
r

COMPUTER ANIMATION: 3-D MOTION
SPECIFICATION AND CONTROL

David Sturm an
Julian Gomez
Roger Gould
Glenn McQueen
Jane Wilhelms

SIGGRAPH 1987 Tutorial

COURSE n o

r

TABLE OF CONTENTS

Computer Animation: 3D Motion Specification and Control
SIGGRAPH 1987

Page

Course Introduction 1

David Sturman,
Control

"A Discussion on the Development of Motion
Systems"

David Sturman, "Interactive Keyframe Animation of 3-D

3

Articulated Models ll
..••••••••••••••••• • ••••.••••••••••• 17

Pat Hanrahan, and David Sturman, IIInteractlve Animation of
Parametric Models" 27

Richard V. Lundin, "Motion Simulation" _ ..• _ .. _. __ ._ 35

Glenn Entis, "Ser 1pt Systems" 45

Craig W. Reynolds,
and Actors"

"Computer Animation with Scripts
.

Richard Chuang, and Glenn Entis,
Animation - Step by Step"

"3-D Shaded Computer

51

59

Julian E. Gomez, "Twixt: A 3D Animation System"•..... 69

Julian E. Gomez, "Comments on Event Driven Animation" 77

Ken Shoemake, "Animating Rotation with Quaternion Curves" 91

Ken Shoemake, "Quaternian Calculus and Fast Animation" 101

Jane Wilhelms, "Dynamics for Everyone" 123

Jane Wilhelms , tlToward Automatic Motion Control" 149

Jane Wilhelms, "Using Dynamic Analysis for Realistic
Animation of Articulated Bodies" 161

William W. Armstrong, and Mark W. Green. "The Dynamics of
Articulated Rigid Bodies for Purposes of Animation"

Michael Girard, and A. A. Maciejewski, "Computational Modeling

197

for the Computer Animation of Legged Figures" 207

Glenn McQueen,
Computer

"Applying Classica l Techniques to
Animation"

N. Magnenat-Thalmann . and D. Thalmann. "An
Bibl.iography on Computer Animation"

Indexed

217

231

COURSE INTRODUCTION
Computer Animation: 3D Motion Specification and Control

SIGGRAPH 1987

David J. Sturman
NYIT Computer Graphics Lab

Computer animation is a fast growing field. In the past ten years improvements
in computer speed, size, and cost have made animation by computer feasible for
many new applications. Computer animation is now widely used in industry, sci
ence, manufacturing, entertainment, advertising, and education. or the various
aspects of computer animation this tutorial will focus on one--motion control.
Motion control involves the translation of an idea for a motion or action into it's
actualization in a sequence of animation. The ease and accuracy of translation
are the criteria with which to measure the quality of a motion control system.

The tutorial is designed for people interested in writing their own motion control
systems and for those interested in investigating existing motion control systems.

The five speakers have been involved in the computer graphics field for a number
of years. David Sturman is a sen ior research scientist at the New York Insti
tute of Technology's Computer Graphics Lab and is an author of much of the
Lab's animation software. He is a co-author of em a parameterized keyframe ani
mation system. Roger Gould is an animator for Pacific Data Images, one of the
world's leading computer animation production houses. He received his BA from
Brown University in H184. He was the coordinator in the production of "A
Comic Zoom", a short an imation that appeared in SIGGRAPH H185 and the H)86
film "Animation Celebration". Dr. Julian Gomez received bis doctorate from
The Ohio State University where he authored a publicly available computer ani
mation system, Twixt. Twixt has been used for a n umber of animations shown at
SIGGRAPH in the past few years and has been the primary computer animation
tool used by Cranston-Csuri Productions and the OSU Computer Graphics
Research Group. Julian is now with RIACS engaged in research on chaotic attr
acters and gra.phic aerodynamic simulators for NASA. Dr. Jane Wilhelms
teaches computer graphics and animation at the University of California, Santa
Cruz and is the author of Deva, a computer animation system that uses dynamic
a.nalys is to model the motion of jointed bodies. Glenn McQueen received his
educat.ion as a traditional animator at Sheridan College in Toronto and has been
a computer animator at the NYlT Computer Graphics Lab for the past 3 years.

Four of the lectures have contributed an original paper to the course notes. In
these papers they discuss their own area of expertise as well as comment on the
current state of computer an imation. Although some concepts are repeated in
several papers, each author writes from a unique point of view with different
emphasis and meaning.

In addit ion, several key papers by these and other authors are reprinted. The
papers go into specific detail about different techniques of computer aided motion

-1-

control. Th e aut.hors were kind enough to grant permission for the reprinting of
their work. They includ e William Armstrong, Glenn Entis, Michael Girard,
Patrick Hanrahan , Dick Lundin, Nadia Magnenat.Thalmann, Craig Reynolds,
and Ken Shoemake.

In the course itself, the lecturers will discuss tlle various forms of motion control
currently in use. Examples of these techniques will be shown in computer anima
tions from recent years. In addition, the role of the animator, vs. the computer
sc ientist will be discussed with attention to the elements of a computer animation
system that are most supportive of the different types of animation and anima·
tor. Towa.rds. the end of the session there will be time for qu es tions and discus·
sion of particular techniques and computer animation in genera.l.

In preparing for this course the lect urers found themselves ask ing, "What (or
who) is a computer animator?", and , " Wbat constitutes a com puter animation
system? " They found that answers were numerous, but that none were complete.
Th cy also found that the act of a..<;king the quest ions was in itself valuable insofar
as it continually gave perspective and meaning to the more detailed issues. In
discussing various com puter animation techniques and com puter animation sys·
terns, the lec tures will keep these quest ions open. They in vite the listener (and
read er) to keep these quest ions in mind as well , and, a rLer the course, to ask them
of t hemselves as they evaluate or design new ::lnimation ~yst('m s.

Introduction

A DiscuBsion on the Development
of Motion Control Systems

David Stu rman
Computer Graphics Laboratory

New York In stitute of Technology
Old Westbury , NY 11568

May, 1086

An imation is a. process to represent change over time, be it the movement of a 'flying

logo', t he bending of a. robot limb, the contortions of a cartoon alley cat, a near

instantaneous chemical process, or the life-cycle of a star. Animation literally means "to

bring to life". It means to take something still and give it vital signs--to make it move.

For the most part, computer animation involves the simu lation of motion through the

rapid display of successive images. Each image represents a sequential moment in time

of an act ion. When these images are displayed fast enough, the human eye interprets

t hem as continuous motion. When generating an imation we are really creating single

fr ames that, when viewed sequentially, appear continuous. We are all familiar with this

phenomenon.

Motion control is the speci fi cation of the frame to frame changes in an animation that

create the illusion of action. Motion control for computer an imation has been studied

seriously for some twenty years [Magnenat-Thalmann 851. In that time there has been

developed a wide diversity of computer systems for motion specification. Each system

attacks a di fferent issue and thus has different strengths and satisfies different needs. No

one system has been ab le to handle the whole task of motion contro l. This paper

discusses various types of systems in terms of the basis (or their development and

characterist ics of their typical users.

Users or Computer AnImation

Computer t echnology has been applied to an imation 10 many ways. The entertainment

industry has made heavy use of it in advertising and 'Saturday morning' cartoon

generation. In advertising, computer graphics is used to get a 'technical' or 'space-age'

look to an animation. In car tooning, computers are used to speed up the process of

generating t he individual frames of the cartoon. Artists have also used computer

- 3-

"

animation as a new explora.Lory art form.

On the other end of the spectrum is the sc icnti ric commu nity . Engineers use computer

a.nimat ion for simulating otherwise unobservable or prohibitively expensive dynamics

sli ch as fluid flow across an airplan e wing o r ship's propeller. Manufacturers use

computer animation ro r simulating man ufacturing processes, and experimenting with

alternative des igns before building expensive equipment. The fi eld of robotics has been

especially active. Here motion control is used to program industrial robots. The

techniques that have been developed are of use in many other applications and the

wealt.h of robotics literature is a basis for many of the recent developments in animation

systems.

Biochemists use computer animation to simulate minute chC'mical processes, the bonding

of proteins, the winding of DNA. The visualization of these processes tbrough computer

animation is bringing new understanding to their field.

Perhaps th e heaviest users of computer animation are the military , aviation, and

shipping industries. Th ey make daily use of simulato rs to train pilots, tank crews, ship

captains and operators of other vehicles which are expensive to run. By using

simulators, t,hey can train a greater number of people in nearly rea listic situations at a

significantly reduced cost. In addition, hazardous situations can be simulated witb no

risk to the participants in training.

Each of these applications has different requirements for a computer animation system.

A system designed for one use is not often useful for another. On the other hand,

systems often incorporate techn"iques developed for other applicat ions.

2D Computer Animation

One of the fi rst ideas for the use of computers in animation was to speed up the

t raditionally laborious process of cartoon animation. Traditionally 1 cartoon animation is

done by hand . Each frame of the animation is drawn by an artist, skilled in drawing

sequences of images that come to life. Animators analyze real motion either directly or

from fi lm, observing the different components and characteristics of particular actions.

Animators understand that the perception of a motion is often di fferent than the motion

itself. So, they use 'tricks' to lead the eye and enhance the action. These tricks

generally employ non-realistic effects that emphasize motions and give greater life to

characters. Objects are squashed, stretched, twisted, enlarged, and otherwise deformed

to exaggerate and emphasize their action. These are techniques learned through years of

-~-

.1

trial and error, Animators acquire a repertoire of motions that they use repeatedly in

their work. The pacing and motion of walking, jumping, funning, skipping, flyin g, clot.h

movemen t, emotional expression, mouth movement , speech and a host of other actions

arc all basic knowledge to the traditional animator.

A laborious part of hand animation is the generation of inMbetwecn fr ames. To create an

animation, skilled artists draw 'key' frames. These frames represent the extremes of a

motion or a critical juncture in an animation. Keys set the general outline and pacing of

an animation, and. are generally three to five frames apart. In a thirty second sequence

of animation t here are 720 frames (at film rate of 24 frames/sec) of which one hundred

or more may be key rrames. The in-between frames (' in between' t he key frames) are

basically slight modifications of the key fram es. These can be drawn (laboriously) by less

experienced animators (who can be paid less) . To maintain consistency, the "in

betweeners" must imi tate the style of the origin al animator. A good in-betweener is a

good imitator. (Additional people do the coloring, backgrounds, camera work, etc.). In
this way, an entire feature length film can be made based on the art work of just a few

'key' animat.ors.

When animat.ors turned towards computers it was to reduce the labor and tedium

inherent in th e animation process. Systems were developed to generate the ' in-between'

fram es from keys pencilled by an animator IBurtnyk 76, Catmull 781. Typically the

animator draws key frames, carefully drawing each line in a key fr ame to correspond to

a line in the prev ious key frame. The computer then interpolates the lines, on a point

to-point bas is, generating each frame between the hand-drawn keys. This is strictly a

two dimensional process, relying on the animator 's skill to generate the correct overall

motion. The main goal is to speed up the animation process by automating in

betwcening. The compu ter lends a certain look to the animation, but the creativity and

design are still determined by the animator.

3D Computer Animation

With the advent of 3-dimensional modelling, animating and rendering, computer

graphics differed enough Crom traditional 2D animation to be a new form of expression.

A modeller describes to the computer the detailed environment and models (characters)

of a sequence. The description includes lighting, color , shape and surface properties of

the models, camera lens characteristics, etc. An animator (often the same person as the

modeller) describes the actions that the models, camera and environment perform over

time. The computer rendering system then automatically draws each frame of the

- 5-

-I

animation with the correct shading, positioning, and perspective for the scene.

The skills required for 3D computer animation are different than (or t raditional 20

anim:llion, although t.hey share some common ground. Drawing (drafting) is not as

crucial since t he computer provides the correct outlines and perspectives on rendering.

The ini t ial pacing of motion is not as crucial since, once established, motions can be sped

up or slowed down with minimal errort . Nevertheless, the artistic eye traditional

animators have (or motion and for representing motion lends a very creative aspect to

their 3D comput~r animations. Although their actual drafting skills may not be

necessary (or 3D animation, their sk ill in composing and pacing animations are

invaluable. Unfortunately, nearly all currcntly ava.ilable 3D computer animation sys tems

require a fa ir degree of computer literacy to generate any meaningful work, restricting

their use by t raditional animators.

3D Keyframe Systems

At first 3-D systems were developed as logical extensions of 2-D keyframe systems. They

used t he simplc idea of allowing the animator to interactively position a model on a

sc reen, specify a frame number , position the model again , speci fy another frame number,

interpolate , and view the rC'su lting animation. Many hardware devices can perform 3D

transformat ions and display jointed rigid body models in real-time {1/30tb sec.) and so

interactive systems usin g those devices give immediate visual feedback of the effec ts of

an animator's man ipulations. A simple conceptual basis combined with immediate visual

feedback makes keyfram ed systems the easiest for computer-novice animators to use and

the most common type of animation system in usc today.

Early keyframe systems used rigid body parts, linked at movable joints [Williams 821 .

Position control consisted of rotations and translations about those join ts. Many systems

a llowed scaling of parts, and animation of the eyepoint and perspective t ransform.

Severa l kinds of keyframe interpolation were usually prov id ed such as linear, cubic

spline, etc. allowing the an imato r a measure of control over the in-betweening.

The number of ways a model can move increases dramatically as the model becomes

more complex. The human body, for instance, contains over 200 degrees of freedom.

Animators working with early keyframe systems recognized the need for a higher level of

control if t hey were to do more complex an imations.

Parameterized Systems

Paramete ri zed systems present a slightly higher level of control over simple keyframe

systems. They utilize keyrrame interpolation, bu t the nature of the data stored at the

keyrrames is difrerent. In parameteri zed systems th (' modeling or a character is more

closely linked to its animation. The way in which an object can move is specified in the

modelling stage rather than assumed, as is th ~ case with simple keyrrame systems.

Degrees or freedom, coordination between parts, limits of motion, etc. arc built into

models through the use of modifiable parameters. The animation system provides the

animator control over the parameter values which in turn control the positioning of the

model. The parameters can also describe the geometry of a model to allow shape

changes in the animation. Parameter values are keyed and in terpolated as in a simple

keyfr ame system. On e such system, em, has been developed at NYlT IHanrahan 851.

Parameter driven animation systems require a good deal more computer training and

experience than simple keyframe systems. However, given the extra computer expertise,

an an imator has more control over an animation than with the direct keyframe

approac h.

Programming Animation

Often an animator requires a special effect , or a specific motion not handled by a general

pu rpose animation system. In this case the motion has to be programmed directly. This

happens mostly in the scientific community but occurs more orten than desired in the

entertainment industry , Programming usually is done in a common computer language

like LISP, C, Pascal or Fortran. Occasionally the language has some extensions to

support graphics or animation. Using a programming language gives the an imator

complete control over the animation; however , he may not see the resul ting motion unti l

the program is complete and the full animation is rendered. If the motion is not correct,

the program has to be modified , recompi led, re-executed , and th e animation re- rendered.

This may take several minutes to several bours. An alternative is to prov ide a

programming interrace to a general purpose animation system. At NYIT we have a

programmer's interface that allows programs to manipulate the animation database used

by our keyframe animation system Mop. An important part of our animators' tools are

special purpose programs that manipulate this kind of database [Lundin 84]. The

database can be reused by Mop at any time for motion preview and interactive

modification. In ract Mop itself can be considered an interactive tool for editing

animation databases.

-7-

G

Ttle direct programmmg approach is, perhaps, the hardest way to animate (or a user

with limi ted computer experience (animators, biologists, physicians). The quality of the

motion is close ly tied with the ability of the programmer to translate a concept into an

algorithm and implement it. Programs arc orten special purpose and not used more than

once or twice. One of the reasons (or this is that it often takes as much time to write a

progra.m the first time as to later adapt i t for general use or to teach others to use it.

The most common users are those with computer expertise who can program their own

animat.ions or are employed to program the animations of others.

Scripting Systems

Scripting systems were developed in an effort to provide a method of animating that was

more fl ex ible (and thus more powerful) than a keyframe approach and not as dirricult to

work with as a full blown programming language. Scripted animation uses a program

like script to 'model' the animation of a. scene. The script usually describes both the

models and animation of a sequence. When describing his scripting animation system

ASAS, Craig Reynolds refers to it as, · 80 notat ion for animated graphics · [Reynolds 821.

As a notation it can be read, edited, and modified on any general purpose computer

system. Only wh en actu ally renderin g images is any special hardware requ ired.

The animator using a scripting system designs and writes the an imation script, and then

runs it through the system once (or each rendered frame . It may take several minutes

(or longer) to generate a complex sequence for playback, thus feedback can be slow. The

advantage of a scripting system is that it provides th e flexibility of programming while

still supporting an imation specific capabilities. Libraries of motions and models can be

generated and reused making the animation process simpler as time goes on. In the case

of LISP-based systems, the scripting language is ex tensible so that new an imation

fun ct ions and primitives can be added to the system. Scripting languages are usually

easier to learn than general-purpose programming languages and thus easier for people

who are not experienced programmers.

An early scripting system, GRAMPS IO'Donnell 811. takes advantage or a rast,

interactive graphics device to allow real-time manipulation of parameters. In this way

the animator can interactively set alues which are then used in the interpretation of the

script.

-s-

The Scientific Approach

Simulation

For the moot part , animation for entertainment I~ not concerned with realistic

simulation. The goal is communication: if a. sequence comm unicates more by ignorin g

realit.y, e.g. an accordion shaped cat walking away from the crushing blow of 20 tons,

then an imators have no hesitation In usin g it. Not so for the scientiric and engineering

community. Realism is important. Looks are not. When a molecule bonds with another

there is no squishing or squashing to emphasize the fact. In simulation, the purpose is to

describe what happens, whatever happens.

Most simulations are programmed di rectly . When the description of the motion is clear

and well defined, programmin g is a natural way to proceed. A few general purpose

animation systems are used for simul ation, but the simulation and entertainment

communities have different enough goals that systems well suited for one may not be

very helpful to the other. Even so, some of the basic technology is shared and many

techniques developed in one field are used ex tensively in the other.

Robotic Origins

Many techniques for 3-D motion systems come from the robotics field where the

emphasis is on the control of robot arms and manipulators.

The robotics industry has developed an extensive literature III t he problems of

programmed robot control. Some of the major topics dealing with motion control are

forward and inverse kinematics, motion trajectories, dynamics, collision detection, and

path planning IPaul 81, Proc. IEEE Robotics 851. Most robotics systems are language

oriented systems in which the engineer (animator) writes a series of instructions to

program the robot IPaul 771. Some systems teach robots by example IPuma 841. These

systems allow the operator to position a robot arm at certain poin ts in a trajectory. The

robot system then remembers these points and can calculate a smooth path of motion

through them.

In some ways the problems for computer animation are different from those of robotics.

Robotics is Dot concerned with problems of expressive commu nication, or non·mechanical

simulation. However, the underlying techniques for motion simulation are the same, and

a study of robotics literature is important for anyone developing a computer animation

system.

Inverse Kinematics

Inverse kinema.tics involves the dctermin:ttion of joint rotations and part lengths that

result in precise motion, placement, and orientation of :tn end nod e (e.g. a robot hand).

This is useful , for instance, when you know that you want a button pressed, and you

don't care how the robot arm gets there, as long as it does. Or in the case of walking

where you want the foot to remain pbnted on the floor wh ile the knee bends

appropriately to the motion of the hip.

When working with an animation system , that implements inverse kinematics, the

an imator specifies discrete positions and motions for end parts. The system then

computes the necessary joint angles and orientations for other parts of the body to put

the specified parts in the desired positions and through the desired motions. Inverse

kin ematics is most easily applied to bodies of few linkages. It works well for walking and

for arm/hand positioning IGi rard 85]. As the number of linkages increases, the inverse

kinematic solutions to a particular position become numerous and complicated.

Computation slows down considerably and more information must be supplied by the

an imato r.

Por example, it is comparatively simple to determine how much to bend an elbow and

twist an upper arm to put a hand into a mailbox. When you bring into play the rotation

of the shoulder, the problem becomes a little more difficult. At this point, you have to

speci fy which takes precedence: the twist of the upper arm or the rotation of the

shoulder. Choices may be based upon which is more energy erricient, communicates

better, or is more natural. As you add degrees of freedom , especially ones that create

redundant degrees of freedom, the problem becomes more complicated since there may

be many energy effi cient, or natural solutions to a single positioning. The criteria for

selecting must be mad e more specific, thus more animator intervention. When criter ia

are natural , humorous, ponderous, etc. the speci ri cation itse lf becomes difficult. (What

does natural mean?)

One of the drawbacks of IDverse kinematics is mentioned above, namely that it is not

simple to use for complex linkages. Another drawback, perhaps more influential, is that

inverse kinematics is not applicable to all aspects of animation and must be incorporated

in an animation system along with more general techniques. It has been used mainly in

the industrial sector for robotics. A few researchers have successfully experimented with

it (or use in production animation, and produced impressive animations, but none have

been embodied in a general purpose animation system {NYlT Demo 84, OSU Demo 84].

II

Goal Directed Systems

Goa l directed systems arise out of the concept of director/actor. The di rector says,

" walk over th ere", or "pick the wrench lip from the table"! and the actor obeys. One of

the first goal directed systems was SHRDLU developed by Winograd in 1\171 as part of a

landmark t.hes is in artiricial intelligence IWinogr:ld 721. It dealt with a vcry li mited

block-world yet was very effective with in th is wo rld. The user could direct the system to

put a red block on a blue block and the system would figu re out where the two blocks

WCTC and what motions to perform to get the one on top of the other. David Zeltzer has

developed a goal directed system based on the idea t hat objects can be given 'motor

skill s' and then directed to use those skills [Zeltzer 82, Zeltzer 841. Research in goal

directed systems has also been going on at the University of Pennsylvania [Korein 821.

T he main effort of using this type of system is ' teaching' objects required skills and

givin g them sufficient knowledge to act consistently within their environment (for

example, avoiding obstacles or walking over uneven te rrain) . The ease of use of these

systems lies entirely with the interface presented to the an imator. Their limitation lies

in the mass of background information need ed in order to direct a cha rac ter through a

variety of motions in a non-trivial environment. !lowever, once a skill is taught, it can

be used repeatedly with little work. This is a system that gets more powerful with

extended use.

Dynamics

Although inverse kin ematics entai ls solving the body position for a des ired effec t it does

not take into account the mass and inertia of the body in motion. Thus animations

produced by these systems often have an unrealistic appearance. The objects do not

seem to have weight or mass, and thus speeds of movement are inaccurately represented.

Dynamics takes into account mass and inert ia as well as the various forces acting on the

body . Animations come out realistically at the expense of mueh (s low) compu tation per

fram e. Characters move correc tly and appear to have weight and substance.

General purpose animation systems incorporating dynamics are still in the experimental

stage. For the most part, they have been used in robotics to simulate robot arm masses

in motion. They require some programming to set up a model with the correct

characteristics and then to apply the correct (orces. Once that is complete, t he system

works out the rest for itself. Recently I Jane Wilhelms developed Deva, an interactive

system (or setting up and previewing the dynamic motion of articulated bodies [Wilhelms

851·

- J\ -

10

D~'nami('s may be the b<'St way to achieve realistic motion for sim ulations. Combined

with goal direction, it could provide an exce llent basis for a general purpose animation

system. Special crrccls involving unrealist ic motions will still be needed so the ability to

override the dynamic control will be necessary.

Other Techniques

There are an infinite variety of motions. The techniques described above only address a

few of them. Other techniques have been developed to animate specific behaviors.

These include particle systems IReeves 83j, systems that act on amorphous

forms [Kawaguchi 8S/, group animation [Amkraut 8S/, and others. These systems handle

special cases of animation and are of limited use except when integrated in to a more

general purpose animation system. They orten require more skill in programming than

in animation yet hold an important place in the overall scheme or animation.

Discussion

As indicated, there are many techniques and systems used ror motion control for

computer animation. Each one answers a particular nc('d or caters to a particular class

of user. No one system answers all

tool bag.

needs, yet eac h system has an appropriate place in

This is a natu ral state in the evolution or any the comput er animation

discipline. As time goes on these systems will be integrated so that an animator has

many or these techniqucs available at oncc.

The recent trend in animation systems has been towards higher levels or control IKorein

82, Zeltzer 85, Wilhelms 851 . Higher levels or control are always based on lower levels or

assumption. To make a dynamics simulation pedorm correctly requires the pre

speci rication or masses, (orces, links, etc. The higher the level or control , the more pre

specification is required. Some systems have a dcfault set or assumptions to simpliry the

animator's sct·up. Nonetheless, this sti ll requires an initial specification of the derauit

set·up. Sometimes non·animators rind a system easy to use but have difficulty with the

initial set-up. For instance, animators at NYIT rind that tbe ini tial set up for the

parameter system, em, is relatively dirricult, but that em arrords better control over the

model and animation than the conventional keyframe system, Mop. Experience has

shown, though , that Mop offers surricient cont rol (or most animations and, because of the

easier set-up, is more likely to be used. Occasionally, animators find that neither system

tits their needs and so program the motion themselves. In such cases, they often bring

the completed motion back to the general purpose system to do touch-up work or to

coordinate it with other action in the animation. Thus, when providiog higher levels of

- 12-

II

control , it is important t hat the increased level of control not require a dirricu lt sel-up ,

and that the animator still has access to all lower levels of motion controL

One di rriculty in the design of animation systems is that systems arc designed by

computer scientists based on their own understandin g or the needs of animators, or arc

designed by computer sc ientists who want to do anim:\tion thClllsclvB. Rarely (ir ever)

are systems designed and implemented by animators. Industria l and sc ientific animators

orten have a speci ric idea or set of rules and algorithms from which a motion control

system can be des.igned . This can belp in getting the animation capabi lities right, but

eveD so, the resulting system is often easier to use for the computer scientist than the

an imator.

Animators usuall y want something to happen, an effect, such as a ball bouncing and

hitting a wall, or a shock wave crossing an airfoil. They do not want to have to wr ite

down (o r know) the equ ations for the motion of bodies in the influence of gravitational

forces, or the formulas for fluid flow. They may just want to control the weight of the

ball or the shape of the ai rfoiL But, they find that they cannot get the effec ts they

desire without programming. In many computer an imation production houses computer

program mers work a longside animators, writing spec ia l purpose programs and using

more complicated an imation systems to provid e effects that the animato r can visua li ze

but not implement . The sc ientific and engineering communities a re analogous. A

solution may be to provide systems that do not require programming skills to use. This

wou ld open the fi eld to more traditional animators. Then again, perhaps animators

should lea rn to program. Systems may be more powerful and versatile if users can

express their ideas algorithmically . Up until now, most animators have found it

necessary to learn programming, but the fi eld is still young and has not taken root on

any particular ground. These issues will be dealt with slowly as the various users and

im plcmcntors work together , each building upon the skills and understanding of the

other .

- 13 .

I :!

References

[Amkraut 8;;1 Amkraut, Susan, Gira.rd , Micha.el, and Karl , George. Eurythmy.
ACM·SIGGRAPII '85 Film and Video Show. July , 1985 A fil m from the Computer
Graphics Rescarch Group, Ohio Sta.te University.

[l3urtnyk 761 l3urtnyk. N., and \vien, M. Interactive Skeleton T echniques for
Enhancing Motion Dynamics in Kcy Animation. Communications of the ACM
]9(10):564-569, October,]976.

[Cat,mull 78J Catmull, E. The Problems of Computer-assist.ed Animation. In
Compu ter Graphics:SIGGRAPH '78 Conference Proceedings , pages 348-353. ACM
SIGGRAPH, August, 1978. A good overview of the problems in compu ter-assisted 2-D
cel animation.

IGirard 85J Girard, Michael , and Maciejewski , Anthony A. Computational
Modeling ror the Computer Animation of Lcgged Figures. In Compute r
C ra phics:SICCRAPH '85 Con ference Proceedings , pages 263-270. ACM·SIGGRAPH,
July, 1985.

[Hanrahan 851 Haranhan , Pat, and Sturman, David. Interactive Animation of
Paramet.ric Models. The Visual Computer:lnlernalional Journal of Computer Graphics
1(4):260-266, December, 1985.

[Kawaguch i 851 Kawaguchi , Yoichiro. Growth ill:Origin . ACM·SIGGRAPH '85 Film
and Video Show. July ,]985 A film produced with the LlNKS·1 at Osaka University ,
and The Art & Science Laboratory, Nippon Electronics College.

[Korein 821 Korein, James U., and Badler, Norman I. Techniques ror Generating
the Goal-Directed Motion of Articulated Structures. IEEE Computer Graphics and
Applica lio,ls 2(0):71-81 , November, 1982.

[Lundin 841 Lundin, Richard V. Motion Simulation. In Nicograph 198-1
Conference Proceedings , pages 2-10. Nicograph, November, 1984.

IMagnenalr Thalmann 85J
Magnenat-Thalmann, Nad ia , and Thalmann , Daniel. An Indexed

Biblography on Computer Animation. IEEE Computer Graphics and Applicalions
5(7):76-85, July, 1985.

INYIT Demo 841 New York Institute of Technology. SIGGRAPH 84 Demo Reel. ACM·
SIGGRAPH '84 Electronic Theater. July, IG84

10'Donnell 81J O'Donnell, T.J., and Olson, Arthur J. GRAMPS· A graphical
language interpreter for real-time, interactive , three-dimensional picture editing and
animation. In Computer Graphics:SIGGRAPH '81 Con ference Proceedings, pages
133-142. ACM·SIGGRAPH, August, 1981.

10SU Demo 84J Ohio State Un iversity Computer Graphics Research Group.
SIGGRAPH 84 Demo Reel. ACM·SIGGRAPH '84 Electronic Theater. July, 1984

\paul 771
Cont rol.

Paul , Richard P. WAVE: A Model-Based Lan~ua~e Fo r Manipulator
Th e Indu striat Robot 4(1):!()- 17, March, 1977.

IPau l 8I1
and Con trol.

Paul, Richard P. Robot Manipulators: Mathematics , Programming,
The MIT Press, Cambrid~e, MA, 198 1.

(Proc. IEEE Robotics 85)
IEEE. Proceedings: Intern atiorzal Con f erence on Robotics and Automation, 1985.5t .
Louis.

IPuma 84] Unimale Puma At/ark-II Robot sao Series Equipment and
Programming Manual Unimation , Inc., Danbury, CT, 1984.

[Reeves 831 Reeves, \Villiam T . Par ticle Systems - A Technique (or Modeling a
Class of Fuzzy Objects. ACM Tran sactions on Graphics 2(2):91-108, April , 1983.

[Reynolds 82j Reynolds, C raig \V. Computer Animation with Scripts and Actors. In
Computer Graphics :SIGGRAPH '82 Conference Proceedings, pages 289-296. ACM
SIGGRAPH, July, 1982.

[Wilhelms 851 Wilhelms, Jane, and Barksy, Brian. Using Dynamic Analysis to
Animate Articul ated Bodies Such as Humans and Robots. In Proceedings , Graphics
In terfa ce '85, pages 107-104. May , 1085.

[Willi a ms 82J Williams, Lan ce. DBOP. In Course No tes: Seminar on Three-
Dimensional Compu ter AuimaiiorL ACM-SIGG RAPH, July, 1082.

[Winograd 721 Winograd, T erry. Understanding Na tural Language. Academic Press,
IQ72. PhD Thesis. Also discussed in many books on Artificial Intelligence.

[Zeltzer 821 Zeltze r, David. Motor Control Techniques for Figure Animation.
IEEE Computer Graphics and Applications 2(9):53-59, November, 1982.

IZeltzer 84] Zeltzer, David. R epresentation and Control of Three Dimensional
Computer Animated Figures. PhD thesis , The Ohio State University , August, Hl84.

[Zeltzer 85] Zeltzer, David . T owards an In tegrated View of 3-D Computer
C haracter Animation. In Proceedings, Graphics Interface '85, pages 105- 11 5. May ,
1985.

- 15-

-/6-

Interactive Keyframe Animation of 3-D Articulated Models

David Sturman
Computer Graphics Laboratory

New York iDst itute 01 T echDolo&>,
Old Westbury , NY 11568

Abstract

This paper discusses some of the issues concerned with keyfram ed computer ani
mation of 3-D articulated models and the problems in designing interactive sys
tems (or th is type of animation. Examples are taken (rom the (our years of key
(rame animation of articulated models done at the NYIT Computer Graphics
Lab, and from our recent at tempts to refin e our original keyframe an imation sys
tem, BBOP. This paper also addresses the importance of the interaction of ani
mators with keyframe animation systems as an element in the design o(such sys
tems.

R esume

Cet art icle aborde certains des aspects de l'animation par ordinateur t raitee par
images in term ediaires de modeles 3-D articul es et des problemes de la conception
de systemes interacti(s appliques a ce genre d 'animation. Des examples decr its
sont ext raits de nos quatre ans d'experience en animat ion par images
inte rm ediaires de modeles articules au sein du NYlT Computer Graphics Labora
tory et de nos r e-centes tentatives d 'ameliorer notre systeme d'animation par
.images interm ediaires, BBOP. eet article souligne aussi I'importance de
l'interac tion des animateurs avec des systemes d 'animation par Images
intermediaires com me un element de la conception de tels systemes.

KEYWORDS: Animation, art iculated model, keyframe, in teractive, uscr
friendly.

-/7-

Introduction

Animation for film and video has t rad it ionally been a long and tedious task ,
with many animators drawing and painting each frame by hand. With the
advent of computers, animators turned toward these machines to take the
drudgery out of the animation process. Early systems worked with two-
dimension al images, automating the tedious inbetweening task. Animators
specified the correspondence between lines in successive key frames by t racing
them in a fi xed ord er. The computer would generate the frames in between by
interpolating corresponding lines from the keyframes 11 ,21 . This t echnique has
been refin ed and is still very popular in modern animation systems like the
TWEEN system produced by CGL, Inc. 131

As three dimensional animation became possible with faster machines and
better display hardware, keyframing was adapted to 3-D animation. Instead of
interpolating corresponding 2-D line segments, 3-D animation systems interpolate
transformations at joints in a three-dimensionally represented model. Key frames
consist not of 2-D images, but of 3-D positions of a model.

Because the models were represented in 3-space and projected on the image plane
by the computer, these systems tend to produce more realistic-looking images,
than those produced by an animator who approximates a 3-D representation with
a 2-D drawing.

This paper discusses some of the techniques and problems in the design of
3-D keyframe animation systems, stress ing th e importance of animator interac
tion. It draws heavily on the NYlT Graphics Lab's key fr ame animation system
BBOPI4,5J, and a more recent NYIT animation system, EMI6J.

Models

The information stored in a model is an important aspect of any animation
sys tem. One simple way to defin e models is as a set of rigid obj ects jointed at
nodes, organized hierarchically into an articulated body . At each node or join t, a
3-D transformation matrix controls the position of the portion of the body below
that joint. Transformation matrices are nested in accordance wi th the body
st ructure. The position of the model at anyone instant is determined solely by
the transformation matrices. The only intelligence contain ed in the model is the
topology of the body par ts and the degrees of freedom at each joint. Alone, the
model is a static entity. To make the model move, the animator uses the anima
tion system to control th e 3-D transformation valu es at each joint. The " rigid
object" stipulation allows scaling of the body parts (using the joint matrices) but
not Hexing or changing their bas ic geometries. These are the types of models
used by the animat.ion systems BBOP and GRAMPS[71. Th e particular model
structure was motivated by the Evans & Sutherland Multi-Picture System
(MPS), on which the systems are based. The MPS manages nested t ransforma
tions easily: performing real-time transformation, clipping, and disp lay of lines.

- IB-

Like BBOP, EM uses models constructed of parts connected at joint nodes.
However, EM uses a geometric modeling language which allows pa.rametric con
trol over the transformations at each joint and over the geometry of the indivi
dual body parts. The set of parameters define the model's final position, shape,
and characteristics. Parameters can be constrained and coordinated with respect
to constants or other parameters in order to give the model intelligence in the
way it moves. For instance, the motion of a ball can be dependent on the slope
of the 800r it rolls across, or swinging arms can be made to swing opposite to
each other.

Scripted systems [8,g,10,H[use procedural models [12[, which embed the
possible motions of the model in the model description itself, leaving some
parameters for external control.

Regardless of the implementation of its models, an animation system should
allow animators to easily modify model structure and movement. Interaction and
visual feedback are important. Systems like BBOP, EM, and GRAMPS are
significant in this regard because the animator can immediately view his changes.

Positioning models

Because key framed animation is based on key "still" fram es, the method of
creating these frames is a vital component of the system. The animator must be
ab le to easily set up all the parameters necessary to define a keyframe. One basic
method of positioning a model in a keyframe is to type in a joint identifier, the
parameter to be changed at that joint, and the value for that parameter.
Although functional, this method is not easy to use.

In BBOP the animator selects a joint using a joystick to traverse the
transformation tree of the model. With a set of function keys, the animator
specifies that he wants to modify the translation , rotation, or scaling parameters
at that joint. Each parameter set has three elements, one for each of the x, y,
and z axes. Using a three-axis joystick, the animator can modify these three
values and watch the model move on the screen. BBOP provides no constraints
or rules about mov ing the model, except that it follows the x, y, z movements of
the joystick. When manipulating a human body model, for instance, limbs can
discon nect from the body structure and joints can be bent at unrealistic angles ,
even causing a limb to enter the body itself. At each joint, the interaction is the
same: the x, y, and z, translation, rotation, and scaling parameters are controlled
by the three outputs of the joystick. This makes the system simple to use, and
an inexperienced person can learn to manipulate a model in just a few minutes.

GRAMPS, which has a similar interactive input method, takes a step
beyond BBOP by allowing several devices for input. By means of simple fun c
tional assignment statements, values from eight dials, a data tablet, and a joys
tick can be used to modify the model's parameters. For instance, the animator
can assign the inverse value of a dial to the rotation of a character and set
bounds on the values the rotation can assume. EM builds on BBOP and

- 2 -

GRAMPS, allowing input modes to be defined dynamically with complicated
dependency expressions including other parameters and multiple input devices.

We noticed an interest ing phenomena in systems which have user
configurable inputs. In HBOP, the interact ion modes are predefined and remain
the same from joint to joint and model to model. An animator can sit down with
a new model and immediately begin to manipulate it. In EM, the inter:action
modes can be configured specific to each parameter and joint in the model's tree
structure, and by each user. Each model and each user can have different input
modes. Thus, it is difficult to sit down with a new model and animate it right
away. It takes time for the animator to get used to the model's control charac
teristics. Onc'e familiar with a model's movement, however, configurable inputs
have proven to be very effective. Especially useful has been the ability to
interactively control parameters of several joints of the model at the same time.
For instance, the animator can rotate the should er, wrist, and waist of a model
simultaneous ly. This was not possible with BHOP.

Modeling camera movement is also an important part of an animation sys
tem. There are many ways to move the camera interactively. \Ve first must
define the coordin ate axes in which the camera can be moved. We define the
pivoting of a camera on its own axes, i. e. tilting, panning, and rolling the camera,
as rotat.ion in the camera's local coordinate system. Camera movement around
an external center point is movement in a global coordin ate sys tem. This is
exempl ified by a camera mounted on a crane th at moves around the space of t he
"animation studio." In BBOP, the center of global camera movements is always
the center of world space and cannot be changed. Movement along arbitrary
coordinate axes would be an important enhancement to the camera model. This
would aid in tracking a movement of the model or moving the camera along a
particular trajectory while maintaining a constant object of interest.

The second aspect of camera movement is how the camera moves relative to
th e model or scene. One approach to interac tive camera movement is to have
the joystick (or other interactive device) operate as if it were attached to the
camera. This is the local or "airplane" method of camera control, because the
joystick models th e pitch , yaw, and roll of an airplane joystick. Pushing the
joystick forward causes the camera to tilt down; pulling the stick to the side
causes the camera to til t to that side. The second method is to model the input
as if the animator were controlling the world. In this "global " mode, joystick
control creates just the opposite effect of the "airplane" method. Pushing the
joystick forward causes the camera to tilt up (or apparently, the world tilt to
down, away from the eye). The two methods are computationaUy equal since
moving the camera to the left is indistinguishable from moving the world to the
right. Different people favor different approaches; however, the majority prefer
the "move the world" approach because the picture they see moves in the same
direction as the joystick. HBOP and EM also cao simulate multiple cameras,
enabling a.n a.nimator to display the same animation as seen from several
viewpoints.

-3 -

-;10-

In addition to camera movement , there is local and global movement at the
joints of the model. That is to say, transformat ions at a join t can take place in
th e coordinate system local to the joint or in the coordinate system of the nex t
higher, or " parent/' joint. (In an ideal implementation the animator would be
ab le to effect t ransformations in any coordinate system. T his would aid, for
instance, in making a fi gure walk so that it rotates over the balls of t he feet , not
around the cente r of the body .) Because BBOP has just one interact ion mode
joys tick X, y, z controlling model parameters x, y, z, - t he joystick's motion often
has lit tle physical relation to the motion of t he model on the screen. To get
around this problem, the animator can display the local coordinate axes as they
move with the current joint. EM fosters more natural interaction because the
animator des igns the input modes, adapt ing each to a particular manipulation of
tb e model. An example of tbis is to set the tablet x/y to be th e model xlz posi
t ion on a Hoor, and the joystick x, y, z to the model's rotation around its z, x, y
axes respectively. P ushing the joyst ick away from you would make the model
t ilt away from you.

The most natural input method perhaps would allow the animator to point
directly to a joint and "drag" it around on the screen. Thus the animator would
manipulate the model by pushing and pulling it into posit ion. There are, how
ever, implementation problems in trying to manage 3-D cont rol from a 2-D view.
For instance, determining the coefficient of movement along the axis perpendicu
lar to the screen can be quite complicated. A typical solu tion would be to set
t hat "z" coefficient to zero, but a more sophisticated solu t ion would be better.

F in ally there are non-kin etic parameters such as color, refl ectance, elas ticity,
etc. which the animator may need to cont rol. These qualities may be required if
a raster version of t he anim ation is desired, and sometimes are perceptible only in
a fully rendered scene. T he time it takes to render scenes is usually prohibitive
to display the actual property to the user in an interactive fashion. An altern a
t ive form of viewin g th ese values is necessary. In EM, the anim ator can learn the
current value of allY parameter by typin g its name. With color vector dev ices,
part of t his problem can be solved by coding various propert ies with different
colors.

K eyframing

A frame in an animation is bas ically a description of t he particular state of
lhe world at a part icular instant in time. In a keyframe system, the an imator
need not describe each frame. Instead he describes a set of " key fram es" from
which the animation system can interpolate the fr ames in between. Interpolation
of intermediate values can be linear, cub ic spline, cosine, etc.

The information stored at a keyframe may vary from a total description of
th e scene and animation to the value of a single parameter used in the generation
of a fr ame. In scripted systems, the " key" information is more like a cue to a
stage performer 191. The cues tell the models (or actors) to start, stop, and in

- 4 -

-21-

some ca!:cs to modify or switch their behavior to some other pre-programmed
mode. In goal-oriented systems, the animator describes a goal state and the
model moves towards that state using its knowledge of itself and the world
111,13]. Goal states can be considered the keys with the model itself generating
the inbetween movements.

To set up key frames in BBOP or EM, the animator positions the model on
the display screen. Then he can record the position of the whole model, a subset
of the model, or just the value of a single parameter as a keyed position in a par
ticular numbered frame. In 3-D systems, each parameter has its own set of keys,
unlike 2-D systems which key a whole image. In BBOP, every value at every
joint for every frame is saved. Those values to be used as keys have a note to
that effect. This is a simple but storage-intensive implementation . When an ani
mator specifies a position as a key in EM, the system saves only the values of
keyed parameters, the frame number, and interpolation information about the
interval between that key and the next. EM has been implemented in a way that
eliminates the need to maintain values at the inbetwecn frames. This scheme is
more complicated than BBOP's, but more space-efficient. EM also can save key
positions by name, separate from the interpolated sequence of numbered key
frames. Numbered keyframes can contain references to named keys, thus provid
ing a sort of macro facility to the keyframe process. For example, if the same
position is needed in multiple keyframes, the position can be described once and
then referenced by each key. If the position needs to be changed , modification of
the original copy modifies it in the other keys.

An animator often uses the same key many times. Copying key frames from
one position to another at first seems to be conceptually simple, but when looked
at carefully a number of issues become apparent. Frequently, an animator copies
(or moves) keys forward or backward in a sequence to change the pace or timing
of an animation. Moving a keyframe forward to expand a sequence can be done
by moving the key to the new location, pushing subsequent keys forward in the
process. This expands the particular key interval but also lengthens the entire
animation. For modification of the timing of an entire animation, or non
synchronized motions, this is a valid approach. However, moving a key for a
motion that is, at some poin t, synchronized or cued to other motions will push
the subsequent keys out of synchronization. Clearly the subsequent keys cannot
be moved forward with any integrity unless corresponding keys for the entire ani
mation are also moved forward. Thus, lengthening a keyframe interval for a sub
set of a model's parameters requires a corresponding contraction of another key
frame interval. The reverse is also true.

In expanding or contracting an interval, an animator may wish to preserve
the characteristics of the original motion in the interval. For the most part,
interpolating functions take care of that . However, there are eases in which the
modified timing oC the intervals produces a motion with undesirable characteris
tics. This is especiaIIy true with cubic spline interpolation where keyframe spac
ing affects the shape of the interpolating curve.

- 5 -

-22.-

Creating motion cycles is another technique that requires copying keyframes.
Repeated motions are common in animation, as in the cycle or a walk or swing.
To generate a cycle, an animator caD manually copy keyframes or the basic
motion to multiple locations, one ror each repetition or the cycle. This method is
tedious and error-prone. Often the original keys contain information unnecessary
to the cycle and need to be trimmed down. AdditionalJy, ir the motion is to be
repeated many times, the keyrrame copy process is unwieldy. Ideally, some form
of cycle operator or interpolation should exist in the animation system.

An alternative approach to modifying animation pacing or cycle generation
is to manipulate the sequence or rrame playback. An animator might draw a
curve as a function or time to indicate to the animation system the frame play.
back sequence he wants. This curve could be saved and later used to control
frame playback. A ramp function might be used to produce linear playback of
rrames at a speed dependent on the slope of the ramp. Cosine curves would
create cyclical animation. Acceleration and deceleration could all be described in
terms of this function. With rurther refinement, different parts or a model or ani
mation could become subject to different pacing functions.

As well as being able to key motions, the animation system should make it
possible for the animator to key attributes such as color, reflectance, etc. A flexi
ble database is necessary if these attributes, varied in number, are to be added to
a model without destroying previous animation.

Using keyframe systems, an animator must manage scores of joints across
hundreds or frames; perhaps hundreds of individual keys. Several systems have
successfully tackled the problem of giving such control to the animator. One
such system, MUTANI14]' divides a model or group of models into tracks -
separate entities that can be keyed individually. For each track, the system
displays a sort of ruler that spans the range of frames. Tick marks indicate keys
and include notations about the action at that key. Animators manipulate the
tick marks to change key positions. MUTAN also has a mode which the anima·
tor can use to deal with the set of keys at a particular frame. Another system,
DIALIIS]. employs a specialized notation that the animator edits on a regular
alph anumeric terminal. It displays frames horizontally and tracks vertically on
the screen. The animator can view parallel tracks at once to facilitate coordina
tion of keys. BBOP and EM have a special motion editor to manipulate keys
along a single track (or parameter), and a command that prints the list of key
frames for a particular parameter.

interpolation
The interpolation process has been given little attention in many animation

systems. Usually they only support linear and cubic spline interpolation. Some
systems allow cosine interpolation and acceleration Of deceleration functions.
Animators' experiences with BBOP indicate that control or the inbetween frames
is very important. There are cases in which the animator only needs linear or

- 6-

-23-

cubic spline interpolation, but there are also cases in which a more sophisticated
motion is desired. One way to accomplish this is to add more keyframes. With
this method, however, the animator quickly gets lost in 8. forest of keys, and the
efficiency of the computer in-betweening is lost. Another solution is to offer a
variety of interpolation types which can be selected for the intervals between
keyframes. This scheme is better but the interface must give the animator a
dear picture of the various interpolation types and the motions they produce.
Limiting the animator to typing in keyframes and interpolation information may
not be sufficient.

BBOP addresses this problem by providing a motion editor. The animator
uses the motion editor to view the values of a parameter across the span of the
animation. Key frames are clearly marked along the curve. The animator can
add or delete keys and specify one of several functions to interpolate values in
individual keyframe intervals. In addition, the animator can hand draw the
desired motion between keyframes to achieve unique movement.

With more than one type of interpolation possible, especially across the path
of a single parameter, it is important how curves of different interpolation types
are joined. To control the continuity of the overall animation, the animator
must be able to determine the degree of continuity across keyframes. Also, the
interpolant's behavior at key boundaries is an important factor in its behavior
between keys. ASAS solves this problem by using piecewise cubic curves with a
selectable degree of continuity at the joints. MUTAN lets the animator specify
acceleration or deceleration functions at keys. The BBOP motion editor supports
an ease-in/ease-out function to match slopes at key boundaries. Using BBOP, an
animator usually positions models at key frames, previews the motion generated
by the default cubic interpolation of the inbetween frames, and then fine-tunes
the movement in the motion editor. The motion editor allows an animator to
give characters idiosyncratic motions, limps, jerkyness, and human-like qualities
that linear and cubic interpolation would not provide.

Conc:lusions
The art of 3-D animation goes beyond positioning models, setting key frames,

and interpolating the inbetweens. Although many animations can be made with
tbese methods, a wide range of situations require more. Scripted animation sys
tems provide one set of solutions. They tend to allow a high level of control over
an animation I simplifying many types of motion control, and are often used to
model algorithmic or functionally-defined motions. These systems are well suited
to goal-directed animation and the simulation of mechanical processes. However,
scripted systems are not good at producing the idiosyncratic and non-algorithmic
"natural" motions that professional animators favor in their productions. In
addition, they do not provide immediate feedback - an important element in ani·
mation systems geared towards animators. Clearly, some combination of scripted
and interactive keyframe animation is desirable.

-7-

-2'1-

The combining or the two approaches has been researched over the past year
at NYIT, primarily by Pat Hanrahan. The animation system, EM, that has
grown out or this research, is more clearly detailed in a paper submitted to the
ACM SIGGRAPH '84 conference.

Acknowledgement.

BBOP was created by Garland Stem, who developed and inspired many of
tbe ideas in this paper. Kenneth Wesley enhanced BBOP to its current state.
The BBOP motion editor was developed by Thaddeus Beier. EM was conceived
of by Pat Hanraban, and implemented with the help of the author. Jacques
Stroweis provided the French translation to the abstract. Pat Hanrahan, Paul
Heckbert, and Jane Nisselson were extremely helprul in providing constructive
review and correction to this paper.

- 8-

-25-

RererenCe8

(1) Burtnyk, N. and Wein, M., "Computer generated key (rame animation."
Journal of SMPTE 80 (March, 1971): 149-153

(2) Catmull, Edwin, "The problems of computer~assisted animation." Computer
Graphiu (SIGGRAPH '78 Proceeding.) 12 (August 1978): 348-353.

(3) Tween U .. " Manual. (New York: CGL Inc., (1983]).

(4) Stem, Garland, "Bhop - a system ror 3D keyrrame figure animation." SIG
GRAPH '89, Coune 1, Introduction to Computer Animation, July Ig83:
240-243 . .

(5) Stern, Garland, uBbop - a program Cor 3-dimensional animation." Nicograph
'89 Proceeding •. Tokyo, Japan, December 1983: 403-404.

(6) Hanrahan, P., and Sturman, D., "Interactive control of parametric models."
submitted to Computer Graphiu (SIGGRAPH '84).

(7) O'Donnell, T . J . and Olson, Arthur J., "GRAMPS - A graphical language
interpreter (or real~time, interactive, three-dimensional picture editing and
animation." Computer Graphiu (SIGGRAPH '81 Proceeding.) 15 (July
1981): 133-142.

(8) Hackathorn, Ronald J., "Anima 11: a 3-D color animation system." Computer
Graphiu (SIGGRAPH '77 Proceeding.) II (July, 1977): 54-64.

(0) Rey nolds, Craig W., "Computer animation with scripts and actors," Com
puter Graphiu (SIGGRAPH '82 Proceeding.) 16 (July 1982): 289-296.

(10) Magncnat-Thalmann, N., and Thalmann, D., "The use of high-level 3-D
graphical types in the Mira animation system." IEEE Computer Graphiu
and Application. 3 (December 1983): 9-16.

(II) Zeltzer, David, "Knowledge-based animation." Proc. ACM
SIGGRAPH/ SIGART Interdiacip/inary Worbhop, Molion: Repreaentation
and Perception. Toronto, Canada, April 1983: 187-192.

(12) Newell, Martin E., "The utilization 01 procedure models in digital image syn
thesis ." Ph.D. dissertation, Department o(Computer Science, University o(
Utah, 1975.

(13) Korein , James U. and Sadler, Norman I., "Techniques (or generating the
goal-directed motion of articulated structures." IEEE Computer Graphica
and Applicalion. 2 (November 1982): 71-81.

(14) Fortin, D., Lamy, J.F., and Thalmann, D., lOA multiple track animator sys·
tern for motion synchronization." Proc. ACM SIGGRAPH/SIGART Inter
diaciplinary Worbhop, Motion: Repreaentation and Perception. Toronto,
Canada, April 1983: 180-186.

(IS) Feiner, S., Salesin, D., and Banehoff, T., "Dial: a diagrammatic animation
language." IEEE Computer Graphiu and Applieatio", 2 (September 1982):
43-53.

- g-

-2"-

r

(Sisllal
,(lmp"te ..

Interactive animation
of parametric models

Pat Hanrahan and
David Stunnan

Computer Graphics Laboratory,
New York Institu te o f Techn ology.
P.O. Box 170, Old Westbury,
NY 11568, USA

This paper describes a program which al
lows parametric models of three-dimen
sional characters and scenes to be interac
tively co ntrolled for computer animation.
The system attempts to span the two most
common approaches to animation: lan
guage-driven or programmed and visually
driven or interactive. Models afC designed
in a geometry language which supports
vector and matrix arithmetic, transforma
tions and instancing of primitive parts. As
a result, constraints and functional depen
dencies between different parts can be pro
grammed. Control is achieved by parame~
terizing the model. Subsets of parameters
can be connected to different logical input
devices, establishing an input mode to
control the model's shape. Parameter sets
can be stored to form a database of posi
tions. Positions then can be mapped to
frames and interpolated to animate the
model.

Key words: Animation Motion control
- Three-<iimensional graphics - Geometric
modeling - Interactive techniques - Para
metric models - Articulated figures - Lan
guages

260

-27-

r)--'I hrcc-dimcnsional compute' an""alion
draws its power from the partnership be
tween the animator who describes a scene's
characters and environmen t once and the

computer which, from this description, is able to
synthesize images from different views, adding de
tai ls such as color, texture, and lighting. Recently
great strides have been made in describing and ren
dering three-dimensional environments (e.g .. Smith
1983; Tucker 1984). Computer animation, how
ever, poses additional problems to those of gener
ating static imagery. One has to con lrol changes
in the shape of objects, their movement, and their
surface properties such as color and rene<:tance,
as well as the methods used to render and compose
the individual frames.
There have been two major approaches in the de
sign of animation control systems. The first type
of system, exemplified by ANIMA-II (Hackathorn
1977), ANTS (Hackathorn et al. 1981), ASAS
(Reynolds 1982). and MIRA-3D (Magnenat-Thal
mann a nd Thalmann 1983), uses a complete pro
gramming language enhanced for animation. Sup
port is provided to model shapes and to move ob
jects. A script. or program, is then written to gener
ate the an imation. Facilities ca n be provided to
automatically iterate through lime or control and
coo rdinate multiple parallel processes. The seco nd
major class o f syslem, exemplified by GRASS (De
fanti 1973), BBOP (Stern 1983 a, b; Sturman 1984)
and GRAMPS (O'Donnell and Olson 1981), is in
teractive and picture d riven . The model is posi
tioned by the animator in real time and positions
are stored in a database at key frames and interpo
lated to form the animation.
Both types of systems have advantages and disad
vantages. The language approach is best for algor
ithmic movement or when the movement is to sim
ulate a physical process, whereas the interactive ap
proach tends to achieve more natural, personalized
motions. An advantage of using the programmed
language approach's 'that the animator is required
to codify his algorithms, and therefore, as rhe sys
tem is used, new capabili lies and tools are added.
Orcourse, learning to use such tools requires anima
tors with programming experience. The language
driven approach tends to be fl exible because many
different types of changes can, in principle, be con
trolled. High-level control strategies such as goal
directed or functionally defined motions are likely
to be language-based. However, the ultimate crite
rion is the quality of the final images, and since
interactive systems provide immediate visual feed
back, they encourage choices based on aesthetic
values rather than implementation considerations.

The Vi,ual Computer (19SS) .260-266
o Springer·Ved ••• 93S

We have been trying to combine thl' two ap
proaches. Scenes are described with a geometric
modeling language. The description includl's the
overall structure of the char:.Jcters and I he environ
men t : the geometry of the different surfaces, the
transfo rmations which connect the different parts,
and the co nstraints which a ll ow the parts to be
coo rd ina ted. A sct of parameters is also declared;
the fi nal position, shape and characteristics of the
model is a function of this set of numbers. An
interactive program interprets this language and
a lso provides a n envi ro nme nt in which the an ima
to r can co ntrol the model. · Users can tailor their
interactive environmen t by design ing their own
screen menus, function keys, and command abbre
via ti ons. Most importantly, users can conti nuously
modi fy di ffe rent parameters by connecting their
values to numeric input devices. The model is dis
played on a rea ltime vector display and its position
changes continuously. The interpreter a lso controls
a generalized pa rameter database. The database
saves useful pa rameter sets, a nd a lso provides tools
so tha t these parameters sets can be manipulated
and recombined. Animation is generated by put
ti ng pa rameter sets in keyframes and interpo lating
the inbctwee ns.

Parametric models

The modeling language example in Fig. 1 describes
a tube capped wi th two spheres. The length of the
tube is "a" and its rad ius is "r". Figures 2 and
3 show the displayed model.

i% lube
parameter scatar a = 2, r = I
i% cc::nler

% initial values SCI 10 2 and 1

rot -90 z
scale r. 2*a. r
cylinder

I
{ % left

I

move - a. O. 0
scale r
sphere

{% right
move a, 0, 0
scale r
sphere

I
I

% rotate - 90 degrees about the l axis
% scale in x, y. and z
% vertiCil I cylindcr of1cngth 1. radius 1

% move in x. y, and 7.

% scale x, y. and z by r
% sphere or radius 1

Fig, I. Model description or a capped tube

. '. I ... " --~ , , , 1. . 1
(,01111 1111 <:1'

The language is hlock-structured. similcr 10 Pascal
o r Algol. Each hlock is delimited hy hraces and
can be given :1 nam,,: follmvin!,! the {)pclling brace.
TIIII('. ("('1I1N, It:/r , and ri;:hl arc the block names
in Fig. 1. Variables ,Ire local 10 the hlock in which
they arc dcclared and conform to Pascal-like scor
ing rulcs (that is. variables declared in an outer
block arc accessible to an inner block if not rede
clared in the inner block, and variables declared
in an inner block are inaccessible 10 an o uter
block). Primitive shapes are created by nam ing the
generic type. Typical primitives a re quadrics a nd
polygons. Expressions can be used to obtain scalar,
vector, or matrix values, and can be constructed
from a wide set oflogical and mathematica l opera
tions and functions. Transformation matrices are
formed by the commands move. rOI. and scale.
Statements whose resulting value is a matrix cause
that matrix to be concatenated onto the current
transformation matrix. When a block ends. the cur
rent transforma tion matrix is popped off the
stack.
A special class of variables are designated as pa
rameters which can be used 10 modify the final
shape of the model. Typical uses of parameters
are to defi ne joint rotations. For example:

{ % Euler-joint
parameter scalar phi. theta, psi

rot phi x
rot theta y
rot psi z

Gill 1/11,

Fig. 2. Capped lube with a .. 2. r = 1

Fig. 3. Capped tube with a = 3. r = O.S

261

-2f-

. . I ___ _

.. \ i fi:t!
~ .O Il I(Hlh'(

para meterizes a join t by the three Euler angles
wh ich ca n be used 10 deri ne a n a rbi tra ry rota ti on
in three dimensio ns. Parameters also may partici
pa te in co nstrai nt expressions.

parame ter sca la r phi

rot lim it (0, phi, 45) x

}

shows how the rota Iron about the x-axis is forced
to lie between 0 and 45 degrees. Coord ina ti ng dif
fe rent parts of the model can be achieved by having
them depend on a single parameter. To swing two
a rms in opposite di rections. we can pa rameterize
a model as

{% body
parame ter sca lar w x
{% len-a rm
rot wx x

}
{% right-arm
fot - wx x

}
}

Objects, as well as transforma tions, can be parame
terized. A simple script interpolates between a tri
angle whose vertices are defined by the three vec
tors (a I ,a2,a3) and another defined by the th ree
vectors (b l ,b2, b3) (the function lerp linea rly inter
polafes between its second and third argumen ts
based on a percentage expressed in the fi rst argu
ment):

parameter sca ler t
vector a I ,a2,a3
vector bl,b2.b3

tria ngle lerp(t,a I,b I), lerp(t,a2, b2}, lerp(t.a3,b3)
}

The interpreter reads a model and then compiles
a program tha t displays the model on a real time
vector di splay (Evans and Sutherland Multi-Pic
ture System). When the interpreter is runni ng, any
variable can be changed by simply assigning a new
value to it. This causes an incrementa l fe-execution

262

- 2~-

of a ll the sta temen ts Ihat depe nd on tha I parame
ter. To achieve fa sl updates. we huild a dependency
graph which lists the variables depe nding on each
line and the li nes dependi ng on each variable.
Therefore. some conventions must be fo llowed
when designing the model. For example. state
ments that prod uce cycl ic dependencies arc not al
lowed.
T he interpreter accepts and immediately executes
modeling language statements, as well as com
ma nds, to the interactive system. These commands
can be typed in o r read from a fil e. One group
of commands is used to move 10 dilTerent blocks
in the model in a manner ana logous to traversing
a tra nsforma tion tree. At each particu lar block,
only those variables in ils scope are considered ac
ti ve and can be changed. Other commands a re used
to set up dilTerent in teracti ve modes and to manip
ula te the database.

Interactive control

One of the main goals of this system is to make
interaction as flexible and extensible as possible.
We fe lt tha t the best approac h would be 10 design
an interpreter wi th a comprehensive se t of com
mands. and provide tools wi th which the user can
structure those commands into a pe rsonalized in
terface. The user dynamica lly loads this interface
into the system. There are three primary tools fo r
setti ng up interaction modes: a system of rela ting
inpu t devices to parameters, a menuing facility,
and a met hod fo r programmi ng keyboard and
fu nction keys.
To control parameters wi th input devices, we model
inputs as varibles whose numerical values are func
tions of physical devices . Physica l devices include
a data tablet, a set of eight dia ls, and a three axis
joystick (Fig. 4). Each of the x, y, and pen status
(z) values of the ta blet are variables, as well as
mouse-x, mouse-y, and mouse-z va lues which cor
respond to the ra te of change of tablet x, y, and
z values. In add ition we have a set of number wheel
(Thornton 1979) variables connected to the x and
y movement of the pen. From the joystick we get
x, y, and z deflection values . From the dials we
get absolute values as well as ra tes of change. There
also is a logical "ticking" device which can be
used to increment (or decrement) a value at regular
intervals. Active input va riables are moni tored
conti nuously. As they change, statemen ts tha t de-

pe nd on them a rc re-executed and the model is
modi ried on the vecto r display device. Statements
rela ting pa ra me ters tllld inp ut devices can be en
tered o n the keyboard or read in rrom a lile. To
demonstra te th is we modi ry the model description
in F ig. I as rollows:

{% tu be
pa rameter sca la r a = 2. r = 1
% ini t ial values se t to 2 a nd 1
para meter scalar d x= O, d y=O. d z=O. spin=O
move dx. d y, dz
rot spin y % rola ti o n abou l y axis
{% center

Now we ca n co nl rol the movement or the lUbe
with the rollowing assignment s tatements:

dx + = wheel x
dz + = whee ly
spin + = 10.joyz

The lert side or the assignmen t s tatement is a pa
ra meler deela red in the model. T he right side of
the equa tion is an inp ut va riable. T he r ight side
o f the stateme nt may contai n any exp ression in
the modelin g la nguage. The three s ta tements a bove
increment the x-axis di splacemen t o f the tube by
the va lue of the ta blet x-a xi s nu mber wheel, the
z-axis d isplacement of the tube by the va lue of

Fig. 4. Workstation showing lerminal. keyboard. Evans and
SUlherl3 nd Multi-Piclure Syslem. joystick. tablet and dials

- 30-

th ... · tahle! y-ax is number \\ h~el. ;lnd the spin (or
rIH;I !iol1) of the tube by the va/uc of the L-:uis
of Ihe joy:-.t id. The stillemcnlS ilre re-exe..:u!ed con
tinually while Ihe input devices arc being used. so
if we denecl the joystick on its z-axis. the tube spins
in Ihe direction or the deneclion. If we wan t to
constrain the displacement of the tuhc to lie a long
its longiludim.l l axis only. we ca n establish the fo l
lowing input mode :

d x + = S.whee lx.cos (spin)
d z + = S.wheelusin (spin)
spi n + = lO.joyz

At each block. any of the currently active va riables
can be related to input devices. T his, for exa mple.
allows us to maintain control of the camera move
ment variables regardless of wh ich block we are
at in the transformation tree. Different sets of in
puts can be specified fo r eac h block of the model.
When the command interpreter enters a part icular
block of the model. it reads in a saved set of input
assignment s for that block. Accordingly. each block
can have an input control with characteristics best
suited for it : such CIS using the tablet to control
motion or Ihe whole body. and the joystick fo r
an arm. In addition. the user can read in any SCI

or input assignments allowing alternative input
modes for the same parameter sets.
T he menu ing system allows users to create thei r
own sys tem of menus to in terface with the com
mand interpreter. A menu is a tex t ri le of items
tha t can be displayed on the screen and selected
using a tablet. The item picked is then in pu t to
the co mmand in terpre ter. Commands can also be
typed in. There is a co mmand to switch to a not her
men u so the user can orga nize a ne two rk o r hierar
chy of menus. Users may use the default menus.
or create and organ ize their ow n men us on a pe r
model. or per-user basis. The command inte rpre ter
itselr generates a set of menus that can be used
to move to each block of the model. a nd to pick
parame ters of the model.
F inally users can" alias" keys and key-seq uences.
T he a lias facility allows users to assign commands
to o ne key or sequence of keys. Fo r insta nce, a
freq uently used co mmand that is pa rt icularly long
can have an a lias that is either an abbreviatio n,
o r a single key o n the keyboard. T he command
interpreter responds to the abbrevia tio n or key ex
actly as if the full command had been given. Keys
a nd abbreviations need not represent full com-

263

" . ,-------------------- (.",11:11
,"'II pUI L'"

mands or lines. Partial commands and strings can
also be a liascd. In addition sets of aliases c:ln be
sa ved and read in automatically.

Manipulati ng parameter sets

In addi tion to con trolli ng the va lues o f parameters
by means of interactive input devices, there is a
system for storing. recalling and manipulating se lS

of parameters. The hierarchical st ructure of the
parameter database resembles the structure of the
model defined in the modeling language. Each
model block is represented as an association list
whose va lue is the sel of its pa rameters and inner
blocks. Parameters are saved as name-value pairs.
For example, the data for the lower body of a
cha racter (Fig. 5) might be represented as:

(lower-body
(wy{O.O))
(I· leg
(w, (O.O))
(wz{O.O))
(lowe r-leg
{w, (O.O))
(foot
(w, (O.O))
(wy{O.O))
(wz{O.O))
(toes

(curl{O.OJ)))))
(r-Ieg
... »

(In thi s hypothetical model the wx's, wy's and wz's
represent ro tations about the x, y, and z axis.) In
the printed representation of the database. paren
theses enclose association lists, and braces enclose
numerical data. Names following len parentheses
correspond to names given to blocks and parame
ters in the model. Commands exist which read and
write parameter sets from the da tabase. For exam
ple, it is possible to write all the parameters that
are within the current block and sub-b locks, or
write all variables within the ' scope of the current
block which match a regu lar expression. Besides
these tra nsactions, the data base can be stored in
a text fi le and directly ed ited.
T he cu rren t values of all the parameters are slored
in a working database. By repositioning the model
(updating the working database) and then copying

264

- 31-

all or a port io n or Ihe working dMahasl' to a .\·Iales
dl/lllhlm'. we ca n deve lop a li brary o r positio ns.
When anyone or those posi ti o ns is re-read into
thc lI ·orking dalaha.w:. the command interpretcr ex
ecutes the modeling statements dependin g o n the
changed parameters and updates the di spla y. In
this example. the derault paramete rs ror a lower
body shown in F ig. 5 a re s to red under the name
re.~ 'ing.

(resting
(lower-body
...))

A subset o r pa rameters which bend the knee ca n
be stored as:

(bent-knee
{lower-leg
(w,{ - 45.0))
(root
(w,{20.0))
(wy{O.O))
(wz {O.O)))))

The database a llows parameter sets 10 contai n
pointers \0 other pa rameter sets. These are rerre-

Fig. ~. Lower body in the resting or default position

Fig.6. Lower body in the resting position with its knee
bent 45 degrees

scnt.:J in the printcd Jalabasc a~ a ll'1I1I1.' fllllO\wd
oy .1 pair or cmpt)' orao.;~ . For .:.\ampk. \\C com
binc the two rr.:viou ~ parameter ~cts into IIIJ.I·ilml/

I:

(position-I
(lower-body
(re~ting l })
(I-leg
(bent-knee I 1))))

This defines po.\·irioll-I. as the lower body resting
but with <I bent knee (Fig. 6). When combining
parameter sets, multiple values may appe<lr for
each p;t rameter with the last values taking prece
dence . T his is an important feature since it allows
us to reline the posi tion of the model by adding.
specific sets of parameters to gene ral o r default
parameter selS.
A nimation is genera ted from a special database
which contains entries al keyframes. The knee
bend described above can be animated by inserting
two key frames in the animation database.

(animation
(frame- I
(body

(,eSling I I)))
(frame-20

(position-l I lJ))

When reading from this database, parameter
values between keyframes arc interpolated au
tomatically. DifTerent interpolating function s. such
as linear. cubic spline, a nd cosine, ca n be specified
for ind ividua l parameters and keyframe interva ls.
It's important to note that parameters can be ide
pendently key-framed.

Discuss ion

For five years the majority of NYIT's animation
was done using the BBOP interactive keyframe
system. Animators found it simple to use - each
joint has nine degrees of freedom (3 ro tation, 3
translation, and 3 scale) controlled by a 3-axis joy
s tick. Some animations were p rogrammed using
C and then bro ught over to BBOP for fine tuning.
We've found it fa ster a nd easier to use the interac
tive approach; however certain motions, like those
ofspphis ticated robo t models using Newtonian me-

dla nics. mul ti-legged walk eydes. and terrain fol
lowing, could be achieved with greah:r rcali~m with
a s lower projJranullcu ;lrproach (Lundin 19H4).
Both have se rved us well. HM was lkvclopcd as

.. In enhancemcnt to BBOP 10 oring a form or pro
granuncd control to the keyframc approach .
We havc used the ~yslell1 10 control a range of
models from articulated ronots to parameterized
face models (Parke 1982). Givcn Ihe nexibility o f
the modeling language. complica ted parametric
models can be described and intricately anima ted.
This was more difficult with BBOP where the ef
fects of parameteriza tion had to be sim ulated by
hand .
One of the most successful features of the syste m
is the ease with which input devices can be used
to set the values o f parameters combined with Ihe
power of real-time update of paramctric models.
Because of the intensity of the interaction between
animator a nd co mputer, the design of contro l
modes is as important as the design of the geomc
try of the model. For this reaso n the input system
was designed to be programmable and rcco nfigur
able. A group of parameters can be controlled by
a single device. or a single parameter can be a func
tion of several deviccs. Connect ing functions of
input devices to rarameters .. l1so permits thc COIl

s truction of const rained input modes. We can
crea te input modes where a robot rolls in the direc
tion it is heading. or a camera rotates about eit her
a local or a globa l axis. Thi s flexibility can also
be used to group the co ntrol of related parameters
or establish alternative control modes for the same
set of parameters. When controlling a parametric
face model, there can be o ne input mode to control
smiling and another for frowning: these two modes
are li kely to share parameters. Finally, the fl exibili
ty allows the input environment to be customized
for the animator's comfort and convenience. Con
trol can be transferred to those devices whiCh fecI
most natu ral. Typically the camera motions arc
assigned to the joysticks, but when the joysticks
are being used to control an articulating joint, cam
era control can be maintained by switching it to
the dials.
Defining animations by time-va rying parameters
has its limitations. The posit ion and shape of the
model is a function of an instant in time. Currently
there are no methods for accessing previous or sub
sequent values of a parameter, or its rate of cha nge.
This prevents us from incorporating dynamics and
hysteresis in the model definitions or control. An-

265

- 32-

- - -----------------------;' .1.,
" . ' .! 11 LI , II \:!

olher limilation of our systelll is Ihat pararneh::rs
cOlllrol the gcomelry through sim ple Slatemcnt s
OInd expressions;./iJf-/OOp5 and cycl ic dependencies
arc nOI allowed. For irnplc1l1ell l<lt ion reasons the
display routincs are forced to Iw ve a fixed size .
As a res ult. il is not possi ble 10 change the arrange
ment of the transformation tree or lopology of
the model Ihrough lime. Such changes are desir
able in complica led animations.
Recently. there has been a great deal of interest
in creating motion control syslcms that work at
the functi onal level or arc goal directed (Korein
1982; Zeltze r 1983). Although we did not original
ly design the sys tem for these reasons, it has some
features of these higher-level systems. Because we
can enfo rce constraint s and form dependencies. it
is possible to design coordi nated movemenls into
the model. Parameters which have functi onal
meanings can be created. For example. a parame
ter could control a wa lking cycle or leg-lift. This
system could also be used to support a higher-level
goal direcled an imation sys tem, Such a sySlcm
would interact with a large symbolic posi tion da ta
base. Posi ti ons in the database could co rrespond
to the ac hievement of subgoals. such as having
the fOO l raised. With our database the current st ate
of Ihe system can be described in terms of these
sub-sta tes, A production system wi th a set of rules
es tabli shing conditions and the effects of transi
tio ns between these states in conjunction with a
planning program co uld be used to automatical1y
generate the keyframes in the animation.

AckIlUlI"/l'dgt'ml!l1Ix. This system is based on the program BBOP
wrillen by Garland Stern, Without th is program to build upon
this work could nOt have been done. The geometry language
was developed by Jim Blinn and Tom Duff, The MPS subrou
tine library was written by J im Clark and Garland Stern, The
major routines used to display refresh buffers in real time were
wriuen by Thad Beier. The in lerpolation routines were based
on Carl DeBoor's spline package. Robert Thornton st ressed
the impoTiance of reeonfigurab1c inputs and invented number
wheels.

266

~33~

References

Derantl T,\ (I 'IB) TIll" (jr"phi~'S Symhi"~is S~ st~m ,\n lllt~ r·
act ive Minicomputer (;raphi~"l' Ll n!!u"g~ Designed rOlr lb ·
hitahilit y :tnd Extensihility. Ph. D. Ois)<Crl at;'''l. Ohio Slate
University

Ii ~ckath"rn R (1~77) Anim;1 H: a J- O colur anilll;lt iun system.
Comput Gr<lph (SIGGRAI'II '77 Pmeeedings) 11 :54-64

Hackathorn R. Parent R, Marshall B. Howard M (19R l) An
intemctive microcomputer bases 3-0 animation system.
Proceedings of Conference of the Canad ian Society for
Man·Machine Interaction, pp ISI- 191

Korein JU . &Idler NI (I982) Techniques for generating the
goal-directed motion or articulated structures. IEEE Com
put Graph AppI2 : 71 - SI

Lundin 0 (1984) Motion simulation. Nicograph '84 Proceed
ings Tokyo, Japan

Magnenat-Thalmilnn N, Thalmann 0 (198J) Thc Use of High
Lev.:! J·D Graphical Types in the Mira Animation System.
IEE E Comput Graph Appl 3 (9).9- 16

O'Donnell TJ, Olson AJ (\98 1) GRAMPS - A graphicall:!n
guage interpreter for real-time, interactive. three-dimen
sional picture edi ting and animation. Comput Graph (S IG
GRAPH '81 Proceedings) 15: t33- 142

Parke F[(1982) Paramelerized models for facial animation .
IEEE CompUI Grnph Appl 2:61-68

Reynolds CW (1982) Computer ;tnimation with ~eripls alld ,LC

tors. Compul Graph (S IGGRA PH '82 Proceedings)
16 : 289- 296

Smith AR, Cook R, Carpenter l. Porter T. Salesin D (198J)
Road to Point Reyes. Title Page Cred it. Comput Graph
17

Stern G (1983a) Bbop - a system fo r 3D keyframe figure anima
lion. SIGGRAPli '83, Cou rse 7, Int roduction to Computer
Animation, pp 24()""243

Stern G (t983 b) Bbop - a program for 3-dimensional anima
tion. Nieograph '83 Proc Tokyo. Japan. pp 403--404

Stunnan OS (1984) Interactive keyframe animation of 3-0 ar
ticulated models. Proc Graph Interface '84 Onowa, Canada.
pp 35--40

Thornton RW (1919) The number wheel: a table t based valua
tor for interactive three-d imensional posi tioning. Comput
Graph (S[GGRAPH '19 Proceedings) 13: 102- 101

Tucker JB (1984) Computer graphics achieves new realism.
High Tech nol4 (6): 40--53

Zeltzer 0 (1983) Knowledge-based animation. Proc ACM S[G
GRAPH{S[GART [nterdiscipli nary Workshop, Motion:
Rcpr~'Senlation ;md Pcr~eption. Toronto, Can<lda, pp lX1-
192

- 3~-

.'
November 1984

NICDGRAPH'84

MOTION SIMULATION

Richard V Lundin

New York Institute of Technology
Old Westhury, New York

ABSTRACT

The BHOP animation system developed at the New York Institute of Tech~
nology was designed to animate hierarchically articulated 3-d models by inter
polating k~ frame poses established during interactive sessions with an Evans
and Sutherland Picture System. This system was evaluated io"-a research pr~
ject in which 3-d robot characters were animated in a simulated environment
with the goal of achieving a realistic rather than a cartoonish look. 10 the
('ourse of the project various techniques evolved for performing tasks - not
achievable within the framework of BBOP - as a post-process to the BBOP ani
mation. These tasks include the creation of motion (or wheeled, tracked and
multi-legged robot vehicles over uneven terrain, the simulation oC dynamics
effects on robot motion, and the animation oC models with Oexible parts. This
paper describes those techniques.

-,;5-

November 1984

NKDGRAPH'84

MOTION SIMULATION

Richard V Lundin

1. IN TROD UC TION

A research animation project at video resolution bas been under way at
l'.'"YIT to eva luate th e 3-d animation system BBOP [1,2] . • Using this sys tem, an
animator poses a tree-structured arti culated model by means of interactive dev
ices to create key frames. The key frames are then interpolated by cubic spline
techniques to produce the remainder of th e frames.

The scenario for the animation is rather mundane in nature, a gang of con
stru ction robots assemble a communications satellite antenna, but it explores
new te rritory by requi ri ng 3-d models to manipulate objects and operate in a
fairly rea li stic man ner in a simulated ou tdoor environment . The ro bots move
about by all manner of locomotion : some are wheeled vehicles, some tracked
vehicles and some are multi-legged vehicles resembling ants. T o anim ate these
vehicles such that the wheels rotate correctly . the wh eels and feet make contact
with the ground , and the veh icles jerk and bounce in response to movement
o'·('f th(' t('fr~in would be a challenging task ind eed usin g only the BnOp sys
tem. Th is cbss of mot ion ca nnot be adequately desc ri bed by an intepolating
procedu re si nce the motion p:Hameters mus t be determined on a frame-by-frame
basis according to spec ifi c equat ions or procedures, more app ropriate ly per
fo rmed by simulation algorithms.

Th e BBOP data base consists of the tree-structure for the model and the
va lu rs of p:HametC' rs to each of the transformations drfining the pos ition and
ori entation of eac h art iculated part of the model for each frame of the sequence.
Rout ines arc 3'·3. iJable for reading t he data base and performing operat ions such
as determinin g th e matrix describin g the transformation from one joint in the
tree to any oth er joint. By arcessing the data base any simu lation can be per
formed as a pos t-p rocess to t he BBOP animation.

The procedure for implementing
a simulation a lgori t hm is to first
an im at(> the model as much as pos
sible with th e SBOP system. For
example, 3. vehicu lar model is
mond 0 \'('[a path. but the wheel
motion is no t. performed . Th e
simulal ion prog r:lI11 is then invokcd
wll L,· II f('~HIs the rmop d;lt a bnse.
performs lilt: silllllblion, and writes
the modi/it'd t rall sform :!.1 ion
p3 r:!. llIf' ters bac k to Ihe d!\t.a basco
The cITf'c-t of t he si mulation on th e
animation (':-I n thell he viewl·d 0 11

anim ator

j
BBOP data b3S~

j
E"S

Pictur~ System

_ -:2,. _

input paramet~rs

j
I---- si mulation algorithm
I--

Figure I

,

November 1984

NKDGRAPH'84

the Evans and Sutherland Picture System, and further modifications made ir
required by either changing input parameters to the simulation algorithm or by
changing the motion data base with BBOP. In fact simulation algorithms can
be tuned to achieve exaggerated motion if a cartoonish style is desired. The
implementation or a post.-process simulation algorithm is illustrated in the block
diagram of figure 1.

Various simulation algorithms developed during this project will now be
described.

2. GROUND SURFACE CONTACT

Common to all types of earth-bound (although any planet will do) models is
the requirement of maintaining contact between the model and the ground su r~
face. The .J::round terrain model usually consists of a texture-mapped polygonal
mesh on which are placed various props that establish the set. A vector model
of the terrain is created to be used on the Picture System. The moving model
or charader is animated over the terrain with the BBOP system to establish the
path and speed of the model. The terrain vector model is usually too coarse to
allow the animator to establish contact of the wheels or feet of the model with
the terrain or to orient the model with respect to its path.

wheel i . rotated
about .trut axie
until wheel cont.e &
ground

Equation of Plane

Some scheme must be con~
jured that establishes ground
contact as a post-process to
the animation. One method is
to take advantage of the
polygonal aspect of the terrain

and calculate the equation of t~~~~~~~~~~ the plane

Az+8v+ C,,+D=O

, b line
for each triangular polygon of
the mesh. The intersection
point or a vertical vector or
plumb line from the axis of a
wheel or rrom an· ankle to the
plane below can then be
calculated from

cont. t through

~~~~::~ ____ ~i~'i'~~~~::'~'P---
yp- (-AXp - Czp - D /11) _ 

---...::::::::~ 

Figure 2 

II, = (- Ax, -Cz, - D )/8 

where Zp ,z, is 3. point through which the plumb line passes and lip is the height 
or the terrain (figure 2). The vector equation of the norma.l 

N = Ai + Bj + ci: 



November 1984 

NKDGRAPH'84 

to th e plane can also be used to re-orien t a. (oot so that it is Hat on the ground. 

If z-buffer-based ' rendering programs are available, this method can be 
adapted to use the z-buffer instead of the polygonal mesh. The ground terrain 
model is rendered from above and the resulting z-buH'er is used to divine the 
topology of the surface. This method allows the surface to be modeled by any 
means and can be liltered wi th all sorts of paraphernalia - which can be rUD 

over or trod upon. The plumb line is transformed to a pixel location in this z· 
space, and the z-valu e at th is coordinate, when transformed back to world 
space, is t he height of the terrain. The normal to the ground at this point can 
be found (rom t he heights at adjacent pixel locat ions, using convent iona l cross
product tec hniques. 

The contacting s urface - the boltom of a wheel or sole of a foot - is moved to 
t.he contact. point. by adjusting the appropriate transformation parameters 
acco rding to the geometry of the model. If the terrain model represents a 
deformable su rface like dirt or sand, t he contact point can also be lowered, such 
that a whee l or (oo t appears to sin k into the ground thanks to z-buffer techn ol
ogy. 

W heel t read marks or footpr ints can be registered on the grou nd terra in in 
th e rendering process by implementing the bump map option o( the polygon 
rendering program with a map consist in g of wheel paths or footprin ts created 
by rendering the model from below. 

3. W/I/;EUA) .. I Sf) TrIA C/,£D I'ElI/CL£S 

Th e p:lth of .3 wheeled vehic le such as " Driller" (figure 8 ) over an uneven ter
rain ('an 0(> approximated by a 2-d path in x and z derived (rom the ini tia l 
BBOP animation. Fu rth ermore, the path of the centerl ine of the vehicle can be 

distance traveled by wheels 
in one fr&l!le 

center 
of turn 

center and radiu. of 
turn detera1ned fra
po.ition of vehicle at 
frame. 1-1.1.1+1 

wheel rotation. per 
frame- d1.tanee traveled 
by wheel di~ided by 
rad1u. ot wheel 

Figure 3 

approximated by a 
se ri es of arcs, each arc 
calculated fro m th ree 
points in t he 2-d path 
[31. The amount of 
wheel rotation per 
frame can then be 
prescribed by dividing 
the arc distance trav
eled by each whee l 
during the fr ame by 
the radius of t he wheel 
as demonstrated in 
figur e 3 In which 
" Driller " is shown 
(rolll :ibO\' t,. Th£' 
stC'ering angl(' of the 
\'C hicle':, ~tc('ring 
wheels ca ll a lso be 
(':\.Sit)' calc ulated fro m 
the gl'Osm'try o f t hi s 



November 1984 

NICOGRAPH'84 

configuration. The vehicle itself is reo
oriented at each frame to point to its 
position at the next frame. 

The animation of tank-like tracks is 
derived. from the arc distance traveled 
each frame by the centerline of the 
track. Each track element is displaced 
by this distance along the track con
tour formed by the wheel system that 
supports the track as illust rated in 
fi gure 4. 

4. WALKERS 

A general walking program has been developed to animate any model with 
legs consistin g of two linked members such as "Humpty " shown in figure 5. 
Input to the program consists of parameters such as stride length , heel strike 
angle, toe-oIT angle, and timings for step events to define the walk characteris
tics of the model. 

The animator provides the motion for the torso of the model on the BBOP 
system. The walk program is then invoked to create the motion of the legs 
from purely geometrical considerations such that th e supporting feet contact the 
grou nd and swinging legs clear t he ground. 

The' description of the stance phase of a leg is based on a solu t ion to equa
tions describing the distance from the hip joint to the ankle joint. The text file 
desc ri bing a subtree consisting of one leg of " Humpty" is: 

{ 
move 43,3.2,46 
rot 30 x 
rot 26 y IN} 
rot 26 z 
scale 0.65,0.65,0.65 
"torso" 

{ 
mO'ie J ,O,O 
rot x 
rot y 
rot z 
"th igh" 

{ 
move 0,-1 .5,0 
rot x 
"caIr" 

{ 
move 0,-1 .5,0 
rot x 
rot. y 

_ ~4 _ 

Figure 5 



1 
} 

} 

"terrain" 
} 

November 1984 

NKlXiRAPH'B4 

rot z 
"foot" 
} 

To establish contact betwecn the bottom of the 
foot and the ground terrain, the rotation angles (or 
the hip , knee, and ankle joints must he determined 
for each frame (to fill in the missing arguments or 
the rotation transformations in the text file above). 
The hip joint and the ankle joint are considered to 
be ball joints and the knee joint is considered to be 
a pin joint. The position of the hip joint p. with 
respect to the torso coordinate system at each 
frame is calculated from the BSOP data base for 
the animation of the torso. The ground contact 
point of the (oat P, with respect to the world coor
dinate system is first determined from one of the 
two methods previous ly described . The foot is 
aligned a long the vector normal to the ground at 
this point. The coordinate of the ankle joint Pa 

with respect to the world coordinate system can 
then be determined from the equation of the line in 
the di rect io n of the normal vector as s hown in 
figure 6. The coordinate of the ankle joint p. j 

with respec t to the torso coordinate system is 
determined by trans form ing the ankle coordinates 
P4 with t.he inverse of the matrix [N], formed by 
concatenating all tran!'formations from the world 
coordinate system to the torso. 

iP,' i-ip.[[Nr-' 

hip (ball joint) 

foot aUgnad 
along norwaal .. ".""\ 

'f 

Figure 6 

establish 
criterion for 
rotation of \ 
leg triangle \ 
about axis 
Ph-Pa ' 

Figure 7 

knee 
(pin joint) 

• • • 

'. 

The transformed coordinate Pa I is one vertex of a triangle through the hip 
joint, knee joint, and ank le joint. Recourse to the law of cosines determines the 
inscribed angles of the triangle shown in figure 7. Since the triangle can be 
rotated arbitr:lrily about the axis defined by the vector from the hip joint to the 
a nkle joint (that is, th e sys t('m is underconstrainedl, some criterion must be 
used to determine the orientat ion of the triangle about this axis. One criterion 
is to retain the fl,lations hip between the triangle formed by the legs and the 
direct.ion of Illotion of the model that was established in the o riginal UOOP ani
m:ltion. Once t.h e o ri entation of the triangle is established, the coordi nates of 
t he knee p. can be d<'l('rmint'd and subsequen tly the required angles at the hip, 
knee , nnd foot. 

The det ermination o r the rotation a ll gles for the sw in g phase o r a leg is based 



November 1984 

NKDGRAPH'84 

on an interpolation between the position or the leg in its last stance phase and 
the posit ion in its next stance phase. 

5. DYNA MIC SIMULATION 

Since " Driller" (figure 8) is mounted on a suspension sys tem consisting or 
stru ts and shock absorbers , it should bounce up and down as it moves over 
uneven terrain , roll to one side as it turns, and pitch back and rorth due to 
acce leration in the d irect ion or its path . A simple dynamics model based on 
damped mass·sp ring systems 14] was formulated to provide these responses. 

T he forces due to acceleration on t he vehicle were approx imated by th e equa· 
t ions of motion for a rigid body rotating in a circular arc about a fixed axis 15] : 

F, = mra 

in which: 
F, = fo rce rad ial to arc 
F, = force tangenti al to arc 
m = mass of body 
r = radins of arc 

:.oJ = angul ar ve loci ty of body 
a = angular acceleration of body 

Th e values of r, w, and a can be 
calc ul ~ted for l\ pat.h th at ha ... been 
<lpp roximated by a seri es of arcs. 
Th e dynamic response of the vehicle 
due to t hese forces depends on the 
gt'ometry of the model and are 
determin ed by balancing force and Figure 8 

DRILLER 

to rque equat ions, All of the elastic . 
forces (eg., forces from springs) and all of the damping forces applied to the 
vehicle by its suspension system are lumped in single terms in the force and 
moment balances for this s implifi cation, 

Ila lancing fortes in t he y.direction gives the following equation: 

dV 
- Ke II - Kd -, ~ dt 

In wh ith: 
111 = mass of vehicle 
y = vertica l position of cente r of mass 
F _ applied ve rI ical force proportional to verti ca.l acceleration '. . du e to motion over uneven terrain 
h't = elastic coefficient (spring constant) roc vert ical t ranslation 
hOd: = visco ll s damping coeffi cient ror vertical translation 



November 1984 

NIaXiRAPH'84 

t = time 

Balancing torques about the pitch or roll axis gives the following equation : 

in which: 
J, = moment of inertia of vehicle about pitch or roll axis 
; = angle o( rotation o( vehicle about pitch or roll axis 
F, = torque force (F, (or roll and F/ (or pitch) 
r, = radius (rom axis where force F, is applied 
Kt, = elastic coeffici ent (or rotation about pitch or roll axis 
Kd, = viscous damping coefficient (or rotation about pitch or roll axis 

It should be noted (rom these equations that it the vehicle is translated or 
rotated (rom its rest configuration by the forces due to motion, (orces of oppo
site sign due to elasticity and damping will tend to restore the vehicle to its 
equilibrium state. By converting the differential equations into difference equa
tions, they can be solved to provide the translational and angular position of 
the vehicle for each fram e of the animated sequence: 

- Kd (" -',-.i 
, AI 

or 

I [Om Kd,] m ] [ m Kd, ] 
1/, = Fv, + U, - I ~,2 + ~ - .61", -2 I .6t2 + Kt, + ~ 

[ [
2/, Kd,] I, ][/, Kd,] 

dJ, = Ft," + dJ'.1 .612 + At - 61,;, · 2 I L\t 2 + Kt, + ~ 

in which: 
i= subscript for variables evaluated at frame i 
i-l= subscript for variables evaluated at frame i-I 
i-2= subscript for variables evaluated at frame i-2 
L\t = time step (reciprocal of frame time 1/30 or 1/24) 

The evaluation of the constant coefficients in these equations - mass, 
moments of inertia, elastic and damping coefficients - is performed during 
interactive sessions using th e Picture System and no actual correspondance with 
the actual physical properti es of the suspension system is required. The only 
thing of consequence is th e achievement of the desired dynamic response. 

, 
/ 



6. EFFECTS OF GRA VITY 

Because computer-modeled objects are in a sense "cut loose" trom gravity it 
is necessary to re-establish the reins of gravity. The (ormation of sparks due'to 
a welding operation, (or example, required the implementation of the following 
ballistic equations to determine the trajectory ot the sparks: 

in which: 
Z,y,Z = position or object at time t 
9 = grav itational constant 
%0. Jlo. ':0 = initial position of obj ett 
tI,o. 0wo. 11:0 = initial velocity ot object in x,Y,z-direction 

The initial velocity and direction of the sparks were determined by stochastic 
means. The z-buffer of the ground terrain was used to find t he locat ion or the 
impact points ot th e sparks and new trajectories were computed following a 
')ouncc. 

The dete rmination of th e trajecto ry of a thrown projectile was another exam .. 
pie in which the effects of gravity were necessa ry. The ini tial position and velcr 
city of the project il e were determined from BBOP animation from the position 
of the throwing hand at the fram e at which the proj ectile was released and the 
position at the preceding fr ame. The position of the projectile for succeed ing 
frames was then determined from the ballistic equations. 

7. FLEXIBLE JOINTS 

Another example in which a post·process technique is required is the anima
tion of flexible joints. The BBOP program was originally intended to animate a 
tree-structure of rigid parts, therefore, a gap can appear at t he joint of two con
nec ting rigid parts when they are rotated with respec t to each other: For exam
ple, the knee joint between polygonal representat ions of the thigh and calf of a 
body model will reveal a gap when the knee is ben t . What is requi red is a Hexi
ble su rface t hat will deform accordin g to the rotat ion angles of the joint in the 
noop animat ion. One solut ion is to treat the joints connecting rigid segments 
as cont rol points for a. sp line defining the centerline of a flexibl e segment, which 
is populated along its lengt.h with clements making up the fl ex ible joint. The 
c1elll('nts (':tn he rigid modl'ls :ts would be incorporated in the goose-neck join t of 
the robot arlll in figure 9 or contours defining the coordinates of rows of a flexi
ble polygoH:! 1 mes h. A bezier spline was chosen for this app lication because it 
li('s on, and is tangent to, the cente rline of the rigid segments defining each end , 
which is the configuration needed for a fl ex ible elbow or kn ee. The disadvan· 
tag(' of this approac h is that the length or the fl ex ible joint changes as it bends. 



November 1984 

NkDGRAPH'84 

Ir it is necessary to constra in the length oC the flexible joint and the tangential 
end conditions are not essen tial, then it is possible to relocate the control points 
by iterative means Cor each Crame to maintain a constant spline length as illus
trated in figure 10. 

Ple~ible JOint with T.nqeney 

Bezier spU ne 
throu9h centerline 
of elemen t s 

Figure 9 

8. CONCLUSION 

Ple~ible Joint with Const.nt 
Length 

Sezier spline 
through canterline 

of el_ents 

control 
~point. 

Figure 10 

A videotape sequence depict ing a robot const ruction scene demonstrates that 
the application of simulation algorithms as a post-process to animation created 
with key-rrame interpolating systems provides the rramework for greatly 
enhancing the rea lism of animation. Moreover, simulation algorithms can be 
implemented for any imaginary world subj ect to any hypothetical laws of phy
sics to achieve any desired effect. 

REFERENCES 

1. Stern , Garland, "Bhop - A Program for 3-Dimensional Animation", Proceed
ings of Nicograph '83 Conference, Tokyo. 
2. Sturman t David, " Int.eractive KeyCrame Animation of 3-0 Articulated 
Models" , Proceedings of Graphics '84, Ottawa, Canada, pp. 35-40. 
3. Faux. LD. and Pratt , M.J., "Computional Geometry for Design and Manufac
t ure·', Ellis and Horwood, C hichester , England, 1980, p.67. 
4. ~'I criam, J.L .. " Mechanics", John Wiley and SODS, New York, 1959, p.336. 
5.loc. cit. rd ·' . p.167. 



SIGGRAPH '86 Tutoriat Note. 
Computer Animation - 3D Motion Specification and Control 

Glenn En/is 

Pacific Data Images 
1111 Karlstad Drive 

Sunnyvale, California 94089 
(408) 745-6755 

ABSTRACT 

A Script for a computer generated animation is a sequence of instructions which 
define the animation. In its most general sense, the script is a program in a special pur
pose animation language. 

This tatk covers some of the general design principles and specific tasks of a script sys
tem. The POI script system is used to demonstrate these principles in the video presenta
tion which accompanies the lecture. This lecture is meant 10 be an inuoduction to the 
concept of scripted animation. It does not delve very deeply into any of the specific 
details of the animation process, but instead attempts to give a clear and visual overv iew 
of lhe script process. 

In addition to presenting the flavor of a script system, this talk is also an exposition of the 
point of view that progranuning is a valuable animation skill. There are some animation 
techniques, situations, and disciplines which inherently require skills normally associated 
with progranuning. Non-programmatic and interactive tools are absolutely essential for 
fine animation as well, but discussion of those is beyond the scope of this paper. 

The notes given here are companions to the live and video presentation~ 

1. What are we talking about? 

What is motion? 
anything which changes during the cou~e of an animation. Many interactive systems allow for the 
specification of Hight paths, but animation can also include the animation of colors, material typeS. 
model paramete~ , viewing specifications. control variables. etc. Any element or value which contri
butes to the definition of a scene is animation fodder. 

What is a computer animation? 
Of course, any motion sequence generated through use of a computer. The imponant thing to keep 
in mind. is that many interesting complex computer animations require more from the animator than 
the simple coordination of a few flight paths. Most commercial animations embody quite a few 
predictable elements. such as animating lights. special effects, coordinated events. etc. In addition to 
these elements, most animations have some surprises. "special features", or ·wow, that' s really hard" 
pans. In general. these hard pans tend to be those portions of the specification which elude easy 
generalization and thus simple tools. 

·This paper orisinal1y appeared in the 1986 Cou rse Notes and was aecompan ied by a lecture by the author. 
It is relt that it! content is useful even without the lecture and 50 is reprinted here. -ed. 

_ u"i_ 



- 2 -

Wh:lt is a script sysl.em? 
The leon script is used because I) it sounds better than ~special purpose animation language~, and 2) 
its generality allows for the inclusion of support tools which augment the language, andlor tie it to 
interactive tools. A script-based system generally supplies high-level programming language 
features as well as special purpose features to suppon animation (see [Reynolds82j - reprinted for 
this Morial - for an excellent discussion of scripts for computer animation). In general. we will 
define a script simply as a special purpose animation programming language. (see [Reynolds85J for 
a discussion of the different senses in which a scripting may require programming). 

2. Why use a script system? 

It is possible to make some very interesting computer animations without programming by using interactive 
lools found in a number of research and commercially available systems. We will lump these tools togther 
under the name of non-programming tools. These include motion editors. menu-based modellers, many 
keyframe systems, etc. [O'Oonnell8l, Gomez85]. Even in systems which rely on programming for some 
part of the specification, interactive tools are absolutely essential for getting the feel of a move, the right 
curve, or for quickJy relating various elements. 

If it is possible to animate without programming, why bother with programming based tools at all? 1bere 
are several good reasons to provide serious support to a programatic control of animation: 

I) Many animations in some way or another fall outside the design model embodied by currentJy avail
able interactive tools. Even some tasks which can be accomplished from within a non-programming 
tool require a good deal of cOnlortion and could more directly and easily be expressed in an animation 
language. 

2) A programming approach to problem solving can be flexible, extensible, and efficient. 

3) Many situations in computer animation are essentially procedural. Although some non-programming 
systems allow simple procedural control of an animation (such as making one control value a function 
of another), mOSt non-trivial procedures require real control structures, handy named variables, shared 
subrouti nes - in short, a programming environment. 

4) When a technique used for a single animation is found to be generally useful, it can be easily pack
aged for general use. An important point on this topic is the fine line which exists between ftspecial 
purpose, non-general hacking", which is a bad thing, and "flexible, quickly customizable. well
focused solution" which is a good thing. Because several assumptions can be made about the anima
tion environment, it is much easier and faster to develop an animation script than a functionally 
equivalent C program. Although many scripts are hacked (i.e. made quickly to solve a specific prob
lem, without much forelhought to organization or generality), they're hacked quickly and can be 
changed quickly. They also lend to be specific to a single animation and animator, which means they 
avoid the major software problem of hacky code masquerading as a public tool. When solutions 
embodied in scripts are seen 10 be generally useful, they are cleaned up and installed. in a script 
library, or rewritten in a general purpose programming language and released and documented as a 
general 1001. Although techniques learned on non-programmatic IOOls can be shared. the sharing is 
generally word-of-mouth rather than a common library. 

The key 10 good animation system design is the integration of all the tools in the lcit. so that interactive 
tools are available where appropriate, without preventing the animator from easily retreating to some 
underlying or organizing representation. Non-programmatic tools are well suited fOt many of the specific 
and predictable problems encountered in animation, but they often aren't adequate. If these tools can co
exist with a programming, or script, environment, then the animator has the option of augmenting the non
programmatic tools with the specific control gained from a script system. This kind of "open-architecture" 



- ) -

approach. where an underlying representation is shared by several differem k.inds of tools. doesn't con
Strai n the animator to one particular model of the animation specification process . 

3. Animation and Software Enl:inccring 

There are strong similarities between writing an animation script and writing a program in a conventional 
language, and between creating a complex animation and software engineering. The discipline of software 
engineering has a lot to teach animato~ in this area, and a good animation system should be ab le to exploit 
these lessons wherever possible. 

An animator doesn't necessarily have 10 be a progranuner lO take advantage of these principles. However. 
while an animator may not have to program to make Donald's arm move, he may need the same laIenlS as 
a good software engineer to make HueYt Dewey and Louie run around the room foc 3 minutes. For all of 
itS expression and flair, complex animation has always required huge amounts of patience. organization. 
precision and repeatability. 

Some general software engineering principles which apply to animation are: 

1) Sharing general techniques in public libraries. as mentioned above. In addition to the general desira
blity of sharing. scripts allow work 10 be chunked as routines. which, like any chunking, provides 
good conceptual shonhand and a handy unit for documentation. 

2) Management of large amounts of data. A recent POI animation had 26 seconds of 60 fields each, hun
dreds of moving pans, and a tOla1 of 50 separate component layers which were composited together. 
All this for one of those "simple logo moves~. Software engineering lools and techniques have 
evolved to help software developers create, track, organize, share, and back-up large amounts of data. 

3) Maintaining complex organi2.ation throughout unpredictable changes. Complex systems are riddled 
with interdependecies. They are always built upon cenain assumptions. These assumptions almost 
always change midway into the project. Experienced animators and software engineers share the abil
ity to organize their projects in anticipation of the unexpected. 

4) Clear, self-documenting organization. Software engineers begin by learning documentation skills. As 
they mature, they learn how to write clear code with descriptive variable and routine names. They 
nest their code so that it reflects its own logical structure. They organize code into functionally clear 
routines with minimal side-effects, and group these into functionally related libraries. All very 
wonderful, bUI hard in practice. These sk.ills take time to develop, and rely on environments which 
allow them to be practiced in the first place. Protecting animators from some of the requirements of 
software engineering may also inadvertandy ~protect" them from the opportunity to learn tools and 
techniques which are well-suited to higher levels of organization. 

The argument presented in this section is that software engineering skills are intrinsicaUy related to the 
animation process, and pan of the potential application of computers is to provide tools which allow an ani
mator to develop these skills. 

4. Useful Features in a Script 

Many of the useful features in a script apply to programming languages in general. Many of the good stra
tegies in creating script·based animation apply to good software engineering in general. 

What features are useful in a script? Here are several: 
- aJlows fast prototyping of images and animation 

- '-17-



- 4 -

- simplicity of design and use 
- support of conunon graphics operations (primitive modelling, 3D transformations, viewing opera-
tions) 
- high-level programming language functionality (control structures, named variables, routines. data 
typing. math expressions, etc.) 
- suppon abstraction by allowing any functional operation to be applied to any graphic operation. 
object, or attribute 
- some hooks to interactive tools 

5. The POI Script System 

The POI script system is p.atterned after the programming language C. and includes several features which 
suppon the specification of high Quality animation for the broadcast market Many of these features are 
covered in the accompanying video, as me POI script is used to illustrate various aspects of the scripting 
process. 

We also make heavy use of the UNlxt environment in the production of animation. Much of UNIX has 
evolved to simplifiy the process of software creation, and these same features are applicable to animation, 
particularly with regard to script creation and management 

6. The Animation Pipeline 

Before we can proceed 10 discuss the deatils of animation and script systems, it is useful to look at the data 
path from original specification to display. The pipeline is a good model for this flow (see [Chuang83] -
reprinted with course notes - for a description of this pipeline). 

The PDI sySte m has the standard entourage of world space and screen space polygon files, image manipu
lators. etc. This part of the discussion will describe how user specifications find their way to screen. how 
!bey can be modified (which includes animated) along the way, and how a script supports all this. 

7. Script in Action 

This section is a set of animated demonstrations of a script The animation consists of a scene in motion, 
with one or more lines of the controlling script displayed at the bottom of the screen. As the line of script 
teltt changes, the scene is updated to reftecl the change. 

After each specific script feature is demonstrated in this manner. a piece of commercial animation will be 
shown which eltploilS that panicular feature. 

7.1. Primitive Generation 

A script should be able to generate a variety of geometric primitives, including polygons. prisms, cylinders. 
cones, pyramids, spheres, torii, surfaces of revolution. and extrusions. Primitives created from a script can 
be a useful mode lling components, since the script also provides the attribute and transformation com
mands needed to combine these primitives into meaningful models. 

Also useful is the ability to animate primitive attributes over time. For example. the cross section of a 
cylinder describes a circle. If partial cylinders are supported (those whose cross-sections describe a circle 
with a wedge cut out of it), then the shape of the cylinder can be animated. 

Simple geometric primitives can account for only a small portion of the models necessary for commercial 

tUNlX i,. Tradcmart of Bell Labonltoriu. 

_ 'if-



- 5 -

production. More complex operations (such as Boolean operations on primitives. see [Beier85]), models 
created (rom digitized input. and control at the polygon and vertex level should also be inc luded in or be 
accessible from the script. 

7.2. 3D transforms 

The basic 3D transformations are translate. rotate, and scale. These are concatentated as they are 
invoked. so that the effectS of several transformations may be applied 10 an object at on~. An important 
feature for hierarchical motion is the ability 10 push and pop the current transformation onto and off of a 
transfonnation stack. 

7.3. Object Transformations 

More sophisticated transformations can make the script a powerful modelling tool. Non-linear uansfonna
Lions such as twist and bend have wide use and can applied to arbitrary input objects [Barr84]. Some com
mercially available systems have introduced bevelling as a basic modelling operation. Shape interpolation 
is another powerful 1001, but in the most general case a good deal of specification is required for good 
behavior throughout the interpolation. 

7.4. Viewing Operations 

Viewing operations define the camera, window, and viewport. As with all other aspects of the system, 
these should be animatable. A camera can be defined by its position, rocal length or angle~r-view, and 
orientation. An alternative to orientation is to provide a second position which the camera will look at. 

The window and viewport define the visible area in world and screen space, respectively. The viewpon 
commonly maps the entire display area, but can be shrunk. to make low resolution tests. 

7.5. Lighting 

There are a wide variety of lighting options available to the animation system designer. The simplest is the 
ambient light, which illuminates surfaces independently of their orientation. Infinite point sources have a 
direction vector and color but no position or falloff. These are often adequate for modelling large scale 
lights such as the sun, but are not adequate for representing the effect of a light within a scene. Loca l lights 
do have position, falloff, and possibly direction, and more accurately simulate the local effects of a small 
lighl 

Whatever Dnds of lights are available from the script. it is essential that all parameters controUing the 
lights be animatable. Sometimes a blatantly moving light is needed for a specific reason. However, it is 
more common that a carefully lighted animation requires subtly moving lights just to get everything to look. 
good In these cases, it may not be apparent to the viewer that the lights are moving, yet the overall result 
is a much better lighting throughout the piece. 

7.6. Surface Attributes 

The su rface properties and colors determine how an object will respond 10 lighl A good system should 
provide a means for fast guesses so that a prototype image can be quic.k.1y realized, but it must also support 
the grueling fine-tuning that is required of a polished production. As with all other atuibutes. these auri
butes must be animatable. 

7.7. Motion Paths 

Motion paths are curves in space. Objects, the camera, the camera traclcing poine, and lights may all follow 
these curves through the scene (see [Shelley83]). Since positioning and motion design are so heavily 
dependent upon the interaction of multiple objects within a scene, it is strongly recommended that motion 
design be done interactively wherever possible. The job of the script system is to easily accep< as input the 
ourput of motion des ign programs, and to provide ways of further man ipulating that ourput 



- 6-

8. Conc lusion 

Script based animation systems provide the powerful model of programming to the animation process. 
Programming is precise. repeatOlble. prov ides powerfu l con(J"ol struClUres, and can promote large scale 
organ ization skills exemplified by software engi neeri ng. 

No single tool, o r general model for tools, is in itself adequate to the task of creating high q ual ity, complex 
computer an imation. Much of the process is highly immediate, visual. and inleractive in namre, and oon
programmatic tools are desirable for these taSks. However, there are many animation problems which 
embody a complex ity of logic or scale of organization which call for programming tools. 

The approach advocated here is for a hybrid environment in which script systems - programming tools - are 
supported and used as a necessary comJX>nent of the complete animator's tool kit. 

9. Rererences 

In addition to the references cited here, a relatively new development is the commercial availablity of 3D 
animation systems. Although lit lle information has been published about these systems, it is suggested that 
the serious student follow up with requests for product brochures, user manuals, sample video tapes, and 
live demonstra tions. 

I) Barr, Alan H. "G lobal and Local Deformations of Solid Primitives", SIGGRAPH '84 Confuence 
Procudings, 18 pp. 21·30 (July, 1984). 

2) Beier, Thaddeus "Object to Object Clipping" SIGGRAPH '85 Tutorial on State of the Art in IIMge Syn
thesis (August, 1985). 

3) Chuang, Richard and Glenn Entis, "3-D Shaded Computer Animation - Step-by-Step", 1£££ Computer 
Graphics tutd Applications 3, pp. 18-25 (1983) 

4) Julian E. Gomez, TWIXT: A 3D Animation System. Computers and Graphics 9 No.3, pp. 29)-298 
(1985) 

5) Hanrahan, Pat and David Sturman, "Interactive Animation of Parametric Models", SIGGRAPH '85 
Tutorial on Introdu.ction to Computer Animation. pp. 87-101 (August. 1985). 

6) O'DonneU, TJ. and Arthur 1. Olson, "GRAMPS - A Graphics Language Interpreter for Real-Time, 
Interactive, Three-Dimensional Picture Editing and Animation", SIGGRAPH '81 Conference Proceedings, 
15 pp. 133-142 (luly, 198 1). 

7) Reynolds, Craig W., "Computer An imation with Scripts and Actors", SIGGRAPH '82 Conference 
Proceedings, 16 pp. 313-322 (Ju ly, 1982). 

8) Reynolds, Craig W., "Description and Control of Time and Dynamics in Computer Animation", SIG· 
GRAPH '85 Tutorial on Advanced Computer Graphics Animation pp. 31-57 (August. 1985), 

9) Shelley, Kim and Donald Greenburg, "Pam Specification and Path Coherence", SIGGRAPH '82 Confer
ence Proceedings. 16 pp. 157-166 (July. 1982). 



Computer Graphics Volume 16. Number 3 July 1982 

Computer Anima tion w ith Scripts and Actors 

by Craig W. Reynold8 

I nfonnatlon Inte nlatlonal Inc. 

AMtrae! 

A technique and philosophy for controlling computer Inima
tion i~ discuMed. Using the ActorlScriptor Animation System 
tA5A51 a sequence is described by the animator a~ a form.1 
written SCRIPT. w hich is in filct a prouam in an an ima
lion/ graphic language. Getting the dcsired I nimation is then 
nquivalen t to 'debugging- the lICript. Typical im~cs man ipu
lated wi th A5AS are synthetic. 3D perspecti\'e. color. ~hilded 
images. However. the animation control techniques am inde
pcndr.nt o f the underlying50ftwareand hardware of the display 
sy.'lillm. so apply to other typesl5till. 8&.\\'. 20. line drawing ... 1. 
D.vnamic land sta t iCI g l'aphies are based on a s.ct of goomclric 
ohjof:t dala types and a s.ct of geometric opt!ralors on these 
tYI)I!.'\. Ruth S(!tll are tt>:len,iblc. TIle operators are applied to the 
f)h j<lt:t ~ undt!r tlUl cont rul o f modular an imated pm,llram 
"h1,,·tlm!.'\ . n,cs<! ~ ll1Jclures Icalloo actor~1 allow paralldism. 
ind"lx!r1umu;u. ':lIld opt ionally, .~.I ' nd'mlli~_atior1. S<.J Ihlll Ihey 
nm n;ndcl' the full range or the lime lICQucncing of even". 
Actors are the emlxKli ment of imaginal)' players in a ~imulated 
mOI'i..,. A type of animated number ca.n be used to dri\'e 
geometric expres:>ion~ Inested geometrica.l operatonJ! with 
dynamic paranlelcfl'l to produce animated objects. Ideas from 
progl'amming styles used in current Artificial Intelligence 
n~l.1rch inspired the design of ASAS. which is in fael an 
extension to the Usp programming enyirunment. ASAS was 
developed in an academic t"e$ClIrch environment and made the 
trans ition to Ihe -mal world" of commercial motion graphics 
produl::tion, 

ell Cat"8ories and Subjed DeM:riptors: 1.3 IComp'''er C ... phlall: 
1.3.3 ICCI: Computatiornol Geontf!lry and Oblect Modeli"8: 
t .3.6 ICCI: MathodolOl(,Y a nd T..ehniques-l..Ifl8Ua&"I!:I: 
13 .• leG I: Tlll"t!t!·nimen. ional GraphiC!! and Realism- Animation 

r~r"'ral Terms: I~ifln . l.a ""u~flea 

Addillnn.!.l Key wn"t~ and I'ttrasea' Li. p. l"roc:eciur7Il Animation 
1.all8Ua8es. MoHon Vietu", Production 

Aulhor . addreI5CI; 
US Mail: 
ARPAnet mail: 
Uucp network ml il: 

lit . S933 Slauson Ayc .. Cuh'cr Ci ly, CA 90230 
ReyllOtdS@Rand·AI 
ucbvulnndv"'!",),llOtda 

Pennimon to eopy without fee all or p«n of Ihit: mII!eMI i, p-anted 
provided that 1M copies an: nOI rfIIde or distributed for direct 
eommc..:ial .d .... ntqc. the ACM COpyriahl notice Ind the title of the 
publio:ation and ill dall: appea r, and noIig: is ,;-..:n that copyin, it: by 
pcnniuion of tM Aaociation for Computin, Machinery. To copy 
otberwiJe. or to republillh. R:quil"Cl a fcc ancilor Ipcocifoc permisaion. 

© 1982 ACM 0·89791 · 076-11821007/0289 $00,75 

2 •• 
- :ll -

Introduction 

Thb paper describes the Actor/5criptor Animation Syalem 
1A5AS1, which Is a way of thinkill8 about and cte.cribill8 
computer flraphic animation. ASAS is basically a notation for 
animated graphics. 1lte notation for an animaled lSequenoe IIhe 
acrlpt / ca.n be automatically read and convened into animated 
im~es by an A5AS interpreter. As in the ca.se of musical notation 
hning interpreted by a group of mu~ician~-or the acript of a 
~'ideo production being executed by a host oC actors, camera, 
audio, lighting and \'ideo technician~-A5AS allows the crea· 
tion and use of any number of simulated part icpants. ".cto rs· 
each of which can conlrul one or more aspect. of the animation. 
nle ability of A5AS actor. 10 operate independenlly or tby 
communicating lVith Coach otherl to act in synchroniz.alion 
~Ilows a simple and unambiguous description of the function 
of Ilach a ctor. 

ASAS differs from 'perfOI"lllance' based real ' time computer 
gr"phics system s as well as from comm"nd or "menu " based 
sys tem • . Writing the A5A5 nOlation for an animated lSequence 
will probably take longer than the final running time of the 
sequence. On the o ther hand, an ASAS s cript is typically mom 
compact Ihan a simple 1i5ti08 of the value of all relevant 
par~meters for each frame. as might be required in a command, 
menu system. This results from the fact that ASAS is a 
procedu ral nota tion, a programm ing language for animat ion 
"ndgraphics. In faCI A5AS is a -full' programming language and 
includes all of the !}'pical modem structured programmi08 
fe<ltures (procedures (recursiYel, local variables, "if then el.5e"~ 
loops. typed data structures and generic operatonJl. Addilioo
ally ASAS supports independent. parallel. "animated" program 
s truc tures (actorsl, and includes a rich set of geometric and 
pho tometric objects and generic operators on these object~. 

The exisleooe of a fomtal nolation for a field of endeavor leads 
10 a workable procedure for the development of an idea. Uke 
;In algorilhm being debugged by a compuler progrunmer, or 
a musica l score being revised, an ASAS IICript being developed 
i& both u nambiguow lind precisely modifillble.. II ia pouible 10 
chall8e jusl one small upect while keepln& everything elae 
exactly the SlIme. This property o f notat ion a lloW8 the prooeu 
of progresslye mfinemenl ("tweaking"l to be used to oonverge 
on the desired algorithm, music or animation, 

Hlalory 

A5AS was developed althe Arch itectu re Machine Croup a l MIT 
a& two tbesi, project~ between 1975 and 1978 [M,M). "ASAS 0" 
was not a full implementation, but"ASAS 1" did lIctually work. 



Computer Graphics Volume 16, Number 3 July 1982 

HlfUro I : ,.tn ,.tid, Fract,1I 

dl,,;p; ,e a "el)' s low and unin'eresling display l)1Ic kagc. In 1979 
A"AS W;lS inllJgr;tlcd into the Digi tal SC<!1l1' Si mulallon Syll.OHn 

or InfullwuiOll III'C'1'31iunai Inc. 1"11 1', 'l.-iplo:' 1') in r.llh·, ~ t · Ci'y, 

C.~ lifotli ia In Ihi~ in sl31100, ASA'i is "0' usud 10 Ill;lke ;"'''1-:<''' 
dim .. :!I)" hilI "" ..... r.:> as a pmpmoiO<sor [til' Ill's l'xis'iOJ< ;11). 

hlll<l"11 s,"fa"l1 ,lIId shaded "'I'Jphic;:< sys'm" 111:1"'" "A,'iA"; :!" 

fu,,<:lltI"'xI as a '1Ut) language (xm'p; I(".. I" ,1 IlsL:ll ing fnm' II", 
Jlnimator'lI script 10 II"I(l oommand scq"{'nlltl for the d isplay 

softwa ... :.. TIm inoonllcnience of having Ihe display SU ppol'I in 
a scl>.lt'a.e software package is offsel by Ihe much wider ",1nge 
of graphic (ealures m ade available 10 Ihe At;At; usc,' Ihmugh IIHl 

"coy 3d" Jnccd III soflw"re. After Ilwee yua,,,, uf "omllll:reia l 1I.sc 
Ihe sys'em was refined and became 'A<;AS J". Thll uunlml 
rcfcronce for Ihe language is Ihe unfimsh .. -d ASAS User's 
Manual 3,0. [Z6) 

TIle dCllign of ASAS was innuenccd by somc OOIlC<~pIS (rom 
l"Cscat'Ch in Ihe i\,1ificial Inle lligence field , The has ic concepl 

o( graphic databases and animal ion scriplS as ptugrams 
Iptuccdural e mbedding or k/lowlcdgt;l was inspi,,~ hy Telry 
Winog",ld's p ionccdng w o rk In compul(]r linguis,ics. In Wino· 

grad 's s,vsll:m nalll ,1)1 lang uage was l't:pl .... ~'iCIIII!d by a plT)(.uJl"~" 

dala Sl l'tIl"'urll. IJOI The OOnL"flpl of 1II{,-SSage l>.lssing actors "':os 
(''(jIll Carl t'ewilrS hody uf work in 'aClor sysll!ms" ~uch ns 
"I--'SMA, [12,13, 14 [ (Similar ooncepls exist in Smallialk 111 1, 
Simula [5! and Modula [JZl.I 

An aoima,ion system in developmenl OIl 300ul Ihe same lime 
n A5AS by Ken Ka h n shared some ooncepts with ASAS. 116.171 
I<alm's systcm had whall'lcw ill calls a 'unironn aClO,' uasis' and 

1'0 perhaps a tlloorolicaJly 'cleaner' structure. l<al1l1 's work 
pl3C(.-d more emphasis on e m bedding oommon"scnse and 
Iheal rical knowledge in anim:l1ion e haraewnl. and Icss empha, 
s is on oomptCJt gral)hiC$. 

As;1 p r'O@:ram m inglanguage, A5AS 'sland s on Ihe shouldel'5 of 

,,, 
~ .52 -

~"II\IS ' t"~ " 'I1:'" " ' ,Is 11:1;,11111",1,,1' III 1111' 

1'1"~";"""';II": 1;'II~w,,,:" U sp AS"'''; "'III IH ' 
n",."d,'",.. t" 1M' ",Ih,',· ""I'I"""'nh~1 III, '" 
,HI ,'\II-IIS"'" ,", LISI' rio,· 1,,:11 1'''>'':'';''11' 

m;",.: """"'''''''''11. ,,' ,\S,\,~ , .~ ,10 ", 1' '''':''1., ' I" 
I ~~I" S,"'" "II l.isl' 1"-"",1",,,, ",,, I 11"1"",,, 
:1,1: 11 .... ,1010, I",,,, ,\S"'''; ' ,IIHI, "" ,'''''S'". ,\ 1".,1' 

"'1<"'1",'11', pIlls I'", ASAS sc,"" '''''.' ,,·lds:III 
,\Si\"'; "'."",,,,'1,,,, A .... ,'-' ,,":IS ..... ·,·I"I "~t "". 
d,,,. M",.:i, ~";hl.lsp :I! TIll' A,dlll, ~·t"n· ,\I,., 
"lIilll: (;,1>"P "I MIT al1( l "',lS p"il1" ~~sl," 

I'~IIIspl'lI1w" I .. "III 11",1,·,' ,\IIT M: ... , ~sp ,le 

III. 

FIll" a lun,; 111111' Lisp has had a "'p'l1alion 

as som"wIHlI or" 'III,V' l"n~I"''':''", ,-..I\,"mfu l 
hut quainl h",1 u,;o,d by I-:nmnis h :1<:" dmllH' 

a,1 ifid,,' IIlll'ltifC"IIe<, ":SO~lrdl<'1"', hul nIl' a 
I"",.:" :,,.:,· 11,:.11.1' suil, ... 1 f,w ,x"' '''''',,·;:.1 liS." 
Th,~o;,: l :rili s i,~, "S am IIlISlI'''~·h ~l. I;SI) i,~ till" 

II( 11 m mUSI dll~ant and IISt,ahl" al/o:0l"lll"IIIc 
IIUl"liuns ,,,'m' d,~\"lsll" , Till: had n 'p"lalII'" 

's Ihl<' rn,1inl,V ,,, p,,"r i"'I'I"II,,'nla' illll ,~ CII' 

UllIl<~",)0",,,t1,d t:umpuI,,,.,. 1k:'~'U,"'l t.isp 

'I';ld,,~ off ""'" c:umpul"linll,,1 "fridlllll',I ' fill' ' l_'lm' .... ~h·I! P'"'''''' 
'IIIeI .. s-~hilit_". ,1 w,'1I .. , ~~,j-l,,,,.1 iU""'I"l:I,'" :"HI " filS' 1II"I'I\On,' 

,",' "~I"in,'" fw' ,I pc",h"'I''''1 "11\ '""''''' '',. Tu"",I ' .h"I1' ,,",' 
",11" '1',,1 ,,:,""11 ,','11 S,"~I"In,~ r,,,. ,:.,-I'"'S I.'·I)" S IIf":"'1(" '"II"'qMIS" 
""nll1l11',.,. t ~ I ," ' I ~sp IlU I. 1m",. lSI' I ~!I I. • ",,,I , ·"",,·nl'., ' Ihn',· 

n ... ns ,In' ""11111": " I"~ ' ,"'h d"",.:nt~1 I . ,~p ",;,1'11111'"" ' I.,'p ~I:o , 

I'hin" "lC' . Syl"lw.li, ~~ 1111 '., ,,,HI X"Il'." 

ASA'> and l.isp IISO: " su"pl", if IIn"sIIJL 'IIIla'i"" ,\ ·1.hl l"ClIIlw, 
si,,~xl pmfi ,~ nulal,nn ' 's IIStxl fill" n ..... 'ra'm",. "~JIIlIll' St"M'.U'= 
""d ( I"'~I, An A";A"; ell:preSSion i.~ lli ' h{,l~ 

111" nUIII ll(l.' 
12 1 a s,vtlliooi t',·" ... 3"1o '-1 
13) a pamlllhesizcd lisl of ell:presslons. 

If Ihe I'xpn~..silm is a list. Ihe fir'Sl Illlfunosl, .h ing is '1m na,,": 
of 3n op"I'a'or lur 'fum't,un" ) and an.II oth .... · {'_~Jl'1$.~UI"S in III<' 
tis l am pa"anll'llll'S ro" Ihe 011<"'3101', Whrm ,III ell:press[on I~ 

H""lu3IOO 1m ' 'f'.'OI'II" ~d " l. IIuml)l:rs .. \""lu:lII' '0 Ih,·"""""·,,s. 
~ylllllOls h. Ilw,r """u ,lly dl~fi",!d \"aluf'. and a los' t ,,~ '(plus 
a (abs b))' , ,>, ·"lu;'h'-~ II, II ... "I~uh or "ppl,vill/-: 1111, "p",-;.I ,,,. 
" pluS '1 III 'he "~·ut,,,",·I." 1·,,,11I31I, .. ,:o;,, 'a(ll,'I,"'" I":ot",:s 1,1 ' a' 
'11 ,<1 'tabs br l. 1" 11' ' ~"""pl.·, 10 d .. ·finll tilt' symhol ·,,"h,~·1.~' In 
IMl 11m 111)111"' ''' ur " 'i',I'I'I"", tim'ls ;,. w,' wOllld WriW. 

(define wheels 
(times tricycles 3)) 

Norm.:.1 ASAS 01J(!,'.:.I0!'5 IIi"., Umes l e\"alua'e eac h of Iht:ir 
paramele''S. while llCt1ain Ope"Mors hal'e "'pIlI:ial C\'alu':'lioo 
pattcms !Il"e define, .... h lch dOtls 11 01 e"alllalc 1111 fit'Sl par:llnc

'er. thcse am .. .a'k-d 'macros"l. To defin-c a simple operalor 1 ..... 11 
II ·thrilltl'l which mull'plics ils s ingle pal'ame'llr I' ~' j 1Jy Ihr'C<!: 

(delop thrice 
(param: 11:) 
(times II: 3)) 



Computer Graphics Volume 16. Number J July 1982 

an aquivalem definil ion in Ma(':U.~11 would be: (deftne houses 

(delun thnce (xl (Umes x 3)) 
(group red·house yellow-house brown-house)) 

TIle finol .. /tampl .. Clluld Ill"" he mwriu" n : 

(define wheels 
(Ihrice lricycles)) 

Special Symbol" 

Wilhill a scr1pt Nlr1ain iI:<po"':I .~ of Ihe pnxlur.l ion are c:unirolled 
by Ihe va lues gh"f!n 10 !lOme s pecial symbols. NOone of the!IC 
symbols are actually ' reserved wor-dll ' , bUI it is llesl 10 use the 
script symbols bKkgrouncl and QmerII only for the purpollC 
of defining Ihe C\.In-ent color of lhe graphi".al background of 
the Image and lhe curn!nt caim, ra descrip tion las a pOV. !ICC Ihe 
I'ICCtion on geometric objectsl . The init ia l ASAS em'i ronment has 
o lhe r sym bols del"inOO IO various fntquent ly used objecls lues, 
coloI'!!. basic solids ). it is good p raC:liCfl 100 know these ilnd avoid 
rodefin ing them . 

Thr. ' puim of vinw- ob~ (paVI iii Ul<od (f) d l'l,n" tl .. , 1M' ;". "f 
vi"w of a o ohsonm r (for l'~.mJlI" thO'! ASA.'i Cemera! " .. lOr ;'" 
nhjc('I. T hat iii. a pav cItlliCrilM~ ,hn 'lm~ lXl()nlina IP ; , .~is lIa.< i" 
vC(" or.> and Ihn posit io n "rlhe origin uf a" a ,ilil ,·;"y ' '''M''ll " "" " 
"pace. We refer 10 suc::h spaces by namNi likr. " 'Y" " I)lIn,' ami 

-an objn<:, 's local coordinahl " 1);>00-. NOlc: a POII' plays ami,' 1" '1:'>' 

s imilar ,,, a ' 4X4 homoscnc<.tU:i lrans(onn malrix' in tlllmr J J) 

graphics syslcm, (there i. a simple Iransfonnalion from ~ POII' 

to a 4X4 matrix l but. POII' i. ~ geometrica l obiect cnm pOoled uf 
vectors and can be manipul<!too iuS! like any olhe .. ol:ijecl . 

A subworid is an objocf aS$O!;ia ted w il h a POII' . TIlis allow~ ASAS 
to manipula.e a com p lex object by modifying on ly the pov. 
hence various 'instanOl!5 ' of an object may share the &a mr. 
u nderly ing dala. Subwortds a1liO a llow ASAS 10 work wilh 
'h, .... 'Cls of abstract ion ' in a graph ic database. when a s ubwor1d 
is fonned it oOles lhe ' ove rall lire ' and -ty pical l't.lor' of ils 
conlelllS. At d isplay time th is a llows I,ITic:icnl tn!C sllVCtlU"floC t 
clipping Iwhen an entire subwQfld is offs.croon l and handlinJit 
of detai l too small 10 sec twhr.n an e llti re aubwor1d lies wilhin 
a single pixel!. 14J lIell(:C Ihe user e.an hui ld 1<..,,,,,ls of abslr;ll:tion 

Geometric O bJeccs 

In addition 10 the dala types found in mosl programm ing 
lilrJKuas;I!S, ASAS provides II SCI of geometric land phOotomelricJ 
objects: vec tor. coiof", polygo n , solId, group, 
pov. a ubw.o r1d, and tight. 

The vecto r n'prescn lS a posi tion in tlm !C 
dirn.msiunal C<1Ill,sian spaN, . .. a llows .hn,., 
p,II',l llll!lenl, Itm X. Y and Z , !oor·dinal".~. T,." il· 
inp; ;-:<wo r.ooluinalcs ma.y hu o",ill,,,1. 

A colo r o hjll<:1 m .. y II" SIM ' .... r., 't1 "ilh,,.. loy liS 

lied. Gr~"," ""d IUue c ... rnpnm,nIS, nr hy tn l",,· 
Sily, llue. SatuI·alion. TIIC IW., ope"ators am 
ca llfld rgb and ihs , each of w h ich aoccpl thn...., 
n umbers belWilen 0 and I. 

1\ simple polygon c:onlains a c olor and a lis t 

___ "F;ig.ue'"·~2c'-,I"IU"""C' "'D"-n""'""ke"~·on~Ae"·""cof"""e'ele·ol-,lg""i""·en~·""c·enoe=h~""'"~.'"n~·""O'C' __ __ 

(defo p afch·lractalizer 

(pa ra m: arch-element lOp· color bol·color levels 
frac tal·ratio height widlh Ieg,width) 

(local: (total·levels 
(ollsel-dist 
(sub-Iower-offsel-l 
(sub-tower -offset-2 

(arch,tower levels) 

levels) 
(ha lf (dlf width leg-width») 
(vec tor ollsel-disl 0 0) 
(m irror x-a.ls sub-towef-offset , l))) 

of vectors, Ihe 'ooundary' . TI111 cut'hole ________________________________________________________________ _ 

operator allows Ihe consll,r r.tion ufp o lygons 
with ' holcs and islands' (lhal is, multiple 
boundaries l. The color can be a group of a 
fron l color and a back colol". TIle bou ndary 
points may be listed Sl!par:ttcly or as a group 
of vectors. tlere is a polygo n expressinn for 
a «ll1aio blue triangle: 

(polygon blue 
(vecto r 1 0 0) 
(ve c to r 0 1 0) 
(vector 0 0 1)) 

A Solid represents a bounded I'(Jg ion of space, 
a closed polyhfldron. 1\ is compo8(.-'(! of vel1ires 
and faCfls las vectors and polygonsl in addi
tion to 100poiogicai connection infonnation . 

Several geometric objecls can be 'glued to· 

gether' in to a group object. which is Ihen 
manipu lated as a whole by the geometric 
operalOf"ll. A group expression a llowt any 
number o f parameten ·geomelrical obj-ects to 
be grouped together, including o ther groups. 

(defop arch· tower 

(pa ram: levels) 

(1/ (ze rop levels) 

(the n nothing) 
(e lse (add-arch-Ievel (arch·lower (di, levels 1))))) 

(defo p add-arch· level 

(param: sub-lower) 

(grasp sub·tower 
(scale Iracla l-re lic) 
(move (vector 0 heighl 0)) 
(rotate 0 .25 y-axis)) 

(gra sp a rch-elemerll 
(recolor (Interp (quo levels lotal-levels) 

bot-co<o> 
lop-<:olOr)l) 

(subwor1d (group arch..:llemenl 

291 

- 53-

(move subtower-ol1sel-1 sub-Iower) 
(move subtower-oflsel-2 sub-tower)))) 



Compute r Graphics Volume 16, Number 3 July 1982 

inro" gcome lric d a lahase by Ihe Imsling of subworld oujilds. 

OhitlClS 10 be seen in shadoo im agfls a l.., illuminatt...u hy light 
nhjt.'(". I ~ . Ugh\., a re comllo."<flCI n f a posilinn vector a nd a c~OI", 

C".eomeCnc Operalorw 

ASAS's gcommric openlor$ am 1111: 10015 Ill" animallW U>I(lS 10 

IIlla l)!!. mllve and o rienl Ohjeo-:IA. An nh,QC"t 's shape In;'.v !'.OrTNl 

dirr.r.lly from tho~ aClion IIf operatn,.,... or pa,1s "nrro'll by haml 
w ilh a digi tizer can be assembled wi lh Ihe op, ~ralOr:s. nw sam .. 

oper<1lon are u~ bolh fo r BI<1tic <1lTangements. or 10 cnl:ale 
anim<1too motion, by operaliog fr<1 me by frame under lhe 
(lOrI lrul of .. n actor. 

In m .. ny oommand/ me nu bued graphics systems it is d ifficul t 
to precisely specify lhe OOIT'flCI o rde ring o f gt.'Omel ric transfo .... 
m at ion . ~'or exsmple, there wi ll be a ' ro ta le ' command w h ich 

ancep ts th ree numbers, the /l ng lcs o f ro ta l ion for each axi •. 
Oflr.n there is no mention of in w h <11 order Ihe rotations aAl 

appli.!d. le i alone a w ay to apocify Ihe drnoired order. I n ASAS. 
Ihe <1n;maIOr p..xplic tly determines Ilw ordering of operations 
by Ihe ,Iruelure of the nesting of Ihe expressions wrillf!n in the 

scrip t. 

nle bas ic operalOI'S are 'generic', they can be given lIny ly p4! 
nf fl:comelric objec'l and op4!ra le on i l as is approprillte for that 
nbjecCs Iype. ASAS Operalors NEVER modify the ohicci thlly are 
np'l"aling 011 . The value retU l1100 by an np"rator;~ a gcometri , 
r:,lll.v modififld copy of t im "'"'ginal Oh jfwt wi lh othe,wi.'<C Ihe 
s,lm,1 type and strur.ture. 

A ",,'at innal .~ho"hand is provid.!(1 fo, ' 11m .:ommon ,M:':!UmnCfl 

uf a seriC$ of Ilpcra,inns to he J>Cliorm()d "" a ~ ",gle oh,t.-'::I. The 
oblt.'C' '0 be operaled upon ca" he made the 'cun'CIlI' object 
lusing Ilw g ras p operator). nle ' gra s ped' objccl ..... ill then be 
luJefim,-d by calls 10 operalol'S which do nut CJlplici l ly specify 
an objecl 10 operate on. 

Two basic Iypes of geomelric operalOl'S are pl"O\'idoo by ASAS, 
'global' and ' local' Isometimt.'S called 'sclf relali\'e' ).The ASAS 
glohal geometlic Opera lOn;; are called: s cale. move , rotate, 
s tretch a nd mi rror. 

Generally , hesc opera lol'S app ly Ihe named geomelrical trans, 
form 10 any g iven geometrical objcci nlC trall.'lforms are relative 
lo,he origin and major axcs of .he global coordinale space. The 
parame'er cypcs to each a re numben lind vectors as appropri · 
a te .I 'Slrotch' is 11 differen,ia l 5('.Il I;ng for "ach axis. spt.'Cified by 
a vector of scal(~ bClorsl. 

As an f!lIOamplc o f ' he " sage of Ihe ASAS global operalOrs see 
Figures 1 and Z. Ihesc show how laSI year's SICGItAPH cover 
was constructed. 

The 'local' opera to rs a re s imi lar in e ffect to thegtobat operators, 
excep t that they are based on a n objec'·' OWN coord inale 
syslem rather lhan the g lobal coordinate syslem. A subworld 
carries a lo08 ils own liule ooordinale aya lem, its pav. NOI only 
docIthis allow efficient m odificat ion ofl he s ubworid but it <1lso 
provides a reference for openllion. in lhe objecl's local 
coordinale space. 1lle local operll ion were inspired by ,he 
'tu nIc ' of the LOGO gnlphics lan«uage Izl, and are intended to 
be" th ree dim ensional <1 nalog of the tUMle opera, ions (walk 
forwards or backwards, tum righ' o r left I. This nOlion of a 3D 
tun ic (more o f a d eep se<l.wimmi08 luMle than a land crawling 

loMniscl ..... as fi l~1 U5(.-d hy Jim S,ansfield and lhun refined hy 

lI .. m)' Unbnrman in a Jll lin" drawing ClIten.sion 10 l.or.o. A 

8!1od l rell,men, of this lIuhj(~t c.an be f!lund in I I I. t ).ually 

obft.'I"!ts will he defi,,,,.!,..., lh lll Ihe nl"igin of,heir lor ... 1 (JOOm inaltl 

s~re is al Ihe (:"nhlr of tim ,,11iI":1. Fnr th is reason W ti will 

infun nally rdllr 10 tlUi 'ori,;in or t llli I()("..al (X)t)rd in<1 tt' "y~I"m ' 

as Ihr, ' celll"r'. 1..tIC ... 1 IIpcrallll"ll 11m provi.led fnr movins, 

m la l ing, $(' ... Iing and '1.(lomlng' '1!la t i\'t! III t llfJ local coordinalc 

fI)'~tem , All of ,hc501 upcr<1tunl aCOllpl one or two pararnelel"li, 

Ihe III:!COrld optional parameler i. ' he object 10 operale on, if 

none i. specified, the currerl ily g,..~ ob;ect ill redefined. 

Note: the relalionsh ip betweeo global and local operalon is 

s imilar to the that of p re, and post·mulc ipliCil lion of transform 

malriOOl'.Also nole: when objOCl. o ther than subwortdsor povs 

are passed to self rela ,ive operators Ihey are first put into an 

iden, i,y I"home'l subwof1d, then optlra led on. 
Local operatol'!l: 

grow 

shrink 

forwa rd 

backw a rd 
I,. 
right 

up 
down 

ow 
<ow 

zoom-In 

zoom -ou t 

local-move 

/;Ca le up about local center 

scale down aboul local cenlCf' 

move along 10f" ... 1 +Z axis 

move a long local ·Z axis 

rolale 10 left about local Y axis 

rolatc 10 righl aboUI local V axis 

mwtc upward abou' local X ax is 

rulllle dO"''''''lII"o aoou' local X IIxi5 

'"(Ila!!! chx:k",iSfl abnul Ior.al Z axi~ 

n'ta!,' cnU'W" ·· rh>("kwisc ahoul I .... :al 7, axi~ 

sc..lltl up 1(>(" ... 1 l a .~ili 

scale down local Z axis 

mo"C a lung arbitrary local veclor 

local·st retch scale each local axis independently 

home resets back 10 orilSinal definition space 

t:Xalllples: an operato r sequcnce which l if evaluated each frame) 

will cause Ihe AIHPLo\NE tthat Is, the .sequcnoeofobjecls which 

fOl"m the animated value of Ihe varillble AIRPlANElto perionn 

'batTel rolls', and one IOcause Ihe CAMERA to pan around w h ile 

;waming oul : 

(grasp airplane) 

(forward 0.1) 

(cw 0.02) 

(up 0.02) 

(gras p camera) 

(right pan·speed) 

(zoom-out 1.01) 

Various Olher A5AS operaton! are available but wi ll not be 

di5CU5SCd here. There are recolor and c ut-hole, and Inte rp the 

general purpose Interpolaler, row <1nd ring which m ake regu lar 

gro ups of ob,eC'Is, and priam which makes solids by projecting 

a polygon. Here are some examples of IIOme o f , hem, an 

openrtor to make a n·sided regular polygon (i05Cribed wilhin 

a Ulli l radius circle), and a n operator 10 make a p riam wi th 

regular ' ends': 



Computer Graphics Volume 16. Number 3 July 1982 

(defop regular-po/ygon 
(param: color sides) 

(potygon color 
(ring sides 

(detop regular-prism 

(vector 0 1 0) 
.I: ... xla))) 

(param: color sides thickness) 

(pn.m colo( 

(vectOf' 0 0 thickness) 
(regular-polygon color sides))) 

Thl. summary of A5AS open.tora sutre'" becaWICI of the 
La~e'a exlenlllibilily; the full lial ia endlesa alOOll the user 
Invenla new OOM as needed. Beyond aimple comblnatlonlll of 
balilc linear operatioN, lhere ia a large cllM of nonlinear 
-beodin&' operators. For e.umple oonaider ' curl ,up' which 
takes a long Ihin objecl: "od cum it in to a . p ira l CEscher fans 
w ill know the " pplicalion for ahal). 

Serlpl' and Anlmalll Bloc:b 

TIle main program an ASAS Uler writes is called a script, w hich 
is a special type of detop. A ICnpt handles the sel tin& up aod 

IClli n&dO\oVTl needed to produCII an animated sequence lor write 
a file fo r later prodU(:tion by another system l. The scnpt 
expression includes a name and any number of subeJ.:pressions. 
The effect is to deline an operator with th.1t name which opens 
production, evaluates each expression in the body, and closes 
produc tion. Them is no m~ldct ion. but the things in the body 
are usually ei ther animate expres.sions I' animate block.s"! or 
production uti lit ies Isuch as 'make N blank rramcs ' , 'put th is 
s late lexl ', or 'make an N second countdown' " 

An animate block is a special type of loop. Each lime around 
Ihe loop, after It evaluates its body, a frame of animal ion is 
produced automat ically. Usually the bodyoonlains cue expres· 
sions I'cue a l frame N .... ' I. These cause objects to be made 
visible Iwith the &fIfI operalorJ or s lart, s top or direc1 actors. 
Animate blocks are exiled w hen a cut operator is evaluated. 

This e.umple ICnpt oonlains one animate block. which s tarts 
two similar KtMs al different l imes. Both actors then run unti l 
the end of the block. 

(script spinniog-cubes 

(local: (runtime 96) 
(midpoint (half runtime))) 

(animate (cue (at 0) 

(start (spin-cube-actOf green))) 

(cue (at midpoint) 
(start (spin-cube-actor blue))) 

(cue (at runtime) 
(cut»))) 

(Note: cut ac:cepU an oplion.al fnllne number, and will cui only 
Ifthatla the CUrTenl frame, 110 lha l third cue could have been 
written as "(cut runtime)' ) When an anlmat. block u exi ted, a ll 
o f Ike actors UIIOcialed with il are .. topped. Hence ani mat. 
blocks a re IIOmewh.at like the 'IICII:nes" of a movie, lhe co.araoe 

'93 
- 56-

structu re of lhe adion. 

While an A'iA'i ' CUC' i5 in fac;t , Imply a number!a frame number 
relative to thc r.un-cnl animate block I il should not be thought 
of as a COJ\:ltanl. Because oftlleoompulational nature of a ICrlpt 
it rAin be quile (~a"y to IT1O\."n CI..Ie$ around, .,inor. .I II cue points 
can 1M! handl .. >d ~ymbolir.a lly (by name rather than by a literal 
numoorl. for cxample it is a simple mall(lr to change the overall 
nlr'l time of /I acript (for a -quick run throuah' tesll if a ll cue 
points arc defined rolative to one variable le.g. ·runlime" . 
library macros exi,t to facilitate juSI such a IIChcme. 1lle 
animator may lind it n (lCell.ll&ry for .Irtislic reallOna 10 move a 
cue poinl within a ICript, again this will be quite painless if 
everyth ing w hich is .. uppoaed to begin or end allhat cue poinl 
m fen to il only symbolically. 

1lle control llructure of an IInimation .ystem would be very 
s imple if we oould assume thai a ll .5eq~ to be produced 
had al most one independently animated realure .It anyone 
time. On the other hand. if we assume that there may be any 
number of fully independent animated features (staMing and 
stoppin& at r.lndom limes, happening at different rates, runnin& 
in sync: or noll then oonvention.al oontrol s tnoClUres am no 
longer the most appropriate. 

An ASAS actor can be thought o f several ways. Most hasica lly 
an actor is a 'chunk' of oode which will be executed Onl:C each 
frame. Usually an actor lor a team of Iheml i", rT$ponsih le for 
one visible elemenl In an animal ion sequence. hllllCe;1 r.on tain, 
aUvaJues and computations "'hiGh rela te I II that Ohj' lCt . tn Ihis 
S(lns-e an actor scn'c:> to ",odul ... ri7.e ... nd loc ... I;7.<1 Ihe code 
rcl ... ted to one aspect, i$Olating it from unrelaled oode. from a 
fonnal point of v iew, an actor is an independent compuling 
process in a non·hierarchical system wi th lynchronil.Cd acti"a' 
tion and ... blc 10 com m unicale w ith other actors by mr.ss.age 

passing. 

When an actor is -on ' lbehveen bein& started and stOped l. il 
will be awakened once each fra me, it5 I~I variables restored, 
ilJi body evaluated. ils va riables saved, Ihen put back 10 s leep. 
(lienee an actor has properties between a ' ckzum' and a 
'process' in mcent lisp im p lementation ... 1 Actors are pul into 
act ion with the start operator, which takes an actor and 
relums the 'actor instance id', a unique numberfore.\ch active 
actor. An actor can deactivll te itse lf, or can be gunned down 
by the script or anolher actOI'. this i5 done with the stop 
operalor which accepts an 'actor instance id· . Run is a 
combination of start and stop. it start s an actM with a 
predetennined &top cue. This is the definition of the operator 
' 8pin-cube·acto r ' used in the ICrlpt 'spinning-cubos': 

(detop spin-cube-actOt 
(param: color) 

(actor (local: (angle 0) 
(d-angle (quo 3 runtime)) 
(my -cube (recolor Coiof cube))) 

(see (rotat. angle y ... xla my-cube)) 

(define angle 
(~u. angle d·angle»») 

II expects one parameter, a color. and returns an actor obj-cct. 



Computer Graphics Volume 16. Number 3 July 1982 

11w actor it,;elf has throe local variables, each of whidl Is 
assi.<ned an initial value in this GiI~: 'anglc' is the curn.!f1t angle 
of rotalion for Ihi' actors cube, 'cJ·aogle ' is the incremental 
vdodty of 11m angle. 'my,cube' is a rnor,lon.,d v .... -sion of A,'ioA.<; 's 
pnKlefimlCl ' cube' sOlid. E,1ch framc the actor cnnsln.J(:t ~ thc 
rotat • .d \,<,n;iun of 'lIly·cuhc' and JlolS!lfl5 it to the displ(l~"f!r, the 
CUl'nmt 'angltt' is updat<.d for the ne~t frame , 

Anlmaled Number. 

[n the last e~amp le the symbol 'anglc' look on a series of 
numeric values, frame by frllrr'IC, funnin& an arithmetic series. 
BUI for more complex tillle behavior Iquadratic or cubic curvesl 
Ihe inline code to handle and update allthOllC linear differeoce 
tenns beoomes a burden. To avoid this, A.<;A.<; suppons an 
animated numeric object called a newton 18.5 in Newlonisn 
mllChaniCliI . Newtons can be used any place a number 1NOuid 
be used, such as a coordinate in a vector or Ihe angle parameter 
for rotate. Betwoon frames howm'er, newtons are automati · 
cally updated to Ihc ne~t value in Iheir pnxlofincd sequence. 
The newton data SIl"UCIure holds its future as a chain of 
piecewise cubic CUIVCS wilh selectable dcgroo of continuity at 
the joinlS. 

A newton can be specillt."<l in lenns of position, veloci ty, 
accelera tion and della acceleration ('jerk' or 'jerkinl'...s5' j when 
those values are knOWIl . But more Iypically newton.s are 
dofinl!d wilh Ulilities which prodl,JCC.! curves with ~nain 
Prol>< ' l'lio.~. Animator'll am familiar with tcmlS tike 'slow in· or 
'~ Iow out' meaning Ihat an ac tion shoul<l stan 101'.:nd) wilh ZCI'D 

"f!loc ity Ifi.,,1 <lori\",t i\',,1 The fi\ 'ft lII05t a>mmon C\J IVCS lor 
piC<Xl.~"f ' :UI'V"5 ) uSt.'(lln A.'ioAS 1l1'C: hOld, linear, s lowln, slowOut 
and slowio Hold accepts a "alue and" length of lime, each of 
the others takes a s taning and ending \'alue and II time, Slowlo 
Is low in and slow oul) has z.cro dcnvali"cs al both e nds. When 
none of the s tandarn CUf'\'CS are appropriate an interpolating 
cubic spline fit is uSt."<l . 

Acto .... and Behavior Simulation 

SOme animation is made to malch a prccunceivoo imaKe, 
cspedally in oommercial production. Other limes, animation 
is produced as an experiment, Ihe answer to ' whllt 1NOuid 
happon if '" ' . In Ihe second 1ypC, which might be called 
'behavior s imulation', the animalor sets up a lillie 1NOrld b,v 
defining the rules of behavior and selecting Ihe Gilst of 
characters, When the behayior simulation is run we oblain 
imagcs of what we nt on in the lillie world. 

A class ic exa mple of this SOM of th ing is 10 II)' to build a 
computer gl'aph;c s imulation of a flock of l.Ji,t.ls. We must define 
Ihe behavior of a single bird so Ihal when a 101 of instances of 
the bird are simulated, they flock oonvilldngly. The flock seems 
to be following a leader, bUI each time they tum, a new bird 
becomes the leader. The flock changcs direction like. single 
unit, yet it is just an assembly ofindivlduals. The flock isa dense 
cluster, but the birds do not oflcn collide, 

ASAS actors provide a convenient way of implementing well 
behaYior simulation.s. As menlioned before, one of the realures 
of actOf's ia tile wa.y they promote 'scpanuion or powefli', 
independent modules of code which do not interfere with each 
olher. This allows an actor to lake Ihe paM of one charactefli 
in the simula.lion. If the ume son of character OCCUnl many 
limes in the simula. tion le.g. ma.ny copies of BIRDl we CIIn use 

independent 'instanccs' of a given 'claM' of aclorll. 

The othflr key fealure of actorll which lIlak('!!i tll" rn SUil"I ,I., f,,,' 
oohavinr , ;mulation is lhe ability to pa5A me ... ge • . ( :I" a riy 11M' 

bird~ in the flock are flXr-hanging infomlatiun, thm .. ,.:], th" 
act inn of light and IIOUnd on lhe hird 's IK1n1l( !l< I1adl '''11' i .~ a \\';In ' 
of wh"m Ihe olh",r" are and wll(l"' they an' ,l(ni n~ (iu .lI l 
intrins ically dl!pth sor1ed oroen] In an actor si m ulatiun !If Iho: 
flock wewuuld nolgo to tl u:.)~t"nt ofmoddin~li,l(ht and "' ''"1<1. 
but we oould roalist;cally have each bird blUil<lca:;tin,l( I" 
llvcl)'onc Ihc mCSll3ge 'I am here Ix y 7. ] ,lIId 1'111 Iwadiu,l( leb 

dy dzJ' . In thaI implcmcntalion, each bird would havc ttl put 
theotllefli in ordcrofimpor1anoe, probably using a 'hidd,)n birrl 
algorithm' , 

M~P __ tnA' 

ASAS me ... ges lire handled by 11NO special opcrat0l1l: send 
and receive. Send compo&es me&&ages and posts them at the 
recipien t's mailhol<. Recelv. mad!! each message 10 the mail, 
001<, Te'lpoodir18 to each In a mannor depending on Ihe 'YP" 
of rnt'!S&iIge. IASAS actors aCT once each frame, not whenever 
a message comes, hence mail may pile up belween frames !IO 

Ihe mailoox is implemented as a ~·IFO queuc.1 

Send takes an address, a 'message type ' CoplionalJ. and any 
o the r llpecific message dala Inumbers, geometric ohir.cts, .~ym, 

bollli. The address is eilher an actor Id or a special lIymhol: ·all ' 
m<1ans Sf1nd to all a (' lors and 'script ' and 'anlmale ' (·an hI' uso .. 1 

to send I11l!"-'<agml to the surrounding script 01· animate hlo",l< . 

TIle ·m~gc typo ' is any symbo l used to eJcsc,;tM' lh" I."p" " f 
m,,,;sage. il mUSI matr-h the mCll,lag<1 ty po: in Ih, ) r~,.:r pi.'nI " 

receive cons truct . Fo" ",~(Irnpl .... til",,", sends ( 1) wll ·tM,ull""'" 
10 speedup by 10 percent and IZI announce to all lJi,~ls ",],,,m 

we are: 

(send bouncer speedup 1.10) 

(send all bird,slate cur'position cur,velOCity) 

TIll! receive oonstnlct has a body much like a case ronst,,,,·t. 
Each message in the mailbox is examined in turn, the 'n1<ssagl! 
type' of each is compared with the type of the various clauses. 
If one of the clauses in the body of thc receive lIlalchns the 
incoming message type, lhe body of lhe clause is C\'aluatcd in 
response 10 Ihe message. Message type 'any· in a clause will 
match any incoming message, The conienl! of a message lpas t 
the typel may be aoccsscd by llpecifying pa,·ametcr hindings for 
the clause ty pe. For example. Ih i ~ aclor knows hnw to 'l1('Hh'l! 

only ·speedup' and ' s lowdown' message: 

(receive ({speedup I) {define speed 
(times speed I))) 

«slowdown I) (define speed 
(quo speed I))) 

(any (print 'What?))) 

T1te message passing mechanism described a bovo is based on 
a. more primatiYe operator called In. The In operator a llows the 
evaluation of any expl"663iOn 'inllide' the local variable space 
of an actor, Ihus allowin& examining: and sell ing Ihe local 
variables of the actor, This is .. userul but dangCf'OWl tool which 
should be used only in .. well designed protocol. 

2" 
-5"-



Computer Graphics Volume 16. Number 3 July 1982 

CommerdaJ Production a. III 

ASAS froquently plays a central role in commercial animal ion 
production al III . ahhough other ler.hniquM of animal ion 
control Hrfl used. Projects made w ith ASAS include, ' MICHOMK 
animaWd logo. ' IJ\S' an imaloo logo. 'NEWS CENT~:1l2' TV nm-vs 
show imro. two TV commercials for 'TOHNAI)O'. va .~ou.~ 

maga7.ioeads. all of tile theme animation forlhe III 1981 Samph, 
Heel ('TIle Juggler' l. ahout ha lf of Ihe special (If(H(:t .~ fo l' tile l ... dd 
Company's feature motion pictuM! ·WOKEH.'. and all o f the 
animat ion and s till images III is m aking for thenx;entJy released 
Disney fea ture 'TRON'. 

('''W'~, Cl ,~~ . ..-,1, IJt>noy l'n.<,Iuc .. ", ... nd IlIfomr.,_ ''''ettY,,,,,,,,I, '''''" 
Figure 3: SOlar Sailer Escape SCquence from TRON 

The Digital SccneSimulalion Group usually w nl'ks on a contt';WI 
hasis witll clients such as fil m and video pmdu(:er"ll and 
ad\'e.1ising agencies. SOn)(J projects com,~ In us car'Crull.1' 

pl;mned out uy Ih" cIienl. wll i le Olhe'"lI come in a "':'Y \ 'a~lU" 

fonn . If we do 001 gel sp<!<:ifi" ar1is,ic din:clions lIimings. 
sloryboards and renderings) from the client. our' An Depa" , 
ment creates these rnalerials in consultation with the cl ient. A 
team of a t least tlwee s taff mem bers (art d irecto r. designer/ ml
coder. lechnical director) is fonned 10 work on Ihe jou. 

When the artistic concept is som ewhat sel1 1ed. work is sta rtt:d 
on its compuler g raphic realiza tion. Thtl firsl slep is 10 creale 
a goom etrical model of the shapes of the objecls 10 he used in 
Ihe animation . Unless the geomelry of the o bjccl is t'Cgular 
enough ~o allow it to be constructed under program control. 
the shape definition is done by hand in a laborious p rocess 
similar to technnical drarcing we call 'encoding- . Often some 
mix of manual data en lry and processing by various ·geometri· 
cal tool' programs is used to oblain a finished objoct sllape 
descriplion. 

As Ihe oujocts arc beinS fi naIi7.ed. the lechnical dil'CClor begins 
10 w rite Ihe ASAS scripts and rcla led programs. When Ihe group 
is worki08 many closely related scenes. for inslance during 
produc tion on a fea ture 111m. many of the ' se ts' or environments 
will be shared between several scenes. In such cases it becomp..s 
convenien t to set up ' lib raries ' of common ASAS function and 
object definitions. COntributions are . made 10 these 'public 
libraries' by all animators working on a project. Usually the 
motions in an an imaled sequence are so specifically planned 
out in advance that an outline orthe script can be written before 
any of Ihe objects are avai lable for test pictures. At this stage 
the ASAS scripl is very abstract, references are made 10 symbolic 
conSlan ts w hose values are not yet known. When object l1Ies 
are ready and Ihe script is roughed ou t the 'graphical debug· 
g ing' begins. 

295 

-57-

Often dl,s ;gn oon.~Ir·a i nls arc stated in sud\ 311 indimet fashion 

j' have thecamera pointing such that the logo is posil innoo hem 
and orir.nlf!d like in this sketch 'llha t the only workabl" w a_v 

10 fi nd th"d ...... irod numeric ... 1 parameters i.~ "~pf1ri rnenta lly wilh 
graphical fl:cdhac::k. Aftll1" specific 'kf:)" fram,~ have 1><'0:'" 

n .unpo. ...... l. and tim transit ions helween Ihem uefi!wd. amnI i"" 
lesl is madl,. Usually this test is made in either line t' VO(:IOI'-1 

or low resolu lion shaded image mode. The sym boli" nature of 
ASAS scripts make il easy 10 adjust the n.!Olime of a sequ<:ll(,e. 

making p reliminary lests al ]0:] speed ratios allows faster tum 

around . Also the script can be simplified for these tests. by 

d ropping out certain elements. replacing others with ' s tand · 

ins' .... 11 these ch.anges c.'!n be made under the control of A'>AS 

script nags. Often lhe motion test will revea l problems in Ihe 
' feel- o f the dynamics of the an imat ion or unexpected behavior 

bclwoon the key f,.ames. 

Anolller p.a$S or two is made to finalize the m o tion and then 
anenl;on is shifted to the color. ligh ting. shading and o thr.,. 

'photom"leric' parameters of the animation. Key frames a rc 
examined on a high resolution video display and color teslS arc 

made onto Ihe Iype of colnr 111m w h ich wi ll be used for Ihe final 
image. Of len a parameter will be determined with a -woof;c 

lest', maki08 a series of frames which differ only by a single 

p<rrameter va lue 4e.g. the amounl of ambien t ligh t in the SCCn'~I. 

wi th the gamut of values laid out. the final value can IJe easily 

be sclectHd . 

Wh"n all has been (h~i,h:d. a Iligh !'CsolUlinn fin al filming is 

madr.. Typic;lIly wllcn Ill" r,:s"l! is Sf:n~enl:d. Ihr. chenl will find 

al least ontl ."ason In rcjecl Ihe work and the whol .. p'U<~'S$ 

goe.~ back 10 Ihe heginn;ng. 

Conclus 40n 

This paper has presented ASAS. a gene ral purpose prog!'am

ming language which haS been eXlended 10 include geometric 
objects and operato!"S. parallel conlrol slruClures and Olher 

features 10 make it useful for animated computer graphic 

applicalions. ASAS makes use of an abstract computing element 
called an actor. we have seen how actors promote modularity 
and how Ihey can s imulate .1 wide range of behavior by 

exchanging messages w ith each othe r. In three years of 

commercial use ASAS has p roved itself a workable and praClical 
1001. While Ihe specific feature a user wants may nOi already 

he a pa.1 of Ihe language. the exlensibility of ASAS allows il 10 
gmw with its users . ASAS has e~panded our 'oomple~ity 

barri er' another no tch , allowing us 10 attempt work wilh mon: 

independent ly animated elements than before. 

The author is not prepared to state that when Ihe ULTIMATE 
computer animation syslem is buill. it wi ll be progtllmmin.g 

language based. But it is hard 10 visualize a system w hich allows 
a rbitrary extensions in to unexpected rea lms wi thout being fully 

programmable. However. programming and making aeslhetic 

judgements seem to be d is joint in m ost people's th inking 
prooesses. The user of a graphics programmi08 liystem m ust 

a lways be on guard against compromising aeslhe tic judgements 
to s implify the programming! The solution used in our 
commercial work is to make the production a joinl effort of 

severa l people, some responsible for anislic issues and olhers 

responsible for technical i$Sues. 



CompulerGraphics Volume 16. Number 3 July 1982 

Hcim"ellce8 

I II Ahels.on, II. and diU.,,,,,a , A. Turfle 'rllOmNry, MIT i>N!!IS 

ISl,dlls in Al1ifkiai InlelligcflC(· I. Cunlll'itlgc, MA. 19111. 

12 1 Au .• lin, II., 'TIle LOGO Primer ', MIT ..... 1. Lab. Ingo Working 

!'ap"" 19. 

131 Churr.h, .... "The C.alculi of Lamtxla Conversions'. Annals of 

M,,"wmalic:.ll Sfuditls 6. l>rincelon l)nivenlity Pro"" 1941. Re· 
prinled hy Klaus Reprint C.o., 1965 . 

141 Clark, J., · lI ientrchica.1 Geomelric Models for Vi$ible Surface 

AI,;-orilhms'. C4CM. October 1976. 

151 Oahl, Myhrha~ .. OO Nygallrd TheSIMULA 67 Common Ilase 

lAnguage, Norwegian Compllling Centre, Oslo, 1966. 

1611)e~·lInli. T. 'TIle Oigitll l COmponenl of the Circle Graphia 

Habitat" Proceedings NCC 1976. 

17J Oijkslra, E.W. 'Noles on Siruciured Programming', .... ugusl 
1969 

18J Eastman, C. and lIenrion, M. 'GLIDE: A language for Design 
Informal ion Syslems' , SfGCRAPfI "77 Proceedings. July 1977, San 

Jose. CA. 

19J futrelle, R. P. and Harta, G. 'Towards the Design of lin 

In trinsically Graphical language', 5lGCRAPfI "78 Proceedings. 

Augusl 1978, .... 11.lIlta, G ..... 

1101 Goates. G., Griss , M. and IlmTon, G. 'PICTlJREBALM: .... 
Usp· hastld Gr'aphics l~lnguage Sy .• tem w ilh Flcxibl .. Syntax and 

Il i''''arr.hical 0;1101 SI" . .lctun:', .~f(;(;RAf'll '/10 Proc:ccdil'lf~' July 
1980. Scallle, WA. 

1111 Guldbeq;;. A. and Kay. A. SAfAi.J. TAL~·72 In~ , ,.t1l:'ion Manual 

Lcaming Research Gruup. Xcrux Palo Alto Hcseardl. Man:h 
1976. 

11Z1 Greif. I. and lIewil1. C. 'Actor Semantics of 1'L"u\lNER·73", 

Proc. of AeM SIGPl.AN·SIC.ACT Omf.. Palo Alto. CA, January 
1975. 

1131 Be",itl. C. and Smilh. II. ' Towards a Programming .... ppren· 
ti c:e ' . MIT Al Lah \\IorkJng Paper 90, January 1975. 

!l4) lIewi1t. C. and Atkinson, R.. 'Parallelism and Synchroniz.a· 
l ion in ' Actor System', AeM Symposium on Principles of 

ProIJramming Languages 4, JanU.lry 1977, 1_ A CA. 

1151 Jones, B. 'An extended ALGOL·60 for Shaded Computer 
Graphics', ACM SIGPUW! SIGGRAPII Sympotlium on Graphical 

Langu.-.ges, April 1976. 

1161 Kahn, K 'An AClor·Based Comput"r' Animation Language' . 
Pruc. oflheACM·SIGGHAl'lIlVorkshopon US#!,.·Qrienlcd Design 

of CompUIC'· Crapllies Systems. Pittsburg. PA. OclOber 1976. 

117) Kahn, K. , 'A Computational Theory Of Ani mation', MIT A.! . 

Lab. WorkJos Paper 145, April 1977. 

1181 larkin, f. "Computing wi th TexI,Graphic Fonns", Confer

ence ROCClt'doftl1e 1980 U5PQmferonce, AoguSI 1930, Stanford 
Univenity. 

[ l 9J Larkin, F .• A Slroclure from Manipula tion for Texl"Graphic 
Objects',SIGGRAPII "IJ() Proceedings, July 1980, seatt le, WA. 

[ZOI Moon, D. MacLisp Reference Manual, Revision 0, MIT 
Project MAC, December 1975. 

Iz1I Newman, W. and Sprou ll, R. Principles of Imerilcl ive 

Computer Graphics. McCraw·HiII , 1973 and 1979. 

... 
-5B-

Illl pfister, G . ..... Il igh Level Language Extension for Creatif1#!: 
and Cnntrolling rJynamic Pieturos". ACM SIGI'LAN/SfGGRA.PII 

~ymposium on Grapllic:al l .ilflguagp.s, April 1976. 

12.31 Prei!lllle.-, M. ·Mulli ·processed Music SYIllIl<lSis' . US Th,'S;s 

MIT E£CS o,'partm 'ml, May 1976. 

IZ41 Ileynolds, C. ..... Mullipmo'ssing Appmar-h to Cu mpulHr 
Animal ion', 511 Ihoosi.'l, MIT un L>epartmr.nt , .... ugust 1975. 

1251 Reynolds. C. ' Compu t .. r Anima tion in the World of Acton; 
and SCripts". SM thesis, MIT lAn::h ilccture Mar-h in .. Groupl. May 
1978 

[26J Reynolds, C. ACtor I SCrip /or Animation S)'li /cm User 's 
MUllul 3.0, tASASUM 31, Informal ion Imemal;onal Inc., in 
pmpanil lion. 

[Z7) Smolia r, S. 'A Para llel Proces8ing Model of Musicsl Struc· 
tures' MIT AI lab Techn ical RepoM Z4Z, September 1971. 

[UJ SUIlIIman, G. and Steele, G. 'SCHEME, An Interpreter ror 

Extended Lam bda Calculus', MIT AI lab Memo 349. December 
1975. 

lZ91 Teitelman, W. l nterU5P Reference M anual, Xero~ Palo Alto 

Research Cenler. 1978. 

1301 Winograd. T. Undcrslanding Na tural L.1r~.:y{e. Acad"mir. 

Press, 1974. 

1311 Winston. P. and Hom, II . l.isp. Addison Wesley, 1981 . 

13ZJ WiMh. N. ·MOOUI.!\. : a Lauguagc for Modular Multi· 
pnJ8ramming' . SOf/ ... a.V!. Prac/ice alld Expcri!!/I(:(J 7, 1: \!-177 PI' . 
3,35. 

Note 
This enl ire paper is an example of computer graph ics. All 
piclUres were produced with Digilal Scene Simulat ion. and 
direct ly Idigi la llyl converted in to four color ha lftones in the 
In foco lo r format.The tex l was ediled and com posed on TECS, 
and a$$l!mbled w ith a Page Makeup Syslem. Cam era ready, fu ll 
page aM !including typesetting and hil iflone genera lio nl was 
produced wilh a COMp80/Z·Pagesctter. Al l o f these sys tems are 
products or infonnation Inlemational Inc . 



e~r.~1i!i~ .. - - ------... e ·· • ~ 



A walk through the production process at this commercial CG 
animation house reveals an emphasis on software tools and the use 

of intermediate-stage graphics for design flexibility. 

3-D Shaded Computer 
Animation-Step by Step 

Richard Chuang and Glenn Entis 

Pacific Data ·Images 

·T he animation of compuler.generated images has 
made a number of contributions 10 the tnlcnainment in
dustry, and the fu ture of these imaaes in film and tclevi
sian looks promisinl. Althoup many computer anima
tion techniques have betn widely researched and pub
lished, their actual commercial usc in production slUdios 
is still in its relative infancy. 

The creation of animation for the emenainmcnl field 
requires a combination of technical capability. design 
sense, and practical production skills. In this article, we 
describe the use of computer graphics Icc:hn~ues in a 
production environment; in doin, so, we stress the prac
tice, rather than theory, of compule:r graphic:s. 

Pacific Data Images produces commercial computer
generated animation for broadcast television. What 
follows is a step-by-step explanation of how commercial 
animation is produced at our facility. In the course of 
this explanation, we will discuss several tools we've built 
to support the animation process. In particular. we em
phasize soflware at POI. since soflware continues 10 be 
the key technical animation component that cannot be 
bought "off-the-shelf." 

The techniques covered in this article provide an exam
ple of how a typical piece is produced in our studio. so 
we make no claim of universality. Nonetheless. this walk 
through our production process should impart a sense or 
what producinl computer animation is like. 

Syslem o'trYiew. The POI animal ion SYSlem was 
developed specifically for the production of commercial 
animation. II produces smooth animation of 3-D shaded 
raster images and features an animation language. a 
modeling 1001 kit. real·lime. animation design, and 
several viewing options. Output is to 16mm or J5mm 
film, or to one-inch video tape. 

Fiaure I presents an overview of our animation 
system. Animation in our system is defined by scripts 
"written" in our animation languaae. by world coor
dinate polygon files. and by motion data. This data is 
proces.scd by the script program •. which interpreu the 
animation script and creates one of several types or poly
gonaJ output files. 

Screen coordinate polYgon files can be sent either 10 
the renderer for the production of antialiased. shaded 
raster images, or to a wireframe display program that 
displays the polygon edges in anlialiased vector (onn. 
World coordinate polYgon files can also be displayed in 
wireframe fonn and can define models used by other 
scripts. Vector files are scnt to the real-time vector device 
for interactive viewing and animation design. 

Images are displayed on color moniton. vector ter
minals, and the system's real-time vector device; images 
can also be sent directly to one of two film recorders or 
to an NTSC encoder for recording onto videotape. The 
color monilon are located at graphics workstations. 
which are equipped with terminals and data tablets for 
interactive use by animation designen. 

The script system 

We rely heavily on a script 5ystem for our animation 
design. Our script system is a special· purpose graphics 
lansuage supporting animation at a hilh level. The script 
system was innuenced by a number of other. similar 
systems. most notably Craig Reynold's lisp-based 
ASAS.' Our script is built on top of the C prolramming 
languagel and thus shares many or C's reatures. We 
designed our script for simple syntax; defau lt vaJues for 
the entire graphic environment: suppon of complex 

Copyright ~ 1983 IEEE. Repri nted 
VnlHm~ 1 

with pennission from 
fA _ 

Computer 

" ~r~nhir~ t Annl i r~t;nn~ fI,lilmk.or 1 n~n.o~ 



modeling. transformations, and motion: and suppan of 
modular scripting. The data structures and file types 
used in the script art shared with other POI design tools 
and, thus. provide a common ground on which all design 
programs communicate. 

We use the name "script" because of the way the 
animation language is used in the production process. In 
the early stages of a job. the basic models and motion for 
an animation a~ roughed out in the script lanauage. This 
original script already includes elementary timina. !ish!· 
ing, viewina, and modeling information that will later be 
refined and used in the construction of the final product. 
At each production stage. this script is updated to renect 
production changes and to incorporate new models and 
motion data from other pans of the system. Thus. tbe 
script is much like a movie script in that it concisely 
describn whQt should happen wh~n and whe~ in the 
production. Unlike a movie script. however, the script 
also defines the animation and is run directly to create 
both the intermediate and final versions of a job. 

There are several advantages to this approach. The 
script was built to be a fast prototypinglanguage for im
age building and motion testing. Typically. the 
preliminary rough script for an animation sequence is 
built in the very first session with a dient. This capability 
for rapid prototyping is essential for desip! experimenta. 
tion and nexibility. 

Next. the script directly handles data types and model· 
ing operations for Iightinl. viewinl. and transfonnation. 
thus freeinl the scrip(writer to conttntrate on whQt has 
to be done. rather than how it has to be implemented. 
Most script values default to predefined values if not ex· 

WORLD SC RIPT H ,..... COQRDINATE 
TEXT POLYGON 

FILE 

1---0 SCRIPT f-. INTERPRETER 

WORLD 
f---. 

SCREEN 
COORDINATE COORDINATE 

POLYGON POLYGON 
FilE FilE 

MonON ~ L..., WORLD 
COOROINATf DATA VECTOR 

FILE FILE ,. 

piicitiy set by the animator, making simple object defini· 
tion fast and easy. For e;!tampie , if a five-sided prism is 
required. the script command is 

prism 5 

Unspecified prism attributes, such as color, radius, 
height. and surface type. all default to standard and/or 
previously Sd values. In addition, viewing parameters, 
such as camera position, focal lenath, lights, window, 
and viewpon. are all set in the script (or. alliin. default 
to standard values) so that when an object is created. it 
can be transformed into its final screen position. 

Since the animation fat a sequence is originally pro
totyped and refined in the same script that creates the 
final piece. the possibility for error and the necessity of 
tedious data transcription is greatly reduced. 

Motion design 

Since the main task of the director and -animator in 
)·D animation is the choreoaraphy of objects and 
camera, we dev~loped a motion desip! system to assist 
them in this. Our motion desian system consists of (I) 
several interactive and noninterac1ive motion design 
tools that Sd up each scene and (2) a number of alter
native methods for viewing each animation sequence. 
Figure 2 ilIwtrales the data flow durinl the motion 
desisn process. 

The interactive motion desian system utilius a vector 
display to establish key-frame positions for the camera 

,...I DfSIGNER I 
WIREFRAME WlREFRAM ,. DtSPl..AY IMAGE H 16MM FILM I PROGRAM 

f-.[ 35MM FILM I 
RENDERED 

RENDERER IMAGE ONE·INCH L.I VIDEO I 

REAL ' TIME 
I r-l DfStGNER I 

·0 VECTOR 

i L.f '1. ·INCH VIOEO I DEVICE 

I 

Figure 1. Ovtlf"llew of the Pacific Oata Images Inlmatlon system. 

Dec~mber 1983 
- 61-

19 



20 

and acton. The camera's view, focal length, and diret
tion of vi~. along with the position and orientation of 
each actor. are specified by the animator interactively. 
The key frames are then placed into an animation se
quence. Next. as specified by the animator. the computer 
Benerates the required number of positions for all the in
termediate frames. 

Mathematical control paths for both space and time 
can also be used to modify the transition of motions be
twem key fnmes . Examples of key-frame modification 
are camera tracking, easing in, easinB out, and roll and 
pitch. For well-defined motions, numerical paths can be 
entered manually or intcractively. All motion specifica. 
tions can interact within the script of each animated 
scene. Combining numerical paths and key-frame speci
fications is ohen used in our animation. 

Extensive use of motion paths simplifies the. design 
tools needed for specifyinB complex motions. By using a 
simple description of motion in terms of motion paths. 
new animaton can quickly learn the basics of )·0 com
puter animation and later extend their knowledge to 
more complex scene choreography. 

PrtYiewinc motion. An animated sequence can be pre
viewed in several ways. Fint, a nip-book approach can 
help an animator view his design in a somewhat " tradi
tional" manner. In this approach, all motions in an 
animation sequence are calculated and drive the motion 
on the real-time 3-D vedor device. This device can play 
the animation back at any speed, which allows the ani
mator to "nip" through the sequence at varyinB rates. 
HavinB access to this level of interactive control is impor· 
tant for an animator in that it helps him understand the 
quality of movement and permits him to closely (and 
slowly) scrutinize movement. 

A second preview method involves filminB a wireframe 
pencil test of an animated sequence. This produces a 

TEXT 
MOTION E01TOR DATA 

FILE 

GRAPHIC 
SPlINE 
EDITOR 

SUBSCRIPT 

REAL-TIME 
(ACTOR) f-

FO' 
VECTOR lGORITHMI 

ANIMATION MOTION 
EDITOR 

CUSTOM 
~OGRAMS 

display of the actual choreography. Through the use of 
very simple .models o r "stand·ins," motion tests can be 
done prior to having the actual acton in each scene. 

Then. finally. the motion can be previewed at low 
resolution (2$6x 243) . Here. the choreography of move
ment, lightinB, and color are setn together before the 
final renderinl. This low-resolution animation is visually 
more helpful to an art director than vector animation, 
since a vector animation sequen~ contains no informa
tion as to the color and mass of each scene. 

Model de.lgn 

A designer has control over many characteristics of the 
objects to be animated. includinl aeometric shape and 
size,u color. surface quality, ' and amount of detail. As 
described above. veT)' simple models are sometimes used 
in previewing a sequence so that the designer can get a 
fec i for the overall scene or movement within a scene. At 
other stages of production. different details of the 
models are required 10 complete and line-Iune the final 
piece. All of this falls under the aenera! heading of model 
design. 

An animator may be called on to animate almost any 
kind of object. so it is important that his available 
modeling tools be nexible and fast. A prime objective of 
our modeling tools is to provide just such a set of general 
capabilities-one that allows quick object definition 
without the necessity of using custom software. 

Figure) illustrates the various. tools that. together, . 
create a finished model. The script languaBe, various 
modelinB programs. and a graphics editor each produce 
a common-format world coordinate polygon !ile. This 
world file can, in tum , be proces.scd by other modelinB 
programs. Additionally. the file can be further manipu
lated by the script language. On~ an object's world 

SCRIPT SCREEN 
INTERPRETER COORDINATE 

POLYGON 
FILE 

IEEECG&A 



polygon file is completed, it can be called up by the script 
controlling the animation for conversion into screen 
coordinates and thm_ incorporated into the final scene. 
Each of these steps is examined in detail below. 

The script lanauage described above is used to create 
most models based on geometric primitives and to build 
up partS of models created by other proa;ranu. Qukldy 
spedfied simple objects made from primitives are 
especially useful as stand-in objects. But the script is the 
basis of both the animation and modeUnI systems, so aU 
script primitives can also be used as building blocks for 
more complicated models. Many models, such as build
inp with muhipk levels. windows. and doon. can be 
constructed by combininl very simpk aeometric: forms 
(see Fiaure .). 

Other modelinl programs create various t)'pes of 
spline-based objects, indudin. patches. free-form sur
faces, and "swirls. " There Is also a speci.a1 proatam for 
cteatina three-dimensiona!" logos from two-dimensional 
contours. The splines and contours used by these pro
arams can be entered in three ways: (1) usia. an interat
live spline editor, (2) from spline data created. in a text 
editor, or (3) from other propams. Fiaures' and 6 illus
trate models defined with various spline-based surfaces. 

Still other proarams fonn various aeometric surfaces 
on polYJonal meshes. For cumpk, a recent job caUed 
for the animation of rocky su.rfaces, so a fractaJ modder' 
was uxd to c:reate mountains. 

We abo use a special. class of moddinl J'I'OII'U1S based 
on a Unix concept known as "filten:." A mter program 
is one that IC/:e'Pt5 a stream of data. performs some 
transformation on that data, and outpull the data. 
usually in its oriainal, input format. The advantaac of 

... , r-"'"' , , , ,. .. - .. ~ , , "' ... , 
~ -.. .... r-- "" , -, , , , , , , , co" r-- _n. , , -, , _. , r-, """'"" , ...... , ..... ". r-. ... ". -, -~ .. , , , , , , , ....... -'-, (OITOII , , , , , , , , 

CUSTO" -,-. ...... , 

this approach is that each filter program can be designed 
to do one very specific task and do it weU. Complex tasks 
are then performed by chainin. filter programs so that 
the output from one pro;ram is the input to the next. 
This type of "combinatorial power" provides very exten
sive paphicaJ capabilities with relatively simple software. 
Our mter ProtramS accept world coordinate pol)'lOn 
files as input; process them in some way (alter polYJOn 
normals, chanac colors, apply nonUnear transfonna-

FlguN 4. AlI ........ I. of Ihi. scene ......... geGlMlric 
primH,," creeted by 1M script. 

........ ,-
"'"' 

, 

~ ... seM EN -INTERfIIIll!' , .. , .... ...... ". 

Flgu,. 3. Both mCKMt script. and animation script. are wrtlten In tM POI script IsnguaQe. Nets that the script 
CIIn alao be uaed to dri" the other modeling 1001 •• 

December 1983 21 
-~?-



22 

Flour. 5. Cat Clock', trim, plant I ...... smak •• and a.h
tray ... all built from a .• pllne-bulfd abj.ct •. 

Flvure 7. Stand-In model 01 a .!IIlm •. 

tions, etc.). and then output a new world coordinate 
polygon file. 

When a geometric or algorithmic modeling approach 
won't suffice, an interactive graphics editor is also 
available. As the artist draws the model with a data tablet 
and interactive display. the computer stores the artist's 
drawing in a file. This infonnation is converted into 
polygons. which can then be used as a model or as input 
into other modelin. programs. Many of our log05 and 
our more free-fonn designs are modeled in just this 
fashion. In some cases, the most practical method of 
building a model is by scanning the original art into the 
display memory with a video camera. displaying the im· 
age on the interactive display as a guide, and then tracing 
the scanned-in image to create the final model. Once de· 
fined, this final model is available for display and anima· 
tion from the script with a single command . 

Rendering a computer graphics model, which is done 
after the model has been defined, means displaying it in 
color on a CRT screen as a solid object with hidden sur-

Fl'ilU,. 15. Thl. Im.g. lutu,... .tochl.tlcally ~ted 
Iplln..ullfd model., t.xtured 'ilround, .ncI .peclal .f· 
fectl'il lo.• 

Flgur. a. DeI,UIfd ~no of , .1111 1If1. 

faces removed and proper )-0 shading. Stand·in models 
are again useful-this time for the detennination of col
or, object placement in the scene. and scale. An example 
of a scene of rendered stand-in models (polygonal stand· 
ins in a still.life) is shown in Figure 7. The colors and 
fi nal placement of the objects were detennined using 
those stand-ins. after which the !inai, detailed scene 
(Figure 8) was created. 

Designing a complicated object correctly on the !irst 
attempt is difficult. so a fast method of viewing objects 
in the design stale is desirable. In our system. any model 
can be previewed as a color wireframe (Figure 9). Such 
wireframes have the advantage of being quick to display 
and yet still show the fuJI structure of the scene. 
Wireframe drawings can also be ploued on paper for 
detailed planning and documentation. 
Onc~ created, models ate rarely thrown away. Most 

computer animation studios build up the equivar~nt of a 
shopping catalog of models that they can use in future 
work. Our script system encourages the modular con· 
struction of models from subparts. Each model is then 
given a name and saved in a model library. If a scene is 
made of several models, the script retrieves the necessary 

IEEECG&A 



FJour- t. Color wtret,.,.,. of I 11111 1If .. 

models from the library. Because each model is inde
pendently defined, the script can be wed to isolate 00. 
jects for documentation and detailed vtcwinl. 

After the model hIS been fully rendered by the 
desipcr, it can be placed at any location on the screen, 
cither by itselr or in combination with other models. Ad· 
ditionally, the camera can be positioned to aim at any 
.screen location. A virtuaUy unlimited number of light 
sources, at any position and or any color, are allowed; in 
fact, at this stalC or design, a major portion of the ar· 
tist's and client's time is.spent adjusting the lighting and 
fine-tuning the color of the model. Subtle liahtin, ef
fects, highliJhtin,. and color balance can be adjusted to 
grntly enhance the strength of the final imaae. 

T ••• shots 

Models and animated movements can be used any 
number of times and in a variety of ways. This is par
ticularly advantageous in preparing lest shots; a script 
can be progressively refined and viewed in inexpensive 
tcst·shot formats until everyone agrees that they have 
what they want . 

The above section on motion design mentioned the use 
of fli~book motion previewing and wire(rame models. 
When combined. these two techniques offer a relatively 
eheap method of previewing the animation for an entire 
production. 

In traditional animation. a ~ncil tPSt is the filmed se
quence of raw, pencil art shown at the normal animated 
playback speed. For the computer graphics equivalent of 
pencil tests, we use the script and models for the final 
piece, but draw each modd as a color wircframe rather 
than as a (ully rendered image. A wircframe image can be 
up to SC'VeraJ orders of magnitude faster to compute than 
a (ully rendered image, yet the wircframe pencil test still 
displays the motion exactly as it will appear in the final 

December 1983 

Flgure 10. This cornpo.lte Irqge ahowa the .. me ant~ 
IliaNd teeM .. 512 _ 411., 251_ 241, Md 121_ 121 ........... 
work. Because the same script and models are used for 
the penclnest and for the fina! piece. the movement and 
models in the test are duplicatable. Thw. misunder
standin" and orpnizationai overhead in the studio are 
reduced. 

Test renderinp are made at variow staaes of the 
animation so that the designer can view and modify the 
look of the models. coloring. lighting, and the general 
feel of the key frames. Often a scene consists of many in
dividual elemenu. includinl mattes for mixinllive action 
with animation. Since test renderin". pencil tesU. and 
the ftnal animation are all made from the same script and 
models, it is a simple mauCf to choose any frame from 
the pencil test and render it exactly as it will appear in the 
final image. 

Usually. the last piece of test footage in a nonnal pro
duction cycle is a low-resolution rendered animation se
quence. This test has hidden surfaces removed, 3-D 
shadinl. and is antialiased, but all at lower resolution 
than what would be considered nonnaUy acceptable (or a 
finished piece. Renderinl fnunes at onc-quarter resolu· 
tion (reduced to half resolution. both vertically and 
horizontally) gives everybody involved in a production 
an excellent feel for the final ntm. Since resolution is 
closely tied to computing time, the low-resolution test 
shot is still signincantly cheaper to compute than the 
final image. And in most cases low-resolution tests arc 
done at one-sixteenth final image size (reduced to one· 
quarter size. both vertically and horizontally). Figure 10 
shows a composite of an image generated at 512x~, 
256 x24J.. , and l28 x 121-pixd resolution. 

Rendered test shots need to be done at the final frame 
rate. In commercial productions. spcciaJ lighting effects 
often take place in a very short time interval and are syn
chronized to a sound track. Seeing each of the final 
frames will assure the designer that all of his planned d· 
fccu are in place and working. To make certain this ha~ 
pens, all the motion data has to be gathered and updated 
before doing the test shot. Figure II shows how all of the 
disparate pieces of infonAation are coordinated to fonn 
the final image. 

Imponant to all test shots is the ease with which they 
can be produced. In some cases. a motion test or 

-'5-
2l 



24 

rendered frame is available in a few minutes time, and 
since everything is repeatable. the animation designer has 
precise control over what is to be changed and what re
mains the same. As a parallel. imagine an architect who 
can refine a sct of blueprints. build scale models from the 
blueprints. and then automatically have the building 
constructed directly from those blueprints. 

The fln.1 shot 

After all necessary test shots have been completed and 
everyone concerned with the production is satisfied with 
them. the final animation sequence is created. In our 
studio. this final prodm:t is shot on either 16mm or 
35mm film through the use of a computer-controlled 
film recorder. 

We generally prefer to produce final animation se
quences directly onto one-inch videotape. To do this. we 
use a "director's" language to control the frame render
ing of the final scene from the animation script and also 
to automatically control the film recorder. If multiple 
scripts are used. or if the scene requires images from out
side sources to be matted with the computer-synthesized 
images. the director's language also handles this. Addi
tionally. various special effects. such as gJows and vcc
ton, are added to the composite imaae at this point. 

OIReCTOR 

i 

Because rendering a single frame of a complex image 
can take a long time, each element of a scene must be up
dated and synchroniUd before the final animation is 
recorded. The completed spot then goes to the client, 
and all scripts. models, and selected intermediate images 
from the animation are archived in a database. 

The above is a general overview of one approach (0 

the production of computer animation. The tools used in 
our studio and by the industry in general are new and im
Provinl rapidly. Ultimately, the quality of an animation 
sequence is the direct result of the quality of the graphic 
desian and animation sense that iOCS into it. Good 
technical tools support animation desian by providing 
clean. simple. and powerful methods of exccutinl a 
desian concept. 

The tool-kit approach outlined here emphasizes 
general animation capabilities rather than custom soft
ware. This simplifies the software management task and 
gives animation designers a clear idea of what is possible. 
Our studio has been open for commercial production 
since May 1983. and we have completed almost a dozen 
commercial productions since that time. About half of 
these jobs were perfonned Without the use of custom 
software. while the remainder required very simple 
custom programs that were generalized and documented. 
and thus became a standard capability of the studio .• 

,--------------------.--------------------~---------.---------~ : : : : : 
WIIRtO _ t SCR!PT SCRUN f- r IMAGe I- MATTE I- fiNAL 

I- OUTPUT 
COORtMNATt - IINTtAPMlt COOIIOINAT( MHOfRER 

filE PROGRA" IMAGE DEVICES 
POLYGON POlYGON . 

FltE 

P 
fiLE 

t 
SPECloll 

SUBSCRIPT EHECTS 
lolCTORl 

MOTION 

'''' 

IIoI,lGE 
fiLE 

FI;ure11. Oete coordlnetlon required 10 produce a line' Imege. 

IEEECG&A 



Appendix 

Our current studio at Pacific Data lmales was formed 
early in 1982. The objective of our three-person poup 
was to produce computer-generated animation for 
broadcast television and film. In this we feel we ha~ 
been sua:esdul. 

Our prt:SCnt animation system has been in develop
ment since the studio was fonned and was completely 
desianed and implemented in-house. The basic system 
was built around a small minicomputlrr. a PDP 11/44, 
and a '12)( '12)( 32-bit DeAnza IP64(X) frame burrer. At 
the end of 1982. we added a VAXlln.so minicomputer 
system, a OeAnza IPS.sao frune burrer. and an IMI .sao 
real-time vector display station to our fKility; in 
September 1983. we obtained a Ridae 32 supmnini. 

As staled earlier, all of our sonware was written in C 
under the Uni}c operatinl environment. Our selection of 
Unix and C was diaated by • desire (or smooth develop
ment and growth. We also use low-resolution raster 
&raphic lerminals al our desb for desian and preview. 

One of our primary goals has always been to develop a 
state--of-the-an animation system capable of accom
modating growth. The ability of the software to be 
lransponed to newer and futer computers is esxntiaJ to 
the devdopment of a productive and competitive anima
tion capability. and modu.1at design is critical to develop
ing a transforminl system. As new animation and imqe 
synthesis tet:hniques become availabie. they will be in
tqrated into our animation system with well-defined in
teraction. 

For more infonnation about our equipment and m0-

tion design, see the article by Rosendahl.? 

Referanee. 

\. Crail Reynolds, "Computer Animatktn wid' Scripts and 
Actors," Compllln' Gf'GplJla (Proc. Sigraph '11), Vol. 16. 
No.3, July 1982. PI'. 289-296, 

2. Brian W. Kernipan and Dennis M. Ritchie, TM C Pro
,ramminf LAllfW(1~. Pmllice-HaIl, Enakwood Oirrs, 
N.J., 1971. 

3. William Newman and Roben F. SprouU. Prlrtdp/n(1/fnt".. 
at:li~ Compuln' Graphic, McGraw-Hili, Hi&htSlown, 
N.J .. 1919. 

•. James O. Foley and Andries 'lUI Dam, FwtuilltMtIuUs o/f~ 
IfflICti\lf! COmptlln' GfJlpllia, Addison-Wesley, Readinl, 
Mus., 1982. 

5. Robert L. Cook and Kenneth Tonuce. "A Rellectanc:e 
Modd (or Computer Graphics." Compuln' GfJlpltic 
(Proc. Siuraph '11), Vot U, No.3, Au," 1911, Pl'. 
307-316. 

6. Alain Fournier. Oon Fussell, and Loren Carpenter, "Com
puter Rendtrinl of StodlUlic Moods," Comm. ACM, Vol. 
2!1. No.6. Junt 1982, PI' . 371-314. 

7. CarlO. Rosendahl, "Dni,nin, ror Computer Animalion." 
CompUftr Gftlpllicr World, Vol. 6. No. 10. Oct. 198). PI'. 
384fl, 

Richard Chun&. vice-president 01 hard· 
wart enlinetrinl and technical dirMOf' at 
Padfk Data (ma,o. was one of the ori,i· 
nal desi,nm of POI's animation S)'$ltn'l. 
From 1979-1982, he was a member of the 
technical staer at HewlC1t-Packald's RF 
and microwave division. His !'nt.reh in_ 
terests includt computer animation s)'$ltn'l 
archilMure. advance rendcrinl tcch
n;quo, and deli," toob. He rt'Ct'ived a 

BSEE (rom the UniYffSily of CaUfornia, Davis. in 1919. 

GStH [lit" is vice-president of software 
and technka! director II POI and was one 
of the dtniopen of the POt animation 
$}'$Itn'I. Prior to joinin, POI , he was a 
software enainea' at Hewleu-Packard and 
at Amptll when: he worked on tht AVA 
paint S)'$ltn'l . 

Entis .,aduattd from Ohio Wesl~an 
Univmity with.a BA in philosophy and a 
BFA in fine ans in 1976 and atlendtd 

""d.u,xl...;,1 ~i" computet' science at tbe P~Y'lechnic Institute 
York. He is a mtmber 01 the IEEE Computet' Society 

and the ACM. 

Det:ember 19S3 -67-





( ~_ • r;'Mf'Io~ · ' Vol 9. -.:... '-l1li. 191_:9, 1911 
"'~«<I '~G,", lin .... " 

0091 _1.9)1111 Hoo. 00 
(. ,'''' ...... _ I'rno LOll 

Eurographics '84 Award Paper 

TWIXT: A 3D AN IMATIONSYSTEMU 

JUUAN E. G6MEZ§ 
Computer Graphics Resean::h Group, The Ohio State Uni¥Crsity, Columoos. OH 43201. U.S ...... 

Abstnct- This paper describes a visually interactive 3Dcomputcr Inimation system. Animation is controlled 
by lists of events stored in tracks .. Tracks arc interpolated by runaions that I\Ive an arbitrary dqrec of 
knowledge about. how to control display panmctCl"t. The system provides real time wireframe playback so 
the animator can sec what the animation looks like and is both input and output device independent. 

t. INTROOucnON 
Computer animation is an imJX)nant and popular topic 
which has received a great deal of attention recently. 
Many 2D and can con animation systems have been 
implemented (e.g.. II . 3. 4]) to interpolate. or inbet .... een 
monochrome and color pictures. However. these sys
tems are animation assistants rather than animators. 
because they require conventional animators to draw 
frames that are close to Ihe final image. 

We are interested in three-dimensional animation. 
where the animator ca n create an alternate reality and 
man ipulate the objectS within it. A number of 3D an
imation systems (e.g .. IS. 6. 9. IS. 19. 21n have been 
implemented and are in current use. These systems 
take various approaches to the problem of designing a 
three-dimensional animation. which typically involve 
programm ing in a high-level language. This is a major 
disadvantage. in that the animator muslleam computer 
programming before being able to animate. Without 
the appropria te high-level construc ts. this means that 
the ani mator must funh ermore learn how to associate 
the high-level concepts of animation with the low-level 
ojXrations provided by a programming language. 

In addition. because of the complexities of evaluating 
the programmed motion. these systems provide only 
oJflint· playback. in that the animator must begin a 
computation 5e(tuencc and return at some later point 
in time to view the 5e(tuence. This process may a lso 
require hardcopying the sequence (i.e. film or video) 
Ixfore being able to view il. 

In this paper we describe / •• ·/x/. a 3D animation sys
tem in usc: at the Computer Graphics Research G roup 
of the Ohio State University. / .... ixt is an interactive 
animation design system where the animator interacts 
visually. ,wixt has been used to generate a number of 
animated sequences. includ ing The Uneven 8ars (1 8 ). 

t The resean::h described in this paper was supported. in 
part. by Nalional Science Foundation grants MCS 79·20977 
and MCS 79-23670. * This paper is oneofthe three award winning papers rrom 
EUROGRAPHICS '84. the annual Conference or the Euro-
pean Associat ion for Computer Graphics. The paper is pub
lished here in a revised fonn . with permission orNonh Holland 
Publishing Company (Amsterdam). the Publisher or EU· 
ROGRAPHICS '84 Conference Proceedings. 

§ Author's address: CGRG/Cranslon Center. I '0 I Neil 
Ave .. Columbus.. OH 43201 . USA. 

The next section of this pajXr presents the design 
criteria for IWix/ . The remaining two sections discuss 
animation design and some major implementation 
features. 

2. DESIGN CArTEAI" 
The design criteria in this set1ion are discussed both 

in terms of how useful they are and how they are im
plemented. 

2.1 Visllal int('raclion 
Our first criterion is that the animator inte ract vi

sually. Many recent 3D animation systems [5. 8. 10. 
J S. 13. 21) require teJtt mediated interaction. in that 
the animator must edi t a file containing some kind of 
program in a high-level language that describes the an· 
imation. The animators have to wait various lengths 
oft ime for frames to compute before being able to see 
them. causing the animation process to be something 
of a tria l and eTTor affair. We specify tha t in M ix/ the 
animator works interactively with images and will see 
the image changing dynamicall y as graphical input is 
processed. 

2.2 Milltiple track 
Our neJtt criterion has to do with the spedfication 

of animation. We did not want to implement a key. 
f;am(' system. in which the animation system knows 
everything there is at one panicular frame (the kq. 
frame) and interpolates for inbetween frames. Ideally. 
a keyframe is necessary only at a transition point. since 
the system can interpolate the rest. Unfonunatel y. a 
keyframe records o ne state. the total state of the frame. 
Some objects in the scene may not have any transitions 
a l that frame. indicating that a keyframe is necessary 
wherever any object has a key action. leading to a large 
number of keyframes. Thus objects that don't really 
belong in a keyframe must be pre·interpolated before 
capturing the keyframe. 

We can thinkofeach object in an animation as pur
sui ng its own course of action: therefore we should 
allow the animator to create trach of action and place 
objectS on their own tracks. The animator specifies 
what the object is doing at various JX)ints in time along 
those tracks. At those JX)ints ~ capture the display 
parameters of the object. For intermediate times we 
mathematically interpolate those parameters to con-



192 JULIAN E. G6MEZ 

SlruCI i"h('/In't'n frames. A related earlierdfort is MU
TAN [9J. which allows the animator to place objects 
on their own tracks and specify synchronization marks 
where different tracks should line up. 

As it turns out. one display parameter of an object 
could easily be independent of another. so we need a 
more complex approach: We must provide tracks for 
('D('h display parameter of an object, not the object as 
a whole. Fo r example. something might be spinning 
around while it jumps up and down, and we should 
allow each ofthose motions to have its own track. On 
these more specific tracks we will have n>miS whenever 
something happens. We will interpolate between events 
to find inbetween values. 

Events on any particular track are necessary only 
when the track begins to change its behavior. How 
tracks art: evaluated to produce a nimation will be dis
cuSS«! later. 

2.3 Mt'iameJrplwsis 
One of an Object's tracks is its surface definition. In 

/ ... ixt. the surface definition of the animator's dala as 
it's drawn on the screen is time dependent. We can 
interpolate between slatic dala definitions to produce 
a third dataset. the one which is actually drawn . This 
will be discussed more later. 

2.4 R('u/'fim(' pla.l'back 
Conventional animation techniques incorporate 

filmed rough sketches of animations in progress to get 
an idea of what the a nimations look like before going 
through the laborious process of inking and painting 
each frame. The rough sketches are drawn w~th pencils. 
giving the name pencil test to the film footage of the 
rough sketch. This is related to the cartoons used in 
classical painting. 

Computation of the color version of an animation 
is still quite expensive. twixt provides pencil test play· 
back in realtime (or as close to it asa multiuser system 
will allow) so the animator can see what the motion 
and composition of the animation look like before 
spending a large amount of time on computation. 

The real-time playback criterion is importa nt. as an 
animator cannot finalize any sequences before seeing 
what they aetually look like. /'1'.';'\'1 incorporates various 
computational tricks to speed calculation ofinbetwccn 
frames: these will be discussed later. 

2.S D('vi('(' ind(,pt'ndence 
( .... ix( operation is not limited to a pan.icular display 

device: this point needs no discUMion. (Wixl can run 
from anywhere in the laboratory. not just from a 
graphics workstation. If the animalOr is fon.unate 
enough to be using a graphics work$lation. twixt Pr:D
vides visual feedback. and the animator has graphical 
input devices with which to interaet. Otherwise. the 
animator sti ll has access to Mix/'s power. but picture 
genera~ion has to be done on tenninals with vector 
graphics capability. with no re:lllime interaction. 

2.6 CGRG wllIIIarilln ('I/I'ifflllm('111 

One of the final. but certainl y important criteria. is 
that IIdx/ fit inlO the environment at CG RG. This 
strongly affects its user interfact. in that commands 
must be designed in a way that corresponds with the 
rest of the programs at CGRG. and that the way the 
animator handles dala corresponds with the rest of the 
graphics software. For example. if the animator asks 
to see the color ofsomething./wixl produces the same 
report as any other software in Ihe animation pipeline. 
twixt's design has infl uenced the design of other soft· 
ware in the animation system. and otherprosrams have 
borrowed ideas and code from IWixt for their operation. 

This criterion also involves access to high quality 
imagery with a minimum of effort. To draw images in 
color. Iwixt speaks directly to sen assmblr PJ, a system 
designed by Frank Crow for varying quality image 
generation. The animator at any time can generate a 
high quality image of the current working frame with 
a simple command (see example below). This capability 
extends to allow the animator to lake an animation 
designed with (wix, and have it generate the equivalent 
command file for later offline computation of the high
quality imagery (again with one command). 

2.7 P('('Imiur\' pallnt)' 

Finally. the reason for some design decisions was 
the lack ofavailable resources. This is a common com
plaint among research institutions. and is often the 
final arbiter in many decisions. as it was in some cases 
here. 

J. ANtMAnON 
The unit of time in twix/ is the frame number. This 

proettds at 24 frames per second for cinema and 30 
for video. II ca n be argued that it would make more 
sense to deal with animation in tems of seconds. In 
any case. the notion of frame is historically tied into 
a nimation. and would be as difficult to overcome as 
switching from the foot 10 the meIer. 

Animation in ,wixt is not limited to moving things 
around in space. Animation in /Mo';xt is dynamically 
changing display parameters. which can include values 
outSide the transformalion matrix . like color. Thus 
objects like light sources can ha"e dynamic color. which 
will not be seen until the frame is computed on :I color 
display. 

3. 1 £v£'nts and Iru(*s 
As previously discussed. each object has a number 

of display parameters. Whenever one of these changes 
value. we designate it an t."Vt!nt. and enter it into a linked 
list of events for that particular parameter. Besides its 
frame number. an event also has other parameters as
sociated with it (e.g.. easc-in count.lincar interpolation. 
Catmull- Rom interpolation. etc.). 

The event list is known asa trod ... Tl1Icksaredoubly 
linked (12J bec::luse a progrnm C:ln go forwards or 
backwards in the list in the same amount of time. and 
quite rapidly. When interpolating. it is nettSS3ry to 

-70-



Twht: A JD 3n1m3t;on system 

access both values preceding and sUcceeding (he current 
value. and these accesses must be done very quickly 
in order to maintain real time response. This imple
mentation scheme sacrifices space for time. 

Comma nds are available to shift the frame number 
of eVents [(hereby changing their timing) and the func
tions associated with the even t. 

The colkction of 311 tracks is known as the ,n'rip/. 
The scri pt is maintained in editable fonn on the file 
system. so the a nimator can look at it or even perfonn 
extemal modifications on it. The script is separate from 
the intermediate form that twixt transmits to sen 
ussmblr. As with tellt editors. it is a good idea to write 
out the script every once in a while in case the system 
crashes (or the animator finds a fatal bug in twixt). 

3.2 InI('rpolUlirm 
There are a plet hora of techniques for interpolating 

or approximating curves between points: see [16) for 
a stan, 

3.2.1 Linear. Much an imation is done with linear 
interpolation. using 

modified to perform sine curve acceleration/decelera
tion. We explicitly allow a to range outside (0.0 + 1.0] 
in order to extrapolate as well as interpolate. 

Since we must access values withi n events. we define 
an abstract funct ion 

£ [object. event. parameter). 

where objt>c/ indicates what object. /!Vent points to the 
event in question. and parameler indicates the param
eter for which the value is desired. E can be boolean 
valued. scalar valued. vector valued. matrix valued. an 
interpolation function. etc. Then the linear interpo
lation function becomes (as appropriate): 

temp = £ (object. to. oj,) . 
r = temp + (HX (£ (object. flo y,) - temp). 

Acceleration and deceleration in classical animation 
are known. respectively. as I!as<'-;n and ease-out, con
veyi ng the idea LAal aD. Object eases into a movement 
fro m rest and eases out from movement to rest. This 
can be generalized to accelerntion and deceleration. 
We can provide acceleration by modifying the inter
polation technique to proceed nonlinearly along the 
interpolated curve. 

Conventionally. eased movement is done with a cir
cular interpolation technique amounting to a ponion 
of the sine curve. This ponion ranges from -11:/2 to 
+11:/2 for aa:eleration. and 11:/2 to 3tr/2 for deceleration. 
In between ease·ins and ease-outs (either or both of 
which may be zero length) linear motion is used. 

-7/-

3.2.2 Sef.'l!lld dexr('('. A couple of second-degree m· 
terpolation techniques are useful. One is to fi t a ci rcular 
section through three points (after handling the colli
near special case). Another is to use blended par;;lbolas. 
or Overhauser interpolation (2. 161. 

3.2.3 Third dt7(rt'('. Cubic splines have a rich liter· 
at ure, having been studied a great deal in mathematics 
and CAD. We provide some of the common splines 
to aid the animator in fitti ng smooth curves through 
d isplay parameters. 

3.3 Frum(' ('f)rt.Wrudion 
To build a frame. /lI'ixl evaluates the activity on 

every track of every object. Once the display parameters 
for an object have been determined. its matrix is built. 
various flags are set. and static data definitions are in
terpolated if necessary. Thus the frame can be consid
ered as Ihe union of activi ty o n all tracks. 

This approach is imponant because it allows the 
animator to specify different motions independently 
and have /wix/ take care of putting them all together. 
Using the previous example (which is exactly delineated 
in the appendix) the animator can design the spinning 
motion. then the jum ping motion. a nd the two se
quences are added together inherently. 

3.4 AbJlrul'l track cOn/rol 
The preceding sections dealt with Ihe basic move

ment capabi lities of Mixl. but it is possible to define 
higher.level funct ions. A first step would be to link 
tracks together. so that one-display parameter is con· 
trolled by a function applied to another display pa. 
rameter. A good example would be 10 make the posi
tion of a rolling object be correctly determined from 
its angular velocity (or vice versa). or the velocity of 
two objects being controlled by thei r distance from 
each other. 

A basic version of this capability is the ability to 
transform tracks: Once a track has been set up. it can 
be copied and transformed to another track of equiv
alent type (i.e. scalar. boolean. vector. etc, ). An example 
would be to take object A's position and multiply it 
by -I into object 8's position. The resulting animation 
would have 8 exactly mi rroring A's position . 

This feature allows the animator to use I\\'i.\'/ at 
varying levels between a guiding system and an ani· 
mator system [20J. The animator is no longer limited 
to designing absolute motion: a track becomes a static 
piece of data which can be instanced to produce actual 
animation. In otherworos, animation designed in iwixl 
ca n be used as procedural animation as well as actual 
animation. 

In general. evaluation ofa track requires evaluation 
of some functio n, of which those mentioned above are 
only a few examples, There are two constraints for a 
movement fu nction: It should be first~rder continuous 
(e l

) so that the object does not suddenly do anything 
(like change position drast ically). and il should be sec
ond-order C'ontinuous (e !) so that the velocities in· 
volved in displaying the object do not change suddenly. 



JULlA~ E. GOMEZ 

II is imponanl 10 Ihink of an evenl in an abslracl 
sense. It is nOllimiled 10 scalars or vectors or even the 
quantities mentioned previously, II is beller 10 think 
ora track as an n-veclor Ihat provides the interpolation 
(uooion with enough information about a certain point 
ofti~ that the function can compute necessary values 
for ;In animation. In the common case of j-vectors 
interpolated with a cubic spline. this is a straightforward 
operation. A more complex funClion. for example an 
n-body probkm. could compute the position ofn bod
ies. the final result for each body ending up on i15 ~ 
sttion track. 

The idea or using a movement function is very gen
eral. since complex functions will eventually generate 
specific values for an object's display parameten. The 
animator has a distinct advantage when he can feed 
parnmeters to high-level functions and let them take 
can: of compilations down to the track level. 

<t, USER INTERFACE 

This section pn:sentS some of the major implemen
tation points about twixt. A detailed explanation would 
not be in order here; the disscussion is limited primarily 
to data use and manipulation. 

4.1 Fraine ('ditinx 
In a basic sense. we can consider IwixI a picture 

editor. The illustrator can simply work with twi.\'t 10 
design a still image. internctively adjusting the scene 
uniil it looks right. generating color versions intermit
tently. 

In this mode. the illustrntor probably won't invoke 
any animation functions. We say "probably," becau..e 
the ability to vary an image over time provides the 
illustrntor with yet another interactive tool in designing 
the image. By animating aspectS of the composition. 
many variations can be generated rapidly and auto
matically. The illustrator can then "pick out" desired 
ponions of a frame description. 

4.2 Space I'S lime 
A fundamental approach in the implementation of 

/lI'i.\'1 is to sacrifice space for time. The real-time con
straint requires maintenance of a large number of vari
ables: By profligate storage of state and transition vari
ables. we can avoid a large amount of computation. 
With a modem vinual memory computer (such as a 
VAX), the time over space sacrifice is no big deal. and 
for the benefits makes a lot of sense. 

4.3 Ohj/!('/s 
4 .3. 1 Mooe/inx If!'c:hnique. The overwhelming ma

jority of surface modeling at the Computer Graphics 
Research Group isdone with polygon meshes.. although 

. twixt will also handle various ki nds ofbicubic patches. 
4.3.2 Obj£'I.·t ('realian. twixt works with inslancf!'S 

(141 of data defined pn:viously by the animator and 
resident in the host filesystem. There tire a few different 
ways of using instances in t .... ;xt. The first simply dis.
plays the polygons (or patches) of the data. An edge 

- 71.-

dictionary (lor polygonal dtlla) is cn:::tted on the ny and 
sent to the display device. The second method is to 
display poi nts for each venex of the data. rather than 
edges: il is used for high complexity objects which oth· 
erwise would use up too much display device memory. 
A variation on this method for bicubic data is to draw 
their control point mesh. The third method does not 
display anythi ng. but keeps the surface dtlta aroulld 
for later interpolation. i.e. a dt·/inc·r. 

Once an instance has been created. we include il in 
an objt'("I. An object includes the instance just created. 
and all static and dynamic parnmeters required to dis.
play it. such as rolor. position, orientation. etc. An 
object may be a blend" (as opposed to a regular object) 
which means that the animator provides a list of de
finers and frame numbers at which to use each or those 
definers. The object is drawn by interpolating between 
the appropriate definers (thus each definition is an 
event on the blender's surface definition trnck). Note 
that the SCt of definers is reusable among diffen::nt 
blenders. 

4.3.3 Spt't:iulllhj('('/S , Some special objects art pro
vided by IM'/XI for the ani mator: the vinual eyepo;nt. 
the ttnter of interest. the background, one default light 
(up to 16 can be requested). and ambient light factor. 
All of these can be animated. 

The eyepoint and center of interest. along with the 
view angle and roll angle. model the vinual camera 
that is viewing the scene. The background can be either 
a solid wash of color or a precomputed image. If it is 
a color. [he rolor can be animated: if it is an image. it 
can be either static or dynamic. A dynamiC image 
background would be the si tuation where the animator 
has precomputed an animation. and now wishes 10 use 
those scenes as backgrounds for new action. 

4.3.4 H ierarchi('S. We implement hierarchical ob
jects by auadllnx one object to another (7). This defines 
a general tree creating one complex object from se15 
of objects. T hus a scene in Mix/ is actually a jaresl 
(12J of hierarchical objects. 

It is imponant to realize that although some objectS 
have special meanings. they are still objects. Thus the 
eyepoint or center of interest can be attached just like 
any other object. To implement an IIn/iX('fiIfl/cl.:. where 
the camera moves wi th a movingaclor while tallowing 
that actor. the animator would allach the center of 
interest to the actor. and attach the eyepoint to the 
actor at the proper camera displacement. 

4.3.5 Naming. There are times when the animator 
will want to speak of an object as whole, and there are 
times when just one value of that object is desired. 
There are also intermediate stages. i.e. when the ani
matordesires a major chunk ofan object. It is neces.sary 
to provide a naming syntax that will handle all of these 

""" We took an approach fashioned after most AlGOl-
based languages: A parameter of an object is addressed 
by obj('(:tname,fidd. To access more than one field 
in an object. the animator concatenates: 0/1)('('(' 

nwnt'/h4dljic4d 2 ... A null field name is equiv3Jcnt 
to naming the whole object. 



TW!J;I: A 3D animation system 

The term Jh4d is ambiguous. since a field can be a 
boolean. a scalar. a vector. a matrix. a surface defini
tion. or SClme OIher primitive used to implement a dis
play parameter. An object's position. for example, is 
a vector. but the X coordinate of that vector is a scalar. 
These two quantities would be named, respectively. 
obj«lnaml!.p and ubjeclname.px. 

4.4 Terminal inlu/ace 
4.4.1 Commands. Commands in twixt follow the 

same fonnat that seems to be generally accepted for 
interactive programs and systems. The syntax is like a 
simplified UNIX shell [I7J: a word (the command) 
OPtionally followed by a set of parameters. Various 
metacharacten are defined for special operations; the 
most interesting is "@," which allows the animator to 
read in commands stored in a fil e. we refer to this as 
calling an indir«t command jill'. The indirection fa
cility nests. SO any indirect command file can itself use 
another indirect com mand file. This makes it possible 
to define primitive operations and build up more com
plex ones by collecting them at progressively higher 
levels. This process could be used to build complex 
data or define complex motions. II is also the mech
anism for restoring a previously saved script or scene 
definition. 

Indirect command files also allow twixt to be driven 
by special purpose programs. which might want explicit 
control over an object. The special purpose program 
would write a command file that the animator woul~ 
tell twixt to read in. The process requires only two 
commands: 

! program thaI generates script onjile 
@jile 

The first command (a system escape) runs the program 
that generates the indirect command file: the second 
command reads it in. 

4.4.2 Abbreviated commands. The animator does 
not have to type out complete commands. An under
lying set of subroutines finds the minimal substrings 
required to distinguish one command from another. 
and the animator can type in any portion of a com
mand that includes its minimal substring. 

This feature is implemented by maintaining a table 
of known commands. At run time(i.e. when Iwixlstarts 
up) it calls a routine that adds commands to this table. 
As each com mand is added. it is insertion sorted [II] 
into the table. A recursive process then examines each 
command, comparing it with its neighbors to see how 
many characters they have in common. The resuult is 
the minimum number of characters necessary for a 
string comparison to distinguish any command from 
any other. 

The run time bindingofthisalgorithm is imponant. 
It allows /'t"';xt to selectively implement or de-imple
ment commands based on which display device it is 
using.. There are commands that make sense for some 
pieces of hardware but not others. thus when running 

-73 -

on those other devices ''''IXI will not recognize those 
commands. 

4.5 SUet'n im('raclirm 
We refer to the manipulatio n of objects as guiding. 

after Zeltzer 120). 
4.5.1 Ab.m/ll/(· Xllidinf(. Anything in twixt can be 

manipulated with explicit commands. e.g.., 

place ubJect at xy=. 

This mode discourages fine adjustments because it is 
so tedious to repeatedly type in numbers that are 
changing by just a small amount. Its advantage is that 
the animator can explicitly control the object. 

4.5.2 Inleractille Kfliding. The already mentioned 
lack of adequate input facilities led to thedevclopment 
of knob mode. a name bom of irony rather than reality. 
In this mode. the animator hits the "x." "y" or "z" 
keys on the terminal repetitively to step a value posi
tively or negatively. Upper case letters have ten times 
as much effect as lower, and step sizes are under analog 
control with yet another key. Other keys control what 
the animator is controlling (e.g .• rotation, position. 
color). The image on the screen changes in real time 
as each key is struck. 

Recently acquired advanced hardware (an Evans & 
Sutherland Picture System 330) provides more rea
sonable means for the animators to interact with their 
images. This system has a tablet. dials and buttons. all 
of which are sorely needed to facili tate the image design 
and animation process. 

To use these devices. the animator bindJ a control 
dial to a display parameter. which can be a simple 
scalar. a scalar component of a vector, a scalar mul
tiplication of a vector. or a scaling control. Simple sca· 
lars would be quantities like specular reflection com
ponent. The second category would include, for ex
ample, the Y component of a position. The third 
category controls blending of vectors and is used for 
operations like sliding an object along the vector to
wards the eyepoint. The founh category allows the an
imator to apply coarser or finer control to another dial. 

4.5.3 Comm(·nl. The interactive facilities are de
signed to allow the animator to interact with the image: 
as such they provide a few general sequences which 
allow all kinds of manipulation to be performed. The 
command interface is intended more for administrative 
details (e.g., show status. or write out script). whereas 
the interactive manipulation lets the animator con
struct and edit images. 

4.5.4 Design aids. twixt provides a frame buffer 
viewport guide. field guides and a TV aperture guide, 
any or all which the animalOf' can overlay on the image. 
The frame buffer guide shows what ponion of the I: I 
aspect ratio vector image will appear on a 4:3 aspect 
ratio frame buffer image. The field guides divide the 
screen into a number of squares so the animator can 
do screen coordinate positioning. The TV aperture 
guide shows which portions of the image will be pro
jected in adequate quality with NTSC video. 



296 

S. SUMMARY 

We ha\'e described Ihe operalion of /"';x/. a three
dimensional even! driven animalion system. We have 
showed Ihat a ca~ful combination of a terminal ori
ented command driven interfa~ with graphical input 
devices results in a syst~m that is device independent. 
yel powerful enough 10 perform moderately complex 
three-dimensional animation in a wide variety or ap
plic:uions. Practically. the rriendli ness or the system 
depends on the le~1 or hardware support. The event 
driven ani mation approach allows easy extension 
or4.5.4 the animation capabilities.. Without modifi
cation to the structure or interface of twixt, more s0-

phisticated functions can be introduced to handle in
terpolation tasks.' 

AcknOK'ltdgemfllls-Frank Crow and Chuck Csuri have ton· 
siantly ell('()uraged eKortS on the development of I",ixt. The 
An Education students at the Computer Graphics Research 
Group h.avc: not too loudly put up with the development ef· 
for1$. especially Susan Van Bac:rle. John C. Donkin was a big 
help in gecting the photos for this paper. Kevin Rea&/! did the 
paste-ups.. Frank Crow. Kathy Simpson. and Dave Zeltur 
provided a number of cogent comments. The ima,ges in this 
paper were provided by studenlli in the An Education procnm 
atCGRG. 

REFERENCES 
I . Ronald M . Baecker. Picture-driven animation. In Iru~· 

actil'e Compuur GrIJphics (Edited by Herben Freeman). 
[EEE Computer Society (1980). Originally published in 
Ccm(erenct' Proemings. Spring 10inl CompUler Conft'r· 
enu. AFlPS. 1969. 

2. J. A. Brewer and D. C. Anderwn. VisuallnteraClion with 
Overhauser Curves and Surfaces. In Inltractive CompUl~ 
Graphics (Edi ted by Herbert Freeman}. IEEE Computer 
Society (1980). OriginaUy published in CompUl~GraphiCJ 
11 (2).(1977). 

1 N. Bunnyk and M. Wein.lnteractivc: Skeleton Techniques 
for Enh.andng Motion Dynamics in Keyrrame Anima· 
tion. C.>fOtf 19(10). ( 1976). 

4. Edwin (atmull. The Problems of Computer·Assisted 
Animation. CumpUl. Graphics 12. (1978). 

S. Richard Chuang and Glenn Entis. 3-D Shaded Computer 
Animation- Step.by-Step. IEEE CompUl. Graphics ApP/. 
J, 18-2S (1983). 

6. Franklin C. Crow. Shaded Computer Graphics in the En
terWnmentlndusuy Compuur (March 1978). Reprinted 
in Tu/tNial: Complller Graphics. Kellosg S. Booth. ed .• 
IEEE Computer Society. 1979. 

7. Franklin C Crow. A More Fluible Image Generation 
Environment. Compill. Graphics 16. 9-18 (1982). 

8. Charles Csuri "I 01.. Tf)K'(lrds an InteraC/ivt High Visual 
Complexil.l' AttimaliOtl Sysltm. Proc. SIGGRAPH 79 
(Au&ust 1979). 

9. Denis Fortin. Jean·Francois Lamy and Daniel Thalmann. 
A Multiple Track Animator System for Motion Syn· 
chronization. hoc. AC.\I SfGGRAPH!SfGART Worl;. 
shop QfI Motion. pp. 187-192. 

10. Ronald J. Hackathorn. ANIMA II: A 3·0 Color Ani_ 
mation S}'5Iem. CompUl, Graphics II. S4-64 (1977). 

- 74-

II. Donald R. Knuth. Thl.' .~rl II/ COmpIII,'r Pm/(rummirlll: 
SOl'{inll and 5I'urdun/(. Addison·Wesley. Reading. MA 
11973). 

12. Donald R. Knuth. rh" .~rI t,rCumputer PmKramm;,tg: 
FuttdamlTltaJ .~llllJl"lIhm_\· (2nd edilion). Addison·WesIey. 
Re:KIing. MA (19UI. 

13. Nadia Magnenat·Thalmann and Daniel Thalmann. The 
Usc of Hi,h·l.evc:1 3-D Gr.lphical Types In the Mira An· 
imation System. IE£E Ct""put GraphICS Appl. ),9-16 
(l983). 

14. William M. Newman and Robert F. Sproull. PrincipiI'S 
"r inltrQ(.1iPl(' CumpUltr Graphics. 2nd edn. McGraw·HiII. 
New York (1979). 

IS. Crai, W. Reynolds. Computer Animation with ScriptS 
and Acton. CompUl. Graphics 16. 289-296 ( 1982). 

16. David F. Roccn and J. Alan Adams. Mmhtn'/aliCtlI Elt
mtnlS fly Cumpllltr Graphics. McGraw·HiII, New York 
(1916), 

11. K. Thompson and D. M. Ritchie. UNIX Programmer's 
Manual. si~t h edn. Bell Laboratories (May 1915). 

18. Susan L. V.nBaerie. Tht Uneven Bars. The Ohio State 
University (1983). Computer generated film . 

19. UnIX Wifli.ms.. BBOP. G lllrSl.' N()if's. Seminar QfI Thr", 
Dimt'u/fJlfal Computer AnlmallOil Ouly 21. 1982). ACM 
SIGGRAPH 82. 

20. David Zeitler. Issues in 3-D Computer Character Ani· 
mation. In Cuurst Notts, Inmxiuc/wn /0 Computer An· 
imaflfJIf. Minneapolis. MN (July 24. 1982). to be pu~ 
lished. 

21. D. ZeIUer. MOlor Control Techniques for Figure Ani· 
mation. I£EE CampUl. Graphics ApP/. 2. 53-S9 (1982). 

APPENDIX A: EXAMPLE 
This typescript implemenlli the eumple given in section 

two: A ball jumps up and down while II rota tes. It is obviously 
ovenimplified. hut a more comple~ example would have made 
the paper too Ion,. The animation is built in two steps: Fint 
the rotalion is designed. then the jumping. Note the animators 
usc or dials to adjust the ball's position during the second step. 
The frame constructor inherently composltes the two actions 
with no intervention by the animator. This script works: it is 
a ~tticd version of the script that was actually used to do 
the animat ion. 

call/pic/data{ball 

rotballO y 
event 1 ball.!)' 
rol ball no y 
evenl 96 balLry 
pencil I 96 
~I ide ball.ry.96 72 
pencil I n 
event JO ball.p 
event 18 ball.p 
pI~ballat 020 
dial ball 
event 34 ball.p 
pencil I 78 
twell) ball.p para 
pendl 
script jumpins 

"SCI data instance 
II first leI's work on rotation 
1/ sct initial rotation 
, register event 
II set final rotation 
II register event 
"see what animation looks like 
" make rotation one second shoner 
" now sec: what it looks like 
" le t's work on the jumping 
II grab inilial position 
" which is also final position 
II ape~ or jump 
" adjUSt 
" register ape'" 
, look at composited animation 
II use par.lbolic interpola tion 
II look at animation again 
II save script 



Twu.t· .... 3D :lmmahOn sysu~m 

-
Fig. 1. Trosh by John Donkin. 

Fig. 2. From TrOlh by John Donkin. 

-75-



298 JUUAN E. GOMEZ 

Fig. 3. OmillrOSlJuraus by Susan Van Baerle and Doug Kingsbury. 

rl&- <4. OmitlrOSQuri On Panui~ by Susan Van 8aerle and Doug KJnpbury. 

Fig. 5. SnOOI and Muttky overlay by Susan Van Baa1e and Doug Klnpbury. 

-76-



Comment8 on Event Driven Computer Animation 

Note! for SIGGRAPH 81 Tutorial 
Computer Animation: S·D Motion Specification and Control 

1. Introduction 

Julian E Gomes 
Re8earch Institut.e for Advanced Computer Science 

[{ decvax!decwrl} !UulianOriac8.e<iu 

The most import ant design goal for an animation IYltem il to not constrain the animator'l 
imagination. The most 8erious problem with any animation system is the mass of detail 
required to produce animation. 

We don't want a syst.em t.o force a paradigm on the animator . In particular, it can 't require 
phYlicallaws, although it must be able to supply them when needed. A brief review of classi· 
cal animation shows this point: although Wily Coyote falls in a fashion that may be related 
t.o d - 1! 2at 2, it usually does not happen until he hu been walking on air for a few seconds 
(the "Cartoon Laws of Motion"). 

No matter what method is used to describe motion, there is a large amount of data that 
needs to be specified. A system that provides only one type of movement will not prov ide the 
needed flexibility. As Wilhelms [2S ] points out, with a kinematics description the animator 
must experiment until the motion looke right , and with a dynamiC3 description the animat.or 
must experiment until the desired motion comes out. 

The mathematics for computer animation and the techniques for building graphics software 
have been well explored . Higher level descriptionl of animation will be the research area in 
the future . The last two decades have demonstrated that computer graphici can display ani· 
mations with adequate form; now it's time to put some effort into constructing animations 
with content. Recent computer animations [2,6 , 11 , 21, 22 ] show a definite move in this 
direction. Th is trend towards characur animation will tax the capabilitiel of computer ani· 
mation Iystems but produce more interesting animation. 

2. Design. points for an animation system 

A topic related to the des ign parameter. for an animation sYltem is classification of anima
tion Iystems, a subject treated by Zeltser 125 ] and Gomes [9]. Both of these schemes rely on 
the motion specification mechanism for categorisation. Qualifiers are also employed to 
describe practical aspects of the system, such as playback. 

2.1. Interactive 

An animation system Ihould be interactive. It'. bard to design pictures without lookiDg 
at a picture of what's being desilned and being able to chanle tbe picture and see directly 
what happenl. 

-77-



2 

2.2. Speed 

An ideal animation sylltem would draw fancy color pictures in real time. Since this u. 
impractical for the time being , the question becomes one of how much playback can be 
provided quickly . An acceptable answer is that as soon as the animator ha! finished 
adjusting something in the script, he can push a button and have the animation play back 
in real time. A few I«onds delay for precalculatio n is acceptable; non real-time playback, 
however, is not. Whereas an animator can find something else to think about for the ten 
seconds or one minute of precalculation , it'. difficult to appreciate motion when it i! 
proceeding at the wrong rate. This is the way things used to be; eel animators wouldn't 
.!lee any motion until perhaps the next day . In thi!l day and age that's not a valid reason; 
a valid reason would be something like "this motion needs two minute!l of Cray time to 
evaluate ... 

The problem is magni6ed on a multiprogramming system , where in addition to playing 
the animation at the wrong rate, the system will swap the animation system in and out of 
the execution queue, causing jerks in the animation . 

We will call an animation system that provides acceptable playback an online system aDd 
designate it as being nice. With current technology, an online system will most likely pro
vide a wireframe display. 

2.8. Flexibility 

The system s houldn't force the animator to use mechanisms she may not want to use. 
So metimes an animator may want a linear spline, even with it.s attendant lack of COD
tinuity in the derivatives. As mentioned in the introduction, sometimes physics may be 
wanted and somet im es not. The point about. flexibility is that the sY!ltem shou ld not force 
any motion mechanisms on the animator. 

The subjects of splining and splines for computer animation have been di!lcussed ade
quately in the literature, !l0 these notes won't mention them other than in the description 
of the twiu implementation later. 

A useful idea from the Icn_ Gumblr system 141 is the ability to s ubstitute module names 
while interacting with the system. This ioole coupling makes it easy for the animator to 
switch data resolution, change lighting algorithm, change anti-aliasing algorithm, change 
screen resolution , etc. Given this capability for chang ing parameten at whim and (rela
tively) immediately obtain ing the new result, the animator is given extra ranges of expres
sive power. When it's trivial to change the way a picture is computed, the user wiU try 
tho!le different ways , resulting in effects that may otherwise not have been attempted . 

2.4 . Extensibility 

The basic reason for extensibility is that no matter what facilities the system provides, a 
need will arise for so mething else. Thu. is especially true in a research and commercial 
production environment!l. Thus the s)'!ltem should include facilities for recon6guring exu.t
ing mechanism!l or including new ones; it sho uld be euen,ibJe . 

An example of this can be found in the ema" editor. It provide!l a wealth of text opera
tion function l, and the uler can write lubroutinu uling the!le operationJI '0 extend the 
power of the editor. A limple example would be a lubroutine that tranlpoea two lines; a 
more complex one would be an interactive e-mail handling repertoire. Once the uler has 
written or borrowed luch a routine, it is a.I easy to ule a.I a built in emac, command, in 
addition to having the same interface. The point u. that the user ha!l tbe capability of 
modifying the Iyl tem to his own desires witho ut rewriting the program. 

- 78-



• 
One way of uaing this extensibility is to have object. that carry t heir own behavior with 
them [131. Humans, for example, can bend their elbows only so far. It would be nice to 
include this (ad in the "human" abatraction. However, it would 1.110 be nice to be able to 
define a new type, lay "human?," that haa different or no restrictions on elbow movement. 

This notion of dynamic use of the system meant the animator can define his ow n move
ment criteria ILnd use them in the animation Iyatern. This in turn meant the animator is 
effectively reconfiguring the s),!ltem to his own needs for that animation. 

In this context , object oriented programming is a generalitation of extensibility. The 
advantages of object oriented programming extend themselves to any structured system, 
including one where the constituents are acton and motions rather than lines of source 
code. 

Dynamic compo nents require a rather sophist icated operating system. In particular, a 
program must be able to load code segments dynamically. Only LISP or Cedar ]181 have 
this notion built into their design. Some efforts have been made towards bringing this 
attractive capability to UNIX, e.g. GEM ]14 1. 

2.5. Usability 

The system should not be a keyframe system. Originally, a ullframe system was one 
which used I:ell frame. to control motion. It was designed to facilitate the way hand ani
mation ill built [20]. The key frames would be drawn by the animator and the system 
would interpolate between them. A number of such systems have been implemented [1, 31 . 

Recently , "keyframe" has been used in a more general sense to mean a system that inter
polatell between values, whether or not there actually are key frames. Thelle are what 
Zelber callll guiding systems [25 1, indicating that the animator must explicitly delluibe the 
animation to be performed. The sylltem will provide splinell to smooth out the animator'lI 
input. 

The use of the terms guiding and hll paramder ill strongly preferred over I:ellframe, lIince 
the latter term implies there are key frames, in contra.st to the first two, which do not. 
Since contemporary animation systems generally do not work with key frames, this accu
racy is desirable. 

Finally, the system shouldn't be an extensio n of a programming language. This forces the 
animator into a paradigm which has nothing to do with images. It's not necessary (nei
ther is it prohibited) for an animator to know that a for loop ill necessary to transform 
the vertices in a database, or that cos· is often used in illumination calculations. Furth
ermore, there ia a strong possibility that the detail of dealing with a programming 
language will distract the animator from the animation. 

2.6. Habitability 

There are a number of other necessary features in an animation system contributing to ita 
habitabi/itl/, or how nice it is to work in the system. Example! are guarded exit (do not 
exit unles! the script ill saved or the user is sure) ; interactive exception handling (e.g . 
"File exists - do you want to overwrite it?"); help facilities. Defanti defined many habita
bility and exten!ibility requirements in GRASS ]5]. 

2.1. Overall 

A point not previou!ly mentioned is that it may require more than one IYltem to perform 
all theae functions , with some sort of hierarchical arrangement between them [25]. This 



• 
approach would provide different levels of complexity and the corresponding different lev
ela of addrcllable detail. 

3. Event Driven Animation 

Event driven animation is an abstraction for delcribing animation . Rather than describing a 
specific animation technique, it d~cribes a methodology for describing animation. It is not 
cORstrained to describing motion, but it is useful for constructing all aspects of an animation. 
It can ~ generaliled to any level, thereby providing appropriate degren of ablliradian. A 
small scale event drjyen animation system can be implemented euily. 

A fundamental concept when dealing with event driven animation is the idea that animation 
is not limited to moving things around; but also moving the color or the shape or the rate of 
change of the animation variables. The concept of event driven animation unifies all the 
different upects of making an animation. The idea i. that all display functions can be 
treated the ume 80 that operations can be performed on any display function u easily as on 
any other, freeing the animator from having to use method ml to deal with display function 
FI and method m2 to deal with display function F,. For example, it'a not acceptable for the 
animator to have to use key joint angles for arm motion a.nd have to use inverse kinematics 
for leg motion. 

Another way of puUing this is that animation it not just getting from point A to point B 
using point8 C and D to help control a cubic 8pline; it'8 dealing with every upect of making a 
picture and making the picture move. Thu8 the mechanitms for performing operations on 
anything should be similar. 

This point can be qualified to a degree. It doesn't make aense to apply vector operation8 to a 
8calar value. However, the system 8hould recognise the problem and deal with it. perhaps 
translating the request to something reasonablt . Or the animator could havt the options of 
configuring tht system to attempt a translation, ignort the problem, or complain and uk for 
instructions. 

S.l. The Display Fundion 

Consider 80me arbitrary display function: given some input parameters telling it how to 
operate, it will take data, proctss it, and output ntw valuel contributing to tht picture. 
Common ditplay functions include tht balic geometric tranlforml luch u translation, 
orientation, and scaling. Other display functionl include color, tran8parency, lurface 
geometry. whether or not to display, joint anglel, etc. 

lt'l readily appartnt that tht datatype required depends on the display function: color it a 
!I-vedor, transpartncy is usually a scalar, oritntation is a !lx!l matrix, lurface geometry it 
a datuet, whethtr or not to be ditplayed it a Boolean value, and a mtthodology for calcu
lating a value il a procedure pointtr. When one of these it used to control a display fUDC
tion, we will call it a control value. 

Mentally we can translate any datatype into a vector of appropriate Icalar values. Thu. a 
matrix becomes a 9-vector of real numbers, a datuet becomea a matrix of S-vectOri which 
is in turn a Sxn vector, a display Bag becomta a 1-vector of Boolean values, and a pro
cedure pointer it a pointer valued 1-vector. Thit point is academic, howtver, and is men
tioned only for formality. 

-vo -



• 
'.1. DefiuitioD8 

The animation process r~uire8 lpecification of value. for every frame of time for every 
di,l play fun ction implemented in the gn.phics system. For an arbit.rary display function F 
we have a sct of control values for it, v;. To each of these control value veeton we attach 
the time at which it is to be used; thie construction of the control value and the time we 
call an euent. The list of events describing the activity of F over the animation we call a 
trad:. The track is implicitly sorted in ascending order by event time; sorting should be 
implemented by the underlying software so the user doesn't have to do it. 

Practically , it makes mort senst to store events only when an input value for F changes, 
and use a splining technique to generate the inbetween values . Thus interpolation informa~ 
tion must also 'be stored in the event: acceleration / deceleration information, splining 
method , d c. This will be diBcuaaed momentarily. 

To access values within tracks, we can define an abstract function 

E(objects,f,t) 

where objecu indicates a class of objects, lis the display function, and t is the time. E will 
return a value appropriate for that display function. The animation controller will have 
to evaluate the appropriate tracks to calculate that rdurn value vector. The number of 
events necessary to do this will depend on the display function and the complexity of the 
splining method, e.g. a cubic spline requires four events to work with; a Boolean function 
requires only the closest preceding event . 

Timing in an animation can be changed by changing the frame numbers in events. Track 
segments can be moved to change the time at which their animation occurs. T rack seg
mentll can also be multiplied by a factor to expand or compress their length. 

:us. Interpolation 

We begin to lIee a relat ion between events and curve generation . In fact, the values con~ 
tained in the events are control points, the frame number is the parameter of interpola
tion, and the animation for that display function ill the result of the generated spline. 
Here the term control I/oluu is better then control point., to emphasize the fact that event 
valu es have arbitrary types, includin g some which cannot be splined. 

There are a plethora of techniques for interpolating or approximating curves. Track ani
mation relies on potchcd curves. Briefly, patching refers to the process of "gluing" together 
splined curves end to end, or surface elements side to side. Continuity in the derivatives 
across the boundaries, although desirable, is not required. Different interpolation functions 
can be used to achieve different patches, although the animator can certainly specify a sin~ 
gle splining function for the entire duration of the track. 

We must assume a track is at leut piecewise continuous; otherwise F will be undefined at 
certain frames, a potential source of serious problems. We would also like the first deriva~ 
tive with respect to time, d F / dt , or F (velocity) to be continuous; this will p.revent sud
den jumps in the output values from F. If the second derivative d 2F / dt', or F (accelera
tion) is also co ntinuoulI, this will prevent sudden jumps in the rate of change of the input 
values to F. If both constraints are met then the output of F will be smooth and will 
change smoothly. See also Smith [171 . 

In order to calculate a frame in an animation, aU track! are evaluated for the given time. 
The collection of activity on all track! inherently generates the animation. 

Note that a change in interpolation functions i! a change in value, and eveots can exist 
just for thi! purpose. Changes in velocity are also events, i.e. specifying values for d F / dt 
instead of F itself. 

- 81-



6 

Keep in mind that interpolation schemn apply to any track, not just position. There is 
no reason why ~splinel can't be used on color or transparency information ; (or continuity 
purposes, it', better if they are. 

S.4. Generality 

The level of abstraction for any track is t ie<d to the intelligence of its twerper (interpola· 
tor) . Position is trivial , rotation matrices are harder , lIur(ace geometries are even harder, 
object collision det~tion is yet harder, f!k The sophistication of the twerper is generally 
based on the amount of support code available and how much dynamism the operating 
system can provide. 

One way of viewing different levels of tracks is to think of the higher levels compiling 
down to the lower levels. Just as a high level language is compiled down to a low level 
language, an abs tract track can be compiled down to simpler on es. This allows the ani
mator to deal with varying levels of abstraction, or with animation systems at different 
levels in Zeltter's hierarchy . The unifying element among different tracks with different 
complexities is that the animator has provided certain values at certain points in time to 
control their behaviors. 

Earlier it was mentioned that a control value could be a pointer to a procedure that con
trols the display fundion. This procedure would be invoked whenever the animation con
troller determines that it should be contributing to the calculation of the animation. This 
is somewhat analogous to "buttons" in Cedar [18, 191, which are modules invoked when a 
user clicks a button on the screen. In Cedar, part of the process of installing a new button 
on screen is to tell the window manager what procedure to invoke when the user clicks 
that button . In the same way, construction of these inqui.itillf! events lets the track 
manager know what procedure to use when evaluation of a track is necessary. This facil
ity is the most powerful aspect of event driven animation, all it allows dynamic control of 
the animation, where display function controllers can use the current values of other 
tracks in determining their own values , and thus respond to environmental parameters. 

4. twixt 

twid is integrated into the OSU image generation pipeline [24 1. This gives the animator a 
unified environment for dealing with animation and image production . 

•. 1. Input Methods 

As described previously [71, there are a number of ways to describe values to tCDirt. The 
fancier the display device the user is working , the better these input methods are. Where 
the input device provides only a limited number of inputs (i.e. a bank of control dials), 
twi%! provides ways of dynamically changing the assignment of each input device to a con
trol mechanism. 

4.2. Layering 

The approach to designing animation in twi%! is laJlering, where the animation is built up 
in layers of motion. Analogies can be drawn to cel animation, where a frame u built up of 
a number or eels lying on top or each other. In twid, however, the layers are not pieces of 
picture, but pieces of motion. 

- 8;1. -



7 

An animator may labor for lome time on one particular part of t he animation, say the 
arm of a baseball pitcher throwing a ball. Then he may switch to the ball and work OD 

that . Th is might. be intereperlled with quick returns to the arm to perfect lome aspect of 
its motion. It might a lso be interspersed with work on the snap of the pitcher'. head. No 
command s are req uired to sw itch context; the animator is carrying the context in his 
mind , and the naming Icheme in twin allows different ways of specify ing the context of aD 

action . 

The intent of this approach ill that it flllow8 the animator to concentrate on one theme for 
some time, until he is ready to conce ntrate on another. It also allows the animator to 
instantly return to any previous activity in order to modify it. T his allows quick imple
mentation of fluhes, where the animator remembers or think! of something th at should be 
done to a seq uence already worked on. 

4 .~ . Objects 

twin supports the common practice of constructing object hierarch ies, i.~. of inserting 
subt rees into trees to express hierarch ical relations hips. Thus I. sce ne is actually made of 
I. Jor~,t\10 ] of treell. However , the relationships that. can be expressed between nodes cover 
I. broader range than that usually available, including operations that can not be expressed 
as matrix products. A later sect ion will elaborate. 

One nice feature in twid is the way the a nimator can rapidly switch databases. A prag
matic perus al of animation environ ments shows t hat few animations are designed with 
graphics hardware that can display thousands of vectors in real time. In fact, animato .... 
are often wor king at a station that can handle a few vectors in real time. twin allows the 
animators to dynamically switch the database used to draw an object. Thus the animator 
can have rapidly drawn frames of low complexity or slowly drawn frames of high complex
ity , just by replacing the surface geometry definition of an object. All parameters of aa 
object not related to its geometry are unaltered by this replacement. 

On fast graphics hardware this becomes less of a constraint . It will decrease in impor
tance in the near future (see fi nal sect ion of notell). 

Objects are named as described in Gomez [7,8]. Two important points not mentioned iA 
the paper are regular expressions and aliases. Names can contain regular expression char
acters like the Unix ,h~fI a nd Clh,. these characters are handled just as they would be iA 
either of shell . The user can also define alias names, ind icating that whenever twixt s~ 
that name, it is to be expanded to all the objects named in the list for that alias . List ele
ments may of course be reg ular expressions. Furthermore , it is not an error to include aa 
undefined object in an alias list. twin assumes that the animator will bring in that object 
later, when he is ready for it . 



4.4. Track bnplementation 

~wirt. implements the following tracks: 

position" dPi dt 
rotation .It d? / dt 
scale .It di / dt 
attach position" do l dt 
color .It de I elt 
shinines.! .It dShinineu / dt 
transparency It. dTran,p-art.nev I dt 
lIurface geometry 
display enable flag 
attachment 
notes 

8 

4.4,1. Basic geometrical transformatioD tracks 

Many of these tracks are straightforwlU'd: position, seaJe, color, iUumination parame
ters . Rotation can be treated either as anglH; around the object'. axel or as SxS orieD· 
tation matrices . The former ca..se is cuy to implement but non.intaitive, meaning that 
after a few rotations, it's hard for the animator to make a direct connedion bet~eeD 
instructing the system to do a rotation and what happens on the tcreen. This is 
because the obj«t'l axes are themselvel transformed, meaning that. t.he rotat.ion is not. 
being applied to the original axes set but the transformed set. In the latt.er cue, 
matrix interpolation was implemented using a scheme based on a question (rom my 
general examinations. This technique has been formalised u quaternion rotat.ionl 
[15, 16[. 

In addit.ion, there are velocity tracks running alongside each primary track that. has a 
defined derivative ((.f;. the position track hILS a derivative but t.he display enable Bag 
doell not) . The animator may address any track directly, or its derivative, or both. In 
the latter case, the velocity track ha.s priority in any conOicts. 

As an example, co ns ider an animator who specifies that an object'l X polition is to be 
o at frame 1 and 20 at (rame 24, then specifies that the X velocity is to be 10 units per 
second. This situation is irreconcilable. The decision to give the velocity track pre
cedence increases the likelihood that the display function will be continuous in ita 
derivatives. 

4.4.2. Hierarchy control tracks 

The attach position is where a child object is attached to its parent, in term. o( t.he 
parent's coordinate space. There are various ways o( inserting a subtree into a tree: 

hang 
In this mode, only the offspring's position is transformed by the parent's matrix; 
the remainder o( the matrix is cakulated from the child's current display param· 
den. The parent's lIcale vector does not propagate down (see attach below). Thia 
mode is intended (or an object that is hanging on another object, such aa .. rod 
hanging on a pivot pin. As the pivot pin moves &round, the rod mUlt go with it., 
but. it shou ld pivot automatically so it remains in the same orientation. 

Implementation is not difficult. To construct the offspring'l mat.rix, fint 
tran.s(orm it'l final pollition by ill parent.'s matrix and pla.ce the result in the 
bottom row of the matrix. The upper left. ld is calculated ILl ulual, with DO 

reference to the parent matrix. 

- 8~-



• 
attach 

This mode was defined by ,cn_ Clum6fr: parent scale values do not propagate 
down. It's useful for attaching light sources to other objects, since in the OSU 
pAradigm the scale value of a light source determines ita ra.ngc. 

couple 
This is a co nventional tree builder. where all eleme ntl of t.he parent's matrix pro· 
pagate to the offapring nodel. Thill method allows a limited .qua,h.ond-,bdch 
capabili ty. 

In adual implementation, twin constructs matrie" in a bottom to top (uhion. In 
order to build a frame, each object', matrix mu.t be constructed. To do this, twizt 
gael through its list of objects (which corresponds to visiting each leaf in the Corell) 
and finds which of them has their newmatriz Oag set, indicating that lome display 
parameter haa changed, neceuit ating recalculation of the matrix. It then traver. 
recursively up the hierarchy tree until it reaches the root of that object subtree, at 
wh ich point it unwinds, constructing each object's matrix on the way down ilf that 
newmairiz Oag is set and concaten ating as appropriate. No matrix is ever computed 
twice; the newmairiz Bag is unset to keep that from happening . Thus each node in the 
tree may be visited more than once, but it won't cause extranl!Ous matrix arithmetic. 

There are two ways of removing a subtree from a tr~; 

detach 

letgo 

Detaches a lIubtr«. The child object (and its children) will no longer be con
trolled by the parent. 

Det achl!! a subtree, but maintains the current transformation as a pretransfor
mation for future animation . This is used for objects which are related to another 
object for part of the animation, then detached to continue own their own way. 

An example would be a hand throwing a ball. Initially, the ball would be 
attached to the hand during the windup. When the ball is released, it is " Id
go," so from that point on in time, the ha.nd will have no control over the ball. 
However, the point a t which the ball was let go determines its freefl ight, so t.he 
transformation at that instant must contribute to t.he animat ion follow ing that 
instant . 

The attachment t.rack controls the characteristics of the hierarchy construction. The 
attach posit.ion track is simply a vector showing the attach position. An auachment 
eve nt simply contains a Bag word showing what kind of attach (or ddach) is to be per
formed at what time. H the event is one of the attaches (as opposed to one of the 
detaches) it abo con tains a pointer to the new parent . 

4.4.3. Surface geometry track 

This track controls the surface geometry of an object. Object shapes are interpolated 
(with fl exibilit ies previoul ly described) between some number of defined geometriel. 
Thus, a blended objed has no Ihape it can call it's own; it is defined only when the ani
mation is running . The animator can (recle playback, or play back a single frame, in 
order to take a look at the current lurface geometry. Again, to save memory, the 
event value fi eld becomes a pointer to another structure that actually definl!! the 
characteristics of the actual geometry and cont.ains the data itself. 

- 85-



10 

4A.4. Notes trad 

Note events an just that - notes. Animators usually write down all kinds of informa
tion on their exposure sheeta. Note events are the animator's notes to themaelves. 
When the animation gets to the frame a note event belongs to, the note in printed (the 
animator can set a flag to enable or disable note printing). 

4 .6. Track Manipulation 

Geometric transformations can be applied to track segments just as they are to objects. 
Tracks can be scaled , translated, or rotated. These operations are different from changing 
the frame numbers in events; the former change the values in the events, the latter change 
the times at which the event!! occur. Thus t he former change the control values them
selves; the latter change the timing of the animation. 

These track-wise operations are implemented in a simple matter: the animator specifies 
the track segment by frame numbers, the operation, and the operand. Rotation must be 
performed on vector or orientation matrix tracks ; it does not make sense otherwise. 

A track segment copier is provided. This together with the track transformer give the ani
mator irataneing capability for a track. Just as geometric primitives can be defined and 
transformed to build more complex objects, tracks can be defined and transformed to elim
inate some of the drudge work of animation. 

As an example, consider a ball bouncing along a mirror. First the animator animates one 
bounce of the ball. Then he copies it two or three times, each one shifted by the appropri
ate time (perhaps two seconds) and the appropriate dislocation. This is the original ball 
animation. Then the animator makes a second instance of the ball, copies the first one's 
position track to the second, and multiplies the second ball's Y position track by -1. This 
is the reflection's animation, and the animator is done. Figure 1 shows value ..... time 
plots for this animation. 

I, ,II, ,II, 
Lt ,I '1 " 1( 
I,., ,,'" \" ,.,,'" \ 

"" ", " , """'" 
""'"'''''''''''''''''''' """"""""""""'" """'" 

Figure 1. 
Plata of ball and reflection positions 

(Z is not important for thi. example) 

Xsauree, XreUectlon 

Ysource 

Yreflectlon 



11 

For a alightly more complex example, ,UppoIC the animation was four balll and their 
rellections bouncing away at right angles (rom a central point. As before, the animator 
would animation one ball and ita refl.edion (actually, eince thi. is alreAdy done, it's only 
necesury to read it in from the aYltem). Then this duet would be co pied and the copy 
rotated 90 degrees about the central point. This copy-rotate action is performed twice 
more, for a tot.al of four balls and their refl.Ktions bouncing . 

4.6. Record Structures 

Following are record Itructures showing how various entities are implemented. The 'q' 
character indicate. a pointer. 

4.6.1. Events 

Event Itfuct.ure 

EventTypel type 

... value 

Natural frame 

Natural eueln 
Natural eutOut 

Twerper 'Q twerper 

Logical dF 

Figure 2. 
Event record structure 

The value field has no type, because it will depend on what the event is being used for . 
If this structure were being implemented in PASCAL, the event type field would serve 
as the CASE selector for a vlltiant record. 

Whether or not the event is a velocity event can be built into the event type field or 
separated into its own field as is shown here. The form shown here has some runtime 
advantages , e.g. if some piece of code needs to do something to a color event, whether 
it's a value or a velocity value, it can work similar to this: 

if (event .type is Color) 
Doit() 

instead of like this: 

if ((event.type is Color) or (event.type is ColorVelocity)) 
Doit() 

Technically, an event structure would be able to handle any kind of display parameter 
the user desired. Unfortunately, most compilers will simply allocate enough space for 
the worst case. In the case of a surface geometry definition, it would require a lot of 
memory. In a global context, most of the memory used would be wasted, since most 
events are much shorter than surface geometry definitions. Therefore it makes sense to 
use pointers for events that could take up a lot of memory. 



4.6.~. Tracks 

Track structur~ 

Event ..q events 

Twerper ..q globalTwerpe:r 

Event ..q derivatives 

Twerpe:r ..q globaIDTwerpe:r 

Figure S. 
Track record structure 

The ~vent pointers are head pointers, i.e. they point to the heads of their respective 
lists. U a global splining function pointer is non-NULL, then the indicated funct ion 
shou ld always be used for interpolating th at track; ot herwise use the patched method 
as described previously. 

An alternative form would be to have a logical fiag indicating whether or not to use 
t he global splin ing function. It's a matter of taste; either way should generate the 
same number of instructions if the NULL pointer is zero, as it is in C. 

4.6.S. Twerpers 

Twerper struct ure 

String ..q name 

code 

Figure 4. 
Interpolating function record structure 

T he name is used for d isplay purposes, i.e. for telling the user what the name of the 
function is. It will point to something like "cubic B-spline" or "combination move," 
etc. The other fie ld points to the code implementing t hat function. It will return 
whatever's appropriate , typically a Boating point blending factor. 

4.6.4.. Conunents 

The itructures shown here are not the actual declarations used in the program, 
although they do indicate the information content required . Other fields may be useful 
for practical purposes. Forward and backward pointers are a help, &5 doubly linked 
list traversal is fast. Additional pointers to reduce cross list t raverea) or avoid 
indirected lookup also save time. Theoretically, they're not necessary , but faster is 
better. 

Obviously there's more to writing an animation system than what's discussed here. 
These concepts, however, form the basil! around which twin is written. There il! a lot 
more that could be described, but that would be outside the scope of these particular 
notes. Some additional references along thes~ lines ar~ my dis8~rtation [91 and t he user 
manual 18J. 

6. Epilogue 

An extens ion to the idea of modifying tracks i! to transform them with modifying functions, 
i.e. to filter the di!play function through time. This would be one .... ay of providing charac
ter. After designing a walk cycle, the animator would apply a modifier to provide a particu
lar kind of walk, e.g. a limp. There are analogies between this and the NYIT motion 

- 38-



postprocessors and Perlin'a pixelatream editor [1 21. 

Current development. in fast 3-D raster diaplay systems will not have &I much of an impact 
as advanced uaer capabilities, because fut hardware is not the hard problem in computer ani
mation. Animators generally desire to aee frames of high complexity in full color with 
advanced aurface modeling techniques (note that this ia different from actual contemporary 
situatio ns); advanced 3-0 systems generally work only with polygona and simple illumination 
calculations. The bandwidth required for complex 3-D imagery far exceeda the capability of 
any current or planned hardware system. Thua the major advancea in computer animation 
will come not from better display units, but from more advanced capa.bilitiea a.vailable \0 the 
animator . 

Building an animation syatem is a nontrivial task. Doing it requirea implementations of kch
niques from all aspects of computer science. It 's better to view an animation system as a 
tool, aince ita function is to be used, rather than to be an end in itself. Much of the aystem's 
auccess will come from it's users ' imagination . But it has to provide them with the appropri
ate leve15 of abstraction and the appropriate hierarc hy of complexities, where "appropriate" 
is the nebulous quantity indicating it's not overbearing in normal use but Imart enough to 
help get the job done. 

Developers and animators must remain in constant contact over the lifetime of an animation 
system; otherwise the it will end up being skewed towards the group that built it. The design 
and development of an animation system should be seen as a symbiotic task between lohe 
"technical" types and the "artist" types . 



References 

1. Baeeker, Rona ld M, "Pidur~riven animation," in Inkraditlt. Computer Graph,,,, ed. 
Herbert Freeman,IEEE Computer Society(1980). Originally published in Conference 
Praceeding" Spring Joint Computer Conference, AFIPS, 1969 

2. Bergeron, Daniel and et, ai, Tonr di Peltrie,.ie !"Animation."" Animation. 1985. 

S. Cat mull , Edwin, "The Problems of Compuler·Auisted Animation," Compuur Craphiea 
12(')(Augu", 1978} . 

4. Crow, Franklin C, "A More Flexible Image Generation Environment," Computer 
Graphiea 16(3) pp . 9-18 SlGGRAPH-ACM, (July 1982) . 

5. DeFanti, Thomas A, "The GraphiC! Symbiosis System - An Interactive Minicomputer 
Graphics Language Designed for Habitability and Extensibility," Ph . D. Dissertation , 
The Ohio State Un iversity (March 1913) . 

6. Donkin, J ohn , Tra,h, Ohio State Univenity CG Re (1984) . Animation. 

1. Gomez, Julian E, "Twixt: A SO Animation System," Computerl and GraphiCl 9(9) pp. 
291-298 Pergamon Pre!! Ltd., (1985) . Reprinted from ProceedinfJ' of Eurographie, '84· 

8. Gomet, Julian E, twir;t u,er manual, Computer Graphics Research Group, The Ohio 
State University (1985) . 

9. Gomez, Julian E, Computer Di,plar of Time Variant Functian" The Ohio State Univer
sity (1985) . Ph.D. dissertlLtion 

10. Knuth, Donald E., The Art of Computer Programming Volume f; Seminumerica/ Algo-
rithml, Addison-Wesley Publishing Co., Reading, Mus. (1969). 

11. Lasseter, John , Lur.o, Jr., Pixar, Inc. (1986). Animation. 

12. Perlin , Ken, "An Image Synthes izer," Computer Graphic. 19(5}(July 1985) . 

IS . Reynolds, Crai g W, "Computer Animation with Scripts and Actors," Computer Graph
iea 16{S} pp. 289-296 SIGGRAPH-ACM, (July 1982) . 

14. Schlag, J ohn F., "Eliminating the Dichotomy Between Scripting and Interaction," in 
Proe . Graphic. Interface '88, (May 1986) . 

15. Shoemake, Ken , "Animating Rotation with Quaternion Curves," Computer Graphie, 
19(')(July 1985} . 

16. Shoemake, Ken, "Quaternion Calculus and Fast Animation," in Tutorial Note'; Com
puter Animation: 3-D Motion Speeijieation and Control, ACM SIGGRAPH(July 1987} . 

11 . Smith, Alvy Ray, "Spline Tutorial Notes," in Tutorial Notu: Computer Animation, 
SIGGRAPH(198<}. 

18. Teitelman, Warren, "The Cedar Programming Environment: A Midterm Report and 
Examination," CSL-8S-11, Xerox PARC (June 1984). 

19. Teitelman, Warren , "A Tour Through Cedar," IEEE Software 1(2) pp. H-1S (April 
1984). 

20. Thomu, Frank and Johnston, Ollie, Dilney Animatio": The /IIu,ion of Life, Abbeville 
Pres!, New York (1981) . 

21. VanBaerle, Susan and Kingsbury, Doug, Snoot Clnd Muttir, Ohio State University 
CGRG (1984) . Animation. 

22. Wedge, Chris, Tuber ', Two Sup, Ohio State Univeraity CGRe (1985) . Animation. 

-'10-



16 

23 . Wilhelms, Jane, "Towards Automatic Motion Control," in Tutorial Notu: Computer 
Animation: 3-D Molion Specification and Co ntrol, 1986 

2<. Zeltzer, David , Gomet, Julian , and MacDougal, Paul, " A Tool Set 
Animation ," In Tutorial Note..: Introduction 10 Computer 
GRAPH(198.) . 

ror SoD Computer 
Animation, SIG-

25 . Zehzer , David , "Toward An Integnted View of SoD Computer Animation ," in Tutorial 
Nott.l : Introduction to Computu Animation, SIG GRAPH(19840). 





SAN FRANClS(0 JULY 22-26 Volume 19, Number J, 1985 

Animating Rotatioo with Qua.teroioo Curves 

Ken Shoemaket 

The Singer Company 
Link Flight Si mulation Division 

ABSTRACT 

Solid bodies roll and tumble tbrough space. In 
computer animation, so do cameras. The rotations of 
these objects lire best described using a four coordinate 
system, quaternions, &.9 is shown in this paper. or all 
quaternions, those on the unit sphere are most suitable 
for animation, but the question of how to construct 
curves on spheres has not been much explored. This 
paper gives one answer by presenti ng a new kind of 
spline curve, created on a sphere, suitable for smoothly 
in-bet weening (i.e. interpolating) sequences of arbi trary 
rotations. Both theory and experiment show that the 
motion generated is smooth and natural, without quirks 
found in earlie r methods. 

C.R. Classification: C.1.1 [Numerical Analysis) 
Interpolation-Spline and piecewise polynomial 
interpolation; G. 1.2 [Numerical Analysis] 
Approximation-Spline and piecewise polynomial 
approximation; 1.2.g [Artificial Intelligence1 Robotics
Manipulators; 1.3.5 [Computer Grapbics) Computational 
Geometry and Object Modelling-Curve, surface, solid, 
and object represe ntation, -Geometric algorithms, 
languages, and systems, - Hierarchy and geometric 
transformations 

Ge ne r a l Terms: Algorithms, Theory 

Keywords and phrases: quaternion, rotation, 
spherical geometry, spline . Bezie r curve, B-spline, 
animation, interpolation, approximation, in-betweening 

1. Introchn:lion 

Computer animation of three dimensional objects 
imitat(,s the key frame techniques of traditional 
animation. using key positions in space instead of key 

Pum.ss,on 10 ,opy "";Iholll r" IU or pari or Ihis malerial II Iflnled 
provided Ihlll .he copies Ire nOI made or dimibuled for direcl 
commercill Idvln.lte, lhe ACM coPyrilhl no.iu 1...:1 .he lille or Ihe 
public&lion 100 ilJ dale IppClr, Ind nOliu il li""n .hll copyin, is by 
pcrmin.on or the A!II-oc:iI.ion for Compulin, Ma.chincry. To ,opy 
o.hcr....;K. or 10 republilh, n:quirn I r" Ifld / or .peo;iru:: pcrmiuion. 

@ 19M) ACM O-MI)791 - 166-O/M5/(X)7J()245 $()O.7) 

dr&winS'. Physics says that the general position of a 
rigid body can be given by combining a translation with 
a rotation. Computer animat.ors key such 
transformations to control both simulated cameras and 
objects to be rendered. (n following such an approach, 
one is naturally led to ask: What is the best 
represe ntation for general rotations, and how does one 
in-between them? Surprisingly little has been publis hed 
on these topics, and the answers are not trivial. 

This paper suggests that the common solution, using 
three Euler's angles interpolated independently. is not 
ideal. The more recent (18-1 3) notation of quaternions 
is proposed instead, along with interpolation on the 
q'J!lte rnion unit sphere. Although quate rnions are le~ 
fallliliar. conversion to quaternions and generation of 
in-between frames can be completely autom:uk , no 
nlaLter how key frames were ori ginally sperified, so 
users don't neeu to know-or care- about inner deuils. 
The same cannot be said for Euler's angles, which are 
more difficult to lCIe. 

Spherical interpolation itself can be used for purposes 
besides animating rotations. For example, the set of all 
possible directions in space forms a sphe re, the ~called 
Gaussian sphere, on which one might want to control 
the positions of infinitely clistant light SOurces. 
Modelling features on a globe is another possible 
application. 

It is simple to use and to program the method proposed 
here. It is more diflicun to follow its development. 
This stems from two caU3es:. 1) rotat ions in space are 
more conflCling than one might t hink, and 2) 
interpolating on a sphere is trickier than interpolating 
in. lIay, a plane. Readers well acquainted with splines 
and their use in compute r animation should have little 
difficulty, although even they may stumble a bit over 
qualernions. 

2. Dueribing rotations 

2. 1 Rigid motion 

Imagine hurling a bric k towards a plate glass window. 
As the brick Ilies closer and closer, a nearby physicist 

Author', current ~ddrc3S: 1100 gllntll Crill Ave .. Menlo I>:.rk, 
CA 9~tY.!5 



might observe that, wbile it does not change shape or 
siut it can tumble freely . Leonhard Euler proved two 
centuries ago that, however the brick tumbles, each 
position caD be achieved by a single rotat ion (rom a 
reference position. [Euler,17521lGoldsteinl The same is 
true (or any rigid body. (Sh&ttering glass is obviously 
not a si ngle rigid body.) 

While tramlations are well animated by Ullin! vectors, 
roLation animation caD be improved by using the 
progenitor of Vt<:tOr9, quaternions. Quaternions were 
discovered by Si r William Rowan Hamilton in October 
ot 1843. The moment is well recorded, (or he 
considered them his most important contribution, the 
inspired answer to II. fifteen-year search for a successor 
to complex numbers. [Hamilton] By an odd Quirk of 
mathematics, only systems of two, four, or eight 
compone nts will multiply as Hamilton desired; triples 
had been his stumbli ng block. 

Soon after quaterniom were introduced, Artbur Cayley 
publis hed a way to describe rotatioM using the new 
multiplication. [Cayley] The notation in his paper so 
closely anticipates matrix notation, which he devised 
several years later, that it may be taken as a formula 
for converting a quaternion to a rotation matrix. It 
turns out that the four values making up a quaternion 
descri be rot&tion in a natural W&y: three of them give 
tbe coordio&tes for the axis of rotation, while the 
fou rth is determined by the angle rotated through. 
[Courant &. lIilbert1 

Sinre compute r graphics leans heavily on vec tor 
operations, it is perhaps easiest to explain quaternions 
nnd rotation matrices in terms of these, reversing 
his tory. However quaternions can stand on their own 
as an elegant algebra of space. [Herstein] [Pickert] 
IMacLaneJ 

2.2 Rotation matriee. 

That a tumbling brick does not change 3ize, 3hape, nor 
"handedness" is mathematically expreMed as the 
preservation of dot products and cross products, since 
thcse measure lengths, angles, and handedness. And 
since the determinant of a 3X3 matrix can bc computed 
as the dot product of one column with the cross 
product of the other two, determinants are also 
prese/'Ved. Symbolically: 

An immediate consequence is that orientation changes 
must be linear ope rations, since the preserved 
operations Afe; hence they have a mat rix 
representation, M. Using the matrix form of a dot 
product, .ul Jl2 ' we can say more precisely that 
(AI Jlll

f (M .u2)" Jll Jl2' from which it follows that 

M' M _ I . 

246 

8 SIGGRAPH'85 

That is, the change matrix M is DrthDgonal; its columns 
(and rows) a re mutually perpendicular unit magnitude 
vectors. Because M m ust al3() preserve determinants, it 
is a "pecioi orthogonal matrix, 311.tisfying 

det(M) - +1 . 

It is well known, and any bow easy to show, that tbe 
special orthogonal matrices form a group, SO(3), under 
multiplication. [MacLaneIlGoldsteinI/Mlsner! In this 
rotation group, the inverse of M is just MI, the 
oppooite rotation. 

To illustrate, the matrix 

M - [ ~ 
o 

'''' 9 
sin 8 

effects a rotation t hrough an angle of 9 around tbe 1" 

axis. Alter verifying the properties discussed so far, 
note that the diagonal entries sum to 1+2cO$ 8. While 
it is too lengthy to show here, the diagonal sum 
measures the same quantity for matrices generating 
rotation around any axis. [MacLaneJ 

2.3 Quaternion. 

Quaternions. like rotations, also form a non
commutative group under their multiplication, and 
these two r,roups are closely relatcd. [Goldstein] 
[PickertIIMisner] In fact , we can substitute qllatcrnion 
mult iplication for rotation matrix multiplication, and 
do lcss computing as a result. [Taylor] 

To perform quaternion arithmetic, group the four 
components into a real part-a scalar, and an 
imaginary part-a vector. Addition is easy: add scalar 
to scalar and vector to vector. But our major interest 
is in multiplication. Start with a simple ca.se: multiply 
tWO quaternions without real parts, or more precisely, 
with zero real parts. The result quaternion has a 
vector that is the cross product of the two vector parts, 
and a. scalar that is tbeir dot product, negated: 

It is certainly convenient to ebcompass both vector 
products witb a single quaternioD product. (One early 
lover of quaternion algebra called vector algebra a 
"hermaphrodite monster", since it required two kinds of 
product, each yielding a difTerent typc of result.) If one 
quaternion has only a scalar part, with its vector 
components all zero, multiplication is just real 
multiplication and vector scaling. Combining the two 
effects gives the general rule lBradyl: 



SAN FRANCISCO JULY 22-26 

Except for the CI'OlS! product this look! like complex 
multiplication, (01+ib.)(02+lb2) - (0102-b.b2) + 
i(a.b2+a2bl)' as Hamilton intended_t 

QuateroioD! multiply with a cross product because 
rotatioD! cootound axes. To illustrate, place a book. in 
t ront of you, face up, with t he top farthest away. Use 
this orientation as a refere nce. Now hold t he sides and 
flip it toward you onto it.! tace, rotati ng ISO degrees 
arouod a lefl.-to-right axis, y. Then, keepiog it face 
down, spin it clockwise ISO degrees around an up-down 
: axis. Two rotatioD! around two perpendicular axesi 
yet the total change in orientation must be, according 
to Euler, a si ngle rotation. Indeed , if you hold the ends 
of the spine and flip the book 180 degrees a round this 
third, outward-pointing, % axis, you should restore the 
origi nal orientation. A1J quaternions, this is 
- anticipating development.! ahead- [0,(0,1,0)1 times 
10,(0,O,I}] equals [0,( 1,0,0)1; the cross product is 
essential. 

Notic:e how quaternion operations give a new 
orientation, in "quaternion coordinates", much as 
translations give a position, relative to some starting 
reference. A central message of this paper is t hat 
quaternion coordinates are best for interpolating 
orientations. For comparison, imagine using spherical 
coordinates for translations! Quaternions represent 
orientation as a single rotation, just as rectangular 
coordinatts represent position as a single vector. 
Translations combine by adding \"ector.;; rotations, by 
multiplying quaternions. The sep arate axes of 
translations don't interact; the axes of rotations must. 
Quaternions preserve this interdependence nMun.lly; 
Eulcr's angle coordinates ignore it. 

2." Euler '. angln 

Why, then, do so many animators use Euler 's angles! 
Mostly, I suspect, because quaternions are unfamiliar. 
Unlike Euler's angles, quaternions are not taught early 
in standard math and physics curricula. Certainly 
the re is a plethora of arguments against angle 
coordinates. Euler 's angle coordinates specify 
orien~Mion as a series of three independent rotations 
abou~ pre-chosen !!.Xes. For example, the orien~ation of 
an airplane is sometimes given as "yaw" (or "heading") 
around a vertical axis, followed by "pitch" around a 
horizontal axis through the wings, followed by "roll" 
around the nose-t.<>-tail line. These three angles must 
be used in exactly t he order given because rotations do 
not commu1.e. The ordering of rotation axes used is a 
matter of convention, as is tbe particular se~ of axes, 
no matter what the order. ror instance some physicists 
use the body centered axcs l-X-:, in contrast to the 
aeronautic~ l-V-%. At lenst a dozen different 
conventiolls are possible for which series of axes to use. 
IKaneJlGoldsteinJ The geometry of orientations in 
Euler's angle coordinates is contorted, and varies with 
choice of initial coordinate axes. There is no 

Hamilton wrole .. '1l1atunion U .+I. · +j ~ ·+k. · , wilh i~_ r _ k' _ ij k .. -I. Th~ mlllliplical ion , "les ,inn b.ror~ arc 
conse~"~nte. of tbi, eles",nt lormul:nion . 

Volume 19, N umber 3, 1985 

reuooable way to "mul tiply" or otherwise combine two 
rotaUons. Even converting between rotation matrices 
and angle coordinates is difficult a nd npensive, 
involving arbitrary assumptiollll and trigonometric 
fu nctions_ In t hei r defense, it must be said that they 
are handy tor so]vi og diffe rential equatioD!-which is 
how E uler used them. IEuler,11581 

3 . In.betweenin, alternative. 

3.1 Strai&bt line in-betweenlnS 

It is not imm.ediately obvious bow to in-between even 
two rotation keys. What orientations should an objec t 
assume on it.! journey betwee n them! A natural answe r 
is; take the first key as a reference, and represent the 
second by describing the singlc rotat ion that takes you 
to it, according to Euler's theorem . The in· between 
orientations should be positioned a long that rotation. 

If we plot quaternions as point.! in four-dimensional 
space, the straight lines betweeo them give orientations 
interpolating the end points in exactly the above sense. 
Ir we plot Euler's angle coordinates instead. the in
between orientations will try to twist around three 
different axes simultaneously. This angle interpolation 
treats the three angles of rotation at each key 
orie ntation as a three-dimensional vector whose 
component.! are interpolaled independently from key to 
key. Paradoxically, we can not rotate si mply except 
around the special axes chose n for composition. We 
may even enconnter so-cfdlerl '"gimbal lock", the loss of 
one degree of rota~ional fr eedom. Gimbal lock resnlt:; 
from trying to ignore Lhe cross product interaction of 
rotations. which can align two of the thre<' a;'lCS. 

Quaternions are sa fe from gimbal lock, and so have 
been used ror years to handle spacec raCt, where i~ is 
unaccep~able. JKanelfMitchell[ 

3.2 How quat er nion. rotate 

Straight line9 betwee n quaternions, however, ignore 
some of the nat ural geomet ry of rotation space. If our 
interpolated poinLs were evenly spaced along a line, the 
animated rotation would speed up in the middle. To 
see why, we musL look at how a quaternion converts to 
a rotation matrix. We rotate a vector by a quaternion 
so: mult iply it on the Mft by the quaternion and on 
the n,ttt" by the inverse or the quaternion, treating the 
vector a.s [O.u l. 

JJ.' - Rot(JJ.) - q JJ. q- I 

Though it is not obvious, the result will always be a 
vector, with a zero scalar component. Notice how this 
guarantees 

which implies that dot and cross products are 
preserved, embedded in the quaternion product. 

The inver.!e of a quaternion is obtained by negating its 

147 



vector part and dividing both part.! by the magnitude 
squared. For q - [s,lll, 

q-I - 11,112 [,,-ll]i 
'I II 

Because all effects of magnitude are divided out, any 
scalar multiple of a quat-ernion gives the same rotatioD. 
(This kind or behavior is Dot unknown in eomputer 
graphics; any scalar multiple of a point in hom~eneous 
eoordinates gives the same non-homogeneous POlllt.) 

If the sca lar part has value w, and the vector part 
values 2", y, and =, the corresponding matrix can be 
worked out to be 

[

1-2,'-2,' 
M - 2%y-2w: 

2u+2w, 

2zy+2w: 

1-2z'-2:' 

2yz-2wx 

2.l"z-2wy 

2y:+2111% 
1_272_2y2 

when the magnitude w~+z1+y2+:2 equals 1. The 
magnit ude res triction implies that, plotted in four
dimensional space, these qURternions lie on a sphere of 
radius one. Deeper inve!!tigation !! hows that such unit 
qUMe rnions carry the amount of rotation in w, as 
cos 0/2, while thc vector part points along thl" rotation 
n"i .. "itlt mngnitud!.' sin 0/2. The a)(is of II ro ta tion i ~ 
th :1t lint' in "pat: r whiC'h rrmains unnlOved : hUl notin' 
thal '~ l" ).:fl r tly what happens wh('u sC' abr mu ltipl<,,, of .t: 
aft· rm ated by I~ . .t:j. fkcauS<' the cros." produ C' l drop~ 
O Ul. n1uILipli('ation rommlltes. q - l mret.s q, mutual 
annihilation O(:curn, and the vecl.Or emerges unscathed. 
Summing the matrix diagonal leads 1.0 the formula 
stated for w. The sum equa!s 4wz_l, but must also be 
1+2 C08 O. A trig identity. cos 20 - 2 cos2 0-1. finishes 
the d~monstation. 

3.3 Great arc in· bet weening 

This spher~ or unit quaternions forms a sub-group, 53, 
of the quaternion group. Furthermore, the spherical 
metric of 53 is the same as the angular metric of 
50(3). IMisnerj From this it fo llows that we can rotate 
without speeding up by interpolating on the sphere. 
Simply plot the two given Orientations on the sphere 
and draw the great circle arc between them. That arc 
is the curve where the sphere intersects a plane through 
the two points and the origin. We sped up before 
because we were cutting across instead of following the 
arc; othe rwise the paths of mtaLion 1\re the same. 

A formula for spherical {ineRT int~rpolation from ql to 
q~. wilh parameler II moving from 0 to I , can be 
o htaiued two different ways. From the group !!tructu re 
we lind 

248 

e SIGGRAPH'85 

while (rom the 4-D geometry eomest 

~in 08 
" + -.-.- " , SID 11 

where q(9, - coo 0_ The first is ~impler (or analysis, 
while the second is more pra,etical (or applications. 

But animations typically have more than two key pose~ 
to cODnect. and here even our ~pherieal elaboration of 
~imple linear interpolation ~bow~ flaws. While 
orientation changes seamle5:lly, the direction of ro~ation 
changes abruptly. In mathematical terms, we want 
higher order continuity. There are lots of ways to 
achieve it--off the sphere; unfortunately we've learned 
too much. 

3.4 Rotation geometry and topology 

No matter what we do in general quaternion space, the 
ultimate effect must be interpreted via the sphere; so 
we had best work there in ~pite of the difficulty. It is 
important to grasp this point. The metric structure, 
hence the intrinsic geometry, of the rotation group 
50(3) is that of a sphere. Over small regions, meaning 
in this ease small rotation angles. a sphere looks as if it 
is nat. But if we go far enough along a "s~raight li ne", 
wt end up back where we started. What could be more 
evident about rotations? Their very essence is moving 
in ('irdts. Looking back to the book-turning 
eXp!'rirnent, the C'oorounding or axe~ is like traveling on 
a sphrre: ir we go if] some direction to a quarter or tht 
way around the sphe re. turn go degrees , travel the 
~amr distance. then turn and travel again. we will 
arriv(' back home, coming in at right angles to the 
din'ction we headed out. Even more revealing, we can 
leave the north pole in any direction and end up at the 
south pole, just as we can rotate 380 degrees around 
any axis and end up oriented the same way. 

Local geometry does not, however, determine glob!!.l 
topology. Contradictory though it may seem, the 
geometry curves like a sphere , but the I.Opology says 
north and south poles are the samet In ract, each pair 
or opposite points represents the same rotation. The 
reader may preserve sanity through two expedients. 
One is to see that this, like homogeneous coordinates, is 
geometry under perspective projection. The second is 
1.0 restore spherical topology· by including 
"entanglements". Physically, taking an object with 
s tr ings attached and rotating it 380 degrees leaves the 
st rings tangled; yet-m~t odd- rotating 720 degrees 
does not. [MisnerJlGardnerj 

Accepting the I.Opologieal oddity is more useful here, 
but it leaves a minor inconvenience. Namely, when 
converting an orientatiOll in some (oreign (orm, such as 
a matri,;, to a quaternion rorm, which quaternion 
should we choose? Which s ide of the sphere! An 
answer that works well is this. Construct a string of 
quaternions through which to interpolate by chOOSing 



SAN FRANCISCO JULY 22'26 

~ach added qua~eroioo 00 the side closest to ~he oDe 
before. Theo small t:haoges io orieota~ioo will yield 
email displat:ement.s 00 ~he sphere. 

.' , 
, , , , . 

-· .• · . y' .~'.1 \ , 

3.5 Spline. 

-"'" ,.' .•. r, 

We are lert with the problem of t:onst ructing smooth 
t:urves on spheres. About a hundred years after 
quaternion.s appeared, ballot: St:hoenberg published a 
two part attat:k on ballistics and at:tuarial problem.s, 
using what he called splines. [Schoenberg] Named by 
a nalogy to a draftman 's tool, these are interpolating 
cu rves const ru t:ted from t:ubic polynomial pieces. wi th 
se<:ond order con tin uity between pieces . Cubic splines 
solve an intesral t!quaLion wh ich says to minimize the 
total "wiggle" of the curve . as measured by the second 
derivative. These inte rpolants a re very popular. and 
the equation <::1.11 ue augmented with Lasrange 
multipliers to constrain the solution curves to lie on a 
sphe re [Courant & Hilbert]; yet there are problems. 
First, the augmented equation is much more diffic ult 
and expensive to solve . Set:ond, the <: urve must adjus~ 
everywhere if one of the points t: hanges; that is, we 
have DO local t:oDtrol. 

3.8 Besier curvCOl 

While Schoenberg invented splines b&Sed on numerical 
analysis. Pierre se~ier invented a clllSS of t: urves, now 
eal1ed by his name, based on geometrical ideas. In fact, 
he showed how to find points on such a t:urve by 
dn.wing lines and splitting them in regular proportions. 
~~ier] This is exactly what is needed. We al ready 
know how to do the equivalent-draw great arcs and 
proportions of arcs-on a sphere. A complete solution 
Deeds only a ' little more. 

... Spherical Bhfer curvCOl 

".1 Joining curve. 

se~ier curves go through only their first and last 
defining poi nts. but we wan t to interpolate al1 our 
orientations. Tbe trick is to splice together short 
13exier t:urves in the manner of spline!. Tbeir creator 
showed an easy way to do this which guarantees finJt 

Volume 19. Number 3. 1985 

order continuity, probably enough for u.s. M the curve 
goes through its end points it is taogent to its end 
segments. Line up the segme nts across a join, match 
tbeir lengths, and tbe curves will piece together 
smoothly. It the key orientations are plaeed at joint.s, 
then eaeb short curve movC3 u.s from one key to the 
next. becau.se eacb piece passes tbrough its ends. 

Now, a. lthough the two !egment.s abutting a curve 
junction should match each other, one of the segments 
can be chosen freely. Tbeu cboices determine the axi! 
and speed or rotation as we pass tbrough the keys. 
The burden of choice can be passed to the animator of 
course, but automation is feasible. and generatly 
preferable. 

".2 Chooeing joint segment. 

Spherit:al linear interpolation gives two conflicting arc 
segmr::nts at a joint, one on each s ide . Smooth the 
different:e with an even compromise, aiming ror a point 
halfway between where the int:oming segment would 
proceed, and where the outgoing segment must a rrive. t 

i •. J 

'. 
•• 

'~'r 

Civen successive key quaternions q~-l' q~, 
interpretted as 4-D unit vectors, the computation 
segment point a~ after q~ is 

where 

Double(p ,q) _ 2(p ' q)q - p 

The matching point for the segment before q~ should 
b, 

for ~he numeriCAlly knowled,uble . ~his con'lr~uion 
.pptOl<im.tu the deri".tin lot poinl.a of • sampled functton by 
.. nr .. .:in, the cenVIII dirruencea or the ""mple ",quen.e. 

[Dahlqlliat k Djork] 

249 



to ensure a smootb join, regardless or how 4~ is chosen. 

'. 

'. 

bJ:';"f Ih~ .. ~ ...,......,~ ''''~'''''' 

•. 3 Evaluating on the spbere 

~ .. ' 

Everything is DOW io band to imitate Bezier's curve 
technique. Each short curve is defined by four 
quaterniODS, qR' 4., hR+ I• '1 •• • , Let the parameter u 
vary from 0 to 1 as the curve departs 9n towards 4" 

and arrives at '1"+1 tangent to the arc from ""+1' 
Sphe rically interpolate by proportion u between q" and 

4", a. and b"+I' ""+1 and '1"+1' to obtain t hree new 
quate rnions. Then interpolate be tween those to get 
two more; and finally interpohHe again. reducing to a 
s ingle poi nt. Abbreviating SI(' rp(p,q;u ) flS (p:q)~ . the 
computation looks like t his: 

q" =,,~O) 

(p!') 'p I') l. - pI' ) 

•. 4 Tanscnt. reviaited 

A si mple check proves the curve touches q" and qUI a~ 
its ends. A rather ch&.lIeo&ing differentiation shows it is 
tangent there to the :s.egments determined by II. and 
'~+I' However, as with Dezi : r 's original curve, the 
rnllgnitude of the tangent is three ti mes that of the 
segmen t itself. That is, we are spinning three times 
faster than s pherical interpolation along the arc. 
Fortunately we can correct the speed by merely 
t run cating the end segme nts to one third their original 
length, so that II~ is d06er to 9. and '.+1 d05er to 
9~+1' 

250 

e SIGGRAPH'85 

, .. , • .I'l '·' 

5. Reaulta 

5.1 The grand .cherne 

What have we ended up with? An animator siLs at a 
workstatio n and interactively establishes a sequence of 
keys for, say, camera orientation. The interpolating 
algorithm does not depend on the nature of the 
interface the animator sees; a ll needed information is 
contained in the .sequence or keys. Probably the 
orientations will be represented internally as matrices, 
.!IO a conversion s tep rollows. The matrices are "lifted" 
to :\ seque nce of neighboring quaternions, q., on the 
uni t sp here, Each quaternion within the sequence will 
become the e ndpoint of two sphe rical Bezie r cu n ·cs. 
Oetween eac h quaternion pair, 9. and q~+I' two 

additional points, 0" and '.+1' are added to control 
motion tbrough the joinLs. At this point, time becomes 
a parameter along the composite curve. As the frame 
number increments, the pa ramete r enters and leaves 
successive curve pieces. Within each piece a loeal 
version of the parameter i3 adjWlted to run from 0 to 1-
Now the Bezier geometric construction comes into play, 
producing an interpolated quaternion, 9.+", from q", 
II", '.+1' 9.+1' and the local parameter, u. Finally the 
mint-fresh interpolated quateroion i3 transmuted into a 
matrix, to be used in rotating a list of object vectors 
for renderi ng. 

5.2 Propertln 

A look at one special ca.se is revealing'. Suppose all the 
points to in terpolate are 9pread along a single arc. 
Thi:!I means they reprcsent different amounts or rotation 
arou nd a single axis, in which cue quaternion 
muhiplicalion commutes. Under these special 
conditions, the formu la for the cu rve sections reduces to 

When this is compared to the standard Bezier 
polynomial, p,,(I_u)3 + 0~3(1-u)2u + 'uI3( I-u)u' + 
qU l u 3 , it is apparent that addition and multiplication 



SAN FRANCISCO JULY 22 -26 

have become multiplication and exponentiation. Of 
course, when the point.l!l are not on one are, 
commutativity fails, so the formula looks much messier. 

In the interesting restricted case when the points are 
spaced evenly and consecutively around an arc, the 
resulting animation behaves exactly as we would hope: 
we get smooth,. constant speed rotation around the 
appropriate axis. Notice tbat we can choose IIny axis 
for this rotation. This is clearly preferable t.o 
interpolation with Euler's angles, where the coordinate 
axes are special. A more subtle property of 111/ 
quaternion interpolation is that the motion is 
independent of coordinate axes. So, for example, if we 
design a move, then rotate the coordinate system 
arbitrarily, the geometry of the motion will not change . 
Eule r interpol ants, unfortunately, will do wildly 
different things. 

5.3 Applicability 

Rotations in space are significantly more complicated 
than rotations in a pl ane . It is easy to deal with the 
latter, since only one parameter is involved . 
Quaternions are out of place in a plane. Joint control 
in robotics simulations has its own highly specialized 
body of techniques; a nd though quaternions have shown 
up in the literature, they see m less useful in that 
con text. [BradYllTaylorl However, B.K.P. Horn has 
used a tessellation of the quaternion unit sphere to 
identify the orientation of an object from its extended 
Gaussian image: a good reference is [Broul. Non-rigid 
motion obviously needs to be handled specially. But fo r 
moving a ca mera eye-point, and for many kinds of 
object motion. quaternion interpolation has strong 
advantages. 

5.4 Compa.rieona a.nd complaint. 

Cost advantages are diffic ult to estimate. Converting a 
matrix to a quaternion requires only one square root 
and three divides plus some adds, at worst. Converting 
back requires 'iJ multiplies and 15 adds. While the 
conversions don't use trigonometric functions, th e arc 
proportioning does. For comparison, angle 
interpolation requires several t rigonomet ric functions as 
well as qui te a few multiplies and adds to create each 
interpolated matrix. My experience is that the Bhier 
scheme is comfortably tast enough for design work, 
which is the only time speed has mattered. (If, tor 
some application, more speed is essential, non-spherical 
quaternion splines will undoubtedly be faster . than 
angle interpolation, while sti ll free of axis bias and 
gimbal lock.) 

These intcrpolan ts are not perfect, of course. Like a ll 
interpolants, they can develop kinks betwee n the 
interpolated points. There are si mple algorithms for 
adding new Sf:quence points to ordinary splines without 
Illtering the original eurve [Boehm I; they do not work 
for this interpolant. And if these cu rves can be shown 
to sll tisfy some variational principal. it will be by 
chance. It is useful to do this, because any solution to 
an integral equation like that for splines admits 
~ll),Jiv i sion ILaue et al] ; minimum curVl"lLllrc bet ween 

Volume 19, Number 3, 1985 

end points imp lies mlDLmu m <: urvature between 
intermediate points as well. Along these lines, Gabriel 
and Kajiya, motivated by quaternions, bave been 
developing a technique to find splines on arbitrary 
Reimannian manifolds by solving differential equations. 
IGabriel & KajiyaJ 

8. QueetioDa 

F'uture resear<:h <:ould answer some interesting pra<:tical 
quest ions. What are these spherical Bezier eurves? Is 
there some abstract characterization of t hem? Or is 
there some related interpolant that is well
characte rized? In light of the success of the geometrk 
adaptation ap proach, it appears reasonable to apply 
the idea to B-splines, which also have a known 
geometric evaluation technique. IGordon & RiesenfeldJ 
How do spheri<:al B-splines behave? Is it possible to 
add new poi nts to a sequenee for eit her kind of eu rve 
without disturbing it! How? Can B-splines be made to 
interpolate, not just approximate, with a simple 
adjustment of cont rol point.l!l! Is there a way to 
construct a eurve parameterized by arc length? This 
would be very useful. What is the best way to allow 
varying intervals between sequence points in parameter 
space? Abandoning the unit. sphere, one could work 
with the four-dimensional Euclidean space of arbitrary 
quaternions. How do standard interpolation methods 
applied there behave when mapped back to matrices? 
Note that we now have litlle guidance in picking the 
inverse image for a matrix, :!ond that cusp-free R~ paths 
do not always project to cusp-free S3 paths. 

However these questions are answered, quaternion 
spline intcrpolants already ofTer a well-beha\'ed 
improvement ove r traditional techniques. They are 
simple to use, simple to implement, robust, effit:ient, 
consisten t , and flexible. More research would make 
them even more so. 

7. Acknowledgment. 

This work was begun for an animation system I 
designed and implemented at Singer-Link. Several 
people there deserve thanks, but I especially thank 
Glen n Davis, who befriended me with his good humor 
and mathematical efforts as I s truggled t hrough t rying 
times. 
I prefer not to invent the wheel if I can find the plans; 
so I pestered Don Venhaus, Brian Barilky, Tom Duff, 
Lance Williams, and Jim Blinn , whom I thank for their 
t ime, t heir comments, and their assurances that they 
had not seen this pa rt icula r wheel roll past PDI, 
Berkeley, Lucasfilm, NYTT, or JPL. 

Tha nks to everyone at Pacific Data Images for the 
iuterest and encouragement that got me started . 

The folks a t Ridge Compute r were generous above and 
beyond the call of customer support in letting me use 
their Imagen typesetting system to produce this paper. 

Last ly, I thank Nod Hall for commenLing on Dumerous 
drafts, and morc. 

251 



References 

I. StZIER, P.E., NumtriC(l1 Control - Molhcmatica 
and Applicotio~, John Wiley and Sons, London 
(1072). 

2. BoEIIM, WOLFGANG, "Inserting new knots into B
!!pli ne curves," Com puter-Aided Dt~i9n 12(4) Pi>. 
190-201 (July 1080). 

3. BRADY, MJCHAEL, " Trajectory Plan ning," in Robot 
Mot ion; Planning and Control, ed. Michael Brady, 
John M. Hollerbach, Timothy L. Hohnson, Tomas 
Lotano.Perez and MaHhew T. Mason.The MIT 
Press (1082). 

·L OROU, PIiIUPPE, " U:!'ing the Gaussia n Image to 
Find the Orielltatio n of Objects." The In/crlllI ' 
/'01'10/ Journal 0/ Robollcs Rc&carch 3(·1} pp. 80·125 
(\Vinler 1984). 

5 . CAYLEY, ARTliUR. " On certai n results relating to 
quaternions," Philosophical Maga zine xxyi pp. 
HI- 145 (February 1845). 

6. COURANT. R. AND HILBERT, D., Me/hods oj 
Afathematical Physics, Volumc f, Interscience Pub-
1i5hers, Inc .. New York (1953). 

7. DAHLQUIST, GERMUND AND BJORCK. ME, Numu· 
II:al Mclhod.~. Prentice-Hall. Inc .• Englewood Cliff5, 
N.J. (:974). Translated by Ned Ande rson. 

8. EUI.ER, LEONII,\RD, '"Decouverte d'un nouveau 
principe de mtc:\nique (1.52)," pp. fll -IOfl in OpUfl 

""111"1. ."cr " (rum!". I ' 5. Or"" Fibli Turi~i. 
1.""":lnu;I.' ( 111.-,7 ). 

!.I. I': l tEll. 1.l::0i"11,\HD. '"I)u m(IU\','uwn t <II' rol:1.tiou 
dl'~ ~orr~ ~olidf':< :lut"'1r ,1"1111 "X,· \ari:,htl' (I' '-,l·q.'" 
in Opera v"nllfl . . "er .;erlllula. I ' ,'I. Or,,11 F iisli 
Turki. Lausannae O. 

W. GADRIEl, STEVEN A. AND KAJIYA, JMiES T .. 
"Spline Interpolation in Curved Manifolds," , 
(1085). Submi ned 

I \. GARDNER, MARTIN, New Mathcmatu;al Diversions 
jrom SC ient ific AmHican. Fireside, St. Louis. :-"Iis· 
$Ou ri (1071). Chapter 2 

12. GOLDSTEIN, HERBEHT, Cla.,sicol Mechanics, $ccond 
edition. Addison-Wesley Publishing Company, Inc., 
Reading, Mass. {I 080). Chapter" and Appendbl. 
B. 

I:? GORDON, WILLIAM J. AND RIESENFEW, RICHARI: 
F., "Bernstein-Bezier methods for the computer' 
aided de5ign of free- form curve5 and Sllrfaces," J 
ACM 21 (2) pp. 293-310 (April 107'1). 

1,1. GORDON, W u..I..IAM J. AND RIESENFELI), HICl lAn e 
F., "f)..spline curves and surraces." in C""'I"j/CI 
AIded GcomdTle Ihs lgn. e.1. Hobert E. Barnhill 
:Inti Il:iehard F. HiI':<en(cl,I,:\ (":ld"mi(" I'n,:;." , :"lew 
York (l07-l). 

I.'>. I'IAMIL TON. ~tH W llI.IAM HOWAN. "On quaLe rn. 
ion.':l: or on a new .'Iy"'Lelll ur inmgil1ari ('~ in alge. 
bra," Ph ,losophlCol Mogam,e xxv pp. 10-13 (July 
I ~14 . 1 ). 

If>. HEIlSTEIN. I.N .. "'ljP I~ " 1/1 Illyrhrfl . . ~uor!d ed'/II>II. 
John \ .... i! r y and ::in"", In" .. ,"\I,·w York ( lfI7.'; ). 

:'52 

5 I G G RAP H '85 

17. KANE, THOMAS R., LIKINS, PETER W. AND LEVIN· 
SON, DAVID A., Spacecraft Dynamic", McGraw-Hili, 
Inc. ( 1983). 

18. LANE, JEFFREY M., CARPENTER, LOREN C., 
WHIITED, 'nJRNER, AND BLINN. JAMES F., "Scan 
line metbods ror displaying parametrically defiDed 
surfaces," Comm. A.CM 23{I) pp. 23-34 (January 
1080). 

10. MACLANE, SAUNDERS .AND BIRKHOFF, GARRETT, 
A.lgebra, second edition, Macmillan Publishing Co., 
Inc., New York (1079). 

20. MISNER, CIIARLES W. , TIIORNE, KIP S., "NO 
WHEELER, JOliN ARCHmALD, ernvitation, \V.II. 
Freeman and Company, San Francisco (1073). 
Chapter 41 - Spinors. 

21. M1TCIJEll, E.E.L. AND ROGERS, A.E .. "Quaternion 
Parameters in the Simulation of a Spinning Rigid 
Body," in Simulation The Dynamic Modeling oj 
Ideas and Systems with Computers, ed. John 
McLeod, P.E., (1068). 

22. NEWMAN, Wu..LIAM M. AND SPROUlL, ROBERT F .. 
Prlnciplu oj Intuactivc Computer Graphics. secolld 
edition, McGraw-Hili, Inc., New York (1079 ). 
Chapter 21 - Cu rves and surraces. 

23. PICKERT, C. AND STEINER, H.-G., "Chapter 8 -
Complex numbers and quaLcrnioml," in F'lI/damen_ 
tols 0/ Mathematics, Volume I - Four/datlOIM oj 
Ma/hematir.' The Real NIHnbu ::;'}sltm find Ilf/r · 
hrn. Nt. II. lI('hnke. F. Ihrhm:-lun, IC Vlad!. 'In,1 

W. S iis.~, (I0S:I). Transla~ed hy S.H. Could. 

~.L ~(' II~!EIJ)I.E Il. W . ANI> [)11l':ETZ, W .. "C I1:'1 ' \('r II 

I,'u nctional :Ul:-llvsis." in r,mdaIrlCli/fI/.< '" 
Mathematic s. Voiumc ffl - AnalYSIS, c.1. II. 
Behnke, F. Dachmann, K. F'ladt, and W. Suss,M IT 
Press, Cambridge, Mass. (1983). Translaled by 
S.I I. Gould. 

25. SCHOENOERG , LJ. , "Contributions to ~he problem 
of approximatio n of equidistant data by an3ly~ic 
fun ctions," Quart. Appl. Moth . " pp. 'J:>-!}!) and 
112-14 1 (10-16). 

26. SMITH, AtVY RAY, "Spline t utorial no te!'!," Techni· 
cal Memo No. 77, Compllter Graphics Project. 
Lucasfilm Ltd. (May 1083). 

Z7. SOSS, W., GERICKE, H., ~D BERGER, K.H., 
"Chapter 1" - Differential geome try of curves and 
surfaces, " in Fundamentals 0/ Mothematics, 
Volume /I - Geomdry, ed. H.' Behnke, F. Bach
mann, K. Fladt, and W. Sii.",M IT Press (1083). 
T ranslated by S.H. Gould. 

28. TAYJ.OR, RUSSF:Ll 1-1., "Planning and Execution of 
Straight Line Manipulato r Trajectories," in Robot 
Motion: Plann ... !} and Control, cd. Micha~1 Orady. 
John M. lIollcrbnch, Timothy L. Hohnson, Tomas 
Lozano-Perez nnd Matth~w T. Mason.The ~l!T 

Pre~ (1082 ). 



SAN FRANC:::ISC:::O JULY 22 -26 

AppcnJu I-Convcr8ion.! 

1.1 Quoternion to mol"u 

Using the res triction that to'+z2+r '+z2 _ 1 for a 
qua.ternion q - lto ,(%,y ,z)], the formula ror the 
corresponding matrix is 

2zy+2toz 
1_2%'1_2:2 
2y:-2W% 

If the quaternion does not have unit magnitude, an 
additional .. multiplies and divides, 3 adds, and a. 
square root will normalize it. (For the matrix 
conversion, the square root can be avoided in favor of 
divides if desirable.) Now we call obtain the operation 
count for creating the matrix. Most terms of the 
en tries a re a. product ot two factors. one of which is 
doubled. So we proceed as rollows. First double z . y, 
and z, and fOfm thei r products with w, .l', y, and z. 
That will take 3 adds and 0 multiplies. Then form the 
sum for each of the 0 entries using I add each , plus an 
extra add for each of the 3 diagonal elements. tor a 
to tal of 12 adds. Thus 9 multipl ies and IS adds suffice 
tc. convert a unit quaternion to a matrix. 

i.!! Mfllriz to quot ,mion 

An pffirien t way to de termine 'Iualcrnion roml't'nf'nls 
.... r. y. ;: from a matrix is to usc lincar combina t ions 
"r Ih,' "ntrics .\ I ... ~ . :"Jotkt that the ,]iagoll al entri~·s 

:lfl' form!·,1 from the ""I'la rI'S of the IluatrrnilJn 
componcut:< . .... hil,· nlf-dial;ona l ent ries :'lrC tIl!' ~um " f a 
~y rnll1 e tric and a skew-symmctric part. T hus lincar 
combinations of the diagonal entries will isolate squarcs 
of components; sums and differences of o pposite off
diagonal entries willlsolate products a mong 1', y, and;: 
and products with w. Using off-diagonals risks dividing 
by a component that may be zero, or w;~hin ( (the 
machine prccision) or zero. "Iowever we can avoid tha.t 
pitfall . and easily compute all components as follows. 

I .. ' >.! 

.. -,'!. .. 
z- (M"_M,,,,)/4 .. 
r - (M~,-M .. )/h' 
z - IM .. -M1I)/ ~" 

, 
• - 0 
I' - -1/2 (M" + M)3) 

I ' >.! 

Z - yl 
, - .'1,,/21 
, - M,, /2z 

, .~ 
• - 0 
" - It! (l - M») 

" >, ' 
Tnlll: FA\" 

r - ",r ' I , - II 
z - Mll /~' l....:...=...!. 

No more than one llquare root, three dividr.s, and a few 
:"Idi'l alld bina ry scale~ are requi red for any r.on\'el'!'ion. 

Volume 19, NumbM 3, 1985 

1.9 Euler onglel lo quoternion 

There are twelve possible ax\., conventions for Euler 
angles. The one used here is roU, pitch, and ,II:W. as 
used in aeronautics. A ge neral ro ta tion is obtained by 
fi rst yawing around the ~ axis by an angle of 1/1, t hen 
pitching around the y axis by 8, and finally rolling 
around the x axis by I/J. Using the way quate rnion 
compone nts deseribe a rotation, we first obtain a 
quaternion for each simple rotation. 

q'Q// - IcOlS f .(s in ; ,0,0)] 

qpi/cA - [cos f·(Osin f ,0)] 

q, . .. - (coo f.(o,o,sin fll 

Multiplying these together in the right order gives the 
desired quaternion q '"" q, ... q,.uAq •• U, with ('omponetl ts 

W _ cos W cos !!..cos 2.. + si n ~sin !!..sin E. 
222222 

I _ 

'" 0 • , - cos -"Ill -CO!< -., ., ., - - -
. 11, 0 ,) 

- ~'l! -:;111 -cos -
~ ., ., 

I .• Euler 1I:'lgle8 to malr,x 

Combining the results of the previous two conversions 
gives 
M _ 

«IOI6sin 4> 
!in Ii'sin 9.sin d>-kQl tber:4{1 
eO! ~s;n 9sin ...... in obroa ~ 

~,,' 1 cO<I9sin tb. 
CO<IScOS tb 

where rP. O, and tP nre the anglcs of roll, pitch, and yaw, 
respectively. 

I.S Molri.l' to Euler ongle, 

While converting a matrix to a unit quaternion only 
involves the sign ambiguity of squa re roots, converti ng 
to Euler angles involves inver:;e trigonometric functi ons, 
as we can only Jirectly determine t he sin's Rnd ('O!I's of 
the angles. Some convcn tio n. sllch 3.., principle angles, 
TtIu:<t be :ulopted. lIowr.ver interpolation pathll will 
vary grc:..tly, <icpcndinlo; o n ~hoice of an glcs. ~;et~i n~ 
that proLlem 'L:lidc, herc's a way to cxtract th~ !li n 's 
and c~'s. l.ookinr; Rt the previou!I e'jualiotl. sin () C:t ll 

be r~ad olf directly as ,\'/ 13 , Use the trigonometric 
identity C060 - ±v' I _in~O to r.om l)utc caJO to within 
a ~ign. which is the he~ t we C3.11 lio. Assuming ros 0 is 
not l.ero, obtain the ,,;ill':I li nd COO'!\ or the oth er :\n gJt'~ 
from 

25:1 



si08 -M13 

,~9 Y l -sin28 

sin tP M'l3 / ~ooO 

,~~ M33 / coo 8 

sin tP MI~ / cos 8 

cos¢ - Mn / (;068 

If cosO is zero, then we must avoid dividing by zero. It 
also becomes impossible to distinguish roll from yaw . 
Adopting the convention that the yaw angle t/> is 0 
allows 

sin 1,1.1 

M" 

sin¢> o 

From these values a two argument tan- 1 will give 
angles between -1f' and +71", or 0 and 2J'r, or some other 
convcntiona l range: t ake YOlir pick. (f or a fas ter 
ronn·r~ioll . just compute , S:IY. 5i1l - 1 and check the sign 
of the ('O>iine term with respect to cosO.) Occausc of 
thr ullcertainties of square roots, inverse trigonometri c 
{unctions, a nd yaw-roll sep:lration, matrix to Eul er 
angle conversion is inheren tly very ill-defined. 

1.6 Quaternion to Euler /lngles 

Use the most straight-forward approach: convert the 
quaternion to a matrix, then the matrix to Euler 
angles. Of course it is unnecessary to compute matrix 
elements that are never used . This conversion is also 
unavoidably ill-defined, as quaternious contain no more 
information about angles than matrices do. 

254 

e SIGGRA PH '85 



Abstract 

Quaternion Calculus and Fast Animation 

Ken Shoemake 

1700 Santa Cruz Avenue 
Menlo Park, California 04025 

Like aerospace engineers, robotics researchers, and James Clerk Maxwell before 
them, graphics programmers can benefit from qua.ternion calculus. Quaternions of 
unit magnitude give a four-component system of coordinates covering all orienta
tions in space without singularities. No system ot three components can do this, 
and more components add redundancy without advantage. Animation brings new 
demands: Construct smooth spline paths through rotation space, and do it effi
ciently. Rotation space is curved, making true splines costly. The quaterniOD unit 
hypersphere has the correct curvature; thus "straight lines" afe great arcs , and 
"linear'" interpolation is no longer dirt cheap. Smoother curves split several arcs 
per point. This paper presents a new algorithm Cor Cl interpolation that splits only 
three arcs per point, the minimum necessary Cor tangent continuity. Using other 
methods described here, even more speed is possible. These methods include Cast arc 
interpolation, Cast quaternion multiplication, and Cast conversion between quater· 
nions and matrices. On the way to achieving these results, quaternion calculus is 
explained. 

C.R. ClassificatIon, G.l.lINumerical Analysisllnterpolation - Spline and piece
wise polynomial interpolation; G.1.2 {Numerical Analysis] Approximation - Spline 
and piecewise polynomial approximation; 1.2.0 IArtificial Intelligencel Robotics -
Manipulators; 1.3.5 IComputer Graphical Computational Geometry and Object Mo
delling - Curve, surface, solid, &I1d object representation, - Geometric algorithms, 
languages, and systems, - Hierarchy and geometric transformations 

General Term.: Algorithms, Theory 

Keywords and phrue.z quaternion, rotation, spherical geometry, spline, quad· 
rangle spline, animation, interpolation, approximation, in·betweening, tracking 

(DRAFT) (DRAFT) 

- 10) -



§I INTRODUCTION (DRAFT) Page 2 

1. Introduction 

The most straight-forward motion of a rigid body with one point fixed is a rotation. 
Possible pos~tions of the body' with respect to the point 8re called orientations. 
Since every orientation can be a.chieved by some rotation about the fixed point, 
and since the fixed point caD he placed anywhere in space with a. translation, any 
(ree position of the body in space can be described as a translation plus a. rotation. 
(Hence it is convenient-a.nd commoD-to blur the distinction between rotation and 
orientation, and between translation vector and point.) To animate such a body 
with a computer, we Deed numerics:1 descriptioDs-i. e. coordinates-ror translations 
and rotations. These coordinates should be chosen in such a way that simple motion 
is simple to describe. In particular, a steady rotation should be simple, regardless 
of the axis chosen, &n4 regardless of the initial orientation. Traditional notations, 
such as matrices, Euler angles, or axis· angle values, fail on one or more of these 
criteria. In contrast, unit quaternions are consistently well-behaved. 

As discussed in {16j. the unit quaternions w + Ir + Jy + kz, with w2 + %2 + y2 + 
Z2 = I, are arguably the most natural coordinates for rotations. They have 
the geometric structure of a sphere in four dimensions; and any steady rotation, 
regardless of axis and initial orientation, is obtained by ste&dy travel along a great 
arc of that sphere. Simultaneously, they form an algebraic system in which the 
product of two quaternions gives the combination of their respective rotations. 
(In this they are like complex numbers of unit modulus, which can be plotted 
as points on a circle, multiplied with each other, and regarded 8.8 rotations in 
a plane.) Though sometimes peculiar, calculations with qus.ternions are fast and 
simple. Stuelpnagel{17] co~clude8 that no other parameterization of rotations works 
as well. That conclusion is generally accepted in the aero.pace indu.try[gl . 

Having chosen our coordin&te apace, we must now construct curves in it. In {16I, 
I showed how unit quat ern ions can be interpolated to animate rotation, in the 
context of key (rame 3-D animation. Dutr(3] merged those ideas with curved surface 
rendering techniques using B-splines, to create a fast approximating curve with 
second-order continuity. Second-order continuity is indeed desirable; unfortunately 
one sacrifices the easy direct control of interpolation to get it. Either that , or the 
curve no longer has local control, which is unacceptable. If speed of computation 
were not an issue, we could use another approach: Gabriel and Kajiyal4J present 
an erudite-and expensive-formula.tion of cubic splines on a hypersphere. Their 
high-order , non-linear, multi-dimensional differential equation offers all the virtues 

-/02-



§2 ORIENTATIO N (D RAFT) Page 3 

of familiar splines, if ODe Ca.D afford to solve the necessary boun dary value problem. 
In practice, one CAD't . 

This paper goes deep into the mathematics of quaterniODs, and shows how to 
improve the efficiency DC quaternion calculations in general, and interpolat ion in 
particular. Section 2 reviews properties of orientations, leading to the choice 
of quaterniODs as coordinates. Section 3 discusses quaternion multiplication, the 
fou ndation for everything else. Fut, unexpected implementations emerge. Section 
4 explores how multiplication carriea over into a repreaentatioD 01 rotatioDs, t he use 
DC most interest. Section 5 looks at /lliinear interpolation" on the unit hypersphere, 
and ways to make it (aster. Section 6 deals with a new spherical interpolation 
technique that delivers tangent continuity with only three arc divisions per point, 
the best possible, In Section 7, quaternion dilJerentiation reveals the required end 
condit ions. Section 8 discusses alternative ways to control orientation, and Section 
9 draws conclusions. Finally, the Appendix givea essential C routines, The emphasis 
througbout is on elegant mathematics efficiently applied. 

2. Orient.tion 

Good notation is a mighty lever. If we compare decimals to Roman numerals, 
we find decimals a great deal euier (or calculation , Likewise, observe how hard 
it is to describe a general straight line in polar coordinates; the linear Cartesian 
coordinates %, y, Z are 80 elJective we rorget we have a choice. Many computer 
animators h.,ye used Euler angle coordinates (or orientation, not realizing there is 
a better choil1~. The hidden assumption in using Euler angles is that rotations act 
just like translations; but they don'ti 

Suppose you hold your arm extended and point at different objects around you, 
Your arm rotates around the fixed point o( your shoulder, and your Hngertip moves 
on the surface or an imaginary sphere in three-dimensional space, with your arm as 
radius, So directions in space are organized like a sphere, not a plane; and there is 
no good way to describe a spbere using Cartesian coordinates. Maps of the Earth 
demonstrate this, unavoidably tearing and stretching the truth. 

Orientations (as opposed to directions) are actually more like a hypersphere, a 
sphere in four-dimensional space, because while pointing in some direction you can 
still rotate your wrist. Here's an interesting way to explore rotation space: Start 

-103-



§3 MULTIPLICATION (DRAFT) Page 4 

with your finger pointing straight forwa.rd, palm down. Without rotating your 
wrist, swing your arm to point up, then to point to the side, then swing forward 
again. You'll find your palm is now facing. sideways, as though you'd just rotated 
your wrist without moving your arm at all. This twist is a property of the way 
orientations ~onnect (their topology), not a trick of anatomy. 

The precise topology of orientations is tha.t of real three-dimensional projective 
space, p3, which is just slightly different from the hypersphere in four-dimensions, 
53, but very different from three-dimensional Euclidean spaeel17J . The hypersphere 
covers p3 doubly, with each two opposite (i.e. antipodal) points on SS covering a 
single point ot the projective space[12, p. 3521. Furthermore, S3 covers the group 
and metric structures or orientations (actually, rotations), not just the topological 
structurell, p. 201 . 

The practical import of the preceding abstractness is that orientations should 
be described using homogeneous coordinates, which were invented especially ror 
projective space. These should have the form lx, II, z, wJ, with w2 + x2 + 112 + z2 = 
I. Also, there .hould be .ome way to multiply and divide these Quadruples which 
will confine products to the hype"phere. 

Quaternions (w + Ix + JII + kz) may be cOllsidered homogeneous coordinates for 
orientations, which can be multiplied as required above. 

3. Multiplication 

Quaternions differ from reals in having three ima.ginary units, 1, J, a.nd k, with 
I' = j' = k' = -1. Imaginary producte do not commute: IJ = k = -JI, Jk = 
I = -kj, kl = J = -Ik. RealB are the center or the multiplication group; they 
commute with everytbing. These specific cases combine in the general rule: 

qq' = (w + Ix + jy + kz)(u/ + Ix' + jy' + kz') 
= (ww' - xx' - yy' - zz') 

+ I(xw' + wx' - zy' + yz') 
+ j(yu/ + zx' + wy' - xz') 
+ k{ zw' - vx' + XV' + wi) 

-IIY/-



§3 MULTIPLICATION (DRAFT) Page 5 

We can now make an important observat ion: The product is linear in both factors. 
That is, p(<>q + fJq') = <>pq + fJ pq' and (<>q + fJq')p = <>qp + fJ q'p, where p is a 
quaternion and ex and fJ are real. One practical impact is that we can use a 4 X 4 
matrix routine (or hardware) to multiply quaterniobs. Use either 

Ld=n 

-x -y 

D (~) w ~z 

z w 
-y x 

or 

Riq=(~ 
-:I -y' -I) (D u! z, -y' 
-.' u! :I .' y' -:I u! 

Note that when q is of unit length Lq is an orthogonal matrix, and similarly for 
q' and Rtf . (An orthogonal m&trix is ooe whose columna (equivalently I rows) are 
mutually perpendicular unit length vettors.) The L matrices (orm an algebraic 
system equivalent to quaternion.; ror example, p(q + q') map. to Lp(L. + L,,) . I 
mention this mainly to help understand the Don-commutativity of quaternioDs. In 
practice, the matrices would be tour times as expensive (e.g., LpLq versus Lpq). 

Associativity or quaternion muitipJicatioD makes mixing Land R matrices interest
ing. 8 eoause (qp)9' = q(pq')' we know tbot R" L. p = L. Ri p. When p is varying 
but q and t/ are not, either or these arrangements ractors out the static part or the 
product Cor greater efflciency[lOj . That is, when we have a long chain or multiplies, 
Qlq2 .. . Qn, and only some inner quaternion qj is being varied, we can collapse all 
left products ql . •. qi-l into an L matrix, all right products qi+l ... qn into an R 
matrix, aDd multiply the Land R matrices into one, leaving just a single matrix 
multiply Cor each update or qj . Articulated objects are a likely candidate Cor th is 
optimization. 

The .mos t st artling discovery is that the product q' can be computed wit h only 8 
real mul t iplies l81, rather than t he obvious 16. The catch is , more adds are used. 
Here's oDe way to Corm the product q" = qq'. 

-105-



§4 ROTATION (DRAFT) 

X,- (Z-v) X (11'-/) 
X 2 - (W+x) X (w' + X') 
X, _ (w - X) X (11' + z') 
X, - (z+v) X (w'-x') 

X. - (z-x) X (x'-y') x.- (z+x) X (x' + 11') 
x 7 - (w+v) X (w'-z') 
x.- (w-v) X (w'+/) 

4. Rotation 

8 -X. +X7 +x. 
t -(X. + 8)/2 

w"-X, +t-x. 
x" -X2 + t-s 
II' -X, + t -X. 
zit -X. + t - X7 

Page 6 

A quaterniOD can be interpreted in many ways. First, as an algebraic quantity , 
w + ix + jy + kz. Second, as a point in 4-space, with coordinates (w, %, II, z), equiv
alent to homogeneous coordinates for a point in (projective) 3-space. Third, as a 
linear transrormation or 4-space, given by left or right quaternion multiplication. 
Fourth, as a scalar plus a 3-vector, w + V, where v = b + Jy + kz. Note that 
VY = -v· v' + v X vlj dot and Cf0ll8 products or vectors were discovered &8 parts 
of the quaternion product. 

Finally, a quaterniOD describes a rotation of J..space. We can write & unit quaternion 
as cos f) + ~sin 8, where t 'is a unit vector. If we then form the product qiq-t, we 
find that the action on the vec:tor vi of r, is to rotate it by 28 around axis v, leaving 
w' unchanged. (Richardsonl14] omits the rador 2, hence all his c:oDversioD rormulae 
are incorl'ect.) We'lJ also find that any scalar multiple or q acts just like tJ, as we 
would expect of homogeneous coordinates. 

Proving that qv'q-l simply rotates v' is instructive; we pick up both insight and 
notation. First, notation. The conjugate of q = w + v is q. = w - v. The Dorm of 
q is N(q) = qq. = q. q = w2 + x 2 + y2 + Z2, which is real. Multiplication confirms 
tbat q-' = q' /N(q); also tb.t (pq)-' = q-'p-' . Some computation sbows tbe 

- /0 .. -



§4 ROTATION (DRAFT) Page 7 

important property! N(pq) = N(p) N(q) . These facts imply that (pq)' -
which can be verified for the units I, J, and k . 

, , 
q p , 

The proof of rotation logicalJy falls into two parts: First show that a vector remains 
a vector, then that the effect i. a rotation. So, let S(q) = (q +q')/2, which extracts 
the scalar w. Then we can deduce S(qv'q-I) = 0, as follows. By definition, 
2S(qv'q-l) = qv'q-I + (qv'q-I)'. By the commutativity of reals, the second 
term is the negative of the first: (qV'q-I)' = (q-I)'(v')'q' = q/N(q)(-v')q' = 
_qyq-I. Hence a. vector remains 8. vector. Furthermore, N(qvlq-l) = N(v'), and 
multiplication is bilinear. This is enough to prove we have an orthogonal transform 
of 3-space, i. e. a rotation And/or a reflection. We can rule out the possibility 
of a reflection with a simple continuity a,r'flment. The norm or q is manifestly 
irrelevant, so assume it is 1. Then when B-or q is 0, the transform is the identity I a 
trivial rotatioD. As e increases, q sweeps out a. great circle arc, and the transform 
continuously evolves through a series of rotations, until at 9 = ,... we have q = -1, 
which again gives the identity transform. We have confirmed not only that qvlq-l 
must effect a rotation, but also that the mapping from quaternions to rotations is 
two to ODe (-q and q give the same rotatioq.). 

The product of two quaternions clearly maps to the product or their rotations, since 
(pq)v'(pg)-I = p(qv'q-I)p-I And [16[ proves that the vector v of q i. the axi. of 
the rotation q produces, while w il COline of twice the angle or rotation. For general 
(non-unit) q, the corresponding 3 X 3 rotation matrix is 

I (Wl +%2_ U:r_J'2 

-w-"'+"--x-"'+=-Y-"'+"--Z'2 2zy + 2wz 
2%% - 2wy 

2xy- 2wx 
W2 _z2 +y2_z2 

2yz + 2wx 

This is an opportune place to comment on lome implementation issu6ll. The formula 
ror rotation is qv'q-l = LqRq-, vi. When q is a unit quaternioD, thia luggests 
an easy way to convert q to a homogeneous rotation matrix: Multiply the simple 
matrices Lq and Rq- into your current transformation. or course, their first row 

t Alter (ailing (or 15 years to find a way to multiply triples so that the norm was preserved, 

Hamilton suddenly realired in October o( 1843 that Quadruples would work. He says "I 

then and there (ell. the galvanic circuit of thought c103e; and the sparh which (ell (rom 

it were the fundamental equaticn3 between i, i, kj exactly such a.s I have used them ever 

since." [7, p. 2031 

- 107-



§5 SLERP (DRAFT) Page 8 

and column must be permuted to last, since computer graphics convention places 
the homogeneous coordinate w last. The desired 4 X 4 matrices arc 

-z 
w 

x 
y 

-~ =:) 
w -z 
z w 

Aside (rom numerical problems, these same matrices work even when N(q) ~ 1. 
Those lacking matrix hardware may consult the appendix (or an efficient conversion 
of a non· unit quaternion to a 3 X 3 matrix. 

To convert from matrix to quaterniOD, a scheme like that ot Shepperd[15] has proven 
numerically robust and efficient. From the diagonal entries and their 8um (the trace 
of the matrix), he determine. whieh 01 w2 , %2, 112 , or ,.2 i. the largest, and uses 
tbat element to extuct tbe otb.ro. A1thougb 1151 do •• n't mention it, if tbe trace 
is greater than zero, using w2 is a.ccurate enough. This leads to the slightly taster 
algorithm in the appendix. 

6. Sierp 

Since a great a.rc is the spherical equivalent of a line, and ednce linear interpolation is 
common Iy written Lerp, it seeml reuonabJe to <:&11 interpolation on a Iphere SJerp. 
There are several equivalent waye ot expreuing Slerp, the most eymmetric ot which 
IS 

SI ( ) 
p.in(l-")O+q.in,,O 

erp p, q; Q = . 0 ' 
"n 

where the 4-space dot product ot p and q defines coe n. As 0' sweeps trom 0 to 1, 
Slerp sweeps out a great arc from p to q. Slerp caD be expressed more concisely in 
tour equivalent exponential torms. In this context, q-l is the same as q., because 
N(q) must equal 1 (or Sierp to be applicable. 

Since quaternion multiplica.tion is not commutative, the equivalence ot these (orms 
is not obvious; it can be proved (rom the tollowing quatt'rnion version o( Euler's 

-/08-



§6 SPLINE (DRAFT) Page 9 

identity. Noting that a unit vector ~ squares to -1 because the cross product 
vanishes and the dot product is I, we can show that Euler's identity holds (or 
quaternions in the form cos 8 + v sin 8 = exp(v8) = 1 + v8 + (V8)2/2! + (V8)3/3! + 
.... This leads to the identity gO = cos aO + i" sin Q(J, from which we see that 
pqOp-1 = exp(pV9p-1a) = (pqp-It. (It is important not to assume too much, 
however; non-commutativity implies that (pq)Q" does Dot equal pOgO, nor does eP+q 

equal ePe', nor does In(pq) equal In(p) + In(q). These familiar identities hold only 
when the cross product of the v~tor parts of p and q vanishes.} 

As a practical algorithm, Sleep looks much slower than Lerp. If the endpoints vary. 
about the best improvement is to use table lookup (or sin and arccos. However, 
when Q is 1/2, we could just add p and q ~nd normalize the result. Ir we have static 
p and q with a steadily varying 0, other improvements are possible. We need only 
calculate 0 and 1/ ain n oncei and we can compute 0'0 and (1 - O'}O with forward 
differencing. We can also pre-scale p and q by 1/ sin O. This reduces the inner loop 
to 8 multiplies, 6 adds, and 2 table lookups per Slerp evaluation. (By representing 
o as a fraction o( 271", these calculations can be done in fixed-point arithmetic with 
all values between -1 and +1.) All that's left is to hegin cheating: When n is 
small, substitute LefP (or Sierp. In fact, this is necessary anyway, to avoid divides 
by nearly zero. We can just push the crossover as high as possible without getting 
caught. Still the moral (or speed is "Minimize Slerps." 

6. Spline 

Key (rame 3-D animation is typically based on splines made or cubic polynomial 
segments. This is because a cubic polynomial has (our degrees o( freedom: two 
to match first derivatives, and two to m&:tch either second derivatives or posi
tions. As 1161 makes clear, a spherical analog of cubic polynomials is needed ror 
well-behaved curves interpolating orientations. Boehml21, in comparing different 
geometric controls (or cubic polynomial segments, describes an evaluation method 
using "quadrangle points" which requires only 3 Lerps, haIr the number needed ror 
the Bezier method adapted in 116). 



§G SPLINE (DRAFT) Page 10 

arrTT"nrrTTO-rrr~b 

a 

P'.LZ.LLLLLL..L.L..L.L---UC q 

FIgure 1. Square Quadrilateral Ftlu.e 2. Warped Quadrilateral 

The interpretation at thhl a.lgorithm is simple: p and q form one side ot a qua.· 
drilateral, a and b the opposite side; the sides may be noo-parallel and non-coplanar. 
The two inner Lerps find poinh on those side., then the outer Lerp Bnds a. point 
in between. Essentially. 8. simple puabol. dnwD OD a square is subjected to &0 

arbitrary hi-linear warp, which converts it to a cubic. Tra.nsliterated into SJerps, 
Boehm's algorithm gives 8 spherical curve, 

Squad(p, a, b:q; <» = Slerp(Slerp(p, q; <», Slerp(a, b; <»; 2( 1 - <> )<» . 

As with Bezier control points, the quaterniODs a and b control the tangents at the 
end points p and q, but do 80 leu simply. To find out exactly how to control 
the tangents (since we wa.nt to match them a.croll segments), we must differentiate 
Squ ad. I'll discuss that in the next section. 

Where efficiency is concerned, there are two good reUODS to recommend thb ap.
proach. First, only three Sierps are used. No fewer would 8uffice to control both 
end points and tangents independently. Second, two ot the three SJerps have static 
end points, allowing the optimizations mentioned above. In contrast, tbe Shier 
approach involves dynamic end points lor hall 01 its six Slerps. We thus expect a 
naive implementation ot Squad to be twice ~.rast, and a clever implementation even 
laster. Still, there is no denying that forward differencing would be faster yet, it we 
could use it. We caD use it it the points to be interpolated are close enough together; 
an ordinary matrix spline[aj woo't stray too Car Crom tbe unit hypersphere in that 

_ JlI'I _ 



§7 DIF F ERENTIATION (DRAFT) Page 11 

case. To generate close points, evaluate Squad for moderate steps of a . Matrix 
splines need only (our adjacent points, which can easily be computed on demand; 
so th is scheme is simpler thac Duff 's B-spline bisec tionl3j . 

7 . Differentiation 

Now, about those tangents. Few people today realize that Maxwell, in his classic 
Treatise OD Electricity and Magneti!m, used quaterniOD ditrerentialsl7, p. 316); we 
could hardly tollow in finer tootstep' . Differentiating Squad is not intractable, 
however we ought first under8tAnd how to differentiate Slefp. This is best done 
in exponential form. In general, the derivative of a quaterniOD expression is much 
the same as that of a similar real expression; the main difficulty is preserving the 
ord er or multiplication. It is not too hard to .howlS, p. 4531 that the differential 
of qQ, where a is a real expression, is qQln(q)dQ + oqO-ldq. (A gentler guide to 
quatcrnion calculus is 161.) or couroe by Euler', identity, In(q) is just to when q = 
cos 0 + v sin O. Thus we find 80 , the derivative with respect to 0, of Slerp (writing 
Slerp as p(p-lq)"') is 

8", Slerp(p, q; ,,) =p(p-lqt In(p-lq) 

= Slerp(p,q; ,,) In(p-lq) · 

In deriving the ta.ngent of Squad at 0 = 0, intermediate expressionl can often be 
greatly simplified s ince we know producta with 0 will be 0, and exponentials will 
be 1. (The Q = 1 cue il Iymmetrical, and need not be worked out leparately.) 
Also it is helpfut" to use coordinates where p is the identity. Thus, let Q = p-lq, 
A = p- I a , and B = p-I b, so that 

Finally, let C = A-IB, and proceed, evaluating at Q = O. 

- 11/ -



§7 DIFFERENTIATION 

aa Squad(p, a, b, q; a) =p aa Qa(Q-a ACa )2{1-a)a 

=p (aa Qa)(Q-a ACo )2{I-a)a 

+ pQa aa (Q-o ACO)2(1-0 jO 

(DRAFT) 

=p QOln(Q) + pao (Q-O ACO)2{I-OjO 

=pln(Q) 

Page 12 

+ p(Q-O ACO )2{1-o)oln (Q-o ACO) ao 2(1 _ a)a 

+ p 2(1 - a)a(Q-o ACO).(1-0jO-l ao (Q-o ACO) 

=pln(Q) + 2pln(Q-oACQ
) 

=p In(Q) + 2p.1Ji(A) 

=p (In(p-l q) +-2 "In(p-l aJ) 

This final expression has a fairly intuitive meaning using simple ideas from dirrer~ 
ential geometryl13, p. 146J. At every point p of the quaternioD unit hyperspbere, 
there is a 3-D linear space of tangent vectors. The logarithms give tangent space 
vectors (or tbe arcs trom p to q and tram p to aj the weighted Bum gives the desired 
tangent space vectorj and the initial factor positions the space ot that vector at 
the start o( tbe curve, p. Look back at the derivative of Slerp to see how this 
interpretation works in that simpJe case. Here's an illustration 01 a tangent space 
on a sphere in three dimensions, where the apace is just a plane. 

Figure I . Tangent space 

Given a series o( quaternions qn, use of Squad requires filling in values an and bn on 
both sides of the interpolation points, so that each "cubic" segment is traced out by 

-/I' -



§8 ALTERNATIVES (DRAFT) Page 13 

Squad(qn, an, bn+b qn+l; 0),85 Q sweeps from 0 to 1. If we supply a tangent space 
vector tn, we C8D solve (or an, and by symmetry bR • as follows: 

A good value (or tn averages the tangents ot arcs to adjacent points: 

so that the values for an and bn are given by 

8. Alternatives 

For controlling a freely moving object or camera, Squad does very well. However it 
cannot be expected to simulate physical equations of motion nor to cause 8 camera to 
track an interesting object. A. it happen!, given an angular momentum vector w(t), 
the quaterniOD differential equation or motion is linear, Bnd euy to integrateI17]. 
This is one of the reuons quaternionl have been 10 popular ror control or spacecraft. 

Tracking is snother matter altogether. A vector from the eyepoint to the object 
tracked is typically used to specify a direction of gaze. However, as noted earlier, 
orientations are more than directions. In order to completely specify an orientation, 
tbe "roll" degree of freedom must be pinned down. Usually this is done by specifying 
a vector, some non-zero "up" component of which is perpendicular to the direction 
of gaze. There is, however, a fundamental difficulty with this procedure. 

A theorem of differential topology says that it is impossible to construct a smooth 
tangent field on the sphere 8' that does not vanish at some pointlll, p. 301112, p. 

-1/3 -



~10 ACKNOWLEDGEMENTS (DRAFT) Page 14 

3671. Because the "up" vectors must be perpendicular to the gaze, they are taogent 
to the sphere of directions. IC "up'" for a particular direction does not depend on 
the path oC the gaze over time, then the "up" vectors form 8 DOD-zero tangent field, 
which cannot be smooth everywhere. 

Ordinarily the discontinuities are placed at the north and south poles, and experi
enced camera animators try to avoid looking nearly straight up or down. However 
it sometimes proves awkward to automatically avoid the neighborhoods of static 
discontinuities. In this case abrupt rolls mu~t be filtered out. The result will be a 
more gradual roll, which does not preserve "up," For example, when tracking an 
object Oying directly overhead, the orientation snaps abruptly througb 180 degrees 
at the pole. Smoothing the roll spreads this change over time. 

g. Conclusions 

The spherical version or Boehm's quadrangle spline allows interpolation of rotations 
with only three Sierps per point, the minimum possible. I have shown how this 
adaptatioD, Squad, can be accomplished. I also provided a variety or meaDS by 
which the cost of Slerps caD be lowered, as caD the cost of converting quaternioDs to 
matrices, and the cost of multiplying quaternioDs. Duff[aJ has suggested subdividing 
a spherical uniform B-spline until reuonably flat, then using non-Slerp algorithms. 
A similar approach will further speed up Squad. Note that both schemes place 
keys at uniformly spaced times, depending on a monotonic time map for more 
flexible control. When the extra smoothness of second order continuity is less 
important than direct control, use Squad, For spherical interpolation with first 
order continuity, Squad is an efficient algorithm, and about the best that can be 
hoped (or. 

10. Acknowledgements 

Warren Robinett criticized early drafts in detail, (or which I am most grateful. Jules 
Bloomenthal contributed a fresh perspective when my vision bad become stale. 

- /I~-



§II REFERENCES (DRAFT) Page 15 

11. References 

III J. G. Belilante, B. Kolman, and H. A. Smith, "An Introduction to Lie Groups 
and Lie Algebras, with Applications," SlAM Review, 8(1),11-46, January 
)966. 

[2] W. Boehm. "On Cubics: A Survey." Compo Graph. and Imagt Proc., 10,201-
226, )9S2. 

13] T. Duff, "Splines in Animation and Modelling," in Course Notes for "State of 
the Art in Image Synthesi>," SIGGRAPH Conlerence, August )986. 

141 S. A. Gabriel and J. T. Kajiya, "Spline Interpolation in Curved Space/' in 
Course Notes (or "State of the Art in Image Synthesis," SIGGRAPH Confer· 
ence, July 19S5. 

151 Sir W. R. Hamilton, Element. 01 Quaiemion" Volume I, Third Edition, 
Chelsea Publishing Co., New York, 1969. 

[6J Sir W. R. Hamilton, Leciuru on Quaternion., Hodges and Smith, Dublin, 
IS53. 

171 T . L. Hankins, Sir William Rowan Hammon, The Jobns Hopkins University 
Press, 19S0. 

lSI T. D. Howell and Jean-Claude Lafon, "The Complexity 01 the Quaternion 
Product," Cornell Comp. Sci. Dept. Tech. Rep. TR-75-245, June 1975. 

191 P. C. Hugh .. , Spacecraft Attitude Dvnamiel, John Wiley and Sons, Inc., New 
York, 19S6. 

1101 B. P. Ickes, "A New Method lor Performing Digital Control System Attitude 
Computations Using Quaternions/' AlAA Journal, January 1070. 

1111 J. W. Milnor, Topology from the Dil/erentiable Viewpoint, The University 
Press oC Virginia, 1969 

112J J. R. Munkres, Topology: A Fird Cour$e, Prentice--Halllnc., Englewood Cliffs, 
NJ, )975 

-1/5-



§12 APPENDIX ( DRAFT) Page 16 

113] B. O'Neill , Elementary Differential Geometry, Academic Press, New York , 
1966 

114J D. S. Richardson, "Quaternion Algebra tor Three-Dimensional Computer 
Graphics and Modelling,'" AU6ira/ian Compo Sci. Communication., 6(1) ,100-
120, February 1983. 

1151 S. W. Shepperd, "Quaternion from Rotation Matrix," J. Cuid. Conlrol, 
1(3),223--224, 1978. 

116J K. Shoemake, "Animating Rotation with Qua.terniOD Curves," Computer 
Graphic., lU(3),245-254, .SI<:;GRAPH Conference Proceeding>, July 1985. 

[17J J. Stuelpnagel, "On the Pa.rameterization of the Three-Dimensional Rotation 
Group," SIAM R,vi,w, 6(4),422- 430, October 1964. 

12. Appendix 

The following C routines implement essential operations described in the text . I 
have chosen to represent quaterniona as arrays 01 four double's, but a .truct might 
be used instead. My rationale is that no questionable casts are necessary when 
performing vector operations (ror example, dot products), and translation to other 
languages (like FORTRAN) is eaay. On the other hand, it would be convenient to 
have runctions return a quaterniOD value, which is only possible with the .truct 
representation. So it goes . 

• deUae I 0 
'deUae T 1 
.d_lia_ Z 2 
.delia_. a 

'deliae EPSILOI 0 .00001 
'deliae HALFPI 1 . 6107;ea257Q48Q5 

-11(,-



§IZ APPENDIX 

'0 
• qaal: Coapute qaateraiOD product qq = qL • qR. 
• Require. caL aDd qR to ~ di.tiDct ,torasl tro. qq. 

0' 
wold qaul(qL.qR,qq) 
doable qL(.f.] .q8[4) .qq(f]; 

{ 

(DRAFT) 

qq[l] = qL[W]OqR[l] - qL[I]oqR[l] - qL[TloqR[T] - qL [Z]0qR [Z] ; 
qq [X] = qL [I] eqR [J:] .. qL [I] eqR [11 .. qL (T)-qR (Z] - qL [Z] eqa [T) ; 
qq (ll = qL [I]."" [T] .. qL (T] eqR [Il .. qL [Zl-qR [I] - qL [I] +qR [Z] ; 
qq (Z] = qL (I] eqR [Z] .. qL (Zl-qR [I] .. caL [I)-qR [Tl - qL [I] eqR [J] ; 

) 

'0 
• qCDj : CODJuJ&te qa.teratoD . 

0' 
void qenJ (q.qq) 
double q[4l.qq[']; 
{ 

} 

'0 

qq [X] = -q [l] ; 
qq [T] = -q [T] ; 
qq [Z] = -q [Zl; 
qq[l] = q[f]; 

• qillT: Invert quater.loD. Tbat 1., for. it. aaltiplicati •• i.ver, •. 

0' 
void qhv(q.qq) 
double q[41.qq[4) ; 

{ 

} 

double lIorai •• ; 

DorEn = 1.0 I (q[Jl+q(l] .. qeTl-,[T] .. q(2:]+,[Z] .. q[,l.q[t]); 
qq [l] = -q [11 • lIorm ... ; 
qq [T} = -q [T] • Danain: 
qq[Z] = -q[Z] •• orainv; 
qq[l] = qrl] • Doraia. ; 

- 1/7 -

Page 17 



§12 APP E NDIX 

/-
• qaxp : EspODeatiate q •• teraloD .... aa1a, .~.tar part o. 
-/ 

yold qexp(q . qq) 
doable q[41.qq[4]; 

{ 
doabl e th.ta,scal. ; 

theta = aqrtCq[J:]eq(J] .. q[T)eq[T] ... q[2]_q[Z)): 
s c ale = 1 . 0; 
it (t.beta ,. EPSILOI) 

aca1e = eleCtbeta)/theta; 
qq(l] = ec abeq[J); 
qq (Y] = Beal._. [T] ; 
qq [Z] = acal ••• [Z] ; 
qq[I] = coa(tbet.); 

} 

/-
• qlo« : Tat. th. aataral lOlarit~ of al lt qaaterll0 • . 
-/ 

,"oid ql og (q . qq) 
double q (4) , qq[4] ; 

{ 

) 

doable theta,.cal. ; 

s cale = eqrt(q[l]eq[l] ... q[Y]eq[T] .. q[z]eq[Z) j 

t heta = &t .. 2(.c&1. ,q(I]) . 
if' ( I c ab ,. 0 . 0) 

1;<: &1 • • theta/scale ; 
qq(IJ = acale • q[I} ; 
qq[1] = s cale. q[T] ; 
qq (ll 0:: 8 C &1 •• q (Z] ; 
qqCI] = 0 . 0; 

-//1-

(DRAFT) Page 18 



§12 APPENDIX 

/. 
• quatto •• t: CoD.ert quateraiOD to 8x3 rotatioD .. triK. 
• QuaterDioD .eed Dot be .. it "JDitad.. Ih~ it al •• ,. i., 
• thi. routi •• caa be at-plif1ed . . / 

yoid quattoaat(q.aat) 
double q[.]; 
double .at[S] [al: 
{ 

(DRAFT) 

,- For aait q . Jut. .. t • II 2.0; or .. t :u = q[l] .. q[I] . atc. -, 
• = 2 . 0/Cq[X]-q[I] .. q[T]-q[T] .. q[Zleq[Z] .. q[W].q[W]); .. = q[X1 · .; ,. = q[Y] · .; .. = q[ZI · .; 
~ = q[ll • x.; "1 •• [11 · ,.; .. = q[ZI • z.; 

"" = q[X1 • x.; x1 I: q[I) • 7·; U I: q(Z] • z:.; 
71 = qtTl · ,.; rr. I: q[Z] • u; U .. q(Z] • Ea; 

•• t [Xl [Xl = 1.0- <n .. u); 
nt[X) [T] = X7 - wz; 
a.t [Xl {Zl = XI: .. WJ; 
•• t. (Y] [I] = ... , .. we. ; 
.. t [T] [T] = 1.0 - Us .. u): 
aat[T] [Z] = 7" ~; 

eat [Z) (X) = xr. - WJ; 
.. t [Z] [T] = 11: .. n; 
a.t [Z] [Z] .. 1.0 - Us • n): 

} 

Page Ig 



l 

§12 APPENDIX 

lat axt(l] = {T.I.I}; 
/ . 
.. .at-Loqoat : eoDy.rt aza rotatioD aatrix to RDit qaat.raloD . . / 

'foid •• ttoqaat(.st,q) 
doable aato [3] Cal ; 
dOllbl. q[4]; 

{ 
doable tr,.; 
iat i.j.t: 

tr = •• tlI]lI] • ut[T][T]+ at[IlIZ] ; 
it (t.r » 0 .0) { 

• = eqrt(tr • 1 .0); 
q(l] ..... 0 . 6; 

.=0.6/.; 
q[J] = (aatrZ] fT] - aat[T] rll) ... : 
q(T) = < ... t[J)(Z] - utlZl[I]) ... , 
q[l] • (~t[T] [X] - ~t[X] [TJ) • "' 

} DIn { 

l 

i = I; 
it ( •• t[T] [T] ,. _tll] [X]) 

i = T; 
il c..t [l] [l] > ~t [1] [ilJ 

i = Z; 
1 = ute!]; k .. ut[Jl; 
• = .qrt.( c..t11][1] - (~tlll ill_tOt] OtJ» • 1.0 ); 
q(1) = ... 0.6; 
0=0.5/.; 
q[l] = (a.t[t][j] - ~t[j][t]) • "' 
q(j] = Ca.t(jHll + ut(1)(Jl) ... ; 
q[t] = (utlrt] [11 ..... tUl [II» ... ; 

-/20-

(DRAFT) Page 20 



§12 APPENDIX 

,-
• alarp : Spherieal linear iaterpol.tio. of •• it q.ater.l0 •• . 
• h t &0 •• fro. 0 to 1. qt 1M- trOll P to q. -, 

.,oid derp(p.q. t. qt) 
double p[C},q(C]; 
double t.; 
dOQbh qt.[t]; 

( 

} 

double o' .sa. coaoa. alaoa . aelp.aclq: 
b.t. i; 

CO.OII == ,[I)-q[l] • p[T]aq[T) • p[Z)aq[Z] • pl'll~[ll; 

it ( (1.0 • coeca) ~ EPSlLOI ) { 
Ie uul cu. -, 
if ( (1.0 - co.oa) ~ £PllLO. ) { 

,. anal cu. _, 

0'.,_ = &eo.Ceo,o.); 
alDo. = ata(o .. ,.); 
eel, = 81.«1 .0 - t)*oa.,.) I liea.; 
aclq c aI8(t.*oa.,8) I atao.; 

} al .. { 

} 

,. aDd • .,ery clo ••• / 
eel, = 1.0 - t; 
aclq = t ; 

tor U = I ; 1 <= .; 1") 
cat [I] = ael"p[l] • aclq'q[i]; 

} .1 .. { 

} 

/. eDd, Dearlt oppo.it. ./ 
qt. [I] = -p[T]; qt[T]. ,[I]. 
qt[Zl = -,[1] ; qt.[W]. ,[1], 
eel, = ,1.«1.0 - t) • RiLlPI); 
.elq = aiaCt. • RlLFPI); 
for (1 = I: 1 c= Z; tu) 

qt.{t] = ael,.p(U •• dq.qt-CU: 

-JZ I -

(DRAFT) Page 21 



-IZZ -



Dynamics for Everyone 

Jafl~ Wilhelms 
Compuur and Information ScieflC~S 

UnivusityofCalifornia. Santa Cruz 95064 
415-429-2440 

ABSTRACT 

There is a move in computer graphics toward more correctly simulat
ing the world being modeled in hopes of achieving more realistic. and 
interesting still images and animation. An important component of this 
move is use of dynamics, i.e. considering the world as masses acting 
under the influence of forces and torques. Dynamics can be useful in pro
viding inverse kinematics, constraints, collisions, and, in general, help 
produce realistic positions and rates of motion. However, it is computa
tionally expensive, involved to program, and complex to control. 

© 1987 IEEE. Reprinted , witb permission, from IEEE Compuler Gra.phic, and Applications, Vol. 7, No. 

6, Jun e. 1987 



- 2 -

I. What is Dynamics and Wh:lt can it nuy Us? 

Dynamics refers to the description of motion as the relationship between forces and 
torques acting on masses. If we treat the objects modeled in computer graphics as masses 
and apply forces and torques to them, we can use physics to find out the motion these 
masses should undergo. This motion should mimic the motion that would actually occur 
to such masses in the real world, hence dynamics simulates the motion, rather than just 
animating it 

Dynamics is useful for a number of reasons: it can help restrict motion to that which 
is realistic in the world modeled; it can automatically find many kinds of complex motion 
with minimal user input (e.g., motion due to gravity); it can automatically impose many 
kinds of constraints (e.g., preventing intersection of colliding bodies); it can be used to 
move complex bodies in natural way; etc. 

Dynamics is problematic as a technique for motion control in computer animation 
because it is (often) computationally expensive, and because controlling the motion is 
(often) difficult. However, it shows considerable potential for manipulating and animat· 
ing bodies, and merits further investigation. 

This paper attempts to provide enough basic information to let anyone simulate sim· 
pIe objects using dynamics. A caveat: I'm not a physicist and I haven't had everything 
here carefully checked by one. It is a culling of relevant information from lots of dif
ferent sources, which are listed in the references at the back. I would be glad to hear 
about errors and suggested improvements. 

2. How To Do It? 

To use dynamics to find the motion of objects, first we must set up the dynamics 
equations of motion which describe how masses will move under the influence of forces 
and torques. Though there are a number of ways to formulate the equations, they all 
should give the· same solution (they refer to the same world). Second, we must solve the 
equations for acceleration. Third, we must integrate to find the new velocity and posi
tion, given that acceleration. Once we have the new position, we can animate the object. 

There are many books discussing dynamics; unless some specific reference needs to 
be made, most of the physics in this paper relies upon these references.7, 10, 17,19,21 
Robotics books are often useful. 14, 18 The following references pertaining to use of 
dynamics for computer animation may also be useful.l. 2, 3, 22, 23, 24, 25, 26 

We will be assuming a right-handed coordinate system with a right-hand screw rule 
for rotations, and [ am assuming that vectors are premultiplied by matrices to change 
coordinate frames. (This is more in keeping with robotics and physics usage than com
puter graphics.) Note that considerable variation in conventions are found in the litera
ture; keep in mind which frame and which screw rule you are using. 14,18 

Matrices will be in uppercase boldface type (J). vectors in lowercase boldface (f), 
and sca1ars in italic type (m), Subscripts will be used to describe the axis for vectors (ex 

lllis wort was supported by National Science Foundation gram number CCR-8606519 and UCSC 
fellowship 660177-1 9900. 



- 3 -

is the position of the center of mass along the x-axis), and to further describe the value 
when necessary (f gr ... ,i,x is the force of gravity acting on the i -th segment along the x
axis). Superscripts will be used to indicate the frame of reference being used, when 
necessary (c/.x is the above seen in terms of the instantaneous position of the j-th coor
dinate frame). 

Table I. is a handy reference for the meaning of tenns. 

2.1. Particles: Point Masses 

To illustrate the method on a very simple object. consider the motion of a point 
mass (a particle) in three-dimensions. Dynamics can be done in two dimensions and it's 
much easier. but also much less interesting. 

2.1.1. Information Needed 

2.1.1.1. Invariant Information 

The only extra piece of constant information we need to dynamically animate parti
cles is the mass of the particle. (We could also do dynamics on a particle of changing 
mass but it's probable that, for computer graphical purposes, constant mass is a reason
able assumption.) 

2.1.1.2. Variable Information 

Variable data we need for dynamically animating particles includes its present posi
tion p (a 3d vector representing x,y, and I.-coordinates) and its present velocity v (also a 
3d vector representing the present motion of the particle). (Again, other coordinate sys
tems could be used, but the cartesian x,y,z. system seems reasonable.) The fact that we 
need 3 numbers to specify the position implies that the particle has three degrees of free
dom of motion. 

We also need to know the force f (a 3d vector with components pulling along the 
x,y, and z-axis) being applied. If a number of forces are pulling at once, we need only 
add the vectors representing the individual forces to get a net force. 

2_1.2. Equations 

According to Newton's Second Law, the dynamics of a particle can be stated as 

f = m a L 

where f is the force (a 3d vector representing the components of the force along each 
cartesian axis) acting on the particle, m is the mass of the particle, and a is the accelera
tion that the particle will undergo. Typically, force IS In Newtons 
(kilograms -meters Isecond 2), mass IS in kilograms, and acceleration is in 
meters Isecond 2. 

This vector equation really represents three scalar equations, one for each cartesian 
axis. These three equations are 

- /2"-



·4 · 

Ix = m a;c I.. 

[y ~ m Q y I.b 

[, = m a l I.e 

The Second Law Equation is a differential equation, because the- acceleration is a 
function of time. The equation can be also stated 

f ~ 2. 

because the acceleration is really the derivative (rate of change) of the velocity over time. 
(TIle force may also vary with time.) Similarly I it could be stated 

f ~m~ 
dt 

3. 

because the velocity is the derivative of the position over time, and, thus, acceleration is 
the second derivative of the position. 

2.1.3. Solving the Equat ions of Motion 

If the user provides the particle mass and the applied force, it is easy to sec that 
solving these three independent equations will give the acceleration that the particle will 
undergo along each cartesian axis, by dividing by the mass. For example. for x 

Q 
__ Ix 

x m 
4. 

2.1.4. Integrating to Find the New Velocity and Position 

The above equations will give us the acceleration, but not the position. A simple 
method of integrating this equation is referred to as the Euler method. It is a numerical 
(= approximate) solution whose inaccuracy increases as does the acceleration or the time 
steps used. The Euler method assumes we know the present velocity (e.g. at time i) and 
want to find the velocity a bit (51) further on in time; the new velocity will be 

5. 

Again, this is really three separate equations. For example, for x 

5 .• 

-/26-



- 5 -

This gives us an approximation of the new velocity, but only an approximation. See 
Figure I., which represents how the velocity is really changing over time. A point on the 
curve at time Ii represent the velocity at a particular time Ij. The arrow leaving the 
curve at a tangent represents the instantaneous acceleration at that time, found from 
Equation 4. in the previous section. The Euler approximation amounts to moving Ot units 
along the time axis and assumes the new velocity is where the arrow is at time ti + Ot . 
Note this is not on the curve. How far off the curve it is depends on how much the curve 
is bending away from the arrow and how large Sl is. With reasonably small time steps 
we can use this method without too much trouble arising. 

Figure 1. 

Given the new velocity, we can now find the new position by the same method 

Pi+i 6. 

Again, this is really three separate equations. For x, 

< 1 < 2 Pi+l,.x = Pi,.x + vi,.xut + -rQj,.xut 6 .• 

The same inaccuracy problem occurs when finding the new poSItion. There are 
better methods of numerical integration, such as the Runge-Kutta method. 5 

2.1.5. Controlling the Motion 

Controlling particles is pretty simple. The user need only supply an external force 
as one 3d vector, or as a nonnalized (length 1) 3d vector representing the direction of the 
force and a scalar magnitude representing the strength of the force. It might be desirable 
to have gravity act on the particle. The gravitational force r grv is the product of a gravi
tational acceleration (about 9.81 meterslsecond2 on earth, acting toward the earth's 
center) times the particle mass. 

Others forces that might be of interest involve collisions with other objects, and are 
discussed briefly later on. 

-/2~-



- 6 -

2.2. Rigid Bodies: Extended Masses 

Assuming that the objects are extended masses, not point masses, complicates 
things considerably. We assume for now that these extended masses are rigid. and do not 
change shape or mass. 

2.2.1. Information Needed 

2.2.1.1. Invariant Information 

The constant information that we need includes the mass m of the object, the center 
of mass c of the objec.t (the balance point), and a way to describe how the mass is distri
buted about the center of mass. The mass is simple. 

The center of mass is a 3d vector describing a location in space. This could be a 
vector from the origin of the world (inertial) space within which all objects are placed, 
but then we would have to keep changing it as the object moved. It is better to assume 
some locaL coordinate frame fixed to the object and describe the center of mass relative 
to this local frame. As long as we know where the local frame is relative to the world 
frame. it is easy to find the world space center of mass if necessary. Typically such a 
local frame is already used to describe the geometry of objects for graphics. If the center 
of mass is not known, picking a point TOughly at the center of the object generally is 
sufficient. 

Describing the mass distribution can be more complex, particularly if the object is 
not symmetrical. Mass distribution for symmetrical objects requires three moments of 
inertia, one about each axis. 

f(y2 + z2)dm 

ly f(x 2 + z2)dm 

I, = f(x 2 + y2)dm 

7.a 

7.b 

7.c 

i.e., the sum of the masses of each particle making up the object (dm) multiplied by the 
square of its perpendicular distance from the axis. 

For symmetrical bodies there are simple ways of calculating these moments of iner
tia. For example, for a box centered at the origin with width c in x. b in y. and a in z. 
the moments of inertia around the origin are 

Ix *m(a 2 + b 2) 8.a 

I, = *m(a 2 + c 2
) 8.b 

I, = *m(b 2 + c 2) 8.c 

Often this bounding box is a close enough approximation. 

-/28-



- 7 -

If the object is not symmetrical, the three products of inertia must also be found. 
For objects symmetrically arranged around a center of mass, the products of inertia rela· 
live to the center of mass are all zero. The products of inertia are shown below. (Note 
that occasionally products of inertia are predefined as negative quantities, making terms 
involving them change sign in the dynamics equations.)IO 

I", ~ fxy dm 9.a 

Ix. ~ fxz dm 9.b 

I" ~ fyz dm 9.c 

The units for moments and products of inertia in the metric system are 
kilogram-meters2. 

Often the moments and products of inertia are arranged in a 3x3 inerh'al tensor 
matrix for using in the equations of motion 

10. 

Estimating the moments of inertia for simple symmeuicaJ bodies is simple. It is 
also quite straightforward to find the moments and products of inertia about any axes or 
points in space given this information. For example. if you should want these values for 
the axes of a second coordinate system whose major axes are parallel to the local frame 
but displaced by (/ix ,oy ,oz), the new values are 

i'x ~ Ix + m(oy2+oz2) 

i', ~ I, + m(/ix2+ oz 2) 

i', ~ I, + m(/ix2+oy2) 

i'", ~ I", + m ox oy 

I'rz = In + m Ox az 
i'" ~ I" + m oy OZ 

ll.a 

Il.b 

Il.c 

12.a 

12.b 

12.c 

Suppose that the new frame isn't parallel to the old. Note that this case may avoid
able in your simulations. however, it is worth examining. Equations 11. and 12. take us 
to a new frame /' whose origin is the same as the desired rotated frame f" . Now we 
need to find the values for the rotated frame. To do this we need to find the direction 
cosines describing how the new x-axis is related to the old x-axis (aoo.a IO,G20). the new 
y-axis to the old y-axis (G01.a 1l.G21). and the new z-axis to the old z-axis (G02.G 12.G22). 
21, IS 

-IZ~-



- 8 -

We can think of the 3x3 rotation matrix representing the orientation of a frame as 3 
direction cosine (column) vectors defining the axis of the frame. Column 0 represents 
the new x-axis, column 1 the new y-axis, and column 2 the new z-axis. To convince 
yourself of this relationship, try transforming the original axiS vectors 
« 1,0,0),(0, 1,0),(0,0,1)) by the rotation matrix. 

13. 

Now, the new moments and products of inertia (Ix". etc.) given those found above 
in a frame parallel to that centered on the center of gravity (lx' • etc.) are 

I"x = I'xaoo +rya~ +/'za&l - 2l.ryQooa Ol - 21xz GocIJrn - 2lyzaola02 14.a 

I"y = J'xa fo +l'yQr, +I'zab: - 2I.xyall:)I111- 2I,nGI OO I2-21pallQ12 14.b 

1", =I'xato +l'yQtt +I'zab, - 21;ryG2oa21-2Ixza2otZ22 - 2Iyz a21 a22 14.c 

Similarly. the products of inertia are 

I"xy = (aooall+aorGIO)/'ry + (aooa12+ a02Q 20)J'n +(aO\aI2+ao2all)/'yz 15 .a 

-(aooolO/'x +aolall/'y +a 02a12/'z) 

I"xz = (aOOO21 +aOla2o)/'xy + (a 00022 + amaiO)/'xz + (aOlall+ a21am)/'yz lS.b 

- (aCJO'l2ol'x +aOla21/'y + a02a ll/'z) 

I"yz = (alOO21+alla20)/'xy +(aIOOll+a20012)/'xz + (alla22 + alz021)/'yZ lS.c 

- (a 1oo2ol'x + a lla 21/'y + a 12a22/'z) 

This may seem like a drastic amount of trouble, but actually it can be programmed 
as subroutines and made invisible to the user. In fact, approx imate quantities can be 
found by merely providing a boundary box around the center of mass and assuming some 
default density to the material (e.g. 1 kilogram Imeter3). The dimensions of the boun
dary box (a ,b ,c) can be used to fi nd the volume (a xb xc meters 3). Multiplying the den
sity by the volume gives the mass. The center of mass can be assumed to be the center of 
the bounding box. The moments of inertia around the center of mass can be found from 
Equation 8. above; the products of inertia will be zero. If the frame not at the center of 
mass but translated away from it, Equations 11. and 12. can be used to find the moments 
and products of inertia relative to this new frame. If the frame is rotated, Equations 13. 
and_14. can be used to find the new moments and products of inertia. 

-/30-



- 9 -

2.2.1.2. Variable Information 

Rigid bodies have six degrees of freedom. Three are the translational degrees of 
freedom as with point masses. Three are rotational degrees of freedom describing how 
the body is oriented toward some frame of reference. Assuming a local coordinate frame 
fixed to the object, lh~ translational degrees of freedom may represent displacement rela
tive to a fixed inertial world frame axes, or along the present local frame axes (or any 
other axes). Similarly. the orientation degrees of freedom may refer to rotation about the 
world space axes, or about the present local frame axes. 

We assume the order of rotations will be fixed as x-rotation, then y-rotation. then z
rotation. This means rotations are Euler. Euler rotations can come in various orders, here 
we follow the order x, then y, then z, so that the x-rotation is relative to the original x
axis, the y-rotation is about the y-axis created by the x-rotation, and the z-rotation is 
about the z-axis created by the fonner two rotations. Amazingly enough, this can also be 
thought of as a z-rotation, then a y-rolation, then an x-rotation around the original frame. 
It is often sensible to assume the local z-axis represents the longitudinal axis of the body, 
when there is an obvious longitudinal axis. 

The other variant infonnation involves the forces f and torques t that cause motion 
to occur. If a number of forces are acting on the body. their total translational effect can 
be found by merely summing them. The center of mass of the body win move trans la
tionally as if it were a particle mass influenced by one net force. 

A torque is similar to a force, except that it causes a rotational motion about a par
ticular axis. Torques can be represented as 3d vectors describing their components about 
an x, y, and z-axis. Torque vectors' net action can be found by summing them. 

If all forces are applied. at the center of mass, they produce no torque; however, a 
force acting at a point on the body other than the center of mass will also cause a torque. 
To find a torque about a coordinate frame's axes due to a force f (/x/y/z) applied at 
point p (x ,Y ,z) (both defined. relative to this frame), use this equation. 

or, using components 

tx 

'y 
t, 

t = p x r 

= f, y - fyz 

= Ix z - f,x 

= fy x - fxY 

16. 

16 .• 

16.b 

16.c 

Often we want motion of the rigid body in tenns of its body-fixed. frame, and the 
point of application of the force is in tenns of this frame, but the external force is more 
naturally given in tenns of the world inertial frame. An external force (or any other 
quantity) defined in the inertial frame can be converted into the local frame by multiply
ing it by the matrix defining how the world frame is oriented as seen from the local 
frame. This matrix is the inverse (= transpose) of the matrix defining how the local 
frame is defined relative to the world frame. 

-131 -



· 10· 

If multiple forces and torques are ac ting upon a body. these six important net values 
(3 force, 3 torque) can be easily found (for motion relative to the local frame) by sum
ming the forces (in local terms) to find the net r. finding the torques caused by these 
forces using Equation 15., and summing these torques with any active pure torques to 
~ : . h.l ~nC. net torque ~t). This elfectively removes the torque component from the forces. 
After this is done, the ne t force effectively is applied to the origin of the local frame. The 
local frame need not be at the center of mass for this to be true. 

2.2.2. Equations 
With rigid bodies, dynamics becomes somewhat Jess trivial. There are a number of 

fonnutations, and here a brief description of the Euler method is presented. The Euler 
method is, perhaps, one of the more intuitive formulations. The Armstrong method for 
articulated body dynamics presented in the next section can, of course, also be used for a 
single non-articulated body. 

The Euler method creates six equations: three are the translational equations of 
motion relating the linear acceleration and mass to the force, and three are the'rotational 
equations of motion relating the angular acceleration and mass distribution to the torque. 
Al together, they specify the behavior of the six degrees of freedom of a free rigid body. 
Much of thi s discussion comes from Wells.21 

The 3d vector version of the translational equations describing the motion of the 
center of mass is fantiliar, e.g. 

f rna 17. 

or, as 3 scalar equations, 

Ix = max ; Iy = may ; I, = ma, 17.a,b,c 

where f is the net force and a is the linear acceleration of the center of mass relative to 
inertial space. This is because the center of mass acts as if the whole body mass were 
located there and all forces are acting at that point. The effect of these forces on rotation 
comes out in the rotational equations. 

The force and linear acceleration could be expressed relative to any axes, e.g. the 
instantaneous local axis fixed to the body, by taking the proper components. However, 
they must both be expressed relative to the same frame. This is an important point, if the 
user inputs the force f W relative to the inertial world coordinate frame and wants the 
linear acceleration a I in terms of the local frame, direction cosines (= rotation matrices) 
can be used to find the components of the worJdspace force relative to the local frame. 
Another way of looking at this is to take the dot product of the force vector (f x.J y J ,) 
with each axis vector (e.g., for the x-axis, (aoo.a lO,Q20». The force component along the 
local x-axis would be 

18. 



- II -

The rOlational equations for motion about (he center of mass are also quite simple, 
assuming the products of inertia are zero and that eirher the local frame is at the center of 
mass or the origin of the local frame is fixed in world space . In this case, 

<. = !:tCJlx + (I, - I, )Wy 00, 19 .• 

<, = lyWy +(/x -lz)oox(J)z 19.b 

<, = 11CJ.), + (/y -Ix)w.xwy 19.c 

where all values are assumed relative to the local body-fixed frame. CJ) is the angular 
velocity of th~ local frame relative to the inertial frame but expressed in terms of 19Cal 
frame axes. w is the angular acceleration. CJ.) is typically in radians Isecond and ro in 
radians Isecond2. 't is the torque acting on the body. 

Should you not be so lucky, the more general form of the equations is below. All 
values are relative to a single coordinate frame, which may be an inertial frame, but is 
(for our case) probably the instantaneous position and orientation of a body-fixed local 
coordinate frame. c refers to the location of the center of mass relative to this frame. a 
refers to linear acceleration of the origin of this frame. All other values are in terms of 
this frame as well. 

. . 
I~ = m (a~ -c~(w;+Wt)+c)'(ffiyw~ -wz)+c,(w~ooz +ffiy» 20.a 

I), = mea)' +c~(W~ffiy + Wz)-c),(wl+Wt) + cz(w),wz -w~» 20.b 

Iz = meal +Ca.(i)z -~)+c)'(W)'(i)z +ro~)-cz«(i)l+(i);» 20.c 

t~ = m(alc)' -a)'cz)+/~w~ + (lz-i),)ffiyWz + 21.a 

l:cy(wxwz -~) -Ix: (Wxffiy + cOz ) + I)': (001- ooi) 

t)' = m(axcz -a:cx)+/),w), + (lx-iz)Wx(i)z + 2l.b 

I" (roy ro, - 00,) - (., (roy ro, + w.) + In (ro} - rol) 

t z = m(a)'c~ -axc),) + lzooz +(I)'-i~)wxOly + 2l.c 

In (royro, - 00,) -I" (ro.ro, + w.,) + I", (ro} - roll 

2.2.3. Solving the Equations 
Again, the Euler method of numerical integration is often adequate to solve the 

equations. Note the equations are simple to solve in the direct direction, given accelera
tions find the forces and torques; however, we want to find linear and angular accelera
tions given forces and torques. We assume we know the present positiOfl 3J)d v~locity 
values. Thus we have (at worst) six equations in six unknowns (ax ,a,,az, COx ,ffiy, roz)· 

-/3.3-



- 12 -

2.2.4. Controlling the Motion 

Rigid bodies can be controlled by a combination of applied torques and applied 
forces. Appljed torques cause a rotational motion about the axes they refer to (e.g. the 
body-fixed local frame) and require a 3d vector. Applied forces involve a 3d force vector 
(as with point masses) and also a 3d locauon .. cctor ocscnoing where: the force IS being 
applied. Typically the location vector will be specified in the local frame. 

Net force is found by summing force vectors irrespective of point of application. 
Net torque is found by taking the torque caused by these forces (using Equation 15.) as 
well as any pure torques and summing these. These six values are used in the six equa
tions of motion. 

3. Articulated Bodies 
Articulated bodies can be thought of as rigid segments connected together by joints 

capable of less than 6 degrees of freedom. There are numerous formulations of the 
dynamics equations for rigid bodies, but again, they all come down to the same thing. 
Some possible choices are the Euler equations,21 the Gibbs-AppeU formulation,l2, 17,15 

the Armstrong recursive formulation, 1, 3 and the Featherstone recursive fonnulation. 6 

The Euler method doesn't deal terribly nicely with constraints at joints. The Gibbs
Appell equations, described in appalling detail elsewhere,25 have been used for graphical 
simulation but in a non-recursive fonn that is 0 (n 4) in complexity. This is computation
ally untenable, but if a recursive formulation could be found it still might be a reasonable 
method, as it allows considerable flexibility in designing joints. (You can design bodies 
that aren't a hierarchical tree structure alone.) The Featherstone method is recursive and 
linear in the number of joints, and is flexible in the types of joints, so it might be worth 
looking into. 

The Armstrong method is recursive and linear in the number of joints and will be 
described in some detail here. It has the slight disadvantage that it can only accommo
date bodies with freedom of movement relative to the world (6 degrees of freedom from 
the body tree root and the world) and three rotary degrees of freedom at each joint. Also 
bodies must be representable as tree structures. This is fine for most animalistic figures, 
and further constraints can be applied on top of the basic dynamics using external forces 
or other more devious methods. The Armstrong method has been used in graphics 
modeling and I am using it at present, using a modified version of code originally pro
vided by Bill Annstrong and Mark Green at the University of Alberta. 

The Armstrong method can be thought of as an extension of the Euler equations 
with multiple segments (connected rigid bodies). Again, there are at most six equations 
for each joint (one for each degree of freedom of motion). The real difference comes in 
the components of the torques and forces. We must consider not only applied forces and 
torques on the segmen~ but forces perculating down onto the segment from the children 
segments, and reaction forces at the joint between the segment and its parent The follow
ing equations are described in detail in Armstrong and Greens 1985 paper.3 They are 
repeated here in slightly different terms to show their equivalence to the Euler fonnula
tions above. 



{ 

- 13 -

3.1. Information 

The same information is needed for articulated bodies made of rigid segments as for 
non-articulated rigid bodies, plus a tree describing how the segments are connected 
together. Each segment can have at most one parent and zero or more chi ldren. For con
venience, the local frame should originate at the proximal (nearer to the root) joint of a 
segment and the longitudinal axis of the segment should be the local z-axis. If this con
vention is followed, the third Euler rotation at a joint will always cause a longitudinal 
rotation. 

If simulating people and other animals, biology and biomechanics books are useful 
sources of infonnation on the nature of organic tissue, dimensions, etc. NASA's book on 
anthropometry is also a handy reference. 16 

3.2. Armstrong Equations 

Again we have six equations, shown below as two vector equations identical to the 
Euler equations given above. Everything is expressed in terms of the instantaneous loca
tion and orientation of the frame of the i -th segment. 

-fj = mj3j -mjcj x oo;+m;CJl; x(CJlj XCj) 22. 

-
'ti = J i Wi + mi C i x 3 i + 00; x J j OOj 23. 

In Equation 22., the first term on the right comes from the linear acceleration of 
frame i , the second from the angular acceleration of frame i , and the third tenn from the 
centrifugal force due to rotation of the frame. In Equation 23., the first term on the right 
is the rate of change of the angular momentum, the second is due to the acceleration of 
the frame. and the third is due to the rotation of the frame. 

If the body is articulated, we must also consider the influence of neighboring seg
ments; in any case we may want to consider external applied forces separate from gravity 
(pushes and pulls). We can break the force up further into 

f; =mi3grv,i + f al, j + Lf SOI'l,i - f lopeJr ,i 24. 

All these are expressed in terms of the i -th local frame. m a grv ,j (= f grv ,il is the force 
due to gravity acting on the mass of segment j. f a t ,j is the net external force acting on 
frame i. f son i is the net force due to each son of segment i acting on segment i through 
the joint joini~g them. f topar Ii is the net force that segment j is applying to its parent. 
This force is applied by the parent back onto the son to keep the two from separating (as 
described in Newton's Third Law), so it is negative in this equation. 

We can also break the torques acting on segment i into components 

'\:j = mjC i X a grv,j + 'tar ,i + l:('tsOfI,i + I son x f son) - 'ttopar ,i 25. 

-/35-



- 14 -

The first tenn on the right, mj C j x a grv ,j (= tgrv,i ), describes the effect of gravity acting 
on the center of mass of the segment and causing a torque at the proximal joint. text ,j is 
the net external torque applied to the segment i. '[son,i is the torque that a son of segment 
i is applying to segment i at the joint between them. I son x f son is the torque due to the 
force a son segment is applying onto segment i. lso/l is a vector from the origin of seg
ment i to the joint between segment i and its son son in tenns of frame i. 't,opar ,j is the 
torque that segment" is applying to its parent segment. Forces acting directly on seg
ment i are assumed to have been analyzed to find their torque component acting on seg
ment i and this added to the applied external torques 'tj. 

Finally. one more vector equation is needed that relates the acceleration of the 
parent and son segments. The right side describes the acceleration of the son's proximal 
hinge due to the the acceleration, angular acceleration, and centrifugal acceleration of the 
parent i . All are in terms of the axes of frame i . 

26. 

One thing to keep in mind is that though the motion is being described in terms of 
the axes of frame j, the motion is relative to inertial space, not the the parent. That is, we 
are not talking about the velocity relative to the parent, which may also be moving on its 
own. We are talking about an inertial motion that includes the motion of the segment 
about its joint to the parent plus any motion that parent may be involved in relative to the 
world. 

3.3. Solving the Equations Recursively 

Because we limit the body to a tree structure, effects of other segments on a particu
lar segment is limited to effects of sons and parent on this segment. This makes it possi
ble to solve the equations recursively. First we must recognize the linear relationship 
between angular and linear acceleration, and between linear acceleration and the reactive 
force on the parent. K and M are r~cursive coefficient matrices which relate linear 
acceleration to angular acceleration (00) and to reactive force on the parent «( lopar), 

respectively. d includes other constituents of the angular acceleration and (' includes 
other constituents of the force on the parent. For each segment i • 

ooj = K j 3j +dj 

(wpar,j = Mj3j+('j 

27. 

28. 

Note that the reactive force ( lopar ,j acting on the parent j of segment i is one of the 
r sonJ forces seen from this parent (see Equation 24.). By some deft maneuvering 
described in more detail in Azmstrong and Green's 1985 paper, the dynamics equations 
can be restated using this relationship. The four recursive coefficients for each segment 
can be found in an inward pass from the leaves of the body tree to the root. Then this 
infonnation can be used to find the accelerations of each segment from the root back to 

-136-



· 15 . 

the leaves. The root segment has no parent, so it has no reactive force on a parent and 
Equation 28, can be solved for the root's linear acceleration. This can be used in Equa
tion 27. to find the angular acceleration of the root This process is repeated outward 
using the relationship in Equation 26. to find the linear acceleration of the son links and 
using this to find their angular acceleration. 

The actual steps are shown below.3 Note that R lopar signifies a 3x3 rotation matrix 
that takes vectors in a local frame into its parent frame, and Rfrompar signifies a 3x3 rota
tion matrix that takes vectors in a parent frame into a son frame, and that these two are 
transposes of each other. R toworld signifies a 3x3 rotation matrix that takes vectors in a 
local frame into the world frame, and RfrornWOf"ld' signifies a 3x3 rotation matrix that takes 
vectors from the world frame into a local frame, and these two are also transJX>ses of 
each other. 

It is useful to compute the cross·product operation using a tilde matrix. The tilde 
matrix for a vector a is a 3x3 matrix that when premultiplied to a vector b gives the same 
result as the cross·prcxluct a xb . It looks like this 

29. 

Inward Pass. The inward pass computes the 4 recursive coefficients and some other use· 
ful quantities that are used often. (I have slightly simplified this step. Readers are invited 
to find more quantities to efficiently precompute.) This step can be divided into two 
passes: one (the slowband) need only be done occasionally; the other (the fastbaruf) 
needs to be done each time through the dynamics loop. Remember subscripts indicate 
which segment the value refers to, and superscripts indicate which frame the value is in 
tenns of (unless it's in frame i). The equations are repeated for each segment. Summa
tions are over all sons of segment j . 

The slow band calculations for a segment i are these: 

3 c •wn = Wi X (Wj x1son) 30. 

Qson R tODarM SOf'IR f rf!"IPaT son son ~on 31. 

'-.JOt!; Q son 32. 

33. 

34. 

- 137-



· 16 . 

35. 

Along the way, we can accumulate some torque and force information for each seg
m~nt. 'toJHUI accumulates torques. 3nd f 0 accumulates for~es. Note I'm a ssumi ii~ that 
externaJ torques ('tal' ,i) are being defined in terms of the local frame (and include torques 
due to external forces), but external forces (0:1 ,j) are in terms of the world space frame. 

f ~; = - (0' X (00- x(m·c-»+Rfromworld(r world+ m _a wor1d\ v.. I I J I al,1 I grY,r-) 

36. 

37. 

The fOUowing equations are the fastband . and should be done each time through the 
dynamics loop loop. 

38. 

39. 

Outward Pass: This completes the world traversing the tree inward. Now we traverse the 
tree outward, again the work can be divided into a slow and Jastband depending on 
whether the information should be updated each time. (Typically J don't differentiate the 
two.) First the important accelerations of the root segment, the only one capable of 
translating freely . 

41. 

Olroot = K rOOI a rOOI + d rOOl 42. 

For the rest of the segments on the way out to the leaves 

43. 

44. 

-1311-



- 17 -

f topcu,i = Miaj + f'j 45. 

if needed to check the solution. 

Integration: Now we can integrate to find the new positions and velocities. This again 
consists of a step that needs to be done each time period, and a step that can possibly be 
done less often. 

This step is done each time period. OU signifies an angular change vector accumu
lating orientation changes. Remember that while these values are defined in tenns of the 
local frame orientation, they are inertial, including motion not only at the joint to the 
parent but all motion of all ancestors back to the world. For each segment, 

O,)~ = mold + oe 00 46. 

47. 

For the root segment, we are also interested in its linear motion. The linear motion 
of the other segments (here relative to the worldspace frame orientation) can be calcu
lated from their angular motion. 

V world - v ;mrld + 01 R loworld a new 

p J:i3r1d + et v MW 

48. 

49. 

Finally, we can update the rotation matrices at the slowband rate from distal to 
proximal (leaves to root). (Reset eu to zero after this operation.) 

R ~~ = R ~\'K"'(I + 8u ) 

This matrix should be orthonormalized to reduce error accumulation.8 

Finally. each R IOpar and its inverse can be calculated 

50. 

51. 

Armstrong and Green3 suggest that the numerical instability that sometimes accu
mulates and causes bodies to flail about can be reduced by reducing the time step 5t or 
by increasing artificially the moments of inertia about longitudinal axes. This latter 
method may produce some anomalous behavior, however, in my experience. 

-139-



- 18 -

3.3.1. Conlrollssucs 

It is nor tenibly difficult to write subroutines to do the dynamics explained above 
(or to borrow the code from a friendly spirit who has done it before you). The open ques
tions involve how to use this dynamic ability to get desirable motion and simulate con
straints nicely. ~ome hints to solving these problems are presented in this section, but a 
great deal of work remains to be done before we can watch simulated animals moving 
realistically about on OUT computer screens under total dynamic control. 

Clearly. the way to control the motion is to supply forces and torques that cause or 
restrict motion, either directly or through sophisticated preprocessorn. Control could also 
be supplied in the fot;m of extra constraint equations that limit the degrees of freedom 
involved. This method will not be discussed here. 

3.4. Automatically Obvious: Gravity 
The effect of gravity is easily calculated given the gravitational acceleration (about 

9.81mlsec 2 on the earth's surface). Assuming the y-axis points away from the center of 
the earth, the force acting on the center of mass of each rigid body is 

f gN = (O.-9.81 . 0)m 28. 

The torque due to this force acting in Lhe body fixed coordinate frame is 

'tgf" = c x f gtv 29. 

3.5. External Dynamic Control 

The user can shove the body about by applying forces and torques directly. 

3.5.1. Exlernal Appl ied Torques 
You can apply a pure external torque to cause rotation of the body about an axis by 

giving a 3d torque vector which is added to the net torque vector t used in the dynamics 
equations for rotation. 

3.5.2. Exlernal Applied Forces 
Forces require both a 3d vector for the force itself and a 3d vector for its point of 

application. If is often most convenient to specify the force in tenns of worldspace coor
dinates (converting it to the coordinates of the local frame of the segment upon which it 
is acting before doing the dynamics equations). The force itself is added to the net force 
used in the translational equations of motion r. 

The position of the force is essential because the force may also cause a torque, 
depending upon where it is applied. It is usuaUy most convenient to specify the torque in 
tenns of the local coordinate frame, e.g., pick a local point of application p. The torque 
due to the force is found by Equation 16. 

-I~O-



- 19-

3.6. Internal Control 

Internal control is mostly relevant to moving an articulated body in the way robots 
and animals move themselves, by applying torques and forces between neighboring seg
ments. As the dynamics formulation described for articulated bodies only accommodates 
rotary joints. only internal torques, not forces will be mentioned. 

3.6.1. Internal Torques 

If you would like the torque to be internal, e.g., simulating a muscle that acts upon 
two neighboring segments in an equal and opposite fashion, this torque should contribute 
to the net torque on Qne segment and its negative should contribute to the net torque on 
its neighbor. 

Internal torques are also useful for simulating joint limits, e.g., to keep the ann from 
bending backwards at the elbow. Rotary spring and damper combinations or exponential 
torques can be used to simulate them. 

3.6.2. Positional Suggestions 

Moving bodies about by suggesting forces and torques is less than intuitive. We 
usually think about motion kinematically, as changes in position. It is still possible to 
take advantage of dynamics but have the user think in positional tenns by providing a 
(more or less) intelligent preprocessing step that converts positional suggestions to forces 
and torques that will accomplish them. 

3.6.3. Internal Positional Control 
The user could suggest local positional changes at joints, e.g., rotate the elbow from 

45 degrees to 60 degrees in 10 seconds. The system could take into account the mass of 
the segments moving and their present velocity and guess how much internal torque will 
do this. Using super- or adaptive sampling or feedback, reasonable torques can be found 
to accomplish the desired motion. Before you ask why use dynamics at all, consider that 
only a few joints of the body need be under positional control at any time. The rest may 
be left in a simple state that is automatically dealt with, e.g., relaxed and hanging loosely, 
or frozen into a local configuration. 

3.6.4. External Positional Control: Goals 
It is ' sometimes handy to pick a point on a body and then a point in worldspace 

where you would like that point to be (a goal). In this case, you can apply a force start
ing at the desired body point and directed toward the goal. Finding the amount of force 
to pull the body to the goal at a reasonable speed without overshooting it or oscillating is 
sometimes tricky. 

3.7. Environment Interactions 
It would be nice if bodies could react automatically and realistically to their 

environment as well. This will add to the cost of the system, because considerable colli
sion detection may have to be done. A simple brute force method of finding collisions is 
to check for the intersection of all the bounding vertices of an object with the bounding 

- 1~1-



·20· 

planes of all olher objects. 

3.7.1. Floors 

Floors can be simulated with reasonable success by modeling them as a combina
lion of a spring and a damper. A spring supplies a force dependent upon the amount ilS 
compressed, Oc. limes a constant k. 

30. 

Similarly. a damper sllpplies a force dependent upon its velocity times a constant 

For complex articulated bodies, it may be weU not to use a constant constant for 
these equations, but find some way of automatically calculating a reasonable propor
tionality constant for the body considering its total motion. 

3.7.2. Other Collisions 

Collisions with other objects is not fundamentally different, though their shapes 
may be different and they may be expected to move in response as well . In this case, the 
collision should be recognized and the collisions forces found before dynamics is done 
on the individual objects to find their motion in response to the collisions. For simple 
bodies, one might prefer to calculate the effects of collisions directly, rather than simulat
ing them with springs and dampers. 

4. Numerical Issues 
Dynamics is alol more expensive than kinematics, but not unreasonably so, given 

the rapidly decreasing cost of compute power. I imagine we could be doing this on 
modem personal computers without too much trouble; at least, if I had a modem personal 
computer, I'd try it. The bells and whistles are costly, e.g. collision detection, joint limits, 
internal preprocessed control, etc. Lots of work remains to be done on this. Use of 
recursive dynamic fOIlTlulations is a real boon. More sophisticated numerical integration 
methods can also help, Runge-Kutte integration is somewhat more complex to program 
and takes longer per time step but you can use much larger time steps than with the Euler 
method and gel more accurate results. Adaptive calculations can also help, e.g. use large 
lime steps when the body is falling freely but very small ones when it hits the floor. A 
clever adaptive idea (thanks to Ralph Abraham, UCSC) is to do a 5th order and a 4th 
order Runge-Kulte integration and if they deviate more than some allowed amount, redo 
it with a smalJer time step. 

5. Who is Doing It? 
This is by no means a complete list, but the people and places that J have heard are 

doing this sort of thing include: me (at UC Santa Cruz), Dave Forsey (at the University of 
WaterJoo),24 Bill Annstrong and Mark Green (at the University of Alberta), 1,3,2 Michael 
Girard and A. Maciejewski9 (at the Ohio State University). Work being presented at 
SIGGRAPH '87 relating to this topic includes that of Haumann at Ohio State" AI Barr 

-1~2.-



- 2 1 -

and others (CalTech and elsewhere),4 and Terzopoulos el a1,20 Isaacs and Cohen 13 and 
Wilkin et al.27 

G. Summary 

This paper is a summary of the knowledge of dynamics that I've found useful for 
simulating the motion of bodies for computer animation. It's been an interesting and 
enjoyable way of creating animation, and seems to have a future. ] hope you have fun 
with it and tell me if you have any problems or come up with any new solutions. Good 
luck! 

-1~3-



- 22 -

Table 1. Meaning of Terms 
Matrices 

J = inertial tensor matrix. 
R topar = rotation matrix segment to parent 
Rfrompar = rotation matrix parent to segment 
R toworld = rotation matrix segment to world 
R!romworld = rotation matrix world to segment 
0 = rotation matrix seen as direction cosines 
I = identity matrix 
K = recursive coefficient matrix 
M - recursive coefficient matrix 

3d Vectors 
f =/orce 
f g'v = force due to gravity 

f= = external applied force 

f son = force applied by child of a segment thru a joint 

f topar = f orce applied onto parent of a segment rhru a join! , = torque 
'tgrv = torque due to gravity 

'w = external applied torque 

'ron = torque applied by child of a segment thru a joint 

't/opar = tOrque applied onto parent of a segment thru a joint 
p = position 
v = linear velocity 
a = linear acceleration 

ag~ = gravitational acceleration 
Bu = angular position 

'" = angular velocity 

'" = angular acceleration 
I = vector to joint of son segment from parent frame 
C = vector to segment center of mass defined in segment frame 
d = recursive coefficient 
f' = recursive coefficient 

Scalars 
m = mass 
Bt = rime step between samples 
I, J, J, = moments of inertia 

I'll",J" = products of inertia 

-I~~-



- 23 -

Appendix I. Runge-Kutta Methods 

by MaClhew Moore 
UCSC Santa Cruz 

The Euler method of numerical integration is not very accurate; the Runge-Kutta 
methods are superior and worth the slight effort of writing more complex code. The 
Runge-Kutta methods have been described as the workhorses for solving differen
tial equations. Several other methods are available, such as the predictor-corrector 
family. which provide incremental speed advantages over Runge-Kutta and which 
are less sensitive to stiffness in the equations. 

As an example, here is a 4-th order Runge-Kutta method for producing a numerical 
solution to the 2'nd order ordinary differential equation 

d2P _F(P ,r) 
(ii'r- m 

which defines the motion of a point mass under an applied force. First decompose 
into two l'st order ODEs. 

dV_ 
Tt-F(P ,r) 

dP _y 
Tt-

Now step through the time interval of interest generating a sequence of positions for 
the point. The step size is h. This set of equations generates the n+ l' SI position and 
velocity vectors. given the n'th. 

KV2 
Kp1=h(Y'+-r-) 

F(p.+~,r+4) 
K"3=h m 

Kpeh (V. +Kv 1) 

K _hF (P.+Kp1,r+h) 
"4- m 

KP1+2KP2+2Kp1+Kp, 
Pn+l=Pn+ 6 

-IY5-



· 24· 

This is already a system of 6 [list order ODEs. The extension of this algorithm to 
larger numbers of point masses is straightforward. 

Adaptive Stepsize Control 

In solving differential equations, a phenomenon called stiffness is often encoun
tered. Stiffness causes numerical instability if the integration step size is too large. 
Choosing a step .size which will cope with the maximum stiffness which could ever 
be encountered would unjustly penalize the algorithm during more normal cases. It 
is best to include a facility to adaptively determine the step size that is appropriate 
as the dynamics algorithm runs. 

For example, the adaptive stepsize algorithm could work by solving the dynamics 
problem twice in each time step, using both a 4' th order Runge-Kulta and a 5'th 
order Runge-Kuua for this. [f the two solutions are not within a given tolerance of 
each other at every point in the model, the algorithm would backtrack to the begin
ning of the time step and halve step size. If the two algorithms agree with each other 
to within a second, much smaller, tolerance at every point, then the step size can be 
doubled for the next step. This requires over twice as much work as a single 4'th 
order Runge-Kutla solution for each step, but the investment is handsomely repaid 
when the algorithm takes large steps through non-stiff situations. 

Intuitively, stiffness arises in a system with an equilibrium configuration, and a res
toring force which pushes the system back towards that configuration whenever the 
system moves away from it. An example of this would be a feedback controller 
which exerts a torque on a joint with the intention of maintaining some given joint 
angle. In numerical integration with a finite step size, it is possible for the step to be 
too large, so that the system is taken from near the equilibrium to some other 
configuration on the "other side" of the equilibrium and farther away. Thus the 
integration "overshoots" the equilibrium configuration. The next step will see the 
restoring force even stronger, and will overshoot even more. The system may then 
oscillate farther and farther away from the equilibrium configuration without bound, 
until completely ridiculous values are produced. The solution is to reduce the step 
size until overshoot does not occur. As the restoring force becomes stronger, 
overshooting becomes easier, and so the step size must be reduced even further. 

-'''6-



- 25 -

References 

1. William W. Annstrong, "Recursive Solution to the Equations of Motion of an N
link Manipulator," Proceedings Fifth World Congress on the Theory of Machines 
and Mechanisms, pp. 1343- 1346, Am. Soc. of Mech_ Eng., 1979. 

2. William W. Annstrong, Mark Green, and R. Lake, Proceedings o/Graphics Inter
Jace86,pp.147-15I,May,1986. 

3. William W. Armstrong and Mark W. Green, "The Dynamics of Articulated Rigid 
Bodies for Purposes of Animation," Proceedings of Graphics Interface '85, pp. 
407-415, Computer Graphics Society, May, 1985. 

4. Alan H. Barr, "Dynamic Constraints," SIGGRAPH '87 Tutorial Notes: Topics in 
Physically-Based Modeling, 1987. 

5. S. Conte and C. de Boor, in Elementary Numerical Analysis. 3rd edition, McGraw
Hill Book Company, New York, 1980. 

6. R. Featherstone, "The Calculation of Robot Dynamics Using Articulated-Booy 
Inertias," International.1ournal of Robotics Research, vol. 2, no. I, pp. 13-30, 
Spring, 1983. 

7. Richard P. Feynman, Robert B. Leighton, and Mauhew Sands, in The Feynman Lec
tures on Physics, California Institute of Technology, Pasadena, California, 1963 . 

8. Daniel T. Finkbeiner, II , Introduction to Marrices and Linear Transformations, p. 
174, W. H. Freeman and Company, San Francisco, CA, 1960. matrices 

9. Michael Girard and Antony A. Maciejewski, "Computational Modeling for the 
Computer Animation of Legged Figures," SIGGRAPH '85 Conference Proceed
ings, vol. 19, pp. 263-270, July, 1985. 

10. Donald T. Greenwood, in Principles of Dynamics, Prentice-Hall, Inc., Englewood 
Cliffs, New ]e"ey. 

II. David Haumann, "Modeling Flexible Bodies," SIGGRAPH 1987 Tutorial Notes: 
Topics in Physically-Based Modelling, July, 1987. 

12. Roberto Horowitz, "Model Reference Adaptive Control of Mechanical Manipula
tors," PhD Thesis, Mechanical Engineering, University of California, Berkeley, 
California, May, 1983. 

13. Paul M. Isaacs and Michael F. Cohen, "Controlling Dynamic Simulation with 
Kinematic Constraints ," SIGGRAPH 1987, July, 1987. 

14. C. S. George Lee, R. C. Gonzalez, and K. S. Fu, Tutorial on Robotics, IEEE Com
puter Society Press, Silver Spring, MD, 1983. 

15. W. G. McLean and E. W. Nelson, Engineering Mechanics: Statics and Dynamics, 
Shaum's Outline Series, McGraw-Hill Book Co., New York, 1978. 

16. NASA, Anthropometric Source Book, NASA Scientific and Technical lnfonnation 
Office, 1978. 

17. L.A. Pars, A Treatise on Analydcal Dynamics, Ox Bow Press, Woodbridge, Con
necticut, 1979. 

18. Richard P. Paul, Robot Manipulators: Mathematics, Programming, and Control, 
The MIT Press, Cambridge, MA, 1981. 

-1~7-



- 26-

19. Robl!I1 Resnick and David Halliday, Physics Part I, John Wiley and Sons, Inc .• New 
York, 1966. 

20. Demetri Terzopoulous, John Platt, Alan H. Barr, and Kurt Fleischer, "Elas tica lly 
Deformable Models," SIGGRAPH 1987, July, 1987. 

21. Dare A. Wells, LAgrangian Dynamics, Shaum's Outline Series, McGraw-Hili Book 
Co., New York, 1969. 

22. Jane Wilhelms, "Virya - A Motion Control Editor for Kinematic and Dynamic Ani
mation," Proceedings of Graphics Interface 86, pp. 141-146, May, 1986. 

23. Jane Wilhelms, "Using Dynamic Analysis for Animation of Articulated Bodies," 
IEEE Computer Graphics and Applications, vol. 7, no. 6, June, 1987. 

24. Jane Wilhelms, David Forsey, and Pat Hanrahan, Manikin: Dynamic Analysis for 
Articulated Body Manipulation, Computer and Information Sciences Board, U. of 
California, Santa Cruz, CA 95064, April, 1987. Tech. Report UCSC-CRL-87-2 

25. Jane Wilhelms, "Graphical Simulation of the Motion of Articulated Bodies such as 
Humans and Robots, with Particular Emphasis on the Use of Dynamic Analysis," 
PhD Thesis, Computer Science Division, Berkeley. CA, July, 1985. 

26. Jane Wilhelms and Brian A. Barsky, "Using Dynamic Analysis for the Animation 
of Articulated Bodies such as Humans and Robots," Proceedings a/Graphics Inter
face '85, pp. 97-104, May 1985. 

27. Andrew Witkin, Kurt Fleischer, and Alan H. Barr, "Energy Constraints on 
Parameteri zed Models," SIGGRAPH 1987, July, 1987. 

- />18-



Thward Automatic Motion 
Control 

April 1967 

J ane Wilhelms 
University of California. San ta Cruz 

J Motion control 

I 

The field of motion control for computer animation 
is still in its youth, though perhaps no longer in infancy. 
A wide variety of techniques are in use, many in combi
nation. Designating motion for complex 3D scenes is 
complicated and time-consuming. because of both the 
difficulty in choosing from the wide range of motion pos
sible, and the sheer amount of information that must be 
specified. Commonly used approaches are fairly low 
level and require a considerable amount of user input to 
design the motion. But as motion becomes more realis
tic, with many objects interacting in complicated ways, 
providing more automatic and high-level approaches to 
motion control becomes increasingly important. This 

OZ1H11618110400-0011$Ol.OO-I987 IEEE 

© 1987 rEEK Reprinted , with permission , (rom IEEE Computer GrfJphic8 and ApplicfJtionB, Vol. 7, No. 
4.00.11-22. Anri!. 19R7 _.lId _ 

11 



article concentrates on present and potential approaches 
to automating motion control for computer animation. 

Overview 
Motion control systems arcortcn classified as interac

tive. scripted. or a combination of both. Interactive 
implies that the user and motion control system partic
ipate in a loop where the user describes a motion. the 
computer quickly provides an animation using it, the 
user modifies the motion as necessary. etc. In scripted 
methods. the user creates a written script describing the 
motion that the control system later interprets to pl"O--
duce the animation.l . 

Motion control can also be classified as low level. high 
level. or somewhere in between. Low level suggests that 
the user is required to specifically describe motion for 
individual degrees of freedom. such as a path through 
space or motion at joints. With high-level control. the 
user may describe motion in more general terms. as in 
"walk forward."leaving the system to find the appropri· 
ate low·level motion description. High-level control is 
desirable because the user can succinct ly and quickly 
define complex motion. 11 does have some disadvan· 
tages, however. because the user has less control over the 
exact motion. For this reason. systems typically provide 
a combina tion of high-level and low· level techniques. 

High·level motion control systems are difficult to 
develop because converting general descriptions to spe
cific instructions is complicated. Systems may make the 
interpretation from high-level to low·level commands by 
relying on command libraries. finite state machines, 
hierarchies,2 and parameterization.I.l.' These methods 
still initially require considerable user motion specifica· 
tion to define the libraries, slate machines, types of 
parameters, etc. Furthermore, if the objects in the 
modeled. environment change, the system may have to be 
instructed how to respond to the new environment. 

The intelligence of the control system can be increased 
in a number of ways, reduc ing thea mount of user input 
required. Drawing upon methods developed in robotics, 
such as inverse kinematics and path planning, moving 
objects can be constrained to move in a desirable man· 
ner in any environment. Using algorithmic control, 
motion can be generated through precise steps. In an 
extremely intelligent system, objects could generate their 
motion on the fly by responding to a changing environ· 
ment and even learn from their experiences. Use of 
stochastic processes might allow introduction of 
(pseudo-J randomness into the motion, making it more 
interesting and possibly more realistic, though there is 
danger of this leading to jittery and unnatural movement. 

Interactive methods 
Interactive refers to motion control techniques that 

al10w the user to design motion in real time while watch-

12 

ing the animation develop on the graphics screen. The 
user can take full advantage of the dials, joysticks.tablet, 
and other interactive devices to Quickly modify the 
motion and see the result. 

The intelligence 
of the control sys tern 

can be increased 
in a number of ways, 
reducing the amount 

of user input required. 

The earliest. and still one orthe most common. inter· 
active motion control methods is keyframing. Here, the 
user specifies a sequence of positions and the times 
when they occur, and the computer interpolates bety..oeen 
these positions to produce the animation. The interpo
lation generally uses some splining technique to provide 
at least fi rst derivative (velocity) and sometimes second 
derivative (acceleration) continuity to the motion . 20 
keyframing has certain serious limitations.s.6 but 3D 
object·based keyframing is a convenient and success ful 
motion control method. 1 Keyframing has the advantage 
that the user can see the total configuration o f the sys
tem at given times, easily noting collisions or undesira· 
ble interactions. The disadvantages are that it is low level, 
requires the user to specifically control each degree of 
freedom, and does not allow easy visualization of the 
motion between keyframes. 

Another interactive motion control method is path 
specification. While keyframing involves positioning all 
the degrees of freedom of the system for particular time 
points. path specification involves designating a coher
ent path over time.u Often this path is interactively 
created by using dials or a tablet to pick positions in a dis
played world. These positions ca n then be used to define 
smooth, curved paths a long which objects move during 
the ani mation. 

The advantage to path specification is that the user can 
think. in terms of the entire motion of a particular body. 
On the other hand. it is low level and does not allow easy 
visualization of the configuration of all objects at a par
ticular time instant (the inverse of the keyframing 
problem). 

A third interactive motion control method is the use 
of control functions,lo where motion is specified 
individuaUy for each degree of freedom as a function of 
time versus position. Again the functions are generally 
developed by designating control points which define 
curves. Control functions have the advantage that motion 
described by other control methods can be easily stored 

IEEE CG&A 
-150-



in this form, and specific low-Ievcl changcs are easily 
made to individual degrees of freedom. However, con
trol functions are less easily visualized as motion in the 
animated world than world space keyframes or paths 
and are very low level. 

Scripted animation 

Scripted animation (or animation languages) allows 
motion to be described as a formal, written scripl.lI·11 
Such a script can be unambiguously interpreted by the 
animation system. which can carry out all later stages of 
the animation independent of further user input. Some 
languages. such as CRAMPS,a are fairly low level. 
CRAMPS combines scripted and interactive animation, 
and the script facilitates communication with the device. 
a calligraphic display. More high-level languages. such 
as ASAS.I\ allow a wider range of object control, includ
ing independence or interaction of objects. synchroni
zation. and ordered sequencing of events O\Ier time. 
ASAS is a complete programming language based on 
Lisp and includes such structured programming options 
as procedures. recursion. and typed data structures. as 
well as uniquely graphical objects and operators. 

Scripled animation systems for articulaled body move
menl have been developed which take advantage of 
dance nolations.14 Both Benesh nolalion 1~. 16 and 
Labanolation l1

'
li have been used to describe :-:lotion for 

computer graphics. 
Motion control languages are also of interest in 

robotics.2o Languages prO\lide the ability to communi
cate with the machine in high-level constructs, to 
describe a co mplete task, and to integrate sensory feed
back into the control system. They pto\lide the potential 
for high-level decision-making, and may be classed as 
explicit or implicit. Explicit languages are low level: the 
user must describe the motion in terms of specific posi
tion changes and velocities. Implicit languages are more 
high level; the user describes the task to be accomplished, 
relying upon an intelligent system to find how to com
plete it. Examples of robot languages are WAVE. AL. and 
AU1UPASS.21·2J 

High-level to low-level interpretation 

Given that the user does not always want to specify 
motion at the lowest possible level (that is. as numbers 
controlling degrees of freedom), various means have 
been developed to provide the user with higher lewl con
trol. These include parameterization. finite state 
machines. command libraries. and hierarchies. 

Parametric motion control involves designating 
parameters whose values define the configuration or 
motion of the objects modeled.I.3 For example. in the 
case of facial animation, parameters may be used to alter 
the position of the mouth or the elevation of the eye
brows. l Parameters are convenient and allow associa
tion of reasonably complex motions (such as smiling) 

April 1887 

- 151-

with relatively few commands. While parameterization 
can be easily implemented using procedures, choosing 
parameters that CO\lCr th e desired range of motion can 
be problematic. The user may have to sacrifice fine con
lrol for ease of use. 

Finite slate machines are appropriate for describing 
and controlling repetitive or coordinated motion. 2.24 For 
example. Zeltzer uses a finite state machine with four 
slates to control the walking of articulated figures. The 
four states of the legs are left stance/right swing, left 
stance/right stance. left swing/right stance. and lefl 
stance/right stance. 

Command libraries provide a means of storing low
level motion descriptions under high-level command 
names. The command "walk." for example. may stand 
for complex changes to many joints of an articulated 
body. Command libraries are a convenient. adaptable 
way to implement high-level control. Combining com
mands can present problems, however, because com· 
mands may send different directions to the same joints 
and produce nonsensical motion .'? 

A hierarchical structure thai uses levels of progres
sively more detailed. less general directions to interpret 
high·level commands may make combining commands 
less problematic and reduce the number that need to be 
slored. For example. if the commands for walking are 
trea led as a combination of commands for whole limbs, 
which are in turn treated as commands to individual 
joints, the commands to raise the leg could be used wilh 
a variety of other motions besides wa lking. Zeltzer's 
skeleton animation system combines the use of com· 
mand libraries and a hierarchical interpreter with finite 
state machines. 2 

Possibilities of more automatic control 
The methods described above require a considerable 

amount of user input to design motion. Even in the case 
of high-level control by parameterizalion and command 
libraries, the user or programmer must at some point 
describe the low-level position changes that correspond 
to "walk" or "smile." As the environment and the 
desired motion increase in complexity, it may be desir
able 10 rely upon a more intelligent, versatile. and auto
matic form of motion control. An intelligent control 
system should take advantage of the knowledge availa
ble in other fields. such as robotics. artificial intelligence. 
and physics. 

Motion control for computer animation is very simi
la r to that of mechanical manipulators. Therefore. it is 
not surprising that robotics has much to offer this field. 
For example. robot control must consider the dynamics 
of the situation: How will the masses of the manipula
tor respond to environmental forces and torques? Most 
computer animation describes motion strictly kinemat
ically. thinking only in terms of positions versus time. 
The use of dynamics can help add realism to motioD_2.S 

13 



In robotics, the interest lies in inverse kinematics (how 
to position a jointed body so that its distal end is at a par
ticular position in space), and path planning and colli
sion detection (how can the robot find a path through 
space when obstacles are present). All these issues are 
equally pertinent to animation control. Indeed, the pres
ent state of robot control is not unlike the present state 
of animation control. Most industrial robots use "teach
ing by doing" for control, where the robot is led through 
positions which it then emuJates.20 This is much the 
same as the way objects are controlled in computer ani
mation using keyframing or path specification. Some 
robots can be controlled by robot languages, similar to 
animation languages.z6 

Other interesti ng approaches might be described as 
algorithmic cont rol, stochastic control, stimulus
response behavioral control, and learning. Algo rithmic 
control refers to motion developed through the use of a 
particular algorithm, as in modeling tree growth by 
algorithmically defining rate of expansion, branching 
pattern, and leaf production. Stochastic control implies 
a degree of cont rolled randomness, usually added to 
motion defined by other methods. Stimulus-response 
control is meant to suggest that object motion is deter
mined not only by some predetermined paltern, but by 
responding to stimuli encountered during the motion. 
For example, a pedestrian moving through a city might 
respond to oncoming traffic by moving to the sidewalk. 
Learning refers to changing the motion dependent upon 
experience. [n this case, the pedestrian might have to 
learn to move to the sidewalk by being consistently run 
over by cars. 

1Ypes of objects and their motion 
Objects vary in the types of motion available to them 

{see Figure l).1)rpica[ly motion is described in terms of 
degrees of freedom, that is, the number of independent 
coordinates needed to specify the positions of all com
ponents of the system. For a system with n degrees of 
freedom shown in t animation frames. a total of n x t 
numbers must be specified. A realistic example isa video 
ani mated at 30 frames a second. A three-minute anima
tion of a set of objects with 50 total degrees of freedom 
(not an unreasonably complex situation) requires 4500 
numbers to completely specify the motion. Of course, 
use of key framing and spline techniques reduces the per
centage of these numbers that the user must specify, but 
the amount of data needed for motion control is still con
siderable. 

Particles 
A particle ca n be described as a point in three space 

(x. y. zJ. The location and motion of such a point is desig
nated by three variables, and thus the point has three 
degrees of freedom of motion. Animating a point 
requires a triplet of numbers for each animation frame. 

- 1:52 -

or three functions describing the variation of x, y. and 
z over time. Reeves et al. have shown how useful parti
cles can be in simulating natural phenomena.27.ze 

Rigid bodies 
A rigid body is defined by some number of points that 

must move together. They may not move relative to each 
other. though they may move as a whole relative to the 
world space. These points may define polygons or a free
form surface. The motion of a rigid body is specified by 
six degrees of freedom: x, y, z translation (as for a point) 
and x, y, z rotation (orientation). (Use of a Ca rtesian sys
tem is not necessary. though it is the most familiar 
method.) Motion of a rigid body is usually visualized as 
motion of a frame that is fixed to the rigid body. with all 
points defining the body moving with the frame. Most 
animation systems concentrate on modeling with rigid 
bodies. 

Flexible bodies 
A flexible body consists of an infinite number of points 

which move relative to each other over time. In practice. 
a flexible body may be defined as a set of moving poin ts. 
These points may represent vertices of polygons. but 
greater flex ibility is achieved if they represent control 
points for surfaces. A moving flexible body, such as an 
amoeba. de fin ed as a free form surface using p control 
pa ints, has 3xp degrees of freedom varying over time. 
This explains why most computer animation is of rigid 
bodies. While some work has bee n done in the field. 2Q 

animating flexible bodies remains a fertile area for 
research. 

Articulated bodies 
Articulated bodies are made up of segments whose 

motion relative to each other is somewhat rest ricted. For 
example. a human body is often represented as rigid seg
ments joined at articulations (joints) which have one to 
three degrees of freedom. The total number of degrees 
of freedom that must be speci fied is the sum of the num· 
ber of degrees of freedom at each joint. A good deal of 
work has been done modeli ng articulated bodies as rigid 
segments. Z.17.30-32 

Articulated bodies may also be flexible. In this case. 
the jOint between two flexible seg ments could be 
modeled as a joint between two coordinate frames. one 
attached to each adjacent segment. 1\0.10 types of motio n 
are then possible. Motion at the a rticu lation consists of 
changing up to six numbers specifying the relation 
between frames. Motion within each flexible segment 
consists of moving the points defining the segment rela
tive to its local frame. The total number of degrees of free
dom necessary to specify a flexible articulated body 
would be the number of degrees of freedom at each joint 
plus three ti mes the numbe r of defining points. 

IEEE CG&/\ 



/: 
, 

a 

b 

, , 

1 1 - -• 
~ 

- . 
3 DOf 6 DOf , 

Particles Rigid bodies 

Each defining point has 3 DOF -- ~ 

6 OOF to world 

c 

Miscellaneous and metamorphosing bodies 
Bodies may also be specified algebraically. A sphere 

can be modeled as a center {three numbers) and a radius, 
and a pulsating sphere could be animated by changing 
the radius. The number of degrees of freedom of the sys
tem would depend upon the nature of the equations 
defining these algebraic objects. 

It becomes more complex when the bodies being 
modeled change their number of degrees of freedom 
over time. Examples of metamorphosing bodies include 
fractal mountain ranges during formation,J] growing 

April 1987 

Aigebraically-delined bodies (e.g .. spheres) 

d 

e 

Figure 1. Degrees of freedom or motion: (a) particles 
and rigid bodies, (b) flexible bodies, (e) articulated 
bodies, (d) miscellaneous bodies, (e) metamorphosing 
bodies. 

plants.3u~ and particle systems.27 The process of 
metamorphosis is in itself a kind of motion control and 
will be dealt with below. 

Constraints 
Constraints restrict object motion (see Figure 2), and 

some entirely eliminate a degree of freedom. For exam· 
pie, the hinge joint at the knee may be modeled as con
strained to move using only one revolute degree of 
freedom. Constraints can also be applied as limits within 
a degree of freedom. The head can swivel on the neck 

15 



bul cannot rotate all the way around. 
These partial constraints can be difficult to model. 

because the limits on a degree of freedom may vary 
according to the positions at other degrees of freedom. 
for example, the arm cannot swing toward the body cen
ler when the body is upright. because the trunk is in the 
way. However. if Ihe trunk is bent forward at the waist. 
such a motion is possible.36 

Constraints may only be applied occasionally, as in the 
motion of leaping, where the legs are sometimes con
strained by the ground. Constraints may take many 
forms: A robot hand may be constrained to remain in 
contact with a surface, or to move around a point. They 
can also be applied to velocity and acceleration. and the 
nature of the constraints may vary with time. 

A motion control system should take into account con
straints. or at least do constraint-checking and respond 
reasonably when they are broken. A reasonable response 
might include informing the user of the constraint vio
lation, and possibly include refusal to accomplish the 
motion in violation. 

Approaches to automating 
animation 

More automated motion control will take the burden 
of motion specification away from the user and give it 
to the animation system. Ideally. one could imagine an 
automated system that. given a description of an envi· 
ronment. its movable bodies. some behavioral rules. and 
(perhaps) what kind of motion is desired. will create an 
appropriate and attractive animation. Such a system 
would require a more sophisticated program and prob· 
ably be much more computationally expensive than 
user-directed systems. furthermore, this type of system 
may not be desirable because it will take control of the 
exact motion away from the user. It is. however. possible 
for the user to alter such an animation at a lower level. 

Such a system could also provide a useful tool for 
studying simulations. A simulation models behavior on 
the basis of known or hypothetical physical laws. Not all 
simulations are graphical. but many simulations can be 
better understood if combined with graphical output. 
Computer-generated graphical simulations are a kind of 
computer animation. Because such simulations try to 
imitate physical processes. they are naturally can· 
strained to be realistic. Simulation techniques can be 
very useful in adding realism to computer animations. 

Dynamic analysis 
Typically, motion control is kinematic, with motion 

being specified by designating positions taken over time 
for each degree of freedom. Kinematic motion specifi
cation does not take into account the causes of motion, 
which are the effects of forces and torques acting upon 

16 

Restraints wiltl a degree 01 freedom. 

such as joint end limits. 

'~ Removing degrees 
"', of freedom. such as 

a 1 DOF hinge joint. ----
\ 

Occasional constraint. as in striking the ground. 

Figure 2. Constraints on motion. 

masses. This is the concern of dynamics. or dynamic 
analysis. (Dynamics also refers to motion or change in 
the general se nse. In this article. its use will be restricted 
10 the meaning of the word as used in physics.) 

Dynamics has been used in computer modeling in a 
few cases. Some CAD/CAM systems include engineer· 
ing packages for dynamic analysis of machines. Vehicle 
crash studies may include dynamic simulations involv· 
ing computer graphicsY The famous Works mechani· 
cal ants and robots from the New York Institute of 
Technology included some dynamic analysis.38 The 
walking creatures modeled by Girard and 
MaciejewskP9 include simple dynamics of the trunk. In 
addition. I have explored.32 and Armstrong and Green~o 
have also independently modeled, articulated bodies 
using a more complete version of dynamic analysis. 

The dynamics equations of motion are used to relate 
the acceleration of the mass (object) to the forces and/or 
torques acting upon it. A force produces translational 
motion; a torque produces revolute motion. In the sim· 
plest case, for a point mass capable of three degrees of 
freedom. the common Newtonian equation of motion is 

F-mo 

where F is the force vector acting on the point mass m 
and a is the acceleration the mass experiences. For con
stant mass, this equation can be solved in either of two 
directions; (t) given the force, one can solve for acceler
ation; or (2) given the acceleration. one can solve for 
force. In robotics. the second direction is generally of 
interest. as the desired motion is known and the amount 
of force that must be applied to the robot motors to pro-

IEEECG&A 

-IS~-



( 

Controlling ,.. JO:;;, '0 DamPing 

~D-L ~ JO~ 
Gravity 

Grovnd reaction 

External 

_ .. :_", ~'ied 

Figure 3. Forces and torques acting on the body. 

duce this motion must be determined. In computer 
graphics, the first direction is of more interest: Given the 
environmental and internal [orces and torques, what is 
the acceleration the object will undergo? Given the 
acceleration. present position. and veloci ty, the path of 
motion can be found. For si mple systems with few 
degrees of freedom. a nalyti cal in tegrat ion can be used. 
As the complexity of Ihc system grows, numerical inte
grat ion techniques arc relied upon. 

The dyna mics equations for articulated bodies are 
complex. For greater rea li sm, body segments should be 
treated as extended masses. Because of the interaction 
between con nected segments. the dynamics equations 
are coupled and must be solved as a system of equations. 
one equation for each degree of freedom. There are a 
variety of formulations for the dynamics equations that 
produce the same result by different methodology. TWo 
methods used in computer graphics are the matrix for· 
muJation of the Gibbs-Appell EquationZS and a recur· 
sive formulat ion developed by Armslrong.4() While each 
has advantages and disadvantages, the latter is much 
faste r (O(n) compared to 0(04

) for th e Gibbs·Appell ver
sion) a nd so is likely to be the method of choice. 

Of the fo rces and torques acting on and in the body. 
some can be calculated automatically. some can be simu
lated using springs and dampers. and some must be sup
plied by the user (see Figure 31. For example. the 
gravitational force can be calcu1ated automatically. Inter
actions with the ground. other coUisions. and joint limits 
can be modeled as springs and dampers. Such internally 
controlled motion as muscles in animals or motors in 
robots are normally supplied by the user. Thus. certain 
types of complex motion. such as falling, striking the 
floor. or bouncing against other objects. can be automat
ically calculated and realistically rendered with no user 
input. 

April 1987 

-155-

Figure 4, Dynamically controlled figure sitting up. 

Producing controlled. coordinated motion using 
dynamic analysis is more of a problem. The user can pro
vide control functions to specify pseudo-muscular forces 
and torques acting on individual degrees of freedom. but 
force/torque control is nonintuitive. It is also (X>ssible for 
the user to suggest the motion at joints under internal 
control as kinematic motion changes. and have the pro
gram calculate appropriate forces and torques to accom
plish the motion. Figure 4 shows a body made to sit up 

17 



using dynamic analysis. A torque is applied 10 the waist, 
the neck and hips are held stable, and all other joints are 
relaxed. The body naturally conforms its motion to the 
floor and gravity. Various approaches to controlling artic
ulated bodies using dynamic analysis have been handled 
in detail in other studies. 1D•25 

It is possible to model dynamics more simply by treat· 
ing the body segments as point masses or limiting 
dynamic analysis to a subset of body parts.J9 Ad hoc 
methods may also be added. such as approximating the 
bouncing expected upon collision and adding this to 
kinematically described motion as a last step. These 
methods are simpler than full dynamics analysis but may 
not be as effective. 

Inverse kinematics 
Kinematics of articulated bodies involves two related 

problems: the direct kinematics problem and the inverse 
kinematics problem. The direct kinematics problem, 
which can be solved rather trivially, is to find the world 
space position of a distal segment of the body given the 
joint positions of the segments proximal to it. In other 
words, given the angles of the shoulder, elbow, and wrist, 
find the position of the hand. The inverse kinematics 
problem is to find the joint positions of the proximal 
joints given the posit ion in world space of a distal seg· 
ment; or. given the position of the hand. find the joint 
angles althe wrist, elbow. and shoulder that will place 
the hand in that position. Inverse kinematics provides a 
means of constraining articulated bod ies in reference to 
the world. For example, it can be used to keep a body 
realistically in contact with the ground when it moves. 
Because kinematic motion has no concept of gravity or 
reaction forces, modeling such environmental interac
tions is nontrivial. 

Inverse kinematics is important in both computer 
graphics' and robotics. It involves two related problems: 
{lJ finding any solution that wiU achieve the desired goal 
and {2) finding the most desirable solution. The inverse 
kinematics problem becomes progressively more diffi· 
cult as the number of degrees of freedom increase. For 
simple six degree-of-frcedom industrial robots, analytic, 
iterative, and geometric solutions ex ist,2lu6 Even in this 
simple case, however, there is often a problem of choos
ing the best solution. 

For a complex body such as a simulated human figure, 
the problem becomes extremely unwieldy. Consider, for 
example. the number of ways a seated figure might reach 
for an object on the table in front ofil. While many solu
tions are possible, certain solutions are much more nat
ural and realistic. What are the criteria that yield a 
realistic solution? Considerations might be total energy 
expended, distance traveled by the hand, distance trav· 
eled by all the joints, time taken, and a subjective 
criterion such as naturalness. ,. 

Korein ·u, has devised iI technique called the reach 
hierarchy method for inverse kinematics that involves 
precomputing the workspace for the chain of articulated 
segments and for each of its distal subchains. The work
space is the region in space that the end of the segment 
is capable of reaching. The algorit hm works as follows 
for point goals: If lhe goal is nol in the workspace of the 
entire chain. it is unreachable, so give up. Or else. for 
each of the joints in the chain from proximal to d istal, 
adjust the joint positions just enough so that the next 
more distal workspace includes the goal. Th is method 
minimizes adjustment of proximal joints. 

Girard and Maciejewski39 presented a technique for 
solving the inverse kinematics of legged figures by 
linearizing the relation between changes in joint space 
and changes in world space. A Jacobian matrix express
ing this relation about the current operating point is 
reasonably accurate for small deviations from the pre
sen t positions. The pseudo-inverse of the Jacobian can 
be used to find joint positions that will result in the 
desired world space position of the segments of interest. 

It should be noted that some of the necessity of inverse 
kinematics can be eliminated by using dynamic analy
sis. For example, if Ihe dynamically controlled body 
strikes the floor. the floor will push back with a reaction 
force sufficient to keep the body from falling through, 
realistic bouncing results. Dynamic forces can also be 
used to pull segments to a certain point in space. 

Path planning and collision detection 
Path, or trajectory, planning involves describing a path 

for an object through space. The user may explicitly 
define this path. either by defining keyframe positions 
to be passed through along the way. or by actua lly defin
ing a path through space. 7•

g However, using automatic 
path-planning algorithms, it is possible to merely desig
nate the start and goal positions and have the system 
determine the path, taking into account the environment 
and constraints. For single. nonarticulaled body motion, 
Cartesian coordinates are used to specify a sequence of 
points through or near which the body passes. 

For articulated bodies, motion may be described either 
in Cartesian coordinates or in joint coordinates. Carte
sian motion is often used to describe how a particular 
part of the body, such as the hand, moves in world space. 
Joint coordinate motion is used to describe the local joint 
positions during the motion. Cartesian coordinates are 
a more intuitive way to describe motion through a world, 
but may require the solution of the inverse kinematics 
problem. A reasonable compromise is to specify world 
space trajectory points along a Cartesian path, using 
inverse kinematics to find the joint coordinate positions 
to achieve these positions. Simple interpolation of joint 

IEEECC&A 
-IS(; -



a 

b 

Fig ure 5. Path planning in a slatic environment. 

positio ns can be used to define the motion between the 
trajectory points.20·26 

An importa nt part of trajectory plan ni ng is coll ision 
detection and obstacle avoidance.· 1 A simple algorithm 
for obstacle avoid ance assumes a stra ight line path from 
start to goal and tests for possible collisions. When a col· 
lision is detected. a new path that avoids the collision can 
be generated. This process is repeated un til a collis ion
free path is found. Collision detection can be done by cal
culati ng a sweep volume, which tests for overlap between 
the moving object and the obstacles, or by lesting fo r col
lisions with a poi nt on the object and scaling up the 
obstacles to accou nt fo r object s ize. 

Collision detection performed iteratively by intersec
tion testing may not be particularly helpful in choosi ng 
an optimum path. s ince only local informat ion is used 
to generate each new path. An alternative is to specify 
a ll constraints on the vertices o f the moving object solv
ing for a path that obeys constraints simultaneously. 

The Lozano-Perez algorithm41 creates a graph whose 
nodes are the starting and goal positions and boundary 
points on the obstacles. The edges between these nodes 
are weighted according to the straight-line distance 
between these positions. If the line joining positions 

April 1987 

c 

d 

passes through an obstacle. its weight is some maximal 
va lue. A minimal path around obstacles ca n be found 
usi ng the Dijks tra algo rithm. Figure 5 illustra tes this 
algorithm which is used to find a path for a body through 
a complex environment. Four subgoals are used to make 
the path more interesting. 

Path planning is made more complex if positional con
straints do not a ll apply simultaneously o r when obsta
cles are the mselves in motion. In this case. coll ision 
avoidance mu st be done on the fl y. Th is proble m is dis
cussed in the section covering stimulus-response control. 

Algorithmic control 
Although all computer-generated motion is controlled 

by algorithms. "algorithmic motion control" refers to 
generation of motion using a series of preprogrammed 
instructions with minimal user input concerning actual 
motion. The user may suggest parameters controlling the 
algorithm. but does not control the specific motion at 
individual degrees offreedom. Simple algorithmic con
trol. often seen in computer-generated animation. 
includes spinning cubes. planets following elliptical 
revolutions. and other cases of repetitive motion. 

Algorithms used to generate still images can often be 

19 
- , 57 -



used to develop interesting anima tions by n..'Cording the 
generation process. The organic forms generated by 
KawaguchP4 are examples. The regularity and order of 
many natural forms, such as shells, horns, and branch
ing plants, can be represented by mathematical expres
sions. For example. shells a re formed by twisting and 
expanding a basic polyhedral model. Plants can be 
formed in a similar manner, with additional considera
tion for the amount and angle of branching and the 
diameter of branches. By recording the generation in 
progress, these bodies can be seen to grow. 

Stochastic control 
An algorithmic technique that is becoming common 

in computer modeling is use of stochastic processes to 
generate objects such as mountains," trees,42 
clouds,4J·44 glass, waves, and bagels.45 Stochastic has 
come to mean use of (pseudo-) random perturbations 
applied during modeling to create more interest ing 
and/or realistic images. Though Ihese techniques are 
often used for stiU images, they can also be used to gener-. 
ale interesling motion. A prime example is fractal, or 
stochastic, mountain generation.JJ Fractal landforms 
are created by subdividing constituent polygons with 
perturbation of vertices. If the process of subdivision is 
displayed over time, a fairly reali stic animation of moun
tain building is produced . as seen in the Genesis Oemo 
in the film Star Trek /1: The Wroth of Khan. (Paramoun t 
1982). 

A related example is Reeves' porlide syslems. 27•21 

Large numbers of particles can be used to model many 
natural phenomena, such as clouds, fire, atmospheric 
disturbances, and vegetation. Particles are easy to ren
der, but they incorporate in s imple form many sophisti
cated features. They are controlled by a number of 
att ributes, such as position, velocity. size, color, and 
shape. Particles can be given a limited lifetime so that 
some die (disappear) and others are born (appear) dur
ing the animation. 

Stochastic processes are used to create and alter each 
particle's shape, motion. a nd appearance. The user can 
specify parameters such as mean number of particles 
generated per frame. where they are placed. and how 
they initially move, but the actual motion is not deter
minate. Particles can be used to represent light sources. 
as in the imitation of fire in the movie Star nek II. By 
drawing the path of each particle over its entire lifetime, 
vegetation can be modeled. as in Alvy Ray Smith's while 
sand.27 

A more sophisticated version of structured particle 
systems21 convincingly models more complex objects 
such as a forest, and more complex motion, such as grass 
blowing in the wind. The use of stochastically generated 
"wind particles" to simulate grasses blowing is partic
ularly interesting from a motion control point of view. 
It suggests that stochastic motion might hold potential 

20 

for modeling a wide range of natural motions, such <15 

sea creatures and plants buffeted by waves, airborne 
seeds. protozoa, Clnd insects. 

Stimulus--response behavioral control 
Stimulus-response control suggests that environmen

tal interactions are taken into account during motion 
generation. The motion of each object is dependent not 
only on its own internal algorithm, but on the behavior 
of other objects. Stimulus-response control could be 
added onto a stochastic algorithmic control algorithm. 
For example, it could be added to the algorithm for tree 
gl'O'Nth by also taking into account the changing environ
ment of the forest: the sun, proximity of neighboring 
plants, people with axes, etc, Biologically speaking, the 
fundamental growth algorithm is genetically pro
grammed, but the exact pattern of the gl'O'Nth is environ
mentally determined. 

Stimulus-response control, obviously, involves two 
steps: recognizing the state of the environment and 
developing a response to it. To explore this, a si mple sys
tem using spheres has been developed at the University 
of California, Santa Cruz. Computer Graphics and I mag
ing Laboratories. Spheres can be given a start position, 
end position. and velocity, as well as a color and s ize. 
When lello.ose in their environment, they move toward 
the destination, checking for collisions with other 
spheres. 

Figure 6 illu strates initially green and white spheres 
on the move. When they collide and pass through each 
other, they turn red; when Ihey reach their destination, 
they turn blue. Various collision avoidance algorithms 
can be explored using this simple system, as can more 
sophist icated types of interaction. Collision avoidance 
is not shown, as it is not particularly illustrative in still 
images. 

Another example of stimulus-response control was a 
project unofficially called "fishbra ins" al the Atari 
Research Labs under Ann Marion.4 A small environ· 
ment with a variety of creatures was modeled. Charac
ters' responses to each other depended both upon their 
own internal sta tes, such as hunger, fatigue. orcalm, and 
the creatures encountered. 

Learning 
At an even more sophisticated level, it is possible to 

imagine motion control algorithms that learn. Learning 
is a difficult problem Ihat is not well understood, either 
for machines or animals. Machine-learning algorithms 
that have been developed in robotics and artificial 
intelligence20·46 provide insight into the use of learning 
for molion control. On the other hand. computer anima
tion may provide an exceUent test site for the practical-
ity of these learning algorithms. 

Fairly simple learning algorithms based on common 
sense may provide a starting point. A simple gauge that 

IEEE CG&A 
-158 -



registers success or railure by whether the desired goal 
is reached or how many colli sions occur, could be used 
to alter ruture motion responses. For example. a simu
lated fi sh attempting to avoid predators whose motion 
is repetitive, might have to learn to respond correctly to 
avoid being eaten. Irthe predator typically attacks from 
underneath the prey. the prey shou ld attempt to get 
benea th the predator. 

Conclusions 
Over the past several years, the trend toward greater 

complexity and more realistic static scenes has been 
great ly aided by knowledge from other fields such as 
physics. A similar process is now occurring in the field 
of motion control for computer animat ion. Motion is 
becoming progressively more complex and realisti c. 
Control of motion can be greatly aided by integrating 
knowledge from related fields such as robotics. artificial 
intelligence. psychology, biology, and physics. Use of 
more automatic motion control techniques. such as auto
matic path plann ing. coll ision 'detection, dynamic anal
ysis. stochastic algorithms. st imulus-driven response. 
and learning algorithms offer great potential fo r ani mat
ing high ly complex mot ion with minimal user input. . 

Acknowledgments 
I wish to thank Michael Berman. Jane Johnson, 

Ca th ry n Nelson. Ken Clu ff. and AI Conrad for their 
assistance in develop ing and implementing the 
algorithms illustrated in th is article. 

References 
1. P. Hanrahan and Q Sturman, "IDteracti~ Animation of Paramet· 

ric Models." inl rodudion to Computer ~njmat;on . course notes, 
ACM SIGGR~PH 85, Aug. 1985, pp. 87-101. 

2. D. Zeltl-ar. " Molor Control Techniques fot Figure Animation." 
1£££ CGM. Nov. 1982. pp. !>3-60. 

3. F. Parka, "ParameteriUld Models for Facial Animation." f£££ 
CGM, Nov. 1982, pp. 81-38. 

4. C.w. Reynolds. "Descriptlon and Control of Time and Dynamics 
In Computer Animation." AdllOncedComputer Animalian. COUI'M 

note" ACM SICCRAPH 85, July 1985. pp. 289-296. 

5. E. Cetmull. "The Problems or Computer-Assisted Animation." 
ComputerCraphics (Proc. SIGGRAPH 78). July 1978. Pp. 348-353. 

Figure 6. Collision detection in a changing envi
ronment. 

April 1987 
-15~-

21 



tt \'f.r IWllVCS. "lnbetwecning for CornlJutllr Animation Usiuj< Mil'" 
ing fbint Constraints." Computer Graphics (proc. SIGGRAPH 81). 
Au~. 198t. liP< 263·269. 

7. S.N. Siwkctee and N.!. Badler. "Parametric Keyframe Intorpola· 
tion Incorporating Kinetic Adjostment and Phrasing ControL" 
Compu[crGrophicsIProc. SIGGRAPH 85). )oly 1985. pp. 255-262. 

8. R.M. Baecker. "Picture·Driven Animation:' Proc. Spring loiru 
ComputerConf.. AFIPS Press. Montvale. N.J .. 1969. pp. 273-288. 

9. K. Shelley and O. Greenberg. "Path SpecifiCAtion and Path Coher
ence." Computer Graphics (Proc. SIGGRAPH 82), )uly 1982. pp. 
157-166. 

10. J. Wilhelms, "Virya-A Motion Control Editor for Kinematic and 
Dynamic Animation." Proc. Graphics Interfoce86, Morsan Kauf· 
mann. Inc., Los Al[os, Catir., May 1986, pp. 141·146. 

11. C.W. Reynolds. "Computer Animation with Scripts and /\ctots." 
Compulel'GrophicslProc. SIGGRAPH 82~ July 1982. pp. 28~296. 

12. N. Magnenat·Thalmann and [l Thalmann. "The Use of 3D High· 
Level Graphical TYpes in the MIRA Animation System," IEEE 
CGM, Dec. 1983. Pl'. 9-16. 

13. T.I . O'Oonnell and A.I. Olson. "GRAMPS-A Graphics Language 
Interpreter for Real·time. Interactive. Three-Dimensional Picture 
Editing and Animation." CompulerGraphia; (Proc. SIGGRAPH 
81). Aug. 1961. PIl. 133,142. 

14. A. Hutchinson Guest. Donce Notalion, Dance Booles. London. 
1984. 

15. G. Politis and D. Herbison·Evans. "A Computer Graphics Inter· 
preter for Benesh Movement Notation." Proc. Ausgroph 85. 1965. 
pp. 25·30. 

Ifl. B. Sin!:h et aL. "A Grallhical Editor for Benesh Mm/ement Nota· 
lIun," COnlllUlcr Groph.cs IProc. SIGGRAI'H 83). July 1983. pp. 
51-62. 

17. N. !. Badlcr.l. O·Rourke. and B. Kaufman, "'Special Problems in 
Human Movement Simulation." Computer Graphics (Proc. SIG· 
GRAPH 80J, July 1960. PI'. 189·203. 

18. TW. Calvert. J. Chapman. and A. Patla. "The Integration of Sub· 
jective and Objective Dala in Ihe Animation of Human Move
ment ," Computer Graphics IProc. SIGGRAPH SOI./uly 1980. pp. 
196-203. 

19. G.J. Savage and I.M. Officer, "'CHOREO: An Inleractive Compuler 
Model for Dance.·· Int'l / . Man-Machine Studies. July 1978. pp< 1-3. 

20. C.s. George Lee, ItC. Gonzalez. and K.S. Fu. Th[orial on Robotics, 
I EEE Computer Soc. Press. Silver Spring, Md .. 1983. 

21. R.P. Paul. "WAVE: A Model·Based Language for Manipulator Con
lrol." Tech. Report MR76-615. Soc. of Manufacturing Engineers. 
Dearborn. Mich .. 1976. 

22. R. Finkel etal.. "'A n Overview of AL. a Programming Uinguage for 
Aulomalion." Proc. Fourlh Inl'l loinl Conf. ArtijiciallntelJigence. 
pp. 758·765. 

23. l.. Lieberman and M . ..... 'esley. "AUTQPASS: An Automatic Pro· 
gramming System for Computer.Controlled Mechanical Auem· 
bly," IBM). He~ean;h and Development. Vol. 21. No. 4. 1977. pp. 
321·333. 

24. R. Tomovic, "On Man·MachineContral," Automatica, i'Brsamon 
Press, Oxford, 1967. 

25. J. Wilhelms. "Graphical Simulation oflhe Molion of Articulated 
Bodies such as Humans and Robols. wilh Particular Emphasis on 
Ihe Use of Dynamic Analysis." doctoral dissertat ion, Computer 
Science Oiv" Unlv. of California. Berkeley, Calif .• July 1985. 

26. R.P. Paul. Robot Manipulators: Mathemolics. Programming, ond 
Control. The MIT Press. Cambridge, Mass., 1981. 

27. w.r. Reewts, "Particle Systems - A Technique for Modeling a Class 
of FuzzyObjectJ." ComputerGraphics(Proc. SIGGRAPH 83)./u1y 
1983, PI'- 35~376. 

28. w:r. Reeves and R. Blau. '"Approximate and Probabilistic 
Algorithms for Shading a nd Rendering Structured Pa rticles Sys· 
terns," Computer Graphics (Proc. SIGGRAPH 85), July 1985, pp. 
313·322. 

29. J. Wdl, "Tht! SyntheSIS ul Cluth OhIIlCb," CUntl,ulo:r G"'I,h,,.,. 
[Proc. SIGGRAPH lI6). Aug. HHW. "I~ 49-54. 

30. TW. Calvert. ). Chapman. and A. I'atle. ··AsJll.~: ls of the Kinomatic 
Simulat ion of HUlllnn Mowment ," IEE~; CG&I\. Nov. IY82. pp. 
4\·52. 

31. n HerbiMln·Evan il. "'Nudes 2: A Numllric Utility Displaying Ellip
soid SoIirfs.·· Computr.rGrophiQ [t'roc. SIGGRA I'H 78~ Aug. 1976. 
pp. 354·356. 

32. J. Wilhelmsartd itA . Ha~ky, "U~inR Oynamic AnalysisrortheAni· 
malion of Articulated Bodies sudl as HUU1au~ Hud Robots." Proc. 
Graphic~ Interfocll tiS .. Canadian tnfurnu,t iun Processin!! Soc" 
Toronto. Ont" May 1985. PI'. 97-\04. 

33. A. Fournier, D. Fussel. and L. Carpenter. "Computer Rendering 
of Stochastic Madels," Camm. ACM. )une 1982. pp. 371·384. 

34. Y. Kaw8guchi. '"A Morphologica) Study of the Form of Nature."' 
Computet Gmphics{Proc. SIGGRAPH 82/. July 1962. pp. 223-232. 

35. A.R. Smilh. "Plants. Fractals. and formal Languages:' Computer 
Graphics [Proc. SIGGRAPH 84), July 1984. pp. 1-10. 

36. J.u. Korein and N.!. Sadler. "Techniques for Generating the Goal
Directed Molion of Articulated Structures." IEEE CG&II. Nov. 
1982. PI'- 71-81. 

37. K.O. Willmert, "Visualizing Human Body Motion Simulations." 
IEEE CG&A. Nov. 1982. pp. 35·43. 

38. R,V. Lundin. " Motion Simulation:' Proc. Nicograph 1984. Nov. 
1984. pp. 2·10. 

39. M. Girard and A.A. Maciejewski. "Computational Modeling for 
the Computer Animation of l.egged Figures." ComputcrGlophics 
(Proc. SIGGRAPH 85). July 1985. PI'. 263-270. 

40. WW. Armstmngand MW.Creen. "The Oynamicsof ArticulMed 
Rigid BodIes fo r I'IJrpostls of Ammalton," !'rue. Cra"h,c:;lnter· 
face85. Canadian Informat.un t'roc:C~SIl1I1 Soc .. 10runlu Onl .. May 
1985.1'1' 407 .... 15 

41. 1'. L01':ano·Pllrct. a,},1 M.A. Wesl(.,\ ....... n Al)(urithm for J'l~nnin~ 
Colhslon·Free l'J ths Among I\llylmdral Ohstad,,~." Cum" .. /\(;M . 
Dc\. 1979. pp. 56(}·570. 

42. ,. Bloomenthal. "Modeling the Mighty Maple," Computer 
Graphics [Proc. SICGRAPH 85). 'ul y 1985. JIll. 305·311. 

43. R. Voss. "Fourier Synthesis of Gaussian Fractals: L/ F Noises. 
Uindscapes and Flakes," Stoteofthe IIrt In ImageS}'nlhcsis. COUI'!ic 
notes. ACM SIGGRAPH 63, ' uly 1983. 

44. G.Y. Gardner. "'Visua l Simulation of Clouds." Computer Graphics 
/proc. SIGGRAPH 85). luly 1985. PI'. 297·303. 

45. K. Perlin. ''An Image Synthesizer." ClmputerGrophics [proc. SIG· 
GRAPH 85), July 1985, pp. 267-296. 

46. S. Tangwongsan and K.5. Fu. "An Application or Learning to 
Robotic Planning." Int 'l/ . Computer and Information Science. Vol. 
8.1979, pp. 303·333. 

Jane Wilhelmi has been an assistant professor 
with tho Computer and Information Sciences 
Board at the Uni~rsityofCalifornia. Sanla Cruz, 
since 1985. Her research inlerests indude com
puter animalion. modeling articulated bodies, 
and use of dynamic analysis for mot ion control. 

W[[hclms received a BA in zoology from the 
Uni\lersity of Wisconsin. Madison. an MA in 
biology from Stanford University. and an MS and 
~ PhD in computer science from the University of 

Californie, Berkeley. She is a memhcrof IEEE and ACM. 

The author can be contacted at tha Uni\lersity of California, 
Santa Cruz, Computer &: Information Sciences Board. Santa Cruz, 
Californ ia 95064. 

IEEE CG&:A 22 
-/(,0 -



Using Dynamic Analysis for Realistic AnImation of Articulated Bodies 

JQIW WilMlIfU 
Compuur GrDplUc.s aJtd IMQgillg lAborcuory 

Compwn aN! lfljonnalioll ScieACes 
University ofCali/«Na. S4ItUJ Cnu. CA 95018 

ABSTRACT 

A major problem in computer animation is creating motion that 
appears natural and realistic, particularly in the case of complex articu
lated bodies such as humans and other animals. At present. truly lifelike 
motion is produced mainly by copying recorded images, a tedious and 
lengthy process requiring considerable external equipment An alternative 
that is explored here is the use of dylUJJ1lic analysis to predict realistic 
motion. Using dynamic motion control, bodies are treated as masses act
ing under the influence of external and internal forces and torques. 
Dynamic control is advantageous because motion is more naturally res
tricted to physically-realizable patterns, and many types of motion can be 
automatically predicted. Use of dynamics suffers from problems of com
putational cost and the difficulty of specifying controlling forces and 
torques. However, evidence has accumulated that dynamics does offer 
hope for more realistic, natural, and automatic motion control. Because 
such motion simulates real world conditions, an animation system using 
dynamic analysis is also a useful tool in such related fields as robotics and 
biomechanics. 

1. Introduction 

The major problem facing computer animation is the creation of motion that 
appears natural and realistic, particularly when the objects in motion arc complex articu
lated bodies such as animals or when multiple objects interact The problem involves a 
number of interesting aspects: e.g.. what kind of user-interface a..l:lows motion 
specification with the least effort, how can the animation system incorporate the intelli
gence to interpret general motion descriptions and translate them into specific motion 
instructions, how can motion be restricted to desirable patterns, and how can motion be 
best described at the lowest level of positions taken over time? 

Thil WOIt WU IUpported lillie Uaivemly 01 CalifOf1lia, $uta Cruz. by NliioM] Sc:ieOO8 FouDdalioa IrI.IIl .umberCCR-
16Oti519 .1Id UCSC feJlowllhip 6601n· I9900. The wort wu IDpported at the U.iveBily of California, 8atdey. by ~ 
1i0Q.l1 Scie:11C4 Fouadalio. JnDi .umben ECS-1:200Jl ud 00445199'7 ud the o.r ••• AdvaDeoMl R_rdI PtojKu 
"'CDC,. ooalnlC:t DU.mben NOOO)9·12-C.Q23S aDd NOOO:)9....I.4.. 



- 2 -

Most animation systems are kinematically-based, in the sense that the motion 
description, from user-input through actual frame rendering, consists of positions 
specified over time. I. 2, 3. 4. S On the other hand, motion in the real world is dynamically
based, detennined by a complex interplay of forces and torques acting on masses. This 
paper expJol"Ci the use of dynamic analysis to generate animation of articulated bodies. 
Dynamic analysis involves setting up and solving the dynamics ~uations of motion 
relating the forces and torques acting on masses to their acceleration. Given forces and 
torques acting on a body. dynamic analysis provides the accelerations that the parts of the 
body will undergo. Using integration, these accelerations can be used to find new posi
tions, thus generating motion. 

Section 2 compares kinematic and dynamic animation systems. Section 3 provides 
some background in dynamic analysis. Section 4 discuss controlling motion using 
dynamics. Section 5 discusses a graphical editor for specifying motion when using 
dynamics and walks the reader through a sample session of generating a dynamic anima
tion. Section 6 discusses problems with using dynamic motion control and possible solu
tions. Throughout the paper. a dynamically-based animation system. Veva. is used to 
illustrate the method. 

2. Kinematics Versus Dynamics (or Animation 

Kinematic systems force the user to choose the desired motion from a tremendous 
variety of possible motions. The most successful animations of living creatures, in terms 
of the reaHty of output, rely on copying motion from recorded images, either by rotos· 
coping (actually tracing the image) or measuring the positions taken in each recorded 
frame and using them to drive the objects being animated. This approach has a number of 
difficulties: the need for external recording and tracing equipment, the fact that motion is 
highly specific and cannot be altered with impunity. the time it takes to measure the 
recorded frames. and the impossibility of finding motion descriptions for imaginary 
animals or conditions where recordings aren't available. 

A simpler, though generally less successful lcinematic approach is reliance on user 
input facilitated by an interactive system. Often this method uses 3-D keyframing where 
the user positions the body as desired at specified times. and motion is interpolated 
between these positions for animation.7,S While 3-D keyframing is more successful than 
2-D keyframing (not suffering from the inherent information loss), it still reHes upon the 
user's ability to designate the appropriate path and rate of motion. Constraint-based sys
tems aid in limiting the range and type of motion, but do not provide a complete solution 
to the problem of making motion appear realistic.9 

An alternative is to give the world being animated greater physical reality. including 
descriptions of masses and active forces and torques, and use dynamic analysis to predict 
motion. Use of dynamics in animating articulated bodies :(or computer graphics had 
largely been limited to crash studies,lO though recently work has begun to appear utiliz
ing dynamics for bodies under internal control. 11,12, 13,14 Dynamics is also used in 
CAD/CAM and robotic a'f.plications. such as simulating and controlling vehicles or 
mechanical manipulaton;1 .16.17.18 and software packages capable of doing dynamic 
analysis such as DRAM arc available. 



- 3-

Dynamically-predicted motion is advantageous because motion can be naturally res
triCIm to realizable patterns and many types of motion, such as falling or reacting to col
lisions, can be found automatically. It is possible for the user to specify motion at a lim
ilm subset of body joints and bave the dynamics calculate applopriate motion at the rcsL 
The problems of inverse kinematics (finding local joint positions that place the body in 
the desired world space configuration) can be dealt with by pushing and pulling with 
external forces. Positional constraints can be simulalm using appropriate forces holding 
the body in position. 19 

Dynamic analysis suffers from three main problems: first, the cost of the analysis; 
second, numerical instability when the bodies arc complex; and third, controlling the 
motion. The control problems are somewhat similar to the motion specification problem 
found in strictly kinematic systems. but even more related to control problems in I'OOOt
ics.16.20.18 Simulating articulated body motion with dynamics is a difficult problem 
because of the many degrees of freedom, the complex coordinated motion possible, and 
our unwillingness to accept mildly unrealistic motion for bodies are familiar as humans 
and animals. Much of what is discussed here is equally relevant to the problem of 
dynamically-animating simpler bodies. 

The ability to realistically simulate worlds using computer animation is also impor
tant in other fields. Many issues in motion control for computer graphics have parallels in 
robotics,l6,20 and simulation systems are imjX)rtant in developing tools for designing and 
testing robots and other manipulators. In biomechanics and medicine, graphical simula
tions provide a means of analyzing motion and testing mathematical models of animal 
motion.21 ,22,23 In sjX)rts, simulations can aid in developing more efficient and safe ways 
of moving.24 

3. Background in Dynamics 
Dynamic analysis refers to the study of the relationship between forces (for transla

tional motion) and torques (for revolute motion) and the motion of masses, a relation 
which is expressed by the dynamics equations of motion.6 While a number of different 
dynamics fonnulations are available, they can all be seen as variations on the simplest. 
most familiar fonn known as Newton's Second Law,2j 

F =ma 

or, the force F acting on a particle is equal to its mass m times its acceleration a. The 
dynamics equations increase in complexity when the masses involved are extended 
bodies not points and when multiple masses interac~ but the fundamental concept of 
relating forces and torques to accelerations remains. 

The number of dynamics equations necessary to specify a system depends on the 
number of degrees of freedom of the system. A point mass has three translational degrees 
of freedom in space. An extended rigid body free to move in space has 6 degrees of free
dom, three translational and three revolute. In the case of articulated bodies, those in 
which masses are connected by joints, the number of degrees of freedom is the sum of 
the degrees of freedom at each joint plus the number of degrees of freedom connecting 
the body to the world. Thus, a human body simplified to 18 internal degrees offreedom 
and free to move in the world would be described by 24 dynamics equations. Because of 



-4-

the interaction taking place between masses in an articulated body, the equations an: 
complex and coupled. 16 This means that the intuitive idea that one can control the body 
dynamically by merely considering the torques acting between neighboring segments 
independently is incorrecL A torque acting on the shoulder will affect to varying extents 
the elbow, wris~ trunk, and the rest of the body. 

Though all dynamics formulations express the behavior of the world being modeled 
and give the same resul~ their appropriateness depends upon the problem being analyzed. 
The Newtonian formulation is common, hut other formulations such as the Lagrangian, 
the Gibbs-Appell,26 and some recursive methods21•1'. 17 are sometimes more appropriate 
for describing articulated bodies. 

Although this paper describes a system, Della, which uses the Gibbs-Appell fonnu
lation, the author has become convinced of its inferiority compared to the much faster 
recursive methods such as that of Annstrong.27 The Gibbs-Appell fonnulation has a cost 
of o (n4) for n degrees of freedom, while the Armstrong method is linear in n (O(n». 
At present work: is proceeding on the interactive system, Manikin, 19 which uses the 
Armstrong fonnulation to explore use of dynamics for positioning and manipulating arti
culated bodies. The GibbS-Appell-based system Deva is described in this paper because 
the control and environmental simulation it uses are more sophisticated than those avail
able in Manikin and beeause the Gibbs-Appell formulation neatly and elegantly partitions 
the complex force. torque. mass. configuration. and velocity infonnation needed to do 
dynamics in a way somewhat more clear than the recursive method. It is hoped that 
readers can map the control methods described here onto faster dynamics formulations 
without great trouble. The possibility also exists that a recursive GibbS-Appell fonnula
tion can be developed, as it has been shown28 that it is possible to find recursive versions 
of non-recursive fonnulations. 

Another difference between the formulations is that the Annstrong method assumes 
that all joints have three revolute degrees of freedom and that the body is connected to 
the world by six degrees of freedom. thus, non-spherical joints must be otherwise con
strained and sliding joints cannot be modeled. The Gibbs-Appell formulation allows for 
more general joints. Featherstone15 has also described a recursive linear dynamics for
mulation without this restriction on the type of joints. 

3.1. Tbe Gibbs-Appell Dynamics Formulation 

This section provides an overview of the Gibbs-Appell formulation. Its derivation 
and details of its use are given in Appendix I and elsewhere29, 13, 14 

For simplicity. a body is represented by segments consisting of rigid extended 
masses connected by joints of from one to six degrees of freedom. The body segments 
are described as a tree structure branching from the fixed, massless world segment. The 
initial joint connects the body to the world. For a body free to move in space, this initial 
joint has six degrees of freedom. For purposes of dynamics, multiple-degree-of-freedom 
joints, such as the shoulder, are treated as a sequence of one-degree-of-freedom joints 
joined by massless. dimensionless segments.3O 

Modeling such joints as a sequence means that rotations are euler. Taking as an 
example the spherical shoulder joint with three rotary degrees of freedom and assuming 
the sequence is an x -rotation followed by a y -rotation followed by a z -rotation, the y-



- 5 -

rotation is not about the fixed-joint--coordinate-frame y -axis, but around a new y-axis 
created by rotating that frame about the.% -axis. The negative consequence of this is that 
the meaning of the y-rotation is not intuitively obvious; the positive consequence is that 
if the initial z -axis is along the longitudinal segment axis, it remains so. The alternative 
model of the spherical joint, in which all three rotations are about the fixed joint coordi
nate frame. requires that longitudinal rotations be mapped to rotation about an arbitrary 
axis. In terms of user convenience, it is perhaps best to allow the user to specify the three 
rotations as an x- and y-rotation relative to the fixed joint frame and a final rotation 
about the longitudinal segment axis. It is not difficult to map this to either the Euler or 
the fixed coordinate mode!.3! 

The dynamics equations express the generalized force at each degree of freedom as 
a function of the mass distribution, acceleration. and velocity of all segments distal to 
this degree of freedom. The generalized force can be thought of as the net force or 
torque (depending on whether the degree of freedom is sliding or revolute) active at this 
degree of freedom and is the result of a combination of gravitational. frictional, con
straint, controlling, and applied forces and torques active within the system. 

For a sliding joint r . the generalized force is 

q, = (m.al(~)) dr oa 
=I' as, 

where, for segment k. 

q. = generalized force 

mk = segment mass 

a k = worldspace acceleration vector of the center of mass 

a l = transpose of acceleration vector of the center of mass 

Clj: = worldspace angular acceleration vector 

CJ.)k = worldspace angular velocity vector 

I k = inertial tensor describing mass distribution 

9 = local angular acceleration 

s' = local acceleration 

Because each segment's worldspace acceleration (and, similarly, angular accelera
tion. velocity. and configuration) is just a function of its local acceleration relative to its 
parent segment and the worldspace acceleration of the parent relative to the world, these 
equations can be expressed in terms of purely local motion and configuration. Rear
ranged into a matrix formulation, they can be simply stated as 

Mc+V=q or M-I(q-V)=C 



- 6-

For a body with n degrees of freedom, c is an n-Iength vector of the local angular or 
linear acceleration at each degree of freedom (local referring to motion of the segment 
distal to this degree of freedom relative to the proximal segment) and q is an n-length 
vector specifying the generalized force active at each degree of freedom. M is an n x II 
inertial matrix describing the configuration oftht system masses. V is an n-length vector 
dependent upon the configuration of the masses and their velocity relative to each other. 
Thus, if the generalized force vector q is known, the equations can be solved for 
accelerations c. This is known as indirect dynamics and is the direction used to find 
motion for animation. Alternatively, if the accelerations c are known, the equations can 
be solved for the generalized forces q. This is known as direct dynamics and is the direc
tion commonly used· in robotics. 16 The equations used to find these vectors and the 
matrix are found in Appendix I. 

In solving the equations for accelerations, the mass is known and assumed to be 
unchanging for a given body. the mass distribution is automatically calculated based 
upon present configuration, and the present known velocities are used. Given general
ized forces, this leaves a set of linear equations which can be solved using Gaussian elim
ination for local accelerations. Numerical integration techniques, such as the Runge
Kutte,32can then be used to find new velocities and positions. 

4. Causes and Control of Motion Using Dynamics 

The forces and torques responsible for motion come from a variety of external and 
internal sources (sec Figure 1): 

(1) Some forces and torques can be accurately and automatically calculated, such as 
those due to gravity or to known external applied pushes or pulls. Realistic anima
tion of this type of motion can be generated with minimal user input. 

(2) Some forces and torques can be simulated within the system. 33 such as those 
due to joint limits, the ground and collisions with other objccts. Springs and 
dampers can be used to model these restrictions, but finding appropriate springs and 
dampers to simulate the motion of segments with widely varying masses and motion 
is not simple and they tend to create numerical instability in the dynamics equa
tions. However, acceptable methods have been developed to model these restric
tions with little user input 

(3) The crux of the dynamic control problem lies in finding the non-automatic 
forces and torques. These include those controlling forces and torques which simu
late muscles in animals or motors in robots. Deva's ability to generate arbitrary 
controlled motion using dynamics is still low-level and primitive. 

4_1. Automatically Calculated Forces and Torques 

Automatic forces and torques presently implemented in Deva include those due to 
gravity, joint limits, and the ground. Detailed descriptions of how these are calculated 
can be found in Appendix II and elsewhere.34•14 

Gravity is calculated using the known mass distribution of body segments. For each 
translational degree of freedom, the effect of gravity is found by summing the gravita
tional forces acting through the centers of mass of all segments distal to this degree of 
freedom and finding the component of this summed force acting along the axis of sliding 



- 7 -

of this degree of freedom. For revolute joints, gravitational torque must be considered, 
torque being the product of a force times the perpendicular distance between the point of 
application of the force and the axis of rotation. The gravitational torque at a revolute 
degree of freedom is found by sununing the torque due to gravity at each distal segment 
and finding the component of this torque acting along the axis of rotation. By altering 
the gravitational acceleration, motion on other planets or in space can be easily simu
lated. Figure 2 shows a body falling fn:ely through space under the influence of gravity. 

Jaim limits. While constraints included in the dynamics equations automatically 
restrict motion to the allowed degn:es of freedom (e.g., if the knee is described as a one 
degn:e-of-fn:edom hinge joint it cannot rotate sideways or longitudinally), dynamics 
does not automatically restrict motion within a particular degn:e of fn:edom. Thus, if an 
arm is dropped the elbow can bend backwards unnaturally or the lower arm may fall 
through the upper (see Figure 3). Kinematically this problem is solved by using joint 
limits beyond which motion cannot occur. Dynamically, a rigid limit is undesirable 
because it does not mimic the natural springy motion that sometimes occurs when such 
positions are reached. 

For Deva, joint limits are simulated using a combination of a spring and damper at 
each degree of freedom. A spring supplies a counteracting force or torque proportional to 
the amount past the specified limit the joint has deformed. The damper supplies a coun
teracting force or torque proportional to the velocity at this degree of freedom. The 
strength of a spring and damper could be proportioned simply by using a spring and 
damper constant which takes into account particular conditions at the joint. To avoid 
having to detennine appropriate constants for each degree of freedom, these constants are 
replaced in Deva with a variable dependent upon the mass distribution and/or velocity of 
segments distal to the degree of freedom. While this value normally restricts motion 
appropriately, it can also be controlled by a proportionality factor input by the user. Fig
ure 4 shows an ann lifted by a torque at the shoulder and elbow and dropped. Note that 
as it falls the elbow reaches an angle of 180 degrees relative to the upper ann and is res
tricted there by the joint limit 

Ground Reaction Forces. Dynamics does not automatically take into account exter
nal environmental constraints such as remaining on or above the ground (see Figure 1). 
This problem is treated in Della by modeling the ground reaction forces as external 
applied forces due to springs and dampers. To detect collisions with the ground, the 
locations of the vertices of a max-min box surrounding each segment are compared to a 
horizontal flat ground plane (a more complex ground would be possible with more 
sophisticated collision detection). Since dynamics is a numerical process, it is possible 
for these vertices to have descended below the ground during the previous time sample. 
Normally this is not a noticeable problem; when it is, supersampling can minimize it 

The ground reaction force actually has three perpendicular components: a vertical 
reaction force counteracting motion into the ground, and two horizontal reaction forces 
mimicking friction along the ground. The vertical component consists of a reaction 
spring that is a function of the amount below the floor each point is descended and a 
reaction damper which is a function of the velocity during penetration. These tiny 
springs and dampers are applied to oppose each vertex that has penetrated the ground. 
Though the reaction force is automatically calculated, it can again be scaled by user input 
to simulate a ground which is hard or soft, rigid or elastic. A weak spring can also 

-/~1-



- 8-

simulate the buoyancy of water. The horizontal reaction force due to friction is taken to 
be a fraction of the vertical reaction force if there is horizontal motion. Otherwise there 
is no horizontal force. By varying the frictiona1 force, a ground that is slippery like ice or 
rough and sticky can be simulated_ (See Figures 5 and 6.) 

OIMr Automatic Forc~s and Torques. While not implemented in Deva, other forces 
and torques can be simulated by techniques similar to those described above. At present, 
no internal collision detection is done, so that the body can move through itself (e.g., if 
the body is falling forward, the arms could swing through the legs). This could be han
dled by collision detection and simulated with springs and dampen; in the same manner 
as floors. A combination of collision detection and applied spring. and dampen; can also 
simulate environmental collisions with walls, tables, etc. 11tis is with the caveat that 
while the collision may be realistic for the model, it would not take into account such 
things as reflex reactions to collisions on the part of the animal, stiffening of muscles, etc. 
While theoretically this could be included in the model, the control problems would be 
considerable. An external applied force, such as being puUed by a rope, can be modeled 
similar to the gravitational force, except that its point of application, magnitude, and 
direction are under user control. 

The forces and torques described above allow the automatic prediction of object 
behavior excluding internal muscular or motor control. Thus, the complex motions of 
falling, colliding with the ground, etc. can easily be simulated using dynamic analysis. 

4.2. Controlling Forces and Torques 

Given that many environmental influences are automatically taken into account 
using dynamic motion control, the difficulty then becomes finding and coordinating the 
internal forces or torques (simulating muscles in animals or motors in machines) to cause 
a specific desired motion. The controlling force (for translational degrees of freedom) or 
torque (for revolute degrees of freedom) is treated in Deva as an ideal actuator acting 
only on one particular degree of freedom This avoids the problem of dealing with actual 
muscles whose torques vary with angle of rotation, and which can affect more than one 
degree of freedom and even cross more than one body segment For biomechanical stu
dies, ii would be possible to add a preprocessor that takes muscular forces and torques 
and converts them to this simple actuator form. 

The determination of controlling forces and torques in Deva is still low-level, in that 
while the user has a fair amount of control over the state of individual degrees of free
dom, he or she has little ability to specify coordination between joints. At present, each 
degree of freedom can exist in one of five different states: I . direct dynamic control: a 
specific controlling force or torque is designated; 2. relaxation: no controlling force or 
torque is applied; 3./rozen: local position is maintained; 4. oriefUed: world-space orienta
tion is maintained; or 5. hybrid K-D COnlro/: desired positions over time are specified by 
the user and the system attempts to find forces and torques to achieve these positions. A 
degree of freedom can only be in one of these states at a time, but can alternate between 
states during the animation. 

1. Direct dynamic control: Controlling forces and torques can be provided by the 
user (using the graphical editor Virya described below) as functions of force or torque 
versus time for each degree of freedom. These functions are modeled as cubic interpola
tory splines to ensure second derivative continuity and sampled to find the contribution 



- 9 -

of controlling forces and torques for each degree of freedom. 1St 36 The ann shown in Fig
ure 4 i. lifted using this method by applying a torque at the shoulder. Wbile dynamically 
acceptable, this method involves (and even accentuates) the problems found in kinematic 
motion control; i.e., the user must specify a force or torque for each degree of freedom 
being internally controlled. as well as predict what force or torque will provide the 
desired motion. 1ms latter problem is even more difficult and unnatural than specifying 
motion kinematically, though it is lessened by the fact that the user need only specify a 
controlling force or torque for those joints under internal control. robotics. 

Direct dynamic control can be useful in modeling world·space interactions. such as 
pulling the body toward a goal or pushing on it with an external fon:e. 

2. Relaxation: RClaution is a default state in which the degree of fIecdom hangs 
loose and reacts to external conditions, joint limits, and the motion of the rest of the 
body. The ann in Figure 4 falls after being lifted because the joints aIe reset to the 
relaxed state. 

3. Freezing: In many controlled motions, some joints arc held locally fixed; e.g., in 
Figure 4 the elbow is frozen while the shoulder is raised. Because of the dynamic 
interaction between body segments, controlling forces and torques must be applied to 
provide this local stability. Normally, the animal body uses feedback to accomplish this, 
altering forces and torques as necessary to maintain position. The freeze function in 
Deva uses the simple method of clamping the joint end limits around the present posi
tion, so that a spring and damper are applied when the joint moves from its present posi
tion. This method has the advantage over rigidly holding the joint in position that it does 
not interfere with the overall dynamic interaction and some small amount of natural 
motion is still possible about the frozen joint. (Freezing could also be done using hybrid 
conlrol and specifying a static position.) 

4 . World-Space Orientation: A related feature is the orienting function. While freez
ing stabilizes a segment locally at its proximal joint, orientation stabilizes a segment in a 
designated world space orientation. This is a first attempt at dealing with the problems of 
balance. Orientation is provided by the user in the fonn of an orientation vector and the 
amount of allowed play about this vector. When the orientation of the segment exceeds 
this amount ofpIay, an external applied torque is applied to the segment in an attempt to 
right it. In Figure 7, the little man does not fall forward because the trunk is in the 
oriented state. At present, the strength of the orienting force is rather crudely determined 
by using a linear spring. so that while righting does occur it is likely to overshoot the 
mark and wobble or take too long. However, this may. with tuning, be useful in helping 
to stabilize the body during walking and standing. A extension of this technique to world 
space positions could allow the simulation of a body fixed about a point, such as hanging 
from a bar. 

5. Hybrid K-D COnlTo/: Finally, while orienting and fnlezing simplify conlrol, they 
do not directly address the problem of finding the conlrolling forces and torques for a 
specific motion. Because kinematic descriptions are far more convenient for the user, it 
is best to use positional motion specifications for those degrees of freedom under internal 
control and have the system determine the forces and torques necessary to achieve these 
positions. The use of positional instructions also provides a convenient interface to 
higher-level control routines whose output is likely to be in kinematic terms. 11rls is 
related to the control problem in robotics, where the desired motion is known but the 

-1 .. 9-



- 10-

forces and torques must be found,l6. 20,17 

At present, Deva converts positional motion descriptions to forces and torques by 
calculating the velocity necessary to achieve the desired position in the upcoming time 
period, considering the mass of distal segments, and making an intelligent guess at the 
appropriate force or torque (see Appendix ll). Because dynamics is done on a finer grain 
than the displayed animation, this simple method without feedback has proved accept
able. More sophisticated methods may be needed as more complex controlled motion is 
explored. Positional control is far more convenient than strictly dynamic control and 
generally gives equally realistic motion. Section S describes a sample animation session 
using hybrid control. 

5_ Virya: A Grapbical Editor for Motion Control 

To ease the problem of specifying control information for multiple-<iegree-<>f
freedom bodies. a graphical editor Virya has been implemented. Virya has two main 
functions. First, it allows the user to design and store controlling functions for each 
degree of freedom of the body. These functions may represent forces or torques over time 
when the degree of freedom is controlled directly by controlling forces and torques, or 
they may represent positions over time when the degree of freedom is controlled by posi
tion suggestions. Second, Virya allows the user to indicate the state of each degree of 
freedom over time, choices being those explained above (direct dynamic control. relaxed, 
frozen , oriented, or positional control). These functions are sampled each time dynamic 
analysis is done and used to determine the contribution of controlling forces and torques 
at each degree of freedom. 

Virya operates on an Evans and Sutherland PS340 graphics system using a tablet 
and puck. Figure 8 shows the Virya screen. The lower half of the screen consists of a 
window describing the control function for each degree of freedom. as well as the name 
and type (x,y,z rotation or x,y,z translation) of the degree of freedom. The upper right 
quadrant shows the menu choices for interacting with Virya. The upper left quadrant is 
an expanded window to create and modify control functions, which are designed by 
designating defining points that specify a cubic interpolatory spline curve. Points can 
easily be added. moved, or deleted using the tablet The control infonnation can be stored 
in ASCII files . 

Virya can also be used to specify and drive strictly kinematic animation. In this 
case, each control function represents only positions over time and animation is achieved 
by directly sampling the functions without recourse to dynamic analysis. Deva provides 
a 3-D keyframing facility where the user can specify a series of positions and associate a 
time with each. These positiOn/time pairs for each degree of freedom become the 
defining points for the control function. Finally, because the output of the dynamic 
analysis routines is kinematic (consisting of a set of positions over time). it can be stored 
as kinematic control functions. This provides a succinct way to store the results of 
dynamic analysis and also allows kinematic tweaking of dynamically-predicted motion. 

6. Sample Session 

To illustrate the method, a brief session explaining how the animator can go from a 
keyframe file to a dynamically-predicted motion on the screen. A 24 degree-<>f.frecdom 
body ("joe") will be used to create the motion of sitting up from a lying position on the 

-/70-



- II -

floor. 

1. Key/raming Approximate Motion: First, the user interactively positions the body 
in a selection of the positions to be interpolated and stores the time and position at each 
degree of freedom for each configwation. The keyframe positions are relevant for con
trolling the position of joints that arc frozen in their local position or under hybrid K-D 
control. Joints that are relaxed will move freely from their initial positions due to the 
environmenL Oriented degrees of freedom will attempt to maintain their world space 
configuratiolL DynamicaJly-conlrol/ed joint> would act according to user-specified forces 
and torques. Oriented and dynamically-eontrolled joint> are not present in this example. 
Figure 9 shows the initial keyframe file for this motion. Figure 10 shows the body as 
defined by this file. Note that the positions of some body pam (such as the anns) are 
unnatural. These joints will be relaxed in the actual motion and dynamic analysis will 
ensure they appear in a natural position. 

2. Keyframe to Virya File Conversion: Next, the user asks Deva to convert the key
frame file to a Virya input file. In this process, data is rearranged so that positions are 
associated with their degree of freedom rather than the time when they occur. Using key
framing, all degrees of freedom are by default assumed to be in hybrid K-D mode. If run, 
the system would attempt to achieve the specified position for each degree of freedom. 
This, however, would likely be counterproductive, since dynamics is unlikely to 
influence the motion in any considerable way (besides possibly indicating that the desired 
positions are unreachable). 

3. Modification o/the Virya Input File: To take advantage of the dynamics, the user 
can then use Virya to modify the input file into a fonn where various degrees of freedom 
are under different modes of control. In the case of sitting up, the hybrid mode is neces
sary only at the waist and neck. The hips are frozen so that the body lifts its trunk not its 
legs when a torque is applied at the waist The rest of the joints are in relaxed mode and 
lie naturally in reference to the floor. Figure 11 shows the Virya input file after 
modification. 

4. Dynamic Analysis: The Virya input file is now sent to Deva and dynamic analysis 
is used to predict motion. Analysis is done 300 times per second The user can specify 
that some or all of these configurations are sent to the display routines or can save the 
output positions in a kind of output keyframe file indicating the times and positions 
predicted for dynamic analysis. 

5. Output Keyframe File to Virya Output File The user asks Deva to convert the out
put keyframe file to a Virya file (again arranging positions by degree of freedom not 
time). This file now can be used to generate a cubic spline curve describing smooth 
motion at each degree of freedom. Using Deva in its strictly kinematic mode, the file is 
sampled to produce output at any desired sample rate. Figure 12 shows a sequence of 
positions generated from the output Virya file. 

7. Problems with Dynamic Motion Control and Possible Solutions 

The three problems that most hamper dynamic motion control are computational 
complexity, numerical instability, and motion control. 

-17/-



- 12-

7.1. Computational Cost 

Using the slow Gibbs-Appell dynamics, only a few seconds of animation are calcu
lated per hour (on a VAX-7S0); however, the Armstrong fonnulation is close enough to 
realtime to be interactive for a patient user (on a 68020-based workstation).12·19 
Annstrong, Green, and Lake have suggested used parallel processing for even great 
speed. 12 Speed is affected not only by the basic dynamics, but by the amount of control 
required, particularly in the case of collision detection and response. 

Speed could also be increased by using dynamic analysis on a subset of the body 
segments. (The motion of light body segments such as the hands contribute minimally to 
the total dynamic interactions of the whole body.) The motion suggested by the dynamo 
ics routines could then be used to partially control the motion of a much more compli
cated body, leaving the user to determine !tinematically the motion at additional degrees 
of freedom. Alternatively, the use of dynamics can be severely simplified to the minima1 
analysis needed to give some feeling of "mass" to the motion. Girard and Maciejewski37 

have used a simple version of dynamic analysis that is applied only to the trunk segment 
of their articulated bodies. 

7.2. Numerical Instability 

The second problem is numerical instability. In the present dynamics formulation, 
considerable oversarnpling must done to ensure solution of the equations: i.e. , the 
dynamics equations are fonnulated and solved from 50 to 300 times per second, while 
video recording occurs 30 times per second. The problem is most serious when the body 
has many degrees of freedom and the motion is very controlled. If sampling is 
insufficiently frequent, a solution cannot be found for the dynamics equations and the 
program dies. Adaptive sampling and the ability to automatically restart the program 
when this occurs would be helpful. Armstrong artificially increases the moments of iner
tia around longitudinal axes to minimize the problem,ll but this can interfere with the 
realism of the movement 

7.3. Motion Control 

The third and most serious problem is motion control. While motion dominated by 
effects from the external environment such as gravity is automatically calculated, some 
reliable, convenient, and kinematically-based method must be found to allow the user to 
specify motion under internal "pseudo-muscular" control. There are two problems: first, 
on a low-level, how to achieve the desired positions at controlled joints; and. second, on 
a higher-level, how to coordinate complex motion.S 

To consider the low-level problem, assume the desired local joint positions for part 
of the body are known (how is another issue, whether from user interaction or inverse 
kinematics3O, 19 ), and the torques (assuming revolute joints) must be specified. Using 
robotic control methods, direct dynamics could be applied to this subset of the body to 
find controlling torques, which can be used with indirect dynamics on the entire body to 
find total body motion. 16 This may not work: e.g., consider a person turning quicldy in 
response to a sudden sound. The user Imows the motion of the trunk and neck, but would 
like a realistic relaxed motion of the arms. If the torques for the trunk rotation are calcu
lated without considering the arms, they will not produce the expected motion when used 
in indirect dynamics, because the motion of the arms will also affect the trunk: and neck. 

-112-



- 13 -

If the arm positions were already known, there would be no point in dynamics. Recursive 
dynamics fonnulations assume onc is solving either for forces and torques or accelera
tions.20,17 It might be possible to reformulate the equations in such a way that these can 
be combined; this should be explored. 

An alternative is to calculate desired torques on the fly during the dynamics, as is 
done in hybrid control here. In the example, a waist torque could be estimated given the 
body mass and desired motion. and altered appropriately over time depending on whether 
the calculated motion is faster or slower than that needed. Various feedback schemes are 
possible and should be tested for accuracy versus speed in this application.38 

The second issue is higher-level control for coordinated motion. A simple example 
might illustrate the problem. Consider modeling a horse rearing on its hind legs and then 
landing on all fours. When on two legs, the hindquarters must apply sufficient torques to 
support the upper body, and alter these torques to compensate for the pawing motion of 
the front legs. When the front legs fall, due to relaxation of the back leg torques, their 
joints will be faidy relaxed. But as soon as the front legs strike the ground, their joints 
must stiffen to accept the body weight; otherwise, they will splay out and the horse will 
fallon its face. The user would not know at exactly what time the legs must tense, so 
control must be specified in terms of "when this event occurs do this".5 

Considerable work has been done in robotics and control theory dealing with these 
issues, and this literature should be exploited in future work. However, though related, 
the problems involved are not identical. In one sense, the animation problem is more 
difficult, as most robots are far simpler than the articulated bodies shown in computer 
graphics. Although some excellent progress has been made in creating bipedal robots,39 
two-legged walking robots capable of the complex fluid movement we associate with 
normal human motion have yet to be built But in another, the animation problem is 
simpler, because only the appearance of realism is needed, not actual physical reality. 

8. Conclusions 

Dynamically-controlled animation offers the possibility of adding a new level of 
realism to worlds created by computer animation. Use of dynamics naturally restricts 
motion to realizable patterns and automatically calculates the effects of many environ
mental interactions which are very difficult to deal with kinematically. Though a number 
of difficult problems exist, preliminary results suggest the method has great potential. 

-173 -



· 14· 

Appendix I: Details of the Gibbs.Appell Dynamico Formulation 

1.1. Derivation of the Gibbs·Appell Formulation 
The Gibbs-Appell dynamics (onnulation is based on the Gibbs Fonnula, which 

describes: the energy 0/ acceleration.29 For rigid bodies consisting of n segments, this 
[onnula is 

G = ,t<i- m,ala, + i-a[I,a, + 
a[<ro,xJ,ro,)+ f(ro,» 

where, for segment k. 

m" = mass 

a.t = acceleration vecwr of center of moss 

{X,t = angular acceleration vector 

OO,t = angular velocity vector 

f (ook = scalar disappears with differentiation 

/xx/"Y/n] . . 
I, = ~Z'I.: = mernai tensor 

Xl yz zt 

Iv;: = (y2 + z2)dm; etc., moments of inertia 

IX] = Jxy dm; etc., products of inertia 

The dynamics equations given in Section 2.1 are found by partially differentiating 
the Gibbs {onnula with respect to the local acceleration relative to each degree of free
dom. 

1.2. Calculating the Terno; of the Dynamico Equations 
Explanation of Terms: The partial differentiation of the Gibbs fonnula leaves motion 
described in inertial world space terms; however, these equations can be restated in tenns 
of local joint configuration because of the known relation between local and world 
frames. Together with the tenns described in Section 2.1, the following kinematic 
configuration information is necessary (k = 1 • . . . • n for n degrees of freedom). 

-17'1 -



- 15 -

r A: = 3-D position vector of jaim connecting segments Jr.-I and k 

g.t = 3-D position vector of center olmass o/segment k 

U.t = 3-D unit vector olroralion or sliding axis ofjoinllr. 

SA:,it.sA: = sliding along axis u 1:. its velocity. and acceleration 

9A: ,91 ,e,t = rotation angle about axis U.t. its angular velocity, and acceleration 

R.t = 3x3 matrix describing rotation about axis U t 

Finding the Inertial Matrix (M-Matrix): M is an fl Xn matrix which takes into account 
the present distribution of body mass. M consists of four subrnatrices. 

The upper left submatrix Me is an rXT matrix describing the relation between revo
lute degrees of freedom Its elements are defined by the following equation 

(fori = 1 •...• r andj = 1 • . . .• r) . 

(Note that distal (i J) refers to whichever of i or j lies further from the initial world seg
ment, and if j and j lie on separate branches the calculation does not take place. Todi
sial refers to the furthest segments continuing out this branch.) 

The upper right submatrix M Os (whose transpose is the lower left submatrix) is an 
rXl matrix describing the relation between revolute and sliding degrees of freedom. Its 
elements are 

(fori = 1, .. ,r andj = 1 ... ,t). 

The lower right submatrix M· is a t Xl matrix describing the relation between sliding 
degrees of freedolIL Its elements are 

-175-



- 16 -

(fori = 1, . . .• r andj = 1, .. . , t) . 

Velocity-Dependent V-Vector: The V-vector takes into account such velocity-dependent 
contributions as the Coriolis and centrifugal forces. The V -vector contains two sub
vectors: V 9 is an r-Iength vector representing revoJute degrees of freedom, and V s is a 
I-length vector representing sliding degrees of freedom_ 

The elements of the V. vector for revolute degrees of freedom (V Ok for k = I, ... , r ) 
are found using the following equation. 

where the components of the N e matrix are found by 

and 

d ' I 
n~3=n~~= Y!" (ml[u, x(g/-r,)]T [uiX(Uj x(g/-r j ))] 

l:disfit(lJ) 

+u[[i-trace (II )Ui XU j+u jxI/uiJ) 

where trace (I I) = 1111+/'22+/133 

(fori = 1, . . . , r andj = 1, ... , r) 

dr, 
l=dis (.tJ) 

ml[u, x(g/-r ,)JT[UiXU j] 

for i proximal to j 
for" distal to j 

(fori = 1, . . . ,r andj = 1, ... ,I) 

The elements of V, vector for sliding degrees of freedom (V,. for k = I, .. . ,I ) are 
found using the following equation. 

-17{' -



- 17 -

where the components of the N s matrix are found by 

(fori = 1, . . . • r andj =i, .. _, r) 

and 

[ 

~ m/ul[ui xuj]. . . 
"n _ l=di,l~(I:J) ,proxvnal to J 

nSI} - 0 i distal to j 

(fori = 1 •.. .• r andj = 1 •...• r) 

- /77-



- 18 -

Appendix II: Calculation of the Forces and Torques Contributing to Motion 

nl. Gravitational Forces and Torques 
The gravitational component of each generalized force can be detenruned simply by 

considering the effect of the mass of distal segments at a particular degree of frc:c:dom. In 
the case of each revolute degree of freedom. this involves finding the torque around its 
axis of rotation, which depends upon the gravitational force acting on each distal segment 
and the perpendicular distance of the point of force's application from the axis of rota
tion. The equation for torque due to gravity at degree of freedom k is 

where Zo = (0,0,1) is a vertical direction vector, 8c = 9.81 m /sec 2 is the acceleration due 
to gravity (on the earth ' s sUlface), and the other terms are as explained previously. 

In the case of each sliding degree of freedom, the gravitational component (j gt) contri
buting to the generalized force there is dependent upon the component of the gravita
tional force acting on each distal segment that lies along the axis of sliding; that is, 

IL2. External Applied Forces 
Where the magnitude and direction of an external applied force (such as a pull from 

a rope or a shove) is known, the contribution of this force to the generalized force at each 
degree of freedom can be calculated using a method very similar to that used for gravity. 
Assume that a force represented by vector F G is applied to segment a at a location desig
nated by the world-space vector a . Each revolute degree of freedom i which lies proxi
mal to ' segment a feels the effect of this applied force as the torque 'tapp i defined by the 
equation -

Each sliding degree of freedom j which lies proximal to segment a feels the effect of the 
applied force as the force F app.J defined by the equation 

11.3. Joint Limit Forces and Torques and Damping 
The joint limit forces (for sliding joints) or torques (for revolute joints) are each 

simulated using three components. The first component counteracts other forces and 
torques pushing the joint beyond its limit and is simply equal in magnitude and opposite: 

-/78 -



- 19-

in direction to all olller forces (for sliding joints) or torques (for revolute joints) contri
buting to the generalized force at that degree of freedom (such as gravity or actuator 
forces). The second component is a spring whose strength is a function of the amount the 
joint limit has been exceeded, the local velocity, and the mass (for sliding joints) or 
moment of inertia (for revolute ones) distal to this degree of freedom. The third com
ponent is a damper which is a function of the local velocity and the mass or moment of 
inertia due to distal segments. The reasoning behind the method used to calculate these 
forces and torques is rather complex and explained fully clsewhere.14 This method is 
superior to a spring and damper proportional only to the amount of compression and the 
velocity because it automatically adjusts for differences in mass of different segments. 
Without such a consideration. individual spring and dampers constants would have to be 
developed for different joints, a considerable burden to lIle uSet. 

The spring force f 'P'.11 and lIle damping force f dmp.1l opposing motion beyond lIle 
joint !intit for sliding joints are 

/sprJI = -ksp,_sl x m_dist x vel_loc x deJx 

where m _ disl is the sum of all masses distal to this degree of freedo~ vetloc is the 
local velocity at this degree of freedom, delx is the amount the joint limit has been 
exceeded, kspr sl and kdmp sl are constants affecting how strongly motion is opposed (typ-
. - m - I 
Ically k"".11 = 1000 sec and kdmp.1l = 1.4 sec ). 

The spring torque tsprJI and the damping torque'tdmpJI for revolute joints are cal
culated in a similar fashion, with m _disl being the moment of inertia at this degree of 
freedom due to distal masses, vel_loc being an angular velocity, delx being an angular 
distance, and the constants being typically kspr rl = SS rad and kdmp rl = 1.4_1_. - sec - sec 

A damping action is normally active throughout the range of joint motion. This 
damper is calculated in the same manner as the end limit damper but is weaker (usually 
60% of end damping). 

1L4. Ground Reaction Forces 
Simulating ground reaction forces with an approximated force plus springs and 

dampers has been found a satisfactory method. Forces are applied at any of the eight 
corners of a max-min box surrounding each body segment which are on or below the 
level of the ground Reaction forces consist of a DOnnal force perpendicular to the ground 
and two orthogonal tangential forces. 
CalcuJaring Normal Forces: Normal forces are calculated as a combination of an 
estimated reaction force plus, possibly, a contribution from a spring and damper. The 
estimated total reaction force for lIle whole body (taking into account its total mass and 
approximated total momentum) is 

frf_tcI :::::: -g xm_lol-k_T{ xm_tot x v_root 

where g is the acceleration due to gravity, m_tot is the total body mass, V_TOOl is the 
vertical velocity of the root segment of the body (the trunk: or abdomen), and Ie _rf is a 
constant (typically .5 sec). This reaction force is distributed between all contact points 

m 



- 20-

depending upon the relative depth of the contact points below the floor. For example, if 
the sum of the distances below the floor of all contact points were 1 centimeter, and a 
particular contact point were .1 centimeter into the floor, it would receive .111 or 10% of 
the reaction force. 

If the contact point continues to descend into the floor, this estimated local force is 
increased by a factor of .2 x 0% where oz is the distance of further descent in meters. 
Calculating Tangential Friction.a/ Forces: Frictional forces act to oppose tangential 
motion along the surface and are dependent upon both the DOnnal force pressing into the 
ground and the characteristics of the swfaces. To simulate frictional forces. a combina
tion of an estimated force plus a spring and damper are again used 

The estimated tangential force for a particular contact point is merely the product of 
a coefficient of friction and the normal force calculated as indicated above and applied in 
a direction to oppose sliding. If the contact continues to be displaced tangentially. a 
tangential spring and damper can be applied to contribute further opposition. 

The reaction force is then treated as an external applied force acting on the contact 
point, as described earlier in this appendix. The effect of reaction forces can be altered 
by varying the constants described above to simulate more or less springiness. damping, 
and friction; e.g. bodies sliding on ice or bouncing on trampolines. 

lLS. Controlling Forces and Torques 

At those degrees of freedom whose motion is being explicitly controlled by the user, 
controlling forces and torques must be input as control functions describing the force or 
torque versus time for each degree of freedom (the direct method) or describing the 
desired positions over time for each degree of freedom (the indirect method). The 
indirect method is more intuititive. 

In the indirect method, the control function is sampled to find the desired local posi
tion at the next time sample. A trivially simple method is used to convert this infonna
tion to a controlling force or torque. 

t'w = m dis' X(t ~os -ve/)x /; \ - tune llme 

where 'm _dist is the sum of the masses (sliding joints) or moments of inertia (revolute 
joints) distal to this degree of freedom, 8_time is the time between time samples, 8yos 
is the distance between the desired next position and the present position, and vel is the 
present velocity. This method is successful in the present case despite its crudeness 
because dynamic analysis is typically done much more often than imaging, so actual 
animated motion appears smooth. 



Figure 1. Forces and Torques Colllribun"ng to Mon"on 

Controlling _&; . 
r 00 Dampzng 

-L-

.--.....,c:==~~:J 

Gravity 

Ground Reactio 

-/til· 

~:J 

Joint Limit 

External 
Applied 

1=-':;'. +4 -



Figure 2. Mon·on. ~ to Gravity Without Restraining Ground Forces 

0.533326 

O.7"3332b 

7 

1.131120 

-18Z -



Figure 3. Mon·on. due to Gravity Without l oint LimitS 

i"\ 
o 066666 o 133332 o 233331 

o 333330 o .~33329 



Figure 4. Conrrolkd Morion of the Ann 

N 
I 

0.'360000 

N 

I.Q80000 

4.740000 

o .bbOOOO 

2 7bOOOO 

b.bbOOOO 

-18'1 . 

1.500000 

N 



Figure 5. Falling Onto a Slippery Ground 

o 200000 

o Sbbbbi 

o b33327 1 033323 

-18$-



Figure 6. Falling onto a Sticky Ground 

~II+++----

I 
. I 

z 

-/'If€. -



Figure 7. Balance Applied to lhe Torso 



Figure 8. The Virya Screen 

• , 
lUI' SMIU lUI •• 

• .. 
"" cmJ SU[ .-.. m, 'etneJ 0'1'''' 

.. If'" .UUU '" ? .• 
lKI CUU[J uun .• .• ".'1lI urll IIUI 

• • '" '" ". ,. 
...... . .. _ ... ... .. - ... "" · .. 

" '" ". m m 

...... . " ..... '" .. -• •• "" · .. • I'· j'" I'" ...... . .. .... ... ... · . , ,_,, · .. 
" " '" m m '" ...... ... .... ... ••• v ... ·, • " .... . .. 

I'" I'" 
, ..... '" ... .. ........ · .. "' .. , '" 
" 

, .. , m '" '" .-, ... " , " ...... · .. ..... II" 
.... 4 ... 

-11f8 -



This page intentionall y 

l eft b l ank . 



Figure 9. Inin'al Input Keyframe File/or Silting Up 

0.000000 /* time zero */ 
- 90.000000 180.000000 180.000000 0.000000 0.000000 - 0.930000 0.000000 
0.000000 0.000000 0 .000000 - lBO.OOOOOO 0 . 000000 0 . 000000 0.000000 
-lBO.OOOOOO 0.000000 0.000000 0 . 000000 0.000000 0.000000 0.000000 
0 . 000000 0.000000 0 . 000000 
2 . 000000 /* time 2 ~econd3 */ 
-90 . 000000 180 . 000000 1BO .00000 0 0.000000 0.000000 -0.9300 00 -45 .000000 
0 . 000 000 0.000000 0 . 000000 -180 . 000000 0.000000 0.000000 0.000000 
-180 . 000000 0 . 000000 0.000000 0 . 000000 0.000000 0.000000 0.000000 
0.000000 0.000000 0.000000 
4.000000 /* time 4 ~econd3 */ 
-90 . 000000 IBO.OOOOO O 180.000 000 0.000000 0.000000 -0.930 000 -90.000000 
0.000000 0.000000 0 . 000000 -180. 000000 0.000000 0.000000 0.000000 
- 180.000000 0.000000 0.000000 0.000000 0 . 000000 0 . 000000 0.000000 
0.000000 0.000000 0 . 000000 
5.000000 1* time 5 ~econd3 *1 
-90.000000 180.000000 180.000000 0.000 000 0.000000 -0.9300 00 -9 0.000000 
0.000000 0.000000 0.000000 -18 0.000000 0.000000 0.000000 0.000000 
- lBO . OOOOOO 0 .000000 0.000000 0.000000 0.000000 0.000000 0.000000 
0.000000 0.000000 0.000000 
100 . 000000 1* time 100 ~econd3 *1 
- 90 . 000000 180.000000 IBO.OOOOOO 0 . 000000 0.000000 - 0.930000 -90 .000000 
0.000000 0 . 000000 0 . 000000 -180 . 000000 0.000000 0.000000 0.000000 
-1 80.000000 0.000000 0.000000 0.000000 0 . 000000 0.000000 0.000000 
0.000000 0.000000 0.000000 



Figure 10. Keyframe Configurations Displayed 



Figuu 11 Input Virya File Modified/or Dynamics (Parcial) 

dof 6 P jnt 1 Type a Nurnv 5 j_waist 
Control 0.000000 0.000000 
Control 2.000000 - 0 .785398 
Control 4 .000000 -1.570796 
Control 5.000000 -1.57 0796 
Control 100. 00000 0 -1 . 570796 
States K a 10 0 a a a a 
o 
do! 7 Pjnt 1 Type 2 Numv 5 j_waist 
Control 0.000000 0.000000 
Control 2.000000 0 . 000000 
Control 4.00 00 00 0.000000 
Control 5 .0000 00 0 . 000000 
Control 100.000000 0.000000 
States F a 100 a a a a 
o 
do! 8 Pjnt 2 Type a Numv 5 j _neck 
Control 0.000000 0.000000 
Control 2.000000 0.000000 
Control 4.000000 0.000000 
Control 5.000000 0.000000 
Control 100.000000 0 . 000000 
States F a 100 a 0 a 0 
o 
do! 9 Pjnt 2 Type 2 Numv 5 j _ neck 
Control 0 . 000000 0.000000 
Control 2 . 000000 0.000000 
Control 4.000000 0.000000 
Control 5.000000 0.000000 
Control 100.000000 0.000000 
States F 0 100 0 a a 0 
o 
do! 10 Pjnt 3 Type 0 Nurnv 5 j_shoulderr 
Control 0.000000 -3.141593 
Control 2.000000 - 3.141593 
Control 4.000000 - 3.141593 
Control 5.000000 -3 . 141593 
Control 100.000000 -3 . 141593 
States R a 100 0 0 a a 
o 



Figure 17--. Sequence of Posirions GeneTared by QUlpUl Virya File 

., = •• 



- 34-

References 

1. Norman I. Badler and Stephen W. Smoliar, "Digital Representation of Human 
Movement," ACM Computing Surveys, vol. II, pp. 19-38, March, 1979. 

2. Thomas W. Calvert, 1. Chapman, and A. Patla, "Aspects of the Kinematic Simula
tion of Human Movement, I, IEEE Computer Graphics and Applications, vol. 2. no. 
9, pp. 41-52, November, 1982. 

3. Marianne Dooley, "Anthropometric Modeling Programs - A Survey," IEEE Com
puter Graphics and Applications, vol. 2, no. 9, pp. 17-26, November, 1982. 

4. Don Herbison-Evans, "Nudes 2: A Numeric Utility Displaying Ellipsoid Solids," 
SIGGRAPH '78 Conference Proceedings, pp. 354-356, August, 1978. 

5. David Zcltzer, "Motor Control Techniques for Figure Animation," IEEE Computer 
Graphics and Applications, vol. 2, no. 9, pp. 53-60, November, 1982. 

6. Dare A. Wells, Lagrangian Dynamics, Shaum's Outline Series, McGraw-Hill Book 
Co., New York, 1969. 

7. Scott N. Steketee and Norman L Badler, "Parametric Keyframe Interpolation Incor
porating Kinetic Adjustment and Phrasing Control," SIGGRAPH '85 Conference 
Proceedings, pp. 255-262, July, 1985. 

8. David Sturman, "Interactive Keyframe Animation of 3-D Articulated Models," 
SIGGRAPH' 85 Tutorial Notes: Introduction to Computer Animation, July, 1985. 

9. Craig W. Reynolds, "Description and Control of Time and Dynamics in Computer 
Animation," SIGGRAPH '85 Tutorial Notes: Advanced Computer Animation, pp. 
289-296, July, 1985. 

10. K. D. Willmert, "Visualizing Human Body Motion Simulations," IEEE Computer 
Graphics and Applications. vol. 2, no. 9, pp. 35-43, November, 1982. 

II. William W. Annstrong and Mark W. Green, "The Dynamics of Articulated Rigid 
Bodies for Purposes of Animation," Proceedings of Graphics Interface '85, pp. 
407-415, Computer Graphics Society, May, 1985. 

12. William W. Annstrong, Mark Green, and R. Lake, Proceedings of Graphics Inter
face 86, pp. 147-151, May, 1986. 

13. Jane Wilhelms and Brian A. Barsky, "Using Dynamic Analysis for the Animation 
of Articulated Bodies such as Humans and Robots," Proceedings a/Graphics Inter
face '85, pp. 97-104, May 1985. 

14. Jane Wilhelms, "Graphical Simulation of the Motion of Articulated Bodies such as 
Humans and Robots, with Particular Emphasis on the Use of Dynamic Analysis," 
PhD Thesis, Computer Science Division, Berkeley, CA, July, 1985. 

15. R. Featherstone, "The Calculation of Robot Dynamics Using Articulated-Body 
Inertias," International Journal of Robotics Research, vol. 2, no. 1, pp. 13-30, 
Spring, 1983. 

16. C. S. George Lee, R. C. Gonzalez, and K. S. Fu, Tutorial on Robotics, IEEE Com
puter Society Press, Silver Spring, MD, 1983. 

17. M. W. Walker and D. E. Orin, "Efficient Dynamic Computer Simulation of Robotic 
Mechanisms," Journal of Dynamic Systems, Measurement, and Control. vol. 104. 



- 35-

pp. 205-211, September, 1982. 

18. Daniel E. Whitney, "Resolved Motion Rate Control of Manipulators and Human 
Prostheses," IEE£ Transactions on Man-Machine Systems, vol. MMS-lO, no. 2, pp. 
47-53, June, 1969. 

19. Jane Wilhelms, David Forsey. and Pat Hanrahan, Manikin: Dynamic Ana/ysis for 
Articulated Body Manipulation , Computer and Infonnation Sciences Board, uesc, 
Santa Cruz, CA, April, 1987. Technical Report UCSC-CRL-87-2 

20. Richard P. Paul, Robot Manipulators: Mathematics, Programming, and Control, 
The MIT Press, Cambridge, MA, 1981. 

21. Hooshang Hemami, ·'Modeling. Control, and Simulation of Human Movement," 
eRe Critical Reviews in Biomedical Engineering , vol. 13, no. 1. pp. 1-34, 1985. 

22. Miles Townsend and Ali Seireg, "Effect of Model Complexity and Gait Criteria on 
the Synthesis of Bipedal Locomotion," IEEE Transactions on Biomedical 
Engineering, vol. BME-20, no. 6, November, 1973. 

23. R. 1. Williams and Ali Seireg, "Interactive Computer Modeling of the Muscu
loskeletal System," IEEE Transactions on Biomedical Engineering, vol. BME-24, 
no. 3, pp. 213-219, May, 1977. 

24. Doris I. Miller, "Computer Simulation of Human Motion," in Techniques for the 
Analysis of Human Motion, ed. D. W. Grieve et aI., Lepus Books, London, 1975. 

25. Robert Resnick and David Halliday, Physics Part I, John Wiley and Sons,lnc., New 
York,1966. 

26. L.A. Pars, A Treatise on Analytical Dynamics, Ox Bow Press, Woodbridge, Con
necticut, 1979. 

27. William W. Annstrong, "Recursive Solution to the Equations of Motion of an N
link Manipulator:' Proceedings Fifth World Congress on the Theory of Machines 
and Mechanisms, pp. 1343-1346, Am. Soc. of Mech. Eng., 1979. 

28. J. M. Hollerbach, "A Recursive Lagrangian Fonnulation of Manipulator Dynamics 
and a Comparative Study of Dynamics Formulation Complexity," IEEE Trans. 0/ 
SJlStems, Man, and Cybernetics, vol. SMC-10, no. II, pp. 730-736, 1980. 

29. Roberto Horowitz. " Model Reference Adaptive Control of Mechanical Manipula
tors," PhD Thesis, Mechanical Engineering, University of California, Berkeley, 
California, May, 1983. 

30. James U. Korein and Nonnan 1. Badler, "Techniques for Generating the Goal
Directed Motion of Articulated Structures," IEEE Computer Graphics and Applica
tions, vol. 2, no. 9, pp. 71-81, November, 1982. 

31. J. D. Foley and A. Van Dam, in Fundamentals of Interactive CompUier Graphics, 
Addison Wesley, Reading, Mass., 1984. 

32. S. Conte and C. de Boor, in E/~ntary Numerical Analysis, 3rd edition, McGraw
Hill Book Company, New York, 1980. 

33. Al Pisano, Department of Mechanical Engineering, University of California, Berke
ley, CA, 1984. Personal Communication. 



- 36-

34. lane Wilhelms, "Virya - A Motion Control Editor for Kinematic and Dynamic Ani
mation," Proceedings o/Graphics Interface 86, pp. 141-146, May, 1986. 

35. Brian A. Barsky and Spencer W. Thomas, "TRANSPLINE -- A System for 
Representing Curves Using Transfonnations Among Four Spline Fonnulations," 
The Computer Journal, vol. 24, no. 3, pp. 271-277, August, 1981. 

36. Richard H. Bartels. John C. Beatty, and Brian A. Barsky. An Introduction 10 the Use 
of Splines in Computer Graphics, Morgan Kaufmann Publishers, Inc., Los Altos, 
California, 1987. 

37. Michael Girard and Antony A. Maciejewski, "Computational Modeling for the 
Computer Animation of Legged Figures, to SIGGRAPH '85 Conference Proceed
ings, vol. 19, pp. 263-270, July, 1985. 

38. Lynwood H. Wilson, "Control Systems Made Simple," Micro/Systems Journal, pp. 
20-24, September/October 1986. 

39. Hirofumi Miura and Isao Shimoyama. "Dynamic Walk of A Biped," International 
Journal of Robotics Research, vol. 3, no. 2, pp. 60-74, 1984. 

-1%-



The dynamics 
of articulated rigid 
bodies for purposes 
of animation 

William W. Armstrong 
and Murk W. Green 

Department of Comput ing Sl.; ictlcc, 
University of Alberta, Edmollton. 
Alberta. C.IIlad<l, T6G 2H I 

Curves ano sUI"faces satisfying COll
linllil~ and smoothness conditions arc 
llsed in computer graphics 10 fil sp".Ilial 
data points. In a similar fash ion. 
smoOlh motions of objects shou ld be 
available \0 animators in such a way 
that the dynamics arc correct \0 the 
degree required for rea lism. The mo
tion. like a curve or surface shape, 
should be conlro llable by easy manipu
lations of a SCI of control parameters or 
by real-time imcraclio n between the 
animator and a scene generated by dy
na mic simulatio n. In this paper, the ob
jects cons idered have the form of rigid 
links joined al binges to form a tree. 
This is a reasonable firsl approximalion 
10 human and animal bodies. The eq ua 
lions of motion arc formulated with re
SpeCI to h inge-centered coordinates, and 
are solved by an efficient technique in 
time which grows linearly with the 
number of links. 

Key words: Dynamics - Animation -
Equations o f m Olion - Robotics 

Th< V .. ~.1 CompUl<r (19~S11 :~1 "010 
C S1",nc<r' \·<rlo~ )98S 

-1'/7 -

he ,1111111 :1111111 ,I I bl1J1l,I11 ,111d hUIll,lll·ll~\· 

ch;lradcr" i:-. )Illl" ,II' Ih..: lllajll1' 1I11"lll\l'd 
prtlhkm:-. in «ll11pl1h:r ,1 11 1111<1lillll t,,"'l' rill 
example Balikr (II)S:!) . The ~c~ ;1"llI.:l'\ III' 

thi:-. prllblem is :1t.:hic\'ing lC' lli :-.tic 111,ltil lll \\ilh 
a minimal amlll!llt tlf dflln un Ihc r:11"1 ,.f llll' 
animator. Sc\'er,d appHl:lcilcs til hUIll:l11 figurc 
a nim:lIi on have oecll tri..:d ill tIll" p:l:-. l ",illl 
:-,ollle Sl!cce:-.s. 
One llf the earliest apprl)"chc:-. W;1:-. IiI rl'Cllrd (II' 

digilize the motion (If a human (Cliver! 0.:1 :11 . 
1980). The animated human figure mimided 
this motion based on the wHetted d:lIa. One of 
the main problems with Ih is tethnitlue wa s ha v
ing a properl y instrumented human actor per
form all the attions requi red for the animation. 
Collecting and processing the motion dala is a 
tum bersome lask and there is littk nexibility in 
editing the motion o nce th e data has been tol
lected. Anothe r problem with the appro:lI.:h j~ 
Ihat the human actor cannot perform dan· 
gerous actions (such as falling off a cliff) (lr 
si mulate the motion of non-human characters. 
A related approach is 10 use human body ptl
sllions as key frames in an an imat ion sequente. 
This slill requires the co lleclit) n of human 
ml1Vemcnt data (but with a Illwe\" vol ullle ) <lnd 
has all the problems associated wilh ke~ fram
ing (Calmull 197R). 
A more recenl :lppro<l th is based Oil de\'doping 
a kinemalit model of lhe human body (Zeltz..:r 
19~2). This model is based on the anat o m y of 
the human body and characteristics of its mo· 
tion. Motion is achieved by a hierarch y of mo· 
tor programs. The low level motor programs 
control the joint angles for a fixed set of jo in ts. 
These motor programs arc co ni rolled by Ihe 
middle level malar programs. The middl e le"l!1 
mOlor programs ca n Slart and SlOp the low 
level programs based on the cu rrent s tate of the 
mode l (joint angles, cenler o f mass, su pport, 
etc.). Botb tbe low level and middle level motor 
programs are modeled as finite aut o mata. Thi:-. 
approach requires far less effort o n the part I)f 
the animator but s lill ha~ some problems. A 
separale SCI o f mOlo r programs is required for 
each type of motion. The s tudy of human mo
tion is required to construct these programs. 
The model can only react to the environment in 
a rest ri cted way. For example, one of these 
models could walk over uneven terrain, but 
cou ld no t respond to someone pushing it. 
The approach to human figure an imation pre
sented here is based on incorporating dynam ics 
into the model of the figure. This added infor-

231 



~ yi"tr:ll ------ - ---------------- - --
( .01111'1111.:1" 

mation greatly simplifies inlcl';l cl ing with and 
contro lling the model. Once the model has heell 
properly constructed (sec Section: Developing. 
rigurc models) :t wiJc range o f mOlioliS can be 
achieved by applying forces o r torques 10 join t). 
in the model al key points in the animation , 
For repetitive motions these fo rces can be pro
grammed in the same way as Ihe kinematic 
models. 
In our view of human figure animation a hu
man figure model must have the following char
acteristics: 
I. The model should produce realistic motion 

sequences when given realis tic input data. In 
other cases Ih e model should produce believ
able result s. 

2. The amount of information the animato r 
must provide should be minimal and pro
portional to the complexity of the moti o n. If 
the character is standing s till o r reacting to 
the environment in a s ta ndard way the anim
ator should not need to spec ify an y motion 
data. 

3. The model should be able to react to and act 
on its env ironmen t. If someone pushes the 
characte r it should react to that fo rce. S imi
larly if the chara cter runs into an object it 
should respond in a natural way and poss ibl y 
have some effect on the objec t (the object 
moves o r fall s over). This Obviously requires 
a model that accounts for such physical 
properties as mass. force. inertia. torque, and 
acceleration. 

In the next three sections of Ihis paper. we 
develop the dynamics of articulated rigid bodies 
(skeletons) and an efficie nt method for solving 
their equat ions o f mo tion. In the fifth section, a 
technique for developing dynamic models of 
human-like figures is presented . A simple exam
ple is used to illu strat e this technique. The final 
section present s so me of the ideas we a re cur
rently working on. 

The equations of motion 
In this secti on, the equations of motion will be 
presented and explained in a tutorial fashion. 
The reader is assumed to be somewhat acquaint
ed with the elementary concepts of dynamics: 
velocity, mass, force. acceleration, angular ve
locity, moment o f inertia, torque, angular accel
erat io n etc. (Goldstein 1 959). A treatment of 

232 

manipulator d ynami cs haseu on Lagrangian 
mech'lIlics is £i\'cn in a honk hy Paul 19M!. 
Iiollerbach ha s £i\'cn ;I recursive Lag.ra ng ian 
formulation of manipulator dynalllics (Holler
bach 1980 h) arH.l has discusscu New tonia n for
mul:lli ons si milar to this one (Hollerbach 1980,,). 
Our treatment is :L generalization of work done 
for the case of linear linkages (Armstro ng 1979), 
with more attention paid to computational ef
ficiency. 
Consider a physical quan tity , such as a force. It 
is a vector, and has a meaning independent of 
any coordinate sys tem. To represent it analyti
call y, one ha s to introduce a system of coor
dinates using a frame. which consists of three 
mutually orthogonal unit vect o rs. The frames 
will al ways be right-handed in this paper. In a 
given frame. a vcctor is charactcrized by three 
components arranged in a one-column matrix. 
We shall always use this representat ion in ou r 
formulation o f the equations of motion. 
For dynamic modelin g o f linkages. it is con
venien t to c hoose fram es whic h move along 
with the links. as th o ugh rigidly auached to 
the m. This is particularly useful s ince. in the 
mov ing fram e, certain quantities are constant. 
s llch as the represen tatio n of the vector fro m a 
hinge of the link to the link's centre of mass. To 
represent positions, we use the vector from the 
origin of the frame to the position in question . 
We no te, though. that the origin of the frame is 
unimportant in determining the representation 
of a vector. In additio n to frames which move 
with the links, we also usc a fixed , non-rotating 
inertial frame. 
The transformation of the represen tati on of a 
vector. a 3-by-l (column) matrix , from one 
frame (a another is done by multiplying the 
representation on the left by a 3-by-3 orthogo
nal matrix . The inverse transfo rmation is done 
using the transpose of the latte r. We shall in
dicate orthogonal matrices by beginning their 
names with the letter R. 
The cross-product of two vectors can be ca rried 
out using the represen tations of the operand 
vectors and the result in a certain frame, and 
will be denoted in this paper by the cross sym
bol ( x ) as an infix operator. 
The unit 3-by-) matrix will be denoted by I. 
There is a very useful operation o n a 3-vector v, 
with components vi, v2, v3, to get a )-by-3 
matrix V such that for a ny 3-vector W , the vec-



(or I: X II ' is equal \0 the product of V and the 
colum n-vector w. This is the "tilde" operation: 

v ~ V~ l t' ~ 
- 1':\ l:2 

0 - t: 1 

-112 v I 0 

We shall use the following quantities, so me of 
them shown in Fig. I. Lower-case letters denote 
scalars (which are subscripted with the appro
priate link number) and representations of vec
tors (super-scripted). while upper-case letters de
note ma trices. A link, o th er than the root link 
of the tree (number I), has o ne proximal hinge 
connect ing it to its parent , which is closer 10 

the root, and, except for leaves of the tree, one 
or more dis tal hinges. The number of a link is 
also used 10 number its proximal hinge. We 
denote by Sr the set of a111inks having link r as 
parent. 

Sca lar : 
/fl, the mass of link r; 

Representations in the ine rt ial frame : 
ao the acceleration of gravit y; 
p' the position vector of the hinge of link r 
which joins it to its paren t, which we shall call 
the proximal hinge of link r; 
v' the velocity of the proximal hinge of link r; 
I; an external force acting on link r a t the 
poin t p~ (see below); 
g'E an ex terna l to rque act ing on link r; 

Fig. I 

- I~~-

Y;"tl:ll
i .Olllp"kT 

Reprl.!scl1tations in the fr'1I11C of link r: 
0' Ihe acceleration of thc proximal hinge of link 
r; 
(I)' the angular velocity of link r; 
/1/ its rat e of change; 
c' the vector from the proximal hinge 10 the 
cen tre of mass of link r; r the force which link r exerts on its parent at 
the proximal hinge; 
g' the torque which link r exerts on its parent 
at the proximal hinge; 
P'E the vecto r from the proximal hinge of link /' 
to the point of applicat ion of the ex terna l force 
IF. to link r; 

Representation in the frame of the parent of 
link r: 
r the vector from the proximal hinge of the 
parent of link r to the proximal hinge of link r 
(constant in the frame of the parent): 

Rotation mat rices: 
R' converts vector representations In the frame 
of link r to the representations in the frame of 
the pa rent link: 
R'l' the inverse (=transpose) of R'; 
R; converts from represe ntations in frame,. to 
representations in the inertial frame: 
R'/ the inverse (= transpose) of R; 
Matrix representation in frame r: 
J' the moment of ine rtia matrix of link r abo ut 
its proximal hinge ; 

The first equation of motion expresses the fact 
that the rate of change of angular momentum 
of link r is equal to the applied torques from 
vanous sources. 

j' w'=gr-m,C'xa'+ [ISx RJI' 
>ES, 

where 

g~.= -w' x (j' w')-g' + L Wg"+ R~T g~: 

+ 111 c'xR,Ta +P' XR,T(, 
, I 0 E I J f' 

(I) 

(2) 

The right-hand sides of (1) and (2) will now be 
explained. The part g'i has been separated out 
since that will help to explain the solution of 
the eq uations as well as accele rate the solution 
implemented on the computer. The term -m,c' 
x a' comes from the fact that the rrame in 
wh ich this equation is formulated is accelera t-

233 



, " ' , , ,. >' 

IIlg wllh respet.:1 to tht.: illl.!r1ial franK giving Ihl.! 
l'ffl.!cl o( Ihe for!.:1.! - 111 , 11 ' <lpplieJ al Ihe !.:Cl1lr..: 
(If mass \I( I Ill' link. In Ih..: lle."l:l IeI'm. Ihl.! fo rL''':s 
.I' c(l1l1in~ frolll .11 1 the sons nf link r arl.! ri rsl 
Ir:llIsformcd rrom Ihe {;oordinalcs of thl.! son 
link. wherl.! they an! n::preselltl.!u, 10 the frame of 
r hy applying 1<'. Then the {;ross product of /' 
wilh Ihe for!.:c gives the torque at the proximal 
hingl.! of link r due 10 the force from the son 
link. 
In Eq. (2). the term - (I)' x (J' w' ) is a torque 
coming from the rOlation of the frame r with 
angular velocity w' which causes the angular 
momentum. J' /I{. to appear to rotate. This tor
que term would not appl.!ar if the equations had 
been formulated in thc inertial frame, In the 
ine rtial frame, however. the Inertia matrix J' 
would not be constant. making that frame less 
appropriate for formulating the equations for 
purposes of computer simulation . 
The !arque - g' is the negative of the torque 
which. by definition. link r exerts on ib parent 
at its proximal hinge. It is the parenl's reaction 
which is "equal and opposite". To be added in 
next .Ire the !arque terms coming from the son 
links. which must be converted from their re
prl.!sentations in the sons' frames, and the exter
nal torque. which must be converted from its 
representation in the inertial frame. I t doesn't 
malte r where the torques are applied, since the 
links are considered rigid. Finall y, the force of 
gravity. m.oG , converted from the inertial 
frame, causes a torque at the proximal hinge of 
link r when applied at its centre of mass: and 
similarly for the exter nal force f; acting at p'j.:. 
The next equation of motion gives the force f' 
acting on the paren t o f link r at the proximal 
hinge of link r. As above. it is convenient to 
separate out a term .It which docs not involve 
the quantities (I' or others which depend on it 
according to our so lut ion mcthod. 

f'= it - 111,11' +111,(" X(rf + I R'I' (3) 

where 

f[=-m.w'x(wrxc')+R~T(jE+m.aG)' (4) 

In Eq.(3), the term -m,a' comes from the fact 
that the frame r is acce lerating, and the nex t 
term from the fact that it is rotating at an 
accelerat ing angular velocity, which causes the 
centre of mass to accelerate with respect to the 

234 

inertia! framc. hn.dly. lhl' rnr~l.!s frlllll lhl.! :-\111 

links arc (;onvcrted III fr.1Il1C rand ellill 11lI1IIi
CHell til thc 11:lr..:lll al Ihe hingl.! . 
In Eq. H). WI.! ~L'I fir:o.t a eClllrifug.d forc..: froill 
thc rotation or 11K fnlllle and sC!.:llnd a conlri
bUlitl n from thl.! CXlern:l! force and gra\'it) aCI
ing 011 thc link. 
The last equations tlescrihing the motion reble 
the acceleration at the proximal hinge of a so n 
link .'i of link r 10 tht! linear and angular accel
erations at the proximal hinge of r: 

R' ll" = ll ; + /I' -I' x (II (5) 

where 

(/; =11)' x (I')' x 1') . (6) 

[n summary, then. the equations of motion for 
each link are formulated in tt!rms of :l moving 
frame attached to the proximal hinge of the 
link. anti consist of equati ons giving the effect 
of torques (I J. (2). cqu,tlions giving the effect of 
forces (31. (4). and equations relating the accel
erations ,It parcnt and son nodes (5). (6). In ordcr 
to gel the motion. WI.! must solve these equa
tions either to get the IOr411es gin:n the motion. 
which would be reasonable to control the 
linkagt!s along a prescribed path. or to gel the 
motion (accelerations. ve locities. positions and 
orientations of the links through time) given the 
torques at the hinges and the external forces 
and torques. We choose the latter approach. 
since our aim is ultimately to lei the animator 
control the motion by ap pli ca tion of torques 
using hand and other control lers in real time. 
The previolls approach has been treated by Luh 
et al. 1979. 

Solution of the equations of motion 

Methods for converting the equations men
tioned al the beginning of this paper to a ma
trix form are well-known. The resulting square 
matrix ean be quite large. with a line fo r every 
degree of freed om in the system. Here we have 
six degrees of freedom for link 1. th e roo t, three 
for position and three for orientation. and three 
degrees of freedom for the orientation of every 
other [ink (the hinges constrain the position. 
but not the orientat ion in our case). A simple 
mode l of the human body without hands or feet 

-200-



has al least 12 Jinks. leading ttl a W-by-39 
matrix. We can expect Ihis nmnOcr to increase 
t.lra~tically if the link:; arc rl.!qllirl.!d 10 be nexible 
Ilr ddormabk in any way. The growth in terms 
of the number of link s is quadratic by that 
technique. The method we arc going to usc 
grows li nearly with thl.! number of links. and is 
appropriate, we feel. for animation purposes. 
where the number of links may be large. 
The hypothesis which aids in solving the equa
tions is that there arc linear relationships be
tween lhe acce leratiort £I' of thc link and the 
amount of angular accelera tion it undergoes 
and between (I ' and the reactive force on the 
parent. Think of giving the configu ration of 
links distal to '1 certain hinge a push at the hin~ ... 
which causes a certain accelcration. This will 
cause a certain angu lar acceleration and it 0.:1'

tain reactive force. which can be expressed as 
follows: 

0)'= K' a' +d' 

f ' =Af'lI'+f". 

(7) 

(8) 

If we <lssume thi s linearit} for all the so ns of 
link r, then we can show it Inductively for link 
r. and a t the sa me lime develop a compu
tationa l method for solving the equations of 
motion by calcu lating the "recursive" coef
ficients K', d', M'. and f" from the distal links 
lowards the root. We encourage the reader to 
write down Eq. (I) and ca rry out the following 
simple subst itutions: First the quantity p of a 
so n link s is replaced by the corresponding 
expressio n from (8) with s instead of r. Then the 
acceleTil.tion a J appearing therein is rewrillcn 
using the right hand side of (5) prefixed by W T

. 

The cross product /' x cil is replaced by thc 
product of the matrix j. with the column vector 
0/. This cnables us to collect the terms in (il 
and obtain 

(V'= T'{g~-/II,c' x a' 

+ L I' WI!" + M' W T la; + a'J)) (9) 
us. 

where we have set 

T'=(J'+ L lJR'MJR"Ti"l - l. (10) 

Now we can determ ine the recursive coefficients 
for (7): 

K~ = T' ( L TJ WM"W T -m,e') III) 
nS. 

.\ i· .. : 
\. . ~ I , ! i f I \ ' ; , 

;lnd 

The next step is to determine the recursive cod
ficients for the force f '. We first su bsti tut e in (~) 
for the fo rces f" using (7) for s instc(ld of 1' . Thl.! 
quantity tl"' is replaced using (5). <Jnd the result
ing ci;' val ues are replaced using (7). 
This gives 

M'= -m, l +m,l" K' 

+ LR'M' R'T(I -l' K') II )) 
.'ES. 

and 

r ' =!{ +III,C' X d' 

+ LIWr+R'M-'R'Tla;-I'xd')). (14) 
us. 

Computation of the solution 
to the equations 

There are certain frequently used constants 
which should be precomputed: 

At each iteration step, the equations of motio n 
must be so lved for the angular accelerations of 
the links by first de termining the coefficients of 
the linear expressions (7) (8) in a pass inward 
from the dista l links to the root link. Then the 
Eq. (8) for the root link, number 1. can be used 
to obtain tbe acceleration a l

• sincej1 , the fo rce 
on the parent o f tbe rOOI link, is ze ro (there is 
no parent). Eq. (5) can then be used repea tedly 
to get the acce lerat ion of the son links. whose 
angular accelerations are computed using (7). 
now with known coeffic ients. on a pass out
wards from the root link. The constrain t forces 
f' at the hinges can also be computed during 
this pass, but this is not required unless we are 
checking the solution. 
Arter the solution phase al each time step, 
comes the integration phase, where ci;' is multi
plied by the time step bt to get the inc rement of 
w'. and the latter is multiplied by bt t.o get an 
incremental rotation vector for the lmk. The 
incremental rotation vectors are used to update 

235 

-201-



- yisll:ll --------------------
l ,olllp"I,:, 

the rotation Ill:mices which spec ify Ihe o ric n
I.n ions of Ihc lin ks: R;, R' (fo r son links only), 
Til .: lincar accelerat ion and vdoc i l ), of link J 

ca n al so be dCicfminc:d ;IS wdl a s its positio n. 
which, toget her wi th th e orientations o f a ll 
links. g iven by RI. a llows al[ thc hinge posi tio ns 
in the inertia l frame 10 be determined (fo r the 
purpose o f g raphics display, fo r example). 
The re is one deficiency in the above method. 
however, namely thaI some o f thc quantities 
which a re computed at each int egra tion step 
ca n be expected t.o va ry slowly. and hence re
computa tion is no t required at every increment 
(5(. Hence all the computations will now be 
divided into two bands: a "fas tba nd" executed 
at each lime sle p. and a "slowband " executed 
co mpl etely o nce every I' executions of the fast
band , The slowband computation ca n be split 
into I' parts and executed uniformly over the 
fas t band itera tio ns in a real-time sys tem. 
The res ulting o rganiza tion of the computation 
is as follows: 
Siowband computations in bound (i.e. from the 
leaves to the root): 
Do fo r eac h link r starting a t the leaves of the 
tree: 

Compllte a;=w'x(w' x{>') 

Compute Q5= RJ M' W T for seS, 

Compute w '= TsQJ for seS, 

Compute T'=(J' + L WJ TS) - I 

Compure K' = T'(L W' - m, l") 
JeS, 

Compute M'=(m, c') K'- m,1 

+ I Q' (I - l ' K') 

Compli/e g~'= -w'x (J' W') + R~T g~ 

+n' x R,T(' + lm c') x R'Ta lOr. I J( , I G 

(ass uming f: and gE a re slowl y-va rying). 

Compute II = - w' x (w' x (m. c'» 
+ R~T(f£ + m, aG) 

(ass uming I: is slo wly-varying). 

Fastband computatio ns, inbo und : 

(15) 

( 16) 

(17) 

( 18) 

( 19) 

(20) 

(2 1 ) 

(22) 

Note: a t this point the hinge torque values g' 
from the controls manipulated by the animator 

236 

arc in~ened . O ne approach 10 con tro ll ing. t he~c 
v"lll e~ i:-. prc~e nl ed in th e ({\Ilnwing ~l·c t io ns. 
:md tll hers .,n: Illhkr devclt1pl11Clll. 
Do for e.,ch link 1", s!a rlin!; di~tal l y and pro
cec<.iing to w;lrds th e r(lot: 

12)) 

Cumpu" ,1' ~ T'lg;+ I/'x(!"'+Q' a;)) (24) 
.•• s. 

Compute 1" = f! + (III, c' ) x d' 

+ I If'" + Q'la; -I' x d')) (25) 

Compute I'" = R' F'. (26) 

Fastband computa tions. outbound: 

Compute a l = - (M I) 11'1 (27) 

ComplII £' w1=Klal+d1. (28) 

Do the fo llowing ror each link r o ther than the 
roo t ou tbound : 

where I' is the parent of the link 1". 

Compw l! uJ'= K'a' + 11' 

Compute f'= M' 0' + r' 
if required for a check of th e sol utio n. 
Integration , fastband : 

Compute w' + cit w' 
and ass ign to w'. 

Compute bu' + bt w' 

(29) 

(30) 

(31) 

(32) 

(3) ) 

and ass ign to bll', whe re the latter quantit y 
accumulates a small rotation of lin k r as an 
" infinitesima l "ector", 

Compllle " +c)1 R~ t1' 1)4) 

and assign to I:' . 

Compute p' + bt 1:' (35) 

and ass ign 10 p'. 
Actually. Eqs. (34) and (35) a re used o nl y for 
the roo t link. The positions of the o ther links 
are dete rmined from the position of the root 
hinge a nd from the hinge-to-h inge vectors in 
the inertial frame R~ Jj, whe re r is the parent of 

-202 -



s. This prevents accumulation of erro rs so that 
the graphic display will not bel.;oml.; distorted. 

Intcgral ion . slowba lid : 
I .. h:n: Ihe WWlion matrices ,1I"e updated, a costly 
process which sho ul d be done o nl y when the 
errors illirodUl.:ed by tardy updating are sur
ficicnlly small. 

Do the foll owing for each link starti ng distally: 

Complll£' R~{I + i5u') (36) 

and assign to W" When this has been done bu' 
mus t be reset to the zero vector to begin its 
accumulation again during the faslband integra
tion. Also compute and sto re the transpose R~ T. 

Onhollormali=e R~ (37) 

to prevent accumulation of errors which would 
ult imately destroy the sim ul ation. 

ComplIle R; T R~ (38) 

for every seS" and assign to W. Also compute 
and slore Ihe transpose W ·/". 
In implementing the above solution. it is of 
critical importance to choose an integration 
step size iiI seveml times smalkr than the per
iod of any frequency present in the system. 
Otherwise num erica l instability will destroy the 
simulation. (II is amusing to watch the stick 
figure's a rms begin to oscillate wildly as it nies 
off to obliv ion though!) The highest frequencies 
will probably be the rot ali ons of small links 
abo ut their long axes under the innuence of 
el ast ic ·torques at the hinges which maintain the 
alignment of the links. What one can do to 
keep these frequencies low is to fa lsely enlarge 
the momen ts of inertia about these axes. It is 
an open question to what extent this can be 
done without destroying the realism of the si m
ulation. Such tricks are often applied in airc raft 
simulators. for example. ilnd alllmation can un
doubtedly benefit from using them hea vil y. A 
method for removing two degrees of freedom 
from the hinges has been described elsewhere 
(Armst rong 1979). 
Other factors which must be appropriately ad
justed are the frictions of the hinges, which 
create viscous damping torques proportional to 
the relative angular velocities of the two links 
involved. As we shall see, creating a zone of 

.\ '!St r;tl -
( ,OtllPlllcr o 

free pla y at the hing.es. where th e stiffness of thl.; 
hinge has no effect. allows the fri ction to ahsorh 
the energy err(l nc(lll~ly intrnducetl hy nume rical 
inaccura l.;ics. leading to a morc stahle modd. 

Developing figure models 

This section describes one approach to develop
ing human figure models based on the dy
namics presented in the previous three sections. 
These models represent the positions and orien
tations of the figure along with how it behaves 
when it interacts with it s environment. This ap
proach is illustrated by two examples presented 
at the end of th is sectio n. 
Our approach to human figure mode ling con
sists of three steps. The first step is developing OJ 

ske leton for the figure. This skeleton co nsists of 
a set of links representing the figure's limbs and 
a set of joints represent ing the places where the 
limbs are co nnected. The se t of links represent
ing the figure form a tree with each link baving 
at most one parent. The skele ton represents the 
topology and physical properties of the figure. 
The ske leton itself ciln be viewed as a stick 
figure. The graph ical display of the figure used 
in an animated seque nce is generated from the 
ske leton. Techniques for co nverting skeletons to 
graphical displays can be found in Burtnyk and 
Wein 1976; Zelt zer 1982 and Lake 1985. As
soc iated with each link in the model is its mass. 
center of mass. and inertia. These quantit ies 
must be calculated or estimated from the figure 
being modeled. 
In order to have realistic motion the skele ton 
must be augmented with additional information 
pertaining to the behavior of il s joints. The 
second step in this modeling process is deter
mining th is information and incorporating il 
into the figure model. Th is step is divided into 
two parts. In the first part the su ppor! for the 
skeleton is deve loped. The force of gravity is 
continuously actin g on the figure and unless il 
is counteracted the figure will fall or collapse. 
There a re seve ra l ways in which the figure can 
be supported. One way is to attach an upward 
pointing force (on average equal to the mass of 
the object times the acce lera tion of gravity) to 
one of the links in the model. The link used 
depends upon the nature of the animation. For 
walking and simi lar actions the force is at-

237 

-20"'1. -



tached to th t! foot Ihat is ill co nt act with the 
!!.ro llod . For gymnastics t h..: forcc might hc al-
1;lched 10 the center of mas:-. of the figme. An
other aprro~lch 10 cou nl eracting the fnrce of 
gravit y is discussed ill th e firs t exa mp k at the 
end of this section. 
The joints in th e model can not he free to move 
any way th ey wis h. Each joint has a certain 
range of angles it is capable of moving through. 
Angles outside of this range will a ppea r un
natural. O ne way of constra ining the motion of 
the join ts is to s top the joint rotation when it 
reaches the end of its natural range. This is not 
a sat isfa cto ry solutio n fo r the fo ll owing reasons. 
First. it leads to very unnatura l mo tions. When 
people move their limbs there is a definite ac
celerat io n and dece lc ration at the end of th e 
mot ion, they don't come to an abrupt sto p at 
the end of th e mo tion (Sc hm idt 1982). Second. 
the a brupt changes caused by the clamping of 
the rota t ion angles violates the assumptions 
used in the development of the eq uatio ns pre
sent ed in Section: Solution of the equati ons of 
motion. Thi rd, someti mes the animator wants a 
limb to move outside Its normal range. If a 
large enough force is applied 10 the model. one 
or more of the limbs shou ld move out of its 
natural range. 
The approach to jo int behavior that we ha ve 
deve lo ped is based on determinin g the natural 
range o f the jo int and then applying torques 
about the joint to keep it in Ihis range. At each 
time s tep the to rque applied to a limb is a 
function of the angle betwee n it a nd its parent. 
This torque wi ll move the limb towards the 
center o f it s norma l range. The to rque functions 
we use in our models have the shape shown in 

Torque 

\ 
Angle 

Fig. 2. A typical torque function 

238 

Fig. 2. As can he seen from this figure there is a 
range of angles where no rcst()rative torques arc 
applied . Th is area of free play leads to more 
na tu ral motions and decreases the tendency of 
the limhs 10 oscillate. The size o f the free play 
zone and the s lope of the fUll ction at the ends 
of this zone determi ne the behavior of the join\. 
A narro w free play zone with steep sides wi ll 
give rise 10 a s tiff joint. The free play zone can 
be moved around in order to simulate different 
types of motion. Note that there are torq ues 
that will cause the joint to act unnaturally. 
At this point if the model is placed in a si mpl e 
enviro nmen t wt th only gravity it wi ll eve ntuall y 
reach equilibrium (in practice thi s occurs after 
one or two seconds of si mulation time depend
ing on how close the in itial state of the model 
is to equili briu m). If the environment acts on 
the model it will essentially roll with the pun
ches. The th ird step in our modeling approach 
is determining the exte rn al forces and to rques 
required for speci fi c motions such as walking. 
throwing. or divi ng. In most ca ses these forces 
and torques a re spikes applied al fixed intervals 
of time o r when certain conditions hold. 
As an example of how th is approach works 
cons ider the problem of an imat ing a finger tap
ping o n a tabl e. The skeleton for thi s finger is 
shown in Fig. :t This skeleton has five links, 
three of which are visi ble in the figure. The 
middle three links represent the visible part of 
the finger and for the purposes o f this example 
all 'have th e same length and mass. At the left 
end o f the figure is a link o f length zero repre
senting the attachment o f the finger to the 
hand. This end o f the finger should have a 
relatively cons tant posi tion, therefore, it has a 
much higher m ass and inertia (about 100 times) 
than the other links. In orde r to suppo rt the 
finger a variable force is applied to this link. 
The stre ngth of th is force is inversel y propor
ti onal to the distance between the curren t po-

support 

Fig. J. Skelelon for a finger 

- ZO'j-



sit ion of th e link ,md its desired position. The 
fifth link is at the other end of the finger and 
;,1:-.0 has I.cro 1c1l1!1It. This link SCfves :IS a con
vc nient place for ~'rpl ying an cxtcrn,d force. 
NC:-:I tlte torque hlllUi(lllS fo r the joints mus t be 
determilled. In this C;ISC we ran the si mulation 
for sevc ral seco llds without torque functions 
and recorded the joint angles that appeared 
natural. The torque functions were based on 
these observations and several runs to deter
mine appropriate slopes of Ihe funct io ns. 
Finally. in o rder for th e finger 10 tap. an exter
nal force must be periodically applied 10 it. In 
Ihis case. a spike lasting 0.11 s is applied to the 
finger tip eve ry 2 s. The mode l is allowed 2 s to 
stabili ze before the first spike is appl ied. 
The simplicity of thi s exa mple indicates the 
case wil h which realist ic an imal ion can be pro
duced wi th this approach. 
This exa mple has been run on bo th a SUN 
workstat ion (a MC680 10 wilh no noating poin t 
hardware) and a VAX 11/780 with a noating 
point accelerator. A time step of om s was used 
in these runs and Ihe slow band was calculated 
at cvcry time step. O n the SUN. 604 cpu sec
onds were required to produce an 8-s an im
aled sequence of the finger tapping (a wire 
frame perspective display of the skeleton was 
produced every 0.1 s). On the SUN hardware 
the si mulation is a factor of 75 slower than real 
time. The same program on the VAX requires 
89 s to produce 8 s of animat ion. If the slow 
band is calculated every other time step, the 
SUN requires 385 s and the VAX requires 
56.6 s to produce 8 s of animat ion. On the VAX 
this is close enough 10 rea l time to ge t some 
feel for the motion wh ile it is being calculated. 
The second example is based on a human body 
model consisting of twelve links. Figure 4 shows 
a sequence of images simula ting the first 0.5 s of 
a diving mot ion very si mply defined by apply
ing externa l forces downward and forward on 
the head and arms. forward on the lower bod y 
and upward and backward on the feet. The 
hinge torques ge nerated by stiffness and friction 
were sufficient to maintain reasonable behavior 
wit ho ut any interven tion by joint motor pro
grams. The momen ts of inert ia of the links were 
increased by about an order of magnitude from 
the correct values for the large links, and by 
three orders of magnitude for the small links 
(li ke the neck). Further exper iments are re-

-20$-

f ' . \. 

quired to dele rmin e the ;dl()wahlc f;tisificll i(l n 
of the moments of ille rti~l still giving reasml;lhk 
hcha\i (lr. With tll i:-. f"i:-.ifi(';ltioll (If the Irue d\
n;Jmics. the integration step sil.e could he laken 
It) he I t lO s. It was p(lssih le tn generate one 
second of motion (111 the V AX II i7RO in 9.5 S llf 
CPU lime, even if Ihe slowband computations 
were donc al every step. This W;I S about 10 
times slower than rea l time. Doing th e slow
band computations every five fastband cycles 
reduced this to rive times real time. 

F ig. 4 

The public domain software "DynaTree", writ 
ten in C by W.W. Armstrong. carried out the 
dynamics computations. The shaded color di s
play of the resulting file of positions. requiring 
about four minutes per pOSition. was done 
using software developed by Roben Lake. 
Clearly, we ha ve a lo ng way to go before ha v
ing near-real-time simulation and display of 
shaded images, but stick-figure simulation in 
real time is very close to being a reality. Drop
ping some of the non-essential terms in the 
equations of mo tion wo uld probably be enough 
to attain it. We are thus a lready facing the 
question of how the animator can control the 
motion in near-real-time. 

239 



· \ i ~ lI:iI ---------------·-----------

t .0111" ... , ,.. 

Conclusions and further work 

In thi s parer we have pn.:sc rllco th e dynamics 
of art iculated ri gid bod ies. an crfic ient met hod 
for sol ving th eir equa tio ns of mo tion. a nd a 
technique for develo ping huma n figure models 
based on these dyna mics. T he examples in 
Section : " Developing figu re modd s" show Ihal 
these equatio ns can be solved almost In real 
time. 
Th is wo rk su ggesl~ a number of w pics fo r fur
ther research. One possible topic is reducing the 
lime required to solve the equations of motion. 
Two possible approaches 10 Ihi s problem arc 
developing better implementations and des ign
ing special hardware fo r thei r exec utio n. Ano th · 
er research topic is deve loping better techniques 
for contro lling the figu re. A I the present ti me 
we have no t thoro ugh ly explored al l the poss i
bilit ies for supporting the model against the 
fo rce of gravit y. Also mea ns for contro ll ing 
compli cated motio ns need to be deve loped. F i
nally the ligure models need to be int eg rated 
with an environment where they can int eract 
with each othe r and long ran ge plann ing can 
occur. 

240 

References 

I\rm'lrong ww Ill)7'}) R.:<:u rS1Vt,' Solu tl<>l1 hI Lh.: 1:411,1' 
Li\ll1~ ,If MIllion of :111 N-llIlk Manipul:llnf, I'ru.: rlrth 
WIIl'1d Cnngrc~~ (Ill Th':(lf) of ~1;tdlln.:~ and M.:~h:l

ni'lIh, M"ntr'::II, 1'1,12. Am Sn.: M .... <:h Eng IJ4J J ,"~f> 
B;tdlcr N (It,ll\2) (clll Spo!cml Issuc I,f IEEE Cllmpuh:r 

GraphiCS and I\ppllCllllOIIS 011 Human Hody Mtldcl, 
and AnlmaLLOn, vol:!. no I) 

Burtnyk N. Weill M (976) Interactil'c Skeleton T.:ch
nique~ for Enhancing Motion Dynamics in Ke) Fram.: 
Animlltion. CACM 19 :564 

Calven TW. Chapman J. Palla A ( 1980) The Intcgrat ion 
of Subjective and Objective Data in the Aninl;lllnn of 
ti uman M .. w.:mcnt. Siggrilph '80. Proc.:cdi ngs. p IYl\ 

C:llmu ll E (1978) The Problcms of Compulcr- A~sl~lcd 
Anima tion. Siggraph '78 Proceedings. p J4R 

Goldstein H (1959) Classical Mechanics. Addjson-We~l.:\ . 

Rc<td inl; MAo . 
Hollerhach JM (1980a) An Iterative LagrangIan Fl'rmu

blion of Mampul:llor Dynamics. MiiSSlIchu$ells In · 
SIUU IC of Technology, AI Laboralory. A.I. M':lIw 
No 5JJ. Revised March 1980 

Hollerb<tch J M (1980b) A RecurSive Lilgr:lIlguln FllOllU-
1:l\Ion of Manipulator Dynamics and a COmp<lr:ltll''''' 
Study of Dyn:lmics Form ulation. IEEE Tnln) . .. 'n S~,· 
l""m~. M an :lnJ C)~rn.:L1':s. SMC-IO, II. pp 7.10- 7.16 

Lake R (1 985) Produeing:1 Sh:lded Tllbular M:ln. Dql.lft . 
ment of Computing Science. Universi ty of Albala 

Luh J, W;tl k .... r M. Paul R (1979J On-line Compul;llh'n:iI 
Scheme fo r Mcchailical M:lnipulators. :!nd II-At' 1I' IP 
S}mposlilm tin Information Conlf\\1 ProbJcm~ III ~I.I· 
nuf:lclUring Technolo~!) . Sluul;ilrl. Gamany 

P.wJ P (198 1) Robot Mampulators: Mathema tics. Pro
I;ramminl;. and COnlrOI. M IT Press. Cambridl;c. MA 

Schmidt RA (1982) MOlOr Conlrol and Learning : A Be· 
havioral Emphasis. Humiln Kinelics Publishers, Cham· 
paign Illinois 

Zell zcr D (1982) Motor Control Techniques for Fl)!ur .... 
Anim;.t l ion. IEEE Computer Graphics (lod Aprll
cal ions 2: SJ 

- 20tD-



SAN FRANCISCO JULY 22-26 VoIvme 19, Number 3, 1985 

Michel Girud 

"d 
A. A. Maciejewlki 

CompulC'r Craphic. R~a"h Group 
The O hio Siale U.;Hl'$ily 

OSU CCRC I Cranl ton CcMC'r 
ISOI Ne il Awuuc 

Colun,bUl O H .3201 

AbBtUtt 

ModeliJOg IKhniquH ror u ;malin,leued ligure. ,,-re duc ribed 
whic h are used in lhe POOA anin ,alio n lySlem. PODA uli. 
Ii . ... r-eudoibw • .,. cOMrol in onler 10 IOI"e Ihe problem. _ 
.oc: i.ued wilb manipul"-lin. kinemalically redundan l lim\:>.. 
PODA buildl o. Ihis capabilily 10 .ynlhesi» a kinemalic 
modd ollened locomotion whkh ",Uow. "'n,malan 10 con l rol 
lb.. (.'OInpl.,.; "t#n.l ionll,;po bdween lhe molion or Ih. body 
of '" qur .... d Ih. coordiUlion ol i .. Je". Finally, POOA 
prow;o." for Ih iMecr"'tion of a , ;mple mod. 1 or leued L0-
comotion dy.amic" which inlur •• Ih"'l Ih. accel""'lion. of a 
6,UH'. body an! _y nchroni .... wi,h Ihe timinl ol'he force. 
"'pplied by ill Ie". 
CR CaulorVs 31Id Subj e<1 O_riplon: 1.3.1 ICompul.r C rapb· 

;,,1: Grapa.iu ud Rulism: An im"-lion. Addilional Key Word, and 
Plu-un: ...,tion conlrol, computalion"-l modeling, m,,-nipol.tor., leue<! 
locomot io-

lnt. odueli.oll 
T h. problem. of animatin, articulated &, ur ... wit h mulliple Ie,. 

hue lonl been '" 100Ke or difficulty ,n Ihe <omp .. tff anim"'lion field . 
Jo1ft1 an,," interpoluioA belWOeft '''y" joint pooIilion. is Ih r mOil 
widdy .. ed metbod of animalinc joiA te<! anin,,,,I • . This method railoto 
wor k. h ........... r . forcaael in wh ich the end of a limbmut be coulrained 
10 mOWe alon.a puliculu path - Ihe inlerpolaled joint pooI,lionl of Iwo 
".ey· I,.. posilion. planled on Iho ,rou d will not . in gen.ral. remain 
On lhe ,""",d (IiC. I). 

Anolk< diflkulty is the , heer ledium or posilionin. "hy, " for 
lim\:>. conwninl many d ........ of frtotdo m. The animal.hown in fiaurc 
2 ~ 9 d~,rea ol freedom in uch 1 • •• 9 de8 .... ol freedon' in Ihe 
ned. &lid 18 des .... of freed om in the ".pine." An animalor l1.in. a 
hy jo;,u .,...10 .... wo .. 1d hAYe 10 mana,e pooI;lionin, '" total ol63 jo;nl • . 

A r,.,.~hr problem is that a Wilkin, or run nins Ii .... e is rno~ than 
........ mlob,e ol mowin,lim\:>. - I ht coordinalion of lo. s, body and fflet 
an fua(liouUy Hlaled in a compl ... : f ... hio& . The motioll of Ihe body 
of a 6 •• ~ .... d Ihe timi", .... d placem .. ,' of lea' arc bolh ki"emalKaU, 
and dyu.ically cOlpled.I20-3el 

The -t>pro...:~ t ake" i. 110. deli,1 olthe PODA .y.lem ia 10 pro
wide Ihe ... imalor with a compulalional model wh ich facilitatH Ihe 
jnt .. ral;" .... d dinel cOII I.ol ollh. f.ndional depuduciu belW fleA 

The ... areb. d_ribed in thi. plIN' WII IUppoM.ed. in part. by 
Nal ional Science Fo .. ndalion ,rani OCR·nCW ISS. and in part . by a 
Nllional Science Foundation Fe!low,hip. 

Penniuion It) copy withoul fee aU or part of thilo ma lcnal il lV.nled 
pro"'ded lhat the g)piel .re not made Or diltri buted for direct 
commercial ad'I&ntqe. the ACM (o",ri,11I notice .nd lhe lil ie of the 
publiQtion I.IId ill dale .ppear, and notioe U liven IMt cop,in, it h~ 
permission of lhe A.ocialion for Com]XItin, Machinery. To copy 
othenriJC. 0<' 10 republish. ~"ifU a fee .nd/ or specifIC pcnniuion. 

co IlJH5 ACM O·K971J1 · IM ·OIS5/00710263 $00.75 

-Z07-

difl'erenl parts of ;o 6811re. An interacliwe menu·drivu in ten""e is used 
for bolh t'-c incremenlal conettll(lion and behawioral control of animalo 
poqeuin, any lIumber oIle," compooed of "'ny n .. mber of join" . A 
. lrale., io implemented i" which the Ii, .... •• mOlion may be deli, ned 
and manip.ialed 01 dilfuent lewet. 01 conuol. At Ihe IowHI lewe l Ihe 
.. imuor . ay dehe and aciju.t tbe cbuackr of 'he mOvtmeal ol the 
Ie," and f ... l . AI a hi,her leul the ",,,;malOl" may dire< t Ibe coordi" .. 
lion ol lhoe legl and cOllrol tho o"erlll motioll dYDamia and palh ol 
th. body. 

The primary ,oal 01 OIU .lforu io 10 b.ild a framework ill which 
Ihe .ynl'-ia of leued 6,ur. motion may bt Ari-islKally conuived and 
con trolled al ;"cre ... inlly hi,htr JeweL. ol complexity .... d a\:>.lraclion. 
In Ihia r .. ud. o .. r inil ial elforlt hawe been f<xu.ued on dewelopin, a 
,ener",' model lor leued locomot ion due 10 ill importance to Ihe .,.t
(IItion of more compl.,. motor , kill •• , uch ... IhOle which u. requir .... 
(or dance and gyn''' ..... Iicol 27 l. 

In thi. fi~t "",ction We will oUll ine t he oo lul ion uken in PODA for 
th~ (onttol of ,;ngle lin,b •. Thi. will .. t Ihe Slag~ for the di.cu.,io ll of 
the leued locon, ,," o,, moJ,1 wh i( h utili ... the limb conl rol ""thod, 
d_ ribed . 

r.tlH"po~t"' Pos""'" K .... I Pos tUon 

THE CONTROL OF LIMO~ 

Rep,""",ntinll a r ticu lated lImbto 
In order to d.fine t he funclionahly of an ~rbilrary arliculaled fiR· 

ure. PODA has a.Jopted Ihe kin.matic noution pr~nled by De"IY,t 
.. d Hu ... berR 131. Thi • • p~ili" '" uique coordi"ate .yuen, fD' CW· 
~ ind iwidul desrct of freedom prtKnl in the fi~ .. rc . Th .... deRr .... ol 
fHedom. wh""hff rot~ry or prilmalic. will be ~ferred 10 .... joint ... d 
Ihc h.ed i"'erconn~I"'B bod" ... hnk • . The fo ... puamele .. uHd to 
deline the tunsformalion between .... jac.nt coord i.ale 'y"le",. an! Ihe 
Icnath of 110. link ". t he Iwill of Ihe link ... I he dialanu belwee" links 
d. and Ihc anIle betw • • n ""k. 9. T he .in81. n riabl. _i"'te<! wilh 
tbo tr l nt/orm at ion depend. On lhe Iype of joinl repre..,nled. that io , 
for rot...., or d ror pr i.noatic jo;,," (fi~ . 3). 

263 



Ci,,~ .. lite aboy" de6nilionl, it <u be shown fill III .. , Ihe tru .. 
form*,ion tHot ....... adjacent coordinate I.amu • - I ;>'lId , dellol~ by 
, . , T, is liven by the hom08UW'" trant'orm .. t''''': 

whue 
P. = <l, COll~, ", _c".,. 
py= a, II .. 8. ". .. .... I, 
P. '" d, ". - 0 

0 , - <OIIo,.in l , 0, _ l in d, SIn I . 

0. "' cOOlo,co.8, " .... "" a , coal, 
0 , .. . iIlO, ", " to. 0, 

By •• ""at...!l), applying adjacutlink Innda.mation, the rcla'ion_ 
,ltip bet ..... " any two coordinate 'yUe", • • ud J ; ..... ,1)' obt .. infll 
\I.inl 

'TJ = 'T, •• '·'7;.1 " ' · 'TI 

Th. abou equation permito >on), link of Ih . 6111", d.,Sned ill iu 
ow .. cOQ,dinau rra ... e, 10 be repuwntfll ill >on), .... bilrU)' .duenct 0#" 

world coord;" .. ,. frame . "'lor. Import,""'I),, ,I nn b ... oed to dUnmi". 
tile nmbet .... d clluacleris'iu of ,h. d., ...... of freedom auilabl.for 
.imulatin, coordinated mo"e ... ""I. 

Tbe Juobllln Mattix 
Ciy",,, the "bou fu ....... ork, 0". can ~ ... ily OM Ih~l, liy~n Ih~ IIU~ 

of Ih .. joint .... ,Ie .. ,iabln, ... ~ un compute tb. pOllilioa of ~II oflh~ 
lin" and ..mye U Ih, pOlilion of lhe ,"d of Ih, limb, Thill ;. (alit<! Ih, 
lor_rsl .. ;" .... "h., proble ... . Th. r.v ...... illlolion, Iha' of complI"_, 
Ihe join! 1n,1 .. from Ihe pooitioll of Ih ... nd of Ih, limb, ill neceoury 
if .. , .. ;'h 10 piau a fool or hand in .orne duired pb.,,.... .. h~t Korein 
~nd B~ler hue ulled 'KO~l direcled motion" [32[, Thill i. called th 
IU .... tu ....... I'" p.oblem. Th l'Ued Io<omolion mod.b in PODA 
roly huyilyon the nee<l for ~o.l.d.rec.ed mollon: fHI mllot be moyed 
.Ionll '.ajeclori.., plKod .uclly .' do."..:! fOOlholds ~nd h.ld in piau 
'" lhe body p ....... our tho", .. 

Th .... llItlOn 01 the InY •• .., ~'n .... all(' p.obl ...... ,10 • ..,,,.u of 
..... ( ~ '" Ih. dillic_lty 'n <I.alin~ WltJ, (onlto lli ..... 1001IIal...:! 'KU ... .. A 
,0 ..... 1 ""llIt,on fo. alb,tr.ry ao-liclllated ,h.i,," dO-<l _01 n ;,I;uod cw •• 
Ih ..... III~' knd Ih ... , .... lu. 10 an nalYlic ",,1,,11011 .null '" no_I',.o ... 
eqllation. [I'lI. Additional co",pliuti"ftla,. incurred wh.n .. ,.h,ndu. 
clo,.oe. of frHdolll .. e prnent . 

264 

e SIGGRAPH'85 

Til_ ""llIlion .><I0Pltd by PODA i.lo linur i .. lhe equation.abo .. t 
th <lIrnnt oP'<ulinr poinl . Tio. l ill .. din,.n lion.1 .ecl.,..- •• p ..... ntin. 
an incrom.n, .. 1 cha .... in position .. nd or;''''a,ion ;n Ih.oe . p .... of 
.. n ubilt3ty link is li ... arly r.latw 10 III_ .ecIO, 0.'- by th. J3Cobi"n 
mal.i~ J Ih.Olllh Lho «lllal ion 

1'1 

for chURO' which ... '" luffi. lOntJy . m ... l1 Th.., by IIpd.L'n~ lhe Jacolli"n 
< ... h <,ck lim. , Lb. ~[u"u ••• of a lu,u • • y. ton ..... ob,ained .. Thi • 
..llow.,h. appliu"o~ of all of the I«""IIIU'" oI ... I.;ngl,nnr "'1".11'0 111 
10 obu,n lho dni,ed r~.ul l 110 b. d lK" uod in ,II. nul ""'tlOn). TIo~ 
.. .. of J;\oCob,anl h", long b ... n a commOn p. ;\oCI, .. ,n .. on lin .... con trol 
. yll.m theory .. nd Ioas been ... c .... flllly applood in tho fiold of roboil(, 
[IUgt· 

011. 10 ilo central n.>Lure 'n tloe .. n;mal ,on of .1,"culuod Ii_u ... , 
.... officionl impl.mu .. t io n fo r , ....... t in. lho J.Kobian ; ....... "lial to 
a ~iabl .. 'Y'IOm. While tho .. :lI' may di/h .... 1 techniqlln "v .. iL.hle. a 
pulieul",ly .I ••• ni method h ... bo:.n form .. I .... d wilh ih ..... of sc,"w 
motor .ari.bt .. [17[. A .. nw molo. ;. char ... l .. i. ed by ,h ..... r i .. bl.! 
..;;, Ih, angu lar voloc;ty of Ihe .. row ni., and ii, the ~.IOC:'ly 01 ... po",1 
all ... hec:llo lloe ",row allis which coinc.d .... ilh Ihe ori.in of ,h. ,",orld 
coordinate fram • . ED ' .. n, . of th ... variablu, th~ dui.ed di.placemenl 
oIlk. foot may b. up ......... '" 

.:; .. R.:;/ 

ii - Rii,-':;"p 

0.-[~;I · 

'" 

.. h ••• R ;'110. upper:Ix 3 ' Olat,on puti,ioQ of ,h. homo ..... ou. tr.n .... 
formation d.scribinllh. d .. ired point who.e ~"oc: i,y ill beonl .peciliiod 
IIId P ;" 110 . pooilio. of Ihi. poinl ,i .... br ,h. fo .. rth column of ilO 
homo •• noo ... tran.format io .. It un be .hown [16[,hu lho Juobia .. 
;. ,i •• n by 

;.[Plx .. , 
0, 

1>1 x .. , 

" 
1' .. )( .... I 
'. )31 

... hr, ... and 1'. uo Ih. lloird a"d fow .. h < .. I .. m .. , ."opecli ... I, .. of 110, 
1ooo"'Ol0n.., ... j'.1nolormalion malr,. "T. _I .. Th" 6nl colum_ of Ih 
J ... obian ill ,i .... by 

1', =[000 /' 

- 20'8-



SAN FRAN(IS(O JULY 22-26 

Thil formut~lio. of Ihe Jacobiu ~now. a minimal .mounl of uln 
~ompul.lion .inc .. th majority of Ih. work haa .Ir • .dy bu" don. 'n 
,.auat;". the homolenea". tr.n.formal;on. ,~uif..d to di.play tho 
objed. Thio;' i .. COlll raal with other I«hniq"es which do nOl upre .. 
the Jacobi •• i. the wwld coordiule f.ame [371. 

lnvertin& the Ja.:obi.n 
Ciwen a li.eu .num bJ yin .. ., oIlhe 1:>.1.obian, w. now nud 10 "'_ 

.. erllh ••• I:>.I.iouhlp r.p.~"I..! by ..... alioll [I) in order 10 dOl •• mill. 

Ih. r ... "i.ed 0./10 :>.I. h iewe • desi.ed Ill. Sinc. w. an dulin, Wilh 
.... bitury a.J1ic .. bl..! fig"re., the Jacobi~II i. in I.neral 1101 ~ .. u. and 
Ih.",for. ill inu .... i. not.d.fi,..d. To obt~in " " ... ful solution •• ,a,d· 
los:>. 01 the ,."k 01 J, lhe po."doi,. ....... i. appli ... . Tilt pIOudo;,"' ..... 
will be d ... 01'" by J' and ill"" "niq". [ Ill ",alr i~ which .al ;l fi ... Ih. 
fo .. r pro.,.,n,", 

JJ>J . J 
J>Jr '" J' 
(J' JI' . j' J 
(J )'1 ' .. J J' '" 

Th ........ Ia~ .. of u.in~ the pseudo;nH'", Li . ill Iha' " .. Iurn,lh. 
lean sq .. ar .. ""nimum "orin 1OOIution 10 ",".';on (\) . Thus il pro .. id .. 
... rul . "uill ill ~h Ih •• ndu and ov •• d,u.m,ned <utS. Oth •• 
In ••• liled in ....... may.u.. be applied (1,2(. A ... <.ll.nl ov ..... ,.w 
<o"U,"i., I ~ .. pselldoillHI"H <onlrol 01 ,eUII.da,,1 muipul.lon:>.l w.1l 
a.o .. ,comolrk intcrp,oUl ion 01111. PM"doill"'rse lI.inl .i .... lar ... Iue 
d«ompooilio. io p ...... nled in [7( . 

A umbe. of dilF •• onl methodl for ukllluin. pselldoi.v.na ha ... 
bHn dixllMOd i .. Ih. lil ••• III,. {& ,14{. I!. di..,,, .. ion of Ih. 10m. oIlh. 
Rllm •• Kal con.id • •• liono ill .. o l .. ed in compulin8 Ih~ pllf'udoinve .... it 
p ..... nt..! by Nobw II I{. Th •• impl ... 1 .li:pr ... ionJ for a pHudoinvo_ 
ap.,.,ar lor ",.I. ic: ... known 10 be 01 full rank . For.n,..)( n m~lri~ .4 
of .ank r , I'" Upr ... ioll for Ih. pse .. do,n ........ illi .. u by 

"m > n _ .;,nd 

ifr _ m < .. 
is) . 

Th~ UN of Ca .... i .. n eliminalioll wilh pi"Ol in, 'cn,OVts III.. need lor an 
uplicil invent cl lclI l"lion ~ .. d ,etlll" in a "Ibl . .. "d .ffi<ient I .. hll;.qlle 
'or comp.I_,lh pHudoin ... na und •• Ih ... conditionl. 

For m:>.l.ric. .. 01 lI .. known •• "k ..... u .. i ... procedu •• lor compul i •• 
Ih. pHlldoia,,_ pr ..... lIl..! by emilie 14{ mlY be used, Ih d,hila 01 
which ar. beyoad Ih • ..,ope of Ihio p • .,.,r. 

Cont.ollh.& Red.UJldlnt Limbe In PODA 
Whil. th ... bov. xo:lion iltul".' ... how lhe pHwdoi" ........ cn M 

.. led 10 obtaill a u .. 11I1 1OIIIIion 10 "Iuation (I), lor u • .,. wh • ..., red ... · 
d~nl d •• ,_ 01 I.eedom uiol, il il only On. ol .. n infinile number of 
sol"lionl. Th mUll" in which Ihe .nimllo, iI,;".n Ihe Buibilily l u 
delO.miu ."ic:1t of ,he .... il.hI.solution. '" molt d ... irable i. Ihrou~h 
.. p.ojKlio. O.,.,UIO • . [I un b •• hown 'hal . hown {51 th .. 1 Ih •• ra.ul 
oolulio. 01 ..... 10011 (\1 illi ... n by 

o,'- _ J+o.i ... (/ _ J'J)i I') 

wh ••• I io aa n " n .nily m.trix and ~ '" .n •• bilrary "Klo. in o.. ~ 
'P""~. Til ... Ih, homo ..... ou. portion of Ihi, solution iJ d .... "bed by 
• pro;«lion ope •• ,o. (f _ J' J) that maOI 111.0 arbitrary "Klo. i ;MO 

Volume 19. Numbet" 3. 1985 

Ih. ullap .. u oI lh. In.lllformal'on. Th. phy.iul inl.rprel.alio .. oIlh. 
~.ncoUi 101., 00. io ilLnluled i. filu..., ~ . 

Th". by di' .... ' choic: .. for Ihe "Klor i, ""oou, d.,.irahl. prope.
liu dnc.ribed ;. l-tpM. un M ach,eveU IInder ,lie <oa.ln""l ;m~ 
by U:>.I.I :>.I.hi .... m."'oIll1. l.,..,ifi eU o.E. One partic .. l ... ly ... 1111 pt"Op-

on, iJ ~ kHpjoin" ... cJo.e .. pauibl. \olOm. partie .. l ... "'11 •• <h ..... n 
by Ih. Inimat.or. Thil io don.ll{ by .pecihin, Ihe "KIO. ii" ... ua.lioll 
(tI) ~ be 

i _ VH 

H '" L:O,(I, - 1 •. 1' .. , 
... h .... I , ;, ,he .111. joi,,1 anll., I ., iJ Ihe cule. anile oIl\oe .Ih joinl 
.n.I., and a, II. c .. le. anll. ,.ill v.lue MtW"Hn ... 0 a ... On • . Th. 
eqnlion may ,,110 be •• n~ralil..! 10' H '"'IlIal,o .ny smootll fllnnion 
on. wi.h •• 10 ",in;m'''. 

The cent .. ~n81 ... defi,,~ .h. ,jui • ..! joint anll. po. itiolU a"d Ih." 
_ialed ~ .. , ... d.6ne Ih.i. roJ~l;v, imporlanu of . alilfaclioll . F.om 
lhe anin,aIO," po'''1 of "i.w, lhe 13'n. may b. Ihoughl of "" ", prin , ," 
whic:h d.fin. the .,ifnOM of 'he joinl abo ul lOm. d.li • ..! con ... poo;l;on . 
PODA pro .. id ... in IH"'li" •• .,..,;6Ulioll of unl •• an.l ..... d ,aill' a.o 
a .... alll of cO.lrolli". ~andant d., ...... of f ....... om in Ih. Ie,". 

Th impl.ment.lion 01 Ihi. formliLation (all "'" ind..Jed 'n III~ 

la_il .. . limin .. tio. pto<:edlirt for COmpul;n. Ih. l"M"doinv.fte " il io 
prope.ly d«omp<»e<i {71. . 

11omoc)t11f""'. 1'Olul'ion 101M ..J.eobi ... f"CjUll'ion U ttw 
Slrl of jo"'l Vt\o¢jt.." ",hich ~oMIS' no tnd tfftc:tor mot'ion . 

MODELING THE KINEMATICS 
or LEGGED LOCOMOTION 

Th. luk of •• i • • m .. tie mod.1 for 1~lIed locomotion io 10 coord~ 
n3" Ih. motion of Ih 1.1.,feel and body in lerlll. 01 Ih.ir . Hp«I,H 
~tion. and v~locil," (N.wtoni.n mechani<al pro.,.,rtits Hch "" fo ... 
;>.lId "' ........ nol ~o ... idered). Th. kin.m.tic ",od.1 mU l l en~bI. the 
.nim.lo. 10 d •• iln th I;minl r.la,iollihipa """"..,n II. ...... ~nd Ih. 
<haracler 01 ,h .... po I."n by .ach I •• in acconbn<. willi IIIe d .. i(n 
oIlh. body's u.j«tory, or""I.lion and lpeed. Ide.lty, it should M 
.a.oi.Ly ad.plabl. 10 •• y .>tl.nsion. mad. in Ih. dynamia domain . 

Calt D .. i&n IJI PODA 
Th. mod.1 of locomolion 'mpl.mented in POOl!. "Iili .... nllmber 

of ...... am.I ... which ar, <on ... nienl for d.tc.ibinl Ihe Ilil of. fiBU ..... 
the terms Ind r.latioll' U e dHiveU from robolic. ,,,,:o.K" 0 .. w.llti", 
m...,hin .. 122-2&1· 

A '1111 ,.U •• " d ..... ibes Ille .... ".nu of lifli", .... d pbocilll of I~. 
rea. Til. palt.r" .e.,.,.lI il .. 1f a.o IIIe &llIr. mo"es, .acll ""pelilio. 01 
IIIe ...... ~lKe iI called Ih. , .... , <,cI • . 

The lim. (or umber 01 f •• m •• ) la"n 10 (omplele •• inll ••• il 
cycle io IIIe , ... oJ P oIlhe <yde. 

Th •• d.w •• ,It .... of I., .. R, , d.tc . i,," Ih. 1.-... 100. 01 Ih. ,a'l 
cycl. periO<J ... hic:h ' . .... pi .... befo •• 10' • io Ii' ..... Til ... 1.live ph....,. 
of Ihe I ••• may be ....... 10 d .... ify III. well known •• ill of ql\&drllpW31 
animal. ifi, . s) . 

Dur;n. each rail cycl. p.riod any ,ivu 10, _m'.,.,lId • p •• u nta." 
of Ih.1 lim. on Ih. Iro .. nd-lhiJ r,aclion ;. call..! the ~.',/ .. <lo • .. II., 
I. ro • ."ampl., til., duty r .. IO. may be aHd 10 dill;n ••• 11 ""'Iween 
the w.lk'''1 a"d ." .. inl ,Iito 01 biped • • W.lkin. nqair .. Ih.1 Ih. 
du ly faclor oIlho uch oIth, Ie •• un·ed O.S .ince , b, .... &.ilion,11Ie 
f ..... mUll M on Ih ••• o.nd .imuLtantQIII1, for .. po.unla.e of Ih. la;1 
cycl. .,.,.iod. Lowe. dUl y r .. lors (I ... Ih.n O.S) .... ull ,n balhllic: ... ot ion 
;denli~..d wilh rllnnin~. whe •• in <he .nli .. body In .... Ih. ~'''und for 
"""'. du.aliOll . 

265 



tre. 
0.5 0 0.5 

,... 
o 0.' 

l l l 
0.73 o .~ 0.5 o o 0.' 

0.5 0 .6 0.6 0.' 0 .' 0 .' 

tr.vers. 
"lie, 

retn, ,,11., ..... 

0.7 0 

We ",ill <.>11 th t;m~" l~g . p~nd~ <>" th grollnd ,to npp<>.1 J",a. 
hQ~ . Th~ I,,,,. ' p<'ot in the air i. the leg'. Ira,,4.' .t"'olt,, ... 

Tb~ ./ .... k. i. dcfinw ;os the d~\"nu tr~v.].,d by the body du r ing "
leg'. onppor1 dur~tion. If we ;>.,knowledge that the foot "''' $ \ tr~v.rw 
the " rok. durin! the Lunder ph""" in order 10 "k«p up· with tht 
body. the ~trok. may altun",ively be . e,Md.d ;os the length of th 
lIep ,ahn by the leg Over the ground (lig . 6,,). Tht body may ",ove 
ove r th. grou nd plane in PODA,'" the . Hoke in this (O"lut bKom •• 
tile di,,"'Her of" cirde in that pbne (fig. 6b) . 

0--- str ole . _.-0 

Leg Coord ,"" ,;on 
TIL. follow ing .clui,,",hip hokl. bet w«" the legl and th body: 

. .t roke 
ooPl"'rtDllullon ~ S 

Oo<.ly PeM 

The above "'Iu~l;on IIOI"e' for th t;" •• (or nurnb..rof fum ... ) th~1 each 
I., mUll .pend on the ,round. By d~fin ;l ;on .... ~Iw h~v. 

Th. ~mount of t''''. wh,ch ~ leg Ipnd. in the ~'r dep<'nd. On both 
th le~ 'p<'ffl and I he uclenglh of Ihe tr~n,fer ph~ Ir3j.-.:'ory. Th3t 

O 
- ucLengtb(lnnof .. Tnjeel0'11 

,unofer uratlon '" I S d eg p •• 

During Ih. ,~;I cyel<: period P, ~ .ingle leg .. ,II Ino~ thro .. t" on. 
cycle of .uppor< ~nd tr3nolor, hence .... h~u : 

P '" .upporlDura lion -I- Ir~n .forDur ~ tion [.J 

for ~ny leg k . [n fUI, one "'"y in.agine 110. p.riod u a duruion .ub
di"id.d inlo .uppoM. and tr~nofer duulion. (fig 71 . The I., .141. a l 
tinl. , m,,"y be d.lorr"in.d ... 

266 

e SIGGRAPH'B5 

le,Slat. '" (le,Stlt~o -1-1) mod P I" 

legSlal .. " - fRo) (P) 

1I1he leg .t.te i& I ... Ihu Ihe .apport d ..... lio .. Iben the I .. i& i .. ,U . upport ph .... olh_ise Ihe I., i& i .. iu Ir • .e.e{er ph .... Moreover. 
Ihe lime of fool placeme .. t occurs wben Ihe I., tlile "'lull urG and Ihe 
foot JiIlolI" occlIn .. hen. Ih. leg l\al. ;. equal to Ihe . uppol1 duralion 
(6,.7). 

A,. ... im.lor ,,"iaC POOl. m.y deli,,. , .. ", for 6ClII"U b • ." .. , ... y 
.. umb..r of leci by in.tlalll'.lia,lhe p"~elen civen .bove. Tb. model 
"'Uel . ure Ihat aU Ih ... ri.b[et are upd.ted accordillc to fUlletion&! 
depeDdenciel, thereby fr""n. tlte anim.tor to experiment .. ilh the ".,i. 
.ble. of intuett Iuc h ... reiat ive ph ... wilholll .. orryinl about Ihe 
integrity of th~ oth .. r.lated ".,iabl .. . 

,,,,, 
Plocement 

'",,'oc ~'i t 
Duration Cycle 

~ Period s."", 
,,,,, ~ //Duration 

Uftoff .~ 

Leg Suppor t aDd 1TaDsret Traje~tori .. 
Aside from th. problem 01 coordinaling the timing of Ihe legs, one 

mull de.ign the motio~ of the .t.p t3k.n dur,ng the IraMle. ph ... e 
and insure tha.! tho feet w,lI remain pl3nled on the ground du.ing tho 
support ph,,",e . 

A ~tep ,. 'pec,fied in PODA by Ihe de. ired tr,,"j« lo'1 of lhe fee l 
and the unler 311gl., and 83i ll' on Ih. joints (which m~y <h3nge dy. 
na", ic3 I1y) . Tbo curve .. hich d.fines the /001 traj.-.: tory i. de6ned by 
a C3t nou ll ·R ..... (interpolatinl) spline . &':"u.e the de.ired shape of 
the ClII'''' depend. on the ~eomet'1 01 th.leg, Ih. <ontrol po,nts of the 
.pline a,. set by mov'~g the foot of the leg. The 3nim3tor may concep-
tualin lhe de,ign of the .tep 31 the ' peci6"""tion of "hy Ie, position." 
in the 'p,r't of a key.ln",i", sy.tem. In POOl., 3 k.y poeilion records 
the pooition of the foot (u a (on trol point in the .pline) ... IId the ce"ter 
allgl .. :lnd I"i ... th~t ~re 3.U<)<ialed wilh Ihat pooili,," . The ~nin'3tor 
'nanipul31es th foot i~to raeh posit ion u. ing POOl. '. inwe ...... kin ... 
m .. lie prQ(eduru, 3nd then, once the fOOl is in plac., th jo;,,1 an~le. 
may be adjusted u.ing the "nter ~ngle nd lain pu~mot.,.. 

T h" .. ppm.."h is d'stingui.hed from hy·lr3n.inl or joinl 3ngle 
inlerpol,,"l ion 'y"e",. in th31 the go~1 of uhi." ;"1 lhe d..,i,ed foot 
poo, tio n in CarI •• i3n .pUt i. prim3ry- tb. foot .. iU tr~vel prec iHly 
~Ionl the .mooth C3tmull·Rorn .pline from.foothold 10 foothold. By 
conu ... " if we interpolate the Ihe ! •• pO. ilion. i. jo int l po.<e, there iI 
nO lenera! mun. of eil her moving the foot a!ong aC U)"'le or pl:oc,nl the 
foot al 3 parlicul~r pia,," on the ground. 

The problem of hopinl the leM' on t he lround 31lhe body tun .. 
1,,"1., 3nd , oUh. i •• impli6ed due 10 POOA'. inHue .inematie C3p3· 
bili.y. T he problem r..duce. losol.,ing for . he pooition of Ih. fOOl in Ih 
[eg'l n,o"i~g coorJi,,"le .y.lem so t h ,,"t it iI idenlic31 to the pl3umenl 
of Ihe fOOl in Ihe pr.viou. f.M"o', .. orld coo.dina' •• yot.m (Ihereby 
k ... p' '' ' lhe foot otat;o n...-y ,n the world). W .... ..,Iye for thi. po.itio" 
u"" g . 

(101 

H"·pr.YFum.Foo~, '" H"'T w,.,',', (W""'tpr ... Fr~m.Fooc.. . ,) 

-210-



SAN FRANCIS<::0 JULY 22·26 

DIH<UoDal CoDtI'ol or th .. Bod)' 
If tht ... ;"al.o< it \0 lIa., ... ptt'YiMIry ~onlrol. O"It. th .. ICII...! 6,. 

11ft, a m .. "" for direui ll ' Ih .. body'. fall I.all.lalional and roblioul 
d~', 01' freedom mutt t.. anilahle. Gi.,en Ih.I an th. ICII "r. 0 .. 

Ibt If'O,,,,d , 'M probltm may be IOI.,...! Uljll, ~lIalioll (10). Tile fll ... 
dunu,aI problem ia \0 ul""lal.t footho"" and plu tbt foot tra...rer 
In.jKtorWt between th'm 10 .. 10 :ada", 10 Ih, deoind bod~ I'>OIioa. 

Foothold aDd TraD.rer Tr'llectory PItDDIDC 
A .. imporlWll concel>' 01' footllold plallllill, is tbe 1I0lioll 01' a •• /. 

nn ... I'f ,.m1; .. ,,1221. Tbis is lb. deoirod patition 01' th It, ilt mi6-
.I .... n or btl' wa~ llIou,b Ih. Let'. IlIppcm danlioll (fi,. 10). Th, 
JH>" ...... 01' U Ulimal wb.n aU 01' iu 1',1 :an ill their . dunce potitiolll 
may be ,.,arded :at the "sulldill,· posillo11 of Iht ""imal (fi,. 11). 

Th. olh", key ill, . ... !ienl for Iht fool loold calclilat ion is the ~bilily 
10 pred i~I Ibt bodY'1 flllll,., potiliono. In PODA, th. bodY'1 trajKlO'1' 
may be compooled :at a fllnclio" of th. dnir...! body trajKIO<'y OV •• lht 
,rond plalle (. ubic .plint duilll...! by Iht animuo.) and dynamic 
COl\$lra;nll du. Ihe limillg and fol'<;o limihlion. of I.g> (to be dillCusud) 
before Ih. pTKiH foothold . an chosen. Since Ih. body'. polilion i.o 
known in advUlct, it is pouiblt 10 plan ahud in ord •• JlCp 10 ... ard Ih. 
nul II.bl. potition 

'"I l in orr 

AI tho be,innin, of lhe l.~ In.u( • • ph~t of I.", oay al f.a,nt t 

w. mul (on'pllt. Ih •• f""II(. I., po.itio" in wodd I pan at f.am. /, 
... follo .. o: 

.... '~ITII" .... ..... L' T[I .• ,. ,. [I···'"TH, .. 

.... ·' · 'nfL~~Pof/ , • w··'"'T", .. . , ( "" "~fL~~P';;) 
.. h~~ 

( ILl 

Thil foothold ... ill ''''",. Ih .1I Ih ~1 I'K ' Co m .. to ilf ·",id·na" .. • 
pooilion h,,1f ""y Ih'O"lh 't~ IUppofl ph"". W. " '11,1 , till det~.miht 
IItt potilioll 01' th fool. ,n Ihe body'. <oo.dinah Iy"en, at Ih~ Ii,,,. 
Ihe foot. i.o pI:o<ed do .. n. Thi. k"" .. I...!~ . i ... quittd in o .. le. 10 fac il i. 
hte movi"llh~ fOOl ho.ilon!ally ... ith r.,pK I 10 the hody d ... inK Ihe 
Iraufn. Thill may ht 3ccompli. hod by: 

o.-".efk_P~" -= [I'-'rT .... ,'.I,. (""" · 't.fLe~ i>;:;'/') 
• h ••• 

h '" I + lru.rctDu.ali .. n 

Th ••• M'ic I.an,f •• IUJe<:IOty dH'_"..! hy Ihe .. "i ll,alot ",ay Ihn 
b. ad3plod 10 ,n .... bd .... en Ih. CUrT" nl fool poo",on ,,,,.I Ih C .. I<II' 
bt"! fo.>th old .o Ih.l1 I h. h.iKl,I,n Ih .. orld and p.ol",.tio ll.11 d,.''''n , . 
mo¥td nnl 10 Ih. body a •• p.~ ...... d 

Robot ,u ...... ..,ch Oil .... lk,nl vehid • • h.u p.oyid.d • "eI, "'".,,' 
01' tomp",al ion,,1 ",od"l. for ,h . .. ,I"" on of bo<ly n,O' ..," pl .. "n"'l alld 
1'1 CO<lf'.hftal ion ,12.1fl i !lo ... ,v" . • h ... oI""'~n ( flln, .' .. .., ,,,,, .. h,,, 

dilf~rrlll II,. '0<1"''''''.'''' " f .""""""" 

Volume 19, Number 3, 1985 

The primvy dOlil" CO.CO'''' of th" robot;.:. alloO.hml ;on 10 
",.intaill dyumic I l abilily of Ih. walkin, yeb;':I •. lO avoid I., inlenee:. 
110" ., lO optimi •• Ih. load ba lan(in, and "nern con.umpt ion, alld to 
inn .. ,hal I k. fHI ""YU ... a~ booyond . heir kinemal ic limiu. Beeau ... 
th. allontll"" mUll ac.ually wor k fOf" .eal .. all.i"l mach'n ... (ralht. 
Ih"" limalal...! ',na), Ibeir .cope io cOIlM",U;Ye. Reolric.iona are 
plac" lIfO Ih. Iy,.. of lail p..tt.enu alld ,.,llIiv. phaM ,.,lalion, hiptt 
IMtlwcu. Ih. letl. IbKtby drul inlly limilinl Ib" tepe. toir. of behay. 
Ion. 

Tile dCl;I. philooophy 01' PODA ia Iv ,in I" ""imalOr ab.c.lule 
coa",,1 O"Ier Ih. enlin: .eI 01' of ... :a.ilablt ,,,;u ia ordn to uplo11 the 
coept;"1 betwNn .hylbm and dy""-mict (\0 be dia ... cd) .i"co thto. 
mallen are of .. I ... mt importnu in ut;'tic d .. i811 . MorK>yer, . ;"co 
PODA'. cUIT.nl implomentalion on the Ridl' 32C minicomputer p'(>
yid .. fOf rull;mt complltalio" 01' a ligllte pouHIinl fOil. 9-del'« of 
freedom It,. at 2 f .. mn ptr _ond, \el inlerfuCllu a"d .. .,natllul 
le,.trttehing may t.. detected immediat.ly, luvinllh. tan,. of muy 
<c ..... ablo 1OIIIIiolli to th~ probl.m> up 10 tho arlill .alh .. Ihan 
hrd- ... iti .. g a .inile IO lut;on into Ih. mOlio .. model. 

MODELING THE DYNAMICS 
OF LEGGED LOCOMOTION 

Tilt .imliialion of Ih. dynamics of motion otOnlrol i .. . \e .. ...! an. 
imalo io :an utrem.ly complu modelin, p.oblem. Modell for .;1111. 
limb. (i"d,,"dal roboll) ... hic h compule Ihe •• Jalion. hiV- bel ..... n Ih. 
lorqll •• applied al Ihc joint •• l he m,,"o. and mo m.nll of inerlia of .ach 
of Ibe link •• ~nd Iho poo,lion of lhe joinll and ,h. i. ;1.I1<X;ated lim, 

d .. ;va.iv .. , :an ... ell und ... lood 1311. Work h,,-, "Ito been publi. h...! in 
tho biomKhan,u field oa the Iho •• Ialionship bet ... «n mu.cubr (ore ... 
and motion pa.an,oton of . impli6ed ·id.al" models o( animaIt133.34I. 
All hough th ... ,nod.l" m~y p.oduce ""cr'Ui"8 animation , lhei. ap-
prop.ialn .... for anini, d." ~11 and conltol n'II,1 b. (ono;d • • N al w.n 
"" their (II'\lally . .. bouftlial) Co" 'pulal;"nal , ... u . 

Si",,,I .. tion va. Animation 
In (O"If",,' '" lI.duolrlal .obo," ;>.,,0.1 b.o ,,,~c h ,"" e ;>.1 .. nltd"',u"~ . 

. 1"",,;>.I,on ,Io~. '101 n"c".",u,I)· '''Iu"e II, ,, CO II,ptllaliOll " f ;>.(lu:.1 fo.( .... 
Th. appliul,O" 01 uYlla",iu I" .""'''3I ioll " .imphfied by Ih. f."II";>.t 
.. c ~re ' nl •• "'I .... only ill .. h ~ 1 Ca" h ..... " 

Tho c_nttal (o.,<".n ,$.0 ,,,.~k. the ",Ol,on look ... ,f for,,,. "' • •• 
b.:ing ;>.ppti.· .. . In nih" . ... ".,1 .. .... " •• p.i,,,,,,ily "'1" ..... " in ""ly",S for 
tile aced .. allon ill dyna", '" ", .. <I .... - II .. compulalio" of paran,de,. 
lu(h u f",c ... , 10'q"'" a~d ",o,,,cII I> of i"ett;a U onlt ,.,Ityant if it un 
h.lp "' ""-'ily man ip"l",. ""c,,\entionl 10 p. oduce (oherent dYII;>.tn ic 
nali.om . 

Th. no<:o.,i l y fo, mod.li,,~ dynamic. in PODA w~ app .... "t "" 
soon :II Ih. ki","'31;C model ... "" completed. In a pII •• ly kinen,a.ic 
modtl lhe mOlio. 01 Ih. body " quickly ... n to be ind"ptndthl from 
Ihe <oordiulion of the Ie, •. alld il appean ;u .hou,h Ihe body i. 
>u.pt"ded from I.,ill (l ', pulling 't. I.~. behind il . 

Tb. dey.lop",ont of dynamici for PODA ;1 an onlo'n, ..... " h 
p.oje<:t . The inilialIOal .. ,,-, to IN whethe, very . ;mpl. drnamic mod. 
ell of I ... ed Iotomolion (oeld be d.v.loped wh ic h we .. bolh am.nabl~ 
to artiolic cO.lrol and u f .. lly IClleral U Ih" kinemat ic n,od.1 {appli
(ablt 10 any Sill", con.lnlcud by the anin.aIO') . AI Ihe lim. of Ihi. 
wr;l ;n8, PODA i. (apableof modelinllht "anllal;oul llCuleralion of 
Ihe <elllu 01' m ... of body in th. v.(.;':al dirK~ion and ,round plane. 
aad lb. rotal. ..... aI acceler.tio" of Ihe body Ihat io tCqll;"...! 10 ;uu.o 
lilal it i.o facinl i •• he direcl ion 01' movemut (if turninl io dnir"'!) . 
AI .lIlh ... , t he body', 11101;0" .. (o""trained and p.ope lled by the 
. ;mulat...! fore .. applicd by the 10RI. 

DecOUlpo.iUon of Dyn.mlc CODtrol in PODA 
Thc ,impl. model IIwd in PODA .. ~ ill' pi.ed by Raibe .. '1 work 

on leu .. 1 hoppilll ".""hin" •. lie and h," (o .. o.k .... have b .. il~ a 0"'" 
l'Ued hopping ",~c hin" .hich il able to ba lance ~nd move in Ih .... 
dimen.;ona. Hi. (onuol al~o.ilh",. ~ •• baud on a decon'pOlilion "Ito 
h" Pf',nK hi_ht , fnrwar.1 Hloc" ~, .\nd .ul i. ud. <0"I.oI 13 1 ,~ , !, 

Th. ",odol .. ~...J i" PUOA dKompOH~ Ihe drnan, ;': co~plin. be
'.""n lhe I .. ~> .. nd Ih body "'0111 two Ii" .. , d«on'p<>fition by le~ and 
d«ompusilion by hO<ty di. oclt"" . 

Vtr tlu l Conlrol 
Dynamiu in lhe von;ul di .K. ion n" .. l hke inlO :o«ou"t the d · 

fKII 01' • ••• ,ty and lhe •• il 'Tel., pe.iod of u r h lc • . S,nce PODA 'I 
de<:ompu.ilion ", hem .. i. b ... ed on d«ompolilion by lei , it .. iII b. htlp
rullo con.ide. a ono· l.ued fi~u ... 

267 
- 2 11-



-

II 14 ~d innc1 shown," tts sbndin9 position 

Tae , ,,"eat modd makn Ih~ .im plil" " , ...... mp' ;on IIU.llh ..... 

.. ud (OKt applied by tht It, on Ih body iI (Ollitant durin, it . ,"pperl 
phue. Th .... im.tor lupt)lin PODA . i,1o. both t il, ulue 0I111i1 force, 
Iht m .... oItht body, ud tht dowawud ucel.'''' ion due c.o 'r .... i I 1. 
No, .p ..... d a(ctluuio ..... the centu of ....... iJ then .i" ... by: 

(12) 

T h • • &i, cydo penod '"31 boo •• bdi"id..d IMO IhrlOt dynamIc ""~n 
oIlh ~'. mOI;O_: p .. . h'n l lhe body Up ,f' H blhnR,and Ihn .tnor;ne 
Lh l>o<Iy I", ilO ori~ ; n;\1 po-oihon !~ long ;U Ih "ppll(""o n o f upward 
10K fored ;>to ' Y""" o'roul _,bo ut th. n"" " unco 1"''''llOn, Ih l>o<I y will 
-,;\I:>ih •• 10 uro ... d O( "y a, 'h,,1 poo,IIOII) . w .... ,11 ,,,UII,,,,. Ih. I'.'~ 
./.'M'o ~ , /,,/1 ~ •• ft!l .. n, ~nd r.,tore d •• ~I'''n r • • poc",vcly {fig 12) 

Th. I'M " '"port <lu •. u,,,,, t. ~ r"". \lOll ,.r Ih t>o.ty . p . .. ,1 '" , 10. 
11 0,"" ,,131 pl:.nt ,,",,I ,h . Siroh t .... "",,,,, 7) S ' n<~ ,h I. g·o u.,.. ",.,1 <If 
, I .. " .,,,,r., " " J ~<! o'y n",,' c" i"~ ,,I. ",-,,1, , I,,· 1 .... ly ', "',, 11 •. <,,( "'0"'''' 
w" 1I3~' 

(Il) 

Th. ~.tlO( .,1 ))<"" t'Oll " f ~." '.; w,tI, ",ultlpl" 1",0 , .. J"ltrn"n"" ." 
PODA by Ih. "'P"' pWlI'Otl "f \h.loa ll ;~t'( ' '' ot"", " f \I,. b"dy d". of 
u eh of;ts I<~, (on. i. IN",1 "" I .p.".J.."II~ Th .. uu"",.ly ";'''pl" ,,' oJ,,1 
pcO<iuees r''''3r bbly tUh'IK "'01;"" fo' boll, w., lki". and ''''''''''~ in 
",ulllpl" I", ~ ~" . .. : if II." ",,,~,,,,,,d. of •• rl ;( ,,1 .' <eel.ralio" i. low 
"n<.l the phu.. ..,13I 1O". hi"" of t ho L,,~. , ... '" 0pJ>O<',I;o n. lhe upwu<l 
",,(ol<ru ions w,1I ':>'11'01 • • ell ult." , ,." .",<><>th walk,n~ """iIl"tlo n. II 'R h 
""c"I'''l ion. ,nulting lTOm .I,onl .. " ,10 ..,. forces ( • . • . ' UR"'n~ ,n a 
1r01) M the .um of fon:u of ".a"y I ... p, .. h,,,. fTO'" Ih •• o un<.l 10M.th. 
(c ... . hoppin,) ",op.llh" body into Ih. ai • . 

The traj«l"", t aken by the body duo 10 the u mm ;olion of ~er"' :>.1 
It~ 3CcellOf";oI. ion. ;ond downw;ord ~ravit;ol;onal ""ulentlOn. uken f.o", 
.""h ofth I.,. io "Ulomatk"Uy .y..:hroniud with rhyth m of Iht ph""" 
rel"lionohi"" in the It,.. ~'o. o~ampl., con~incin. 'a"'o .... , IrOU . "nd 
bou"d'. , molion m;oy be ani",alhl.imply by " lltrinllh figure '. ga;t . 

Anothe. adva"ta,e 10 PODA'.le! dKompo.ilion o f vul;ul dy
n:o.m;'. io Ih"t (han, .. in Ih. & ,u~'. mot .... p:o.r"",.ltl"S which .vol~" 
o~tr ,iii cyde pe.iod., luch u bodr . pehl o r .pw:u"d le~ fOKt ","y be 
eui ly .ccomn.o,hted by adju.lin, Ihe .. Ialed dynamic 1>".;0".0" .. rOt 
e",," 10.'. <onlrtbu, ion independ .. , ly "I I he he.,nn,n~ of ill ""ward 
pu.h,n, phu... T"t ou bitity of """h ItR" u, nlr ib .. " o n gu~r"ntet" the 
...... 'iul ~13bilily of Ih . botJy :u .:. _h o lt . A •• il .hifti,,~ al(oto,h,,, b", 
been de~.lophl by one " f the antho .. which uj>i"iu th e "b,loly for t. u 
10 ""d.rgo pho« .hifl , by Ya_ryin~ Ihe d i. tribut ion of ~.r"c"t p,,,hinK 
fo rc • • amonl Ih'''I. 

Hor ' .ont.1 Contro l 
Tb. <I .. i.h1 hO.OIonul v.,h la~on by Ih~ fi~',,~ is . p"" i~w ;n 

PODA by th. an;maIO, ""I~ ~ uobC .pl i"e (Ca.mull-Rom <>l B..pline) 
Cive" the dnired hotly op_1 alonR di W ... n, puu of .ho cur¥<. PODA 
m .. y ,akul"le lhe 01 • • , •• ,1 po""o ... ~nd H I""" ••• alo". ;t u.in. " n .. • 
m" ' , ,,1 ;o.d.,,~.h Uk" !,,l ion 

268 

•• SIGGRAPH'85 

Moving In a Va'" ~U , tIw "'9' nt .. tlw 
...... Nv_. to"""''' t~r ,.,xt foothoWs . 

Howe~u , :>. L.ned filllre '. ""cole.a,ion towanl :>. duired dirKlion 
an" sp«<t mun be ( oh ... nl wilh iu Ie, .uPpMt d"ral ioD pane. n and 
il m.,SI aJ.o .imulate Ihe ell"KI. of momntum in " ,iv"n dirKlion in 
order to live II .. body a .. n .. of we ighl . 

In PODA, the body' •• bil;ty to 'urn :o.nd .pecd up II (On.isteDI w;lh 
the number of fHt on Ihe ,round ... d the mag,n'tudeof tht m:>.lI'mum 

;o,hievable fo ret nF ...... n _i,ned hy the :>.n'm.lo. 10 n(h , upporl'ng 
Ie, . Tb. m"",imum ach,evable Icul .. "tion of th, body .. go~.rn.d by 
th. ou m of lheir fore .. : 

. . IIF",··II 
lIo ..• ,. II ' L --

. ~ I "'-'."'y 
whr ..... the nun,b.t o ( fUI o n the I , o und 

AI eu h f. ,,",e PODA ("mpul., th" " •• t deli r",1 velocity 3101'. the 
d""red bouy path. Thrn PODA de, .. ", in" llor J •• ir..! "".I."'lion 
~I 3 .i~.n 'r"me 11"0"." voloc'ly rnM r • ..!bad . Ih"t io. by .uhtract . 
,n~ Ih dni.ed ~~l<Kil r fr" ", Ih. <""r'" uloc ily 31 ."al fr3m". Tlte 
1,,,,"n,,t.,1 u(el"'3""" of Ih. bu<ly al fu",. I •• tl,." curnp,,,.d .u: 

.:i", , _ 
, .i" , 

n,", . ~ "'",t !I· ... , ,), 'I " " , __ .. :11 

,i, ( v.i. , v.i) 
An ." 1,1" ",,, .,1 hM\W ... ,1 "·«).or." ,,," d", ,,,~ <lor r~<""'~ .1."." ", ,, 

~nd rorw;,..t! ."1(c.I ••.• I,no, oI"to,,~ tI,. p" . h du, .",,,,, .. " ........ ,..,y '" . .. , I~r 
,,, ."""b,. l b. ~K.(t " ,.~,t ,,,,_tl;'.,, w,d, r~' I"'( 1 I" .1 •• 1""ly .•• r .... . 
I'!.><~ "'~"t ;>.",J r",,1 Ioft,,11 (1&1 



SAN FRANCISCO JULY 22-26 

Rotatlf)aal C~trol 
Til. '-lloid and I.e uual ... calnl .. lio .... dtIKribed ad .. p' 10 tllow 

for r.u ~"io ... 1 (Olilrol of til. bod,.. At ,II. lim. of IlIiI _rili ••• 
h_ ...... Ollly III. d,. ... miu of &cul,rat ioll' .bollt Ih, ,. •• ucil II .... 
'"'" impl.mulM! (1111 pild, uill"o.u.lioa ."p&I"nl ill '.11 .... 1 l io du 
to , ... "!>Vallo. 01 ," •• ppllulion 01 ... rtical &cui.nlio" bel_"" 
, ... tro,,1 ud rur I«lio"I 01,11. body). VII. uNo ..:"I.r.,;olu .,. 
lOOC_VY if .... willi 'h, body 10 ,.ulil lically Ill", to dill' il it flC;"1 
ill the dir..;lioll 01 mOvt", ... I. 

TI .. l impl. fum. to frlL/l\' IIr:l1t1)' .pptitod for horioonlal (01111"01 
ill lIot IUt!'id,"1 101' coordl".,..! hirnilll , "lM'Ci.lI,. for Mluin, ,&ito 
whll"Il .. Ih. I.,. art of Ih. ,l'Oulid. In Ilith c .... On. mUll know 
_II., .. l ilt bod,. it ,oilll in orcin 10 .1f'Cliv,!,. :lllli<:;p." ,h. rol'l.l;ouJ 
IU;c.luI\;oll, nqllind 10 kHP till body propul,. ori'"ltd before il. ,.." 
I ..... Ih- 11"01I1Id. 

TII.IOIIII;on Adopled by PODA fOf rolGlioul control li.lIH Ad~Gn. 
1&,,01 iu .bilily 10 know the t • ..",I .. t;on,1 (oordin.:>t., 01 th body 1ft 
,d~anu. Th. ord.r of ul,~I,don lor body dynanoiu pl;ly, .." impor
'''''I rol, in thil mItior Iii,. 13) . Th. direction of body molion m.y 
b. d.ri~ed from tho ,.qu.ne. ol .. ctuII ~.Iodti .. taken by tht body. 

"'nlmllor lnpul t 
Olllrtd Dody Pltn 

tnCI DOIly ~ .. O 

Coml)lllt 0 .. 1,10 I 
.... . IOCII\l IlonQ Plln I 

I ComplIll I+onlOnlll 1M I 
.... rliceillocl\j Dynlmici I 

r eoCIW PollllOf1 l 
Mel QrlW11111ot1 

On" Ih. d .. iAd body OIltM .. tion, ..,.. kno .. ". POOA i ... bl. to 
uploil Ih. I., docompooillon '''.111)' '",ployed lor ~uliuJ control . 
£..eh I ••• ppli ... poI;li~. ICc.l,rllioll durill' ito pUlhill1 ph ..... lId 
• lIt.lli ... , .... Iori". aculultion durin. ill ,...torin, ph .... in ordor to 
brin, tho body u lCl ly to Ih. d.ind "".1. computtd .1 ill mid-"""" 
... I .... "to I •• potition. II ... ..,1 ... N ... ton'. ,""u .. lion. 01 motion .. lth 
tho (OIl.trlil\l ,b., w ... i.h ,h. final mid-.I..",. rol .. tio"aI v.locity to 
b. "1"'0, w. h .. v" 

>-

w,,_ II" i.o I0.Il11 •• boUI ,b. J"W ....u.. 
COlIctu.10!l 

Tilt d-.rib.d formul.lioa. Ir,a .... pro .... n 10 be nccMNul mod.", 101 
Ih. 'YI,,, .. iI oIl ... td locomolio.. How .... r , m .... ,. iat._lta' prob-
lem .... mu .. 10 be IIOh,td. W. will ... &a. Ih. I ... ed locomol;o .. mod,1 
i. POOA u mort Ie I ..... " fI"'OnI .ac •• impl.r mod.l . Th. Add ilioll 
oll"'O,.,ioll.ll d,.umiu for bod,. pile. ""d, m .... ,.II .. all,.. lb. mod.1-
i •• 01 bod,. d,.umk. d .. 1 10 ,II. mo&ioll 01 non-.upporl; •• limbo ..... 
obviou. choic .. for 1lI" .. ioa . 

Olh.r probltma 01 i"I ..... ' iMllld. tho dow.lopm.1I1 of cOll l rollocll. 
• iquI for mlin, .. in;1I1 poot~r.1 bt.luu, III. iMlw.iQJI of obo, .. d. AVoid. 
.... u .nd colli, io" d,loclio .. .. d I n,U.nl of dui lninl n.olOl •• ill • 
.. bovo .. nd b.yond ,)._ r.qlli ... ",.nlt 01 walk in, ud ,"nnine. 

Acltn" .. I...,IIl · n,n,h 
T)._ awl).on .i.h 10 I .... il Jolt" Rune. and Su .... Amkuu' j", 

Ih prtp"u'ioft 01 ,hi, documul, .... d C). ... I .. C.".; .. nd T"on, ... l.i" .. 
hu for ,hi ... , .. inlu ...... 011110 ,tim~!&I;nl.n~ironn,.R' al CGRG . 

Volume 19, Number 3, 1985 

[II B .. -un.l, Adi ud nom .. N. E. c,.. ... m •• 'C,"waliltd I" ........ : 
n-,. ... d Appllealio .. ,· Wil.r-f.l_i,"". N .... York, 1914. 

121 Bo.llio •• T. L . .... d P. L. Od.n, ·C .... ali.td tn ... wat Mllric. ... • 
Wijq-/III.,...,it .. co,N •• York, H17!. 

[.11 Btl .. ~it , J . .. nd R. S. H..,."nbtr' •• A Kin,,,,"lic Not .. lion for 
Low .... Pair Moct....nilm. B .. ed Oil MllritH,' ASME )our .... l of 
ApplHd M..;b/Ulic., Vol. 2.1, pp. 215-2H. J""., 11155. 

[41 C ... vil1., T . N. E., ·Som. Applit .. tion. 01 tb. p .... do'n ... ,,... of .. 
MllrU,' SIAM Revi,., Vol. 2, No.1. J .. nu&l"")', lQ60. 

1'1 G",Wml, T . N. E .• 'Tht Plllldoinun. of. Rte' .. nl .. l..,. of SinlUI .... 
M .. lrU .. nd ,II Applicat ion. 10 110. Sollilion. 01 Sy.lem. 01 Line..,. 
£qUI;O"',' SIAM R.~itw. Vol. I, No. I. Januuy, 19S9. 

I ~I H.nllOn, R. J . .... d C. L. LGw,o", ·&tlen,io"l Ind Appliutiono 
01 lb. Houllholdtr Allorilh", ror Solvin, Li" .. ,. L .... t SquAN. 
Probl •• ".,. M.IA,m.lic. 01 Compul .. fion, Vol. 2.1, pp. 7&7-&12, 
1989. 

[71 KI.;_, C. A ...... d Hulo.ll" C. H., ·R.~i,. of Plilldoinv,,... Con
lrollor U .. wilb Kium.l;eally R.dulld,"t M .. nipul"lon," IEEE 
1h"AClion. 011 SplenII, 101 .... , .,.d c,.WlltlicJ, Vol. SMC-Il. 
No. 2, pp. 2U-250,Mvchl April . I~S . 

[I I Li.po;' , A., 'Alllom"l;c S"lMrvilory Colltl"'Ol oIlh. Conli."t.I;oll 
ud &htv>or 01 M .. llibod,. Mtch.nitm.,' IEEE 1h .... elio ... on 
S,.,Ctmt, M/UI &lid Cybwllt"tic., Vol. SMC-7, No. 12, o..:.mbt-r, 
19n. 

[91 Mac~.w,Jr.i. A. A., &lid KI"n , C. A .• ' Obo11C1t A~oid .... c. for 
Kiumtlict.ll,. Rtd .. nd .... t M .... iplll .. ' on ill Dynamil;ally Vo.ryilll 
E.~ironmtllll , · 10 "PIMV in Int.,lIItioJlaJ JOllrllaJ 01 Robotic. ft .. 
.. vcA. 

[101 MlCitjtw.ki , A. A .• IIId KI"II. C. A., ' SAM - Anim .. tion SchWAN 
for Simula,'n. Art le .. )tl" MOlion," .ubmilled 10 IEEE Gomput.,. 
Grapltiu ud AppJic.tio .... 

1II1 Noblt, B., "Mtlhod. lor Compulilll th. MOO ...... P."roM G.n .. aI_ 
iltd [~vtl"$", ... d R.I.led MIllin," pp. 245-301. in C.n.,tl"'<1 
I ......... ... " A"I .. canll .... ed. by M. A. Nubtd, Acad.m>C PAN, 
N •• YorJr. , 1975. 

[121 Pul, R., Robot M.,.ipul.ton. MIT PAM, Cambrid •• , M ...... 1981 . 

11.11 p.~, R., 'On 8tt1 Appl"Oximll' Solul ion. 01 Li".v M .. lrU 
Eq •• 'ion.," Pr«. Cambt-idp PltiJo.. Soc., Vol. 52. pp. 11-19, , .... 

1141 P.lIn. G . .... d J. H. WII!l.illoon. ·T". LI ... t Sq ........ Probl.m .... d 
Ptt.do-I ........ ,· Til. Camput. JOII,.tI, Vol. lS, No . .1, A •••• t , 
1970. 

[1&1 Ribbl. , E. A., ·SyMb.it 01 Hllm.,. SJr..lllal MMioll. u.d I'" 0..-
.i,l 01 .. Sp.cial-Purpoeo Ptoc_ lor R ........ Tirn. Anim .. lio. 01 
H.mlll IIId A.lmal Fi.",. MMio ... • M ... I .. •• Th .. io. Th. Obio 
5111. Uni~tftil,., Jllnt. 1~2. 

[ I~l W.sdro •• K. J .• ·Coomtlriu.l1,. Bued Ma.nipuillor R .. ,. Conll"'Ol 
Al.ori~ltm'·. s. .... "I/, Applitd Mtc.&II1a Go"f_IICt, K ........ CiIJ, 
o..:.mllor, 11111 . 

1111 W.sdl"'On. K. J., ·Th. UII of Molon in Sp.t' ''' Kinemttiu," Pro
cHeli"" 01 th IFToMM Conftr .. ce on Linhp. ""d Comp~ler 

D-i,n M.d,od., B"c~a~.I . Ju n •• Ill?!. Vol R . pp. 5l5-54\ 

I1I1 Whi, ... ,., O. t .. "RItOI .. ed Motion Rile COllirol of M .. n'p"l&lo," 
ud Humu ProtlltU .... 1E:E:E: 1h.,...:lio" .• • 'n M~"-MAC"i,,. ~y~. 
Itml, Vol. MMS-IO, No.2, pp. 41 -5l. June. 1!)fI9. 

1191 Whi,",,., D. E., 'Th. M .. llt.n,&lic. of (:oonlin .. ltd Conlrol ,,' 
Pf'otch ..... "d M.niplll.to ... • Jouru.1 uf DynAmic Syll,,,,,. M •• · 
." ... ,ne"' . •• d Co"'rol. Tr.\n~."",liou ASME. Vol. 94. Slti .. C, pp. 
303- 109, D.umbtr. 1972. pp. "9-58. 

269 
-213 -



1201 AIa.llder, R., "n. Cai~ of Bipedal ud Q,,&dn.pedal A.iIn .... ,· 
TH l"k"t'u,io" al }o ..... al 01 Robotic. Re,ul'd, Vol. 3. No. l, 
S.mmn- 1984. 

[2 11 McClln, R.B., ... d " .. _db;' C.I., "Ad"p'i". Locomo/.ioa of a 
M.ltik .. .d Robot O¥fl" a ....... TnT";,,', IEEE Traaaat;lio .... II 
S,..c.m.. 101 .. , ..., erber.da, Vol. SMC-9, No. 4, April, 1919, 
pp. 176-1&2. 

1221 onll, D.E., ·SIIpet""i.ory Collirol of .. Multik .. td Robot", 1,,1«
ulio"ai l ... rnal of RobolN;. R_lll'Cio, Vol. 1. No. I , Sprill i. 1982, 
pp. 79-91. 

1231 Klei., G.A., 0Il00_, K.W., and PII,I!, o.R., '(1.. of Forc. &ad 
Anit.d. S"'M>n fo..l.o«lmoc.io. of .. LeUe<! V.loick on .. lrnc.l .... 
Ten"; .. ," ll1lerll"llouJ J"OI,UJ of Robotic., Vol. 2, No.2, Slimmer, 
1983, pp. 3- 11. 

{241 O'luner, P., Tu.i, I. .J., and MeChe... R.B., "Rough Tena,,, '
(omotion by II Huapod Robot U.i"l .. Binocular R ..... inl S1" 
tern,' ProueJin,J of Finl IlIleruliou'/ S,.m~;"m of Robotic. 
R_,"",II , Ikcnoa Wood" N.H., Alllut 21, 1983. 

[2S1 t...., Wb .. Joon, " It. Compuler SUnulalio .. Sl udy 01 Omnidit",,_ 
lioul Sul>" ...... oo'1 Co.u'O)l rOO' Roullo - Tenai n L.oc:omOlion by • 
M .. llil~ned Robol v.l!icle" Pb.D. Dia&erl&lion. Tbe Ohio Siale 
UIli .. ersily. Columbul. Ohio. Manh. 1984. 

[261 Yelo . S. "L.oc:OfI"Iotion 01 a TIo.,.......L.uN Robol 0...,.. S'na(lu," 
B .... m.o .. Mw~rs Thuia. The Ohio Siale University. Columbus, 
Obio. Manh. 19&4. 

1271 Zeilier. D.L .• "Rep.--nlalioll. aad Conlrol 01 Tilt ... Dimenlionll 
Compul~Anima~ Fi.u ...... Pb.D DiaNnalion. Tioe Ohio Siale 
U .. iversily, Columbul. Ohio. Manh. 1984. 

["lSI Murphy, K.N .• and Raibert , M.H .• "Trott i ... aad Boudin. in a 
Planar Two-Lf1I:led Mod .... Fifdl CISM- InOMM Sympo;oium 

On Tllc:ory.-no Praclic, of Robol~ and Manipulalors, J"", 26- 29, 
198~, Udin~. [Ialy. 

[291 Mi"r. , H. and Shimoyan.a. I. "Dy n.",ic W.lk of '" BiPfll" Tile 
'nl •• n.>l.o",,1 Journal of Robf!lic~ Ren"~" , Vol . l. No. 2, S.""me' 
19114, pp r.o-7~. 

130[ Peanon, K.C ., ..,d fhnkl in. R .. "Ch'>"""I"",iu 01 WI 1.10 ...... 
... enll and Paunns of Coordi,..,ion in Lo<".ls Walking on ROllih 
TefT.in," The 1"1.,..,,,,1;0,..,,1 )oll.ul 01 Robolic_ R<'HMCh, Vol. 3, 
No. 2., Slimm .. 19114. pp 101 - 107. 

[3 11 R.ibe,I, M.H .• Brown, H.B.Jr . and Chpponia, M., "EJtperi",enli 
ill. s..tanu .. i'b a 3D On ..... Lru«l hoppin. 1.1,..,.i".," Til_ lai.e.n .•• 
t;"n.ol Jo",n .• 1 01 Robotic. Rne.uc~. Vol. 3, No. 1., Sun .. " .. 1984, 
pp 7$- 62. 

1321· Ko,.;n . J. U., and Badl .. , N.I., "Technique. lor Ce" .. ali" . Ihe 
Goal - Di. ec'''' Motion 01 A,ticuta'''' Strll""'",' IEEE COmpulet" 
G",pllic~ and Applical ioto •• Novem"". 1982, pp. 71- 111. 

1331 Hemami. H. aad Zhen., Y .• "Dynam"'- ..... d Courol 01 Motio. 011. 

the Grolill.d aIId ;" I'" Air .,110 Appliul ioll. to Biped Robou," 
Jogr ... l of RobtHic Sy$l~m~. Vol I. No. 1, 1934. pp. 10 1-116. 

[341 Hem»mi, H. »nd Chen, B. "Subility An»IYI~ and In put De.iln 01 
'" T.o-Link Pluoar Biped, T~e Inl~.nalio ... 1 JOM,nal 01 Robol ic. 
R.-earc., Vo.!. 3, No. 1 ., Slimmer 1984, pp. 93- 100. 

lUI M( Mahoa, T .A .• -Me-c:kaniu 01 Loc.on.otion," T~e Inl .. "",;"",,1 
Jou .... 1 01 Robofia R.-earcll , Vol. 3, No. 1 ., Slimmer 1934, pp 
4-111. 

1361 Lundin. It .V. "Motion Sin,,,lu'Oft." Njcofl,ap ~ Proc~jnr$ / <Jif4, 
pp.1- 10. 

1311 O.ill., D. E., ""d Sc:k.ad .. , W. W., "£fIi,;on' J:.cob;n Ott,,"n;'" 
nal ion 100' Robot Muipula1.lln," S"III IFToMM eo ••• a., N~w 
~hli, Indi., o..:ember 1S- 10. 1983. 

270 

e SIGGR AP H'85 

[311] 0.;., D.E .• "'~Gk". R.B .• V.kobru.ovic, M ..... d Hariot. ... C., 
"Kiacmllic: aad K.i-.tic An I"";' 01 Op.. -Ch i. Liak .... Uli-
liIin, N •• Io.-E.J.er Melkod.: Ma, lIeml l icd 8io.cH.c-. Vol 43. 
~p. 101- 130. 11119. 



Some of the equations in [Girard 85j do not reproduce wel l. Those equations are 
reprinted here. 

( 10) 

wOrldprevFrameFoot = WorldT · (HiPFoot I 
t - I IIIP, _1 I - I 

lIipprevFrameFoot = HiPT ( WoridprevFrameFoot I 
. I World, t - I 

( II ) 

WorldrefLegPos = WorldT · (Hi PrefLegPos ) 
/ I hip , I 

(and lower on that same page) 

( 12) 

(13) 

Body refLegPos = BodYT ( / ~ WorldJ ~ 
World rcfLcgF'os /1 ) 

[ 
F" if" _ -----"-

rnassbody 
- g I for leg i 

t ransferDuratioo = (Cf; ) (supportDurat ioo) 

-Z I5 -



( 14) 

Ila,,-II= t I I~ II 
j _ 1 mass body 

(15 ) 

a" II." 11 11::::: II 
where 

Ila" II = min! I I a"", .. I I ' 11·,,_11) 
(Ve1desired - Vel) 

(On page 269) 

.. ( Umidstance+P - (j midstancc ) 
u = --.-=--,--,---r--c-=---,---:-=--,----. 

( pushDurat ion I ( push Duration + rallDuration I 

-216-



Applying Classical Techniques to Computer Animation 

Introduction 

Glenn McQueen 

Computer Graphics Laboratory 

New York Institute of Technology 

Old Westbury. New York 11668 

This paper discusses prin ciples of conventional an imation and how they 

can enhance the qua li ty of computer generated animation. Sin ce these tri cks 

improve t he look of any animation and take no longer to rend er t.han unembel

lished animation , these principles are well suited for animation in a production 

environment. 

Principles of Animation 

It may be more accurate to rerer to these tricks not as principles of anima

tion , but as principles of communication. Anyone can animate - just move a 

group of objects around and you've got anim at ion . But animat ing successfully 

implies much more t han moving stuff from poin t A to point B. Effective anima

tion elicits a response from the viewer, it captivates and entertains iThomasSl] . 

Character animation is well suited for the development of an emotional link 

between the audience and the animation. Flying logos, on the other hand, are 

sometimes devoid ot the endearing qualities which allow an audience to empath

ize with a cartoon character. How much emotional appeal can be squeezed out ot 

- 217-



- 2 -

a lcn second fly-through? If a storyboard is presented which will allow the ani

mator the freedom to apply some character to a logo, terrifi c. If not, then t he 

diffi cult job of 'captivating and entertaining ' without th e benefit of a character 

lies ahead. 

Think of an animator as a sleight-oC-band artist . He has a selec tion of 

tricks which fool the eye into seeing something which may or may not be th ere 

[Luck liesh65]. P erhaps the most basic 'trick' is to observe the motion of an 

object, see the essence of its movement, and determine the best way to simulate 

it. From there we add embellishments to jazz up the motion. Squ ash and stretch 

is on e of these embellishments. This emphasizes the apparent elastic, rubbery 

propert ies of a shape, for example when a cartoon cat falls from a lh ird slory 

window. Its body slrelches on lh e way down and lhen squ ashes as il boun ces into 

th e dog catcher truck. Ove rlapping action refers to the parl.s of a character 

which SltHl or stop mO"' illg at different times, as in the cat 's head remainin g on 

lh e screen a few frames longer than the falling body, and then snapping down to 

calch up. Secondary motion addresses minor ac tion which supports th e main 

action in a scene, as in garbage cans being knocked over on the landing. Staging 

deals wilh t he overall composition o( a scene, while arcs refer to the principle 

that most actions aren 't straight, but follow some sort of curve. The principles of 

ease in ease out allow for smoolh acce leration and deceleration of motion. E xag

geration exaggerales the essential clements of a movement, drawin g them to th e 

audience 's attention. Anticipation refers to movement just before a major action 

which allows the audience to anticipate the coming action, as in the cat scram

bling in ai r for a few seconds before falling. Finally the principle of timing and 

pacing, which refers to how timing influences the overall effect of a piece of ani

mation. 

An understanding of these principles is important, so let's go over them ID 

-21~-



• 3 • 

more detaiL 

Squash and Stretch 

Perh aps th e easiest way to breathe life into a stat ic piece of animation is 

to incorporate squash and stretch If a character or object is in motion it will 

undergo certain changes within its overall shape. A5 in our example or the cat, a 

character ralling through space stretches in the direction or the rail, and squashes 

or 'splats' when it hits the ground. The scaling may seem extreme when viewed 

in a single rrame, hut in motion it is remarkable how much the squashing and 

stretching can be exaggerated while still retaining a natural look. This elasticity 

can be used to imply weight , mass or other physical qualities. For example, the 

shape of an iron balloon would not be affected by a drop to the ground , while a 

ha lloon full or cooking oi l would go through drastic shape changes both as it 

dropped and wh en it hit the ground . Com puter graphics easi ly supports global 

axial scales, allowing the animat.o r to 'keep-the-volume-or-the-object-constant' 

throughout the scene. If the sph ere is scaled by a .5 unit squ ash along its length 

to imply a squishy ba ll smack ing against the ground , an appropriate scale, say 

1.5, units affecting its width wou ld be necessary to keep the implied volume 

constant. As usual, more complex models present more complex problems. Ir a 

hierarchica lly defin ed character lands with a thud on his butt , a global scale in Y 

would not be appropriate , as this would also squish his legs, reet and everything 

else (fig. 16). This implies equal weight or mass among all his parts , when in 

ract his torso and neck would be squishing the most. Scaling the peripheral 

body parts back up by a percentage of the original scale keeps the visual weight 

with the most implied mass (fig. 1,). 

Un.qu •• hed 



-. -
Idea lly, a flexibl e model would be used, in which the shape of various pa.rts can 

be appropriately ('hanged. This would allow the character t.o take on much a 

pear-shaped squ3Sh, more convincing in implying w('ight . 

Overlapping Action, Follow Through 

If all the parts of a character stop or change motion at the same time, the 

effect is ODe of extreme rigidity . To impart a sense of Ouidity. animators delay 

the movement of appendages. In a keyframe animation system, keys can be set to 

block out the main motion of the character. Once the animation has been pre-

viewed and approved, overlapping action can be added. For example let's look at 

a piece of animation in which a character falls on the ground. Assume tbat the 

main motion has been blocked out. Now, move the last frame ( the one where he 

hits t.he ground) forward a couple of frames. You now have two identical 'last 

framcs', one s lightly aft er t.he ncxt. Go back to t.he originnl 'g round-hitting' 

frame and movc the character's arms and hair back up to a 'falling' position. 

Interpolate the 'between' fram es. The sequence of frames now shows the charac-

ter landing, with 

jig. f 

Landing At Rest 

Overlapping action is moving the camera through an 

environment or zooming a logo through space. Early computer animation typi

cally comprised of a move, a pause, a rotation, a pause, another move, another 

pause, etc. This quickly becomes tedious. A solution is to start the rotation 

before the move finishes, substituting the pauses for overlapping action. Follow-

- 220-



- 6 -

through is a common form of overlapping actioD. Rather than abruptly stopping 

an action after it has been completed , the motion eases out along the same path 

of action. For example, a tennis swing is much more effective if the swing contin~ 

ues after the ball has been hit. Follow-through gives continuity and fluidity to 

movement. 

Ease In, Ea~ Ou t 

A judicious use of eases can grea.t1y enhance the look of even the most 

basic move or translation. An ease is a. gradual speeding up or slowing down of a 

motion usually used at the beginning or end of an action to 'sorten' the transition 

between active and static. Many animation systems give a wide choice of eases, 

th e most common bein g linear or exponential. Linear eases slow in and out 

at the sa me rate, so a ll motion proceeds in a steady, predictable manner. They do 

not particularly lend t.hemselves to interest ing animation and are least desir

able. Exponent ial eases are more widely used, as their motion is fluid and more 

enjoyable to watch. Being ab le to actually define your own ease is the best alter

native. At NYIT, a curve editor is used to interactively edit curves which 

represent x, y and z transformations. This system is ideal for visualizing eases, 

allowing both lin ear and ' hand made' exponential eases. A splining fUDction , 

when used in conjunction with a relaxing algorithm allows for an infinite number 

of possible eases. There are Frames ----) 

accepted algorithms 

defining the mathematical 

specifications of all the 

myriad eases, but actually fig. $ 

seeing the curve dip down to its rest position is sometimes as useful as seeing the 

animation in preview (fig. 9). The ability to interactively adjust a curve which 

- .22J -



- 0-

determines the rate of animation or transition between pos itions in a keyframe is 

cru cial. The flexibility of interactively adjustable curves cannot be stressed 

enough, as each job requires a slightly different move and tries to give a different 

fecI. A standard case might not give the animator the flexibility he needs to 

impart a sense of mass to, say. a heavy object; a really slow ease-ID, while an 

hand drawn ease might. 

Exaggeration 

Class ically trained animators often speak of using exaggeration to 'sell' the 

action or the movement of a character. This is nol meant to imply that exaggera

tion of motion is always the way to go, but often exaggerating certain motion 

charact er is tics often is necessary to maintain a degree of interesting motion. 

Exaggcr:ltion doesn't. have to impart a cartoony fee l to the animation to be 

effective. For example, if a client requests a piece of animation showing a com

puter generated dancer completing a pirouette, source rootage could be used 

but only up to a point. After the motion has been blocked out, it's up to the ani

mator to decide which movements of the dancer must be exaggerated in order to 

enhance the animation. Kenneth Wesley's skater animation for "CBS Sports 

Saturday [19861" is a terrific example. To assist the animator, the client pro

vided live action foota.ge for reference. The live action was used 1.0 rough out the 

maj or movements, which were then subtlely exaggerated to showcase the graceful 

aspect of the skater. The effect is neither cartoony nor sti ff, but natural and fluid. 

Anticipation 

One of the oldest theatrical devices used to Improve the readab ility of 

animated shorts is anticipation. Anticipation occurs when a major action is pre-



- 7 -

ceded by a specific move which allows the audience to predict what is about to 

happen. This anticipation can be as small as a change of expression or as big as a 

broad physical action. In (fig. 4) the character gathers itsel f up like a spring, 

drawing back 

fig· • 

These anticipatory moves do necessarily imply why something is being done, 

but make clear what is being done. Although anticipation works best when deal

ing with characters, the practice of cluing the audience in to what is about to 

happen is valid (or more straightforward animation as well. Once a move has 

been implied through ant icipation , animating a vastly different move can be 

used to introduce an element of surprise. For example, a car coi ling up , obvi

ously ready to shoot forward but then zooming backward could be considered 

a sight gag. or course, this kind of slapstick may not suit all tastes or all produc

tion situations. 

Secondary Action 

Secondary action rerers to additional motion which helps support the 

maIO action in a scene. This particular type or motion is usually subtle, and 

occurs either berore or arter the main action so as not to compete with the pri

mary movement. For example, a character shuffiing his feet slightly while wait

ing ror someone reinrorces his uneasiness, giving the audience the visual cues 

they need to understand his character. 

In real lire, people or animate objects seldom stand perrectly still - there's 

-223 -



- 8 -

always some secondary motion. Someone sitting might tap their toes or drum 

their fingers against the arm of a chai r, while a plant might sw:)y slightly in a 

breeze. Without this subtle secondary motion, animation takes on a sterile, 

robotic look. 

Like overlapping action, anticipation and squash and stretch, secondary 

action is best added after the main act ion has been roughed out. 

Arcs 

Most motion is not lin ear, but describes some sort of arc. This basic 

premise is based on classical character animation, but bas obvious applications to 

the field of computer animation. Rather than linearly interpolating from one 

keyframe to the next, passing a curve through the keys gives a more dynamic 

look to the animation. If animation has been comp letely interpolated using 

splillC's, bowever, the motion may be too smooth, too uniform in velocity - in 

short, it will havc no punch. Any 'ooomph' lost by splining can be regained by 

cditing curves by hand. Again, a function editor which gives an interactive 

graphic representat ion is ideal for defining motion curves. Most systems have 

some automatic interpolation functions available to the animator. At NYlT we 

have the choice between user defined, linear, or cubic interpolating splines. One 

problem with cubic interpolating splines is that in their quest to keep slope con-

tinuity from keyframe to keyframe they tend to overshoot when confronted with 

sudden changes in velocity [Heckbert85j. Since animators intend keyframes to 

represent extremes 1D 

motion, these overshoots 
fig. 5 

can have disastrous 

results. Feet go through 

the Boor, fingers go 

-zz'j -



th rough hands, dogs sleep with cats. In short , chaos ens ues. Non-overshooting 

cubic interpolating splines (fig. 5) are necessary in a production animation 

environment :l.S they allow smooth motion without jumping in and out of a curve 

editor. 

Staging 

Perhaps the most basic trick of all , staging, refers to the total composition 

of a piece of animation. Even if a scene is well animated, the desired effect could 

be lost if t he scene isn' t well set up. Every cut, every shot , should reHect and 

rein force the theme or mood in the storyboard. An action should be staged so 

that it is unmistakably clear, a mood staged so that it has the most impact on 

the audience. A good animation system should give the animator an equivalent 

degree of degree of scene control affo rded to a live action director. 

Some systems offer several cameras, most of which can be gimballed , 

dollied, moved and rotated, while others give the option of changing not only 

the camera position but where the camera. is looking as well. Being able to 

change only the 'point of interest' and camera position is useful for plotted moves 

and fl y-throughs, but can be cu mbersome when a simple pan or dolly is called 

for. Here camera. orientation is a more useful controL 

Bein g able to choose from a. number of cameras helps in coming up with 

the most effect ive shot. Multi-camera systems make the animat.ion process easier, 

as wel l. If complex motion between several objects is requ ired, several well 

placed cameras help alert the animator to unwanted in tersections, prevent

ing nasty su rprises during the rendering process. Most animation systems have 

not only an infinite choice of camera positions, but an infinite choice of focal 

lengths as well. A slight lens change can make a. dramatic difference in the look of 

a piece of an im ation. 

-zzs-



- 10 -

Timing / Pacing 

Timing can be one of the most frustrating aspects of production oriented 

computer animation. How many times have you laboured for weeks over models, 

lighting and texturing, only to find that the client has cut the animation 

from eleven seconds down to seven? Usually a client will wa.nt a great deal of 

action in a v.ery short period of time. IC he was dealing with live action chances 

are he would be a little more lenient with his stopwatch, but the cost-per

second of computer animation makes every moment count. Limited budgets are 

partially to blame for some of the t~fast Oy throughs seen every night on TV. 

The timeframe usually allotted to TV spots is five to twenty seconds, with an 

occasional thirty second piece. These time constraints, when coupled with tight 

delivery/air-dalr'! deadlines allow for few an imation changes during a production. 

Sometimes a persuasive animator can squeeze a couple more fr ames out of a 

client, permitting a reasonable ease-in or a graceful camera. move, but a couple of 

frames is usually the limit. A useful tool for handling these situations is one that 

allows the animation to be expanded or contracted to different lengths without 

affecting the motion or the relative timing of the piece. This expansion or con

traction also cou ld be applied to just sections of the animation, changing the tim

ing of the main action while leaving the eases at each end untouched. 

Computers in Particular ... 

Although the aforementioned principles are of great help when producing 

animation, they do not address many animation problems. Facial animation, 

interaction between models and environments, clothing, even simple walk cycles 

present unique problems which may require specialized software solutions. 

-2Z6-



Tree Traversal 

One difficulty associated with conventional hierarchically defined models is 

the inflexibility of their tree structu re. For example, as the torso is rotated ror-

ward to begin tbe fall into a walk cycle, botb legs rotate off tbe floor (fig. 6a). 

The brute force solution to this problem is to rotate each leg back to the desired 

location for e.ach keyframe (fig. 66). A more elegant solution is to r~root the 

hierarchy of the model, allowing the animator to change root nodes on the Oy. 

This would allow the animator to change the root node and pivot the model 

around the right foot for one step (fig. 6c), then change the root node, allowing 

the next st.ep to be pivoted around the left foot. This implies two distinct choices 

of rotation, a bend which will root the tree at the torso and a pivot, which will 

root the tree at the app ropriate end node. 

Point of Rotation 

6a 

Inverse Kinematics 

Inverse kinematic chains have several uses for character animation. Let's 

use a walk cycle as an example. By setting the feet at their desired position and 

invoking inverse kinematics , the rotations for the ankles, knees and hips are 

derived. Although this keeps the feet on the floor, the combination of rotations 

which inverse kinematics give may not be the ones the animator desires. The 

ability to create goal-oriented keyrrames is important, but so is control over th~ 

methods used to attain the goal. 

-ZZ7-



- 12-

Parameterized Systems 

Parameterized animation allows the animator to apply scales, rotations, 

transformations or other operations to a series of points through a single parame

ter. Both the number of points affected and their interelationship is included in a 

script describing each parameter. Let's use facial animation as an example. 

Facial animation lends itself to parameterized systems since different parts of a 

body can be addressed separately, unlike a face which has no distinct delineation 

between elements. Several successful attempts at facial animation have been 

made by [Parke82]' and later at NYlT utilizing the progr.m, EM [H.nrahan851. 

EM allows tbe animator to use scr ipt equations to control input parameters, 

which can then be manipulated on an E&S calligraphic system using a set of 

dials. The parameter 'Rsmile ' might affect the vertex at the right corner of the 

mouth on a 1*1 rat.io, wbile affect in g tbe immediately surrounding vertices on a 

1*.5 ralio. This means if the animator applies a transformation of ,5 units to 

'Rsmile', the corner vertex will move .5 units, while the surrounding vertices in 

'Rsmile' will move .25 units (fig. 7). The success of this SV!ltelm glreatly depends 
~ ",----

on the sk ill with which the parameters 

'are described, but once a flexible set of 

parameters is created the model can be 

manipulated with a tremendous degree 

of precision and freedom. 

Programmed Animation fig. 7 

Occassionally a piece of animation is just too complex to be animated by 

manually positioning and requires a specialized program to animate the objects, 

For example, if the storyboard called for thousands of little tiles to randomly fiy 

-228-



- 13 -

a.round then suddenly form a sphere , it might make more sense to write a short 

program to control th eir motion rather than spending hours animating them with 

an interactive system. Although simple random motion generators may not give 

th e animator the con trol he would prefer, on occasion they provide exact ly wh at's 

needed. Another situation which would lend itself to programmed animation 

would be a vehicle driving over an uneven landscape [Lundin84]. Keyframe inter

polation is tedious in this case, as the changing landscape requires keys at each 

frame. 

Condusion 

Over the las t few years many advances have been made towards generat

ing higher quality a nimation. Rendering techniques such as ray tracing and tem

poral anti-aliasin g have added to animat ion's illusion of reality, but requi re 

tremendous amounts of computing power as well as a certain t echnica l enlighten

ment on the part of the user. 

Class ical animation techniques, on the other hand, have been in use suc

cessfully for decades and can be used on systems rangin g from Crays to Commo

dores. Comprehensive animation systems which allow animators the freedom 

afforded to classical animators will improve the art of computer animation 

without enormous computational power. By implementing principles of class ical 

animation we can approach the challenge of creating terrific computer generated 

animation from a less technically-oriented direction. Great computer animation 

will always be a mixture of programming wizardry and the black art of classical 

character animation. 

-Z29 -



References 

Illeckbert85j Hcckbert, Paul. Non·Ove rshooting Hermite Cubic Splines Jor Key
Jrame Animation. New York Institute of Technology Computer Graphics Labora
tory 3D Technical Memo #10, February 7 IG85 

[Hanrahan851 Hanrahan, Pat and Sturman, David. Interaclive Animation of 
Parametric Models. Course Notesj Introduction to Computer Animation ACM 
SIGGRAPH 1985. 

[Luckliesh65[ 
Applications. 

Luckliesh, M. Visual flIusions, 
Dover Pu blications, I G65. 

Their Causes, Characteristics & 

ILundin84J Lundin , Richard V. Motion Simulation. N ;c ograph 1984 ConJer-
ence Proceedings. Nicograph, November IGS4. 

[parke82] Parke, Frederick I. Parameterized Models ror Facial Animation. 
IEEE Co mputer Graphics and Applications,Nov IG82. 

[Thomas8iJ 
sion oj Life . 

Thomas, frank and Johnst.one, Ollie. Disney Animat iorl, the ntu
Abbeville Press, New York, 1GB1. 

Suggested Reading 

1. Blair, Preston. Animation. Walter T. Foster Art Books, Tustin, CA, }G4Q. 

2. Blair, Preston. How to Animate Film Cartoons. Walter T. Foster Art Books, 
Tustin, CA, 1980. 

3. Halas John, Manvell , Roger. The Technique of Film Animation. Hastings 
House ,lG76. 

4. Halas, John. Computer Animation. Hastings House, IG74. 

5. Sturman, David. A Discussion on Ihe Development oj Molion Control 
Systems. Course Notes; 3d Motion Specification and Control, ACM SIGGRAPH 
1986. 

-230-



AN INDEXED BIBLIO GAPHY ON COMPUTER ANIMATION 

N. Magnenat-Tha!mann and O. Thalmann 
MIRA Lab . REC/IRO 

University of Montreal 
Montreal , Canada 

1985 

Although the computer plays an ever- increasing role in animation . tbe term 

·computer anima.tioD- is impreci se and can Bometimes be misleading . This 

is because the computer can playa variety of different roles . A popular 

and simple way of classifying animation systems i8 to distinguish between 

computer-assisted and modelled animation . 

Computer-assisted animation consists mainly of assisting conventional 

animation by comput er . In particular. the computer can be used to input 

drawings, to produce in-bet.eens. to specify the motion of an object along 

a path. to color the draWings and create a background , to synchronize 

motion with sound and t o initiate the re cording of a sequence on film . 

This type of comput er animation is a180 mainly carried out in t wo 

dimensions . 

l i th modelled animat i on, the compute r becomes more than a support, playing 

a basic role in the creat ion of a three-dimentional world . This type of 

computer animat i on involves t hree main activities : object modelling , 

motion specification and synchronization and image rendering . 

A ' computer animation' bibliography could include references on a wide 

variety of relat ed SUbjects : e .g . graphics editing. computer-ai ded 

geometry , computer art and i mage synthesis . Bas ed on John Halas stat ement 

that 'movement is the essence of an i mation' , the authors decided to f ocus 

on the references on mo t ion in two and three dimensions . This 

bibligraphy , therefore, contains an exhaustive list of papera on key-frame 

systems and computer animation systems and languages . Papera on the fast 

developing topiC of human modelling and animation are also l i sted . 

Although Object modelling is an important part of modelled computer 

animation, we have not 

Readers are invited to 

l i sted the numerous papers 

consult the very completed 

- 2 3 1-

This bibliography a l so appeared in 

on this subject . 

bibliography on 

"IEEE Compute r Graphics & App licatio n s ", J uly 1985 



computer-aided geometric design by Brian Barsky (IEEE Computer Graph i cs 

and Applications,July 1981,pp .61-109) . Image rendering is also an 

important process in the production of computer-generated films . However, 

image synthesis is a rssearch domain at the same level as computer 

animation, so we have only listed papers that descr i be techniques directly 

linked to animation like particle systems or motion blur . Most important 

papers on image synthesis may be found in the SIGGRAPH proceedings, IEEE 

Computer Graphics and Applications and ACM Transactions on Graphics . 

Papers listed in this bibliography are mainly research papers; although we 

cannot guarantee that this list contains no errors or omissions, we 

believe it to be accurate and complete . We have also listed several 

papers intended for a wider audience that we jUdge to be of significant 

interest. 

The index allows the reader to find all the papers related to a theme or 

belonging to a cla8s. The same paper may be present in more than one 

class. For example, a paper which discus8es a computer animation system 

for animating human bodies using in-betweens will be classified in three 

categories: computer animation systems, key-frame animation and human 

modelling and animation . 

-232.-



A 

1. Ackland, B. and Weste. N. (1980) I~eal Time Animation Playback on a 
Frame Store Display System", Proe. SICGRAPH'80. Computer Graphics, 
Vol. 14, No 3, .pp. 182-188. 

2. Alexander, S. and Huggins, W.H. (1967). User's Manual on PMACRO. 
John Hopkins University. 

3. Armbrust, R. (1983) ''The Simulation of Space". Computer Pictures. 
Vol. I, No I, pp. 24-27. 

4. Armstrong W.W. and Green H. (1985) liThe Dynamics of Articulated 
Rigid Bodies for Purposes of An1matloo". Proe. Graphics Interface 
'85, Montreal. 

5. Auger, R. (1983) "3D Computer Animation in Television Advertising", 
Proe. eG'83, London, pp. 259~266. 

B 

6. Badler. N.l. (1975) Temporal Scene Analysis: Conceptual Descriptions 
of Objects Movements, Ph.D. D168" Uolvo of Toronto. 

7. :Sadler, N.I. (1982) ''Human Body Modele and Animation", IEEE Computer 
GraphiCS and Applications, Vol. 2, No 9. pp. 6-7. 

8. Badler. N.I. (1984) '~at is Required for Effective Human Figure 
Animation?". Froc. GraphiCS Interface '84, Ottawa. pp. 119-120. 

9. Badler, N.I. and Morria, M.A. (1982) '~ode1ling Flexible Articulated 
Objects". Proc. Computer Graphics '82, Online Conf., pp. 305-314. 

10. :Sadler, N.!., O'Rourke, J. and Kaufman. B. (1980) "Special Problema in 
Buman Movement Simulation", Froc. SIGGRAPH'80. Computer Graphica. Vol. 14. 
No 3 . pp. 189-197. 

-233 -



11. Badl e r, N.l., O'Rourke, J . nnd To Hzi s (1 97 9 ) "A Sphe ri cal Representation 
of a Human Body for Vi s ualizi ng Move ment", Proc. IEEE, Vol. 67, No 10, 
pp. 1397-1403. 

12 . Bad ler, N. I. a nd Smol1ar, S.W. (1979) "Digital Re pr esent a tions of Human 
Movement", Computing Surveys, Vol. 11. No I, pp. 19 - 38. 

13. Baecker, R.M. (1969) Interactive Computer-Mediated Animation , Ph.D. 
Dissertation. MIT, Project Mac-Tr-61. 

14. Baecker, R.H. (1969., "Picture-driven Animation", Proc. Spring Joint 
Computer Confe rence", AFIPS Press, Vol. 34, pp. 273-288. 

15. Baecker, R. (1970) "Current Issues in Interactive Comput e r-Mediated 
Animation", Froc. 9th Annual Meeting UAIDE, pp . 273-288. 

16. Baecker, R.M. (1971) "From the Animated Student to the Animated Computer 
to the Animated Film to the Animated Student ...... Proc . Purdue 1971 
Symp. App1. Comput. Electr . Eng. Educ., Purdue University . 

17. Baecker, R.H. (1976) "A Conversational Extensible System for the Anima
tion of Shaded Images". Proe. SIGGRAPH'76, Computer Craphics, Vol. 10. 
No 2, pp . 32-39. 

18. Balchin. N. (1983) "Film Animation by Microcomputer", Froe. CG'83, 
London, pp. 197-204 . 

19. Begley. S. (1982) ''The Creative Computers", News .... eek. July 12, pp. 44-47. 

20. Booth. S., Kochanek, D.H. and Wein H. (1983) "Computers animate film and 
video", IEEE spectrum, pp. 44-51. 

21. Booth, K.S. and MacKay, S. (1982) "Techniques for Frame Buffer Animation", 
Proe. Graphics Interface '82, pp. 213-219. 

22. Borrell, J. (1981) ''The Hagic of Computer Animation", Computer Graphic. 
World. ·No 10, pp. 25-33. 



DOODOOOODoooaOOOOOODDDDDDDDDDDDDOODDDODDDDDODDO 

23. Bosche C. (1967) "Computer Generated Random Dot Images", Design and 
Planning. 2. pp. 87-92. 

2.4 . Brovo. M.H. and Sedgwick. R. (198.4) "A System for Algorithm Animation". 
Proc. SIGGRAPH'8.4, pp. 187-19.4. 

25. Burtnyk, N., Pulfer, J.K. and Wein, M. (1971), "Computer Graphics and 
Film Animation!!. INFOR, pp. l-ll. 

26. Burtnyk, N. and Wein M. (1971) "Computer-Generated Key-frame Anitnation", 
Journal of Society for Motion Picture and Television Engineers, Vol. 80, 
pp. 149-153. 

27. Burtnyk, N. and Wein, M. (1971 ) "A Computer Animation System for the 
Animator", Proc. UAIDE 10t.h Annual Meeting, pp. 3-5 t.o 3-'24 • 

• 28. BurtDyk. N. and Wein, M. (1974) '~owards a Computer Animating Production 
Tool", Proceedings Eurocomp Congress, Online. BruneI, England, 1974, 
pp. 174-185. 

29. Burt.nyk, N. and Wein, M. (1976) "Interactive Skeleton Techniques for 
Enhancing Motion Dynamics in Key Frame Animat.ion", CO!!l!ll. ACM, Vol. 19, 
No 10, pp. 564-569. 

30. Buxton, W. (1982) "Computer Assisted Filmmaking", American Cinematographer, 
Vol. 63, No 8. 

c 

31. Calvert. T.W. and Chapman, J. (1978) '~otation of Movement with Computer 
Assistance", Proe. ACM Annual Conf., Vol. 2, pp. 731-736. 

32. Calvert. T.W • • Chapman, J. and Patla, A. (1980), '~he Integration of 
Subjective and Objective Data in Animation of Human Movement", Proe. 
SIGGRAPH'80, Computer Graphics, Vol. 1.4, No 3, pp • . 198-203 . 

33. Calvert, T.W., Chapman, J. and Patla, A. (1982) "Aspects of the Kinematic 
Simulation of Human Movement", IEEE Computer Graphics and Applications. 
Vol. 2, No 9. pp. 41-50. 

-23S-



JOOODt...::ICJODCJOCJoaC"J:.::Jooo::=:aOClCJODDCJCJCJCJDDDCJCJCJDOOODCJDCJCJ 

3[,. Calvert. T.W., Chapman , J. and Path, A. (l982b ) "rhe Simulation of 
Human Movement", Proc. Graphics Interface '82, pp. 227-234. 

35 . Carr, J .W., et 81., (19 70) "Int.eractive Movie Making", Proceedings 
9th UAIDE Annual Meeting , pp. 381-397. 

36. Ca tmu11, E. (1972) "A Sys l em for Computer Generated Movies", Froc. 
ACH Annual Conference, pp. 422-431. 

37. C.tmull. I. (1978 J "The Problems of Computer-assisted Animation", 
Computer GraphiCS, Vol. 12, No 3, pp. 348-353. 

38. Catmull I. (1979) ''Ne .... Frontiers i n Computer Animation", American 
Cinematographer , October Issue. 

39. CGlJ (1982) "Digital Paint Systems Survey", Comput.er Graphics "World, 
Vol. 5 , No 4 , pp . 62-65. 

40. Christopher. R . (1982) ''Digital Animation does Dallas", Videography, 
February Issue. pp. 37-42. 

41. Chuang, R. and Intis. G. (1983) "3D Shaded Computer Animation - Step 
by Step", IEEE Computer Graphics and Applications, Vol. 3. No 9. 
pp . 18-25 . 

42. Citron. J . and Whitney, J . (1968) "CAMP Computer Assisted Movie Proouc
tionll, FJCC. AFIPS Conference Proceedings. Vol. 33 ( 2). pp. 1299-1305. 

43. Colonna. J.F. (1983) tlFrom Di.p1ay of Computer Results to Artistic 
Creation". Proc. CG'83 , London. pp. 219-232. 

44. Cro ..... F. C. (1978) "Shaded Computer Graphics in the Entertainment 
Industry". Computer. IEEE Puss. 11 (3). pp . 11-23. 

4S. Cauri. C. (1970) ''Real-Time F11m Animation", Proc. 9th UAIDE Annual 
Meetins, pp. 289-305. 

-.236-



DDDDODDOOOOODOODDODDDDDDODDOODDODOODDDDDDDDODDC 

46. Csuri, C. (1974) ''Real-Time Computer Animation". Proc. IFIP Congress '74._ 
North-Holland. pp. 707-711. 

47. Csuri, C. (1974) "Computer Graphics and Art", Proc. IEEE 62(4). pp. 503-515. 

48. Csuri, C. (1975) "Computer Animation". Proc. SIGGRAPH '75. pp. 92-101. 

49. Csuri. C., Hackathorn. R. t Parent. R., Carlson, W. and Howard. H. (1979) 
'~oward6 an Interactive High Visual Complexity Animation System". Proc. 
SIGGRAPH'79. Computer Graphics, Vol. 13, No 2. pp. 289-299. 

50. Csuri, C. and Shaffer, J. (1968) "Art, Computers and Mathematics". 
Froc. Fall Joint Computer Cont., AFIPS, pp. 1293-1298. 

D 

51. DeFanU, T. (1976) '"The Digital Component of the Circle Craphics Habitat", 
Proc . National Computer Conference '76. pp. 195-203. 

52. DeFanti. T. (1980) '~anguage Control Structures for Easy Electronic 
Vhualization". BYTE. November Issue, pp. 90-106. 

53 . DeFanti. T. (1983) "Extended Memory Use in the ZGRASS Graphics System". 
in Computer Graphics. Theory and Applications. Springer-Verlag, Tokyo, pp . 380-3 

54. Dietrich F. (1983) itA Micro Computer System for Real-Time Animation", 
The Artist Designer and Computer Graphics, Tutorial SICGRAPH ' 83. Vol. 18, 
pp. 43-47. 

55. Duncan. W. Jr (1982) "Computer Animation at Information International". 
Turorial notes on 3D Computer Animation. SIGGRAPH'82. 

56. Duff. D.S. (1976) Simulation and Animation. H.Sc. Theaia. Dept. of 
Computer Science, Univeraity of Toronto. 

57. Duff. T. (1983) "Computer Graphics in the Biggest Box Office Hit: Return 
of the Jed!". Froc. Computer Graphica '83, Online Conf .• pp. 283-289. 

-2,7-



)LJDt~DDCX::)OCJDc..-:JOC:J:"";JL'::J::"':':':18::::lL:JDODDL:JC!DD:-.JDD~DDOOODDDDDODO 

r 

58. Feiner. S . , Salesin, D. and Banchoff, T. (1982) "Dial: A Diagrammatic 
Animation Language", IEEE Computer Graphic s a nd Appli cations. Vol. 2, 
No 9, pp. ~3-5~. 

59. Ferderber, S. (1983) ''The Commercial Production Designer". Millimeter. 
February Issue, pp. 52-66. 

60. Fetter. W.A. ' (1964) Computer Graphics in Communication, McGra .... -Hill, 
Ne .... York. 

61. Fetter, W.A. (1981) "Wide Angle Displays for 'Iactical Situations", 
Proc. US Army 'Ihird Computer Graphics Workshop, pp. 99-103. 

62. Fetter, W.A. (1982) "A ProgreSsion of Human Figures Simulated by Com
puter Graphics", IEEE Computer Graphics and Applications, Vol. 2, No 9, 
pp. 9-13. 

63. Fishkin, K.P . and Barsky, B.A. (1984) "A Family of Ne .... Algorithms for 
Soft Filling", Proc. SIGGRAPH '84, pp. 235-244. 

64. Fishkin, K.P. and Barsky. B. A. (1984) "Algorithms for Brush Movement in 
Paint Systems ll

, Proe.. GraphiCS Interface '84., Otta .... a. pp. 9-16. 

65. Fortin. D .• Lamy, J.F. and Thalmann, D. (1983) itA Multiple Track Animator 
System", Proe. SIGGRAPH/SIGART Interdisciplinary Workshop on Motion: 
Representation and Perception. Toronto, pp. 180-186. 

66. Fox, and Waite (1982) "Computer Animation with Color Registers!!, BYTE. 
pp. 194-214. 

67. Fox, D. and Waite, M. (1984) Computer Animation Primer, McGra .... -Hill. 

68. Friesen, D. P. (1969) "A Professional Animator looks at Computer Animation'" 
Proceedings 8th UAIDE Annual Meetins, pp. 187-194. 

69. Futrel1e. R.P. (1974) "GALATEA: Interactive Graphics for the Analysis of 
Moving Images". Proc. Information ProcesSing 7', North Holland. pp. 712-71.5. 

-Z3.B-



G 

70. Ceschwind. D.M. (1982) '~e NOVA Opering : A Case Study in D1g1tal 
Computer Animation", Proe. Computer Graphics '82, Online Conf. pp. 325-
335. 

71. Goldstein, R.A. (1971) "A System for Computer Animation of 3-D Objects". 
Proceedings 10th UAIDE Annual Meeting, pp. 3-128 to 3-139. 

72. Coldstein. R.A. and Nagel, R. (1971) "3-D Visual Simulation". Simulation. 
pp. 25-31. 

73. Coss, T. (1983) "Animation and the New Machine", Print, Karch/April Issue, 
pp. 57-64. 

74 . Green, H. (1981) "A System for Designing and Animating Objecu 'With Curved 
Surfaces", Proe. Canadian Han-Computer Communications Society tal! pp. 377-
384. 

75. Greenberg, J .M. (1985) "Computer Animation 1n Distance Teaching". Proe:. 
Graphics Interface '85. Montreal. 

H 

]6. Hackathorn. R. (1977) "ANIMA II:.,. 3-D Color Animation System", Proc. 
SIGGRAPH'77. Computer Graphics, Vol. 11. No 2, pp. 54-64. 

77. HackAthorn, R., Parent, R., Marshall. B. snd Ho .... ard. M. (1981) "An 
Interactive H.!crocomputer Based 3-D Animation System". Proc. Canadian 
Han-Computer Communications Society Conference '81, pp. 181-191. 

78. Haflinger. D.J •• and Ressler, P.C. (1971) "Animation with IGS". Proceedings 
10th UAIDE Annual Meeting, pp. 3-227 to 3-234. 

79. Hala8. J. (editor) (1974) Computer Animation, Haatings House, New York. 

80. Hayward, S. (1984) Computers for Animation, Focal Press. 



J.::JCJDCJCJ::::l:::JDClGOD~.=J=.,L:):::::JDDwDC:::;DDDDOOOOODODOODDODClDCJCJ:::J 

81. Herbison-Evans , D. (1978) "h"UDES 2: A Numer i c. Ut ility Di6playing 
Ellip50id Solids, Version 2", Proc.. S IGGRAPH'78, Computer Graphics, 
Vol. 12 , No 3 , pp . 354-35 6. 

82. Herbison- Evans, D. (1982) "Real-Time Animation of Human Figure 
Drawings with Hidden-lines Omitted", IEEE Computer Gra·phics and 
Applications , Vol. 2, No 9, pp. 27-33. 

83. Herbison-Evans , D. (1983 .) ''Manipulating Ellipsoids in Animation". 
Co:nputer Graphics \" orld. No.7 . pp. 78-82. 

84. Herbison-Evans, D. (1983 ) "Hidden Arcs of Interpenetrating and 
Obscuring Ellipsoids", The Australian Journal. Vol. 15, No 2, 
pp. 65-68. 

85. Honey, F.J. (1971) "Artist Oriented Computer Animation", Journal of 
Society of Motion Picture and Television Engineers, Vol. 80, No 3, 
p. 154. ' 

86. Honey, F.J. (1971) "Computer Animated Episodes by Single Axis 
Rotations ", Froc . 10th UAIDE Annual Meeting, pp. 3-120 to 3-226 . 

87. Hopgood. F .R.A. (1969) "GROATS : A graphic output system for atlas 
using the 4020". Proceedings 9th UAIDE Annual Meeting, pp. 401-410. 

8S. Hubschman. H. and Zucker, S . W. (1982) "Frame-to-Frame Coherence and 
the Hidden Surface Computation: Constraints for a Convex World", ACH 
Trans. on Graphics. Vol. I, No 2, pp. 129-162 . 

89. Huggins, W.H .• and Entwisle. D.R. (1969) "Computer Animation for the 
Acad\l!mic Community". SJCC. AFIPS Conference Proceedings , Vol. 34. p. 62.3. 

90. Hunter. G.H . (1977) "Computer Animation Survey", CompuL and Graphics, 
Pergamon Press. Vol. 2, pp. 225-229. 

91. Hum, B. (1981) "Computer Animation for Industrial Training", Computer 
Graphics World, No la, pp. 65-68. 



I 

92. Iversen, W.R. (1982) "Processor Animates 3-d Surface Images", Elec.tronics, 
1982. pp. 149-150. 

K 

93. Kahn. X.M . (1976) An Actor-Based Computer Animation Language, MIT AI 
Working Paper '120. 

94. KalliS. S.A. (1971) "Computer Animation Techniques". Journal of the SMPTE. 
Vol. 80, No 3, pp. 145-148. 

95. Ka~aguchll Y. (1981) Digital Image (1n Japanese), ASCII Publishing. 

96. Kitching. A. (1973) "Computer Animation-Some Ne .... ANTICS", Br. Kinemato
sraphy Sound Television J . • 55(12). pp. 372-386. 

97 . }{nowlton. X.C. (1964) "A Computer Technique for Producing Animated Movies", 
Froe. 5Jee AFIPS Conference, W. 25, pp. 67-87. 

98. Knowlton. K.C. (1965) "Computer-Produced Movies". Scbnce. 150. pp. 1116-
1120. 

99. Knowlton. K. (l968) "Computer-Animated Movies", Emerging Concepts in 
Computer Graphics, Benjamin, N.Y. , pp. 243-370. 

100 . J(nmoolton, R.C. (1970) "EXPLOR-A Generator of Images", Proc. 9th UAIDE 
Annual Meeting. pp. 543-583. 

101. Knowlton. K. (1972) "Collaborations with Artists: .A Programmer's Reflec
tions", Proc. tFIP Working Conf. on Graphic LAnguages, North.- Holland, 
pp. 399-418. 

102. Knowlton, JCC. (1981) "Computer Animation as an Aid to Comprehending the 
Universe", Computers for Imagemaking, D.R. Clark, ed., Perm_gon Preas, 
Oxford and New York, 1981. pp. 131-139. 

- Z'II-



C:::::lC1C1ClODDCJ08DD08~:::JDa::J8:=lODC:1D::JQ:=>DOClClClCJClCJClOClOClClClClClCl 

103. Kochanek. n.H.U. and Bart.elli. R.H. (198t.) "Interpolating Splines with 
Local TenSion, Continu ity and lUas Control" , Pr"oc. SIGGRAPH '8t., pp. 33--41. 

10-4. Korein, J. and BalHer, N. (1983) "Temporal Anti-Aliasing in Computer 
Generated Animation", Proc. SIGGRAPH ' 83, Computer Graphics. Vol. 17, 
No 3 . pp. 377-388. 

L 

105. Lansdown. R.J . (1982) "Computer Aided Animation: A Concise Review", 
Proc. Computer Graphics '82, Online Conf •• pp. 279-290. 

106. Lansdovn, J . (1983) "The Economics of Computer-Aided Animation". 
Proc . Computer Graphics '83, Online Con! .• pp. 267-275. 

107. Laybourne , K. (1979) The Animation Book, Crown. 

108 . Levine. S.R. (1975) "Computer Animation at Lawren ce LivenDore 
Laboratory", Froc. SIGGRAPH '75, pp. 81-8-4. 

109. Levitan, E.L. (1977) El ectron ic Imaging Techniques, Van Nostrand. 

110. Levoy, M. (1977) "A Color Animation System Based on the Multip1ane 
Technique", Proc . SIGGRAPH '77, Computer Graphics, Vol. 11, No 2. 
pp. 65-71. 

111. Levoy, M. (1978) Computer-Assisted Cartoon Animation. master's thesis. 
Cornell University, Ithaca, N.Y., Aug. 1978. 

112. Levell, J. (1981) "The Computer P.intings of David Em". Business Screen, 
October Issue, pp. 38-40 . 

113. Lewell, J. (1983) "'The Pioneers: John Whitney Sr", Computer Pictures, 
Vol. I, No 3 . pp . 22-24. 

114. Levie, J . P. (1984) "Te xture Syntheda for Disital Painting", Proc. 
SIGGRAPH '84, pp . 245-252. 



115. Lieberman. L.I. (1971) "Compufilms: A Computer Animation Process". 
Simulation 16(1) . pp. 33-36 . 

116. Lipscomb, J.S . (1981) "Reversed Apparent Movement and Errati.c Motion 
.... ith Many Refreshes per Update", COllOputer Graphic s . Vol. 14, No 4, 
pp. 113-118. 

H 

117 . Hagnenat-Tha1mann, N. and Thalmann. D. (198:' ) "3D Computer Animation 
Films Using a Programming Language and Interactive Systems", Pr oc . 
Computer Graphi cs '83, . Online Conf . pp. 247-257. 

118 . Hagnenat-Thalmann, N. and Thalmann, D. (1983 ) '~e Use of 3D High
Level Graphical Types in the MIRA Animation System", IEEE Computer 
Graphics and Applications, Vol . 3, No 9, pp . 9-16. 

119 . Hagnenat-Thalmann, N. and Thalmann, D. (1983) '7he Use of 3D Abstract 
Graphical Types in Computer Graphics and Animation". in Computer 
Graphics, Theory and Applications (T.L. Kunii. ed.), Springer-Verlag, 
Tokyo, pp. 360-373. 

120. Magnenat-Thalmann. N. and Thalmann, D. (1984) "CINEMIRA: A 3D Computer 
Animation Language Based on Actor and Camera Data Types", Technical 
Report. Univerai t y of Montreal. 

121. Hagnenat-Thalmann, N. and Thalmann, D. (1984 ) "3D Shaded Director
Oriented Computer Animation". Proc. Graphics Interface · '84, Otta ...... 

122. 

123. 

Hagnenat-Thalmann, N. and Thalmann. D. (1985) Computer Anlmatioo; Theory 

and Practice. Springer-Verlag, TOKYO, 1985 

tl'qS) 
Hagnenat-Thalmann, N., Thalmann , D. and Fortin, M. '~lRANIH! 
An Extensible Director-Oriented System for the Animation of· Realistic 
Images". IEEE Computer Graphica .nd Applications. March Issue. 

124. Hagnenat-Thalmann. N., Thalmann, D. , Fortin, H. and ~nglo1s. L. (1985) 
'~IRA-SHADING: A Language for the Synthesis and the Animation of Realistic 
Images". Frontiers 1n Computer Graphics, Springer-Verlag, pp . 101-113. 

-2'/3-



)QOD8DD~ODODDOODDODDD08000DODDDDDDDDDDDDDDDD~O 

125. Malot.'any, A.S. and Kashef. B. (l984) "A Color Real-Time Animation 
System", Proc. Graphics Interface '84, Ottawa, pp. 43-.50. 

126_ Harion. A., Fleisc her. K. Bnd Vi c kers, H. (1984) "To ... ·ard Express ive 
Animation for Interactive Characters", Proc. Graphics Interfa ce '84, 
Ottawa, pp. 17-20. 

127. Max, N.L. (1979) "Atom LLL: - Atoms with Shading and Highlights", 
Computer Graphics, Vol. 13, No 2, pp. 165-173. 

128. Max, N. and Blunden, J. (1980) "Optical Printing in Computer Animation", 
Proc. SIGGRAPH '80, Computer Graphics, Vol. 14. No 3, pp. 171-177. 

129. McCarthy, M. (1982) "Animation's New Protege", Video Systems, pp. 40-46. 

130. Mezei, L. and Zivian. A. (1971) "ARTA; An Interactive Animation System". 
Proc. Information Processing 71. North-Holland. pp. 429-434. 

131. Mittelman , P. (1983) "Computer Graphics at MAGI". Proc. Computer Graphics 
'83. Online Conf., pp. 291-301. 

132. Miura, T., Iwata. J., and Tsuda, J. (1967) "An Application of Hybrid 
Curve Generation - Cartoon Animation by Electronic Computers", Proc. 
Spring Joint Computer Conference, p.141. 

133. Hudur. S.P . , and Singh, J.B. (1978) "A Notation for Computer Animation", 
IEEE Trans. 00. Systems, Man and Cybernetics, Vol. SHC-S, No 4, pp. 308-311. 

N 

134. Negroponte, N. and Pangaro, P. (1976) "Experiments with Computer Animation~ 
Computer Graphics. Vol. 10. No 2. pp. 40-44. 

135. Nolan, J., and Yarbrough. L. (1968) "An on-line Computer Drawing and 
Animation System", Proceedings IFIPS Congren 1968, North-Holland, 
Amsterdam. p. 605. 

-24'/-



136. Noll, A.M. (1965) "Stereographic Projections by Digital Computers ", 
Computers and Automation, Vol. 14, pp. 32-34. 

137. Noll, A.M. (196'; .) "Computer Generated Three-Dimensional Moviee", 
Computers and Auto~tion, Nove~ber Issue, p. 20. 

138. Noll, A.M. (1967) "Compute rs and the Visual Arts", Design and Planning, 
2, pp. 65-80. 

139. Noma, T. and KunH, T.L. (1985) "A Framework for Generating 30 Engineer
ing Animation from 20", Proc. Graphics Interface '85 t .Montreal. 

o 

140. Odgers, C.R. (1982) "Criteria for Choosing a Camera for Use in a Video 
DigiUdng System", Tutorial notes on Computer Animation. SIGGRAPH '82, 
pp. 108-119. 

141. Odgers, C.R. (1983) "Fundamentals of Video Recording for Computer 
Animation", Tutorial notes on Computer Animation, SIGGRAPH '83, pp. 
175-186. 

142. O'Rourke, J. and Radler, N.I. (1979) Decomposition of Three-dimensional 
Objects into Spheres", IEEE Transactions on Pattern Analysis and Machine 
Intelligence, Vol. RAMI-I, pp. 295-306. 

143. Parke, F.I. (1972) "Animation of F~ces", Proceedings ACM Annual Conference. 
Vol. 1. 

144. Parke, Frederic I. (1974) A Parametric Model for Human Faces, Ph.D. thesis. 
University of Utah, Salt Lake City, Utah . 

145 . Parke, F.I. (1975) "A Model for Human Faces that Allova Speech Synchronhed 
Animation", Computers and GraphiCS, Pergamon Press, Vol. I, No I, pp. 1-4. 

- Z'/5 -



H6 . Parke. Frederic 1. (1979) "Computer Graph i c Hodels for the Human Face". 
Proc. Compsac 79, IEEE Computer Society. Los Alamitos, Calif., pp. 724-727. 

H7. Parke, F.!. (1980) "Adaptation of Scan and SUt-Scan Techniques to 
Computer Animation", Proc. SIGGRAPH '80, Computer Graphics, Vol. 110, 
No 3. pp . 178-181. 

148. Parke. F.I . (1 982 ) "Parallleteri%ed Hodels for Facial Animation". IEEE 
Computer Graphics and Applications. Vol. 2. No 9, pp. 61-68. 

149. Pattenon, R. (1982) "The Making of Tron". American Cinl!!matographer. 
Vo!. 63. No 8 . 

150 . Platt. S. and Badler, N. (19S1) "Anima ting Facial Expressions". Proc. 
SIGGRAPH 'Sl. Computer Graphics, Vol. 15, No 3. pp . 245-252. 

151. Porter. T. and Duff. T. (1984) "Camposi ting Digital Images". Proc. 
SIGGRAPH '84, pp. 253-259. 

152 . Porter, T.K. (1984) "Computer Graphics and Major Hotion Pictures", 
Proe. CAMP 'S4 , Berlin. 

153. Potel. M.J. (1977) "Real-Time Playback in Animation Systems". Proc. 
SIGGRAPH '77, Computer Graphics. Vol. 11. No 2, pp. 72-77. 

154. Potmes11, M. and ChakravartYt t. (1983) '~odeling Hotion Blur 1n Computer
Genera ted Images ". Proc. SIGGRAPH '.83 I Computer Graphics. Vol. . 17 I No 3. 
pp. 389-399. 

155. Potter. T.E. and Wi11mert, X.D. (1975) "Three-Dimensional Hu1tL&n 
Display Model", Computer Graphics, Vol. 9. No 1. pp. 102-110. 

156. Potts, J. (1983) "Animating the Indescribable". Government Data Systems, 
May/June Issue, pp. 10-13. 



R 

157. Reeves. W·.T. (1980) Quantitative Representations of Complex Dynamic 
Shape for Motion Analysis, Ph.D', Thesis. Dept. of Computer Science. 
Dniv. of Toronto. 

158. Reeves. W.T. (1981) "lnbetwuning for Coroputer Animation Utilizing 
Moving Point Constraints", Free. SIGGRAPH '81, ACM. pp. 263-269. 

159. Reeves, W.T. (1983) "Particle Systems - A Technique for Modeling a 
Class of Fuzzy Objects", Free. SIGGWH 'al. Computer Graphics. Vol. 17. 
No 3. pp. 359-376. 

160. Ressler. S.P. (1982) An Object Editor for a Real Time Animation 
Processor, Free. of Graphics Interface '82. pp. 221-226. 

161. Reynolds, C.W. (1978) Computer Animation in the World of Actors and 
Scripta. SM Thesis, MIT (Architecture Machine Group). 

162. Reynolds. C.W. (1982) "Computer Animation with Scripts and Actors". 
Proc. SIGGRAPH '82. Computer Graphics. Vol. 16, No 3. pp. 289-296. 

163. Russett, R. and Starr C. (1976) Experimental Animation,_ New York: Van 
Nos trand Reinhold. 

s 

164. Schachter. B.J. (1981) "Computer Image Generation for Flight Simulation". 
IEEE Computer Graphics and Applications. Vol. 1, No 4. pp. 29- 68. 

165. Schachter. B.J. (1983) "Generation of Special Effects". 10 Computer 
Image Generation. John Wiley. New York. pp. 155-172. 

166. Schnhgaos. C. and Pou1ard. S. (1972). "FILOMENE FILEMON, Un ayadme 
comp1exe pour 1. production de films d'animatioo-aur ordinateura". Proc. 
CIPS '72. pp. 212301-212329. 

167. Schumacker. R.A., Brand. B •• Gilliland. M. and Sharp, W. (1969) Study 
for Applying Computer-generated Imagea to Visual Simulation, AFHRL-TR-
69-14. U.S. Air Force Human Resources Lab. 

-Z'I7-



168. Shoup, R.G. (19 79) "Colour Table Animation", Pr oc. SIGGRAPH '79, Computer 
Graphics._ Vol. 13. No 2, pp. 8-13. 

169. Shoup, R.C. (19 79) "SUPERPAINT: The Digital Animator". Datama tion. May 
I ssue . pp. 150-156. 

170. Sinden, F.W. (1967) "Synthetic Cinematography", Per spective 7, No '. 
pp. 279-289. 

171. Smith. A.R •. (l97 9) "rint Fill", Proc. SIGGRAPH '79, Computer Graphics, 
Vol. 13. No 2, pp . 276-283. 

172. Smith, A.R. (197B) PAIh~, Technical memO no 7, NYIT. 

173. Smith, A.R. (1983) Digital Filmmaking, Abacus, Springe r-Verlag .. ~1. i , No. ~. 

". n-H. 
174. Smollar. S.W., and Trac ton, W. (1978) "A Lexical Analysis of Labanotation 

v1th an Assoc iated Data Structure ", Proc. ACM Annual Conf .• Vol. 2, pp . 
727-730 . 

175. Smo11sr, S.W .• and ""eber. L. (1977) "Using the Computer for a Semantic 
Representation of Labano tation", Computing and the Humanities. Unvi. 
~aterloo Press. pp. 253-261 . 

176. Sorensen. P. (19B2) "Tronic Imagery". Cinefex 8, Apri!!: issue . 

177. Sorensen, P. (l9B3) "Movies, Computers and the Future", American Cinema
tographer. January issue. 

178. Spina, L . (1982) ''Paint-By-Pixels: Computer PO\Jer Comes to TV Artists". 
Millimeter Magazine, Vol. 10. No 2. 

179. Stern. G. (197B) Garland's Animation System - A Computer Aided System 
for Animated Motion Pictures, Ph.D. ThesiS. University of Utah, Salt Lake 
City. Utah. 

IBO. Stern, C. (l979) "Softcel: An Application of Raster Scan Graphics to 
Conventional eel Animation", Proc. SIGGRAPH '79, Computer Graphica , 
Vol. 13, No 3, pp. 284-288. 



't:Ji:::::C:JOCJCJCJCJc:::Jc::x::Jc:::Jc:::JDClClc:::Jc:::Jcx:Jc:::Jc:::JDOOODClClClCJClClc:::JCJc:::Jc:::JCJClClOClClClClDC] 

181. Stern. C. (1983) "Bboop: A Syuem for 3D Key Frame Figure Animation". 
SIGGRAPH '83 tutorial. pp. 240-243. 

182. Scurman. D. (1984) IIInterac-tive Key Frame Animation of 3D Articulated 
Kodels". Froc. Graphics Interface '84, Ottawa, pp. 35-40. 

T 

183. Talbot, P.A . , Carr III. J .W • • Coulter Jr .• R.C. and Hwang. R.C. (1971) 
"Animator: An On-Line Two-dimensional Film Animation System", Communi
cations of the ACH, Vol. 14. No 4. pp. 251-259. 

184. Taylor. R. (1983) "Designina for che Feature Film", Tutorial 
on the Artist/Designer and Computer Graphics. SIGCRAPH '83 , 

notes 
p. 31. 

185. Thalmann, D. and Magnenat-Thalmann, N. (1983) "Actor and Camera Data 
Types 1n Computer Animation". Proc. Graphics Interface '83, pp. 203-210. 

186. Thalmann. D. and Hagnenat-Thalmann. N. (1984) '~owards an Artist
Oriented Approach to 3D-Computer Animation". Froc. CAMP '84. Berlin, 
pp. 523-527. 

187. Thalmann, D. and H.agnenat-Thalmann . N. (1985) "3D Computer Mimation:More en 
E.olutloo Problem then. Moti.., Problem", Pro: Clragbics lolerfec:e '85, Moot .... l, 1985 

188. Thalmann, D., Magnenat-Thalmann. N. and Bergeron, P. (1982) '~ream 
Flight: A Fictional Film Produced by 3D Computer Animation". Froc. 
Computer GraphiCS '82. Online Conf. Ltd •• pp. 353-368 . 

189. Thornton. R. (1983) "Computer assisted Animation at NYIT", 'roc. Computer 
Graphic. '83, Online Coof., pp. 277-282 . 

190. Til.on, M.D. (1976) Editing Computer Animated Film, master'. thesi_, 
Unlv~r.ity of Toronto, Canad •• 

- 2'19-



;Jl;JODOODCJDODDDOD DCJDClClOOCJ::::>ODDD:::JDDDDODOClClODDClDDD C 

w 

191. Wallace. B.A. (1981) '~erging and Transformation of Raster Images for 
Cartoon Animation", Froc. SIGGRAPH 'Sl. COr.lputer Graphics. Vol. 15. 
No 3. pp. 253-262 . 

192. Weber. L .• Smoliar. S.W. and Badler. N.I. (1978) "An Architecture 
for the Simulation of Human Movement", Proc. ACH National Conference. 
pp. 737-745. 

193. Wein, H. and Burtnyk. N. (1972) "A Computer Facility for Film Animation 
and Music", Proc. CIPS '72, pp. 212201-212205. 

194. Wein. M. and Burtnyk, N. (1976) "Computer Animation" in: Encyclopedia 
of Computer Science and Technology. Vol. 5, Marcel Dekker, pp. 397-436. 

195. Weiner, D.D. and Anderson, S.E. (1968), lOA Computer Animation Movie 
Language for Educational Hotion Pictures". Proc. FJCC, p. 1318. 

196. Whitney. J.B. (1971) "A Computer art for the Video Picture Wall". 
Proceedings trIPS Congress 1971, North-Holland. Amsterdam, pp. 1382-1386. 

197. Whitney, J.8. (1'71) "Analog and Digital Computer Graphic Systems Applied 
to. New Motion-Picture Fine Art", J. Soc. Motion Picture and Te1evhion 
Eng., Vol. 80 . No 3, p. 196. 

198. Whitney, J. (1980) Digital Harmony, Peterborough, NH: Byte Books, McGraw
Hill. 

199. Wilhelms. J. and Barsky, B.A. (1985) '~sinB Dynamics Ana1ysi. for the 
Animation of Articulated Bodies as Humana and Robots", Proc. Graphics 
Interface '85, Montreal. 

200 • . Williams, L. (1983) "Overview of 3D Animation", Tutorial notes on 
Computer Animation SIGGRAPH '83, pp. 212-219. 

-260-



201. Willmert, X.D. (1978) "Graphic Display of Human Hotion", Proc. ACH '78 
Conf., pp. 115-719 . 

202. Withrow. C. (1970) A Dynamic Model for Computer-aided Choreography, Univ. 
Utah," Dep. Computer Science. No 70-103. 

z 

203. Zajac. I.E. (1965) "Computer Animation: A ne\ol Scientific and Educational 
Tool". J. SMPTI 74, pp. 1006-1008 . 

204. Zajac, E.E. (1966) "Film Animation by Computer", Ne .... Scientist 29. pp. 
346-349. 

205. Zeltzer, D. and Csuri. C. (1981) "Goal-Directed Movement Simulation". 
Proc. Canadian Man-Computer Communications Society '81, pp. 271-280 • 

• 

206. Zeltzer, D. (1982) "Motor Control Techniques for Figure Animation", 
IEEE Computer Graphics and Applications, Vol. 2. No 9, pp. 53-59. 

207. Zeltzer, D. (1982 ) "Representation of Complex Animated Figures", 
Proc. Graphics Interface '82, pp. 205-211. 

208. Zeltzer. D. (1983) "Knowledge-based Animation". Proc. SIGGRAPH/SIGART 
WorKshop on Motion, pp. 187-192. 

209. Zeltzer. D. (1985) "Towards an Integrated View of 3D Computer Animation", 
froc. Graphics Interface '85, Montrea. 

210. ZiJraDerlin, T., Stanley, J. and Stone. W. (1978) "A Sensor Simulation 
And Animation System", Froc. SIGCRAPH '78. Computer Graphics, Vol. 12. 
No 3. pp. 105-110. 

-251-



rnr l v pn pc.'r s 

2 14 23 2 6 29 3~ 3 6 42 4 5 ~ O 60 68 71 7 2 7 0 79 0 5 06 89 94 

9 G 9 7 90 99 10 0 10 1 1 1~ 1 3 0 13~ 136 137 1 30 163 19 6 197 203 

204 

books nnd surveys 

20 25 44 67 79 80 90 95 105 10 9 122 163 165 173 194 19B 2 0 0 

theore ti ca l .paper s 

4 6 133 157 187 199 209 

..... ·.ide-audience pape rs 

3 5 18 19 22 30 38 40 43 44 59 66 73 9 1 9 2 l OG 11 2 11 3 129 

140 141 149 156 170 173 176 177 178 184 

key-fr ame anima t i o n 

13 14 15 16 26 27 29 37 65 96 103 11 0 III 126 132 1 58 179 

180 181 182 19 1 

pa int sys tems 

39 63 64 96 11 0 111 114 169 171 172 

r ea l-timp. an i ma ti on 

1 21 45 46 48 51 52 53 66 125 153 160 168 

computer animation languages 

2 23 5 8 93 97 98 99 100 101 102 ~17 118 119 120 121 123 124 

133 161 162 185 188 195 

computer animati o n systems 

17 24 27 28 36 41 42 48 49 51 52 53 54 65 69 71 74 76 77 81 

85 86 87 96 110 117 121 123 124 125 127 130 135 166 179 180 

181 183 186 190 193 197 210 

-252-



JDDDDDDDOODDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDC 

COr.lputcr- o(~ncrated fiIr.s - Ci:lSP. studies 

~5 57 70 100 131 149 152 176 ) 84 ]08 189 

hU:lLln roode-Ilinn ?-:1;0 aniMation 

4 7 0 9 10 11 12 31 32 33 34 60 61 62 01 82 f3 A4 142 143 

144 145 146 148 150 155 174 175 192 201 202 205 206 207 200 

special tE"chnig u(!s 

00 104 11G 128 147 151 15~ 159 

Bl:mlicntions (sir:.uIation, ClID/CN:) 

56 72 75 09 134 139 

-253-




