Le-ellen Spelman (212) 466-5212 Peter Rogers (212) 466-5213

	Price
Company	$7 / 36 / 84$
Tandem	14
Stratus Computer	16
Norsk Data	33
Apple Computer	25
TeleVideo	4
Convergent Technologies	12

Price $7 / 30 / 84$

14
16
3
4
12

Estimated E.P.S		
FY 1984	FY 1985	
$\$ 0.85$		$\$ 1.20$
$\$.25$		1.50
7.75		2.15
1.10		2.35
0.37		0.45
0.55		1.25

In many ways, Tandem's third quarter was a "make or break" period for the company, following the disastrous results of the preceeding quarter and the generally disappointing progress which has been made over the past three years. Investors were looking for Tandem to resume a growth rate of at least 35\%, particularly given the buoyant economic environment and favorable reaction to its new TXP system. However, the company didn't come through. While results were up sharply over the second quarter, they were below expectations. Revenues expanded 29% to $\$ 142 \mathrm{milli}$. As expenses were geared to a 35% sales improvement, operating margins suffered, falling from 12.3\% to 10.1%, and earnings per share rose only 10% to $\$ 0.23$, versus $\$ 0.21$ in the year-earlier period.

The revenue shortfall was particularly disappointing in light of Tandem's earlier statement that second quarter shipments were close to target but much of it could not be recognized and thus there would be a spillover effect into the third quarter. Clearly, this was not the case. The company's excuse for the shortfall was the fact that it is in a marketing transition, attempting to sell larger and larger configurations which require longer selling cycles. This may well be part of the reason, but other factors were involved too, some of which can be more readily explained, such as the slowdown in banking business due to the financial condition of many of these institutions. Of possibly greatest significance is the fact that management appears to have lost some control over the company.

Fourth quarter revenue growth is expected, at best, to show modest improvement versus the third quarter rate (e.g. perhaps a 30\% increase). Margins could be under pressure due to the NSII to TXP trade-in program, which expires at the end of the quarter. While this boosts sales, gross margins suffer. On the plus side, its fourth quarter tax rate should plummet to 2ø-22\% from 40% due to the elimination of the DISC. We have cut our estimate for the year to $\$ 0.85$ from $\$ 1.00$. For 1985, we are now looking for $\$ 1.2 \emptyset$ versus our earlier estimate of $\$ 1.76$.

While we continue to believe that Tandem has a good product and an attractive market niche, its apparent lack of
control and loss of credibility will prevent the stock from appreciating, in our view.

Tandem Computers, Incorporated RESEARCH LIBRARY 19333 Vallco Parkway

Orderperson:
I would like to order a copy(ies) of the following publications:

If this publication is not available, please let me know as soon as possible.

Thank you.

Jean Caltagirone

Len Lehman - Mercury News Cacey Tangney, Tandem's manager of investor relations, has had to deal with her share of worried stockholders

The fine art of investor relations

Companies use finesse and handholding in dealing with Wall Street

By Dedra Hauser
Business Writer

Last month, Cacey Tangney could have starred in an Excedrin commercial depicting tension headache No. 99.

As manager of investor relations for Tandem Computers Inc. of Cupertino, Tangney had to contend with dozens of major stockholders and Wall Street analysts who were surprised, worried and more than a little upset by the company's lower-than-expected third-quarter financial results and the impact it was having on the stock. The company's stock plummeted 32 per-
cent during the week that the company announced its earnings.
Given the vagaries of the stock market, no company can expect to control the price of its stock. But, as Tandem has concluded, the way a company manages investor relations can make a real difference in the stock market's reaction to company news. "We are trying to get some advice from our investment bankers about what we might have done better (in announcing the third quarter)," Tangney says.
Tangney describes investor relations as an art. Companies practice
the art by cultivating relationships with the investment community. Typically, an investor relations marager or staff deals primarily with securities analysts at brokerage firms - the people whose stock recommendations determine the investment decisions of many major investors.
The manager in charge of investor relations has to make sure the company complies with federal securities laws in releasing to the public any significant company information, such as news of quarterly earnings reports, acquisitions and major management changes. In addition, many companies
talk regularly with investment specialists, hoping to sell them on the company's strengths.
Investor relations programs would be much more effective if management had a better grasp of what makes Wall Street tick, says Michael Dunmire, who recently joined Convergent Technologies of Santa Clara as investor relations manager after 13 years working in the investment community.

Perhaps the most important thing to understand, he says, is that Wall

Continued on Page 7F

Companies find that investors don't like surprises

ar Continued from Page $1 F$
oc:Street doesn't like surprises. Tandem's - experience is a case in point.

With a 10 percent increase in earnings on a 29 percent increase in sales, Tandem hadn't expected its third-quarter results to trigger such a selloff in the market. "We underestimated the reaction," Tangney says.
calls shareholders and investors as soon as any significant news about the company is "eased.
The thing you don't want is (for the paper and community) to pick up the paper and see the company's name in the
headlines (when they weren't prepared for
\qquad
Burter Wall Street's projections for the quarter, based in part on the outlook Tanwere higher than the company's results. Tangney says she was peppered with the Tangney says she was peppered with the
same question by most of the analysts and same question by most of the analysts and
shareholders who called after the earnings were announced. 'Why didn't you let us know it was coming?' ${ }^{\text {n }}$

One way the company could have prepared the investment community for the disappointing earnings was to announce immediately after the quarter was completed that sales and earnings were below its expectations. Companies can't release their quarterly figures until they've been audited, which often takes a month or more. But some companies comment on the quarter as soon as it is finished if their quarterly results are different from Wall
Street's projections. reets projections.
But Tandem's management stuck to its past policy of not commenting on the quarter until the final numbers were ready to
be released. "This is something we'll, of course, review," Tangney says.
course, review, Tangney says. bad news by keeping analysts informed as soon as problems crop up and by making sure they provide as complete a perspective as possible, Dunmire says.

The investor relations manager at National Semiconductor Co. of Santa Clara nothing more embarrassing.
the headlines); There's nothing more embarrassing, says Patrick Brennan, National Semiconductor's vice presiden nd treasurer.
National has learned which investors or nalysts tend to react more strongly to news and makes a point of contacting hem quickly when news breaks ahout National "Some analysts need a little more handholding," he says,
When someone from Wall Street calls
up a company to check on a rumor, the knee-jerk response often is to deny the allegations, says Dunmire of Convergent. But since most rumors contain at least a grain of truth, companies should provide a complete response to the rumor, even if it involves an issue that hasn't been resolved within the company, he says. Convergent
hasn't always done that, he admits. hasa't always done that, he admits.

$$
s
$$

:

The thing you don't want is (for the investment community) to pick up the paper and see the company's name in the headlines. There's

- Patrick Brennan, National Semiconductor

For example, Convergent denied persistent rumors that it would write off its WorkSlate computer only a few weeks verue it did just that. In this case, Converannouncement, probably because investors saw it as a positive move, he says. "But
interested in winning brokerage business from Dunmire. That broker was able to ferret out detailed information about the emotional state of the manager in question.
Ideally, Dunmire says, investor rela tions managers want to paint a complete

LEVEL 1 - 1 OF 4 STORIES

Copyright © 1984 The Financial Times Limited;
Financial Times
August 2, 1984, Thursday

SECTION: SECTION I; Technology; Pg. 7
LENGTH: 1045 wards
HEADLINE: Tandem 5 lows but keeps on running; TANDEM COMPUTERS MEETS

BYLINE: BY ALAN CANE
in California, where the earth moves
FAULT TOLERANCE comes naturally in California, where build up under the san restlessly and regularly, relieving the st
Andreas and neighbouring Calaveras shaking the low, flat-roofed
It shifted violently earlier this year, Shalicon Valley" electronics buildings which house many of California's

保, for the ground under
Tandem executives, however,
was already shaking.
The company was about to announce that revenues for the second quarter of 1983-84 would be below those for the first, 1977 .
since the company went public in and cations giant American Telephone and
coupled with the news that telecommun Tandem's special territory, fall of its Telegraph (AT \& T) was about the announcement was enough to in the previous 12 months. tolerant systems, the down from a high of $\$ 40.25$. stock price to $\$ 16.25$, vered around the $\$ 20$ mark since still below analysts ${ }^{\prime}$

The stock price has quivered announced last week, wiser $\$ 14$. expectations and pushed the context of Tandems yer
the computing world.
fault-tolerant computing, taking It virtually created the modern concept the most important technologies in a long lead in what is now seen as it had no compete fault tolerance can be business data processing. For world now attaches the computing worlems, mostly startups; of the importance the computing companies now offering these logy, computer consoles, gauged from the list of companies, Computer Technology, Parallel Computers, August Systems it includes Status, No h. Tolerant Systems,

What Tandem understood earlier than any of the others, was the desperation What Tandem under s was beginning to grip data processing managers when they pondered the consequences of failure of their computers.

Most modern companies are completely dependent on their data processing systems. Fallure means at best, expense and inconvenience -- at worst, the entire company could be at risk.

The companies most acutely aware of the problem were running large on-line databases, with transaction orientated terminals connected through communications lines -- the banks, financial institutions, retailers, hotels and the leisure business.

Before Tandem, the only answer was "hot standby" -- a duplicate computer system warmed up and ready to go if the original failed. It was expensive, risky and, as many customers discovered to their cost, not too reliable.

Tandem's idea was to duplicate all the essential items in the computer using clever software to move information to healthy parts of the system in the event of a single component failure and to make it possible to connect many processors together to give mssive transaction processing power.

Its original business plan, dated September 1975, notes: "No manufacturer has designed a multiprocessor from the ground up. Tandem will be the first company to offer a fully implemented hardware and software solution. We expect to gain the dominant share of this rapidly emerging market."

It was and it did. From 1977 through to 1983 , its revenues grew from $\$ 8 \mathrm{~m}$ to $\$ 418 \mathrm{~m}$; it now has over 720 customers with a world-wide network of over 60 sales and engineering offices.

Its prestige customrs in the UK include the London clearing banks (the CHAPS network), the London Stock Exchange and GCHQ Cheltenham, the Government defence listening post.

In the U.S. the list includes Wells Fargo Bank, Hughes Aircraft and GTE.
So what is slowing -- if not stopping -- the world's most significant fault tolerant computer company?

To some extent, it seems to be a victim of its own success. Most analysts, and the company itself, believe that its current less-than-sparkling financial performance is an anomaly caused by Tandem's increasing penetration of major companies.

That means its quarterly performance is tied more precisely to the buying cycles of these large companies, 50 producing low revenue figures in the early part of the year.

Second, it no longer has the fault tolerant market to itself. Indeed, it is even trying to play down its image as the leading fault tolerant manufacturer, arguing that every manufacturer will have to provide fault tolerance in future.

Its claim now is to be the leading manufacturer of high capacity transaction processing systems; the power of the system being a consequence of exploiting all the advantages of a multiprocessor system -- the customer gets fault tolerance as a bonus on top of all his power rather than as the principal reason for buying Tandem.

But Tandem is also a victim of its own originality. It designed its fault tolerant machines, the NonStop series, back in 1976 when hardware was expensive and software, by comparison, cheap.

The newer companies in the field -- of which the most significant is generally reckoned to be Stratus -- have taken advantage of the cheap and powerful hardware now available to develop computers with comparable power to the Tandem systems but at substantially lower cost. Stratus is already beginning to make significant inroads into financial markets. In the UK, Link, a consortium of building societies and financial institutions, plans to build a network of automated teller machines on Stratus switches.

In the U.S. customers include Merrill Lynch, Lockheed and Bank of America.
Tandem's response has been to develop new systems at the top end of the market -- the TPX family -- and to promise new systems which will directly compete with Stratus' lower-priced offerings.

Stratus sees Tandem as the competition. Its founder and president, William Foster, says: "It is a very successful company with a substantial number of large accounts and that is not going to change."

Tandem has its sights set on IBM. President James Treybig says: "Tandem is the new mainframe -- we have got to stay right here and win. IBM can go to other places. You anly beat IBM by being better."

GRAPHIC: Picture, Tandem's "paperless factory" at Austin, Texas

Copyright 1984 The Financial Times Limited; Financial Times

August 2, 1984, Thursday
SECTION: SECTION I; Technology; Pg. 7
LENGTH: 346 words
HEADLINE: Designing for fault tolerance
BYLINE: EDITED BY ALAN CANE
BODY:
TANDEM'S FAULT tolerant design, when it launched its "NonStop 16 " back in 1977, was revolutionary.

The aim was an architecture which would continue to process data successfully despite any single component failure -- a component, in this case, means the central processor, the high speed memory, the input output controller, the input/output data path, the disk memory and the disk controller.

Failure of any of these components in a conventional computer means the application running also fails. To provide fault tolerance, Tandem duplicates all the critical hardware and the software.

Tandem's answer is to link the two systems through a high speed data transfer system with one memory component kept in a state which allows it to assume control if the other memory fails.

The central processor in Tandem systems is built out of conventional microelectronic building blocks -- Schottky technology. Fault tolerance is assured by software techniques -- checkpointing and transaction monitoring -which inevitably costs the user something in system overhead.

Tandem argues that this is no penalty -- the user can exploit the power of the entire multiprocessor system.

Stratus, designed some five years later, makes use of the fastest, most powerful microprocessor chips commercially available, the Motorola 68000 family. Fault tolerance is built into the hardware, so there is no software overhead.

Basically the system multiplies up the new, low cost hardware to give a fault tolerant system. Two pairs of 68000 processors are fed with identical programs to operate on identical data.

The processors are paired, and the results of each set of computations compared. Only if all four results are identical is the system acknowledged as working correctly. If one differs it can be isolated while the other processors continue to operate.

This check takes place once every 125 nanoseconds or 8 m times a second.
It means that Stratus can build a machine which at the top end processes 3 m instructions a second -- for roughly $£ 262,000$.

Tandem airs gain

CUPERTINO, Calif. - Tandem Computers, Inc. said its profit for the third fiscal quarter, ended June 30 , increased to $\$ 9.2$ million, or 23 cents a share, from $\$ 8.4$ million, or 21 cents a share, a year earlier.

Revenue for the quarter rose 29\% to $\$ 141.9$ million from $\$ 110.2$ million a year ago, a spokesman for the company reported.

James G. Treybig, company president, said Tandem "enjoyed a quarter of good revenue growth. We also added a significant number of new customers."
He said the company's Nonstop TXP computer accounted for a majority of the systems shipped during the third quarter.

Bank Finds Computers A Headache

By JuL Cortino

SAN FRANCISCO-The Bank of America is about 12 to 18 months away from bringing some order to the chaos that now characterizes this major West Coast bank's end-user computing operations.
John Parady, vice president of technology and communications services, held a meeting last week designed to placate some 100 BankAmerica middle managers about the bank's future plans for computerization, MIS Week has learned.
"We're going through a lot of change and a lot of pain right SEE BANK, PAGE 9

Bank Finds Computer Chaos

CONTINUED FROM PACE now," said Parady. "We're los ing good people-for climate issues and because of salary dif ferential.
Parady assured his frustrated audience that he was aware that BankAmerica's policy of raising annual salaries 5 percent was not competitive. He noted that competitors offer salaries from 8 to 31 percent abo
tit challenge to retain and We can't compete.
Parady said his department is "trying to get a handle" on the salary issue. The bank is also attempting to establish a unified systems architecture to be used throughout BankAmerica, as weurce allocation structure source allocation structure
"Right now it's a kluge," said Parady. "We have 51 Tandem Nonstop Ils, 42 Tandem NonStop (Digital Equipment Corp 1170 . We have some Prime equipment, some System/34s from International Business Machines Corp.). We even have some H-P (Hewlett-Packard) 1000 s. It's a mess
According to Parady, "In the past, vendors had free license to ind a pocket of acceptance within the bank and install a one-of-a-kind solution. That's changing slowly.
The bank has decided to standardize, internally, on the IBM 308X family for its major host systems. The MVS-XA operating environment has also been adopted by the bank
Parady also acknowledged that the bank has no overall mechanism for . bringing in microcomputers. "We've been back-dooring' this area. We've got the cart before the horse, People are buying them because they re status symbols, not because they have a need for per sopal computig. But, you can't be a 20 th century, manager and Micros should fit into an overall applications strategy Pight now, they don't"
According to a BankAmerica insider, the bank has brought in 510 mimion worth of IBM PCs over the past 18 months. Said the for $\$ 5$ million (or is funding more. And, they haven't figured out what to do with the first batch.'
Parady urged his managers to function as a team and to focus less on empire-building within BankAmerica
"Users should come to us with a set of requirements, not a
preconceived solution," he admonished.
For instance choice for the AMG project. The Fork's Arance, he noted that the (AMG) Area Management Group using Burroughs equipd a pilot using Burroughs equipment and intended to install 100 systems by the end of 1984. Parady said his office was able to convince the division
systems.
systems
According to a BankAmerica insider, Burroughs is competing

AN consolideration is responsibie for into key regional services thereby reducing the volume of

Applications

services offered at each branch.
Parady also noted that BankDivision is so far along and

Tandem project that it could proceed even though Tandem patibility,'
The bank has chosen Rolm as the vendor for some 257 PBXs to be placed throughout the bank's California branches. The Rolm private branch exchanges will replace the Centrex system from AT\&T Wang has some $\$ 20$ million worth of equipment within BankAmerica. "Wang's basic strategy is to find pockets outside of the system control area and to Parady said.

The disarray inside BankAmerica has frustrated many managers-including Parady, who was brought in one year ago. "We are far from ac complishing the goal of being a responsive service organization," he said. "We looked at our percent was react and I can percent was teact, and 5 percent assurn't doing planning. The wasucture we put in place three structure we puly the beginning A reorganization doesn't itself solve problems. It's the framework. There's a lot more work before us.

LEVEL 1 - 2 OF 3 STORIES
 Copyright 1984 CW Communications/Inc.; Computerworld

$$
\text { August 13, } 1984
$$

SECTION: NEWS; Pg. 8
LENGTH: 861 words
HEADLINE: NYSE system bears up under record stock trading
BYLINE: By Jahn Desmond, CW Staff
DATELINE: NEW YORK
BODY:
If the number of shares traded Aug. 3 on the New York Stock Exchange (NYSE) had been traded any day two years ago, the computer center that processes the transactions probably would have been in trouble.

But the timing of the largest single trading day in Big Board history -capping a rally that began July 30 and culminated with 237 million shares exchanged on Aug. 3 -- was fortunate for the Security Industries Automation Corp. (Siac), which processes the transactions. Siac is nearing completion of a $\$ 10$ million, two-year effort to increase system capacity to accommodate a 250 million-share day, according to John McGee, vice-president of Siac corporate affairs.

Two years ago, system capacity was 150 million shares traded per day, McGee said. However, the work load for Siac is dictated not so much by the number of shares traded as by the number of individual transactions. Although Aug. 3 set the record for the number of shares traded, more individual transactions occurred last Monday, according to Donald Dueweke, senior vice-president of market operations for the NYSE. Transactions totaled 101,651 on Aug. 3 and 105,976 the next Monday, he said. (The record for transactions/day was set on Oct. 13, 1982, when 107,601 transactions were made, according to an NYSE spokesman.)

Though the number of shares traded on Aug. 3 was prodigious, system capacity was not reached, Dueweke said. Trading volume in messages per second on the Common Message Switch system, the interface between member firms ordering systems and the NYSE, was only 44% of capacity and 51% the following Monday, Dueweke said.

Siac, a subsidiary of the NYSE and the American Stock Exchange, uses volume forecasts to project required CPU message rates. Siac completed its last system upgrade in the nick of time this year, just as the firm did in the summer of 1982, according to Charles McQuade, Siac president and chief executive officer.

Since trading records were set in the summer of 1982 [CW, Aug. 30, 1982], Siac has added an IBM 3083 mainframe, replaced an IBM 4341 mainframe with a 3031 mainframe and häs added 50 Tandem Computers; Inc. transaction-oriented minicomputers to the 70 already in place, McQuade said. ش number of Tandem Fault-tolerant devices are also empioyed within the pverall configuration. That configuration consists of two IBM $370 / 1585$ and a $370 / 148$; two IBM 30335 ;

6 1984 Computerworld, August 13, 1984

one IBM 4341; four Sperry Corp. mainframes: two 1100/82s and two 1100/605; and nearly 40 Digital Equipment Corp. PDP-11/05, $11 / 45$ and $11 / 70$ minis.

If projections show that the volume is likely to exceed 250,000 transactions in a day, Siac can add more hardware. McGee said the decision was made four years ago to use a modular CPU architecture capable of expansion or even contraction.

Is there a physical limitation to system capacity based on how fast traders can execute orders?
"There doesn't seem to be," McQuade said, adding that the two recent heavy trading days were test enough for limitations. "Two hundred thirty-five million shares is just mind-boggling," he said. He noted that 72 million shares were traded in the first hour, and total trading exceeded the prior record -- set just the previous day -- by 65 million shares.

What happens if the system breaking point is reached? "There's no such thing as that," McQuade said.

For one thing, "more and more big players are out there," McQuade said, referring to the institutional investors that trade nuge numbers of shares in one transaction. Block trades of at least 10,000 shares each represented 135 million of the total shares traded Aug. 3, McQuade said. The average number of shares per trade is 1,728 today, $V 5$. half that number about five years ago, according to McGee.

If Siac's market reporting system was down for more than a 10 -minute period, McGee said, "There 15 a high probability that the market would have to cease trading." For that reason, he said, Siac puts "an extremely high premium on recoverability and availability" of the system.

Siac is involved not only in system support, order processing, trading and reporting, but in clearance and settlement for trades involving stocks, bonds, options and financtal futures, McGee said. As a result of the record trading on Aug. 3, Siac was extremely busy immediately thereafter settling trades. "Right now, we're just beginning to be hit by what happened," he said last week. "That's a delayed reaction."

From one trader's point of view, the system reacted well to the record-breaking Aug. 3. "Considering that we had the highest volume in history, the system worked with a remarkable degree of efficiency," said Michael Geran of E. F. Hutton \& Co. in New York. While the paper ticker lagged 50 me 18 minutes behind in updating prices, the CRT screens posted prices only a few seconds later than usual, Geran said. He noted that both the ticker and the screens usually post prices at the same time.

Asked whether system capacity should be upgraded again in the wake of the recent trading records, Dueweke said, "Not unless market conditions change and we start looking at a push to the 300 - to 350 -million shares-per-day range. ${ }^{n}$

GRAPHIC: Charts

LEVEL 1 - 2 OF 4 STORIES

Copyright (3) 1984 The Financial Times Limited;
Financial Times

August 2, 1984, Thursday

SECTION: SECTION I; Technology; Pg. 7
LENGTH: 190 words
BYLINE: EDITED BY ALAN CANE
BODY:
WILL LOCKE, editorial systems editor of the Los Angeles Times, is one of the personalities of the newspaper business. He thinks fast, speaks slow and carries on his shoulders the knowledge that the Tandem-based computer system he runs can make or break his newspaper.
"We have never lost an edition since the system was installed," he says with the wary scepticism of the professional journalist.

The Times system was installed by Systems Integrators, one of the most experienced systems houses in the business of computerising newspapers.

It was not a solution the Times arrived at easily. The various investigations carried out by the new technology teams extended over some eight years.

The present system based on Systems Integrators "Coyote" editorial terminals and Tandem computers was installed in 1981. Training the journalists had its problems: "Writers would come in, learn enough to do their job and never show up again."

Even with all their preparations, the move to computerisation was tramautic: "It still came as a shock; our credibility was stretched to the limit" Locke says, wincing at the memory.

LEVEL 1 - 6 OF 7 STORIES
 Copyright © 1984 CW Communications/Inc.; Computerworld

August 20, 1984
SECTION: NEWS; Pg. 50
LENGTH: 815 wards
HEADLINE: On-line system refines Mobil's credit card operations
DATELINE: KANSAS CITY, Mo.

BODY:

Neither hail nor sleet nor snow nor rain could 5 top them -- credit card receipts. They would roll in waves across the country, millions of these flimsy pieces of paper. Some would make the journey by mail, others by plane. Some would be picked up by truckers making gas deliveries earlier in the week. They would arrive here, at Mobil $0 i l$ Corp.'s data processing center, to be unbundled and fed into the firm's computer system.

It was, on average, a 10 -day trek for these little sales tickets. But that was three years ago, when Mobil's credit card program was a paper-based operation.

That situation has changed. A year ago, following a successful pilot project, the company installed an on-line transaction processing system, designed to capture and send credit card purchase information electronically from its service stations to its DP center. At present, approximately 2,500 stations are a part of Mobil's network.

At these stations, attendants record transactions by entering information into a point-of-sale (POS) terminal that is connected to an on-line data base of customer credit information. The data 15 transmitted to Mobil's DP center, where the card is authorized and the sale registered. Then it is uploaded to the firm's billing system for batch processing.

According to John Rowerdink, who manages the POS system for Mobil, the new system has provided benefits for the company, as well as for its customers.
"The system made our credit card operation run more efficiently, which meant that [in times of high interest rates] we were able to continue to offer the service," Rowerdink said.

It has decreased the number of bad credit sales and has reduced the occurrences of credit fraud, he explained. In addition, it has cut down on the firm's operating expenses by removing the necessity of processing millions of pleces of paper.

But the primary advantage, Rowerdink said, has been the reduction of credit card "float," the time period between purchase and payment. "With this system," he explained," we capture the purchase information immediately."

At the heart of the system lies a six-processor Nonstop 11 and TXP system designed by Tandem Computers, Inc., a Cupertino, Calif., firm. The system
runs Tandem's Guardian proprietary operating system. Mobil has developed an on-line data base using Encompass, Tandem's relational data base program. A Tandem 6100 communications subsystem manages front-end data communications for the POS terminals.

Currently, Mobil has installed 10 128M-byte disk drives and four 264 M -byte drives in its Kansas City center. Each Tandem processor can hold up to $2 M$ bytes of main memory.

Mobil's POS terminals are connected to the $D P$ center by a combination of $1,200 \mathrm{bit} / \mathrm{sec}$ and $9,600 \mathrm{bit} / \mathrm{sec}$ telephone circuits. Multiplexers combine lines from several stations into the long-distance lines. The terminals operate asynchronously with a poll/select protocol and were designed specifically for the Mobil operation.

One of the advantages of the Tandem system is that processing power can be added, removed and rearranged without reprogramming the system or the application software. As more service stations are put on-line, additional processor modules can be added to the system. "We can start 5 mall and expand as we go," Rowerdink explained.

Mobil is currently implementing the system in service stations on the West Coast and in Arizona, Florida, Maryland, Virginia, Texas and the Northeast.

The company has also initiated another service for its customers based on the Tandem system: a debit card service that allows customers to use automated teller machine (ATM) cards to buy gas at Mobil stations. The service is now available in the Washington, D.C., metropolitan area. Mobil is in the process of bringing the service to its California stations, Rowerdink said.

The ATM service operates in a fashion similar to the credit card service. When a customer uses an ATM card to buy gas, the attendant runs the card through the POS terminal. Customers enter their personal identification number (PIN) code. Once the ATM card number, PIN code and all purchase information have been entered, the POS terminal transmits the information to the Tandem system, which sends the data to the bank. The amount of the purchase is then automatically subtracted from the customer's account.

Since Mobil receives the payment for services immediately, the transaction qualifies as a cash payment, so customers are able to take advantage of Mobil's discount program for cash purchases.

Will Mobil continue to expand its network? Originally, the company planned to bring an additional 1,500 stations on-line, but Rowerdink said he was not sure the firm's planned second phase would materialize. Whether the company broadens the network will depend primarily on the cost savings the system brings to Mobil, he explained.

On-line system refines Mobil's credit card operations

KANSAS CITY, Mo. - Neither hail nor sleet nor snow nor rain could stop them - credit card receipts. They would roll in waves across the country, millions of these flimsy pieces of paper. Some would make the journey by mail, others by plane. Some would be picked up by truckere making gas deliveries earlier in the week. They wculd arrive here, at Mobil Oil Corp.'s data processing center, to be unbundled and fed into the firm's computer system.

It was, on average, a 10 -day trek for these little sales tickets. But that was three years ago, when Mobil's credit card program was a paperbased operation.

That situation has changed. A year ago, following a successful pilot project, the company installed an online transaction processing system, designed to capture and send credit card purchase information electronically from its service stations to its DP center. At present, approximately 2,500 stations are a part of Mobil's network.

At these stations, attendants record transactions by entering information into a point-of-sale (POS) terminal that is connected to an on-line data base of customer credit information. The data is transmitted to Mobil's DP center, where the card is authorized and the sale registered. Then it is uploaded to the firm's billing system for batch processing.

According to John Rowerdink, who manages the POS system for Mobil, the new system has provided benefits for the company, as well as for its customers.
"The system made our credit card operation run more efficiently, which meant that [in times of high interest rates] we were able to continue to offer the service," Rowerdink said.

It has decreased the number of bad credit sales and has reduced the oc-
currences of credit fraud, he explained. In addition, it has cut down on the firm's operating expenses by removing the necessity of processing millions of pieces of paper.

But the primary advantage, Rowerdink said, has been the reduction of credit card "float," the time period between purchase and payment. "With this system," he explained,"we capture the purchase information immediately."

At the heart of the system lies a six-processor Nonstop II and TXP system designed by Tandem Computers, Inc., a Cupertino, Calif., firm. The system runs Tandem's Guardian proprietary operating system. Mobil has developed an on-line data base using Encompass, Tandem's relational data base program. A Tandem 6100 communications subsystem manages front-end data communications for the POS terminals.

Currently, Mobil has installed 10 128M-byte disk drives and four 264M-byte drives in its Kansas City center. Each Tandem processor can hold up to 2 M bytes of main memory.

Mobil's POS terminals are connected to the DP center by a combination of $1,200 \mathrm{bit} / \mathrm{sec}$ and $9,600 \mathrm{bit} / \mathrm{sec}$ telephone circuits. Multiplexers combine lines from several stations into the long-distance lines. The terminals operate asynchronously with a poll/ select protocol and were designed specifically for the Mobil operation.

One of the advantages of the Tandem system is that processing power can be added, removed and rearranged without reprogramming the system or the application software. As more service stations are put online, additional processor modules can be added to the system. "We can start small and expand as we go," Rowerdink explained.

Mobil is currently implementing the system in service stations on the West Coast and in Arizona, Florida,

Maryland, Virginia, Texas and the Northeast.

The company has also initiated another service for its customers based on the Tandem system: a debit card service that allows customers to use automated teller machine (ATM) cards to buy gas at Mobil stations. The service is now available in the Washington, D.C., metropolitan area. Mobil is in the process of bringing the service to its California stations, Rowerdink said.

The ATM service operates in a fashion similar to the credit card service. When a customer uses an ATM card to buy gas, the attendant runs the card through the POS terminal. Customers enter their personal identification number (PIN) code. Once the ATM card number, PIN code and all purchase information have been entered, the POS terminal transmits the information to the Tandem system. which sends the data to the bank. The amount of the purchase is then automatically subtracted from the customer's account.

Since Mobil receives the payment for services immediately, the transaction qualifies as a cash payment, so customers are able to take advantage of Mobil's discount program for cash purchases.

Will Mobil continue to expand its network? Originally, the company planned to bring an additional 1,500 stations on-line, but Rowerdink said he was not sure the firm's planned second phase would materialize. Whether the company broadens the network will depend primarily on the cost savings the system brings to Mobil, he explained.

Tandem Computers slashes prices

Tandem Computers Inc. of Cupertino announced 12 percent to 24 percent price cuts on two of its three cornputer systems.
The reductions are even greater when new volume discounts are added.
"I'm very impressed by this, it's a big deal," said Skip Bushee, executive vice president of InfoCorp., a Cupertino market researcher.
Tandem is responding to competition by Stratus Computers of Natick, Mass., and other manufacturers of low-end, or less expensive, models of fault-tolerant mainframe computers, Bushee said.
Bushee didn't consider the price cuts as a response to Tandem's lower-than-expected third-quarter results.
However, Omri Serlin, head of ITOM International, a Los Altos consultant, see Tandern's action as "save-the-year mood."
"The cuts are to stimulate demand," Serlin said.
th "Tandem has been slow to respond to (competition in) the low-end."
The cuts are on Tandem's NonStop 1+ and NonStop II machines.

Tandem Computers Information Center
WORKSTATION ALERT
(formerly Computer Graphics for Management; Data \& Graphics for Management)

Date:
Route to:
Rick Berman - loc 1
Jim Davis - loc 1

Marilyn Miller - loc 1 \quad| David Sherertz - loc 100 |
| :--- |
| Kim Worsencroft - loc 10 |
| Roger Brandt - loc 103 |

Prices cut by Tandem

Times Tribune staff

In an effort to attract a broader range of customers and combat new competition, Tandem Computers Inc. In Cupertino dropped prices on its computers and related products up to 38 percent for largevolume purchases.

Tandem systems now start at $\$ 55,000$ for volume purchases of tts NonStop $1+$ system that completes 1.4 million instructions per second.
"The new prices are part of our plan to broaden our installed based at the low-end by providing the highest performance and the lowest cost," said James C. Treybig, president and chief executive officer.

Tandem produces computers used in transaction processing, where information is entered into a computer and immediately updated from many separate locations.
For systems sold in small numbers, or singly, Tandem's cuts averaged between 12 percent and 24 percent.

Analysts described the cuts as a on Tandem's part to stimulate demand
P B8 James C. Treybig Pannounces new price structure. Peninsula Times Tribune 8/21/84

Tandem Computers Information Center
TELEPHONE NEWS
Date:
Route to:
Roger Brandt - loc 103
Larry Marks - loc 4
Bengt Rindegard - loc 4
Please return to the Information Center, loc 1 , bldg 3.

Tandem To Redefine Roles Of NonStop II, NonStop 1+ CPUs

Continued from Page 1
sources close to the company said. The company is also expected to announce a second low-end minicomputer in mid-1985.
Tandem will drop the price of the NonStop $1+$ from $\$ 126,000$ to $\$ 89,000$ in single quantity purchases and from $\$ 89,000$ to $\$ 55,000$ in volume purchases, said Gerald Peterson, vice president of international marketing. The new price for the NonStop II will be $\$ 129,500$, a drop of $\$ 65,500$ from the old price, Peterson added. Peterson admitted the price cuts were to make the company more competitive in the crowded faulttolerant marketplace.
"We [Tandem] feel we have a superior product in terms of performance," Peterson said, "but our competitors have been beating us with price. These reductions will make up for that deficiency."

The new base configurations for both NonStop computers will feature one fewer disk drive and controller than previous configura-
tions. As in previous models, each controller in the new configuration supports eight disk drives, a company spokeswoman said. The new configuration for the NonStop $1+$, the spokeswoman said, will feature four processors, 4.4 Mbytes of main memory. It will sell for $\$ 105,000$ for single quantity or $\$ 70,000$ for volume pur chases.
Tandem will also be redefining the role for both NonStop computers, Peterson said. The NonStop $1+$ will be targeted for two markets, he said. For the large user the computer will be targeted for specific end user applications in a networking environment, he said.
The second target area will be with value-added remarketers (VARs) and OEMs. With the price cuts, Peterson said, the NonStop $1+$ will be an ideal product for repackagers seeking a fault-tolerant computer for their market segments.
The 2-year-old NonStop II, Pe terson said, will be the entry-
level computer for large users. Peterson said the NonStop II will fit into network environments with the company's 1-year-old, high-end TXP. In addition, the NonStop II supports SNA, is software compatible with the TXP and users can upgrade to the TXP from the NonStop II when they outgrow the system
He said most large users are looking for two or three computers to fulfill different functions in their network, and that the TXP only fulfilled one network component requirement. "The TXP has been tremendously successful, but we have realized one product will not fit all areas," he said.

Craig Symons, an analyst with Gartner Group Inc., Stamford, Conn., said the price cuts are an attempt to bolster low-end sales.

He said companies such as Stratus Computer Inc., Natick, Mass., have been taking some sales from Tandem at the low-end on a price basis. Stratus sells its current low-
nd system for about $\$ 140,000$. Omri Serlin, president of ITOM International Corp., Los Altos, Calif., also said Stratus had been taking sales from Tandem. Stratus' low end, the FT-200, offers performance of 1 MIPS for less than half the price of the Tandem TXP and $\$ 55,000$ less than the old price for the NonStop II.
"The NonStop $1+$ hasn't been a world beater' product," Serlin said. "The $1+$ is really a stop-gap measure, and Tandem needs a better low-end offering."
In addition to dropping the lowend prices, several sources close to the company said the price cuts are clearing the way for new lowend product introductions. One source said Tandem will introduce two new low-end minicomputers. One, code named Checkmate, will be priced about $\$ 100,000$ and wil probably replace the NonStop $1+$ Checkmate is due in early January. The second will be priced at about $\$ 50,000$ and will be announced sometime in mid-1985.

The Checkmate's operating system will be embedded in firmware, thus reducing the software overhead for the system, a second source said. The Checkmate, unlike the NonStop $1+$, will also have full communications and compatibility with a TXP processor housed in the same cabinet, a third source added.

The other minicomputer for introduction later next year, however, will use a different architecture than any of Tandem's previous fault-tolerant offerings, said Steve Smith of Paine Webber Inc., New York. While Smith said he is not sure of what type of design, he did say the minicomputer will ke 32 . bit architecture and will be targeted at the extreme low-end faulttolerant market.

In addition, Tandem is expected to unveil both IBM Personal Computer emulation for its terminals and an I/O controller for the TXP series in late December or early January, sources close to the company said.

NEWS

Tandem cuts prices on low-end and mid-range systems

By Jeffry Beeler

CW West Coast Bureau

CUPERTINO, Calif. - In a product move aimed at medium-scale processor users in the regional offices of large corporations, Tandem Computers, Inc. today reconfigured and trimmed the prices for several of its low-end and mid-range packaged systems.

The firm also added another configuration option to its line of Non-Stop I+ packaged systems and announced an upgrade kit that reportedly transforms Non-Stop It and Non-Stop II processors into Tandem's top-of-the-line TXP mainframe. In addition, the company cut the main memory prices for its Non-Stop II and TXP machines by nearly a third.

Today's price cuts apply to three varieties of Tandem packaged systems:

- Non-Stop I+ configurations that expand in two-processor increments.

Non-Stop I+ configurations that expand in four-CPU increments.

Non-Stop II configurations that expand in two-processor increments.

In the wake of Tandem's latest repricings, a two-processor Non-Stop I+ system that used to
sell for $\$ 126,000$ per CPU now costs $\$ 89,000$ per machine, according to Steve Schmidt, the company's vice-president of strategic planning.

If a user expands his configuration beyond 20 Non-Stop It pairs, the price for each additional two-processor building block drops still further to $\$ 55,000$ per CPU. In the past, each two-processor increment beyond the 20 -pair limit cost $\$ 99,000$ per machine, Schmidt said.

On the Non-Stop II side, Tandem has lowered the per-CPU price of a basic two-mainframe system from $\$ 195,000$ to $\$ 129,500$, he added.

Coinciding with Tandem's price cuts are several minor configuration changes to the entry-level versions of both the Non-Stop I + and Non-Stop II packaged systems. Until today, a dual Non-Stop I+ or Non-Stop II package typically incorporated two disk units.

Under the revised pricing scheme, however, the same basic configurations now come with only one disk system, according to a Tandem spokeswoman. But because entry-level Non-Stop I + and Non-Stop II packaged systems are often used solely for development purposes rather than for production applications, one disk module is all that many users need, at least at the outset.

In the past, if Tandem had configured its packaged systems with just one disk unit alone, a basic Non-Stop It offering would have sold for $\$ 101,150$ per processor, compared with $\$ 170,150$ per machine for a comparably equipped Non-Stop II configuration, Schmidt said.

Packages of four

Today's announcement also reported another configuration change to the firm's packaged systems line: For the first time, Tandem is now making its Non-Stop I + machines available in packages of four processors as well as in pairs, the spokeswoman said.

For any Non-Stop I+ configuration consisting of 20 or fewer CPUs, each four-processor set is priced at $\$ 105,000$ per machine. Thereafter, the price of every extra expansion package drops to $\$ 70,000$ per mainframe, Schmidt said.

In further product-related moves, Tandem also trimmed the price of its 2 M -byte Non-Stop II and TXP memory modules from $\$ 22,000$ to $\$ 15,000$ and priced its just announced upgrade kits at $\$ 70,000$ to $\$ 90,000$ per processor.

Tandem is headquartered at 19333 Vallco Pkwy., Cupertino, Calif. 95014.

Tandem's focus on mainframe sales intact despite latest pricing moves

CUPERTINO, Calif. - Although
 Stop II, the vendor has reportedly re-

 the latest price and configuration changes announced by Tandem Computers, Inc. today reflect a renewed emphasis on the low end of the firm's product line, the main focus of the company's business reportedly remains unchanged.Tandem will continue to address the on-line transaction processing needs of large commercial accounts, which typically require two classes of mainframes - large ones of corporate computing hubs and mediumsize ones for satellite locations according to Steve Schmidt, Tandem's vice-president of strategic planning.

During the past few months, most of Tandem's product announcements have come at the high end of its processor line, which is geared primarily to large corporate data centers. With today's price and packaging revisions to the Non-Stop It and Non-
affirmed its intention to serve major organizations in their outlying offices as well as at their headquarter sites.

Tandem's decision to pare its NonStop It and Non-Stop II prices will purportedly ease entrance barriers to the low end of the firm's processor line. In addition, the action is expected to stimulate product demand among field locations that might otherwise opt for medium-scale systems such as IBM's Series $/ 1$ and 8100 , according to company Marketing VicePresident Jerry Peterson.

For Tandem itself, the price cuts will also reportedly correct a growing price and performance imbalance between the firm's entry-level NonStop It and its TXP. Such an imbalance might eventually have caused the company problems by hindering sales of its low-end systems to divisional or regional locations.

THE PENINSULA TIMES TRIBUNE, Thursday, Aug. 23, 1984-C-S

members, Saturday through Sept. 16. Re ception, 7 to 9 p.m. Friday, Sunnyvale Community Center, 550 E. Remington Drive.

EWERT'S-"Gestures in Color," photog raphy by Ed Shvartzman, through August, Ewert's Photo Gallery, 2090 Duane Ave. Santa Clara.

SUN-Pen and ink drawings of historica homes around the Santa Clara Valley and Bay Area by Kathleen Swick, through Tuesday, Sun Gallery, Vallco village, Wolfe and Homestead roads, Cupertino.

TANDEM-Watercolor, tapestry and sculpture by faculty and graduate students from San Jose State University, through August, Tandem Computers, 19333 Valico Parkway, Cupertino.

Jalbert-"Santa Cruz Fine Art," featuring work by Bill Bohannon, Cheryl Cal

CAMPBELL-Paintings and monotypes by Charles Eckart, through Sept. 15. Charles Campbell Gallery, 647 Chestnut SL., San Franclsco.

CAMERAWORK-"EI Salvador: The Work of Thirty Photographers," through Sept. 8. San Francisco Camerawork, 70 12 th St.

CHOWNING-Sculpture by Margaret Keelan and wall sculpture by Art Nelson, through Sept. 6, Joseph Chowning Gallery, 1717 17th St., San Francisco.
DE SARTHE-New gallery features PIcasso, Renoir, Montezin, Cassatt and Modigliani, through August, Pascal de Sarthe Gailery, 315 Sutier St., San Francisco.

FULLER GOLDEEN -"Baseball Card Portraits," of the Oakland A's by Bay Area artists including Robert Arneson John Battenberg, Richard McLean, Mel Ramos, Raymond Saunders and William . Wiley; "50 Artists/50 States" contem porary painting and sculpture by artists rom every state in the union, both trrough Saturday, Fuller Goldeen Ga lery, 228 Grant Ave., San Francisco.

GHENT - Collage and sculpture by Pam Dixon, through August, Gregory Ghen Fillan, tho cwntar ©s Can Firanciern

Thiebaud and boxes by Ro Berg, through Sept. 12, Jeremy Stone Gallery, 126 Post SL., San Francisco.

BRUCE VELICK-Paintings by Stan Fullerton, through August, Bruce Velick Gallery, 55 Grant Ave., San Francisco.
VISION-Black and white photographs by Henry Gilpin, Hans Hammarskiold and Suzanne Olmsted, through Sept. 8, Vision Gallery, 1151 Mission St., San Francisco.

VORPAL-Oils by Plet Bekaert, through Cundav Daetal naintinoe af nithan and

IMDIANA JONES AMO THE TEMPLE OF DOOM | Tonight at |
| :---: |
| $7: 30,9,45$ |

HACIENDA 3
SUNNTVALE 245-2222
acquire Amiga. Amiga signed a der which Amiga lp it develop the

The suit continues, Atari is suffering and will continue to suffer irreparable injury as a result of the pending use of the circuits by Atari's competitors.

Tandem Cuts NonStop Prices

CUPERTINO, Calif.-Tandem Computers Inc. has taken a stab at increasing its installed base of computers, while simultaneously paving the way for the company's powerful NonStop TXP system, by reducing prices on entry-level processors.
The aggressive pricing structure applies to Tandem's NonStop 1-Plus and NonStop II systems. Disk and memory prices have also been cut.
The NonStop 1-Plus systems, with 1.4 million instructions per second (mips) capability, are lowered in price by 12 percent,

Xerox Establishes AI Business Unit

PASADENA, Calif.-Xerox Corp. announced it has established an Artificial Intelligence Systems Business Unit with headquarters here.
Xerox has been a major supplier of artificial intelligence hardware and software since 1981. The formation of the new business unit is in response to what the company believes will be a significant increase in the artificial intelligence marketplace during the next two to five years.

Gary Moskovitz has been named manager of the new unit and will report directly to Louis Karagianis, general manager, Xerox Special Information Systems. Before joining Xerox in April, Moskovitz was marketing director for new systems development at Mattel Electronics.
bringing the price down to $\$ 89,000$. A new volume-purchase schedule offers discounts of up to 38 percent, which brings package prices down to $\$ 55,000$ for this two-processor configuration.

The NonStop 1-Plus system, with 2.8 mips , has been reduced in price by 32 percent, to $\$ 105,000$. The new volume-purchase program brings package prices down to $\$ 70,000$ for this four-processor configuration.

The NonStop II system package, with two processors and four megabytes of memory, is reduced in price by 24 percent. This brings the package price down to $\$ 129,000$.
Tandem is also offering a trade-in program that gives users the opportunity to move from the NonStop 1-Plus to a NonStop II or TXP, or from a NonStop II to a TXP for 60 to 80 percent of the list price for the higher-priced systems.

According to Tandem, the new prices will not further erode the company's already narrow profit margins. The company maintains that customers are being encouraged to upgrade their systems, which will generate more revenue. And Tandem said it recently implemented measures to control costs.

- International Data Corp., in a study done for Tandem, notes that "in lowering the cost of its entry-level systems, Tandem has made it easier for users to develop a transaction application without worrying if all sites that need systems will be able to costjustify them.
-Jull Cortino

Tandem restricts hiring, travel and faces thinner profitability

By MIKE BRENNAN
In the face of rising expenses and some sales problems, Tandem Computers President Jimmy Treybig said last week the Cupertino computer maker has swung into a belt-tightening program.
The tightening-up, begun about two weeks ago, coincides with price cuts, up to 32 percent, announced last week for Tandem's NonStop 1-plus and NonStop II mainframe computers and some computer accessories.
Among its moves, the company imposed restrictions on hiring and travel for employees.
Tandem also announced that owners of both machines can trade them in and get credits from 60 - to 80 -percent toward the purchase of the more expensive TXP computer introduced last year.
The price cuts may hurt Tandem's profits in the fourth quarter ending Sept. 30, Treybig said.

Securities analysts who follow Tandem said slow sales for some of the company's products will compound the belt tighten-
> "Through the rest of the calendar year and into the first quarter of next year, profits will be under pressure."

ing moves and price cuts-all of which may produce flat to down earnings for the next three quarters.

Through the rest of the calendaryear and into the first quarter of next year, profits will be under pressure," said Craig Symons, a financial analyst for the Gartner Group, a Stamford, Conn., market research company. "The TXP is taking longer to sell than the company expected, NonStop II sales have dried up and the NonStop I is getting hurt by the startups."

Aharon Orlansky, a securities analyst with Sutro \& Co., a San Francisco brokerage, agreed.
'During the next quarter or two, profits could be impacted, but the company could benefit in increased volume," he said. "Later on when TXP sales increase, it will make up for this.'
In the third quarter ended June 30 , Tandem reported profits per share of 23 cents, compared with 21 cents in the same quarter the year before.
Treybig said the price cuts could put profits under pressure, but since they were implemented only two weeks ago, it's still too early to tell.
'We'll have a better feeling in the next two weeks," he said.
The belt-tightening moves, which include new restrictions on travel, hiring and wage increases, are to combat higher expenses incurred by the hiring of more than 600 people in the first half of the year.
Many of the new employees are busy developing products that will be introduced starting in October, Treybig said. New product introductions will then occur every other month well into next year, he every
eaid
Industry sources said Tandem is developing at least two major new products that are aimed at both the medium and low end of the market.
One, code-named Checkmate, is a medium range mainframe computer that will use gate array logic devices.
The other product, reportedly codenamed Dynamite, is a low-end minicom-
puter that fits under a desk, much as the NCR Corp. Tower, sources said:
Treybig said the belt tightening moves will make sure that our revenues begin catching up with our employment. We hired people faster than general revenues. Now we're trying to hold the people count down."

The price cuts on the low end of Tan_{1} dem's product line aren't in response to competitive pressures from start-up companies, Treybig said, but pressure from IBM. The price cuts also should make Tandem's entire product line more attractive to the company's very large corporate customers, such as banks and financial institutions, he said.
The price cuts are aimed at stimulating demand, and beating back the start-up
ompanies competing with Tandem, such as Stratus Computer Inc, said Omri Serlin, president of ITOM International, a Los Gatos consulting company.
"Tandern executives call the low end of the market the microcomputer marketplace, referring to Stratus-that typifies the attitude Tandem has," he said. "Tan: dem claims it is a mainframe company and its main competitor is IBM. Now it has wqke up. The low end of the market is more important than they thought." "/
Treybig, in an interview, did concede that Tandem needs to be more aggressive on low-end marketing.
Another objective of this strategy, Serline said, is to generate enough sales in the fourth quarter to raise the company's annual growth rate above 30 percent-a
benchmark the company strives to achieve.
Treybig said achieving the 30 percent goal has nothing to do with the price cuts. "We do hope growth will step up, but cutting pricing doesn't increase revenues in theshort term," he said. "We wouldn't feel less successful if we grew at a $291 / 2$ percent rate. We've grown at a 65 percent rate during the past two years."
Ted Costello, an analyst with Dean Witter Reynolds Inc. in Palo Alto, said Tandem is trying to get into shape before the fiscal year ends. This quarter alone, he said, the company has added 39 new cus-tomers- a reflection that the average selling time for the TXP has increased.

The on-line transaction processing market is still vital," he said.

Congress urged to ease taxes on stock options
 By David Butiness Writer
 What is the tick-tock in the mechanism of Silicon Valley's industrial success?
 of Silicon Valley's industrial success? Stock options, stock options. But the smooth working of But the smooth working of the mech- anism is gummed up by complicated and taxes on the stock options, a group of Silicon Valley business people Silicon Valley business people told a con- gressional economic committee Tuesday gressional economic committee Tuesday. At the final hearing on entrepreneurial activity in Silicon Valley, the Joint Eco-
 nomic Committee heard wide-ranging tes timony on how Silicon Valley
 timony on how Silicon Valley has devel-
 oped over the past decades and sugges tions on how government can help the process, The committee is examinipg the area's success as part of a series of nine area's success as part of a series of nine Friday in the Route 128 industrial area near Boston, Mass. Venture capitalists and entrepreneurs described how early described how early investments in unproven ideas can help develop new com panies, But that process depends on pro- viding financial viding financial incentives to entrepre- neurs in the form of inexpensive stack neurs in the form of inexpensive stock options in the new companies, they told the committee.
 Yet special limits and taxes have robbed the options of some of their tion, several entrepreneurs said. iI honestly don" "I honestly don't understand the gov ernment's policy toward stock options, said James Treybig, president of Tandem said James Treybig, president of Tandem Computers Inc. of Cupertino. Tandem hopes to give work tive to help imperove company performance by selling stock company performincluding assembly workers, at prices lower than the going rate on the stack market. Yet assembly workers often must sell their stock right away to pay sell their stock right away to pay federal tax they owe under the preference tax
 provisions, Treybig said, "I don't see why we want to discourage ownership by those we want to disco people," he said
 The preference tax on incentive stock options is an attempt by Congress to broaden the tax hace broaden the tax base. It taxes the profits that employees gain on stock options on the difference between what the com pany charged them for the stock and what the stock is worth on the open market. The tax is due even bepore the The tax is due even before the employee actually sells the stock purchased from the company under the stock option. Congress bas
 Congress has limited the amount of
 stock an employee can purchase from a
 The limit, which was intended to prevent a small group of company founders has hurt larger companies more th stock. start-ups. puters Systems Inc. of Los Altos, told the committee that founders can receive a $\$ 100$ substantial amount of stock under the $\$ 100,000$ limit when the company is young and charging a penny a share. But as the company grows a penny a share. But as the more, the limit cuts down the number of shares employees and officers

Limits on stock options are criticized

By David Sylvester
Buniness Writer
What is the tiek-tock in the mecha-
nism of Silicon Valley's industrial suct
cess?
Stock options, stock options.
But the smooth working of the mech
anism is gummed up y laws and taxes on the stock options, group of Silicon Valley business people
told a congressional economic committold a congressional economic commit tee Tuesday
At the fin
ial activity in Silicon Valley, the Join Economic Committee heard wide-rang ing testimony on how Silicon Valley has
developed over the past decades and suggestions on how government can help the process. The committee is examining the area's success as part of SI mercury News 8/29/54 p1

I honestly don't understand the government's policy toward stock options. - James Treybig, president of Tandem Computers
\qquad 128 industrial area near Boston, Mass. Venture capitalists and entrepreneurs described how early investments in unproven ideas can help develop new
companies. But that process deponds on companies. But hat process depends on
providing financlal incentives to entrepreneurs in the form of inexpensive stock options in the new companies,
they told the committee. they told the committee.
Yet special limits and
robbed the options of some of their
attraction, several entreprene 1D
"I honestly don't understand the government's policy toward stock options,
said James Treybig, president of Tan dem Computers Inc. of Cupertino. Tandem hopes to give workers incentive to help improve workers an
formance by selling stock employee, including assembly workers, at prices lower than the going rate on
the stock market the stock market. Yet assembly workers often must sell their stock right
away to pay federal tax they owe under the preference tax provisions, Treybig said. "I don't see why we want to discourage ownership by those people," he
said. The preference tax on incentive stock options is an attempt by Congress to broaden the táx base, It taxes the prof-
its that employees gain on stock options its that employees gain on stock options
based on the difference between what the company charged them for the stock and what the stock is worth on the open market.
The tax is
The tax is due even before the employee actually sells the stock pur-
chased from the company under the chased from
stock option.
Congress has limited stock an employee can purchase from of The limit $\$ 100,000$ a year.
The limit, which was intended to prevent a small group of company found-
ers from giving the

Continued on Page $4 D$

$$
+2
$$

LEVEL 1 - 1 OF 1 STORY
Copyright 1984 Reuters, Ltd.; Reuters North European Service

AUGUST 30, 1984, THURSDAY, AM CYCLE
LENGTH: 160 wards
HEADLINE: FRENCH FIRM WINS NORWEGIAN NATIONAL VIDEOTEX CONTRACT
DATELINE: PARIS, AUG 30
KEYWORD: VIDEOTEX

BODY:

THE FRENCH DATA PROCESSING GROUP CAP GEMINI SOGETI (CGS) SAID TODAY IT HAS WON A KEY CONTRACT FROM THE NORWEGIAN TELECOMMUNICATIONS ADMINISTRATION FOR THE DESIGN AND INSTALLATION OF A PUBLIC VIDEOTEX SYSTEM.

THE NORWEGIAN CONTRACT IS THE FIRST FRENCH EXPORT SUCCESS IN EUROPE FOR VIDEOTEX SYSTEMS, WHICH ENABLE TELEPHONE SUBSCRIBERS TO CALL UP DATA ON A TELEVISION SCREEN. IT WAS WON IN THE FACE OF COMPETITION FROM THE U.S. COMPUTER GIANT IBM AND THE FRENCH STATE-OWNED COMPUTER GROUP, BULL.

CGS AS MAIN CONTRACTOR AND ITS NORWEGIAN SUBSIDIARY, DATA LOGIC, WILL SUPPLY THE SOF TWARE AND TANDEM COMPUTERS WILL SUPPLY THE HARDWARE. THE CONTRACT IS WORTH 14 MILLION FRANCS (1.6 MILLTON DOLLARS), SPLIT $50 / 50$ BETWEEN SOFTWARE AND HARDWARE.

THE FRENCH FIRM IS ALSO THE MAIN CONTRACTOR FOR FRANCE'S ELECTRONIC TELEPHONE DIRECTORY, THE WORLD'S LARGEST VIDEOTEX SYSTEM, TO BE OFFERED TO 30 MILLION SUBSCRIBERS WITH HOME OR OFFICE TERMINALS OVER THE NEXT DECADE.

LEVEL 1 - 1 OF 4 STORIES
Copyright 1984 McGraw-Hill, Inc.; Business Week
August 20, 1984

SECTION: CORPORATE SCOREBOARD; Pg. 81
Note: This table may be divided, and additional information on a particular entry may appear on more than one screen.

LENGTH: 1004 wards
HEADLINE: SECOND QUARTER 1984

BODY:
COMPANY
$\begin{array}{cc}\text { SALES } & \\ \text { 2nd } & \text { Change } \\ \text { quarter } & \text { from } \\ 1984 & 1983 \\ \$ \text { mil. } & \%\end{array}$

PROFITS		
2nd	Change	6
quarter	from	months
1984	1983	1984
$\$ \mathrm{mil}$.	$\%$	$\$ \mathrm{mil}$.

22 OFFICE EQUIPMENT, COMPUTERS AM International

(5)	153.7	8	298.0	7	2.9	-16	4.3
Amdahl	196.8		371.4	5	4.9	-44	9.1
Apple Computer							
(3)	422.1	58	722.2	46	18.3	-24	27.4
Bell \& Howell	176.4	4	342.1	5	7.7	5	12.7
Burroughs	** 1233.7	18	2333.1	14	57.3	35	100.3
Coleco Industries	166.6	32	352.7	15	5.1	-43	9.6
Computervision	133.6	42	255.3	39	10.9	36	21.6
Control Data	1256.3	10	2444.6	12	23.4	-40	55.1
Data General (3)	277.1	47	525.5	40	16.1	270	28.7
Datapoint (5)	155.0	14	295.8	9	8.0	413	16.5
Dataproducts (9)	121.5	51	248.0	54	8.8	198	19.4
Diebold	120.3	10	238.3	11	14.1	30	28.1
Hewlett-Packard							
(2)	1519.0	30	2797.0	26	141.0	29	236.0
Honeywell	1486.7	7	2879.0	6	74.3	27	113.9
Intergraph	98.8	80	177.5	77	16.5	152	26.8
International							
Business Machines	11199.0	17	20784.0	16	1623.0	21	2825.0
Mohawk Data							
Sciences (8)	97.4	2	204.0	10	-59.7	NM	-59.2
NCR	998.8	7	1860.2	9	76.2	11	121.7
Nashua	146.1	4	298.8	4	6.2	115	12.1
Pitney-Bowes	425.5	8	846.8	10	31.8	13	61.5
Prime Computer	161.4	32	307.0	27	12.8	101	23.0
ROLM (6)	196.1	44	371.6	42	11.8	22	22.0
Seagate							
Technology (6)	100.5	117	201.6	153	11.5	57	23.0
Sperry (9)	1187.1	6	2665.9	10	20.1	-7	101.5
Standard Register	** 102.8	15	204.1	16	5.8	21	11.4
Storage							
Technology Tandem Computers	247.1	4	426.6	-7	-4.9	NM	-21.6

(1984 McGraw-Hill, Inc., Business Week, August 20, 1984
(3)

Tandon (3)
Telex (9) Wang Laboratories (6)

Xerox
INDUSTRY
COMPOSITE
ALL-INDUSTRY COMPOSITE COMPANY

141.9	29	253.2	23	9.2	10	11.2
TU6.3	28	211.4	38	10.4	22	20.4
* 97.1	37	191.6	31	10.8	33	20.8
713.8	51	1257.3	45	73.7	33	123.5
2257.9	0	4394.7	1	95.5	-38	221.6
25696.3	16	48759.9	15	2343.4	13	4228.0
701.8	12	139.0	12	36.6	28	72.1
PROFITS						

MARGINS

	Change from 1983 \%	$\begin{gathered} \text { 2nd } \\ \text { quarter } \\ 1984 \\ \% \end{gathered}$	$\begin{aligned} & \text { 2nd } \\ & \text { quarter } \\ & 1983 \\ & \% \end{aligned}$	Return on common equity 12 months ending $6-30^{-}$	```Price- earnings ratio 7-31```	$\begin{gathered} 12 \\ \text { months' } \\ \text { earnings } \\ \text { per } \\ \text { share } \end{gathered}$
22 OFFICE EQUIPMENT,	COMPUTERS					
AM International (5)	-25	1.9	2.5	NM	3	0.78
Amdahl	-34	2.5	4.9	10.2	12	0.85
Apple Computer (3)	-43	4.3	9.1	9.6	43	0.63
Bell \& Howell	10	4.4	4.3	10.7	12	2.26
Burroughs	30	4.6	4.1	9.8	10	4.99
Coleco Industries	-62	3.1	7.2	-24.7	NM	-1.46
Computervision	37	8.1	8.5	17.9	25	1.44
Control Data	-24	1.9	3.4	7.9	7	3.73
Data General (3)	207	5.8	2.3	9.7	23	1.90
Datapoint (5)	392	5.1	1.1	7.4	15	1.28
Dataproducts (9)	171	7.2	3.6	15.3	11	1.53
Hewlett-Packard 22.4						
(2)	22	9.3	9.3	15.0	20	1.84
Honeywell	41	5.0	4.2	11.3	9	5.68
Intergraph	144	16.7	11.9	27.9	27	1.76
International						
Business Machines	22	14.5	14.0	24.9	11	9.82
Mohawk Data						
Sciences (8)	NM	NM	3.0	-31.9	NM	-3.65
NCR	18	7.6	7.4	14.9	8	2.84
Nashua	139	4.2	2.0	13.0	8	3.18
Pitney-Bowes	20	7.5	7.2	21.6	9	3.26
Prime Computer	54	8.0	5.2	14.6	18	0.85
ROLM (6)	20	6.0	7.0	7.2	27	1.49
Seagate Technology						
(6)	117	11.4	15.7	27.4	9	0.95
Sperry (9)	30	1.7	1.9	7.1	10	3.77
Standard Register	19	5.6	5.4	16.4	10	3.35
Storage 5.6 5.4 10.35						
Technology Tandem Computers	NM	NM	0.6	-7.1	NM	-1.00
(3)	-25	6.5	7.7	8.9	21	0.72
Tancon (3)	28	9.8	10.3	13.7	13	0.63
Telex (9)	32	11.1	11.4	26.3	11	2.66
Wang Laboratories						

(0) 1984 McGraw-Hill, Inc., Business Week, August 20, 1984

(6)	34	10.3	11.8	17.9	17	1.52
Xerox	-21	4.2	6.8	8.5	9	3.76
INDUSTRY COMPOSITE	16	9.1	9.3	17.7	15	4.43
ALL-INDUSTRY						
COMPOSITE	38	5.2	4.5	13.3	12	3.46

(1) Second quarter ending May 31. (2) Second quarter ending Apr. 30. Third quarter and most recent six months ending June 30. (4) Third quarter and most recent six months ending May 31. (5) Third quarter and most recent six months ending Apr. 30. (6) Fourth quarter and most recent six months ending June 30. (7) Fourth quarter and most recent six months ending May 31. (8) Fourth quarter and most recent six months ending Apr. 30. (9) First quarter and most recent six months ending June 30 . (10) First quarter and most recent six months ending May 31. (11) First quarter and most recent six months ending Apr. 30. * Sales include excise taxes. ** Sales include other income. *** Sales include excise taxes and other income. + Revenues from major subsidiaries not included in consolidated sales. ++ Net income includes tax-los5 carryforward, reported as extraordinary item. Earnings per share are for latest 12 months, not necessarily for end of most recent fiscal year. They include all comman stock equivalents but exclude extraordinary items. NA=not available. NM=not meaningful. DATA: STANDARD \& POOR'S COMPUSTAT SERVICES INC.

GLOSSARY

Sales: Includes all sales and other operating revenues. For banks, includes all operating revenues.

Profits: Net income before extraordinary items. For banks, profits are net income after security gains or losses.

Margins: Net income from continuing operations before extraordinary items as percent of sales.

Return on common equity: Ratio of net income available for common stockholders (most recent 12 months) to latest available common equity, which includes common stock, capital surplus, and retained earnings.

Price-earnings ratio: Based on July 31 common stock price and carporate earnings before extraordinary items for most recent 12 -month period.

Earnings per share: For most recent 12 -month period. Includes all common-stock equivalents.

File:	Companies
Date:	C- $906-235,1$
	August 29, 1984

Title:
Price and Product Moves to Maintain Growth at Tandem

Summary:

Again, sales cycle longer than expected

Personnel turnover

> Tandem showed revenue gains below the industry average and even less impressive income gains in F3Q84. New pricing on NonStop is in effect, and new products are expected in 1984 and 1985.

Six months ago Tandem indicated that many of its problems were behind it and it was ready for a return to 35 percent growth. But during F3Q84 Tandem reported a healthy, yet nevertheless disappointing revenue increase of 28.8 percent over F 3 Q 83 and a 12.3 percent increase in net income to a level which still lags that of the first quarter.

Tandem once again stated that its new focus on sales of high-end systems to major accounts has resulted in a lengthening of the sales cycle beyond its initial expectations. Therefore, business that was expected to close in the third quarter did not. This explanation was also offered at the end of the second quarter and, at this point, it is too early to tell whether this business will eventually be closed or whether the competition at the high end (most notably from IBM) is proving to be more formidable than Tandem originally expected.

Also being blamed for the revenue shortfall is a high-er-than-expected turnover rate among the sales force. This statement has merit considering the fact that the nucleus of Tandem's U.K. sales operation did defect during the quarter, with most of the personnel going to competitor Stratus Computer causing the U.K. operation to fall short of its quota. This could continue to be a problem for Tandem with some of the newer faulttolerant start-ups actively recruiting salespeople.

New pricing and products expected

We suspect that some of these newer start-ups, and particularly Stratus, are beginning to eat into Tan- dem's low-end business. The new TXP product has been relatively successful. But one consequence of this relative success at the low end is that NonStop $1+$ and NonStop 11 have looked comparatively poor in price/performance ... thus hurting the low-end order rates. As a result, on August 20, Tandem announced significant price cuts on its low-end models, and put in a program of price credits towards TXP purchases.

A NonStop $1+$ packaged system has been cut by 12 percent (to $\$ 89,000$) and is further affected by new end user quantity discount schedules which lower list price
by up to 38 percent. A larger packaged system (four processors instead of two) is priced at $\$ 105,000$, a 32 percent reduction over prior prices. NonStop 11 pack ages are also reduced by up to 24 percent. Memory prices have been cut by 32 percent -- down from $\$ 22,000$ to $\$ 15,000$ for a 2 -Mbyte board. This price action is, in effect, recognition that the high-end market alone is not all that easy to stimulate or penetrate, and that low-end coverage is also essential. Until the newer low-end products are available, competitive current prices are important. The inevitable consequence, however, is lower gross margins and continued pressure on earning.

We expect announcement of a new low-end product in 1984. This new product, referred to as "Checkmate," would be in the $\$ 100,000$ range and essentially replace the NonStop 1+ product. Reports indicate that Checkmate would have a significant portion of the operating system implemented in firmware to improve performance and would have a TXP processor in the same cabinet.

In mid-1985. Tandem plans to introduce a second lowend processor that could be in the $\$ 50,000$ range. This processor, an under-the-desk version, would be the first 32 -bit implementation for Tandem, a hurdle that had to be taken sooner or later in order to remain competitive. This product would then serve as basis for eventual replacement of the TXP processor line. The change is expected to be relatively transparent for the user, although certainly not for Tandem. The transition from 16 -bit to 32 -bit is never easy, especially with the heavy machine-dependent software that Tandem has developed for its initial products.

At this point Tandem appears to have lost its momentum and status as a high-growth player in the technology fleld. We would expect Tandem to show a 30 percent growth rate in F1985, but see little chance of increasing that rate over the long term. New products, pricing and marketing programs, all effective, will be necessary just to maintain this level of growth.

Tandem Reduces Packaged Sys., Peripherals Prices
 CUPERTINO, Calif. - Tandem

Computers, Inc., has instituted sweeping price cuts on packaged systems and some peripherals in an effort to become more competitive with startups at the low-end of the transaction processing market and to stimulate customer migration to its high-end TXP systems.
The latest moves include reduction between 12 and 30 per cent on volume discounts covering two NonStop $1+$ packaged systems, a 24 per cent reduction in a NonStop II configuration and the introduction of an upgrade discount schedule for TXP upgrades.
Tandem also reduced its twomegabyte memory board from $\$ 22,000$ to $\$ 15,000$, its 264 -megabyte disk drive package by 6 per cent to $\$ 37,000$ and its 128 -megabyte drive by 7 per cent to $\$ 28,000$.
The price cuts at the low-end of the Tandem line, intended mainly to boost the company's sales through OEM and VAR channels and to broaden its installed eustomer base, mean a 1.4 MPIS, entry-level NonStop $1+$ system with 2.2 megabytes of memory, 238
megabytes of disk storage, a tape drive and support for 17 terminals, plus software, can be bought on a maximum 38 per cent discount basis for $\$ 55,000$. The new volume-based discount schedule starts with a 20 system order. The same package of the NonStop $1+$ on a single-unit basis lists for $\$ 89,000$, a reduction of 12 per cent.
In addition, Tandem, introduced credits for upgrades to the high-end TXP system from the NonStop $1+$ and NonStop II ranging from 60 to 80 per cent. The upgrade credits replace a previous upgrade plan between the Nonstop $1+$ and Nonstop II families.
Tandem president James Treybig said the low-end volume discount price cuts are intended to make Tandem more competitive against its low-end start-up challengers such as Parallel Computer and Tolerant Systems as well as to counteract aggressive efforts by IBM to penetrate VAR and OEM channels.
Greater low-end volumes also could boost revenues from upgrades to the TXP system if users are attracted by
the credits on the big system that accrue on the basis of how much of the NonStop equipment they buy. There has been no price change, however, to the TXP itself since it was introduced last year.
Mr. Treybig said he believes reduced profit margins at the low end of the product line would be offset by greater low-end volume and by stimulated upgrade revenues.
A second, Nonstop $1+$ four-processor, 2.8-MIP packaged system had its prices out 32 -per cent to $\$ 105,000$ in single quantities and to $\$ 70,000$ on the volume discount schedule.
The unit-based volume discounts do not apply to the new NonStop II systems, but the price was cut by 24 per cent to $\$ 129.500$ on a 2 -processor packaged system which includes 4 megabytes of memory, a 128 megabyte disk drive, tape drive, an operations service processor and software. Tandem said previous dollar-based volume discounts continue to apply to all of its products.

Tandem Computer, Inc. - Thomas J. Perkins, chrairman, acquired (in the open market) 10,000 shares at $\$ 14.75$ to $\$ 15.75$ each, increasing the total direct ownership of the Thomas J. Perkins, Inc., retirement plan to 510,468 shares.

Electronic News $9 / 3 / 84 \rho^{24}$

Tandem, Cap Get \$1.6MNorwayPact

PARIS (FNS) - Cap Gemini Sogeti, France's largest data processing group, said last week it has won a $\$ 1.6$ mittion contract together with Tandem Computers to design and install a public videotext system for the Norwegian Telecommunications, Authority.
About half the value of the contract goes to CGS, which is to supply software through its Norwegian subsidiary Data Logic, and the other half to Tandem Computers for hardware.

IBM, LM Ericsson and the state owned French computer group Bull were among other reported bidders for the tender.

Tandem Computers Information Center

SEYBOLD REPORT ON PROFESSIONAL COMPUTING
Date:
Route to:
Joel Bartlett - loc 1
Rick Berman - loc 1
Lee Bolton - loc 1
Chris Duke - loc 1
Paul McJones - loc 100
Kim Worsencroft - loc 100

Please return to the Information Center loc 1, bldg 3

DATA PROCESSING

Nonstop Challenges In Fault-Tolerant Market

By Omri Serlin

The euphoria of 1980-1983, during which some two dorsen start-upe and some well-established companies entered the market for fault-tolerant, on-line transaction processing systems (FTOLTP), has been replaced recently with the somber realization that selling FT systems is a hard "push" rather than the easy "pull" that entrepreneurs, venture capitalists and some market researchens had anticipated.

With the notable exception of Tandem Computen Inc., Cu pertino, Calif., and Stratus Computer Inc., Natick, Mass, no other FT/OLTP suppliers have, as yet, managed the total transition from the development stage to full production.

Just about all new entrants have experienced significant product delays, and many are having a difficult time trying to raise much-needed capital for completing product development and estab-

SPECIAL REPORT

FAULT TOLERANT SYSTEMS FAU ERANT SYSTEMS FAULT TOLERA TEMS FAULT TOLERANT SY FAULT TOLERANT SYSTEMS FAU

FAULT TOLERANT SYSTEMS

ERANT SYSTEMS FAULT TOLERA TEMS FAULT TOLERANT SY FAULT TOLERANT SYSTEMS FAU ERANT SYSTEMS FAULT TOLERA TEMS FAULT TOLERANT SY
lishing manufacturing and marketing functions.
The size of the FT/OLTP marketplace has been groes ly exaggerated, especially by market researchers who friled to grasp the difference between potential and realizable markets.
The potential mar ket for FT systems in OLTP and related applications continues to be huge (see chart 1) because the clear trend to on-line processing is creating a need for nonstop computing. The actual penetration by current FT/OLTP suppliers, however, has been miniscule (see chart 21 and is likely to continue to be insignificant in relative terms.
One of the key factors limiting the acceptance of current FT systems is that they generally focus on the easy parts of the problem and tend to ignore the more difficult, and often more important, aspects.
Of course, there are variations be-

tween individual systems, and these are hotly debated among the proponents of the various approaches"hardware" vs, "software" fault tolerance, tightly coupled vs. loosely coupled architecture, etc.
But in a general sense, just about all FT systems offer reasonably robust fault-detection and recovery mechanisms in two areas: procens execution and data storage. The FT requirements of these two aspects are well understood and are relatively easy to achieve.
Unfortunately, procensor failures and disk crashes are no longer the key problems preventing nonstop oper-

Omri Seriin heads ITOM International Co, a research and consulting firm in Los Altos, Calif. He writes the FT Symtems newsletter, which reports on market, company and product developments in the fault-tolerant systems arena.
ation. There is mounting evidence that "operator errors" and problems with remote communications lines are far more significant factors in downtime. Neither of these problems is effectively addressed in any of today's FT systems.

Furthermore, as the reliability of basic electronic and electro-mechanical components increases, power disruptions are becoming relatively more important in causing failures.
Yet few FT suppliers are providing power-fail protection in their systems. The general attitude seems to be that the provision of reliable power-such us an uninterruptible power system (UPS)-is the responsibility of the customer's facility-management department.
Some very important operational factors are not receiving sufficient attention from FT suppliers. For example, few have solved the problem of how to allow Continued on Page 30

1984 Penetration Of On-Line Transaction
Processing Market By Fault-Tolerant Suppliers
(Projections)
Chart 2
TOTAL: 5712 Mallion

DATA PROCESSING

Users Find 'Fault Tolerance' A Relative Term

By Jean S. Bozman
Fault tolerance is a relative term end users told huormation Systems News. For some, a short time period for system recovery is acceptable, while for others nothing less than nonstop processing will do.
Fault tolerance is a phrase that is thrown around, said one Dallas user, but nobody knows exactly what it means. A single hardware failure may not crash a system, but vital data may be lost during an incomplete transaction. And, in any case, software failures are more often the causes of user downtime than hardware fnilures."
Because fault-tolerant systems vary 80 greatly in real-time trantaction processing, some users have gone to great lengths to test the limits of systems they plan to purchase. One company, a New York investment firm, tested a Stratus Computer Inc system by seeing how many printed bourds could be removed without a sys. tem failure.
We found that the Stratus really does tolerate a lot of stress," said an information systems manager at the New York firm. We started polling printed-circuit boards at random, and the only way we got it to stop was to pull out enough CPU boards to make it non-functional. However, the moment we repiaced the CPU boards, it was of and running again.
That kind of real-time transaction processing-the kind used in process control, banking and finuncial applications-puts at a premium the 100 -perpent availability of the computer.
For many applications, sulseoond or severnl-seond recovery time is sufficient, users and vendars agreed.
In an office situation, where you have a lot of people sitting at terminals, users will tolerate a several-second delay for recovery far better than a bank that is doing hundreds of financial transactions each minute," said one engineer at AT\&T who did not wish to be named "Engineering environments demand immediate response, as do telecommunications applications."
Tolenable waiting times vary widely, vendors suid. The amount of nomptable reovery time is appli-cation-dependent," said Shirley Henry, director of markoting at Tolerunt Systems linc, San Jose, Calif. The level of protection is selectable by programming"
To achieve this, Tolerant Sybtems relies on a software solution, allowing an error-detector buried in the "kernel" of its enhanced Unix operating system to isolate hardware or software failures that result in an incomplete transaction, bypassing them until repairs can be made. Then, the system reconfigures around the problem, with recovery time in a second or two.
"Our system, which is made up of system building blocks based on the National Semiconductor (Corp.) 16032 and 32032 chips, will not allow a partial
transaction to take place," Hen- such as Tolerant's is preserved. ry said. "If a stoppage occurs the computer will return to a previous copy of the data base and reconstruct the transaction from the beginning." The integ. rity of the data base in a system

However, a certain amount of time is needed before the user can then access the data base. Hardware-based, fault-tolerant systems offer an additional advantage, analysts point out-
the data base was never disturbed by the failure of one of the CPUs or its components.
Information systems manigers should be annlyzing what they really want in a fault-colerant system, said the ATAT engineer. 'When
such a decision-maker buys fault toleranoe, he's really buying faith the engineer said "ite knows there will inevitably be hardware failures. But the real question is will the machine koep running even when those failurs cccur?

Circle Reader Service No. 023

Fault-Tolerant Solutions Vary With Vendor
 By Paul E. Schindler Jr.
 than conventional computer
 that runs between hardware so-
 spectrum are those who believe
 soft ware-dependent fault toler-

Every commercial fault-tolerant computer system uses some combination of both hurdware and software to ensure that the systems will crash less often
systems when component failures occur.
Still, the various fault-tolerant systems suppliers fall at various places along a spectrum
lutions and noftware solutions, vendors and industry analynts said. Most vendors combine the two approaches to some degree. At the hardware end of the
that fault tolerance should rely on CPU redundancy. On the other end are those who said it should rely on software to isolate component or software failures.
Senior analyst Joan de Regt of International Resource Development lnc., a Norwalk, Conn., marketing research firm, said vendors depending primarily on hardware for fault tolerance include August Systems Inc, Tigard, Ore, which uses a triple-CPU checking system; Stratus Computer Inc., Natick, Mass, which has four CPUs checking each transsetion; and AT\&T, which relies on self-checking VLSI chips.
"Hardware-based Bystems are more fault tolerant than the software-based systems because you can immediately redirect traffic to the working components," said de Regt.

Hardware solutions, sald Shirley Henry, director of marketing at Tolerant Systems Inc., San Jose, Calif., are best when absolute system integrity at the instruction level is needed. "If a human life is at stake, use redundant hardwars," she said. However, Henry said it was "fair to say we are primarily using software" to achieve fault tolerance.
She, and othern who build software-based syntems, believe that such systems are more easily expandable than hard-ware-based systems, since they rely on reconfiguration rather than duplicetion of components.

Software tolutions may still be virtually instantaneous in recovery time, but usually several seconds are needed to reconfigure the system, industry analystes said.
Among thase offering software solutions are Tandem Computers Inc, Cupertino, Calif., the founder of the fault-tolerant marketplace; Auragen Syntems Corp., Englewood Cliffs, N.J.; Computer Consoles Inc., Rochester, N.Y.; Parallel Computers, Santa Crux, Calif; Sequoia Systems Inc., Mariboro, Mass.; Synapse Computer Corp., Milpitas, Calif.; and Tolerant Systems.
Many of these software-dependent, fault-tolerant systems are based on Motorola's MC 6800032 -bit chip, and have Unix-compatible or enhanced Unix operating systems.
Tandem, however, combines software fault tolerance with a duplicate CPU for backup operation.
Tolerant, like fault-tolerant vendor Synapse, has broken its CPU into segments of logic and memory that can distribute a computation around a failure.
Tandem, the market leader with more than $\$ 500$ million in sales this year, relies on both software fault tolerance, which is customized for each user, and on hardware redundancy provided by a backup CPU,
De Regt said it was her opinion that Tandem's philosophy of
ance made sense when the firm was founded in the mid-70s, "at a time when hardware costs were high and software was less expensive."
Ever since, however, hardware costs have dropped and software costs have increased, she said, "so the balance has shifted," making hardware nolutions to fault tolerance more effective.
Charles Lecht, president of Lecht Sciences Inc., a New York software house, had a less evenhanded approach to the question than de Regt. "Redundant processors are the only way to go," he said. "All of them running the same program, all of

SPECIAL REPORT

fault tolirant SYSTEMS

them able to take over each other's workload.
"Or course, software will always be a factor," Lecht said. "But if you think of software as the driver and hardware as the car, all the drivers in the world will not help you if there is no car for them to drive. You cannot do it all in software."
The philosophical leader of the hardware fault-tolerant camp, snalyits agree, is Stratus. Peter Kasther, manager of Stratus' corporate business development. said his 4 -year-old firm believes that hardware fault tolerance has "definite advantages" over software-based systems.

Competitors argue that redundant hardware systems such as Stratus-which has four sets of logic executing the same instructions simultaneouslyhas a cost disadvantage. But Kastner said chips amount to only 2 percent of the selling price of a typical system. The clear advantage is that any malfunctioning chip-the one that produces a different answer than the others-is immedistely isolated from the syintem for repains. Moreover, he suid. hardware faults are far more infrequent than software faults.

Kastner summed up the Stratus philosophy as "hardware redundancy which is controlled by hardware, rather than by soffware, and argued that his firm's software techniques, including automatic rebooting in case of system failure, use fewer CPU cycles than similar techniques used by software-oriented competitors.
Toward the hardware end of Continued on Page 30

FT Vendors Facing Difficulty Righting 'Soft' Software Errors

Continued from Page 22
new versions of the operating system to be installed, without disrupting ongoing operations.

Yet without such a facility, the system can be hardly considered "nonstop." In many cases, the checkpointing (state saving) of the datin base, required for protection against disk failures, cannot be accomplished without terminating, or slowing down, the on-line workload.

Some systems do not even provide for on-line repair; such systems cannot be regarded as FT systems at all.
Probably the most difficult issue is that of "sof"" software errors, loosely defined as the type of "bugs" in either the system ar user code, which do not come to light except under an array of unusual coincidences.
In on-line systems, communications with tocal and remote terminals often create random sequences that could cause such "bunching" of unusual events.
All these (and other) problems signifieantly detract from the completeness of the FT story as told by the current practitioners.
Thus, it is not surprising that when the prospective customer is faced with choosing between a "kludgey" solution
from his conventional supplier and an elegant, but incomplete (and incompatible), FT system from a relative newcomer without a track record, more often than not the conventional supplier wins.
For example, IBM has been successful in selling its Airline Control Program (ACP) as a high-availability tures to
FT suppliers are responding to the compatibility issue in two ways. Those that hope to place their systems in IBM environments, such as Tandem, are implementing high-level SNA compatibilplem.

Those aiming at DEC and other non-

> Probably the most difficult issue is that of 'soft' software errors, loosely defined as the type of 'bugs' in either the system or user code, which do not come to light except under an array of unusual coincidences.
transaction system in the banking and brokerage industries, despite the many nevere limitations inherent in the product; NCR Corp., Dayton, Ohio, is now offering its "Cluster" hardware and Instant Ready software; and the recent VMS Version 4 from Digital Equipment Corp., Maynard, Mass., implements several high-availability fea-

Leading Competitors in The Fault Tolerant Market

IBM environments-Auragen Systems Corp. Fort Lee, N.J., Sequoia Systems Inc., Marlboro, Mass., Tolerant Systems Inc., San Jose. Calif-are providing Unix compatibility. These companies are hoping that the growing acceptance of Unix as a standard will allow them easier entry.
One of the more interesting recent de-

Continued from Page 24 the spectrum, but less militant than Stratus, is ATAT Technologies, formerly the Western Electric Co, subsidiary of ATET. Paul Teetor, an engineer with ATET Bell Laboratories in Naperville, III, said that while AT\&TE 3B20D processor does offer hardware redundancy, our strength is the fusion of hardware and software:"
Teetor admitted that "hardware re: dundancy is the backbone of our system," but said it would not offer the benefits it does without use of a special version of the Unix operating syitem known as Unix Real Time Reliable or Unix RTR.

When AT\&T announced commercial availability of the 3B20D last March, Teetor said, it said a typical system operating 24 hours a day, 365 daye a year would only be down eight minutes a year. When the 3B20D was being designed, tested and used within AT\&Ts phone system, it was responsible for keeping the phone system's 800 numbers and AT\&T credit-card verification services up and running
Previously written Unix programs will run under Unix RTR on the 3B20D without modification, Teetor said, and they will be more reliable because they are running on a more reliable operating system or can be modified to take advantage of the system's special fault-tolerant features.
"Our whole goal is to lose the minimum amount of information during a failure," he said. As a result, the ATAT system, unlike Stratus, does not immediately have an automatic reboot feature. Instead, it first tries to restart the process, using a combination of hardware and software to prevent entry into infinite loops.
Hardware systems are criticized for the difficulty in expanding them, due to the need for hardware overhead to provide redundancy. By contrast, software systems are more readily expandable, since the amount of software needed does not grow as quickly as does system size.
velopments is the increasing activity in the area of multi-microprocessor based systems, which offer selected FT features. Arete Systems Corp., San Jose, Calif., EnMasse Computer Corp., Acton, Mass, Parallel Computers Inc., Santa Cruz, Calif., Sequent Computer Systems Inc., Portland, Ore., and several others are basing their strategies on the idea that most applications currently addressed by "true" FT suppliers could be satisfied with less-than-full fault tolerance, provided the price is right.
Much attention has been focused on AT\&T's recent entry into the faulttolerant arena with its relatively old 3B20D duplexed system. However, the lack of expandability and of commercial transaction software limits its attraction to defense, telecommunications and other specialized applications.
However, a potentially significant development ensuing from the 3B20 program is the set of modifications to Unix, recently implemented by AT\&T Bell Laboratories, that allow it to run on the dual-processor 3B20A model. These modifications, which are expected to eventually show up in Unix System V, are general enough to allow Unix to be used on other multiple processor configurations.

AT\&T's 3B Fault Tolerance Fuses Hardware, Software

Tandem, which relies on both soft ware fault tolerance and CPU duplication, prefers to think of fault tolerance as "a feature, not a market," according to Jerry Held, Tandem's director of strategic planning.
Held also said that Tandem's self-view is not that of a fault-tolerant system provider, but rather a provider of syitems for "on-line transaction processing,' for which fault tolerance is but one requirement.
His company, founded in 1970, is the market leader, with more than 80 percent of the market.
Held said he prefers to look at a different apectrum, "not from hardware to software, but from availability to expandability." Most systems fall at one end or the other of this scale, he said, while Tandem is firmly placed in the middle, "offering the best combination of both"
Single-processor redundant systems such as Stratus and ATET would be at the 100 percent-availability end of the scale, he suggested, while Synapse has stressed expandability over 100 percent uptime.
But, while saying that Tandem sybtems offer "a tremendous amount of hardware fault tolerance, Held was willing to say that "a number of our features are based in software." He saíd Tandem has examined the concept of redundant hardware, but concluded that dundant hardware,
Hardware solutions, Held said, "only solve half the problem. We believe multiprocessor systems are the key to most customer problems." Such systems are easier to put together with sottware than with hardware, he said.
While the cost of hardware components is dropping. Held said, the number of components in a system is rising, "Hardware cost is not going to zero," he said "Redundant systems tend to double hardware costa. In two systems, with equally mature technologies, the more cost-effective design will be software-oriented."
system or user code, which do not come to light except under an array of unusual coincidences.
In on-line systems, communications with local and remote terminals often create random sequences that could cause such "bunching" of unusual events.

All these (and other) problems significantly detract from the completeness of the FT story as told by the current practitioners.
Thus, it is not surprising that when the prospective customer is faced with choosing between a "kludgey" solution

> code, which do not come to ignt except under an array of unusual coincidences.
transaction system in the banking and brokerage industries, despite the many severe limitations inherent in the product; NCR Corp., Dayton, Ohio, is now offering its "Cluster" hardware and Instant Ready software; and the recent VMS Version 4 from Digital Equipment Corp., Maynard, Mass., implements several high-availability fea-

IBM environments-Auragen Systems Corp. Fort Lee, N.J., Sequoia Systems Inc., Marlboro, Mass., Tolerant Systems Inc., San Jose, Calif.-are providing Unix compatibility. These companies are hoping that the growing acceptance of Unix as a standard will allow them easier entry.

One of the more interesting recent de-
cial tra tractior tions applica Howe develop progran Unix, r Bell La on the These pected System Unix to cessor

Leading Competitors In The Fault Tolerant Market				
Company Name And Model No.	Base Memory And Procassor Chip	Recovery Time And Method (Harctware) (Software)	Performance In MIPS (Approx.)	Price
ATBF Irtomation Spstems, 38200	5 Wbytes. Progretary Chip	Subsecond Hardwars And Solture	1 MIPS	\$340,000
August Systems inc $\operatorname{cs} 308$	512 x byes. Intel Corp: 8006	NA. Hardware And Sotwara	NA	\$150,000
Auragen Systems Corp System 1000	4 Moytes Molorola MC68500	1-8 Seconds. Soltware	1.5 MPPS	\$138.000
Conpular Conscles inc. Power 5. Powe 6 Seres	2 Moytes. Propnetary Ohp	$1-10$ Seconds Hardware	2 MIPS	\$187,000
Pratei Computers. Parale 300	$\begin{aligned} & \text { 2Moyed } \\ & \text { Motordh } \\ & \text { MC58500 } \end{aligned}$	2. 3 Seconds. Hardware And Sotinare	7 MPS	\$74900
Secuola Systems inc. NA.	NA. Motorola MC66000	NA. Hardware And Soltware	25 MPPS	\$250,000
Stratus Compiter inc FT. 200	$\begin{aligned} & \text { 2 Wbyes } \\ & \text { Motroia } \\ & \text { MCs8000 } \end{aligned}$	Subseond. Hadduate	1 MIPS	\$140,000
Synapse Corpute Corp. $1010-\mathrm{A}$	6 Mbyes, Molorida MC68000	$\begin{aligned} & \text { 3.5 Naptes: } \\ & \text { Hentrae And } \\ & \text { sothrase, } \end{aligned}$	15 MIPS	S300,000
Tandem Computer Inc. TXP	4. Myytes Propnelay Crip	2. 4 Secands. Hardware And Sothwale	4 MPSS	\$298,000
Tolerant Systens luc: Etenty Series 5000	2 Myytes, National Serilconductor: 32020	1. 4 Seconds, Soctware	1.52 MPS	\$145.000
Al igures suppled by conpanies. Riscovery fines aie appication depeindert,				
"Recovery fine is based on complete appication livel necovey and data base nifegrity,				

AT\&T's 3B Fault Fuses Hardware,

Continued from Page 24
the spectrum, but less militant than Stratus, is AT\&T Technologies, formerly the Western Electric Co. subsidiary of AT\&T. Paul Teetor, an engineer with AT\&T Bell Laboratories in Naperville, Ill., said that while AT\&T's 3B20D processor does offer hardware redundancy, "our strength is the fusion of hardware and software."
Teetor admitted that "hardware redundancy is the backbone of our system," but said it would not offer the benefits it does without use of a special version of the Unix operating system known as Unix Real Time Reliable or Unix RTR.

When AT\&T announced commercial availability of the 3B20D last March, Teetor said, it said a typical system operating 24 hours a day, 365 days a year would only be down eight minutes a year. When the 3B20D was being designed, tested and used within AT\&T"s phone system, it was responsible for keeping the phone system's 800 numbers and AT\&T credit-card verification services up and running.

Previously written Unix programs will run under Unix RTR on the 3B20D without modification, Teetor said, and they will be more reliable because they are running on a more reliable operating system or can be modified to take advantage of the system's special fault-tolerant features.
"Our whole goal is to lose the minimum amount of information during a failure," he said. As a result, the AT\&T system, unlike Stratus, does not immediately have an automatic reboot feature. Instead, it first tries to restart the process, using a combination of hardware and software to prevent entry into infinite loops.

Hardware systems are criticized for the difficulty in expanding them, due to the need for hardware overhead to provide redundancy. By contrast, software systems are more readily expandable, since the amount of software needed does not grow as quickly as does system size. prefers feature ry Held plannin

Held is not t vider, b "on-line fault to

His 0

 market cent of Held ent spd softwar pandab end or while middle both."Sing such a the 10 scale, stresse uptime

But,

 tems hardw willing feature Tande dundal "it is solve h proces custom easier with hTandem Compenhors
s of Mead Data Central Financial Times

August 2, 1984, Thursday

LENGTH: 1045 words
HEADLINE: Tandem slows but keeps on running;
TANDEM COMPUTERS MEETS COMPETITION IN FAILSAFE SYSTEMS

BYLINE: BY ALAN CANE
BODY:
FAULT TOLERANCE Regularly, relieving the stress
Andreas and neighbour earlier this year, shaking silicon Valley" electrons
It shifted violently many of California's of Tandem computers.
buildings which house the Cupertino office
Tandem executives, howe shaking. their feet was already The company was abl those for the fecember 1977.
1983-84 would be beiont public in Decent news that telecommunications special territory, fault
coupled with the news about to invade Tandem'sn to accelerate the fall of its Telegraph (AT \& T) was announcement was en $\$ 40.25$ in the previous 12 months. tolerant systems, $\$ 16.25$, down from a high $\$ 20$ mark since then; significantly stock price ce has quivered around last week, were s.

The stock price results, announcer down just under better third quarter pushed the price down of Tandems

All of this world.
the modern concept of fault-tolerant technologies in business data processing. of the importance the of companies now computer Technology, computer august systems it includes formation inc. Tolerant and Perkin-Elmer.

What Tandem understood earlier than any of the others, they pondered the which was beginning to grip data processiters. consequences of failure of

Most modern companies are completely dependent on their data processing systems. Failure means at best, expense and inconvenience -- at worst, the entire company could be at risk.

The companies most acutely aware of the problem were running large on-line databases, with transaction orientated terminals connected through communications lines -- the banks, financial institutions, retailers, hotels and the leisure business.

Before Tandem, the only answer was "not standby" -- a duplicate computer system warmed up and ready to go if the original failed. It was expensive, risky and, as many customers discovered to their cost, not too reliable.

Tandem's idea was to duplicate all the essential items in the computer using clever software to move information to healthy parts of the system in the event of a single component failure and to make it possible to connect many processors together to give mssive transaction processing power.

Its original business plan, dated September 1975, notes: "No manufacturer has designed a multiprocessor from the ground up. Tandem will be the first company to offer a fully implemented hardware and software solution. We expect to gain the dominant share of this rapidly emerging market."

It was and it did. From 1977 through to 1983 , its revenues grew from $\$ 8 \mathrm{~m}$ to $\$ 418 \mathrm{~m}$; it now has over 720 customers with a world-wide network of over 60 sales and engineering offices.

Its prestige customrs in the UK include the London clearing banks (the CHAPS network), the London Stock Exchange and GCHO Cheltenham, the Government defence listening post.

In the U.S. the list includes Wells Fargo Bank, Hughes Aircraft and GTE.
So what is slowing -- if not stopping -- the world's most significant fault tolerant computer company?

To some extent, it seems to be a victim of its own success. Most analysts, and the company itself, believe that its current less-than-sparkling financial performance is an anomaly caused by Tandem's increasing penetration of major companies.

That means its quarterly performance is tied more precisely to the buying cycles of these large companies, 50 producing low revenue figures in the early part of the year.

Second, it no longer has the fault tolerant market to itself. Indeed, it is even trying to play down its image as the leading fault tolerant manufacturer, arguing that every manufacturer will have to provide fault tolerance in future.

Its claim now is to be the leading manufacturer of high capacity transaction processing systems; the power of the system being a consequence of exploiting all the advantages of a multiprocessor system -- the customer gets fault tolerance as a bonus on top of all his power rather than as the principal reason for buying Tandem.

But Tandem is also a victim of its own originality. It designed its fault tolerant machines, the NonStop series, back in 1976 when hardware was expensive and software, by comparison, cheap.

The newer companies in the field -- of which the most significant is generally reckoned to be Stratus -- have taken advantage of the cheap and powerful hardware now available to develop computers with comparable power to beginning to make significant inroads into financial markets. In the UK, Link, a consortium of building societies and financial institutions, plans to build a network of automated teller machines on Stratus switches.

In the U.S. customers include Merrill Lynch, Lockheed and Bank of America.
Tandem's response has been to develop new systems at the top end of the market -- the TPX family -- and to promise new systems which will directly compete with Stratus' lower-priced offerings.

Stratus sees Tandem as the competition. Its founder and president, William Foster, says: "It is a very successful company with a substantial number of large accounts and that is not going to change."

Tandem has its sights set on IBM. President James Treybig says: "Tandem is the new mainframe -- we have got to stay right here and win. IBM can go to other places. You only beat IBM by being better."

GRAPHIC: Picture, Tandem's "paperless factory" at Austin, Texas
$=$

2

Services of Mead Data Central

- Taidem cumpethors

Copyright 1984 The Financial Times Limited;

 Financial Times$$
\text { August } 2,1984 \text {, Thursday }
$$

SECTION: SECTION I; Technology; Pg. 7
LENGTH: 346 wards
HEADLINE: Designing for fault tolerance
BYLINE: EDITED BY ALAN CANE
BODY:
TANDEM'S FAULT tolerant design, when it launched its "NonStop 16" back in 1977, was revolutionary.

The aim was an architecture which would continue to process data successfully despite any single component failure -- a component, in this case, means the central processor, the high speed memory, the input output controller, the input/output data path, the disk memory and the disk controller.

Failure of any of these components in a conventional computer means the application running also falls. To provide fault tolerance, Tandem duplicates all the critical hardware and the software.

Tandem's answer is to link the two systems through a high speed data transfer system with one memory component kept in a state which allows it to assume control if the other memory falls.

The central processor in Tandem systems is built out of conventional microelectronic building blocks -- Schottky technology. Fault tolerance is assured by software techniques -- checkpointing and transaction monitoring -which inevitably costs the user something in system overhead.

Tandem argues that this is no penalty -- the user can exploit the power of the entire multiprocessor system.

Stratus, designed same five years later, makes use of the fastest, most powerful microprocessor chips commercially available, the Motorola 68000 family. Fault tolerance is built into the hardware, so there is no software overhead.

Basically the system multiplies up the new, low cost hardware to give a fault tolerant system. Two pairs of 68000 processors are fed with identical programs to operate on identical data.

The processors are paired, and the results of each set of computations compared. Only if all four results are identical is the system acknowledged as working correctly. If one differs it can be isolated while the other processors continue to operate.

This check takes place once every 125 nanoseconds or 8 m times a second.
It means that Stratus can build a machine which at the top end processes 3 m instructions a second -- for roughly $£ 262,000$.

TANDEM COMPUTERS，INC．

Systern Characteristics	$\begin{gathered} \text { Nonstop } \\ I X P \end{gathered}$
Melativeratorsteno	
M Mps^{2}	4.32
Memory alro in byted EXI 	
Purchase Price （Mernory Slize）	$\begin{aligned} & \$ 322,000 \\ & (4 \mathrm{M}) \end{aligned}$
wase fictiv （2eapisem	
Machine Cycle Time （Nsec）	83.3 －
Cache（Butfer）size	128K－1M
Eingectionticis	
Price per 1 M byte of main memory ${ }^{4}$	11，000．

CW estimates based on vendor－supplied in－ formation．Relative performiance ratings are based on an IBM $370 / 158-3$ equaling 45 ．
These numbers are designed to put the pro－ These numbers are designed to put the pro－
cessor into perspective with other systerns； they do not constitute a buyer＇s guide．Actu－ al performance can vary with the application， peripherals and software．
2．Vendor claims．
3．The available number of procassor $1 / 0$ ports． Avallable only in 2 M －byte increments costing
$\$ 22,000$ ．

SYNAPSE COMPUTER CORP．

Characteristics

	1596065
Mlps ${ }^{\prime}$	2．8－14
Weriony gixe byter TMamum－Maxinum）	
Purchase Price ${ }^{3}$ （Mernory Slze）	$\begin{aligned} & \$ 169,000 \\ & (6 \mathrm{M}) \end{aligned}$
Lese price （cesese Term）	
Machine Cycle Time （Nsec）	100
Cache（Buffer）stze ${ }^{\text {a }}$	16 K
（fus Architecture？	
Price per 1 M byte of maln memory	\＄14，000

1．CW estimates based on vendor－supplied in－ formation．Reiative performance ratings are These numbers are designed to put theopro－ cessor into perspective with other systerns； they do not consittute a buyer＇s guide．Actu－ al performance can vary with the opplication， perlpherais and sof were．
Westimates．
3．For a five－processor syatem confgured for a
transaction processing work load，the rela tive pertormance niure is 158．The vendor sald up to 28 processors can be used．In a 28 －processor configuration，the relative pe Per CPU．

Characterlstlcs System	DPS 8／47	DPS 8／49	DPS 8／52	DPS 8／62	DRS 8／70	DPS 88／81	DPS 88／82
		F53，				230	
Mlps ${ }^{2}$	．73－1．2	1．1－4．5	1．1－4．9	1．2－5．9．	1．8－7．2	7.2	13
Wemory arzela byt Winturaporatheral		dix		HW\％	蒀		
Purchase Price ${ }^{2}$ （Memory Size）	$\begin{aligned} & \$ 153,000 \\ & (2 \mathrm{M}) \end{aligned}$	$\begin{gathered} \$ 253,000 \\ (2 \mathrm{M}) \end{gathered}$	$\begin{gathered} 8450,000 \\ (2 \mathrm{M}) \\ \hline \end{gathered}$	$\begin{aligned} & 5500,000 \\ & (2 \mathrm{M}) \end{aligned}$	$\begin{gathered} \$ 700,000 \\ (2 \mathrm{M}) \\ \hline \end{gathered}$	\＄2，850，000 （16M）	$\begin{aligned} & \$ 4,050,000 \\ & (32 \mathrm{M}) \end{aligned}$
Pratepoter （1）the sem	Dujuchay	Theogoriv				Hoysor	
Machine Cyole Time （ Ns sec）	Not Avallable	$\begin{gathered} \text { Not } \\ \text { Available } \end{gathered}$	\square Avallable	\square Avaliable	$\begin{gathered} \text { Not } \\ \text { Avallable } \end{gathered}$	$\begin{gathered} \text { Not } \\ \text { Available } \end{gathered}$	$\begin{gathered} \text { Not } \\ \text { Avallable } \end{gathered}$
Cache（Buffer）size	32 K	84 K	128K				
Price per 1M byte of maln memory	\＄7，500	\＄7，500	\＄20，000	\＄20，000	\＄20，000	\＄20，000	\＄20，000

1．CW estimates based on vendor－supplied information．Relative performance ratings are based on an IBM $370 / 158-3$ equaling 45 ．Theso numbers are designed to． put the processor into perspective with other systems；they do not constitute a buyer＇s guide．All systerns are not alike；they use difforent operating syatems． and 2． CW software．
3．For the processor only．Each of the models in the DPS 8 line can accommodate multiple processors．
5

Characteristlcs System	DPS 6／40	DPS 6／45	14 DPS 6／75	DP＇s 6／95	DPS 7／36E	DPS 7／6EE
	Wemb		8614as	8718		189
Mips ${ }^{\text {² }}$	． 4	． 4	． 7	1.8	5^{3}	$1.36{ }^{\text {x }}$
Whrory ame byen	WisikzM	N		SVIT	Tor	
Purchase Pilce ${ }^{+}$ （Mernory Size）	$\begin{gathered} \$ 37,330 \\ (512 \mathrm{~K}) \end{gathered}$	$\begin{gathered} \$ 49,900 \\ (512 K) \end{gathered}$	$\begin{gathered} \$ 59.150 \\ (1 \mathrm{M}) \end{gathered}$	$\begin{gathered} \$ 104,900 \\ (2 \mathrm{M}) \end{gathered}$	$\begin{aligned} & \$ 85,200^{6} \\ & (1 \mathrm{M}) \end{aligned}$	$\begin{gathered} \$ 215,700^{\circ} \\ (2 \mathrm{M}) \\ \hline \end{gathered}$
Lesen price？ （esese rom ）						
Machine Cycle TIme （ Nsec ）	250	250	： 200	125	$\cdots 26330$	140
	Kir			$9 \mathrm{Fan}$		
Cache（Buffer）size	None	None	8K	8 K	None	mone
			2－m，		diprssur	，
Price per 1 M byte of main memory	\＄9，000 ：त्ता	\＄9，000	\＄9，000	令 88,000 大	17 $\$ 10,000$	\＄10，000

1．CW estumates based on vendor－supplied information，Relative performance ratings are based on an IBM $370 / 158-3$ equaling 45．These numbers are desigred to put the processor into perspective with other systems；they do not constitute a buyer＇s guide．Actual performance can very with the application，peripherals and sotware．
2．Vendor claims．
3． CW estimates．
4．Includes processor，console，80M－byte disk dive，5－1／4 in．diskette difive and $5-1 / 4 \mathrm{in}$ ．diskette drive．The DPS $6 / 45$ purchase price also includes Honeywells 5．Includes a unit record
5．Incl $7 / 85$ inctiocrd processor，console，keyboard，remote maintenance adapter and a diskette unit．The DPS $7 / 35 E$ configuration inctudes two I／O channels；the DPS 7／65 includes four 1／0 channels．

Nonstop Challenges In Fault-Tolerant Market

By Omri Serin
The euphoria of 1980-1983, during which some two dot en start-upe and some well-established companies entered the market for fauletolerant, on-line transnction proceseing syrtema (FT/OLTP), has been replaced recently with the somber realization that selling FT systems is a hard prash" rather than the eary "puil" that entrepreneurs, venture capitalists and some market researchers had anticpated.
With the notable exoeption of Tandem Computers Inc., Cupertino, Calif, and Stratus Computer Inc. Natick, Mase, no other FTOLTP suppliers have, as yet, managed the total transition from the development stage to full production.
Just about all new entrants have ex perienced significant product delays, and many are having a difficult time trying to raise much-needed capital for completing product development and estab-

SPECIAL REPORT

FAULT TOLERANT SYSTEMS FAU ERANT SYSTEMS FAULT TOLERA TLMS FAULT TOLEFANT SY FAULT TOLERANT SYSTENS FAL

ERANT SYSTENS FAULT TOLERA TEMS FAULT TOLERANT SY FAULT TOUERANT SYSTEN'S FAU ERANT SYSTEMS FAULTTOLERA
TEMS FAULT TOLERANT SY
lishing manufactur ing and marketing functions.
The sime of the FT/OLTP market. place has been groer by exaggerated, espe cially by market cially by market failed to grasp the difference between potential and realizable markets.
The potential mar: ket for FT syatems in OLTP and related app plications continues to be huge (see chart 1) because the clear trend to on-line pro ceming is creating a need for nonstop computing. The actual penetrition by currnt FTOLTP supplien. however, has been miniscule (see chart 2) and is likely to continue to be insignificant in relative terme
One of the key factors limiting the acceptance of current FT systems is that they generally focus on the easy parta of the problem and tend to ig. nore the more difficult, and often more important, aspects.
Of course, there are variations be-

tween individual systems, and these are hotly debated among the proponents of the various approaches"hardware" va. "software" fault tolerance, tightly coupled vs. loosely coupled architecture, ete
But in a general sense, just about all FT systems offer reasonably robust fault-detection and recovery mechanisms in two areas: process execution and data storage. The FT requirements of these two aspects are well understood and are relatively easy to achieve.
Unfortunately, processor failures and diak crashes are no longer the key problems preventing nonstop oper-

Omri Serlin heads ITOM Internationa/ Co. a research and consulting firm in Los Altas, Calif. He writes the FT Sybtems newaletter, which reports on market, company and product developments in the fault-tolerant systems arena.

1984 Transaction Processing Market (Projections)

Chart 1

- TTOU manmenar Ce
ation. There is mounting evidence that "operator errors" and problem with remote communications lines are far more significant factors in downtime. Neither of these problems is ef fectively addressed in any of today's FT systems.
Furthermore, as the reliability of basic electronic and electro-mechanical components increases, power disruptions are becoming relatively more important in causing failures.
Yet few FT suppliers are providing power-fail protection in their systems. The general attitude seems to be that the provision of reliable power-such as an uninterruptible power system (UPS)-is the responsibility of the customer's facility-management department.
Some very important operational factors are not receiving sufficient attention from FT suppliers. For example, few have solved the problem of how to allow Continued on Page 30

1984 Penetration Of On-Line Transaction Processing Market By Fault-Tolerant Suppliers (Projections)

Chert 2
TOTAL $\mathbf{5 7 1 2}$ IVIItion

DATA PROCESSING

et

Users Find 'Fault Tolerance' A Relative Term

By Jean S. Borman Fault tolerance is a relative terme end users told Information Systems Nows For some, a short time period for syatem recovery is acceptable, while for others nothing less than nonstop processing will do.
Fault tolerance is a phrase that is thrown around, said one Dallas user, "but nobody knows Dxactly what it means. A single exacdy wilure may not anch hardware bel dote mesh be lost during an incomplete translost during an incomplete cotware action. And, in any case, software failures are more often the
causes of user downtime than causes of user dow
hardware failures."
Because fault-tolerant syitems
Because faul-tolerant syitems
vary so greatly in real-time trans action processing, some usen have gone to great lengths to tes the limits of systems they plan to purchase. One company, a New York invertment firm, tested a Stratus Computer Inc. aystem by weing how many printed boards and be memoved without is ays tem failure.
"We found that the Stritus real. Iy does tolerate a lot of stros," said an information systems manner at the New York firm. We started pulling printed-circuit boards at andom, and the only way we got it to stop was to pull out enough CPU boards to make it non-fiune tional. However, the moment we eplaced the CPU boards it was of and running again"
That kind of real-time transac tion procosing - the kind used in process control, banking and financial applications-puts at a premium the 100 -percent availability of the computer
For many applications, sub weond or several second recovery time is nufficient, users and vendors agrved.
"In an office situation, where you have a lot of people sitting at terminais, usen will toierate a several-mecond delay for recov ery far better than a bank that is doing hundreds of financia transactions each minute." said one engineer at AT\&T who did not with to be named. "Engineering environments demand immediate response, as do telecommunications applications.
Tolerable waiting times vary widely, vendan mid. The amount of accoptable rocovery time is appoli-cation-dependent," anid Shirley Henry, director of marketing of Tolerant Sytems liec San Joer. Calif The level α protection is x. lectable by programming
To achieve this, Tolerant Syz ems relies on a sottware solution, allowing an error-detector buried in the "kernel" of its enhanced Unix operating system to isolate hardware or software failures that result in an incomplete transaction, bypassing them until repain can be made. Then, the system reconfigures around the problem, with recov ery time in a second or two.
"Our system, which is made up of system building block: based on the National Semiconductor (Corp.) 16032 and 32032 chips, will not allow a partial
transaction to take place," Henry said. "If a stoppage occurs, the computer stoppage occurs, the computer will return to a previous copy of the data base and reconstruct the transaction from the beginning." The integ' rity of the data base in a system
such as Tolerant's is preserved. However, a certain amount of time is needed before the user can then access the data base Hardware-based, fault-tolerant systems offer an additional advantage, analysts point out-
the data base was never dibturbed by the failure of one of the CPUs or its components. Information systems managers should be analyzing what they raally want in a fault-tolerant nytem, said the AT\&T engineer. When
such a decision-maker buys faut thernince, hes roally buying faith, the engineer said. He knows therewill inevitably be harctware failures. But the real question is will the machine keep running even when those failures occur?

Circle Reader Service No. 023

DATA PROCESSING

(3) Fault-Tolerant Solutions Vary With Vendor
 spectrum are those who believe

By Paul E. Schindier Jr. Every commercial fanl-tolerant computer system uses nome combination of both hardware and software to ensure that the systems will crash less often
than conventional computer systems wr.
Still, the various fault-toler ant systems suppliers fall at various places along a spectrum
that runs between hardware solutions and software solutions, vendors and industry analyste said. Most vendors combine the two approaches to some degree. At the hardware end of the
that fault tolerance should rely on CPU redundancy. On the other end are those who said it should rely on software to isolate component or software failures.
Senior analyst Joan de Regt of International Resource Development lnc., a Norwalk, Conn.. marketing research firm, said vendors depending primarily on hardware for fault tolerance include Auguat Syatems Inc., Tigard, Ore., which uses a triple-CPU checking system; Stratus Computer Inc, Natick, Mass, which has four CPUs checking each transaction; and AT\&T, which relies on self-checking VISI chips.
"Hardware-hased syips.
"Hardware-based systems are more fault tolerant than the software-based systems because you can immediately redirect traffic to the working components," said de Regt.
Hardware solutions, said Shirley Henry, director of marketing at Tolerant Systems Inc, San Jose, Calif, are best when aboolute system integrity at the instruction level is needed. If a human life is at stake, use redundant hardware," she said. However, Henry said it was "frir to say we are primarily using software" to achieve fault tolerance. She, and others who build software-based systems, believe that such systems are more easily expandable than hard-ware-based systems, since they rely on reconfiguration rather than duplication of components. Software solutions may still be virtually instantaneous in recovery time, but usually several seconds are needed to reconfigure the system, industry analysta said.
Among those offering software solutions are Tandem Computers Inc., Cupertino, Calif., the founder of the fault-tolerant marketplace; Auragen Systems Corp., Englewood Cliffs, N.J., Computer Consoles Inc., Rocheater, N.Y.; Paralle! Computers, Santa Cruz, Calif: Sequoia Syatems lnc., Maribore, Mass: Synapse Computer Corp., Milpitas, Calif; and Tolerant Systems.
Many of these softwaredependent, fault-tolerant systems are based on Motorola': MC 6800032 -bit chip, and have Unix-compatible or enhanced Unix operating systems.
Tandem, however, combine software fault tolerance with a duplicate CPU for backup operation.
Tolerant, like fault-tolerant vendor Synapse, has broken its CPU into segments of logic and memory that can distribute a computation around a failure.
Tandem, the market leader with more than $\$ 500$ million in sales this year, relies on both software fault tolerance, which is customized for each user, and on hardware redundancy provided by a backup CPU.
De Regt said it was her opinion that Tandem's philosophy of
software-dependent fault tolerance made sense when the firm was founded in the mid-70s, "at a time when hardware costs were high and software was less expensive."
Ever since, however, hardware costs have dropped and software costs have increased. she said, "so the balance has shifted," making hardware sotutions to fault tolerance more effective.
Charles Lecht, president of Lecht Sciences Inc., a New York software house, had a less evenhanded approach to the question than de Regt. "Redundant processonn are the only way to go," he said. "All of them rumning the same program, all of

SPECIAL REPORT

FAULT
TOLERANT
SYSTEMS
-
them able to take over ench other's workload.
"Of course, software will always be a factor," Lecht said. "But if you think of software ns the driver and hardware as the car, all the drivers in the world will not help you if there is no car for them to drive. You cannot do it all in software."
The philosophical leader of the hardware fault-tolerant camp. analysts agree, is Stratus. Peter Kastner, manager of Stratus' corporate business development. said his 4 year-old firm believes that hardware fault tolernince has "definite advantages" over software-based syvtems.

Competitors argue that redundant hardware systems such as Stratus-which has four sets of logic executing the same ingtructions simultaneouslyhas a coet disadvantage. But Kastner aaid chips amount to only 2 percent of the selling price of a typical system. The clear advantage is that any malfunctioning chip-the one that produces a different answer than the othern-is immediately isolated from the system for repain. Moreover, he said, hardware faults are far more infrequent than software faulta.

Kastner summed up the Stratus philosophy as "hardware redundancy which is controlled by hardware, rather than by software," and argued that his firm's software techniques, including automatic rebooting in case of syatem failure, use fewer CPU cycles than similar techniques used by software-oriented competitors.
Toward the hardware end of Continued on Page 30

DATA PROCESSING

FT Vendors Facing Difinculty Righting 'Soft' Software Errors

Continued from Page 22
new versiona of the operating system to be installed, without disrupting ongoing operations.
Yet without such a facility, the sys. tem can be hardly considered "nonstop." In many cases, the checkpoint ing (state saving) of the data base required for protection against disk failures, cannot be accomplished without terminating, or slowing down, the on-line workload.
Some systems do not even provide for on-line repair; such systems cannot be regarded as FT systems at all.
Probably the mont difficult issue is that of "soft" software errors, loosely defined as the type of "bugs" in either the system or user code, which do not come to light except under an array of unusual coincidences.
In on-line systems, communications with local and remote terminals often create random sequences that could cause such "bunching" of unusual events.
All these (and other) problems significantly detract from the completeness of the FT story as told by the current practitioners.
Thus, it is not surprising that when the prospective customer is faced with choosing between a "kludgey" solution
from his conventional supplier and an elegant, but incomplete (and incompatible), FT syatem from a relative often than not the conventional supplier wins.
For example, IBM has been successful in selling its Airline Control Program (ACP) as a high-availability

> Probably the most difficult issue is that of 'soft' software errors, loosely defined as the type of 'bugs' in either the system or user code, which do not come to light except under an array of unusual coincidences.
transaction system in the banking and brokerage industries, despite the many severe limitations inherent in the product: NCR Corp, Dayton, Ohio, is now offering its "Cluster" hardware and lnstant Ready software; and the recent VMS Version 4 from Digital Equipment Corp, Maynard, Mass., implements several high-availability fea-

approach.

FT suppliers are responding to the compatibility issue in two ways. Those that hope to place their systems in IBM environments, such as Tandem, are implementing high-level SNA compatibilplem.
Those aiming at DEC and other non-

IBM environments-Auragen Systems Corp. Fort Lee, NJ.., Sequoia Systems Inc., Mariboro, Mase, Tolerant Systems inc., San Jose, Calif-are providing Unix compatibility. These companies are hoping that the growing acceptance of Unix as a standard will allow them easier entry.
One of the more interesting recent de-

Leading Competitors in

 The Faut Tolerant Market
velopments is the increasing activity in
the area of multi-microprocensor based systems, which offer selected FT features Arete Systems Corp, San Joos Calif., EnMasse Computer Corp., Acton, Mass., Parallel Computers Inc., Santa Cruz, Calif., Sequent Computer Systems Inc., Portland, Ore., and several others are basing their strategies on the idea that most applications currently addressed by "true" FT suppliers could be satisfied with less-than-full fault tolerance, provided the price is right.
Much attention has been focused on AT\&T's recent entry into the faulttolerant arena with its relatively old 3B20D duplexed system. However, the lack of expandability and of commercial transaction software limits its attraction to defense, telecommunications and other specialized applications.
However, a potentially significant development ensuing from the 3B20 program is the set of modifications to Unix, recently implemented by AT\&T Bell Laboratories, that allow it to run on the dual-processor 3B20A model. These modifications, which are expected to eventually show up in Unix Syatem V, are general enough to allow Unix to be used on other multiple processor configurations.
n

T+ T T
 AT\&T's 3B Fault Tolerance Fuses Hardware, Software

Continued from Page 24

the spectrum, but less militant than Stra tus, is AT\&T Technologies, formerly the Western Electric Co. subsidiary of AT\&T Paul Teetor, an engineer with ATET Bell Laboratories in Naperville, III., said that while AT\&T: 3B20D processor does offer hardware redundancy, "our atrength is the fusion of hardware and sotware.
the fusion of hardware and software"
Teetor admitted that "hardware
Teetor admitted that "hardware re-
dundancy is the backbone of our syatem," but said it would not offer the benefita it does without use of a special verion of the Unix operating system known is Unix Real Time Reliable or Unix RTR
When AT\&T announced commercia. availability of the 3B20D last March. Teetor said, it said a typical system operating 24 hours a day, 365 days a year would only be down eight minutes a year. When the 3B20D was being designed, tested and used within ATET: phone system, it was responsible for keeping the phone system's 800 numbers and AT\&T crodit-card verification services up and running
Previously written Unix programs will run under Unix RTR on the 3B20D without modification, Teetor said, and they will be more reliable because they are running on a more reliable operating system or can be modified to take advantage of the syitem's special fault-toler: ant features.
"Our whole goal is to lose the minimum amount of information during a failure," he said. As a result, the AT\&T system, unlike Stratus, does not immediately have an automatic reboot feature. Instead, it first tries to restart the process, using a combination of hardware and software to prevent entry into infinite loops.
Hardware systems are criticized for the difficulty in expanding them, due to the need for hardware overhead to provide redundancy. By contrant, software syatems are more readily expandable. since the amount of software needed does not grow as quickly as does system size.

Tandem, which relies on both software fault tolerance and CPU duplication, prefers to think of fault tolerance as "a feature, not a market," according to Jerry Held, Tandem's director of strategic planning.
Held also said that Tandem's self-view is not that of a fault-tolerant system provider, but rather a provider of systems for on-line transaction processing." for which fault tolernince is but one requirement.
His company, founded in 1970, is the market leader, with more than 80 percent of the market.
Held said he prefers to look at a different spectrum, "not from hardware to software, but from availability to expandability." Most systems fall at one end or the other of this scale, he said, while Tandem is firmly placed in the middle, "offering the best combination of middle
Single-processor redundant syatems such as Stratus and AT\&T would be at the 100 percent-availability end of the scale, he suggested, while Synapse has stressed expandability over 100 percent uptime.
But, while saying that Tandem systems offer "a tremendous amount of hardware fault tolerance," Held was willing to say that "a number of our features are based in software," He said Tandem has examined the concept of redundant hardware, but concluded that it is not optimum.
Hardware solutions, Held said, "only solve half the problem. We believe multiprocessor syatems are the key to most customer problems." Such syitems are easier to put together with sottware than with hardware, he said.
While the coet of hardware components is dropping. Held said, the number of componenta in a aystem is rising. Hardware coet is not going to zero," he said. "Redundant ayatems tend to double hardwart conts. In two syitems, with equally mature technologies, the more conteffective design will be software-oriented."
ifreopt under an array of unusual Honces.
ar-line systems, communications local and remote terminals often random sequences that could

AII these (and other) problems signifiandy detract from the completeness of FI story as told by the current pracUdioners.
Thus, it is not surprising that when the prospective customer is faced with choosing between a "kludgey" solution

under an array of unusual coincidences.

IBM environments-Auragen Systems Corp. Fort Lee, N.J., Sequoia Systems Inc., Marlboro, Mass., Tolerant Systems Inc., San Jose, Calif.-are providing Unix compatibility. These companies are hoping that the growing acceptance of Unix as a standard will allow them easier entry.
One of the more interesting recent de-

AT\&T's 3B Fault Fuses Hardware,

Continued from Page 24
the spectrum, but less militant than Stratus, is AT\&T Technologies, formerly the Western Electric Co. subsidiary of AT\&T. Paul Teetor, an engineer with AT\&T Bell Laboratories in Naperville, Ill., said that while AT\&T's 3B20D processor does offer hardware redundancy, "our strength is the fusion of hardware and software."
Teetor admitted that "hardware redundancy is the backbone of our system," but said it would not offer the benefits it does without use of a special version of the Unix operating system known as Unix Real Time Reliable or Unix RTR.
When AT\&T announced commercial availability of the 3B20D last March, Teetor said, it said a typical system operating 24 hours a day, 365 days a year would only be ddwn eight minutes a year. When the 3R20D was being designed, tested and used within AT\&T's phone system, it was responsible for keeping the phone system's 800 numbers and AT\&T credit-card verification services up and running.

Previously written Unix programs will run under Unix RTR on the 3B20D without modification, Teetor said, and they will be more reliable because they are running on a more reliable operating system or can be modified to take advantage of the system's special fauld-tolerant features.
"Our whole goal is to lose the minimum amount of information during a failure," he said. As a result, the AT\&T system, unlike Stratus, does not immedi ately have an automatic reboot feature. Instead, it first tries to restart the process, using a combination of hardware and software to prevent entry into infinite loops.
Hardware systems are criticized for the difficulty in expanding them, due to the need for hardware overhead to provide redundancy. By contrast, software systems are more readily expandable, since the amount of software needed does not grow as quickly as does system size.

By Dedra Hauser

Busines Writer

WHEN David Anderson left IBM in 1981 to join a start-up, his goal was financial independence in five to seven years The start-up was eventually scrubbed, but Ander son's ambition wasn't. So early this year, he went to Work for Trilogy Ltd. of Cupertino as a vice president of computer development.
That's two strikes for Anderson. Trilogy abandoned its original plans to develop a new supercomputer and super-chip. As a result, the value of

Anderson's Trilogy stock options has dwindled And yet hope springs eternal. Anderson is still at Trilogy. But the 50 -year-old is considering a job offer at a start-up that would require him to take a 30 percent pay cut. This is the first time he would accept a pay cut to join a company.
Because so many of Silicon Valley's managers and executives share Anderson's penchant for financial risk taking, established high-tech companies have gone to great lengths to develop compensation practices that attract and retain this kind of manager. These companies don't always succeed, because it's tough to compete against start-up com-
panies offering low-priced stock
But that doesn't stop them from trying. The keen competition for good managers has fostered a pay for-performance philosophy that pervades most Silicon Valley companies. High-tech firms have designed salary, bonus and stock packages to motivate and reward individual achievement and to ellow managers to share corporate profits.
At times during the late 1970s and early 1980s, the competition for scarce management talen sparked compensation wars that drove pay scales through the roof and pushed job turnover rates to a crisis level. As a result, companies have begun to
from engaging in biding Contests to
shy away from engaging in bidding contests to aturact or retain managers, experts say.

Companies have stopped acting like they're bidding for $0 . \mathrm{J}$. Simpson all the time, although there's always the exception, says Michele Hughes, a partner in the san Francisco office of the executive search firm Ward Howell International Inc.

Besides, most senior executives can't be bought by money aione. "Guys making above $\$ 100,000$ think altogether differently (than middle manag. ers), says John velcamp, an executive search professional whose Santa Clara firm bears his name.

Continued on Page 4D

Spreading high-tech wealth
 Continued from Page ID
 of money (to attract me), and they did.

"Theyre thinking long term and they have their reputation and prestige to think of, so $\$ 10.000$ one way or another won't make a difference. They're much more interested in a growth experience, Nonetheless, highttech companies are developing
salary, bonus and stock packa salary, bonus and stock packages that enable good
performers to earn substantially more than their periormers to earn substantially more than their
peers at high-tech companies and their counterpeers at high-tech companies and their counterparts in other industries. At Hewlett-Packard Co, of managers who have the same jos paid to different managers who have the same job titie can vary by
as much as 35 percent based on contribution to the company says Charlie Marshall manager of man agement compensation at $\mathrm{H}-\mathrm{P}$. Companies in most industrie
tion of their top executives to some compensacompany and individual performance. What distinguishes high-tech companies is that they extend this compensation approach to managers at all levels of the company.
Many also have programs to reward employees
who arin I manager bul are deemed key individual who aren I managers but are deemed key individual
contritutors to the company One of the more contributors to the company One of the more
unusual awards was one given by Monolithic Memunusual awards was one given by Monolithic Mem-
ories Inc. of Santa Clara a few years ago. Monolithofies inc. of Santa clara a few years ago. Monolith-
a Porsche to an engineer to recognize his role in a crucial project at the semiconductor com-
reme Pany Handing out Porsches is rare but incentive and thanding out Porsches is rare, but incentive and growing in pooularity among high-tech companies, says Michael Spratt, the San Jose general manager of Hay Management Consultants.
In keeping with their entrepreneurial spirit. high-tech companies also tie a bigger chunk of
managers' income to the achievement of company managers income to the achievement of company objectives than in most other industries
Excluding stock options, about a quarter of the income paid to high-tech managers is in the form of bonuses, compared with about 15 percent in other industries, says Jay schuster, author of a book on high-tech management compensation and a principal in the human resources consulting firm of half their compensation is based on company perhalr their
formance.
As a result, the income of higli-tech managers, particularly those in top management. can be volatile. The total cash compensation of 260 highttech companies surveyed by Radford Associates Inc. of Santa Clara showed that senior management pay only increased 3 percent in 1982 but jumped nearly
13 percent the following year. The swing was even 13 percent the following year. The swing was even
greater for chief executive officers: Their pay greater for chief executive officers: Their pay
increased 15 percent in 1983 after being cut increased 15 pe
percent in 1982 .
percent in 1982
This means that managers hove to carefully evaluate the business prospects of the companies they join, since their income is often clasely tied to the fortunes of their employers.
In most cases, managers do best when their companies do well, but ailing companies sometimes nies to attract managers. David Caplan says be nies to atract managers. David Caplan says he me spent as executive vice president and acting he spent as executive vice president and acting
president at troubled Fortune Systems Corp. of fedweod City. -They were prepared to spend a lot

Caplan wouldn't disclose his total compenvilion at Fortune, but public documents show that $\$ 190$, whe company, he cays. more than the compensation at his previous job with Perkin-Elmer Corp. of Norwalk, Conn., and more than he's earning at his current job as vice president and general manager of Convergent Technologies data systems division in Sunnyvale. Because
Because the high-tech industry is relatively young
and volatile, there are few hard and volatile, there are few hard-and-fast rules that can be used to figure out where the best and corst-paying toang jobs are
Alowing year. And companies guard information about their pay practices as closely as they protect their most prized trade secrets because they don't want their competitors to know what it would take to raid their management ranks. Companies only publicly disclose compensation data for the five best-paid executives, information required by the federal government
Information from salary surveys shows the averages but masks the many special cases that distinguish Silicon Valley pay pracuces And compensafrom stock options, which can represent a substion tial chunk of mana gers' incomes.
Radford's compensation survey shows that while bigger companies tend to pay more for the same job than small ones, there are many exceptions to this rule.
Mayfield Fund, a Menlo Park venture capital firm, surveyed compensation at its own portiolio companies and found "no common trends," says Maytield partner Bill Unger. "Compensation ai these companies is very personalized.
As in most industries, sales and marketing managers often have the greatest earnings potential because their pay is so closely tied to performance says Don York, vice president at Radiord.
hose that sell to end-users, have been earning more than their counterparts in other high-tech more nies recently, he says. For example a second-level nies recently, he says. For example, a second-level earned $\$ 600,000$ in salary and bonuses last year more than the company's chief executive officer. Some companies, such as National Semiconductor Corp. of Santa Clara, are known for paying above-average salaries "National pays very well, but you earn it," says executive search specialist Velcamp. Because National managers tend to work hard, their higher-than-average pay scale is often called "suffer money," be says.
Compensation experts and executive search professionals say managers at Amdahl Corp. of SunnyMountain View and H -P often make less than their Mountain View and h-P often make less than their counterparts at other companiee Spokesmen for declined to comment
But an executive search professional who requested anonymity says that many H-P managers look at more than cash when they measure their compensation. When you offer an H-P manager another job at a substantial pay increase, be says,

Payday and the bottom line: How they compare

Firm	CEO	. 23 Cash Compensation for CEO	Change from 'e2	83 Profit (millions)	Change from 'g2
Advanced Micro Devices inc.	W.. Sanders III	\$947,794	+64\%	\$21	+134\%
Apple Computer inc.	- Jchn Sculley	\$1,830.329	+297\%	576.7	+25\%
Ask Computer Systems inc.	Sandra L Kurtog	\$178.740	NA	\$3,9	+67\%
Convergent Tecthologies	Alien H. Micheis	\$165.256	-15\%	\$14.9	+25\%
Dysan Corb	-William L. Harry	\$189,906	-20\%	\$489	+443\%
Hewert-Packard Co	John A Young	\$729,193	+22\%	\$432	+13\%
Inte Corp	Gordon E. Moore	\$493,262	+73\%	\$116.	+286\%
Monolithic Memornes inc	1 Irwin Federman	\$226.923	+51\%	\$10.2.	263\%. ${ }^{2} .7$ min.*
National Semiconductor Corp Ravchem Corp	Charies Sporck Paul M Cook	$\$ 219.291$ $\$ 300.000$	$+14 \%$ $+25 \%$	\$14.2.*	$\begin{aligned} & \$ 10.7 \mathrm{~min}^{* *} \\ & -18 \% / \end{aligned}$
Raychem Corp Aolm Corp	${ }^{\text {Paul M M Mneth Ostman }}$	\$419,620	+25\%	\$35.5	+19\%
Tandem Computers inc	James G. Treybig	\$178,269	-6\%	\$30.8	+3\%
Varian Associates inc.	Thumas D. Sege	\$548.601	+20\%	\$44.9	+69\%

TRENDS IN
 TOTAL CASH COMPENSATION

$\square_{\text {. }]^{1981-1982 ~}}^{\square^{1982-1983}}$

"they"ll add up their parking space, their major medical and their three doughnuts every morning at H-P
The prevalence of stock options or outright stock grants as a major component of management compensation at high-tech companies makes it difficul to compare pay scales of different companies Although potentially the most lucrative source of income for many managers, the value of options is subject to the periormance of the company, the whims of the stock market and the investment
Take the case of Harry Felkes,
Sales and Marketing Manage, who was rank by Sales and Marketing Management Magazine this month as one of the 10 best-paid sales and market senior vice president of sales and marketing al Verbatim Corp, of Sunnyvale last year but has since become vice president of sales and field organization for Inmac of Santa Clara
It wasn't his 1983 cash compensation of $\$ 124,474$ at Verbatim that earned Fekkes his top ranking It was the stock options he converted into Verbatim stock when the stock was worth $\$ 352,526$, giving him a large potential profit.
Options, which can be structured in a number of different ways, give holders the right to buy stock at a set price. Option holders make a profit if they sell the stock at a price higher than the
price at which they convert the options.
Employees can only convert options they're granted into stock over a period of time, often spread out over four years, and they have to remain with the company to convert them. As a result, options are called "golden handcuffs," since they motivate employees to stay with a company until the options can be exercised
Fekkes didn't sell the stock when he exercised his options. Since then, the value of Verbatim's stock has dropped by more than two-thirds, which would make it unprofitable for him to sell it, he says. "Im a lot less enamored by stock options than 1 used to be, since they may not end up being worth very much, Fekkes says. Im much more mots. vated by a cash bonus program
directly tied to my own periormance
Because the sex appeal of high-tech stock has diminished in many quarters, some Silicon Valley companies are turning to cash bonus and protit
sharing programs, according to compensation experts. Public companies have found that cash bonuses are one way they can hope to compete against start-up companies. who twoicallv offer
stock but not much cash Executive search special. ist Velcamp sass a local semiconductor company is introducing a cash bonus program that could resuil
in bonus awards larger than a manager's salary in bonus award larger than a manager's salary. Intel Corp. of Santa Clara has a stock option program that has been very lucrative for some of its executives. The company uses salary increases oped a comple bonus formula that rewards managers for both bonus formula that rewards manance.
Intel distribe ed $\$ 8.5$ million in bonuses early this year to 584 e ployees, primarily managers but also employee considered to be key contributors, The size of eat employee's bonus was based on his or her salary
Intel announ esa target bonus each year and $\overline{3}$ Intel announ es a target bonus each year and sete objectives for the corporation and each operation
that have to be met to receive the bonus "This year that have to be met to receive the bonus "This year
we also adde! a quality index that is anothet we also adde. a quality index that is anothet Scarsella, man iger of domestic compensation.
H-P, on the ther hand. has a profit-sharing plan distributed to all employees but no management bonus plan
"When you tave bonuses and incentives given to individuals or certain groups, it's hard to sustain the team spirit a id the collaboration needed to get products out," says Marshall, manager of manage-
ment compent tion. ment compen tion.
But wheth companies use stock options, bonuses or pri fit sharing, the implication for manmanagers have to take the perspective of investore and pick a ecmpany that's going to be a winner. This is particularly important at younger companies whose p Mormance and stock market price _ tends to be m re volatile.
"A lot of co mpanies in this valley do a better job at compensation planning than business planting." says Fekkes of Inmac. And when companies don't set realistic b siness goals, managers don't receive that portion o! their pay tied to meeting those goals, he says. You have pusinoss opportunities and what are pie in are real busin ss opp
the sky oppor
But money is fust one of the factors Fekkes weighs in selecting a job. "I look for a job that will assist me in teroming a broader executive ... I want to grov to become a CEO (chief executive

Again, sales cycle longer than expected

Price and Product Moves to Maintain Growth at Tandem
Tandem showed revenue gains below the industry average and even less impressive income gains in F3Q84. New pricing on NonStop is in effect, and new products are expected in 1984 and 1985.

Six months ago Tandem indicated that many of its problems were behind it and it was ready for a return to 35 percent growth. But during F3Q84 Tandem reported a healthy, yet nevertheless disappointing revenue increase of 28,8 percent over F 3 Q 83 and a 12.3 percent increase in net income to a level which still lags that of the first quarter.

Tandem once again stated that its new focus on sales of high-end systems to major accounts has resulted in a lengthening of the sales cycle beyond its initial expectations. Therefore, business that was expected to close in the third quarter did not. This explanation was also offered at the end of the second quarter and, at this point, it is too early to tell whether this business will eventually be-closed or whether the competition at the high end (most notably from 1BM) is proving to be more formidable than Tandem originally expected.

Also being blamed for the revenue shortfall is a high-er-than-expected turnover rate among the sales force. This statement has merit considering the fact that the nucleus of Tandem's U.K. sales operation did defect during the quarter, with most of the personnel going to competitor Stratus Computer causing the U.K. opera2 tion to fall short of its quota This could continue to be a problem for Tandem with some of the newer faclt tolerant start-ups actively recruiting salespeople

New pricing and products expected

We suspect that some of these newer start-ups, and particularly Stratus, are beginning to eat into Tandem's low-end business. The new TXP product has been relatively successful. But one consequence of this relative success at the low end is that NonStop 1and NonStop 11 have looked comparatively poor in price/performance ...t thus hurting the low-end order rates. As a result, on August 20 , Tandem announced significant price cuts on its low-end models, and put in a program of price credits towards TXP purchases.

A NonStop 1^{+}packaged system has been cut by 12 percent (to $\$ 89,000$) and is further affected by new end user quantity discount schedules which lower list price
by up to 38 percent. A larger packaged system (four processors instead of two) is priced at $\$ 105,000$, a 32 percent reduction over prior prices. NonStop 11 pack ages are also reduced by up to 24 percent, Memory prices have been cut by 32 percent - down from $\$ 22,000$ to $\$ 15,000$ for a 2 -Mbyte board. This price action is, in effect, recognition that the high-end mar ket alone is not all that easy to stimulate or penetrate, and that low-end coverage is also essential. Until the newer low-end products are available, competitive current prices are important. The inevitable consequence, however, is lower gross margins and continued pressure on earning.

We expect announcement of a new low-end product in 1984. This new product, referred to as "Checkmate," would be in the $\$ 100,000$ range and essentially replace the NonStop 1+ product. Reports indicate that Checkmate would have a significant portion of the operating system implemented in firmware to improve performance, and would have a TXP-processor in the same cabinet.

In mid-1985. Tandem plans to introduce a second lowend processor that could be in the $\$ 50,000$ range. This processor, an under-the-desk version, would be the first 32 -bit implementation for Tandem, a hurdle that had to be taken sooner or later in order to remain competitive. This product would then serve as basis for eventual replacement of the TXP processor line. The change is expected to be relatively transparent for the user, although certainly not for Tandem. The transition from 16 -bit to 32 -bit is never easy, especialiy with the heavy machine-dependent software that Tandem has developed for its initial products.

At this point Tandem appears to have lost its momentum and status as a high-growth player in the technology field. We would expect Tandem to show a 30 percent growth rate in F1985, but see little chance of increasing that rate over the long term. New products, pricing and marketing programs, all effective, will be necessary just to maintain this level of growth.

Copyright, Gartner Group, Inc.
GGA-12, SS-7

LEVEL 1 - 1 OF 4 STORIES
 Copyright © 1984 McGraw-Hill, Inc.;
 Business Week

August 20, 1984
SECTION: CORPORATE SCOREBOARD; Pg. 81
Note: This table may be divided, and additional information on a particular entry may appear on more than one screen.

LENGTH: 1004 words
HEADLINE: SECOND QUARTER 1984

COMPANY	$\begin{aligned} & \text { SALES } \\ & \text { 2nd } \\ & \text { quarter } \\ & 1984 \\ & \$ \text { mil. } \end{aligned}$	Change from 1983 $\%$	months 1984 \$ mil.	Change fram 1983 \%	PROF ITS 2nd quarter 1984 \$ mil.	Change from 1983	$\stackrel{6}{6}$ 1984 \$ mil
22 OFFICE EQUIPMENT, COMPUTERS							
AM International							
(5)	153.7	8	298.0	7	2.9	-16	4.3
Amdahl	196.8	9	371.4	5	4.9	-44	9.1
Apple Computer							
(3)	422.1	58	722.2	46	18.3	-24	27.4
Bell \& Howell	176.4	4	342.1	5	7.7	5	12.7
Burroughs	** 1233.7	18	2333.1	14	57.3	35	100.3
Coleco Industries	166.6	32	352.7	15	5.1	-43	9.6
Computervision	133.6	42	255.3	39	10.9	36	21.6
Control Data	1256.3	10	2444.6	12	23.4	-40	55.1
Data General (3)	277.1	47	525.5	40	16.1	270	28.7
Datapoint (5)	155.0	14	295.8	9	8.0	413	16.5
Dataproducts (9)	121.5	51	248.0	54	8.8	198	19.4
Diebold	120.3	10	238.3	11	14.1	30	28.1
Hewlett-Packard							
(2)	1519.0	30	2797.0	26	141.0	29	236.0
Honeywell	1486.7	7	2879.0	6	74.3	27	113.9
Intergraph	98.8	80	177.5	77	16.5	152	26.8
International							
Business Machines	11199.0	17	20784.0	16	1623.0	21	2825.0
Mohawk Data							
Sciences (8)	97.4	2	204.0	10	-59.7	NM	-59.2
NCR	998.8	7	1860.2	9	76.2	11	121.7
Nashua	146.1	4	298.8	4	6.2	115	12.1
Pitney-Bowes	425.5	8	846.8	10	31.8	13	61.5
Prime Computer	161.4	32	307.0	27	12.8	101	23.0
ROLM (6)	196.1	44	371.6	42	11.8	22	22.0
Seagate							
Technology (6)	100.5	117	201.6	153	11.5	57	23.0
Sperry (9)	1187.1	6	2665.9	10	20.1	-7	101.5
Standard Register	** 102.8	15	204.1	16	5.8	21	11.4
Storage							
Technology	247.1	4	426.6	-7	-4.9	NM	-21.6

(f) 1984 MCEraw-Hill, Inc., Business Week, August 20, 1984
(3)
Tandon (3)

Telex (9)
Wang Laboratories
(6)
Xerox
INDUSTRY
COMPOSITE
ALL-INDUSTRY COMPOSITE COMPANY

141.9	29	253.2	23	9.2	10	11.2
H*6.3	28	211.4	38	10.4	22	20.7
713.8	37	191.6	31	10.8	33	20.8
2257.9	0	4397.3	45	73.7	33	123.5
25696.3	16	48759.9	15	2343.4	13	4228.0
701.8 PROF ITS	12	139.0	12	36.6	28	72.1

MARGINS

		MARGINS				$\begin{gathered} 12 \\ \text { months } \\ \text { earnings } \\ \text { per } \\ \text { share } \end{gathered}$
	Changefrom1983\boldsymbol{z}\%	2nd quarter 1984 2	2nd quarter 1983 $\%$	Return on common equity 12 months ending 6-30	$\begin{aligned} & \text { Price- } \\ & \text { earnings } \\ & \text { ratio } \\ & 7-31 \end{aligned}$	
22 OFFICE EQUIPMENT,						
AM International (5)	-25	1.9	2.5	NM	3	0.78
Amdahl	-34	2.5	4.9	10.2	12	0.85
Apple Computer (3)	-43	4.3	9.1	9.6	43	0.63
Bell \& Howell	10	4.4	4.3	10.7	12	2.26
Burroughs	30	4.6	4.1	9.8	10	4.99
Coleco Industries	-62	3.1	7.2	-24.7	NM	-1.46
Computervision	37	8.1	8.5	17.9	25	1.44
Control Data	-24	1.9	3.4	7.9	7	3.73
Data General (3)	207	5.8	2.3	9.7	23	1.90
Datapoint (5)	392	5.1	1.1	7.4	15	1.28
Dataproducts (9)	171	7.2	3.6	15.3	11	1.53
Diebold	32	11.7	10.0	22.4	12	6.43
Hewlett-Packard						
Honeywell	41	5.0	4.2	11.3	9	5.68
Intergraph	144	16.7	11.9	27.9	27	1.76
International						
Business Machines	22	14.5	14.0	24.9	11	9.82
Mohawk Data						
Sciences (8)	NM	NM	3.0	-31.9	NM	-3.65
NCR	18	7.6	7.4	14.9	8	2.84
Nashua	139	4.2	2.0	13.0	8	3.18
Pitney-Bowes	20	7.5	7.2	21.6	9	3.26
Prime Computer	54	8.0	5.2	14.6	18	0.85
ROLM (6)	20	6.0	7.0	7.2	27	1.49
Seagate Technology 0.09						
Sperry (9)	30	1.7	1.9	7.1	10	3.77
$\begin{array}{lllllll}\text { Standard Register } & 19 & 5.6 & 5.4 & 16.4 & 10 & 3.35\end{array}$						
Storage						
$\begin{array}{llllll}\text { Technology } \\ \text { Tandem Computers } & \text { NM } & \text { NM } & 0.6 & -7.1 & \text { NM }\end{array}$						
(3)	-25	6.5	7.7	8.9	21	0.72
Tancon (3)	28	9.8	10.3	13.7	13	0.63
Telex (9)	32	11.1	11.4	26.3	11	2.66
Wang Laboratories						

22 OFFICE EQUIPMENT, COMPUTERS
AM International (5) -25
Amdahl
Apple Computer
(3)

Bell \& Howell
Burroughs
RROFITS

8 1984 McGraw-Hill, Inc., Business Week, August 20,1984

(6)	34	10.3	11.8	17.9	17	1.52
XeroX	-21	4.2	6.8	8.5	9	3.76
INDUSTRY COMPOSITE	16	9.1	9.3	17.7	15	4.43
ALL-INDUSTRY	38	5.2	4.5	13.3	12	3.46
COMPOSITE						

(1) Second quarter ending May 31. (2) Second quarter ending Apr. 30. (3) Third quarter and most recent six months ending June 30. (4) Third quarter and most recent six months ending May 31. (5) Third quarter and most recent six months ending Apr. 30. (6) Fourth quarter and most recent six months ending June 30. (7) Fourth quarter and most recent six months ending May 31. (8) Fourth quarter and most recent six months ending Apr. 30. (9) First quarter and most recent six months ending June 30 . (10) First quarter and most recent six months ending May 31. (11) First quarter and most recent six months ending Apr. 30. * Sales include excise taxe5. ** Sales include other income. *** Sales include excise taxes and other income. + Revenues from major subsidiaries not included in consolidated sales. ++ Net income includes tax-loss carryforward, reported as extraordinary item. Earnings per share are for latest 12 months, not necessarily for end of most recent fiscal year. They include all common stock equivalents but exclude extraordinary items. $N A=$ not available. $N M=n o t$ meaningful. DATA: STANDARD \& POOR'S COMPUSTAT SERVICES INC.

GLOSSARY
Sales: Includes all sales and other operating revenues. For banks, includes all operating revenues.

Profits: Net income before extraordinary items. For banks, profits are net income after security gains or losses.

Margins: Net income from continuing operations before extraordinary items as percent of sales.

Return on common equity: Ratio of net income available for common stockholders (most recent 12 months) to latest available common equity, which includes common stock, capital surplus, and retained earnings.

Price-earnings ratio: Based on July 31 common stock price and corporate earnings before extraordinary items for most recent 12 -month period.

Earnings per share: For most recent 12 -month period. Includes all common-stock equivalents.

LEVEL 1 - 7 OF 9 STORIES

Copyright 1984 Financial World Partners; Financial World

August 21, 1984
SECTION: FEATURES; Pg. 22
LENGTH: 2051 wards
HEADLINE: America's top growth companies
BYLINE: by industry group
BODY:

$$
5-Y r \text {. }
$$

EPS

Growth
Rank
Company

AEROSPACE

1 Aeronca 104
2 General Dynamics 103
3 Grumman 99
4 Lockheed 90
5 OEA Inc. 83
6 Sargent industries 76
7 Aeroflex Labs 71
8 Gulfstream Aerospace 71
9 Canadian Marconi 54
10 Watkins-Johnson 53
11 Atlantic Research 48 AIRLINES
1 Jet America 123
2 Aircal Inc. 67
3 Air Midwest 60
4 People Express 57 AUTOMOTIVE
1 Facet Enterprises 90
2 Standard Motor 82
3 Mr . Gasket 68
4 Standard Products 61
5 Sparton 49
BANKING
1 Sterling Bancorp 110
2 State Street Boston 83
3 Fidelcor 81
4 Alaska Pacific Bancorp 76
5 IRE Financial 72
6 Capitol Bancorporation 65
7 Savings Bank-Puget 5d. 59
8 Great American Fin'l 56
9 Valley National 53
10 Citizens \& Southern 45
BUILDING \&
CONSTRUCTION

8 1984 Financial World Partner5, Financial World, August 21, 1984
1 Ultrasystems 123
2 Clow Corp. 120
3 AFG Industries 114
4 Acmat 104
5 Textone 96
6 General Homes 89
7 Washington Homes 81
8 Sherwin-Williams 79
9 Bliss, A.T. 69
10 Etz Lavud Ltd. 66
11 Thetford 63
12 Perini 60
13 Todd Shipyards 59
14 Dynalectron 54
15 Valspar 47
16 Brand Insulations 45
BUSINESS EQUIPMENT \&
DATA PROCESSING
1 Televideo Systems 122
2 Data Switch 121
3 Decision Data 121
4 Mgmt . Science America 121
5 Cipher Data Product 114
6 Tandon 113
7 Cray Research 107
8 Emulex 107
9 Miniscribe 101
10 Systems \& Camputer 101
11 CCX Network 100
12 Computer Data System 100
13 Funds Net 95
14 Eagle Computer 95
15 Xebec 89
16 Par Technology 88
17 Rodine PLC 87
18 Continental Information 86
19 Seagate Technology 86
20 Quality Systems 85
21 Telerate 84
22 Key Tronic 82
23 Micom Systems 82
24 Boothe Financial 82
25 Network Systems 81
26 SCI Systems 81
27 Ultimate Corp. 79
28 Micropolis 78
29 On-Line Software 78
30 Intergraph 77
31 Hogan Systems 76
32 AGS Computer 75
33 Altos Computer Systems 75
34 Wang Laboratories 74
35 Priam 73
36 Infortron Systems 73
37 Software AG Systems 73

38 Apple Computer 71
39 Computer Associates 71
40 Convergent Tech. 69
41 Intecom Inc. 69
42 Ask Computer Systems 69
43 Onyx Inc. 68
4 Visual Technology 68
45 Compucare 67
46 Intelligent Systems 67
47 NBI 66
48 Applied Data Research 64
49 Systems Integrators 64
50 Computer Consoles 63
51 Alpha Microsystems 62
52 Telex Corp. 62
53 Quantum 62
54 Lee Data 61
55 Pansophic Systems 61
56 Telkon 61
57 Apollo Computer 60
58 Daisy Systems 60
59 OBA Systems 60
60 Softech 60
61 C-Cor Electranics 59
62 DST Systems 59
63 First Data Resources 59
64 Computer Factory 58
65 Floating Point Systems 58
66 Monolithic Memories 58
67 Kaypro 58
68 Scan Optics 58
69 Ashton-Tate 57
70 ISC Systems 57
71 Cullinet Software 56
-72 Tandem Computer 56
73 Verbatim 56
74 Cycare Systems 53
75 Technalysis 52
76 Ungermann-Bass 51
77 Computer Language 49
78 Computer Horizon 47
79 Evans \& Sutherland 46
80 Data I/O 45
BUSINESS SERVICES
1 VSE COrp. 105
2 Commodore int'l 101
3 Mickleberry 101
4 Pope, Evans \& Robbins 97
5 Integrated Resources 92
6 Int'l Leasing 89
7 Digital Communications 88
8 Payco America 88
9 Gemco 87
10 Ciberonics 75
11 Network Security 74

