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A look at Tandem’s
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When the shoe’s on
the vendor’s foot:
A look at Tandem’s
corporate network

When a computer vendor sets up an
internal network using its own
products, outsiders may see what

s part of an ambitious
internal communications and information management
strategy, Tandem Computers Inc. has used its own
hardware and software products to build a vast corpo-
rate network. The data communications web contains
200 nodes and spans 18 countries. Users in such
countries as Japan and Australia are tied to sites in the
United States, Canada, and Mexico, as are offices in
the major commercial centers of Europe

Over a hundred different applications run over the in-
house network. Perhaps the most important of these is
electronic mail. Roughly 70,000 messages are origi-
nated, and 250,000 are delivered each week to and
from users throughout the world.

The widely used electronic mail is joined by a number
of more specialized applications. For instance, the
company's various manufacturing groups maintain
their records in a distributed database. A battery of
financial packages is available to network users, includ-
ing tools for order entry, invoicing, credit and collec-
tions, and budgeting. A network-based program is also
avalilable to process requests for product enhance-
ments and to track the actions taken in response

In addition to the applications, many databases and
information resources are accessed via the network by
domestic and international Tandem workers. A “'pub-
lic’” database, accessible by anyone in the company,
contains information on employee office locations,
office telephone numbers, department affiliations, fac-
simile and mail drops, and so on. Customer lists, notes
about software, and other marketing information are
listed in a customer-reference database.

An innovative archive of technical information has
been compiled primarily from electronic mail ex-
changes. Another database, set up as an electronic
bulletin board, provides a central source of support

the machines can really do.

information. Field salespeople, responding 10 requests
for proposals, make use of a constantly expanding
collection of proposal text files.

Resources like these have become indispensable to
nearly all Tandem employees. Since data communica-
tions is so important to the way the company does
business, developing and maintaining the corporate
network has become a leading concern.

Topology

Management has Insisted that the corporate network
be built using standard Tandem products. Thus, each
node consists of a multiple-processor computer in the
NonStop line. Standard Tandem communications soft-
ware and hardware are used, and databases are
managed by standard Tandem products as weil

Of the 200 computers in the corporate network, 193
support applications and databases. These application
nodes exist primarily to meet local word- and data-
processing needs. However, they do handle communi-
cations for local users and applications, and they
accept passenger traffic from other nodes.

The application nodes are built around seven “'back-
bone'’ nodes that are dedicated to communications
(Fig. 1). These nodes are linked by leased high-speed
lines and, in several instances, by high-bandwidth
satellite or microwave links. The backbone nodes have
only one job: to be constantly available to move
information between application processors. Roughly
1,500 Mbytes of data flow through them each day
There is, in addition, a substantial amount of regional
traffic that never reaches the backbone nodes

Connected directly to the backbone nodes are
*Class I'' nodes —machines that run accounting, man-
ufacturing, and customer-support applications. These
programs must be available if the company is 10 do
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1. Over a billion and a half served. Tandem branches grams and data in the United States, via an extensive,
from Osaka. Singapore, and Sydney to Neufahrn in internal computer network. The seven backbone nodes
West Germany can reach each other, as well as pro- handle 1.5 billion bytes of traffic a day.

business, and thus the nodes in which they run must 2. Architectural outline. In this sample layout, all appli-
always be accessible from a backbone node. cations nodes except for the development machines
The network's 26 Class | nodes are always linked have at least two paths to the backbone network.

directly to at least one backbone node and either
directly or indirectly (through another Class | or Class II
machine) to a second backbone node (Fig. 2). Each
machine is thus part of a ring. This dual-path policy has
been established to provide uninterrupted network
service. It ensures that even if a backbone machine, a
communications line, or a modem fails, the Class |
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node will not be cut off from the network. i % === A
Over a hundred network nodes are Class Il. They J_ ! 1. el
typically serve field sales and service offices, running I R .
local applications and less time-critical network appli- A f s I -
cations such as electronic mail. Thus, they need access T

to the network, but response-time and availability

requirements are not as stringent as in the case of

Class | nodes. Class Il nodes are connected no more

than two nodes away from a backbone machine (or a

high-speed lightwave cluster, as in Figure 2) whenever

possible. They also each have an alternate path to a

backbone node—and thus to the rest of the network. -
Class lll nodes are used primarily for development
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work or customer education, not for running network ¥

applications. They are often intentionally overloaded, S AN

brought down, or crashed to debug and test the gty HeVIC S TR SR

capabilities of software products and, therefore., are Sm—— 25 PUBLIO DT NEYROA MO

not always connected to the network. They are also OFHBILS BATELLIE MROOmNE. Of TEWEITOL. LI

used to give customers and internal support people sesasescssce DUAL 10-MBIT § OPTICAL FIBER LINKS

experience in loading machines and handling recovery.
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When any of the 63 Class Ill nodes is connected to
the network, the connection is either through a ring or a
spur composed only of Class lll nodes. (A spurisa
group of nodes strung along a communications path
that is attached to the network at one end.) Thus, no
higher-class node ever has to rely on a path through a
Class lll node for access to the network.

Application nodes of the three classes are usually
connected to the backbone nodes (and to one an-
other) via leased lines or satellite links. A microwave
scheme from M/ A-Com with Coastcom multiplexers
joins the two California backbone nodes. Some appli-
cation nodes, most notably in Mexico, Canada, and
Europe, are linked via X.25 circuits, In addition to the
node-to-node lines, there are numerous connections
from terminals and terminal clusters to nearby nodes.

Tandem believes that, considering the size of the
company and the network, it pays very little for com-
munications, Expenses for domestic and international
circuits, satellite links, modems, and other communica-
tions services are in the neighborhood of $180,000 per
month,

Network management

Between 1979 and 1981, the Tandem corporate net-
work grew from zero to about 40 nodes without any
centralized management. Individual computers and
applications were locally managed, and when local
operations people wanted to interconnect their ma-
chines, they did so by whatever means seemed appro-
priate or convenient. Admittedly, this was haphazard,
but it met the company's needs at the time.

During this three-year period, the average availability
of Class | nodes over the network was low, not because
of a problem with the computers themselves, but
because no thought had been given to network ar-
chitecture, At first, the 40 computers had been linked
in star fashion to several central machines at corporate
headquarters, to facilitate order-processing activities,
communications between software developers, and so
forth. However, disruptions in the star network could
isolale users from resources in the network.

No provision had been made for alternate communi-
cations paths. Thus, line and modem failures inevitably
isolated at least one node (and sometimes several)
from the rest of the network. This also occurred when a
node in the middle of a spur was brought down for
maintenance or configuration changes.

In response to difficulties of this kind, a small network
support group was formed in 1981 to evaluate the
situation and address the problems involved in running
a large multifunction network. Within four months, the
backbone structure was put into place and rings were
formed to provide less-interruptible service.

Network-oriented node-management practices were
also instituted. For example, Class | nodes were not
allowed to leave the network without being scheduled
by the support group. Test software required approval
before being let loose on the network.

As a result of these changes, the average Class |
node availability rose dramatically and is now routinely
at the 99 percent level. At first glance, this statistic may

be misunderstood. Vendor hype usually includes claims
of high availability. The respectability of these claims
depends on how the term *‘availability' is defined. One
must examine what underlies this kind of statistic.

To achieve complete availability with a standalone
computer during five consecutive 8- or 12-hour busi-
ness days requires only that the machine run during
these days without a hardware failure. Maintenance
and reconfiguration can be handled at night or on
weekends without affecting the average. But achieving
an average network availability of 99 percent running
26 Class | nodes for seven 24-hour days per week (as
the network support group has done for aimost three
years) is far more complicated.

The Class | nodes must be available whenever the
applications on them are likely to be accessed. Ina
domestic operation, this means 12 hours a day, since
people work eight-hour business days in each of four
time zones. Adding European users, and now users in
the Pacific basin (Japan, Hong Kong, New Zealand,
Australia, Singapore, and Hawaii), has put an unprece-
dented demand on the network.

Global demand for network access to Class | nodes
imposes several stringent conditions. Maintenance and
configuration changes requiring any of the Class |
computers to be out of service count against the
availability average. Whenever these computers are
reconfigured, brought down for software changes,
moved, or upgraded, the downtime is noted.

Not only must each Class | application node be
available, but also, at least one communications path
from each of these nodes to a backbone node is
required continuously. This path may include several
modems and lines and, on occasion, a Class Il node, all
of which must be available if the path is to be used.
Finally, the backbone network itseif must be available
virtually all the time, to ensure that the primary and
alternate communications paths are usable.

Given the above details, it is easy to appreciate what
underiies the 99 percent availability statistic for Class |
nodes. Global operations make incredible demands on
network components and personnel. Even preventive
maintenance is carefully scheduled and carried out.

The division of labor
Application nedes within the Tandem corporate net-
work are locally managed. The applications that make
use of the network are likewise developed, maintained,
and managed by the groups that use them (manufac-
turing, capital management, marketing, etc.) or by
specially designated organizations within the company.
The network support group is responsible for the
backbone machines and related communications
equipment. The backbone concept was implemented
to separate the basic communications from the appli-
cations. This separation has made the nodes that
handle the two functions more efficient and manage-
able. Backbone and application machines are config-
ured differently to optimize the performance of each,
The primary role of network support is to manage the
corporate network as a multifunction communications
medium. Members of the support group collect data on




network operations, manage the backbone machines,
and troubleshoot line problems. They also train opera-
tions people at each node to consider the impact of
their actions on the network at large.

Group members investigate and make recommenda-
tions on new hardware, software, and line services that
might enhance the usefulness and responsiveness of
the network. They must also plan for and maintain a
sensible network architecture. This means treading a
fine line between cost-effective implementation and
satisfactory availability and response time.

The means to keep growing

Since 1981, the network support group has overseen
the growth of the network from 40 to 200 nodes. Yet
the group has never consisted of more than six people.
The work of this group is simplified by the architecture
and operating system of the computers used in the
network. Each node consists of a computer designed
for “‘failure tolerance’ and expandability.

Failure tolerance refers to the ability of these com-
puters to continue to function in the face of any single
component failure, including a processor failure, and to
the fact that it is possible to repair and reintegrate a
failed component without shutting the computer down.
This feature is important to the functioning of Class |
nodes in Tandem's global network.

Expandability refers to the fact that a single machine
can consist of anywhere from two to 16 cooperating
processors. Guardian, the distributed operating system
that manages resources for each multiprocessor node,
allows the machine to grow through that range without
requiring any reprogramming of applications. This
means, for example, that operators of a NonStop TXP
machine can increase the processing power of the
computer from roughly four million instructions per
second (MIPS) to 32 MIPS without having to change a
single line of code.

Where even more local processing power is required,
up to 14 of these computers (for up to 224 processors)
can be linked locally in a ring via a Tandem
software/hardware product known as the Fiber Optic
Extension (FOX). This link is almost as fast as the
internal bus that links processors within a single ma-
chine. The data transfer that takes place over the link is
managed by the same operating system mechanism
that handles traffic within a single multiprocessor node
(independently of the input/output channels of the
processors). As a result, the entire local subnetwork
thus created can be used as if it were one large
machine with a processing capability of 448 MIPS (14
nodes each with 16 two-MIPS processors).

The reliability and local expansion capability of the
computers used in the Tandem corporate network
make the network far easier to manage than it would
otherwise be. As explained above, the operating sys-
tem running in the local machine has the ability to
make multiple processors appear to users and pro-
grammers as a single unified resource. In a network
setting, this operating system also has the ability to
blur node boundaries. The operating system and asso-
ciated networking software permit operations people

3. Rings of light. Computers in buildings at company
headquarters are being linked into lightwave rings. The
portions of the rings within buildings are now complete.
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and users to log on to their local machine and do work
on remote nodes.

For example, they can type in successive two- or
three-word commands that will start a program on a
machine in New York, instruct that program to access a
file in a disk volume in Atlanta, and print out the results
for another employee on a device attached to a
computer in Chicago. The command syntax by which
these operations are carried out is identical to those
that would be used locally for similar operations, ex-
cept that, in each case, a node specifier must be
added to the program, file, or device name.

Five of the seven backbone nodes in the corporate




network are managed remotely from control points in
Cupertino, Calif., and Frankfurt, West Germany. If, in
the course of routine monitoring (or as a result of a
telephone call from users), network support people
detect a noisy line that is causing delays and timeouts,
they can run tests lo identify what kind of noise is
present and then, if necessary, bring down the line.

The networking software will immediately detect this
change, update the routing tables in each node, and
automatically channel messages over an alternate
path. Network support people can then simply call the
telephone company personnel to report the problem
and let them fix it. When the problem is fixed, network
support brings the line back up and, at that point,
network software updates the routing tables again to
indicate that the old path is available.

Adding a node to the network involves little more
than plugging it in. The local organization finds physical
space for the new machine and sets it up. Meanwhile,
the network support group orders the communications
lines and assigns a node number and node name to the
new machine. When everything is in place, the local
operations people attach the machine to the line,
activate the line handler with a single command, and let
the networking software do the rest

When the new node is attached, it announces its
existence 10 its immediate neighbor. The neighbor
sends the node a copy of its routing tables containing
information about all the other network nodes. The new
machine then sends greeting messages to those nodes.
After receiving such a message, each node updates its
routing tables. Only operations peogle at the nodes
connected directly to the new one need to know that a
change has occurred.

The network support group is currently using the
lightwave product described above to link computers
at company headquarters into rings (Fig. 3). The
machines are joined by 9.6-kbit /s leased lines, with
modems from Codex Corp. and Halcyon Communica-
tions Inc. Intrabuilding connections are 19.2- to 56-
kbit /s RS-449 modem eliminators from Compre Comm
Inc. or ARK Electronic Products Inc.

With lightwave links in place, up to 14 nodes will be
able to communicate with each other almost as fast as
the muitiple processors within a given node. The link
joining machines into a high-speed cluster consists of
four fibers, two each for transmit and receive channels,
configured in a ring at 10 Mbit/s per fiber.

implementing the headquarters’ architecture shown
in Figure 3 will reduce the processing overhead associ-
ated with networking, since a controller, rather than the
machines participating in the ring, will process pass-
through traffic. In addition, functional groups of com-
puters and users will be consolidated and certain
replicated databases will no longer be needed, since it
will be possible to access a database on another node
in the ring almost as fast as if the database were locally
attached.

Another reason for moving to lightwave technology is
its improved reliability. The current architecture pro-
vides only two paths from most machines to the
network at large, while the lightwave rings yield four

4. Breaking up is hard to do. In this distributed
database, communal data is replicated at each site, and
local data is partitioned among the sites.
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paths to each and every node in the cluster. Also, pass-
through traffic can continue over a link even if the
intermediate nodes are gdown.

A distributed database

Nearly all phases of Tandem's business depend in one
way or another on services that the corporate network
pravides. As mentioned earlier, over a hundred differ-
ent applications run over the network. Numerous
databases and information resources are also available
remotely. One sophisticated application developed by
and for the manufacturing organization uses the net-
work to maintain a distributed database.

Tandem has manufacturing plants in four locations:
California, Texas, Virginia, and West Germany. Each
one has a fair degree of local autonomy but similar
information needs. Managers and employees at each
plant need access to communal data, such as the
company's comprehensive parts catalog and bills-of-
materials (lists of parts that go into specific assemblies
and finished products). For their own shops, they must




keep a close eye on local information. This includes
production schedules, materials requirements, pur-
chasing of parts, receiving, inventory, interplant materi-
als transfers, and work-in-process.

Originally, manufacturing information of this kind was
maintained in separate databases at each site. This
was good for autonomy because local information was
under local control and communal information was
always available, even when communications lines or
distant computers were down. However, it also meant
that communal data (such as the parts catalog and
bills-of-materials) was often inconsistent from site to
site. Monthly, there were typically 4,500 updates to the
bills-of-materials files and 1,000 to the parts catalog.
Thus, the copies of these files used at the various sites
had to be updated and reconciled once a week.

Anticipated growth in the number of manufacturing
sites was bound to increase the need for local auton-
omy. As each site's functions became increasingly
specialized, so did its data requirements. At the same
time, growth would aggravate the problem of consis-
tency. Sites would need better ways to keep each other
current and to share resources. Anticipating this,
manufacturing information planners decided to use the
network to provide an integrated, distributed resource.

The application they created distributes data across
the network in two ways, as shown in Figure 4.
Communal data, which is used heavily at each site, is
replicated so that all manufacturing sites have ready
access to it. Local data, which consists of records of
interest only to users on particular nodes is stored at
those nodes. The files containing those records are
partitioned across the network.

Reads and updates of local data are easy because
the information is on the local node and because there
is no need to inform any other node of changes. Reads
are also easy with replicated data. because the files are
available on the local node. Updates of replicated data
are more complex, however, because the local update
cannot be considered complete until copies at all other
remote manufacturing sites have been updated as well.

The designers of the application had a choice of how
to handle these remote updates. One strategy would
be to include the updates as part of the local transac-
tion and not consider that transaction complete until
the relevant records on all remote manufacturing nodes
had been successfully updated. This would have a
substantial negative impact on response time for the
user requesting the local update, whose terminal or
process would be suspended until update requests
traveled to, and were completed by, all other nodes. It
would also mean that if, for some reason, one of the
remote nodes were inaccessible, the transaction could
not be successfully completed, even on the local node.

Another approach would be to let the local software
incorporate some kind of independent delivery mecha-
nism. This mechanism would take responsibility for
updating communal data on remote nodes as soon as
possible after the local update transaction had been
completed. The “‘asynchronous delivery'’ approach
would mean that replicated files would be inconsistent
for brief periods of time, until the independent delivery

mechanism completed its work. It would also introduce
the possibility of concurrent (and inconsistent) updates
of the same replicated record by different nodes.

The developers decided to sacrifice absolute consis-
tency of the replicated files at every moment in ex-
change for site autonomy and short terminal response
times. To prevent conflicting updates to replicated
data, they granted “ownership” of specific records to
specific nodes and wrote the application in such a way
that only the owner node could update a particular
record. To prevent conflicting additions to replicated
files, they pre-assigned various key ranges to certain
sites and limited the additions to those ranges.

A customized delivery mechanism for delivery inde-
pendent of the user was also developed. In it, each
request to change a global record Is put on a queue.
This queue is emptied over a period of time by a
software module that scrolis through the requests
trying to update the remote databases. The module is
programmed to perform the updates in the order in
which they are received, preventing conflict.

The distributed manufacturing application was one of
the first such programs to make extensive use of the
network, It was implemented via standard Tandem
products including a relational database manager and
a terminal control program. If it were being developed
today, there would be no need for the request queue or
the customized delivery module, because a standard
product now provides a reliable asynchronous delivery
mechanism. This mechanism, known as Transfer, was
developed to meet the future needs of distributed
applications and interconnections between them.

The delivery mechanism consists of high-level (trans-
port layer) software that gets information to people,
devices, and processes in a specified time frame.
Earlier approaches to network messaging (built into the
operating system) were designed for interactive ex-
changes and could not be used unless the two commu-
nicating entities were available at the same time. If a
particular node was not available, the user (or pro-
gram) took responsibility for trying again at a later time.

The new software was designed to overcome this
limitation. It attempts to deliver messages as soon as
possible or within a specified time frame. If unsuccess-
ful on the first try. it takes responsibility for periodic
retry attempts thereafter. Delivery of the message or
information package once and exactly once is guaran-
teed. If line failures, node failures, or disk controller
failures make delivery impossible within the time period
specified, the delivery mechanism notifies the requester
of that fact.

Supporting support
Sales and service offices exchange information with
hardware and software support centers by means of a
product-reporting application. This network-based pro-
gram provides a way for a field analyst (or, indirectly, a
customer) to report a perceived engineering defect or
bug, to request an enhancement to a product, or to ask
a question concerning a product.

Field personnel enter product reports on software
screens generated by the reporting application. Once a




product report has been entered, the application for-
wards the report over the network to the appropriate
support person. (If no support destination is specified
on the report, an administrator decides where the
report should go and forwards it.)

Although a report can be sent from any node to any
other node (where both nodes have the application), it
is normally sent from a field sales and service office to
one of several regional technical support groups. In
some cases, the regional group will be able to supply
an answer and will simply return the report to the
originating node. In other cases, the regional group will
send the report to the corporate technical group, which
will then either answer it or forward it again to the
appropriate software or hardware development group.

Whenever a report gets forwarded, the application
uses its electronic-mail interface to send a message to
the report’s originator, This keeps the person with the
problem abreast of who is working on it. In such cases,
the application also generates a mail message to the
analyst to whom the report has been referred, as a
reminder that someone is waiting for an answer.

Regardless of the exact path of a particular report,
when a response is complete, the report is ‘returned to
the field.” All information pertaining to the problem is
automatically collected and sent to the originating
node by the application. To inform everyone concerned
how the problem was resolved, and to make it easier to
handle like problems in the future, an updated copy of
the report (with the response) is automatically sent to
all nodes that the report traveled to during its lifetime.

In addition, the application maintains a database on
each individual node that contains all reports originated
from that node as well as those that have been sent to
it from other nodes. Thus, there is a fair amount of
replication of the application’s data throughout the
network, even though each node has only a subset of
the entire problem-reporting database. The database is
frequently accessed by support personnel to identify
outstanding problems that have already been reported,
thus eliminating duplication of effort and ensuring
faster resolution of problems for all customers.

Help for the business side

The network offers resources aimed at groups besides
manufacturing and support. Business functions, from
closing sales to processing orders to reporting financial
data, have been computerized. Most of these are
traditional, centralized applications, but some make
extensive use of the network.

Products are built because someone wants to buy
them. To help sales representatives sell them, the
marketing department maintains a customer-reference
database. Field salespeople who learn how customers
or software houses use their products can submit that
information to the database. Their colleagues can then
view the data over the network and generate reports by
industry, by application, or by product.

In this way, sales representatives can identify existing
customers who might be able to help future ones. The
customer-reference database is also a source of ideas
on what to propose to prospective purchasers. And

finally, a complementary-products listing provides a
catalog of software packages available in the market-
place that can strengthen a representative’s offerings.

Salespeople worldwide must often respond to “'re-
quests for proposals' because these requests usually
present substantial opportunities. To eliminate the
need to reinvent the wheel each time a proposal must
be written, a headquarters proposal-assistance team
maintains text files, accessible over the network. While
they do not eliminate the need for writing and analysis
by field sales, the text files substantially reduce the
time it takes to prepare a customized proposal.

Once a sale has been made, it must be accounted
for and the order administered. Contracts are sent to a
sales administrator who verifies them and enters them
into a marketing support application. The application
sends an "‘electronic packing slip” to a manufacturing
group. The message tells manufacturing to build and
ship the order.

When the ordered equipment is shipped, a manufac-
turing person logs on to the marketing application and
marks the order complete. (Order status is reflected in
daily reports that are sent by the application to regional
sales and service offices over the network.) The appli-
cation then sends a message to an accounting and
invoicing routine, telling it to bill the customer.

The accounting and invoicing application is tied to a
database of ledgers, which it updates when bills are
sent or payment received. It supplies sales reports to
management people and answers their queries. It uses
the network to broadcast reports to field offices and to
tell accountants at the manufacturing site when a piece
of equipment has been booked as a revenue item.

The budget model is another financial application
that runs on the network. This tool is used by every
organizational unit within Tandem in preparing capital
asset and operating budgets for the coming year.
Managers enter basic salary, hiring, and expense data
on specially formatted screens, and the model calcu-
lates monthly, quarterly, and annual totals and gener-
ates reports that are used In evaluating spending plans

The budget model provides software that rolls, or
merges, the budgets of various groups together auto-
matically and generates an overall budget for larger
organizational units. The results of local caiculations
can be forwarded over the network to headquarters
where they are used in forecasting cash requirements
and ensuring that a reasonable level of profitability is
achieved by the company. ®

This is the first in a two-part series on Tandem's
internal network operations. The second part will focus
on electronic mail, the company’s most widely used
application, and take a closer look at network hard-
ware and software.

Kent Madsen is the editor of the Tandem Application
Monograph Series, produced by the company's field
productivity program. David Foley is the technical
manager of the Tandem network. Foley is responsible
for architectural and strategic planning, analysis, and
operations support.
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How multiprocessor

nodes can

ecome

more sociable

This month’s continuing look at
Tandem'’s corporate network and its
nodes shows a company increasingly
dependent on distributed network

t Tandem Computers
Inc., electronic mail began as an ad hoc program
allowing employees to send messages through existing
machines used primarily for development, marketing,
manufacturing, and order processing. However, today
it is the most heavily used application in a worldwide
internal network, and its importance is growing. During
a recent 18-month period, network traffic doubled, but
mail volume tripled.

Through electronic mall, Tandem salespeople from
Singapore to Stockholm now collaborate and share
information on a daily basis. Analysts from Montreal to
Melbourne help each other respond to customer prob-
lems and to queries from prospects. Hardware repair
personnel at distant sites communicate with manufac-
turing workers to resolve customer equipment prob-
lems. Managers at all levels use the network to keep in
touch with employees and colleagues throughout the
world. Moreover, electronic mail helps employees es-
lablish and maintain personal relationships across geo-
graphic or organizational boundaries. Thus, it contrib-
utes to a sense of community and teamwork.

One way of understanding the impact of electronic
mail on the organization as a whole is to follow a
fictitious employee through a typical day. noting how
extensively this corporate resource is used. John is the
manager of a technical support group of 40 or 50
people affiliated with the headquarters’ marketing
organization. The first thing he does when he arrives at
the office in the morning is to log on to the local
Computer to scan his electronic mail, that is, to view a
list of all messages in his electronic in-box.

Each item in the list of incoming mail gives the
sender's name, the message type (original, forward,
'eply, and so on), and a subject line. Having scanned
his mail, John can then select the most important
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applications like electronic mail.

messages to read first. Currently, there are four mes-
sages waiting. The first invites him to a strategy meet-
ing that morning with the software development group.
Another message contains minutes of a meeting he
attended last week. John responds immediately to the
invitation and files the minutes of last week’'s meeting
(on disk) in electronic folders bearing names that he
has specified.

John's third memo is a request from the vice presi-
dent of marketing asking him to provide people to help
with a design review for a large customer’s application.
John uses the electronic-mail editor to compose a short
addendum and to add an enclosure to the vice presi-
dent's request, providing more specific instructions.
John then forwards the whole package to a subordi-
nate, who will follow through for him

He notices among his messages a request from a
technical analyst in Australia for performance informa-
tion on a new hardware product. John doesn't have the
performance information needed, but he knows of
someone at the performance research center in Ger-
many who might. He forwards the message there and
replies to the analyst in Australia, indicating what he
has done, then heads out the door for his meeting.

All of this has been accomplished in less than five
minutes. The messages John has sent are delivered
almost immediately (or within the time frame he has
specified). Thus, problems can be resolved and an-
swers obtained very quickly, and John can be respon-
sive without carrying details around in his head all day
(or all week).

After returning from his strategy meeting, John again
reviews his in-box. This keeps him in touch with people
and problems from hour to hour, without being inter-
rupted and without interrupting others. He typically
checks his mail each time he finishes one of the day's




major projects (a meeting, an interview, a lunch en-
gagement, or a trip to the corporate library).

By using the in-house electronic mail, John avoids
the frustration and inefficiency of '‘telephone tag™ and
cuts down on his long-distance telephone costs. He
can leave lengthy messages on complex technical
topics for someone who may not be available at the
moment, and be assured that the message will not be
garbled by an intermediary. In addition, John uses
electronic mail to communicate easily with people on
the other side of the world, whose business day may
not overlap his own at all.

Letting digits do the walking . . .

John (and every other employee) is identified by a
correspondent name. Electronic mail includes a way to
look up the correspondent names of people on local
and remote nodes. These names are listed in a direc-
tory application of the “‘public database,"" which con-
tains such information as employee office locations,
telephone numbers, correspondent names, and depart-
ment affiliations.

It is easier to look up the correspondent name via
computer than it is to find a number in a conventional
telephone directory, because the computer does the
searching. The correspondent database is updated
weekly to incorporate all new hires, internal transfers,
changes of address, and changes of status. With a
query program, John searches the database for cor-
respondent names by office location, node location,
surname, or partial spelling of the surname.

John uses electronic mail to broadcast messages to
large numbers of people via distribution lists. For
example, when he wants to call a group meeting, he
invokes a mailing list containing the correspondent
names of everyone in his group. When he wants to
announce some change in support policies, he invokes
a much larger distribution list to send a message to
everyone in the company. Thus, it is no more difficult to
address many than it is to communicate with a few—or
with one.

. . . and putting heads together

An interesting and well-used oftshoot of electronic mail
is an archive of technical information. Much of the mail
that comes across the network is in the form of tech-
nical queries, broadcast to all employees. Workers
send such queries when they need information on
competitors, product performance, how to link particu-
lar devices, and so on. Answers are not hard to come
by. Chances are that, out of the 5,200 Tandem em-
ployees who receive these messages, at least one will
have the required experience or information.

At first, broadcast technical queries typically pro-
voked dozens of secondary queries from people want-
ing to know what the original questioner had learned.
To avoid having to answer these secondary queries
individually, authors of technical query messages be-
gan to adopt the practice of identifying a file (accessi-
ble over the network) in which any replies would be
stored. This allowed other interested parties to benefit
from the exchange simply by accessing the reply file a

day or two after the initial query was sent out.

The whole process has now been taken one step
further. An administrative employee systematically
reads and files (on disk) all technical queries related to
a particular topic. After a week or so, the employee
copies all the reply fields to a central node, stores them
on disk (with the relevant query), and adds appropriate
entries to a subject index.

This centralized repository, referred to as the “ar-
chive,"" is equipped with search software to facilitate
information retrieval. Many employees may not be
interested in particular informal exchanges of informa-
tion at the time they occur. However, they can locate
and access a stored record of these discussions when-
ever the need arises. The archive virtually eliminates the
need for duplicate queries and provides an extremely
valuable information resource, reachable from any net-
work node.

There is a vast reservoir of information and insight
within the organization itself, many times larger and
more valuable than most formal, structured databases.
The combined on-the-job experience of the 5,200
Tandem employees probably exceeds 30,000 years,
and their combined college and university experience
may amount to 20,000 years or more. Electronic mail
and the archive allow people to share insights easily
and store them for the use of others. These tools are
instrumental in tapping a wealth of information and
human experience.

Electronic mail helps to preserve small-company
interpersonal communications in the face of rapid
growth. It aiso gives employees easy access to in-
formation resources within the company, regardless of
where those resources may be. The archive and the
electronic-mail network eliminate much duplication of
effort and energy.

Overcoming hardware failures
While other applications are growing in use, electronic
mail has become the lifeblood of the company’s opera-
tions. It succeeds basically because users have come
to trust the network to deliver their messages. This trust
can be credited to one fundamental design principle,
which underlies the network architecture and the hard-
ware and software architecture at each node. The
principle is that of “'fault tolerance.™

A fauit-tolerant computer is one that can ensure
continuous operation and data integrity in the face of
any single component’s failure. In addition, it must
allow hardware service personnel to replace compo-
nents and activate them without shutting the machine
down. Such performance Is crucial to computers in a
network as large as Tandem's because the more
computers there are, the more likely it is that a
disabling failure will occur somewhere in the network.

A hypothetical computer running 24 hours a day and
capable of offering 99 percent availability might have a
mean time between failures of about two weeks. A two-
node network composed of such machines would
therefore average one failed node a week. With 200
nodes, a network would experience a node failure
about every two hours. If we assume that communica-
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tions lines go down as frequently as nodes and that the
mean time to repair a line or a node is three or four
hours, it is likely that a network that large would never
be completely operational Clearly, much higher stan-
dards of machine avallability are required for large
networks

The overall availability of Tandem's corporate net-
work rests on the continued functioning of its constitu-
ent hardware, as shown in Figure 1. Each node (includ-
ing the backbone nodes) contains multiple processors
linked by dual h gh-speed buses. Any one of these
interprocessor buses (IPBs) can carry traffic at up to
13 Mbyte /s

Each processor has its own IPB interface, instruction
processing unit, memory. and input/output (170)
channel (as well as its own pPower supply). However.
the Guardian operating system distributed over these
processors makes them appear to local or remote
users as a single computer. It also allows them to
Cooperate with one another in processing individual
transactions, to share the work load equitably, and to

back one another up in the event of a failure,

The IPB uses a multiplexed, packet-interleaved pro-
tocol for high-speed Interprocessor communications at
the local node with a minimum of CPU interruption.
However, it would be a mistake to view it as an ordinary
communications link. From a logical standpoint, it is
more like an internal bus in a conventional computer,
since It ties cooperating elements of the local machine
together and makes them appear as one,

As Figure 1 shows, designing for fault tolerance
meant using multiple hardware components within a
single computer. It also Implied that techniques would
have to be found for detecting failures, disabling prob-
lem components, and allowing for their repair and
replacement without bringing down the rest of the
computer,

Accordingly, hardware and software designers de-
vised rigorous internal consistency checks for each
processor. They believed that it was Important to
detect problems rapidly and halt a failed processor
before it had a chance to contaminate data or disrupt
the operations of the other processors. In keeping with
this philosophy, if a processor finds that it cannot pass
its own internal consistency checks, it will simply halt
itself, allowing another processor to take over control
of its peripheral devices.

If. by some fiuke, a processor with a problem man-
ages 1o pass its own internal checks anyway, there is
yet another mechanism provided by which the proces-
SOr can be restrained. Designers of the operating
system decided that, once every second, each proces-
SOr within a given node would send status messages
over the IPB to all others indicating that it is alive and
well. Also, every two seconds, each processor would
check to make sure that it had received such a
message from all the others.

When operational processors detect that one of the
others is not following this established protocol, they
can effectively quarantine the offender by declaring it
"“down."" Control of its Peripheral devices is then trans-
ferred automatically to the backup processor. In addi-
tion, backup applications program modules running in
the other Processors are activated to take over the
work formerly assigned to the failed processor. When a
processor is declared down in this manner, one of the
other processors will also take corrective action to
clean up any outstanding messages.

To allow the transfer of control of peripheral devices,
hardware designers built dual-ported device controllers
that can be connected to the 170 channels of two
different processors. The controller is owned by only
One processor at a time. However, if there is a problem
either with the Owning processor or with its 170 chan-
nel, operating system procedures switch ownership of
the device and controller to the other processor (and
is 170 channel). In this way, any device can be
accessed even if the controlling processor or 170
channel fails. To ensure continuous operation even in
the face of disk-controller failures, the disks themseives
are dual-ported as well and €an be connected to two
different controllers, as shown in Figure 1.

The hardware designers also made provisions for the




attachment of “‘mirrored disks™ so that failure of a disk
drive or its storage medium does not require that the
computer be shut down. Mirrored disks are pairs of
physically independent disk drives. Writes are per-
formed on the disks in both drives; reads are taken
from whichever disk has the shortest seek time. If one
becomes inoperable, processing can continue with
reads and updates directed to the healthy disk. When
the failed disk is repaired, it can be restored to
operation and its contents brought to a recent, consis-
tent state. Then all updates performed on the other
disk in the interim are transferred to it automatically.

Clearly, fault tolerance could not be achieved without
the duplication of hardware components within a single
computer. However, software runs on the hardware,
and, therefore, if one processor is to take over for
another, software components must be duplicated as
well. This Is accomplished through the use of "'process
pairs.” (A process is a program module running in a
particular processor.)

The operating system allows a "'primary"’ process
running in one processor to send periodic checkpoint
messages to a “‘backup’’ process running in another
processor. Checkpoint messages, usually sent before
the primary process performs a critical task, such as
1/0 or updating a database, contain all the information
that the backup process would need to take over for
the primary one in the event of a processor crash.

If a processor goes down, backup processes running
in other processors are activated so that they can
continue the activities of the primary processes that
were running in the now-failed processor. Because the
backup process does not duplicate the activities of the
primary one while the primary is still functional, it
places only minimal demands on the processor in
which it resides. Thus, processors can host backup
processes as well as primary ones and do almost as
much useful work as they would if the backup pro-
cesses were not present.

The operating system itself is protected by the
implementation of process pairs. Early users of Tandem
machines had to program their own primary and back-
up application processes (and devise effective
checkpointing strategies) to get full protection. Now,
however, a standard Tandem application development
environment obviates the need for user programming
of process pairs.

Sociable vs. self-centered computers
Hardware and software reliability are critical in a large
network. However, there is an equally important need
for machines that communicate and cooperate with
their peers. Over the years, Tandem has come to
believe that successful networking begins with the
design of such *‘sociable’ computers. A number of
complex problems, which many people associate with
networking itself, actually stem from the architectures
of the machines being used as nodes. In most cases,
such machines were originally designed with no
thought for networking.

The economic need to preserve these architectures
has forced many computer vendors to adopt an *‘add-

2. Overhead of the loner. To get a typical com-
puter to interact takes a lot more code than if the
machine already considers itself a network.
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on'" approach to networking (Fig. 2). According to this
approach, at each end of the communications line is a
computer with an operating system designed for
standalone processing. This operating system condi-
tions the computer to think of itself as the main (if not
the only) intelligent entity and to view anything at-
tached to it as a peripheral.

Layered on top of each node's operating systemis a
very substantial body of code, which must correct that
myopic view. By clever and complex ruses, this 'net-
work operating system’* overcomes the ingrained
reclusiveness and egocentricity of the standalone com-
puter, making it possible for that machine to converse
with other computers in a network. Such communica-
tions is limited, though, and subject to rigid and
somewhat arbitrary constraints, because each com-
puter must be made to believe that it is still only talking
to peripherals.

Inherent in this approach is a heavy communications
processing burden that falls on the computers them-
selves (Fig. 2A), stemming from the fact that, in
essence, the network operating system has to work
against the local operating system. In addition, this
approach entails a formidable burden of mounting
software complexity. This burden is like an irrevocable
tax on every network user, manager, and application,
and it has a substantial negative impact on productivity
for as long as the network exists.

This complexity increases exponentially as more
(and different) computers are added to the network.
And even if the linked computers are identical,
networking is almost always a strange new world, with
remote access procedures and syntax rules vastly
different from those used at the local level,

Intranode communications

By contrast, the software that supports Tandem's
corporate network does not present a new world to
users and programs, but rather functions as an exten-
sion of the local environment. In a very real sense,
networking is not layered on top of the nodal operating
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system, but built into it. No separate network operating
system is needed.

Nodes in the corporate network routinely engage in
“internal dialogues.” Since each computer is, in and of
itself, a local network composed of multiple indepen-
dent processors, a machine’s processing consists of
conversations between its constituent parts. (Artificial
intelligence theorists suggest that people may also
think this way.) The same communications mecha-
nisms that the operating system uses to blur processor
boundaries on the local level are effective in blurring
node boundaries within a network as well. When cou-
pled with basic internode communications protocols,
these local mechanisms (built into the operating sys-
tem) contribute greatly to network operations.

The most important of these mechanisms is a *‘mes-
sage manager,’’ upon which the entire local operating
system is based. Messages are important in the Tan-
dem computing environment because the operating
system itself is not a single monolithic program but a
collection of "interrupt handlers'' and processes. Each
process has particular areas of responsibility and must
communicate and cooperate with others (through mes-
sages) to get work done. These messages must flow,
not only within a single processor, but also among the
various processors (none of which shares memory).

Copies of the most basic operating system pro-
cesses (such as the "monitor’" and the ““‘memory
manager'') run in every processor. However, some
functions, most notably input and output, must be
handled by the particular processors to which the 1/0
devices are physically attached. This posed a problem
for the early designers because all the hardware and
software entities in a multiprocessor computer needed
access to these |/ 0 resources,

To resolve the problem, the designers developed the
message manager, which allows a process to commu-
nicate with another process anywhere in the local
machine simply by providing the destination entity's
symbolic name. The message manager takes full
responsibility for locating the named process and get-
ting the message to it regardless of where that process
may be running. Disks, tape drives, and terminals are
all associated with processes. Thus, the message man-
ager provides a way of addressing and accessing such
devices from any location at all in the multiprocessor
machine.

A message, as defined in the operating system, is
bidirectional. It consists of a “‘request’’ for service and
a “reply." Several such messages may be required to
carry out a given operating system function. For exam-
ple, a monitor process may be asked to create a new
process. To do so, it must do some work and then
make requests of several other operating system pro-
cesses to gather the resources needed.

One of the requests would be to a “'disk process,"’
asking that space be allocated on disk as virtual
memory for the new process. When the disk process
has allocated the space, it replies, indicating that the
work has been done. (This reply completes the mes-
sage.) Other requests are made as well, and when the
monitor process has seen to it that all of the necessary

3. Software. Segmented code allows the operat-
ing system to span processors over an IPB and
hide detalls of the hardware from user programs.
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resources are in place, it replies to the entity that made
the request, indicating that the process has been
created.

It is easy to underestimate the value and uniqueness
of the message manager. There is certainly nothing
special about the concept of program modules passing
information to one anather. That happens all the time in
conventional computing environments that lack a for-
mal messaging scheme, Usually, one program module
places information at a specified location in memory,
and another picks it up. By contrast, the message
manager is a general-purpose mechanism for getting a
message between any two processes in a multiproces-
sor machine. It does not assume that communicating
program modules will inevitably be running in the same
processor or that memory is shared between the
processors involved.

Accessing resources within nodes . . .
Applications processes are not allowed to communi-
cate directly with the message manager or with basic
operating system processes. However, the processes
can make use of the operating systemn through a "file
interface,” which ensures that such interactions do not
accidentally create problems for the user or for the
machine (Fig. 3).

The file interface works with the message manager to
allow application processes to communicate with enti-
ties such as other processes, files, and |/ O devices, by
a single set of calls. That is. such resources can all be
referenced by means of pre-assigned symbolic file
names. Application processes do not need to know
physical locations since the file interface can access
operating system tables that keep track of the entities.

To distribute the load over multiple processors (as




4. Network travel. Application process A need only
know the unique network name of process B, and the
operating system handles the trip for any request
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from A. Thus, process A can access remote files, pro-
grams, and devices (through processes like B) al-
maost as easily as it can reach local ones.
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well as for other reasons), application programs typi-
cally have a structure similar to the operating system in
terms of requester and server processes. They also use
the message manager's basic request/reply protocol.

For example, an application-type requester process
running in one processor might be programmed to
control a group of terminals and validate input from
them. while an application server, running in another
processor, might be programmed to formulate
database queries. As a particular transaction is re-
ceived, the requester validates the initial input and then
sends a request to the server (via the file interface) that
indicates what work needs to be done. The server
process accesses the database (again via the file
interface), retrieves the desired information (or updates
the appropriate records), and then replies with the
requested information or a confirmation that the work
has been completed.

. . and throughout the network
Since the computers that compose the network already
consisted of multiple, communicating entities, it was far
easier to interconnect them than it would otherwise
have been. A group of four or five people spent only
about a year developing the required networking soft-
ware. This software, known as Expand, allows the local
file interface and message manager to address and
communicate with processes, files, and devices any-
where in a Tandem network. -

The networking software consists of line handlers, a
proprietary protocol for guaranteed data integrity, and
a network control program (NCP). The NCP, which
runs at every node, monitors and logs changes in
network status.

Routing responsibility is distributed. The NCP main-
tains a copy of the network routing table (NRT) in each
processor. The NRT lists the location of all of the other
network nodes. NRTs are used to determine the best
path to other nodes and to establish the communica-

tions link. (Thus there is no centralized routing that can
fail and paralyze the entire network.)

The file interface bridges the network by allowing
local processes to access files, processes, and devices
anywhere in the network through a single set of calls.
The addition of a node specifier to the symbolic name
uniquely identifies these resources throughout the net-
work

Listening in on network dialogue

The networking software is basically an extension of
the services provided by the local message manager.
Just as the message manager software allows one
process to send messages to others within the local
machine, its networking extension allows a local pro-
cess to send messages to other processes running at
remote nodes in the network.

As mentioned last month, operations people and
other users of the corporate network can, with proper
security authorization, log on to a network node in
California (or anywhere else) and do work on remote
nodes. For example, with successive two- or three-
word commands, they can start a program running on
a machine in New York, instruct that program to access
a file on a disk volume in Atlanta, and print out the
results for another employee on a device attachedto a
computer in Chicago. Also noted was the fact that the
command structures by which these operations are
carried out are identical to those that would be used
locally for similar operations except that, in each case,
the program, file, or device name must be further
qualified by a node name.

This sequence of events can be used to illustrate
how the operating system entities work together. In
fact, the different operations were achieved through
one mechanism: messages. Process-to-process mes-
sages pass first through the local file interface and
message manager, next through local and remote line
handlers, and finally through the remote message
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manager and file interface software layers.

Consider process A running on node X within the
corporate network (Fig. 4). If process A (an application
process) needs to communicate with a process running
at the local node, it gives the message, along with the
name of the destination process, to the file interface.
The file interface checks the message, makes sure that
it is legitimate, consults operating system tables to find
out where the destination process Is running, and
hands the message to the message manager.

The message manager takes responsibility for deliv-
ering the message and for returning the reply from the
destination process. If the destination process is an
operating system process, it replies directly through the
message manager. If, on the other hand, it is a user
application process, It must use the file interface to
pass the reply to the message manager.

When process A wants to communicate with process
B located at remote node Y, it proceeds the same way,
giving a message and destination process name o the
local file interface. However, this time the name con-
sists of the process name appended to a node name
(for instance, "'nodeY.processB"). The file interface,
discerning that this resource is not available locally,
accesses the network routing table.

From the information contained in the table, the file
interface determines that the message must go through
a specific network line handler to reach its destination.
It therefore preserves the name of the destination
process but tells the message manager to deliver the
message to that line handler. (In the event that there
are two or more line handlers leading to the remote
node, the routing table will indicate which path is best,
based on the speed of the communications lines and
the number of intervening nodes.)

When it receives the message, the local line handler
compresses and packelizes the data and sends it over
a communications line to another line handler at node
Y. This line handler reassembles and decompresses the
data and strips off the node portion of the destination
process name. It then hands the message to node Y's
message manager, which uses operating system tables
to locate process B and present the message to it.
Process B does whatever it was instructed to do and
then replies. The message manager takes responsibility
for seeing to it that the reply retraces the path of the re-
quest back to process A.

Through this basic mechanism, a user in California
can log on to a local machine and enter a command
that will start a program running on a machine in New
York (Fig. 5A). First the user accesses a local “com-
mand interpreter'” process, which reads input from the
terminal through a terminal 1/ O process. In response to
this input, the command interpreter (acting as a re-
quester process, analogous 10 process A in Figure 4)
sends a message to an operating system process, the
“monitor'’ (a server, analogous to process B), running
in the New York machine. The monitor process starts
up the program and replies.
~ The new program started in New York then requests
input from the user terminal in California (by sending a
message to the terminal I/ O process). In response, the

user instructs the program to access a disk file at-
tached to a machine in Atlanta. As shown in Figure 5B,
the New York program (now analogous to process A)
sends a message to the disk process in Atlanta (analo-
gous to process B). The disk process does the neces-
sary work and replies with the requested information,
The program in New York then responds to the Califor-
nia terminal and requests further input.

In response, the user in California instructs the
program in New York to print out the results of the disk
access on a machine in Chicago. As shown in Figure
5C, the New York program sends a message 10 a line-
printer process in Chicago. The line-printer process
sees to it that the information gets printed, and replies.

In all these cases, the destination process does not
have to be aware of the origin of requests. From its
point of view, the message might just as well have
come from a local process. This is because all the
destination process has to do is to hand the reply to
the message manager (or file interface), which will see
that the reply finds its way back to the source process,
following essentially the same path as the request.

Because Tandem chose to use standard software
products at all nodes in the network, the syntax in the
above operations Is the same as would be used to
perform similar operations locally. The only change
needed is that the file, process. or device name would
have to be qualified by a node name,

Managing growth and applications

All applications, even those running on a single node,
are designed in terms of the requester/ server concept.
As a result, these applications can be distributed easily
when the need arises

For example, a particular order-entry application
started out with all orders called in to a central point
and stored on disk. This application became distrib-
uted when people in the branch offices were able to
key in the Information themselves. However, there was
still a need to keep a copy on a central disk. Since the
application was written using requester and server
processes, it was simple to move the requester por-
tions to the regional nodes while the servers remained
at the central site to update the database and to return
acknowledgments to the requester.

Growth can affect user applications almost as drasti-
cally as distribution. Most environments can only add
processing power by purchasing a larger machine,
often with a different architecture and operating sys-
tem. Such a move almost inevitably entails a significant
software conversion effort. Even if manageable locally,
a capacity upgrade can become difficult in a network
setting. Dozens of applications and remote nodes that
regularly access the newly configured local node must
then also be changed.

In Tandem's corporate network, however, increased
data processing demands at local nodes have been
met without producing waves locally and throughout
the network, Nodes can be expanded from two to 16
processors, and duplicate copies of requester and
server processes can be run in the new processors.
Thus, the applications can handle twice the work load.




5. The network as single virtual machine. Autho- program on a node in New York (A), instruct that pro-
rized users can log on to a network node in California gram to read a disk file in Atlanta (B), and have it print
(or anywhere else) and, with single commands, starta the file on a device in Chicago (C). Processes that be-
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gin as or are created by servers (such as the new pro-
cess in New York) can turn around and make requests
of other processes. They can also use the same tech-
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but programmers do not have to change a single line of
code.

The network is remarkably homogeneous. All work-
Ing nodes have the same architecture and run identical
versions of the nodal operating system. Along with the
local expandability of each node, this homogeneity
greatly facilitates network management from a logical
standpoint. It is much easier not having to deal with
new operating systems as the network grows. The
ability to reuse the same box also means that, physi-
cally, remote sites are more readily upgraded. Even at
the central computer center, expanding a node is far
less disruptive than replacing it.

Expandability also aids in the management of distrib-
uted applications. When the use of such applications
grows, certain components such as disks. controllers,
or CPUs may become bottlenecks. Modules can be
added to replicate these components. In the example
considered earlier, an order-entry application was repli-
cated to the regional nodes. When a region grows, the
requester program can be duplicated and run ona
ditterent CPU. The application then doubles its capac-
ity without being rewritten, simply by having another
copy of itself spawned.

New processors are often added to overworked
nodes to relieve the burden on the existing processors.
If several application processes are then moved from
their original processors to the new ones to redistribute

the load, the application programs do not have to be
changed. They will run just as they did under the old
configuration except that, overall, response times will
be better.

Looking to the future

In any structure as large and multifaceted as the
Tandem corporate network, change is a constant, Use
of the network’s long-haul circuits has grown enor-
mously in the recent past. For example, the bandwidth
required on the backbone link between the two U. S.
coasts began at 10 kbit/s in the middle of 1982. It
doubled the following year. By 1984 it was up to 56
kbit/s, and by the end of this year it will have doubled
again. Projections for the fourth quarter of next year
show a need for another 56 kbit/s, a full T1 (1.544
Mbit/s) by the end of the decade.

These projections are for the network's data traffic
only. The introduction of facsimile transmission ca-
pability to the network, which is currently taking place,
will undoubtedly increase the rate of growth. Facsimile
applications expected soon are a tie-in to electronic
maill, store-and-forward facsimile switching, and dialing
in or out to distribute and archive facsimile images on
disk. The manufacturing division is starting with 40 to
80 pages a day, and the number is expected to
increase.

To meet future needs for data transmission band-
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width, the network support group is making plans to
install satellite links between selected backbone nodes.
These links will not replace existing terrestrial lines,
which are needed for interactive traffic because of their
low propagation delay. They will, however, provide the
bandwidth needed to carry large volumes of mail and
other transmissions for which rapid response times are
not important.

Local traffic (particularly at the company’s head-
quarters) is increasing roughly 50 percent faster than
long-haul traffic. Clusters of machines linked by the
company's lightwave product will therefore play an
increasingly important role in the corporate network.
Up to 14 computers can be linked in a ring via double-
circuit optical fiber. The entire subnetwork thus created
may contain up to 224 processors, each capable of
processing 4 million instructions per second. The main
headquarters subnetwork will initially contain over 100
processors.

A lightwave subnetwork is very much like a single,
large, powerful node for two reasons. First of all, the
transmission medium offers the speed and bandwidth
needed to ensure that response times are essentially
the same whether processing tasks involve communi-
cations within or between individual computers, Each
of the four fibers (two full-duplex circuits) carries data
at 10 Mbit/s, for an aggregate data transfer rate of 40
Mbit /s (the theoretical optimum; actual user through-
put depends upon the application).

Secondly, the message manager allows users and
executing programs to communicate with or access
any other executing program, peripheral, or file in the
corporate network simply by supplying its name and
the relevant node name, As Figure 6 shows, the
lightwave ring is designed to transport messages be-
tween processes. It sends them directly over the
interprocessor bus, without using 1/0 channels or

Repnnted from Data Communications, September. 1985, copynght 1985 by McGraw-Hill. Inc. with all nghts reserved
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controllers. Clustering nodes on a lightwave ring takes
advantage of higher-speed hardware. This method
consumes up to 80 percent less CPU time than does
the conventional way of handling data traffic, in which
data leaves a node via a line handler. It also provides
much faster response times, ®

(This is the second part of a two-part article.)
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WORKPLACE DEMOCRACY IN TANDEM MANUFACTURING:
A THEORETICAL FRAMEWORK

Dr. Nancy Dixon
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Cupertino, Calif. 95014
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Workplace democracy or participative management, as it is sometimes
called, is a systematic process designed to implement the five major
corporate goals of Tandem in the manufacturing setting; people-
oriented environment, satisfied customers, clear direction for
employees, superior products and sustained profitability. As a total
corporation Tandem has been able to make these goals not just words on
paper, but a living reality for its employees. Tandem employees have
always felt that they were trusted with high level information,
listened to when something important needed to be communicated, and
valued for the unique contribution each makes to the organization.
Employee attitudes such as these exist at Tandem because the corporate
leaders, who within a small organization, have been able to exert a
strong impact on its culture. Positive employee attitudes have been
purposefully nurtured through open door policies, open and shared
information, tele-conferencing, beer busts and above all a corporate
team that modeled its own beliefs.

Tandem has grown, and as it becomes still larger, there is need to
supplement the informal processes of the past to retain the best of
Tandem culture. Workplace democracy is a way to systematize the
Tandem philosophy in the manufacturing setting. The basic beliefs of
workplace democracy are rooted in the culture of Tandem. The system-
atic process used to implement those beliefs is modeled on the demo-
cratic process of the United States.

PHILOSOPHY OF THE LEADERS

The most important element of workplace democracy is the belief system
that underpins it. That belief system is represented in the following
statements:

Given adequate information, employees will make decisions that are in
the best interest of both the organization and themselves.

Employees are better able to make decisions related to their job
functions than are leaders who are further removed from the process.

Given a positive environment, employees want to do work of which they
can be proud.




Employees want to be part of and to identify with something larger
than themselves. . -

Employees want to learn and grow in their work.

These beliefs are so important to the success of workplace democracy
that the first step in the implementation process is to have the
leaders of the organization hold a discussion concerning their own
beliefs about workers. If the management team arrives at a belief
statement that is consistant with the spirit of the beliefs listed
above, then the participative process can be implemented effectively.
However if the management team, as a whole, leans toward opposite
beliefs, i.e. employees are motivated only by their own self-interest,
incapable of understanding management level information, and unwilling
to work unless closely supervised, then a participative style of
management should not be attempted at that site. The decision of -~
whether or not to implement workplace democracy, is not meant as a ‘
judgement which implies that one set of beliefs is right and the other
is wrong. The collective experiences of that management team may
honestly lead them to the second conclusion. However sincere these
beliefs are, workplace democracy should not be attempted under such
circumstances because without holding positive beliefs about
employees, leaders cannot honestly let go of some of their authority
in order for employees to participate. Attempts to do so come off as
phony, such as limiting participation to inconsequential decisions or
attempting to manipulate employees around decisions that have already
been made. Most employees have been manipulated often enough in their
work careers to recognize a con job. Thus, workplace democracy should
only be attempted where the beliefs of the leaders are consistent with
the management philosophy they are attempting to implement.

ELEMENTS OF WORKPLACE DEMOCRACY

The systematic process of workplace democracy has three major
elements. Each element is so interwoven with the others that it
presents a somewhat false picture to separate them out. However, for
the purpose of clarity, they will be discussed separately here. The
three elements are alignment, representation and information.

The first element of workplace democracy is alignment. Of the three
elements it is the most easily overlooked. The other two, information
and representation, are visible as wall charts or committee meetings.
Alignment means that the members of the organization agree upon a com=-
mon goal that each feels is in the best interest of all. Alignment
differs from a company goal, in that a goal is usually set by
management, and is primarily addressed to profitability. Whereas
alignment occurs when the goal or vision is one that will clearly
benefit all. England, during the Second World War serves as a
historical example of alignment. The people aligned around the belief
that England as a country would survive, even if German bombs leveled
every building. It was the fighting words of Sir Winston Churchill
around which the people aligned. There are many examples of alignment




in sports, matches when players have focused on winning the big game
rather than on any personal glory the game might bring. :
Organizational alignment occurs when the goal is inviting enough that
employees freely choose to work toward it. The goal in Tandem
manufacturing might be to produce the world's finest computer, or to
make our plant the best place to work in the United States.

An effective beginning to achieve alignment of a manufacturing site is
to have the whole plant meet in a full day retreat to establish their
common goal. The questions asked are, "What quality of product do you
want to build? What kind of environment do you want to function
within? and What kind of leadership will help you achieve these
goals?" In this process the belief of the organization's leaders is
put to test because the process must be honest and open if the group
is to truely become aligned. )
Representation is the second element of workplace democracy. Repre-
sentation, as the term is used here, means a systematic process that
allows employees at all levels an opportunity to share in making de-
cisions. The representative process is philosophically based on the
democratic principle that all, rather than an elite class, are cap-
able of making decisions that will benefit all. In the manufacturing
setting a number of groups serve as decision making bodies. The
largest group is the weekly plant meeting attended by everyone in the
plant. Here information on organizational performance is presented
and discussed. Three committees also meet weekly, reporting their
activities at the plant meeting. They are the Process, Productivity
and Materials committees. These committees gather the information
that is presented at the plant meeting, and have the responsibility of
identifying and solving problems related to each of their three
functions. Work group meetings are the third form of representation.
These brief, daily meetings are the opportunity for employees to re-
view how they did the previous day and to plan their daily work. All
three types of meetings are facilitated by a member of that group.

Representation has little meaning unless employees have information
with which to make decisions. Thus, an information system is the
third element of workplace democracy. In the democratic process of
the United States access to information is essential as exemplified by
freedom of the press and open congressional records. In workplace
democracy or participative management information is equally
essential. Employees are taught to collect and understand management
level information. Care is taken that the organizational performance
of the whole plant is represented in these measurements. Thus
productivity measures such as Cost per Standard Hour and Work in
Process Cycle Time are used. Quality is measured by Mean Time Between
Failure. Schedule is charted as Plan vs Actual hours. It is around
this type of information that representative decision making occurs.
These measures are reported by the employees at weekly plant meetings.

In addition to the information presented at plant meetings, a weekly
newspaper is distributed that shows the collected information in
graphs. The newspaper is created by the employees themselves. In
addition to organizational performance information, the newspaper is




used to communicate the agreed upon goals of the plant.

Another way information is kept and displayed is by having wall charts
that employees maintain in each work area. These charts reflect the
amount of work the group has committed to in their daily work group
meetings, the work accomplished to date and various measures of
quality. Thus feedback on each group's performance is daily and
visible.

It is not uncommon in manufacturing for some type of performance mea-

sures to be computed. It is however unusual for those measures to re=-
present anything other than direct labor effort. It is even more un-

usual for the information to be gathered and utilized by the employees
themselves.

DEFINITION OF WORKPLACE DEMOCRACY AT TANDEM

Workplace democracy is defined as an organizational structure and
systematic process which supports the utilization of the whole person
(values, creativity, knowledge and skills) in the work environment
through:

® open communication

® participation in decision making at all levels

# respect for each individual

* immediate feedback on organizational performance

One of the concepts incorporated into this definition is that the
employee's ideas and planning skills are utilized as well as his/her
manual labor. However, it is important to note the word "supports"
rather than "demands" in the definition. Just as the democratic pro-
cess of the United States does not require citizens to vote or run for
congress, so an employee in workplace democracy is not required to
participate. An employee may choose to simply do the assigned task
and leave participation to others.

Workplace democracy as it is designed for Tandem manufacturing can be
viewed as a framework upon which each plant or organization may con-
struct its own unique system. That system may vary in terms of the
extent of employee participation, the number and type of committees,
the productivity and quality measures used and so on. It is assumed,
however, that for workplace democracy to be successful in any organ-
ization it must incorporate the three elements of alignment, repre-
sentation and feedback of organizational performance.

It is important not only to say what workplace democracy is but also
what it is not. It is not a system that requires every employee to
help make every decision. Some decisions are appropriately made by
the leadership at each level of the organization. For example, the




organizational charter for manufacturing is defined at the corporate
level and individuals, including the plant manager, are employed to
carry *out that charter. In Tandem manufacturing the charter is to
convert raw materials into usable finished goods with; a competitive
cost, quality upon receipt of finished goods, reliability, on time
delivery and predictability, while maintaining a positive work en-
vironment. Neither the employees nor the leadership of a manufac-
turing plant are free to choose not to convert raw goods into usable
product. As illustrated by the organizational charter every manager
has certain decisions he/she can make and others that are made at a
higher level. Managers can only allow others to participate in de-
cisions that are within the scope of their own responsibility. They
cannot share power they do not have.

WORKPLACE DEMOCRACY AS A COMPLEX CONFIGURATION -

As illustrated in figure one, the success of workplace democracy
cannot be found in any one element. It is the combined effect of all
three elements that makes it effective. Many organizations have
attempted to put into place one of the three elements, believing that
that element alone would increase productivity. For example, a great
number of employee-involvement programs have been implemented’in
organizations with only brief success because the employees were given
no information base to use in making decisions. Other organizations
have attempted to align employees around an organizational goal, again
achieving only limited success because employees had no systematic way
to input their ideas into the organizational hierarchy.

It cannot be overly stressed that workplace democracy is not simply
allowing employees to make some of the decisions. Rather workplace
democracy, as it has been developed in manufacturing at Tandem, is
founded on a positive belief in people and derives its effectiveness
from the interrelatedness of its three elements, an information system
that is used to give immediate feedback of organizational performance,
dynamic leadership capable of aligning the organization around a
common vision and systematic represenation of all levels in the
decision making process.
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Silicon compilers tame
10,000-gate-plus
ASICs, gate arrays

Traditional design methods that manipu-
late gates or simple macrocells become un-
wieldy at densities of tens of thousands of
qates per chip. However, silicon compilation
offers a new paradigm for the manage-
ment of these large, complex designs.

William J Stenzel, Tandem Computers Inc

Silicon compilation is an alternative to gate arrays and
standard cells for implementing ICs. A silicon compiler
creates layouts of part or all of a chip from a high-level
description. Therefore, when using a silicon compiler,
you can focus your efforts on high-level verification and
system-timing issues rather than on low-level circuits
and gates. Conceived for custom chips, silicon-compila-
tion techniques also prove useful for gate arrays con-
taining more than 30,000 gates.

Unlike gate-array or standard-cell designs, which
require a gate-by-gate approach, silicon compilers allow
you to manipulate high-level functions. You'll find sili-
con compilers’ advantages most evident when you de-
sign data-path blocks and specify compiler functions in
terms of latches, register files, multiplexers, arithmetic
and logic units (ALUs), and shifters as well as in terms
of their connections to data buses. In contrast, when
using standard cells or gate arrays, you build up

high-level functions from a library of low-level ele-
ments, such as gates and flip-flops, and then route
signals between them.

Compiled chips, like standard-cell chips, require full
wafer processing, in contrast to gate arrays, which
require only the personalization of an existing base
wafer’s metalization. Consequently, nonrecurring ex-
pense (NRE) and time required to fabricate prototypes
of a compiled chip are similar to those of standard-cell
chips and higher than for small gate arrays.

Silicon compilation excels at highly structured, regu-
lar functions, such as data paths and memories. Such
functions appear, for example, in digital signal pro-
cessors, which are primarily structured blocks with
most of their interconnections going to the external
pins. Further, more complex chips may have islands of
regularity in a sea of interconnection.

Look at your application to decide if your design is
large enough to benefit from compilation. To consoli-
date only a few thousand gates of random logie, you
might find a gate array more cost-effective. Designs in
excess of 10,000 gates are the best candidates for
compilation.

Compiler vendors offer two types of tools

When evaluating silicon-compiler vendors, you will find
that some offer generic tools while others offer tools
specific to their own foundries. Two that offer generic
tools are Silicon Compiler Systems Corp. (San Jose, CA)
and Seattle Silicon Corp. (Bellevue, WA). You may com-
pile your design for fabrication at one of serveral foun-
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Silicon compilers allow you to manipulate
high-level functions; you needn’t work at
the gate level.

dries these two companies’ compilers support. In con-
trast, VLSI Technology Ine. (San Jose, CA) offers
compilation tools customized to VLSI Technology’s fabri-
cation process.

Other differences among compiler vendors lie in the
features their compilers offer. Compilers from Silicon
Compiler Systems and VLSI Technology are complete
packages, including data entry, simulation, and timing
analysis. Seattle Silicon’s offering requires a third-
party CAE workstation and software to provide many
functions, such as schematic capture and logic simula-
tion. Finally, Silicon Compiler Systems and Seattle
Silicon offer tools that let sophisticated customers such
as semiconductor houses create their own block compil-
ers. This feature enables such customers to add propri-
etary functions or to tune functions to their own pro-
cesses.

Changing your mindset

When first using a silicon compiler, you might need to
make some changes to your design approach, particu-
larly if your experience is with board-level TTL. Esti-
mating whether or not a given design will fit onto a chip
requires a set of guidelines that differ from those for
pe-board layout. For example, when you size the pe-
board area for a TTL design, half a dozen inverters and
a 64k-byte RAM take about the same amount of space.
Conversely, area within compiled chips depends more
on the amount of logic in a function. Moreover, intercon-
nections within a chip consume considerable space,
occupying as much area as active logic in many cases.

Circuitry details, too, might dictate some changes in
your design methods when you first use a silicon
compiler. For example, although most systems use an
edge-triggered register methodology that’s familiar to
TTL designers, Silicon Compiler Systems’ Genesil dif-
fers in that it supports a latch-based scheme with
2-phase, nonoverlapped clocks and precharged buses,
more typical of custom IC designs.

In contrast to edge-triggered schemes, which use
registers as state elements that sample inputs at a clock
edge (and which allow data an entire clock period to
propagate through the subsequent logic before being
sampled at the next clock edge), 2-phase latch-based
schemes use transparent latches as state elements. The
latches propagate data from their inputs to their out-
puts when the clock that enables them is asserted, and
they hold their data when the clock is not asserted.

In the 2-phase scheme, a clock generator converts a
master clock into two phases: phase A and phase B.

Phase A is asserted when the master clock is high;
phase B, when the master clock is low. These two
phases are interlocked so that they are never simultane-
ously asserted (hence the term “2-phase nonover-

lapped”).
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Fig 1—The designer, the compiler vendor, and the silicon foundry
must all cooperate to bring an IC from an idea to a working chip.




You must alternate which phase controls the latches
throughout your design: Signals originating in a latch
controlled by phase A must terminate in a latch con-
trolled by phase B. When a phase A latch is propagat-
ing, the subsequent phase B latch is holding, and vice
versa, thus eliminating race conditions. Transparent
latches require roughly half the space and internal logic
as edge-triggered registers. Hence, they provide an
advantage in chip size. After becoming familiar with
the technique, you will find the latch-based scheme to
be flexible and useful for pushing the performance of
critical timing paths.

Design process

Fig 1 charts the steps—covering several design disci-
plines—that you must take to transform your product
idea into a working chip. You must organize major
projects with an awareness of these disciplines. During
the specification and initial design phase, several engi-
neers might each concentrate on a functional area of the
design. As the project progresses, each engineer might
focus on simulation, layout, or timing analysis.

In the architecturzl-definition phase, you must deter-
mine how to map your idea onto chips and evaluate
design alternatives against system cost and perfor-
mance requirements. Using the compiler, you can cre-
ate trial designs of major blocks for evaluation. Because
you describe blocks by their functional attributes, the
compiler can capture the rough design and do the detail
work necessary to determine size and speed estimates.

For example, within a data path, you could specify
interconnections between ALUs, latches, register files,
and multiplexers via major buses (as you would when
drawing a conceptual block diagram). You can sketch
the design alternatives and have the compiler expand
the sketch into full detail to facilitate experimental
designs for architectural evaluation. By the end of this
phase, you will produce block diagrams and detailed
specifications for the design.

Cost estimates

The major variables in a chip’s cost are its size,
package, and foundry. You can estimate size by experi-
menting with designs on the compiler and incorporat-
ing major logic blocks, signal buses, and an allowance
for details not included in the rough design. High pin
counts can create pad-limited chips in which /O pads on
the periphery determine the die size. As the die size
increases, chip cost dramatically increases. Your foun-
dry should help by estimating the cost based on die size.

Pin-count estimates should include power and ground
pins. To reduce noise from simultaneously switched
outputs, you need at least one power and ground pin for
every eight to ten simultaneous outputs. The required
ratio varies with the speed of the output drivers and
the fabrication process. As pin counts increase, package
costs also increase. Ceramic pin-grid-array (PGA)
packages of 100 to 180 pins are available, but they can
add $10 to $20 to parts cost.

Design capture

To implement your design, the compiler must capture
several layers of information. Working from the inside
of the chip to the outside, you should follow these steps
in the design capture:

® Define the functional blocks and specify block

interconnections.

® Specify chip I/O pads for function and location on

the chip periphery.

¢ Connect the pads to the internal circuitry.

® Specify the package type and the bonding be-

tween chip 1/0 pads and package pins.

At the block-specification phase, you begin by select-
ing the desired type of functional block from a block-
creation menu. The detailed specification varies with
the type of block. For example, a random-logic block
would comprise simple gates. Seattle Silicon and Silicon
Compiler Systems support a schematic-capture mode
using third-party CAE workstations. In this mode, you
could specify the random-logic block by interactively
drawing a schematic of the gates and identifying the
external ports. Alternatively, Silicon Compiler Systems
also supports a menu-driven, text-oriented means of
specifying random-logic blocks.

A RAM or FIFO block, on the other hand, requires
different information. The meaningful parameters for
these blocks are size, organization, and timing. You
may specify these parameters in a menu-driven fashion
by filling in the appropriate blanks for the number of
inputs, the number of words, the speed options, wheth-
er the block is to be single or multiple ported, and
whether or not the output is latched.

Such blocks as read-only memory (ROM) or program-
mable-logic arrays (PLA) need this type of menu-
driven structural information; in addition, they require
programming information to specify their contents. For
example, Genesil accepts truth tables, fuse maps, logic
equations, or state-machine descriptions as formats for
conveying PLA contents. Logic minimizers, such as
Espresso from the University of California at Berkeley,




Silicon compilation excels at implementing
highly structured, regular functions, such
as data paths and memories.

are available for PLA minterm reduction on several
compilers.

You also have options in the method of specifying
ROM contents. Genesil includes a maero assembler that
can create symbolic macros and generate ROM contents
by macro assembly. Alternatively, you can use a file
containing the object code as ASCII ones and zeros. (At
Tandem, designers develop microcode on a system
other than the compiler and then port the finished

Background

Silicon compilers began generating interest in
1983 and 1984 (Refs 1, 2, and 3), and they have
since evolved into practieal tools, yielding such
products as graphies controller chips (Ref 4).

The information in this article is based on the
experience of designers at Tandem Computers,
who used silicon compilation to realize four CMOS
chips employed in the company’s NonStop CLX, a
user-serviceable distributed on-line transaction-
processing (OLTP) system. One of the chips—the
CPU—measures approximately 500x500 mils and
contains 60,000 transistors.
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Tandem Computers Ine produced this CPU chip with a silicon
compiler for its NonStop CLX fauli-tolerant computer. Part of a
four-chip set, the CPU measures 500%500 mils and contains
over 60,000 transistors.

object code to the compiler, formatting it appropriately
along the way.)

Consider also complex blocks such as data paths.
Genesil uses a menu-driven approach to specify data-
path elements, bus connections, and orientation. Under
Genesil, the entire data path is the same bit width (that
is, number of bits in a word slice), although some
elements allow masking of selected bits. (Although this
scheme might sound restrictive, it's actually quite ver-
satile.)

After you create the functional blocks, you must
interconnect them. Genesil uses a textual net list to
connect the external ports on each functional block to a
named net. Seattle Silicon uses a third-party CAE-
workstation schematic package to interconnect blocks.

Careful planning and good naming conventions are
important to the interconnection phase. If several engi-
neers work on different portions of a complex chip,
prior agreement on net names and spellings will allow
smooth and accurate net listing. Make the port names
the same as the net names whenever possible.

Chip layout

The first step in chip layout is compiling the function-
al blocks, transforming them from a text deseription
into a custom layout. After compilation, you can manip-
ulate them as blocks having signal ports on their edges,
without dealing with their internal layout. The rest of
the layout phase consists of placing the blocks and
routing their interconnections.

Compilers rely on an automatie signal router for
interconnection. Because a chip's size is flexible at this
stage, the router can push blocks away from each other
to make room for the interconnections, guaranteeing
that all the interconnections can be made. However, the
result can be a very large chip. Designers exert the
most influence on the layout through their placement of
the blocks. Other factors affecting layout include the
relative priority of signals and, on some compilers,
assignment of routing channels.

You should have a layout plan in mind for the overall
interconnection of the blocks (such as where major
buses tie to which blocks). Although compilers have
placement aids or even auto-placement algorithms
available, your insight is important in producing a tight
layout of a complex chip. Experimenting with alternate
layouts will be fruitful, both for trying significantly
different placements and for fine tuning the most prom-
ising placement. Achieving a good layout is very much
an iterative process.




The compiler should assure adequate power and clock
distribution, For example, Genesil calculates the power
of each block and uses a power/ground bus width based
on the total power of all blocks downstream from a given
point. This procedure results in power buses that begin
with a width of the power bonding pad and taper
progressively. Clock lines may benefit from high-priori-
ty routing and several-times wider-than-minimal metal
lines. In some cases, the clock lines can be isolated from
other signals by surrounding them with ground lines.

Because interconnection delays stemming from wir-
ing capacitance can be significant in CMOS, you must
monitor the chip's eritical paths while optimizing the
chip size.

Simulation—verifying your design

Verifying your design through simulation is essential
to maintaining the project schedule and budget. The
expense, effort, and time required for chip iterations
make a first-pass success highly desirable. Good simu-
lation tools and a careful strategy make first-pass
suceess attainable. The compiler generates a simulation
model for your design automatically, ensuring that
what you simulate corresponds to what you imple-
mented.

Table 1 describes several levels at which to simulate.
As you enter your design, you may interactively simu-
late small portions. For example, you may perform a
check on a piece of control logic by manually applying a
few patterns and observing the response. This level

TABLE 1—LEVELS OF SIMULATION

CHARACTERISTICS/USE

= GOOD FOR INITIAL DESIGN CHECKOUT
OR TROUBLE SHOOTING.

* POOA FOR COMPREHENSIVE
VERIFICATION.

» POOR REPRODUCIBILITY.

= ALLOWS SIMULATOR TO CHECK EXPECTED
AESULTS. CAN BE RERUN AFTER
CHANGES AS A REGRESSION TEST

» CAN BE USED AS PART OF PRODUCTION
TEST.

» RELIES ON DESIGNER INGENUITY TO
COVER ALL TEST CASES. CAN OVERLOOK
SYSTEM-LEVEL PROBLEMS.

= EXERCISES CHIP IN SYSTEM
ENVIRONMENT.

« GIVES HIGHEST DEGREE ON CONFIDENCE

« CONVERGES MICROCODE/SOFTWARE
AND HARDWARE VERIFICATION,

« CAN EXTRACT RESPONSES FOR PRODUC-
TION TEST.

TYPE
INTERACTIVE

HAND-CODED

SYSTEM-LEVEL

does not provide comprehensive verification, but it's a
good indication that you're on the right track.

At the next level, you can apply hand-coded simula-
tion vectors to the whole chip or to large parts of it.
These vectors can become production-test vectors. This
level is more rigorous and is reproducible as a regres-
sion test. However, it still relies on your ingenuity to
specify the stimulus and response. Because simulation
runs can require hundreds or thousands of vectors, the
simulator must check for the expected response to a
given stimulus and automatically flag any diserepan-
cies. This rigorous simulation is far superior to the
alternative of visually checking a printout of the simula-
tor’s output for erroneous responses.

Finally, you can embed the chip into a model of its
intended application and perform system-level simula-
tions. This level can expose subtle bugs and boundary
conditions that you would not normally find in your lab.

Timing analysis

Accurate prediction of the performance of your chips
is an important part of the design. You need to relate
your system's goals and constraints and identify the
areas of your chip that need fine tuning.

Two main components of CMOS circuit delays are the
gate propagation delay and the additional delay arising
from the capacitance and resistance of the interconnec-
tion. To obtain accurate timing numbers, you need to
incorporate the interconnection loading derived from
the actual layout of the chip. In a large chip, the
interconnection delay of a signal crossing the chip can
exceed a gate’s nominal propagation delay. An exces-
sive interconnection delay indicates a very long routing
or a net with a large fan-out. You can shorten the delay
by increasing the strength of the driver, altering the
placement of the chip to shorten the interconnection
length, or revising the logic to reduce the fan-out.

Two classes of timing-prediction tools exist. The
more traditional tool is based on circuit simulation.
Using a model of your circuit, you can stimulate it to
trace specific circuit paths to obtain their delay. In
general, the more accurate the caleulations, the slower
the simulator. Spice, a commercially available circuit
simulator, is an example of a very accurate and compu-
tation-intensive tool. One of the main drawbacks of this
type of tool is that it gives you information about only
the paths you specify and already suspect—not unex-
pectedly slow paths.

The second class of timing tool, static analysis, can
examine all paths and tell you which are the longest.




Two types of compiler vendors exist: those
offering generic tools and those offering
tools specific to their own foundries.

Static timing analyzers first characterize the delay
from input transitions at each gate to the output
transition at the gate's loads. They then trace the paths
through the circuit, adding up the delays as they go.
The most powerful form of analysis traces paths from
their origin in a clocked element to their termination in
a clocked element. In a synchronous system, this analy-
sis identifies the eritical paths limiting clock speed.

The static-analysis tool's obvious benefit is that it
tells you about timing paths you may not have realized
were slow. Other capabilities of a sophisticated static
tool include incorporating external setup and hold re-
quirements, checking margins on internal hold times,
and the ability to specify timing paths to be ignored.
Genesil also has the ability to automatically extract a
Spice model of a specified path to allow more exact
timing simulation where desired. The accuracy of a
static timing analyzer depends on the sophistication of
its models of transistor characteristies and resistive and
capacitive loading. Static timing analyzers better suit
synchronous cireuits than asynchronous ones.

You can use both timing tools to observe the effects of
temperature, variations in voltage, and variations in
the fabrication process.

The next step is to assure that the physical mask that
the compiler produced accurately represents your de-
sign. To accomplish this task, compiler vendors provide
various types of post-design checks. The most basic is
the traditional design-rule check (DRC). The DRC
program processes the mask's data against the physical
design rules for the foundry you have selected, check-
ing that trace width and spacing meet a minimum
specified size and that the transistors are properly
formed, for instance. This checking assures that the
chip can be fabricated.

Checking the mask

You can make an additional check by programmati-
cally extracting the circuit’s topology (that is, by deriv-
ing the circuit elements and the net list that they
implement from the mask). This extraction can further
verify the physical design, either by direct comparison
to the logic design you previously simulated or by
simulation against the same stimulus/response vectors
you previously used.

You may wonder why compilers need this type of
post-verification; after all, they should automatically
generate correct silicon. However, one of the benefits of
a silicon compiler is that it facilitates large, complex
chip designs, such as microprocessors. Designers de-

TABLE 2—PROTOTYPE FABRICATION STEPS

TASK TIME COST
FINAL VERIFICATION 27O 4 WEEKS SEE NOTE
DATABASE CONVERSION 1 WEEK $2k TO 10k
PLOT APPROVAL 2 DAYS —
MASK GENERATION 1 TO 2 WEEKS $30k TO 40k
WAFER FABRICATION 6 TO 10 WEEKS Sk TO 20k
ASSEMBLY 1 TO 2 WEEKS —
PACKAGE PART TEST 1 TO 2 WEEKS SEE NOTE

NOTE: PART OF BROKERAGE PACKAGE FROM COMPILER
VENDOR

mand rich sets of design elements, and vendors enhance
their products for higher density and performance. The
result is that as designers push beyond what has been
done before, a possibility of generating bugs exists.
Even a single error in a chip can cause a malfunction;
therefore, post-verification is essential to ensuring
correct silicon.

After verification, build prototypes

When your chip has completed final verification, you
are ready to build prototypes. Several compiler vendors
offer a brokerage service, for which they coordinate
initial fabrication with the foundry and deliver the
working parts to you. Seattle Silicon and Silicon Com-
piler Systems offer this service with guarantees of
working parts.

To ensure a smooth path for your prototypes and to
prepare for production, you need to begin a business
relationship with your foundry well in advance of first
silicon. This preparation can insure that the right
resources and materials are in place when you need
them. For example, if you specify a package type that
the foundry does not stock, the lead time to procure it
can be longer than the fabrication time.

Advance discussions can also clarify the time and
charges for fabrication. The overall time and charges
for getting tested parts are substantially more than for
simply running a wafer lot. You need to make certain
that you understand the steps in the process (Table 2).
For example, starting from a database tape, the foun-
dry converts database formats for the mask vendor and
has the masks fabricated, inspected, and repaired be-
fore processing. After processing, the parts are assem-
bled. You also need to allow time for testing, either at
the foundry or at the compiler vendor. Table 2 de-




You may need to make some changes to
your design approach, particularly if your
experience is with board-level T'TL.

TABLE 3—CHARACTERIZATION AND
PRODUCTION TESTS

AREAS TESTED

* OVERALL LOGICAL INTEGRITY OF
CHIP.

* VOLTAGE THRESHOLD OF INPUT
PINS,

* VOLTAGE AND CURRENT OF OUTPUT
PINS.

* LEAKAGE CURRENT OF INPUT AND
3-STATE PINS.

* CHIP INPUT SETUP/HOLD FROM
EXTERNAL CLOCK

* DELAY FROM CLOCK OR INPUT PINS
TO OUTPUT PINS.

* MAXIMUM OPERATING FREQUENCY
FOR CLOCK.

TYPE OF TEST
FUNCTIONAL

DC PARAMETRIC

AC—SETUP/HOLD
—OUTPUT DELAY
—CYCLE TYPE

scribes the steps in prototype fabrication, including the
time and cost required.

If you use a brokerage arrangement, the foundry
delivers untested parts to your compiler vendor. The
compiler vendor then tests the packaged parts using
test vectors from your simulation runs. This test as-
sures functional parts and provides some speed testing.
The compiler vendor’s involvement usually ends here.

You must still do substantial test development to put
your parts into production. Production tests have three
broad components: functional tests, de tests, and ac
tests (Table 3).

Funetional tests find fabrication faults quickly. The
vectors used for simulation during design verification
may not be appropriate for production. Verification
typically assumes that the logic elements are perfect
and checks to determine if your design functions as
intended. These tests can have poor fault coverage or
can be excessive in length. One current weakness of
silicon compilers is poor support for fault-grading tools
with which you improve production tests.

Compilers support transporting simulation vectors to
selected IC testers. (With Genesil, Tandem designers
needed to develop a format converter for Sentry
Schlumberger Inc and Ando Corp for production. Once
this tool was in place, they captured vectors from
system-level simulations and incorporated them into
production tests. This tool proved to be very effective:
The chips could be tested with the same stimuli that
they would ultimately encounter in the system.)

De and ac tests check the chip against its data-sheet
specifications, The de tests include input-voltage
thresholds, output voltage levels at specified currents,

and input and 3-state leakage currents. Ac tests include
output delays, cyele times, and setup and hold times.
Ideally, you should characterize these parameters over
a range of supply voltages and temperatures corre-
sponding to the specified operating range. Use a sam-
pling of parts over different fabrication runs to include
process variations. This testing lets you balance your
system requirements against the actual performance of
the chips and establish test limits to maximize your
yield. It can also indicate problem areas requiring
further attention. Your foundry can help in performing
this characterization. EDN
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Transaction Processing on the Tandem NonStop Computer:
Requestor/Server Structures

INTRODUCTION

Online Transaction Processing

Online transaction processing is, as the name
implies, computer processing of data relevant to in-
dividual business transactions as they occur.' It is
perhaps best understood in contrast to batch
processing, the carefully sequenced posting of large
numbers of transactions the night after, the week
after, or the month after they occur. Online
transaction-processing systems are attractive be-

cause (unlike batch systems) they are never out of

date. They can provide accurate information on the
state of a business at any instant, This allows man-
agers to respond immediately (and intelligently) to
unforeseen problems, changing conditions, and un-
expected opportunities.

Online transaction processing has obvious ap-
plications in banking, inventory control, ticket and
flight reservation processing, and many other areas.
The major operational requirements are illustrated
in Fig. 1. A large number of terminals must access
and update a common data base in real time.
Changes in the data base must be immediately
available to all users. The system must be capable
of handling large numbers of transactions of various
types, arriving almost concurrently in an unpredict-

LA
i 8

Many terminals Diverse transactions
(customers waiting, (high volume,
employees waiting) unpredictable

sequence)

able sequence. The hardware used must be ex-
tremely reliable because business cannot go on
when the system is down,

Transaction-processing software must be easily
modifiable, capable of rapid response, and readily
expandable:

® Ease of modification is important because,

during the lifetime of the software, numer-
ous changes will have to be made to keep
pace with user needs and to fix bugs. The
cost of making these changes must be con-
sidered as part of the cost of developing the
software.

® Response time is critical because customers

are frustrated if the system is slow (o re-
spond, and terminal operators are idle and
unproductive while waiting for the system.

® Expandability is vital because software that

handles 200 terminals today may within a
few years have to deal with 1000, and sys-
tems used initially for inventory control may
eventually have to perform billing and other
functions as well.

Application
software

* Easily
modifiable

» Capable of Data
rapid response base
* Readily
expandable
Computer hardware Data-base updates
(must be reliable) immediately available
to all users

Fig. 1 The environment of online transaction processing.




The NonStop System

Tandem designed the NonStop system? with on-
line transaction processing in mind. It is many times
more reliable than any other commercially available
system. No single component failure can shut it
down or contaminate its data if it is properly con-
figured.

As shown in Fig. 2, the system contains multi-
ple CPUs, each with its own private memory and
multiplexed input/output channel. The processor
modules communicate with one another over a pair
of high-speed interprocessor buses (DYNABUS).
Peripheral device controllers are connected to the
input/output channel of two processor modules so
that the device is accessible even if a CPU fails. The
system can be expanded simply by adding more
processor modules (up to a maximum of 16 per sys-
tem) as the workload increases. Then, with the aid
of Tandem's EXPAND software, up to 255 systems
can be joined into a network. Such expansion is
possible without reprogramming.

Dynabus
1l

I Tl Tl

Processor modules

T

= Disc Terminal il
controller '_ Tape | | controller
controller

Disc

olle

-] Disc BOBEaNe,
controller

Fig. 2 The basic architecture of the Tandem
NonStop system.

A process (i.e., a program running on the
Tandem machine)® can be protected from system
failures by the execution of a Secondary, or backup,
process in another processor (Fig. 3). This backup is
programmed so as to require only periodic
checkpoint messages to keep it apprised of the state
of the primary, and it can step in at any time should
the primary fail. The logistics involved in maintain-
ing a collection of concurrently executing process
pairs (primaries and backups), distributed over as

L]

many as 16 CPUs, would be horrendous were it not
for a simple and extremely efficient message system
built into GUARDIAN, the Tandem operating sys-
tem. As shown in Fig. 3, the message system allows
any process in the system to communicate with any
other without detailed knowledge of its physical lo-
cation. Furthermore, it positively confirms receipt
of each message and keeps the sender’s address on
hand so that the receiver can reply as if the sender
were still on the line. The message system makes
every process running on a l6-processor system as
easy 1o access as a file on a more conventional
machine.

— Message system

Fig. 3 The message system (part of the Tandem
operating system) makes every process running
on a 16-processor system as easy to access as a
file on a more conventional machine.

The unique architecture of the Tandem NonStop
computer system brings into play some equally
unique approaches to software design. Because of
the message system and the availability of multiple
processors, there are performance and other advan-
tages to be gained by breaking transaction-
processing software down into ‘‘requestor
processes’” (independent software entities that con-
trol terminals and perform user-interface functions)
and *‘server processes'’ (independent entities that
access and manipulate the data base). The purpose of
this paper is to discuss the nature of the requestor/
server structure and the advantages that result from
its implementation on the Tandem machine.

REQUESTOR AND SERVER PROCESSES

Figure 4 shows the division of labor between
“‘requestor’” and “‘server” processes in an online
project management system. This system provides
managers with accurate and timely information on
projects in progress, events that occur in connection
with each project, and participants in projects and
events.

The requestor process is responsible for the fol-
lowing functions: terminal interface, field valida-
tion, data mapping, and transaction control.' The
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terminal interface deals with the various protocols
that different terminals in the system employ. Field
validation involves checking the input for
numeric-only or alphabetic-only fields, required
fields, etc. Data mapping is the conversion of data
from its terminal display form to its internal form
(e.g., June 27, 1981 to 810627) and back again.
Transaction control includes all the logic necessary
to display screens in the proper order, perform
inter-field data consistency checks, and decide what
actions to take in response to inputs from the termi-
nal. It is desirable from the standpoint of efficient
resource management that requestors be multi-
threaded (i.e., capable of dealing with more than
one request at a time), but this presents a formidable
programming challenge.

Server processes (always single-threaded) are
responsible for data base access, calculations, and
other functions. In the sample application described
in Fig. 4, there are four servers (Projects, Events,
Participants, and Employee/Department), each one
capable of processing several different transactions.
For example, the Project server can add, update,
delete, and list projects. (This does not mean that it
only accesses project records, but rather that it per-
forms all data base access required to process
project-related transactions.)

Two examples will illustrate how requestors and
servers work together in handling a transaction.

Example 1. A user at a terminal presses a func-
tion key to indicate that he wants to add an event.

Requestor

* Terminal interface
* Field validation

e Data mapping
» Transaction control

However, in entering information about the event,
he forgets to supply the project name, which is con-
sidered by the software to be a required field. The
requestor receives the input, recognizes that a re-
quired field is missing, and sends an appropriate
error message to the terminal. In this case, because
of the error, the server does not get involved.
Example 2. The user at the terminal receives the
error message and repeats the request to add an
event, this time supplying the required information.
The requestor again checks to see that all the infor-
mation is there and that it is in the correct format
(numeric items in numeric fields, etc.). Then, it
converts the data to the internal representation for-
mat and composes a message consisting of data rel-
evant to the event and a code indicating that a new
event is to be added to a particular project. It sends
this message (the *‘request’’) to the Events server.

The Events server receives the message, iden-
tifies the “*add event’’ code, and, in response to that
code, takes action. First, it reads the relevant proj-
ect record and increments by one the event-count
number contained in that record. Next, it sets the
event number for the new event equal to the event-
count number, writes that event to the data base, and
rewrites the project record. Finally, it composes a
message containing an *‘operation-successful’’ code
and sends that message back to the requestor.

The requestor recognizes the ‘‘operation-suc-
cessful™ code and sends an appropriate message (o
the terminal.

Servers

Projects

Add Delete
Update List

Events

Add Delete
Update List

Data
base

Participants

Add Delete
Update List

Empl./Dept.
Add Delete
Update List

Fig. 4 Requestor and server processes in application software for an online project management system.
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User-supplied
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* Multithreaded

terminal

interface SCREEN COBOL
* NonStop programs

coding (single threaded)
* Transaction

control

Requestor

Data
base

00

Empl./Dept.
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Fig. 5 PATHWAY, a Tandem software product, simplifies and standardizes the development of requestor/

server-based application software.

Tandem offers a software product, PATHWAY,?
which simplifies and standardizes the development
and maintenance of requestor/server-based applica-
tion software (Fig. 5). PATHWAY eliminates the
need to consider multithreading of the requestors
and the design of primary and backup requestor
pairs. It also provides an environment for the con-
figuration and control of the application.

Under PATHWAY, the only part of the requestor
that users must supply is a collection of appropriate
SCREEN COBOL programs (written as if they were
single-threaded). Users must also design and write
the servers. The first step in designing a system
based on PATHWAY is to identify the required
transactions and define precisely the sequence of
actions for each one. Then, comes the problem of
“*packaging’’ these transactions into servers.

Packaging is something of an art, learned by
experience with diverse applications, and there are
many different ways of doing it. However, several
guidelines can be mentioned here. First, the reques-
tor should generally not have to call upon two dif-
ferent servers to complete a single transaction (be-
cause this doubles the message overhead, the load
on the requestor, and the possibility of delays due to
queuing). Secondly, if several transactions are han-
dled by a given server (as in Fig. 4), they should not
have widely varying execution times. If they do,
users will find it difficult to tune and control the
system because response times for the relatively

simple transactions will be erratic, depending on
whether a request for the complicated transaction is
being executed at the same time.

Server processes should be context-free. They
should not be required to remember past requests
and should not concern themselves with the origins
of the present request. The fact that a request came
from a Tandem 6520 terminal connected to a remote
Tandem system in Chicago connected to the local
system via a packet network (and that the user
pressed function key F5 in response to the ‘‘Enter
Event’” screen) is immaterial at this point in the
transaction. Servers need not even know which re-
questor sent the request because, in effect, the
Tandem message system holds the appropriate line
of communication open until the server responds.

Because servers are single-threaded and con-
cerned primarily with satisfying simple requests for
data base records or sets of records, they are ex-
tremely easy to design, code, and understand.

ADVANTAGES
Ease of Modification

Writing complex transaction-processing soft-
ware in terms of simpler requestor and server
modules reduces the likelihood of errors in design
and coding, and it also makes the software easier to
modify. Each module is highly independent of




every other. The interface between a requestor and a
server is restricted to a well-defined and limited set
of message formats and function codes. Thus, a
change in any component is unlikely to have unex-
pected or subtle effects on other components.

The modular structure of properly designed
requestor/server software greatly facilitates mainte-
nance and the implementation of changes because
such software can be readily understood. An analyst
or designer who understands the requestor/server
concept has only to ask a few basic questions to get
an overview of the system: What functions does the
application perform? What do the various reques-
tors do? What do the various servers do? What is the
format of the interprocess messages exchanged be-
tween the requestors and servers?

At the component level, he asks: What is the
format of each screen (menu screen, add-event
screen, etc.) presented to the terminal? What is the
logical hierarchy of the screens?

With regard to a particular server, he asks: What
requests does this server respond to? What data base
files does it access? What transactions does it take
part in?

Thus, the individuals assigned to maintain the
system or to implement changes can begin their work
with a comprehensive understanding of the system
and its components. This greatly increases the
probability that any changes made will be correct.

Rapid Response

Some of the most striking advantages of the
requestor/server structure stem from its ability to
take full advantage of the unique capabilities of the
NonStop system. Among these capabilities are a
capacity for parallel processing and system-tuning
features based on the availability of multiple
processors.

Transaction Pipelining. Traditionally, the term
“*pipelining’’ has been used to refer to the simulta-
neous execution by computer hardware of more than
one instruction at a time. Each instruction is typi-
cally divided into two phases, and the hardware
executes the first phase of one instruction simulta-
neously with the second phase of another. This im-
proves performance. Because of its multiple-
processor architecture, the Tandem NonStop system
is capable of a tremendous amount of this parallel
processing, and the requestor/server structure
makes possible what might be referred to as transac-
tion pipelining. The effects of transaction pipelin-
ing are illustrated in Fig. 6. _

In Fig. 6a, we assume that three transactions,
labeled A, B, and C, are received concurrently by a
“*monolithic’” program labeled R/S, which per-
forms both requestor and server functions. R/S
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takes 2 arbitrary time units (2t) to service each
transaction. Under these circumstances, A will be
served first while B and C wait, B will be served
next while C waits, and C will be served last. As
shown in Fig. 6a, transaction A will be finished in
2t, but transaction B will take 4t (because of the
wait time), and transaction C a full 6t.

The average response time for this series of 3
transactions is (2t + 4t + 61)/3, or in other words 41.
The throughput of the system under these conditions
is 3 transactions/6t, or in other words 0.5
transactions per time unit.

In Fig. 6b, the same three transactions arrive at
the system concurrently. However, in this case, the
application software consists of a requestor (R) and
a server (S) rather than a monolithic program, and
the hardware is a Tandem multiple-processor system
capable of parallel processing of requestor and
server functions. We assume that it takes one time
unit (1) for the requestor to do its work and another
time unit (t) for the server to do its work (for a total
processing time of 2t as in the previous example).

In the first time unit, A is serviced by R, while
B and C wait. In the second time unit, A is serviced
by S, and B is serviced by R, while C continues its
wait. In the third time unit, B is serviced by S, and
C is serviced by R. Finally, in the fourth time unit,
Cis serviced by S.

(a)
Time —» 0 2t 4t 6
R/S i

Transaction A

R/S

Transaction B

R/S

Transaction C

Average response lime = (2t+41+6t)/3 = 41

Throughput = 3 transactions/6t
= 0.5 transactions/t

(b)

Time— 0 1t 2t 3t' 4tl

Transaction A R S : :
I

Transaction B B S

Transaction C R S

Average response time = (2t+3t+41)/3 = -3t

Throughput = 3 transactions/41
= 0,75 transactions/t

Fig. 6 Comparison of the performance of (a)
monolithic transaction - processing software run-
ning on a conventional computer and (b)
requestor /server software running on a Tandem
machine.




As shown in Fig. 6b, under these circumstances,
the response times are lower and the system
throughput is higher because of processing over-
laps. The response time for A is 2t, the response
time for B is 3t, and the response time for C is 41.
Thus, the average response time is (2t + 3t + 4t)/3,
or in other words 3t. The throughput of the system is
3 transactions/4t. or in other words 0.75
transactions per time unit.

This is, of course, an idealized case. It is un-
realistic to assume that every transaction will take
equal time in the requestor and the server, and,
what’s more, the time taken in sending messages
has been ignored. (It is usually negligible.) How-
ever, the basic idea is sound — namely that perfor-
mance gains can be achieved by structuring applica-
tion software to take advantage of the Tandem sys-
tem’s inherent capability for parallel processing.

Tuning a Requestor/Server Application.
Traditionally the tuning of application software to
improve performance has been done by modifying
the program itself. However, there are several
dangers inherent in this practice:

® Modifying code may introduce bugs.

® The time required to modify code is consid-

erable (often measured in days, weeks, or,
in extreme cases, months).

® Tuning of this kind usually involves coding

tricks that also make the programs harder to
debug, maintain, and understand.

® Modifying code is the most expensive way

10 tune because of the manpower costs in-
volved.

&

Dual executions
of the same server

Requestor

&~
18-

A more reasonable approach to tuning is avail-
able on the NonStop system if the software is based
on the requestor/server model. The performance
problem can be traced either to hardware or soft-
ware overloading. If the performance problem is
due to an excessive queue on a hardware compo-
nent, more hardware can be added. as on any com-
puter system. However, the NonStop system is
unique in that it allows CPUs to be added as easily
as any other type of hardware (and without repro-
gramming).

If the performance problem is due to software
overloading, it can be traced to terminal software
overloading or data base software overloading (via
a Tandem performance-measuring tool known as
XRAY,% which can measure the average queue
length associated with a given process), Once the
problem is identified, the application manager
needs only to introduce additional requestors or ser-
vers into the system to correct it (Fig. 7). This in-
volves no recoding because the requestor or server
processes added are simply new executions of exist-
ing programs.

Load-balancing is another tuning method avail-
able on the NonStop system if the application soft-
ware has been designed in accordance with the
requestor/server model. Load-balancing is the redis-
tribution of files on discs or of processes among the
available CPUs to achieve the most efficient use of
each.

Figure 8 illustrates one load-balancing opera-
tion. If CPU 2 in Figure 8a is chronically over-
loaded and XRAY measurements show that server
S3 is the culprit, it would be possible in a matter of

L

Employee/
Department

Fig. 7 By duplicating requestors or servers, system managers can relieve overloading of selected software

resources and thus improve response time.
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Fig. 8 (a) To relieve a bottleneck in CPU 2 due to overloading, the system manager could shift Server 3

to CPU 0, thus balancing the load (b).

minutes (Fig. 8b) to move server §3 from CPU 2 1o
CPU 0, which happens to be underutilized.

The NonStop system architecture allows any
process to run in any processor module. The mes-
sage system allows processes to communicate with
one another regardless of which CPU they are run-
ning in and without the need for either process to
know which CPU the other is running in. Therefore,
there 1s no need to modify the code of a process
when moving it from one CPU to another.

By adding software capacity in modular fashion
and balancing the load on each CPU, the application
manager can tune the application software without
recoding, while preserving its logical structure, its
modularity, and its simplicity.

Expandability

As explained above, the requestor/server struc-
ture makes application expansion easier. To add ca-
pacity to a NonStop system, one simply adds more
processor modules, terminals, and disc drives as
needed. Additional copies of the requestors and ser-
vers, identical to those in the original software, can
then be run on the new hardware. The additional
cost of software is minimal, consisting only of
license fees for optional software products running
in the new processors, and no additional program-
ming is required.

Adding new functions is also simple. As the
computing tasks increase in complexity, new ser-
vers are added to perform the new functions, and
the SCREEN COBOL programs in the requestor are
modified to make the appropriate requests.

CONCLUSION

The Tandem NonStop system architecture
provides a favorable environment for online transac-
tion processing, but poorly designed application
software can negate the benefits offered by the ma-
chine. The requestor/server structure offers a
proven way of achieving ease of modification, rapid
response time, and expandability in transaction-
processing software designed for the Tandem ma-
chine, and the PATHWAY software product signifi-
cantly reduces the time needed to develop such
software.
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Abstract

A fault-tolerant computer architecture is examined that is commercially avail-
able today and installed in many industries. The hardware is examined in this
paper and the software is examined in a companion paper [Ref. 4].




Introduction

The increasing need for businesses to go on-line is stimulating a requirement for cost effective
computer systems having continuous availability [Ref. 7, 2. Certain applications such as auto-
matic toll billing for telephone systems lose money each minute the system is down and the
losses are irrecoverable. Systems commercially available today have met a necessary require-
ment of multiprocessing but not the sufficient conditions for fault-tolerant computing.

The greatest dollar volume spent on systems needing these fault-tolerant capabilities are in the
commercial on-line, data base transaction, and terminal oriented applications. The design of the
Tandem 16 NonStop* system was directed toward offering the commercial market an off-the-
shelf, general purpose system with at least an order-of-magnitude better availability than existing
off-the-shelf systems without charging a premium (see Appendix A). This was accomplished by
using a top down system design approach, thus avoiding the shortcomings of the systems
currently addressing the fault-tolerant market.

Except for some very expensive special systems developed by the military, universities, and
some computer manufacturers in limited quantities, no commercially available systems have
been designed for continuous availability. Some systems such as the ones designed by ROLM
have been designed for high MTBF by “ruggedizing,” but typically computers have been de-
signed to be in a monolithic, single processor environment. As certain applications demanded
continuous availability, manufacturers recognized that a multiprocessor system was necessary
to meet the demands for availability. In order to preserve previous development effort and
compatibility, manufacturers invented awkward devices such as /O channel switches and
interprocessor communication adapters to retrofit existing hardware. The basic flaw in this effort
is that only multiprocessing was achieved. While that is necessary for continuously available
systems, it is far from sufficient.

Single points of failure flourish in these past architectures (Figure 1). A power supply failure in the
1/O bus switch or a single integrated circuit (IC) package failure in any I/O controller on the 1/0
channel emanating from the I/O bus switch will cause the entire system to fail. Other architectures
have used a common memory for interprocessor communications, creating another single point
of failure. Typically such systems have not even approached the problem of on-line maintenance,
redundant cooling, or a power distribution system that allows for brownout conditions. In today’s
marketplace, many of the applications of fault-tolerant systems do not allow any down time for
repair.

Expansion of a system such as the one in Figure 1 is prohibitively expensive. A three-processor
system, strongly connected in a redundant fashion, would require twelve interprocessor links on
the i/O channels; five processors would need forty links; for n processors, 2n(n-1) links are
required. These links often consist of 100-200 IC packages and require entire circuit boards
priced between $6,000 and $10,000 each. Using the I/O channel in this manner limits the /O
capabilities as a further undesirable side effect. The resulting hardware changes for expansion, if
undertaken, are typically dwarfed in magnitude by the software changes needed when applica-
tions are to be geographically changed or expanded.

This paper describes the Tandem 16 architecture at the lowest level (hardware). Section | deals
with the overall system organization and packaging. Section |l explains the processor module
organization and its attachment to the interprocessor communications system. Section Il
discusses the I/O system organization. Section IV discusses power, packaging, and on-line
maintenance aspects that are not covered elsewhere in the paper.
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Figure 1. Example of Previous Fault-Tolerant Systems

I. SYSTEM ORGANIZATION

The Tandem 16 NonStop system is organized around three basic elements: the processor
module, dual-ported I/O controllers, and the DC power distribution system (Figures 2 and 3). The
processors are interconnected by a dual-interprocessor bus system: the Dynabus; the /O
controllers are each connected with two independent I/O channels, one to each port; and the
power distribution system is integrated with the modular packaging of the system.

The system design goal is two-fold: (1) to continue operation of the system through any single
failure, and (2) to be able to repair that failure without affecting the rest of the system. The on-line
maintenance aspects were a key factor in the design of the physical packaging and the power-
distribution of the system.
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Figure 3. Tandem 16 Power Distribution

System Packaging

The cabinet (Figure 4) is divided into four sections: the upper card cage, the lower card cage,
cooling, and power supplies. The upper card cage contains up to four processors, each with up to
2 M bytes of independent main memory. The lower card cage contains up to thirty-two 1/O
controller printed circuit (PC) cards, where each controller consists of one to three PC cards. The
cooling section consists of four fans and a plenum chamber that forces laminar air flow through
the card cages. The power supply section contains up to four power supply modules. Multiple
cabinets may be bolted together and the system has the capability to accommodate a maximum
of sixteen processors.

Each processor module, consisting of a CPU, memory, Dynabus control and I/O channel are
powered by an associated power supply. If a failed module is to be replaced in this section its
associated power supply is shut off, the module is replaced, and the power supply is turned on.
Each card cage slot in the I/O card cage is powered by two different power supplies. Each of the
I/O controllers is connected via its dual-port arrangement to two processors. Each of those
processors has its own power supply; usually, but not necessarily, those two supplies are the
ones that power the I/O controller (Figure 3). Each slot in the |/O card cage can be powered down
by a corresponding switch disconnecting power from the slot from both supplies without affecting
power to the remainder of the system. Therefore, if a power supply fails, or if one is shut down to
repair a processor, no I/O controllers are affected.




| PRAOCESSORS

32 10 SLOTS

(i) ()

POWER POWER POWER POWER
SuPPLY SUPPLY SuPPLY SUPPLY

Figure 4. Tandem 16 Physical Cabinet

The dual-power sourcing to the |/O controllers was originally designed using relay switching. This
plan was abandoned for several reasons: a) to contend with relay failure modes is difficult; b) the
number of contact bounces on a switch-over is neither uniform nor predictable making it difficult
for the operating system to handle power-on interrupts from the | O controllers; and c) during the
switch-over, controllers do lose power, and while most controllers are software-restartable,
communications controllers hang up their communications lines. We therefore devised a diode
current sharing scheme whereby 1/O controllers are constantly drawing current from two supplies
simultaneously. If a power supply fails, all the current for a given controller is supplied by the
second power supply. There is also circuitry to provide for a controlled ramping of current draw on




turn-on and turn-off so there are no instantaneous power demands for a given supply causing a
potential momentary dip in supply voltage.

Both fans and power supplies are electrically connected using quick disconnect connectors to
speed replacement upon failure. No tools are required to replace a power supply. A screwdriver is
all that is needed to replace a fan. Both replacements take less than 5 minutes.

Interconnections

Physical interconnection is done both using front edge connectors and back-planes. Communica-
tions within a processor module(e.g. between the CPU and main memory)takes place over four 50-
pin front edge connectors using flat ribbon cable. Interprocessor communication takes place over
the Dynabus on the back-plane also utilizing ribbon cable. The I/O controllers use etch trace on the
back-plane for communication among PC cards of a multicard controller. The 1/O channels are
back-plane ribbon cable connections between the processors and the 1/O controllers.

Peripheral I/O devices are connected via shielded round cable either to a bulk-head patch panel
or directly to the front edge connectors of the I/O controllers. If a patch panel is used, then there is
a connection using round cables between the patch panel and the front edge connectors of the
I/O controllers.

Power is distributed using a DC power distribution scheme. Physically, AC is brought in through a
filtering and phase splitting distribution box. Pigtails connect the AC distribution box to one of the
input connectors of a power supply. The DC power from the supply is routed through a cable
harness to a laminated bus bar arrangement which distributes power on the back-plane to both
processors and |/O controllers.

Il. PROCESSOR MODULE ORGANIZATION

The processor (Figure 5) includes a 16-bit CPU, main memory, the Dynabus interface control,
and an /O channel. Physically the CPU, I/O channel and Dynabus control consists of two PC
boards 16 inches by 18 inches, each containing approximately 300 IC packages. Schottky TTL
circuitry is used. Up to 2 M bytes of main memory is available utilizing core or semicondutor
technology. Core memory boards hold 32K or 128K 17-bit words and each occupy two card slots
because of the height of the core stack. Semiconductor memory is implemented utilizing 16-pin,
4K or 16K dynamic RAMs. These memory boards contain 48K and 192K 22-bit words per board,
respectively, and occupy only one card slot and are therefore 50% denser than core.

The processor module is viewed by the user as a 16-bit stack-oriented processor, with a demand
paging, virtual memory system capable of supporting multiprogramming.

The CPU

The CPU is a microprogrammed processor consisting of a bank of 8 registers which can be used
as general purpose registers, as an LIFO register stack, or for indexing; an ALU; a shifter; two
memory stack management registers; program control registers (e.g. program counter, instruc-
tion register, environment or status register, and a next instruction register for instruction prefetch-
ing); scratch pad registers available only to the microprogrammer: and several other miscellane-
ous flags and counters for the microprogrammer.

The microprogram is stored in read-only memory and is organized in 512-word sectors of 32-bit
words. The microinstruction has different formats for branching, sequential functions, and
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immediate operand operations. The Tandem 16 instruction set occupies 1024 words with the
decimal arithmetic and the floating point options each occupying another 512 words. The address
space for the microprogam is 4K words.

The microprocessor has a 100 ns cycle time and is a two-stage pipelined microprocessor, i.e,all
microinstructions take two cycles to execute but one completes each cycle. In the first stage of
the pipeline any two operands are selected by two source fields in the microinstruction for loading
into the ALU input registers. In the second stage of the pipeline the ALU performs a primitive
operation on the operands placed in the ALU input registers during the previous cycle and
performs a shift operation on the results. In parallel, a miscellaneous operation such as a
condition code setting or a counter increment can be done, the result can be stored in any CPU
register or dispatched to the memory system or I/O channel, and a condition test made on the
results. Each of these parallel operations is controlled by a separate control field in the micro-
instruction.

The basic set of 173 machine instructions includes arithmetic operations (add, subtract, etc.),
logical operations (and, or, exclusive or), bit deposit, block (multiple element) moves/
compares/scans, procedure calls and exits, interprocessor SENDs, |/O operations, and operat-
ing system primitives. All instructions are 16 bits in length. The decimal instruction set provides an
additional 32 instructions dealing with four-word operands while the floating point instructions set
provides an additional 43 instructions.




The interrupt system has 16 major interrupt levels which include interprocessor bus data re-
ceived, 1/O transfer completion, memory error, interval timer, page fault, privileged instruction
violation, ete.

Provision is made for several events to cause microinterrupts. They are entirely handled by the
CPU's microprocessor without causing an interrupt to the operating system. One event for
example, is the receipt of a 16-word packet over the Dynabus. A packet is the primitive unit of data
which is transferred over the Dynabus for interprocessor communication.The microprocessor
puts the information in a predetermined area of memory and does not cause a system interrupt
until the entire message is received.

The register stack is used for most arithmetic operations and for holding parameters for block
instructions (moves/compares/scans) which need the parameters updated dynamically so that
the instructions may be interruptable and restarted. The 8-register stack is a “wraparound” stack
and is not logically connected to the memory stack.

Main Memory

Main memory is organized in physical pages of 1K words of 16 bits/word. Up to 1 M words of
memory may be attached to a processor. In the core memory systems there is a parity bit for
single error detection, and in semiconductor memory systems there are 6 check bits/word to
provide single error correction and double error detection. Due to the relative reliability of these
two technologies, we have found that semiconductor memory, without error correction, is much
less reliable than core, and that with error correction, it is somewhat more reliable than core.
Battery backup provides short term non-volatility to the semiconductor memory system for utility
power outage considerations.

It might be noted that there are some memory systems using a 21-bit error correction scheme (5
check bits on a 16-bit data word instead of 6). While 5 bits are enough to correct all single bit
errors, it does not detect approximately 1/3 of the possible double bit error combinations. In these
conditions, this 5-check bit scheme will incorrectly deduce that some bit (neither of the bits
actually in error) is incorrect and correctable. The scheme will then correct this bit (actually
causing 3 bits to be in error), and deliver it to the system as “good” reporting a correctable
memory error.

Memory is logically divided into 4 address spaces (Figure 6). These are the virtual address
spaces of the machine; both the system and the user have a code space and a data space. The
code space is unmodifiable and the data space can be viewed either as a stack or a random
access memory, depending on the addressing mode used. Each of these virtual address spaces
are 64K words long addressed by a 16-bit virtual address.

The physical memory address is 20 bits with conversion from the virtual address to physical
address accomplished through a mapping scheme. Four maps are provided, one for each logical
address space; each map consists of 64 entries, one for each page in the virtual address space.
The maps are implemented in 50 ns access bipolar static RAM. The map access and main
memory error correction is included in the 500 ns cycle time for semiconductor memory systems.

The unmodifiable code area provides reentrant, recursive, and sharable code. The data space
(Figure 7) can be referenced relative to address 0 (global data or G+ addressing), or relative to
the memory stack management registers in the CPU.

The lowest level language provided on the Tandem 16 system is T/TAL, a high-level, block-
structured, ALGOL-like language which provides structures to get at the more efficient machine




LOGIC AL
ADDALES
. . = n =
USER SYSTEM USER SYSTEM
Data DATA cood CoDE
AREA AREA anga AREA
i LOCICAL 84 LOGICAL 4 LOGICAL 4 LOGICAL
PACEY) PAGES! PAGES) : PAGES!
wsn - [ i ' = [ = =
LOGICAL
PAGE MO
°
L
i MAF | AR T AP 3
o = waro SYSTEM usER SYSTEM
: USER : DATA oDt CO0E
= DaTA —4
i i i MAR ENTHY
i i WP
L] L] W ¥ 12 13 A s
______ - - -
= By I v =s]ceeks]
o
. N /

1
PHYSICAL PAGE MO 1O 798I

FeorARITY

A - AEFERENCE BITS - USED BY OFERATING
SYSTEM TOSELECT & FAGE FOR OVERLAY

O-DIRTY BT - SET WHENEVER A WRITE
ACCESS 15 MADE TO THE PAGE

A = ABSENT 1 INDICATES THAT TME PAGE
15 NOT PRESENT IN PHYRICAL MEMORY
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instructions. The basic program unit in T/TAL is the PROCEDURE. Unlike ALGOL, there is no
outer block, but rather a main PROCEDURE. T/TAL has the ability to declare certainvariables as
global. PROCEDURES cannot be nested in T/TAL, but a SUBPROCEDURE can be nested in a
PROCEDURE and only in a PROCEDURE. A SUBPROCEDURE is limited in local variable
access capabilities.

The memory stack, defined by two registers in the CPU, is used for efficient linkage to and from
procedures, parameter passing, and dynamic storage allocation and deallocation for variables
local to the procedure.




The L register (Local variables) points to the last stack marker placed on the stack. This marker
contains return information about the caller such as the return address and the previous location
of the L register. The contents of the L register are primarily changed by the procedure call and exit
instructions.

Addressing relative to the L register provides access to parameters passed to a procedure (L—)
and local variables of the procedure (L+). Parameters may be passed either by value (using
direct addressing) or by reference (using indirect addressing).

The S register (stack top pointer) points to the last element placed on the stack. Itis used for a
SUBPROCEDURE's sublocal data area when S relative addressing (S—) is used.

DATA
AREA

( i G 10] | BASE
MEMORY REFERENCE

INSTRUCTION IN CODE AREA

7 8 9 M0 1Y 12 13 14 15
k\\.\\\\w E " oae Tl ‘nausonnsr G;:?:L
R\Y\\\\\\\‘ 1]0 L' PLUS REL —
\ \\\\\:\‘EFQI\SSM N30 AL NN

1

—_—
L MINUS REL —

- 7] G [255]

RN RN
\\\‘&\\N 1 1 1 s MllNUs REL —-—\ \'l- %
\ Y, \

<

I
ADDRESSING MODE AND
DISPLACEMENT FROM BASE

e & 1 L

A PARAMETERS
=] BIWORDE) L= ==

N £ 1 Lol ' BAsE
Ve

p LOCAL
;. -t L'PLUS DATA

1128 WORDS)

\ = =
/\w
S
Eivosor 4. 2=t
\ §° MINUS STACK
{32 WORDS! AREA
S (0] ! BASE

Figure 7. Tandem 16 Data Space

1




There is a special mode of addressing used by the operating system, called System Global
(SG+) addressing. It is used by the operating system while it is working in a user’s virtual data
space (on his behalf) and needs to address the system data space. The system data space
contains many resource tables and buffgrs and the need to access them quickly justifies the
existence of this addressing mode.

There are three tables known to the operating system, the microprogram and the hardware: the
system interrupt vector (SIV), the I/O Control (IOC) table, and the Bus Receive Table (BRT).
These tables will be explained in later sections as appropriate.

The Dynabus

The Dynabus is a set of two independent interprocessor buses. Bus access is determined by two
independent interprocessor bus controllers. Each of these controllers is dual-powered, in the
same manner as an |/O controller. The Dynabus controllers are very small, approximately 30 IC
packages, and are not associated with, nor physically a part of any processor. Each bus has a
two-byte data path and control lines associated with it. There are two sets of radial connections
from each interprocessor bus controller to each processor module. They distribute clocks for
synchronous transmission over the bus and for transmission enable. Therefore, no failed pro-
cessor can independently dominate Dynabus utilization upon failure since in order to electrically
transmit onto the bus, the bus controller must agree that a given processor has the right to
transmit. Each bus has a clock associated with it, running independently of the processor clocks
and located on the associated bus controller. The clock rate is 150 ns on two- to eight-processor
systems. The clock does need to be slowed down for the longer interprocessor buses of greater
than eight processors. Therefore each bus on small systems transfers at the rate of 13.3 M
bytes/second and on the larger systems at 10 M bytes/second. Performance measurements
have shown that under worst case test conditions the Dynabus is only 15% utilized in a
ten-processor system.

Each processor in the system attaches to both interprocessor buses. The Dynabus interface
control section (Figure 8) consists of 3 high speed caches: an incoming queue associated with
each interprocessor bus, and a single outgoing queue that can be switched to either of the buses.
All caches are sixteen words in length and all bus transfers are cache to cache. All components
that attach to either of the buses are kept physically distinct, so that no single component failure
can contaminate both buses simultaneously. Also in this section are clock synchronization and
interlock circuitry. All processors communicate in point-to-point manner using this redundant
direct shared bus (DSB) configuration [Ref. 3].

For any given interprocessor data transfer, one processor is the sender and the other the receiver.
Before a processor can receive data over an interprocessor bus, the operating system must
configure an entry in a table (Figure 9) known as the Bus Receive Table (BRT). Each BRT entry
contains the address where the incoming data is to be stored, the sequence number of the next
packet, the processor number of the sender and receiver, and the number of words expected. To
transfer data over a bus, a SEND instruction is executed in the sending processor, which specifies
the bus to be used, the intended receiver, and the number of words to be sent. The sending
processor's CPU stays in the SEND instruction until the data transfer is completed. Up to 65,535
words can be sent in a single SEND instruction. While the sending processor is executing the
SEND instruction, the Dynabus interface control logic in the receiving processor is storing the
data away according to the appropriate BRT entry. In the receiving processor this occurs
simultaneously with the program execution.
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. The message is divided into packets of fourteen information words, a sequence number word,
and an LRC check word. The sending processor first fills its outgoing queue with these packets,
requests a bus transfer, and transmits upon grant of the bus by the interprocessor bus controller.
The receiving processor fills the incoming queue associated with the bus over which the packet is
received, and issues a microinterrupt to its own CPU. The microprocessor of the CPU checks the
BRT entry, stores the packet away, verifies the LRC check word, and updates the BRT entry
accordingly. If the count is exhausted the currently executing program is interrupted; otherwise
program execution continues.

The BRT entries are four words that include a transfer count buffer address, sequence number
expected, and the sender and receiver CPU numbers. The SEND instruction has as parameters
the designation of the bus to be used, the intended receiver, the data buffer address in the system
data space, the word count to be transferred, and a timeout value. Error recovery action is to be
taken in case the transfer is not completed within the timeout interval. These parameters are
placed on the register stack and are dynamically updated so that the SEND instruction is
interruptable on packet boundaries.

There are several levels of protocol, beyond the scope of this paper, dealing with the interproces-
sor bus that exist in software [Ref. 4], to assure that valid data is transferred. The philosophy for
the hardware/software partitioning was to leave the more esoteric decisions to the software, e.g.,
alternate path routing, and error recovery procedures, with fault detection and reporting im-
plemented in the hardware. Fault detection was designed in those areas having the highest
anticipated probability of error.

The Input/Output Channel

The heart of the Tandem 16 1/O System is the I/O channel. All /O is done on a direct memory
access (DMA) basis. The channel is a microprogrammed, block muitiplexed channel with the
block size determined by the individual controllers. All the controllers are buffered to some degree
so that all transfers over the |/O channel are at memory speed (4 M Bytes/Second) and never wait
for mechanical motion since the transfers always come from a buffer in the controller rather than
from the actual I/O device.

There exists a table in the system data space of each processor called the 10C (I/O Control) table
that contains a two-word entry (Figure 10) for each of the 256 possible I/O devices attached to the
I/O channel. These entries contain a byte count and virtual address in the system data space for
data transfers from the I/O system.

The I/O channel moves the IOC entry to active registers during connection of an I/O controller and
restores the updated values to the IOC upon disconnection. The I/O channel alerts the 1/O
controller when the count has been exhausted and that causes the controller to interrupt the
processor.

The channel does not execute channel programs as on many systems but it does do data transfer
in parallel with program execution. The memory system priority always permits |/O accesses to
be handied before CPU or Dynabus accesses (in an on-line, transaction oriented environment, it
is rare that a system is not /O bound). The maximum /O transfer is 4K bytes.
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lll. 1/O SYSTEM ORGANIZATION

The 1/0 system had a design goal of being very efficient in a transaction, on-line oriented
environment. This environment has constraints different from those of a batch environment. The
figure of merit in an on-line system is the number of transactions/second/dollar that can be
handled by the system. We also wanted an |/O system that had low overhead, fast transfer rates,
no overruns, and no interrupts to the system until a logical entity of work was completed (e.g., no
character by character interupts from the terminals). The resulting design satisfied these goals by
implementing an I/O system that was extremely simple.

I/O controllers reconnect to the channel when their buffers are stressed past a configurable
threshold, transfer data in a burst mode until their buffer stress is zero (buffer empty on input
operations, full on output operations), and disconnect from the channel. When the transfer
terminates, the I/O controller interrupts the processor. Controllers may interrupt for other reasons
than an exhausted byte count, e.g., a terminal controller receiving an end-of-page character from
a page mode terminal, or I/O channel error condition, or a disc pack being mounted.
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Dual-Port Controllers

The dual-ported I/O device controllers provide the interface between the Tandem 16 standard I/O
channel and a variety of peripheral devices using distinct interfaces. While the I/O controllers are
vastly different, there is a commonality among them that folds them into the Tandem 16 NonStop
architecture.

Each controller contains two independent I/O channel ports implemented by IC packages which
are physically separate from each other so that no interface chip can simultaneously cause failure
of both ports. Each port of each controller has a 5-bit configurable controller number and interrupt
priority setting. These settings can be different on each port. The only requirement is that each
port attached to an I/O channel must be assigned a controller number and priority distinct from
controller numbers and priorities of other ports attached to the same 1/O channel.

Each controller has a PON (power-on) circuit which clamps its output to ground whenever the
controller's DC supply voltage is not within regulation. The PON circuit has hysteresis in it so that
it will not oscillate if the power should hover near the limit of regulation. When the power is within
regulation, the output of the PON circuit is at a TTL “1” level. A power-on condition causes a
controller reset and also gives an interrupt to one of the two processors to which it is attached.
The output of the PON circuit is also used to enable all the I/O channel bus transceivers so that a
controller being powered down will not cause interference on the I/O channels during the power
transient. This is possible because the PON circuit operates with the supply voitage as low as .2
volts and special transceivers are used which correctly stay in a high impedance state as long as
the control enable is at a logical “0".

Logically only one of the two ports of an I/O controller is active and the other port is utilized only in
the event of a path failure to the primary port. There is an “ownership” bit (Figure 11) indicating to
each port if it is the primary port or the alternate. Ownership is changed only by the operating
system issuing a TAKE OWNERSHIP I/O command. Executing this special command causes the
I/O controller to swap its primary and alternate port designation and to do a controller reset. Any
attempt to use a controller which is not owned by a given processor will result in an ownership
violation. If a processor determines that a given controller is malfunctioning on its I/O channel, it
canissue a DISABLE PORT command that logically disconnects the port from that /O controller.
This does not affect the ownership status. That way, if the problem is within the port, the alternate
path can be used, but if the problem is in the common portion of the controller, ownership is not
forced upon the other processor.

A controller signals an interrupt on the I/O channel if the channel has indicated an exhausted
transfer count, if the controller terminates the transfer prematurely, or for attention purposes.

When simultaneous interrupts occur on an I/O channel, a priority scheme determines which
interrupt is handled first. There are two levels of priorities designated “rank 0" and “rank 1". Each
rank has up to sixteen controllers assigned to it. Jumper wires on each controller determine the
rank and position within the rank (positions 0 to 15). The /O channel issues a rank 0 interrupt poll
cycle and each controller assigned to rank 0 can place an interrupt request, if it needs service, on
a dedicated data bit of the I/O channel determined by the jumper wires. If there are no controllers
on rank 0 requiring service, the I/O channel issues the interrupt poll cycle for rank 1. Note, only
thirty-two controllers can be assigned to a given channel and each one has a unique rank and
position designation. The highest priority controller is granted access to the interrupt system.
Thus a radial polling technique allows the processor to resolve thirty-two different controller
priorities in just two poll cycles. Each port of a controller has a separate set of configuration
jumpers so that a controller can have different priorities on its primary and alternate path.

16




1oC

i

cru B

ALL DATA AND
CONTROL
INFORMATION
TRANSFERS
OCCUR VIA THE
OWNED™ SIDE

OWNERSHIP 15 TAKEN
BY CPU O WHEN AN

FIDWITH TAKE OWNEREMIF
IS ISSUED TO CONTROLLER ]

O ASHIP

cru 2

;

AN EID TO THE
UNOWNED" SIDE
1S REJECTED WITH
A “DEVICE IS
OWNED BY OTHER
FORT STATUS

TYPICALLY
OWNERSHIP IS NOT
CHANGED UNLESS

A FAILURE OCCURS

IF NECESSARY CPU J CAN
TAKE OWNERSHIP AWAY FROM
] CPUOBY ISSUING AN E1O

(7T foreas
N

CONTROLLER 17
Figure 11. Ownership Circuitry

)

-

LUNITS

Controller Buffer Considerations

In the design of the Tandem 16 I/O system, a lot of attention was paid to the overrun problem.
While overruns are possible on this system, they have been made a rare occurrence. Each 1/O
controller has three configurable settings: the I/O controller number, the interrupt priority, and
buffer stress threshold reconnect setting.

Each I/O controller is buffered to some extent. The asynchronous terminal controller has 2 bytes
of buffering, while the disc controller has 4K bytes of buffering. Considerations of device transfer
rate, channel transfer rate, the individual controller’s buffer depth, the controller's reconnect
priority, and a given channel's I/O complement can be used to determine the buffer's depth (stress
threshold) at which a reconnect request should be made to the channel to minimize the chance of
overrun. Each controller with significant buffering (more than 32 bytes) has a configurable stress
threshold. Buffer stress is defined as the number of cells full on an input operation, and the
number of cells empty on output operations. In general, the I/O channel relieves stress while the
I/O device generates more stress. Therefore the higher the stress, the more the buffer needs relief
from the I/O channel, regardless of the direction of data transfer.

Tandem has developed a program which takes a system configuration and determines the
appropriate stress threshold settings needed to guarantee no data overruns. Since reconnect
overhead time is known, and all transfers on the 1/O bus take place at memory speed, and the
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upper bound of the block length is known for each type of controller, it is a deterministic function
as to whether or not an overrun is possible. If it is impossible to generate a no-overrun configura-
tion, the program will output at minimum-overrrun threshold settings. Most times, however, it is
possible to iterate on the configuration until threshold settings can be determined that prevent
overruns.

Disc Controller Considerations

The greatest fear that an on-line system user has is that “the data base is down" [Ref. 5]. Many of
these users are willing to pay the premium of having duplicated or “mirrored"” data bases in case
of disc drive fails. To meet this requirement, Tandem provides automatic mirroring of data bases.

A disc volume is a set of data contained on one spindle or one removable disc pack. A user may
declare any of the disc volumes as mirrored pairs at system generation time (Figure 12). The
system then maintains these pairs so they always contain identical data. Thus protection is
achieved for a single drive failure. Each disc drive in the system may be dual-ported. Each port of
a disc drive is connected to an independent disc controller. Each of the disc controllers are also
dual-ported and connected between two processors. A string of up to eight drives (four mirrored
pairs) can be supported by a pair of controllers in this manner.

Note that in this configuration there are many paths to any given data and that data can be
retrieved regardless of any single disc drive failure, disc controller failure, power supply failure,
processor failure, or I/O channel failure.

The disc controller is buffered for a maximum length record which provides several features
important in an on-line system. For example, the disc controller is absolutely immune to overruns.

This disc controller uses a Fire code [Ref. 6] for burst error correction and detection. It can correct
11 bit bursts in the controller’s buffer before transmission to the channel. Since overlapped seeks
are allowed by the controller, when data is to be read from a mirrored pair it can be read from the
drive which has its arm closest to the data cylinder. This is accomplished by using “split seeks,” a
SYSGEN parameter that requires one of the mirrored pair to only read from the first half of the disc
cylinders with the other disc responsible for the second half of the disc cylinders. Itis interesting to
note that since the majority of transactions in an on-line system are reads, mirrrored volumes
actually can increase performance.

NonStop I/O System Considerations

The I/O channel interface consists of a two-byte data bus and control signals. All data transferred
over the bus is parity checked in both directions, and errors are reported via the interrupt system.
A watchdog timer in the 1/O channel detects if a non-existent /O controller has been addressed,
or if a controller stops responding during an |/O sequence.

The data transfer byte count word in the IOC entry contains four status bits including a protect bit.
When this bit is set to “1” only output transfers are permitted to this device.

Because I/O controllers are connected between two independent I/O channels, it is very impor-
tant that word count, buffer address, and direction of transfer are controlled by the processor
instead of within the controller. If that information were to be kept in the controller, a single failure
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could cause both processors to which it was attached to fail. Consider what would happen if a
byte count register was located in the controller and was stuck in a situation such that the count
could not decrement to zero on an input transfer. It would be possible to overwrite the buffer and
cause system tables to become meaningless. The error would propagate to the other processor
upon discovery that the first processor was no longer operating.

Other error conditions that the channel checks for are violations of I/O protocol, attempts to
transfer to absent pages (it is the operating system’s responsibility to “tack down” the virtual
pages used for I/O buffering), uncorrectable memory errors, and map parity errors.
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IV. POWER, PACKAGING, ON-LINE MAINTENANCE

The Tandem 16 power supply has three sections: a 5-volt interruptable section, a 5-volt uninter-
ruptable section, and a 12-15 volt uninterruptable section. The interruptable section will stop
supplying DC power when AC is lost while the uninterruptable sections will continue to supply DC
power. The interruptable section powers |/O controllers and that portion of a processor which is
not related to memory refresh operation. The uninterruptable sections provide power for the
memory array and refresh circuitry. The 5-volt sections are switching regulated supplies while the
12-15 volt section is linearly regulated. The uninterruptable sections have a provision for a battery
attachment so that in case of utility power failure, memory contents are kept for 1.5 to 4 hours,
depending on the amount of memory attached to the supply.

The power supply accepts AC input of 110 or 220 volts +20% to provide brownout insensitivity. At
nominal line conditions, over 30 msec of ride-through is provided by storage capacitors. A
power-fail warning signal is provided when there is at least 5 msec of regulated power remaining
so that the processor can go through an orderly shut down. Some users must remain operational
through utility power failure and have generator systems which provide continuous AC power for
the entire system, including peripheral devices.

The power-fail warning scheme in the Tandem 16 power supply monitors charge in the storage
capacitors rather than monitoring loss of AC peaks as is conventionally done. This has the
advantage that the 5 msec required to do a power shutdown sequence in the processor is
guaranteed even if it occurs after a brownout period.

The power supply provides all other prudent features required in a computer system, such as over
voltage and over current protection, and over temperature protection.

The power-up sequencing on disc drives has been implemented with independent rather than
daisy-chained circuits. In the daisy-chained approach, one bad sequencer circuit can cause the
remaining drives in the chain not to sequence up after a power failure.

Further Packaging and On-line Maintenance Considerations

Modularity is a key concept in the Tandem 16 system. The maintenance philosophy is to make all
repair by module replacement at the user site without making the system unavailable to the user.
Therefore the back-planes, power supplies, fans, /0O channels, as well as the PC cards are
modular and easily replaceable. Thumb screws are used when they can be so that a minimum
number of tools is needed for repair. The package is designed so that there is easy access to all
modules.

Processors and I/O controllers not only can be replaced on-line, but added on-line without system
interruption if expansion is planned, all without applications software being changed.

Summary

The contribution of the Tandem 16 system lies in the synthesis of a system to directly address the
need of the NonStop application marketplace. By avoiding the “onus of compatibility” to any
previous system, an architecture could be designed from “scratch” that was “clean” and efficient.

The system goals have been met to a large degree. Systems have been installed containing two
to twelve processors. Many application programs are on-line and running. They recover from
failures, and stay up continuously.
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APPENDIX A

The Tandem 16 system provides its high
availability through architecture. In the lit-
erature [Ref. 7,8] we find that availability
ranges between 0 and 1 and is defined as:

(1)

I MTBF
MTBF + MTTR
where
A = Availability
MTBF = Mean Time Between
Failure
MTTR = Mean Time to Repair

The availability of two redundant systems
where only one is required is represented

o [ e 7
| Ay |
| |
| |
| A2 |
I g L .
Figure 13.

and the parallel system, A(PAR), has an
availability of

A(PAR) = A, + A, - A/A, (2)
IfA, = A, = A then,
A(PAR) = 2A — A2 (3)

When subsystems in series are required for
operation, the system is represented by:

Figure 14.

and the series systems, A(SER), has an
availability of

A(SER) = AA, (4)

While it is not the intention of the author to
give any more than these basics of theory
of Availability, a comparison of three ar-
chitectures of disc subsystems connected
to host computers will serve as an example
to demonstrate the order-of-magnitude
more availability claimed for the Tandem 16
systems.The three architectures will be the
following:

CPU ICPU

CTLR

©
o

CTLR

Tandem 16 System

Figure 15.

CPU

CTLR

®

Batch System

Figure 16.




and the typical “fault-tolerant” system

CPU CPU
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CTLR
Bt
©
CTLR
“f-t" System
Figure 17.

The availability models for the three sys-
tems are:

cPU CTLR DISC
TANDEM r
T/16 !
SYSTEM
CPU CTLR DISC
BATCH
SySTEM —{CPU CTLR DISC
"oy
SYSTEM
CPU CTLR DISC
CPU CTLR DISC
Figure 18.

Assuming the MTBF of all similar compo-
nents to be equal:

CPU 9,000 hours
CTLR 12,000 hours
DISC 4,000 hours
SWITCH 15,000 hours

and the MTTR for any failure to be a con-
serative 24 hours, the availability of these
systems are:

One CPU = .997340426 (5)
Parallel CPUs = .999992927 (6)
One CTLR =.998003992 (7)
Parallel CTLRs = .999996016 (8)
One Disc = .994035785 (9)
Parallel Discs = .999964429 (10)
One Switch = 998402556 (11)

Tandem 16 = (.999992927)(.999996016)

(.999964229) (12)
= .999953172 (13)
Batch
System = (.997340426)(.998003992)
(.994035785) (14)
= ,989413082 (15)
oy
System = (.999992927)(.998402556)

(.99996016)(.999964229) (16)
998355803 (17)

Solving (1) for MTBF we get

MTBF w (18)

Again assuming MTTR = 24 hours, the
MTBF for the above systems are:

Batch
Tandem 16 System “f-t" system
512,490 2,243 14,573 hours
= 21,353 =93 =607 days
=58.4 =0.25 = 1.66 years




The Tandem 16 architecture provides 35
times the MTBF of the typical “fault-
tolerant” system architecture and 233
times that of the typical batch system. In
this analysis it was assumed that dual con-
trollers and dual ported discs were used,
and that the two volumes were kept identi-
cal in each system except the batch sys-
tem.

Tandem has completed extensive com-
puter modeling of architectures. Empirical
observations have substantiated our
modeling data and product claim: the Tan-
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dem 16 architecture does, in fact, provide
an order-of-magnitude more availablility
than any past commercially available sys-
tems. The results seen here in this appen-
dix, however, would not be observed nor-
mally on any of the systems mentioned.
There are assumptions made which make
these calculations unrealistic: all faults are
not independent as assumed, faults do go
undetected for long periods of time, and so
forth. What this exercise does prove is that
this architecture does provide a vehicle for
order-of-magnitude improvement in avail-
ability which is empirically observable.
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ABSTRACT

The Tandem 16 computer system is an attempt at providing a general-purpose,
multiple-computer system which is at least one order of magnitude more
reliable than conventional commercial offerings.Through software abstractions
a multiple-computer structure, desirable for failure tolerance, is transformed
into something approaching a symmetric multiprocessor, desirable for pro-
gramming ease. Section 1 of this paper provides an overview of the hardware
structure. In section 2 are found the design goals for the operating system,
"Guardian.” Section 3 provides a bottom-up view of Guardian. The user-level
interface is then discussed in section 4. Section 5 provides an introduction to
the mechanism used to provide failure tolerance at the application level and to
application structuring. Finally, section 6 contains a few comments on system
reliability and implementation.

*NonStop is a trademark of Tandem Computers Incorporated.




I.INTRODUCTION

Background

On-line computer processing has become a way of life for many businesses. As they make the
transition from manual or batch methods to on-line systems, they become increasingly vulnera-
ble to computer failures. Whereas in a batch system the direct costs of a failure might simply be
increased overtime for the operations staff, a failure of an on-line system results in immediate
business losses.

System Overview

The Tandem 16 [Ref. 1, 2] was designed to provide a system for on-line applications that would be
significantly more reliable than currently available commercial computer systems. The hardware
structure consists of multiple processor modules interconnected by redundant interprocessor
buses. A PMS [Ref. 3] definition of the hardware is found in Figure 1.
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Figure 1. Hardware Structure

Each processor has its own power supply, memory, and I/O channel and is connected to all other
processors by redundant interprocessor buses. Each 1/O controller is redundantly powered and
connected to two different /0 channels. As a result, any interprocessor bus failure does not affect
the ability of a processor to communicate with any other processor. The failure of an I/O channel
or of a processor does not cause the loss of an |/O device. Likewise, the failure of a module
(processor or 1/O controller) does not disable any other module or disable any inter-module
communication. Finally, certain I/O devices such as disc drives may be connected to two different
/O controllers, and disc drives may in turn be duplicated such that the failure of an 1/O controller or
disc drive will not result in loss of data.

The system is not a true multiprocessor [Ref. 4], but rather a “multiple computer” system. The
multiple computer approach is preferable for several reasons. First, since no module is shared by
the entire system, it increases the system's reliability. Second, a muitiple computer system does




not require the complex hardware needed to handle multiple access paths to acommon memory.
In smaller systems, the cost of such a multiported memory is undesirable; and in larger systems,
performance suffers because of memory access interference.

On-line repair is as necessry as reliability in assuring system availability. The modular structure of
the Tandem 16 system allows processors, |/O controllers, or buses to be repaired or replaced
while the rest of the system continues to operate. Once repaired, they may then be reintegrated
into the system.

The system structure allows a wide range of system sizes to be supported. As many as sixteen
processors, each with up to 512K bytes of memory, may be connected into one system. Each
processor may also have up to 256 |/O devices connected to it. This provides for tremendous
growth of application programs and processing loads without the requirement that the application
be reimplemented on a larger system with a different architecture.

Finally, the system is meant to provide a general solution to the problem of providing a failure-
tolerant, on-line environment suitable for commercial use. As such, the system supports con-
ventional programming languages and peripherals and is oriented toward providing large num-
bers of terminals with access to large data bases.

Il. SYSTEM DESIGN GOALS

Integrated Hardware/Software Design

The Tandem 16 system was designed to solve a specific problem. This problem was not stated in
terms of hardware and software requirements, but rather in terms of system requirements. The
hardware and software designs then proceeded in tandem to provide a unified solution. The
hardware design concerned itself with the contents of each module, their interconnection to the
common buses, and error detection and correction within modules and on the communication
paths. The software design was given the problem of control; that is, selection of which modules
to use and which buses to use to communicate with them. Furthermore, as errors are detected, it
was the responsibility of the software to control recovery actions.

Operating System Design Goals
The first and foremost goal of the operating system, Guardian, was to provide a failure-tolerant
system. This translated into the following design “axioms”:

* the operating system should be able to remain operational after any single detected
module or bus failure

* the operating system should allow any module or bus to be repaired on-line and then
reintegrated into the system.

¢ the operating system should be implemented in a reliable manner. Increased reliability
provided by the hardware architecture must not be negated by software problems.

A second set of requirements came from the great numbers and sizes of hardware configurations
that are possible:

e the operating system should support all possible hardware configurations, ranging from a
two-processor, discless system through a sixteen-processor system with billions of bytes of
disc storage.

¢ the operating system should hide the physical configuration as much as possible such that
applications could be written to run on a great variety of system configurations.




Il OPERATING SYSTEM STRUCTURES

To satisfy these requirements, the operating system was designed to have the appearance of a
true multiprocessor at the user level. The design of the system was strongly influenced by
Dijkstras work on the “THE" system [Ref 5], and Brinch Hansen’s implementation of an
operating system nucleus for a single-processor system [Ref. 6]. The primary abstractions are
processes, which do work, and messages, which allow interprocess communication.

Processes

At the lowest level of the system is the basic hardware as earlier described. It provides the
capability for redundant modules, i.e. |/O controllers, |/O devices, and processor modules
consisting of a processor, memory, and a power supply. These redundant modules are in turn
interconnected by redundant buses. Error detection is provided on all communication paths and
error correction is provided within each processor's memory. The hardware does not concern
itself with the selection of communication paths or the assignment of tasks to specific modules.

The first abstraction provided is that of the process. Each processor module may have one or
more processes residing in it. A process is initially created in a specific processor and may not
execute in another processor. Each process has an execution priority assigned to it. Processor
time is allocated on a strict priority basis to the highest priority ready process.

Process synchronization primitives include “counting semaphores” and process local “event”
flags. Semaphore operations are performed via the functions PSEM and VSEM, corresponding
to Dijkstra’s P and V operations. Semaphores may only be used for synchronization between
processes within the same processor. They are typically used to control access to resources such
as resident memory buffers, message control blocks, and I/O controllers.

When certain low-level actions such as device interrupts, processor power-on, message comple-
tion or message arrival occur, they result in “event” flags being set for the appropriate process. A
process may wait for one or more events to occur via the function WAIT. The process is activated
as soon as the first WAITed for event occurs. Events are signaled via the function AWAKE. Event
signals are queued using a “wake up waiting” mechanism so that they are not lost if the event is
signaled when the process is not waiting onit. Like semaphores, event signals may not be passed
between processors. Event flags are predefined for eight different events and may not be
redefined.

When a process blocks itself to wait for some event to occur or for a semaphore to be allocated to
it, it may specify a maximum time to block. If the time limit expires and the event has not occurred
or the resource has not been obtained, then the process will continue execution but an error
condition will be returned to it. This timeout allows “watch dog” timers to be easily placed on
device interrupts or on resource allocations where a failure may occur.

Each process in the system has a unique indentifier or “processid” in the form: <cpu #,process
#>, which allows it to be referenced on a system-wide basis. This leads to the next abstraction,
the message system, which provides a processor-independent, failure-tolerant method for
interprocess communication.

Messages

The message system provides five primitive operations which can be illustrated in the context of a
process making a request to some server process,Figure 2.The process's request for service will
send a message to the appropriate server process via the procedure LINK. The message will




consist of parameters denoting the type of request and any needed data. The message will be
queued for the server process, setting an event flag, and then the requestor process may
continue executing.

When the server process wishes to check for any messages, it calls LISTEN. LISTEN returns the
first message queued or an indication that no messages are queued. The server process will then
obtain a copy of the requestor's data by calling the procedure READLINK.

Next, the server process will process the request. The status of the operation and any resuit will
then be returned by the WRITELINK procedure, which will signal the requestor process via
another event flag. Finally, the requestor process will complete its end of the transaction by calling
BREAKLINK.
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Figure 2. Message System Primitive Operations

A communications protocol was defined for the interprocessor buses that would tolerate any
single bus error during the execution of any message system primitive. This design assuresthata
communications failure will occur if and only if the sender or receiver processes or their pro-
cessors fail. Any bus errors which occur during a message system operation will be automatically
corrected in a manner transparent to the communicating processes and logged on the system
console.The interprocessor buses are not used for communication between processesin the
same processor, which can be done faster in memory. However, the processes involved in the
message transfer are unable to detect this difference.

The message system is designed such that resources needed for message transmission (control
blocks) are obtained at the start of a message transfer request. Once LINK has been successfully
completed, both processes are assured that sufficient resources are in hand to be able to
complete the message transfer. Furthermore, a process may reserve control blocks to guarantee
that it will always be able to send messages to process a request that it picks up from its message
queue. Such resource controls assure that deadlocks can be prevented in complex producer/
consumer interactions, if the programmer correctly analyzes and anticipates potential deadlocks
within the application.




Process-Pairs

With the implementation of processes and messages, the system is no longer seen as separate
modules. Instead, the system can be viewed as a set of processes which may interact via
messages in any arbitrary manner, as shown in Figure 3.

By defining messages as the only legitimate method for process-to-process interaction, inter-
process communication is not limited by the multiple-computer organization of the system. The
system then starts to take on the appearance of a true multiprocessor. Processor boundaries
have been blurred, but I/O devices are still not accessible to all processes.

System-wide access to I/O devices is provided by the mechanism of “process-pairs.” An |/O
process-pair consists of two cooperating processes located in two different processors that
control a particular /0 device. One of the processes will be considered the “primary” and one will
be considered the “backup.” The primary process handles requests sent to it and controls the 1/0
device. When a request for an operation such as a file open or close occurs, the primary will send
this information to the backup process via the message system. These “checkpoints” assure that
the backup process will have all information needed to take over control of the device in the event
of an I/O channel error or a failure of the primary process's processor.A process-pair for a
redundantly-recorded disc volume is illustrated in Figure 4.
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Figure 3. System Structure Figure 4. Process-pair for a

After the Addition of Redundantly-Recorded Disc Volume
Processes and Messages

Because of the distributed nature of the system, it is not possible to provide a block of “driver”
code that could be called directly to access the device. While potentially more efficient, such an
approach would preclude access to every device in the system by every process in the system.

The 1/O process-pair and associated I/0 device(s) are known by a logical device name such as
“$DISC1" or by a logical device number rather than by the processid or either process. I/O device
names are mapped to the appropriate processes via the logical device table (LDT) in every
processor, which supplies two processids for each device. A message request made on the basis
of a device name or number results in the message being sent to the first process in the table. If
the message cannot be sent or if the message is sent to the backup process, an error indication




will be returned. The processid entries in the LDT will then be reversed and the message resent.
Note two things: first, the error recovery can be done in an automatic manner; and second, the
requestor is not concerned with what process actually handled the request. Error recovery cannot
always be done automatically. For example, the primary process of a pair controlling a line printer
fails while handling a request to print a line on a check. The application process would prefer to
see the process failure as an error rather than have the request automatically retried, which might
result in two checks being printed.

The two primitives, processes and messages, blur the boundaries between processors and
provide a failure-tolerant method for interprocess communication. By defining a method of
grouping processes (process-pairs), a mechanism for uniform access to an |/O device or other
system-wide resource is provided. This access method is independent of the function performed
within the processes, their locations, or their implementations. Within the process-pair, the
message system is used to checkpoint state changes so that the backup process may take over
in the event of a failure. This checkpoint mechanism is in turn independent of all other processes
and messages in the system.

The system structure can be summarized as follows. Guardian is constructed of processes which
communicate using messages. Fault tolerance is provided by duplication of components in both
the hardware and the software. Access to /O devices is provided by process-pairs consisting of a
primary process and a backup process. The primary process must checkpoint state information
to the backup process so that the backup may take over on a failure. Requests to these devices
are routed using the logical device name or number so that the request is always routed to the
current primary process. The result is a set of primitives and protocols which allow recovery and
continued processing in spite of bus, processor, 1/O controller, or /O device failures. Furthermore,
these primitives provide access to all system resources from every process in the system.

System Processes

The next step in structuring the system comes in assigning functions to processes. As previously
shown, I/O devices are controlled by process-pairs. Another process-pair known as the
“operator” is present in the system. This pair is responsible for formatting and printing error
messages on the system console. Here is an example of where Guardian has not followed a strict
level structure. The operator makes requests to a terminal process to print the messages, yet the
terminal process wishes to send messages to the operator to report I/O channel errors. Aninfinite
cycle is prevented by having the terminal process not send messages for errors on the operator
terminal and having I/O processes never wait for message completions when sending errors to
the operator. While it may be preferable to prevent cycles of any type in system design, they have
been allowed in Guardian when it can be shown that they will terminate. The ability to reserve
message control blocks assures that no cycle will be blocked because of resource problems.

Each processor has a “system monitor” process which handles such functions as process
creation and deletion, setting time of day, and processor failure and reload cleanup operations.

A memory management process is also resident in each processor. This process is responsible
for allocating a page of physical memory and then sending messages to the appropriate disc
processes to do the actual disc I/O. Pages are brought in on a demand basis and pages to overlay
are selected on a “least recently used" basis over the entire memory of the processor.

The choice of relatively unsophisticated algorithms for scheduling and memory management
was a result of the fact that the system was not intended to be a general-purpose timeshare




system. Rather, it was to be a system which supported multiple processes and terminals in an
extremely flexible manner.

Application Process Interface

Above the process and communication structure there exists a library of procedures which are
used to access system resources.These procedures run in the calling process’senvironment and
may or may not send messages to other processes in the system. For example, the file system
procedures do not do the actual I/O operations. Instead, they check the caller’s parameters, andif
all is in order a message is sent to the appropriate 1/0 process-pair. Likewise, process creation is
seen as a procedure call to NEWPROCESS, which does nothing but check the caller’s parame-
ters and then send a message to the system monitor process in the processor where the process
is to be created. On the other hand, a procedure such as TIME which returns the current time of
day does not send any messages. In either case, the access t0 system resources appears simply
as procedure calls, effectively hiding the process structure, message system, hardware organi-
zation, and associated failure recovery mechanisms.

Initialization and Processor Reload

System initialization starts with one processor being cold loaded from some disc on the system.
The load file contains a memory image of the operating system resident code and data, with all
system processes in existence and at their initial states. The system monitor process then
creates a command interpreter process.

Guardian may be brought up even though a processor or peripheral device is down. This is
possible because operating system disc images may be kept on multiple disc drives, 1/O
controllers may be accessed by two different processors, and the terminal that has the initial
command interpreter on it is selected by using the processor’s switch register.

After a cold load,the system logically consists of one processor and any peripherals attached to it.
More processors and peripherals may be added to the system via the command interpreter
command:

‘RELOAD 1,8DISC

This command will read the disc image for processor 1 from the disc $DISC and send it over either
interprocessor bus to processor 1. Once itis loaded, all processes residing in other processors in
the system will be notified that processor 1 is up.

This command is also used to reload a processor after it has been repaired. Guardian does not
differentiate between an initial load of a processor and a later reload. In each case, resources are
being logically added to the system and processes must be notified so that they may make use of
them.

The previous example of a reload message being sent to all processes is an example of how
functions are split in Guardian. A mechanism is provided for informing a process of a system
status change. It may then take some unspecified action (including doing nothing). Similarly, a
system power-on simply sets the PON event flag for all processes. The operating system kernel
must only insure that the process structure and message system are correctly saved and
restored. It is then the responsibility of individual processes to do such things as reinitialize their
I/O controllers.




Operating System Error Detection

Besides the hardware-provided single error detection and correction on memory, and single error
detection on the interprocessor and 1/O buses, additional software error checks are provided.
The first of these is the detection of a down processor. Every second, each processor in the
system sends a special “I'm alive” message over each bus to all processors in the system. Every
two seconds, each processor checks to see that it has received one of these messages fromeach
processor. If a message has not been received, then it assumes that that processor is down.

Additionally, the operating system makes checks on the correctness of data structures such as
linked lists when operations are done on them. Any processor detecting such an error will halt.

All I/O interrupts are bracketed by a “watch dog” timer such that the system will not hang up if an
I/O operation does not complete with the expected interrupt. If an I/O bus error occurs then the
backup process will take over control of the device using the second I/O bus.

As previously noted, the interprocessor bus protocol is designed to correct single bus errors. In
addition to this, extensive checks are made on the control information received over the buses to
verify that it is consistent with the state of the receiving processor.

Power-fail/automatic restart is provided within each processor. A power-failure is detected inde-
pendently by each processor module and as a result is not a system-wide, synchronous event.
The system was designed to recover from either a complete system power-fail, or a transient
which will cause some of the processors to power-fail and then immediately restart.

IV. USER-LEVEL SYSTEM INTERFACE

Tools are provided for interactive program development using COBOL or a block-structured
implementation language, T/TAL. A file system with facilities comparable to or exceeding those
offered by other “midi” computer systems allows access to disc files and other 1/O devices.
Process creation, intercommunication, and checkpointing primitives are also implemented.

The application process level facilities and the interactive program development tools have been
heavily influenced by the HP3000 [Ref. 7] and by UNIX [Ref. 8].

Interactive System Access

General-purpose, interactive access to the system is provided by the command interpreter,
COMINT, similar in many ways to the Shell of UNIX. Normally a command interpreter is run
interactively from a terminal, but commands may be read from any type of file. The command
interpreter is seen by the operating system as simply another type of application process.

Commands are read from the terminal, prompted by a colon ( “:" ):

:command / process parameters / arguments

If the command is recognized, it will be directly executed. A command of this type is:
LOGON SOFTWARE.JOEL

which is used to gain access to the system. If the command is not recognized, then a process will
be created using the program file “$SYSTEM.SYSTEM.command” and the arguments for the
command will be sent to this new process. The command interpreter will then suspend itself until
amessage is received indicating that the process has stopped. If this process cannot be created,




then an error message is printed. For example, the text editor is accessed by typing EDIT
" followed by any command string:

:EDIT FILE

This will result in a process being created using the program file $SYSTEM.SYSTEM.EDIT and

the command string, “FILE,” being sent to it. Also a part of this command string message are the

names of the files that are being used for input and output by the command interpreter. These are

then used by the process for its input and output. If the previous command was typed at a

terminal, the input and output files would be the device name of the terminal. Alternative names

for the input and output files may be specified. For example:

:EDIT /IN COMMANDS/

will create an editor process and pass it the file name “COMMANDS" for the input file and the

terminal's file name, the default, for the output file. Finally, the processor to use and the priority at

which to run the process may also be specified:

:EDIT /PRI1100, CPU 3/

This will create an editor process in processor three with a priority of 100.

Additional features allow multiple processes to be started from one command interpreter and
allow the previously typed command line to be edited.

Programming Languages

Compilers have been implemented for two languages, T/TAL and ANSI 74 COBOL. T/TAL is a
block-structured implementation language. Its capabilities are similar to those offered by C on
UNIX or SPL on the HP3000. All Tandem software is written in T/TAL as are most user
applications.

Code generated by either compiler may be shared by multiple processes in the same processor.
Both compilers generate an object file which may be immediately run without any intervening link
edit operation. However, the object file also contains enough information so that an object editor,
UPDATE, may combine the objects produced by several compilations or selectively replace
procedures in an object file.

Tools

Program development tools include an interactive text editor, object file editor, text formatter, and
interactive debugger. A screen generation program and access routines are provided to facilitate
application interaction with page mode CRT terminals. File utilities exist which allow file backup
and restore, file copying and dumping, and initial loading of key-sequenced files. A peripheral
utility is provided to do such operations as disc formatting, disc track sparing, and mounting or
demounting disc volumes.

Process Creation and Deletion

Processes are created by the command interpreter or by an application process call to the
procedure NEWPROCESS. Parameters supplied include the name of the file holding the object
code for the process, the processor number to use, and the priority at which to run the process.
The parameters will be checked and then sent to the system monitor process in the appropriate
processor. The system monitor will then create the process and return a “creationid” identifying
the new process to the calling process. Part of this value is the processid previously defined, and
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the rest is the value of the processor clock at the time of process creation. The clock is kept as a 48
bit value which is the number of 10ms intervals since 12 a.m. on December 31, 1975, which
assures that creationids will be unique over the life of the system.

Processes are not grouped in classical ancestry trees. No process is considered subservient to
any other process on the basis of parentage. Two processes, one created by the other, will be
treated as equals by the system. When a process, A, creates another process, B, no record of B is
attached to A. The only record kept is in the process B where the creationid of A is saved. This
creationid is known as B's “mom.” When process B stops, process A is sent a stop message
indicating that process B no longer exists.A process’'s mom is flexible and a process may adopt
another process. For example (Figure 5), process A creates process B. Process B in turn creates
a cooperating process, C. Since C would like to know if B stops, C will adopt B.

A process may stop itself or some other process by calling STOP. Process deletion is again a
function of the system monitor process. Resources will be released and a stop message will be
sent to the process's mom. If the mom process does not exist, then no message will be sent.

A CREATES B: A - MOM 8
B CREATES C: A - MOM B - MOM c
C "ADOPTS" B: A B -— MOM > C

Figure 5. Flexible Process Relationships

Application Process-Pairs

The process-pair concept introduced earlier is a powerful method for making some resource
available to all processes in the system in a fault-tolerant manner. It is extended to the application
processes as follows. When a process is created via NEWPROCESS, a process-pair name may
be supplied. The creationid returned for this process consists of the processid and the process
name rather than the processor clock value. For example (Figure 6), process A wishes to create a
process with the name “$SPOOL." Once B has been created, any process in the system may
send a message to that process via the name “$SPOOL."

Process B may now wish to create a process B’ in another processor to be its backup. B would
then call NEWPROCESS, supplying the name “$SPOOL." Process B will keep B" updated via
checkpoints so that B’ may become the primary if B fails. B and B' each wish to receive an
indication if the other process is deleted. Therefore, B and B’ will automatically set to be each
other's moms.

When the last process with the name “$SPOOL" is deleted, process A will be sent a message.
Process A is known as the “ancestor” by the fact that this process was the one which created the
first process by the name of “$SPOOL." Process A in turn may be a named process, in which case
As name will be sent the termination message. This allows a process-pair, “$A’ consisting of
processes A and A’, to create a named process, “$B" consisting of B and optionally B’, and
guarantee that it will be sent a message when the process name $B no longer exists. This will
occur even if the process which first created $B no longer exists.
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A < ANCESTOR B <— MOM —»- B $SPOOL

SA A < MOM — A < ANCESTOR — B <— MOM —» B B8

Figure 6. Application Process-pairs

File System

The Guardian file system provides a uniform method for access to disc files, unit record devices,
and processes. All files are named: disc files have names such as “$DISC1.SUBVOL.FILE" and
unit record devices and processes have names such as “SLP" Access by name allows any
process running in any processor to access any file in the system. Direction to the appropriate
process of the process-pair is handled by the file system in a manner transparent to the
requesting program.

Files of all types are opened by calling:
CALL OPEN (filename.filenum,. . .)

The calling process supplies the file name. Security will be checked and then a file number will be
returned to the calling process. This file number is then used for all further accesses to the file. A
file may be opened for “wait” or “no-wait" access. If “wait” access is chosen, the process will be
suspended until the requested operation on the file has been completed. On the other hand, if the
“no-wait” access is requested then once the operation has been initiated, the requesting process
may continue processing.

Disc Files

Each disc file is composed of between one and sixteen partitions. Each partition resides on a
specific disc volume and is in turn composed of up to sixteen extents. Each extent is one or more
contiguous disc pages of 2048 bytes each. Disc files come in several types. The first is
“unstructured,” similar to UNIX, where the file is treated as a contiguous set of bytes. A current file
pointer is kept which is the byte address of the beginning of the next transfer. After each read or
write operation:

CALL READ(filenum,buffer,cnt,transfercnt)
CALL WRITE(filenum buffer,cnt, transfercnt)

the file pointer is incremented by the number of bytes transferred. The file pointer may be moved
explicitly by:

CALL POSITION(filenum fileposition)
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The second type of file is a "relative-record” file. The file consists of fixed or variable-size records
and may be randomly accessed. Rather than positioning to an arbitrary byte in the file, the
process positions to the start of a specific record. If the process reads less than the record size,
then the file pointer advances to the start of the next record.

The third type of file is “entry-sequenced.” Records written to this file may be of varying lengths
and are always appended to the end of the file. This type of file is normally used as a log file.

The final type of disc file is “key-sequenced.” A file of this type may have a unique primary key and
up to 255 alternate keys. Entry-sequenced and relative-record files may also have alternate keys.
Each key may be up to 255 bytes long. Access to this file may be done on any key using the
procedure:

CALL KEYPOSITION(filenum, key,keytag, keylen,positionmode)

The parameter “keytag” identifies which key is being used. The pointer “key" designates the
value of the key which is “keylen” bytes long. The “positionmode" describes what type of access
is to be made to the file. The first type of access is "approximate.” Using this, successive reads to
the file will return all records whose key values are greater than or equal to the "key" for “keylen.”
The second type of positioning is “generic.” Here, successive reads will return all records whose
key value is equal to "key" for “keylen.” The final type of positioning is “exact.” Successive reads
will return all records whose keys are "keylen" long and equal to "key."

Files or individual records may be locked by:

CALL LOCKFILE(filenum)
CALL LOCKRECORD(filenum)

Record locking and unlocking may be combined with the actual /O operation desired for
increased efficiency:

CALL READUPDATELOCK(filenum,. . .)
CALL WRITEUPDATEUNLOCK((filenum,. . .)

The distributed nature of the system does not allow efficient detection of deadlocks caused by file
locking. As a result, this type of checking is not done. A lock request on a file that has been
opened with “no-wait” access will allow the application to do other processing if the requested file
is not immediately available. A process may use this mechanism to assure that it will not wait
indefinitely in the case of a deadlock.

Disc I/O

The disc processes in each processor share an area of main memory called the “disc cache.”
Each block read from the disc is placed in this area. Space is reused on a weighted “least recently
used" basis. Thus, such items as index blocks for key sequenced files are kept available in
memory so that successive accesses do not require that they be reread.

A logical disc volume, “$DISC1,” may be recorded onto two different disc drives using two
different I/O controllers. This second, or “mirror” volume provides a transparent duplication of
data which protects a data base against loss via a failed disc drive or controller. All file writes are
performed on both disc drives and file reads may be done from either drive. When a failed drive
has been repaired, it may be “revived” while the application continues accesses and updates to
files on that logical device.




Device I/O

1/O operations are done to unit record devices in a similar manner to disc file accesses. Here,
Guardian does not support a record-structured, device-independent mode of access and as a
result operations such as unblocking tape records must be done by the application program.
While this lack of device-independent I/O can be considered a liability in some applications, it
allows easy addition of new types of I/O devices to the system without requiring changes to the
file system and allows device-dependent control by the application program.

Read and write operations are done in an identical manner for all files. Device-dependent
operations such as skipping on vertical form channels on a line printer may be done by:

CALL CONTROL(filenum,control#,parameter)

Enabling or disabling terminal parity checking or other such access options are done by:
CALL SETMODE(filenum,modetype,. . .)

Guardian provides an extremely general purpose interface to asynchronous RS-232 or current
loop devices. The file system and asynchronous terminal process provide a read after write
operation:

CALL WRITEREAD(filenum,buffer,writecnt,readcnt,countread)

which allows a character sequence to be output to a device followed immediately by a read from
the device. This allows the character sequence which causes a CRT terminal to transmit to be
sent to it. The line will then be turned around and the terminal’s buffer read into the processor.
Since this write/read turn-around is done in the device controller, no data is lost because the read
could not be started soon enough.

Normally, operating systems wish to enforce certain terminal characteristics such as inserting a
carriage return and linefeed after each line written or interpreting certain characters on input for
such operations as line and character delete. While Guardian provides such facilities, they may
be disabled at the time the system is configured or after the file is opened. Other characteristics
such as type of connection, character size, parity, speed, and character echoing are completely
configurable. This allows arbitrary character sequences to be input and output without any
interpretation or character editing being done by the operating system.

Communication software is also provided to handle multi-point asynchronous terminals. Point-
to-point and muiti-point Bisync software is also provided. Rather than attempting to emulate
specific devices, the application program is allowed to specify the line control used.

Interprocess 1/0O

Each process in the system may have messages from other processes queued for it. Access to
this message queue is provided via the file “SRECEIVE." A read on this file will return the first
message. A process may check to see if any messages are queued and then continue process-
ing if none are present. A process may ascertain the identity of the sending process via the
procedure:

CALL LASTRECEIVE(sender)

This returns the “creationid” of the sending process. It is supplied by the operating system and
thus may not be forged by the sending process. A process will receive indication of such events
as a process being stopped,a processor failingor being reloaded,or the break key being pressed
on a terminal that this process has open in the form of messages read from this file.
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A process may open another process as a “file.” Once opened, the process may use the file
system procedures WRITE, WRITEREAD, SETMODE, and CONTROL to send messages to
that process. The receiving process will read these requests from its “SRECEIVE” file. It will then
process them and possibly return an error indication to the sending process. This allows the
“server” process to simulate some arbitrary device. Using these tools, an output spooler or a
process which could allow access to labeled magnetic tapes written on some other system can
be constructed. The requesting process believes that it is communicating with a device, and the
server process is able to simulate that device without requiring special privileged "hooks" in the
file system. :

V. APPLICATION PROGRAMS

Application Program Checkpointing

Application process-pairs are used to provide some service on a failure-tolerant basis. Requests
are processed by the primary process and results are returned to the requestor process. On a
failure of the primary process, the backup must be able to continue offering this service. This
requires that any state changes in the primary process be sent (checkpointed) to the backup
process. While such checkpoints could be sent on an instruction-by-instruction basis, this is
clearly not feasible because of the overhead involved. Instead, a process need only checkpoint
its state when it is about to make a non-retryable request to another process.

For example, at time T1, when the primary process and its backup are in the same state, the
primary process starts some operation. Later, at time T2, when it is ready to write the result to a
disc file, it will checkpoint changes made since time T1 to its backup. The processes will then
again be in the same state. If the primary process failed at any point before T2, the backup
process could restart at the last checkpoint, made at T1. The selection of states to checkpoint is
analogous to defining restart points for jobs in a batch processing system. In a batch environ-
ment, these checkpoints are saved in a disc file; in process-pairs they are saved in a backup
process.

Guardian provides system functions for checkpointing process state information between pro-
cesses of a process-pair.The first type of item checkpointed is portions of the process'’s data
space. This includes global data and/or the current stack, holding procedure return addresses,
procedure local variables, and procedure parameters. Consider the following program segment,
written in T/TAL, whose purpose is to output to a terminal the first 100 items of an array, “buffer:"

FOR i:=1TO100 DO
BEGIN
CALL WRITE((terminal,buffer{i],itemlen);
END;

This operation could be made failure-tolerant by two calls to the CHECKPOINT procedure. The
first checkpoint copies the entire buffer to the backup process. This need only be done once as
the data is not changed by later processing. The second checkpoint, before each write, saves the
current process state, including the variable “i." This allows the backup process to take over the
operation, duplicating at most one line of output.
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CALL CHECKPOINT(,buffer[1],buffersize);
FOR i:= 1_TO 100 DO

BEGIN

CALL CHECKPOINT (stackbase);
CALL WRITE (outfile,buffer{i],itemlen);
END;

When the primary process fails, the backup will take over at the last checkpoint. The next logical
extension to the original segment would beif the process were copying theone hundred valuesto

be output from some disc file:

FOR i:=1TO100 DO
BEGIN
CALL READ(infile,buffer,itemlen);
CALL WRITE(outfile,bufferitemlen);
END;

In this case,not only would the process's data space contents need to be checkpointed as before,
but so would the current file pointers for the input and output files. This ensures that they are
correctly set when the backup process takes over. In order for file pointers to be checkpointed,
both processes of the process-pair must have the files open. Special functions are provided
which allow the primary process to cause a file to be opened or closed by the backup process:

CALL CHECKOPEN(filename,. . .)
CALL CHECKCLOSE(filename,...)

In the sample program, CHECKOPEN would be called following the call to OPEN when the
primary process started. The program segment would now look like:

CALL CHECKPOINT (,buffer{1],buffersize);
FOR i:=1T7O100 DO
BEGIN
CALL CHECKPOINT (stackbase, infile,,outfile);
CALL READ(infile,bufferitemien);
CALL WRITE (outfile,buffer,itemlien);
END;

If a failure occurred after the read but before the write, the backup would take over and repeat the
read using the same file pointer as was used by the primary. In both of these examples, a failure
following the write but preceding the next checkpoint could result in a record being written twice.
This would cause no problem if the record was being written to some absolute position in the file;
however, an error would occur when writing to a key-sequenced disc file. In this case, the primary
would successfully write the record to the file, but its backup process would get a “duplicate key”
error when repeating the write. This problem is solved by having Guardian automatically gen-
erate an optional sequence number for disc file writes.

A part of the information copied to the backup process when a file is checkpointed is the
sequence number for the next write to the file. When a write is done to a file that has been opened
with this option, the sequence number passed by the file system is compared with the copy held
by the disc process. If it is the same, then the operation is done and the status (error indication
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and transfer count) is returned to the application process and a copy is saved by the disc process.
On the other hand, if sequence numbers do not agree, then no operation is done and a copy of the
previous operation’s status is returned. Using the previous example, the use of file sequence
numbers is shown in Figure 7.

When a process-pair has a file open, any records locked in the file will be considered locked by the
process-pair. When the primary fails, the backup may finish file modifications with locks still in
effect, preserving the integrity of the data base.

While the primary process operates, the backup process receives the checkpoint information via
a call to the procedure CHECKMONITOR. When the primary process sends a checkpoint
message via a call to CHECKPOINT, this procedure moves checkpointed portions of the primary
process’s data space into the backup's data space and saves the latest file information.If a
messge is directed to the backup process and the primary process still exists, it is rejected withan
“ownership” error which informs the sender that the message is to be sent to the other member of
the process-pair. Finally, when the primary process fails, CHECKMONITOR will transfer control to
the correct restart point.

The Tandem implementation of COBOL provides a similar checkpointing facility. In each case,
checkpointing is not an automatic operation. Careful attention during the application design
phase will result in fewer checkpoints and will yield a checkpointing scheme that can be analyzed
for correctness. Consideration must also be given to how the application will recover from failures
occuring while a write operation is in progress to non-disc devices. Recovery when accessing a
CRT terminal could be automatically done by rewriting the entire screen. Recovery while printing
checks on a line printer would require some manual intervention and operator interaction with the
application program.

ACTION SEQUENCE VALUES AFTER ACTION:
PRIMARY | BACKUP | DISC PROCESS
CHECKPOINT (stackbase, ,infile, , outfile) 0 0 0
sequence # of primary sent to backup
CALL WRITE (outfile, butfer, itemien) 1 0 1
sequence #'s match, operation is done,
sequence #'s advanced
*** PRIMARY PROCESS FAILS, BACKUP TAKES OVER ***
CALL WRITE (outfile, butfer, itemien) — 1 1
sequence #'s don't match, operation is not done,
backup's sequence # is advanced

Figure 7. File System Sequence Numbers

Application Structuring

The process, process-pair, and interprocess communication primitives of Guardian provide
extremely general tools for application structuring. For example, consider an inquiry application
such as hotel reservations. Requests come in from various types of terminals for reservations,
cancellations, and hotel registration. Other requests come in for items such as management
reports showing the number of rooms available at some hotel on some date. The application
could be structured as follows:
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Process-pairs will be defined for each type of terminal to handle actual terminal I/O (including any
required line protocol and character conversion) and initial request verification. Each process-
pair will be designed to handle some number of terminals. When a valid request has been
received from a terminal, the terminal process-pair will route the message to the appropriate
server process-pair.

Each server process-pair will be assigned a certain part of the application. In some cases,
multiple copies of a server program will be run to allow multiple requests to be processed in
parallel.

There are several advantages to this approach. First,the handling of terminals and processing of
requests have been cleanly separated. New types of terminals can be added by simply adding a
type of terminal control process-pair. New types of requests can be handled by adding another
type of server process-pair. Likewise, software modifications and testing can be done on a
modular basis. Finally, nowhere in this structure is there any requirement for a specific number of
processors in the system or for the relative locations of processes. As the system load or the
application changes, the number of processors, amount of memory, or physical location of
processes may be changed without distrubing the application’s internal structure.

VI. SOFTWARE RELIABILITY

When design of the operating system was started, we hoped to eliminate as much as possible the
archetypal system crash. That is, once or twice a day, or week, the system crashes in a
non-repeatable fashion. Our experience on an in-house system used primarily for software
development and manual writing shows that we have achieved that goal. During a three-month
period in the summer of 1977, a processor failed because of a software problem on two
occasions. In each case, the problem was found at that time and the failure could be repeated by
running a particular program.

| propose the following explanation of this reliability. First, the system was very carefully struc-
tured and much time was spent in initially specifying primitives. As experience was gained in
trying to apply these primitives at higher levels, problems were found. This resulted in design
changes at lower levels rather than “kludges” at a higher level. Implementation was also forced to
stay within the designed structures because of the distributed nature of the hardware. If a problem
could not be solved using processes interacting via messages, then it could not be "kludged” by
turning off interrupts and changing some flag in memory. Given a single processor system, there
is a very strong temptation to solve difficult problems in this manner.

Second, as the operating system and hardware were developed at the same time, another
vendor’s system was used to provide interactive text editing, a cross T/TAL compiler, a Tandem 16
processor simulator, and a downloader for the Tandem 16 prototypes. Implementation and
checkout were not impeded by unreliable prototypes and as each level of the system was
implemented, it could be extensively checked. These tools allowed initial implementation and
checkout of all functions of the system through the level of the command interpreter. The wisdom
of this approach can best be shown by the fact that when the first prototype processors were
made available to the operating systems group, all operating system functions which ran on the
simulator ran on the prototypes.

Third, debugging tools were built into the operating system from the start. A low-level interactive
debugger was implemented which allowed breakpoints to be set at any level of the operating
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" system, including interrupt handlers. Once this low-level debugger is entered in one processor,
clocks in all other processors in the system are stopped so that they will not decide that the first
processor is down. When the first processor continues, so will the rest of the system. A full
maintenance panel only had to be used to track problems that managed to destroy the low-level
debugger. Consistency checks were also coded into low-level routines. For example, before an
element is inserted in a doubly-linked list, the list links of the element that the new element is
being inserted behind are verified. These checks have proved to be extremely valuable in tracking
problems or when implementing new features in the system. Even when extensive changes are
being made to the system, it has the property that it will stop at one of these consistency checks
very soon after something has gone wrong, allowing the problem to be rapidly found.

Fourth, formal testing was carried out at all levels of the system as they were implemented. A third
person, whose only job was testing, was added to the initial project well before completion. By
testing not just the external specifications of the system but also the underlying system primi-
tives, it was assured that all system functions at all levels could be checked.

Finally, the primary design goal of the entire system was reliability. When the system design goals
are clearly defined and understood by all involved, they can control implementation on a daily
basis. Implied goals on the other hand are often forgotten when seemingly small decisions are
made.

VIl. CONCLUSIONS

The innovative aspects of Guardian lie not in any new concepts introduced, but rather in the
synthesis of pre-existing ideas. Of particular note are the low-level abstractions, process and
message. By using these, all processor boundaries can be hidden from both the application
programs and most of the operating system. These initial abstractions are the key to the system’s
ability to tolerate failures. They also provide the configuration independence that is necessary in
order for the system and applications to run over a wide range of system sizes.

Guardian provides the application programmer with extremely general approaches to process
structuring, interprocess communication, and failure tolerance. Much has been said about
structuring programs using multiple communicating processes, but few operating systems are
able to support such structures.

Finally, the design goals of the system have been met to a large degree. Systems with between
two and ten processors have been installed and are running on-line applications. They are
recovering from failures and failures are being repaired on-line
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INTRODUCTION

The Expand NonStop Network is unique because it is an extension of an existing network
operating system. Every Tandem 16 computer system comprises from 2 to 16 separate central
processors. Running in the NonStop mode requires constant communication among the pro-
cessors. Consequently, the Guardian Operating System includes a sophisticated message
handling system to control communications between processors and between processes (pro-
grams) running in one processor or running in separate processors. In effect, every Tandem 16
system is a local network controlled by the Guardian Operating System. The Expand NonStop
Network expands the scope of the Guardian Operating System to allow communications among
as many as 255 Tandem 16 systems.

The Guardian/Expand Network system, combined with the unique architecture of the Tandem 16
computer system, provides network users with a number of features unequalled by other
computer vendors:

¢ NonStop Nodes
The fault tolerant hardware and software of the Tandem 16 system eliminates the computer
as a source of network failures [Ref. 7].
NOTE: Individual Tandem 16 systems within the
network are called “nodes” to distinguish the
computer system from the network system.

e A Distributed System

The Guardian/Expand Network makes it possible to configure a network of Tandem 16 fault
tolerant computer systems so that a user of any node in the network can access the
resources of any other node (processors, files, or physical devices) without regard for the
physical location of the resource. To the user, the Guardian/Expand Network appears to be
one large set of computer resources rather than a collection of separate systems.

¢ Dynamic Message Routing

The Guardian/Expand Network constantly monitors the communications paths. When a
transmission fails, the system retries until the transmission succeeds or until the system
determines that the communications path has been broken. When the communications
path has been broken, the Guardian/Expand system automatically reroutes the message
via a different communications path.

® Best Path Message Routing

The Guardian/Expand system monitors the communication lines and automatically selects
the best path. The best path is the one that takes the least time. The system selects the
fastest rather than the shortest path because this optimum end-to-end protocol can reduce
communications costs. When a communications line fails, Guardian/Expand reroutes
messages using the next fastest available path. When a new line is added, the system
takes advantage of any new best paths created by the addition.

e Precisely Tailored Hardware

Different nodes within a network typically have different computing requirements. The
Tandem 16 system allows users to place exactly the right amount of computing power at
each site. Even though the nodes within the network may range from a basic two-processor
system to a sixteen-processor system with billions of bytes of on-line disc storage, the
systems retain total compatibility of data, software, and application programs.




e Logical Growth
The Tandem 16 architecture allows for incremental hardware expansion. A user can add
memory, central processors, or peripheral devices as computing requirements grow.
Similarly, the Guardian/Expand Network allows incremental expansion. Nodes can be
added or removed and communications paths can be changed, all without reconfiguring
existing systems.

Notice that the Guardian/Expand Network can forestall the need for hardware expansion
since the resources of every system in the network are accessible.

e Data Integrity
The Guardian/Expand Network incorporates multiple safeguards to ensure that message
packets are received correctly and that data cannot be lost in transmission.

e Human Engineering

Because the Expand Network is an extension of the Guardian Operating System, the user
interface to the network is through the Guardian command interpreter. For example, to run
the text editor program on the local system, the user enters the command EDIT at his
terminal. To run the program on a remote system, the user simply enters the symbolic name
of the remote system before the command:\OHIO EDIT. In effect, this command connects
the user terminal with the remote OHIO system and starts the text editor program on that
system. The only difference the user may notice in running on that remote system rather
than the local system is that response time may be slightly longer since the communication
lines cannot match the performance of the local processor.

* Simple Programming Interface
The Expand Network relieves programmers of the need to deal with a cumbersome
telecommunication access method. Since programs communicate with each other via
Guardian's message system, the programmer uses the same commands to communicate
with a program in the same processor, another processor, or another system.

Full appreciation of the Expand Network system requires an understanding of how tightly the
Expand Network system is integrated with the Guardian Operating System and the Tandem 16's
architecture.

|. THE TANDEM 16 SYSTEM: A NETWORK IN A BOX

The Tandem 16 NonStop system is designed for the on-line, terminal and transaction, data
base-oriented market where high availability is required [Ref 2]. This requires a multiple
processor system that can tolerate the failure of any single component, including even a central
processor unit. Figure 1 illustrates the architecture of a typical Tandem 16 system.

Notice that at least two paths connect any two components in the system, and everything in the
system, including even individual disc files, can be duplicated. Normally, all resources in the
system function as independent, parallel resources. However, when a component fails, the
remaining system components automatically take over the workload of the failed component. A
system user at a terminal is typically unaware of the failure. Figure 2 illustrates a path switch
resulting from the failure of an 1/O channel.
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The Dynabus is used for interprocessor communication. Of course, the Dynabus is redundant,
and each bus communicates at 13 megabytes per second. The regular |/O channels are block
multiplexed and operate at 4 megabytes per second. Because of the speed of the Dynabus, the
overhead for performing I/O operations via an indirect path as in Figure 2 is negligible.

Guardian Operating System

Guardian, the Tandem 16’s general purpose multiprocessor operating system, manages the
system's resources. The operating system resides in each processor in a system, but is aware of
all the other processors. In fact, the operating systems in the different processors constantly
monitor each other's performance. The instant one processor’s operating system fails to respond
correctly, the other processors assume that it is failing and take over its workload. Obviously, this
requires a great deal of communication among the processors. Additionally, this requires a
process to be able to address system resources by a logical name rather than by a physical
address. The Guardian Operating System is designed in a top down manner with three levels and
well defined interfaces as shown in Figure 3.
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Figure 3. Guardian Operating System




The Guardian Operating System is based on the concept of processes sending messages to
other processes. All resources in the system are considered to be files, and each resource has a
logical file name. Communication between an application process, denoted by circles in Figure 3,
and any other resource (disc, tape, another process, etc.) is via the file system. The file system
knows only the logical name of the intended recipient of a message. The file system passes the
message to the message system, which then determines the physical location of the recipient.
The message system is a software analog of the Dynabus. The message system handles
automatic path retries in case of path errors. Because application programs deal only with logical
file names, the Guardian Operating System offers total geographic independence of resources.
The programmer views this multiprocessor system as a single processor with resources avail-
able through file system calls.

Another advantage of geographic independence of physical resources is that it eliminates the
need for reprogramming when hardware changes occur. For example, a user can add processors
or 1/O devices as the application load grows with time, but all existing programs can remain
unchanged.

Data Integrity in the Tandem 16

The integrity of the data base in a Tandem 16 system is ensured by the Enscribe Data Base
Record Manager. Enscribe uses a checkpointing scheme to perform data base updates in two
separate processors. This scheme guarantees data base integrity even if a processor or |/O path
failure occurs in the middle of an update. Optionally, two disc drives can be configured as identical
copies of each other. Such discs are called a “mirrored pair” Further, each disc drive can be
connected to a different controller. This technique maintains data integrity despite the loss of any
single component, a processor, disc drive, disc controller, or power supply, evenif the discis in the
middle of an update when the component fails. Thus, linkages are kept consistent and have high
integrity within the system.

Il. GUARDIAN/EXPAND: THE NETWORK EXTENSION TO THE MESSAGE SYSTEM

The Expand Network system extends the Guardian message system beyond the boundaries of a
single system. The Guardian/Expand Network allows up to 255 separate Tandem 16 systems to
be linked together. Conceptually, the Guardian/Expand Network system extends the Dynabus
over miles or continents. To a user at a terminal, the entire network appears to be a single Tandem
16 system. (There may, of course, be a noticeable difference in performance since the Dynabus
itself is more than 10,000 times faster than a typical “fast” 9600 baud private line.)

As an extension of the Guardian message system, the Expand Network maintains the geogra-
phic independence of resources. Any resource in the network can be addressed by its logical file
name without regard for its physical location. However, a configuration option allows users to
reserve processors for local processing requirements, thereby excluding those processors from
the network.

lll. THE COMPONENTS OF EXPAND

The major components of Expand are the End-to-End protocol, the Network Control Process, the
Network Line Handler, the Network Routing Table, and the Network Utilities.




End-to-End Protocol

The End-to-End Protocol insures the integrity of messages from source to destination of a
message regardiess of how many intervening nodes and resources are utilized in the message
transmission [Ref. 3]. The protocol is based upon the exchange of packets over a communica-
tions path. Expand supports communications paths of either a full duplex telephone line or a
virtual circuit through an X.25 network.

Perhaps the greatest fear of network users is that the data base is down [Ref. 4]. The End-to-End
Protocol makes sure that data transmissions are received correctly and don't get lost.

Network Control Process

The Network Control Process maintains the Network Routing Table, logs network changes, and
services certain requests from remote nodes. Inquiries concerning remote resources are directed
to the Network Control Process. Messages for all other processes are routed directly to the
destination process. One Network Control Process resides in each node in the network.

Network Line Handler

The Network Line Handlers establish and maintain the communications path between two
physically connected nodes. The line handlers also create a logical connections of nodes that are
not neighbors by forwarding messages, thus implementing the End-to-End Protocol. When the
X.25 network protocol is used, a line handler exists for each virtual circuit. These line handlers, in
turn, communicate with a single X.25 access process that manages the physical line to the X.25
network.

Network Routing Table

Each Network Control Process builds and maintains its own Network Routing Table. The local
Guardian message system uses the Network Routing Table to direct messages for other systems
to the proper line handler. Line handlers also use the Network Routing Table to select the proper
line handler when forwarding a packet. Network Routing Table maintenance is best explained
with an example. Assume that a network is configured as in Figure 4. Notice that the normal route
between nodes A and E is from A to B to C to E. The system uses this route because of the high
speed link between nodes B and C. The failure of the link between B and C generates the
following events:

1. The Network Control Process in node B informs its neighboring (directly connected) nodes
(A and D) of the failure of the B to C communications line. Meanwhile, node C notifies its
neighbor (node E) of the failure. Nodes D and E then notify each other of the change.

2. This change requires the establishment of a new communications path between nodes A
and E ( and others not described here for the sake of simplicity). Nodes A and E establish a
new connnection by exchanging a number of control messages. Each node notifies its
neighbor of the change in the shortest time distance to remote systems.

3. When the connection is established, each node updates its Network Routing Table so that its
own packets are directed properly, and so that messages are forwarded over the fastest
available path,




Figure 4. Network Routing

When a node updates its Network Routing Table, it checks to see if the change creates any new
shorter (faster) communications paths. Therefore, the addition of a new line may generate a
number of path changes. For example, restoring the path between nodes B and C in the sample
network changes the path between nodes C and D. Messages are forwarded via node B rather
than node E to take advantage of the faster line.

It is important to point out the Network Control Process and all Line Handlers run as NonStop
process-pairs. This exclusive feature ensures a degree of reliability possible only in a fully
redundant system such as the Tandem 16 computer.

Network Utilities

The Network Utility programs aid the user in monitoring the status of the network and in tracing
problems. The tracing facility, NETRACE, creates a trace file that tracks the events that occur
within a specific Line Handler. A companion utility, NETDUMP, formats this trace data for report
generation.

The NETSTATS program displays accumulated statistics for a given line handler and optionally
resets them. The statistics are reported by protocol level and include counts of the number of
frames of a given type that have been sent or received, and the number of requests that have
been initiated or processed by the line handler.

NETMAPS provides a facility to display the entire network status as viewed from a single system.
It gives the current status of each remote system and the status and routing of each communica-
tions path to each system.

NETPROBE traces, system by system, the physical route used between two systems and gives
the elapsed time required to traverse the route.

The user can run these utilities from any terminal in the network, and their output can be directed
to any terminal or other output device in the network. Therefore, a user can check the perfor-
mance of any system in the network.




. Network Logging Center

As an option, the user can designate one node of the network as the Network Logging Center.
When this is done, the status messages normally logged at each individual node are forwarded to
the logging center.

lil. AVOIDING THE PITFALLS OF NETWORKS

Understanding the evolution of networks is helpful in évoiding the pitfalls of many of the network
systems currently available commercially from computer venders. The concept of creating an
interlinked network of computers results from two different approaches to solving the problems of
organizations with geographically scattered requirements for computing resources.

The first approach simply places a computer at each site that can justify the cost, a common
technique in batch oriented environments. This approach tends to isolate the end user from the
computing resources. Also, the approach makes it difficult for the organization to exchage
information easily among the computer installations. Sharing data among installations typically
involves shuttling about magnetic tapes or even decks of punched cards. As a result, the
organization's data base is seldom completely accurate. Clearly, it would be an advantage if the
computers could communicate directly with one another.

The second approach places one large host computer at a central location with terminals at
remote locations. This has the advantage of placing the organization’s data on-line and allows
non EDP personnel greater access to the computing resource. However, this approach ignores
the practical economics of the computer industry. In the past two decades, computer hardware
has become increasingly less expensive while communications costs have remained relatively
high. A more serious disadvantage of this approach is that a failure of the host computer can
cripple the organization’s ability to conduct its business [Ref. 5 ]. Clearly. it would be an advantage
if some computing power could be located at the remote terminal sites.

Both approaches lead to network systems. In the first case, existing computer installations were
made to communicate with each other. In the second case, some computing responsibilities were
moved from the host computer to the remote locations. Eventually, the so called “"80/20" rule
emerged. This rule states that when 80% of the processing against a partition of a data base is
performed on behalf of a remote site, it is most cost effective to move that partition to a comptuer
system at the remote site in a computer network configuration [Ref. 6. This way only about 20%
of the system transactions require communication facilities.
Establishing a network is an attempt to meet one or more of the following objectives:

¢ Distribute data bases (put the work close to the end user)

e Share resources

¢ Reduce communications costs

* |ncrease performance and decrease response time by partitioning tasks

e Achieve higher system availability

Past Approaches

Several computer manufacturers have implémented and market network systems [Ref. 7].
Typically, these systems reveal their heritage in the evolutionary approaches to networks. For
example, most network operating systems have been imposed “on top” of existing operating
systems. This gives rise to network “architectures” that have no relationship to the systems they
serve and to cumbersome access methods.
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In systems where computer systems have replaced terminals, the concept of a host computer
with a centralized data base generally remains. Unfortunately, the problems caused by a failure of
the host computer also remain. If the host suffers intermittent failures, data integrity can be lost
throughout the network, not just in the host's data base.

In general, commercial networks have linked the nodes of a network system in a point-to-point
manner as shown in Figure 5.

In the network shown in Figure 5, all nodes can communicate with each other since each is
connected to all other nodes by communications lines. While this is convenient, it is also very
costly. By contrast, Figure 6 shows a typical Guardian/Expand network.

The Guardian/Expand Network reduces communications costs because its automatic message
forwarding eliminates the need for point-to-point interconnection of the network. Most other
commercially available networks require the user to write special applications programs to relay
messages from node to node.

1
e S
~ / \ B
T i \
| W . N
K K y
\..7 S Tne
g' /( _‘;m/\ )/ ]
\ vl .

Figure 5. A Typical Network

Recognizing the Risks of Distributed Processing

Several risks face the user contemplating a network of computing systems. However, these risks
can be avoided if they are recognized in time.

e System Availability
Networks that rely on a host computer or that have a master/slave hierarchy can never be
more reliable than the central computer.

e System Compatibility

Selecting the computer systems for each node of a network requires consideration of
factors other than just the hardware costs. Considering only hardware costs, it may make
sense to install different kinds of computers at different sites. But in a network, costs
increase as the number of vendors increase. Different programming groups are required for
the different processors. Incompatibilities in data types, operating systems, and program-
ming languages must be resolved. Making a relatively simple change at the network level
may involve extensive reprogramming requiring extensive coordination.




Expansion Capabilities

System expansion must be carefully planned, as mistakes here can be very expensive. The
user should plan for both the expansion of the network and the hardware expansion of
individual systems. In regard to the latter, it should be noted that even with a single vendor
different sizes of computers often used different, incompatible operating systems and
access methods. Thus, outgrowing a particular processor may involve extensive repro-
gramming. Reprogramming without gaining additional system capabilities is the most
expensive kind of programming.

Data Integrity

The safeguards for data integrity offered by a network vendor should be examined closely.
Data bas integrity at each site is just as important as accurate data transmission throughout
the network. A single corrupted data base can quickly contaminate the entire network, not
because the data is duplicated, but because the data at one site is typically based on data
from other sites. In a 20-node system where each node interacts with four other nodes each
minute, the entire network can be corrupted in less than three minutes.

Network Support Software

Vendor supplied support programs are an important part of a network. Tracing an error back
to its source can be difficult since the error may pass through a number of nodes before it is
detected. The network should include a method for isolating errors anywhere within the
network from any given node. More typically, error analysis functions are centralized in a
host or master computer, which leaves the entire network vulnerable to a failure in the host
computer.

Figure 6. A Typical Guardian/Expand Network
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Summary

The Guardian Operating System is perhaps the only operating system designed as a network
system. The multi-processor design of the Tandem 16 system necessarily requires an operating
system structured as a local network-in-a-box. In effect, the Expand NonStop Network simply
eliminates the box.
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Abstract

This paper presents information for the individual responsible for designing
a transaction oriented system. It covers the major design considerations that
should be taken into account. The paper is divided into the following topics:

I. Introduction

II. A Transaction Processing System Model
III. System Control

IV. Implementation Considerations

V. TANDEM'’s Transaction Processing System

. Introduction

One of the important points in any design, and the most important in a transaction environ-
ment, is that the system as a whole should be viewed as a "SERVICE". In any service
organization the first goal is to find a service that people need. The second goal is to offer a
service that people can depend on, and the third goal is to respond to the changing demands of
those who use the service, If all three goals are not established from the beginning the success of

NOTE: TANDEM, GUARDIAN, EXPAND, NonStop, and PATHWAY are trademarks of Tandem Computers
Incorporated.




the service may be negligible. The one goal most neglected in the past has been responding to
change. The combination of user needs, building a reliable system, and the ability to react to
change quickly are explored in this paper. The intent of this paper is to offer a better under-
standing of transaction processing and suggest general guidelines for successful implementations
in the future, by examining these three points.

The first design consideration must be to fulfill a user defined need. This need or service is
referred to as a “"USER FUNCTION". Once a function is offered, a user gains confidence in the
service based on reliability and the system’s responsiveness to change as the needs of the
business change. This ability to change and evolve is referred to as “REACTION TIME". The
following design considerations have a direct impact on reaction time.

INSTALLABILITY:

A system can succeed only if it can be installed in a reasonable amount of time. Ease of
installation also applies to any major enhancements or user functions.

FLEXIBILITY:

Determines how well the system reacts to change. If a system is designed properly with change in
mind, changes can be applied quickly. Reaction time is reduced significantly.

EXPANDABILITY:

Allows the system to accommodate new users and new functions. After a system’s initial success,

two events typically occur:

1. More users want to use the system. A well-designed system must incorporate the ability to
handle an increase in the number of users.

2. New functions are requested. The ability to handle new user functions without affecting the
current user functions must also be considered.

MAINTAINABILITY:

The ability to correct problems and “tune” a running application. Too often, this consideration is
overlooked in the original design. The problems that occur not only affect the existing functions
but future functions as well. If significant resources are required to maintain existing functions,
the ability to provide changes and enhancements is reduced. The total reaction time increases
and the probability of overall success decreases.

RELIABILITY:

To ensure “service” to the user, the system must be reliable. The best implementations fail if the
user cannot access his system. In addition to being constantly available, the system must ensure
the integrity of its data base.

Note: Performance considerations are important; however, the above mentioned considerations
should not be sacrificed for efficiency. The key to performance is through a good design.




Il. A Transaction Processing System Model

Figure 1 shows the components of a typical transaction oriented system. A video display unit
provides the human interface to the system. The remainder of the diagram describes the
software components of a computer system including a Data Base stored on a direct access
device external to the computer. Notice that the flow of control in this diagram is bi-directional.
Notice also that operator request may not need the services of all five components. For example,
if an operator enters non-numeric data into an entry field defined as numeric data only, the
terminal I/0 and the field validation routines are the only two components exercised. The
request for a new function might involve the display of a new format. In this case four
components are exercised: terminal I/0, field validation, data mapping, and transaction control.

This diagram is used as the foundation for the design of a transaction oriented system. The
components describe the functional activities that are common to all transaction oriented
applications. A brief definition of each component follows the diagram.

HUMAN INTERFACE
\ TO THE SYSTEM
— VIA A TERMINAL

S

—
\

TERMINAL ~__ (TERMINAL 1O
INTERFACE i HANDLER)
\
FIELD _ (DATA CONSISTENCY
VALIDATION - CHECKS)
\
DATA (DATA CONVERSION AND
MAPPING NIRRT V) FORMATTING)
\
TRANSACTION (APPLICATION AND
CONTROL TRANSACTION FLOW)
DATA BASE | _ (ACCESS/UPDATE
SERVICE OF THE DATA BASE)

X
L Es

DATA
BASE

FIGURE 1. TRANSACTION PROCESSING SYSTEM MODEL




Major Program Components

I. Terminal Interface
The terminal interface is responsible for the following general functions:

® All physical terminal I/0
® Control of device-dependent characteristics

Because the physical 1/0 to various terminal types often involves different protocols, it is
advantageous to isolate the code that actually communicates with terminals into one place. This
approach enhances the capability to test and install new terminal types, isolate and fix problems,
and easily take advantage of new features that may become available on existing terminal types.

The data transmitted by the physical 1/0 also requires different handling by different terminal
types, e.g., the codes to delimit a field may differ.

2. Field Validation

The field validation facility is responsible for data consistency on a field-by-field level.
Normally these edits are defined when the screen format is built.

Field validations should be applied as close to the actual operator as possible. Notification of a
problem with a data field entered should be timely, and its impact on the running system should
be kept to a mimimum.

The mechanism by which field edits are defined should be independent of physical terminal
type. There should be one consistent way to define a field as numeric data only, a field that must
be entered, or a range of acceptable values for a particular field. By separating the type of edit
from the physical mechanism of applying the edits, which are defined at the terminal interface,
terminal types can be added to the system without altering the logical view of entry fields and
their associated edits.

3. Data Mapping

This facility is responsible for the conversion and formatting of data from an external to an
internal representation and back again. By developing application tasks which refer to the data
in its internal form the external characteristics of a system may change without affecting existing
applications.

Data mapping is the key to writing terminal independent applications which process requests
with no concern as to how that request was actually constructed. Therefore, whether requests are
stored in a batch file on disc or entered through a video display should have no bearing on the
application design below this point.

The data mapping facility should be at the symbolic field name level. This allows the ordering of
fields to change on a particular screen display; however, the order in which the fields appear in
the logical request will remain the same.




" 4, Transaction Control

This facility is responsible for the overall application flow. It is analogous to the top level
implementation of a structured program which:

® Initiates all logical terminal 1/0;

® Interprets and validates the request received from the data mapping facility;

® If Data Base access is required to service the request, the appropriate data along with the
proper control information is passed to the appropriate Data Base routine; and

® Interprets and validates the Data Base routine replies.
The main function of transaction control is application flow, along with the routing of requests to

one or more Data Base routines. It is a relatively small portion of actual application code;
however, it is the heart of any application. The major benefits of this approach are:

® Since the actual amount of code necessary to control any one function is relatively small, it
is a simple task to add and change user functions;

® Since the approach is structured in a modular fashion, new functions can be integrated and
tested easily as part of the whole application; and

® Application flow and control can be tested as a separate piece of the total application and
therefore have little or no impact on the Data Base services.

5. Data Base Service
This facility is responsible for all activity on a Data Base. This is normally a very important
application function because it alters the state of the Data Base.
A Data Base service routine should be written using the simplest approach possible. The most
straightforward and simple approach contains the following components:
® Get a request from a transaction control facility:
This is the point of entry for a Data Base service. Getting a request from the transaction
control facility is similar to reading a record from a disc file,
® Access the Data Base:
The request may be for a read, write, update, delete or any combination of the four. The
specified requests are applied against the Data Base.
® Build a reply based on the results of the Data Base access:

The reply could contain actual data from the Data Base, control information describing any
error condition that occurred, or any combination of the two.

® Reply to the transaction control facility:

This is the exit point of the Data Base service. Replying to the transaction control facility is
similar to writing a record to a disc file.

Moreover, each Data Base service should process requests uniformly from one or more user
functions. By doing so the Data Base service will be independent of any particular user function,
and the service can be viewed as a general utility, accessible by any user function. This
eliminates redundant code and simplifies the implementation of new user functions requiring
Data Base services already established.




. The Data Base service must be written in a context free environment. The Data Base service
should not be responsible for the retention of data between requests. Once a request is received,
the Data Base service should be able to process the complete request and then forget about it.
This approach simplifies the code significantly and creates an environment that is easy to
understand and maintain.

One critical part of any transaction oriented system is input validation. There are three major
types of input validation:

TYPE OF VALIDATION EXAMPLE
E[E_fﬁj - NUMERIC
— MUST FILL

RANGE 100 THRU 189

REQUEST! = INTER-FIELD RELATIONSHIPS
= (IF PAYMENT-METHOD = “CASH" THE AMOUNT
ENCLOSED MUST BE - 0)

(IF CITY WAS ENTERED STATE AND ZIP CODE MUST
ALSO BE ENTERED)

e

1DATA BASE ! = DOES ACCOUNT # 12345 EXIST IN THE DATA BASE?

DOES THIS SALES TRANSACTION IN THE AMOUNT
$245.00 FOR ACCOUNT # 12345 EXCEED THE
ESTABLISHED CREDIT LIMIT?

Figure 2 shows each level of edit within the transaction processing system model.

TERMINAL
INTERFACE
FIELD VALIDATION |- {|'FIELD]VAI-IDATlON )

X

DATA MAPPING

\

TRANSACTION
CONTROL

A

DATA BASE «— (|DATA BASE|VALIDATION )
SERVICE

le——— (|REQUEST]| VALIDATION )

FIGURE 2. EDIT LEVELS




At this point the model is defined. The following illustrations show the use of the model in an
application environment.

The internal components of the transaction processing system model can be grouped into the
following categories:

Regquest oriented:

Components 1 through 4 have the combined responsibility for gathering, interpreting and
responding to requests. From this point on the combination of components 1 through 4 will be
referred to as the “REQUESTOR” portion of our model.

Service oriented:

Component 5, the Data Base services, are written as general utility functions accessible by any
user function within a REQUESTOR. The Data Base services will be referred to as
“SERVERS".

Figure 3 shows the REQUESTOR/SERVER relationships:

HUMAN INTERFACE TO THE SYSTEM

*** THIS IS WHERE THE ACTUAL REQUEST

4

ORIGINATES. . ..
5
TERMINAL INTERFACE |
FIELD VALIDATION | REQUEST
REQUESTOR [_> ORIENTED
DATA MAPPING | COMPONENTS

TRANSACTION CONTROL |

SERVICE
|:>I DATA BASE SERVICE | | ORIENTED

COMPONENTS

DATA
BASE

FIGURE 3. REQUESTOR/SERVER RELATIONSHIPS




Figure 4 illustrates an order entry application with three basic functions: credit checking a
customer, adding a new order, and updating an existing order.

REQUESTOR SERVERS

< 7

ﬁ
ORDER
ENTRY
REQUEST
@ L Y [ ORDERENTRY ADD ooy
-~ REQUESTOR NEW ORDER eon
8 BASE

\;. UPDATE ORDER

FIGURE 4. ORDER ENTRY APPLICATION

This example illustrates a terminal operator building an order entry request and sending it to the
system. It also shows the relationship established between the requestor, who is responsible for
the overall application control, and the Data Base servers, which are responsible for all Data
Base activity. The system is partitioned into small modular components that are easy to define,
write, debug and enhance. Because of its modularity, the system is extremely easy to maintain.




Figure 5 shows the relationships established between multiple applications running under the

control of one transaction processing system.

REQUESTORS SERVERS
r\
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| | \
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ENTRY
REQUEST ™\

UPDATE A
CUSTOMER
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R Y
ORDER ENTR =& ORDER

REQUEST

UPDATE

ORDER ‘\
\

CORPORATE
DATA
BASE

FIGURE 5. MULTIPLE APPLICATIONS IN A SINGLE SYSTEM

The above example illustrates the following points:
e Multiple application requestors can exist within a transaction processing system.

® Each terminal operator should have access to the number of application requestors needed.

e Data Base Servers may be shared among requestor applications.




lll. System Control

Taking advantage of modular design techniques improves the overall quality of the system.
However, as the components of a system are divided into smaller, more manageable segments,
the problem of overall control becomes increasingly difficult.

The solution to this problem is to create a command center that has a global view of the entire
application and, therefore, can create, delete and monitor the total application environment.
This facility will be referred to as the APPLICATION MONITOR. Figure 6 illustrates the
application monitor’s view of the system:

Wy

REQUESTORS SERVERS
M Y

ADD NEW
CUSTOMER

| =

)

UPDATE A
CUSTOMER

- > DATA
BASE

ADD NEW ‘_/

ORDER

APPLICATION
MONITOR

FIGURE 6. SYSTEM CONTROLLED BY APPLICATION MONITOR
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The transaction processing system model established previously can be viewed in the following

way:
TRANSACTION PROCESSING SYSTEM
APPLICATION
REQUESTOR 1
SERVER 1
SERVER 2
APPLICATION y 5
REQUESTOR 2 SERVERS Lk
=
USER 3 A
" TERMINAL -
. B
' A
. : S
" E
SERVER n
APPLICATION
REQUESTOR n

FIGURE 7. TRANSACTION PROCESSING SYSTEM OVERVIEW

The application monitor's view of a transaction processing system is analogous to the view a
system operator might have at his console. The system operator controls the hardware environ-
ment and the application monitor controls the application environment.

The application monitor should maintain control aver the following functions within a transaction
processing system:

® Overall Transaction Processing System

® Each Application REQUESTOR

® Each Data Base SERVER

® Each Operator TERMINAL




IV. Implementation Considerations

Once the system is designed, its timely implementation, plus its ability to change as the needs
of the business change, will be the deciding factors that determine its ultimate success or failure.
Each system may be composed of many applications and each application will require the
following components:

APPLICATION

* TERMINAL INTERFACE

FIELD VALIDATION
(ONE COMPONENT OF THE SCREEN DEFINITION)

COMPONENTS OF A SCREEN DEFINITION:

1. INFORMATIONAL DATA FOR PROMPTS (PROTECTED)
DATA ENTRY FIELDS {UNPROTECTED)
INITIAL ENTRY FIELD VALUES
ENTRY FIELD VALIDATION SPECIFICATIONS

LN

DATA MAPPING (TO AND FROM THE SCREENS AND MEMORY)

DOHuvmecOom>D

TRANSACTION CONTROL WHICH IS RESPONSIBLE FOR:

1. INITIATING ALL LOGICAL TERMINAL 1O

2. INTERPRETING AND VALIDATING REQUESTS
3. ROUTING REQUESTS TO THE PROPER SERVER

4 INTERPRETING AND VALIDATING REPLIES FROM THE SERVER

DATA BASE SERVICE WHICH IS REPONSIBLE FOR:

1. ACCEPTING AND INTERPRETING REQUESTOR MESSAGES
SERVEH(S) 2 ANY DATA BASE ACTIVITY

(READ. WRITE. REWRITE OR DELETE)
3. BUILDING A REPLY BASED ON THE SUCCESS OR FAILURE OF THE DATA
BASE ACTIVITY
REPLYING TO A REQUESTOR

.

FIGURE B. FUNCTIONS OF REQUESTORS VERSUS SERVERS WITHIN AN APPLICATION

Requestor Procedures

Because the requestor provides the logic that communicates with the end user, it must be the
most flexible component of the system. A means of designing, changing and deleting screen
formats is essential. Internal record formats produced through data mapping should be kept and
maintained in a data definition library similar to those libraries associated with record definitions
on a Data Base Management System. The actual transaction control might be written in a
procedural language that is easy to use but flexible enough to handle total application flow.

All the above facilities should be maintained in a library accessible at run time. This allows
smooth integration of each function within a requestor. It also allows modular expansion of
functions within an application with little or no impact on current running functions.
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This approach to implementing an application requestor ensures the reaction time necessary to
effectively handle user demand. Moreover, it allows the system to expand in small, well-
controlled increments, thus increasing the integrity of the overall system.

Server Procedures

The back-end component of any application is the Data Base server. Back-end functions must
be handled with care, for they maintain the most critical aspect of any application, the Data
Base. One of the principal advantages of this design concept is that it greatly simplifies the
implementation. Server procedures can be designed and tested in the familiar — read a record,
update the Data Base and Write a reply — fasion. Input transactions can be read from a disc file
or magnetic tape. Test Data Bases can be created for the purposes of testing, and server
procedure testing can take place independent of the overall application implementation.

The following diagram illustrates the two step integration of any Data Base server:

DATA BASE SERVER DEVELOPMENT AND IMPLEMENTATION
STEP ONE — TEST THE DATA STEP TWO — INTEGRATE THE
BASE SERVERIN DATA BASE
A TOTALLY SERVER IN THE
BATCH LIVE
ENVIRONMENT ENVIRONMENT
BATCH OPERATOR
REQUEST TERMINAL
FILE
REQUESTOR
SERVER SERVER
TEST CORPORATE
DATA BASE DATA BASE

FIGURE 9. INSTALLING A DATA BASE SERVER

The integration of both REQUESTORS and SERVERS into the live system should be handled
via the APPLICATION MONITOR. The application monitor should be able to logically start
and stop any component within the system.




V. The TANDEM Transaction Processing System

TANDEM offers a total environment for transaction processing. The GUARDIAN OPERAT-
ING SYSTEM was specifically designed with NonStop transaction processing in mind. The
FILE SYSTEM within Guardian allows separately running processes (in the same CPU,
different CPUs within a single system or different systems with an EXPAND network) to
communicate with each other at a simple READ/WRITE level. Guardian allows one logical
computer system to incorporate up to 16 processors. The EXPAND network allows the intercon-
nection of as many as 255 logical systems within a network and still maintains the simple
READ/WRITE level communications between application processes. With this as a base,
TANDEM has introduced a new product called PATHWAY. PATHWAY allows a user to take
advantage of the unique TANDEM architecture, and it significantly reduces the time necessary
to develop a transaction processing system. The functions enclosed within the inner box are
addressed by the PATHWAY product.

] HUMAN INTERFACE
‘*N TO THE SYSTEM
S VIA A TERMINAL

TERMINAL . (TERMINAL

INTERFACE /O HANDLER

\

FIELD  _ (DATA CONSISTENCY
VALIDATION 5 CHECKS)

\

DATA , » (DATA CONVERSION AND
MAPPING FORMATTING)

\

TRANSACTION » (APPLICATION AND

CONTROL TRANSACTION FLOW)

A\
A

DATA BASE (ACCESS/UPDATE
SERVICE OF THE DATA BASE)

\
(S

DATA
BASE

FIGURE 10. THE PATHWAY SYSTEM WITHIN THE TRANSACTION PROCESSING SYSTEM MODEL




PATHWAY Product Overview

The goal of the PATHWAY product is to simplify the design and development of transaction
oriented applications. The PATHWAY product addresses four of the major components neces-
sary to implement a transaction oriented application.

1. Terminal Interface ( Multi-terminal I/0 handler )
2. Field Validation ( Data consistency checks )
3. Data Mapping ( Data conversion & formatting )
4. Transaction Control ( Application & transaction flow )

The fifth component (Data Base Server) can be implemented using any of the TANDEM
standard languages — COBOL, FORTRAN, TAL, or MUMPS.

The PATHWAY product has the following components:

® [nteractive Screen Builder

Allows the user to build screens interactively at a terminal.

® Screen COBOL compiler

A COBOL-like terminal oriented language. The compiler creates and maintains a pseudo code
library accessed by the Terminal Control Process at run time.

® Terminal Control Process

Interprets the pseudo code-library created by the Screen COBOL compiler and performs the
four major application functions mentioned above in a NONSTOP environment.

® Application Monitor

Responsible for creating, monitoring and altering the application run time environment,

® AMCOM - Application Monitor Command Language

The mechanism by which an operator may communicate with an active Application Monitor.

If we assume a successful installation of a transaction oriented system, we now must deal with
EXPANDABILITY. By using the unique TANDEM architecture, an application can be written
and then expand smoothly as the demands placed on the system increase. Most successful
systems first expand because of an increase in the number of users who need to use it. Figure 11
shows the addition of new users and interjects a new question: “Do I run more than one copy of




. the total application or do the users share the application?” Figure 11 shows users sharing the
application. It should be noted that TANDEM's terminal control process, a part of PATHWAY,
handles all the multi-tasking between more than one terminal of the same type. In Figure 11,
notice that the application remains unchanged even though the number of users increases.

REQUESTOR SERVERS

.

ADD

= »( ORDER ENTRY
J NEW ORDER

REQUESTOR

UPDATE ORDER

FIGURE 11. ADDING USERS TO PATHWAY SYSTEM

In a successful application, the addition of users can degrade system performance. At that point,
most systems go through either a major change or a rewrite. The unique TANDEM approach
offers an alternative.

To alleviate the problem of increased user load, the system must be able to distribute the
application into more than one physical process. This is the key to expandability.

The description of the system to this point views the system as one self-contained application.
However, all expansion limitations can be eliminated if one logical application can comprise
multiple physical processes or running programs. This leaves the original design of the system
unchanged, but increases system throughput by expanding the modularity of the application
beyond the physical boundaries of a single program unit.
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The following diagrams illustrate the various ways of functionally distributing the application to
allow for expansion:

e Terminal operators can be connected to multiple requestors running the same application.
® Multiple copies of the same server can be created to increase throughput.

® Sharing a server between more than one application requestor.

REQUESTORS SERVERS

ORDER ENTRY

i @
*‘ -‘--

i REQUESTOR /™

0

ADD NEW
o

—»( UPDATE ORDER )=

CORPORATE
DATA BASE

ORDER ENTRY

REQUESTOR

FIGURE 12. SYSTEM EXPANSION BY ADDING REQUESTOR

Notice that the users are distributed between two requestors and that the requestors share the
server functions. Therefore, the total number of servers remains constant even though the
system includes multiple requestors.
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Another expansion problem is caused by increased demand on any one server. This problem can
be overcome by duplicating a particular server to create what is known as a "SERVER CLASS".
For example, if the majority of user demand on the system is to run credit checks, using a single
server for credit checking could create a bottleneck and impact the total applicaton. This
bottleneck can be eliminated by creating another copy of the credit check server and distributing
the requests between the two copies. Figure 13 illustrates a server class:

REQUESTORS SERVERS

SERVER
CLASS

€Y

ORDER ENTRY
REQUESTOR

ADD

' ™ NEWORDER /)

ORDER ENTRY

TN RDER )¢——
REQUESTOR SPOATES

Y

=3 =3 =3>>
s I

CORPORATE

DATA BASE

FIGURE 13. SERVER CLASSES
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Figure 14 illustrates the addition of a new application. Notice that even though there are two
unique applications, the requestors can still share servers or server classes.

REQUESTORS SERVERS

0 e iy

||
ADD NEW
CUSTOMER

UPDATE A
CUSTOMER

SERVER
CLASS

1B
/k |

ORDER ENTRY
REQUESTOR

ORDER ENTRY
REQUESTOR

UPDATE ORDER ﬁ
\

CORPORATE
DATA BASE

FIGURE 14. ADDING A NEW APPLICATION REQUESTOR

Figure 14 shows that both the order entry and customer entry applications need to be able to
check credit. The credit check server class is therefore shared by both applications, yet each
application also has its own private servers to fulfill the individual requirements of a particular
application.
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One of the major reasons for distributing an application into multiple processes was for expanda-
bility. Figure 15 illustrates the distribution of application functions within a local TANDEM
system. Terminals, Requestors and Servers may be distributed among multiple CPU'’s,
maximizing parallel operations and increasing throughput. It should be clear that when demand
forces the system to grow that no design changes will be necessary.
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Requestors
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FIGURE 15. DISTRIBUTED LOAD BALANCING ON A LOCAL TANDEM SYSTEM




The next step in distributing application functions is over a network. The mechanism for
communicating between processes within the TANDEM environment is consistent ( Read /
Write ). Therefore, distributing application functions over a TANDEM network using EX-
PAND does not impact the original design. Figure 16 illustrates the distribution of application
functions over a simple EXPAND network.
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In summary TANDEM offers a total solution to transaction processing:

RELIABILITY:

NonStop transaction processing assures continuous system availability and data integrity

INSTALLABILITY:

PATHWAY offers a quick and easy way of developing transaction oriented applications, which
significantly reduces the cost of applications development.

FLEXIBILITY:

PATHWAY offers the ability to make on-line additions, modifications, or deletions of transac-
tion types, screen characteristics, applications, and terminals.

EXPANDABILITY:

The combination of the GUARDIAN Operating system and the EXPAND network offers true
distributed processing, which allows applications to run in any processor in any system without
regard for the physical location of terminals or the data base.

MAINTAINABILITY:

Because of the structured approach taken by the PATHWAY product, modules may be written
and implemented in small, single threaded, and easy to understand components. Therefore, the
maintenance task will be kept to a minimum.
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One database does it all

by Kevin Weigler

Today, DP managers of global
organizations believe they must accept
the cost of performance trade-offs in
relational databases. However, in-
novations in database technology will
soon provide a solution to this problem

Each vendor’s relational database
management systemn (RDBMS) is op-
timized for a specific environment. For
example, an RDBMS that is designed
for batch processing may provide poor
transaction and query processing per-
formance. An on-line fransaction
processing (OLTP) RDBMS that
provides rapid inserts, updates and
deletes may provide poor sequential

“Parallel processing, distribution
and resultant high performance
are all natural extensions of a
message-based operating system
running over a loosely coupled
architecture.”

reads. For query processing, an RD-
BMS may provide good decision sup-
port but poor OLTP performance.

To gain optimum performance for all
accesses -- transaction, sequential
(batch), and query processing -- organi-
zations must maintain multiple data-
bases on multiple vendors’ equipment,
Typically, one system is used for batch
and/or query, another for OLTP. The
first database is updated at night, the
second on-line database provides con-
stant access to current information. But,
with multiple databases. organizations
do now know the state of their business
at any one time and they incur the cost
of maintaining extra hardware and soft
ware

Leveraging parallelism for

OLTP

Batch Report

Figure 1

SINGLE DATABASE FOR ALL APPLICATION TYPES

Ad hoc
Query

=Y

Many organizations are switching from
a hierarchical to a relational database
management system because the latter
provides a more flexible means of ac-
cessing and combining information. An
RDBMS allows new types of data to be
added and accommodates different
ways of viewing data without the need
to restructure the database.

The emerging data manipulation
language of choice is the American
National Standards Institute (ANSI)
Structured Query Language (SQL).
SQL allows portability of programming
skills across the multiple vendor en-
vironments that are often found in
global organizations. These organiza-
tions are demanding one database of
record that performs well for all types of
accesses using a language that is por-
table across heterogeneous systems

According to the Garter Group, Inc.,
a market research firm based in Stam-
ford. Connecticut, “In the near future
customers won't have to trade off per

formance in one type of access for
another, There will be a general-
purpose, high-performance database
capable of running OLTP, batch and
query, available in 2 - 3 years.” (see
Figure 1). The added performance
gained from this type of database could
greatly increase an organization’s com-
petitive advantage.

Distribution for Perlormance

As organizations spread to provide bet-
ter service to their geographically
distributed customers, disseminating in-
formation via data distribution provides
better performance for users than a cen-
tralized strategy. When users are widely
dispersed, response time is dominated
by time required for data communica-
tion. By moving the database close to
the user, communication time is mini-
mized. As communication time de-
creases, the cost of transferring data also
decreases. Thus, data distribution can
be more economical for global organ-
izations as well




Many organizations will have strategic
reasons for both centralizing and
distributing data. By using one flexible
RDBMS, suitable for both centralized
and distributed applications, an
organization gains the advantage of
disseminating data as business needs
dictate. $

With a distributed RDBMS of record,
the organization maintains one logical
database that is spread across any
number of nodes. Users at local and
remote nodes perceive the entire
database as if it were stored locally.

A distributed RDBMS can ensure data
integrity in the event of application,
node or network failure. It can manage

“When users are widely dispersed,
response time is dominated by
time required for data com-
munication. By moving the
database close to the user, com-
munication time is minimized. As
communication time decreases,
the cost of transferring data also
decreases.”

a transaction that is updating data on
multiple nodes so that either the tran-
saction will completely commit or back
out

A distributed network provides con-
tinuous availability, which also improves
performance. Each node operates in-
dependently and even if other nodes
become unavailable the network con-
tinues to operate.

Many smaller processors connected to
process a query (for example) in parallel
cost less to design, and hence to pur-
chase, than one large processor. Using
a multiprocessor system with non-
shared memory that is capable of
parallel processing, an organization can
use multiple operating systems, disks,
channels and applications to gain better
overall performance.

Parallel Performance

Parallel processing can be accomplished
in several ways, including the use of
tightly and loosely coupled multiple

Processors.

B Parallel query execution

CPU 1 2 3

Figure 2

B Reduces elapsed time up to a factor of N (N = # of CPUs)

4
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LEVERAGING A PARALLEL ARCHITECTURE
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Tightly coupled processors share one or
more key resources, including memory.
As contention increases for key resour-
ces an ever greater percentage of
systemn resources will be devoted to
managing the system and its resources,
not to productive work. Adding an ad-
ditional processor provides much less
than 100 percent of its capacity due to
the interlocking of shared memory
There is also a limit to how many
processors can be added before the
memory runs out of bandwidth.

Tightly coupled systems run a
significantly greater risk of failure than
loosely coupled systems because an
error in one processor can corrupt the
operations environment of another. If
the one copy of the operating system
fails, all the processors fail.

Running a message-based operating
system, loosely coupled processors
communicate by sending messages
from one program to another. Even
system level requests become messages
flowing over a high-speed bus to each
Processor.

With loosely coupled processors, when
one processor fails, the others will con-
tinue to be productive and no data is
lost. Load sharing can spread out the
work and give better, more consistent
response time. Adding an additional
processor provides close to 100 percent
performance improvement from each
processor. Hence, linear performance
growth can continue almost indefinitely
with the addition of processors. With

loosely coupled processors, a distri-
buted environment is a natural exten-
sion of a central site.

Loosely coupled multiprocessor sys-
tems provide even better performance
when used for parallel processing. In
parallel query processing with a
distributed RDBMS, the master query
executor(s) decomposes a query into N
fragments. N server executors search
disks containing the desired tables,
anywhere in the network, and the result
is brought up to the application. This
can improve response time by as much
as a factor of N, where N is the number
of processors that are available to the
query. For example, with five fragments
a request that would normally execute
in 10 seconds could take as little as 2
seconds (see Figure 2).

Parallel processing, distribution and
resultant high performance are all
natural extensions of a message-based
operating system running over a loosely
coupled architecture. Thus, hosting a
single database of record on a parallel
processing system provides a substantial
performance advantage.

Platiorm for Performance

In addition to the need for parallelism,
the one RDBMS of record places ad-
ditional requirements on its system plat-
form:

* Data Integrity - A transaction is com-
pleted as a whole or not at all, even if
the system crashes in the process of




completing the transaction.

* Modular Expandability - More

processors, disks, workstations, devices,

etc. can be added to the system without
taking it down or changing any ap-
plication or system code.

* High Availability - A loosely coupled
multiprocessor architecture provides
very high availability because, when
one processor fails, the other will con-
tinue to do the failed processor's work --
without interrupting the user.

* Node Autonomy - In a distributed
network of systems, some nodes will
occasionally be unavailable. Each node
must be able to provide data without
reliance on any other component or
node in the network.

® Security - An RDBMS should be in-
tegrated into the operating system to
prevent subversion by a user who
opens and writes to data files without
going through the RDBMS.

* Tools - An RDBMS should allow
easy access, with comprehensive tools
to increase productivity and keep down
the increasing cost of system operations
and development. Decision support
tools are important in enabling an
organization to use data in new strategic
ways.

* Workstation Integration - Workstation
and personal computer use will con-
tinue to expand into the 1990s. These
devices will generate increasingly more
complex transactions, growing from
hundreds of bits to hundreds of
thousands of bits in length. For
maximum user productivity and best
utilization of inexpensive MIPS, work-
station users need to share data with
host systems on a peer-to-peer basis.

* Connectivity - The ability to connect
diverse systems and software protects
an organization’s investment and im-
proves productivity of users and
equipment. On-line applications can be
off-loaded from a back-end host
designed for batch processing to a
system designed for OLTP to free host
capacity. This system will require ex-
cellent connectivity across multivendor
systems, i.e. X.25 packet-switching

networks, SNA systems and networks
and workstation local area networks
(LANSs). This connectivity should be as
transparent as possible to the ap-
plication.

One Database for All

Increasingly, organizations are
recognizing the strategic importance of
enterprise-wide transaction processing
networks, considering the database to
be “mission critical” to their operations,
If the database is unavailable, business
stops.

This network is becoming a transaction-
rich environment, requiring data
sharing across wide area and local area
networks, workstations and mainframes

“To gain optimum performance
Jor all accesses -- transaction,
sequential (batch) and query

processing - organizations must
maintain multiple databases on
multiple vendors’ equipment.”

and heterogeneous systems. When
transaction processing is done on-line, a
user at a terminal, personal computer or
workstation can capture transactions,
make changes to the database, and get
response in seconds.

The network provides immediate ac-
cess to the exact state of the business,
extremely important to a global
operation where multiple demands are
made for strategic information 24 hours
a day. Compare this with batch
processing, which updates transaction
information in a few hours or by the
next day

For the enterprise transaction
processing network of the future, the
one RDBMS of record will need to ser-
vice heterogeneous systems with an in-
dustry standard communications inter-
face, such as IBM's SNA LU6.2. It
should adhere to the full ANSI SQL
standard to meet multivendor network
requiremnents. To perform well for all

*

types of accesses, the RDBMS of
record should accomplish the following:

® On Line Transaction Processing - 1/0O
architecture should be optimized for
random access. Fixed overhead for
initializing and terminating transactions
must be minimal.

* Batch Processing - Batch processing
requires effective sequential /0 via
techniques such as block buffering and
successful disk cache management.

*® Query Processing - For complex
transactions, throughput can be im-
proved if each query within a transac-
tion can be evaluated in parallel, taking
advantage of loosely coupled multiple
processor architecture,

* Operations - As organizations move
critical information to a single RDBMS,
it becomes necessary that the database
be available 24 hours a day, seven days
a week.

Typically, to rebalance files for rapid
physical access, the database must be
shut down. A “snapshot” copy of the
database must be made, compressed
and then swapped into operation.

With on-line reorganization, files can be
rebalanced during an access while on-
line, without incurring the expense of
shutting the operation down. On-line
file reorganization translates into in-
creased availability and higher perfor-

mance.
Key to 1990s Performance

Current RDBMS offerings are designed
for particular processing environments:
transaction, batch and query. Parallel
processing technology offers the
greatest potential to provide a platform
for an RDBMS to perform well for all
three environments. In addition to
requiring parallelism, a single database
of record demands several additional
services from its operational environ-
ment, i.e., data integrity, modular ex-
pandability, high availability, security,
tools, workstation integration and con-
nectivity. DP managers must consider
the total operational requirements when
evaluating vendor offerings. su




ST
About the author

Kevin M. Weigler is product
marketing manager for NonStop
SQL, a distributed RDBMS from
Tandem Computers. He has special-
ized in DBMSs and application
development on a variety of hard-
ware platforms for thirteen years.

After studying physics at Evergreen
State College in Olympia, Washing-
ton, Mr. Weigler earned a B.S. in
mathematics from the University of
LaVerne in California.

This article is reprinted from the December 1988 issue of Sysiems User magazine by

Caulfield Publishing. Ltd. All copyrights reserved by Caullield Publishing. Lid




DDP Offers
Flexibility
At Low Cost

By STUART LEVIN and
JORDAN SCHELL-LAMBERT

ILhe insurance industry can
become more competitive and cost-
effective by sharing data processing
tasks among muluple computers or
sites, using an approach called
“distributed data processing’.

Firms using this approach ex-
perience, among other benefits, 1im-
proved customer service levels,
greater flexibility in the use of therr
svstems, and reduced data com-
munications CxXpenscs

{):\.’Tihu[rul data ProCcssing 1s a
technique that relies on muluple
computer svstems. In a distributed
processing environment, computers
share processing workloads while
regularly shanng data samong them-
selves,

Computing tasks are distnibuted
across processors, cach of which s
designed to optumally handle its pro-
cessing demands, Central main-
frames could be devoted to large
batch runs while “transaction [ll.iv
cessing engines would handle on-
line inquiries and database updares.
I'hey work in parallel, in contrast to
a single central computer processing
one task at a ume.

An example of this can be illus-
trated at the insurance point of sale

A carrier has placed a kiosk in a

shopping mall, with a personal ¢

puter and electronic funds transter

capabilities integrated within it

Ready For Inquiry

People in the mall mav come up to
the kiosk and inquire about costs for
certain products, such as term life, or

a special reprint from the

NATIONAL
= UNDERWRITER

POLICYOWNER SERVICE and claims personnel are more productive using
on-line transaction processing distributed systems.

personal auto or homeowners insur
ance.

All rate quorte processing could
take place at the mall location, or at a
regional processor. The svstem mav
want to check the claims and pav-
ment history Of any exists) of the ap-
plicant within the home office
SVsem

l'he kiosk prints out the quote
I'he svstem could then ask the pros-
pect if he or she would hike 1o make a

purchase. If ves. then the prospect
could use a credit card, have the pur-
chase authorized, and receive a
binder, The home office svstems
would be notified of the sale across

an electronic network.

FEBRUARY 16, 1987/ NATIONAL UNDERWRITER

DDP can be approached in a vare-
tv of wavs. For simplicity, this article
covers three possible approaches:
specialized “transacuon processing
engines, geographic expansion, and
nerworks opumized for DDP

1. Transacton Processing Engines.

A fairlv simple form of DDP can be
prescribed tor a common headache:
ntegration of existing svstems that
ant communicate with each other,
especially of they run on different
“host”™ processors. The solution uses
computers ds “go-betweens” to han-
dle the translations.

An example of this approach would
be using screens existng in ditterent

host computers or simplv in different




applications. On-line transaction pro-
cessors could easily bring all screens
together. quickly creating “new’” ap-
plicatians, maximizing the produc-
tivity of all involved.

This approach also allows policy-
owner service and claims depart-
ments better access o information,
raising service levels and providing
competitive advantages.

\ large direct-response insurance
company has implemented a DDP
system in this category. The system
integrates back-end mainframes with
1.500 personal computers in a4 na-
tionwide network.

The new svstem provides sales
and service emplovees a way to ac-
cess both Honevwell and IBM host
systems. Also, agents and service
personnel need not be concerned
about logging onto multiple hosts.
Once they have accessed the net-
work, it manages security and allows
users easv access to whichever ap-
plications they need.

2. Geographic expansion. As a
strategy, growing distributed “nodes”
is 2 way to make users more pro-
ductive. Processors at each location
can be tailored to the people or
customer they service, This flex-
ibility is not easy to achieve with a
single central machine.

The computers used in DDP have
been developing more rapidly than
large general-purpose processors. |t
is not unusual for a product’s per-
formance to dramatically increase
while the price decreases from year
to vear. Distributed processing takes
advantage of this trend. As new
svstems are designed, more pro-
cessing can be put on machines
closer to the user. The central host
may still be used for special
calculations or high-volume runs like
check writing.

Major Cost Savings

Major cost savings can be achieved
by using the local machines vert
another way, They can help contain
communications costs bv handling
long-distance voice and data
switching for an office or a region.

Agency automation or field
underwriting applications could be
accomplished with this kind of
system. Since home-office under-
writing procedures can be enforced
through the system. a significant
amount of authority (generally for
simpler, common-place products)

can be distributed without hiring
high-level expertise in every office.

3. Corporate processors and net-
works optimized for DDP. Though
each company will define “optimum”
differently, the ultimate in dis-
tributed processing might resemble a
map of the carrier's office locations
and agencies. Some processing
chores are likely to remain central-
ized. Yet. with this approach, even a
traditional large central computer site
may take advantage of DDP.

After outlving nodes have been
developed, the systems planner
should take a look at what remains
on the central computer, It might
make sense to break up the central
tasks, creating high-speed “transac-
tion processing engines” within the
network.

Higher Performance

Before a transaction is completed,
it mav pass through multiple devices
and processors. Even if these
machines are located in the same
room at an operations center, the
company can still use DDP tech-
niques to achieve higher perfor-
mance and flexibility.

Before installing a distributed
system, insurers would want to
evaluate the economic variables of
the plan. Potenuial cost savings must
be balanced against development
COSLS.

As cost and competitive pressures
in the insurance industry increase,
the interest in DDPis growing. Look
for the use of distributed processing
systems to increase within the in-
surance industry in the near future. Z

Mr. Levin is insurance indus-
try marketing manager for Tan-
dem Computers Inc., Cupertino,
Calif. Mr. Schell-Lambert is
manager, management informa-
tion consulting division, Arthur
Andersen & Co.

Stock No.

500110




BUILDING FOR THE FUTURE

Establishing an In-house Custom Design Capability

by Al McBride
Director of Engineering, VLSI Technology
Tandem Computers Incorporated
April 14, 1986

Copyright 1986 Tandem Computers Incorporated




Introduction

Tandem Computers Incorporated, founded eleven years ago, today
ranks as a Fortune 500 company with $624 million in revenues (fiscal
year ended September 30, 1985). Tandem's success is derived from the
wide market acceptance of its unique computer system, designed to
satisfy the full range of requirements for on-line transaction
processing (OLTP). The market for OLTP systems is growing twice as
fast as the worldwide market for commercial data processing systems.

Tandem systems are widely used to run automated teller networks,
messaging systems, factories, stock exchanges and point-of-sale
systems.

Unlike computer systems from any other vendor, Tandem systems
provide the combination of data integrity, distributed data base,
system security, fault tolerance, modular growth without
reprogramming, the ability to process thousands of transactions per
second, networking, ease of programming and integration with existing

information processing devices.

In~-House VLSI Design Capability

In late 1979 and during the very early 1980s, Tandem began
investing in an in-house integrated circuit (IC) research and
development facility to develop VLSI technologies for use in future
products. Tandem's goal was to minimize development time for new

products using increasingly complex circuit technologies, and to

deliver new systems to market faster.




Today, Tandem has a leadership position in VLSI design
capability. The company has in-house facilities for computer-aided
design (CAD), simulation and VLSI prototype fabrication.

The most significant outcome to date of Tandem's investment in
VLSI technology development is the new NonStop VLX system. The VLX is
a transaction processing mainframe that delivers higher transaction
throughput than the industry's largest computer system. It features
new ECL/TTL gate array technology in its processors, and CMOS
technology and off-the-shelf microprocessors in many other parts of
the system.

By designing new circuit technology internally, Tandem was able
to reduce by one year the development time for the VLX. New circuit
technologies that Tandem is continuing to develop, combined with the
advantages of Tandem's unique parallel system architecture, will

provide the foundation for Tandem's future.

Tandem's VLSI Philosophy

In 1979, Tandem made several fundamental decisions that would
govern its development and use of VLSI technology. These decisions
were ambitious for the Tandem of 1979 -- a $50 million company only
five years old.

Tandem's first decision was to use gate array technology because
of the benefits it offered. Gate arrays could be personalized and
lent themselves to quick design turnaround. They also offered a
choice of technologies: bipolaﬁ for high speed and CMOS for high
density and low power. Tandem would apply both of these technologies

as appropriate throughout its systems. In addition, entire gate array




designs could be be done with one base wafer type, and they met the
system requirement for design contribution and unigqueness.

Another key decision was to establish more than one source for
the gate arrays. Because supply would be fundamental to Tandem's
success in this venture, the company could not gamble on any one
vendor for the components.

Tandem also decided that it wanted to have other technologies
available, in addition to gate arrays, for implementing different
products such as processors and controllers. So the company decided
to use microprocessors as well as bipolar and CMOS gate arrays.

Finally, Tandem decided to build a prototype chip fabrication
facility so that it could turn around new designs quickly, and -- in
the face of ever more complex system designs -- provide new systems in

a timely manner.

Computer-Aided Design (CAD) and Simulation

In 1979, CAD and simulation capabilities were the "crown jewels"
of only a few large companies. Advanced chip and multiple chip
simulations were still academic subjects. Consequently, Tandem's
first job was to write CAD and simulation software that could run on
its own computer systems.

One of Tandem's primary objectives for its CAD capability was
that it had to give Tandem the ability to design circuits in such a
way that they could be multiple sourced. With these CAD tools, Tandem
is able to map its chip designs to multiple vendors and have
interchangeability of chips on the boards. This helps Tandem ensure

low price, high gquality and availability.




In just 15 months, Tandem's CAD and simulation software were up
and running. The first processor the company designed using these
tools was the NonStop TXP, introduced in 1983. Although there were no
gate arrays in the TXP, Tandem proved that its design and simulation
software worked.

The company estimates that the in-house tools cut as much as six
months from the design cycle of the TXP. Tandem was able to make

modifications early in the design cycle and test them in a few hours.

Tandem Systems Help Design New Systems

One of the most important advantages of Tandem's design tools is
that they run on Tandem computers and can exploit the power of
Tandem's distributed data base and networking capability. In
addition, CAD and simulation tasks run much faster on a Tandem system
than on large conventional uniprocessor systems because the tasks run
in parallel on separate processors.

Another advantage of Tandem's design tools is that they allow
designers to frequently interact with the program to see how the
design is progressing. They can modify the design throughout the
process and experiment and innovate -- one of the most important
advantages of a responsive design system.

Tandem's in-house CAD and simulation capabilities have a direct
impact on the success of its products. Effective design can result in
less hardware in a system, which means lower cost, better reliability,
lower cost of ownership and higher performance. The NonStop II, for
example, contains 30,000 gates on three boards -- about 10,000 per

board. The TXP has 50,000 gates on four boards. Tandem's new system,




the NonStop VLX, has 78,008 gates on only two boards, three times the
integratién density of TXP.

randem's CAD layout tools enable Tandem to achieve 19 to 15
percent better circuit utilization on bipolar and CMOS chips than the
industry average. The new VLX system has an average chip circuit
utilization of 95 percent over 33 parts. 1f Tandem had followed the
recommendation made by one of its semiconductor vendors -- to have 80
percent utilization -- the VLX would have resulted in 5@ percent more
boards, 20 percent more chips and a 25 percent higher cost. Tandem
has been told that it is the only company to be successful at laying

out 100 percent of the usable gates on the chip.

From Design to Prototypes

In 1979 when Tandem selected bipolar gate arrays as the
technology for future high-performance systems, Tandem's research
showed that there were no gate array vendors who had what Tandem
required for the VLX. Available gate arrays were all emitter-coupled
logic (ECL). But Tandem's systems experience showed that
transistor-to-transistor logic (TTL) for the input/output interface to
the printed circuit board was the most cost-effective for its systams.

The result of this research was a joint chip development between
Tandem and Motorola, one of the world's leading semiconductor
suppliers. Working together, Tandem and Motorola jointly developed
the Motorola MCA 2808 ALS, now a standard product in Motorola's semi-
custom bipolar line. The chip is optimized to Tapdem's needs in terms
of density, power dissipation and performance, and takes advantage of

Motorola's state-of-the-art Mosaic II bipolar production process.




Reduced Design Time

Also in 1979, Tandem had decided that fast turnaround for gate
array designs would be critical to its ability to bring new products
to market quickly. But at that time, all the vendors Tandem surveyed
were only beginning to develop their processes and improve yields.
Turnaround time for a new chip -- or even a design change -- was
months, not weeks. Tandem knew it could not build a wafer fabrication
facility, but realized it would have to do some part of the process on
its own.

Consequently, Tandem built a very large-scale integrated (VLSI)
prototype fabrication line in which Tandem could metalize, test and
assemble its own unique designs, starting from a vendor's standard
wafer. With gate arrays, the unigqueness of each design is in the
connection of the gates on the wafer. The semiconductor vendor does
two-thirds of the manufacturing and maintains the wafer inventory,
then Tandem does the final one-third in one to five weeks (instead of
the 10 to 16 weeks it would take from the vendor). Following its
mul tivendor strategy, Tandem qualified two vendors for the wafers.
Tandem's first prototype chip was a 2,000-gate bipolar device with
three layers of metalization. Tandem's fab line could add three
layers of metal to the base silicon and procéss CMOS and bipolar
wafers. Only a few chip fab lines in the world can match this.

The lab was built during 1983. The initial designs were
fabricated in the fall of 1984. 1In 1985 the prototype line turned out
52 bipolar and 18 CMOS designs. About 1,000 parts were produced,
including some for manufacturing beta systems. Some chips were turned

out in a single weekend, although the average turnaround was five




‘weeks. Tandem's in-house VLSI lab even produced chips for
manufacturing VLX beta systems to keep the project on schedule.

Part of Tandem's in-house capability is a rigorous testing plan.
For instance, heat transfer simulations began on the new chip even
pefore any prototypes were available. As a result of these
simulations, Tandem designed a heat sink that substantially improves
the reliability of the end products.

Tandem's joint development work with Motorola resulted in a
standard product that today is the most popular gate array in
Motorola's semi-custom bipolar product line. Tandem's CAD and
prototype fabrication capability have been successful in helping
Tandem develop new products in a timely manner. In just five years,
Tandem has moved from absolutely no in-house capability to a position

of leadership in bipolar and CMOS gate arrays.

Advantages for the Future

Tandem's new product development has benefitad from its in-house
CAD, simulation and prototype fabrication capabilities. The knowledge
base and the facilities Tandem has gained from this investment will
provide it with advantages in the future.

Today Tandem systems incorporate 2,900 circuit bipolar chips and
4,000 circuit CMOS parts. Tandem engineers are working on CMOS
designs with as many as 20,000 circuits per chip. Developments such
as these could result in a 30,000-gate, three-board NonStop II on two
chips. b

Tandem intends to continue to develop and exploit

state-of-the-art technology jointly with its semiconductor vendors.




Tandem already designs full custom chips using silicon compilation
techniques. Tandem is also examining a gate array connection
technique that recovers space on the chip by using more than three
layers of metal, plus other innovative process and circuit design
inventions.

The company expects that these advances will allow it to continue
to increase densities -- 8,000 gates in bipolar and up to 50,0008 gates
in CMOS by 199d. In addition, Tandem will continue to explore new
packaging schemes to accommodate the power dissipation of the new
designs. Tandem also is watching developments in gallium arsenide as
a possible alternative to silicon.

Staying at the forefront of these technologies is vital to
Tandem's future. By applying the latest VLSI technologieé within
Tandem's patented parallel architecture, Tandem believes it <an
continually offer its customers the best on-line transaction

processing systems in the industry.

-- END --

Al McBride is Tandem's director of engineering, VLSI technology. He
joined Tandem in 1980 after 15 years at IBM, where he held senior
engineering positions in advanced technologies. During his tenure at
IBM, Mr. McBride worked on the advanced computer system project which
was managed by Gene Amdahl. Mr. McBride also worked on IBM's 801 RISC
processor development and the initial designs of the IBM PC. He also
managed IBM's development of a 1568 circuit bipolar gate array
microprocessor and he managed the development team for IBM's first
single chip computer. Mr. McBride holds MSEE and BSEE degrees from
the University of California, Berkeley.

Tandem, NonStop, NonStop VLX, NonStop TXP and NonStop II are
trademarks of Tandem Computers Incorporated.
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Jeri Edwards, Tandem Computers inc., Cupertino, Calif.

Time-staged
delivery networks
save time, enhance
productivity

When resources, facilities, and
recipients are unavailable, a
new type of network allows data

ime-staged delivery allows
a sender to input information to a network and then go
on to other tasks while the information is being sent.
Unlike interactive communications, time-staged deliv-
ery does not require that the information receiver be
present at the time data is transmitted. A delivery
mechanism transfers the information to a location in
the network designated as the receiver's reception
"‘depot’’ and stores it there. Message receivers can
then pick up messages at their convenience. Time-
staged delivery is often termed “‘asynchronous,’” or
without regard to time, because the sender and re-
ceiver do not have 1o be in lockstep for information to
pass between them. Several requests may be sent at
once. The responses are returned later, without regard
to time or sequence

Before time-staged delivery. all information ex-
change was interactive. That is, senders and receivers
exchanged information in real time (Fig. 1). This meant
that the sender, receiver, and network all had to be
active at the same time. Such setups are generally
called synchronous communications because the
sender and receiver match, or synchronize, responses
with requests. A response is the information returned
directly after a request, and it must be received before
another request can be made.

interactive and time-staged Oelivery paraliel the
development of the modern telephone network and
electronic-mail implementations, respectively. That is,
people use the telephone when they must talk directly
to another person. The sender, receiver, and communi-
cations resource must all be active for the message to
get through. But often it is more productive to use an
electronic-mail facility, especially if time is not critical
This type of implementation accepts messages (from
the sender) and guarantees that they will reach the
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to reach its appointed rounds.

intended receiver, thereby eliminating the need for
direct contact between sender and receiver.

This does not mean that all electronic-mail imple-
mentations are time-staged delivery networks. Conven-
tional electronic-mail networks incorporate time-staged
delivery but only for a particular terminal type and
software application. General time-staged delivery net-
works, on the other hand, are multipurpose implemen-
tations that can be used by any application.

Occasionally, time-staged delivery networks are con-
fused with store-and-forward implementations, such as
Arpanet. Packet-switching networks have been labeled
store-and-forward networks because they take packets
off incoming communications lines, put them on an
outgoing queue, and then transmit them (see 'X.400
compared'). Time-staged delivery networks often op-
erate on top of such packet-switching networks, pro-
viding an added layer of service. The delivery network,
however, manages the entire transmission (which may
consist of multiple packets) through the packet-switch-
ing network on behalf of the sender.

Transfer va. SNADS

Tandem Computers’ time-staged delivery network is
called Transfer. Tandem customers write time-staged
applications that use Transfer for the distribution and
storage of information. Tandem's electronic-mail and
facsimile transport products use Transfer for office
communications.

IBM also has a time-staged delivery capability known
as Systerns Network Architecture Delivery Systems
(SNADS). Like IBM's Systems Network Architecture
(SNA), SNADS is also a network architecture. To date,
it has been implemented in IBM's Distributed Office
Support System (DISOSS) version 3.2, System/ 36,
and the 5520 word processing system. These products
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1. Interactive vs. time-staged. With interactive com-
munications, sender and receiver exchange data in real
time. In time-staged, the network is independent,

INTERACTIVE COMMUNICATIONS

implement SNADS for document distribution. The
SNADS implemention in such instances is closed:
Applications cannot use the SNADS facility. The recent
SNADS implementation in IBM System/ 38, however,
supports a method for applications to use its SNADS
capabilities.

Any applications that interact with each other could
probably be enhanced by using a time-staged delivery
network, and there are four categories of applications
that can be immediately identified:

X.400 compared

The International Telegraph and Telephone Con-
sultative Committee (CCITT) approved the X.400
message handling standard in October 1984
(Data Communications, May 1984, p. 159). Since
then, several vendors have announced support for
the standard. Electronic-mail vendors are examin-
ing X.400 for use in linking private electronic-mail
systems to public services.

X.400, Systems Network Architecture Delivery
System (SNADS) coupled with Distributed Office
Support System, and Transfer have certain ele-
ments in common. Conceptually, all three involve a
dellivery system with a postman, envelopes, and
document contents. It appears there may have to
be gateway products to link X.400 with SNADS
and other products. Transfer is similar to X.400,
but it is not currently compatible at all X. 400 levels.

® Job networking.

® Distributed database maintenance.
® Document distribution,

® [ntelligent networking.

Job networking. This first category is also known by
the terms “‘extended transactions’ and "“functional
distribution.”” There are instances where processes
need to be tied together for full automation into a
sequence of steps. Information then flows between the
steps and triggers the execution of dependent pro-
cesses. An example of job networking might be a chain
store where orders taken at branch offices are then
relayed to regional offices. At the regional office daily
sales records are taken and supply orders are filled out
and sent to a regional warehouse. When the stock
arrives at the store’s receiving dock, the receiving clerk
records its arrival (Fig. 2).

The Japanese are developing a new twist to job
networking, a time-staged method of manufacturing
they call “Kanban'' —also known as just-in-time manu-
facturing in the United States. With Kanban, factory
parts are worked on in various locations and ultimately
arrive at predetermined locations just in time to be
Incorporated with other arriving parts. Accompanying
the parts is documentation regarding identification,
history, and the next station destination for the parts.
Once the parts reach the next station, the information
regarding them is updated.

Robots and cards

Although the Kanban method promised to save manu-
facturing companies millions of dollars, it has not done
SO yet. As it turns out, the task of automating parts flow
is easier than automating information flow. The Japa-
nese used cards to record parts information (Kanban
means card), which worked well when people manned
stations, but not when robots manned stations.

Time-staged delivery solves this problem by auto-
mating the flow of information between processes.
After information is delivered to a process-receiving
depot, an application can get the information and
display it for a human operator, or a robot can access
the same information.-After the part is processed, the
information can be updated and handed back to the
time-staged delivery operation for transport to the next
process.

Distributed database maintenance. Managing a net-
work containing a distributed database can be a
difficult job. The entire database must be available and
accessible when updates occur, otherwise it can be-
come inconsistent. For example, a worker jackham-
mers through all eight lines in a communications path,
Oor computers are taken off an application after busi-
ness hours in London to work on another job while
updates are being sent from California during business
hours. Thus, vital updates during such downtime can
be lost.

A time-staged delivery network can alleviate this
maintenance headache by delivering information when
resources are available to handle it. The network can
hold the update until the links damaged by the jack-
hammer are repaired, deliver the update to the destina-
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2. Chain store. Time-staged delivery networks are use-
ful for chain stores where orders must be coordinated
with merchandise shipments and delivery dates.

tion node, and hold it there until the application has
returned.

Document distribution. This application covers in-
formation transportation between individuals. These
applications are the most obvious for timed-staged
delivery because people are usually too busy to wait for
information. A time-staged delivery system would take
information from the sender and hold it until the
receiver is ready to pick it up.

Electronic mail is the most common document distri-
bution application. File transfer and forms routing are
also document distribution applications. File transfer
applications take documents created outside the sys-
tem (for example, a microcomputer or word processing
equipment) and transport them to receivers (one per-
son or a group of people). Forms-routing applications
typically automate the flow of business forms through a
corporation.

Tools that automate business activity
Some document distribution applications can be similar
to job networking in office environments. For example;
a person fills out an expense report that then gets
routed by several individuals in management for ap-
proval before it reaches the payroll department. Unlike
job networking or distributed database maintenance
(which is transaction based), document distribution
applications are productivity tools that automate busi-
ness activity.

intelligent networking. These applications connect
diverse computers and devices through a central net-
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work of processors. Applications on diverse computers
usually are created to work in standalone environ-
ments. Connecting them through a central network
facilitates communications, while placing the burden of
connection on the network. This arrangement also
tends to be least disruptive to the diverse computer
applications.

Requiring synchronized communications for passing
information on an intelligent network would often re-
quire programming modifications. In many cases, a
time-staged delivery network eliminates most of the
need for programming modification. The network han-
dles the communications for the applications. Because
the network holds the information at the destination for
the recipient, it allows the receiving station to respond
to the information when it is convenient to do so, rather
than interrupting the recipient’s local work flow.

Transfer and SNADS represent solutions to the re-
quirements for time-staged delivery. The goals for the
two architectures are similar. Both move data between
the sender and receiver asynchronously; both add
functionality to a network built for interactive communi-
cations; both are meant to be used in mixed
interactive/time-staged applications, as well as “‘pure"’
time-staged environments; and both have goals of
application independence, ease of use, manageability,
efficiency, and extendability.

As with any network, there is a trade-off between
functionality and resource use. A full-function time-
staged delivery network offers a variety of features. A
basic network (distributed spooler) offers a skeleton of
the functionality of the full system, but it consumes
fewer resources. This is not a bargain, however, if you
end up adding the missing features yourself.

Automatic process invocation

Automatic process invocation is an important feature
for time-staged delivery systems. Three of the four
types of applications for which time-staged delivery is
appropriate (job networking, distributed database
maintenance, and intelligent networking) require pro-
cesses 1o be triggered because of the arrival of certain
types of messages.

Even document distribution applications can be
enchanced by having such a facility. A document
distribution application could use this feature to invoke
a filing process that would automatically file each
incoming document in an appropriate folder.

Figure 3 compares the architectures of SNADS and
Transfer at a high level. With the Transfer architecture,
a user can be a person, device, or application. An
application program, called a “‘client," interfaces to
Transfer for the user. When the user is an application, it
can be its own “‘client” and interface to Transfer
directly. Clients interface to Transier through a well-
defined, high-level language called *‘Units of Work."'
There are more than 40 Units of Work available for
clients to use (although most clients will not use all of
them).

After Transfer has accepted the message from the
sender's client, it sends that message through the
network. At the destination node, another Transfer
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3. Comparison. The operational architecture of IBM's
SNADS and Tandem Computers' Transfer are similar.
Both are time-staged delivery networks.
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from 16 to 64 Kbps to provide voice commun- DISOSS applications; that is, when DISOSS needs to
ication over synchronous digital transmission distribute a document outside its node, it uses SNADS.

facilities. This compac!, cost-effective unit has
the ability to operate full or half-duplex over
terrestrial or satellite systems.

SNADS requires several other IBM architectures to
distribute a docurment for DISOSS. It uses SNA (Logical
Unit 6.2 sessions) to move the documents. The docu-
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Sandy Metz, Tandem Computers Inc., Cupertino, Callf,

The different
flavors of SNA
compatibility

aw

A straightforward discussion of
breaking into an SNA network.

The author distinguishes between
host access, device support, device

emulation, and passthrough.

BM's commitment to making
systems network architecture (SNA) the basis for all its
future data communications products has made SNA
unavoidable—for both users and vendors alike. Ac-
cording to current estimates, roughly 70 percent of
installed computers in large organizations are either
IBM or IBM-compatible. Consequently, independent
vendors are very likely to sell into an SNA environ-
ment—a likelihood that is increasing. With this rise in
the importance and visibility of SNA has naturally come
an increase in non-IBM products designed to work with
SNA networks.

SNA is an architecture, rather than a single entity,
that allows non-IBM vendors to design products that
work in the SNA environment. It is unlikely that IBM will
radically change SNA. Inevitably, SNA will continue to
evolve, but its basic structure should remain stable so
that the existing investment of the large IBM customer
base will be preserved. To understand how SNA
compatibility is achieved, and how implementations
vary, requires a brief overview of the networking
scheme.

Non-IBM vendors are aided in designing compatible
products by the separation of function provided by
SNA's layered architecture. This essentially permits
products that work with SNA to manage a subset of
SNA functional capabilities. A note of caution, how-
ever: Those layers not managed by the SNA-compat-
ible product must be managed by the applications
programmer. There are currently six SNA layers, which
provide the following functions:

m Data link control— uses link-level protocols to trans-
mit data between network nodes

® Path control—responsible for message routing and
integrity between network-addressable units (NAUs)

® Transmission control— controls data sequencing and
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the rate at which data fiows to a node

= Data flow control—deals with the logical organization

of message flow, such as response mode, send/ {

receive modes, and message grouping

= Presentation services— provide device-specific data

formats |
m NAU services manager—interfaces to the user or '
network manager.

Within an SNA network, a message percolates .
through each of these layers at both the source and
destination nodes. The most basic piece of SNA data,
called a request unit (RU), usually contains the user
application data (Fig. 1). The NAU services manager
and presentation services layers interact with the RU by
providing, respectively, user interfacing and device-
specific data formatting.

The transmission control layer then adds a request/
response header (RH) to the RU. This header contains
transmission and data flow control information, includ-
ing a request or response indicator, the RU type
category, chaining information, bracket information,
response type information, a pacing (flow control)
indicator, and a sense data indicator (indicates the
presence of user data).

The RU-RH combination is then passed to the path
control layer,where a transmission header (TH) is
added to the message. This header includes address-
ing information (source and destination), segmenting
information, expedited or normal flow indicator, and
sequence number information, and it may contain
complex route flow-control information as well. The
data link control layer then adds a link header (LH) and
link trailer (LT) to the RU-RH-TH message. The LH and
LT add the link level protocols necessary for transmis-
sion over common-carrier facilities.

The data link control layer manages the transmission

-
8
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1. Requirements. Any software-based SNA-compat-
ible product must contain elements of the correspond-
ing IBM SNA layers, though non-IBM vendors have more

discretion in the complexity of the subsets they add to
their products. This is necessary for the non-IBM appii-
cations to interact with IBM SNA programs.

USER DATA;
MESSAGE/RECORD

NETWORK/PRESENTATION
SERVICES

DATA FLOW
CONTROL

REQUEST/

RESPONSE-
HEADER (RH)

TRANSMISSION
HEADER (TH)

DATA LINK

CONTROL e

J Sor |

of the message from the source node to the destination
node, where the headers are stripped from the mes-
sage in the same fashion as they were added, until the
basic request unit is all that remains. The more layers
that can be managed by the SNA interface product—
whether from IBM or an independent vendor—the less
the applications programmer, or user, has to do.

Ki .

Figure 2 shows the SNA network topology, consisting
of a 'sub-area’’ network and a "'peripheral’” network.
The differences are significant. For example, moving
data from the peripheral to the sub-area network
requires a 2- or 6-byte transmission header (depending
on the source and destination node types), while
moving data through the sub-area network requires a
10- or 26-byte transmission header (depending on the
IBM software release being used).

Most SNA-compatible products currently on the mar-
ket interface only as a peripheral-network node. An
example of such a product is a terminal that emulates
an SNA terminal, appearing to the SNA network as an

20

actuaf|BM SNA terminal. To perform more-complex
tasks, such as communications between IBM SNA
applications and non-IBM SNA applications, it is neces-
sary to interface with the sub-area network.

One of the few examples of a sub-area network
interface is Tandem Computers’' SNA gateway product,
called SNAX (for SNA Communications Services),
which interfaces with the sub-area network to perform
IBM host-level device control. This interface manages
the data link control, path control, and transmission
control layers. The applications programmer need only
provide the device-specific data format and the user
interface to control terminal-node and cluster-control-
ler-level devices from the non-IBM processor.

Messages are sent and received across an SNA
network between logical network components (the
NAUs). IBM's SNA defines three different types of
NAUs: the systems services control point (SSCP),
physical units (PUs), and logical units (LUs). All SNA-
compatible devices need to be able to assume one or
more of thesa roles.

The SSCP paerforms network management functions
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such as controlling the communications access to
resources associated with the PUs and LUs. Somewhat
less complex, & PU performs control functions for the
device in which it is located and in some cases for other
devices attached to the device containing the PU.
Every node in an SNA network is associated with one
physical unit type (see "Unit layers’). An LU is either a
device (terminal) or a program (processor-resident)
through which a user gains access to the data commu-
nications network. Figure 3 shows an architectural view
of an SNA network and the relationship between these
network entities.

Network-addressable units communicate with each
other by establishing temporary logical connections
called sessions. Session parameters, which define the
manner in which data will be exchanged between
NAUS, are established through a handshaking protocol.

To effect an LU-to-LU session, the SSCP must first
establish an SSCP-PU session with each physical unit
that is active in the network configuration. After this
initial contact with the physical units, the SSCP then
establishes SSCP-1o-LU sessions with the active logical

units of each physical unit. Only after this is completed
can the LUs establish sessions with other LUs for
normal data-traffic flow.

Non-IBM products are interfaced with SNA by estab-
lishing the proper sessions with IBM LUs in the SNA
network. Each type of session is characterized by sets
of parameters, or profiles, that define the functional
subset of SNA capabilities required for that session.
Non-IBM vendors can determine and implement one or
more of these functional subsets to achieve differing
levels of compatibility.

Penetrating SNA

There are several ways to gain access to SNA net-
works. One method is by writing a software-based
interface for device control. In this case, an application
program running on a non-IBM processor controls an
SNA device.

Another method of accessing an SNA network is
through a software-based interface for accessing a
host. This method permits an application running on a
non-IBM computer to communicate with an application

2. Demarcation. SNA networks are divided into two
major areas: the sub-area network and the peripheral
network. Most SNA-compatible products interface only

at the peripheral network level. For non-IBM applica-
tions to work with IBM SNA applications, interface in the
sub-area network is necessary.
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Unit layers

Physical and logical units are identifiable in exist-
ing IBM products: Below is a listing and brief de~"
scription of the different PU and LU types. ;
= PU type 1—a terminal node, such as an IBM
3271.
® PU type 2—a cluster controller node, which su-
pervises the behavior of terminals (PU type 1) and
other peripherals. ;
= PU type 3—not currently defined by IBM.
® PU type 4—a communications-controlier node,
such as an IBM 3705. These are typically front-end
processors, which off-load from the host much of
the work, such as interrupt handling, associated
with data communications.
m PU type 5—a host node, typically containing a
system services control point (SSCP). The physi-
cal unit type 5 is usually mainframe-based, al-
though with new microprocessors some control-
lers are assuming more and more host-like
functions. ¢

LUs represent networking intelligence, usually
software-based, in the SNA network. The LU types
are distinguished by the degree of capability they
afford users in network communications:
m LU type 0—provides a generalized user-defin-
able process-to-process communications capabil-
ity for user applications.
m LU type 1—defines the formats and protocols
for SNA support of a remote-job-entry workstation
wheg operating in batch mode. An LU type 1 sup-
porfs the SNA character-set data stream.
= LU types 2 and 3—define the session rules for
communications with interactive displays and
hard-copy printers, typically 3270 terminals and
other cluster-controller-attachable devices, LU -
types 2 and 3 support a different character-set-
data stream.
® LU type 4—defines session rules for communi=-
cating with the 3770 data processor and other-
SNA word processing devices.
® LU type 5—not currently defined by IBM.
® LU type 6—defines SNA process-to-process
communications” rules for distributed database
environments. =i

-

s

e

running on an IBM (or compatible) SNA host. This
"“‘compatibility’* provides access to SNA host
databases, allowing the non-IBM-computer user to
benefit from existing SNA applications programs.

Data General's DG/ SNA software product (akin to
Digital Equipment Corporation's) provides one such
interface capability for its line of 32-bit processors. It
allows applications running on an Eclipse com-
puter to communicate with SNA host applications.

Designing a programmatic, or software-based, inter-
face for SNA host access involves selection and imple-
mentation of the desired session services. This requires

m .

that a subset of every SNA layer be implemented. Once
each layer is defined, the interface can then support
varying levels of SNA complexity.

One special type of software interface for host
access is used strictly for hardware emulation. This
approach is used mainly where non-IBM terminals are
made to appear to SNA hosts as IBM SNA terminals.

Compatibility degrees

Making terminal equipment SNA-compatible is the
easiest type of host-access interface to implement,
because it involves only the SNA peripheral network.
Providing compatible terminal equipment allows a ven-
dor to sell into the large existing SNA customer base
without requiring a large investment in research and
development. There are many companies offering this
type of equipment (see table), although degrees of
compatibility are widely disparate.

To emulate an SNA device such as a 3270 terminal,
the vendor must address all SNA layers and all the
functions within those layers that are appropriate to the
types of sessions being used. Hardware functions such
as keyboard input must be mapped to the non-IBM
device, and protocol and format conversions must also
be efficiently performed in order to offer complete
compatibility. Protocol converters perform similarly,

3. Network addressable units (NAUs). SNA-compat-
ible products must assume the role of one or more *‘au-
thorized"' SNA entities: a systems services control point
(SSCP); physical units (PUs); or logical units (LUs).

COMMUNICATIONS .

CONTROLLER®
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but are not included in this survey because their
operation does not also support user applications.

Trans;
Passthrough, another SNA interface method, involves
using a non-IBM computer or network to move informa-
tion between an SNA host and an SNA terminal device
(Fig. 4). This is particularly useful to users who have an
existing non-SNA network and wish to retain that
investment while at the same time being able to
interface SNA devices and processors o it.
Passthrough software coexists with programmatic
SNA interfaces. It connects users without requiring
applications programs in the middle. Hence the user
applications retain the use of the network.
Hewlett-Packard's DSN/Interactive Mainframe Facil-
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ity uses the passthrough method to enable H-P termi-
nals and printers connected to an HP3000 to behave
as though they were IBM terminals or printers con-
nected directly to an SNA host. A few passthrough
products allow more than one vendor's devices to be
used (see table),

Some SNA-compatible products combine these SNA
interface capabilities. The software combines
passthrough with programmatic interfaces both for
host access and device control. This allows for the
management of more-complex applications. For exam-
ple, a single entry into an SNA electronic cash register,
directly attached to a non-IBM processor, would be
able to access credit-check applications automatically
in an SNA host at a remote location,

Using non-IBM equipment with IBM hosts is not a
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4. Passthrough. Among the most complex forms of
SNA compatibility, passthrough permits an IBM SNA

network by combining SNA-compatible device support
with SNA-compatible host access. Few passthrough

device to access IBM SNA applications via a non-IBM products support more than one vendor's devices.
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SNA
INTERFACE
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NON-1BM

SNA
INTERFACE

NON-IBM
CPU

APPLICATION
PROGRAM

y/

new idea, and many major IBM customers use a variety
of non-IBM gear to fulfill certain needs. Price is perhaps
the main reason for this. Non-IBM vendors can often
make a comparable product for less money, with
performance equal to or better than that offered by
IBM.

Smaller vendors also have more flexibility to custom-
ize products for particular applications. They have the
resources and the time to create a product with the
features and functions best suited to a particular
application (and perhaps a particular customer). This
flexibility also often aflows the small IBM-compatible
vendor to offer better delivery time.

Another boon to non-IBM vendors is that many users
want to be able to buy software from a variety of
sources. Many specialized vendors provide products
and services that IBM does not offer.

Vendor selection

Naturally, choosing a vendor for SNA compatibility will
be based mainly on the specific requirements of the
customer’s application. SNA software-based interfaces
for general host access, device control, and
passthrough capabilities are all available from more
than one vendor. In many cases, however, a vendor
can supply one capabllity but not the other. Another
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word of caution: The SNA-compatible product may be
so closely tied to current IBM software releases that
updating it—to keep up with mainframe software—
could be a problem.

Once application needs have been determined and
analyzed, the vendors must be studied. While technical
SNA-compatibility details are certainly key, the ca-
pability and availability of the vendor's support orga-
nization and the level of customer training offered
cannot e overlooked.

Yet another factor in evaluating a prospective vendor
are offerings beyond SNA compatibility. It may be
possible to springboard the investment into other ar-
eas, such as networking and database management.
Seasoned users typically know that an integrated prod-
uct, wherein the vendor has added SNA compatibility
to other sought-after software or hardware, is generally
quicker and easier to implement than trying to add
SNA compatibility to existing non-IBM products
themselves, ®
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Solving the
roblems of
istributed

databases

True distributed databases—where
dispersed records look to users as one
unit, without centralized control—are

. espite the increasing
number of computers within many companies today,
the full value of all this hardware—the potential return
on investment —is often not realized because the di-
verse computing resources cannot share information.
However, recent advances in the area of distributed
databases (DDBs) are now making it possibie for all
corporate data to be accessible through a single
resource.

Such schemes permit companies that have even
widely dispersed data repositories 1o retain the advan-
tages of locally controlled data. A true distributed
database represents a decentralized scheme for data
management wherein files are spread through a collec-
tion of autonomous nodes that communicate with one
another via a common language. The purpose of such
a decentralized database is to make all the data that is
available to the corporation as a whole aiso conve-
niently available to individual users. This data availabil-
ity can, for example, facilitate the local management of
day-to-day tasks while also providing a basis at the
corporate level for planning future strategies.

Though the nodes in a distributed database can exist
in one room or building, these nodes are usually
geographically separated. The DDB can therefore link a
worldwide corporation into a single operating entity,
with vital information available in a timely fashion
wherever it is needed (Fig. 1). With a properly imple-
mented distributed database, critical data can be
stored, updated, and retrieved, independent of the
location of either the data or the user.

The term *‘distributed’ database has been usad to
describe some data management schemes that really
offer only a subset of true distributed database ca-
pabilities. One example is a centralized database that
is accessible from remote nodes. This can more pre-
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now appearing. Here’s how it is done.

cisely be called a shared database, which provides, in
reality, only distributed access to centralized data.
Another scheme features individual databases residing
on computers that are linked in a network. While these
are, in a literal sense, ‘‘distributed’’ databases, the
data within each is still inherently centralized.

There are several technical considerations that make
a truly distributed data management scheme attrac-
tive—the main one being the sheer size of many
databases today. Linking diverse data files into a single
resource often provides additional capacity that is
increasingly hard to find with the single, centralized
approach. A decentralized data management "‘net-
work'* could consist of literally hundreds of individual
processors located around the world, with the data in
each available to every node.

Only the data that is used on a daily basis need be
kept at a local node; other useful information in the
database is accessible remotely. In this way, data
availability can be guaranteed by placing critical data
at the local node. Naturally, placing data next to its
most frequent users speeds response time in retrieving
this data.

The autonomy of nodes in a distributed database
allows each organizational entity to manage its in-
formation in its own way. And since each node is
independent, and the data location transparent to the
user community, the database configuration is modular
and, therefore, flexible. Network nodes can be added,
deleted, and rearranged without significantly affecting
cata access and usage.

From a management standpoint, linking data into a
single resource provides a way to track the status of
the corporation as a whole with convenient access 1o
network-wide data. At the same time, control of local
data resources can be kept at the divisional or depart-
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1. Branching oul. One objective of a distributed
database is to put data records where they are most

often used. Distribution of data is done based either on
location or on function.
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mental level. The existence of a corporate-wide
database need not impact the efficiency of local data
management and retrieval activity.

Another big plus to management is the flexibility
provided by a decenlralized data management
scheme. The data distribution can be designed to
reflect the changing needs of a business: When in-
formation needs change, the database can too.

Distribution design

Several non-issues with a centralized database, such
as how the data will be distributed. become critically
important in a decenlralized environment. There are
two main approaches to distributing data: Decentralize
by function. or decentralize by location.

The selection of the best decentralization method is
based on the particular application, or the way data will
be used. If the data will typically be accessed repeat-
edly by the same users, then decentralization by func-
tion could be the more appropriate. Examples of this
would be putting manufacturing materials lists at the
appropnate manutacturing plants and customer in-
lormation at sales locations.

Partitioning customer information on a node-per-
region basis is an example of decentralizing by loca-
tion. This method might be used for data pertaining
specifically 10 a sales region or other geographically
based entity within the corporation.

Another key issue that has to be resolved in evaluat-
ing the feasibility of a distributed database is the
degree of decentralization. For example, function and
maintenance of individual nodes can be decentralized
while the operation and control of the collective
database and network remains centralized. Or it may
pe preferable, depending on the situation, to further
decentralize operation and control while keeping the
design of the database and network architecture cen-
iralized. At the extreme, it may be desirable to decen-
tralize everything, except the “‘global protocol”
architecture.
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An analogous example of maximum decentralization
is the international telephone network. Each telephone
company independently implements the commaon pro-
tocols of the international phone network (such as for
dialing and billing), and the only centralized function is
the architecture of these protocols. Within each com-
pany, design and architecture are typically centralized,
while operation and control are delegated to the op-
erating regions. These regions, in turn, delegate most
operation and maintenance to the individual ex-
changes, which operate and maintain their own local
hardware.

Searches

A major challenge in designing and managing a distrib-
uted database results from the inherent lack of central-
1zed knowledge of the entire database. It is difficult and
often undesirable to maintain information concerning
the entire database in any one place, but this require-
ment seems inevitable in order to manage requests
such as. “"Where is file A?"

One solution to this dilemma involves the concepts of
global, local, and semiglobal data. Global data is
information that is common to and shared by all sites.
Examples of global data are an item master file of parts
that comprise a company's parts catalog and a bill-of-
materials file that describes a product’s structure.

Local data Is information that is uniquely important
1o the individual site using it. although it is accessible to
all sites. Examples of local data are items in stock and
work in process. Local data retains the same format as
corresponding data has at other sites.

Semiglobal data is used in internodal—and often
intersite —transactions. This might be the case for. say,
an interplant materials transfer. In this case, a request
by one site for materials from another is placed,
processed. and monitored. The process requires that
all data and status information pertaining to the request
be resident at both sites, But since this information is of
no use to any third party. it is duplicated only at the two
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nodes that use it.

Information is made available to the entire network
by partitioning or replicating the data files. Partitioning
a data file means splitting it into records and then
distributing the records so that each record resides at
exactly one network node (Fig. 2A). Replication means
duplicating data records at more than one node (Fig.
2B). Local data can be partitioned, but global data
must be replicated.

Data is partitioned to put it close to the sites that use
it. An example might be storing bank account data at
the home branch of the bank customer. This has the
effect of reducing message traffic and message delay,
and of distributing work. In the case of an airlines
reservation network, data is partitioned by corporation.
Most transactions submitted by one airline deal only
with that airline and therefore run on a singie node.
Transactions that deal with other airflines are routed to
other airlines' nodes, as appropriate.

Replication also serves the purpose of bringing data
closer to the user, and has long been used to improve
data availability. !f one copy of a file is lost, for
whatever reason, another can be accessed at a remote
node. Global data is replicated at all sites. In a geo-
graphically distributed database network, replication
also provides the benefit of improving response time by
eliminating long-haul message delays.

Updating

Partitioned data is most efficient when the data must
be kept current, which generally means that it is
updated frequently. The single copy of each data item
makes updating an efficient process. However, nonic-
cal ‘'read" operations are more expensive, making
partitioning less efficient for data that is widely used
but updated infrequently. In the Tandem scheme, a
database record manager allows files to be partitioned
among network nodes based on single field values
within files, such as ''part number'' or '‘customer
name."

Replicated data is most efficient when muitiple reads
of the data are expected, but updates are not as
frequent. The data is duplicated at nodes where high-
volume reads are expected, producing high availability
and good response time. When replicated data must
be updated, however, an update to a record at one
node should cause an identical update at all other
nodes where that record resides. If any one replica is
unavailable, there couid be problems.

A variety of schemes can be employed for updating
replicated data, even though the copy of the record
may be temporarily unavailable at one or more of the
nodes. One technique requires that a majority of the
replicas be read and updated as part of each transac-
tion, though the definition of “majority'’ varies with the
application. This scheme has the advantage of tolerat-
ing some nodal unavailability, but it is not practical for
either very small or very large networks.

In a very small network of, say, two nodes, having
either node unavailable prevents an update of a major-
ity of the nodes. In larger networks, delays in complet-
ing the update transaction are proportional to network
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size: As the network grows, transactions will take
longer to complete. One example of a file manager that
uses a majority-update scheme is an experimental
database network built at Xerox Research (see refer-
ences for additional information).

Another method for updating replicas is the “‘as soon
as possible'' (ASAP) method. This technigue involves
designating one replica, the “‘master copy," on either a
record-type or case-by-case basis, which ensures that
the file at its node is updated. The updates are then
asynchronously sent to the other replicas. This ap-
proach sacrifices consistency for availability and re-
sponse time. Tandem's internal distributed database
application, called Empact, is one that uses ASAP
updates for frequently used data, and consistent up-
dates for critical data.

A different method involves a time-based technique,
in which there is a master copy of the data record, and
its replicas (or slaves) are "snapshots of the master
as of a specific time. The slave copies are periodicaily
updated, and each replica is "‘time-stamped” to indi-
cate its degree of currency. This technique is appropri-
ate for files that change very slowly and for which
currency is not critical to business operations. IBM's
experimental “R"* System provides this time-stamping
of replicas.

When retrieving the time-stamped replicas, the de-
gree of currency can be specified in the query. It may

2 Replication. Local data files may be partitioned (A)
at the same site. Global files, on the other hand, are
replicated in each network node (B).
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not always be necessary to read the maost current
copy, so some time and communications costs might
be saved by reading a copy that is ohysically closer.
but with an older time-stamp.

Relational

With data distributed all about a network, the retrieval
method must be convenient and fairly simple to the
user. This means that the database manager must
keep track of all data locations in a manner that is
transparent to the user. This requirement, combined
with the flexibility needed to move data from node to
node as information requirements change, makes a
relational model almost a necessity in a distributed
database environment.

A relational database stores data in two-dimensional
tables of rows and columns containing related informa-
tion (Fig. 3). Information is entered into the database
by creating the tables and filling them with pertinent
data. Expanding the database is a matter of adding
new tables or adding new entries to existing tables.

Unlike hierarchical and network databases, the
structure of a relational database is not determined and
fixed when the database is defined. Data items are
logically linked by the data management software on
an as-needed basis, so data items are not dependent
on other items (Fig. 4).

Connections between records are based on ‘‘soft
pointers'’ (called keys), rather than “*hard pointers,"’
such as record addresses. This distinction allows the
data at a node in a relational database to be reorga-
nized without affecting other nodes. The relational data
structure, it can be said, is dynamic and flexible, which
makes it particularly suitable for a distributed
environment.

Maintaining data integrity

A clear concept of a transaction is essential in coordi-
nating multiple updates to distributed data. The muiti-
ple nodes and multiple copies of data items can mean
distriouted chaos if transactions are not carefully imple-

3. Relational. A relational database differs from the hi-
erarchical database in that common elements in the file
permit records (o be logically connected.

4. Linking up. In this DDB transaction, a warehouse
parts file is linked with a headquarters purchase order
file to determine how many items are in a particular
order.

AT WAREHOUSE

PURCHASE-ORDER
FILE

LINK PARTS TO PURCHASE ORDER VIA STOCKNUM |
LIST 8Y STOCKNUM
ITEM,
QTY-ON-ORDER,
ORDER-OATE,
WHERE LOCATION = "SAN FRANCISCO™
RESULTS:
[ sTocxaum  iTem QTY-ON-ORDER ORDER-DATE |
AT8 TRIBBLE 500 051982
GO4 BUVET 500 0519-82
H73 WHATSIT 1,000 04-28-82
K88 8LURS 400 03-08-82
M38 PLAZIER S0 041582
T0S KRUPUS 535 021782

mented and monitored. A transaction is an operation in
which application procedures, such as banking opera-
tions, are mapped into transformations (by executing
programs) that invoke database actions. These in-
clude: Read the customer, account, and teller records;
write the account, teller record, and a memorandum
record; and send response messages to a terminal. The
result of this process should be that the database is
moved from one consistent state to another.

The key properties of a transaction are:
= Consistency —the transaction is a consistent trans-
formation of the database state (for automated teller or
banking transactions, that money is neither created nor
destroyed)
® Atomicity (transactions are "‘atomic’’) —either all the
actions invoked by the transaction occur, or eise the
entire transaction i1s nullified (in the banking case, that
no account is left in a partially updated state)
® Durability —once a transaction is completed, its ef-
fects cannot be nullified without running a compensat-
ing transaction (funds removed from an account would
have to be redeposited to be accessed again).

All of these criterna and requirements must be upheld
uniformly across the network in order for a distributed
database to work. Database management packages
that consider a single database action to be a transac-
tion, therefore, are unsuitable for a distributed
environment.

There are several techniques-available for maintain-
ing consistency, atomicity, and durability in a central-
ized environment, including concurrency control and
transaction backout (reversing the effect of a partially
completed transaction). These techniques can aiso be
applied in the distributed environment, but their man-

#
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agement on a network-wide scale becomes much more
complex due to the added communications
considerations.

To ensure database integrity in a distributed transac-
tion, all messages between nodes must arrive safely,
and the sending node must be made aware that each
message has in fact arrived. Both requirements can be
met by using a “‘two-phase commit'' protocol.

“Committed” transactions

A two-phase commit protocol uses a commit coordi-
nator program to centralize the decision to commit or
abort a transaction. The commit coordinator has a
communications path to all the participants of each
transaction. These participants, it should be noted, can
be processes, autonomous components within a pro-
cess, or both.

The commit coordinator asks all the participants to
enter a “'‘prepare’’ state, from which each participant
can either commit or abort its part of the transaction.
Once all participants are in the prepare state, each will
transmit a message indicating this to the commit
coordinator, which in turn can send a commit or abort
message to all the participants (Fig, 5).

Once the commit coordinator sends the commit
message, it waits for an acknowledgment from each
participant before terminating the transaction. Use of
this two-phase commit protocol helps ensure the integ-
nty of a distributed transaction.

Distributed administration
Management of a woridwide database must be both
distributed and centralized. Certain aspects of the
database are common to the entire network and
therefore must be designed and controlled by a central
organization. A prime example of this is the global
record format.

Local database functions can be controlled at the
local node to provide site autonomy, which is one of
the basic goals of a distributed database. An example

5. Commitments. A dialog between the commit coordi-
nator and a participant (A) ensures that transactions will
be completed. The commit coordinator has a path to all
participants, any of which may abort (B and C).
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of one such local function is a report format.

A hierarchy of control can therefore be imposed.
with network-wide functions being managed by a cen-
tral organization and control of other database activi-
ties being distributed in a hierarchical fashion. The key
requirement, however, is that each level use the proto-
col of the global architecture for all its inputs and
outputs. Each organizational level has an administrator,
who publishes and controls the protocols of his compo-
nent of the database network. And while a great
degree of autonomy can be exercised, the structure of
levels and control at this level should parallel the
structure of the overall organization.

DDB selection

The choice of a distributed database management
system is naturally dependent on the application re-
quirements. However, care should also be taken to
implement sufficient flexibility into whatever database
network is constructed, to account for rapidly changing
application requirements.

Requirements of a true distributed database include
the ability to distribute data files between at least two
computer nodes: to provide location transparency be-
tween data and users; to retain data file relationships
(even when the files are located at separate network
nodes); and to ensure transaction integrity in the
distributed environment. The two commercially avail-
able distributed transaction management systems that
most closely meet these requirements are IBM's
CICS/ISC and Tandem Computers' Encompass. The
ISC feature of IBM's CICS provides for distributed
transactions and the ability to access remote files, but
it does not transparently handle data partitioning or
replication.

Data partitioning requires direct action by an oper-
ator with IBM's CICS/ISC, while this is done automati-
cally—transparently to the operator —with Encom-
pass. Manual intervention is also required with the IBM
product for data replication, but Encompass requires
manual intervention only for files resident on a remote
node.

Another selection criterion is flexibility, since one of
the purposes of a distributed database is to allow for
the changing information needs of a corporation. The
ability to add nodes, delete nodes, and reconfigure the
distribution of data without changing application pro-
grams is a requirement.

Inherent in all of these requirements are a reliable
data communications and networking capability, and
the use of a relational database model. Without this
base on which to build, no distributed data manage-
ment network can be successiul.

Beyond these basic requirements are some features
that will enhance the usefulness of the database
throughout a lifetime of changing requirements. One
way of achieving this goal is through the use of highly
reliable hardware and network software. Even though
the database must be designed so that a failure at one
node cannot prevent access to critical data. the distrib-
uted network will be much more efficient if extraneous
hardware and software failures can be keptto a
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minimum. The ideal, of course, is to maintain data
availability in the face of component failures or tempo-
rary inaccessibility of some network nodes.

Evolution

The linking of highly reliable computers intoa single
distributed database is not easy, but progress in this
area and the availability of proven products is making
this once blue-sky objective possible to achieve. That
computer networks will move in this direction is
inevitable.

information management schemes, now computer-
based, are replacing traditionally paper-based ones.
But these earlier operations were not totally inef-
ficient —the paper was invariably located at the point
where it was most often used. The move to centralized
data management procedures changed all that, though
it came about more from a need to optimize expensive
computing resources in the earlier days of computer
technology than from the desire to centralize informa-
tion resources.

With the cost of hardware rapidly decreasing and the
reliability of data communications steadily increasing,
the time has come to return to an information manage-
ment operation that puts the data back where it is
needed, as long as it can be done without sacrificing
the advantages of a centralized database. Distributed
databases are therefore the logical continuation in the
evolution of computer usage for information manage-
ment. And this evolution has been considerable: from
compact data storage, o early database management
systems, to the on-line access of centralized data, (0
remote data processing, and now, finally, to the distrib-
uted database management system, which promises 10
provide accurate and consistent data to all users,
acceptable response time, and availability —even
through otherwise catastrophic communications and
hardware failures. ®
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AN ARCHITECTURE FOR
HIGH VOLUME
TRANSACTION PROCESSING

Robert W. Horst - Timothy C.K. Chou
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ABSTRACT

This paper describes a commercially
wvailable multiple processor system that
lelivers mainframe class performance for

high volume transaction processing.
Multiple systems of up to sixteen
processors each are configured in a ring
structure using fiber optics. This
structure allows from two to over two
hundred processors to be applied to a
single on-line application. We discuss

selecting a large number
of small processors versus a small number
of large processors. Benchmark results
are presented to demonstrate the linearity
in system performance as processors are
added.

the tradeoffs in

1.0 INTRODUCTION

the market for
processing has
the 60's, only
large on-line
(OLTP) systems.
vere filled by

In recent years,
high volume transaction
increased rapidly, In
large airlines required
transaction processing
These requirements
centralized mainframe computers running
specialized, highly tuned applications.
They suffered from limited expandability,

a costly applications environment, and the
requirement to program in assembly
language (5],

Today, many other industries are
taking advantage of OLTP systems. Some of
these applications include on-line
banking, credit authorization, debit
cards, teletext, medical information
systems and paperless factories, These

markets have similar systems requirements:
the system must continue to operate
despite hardware failures, it must be
expandable, and it must be capable of high
transaction throughput.

One example of a high volume
transaction processing environment is the
TWA Reservation System (PARS) (5], This
system is composed of a high performance
mainframe connected to over 10,000
terminals. The system supports a peak

0149-7111/85/0000/0240801.00 © 1985 |IEEE

throughput in .excess of 170
transactions/second while maintaining an
average response time of 1.5 seconds.

In 1976 Tandem introduced a new

system architecture which was specifically
designed to address the problems of OLTP.
Designated the NonStop I, this system
consisted of from two to sixteen loosely
coupled processors which communicated with
each other over dual high speed busses

[2,10]. The Tandem system architecture is
illustrated in Figure 1. The loosely
coupled architecture has proven to be
quite effective for transaction
processing. It supports incremental
expansion, availability, and high
performance [8? The loose coupling does
not limit performance since transaction
processing, unlike most scientific

processing, is easily partitioned into
multiple relatively independent processes.

DYNABUS

[ 1 ) I

DYNABUS
CONTROLLER

cru
PROCESSOR MODULES
MAIN MEMORY

10 CONTROLLER
Dl&c TERMIH.!I.
conmouu Coumou.il
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Figure 1. System Architecture
In 1981, the NonStop 11 was
introduced to remove addressing
limitations of the 16-bit NonStop I. In
the intervening five vyears, many new
features have been added to the basic
offering. The system was expanded into a

network of up to 255 systems, a relational




data base management system as well as

transaction management software [1,3,4]
were also added. These products allowed
users to develop distributed fault
tolerant OLTP applications without
worrying about the underlying system

implementation,. .

The system as it stood in 1981
solved all of the requirements for OLTP,
but the performance required for some
large applications was beyond the reach of
a lé6-processor system, The network
provided a way to apply more than one
system to a single application without
reprogramming; however, the relatively
slow speed of data communications lines
and software overheads of long-haul
communication protocols proved to be a
bottleneck in high wvolume applications.
It was apparent that there was a market
need for systems of larger than 16
processors. The need was addressed by
starting projects both to expand the

number of processors vhich could be
applied to a single application, and to
develop a new higher performance

processor.

2.0 FIBER OPTIC EXTENSION (FOX)

The most obvious way to increase
the number of processors in a system is to
extend the high-speed interprocessor
busses to handle, say 32 or &4 processors.
While this 1is not difficult from a
hardware design standpoint, there are
drawbacks. All processors would be
required to be in close physical proximity
in order to keep from degrading the bus
performance. This would cause a physical
space problem in some computer rooms. In
addition, allowing a single system to
expand to more processors does not help
existing customers that already have
several systems requiring higher bandwidth
communications.

An alternative approach to adding
processors in the same system is to use a
high speed connection between systems,
This effectively adds another level of
interconnection hierarchy between the 26
Mbytes/sec inter-CPU links, and the 56
Kbyte/sec network links. Figure 2
illustrates the Tandem solution which uses
fiber-optics to link up to fourteen
systems. Each node can accept or send up
to 4 Mbytes/sec. With this additional
bandwidth, a cluster of up to 224 CPU's
can be configured to handle a single on-
line transaction processing application.

Fiber optic links were chosen both
to solve technical and practical problems
in configuring large clusters, Since
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Figure 2. FOX Architecture

fiber optics are not susceptible to
electromagnetic interference, they provide
a reliable connection even in noisy
environments, They also provide high
bandwidth communications over fairly large
distances (1 km) . This eases the
congestion in the computer room and allows

many computers in the same or nearby
buildings to be linked. Fiber optic
cables are also flexible and of small

diameter, thus easing installation.

The topology of the FOX connection
l1s a store-and-forward ring structure.
Four fibers are connected between a system
and each of its neighbors. Each
interprocessor bus is extended by a pair
of fibers, which allows messages to be
sent in either direction around the ring.
The four paths provided between any pair
of systems assures that communication is
not lost in the event that one entire
system is disabled (due to a power-fail
perhaps) or in the event an entire four
fiber bundle is severed, The ring
topology also has advantages over a star
in that there is no central switch which
could be a single point of failure. In
addition, cable routing is easier with a
ring than with a star.

In a ring structure, bandwidth
increases as additional nodes are added.
The total bandwidth available in a FOX
network depends on the amount of
passthrough traffic. In a 14 node FOX ring
1f each node sends to all other nodes with
equal probability the network has a usable
bandwidth of 10 Mbytes/sec. With no
passthrough traffic the bandwidth
increases to 24 Mbytes/sec. Theoretically
an application generating 3K bytes of

|
{

- ——




traffic per transaction ,at 1,000
transactions per second, would require a
FOX ring bandwidth of only 3

Mbytes/second. This would put total
utilization of the FOX network at less
than 30% of the total available bandwidth.

4.0 PRQOCESSOR SIZE

Once a system architecture can
apply a large number of processors to a
single application, there is still a
question of what the characteristics of
each processor should be. The
possibilities span a large range of
performance levels. At the low end of the
performance range are microprocessor based
designs, These may be based on one chip
microprocessors such as the Motorola 680xx
family, the Intel 8086 family or the
National 32000, In the midrange are
designs based on medium-scale integration
or gate arrays. Such designs are typified
by mini/supermini computers such as the
Digital VAX series, Hewlett-Packard 3000
and the IBM 43xx series. At the high end
are designs based on the most aggressive
IC, packaging, and cooling technologies.
Examples of this type of design are
mainframes such as the IBM 308x, Amdahl
470 and 580, and high end machines from
Sperry, Burroughs, CDC and Cray.

Many factors need to be analyzed in
order to decide whether the micro, mini,
or mainframe type design should be
preferred for the processors in a high

volume transaction processing system.
These factors include cost-performance,
granularity of fault tolerance,

granularity of adding performance, and
ease of managing the system.

4.1 COST-PERFORMANCE

In a system which Iis modularly
expandable, cost-performance 15 the
driving force in the development of a new
processor. [mproving cost-performance by
lowering costs is difficult. Even using a
microprocessor, which may be nearly free,
may not significantly reduce costs over a
minicomputer-style design due to the many
fixed costs which make up a system. The
cost of main memory, packaging, power and
cabling are not reduced 1in proportion as
the CPU cost is reduced.

It is easier to improve cost-
performance by increasing the performance
of the processor. This would seem to
favor a mainframe as the best choice for a
multiprocessor system. There are several

reasons why this is not the case. The
complexity of a mainframe design

requires

a much larger development cost and longer
development time. In addition, in trying
to 1mprove uniprocessor performance some
nonlinearities are encountered. For
instance, the jump from air to liquid
cooling constitutes a large cost
increment,

4.2 OTHER FACTORS

Other factors influence the choice
of processors. If the processor is too
small, the number of processors required
to perform a large application can become
so large as to be unmanageable. In
addition, if the system is not carefully
designed, performance improvements can
cease to be linear beyond some number of
processors.

On the other hand, if the processor
1s so powerful that the application can be

handled by a single processor, fault
tolerance can suffer. Today the only
fault tolerant confiqurations of

mainframes require an expensive duplicated
hot standby. Even if these machines were
incorporated into a Tandem-like structure
which would allovw the second machine to do
useful work, the failure of one of the
mainframes would remove half the computing
power from the system. In extremely
critical applications, it may not be
tolerable to degrade performance while a
hardware failure is being repaired. 1f
the application requires only one
processor to handle the peak load, a
second processor 1is needed in case of
failure, for a 100% overhead. In
contrast, i1f four less powerful processors
are used to handle the same workload, only
one extra processor is needed in case of
failure for a 25% overhead.

5.0 NONSTOP TXP

Taking the above reasons into
consideration, Tandem developed the
NonStop TXP processor, which was
introduced in 1983, Its primary design
objectives were to improve both cost-
performance and absolute performance over
the NonStop II (7], The initial pricing
of the NonStop TXP  offered a 50%
improvement in price-performance over the
NonStop Il at about 2.5 times its
performance,

In the NonStop TXP design, the

' emphasis on cost-performance extended all

the way to the component level. One of
the first decisions to be made was :he
selection of static RAM's to be used in
the cache memory and control store. The
most advanced RAM's at that time were




organized as 4Kx4 and 16Kxl bits with
access times of 45ns. These were four
times the density of and 10 ns faster than
the RAM's used in the NonStop I1I.

To implement logic functions,
advanced MSI Schottky technology and
programmable array logic were chosen, An
extensive analysis of LSI alternatives,
including many different gate arrays,
showed that a gate array machine would
have been about the same performance
level, higher cost, and would have
required a much longer development cycle.

Once a technology was chosen, the
next challenge was to develop an
architecture which could utilize the
improved components to improve performance
and cost-performance. One such area was
the cache memory design. Although
extensive academic research in cache
memories was available during the NonStop
TXP design [11], most of the studies did
not anticipate the impact of large RAM's
on cache organizations. Using leK static
RAM's, a 64K byte cache requires only 32
components (not including parity or the
tag comparison RAM's or logic). This
makes it much more economical to design a
large "dumb” cache (direct mapped) than a
smaller "smart®™ cache (set associative).
After performing some real time emulation
of different cache organizations, the
final cache design for the NonStop TXP was
chosen. It is a 64K byte direct mapped
virtual cache vith hashing of some of the
address bits. Hit ratios for the cache
have been measured between 56% and 95%
while performing real transaction
processing workloads.

Other tradeoffs were also made in

the interest of cost performance. In
order for the NonStop TXP to be plug-
compatable with the NonStop Il processor,
the CPU was required to fi on four
circuit boards. Had it overflowed those
boards, a large jump in cost would have
occurred, For this reason, the NonStop

TXP relies on microcode to perform some of
the functions done in hardwvare on many
machines. For instance, after every cache
access, the microcode must perform a
conditional branch to test for a cache

miss. [f a miss occurred, the microcode
fetches the block from memory and refills
the cache block. Performanc could have

been improved a few percent by providing
additional control and data path hardware
to perform the cache refill directly.
However, since this hardware would have
required an additional logic board, it
would have adversely affected cost-
performance.

Many of the tradeoffs made in the
NonStop TXP design were based on detailed
measurements of th NonStop 11

performance, A complex performance
analyzer, named XPLOR, was designed and
built solely for that purpose. XPLOR was
used to perform the cache emulation
experiments, In addition, it provided
data on instruction frequencies, percent
time spent in each instruction, and the
memory reference activitcy of each
instruction. This allowed hardware to be
saved in the support of less frequent
instructions and applied to accelerating
the more frequent instructions. XPLOR
also provided data which enabled the
microcode to be optimized for the more
frequent paths through complex
instructions.

The final result (see Appendix A)
is a processor which has a 83.3 ns
microcycle time and can execute simple
instructions in only two cycles, In
typical applications, the NonStop TXP

executes about 2 million native
instructions per second. This new
processor has not uncovered any

bottlenecks in the 1/0 or message system;
hence, the improvements in CPU performance
have been directly translated into
transaction processing performance.

6.0 BENCHMARKS

Recently several customer
benchmarks have been run which demonstrate
the capability of this system architecture
to support high volume, high performance
on-line transaction processing. Two of
these benchmarks are described below.

6.1 BANKING BENCHMARK

In the summer of 1984 a major
European bank benchmarked a Tandem system
to support a4 bank card and electronic
funds transfer application. The data base
for the application consisted of the
following files:

Card : 1.2 million records
Memo : 2.4 million records
Balance

Log : Sequential log of all

updates to the Memo
Balance File

Customer : Info about accounts
Product

The application was described by
five major types of transactions. Two of
the more frequently executed transactions
were the DEBIT and LOOKUP ‘transactions.




® DEBIT Transaction Profile:

Message in;

Read random Card File;

Read random Memo Balance File:

Message out;

Message in:

Read random with lock same
record as before from Memo
Balance File:

Rewrite record to Memo Balance
File:

Sequential write to LOG file of
Memo Balance File update;

Message out.

* LOOKUP Transaction Profile:

Message in:

Read random Card File;

Read random Memo Balance File;

Message out:

Messaqe 1N

Read random Customer Product
File;

Message out,

In this benchmark the
occurred with the following

transactions
frequency:

-

J Transaction Name Frequency

|

!358:? 52.5%
LOOKUP 39.5%

}QTHER 8.0%

The benchmark was done on a 4,
12, and 16 processor Single system as well

S

its area. Each site will bpe
through a large SNA network and can
communicate directly with the other two
when necessary for processing out-of-area
authorizations, The data base for the

connected

application consisted of the following
files:
Authorization : 20 million
records
Bankcard Negative : 10 million
records
Out-of-Area Index ¢ 10 million
records
The application was composed
largely of one transaction, MAIN, which

was nearly 75% of all transactions,

* MAIN Transaction Profile:

Message in:

Four in-memory table lookups;
Read of indexed file;

Read of indexed file;

Update of indexed file;

Write to sequential file;

6.3 SUMMARY

Both of these benchmarks
demonstrate the Ccapability for this system
architecture tp provide high volume
transaction processing. The actual
transaction throughputs are shown in
Figure 3, Response times in both
benchmarks averaged less than 2 seconds.

Figure 4 graphically illustrates both the
linearity and processing power in the
region between 2 and 32 pProcessors,

as 1,2,3 and E §-CPU Systems FOXed
together. The results are shown in Figure 3,
! Benchmark ¥Systems "TXPwSystem TXPs TPS TPS/TXP
| Banking 1 4 4 6 4
Banking 1 B 8 30 s
Banking 2 4 8 28.5 36
Banking 1 12 12 47 as
Banking 3 4 12 48 38
Banking 1 [ 18 625 38
Banking 4 4 16 58 37
Feotan 2 8 18 81 38
Ratail 2 16 32 124 a9
L TPS = Transactions Per Secona
Flgure 3, Benchmark Results
6. RETAILING BENCHMARK
In the fall of 1984 4 major
American retailer benchmarked a retail
credit authorization application. The
réequirements were for three individua]
sites, each Site providing 100+

authorization

transactions per Second

for

130
120 -
110 -

b

02« 88 19 2 M % B 20 2 24 26 28 0 32
Mumber ol Processary

A Barking Benchmarx
8 Retading Benchmark

Figure 4. High Volume
Transaction Processing

While these graphs do not contain a

wealth of data points it should be noted
that each experiment is expensive in both
time and equipment. However, they do




represent experimental results as opposed
to theoretical modeling results.
There is a great temptation to

extrapolate the curve shown in Figure 4 to
224 processors (the total number in a FOX
ring). Assuming linear growth the
transaction rate that hypothetically could
be supported 1is somevhere over 800
transaction per second. In reality this
may or may not be achievable; however, we
hope at some point in time to be able to
ascertain this experimentally. Once again,

it should be noted that building a 224
processor system and benchmarking 1t is
extremely costly in both time and
equipment.
7.0 CONCLUSIONS
For a number of years there has
been academic interest and hypotheses [9]

that a number of small processors could be
tied together in some way and provide the
computing power of a larger machine. While
this may not be true in general this paper
illustrates that it is possible in on-line
transaction processing.

Ordinary OLTP systems bottleneck at

50 transactions per second while high
performance OLTP systems achieve 200
transactions per second. Beyond these
rates, users have been forced to build

their applications using ad hoc techniques
rather than general purpose systems. Even
using these ad hoc techniques, the highest

transaction throughput claimed by any
mainframe manufacturer is somewhere near
800 transactions per second ([6]. Our

experimental results to date indicate that
the Tandem architecture ,a general purpose
multiprocessor, is capable of supporting
high volume transaction processing.
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Architecture Determines
Cost and Reliability of
Fault-Tolerant Design

Different architectures are available to achieve fault-tolerant computing.
Cost-effectiveness and reliability are now available for commercial environments.

by Dennis McEvoy
and Sandra Metz,
Tandem Computers Inc.

ault tolerance, or

the ability of computers to recover
automatically from failures and con-
tinue processing, is becoming a criti-
cal element in svstems used in an on-
line, interactive mode. There are sev-
eral fault-tolerant svstem architec-
tures and configurations available to-
dav, each optimized for the needs of
different high-reliabilitv markets

This article will discuss several wavs
to achieve fault tolerance in comput-
ing systems, and the relative merits of
each.

A classical system architecture
typically consists of a centralized pro-
cessor, an /O channel, and control-
lers to manage such peripherals as
terminals and disks Because a failure
in any one of these components can
take the entire svstem off-line, this
configuration is acceptable only for

applications that don't require contin-

uous system availability

Applications that demand contin-

uous availability tvpically require
some kind of fault-tolerant comput-
ing system. Such a design must
strategically duplicate components
in an efficient and cost-effective man-
ner. The methods of duplication—
and the resulting levels of fault toler
ance—vary dramaticallv and are suit-
able for a wide range of applications

SWITCHED BACKLP

the central-processing unit. Fig 1
shows a dual-processor system in
which one processor acts as a backup
for the other. The processors are con-
nected through a switch, and either
one can communicate with the other
components to control the entire sys-
tem.

This standby configuration is
known as switched backup and pro-
vides the benefit of fault tolerance in
the case of a single processor failure.
Switched backup is one of the most
commonly used configurations for
large on-line mainframe applica-
tions

Several problems are associated
with switched backup. One involves
eveny company's biggest concerm—
dollars. Since the second processor is
a backup. it remains idle until the
first processor fails. If the backup hap-
pens to be a $2 million mainframe, a
fairly expensive piece of hardware
will be idle until a failure occurs in
the on-line system.

However, lo gain better retum
on vour investment, vou can use the
backup system for program develop-
ment while the on-line system is still
functional. In that case, however,
when the on-line processor fails, the
development work on the backup pro-
cessor must be halted so that the
backup svstem can be switched on-
line.

Another problem with a
switched backup is that it provides
Gult wierance for only one
situation—a single processor failure.
An VO-channel failure between the
bus switch and disk controller, for ex-
ample would quickly tum both 52

milbon mainframes castors up. The
bus switch itself is another single

I PO o system failure.

A very basic approach to fault-
tolerant computing is to duplicate




Computer Technology Review

sSummer 1957

TERMINAL
CONTROLLER

IRBBRRAI

e
CONTROLLER

Fig 1 A very basic approach to Gault-tolerant
computing is switched backup. which dupli-
cates the central-processing unit. A switch con-
nects hwo processors 5o that esther can commu-
nicate with the other system components and
control the computer as a whole

TRIPLE MODULAR REDUNDANCY
R SRR e e

A higher level of fault tolerance is
achieved with a configuration known
as triple modular redundancy. Like
switched backup, triple modular re-
dundancy is a hardware-only ap-
proach. but it goes a step further bv
providing three copies of every piece
of system hardware (Fig 2!.

The three processors are lock-
stepped together and simultaneously
run the same instruction stream A
piece of hardware called a voter re-
ceives and compares the output from
all three processors. If one output
doesn't match the others. the voting
hardware accepts the output from
the wo matching processors and
passes it along to the appropnate
interface.

This approach has been used
successfully for many vears in such
areas as space research and nuclear
power plants, where computer fail-
ure is unacceptable. In the commer-
cial emvironment, however. triple mod-
ular redundancy poses two major
problems: tripled cost and complex
design. A single clock must run the en-
tire system, and the clock must be im-
plemented so that it can’t possibly
fail. This is a technically complex re-
quirement.

These limitations weren't a stum-
bling block in applications like the
U S. space program, where literally
billions of dollars were riding on the
fact that the computer would be avail-
able 100% of the time.

COMPARISON LOGIC

A similar approach is to have four pro-
cessors running the same instruction
stream (Fig 31. The processor outputs
are paired with each other and com-
pared. If a mismatch occurs, the pair
containing the mismatch is shut
down. The system continues running
with the remaining pair of proces-
SOrs.
Although similar to triple modu-
lar redundancy, such comparison
logic has the advantage of being easi-
er to implement than voter logic, and
therefore is less expensive to design
and maintain. However, the financial
problems of redundant hardware all
running a single instruction stream
and performing identical operations
still remain.

Also, comparison logic causes a
good processor to be taken off- line
along with the problem unit, thus
wasting a resource that could be
working with the svstem. And, again,
the clock is the weakest link in the
system, a single point at which the en-
tire systemn could fail

A MULTICOMPUTER SYSTEM
SRS FT A TTA )

A different approach to fault-tolerant
computing, imvohving a unique, inte-

| o |
| Seey |

DD -

Pig 2 A higher level of fault tolerance is
whuch provides three copees of every piece of
sysiem hardware. The three processors are
lock-stepped together and voter logic receives
and compares the output from all three.

grated hardware/software architec-
ture, was taken by Tandem Comput-
ers. Tandem's NonStop system was
designed specifically for the on-line
transaction-processing marketplace.
This arena requires a system architec-
ture that's not only fault-tolerant and
easilv expandable, but also maintains
a price’ performance ratio suitable
for commercial transaction-
processing applications.

This architecture combines hard-
ware and software so that there's no
single point of failure (Fig 4). Compo-
nents are duplicated but are not re-
dundant. Each processor runs its
own instruction stream, so no back-
up components sit idle until a failure
occurs.,

Fault tolerance is achieved by
keeping each processor in constant
communication with the others in
the svstem via a dual high-speed in-
terprocessor system bus. If one pro-
cessor fails, its workload will auto-
maticallv be absorbed by the remain-
ing processors.

Each processor has its own 'O
channel and each /O controller is
dual ported. Thus, if one processor
fails. another can still use that con-
troller. Since disks are physically du-
plicated with identical data stored
on each even a disk crash can't bring
down the system. The duplicate disks
pay for themselves by ensuring com-
plete svstem fault tolerance and im-
proved performance. One disk per-
forms seeks on the inner portion of
its surface while the other disk per-
forms the same seeks on its outer por-
tion. This provides a significant per-
formance improvement in seek times.

The software architecture is
based on independent processors
and independent programs within
them all of which communicate
through a message svstem that is an
integral part of the operating svstemn
This operating svstem sees all pro-
grams and data transfers as commu-
nications distributed over several pro-
Ccessors

Programs can access any device
anmywhere in the svstem, even those
not pinsically connected to the pro-
cessor nunning the program. Con-
verseh each program is unaffected
by the processor on which it runs.
The operating system sees all phvsi-
cal resources as logical files. Only the
message-routing part of the operating
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Fig 3 An approach similar to triple modular redundancy is to have four processors running the
same instruction stream with their output paired and compared. If a mismatch ocours, the pair
containing the mismatch is shut down and the remaining pair continues 1o run the system.

system knows the geographic loca-
tions of resources. so data can be re-
routed and resources dvnamically
reallocated during a failure.

Software fault tolerance is im-
proved by distributing the operating
svstem across all the processors in
the system. If one processor fails, its
job will be picked up by those remain-
ing. In a system where three or four
copies of the hardware are lock-
stepped together, a severe software
bug could crash all the processors si-
multaneouslv. Past experience shows
that software bugs severe enough to
crash a syvstem are typically related ei-
ther to timing or to the placement of
data in memory. In a NonStop svs-
tem, however a software failure will
probabh not crash more than one
stances and exact placement of data
in memon are unigue 1o each proces-
sor.

SYSTEM EXPANSION
AR e
On-line transaction processing is
characterized by the need for easy
svstem expansion. For example, if a

control of 50 autormnated teller ma-
chines and the application is success-
ful, the bank will tvpically wish to ex-
pand the automated-teller network.
The interprocessor bus system is
the key to easy hardware expansion

because each processor module has
its own memory, 'O channel, and
bus controller. To expand this sys-
tem, additional processor modules
are simply added to the bus. The mes-
sage system keeps track of all system
resources, so the system software
load is automatically allocated to the
appropriate hardware. The system
can then be fine tuned for optimum
ce.

It's possible to have a modularly
expandable multiprocessor system
where the processors are linked
through a shared memory. A shared-
memory architecture provides fast
data access to all the processors and
provides additional processing pow-
er. But the additional processing pow-
er obtained doesn't increase linearty.

For example, a second processor
doubles your investment and pro-
vides only 1.7 to 1.8 times the power
of a single CPU because of contention
for the shared memory and assoc-
ated shared resources. A third unit
provides approximately 2 4 times the
power for three times the cost. By the
time the fourth processor is added,
it's possible to reach a state of dimin-
ishing retums.

One way to get around the con-
tention problem is to locate a cache
memory in front of each CPU. Each

waus
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Fig 4 In a multicompuser system architecture, components are dupbcated but not redundanm
Each processor runs iss ows mstruction stresmn and none of the backup components sits idie

waiting for a faihure.
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~ache slill has to fetch instructions
from memory though: so that while
the problem may be minimized, the
limits of the shared memory will be
reached eventually

A multicomputer software archi-
tecture eliminates such svstem bottle-
necks as memony contention because
the operating system runs in each
processor. and the onl communica-
tion between CPUs occurs when a
user program requests 1’0 from an-
other processor. This communication
is done over the system bus, which
runs at an aggregate rate of 26
Mbytes 's. Since the processor mem-
orv runs at 5 Mbytes's bus conten-
tion doesn t cause a problem

Like the shared-memory ap-
proach. multicomputer architecture
is modularlv expandable But be-
cause interprocessor communication
occurs in the svstem bus. memory
contention is eliminated along with
the potential single-point failure of a
shared memon Therefore, a dual-
processor svstem vields a full two pro-
cessors worth of computing power.
three units vield three processors
worth of power and so forth. There's
virtually no performance perfor-
mance degradation associated with
expandabilin

Another acvantage of multicom-
puter architecture is the networking
scheme inherent in a single system
Since the message svstem already
keeps track of the physical location of
all resources a configuration can be
expanded into a network of systems
without anv changes in existing soft-
ware The message system keeps
track of each system as easily as it
keeps track of each processor. and
the user doesn t require any addition-
al programming

This networking scheme also con-
tains a distributed database capabil-
itv so data files can be distributed
among a network of svstems, while
the message syvstem automatically
keeps track of their locations. The
user doesn 't need to know where a
specific piece of data resides in order
1o access it.

CHOOSING A FAULTTOLERANT
SYSTEM

The choize of a fault-tolerant system
should depend on the application
Sore require 100% availability. but

only during critical time penods. An
automated betting system at a race
track, for instance, must be available
on race days, but could be serviced at
night. In contrast, a system that moni-
tors medical equipment in a hospital
must be available continuously. even
during periods of maintenance and
repair

You can determine the degree of
fault tolerance required by analyzing
the cost of failure for a given applica-
tion. For example, suppose a system
advertised a guaranteed up-time of
over 99% . That may sound fairly reli-
able, but 1% downtime translates into
approximately a third of a day each
month. If the application involved is
control of automated teller terminals
and the downtime occurs during a
Friday lunch hour, the 89% uptime
won't soothe the angrv customers
The cost of failure in this case re-
quires 100% system availability

Other considerations include the
intial system cost. ease and cost of ex-
pansion and modification, and the
vendor-supplied system software
Also, if a database management sys-
tem is needed for the application
vou should choose a vendor who can
supph one because it’s difficult 10
add features like networking and data-
base management to a fault-tolerant
system unless they're designed into it
at the start

Dennis L. McEvoy is vice president
of software development at Tandem.
He joined in 1974 as a member of the
original software development tearn
and project manager for the develop-
ment of the firm's NonStop operating
sysiem.

Sandra Metz is a technical public rela
tions specialist at Tandem. She joined
the firm in 1982 after working as a
writer for Hewlett-Packard and holds

a BS in technical writing from

Carnegie-Mellon Univ.
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How multiprocessor

nodes can

ecome

more sociable

This month’s continuing look at
Tandem'’s corporate network and its
nodes shows a company increasingly
dependent on distributed network

t Tandem Computers
Inc., electronic mail began as an ad hoc program
allowing employees to send messages through existing
machines used primarily for development, marketing,
manufacturing, and order processing. However, today
it is the most heavily used application in a worldwide
internal network, and its importance is growing. During
a recent 18-month period, network traffic doubled, but
mail volume tripled.

Through electronic mail, Tandem salespeople from
Singapore to Stockholm now collaborate and share
information on a daily basis. Analysts from Montreal to
Melbourne help each other respond to customer prob-
lems and to queries from prospects. Hardware repair
personnel at distant sites communicate with manufac-
turing workers to resolve customer equipment prob-
lems. Managers at all levels use the network to keep in
touch with employees and colleagues throughout the
world. Moreover, electronic mail helps employees es-
tablish and maintain personal relationships across geo-
graphic or organizational boundaries. Thus, it contrib-
utes 10 a sense of community and teamwork.

One way of understanding the impact of electronic
mail on the organization as a whole is to follow a
fictitious employee through a typical day, noting how
extensively this corporate resource is used. John is the
manager of a technical support group of 40 or 50
people affiliated with the headquarters’ marketing
organization. The first thing he does when he arrives at
the office in the morning is to log on to the local
computer to scan his electronic mail, that is, to view a
list of all messages in his electronic in-box.

Each item in the list of incoming mail gives the
sender's name, the message type (original, forward,
reply, and so on), and a subject line. Having scanned
his mail, John can then select the most important
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applications like electronic mail.

messages to read first. Currently, there are four mes-
sages waiting. The first invites him to a strategy meet-
ing that morning with the software development group.
Another message contains minutes of a meeting he
attended last week. John responds immediately to the
invitation and files the minutes of last week's meeting
(on disk) in electronic folders bearing names that he
has specified

John's third memo is a request from the vice presi-
dent of marketing asking him to provide people 10 help
with a design review for a large customer’s application.
John uses the electronic-mail editor to compose a short
addendum and to add an enclosure 1o the vice presi-
dent's request, providing more specific instructions.
John then forwards the whole package 1o a subordi-
nate, who will follow through for him.

He notices among his messages a request from a
technical analyst in Australia for performance informa-
tion on a new hardware product. John doesn't have the
performance information needed, but he knows of
someone at the performance research center in Ger-
many who might. He forwards the message there and
replies to the analyst in Australia, indicating what he
has done, then heads out the door for his meeting.

All of this has been accomplished in less than five
minutes. The messages John has sent are delivered
almost immediately (or within the time frame he has
specified). Thus, problems can be resolved and an-
swers obtained very quickly, and John can be respon-
sive without carrying details around in his head all day
(or all week).

After returning from his strategy meeting. John again
reviews his in-box. This keeps him in touch with people
and problems from hour to hour, without being inter-
rupted and without interrupting others. He typically
checks his mail each time he finishes one of the day's
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major projects (a meeting, an interview, a lunch en-
gagement, or a trip to the corporate library).

By using the in-house electronic mail, John avoids
the frustration and inefficiency of “'telephone tag'’ and
cuts down on his long-distance telephone costs. He
can leave lengthy messages on complex technical
topics for someone who may not be available at the
moment, and be assured that the message will not be
garbled by an intermediary. In addition, John uses
electronic mail to communicate easily with people on
the other side of the world, whose business day may
not overlap s own at all,

Letting digits do the walking . ..

John (and every other employee) is identified by a
correspondent name. Electronic mail includes a way to
look up the correspondent names of people on local
and remote nodes. These names are listed in a direc-
tory application of the “public database,” which con-
tains such information as empioyee office locations,
telephone numbers, correspondent names, and depart-
ment affiliations.

It 1s easier to look up the correspondent name via
computer than it i1s to find a number in a2 conventional
telephone directory, because the computer does the
searching. The correspondent database is updated
weekly to incorporate all new hires, internal transfers,
changes of address, and changes of status. With a
query program, John searches the database for cor-
respondent names by office location, node location,
surname, or partial spelling of the surname

John uses electronic mail to broadcast messages 10
large numbers of people via distribution lists. For
example, when he wants to call a group meeting, he
invokes a mailing list containing the correspondent
names of everyone in his group. When he wants to
announce some change in support policies, he invokes
a much larger distribution list to send a message to
everyone in the company. Thus, it is no more difficult to
address many than it is to communicate with a few—or
with one.

. . and putting heads together
An interesting and weli-used offshoot of electronic mail
1s an archive of technical information. Much of the mail
that comes across the network is in the form of tech-
nical queries, broadcast to all employees. Workers
send such gueries when they need information on
competitors, product performance, how to link particu-
lar devices, and so on. Answers are not hard to come
by. Chances are that, out of the 5,200 Tandem em-
ployees who receive these messages, at least one will
have the required experience or information.

At first, broadcast technical queries typically pro-
voked dozens of secondary queries from people want-
ing to know what the original questioner had learned.
To avoid having to answer these secondary queries
individually, authors of technical query messages be-
gan to adopt the practice of identifying a file (accessi-
ble over the network) in which any replies would be
stored. This allowed other interested parties to benefit
from the exchange simply by accessing the reply file a

280

-

day or two after the initial query was sent out.

The whole process has now been taken one step
further. An administrative employee systematically
reads and files (on disk) all technical queries related to
a particular topic. After 3 week or so, the employee
copies all the reply fi213s to a central node, stores them
on disk (with the relevant query), and adds appropriate
entries 1o a subject index

This centralized repository, referred to as the “ar-
chive,” is equipped with search software to facilitate
information retrieval. Many employees may not be
interested in particular informal exchanges of informa-
tion at the time they occur. However, they can locate
and access a stored record of these discussions when-
ever the need arises. The archive virtually eliminates the
need for duplicate queries and provides an extremely
valuable information resource, reachable from any net-
work node.

There is a vast reservoir of information and insight
within the organization itself, many times larger and
maore valuable than most formal, structured databases.
The combined on-the-job experience of the 5,200
Tandem employees prooably exceeds 30,000 years,
and their combined college and university experience
may amount to 20,000 years or more. Electronic mail
and the archive allow people to share insights easily
and store them for the use of others. These tools are
instrumental in tapping a wealth of information and
human experience.

Electronic mail helps to preserve small-company
interpersonal communications in the face of rapid
growth. It also gives employees easy access to in-
tormation resources within the company, regardless of
where those resources may be. The archive and the
electronic-mail network eliminate much duplication of
effort and energy.

Overcoming hardware failures

While other applications are growing in use, electronic
mail has become the lifeblood of the company’s opera-
tions. It succeeds basically because users have come
to trust the network to deliver their messages. This trust
can be credited to one fundamental design principle,
which underlies the network architecture and the hard-
ware and soltware architecture at each node. The
principle is that of "‘fault tolerance.”

A fault-tolerant computer is one that can ensure
continuous operation and data integrity in the face of
any single component's failure. In addition, it must
allow hardware service personnel to replace compo-
nents and activate them without shutting the machine
down. Such performance is crucial to computers in a
network as large as Tandem's because the more
computers there are, the more likely it is that a
disabling failure will occur somewhere in the network,

A hypothetical computer running 24 hours a day and
capable of offering 99 percent availability might have a
mean time between failures of about two weeks. A two-
node network composed of such machines would
therefore average one failed node a week. With 200
nodes, a network would experience a node failure
about every two hours. If we assume that communica-
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1. Hardware. Each node contains several proces-
sors (at least two) that communicate with a high-
speed bus and dual-ported device controllers.

tions lines go down as frequently as nodes and that the
mean time to repair a line or a node is three or four
hours, it is likely that a network that large would never
be completely operational. Clearly, much higher stan-
dards of machine availability are required for large
networks.

The overall availability of Tandem's corporate net-
work rests on the continued functioning of its constitu-
ent hardware, as shown in Figure 1. Each node (includ-
ing the backbone nodes) contains multiple processors
linked by dual high-speed buses. Any one of these
interprocessor buses (IPBs) can carry traffic at up to
13 Mbyte/s.

Each processor has its own IPB interface, instruction
processing unit, memory, and input /output (1/0)
channel (as well as its own power supply). However,
the Guardian operating system distributed over these
processors makes them appear to local or remote
users as a single computer. It also allows them to
cooperate with one another in processing individual
transactions, to share the work load equitably, and to
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back one another up in the event of a failure.

The IPB uses a multiplexed, packet-interleaved pro-
tocol for high-speed interprocessor communications at
the local node with a minimum of CPU interruption.
However, it would be a mistake 10 view it as an ordinary
communications link. From a logical standpoint, it is
more like an internal bus in a conventional computer,
since it ties cooperating elements of the local machine
together and makes them appear as one.

As Figure 1 shows, designing for fault tolerance
meant using multiple hardware components within a
single computer. It also implied that techniques would
have 1o be found for detecting failures, disabling prob-
lem components, and allowing for their repair and
replacement without bringing down the rest of the
computer.

Accordingly, hardware and software designers de-
vised rigorous internal consistency checks for each
processor. They believed that it was important to
detect problems rapidly and halt a failed processor
before it had a chance to contaminate data or disrupt
the operations of the other processors. In keeping with
this philosophy. it a processor finds that it cannot pass
its own internal consistency checks, it will simply halt
itself, allowing another processor to take over control
of its peripheral devices.

If. by some fluke, a processor with a problem man-
ages 1o pass ils own internal checks anyway, there is
yet another mechanism provided by which the proces-
sor can be restrained. Designers of the operating
system decided thal, once every second, each proces-
sor within a given node would send status messages
over the IPB to all others indicating that it is alive and
well. Also, every two seconds, each processor would
check 1o make sure that it had received such a
message from all the others.

When operational processors detect that one of the
others is not following this established protocol, they
can effectively quarantine the oflender by declaring it
“down."’ Control of its peripheral devices is then trans-
ferred automatically to the backup processor. In addi-
tion, backup applications program modules running in
the other processors are aclivated to take over the
work formerly assigned to the failed processor. When a
processor is declared down in this manner, one of the
other processors will also take corrective action to
clean up any outslanding messages.

To allow the transfer of control of peripheral devices,
hardware designers built dual-ported device controllers
that can be connected to the |/0 channels of two
different processors. The controller is owned by only
one processor al a ime. However, if there 1s a problem
either with the owning processor or with its |/0 chan-
nel, operating system procedures switch ownership of
the device and controller to the other processor (and
its 1/0 channel). In this way, any device can be
accessed even |f the controlling processor or I/0
channel fails. To ensure continuous operation even in
the face of disk-controller failures, the disks themselves
are dual-ported as well and can be connected to two
different controllers, as shown in Figure 1.

The hardware designers also made provisions for the
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attachment of "'mirrored disks"* so that failure of a disk
drive or its storage medium does not require that the
computer be shut down. Mirrored disks are pairs of
physically independent disk drives. Writes are per-
formed on the disks in both drives; reads are taken
from whichever disk has the shortest seek time. If one
becomes inoperable, processing can continue with
reads and updates directed to the healthy disk. When
the failed disk is repaired, it can be restored to
operation and its contents brought to a recent, consis-
lent state. Then all updates performed on the other
disk in the interim are transferred to it automatically.

Clearly, fault tolerance could not be achieved without
the duplication of hardware components within a single
computer. However, software runs on the hardware,
and, therefore, it one processor is to take over for
another, software components must be duplicated as
well. This is accomplished through the use of “*process
pairs.”" (A process is a program module running in a
particular processor.)

The aperating system allows a “'primary'’ process
running in one processor 1o send periodic checkpoint
messages 10 a "backup' process running in another
processor. Checkpoint messages, usually sent before
the primary process performs a critical task, such as
I/0 or updating a database, contain all the information
that the backup process would need to take over for
the primary one in the event of a processor crash,

If a processor goes down, backup processes running
in other processors are activated so that they can
continue the activities of the primary processes that
were running in the now-failed processor. Because the
backup process does not duplicate the activities of the
primary one while the primary is still functional, it
places only minimal demands on the processor in
which it resides. Thus, processors can host backup
processes as well as primary ones and do almost as
much useful work as they would if the backup pro-
cesses were not present

The operating system itself is protected by the
implementation of process pairs. Early users of Tandem
machines had to program their own primary and back-
up application processes (and devise effective
checkpointing strategies) to get full protection. Now,
however, a standard Tandem application development
environment cbviates the need for user programming
of process pairs.

Sociable vs. self-centered computers
Hardware and software reliability are critical in a large
network. However, there is an equally important need
for machines that communicate and cooperate with
their peers. Over the years, Tandem has come to
believe that successful networking begins with the
design of such "‘sociable” computers. A number of
complex problems, which many people associate with
networking itself, actually stem from the architectures
of the machines being used as nodes. In most cases,
such machines were originally designed with no
thought for networking.

The economic need to preserve these architectures
has forced many computer vendors to adopt an ‘‘add-

2. Overhead of the loner. To get a typical com-
puter to interact takes a lot more code than if the
machine slready considers itself a network.

4 HOST-CENTERED

ENVIROMMENT ENVIRONMENT

on"' approach to networking (Fig. 2). According to this
approach, at each end of the communications lineis a
computer with an operating system designed for
standalone processing. This operating system condi-
tions the computer to think of itself as the main (if not
the only) intelligent entity and to view anything at-
tached to it as a peripheral.

Layered on top of each node’s operating systemis a
very substantial bcdy of code, which must correct that
myopic view. By clever and complex ruses, this *'net-
work operating system'' overcomes the ingrained
reclusiveness anc egocentricity of the standalone com-
puter, making it possible for that machine to converse
with other computers in a network. Such communica-
tions is limited, though, and subject to rigid and
somewhat artitrary constraints, because each com-
puter must be made to believe that it is still only talking
to peripherals

Inherent in this approach is a heavy communications
processing burden that falls on the computers them-
selves (Fig. 2A), stemming from the fact that, in
essence, the network operating system has to work
against the local operating system. In addition, this
approach entails a formidable burden of mounting
software complexity, This burden is like an irrevocable
tax on every network user, manager, and application,
and it has a substantial negative impact on productivity
for as long as the network exists.

This complexity increases exponentially as more
(and different) computers are added to the network.
And even if the linked computers are identical,
networking is aimost always a strange new world, with
remote access procedures and syntax rules vastly
different from those used at the local level.

Intranode communications

By contrast, the software that supports Tandem's
corporate network does not present a new world to
users and programs, but rather functions as an exten-
sion of the local environment. In a very real sense,
networking is not layered on top of the nodal operating
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systemn, but built into it. No separate network operating
system is needed.

Nodes in the corporate network routinely engage in
“internal dialogues." Since each computer is, in and of
itself, a local network composed of multiple indepen-
dent processors, a machine's processing consists of
conversations between its constituent parts. (Artificial
intelligence theorists suggest that people may also
think this way.) The same communications mecha-
nisms that the operating system uses to blur processor
boundaries on the local level are effective in blurring
node boundaries within a network as well. When cou-
pled with basic internode communications protocols,
these local mechanisms (built into the operating sys-
tem) contribute greatly to network operations.

The most important of these mechanisms is a *‘mes-
sage manager,'' upon which the entire local operating
system s based. Messages are important in the Tan-
dem computing environment because the operating
system itself is not a single monolithic program but a
collection of “interrupt handlers' and processes. Each
process has particular areas of responsibility and must
communicate and cooperale with others (through mes-
sages) to get work done. These messages must flow,
not only within a single processor, but also among the
various processors (none of which shares memory).

Copies of the most basic operating system pro-
cesses (such as the "monitor” and the “memory
manager'’) run in every processor. However, some
functions. most notably input and output, must be
handled by the particular processors to which the |70
devices are physically attached. This posed a problem
for the early designers because all the hardware and
software entities in a multiprocessor computer needed
access to these | /O resources.

To resolve the problem, the designers developed the
message manager, which allows a process to commu-
nicate with another process anywhere in the local
machine simply by providing the destination entity's
symbolic name. The message manager takes full
responsibility for locating the named process and get-
ting the message fo it regardless of where that process
may be running. Disks, tape drives, and terminals are
all associated with processes. Thus, the message man-
ager provides a way of addressing and accessing such
devices from any location at all in the multiprocessor
machine.

A message, as defined in the operating system, is
bidirectional. It consists of a "'request’’ for service and
a "reply.” Several such messages may be required to
carry out a given operating system function. For exam-
ple, a monitor process may be asked 10 create a new
process. To do so, it must do some work and then
make requests of several other operating system pro-
cesses o gather the resources needed.

One of the requests would be to a "‘disk process,"
asking that space be allocated on disk as virtual
memory for the new process. When the disk process
has allocated the space, it replies, indicating that the
work has been done. (This reply completes the mes-
sage.) Other requests are made as well, and when the
monitor process has seen to it that all of the necessary
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3. Software. Segmented code allows the operat-
ing system to span processors over an IPB and
hide details of the hardware from user programs.

P8 = INTERPROCESSOR BUS
170 = INPUT/OUTPUT

resources are in place, it replies to the entity that made
the request, indicating that the process has been
created

It is easy to underestimate the value and uniqueness
of the message manager. There is certainly nothing
special about the concept of program modules passing
information to one another. That happens all the time in
conventional computing environments that lack a for-
mal messaging scheme. Usually, one program module
places information at a specified location in memory,
and another picks it up. By contrast. the message
manager is a general-purpose mechanism for getting a
message between any two processes in a multiproces-
sor machine. It does not assume that communicating
program modules will inevitably be running in the same
processor or that memory is shared between the
processors involved

Accessing resources within nodes . ..

Applications processes are not allowed to communi-
cate directly with the message manager or with basic
operating system processes. However, the processes
can make use of the operating system through a “‘file
interface,”” which ensures that such interactions do not
accidentally create problems for the user or for the
machine (Fig. 3).

The file interface works with the message manager to
allow application processes to communicate with enti-
ties such as other processes, files, and |/0 devices, by
a single set of calls. That is, such resources can all be
referenced by means of pre-assigned symbolic file
names. Application processes do not need 10 know
physical locations since the file interface can access
operating system tables that keep track of the entities.

To distribute the load over multiple processors (as
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4. Network travel. Application process A need only
know the unique network name of process B, ard the
operating system handles the trip for any request
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from A. Thus, process A can access remote files, pro- |
grams, and devices (through processes like B) al- |
most as easily as it can reach local ones.
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well as for other reasons), application programs typi-
cally have a structure similar to the operating system in
terms of requester and server processes. They also use
the message manager's basic request/reply protocol.
For example, an application-type requester process
running in one processor might be programmed (o
control a group of terminals and validate input from
them, while an application server, running in another
| processor. might be programmed to formulate
database queries. As a particular transaction is re-
| ceived, the requester validates the initial input and then
sends a request 1o the server (via the file interface) that
indicates what work needs to be done. The server
process accesses the database (again via the file
interface), retrieves the desired information (or updates
the appropriate records), and then replies with the
requested information or a confirmation that the work
has been completed

. . . and throughout the network
| Since the computers that compose the network already
consisted of multiple, communicating entities, it was far
easier 10 interconnect them than it would otherwise
have been. A group of four or five people spent only
about a year developing the required networking soft-
ware. This software, known as Expand, allows the local
file interface and message manager to address and
communicate with processes, files, and devices any-
where in a Tandem network.

The networking software consists of line handlers, a
proprietary protocol for guaranteed data integrity, and
a network control program (NCP). The NCP, which
runs at every node, monitors and logs changes in
network status,

Routing responsibility is distributed. The NCP main-
tains a copy of the network routing table (NRT) in each
processor. The NRT lists the location of all of the other
network nodes. NRTs are used to determine the best
path to other nodes and to establish the communica-

tions link. (Thus there is no centralized routing that can
fail and paralyze the entire network.) ;

The file interface bridges the network by allowing
local processes to access files, processes, and devices
anywhere in the network through a single set of calls.
The addition of a node specifier to the symbolic name
uniquely identifies these resources throughout the net-
work,

Listening in on network dialogue

The networking software is basically an extension of
the services provided by the local message manager.
Just as the message manager software allows one
process to send messages to others within the local
machine, its networking extension allows a local pro-
cess to send messages to other processes running at
remote nodes in the network.

As mentioned last month, operations people and
other users of the corporate network can, with proper
security authorization, log on to a network node in
California (or anywhere else) and do work on remote
nodes. For example, with successive two- or three-
word commands, they can start a program running on
a machine in New York, instruct that program to access
a file on a disk volume in Atlanta, and print out the
results for another employee on a device attached to a
computer in Chicago. Also noted was the fact that the
command structures by which these operations are
carried out are identical to those that would be used
locally for similar operations except that, in each case,

. the program, file, or device name must be further

qualified by a node name.

This sequence of events can be used to illustrate
how the operating system entities work together. In
fact, the different operations were achieved through
one mechanism: messages. Process-to-process mes-
sages pass first through the local file interface and
message manager, next through local and remote line
handlers, and finally through the remote message
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manager and file interface software layers.

Consider process A running on node X within the
corporate network (Fig. 4). If process A (an application
process) needs to communicate with a process running
at the local node, it gives the message, along with the
name of the destination process, to the file interface.
The file interface checks the message, makes sure that
it is legitimate, consults operating system tables to find
out where the destination process is running, and
hands the message to the message manager.

The message manager takes responsibility for deliv-
ering the message and for returning the reply from the
destination process. If the destination process is an
operating system process, it replies directly through the
message manager. If, on the other hand, it is a user
application process. it must use the file interface to
pdss the reply to the message manager.

When process A wants to communicate with process
B located at remote node Y, it proceeds the same way,
giving a message and destination process name to the
local file interface. However, this time the name con-
sists of the process name appended 10 a node name
(for instance, ''nodeY processB’’). The file interface,
discerning that this resource is not available locally,
accesses the network routing table.

From the information contained in the table, the file
interface determines that the message must go through
a specific network line handler to reach its destination.
It therefore preserves the name of the destination
process but tells the message manager to deliver the
message 1o that line handler. (In the event that there
are two or more line handlers leading to the remote
node, the routing table will indicate which path is best,
based on the speed of the communications lines and
the number of intervening nodes.)

When it receives the message, the local line handler
compresses and packetizes the data and sends it over
a communications line to another line handler at node
Y This line handler reassembles and decompresses the
data and strips off the node portion of the destination
process name. It then hands the message to node Y's
message manager, which uses operating system tables
1o locate process B and present the message to it.
Process B does whatever it was instructed to do and
then replies. The message manager takes responsibility
tor seeing to it that the reply retraces the path of the re-

Juest back to process A.

Through this basic mechanism, a user in California
can log on to a local machine and enter a command
that will start a program running on a machine in New
York (Fig. SA). First the user accesses a local "“‘com-
mand interpreter'’ process, which reads input from the
terminal through a terminal 1/0 process. In response 1o
this input, the command interpreter (acting as a re-
auester process, analogous to process A in Figure 4)
sends a message 1o an operating system process, the

monitor'’ (a server, analogous to process B), running
n the New York machine. The monitor process starts
up the program and replies.

The new program started in New York then requests
input from the user terminal in California (by sending a
message to the terminal 1/0 process). In response, the
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user instructs the program to access a disk file at-
tached to a machine in Atlanta. As shown in Figure 5B,
the New York program (now analogous to process A)
sends a message to the disk process in Atlanta (analo-
gous to process B). The disk process does the neces-
sary work and replies with the requested information.
The program in New York then responds to the Califor-
nia terminal and requests further input.

In response, the user in California instructs the
program in New York to print out the results of the disk
access on a machine in Chicago. As shown in Figure
5C, the New York program sends a message to a line-
printer process in Chicago. The line-printer process
sees fo it that the information gets printed, and replies.

In all these cases, the destination process does not
have to be aware of the origin of requests. From its
point of view, the message might just as well have
come from a local process. This is because all the
destination process has to do is to hand the reply to
the message manager (or file interface), which will see
that the reply finds its way back to the source process,
following essentially the same path as the request.

Because Tandem chose to use standard software
products at all nodes in the network, the syntax in the
above operations is the same as would be used to
perform similar operations locally. The only change
needed is that the file, process, or device name would
have to be qualified by a node name.

Managing growth and applications

All applications, even those running on a single node,
are designed in terms of the requester /server concept.
As a result, these applications can be distributed easily
when the need arises.

For example, a particular order-entry application
started out with all orders called in to a central point
and stored on disk. This application became distrib-
uted when people in the branch offices were able to
key in the information themselves. However, there was
still a need to keep a copy on a central disk. Since the
application was written using requester and server
processes, it was simple to move the requester por-
tions to the regional nodes while the servers remained
al the central site to update the database and to return
acknowledgments to the requester.

Growth can affect user applications almost as drasti-
cally as distribution. Most environments can only add
processing power by purchasing a larger machine,
often with a different architecture and operating sys-
tem. Such a move almost inevitably entails a significant
software conversion effort. Even it manageable locally,
a capacity upgrade can become difficult in a network
setting. Dozens of applications and remote nodes that
regularly access the newly configured local node must
then aiso be changed.

In Tandem's corporate network, however, increased
data processing demands at local nodes have been
met without producing waves locally and throughout
the network. Nodes can be expanded from two to 16
processors, and duplicate copies of requester and
server processes can be run in the new processors.
Thus, the applications can handle twice the work load,
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but programmers do not have to change a single line of
code.

The network is remarkably homogeneous. All work-
ing nodes have the same architecture and run identical
versions of the nodal operating system. Along with the
local expandability of each node, this homogeneity
greatly facilitates network management from a logical
standpoint. It is much easier not having to deal with
riew operating systems as the network grows. The
ability to reuse the same box also means that, physi-
cally, remote sites are more readily upgraded. Even at
‘ne central computer center. expanding a node is far
255 disruptive than replacing it.

Expandability also aids in the management of distrib-
uted applications. When the use of such applications
grows, certain components such as disks, controllers,
or CPUs may become bottlenecks. Modules can be
added to replicate these components. In the example
considered earlier, an order-entry application was repli-
caled to the regional nodes. When a region grows, the
'2quester program can be duplicated and run on a
> fierent CPU. The application then doubles its capac-
'» without being rewritten, simply by having another
“Opy of itself spawned.

New processors are often added to overworked
nodes to relieve the burden on the existing processors.
I several application processes are then moved from
their original processors to the new ones to redistribute
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the load, the application programs do not have to be
changed. They will run just as they did under the old
configuration except that, overall, response times will
be better.

Looking to the future

In any structure as large and multifaceted as the
Tandem corporate network, change is a constant. Use
of the network’s long-haul circuits has grown enor-
mously in the recent past. For example, the bandwidth
required on the backbone link between the two U. S.
coasts began at 10 kbit/s in the middle of 1982. It
doubled the following year. By 1984 it was up to 56
kbit/s, and by the end of this year it will have doubled
again. Projections for the fourth quarter of next year
show a need for another 56 kbit/s, a full T1 (1.544
Mbit/s) by the end of the decade.

These projections are for the network's data traffic
only. The introduction of facsimile transmission ca-
pability to the network, which is currently taking place,
will undoubtedly increase the rate of growth. Facsimile
applications expected soon are a tie-in 10 electronic
mail, store-and-forward facsimile switching, and dialing
in or out to distribute and archive facsimile images on
disk. The manufacturing division is starting with 40 to
80 pages a day, and the number is expected to
increase.

To meet future needs for data transmission band-
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width, the network support group is making plans 1o
install satellite links between selected backbone nodes.
These links will not replace existing terrestrial lines,
which are needed for interactive traffic because of their
low propagation delay. They will, however, provide the
bandwidth needed to carry large volumes of mail and
other transmissions for which rapid response times are
not important.

Local traffic (particularly at the company’s head-
quarters) is increasing roughly 50 percent faster than
long-haul traffic. Clusters of machines linked by the
company's lightwave product will therefore play an
increasingly important role in the corporate network.
Up to 14 computers can be linked in a ring via double-
circuit optical fiber. The entire subnetwork thus created
may contain up to 224 processors, each capable of
processing 4 million instructions per second. The main
headquarters subnetwork will initially contain over 100
processors

A lightwave subnetwork is very much like a single,
large, powerful node for two reasons. First of all, the
transmission medium offers the speed and bandwidth
needed to ensure that response times are essentially
the same whether processing tasks involve communi-
cations within or between individual computers. Each
of the four fibers (two full-duplex circuits) carries data
at 10 Mbit/s, for an aggregate data transfer rate of 40
Mbit/s (the theoretical optimum; actual user through-
put depends upon the application).

Secondly, the message manager allows users and
executing programs to communicate with or access
any other executing program, peripheral, or file in the
corporate network simply by supplying its name and
the relevant node name. As Figure 6 shows, the
lightwave ring is designed to transport messages be-
tween processes. It sends them directly over the
interprocessor bus, without using |/0 channels or

controllers. Clustering nodes on a lightwave ring takes
advantage of higher-speed hardware. This method
consumes up to 80 percent less CPU time than does
the conventional way of handling data traffic, in which
data leaves a node via a line handler. It also provides
much faster response times. ®

{This is the second part of a two-part article.)
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