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COURSE INTRODUCTION
Computer Animation: 3D Motion Specification and Control
SIGGRAPH 1987

David J. Sturman
NYIT Computer Graphics Lab

Computer animation is a fast growing field. In the past ten years improvements
in computer speed, size, and cost have made animation by computer feasible for
many new applications. Computer animation is now widely used in industry, sci-
ence, manufacturing, entertainment, advertising, and education. Of the various
aspects of computer animation this tutorial will focus on one--motion control.
Motion control involves the translation of an idea for a motion or action into it's
actualization in a sequence of animation. The ease and accuracy of translation
are the criteria with which to measure the quality of a motion control system.

The tutorial is designed for people interested in writing their own motion control
systems and for those interested in investigating existing motion control systems.

The five speakers have been involved in the computer graphies field for a number
of years. David Sturman is a senior research scientist at the New York Insti-
tute of Technology’s Computer Graphics Lab and is an author of much of the
Lab’s animation software. He is a co-author of em a parameterized keyframe ani-
mation system. Roger Gould is an animator for Pacific Data Images, one of the
world’s leading computer animation production houses. He received his BA from
Brown University in 1984. He was the coordinator in the production of “A
Comic Zoom”, a short animation that appeared in SIGGRAPH 1985 and the 1986
film “Animation Celebration”. Dr. Julian Gomez received his doctorate from
The Ohio State University where he authored a publicly available computer ani-
mation system, Twizt. Twizt has been used for a number of animations shown at
SIGGRAPH in the past few years and has been the primary computer animation
tool used by Cranston-Csuri Productions and the OSU Computer Graphics
Research Group. Julian is now with RIACS engaged in research on chaotic attr-
acters and graphic aerodynamic simulators for NASA. Dr. Jane Wilhelms
teaches computer graphics and animation at the University of California, Santa
Cruz and is the author of Deva, a computer animation system that uses dynamic
analysis to model the motion of jointed bodies. Glenn McQueen received his
education as a traditional animator at Sheridan College in Toronto and has been
a computer animator at the NYIT Computer Graphics Lab for the past 3 years.

Four of the lectures have contributed an original paper to the course notes. In
these papers they discuss their own area of expertise as well as comment on the
current state of computer animation. Although some concepts are repeated in
several papers, each author writes from a unique point of view with different
emphasis and meaning.

In addition, several key papers by these and other authors are reprinted. The
papers go into specific detail about different techniques of computer aided motion
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control. The authors were kind enough to grant permission for the reprinting of
their work. They include William Armstrong, Glenn Entis, Michael Girard,
Patrick Hanrahan, Dick Lundin, Nadia Magnenat-Thalmann, Craig Reynolds,
and Ken Shoemake.

In the course itself, the lecturers will discuss the various forms of motion control
currently in use. Examples of these techniques will be shown in computer anima-
tions from recent years. In addition, the role of the animator, vs. the computer
scientist will be discussed with attention to the elements of a computer animation
system that are most supportive of the different types of animation and anima-
tor. Towards the end of the session there will be time for questions and discus-
sion of particular techniques and computer animation in general.

In preparing for this course the lecturers found themselves asking, ‘“What (or
who) is a computer animator?”, and, “What constitutes a computer animation
system?”’ They found that answers were numerous, but that none were complete.
They also found that the act of asking the questions was in itself valuable insofar
as it continually gave perspective and meaning to the more detailed issues. In
discussing various computer animation techniques and computer animation sys-
tems, the lectures will keep these questions open. They invite the listener (and
reader) to keep these questions in mind as well, and, after the course, to ask them
of themselves as they evaluate or design new animation systems.



A Discussion on the Development
of Motion Control Systems

David Sturman
Computer Graphics Laboratory
New York Institute of Technology
Old Westbury, NY 11568
May, 1986

Introduction

Animation is a process to represent change over time, be it the movement of a ‘flying
logo’, the bending of a robot limb, the contortions of a cartoon alley cat, a near-
instantaneous chemical process, or the life-cycle of a star. Animation literally means “to

bring to life”’. It means to take something still and give it vital signs--to make it move.

For the most part, computer animation involves the simulation of motion through the
rapid display of successive images. Each image represents a sequential moment in time
of an action. When these images are displayed fast enough, the human eye interprets
them as continuous motion. When generating animation we are really creating single
frames that, when viewed sequentially, appear continuous. We are all familiar with this

phenomenon.

Motion control is the specification of the frame to frame changes in an animation that
create the illusion of action. Motion control for computer animation has been studied
seriously for some twenty years [Magnenat-Thalmann 85]. In that time there has been
developed a wide diversity of computer systems for motion specification. Each system
attacks a different issue and thus has different strengths and satisfies different needs. No
one system has been able to handle the whole task of motion control. This paper
discusses various types of systems in terms of the basis for their development and

characteristics of their typical users.

Users of Computer Animation

Computer technology has been applied to animation in many ways. The entertainment
industry has made heavy use of it in advertising and ‘Saturday morning’ cartoon
generation. In advertising, computer graphics is used to get a ‘technical’ or ‘space-age’
look to an animation. In cartooning, computers are used to speed up the process of

generating the individual frames of the cartoon. Artists have also used computer
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animation as a new exploratory art form.

On the other end of the spectrum is the scientific community. Engineers use computer
animation for simulating otherwise unobservable or prohibitively expensive dynamics
such as fluid flow across an airplane wing or ship’s propeller. Manufacturers use
computer animation for simulating manufacturing processes, and experimenting with
alternative designs before building expensive equipment. The field of robotics has been
especially active. Here motion control is used to program industrial robots. The
techniques that have been developed are of use in many other applications and the

wealth of robotics literature is a basis for many of the recent developments in animation
systems.

Biochemists use computer animation to simulate minute chemical processes, the bonding
of proteins, the winding of DNA. The visualization of these processes through computer

animation is bringing new understanding to their field.

Perhaps the heaviest users of computer animation are the military, aviation, and
shipping industries. They make daily use of simulators to train pilots, tank crews, ship
captains and operators of other vehicles which are expensive to run. By using
simulators, they can train a greater number of people in nearly realistic situations at a

significantly reduced cost. In addition, hazardous situations can be simulated with no

risk to the participants in training.

Each of these applications has different requirements for a computer animation system.
A system designed for one use is not often useful for another. On the other hand,

systems often incorporate techniques developed for other applications.

2D Computer Animation

One of the first ideas for the use of computers in animation was to speed up the
traditionally laborious process of cartoon animation. Traditionally, cartoon animation is
done by hand. Each frame of the animation is drawn by an artist, skilled in drawing
sequences of images that come to life. Animators analyze real motion either directly or
from film, observing the different components and characteristics of particular actions.
Animators understand that the perception of a motion is often different than the motion
itself. So, they use ‘tricks’ to lead the eye and enhance the action. These tricks
generally employ non-realistic effects that emphasize motions and give greater life to
characters. Objects are squashed, stretched, twisted, enlarged, and otherwise deformed
to exaggerate and emphasize their action. These are techniques learned through years of



trial and error. Animators acquire a repertoire of motions that they use repeatedly in
their work. The pacing and motion of walking, jumping, running, skipping, flying, cloth
movement, emotional expression, mouth movement, speech and a host of other actions

are all basic knowledge to the traditional animator.

A laborious part of hand animation is the generation of in-between frames. To create an
animation, skilled artists draw ‘key’ frames. These frames represent the extremes of a
motion or a critical juncture in an animation. Keys set the general outline and pacing of
an animation, and are generally three to five frames apart. In a thirty second sequence
of animation there are 720 frames (at film rate of 24 frames/sec) of which one hundred
or more may be key frames. The in-between frames (‘in between' the key frames) are
basically slight modifications of the key frames. These can be drawn (laboriously) by less
experienced animators (who can be paid less). To maintain consistency, the ‘“‘in-
betweeners’” must imitate the style of the original animator. A good in-betweener is a
good imitator. (Additional people do the coloring, backgrounds, camera work, etc.). In
this way, an entire feature length film can be made based on the art work of just a few

‘key’ animators.

When animators turned towards computers it was to reduce the labor and tedium
inherent in the animation process. Systems were developed to generate the ‘in-between’
frames from keys pencilled by an animator [Burtnyk 76, Catmull 78]. Typically the
animator draws key frames, carefully drawing each line in a key frame to correspond to
a line in the previous key frame. The computer then interpolates the lines, on a point-
to-point basis, generating each frame between the hand-drawn keys. This is strictly a
two dimensional process, relying on the animator’s skill to generate the correct overall
motion. The main goal is to speed up the animation process by automating in-
betweening. The computer lends a certain look to the animation, but the creativity and

design are still determined by the animator.

3D Computer Animation

With the advent of 3-dimensional modelling, animating and rendering, computer
graphics differed enough from traditional 2D animation to be a new form of expression.
A modeller describes to the computer the detailed environment and models (characters)
of a sequence. The description includes lighting, color, shape and surface properties of
the models, camera lens characteristics, etc. An animator (often the same person as the
modeller) describes the actions that the models, camera and environment perform over
time. The computer rendering system then automatically draws each frame of the



animation with the correct shading, positioning, and perspective for the scene.

The skills required for 3D computer animation are different than for traditional 2D
animation, although they share some common ground. Drawing (drafting) is not as
crucial since the computer provides the correct outlines and perspectives on rendering.
The initial pacing of motion is not as crucial since, once established, motions can be sped
up or slowed down with minimal effort. Nevertheless, the artistic eye traditional
animators have for motion and for representing motion lends a very creative aspect to
their 3D computer animations. Although their actual drafting skills may not be
necessary for 3D animation, their skill in composing and pacing animations are
invaluable. Unfortunately, nearly all currently available 3D computer animation systems
require a fair degree of computer literacy to generate any meaningful work, restricting

their use by traditional animators.

3D Keyframe Systems

At first 3-D systems were developed as logical extensions of 2-D keyframe systems. They
used the simple idea of allowing the animator to interactively position a model on a
screen, specify a frame number, position the model again, specify another frame number,
interpolate, and view the resulting animation. Many hardware devices can perform 3D
transformations and display jointed rigid body models in real-time (1/30th sec.) and so
interactive systems using those devices give immediate visual feedback of the effects of
an animator's manipulations. A simple conceptual basis combined with immediate visual
feedback makes keyframed systems the easiest for computer-novice animators to use and

the most common type of animation system in use today.

Early keyframe systems used rigid body parts, linked at movable joints [Williams 82].
Position control consisted of rotations and translations about those joints. Many systems
allowed scaling of parts, and animation of the eyepoint and perspective transform.
Several kinds of keyframe interpolation were usually provided such as linear, cubic

spline, etc. allowing the animator a measure of control over the in-betweening.

The number of ways a model can move increases dramatically as the model becomes
more complex. The human body, for instance, contains over 200 degrees of freedom.
Animators working with early keyframe systems recognized the need for a higher level of
control if they were to do more complex animations.
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Parameterized Systems

Parameterized systems present a slightly higher level of control over simple keyframe
systems. They utilize keyframe interpolation, but the nature of the data stored at the
keyframes is different. In parameterized systems the modeling of a character is more
closely linked to its animation. The way in which an object can move is specified in the
modelling stage rather than assumed, as is the case with simple keyframe systems.
Degrees of freedom, coordination between parts, limits of motion, etc. are built into
models through the use of modifiable parameters. The animation system provides the
animator control over the parameter values which in turn control the positioning of the
model. The parameters can also describe the geometry of a model to allow shape
changes in the animation. Parameter values are keyed and interpolated as in a simple
keyframe system. One such system, em, has been developed at NYIT [Hanrahan 85).

Parameter driven animation systems require a good deal more computer training and
experience than simple keyframe systems. However, given the extra computer expertise,
an animator has more control over an animation than with the direct keyframe

approach.

Programming Animation

Often an animator requires a special effect, or a specific motion not handled by a general
purpose animation system. In this case the motion has to be programmed directly. This
happens mostly in the scientific community but occurs more often than desired in the
entertainment industry. Programming usually is done in a common computer language
like LISP, C, Pascal or Fortran. Occasionally the language has some extensions to
support graphics or animation. Using a programming language gives the animator
complete control over the animation; however, he may not see the resulting motion until
the program is complete and the full animation is rendered. If the motion is not correct,
the program has to be modified, recompiled, re-executed, and the animation re-rendered.
This may take several minutes to several hours. An alternative is to provide a
programming interface to a general purpose animation system. At NYIT we have a
programmer’s interface that allows programs to manipulate the animation database used
by our keyframe animation system bbop. An important part of our animators’ tools are
special purpose programs that manipulate this kind of database [Lundin 84]. The
database can be reused by bbop at any time for motion preview and interactive
modification. In fact bbop itself can be considered an interactive tool for editing

animation databases.



The direct programming approach is, perhaps, the hardest way to animate for a user
with limited computer experience (animators, biologists, physicians). The quality of the
motion is closely tied with the ability of the programmer to translate a concept into an
algorithm and implement it. Programs are often special purpose and not used more than
once or twice. One of the reasons for this is that it often takes as much time to write a
program the first time as to later adapt it for general use or to teach others to use it.
The most common users are those with computer expertise who can program their own

animations or are employed to program the animations of others.

Scripting Systems

Seripting systems were developed in an effort to provide a method of animating that was
more flexible (and thus more powerful) than a keyframe approach and not as difficult to
work with as a full blown programming language. Scripted animation uses a program-
like script to ‘model’ the animation of a scene. The script usually describes both the
models and animation of a sequence. When describing his scripting animation system
ASAS, Craig Reynolds refers to it as, "a notation for animated graphics® [Reynolds 82].
As a notation it can be read, edited, and modified on any general purpose computer

system. Only when actually rendering images is any special hardware required.

The animator using a scripting system designs and writes the animation script, and then
runs it through the system once for each rendered frame. It may take several minutes
(or longer) to generate a complex sequence for playback, thus feedback can be slow. The
advantage of a scripting system is that it provides the flexibility of programming while
still supporting animation specific capabilities. Libraries of motions and models can be
generated and reused making the animation process simpler as time goes on. In the case
of LISP-based systems, the scripting language is extensible so that new animation
functions and primitives can be added to the system. Scripting languages are usually

easier to learn than general-purpose programming languages and thus easier for people
who are not experienced programmers.
An early scripting system, GRAMPS [O'Donnell 81], takes advantage of a fast,

interactive graphics device to allow real-time manipulation of parameters. In this way
the animator can interactively set values which are then used in the interpretation of the

seript.
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The Scientific Approach

Simulation

For the most part, animation for entertainment is not concerned with realistic
simulation. The goal is communication: if a sequence communicates more by ignoring
reality, e.g. an accordion shaped cat walking away from the crushing blow of 20 tons,
then animators have no hesitation in using it. Not so for the scientific and engineering
community. Realism is important. Looks are not. When a molecule bonds with another
there is no squishing or squashing to emphasize the fact. In simulation, the purpose is to

describe what happens, whatever happens.

Most simulations are programmed directly. When the description of the motion is clear
and well defined, programming is a natural way to proceed. A few general purpose
animation systems are used for simulation, but the simulation and entertainment
communities have different enough goals that systems well suited for one may not be
very helpful to the other. Even so, some of the basic technology is shared and many

techniques developed in one field are used extensively in the other.

Robotic Origins
Many techniques for 3-D motion systems come from the robotics field where the

emphasis is on the control of robot arms and manipulators.

The robotics industry has developed an extensive literature in the problems of
programmed robot control. Some of the major topics dealing with motion control are
forward and inverse kinematics, motion trajectories, dynamics, collision detection, and
path planning [Paul 81, Proc. IEEE Robotics 85]. Most robotics systems are language
oriented systems in which the engineer (animator) writes a series of instructions to
program the robot [Paul 77]. Some systems teach robots by example [Puma 84]. These
systems allow the operator to position a robot arm at certain points in a trajectory. The

robot system then remembers these points and can calculate a smooth path of motion

through them.

In some ways the problems for computer animation are different from those of robotics.
Robotics is not concerned with problems of expressive communication, or non-mechanical
simulation. However, the underlying techniques for motion simulation are the same, and

a study of robotics literature is important for anyone developing a computer animation

system.



Inverse Kinematics

Inverse kinematics involves the determination of joint rotations and part lengths that
result in precise motion, placement, and orientation of an end node (e.g. a robot hand).
This is useful, for instance, when you know that you want a button pressed, and you
don't care how the robot arm gets there, as long as it does. Or in the case of walking

where you want the foot to remain planted on the floor while the knee bends

appropriately to the motion of the hip.

When working with an animation system  that implements inverse kinematics, the
animator specifies discrete positions and motions for end parts. The system then
computes the necessary joint angles and orientations for other parts of the body to put
the specified parts in the desired positions and through the desired motions. Inverse
kinematics is most easily applied to bodies of few linkages. It works well for walking and
for arm/hand positioning [Girard 85]. As the number of linkages increases, the inverse
kinematic solutions to a particular position become numerous and complicated.

Computation slows down considerably and more information must be supplied by the

animator.

For example, it is comparatively simple to determine how much to bend an elbow and
twist an upper arm to put a hand into a mailbox. When you bring into play the rotation
of the shoulder, the problem becomes a little more difficult. At this point, you have to
specify which takes precedence: the twist of the upper arm or the rotation of the
shoulder. Choices may be based upon which is more energy efficient, communicates
better, or is more natural. As you add degrees of freedom, especially ones that create
redundant degrees of freedom, the problem becomes more complicated since there may
be many energy efficient, or natural solutions to a single positioning. The criteria for
selecting must be made more specific, thus more animator intervention. When criteria
are natural, humorous, ponderous, ete. the specification itsell becomes difficult. (What

does natural mean?)

One of the drawbacks of inverse kinematics is mentioned above, namely that it is not
simple to use for complex linkages. Another drawback, perhaps more influential, is that
inverse kinematics is not applicable to all aspects of animation and must be incorporated
in an animation system along with more general techniques. It has been used mainly in
the industrial sector for robotics. A few researchers have successfully experimented with
it for use in production animation, and produced impressive animations, but none have
been embodied in a general purpose animation system [NYIT Demo 84, OSU Demo 84].

-0~
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Goal Directed Systems

Goal directed systems arise out of the concept of director/actor. The director says,
“walk over there”, or “pick the wrench up from the table”, and the actor obeys. One of
the first goal directed systems was SHRDLU developed by Winograd in 1971 as part of a
landmark thesis in artificial intelligence [Winograd 72]. It dealt with a very limited
block-world yet was very effective within this world. The user could direct the system to
put a red block on a blue block and the system would figure out where the two blocks
were and what motions to perform to get the one on top of the other. David Zeltzer has
developed a goal directed system based on the idea that objects can be given ‘motor
skills’ and then directed to use those skills [Zeltzer 82, Zeltzer 84]. Research in goal

directed systems has also been going on at the University of Pennsylvania [Korein 82].

The main effort of using this type of system is ‘teaching’ objects required skills and
giving them sufficient knowledge to act consistently within their environment (for
example, avoiding obstacles or walking over uneven terrain). The ease of use of these
systems lies entirely with the interface presented to the animator. Their limitation lies
in the mass of background information needed in order to direct a character through a
variety of motions in a non-trivial environment. However, once a skill is taught, it can
be used repeatedly with little work. This is a system that gets more powerful with

extended use.

Dynamics

Although inverse kinematics entails solving the body position for a desired effect it does
not take into account the mass and inertia of the body in motion. Thus animations
produced by these systems often have an unrealistic appearance. The objects do not
seem to have weight or mass, and thus speeds of movement are inaccurately represented.
Dynamics takes into account mass and inertia as well as the various forces acting on the
body. Animations come out realistically at the expense of much (slow) computation per

frame. Characters move correctly and appear to have weight and substance.

General purpose animation systems incorporating dynamics are still in the experimental
stage. For the most part, they have been used in robotics to simulate robot arm masses
in motion. They require some programming to set up a model with the correct
characteristics and then to apply the correct forces. Once that is complete, the system
works out the rest for itself. Recently, Jane Wilhelms developed Deva, an interactive

system for setting up and previewing the dynamic motion of articulated bodies [Wilhelms
85).

..]!_.-
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Dynamics may be the best way to achieve realistic motion for simulations. Combined
with goal direction, it could provide an excellent basis for a general purpose animation
system. Special effects involving unrealistic motions will still be needed so the ability to

override the dynamic control will be necessary.

Other Techniques

There are an infinite variety of motions. The techniques described above only address a
few of them. Other techniques have been developed to animate specific behaviors.
These include particle systems [Reeves 83], systems that act on amorphous
forms [Kawaguchi 85], group animation [Amkraut 85|, and others. These systems handle
special cases of animation and are of limited use except when integrated into a more
general purpose animation system. They often require more skill in programming than

in animation yet hold an important place in the overall scheme of animation.

Discussion

As indicated, there are many techniques and systems used for motion control for
computer animation. Each one answers a particular need or caters to a particular class
of user. No one system answers all needs, yet each system has an appropriate place in
the computer animation tool bag. This is a natural state in the evolution of any

discipline. As time goes on these systems will be integrated so that an animator has

many of these techniques available at once.

The recent trend in animation systems has been towards higher levels of control [Korein
82, Zeltzer 85, Wilhelms 85]. Higher levels of control are always based on lower levels of
assumption. To make a dynamics simulation perform correctly requires the pre-
specification of masses, forces, links, etc. The higher the level of control, the more pre-
specification is required. Some systems have a default set of assumptions to simplify the
animator’s set-up. Nonetheless, this still requires an initial specification of the default
set-up. Sometimes non-animators find a system easy to use but have difficulty with the
initial set-up. For instance, animators at NYIT find that the initial set up for the
parameter system, em, is relatively difficult, but that em affords better control over the
model and animation than the conventional keyframe system, bbop. Experience has
shown, though, that bbop offers sufficient control for most animations and, because of the
easier set-up, is more likely to be used. Occasionally, animators find that neither system
fits their needs and so program the motion themselves. In such cases, they often bring
the completed motion back to the general purpose system to do touch-up work or to
coordinate it with other action in the animation. Thus, when providing higher levels of

-12-
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control, it is important that the increased level of control not require a difficult set-up,

and that the animator still has access to all lower levels of motion control.

One difficulty in the design of animation systems is that systems are designed by
computer scientists based on their own understanding of the needs of animators, or are
designed by computer scientists who want to do animation themselves. Rarely (if ever)
are systems designed and implemented by animators. Industrial and scientific animators
often have a specific idea or set of rules and algorithms from which a motion control
system can be designed. This can help in getting the animation capabilities right, but
even so, the resulting system is often easier to use for the computer scientist than the

animator.

Animators usually want something to happen, an effect, such as a ball bouncing and
hitting a wall, or a shock wave crossing an airfoil. They do not want to have to write
down (or know) the equations for the motion of bodies in the influence of gravitational
forces, or the formulas for fluid flow. They may just want to control the weight of the
ball or the shape of the airfoil. But, they find that they cannot get the effects they
desire without programming. In many computer animation production houses computer
programmers work alongside animators, writing special purpose programs and using
more complicated animation systems to provide effects that the animator can visualize
but not implement. The scientific and engineering communities are analogous. A
solution may be to provide systems that do not require programming skills to use. This
would open the field to more traditional animators. Then again, perhaps animators
should learn to program. Systems may be more powerful and versatile if users can
express their ideas algorithmically. Up until now, most animators have found it
necessary to learn programming, but the field is still young and has not taken root on
any particular ground. These issues will be dealt with slowly as the various users and
implementors work together, each building upon the skills and understanding of the

other.

- 13-
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Interactive Keyframe Animation of 3-D Articulated Models

David Sturman
Computer Graphics Laboratory
New York Institute of Technology
Old Westbury, NY 11568

Abstract

This paper discusses some of the issues concerned with keyframed computer ani-
mation of 3-D articulated models and the problems in designing interactive sys-
tems for this type of animation. Examples are taken from the four years of key-
frame animation of articulated models done at the NYIT Computer Graphics
Lab, and from our recent attempts to refine our original keyframe animation sys-
tem, BBOP. This paper also addresses the importance of the interaction of ani-
mators with keyframe animation systems as an element in the design of such sys-
tems.

Résumé

Cet article aborde certains des aspects de 'animation par ordinateur traitée par
images intermédiaires de modeles 3-D articulés et des problemes de la conception
de systemes interactifs appliqués a ce genre d’animation. Des examples décrits
sont extraits de nos quatre ans d'expérience en animation par images
intermédiaires de modeles articule$ au sein du NYIT Computer Graphics Labora-
tory et de nos récentes tentatives d'améliorer notre systeme d’animation par
images intermédiaires, BBOP. Cet article souligne aussi l'importance de
'interaction des animateurs avec des systemes d’animation par images
intermédiaires comme un élement de la conception de tels systemes.

KEYIVVORDS: Animation, articulated model, keyframe, interactive, user-
friendly.
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Introduction

Animation for film and video has traditionally been a long and tedious task,
with many animators drawing and painting each frame by hand. With the
advent of computers, animators turned toward these machines to take the
drudgery out of the animation process. Early systems worked with two--
dimensional images, automating the tedious inbetweening task. Animators
specified the correspondence between lines in successive key frames by tracing
them in a fixed order. The computer would generate the frames in between by
interpolating corresponding lines from the keyframes [1,2]. This technique has
been refined and is still very popular in modern animation systems like the
TWEEN system produced by CGL, Inc. [3]

As three dimensional animation became possible with faster machines and
better display hardware, keyframing was adapted to 3-D animation. Instead of
interpolating corresponding 2-D line segments, 3-D animation systems interpolate
transformations at joints in a three-dimensionally represented model. Key frames
consist not of 2-D images, but of 3-D positions of a model.

Because the models were represented in 3-space and projected on the image plane
by the computer, these systems tend to produce more realistic-looking images,
than those produced by an animator who approximates a 3-D representation with
a 2-D drawing.

This paper discusses some of the techniques and problems in the design of
3-D keyframe animation systems, stressing the importance of animator interac-
tion. It draws heavily on the NYIT Graphics Lab’s keyframe animation system
BBOP[4,5], and a more recent NYIT animation system, EM[6].

Models

The information stored in a model is an important aspect of any animation
system. One simple way to define models is as a set of rigid objects jointed at
nodes, organized hierarchically into an articulated body. At each node or joint, a
3-D transformation matrix controls the position of the portion of the body below
that joint. Transformation matrices are nested in accordance with the body
structure. The position of the model at any one instant is determined solely by
the transformation matrices. The only intelligence contained in the model is the
topology of the body parts and the degrees of freedom at each joint. Alone, the
model is a static entity. To make the model move, the animator uses the anima-
tion system to control the 3-D transformation values at each joint. The “‘rigid
object’” stipulation allows scaling of the body parts (using the joint matrices) but
not flexing or changing their basic geometries. These are the types of models
used by the animation systems BBOP and GRAMPS[7]. The particular model
structure was motivated by the Evans & Sutherland Multi-Picture System
(MPS), on which the systems are based. The MPS manages nested transforma-
tions easily: performing real-time transformation, clipping, and display of lines.
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Like BBOP, EM uses models constructed of parts connected at joint nodes.
However, EM uses a geometric modeling language which allows parametric con-
trol over the transformations at each joint and over the geometry of the indivi-
dual body parts. The set of parameters define the model’s final position, shape,
and characteristics. Parameters can be constrained and coordinated with respect
to constants or other parameters in order to give the model intelligence in the
way it moves. For instance, the motion of a ball can be dependent on the slope
of the floor it rolls across, or swinging arms can be made to swing opposite to
each other.

Scripted systems [8,9,10,11] use procedural models [12], which embed the
possible motions of the model in the model description itself, leaving some
parameters for external control.

Regardless of the implementation of its models, an animation system should
allow animators to easily modify model structure and movement. Interaction and
visual feedback are important. Systems like BBOP, EM, and GRAMPS are
significant in this regard because the animator can immediately view his changes.

Positioning models

Because keyframed animation is based on key ‘‘still”’ frames, the method of
creating these frames is a vital component of the system. The animator must be
able to easily set up all the parameters necessary to define a keyframe. One basic
method of positioning a model in a keyframe is to type in a joint identifier, the
parameter to be changed at that joint, and the value for that parameter.
Although functional, this method is not easy to use.

In BBOP the animator selects a joint using a joystick to traverse the
transformation tree of the model. With a set of function keys, the animator
specifies that he wants to modify the translation, rotation, or scaling parameters
at that joint. Each parameter set has three elements, one for each of the x, y,
and z axes. Using a three-axis joystick, the animator can modify these three
values and watch the model move on the screen. BBOP provides no constraints
or rules about moving the model, except that it follows the x, y, z movements of
the joystick. When manipulating a human body model, for instance, limbs can
disconnect from the body structure and joints can be bent at unrealistic angles,
even causing a limb to enter the body itself. At each joint, the interaction is the
same: the x, y, and z, translation, rotation, and scaling parameters are controlled
by the three outputs of the joystick. This makes the system simple to use, and
an inexperienced person can learn to manipulate a model in just a few minutes.

GRAMPS, which has a similar interactive input method, takes a step
beyond BBOP by allowing several devices for input. By means of simple func-
tional assignment statements, values from eight dials, a data tablet, and a joys-
tick can be used to modify the model’s parameters. For instance, the animator
can assign the inverse value of a dial to the rotation of a character and set
bounds on the values the rotation can assume. EM builds on BBOP and



GRAMPS, allowing input modes to be defined dynamically with complicated
dependency expressions including other parameters and multiple input devices.

We noticed an interesting phenomena in systems which have user
configurable inputs. In BBOP, the interaction modes are predefined and remain
the same from joint to joint and model to model. An animator can sit down with
a new model and immediately begin to manipulate it. In EM, the interaction
modes can be configured specific to each parameter and joint in the model’s tree
structure, and by each user. Each model and each user can have different input
modes. Thus, it is difficult to sit down with a new model and animate it right
away. It takes time for the animator to get used to the model’s control charac-
teristics. Once familiar with a model's movement, however, configurable inputs
have proven to be very effective. Especially useful has been the ability to
interactively control parameters of several joints of the model at the same time.
For instance, the animator can rotate the shoulder, wrist, and waist of a model
simultaneously. This was not possible with BBOP.

Modeling camera movement is also an important part of an animation sys-
tem. There are many ways to move the camera interactively. We first must
define the coordinate axes in which the camera can be moved. We define the
pivoting of a camera on its own axes, i.e. tilting, panning, and rolling the camera,
as rotation in the camera’s local coordinate system. Camera movement around
an external center point is movement in a global coordinate system. This is
exemplified by a camera mounted on a crane that moves around the space of the
“animation studio.” In BBOP, the center of global camera movements is always
the center of world space and cannot be changed. Movement along arbitrary
coordinate axes would be an important enhancement to the camera model. This
would aid in tracking a movement of the model or moving the camera along a
particular trajectory while maintaining a constant object of interest.

The second aspect of camera movement is how the camera moves relative to
the model or scene. One approach to interactive camera movement is to have
the joystick (or other interactive device) operate as if it were attached to the
camera. This is the local or “airplane” method of camera control, because the
joystick models the pitch, yaw, and roll of an airplane joystick. Pushing the
joystick forward causes the camera to tilt down; pulling the stick to the side
causes the camera to tilt to that side. The second method is to model the input
as if the animator were controlling the world. In this “global” mode, joystick
control creates just the opposite effect of the ‘‘airplane” method. Pushing the
joystick forward causes the camera to tilt up (or apparently, the world tilt to
down, away from the eye). The two methods are computationally equal since
moving the camera to the left is indistinguishable from moving the world to the
right. Different people favor different approaches; however, the majority prefer
the “move the world” approach because the picture they see moves in the same
direction as the joystick. BBOP and EM also can simulate multiple cameras,
enabling an animator to display the same animation as seen from several

viewpoints.

i Ba
«20=



In addition to camera movement, there is local and global movement at the
joints of the model. That is to say, transformations at a joint can take place in
the coordinate system local to the joint or in the coordinate system of the next
higher, or “parent,” joint. (In an ideal implementation the animator would be
able to effect transformations in any coordinate system. This would aid, for
instance, in making a figure walk so that it rotates over the balls of the feet, not
around the center of the body.) Because BBOP has just one interaction mode -
joystick x, y, z controlling model parameters x, y, z, — the joystick’s motion often
has little physical relation to the motion of the model on the screen. To get
around this problem, the animator can display the local coordinate axes as they
move with the current joint. EM fosters more natural interaction because the
animator designs the input modes, adapting each to a particular manipulation of
the model. An example of this is to set the tablet x/y to be the model x/z posi-
tion on a floor, and the joystick x, y, z to the model’s rotation around its z, x, y
axes respectively. Pushing the joystick away from you would make the model
tilt away from you.

The most natural input method perhaps would allow the animator to point
directly to a joint and “drag” it around on the screen. Thus the animator would
manipulate the model by pushing and pulling it into position. There are, how-
ever, implementation problems in trying to manage 3-D control from a 2-D view.
For instance, determining the coeflicient of movement along the axis perpendicu-
lar to the screen can be quite complicated. A typical solution would be to set
that “z"" coeflicient to zero, but a more sophisticated solution would be better.

Finally there are non-kinetic parameters such as color, reflectance, elasticity,
etc. which the animator may need to control. These qualities may be required if
a raster version of the animation is desired, and sometimes are perceptible only in
a fully rendered scene. The time it takes to render scenes is usually prohibitive
to display the actual property to the user in an interactive fashion. An alterna-
tive form of viewing these values is necessary. In EM, the animator can learn the
current value of any parameter by typing its name. With color vector devices,
part of this problem can be solved by coding various properties with different
colors.

Keyframing

A frame in an animation is basically a description of the particular state of
the world at a particular instant in time. In a keyframe system, the animator
need not describe each frame. Instead he describes a set of “key frames” from
which the animation system can interpolate the frames in between. Interpolation
of intermediate values can be linear, cubic spline, cosine, etc.

The information stored at a keyframe may vary from a total description of
the scene and animation to the value of a single parameter used in the generation
of a frame. In scripted systems, the “key” information is more like a cue to a
stage performer [9]. The cues tell the models (or actors) to start, stop, and in
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some cases to modify or switch their behavior to some other pre-programmed
mode. In goal-oriented systems, the animator describes a goal state and the
model moves towards that state using its knowledge of itself and the world
[11,13]. Goal states can be considered the keys with the model itself generating
the inbetween movements.

To set up keyframes in BBOP or EM, the animator positions the model on
the display screen. Then he can record the position of the whole model, a subset
of the model, or just the value of a single parameter as a keyed position in a par-
ticular numbered frame. In 3-D systems, each parameter has its own set of keys,
unlike 2-D systems which key a whole image. In BBOP, every value at every
joint for every frame is saved. Those values to be used as keys have a note to
that effect. This is a simple but storage-intensive implementation. When an ani-
mator specifies a position as a key in EM, the system saves only the values of
keyed parameters, the frame number, and interpolation information about the
interval between that key and the next. EM has been implemented in a way that
eliminates the need to maintain values at the inbetween frames. This scheme is
more complicated than BBOP’s, but more space-efficient. EM also can save key
positions by name, separate from the interpolated sequence of numbered key-
frames. Numbered keyframes can contain references to named keys, thus provid-
ing a sort of macro facility to the keyframe process. For example, if the same
position is needed in multiple keyframes, the position can be described once and
then referenced by each key. If the position needs to be changed, modification of
the original copy modifies it in the other keys.

An animator often uses the same key many times. Copying keyframes from
one position to another at first seems to be conceptually simple, but when looked
at carefully a number of issues become apparent. Frequently, an animator copies
(or moves) keys forward or backward in a sequence to change the pace or timing
of an animation. Moving a keyframe forward to expand a sequence can be done
by moving the key to the new location, pushing subsequent keys forward in the
process. This expands the particular key interval but also lengthens the entire
animation. For modification of the timing of an entire animation, or non-
synchronized motions, this is a valid approach. However, moving a key for a
motion that is, at some point, synchronized or cued to other motions will push
the subsequent keys out of synchronization. Clearly the subsequent keys cannot
be moved forward with any integrity unless corresponding keys for the entire ani-
mation are also moved forward. Thus, lengthening a keyframe interval for a sub-
set of a model’s parameters requires a corresponding contraction of another key-
frame interval. The reverse is also true.

In expanding or contracting an interval, an animator may wish to preserve
the characteristics of the original motion in the interval. For the most part,
interpolating functions take care of that. However, there are cases in which the
modified timing of the intervals produces a motion with undesirable characteris-
tics. This is especially true with cubic spline interpolation where keyframe spac-
ing affects the shape of the interpolating curve.
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Creating motion cycles is another technique that requires copying keyframes.
Repeated motions are common in animation, as in the cycle of a walk or swing.
To generate a cycle, an animator can manually copy keyframes of the basic
motion to multiple locations, one for each repetition of the cycle. This method is
tedious and error-prone. Often the original keys contain information unnecessary
to the cycle and need to be trimmed down. Additionally, if the motion is to be
repeated many times, the keyframe copy process is unwieldy. Ideally, some form
of cycle operator or interpolation should exist in the animation system.

An alternative approach to modifying animation pacing or cycle generation
is to manipulate the sequence of frame playback. An animator might draw a
curve as a function of time to indicate to the animation system the frame play-
back sequence he wants. This curve could be saved and later used to control
frame playback. A ramp function might be used to produce linear playback of
frames at a speed dependent on the slope of the ramp. Cosine curves would
create cyclical animation. Acceleration and deceleration could all be described in
terms of this function. With further refinement, different parts of a model or ani-
mation could become subject to different pacing functions.

As well as being able to key motions, the animation system should make it
possible for the animator to key attributes such as color, reflectance, etc. A flexi-
ble database is necessary if these attributes, varied in number, are to be added to
a model without destroying previous animation.

Using keyframe systems, an animator must manage scores of joints across
hundreds of frames; perhaps hundreds of individual keys. Several systems have
successfully tackled the problem of giving such control to the animator. One
such system, MUTAN][14], divides a model or group of models into tracks -
separate entities that can be keyed individually. For each track, the system
displays a sort of ruler that spans the range of frames. Tick marks indicate keys
and include notations about the action at that key. Animators manipulate the
tick marks to change key positions. MUTAN also has a mode which the anima-
tor can use to deal with the set of keys at a particular frame. Another system,
DIAL[15], employs a specialized notation that the animator edits on a regular
alphanumeric terminal. It displays frames horizontally and tracks vertically on
the screen. The animator can view parallel tracks at once to facilitate coordina-
tion of keys. BBOP and EM have a special motion editor to manipulate keys
along a single track (or parameter), and a command that prints the list of key
frames for a particular parameter.

Interpolation

The interpolation process has been given little attention in many animation
systems. Usually they only support linear and cubic spline interpolation. Some
systems allow cosine interpolation and acceleration or deceleration functions.
Animators’ experiences with BBOP indicate that control of the inbetween frames
is very important. There are cases in which the animator only needs linear or
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cubic spline interpolation, but there are also cases in which a more sophisticated
motion is desired. One way to accomplish this is to add more keyframes. With
this method, however, the animator quickly gets lost in a forest of keys, and the
efficiency of the computer in-betweening is lost. Another solution is to offer a
variety of interpolation types which can be selected for the intervals between
keyframes. This scheme is better but the interface must give the animator a
clear picture of the various interpolation types and the motions they produce.
Limiting the animator to typing in keyframes and interpolation information may
not be sufficient.

BBOP addresses this problem by providing a motion editor. The animator
uses the motion editor to view the values of a parameter across the span of the
animation. Key frames are clearly marked along the curve. The animator can
add or delete keys and specify one of several functions to interpolate values in
individual keyframe intervals. In addition, the animator can hand draw the
desired motion between keyframes to achieve unique movement.

With more than one type of interpolation possible, especially across the path
of a single parameter, it is important how curves of different interpolation types
are joined. To control the continuity of the overall animation, the animator
must be able to determine the degree of continuity across keyframes. Also, the
interpolant’s behavior at key boundaries is an important factor in its behavior
between keys. ASAS solves this problem by using piecewise cubic curves with a
selectable degree of continuity at the joints. MUTAN lets the animator specily
acceleration or deceleration functions at keys. The BBOP motion editor supports
an ease-in/ease-out function to match slopes at key boundaries. Using BBOP, an
animator usually positions models at key frames, previews the motion generated
by the default cubic interpolation of the inbetween frames, and then fine-tunes
the movement in the motion editor. The motion editor allows an animator to
give characters idiosyncratic motions, limps, jerkyness, and human-like qualities
that linear and cubic interpolation would not provide.

Conclusions

The art of 3-D animation goes beyond positioning models, setting keyframes,
and interpolating the inbetweens. Although many animations can be made with
these methods, a wide range of situations require more. Scripted animation sys-
tems provide one set of solutions. They tend to allow a high level of control over
an animation, simplifying many types of motion control, and are often used to
model algorithmic or functionally-defined motions. These systems are well suited
to goal-directed animation and the simulation of mechanical processes. However,
scripted systems are not good at producing the idiosyncratic and non-algorithmic
“natural” motions that professional animators favor in their productions. In
addition, they do not provide immediate feedback — an important element in ani-
mation systems geared towards animators. Clearly, some combination of scripted
and interactive keyframe animation is desirable.
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The combining of the two approaches has been researched over the past year
at NYIT, primarily by Pat Hanrahan. The animation system, EM, that has
grown out of this research, is more clearly detailed in a paper submitted to the
ACM SIGGRAPH '84 conference.
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This paper describes a program which al-
lows parametric models of three-dimen-
sional characters and scenes to be interac-
tively controlled for computer animation.
The system attempts to span the two most
common approaches to animation: lan-
guage-driven or programmed and visually-
driven or interactive. Models are designed
in a geometry language which supports
vector and matrix arithmetic, transforma-
tions and instancing of primitive parts. As
a result, constraints and functional depen-
dencies between different parts can be pro-
grammed. Control is achieved by parame-
terizing the model. Subsets of parameters
can be connected to different logical input
devices, establishing an input mode to
control the model’s shape. Parameter sets
can be stored to form a database of posi-
tions. Positions then can be mapped to
frames and interpolated to animate the
model.
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4+ ™ hree-dimensional  computer  animation
draws its power from the partnership be-
tween the animator who describes a scene’s
characters and environment once and the
computer which, from this description, is able to
synthesize images from different views, adding de-
tails such as color, texture, and lighting. Recently
great strides have been made in describing and ren-
dering three-dimensional environments (e.g., Smith
1983; Tucker 1984). Computer animation, how-
ever, poses additional problems to those of gener-
ating static imagery. One has to control changes
in the shape of objects, their movement, and their
surface properties such as color and reflectance,
as well as the methods used to render and compose
the individual frames.

There have been two major approaches in the de-
sign of animation control systems. The first type
of system, exemplified by ANIMA-II (Hackathorn
1977), ANTS (Hackathorn et al. 1981), ASAS
(Reynolds 1982), and MIRA-3D (Magnenat-Thal-
mann and Thalmann 1983), uses a complete pro-
gramming language enhanced for animation. Sup-
port is provided to model shapes and to move ob-
jects. A script, or program, is then written to gener-
ate the animation. Facilities can be provided to
automatically iterate through time or control and
coordinate multiple parallel processes. The second
major class of system, exemplified by GRASS (De-
fanti 1973), BBOP (Stern 1983a, b; Sturman 1984)
and GRAMPS (O’Donnell and Olson 1981), is in-
teractive and picture driven. The model is posi-
tioned by the animator in real time and positions
are stored in a database at key frames and interpo-
lated to form the animation.

Both types of systems have advantages and disad-
vantages. The language approach is best for algor-
ithmic movement or when the movement is to sim-
ulate a physical process, whereas the interactive ap-
proach tends to achieve more natural, personalized
motions. An advantage of using the programmed
language approach s that the animator is required
to codify his algorithms, and therefore, as the sys-
tem is used, new capabilities and tools are added.
Of course, learning to use such tools requires anima-
tors with programming experience. The language-
driven approach tends to be flexible because many
different types of changes can, in principle, be con-
trolled. High-level control strategies such as goal
directed or functionally defined motions are likely
to be language-based. However, the ultimate crite-
rion is the quality of the final images, and since
interactive systems provide immediate visual feed-
back, they encourage choices based on aesthetic
values rather than implementation considerations.

The Visual Computer (1985) 1:260-266
© Springer-Verlag 1985
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We have been trying to combine the two ap-
proaches. Scenes are described with a gecometric
modeling language. The description includes the
overall structure of the characters and the environ-
ment: the geometry of the different surfaces, the
transformations which connect the different parts,
and the constraints which allow the parts to be
coordinated. A set of parameters is also declared;
the final position, shape and characteristics of the
model is a function of this set of numbers. An
interactive program interprets this language and
also provides an environment in which the anima-
tor can control the model.” Users can tailor their
interactive environment by designing their own
screen menus, function keys, and command abbre-
viations. Most importantly, users can continuously
modify different parameters by connecting their
values to numeric input devices. The model is dis-
played on a real time vector display and its position
changes continuously. The interpreter also controls
a generalized parameter database. The database
saves useful parameter sets, and also provides tools
so that these parameters sets can be manipulated
and recombined. Animation is generated by put-
ting parameter sets in keyframes and interpolating
the inbetweens.

Parametric models

The modeling language example in Fig. 1 describes
a tube capped with two spheres. The length of the
tube is “a’ and its radius is “r”. Figures 2 and
3 show the displayed model.

: — Niupy] —

C.omputer

The language is block-structured, similer to Pascal
or Algol. Each block is delimited by braces and
can be given a name following the opening brace.
Tube, center, left, and right are the block names
in Fig. 1. Variables are local to the block in which
they are declared and conform to Pascal-like scop-
ing rules (that is, variables declared in an outer
block are accessible to an inner block if not rede-
clared in the inner block, and variables declared
in an inner block are inaccessible to an outer
block). Primitive shapes are created by naming the
generic type. Typical primitives are quadrics and
polygons. Expressions can be used to obtain scalar,
vector, or matrix values, and can be constructed
from a wide set of logical and mathematical opera-
tions and functions. Transformation matrices are
formed by the commands move, rot, and scale.
Statements whose resulting value is a matrix cause
that matrix to be concatenated onto the current
transformation matrix. When a block ends, the cur-
rent transformation matrix is popped off the
stack.

A special class of variables are designated as pa-
rameters which can be used to modify the final
shape of the model. Typical uses of parameters
are to define joint rotations. For example:

{ % Euler-joint
parameter scalar phi, theta, psi

{ % tube
parameter scalar a=2, r=1 % initial values set to 2 and 1

{ % center

rot =90z % rotate —90 degrees about the z axis
scaler, 2+a, r % scaleinx, y, and z
cylinder % vertical cylinder of length 1, radius 1
}
{ % left
move —a, 0,0 % moveinx, y,andz
scale r % scale x, y, and zby r
sphere % sphere of radius 1
}
{ % right
move a, 0, 0
scaler
sphere

}
}

Fig, 1. Model description of a capped tube

rot phi x
rot theta y
rot psi z
}
"'\.% /?
"-‘.\ L4+
2 ANl
Fig. 2. Capped tube with a=2,r=1
B .
i) i
J iy
Fig. 3. Capped tube witha=3, r=0.5
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parameterizes a joint by the three Euler angles
which can be used to define an arbitrary rotation
in three dimensions. Parameters also may partici-
pate in constraint expressions.

{

parameter scalar phi
rot limit (0, phi, 45) x

}

shows how the rotation about the x-axis is forced
to lie between 0 and 45 degrees. Coordinating dif-
ferent parts of the model can be achieved by having
them depend on a single parameter. To swing two
arms in opposite directions, we can parameterize
a model as

{% body
parameter scalar wx
{% left-arm
rot wx x

{ % right-arm
rot —wx x

-
}

Objects, as well as transformations, can be parame-
terized. A simple script interpolates between a tri-
angle whose vertices are defined by the three vec-
tors (al,a2,a3) and another defined by the three
vectors (b1,b2,b3) (the function lerp linearly inter-
polates between its second and third arguments
based on a percentage expressed in the first argu-
ment):

{

parameter scaler t
vector al,a2,a3
vector bl,b2,b3

triangle lerp(t,al,b1), lerp(t,a2,b2), lerp(t,a3,b3)
}

The interpreter reads a model and then compiles
a program that displays the model on a real time
vector display (Evans and Sutherland Multi-Pic-
ture System). When the interpreter is running, any
variable can be changed by simply assigning a new
value to it. This causes an incremental re-execution
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of all the statements that depend on that parame-
ter. To achieve fast updates, we build a dependency
graph which lists the variables depending on cach
line and the lines depending on cach variable.
Therefore, some conventions must be followed
when designing the model. For example, state-
ments that produce cyclic dependencies are not al-
lowed.

The interpreter accepts and immediately executes
modeling language statements, as well as com-
mands, to the interactive system. These commands
can be typed in or read from a file. One group
of commands is used to move to different blocks
in the model in a manner analogous to traversing
a transformation tree. At each particular block,
only those variables in its scope are considered ac-
tive and can be changed. Other commands are used
to set up different interactive modes and to manip-
ulate the database.

Interactive control

One of the main goals of this system is to make
interaction as flexible and extensible as possible.
We felt that the best approach would be to design
an interpreter with a comprehensive set of com-
mands, and provide tools with which the user can
structure those commands into a personalized in-
terface. The user dynamically loads this interface
into the system. There are three primary tools for
setting up interaction modes: a system of relating
input devices to parameters, a menuing facility,
and a method for programming keyboard and
function keys.

To control parameters with input devices, we model
inputs as varibles whose numerical values are func-
tions of physical devices. Physical devices include
a data tablet, a set of eight dials, and a three axis
joystick (Fig. 4). Each of the x, y, and pen status
(z) values of the tablet are variables, as well as
mouse-X, mouse-y, and mouse-z values which cor-
respond to the rate of change of tablet x, y, and
z values. In addition we have a set of number wheel
(Thornton 1979) variables connected to the x and
y movement of the pen. From the joystick we get
X, y, and z deflection values. From the dials we
get absolute values as well as rates of change. There
also is a logical “ticking” device which can be
used to increment (or decrement) a value at regular
intervals. Active input variables are monitored
continuously. As they change, statements that de-
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pend on them are re-executed and the model is
modified on the vector display device. Statements
relating parameters and input devices can be en-
tered on the keyboard or read in from a file. To
demonstrate this we modify the model description
in Fig. 1 as follows:

{ % tube
parameter scalara=2, r=1
% initial values set to 2 and 1
parameter scalar dx=0, dy=0,dz=0, spin=0
move dx, dy, dz
rot spin y
{ % center

™
-

Now we can control the movement of the tube
with the following assignment statements:

% rotation about y axis

dx + = wheelx
dz + = wheely
spin + = 10sjoyz

Il

Il

The left side of the assignment statement is a pa-
rameter declared in the model. The right side of
the equation is an input variable. The right side
of the statement may contain any expression in
the modeling language. The three statements above
increment the x-axis displacement of the tube by
the value of the tablet x-axis number wheel, the
z-axis displacement of the tube by the value of

Fig. 4. Workstation showing terminal, keyboard, Evans and
Sutherland Multi-Picture System, joystick, tablet and dials
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the tablet y-axis number wheel, and the spin (or
rotation) of the tube by the value of the z-axis
ol the joystick. The statements arce re-executed con-
tinually while the input devices are being used. so
il we deflect the joystick on its z-axis, the tube spins
in the direction of the deflection. If we want to
constrain the displacement of the tube to lic along
its longitudinal axis only, we can establish the fol-
lowing input mode:

dx + = Sxwheelx*cos (spin)
dz + S*wheelx*sin (spin)
spin + = 10xjoyz

I

At each block, any of the currently active variables
can be related to input devices. This, for example,
allows us to maintain control of the camera move-
ment variables regardless of which block we are
at in the transformation tree. Different sets of in-
puts can be specified for cach block of the model.
When the command interpreter enters a particular
block of the model, it reads in a saved set of input
assignments for that block. Accordingly. each block
can have an input control with characteristics best
suited for it: such as using the tablet to control
motion of the whole body. and the joystick for
an arm. In addition. the user can read in any sct
of input assignments allowing alternative input
modes for the same parameter sets.

The menuing system allows users to create their
own system of menus to interface with the com-
mand interpreter. A menu is a text file of items
that can be displayed on the screen and selected
using a tablet. The item picked is then input to
the command interpreter. Commands can also be
typed in. There is a command to switch to another
menu so the user can organize a network or hierar-
chy of menus. Users may use the default menus,
or create and organize their own menus on a per-
model. or per-user basis. The command interpreter
itself generates a set of menus that can be used
to move o each block of the model. and to pick
parameters of the model.

Finally users can “‘alias™ keys and key-sequences.
The alias facility allows users to assign commands
to one key or sequence of keys. For instance, a
frequently used command that is particularly long
can have an alias that is either an abbreviation,
or a single key on the keyboard. The command
interpreter responds to the abbreviation or key ex-
actly as if the full command had been given. Keys
and abbreviations need not represent full com-
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mands or lines. Partial commands and strings can
also be aliased. In addition sets of aliases can be
saved and read in automatically.

Manipulating parameter sets

In addition to controlling the values of parameters
by means of interactive input devices, there is a
system for storing, recalling and manipulating sets
of parameters. The hierarchical structure of the
parameter database tesembles the structure of the
model defined in the modeling language. Each
model block is represented as an association list
whose value is the set of its parameters and inner
blocks. Parameters are saved as name-value pairs.
For example, the data for the lower body of a
character (Fig. 5) might be represented as:

(lower-body
(wy{0.0})
(I-leg

(wx{0.0})
(wz{0.0})
(lower-leg
(wx{0.0})
(foot
(wx{0.0})
(wy{0.0})
(wz{0.0})
(toes
(curl{0.0})))))
(r-leg
)

(In this hypothetical model the wx’s, wy’s and wz's
represent rotations about the x, y, and z axis.) In
the printed representation of the database, paren-
theses enclose association lists, and braces enclose
numerical data. Names following left parentheses
correspond to names given to blocks and parame-
ters in the model. Commands exist which read and
write parameter sets from the database. For exam-
ple, it is possible to write all the parameters that
are within the current block and sub-blocks, or
write all variables within the scope of the current
block which match a regular expression. Besides
these transactions, the data base can be stored in
a text file and directly edited.

The current values of all the parameters are stored
in a working database. By repositioning the model
(updating the working database) and then copying

264

_al-

all or a portion of the working database to a states
database, we can develop a library of positions.
When any one of those positions is re-rcad into
the working database, the command interpreter ex-
ecutes the modeling statements depending on the
changed parameters and updates the display. In
this example, the default parameters for a lower
body shown in Fig. 5 are stored under the name
resting.

(resting
(lower-body

=)

A subset of parameters which bend the knee can
be stored as:

(bent-knee
(lower-leg
(wx{—45.0})
(foot
(wx {20.0})
(wy{0.0})
(wz{0.0})))

The database allows parameter sets to contain
pointers Lo other parameter sets. These are repre-

Fig. 5. Lower body in the resting or default position

Fig. 6. Lower body in the resting position with its knee
bent 45 degrees




sented in the printed database as a name followed
by a pair of empty braces. For example, we com-
bine the two previous parameter sets into position-
It

(position-1
(lower-body
(resting { })
(I-leg

(bent-knee { }))))

This defines position-1-as the lower body resting
but with a bent knee (Fig. 6). When combining
parameter scts, multiple values may appear for
each parameter with the last values taking prece-
dence. This is an important feature since it allows
us to refine the position of the model by adding
specific sets of parameters to general or default
parameler sets.

Animation is generated from a special database
which contains entries at keyframes. The knee
bend described above can be animated by inserting
two key frames in the animation database.

(animation
(frame-1

(body

(resting { })))
(frame-20

(position-1{ })))

When reading from this database, parameter
values between keyframes are interpolated au-
tomatically. Different interpolating functions, such
as linear, cubic spline, and cosine, can be specified
for individual parameters and keyframe intervals.
It's important to note that parameters can be ide-
pendently key-framed.

Discussion

For five years the majority of NYIT's animation
was done using the BBOP interactive keyframe
system. Animators found it simple to use — each
joint has nine degrees of freedom (3 rotation, 3
translation, and 3 scale) controlled by a 3-axis joy-
stick. Some animations were programmed using
C and then brought over to BBOP for fine tuning.
We've found it faster and easier to use the interac-
tive approach ; however certain motions, like those
of sophisticated robot models using Newtonian me-

chanics, multi-legged walk cycles. and terrain fol-
lowing, could be achieved with greater realism with
a slower programmed approach (Lundin 1984).
Both have served us well. EM was developed as
an enhancement to B80F 1o bring a form of pro-
grammed control to the keylrame approach.

We have used the system to control a range of
models from articulated robots to parameterized
face models (Parke 1982). Given the flexibility of
the modeling language, complicated parametric
models can be described and intricately animated.
This was more difficult with BBOP where the ef-
fects of parameterization had to be simulated by
hand.

One of the most successful features of the system
is the ease with which input devices can be used
to set the values of parameters combined with the
power of real-time update of parametric models.
Because of the intensity of the interaction between
animator and computer, the design of control
modes is as important as the design of the geome-
try of the model. For this reason the input system
was designed to be programmable and reconfigur-
able. A group of parameters can be controlled by
a single device, or a single parameter can be a lunc-
tion of several devices. Connecting functions of
input devices to parameters also permits the con-
struction of constrained input modes. We can
create input modes where a robot rolls in the direc-
tion it is heading, or a camera rotates about either
a local or a global axis. This flexibility can also
be used to group the control of related parameters
or establish alternative control modes for the same
set of parameters. When controlling a parametric
face model, there can be one input mode to control
smiling and another for frowning; these two modes
are likely to share parameters. Finally, the flexibili-
ty allows the input environment to be customized
for the animator’'s comfort and convenience. Con-
trol can be transferred to those devices which feel
most natural. Typically the camera motions are
assigned to the joysticks, but when the joysticks
are being used to control an articulating joint, cam-
era control can be maintained by switching it to
the dials.

Defining animations by time-varying parameters
has its limitations. The position and shape of the
model is a function of an instant in time. Currently
there are no methods for accessing previous or sub-
sequent values of a parameter, or its rate of change.
This prevents us from incorporating dynamics and
hysteresis in the model definitions or control. An-
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other limitation of our system is that parameters
control the geometry through simple statements
and expressions; for-loops and cyclic dependencics
are not allowed. For implementation reasons the
display routines arc forced to have a fixed sizc.
As a result, it is not possible to change the arrange-
ment of the transformation trce or topology of
the model through time. Such changes are desir-
able in complicated animations.

Recently, there has been a great deal of interest
in creating motion control systems that work at
the functional level or are goal directed (Korein
1982; Zeltzer 1983). Although we did not original-
ly design the system for these reasons, it has some
features of these higher-level systems. Because we
can enforce constraints and form dependencies, it
is possible to design coordinated movements into
the model. Parameters which have functional
meanings can be created. For example, a parame-
ter could control a walking cycle or leg-lift. This
system could also be used to support a higher-level
goal directed animation system. Such a system
would interact with a large symbolic position data-
base. Positions in the database could correspond
to the achievement of subgoals, such as having
the foot raised. With our database the current state
of the system can be described in terms of these
sub-states. A production system with a set of rules
establishing conditions and the effects of transi-
tions between these states in conjunction with a
planning program could be used to automatically
generate the keyframes in the animation.

Acknowledgements. This system is based on the program BBOP
written by Garland Stern. Without this program to build upon
this work could not have been done. The geometry language
was developed by Jim Blinn and Tom Dufl. The MPS subrou-
tine library was written by Jim Clark and Garland Stern. The
major routines used to display refresh bufTers in real time were
written by Thad Beier. The interpolation routines were based
on Carl DeBoor’s spline package. Robert Thornton stressed
the importance of reconfigurable inputs and invented number
wheels.
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MOTION SIMULATION
Richard V Lundin

New York Institute of Technology
Old Westbury, New York

ABSTRACT

The BBOP animation system developed at the New York Institute of Tech-
nology was designed to animate hierarchically articulated 3-d models by inter-
polating key frame poses established during interactive sessions with an Evans
and Sutherland Picture System. This system was evaluated in-a research pro-
ject in which 3-d robot characters were animated in a simulated environment
with the goal of achieving a realistic rather than a cartoonish look. In the
course of the project various techniques evolved for performing tasks - not
achievable within the framework of BBOP - as a post-process to the BBOP ani-
mation. These tasks include the creation of motion for wheeled, tracked and
inulti-legged robot vehicles over uneven terrain, the simulation of dynamics
cffects on robot motion, and the animation of models with flexible parts. This
paper describes those techniques.
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MOTION SIMULATION

Richard V Lundin

1. INTRODUCTION

A research animation project at video resolution has been under way at
NYIT to evaluate the 3-d animation system BBOP [1,2]. . Using this system, an
animator poses a tree-structured articulated model by means of interactive dev-
ices to create key frames. The key frames are then interpolated by cubic spline
techniques to produce the remainder of the frames.

The scenario for the animation is rather mundane in nature, a gang of con-
struction robots assemble a communications satellite antenna, but it explores
new territory by requiring 3-d models to manipulate objects and operate in a
fairly realistic manner in a simulated outdoor environment. The robots move
about by all manner of locomotion: some are wheeled vehicles, some tracked
vehicles and some are multi-legged vehicles resembling ants. To animate these
vehicles such that the wheels rotate correctly, the wheels and feet make contact
with the ground, and the vehicles jerk and bounce in response to movement
over the terrain would be a challenging task indeed using only the BBOP sys-
tem. This class of motion cannot be adequately described by an intepolating
procedure since the motion parameters must be determined on a frame-by-frame
basis according to specific equations or procedures, more appropriately per-

formed by simulation algorithms.

The BBOP data base consists of the tree-structure for the model and the
values of parameters to each of the transformations defining the position and
orientation of each articulated part of the model for each frame of the sequence.
Routines are available for reading the data base and performing operations such
as determining the matrix describing the transformation from one joint in the
tree to any other joint. By accessing the data base any simulation can be per-
formed as a post-process to the BBOP animation.

The procedure for implementing
a simulation algorithm is to first animator
animate the model as much as pos-
sible with the BBOP system. For
example, a vehicular model is
moved over a path, but the wheel BBOP data base | | simulation algorithm
motion is not performed. The
simulation program is then invoked
which reads the BBOP data base,
performs the simulation, and writes E&S
the modified transformation Picture System
parameters back to the data base.
The effect of the simulation on the
animation can then be viewed on Figure 1

input parameters
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the Evans and Sutherland Picture System, and further modifications made if
required by either changing input parameters to the simulation algorithm or by
changing the motion data base with BBOP. In fact simulation algorithms can
be tuned to achieve exaggerated motion if a cartoonish style is desired. The
implementation of a post-process simulation algorithm is illustrated in the block
diagram of figure 1.

Various simulation algorithms developed during this project will now be
described.

2. GROUND SURFACE CONTACT

Common to all types of earth-bound (although any planet will do) models is
the requirement of maintaining contact between the model and the ground sur-
face. The ground terrain model usually consists of a texture-mapped polygonal
mesh on which are placed various props that establish the set. A vector model
of the terrain is created to be used on the Picture System. The moving model
or character is animated over the terrain with the BBOP system to establish the
path and speed of the model. The terrain vector model is usually too coarse to
allow the animator to establish contact of the wheels or feet of the model with
the terrain or to orient the model with respect to its path.

Some scheme must be con-
jured that establishes ground
contact as a post-process to
the animation. One method is Jheet 13 cotases
to take advantage of the until wheel contacts
polygonal aspect of the terrain
and calculate the equation of
the plane

Equation of Plane

Ax + By 4 Cz + D= 0

Az+By+Cz:+D =0

for each triangular polygon of ehecnoh
the mesh. The intersection =. o Xp, Ip ——
point of a vertical vector or

plumb line from the axis of a o= L - T - DI/B) —
wheel or from an- ankle to the '

plane below can then be Figure 2
calculated from

v, = (-Az,-Cz,-D)/B

where z,,z, is a point through which the plumb line passes and y, is the height
of the terrain (figure 2). The vector equation of the normal

N = Ai + Bj + Ck

-27-



November 1984

NICOGRAPH'84

to the plane can also be used to re-orient a foot so that it is flat on the ground.

If z-buffer-based  rendering programs are available, this method can be
adapted to use the z-buffer instead of the polygonal mesh. The ground terrain
model is rendered from above and the resulting z-buffer is used to divine the
topology of the surface. This method allows the surface to be modeled by any
means and can be littered with all sorts of paraphernalia - which can be run
over or trod upon. The plumb line is transformed to a pixel location in this z-
space, and the z-value at this coordinate, when transformed back to world
space, is the height of the terrain. The normal to the ground at this point can
be found from the heights at adjacent pixel locations, using conventional cross-

product techniques.

The contacting surface - the bottom of a wheel or sole of a foot - is moved to
the contact point by adjusting the appropriate transformation parameters
according to the geometry of the model. If the terrain model represents a
deformable surface like dirt or sand, the contact point can also be lowered, such
that a wheel or foot appears to sink into the ground thanks to z-buffer technol-

ogy.

Wheel tread marks or footprints can be registered on the ground terrain in
the rendering process by implementing the bump map option of the polygon
rendering program with a map consisting of wheel paths or footprints created

by rendering the model from below.
3. WHEELED AND TRACKED VEHICLES

The path of a wheeled vehicle such as “Driller” (figure 8) over an uneven ter-
rain can be approximated by a 2-d path in x and z derived from the initial

BBOP animation. Furthermore, the path of the centerline of the vehicle can be
approximated by a

series of arcs, each are
calculated from three
oints in the 2-d path
3L. The amount of
wheel rotation per
center and radius of frame can then be
thrn deternined from prescribed by dividing

distance traveled by wheels
in one frame

center
of turn

position of vehicle at 1
frames i-1,1,i+1 the arc distance trav-

eled by each wheel
wheel rotations per during the frame by

f = distance traveled '
by wheed d4vided by the radius of the wheel

radius of wheel as demonstrated in

figure 3 in  which
“Driller" 1s shown
from above. The

steering angle of the
vehicle's steering
Figure 3 wheels can also be
easily calculated from
the geometry of this

steering
angle

-



November 1984

configuration. The vehicle itselfl is re-
oriented at each frame to point to its
position at the next frame.

The animation of tank-like tracks is
derived from the arc distance traveled
each frame by the centerline of the
track. Each track element is displaced
by this distance along the track con-

elements
move alo
track cont

tour formed by the wheel system that
supports the track as illustrated in g*'**"<
figure 4.

4. WALKERS

A general walking program has been developed to animate any model with
legs consisting of two linked members such as “Humpty’’ shown in figure 5.
Input to the program consists of parameters such as stride length, heel strike
angle, toe-ofl angle, and timings for step events to define the walk characteris-
tics of the model.

The animator provides the motion for the torso of the model on the BBOP
system. The walk program is then invoked to create the motion of the legs
from purely geometrical considerations such that the supporting feet contact the
ground and swinging legs clear the ground.

The description of the stance phase of a leg is based on a solution to equa-
tions describing the distance from the hip joint to the ankle joint. The text file
describing a subtree consisting of one leg of ‘‘Humpty”’ is:

{
move 43,3.2,46

rot 30 x
rot 26 y (M
rot 26 z
scale 0.65,0.65,0.65
“torso”
move 1,0,0
rot x
rot y
rot z
“thigh”
move 0,-1.5,0
rot x
“eall”
{ .
move 0,-1.5,0 Figure 5
rot x

rot y

- =0
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rot z
“foot™ hip (ball joint)
{ knee
‘o L (pin joint)
terrain foot aligned
} along normal
to ground

To establish contact between the bottom of the
foot and the ground terrain, the rotation angles for
the hip, knee, and ankle joints must be determined
for each frame (to fill in the missing arguments of
the rotation transformations in the text file above).
The hip joint and the ankle joint are considered to
be ball joints and the knee joint is considered to be
a pin joint. The position of the hip joint P, with
respect to the ltorso coordinate system at each
frame is calculated from the BBOP data base for
the animation of the torso. The ground contact
point of the foot P, with respect to the world coor-
dinate system is first determined from one of the
two methods previously described. The foot is
aligned along the vector normal to the ground at

this point. The coordinate of the ankle joint P, cos b =
with respect to the world coordinate system can {—LL};}}@&)
then be determined from the equation of the line in ",‘r_3 8 r71Px

the direction of the normal vector as shown in establish |
ﬁgure 6. The coordinate of the .ankle joint oy j;i::fég“og‘"‘
with respect to the torso coordinate system is leg triangle |
determined by transforming the ankle coordinates  3°opt axis
P, with the inverse of the matrix [M], formed by Ll
concatenating all transformations from the world

coordinate system to the torso.

(P! | = [P]IN] Figure 7

The transformed coordinate Pa’ is one vertex of a triangle through the hip
joint, knee joint, and ankle joint. Recourse to the law of cosines determines the
inscribed angles of the triangle shown in figure 7. Since the triangle can be
rotated arbitrarily about the axis defined by the vector from the hip joint to the
ankle joint (that is, the system is underconstrained), some criterion must be
used to determine the orientation of the triangle about this axis. One criterion
is to retain the relationship between the triangle formed by the legs and the
direction of motion of the model that was established in the original BBOP ani-
mation. Once the orientation of the triangle is established, the coordinates of
the knee P, can be determined and subsequently the required angles at the hip,

knee, and foot.

The determination of the rotation angles for the swing phase of a leg is based
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on an interpolation between the position of the leg in its last stance phase and
the position in its next stance phase.

5. DYNAMIC SIMULATION

Since ‘‘Driller” (figure 8) is mounted on a suspension system consisting of
struts and shock absorbers, it should bounce up and down as it moves over
uneven terrain, roll to one side as it turns, and pitch back and forth due to
acceleration in the direction of its path. A simple dynamics model based on
damped mass-spring systems [4] was formulated to provide these responses.

~ The forces due to acceleration on the vehicle were approximated by the equa-
tions of motion for a rigid body rotating in a circular arc about a fixed axis [5]:

2 ly-translation axis

F, =mrw
. |
Fi =mra @)
in which: _ center DRILLER
F, = force radial to are of mass

F, = force tangential to arc
m = mass of body

w = angular velocity of body T

A

r = radius of arc

a = angular acceleration of body . . °$
The values of r, w, and a can be Al ¢itch
calculated for a path that has been Taxis

approximated by a series of arcs.
The dynamic response of the vehicle ‘o
due to these forces depends on the
geometry of the model and are
determined by balancing force and Figure 8

torque equations. All of the elastic )

forces (eg., forces from springs) and all of the damping forces applied to the
vehicle by its suspension system are lumped in single terms in the force and
moment balances for this simplification.

roll
axis

Balancing forces in the y-direction gives the following equation:

d? d
np};§-== F, - ﬁ(e,y‘-ffd;-gg
in which:

m = mass of vehicle
y = vertical position of center of mass
F, = applied vertical force proportional to vertical acceleration

due to motion over uneven terrain
Re, = elastic coeflicient (spring constant) for vertical translation
Rd, = viscous damping coeflicient for vertical translation

i
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{ = time

Balancing torques about the pitch or roll axis gives the following equation:

dz
J’,Tf = Fyry - Key- Kd, =2
in which:

I, = moment of inertia of vehicle about pitch or roll axis

¢ = angle of rotation of vehicle about pitch or roll axis

F, = torque force (F, for roll and F, for pitch)

r, = radius from axis where force F, is applied

Ke, = elastic coefficient for rotation about pitch or roll axis

Kd, = viscous damping coefficient for rotation about pitch or roll axis

It should be noted from these equations that if the vehicle is translated or
rotated from its rest configuration by the forces due to motion, forces of oppo-
site sign due to elasticity and damping will tend to restore the vehicle to its
equilibrium state. By converting the differential equations into difference equa-
tions, they can be solved to provide the translational and angular position of
the vehicle for each frame of the animated sequence:

(y. = -l)

m[ (b-va) (- y.-z) ]/m = Fy, - Keyy, - Kd,

At At
l (6 - ¢. 1) (fia- ¢..z) ]/m s b i Kd,w'::"l]
or
- le' "% ;:l? & ] A:’”"’]/, T e !id: l
o= [Furor o[ 3+ 7] - a3+ v R
in which:

i= subscript for variables evaluated at frame i

i-1= subscript for variables evaluated at frame i-1
i-2= subscript for variables evaluated at frame i-2

At = time step (reciprocal of frame time 1/30 or 1/24)

The evaluation of the constant coeflicients in these equations - mass,
moments of inertia, elastic and damping coefficients - is performed during
interactive sessions using the Picture System and no actual correspondance with
the actual physical properties of the suspension system is required. The only
thing of consequence is the achievement of the desired dynamic response.
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6. EFFECTS OF GRAVITY

Because computer-modeled objects are in a sense ‘“‘cut loose’” from gravity, it
is necessary to re-establish the reins of gravity. The formation of sparks due to
a welding operation, for example, required the implementation of the following
ballistic equations to determine the trajectory of the sparks:

1
/] =—Eﬁ"2+ Yo+ Vo

z = v ol + 29

z = vl + 29

in which:
z,y,z = position of object at time ¢
g = gravitational constant
zo, Vo, 2o = initial position of object
v:0, Y0, vz0 = initial velocity of object in x,y,z-direction

The initial velocity and direction of the sparks were determined by stochastic
means. The z-buffer of the ground terrain was used to find the location of the
impact points of the sparks and new trajectories were computed following a
hounce.

The determination of the trajectory of a thrown projectile was another exam-
ple in which the effects of gravity were nccessary. The initial position and velo-
city of the projectile were determined from BBOP animation from the position
of the throwing hand at the frame at which the projectile was released and the
position at the preceding frame. The position of the projectile for succeeding
frames was then determined from the ballistic equations.

7. FLEXIBLE JOINTS

Another example in which a post-process technique is required is the anima-
tion of flexible joints. The BBOP program was originally intended to animate a
tree-structure of rigid parts, therefore, a gap can appear at the joint of two con-
necting rigid parts when they are rotated with respect to each other. For exam-
ple, the knee joint between polygonal representations of the thigh and calf of a
body model will reveal a gap when the knee is bent. What is required is a flexi-
ble surface that will deform according to the rotation angles of the joint in the
BBOP animation. One solution is to treat the joints connecting rigid segments
as control points for a spline defining the centerline of a flexible segment, which
is populated along its length with elements making up the flexible joint. The
elements can be rigid models as would be incorporated in the goose-neck joint of
the robot arm in figure 9 or contours defining the coordinates of rows of a flexi-
ble polygonal mesh. A bezier spline was chosen for this application because it
lies on, and is tangent to, the centerline of the rigid segments defining each end,
which is the configuration needed for a flexible elbow or knee. The disadvan-
tage of this approach is that the length of the flexible joint changes as it bends.
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If it is necessary to constrain the length of the flexible joint and the tangential
end conditions are not essential, then it is possible to relocate the control points
by iterative means for each frame to maintain a constant spline length as illus-

trated in figure 10.

Flexible Joint with Constant

Flexible Joint with Tangency h
Lengt

Bezier spline

through centerline arml
of elements
Bezier spline
through centerline
of elements
modified
arm3
Figure 9 Figure 10

8. CONCLUSION

A videotape sequence depicting a robot construction scene demonstrates that
the application of simulation algorithms as a post-process to animation created
with key-frame interpolating systems provides the framework for greatly
enhancing the realism of animation. Moreover, simulation algorithms can be
implemented for any imaginary world subject to any hypothetical laws of phy-
sics to achieve any desired effect.
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ABSTRACT

A Script for a computer generated animation is a sequence of instructions which
define the animation. In its most general sense, the script is a program in a special pur-
pose animation language.

This talk covers some of the general design principles and specific tasks of a script sys-
tem. The PDI script system is used to demonstrate these principles in the video presenta-
tion which accompanies the lecture. This lecture is meant to be an introduction to the
concept of scripted animation. It does not delve very deeply into any of the specific
details of the animation process, but instead attempts to give a clear and visual overview
of the script process.

In addition to presenting the flavor of a script system, this talk is also an exposition of the
point of view that programming is a valuable animation skill. There are some animation
techniques, situations, and disciplines which inherently require skills normally associated
with programming. Non-programmatic and interactive tools are absolutely essential for
fine animation as well, but discussion of those is beyond the scope of this paper.

The notes given here are companions to the live and video presentation*

1. What are we talking about?

What is motion?
anything which changes during the course of an animation. Many interactive systems allow for the
specification of flight paths, but animation can also include the animation of colors, material types,
model parameters, viewing specifications, control variables, etc. Any element or value which contri-
butes to the definition of a scene is animation fodder.

What is a computer animation?

Of course, any motion sequence generated through use of a computer. The important thing to keep
in mind is that many interesting complex computer animations require more from the animator than
the simple coordination of a few flight paths. Most commercial animations embody quite a few
predictable elements, such as animating lights, special effects, coordinated events, etc. In addition to
these elements, most animations have some surprises, "special features”, or "wow, that’s really hard"
parts. In general, these hard parts tend to be those portions of the specification which elude easy
generalization and thus simple tools.

* This paper originally appeared in the 1986 Course Notes and was accompauied by a lecture by the author.
It is felt that its content is useful even without the lecture and so is reprinted here. -ed.
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What is a script system?

The term script is used because 1) it sounds better than "special purpose animation language”, and 2)
its generality allows for the inclusion of support tools which augment the language, and/or tie it to
interactive tools. A script-based system generally supplies high-level programming language
features as well as special purpose features to support animation (see [Reynolds82] - reprinted for
this tutorial - for an excellent discussion of scripts for computer animation). In general, we will
define a script simply as a special purpose animation programming language. ( see [Reynolds85] for
a discussion of the different senses in which a scripting may require programming).

2. Why use a script system?

It is possible to make some very interesting computer animations without programming by using interactive
tools found in a number of research and commercially available systems. We will lump these tools togther
under the name of non-programming tools. These include motion editors, menu-based modellers, many
keyframe systems, etc. [O’Donnell81, Gomez85]. Even in systems which rely on programming for some
part of the specification, interactive tools are absolutely essential for getting the feel of a move, the right
curve, or for quickly relating various elements.

If it is possible to animate without programming, why bother with programming based tools at all? There
are several good reasons to provide serious support to a programatic control of animation:

1) Many animations in some way or another fall outside the design model embodied by currently avail-
able interactive tools. Even some tasks which can be accomplished from within a non-programming
tool require a good deal of contortion and could more directly and easily be expressed in an animation

language.
2) A programming approach to problem solving can be flexible, extensible, and efficient.

3) Many sitations in computer animation are essentially procedural. Although some non-programming
systems allow simple procedural control of an animation (such as making one control value a function
of another), most non-trivial procedures require real control structures, handy named variables, shared
subroutines - in short, a programming environment,

4) When a technique used for a single animation is found to be generally useful, it can be easily pack-
aged for general use. An important point on this topic is the fine line which exists between "special
purpose, non-general hacking", which is a bad thing, and "flexible, quickly customizable, well-
focused solution" which is a good thing. Because several assumptions can be made about the anima-
tion environment, it is much easier and faster to develop an animation script than a functionally
equivalent C program. Although many scripts are hacked (i.e. made quickly to solve a specific prob-
lem, without much forethought to organization or generality), they're hacked quickly and can be
changed quickly. They also tend to be specific to a single animation and animator, which means they
avoid the major software problem of hacky code masquerading as a public tool. When solutions
embodied in scripts are seen to be generally useful, they are cleaned up and installed in a script
library, or rewritten in a general purpose programming language and released and documented as a
general tool. Although techniques learned on non-programmatic tools can be shared, the sharing is
generally word-of-mouth rather than a common library.

The key to good animation system design is the integration of all the tools in the kit, so that interactive
tools are available where appropriate, without preventing the animator from easily retreating to some
underlying or organizing representation. Non-programmatic tools are well suited for many of the specific
and predictable problems encountered in animation, but they often aren’t adequate. If these tools can co-
exist with a programming, or script, environment, then the animator has the option of augmenting the non-
programmatic tools with the specific control gained from a script system. This kind of "open-architecture”
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approach, where an underlying representation is shared by several different kinds of tools, doesn’t con-
strain the animator to one particular model of the animation specification process.

3. Animation and Software Engineering

There are strong similarities between writing an animation script and writing a program in a conventional
language, and between creating a complex animation and software engineering. The discipline of software
engineering has a lot to teach animators in this area, and a good animation system should be able to exploit
these lessons wherever possible.

An animator doesn’t necessarily have to be a programmer to take advantage of these principles. However,
while an animator may not have to program to make Donald’s arm move, he may need the same talents as
a good software engineer to make Huey, Dewey and Louie run around the room for 3 minutes. For all of
its expression and flair, complex animation has always required huge amounts of patience, organization,
precision and repeatability.

Some general software engineering principles which apply to animation are:

1) Sharing general techniques in public libraries, as mentioned above. In addition to the general desira-
blity of sharing, scripts allow work to be chunked as routines, which, like any chunking, provides
good conceptual shorthand and a handy unit for documentation.

2) Management of large amounts of data. A recent PDI animation had 26 seconds of 60 fields each, hun-
dreds of moving parts, and a total of 50 separate component layers which were composited together.
All this for one of those "simple logo moves”. Software engineering tools and techniques have
evolved to help software developers create, track, organize, share, and back-up large amounts of data.

3) Maintaining complex organization throughout unpredictable changes. Complex systems are riddled
with interdependecies. They are always built upon certain assumptions. These assumptions almost
always change midway into the project. Experienced animators and software engineers share the abil-
ity to organize their projects in anticipation of the unexpected.

4) Clear, self-documenting organization. Software engineers begin by leaming documentation skills. As
they mature, they learn how to write clear code with descriptive variable and routine names. They
nest their code so that it reflects its own logical structure. They organize code into functionally clear
routines with minimal side-effects, and group these into functionally related libraries. All very
wonderful, but hard in practice. These skills take time to develop, and rely on environments which
allow them to be practiced in the first place. Protecting animators from some of the requirements of
software engineering may also inadvertantly "protect” them from the opportunity to learn tools and
techniques which are well-suited to higher levels of organization.

The argument presented in this section is that software engineering skills are intrinsically related to the
animation process, and part of the potential application of computers is to provide tools which allow an ani-
mator to develop these skills.

4. Useful Features in a Script

Many of the useful features in a script apply to programming languages in general. Many of the good stra-
tegies in creating script-based animation apply to good software engineering in general.

What features are useful in a script? Here are several:
- allows fast prototyping of images and animation
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- simplicity of design and use
- support of common graphics operations (primitive modelling, 3D transformations, viewing opera-

tions)
- high-level programming language functionality (control structures, named variables, routines, data

typing, math expressions, etc.)
- support abstraction by allowing any functional operation to be applied to any graphic operation,

object, or attribute
- some hooks to interactive tools

5. The PDI Script System

The PDI script system is patterned after the programming language C, and includes several features which
support the specification of high quality animation for the broadcast market. Many of these features are
covered in the accompanying video, as the PDI script is used to illustrate various aspects of the scripting
process.

We also make heavy use of the UNIXT environment in the production of animation. Much of UNIX has
evolved to simplifiy the process of software creation, and these same features are applicable to animation,
particularly with regard to script creation and management.

6. The Animation Pipeline

Before we can proceed to discuss the deatils of animation and script systems, it is useful to look at the data
path from original specification to display. The pipeline is a good model for this flow (see [Chuang83] -
reprinted with course notes - for a description of this pipeline).

The PDI system has the standard entourage of world space and screen space polygon files, image manipu-
lators, etc. This part of the discussion will describe how user specifications find their way to screen, how
they can be modified (which includes animated) along the way, and how a script supports all this.

7. Script in Action

This section is a set of animated demonstrations of a script. The animation consists of a scene in motion,
with one or more lines of the controlling script displayed at the bottom of the screen. As the line of script
text changes, the scene is updated to reflect the change.

After each specific script feature is demonstrated in this manner, a piece of commercial animation will be
shown which exploits that particular feature.

7.1. Primitive Generation

A script should be able to generate a variety of geometric primitives, including polygons, prisms, cylinders,
cones, pyramids, spheres, torii, surfaces of revolution, and extrusions. Primitives created from a script can
be a useful modelling components, since the script also provides the attribute and transformation com-
mands needed to combine these primitives into meaningful models.

Also useful is the ability to animate primitive attributes over time. For example, the cross section of a
cylinder describes a circle. If partial cylinders are supported (those whose cross-sections describe a circle
with a wedge cut out of it), then the shape of the cylinder can be animated.

Simple geometric primitives can account for only a small portion of the models necessary for commercial

TUNIX is a Trademark of Bell Laboratories.
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production, More complex operations (such as Boolean operations on primitives, see [Beier85]), models
created from digitized input, and control at the polygon and vertex level should also be included in or be
accessible from the script.

7.2. 3D transforms

The basic 3D transformations are translate, rotate, and scale. These are concatentated as they are
invoked, so that the effects of several transformations may be applied to an object at once. An important
feature for hierarchical motion is the ability to push and pop the current transformation onto and off of a
transformation stack.

7.3. Object Transformations

More sophisticated transformations can make the script a powerful modelling tool. Non-linear transforma-
tions such as twist and bend have wide use and can applied to arbitrary input objects [Barr84]. Some com-
mercially available systems have introduced bevelling as a basic modelling operation. Shape interpolation
is another powerful tool, but in the most general case a good deal of specification is required for good
behavior throughout the interpolation.

7.4. Viewing Operations

Viewing operations define the camera, window, and viewport. As with all other aspects of the system,
these should be animatable. A camera can be defined by its position, focal length or angle-of-view, and
orientation. An alternative to orientation is to provide a second position which the camera will look at.

The window and viewport define the visible area in world and screen space, respectively. The viewport
commonly maps the entire display area, but can be shrunk to make low resolution tests.

7.5. Lighting

There are a wide variety of lighting options available to the animation system designer. The simplest is the
ambient light, which illuminates surfaces independently of their orientation. Infinite point sources have a
direction vector and color but no position or falloff. These are often adequate for modelling large scale
lights such as the sun, but are not adequate for representing the effect of a light within a scene. Local lights
do have position, falloff, and possibly direction, and more accurately simulate the local effects of a small
light.

Whatever kinds of lights are available from the script, it is essential that all parameters controlling the
lights be animatable. Sometimes a blatantly moving light is needed for a specific reason. However, it is
more common that a carefully lighted animation requires subtly moving lights just to get everything to look
good. In these cases, it may not be apparent to the viewer that the lights are moving, yet the overall result
is a much better lighting throughout the piece.

7.6. Surface Attributes

The surface properties and colors determine how an object will respond to light. A good system should
provide a means for fast guesses so that a prototype image can be quickly realized, but it must also support
the grueling fine-tuning that is required of a polished production. As with all other attributes, these attri-
butes must be animatable.

7.7. Motion Paths

Motion paths are curves in space. Objects, the camera, the camera tracking point, and lights may all follow
these curves through the scene (see [Shelley83]). Since positioning and motion design are so heavily
dependent upon the interaction of multiple objects within a scene, it is strongly recommended that motion
design be done interactively wherever possible. The job of the script system is to easily accept as input the
output of motion design programs, and to provide ways of further manipulating that output.
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8. Conclusion

Script based animation systems provide the powerful model of programming to the animation process.
Programming is precise, repeatable, provides powerful control structures, and can promote large scale
organization skills exemplified by software engineering.

No single tool, or general model for tools, is in itself adequate to the task of creating high quality, complex
computer animation. Much of the process is highly immediate, visual, and interactive in nature, and non-
programmatic tools are desirable for these tasks. However, there are many animation problems which
embody a complexity of logic or scale of organization which call for programming tools.

The approach advocated here is for a hybrid environment in which script systems - programming tools - are
supported and used as a necessary component of the complete animator’s tool kit.
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Abstract

A technique and philosophy for controlling computer anima-
tion is discussed. Using the Actor/Scriptor Animation System
IASAS) a sequence is described by the animalor as a formal
wrilten SCRIPT, which is in fact a program in an anima-
tion/graphic language. Getting the desired animation is then
equivalent to "debugging” the script. Typical images manipu-
lated with ASAS are synthetic, 3D perspective, color, shaded
images. However, the animation control techniques are inde-
pendent of the underlying software and hardware of the display
system, so apply to other types (still, B&W, 2D, line drawing .....
Dynamic (and static) graphics are based on a set of geometric
object data types and a set of geometric operators on these
types. Both sets are extensible. The operators are applied to the

objects under the control of modular animated program
structures. These structures (called actorsi allow parallelism,
independence, and optionally, synchronization, so that they
can render the full range of the time sequencing of events.

Actors are the embodiment of imaginary players in a simulated
movie. A tvpe of animated number can be used to drive
geometric expressions (nested geomelrical operators) with
dynamic parameters to produce animated objects. Ideas from
programming styles used in current Artificial Intelligence
research inspired the design of ASAS, which is in fact an
extension to the Lisp programming environmenl. ASAS was
developed in an academic research environment and made the
transition to the “real world® of commercial motion graphics
production.
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Introduction

This paper describes the Actor/Scriptor Animation System
(ASAS), which is a way of thinking about and describing
computer graphic animation. ASAS is basically a notation for
animated graphics. The notation for an animated sequence (the
script) can be automatically read and converted into animated
images by an ASAS interpreter. As in the case of musical notation
being interpreted by a group of musicians—or the script of a
video production being executed by a host of actors, camera,
audio, lighting and video technicians— ASAS allows the crea-
tion and use ol any number of simulated particpants, "actors”
cach of which can control one or more aspects of the animation.
The ability of ASAS actors to operate independently or by
communicaling with each other) to act in synchronization
allows a simple and unambiguous description of the function
of each actor

ASAS differs from “performance” based real time computer
graphics systems as well as from command or “menu” based
systems. Wriling the ASAS notation for an animated sequence
will probably take longer than the final running time of the
sequence. On the other hand, an ASAS script is typically more
compact than a simple listing of the value of all relevant
parameters for each frame, as might be required in a command-
menu system. This results from the fact that ASAS is a
procedural notation, a programming language for animation
and graphics. In fact ASAS is a “full” programming language and
includes all of the typical modemn structured programming
features (procedures (recursive), local variables, *if then else’s
loops, typed data structures and generic operators). Addition-
ally ASAS supports independent, parallel, *animated” program
structures (actors), and includes a rich set of geometric and
photometric objects and generic operators on these objects.

The existence of a formal notation for a field of endeavor leads
to a workable procedure for the development of an idea. Like
an algorithm being debugged by a computer programmer, or
a musical score being revised, an ASAS script being developed
is both unambiguous and precisely modifiable. It is possible to
change just one small aspect while keeping everything else
exactly the same. This property of notation allows the process
of progressive refinement (“tweaking’) to be used to converge
on the desired algorithm, music or animation.

History

ASAS was developed at the Architecture Machine Group at MIT
as two thesis projects between 1975 and 1978 [24,24]. "ASAS 0*
was not a full implementation, but *ASAS 1* did actually work,
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An Arch Fractal

Figure I:
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Number 3

grants™ because ol s relatonship 1o the
programming lainguage Lisp, ASAS can e
considered 1o be either implemented i, o
an extension to, Lispe The nich program.
miing covironment ol ASAS s doe Bagely o
Lasp, sinee all Lisp primitives amd unilities
are usabile Drons ASAS L vice versal A Lasp
interpreter plus the ASAS software vields an
ASAS interpreter. ASAS was developed ane-
der MagicSixbasp at The Architecture Ma-
chine Group at MIT and was painlessly
transplanted to run under MIT Maclisp at
1.

For a long time Lisp has had a reputation
as somewhat of a “toy” language, a powaerful

hut quaint tool used by gnomish academic

artificial intelligence resecarchors, but not a
language really suitad for commercial use
These eritisisms are misdirected, Lisp is one
of the most elegant and uscable algorithmie
notations ever devised. The bad reputation

is cloe nl.’lllll_\' 1o poor iII\{)ll'llll.‘lll:ll'itll'l.\' or

despite a very slow and uninteresting display package. In 1979
ASAS was integrated into the Digital Scene Simulation system
ol Information International Ine. CHI7, “triple-171 in Culver City,
California. In this instance, ASAS is nol used to make images
directly, but serves as a preprocessor lor (s existing 31),
hidden surface and shaded graphics system. Henee “ASAS 2°
functioned as a true language compiler, translating from the
animator’s script to the command sequence for the display
software. The inconvenience of having the display support in
a separale software package is offset by the much wider range
of graphic features made available to the ASAS user through the
very advanced 111 software, Alter three years of commercial use
the system was refined and became "ASAS 3°. The current
reference for the language is the unfinished ASAS User's

Manual 3.0. [26]

of ASAS was influenced by some concepts from
the Artificial Intelligence field. The basic concept
of graphic databases and animation scripts as programs
(procedural embedding of knowledge) was inspired by Terry
Winograd's pioneering work in computer linguistics, In Wino-
grad's svstem natural language was represented by a procedural
data structure. [30] The concept of message passing actors was
from Carl Hewitt's body of work in -actor systems® such as
PLASMA. [12,13,14] (Similar concepts exist in Smalltalk [11],
Simula [5] and Modula [32].)

The design
research in

An animation system in development at about the same time
as ASAS by Ken Kahn shared some concepts with ASAS. [16,17]
Kahn's system had what Hewitt calls a “uniform actor basis” and
so perhaps a theoretically “cleaner® structure. Kahn's work
placed more emphasis on embedding commaon-sense and
theatrical knowledge in animation characters, and less empha-
sis on complex graphics.

ASAS and Lisp

As a programming language, ASAS “stands on the shoulders of
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underpowered computers. Because  Lisp
trades off raw computational elficiency lor expressive power
and usability, a well designed interpreter and a fast machine
are required for a production envirconment. Today there are
several good Lisp svstems lor varvious tvpes of general purpose
computers IMacbisp [ 20], Interb ISP [29] and currentiy three
firms are selling specially designed Lisp machines (Lisp Ma-

chine Ine, symbolics Ine, and Xerox)
ASAS Expressions

ASAS and Lisp use a simple, if unusual, notation. A “parenthe-
sized prefix notation” is used for operators, control structures
and data, An ASAS expression is cither:

(11 a number

121 a svmbol "variable”)

(3) a parenthesized list of expressions.
If the expression is a list, the first (leftmosti thing is the name
of an operator tor “function”! and any other expressions in the
list are parameters for the operator. When an expression is
evaluated (or “executed’), numbers evaluate to themselves,
svmbaols to their currently defined value, and a list ieg: “(plus
a (abs b))" 1 evaluates to the result of applying the operator
plus’i to the recursively evaluated parameters (values ol “a’
and “(abs b)"1. For example, 10 define the symbol “wheels™ 10

be the number of tricveles times 3, we would write:

(define wheels
(times tricycles 3))

Normal ASAS operators (like timesi evaluate each of their
parameters, while certain operators have special evaluation
patterns (like define, which does not evaluate its first parame-
ter, these are called “macros®). To define a simple operator (call
it "thrice”) which multiplies its single parameter (°x") by three:

(defop thrice
(param: x)
(times x 3))
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an equivalent definition in MacLisp would be:
(defun thrice (x) (times x 3))
The first example could then be rewritten:

(define wheels
(thrice tricycles))

Special Symbols

Within a script certain aspects of the production are controlled
by the values given 1o some special symbols. None of these
symbols are actually “reserved words®, bul it is best to use the
script symbols background and camera only for the purpose
of defining the current color of the graphical background of
the image and the current cainera description (as a pov, see the
section on geometric objects). The initial ASAS environment has
other symbols defined to various frequently used objects (axes,
colors, basic solids), it is good practice to know these and avoid
redefining them.

Geometric Objects

In addition to the data types found in most programming
languages, ASAS provides a set of geometric (and photometric
objects: vector, color, polygon, solid, group,
pov, subworld, and light.
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(define houses
(group red-house yellow-house brown-house))

The “point of view" object (POV) is used 1o define the point ol
view of an observer (for example the ASAS cameral or of an
object. That is, a pov describes the three coordinate axis hasis
vectors and the position of the origin of an arbitrary coordinate
space. We refer to such spaces by names like “eve space” and
“an object’s local coordinate space’. Note: a pov plays a role very
similar to a "4X4 homogeneous transform maitrix® in other 31)
graphics systems (there is a simple transformation from a pov
10 a 4X4 matrix) but a pov is a geometrical object composed of
vectors and can be manipulated just like any other object.

A subworld is an object associated with a pov. This allows ASAS
to manipulate a complex object by modifying only the pov,
hence various “instances® of an object may share the same
underlying data. Subworlds also allow ASAS to work with
“levels of abstraction” in a graphic database, when a subworld
is formed it notes the “overall size* and “typical color” of its
conlents. At display time this allows efficient tree structured
clipping iwhen an entire subworld is offscreen) and handling
of detail too small to see (when an entire subworld lies within
a single pixell. [4] Hence the user can build levels of abstraction

Figure 2:

How to make an Arch Fractal (given an arch element.

The vector represents a position in thiee
dimensional Cartesian space. It allows three
parameters, the X, ¥ and Z coordinates. Trail-

ing zero coordinates may be omitted. (param:
A color object may be specified either by its
Ked, Green and Blue components, or by Inten- (local:

sity, Hue, Saturation. The two operators are
called rgb and ihs, each of which accept three
numbers between 0 and 1.

(defop arch-fractalizer

arch-element top-color bot-color levels
fractal-ratio height width leg-width)

levels)

(half (dif width leg-width)))
(vector offset-dist 0 0))

(mirror x-axis sub-tower-offset-1)))

(total-levels
(offset-dist
(sub-tower-offset-1
(sub-tower-offset-2

A simple polygon contains a color and a list (arch-tower levels))
of vectors, the “boundary". The cut-hole
operator allows the construction of polygons
with “holes and islands® (that is, multiple (defop arch-tower
boundaries). The color can be a group of a (param: levels)
front color and a back color. The boundary
points may be listed separately or as a group (if (zerop levels)
of vectors. Here is a polygon expression for (then nothing)
a certain blue triangle: (else (add-arch-level (arch-tower (dif levels 1))
(polygon blue
(vector 1 0 0)
(vector 0 1 0) (defop add-arch-level

(vector 0 0 1))

A solid represents a bounded region of space,
a closed polyhedron. It is composed of vertices
and faces (as vectors and polygons) in addi-
tion to topological connection information.

Several geometric objects can be “glued to-
gether® into a group object, which is then
manipulated as a whole by the geometric
operators. A group expression allows any
number of parameters -geometrical objects to
be grouped together, including other groups.

(param:

sub-tower)

(grasp sub-tower

(scale fractal-ratio)
(move (vector 0 height 0))
(rotate 0.25 y-axis))

(grasp arch-element

(recolor (interp (quo levels total-levels)
bot-color

top-color)))

(subworld (group arch-element

(move subtower-offset-1 sub-tower)
(move subtower-offset-2 sub-tower))))
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into a geometric database by the nesting of subworld objects.

Objects to be seen in shaded images are illuminated by light
objects, Lights are composed of a position vector and a color.

Geometric Operators

ASAS’s geomelric operators are (he tools the animator uses to
shape, move and orient objects. An object’s shape may come
directly from the action of operators, or parts encoded by hand
with a digitizer can be assembled with the operators. The same
operators are used both for static arrangements, or lo create
animated motion, by operaling frame by frame under the
control of an actor.

In many command/menu based graphics systems it is difficult
to precisely specify the correct ordering of geometric transfor-
mation. For example, there will be a *rotate” command which
accepts three numbers, the angles of rotation for each axis.
Often there is no mention of in what order the rotations are
applied, let alone a way 1o specify the desired order. In ASAS,
the animator explictly determines the ordering of operations
by the structure of the nesting of the expressions written in the

script.

The basic operators are “generic”, they can be given any type
of geometric object and operate on it as is appropriate for that
object’s type. ASAS operators NEVER modify the object they are
operating on. The value returned by an operator is a geometri-
cally modified copy of the original object with otherwise the
same lype and structure.

A notational shorthand is provided for the common occurence
of a series of operations to be performed on a single object. The
object to be operated upon can be made the “current” object
lusing the grasp operator). The "grasped” object will then be
redefined by calls to operators which do not explicitly specify
an object to operate on.

Two basic types of geometric operators are provided by ASAS,
*global® and "local” (sometimes called “self relative’).The ASAS
global geometric operators are called: scale, move, rotate,
stretch and mirror.

Gcnerall'y these operators apply the named geometrical trans-
form to any given geometrical object The transforms are relative
1o the origin and major axes of the global coordinate space. The
parameter types o each are numbers and vectors as appropri-
ate. ("Stretch” is a differential scaling for each axis, specified by
a vector of scale factors).

As an example of the usage of the ASAS global operators see
Figures 1 and 2, these show how last year's SIGGRAPH cover
was constructed.

The “local® operators are similar in effect to the global operators,
except that they are based on an object's OWN coordinate
system rather than the global coordinate system. A subworld
carries along its own little coordinate system, its pov. Not only
does this allow efficient modification of the subworld but it also
provides a reference for operations in the object’s local
coordinate space. The local operators were inspired by the
“turtle® of the LOGO graphics language [2], and are intended to
be a three dimensional analog of the turtle operations (walk
forwards or backwards, turn right or left). This notion of a 3D
turtle (more of a deep sea swimming turtle than a land crawling
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tortoise) was first used by Jim Stansfield and then refined by
Henry Lieberman in a 3D line drawing extension to LOGO. A
good treatment of this subject can be found in [1]. Usually
objects will be defined so that the origin of their local coordinate
space is al the center of the object, For this reason we will
informally refer to the “origin of the local coordinate system”
as the “center’. Local operators are provided for moving,
rotating, scaling and “zooming” relative to the local coordinate
system. All of these operators accepl one or two paramelers,
the second optional parameter is the object to operate on, if
none is specified, the currently grasped object is redefined.

Note: the relationship between global and local operators is
similar to the that of pre- and post-multiplication of transform
matrices. Also note: when objects other than subworlds or povs
are passed to self relative operators they are first put into an
identity (*home~) subworld, then operated on.

Local operators:

grow scale up about local center

shrink scale down about local center
forward move along local +Z axis

backward move along local -Z axis

left rotate to left about local Y axis

right rotate to right about local Y axis

up rotate upward about local X axis
down rotate downward about local X axis
cw rotate clockwise about local Z axis
ccw rotate counter-clockwise about local Z axis
zoom-in scale up local Z axis

zoom-out scale down local Z axis

local-move  move along arbitrary local vector
local-stretch scale each local axis independently
home resets back to original definition space

Examples: an operator sequence which (if evaluated each frame|
will cause the AIRPLANE (that is, the sequence of objects which
form the animated value of the variable AIRPLANE) to perform
“barrel rolls®, and one to cause the CAMERA to pan around while

zooming oul:

(grasp airplane)
(forward 0.1)
(cw 0.02)

(up 0.02)

(grasp camera)
(right pan-speed)
(zoom-out 1.01)

Various other ASAS operators are available but will not be
discussed here. There are recolor and cut-hole, and Interp the
general purpose interpolater, row and ring which make regular
groups of objects, and prism which makes solids by projecting
a polygon. Here are some examples of some of them, an
operaltor to make a n-sided regular polygon (inscribed within
a unit radius circle), and an operator to make a prism with
regular “ends":
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(defop regular-polygon
(param: color sides)

(polygon color
(ring sides
(vector 0 1 0)
z-axis)))

(defop regular-prism
(param: color sides thickness)
(prism color
(vector 0 0 thickness)
(regular-polygon color sides)))

This summary of ASAS operators suffers because of the
language's extensibility; the full list is endless since the user
invents new ones as needed. Beyond simple combinations of
basic linear operations, there is a large class of nonlinear
“bending” operators. For example consider “curl-up® which
takes a long thin object and curls it into a spiral (Escher fans
will know the application for that).

Scripts and Animate Blocks

The main program an ASAS user writes is called a script, which
is a special type of defop. A script handles the setting up and
setting down needed to produce an animated sequence (or write
a file for later production by another system). The script
expression includes a name and any number of subexpressions.
The effect is to define an operator with that name which opens
production, evaluates each expression in the body, and closes
production. There is no restriction, but the things in the body
are usually either animate expressions (*animate blocks®) or
production utilities (such as “make N blank frames®, “put this
slate text”, or “make an N second countdown’).

An animate block is a special type of loop. Each time around
the loop, after it evaluates its body, a frame of animation is
produced automatically. Usually the body contains cue expres-
sions ("cue at frame N, ... °). These cause objects to be made
visible (with the see operator| or start, stop or direct actors.
Animate blocks are exited when a cut operator is evaluated.

This example script contains one animate block, which starts
two similar actors at different times. Both actors then run until
the end of the block.

(script spinning-cubes

(local: (runtime 96)
(midpoint (half runtime)))

(animate (cue (at 0)
(start (spin-cube-actor green)))

(cue (at midpoint)
(start (spin-cube-actor blue)))

(cue (at runtime)
(cut))))

{Note: cut accepts an optional frame number, and will cut only
if that is the current frame, so that third cue could have been
written as “(cut runtime)*) When an animate block is exited, all
of the actors associated with it are stopped. Hence animate
blocks are somewhat like the *scenes” of a movie, the coarse
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structure of the action.

While an ASAS “cue” is in fact simply a number (a frame number
relative to the current animate block) it should not be thought
of as a constani. Because of the computational nature of a script
it can be quite easy to move cues around, since all cue points
can be handled symbalically (by name rather than by a literal
numberl. For example it is a simple matter to change the overall
runtime of a script (for a "quick run through” test) if all cue
points are defined relative to one variable (e.g. “runtime’).
Library macros exist to facilitate just such a scheme. The
animator may find it necessary for artistic reasons to move a
cue point within a script, again this will be quite painless if
everything which is supposed to begin or end at that cue point
refers to it only symbolically.

Actors

The control structure of an animation system would be very
simple if we could assume that all sequences to be produced
had at most one independently animated feature at any one
time. On the other hand, if we assume that there may be any
number of fully independent animated features (starting and
stopping at random times, happening at different rates, running
in sync or notl then conventional control structures are no
longer the most appropriate.

An ASAS actor can be thought of several ways. Most basically
an actor is a “chunk” of code which will be executed once each
frame. Usually an actor (or a team of them| is responsible for
one visible element in an animation sequence, hence it contains
all values and computations which relate to that object, In this
sense an actor serves to modularize and localize the code
related to one aspect, isolating it from unrelated code. From a
formal point of view, an actor is an independent computing
process in a non-hierarchical system with synchronized activa-
tion and able to communicate with other actors by message
passing.

When an actor is “on” (between being started and stoped), it
will be awakened once each frame, its local variables restored,
its body evaluated, its variables saved, then put back to sleep.
(Hence an actor has properties between a “closure” and a
*process” in recent Lisp implementations.) Actors are put into
action with the start operator, which takes an actor and
returns the "actor instance id", a unique number for each active
actor. An actor can deactivate itself, or can be gunned down
by the script or another actor, this is done with the stop
operator which accepts an ‘actor instance id". Run is a
combination of start and stop, it starts an actor with a
predetermined stop cue. This is the definition of the operator
*spin-cube-actor® used in the script *spinning-cubes™:

(defop spin-cube-actor
(param: color)

(actor (local: (angle 0)
(d-angle (quo 3 runtime))
(my-cube (recolor color cube)))

(see (rotate angle y-axis my-cube))

(define angle
(plus angle d-angle))))

It expects one parameter, a color, and returns an actor object.
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The actor itsell has three local variables, each of which is
assigned an initial value in this case: “angle” is the current angle
of rotation for this actors cube, “d-angle® is the incremental
veloeity of the angle, “my-cube” is a recolored version of ASAS's
predefined “cube’ solld. Each frame the actor constructs the
rotated version of “my-cube” and passes it to the displaver, the
current “angle” is updated for the next frame.

Animated Numbers

In the last example the symbol "angle” took on a series of
numeric values, frame by frame, forming an arithmetic series.
But for more complex time behavior (quadratic or cubic curves)
the inline code to handle and update all those linear difference
terms becomes a burden. To avoid this, ASAS supports an
animated numeric object called a newton (as in Newtonian
mechanics). Newtons can be used any place a number would
be used, such as a coordinate in a vector or the angle parameter
for rotate. Between frames however, newtons are automati-
cally updated to the next value in their predefined sequence.
The newton data structure holds its future as a chain of
piecewise cubic curves with selectable degree of continuity at
the joints.

A newton can be specified in terms of position, velocity,
acceleration and delta acceleration (“jerk” or *jerkiness”) when
those values are known. Bul more typically newtons are
defined with utilities which produce curves with certain
properties. Animators are familiar with terms like “slow in” or
“slow out” meaning that an action should start (or end) with zero
velocity (first derivativel. The five most common curves (or
picces of curves) used in ASAS are: hold, linear, slowin, slowout
and slowio. Hold accepts a value and a length of time. each of
the others takes a starting and ending value and a time. Slowio
{slow in and slow out| has zero derivatives al both ends. When
none of the standard curves are appropriale an interpolating
cubic spline fit is used.

Actors and Behavior Simulation

Some animation is made to match a preconceived image,
especially in commercial production. Other times, animation
is produced as an experiment, the answer to “what would
happen if ..°. In the second type, which might be called
“behavior simulation”, the animator sets up a little world by
defining the rules of behavior and selecting the cast of
characters. When the behavior simulation is run we obtain
images of what went on in the little world.

A classic example of this sort of thing is to try to build a
computer graphic simulation of a flock of birds. We must define
the behavior of a single bird so that when a lot of instances of
the bird are simulated, they flock convincingly. The flock seems
to be following a leader, but each time they turn, a new bird
becomes the leader. The flock changes direction like a single
unit, yet it is just an assembly of individuals. The flock is a dense
cluster, but the birds do not often collide.

ASAS actors provide a convenient way of implementing such
behavior simulations. As mentioned before, one of the features
of actors is the way they promote “separation of powers®,
independent modules of code which do not interfere with each
other. This allows an actor to take the part of one characters
in the simulation. If the same sort of character occurs many
times in the simulation (e.g. many copies of BIRD) we can use
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independent “instances” of a given "class” of actors.

The other key feature of actors which makes them suitable for
behavior simulation is the ability 10 pass messages. Clearly the
birds in the flock are exchanging information, through the
action of light and sound on the bird's senses each one is mwane
of where the others are and where they are going (in an
intrinsically depth sorted ordert) In an actor simulation ol the
flock we would not go to the extent of modeling light and sound,
but we could realistically have each bird broadcasling to
everyone the message "1 am here (x y z) and I'm heading tdx
dy dz)". In that implementation, each bird would have 10 put
the others in order of importance, probably using a *hidden bird
algorithm®.

Message Passing

ASAS messages are handled by two special operators: send
and recelve. Send composes messages and posts them at the
recipient’s mailbox. Recelve reads each message in the mail-
box, responding o each in a manner depending on the type
of message. |IASAS actors act once each frame, nol whenever
a message comes, hence mail may pile up between frames so
the mailbox is implemented as a FIFO queue.)

Send takes an address, a “message type (optional), and any
other specific message data (numbers, geometric objects, sym-
bolsi. The address is either an actor id or a special symbol: “all*
means send to all actors and “script” and “animate” can be used
to send messages to the surrounding script or animate block.
The “message type” is any symbol used to describe the tvpe of
message, it must match the message type in the recipient s
receive construct. For example, these sends (1) tell “bouncer”
to speedup by 10 percent and (2) announce lo all birds where
we are:

(send bouncer speedup 1.10)
(send all bird-state cur-position cur-velocity)

The receive construct has a body much like a case construct
Each message in the mailbox is examined in tum, the "message
type” of each is compared with the type of the various clauses.
If one of the clauses in the body of the receive maiches the
incoming message type, the body of the clause is evaluated in
response to the message. Message type "any" in a clause will
match any incoming message. The contents of a message (past
the typel may be accessed by specifying parameter bindings for
the clause type. For example, this actor knows how to receive
only “speedup” and “slowdown” message:

(receive ((speedup f) (define speed

(times speed 1)))
((slowdown f) (define speed

(quo speed 1))
(any (print 'What?)))

The message passing mechanism described above is based on
a more primative operator called In. The In operator allows the
evaluation of any expression “inside” the local variable space
of an actor, thus allowing examining and setting the local
variables of the actor. This is a useful but dangerous tool which
should be used only in a well designed protocol.
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Commercial Production at 111

ASAS frequently plays a central role in commercial animation
production at Iil, although other techniques of animation
control are used. Projects made with ASAS include, "MICROMA"
animated logo, "LBS" animated logo, "NEWS CENTER 2° TV news
show intro, two TV commercials for "TORNADO®, various
magazine ads, all of the theme animation for the 111 1981 Sample
Reel ("The Juggler), about half of the special effects for the Ladd
Company's feature motion picture "LOOKER", and all of the
animation and still images Il is making for the recently released
Disney feature “TRON".

Copyright © 1982 by Walt Disney Productions and Information International, Ine.
Figure 3: Solar Sailer Escape Sequence from TRON

The Digital Scene Simulation Group usually works on a contract
basis with clients such as film and video producers and
advertising agencies. Some projects come to us carefully
planned out by the client, while others come in a very vague
form. If we do not get specific artistic directions (timings,
storyboards and renderings) from the client, our Art Depart-
ment creates these materials in consultation with the client, A
team of at least three staff members (art director, designer/en-
coder, technical director) is formed to work on the job.

When the artistic concept is somewhat settled, work is started
on its computer graphic realization. The first step is to create
a geometrical model of the shapes of the objects to be used in
the animation. Unless the geometry of the object is regular
enough to allow it to be constructed under program control,
the shape definition is done by hand in a laborious process
similar to technnical drafting we call *encoding’. Often some
mix of manual data entry and processing by various *geometri-
cal tool” programs is used to obtain a finished object shape
description.

As the objects are being finalized, the technical director begins
to write the ASAS scripts and related programs. When the group
is working many closely related scenes, for instance during
production on a feature film, many of the *sets” or environments
will be shared between several scenes. In such cases it becomes
convenient to set up “libraries” of common ASAS function and
object definitions. Contributions are made to these “public
libraries” by all animators working on a project. Usually the
motions in an animated sequence are so specifically planned
out in advance that an outline of the script can be written before
any of the objects are available for test pictures. At this stage
the ASAS script is very abstract, references are made to symbolic
constants whose values are not yet known. When object files
are ready and the script is roughed out the “graphical debug-
ging" begins.
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Often design constraints are stated in such an indirect fashion
("have the camera pointing such that the logo is positioned here
and oriented like in this sketch’) that the only workable way
to find the desired numerical parameters is experimentally with
graphical feedback. After specific “key” frames have been
composed, and the transitions between them defined, a motion
test is made. Usually this test is made in either line (*vector’)
or low resolution shaded image mode. The symbaolic nature of
ASAS scripts make il easy to adjust the runtime of a sequence,
making preliminary tests at 10:1 speed ratios allows faster turn
around. Also the script can be simplified for these tests, by
dropping out certain elements, replacing others with “stand-
ins", all these changes can be made under the control of ASAS
script flags. Often the motion test will reveal problems in the
“feel” of the dynamics of the animation or unexpected behavior
between the key frames.

Another pass or two is made to finalize the motion and then
attention is shifted to the color, lighting, shading and other
‘photometeric” parameters of the animation. Key frames are
examined on a high resolution video display and color tests are
made onto the type of color film which will be used for the final
image. Often a parameter will be determined with a “wedge
test’, making a series of frames which differ only by a single
parameter value (e.g. the amount of ambient light in the scene),
with the gamut of values laid out, the final value can be easily
be selected.

When all has been decided, a high resolution final filming is
made. Typically when the result is sereened, the client will find
at least one reason to reject the work and the whole process

goes back to the beginning.
Conclusion

This paper has presented ASAS, a general purpose program-
ming language which has been extended to include geometric
objects and operators, parallel control structures and other
features to make it useful for animated computer graphic
applications. ASAS makes use of an abstract computing element
called an actor, we have seen how actors promote modularity
and how they can simulate a wide range of behavior by
exchanging messages with each other. In three years of
commercial use ASAS has proved itself a workable and practical
tool. While the specific feature a user wants may not already
be a part of the language, the extensibility of ASAS allows it to
grow with its users. ASAS has expanded our “complexity
barrier” another notch, allowing us to attempt work with more
independently animated elements than before.

The author is not prepared to state that when the ULTIMATE
computer animation system is built, it will be programming
language based. But it is hard to visualize a system which allows
arbitrary extensions into unexpected realms without being fully
programmable. However, programming and making aesthetic
judgements seem to be disjoint in most people's thinking
processes. The user of a graphics programming system must
always be on guard against compromising aesthetic judgements
to simplify the programming! The solution used in our
commercial work is to make the production a joint effort of
several people, some responsible for artistic issues and others
responsible for technical issues.
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Note
This entire paper is an example of computer graphics. All

pictures were produced with Digital Scene Simulation, and
directly (digitally) converted into four color halftones in the
Infocolor format.The text was edited and composed on TECS,
and assembled with a Page Makeup System. Camera ready, full
page art (including typesetting and halftone generation) was
produced with a COMp80/2-Pagesetter. All of these systems are
products of Information International Inc.
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A walk through the production process at this commercial CG
animation house reveals an emphasis on software tools and the use
of intermediate-stage graphics for design flexibility.

3-D Shaded Computer
Animation—Step by Step

Richard Chuang and Glenn Entis
Pacific Data Images

y § he animation of computer-generated images has
made a number of contributions to the entertainment in-
dustry, and the future of these images in film and televi-
sion looks promising. Although many computer anima-
tion techniques have been widely researched and pub-
lished, their actual commercial use in production studios
is still in its relative infancy.

The creation of animation for the entertainment field
requires a combination of technical capability, design
sense, and practical production skills. In this article, we
describe the use of computer graphics techniques in a
production environment; in doing so, we stress the prac-
tice, rather than theory, of computer graphics.

Pacific Data Images produces commercial computer-
generated animation for broadcast television. What
follows is a step-by-step explanation of how commercial
animation is produced at our facility. In the course of
this explanation, we will discuss several tools we’ve built
to support the animation process. In particular, we em-
phasize software at PDI, since software continues to be
the key technical animation component that cannot be
bought *'off-the-shelf."’

The techniques covered in this article provide an exam-
ple of how a typical piece is produced in our studio, so
we make no claim of universality. Nonetheless, this walk
through our production process should impart a sense of
what producing computer animation is like.

System overview. The PDI animation system was
developed specifically for the production of commercial
animation. [t produces smooth animation of 3-D shaded
raster images and features an animation language, a
modeling tool kit, real-time animation design, and
several viewing options. Output is to |émm or 35mm
film, or to one-inch video tape.

Figure | presents an overview of our animation
system. Animation in our system is defined by scripts
“‘written’' in our animation language, by world coor-
dinate polygon files, and by motion data. This data is
processed by the script program, which interprets the
animation script and creates one of several types of poly-
gonal output files.

Screen coordinate polygon files can be sent either to
the renderer for the production of antialiased, shaded
raster images, or to a wireframe display program that
displays the polygon edges in antialiased vector form.
World coordinate polygon files can also be displayed in
wireframe form and can define models used by other
scripts, Vector files are sent to the real-time vector device
for interactive viewing and animation design.

Images are displayed on color monitors, vector ter-
minals, and the system’s real-time vector device; images
can also be sent directly to one of two film recorders or
to an NTSC encoder [or recording onto videotape. The
color monitors are located at graphics workstations,
which are equipped with terminals and data tablets for
interactive use by animation designers.

The script system

We rely heavily on a script system for our animation
design. Our script system is a special-purpose graphics
language supporting animation at a high level. The script
system was influenced by a number of other, similar
systems, most notably Craig Reynold's Lisp-based
ASAS.' Our script is built on top of the C programming
language? and thus shares many of C's features. We
designed our script for simple syntax; default values for
the entire graphic environment; support of complex
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modeling, transformations, and motion; and support of
modular scripting. The data structures and file types
used in the script are shared with other PDI design tools
and, thus, provide a common ground on which all design
programs communicate.

We use the name ‘‘script’’ because of the way the
animation language is used in the production process. In
the early stages of a job, the basic models and motion for
an animation are roughed out in the script language. This
original script already includes elementary timing, light-
ing, viewing, and modeling information that will later be
refined and used in the construction of the final product.
At each production stage, this script is updated to reflect
production changes and to incorporate new models and
motion data from other parts of the system. Thus, the
script is much like a movie script in that it concisely
describes what should happen when and where in the
production. Unlike a movie script, however, the script
also defines the animation and is run directly to create
both the intermediate and final versions of a job.

There are several advantages to this approach. The
script was built to be a fast prototyping language for im-
age building and motion testing. Typically, the
preliminary rough script for an animation sequence is
built in the very first session with a client. This capability
for rapid prototyping is essential for design experimenta-
tion and flexibility.

Next, the script directly handles data types and model-
ing operations for lighting, viewing, and transformation,
thus freeing the scriptwriter to concentrate on what has
to be done, rather than how it has to be implemented.
Most script values default to predefined values if not ex-

D

plicitly set by the animator, making simple object defini-
tion fast and easy. For example, if a five-sided prism is
required, the script command is

prism §

Unspecified prism attributes, such as color, radius,
height, and surface type, all default to standard and/or
previously set values. In addition, viewing parameters,
such as camera position, focal length, lights, window,
and viewport, are all set in the script (or, again, default
to standard values) so that when an object is created, it
can be transformed into its final screen position.

Since the animation for a sequence is originally pro-
totyped and refined in the same script that creates the
final piece, the possibility for error and the necessity of
tedious data transcription is greatly reduced.

Motion design

Since the main task of the director and -animator in
3-D animation is the choreography of objects and
camera, we developed a motion design system to assist
them in this. Our motion design system consists of (1)
several interactive and noninteractive motion design
tools that set up each scene and (2) a number of aiter-
native methods for viewing each animation sequence.
Figure 2 illustrates the data flow during the motion
design process.

The interactive motion design system utilizes a vector
display to establish key-frame positions for the camera

—»{ DESIGNER
WIREFRAME WIREFRAM
SCRIPT |- M commirs DISPLAY of " Wkce |
TEXT | PROGRAM
Y POLYGON ~p4 16MM FILM
FILE
SCRIPT
INTERPRETER
O 35MM FiLM
WORLD SCREEN RENDERED |
COORDINATE |- COORDINATE | RENDERER ™| iMace ONEINCH
POLYGON POLYGON -
[ FLE FILE YIOEQ
DESIGNER
REAL-TIME
MOTION bplonar
oy COORDINATE
tF)fLE VECTOR %-INCH VIDED
FILE

Figure 1. Overview of the Pacific Data Images animation system.
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and actors. The camera’'s view, focal length, and direc-
tion of view, along with the position and orientation of
each actor, are specified by the animator interactively.
The key frames are then placed into an animation se-
quence. Next, as specified by the animator, the computer
generates the required number of positions for all the in-
termediate frames.

Mathematical control paths for both space and time
can also be used to modify the transition of motions be-
tween key frames. Examples of key-frame modification
are camera tracking, easing in, easing out, and roll and
pitch. For well-defined motions, numerical paths can be
entered manually or interactively. All motion specifica-
tions can interact within the script of each animated
scene. Combining numerical paths and key-frame speci-
fications is often used in our animation.

Extensive use of motion paths simplifies the design
tools needed for specifying complex motions. By using a
simple description of motion in terms of motion paths,
new animators can quickly learn the basics of 3-D com-
puter animation and later extend their knowledge to
more complex scene choreography.

Previewing motion. An animated sequence can be pre-
viewed in several ways. First, a flip-book approach can
help an animator view his design in a somewhat ‘‘tradi-
tional’”” manner. In this approach, all motions in an
animation sequence are calculated and drive the motion
on the real-time 3-D vector device. This device can play
the animation back at any speed, which allows the ani-
mator to *‘flip’* through the sequence at varying rates.
Having access to this level of interactive control is impor-
tant for an animator in that it helps him understand the
quality of movement and permits him to closely (and
slowly) scrutinize movement.

A second preview method involves filming a wireframe
pencil test of an animated sequence. This produces a

TEXT

display of the actual choreography. Through the use of
very simple models or ‘‘stand-ins,"” motion tests can be
done prior to having the actual actors in each scene,

Then, finaily, the motion can be previewed at low
resolution (256 x 243). Here, the choreography of move-
ment, lighting, and color are seen together before the
final rendering. This low-resolution animation is visually
more helpful to an art director than vector animation,
since a vector animation sequence contains no informa-
tion as to the color and mass of each scene.

Model design

A designer has control over many characteristics of the
objects to be animated, including geometric shape and
size,’* color, surface quality,’ and amount of detail. As
described above, very simple models are sometimes used
in previewing a sequence so that the designer can get a
feel for the overall scene or movement within a scene. At
other stages of production, different details of the
models are required to complete and fine-tune the final
piece. All of this falls under the general heading of model
design.

An animator may be called on to animate almost any
kind of object, so it is important that his available
modeling tools be flexible and fast. A prime objective of
our modeling tools is to provide just such a set of general
capabilities—one that allows quick object definition
without the necessity of using custom software.

Figure 3 illustrates the various tools that, together,
create a finished model. The script language, various
modeling programs, and a graphics editor each produce
a common-format world coordinate polygon file. This
world file can, in turn, be processed by other modeling
programs. Additionally, the file can be further manipu-
lated by the script language. Once an object’s world
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Figure 2. Motion data flowchart.
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polygon file is completed, it can be called up by the script
controlling the animation for conversion into screen
coordinates and then incorporated into the final scene.
Each of these steps is examined in detail below.

The script language described above is used to create
most models based on geometric primitives and to build
up parts of models created by other programs. Quickly
specified simple objects made from primitives are
especially useful as stand-in objects. But the script is the
basis of both the animation and modeling systems, so all
script primitives can also be used as building blocks for
more complicated models. Many models, such as build-
ings with multiple levels, windows, and doors, can be
constructed by combining very simple geometric forms
(see Figure 4).

Other modeling programs create various types of
spline-based objects, including patches, free-form sur-
faces, and *‘swirls.”* There is also a special program for
creating three-dimensional logos from two-dimensional
contours. The splines and contours used by these pro-
grams can be entered in three ways: (1) using an interac-
tive spline editor, (2) from spline data created in a text
editor, or (3) from other programs. Figures 5 and 6 illus-
trate models defined with various spline-based surfaces.

Still other programs form various geometric surfaces
on polygonal meshes. For example, a recent job called
for the animation of rocky surfaces, so a fractal modeler®
was used to create mountains.

We also use a special class of modeling programs based
on a Unix concept known as **filters.”” A filter program
is one that accepts a stream of data, performs some
transformation on that data, and outputs the data,
usually in its original, input format. The advantage of

scret [~
o
]
]

|F.“M._J

SPLINE-

MODELNG [ 7]

PROGRAMS

T="* MODELING
PROGRAMS

this approach is that each filter program can be designed
to do one very specific task and do it well. Complex tasks
are then performed by chaining filter programs so that
the output from one program is the input to the next.
This type of *“‘combinatorial power’’ provides very exten-
sive graphical capabilities with relatively simple software.
Our filter programs accept world coordinate polygon
files as input, process them in some way (alter polygon
normals, change colors, apply nonlinear transforma-

o

Figure 4. All elements of this scene are simple geometric
primitives created by the script.
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Figure 3. Both model scripts and animation scripts are written In the PDI script language. Ncte that the script

can aiso be used to drive the other modeling tools.
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Figure 8. This image features stochasticaily generated
spline-based models, textured ground, and special ef-

Figure 5. Cat Clock's trim, plant leaves, smoke, and ash-
tray were all bullt from B-spline-based objects.

Figure 7. Stand-in model of a still life.

tions, etc.), and then output a new world coordinate
polygon file.

When a geometric or algorithmic modeling approach
won't suffice, an interactive graphics editor is also
available. As the artist draws the model with a data tablet
and interactive display, the computer stores the artist's
drawing in a file. This information is converted into
polygons, which can then be used as a model or as input
into other modeling programs. Many of our logos and
our more free-form designs are modeled in just this
fashion. In some cases, the most practical method of
building a model is by scanning the original art into the
display memory with a video camera, displaying the im-
age on the interactive display as a guide, and then tracing
the scanned-in image to create the final model. Once de-
fined, this final model is available for display and anima-
tion from the script with a single command.

Rendering a computer graphics model, which is done
after the model has been defined, means displaying it in
color on a CRT screen as a solid object with hidden sur-

_él.f..

Figure 8. Detailed rendering of a still life.

faces removed and proper 3-D shading. Stand-in models
are again useful—this time for the determination of col-
or, object placement in the scene, and scale. An example
of a scene of rendered stand-in models (polygonal stand-
ins in a still-life) is shown in Figure 7. The colors and
final placement of the objects were determined using
those stand-ins, after which the final, detailed scene
(Figure 8) was created.

Designing a complicated object correctly on the first
attempt is difficult, so a fast method of viewing objects
in the design state is desirable. In our system, any model
can be previewed as a color wireframe (Figure 9). Such
wireframes have the advantage of being quick to display
and yet still show the full structure of the scene.
Wireframe drawings can also be plotted on paper for
detailed planning and documentation.

Once created, models are rarely thrown away. Most
computer animation studios build up the equivalent of a
shopping catalog of models that they can use in future
work. Our script system encourages the modular con-
struction of models from subparts. Each model is then
given a name and saved in a model library. If a scene is
made of several models, the script retrieves the necessary

IEEE CG&A



Figure 9. Color wireframe of a still life.

models from the library. Because each model is inde-
pendently defined, the script can be used to isolate ob-
jects for documentation and detailed viewing.

After the model has been fully rendered by the
designer, it can be placed at any location on the screen,
either by itself or in combination with other models. Ad-
ditionally, the camera can be positioned to aim at any
screen location. A virtually unlimited number of light
sources, at any position and of any color, are allowed; in
fact, at this stage of design, a major portion of the ar-
tist’s and client’s time is spent adjusting the lighting and
fine-tuning the color of the model. Subtle lighting ef-
fects, highlighting, and color balance can be adjusted to
greatly enhance the strength of the final image.

Test shots

Models and animated movements can be used any
number of times and in a variety of ways. This is par-
ticularly advantageous in preparing test shots; a script
can be progressively refined and viewed in inexpensive
test-shot formats until everyone agrees that they have
what they want.

The above section on motion design mentioned the use
of flip-book motion previewing and wireframe models.
When combined, these two techniques offer a relatively
cheap method of previewing the animation for an entire
production.

In traditional animation, a pencil test is the filmed se-
quence of raw, pencil art shown at the normal animated
playback speed. For the computer graphics equivalent of
pencil tests, we use the script and models for the final
piece, but draw each model as a color wireframe rather
than as a fully rendered image. A wireframe image can be
up to several orders of magnitude faster to compute than
a fully rendered image, yet the wireframe pencil test still
displays the motion exactly as it will appear in the final

December 1983

Figure 10. This composite image shows the same anti-
sllased scene al 512 x 488, 258 x 243, and 128 x 121
resolution.

work. Because the same script and models are used for
the pencil test and for the final piece, the movement and
models in the test are duplicatable. Thus, misunder-
standings and organizational overhead in the studio are
reduced.

Test renderings are made at various stages of the
animation so that the designer can view and modify the
look of the models, coloring, lighting, and the general
feel of the key frames. Often a scene consists of many in-
dividual elements, including mattes for mixing live action
with animation. Since test renderings, pencil tests, and
the final animation are all made from the same script and
models, it is a simple matter to choose any frame from
the pencil test and render it exactly as it will appear in the
final image.

Usually, the last piece of test footage in a normal pro-
duction cycle is a low-resolution rendered animation se-
quence. This test has hidden surfaces removed, 3-D
shading, and is antialiased, but all at lower resolution
than what would be considered normally acceptable fora
finished piece. Rendering frames at one-quarter resolu-
tion (reduced to half resolution, both vertically and
horizontally) gives everybody invoived in a production
an excellent feel for the final film. Since resolution is
closely tied to computing time, the low-resolution test
shot is still significantly cheaper to compute than the
final image. And in most cases low-resolution tests are
done at one-sixteenth final image size (reduced to one-
quarter size, both vertically and horizontally). Figure 10
shows a composite of an image generated at 512 x 486-,
256 % 243-, and 128 x 121-pixel resolution.

Rendered test shots need to be done at the final frame
rate. In commercial productions, special lighting effects
often take place in a very short time interval and are syn-
chronized to a sound track. Seeing each of the final
frames will assure the designer that all of his planned ef-
fects are in place and working. To make certain this hap-
pens, all the motion data has to be gathered and updated
before doing the test shot. Figure 11 shows how all of the
disparate pieces of information are coordinated to form

the final image.
Important to all test shots is the ease with which they

can be produced. In some cases, a motion test or
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rendered frame is available in a few minutes time, and
since everything is repeatable, the animation designer has
precise control over what is to be changed and what re-
mains the same. As a parallel, imagine an architect who
can refine a set of blueprints, build scale models from the
blueprints, and then automatically have the building
constructed directly from those blueprints.

The final shot

After all necessary test shots have been completed and
everyone concerned with the production is satisfied with
them, the final animation sequence is created. In our
studio, this final product is shot on either 16mm or
35mm film through the use of a computer-controlled
film recorder.

We generally prefer to produce final animation se-
quences directly onto one-inch videotape. To do this, we
use a “‘director’s” language to control the frame render-
ing of the final scene from the animation script and also
to automatically control the film recorder. If multiple
scripts are used, or if the scene requires images from out-
side sources to be matted with the computer-synthesized
images, the director’s language also handles this. Addi-
tionally, various special effects, such as glows and vec-
tors, are added to the composite image at this point.

Because rendering a single frame of a complex image
can take a long time, each element of a scene must be up-
dated and synchronized before the final animation is
recorded. The completed spot then goes to the client,
and all scripts, models, and selected intermediate images
from the animation are archived in a database.

The above is a general overview of one approach to
the production of computer animation. The tools used in
our studio and by the industry in general are new and im-
proving rapidly. Ultimately, the quality of an animation
sequence is the direct result of the quality of the graphic
design and animation sense that goes into it. Good
technical tools support animation design by providing
clean, simple, and powerful methods of executing a
design concept.

The tool-kit approach outlined here emphasizes
general animation capabilities rather than custom soft-
ware. This simplifies the software management task and
gives animation designers a clear idea of what is possible.
Our studio has been open for commercial production
since May 1983, and we have completed almost a dozen
commercial productions since that time. About half of
these jobs were performed without the use of custom
software, while the remainder required very simple
custom programs that were generalized and documented,
and thus became a standard capability of the studio. B
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Figure 11. Data coordination required to produce a final image.
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Appendix

Our current studio at Pacific Data Images was formed
early in 1982, The objective of our three-person group
was to produce computer-generated animation for
broadcast television and film. In this we feel we have
been successful.

Our present animation system has been in develop-
ment since the studio was formed and was completely
designed and implemented in-house. The basic system
was built around a small minicomputer, a PDP 11/44,
and a 512 x 512 x 32-bit DeAnza [P6400 frame buffer. At
the end of 1982, we added a VAX11/750 minicomputer
system, a DeAnza IP8500 frame bufTer, and an IMI 500
real-time vector display station to our facility; in
September 1983, we obtained a Ridge 32 supermini.

As stated earlier, all of our software was written in C
under the Unix operating environment. Qur selection of
Unix and C was dictated by a desire for smooth develop-
ment and growth., We also use low-resolution raster
graphic terminals at our desks for design and preview.

One of our primary goals has always been to develop a
state-of-the-art animation system capable of accom-
modating growth. The ability of the software to be
transported to newer and faster computers is essential to
the development of a productive and competitive anima-
tion capability, and modular design is critical to develop-
ing a transforming system. As new animation and image
synthesis techniques become available, they will be in-
tegrated into our animation system with well-defined in-
teraction.

For more information about our equipment and mo-
tion design, see the article by Rosendahl.”
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Abstract—This paper describes a visually interactive 3D computer animation system. Animation is controlled
by lists of events stored in tracks. Tracks are interpolated by functions that have an arbitrary degree of
knowledge about how to control display parameters. The system provides real time wireframe playback so
the animator can see what the animation looks like and is both input and output device independent.

I. INTRODUCTION

Computer animation is an important and popular topic
which has received a great deal of attention recently.
Many 2D and cartoon animation systems have been
implemented (e.g.. [1. 3. 4]) to interpolate, or inbetween
monochrome and color pictures. However, these sys-
tems are animation assistants rather than animators,
because they require conventional animators to draw
frames that are close to the final image.

We are interested in three-dimensional animation,
where the animator can create an alternate reality and
manipulate the objects within it. A number of 3D an-
imation systems (e.g., (5. 6. 9. 15. 19, 21]) have been
implemented and are in current use. These systems
take various approaches to the problem of designing a
three-dimensional animation. which typically involve
programming in a high-level language. This is a major
disadvantage, in that the animator must learn computer
programming before being able to animate. Without
the appropriate high-level constructs, this means that
the animator must furthermore learn how to associate
the high-level concepts of animation with the low-level
operations provided by a programming language.

In addition, because of the complexities of evaluating
the programmed motion. these systems provide only
offline playback, in that the animator must begin a
computation sequence and return at some later point
in time to view the sequence. This process may also
require hardcopying the sequence (i.e. film or video)
before being able to view it.

In this paper we describe rwixr, a 3D animation sys-
tem in use at the Computer Graphics Research Group
of the Ohio State University. /wix! is an interactive
animation design system where the animator interacts
visually. rwixt has been used to generate a number of
animated sequences, including The Uneven Bars [18].

t The research described in this paper was supported. in
part, by National Science Foundation grants MCS 79-20977
and MCS 79-23670.

t This paper is one of the three award winning papers from
EUROGRAPHICS "84, the annual Conference of the Euro-
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lished here in a revised form, with permission of North Holland
Publishing Company (Amsterdam), the Publisher of EU-
ROGRAPHICS "84 Conference Proceedings.

§ Author’s address: CGRG/Cranston Center. 1501 Neil
Ave., Columbus. OH 43201, USA.
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The next section of this paper presents the design
criteria for /wixt. The remaining two sections discuss
animation design and some major implementation
features.

2. DESIGN CRITERIA
The design criteria in this section are discussed both
in terms of how useful they are and how they are im-
plemented.

2.1 Visual interaction

Our first criterion is that the animator interact vi-
sually. Many recent 3D animation systems [S, 8. 10,
15. 13. 21] require text mediated interaction, in that
the animator must edit a file containing some kind of
program in a high-level language that describes the an-
imation. The animators have to wait various lengths
of time for frames to compute before being able to see
them. causing the animation process to be something
of a tnal and error affair. We specify that in wixr the
animator works interactively with images and will see
the image changing dynamically as graphical input is
processed,

2.2 Multiple track
Our next criterion has to do with the specification
of animation. We did not want to implement a key-

[rame system, in which the animation system knows

evervthing there is at one particular frame (the key-
frame) and interpolates for inbetween frames. Ideally,
a keyframe is necessary only at a transition point, since
the system can interpolate the rest. Unfortunately, a
keyframe records one state, the total state of the frame.
Some objects in the scene may not have any transitions
at that frame, indicating that a keyframe is necessary
wherever any object has a key action, leading to a large
number of keyframes. Thus objects that don’t really
belong in a keyframe must be pre-interpolated before
capturing the keyframe.

We can think of each object in an animation as pur-
suing its own course of action: therefore we should
allow the animator to create fracks of action and place
objects on their own tracks. The animator specifies
what the object is doing at various points in time along
those tracks. At those points we capture the display
parameters of the object. For intermediate times we
mathematically interpolate those parameters to con-
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struct inbetween frames. A related earlier effort is MU-
TAN [9]. which allows the animator to place objects
on their own tracks and specify synchronization marks
where different tracks should line up.

As it turns out. one display parameter of an object
could easily be independent of another, so we need a
more complex approach: We must provide tracks for
each display parameter of an object. not the object as
a whole. For example, something might be spinning
around while it jumps up and down, and we should
allow each of those motions to have its own track. On
these more specific tracks we will have events whenever
something happens. We will interpolate between events
to find inbetween values.

Events on any particular track are necessary only
when the track begins to change its behavior. How
tracks are evaluated to produce animation will be dis-
cussed later.

2.3 Metamorphosis

One of an object’s tracks is its surface definition. In
rwixt, the surface definition of the animator’s data as
it's drawn on the screen is time dependent. We can
interpolate between static data definitions to produce
a third dataset. the one which is actually drawn. This
will be discussed more later.

2.4 Reual-time plavback

Conventional animation techniques incorporate
filmed rough sketches of animations in progress to get
an idea of what the animations look like before going
through the laborious process of inking and painting
each frame. The rough sketches are drawn with pencils,
giving the name pencil test to the film footage of the
rough sketch. This is related to the cartoons used in
classical painting.

Computation of the color version of an animation
is still quite expensive. (wixt provides pencil test play-
back in real time (or as close to it as a multiuser system
will allow) so the animator can see what the motion
and composition of the animation look like before
spending a large amount of time on computation.

The real-time playback criterion is important, as an
animator cannot finalize any sequences before seeing
what they actually look like. rwixt incorporates various
computational tricks to speed calculation of inbetween
frames: these will be discussed later.

2.5 Device independence

Iwixt operation is not limited to a particular display
device: this point needs no discussion. /wix? can run
from anywhere in the laboratory., not just from a
graphics workstation. If the animator is fortunate
enough to be using a graphics workstation. wixt pro-
vides visual feedback, and the animator has graphical
input devices with which to interact. Otherwise. the
animator still has access to /wixt's power, but picture
generation has to be done on terminals with vector
graphics capability. with no real time interaction.

JuLiaN E. GOMEZ

2.6 CGRG animation environment

One of the final. but certainly important criteria, is
that (wixr fit into the environment at CGRG. This
strongly affects its user interface, in that commands
must be designed in a way that corresponds with the
rest of the programs at CGRG. and that the way the
animator handles data corresponds with the rest of the
graphics software. For example, if the animator asks
to see the color of something, rwixt produces the same
report as any other software in the animation pipeline.
iwixt's design has influenced the design of other soft-
ware in the animation system, and other programs have
borrowed ideas and code from (wixt for their operation.

This criterion also involves access to high quality
imagery with a minimum of effort. To draw images in
color, twixt speaks directly to scn assmbir [7], a system
designed by Frank Crow for varying quality image
generation. The animator at any time can generate a
high quality image of the current working frame with
asimple command (see example below). This capability
extends to allow the animator to take an animation
designed with rwixt and have it generate the equivalent
command file for later offline computation of the high-
quality imagery (again with one command).

2.7 Pecuniary paucity

Finally. the reason for some design decisions was
the lack of available resources. This isa common com-
plaint among research institutions. and is often the
final arbiter in many decisions. as it was in some cases

here.

3. ANIMATION

The unit of time in (wixt is the frame number. This
proceeds at 24 frames per second for cinema and 30
for video. It can be argued that it would make more
sense to deal with animation in terms of seconds. In
any case. the notion of frame is historically tied into
animation, and would be as difficult to overcome as
switching from the foot to the meter.

Animation in rwixt is not limited to moving things
around in space. Animation in /wixt is dvnamically
changing display parameters. which can include values
outside the transformation matnx. like color. Thus
objects like light sources can have dynamic color. which
will not be seen until the frame is computed on a color
display.

3.1 Events and tracks

As previously discussed, each object has a number
of display parameters. Whenever one of these changes
value, we designate it an event, and enter it into a linked
list of events for that particular parameter. Besides its
frame number, an event also has other parameters as-
sociated with it (e.g.. ease-in count. linear interpolation.
Catmull-Rom interpolation. etc.).

The event list is known as a track. Tracks are doubly
linked [12] because a program can go forwards or
backwards in the list in the same amount of time. and
quite rapidly. When interpolating. it is necessary to

...70_..



Twixt: A 3D animation system

access both values preceding and succeeding the current
value, and these accesses must be done very quickly
in order to maintain real time response. This imple-
mentation scheme sacrifices space for time.

Commands are available to shift the frame number
of events (thereby changing their timing) and the func-
tions associated with the event.

The collection of all tracks is known as the script.
The script is maintained in editable form on the file
system. so the animator can look at it or even perform
external modifications on it. The script is separate from
the intermediate form that (wixt transmits to scn
assmblr. As with text editors, it is a good idea to write
out the script every once in a while in case the system
crashes (or the animator finds a fatal bug in twixt).

3.2 Imerpolation
There are a plethora of techniques for interpolating
or approximating curves between points; see [16] for
a start. -
3.2.1 Linear. Much animation is done with linear
interpolation. using

¢ =cyp+ ax(c, — c)

modified to perform sine curve acceleration/decelera-
tion. We explicitly allow « to range outside [0.0 + 1.0]
in order to extrapolate as well as interpolate.

Since we must access values within events, we define
an abstract function

E (object, event. parameter),

where object indicates what object, event points to the
event in question. and parameter indicates the param-
eter for which the value is desired. E can be boolean
valued. scalar valued. vector valued, matrix valued, an
interpolation function, etc. Then the linear interpo-
lation function becomes (as appropriate):

temp = E (object, ¢, )

r=temp + a*X (E (object, ¢, ) — temp).

Acceleration and deceleration in classical animation
are known, respectively, as e¢ase-in and ease-oul. con-
veying the idea that an object eases into a movement
from rest and eases out from movement to rest. This
can be generalized to acceleration and deceleration.
We can provide acceleration by modifying the inter-
polation technique to proceed nonlinearly along the
interpolated curve.

Conventionally, eased movement is done with a cir-
cular interpolation technique amounting to a portion
of the sine curve. This portion ranges from —x/2 to
+x/2 for acceleration, and 7/2 to 3«x/2 for deceleration.
In between ease-ins and ease-outs (either or both of
which may be zero length) linear motion is used.

—7,.—
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3.2.2 Second degree. A couple of second-degree in-
terpolation techniques are useful. One is to fit a circular
section through three points (after handling the colli-
near special case). Another is to use blended parabolas.
or Overhauser interpolation [2. 16].

3.2.3 Third degree. Cubic splines have a nch liter-
ature. having been studied a great deal in mathematics
and CAD. We provide some of the common splines
to aid the animator in fitting smooth curves through
display parameters.

3.3 Frame construction

To build a frame, (wixt evaluates the activity on
every track of every object. Once the display parameters
for an object have been determined. its matrix is built,
various flags are set, and static data definitions are in-
terpolated if necessary. Thus the frame can be consid-
ered as the union of activity on all tracks.

This approach is important because it allows the
animator to specify different motions independently
and have (wixt take care of putting them all together.
Using the previous example (which is exactly delineated
in the appendix) the animator can design the spinning
motion, then the jumping motion, and the two se-
quences are added together inherently.

3.4 Abstract track control

The preceding sections dealt with the basic move-
ment capabilities of rwixt, but it is possible to define
higher-level functions. A first step would be to link
tracks together, so that one display parameter is con-
trolled by a function applied to another display pa-
rameter. A good example would be to make the posi-
tion of a rolling object be correctly determined from
its angular velocity (or vice versa), or the velocity of
two objects being controlled by their distance from
each other.

A basic version of this capability is the ability to
transform tracks: Once a track has been set up, it can
be copied and transformed to another track of equiv-
alent type (i.e. scalar, boolean, vector. etc.). An example
would be to take object A's position and multiply it
by — | into object B’s position. The resulting animation
would have B exactly mirroring {’s position,

This feature allows the animator to use fwiv at
varying levels between a guiding system and an ani-
mator system [20]. The animator is no longer limited
to designing absolute motion: a track becomes a static
piece of data which can be instanced to produce actual
animation. In other words. animation designed in (wixt
can be used as procedural animation as well as actual
animation.

In general, evaluation of a track requires evaluation
of some function. of which those mentioned above are
only a few examples. There are two constraints for a
movement function: It should be first-order continuous
(C") so that the object does not suddenly do anything
(like change position drastically). and it should be sec-
ond-order continuous (C?) so that the velocities in-
volved in displaying the object do not change suddenly.
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It 1s important 1o think of an event in an abstract
sense. It is not limited to scalars or vectors or even the
quantities mentioned previously. It is better to think
of a track as an n-vector that provides the interpolation
function with enough information about a certain point
of ime that the function can compute necessary values
for an animation. In the common case of 3-vectors
interpolated with a cubic spline. this is a straightforward
operation. A more complex function. for example an
n-body problem. could compute the position of n bod-
ies. the final result for each body ending up on its po-
sition track.

The idea of using a movement function is very gen-
eral. since complex functions will eventually generate
specific values for an object's display parameters. The
animator has a distinct advantage when he can feed
parameters to high-level functions and let them take
care of compilations down to the track level.

4. USER INTERFACE
This section presents some of the major implemen-
tation points about rwixt. A detailed explanation would
not be in order here; the disscussion is limited primanly
to data use and manipulation.

4.1 Frame editing

In a basic sense. we can consider /wix! a picture
editor. The illustrator can simply work with (wixt to
design a still image, interactively adjusting the scene
until it looks right. generating color versions intermit-
tently.

In this mode, the illustrator probably won't invoke
any animation functions. We say “probably,” because
the ability to vary an image over time provides the
illustrator with yet another interactive tool in designing
the image. By animating aspects of the composition.
many variations can be generated rapidly and auto-
matically. The illustrator can then *pick out™ desired
portions of a frame description.

4.2 Space vs time

A fundamental approach in the implementation of
rwixt is to sacrifice space for time. The real-time con-
straint requires maintenance of a large number of van-
ables: By profligate storage of state and transition vari-
ables, we can avoid a large amount of computation.
With a modern virtual memory computer (such as a
VAX). the time over space sacrifice is no big deal, and
for the benefits makes a lot of sense.

4.3 Objects

4.3.1 Modeling technique. The overwhelming ma-
Jjority of surface modeling at the Computer Graphics
Research Group is done with polygon meshes, although
- twixt will also handle various kinds of bicubic patches.

4.3.2 Object creation. twixt works with instances
[14) of data defined previously by the animator and
resident in the host filesystem. There are a few different
ways of using instances in /wixt. The first simply dis-
plays the polygons (or patches) of the data. An edge
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dictionary (for polygonal data) is created on the fly and
sent to the display device. The second method is to
display points for each vertex of the data. rather than
edges: it is used for high complexity objects which oth-
erwise would use up too much display device memory.
A vanation on this method for bicubic data is to draw
their control point mesh, The third method does not
display anything. but keeps the surface data around
for later interpolation. i.e. a definer.

Once an instance has been created. we include it in
an object. An object includes the instance just created.
and all static and dynamic parameters required to dis-
play it. such as color. position, orientation. etc. An
object may be a blender (as opposed to a regular object)
which means that the animator provides a list of de-
finers and frame numbers at which to use each of those
definers. The object is drawn by interpolating between
the appropriate definers (thus each definition is an
event on the blender’s surface definition track). Note
that the set of definers is reusable among different
blenders.

4.3.3 Special objects. Some special objects are pro-
vided by rwixi for the animator: the virtual eyepoint.
the center of interest, the background, one default light
(up to 16 can be requested), and ambient light factor.
All of these can be animated.

The eyepoint and center of interest. along with the
view angle and roll angle. model the virtual camera
that is viewing the scene. The background can be etther
a solid wash of color or a precomputed image. I it is
a color. the color can be animated: if it is an image, it
can be either static or dynamic. A dvnamic image
background would be the situation where the animator
has precomputed an animation. and now wishes o use
those scenes as backgrounds for new action.

4.3.4 Hierarchies. We implement hierarchical ob-
Jjects by attaching one object to another [7]. This defines
a general tree creating one complex object from sets
of objects. Thus a scene in (wixt is actually a forest
[12] of hierarchical objects.

It is important to realize that although some objects
have special meanings. they are still objects. Thus the
eyepoint or center of interest can be attached just like
any other object. To implement an unfixed truck. where
the camera moves with a moving actor while following
that actor, the animator would attach the center of
interest to the actor, and attach the eyepoint to the
actor at the proper camera displacement.

4.3.5 Naming. There are times when the animator
will want to speak of an object as whole, and there are
times when just one value of that object is desired.
There are also intermediate stages, i.e. when the ani-
mator desires a major chunk of an object. It is necessary
to provide a naming syntax that will handle all of these
cases.

We took an approach fashioned after most ALGOL-
based languages: A parameter of an object is addressed
by objectname.field. To access more than one field
in an object. the animator concatenates: object-
name.field field 2 . . . A null field name is equivalent
to naming the whole object.
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The term field is ambiguous. since a field can be a
boolean. a scalar., a vector, a matrix, a surface defini-
tion, or some other primitive used to implement a dis-
play parameter. An object’s position, for example, is
a vector. but the X coordinate of that vector is a scalar.
These two quantities would be named, respectively,
objectname.p and ovbjectname.px.

4.4 Terminal interface

4.4.1 Commands. Commands in twixt follow the
same format that seems 1o be generally accepted for
interactive programs and systems. The syntax is like a
simplified UNIX shell [17]: 2 word (the command)
optionally followed by a set of parameters. Various
metacharacters are defined for special operations; the
most interesting is “@." which allows the animator to
read in commands stored in a file. We refer to this as
calling an indirect command file. The indirection fa-
cility nests, so any indirect command file can itself use
another indirect command file. This makes it possible
to define primitive operations and build up more com-
plex ones by collecting them at progressively higher
levels. This process could be used to build complex
data or define complex motions. It is also the mech-
anism for restoring a previously saved script or scene
definition.

Indirect command files also allow /wixt to be driven
by special purpose programs, which might want explicit
control over an object. The special purpose program
would write a command file that the animator would
tell rwixt 1o read in. The process requires only two
commands:

! program that generates script on file
@ file

The first command (a system escape) runs the program
that generates the indirect command file; the second
command reads it in.

4.4.2 Abbreviated commands. The animator does
not have to type out complete commands. An under-
lying set of subroutines finds the minimal substrings
required to distinguish one command from another,
and the animator can type in any portion of a com-
mand that includes its minimal substring.

This feature is implemented by maintaining a table
of known commands. At run time (i.e. when (wix{ starts
up) it calls a routine that adds commands to this table.
As each command is added, it is insertion sorted [11]
into the table. A recursive process then examines each
command, comparing it with its neighbors to see how
many characters they have in common. The resuult is
the minimum number of characters necessary for a
string comparison to distinguish any command from
any other.

The run time binding of this algorithm is important.
It allows (wixt to selectively implement or de-imple-
ment commands based on which display device it is
using. There are commands that make sense for some
pieces of hardware but not others. thus when running
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on those other devices rwixt will not recognize those
commands.

4.5 Screen interaction

We refer to the manipulation of objects as guiding.
after Zeltzer [20].

4.5.1 Absolute guiding. Anything in (wixt can be
manipulated with explicit commands. e.g..

place object at xyz.

This mode discourages fine adjustments because it is
so tedious to repeatedly type in numbers that are
changing by just a small amount. Its advantage is that
the animator can explicitly control the object.

4.5.2 Interactive guiding. The already mentioned
lack of adequate input facilities led to the development
of knob mode, a name born of irony rather than reality.
In this mode. the animator hits the “x,” *y” or “z"
keys on the terminal repetitively to step a value posi-
tively or negatively. Upper case letters have ten times
as much effect as lower, and step sizes are under analog
control with yet another key. Other keys control what
the animator is controlling (e.g.. rotation, position,
color). The image on the screen changes in real time
as each key is struck.

Recently acquired advanced hardware (an Evans &
Sutherland Picture System 330) provides more rea-
sonable means for the animators to interact with their
images. This system has a tablet, dials and buttons. all
of which are sorely needed to facilitate the image design
and animation process.

To use these devices. the animator binds a control
dial to a display parameter, which can be a simple
scalar, a scalar component of a vector, a scalar mul-
tiplication of a vector. or a scaling control. Simple sca-
lars would be guantities like specular reflection com-
ponent. The second category would include, for ex-
ample, the Y component of a position. The third
category controls blending of vectors and is used for
operations like sliding an object along the vector to-
wards the eyepoint, The fourth category allows the an-
imator to apply coarser or finer control to another dial.

4.5.3 Comment, The interactive facilities are de-
signed to allow the animator to interact with the image;
as such they provide a few general sequences which
allow all kinds of manipulation to be performed. The
command interface is intended more for administrative
details (e.g.. show status, or write out script), whereas
the interactive manipulation lets the animator con-
struct and edit images.

4.5.4 Design aids. twixt provides a frame buffer
viewport guide, field guides and a TV aperture guide,
any or all which the animator can overlay on the image.
The frame buffer guide shows what portion of the I:1
aspect ratio vector image will appear on a 4:3 aspect
ratio frame buffer image. The field guides divide the
screen into a number of squares so the animator can
do screen coordinate positioning. The TV aperture
guide shows which portions of the image will be pro-
jected in adequate quality with NTSC video.
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5. SUMMARY

We have described the operation of iwixi, a three-
dimensional event driven animation system. We have
showed that a careful combination of a terminal on-
ented command driven interface with graphical input
devices results in a system that is device independent.
vet powerful enough to perform moderately complex
three-dimensional animation in a wide variety of ap-
plications. Practically, the friendliness of the system
depends on the level of hardware support. The event
driven amimation approach allows easy extension
0f4.5.4 the animation capabilities. Without modifi-
cation to the structure or interface of /wixi, more so-
phisticated functions can be introduced to handle in-
terpolation tasks.”
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APPENDIX A: EXAMPLE

This typescript implements the example given in section
two: A ball jumps up and down while it rotates. It is obviously
oversimplified. but a more complex example would have made
the paper too long. The animation is built in two steps: First
the rotation is designed, then the jumping. Note the animator's
use of dials to adjust the ball's position duning the second step.
The frame constructor inherently composites the two actions
with no intervention by the animator. This script works: it is
a prettied version of the script that was actually used 1o do
the amimation.

# get data instance

call /pic/data/ball
# first let's work on rotation

rot ball 0 y # set initial rotation
event | ball.ry # register event
rot ball 720 y # set final rotation
event 96 ball.ry # register event
pencil |1 96 # see what animation looks like
slide ball.rv.96 72  # make rotation one second shorter
pencil | 72 # now see what it looks like

# let's work on the jumping
event 30 ball.p # grab initial position
event 78 ball.p # which 1s also final position
place ballat 0 20 # apex of jump
dial ball # adjust
event 54 ball.p # register apex
pencil | 78 # look at composited animation
twerp ball.p para  # use parabolic interpolation
pencil # look at animation again
script jumping # save script
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Fig. 1. Trash by John Donkin.

Fig. 2. From Trash by John Donkin.
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Fig. 5. Snoot and Muttley overlay by Susan Van Baerle and Doug Kingsbury.
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1. Introduction

The most important design goal for an animation system is to not constrain the animator’s
imagination. The most serious problem with any animation system is the mass of detail
required to produce animation.

We don’t want a system to force a paradigm on the animator. In particular, it can’t require
physical laws, although it must be able to supply them when needed. A brief review of classi-
cal animation shows this point: although Wily Coyote falls in a fashion that may be related
to d =1/2at?, it usually does not happen until he has been walking on air for a few seconds
(the “Cartoon Laws of Motion™).

No matter what method is used to describe motion, there is a large amount of data that
needs to be specified. A system that provides only one type of movement will not provide the
needed flexibility. As Wilhelms [23] points out, with a kinematics description the animator
must experiment until the motion looks right, and with a dynamics description the animator
must experiment until the desired motion comes out.

The mathematics for computer animation and the techniques for building graphics software
have been well explored. Higher level descriptions of animation will be the research area in
the future. The last two decades have demonstrated that computer graphics can display ani-
mations with adequate form; now it’s time to put some effort into constructing animations
with content. Recent computer animations [2, 6, 11, 21, 22| show a definite move in this
direction. This trend towards character animation will tax the capabilities of computer ani-
mation systems but produce more interesting animation.

2. Design points for an animation system

A topic related to the design parameters for an animation system is classification of anima-
tion systems, a subject treated by Zeltzer [25] and Gomesz [9]. Both of these schemes rely on
the motion specification mechanism for categorization. Qualifiers are also employed to
describe practical aspects of the system, such as playback.

2.1. Interactive

An animation system should be interactive. It’s hard to design pictures without looking
at a picture of what’s being designed and being able to change the picture and see directly
what happens.
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2.2. Speed

An ideal animation system would draw fancy color pictures in real time. Since this is
impractical for the time being, the question becomes one of how much playback can be
provided quickly. An acceptable answer is that as soon as the animator has finished
adjusting something in the script, he can push a button and have the animation play back
in real time. A few seconds delay for precalculation is acceptable; non real-time playback,
however, is not. Whereas an animator can find something else to think about for the ten
seconds or one minute of precalculation, it's difficult to appreciate motion when it is
proceeding at the wrong rate. This is the way things used to be; cel animators wouldn’t
see any motion until perhaps the next day. In this day and age that’s not a valid reason;
a valid reason would be something like ‘“this motion needs two minutes of Cray time to
evaluate.”

The problem is magnified on a multiprogramming system, where in addition to playing
the animation at the wrong rate, the system will swap the animation system in and out of
the execution queue, causing jerks in the animation.

We will call an animation system that provides acceptable playback an online system and
designate it as being nice. With current technology, an online system will most likely pro-
vide a wireframe display.

2.3. Flexibility

The system shouldn’t force the animator to use mechanisms she may not want to use.
Sometimes an animator may want a linear spline, even with its attendant lack of con-
tinuity in the derivatives. As mentioned in the introduction, sometimes physics may be
wanted and sometimes not. The point about flexibility is that the system should not force
any motion mechanisms on the animator.

The subjects of splining and splines for computer animation have been discussed ade-
quately in the literature, so these notes won’t mention them other than in the description
of the twizt implementation later.

A useful idea from the scn_assmblr system [4] is the ability to substitute module names
while interacting with the system. This loose coupling makes it easy for the animator to
switch data resolution, change lighting algorithm, change anti-aliasing algorithm, change
screen resolution, etc. Given this capability for changing parameters at whim and (rela-
tively) immediately obtaining the new result, the animator is given extra ranges of expres-
sive power. When it’s trivial to change the way a picture is computed, the user will try
those different ways, resulting in effects that may otherwise not have been attempted.

2.4. Extensibility

The basic reason for extensibility is that no matter what facilities the system provides, a
need will arise for something else. This is especially true in a research and commercial
production environments. Thus the system should include facilities for reconfiguring exist-
ing mechanisms or including new ones; it should be extenssble.

An example of this can be found in the emacs editor. It provides a wealth of text opera-
tion functions, and the user can write subroutines using these operations to extend the
power of the editor. A simple example would be a subroutine that transposes two lines; a
more complex one would be an interactive e-mail handling repertoire. Once the user has
written or borrowed such a routine, it is as easy to use as a built in emaes command, in
addition to having the same interface. The point is that the user has the capability of
modifying the system to his own desires without rewriting the program,
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One way of using this extensibility is to have objects that carry their own behavior with
them [18]. Humans, for example, can bend their elbows only so far. It would be nice to
include this fact in the “human’ abstraction. However, it would also be nice to be able to
define a new type, say “human?,” that has different or no restrictions on elbow movement.

This notion of dynamic use of the system means the animator can define his own move-
ment criteria and use them in the animation system. This in turn means the animator is
effectively reconfiguring the system to his own needs for that animation.

In this context, object oriented programming is a generalization of extensibility. The
advantages of object oriented programming extend themselves to any structured system,
including one where the constituents are actors and motions rather than lines of source
code.

Dynamic components require a rather sophisticated operating system. In particular, a
program must be able to load code segments dynamically. Only LISP or Cedar [18] have
this notion built into their design. Some efforts have been made towards bringing this
attractive capability to UNIX, e.g. GEM [14].

2.5. Usability

The system should not be a keyframe system. Originally, a keyframe system was one
which used key frames to control motion. It was designed to facilitate the way hand ani-
mation is built [20]. The key frames would be drawn by the animator and the system
would interpolate between them. A number of such systems have been implemented |1, 3].

Recently, “keyframe’’ has been used in a more general sense to mean a system that inter-
polates between values, whether or not there actually are key frames. These are what
Zeltzer calls guiding systems [25], indicating that the animator must explicitly describe the
animation to be performed. The system will provide splines to smooth out the animator’s
input.

The use of the terms guiding and key parameter is strongly preferred over keyframe, since
the latter term implies there are key frames, in contrast to the first two, which do not.
Since contemporary animation systems generally do not work with key frames, this accu-
racy is desirable.

Finally, the system shouldn’t be an extension of a programming language. This forces the
animator into a paradigm which has nothing to do with images. It’s not necessary (nei-
ther is it prohibited) for an animator to know that a for loop is necessary to transform
the vertices in a database, or that cos™ is often used in illumination calculations. Furth-
ermore, there is a strong possibility that the detail of dealing with a programming
language will distract the animator from the animation.

2.6. Habitability

There are a number of other necessary features in an animation system contributing to its
habitability, or how nice it is to work in the system. Examples are guarded exit (do not
exit unless the script is saved or the user is sure); interactive exception handling (e.g.
“File exists - do you want to overwrite it?”); help facilities. Defanti defined many habita-
bility and extensibility requirements in GRASS |[5].

2.7. Overall

A point not previously mentioned is that it may require more than one system to perform
all these functions, with some sort of hierarchical arrangement between them [25]. This
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approach would provide different levels of complexity and the corresponding different lev-
els of addressable detail.

3. Event Driven Animation

Event driven animation is an abstraction for describing animation. Rather than describing a
specific animation technique, it describes a methodology for describing animation. It is not
constrained to describing motion, but it is useful for constructing all aspects of an animation.
It can be generalized to any level, thereby providing appropriate degrees of abstraction. A
small scale event driven animation system can be implemented easily.

A fundamental concept when dealing with event driven animation is the idea that animation
is not limited to moving things around; but also moving the color or the shape or the rate of
change of the animation variables. The concept of event driven animation unifies all the
different aspects of making an animation. The idea is that all display functions can be
treated the same so that operations can be performed on any display function as easily as on
any other, freeing the animator from having to use method m, to deal with display function
F, and method m, to deal with display function F,. For example, it’s not acceptable for the
animator to have to use key joint angles for arm motion and have to use inverse kinematics

for leg motion.

Another way of putting this is that animation is not just getting from point A to point B
using points C and D to help control a cubic spline; it’s dealing with every aspect of making a
picture and making the picture move. Thus the mechanisms for performing operations on
anything should be similar.

This point can be qualified to a degree. It doesn’t make sense to apply vector operations to a
scalar value. However, the system should recognize the problem and deal with it, perhaps
translating the request to something reasonable. Or the animator could have the options of
configuring the system to attempt a translation, ignore the problem, or complain and ask for
instructions.

3.1. The Display Function

Consider some arbitrary display function: given some input parameters telling it how to
operate, it will take data, process it, and output new values contributing to the picture.
Common display functions include the basic geometric transforms such as translation,
orientation, and scaling. Other display functions include color, transparency, surface
geometry, whether or not to display, joint angles, etc.

It’s readily apparent that the datatype required depends on the display function: color is a
3-vector, transparency is usually a scalar, orientation is a 3x3 matrix, surface geometry is
a dataset, whether or not to be displayed is a Boolean value, and a methodology for calcu-
lating a value is a procedure pointer. When one of these is used to control a display func-
tion, we will call it a control value.

Mentally we can translate any datatype into a vector of appropriate scalar values. Thus a
matrix becomes a 9-vector of real numbers, a dataset becomes a matrix of 8-vectors which
is in turn a 3xn vector, a display flag becomes a 1-vector of Boolean values, and a pro-
cedure pointer is a pointer valued 1-vector. This point is academic, however, and is men-
tioned only for formality.
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3.2. Definitions

The animation process requires specification of values for every frame of time for every
display function implemented in the graphics system. For an arbitrary display function F
we have a set of control values for it, ¥;. To each of these control value vectors we attach
the time at which it is to be used; this construction of the control value and the time we
call an event. The list of events describing the activity of F over the animation we call a
track. The track is implicitly sorted in ascending order by event time; sorting should be
implemented by the underlying software so the user doesn’t have to do it.

Practically, it makes more sense to store events only when an input value for F changes,
and use a splining technique to generate the inbetween values. Thus interpolation informa-
tion must also be stored in the event: acceleration/deceleration information, splining
method, ete. This will be discussed momentarily.

To access values within tracks, we can define an abstract function
E(objects,f,t)

where objects indicates a class of objects, fis the display function, and t is the time. E will
return a value appropriate for that display function. The animation controller will have
to evaluate the appropriate tracks to calculate that return value vector. The number of
events necessary to do this will depend on the display function and the complexity of the
splining method, ¢.g. a cubic spline requires four events to work with; a Boolean function
requires only the closest preceding event.

Timing in an animation can be changed by changing the frame numbers in events. Track
segments can be moved to change the time at which their animation occurs. Track seg-
ments can also be multiplied by a factor to expand or compress their length.

3.3. Interpolation

We begin to see a relation between events and curve generation. In fact, the values con-
tained in the events are control points, the frame number is the parameter of interpola-
tion, and the animation for that display function is the result of the generated spline.
Here the term control values is better then control points, to emphasize the fact that event
values have arbitrary types, including some which cannot be splined.

There are a plethora of techniques for interpolating or approximating curves. Track ani-
mation relies on patched curves. Briefly, paiching refers to the process of “gluing” together
splined curves end to end, or surface elements side to side. Continuity in the derivatives
across the boundaries, although desirable, is not required. Different interpolation functions
can be used to achieve different patches, although the animator can certainly specify a sin-
gle splining function for the entire duration of the track.

We must assume a track is at least piecewise continuous; otherwise F will be undefined at
certain frames, a potential source of serious problems. We would also like the first deriva-
tive with respect to time, d F/dt, or F (velocity) to be continuous; this will prevent sud-
den jumps in the output values from F. If the second derivative d?F/dt? or F (accelera-
tion) is also continuous, this will prevent sudden jumps in the rate of change of the input
values to F. If both constraints are met then the output of F will be smooth and will
change smoothly. See also Smith [17].

In order to calculate a frame in an animation, all tracks are evaluated for the given time.
The collection of activity on all tracks inherently generates the animation.

Note that a change in interpolation functions is a change in value, and events can exist
just for this purpose. Changes in velocity are also events, i.c. specifying values for d F/dt
instead of F itself.



Keep in mind that interpolation schemes apply to any track, not just position. There is
no reason why B-splines can’t be used on color or transparency information; for continuity
purposes, it’s better if they are.

3.4. Generality

The level of abstraction for any track is tied to the intelligence of its twerper (interpola-
tor). Position is trivial, rotation matrices are harder, surface geometries are even harder,
object collision detection is yet harder, ete. The sophistication of the twerper is generally
based on the amount of support code available and how much dynamism the operating
system can provide.

One way of viewing different levels of tracks is to think of the higher levels compiling
down to the lower levels. Just as a high level language is compiled down to a low level
language, an abstract track can be compiled down to simpler ones. This allows the ani-
mator to deal with varying levels of abstraction, or with animation systems at different
levels in Zeltzer’s hierarchy. The unifying element among different tracks with different
complexities is that the animator has provided certain values at certain points in time to
control their behaviors.

Earlier it was mentioned that a control value could be a pointer to a procedure that con-
trols the display function. This procedure would be invoked whenever the animation con-
troller determines that it should be contributing to the calculation of the animation. This
is somewhat analogous to “buttons” in Cedar [18, 19], which are modules invoked when a
user clicks a button on the screen. In Cedar, part of the process of installing a new button
on screen is to tell the window manager what procedure to invoke when the user clicks
that button. In the same way, construction of these inguisitive events lets the track
manager know what procedure to use when evaluation of a track is necessary. This facil-
ity is the most powerful aspect of event driven animation, as it allows dynamic control of
the animation, where display function controllers can use the current values of other
tracks in determining their own values, and thus respond to environmental parameters.

4. twixt

twizt is integrated into the OSU image generation pipeline [24]. This gives the animator a
unified environment for dealing with animation and image production.

4.1. Input Methods
As described previously [7], there are a number of ways to describe values to twizt. The
fancier the display device the user is working, the better these input methods are. Where
the input device provides only a limited number of inputs (i.c. a bank of control dials),
twizt provides ways of dynamically changing the assignment of each input device to a con-
trol mechanism.

4.2. Layering

The approach to designing animation in twizt is layering, where the animation is built up
in layers of motion. Analogies can be drawn to cel animation, where a frame is built up of
a number of cels lying on top of each other. In twirt, however, the layers are not pieces of
picture, but pieces of motion.
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An animator may labor for some time on one particular part of the animation, say the
arm of a baseball pitcher throwing a ball. Then he may switch to the ball and work on
that. This might be interspersed with quick returns to the arm to perfect some aspect of
its motion. It might also be interspersed with work on the snap of the pitcher’s head. No
commands are required to switch context; the animator is carrying the context in his
mind, and the naming scheme in twizt allows different ways of specifying the context of an
action.

The intent of this approach is that it allows the animator to concentrate on one theme for
some time, until he is ready to concentrate on another. It also allows the animator to
instantly return to any previous activity in order to modify it. This allows quick imple-
mentation of flashes, where the animator remembers or thinks of something that should be
done to a sequence already worked on.

4.3. Objects

twirt supports the common practice of constructing object hierarchies, i.c. of inserting
subtrees into trees to express hierarchical relationships. Thus a scene is actually made of
a forest[10] of trees. However, the relationships that can be expressed between nodes cover
a broader range than that usually available, including operations that cannot be expressed
as matrix products. A later section will elaborate.

One nice feature in twirt is the way the animator can rapidly switch databases. A prag-
matic perusal of animation environments shows that few animations are designed with
graphics hardware that can display thousands of vectors in real time. In fact, animators
are often working at a station that can handle a few vectors in real time. twizt allows the
animators to dynamically switch the database used to draw an object. Thus the animator
can have rapidly drawn frames of low complexity or slowly drawn frames of high complex-
ity, just by replacing the surface geometry definition of an object. All parameters of an
object not related to its geometry are unaltered by this replacement.

On fast graphics hardware this becomes less of a constraint. It will decrease in impor-
tance in the near future (see final section of notes).

Objects are named as described in Gomez (7, 8]. Two important points not mentioned in
the paper are regular expressions and aliases. Names can contain regular expression char-
acters like the Unix shell and csh; these characters are handled just as they would be in
either of shell. The user can also define alias names, indicating that whenever twixt sees
that name, it is to be expanded to all the objects named in the list for that alias. List ele-
ments may of course be regular expressions. Furthermore, it is not an error to include an
undefined object in an alias list. twizt assumes that the animator will bring in that object
later, when he is ready for it.
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4.4. Track Implementation
twizt implements the following tracks:

position & dp/ dt
rotation & d¥ /dt

scale & d¥ /dt

attach position & da/ dt
color & d7 /dt

shininess & dShintncss /dt
transparency & dTransparency /dt
surface geometry

display enable flag
attachment

notes

4.4.1. Basic geometrical transformation tracks

Many of these tracks are straightforward: position, scale, color, illumination parame-
ters. Rotation can be treated either as angles around the object’s axes or as 3x8 orien-
tation matrices. The former case is easy to implement but non-intuitive, meaning that
after a few rotations, it's hard for the animator to make a direct connection between
instructing the system to do a rotation and what happens on the screen. This is
because the object’s axes are themselves transformed, meaning that the rotation is not
being applied to the original axes set but the transformed set. In the latter case,
matrix interpolation was implemented using a scheme based on a question from my
general examinations. This technique has been formalized as quaternion rotations
(15, 18).

In addition, there are velocity tracks running alongside each primary track that has a
defined derivative (e.g. the position track has a derivative but the display enable flag
does not). The animator may address any track directly, or its derivative, or both. In
the latter case, the velocity track has priority in any conflicts.

As an example, consider an animator who specifies that an object’s X position is to be
0 at frame 1 and 20 at frame 24, then specifies that the X velocity is to be 10 units per
second. This situation is irreconcilable. The decision to give the velocity track pre-
cedence increases the likelihood that the display function will be continuous in its

derivatives.

4.4.2. Hierarchy control tracks

The attach position is where a child object is attached to its parent, in terms of the
parent’s coordinate space. There are various ways of inserting a subtree into a tree:

hang
In this mode, only the offspring’s position is transformed by the parent’s matrix;

the remainder of the matrix is calculated from the child’s current display param-
eters. The parent’s scale vector does not propagate down (see attach below). This
mode is intended for an object that is hanging on another object, such as a rod
hanging on a pivot pin. As the pivot pin moves around, the rod must go with it,
but it should pivot automatically so it remains in the same orientation.

Implementation is not difficult. To construct the offspring’s matrix, first
transform it’s final position by its parent’s matrix and place the result in the
bottom row of the matrix. The upper left 3x3 is calculated as usual, with no
reference to the parent matrix.
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attach
This mode was defined by scn_assmbir: parent scale values do not propagate
down. It's useful for attaching light sources to other objects, since in the OSU
paradigm the scale value of a light source determines its range.

couple
This is a conventional tree builder, where all elements of the parent’s matrix pro-
pagate to the offspring nodes. This method allows a limited squash-and-stretch
capability.

In actual implementation, twirt constructs matrices in a bottom to top fashion. In
order to build a frame, each object’s matrix must be constructed. To do this, twizt
goes through its list of objects (which corresponds to visiting each leaf in the forest)
and finds which of them has their newmatriz flag set, indicating that some display
parameter has changed, necessitating recalculation of the matrix. It then travels
recursively up the hierarchy tree until it reaches the root of that object subtree, at
which point it unwinds, constructing each object’s matrix on the way down ¢ff that
newmatriz flag is set and concatenating as appropriate. No matrix is ever computed
twice; the newmatriz flag is unset to keep that from happening. Thus each node in the
tree may be visited more than once, but it won’t cause extraneous matrix arithmetic.

There are two ways of removing a subtree from a tree:

detach
Detaches a subtree. The child object (and its children) will no longer be con-
trolled by the parent.

letgo
Detaches a subtree, but maintains the current transformation as a pretransfor-
mation for future animation. This is used for objects which are related to another
object for part of the animation, then detached to continue own their own way.

An example would be a hand throwing a ball. Initially, the ball would be
attached to the hand during the windup. When the ball is released, it is “let-
go,"” so from that point on in time, the hand will have no control over the ball.
However, the point at which the ball was let go determines its freeflight, so the
transformation at that instant must contribute to the animation following that
instant.

The attachment track controls the characteristics of the hierarchy construction. The
attach position track is simply a vector showing the attach position. An attachment
event simply contains a flag word showing what kind of attach (or detach) is to be per-
formed at what time. If the event is one of the attaches (as opposed to one of the
detaches) it also contains a pointer to the new parent.

4.4.3. Surface geometry track

This track controls the surface geometry of an object. Object shapes are interpolated
(with flexibilities previously described) between some number of defined geometries.
Thus, a blended object has no shape it can call it’s own; it is defined only when the ani-
mation is running. The animator can freese playback, or play back a single frame, in
order to take a look at the current surface geometry. Again, to save memory, the
event value field becomes a pointer to another structure that actually defines the
characteristics of the actual geometry and contains the data itself.
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4.4.4. Notes track

Note events are just that — notes. Animators usually write down all kinds of informa-
tion on their exposure sheets. Note events are the animator’s notes to themselves.
When the animation gets to the frame a note event belongs to, the note is printed (the
animator can set a flag to enable or disable note printing).

4.5. Track Manipulation

Geometric transformations can be applied to track segments just as they are to objects.
Tracks can be scaled, translated, or rotated. These operations are different from changing
the frame numbers in events; the former change the values in the events, the latter change
the times at which the events occur. Thus the former change the control values them-
selves; the latter change the timing of the animation.

These track-wise operations are implemented in a simple matter: the animator specifies
the track segment by frame numbers, the operation, and the operand. Rotation must be
performed on vector or orientation matrix tracks; it does not make sense otherwise.

A track segment copier is provided. This together with the track transformer give the ani-
mator instancing capability for a track. Just as geometric primitives can be defined and
transformed to build more complex objects, tracks can be defined and transformed to elim-
inate some of the drudge work of animation.

As an example, consider a ball bouncing along a mirror. First the animator animates one
bounce of the ball. Then he copies it two or three times, each one shifted by the appropri-
ate time (perhaps two seconds) and the appropriate dislocation. This is the original ball
animation. Then the animator makes a second instance of the ball, copies the first one’s
position track to the second, and multiplies the second ball’s Y position track by -1. This
is the reflection’s animation, and the animator is done. Figure 1 shows value vs. time
plots for this animation.

Xsource, Xreflection

Ysource

'
RT—— ", Yreflection

Figure 1.
Plots of ball and reflection positions
(Z is not important for this example)
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For a slightly more complex example, suppose the animation was four balls and their
reflections bouncing away at right angles from a central point. As before, the animator
would animation one ball and its reflection (actually, since this is already done, it’s only
necessary to read it in from the system). Then this duet would be copied and the copy
rotated 90 degrees about the central point. This copy-rotate action is performed twice
more, for a total of four balls and their reflections bouncing.

4.6. Record Structures

Following are record structures showing how various entities are implemented. The ‘g’
character indicates a pointer.

4.6.1. Events

Event structure

EventTypes type

2 value
Natural frame
Natural easeln
Natural easeOut
Twerper 3 twerper
Logical dF

Figure 2.

Event record structure

The value field has no type, because it will depend on what the event is being used for.
If this structure were being implemented in PASCAL, the event type field would serve
as the CASE selector for a variant record.

Whether or not the event is a velocity event can be built into the event type field or
separated into its own field as is shown here. The form shown here has some runtime
advantages, ¢.g. if some piece of code needs to do something to a color event, whether
it’s a value or a velocity value, it can work similar to this:

if (event.type is Color)
Doit()

instead of like this:

if ((event.type is Color) or (event.type is ColorVelocity))
Doit()

Technically, an event structure would be able to handle any kind of display parameter
the user desired. Unfortunately, most compilers will simply allocate enough space for
the worst case. In the case of a surface geometry definition, it would require a lot of
memory. In a global context, most of the memory used would be wasted, since most
events are much shorter than surface geometry definitions. Therefore it makes sense to
use pointers for events that could take up a lot of memory.
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4.6.2. Tracks

Track structure
Event g events
Twerper «a globalTwerper
Event -« derivatives
Twerper -« globalDTwerper
Figure 3.

Track record structure

The event pointers are head pointers, s.e. they point to the heads of their respective
lists. If a global splining function pointer is non-NULL, then the indicated function
should always be used for interpolating that track; otherwise use the patched method
as described previously.

An alternative form would be to have a logical flag indicating whether or not to use
the global splining function. It’s a matter of taste; either way should generate the
same number of instructions if the NULL pointer is zero, as it is in C.

4.6.3. Twerpers

Twerper structure

String g name
code
Figure 4.

Interpolating function record structure

The name is used for display purposes, i.e. for telling the user what the name of the
function is. It will point to something like ““cubic B-spline” or ‘‘combination move,”
etc. The other field points to the code implementing that function. It will return
whatever’s appropriate, typically a floating point blending factor.

4.6.4. Comments

The structures shown here are not the actual declarations used in the program,
although they do indicate the information content required. Other fields may be useful
for practical purposes. Forward and backward pointers are a help, as doubly linked
list traversal is fast. Additional pointers to reduce cross list traversal or avoid
indirected lookup also save time. Theoretically, they’re not necessary, but faster is
better.

Obviously there’s more to writing an animation system than what’s discussed here.
These concepts, however, form the basis around which twizt is written. There is a lot
more that could be described, but that would be outside the scope of these particular
notes. Some additional references along these lines are my dissertation [9] and the user
manual [8].

5. Epilogue
An extension to the idea of modifying tracks is to transform them with modifying functions,
t.e. to filter the display function through time. This would be one way of providing charac-
ter. After designing a walk cycle, the animator would apply a modifier to provide a particu-
lar kind of walk, e.g. a limp. There are analogies between this and the NYIT motion
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postprocessors and Perlin’s pixel stream editor [12].

Current developments in fast 3-D raster display systems will not have as much of an impact
as advanced user capabilities, because fast hardware is not the hard problem in computer ani-
mation. Animators generally desire to see frames of high complexity in full color with
advanced surface modeling techniques (note that this is different from actual contemporary
situations); advanced 3-D systems generally work only with polygons and simple illumination
calculations. The bandwidth required for complex 8-D imagery far exceeds the capability of
any current or planned hardware system. Thus the major advances in computer animation
will come not from better display units, but from more advanced capabilities available to the
animator.

Building an animation system is a nontrivial task. Doing it requires implementations of tech-
niques from all aspects of computer science. It’s better to view an animation system as a
tool, since its function is to be used, rather than to be an end in itself. Much of the system’s
success will come from it’s users’ imagination. But it has to provide them with the appropri-
ate levels of abstraction and the appropriate hierarchy of complexities, where “appropriate”
is the nebulous quantity indicating it’s not overbearing in normal use but smart enough to
help get the job done.

Developers and animators must remain in constant contact over the lifetime of an animation
system; otherwise the it will end up being skewed towards the group that built it. The design
and development of an animation system should be seen as a symbiotic task between the
“technical” types and the “artist™ types.
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Animating Rotation with Quaternion Curves
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ABSTRACT

Solid bodies roll and tumble through space. In
computer animation, so do cameras. The rotations of
these objects are best described using a four coordinate
system, quaternions, as is shown in this paper. Of all
quaternions, those on the unit sphere are most suitable
for animation, but the question of how to construct
curves on spheres has not been much explored. This
paper gives one answer by presenting a new kind of
spline curve, created on a sphere, suitable for smoothly
in-betweening (i.e. interpolating) sequences of arbitrary
rotations. Both theory and experiment show that the
motion generated is smooth and natural, without quirks
found in earlier methods.

C.R. Classification: G.1.1 [Numerical Analysis]

Interpolation—Spline  and  piecewise  polynomial
interpolation; G.1.2 [Numerical Analysis|
Approximation—Spline and piecewise polynomial
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languages, and systems, —Hierarchy and geometric
transformations

General Terms: Algorithms, Theory

Keywords and phrases: quaternion, rotation,
spherical geometry, spline, Bézier curve, B-spline,
animation, interpolation, approximation, in-betweening

1. Introduction

Computer animation of three dimensional objects
imitates the key frame techniques of traditional
animation, using key positions in space instead of key
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provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1985 ACM 0-89791-166-0/85/007/0245 $00.75

drawings. Physics says that the general position of a
rigid body can be given by combining a translation with
a  rotation. Computer  animators key such
transformations to control both simulated cameras and
objects to be rendered. In following such an approach,
one is naturally led to ask: What is the best
representation for general rotations, and how does one
in-between them? Surprisingly little has been published
on these topics, and the answers are not trivial.

This paper suggests that the common solution, using
three Euler's angles interpolated independently, is not
ideal. The more recent (1843) notation of quaternions
is proposed instead, along with interpolation on the
quaternion unit sphere. Although quaternions are less
familiar, conversion to quaternions and generation of
in-between frames can be completely automatic, no
matter how key [frames were originally specified, so
users don't need to know—or care—about inner details.
The same cannot be said for Euler's angles, which are
more difficult to use.

Spherical interpolation itsell can be used for purposes
besides animating rotations. For example, the set of all
possible directions in space forms a sphere, the so-called
Gaussian sphere, on which one might want to control
the positions of infinitely distant light sources.
Modelling features on a globe is another possible
application.

It is simple to use and to program the method proposed
here. It is more difficult to follow its development.
This stems [rom two causes: 1) rotations in space are
more confusing than one might think, and 2)
interpolating on a sphere is trickier than interpolating
in, say, a plane. Readers well acquainted with splines
and their use in computer animation should have little
difficulty, although even they may stumble a bit over
quaternions.

2. Describing rotations
2.1 Rigid motion

Imagine hurling a brick towards a plate glass window.
As the brick flies closer and closer, a nearby physicist

t  Author’s current address: 1700 Santa Cruz Ave., Menlo Park,
CA 04025

This reprint contains two corrections from the original paper. They are in section 3.2 on page 247 and In the the central element of the 245

matrix M of section 1.4 on page 253.
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might observe that, while it does not change shape or
size, it can tumble freely. Leonhard Euler proved two
centuries ago that, however the brick tumbles, each
position can be achieved by a single rotation from a
reference position. [Euler,1752| [Goldstein] The same is
true for any rigid body. (Shattering glass is obviously
not a single rigid body.)

While translations are well animated by using vectors,
rotation animation can be improved by using the
progenitor of vectors, quaternions. Quaternions were
discovered by Sir William Rowan Hamilton in October
of 1843. The moment is well recorded, for he
considered them his most important contribution, the
inspired answer to a fifteen-year search for a successor
to complex numbers. [Hamilton] By an odd quirk of
mathematics, only systems of two, four, or eight
components will multiply as Hamilton desired; triples
had been his stumbling block.

Soon after quaternions were introduced, Arthur Cayley
published a way to describe rotations using the new
multiplication. [Cayley] The notation in his paper so
closely anticipates matrix notation, which he devised
several years later, that it may be taken as a formula
for converting a quaternion to a rotation matrix. It
turns out that the four values making up a quaternion
describe rotation in a natural way: three of them give
the coordinates for the axis of rotation, while the
fourth is determined by the angle rotated through.
[Courant & Hilbert]

Since computer graphics leans heavily on vector
operations, it is perhaps easiest to explain quaternions
and rotation matrices in terms of these, reversing
history. However quaternions can stand on their own
as an elegant algebra of space. [Herstein| [Pickert]
[MacLane|

2.2 Rotation matrices

That a tumbling brick does not change size, shape, nor

"handedness” is mathematically expressed as the
preservation of dot products and cross products, since

these measure lengths, angles, and handedness. And
since the determinant of a 3X3 matrix can be computed
as the dot product of one column with the cross
product of the other two, determinants are also
preserved. Symbolically:

Rot(z;)"Rot(us) = 1,1,
Rot(x;)>XRot(x,) = Rot(u;Xu,)

det(Rot(xu,),Rot(x,),Rot(1g)) = det(x,u5,u3)

An immediate consequence is that orientation changes
must be linear operations, since the preserved
operations are; hence they have a matrix
representation, M. Using the matrix form of a dot
product, ,u: u,, we can say more precisely that
(M 2,)" (M uy) = 2} u,, from which it follows that

M'M =1,

246 42

That is, the change matrix M is orthogonal; its columns
(and rows) are mutually perpendicular unit magnitude
vectors. Because M must also preserve determinants, it
is a special orthogonal matrix, satisfying

det(M) = +1 .

It is well known, and anyhow easy to show, that the
special orthogonal matrices form a group, SO(3), under
multiplication. [MacLane](Goldstein|[Misner] In this
rotation group, the inverse of M is just M', the
opposite rotation.

To illustrate, the matrix

1 0 0
M=1]0 cos@® —sin ¥
0 sind cosé

effects a rotation through an angle of # around the z

axis. After verifying the properties discussed so far,
note that the diagonal entries sum to 14+2cos 6. While
it is too lengthy to show here, the diagonal sum
measures the same quantity for matrices generating
rotation around any axis. [MacLane|

2.3 Quaternions

Quaternions, like rotations, also form a non-
commutative group under their multiplication, and
these two groups are closely related. [Goldstein|
[Pickert][Misner] In fact, we can substitute quaternion
multiplication for rotation matrix multiplication, and
do less computing as a result. [Taylor|

To perform quaternion arithmetic, group the four
components into a real part—a scalar, and an
imaginary part—a vector. Addition is easy: add scalar
to scalar and vector to vector. But our major interest
is in multiplication. Start with a simple case: multiply
two quaternions without real parts, or more precisely,
with zero real parts. The result quaternion has a
vector that is the cross product of the two vector parts,
and a scalar that is their dot product, negated:

2y, = [(—uy2p), (2, Xa,)] -

It is certainly convenient to ehcompass both vector
products with a single quaternion product. (One early
lover of quaternion algebra called vector algebra a
"hermaphrodite monster", since it required two kinds of
product, each yielding a different type of result.) If one
quaternion has only a scalar part, with its vector
components all zero, multiplication is just real
multiplication and vector scaling. Combining the two
effects gives the general rule [Brady]:

[81022y) [s2022) = [(8y82—2)"25),(8 \2g+som, 42, Xuy)) .
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Except for the cross product this looks like complex
multiplication, (a,+ib;)(ag+iby) = (aya,—byb,) +
i(ayby+ayb,), as Hamilton intended.t

Quaternions multiply with a cross product because
rotations confound axes. To illustrate , place a book in
front of you, face up, with the top farthest away. Use
this orientation as a reference. Now hold the sides and
flip it toward you onto its lace, rotating 180 degrees
around a left-to-right axis, y. Then, keeping it face
down, spin it clockwise 180 degrees around an up-down
z axis. Two rotations around two perpendicular axes;
yet the total change in orientation must be, according
to Euler, a single rotation. Indeed, if you hold the ends
of the spine and flip the book 180 degrees around this
third, outward-pointing, z axis, you should restore the
original orientation. As  quaternions, this s
—anticipating developments ahead— [0,(0,1,0)] times
[0,(0,0,1)] equals [0,(1,0,0)); the cross product is
essential.

Notice how quaternion operations give a new
orientation, in "quaternion coordinates”, much as
translations give a position, relative to some starting
reference. A central message of this paper is that
quaternion coordinates are best for interpolating
orientations. For comparison, imagine using spherical
coordinates for translations! Quaternions represent
orientation as a single rotation, just as rectangular
coordinates represent position as a single vector.
Translations combine by adding vectors; rotations, by
multiplying quaternions. The separate axes of
translations don't interact; the axes of rotations must.
Quaternions preserve this interdependence naturally;
Euler's angle coordinates ignore it.

2.4 Euler's angles

Why, then, do so many animators use Euler's angles?
Mostly, | suspect, because quaternions are unlamiliar.
Unlike Euler's angles, quaternions are not taught early
in standard math and physics curricula. Certainly
there is a plethora of arguments against angle
coordinates.  Euler's angle coordinates specify
orientation as a series of three independent rotations
about pre-chosen axes. For example, the orientation of
an airplane is sometimes given as "yaw" (or "heading")
around a vertical axis, followed by "pitch" around a
horizontal axis through the wings, followed by "roll"
around the nose-to-tail line. These three angles must
be used in exactly the order given because rotations do
not commute. The ordering of rotation axes used is a
matter of convention, as is the particular set of axes,
no matter what the order. For instance some physicists
use the body centered axes z-z-z, in contrast to the
aeronauties z-y-z. At least a dozen different
conventions are possible for which series of axes to use,
[Kane|[Goldstein] The geometry of orientations in
Euler's angle coordinates is contorted, and varies with
choice of initial coordinate axes. There is no

+ Hamilton wrote a quaternion as s+iv'+ju?+kv’, with i¥ =

7 =k?=ijk = —1. The multiplication rules given before are
consequences of this elegant formulation.

_QS_

reasonable way to "multiply" or otherwise combine two
rotations. Even converting between rotation matrices
and angle coordinates is difficult and expensive,
involving arbitrary assumptions and trigonometric
functions. In their defense, it must be said that they
are handy for solving differential equations—which is
how Euler used them. [Euler,1758|

3. In-betweening alternatives
3.1 Straight line in-betweening

It is not immediately obvious how to in-between even
two rotation keys. What orientations should an object
assume on its journey between them? A natural answer
is: take the first key as a reference, and represent the
second by describing the single rotation that takes you
to it, according to Euler's theorem. The in-between
orientations should be positioned along that rotation.

If we plot quaternions as points in four-dimensional
space, the straight lines between them give orientations
interpolating the end points in exactly the above sense.
If we plot Euler's angle coordinates instead, the in-
between orientations will try to twist around three
different axes simultaneously. This angle interpolation
treats the three angles of rotation at each key
orientation as a three-dimensional vector whose
components are interpolated independently from key to
key. Paradoxically, we can not rotate simply except
around the special axes chosen for composition. We
may even encounter so-called "gimbal lock”, the loss of
one degree of rotational freedom. Gimbal lock results
from trying to ignore the cross product interaction of
rotations, which can align two of the three axes.
Quaternions are safe from gimbal lock, and so have
been used for years to handle spacecraft, where it is
unacceptable. [Kane|[Mitchell|

3.2 How quaternions rotate

Straight lines between quaternions, however, ignore
some of the natural geometry of rotation space. If our
interpolated points were evenly spaced along a line, the
animated rotation would speed up in the middle. To
see why, we must look at how a quaternion converts to
a rotation matrix. We rotate a vector by a quaternion
so: multiply it on the |eft by the quaternion and on
the rightby the inverse of the quaternion, treating the
vector as [0,u].

2’ =Rot(u)=¢q ug™

Though it is not obvious, the result will always be a
vector, with a zero scalar component. Notice how Lhis
guarantees

Rot(z,;) Rot(x;) = Rot(x; 1)
which implies that dot and cross products are

preserved, embedded in the quaternion product.

The inverse of a quaternion is obtained by negating its
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vector part and dividing both parts by the magnitude
squared. For ¢ = [s,],

-1

¢! = [s,—u]; e} =s"+un.

1
11,112
117ii
Because all effects of magnitude are divided out, any
scalar multiple of a quaternion gives the same rotation.
(This kind of behavior is not unknown in computer
graphics; any scalar multiple of a point in homogeneous
coordinates gives the same non-homogeneous point.)

If the scalar part has value w, and the vector part
values z, y, and z, the corresponding matrix can be
worked out to be

1—23,.'2—*222 2zy+2wz 2z —2wy
M=| 2zy—2wz 1 —27%—2:%  2y: 42wz
2z242wy  2yz—2wzr 1-22°—2y°

when the magnitude w’4z’+y?+z* equals 1. The
magnitude restriction implies that, plotted in four-
dimensional space, these quaternions lie on a sphere of
radius one. Deeper investigation shows that such unit
quaternions carry the amount of rotation in w, as
cos 0/2, while the vector part points along the rotation
axis with magnitude sin 8/2. The axis of a rotation is
that line in space which remains unmoved: but notice
that's exactly what happens when scalar multiples of
are rotated by [s.z]. Because the cross product drops
out. multiplication commutes, ¢~' meets ¢, mutual
annihilation occurs, and the vector emerges unscathed.
Summing the matrix diagonal leads to the formula
stated for w. The sum equals 4w®—1, but must also be
1+2¢cos 8. A trig identity, cos 20 = 2cos? f—1, finishes
the demonstation.

3.3 Great arc in-betweening

This sphere of unit quaternions forms a sub-group, S8,
of the quaternion group. Furthermore, the spherical
metric of S% is the same as the angular metric of
S0(3). [Misner] From this it follows that we can rotate
without speeding up by interpolating on the sphere.
Simply plot the two given orientations on the sphere
and draw the great circle arc between them. That are
is the curve where the sphere intersects a plane through
the two points and the origin. We sped up before
because we were cutting across instead of following the
arc; otherwise the paths of rotation are the same.

A formula for spherical linear interpolation from ¢, to
9., with parameter u moving from 0 to 1, can be
obtained two different ways. From the group structure
we find

Slerp(g.qqu) = q:(?f‘?z)' i

248 —q4 -

while from the 4-D geometry comest

sin uf
sin @

sin (1—u)d
sin @

Slerp(qy,qq5u) = 0 +

q?l

where ¢,°q; = cos 6. The first is simpler for analysis,
while the second is more pragtical for applications.

But animations typically have more than two key poses
to connect, and here even our spherical elaboration of
simple linear interpolation shows flaws. While
orientation changes seamlessly, the direction of rotation
changes abruptly. In mathematical terms, we want
higher order continuity. There are lots of ways to
achieve it—off the sphere; unfortunately we've learned
too much.

3.4 Rotation geometry and topology

No matter what we do in general quaternion space, the
ultimate effect must be interpreted via the sphere; so
we had best work there in spite of the difficulty. It is
important to grasp this point. The metric structure,
hence the intrinsic geometry, of the rotation group
SO(3) is that of a sphere. Over small regions, meaning
in this case small rotation angles, a sphere looks as if it
is flat. But if we go far enough along a "straight line",
we end up back where we started. What could be more
evident about rotations? Their very essence is moving
in circles. Looking back to the book-turning
experiment. the confounding of axes is like traveling on
a sphere: il we go in some direction to a quarter of the
way around the sphere. turn 90 degrees, travel the
same distance, then turn and travel again, we will
arrive back home, coming in at right angles to the
direction we headed out. Even more revealing, we can
leave the north pole in any direction and end up at the
south pole, just as we can rotate 360 degrees around
any axis and end up oriented the same way.

Local geometry does not, however, determine global
topology. Contradictory though it may seem, the
geometry curves like a sphere, but the topology says
north and south poles are the same! In fact, each pair
of opposite points represents the same rotation. The
reader may preserve sanity through two expedients.
One is to see that this, like homogeneous coordinates, is
geometry under perspective projection. The second is
to  restore  spherical topology - by including
"entanglements". Physically, taking an object with
strings attached and rotating it 360 degrees leaves the
strings tangled; yet—most odd-—rotating 720 degrees
does not. [Misner|[Gardner|

Accepting the topological oddity is more useful here,
but it leaves a minor inconvenience. Namely, when
converting an orientation in some foreign form, such as
a matrix, to a quaternion form, which quaternion
should we choose? Which side of the sphere? An
answer that works well is this. Construct a string of
quaternions through which to interpolate by choosing

t  Glenn Davis suggested this formula.
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each added quaternion on the side closest to the one
before. Then small changes in orientation will yield
small displacements on the sphere.

posnis  at
infinity

whenleylazia] \

Representing a preojective piane
3.5 Splines

We are left with the problem of constructing smooth
curves on spheres. About a hundred years after
quaternions appeared, Isaac Schoenberg published a
two part attack on ballistics and actuarial problems,
using what he called splines. [Schoenberg] Named by
analogy to a draftman’s tool, these are interpolating
curves constructed from cubic polynomial pieces, with
second order continuity between pieces. Cubic splines
solve an integral equation which says to minimize the
total "wiggle" of the curve, as measured by the second
derivative. These interpolants are very popular, and
the equation ec¢an be augmented with Lagrange
multipliers to constrain the solution curves to lie on a
sphere [Courant & Hilbert|; yet there are problems.
First, the augmented equation is much more difficult
and expensive to solve. Second, the curve must adjust
everywhere il one of the points changes; that is, we
have no local control.

3.6 Bésier curves

While Schoenberg invented splines based on numerical
analysis, Pierre Bézier invented a class of curves, now
called by his name, based on geometrical ideas. In fact,
he showed how to find points on such a curve by
drawing lines and splitting them in regular proportions.
[Bézier| This is exactly what is needed. We already
know how to do the equivalent—draw great arcs and
proportions of arcs—on & sphere. A complete solution
needs only a little more.

4. Spherical Bésier curves
4.1 Joining curves

Bézier curves go through only their first and last
defining points, but we want to interpolate all our
orientations. The trick is to splice together short
Bézier curves in the manner of splines. Their creator
showed an easy way to do this which guarantees first

-95-

order continuity, probably enough for us. As the curve
goes through its end points it is tangent to its end
segments. Line up the segments across a join, match
their lengths, and the curves will piece together
smoothly. If the key orientations are placed at joints,
then each short curve moves us from one key to the
next, because each piece passes through its ends.

Now, although the two segments abutting a curve
junction should match each other, one of the segments
can be chosen freely. These choices determine the axis
and speed of rotation as we pass through the keys.
The burden of choice can be passed to the animator of
course, but automation is feasible, and generally
preferable.

4.2 Choosing joint segments

Spherical linear interpolation gives two conflicting arc
segments al a joint, one on each side. Smooth the
difference with an even compromise, aiming for a point
halfway between where the incoming segment would
proceed, and where the outgoing segment must arrive.t

Un-y

in

Fnes

Constructing & peint for tangent

Given successive key quaternions g,_;, Gn, Gns
interpretted as 4-D unit vectors, the computation for a
segment point a, after g, is

a, = BiSEC'.(DOUbh(qu..]rQn )'Qu +1J '
where

Double(p,g) = 2(p-q)g —p ;

: +
Bisect(p,q) =
iipt+ell

The matching point for the segment before ¢, should
be

b, = Double(a,,q,)

For the numerically knowleqsuble, this consl.rpclion
g approximates the derivative at points of a sampled function by
averaging the central differences of the sample sequence.

[Dahlquist & Bjork|
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to ensure a smooth join, regardless of how a, is chosen.

busy

s”‘"""‘! Bezrer Jegments  together

4.3 Evaluating on the sphere

Everything is now in hand to imitate Bézier's curve
technique. Each short curve is defined by four
quaternions, ¢,, a,, by,;, ¢4 Let the parameter u
vary from O to 1 as the curve departs ¢, towards a,
and arrives at g,,; tangent to the arc from bagte
Spherically interpolate by proportion u between ¢, and
8.y 8, and b,.,, b,,, and g¢,,,, to obtain three new
quaternions. Then interpolate between those to get
two more; and finally interpolate again, reducing to a
single point. Abbreviating Slerp(p,q:u) as (P:q)y, the
computation looks like this:

¢ =pd”
(8:p (), =p§"
a, =p{® (pd":p (V) =pf?

(p{?:pf7),=p{" (8 :p ) =p§) =, 1,

bas1=p4" (p{":p§")e=p{?
(p§?:pf?), =pi"
qg-l-l:-PQO)

4.4 Tangents revisited

A simple check proves the curve touches ¢, and ¢,,, at
its ends. A rather challenging differentiation shows it is
tangent there to the segments determined by a, and
b,.,- However, as with Bézi:r's original curve, the
magnitude of the tangent is three times that of the
segment itself. That is; we are spinning three times
faster than spherical interpolation along the arec.
Fortunately we can correct the speed by merely
truncating the end segments to one third their original
length, so that a, is closer to g, and b,,, closer to

Tn+1-

Gnes = P2’

Calcvisting a Bézier curve point recursively

5. Results
5.1 The grand scheme

What have we ended up with? An animator sits at a
workstation and interactively establishes a sequence of
keys for, say, camera orientation. The interpolating
algorithm does not depend on the nature of the
interface the animator sees; all needed information is
contained in the sequence of keys. Probably the
orientations will be represented internally as matrices,
so a conversion step follows. The matrices are "lifted"”
to a sequence of neighboring quaternions, ¢,, on the
unit sphere. Each quaternion within the sequence will
become the endpoint of two spherical Bézier curves.
Between each quaternion pair, ¢, and gq,,,, two

additional points, a, and b,,,, are added to control
motion through the joints. At this point, time becomes
a parameter along the composite curve. As the [rame
number increments, the parameter enters and leaves
successive curve pieces. Within each piece a local
version of the parameter is adjusted to run from 0 to 1.
Now the Bézier geometric construction comes into play,
producing an interpolated quaternion, ¢,,,, from g,,
@y, byy1y Gu4yy and the local parameter, u. Finally the
mint-fresh interpolated quaternion is transmuted into a
matrix, to be used in rotating a list of object vectors
for rendering.

5.2 Properties

A look at one special case is revealing. Suppose all the
points to interpolate are spread along a single arc.
This means they represent different amounts of rotation
around a single axis, in which case quaternion
multiplication commutes. Under these special
conditions, the formula for the curve sections reduces to

Gran =8 TP a1 BN g2t

When this is compared to the standard Bézier
polynomial, p,(1—u)® + a,3(1—«)?u + b,,,3(1—u)u? +
Qn41t” , it is apparent that addition and multiplication
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have become multiplication and exponentiation. Of
course, when the points are not on one are,
commutativity fails, so the formula looks much messier.

In the interesting restricted case when the points are
spaced evenly and consecutively around an are, the
resulting animation behaves exactly as we would hope:
we get smooth,. constant speed rotation around the
appropriate axis. Notice that we can choose any axis
for this rotation. This is clearly preferable to
interpolation with Euler’s angles, where the coordinate
axes are special. A more subtle property of all
quaternion interpolation is that the motion is
independent of coordinate axes. So, for example, il we
design a move, then rotate the coordinate system
arbitrarily, the geometry of the motion will not change.
Euler interpolants, unfortunately, will do wildly
different things.

5.3 Applicability

Rotations in space are significantly more complicated
than rotations in a plane. It is easy to deal with the
latter, since only one parameter is involved.
Quaternions are out of place in a plane. Joint control
in robotics simulations has its own highly specialized
body of techniques; and though quaternions have shown
up in the literature, they seem less useful in that
context. [Brady|[Taylor] However, B.K.P. Horn has
used a tessellation of the quaternion unit sphere to
identily the orientation of an object from its extended
Gaussian image; a good reference is [Brou]. Non-rigid
motion obviously needs to be handled specially. But for
moving a camera eye-point, and for many kinds of
object motion, quaternion interpolation has strong
advantages.

5.4 Comparisons and complaints

Cost advantages are difficult to estimate. Converting a
matrix to a quaternion requires only one square root
and three divides plus some adds, at worst. Converting
back requires 9 multiplies and 15 adds. While the
conversions don't use trigonometric functions, the arc
proportioning does. For comparison, angle
interpolation requires several trigonometric functions as
well as quite a few multiplies and adds to create each
interpolated matrix. My experience is that the Bézier
scheme is comfortably fast enough for design work,
which is the only time speed has mattered. (If, for
some application, more speed is essential, non-spherical
quaternion splines will undoubtedly be faster than
angle interpolation, while still free of axis bias and
gimbal lock.)

These interpolants are not perfect, of course. Like all
interpolants, they can develop kinks between the
interpolated points. There are simple algorithms for
adding new sequence points to ordinary splines without
altering the original curve [Boehm|; they do not work
for this interpolant. And if these curves can be shown
to satisfly some variational principal, it will be by
chance. It is useful to do this, because any solution to
an integral equation like that for splines admits
subdivision [Lane et all; minimum curvature between
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end points implies minimum curvature between
intermediate points as well. Along these lines, Gabriel
and Kajiya, motivated by quaternions, have been
developing a technique to find splines on arbitrary
Reimannian manifolds by solving differential equations.
[Gabriel & Kajiya]

6. Questions

Future research could answer some interesting practical
questions. What are these spherical Bézier curves? Is
there some abstract characterization of them? Or is
there some related interpolant that is well-
characterized? In light of the success of the geometric
adaptation approach, it appears reasonable to apply
the idea to B-splines, which also have a known
geometric evaluation technique. [Gordon & Riesenfeld|
How do spherical B-splines behave? Is it possible to
add new points to a sequence for either kind of curve
without disturbing it? How? Can B-splines be made to
interpolate, not just approximate, with a simple
adjustment of control points? Is there a way to
construct a curve parameterized by arc length? This
would be very useful. What is the best way to allow
varying intervals between sequence points in parameter
space? Abandoning the unit sphere, one could work
with the four-dimensional Euclidean space of arbitrary
quaternions. How do standard interpolation methods
applied there behave when mapped back to matrices?
Note that we now have little guidance in picking the
inverse image for a matrix, and that cusp-free R paths
do not always project to cusp-free 52 paths.

However these questions are answered, quaternion
spline interpolants already offer a well-behaved
improvement over traditional techniques. They are
simple to use, simple to implement, robust, efficient,
consistent, and flexible. More research would make
them even more so.
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Appendiz I—Conversions
L1 Qualernion to matriz

Using the restriction that w?4z24y*422=1 for a
quaternion ¢ = [w,(z,y,z)], the formula for the
corresponding matrix is

1—-2¢y%—22% 22y42wz  2z2—2wy
M = | 2zy—2wz 1—22°—2:% 2yz+42uwz
2zz42wy  2yz—2wz 1—23:2—‘2992

Il the quaternion does not have unit magnitude, an
additional 4 multiplies and divides, 3 adds, and a
square root will normalize it. (For the matrix
conversion, the square root can be avoided in favor of
divides if desirable.) Now we can obtain the operation
count for creating the matrix. Most terms of the
entries are a product of two [lactors, one of which is
doubled. So we proceed as follows. First double z, vy,
and z, and form their products with w, z, y, and =.
That will take 3 adds and 9 multiplies. Then form the
sum for each of the 9 entries using 1 add each, plus an
extra add for each of the 3 diagonal elements, for a
total of 12 adds. Thus 9 multiplies and 15 adds suffice
LG convert a unit quaternion to a matrix.

1.2 Matriz to quaternion

An efficient way to determine quaternion components
w, r. y, = from a matrix is to use linear combinations
of the entries M, . Notice that the diagonal entries
are  formed from the squares of the quaternion
components, while ofl-diagonal entries are the sum of a
symimnetric and a skew-symmetric part. Thus linear
combinations of the diagonal entries will isolate squares
of components; sums and differences of opposite off-
diagonal entries will isolate products among z, y, and =
and products with w. Using off-diagonals risks dividing
by a component that may be zero, or within ¢ (the
machine precision) of zero. However we can avoid that
pitfall, and easily compute all components as [ollows.

v = 141+ My, + My + My)

vl
—__'?LUE_ FALSE
w o=V w =0
7= (My=My) /4w | 1% = =12 (Mg + My)
¥ =My = My) [ w

2= (M= My) /4w el
TRUE FALSE
l'-\?? T =)
=My /22 v =12 = My)
z =My /22
y")l'
TRUE FALSE
y = Vy* y=1
2= My [ 2y 2 -]

No more than one square root, three divides, and a few
adds and binary scales are required for any conversion,
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I.8 Euler angles to quaternion

There are twelve possible axis conventions for Euler
angles. The one used here is roll, pitch, and yaw, as
used in aeronautics. A general rotation is obtained by
first yawing around the z axis by an angle of &, then
pitching around the y axis by 6, and finally rolling
around the x axis by 1. Using the way quaternion
components describe a rotation, we first obtain a
quaternion for each simple rotation.

%ot = [cos Jf’-[si“ g'o-m]

0 o
tpuer = [e0s - (0sin 0]

Gyow = {cos-g,(o,o.sin-f-)]

Multiplying these together in the right order gives the
desired quaternion q = Tyaw Tpiteh Trott» With components

' g ) . ¥, 8. @

W = COS €08 —COos-— -+ sin—sin —sin —
2 2 2 2 2 2

. P 0 =] . 0. &

I = SIn—CO0S —CO0S— — COS —Sin —sin —
2 2 2 2 2 L]

: . . o

Yy = COS§—SIn—cos—— -+ SIn —/Cos —Sin —
R R LI S

1 {l ] 1A v (]

4 - - - .
< = OS5 —_TCOR—"SIN = — =S 7SI - Lh8 —
3 B 3 7] o o

I 4 Euler angles to matriz

Combining the results of the previous two conversions
gives
M =

cos feos ¢ cos fsin ¢ —sin @
sin sin fcos d—cos Wsin ¢ sin Wsin fsin d+cos YeosP cos fsin v,
cos Ysin fcos d+sin Ysin @ cos Ysin Bsin d—sin Weos @ cos feos

where 1, 0, and ¢ are the angles of roll, pitch, and yaw,
respectively.

1.5 Matriz to Euler angles

While converting a matrix to a unit quaternion only
involves the sign ambiguity of square roots, converting
to Euler angles involves inverse trigonometric functions,
as we can only directly determine the sin's and cos's of
the angles. Some convention, such as principle angles,
must be adopted. However interpolation paths will
vary greatly, depending on choice of angles. Seiting
that problem aside, here's a way Lo extract the sin's
and cos's. Looking at the previous equation, siné can
be read ofl directly as —M,;. Use the trigonometric
identity cosf = +V 1—sin" 0 to compute cos 0 to within
a sign, which is the best we can do. Assuming cos@ is
not zero, obtain the sin's and cos's of the other angles
from
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sin@ = —M;

cosf = V1-—sin“d
siny) = My, / cosf
cost) = My [/ cosl
sing = Mu./cosﬂ

cos¢p = M, /cosb

If cos @ is zero, then we must avoid dividing by zero. It
also becomes impossible to distinguish roll from yaw.
Adopting the convention that the yaw angle ¢ is 0
allows

siny) = —My,
cosP = My
sing = 0
cos¢p = 1

From these values a two argument tan™' will give

angles between —m and +m, or 0 and 2w, or some other
conventional range; take your pick. (For a faster
conversion, just compute, say, sin”' and check the sign
of the cosine term with respect to cosf.) Because of
the uncertainties of square roots, inverse trigonometric
functions, and yaw-roll separation, matrix to Euler
angle conversion is inherently very ill-defined.

1.6 Quaternion to Euler angles

Use the most straight-forward approach: convert the
quaternion to a matrix, then the matrix to Euler
angles. Of course it is unnecessary to compute matrix
elements that are never used. This conversion is also
unavoidably ill-defined, as quaternions contain no more
information about angles than matrices do.
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Quaternion Calculus and Fast Animation
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Abstract

Like aerospace engineers, robotics researchers, and James Clerk Maxwell before
them, graphics programmers can benefit from quaternion calculus. Quaternions of
unit magnitude give a four-component system of coordinates covering all orienta-
tions in space without singularities. No system of three components can do this,
and more components add redundancy without advantage. Animation brings new
demands: Construct smooth spline paths through rotation space, and do it effi-
ciently. Rotation space is curved, making true splines costly. The quaternion unit
hypersphere has the correct curvature; thus “straight lines” are great arcs, and
“linear” interpolation is no longer dirt cheap. Smoother curves split several arcs
per point. This paper presents a new algorithm for C! interpolation that splits only
three arcs per point, the minimum necessary for tangent continuity. Using other
methods described here, even more speed is possible. These methods include fast arc
interpolation, fast quaternion multiplication, and fast conversion between quater-
nions and matrices., On the way to achieving these results, quaternion calculus is
explained.

C.R. Classification: G.1.1 [Numerical Analysis| Interpolation — Spline and piece-
wise polynomial interpolation; G.1.2 [Numerical Analysis] Approximation — Spline
and piecewise polynomial approximation; 1.2.9 [Artificial Intelligence] Robotiecs —
Manipulators; 1.3.5 [Computer Graphics] Computational Geometry and Object Mo-
delling — Curve, surface, solid, and object representation, — Geometric algorithms,
languages, and systems, — Hierarchy and geometric transformations

General Terms: Algorithms, Theory

Keywords and phrases: quaternion, rotation, spherical geometry, spline, quad-
rangle spline, animation, interpolation, approximation, in-betweening, tracking
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§1 INTRODUCTION (DRAFT) Page 2

1. Introduction

The most straight-forward motion of a rigid body with one point fixed is a rotation.
Possible positions of the body with respect to the point are called orientations.
Since every orientation can be achieved by some rotation about the fixed point,
and since the fixed point can be placed anywhere in space with a translation, any
free position of the body in space can be described as a translation plus a rotation.
(Hence it is convenient—and common—to blur the distinction between rotation and
orientation, and between translation vector and point.) To animate such a body
with a computer, we need numerical descriptions—i. e. coordinates—for translations
and rotations. These coordinates should be chosen in such a way that simple motion
is simple to describe. In particular, a steady rotation should be simple, regardless
of the axis chosen, and regardless of the initial orientation. Traditional notations,
such as matrices, Euler angles, or axis-angle values, fail on one or more of these
criteria. In contrast, unit quaternions are consistently well-behaved.

As discussed in [16], the unit quaternions w + iz + jy + k2, with w? + 22 + y® +
22 = 1, are arguably the most natural coordinates for rotations. They have
the geometric structure of a sphere in four dimensions; and any steady rotation,
regardless of axis and jinitial orientation, is obtained by steady travel along a great
arc of that sphere. Simultaneously, they form an algebraic system in which the
product of two quaternions gives the combination of their respective rotations.
(In this they are like complex numbers of unit modulus, which can be plotted
as points on a circle, multiplied with each other, and regarded as rotations in
a plane.) Though sometimes peculiar, calculations with quaternions are fast and
simple. Stuelpnagel[17] concludes that no other parameterization of rotations works

as well. That conclusion is generally accepted in the aerospace industry[9].

Having chosen our coordinate space, we must now construct curves in it. In [16],
I showed how unit quaternions can be interpolated to animate rotation, in the
context of key frame 3-D animation. Duff[3] merged those ideas with curved surface
rendering techniques using B-splines, to create a fast approximating cutve with
second-order continuity. Second-order continuity is indeed desirable; unfortunately
one sacrifices the easy direct control of interpolation to get it. Either that, or the
curve no longer has local control, which is unacceptable. If speed of computation
were not an issue, we could use another approach: Gabriel and Kajiya[4] present
an erudite—and expensive—formulation of cubic splines on a hypersphere. Their
high-order, non-linear, multi-dimensional differential equation offers all the virtues

-102-



§2 ORIENTATION (DRAFT) Page 3

of familiar splines, if one can afford to solve the necessary boundary value problem.
In practice, one can't.

This paper goes deep into the mathematics of quaternions, and shows how to
improve the efficiency of quaternion calculations in general, and interpolation in
particular. Section 2 reviews properties of orientations, leading to the choice
of quaternions as coordinates. Section 3 discusses quaternion multiplication, the
foundation for everything else. Fast, unexpected implementations emerge. Section
4 explores how multiplication carries over into a representation of rotations, the use
of most interest. Section 5 looks at “linear interpolation” on the unit hypersphere,
and ways to make it faster. Section 6 deals with a new spherical interpolation
technique that delivers tangent continuity with only three arc divisions per point,
the best possible. In Section 7, quaternion differentiation reveals the required end
conditions. Section 8 discusses alternative ways to control orientation, and Section
9 draws conclusions. Finally, the Appendix gives essential C routines. The emphasis
throughout is on elegant mathematics efficiently applied.

2. Orientation

Good notation is a mighty lever. If we compare decimals to Roman numerals,
we find decimals a great deal easier for calculation. Likewise, observe how hard
it is to describe a general straight line in polar coordinates; the linear Cartesian
coordinates z, y, z are so effective we forget we have a choice. Many computer
animators have used Euler angle coordinates for orientation, not realizing there is
a better choigg. The hidden assumption in using Euler angles is that rotations act
just like translations; but they don't!

Suppose you hold your arm extended and point at different objects around you.
Your arm rotates around the fixed point of your shoulder, and your fingertip moves
on the surface of an imaginary sphere in three-dimensional space, with your arm as
radius. So directions in space are organized like a sphere, not a plane; and there is
no good way to describe a sphere using Cartesian coordinates. Maps of the Earth
demonstrate this, unavoidably tearing and stretching the truth.

Orientations (as opposed to directions) are actually more like a hypersphere, a

sphere in four-dimensional space, because while pointing in some direction you can
still rotate your wrist. Here's an interesting way to explore rotation space: Start
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3

with your finger pointing straight forward, palm down. Without rotating your
wrist, swing your arm to point up, then to point to the side, then swing forward
again. You'll find your palm is now facing.sideways, as though you'd just rotated
your wrist without moving your arm at all. This twist is a property of the way
orientations connect (their topology), not a trick of anatomy.

The precise topology of orientations is that of real three-dimensional projective
space, P3, which is just slightly different from the hypersphere in four-dimensions,
S3, but very different from three-dimensional Euclidean space[17]. The hypersphere
covers P? doubly, with each two opposite (i.e. antipodal) points on S covering a
single point of the projective space[12, p. 352]. Furthermore, S* covers the group
and metric structures of orientations (actually, rotations), not just the topological

structure[l, p. 20].

The practical import of the preceding abstractness is that orientations should
be described using homogeneous coordinates, which were invented especially for
projective space. These should have the form |z, y, 2, w], with w? + 22 4+ 9% + 22 =
1. Also, there should be some way to multiply and divide these quadruples which

will confine products to the hypersphere.

Quaternions (w + iz + Jy + kz) may be considered homogeneous coordinates for
orientations, which can be multiplied as required above.

3. Multiplication

Quaternions differ from reals in having three imaginary units, I, J, and k, with
i2 = j2 = k? = —1. Imaginary products do not commute: {j = k = —Ji, jk =
i = —kj, ki = J = —lk. Reals are the center of the multiplication group; they
commute with everything. These specific cases combine in the general rule:

9 = (w+iz+jy+kz)(o +iz' +jy +k2)
= (ww' —z2! —yy —22)
+ i(zw' + we' — 2y + y2')
+ j(yo + 22’ + wy — z2')
+ k{zw' — y2’' + 2y’ + w?)
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We can now make an important observation: The product is linear in both factors.
That is, p(ag + f¢') = apg + Ppqd and (ag + B¢ )p = agp + B¢'p, where p is a
quaternion and o and § are real. One practical impact is that we can use a 4 X 4
matrix routine (or hardware) to multiply quaterniohs. Use either

W =2 -y —2 w
|z w =z oy 7
Lyd = y 2z w -z v
z -y T w o
or
v -7 -y -2 w
7 o -y z
Fet=|g ¢ v o] ¥
d Yy -7 o z

Note that when ¢ is of unit length L, is an orthogonal matrix, and similarly for
¢’ and Ry. (An orthogonal matrix is one whose columns (equivalently, rows) are
mutually perpendicular unit length vectors.) The L matrices form an algebraic
system equivalent to quaternions; for example, p(q + ¢’) maps to Lp(Lg + Ly). 1
mention this mainly to help understand the non-commutativity of quaternions. In
practice, the matrices would be four times as expensive (e.g., Lp Lq versus Ly g).

Associativity of quaternion multiplication makes mixing L and R matrices interest-
ing. Because (gp)¢ = ¢(pq’), we know that Ry Lgp = LqRyp. When p is varying
but ¢ and ¢ are not, either of these arrangements factors out the static part of the
product for greater efficiency[10]. That is, when we have a long chain of multiplies,
9192 - .-qn, and only some inner quaternion ¢; is being varied, we can collapse all
left products ¢;...¢;_, into an L matrix, all right products ¢;,, ...gn into an R
matrix, and multiply the L and R matrices into one, leaving just a single matrix
multiply for each update of ¢;. Articulated objects are a likely candidate for this

optimization.

The most startling discovery is that the product ¢¢’ can be computed with only 8
real multiplies(8], rather than the obvious 18. The catch is, more adds are used.

Here's one way to form the product ¢" = ¢¢’.

-/05 -
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Xy~ (z—y) X (V- 7) X5 — (z—2z) X (' = ¢/)
Xz — (w+z) X (v +2) Xo— (z+2) X (7 +¢)
X3+~ (w—z)X (Y +2) X7 — (w+y) X (v —2)
Xe— (2+y) X (v —2) X — (w—y) X (v +2)

8 +—Xeo+ X7+ Xs
t —(Xs +8)/2

w” —X;+t—-Xs
3”4—X2+t-8

f*-Xa-l-f-—-Xs
=X +t-Xz

4. Rotation

A quaternion can be interpreted in many ways. First, as an algebraic quantity,
w + iz + jy + k2. Second, as a point in 4-space, with coordinates (w, z, y, z), equiv-
alent to homogeneous coordinates for a point in (projective) 3-space. Third, as a
linear transformation of 4-space, given by left or right quaternion multiplication.
Fourth, as a scalar plus a 3-vector, w + v, where v = Iz + Jy + kz. Note that
vv! = —v-v/ +v X v/; dot and cross products of vectors were discovered as parts

of the quaternion product.

Finally, a quaternion describes a rotation of 3-space. We can write a unit quaternion
as cos @ + ¥sin @, where ¥ is a unit vector. If we then form the product g¢’qg™*, we
find that the action on the vector v/ of ¢, is to rotate it by 26 around axis v, leaving
w’ unchanged. (Richardson[14] omits the factor 2, hence all his conversion formulae
are incorrect.) We'll also find that any scalar multiple of ¢ acts just like ¢, as we
would expect of homogeneous coordinates.

Proving that gv'¢~! simply rotates ¥/ is instructive; we pick up both insight and
notation. First, notation. The conjugate of ¢ = w+v is ¢ = w—v. The norm of
gis N(g) = q¢" = ¢ ¢ = w? + 2% 4+ y® + 22, which is real. Multiplication confirms
that ¢! = ¢"/N(g); also that (pg)~* = ¢~'p~*. Some computation shows the
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important property? N(pg) = N(p)N(g). These facts imply that (pq)' = q‘p‘,
which can be verified for the units i, J, and k.

The proof of rotation logically falls into two parts: First show that a vector remains
a vector, then that the effect is a rotation. So, let S(g) = (¢+¢")/2, which extracts
the scalar w. Then we can deduce S(qv'g™") = 0, as follows. By definition,
2S(qv'g™ ) = ¢qv'g™! + (¢v'¢~!)". By the commutativity of reals, the second
term is the negative of the first: (¢v'g~!)" = (¢71)°(v')'¢" = ¢/ N(g)(—v")¢" =
—qv'q~!. Hence a vector remains a vector. Furthermore, N(gv/¢~!) = N(v/), and
multiplication is bilinear. This is enough to prove we have an orthogonal transform
of 3-space, i. e. a rotation and/or a reflection. We can rule out the possibility
of a reflection with a simple continuity argument. The norm of g is manifestly
irrelevant, so assume it is 1. Then when 0-of g is 0, the transform is the identity, a
trivial rotation. As @ increases, ¢ sweeps out a great circle arc, and the transform
continuously evolves through a series of rotations, until at § = r we have ¢ = —1,
which again gives the identity transform. We have confirmed not only that gv/¢g™!
must effect a rotation, but also that the mapping from quaternions to rotations is
two to one (—¢ and ¢ give the same rotation).

The product of two quaternions clearly maps to the product of their rotations, since
(pg)v'(pg)™" = p(gv'g~')p~!. And (18] proves that the vector v of g is the axis of
the rotation ¢ produces, while w is cosine of twice the angle of rotation. For general
(non-unit) ¢, the corresponding 3 X 3 rotation matrix is

q wd +2% -y -2 2zy — 2wz 2zz + 2wy
2zy + 2wz wl—23 49320 2yz — 2wz
o | 2 2 2
i 2z2 — 2wy 2yz + 2wz w?—z? -y 422

This is an opportune place to comment on some implementation issues. The formula
for rotation is gv/g™! = L, Ry v/. When ¢ is & unit quaternion, this suggests
an easy way to convert ¢ to a homogeneous rotation matrix: Multiply the simple
matrices Lq and R+ into your current transformation. Of course, their first row

t After failing for 15 years to find a way to multiply triples so that the norm was preserved,
Hamilton suddenly realized in October of 1843 that quadruples would work. He says “I
then and there felt the galvanic circuit of thought close; and the sparks which fell from
it were the fundamental equaticns between i, j, k; exactly such as | have used them ever

since.” (7, p. 293]
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and column must be permuted to last, since computer graphics convention places
the homogeneous coordinate w last. The desired 4 X 4 matrices are

w -z Yy =z w -2 y -z

z w —z y z w —z —y

LoRg = -y z w 2 -y z w -z
-z -y -z W r y z w

Aside from numerical problems, these same matrices work even when N(g) # 1.
Those lacking matrix hardware may consult the appendix for an efficient conversion
of a non-unit quaternion to a 3 X 3 matrix.

To convert from matrix to quaternion, a scheme like that of Shepperd[15] has proven
numerically robust and efficient. From the diagonal entries and their sum (the trace
of the matrix), he determines which of w?, z%, y?, or 2? is the largest, and uses
that element to extract the others. Although [15] doesn't mention it, if the trace
is greater than zero, using w? is accurate enough. This leads to the slightly faster

algorithm in the appendix.

5. Slerp

Since a great arc is the spherical equivalent of a line, and since linear interpolation is
commonly written Lerp, it seems reasonable to call interpolation on a sphere Slerp.
There are several equivalent ways of expressing Slerp, the most symmetric of which

is
.y _ psin(l —a)} + gsinafl
Slerp(p! 'H 0‘) — sin N '

where the 4-space dot product of p and ¢ defines cos (1. As o sweeps from 0 to 1,
Slerp sweeps out a great arc from p to g. Slerp can be expressed more concisely in
four equivalent exponential forms. In this context, ¢—! is the same as ¢', because

N(g) must equal 1 for Slerp to be applicable.

Slerp(p, g;a) = p(p™'9)* = (pg™")' "¢ =(ep™")p=qlg"'p)" ™"

Since quaternion multiplication is not commutative, the equivalence of these forms
is not obvious; it can be proved from the following quaternion version of Euler's
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identity. Noting that a unit vector ¥ squares to —1 because the cross product
vanishes and the dot product is 1, we can show that Euler's identity holds for
quaternions in the form cos @ + ¥ sin § = exp(¥0) = 1 + 90 + (¥0)? /2! + (¥6)%/3! +

-+, This leads to the identity ¢* = cosaf + ¥sinaf, from which we see that
pg®p~! = exp(p¥Op~'a) = (pgp~*)®. (It is important not to assume too much,
however; non-commutativity implies that (pq)® does not equal p*¢®, nor does eP*9¢
equal ePe?, nor does In(pg) equal In(p) + In(g). These familiar identities hold only
when the cross product of the vector parts of p and ¢ vanishes.)

As a practical algorithm, Slerp looks much slower than Lerp. If the endpoints vary,
about the best improvement is to use table lookup for sin and arccos. However,
when a is 1/2, we could just add p and ¢ and normalize the result. If we have static
p and ¢ with a steadily varying «, other improvements are possible. We need only
calculate {2 and 1/sin (2 once; and we can compute af2 and (1 — )2 with forward
differencing. We can also pre-scale p and ¢ by 1/sin Q2. This reduces the inner loop
to 8 multiplies, 6 adds, and 2 table lookups per Slerp evaluation. (By representing
(1 as a fraction of 2, these calculations can be done in fixed-point arithmetic with
all values between —1 and +1.) All that's left is to begin cheating: When 1 is
small, substitute Lerp for Slerp. In fact, this is necessary anyway, to avoid divides
by nearly zero. We can just push the crossover as high as possible without getting
caught. Still the moral for speed is “Minimize Slerps.”

6. Spline

Key frame 3-D animation is typically based on splines made of cubic polynomial
segments. This is because a cubic polynomial has four degrees of freedom: two
to match first derivatives, and two to match either second derivatives or posi-
tions. As [16] makes clear, a spherical analog of cubic polynomials is needed for
well-behaved curves interpolating orientations. Boehm|2], in comparing different
geometric controls for cubic polynomial segments, describes an evaluation method
using “quadrangle points” which requires only 3 Lerps, half the number needed for
the Bézier method adapted in [186].
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§6 SPLINE

a b

a
~ ™
4 N
/ N
/ \ b

p q p q

Figure 1. Square Quadrilateral Figure 2. Warped Quadrilateral

The interpretation of this algorithm is simple: p and ¢ form one side of a qua-
drilateral, a and b the opposite side; the sides may be non-parallel and non-coplanar.
The two inner Lerps find points on those sides, then the outer Lerp finds a point
in between. Essentially, a simple parabola drawn on a square is subjected to an
arbitrary bi-linear warp, which converts it to a cubic. Transliterated into Slerps,

Boehm's algorithm gives a spherical curve,
Squad(p, a, b, ¢; &) = Slerp(Slerp(p, g; a), Slerp(a, b; a); 2(1 — a)a) .

As with Bézier control points, the quaternions a and b control the tangents at the
end points p and ¢, but do so less simply. To find out exactly how to control
the tangents (since we want to match them across segments), we must differentiate
Squad. I'll discuss that in the next section.

Where efficiency is concerned, there are two good reasons to recommend this ap-
proach. First, only three Slerps are used. No fewer would suffice to control both
end points and tangents independently. Second, two of the three Slerps have static
end points, allowing the optimizations mentioned above. In contrast, the Bézier
approach involves dynamic end points for half of its six Slerps. We thus expect a
naive implementation of Squad to be twice as fast, and a clever implementation even
faster. Still, there is no denying that forward differencing would be faster yet, if we
could use it. We can use it if the points to be interpolated are close enough together;
an ordinary matrix spline[3] won't stray too far from the unit hypersphere in that

=N -
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case. To generate close points, evaluate Squad for moderate steps of a. Matrix
splines need only four adjacent points, which can easily be computed on demand;
so this scheme is simpler thar Dufl's B-spline bisection|[3].

7. Differentiation

Now, about those tangents. Few people today realize that Maxwell, in his classic
Treatise on Electricity and Magnetism, used quaternion differentials[7, p. 3186]; we
could hardly follow in finer footsteps. Differentiating Squad is not intractable,
however we ought first understand how to differentiate Slerp. This is best done
in exponential form. In general, the derivative of a quaternion expression is much
the same as that of a similar real expression; the main difficulty is preserving the
order of multiplication. It is not too hard to show[5, p. 453] that the differential
of g%, where o is a real expression, is ¢%In(q)da + ag®*~'dg. (A gentler guide to
quaternion calculus is [6].) Of course by Euler’s identity, In(g) is just 96 when ¢ =
cos § + ¥sin 0. Thus we find 84, the derivative with respect to a, of Slerp (writing

Slerp as p(p~'q)®) is

8a Slerp(p, g; o) =p(p™'q)"In(p™"q)
=Slerp(p, ¢; @) In(p~q)

In deriving the tangent of Squad at o = 0, intermediate expressions can often be
greatly simplified since we know products with a will be 0, and exponentials will
be 1. (The a = 1 case is symmetrical, and need not be worked out separately.)
Also it is helpful to use coordinates where p is the identity. Thus, let Q@ = p~!g,
A = p~'a, and B = p~1}, so that

2(1—a)a

Squad(p, a,b,¢;a) = pQ*(Q~*A(A™'B)%)

Finally, let C = A~1B, and proceed, evaluating at o = 0.

| | e
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8 Squad(p, a, b, ¢; &) =p 8a QQ(Q—GACQ)2(1—-0)¢:

=p (92 Q%)@ *AC?)* !~
+pQ% 8, (QAC)* 1~

=pQ*In(Q) + pda (Q~*AC?)*!' )

=pIn(Q)
+p(Q*AC%) ™' In (Q""AC) 85 2(1 — a)a
+p2(1 — a)(Q~*AC)* "1 g (Q~*AC")

=pIn(Q) + 2pIn (Q~*AC?)

=pIn(Q) + 2pIn(A)

=p(In(p~™'¢)+2In(p™"a))

This final expression has a fairly intuitive meaning using simple ideas from differ-
ential geometry[13, p. 146]. At every point p of the quaternion unit hypersphere,
there is a 3-D linear space of tangent vectors. The logarithms give tangent space
vectors for the arcs from p to ¢ and from p to a; the weighted sum gives the desired
tangent space vector; and the initial factor positions the space of that vector at
the start of the curve, p. Look back at the derivative of Slerp to see how this
interpretation works in that simple case. Here's an illustration of a tangent space
on a sphere in three dimensions, where the tangent space is just a plane.

Figure 8. Tangent space

Given a series of quaternions ¢y, use of Squad requires filling in values a,, and b,, on
both sides of the interpolation points, so that each “cubic” segment is traced out by
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Squad(gn, @n,bn41,qn+1; @), as a sweeps from O to 1. If we supply a tangent space
vector t,,, we can solve for a,, and by symmetry b,, as follows:

tn —In(g7"gn4y)

an =gn exp( 5 )
—tp, —In(g;71q,—
b” =dn exp( n (2!1 n 1))

A good value for t, averages the tangents of arcs to adjacent points:

_In(g7gn41) = In(g7 " gn—y)
s 2

so that the values for a,, and b, are given by

_ln(qﬁl‘hﬂ) +1n(¢7' gp—1)
4

).

ap = by = gn exp(

8. Alternatives

For controlling a freely moving object or camera, Squad does very well. However it
cannot be expected to simulate physical equations of motion nor to cause a camera to
track an interesting object. As it happens, given an angular momentum vector w(t),
the quaternion differential equation of motion is linear, and easy to integrate[17].
This is one of the reasons quaternions have been so popular for control of spacecraft.

Tracking is another matter altogether. A vector from the eyepoint to the object
tracked is typically used to specify a direction of gaze. However, as noted earlier,
orientations are more than directions. In order to completely specify an orientation,
the “roll” degree of freedom must be pinned down. Usually this is done by specifying
a vector, some non-zero “up” component of which is perpendicular to the direction
of gaze. There is, however, a fundamental difficulty with this procedure.

A theorem of differential topology says that it is impossible to construct a smooth
tangent field on the sphere S? that does not vanish at some point[11, p. 30][12, p.

o X
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367]. Because the “up” vectors must be perpendicular to the gaze, they are tangent
to the sphere of directions. If “up” for a particular direction does not depend on

the path of the gaze over time, then the “up” vectors form a non-zero tangent field,
which cannot be smooth everywhere.

Ordinarily the discontinuities are placed at the north and south poles, and experi-
enced camera animators try to avoid looking nearly straight up or down. However
it sometimes proves awkward to automatically avoid the neighborhoods of static
discontinuities. In this case abrupt rolls must be filtered out. The result will be a
more gradual roll, which does not preserve “up.” For example, when tracking an
object flying directly overhead, the orientation snaps abruptly through 180 degrees
at the pole. Smoothing the roll spreads this change over time.

9. Conclusions

The spherical version of Boehm's quadrangle spline allows interpolation of rotations
with only three Slerps per point, the minimum possible. I have shown how this
adaptation, Squad, can be accomplished. I also provided a variety of means by
which the cost of Slerps can be lowered, as can the cost of converting quaternions to
matrices, and the cost of multiplying quaternions. Duff[3] has suggested subdividing
a spherical uniform B-spline until reasonably flat, then using non-Slerp algorithms.
A similar approach will further speed up Squad. Note that both schemes place
keys at uniformly spaced times, depending on a monotonic time map for more
flexible control. When the extra smoothness of second order continuity is less
important than direct control, use Squad. For spherical interpolation with first
order continuity, Squad is an efficient algorithm, and about the best that can be

hoped for.
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Appendix

The following C routines implement essential operations described in the text. I
have chosen to represent quaternions as arrays of four double's, but a struct might
be used instead. My rationale is that no questionable casts are necessary when
performing vector operations (for example, dot products), and translation to other
languages (like FORTRAN) is easy. On the other hand, it would be convenient to
have functions return a quaternion value, which is only possible with the struct

representation. So it goes.

#define X 0O
#define T 1
#define Z 2
#define ¥ 3

#define EPSILON 0.00001
#define HALFPI 1.6570708328704805
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/*
¢ qmul: Compute quaternion product qq = qL # qR.
¢ Requires qL and qR to be distinct storage from qq.
o/
void qmul(qL,qR,qq)
double qL[4],qR[4].qq[4];

{
qq[W] = qL[W]eqR[W] - qL[X]*qR[X] - qL[Y]*qR[Y] - qL([Z]eqR[Z];
qq[X] = qL[W]eqR[X] + qL[X]*qR[W] + qL[Y}*qR[Z] - qL[Z]eqR[Y];
qqlY] = qL[W]l*qR[Y] + qL[Y]eqR[¥W] + qL[Z]*qR[X] - qL[X]eqR[Z]:
qq(Z] = qL[W]l#qR[Z] + qL[Z]*qR[W] + qLIX)*qRIY] - qL[YleqR[X]:

}

L

* gcnj: Conjugate quaternion.

o/

void qenj(q,qq)
double q[4].qql4]:

{
qqlx] = -q[x];
qqlY] = -q[Y];
qqlz] = -qlz];
qql¥] = q[¥];

}

/*

# qinv: Invert quaternion. That is, form its multiplicative inverse.

»/
void qinv(q.qq)
double q[4].qq[4]:

{
double norminv;
norminv = 1.0 / (q[X]eq(X] + q(Yleq[Y] + q[Z]eqlZ] + q[W]leq(W]);
qq[X] = -q[X] * norminv;
qq[Y] = -q[Y] ¢ norminv;
qqlz] = -q[Z] ¢ norminv;
qq(¥] = q[¥] ¢ normiav;
}

! 1 L7 e
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/*
¢ qexp: Exponentiaste quaternion, assuming scalar part 0.
o/

void qexp(q.qq)

double q[4].qql4];

{
double theta,scale;
theta = sqrt(q[XJeq[X] + qlYl*q[Y] + ql[Z]eq(Z]):
scale = 1.0;
if (theta > EPSILON)
scale = gin(theta)/theta;
qq[X] = scaleeq[X];
qq([Y] = scale+q[TY];
qq[Z] = scalee¢q[Z];
qq[¥] = cos(theta);
}
/e
* qlog: Take the natural logarithm of unit quaternion.
s/

void qlog(q.qq)
double q[4].qq[4]:

{
double theta,scale;
scale = sqrt(q[X]eq(x] + q[Yleq[Y] + q(Z]leq(2]);
theta = atan2(scale,q[W]);
if (scale > 0.0) '

scale = theta/scale;

qq[X] = smcale ¢ q[X];
qq[Y] = scale * q[Y]:
qql[Z] = scale * q[Z];
qq[¥] = 0.0;

}

L
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/®

* quattomat: Comvert quaternion to 3x3 rotation mstrix.

¢ Quaternion need not be unit magnitude. When it always is,
* this routine can be simplified.

o/

void quattomat(q,mat)

double q[4];

double mat [3] [3];

double s,xs,ys,zs,vx,vy, vz, XX,XY,X2,YY,YZ,22;

/% For unit q. just set s = 2.0; or set xs = q[X] + q[X], etc. o/
s = 2.0/(q[x]eq[x] + qlY)eq[Y] + qlZ]leq[Z] + q[W]eq(¥W]):

xs = q[X] ¢ 8; ys=gq[Y] *8; zs=qlZ] ¢ 8;
vx = qW] ¢ xs; wy = q[W] ¢ ys;: wz =q[Z] * zs;
xx = q[X] * xs; xy = q[X] ® ys; =xz = q[Z] * zs;
yy = qlY] * ys; yz = qlZ] ¢ zs; zz =q[Z) * zs;
mat[X]1[X] = 1.0 - (yy + zz);

mat[X]1[Y] = xy - wz;

mat [X] [Z] = xz + wy;

mat[YI[X] = xy + wz;

mat[YI[Y] = 1.0 - (xx + zz);

mat[Y][Z] = yz - wx;

mat[Z] [X] = xz - wy;

mat[Z][Y] = yz + wx;

mat[Z][Z] = 1.0 - (xx + yy):
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int nxt(3] = {v,2,x};

/e
¢ mattoquat: Convert 8x3 rotation matrix to unit quaternion.

void mattoquat (mat,q)
double mat [3][3];
double q[4];

{

double tr,s;
int 4,§.k;

tr = mat[X][X] + mat[Y][Y]+ mat[Z][Z];
it (tr > 0.0) {

s = sqrt(tr + 1.0);

q(¥] = s » 0.5;

8§ =0.6/8;

qX] = (mat[Z][Y] - mat[Y][Z]) ¢ &:
qlY] = (mat[X][Z] - mat[Z][X]) @ u;
q[Z] = (mat[Y][X] - mat[X][Y]) » s;

} else {

i=1X;
if (mat(Y][Y] > mat[X][X])

i=7;
if (mat([Z][Z] > mat[1][1])

i1i=12Z;

= nxt[1]: k = axt[j]:

8 = sqrt( (mat[i][1] - (mat[j]1[§]+mat[x][k])) + 1.0 );
qli] = s ¢ 0.5;
s =0.6/8;

q(¥] = (mat[k][j] - mat[j][k]) ¢ s;
qlj] = (mat[§1[1] + mat[11[§]) @ »;
qlk] = (mat[k][1] + mat[1][k]) ¢ »;

' 4 2
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/e
¢ glerp: Spherical linear interpolatiom of unit quaternions.
® As t goes from O to 1, qt goes from p to q.
o/

void slerp(p.q.t.qt)

double p[4].ql4];

double t;

double qt[4];

{

double omega,cosom,sinom,sclp,sclq;
int 4;

cosom = p[X]eq(X] ¢ p[Yleql[Y] + p[Z]eq(z] + p(Wleq(¥];
if ( (1.0 + cosom) > EPSILON ) {
/* usual case ¢/
1t ( (1.0 - cosom) > EPSILON ) {
/¢ usual case ¢/
omega = acos(coson) ;
ginom = sin(omega);
sclp = 8in((1.0 - t)ecmegs) / sinom;
sclq = sin(teomega) / sinom;

} else {

/* ends very close ¢/

sclp = 1.0 - ¢;

sclqg = t;
}
for (1 = X; 1 <= W; 1+9)

qt[1] = sclpep[i] ¢ sclqeq[i]:

} else {

/* ends nearly opposite ®/
qt(X] = -p[Y];: qtl¥] = p[xl:
qt[Z] = -p[w]; qtlw] = p[2];
sclp = sin((1.0 = t) ¢ HALFPI);
sclq = sin(t ¢ HALFPI);
for (1 = X; 1 €= Z; 1+9)

qt[i] = sclpep[i] + sclqeqtlil:

nn
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Dynamics for Everyone

Jane Wilhelms
Computer and Information Sciences
Universiry of California, Santa Cruz 95064
415-429-2440

ABSTRACT

There is a move in computer graphics toward more correctly simulat-
ing the world being modeled in hopes of achieving more realistic and
interesting still images and animation. An important component of this
move is use of dynamics, i.e. considering the world as masses acting
under the influence of forces and torques. Dynamics can be useful in pro-
viding inverse kinematics, constraints, collisions, and, in general, help
produce realistic positions and rates of motion. However, it is computa-
tionally expensive, involved to program, and complex to control.

© 1987 IEEE. Reprinted, with permission, from /EEE Computer Graphics and Applications, Vol. 7, No.
6, June, 1987
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I. What is Dynamics and What can it Buy Us?

Dynamics refers to the description of motion as the relationship between forces and
torques acting on masses. If we treat the objects modeled in computer graphics as masses
and apply forces and torques to them, we can use physics to find out the motion these
masses should undergo. This motion should mimic the motion that would actually occur
to such masses in the real world, hence dynamics simulates the motion, rather than just
animating it.

Dynamics is useful for a number of reasons: it can help restrict motion to that which
is realistic in the world modeled; it can automatically find many kinds of complex motion
with minimal user input (e.g., motion due to gravity); it can automatically impose many
kinds of constraints (e.g., preventing intersection of colliding bodies); it can be used to
move complex bodies in natural way; etc.

Dynamics is problematic as a technique for motion control in computer animation
because it is (often) computationally expensive, and because controlling the motion is
(often) difficult. However, it shows considerable potential for manipulating and animat-
ing bodies, and merits further investigation.

This paper attempts to provide enough basic information to let anyone simulate sim-
ple objects using dynamics. A caveat: I'm not a physicist and I haven’t had everything
here carefully checked by one. It is a culling of relevant information from lots of dif-
ferent sources, which are listed in the references at the back. I would be glad to hear
about errors and suggested improvements.

2. How To Do It?

To use dynamics to find the motion of objects, first we must set up the dynamics
equations of motion which describe how masses will move under the influence of forces
and torques. Though there are a number of ways to formulate the equations, they all
should give the same solution (they refer to the same world). Second, we must solve the
equations for acceleration. Third, we must integrate to find the new velocity and posi-
tion, given that acceleration. Once we have the new position, we can animate the object.

There are many books discussing dynamics; unless some specific reference needs to
be made, most of the physics in this paper relies upon these references.”»10:17.19,21
Robotics books are often useful.!®!® The following references {Jertaining to use of
dynamics for computer animation may also be useful.1+2:3,22,23,24,25,26

We will be assuming a right-handed coordinate system with a right-hand screw rule
for rotations, and I am assuming that vectors are premultiplied by matrices to change
coordinate frames. (This is more in keeping with robotics and physics usage than com-
puter graphics.) Note that considerable variation in conventions are found in the litera-
ture; keep in mind which frame and which screw rule you are using. 14,18

Matrices will be in uppercase boldface type (J), vectors in lowercase boldface (f),
and scalars in italic type (m ). Subscripts will be used to describe the axis for vectors (¢ 5

This work was supported by National Science Foundation grant number CCR-8606519 and UCSC
fellowship 660177-19900.
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1s the position of the center of mass along the x-axis), and to further describe the value
when necessary (f grv,ix 18 the force of gravity acting on the i-th segment along the x-
axis). Superscripts will be used to indicate the frame of reference being used, when
necessary (c¢/, is the above seen in terms of the instantaneous position of the j-th coor-
dinate frame).

Table 1. is a handy reference for the meaning of terms.

2.1. Particles: Point Masses

To illustrate the method on a very simple object, consider the motion of a point
mass (a particle) in three-dimensions. Dynamics can be done in two dimensions and it’s
much easier, but also much less interesting.

2.1.1. Information Needed

2.1.1.1. Invariant Information

The only extra piece of constant information we need to dynamically animate parti-
cles is the mass of the particle. (We could also do dynamics on a particle of changing
mass but it’s probable that, for computer graphical purposes, constant mass is a reason-
able assumption.)

2.1.1.2. Variable Information

Variable data we need for dynamically animating particles includes its present posi-
tion p (a 3d vector representing x,y, and z-coordinates) and its present velocity v (also a
3d vector representing the present motion of the particle). (Again, other coordinate sys-
tems could be used, but the cartesian x,y,z system seems reasonable.) The fact that we
need 3 numbers to specify the position implies that the particle has three degrees of free-
dom of motion.

We also need to know the force f (a 3d vector with components pulling along the
X,y, and z-axis) being applied. If a number of forces are pulling at once, we need only
add the vectors representing the individual forces to get a net force.

2.1.2. Equations
According to Newton’s Second Law, the dynamics of a particle can be stated as

f =ma 1

where f is the force (a 3d vector representing the components of the force along each
cartesian axis) acting on the particle, m is the mass of the particle, and a is the accelera-
tion that the particle will undergo. Typically, force 1is in Newrons
(kilograms —meters [second?), mass is in kilograms, and acceleration is in
meters /second?.

This vector equation really represents three scalar equations, one for each cartesian
axis. These three equations are
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fx =m a, l.a
fy =ma, L.b
f: =ma, l.c

The Second Law Equation is a differential equation, because the acceleration is a
function of time. The equation can be also stated

_ dyv
= moy

because the acceleration is really the derivative (rate of change) of the velocity over time.
(The force may also vary with time.) Similarly, it could be stated

£ =m%ig— 3,

because the velocity is the derivative of the position over time, and, thus, acceleration is
the second derivative of the position.

2.1.3. Solving the Equations of Motion

If the user provides the particle mass and the applied force, it is easy to see that
solving these three independent equations will give the acceleration that the particle will
undergo along each cartesian axis, by dividing by the mass. For example, for x

ay =‘% 4,

2.1.4. Integrating to Find the New Velocity and Position

The above equations will give us the acceleration, but not the position. A simple
method of integrating this equation is referred to as the Euler method. It is a numerical
(= approximate) solution whose inaccuracy increases as does the acceleration or the time
steps used. The Euler method assumes we know the present velocity (e.g. at time i) and
want to find the velocity a bit (8¢) further on in time; the new velocity will be

Again, this is really three separate equations. For example, for x

Vislx = Vix + a;'x&r S5.a
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This gives us an approximation of the new velocity, but only an approximation. See
Figure 1., which represents how the velocity is really changing over time. A point on the
curve at time #; represent the velocity at a particular time #;. The arrow leaving the
curve at a tangent represents the instantaneous acceleration at that time, found from
Equation 4. in the previous section. The Euler approximation amounts to moving 8¢ units
along the time axis and assumes the new velocity is where the arrow is at time #; + &¢.
Note this is not on the curve. How far off the curve it is depends on how much the curve
is bending away from the arrow and how large &¢ is. With reasonably small time steps
we can use this method without too much trouble arising.

Figure 1.

veld

L L toift
time

Given the new velocity, we can now find the new position by the same method
Piv1 = Pi + v;0t + -i—a,-ﬁrz 6.
Again, this is really three separate equations. For x,
Pitlx = Pix + VixOt + -i-a,-',ﬁrz 6.2

The same inaccuracy problem occurs when finding the new position. There are
better methods of numerical integration, such as the Runge-Kutta method.?

2.1.5. Controlling the Motion

Controlling particles is pretty simple. The user need only supply an external force
as one 3d vector, or as a normalized (length 1) 3d vector representing the direction of the
force and a scalar magnitude representing the strength of the force. It might be desirable
to have gravity act on the particle. The gravitational force f ., is the product of a gravi-
tational acceleration (about 9.81 meters/second? on earth, acting toward the earth’s
center) times the particle mass.

Others forces that might be of interest involve collisions with other objects, and are
discussed briefly later on.
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2.2. Rigid Bodies: Extended Masses

Assuming that the objects are extended masses, not point masses, complicates
things considerably. We assume for now that these extended masses are rigid, and do not
change shape or mass.

2.2.1. Information Needed

2.2.1.1. Invariant Information

The constant information that we need includes the mass m of the object, the center
of mass ¢ of the object (the balance point), and a way to describe how the mass is distri-
buted about the center of mass. The mass is simple.

The center of mass is a 3d vector describing a location in space. This could be a
vector from the origin of the world (inertial) space within which all objects are placed,
but then we would have to keep changing it as the object moved. It is better to assume
some local coordinate frame fixed to the object and describe the center of mass relative
to this local frame. As long as we know where the local frame is relative to the world
frame, it is easy to find the world space center of mass if necessary. Typically such a
local frame is already used to describe the geometry of objects for graphics. If the center
of mass is not known, picking a point roughly at the center of the object generally is
sufficient.

Describing the mass distribution can be more complex, particularly if the object is
not symmetrical. Mass distribution for symmetrical objects requires three moments of
inertia, one about each axis.

I = [6% + 22)dm 7.a
Iy, = [(x? + z2)dm 7b
I, = [(x2 + y%)dm 7.c

i.e., the sum of the masses of each particle making up the object (dm) multiplied by the
square of its perpendicular distance from the axis.

For symmetrical bodies there are simple ways of calculating these moments of iner-
tia. For example, for a box centered at the origin with widthc¢ inx, b iny,and a in z,
the moments of inertia around the origin are

L. = T12—m (@? + b?) 8.a
Iy, = —1-12—.r:»z(.:12 + ¢?) 8.b
I, = 4ym@®? + c?) 8.c

Often this bounding box is a close enough approximation.
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If the object is not symmetrical, the three products of inertia must also be found.
For objects symmetrically arranged around a center of mass, the products of inertia rela-
tive to the center of mass are all zero. The products of inertia are shown below. (Note
that occasionally products of inertia are predefined as negative quantities, making terms
involving them change sign in the dynamics e,quauions.)"5'r

Ly = [xy dm 9.2
Iy = [xz dm 9.b
Iy, = Iyz dm 9.c

The units for moments and products of inertia in the metric system are
kilogram —meters?Z.

Often the moments and products of inertia are arranged in a 3x3 inertial tensor
matrix for using in the equations of motion

Iy <l
Ji=|-Iy 1;’—1; 10
_]xz_ yz [z

Estimating the moments of inertia for simple symmetrical bodies is simple. It is
also quite straightforward to find the moments and products of inertia about any axes or
points in space given this information. For example, if you should want these values for
the axes of a second coordinate system whose major axes are parallel to the local frame
but displaced by (8x,8y ,8z ), the new values are

I'y =1, + m@y?+ 8z?%) 1l.a
ry =1, + m@®2+8z2) 11.b
I, = I, + m(&2+8y? 1l.c
I'y = Iy + m &x dy 12.a
Iy =1y + mdx 8z 12.b
Iy, =1, + mdy &z 12.c

Suppose that the new frame isn’t parallel to the old. Note that this case may avoid-
able in your simulations, however, it is worth examining. Equations 11. and 12. take us
to a new frame f’ whose origin is the same as the desired rotated frame f”. Now we
need to find the values for the rotated frame. To do this we need to find the direction
cosines describing how the new x-axis is related to the old x-axis (@gg,210,a20), the new

y-axis to the old y-axis (a¢;,@11,@21), and the new z-axis to the old z-axis (agp,@12,322)-
21,15
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We can think of the 3x3 rotation matrix representing the orientation of a frame as 3
direction cosine (column) vectors defining the axis of the frame. Column O represents
the new x-axis, column 1 the new y-axis, and column 2 the new z-axis. To convince
yourself of this relationship, try transforming the original axis vectors
((1,0,0),(0,1,0),(0,0,1)) by the rotation matrix.

app 4ol a2
Dk= ajp ay) alz 13.

azo azy an

Now, the new moments and products of inertia (/x”, etc.) given those found above
in a frame parallel to that centered on the center of gravity (Ix’, etc.) are

I's = I'sad +!’yad’1 +1’za82-—21,yaooam—ﬂnaooam—ﬂy,amagz 14.a
!”y = I'xafy +1’ya?'l +1ap —2xyaj0a1 —2Uxzajarz—2yanar 14.b
I"'y=Irady +I'yafy +1a% —2yagas —2gpaxayn — 2y, azian  14c

Similarly, the products of inertia are

I"yy = (agoain +aoia10)l'sy +(@a12+ ana20)'x +(@naiz +aea )y, 15.a
—(agoarol’s +aqanl’y +apal’;)

I"x; = (agoaz1 +a01a20)'xy + (@00a22 + ana10)'x +(@0idn+anap)l’y, 15.b
—(agoazol’x +aoiazl’y +apaxnl’)

1"y, = (ayoaz1+anazl'sy +(aj0an+axa 1)l s +(@11an +apay)ly, 15.c
—(ay0a20l’x +anagyl’y +ajaxnl’)

This may seem like a drastic amount of trouble, but actually it can be programmed
as subroutines and made invisible to the user. In fact, approximate quantities can be
found by merely providing a boundary box around the center of mass and assuming some
default density to the material (e.g. 1 kilogram/meter3). The dimensions of the boun-
dary box (a,b ,c) can be used to find the volume (a xb Xc meters?3). Multiplying the den-
sity by the volume gives the mass. The center of mass can be assumed to be the center of
the bounding box. The moments of inertia around the center of mass can be found from
Equation 8. above; the products of inertia will be zero. If the frame not at the center of
mass but translated away from it, Equations 11. and 12. can be used to find the moments
and products of inertia relative to this new frame. If the frame is rotated, Equations 13,
and 14. can be used to find the new moments and products of inertia.

_;3(':)_.



2.2.1.2. Variable Information

Rigid bodies have six degrees of freedom. Three are the translational degrees of
freedom as with point masses. Three are rotational degrees of freedom describing how
the body is oriented toward some frame of reference. Assuming a local coordinate frame
fixed to the object, the translational degrees of freedom may represent displacement rela-
tive to a fixed inertial world frame axes, or along the present local frame axes (or any
other axes). Similarly, the orientation degrees of freedom may refer to rotation about the
world space axes, or about the present local frame axes.

We assume the order of rotations will be fixed as x-rotation, then y-rotation, then z-
rotation. This means rotations are Euler. Euler rotations can come in various orders, here
we follow the order x, then y, then z, so that the x-rotation is relative to the original x-
axis, the y-rotation is about the y-axis created by the x-rotation, and the z-rotation is
about the z-axis created by the former two rotations. Amazingly enough, this can also be
thought of as a z-rotation, then a y-rotation, then an x-rotation around the original frame.
It is often sensible to assume the local z-axis represents the longitudinal axis of the body,
when there is an obvious longitudinal axis.

The other variant information involves the forces f and torques 7T that cause motion
to occur. If a number of forces are acting on the body, their total translational effect can
be found by merely summing them. The center of mass of the body will move transla-
tionally as if it were a particle mass influenced by one net force.

A torque is similar to a force, except that it causes a rotational motion about a par-
ticular axis. Torques can be represented as 3d vectors describing their components about
an x, y, and z-axis. Torque vectors’ net action can be found by summing them.

If all forces are applied at the center of mass, they produce no torque; however, a
force acting at a point on the body other than the center of mass will also cause a torque.
To find a torque about a coordinate frame’s axes due to a force f (f,.fy.f;) applied at
point p (x,y,z) (both defined relative to this frame), use this equation.

t=pxf 16.
or, using components
T =fiy - fyz 16.a
Ty =fx2z - fax 16.b
tz=fyx_fx)’ 16.c

Often we want motion of the rigid body in terms of its body-fixed frame, and the
point of application of the force is in terms of this frame, but the external force is more
naturally given in terms of the world inertial frame. An external force (or any other
quantity) defined in the inertial frame can be converted into the local frame by multiply-
ing it by the matrix defining how the world frame is oriented as seen from the local
frame. This matrix is the inverse (= transpose) of the matrix defining how the local
frame is defined relative to the world frame.
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If multiple forces and torques are acting upon a body, these six important net values
(3 force, 3 torque) can be easily found (for motion relative to the local frame) by sum-
ming the forces (in local terms) to find the net f, finding the torques caused by these
forces using Equation 15., and summing these torques with any active pure torques to
L4 tne net torque (t). This cifectively removes the torque component from the forces.
After this is done, the net force effectively is applied to the origin of the local frame. The
local frame need not be at the center of mass for this to be true.

2.2.2. Equations

With rigid bodies, dynamics becomes somewhat less trivial. There are a number of
formulations, and here a brief description of the Euler method is presented. The Euler
method is, perhaps, one of the more intuitive formulations. The Armstrong method for
articulated body dynamics presented in the next section can, of course, also be used for a
single non-articulated body.

The Euler method creates six equations: three are the translational equations of
motion relating the linear acceleration and mass to the force, and three are the'rotational
equations of motion relating the angular acceleration and mass distribution to the torque.
Altogether, they specify the behavior of the six degrees of freedom of a free rigid body.
Much of this discussion comes from Wells.2!

The 3d vector version of the translational equations describing the motion of the
center of mass is familiar, e.g.

17.

-
I

=
-]

or, as 3 scalar equations,
fx=ma, ; fy =may [z =ma, 17.2,b,c

where f is the net force and a is the linear acceleration of the center of mass relative to
inertial space. This is because the center of mass acts as if the whole body mass were
located there and all forces are acting at that point. The effect of these forces on rotation
comes out in the rotational equations.

The force and linear acceleration could be expressed relative to any axes, e.g. the
instantaneous local axis fixed to the body, by taking the proper components. However,
they must both be expressed relative to the same frame. This is an important point, if the
user inputs the force f " relative to the inertial world coordinate frame and wants the
linear acceleration a’ in terms of the local frame, direction cosines (= rotation matrices)
can be used to find the components of the worldspace force relative to the local frame.
Another way of looking at this is to take the dot product of the force vector (fx.fy.f2)
with each axis vector (e.g., for the x-axis, (agg,a10,@20))- The force component along the
local x-axis would be

fx = fPagp+fyay+fray 18.
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The rotational equations for motion about the center of mass are also quite simple,
assuming the products of inertia are zero and that eirher the local frame is at the center of
mass or the origin of the local frame is fixed in world space . In this case,

T, = Iy + (I — 1) 0, 19.b

where all values are assumed relative to the local body-fixed frame. @ is the angular
velocity of the local frame relative to the inertial frame but expressed in terms of local
frame axes. o is the angular acceleration. w is typically in radians/second and ® in
radians /second?. 7 is the torque acting on the body.

Should you not be so lucky, the more general form of the equations is below. All
values are relative to a single coordinate frame, which may be an inertial frame, but is
(for our case) probably the instantaneous position and orientation of a body-fixed local
coordinate frame. ¢ refers to the location of the center of mass relative to this frame. a
refers to linear acceleration of the origin of this frame. All other values are in terms of
this frame as well.

fx = m(ay — cx (0} + ©0F) + ¢y (0, 0 —@,) + ¢, (0 @, +(;.)y)) 20.a

fy = m(ay + cx (0, 0, +<;J,,)—c),(m,?+co,2)+c,(m),mz - o)) 20.b

f2 = m(a, +c,0, —63,)+cy(m,m, + ) - ¢, (0F + ©})) 20.c

T = m(acy —ayc,) + L0y + (=10, 0, + 21.a
Ly (0, 0, —tb,)—fn(m,m, +cbz)+!,,(m}—m})

Ty = m(ayc; —a;¢x) +Iy(.:)y + (I, =)0, 0, + 21.b
Iy (0 @ = ©,) = Iy (0 @, + @) + [; (0F — ©2)

T, = m(aycy —aycy) + 10, + (Iy=l )00 + 21.c

Lt (@, @, = @) = I, (@ 0 + @) + 1y (0F — ©2)

2.2.3. Solving the Equations

Again, the Euler method of numerical integration is often adequate to solve the
equations. Note the equations are simple to solve in the direct direction, given accelera-
tions find the forces and torques; however, we want to find linear and angular accelera-
tions given forces and torques. We assume we know the present position and velocity
values. Thus we have (at worst) six equations in six unknowns (ax,ay ,@; , Ox,Wy, ©;).
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2.2.4. Controlling the Motion

Rigid bodies can be controlled by a combination of applied torques and applied
forces. Applied torques cause a rotational motion about the axes they refer to (e.g. the
body-fixed local frame) and require a 3d vector. Applied forces involve a 3d force vector
(as with point masses) and also a 3d locauon vector descriving where the force 1s being
applied. Typically the location vector will be specified in the local frame.

Net force is found by summing force vectors irrespective of point of application.
Net torque is found by taking the torque caused by these forces (using Equation 15.) as
well as any pure torques and summing these. These six values are used in the six equa-

tions of motion.

3. Articulated Bodies

Articulated bodies can be thought of as rigid segments connected together by joints
capable of less than 6 degrees of freedom. There are numerous formulations of the
dynamics equations for rigid bodies, but again, they all come down to the same thing.
Some possible choices are the Euler equations,?! the Gibbs-Appell formulation,1% 17,25
the Armstrong recursive formulation,’»3 and the Featherstone recursive formulation.$
The Euler method doesn’t deal terribly nicely with constraints at joints. The Gibbs-
Appell equations, described in appalling detail elsewhere,25 have been used for graphical
simulation but in a non-recursive form that is O (n4) in complexity. This is computation-
ally untenable, but if a recursive formulation could be found it still might be a reasonable
method, as it allows considerable flexibility in designing joints. (You can design bodies
that aren’t a hierarchical tree structure alone.) The Featherstone method is recursive and
linear in the number of joints, and is flexible in the types of joints, so it might be worth
looking into.

The Armstrong method is recursive and linear in the number of joints and will be
described in some detail here. It has the slight disadvantage that it can only accommo-
date bodies with freedom of movement relative to the world (6 degrees of freedom from
the body tree root and the world) and three rotary degrees of freedom at each joint. Also
bodies must be representable as tree structures. This is fine for most animalistic figures,
and further constraints can be applied on top of the basic dynamics using external forces
or other more devious methods. The Armstrong method has been used in graphics
modeling and I am using it at present, using a modified version of code originally pro-
vided by Bill Armstrong and Mark Green at the University of Alberta.

The Armstrong method can be thought of as an extension of the Euler equations
with multiple segments (connected rigid bodies). Again, there are at most six equations
for each joint (one for each degree of freedom of motion). The real difference comes in
the components of the torques and forces. We must consider not only applied forces and
torques on the segment, but forces perculating down onto the segment from the children
segments, and reaction forces at the joint between the segment and its parent. The follow-
ing equations are described in detail in Armstrong and Greens 1985 paper.? They are
repeated here in slightly different terms to show their equivalence to the Euler formula-
tions above.
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3.1. Information

The same information is needed for articulated bodies made of rigid segments as for
non-articulated rigid bodies, plus a tree describing how the segments are connected
together. Each segment can have at most one parent and zero or more children. For con-
venience, the local frame should originate at the proximal (nearer to the root) joint of a
segment and the longitudinal axis of the segment should be the local z-axis. If this con-
vention is followed, the third Euler rotation at a joint will always cause a longitudinal
rotation.

If simulating people and other animals, biology and biomechanics books are useful
sources of information on the nature of organic tissue, dimensions, etc. NASA’s book on
anthropometry is also a handy reference.!

3.2. Armstrong Equations

Again we have six equations, shown below as two vector equations identical to the
Euler equations given above. Everything is expressed in terms of the instantaneous loca-
tion and orientation of the frame of the i -th segment.

f; = ma; —mijc; XxW; +m;; X (W; X¢;) 22.
To=Jiw+ mic; xa; +0; xJ;w; 23.

In Equation 22., the first term on the right comes from the linear acceleration of
frame i, the second from the angular acceleration of frame i, and the third term from the
centrifugal force due to rotation of the frame. In Equation 23., the first term on the right
is the rate of change of the angular momentum, the second is due to the acceleration of
the frame. and the third is due to the rotation of the frame.

If the body is articulated, we must also consider the influence of neighboring seg-
ments; in any case we may want to consider external applied forces separate from gravity
(pushes and pulls). We can break the force up further into

f i =m,-agn,,; - fwl;‘ + zf sonji — ffopar.i 24.

All these are expressed in terms of the i-th local frame. ma g, ; (=f g ;) is the force
due to gravity acting on the mass of segment i. f . ; is the net external force acting on
frame i. f 5o, is the net force due to each son of segment i acting on segment i through
the joint joining them. f oy, ; is the net force that segment i is applying to its parent.
This force is applied by the parent back onto the son to keep the two from separating (as
described in Newton’s Third Law), so it is negative in this equation.

We can also break the torques acting on segment i into components

ti=ml'cixagnr.:'+Tm,:'+E(tsou.i+lm><fm)"twpm',i 25.
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The first term on the right, m;¢; X8 g, ; (=T i), describes the effect of gravity acting
on the center of mass of the segment and causing a torque at the proximal joint. T, ; is
the net external torque applied to the segment i. T, ; is the torque that a son of segment
i is applying to segment i at the joint between them. 1,,xf g, is the torque due to the
force a son segment is applying onto segment i. 1 ¢, is a vector from the origin of seg-
ment i to the joint between segment i and its son son in terms of frame i. Typar,; is the
torque that segment { is applying to its parent segment. Forces acting directly on seg-
ment i are assumed to have been analyzed to find their torque component acting on seg-
ment i and this added to the applied external torques ;.

Finally, one more vector equation is needed that relates the acceleration of the
parent and son segments. The right side describes the acceleration of the son’s proximal
hinge due to the the acceleration, angular acceleration, and centrifugal acceleration of the
parent i . All are in terms of the axes of frame i.

Qson = 4; — lgon X(;)i + @; X (@; X1gon) 26.

One thing to keep in mind is that though the motion is being described in terms of
the axes of frame i, the motion is relative to inertial space, not the the parent. That is, we
are not talking about the velocity relative to the parent, which may also be moving on its
own. We are talking about an inertial motion that includes the motion of the segment
about its joint to the parent plus any motion that parent may be involved in relative to the
world.

3.3. Solving the Equations Recursively

Because we limit the body to a tree structure, effects of other segments on a particu-
lar segment is limited to effects of sons and parent on this segment. This makes it possi-
ble to solve the equations recursively. First we must recognize the linear relationship
between angular and linear acceleration, and between linear acceleration and the reactive
force on the parent. K and M are recursive coefficient matrices which relate linear
acceleration to angular acceleration (w) and to reactive force on the parent (f ;5par),
respectively. d includes other constituents of the angular acceleration and f’ includes
other constituents of the force on the parent. For each segment i,

o; = K;a; +d; 27.
f:apa',i = M,-a;+f’,- 28.

Note that the reactive force f ,,p4-,; acting on the parent j of segment i is one of the
f son; forces seen from this parent (see Equation 24.). By some deft maneuvering
described in more detail in Armstrong and Green’s 1985 paper, the dynamics equations
can be restated using this relationship. The four recursive coefficients for each segment
can be found in an inward pass from the leaves of the body tree to the root. Then this
information can be used to find the accelerations of each segment from the root back to

-136—



-15-

the leaves. The root segment has no parent, so it has no reactive force on a parent and
Equation 28. can be solved for the root’s linear acceleration. This can be used in Equa-
tion 27. to find the angular acceleration of the root. This process is repeated outward
using the relationship in Equation 26. to find the linear acceleration of the son links and
using this to find their angular acceleration.

The actual steps are shown below.3 Note that RPa” signifies a 3x3 rotation matrix
that takes vectors in a local frame into its parent frame, and R /7ompar signifies a 3x3 rota-
tion matrix that takes vectors in a parent frame into a son frame, and that these two are
transposes of each other. Rorld signifies a 3x3 rotation matrix that takes vectors in a
local frame into the world frame, and R fromworld gjonifies a 3x3 rotation matrix that takes
vectors from the world frame into a local frame, and these two are also transposes of
each other.

It is useful to compute the cross-product operation using a tilde matrix. The tilde
matrix for a vector a is a 3x3 matrix that when premultiplied to a vector b gives the same
result as the cross-product a xb . It looks like this

0 -a, g
d=|a 0 -a 29.
-ay a 0

Inward Pass. The inward pass computes the 4 recursive coefficients and some other use-
ful quantities that are used often. (I have slightly simplified this step. Readers are invited
to find more quantities to efficiently precompute.) This step can be divided into two
passes: one (the slowband) need only be done occasionally; the other (the fastband)
needs to be done each time through the dynamics loop. Remember subscripts indicate
which segment the value refers to, and superscripts indicate which frame the value is in
terms of (unless it’s in frame i ). The equations are repeated for each segment. Summa-
tions are over all sons of segment i.

The slowband calculations for a segment i are these:

Acson = O X (W X1g0n) 30.
Qson = RGRYM 7R {fomear 31.
Waon = Toon Qom 32.
Ti = Ji+X Won lson)™ 33.
Ki = Ti(EXWon — m€;) 34,
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M; = mc)K; -mI+3¥ (Qgn -T;K;)) 35.

Along the way, we can accumulate some torque and force information for each seg-
ment, Tgpa accumulales torques, and f g accumulates forces. Note I'm assuming that
external torques (T.x ;) are being defined in terms of the local frame (and include torques
due to external forces), but external forces (o ;) are in terms of the world space frame.

Toparti = —W;iX(JiXW;) + Ty i + (mjc;) x R fromworldg world 36.
foi = = X (@; X (m;c;))+ R fromworld(f world 4 m;a worl 37.

The following equations are the fastband, and should be done each time through the
dynamics loop loop.

To,i = Topart,i — Topar,i t E (R fgpar Tl%opnarm) 38.
d:' =T i (to,:' 0 Z (l son X (R 1P f'.s‘?gr’:' + Q son@ ¢ son ) 39.

f'; = fo,i + (mic;) xd; +Z(R§3ﬁ“’f’,m +Q.ron(ar:,mn —lsonxd;)) 40.

Outward Pass: This completes the world traversing the tree inward. Now we traverse the
tree outward, again the work can be divided into a slow and fastband depending on
whether the information should be updated each time. (Typically I don't differentiate the
two.) First the important accelerations of the root segment, the only one capable of
translating freely.

—(M root )_lf'roor 41.

A root

f;Jmat = K002 roor +d o0t 42.
For the rest of the segments on the way out to the leaves

a; = Rfromwaa, , _+ape—1p7 x o) 43,

o = K;a; +d; 44.
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f:opar,i = Mi'al' +f’i 45.

if needed to check the solution.

Integration: Now we can integrate to find the new positions and velocities. This again
consists of a step that needs to be done each time period, and a step that can possibly be
done less often.

This step is done each time period. du signifies an angular change vector accumu-
lating orientation changes. Remember that while these values are defined in terms of the
local frame orientation, they are inertial, including motion not only at the joint to the
parent but all motion of all ancestors back to the world. For each segment,

Wold + Stw 46.

mnew

Suw Sum-d + ot 47.

For the root segment, we are also interested in its linear motion. The linear motion
of the other segments (here relative to the worldspace frame orientation) can be calcu-
lated from their angular motion.

V,‘feﬂf“ = Vé‘fﬂﬂd'ﬁ' SIR‘MO"M&W 48.
Pt = pYI+ BtV pew 49.

Finally, we can update the rotation matrices at the slowband rate from distal to
proximal (leaves to root). (Reset du to zero after this operation.)

R fopar = R g (1 + du ) 50.
This matrix should be orthonormalized to reduce error accumulation.®
Finally, each R *P4" and its inverse can be calculated
R = RAIrUR i3l s1.

Armstrong and Green? suggest that the numerical instability that sometimes accu-
mulates and causes bodies to flail about can be reduced by reducing the time step 8¢ or
by increasing artificially the moments of inertia about longitudinal axes. This latter
method may produce some anomalous behavior, however, in my experience.
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3.3.1. Control Issues

It is not terribly difficult to write subroutines to do the dynamics explained above
(or to borrow the code from a friendly spirit who has done it before you). The open ques-
tions involve how to use this dynamic ability to get desirable motion and simulate con-
straints nicely. Some hints to solving these problems are presented in this section, but a
great deal of work remains to be done before we can watch simulated animals moving
realistically about on our computer screens under total dynamic control.

Clearly, the way to control the motion is to supply forces and torques that cause or
restrict motion, either directly or through sophisticated preprocessors. Control could also
be supplied in the form of extra constraint equations that limit the degrees of freedom
involved. This method will not be discussed here.

3.4. Automatically Obvious : Gravity

The effect of gravity is easily calculated given the gravitational acceleration (about
9.81m/sec? on the earth’s surface). Assuming the y-axis points away from the center of
the earth, the force acting on the center of mass of each rigid body is

ferv =(0,-981,0)m 28.
The torque due to this force acting in the body fixed coordinate frame is

Torv = € XTgn 29.

3.5. External Dynamic Control
The user can shove the body about by applying forces and torques directly.

3.5.1. External Applied Torques

You can apply a pure external torque to cause rotation of the body about an axis by
giving a 3d torque vector which is added to the net torque vector T used in the dynamics
equations for rotation.

3.5.2. External Applied Forces

Forces require both a 3d vector for the force itself and a 3d vector for its point of
application. If is often most convenient to specify the force in terms of worldspace coor-
dinates (converting it to the coordinates of the local frame of the segment upon which it
is acting before doing the dynamics equations). The force itself is added to the net force
used in the translational equations of motion f.

The position of the force is essential because the force may also cause a torque,
depending upon where it is applied. It is usually most convenient to specify the torque in
terms of the local coordinate frame, e.g., pick a local point of application p. The torque
due to the force is found by Equation 16.
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3.6. Internal Control

Internal control is mostly relevant to moving an articulated body in the way robots
and animals move themselves, by applying torques and forces between neighboring seg-
ments. As the dynamics formulation described for articulated bodies only accommodates
rotary joints, only internal torques, not forces will be mentioned.

3.6.1. Internal Torques

If you would like the torque to be internal, e.g., simulating a muscle that acts upon
two neighboring segments in an equal and opposite fashion, this torque should contribute
to the net torque on one segment and its negative should contribute to the net torque on
its neighbor.

Internal torques are also useful for simulating joint limits, e.g., to keep the arm from
bending backwards at the elbow. Rotary spring and damper combinations or exponential
torques can be used to simulate them.

3.6.2. Positional Suggestions

Moving bodies about by suggesting forces and torques is less than intuitive. We
usually think about motion kinematically, as changes in position. It is still possible to
take advantage of dynamics but have the user think in positional terms by providing a
(more or less) intelligent preprocessing step that converts positional suggestions to forces
and torques that will accomplish them.

3.6.3. Internal Positional Control

The user could suggest local positional changes at joints, e.g., rotate the elbow from
45 degrees to 60 degrees in 10 seconds. The system could take into account the mass of
the segments moving and their present velocity and guess how much internal torque will
do this. Using super- or adaptive sampling or feedback, reasonable torques can be found
to accomplish the desired motion. Before you ask why use dynamics at all, consider that
only a few joints of the body need be under positional control at any time. The rest may
be left in a simple state that is automatically dealt with, e.g., relaxed and hanging loosely,
or frozen into a local configuration.

3.6.4. External Positional Control: Goals

It is sometimes handy to pick a point on a body and then a point in worldspace
where you would like that point to be (a goal). In this case, you can apply a force start-
ing at the desired body point and directed toward the goal. Finding the amount of force
to pull the body to the goal at a reasonable speed without overshooting it or oscillating is
sometimes tricky.

3.7. Environment Interactions

It would be nice if bodies could react automatically and realistically to their
environment as well. This will add to the cost of the system, because considerable colli-
sion detection may have to be done. A simple brute force method of finding collisions is
to check for the intersection of all the bounding vertices of an object with the bounding
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planes of all other objects.

3.7.1. Floors

Floors can be simulated with reasonable success by modeling them as a combina-
tion of a spring and a damper. A spring supplies a force dependent upon the amount its
compressed, dc, times a constant k.

for = ke 30.

Similarly, a damper supplies a force dependent upon its velocity times a constant.

For complex articulated bodies, it may be well not to use a constant constant for
these equations, but find some way of automatically calculating a reasonable propor-
tionality constant for the body considering its total motion.

3.7.2. Other Collisions

Collisions with other objects is not fundamentally different, though their shapes
may be different and they may be expected to move in response as well. In this case, the
collision should be recognized and the collisions forces found before dynamics is done
on the individual objects to find their motion in response to the collisions. For simple
bodies, one might prefer to calculate the effects of collisions directly, rather than simulat-
ing them with springs and dampers.

4. Numerical Issues

Dynamics is alot more expensive than kinematics, but not unreasonably so, given
the rapidly decreasing cost of compute power. I imagine we could be doing this on
modern personal computers without too much trouble; at least, if I had a modemn personal
computer, I'd try it. The bells and whistles are costly, e.g. collision detection, joint limits,
internal preprocessed control, etc. Lots of work remains to be done on this. Use of
recursive dynamic formulations is a real boon. More sophisticated numerical integration
methods can also help, Runge-Kutte integration is somewhat more complex to program
and takes longer per time step but you can use much larger time steps than with the Euler
method and get more accurate results. Adaptive calculations can also help, e.g. use large
time steps when the body is falling freely but very small ones when it hits the floor. A
clever adaptive idea (thanks to Ralph Abraham, UCSC) is to do a 5th order and a 4th
order Runge-Kutte integration and if they deviate more than some allowed amount, redo

it with a smaller time step.

5. Who is Doing It?

This is by no means a complete list, but the people and places that I have heard are
doing this sort of thing include: me (at UC Santa Cruz), Dave Forsey (at the University of
Waterloo),?? Bill Armstrong and Mark Green (at the University of Albcna)," 3,2 Michael
Girard and A. Maciejewski® (at the Ohio State University). Work being presented at
SIGGRAPH '87 relating to this topic includes that of Haumann at Ohio State!! Al Barr
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and others (CalTech and elsewhere),* and Terzopoulos et al,2 Isaacs and Cohen!3 and
Witkin et al.2’

6. Summary

This paper is a summary of the knowledge of dynamics that I’ve found useful for
simulating the motion of bodies for computer animation. It’s been an interesting and
enjoyable way of creating animation, and seems to have a future. 1 hope you have fun
with it and tell me if you have any problems or come up with any new solutions. Good
luck!
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Table 1. Meaning of Terms

Matrices

J = Inertial tensor matrix

R topar = rotation matrix segment to parent

R {rompar = rotation matrix parent to segment

R toworld = rotation matrix segment to world

R fromworld = rotation matrix world to segment

D = rotation matrix seen as direction cosines

I = identity matrix

K = recursive coefficient matrix

M = recursive coefficient matrix

3d Vectors

f = force

forv = force due to gravity

= external applied force

£ oon = force applied by child of a segment thru a joint
f ropar = force applied onto parent of a segment thru a joint
T = torque

Torv = torque due to gravity

Toxt = external applied torque

Lo = torque applied by child of a segment thru a joint
Tiopar = torque applied onto parent of a segment thru a joint
p = position

v = linear velocity

a = linear acceleration

Agny = gravitational acceleration

du = angular position

() = angular velocity

® = angular acceleration

1 = vector to joint of son segment from parent frame
c = vector to segment center of mass defined in segment frame
d = recursive coefficient

£ = recursive coefficient

Scalars

m = mass

ot = time step between samples

I 0y I, = moments of inertia

Ly Iz dyz = products of inertia
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Appendix I. Runge-Kutta Methods

by Matthew Moore
UCSC Santa Cruz

The Euler method of numerical integration is not very accurate; the Runge-Kutta
methods are superior and worth the slight effort of writing more complex code. The
Runge-Kutta methods have been described as the workhorses for solving differen-
tial equations. Several other methods are available, such as the predictor-corrector
family, which provide incremental speed advantages over Runge-Kutta and which
are less sensitive to stiffness in the equations.

As an example, here is a 4-th order Runge-Kutta method for producing a numerical
solution to the 2’nd order ordinary differential equation

d?P _F(P,t)
dr2 m

which defines the motion of a point mass under an applied force. First decompose
into two 1'st order ODEs.

%Y-:F P 1)
dP

dar
Now step through the time interval of interest generating a sequence of positions for

the point. The step size is 4. This set of equations generates the n+1’st position and
velocity vectors, given the n’th.

Kp=hV,

F(Pp,t)

Kv l=h
m

K
Kpy=h (Va+—y)

Kp 4=h (V,, +Kv 3)
F (P,+Kps,t+h)
=h =
Kp +2Kp+2Kp3+Kp4
6

Kv

Pﬂ+l=Pn+
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ViS4 Kv 1+2KV2‘£2K?3+K1’4

This is already a system of 6 first order ODEs. The extension of this algorithm to
larger numbers of point masses is straightforward.

Adaptive Stepsize Control

In solving differential equations, a phenomenon called stiffness is often encoun-
tered. Stiffness causes numerical instability if the integration step size is too large.
Choosing a step size which will cope with the maximum stiffness which could ever
be encountered would unjustly penalize the algorithm during more normal cases. It
is best to include a facility to adaptively determine the step size that is appropriate
as the dynamics algorithm runs.

For example, the adaptive stepsize algorithm could work by solving the dynamics
problem twice in each time step, using both a 4’th order Runge-Kutta and a 5’th
order Runge-Kutta for this. If the two solutions are not within a given tolerance of
each other at every point in the model, the algorithm would backtrack to the begin-
ning of the time step and halve step size. If the two algorithms agree with each other
to within a second, much smaller, tolerance at every point, then the step size can be
doubled for the next step. This requires over twice as much work as a single 4’th
order Runge-Kutta solution for each step, but the investment is handsomely repaid
when the algorithm takes large steps through non-stiff situations.

Intuitively, stiffness arises in a system with an equilibrium configuration, and a res-
toring force which pushes the system back towards that configuration whenever the
system moves away from it. An example of this would be a feedback controller
which exerts a torque on a joint with the intention of maintaining some given joint
angle. In numerical integration with a finite step size, it is possible for the step to be
too large, so that the system is taken from near the equilibrium to some other
configuration on the "other side" of the equilibrium and farther away. Thus the
integration "overshoots" the equilibrium configuration. The next step will see the
restoring force even stronger, and will overshoot even more. The system may then
oscillate farther and farther away from the equilibrium configuration without bound,
until completely ridiculous values are produced. The solution is to reduce the step
size until overshoot does not occur. As the restoring force becomes stronger,
overshooting becomes easier, and so the step size must be reduced even further.
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Toward Automatic Motion

Control

Jane Wilhelms
University of California, Santa Cruz

-Motion control for computer animation is arich area,;
-for new research. The trend toward grg,atgrmpla&l
dn_animation makes’the developm Q,tl;no ty,;.

uvenlent and automatic methods ¢ of otlo: mL
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The field of motion control for computer animation
is still in its youth, though perhaps no longer in infancy.
A wide variety of techniques are in use, many in combi-
nation. Designating motion for complex 3D scenes is
complicated and time-consuming, because of both the
difficulty in choosing from the wide range of motion pos-
sible, and the sheer amount of information that must be
specified. Commonly used approaches are fairly low
level and require a considerable amount of user input to
design the motion. But as motion becomes more realis-
tic, with many objects interacting in complicated ways,
providing more automatic and high-level approaches to
motion control becomes increasingly important. This
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article concentrates on present and potential approaches
to automating motion control for computer animation.

Overview

Motion control systems are often classified as interac-
tive, scripted, or a combination of both. Interactive
implies that the user and motion control system partic-
ipate in a loop where the user describes a motion, the
computer quickly provides an animation using it, the
user modifies the motion as necessary, etc. In scripted
methods, the user creates a written script describing the
motion that the control system later interprets to pro-
duce the animation.! '

Motion control can also be classified as low level, high
level, or somewhere in between. Low level suggests that
the user is required to specifically describe motion for
individual degrees of freedom, such as a path through
space or motion at joints. With high-level control, the
user may describe motion in more general terms, as in
“walk forward," leaving the system to find the appropri-
ate low-level motion description. High-level control is
desirable because the user can succinctly and quickly
define complex motion. It does have some disadvan-
tages, however, because the user has less control over the
exact motion. For this reason, systems typically provide
a combination of high-level and low-level techniques.

High-level motion control systems are difficult to
develop because converting general descriptions to spe-
cific instructions is complicated. Systems may make the
interpretation from high-level to low-level commands by
relying on command libraries, finite state machines,
hierarchies,? and parameterization.** These methods
still initially require considerable user motion specifica-
tion to define the libraries, state machines, types of
parameters, etc. Furthermore, if the objects in the
modeled environment change, the system may have to be
instructed how to respond to the new environment.

The intelligence of the control system can be increased
in a number of ways, reducing the amount of user input
required. Drawing upon methods developed in robotics,
such as inverse kinematics and path planning, moving
objects can be constrained to move in a desirable man-
ner in any environment. Using algorithmic control,
motion can be generated through precise steps. In an
extremely intelligent system, objects could generate their
motion on the fly by responding to a changing environ-
ment and even learn from their experiences. Use of
stochastic processes might allow introduction of
(pseudo-) randomness into the motion, making it more
interesting and possibly more realistic, though there is
danger of this leading to jittery and unnatural movement.

Interactive methods
Interactive refers to motion control techniques that
allow the user to design motion in real time while watch-
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ing the animation develop on the graphics screen. The
user can take full advantage of the dials, joysticks, tablet,
and other interactive devices to quickly modify the
motion and see the result.

The intelligence
of the control system
can be increased
in a number of ways,
reducing the amount
of user input required.

The earliest, and still one of the most common, inter-
active motion control methods is keyframing. Here, the
user specifies a sequence of positions and the times
when they occur, and the computer interpolates between
these positions to produce the animation. The interpo-
lation generally uses some splining technique to provide
at least first derivative (velocity) and sometimes second
derivative (acceleration) continuity to the motion. 2D
keyframing has certain serious limitations,>® but 3D
object-based keyframing is a convenient and successful
motion control method.” Keyframing has the advantage
that the user can see the total configuration of the sys-
tem at given times, easily noting collisions or undesira-
ble interactions. The disadvantages are that it is low level,
requires the user to specifically control each degree of
freedom, and does not allow easy visualization of the
motion between keyframes.

Another interactive motion control method is path
specification. While keyframing involves positioning all
the degrees of freedom of the system for particular time
points, path specification involves designating a coher-
ent path over time.®? Often this path is interactively
created by using dials or a tablet to pick positionsin a dis-
played world. These positions can then be used to define
smooth, curved paths along which objects move during
the animation.

The advantage to path specification is that the user can
think in terms of the entire motion of a particular body.
On the other hand, it is low level and does not allow easy
visualization of the configuration of all objects at a par-
ticular time instant (the inverse of the keyframing
problem).

A third interactive motion control method is the use
of control functions,’® where motion is specified
individually for each degree of freedom as a function of
time versus position. Again the functions are generally
developed by designating control points which define
curves. Control functions have the advantage that motion
described by other control methods can be easily stored
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in this form, and specific low-level changes are easily
made to individual degrees of freedom. However, con-
trol functions are less easily visualized as motion in the
animated world than world space keyframes or paths
and are very low level.

Scripted animation

Scripted animation (or animation languages) allows
motion to be described as a formal, written script.1?
Such a script can be unambiguously interpreted by the
animation system, which can carry out all later stages of
the animation independent of further user input. Some
languages, such as GRAMPS," are fairly low level.
GRAMPS combines scripted and interactive animation,
and the script facilitates communication with the device,
a calligraphic display. More high-level languages, such
as ASAS," allow a wider range of object control, includ-
ing independence or interaction of objects, synchroni-
zation, and ordered sequencing of events over time.
ASAS is a complete programming language based on
Lisp and includes such structured programming options
as procedures, recursion, and typed data structures, as
well as uniquely graphical objects and operators.

Scripted animation systems for articulated body move-
ment have been developed which take advantage of
dance notations. Both Benesh notation'™'® and
Labanotation'? have been used to describe motion for
computer graphics.

Motion control languages are also of interest in
robotics.?’ Languages provide the ability to communi-
cate with the machine in high-level constructs, to
describe a complete task, and to integrate sensory feed-
back into the control system. They provide the potential
for high-level decision-making, and may be classed as
explicit or implicit. Explicit languages are low level; the
user must describe the motion in terms of specific posi-
tion changes and velocities. Implicit languages are more
high level; the user describes the task to be accomplished,
relying upon an intelligent system to find how to com-
plete it. Examples of robot languages are WAVE, AL, and
AUTOPASS. 2123

High-level to low-level interpretation

Given that the user does not always want to specify
motion at the lowest possible level (that is, as numbers
controlling degrees of freedom), various means have
been developed to provide the user with higher level con-
trol. These include parameterization, finite state
machines, command libraries, and hierarchies.

Parametric motion control involves designating
parameters whose values define the configuration or
motion of the objects modeled.!? For example, in the
case of facial animation, parameters may be used to alter
the position of the mouth or the elevation of the eye-
brows.® Parameters are convenient and allow associa-
tion of reasonably complex motions (such as smiling)
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with relatively few commands. While parameterization
can be easily implemented using procedures, choosing
parameters that cover the desired range of motion can
be problematic. The user may have to sacrifice fine con-
trol for ease of use.

Finite state machines are appropriate for describing
and controlling repetitive or coordinated motion.??* For
example, Zeltzer uses a finite state machine with four
states to control the walking of articulated figures. The
four states of the legs are left stance/right swing, left
stance/right stance, left swing/right stance, and left
stance/right stance.

Command libraries provide a means of storing low-
level motion descriptions under high-level command
names. The command “walk," for example, may stand
for complex changes to many joints of an articulated
body. Command libraries are a convenient, adaptable
way to implement high-level control. Combining com-
mands can present problems, however, because com-
mands may send different directions to the same joints
and produce nonsensical motion."

A hierarchical structure that uses levels of progres-
sively more detailed, less general directions to interpret
high-level commands may make combining commands
less problematic and reduce the number that need to be
stored. For example, if the commands for walking are
treated as a combination of commands for whole limbs,
which are in turn treated as commands to individual
joints, the commands to raise the leg could be used with
a variety of other motions besides walking. Zeltzer's
skeleton animation system combines the use of com-
mand libraries and a hierarchical interpreter with finite
state machines.?

Possibilities of more automatic control

The methods described above require a considerable
amount of user input to design motion. Even in the case
of high-level control by parameterization and command
libraries, the user or programmer must at some point
describe the low-level position changes that correspond
to “walk" or “smile.” As the environment and the
desired motion increase in complexity, it may be desir-
able to rely upon a more intelligent, versatile, and auto-
matic form of motion control. An intelligent control
system should take advantage of the knowledge availa-
ble in other fields, such as robotics, artificial intelligence,
and physics.

Motion control for computer animation is very simi-
lar to that of mechanical manipulators. Therefore, it is
not surprising that robotics has much to offer this field.
For example, robot control must consider the dynamics
of the situation: How will the masses of the manipula-
tor respond to environmental forces and torques? Most
computer animation describes motion strictly kinemat-
ically, thinking only in terms of positions versus time.
The use of dynamics can help add realism to motion.?®
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In robotics, the interest lies in inverse kinematics (how
to position a jointed body so that its distal end is at a par-
ticular position in space), and path planning and colli-
sion detection (how can the robot find a path through
space when obstacles are present). All these issues are
equally pertinent to animation control. Indeed, the pres-
ent state of robot control is not unlike the present state
of animation control. Most industrial robots use “teach-
ing by doing” for control, where the robot is led through
positions which it then emulates.?® This is much the
same as the way objects are controlled in computer ani-
mation using keyframing or path specification. Some
robots can be controlled by robot languages, similar to
animation languages.?®

Other interesting approaches might be described as
algorithmic control, stochastic control, stimulus-
response behavioral control, and learning. Algorithmic
control refers to motion developed through the use of a
particular algorithm, as in modeling tree growth by
algorithmically defining rate of expansion, branching
pattern, and leaf production. Stochastic control implies
a degree of controlled randomness, usually added to
motion defined by other methods. Stimulus-response
control is meant to suggest that object motion is deter-
mined not only by some predetermined pattern, but by
responding to stimuli encountered during the motion.
For example, a pedestrian moving through a city might
respond to oncoming traffic by moving to the sidewalk.
Learning refers to changing the motion dependent upon
experience. In this case, the pedestrian might have to
learn to move to the sidewalk by being consistently run
over by cars.

Types of objects and their motion

Objects vary in the types of motion available to them
(see Figure 1). Typically motion is described in terms of
degrees of freedom, that is, the number of independent
coordinates needed to specify the positions of all com-
ponents of the system. For a system with n degrees of
freedom shown in t animation frames, a total of nxt
numbers must be specified. A realistic example is a video
animated at 30 frames a second. A three-minute anima-
tion of a set of objects with 50 total degrees of freedom
(not an unreasonably complex situation) requires 4500
numbers to completely specify the motion. Of course,
use of keyframing and spline techniques reduces the per-
centage of these numbers that the user must specify, but
the amount of data needed for motion control is still con-

siderable.

Particles

A particle can be described as a point in three space
(x, y» z). The location and motion of such a point is desig-
nated by three variables, and thus the point has three
degrees of freedom of motion. Animating a point
requires a triplet of numbers for each animation frame,
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or three functions describing the variation of x, y, and
z over time. Reeves et al. have shown how useful parti-
cles can be in simulating natural phenomena.?”:?8

Rigid bodies

A rigid body is defined by some number of points that
must move together. They may not move relative to each
other, though they may move as a whole relative to the
world space. These points may define polygons or a free-
form surface. The motion of a rigid body is specified by
six degrees of freedom: x, y, z translation (as for a point)
and x, y, z rotation (orientation). (Use of a Cartesian sys-
tem is not necessary, though it is the most familiar
method.) Motion of a rigid body is usually visualized as
motion of a frame that is fixed to the rigid body, with all
points defining the body moving with the frame. Most
animation systems concentrate on modeling with rigid
bodies.

Flexible bodies

A flexible body consists of an infinite number of points
which move relative to each other over time. In practice,
a flexible body may be defined as a set of moving points.
These points may represent vertices of polygons, but
greater flexibility is achieved if they represent control
points for surfaces. A moving flexible body, such as an
amoeba, defined as a free form surface using p control
points, has 3x p degrees of freedom varying over time.
This explains why most computer animation is of rigid
bodies. While some work has been done in the field,?®
animating flexible bodies remains a fertile area for
research.

Articulated bodies

Articulated bodies are made up of segments whose
motion relative to each other is somewhat restricted. For
example, a human body is often represented as rigid seg-
ments joined at articulations (joints) which have one to
three degrees of freedom. The total number of degrees
of freedom that must be specified is the sum of the num-
ber of degrees of freedom at each joint. A good deal of
work has been done modeling articulated bodies as rigid
segments,?17.30-32

Articulated bodies may also be flexible. In this case,
the joint between two flexible segments could be
modeled as a joint between two coordinate frames, one
attached to each adjacent segment. Two types of motion
are then possible. Motion at the articulation consists of
changing up to six numbers specifying the relation
between frames. Motion within each flexible segment
consists of moving the points defining the segment rela-
tive to its local frame. The total number of degrees of free-
dom necessary to specify a flexible articulated body
would be the number of degrees of freedom at each joint
plus three times the number of defining points.
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Algebraically-defined bodies (e.g.. spheres)
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Miscellaneous and metamorphosing bodies

Bodies may also be specified algebraically. A sphere
can be modeled as a center (three numbers) and a radius,
and a pulsating sphere could be animated by changing
the radius. The number of degrees of freedom of the sys-
tem would depend upon the nature of the equations
defining these algebraic objects.

It becomes more complex when the bodies being
modeled change their number of degrees of freedom
over time. Examples of metamorphosing bodies include
fractal mountain ranges during formation,*? growing
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Figure 1. Degrees of freedom of motion: (a) particles
and rigid bodies, (b) flexible bodies, (c) articulated
bodies, (d) miscellaneous bodies, () metamorphosing
bodies.

plants,3% and particle systems.?’” The process of
metamorphosis is in itself a kind of motion control and
will be dealt with below.

Constraints

Constraints restrict object motion (see Figure 2), and
some entirely eliminate a degree of freedom. For exam-
ple, the hinge joint at the knee may be modeled as con-
strained to move using only one revolute degree of
freedom. Constraints can also be applied as limits within
a degree of freedom. The head can swivel on the neck
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but cannot rotate all the way around.

These partial constraints can be difficult to model,
because the limits on a degree of freedom may vary
according to the positions at other degrees of freedom.
For example, the arm cannot swing toward the body cen-
ter when the body is upright, because the trunk is in the
way. However, if the trunk is bent forward at the waist,
such a motion is possible.?®

Constraints may only be applied occasionally, as in the
motion of leaping, where the legs are sometimes con-
strained by the ground. Constraints may take many
forms: A robot hand may be constrained to remain in
contact with a surface, or to move around a point. They
can also be applied to velocity and acceleration, and the
nature of the constraints may vary with time.

A motion control system should take into account con-
straints, or at least do constraint-checking and respond
reasonably when they are broken. A reasonable response
might include informing the user of the constraint vio-
lation, and possibly include refusal to accomplish the
motion in violation.

Approaches to automating
animation

More automated motion control will take the burden
of motion specification away from the user and give it
to the animation system. Ideally, one could imagine an
automated system that, given a description of an envi-
ronment, its movable bodies, some behavioral rules, and
(perhaps) what kind of motion is desired, will create an
appropriate and attractive animation. Such a system
would require a more sophisticated program and prob-
ably be much more computationally expensive than
user-directed systems. Furthermore, this type of system
may not be desirable because it will take control of the
exact motion away from the user. It is, however, possible
for the user to alter such an animation at a lower level.

Such a system could also provide a useful tool for
studying simulations. A simulation models behavior on
the basis of known or hypothetical physical laws. Not all
simulations are graphical, but many simulations can be
better understood if combined with graphical output.
Computer-generated graphical simulations are a kind of
computer animation. Because such simulations try to
imitate physical processes, they are naturally con-
strained to be realistic. Simulation techniques can be
very useful in adding realism to computer animations.

Dynamic analysis

Typically, motion control is kinematic, with motion
being specified by designating positions taken over time
for each degree of freedom. Kinematic motion specifi-
cation does not take into account the causes of motion,
which are the effects of forces and torques acting upon
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Restraints with a degree of freedom,
such as joint end limits.

Removing degrees
“s.  of freedom, such as

a 1 DOF hinge joint.

Occasional constraint, as in siriking the ground.

Figure 2. Constraints on motion.

masses. This is the concern of dynamics, or dynamic
analysis. (Dynamics also refers to motion or change in
the general sense. In this article, its use will be restricted
to the meaning of the word as used in physics.)
Dynamics has been used in computer modeling in a
few cases. Some CAD/CAM systems include engineer-
ing packages for dynamic analysis of machines. Vehicle
crash studies may include dynamic simulations involv-
ing computer graphics.?” The famous Works mechani-
cal ants and robots from the New York Institute of
Technology included some dynamic analysis.® The
walking creatures modeled by Girard and
Maciejewski* include simple dynamics of the trunk. In
addition, I have explored,*? and Armstrong and Green*
have also independently modeled, articulated bodies
using a more complete version of dynamic analysis.
The dynamics equations of motion are used to relate
the acceleration of the mass (object) to the forces and/or
torques acting upon it. A force produces translational
motion; a torque produces revolute motion. In the sim-
plest case, for a point mass capable of three degrees of
freedom, the common Newtonian equation of motion is

F=ma

where F is the force vector acting on the point mass m
and a is the acceleration the mass experiences. For con-
stant mass, this equation can be solved in either of two
directions: (1) given the force, one can solve for acceler-
ation; or (2) given the acceleration, one can solve for
force. In robotics, the second direction is generally of
interest, as the desired motion is known and the amount
of force that must be applied to the robot motors to pro-
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Figure 3. Forces and torques acting on the body.

duce this motion must be determined. In computer
graphics, the first direction is of more interest: Given the
environmental and internal forces and torques, what is
the acceleration the object will undergo? Given the
acceleration, present position, and velocity, the path of
motion can be found. For simple systems with few
degrees of freedom, analytical integration can be used.
As the complexity of the system grows, numerical inte-
gration techniques are relied upon.

The dynamics equations for articulated bodies are
complex. For greater realism, body segments should be
treated as extended masses. Because of the interaction
between connected segments, the dynamics equations
are coupled and must be solved as a system of equations,
one equation for each degree of freedom. There are a
variety of formulations for the dynamics equations that
produce the same result by different methodology. Two
methods used in computer graphics are the matrix for-
mulation of the Gibbs-Appell Equation?® and a recur-
sive formulation developed by Armstrong.*® While each
has advantages and disadvantages, the latter is much
faster (O(n) compared to O(n*) for the Gibbs-Appell ver-
sion) and so is likely to be the method of choice.

Of the forces and torques acting on and in the body,
some can be calculated automatically, some can be simu-
lated using springs and dampers, and some must be sup-
plied by the user (see Figure 3). For example, the
gravitational force can be calculated automatically. Inter-
actions with the ground, other collisions, and joint limits
can be modeled as springs and dampers. Such internally
controlled motion as muscles in animals or motors in
robots are normally supplied by the user. Thus, certain
types of complex motion, such as falling, striking the
floor, or bouncing against other objects, can be automat-
ically calculated and realistically rendered with no user
input.

April 1987

-)|55~

Figure 4. Dynamically controlled figure sitting up.

Producing controlled, coordinated motion using
dynamic analysis is more of a problem. The user can pro-
vide control functions to specify pseudo-muscular forces
and torques acting on individual degrees of freedom, but
force/torque control is nonintuitive. It is also possible for
the user to suggest the motion at joints under internal
control as kinematic motion changes, and have the pro-
gram calculate appropriate forces and torques to accom-
plish the motion. Figure 4 shows a body made to sit up
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using dynamic analysis. A torque is applied to the waist,
the neck and hips are held stable, and all other joints are
relaxed. The body naturally conforms its motion to the
floor and gravity. Various approaches to controlling artic-
ulated bodies using dynamic analysis have been handled
in detail in other studies.-?5

It is possible to model dynamics more simply by treat-
ing the body segments as point masses or limiting
dynamic analysis to a subset of body parts.*® Ad hoc
methods may also be added, such as approximating the
bouncing expected upon collision and adding this to
kinematically described motion as a last step. These
methods are simpler than full dynamics analysis but may
not be as effective.

Inverse kinematics

Kinematics of articulated bodies involves two related
problems: the direct kinematics problem and the inverse
kinematics problem. The direct kinematics problem,
which can be solved rather trivially, is to find the world
space position of a distal segment of the body given the
joint positions of the segments proximal to it. In other
words, given the angles of the shoulder, elbow, and wrist,
find the position of the hand. The inverse kinematics
problem is to find the joint positions of the proximal
joints given the position in world space of a distal seg-
ment; or, given the position of the hand, find the joint
angles at the wrist, elbow, and shoulder that will place
the hand in that position. Inverse kinematics provides a
means of constraining articulated bodies in reference to
the world. For example, it can be used to keep a body
realistically in contact with the ground when it moves.
Because kinematic motion has no concept of gravity or
reaction forces, modeling such environmental interac-
tions is nontrivial.

Inverse kinematics is important in both computer
graphics and robotics. It involves two related problems:
(1) finding any solution that will achieve the desired goal
and (2) finding the most desirable solution. The inverse
kinematics problem becomes progressively more diffi-
cult as the number of degrees of freedom increase. For
simple six degree-of-freedom industrial robots, analytic,
iterative, and geometric solutions exist.2%2¢ Even in this
simple case, however, there is often a problem of choos-
ing the best solution.

For a complex body such as a simulated human figure,
the problem becomes extremely unwieldy. Consider, for
example, the number of ways a seated figure might reach
for an object on the table in front of it. While many solu-
tions are possible, certain solutions are much more nat-
ural and realistic. What are the criteria that yield a
realistic solution? Considerations might be total energy
expended, distance traveled by the hand, distance trav-
eled by all the joints, time taken, and a subjective
criterion such as naturalness.
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Korein® has devised a technique called the reach
hierarchy method for inverse kinematics that involves
precomputing the workspace for the chain of articulated
segments and for each of its distal subchains. The work-
space is the region in space that the end of the segment
is capable of reaching. The algorithm works as follows
for point goals: If the goal is not in the workspace of the
entire chain, it is unreachable, so give up. Or else, for
each of the joints in the chain from proximal to distal,
adjust the joint positions just enough so that the next
more distal workspace includes the goal. This method
minimizes adjustment of proximal joints.

Girard and Maciejewski* presented a technique for
solving the inverse kinematics of legged figures by
linearizing the relation between changes in joint space
and changes in world space. A Jacobian matrix express-
ing this relation about the current operating point is
reasonably accurate for small deviations from the pre-
sent positions. The pseudo-inverse of the Jacobian can
be used to find joint positions that will result in the
desired world space position of the segments of interest.

It should be noted that some of the necessity of inverse
kinematics can be eliminated by using dynamic analy-
sis. For example, if the dynamically controlled body
strikes the floor, the floor will push back with a reaction
force sufficient to keep the body from falling through,
realistic bouncing results. Dynamic forces can also be
used to pull segments to a certain point in space.

Path planning and collision detection

Path, or trajectory, planning involves describing a path
for an object through space. The user may explicitly
define this path, either by defining keyframe positions
to be passed through along the way, or by actually defin-
ing a path through space.”® However, using automatic
path-planning algorithms, it is possible to merely desig-
nate the start and goal positions and have the system
determine the path, taking into account the environment
and constraints. For single, nonarticulated body motion,
Cartesian coordinates are used to specify a sequence of
points through or near which the body passes.

For articulated bodies, motion may be described either
in Cartesian coordinates or in joint coordinates. Carte-
sian motion is often used to describe how a particular
part of the body, such as the hand, moves in world space.
Joint coordinate motion is used to describe the local joint
positions during the motion. Cartesian coordinates are
a more intuitive way to describe motion through a world,
but may require the solution of the inverse kinematics
problem. A reasonable compromise is to specify world
space trajectory points along a Cartesian path, using
inverse kinematics to find the joint coordinate positions
to achieve these positions. Simple interpolation of joint
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Figure 5. Path planning in a static environment.

positions can be used to define the motion between the
trajectory points.?0-26

An important part of trajectory planning is collision
detection and obstacle avoidance.*! A simple algorithm
for obstacle avoidance assumes a straight line path from
start to goal and tests for possible collisions. When a col-
lision is detected, a new path that avoids the collision can
be generated. This process is repeated until a collision-
free path is found. Collision detection can be done by cal-
culating a sweep volume, which tests for overlap between
the moving object and the obstacles, or by testing for col-
lisions with a point on the object and scaling up the
obstacles to account for object size.

Collision detection performed iteratively by intersec-
tion testing may not be particularly helpful in choosing
an optimum path, since only local information is used
to generate each new path. An alternative is to specify
all constraints on the vertices of the moving object solv-
ing for a path that obeys constraints simultaneously.

The Lozano-Perez algorithm*' creates a graph whose
nodes are the starting and goal positions and boundary
points on the obstacles. The edges between these nodes
are weighted according to the straight-line distance
between these positions. If the line joining positions
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passes through an obstacle, its weight is some maximal
value. A minimal path around obstacles can be found
using the Dijkstra algorithm. Figure 5 illustrates this
algorithm which is used to find a path for a body through
a complex environment. Four subgoals are used to make
the path more interesting.

Path planning is made more complex if positional con-
straints do not all apply simultaneously or when obsta-
cles are themselves in motion. In this case, collision
avoidance must be done on the fly. This problem is dis-
cussed in the section covering stimulus-response control.

Algorithmic control

Although all computer-generated motion is controlled
by algorithms, *“‘algorithmic motion control” refers to
generation of motion using a series of preprogrammed
instructions with minimal user input concerning actual
motion. The user may suggest parameters controlling the
algorithm, but does not control the specific motion at
individual degrees of freedom. Simple algorithmic con-
trol, often seen in computer-generated animation,
includes spinning cubes, planets following elliptical
revolutions, and other cases of repetitive motion.

Algorithms used to generate still images can often be
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used to develop interesting animations by recording the
generation process. The organic forms generated by
Kawaguchi** are examples. The regularity and order of
many natural forms, such as shells, horns, and branch-
ing plants, can be represented by mathematical expres-
sions. For example, shells are formed by twisting and
expanding a basic polyhedral model. Plants can be
formed in a similar manner, with additional considera-
tion for the amount and angle of branching and the
diameter of branches. By recording the generation in
progress, these bodies can be seen to grow.

Stochastic control

An algorithmic technique that is becoming common
in computer modeling is use of stochastic processes to
generate objects such as mountains,® trees,*?
clouds,™* glass, waves, and bagels.*> Stochastic has
come to mean use of (pseudo-) random perturbations
applied during modeling to create more interesting
and/or realistic images. Though these techniques are
often used for still images, they can also be used to gener-
ate interesting motion. A prime example is fractal, or
stochastic, mountain generation.’® Fractal landforms
are created by subdividing constituent polygons with
perturbation of vertices. If the process of subdivision is
displayed over time, a fairly realistic animation of moun-
tain building is produced, as seen in the Genesis Demo
in the film Star Trek 11: The Wrath of Khan, (Paramount
1982).

A related example is Reeves' particle systems.?”-*
Large numbers of particles can be used to model many
natural phenomena, such as clouds, fire, atmospheric
disturbances, and vegetation. Particles are easy to ren-
der, but they incorporate in simple form many sophisti-
cated features. They are controlled by a number of
attributes, such as position, velocity, size, color, and
shape. Particles can be given a limited lifetime so that
some die (disappear) and others are born (appear) dur-
ing the animation.

Stochastic processes are used to create and alter each
particle's shape, motion, and appearance. The user can
specify parameters such as mean number of particles
generated per frame, where they are placed, and how
they initially move, but the actual motion is not deter-
minate. Particles can be used to represent light sources,
as in the imitation of fire in the movie Star Trek I1. By
drawing the path of each particle over its entire lifetime,
vegetation can be modeled, as in Alvy Ray Smith's white
sand.?”

A more sophisticated version of structured particle
systems?® convincingly models more complex objects
such as a forest, and more complex motion, such as grass
blowing in the wind. The use of stochastically generated
“wind particles” to simulate grasses blowing is partic-
ularly interesting from a motion control point of view.
It suggests that stochastic motion might hold potential
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for modeling a wide range of natural motions, such as
sea creatures and plants buffeted by waves, airborne
seeds, protozoa, and insects.

Stimulus-response behavioral control

Stimulus-response control suggests that environmen-
tal interactions are taken into account during motion
generation. The motion of each object is dependent not
only on its own internal algorithm, but on the behavior
of other objects. Stimulus-response control could be
added onto a stochastic algorithmic control algorithm.
For example, it could be added to the algorithm for tree
growth by also taking into account the changing environ-
ment of the forest: the sun, proximity of neighboring
plants, people with axes, etc. Biologically speaking, the
fundamental growth algorithm is genetically pro-
grammed, but the exact pattern of the growth is environ-
mentally determined.

Stimulus-response control, obviously, involves two
steps: recognizing the state of the environment and
developing a response to it. To explore this, a simple sys-
tem using spheres has been developed at the University
of California, Santa Cruz, Computer Graphics and Imag-
ing Laboratories. Spheres can be given a start position,
end position, and velocity, as well as a color and size.
When let loose in their environment, they move toward
the destination, checking for collisions with other
spheres.

Figure 6 illustrates initially green and white spheres
on the move. When they collide and pass through each
other, they turn red; when they reach their destination,
they turn blue. Various collision avoidance algorithms
can be explored using this simple system, as can more
sophisticated types of interaction. Collision avoidance
is not shown, as it is not particularly illustrative in still
images.

Another example of stimulus-response control was a
project unofficially called “fishbrains” at the Atari
Research Labs under Ann Marion.* A small environ-
ment with a variety of creatures was modeled. Charac-
ters’ responses to each other depended both upon their
own internal states, such as hunger, fatigue, or calm, and
the creatures encountered.

Learning

At an even more sophisticated level, it is possible to
imagine motion control algorithms that learn. Learning
is a difficult problem that is not well understood, either
for machines or animals. Machine-learning algorithms
that have been developed in robotics and artificial
intelligence?“® provide insight into the use of learning
for motion control. On the other hand, computer anima-
tion may provide an excellent test site for the practical-
ity of these learning algorithms.

Fairly simple learning algorithms based on common
sense may provide a starting point. A simple gauge that
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registers success or failure by whether the desired goal
is reached or how many collisions occur, could be used
to alter future motion responses. For example, a simu-
lated fish attempting to avoid predators whose motion
is repetitive, might have to learn to respond correctly to
avoid being eaten. If the predator typically attacks from
underneath the prey, the prey should attempt to get
beneath the predator.

Conclusions

Over the past several years, the trend toward greater
complexity and more realistic static scenes has been
greatly aided by knowledge from other fields such as
physics. A similar process is now occurring in the field
of motion control for computer animation. Motion is
becoming progressively more complex and realistic.
Control of motion can be greatly aided by integrating
knowledge from related fields such as robotics, artificial
intelligence, psychology, biology, and physics. Use of
more automatic motion control techniques, such as auto-
matic path planning, collision detection, dynamic anal-
ysis, stochastic algorithms, stimulus-driven response,
and learning algorithms offer great potential for animat-
ing highly complex motion with minimal user input.l

Acknowledgments

I wish to thank Michael Berman, Jane Johnson,
Cathryn Nelson, Ken Cluff, and Al Conrad for their
assistance in developing and implementing the
algorithms illustrated in this article.

References

. P Hanrahan and D. Sturman, “Interactive Animation of Paramet-
ric Models,” Introduction to Computer Animation, course notes,
ACM SIGGRAPH 85, Aug. 1985, pp. 87-101.

2. D. Zeltzer, “Motor Control Techniques for Figure Animation,"

IEEE CGE&A, Nav. 1982, pp. 53-60.

3. F. Parke, "'Parameterized Models for Facial Animation,” IEEE
CG&A, Nov. 1982, pp. 61-68.

4. CW. Reynolds, 'Description and Control of Time and Dynamics
in Computer Animation," Advanced Computer Animation, course
notes, ACM SIGGRAPH 85, july 1985, pp. 289-296.

5. E. Catmull, “The Problems of Computer-Assisted Animation,"

Computer Graphics (Proc. SIGGRAPH 78), July 1978, pp. 348-353.

=1

April 1987

—159-

Figure 6. Collision detection in a changing envi-
ronment.

21



12.

13.

14.

15.

16.

18.

19.

20,

2

pary

22,

23.

24.

i. WI. Reeves, " Inbelweening for Computer Animation Using Mov-

ing Point Constraints,” Computer Graphics (Proc. SIGGRAPH 81).
Aug. 1981, pp. 263-269.

. S.N. Skeketee and N.I. Badler, “Parametric Keyframe Interpola-
tion Incorporating Kinetic Adjustment and Phrasing Control,”
Computer Graphics (Proc. SIGGRAPH 85), July 1985, pp. 255-262.

. R.M. Baecker, "Picture-Driven Animation,” Proc. Spring Joint
Computer Conf.. AFIPS Press, Montvale, N.]., 1969, pp. 273-288.

. K. Shelley and D. Greenberg, "' Path Specification and Path Coher-
ence,” Compulter Graphics (Proc. SIGGRAPH 82), July 1982, pp.
157-166.

. ]. Wilhelms, “Virya-A Motion Control Editor for Kinematic and
Dynamic Animation," Proc. Graphics Interface 86, Morgan Kauf-
mann, Inc., Los Altos, Calif., May 1986, pp. 141-146.

. CW. Reynolds, "Computer Animation with Scripts and Actors,”

Computer Graphics (Proc. SIGGRAPH 82), July 1982, pp. 289-296.

N. MagnenatThalmann and D. Thalmann, “The Use of 3D High-

Level Graphical Types in the MIRA Animation System," IEEE

CG&A, Dec. 1983, pp. 9-16.

T.). O'Donnell and A.]. Olson, "GRAMPS—A Graphics Language

Interpreter for Real-time, Interactive, Three-Dimensional Picture

Editing and Animation,” Computer Graphics (Proc. SIGGRAPH

81), Aug. 1981, pp. 133-142.

A. Hutchinson Guest, Dance Notation, Dance Books, London,
1964.

G. Politis and D. Herbison-Evans, “A Computer Graphics Inter-
preter for Benesh Movement Notation," Proc. Ausgraph 85, 1985,

pp. 25-30.

B. Singh et al., “A Graphical Editor for Benesh Movement Nota-
tion,” Computer Graphics (Proc. SIGGRAPH 83), July 1983, pp.
51-62.

. N.I. Badier. |. O'Rourke, and B. Kaufman, "Special Problems in
Human Movement Simulation,” Computer Graphics {Proc. SIG-
GRAPH 80), July 1980, pp. 189-203.

TW. Calvert, |. Chapman, and A. Patla, ""The Integration of Sub-
jective and Objective Data in the Animation of Human Move-
ment,” Computer Graphics [Proc. SIGGRAPH 80), July 1980, pp.
198-203.

G.]. Savage and .M. Officer, “CHOREO: An Interactive Computer
Model for Dance,” Int'l |. Man-Machine Studies, July 1978, pp. 1-3.
C.5. George Lee, R.C. Gonzalez, and K.S. Fu, Tutoriol on Robotics,
IEEE Computer Soc. Press, Silver Spring, Md., 1983.

. R.P. Paul, "WAVE: A Model-Based Language for Manipulator Con-
trol," Tech. Report MR76-615, Soc. of Manufacturing Engineers,
Dearborn, Mich., 1976.

R. Finkel et al., “An Overview of AL, a Programming Language for
Automation,” Proc. Fourth Int’l Joint Conf. Artificial Intelligence,
pp. 758-765.

L. Lieberman and M. Wesley, "AUTOPASS: An Automalic Pro-
gramming System for Computer-Controlled Mechanical Assem-
bly," IBM ). Research and Development, Vol. 21, No. 4, 1977, pp.
321-333.

R. Tomovic, "'On Man-Machine Control,"” Automatica, Pergamon
Press, Oxford, 1967.

25. |. Wilhelms, “Graphical Simulation of the Motion of Articulated

26.

27.

22

Bodies such as Humans and Robots, with Particular Emphasis on
the Use of Dynamic Analysis," doctoral dissertation, Computer
Science Div., Univ. of California, Berkeley, Calif., July 1985.
R.P. Paul, Robot Manipulators: Mathematics, Programming, and
Control, The MIT Press, Cambridge, Mass., 1981.

WT. Reeves, “'Particle Systems - A Technique for Modeling a Class

of Fuzzy Objects,"” Computer Graphics (Proc. SIGGRAPH 83), July

1983, pp. 359-376.

. WT. Reeves and R. Blau, “Approximate and Probabilistic
Algorithms for Shading and Rendering Structured Particles Sys-
tems," Computer Graphics (Proc. SIGGRAPH 85), July 1985, pp.
313-322.

29. |. Weil, “The Synthesis of Cloth Objects,” Computer Graphics
(Proc. SIGGRAPH 86), Aug. 1986. pp. 49-54.

30. TW. Calvert, |. Chapman, and A, Patla, "Aspects of the Kinematic
Simulation of Human Movemenl,” IEEE CGEA, Nov. 1982, pp.
41-52.

31. D. Herbison-Evans, "Nudes 2: A Numeric Utility Displaying Ellip-
soid Solids,” Computer Graphics (Proc. SIGGRAPH 78), Aug. 1978,
Pp. 354-356.

32. |. Wilhelms and B.A. Barsky, “Using Dynamic Analysis for the Ani-
mation of Articulated Bodies such as Humans and Robols," Proc.
Graphics Interface 85,, Canadian Information Processing Soc.,
Toronto, Ont., May 1985, pp. 97-104.

33. A. Fournier, D. Fussel, and L. Carpenler, "Computer Rendering
of Stochastic Models,” Comm. ACM, June 1982, pp. 371-384.
34. Y. Kawaguchi, "A Morphological Study of the Form of Nature,”

Computer Graphics [Proc. SIGGRAPH 82), July 1982, pp. 223-232.

35. A.R. Smith, “Plants, Fractals, and Formal Languages,” Compuler
Graphics [Proc. SIGGRAPH 84), July 1984, pp. 1-10.

36. J.U. Korein and N.1. Badler, "' Techniques for Generating the Goal-
Directed Motion of Articulated Structures,” IEEE CG&A, Nov.
1982, pp. 71-81.

37. K.D. Willmert, "'Visualizing Human Body Motion Simulations,”
IEEE CG&A, Nov. 1982, pp. 35-43.

38. RV. Lundin, “Motion Simulation,”" Proc. Nicograph 1984, Nov.
1984, pp. 210,

39. M. Girard and A.A. Maciejewski, "Computational Modeling for
the Computer Animation of L.egged Figures,” Computer Graphics
(Proc. SIGGRAPH B85), July 1985, pp. 263-270.

40. WW. Armstrong and MW. Green, *The Dynamics ol Articulated
Rigid Bodies for Purposes of Animation,” Proc. Graphics Inter-
face 85. Canadian Information Processing Soc., Toronto, Ont., May
1985, pp. 407-415

T. Lozano-Perez and M.A. Weslev, “An Algorithm for Planning
Collision-Free Paths Among Polyhedral Obstacles,” Comm. ACM,
Oct. 1979, pp. 560-570.

42.]. Bloomenthal, "Modeling the Mighty Maple,” Computer
Graphics (Proc. SIGGRAPH 85), July 1985, pp. 305-311.

43. R. Voss, "Fourier Synthesis of Gaussian Fractals: L/F Noises,
Landscapes and Flakes,"” State of the Art in Image Synthesis, course
notes, ACM SIGGRAPH 83, July 1983.

44, GY. Gardner, ""Visual Simulation of Clouds,”” Computer Graphics
(Proc. SIGGRAPH 85), July 1985, pp. 297-303.

45, K. Perlin, “An Image Synthesizer,” Computer Graphics (Proc. S1G-
GRAPH 85), July 1985, pp. 287-296.

46. S. Tangwongsan and K.S. Fu, "An Application of Learning to

Robotic Planning.” Int'l ]. Computer and Information Science, Vol.

8, 1979, pp. 303-333.

41.

jary

' 77" Jane Wilhelms has been an assistant professor
with the Computer and Information Sciences
Board at the University of California, Santa Cruz,
since 1985. Her research interests include com-
puter animation, modeling articulated bodies,
and use of dynamic analysis for motion control.
Wilhelms received a BA in zoology from the
University of Wisconsin, Madison, an MA in
biology from Stanford University, and an MS and
a PhD in computer science from the University of
California, Berkeley. She is a member of IEEE and ACM.

"

The author can be contacted at the University of California,
Santa Cruz, Computer & Information Sciences Board, Santa Cruz,
California 95064.

IEEE CG&A

-l‘o-



Using Dynamic Analysis for Realistic Animation of Articulated Bodies

Jane Wilhelms
Computer Graphics and Imaging Laboratory
Computer and Information Sciences
University of California, Santa Cruz, CA 95018

ABSTRACT

A major problem in computer animation is creating motion that
appears natural and realistic, particularly in the case of complex articu-
lated bodies such as humans and other animals. At present, truly lifelike
motion is produced mainly by copying recorded images, a tedious and
lengthy process requiring considerable external equipment. An altemnative
that is explored here is the use of dynamic analysis to predict realistic
motion. Using dynamic motion control, bodies are treated as masses act-
ing under the influence of external and internal forces and torques.
Dynamic control is advantageous because motion is more naturally res-
tricted to physically-realizable patterns, and many types of motion can be
automatically predicted. Use of dynamics suffers from problems of com-
putational cost and the difficulty of specifying controlling forces and
torques. However, evidence has accumulated that dynamics does offer
hope for more realistic, natural, and automatic motion control. Because
such motion simulates real world conditions, an animation system using
dynamic analysis is also a useful tool in such related fields as robotics and
biomechanics.

1. Introduction

The major problem facing computer animation is the creation of motion that
appears natural and realistic, particularly when the objects in motion are complex articu-
lated bodies such as animals or when multiple objects interact. The problem involves a
number of interesting aspects: e.g., what kind of user-interface allows motion
specification with the least effort, how can the animation system incorporate the intelli-
gence to interpret general motion descriptions and translate them into specific motion
instructions, how can motion be restricted to desirable patterns, and how can motion be
best described at the lowest level of positions taken over time?

This work was supported at the University of California, Santa Cruz, by National Science Foundation grant sumber CCR-
8606519 and UCSC fellowship 660177-19900. The work was supported at the University of California, Berkeley, by Na-
tional Science Foundation grant numbers ECS-8204381 and DCI-8451997 and the Defense Advanced Research Projects
Agency contract numbers N00039-82-C-0235 and N0D039-84-C-0089.

ol (A B



i

Most animation systems are kinematically-based, in the sense that the motion
description, from user-input through actual frame rendering, consists of positions
specified over time.!'%3:45 On the other hand, motion in the real world is dynamically-
based, determined by a complex interplay of forces and torques acting on masses. This
paper explores the use of dynamic analysis to generate animation of articulated bodies.
Dynamic analysis involves setting up and solving the dynamics equations of motion
relating the forces and torques acting on masses to their acceleration.® Given forces and
torques acting on a body, dynamic analysis provides the accelerations that the parts of the
body will undergo. Using integration, these accelerations can be used to find new posi-
tions, thus generating motion.

Section 2 compares kinematic and dynamic animation systems. Section 3 provides
some background in dynamic analysis. Section 4 discuss controlling motion using
dynamics. Section 5 discusses a graphical editor for specifying motion when using
dynamics and walks the reader through a sample session of generating a dynamic anima-
tion. Section 6 discusses problems with using dynamic motion control and possible solu-
tions. Throughout the paper, a dynamically-based animation system, Deva, is used to
illustrate the method.

2. Kinematics Versus Dynamics for Animation

Kinematic systems force the user to choose the desired motion from a tremendous
variety of possible motions. The most successful animations of living creatures, in terms
of the reality of output, rely on copying motion from recorded images, either by rotos-
coping (actually tracing the image) or measuring the positions taken in each recorded
frame and using them to drive the objects being animated. This approach has a number of
difficulties: the need for external recording and tracing equipment, the fact that motion is
highly specific and cannot be altered with impunity, the time it takes to measure the
recorded frames, and the impossibility of finding motion descriptions for imaginary
animals or conditions where recordings aren’t available.

A simpler, though generally less successful kinematic approach is reliance on user
input facilitated by an interactive system. Often this method uses 3-D keyframing where
the user positions the body as desired at specified times, and motion is interpolated
between these positions for animation.”»8 While 3-D keyframing is more successful than
2-D keyframing (not suffering from the inherent information loss), it still relies upon the
user’s ability to designate the appropriate path and rate of motion. Constraint-based sys-
tems aid in limiting the range and type of motion, but do not provide a complete solution
to the problem of making motion appear realistic.?

An alternative is to give the world being animated greater physical reality, including
descriptions of masses and active forces and torques, and use dynamic analysis to predict
motion. Use of dynamics in animating articulated bodies for computer graphics had
largely been limited to crash studies,!? though recently work has begun to appear utiliz-
ing dynamics for bodies under internal control.1:1%13,14 Dynamics is also used in
CAD/CAM and robotic lications, such as simulating and controlling vehicles or
mechanical manipulators!®16:17.18 and software packages capable of doing dynamic
analysis such as DRAM are available.
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Dynamically-predicted motion is advantageous because motion can be naturally res-
tricted to realizable patterns and many types of motion, such as falling or reacting to col-
lisions, can be found automatically. It is possible for the user to specify motion at a lim-
ited subset of body joints and have the dynamics calculate appropriate motion at the rest.
The problems of inverse kinematics (finding local joint positions that place the body in
the desired world space configuration) can be dealt with by pushing and pulling with
external forces. Positional constraints can be simulated using appropriate forces holding
the body in position. 12

Dynamic analysis suffers from three main problems: first, the cost of the analysis;
second, numerical instability when the bodies are complex; and third, controlling the
motion. The control problems are somewhat similar to the motion specification problem
found in strictly kinematic systems, but even more related to control problems in robot-
ics.16:20,18 gimulating articulated body motion with dynamics is a difficult problem
because of the many degrees of freedom, the complex coordinated motion possible, and
our unwillingness to accept mildly unrealistic motion for bodies are familiar as humans
and animals. Much of what is discussed here is equally relevant to the problem of .
dynamically-animating simpler bodies.

The ability to realistically simulate worlds using computer animation is also impor-
tant in other fields. Many issues in motion control for computer graphics have parallels in
robotics, 1620 and simulation systems are important in developing tools for designing and
testing robots and other manipulators. In biomechanics and medicine, graphical simula-
tions provide a means of analyzing motion and testing mathematical models of animal
motion.21»2%23 sports, simulations can aid in developing more efficient and safe ways
of moving. %

3. Background in Dynamics

Dynamic analysis refers to the study of the relationship between forces (for transla-
tional motion) and torques (for revolute motion) and the motion of masses, a relation
which is expressed by the dynamics equations of motion.6 While a number of different
dynamics formulations are available, they can all be seen as variations on the simplest,
most familiar form known as Newzon’s Second Law,?

F =ma

or, the force F acting on a particle is equal to its mass m times its acceleration a. The
dynamics equations increase in complexity when the masses involved are extended
bodies not points and when multiple masses interact, but the fundamental concept of
relating forces and torques to accelerations remains.

The number of dynamics equations necessary to specify a system depends on the
number of degrees of freedom of the system. A point mass has three translational degrees
of freedom in space. An extended rigid body free to move in space has 6 degrees of free-
dom, three translational and three revolute. In the case of articulated bodies, those in
which masses are connected by joints, the number of degrees of freedom is the sum of
the degrees of freedom at each joint plus the number of degrees of freedom connecting
the body to the world. Thus, a human body simplified to 18 internal degrees of freedom
and free to move in the world would be described by 24 dynamics equations. Because of
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the interaction taking place between masses in an articulated body, the equations are
complex and coupled.!® This means that the intuitive idea that one can control the body
dynamically by merely considering the torques acting between neighboring segments
independently is incorrect. A torque acting on the shoulder will affect to varying extents
the elbow, wrist, trunk, and the rest of the body.

Though all dynamics formulations express the behavior of the world being modeled
and give the same result, their appropriateness depends upon the problem being analyzed.
The Newtonian formulation is common, but other formulations such as the Lagrangian,
the Gibbs-Appell, 26 and some recursive methods?7» 1517 are sometimes more appropriate
for describing articulated bodies.

Although this paper describes a system, Deva, which uses the Gibbs-Appell formu-
lation, the author has become convinced of its inferiority compared to the much faster
recursive methods such as that of Armstrong.2’ The Gibbs-Appell formulation has a cost
of O (n?) for n degrees of freedom, while the Armstrong method is linear in n (O (n)).
At present work is proceeding on the interactive system, Manikin, 1° which uses the
Armstrong formulation to explore use of dynamics for positioning and manipulating arti- -
culated bodies. The Gibbs-Appell-based system Deva is described in this paper because
the control and environmental simulation it uses are more sophisticated than those avail-
able in Manikin and because the Gibbs-Appell formulation neatly and elegantly partitions
the complex force, torque, mass, configuration, and velocity information needed to do
dynamics in a way somewhat more clear than the recursive method. It is hoped that
readers can map the control methods described here onto faster dynamics formulations
without great trouble. The possibility also exists that a recursive Gibbs-Appell formula-
tion can be developed, as it has been shown?® that it is possible to find recursive versions
of non-recursive formulations.

Another difference between the formulations is that the Armstrong method assumes
that all joints have three revolute degrees of freedom and that the body is connected to
the world by six degrees of freedom, thus, non-spherical joints must be otherwise con-
strained and sliding joints cannot be modeled. The Gibbs-Appell formulation allows for
more general joints. Featherstone!’ has also described a recursive linear dynamics for-
mulation without this restriction on the type of joints.

3.1. The Gibbs-Appell Dynamics Formulation

This section provides an overview of the Gibbs-Appell formulation. Its derivation
and details of its use are given in Appendix I and elsewhereZ® 13, 14 '

For simplicity, a body is represented by segments consisting of rigid extended
masses connected by joints of from one to six degrees of freedom. The body segments
are described as a tree structure branching from the fixed, massless world segment. The
initial joint connects the body to the world. For a body free to move in space, this initial
joint has six degrees of freedom. For purposes of dynamics, multiple-degree-of-freedom
joints, such as the shoulder, are treated as a sequence of one-degree-of-freedom joints
joined by massless, dimensionless segments. 30

Modeling such joints as a sequence means that rotations are ewler. Taking as an
example the spherical shoulder joint with three rotary degrees of freedom and assuming
the sequence is an x-rotation followed by a y -rotation followed by a z-rotation, the y-
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rotation is not about the fixed-joint-coordinate-frame y -axis, but around a new y -axis
created by rotating that frame about the x -axis. The negative consequence of this is that
the meaning of the y-rotation is not intuitively obvious; the positive consequence is that
if the initial z-axis is along the longitudinal segment axis, it remains so. The alternative
model of the spherical joint, in which all three rotations are about the fixed joint coordi-
nate frame, requires that longitudinal rotations be mapped to rotation about an arbitrary
axis. In terms of user convenience, it is perhaps best to allow the user to specify the three
rotations as an x- and y-rotation relative to the fixed joint frame and a final rotation
about the longitudinal segment axis. It is not difficult to map this to either the Euler or
the fixed coordinate model.3!

The dynamics equations express the generalized force at each degree of freedom as
a function of the mass distribution, acceleration, and velocity of all segments distal to
this degree of freedom. The generalized force can be thought of as the net force or
torque (depending on whether the degree of freedom is sliding or revolute) active at this
degree of freedom and is the result of a combination of gravitational, frictional, con-
straint, controlling, and applied forces and torques active within the system.

For a sliding joint r, the generalized force is
oa k

0. = & malhy

For a revolute joint r, the generalized force is
di oa d d
0 =8 ma ICEh) + oL CEh) + (G @od o)

where, for segment k,
qx = generalized force
my = segment mass
a; = worldspace acceleration vector of the center of mass
a [ = transpose of acceleration vector of the center of mass
oy = worldspace angular acceleration vector
w; = worldspace angular velocity vector
I, =inertial tensor describing mass distribution

0 = local angular acceleration

§ =local acceleration
Because each segment’s worldspace acceleration (and, similarly, angular accelera-
tion, velocity, and configuration) is just a function of its local acceleration relative to its
parent segment and the worldspace acceleration of the parent relative to the world, these
equations can be expressed in terms of purely local motion and configuration. Rear-
ranged into a matrix formulation, they can be simply stated as

Mc+V=q or M-i(q -V)=¢
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For a body with n degrees of freedom, ¢ is an n-length vector of the local angular or
linear acceleration at each degree of freedom (local referring to motion of the segment
distal to this degree of freedom relative to the proximal segment) and q is an n-length
vector specifying the generalized force active at each degree of freedom. Mis ann X n
inertial matrix describing the configuration of the system masses. V is an n-length vector
dependent upon the configuration of the masses and their velocity relative to each other.
Thus, if the generalized force vector q is known, the equations can be solved for
accelerations ¢. This is known as indirect dynamics and is the direction used to find
motion for animation. Alternatively, if the accelerations ¢ are known, the equations can
be solved for the generalized forces q. This is known as direct dynamics and is the direc-
tion commonly used-in robotics.!6 The equations used to find these vectors and the
matrix are found in Appendix L

In solving the equations for accelerations, the mass is known and assumed to be
unchanging for a given body, the mass distribution is automatically calculated based
upon present configuration, and the present known velocities are used. Given general-
ized forces, this leaves a set of linear equations which can be solved using Gaussian elim-
ination for local accelerations. Numerical integration techniques, such as the Runge-
Kutte,32 can then be used to find new velocities and positions.

4. Causes and Control of Motion Using Dynamics
The forces and torques responsible for motion come from a variety of external and
internal sources (see Figure 1):
(1) Some forces and torques can be accurately and automatically calculated, such as
those due to gravity or to known external applied pushes or pulls. Realistic anima-
tion of this type of motion can be generated with minimal user input.
(2) Some forces and torques can be simulated within the system, 33 such as those
due to joint limits, the ground and collisions with other objects. Springs and
dampers can be used to model these restrictions, but finding appropriate springs and
dampers to simulate the motion of segments with widely varying masses and motion
is not simple and they tend to create numerical instability in the dynamics equa-
tions. However, acceptable methods have been developed to model these restric-
tions with little user input.
(3) The crux of the dynamic control problem lies in finding the non-automatic
forces and torques. These include those controlling forces and torques which simu-
late muscles in animals or motors in robots. Deva’s ability to generate arbitrary
controlled motion using dynamics is still low-level and primitive.

4.1. Automatically Calculated Forces and Torques

Automatic forces and torques presently implemented in Deva include those due to
gravity, joint limits, and the ground. Detailed descriptions of how these are calculated
can be found in Appendix II and elsewhere.34 14

Gravity is calculated using the known mass distribution of body segments. For each
translational degree of freedom, the effect of gravity is found by summing the gravita-
tional forces acting through the centers of mass of all segments distal to this degree of
freedom and finding the component of this summed force acting along the axis of sliding
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of this degree of freedom. For revolute joints, gravitational torque must be considered,
torque being the product of a force times the perpendicular distance between the point of
application of the force and the axis of rotation. The gravitational torque at a revolute
degree of freedom is found by summing the torque due to gravity at each distal segment
and finding the component of this torque acting along the axis of rotation. By altering
the gravitational acceleration, motion on other planets or in space can be easily simu-
lated. Figure 2 shows a body falling freely through space under the influence of gravity.

Joint Limits. While constraints included in the dynamics equations automatically
restrict motion to the allowed degrees of freedom (e.g., if the knee is described as a one
degree-of-freedom hinge joint it cannot rotate sideways or longitudinally), dynamics
does not automatically restrict motion within a particular degree of freedom. Thus, if an
arm is dropped the elbow can bend backwards unnaturally or the lower arm may fall
through the upper (see Figure 3). Kinematically this problem is solved by using joint
limits beyond which motion cannot occur. Dynamically, a rigid limit is undesirable
because it does not mimic the natural springy motion that sometimes occurs when such
positions are reached.

For Deva, joint limits are simulated using a combination of a spring and damper at
each degree of freedom. A spring supplies a counteracting force or torque proportional to
the amount past the specified limit the joint has deformed. The damper supplies a coun-
teracting force or torque proportional to the velocity at this degree of freedom. The
strength of a spring and damper could be proportioned simply by using a spring and
damper constant which takes into account particular conditions at the joint. To avoid
having to determine appropriate constants for each degree of freedom, these constants are
replaced in Deva with a variable dependent upon the mass distribution and/or velocity of
segments distal to the degree of freedom. While this value normally restricts motion
appropriately, it can also be controlled by a proportionality factor input by the user. Fig-
ure 4 shows an arm lifted by a torque at the shoulder and elbow and dropped. Note that
as it falls the elbow reaches an angle of 180 degrees relative to the upper arm and is res-
tricted there by the joint limit.

Ground Reaction Forces. Dynamics does not automatically take into account exter-
nal environmental constraints such as remaining on or above the ground (see Figure 1).
This problem is treated in Deva by modeling the ground reaction forces as external
applied forces due to springs and dampers. To detect collisions with the ground, the
locations of the vertices of a max-min box surrounding each segment are compared to a
horizontal flat ground plane (a more complex ground would be possible with more
sophisticated collision detection). Since dynamics is a numerical process, it is possible
for these vertices to have descended below the ground during the previous time sample.
Normally this is not a noticeable problem; when it is, supersampling can minimize it.

The ground reaction force actually has three perpendicular components: a vertical
reaction force counteracting motion into the ground, and two horizontal reaction forces
mimicking friction along the ground. The vertical component consists of a reaction
spring that is a function of the amount below the floor each point is descended and a
reaction damper which is a function of the velocity during penetration. These tiny
springs and dampers are applied to oppose each vertex that has penetrated the ground.
Though the reaction force is automatically calculated, it can again be scaled by user input
to simulate a ground which is hard or soft, rigid or elastic. A weak spring can also
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simulate the buoyancy of water. The horizontal reaction force due to friction is taken to
be a fraction of the vertical reaction force if there is horizontal motion. Otherwise there
is no horizontal force. By varying the frictional force, a ground that is slippery like ice or
rough and sticky can be simulated. (See Figures 5 and 6.)

Other Automatic Forces and Torques. While not implemented in Deva, other forces
and torques can be simulated by techniques similar to those described above. At present,
no internal collision detection is done, so that the body can move through itself (e.g., if
the body is falling forward, the arms could swing through the legs). This could be han-
dled by collision detection and simulated with springs and dampers in the same manner
as floors. A combination of collision detection and applied springs and dampers can also
simulate environmental collisions with walls, tables, etc. This is with the caveat that
while the collision may be realistic for the model, it would not take into account such
things as reflex reactions to collisions on the part of the animal, stiffening of muscles, etc.
While theoretically this could be included in the model, the control problems would be
considerable. An external applied force, such as being pulled by a rope, can be modeled
similar to the gravitational force, except that its point of application, magnitude, and
direction are under user control.

The forces and torques described above allow the automatic prediction of object
behavior excluding internal muscular or motor control. Thus, the complex motions of
falling, colliding with the ground, etc. can easily be simulated using dynamic analysis.

4.2. Controlling Forces and Torques

Given that many environmental influences are automatically taken into account
using dynamic motion control, the difficulty then becomes finding and coordinating the
internal forces or torques (simulating muscles in animals or motors in machines) to cause
a specific desired motion. The controlling force (for translational degrees of freedom) or
torque (for revolute degrees of freedom) is treated in Deva as an ideal actuator acting
only on one particular degree of freedom. This avoids the problem of dealing with actual
muscles whose torques vary with angle of rotation, and which can affect more than one
degree of freedom and even cross more than one body segment. For biomechanical stu-
dies, it would be possible to add a preprocessor that takes muscular forces and torques
and converts them to this simple actuator form.

The determination of controlling forces and torques in Deva is still low-level, in that
while the user has a fair amount of control over the state of individual degrees of free-
dom, he or she has little ability to specify coordination between joints. At present, each
degree of freedom can exist in one of five different states: 1. direct dynamic control: a
specific controlling force or torque is designated; 2. relaxation: no controlling force or
torque is applied; 3. frozen: local position is maintained; 4. oriented: world-space orienta-
tion is maintained; or 5. hybrid K-D control: desired positions over time are specified by
the user and the system attempts to find forces and torques to achieve these positions. A
degree of freedom can only be in one of these states at a time, but can alternate between
states during the animation.

1. Direct dynamic control: Controlling forces and torques can be provided by the
user (using the graphical editor Virya described below) as functions of force or torque
versus time for each degree of freedom. These functions are modeled as cubic interpola-
tory splines to ensure second derivative continuity and sampled to find the contribution
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of controlling forces and torques for each degree of freedom.35 36 The arm shown in Fig-
ure 4 is lifted using this method by applying a torque at the shoulder. While dynamically
acceptable, this method involves (and even accentuates) the problems found in kinematic
motion control; i.e., the user must specify a force or torque for each degree of freedom
being internally controlled, as well as predict what force or torque will provide the
desired motion. This latter problem is even more difficult and unnatural than specifying
motion kinematically, though it is lessened by the fact that the user need only specify a
controlling force or torque for those joints under internal control. robotics.

Direct dynamic control can be useful in modeling world-space interactions, such as
pulling the body toward a goal or pushing on it with an external force.

2. Relaxation: Relaxation is a default state in which the degree of freedom hangs
loose and reacts to external conditions, joint limits, and the motion of the rest of the
body. The arm in Figure 4 falls after being lifted because the joints are reset to the
relaxed state.

3. Freezing: In many controlled motions, some joints are held locally fixed; e.g., in
Figure 4 the elbow is frozen while the shoulder is raised. Because of the dynamic
interaction between body segments, controlling forces and torques must be applied to
provide this local stability. Normally, the animal body uses feedback to accomplish this,
altering forces and torques as necessary to maintain position. The freeze function in
Deva uses the simple method of clamping the joint end limits around the present posi-
tion, so that a spring and damper are applied when the joint moves from its present posi-
tion. This method has the advantage over rigidly holding the joint in position that it does
not interfere with the overall dynamic interaction and some small amount of natural
motion is still possible about the frozen joint. (Freezing could also be done using hybrid
control and specifying a static position.)

4. World-Space Orientation: A related feature is the orienting function. While freez-
ing stabilizes a segment locally at its proximal joint, orientation stabilizes a segment in a
designated world space orientation. This is a first attempt at dealing with the problems of
balance. Orientation is provided by the user in the form of an orientation vector and the
amount of allowed play about this vector. When the orientation of the segment exceeds
this amount of play, an external applied torque is applied to the segment in an attempt to
right it. In Figure 7, the little man does not fall forward because the trunk is in the
oriented state. At present, the strength of the orienting force is rather crudely determined
by using a linear spring, so that while righting does occur it is likely to overshoot the
mark and wobble or take too long. However, this may, with tuning, be useful in helping
to stabilize the body during walking and standing. A extension of this technique to world
space positions could allow the simulation of a body fixed about a point, such as hanging
from a bar.

5. Hybrid K-D Control: Finally, while orienting and freezing simplify control, they
do not directly address the problem of finding the controlling forces and torques for a
specific motion. Because kinematic descriptions are far more convenient for the user, it
is best to use positional motion specifications for those degrees of freedom under internal
control and have the system determine the forces and torques necessary to achieve these
positions. The use of positional instructions also provides a convenient interface to
higher-level control routines whose output is likely to be in kinematic terms. This is
related to the control problem in robotics, where the desired motion is known but the

- 169~



=1

forces and torques must be found, 1620, 17

At present, Deva converts positional motion descriptions to forces and torques by
calculating the velocity necessary to achieve the desired position in the upcoming time
period, considering the mass of distal segments, and making an intelligent guess at the
appropriate force or torque (see Appendix II). Because dynamics is done on a finer grain
than the displayed animation, this simple method without feedback has proved accept-
able. More sophisticated methods may be needed as more complex controlled motion is
explored. Positional control is far more convenient than strictly dynamic control and
generally gives equally realistic motion. Section 5 describes a sample animation session
using hybrid control.

S. Virya: A Graphical Editor for Motion Control

To ease the problem of specifying control information for multiple-degree-of-
freedom bodies, a graphical editor Virya has been implemented. Virya has two main
functions. First, it allows the user to design and store controlling functions for each
degree of freedom of the body. These functions may represent forces or torques over time
when the degree of freedom is controlled directly by controlling forces and torques, or
they may represent positions over time when the degree of freedom is controlled by posi-
tion suggestions. Second, Virya allows the user to indicate the state of each degree of
freedom over time, choices being those explained above (direct dynamic control, relaxed,
frozen, oriented, or positional control). These functions are sampled each time dynamic
analysis is done and used to determine the contribution of controlling forces and torques
at each degree of freedom.

Virya operates on an Evans and Sutherland PS340 graphics system using a tablet
and puck. Figure 8 shows the Virya screen. The lower half of the screen consists of a
window describing the control function for each degree of freedom, as well as the name
and type (x,y,z rotation or x,y,z translation) of the degree of freedom. The upper right
quadrant shows the menu choices for interacting with Virya. The upper left quadrant is
an expanded window to create and modify control functions, which are designed by
designating defining points that specify a cubic interpolatory spline curve. Points can
easily be added, moved, or deleted using the tablet. The control information can be stored
in ASCII files.

Virya can also be used to specify and drive strictly kinematic animation. In this
case, each control function represents only positions over time and animation is achieved
by directly sampling the functions without recourse to dynamic analysis. Deva provides
a 3-D keyframing facility where the user can specify a series of positions and associate a
time with each. These position/time pairs for each degree of freedom become the
defining points for the control function. Finally, because the output of the dynamic
analysis routines is kinematic (consisting of a set of positions over time), it can be stored
as kinematic control functions. This provides a succinct way to store the results of
dynamic analysis and also allows kinematic tweaking of dynamically-predicted motion.

6. Sample Session

To illustrate the method, a brief session explaining how the animator can go from a
keyframe file to a dynamically-predicted motion on the screen. A 24 degree-of-freedom
body ("joe") will be used to create the motion of sitting up from a lying position on the
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floor.

1. Keyframing Approximate Motion: First, the user interactively positions the body
in a selection of the positions to be interpolated and stores the time and position at each
degree of freedom for each configuration. The keyframe positions are relevant for con-
trolling the position of joints that are frozen in their local position or under hybrid K-D
control. Joints that are relaxed will move freely from their initial positions due to the
environment. Oriented degrees of freedom will attempt to maintain their world space
configuration. Dynamically-controlled joints would act according to user-specified forces
and torques. Oriented and dynamically-controlled joints are not present in this example.
Figure 9 shows the initial keyframe file for this motion. Figure 10 shows the body as
defined by this file. Note that the positions of some body parts (such as the arms) are
unnatural. These joints will be relaxed in the actual motion and dynamic analysis will
ensure they appear in a natural position.

2. Keyframe to Virya File Conversion: Next, the user asks Deva to convert the key-
frame file to a Virya input file. In this process, data is rearranged so that positions are
associated with their degree of freedom rather than the time when they occur. Using key-
framing, all degrees of freedom are by default assumed to be in hybrid K-D mode. If run,
the system would attempt to achieve the specified position for each degree of freedom.
This, however, would likely be counterproductive, since dynamics is unlikely to
influence the motion in any considerable way (besides possibly indicating that the desired
positions are unreachable).

3. Modification of the Virya Input File: To take advantage of the dynamics, the user
can then use Virya to modify the input file into a form where various degrees of freedom
are under different modes of control. In the case of sitting up, the hybrid mode is neces-
sary only at the waist and neck. The hips are frozen so that the body lifts its trunk not its
legs when a torque is applied at the waist. The rest of the joints are in relaxed mode and
lie naturally in reference to the floor. Figure 11 shows the Virya input file after
modification.

4. Dynamic Analysis: The Virya input file is now sent to Deva and dynamic analysis
is used to predict motion. Analysis is done 300 times per second. The user can specify
that some or all of these configurations are sent to the display routines or can save the
output positions in a kind of output keyframe file indicating the times and positions
predicted for dynamic analysis.

5. Output Keyframe File to Virya Output File The user asks Deva to convert the out-
put keyframe file to a Virya file (again arranging positions by degree of freedom not
time). This file now can be used to generate a cubic spline curve describing smooth
motion at each degree of freedom. Using Deva in its strictly kinematic mode, the file is
sampled to produce output at any desired sample rate. Figure 12 shows a sequence of
positions generated from the output Virya file.

7. Problems with Dynamic Motion Control and Possible Solutions

The three problems that most hamper dynamic motion control are computational
complexity, numerical instability, and motion control.
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7.1. Computational Cost

Using the slow Gibbs-Appell dynamics, only a few seconds of animation are calcu-
lated per hour (on a VAX-750); however, the Armstrong formulation is close enough to
realtime to be interactive for a patient user (on a 68020-based workstation).1%1?
Armstrong, Green, and Lake have suggested used parallel processing for even great
speed.12 Speed is affected not only by the basic dynamics, but by the amount of control
required, particularly in the case of collision detection and response.

Speed could also be increased by using dynamic analysis on a subset of the body
segments. (The motion of light body segments such as the hands contribute minimally to
the total dynamic interactions of the whole body.) The motion suggested by the dynam-
ics routines could then be used to partially control the motion of a much more compli-
cated body, leaving the user to determine kinematically the motion at additional degrees
of freedom. Alternatively, the use of dynamics can be severely simplified to the minimal
analysis needed to give some feeling of "mass" to the motion. Girard and Maciejewski>’
have used a simple version of dynamic analysis that is applied only to the trunk segment
of their articulated bodies.

7.2. Numerical Instability

The second problem is numerical instability. In the present dynamics formulation,
considerable oversampling must done to ensure solution of the equations; i.e., the
dynamics equations are formulated and solved from 50 to 300 times per second, while
video recording occurs 30 times per second. The problem is most serious when the body
has many degrees of freedom and the motion is very controlled. If sampling is
insufficiently frequent, a solution cannot be found for the dynamics equations and the
program dies. Adaptive sampling and the ability to automatically restart the program
when this occurs would be helpful. Armstrong artificially increases the moments of iner-
tia around longitudinal axes to minimize the problem,!! but this can interfere with the
realism of the movement.

7.3. Motion Control

The third and most serious problem is motion control. While motion dominated by
effects from the external environment such as gravity is automatically calculated, some
reliable, convenient, and kinematically-based method must be found to allow the user to
specify motion under internal "pseudo-muscular” control. There are two problems: first,
on a low-level, how to achieve the desired positions at controlled joints; and, second, on
a higher-level, how to coordinate complex motion.”

To consider the low-level problem, assume the desired local joint positions for part
of the body are known (how is another issue, whether from user interaction or inverse
kinematics3% 19 ), and the torques (assuming revolute joints) must be specified. Using
robotic control methods, direct dynamics could be applied to this subset of the body to
find controlling torques, which can be used with indirect dynamics on the entire body to
find total body motion.!® This may not work: e.g., consider a person turning quickly in
response to a sudden sound. The user knows the motion of the trunk and neck, but would
like a realistic relaxed motion of the arms. If the torques for the trunk rotation are calcu-
lated without considering the arms, they will not produce the expected motion when used
in indirect dynamics, because the motion of the arms will also affect the trunk and neck.
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If the arm positions were already known, there would be no point in dynamics. Recursive
dynamics formulations assume one is solving either for forces and torques or accelera-
tions.2% 17 It might be possible to reformulate the equations in such a way that these can
be combined; this should be explored.

An alternative is to calculate desired torques on the fly during the dynamics, as is
done in hybrid control here. In the example, a waist torque could be estimated given the
body mass and desired motion, and altered appropriately over time depending on whether
the calculated motion is faster or slower than that needed. Various feedback schemes are
possible and should be tested for accuracy versus speed in this application.38

The second issue is higher-level control for coordinated motion. A simple example
might illustrate the problem. Consider modeling a horse rearing on its hind legs and then
landing on all fours. When on two legs, the hindquarters must apply sufficient torques to
support the upper body, and alter these torques to compensate for the pawing motion of
the front legs. When the front legs fall, due to relaxation of the back leg torques, their
joints will be fairly relaxed. But as soon as the front legs strike the ground, their joints
must stiffen to accept the body weight; otherwise, they will splay out and the horse will
fall on its face. The user would not know at exactly what time the legs must tense, so
control must be specified in terms of "when this event occurs do this".>

Considerable work has been done in robotics and control theory dealing with these
issues, and this literature should be exploited in future work. However, though related,
the problems involved are not identical. In one sense, the animation problem is more
difficult, as most robots are far simpler than the articulated bodies shown in computer
graphics. Although some excellent progress has been made in creating bipedal robots,3?
two-legged walking robots capable of the complex fluid movement we associate with
normal human motion have yet to be built. But in another, the animation problem is
simpler, because only the appearance of realism is needed, not actual physical reality.

8. Conclusions

Dynamically-controlled animation offers the possibility of adding a new level of
realism to worlds created by computer animation. Use of dynamics naturally restricts
motion to realizable patterns and automatically calculates the effects of many environ-
mental interactions which are very difficult to deal with kinematically. Though a number
of difficult problems exist, preliminary results suggest the method has great potential.
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Appendix I: Details of the Gibbs-Appell Dynamics Formulation

L1. Derivation of the Gibbs-Appell Formulation

The Gibbs-Appell dynamics formulation is based on the Gibbs Formula, which
describes the energy of acceleration.® For rigid bodies consisting of n segments, this

formula is

G =‘g‘l(—é- mgafak +-}a{ltag o+
o (@ Xl g ) + f (@)

where, for segment k,
my = mass
a; = acceleration vector of center of mass
o = angular acceleration vector
w = angular velocity vector
f (0 )= scalar disappears with differentiation

/- )
I, = 21| = inertial tensor

xy'yy
i
Ix = |(y% + z2)dm; etc., moments of inertia

Iy = Py dm; etc., products of inertia

The dynamics equations given in Section 2.1 are found by partially differentiating
the Gibbs formula with respect to the local acceleration relative to each degree of free-

dom.

L.2. Calculating the Terms of the Dynamics Equations

Explanation of Terms: The partial differentiation of the Gibbs formula leaves motion
described in inertial world space terms; however, these equations can be restated in terms
of local joint configuration because of the known relation between local and world
frames. Together with the terms described in Section 2.1, the following kinematic
configuration information is necessary (k =1, ...,n for n degrees of freedom).
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r = 3-D position vector of joint connecting segments k-1 and k

g = 3-D position vector of center of mass of segment k

u ;. =3-D unit vector of rotation or sliding axis of joint k

Sk,Sk,Sk = sliding along axis u, its velocity, and acceleration

Ok ,ék ,ét = rotation angle about axis uy, its angular velocity, and acceleration

R ¢ =3x3 matrix describing rotation about axis u ;

Finding the Inertial Matrix (M-Matrix): M is an nxn matrix which takes into account
the present distribution of body mass. M consists of four submatrices.

Mé M6
M=[[Mo.s]‘r M’]

The upper left submatrix M @ is an r xr matrix describing the relation between revo-
lute degrees of freedom. Its elements are defined by the following equation

md=m = 5
k=distal G j
[ujx(gr—r;j)Hull;u;)

)(f?!k [uix(ge—r )"

(fori=1,...,randj=1,...,r).
(Note that distal (i ,j ) refers to whichever of i or j lies further from the initial world seg-

ment, and if i and j lie on separate branches the calculation does not take place. Todi-
stal refers to the furthest segments continuing out this branch.)

The upper right submatrix M ® (whose transpose is the lower left submatrix) is an
rxt matrix describing the relation between revolute and sliding degrees of freedom. Its
elements are

Togistal
m;Ps= 2; - mgu Jux(g g ;)]
k= @i.J)

(fori =1,.randj =1,.,2).

The lower right submatrix M# is a #xs matrix describing the relation between sliding
degrees of freedom. Its elements are

Todi
s - Ty .
m=mj = . EEJ)mtu, u;
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(fori=1,...,randj=1,...,1).

Velocity-Dependent V-Vector: The V-vector takes into account such velocity-dependent
contributions as the Coriolis and centrifugal forces. The V -vector contains two sub-
vectors: Vg is an r-length vector representing revolute degrees of freedom, and V is a

t-length vector representing sliding degrees of freedom.

Vai Vi1

Vv
oo i) vl
6r st

The elements of the Vg vector for revolute degrees of freedom (Vg fork =1,...,r )
are found using the following equation.

. a2 . .| N& N& .o
Vor=(81,- 0, 5150 (Ngr 0 | Birnr 11T

where the components of the N g matrix are found by

nbfi=nkf} =;=d::-a (&.;)(mr [ e (g 1= )17 [u; x(u jx(g =T ;)]

ﬂ[[-%—rrace(I;)u;xuj-i—ujxlgu,-])

where trace (I; )= I“1+1322+[;33
(fori=1,...,randj=1,...,r)

and 5
dj T
) my[ueX(g—r )] [u;xu ]
I=distal (k,j)
n@: for i proximal to j
0 for i distal to j

(fori=1,...,randj=1,...,¢2)

The elements of V; vector for sliding degrees of freedom (Vg for k =1,...,7 ) are
found using the following equation.

.. | N oNg[ ..
Vg=[91,..,9,,sl,..,s,] [NHT 0 [91,..,9,,.5'1,..,.5',]1'
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where the components of the N ; matrix are found by
KO—p kO 2"’ WO | T T ——
Ry =Nsi i *) pu L x( ix(81 ;))]

(fori =1,...,randj=i,...,r)

and

f‘gl mufluixuj] : )
e _ | 1=distal (k.j) i proximal to j
Psiy =10 i distal to j

(fori=1,...,randj=1,...,t)
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Appendix II: Calculation of the Forces and Torques Contributing to Motion

IL1. Gravitational Forces and Torques

The gravitational component of each generalized force can be determined simply by
considering the effect of the mass of distal segments at a particular degree of freedom. In
the case of each revolute degree of freedom, this involves finding the torque around its
axis of rotation, which depends upon the gravitational force acting on each distal segment
and the perpendicular distance of the point of force’s application from the axis of rota-
tion. The equation for torque due to gravity at degree of freedom k is

Tok =“gcdgmizw[ukx(gi —rg)l

where zg = (0,0,1) is a vertical direction vector, g. = 9.81 m/sec? is the acceleration due
to gravity (on the earth’s surface), and the other terms are as explained previously.

In the case of each sliding degree of freedom, the gravitational component (fg) contri-
buting to the generalized force there is dependent upon the component of the gravita-
tional force acting on each distal segment that lies along the axis of sliding; that is,

.
fok =8¢ ﬁl’"izauk
P

IL2. External Applied Forces

Where the magnitude and direction of an external applied force (such as a pull from
a rope or a shove) is known, the contribution of this force to the generalized force at each
degree of freedom can be calculated using a method very similar to that used for gravity.
Assume that a force represented by vector F , is applied to segment a at a location desig-
nated by the world-space vector a. Each revolute degree of freedom i which lies proxi-
mal to segment a feels the effect of this applied force as the torque Ty, ; defined by the
equation N

Tapp i = Falu;x(a -r;)]

Each sliding degree of freedom j which lies proximal to segment a feels the effect of the
applied force as the force F 4, ; defined by the equation

Fap_j=Fau;

IL3. Joint Limit Forces and Torques and Damping

_ The joint limit forces (for sliding joints) or torques (for revolute joints) are each
simulated using three components. The first component counteracts other forces and
torques pushing the joint beyond its limit and is simply equal in magnitude and opposite
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in direction to all other forces (for sliding joints) or torques (for revolute joints) contri-
buting to the generalized force at that degree of freedom (such as gravity or actuator
forces). The second component is a spring whose strength is a function of the amount the
joint limit has been exceeded, the local velocity, and the mass (for sliding joints) or
moment of inertia (for revolute ones) distal to this degree of freedom. The third com-
ponent is a damper which is a function of the local velocity and the mass or moment of
inertia due to distal segments. The reasoning behind the method used to calculate these
forces and torques is rather complex and explained fully elsewhere.!® This method is
superior to a spring and damper proportional only to the amount of compression and the
velocity because it automatically adjusts for differences in mass of different segments.
Without such a consideration, individual spring and dampers constants would have to be
developed for different joints, a considerable burden to the user.

The spring force f g, ji and the damping force f 4mp j1 Opposing motion beyond the
joint limit for sliding joints are

fopr jt = ~kspr st X m_dist X vel_loc x delx

famp_ji = —kamp st X m_dist X vel_loc

where m_dist is the sum of all masses distal to this degree of freedom, vel_loc is the
local velocity at this degree of freedom, delx is the amount the joint limit has been
exceeded, kgpr 5 and kymp s are constants affecting how strongly motion is opposed (typ-

: 0 m _ 1
ically k-"P’_ﬂ = IOOOW and kdmp_ﬂ = 1.4—53-0—).

The spring torque Ty, j; and the damping torque Tam, Ji for revolute joints are cal-
culated in a similar fashion, with m_dist being the moment of inertia at this degree of
freedom due to distal masses, vel_loc being an angular velocity, delx being an angular

distance, and the constants being typically kepr 1 = 55222 and kg ;1 = 1.4-1.

A damping action is normally active throughout the range of joint motion. This
damper is calculated in the same manner as the end limit damper but is weaker (usually
60% of end damping).

IL4. Ground Reaction Forces

Simulating ground reaction forces with an approximated force plus springs and

dampers has been found a satisfactory method. Forces are applied at any of the eight
corners of a max-min box surrounding each body segment which are on or below the
level of the ground. Reaction forces consist of a normal force perpendicular to the ground
and two orthogonal tangential forces.
Calculating Normal Forces: Normal forces are calculated as a combination of an
estimated reaction force plus, possibly, a contribution from a spring and damper. The
estimated total reaction force for the whole body (taking into account its total mass and
approximated total momentum) is

frf to# = =8 Xm_tot —k_rf Xm_tot Xv_root

where g is the acceleration due to gravity, m_tot is the total body mass, v_root is the
vertical velocity of the root segment of the body (the trunk or abdomen), and k_rf is a

constant (typically .5%;‘5). This reaction force is distributed between all contact points
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depending upon the relative depth of the contact points below the floor. For example, if
the sum of the distances below the floor of all contact points were 1 centimeter, and a
particular contact point were .1 centimeter into the floor, it would receive .1/1 or 10% of
the reaction force.

If the contact point continues to descend into the floor, this estimated local force is
increased by a factor of .2 x 8z where 8z is the distance of further descent in meters.

Calculating Tangential Frictional Forces: Frictional forces act to oppose tangential
motion along the surface and are dependent upon both the normal force pressing into the
ground and the characteristics of the surfaces. To simulate frictional forces, a combina-
tion of an estimated force plus a spring and damper are again used.

The estimated tangential force for a particular contact point is merely the product of
a coefficient of friction and the normal force calculated as indicated above and applied in
a direction to oppose sliding. If the contact continues to be displaced tangentially, a
tangential spring and damper can be applied to contribute further opposition.

The reaction force is then treated as an external applied force acting on the contact
point, as described earlier in this appendix. The effect of reaction forces can be altered
by varying the constants described above to simulate more or less springiness, damping,
and friction; e.g. bodies sliding on ice or bouncing on trampolines.

ILS. Controlling Forces and Torques

At those degrees of freedom whose motion is being explicitly controlled by the user,
controlling forces and torques must be input as control functions describing the force or
torque versus time for each degree of freedom (the direct method) or describing the
desired positions over time for each degree of freedom (the indirect method). The
indirect method is more intuititive.

In the indirect method, the control function is sampled to find the desired local posi-
tion at the next time sample. A trivially simple method is used to convert this informa-
tion to a controlling force or torque.

ftiea = m_dist x(-g—;%—vef)xnl.—m?

where m_dist is the sum of the masses (sliding joints) or moments of inertia (revolute
joints) distal to this degree of freedom, & trime is the time between time samples, §_pos
is the distance between the desired next position and the present position, and vel is the
present velocity. This method is successful in the present case despite its crudeness
because dynamic analysis is typically done much more often than imaging, so actual
animated motion appears smooth.
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Figure 1. Forces and Torques Contributing to Motion
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Figure 2. Motion due w0 Gravity Withous Restraining Ground Forces
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Figure 3. Motion due to Gravity Without Joint Limits
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Figure 4. Controlled Morion of the Arm
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Figure 5. Falling onto a Slippery Ground
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Figure 6. Falling onto a Sticky Ground
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Figure 7. Balance Applied to the Torso
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Figure 8. The Virya Screen
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Figure 9. Initial Inpur Keyframe File for Sitting Up

0.000000 /* time zero */

-90.000000 180.000000 180.000000 0.000000 0.000000 -0.930000 0.000000
0.000000 0.000000 0.000000 -180.000000 0.000000 0.000000 0.000000
-180.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000

2.000000 /* time 2 seconds */

-90.000000 180.000000 180.000000 0.000000 0.000000 -0.930000 -45.000000
0.000000 0.000000 0.000000 -180.000000 0.000000 0.000000 0.000000
-180.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000

4.000000 /* time 4 seconds */

-90.000000 180.000000 180.000000 0.000000 0.000000 -0.930000 -90.000000
0.000000 0.000000 0.000000 -180.000000 0.000000 0.000000 0.000000
-180.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000O0
0.000000 0.000000 0.000000

5.000000 /* time 5 seconds */

-90.000000 180.000000 180.000000 0.000000 0.000000 -0.930000 -90.000000
0.000000 0.000000 0.000000 -180.000000 0.000000 0.000000 0.000000
-180.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000

100.000000 /* time 100 seconds */

-90.000000 180.000000 180.000000 0.000000 0.000000 -0.930000 -50.000000
0.000000 0.000000 0.000000 -180.000000 0.000000 0.000000 0.00000O0
-180.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
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Figure 10. Keyframe Configurations Displayed
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Figure 11 Input Virya File Modified for Dynamics (Partial)

dof 6 Pijnt 1 Type 0 Numv 5 j_waist
Control 0.000000 0.000000

Control 2.000000 -0.785398

Control 4.000000 -1.570796

Control 5.000000 -1.570796

Control 100.000000 =1.570796

States K 0 100 000 0O

Q

dof 7 Pjnt 1 Type 2 Numv 5 J_waist
Control 0.000000 0.000000

Contrel 2.000000 0.000000
Control 4.000000 0.000000
Control 5.000000 0.000000
Control 100.000000 0.000000
States F 0 100 0 0 0 O

Q

dof 8 Pjnt 2 Type 0 Numv S5 Jj_neck
Contrel 0.000000 0.000000

Control 2.000000 0.000000

Control 4.000000 0.000000

Control 5.000000 0.000000

Control 100.000000 0.000000

States F 0 100 000 O

Q

dof 9 Pjnt 2 Type 2 Numv 5 j_neck
Control 0.000000 0.000000

Control 2.000000 0.000000

Control 4.000000 0.000000

Control 5.000000 0.000000

Control 100.000000 0.000000

States F 0 100 000 O

Q

dof 10 Pjnt 3 Type 0 Numv 5 j_shoulderr
Control 0.000000 -3.141593

Control 2.000000 -3.141593

Control 4.000000 -3.141593

Control 5.000000 -3.141593

Control 100.000000 -3.141593

States R 0 100 000 O

Q
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The dynamics

of articulated rigid
bodies for purposes
of animation

William W. Armstrong
and Mark W. Green

Department of Computing Science,
University of Alberta, Edmonton,
Alberta, Canada, T6G 2HI

Curves and surfaces satislying con-
tinuity and smoothness conditions are
used in computer graphics to fit spatial
data points. In a similar fashion.
smooth motions of objects should be
available to animators in such a way
that the dynamics are correct to the
degree required for realism. The mo-
tion, like a curve or surface shape,
should be controllable by easy manipu-
lations of a set of control parameters or
by real-time interaction between the
animator and a scene generated by dy-
namic simulation. In this paper, the ob-
jects considered have the form of rigid
links joined at hinges to form a tree.
This is a reasonable first approximation
to human and animal bodies. The equa-
tions of motion are formulated with re-
spect to hinge-centered coordinates, and
are solved by an efficient technique in
time which grows linearly with the
number of links.

Key words: Dynamics - Animation -
Equations of motion - Robotics

he animation of human and human-hke
characters is one ol the major unsolved
problems in computer animation (see fon
example Badler (1982). The key aspect of
this problem is achieving realistic motion with
a minimal amount of cffort on the part of the
animator, Several approaches to human figure
animation have been tried in the past with
SOMC SUCCLSS,
One of the carliest approaches was 1o record or
digitize the motion of a human (Calvert ¢t al.
1980). The animated human fligure mimicked
this motion based on the collected data. One of
the main problems with this technique was hav-
ing a properly instrumented human actor per-
form all the actions required for the animation.
Collecting and processing the motion data is a
cumbersome task and there is little flexibility in
cditing the motion once the data has been col-
lected. Another problem with the approach is
that the human actor cannot perform dan-
gerous actions (such as falling off a cliff) or
simulate the motion of non-human characters.
A related approach is to use human body po-
sitions as key frames in an animation scquence.
This still requires the collection of human
movement data (but with a lower volume) and
has all the problems associated with key [ram-
ing (Catmull 1978).
A more recent approach is based on developing
a kinematic model of the human body (Zeltzer
1982). This model is based on the anatomy of
the human body and characteristics of its mo-
tion. Motion is achieved by a hierarchy of mo-
tor programs. The low level motor programs
control the joint angles for a fixed set of joints.
These motor programs are controlled by the
middle level motor programs. The middle level
motor programs can start and stop the low
level programs based on the current state of the
model (joint angles, center of mass, support,
etc.). Both the low level and middle level motor
programs are modeled as finite automata. This
approach requires far less effort on the part of
the animator but still has some problems. A
separale set of motor programs is required for
each type of motion. The study of human mo-
tion is required to construct these programs.
The model can only react to the environment in
a restricted way. For example, one of these
models could walk over uneven terrain, but
could not respond to someone pushing it.
The approach to human figure animation pre-
sented here is based on incorporating dynamics
into the model of the figure. This added infor-
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mation greatly simplifies interacting with and
controlling the model. Once the model has been
properly constructed (sec Section: Developing
figure models) a wide range of motions can be
achieved by applying forces or torques (o joints
in the model at key points in the animation.

For repetitive motions these forces can be pro-

grammed in the same way as the kinematic

models.

In our view of human figure animation a hu-

man figure model must have the following char-

acteristics: :

1. The model should produce realistic motion
sequences when given realistic input data. In
other cases the model should produce believ-
able results.

2. The amount of information the animator
must provide should be minimal and pro-
portional to the complexity of the motion. If
the character is standing still or reacting to
the environment in a standard way the anim-
ator should not need to specily any motion
data.

3. The model should be able to react to and act
on ils environment. If someone pushes the
character it should react to that force. Simi-
larly if the character runs into an object it
should respond in a natural way and possibly
have some effect on the object (the object
moves or falls over). This obviously requires
a model that accounts for such physical
properties as mass, force, inertia, torque, and
acceleration.

In the next three sections of this paper, we
develop the dynamics of articulated rigid bodies
(skeletons) and an efficient method for solving
their equations of motion. In the fifth section, a
technique for developing dynamic models of
human-like figures is presented. A simple exam-
ple is used to illustrate this technique. The final
section presents some of the ideas we are cur-
rently working on.

The equations of motion

In this section, the equations of motion will be
presented and explained in a tutorial fashion.
The reader is assumed to be somewhat acquaint-
ed with the elementary concepts of dynamics:
velocity, mass, force, acceleration, angular ve-
locity, moment of inertia, torque, angular accel-
eration etc. (Goldstein 1959). A treatment of

232

manipulator dynamics based on Lagrangian
mechanics is given in a book by Paul 1981.
Hollerbach has given a recursive Lagrangian
formulation of manipulator dynamics (Holler-
bach 1980b) and has discussed Newtonian for-
mulations similar to this one (Hollerbach 19804).
Our treatment 1s a generalization of work done
for the case of linear linkages (Armstrong 1979),
with more attention paid to computational ef-
ficiency.

Consider a physical quantity, such as a force. It
is a vector, and has a meaning independent of
any coordinate system. To represent it analyti-
cally, one has to introduce a system of coor-
dinates using a frame, which consists of three
mutually orthogonal unit vectors. The frames
will always be right-handed in this paper. In a
given frame, a vector is characterized by three
components arranged in a one-column matrix.
We shall always use this representation in our
formulation of the equations of motion.

For dynamic modeling of linkages, it is con-
venient to choose frames which move along
with the links, as though rigidly autached to
them. This is particularly useful since, in the
moving [rame, certain quantities are constant,
such as the representation of the vector from a
hinge of the link to the link’s centre of mass. To
represent positions, we use the vector from the
origin of the frame to the position in question.
We note, though, that the origin of the frame is
unimportant in determining the representation
of a vector. In addition to frames which move
with the links, we also use a fixed, non-rotating
inertial frame.

The transformation of the representation of a
vector, a 3-by-1 (column) matrix, from one
frame to another is done by multiplying the
representation on the left by a 3-by-3 orthogo-
nal matrix. The inverse transformation is done
using the transpose of the latter. We shall in-
dicate orthogonal matrices by beginning their
names with the letter R.

The cross-product of two vectors can be carried
out using the representations of the operand
vectors and the result in a certain frame, and
will be denoted in this paper by the cross sym-
bol ( x) as an infix operator.

The unit 3-by-3 matrix will be denoted by L
There is a very useful operation on a 3-vector v,
with components vl, v2, v3, to get a 3-by-3
matrix V such that for any 3-vector w, the vec-

~198-



tor rxw is equal to the product of V and the
column-vector w. This is the “tilde™ operation:

0 —u3 v2
i=V= vl 0 —vl
-2 vl 0

We shall use the following quantitics, some of
them shown in Fig. I. Lower-case letters denote
scalars (which are subscripted with the appro-
priate link number) and representations of vec-
tors (super-scripted), while upper-case letters de-
note matrices. A link, other than the root link
of the tree (number 1), has one proximal hinge
connecting it to its parent, which is closer to
the root, and, except for leaves of the tree, one
or more distal hinges. The number of a link is
also used to number its proximal hinge. We
denote by S, the set of all links having link r as
parent.

Scalar:
m, the mass of link r;

Representations in the inertial frame:

ag the acceleration of gravity;

p" the position vector of the hinge of link r
which joins it to its parent, which we shall call
the proximal hinge of link r;

v" the velocity of the proximal hinge of link r;
f¢ an external force acting on link r at the
point pf (see below);

g% an external torque acting on link r;

Fig. 1
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Representations in the frame of link r:

a" the acceleration of the proximal hinge of link
r.
" the angular velocity of link r:

" its rate of change;

¢" the vector from the proximal hinge to the
centre of mass of link r;

/" the force which link r exerts on its parent at
the proximal hinge;

g" the torque which link r exerts on its parent
at the proximal hinge;

p% the vector from the proximal hinge of link r
to the point of application of the external force

S to link r;

Representation in the frame of the parent of
link r:

I" the vector from the proximal hinge of the
parent of link r to the proximal hinge of link r
(constant in the frame of the parent);

Rotation matrices:

R" converts vector representations in the frame
of link r to the representations in the frame of
the parent link;

R"T the inverse (= transpose) of R";

R} converts from representations in frame r to
representations in the inertial frame;

R} the inverse (= transpose) of R;

Matrix representation in frame r:
J" the moment of inertia matrix of link r about
its proximal hinge;

The first equation of motion expresses the fact
that the rate of change of angular momentum
of link r is equal to the applied torques from
various sources.

Jro'=gi—mc"xa"+ ) FxRf* (1)
seS-
where

gi=—' x(J w)—g+ > R'g*+R] g}

seS,

+m,¢"x R\ ag+pi x R} f§. (2)

The right-hand sides of (1) and (2) will now be
explained. The part g5 has been separated out
since that will help to explain the solution of
the equations as well as accelerate the solution
implemented on the computer. The term —m, c"
xa" comes from the fact that the frame in
which this equation is formulated is accelerat-
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g with respect to the inertial frame, giving the
effect of the force —m, a" applied at the centre
of mass of the link. In the next term. the forees
1 coming from all the sons of link r are [irst
transformed from the coordinates of the son
link. where they are represented, to the frame of
r by applying R*. Then the cross product of P
with the force gives the torque at the proximal
hinge of link r due to the force from the son
link.

In Eq. (2). the term —o" x(J"w") is a torque
coming from the rotation of the frame r with
angular velocity " which causes the angular
momentum. J" o', to appear Lo rotate. This tor-
que term would not appear if the equations had
been formulated in the inertial frame. In the
inertial frame, however, the inertia matrix J"
would not be constant, making that frame less
appropriate for formulating the equations for
purposes of computer simulation.

The torque —g" is the negative of the torque
which, by definition, link r exerts on its parent
at its proximal hinge. It is the parent’s reaction
which is “equal and opposite™. To be added in
next are the torque terms coming [rom the son
links. which must be converted from their re-
presentations in the sons’ frames, and the exter-
nal torque, which must be converted [rom its
representation in the inertial frame. It doesn’t
matter where the torques are applied, since the
links are considered rigid. Finally, the force of
gravity, m,a;, converted from the inertial
frame, causes a torque at the proximal hinge of
link r when applied at its centre of mass; and
similarly for the external force f; acting at p.
The next equation of motion gives the force f”
acting on the parent of link r at the proximal
hinge of link r. As above, it is convenient to
separate out a term fY which does not involve
the quantities " or others which depend on it
according to our solution method.

Sr=fi—md +mc" xo'+ ) RS (3)
seS,

where

fi=—m o x (0" xc")+R;T(fE+m, ag). (4)

In Eq.(3), the term —m_ a" comes from the fact
that the frame r is accelerating, and the next
term from the fact that it is rotating at an
accelerating angular velocity, which causes the
centre of mass to accelerate with respect to the
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mertial frame. Finally. the forces from the son
links are converted to frame r and communi-
cated to the parent at the himge.

In Eq.(4). we get first a centrifugal foree from
the rotation of the frame and second a contri-
bution from the external force and gravity act-
ing on the link.

The last equations describing the motion relate
the acceleration at the proximal hinge of a son
link s of link r to the linear and angular accel-
crations at the proximal hinge of r:

Ra*=a+a" —I"xaf (5)
where
=" x(m" x ). (6)

In summary, then. the equations of motion for
each link are formulated in terms of a moving
frame attached to the proximal hinge of the
link, and consist of cquations giving the effect
of torques (1). (2), equations giving the effect of
forces (3). (4). and equations relating the accel-
crations at parent and son nodes (5). (6). In order
to get the motion. we must solve these equa-
tions either to get the torques given the motion,
which would be reasonable to control the
linkages along a prescribed path. or to get the
motion (accelerations, velocities, positions and
orientations of the links through time) given the
torques at the hinges and the external forces
and torques. We choose the latter approach,
since our aim is ultimately to let the animator
control the motion by application ol torques
using hand and other controllers in real time.
The previous approach has been treated by Luh
et al. 1979.

Solution of the equations of motion

Methods for converting the equations men-
tioned at the beginning of this paper to a ma-
trix form are well-known. The resulting square
matrix can be quite large, with a line for every
degree of freedom in the system. Here we have
six degrees of [reedom for link 1, the root, three
for position and three for orientation, and three
degrees of freedom for the orientation of every
other link (the hinges constrain the position,
but not the orientation in our case). A simple
model of the human body without hands or feet



has at least 12 links, leading 10 a 39-by-39
matrix. We can expect this number to increase
drastically if the links are required o be Mexible
or deformable in any way. The growth in terms
of the number of links is quadratic by that
technique. The method we are going to use
grows linearly with the number of links, and is
appropriate, we feel, for animation purposes,
where the number of links may be large.

The hypothesis which aids in solving the equa-
tions is that there are linear relationships be-
tween the acceleration «” of the link and the
amount of angular acceleration it undergoes
and between «" and the reactive force on the
parent. Think of giving the configuration of
links distal to a certain hinge a push at the hinge
which causes a certain acceleration. This will
cause a certain angular acceleration and a cer-
tain reactive force, which can be expressed as
follows:

o'=K"a +d (7)
f=Ma+/[". (8)

If we assume this linearity for all the sons of
link r, then we can show it inductively for link
r. and at the same time develop a compu-
tational method for solving the equations of
motion by calculating the “recursive™ coef-
ficients K', d', M", and f'" f[rom the distal links
towards the root. We encourage the reader to
write down Eq. (1) and carry out the following
simple substitutions: First the quantity f* of a
son link s is replaced by the corresponding
expression from (8) with s instead of r. Then the
acceleration & appearing therein is rewritten
using the right hand side of (5) prefixed by R*™.
The cross product IFx«" is replaced by the
product of the matrix I* with the column vector
. This enables us to collect the terms in o'
and obtain

o' =T (gi—m, " xda

+ Y FR(f"+M* R (a;+a")) 9)
seS,
where we have set
T =J'+ Y FREM*RTF)~". (10)
seSr

Now we can determine the recursive coefficients
for (7):

K'=T'(Y FREM*R*T—m, &) (11)

s€S,

X2

CoLelaiitiat i

and

d"=T"(gi+ Y PR+ MR a))). (12)
AEN,

The next step is to determine the recursive coel-

ficients for the force /7. We [irst substitute in (3)

for the forces f* using (7) for s instead of ». The

quantity a* is replaced using (5), and the result-

ing ©" values are replaced using (7).

This gives

M'=—mIl+m K"

+ ZR"M"R"'(I—T“K') (13)
S€S,

and

[T=fi+mc" xd
+ Y (R [+ R*M*R*" (@}~ I' x d")). (14)

SES,

Computation of the solution
to the equations

There are certain frequently used constants
which should be precomputed:

J'om Imc',m ¢ mag, I.

At each iteration step, the equations of motion
must be solved for the angular accelerations of
the links by first determining the coefficients of
the linear expressions (7) (8) in a pass inward
from the distal links to the root link. Then the
Eq.(8) for the root link, number 1, can be used
to obtain the acceleration a', since f', the force
on the parent of the root link, is zero (there 1s
no parent). Eq. (5) can then be used repeatedly
to get the acceleration of the son links, whose
angular accelerations are computed using (7).
now with known coefficients, on a pass oul-
wards from the root link. The constraint forces
/" at the hinges can also be computed during
this pass, but this is not required unless we are
checking the solution.

After the solution phase at each time step,
comes the integration phase, where " is multi-
plied by the time step dt to get the increment of
", and the latter is multiplied by 6t to get an
incremental rotation vector for the link. The
incremental rotation vectors are used to update
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the rotation matrices which specify the orien-
tations of the links: Rj. R* (for son links only).
The lincar acceleration and velocity of lhink |
can also be determined as well as its position,
which, together with the orientations of all
links, given by Rj, allows all the hinge positions
in the inertial frame to be determined (for the
purpose of graphics display, for example).

There is one deficiency in the above method,
however, namely that some of the quantities
which are computed at each integration step
can be expected to vary slowly, and hence re-
computation is not required at every increment
or. Hence all the computations will now be
divided into two bands: a “fastband™ executed
at each time step, and a “slowband" executed
completely once every v executions of the fast-
band. The slowband computation can be split
into v parts and executed uniformly over the
fastband iterations in a real-time system.

The resulting organization of the computation
1s as follows:

Slowband computations inbound (i.e. from the
leaves to the root):

Do for each link r starting at the leaves of the
tree:

Compute ai=w" x(w"x ) (15)
Compute Q*=R*M*R*T for seS, (16)
Compute W*=I*Q°* for seS, (17)
Compute T"=(J"+ Y W*T)~! (18)
seS,
Compute K'=T"() W*—m,&") (19)
seS,
Compute M"=(m ¢ )K"—m,_1
+ Y Q*I-FK") (20)
seS,
Compute gi'=—o" x(J o)+ R} g}
+Pe X R fE+(m, ") x R a, (21)

(assuming ff and gf are slowly-varying).
Compute fi=—w"x(w"x(m,c)
+R;T(ff+m,ag) (22)
(assuming ff is slowly-varying).

Fastband computations, inbound:
Note: at this point the hinge torque values g"
from the controls manipulated by the animator
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are inserted. One approach to controlling these
values is presented in the following sections,
and others are under development.

Do for cach link r, starting distally and pro-
ceeding towards the root:

Compure gh=g\"—g"+ ) R'g (23)
SEN,
Compute d"=T"(g\ + Z Ex(f"+Q%a}) (24)
SES,
Compute "= f{+(m,¢") xd"
+ 2 (" + QeI xd) (25)
seS,

Compute [""=R"[". (26)
Fastband computations, outbound:

Compute a'=—(M")"' [ (27
Compute &'=K'a' +d". (28)

Do the following for each link r other than the
root outbound:

Compute a"=R""(d" +a"—1"x ") (29)
where p is the parent of the link r.

Compute o =K"da"+d" (30)
Compute f*=M"a"+[" (31)

if required for a check of the solution.
Integration, fastband:

Compute "+ 0t o)’ (32)
and assign to o".

Compute du"+ 0t " (33)
and assign to Jou’, where the latter quantity
accumulates a small rotation of link r as an
“infinitesimal vector™.

Compute "+ 01 R}d" (34)
and assign to t".
Compute p"+dtt” (35)

and assign to p".

Actually, Egs.(34) and (35) are used only for
the root link. The positions of the other links
are determined from the position of the root
hinge and from the hinge-to-hinge vectors in
the inertial frame R} P, where r is the parent of
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s. This prevents accumulation of errors so that
the graphic display will not become distorted.

Integration, slowband:

Here the rotation matrices are updated, a costly
process which should be done only when the
errors introduced by tardy updating are suf-
ficiently small.

Do the following for each link starting distally:
Compute Ri(1+0a") (36)

and assign to Rj. When this has been done Ju”
must be reset to the zero vector to begin its
accumulation again during the fastband integra-
tion. Also compute and store the transpose R;”.

Orthonormalize R (37)

to prevent accumulation of errors which would
ultimately destroy the simulation.

Compute R;" R (38)

for every s€S§,, and assign to R*. Also compulte
and store the transpose R*".

In implementing the above solution, it is of
critical importance to choose an integration
step size ot several times smaller than the per-
lod of any [requency present in the system.
Otherwise numerical instability will destroy the
simulation. (It is amusing to watch the stick
figure’s arms begin to oscillate wildly as it flies
off to oblivion though!) The highest frequencies
will probably be the rotations of small links
about their long axes under the influence of
elastic-torques at the hinges which maintain the
alignment of the links. What one can do to
keep these frequencies low is to falsely enlarge
the moments of inertia about these axes. It is
an open question to what extent this can be
done without destroying the realism of the sim-
ulation. Such tricks are often applied in aircraft
simulators, for example, and animation can un-
doubtedly benefit from using them heavily. A
method for removing two degrees of freedom
from the hinges has been described elsewhere
(Armstrong 1979).

Other factors which must be appropriately ad-
justed are the frictions of the hinges, which
create viscous damping torques proportional to
the relative angular velocities of the two links
involved. As we shall see, creating a zone of

AT
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frec play at the hinges. where the stiffness of the
hinge has no effect. allows the friction to absorb
the energy erroncously introduced by numerical
inaccuracies, leading to a more stable model.

Developing figure models

This section describes one approach to develop-
ing human figure models based on the dy-
namics presented in the previous three sections.
These models represent the positions and orien-
tations of the figure along with how it behaves
when it interacts with its environment. This ap-
proach is illustrated by two examples presented
at the end of this section.

Our approach to human figure modeling con-
sists of three steps. The first step is developing a
skeleton for the figure. This skeleton consists of
a set of links representing the figure’s limbs and
a set of joints representing the places where the
limbs are connected. The set of links represent-
ing the figure form a tree with each link having
at most one parent. The skeleton represents the
topology and physical properties of the figure.
The skeleton itsell can be viewed as a stick
figure. The graphical display of the figure used
in an animated sequence is generated from the
skeleton. Techniques for converting skeletons to
graphical displays can be found in Burtnyk and
Wein 1976; Zeltzer 1982 and Lake 1985. As-
sociated with each link in the model is its mass.
center of mass, and inertia. These quantities
must be calculated or estimated from the figure
being modeled.

In order to have realistic motion the skeleton
must be augmented with additional information
pertaining to the behavior of its joints. The
second step in this modeling process is deter-
mining this information and incorporating it
into the figure model. This step 1s divided into
two parts. In the first part the support for the
skeleton is developed. The force of gravity is
continuously acting on the figure and unless it
is counteracted the figure will fall or collapse.
There are several ways in which the figure can
be supported. One way is to attach an upward
pointing force (on average equal to the mass of
the object times the acceleration of gravity) to
one of the links in the model. The link used
depends upon the nature of the animation. For
walking and similar actions the force is at-
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tached to the foot that is in contact with the
ground. For gymnastics the force might be at-
tached to the center of mass of the figure. An-
other approach to counteracting the force of
gravity is discussed in the first example at the
end of this section.

The joints in the model cannot be [ree to move
any way they wish. Each joint has a certain
range of angles it is capable of moving through.
Angles outside of this range will appear un-
natural. One way of constraining the motion of
the joints is to stop the joint rotation when it
reaches the end of its natural range. This is not
a satisfactory solution for the following reasons.
First, it leads to very unnatural motions. When
people move their limbs there is a definite ac-
celeration and deceleration at the end of the
motion, they don’t come to an abrupt stop at
the end of the motion (Schmidt 1982). Second,
the abrupt changes caused by the clamping of
the rotation angles violates the assumptions
used in the development of the equations pre-
sented in Section: Solution of the equations of
motion. Third, sometimes the animator wants a
limb to move outside its normal range. If a
large enough force is applied to the model, one
or more of the limbs should move out of its
natural range.

The approach to joint behavior that we have
developed is based on determining the natural
range of the joint and then applying torques
about the joint to keep it in this range. At each
time step the torque applied to a limb is a
function of the angle between it and its parent.
This torque will move the limb towards the
center of its normal range. The torque functions
we use in our models have the shape shown in

Torque

Angle

Fig. 2. A typical torque lunction

Fig. 2. As can be seen from this figure there is a
range of angles where no restorative torques are:
applied. This area of free play leads to more
natural motions and decreases the tendency of
the limbs to oscillate. The size of the free play
zone and the slope of the function at the ends
of this zone determine the behavior of the joint.
A narrow [rce play zone with steep sides will
give rise to a stiff joint. The free play zone can
be moved around in order to simulate different
types of motion. Note that there are torques
that will cause the joint to act unnaturally.

At this point if the model is placed in a simple
environment with only gravity it will eventually
reach equilibrium (in practice this occurs after
one or (wo seconds of simulation time depend-
ing on how close the initial state of the model
is to equilibrium). If the environment acts on
the model it will essentially roll with the pun-
ches. The third step in our modeling approach
is determining the external forces and torques
required for specific motions such as walking,
throwing, or diving. In most cases these forces
and torques are spikes applied at fixed intervals
of time or when certain conditions hold.

As an example of how this approach works
consider the problem of animating a finger tap-
ping on a table. The skeleton for this finger is
shown in Fig.3. This skeleton has five links,
three of which are visible in the figure. The
middle three links represent the visible part of
the finger and for the purposes of this example
all -have the same length and mass. At the left
end of the figure is a link of length zero repre-
senting the attachment of the finger to the
hand. This end of the finger should have a
relatively constant position, therefore, it has a
much higher mass and inertia (about 100 times)
than the other links. In order to support the
finger a variable force is applied to this link.
The strength of this force is inversely propor-
tional to the distance between the current po-

finger tip
support

Fig. 3. Skeleton for a finger
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sition of the link and its desired position. The
fifth Tink is at the other end of the finger and
also has zero length. This hink serves as a con-
venient place for applying an external force.
Next the torque functions for the joints must be
determined. In this case we ran the simulation
for several seconds without torque functions
and recorded the joint angles that appeared
natural. The torque functions were based on
these observations and several runs to deter-
mine appropriate slopes of the functions.
Finally, in order for the finger to tap, an exter-
nal force must be periodically applied to it. In
this case, a spike lasting 0.11 s is applied to the
finger tip every 2s. The model is allowed 2s to
stabilize before the first spike is applied.

The simplicity of this example indicates the
ease with which realistic animation can be pro-
duced with this approach.

This example has been run on both a SUN
workstation (a MC68010 with no floating point
hardware) and a VAX 11/780 with a floating
point accelerator. A time step of 0.01 s was used
in these runs and the slow band was calculated
at every time step. On the SUN, 604 cpu sec-
onds were required to produce an 8-s anim-
aled sequence of the finger tapping (a wire
frame perspective display of the skeleton was
produced every 0.1s). On the SUN hardware
the simulation is a factor of 75 slower than real
time. The same program on the VAX requires
89s to produce 8s of animation. If the slow
band is calculated every other time step, the
SUN requires 385s and the VAX requires
56.6s to produce 8s of animation. On the VAX
this is close enough to real time to get some
feel for the motion while it is being calculated.
The second example is based on a human body
model consisting of twelve links. Figure 4 shows
a sequence of images simulating the first 0.5s of
a diving motion very simply defined by apply-
ing external forces downward and forward on
the head and arms, forward on the lower body
and upward and backward on the feet. The
hinge torques generated by stiffness and friction
were sufficient to maintain reasonable behavior
without any intervention by joint motor pro-
grams. The moments of inertia of the links were
increased by about an order of magnitude from
the correct values for the large links, and by
three orders of magnitude for the small links
(like the neck). Further experiments are re-

quired o determine the allowable falsification
of the moments of inertia still giving reasonable
behavior., With this falsification of the true dy-
namics, the integration step size could be taken
to be 1/30s. It was possible to generate one
sccond of motion on the VAX 11,780 in 955 of
CPU time, even il the slowband computations
were done at every step. This was about 10
times slower than real time. Doing the slow-
band computations every five fastband cycles
reduced this to five times real time.

Fig. 4

The public domain software “DynaTree”, writ-
ten in C by W.W. Armstrong, carried out the
dynamics computations. The shaded color dis-
play of the resulting file of positions. requiring
about four minutes per position, was done
using software developed by Robert Lake.
Clearly, we have a long way to go before hav-
ing near-real-time simulation and display of
shaded images, but stick-figure simulation in
real time is very close to being a reality. Drop-
ping some of the non-essential terms in the
equations of motion would probably be enough
to attain it. We are thus already facing the
question of how the animator can control the
motion in near-real-time. '
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Conclusions and further work

In this paper we have presented the dynamics
of articulated rigid bodics, an ellicient method
for solving their equations of motion. and a
technique for developing human figure models
based on these dynamics. The examples in
Section: *Developing figure models™ show that
these equations can be solved almost in real
time.

This work suggests a number of topics for fur-
ther research. One possible topic is reducing the
time required to solve the equations of motion.
Two possible approaches to this problem are
developing better implementations and design-
ing special hardware for their execution. Anoth-
er research topic is developing better techniques
for controlling the figure. At the present time
we have not thoroughly explored all the possi-
bilities for supporting the model against the
force of gravity. Also means for controlling
complicated motions need to be developed. Fi-
nally the figure models need to be integrated
with an environment where they can interact
with each other and long range planning can
occur.
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Abstract

Modeling techniques for animating legged figures are described
which are used in the PODA animation system. PODA uti-
lizes pseudoinverse control in order to solve the problems as-
sociated with manipulating kinematically redundant limbs.
PODA builds on this capability to synthesize a kinematic
model of legged locomotion which allows animators to control

the complex réfationships between the motion of the body

of a Rigure and the coordination of its legs. Finally, PODA

provides for the integration of a simple model of legged lo-

comotion dynamics which insures that the accelerations of a

figure’s body are synchronized with the timing of the forces

applied by its legs.

CR Categories and Subject Descriptors: 1.3.7 |Computer Graph-
ics|: Graphics and Realism: Animation. Additional Key Words and
Phrases: motion control, computational modeling, manipulators, legged
locomotion

Introduction

The problems of animating articulated figures with multiple legs
have long been a source of difficulty in the computer animation field.
Joint angle interpolation between “key” joint positions is the most
widely used method of animating jointed animals. This method fails to
work, however, for cases in which the end of a limb must be constrained
to move along a particular path - the interpolated joint positions of two
“key" leg positions planted on the ground will not, in general, remain
on the ground (6g. 1).

Another difficulty is the sheer tedium of positioning “keys" for
limbs containing many degrees of freedom. The animal shown in figure
2 possesses 9 degrees of freedom in each leg,9 degees of freedom in the
neck, and 18 degees of freedom in the “spine.” An animator using a
key joint system would have to manage positioning a total of 63 joints.

A further problem is that a walking or running figure is more than
an assemblage of moving limbs - the coordination of legs, body and feet
are functiosally related in a complex fashion. The motion of the body
of a figure and the timing and placement of legs are both kinematically
and dynamically coupled.|[20-36]

The approach taken in the design of the PODA system is to pro-
vide the amimator with a putational model which facilitates the
integratiom and direct control of the functional dependencies between

The research described in this paper was supported, in part, by
National Science Foundation grant DCR-8304185, and in part, by a
National Science Foundation Fe!lowship.
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different parts of a figure. An interactive menu-driven interface is used
for both the incremental construction and behavioral control of animals
possessing any number of legs composed of any number of joints. A
strategy is implemented in which the figure’s motion may be designed
and manipulated at different levels of control. At the lowest level the
animator may define and adjust the character of the movement of the
legs and feet. At a higher level the animator may direct the coordina-
tion of the legs and control the overall motion dynamics and path of
the body.

The primary goal of our efforts is to build a framework in which
the synthesis of legged figure motion may be artistically conceived and
controlled at increasingly higher levels of complexity and abstraction.
In this regard, our initial efforts have been focussed on developing a
general model tor legged locomotion due to its importance to the exe-
cution of more complex motor skills, such as those which are required
for dance and gymnastics|27|.

In this first section we will outline the solution taken in PODA for
the control of single limbs. This will set the stage for the discussion of
the legged locomotion model which utilizes the limb control methods
described.

&

Key2 Position
Figure 1

[

Key 1 Position

Inter polated Position

THE CONTROL OF LIMBS

Representing articulated limbs

In order to define the functionality of an arbitrary articulated fig-
ure, PODA has adopted the kinemalic notation presented by Denavnt
and Hartenberg [3|. This specifies a unique coordinate system for ev-
ery individual degree of freedom present in the figure. These degrees of
freedom, whether rotary or prismatic, will be referred to as joints and
the fixed interconnecting bodies as links. The four parameters used to
define the transformation between adjacent coordinate systems are the
length of the link a, the twist of the link a, the distance between links
d, and the angle between links #. The single variable associated with
the transformation depends on the type of joint represented, that is #
for rotary or d for prismatic joints (fig. 3).
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Figure 2

Given the above definitions, it can be shown [12] that the trans-
formation between adjacent coordinate frames 1+ — | and : denoted by
*=!T, is given by the homogeneous transformation:

|

P = a;co88, n, =cosh,

L=2-H
-,

g
00
where

py = a;sinf;, n, =ain#,

Py = d, n, =0
0 = —cosa,sinfl;, a, =sina,siné,
0y = COSa; cosf, a, = —sina, cos
o, =sina, a, =cosa,

By repeatedly applying adjacent link transformations the relation-
ship between any two coordinate systems 1 and j is easily obtained
using

T = Tigs g 77Ty

The above equation permits any link of the figure, defined in its
own coordinate frame, to be represented in any arbitrary reference or
world coordinate frame. More importantly, it can be used to determine
the number and characteristica of the degrees of freedom available for
simulating coordinated movement.

The Jacobian Matrix

Given the above framework, one can easily see that, given the state
of the joint angle variables, we can compute the position of all of the
links and arrive at the position of the end of the limb. This is called the
forward kinematics problem. The reverse situation, that of computing
the joint angles from the position of the end of the limb, is necessary
if we wish to place a foot or hand in some desired place-what Korein
and Badler have called “goal directed motion” [32|. This is called the
inverse kinematics problem. The legged locomotion models in PODA
rely heavily on the need for goal-directed motion: feet must be moved
along trajectories, placed exactly at desired footholds and held in place
as the body passes over them.

The solution of the inverse kinematies plubiem is the source of
much of the difficulty in dealing with controlling articulated figures. A
general solution for arbitrary articulated chains does not exist and even
those that lend themselves to an analytic solution result in nonlinear
equations [12]. Additional complications are incurred when redundant
degrees of freedom are present.

264

The solution adopted by PODA is to linearize the equations about
the current operating point. The six-dimensional vector representing
an incremental change in position and orientation in three space of
an arbitrary link is linearly related to the vector Ad by the Jacobian
matrix J through the equation

AF=J(0)Ad (1)

for changes which are sufficiently small. Thus by updating the Jacobian
each cycle time, the advantages of a linear system are obtained. This
allows the application of all of the technigues of solving linear equations
to obtain the desired result (to be discussed in the next section). The
use of Jacobians has long been a common practice in nonlinear control
system theory and has been successfully applied in the held of robotics
|18.19].

Due to its central nature in the animation of articulated figures,
an efficient implementation for generating the Jacobian is essential to
a viable system. While there are may different techniques available, a
particularly elegant method has been formulated with the use of screw
motor variables [17]. A screw motor is characterized by the variables
w, the angular velocity of the screw axis, and 4, the velocity of a point
attached to the screw axis which coincides with the origin of the world
coordinate frame. [n terms of these variables, the desired displacement
of the foot may be expressed as

& = Ray
A=Rij-axp (2)

with the original foot displacement AZ given by

oe-fg)

where R is the upper 3 x 3 rotation partition of the homogeneous trans-
formation describing the desired point whose velocity is being specified
and p ia the position of this point given by the fourth column of its
homogeneous transformation. It can be shown [16] that the Jacobian

ia given by
J= Ppxa, prXa Pa X 8n ‘3}
ay ay ow a,
where a, and p, are the third and fourth columns, respectively, of the
h g transformation matrix "T,.,. The Grst column of the
Jacobian is given by

p=000]" a,=001]".
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Figure 3 j;lnt 1+1

Yink 1-1
Link Parameters Associoled Wilh Link i

This formulation of the Jacobian allows a minimal amount of extra
computation since the majority of the work has already been done in
generating the homogeneous transformations required to display the
object. This is in contrast with other techniques which do not expres:
the Jacobian in the world coordinate frame [37],

Inverting the Jacobian

Given a linear system by virtue of the Jacobian, we now need to in-
vert the relationship represented by equation (1) in order to determine
the required Af to achieve a desired AZ. Since we are dealing with
arbitrary articulated figures, the Jacobian is in general not square and
therefore its inverse is not, defined. To obtain a useful solution regard-
less of the rank of J, the pseudoinverse is applied. The pseudoinverse
will be denoted by J* and is the unique | 13| matrix which satisfies the
four properties:

JIrg=1
RS =
{7 ma*
[L 5T =T g+ (4)

The advantages of using the pseudoinverse lie in that it returns the
least squares minimum norm solution to equation (1). Thus it provides
useful results in both the under and over determined cases. Other
generalized inverses may also be applied [1,2]. An excellent overview
concerning the pseudoinverse control of redundant manipulators as well
asa gtotnel.n: lnlefpr!tal.mu of the pseudoinverse using singular value
decomposi is pi ted in [T].

A number of dlﬂerent methods for calculating pseudoinverses have
been discussed in the literature |6, 14]. A discussion of the some of the
numerical considerations involved in computing the pseudoinverse is
presented by Noble [11]. The simplest expr for a pseudoinverse
appear for matrices known to be of full rank. For an m x n matrix A
of rank r, the expression for the pseudoinverse is given by

AT(AAT) UHr=m<n (5.

4w {{AT A)7'AT ifm>n=rand
The use of Gaussian elimination with pivoting removes the need for an
explicit inverse calculation and results in a stable and efficient technique
‘or computing the pseudoinverses under these conditions.
For matrices of unknown rank a recursive procedure for computing
the pseudoinverse presented by Greville [4] may be used, the details of
which are beyond the scope of this paper.

Controlling Redundant Limbs in PODA

While the above section illustrates how the pseudoinverse can be
used to obtain a useful solution to equation (1), for cases where redun-
dant degrees of freedom exist, it is only one of an infinite number of
solutions, The manner in which the animator is given the fexibility tv
determine which of the available solutions is most desirable is through
a projection operator. [t can be shown that shown [5] that the general
solution of equation (1) is given by

Af=JYAZ+(1-J* J)i (6)
where / is an n x n unity matrix and z is an arbitrary vector in Af-

space. Thus the homogeneous portion of this solution is described by
a projection operator ([ — J* J) that maos the arbitrary vector 2 into

the null space of the transformation. The physical interpretation of the
homogeneous solution is illustrated in figure 4.

Thus by different choices for the vector #, various desirable proper-
ties described in #-space can be achieved under the constraint imposed
by exact achievement of the specified AZ. One particularly useful prop-
erty is to keep joints as close as possible to some particular angles chosen
by the animator. This is done |8] by specifying the vector £in equation
(8) to be

F=VH

with -
H=3 ot -0.)

=1

where #; is the ith joint angle, #,, is the center angle of the :th joint
angle, and a, is a center angle gain value between zero and one. The
equation may also be generalized for H equal to any smooth function
one wishes to minimise.

The center angles define the desired joint angle positions and their
associated gains define their relative importance of satisfaction. From
the animators point of view, the gains may be thought of as “springs”
which define the stiffness of the joint about some desired center position.
PODA provides interactive specification of center angles and gains as
a means of controlling redundant degrees of freedom in the legs.

The implementation of this formulation can be included in the
gaussian elimination procedure for computing the pseudoinverse if it is
properly decomposed [7].

Figure 4

(—

Homogeneous solution to the Jacobian equation is the
set of joint velocities which cause no end effector motion.

MODELING THE KINEMATICS
OF LEGGED LOCOMOTION

The task of a kinematic model for legged locomotion i to coordi-
nate the motion of the legsfeet and body in terms of their respective
positions and velocities (Newtonian mechanical properties such as force
and mass are not considered). The kinematic model must enable the
animator to design the timing relationships between the legs and the
character of the steps taken by each leg in accordance with the design
of the body's trajectory, orientation and speed. Ideally, it should be
easily adaptable to any extensions made in the dynamics domain.

Gait Design in PODA

The model of locomotion implemented in PODA utilises a number
of parameters which are convenient for describing the gait of a figure-
the terms and relations are dcrwed from rol:ot.ica research on walking
machines |22-26|.

A gait pattern describes the sequence of lifting and placing of the
feet. The pattern repeats itself as the figure moves: each repetition of
the sequence is called the gast cycle.

The time (or number of frames) taken to complete a single gait
cycle is the period P of the cycle.

The relative phase of leg 1, R, , describes the fraction of the gait
cycle period which transpires before leg 1 1s lifted. The relative phases
of the legs may be used to classify the well known gaits of quadrupedal
animals (fig. 5).

During each gait cycle period any given leg will spend a percentage
of that time on the ground-this fraction is called the duty factor of ley
1. For example, the duty factor may be used to distinguish between
the walking and running gaits of bipeds. Walking requires that the

duty factor of the each of the legs exceed 0.5 since, by definition,the

feet must be on the ground simultaneously for a percentage of the gait
cycle period. Lower duty factors (less than 0.5) result in ballistic motion
identified with running, wherein the entire body leaves the ground for
some duration.
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We will call the time a leg spend:; on the ground its support dura-
tion. The time spent in the air is the leg's transfer duration.

The stroke is defined as the distance traveled by the body during a
leg’s support duration. If we acknowledge that the foot must traverse
the stroke during the transfer phase in order to “keep up” with the
body, the stroke may alternatively be regarded as the length of the
step taken by the leg over the ground (fig. 6a). The body may move
over the ground plane in PODA, so the stroke in this context becomes
the diameter of a circle in that plane (fig. 6b).

Leg Coordination
The following relationship holds between the legs and the body:

stroke

ST, T
bodySpeed ("

support Duration =

The above equation solves for the time (or number of frames) that each
leg must spend on the ground. By definition we also have

support Duration

dutyFactor =
utyFactor P

The amount of time which a leg spends in the air depends on both
the leg speed and the arclength of the transfer phase trajectory. That

130
arcLength(transferTrajectory)

legSpeed

transfer Duration =

During the gait cycle period P, a single leg will move through one
cycle of support and transfer, hence we have:

P = supportDuration + transferDuration (8)
for any leg k. In fact, one may imagine the period as a duration sub-

divided into support and transfer durations (fig. 7). The leg state at
time ¢t may be determined as

266

legState = (legState, + t) mod P (9)

where
legState,, = (R;) (P)

If the leg state is less than the support duration then the leg is in
its support phase, otherwise the leg is in its transfer phase. Moreover,
the time of foot placement occurs when the leg state equals sero and the
i(‘oot ii.;'toﬂ' occurs when the leg state is equal to the support duration

fig. 7).

An animator using PODA may design gaits for figures having any

ber of legs by insta ing the parameters given above. The model
makes sure that all the variables are updated ding to functional
dependencies, thereby freeing the animator to experiment with the vari-
ables of interest such as relative phase without worrying about the
integrity of the other related variables.

Transfer
Duration

Support
Foot Durstion

Liftoff
Figure 7

Leg Support and Transfer Trajectories

Aside from the problem of coordinating the timing of the legs, one
must design the motion of the step taken during the transfer phase
and insure that the feet will remain planted on the ground during the
support phase.

A step is specified in PODA by the desired trajectory of the feet
and the center angles and gains on the joints (which may change dy-
namically). The curve which defines the foot trajectory is defined by
a Catmull-Rom (interpolating) spline. Because the desired shape of
the curve depends on the geometry of the leg, the control points of the
spline are set by moving the foot of the leg. The animator may concep-
tualize the design of the step as the specification of “key leg positions,”
in the spirit of a key-framing system. In PODA, a key position records
the position of the foot (as a control point in the spline) and the center
angles and gains that are associated with that position. The animator
manipulates the foot into each position using PODA's inverse kine-
matic procedures, and then , once the foot is in place, the joint angles
may be adjusted using the center angle and gain parameters,

This approach is distinguished from key-framing or joint angle
interpolation systems in that the goal of achieving the desired foot
position in Cartesian space is primary-the foot will travel precisely
along the smooth Catmull-Rom spline from foothold to foothold. By
contrasy, if we interpolate the the leg positions in joint space, there is
no general means of either moving the foot along a curve or placing the
foot at a particular place on the ground.

The problem of keeping the legs on the ground as the body trans-
lates and rotates is simplified due to PODA's inverse kinematic capa-
bility. The problem reduces to solving for the position of the foot in the
leg’s moving coordinate system so that it is identical to the placement
of the foot in the previous frame's world coordinate system (thereby
keeping the foot stationary in the world). We we solve for this position
using:

"""""’prevFr.anu'!"'r\‘).m_zu.;.._l = w""']TH.,.‘_I (”h'FDDh—|) (10)

""'prevFrameFoo;., = My i, (w"""prevF'rameF'ool,_,)
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Directional Control of the Body

If the animator is to have supervisory control over the legged fig-
ure, a means for directing the body's full translational and rotational
degree's of freedom must be available. Given that all the legs are on
the ground, the problem may be solved using equation (10). The fun-
damental problem is to calculate footholds and plan the foot transfer
trajectories between them so as to adapt to the desired body motion.

Foothold and Transfer Trajectory Planning

An important concept of foothold planning is the notion of a ref-
erence leg position|22]. This is the desired position of the leg in mid-
stance or half way though the leg’s support duration (fig. 10). The
posture of an animal when all of its legs are in their reference positions
may be regarded as the “standing” position of the animal (fig. 11).

The other key ingredient for the foothold calculation is the ability
to predict the body's future positions. In PODA, the body's trajectory
may be computed as a function of the desired body trajectory over the
ground plane (a cubic spline designed by the animator) and dynamic
constraints due the timing and force limitations of legs (to be discussed)
before the precise footholds are chosen. Since the body's position is
known in advance, it is possible to plan ahead in order step toward the
next stable position

Mid-stance = v
Foot Placement ;;';,'?,:,, g B
------- g ey
9 e =
i 1‘ o s il

=% gl
W\
A ":’ {
g
I

Figure 10

At the beginning of the leg transfer phase of leg 1, say at frame t.
we must compute the reference leg position in world space at frame f;
as follows:

WurlrlT“w l = “..-II.IT[I--J',I [+ 8 '“Tlhp
w"""reﬁ.'.egposh = w"""TH.l._I (H"'rc.[ngF'L;;) (11)

where
[i = t # transferDuration + 0.5(support Duration)

This foothold will insure that that leg 1 comes to ita “mid-stance”
position half way through its support phase. We must still determine
the position of the foot in the body's coordinate system at the time
the foot is placed down. This knowledge is required in order to facili-
tate moving the foot horizontally with respect to the body during the
transfer. This may be accomplished by:

Oty refTegPosy, = W Tuwusa, (w...l.:m“p;;h)

where
f2 =t + transferDuration

The generic transfer trajectory designed by the animator may then
be adapted to move between the current foot position and the calcu-
lated foothold so that the height in the world and proportional distance
moved next to the body are preserved

Robotics research on walking vehicles has provided a rich source
of computational models for the solution of body motion planning and
leg coordination;22-26]. However, their design criteria i3 somewhat
different the requirements of annnation

The primary design concerns of the robotics algorithms are to
maintain dynamic stability of the walking vehicle, to avoid leg intersec-
tions, to optimise the load balancing and energy consumption, and to
insure that the feet never stray beyond their kinematic limits, Because
the algorithms must actually work for real walking machines (rather
than simulated figures), their scope is conservative. Restrictions are
placed on the types of gait patterns and relative phase relationships
between the legs, thereby drastically limiting the repertoire of behav-
fors.

The design philosophy of PODA is tu give the animator absolute
control over the entire set of of available gaits in order to exploit the
coupling between rhythm and dynamics (to be discussed) since these
matters are of extreme importance in artistic design. Moreover, since
PODA's current implementation on the Ridge 32C minicomputer pro-
vides for realtime computation of a figure possessing four 9-degree of
freedom legs at 2 frames per second, leg interference and unnatural
leg stretching may be detected immediately, leaving the range of many
reasonable solutions to these problems up to the artist rather than
hard-wiring a single solution into the motion madel.

MODELING THE DYNAMICS
OF LEGGED LOCOMOTION

The simulation of the dynamics of motion control in:legged an-
imals is an extremely complex modeling problem. Models for single
limbe (industrial robots) which compute the relationships between the
torques applied at the joints,the masses and moments of inertia of each
of the links, and the position of the joints and their associated time

derivatives, are well understood [38|. Work has also been published in
the biomechanics field on the the relationship between muscular forces
and motion parameters of simplified “ideal” models of mima[s[33,34].
Although these inodels may produce interesting animation, their ap-
propriateness for artistic design and control must be considered as well
as their (usually substantial) computational costs.

Simulation vs. Animation

In coutrast to industrial robots and biomechanical simulations,
animation does not necessanly require the computation of actual forces.
The application of dynamics to animation s simplified by the fact that
we are interested only in what can bhe seen

The essential concern 15 to make the motion look as if forces were
being applied. In other words, we are primarily interested in solving for
the acceleration in dynamics models — the computation of parameters
such as forces, torques and moments of inertia is only relevant if it can
help us easily manipulate accelerations to produce coherent dynamic
realism,

The necessity for modeling dynamics in PODA was apparent as
soon as the kinematic model was completed. In a purely kinematic
model the motion of the body 13 quickly seen to be independent from
the coordination of the legs, and it appears as though the body is
suspended from strings, pulling its legs behind it.

The development of dynamics for PODA is an ongoing research
project. The initial goal was to see whether very simple dynamic mod-
els of legged locomotion could be developed which were both amenable
to artistic control and as fully general as the kinematic model (appli-
cable to any figure constructed by the animator). At the time of this
writing, PODA is capable of modeling the translational acceleration of
the center of mass of body in the vertical direction and ground plane,
and the rotational acceleration of the body that is required to insure
that it is facing in the direction of movement (if turning is desired).
At all stages, the body's motion is constrained and propelled by the
simulated forces applied by the legs.

Decomposition of Dynamic Control in PODA

The simple model used in PODA was inspired by Raibert’s work
on legged hopping machines. He and his coworkers have built a one-
legged hopping machine which 13 able to balance and move in three
dimensions. His control algorithms are based on a decomposition into
happing height, forward velocity, and attitude cunlmlff}l.!&?.

The model used in PODA decomposes the dynamic coupling be-
tween the legs and the body along two lines: decomposition by leg and
decomposition by body direction.

Vertical Control

Dynamics in the vertical direction must take into account the ef-
fects of gravity and the gait cycle period of each leg. Since PODA's
decomposition scheme is based on decomposition by leg, it will be help-
ful to consider a one-legged figure.
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Moving in a wave gait, the legs near the
rear advance toward their next footholds,

Figure 11

The current model makes the simplifying assumption that the up-
ward force applied by the leg on the body is constant during its support
phase. The animator supplies PODA with both the value of this force,
the mass of the body, and the downward acceleration due to gravity.
Net upward accelerationief the center of mass is then given by:

P Al
s,,:(—L—gJ for leg 1 (12)
MasShly

The gait cycle period may be subdivided into three dynamic stages
of the leg’s motion: pushing the body up,free lalling,and then restoring
the body te its original position (as long as the application of upward
leg forces are symmetrical about the mud-stance position, the body will
stabilize to zero velocity at that position). We will call these the push
duration, fall duration, and restore duration respectively (fig. 12)

The leg support duration is a function of the body speed i the
horizontal plane and the stroke (equation 7). Sinee the leg's traversal of
the transfer trajectory must coincide with the body's hallistic motion

we have:
transler Duration (.l.' ) [=npport Duration) (13)
7

The vertical position of igures with multiple legs 12 determined
PODA by the superpusition of the ballistic inotion of the body due of
each of its legs considered independently. This extremely simple model
produces remarkably realistic motion for both walking and running in
multiple leg fignures: if the magmitnde of vertical acceleration is low
and the phase relationships of the legs are in opposition, the upward
accelerations will cancel, resulting 1m a smooth walking oscillation. High
accelerations resulting from strong single leg forces (e.g. runming in a
trot) or the sum of forces of many legs pushing from the ground together
(e:g. hopping) propel the body into the air.

The trajectory taken by the body due to the summation of vertical
leg accelerations and downward gravitational accelerations taken from
each of the legs is automatically synchronized with rhythm of the phase
relationships in the legs. For example, convincing cantors, trots, and
bounding motion may be animated simply by altering the figure’s gait.

Another advantage to PODA's leg decomposition of vertical dy-
namics is that changes in the figure’s motion parameters which evolve
over gait cycle periods, such as body speed or upward leg force may be
easily accommodated by adjusting the related dynamic parameters for
each leg's contribution independently at the begmning of its upward
pushing phase. The stability of each leg’s contribution guarantees the
vertical stability of the body as a whole. A gait shifting algorithm has
been developed by one of the authors which exploits the ability lor legs
to undergo phase shifts by varying the distribution of vertical pushing
forces among them.

Horizontal Control

The desired horizontal path taken by the figure is specified in
PODA by the animator with a cubic spline (Catmull-Rom or B-spline)
Given the desired body speed along different parts of the curve, PODA
may calculate the desired positions and velocities along it using a nu-
merical arclength calenlation

However, a legged figure's acceleration toward a desired direction
and speed must be coherent with its leg support duration pattern and
it must also simulate the effects of momentum in a given direction in
order to give the body a sense of weight.

[n PODA, the body's ability to turn and speed up is consistent with
the number of feet on the ground and the maginitude of the maximum

achievable force || Fy,ay, || assigned by the animator to each supporting
leg. The maximum achievable acceleration of the body is governed by
the sum of their forces:

- |17
Mol = 30 S (14)

where n is the number of feet on the ground

Foot

Placement \
i \ Restore

3 Dur ation
Dur ation G . L S ¢
Transfer ai Duration
Duration

Cycle
\ Period

Foot Push

Liftoff ;
Figure 12 F‘———/Dwalwn

At each frame PODA computes the next degired velocity along the
desired bouy path. Then PODA determines the desired acceleration
at a given frame through velocity error feedback, that is, by subtract-
ing the desired velocity from the current velocity at that frame. The
horizontal acceleration of the body at frame ¢ is then computed as:

= § & ’iv." -
Wy = flug el oo 2
"

(15)

where
Bty il - im0, . I e i)

Wi (vri.‘...... vpi)

An additional barkward acceleration durmg the restore Jduration
and lorward acceleration during the push duration 12 necessary in order
to simnlate the effects foot position with respect to the Tuady st Toot
placement and foot hftolf | 28]
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Rotatlonal Control

The foothold and leg transfer calculations described adapt to allow
for full rotational control of the body. At the time of this writing,
howaver, only the dynamics of accelerations about the yaw axis have
been implemented (the pitch axis rotation apparent in figurej 2 is due
to the separation of the application of vertical acceleration between
the front and rear sections of the body). Yaw axis accelerations are
necessary if we wish the body to realistically turn so that it is facing
in the direction of movement.

The simple frame to frame strategy applied for horisontal control
is not sufficient for coordinated turning, especially for running gaits
wherein the legs are off the ground. In such cases one must know
where the body is going in order to effectively anticipate the rotational
accelerations required to keep the body properly oriented before its feet
leave the ground.

The solution adopted by PODA for rotational control takes advan.
tage of ita ability to know the translational coordinates of the body in
advance. The order of calculation for body dynamics plays an impor-
tant role in this matter (fig. 13). The direction of body motion may
be derived from the sequence of actual velocities taken by the body.

Animator inputs
Desired Body Path
and Body Speed
+
Compute Desired
Velocity along Path
+
Compute Horizontal and
Verticel Body Dynamics
4
Compule Anguler Body
Dynamics

+

Body Position
and Orientation

Figure 13

Once the desired body orientations are known, PODA is able to
exploit the leg decomposition strategy employed for vertical control,
Each log applies a positive acceleration during its pushing phase and
a negative restoring acceleration during its restoring phase in order to
bring the body exactly to the desired angle computed at its mid-stance
reference leg position. [f we solve Newton's equations of motion with
the constraint that we wish the final mid-stance rotational velocity to
be sero, we have:

& lﬂ'mhlsuufﬂ-P - a_t}_lh'l!‘lmlro]
{pushDuration){pushDuration + fallDuration)

where o is angle about the yaw axis.

Conclusion

The described formulations have proven to be succesaful models for
the synthesis of legged locomotion. However, many interesting prob-
lems remain to be solved. We will refine the legged locomotion model
in PODA as more is learned from each simpler model. The addition

of rotational dynamics for body pitch and, more generally, the modal-
ing of body dynamics due to the motion of non-supporting limbs are
obvious choices for extension.

Other problems of interest include the development of control tech-
niques for maintaining postural balance, the inclusion of obstacle avoid-
ance and collision detection, and a means of designing motor skills
above and beyond the requirements of walking and running.
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Some of the equations in [Girard 85] do not reproduce well. Those equations are
reprinted here.

(10)
Worldp revFrameFoot, _; = w"'l"TmpM[ HirFoot, , )
HipprevFrameFoot, = HiPTwo,Id' ( w"""prevFrameFoot‘_I]
(11)
World __ World Bod
or THip;l_ or Tbody;l yTHip

WorldrefLegPos 1= w°"dThip j ( HrrefLegPos )
1

(and lower on that same page)

B“’d”refLegPosf = B°d"Tworld; 2[ WerldrefLegPos , | )

(12)

Fyl

massbody

- gl for leg ¢
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n
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where
g || = i || [ |
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(On page 269)
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Applying Classical Techniques to Computer Animation

Glenn McQueen
Computer Graphics Laboratory
New York Institute of Technology
Old Westbury, New York 11568

Introduction

This paper discusses principles of conventional animation and how they
can enhance the quality of computer gencrated animation. Since these tricks
improve the look of any animation and take no longer to render than unembel-
lished animation, these principles are well suited for animation in a production

environment.
Principles of Animation

It may be more accurate to refer to these tricks not as principles of anima-
tion, but as principles of communication. Anyone can animate - just move a
group of objects around and you've got animation. But animating successfully
implies much more than moving stuff from point A to point B. Effective anima-
tion elicits a response from the viewer, it captivates and entertains [Thomas81].
Character animation is well suited for the development of an emotional link
between the audience and the animation. Flying logos, on the other hand, are
sometimes devoid of the endearing qualities which allow an audience to empath-

ize with a cartoon character. How much emotional appeal can be squeezed out of

=217~



a ten second fly-through? If a storyboard is presented which will allow the ani-
mator the freedom to apply some character to a logo, terrific. If not, then the
difficult job of ‘captivating and entertaining’ without the benefit of a character
lies ahead.

Think of an animator as a sleight-of-hand artist. He has a selection of
tricks which fool the eye into seeing something which may or may not be there
[Luckliesh65]. Perhaps the most basic ‘trick’ is to observe the motion of an
object, see the essence of its movement, and determine the best way to simulate
it. From there we add embellishments to jazz up the motion. Squash and stretch
is one of these embellishments. This emphasizes the apparent elastic, rubbery
properties of a shape, for example when a cartoon cat falls from a third story
window. Its body stretches on the way down and then squashes as it bounces into
the dog catcher truck. Overlapping action refers to the parts of a character
which start or stop moving at different times, as in the cat’s head remaining on
the screen a few frames longer than the falling body, and then snapping down to
catch up. Secondary motion addresses minor action which supports the main
action in a scene, as in garbage cans being knocked over on the landing. Staging
deals with the overall composition of a scene, while arcs refer to the principle
that most actions aren’t straight, but follow some sort of curve. The principles of
ease tn ease out allow for smooth acceleration and deceleration of motion. Ezag-
geration exaggerates the essential elements of a movement, drawing them to the
audience’s attention. Anficipation refers to movement just before a major action
which allows the audience to anticipate the coming action, as in the cat scram-
bling in air for a few seconds before falling. Finally the principle of tfming and
pacing, which refers to how timing influences the overall effect of a piece of ani-

mation.

An understanding of these principles is important, so let's go over them in
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more detail.
Squash and Stretch

Perhaps the easiest way to breathe life into a static piece of animation is
to incorporate squash and stretch If a character or object is in motion it will
undergo certain changes within its overall shape. As in our example of the cat, a
character fallihg through space stretches in the direction of the fall, and squashes
or ‘splats’ when it hits the ground. The scaling may seem extreme when viewed
in a single frame, but in motion it is remarkable how much the squashing and
stretching can be exaggerated while still retaining a natural look. This elasticity
can be used to imply weight, mass or other physical qualities. For example, the
shape of an iron balloon would not be affected by a drop to the ground, while a
balloon full of cooking oil would go through drastic shape changes both as it
dropped and when it hit the ground. Computer graphics easily supports global
axial scales, allowing the animator to ‘keep-the-volume-of-the-object-constant’
throughout the scene. If the sphere is scaled by a .5 unit squash along its length
to imply a squishy ball smacking against the ground, an appropriate scale, say
1.5, units affecting its width would be necessary to keep the implied volume
constant. As usual, more complex models present more complex problems. If a
hierarchically defined character lands with a thud on his butt, a global scale in Y
would not be appropriate, as this would also squish his legs, feet and everything
else (fig. 16). This implies equal weight or mass among all his parts, when in

fact his torso and neck would be squishing the most. Scaling the peripheral

body parts back up by a percentage of the original scale keeps the visual weight




Ideally, a flexible model would be used, in which the shape of various parts can
be appropriately changed. This would allow the character to take on much a

pear-shaped squash, more convincing in implying weight.
Overlapping Action, Follow Through

If all the parts of a character stop or change motion at the same time, the
effect is one of extreme rigidity. To impart a sense of fluidity, animators delay
the movement of appendages. In a keyframe animation system, keys can be set to
block out the main motion of the character. Once the animation has been pre-
viewed and approved, overlapping action can be added. For example let’s look at
a piece of animation in which a character falls on the ground. Assume that the
main motion has been blocked out. Now, move the last frame ( the one where he
hits the ground ) forward a couple of frames. You now have two identical ‘last
frames’, one slightly after the next. Go back to the original ‘ground-hitting’
frame and move the character’s arms and hair back up to a ‘falling’ position.

Interpolate the ‘between’ frames. The sequence of frames now shows the charac-

fig. 2

At Rest
Falling Landing

Overlapping action is extremely important en moving the camera through an
environment or zooming a logo through space. Early computer animation typi-
cally comprised of a move, a pause, a rotation, a pause, another move, another
pause, etc. This quickly becomes tedious. A solution is to start the rotation

before the move finishes, substituting the pauses for overlapping action. Follow-
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through is a common form of overlapping action. Rather than abruptly stopping
an action after it has been completed, the motion eases out along the same path
of action. For example, a tennis swing is much more effective if the swing contin-
ues after the ball has been hit. Follow-through gives continuity and fluidity to

movement.
Ease In, Ease Out

A judicious use of eases can greatly enhance the look of even the most
basic move or translation. An ease is a gradual speeding up or slowing down of a
motion usually used at the beginning or end of an action to ‘soften’ the transition
between active and static. Many animation systems give a wide choice of eases,
the most common being linear or exponential. Linear eases slow in and out
at the same rate, so all motion proceeds in a steady, predictable manner. They do
not particularly lend themselves to interesting animation and are least desir-
able. Exponential eases are more widely used, as their motion is fluid and more
enjoyable to watch. Being able to actually define your own ease is the best alter-
native. At NYIT, a curve editor is used to interactively edit curves which
represent x, y and z transformations. This system is ideal for visualizing eases,
allowing both linear and ‘hand made’ exponential eases. A splining function,
when used in conjunction with a relaxing algorithm allows for an infinite number

of possible eases. There are Frames ---->

accepted algorithms

defining the mathematical

specifications of all the

myriad eases, but actually fig. 8
seeing the curve dip down to its rest position is sometimes as useful as seeing the

animation in preview (fig. 3). The ability to interactively adjust a curve which
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determines the rate of animation or transition between positions in a keyframe is
crucial. The flexibility of interactively adjustable curves cannot be stressed
enough, as each job requires a slightly different move and tries to give a different
feel. A standard ease might not give the animator the flexibility he needs to

impart a sense of mass to, say, a heavy object ; a really slow ease-in, while an

hand drawn ease might.

Exaggeration

Classically trained animators often speak of using ezaggeration to ‘sell’ the
action or the movement of a character. This is not meant to imply that exaggera-
tion of motion is always the way to go, but often exaggerating certain motion
characteristics often is necessary to maintain a degree of interesting motion.
Exaggeration doesn’t have to impart a cartoony feel to the animation to be
effective. For example, if a client requests a piece of animation showing a com-
puter generated dancer completing a pirouette, source footage could be used
but only up to a point. After the motion has been blocked out, it’s up to the ani-
mator to decide which movements of the dancer must be exaggerated in order to
enhance the animation. Kenneth Wesley's skater animation for “CBS Sports
Saturday [1986]" is a terrific example. To assist the animator, the client pro-
vided live action footage for reference. The live action was used to rough out the
major movements, which were then subtlely exaggerated to showcase the graceful

aspect of the skater. The effect is neither cartoony nor stiff, but natural and fluid.

Anticipation

One of the oldest theatrical devices used to improve the readability of

animated shorts is anticipation. Anticipation occurs when a major action is pre-
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ceded by a specific move which allows the audience to predict what is about to
happen. This anticipation can be as small as a change of expression or as big as a

broad physical action. In (fig. 4) the character gathers itsell up like a spring,

fig- 4

These anticipatory “moves do not necessarily imply why something is being done,

but make clear what is being done. Although anticipation works best when deal-
ing with characters, the practice of cluing the audience in to what is about to
happen is valid for more straightforward animation as well. Once a move has
been implied through anticipation, animating a vastly different move can be
used to introduce an element of surprise. For example, a car coiling up, obvi-
ously ready to shoot forward but then zooming backward could be considered
a sight gag. Of course, this kind of slapstick may not suit all tastes or all produc-

tion situations.
Secondary Action

Secondary action refers to additional motion which helps support the
main action in a scene. This particular type of motion is usually subtle, and
occurs either before or after the main action so as not to compete with the pri-
mary movement. For example, a character shuffling his feet slightly while wait-
ing for someone reinforces his uneasiness, giving the audience the visual cues
they need to understand his character.

In real life, people or animate objects seldom stand perfectly still - there’s
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always some secondary motion. Someone sitting might tap their toes or drum
their fingers against the arm of a chair, while a plant might sway slightly in a
breeze. Without this subtle secondary motion, animation takes on a sterile,
robotic look.

Like overlapping action, anticipation and squash and stretch, secondary

action is best added after the main action has been roughed out.

Arcs

Most motion is not linear, but describes some sort of arc. This basic
premise is based on classical character animation, but has obvious applications to
the field of computer animation. Rather than linearly interpolating from one
keyframe to the next, passing a curve through the keys gives a more dynamic
look to the animation. If animation has been completely interpolated using
splines, however, the motion may be too smooth, too uniform in velocity - in
short, it will have no punch. Any ‘ooomph’ lost by splining can be regained by
editing curves by hand. Again, a function editor which gives an interactive
graphic representation is ideal for defining motion curves. Most systems have
some automatic interpolation functions available to the animator. At NYIT we
have the choice between user defined, linear, or cubic interpolating splines. One
problem with cubic interpolating splines is that in their quest to keep slope con-
tinuity from keyframe to keyframe they tend to overshoot when confronted with

sudden changes in velocity [Heckbert85]. Since animators intend keyframes to

represent extremes in % ——
. fig. 5

motion, these overshoots

can have disastrous fe=eeyede oo oo 5 Non-Overshooting

results. Feet go through

the floor, fingers go /‘ Overshooting
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through hands, dogs sleep with cats. In short, chaos ensues. Non-overshooting
cubic interpolating splines (fig. 5) are necessary in a production animation
environment as they allow smooth motion without jumping in and out of a curve

editor.
Staging

Perhaps the most basic trick of all, staging, refers to the total composition
of a piece of animation. Even if a scene is well animated, the desired effect could
be lost if the scene isn't well set up. Every cut, every shot, should reflect and
reinforce the theme or mood in the storyboard. An action should be staged so
that it is unmistakably clear, a mood staged so that it has the most impact on
the audience. A good animation system should give the animator an equivalent
degree of degree of scene control afforded to a live action director.

Some systems offer several cameras, most of which can be gimballed,
dollied, moved and rotated, while others give the option of changing not only
the camera position but where the camera is looking as well. Being able to
change only the ‘point of interest’ and camera position is useful for plotted moves
and fly-throughs, but can be cumbersome when a simple pan or dolly is called
for. Here camera orientation is a more useful control.

Being able to choose from a number of cameras helps in coming up with
the most effective shot. Multi-camera systems make the animation process easier,
as well. If complex motion between several objects is required, several well
placed cameras help alert the animator to unwanted intersections, prevent-
ing nasty surprises during the rendering process. Most animation systems have
not only an infinite choice of camera positions, but an infinite choice of focal
lengths as well. A slight lens change can make a dramatic difference in the look of

a piece of animation.
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Timing / Pacing

Timing can be one of the most frustrating aspects of production oriented
computer animation. How many times have you laboured for weeks over models,
lighting and texturing, only to find that the client has cut the animation
from eleven seconds down to seven? Usually a client will want a great deal of
action in a very short period of time. If he was dealing with live action chances
are he would be a little more lenient with his stopwatch, but the cost-per-
second of computer animation makes every moment count. Limited budgets are
partially to blame for some of the too-fast fly throughs seen every night on TV.
The timeframe usually allotted to TV spots is five to twenty seconds, with an
occasional thirty second piece. These time constraints, when coupled with tight
delivery /air-date deadlines allow for few animation changes during a production.
Sometimes a persuasive animator can squeeze a couple more frames out of a
client, permitting a reasonable ease-in or a graceful camera move, but a couple of
frames is usually the limit. A useful tool for handling these situations is one that
allows the animation to be expanded or contracted to different lengths without
affecting the motion or the relative timing of the piece. This expansion or con-
traction also could be applied to just sections of the animation, changing the tim-

ing of the main action while leaving the eases at each end untouched.

Computers in Particular ...

Although the aforementioned principles are of great help when producing
animation, they do not address many animation problems. Facial animation,
interaction between models and environments, clothing, even simple walk cycles

present unique problems which may require specialized software solutions.
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Tree Traversal

One difficulty associated with conventional hierarchically defined models is
the inflexibility of their trec structure. For example, as the torso is rotated for-
ward to begin the fall into a walk cycle, both legs rotate off the floor (fig. 6a).
The brute force solution to this problem is to rotate each leg back to the desired
location for each keyframe (fig. 6b). A more elegant solution is to re-root the
hierarchy of the model, allowing the animator to change root nodes on the fly.
This would allow the animator to change the root node and pivot the model
around the right foot for one step (fig. 6¢c), then change the root node, allowing
the next step to be pivoted around the left foot. This implies two distinct choices

of rotation, a bend which will root the tree at the torso and a pivot, which will

i & %

;. : .r.'%
Point 4 Bueg o
of
/ Rotation
bc

root the tree at the appropriate end node.

Point of Rotation

6a

Inverse Kinematics

Inverse kinematic chains have several uses for character animation. Let’s
use a walk cycle as an example. By setting the feet at their desired position and
invoking inverse kinematics, the rotations for the ankles, knees and hips are
derived. Although this keeps the feet on the floor, the combination of rotations
which inverse kinematics give may not be the ones the animator desires. The
ability to create goal-oriented keyframes is important, but so is control over the

methods used to attain the goal.
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Parameterized Systems

Parameterized animation allows the animator to apply scales, rotations,
transformations or other operations to a series of points through a single parame-
ter. Both the number of points affected and their interelationship is included in a
script describing each parameter. Let's use facial animation as an éxample.
Facial animation lends itself to parameterized systems since different parts of a
body can be addressed separately, unlike a face which has no distinct delineation
between elements. Several successful attempts at facial animation have been
made by [Parke82|, and later at NYIT utilizing the program, EM [Hanrahan85].
EM allows the animator to use script equations to control input parameters,
which can then be manipulated on an E&S calligraphic system using a set of
dials. The parameter ‘Rsmile’ might affect the vertex at the right corner of the
mouth on a 1x1 ratio, while affecting the immediately surrounding vertices on a
1*.5 ratio. This means if the animator applies a transformation of .5 units to
‘Rsmile’, the corner vertex will move .5 units, while the surrounding vertices in
‘Rsmile’ will move .25 units (fig. 7). The success of this system greatly depends

=/ N

on the skill with which the parameters .

are described, but once a flexible set of

parameters is created the model can be

manipulated with a tremendous degree W’ “@Eﬁﬁﬁﬂ- A
" ». A"‘ </ \4
of precision and freedom. I: L =

‘
Programmed Animation fia. :\\\ :

Occassionally a piece of animation is just too complex to be animated by

manually positioning and requires a specialized program to animate the objects.

For example, if the storyboard called for thousands of little tiles to randomly fly
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around then suddenly form a sphere, it might make more sense to write a short
program to control their motion rather than spending hours animating them with
an interactive system. Although simple random motion generators may not give
the animator the control he would prefer, on occasion they provide exactly what's
needed. Another situation which would lend itself to programmed animation
would be a vehicle driving over an uneven landscape [Lundin84]. Keyframe inter-
polation is tedious in this case, as the changing landscape requires keys at each

frame.
Conclusion

Over the last few years many advances have been made towards generat-
ing higher quality animation. Rendering techniques such as ray tracing and tem-
poral anti-aliasing have added to animation’s illusion of reality, but require
tremendous amounts of computing power as well as a certain technical enlighten-
ment on the part of the user.

Classical animation techniques, on the other hand, have been in use suc-
cessfully for decades and can be used on systems ranging from Crays to Commo-
dores. Comprehensive animation systems which allow animators the freedom
afforded to classical animators will improve the art of computer animation
without enormous computational power. By implementing principles of classical
animation we can approach the challenge of creating terrific computer generated
animation from a less technically-oriented direction. Great computer animation
will always be a mixture of programming wizardry and the black art of classical

character animation.
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AN INDEXED BIBLIOGAPHY ON COMPUTER ANIMATION

N. Magnenat-Thalmann and D. Thalmann
MIRA Lab. HEC/IRO
University of Montreal
Montreal, Canada

1985

Although the computer plays an ever-increasing role in animation, the term
“computer animation" is imprecise and can sometimes be misleading. This
is because the computer can play a variety of different roles. A popular
and simple way of classifying animation systems is to distinguish between
computer-assisted and modelled animation.

Computer-assisted animation consists mainly of assisting conventional
animation by computer. In particular, the computer can be used to input
drawings, to produce in-betweens, to specify the motion of an object along
a path, to color the drawings and create a background, to synchronize
motion with sound and to initiate the recording of a sequence on film.
This type of computer animation is also mainly carried out in two

dimensions.

With modelled animation, the computer becomes more than a support, playing
a basic role in the creation of a three-dimentional world. This type of
computer animation involves three main activities: object modelling,

motion specification and synchronization and image rendering.

A "computer animation® bibliography could include references on a wide
variety of related subjects: e.g. graphics editing, computer-aided
geometry, computer art and image synthesis. Based on John Halas statement
that "movement is the essence of animation®, the authors decided to focus
on the references on motion in two and three dimensioms. This
bibligraphy, therefore, contains an exhaustive list of papers on key-frame
systems and computer animation systems and languages. Papers on the fast
developing topic of human modelling and animation are also listed.
Although object modelling is an important part of modelled computer
animation, we have not 1listed the numerous papers on this subject.
Readers are invited to consult the very completed bibliography on

P

This bibliography also appeared in
"IEEE Computer Graphics & Applications", July 1985



computer-aided geometric design by Brian Barsky (IEEE Computer Graphice
and Applications,July 1981,pp.67-109). Image rendering is also an
important process in the production of computer-generated films. However,
image synthesis is a research domain at the same level as computer
animation, so we have only listed papers that describe techniques directly
linked to animation like particle systems or motion blur. Most important
papers on image synthesis may be found in the SIGGRAPH proceedings, IEEE
Computer Graphics and Applications and ACM Transactions on Graphics.

Papers listed in this bibliography are mainly research papers; although we
cannot guarantee that this list contains no errors or omissions, we
believe it to be accurate and complete. We have also listed several
papers intended for a wider audience that we judge to be of significant

interest.

The index allows the reader to find all the papers related to a theme or
belonging to a class. The same paper may be present in more than one
class. For example, a paper which discusses a computer animation system
for animating human bodies using in-betweens will be classified in three
categories: computer animation systems, key-frame animation and human

modelling and animation.
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