
L-N D E M

SYSTEMS REVIEW
VOll \11 2, il)\IRER

"'-
.r~.
",-'

c-~
.-~.

"'-",-

LANE MEDICAl. LIBRARY

MAR 2 51981
STANFORD UtliVERSITY

I

TECHNICAL
SERVICES

COLLECTION

Credit-authorization Benchmark for
High Performance and Unear Growth

Buffering for Beller Performance

DP2 Conversion · TACL • COBOL85

Managing System Time

New Products ' Manual Subscriptions

Index

7

-
TANDEM SYSTEMS REVIEW

...... 1. ..-..1, '''' , 2 Credit-authorization Benchmark (i" Turnbull \\ hut

• - for High Performance and Linear
"'"

Growth • ,-
• Tony Chmiel. Tom 110llY • M.rir:11c-Trihoilari

• Ml f"'_ .. """" 9 Buffering for Beller Application • •
(• 'Sdw/kr Performance
,. I~. Randy Mal/rUII

Men.im
n",m.,.,.

• w

18 DPI-DP2 File Conversion: An Overview " Sta\'I\1

• Jim Talf'
1 T)'pN'lIil\J Group

•• .t_a.-.-• ., ,....C,.
Pw_ n.r _

24 Determining FCP Conversion Time '" ".."..,.. ~ .. "'*-- ---- .' __ .10""" Jim Tale -"",._-- _ !O _ .. - """ ~ poocIucI.
.......... *"""- ... tt.oorol
~ _,..To..w_
.-.-10*<1

30 TACL, Tandem's New Extensible .. ., Ihr , _toT
Command Language c ~i!d,s.ln

--. 19'" ~1Iw
"'" "5~. ""'*", C ... Julia Campbell, Rob;n Glascock N'. ~_QdrIlwU. S. -- -.. ,., ,.......... -C_l1wod_~ 39 Tandem's New COBOL85 _ __ .IIId ,."..

""- ... , '0 11or.,........ /)()n Nelson
~"""".1lO9So_'\'Wy
A>.- """"'lilt. ("A 904Of'J - I_bt'~
COIQpIIUn I~od An flllu •
""'"qdDao_, yOr 48 Managing System Time ~ III ..,.Iona. III(tuo.i""
~",.~_IO Under GUARD IAN 90 _ , .. M tor I'f\Uf
___ 11I1 C_·

Eric Ntdlen --"., ~.CIf
_.~lolT __ Co.plllm
1**JIeollool ""'OCR,

55 Tandem's New Products CklSSJ.1:f. I)'(N 'n,
e. -f~ E"IC'O'otMss'

COrinne Robinson ENtmF. fNSCIUfIE.
EXf'ItoNo. IAXUi<t 1'0'1(.
(~JU:lI ... i't. OlAIlDtAS9D,

• Gl:ARl)I,," toM'. I 'IISPE<'"T •
........ D. Nw.'ioop n ...
PC'RlI."lAT. PS \110.11.,
PS TEXT un. TACI. TAl.

61 Subscriplion Policy for Software TI,U. ntA"lSfEII:. :(ltAY
IB IB pt- _u.-..uql Manuals 1_ ___ MaduIIn

CaJpcnI_ l:""' •• I~ Tim McS (!f!"~y oI"T .. T ~

65 Index

Credit -authorization Benchmark
for High Performance and
Linear Growth

n benchmark teSts conducted for
a major u.s. retailer interested in
building a nationwide credit·
authorization system, Tandem'"
NonStop TXP'" systems demon·
strated a linear increase in pro

____ cessing power as additional pro·
cessor modules were added. In the tests,
an 8-processor Tandem system processed twice
as many transactions per second as a
4-processor system, and a 32-processor system
processed twice as many as a 16·processor
system .

The benchmark tests also demonstrated the
high performance of Tandem NonStop TX P
systems: on the 32·processor system, 149
transactions were processed per second. with a
CPU utilization of 80.6"10. Response lime was
less than IWO seconds for al least 901110 of the
transact ions .

This article discusses the importance of
linear growth in processing power and then
desc ri bes the retailer's proposed credit
authorization application, the hardware and
software configurations used in the tests, and
the results of the performance measurements.

TANDEM SYSTE .", .,'

Importance of Linear Growth
in Processing Power
The results indicating the linear growlh in
processing power are significant. They mean
that users can expand their NonStop TXP sys·
tems to meet growing transaction-processing
needs withoUi incurring the nonlinear increase
in system costs encoumered when most other
computer systems are expanded. Also,
Tandem systems are expandable in small Sleps
so that the amount of processing power avail
able need never grealiy exceed that required.

The expansion of the test system Slopped at
32 processors, as that was [he total needed LO
sat isfy the retailer'S requirements. There is no
indication thai the linear behavior of the
NonStop TXP system SlOpS there, however.
It conceivably extends.to 224 NonStop TXP
processors, the maximum number that
can be linked by FOX'M, Tandem's fiber optic
extension.

Project Overview
The retailer, interested in meeting stringent
requirements for its credit·authorization sys·
tern, asked Tandem to run simulations of the
application on Tandem hardware. The key
requirements were a fast response lime and a
high transaction volume.

lEw . FEBRUAIl't I 9 • ,

=

•

Specifically, the retailer proposed to create
a IClwork consisting of three host systems and
to divide the nationallransaclion volume
among them. This credit-aUlhorization nCL
worf oold receive transactions from the
retailer's existing SNA environment through
an 18\1)'705125 Communications Controller.
Initially, the peak transaction volume for each
h~1 ')!\tcm ould be 60 transactions per sec
ond (Ips), with a potential for growth to
120 tps. The retailer required a rcsponse time
under (.... '0 'iCConds for at least 900,'0 of the
transactions.

r o benchmark evaluations were conducted
to validate the system design. The first,
rei m'd to as 81, was conducted at the
Tandem Performance Center in Sunnyvale,
Cahfomia. The second , a retai ler-developed
\olun tC\l referred to as 82, was conducted
at the Tandem manufacturing facility in 5am3
CWJ, Ca lifornia.

The Benchmarks
Btnfhmark BI
In BI. a ,tandard benchmarking application
~as modiFied by Tandem to simulate the SNA
inr ace and data-base 1/ 0 requirements for
the OI(lpo~ credi t-authorization system. This
apphl.ltion was first run on a 4-processor
f\,;onSIOP TXP s~tem and then on an
8-procc<>~or NonStop TXP S~lem.

[-,gure 1 illustrates the hardware configura
tion 11~ in the 8-processor BI tests. Two
s>~tcm' (A and B), each consisting of
4 NonStop TXP processors, were connected
with FOX. The twO systems were identically
configured. with the exception that some
applic.:31ion files were partitioned across disc
volumes resident in both systems. The credit
authorization files and negative files for other
national credit cards were dh'ided into eight
partitions, based on the primary key. Four of
the eight partitions resided on system A and
four on B. The byte-synchronous lines and
modem eliminators connecting the twO

machines "ere used to simulate the processing
of cred it-authorization requests for national
cTecill cards.

~Ul1I l

'_A
...... TlCP ",proD' .;;;;;.

....

....

---FO'

....., -

In the 4-processor tests, only system A was
used, and the files were partitioned over the
four disc volumes residem on that system.
Credit-authorization requests for nationa l
credit cards were simulated by programs
within system A.

Benchmark B2
In B2, the retailer prov ided an application
similar to that used in B1. T his applicmion
was stress-tested on 16- and 32-proccssor
NonStop TXP systcms.

TANDEM SYS TI, \I S IlEYIE\\

""'-
"" --

flgul1I l .

Hardwaf'(' COII/igurution
usM in the 8·fJfYX.PSSQr
8/ tests. /n the 4-
proassor tests, only
system A was ustd. (r'(N'
simp/icity, the asynchro
nous COli/rollers and
terminals. a primer
COIItroiler and printer,
and tope controllers alld
tape drives are 1I0t
shown.)

J

Agure 2-

Hardware rotIfiguratiOtr
used in the J1-processor
81 tests. (a) An O'rer
l'iew. In the l6-processor
tests, the same t'Of//igu
ration ~YlS used. with
half the number qf CPUs
and SNA lines. (b) The
distribution Q/ disc
dril'eS, byte·synchronous
COtItroilers. and bit
synchronous controllers
in the l6-proct!SS{)r
systems. (For s imp/kit):
asynchronous controllers
and terminals. a printer
comroller afld primer,
and tope controllers afld
tape dril'f.'s are fI()f
$how".)

4

Agure2 ..

.,

Figure 2 provides a high-level oven' ie" of
the hardware configuration used in the 32-
processor 82 tesl. This time; FOX was used to
connect two fully configured, l6-processor
NonStop TXP systems. The credit
authorization and bankcard negative files were
again partitioned across bOlh nodes: this time
ten partitions were used (five per system).

TXP

In the 16·processor tests, the same conflgu
ration "as used except that two 8-processor
systcms were linked together instead of t\\O
l6-proccssor systems. Again. the files were
partitioned across both nodes. There were ten
partitions (five per system).

It was the goal of 82 to provide as realistic a
test environment as possible. Thus. a driver
system consisting of 16 NonStop TXP proces
sors was used in both the 16- and 32-processor
tests. The driver system sent transactions to
the benchmark nodes using 20 lines driven by
SNAX. Tandem's standard SNA interface (ten
lines were used in the 16-processor tests).

TA N DEM S Y ST EM S It E VI f, V. fE 8 11;U AII; Y I 9 • 6

»

SNAX \\."35 used because, as explained above,
Iran~a<.::lions would come to the proposed
Tandem credit-authorization system rrom the
ret . qcr's existi ng SNA environment through
an 3M 3705/25 Communications Controller.

In :aodition 10 the SNA lines (which used the
3650' olocol). ten bisynchronous lines were
e\cnly di"tributed between the two nodes in
both tht' 16· and 32·processor leSIS. These
lin!.: wert u'iCd to simulate the transmission
and ,icing of transactions to nalional
bank...dl J-authorization centers.

Appl" alion Overview
A., .. r incd above. twO separate application
des ':1 lefC used in the eva luation . The first
(B J) a: an appl icat ion simulation developed
by T:.tndcm. and the second (82) was a more
real! ilL cU'\lomer·wrillcn simulation.

Th de igo used in BI is summarized in
Figu .. '\ .. ~how n, both the terminal simula
tors j In SN .\ 36S0simulator ran in the
sam~ I'm a.'i the application. The major
diffc-c in 82 were that (a) a separate
drh tern and a real SNA interface
rep1 ! the Bl (erminal simulator and S A
36~O lulator shown in Figure 3. and (b) the
sen-'I n 82 were provided by the customer.
EJ[C\ for these difrerences, the structure or
the u>plication was the same as that shown
in r 3

AppJi lion Components

SNA 3650 Simulation. The 81 terminal simu
lator .. (resideR(in the same node as the appli
cation ,oft ware) and the 82 terminal
simulator, (resident in a separate driver sys
tem) both generated transactions containing
random data at specified time intervals and
captured response-time statistics. The Bl sim
ulator; accounted ror expected SNA
communications-soft\~are overhead by con
suming CPU cycles, however, while the 82
terminal si mulators used SNAX.

Flgu" 3

-"""

\ -
x -"""

\

-

Terminal Control Process (Tep). The Termi
nal Control Process (TCP) is a multithreaded
process supplied by Tandem to con trol multi
ple terminals and termi nal types . In both BI
and 82, one TCP resided in each CPU al each
node. Application programs executed by the
TCP were written in Screen COBOL.

Fl;.8RliAJlY L , • 6 TA~DEM SYSTEMS R !!. v JEW

Figure 3.

StniclUre Q{ the ap/Nica
tion run in benchmark
B I. The B1 application
hod essemiully the some
stnlcture, e:r.uptthat a
dril'er system and a
real SNA illler/ace were
used in place oj the
terminal and SNA 3650
simll/ators.

,

Sen'trs. The functions listed below are repre-
lib"'. The transaction mix used In the B1 and 82 sentative of typical servers used in the tests

benchmarks. (although nOl all servers performed every func-
Pen:et1 I'gto uo requlRfMftI.

tion listed):
rranucllOl1 o'mlx
R&id.<Jn1y of ". I 1em'l1MI fNd • Edit and reformat incoming transactions .
CUIIlorne(S 5 IIb1e lookupS

credll record I read of Auln IIIe • Make yes/ no decisions for local requests.
, ""'1110 t.ao IIIe
~ inl8fprocns IIOs • Determine the need for remote or bankcard
I reply 10 1,""ln" authorizations .

ProceS.lng Jot "'. , !emllnal rNd
Perform fallback proce, .. mg

d1a1'gHulllorlZlllon 5 IIb1e looIIupS •
and updllle ' rei(! of Aulll IIIe Log transactions. , updlol.oI Aulll file •

, wnle 10 log llie • Format responses. ~ Inle<proc:ess IIOs
, reply 10 lermln" • Simulatc goi ng to a remote '\[) [or

0111-01 .. <11. , .. IltII'mln"rNd

.ull'lOrluUon 21.bIe Iookuos authorization.
(2·second del.y) , iliad 01 Aulll III. • Format messages to the ban~ u d interface.

I lead 01 IndeX III.
I WIlle to pipeline • Log remOle authorizations .
11rlllrproceu IIOs
I leply 10 letml~I • Log catalog reQuesl~ for :ate processi ng.

0111-01'11" '" (Same at 1tIOYe)

.ulIlorlZlIlOfl • Log operat ional (as oppose:: ' application)
(3-MCond delay) exception conditions .
0II1.of-area , .. (Same ... bOIIel
.ulhorlZallon • Provide table-lookup servlC 10 other ... -, servers.
(4-MCOnd dNy)

.... - ... 'I.-nol.,... rNd Bankcard Inter/au. In both I and 82, lhe
aulhorlUllon 3tabll~

I',second delay) , wnlilo berI~ line bankcard interface pro\'id¢G multithrcaded
'lUdol~"M interface to various bankcard- 'horization
, Wf.le 10 berlkcafd log net\\orks. It isolated applkal1~ 'loefvcrs r rom
~'"t~1IOs
, ~1O_1 • • "un* communications-protocol ror ns.

so""",, , .. (Same at 1Ibo\Oet
.uthonzallon Bankcard Echo. In both 01 d 82, the
(2-lflCond oeIIy)

""""'" '" u
bankcard echo simulated a Ikcard-

aulnoriullon authorization nct\\ork. It ImJ 'ted response-_ lime dcla)'~ based on tran~t In type and
Cu.lomet' IlIe Inquil)' ". lterm,""''''''

<fI l.bIe lookuPt
resided in a separate node (Of in the 4-

, .eM 01 Aultl "'I pr~sor tests, in a differen1 c PU) from the
I wnll 10 Log "Ie node containing the ban~card interface.
31nlWDlOCelS I10s
, reply 10 termln'"

eusl_"1e '" 111IfTJI,"1I rI1Id The Transaction Mi"(
Inqull)' .nd updllte <fI!.blllookl.Ips The transaction mh u.s.ed in ou r tests is shown

I rI1Id of Auln llie
I updall of "'-'In 1,1e in Table I. It reproduced the retailer's r~quire-
, wr,te '0 log hie menU as c1osel) as pos<;iblc . incorporating a
3jn~1IOs
, NPfY 10 terrntneI ~pecified percentage of each type of transac-

AuII'lOrtUIJon lrom , .. , PIDelIM,...j - lion that the production "y, lem would be
remoll .yslem , -...

, rNd of Aulh hll required to process. .
1 updIl.of Auth hll As shown in Table J, all of the transaC110nS
1 wnll 10 Log I,. used tablt lookups. The~ tables \\eTC loaded
31n~1IOs

AlJtnofIzIIliOn lrom
1 ~ 10 "*"'" in to e tcnded data segments ",ithin each pro-... ,-- ccssor's memor)'. The application then ca lcu-u, , WlliIoollQCI

~l}'Ilem I Wl'11i1O c.lIIog I. lated "'hich table it shoold reference to read the
1 WlMrpI'OCeM ~ OCctSS3T)' informal ion . (The USC' of in-mem~ry
1 N(IIy 10 """""" tables is a high-performance design alt.ernau\'c

to storing data tablo on disc; when thiS tech-
nique is used, table access can be at memory
,peed rather than at 1 0 speed.)

TANDEM $YST[\C,
-----:--1 , • , 6

=

Benchmark Results
One way of comparing [he capacities of
multiple-processor computer systems of vari
OU~ ~izcs i ~ to measure the average CPU utili
zation at different transaction rates. Given
transaction rates and corresponding CPU utiJi
Z3ti('ln averages for a system with n processors,
the system 's performance behavior is consid
ered linear if. with twice as many processors
and I 0 peripherals , it can handle twice as
many transactions per second 3tlhe same level
of (PL ut ili zation. The results of BI and 82
show that Tandem systems behave in this way.

flgUlt 4 and Table 2 summarize the per
formance of the systems in 81 . The dala shows
thaI, .11 given levels of CPU utilization, the
8-processor system was consistently able to
handle (\\·ice as many transactions per second
as th Hnocessor system.

To'"
81 t :action rate versus CPU utilization
(N(p !_XP processors).

~.

J

• ptVC"' '" ",
'"
10.1 ,
" " ~~

"'. ",
20.2

''' 1
11 ,5 ..

CPU I.Itlltullol1

""
.37
,>7
50.'
30.3

28.3

23."

., .•
12.5

50.'
36.2
28.3

23.3

Flgl.lftl4

'"

h
ij
j-

1'1

h
it
1-

20

"
"
,

• • 20 .. 60 60 '00

CPU_

'"
30

20

'"
• 0 20 '" 60 '" ...

CPU_

FE II RUA R Y 1 9.6 T AN D E M S Y STI! M S II I! \ ' I E. W

Figure ...

Summary of perfor
mance data obtained in
benchmark B/ for (a) the
4-processor system and
(b) the 8-processor sys
tem. The 8-processor
system (XIfIsistently han
dled twice as many trans
actions per serond as the
4-processor system at
idenlicolle)·e/s Q/ CPU
uriliZlltion.

7

Flgur.S.

Summary oj perjor-
Inallce dOlO obtained in
benchmark 82 for (0) lhe
l6-prQCeSSOr system and
(b) file J2-~ssor
system. The 32-proa!5SOr
system consistently hon-
dfed twice as many lrons-
aclions per second as the
l6-proctssor system 01
iciemico//el'els ojCPU
Illili:,ation.

8

Flgu" S

..
.,

I / n eo

ij ..
1- 20

,L J

• 20 .. eo ., ""
""'-

.,
"" I

n '"
ij .,

J-
..

i • • 20 .. eo '" '" ""'-

Figure 5 and Table 3 summarize the per
formance of the systems in 82. The data
shows that, at given levels of CPU utili zation,
the 32-processor system was able to handle
twice as many transactions per second as the
16-processor system. In the 32-processor tests,
the system easily exceeded the benchmark
goals . Since 149tps was obtained with the
first benchmark test , it was not necessary to
fine-tune the application to meet the. goal of
120 IpS.

T.~S.

B2 transaction rate versus CPU utilization
(NonStOP TXP pr~~essors):..

Tr.I'I"C:Uon. CPUulllluUon ...-.... " ..
l' proc: .. 'OfI

720 ." ... '3.7 ". '"
'" '" ... •• -.,. ..

32 p«)C.'~

1.90 •
12. 0 •
110.0 ... •

70_0 •
!l7.0 •

Ad._Itd_",",,)
\ bn) Tanckm an~'ttl tomn~ and~,), 10

lilt ~~ dlhe 81 and 8l perf~ I. 'TkaulOOn
... ~ lI~t 10 m:QIJnUc lilt ,'arr .1Id or lilt f'Oev.
YorL UplO'J>n Branch and Solllh CnIlJ1l · "'00 rolllrib-
Uled lhe buI~ oilhe tort ... an: 10 lfr bm: .loll) Yoo/1ll .
SlqJhm Oud!r,. and John U.,.m-s ,he btnI:h-
nw~\; R ... bard ' -nul.: of the laTJeS\ • Ofl ~for-
mano.-c' GIOJJ'I for h'" auiwano:t' in un '4rH\\A" S)1-
ItIII; Coary H~ for hl~ C'OninbullM • IInark \1onitor

18\1C)N); and the mtt~ 'Iaff ud ' lhe Sanll
('\an rtWIurlC1unlll fkllll) for lhcir throuaf1out IhI:

tw:nduaatb_

Ton, Chm'-l Ia • ..,.1OI' Iiall analYSl1n I Tanditm Peflormal'lCe
c.nt. elld"" bien ,*,UI Tanotm Iinctl ,,*'uary of IIi6C TOllY
"..11 ~ '*~ ,n dall procese ... Ih more thtn h.11
oIlN1t on Tandtm NonSIOO 'yS~

TOM Houy ,," lIMn .,11'1 Tat'(Iern bOWl In. rs elldlleu'·
Nflilye ~.~taOr lor Irw T.-n6em Per~ Cenler,
s.bti Ihos Torn wOrtolid on enol""" majOr rn.8,,,ltllme ocweIOJI,ng
~~-"IetI1 'YSllIIMand~e~nafIC:.
tr4'\1S few 1n. 'ofICIa-pten'l.

I • • 6

equential block buffering
and bu ffered cache arc
GUARDIA N 90'" File Systcm
options thai call significantly
improve the performance of on·
line and batch applications that
process structured files sequen·

tialh ddition 10 improving the perfor-
man f \pec ific applications, lhey reduce the
per- lion utilization of CPU and disc
reso • thus indirectly improving the per·
fOflT' :'If all other applications lhat share
tho. ourccs.

In article. the following topics are
discu 1

• TIlt lplementation of sequential block
bu ffc ~.

• Th uplentalion of buffered cac he .

• T hl 00 COBOL enhancements that make
both ICiltures easy to usc.

• Thc U~ of sequentia l block buffering in a
read-only environment.

• Concurrency issues relating to sequential
block buffering.

• Considerations for using sequent ial block
buffering and/ or buffered cache when records
are updated.

Sequential block buffering is avai lable with
both GUARDIAN·" and GUA RDIA N 90 oper
ating systems, both Disc Process I (DP!) and
Disc Process 2 (DP2), and a variet y of pro
gramming languages. Some performance and
implementation details vary from one Tandem
hardware and software environment to
another. In BOO DP!, buffered cache is avail·
able for TMF'" audited files onl y; in DP2 it is
available for all files.

Buffering for
Better Application Performance

To simplify the discuss ion, this article
assumes a processing environment composed
of NonStop TXP processors, Ihe BOO
GUARDIAN 90 operating system, BOO DP2,
and BOO COBOL. I It presents a detailed view
of the use of sequential block buffering and
buffered cache in this environment. Tandcm
systems analysts can help users to apply the
information to other processing environments.

How Sequential Block Burrering
Works
ENSCRIBE'" structured files are a set of data
records. To provide an efficient means of
moving the records between disc and memory.
the records arc grouped into fixed-length data
structures called blocks. Blocks can be as large
as 4096 bytes and can hold as many records
as space permits (minus room fo r control
information).

' llIndom ,,"m rdt ~COflOI compilw and run.'I libnry in ,Ite Ii",l
CIIImcW qlWur 0{ 1986. CODOl.8S. lbmlxd in lite _pAII}i", ,,,,ic ...
~1m<km.~ ~ CQ8Ol..K.I. · .. iIl boo bOl'lC"d oo,lte ANSI COIlOI 191U
<I.IIIIbnI. lu "",.n lite ~1aI bled burr~ .. and burrem! carlY hod~
dnaibrd.n ,'" ,ic ill boo kkllliral "lIh,~ 0{ 1100 COI~OL

FESRUARt 19., . TANDEM SYSTEMS
R II V lEW 9

r
II

II

I

AgUr-l

.,

.,

Rgul1Il .

" " '"

R'
R2

'"

""""
R'
R2
R3

Data fJCCeSS (aj 'I<";lholll
sequetllia/ block blJ.fforing
and (b) ith it. This Fill!
System option allows Q

proct!5S 10 read Q $lrUC

lUfP{/ ji/, one block a/ a

10

-
"" --

tim" instead qf OM rrcord
01 Q lime. ,,1tilf' ".,amms
Ihe COI'!IWliemY qf auto
matic record dtbkx1wrg.
Sincr theff' Off' tllen
many rerords in Q

'" R'
Rl~ R2-_
"'~

S(fUctUrnJ bltX'k. rradml
afllt! ",'/,Ir sequetltiol
b/oC'k bull"'", miuitt
lht! numMr of m{UesiS
for Sf!n'ia that muSI IN
gnllO thi! dl~ pron!SS.

TANDE\t S Y S TEM ~

Sequential block buffering is a File System
option that allow5 a process to read a struc·
lured file one block at a Lime instead of one
record al a lime, while retaining the conve·
nience of automatic record deblocking (see
Figure I). Since a structured block often has
many records (the ratio of records 10 blocks is
known as the blocking faclor), reading a file
with sequential block buffering redu(.'"t. ... the
number of requests for serv ice thai mll.';(be
sent 10 the disc process.

While many disc·process requests for
sequential reads are likely to be S3tl'ificd from
cache. the requests still must entcr a queue for
disc·process services. The more !Jlphcutions
there are contending for dbc ~ ... e. the
greater the opportunity for queuing u ld the
greater the chance of a cachc "miss

Also, each time the proccs'i 5eIKf< ;[request
10 lhe disc process, it incurs tile .;werhead asso
ciated "ith an interprocess LOd enters
an 110 wail slate. This meam Ihal it must give
up (he CPU to any other pr~esses ... aiting for
it. When the I ' 0 completes, the ..:esS must
enter the ready list and \\-ait for; CPU to
become available to resu me exe", .. IIlon.

When sequentiaJ block buf~ ng I' in effcct.
the File S)'5lem requests !tCrvi.:e .>m the disc
process only when a new blOCk rk.'eded. not
for every rttOrd logically read b lC program.
As shown in Figure I , the hie System main
tains a buffer in the process fie segment
(PFS), a private data area eslablished for every
process. When a running program issues a
sequential read request , the fIle System satis
fies the request by deblocking the nex t record
from lhe buffer and moving the information
into the data area of the proccs Thus, no
messages ha e 10 be scnl to the dhc process,
and the requester does not have 0 "nit for
a reply.

I 9 I ,

=

If update operations are performed on a
file opened for sequential block buffering, the
update does not simply change the record in
the program's private sequential block buffer.
The update is also passed directly to the disc
process.

lbe buffer is discarded when an update
occurs. so the next sequential read results in a
tl'lesage to the disc process, and possibly a
physical 1/0 to retrieve the next block. TIle
performance is no worse than when a program
reads without sequential block buffering, but
no benefit is received either.

With the exception of some concurrency
issues (discussed later), sequential block buf
fering is transparent to programmers.

If a program uses sequential block buffering
to opcn a file with alternate keys, the
alternate-key file is also opened with sequen
tial block buffering. When a file is accessed
sequentially by a lternate key, the ahernate-key
file can be read sequentially. The primary file
mu~t then be read by key, however, a nonse
qU«.:ntial access. Overall performance is thus
improved, but the disc process must still be
involved with every requcst to read a new
record. The same file can also be accessed
sequentially by primary key and receive the
norma] benefits of sequentiaJ block buffering.

How Buffered Cache Works
The BOO software release offcrs a new File Sys
tem and disc-process feature known as buf
fered cache, which must nOt be confused with
sequential block buffering. Buffered cache
allows data-base updatcs to be written to
cache without immediately being written to
disc. This is a significant performance advan
tage for an application that writes sequent ial
data. Instead of writing each record to disc
separately, the application can build blocks of
records in cache without having to do any
physical 110 until after the block is complete.
The total number of physical I/ Os is thus
reduced by a factor that approaches the block
ing factor of the file. Of course, Ihis assumes
thai enough cache is available to let the block
stay in cache withOUI disturbance until the
block is finished and that records are wrincn
in the sequence in which they are organized.

Updated cache blocks are written when the
disc process goes idle, when they are forced
out by a least recently used algorithm, or when
periodic (every five minutes) comrol points
are processed by the disc process. The longer a
data block stays in cache, the more opportu
nity there is to update it multiple times in
memory and post all of the updates with a
single write La the disc. The performance bene
fit of buffered cache comes from the applica
tion's ability to write to buffered cache
without waiting for the mechanical delay of
the disc drive, and from the batching of multi
ple updates (cache-write hits).

If a file is audited by TMF, buffered cache is
automatically used for all updates to the file.
TMF ensures file consistency by using audit
trails La back out aborted transactions or LO
recover inconsistent files. The File System
permits applications to request buffered cache
for DP2 unaudited files as well, however.

Application designers must carefully con
sider the use of buffered cache for unaudited
files because, if it is used, a CPU failure that
causes the loss of a primary disc process is
likely to result in loss of the updates made to
the file, if the sync depth is zero. Loss of buf
fered cache data can occur if a volume is
brought down incorrectly. or if a double fail
ure causes loss of the disc-process pair. If this
happens, the File System returns Error 122,
FEDATALOSS, 10 the application. Operations
procedures should be established or the appli
cation should be written to implement a
"restore and rerun" type of recovery when
this error is encountered.

Sequential block buffering and buffered
cache arc separate and independent functions.
Sequential block buffering is designed to
improve read performance, while buffered
cache is intended to improve write
performance.

FEB RUARY 19,, _ TAN D E M S YSTEMS RI' V I E W 11

12

BOO COBOL Enhancements
Sequcmial block buffering has been supported
by the File System for many years, but nOI by
COBOL. Some programmers have called File
System procedures directly from COBOL to
take advantage of sequential block buffering.
Although Ihis works, the method is somewhat
cumbersome. The BOO version of COBOL has
been enhanced to fully support the fe3lUre.

Sequential block buffering is now selected
th rough the RESERVE n AREAS clause in the:
FILE-CONTROL entry. When n is grealer (han
I and the open mode is INPUT or J-O, sequen
tial block buffering is selected. The number
specified as n does nOi vary the number or
size of buffers. A number greater than J sim
ply selects the feature. The file opened must
be a slruclUred disc file, and the access mode
must be SEQUENTIAL. Organization can be
SEQUENTiAL, INDEXED, or RELATIVE,
however. If for any reason sequemial block
buffering cannOt be invoked, normal 110 is
used, and no diagnostic is issued.

RESERVE n AREAS is also used to select
the buffered-cache fealUre, so programmers
should take care to select the correct open
mode. Sequential block buffering is selected
when I.he open mode is INPUT or '·0; buffered
cache IS selected when the open mode is 1-0 or
OUTPUT. Thus, buffered cache and sequemial
block buffering are bOlh selected when the
o~n mode i~ 1-0. The only way to read a file
w~th sequent~al block buffering and update it
wnhoutthe nsk involved with unaudited buf
f~red cache is to use two separate file defini
tions (FDs), one open for INPUT with
R~SERVE 2 AREAS and another open for 1·0
with no RESERVE n AREAS clause.

The same COBOL verbs. REAO and START
used fo~ normal sequential 110 are used for .
sequem~al block buffering. The faci that
sequentlal.block buffering or buffered cache is
turned on IS transparent 10 programmers.

The following pr?8ram is a simple example
of the new COBOL Implementation:

IDE TlFICATION DIVISION.
PROGRAM· ID.SBB·EXAMPLE
ENVIRONMENT DIVISION.
CONFIGURATIO SECnON.
SOURCE·COMPUTER. TA"D[~116.
OBlECf·COMPUTER. TANDE~l 16.
I PUT·OUTPUT SECfION.
FI LE·CONTROL.

SELECf TEST·SBB\SSI(.N TO
TESTFILE
ORGA IZATION IS Il (JL'ENTlAL
ACCESS MODE IS srQl ENTIAL
RESER VE 2. AREAS

OATA DIVISION.
FI LE SECfION.
FD TEST·SBB

LABEL RECOR DS ,Rf O'"TTED.
01 TEST·SBB·RECORD PI("<100).
WORKING-STORAGE ECTIt}N.
01 EOF-FLAG Ill(' q VALUE O.
PROCEDURE DIVI 10".
MAIN·LlNE.

OPEN I PUT TEST·SBB
PERFORM PROCESS-F LF U~TIL

EOF·FLAG I.
CLOSE TEST·SOB.
STOP RUN.

PROCESS·FILE.
READ TEST·SBB AT r '0 .\lOVE I

TO EOF·FLAG.

Reading with Sequential Block
Buffering
11le main reason Tandem offercquent ial
block buffering is 10 impro\'e the performance
of programs that read structured files sequen
tially. This feature is most commonly used in
batch pnx"CSsing. Sequential block buffering
can improve the performance 01 most batch
programs substantiall}'. The performance
improvement vatie ith the blocking factor of
the files read: the bigger the block and the
smaller lhe record, the better the performance
impro\'cment.

SYsrEMS It E \' I E ~
I t a 6

Without sequential block buffering, in tests
on a NonSlop TXP system runn ing BOO so[(·
ware, DP2, and code writlen in COBOL, it
took 11.99 seconds 10 read 2500 records (each
of which was 100 bytes long) from a key·
scquenced file with a 5·byte key, a block size
of 4096. and an average blocking factor of
38.5. Thai $3It1e operation can be completed
in 3.77 CiCconds wilh sequenliai block buf·
fering. Thus, sequential block buffering pro
vides beller than a factor·of-three
improvement.

II i~ important to note that sequentia l read·
ing can be important to on·line programs as
well as balch programs. Many on·line pro
grams pres.enl lists of information or conduci
brief file :'leans. For example, an order·
proce~sing upplicmian may contain a screen
with order-header information and room for
nine detail lines. The application can use
sequential block buffering to read the detai l
lincs and improve response. Thus, an order
display that used 10 require ten disc·process
services (one for the header and nine for lhe
details), can be changed to require on ly Iwa
(one for the header and one for lhe block of
detail re~ords). Sequential block buffering can
and should be used to improve the perfor·
mance of this type of read-only operation.

The only issue that requires consideration
when sequential block buffering is being eva lu
ated for a read·only application is whether or
nO(other processes are updating lhe file while
it is hcinp: read.

Concurrency Issues Related to
Sequential Block Buffering
Becau<;c records are read from a private buffer
with scQuent ial block buffering, there is always
a chance that the buffer may be 001 of date
when another process updates a file that is
being read with sequential block buffering.
For this rcason. the ENSCRIBE Programming
Manual warns against using sequentia l block
buffering with access modes OIhcr than "read·
exclusive" or "read-protected." The File Sys·
tern allows other types of access, however. The
following considerations are important if
shared access is allowed with scquential block
buffering.

Sequentia l block buffering cannot detect
record or key locks. This can be both a benefit
and a burden. The benefit is that the process
read ing wit h sequenti al block buffer ing is not
impeded by another process' locks. It views
the record in ils cu rrent state as of the time the
block is read from d isc , and the process does
not have to wait to see it. The problem is tha t
if the record is locked, it probabl y is involved
in an update. The process cannot tell if the
record image it read is the before image or the
after image. It may view inconsistent data ,
and there is no way to know if it has.

If one process deletes . adds, or updates
records while another reads with scquential
block buffering, an additional problem may
occu r. The process
usi ng sequential block
buffering may see
data tha t is recently
deleted or skip
records recemly
added. Depending on
the application, these
anomalies may be
acceptable.

T Tse sequential block
V buffering to improve
the performance of read
only on-line operations.

In a key·seQuenced file, the above opera·
tions are potentially multiblock operations.
Th is means that ncw blocks are added to make
room for new or larger records, or that old
blocks are empt ied and returned to the pool of
free blocks. If one of these muhi block opera·
tions is performed at or near the same file
posi tion as scQuentia l block·buffered reads,
one might be concerned about the structural
cont inu ity of the file. Sequentia l block buf
fering is not confused by block splits , however,
as il passcs posit ioning information along with
requests to read a next block .

L.,6 . TANOEM S 'STEMS \I. E v LeW 13

Updating with Sequential Block
Buffering and Buffered Cache
There are many applications that perform
update operaljons as they ~rocess a ~Ie .
sequentially. One example IS an apphcatlon
(hal purges a key-sequenced cuslomer-order
history file. Assume the application is
designed to keep 12 months of history on file
and delete everything older. Sinct the primary
key is the customer number followed by the
order number, and there are no alternate ~c)'S.
a program must search sequentially for
records to purge. Since the job Tuns monthly,
it deletes about 8'10 of the records in the file
each time it is run.

It is possible to take advantage of sequential
block buffering and buffered cache in this type
of application. The best method to use
depends on the type of access allowed to the
file. If the file can be opened for c\:clusi\"c (or
prOiected) access, there is no need to consider
the effect of other processes updating the file
concurrently. If the file mUSI be opened for
shared access, however, programmers should
select a method of processing that protectS the
process from concurrent updates.

The Single· file, ingle-read Method
A single-file, single·read method is best \\ hen
exclusive aecess is possible. The method is
quite straightforward: simply read the record,
decide if il should be processed, and then pro
cess the record. 1lle same file open used to
read the file is used to update it. A sample
implementation follows:

MAIN-LINE.
OPEN 1-0 TEST-SBB PROTECTED.
PERFORM PROCESS-FILE UNTIL EOF.
CLOSE TEST·SBB
STOP RUN.

PROCESS·FI LE.
READ TEST-SBB NEXT RECORD

AT END MOVE I TO EOF-FLAG.
IF NOT EOF

IF UPDATE.NEEDED
REWRITE TEST-SBB-RECORD.

TIle file is o~ned for protected 1/ 0 access
and RESERVE 2 AREAS i .. specified in FILE.
CONTROL. Thus, both sequentia l block buf.
fering and buffered cache are invoked. The
former speeds up the reads. hile the laner
speeds up the updates .

On a onStop T\.P systcm \\ ith BOO soft·
ware, DP2, and code wrinen in COBOL. tests
\\ere run to measure the time required to pro·
ces a rile sequentially (\\ IIh updates of vary·
ing percentages of the records) by various
methods! In these te\t .. , I:. ke}·o,equenced file
wilh 2500 record . and a S·byle key was used.
Each record \\as 100 bytes long, the block size
was 4096. and lhe a\crage bkll.:"ki ng ractor was
38.5. Elapsed time wa mta .. ured by a COBOL
program. and each te!il \\as run at least twice
on a dedicated s)~tem.

The design or the tests prc>\ id~ a worst case
scenario, because updates aJ' c\enly distrib·
uted throughout the filc. If ~u·o of the records
are reported upd(uw. c\'m 20th record is
changed. This mean~ there c. no "clumping"
of updates in a blod •• LC , some blocks receiv
ing multiple updal~ "hile re .. ident in buffered
cache (cache· write hib) and others remaining
untouched. In a real apphcallon clumping
would occur, allO\\"ing for b(:ler performance.

Figure 2 sho""5 ho" the' t1Il1C required to
process the 2S00 records van ·d (undcr the
single.file , single· read methtxl) depending on
the percentage of records thDI "ere updated
during the .sequential pa. .. ~. The dashed curve
~how the lime required Ythen o;equential block
buffering and buffered cache "ere used. The
solid curve shows the limC' required when nor·
mal reads and updates were perrormed (with·
out sequential block buffering or burfered
cache).

In Figure 2, the processing time increases
(in both cases) as the percentage of rec~rds
updated incrca5e!io. If e\ery record read I~
updated. the entire operation takes 2.5 Ume5'

f as long with normal reads and updates l~an I

the read and updates \\eTC performed WIth
sequential blod buffering and buffered cache.

~14~--------------~~~~~~~~--------------------------______________________ ~:-;~
TANDEM SYSTEMS " " _[Vlf'" fE •• U A

s

..

If every 20th record is updaled (5aJo of Ihe
total), (he entire operation takes 1.8 times as
long wilh normal reads and updates than if the
reads and upda tes were performed with
sequential block buffering and buffered cache.
As mentioned earlier, if no updales are per
formed, a threefold improvemenl is realized
with .equenlial block buffering.

The Double-file . Double-read Melhod
A double-file, double-read method scrves two
purposes. First. it makes sequenlial block buf
fering easier to usc in a shared update environ
menl because concurrency proleclion can be
provided with selective record locking. Sec
ond, it allows sequential block buffering to be
used without buffered cache. The second file,
used for the updale and locking operations , is
opened for normal 110.

The method involves first reading through
the file with sequential block buffering and
selecting records. Then , the key from the
selecled record is used to reread the record
through a second open of the same file. The
FILE.cONTROL for Ihis second file open spec
ifies RFSERVE I A REA (or no RESERVE
clause at all), so sequential block buffering
and bulfered cache arc not used. The second
read mayor may not spec ify WITH LOCK ,
depending on the need for concurrency prOlec
tion. 11 mared access is specified in the open
statellll..'nt, record locking should be used, and
the record image retrieved in the second read
should be verified as current; otherwise, pro
tected access should be specified in the open
of the second fi le. The record can then be
rewritten, and any lock can be released.

Although this method is less cfficiem than
the single- file . single-read mel hod (in Icrms of
the code that is executed when a record is
updated), it eliminates Ihe possibility of over
laying another process' update because a non
current record image was used from a
sequential block buffer. h also eliminales any
risk involved in using buffered cache.

Flguttl 2

SIng--.IIIng mtthod

''''

i "" ' 00

i -_ .. -.......... \
§ 80

"

I 60 ,
i '"
~ 20

\...~~~ -" " 20 ., eo eo ' 00

fW<*!I8Qe at teQOIUB updlded ---
A sample implememation of the double-file,

double-read method follows:

MAIN-LINE.
OPEN INPUT TEST-SBB SHARED.
OPEN 1-0 TEST-FI LE SHARED.
PERFORM PROCESS-FILE UNTIL EOF.
CLOSE TEST-SBB.
CLOSE TEST-FI LE.
STOP RUN.

PROCESS-FI LE.
READ TEST-SBB NEXT RECORD

AT END MOVE 1 TO EOF-FLAG.
IF NOTEOF

IF UPDATE-NEEDED
MOVE TS·KEY TO TF-KEY
READ TEST-FILE RECORD

WITH LOCK
KEY IS TF-KEY

REWRITE TEST-fiLE-RECORD
WITH UNLOCK.

F E BR U ARY J9.6 . TAND E M S Y S TEM S R e VIEW

Figure 2.

Processillg limejor 2500
records (each J()() bYles
long) 'l'l'ilh Ihe single-file.
Single-read melhod. The
lime vories . depending
{)f/ Ihe percentage 0/
records Ihol musl be
updaled during Ihe
sequemioJ pass. A key.
sequenced file ,,·ilh a
5-bYle key 'l'l'OS used. The
block size 'l'l'OS 4096. and
Ihe average blocking
joclOr 'l'l'as 38.5. A
NQI/Stop TXP processor,
800So/III'0"', DP2, and
COBOL code lI'ere used.

"

Figure 3.

Pf'fXt!ssing time/or Ihe
double-/ile, double-read
melhod. When 100ft qf
the records read are
updaled, Ihe bemuil 0/
sequential b/(xk buffering
is insignificant. When
only 5% of the records
read are upda/ed. hOI<'

el't'r, a 44% throughput
improl'ellf(mt is realiud.
(fhe lf'St em'irotrl1lenl
and/ife ~'t'fl' identical 10
those/or Figure 2.)

Figure 4.

A comparison of the
pr()C'eSSing times/or
l'QriOUS double·file and
single]ile methods.
When only 5,-, qf the file
is updaled in a sequential
pass, the double-/ile
method is abor/! lifo
slower Ihan Ihe single-file
method wilh buffered
cache and sequential
block buffering. (Under
(hose same t"irmm-
slances, ho el'ef; Ihe
double-file method is sliff
aOOul37f, /asler than
Ihe single-!ife melhod
using norma/liD.) As
the percentage of records
updated increases paSI
20/f'" Ihe performance qf
Ihe double-file method
degrades. (The lf'St en vi-
ronment and file were
idemical 10 Ihose lor
Figure 2.)

Flgur.3

, ..

o
o

flgure 4

""

I
".
'00

i
~

.,

I eo

•
i '"
!

'"
0

0

,. .. eo ..

~".,y.c. '

metlCICI wC7'IltC<:t1S to""; -

/

" ./
./

/
/

/
~ Sro;;. t :.t'9-~ ,/, ID~..,

¥ 1C:I;:IIc'I1;,_ ---" --, --- ~ --...... -~--..

'" '" '" ., ...
~cI-a.\CldIIId --

TEST· FILE is opened for .. hared I '0 access
and RESER v E " A REAS b lIor specified in'
FILE·CONTROL. TEST-SAO i~ opened for
~hared .inpu~ access . and RESl'RVE2 AREAS
I specified In 1· ltE- C>.'t 1 ROL to invoke
sequenlial blod buffering.

Figure 3 summarize .. the rc .. ults of a per
form3~ lest o f a NonStop T XP syslem doing
sequential bloc~ buffering by the double-fi le
double·rrad method. The ('51 \\-as conducted
in the same environmcOl anJ \\jlh the same
file as thai describt.'tJ earlier. When 1000/0 of
the- record ~ read ere upd.lled. the beneftl of
.sequcmia l block bullering \\.:t~ insignificant.
When only 511:"0 of the record., read were
updated . however. a +t'~ liuough pul improve
ment was realized. (1'\oIC T h.: IC\t also
showed that e limination of re ~'ord locking
"hen protected accc'-; is u\~lilable is slighlly
mort efficient .)

Comparing the "'ariou ... \h·thnd ..
A~ the le-. ts de'}cribcd '0 far ha\e sho\,n. both
sequential bloc~ bufli:nng :md buffered cache
consislcnth impro\e J)l.'Tfonnam;c. all hough
the lc\'el of improvemcm \ar ., from one situ
ation 10 anot her.

Figure 4 comp.1re, the performance of vari·
QUS cbJble- fiIe and sing!.: file met hods. When
onl)' 50:'. of the fi le i, u~atc;j in a sequential
pass, the double· rile lT1Clhod i .. approximalely
11 070 SIO\\ Cf than the ')ingh: ~ 1 ilc method with
buffered cache and ...cquentlal bloc~ buffering.
(Under thoc,c (3.R'Ie drcum"lI,Ulces, however,
the double-file method 1 .. about 37010 faslcr
than the single·fi le method hen normal 1/0
is used .)

The ad\'3n1age or the double-file melhod is
that there is no ri .. ~ from u<;in~ buffered cache.
and shared upda te acce-.S i .. allo\\cd .

J
The .

II ~. addiliona l co",t (in "hich 50:'0 of the fIle
is updated in a sequential p:b.S) is relatively
small in light of Lhese ad\'anlages. As the per
centage of records updaled increases past
20~ •• ho ever. the performance of I~ ~ble.
file I1lClhod deg rades. This degradallon IS

caused by the additiona l read a nd record lock
request~ sent 10 the d isc process.

•

b

This means thai the fastes t way to process a
file sequentially is to rely on the single-file
method (using bOlh sequential block buffering
and buffered cache and opening the file for
exclusive or protected access). The choice of a
next-best alternative (from Ihe standpoint of
performance) depends on the characteristics of
(he file and Ihe percentage of records updated.
If a lew percentage of records is to be
updated. the double-file method with sequen
tial block buffering is probably beSt. If a large
number of records is to be updated, however,
the single-file, unbuffered method is besl. The
exa,t "break-even" percentage varies from
application to application and can on ly be
determined through tesling.

Conclusion

Seql nliai block buffering and buffered cache
are portaot File System features for improv.
ing application performance. The new BOO
enhancements to COBOL make the features
cas} for programmers 10 use.

While it IS generally intended for read·only
applil..lIIOnS, sequentia l block buffering can
help OIhcr applications as well. Buffered cache
impro\c\ the performance of most applications
that wrile. delete, and update. Before selecting
the tel'hniques for accessing a file, application
designer>; should (I) analyze the file's charac·
terist 11:0;, (2) determine the possibili ty of con·
current updates to it. and (3) calcu late the
percentage of its records thai a re updated.

Rtferences
BOO Soft ... ,are Documentation (Soft~)on COHO!.. 1 98~. BOO
wftware rcltase Site Update Tape (Sun. Part 00. T92~ I BOO.
Tandem Computers Incorporatt"d.

COBOL RtfoTPMtMunllol. 1985. Scclion 9. Procedure
Di ... ision-Vcrbs. Part 00. 825891\00. Tandem Computers
Inccrpomltd.

ENSCR IBE Programmilfl /I·lonltai. 1985. Section 4, File
I\a:es.s. Part 110. 82083 BOO. Tandem Comp.lIers Inccrpomttd.

Welsh. R. 1984. Optimizing Sequential Pfoct'SSing on the
Tandem S~"Slem. 7im""m . .kmrnul. \"01. 2, 00. 3.

AckJlOVolfdgml'nlS
The author would li~e to thank 1\·me Noonan for his helpful
5uggt'!itions for the [C"Chllical OOlllelil of the article. Thanks also
to Jim Enright. Jim Gray, Guy Ilaas. Rich L)·nn. Chris
Ohland, Emile Roth, t {arold Sammer. Dick 11Iomas. and Rob
Wd5h for their help in reviewing the arlicle.

Randy M.tt •• n Is. &enlor stall 8/1alystln the MInneapolis
DIstrict. HIs actMIles Include appllcaUon-deslgn support,
supporl lor t1a.ta·base produc ts, pe.!ofmance. and capacity
planning. Belora jolnll"lg Tandem In 1981, he spent live years wllh
a consulUI"Ig !I.m, deslgllll"lg and deYeloplng dlst.lbuted on·llne
transacllon procassll"lg appllcallons. Randy holds a a.B.A.ln
buslneu compute. aystems lrom Eastern Michigan UnIYG.slty.

I 9 a 6 TAloIDEM S,STEMS RPV I EW 17

18

DPI-DP2 File Conversion:
An Overview

hen systems are
converted from ht-= Tandem's Disc Pro·
cess I (OP I) to Disc
Process 2 (DP2). lhe
disc volumes must be
converted to DP2

format. This is because the volume label.
directory, and internaJ structure of structured
files on a DP2 volume are different from those
on a DPI volume.'

Tandem's DPI·DP2 file-con\'ersion utilities
s~pport all conversion requirements, from the
Simplest to the most comple.x. Note that while
this arli~le ~mphasizes the more complc;(file
~vers~on ISSUes, most DPI·DP2 file com'er
slons ~III not be C?mplex. An understanding
of the ISSUes explamed here. howc\'er. \\, ill
ena~le those responsible for DPI·DP2 coo
verSion to fully plan for the conversion of
their fi les.

SYSTEMS

Conversion lililie~

The following Tandem ill
for file con'o'crsion from LP
from DP2 10 DPI):

arc avai lable
to OP2 (and

• BACWUPhas Iy,O new (DP IFOR
\tAT and DP2FOR'1 AI) IhaJ write a file to
tape: in the specified formal. Ir neit her option
is specified, the format of the: tape file will be
the same as that of Ihc source disc file.

• RESTORE comerts files au omalicaU), if the
format of the tape file differs rom that of the
destination diIM: file. Since R[~"TORE can read
all tapes created by BACII:UP, il can be used to
com'en an), file.
• The File Com'ersion Program (FCP) is a
new utility designed to con\t!rt mulliple files
and volumes in parallel. It com'erts files from
disc to disc. Yo hich alia",,, it to con\'ert vol
umes faster than BA KUP and RESTORE. It
should be used 10 convert mirrored volumes,
and COli be used to conver! nonmirrored vol
umes. (For a discussion of the time requ ired 10

con\'crt files with FCP. refer to the accompa·
nying article. "Determining FCP Conversion
Time.")
• The File Utility Program (FUP) DUP COl,,·
mand comerl5 files automatically if the for·
mat of the destination file differs from that of
the source file.

I , • 6

•

File Conversion Assistance
Program (FCAP)
Th File Conversion Assistance Program
(FeAP) automates DPI ·DP2 file conversion. h
is similar in funelion to INSTALL, a utility
thai provides an automated means of generat
ing and insta lling the GUARDIAN operating
system. FeAP invokes the DPI·DP2 conver
sion utilities at the appropriate time during the
comersion process .

FeAP may be used for conversion planning
as, 'ell. II generates a set of reports from dam
produced by an Fe p ADVISE operation. The
reports categorize the Fep dala, making it
much easier to identify riles thai require
special consideration before starting their
convc:nion.

J FeAP'S documentation is an integral
pal of the program itself. no separate hard
eOf1 manual accompanies it. Instead, onc of
the options on Fe AP'S initial menu is to print
the user's guide . Refer to the 820 Software
Oi)C'Umentation (Soft doc) for further informa·
lion about FeAP and the user's guide.

DP2 Resource Requirements
Tesl have shown thai processors containing
DP2 typica lly require marc than 2 MbYles of
memory. DP! rcquires 80 Kbytes for its code
space, whereas DP2 needs 200 Kbytes. Also,
DP2 requires additional memory to support a
potentially largcr cache size.

Before installing DP2, use XRAY '" to evalu·
ate DPl ' s memory utilization. If the XRAY
results indicate memory pressure, add morc
memory befo re installing DP2. Excessive page
faults can significantly degrade performance.

For DP2 TMF, a volume can contain either
audited files or audit-trail files, but not both.
This restriction was made to make DP2 soft·
ware more reliable than that of DP!. The DPl
TMF practice of "cross·auditing" is nOt
a llowed with DP2. If all DPl volumes contain
aud ited f iles , an additional mirrored volume is
required unless all the audited files on a mir·
rored volume can be moved to other volumes.

Restrictions on Mixing
DPl and DP2 Volumes
As there is no requirement for all volumes on a
node to have the same fonnat, a single node
can contain both DP I and DP2 volumes. This
means that, if appropriate, one or twO volumes
can be converted al a time, as opposed to all
volumes being converted at once. The follow·
iog are the restrictions associated with mixing
DP! and DP2 volumes on the same node:

• All volumes connected to the same d isc con·
troller must have the same disc· process type.
A controller string must not contain a mix of
DP J and DP2 volu mes.

• If a file has alternate keys, the primary fi le
and the a lt ernate· key files mUSt have the same
disc·process type.

• All partitions of a fi le must have the same
disc·process type. This includes files that a re
partitioned across nodes.

• For TMF, audited files and audiHrail files
must be on volumes with the same disc·process
type. This usually means that all volumes on a
node that uses TMF must be converted at the
same time.

Changes in File Characteristics
DP2 introduces several changes in file charac
teristics. In some instances, described below,
these changes will require special consider·
ation and action before conversion.

Fewer Valid Block Sizes
DP2 block sizes are li mited to power·of·two
multiples of the seClor size (5 12, 1024,2048,
o r 4096 bytes). This means DP2 does not sup·
port four DP] block sizes: 1536,2560,3072,
and 3584 bytes. The conversion utilities adjust
the block size of any st ructured fi le having one
of the invalid DPI sizes to the next highest
DP2 block size. (Thus, block size 1536 is
adjusted to 2048, and block sizes 2560, 3072,
and 3584 are adjusted to 4096.)

FE B R U A R Y . ,1 6.T A NDEM S Y S TEM S REV1EW 19

This adjuslnlent may not be: optimum for a
parl icular file. To avoid this condition. run the
FCP ADVISE command on all files first to
identify those: whose block sizes "ill change
(or usc FCAP; the planning reports thai it gen
erates idenlify these files). Using a valid OP2
block size, restructure !.hose files "host blod.
sizr 'oI.'OUId be adjusted inappropriately during
con\'ersion; then com'en the files.

Inde.'(and Data Hlock-sizt RtquirfmtnlS
for Ke) -stQuenced Files
DP2 requires index and data blocks in a key
sequenced file to be the same size, "hile DP!
does nOI.

DPI Block-she Reqllium~nt.s. A OP! file uses
different index and data block sizes primarily
to achieve optimum performanct. DP) wa~
designed to use write-through cache. in "hich
every write operation causes an immediate
disc 110. (With the BOO soft" are release. DPI
began using buffered cache for audittd files
only.) Optimum block sizes for a DP) file are
detennincd by its write-through cache require
ments, as discussed belOl'. (For a comparison
of OPt and OP2 cache Schachter. 19 5.)

For random access of a OPI file for hich
write-through cache is UStd, a small data block
size is desirable because fe if any. read cache
hits are expected. Less of the finite cache
resource is used to hold the blod.. and the
number of b)'tes wriuen to disc for a "rite
~ration is minimized. If the index blockize
IS also small, however, an e'\(ccssi\'e number of
index levels ha\'e to be accessed ""hen a data
block i~ re~rie\'ed. In this case, a large inde~
block SIze: IS appropriate.

~or sequential writes to DP! files for which
w':II~- I ~rough cache is used. a small blod. size
minimizes the number of bytes written to disc
for each write operation.

DP} Block-sltr Rb/lIil'l'm~nts. In DP2
because all of a file's blocks are cached in the
same burrer and a scpaI"ate cache buffer is
used for each bl~i. $ize. block sizes for DP2
inde~ and data fl lC$ must be ident.ical.

Also, DP2 cache can be either write-through
or buffered . The default. buffered for
audited and "" rite-through fo r nonaudiled
files . ~on3udited files rna) be buffered, if
appropriate. howe\'ef >\ buffered file that is
",rillen to ~uenti:llly luld USC' a large
blod. ile to l a l.~ ad\'3nt3I(e of cache write
hits . ben file thar are "ntlen to randomly
benefit from u .. ing buffertd cache because
the di~ I 0 docs not h3Vt 0 be performed
immediately.

COnl'f'nlon Consldl.'ratlom. Because DP2
requir~ the iode, and dar.1 blocks of key
':ICquenccd file 10 hJ\e It)(arne block size, the
con\er~ion utilit ies autom.tlically change the
blad. ile of DP) fll Ydl h differing index
and data blod. Ile.' During the con .. 'ersion.
the bled ile be-c0l'lY (he larger of the DPI
data and inde'\(blod Sal TlMJnded up 10 a
... -alid OP2 blod ,iu (h" ."",ample. a DPI file
"lIh an iodc\ blod. Size (J '536 and a data
block ile of S 12 Yo~ III t: a DP2 index and
data blod. ",ile of 204!i.)

BcfOf(con\crtmg flies from DP) to DP2,
use reAP to identi f) all file!!. "hose index and
data block SiIC~ are different. For each of
these, delermine ",hieh is optimum for the
DPZ cadX' schemr: the blod !!.ize it will autO
matically be ai\en b) the com'ersi?n uti lity or
one of the other \'alid DP:! block SIZes.

It is best to re~truc; lUrc. bcforeconvers!on,
those files whose posl<on", en;ion block size
"ould be inappropriate. For a large file, how
c\'er, it may be more pra~tica l to restructure
the file ""hile con\erting it. Use the FC.P DUP
command's 8L OCKSIZE. option for thiS.

_·ft

Presen'ing II .' ile's Address Space

Bit-map Blocks and Address Space. DP2
relative and key-sequenced files contain bit
map blocks in add ition to index (key
sequenced) and data blocks . Bit-map blocks
are used for free-space allocation within the
file. With the addition of these bit-map
blocks. it becomes necessary to distinguish
between add ress space and total file space.

Address spare can be defined as the tOlal
amount of space in a file that is available for
~m: !aora~e of data and index (key-sequenced)
information when all the file 's extents are allo
cated. It e:l(c1udes any space required for bit
map blocks, Total file space can be defined as
the total amount of space avai lable in a file
when aJllhe file's extents are allocated
indud ing address space and bit-map bl~k
spa~t. Withi n these definitions, DPI address
space equals the total f ile space, as it does not
use bit·map blocks . Thus, for DP2

address space - total file space - bit-map
bloc}.; space ,

whilt for DP!

address space - lotal file space .

COnl't!rsion Considerations. For relative and
key,~uenced files, the file conversion utili
ties attempt to preserve address space by
adju!lling the size of the total file space to
compensale for the presence (DP I 10 DP2) or
absence (DP2 to DP!) of bit-map blocks in the
coO\'ert~d file. They increment a file 's primary
extent size when converting il from DP I to
DP2 or decrement its primary extent size when
converting it from DP2 to DP I.

The adjustment factor is a multiple of the
file's block size . The smallesl unit of alloca
tion in a disc file is one page (2048 bytes).
Thus, if the adjustment factor is not a
2048-byte multiple (possible for block sizes of
512 or 1024), the conversion utility rounds up
the factor to the next highesl page value for
DP . -to-DP2 conversions and the next lowest
page value for DP2-to-DP! conversions. After
an extent adjustment, a converted file has the
same amount of address space as the source
file or slightly more.

It is evident that DP2 relat ive and key
sequenced files require slightly more disc
space than their DP! counterparts. If few of
these files reside on a volume, the additional
space requirement is minimal (I % or less). If
a volume contains a
large number of
these files, however,
the additional space
requirement could
be significant, espe
c ially if the volume
is almost fi lled to
capacity. The addi
tional space required
could be as much as

Tn conversion, block size
1 becomes the larger of the
DPl data and index block
sizes rounded up to a valid
DP2 block size.

SOlo but typically is in the range of 1% to 2%.
Use the Fep ADVISE command as an aid in
estimating the additional space needed for
conversion. O ne or morc addit ional disc vol
umes may be needed if the additional space is
not available.

DP2 Blocks Must Reside in the Same Extent
There are other reasons that a file 's extent
sizes may be adjusted during conversion. For
DP2, a block must reside in lhe same extent
while for DP!, a block may be split betwee~
twO extents, such that the first half of a block
can fall at the end of one extent and the last
half reside at the beginning of the next. This
occurs if, for a file whose block size is 4096
either the primary or secondary extent size i~
an odd number. For any struct ured file in this
condition, the DP2 conversion utilities incre
ment the extent size to the next even value.

FEBRUARY 1986.TANDEM S Y STE M S REVIEW
21

Difference in Number of Extents Allo" ed
A DPI file may only have a maximum of 16
extents allocated (I primary and 15 second
ary). This limit is not adjustable. Thus, for
DP),

10lal file space (in pages)
"'" primary extent size
+ (15. secondary extent size).

The maximum number of e:<tents for a
DP2 nonpartitioned file is dynamically
alterable and is limited by the space available
in the file label. This allows for over 900
extentS in mOSI instances. A 0(" file charac
teristic. MAX EXTENTS, dictates the maxi
mum number of extents allocatable for a DP2
file. Thus, for DP2.

lotal file space (in pages)
= primary extent size
+ ((MAXEXTE TS -))
• secondary extent size)

To accommodate this difference:, "hen con
verting a DP2 file "hose MAX EXTENTS value
is greater than 16 bad: to DP), the com'ersion
Ulilities .adjust the primary and secondary
extent Sizes so that the total file space filS into
16 extents. For example, Table 1 shows the
characteristics of a DP2 unstructured file
whose MAXEXTENTS value is greater than 16
and the new values for these characteristics
after the file has betn converted to DP). ote
that the total file space has been maintained
but the extent sizes have changed considerabl)".

t.tHe I .

Characteristics of a OP2 unstructured lIIe whose
MAXEX}ENTS value Is greater than 16 befOl'e and
alter It IS converted to OPt '

Chlf.tlerhUc.

Prlrnary exlenllize

Sec:ondary ulenl SIO:e

MAXEXTENtS

Total lile $IIoICe

unct.r OP2

" "
"" -..... ~ 110 + (200 - II • IOJ

Partitioned Files
\~hile the parts of any key ·sequenced pani
lIooed file can be: converted individually. ror
entry-SCQuenced and relalive partitioned fi les
all parts might ha\e to be converted as a Unit',

Ke)-sequencf'd FII
Key-sequenced files d.re partitioned at file cre
alian when the primary key \'alues for the
range of records that an: to reside in each pari
of the file are !pecifled. ft I not absolutely
essential that addre!><i: spa¢.' be preserved in
each part during file ronvtrsion. Records des
tined to reside in OIlC' pari before file conver
sion reside in the same: part after conversion,
even if that part 's address .,pace is incre
mented slightly b) the con\er~ion process.
ThU5, regard los of any C Jnges in a key
sequenct"d file's characte lics, it is always
possible to con\'ert each (rt individually.

Enlr)-sequenced and Rrlath e files
For an entry-sequcnj,,--ed or relative partitioned
file, the position of a re:(rd in the file is
dq>endent on each p.ut 5 .lddrcss space. If
an individual part's addre-;s space were not
prestned during con\"ef~10I1. records in one
part might faU into anol her part . If this
would occur for any par~ of a file. all parts
of the file must be convt'rted as a unit; the
coO\'ersion utilitio \\ ill not convert each
patt individually.

Also, the partS of an entry-sequen'7d or
relative partitioned file whose block size would
change as a re~ult of conversion must be con
verted together. An individual part may nOI be
co",,'ttted ~parately because it is highly prob
able that ~me records would fall into differenl
parts after conversion.

Com~rs;on Example /. A part of a DPl
entry-sequenced partitioned file has these
characteristics:

haraclerislics
Primary eXltnt sizt
Secondary extent size
Block size

Value
12 pages
15 pages

4096 byres

. d xtenl size is For thiS file. a IS-page seeon ary e . .
not vaHd for DP2 because the block Size I.S

4096 (as explained earlier). This extent Size
mU5t be an even number, but if it were ld
adjusted to 16 pages. the address space ,:u
not be preserved . Thus, Lhe part cannot
com·erled individuaJly.

~22'----------------'~A~N;-O;-E;-.:--:-:-:-:----------------______________________ ~--~'-:~
SYS1 £,,", S _ £ \ 1£" fE •• U,.J Y

2

Com'tTsion Example 1. A part of a relalive
partitioned file has a block size of 512 bYles.
When it is converted, space mUSI be added
(OPI to DP2) or subtracted (DP2 10 DP I) to
compensate for bit-map blocks. The block size
is not a multiple of a disc page (2048 bytes),
however. In all probabililY, address space
would not be preserved if the primary extent
were adjusted; therefore, the part cannot be
convened individually. This is a lso t rue for a
relative partitioned file with a block size
of I 124.

Co~ erli ng Files Whose
Parts Must Be Conver lcd as a Unit
USt· r-CAP to identify those files whose parts
can be converted individually with Fep and
those that must be converted as a unit with
BAl KUP a nd RESTORE or FUP OUP. (Fep is
nOI clpable of converting all parts as a unit.)

Files ThaI Cannol Be Converted
FCAP produces reports identifying all files
that cannot be converted. (It runs the FCP
AD\- ISE command and generates the reports
upon completion of the ADVISE operat ion.)
The following describes the files that cannot
be converted .

Bruk!'n Files
A file must have structural integrity before it
can be converted, as none of the conversion
utili tiec; convert broken files. (The Fep
ADVI SE command's VERIFY option identifi es
such files. Note that this opt ion checks only
for errors thai would prevent a file from being
converted; it does not check for all possible
structural errors.)

TMF Audit-lrail Files
The imernaJ format for TMF audit-trai l fil es is
different for DPI and DP2; also, after a con
version, the required TMF in itializat ion invali
dates all previous audit trails. For these
reasons, audit-trail files (those with a file code
of 134) must not be converted . (FCP does not
convert these files. The other conversion utili
ties do, but the contents of the converted files
are useless.)

OP2 Records Longer Than 2035 Bytes
DP2 key-sequenced files may have records
longer than 2035 bytes, the maxim um record
length for OP I . These files cannot be con
verted to DP!.

OP2 Primary Files Having More Than
26 Alternate-key Fi les
A DP2 fi le label is larger than a DPI file label,
allowing the specification of more a lternate
keys and alternate-key fi les than are allowed
under DP I. As a rule , a DP2 pri mary file with
more than 26 alternate-key fil es is not convert
ible to DP!.

Conclusion
An understanding of DPI -DP2 fi le·conversion
issues is essential for the successful conversion
of a data base. While not a ll fi le conversions
will be complex, it is important that those
responsible for a conversion understand the
fi le·conversion process and the changes in the
physical implement ation of the data base that
may result.

RdrrtnttS
820 Sort ... 'D.~ Dotummtation (Softdoc) on the File COfl\"e~ion
A$Mstlnce Prosmm (FCAP). 198j. 820 soft an: n:1easoe Site
Update Tape (Sun.

Carlyle, Ie and Ml"GaII'an. L 1985. DP2Ii ighlight$.
Tondenr Sys/etnS Rt'!I~. YOl. I, no. 2. Tandrm Computers
Incorporated.

DPI.DP1 File COfllwsiOll Manllal. 1985. Pari no. 82407 800.
Tandem Computers lnoorpomted.

DP1Class. 1985. C(lUrse no. J8448·AOO. Tandem Compulers
I noorporated.

Schachter. T. 1985. 01'2'5 Efficient Use of Cache.
71mdem S)'stems Review. YOl. I, no. 2. Tan<km Computers
Incorpomled.

J Im Tl tl d8"lelope<j the Fill Conve~lon Program (FCP) and the
FIle Conversion Auls tance Program (FCAP). He Joined Tandem
In 1979 IS an Instructor and C(lUrse develop81 In Hardware
TraIning. AUer thaI , he became a course developer In Software
EducaUon end, then. DIstrict Systems M.nager In Phoenl •. He Is
currently an advisory lIa"anatyst lor the Large System' Sup
port Groop. Before Joining Tandem. Jim supported automated
war~lng systems. He has 11 years 01 computIng e.parlence.

FEBRUARY I 9 • 6
REVIEW TANDEM SYS TEMS

2J

24

Detennining PCP Conversion Time

he File Conversion Program
(Fep) is a Tandem ulililY for
com'ening files from Disc
Process 1 (DP!) formal to
Disc Process 2 (DP2) format
(and vice versa). ' This article

------ explains how to determine
ttJ:e amount of time il will lake to comer! files
With Fep. II provides a model that can be used
to estimate the amount of lime Ihal will be
required to conven any volume. The model
was derived from conversion tests aJso
described in the article.

Busic File Conversion Steps
Belav. i an abbreviated II It DPl-IO-DP2
file-conversion MI!p!t. conl n ing those steps
that take the most time to p orm.' This arti·
cle focuses on Step 8. (Note that this step may
take as lillIe as a quark"!' of '1)(' lime needed to
perform all of the comCTSIO!'. \(eps listed.)

The Ii I belo", a sumes thai a BOO or laler
release of the G ROIA 90 operating system
has been installro and that the SYSGEN for
DP2 has bttn pcrforme..-d. It I~ assumes thaI
all \'Olume 10 be con"erl rc mirrored ,
ahhou,h rep can be used 01 nonmirrored
volumes if an extra di c dn 1\ available as
the destmation disc.

I . Shut down all applil.:af ons and
sub) terns.

2. Back up all files (u3ually 10 tape. but a
disc can be removed to accomplish Ihis
Slep).

3. Run Fep ADVISE, VERIFY on all vol
umes being converted.

4. Use BA KUP 10 bad up files not coover!
ible by Fep. (This will be a ~mall subsel
of the files backed up in Step 2.)

• £ V I £ ...
I , • 6

---- - - s

..

S. Shut down the "old" system.

6. Copy the " new" system-image tape to
disc a nd cold load the system.

7. Convert the riles that must be convened
by ReSfORE.

8. Usc FCP to CONVERT all other files.

9. Run INSTA LL and perform the REPSUB
SYS phase.

10. Run FILCHECK to insure the structural
integrity of all structured files.

II . Start up all subsystems and applications.

12. Revive the volumes .

Main Factors Affecting FCP
Con>ersion Time
TIle main factors that may influence the
amount of t ime needed for an Fe p conversion
are:

• Processor type (NonStop 11''' or
Non!)top TXP) and disc-controller type
(3101> or 3107).

• Number o f files on the volume.

• Average fi le size on the volume.

• File type:.

PrOCb'iOr and Oisc-conlroller Types
The types of processor (NonStop U or
NonStop TX P) and disc controller (3106 or
3107) are the primary hardware factors. They
d ictate the conversion transfer rale. The
amount of time required to create and update
the convened files is dependem on the proces
sor type.

Number of Files on the Volume
The number of files on a volume correlates
d irectly with the time required to convert the
volume. The greater the number of files, the
longer it will take to convert the volume. For
every fi le, FC P must create the destination
file , allocate disc space, and update the file
label a fter conversion .

Averngc File Size on the Volume
Large files conven at a higher rate than do
small files (28 Kbytes o r less) , for two rea
sons:

1. For small files, the time required for file
creation, disc-space allocation, and the
update of the file label is a significan t por
tion (perhaps 50% or more) of the total
time required to conven the file. This
lowers the file's overall conversion rate.

2. Each file is converted by a pair of Fcr
processes (FCPI and FCP2). The two pro
cesses are designed to overlap reading from
the source file and writing to the destina
tion fi le. For small files (28 Kbytes or Jess)
there is no overlap, however, because of the
small amount of data involved. Thus, the
file's overall conversion rate is lower.

File Type
Unstructured files are the fastest to convert
because only thei r file labels need to be modi·
fled. Data is simply copied from the source
file into the destination file without changes.

For a DPI emry-sequenced or relative file,
the logical and physical block positions within
the file are the same. The file can thus be read
sequentially, simplifyi ng convers ion. Multiple
blocks can be read in a single read operation.

A key-sequenced file is the slowest to con
vert because the source file must be read via
the index so that records can be extracted in
logically ascendi ng order. This means only one
block can be read with eac h read operation.
For this reason, a key-sequenced file with a
4096-bytc block size converts at a higher over
all rate than a key-sequenced file with a 5 12-
byte block size.

F E BR U AR V 1 9 86 T A NOEM S Y S TIlM S REVI E W "

26

TltIIe I. . J I the lJJe sets generated for lhe DP1 ·DP2 File Conversion PrO{!~m (FCP) tests.
Characlerlsl cs 0 fit. HI 1 fill Nt:2 File Nt 3 FIll HI4

Records/IIII 250

~fi"sile 2"KB

Total numbel' of 111M "'" ~of UII$1NCluM lila ...
t-k.mber of enl.,..equenc:-' filM

512~. bIoek
,,.

1024-b)1' block ,,.
,...." ,,. -- ,,.

-
Number 01 retll"'" files

512-b1t. block ,,.
102'-by1. block ,,.
,...." ,,. _ ,,.

Nllmblrol ~-sequenclld files
512--by1l block ,,.

102.c..byll block ,,.
2(M8.by1. block ,,. -.- ,,.

FI IIn' Ib:n(bo,n primary
NId lICondIry) In pagu •
Fep Conversion Tests
The FCP conversion tests were designed to
take inlo actOUnithe main factors thai affect
FCP conversion lime. The BOO versioru: of DP2
and FCP were used.

File Description
Four different file sets were generated (see
Table J), with average file sizes ranging from
small (24 Kbytes) '0 large (10.4 Mby,es) .
Each file set was individually loaded 0010 a
DP! mirrored volume, which was then con
verted to DP2.

TANDEM

"'" ".000 '25.000 "" .. 22M8 10.4MB
200 20 • OG •
" " " " ,
" •
" •
" ,
" ,
" ,
" ,
" ,
"

, ,
-.. .., ...,

Each file set consi~led of ~CO.OOO 80-byIC
records distributed e .. cnl} lJIl /fig the four dif·
ferent types of file. Tht tot..t.l lIe of e~ch file
sct lAas approximatel} 45 Mb)les, :nIS was
deemed 10 be suffidently IaJ g 10 Yield mean
ingful FCP com:er.ion-IIDY d. la.

All files in a file set contained the same
number of S()"b)' le record'i. TIl;' included the
unstructured files. who'o{' end-of· file value .
equalled the number of record per file m.ultl
plied by 80 bytC'S. Oni}" valid . .oP2 block sIzes
were used for the structured Ille~ (5 12. I02~ ,
2048. and 4096 by' es). All key-\equenced ['ies
were generated with a blod. SLACK value 0
IO~ •.

I.E\' IEW ,
I , • Ii

Configuration
Figure 1 represenls the hardware conriguration
ror Ihe lest syslem. Only volumes SDATAI and
SDATA2 were used ror the conversion tests.
They were both mirrored 4114/ 4115 volumes.

For each or the rour rile sets , the Fep CON
VERT operat ion was run Iwelve times, measur
ing the elapsed conversion times ror one, two,
and three FCPI-FCP2 process pairs, on either
a NonStop U or a NonStop TXP processor
connected to either a 3106 or a 3107 disc
controller.

Only one volume was converted at a time,
and no other activity was present on the sys
tem during the tests. All FCP OUlput data was
directed to a disc file on $SYSTEM. Volume
SDATAI was used ror the tests or ri le sets 1 and
3, and SDATA2 for the tests of file sets 2 and 4.

Flgul1l1

""'0 "'" , """ "'" 3

Tesl R~uUs
The elapsed time required to convert a file set
with Fep for each hardware configuration is
listed in Table 2. These resuhs show that there
is almost a linear relationship between the
average file size and the average conversion
rate. 1\5 the average file size increases, the
average conversion rale a lso increases (elapsed
conversion time decreases).

- - - seeoncwy access pBIh

TabM2-

Elapsed time (In mlnutes:seconds) required to convert four file sets from DP1 to DP2 format with the File
~versl~!,_ P~,?,gramJ!:C Pl.

NonStop II proc or NonStop TXP proc ... or

Number 01
FCPI ·FCP2 31Ndl" 3107 dl lJ(: 3106 dl,c 3107 dl.C

FlI ... 1 proc.II p.lrs conlroU.r controll.r controller controU.r

FI ll , 50:47 45:31 35:22 31:29
(2. Kbylea, 2000 lIIe,) , .2:28 39:27 31 :34 28:58

3 0&2:21 39:33 31:57 29:14

FlI ... t2 , 17:58 15:11 11 :08 10:39
(220 Kbyte •. 200 Illes) , 15:50 14:27 11 :31 11 :08

3 16:16 14:50 12:27 11 :29

FI 13 , 14:.1 11 :23 9:"8 8:00
(2.2 Mbytel. 20 m.,) , 10&:12 11:37 11 :15 9:24

3 1.:25 11:33 11:36 9:07

Flle set. , , ... 7:0 5:32 5:20

(10 .• Mbyt '1"1) , 9: 10 7:31 7:2. .,.
3 to:l0 7:29 8:0&5 .,0

FEIlRUAR ' I 9 8 6 TANDE M S YSTEMS R E VIEW

FJgure 1.

The hard are configura.
(ion used in Ihe DPI·
DPZ File Coo version
Program ("'CP) ItstS.

27

Table 3.
Hardware--dependem values tor variables tr . 12. and 13 of FCP conversio.).I.me model.s';;':~~!!!~=

NonSIOP tT procH" NCIfISlop TXP proc .. $Ot"

3106 dllC 3tOl ellC 3106 ellC

FIgufll2

flt!]1e elh.1on dIIC-space
allocf.hon. ancIlilt-labeI upda ••
time, In 5IIcs1hle)

12 tFCP Q\'efhud)

:DSAP /OUT SSilGAl BYSUBVOL

PAGE 0 OSAP - SCAT on \SUPPORT _
D'sc Spac. Analy$ls Program - T9(mBOO· (28JAN85!
VOlume $CAT I. logical ClflVlce 51
Device type Is3. IUbtype 3t 'to. - 2~B I

114,026 pages{20-C3 t1ytes)on l'OIume
233.525.2.a byles on ¥OIume

Summary at space U511 on SCAT
.0,908 1_ Plges In &62 alent. (9.5~)

.258 allocated P 1 17.08II ... ,..,tI {l7t"o}.
12.29111l\lJM11 pagel In 3, '31 liiesltO.7%).
1,949 deallocatible extent PIOIS kt 33I'Ih,'."'"

Spac. Allocation eonll$leney Analysl$

No spICe atlOCi11oro anomailes

Medl~ Failure Analysis:

"'1mif\' dISC has no unl9-ilred delecll"4l11Clotf.1.
MimI! disc lias no unspared oetectl¥e _tor('l

ALGORITH

Rgufll 2.

Example Disc Space
AnalJi$is Progrom
(DSAP) repor/ used in
determining the WIllies oj

,
• 3 ..
2 ,.
" ' .. • "

as (avtrageJile SIU) and
nf (number r(files) for
the conversion.time
mO<k!.

.. ,
0 ,
0 , , , ,

..
" " " • .,
n
".

"

l:OIIaoa.. conll"DlleI' IIlM'IlnaOtIr 3101 dlae
con.rollef

01 01 u.b 0.5

". .. ,

.'" .,.
,

.or
'" 321

, ,
91.2

Estimating File-con'ersion Time
COnH!_r lon-Ifmt Mocil
Based on I he t~1 r II
to cslimate the amc nf
con\-ert a volume as de

lhe follow ing model
time required to
'Ioped :

Con\efsion lime in secor d

(, OHP)
- ~/+ fJ -IV

"here fl - flte C~ lion, disc-space
allocali ., and file-label
update ime in seconds/ file

P - an I (F)\-erhead factor

j3 - tran fc: rate in Kbytesl
~ond

as - a\l!rRg:C ale c;ize in Kbytesl
file

rif - numb<: of nles

The: values of fl.P. Idj3 depend on the
hard are configuration I.e., the processor
and di c-controllcr (l~ Usc Table 3 to
determine these for a "pccific hardware
configuration. . .

In determining the value of II, a mod ified
\-er ion of Fep I as used to capture the actual
time required to create the: desti nati~n file,
allocate disc space, and update the file label.
1be value proved to be processor dependent.

In caicuialins the \-'Blues of 11 an~j3. me
elapsed limes for file sets I and 2 With one
FCPI-FCP2 process pair ",ere used.

2

-

Other Faclors Arrecl ing Conversion Time
Many other factors, besides those previously
mentioned, can arrect conversion lime. If a
volume has a predominance of unstructured
liles, it will probably convert in less time than
the model would indicate. Conversely. if key
sequenced files predominate, more time will
probably be required.

If FCP is to be used to convert multiple
volumes in parallel (as it was designed to do),
resource contention may cause the conversion
time for a volume to increase. Thus, the
model-based estimate should be viewed as an
apprOldmation wit h an accuracy of ± 25010.

Usinl! the Model
The values for the average fi Ie size (as) and
number of files (n./) can be determined with
the Disc Space Analysis Program (DSAP), a
GUARDIAN 90 utility. For this explanation,
the DSAP OUtput example in Figure 2 is used
as the basis for determi ning the va lues of as
and nf.

Page 0 of the DSAP example indicates
100.258 pages are a llocated to 8771 fi les. Of
this INal, however, 12,297 pages are unused;
i.e .• they do not currently hold any data . To
find out the number of disc pages that contain
data, subtracl the unused pages from the a llo
cated pages (in this example , 100,258 - 12,297
- 87,961) .

Then detenni ne the average file size in
Kbytes. (Set aside the six temporary fi les men
tioned on page I of the report for later consid
eration.) To calculate the average file size,
multiply the total data pages by 2 Kbytes (the
size of a disc page) and divide the resuh by the
number of files on the volume. For this exam
ple, the average file size is

87,971 pages. 2 Kbytes
877 1 files - 20. I KbYles/ file.

Now consider the temporary files memioned
on page I. As FCP does not convert tempo
rary files, subtract them and the space they use
from the totals . In this example, the total
number of files is 877 1 - 6, or 8765 files, and
the total space used is 87,96 1 - (198 - 54), or
87,817 pages. Thus, the average file size is

87,817 pages. 2 Kbytes
8765 files - 20 .0 Kbytes/ file.

To calculate the time requjred to convert the
volume, use 20 Kbytes/ file as the average file
size (as) and 8765 as the number of files (n./).
AJso , fo r this example. assu me the system has
NonStop TXP processors and 3106 disc con
trollers. Thus, the approximate time requi red
to convert the volume is

T· (05 20.0 + 24.5) 8 6 1me=. + 86.4 -75

or 8897 seconds (148.3 minutes or 2.5 hours).

If this volume were on a NonStop U system
using 3 106 controllers , the approximate time
required for conversion would be

Time = (0.7 + 20.0 + 17.8) _ 8765
50.7

or 12,670 seconds (211.2 minutes or 3.5 hours).

Conclusion
The amount of time required to convert a vol
ume from DP! to DP2 is dependent on many
factors. This model for estimating FCP con
version time takes into consideration the main
factors affecting FCP conversion. It should be
helpful for calculating the amount of ti me it
will take FCP to convert a specific volume.

Rtr~nca
DPI-DN FikCQflwrsiOn Munuul. 1985. Pan flO. &2401 800.
Tandnn Computers Incorporated.

Jim Tall wrote this arllcle, ae well as the accompanying article,
uDP1 _0P2 File Cooverslon: An Overview."

FEIIII.UAII.V 1916 TANOEM SYSTE M S REVIEW 29

30

TACL, Tandem's
New Extensible
Command Language

or some time, users of
Tandem systems have asked
for an iOlerface to the
GUARDIAN operating sys·
tern that is more flexible and
powerfullhan COMINT,
Tandem's command inter

preter. To answer this need, Tandem has devel
oped a new integrated command language that
can be used to perfonn simple interactive
functions as well as to automate complex pro
cedures. TACL"', the Tandem Advanced Com
mand Language, is available for use with
GUARDIAN 90 in the 820 software release.

TACi.!s basic command-interpreter features
include:

• Support of CO MINT commands.
• Support of user-defined alternate command
names (aliases).
• A command history, allowing reexecution
andl or modification of previously entered
commands.
• Function-key definitions.
• Prompts containing status information.

TACl.!s advanced command·language fca·
tures include:

• Extensibility. allowing user-wriucn com
mands with full functionality.
• A "help" facility that describe::: rhe sym3X
expected next.
• Support of wild cards for file l\i1"11ing.
• Support of macro files (files .:onraining a
series of commands in the order and formal
they 1,I,'OUld be typed in in lera~lively).
• An implicit RUN command. allowing pro
grams or macro files (0 be imoked by file
name only.
• Support of functions that return a \'a]ue,
allowing the resulLS of one command [0 be
used as the arguments of another bimilar to
UNIX pipes).

TACeS extensibilit y is achie .. 'ed through the
following features traditiona lly avai lable only
in programming languages:

• Transparent type: conversion between
numeric and string data.

• Arithmetic and logical expressions.
• Variables (which can be used as stacks).
• Procedural constructs (macro. text, and
rout ine functions).
• Control structures (IF. labeled CASE, recur·
sion, WHILE·DO, and DO-UNTIL loops).

• Exception handling.
• A debugging facility v.hich allows step-by
step or breakpoint debugging.

TANDEM S Y S T E M S lEV I EV. I 9 • 6

s

•

• Sequential 1/ 0.

• GUA RDIAN 90 interface procedures.

• Support of variables used for process
communication.

• Text-editing primitives.

• Aid~ for parsing complex argument strings .

The basic command-interpreter features are
described in the TACL manuals listed at the
end of Ihis article. The more advanced fea
tur~ and the programming fealUres are
described in the following sections. Examples
of how they can be used are included.

A dvanced Command-language
FealUres

Extensibllit)
All commands in TACL are implemented as
functions, the TACL equivalent of procedures.
Each TACL user's environment is initialized
with a standard set of functions, the
TACt BASE functions , that implement com
mands compatible with COMINT. Users can
add to or replace these functions at any time
b)' creating new functions that use existing
commands and buill-in functions. The new
functions can be as simple as COMINT com
mand., or as complex as programs.

The bu ilt-in functions are TACl's predefined
building blocks. Many of these functions pro
vide a high-level interface to GUARDIAN 90
procedures such as FILEINFO and PROCESS
INFO. Others allow new, morc flexible ways of
using the system, such as selecting sets of fi les
using wild -card nOlation (TACL's file-name
templates).

Help Facility
TACL provides three facilities for aiding inter
active users. First. users can display a list of
the available built-in functions by typing the
command BUILTINS. They can also press the
predefined "help" key, FI6, to display the
syntax options of any command, including
that of user-defined commands. Finally, as
TACL evaluates an incorrectly typed com
mand, it issues an error message indicating the
syntax it was expecting. Users can then correct
the command without having [0 refer to a
manual. (This feature is also available to
TACL programs.)

Flgu,.. '

?SECTIQN prJnt ROUTINE :==::===::a . ===£=============== __ _________ _
= E TGALs III Wes mltchlng the !IIe-nsme template - - - - - - - - - - -
= = passed to the routine.

'FRAME !Make It eas)'to cle.n up PUSHed varlable$.!
'PUSH template lPrepare a v.,l.bIe to hold the argument.)

'PUSH .rlLtype. /llename lPrepl'e vlrlableS used by DO_EACH routine.)

SINK IIIAflGUMENT NALUE template/TEMPLATE] IGet the temptate argumenl.)

::===EEzaE====:Z:====2=====================
:: = Deline a routine that TGALt elaCh llIe.
:=====z •• a=====zz:======a==================
[.OEF do_e.ch ROUTINE
~OOY I

(.LooP ILoop OI1Ct1lor eaen IlIe n.me passed to this routlne.j
1>01
= = Find out If the .rgument Is. lite n.me (I)
... or tile end 01 the argument atrlng (2)
'" '" and lav. the v.lue of It

'SET a~type (.ARGUMENT NALUE lilenamel FILENAME ENO)

,.IF (.rll-type '" I) {II. file nerne, TGAL It.,
[THEN j

J,lNTILI

TGAL fin (Illename). OUt Sa .• tgal , flOWalU
1111

(arll-t)'pe • 2) IWhen no more We n.mes, quit.)
I {Ioopl
Idell

=====:================:==z=================
= .. Execute the routine ttl.t TGALs each 1l1e, passing It
'" = the complete n" of IlIe! n.met thet m"ch tile template
= '" we weJ8 given.

Go_each I.FILENAMES Itempl"eD

ItUNFRAME lelMn up all variable, we cleateet here.1

File-name Templates (Wild Cards)
Users of Tandem systems have req uested a way
to perform an operation, such as purging or
print ing, on a sct of fi les without having to
type each file name in the set. Wit h TACl ,
users can do this by giv ing a file-name tem
plate as an argument to a function. For
instance, the command FILENAMES accepts a
file-name template and prints the names of lhe
files the template specifies in a formal similar
to that used by the famili ar COMINT FilES
command, The example in Figure 1 illustrates
the contents of a routine named PRI NT that
accepts a file-name template as an argument
and TGAls each file name that maldtes it.

FlguAi I.

This PRINT [unctioll
demOllstrates the
argumeflt -handling
capabilities 0[a TACL
rowine.

fEBRUARY I 9 t 6 TAI'\ID6M SY S TeMS REVIEW 31

Jl

Macro Files
A desirable trait of any command language is
the capability of executing commonly used
sequences of commands without typing them
each time. Some of the tools used in the
Tandem environment to accomplish this are
OBEY, STREAM, and EXEC. TACL allows
users access to lhese 10015, but introduces
macro files as a simpler means of accomplish
ing this goal.

A macro file is simply an edit file that con
tains one or more commands. These com
mands are execuled in sequence when users
invoke the macro file by its file name. A
macro file can contain a few commands typed
in the same format as they would be typed
interactively or a few thousand commands
utilizing some of TACCs more sophisticated
features. It can also contain definitions of new
functions to be used as subroutines.

Users can define dummy arguments in
macro files and pass arguments to the macros
at start·up time. They can achieve e\'en more
sophisticated argument handling in macro
files by using routines within the macro files.

Finally, through macro files, TACl can
determine which actions to take dynamically,
based on the results of previous actions and
the characteristics of the current environment,
rather than basing its actions solely on the
environment that existed when a pr0ctS5
started.

Implicit RUN or Function In\"ocation
TACL users can execute a macro file or pro
gram (object) fi le simply by typing the file's
name. If the name is not fully qualified, TACL
searches a user's current search list of subvol
urne names. The default search list contains
SSYSTEM.SYSTEM only (Simulating the way
COMINT handles program file names). Users
can modify their individual search lists, hov.
ever, to ~ave TACl look for programs and
macros 10 Other subvolumes before or after
searching SSYSTEM.SYSTEM. The list can
contain a user's current subvolume and/ or any
other locations.

T NDEM
SY S TEM S

For program files, all RUN options (includ
ing DEBUG) are available with this implicit
RUN feature. 10e search feature is not avail.
able when the RUN command is explicitly
used.

E:(plicilIO\ocation and Pi~like Usage
The TACL User 's Guidi' and TACL Quick Starr
explain how users can load Ithraries of com
mands to customize their Individual envi ron
ments. They then e~eC1.IIC thc:~ commands by
typing the command narJ'le nd command
arguments on a single line ld pressing
RETURN. (This method or oking com-
mands or functions can be« l~idered implicit
in\'oc3tion.)

Explicit invocation prO\ Idt ' additional
functionality. Users can jnvokx commands
explicitly by surroundin@ Ihfom in square
brackets ([J) . TACL evaluate my command
surrounded by square bnldec as soon as all
left and right square brackets match. This
allows users to place multiple (ommands on a
single line and to spread a smg c command
o .. er multiple lines

For instance, the commands

I > [time) (status · , user]

cause the time and then the statlls information
to be displayed. I Similarly. T,\Cl. does not
evaluate the command

2> I status
2> .,
2> user J

until the square brackets match.
Explicit invocation also al lows users to ~est

commands so that the output of one funcuon
can be passed as input d irect ly to another.
Before TACl was available. it was necessary to
store the results of 3 command in an interme
diate process, variable, or file so that it could
be altered into acceptable input for another
function.

I , I 6

s

•

•

For example, to obtain a timestamp and
display it in a format of month, day, year, and
time, users had to call TIMESTAMP, save the
result, pass it to CONTIME, save CONTIME's
result~, and convert them to date and lime
format. In TACl the timestamp conversion
can be done in a single command, as illus
trated below:

3> NOUTPUT L.Contime_To_Text
3> I#CONTIME
3 > I'~IMESTAMPIII
June 23. 1985 12:35:06

In the '\~()vC example, TACL executes the func
tion NTI .1ES'TAMP and passes the value
retu rned as an argument to #CONTIME. It
then e:o:ecutes NCONTIME and passes its value
as an argument to the TAClBASE function
_Contime __ To_ Text. TACL then passes the
result to #OUTPUT and executes it, displaying
the formatted date on the user's terminal.

Programming Facilities
Transparent Data Type Conversions
From a 'JACl user's point of view, all data is
textual In fact, TACL recognizes integers as
well and can perform arithmetic and logical
opera! ions on integers. TACL makes any con·
version ... between numeric values and ASCU
that might be required. In addition , whenever
users need 10 supply a number as an argument
to a TACL routine, they can use the name of a
variable containing a number.

Arilhmelic and Logical Expressions
TACL also a llows the use of an arithmetic
expression wherever a number or numeric vari
able name is expec!cd. Such an expression
must be enclosed in parentheses, and can
include other arithmetic expressions, integer
numbers, numeric variables, and operators.
Operators can be arithmetic (+ , -, ., I) or
logical (NOT. AND. OR. < . > . _. < _.
> "" , < ». Parentheses can be used to con·
1rel the order of evaluation. The value of a
logical express ion is either - I (true) or 0
(false).

Variables
In most programming languages, variables are
used to store values. A variable's current value
is subst ituted for its name each time it is
encountered. Some languages also allow a
variable to be a fu nction or procedure that is
executed whenever its name is used. Generally,
a variable is defined to be of a specified type,
for example, integer or string. All these capa·
bilities are also true ofTACl variables. In
TACl, however, a variable's value and type
and the manner in which it is used can be quite
different from those in other programming
languages.

In TACl, variables arc actually stacks, and
the number of levels in a variable is li mited
only by the fac t that they must fit into the
ultCr's data area.
Any existing level of
a variable can be
referenced. Variables
can be created,
assigned values, and
destroyed either
interactively or from
within a TACl pro·
g ram. By default,
all variables are

I IX lith TACL, variables r r can be altered while
the process is running so
that concurrent processes
can be managed flexibly.

global within a TACl program, although it is
possible to create local variables for a particu·
lar procedure.

The method TACL uses to substitute a vari·
able's value for its name is somewhat different
from that of most languages. The value that is
subst ituted for the variable name depends on
its type: alias, text, macro, routine, or delta.
Text, macro, and rout ine vari ables can contain
commands or function invocations as well as
text; they then can be viewed as procedures.

An alias variable is used as another name
for a word. The word may be the name of a
built- in fUllction, TACLBASE command , user·
defined command, o r fi le name. When the
variable name is used, the word for which it is
an alias is substituted.

fEBRUARY i986 . TANPEM S Y STE M S REVIEW
JJ

34

Te'Ct, the default, is the type most imilar to
types found in other languages. The value of a
text variable is simply the vaJue of the text to
which the variable is set or defined . It can be
numeric or character.

like a text variable, a macro \'3riable can
contain numeric or character text. Macros
allow the substitution of dummy arguments
based on the positions of their actual argu·
ments. A macro variable's value then becomes
its textual conlent plus the: argument substitu ·
tions. (Macros are most often used to e.\ccute
other commands, however, in the samt way
that routines are used.)

A routine variable is used to execute other
commands. much like a procedure is used in
other languages. It determines its o"n value
through calls to the built·in function
NRESULT. A routine has the option of nOI
returning a value.

Delto variables are discussed in the section,
"TACL Text Editor ('DELTA). "

TACL variables can be used in "'3)'5 not
commonly offered in other programming Ian.
guages. For example, "ariables can be used as
inpUi and OUtput files to one or more other
processes. They can be used strictly as files;
that is, the entire input contents are contained
in the input variable "hen the process is
started and the OUtput variable is examined
when the process' OUtput is complete.

These variables can also be altered dynami.
cal~y, however; their contents can be changed
while the process is running. This provides
great nexibility in managing one or more con.
current processes. TACL variables can also be
used easily to perform sequential 110 to files,
as elaborated Upon in the section "Sequential
1/0." '

Procedural Constructs
Text. macro. and rOUtlflC -ACl variables can
be used as procedure because they themselves
can contai n command or function invoca.
lions. AJllh~ can be \;on.,tructed with func.
tions of any type ali buildins blocks; each can
be used to fill partic..1llar needs.

Text fu octioru. the Imp!est of the three to
build and use , can conl In collections of com.
mands and /or buih·in fUllI.:tions that are
im'Oked as a unit: thus 'he name of the rune.
lion becomes a ~horthand notation for the
sequence of function '" .thin it. The invoca·
tion of a text function rrOliut.."('S only those
results generated by its c..;n tituents.

A macro can contain dillerent functions or
fun tion arguments eVer) t mte it is invoked,
through the: argumcn(,·subSfuulion scheme
mentioned in tht prevIous :ction. The results
of a macro invocation consl')t of the results of
the functions contained \1111 lin it , after the
actual argumenl\ ha\C' rer!; :«1 the dummy
arguments.

Routi nes art the most \'C~tile of the proce·
dure types in TACL Users n vary the con
tentS of a routine (in the sanr \1.'3)' they can
''af)' the content of a m3cru) b)' having TACL
pas arguments 10 it. In addition. TACL can
check routine arguments aUlomatically for
s)"ntactic (and in some caso. semantic) cor·
reclness through the built·in function ~ARGU.
MENT. Note that the writer of the routine
detenn incs s)"ntllctic C'Orrectne~5; the sy~tax .
rules for rout ine argumcnt~ need not be Idenu·
caito those for TACL commands.

The "riter of the routine al'\o has complete
control o\er the values (or results) produced
by the invocation of the routine. If ne.eded,
values must be generated explicitly With the
built ·in function ,fRESUlT.

Control IruclUrcs
All of TAC t.:s procedural function types can
make use of the control built-in functions [0 l
perform different actions, based on the values '\
of control expressions (which can be the I
results of function invocations).

I 9 I 6

\

{

r

TACL supports block IF-THEN-ELSE state
ments, labeled CASEs , and twO loop types
(WHILE-DO and OO-UNTlL). Recursion is
also possible.

Routi nes alone can be programmed to
#RETURN al any time to their invoking runc
tion (or simply lenninate , ir they were invoked
directly rrom the keyboard).

Exceplion Handling
Anolher facility unique to routines is the abil
ity to detect and handle exception conditions
programmatically. Exceplions are generated
("raised") by Tt\CL or by runctions when an
unexpected e ent prevents normal processing.
Routines may cau\(! (NRA ISE) exceptions at
any time they arc being executed.

Ir a routine r.eeds to hand le exceptions itselr
(and this can include exceptions raised by it or
by any routine it invokes), it uses the NFILTER
built-in runction to name the exceptions ror
which it will accept responsibility.

When an exception is raised . TACL ceases
invoking the current routine and checks
whether the exception is filtered by it. If nOt.
TACL cancel,. execution of the rOUline that
invoked the current one (if lhere is such a rou
tine) and checks thai routine's filters. It passes
the exception "up" the chain of rOlJlinc invo
calions in this manner until it finds a riltering
routine.

When TACL finds the routine that filters the
desired exception, it rein vokes that routine.
The routine mu~t use #EXCEPTION to find
out whether it is being invoked normally or as
lhe result of its filtering a raised exception.

In some instances, TACL handles exceptions
ror users. One frequently encountered excep~
tion is called -ERROR, which is raised when
TACL detects an error. One cause of a raised
-ERROR is the auempt to invoke a routine
:with arguments not recognized as correct by
Its NARGUM ENT processi ng. If such an argu
ment error OCcurs when no routine has
declared it will handle _ERROR problems,
TACL responds by return ing the error message
"expecting followed by a list or the argu~
ment types expected.

Debugg ing Facility
TACL supplies a debugging fac ility for TACL
code. Users have the option o r stepping line by
line or seui ng breakpoints at an invocation.
The debugger itself is written in TACL code
and resides in TACLBASE. Users may create
a modified version by copying it from
TACLBASE, making the desired changes, a nd
LOADing it into their individual environ
menlS. Any TACL command can be evaluated
at a debugger prompt ; thus, users can obta in
information about the TACL process or any of
its variables.

Sequential 1/ 0
TACL functions can pass information to and
use inrormation from o ther processes, devices,
and fi les of all
types, includi ng edit
files. The #INPUT
(and NINPUTV) and
'OUTPUT (and
#OUTPUTV) func
tions can be used to
read rrom and write
to the I N and OUT
files of a TACL pro
cess . The function

T'he TACL variables can
be altered while the . . process IS runnmg so

that concurrent processes
can be managed flexibly.

#REQUESTER can be used to open other
files for readi ng or writing, perrorm the oper
ations, and close the fi les. The function
NREQUESTER l i D can occur asynchronously;
that is, other functions can be invoked whi le
TACL completes the 110. It is a lso possible to
wait for the operation LO fini sh.

, , I 9 • 6 • T " l'I 0 E M SYSTEMS II. E v t E W J5

I '

F1gu .. 2

?SECTION progr'm..Umer ROUTINE
,FRAME

'PUSH program.J... {SlIt up varl,bIes!of controillngi
.PUSH prog!1Im..SIIlUS l ihe process 10 be limed.,

.PUSH soun::--.'lle
I5ET source_lite smallobj

.PUSH InspecLin {Sal up variables lor controlling INSPECT procell.,

.PUSH InspecLOUI
'PUSH InspeclJerver

[.SET 'n.peeLln &
bIbo"buIId"objec,"flie + %2.7
bfbo"buIId"obJecl "fIle + % 43-(
blbo"bulld"object"flle + %~1
blbo"bulld"objecl "'fIle + %",,
blbo"bulld"objecl"'f'Ie+ % 504
resume
I

'PUSH ble.kpolnLname [Set up ~'fllblel for dala fslatlng j
.SET brlskpolrll-"ame S'a,l [to IIm1rlO and brukpolnts.,

.PUSH atarLllme, lIop_tlme, elapse<L"me

= = Gel. Ml"ler Hie name 10 use !of INSPECT
=,. (the TERM of the limed process)
.SET InspecLHl'Yel' I.SERVER/IN InapecLin. oc.rr In,pecLoutl]

:::: Slart lhe process 10 be timed under INSPECT
RUND Ssyslem.lyslem.blndlSTATUS progratrLllIlUS, NOWAlT, &

INV progrIm..Jn DYNAMIC, otJf $.S..flen'lp. &
TERM 11nspecLletVet)/

= = Walt lor 1110 be atalled up (ready lor Input)
sink (IWAIT progr.m.Jnl

'" = Send It the eomlnlnds 10 . tlll wor1c
lAPPEND progrIlTL.In ICkI • hom laourc llllj
'APPEND progrlRl.-ln build t"tobl
.EOF proQl'lrrLJn
= = Send II In end 011111

GUARDIAN 90 Interrace Functions

.SET . ,atLllrn. [,tlrnes,.mp] [RecOtd the s lartJng t,me,)

= .. Prln' lINden. first "brNkpoInl" name (St,rt)
IOUTPUT

IOIJTPVT /COlUMN 5, HOLOI
IOUTPUT /COLUMN 40. HOlOi
IOUTPUT /COlUMN 55, HOLOI
KlUTPUT /COLUMN 701

breakpolrll

"'" ...
elapsed

fOUTPUT /COLUMN 5, HOLDI name
tOUTPUT /COLUMN.o, HOLOI lIme
fOl1TPlIT /COlUMN 55, HOLOI "me
tOUTPUT /COLUMN 701 lime

IOUTP\IT

1OUTP\JT\I/COlUMN 5, HOlOi bre.kpo!nLname

"'. Begin loop which will. lor orellkpoint"o be hit and
.... r.cord. lhe lime spen, between each pal,
w.ILIOf_breakpolnll

?SECTION prinLbreakpo/nLllmes TEXT ==a.= •• _ •••• :.a#~aBs_ •••• =:====.z __ • __
... Funclion 10 prlnltl'le ""Ikpolnls encountered and the
,. = lime elapsed between NdI pilI of breakpolnls •••• : ••••• B •••• _ ••• __ Z.,.=;=== •• ~: ____ •• ~
ISET eI.pled_tlme [ICOMPlITE ItO,Lllme - sllfLUme[

.. = PTlnl etlPMd time lor code AFTER lui btukpolnt.
= = lhen neme of the bfllkpo/nlWl j~1 hll
IOUTPlIT ICOLUMN.o, HOlDI'[conllme_lo_texLllmfI

[1cOn1in,. (SllfLllrMm
toUTPlIT /COlUMN 55, HOLOI[conIIIM_to_texLllme

[l(:Onllme 111000_lnnem
IOUTPUT /COlUMN 10/ [conhme..IO_lexLllme

[' cont,me lello,.,;Lllmem

IOVTPIIT\"ICOLUMN 5. HOLnt bf .. kPOlnL,,,,,,,

Using Variables for Process I/ O
F1vur.2.

PROGRAM_TIMER
can be used 10 make
elapsed-time performunce
measurements on pr0-
cesses \Io"ho.se actions ure
comrolled through
INSPECT breakpoints.
This ~'('rsion qf the rou
tine was used W fTII!'(lSUf?

BIND performance. The
routine's imp/kit
ISER VER is the IN file
qf the process (supplying
commands to it). The
explicit serwr-/iie name
is used as the TERM qf
the process so that
INSPECT's input and
outpul can be manipu
lated. PROGRAM_
TIMER also has a sub
function (get.Jxeak
poinlJ'QUline) that ust's
'DELTA to exlrocl i'llor
mation/rom INSPECT's
OUtput.

TACL implements many of the most useful
GUARDIAN 90 procedures as buill-in func
tions. These functions are easy to use, as
TACL converts the values supplied as input
(numeric or plain text) to the proper for
mats, fills in required parameters, calls
GUARDIAN 90, and converts the returned
values to text. On GUARDIAN 90 calls that
return multiple values (FILEINFO, for exam
ple), TACL obl3ins only the items users spec
ify. Some of the GUARDIAN 90 procedures
TACL supports are shown in Table I.

When users start a process with TACL (by
explicit or implicit RUN, or by using
#NEWPROCESS), the process can use TACL
variables as its IN, OUT, and/ or TERM files.
In addition, if the program uses logical file
names, users can direct the program to use
TACL variables in place of other physical files,
as well. This is the server· file feature ofTACL.

When server files are used, TACL can deter
mine the contents of the process' input vari
able programmatically while the process is
running, and it can examine the contents of
the process' output variable at any time; that
is, TACL is in complete control of the process.

36 TANDEM S"'STEMS

An example of the use of both explicit and
implicit server files to control a program run·
ning under INSPECT is shown in Figure 2.
Figure 3 demonstrates how a program that
gets its file location by reading an ASSIGN
message might use a TACL variable instead of
a disc file .

.e. ... IEW FEBRUA I 9 I ,

,

?SECTION "'I ILfor ..,.brMkpoIntl TEXT
"'s=:g= ••• ··············· "' ····::··:=::··:
"': RecuraMluncl10n ItI" "'11" fof btelkpolnlJ 10 t:. hll and
'" '" reports on In.m
=:"':ss =.s •••••••••••••• • •• ·. s •••• :::zz:.

"' .. WlJt for INSPECT MINdy tor tnpullmeanlng a
,. '" brUlcpolnl hal ~ ~ 0FI1of IN program to
:::0 Slop
[ICASE [,VARlABlEJN F'O IVAfMBL£i

[MAlT 1nape<:1-!1'I progrwn.. _ tItUlD

,nl(l8CLJnI
tSET Slop_tHM I. tlrnntamol

"' '' 011 btukpomllOcltlOn lrom tNSPECT outPUt
"'. and pnnl , (.\Ostla
oeL~""pOInt...Jl8f1'le
prlnLbreakpol'LIIIMA

If . Inrow y INSP£CT outPUt
,set Inspec:Lout

"' .. teaume eXIe ItIn oVId ..,.1 IOf oot bl'Ukpolnt
ISET " "LUme I. ImIIIlmPI
MPPENO Inspeo IN ~

walLfOf_bfelllpolnh

PogrIlTLSIItUS'
tsET lIot;U!1TIe [11 III

tSET brNJu)ol,t nan. S :III
prlnLbfw,k$lIMnt- I

OOUTPIJT

[Puntatllrstlelon)
Ilut btllkpoitlll

tOlITPUT Kit ng..,.,., pn.p.c;L ' &
('SfRVf:R no: I ,,*~D I Dlillte the __ I

Ihle lot INSPECT. I

T.bIe , .

GUARDIAN 90 procedures and the equlva.[en t TACL
OUA"OIAN eo pnlCedutl TACL bunt.ln
File 1)'IIMn

creale (partially l uppoort.dl
deYleIInlo -- -

hlelnlo

ne_tlilan.me
PfOCeslflleMc:ul'1ly

'M_
open, wrlwreldfrMo. and eloM
open. write. and eloM
open and elol;e

wrillfeld

open and elol;e
Pf'OCfts con~

ICtival8(lfOeq1

!!!erPl1twlly
CIIIt8PfOeeUn."..

Cre&teremotenama -""'- -_ IfI'II! Of 081ppcM,ntry

flewPfOCeq Of newproeq'~alt-
PI'Oeft.lnlo

!!,OJI

• y

' cr.,,,111e
'dftlC.'nlo

'hlelnlo :-__ _

'h~xll'Ien'mI

'procanlllelMCUltty

.r.nam.
READ 'fMjuest ..

WRITE 'fMjuesl ..

"" 'Inpul_ "C"""'~"::... __ _ ,
itoI.Itput , toutpulv

ter"I.~

'erul .. emotename

.ctebugproces,

.lookupProeHl

'nlWPfOCHa
'PfOCeI,'nlo

' Slop

, . , T A N 0 E M ,

?SECTION QtcLbrukpolnLname ROUTINE
••••• : • ••• :"" ••• "':=:::::==:==::==::=::="
:. 'DELTA eornmandllo exirKI lhe breaj(polnl loe,lIon
""'rom IhilNSPECT OUlput
.:=:s: •••••• ::=: •• ====:.==== ========== ==
.FRAME
,PUSH Oe! ILcommanda
ts£T ITVPE DELTAldeltLCOmrrllndl &
GIMpec:LoutS & '" s Getlhe le~t from InspecLout
OJ & •• Go to the begInning
;5-8REAKPOINT-$ & = = Search !of -BREAKPOINT-
1N Xbr8lkpolnLn.me$' & "" = II found, put the rest of the teKI
HK .. '" InlO breakpolnLname.

.. " etaar lhe buller.

SINK ['CELTA ./COMMANDS detlLeommandsl[

'UNFRAM E

. ,

y , T E M S , E , , , w 37

,.

II

II

I
I·

II
I

Flgu ... ,

?TACL MACRO

.FRAME

.PlJSH p1'~ame. proo...stat, datLvar
'SET / IN dataUIa I datLvar

fCreate variables to run the program.'
{Load data Into tile data variable.,

:::: Set up variable. to control the servers .Imulatlng logical Illes
'PlJSH seryecllLname, serveLouLname, server-'n, server_out

:::: Get server file names for 2 logical Illes, the program will
:: = use one as 8ll Input llle and the other as 8ll output IlIe
tSET server_llLf\ame {.SERVER lIN aerver_ln / 1
'SET serveLOULname {'SERVER I OUT S8rvBf_OUt /J

=:: Save a copy of the currenl ASSIGNs, then asslgnlhe logical
= = Illes to lhe seNer names
_PlJSH _ASStGN
ASSIGN 11005, {server_llLname)
ASSIGN ItOO6, IservecouLname)

:::: Run the program using a atatus variable to teU when IIl1nlshet:
plroral STATUS PfOO-ltat. nowart I

"':: Append the contanlS of the data fila. nawcontalned In datLYaf,
E:: to tile IN Yarlable of the server slmutaung the logical lila being
"':: used IOf Inpul. Thla aJlows the program access to the data.
IfAPPENOV server_In datLyar

:: = When ali lhe data has been read lrom lhe IN vartable (serveLJnl or
:: = the program terminates IPfOO-l lat), wa can 8lCamlne tile OUT variable
"" (server_ou l), to see the resulls 01 the program.
SINK I,WAIT servlf_ln proo...stat!

tOOTPUT
toUTPUT The result. 01 the program ara:
OUTVAR sefV~If_OUI

= '" Slop the servers whk:ll_ ... running and _pop the current Ioglealille
:: = asslgna. These command. and the 'UNFRAME will leave the environment
:::: as 11 originally was,

SINK IffSERVERI KILL Itservef_l"-.f\ameD
SINK [tsERVERI KILL / [8(:IrYer_OULnameD

_POP .ASSIGN

'UNFRAME

L-________________________ ~

FIii!Uf.3.

This mucro (km()flstrQtes
tll"O TACL sen/er files
simululing 110 fifes for a
FORTRAN progrom.

TM senter names are
possed to the program
with ASSIGNs. The IN
sef"\~r-file \"tlriobie is

jilled ... 'ith the dOfOfor
the program, ond the
OUT \wiub/e receives
the program's ()UIPII/,

TACL Text Editor (NDELTA)
Although it is possible to use the #ARGUMENT
feaLUre of routines 10 interpret textual argu
ment strings, TACL has a much more powerful
text manipulation facility called 'DELTA. This
faci li ty is a programmable text editor that
allows the use of IFs, loops, and macros. It
can read and write TACL variables as well ao;
files of all types (using sequentialI/O) . The
usual editing functions, such as insert. delete,
and search, are also suppon ed, along will
upshifting and downshifting.

The 'DELTA facility can be used intene·
lively or as a low-level tool in the creation of
higher-Ic\!cl multipurpose (or specialized) text
editing functions. (The latter is done b) 'lor
ing #DELTA commands in a variable of type
DELTA.)

Figure 2 contains a routine using #DH.f.\
(gcLbreakpoinLname) which extracts a
breakpoint name rrom INSPECT proce'is out
put and places it in a variable ror use in DIller
routines.

Conclusion
TACl has many reatures Ihal make it well
suited ror implementing complex proced ures,
especially those requiring process control or
access to the GUARDIAN 90 operaling s)~tem.
While it is not a replacement ror compiled
languages, as an interpreted high· levellan·
guage it is ideal ror Quick prototyping, For the
development or applications whose perror·
mancc is not critical but whose flexibil ity is
(such as a command processor), TACL pro·
vides a complete solution.

Julia C.mpbtll has worked In Tanoem's Languagn .nd TOOl'
Qualrty Asaulloce GtOUp for two yeaq. auPl)Ort'1III PATHWAY.
the Proouct Development Toot. (POn, the FOfITAAN compllef.
and TACL Belore '4'OrkIng In SoIrw,re ~t. Julia
worked In Tandem'. Manulaclurlng MIS Group as. programmerl
analyllt lor the PATHWAY apptlcllion EMPACT.

Robin GtllJcock Joined Tandem In 1983 as a mamber 01 the
Languages and Tool. Oual1ly urlnce Group 01 Software
Oevelopment. Since lhen she has been responSible for the QA
and perlormance ... lIu&tlOf"1 01_81 producl!l. includlflO TACL
She has _I!y moved Into the Work GfOUp SoIIw.re Quality
AUl,lfaOCe PfOjact, wlMll8 she I, writing tools 10 lacll1t.'e the
testIng 01 screen-blseclIntelllCtlYe software Robin lpentiour
yea~ In softwara development a , othel companies belore c0rn
Ing to TlllClem.

J8 T A ~ D E ~ SYSTeMS It E V I E II> FEBItUAItY I , I ,

-

«

D

nth,: first calendar quarter of
1986, Tandem will release a new
COBOL compiler and run ~time
library L<1Jlcd COBOl8S .
COBOl 8S "ill nOt immediately
rcplal,;C' the current CODal com·
pil(r and run-ti me library

(referred to in this ankle as COBOl74). Both
products will be available fo r the next fe\'.
years, afler which ('OBOl74 will gradually be
phased out.

COBOl8S run nly on the GUARDIAN 90
operating s)'St~n. If is ba\ed on the new Amer
ican National Standard .. Im titute (A SI)
COBOL 1985 standard. It supporLS all of the
required modulC!\ in the rcv iMX1 American
National Standard Prog:ramming Language
COBOL, X3 .23·19~S, and hali extensions to
provide access to .. tandard Tandem facilities.

COBOl8S supports the following ANSI
standar~ modules: nucleus , table.handling,
sequentlall /~, relative l iO, indexed 110,
sort/ merge, mterpr~ram communication
and. SOUrce text manipulation. Level I of the
Optional debug module (w hich allows para· f aph tr~ces) is also supported by COBOl8S.

wo Optional modules of the ANSI standard
have not .bee~ implemented: report writer and
cfmmunlCatlons. The segmentation module is
a most entirely implemented.

I 9 • ,

Tandem's New COBOL85

COBOL85 and Ihe New Slandard
The new COBOL standard has been in the
making for some time. The previous standard
was approved in 1974; work on the new one
began in 1978, and it was approved in Septem·
ber 1985. Most of the problems in completing
the new standard had to do with its incompati·
bilities with the previous standard. Several
review cycles were nceded 10 resolve lhe prob·
terns, and there are still several areas in which
the two are incompatible.

Most COBOL programmers feel that the
changes are necessary, however, and that they
will cau.se few (if any) eomersion problems.
This is especially true for Tandem COBOL,
since Tandem implemented COBOl74 in a
logical fashion in the main areas affected by
the changes. Also, Tandem tended 10 follow
the clarified specifications as Ihey were placed
in the CODASYL COBOL Commillee Journal
of Development (JOD). Unfonunately. some
other implementors did not, and almost all of
the complaints came from their users. If
Tandem COBOL users have any conversion
problems at all. they should be minor ones.

J9

40

One might well ask why there should be a
new standard. The answer lies in the simple
fact that COBOL has existed for 25 years. As a
result, it lacks many of the aids for "struc
lUred programming" that other languages
have. This has caused maintenance night
mares and long development times for applica
tions written in COBOL.

The new standard includes most of these
missing facilities, which aid in program
design, implementation, and maintenance.
Digital Equipment Corporation (DEC) and
Control Data Corporation (CDC) presently
orfer compi lers containing many or the new
features, and some of their users estimate up
to a 500/0 reduction in implementation time
and maintenance costs. A cost/ benefit slUdy
published by the U.S. Department or Com
merce (NBSIR 83-2639) indicates thaI the red
eral governmem could save approximately
$90 million over a ten-year period by adopting
the new standard, primarily because of such
reductions .

In the 1974 standard, there were many unde
fined areas and rarely used features. In the
new standard, the undefined areas have been
defined and the rarely used reatures made
obsolete (although not deleted). These obso
lete reatures will be deleted when the next
standard is completed (in the 1990s).
COBOL85 flags obsolete features upon
request.

New Features in the
COBOL 1985 Standard

The most importam changes a re those com
monly called "the struclUred programming
features." These comprise:

• Explicit scope terminators.

• NOT options ror the "one-legged" branches,
such as AT END.

• In-line PERFORM.

• Nested programs.

• The EVALUATE statement.

Explicit scope terminators are reserved
words that can be used to terminate condi
tional statements. There is one for every such
statement. The form is END-verb, where
"verb" is IF, ADD, READ, and so on. When
an explicit terminator is specified, the ,Iate
ment becomes an imperative statemem and
can be used anywhere an imperative statement
can be used. The following example illustrates
the use of explicit scope terminator!<l (and two
other minor new features):

IF Action - "Delete" THEN
DELETE Trans-file RECORD

INVALID KEY
CALL Inv· key·process

NOT INVALID KEY
SET Some-deleted TO TRUE
ADD I TO Records-deleted

END-DELETE
END-IF

The explicit scope terminators in this example
are END-DELETE and END-IF.

Note also that no periods are used to lenni
nate the conditional statements. One of (he
biggest problems with COBOL has been the
period terminator. It is hard to see, it termi
nates everything, and it is a source of many
program bugs. If a period were inserted after
"ADD 1 TO Records-deleted." COB01.74
'A'OUld terminate the IF and DELETE and cause
a syntax error. The only periods necessary in
the Procedure Division in COBOLaS, howe er,
are after section and paragraph headers and at
the end or a paragraph.

The previous example also illus tral~ the use
of a new NOT branch that has been provided
for phrases such as SIZE ERROR, INVALID
KEY, and AT END. (These were formerly one
legged branches, but now, in each case, a NOT
branch is available.) Also illustrated is the use
of the optional word THEN after the condition
in the IF statement, and the use of SET to set
the conditional variable associated with a
condition-name to a value that makes the
condition-name true. In the example, "SET
Some-deleted TO TRUE" moves the value that
makes "Some-deleted" true to the associated
conditional variable.

TANDEM S Y S TEM S
R EV I E W. FEBRUARY I , • 6

The in-line PERFORM is similar 10 a ,"00
loop" in other languages . An example IS:

PERFORM WITH 1 fST AFTER
VARYING 11 FRO\1 I BY I UNTIL II - 12

ADD I TO Counter- I
CALL Somethill11

END-PERFORM

Obviously. this is much easier than crealing a
paragraph to conlain the performed code.
NOle the TFSf AFl ER phrase. This indicates
that the loop tesl i'!i 10 take p lace after the
loop. The defauh j, ht'fore the loop (the
COBOL74 method), and the words TEST
BEFORE are avail. bJt if the programmer wants
to be morc explicit

A nested program 1 onc thai is embedded
in some other progl"".lm. Other languages have
offered this facility for Yl'JrS , and now CODOL
does too. Nested programs enable the pro
grammer to structure lhe la"k easily. They are
superior to performed paragraphs since lhe
programmer can prev(.nt unwanted side effects
such as the chan ina of a \'ariable that was not
meant to be cha get! .. 1\ paragraph can refer
ence everything 1 the Data Division of the
performing prO(' m. A nC\led program
cannot.

A simplified e~ unple of a nested program
follows:

IDENTI FICATION DIVISION.
PROGRAM·IO. Contain ing-Program.
DATA DIVISION
WORKI NG-STORAGL SECTION_

• Note that the following has a global
• name. It can be referenced in a
• contained program.
.01 FI GLOBAL PIC xxx.

The following docs not have a global
• name. It cannot be referenced in a
• comained program .
01 F2 PIC XXXXX
PROCEDURE DIVISION.
STARTT.

CALL Contained- I.
STOP RUN.

IDENTIFICATION DIVISION.
PROGRAM_ID. Contained-I.
WORKING-STORAGE SECTION
01 An-item PIC 99. .
PROCEDURE DIVISION.
STARTT.

MOVE "xxx" TO FI EXITT. •

EXIT PROGRAM
END PROGRAM Contaj~ed- I .

END PROGRAM Contain ing-Program.

This example illustrates the use of a GLOBAL
name. If GLOBAL is not specified for a name,
it cannot be referenced in a contained pro
gram. Thus, that data can be protected .

Note that the struclUre is lop-down, not
bottom-up as it is in other languages, such as
Pascal and Ada. This makes for easier reading
and construction.

Finally. note that no ENV IRONMENT
DIVISION is needed in any program, comained
or containing. The nesting limit is seven, but
using more than twO or three levels is
unpractical .

The new EVALUATE statement allows the
testing of one or more items and the selection
of different paths depending on various cri
teria. It is similar to the CASE statemem in
other languages, but is much more powerful.
By using EVALUATE, the programmer can
avoid very complcx nested IF statements. An
example of the EVALUATE statement is shown
in Figure 1.

The example illustrates the use of IWO

"selection subjects." The first is the condi
tional expression "Balance NEGATIVE," and
the second is the data name "Customer-type."
Each WHEN phrase must contain the same
number of "selection objects" as there are
selection subjects, and these objects are paired
with the subjects positionally. In the example,
the selection objects in the first WHEN phrase
are the truth condition FALSE and the match
anything word ANY.

"'~,

EVALUATE BaJ.III:' NEGATIVE ALSO Cl,latornef-lype
WHEN FALSE ALSO ANY

CONTINUE
WHEN TRUE ALSO Preltrred

PERFORM O\Inn-pr.telted-Cultomlr
WHEN TRUE ALSO Always.l.te

PERFORM OunrHlte-customer
WHEN OTHER

EHo-EVAlUATE

DISPLAY " E.rrot~

GO TO AbortofUn

Flgu,.. t .

AnexompleQ{lhe
EVALUATE starement
Ihal uses two seleclion
subjects.

41
.. SYSTEMS 1 •• • • TAl'IDE'" --------------.....

42

The fi rst WHEN phrase is selected if the
dala item referenced by Balance is positive or
zero and the data item referenced by
"Customer-type" has any value. The word
FALSE indicates that the corresponding selec
tion subject must evaluate 10 a false condi
tion. The word ANY indicates that the
corresponding selection subject is ignored;
that is, any value at all is considered to match.
NOie that the action taken is null. The word
CONTINUE is a no-op instruction. The execu
tion continues after END-EVALUATE.

The second WHEN phrase is selected if the
data item referenced by "Balance" is negative
and the va lue of "Customer-type" is the value
"Preferred." "Preferred" can be another data
item, or it can be a constam defined with the
REPLACE statement (for example,
"REPLACE := Preferred -= = BY "'" "" I ... :E . ").

The third WHEN ph rase selection is similar
to the second. If no WHEN phrase is selected,
the WHEN OTHER phrase is selected.

An equivalent IF statement in COBOL74
'""'QUId be:

IF Balance NOT NEGATIVE
NEXT SENTENCE

ELSE
IF Balance NEGATIVE
AND Customer-type _ I

PERFORM Dunn-preferred-customer
ELSE

IF Balance NEGATIVE
AND Customer-type '" 2

PERFORM Dunn-late-customer
ELSE

DISPLAY" Error"
GO TO Abort-run.

NOie that this is harder to read than the EVAL
UATE statement. When many WHEN phrases
and selection subjects and objects are used,
the equivalent nested IF becomes quite com
plex. From I 10255 selection subjects and a
corresponding number of selection objects can
be used.

Some of the other major changes in
COBOL8S are summarized below:

• INSPECf CONVERTING enables the pro
grammer to convert one character string to
another. This feature is commonly used to
convert lowercase to uppercase.

• Reference modification (commonly referred
to as substring or byte slicing in other Ian·
guages) allows the programmer to reference a
part of a data item. Although it can be mis
used, reference modification can be a vel)
powerful and useful feature.

• External files and data enable the pro
grammer to share data and files among pro
grams without passing the files or data as
paramclers.

• CALL has been enhanced to allow the pass
ing of any elementary item as a parameter and
to allow the protection of parameters by sprci
fying thai lhey are passed by contenL.

• The INITIALIZE statement allows the pro
grammer to set items to predefined values. For
example, by referencing a group item, the pro·
gram mer can set each elementary item to an
appropriate predefined value.

• Variable· length records can be written under
explicit conlrol, and the length can be dele.
mined when the record is read.

• The REPLACE statement allows the pro
grammer to replacc one or more words with
another. This feature is often used to define
constants, such as the length of a table .

Incompatibilities
In the detailed discussion below, COBOL8S's
incompalibilities with COBOL 74 are grouped
according to whether they:

• Are likely to cause problems.

• May cause problems.

• Are unlikely to cause problems.

In each case, first the incompatibility is
described . Then an action is recommended to
help programmers avoid future problems
caused by that incompatibility when they write
COBOL74 programs.

TAI'IDEM SYSTEMS REYIEW ' F EBRUA RY 1916

7

IncompatibiliLies L1kel) to Cause Problems

I. COBOL8S has 49 OC" reserved words.
2. SEARCH AU now ~ a binary search.
3. Many new 1-0 tatus codes have been

added.
4. Numeric exccplions may abort a run.
S. Arithmetic re:.ults may differ (because of

greater preci. [on In COBOUS) .

6. Short record on fixed· length files do not
abort a run

7. Subscript evaluation differ\ in STRING
and UNSTRI N(,.

8. Multiple source prog oms in a compiler
input file nov. requlfc terminalors .

9. OPEN ' -0 or ; XTEND on a nonex isting
file docs not cre .. te Ihr file.

New Rlsln'td U(JI'ds. me 49 new reserved
words are listed at he r1j?hl. Of them, 19 are
END-xxx statemen (where xxx is a verb like
IF) and the rest ar other words. TEST. ANY,
TRUE, and FALSE rt probably the mOSt likely
to cause problem ias:~tics are given when
t.hese \\'Ords are mi lSCd. but the diagnostics
may be confusin (Inte I",-'Orrect syntax is
being diagnosed).
Aclion. This incompatibility has proven to be
a minor problem. Avoid u!o.ing the new v.ords .
When the transfer to C080L8S is made. the
REPLACE statement can be used to help
alleviate the problem Also, 'iCveral conversion
programs should be a\ailable from vari0U5
software vcndors to change reserved words
(and make other change~) automatically.

SEA RCH ALL. COOOl.14 docs a seri al
~arch.' so an itcm rna)' be found even if the
Items 10 the table are in incorrect order. A
compatibility warning diagnostic is provided.
Also, if the standard SEARCH ALL rules arc
no~ followed in the syntax of the statement, a
senal search is done.
AClion. Make Su re that the table is in order
and that all rules are followed for SEARCH
ALl.

New {-o Status Codes. COBOl74 produces
status codes "00," "30," "90," and "91."
instead of the new codes. Two situat ions are
most likely to cause problems:

• Opening an optional fi le that is nOI present
produces 1·0 status code OS when status code
00 was produced in COB0L74. (Also, for an
optional file opened for 1-0 or EXTEND, 1-0
stalUs code OS is rcturned by COBOl8S if the
file was created .)

• Executing an OPEN or CLOSE statement
wilh options such as NO REWIND,
REEL/UNIT, or FOR REMOVAL for a device
that does not support the options resul ts in
status code 07 rather than status code 00.

In both cases, the operation is successful. A
liSl of the differences is provided in the
COBOL85 Riiference Manual. No diagnostics
can be provided.
Action. Take care in tcsting for specific codes
0[00,30,90, and 91.

New reserved words in COBOL85.

ALPHABET
ALPHABETIC·lOWER
AlPHABETIC·UPPER
ALPHANUMERIC
ALPHANUMERIC·EDITED
A Y
BINARY
CLASS
COMMON
CONTENT
CONTINUE
CONVERTING
DAY·OF·WEEK
END·ADD
END·CALL
END·COMPUTE
END· DELETE

END-DIVIDE
END·EVALUATE
END·IF
END·MULTIPLY
END· PERFORM
END·READ
END·RECEIVE
END·RETURN
END-REWRITE
END·SEARCH
END·SfART
END·SfRING
END·SUBTRACT
END·UNSfRI NG
END·WRITE
EVALUATE
EXTERNAL

I· •• ·TA~DEM
It E v I I! W

FA LSE
GLOBAL
INITI ALIZE
NUM ERIC-EDITED
ORDER
OTHER
PACKED-DEC IMAL
PADDING
PURGE
REFERENCE
REPLACE
STANDARD-2
TESf
THEN
TRUE

4J

Numeric Exceptions. Numeric exceplions
(such as an arithmetic overflow) may abort a
run if SIZE ER ROR is nOI specified. COBOl74

does not detect

COBOL85 ensures more
accuracy jar arithmetic

operations than does
COBOL74, and it never
truncates digits jrom the lift.

these, and thus,
incorrect values may
be produced. Also,
invalid data in a
numeric dala item
(such as being ini
tialized 10 spaces)
may cause an abort.
COBOL74 would
process the bad

44

data , giving undefined results (spaces would
be treated as zeros, however). No diagnostics
can be provided.
Action. Use care in calculations, and use SIZE
ERROR when exceptions are possible . Make
sure numeric data items are initialized
correctly.

Arithmetic Results. Arithmetic results may
differ. COBOl74 does nOl produce as many
digits to the right as COBOl8S does, and it
~metimes truncates significant digits from the
left witholll any indication, if SIZE ERROR is
not specified.

COBOl8S ensures more accuracy for
arithmetic operations, and it never truncates
digits from the left. Note that a run may be
aborted as the result of an arithmetic overflow
condition in conditions that previously
resulted in left truncation or right zero pad
ding. No diagnostics can be provided.
Acrion. If the accuracy in an arithmetic
expression is Questionable (especially for divi
sion) , use individual ADD, SUBTRACT, MUl.
TIPlY, and DIVIDE statements to control the
accuracy. Use the SIZE ERROR clause to detect
any possible left truncation, if necessary.
(Note that it involves more overhead. NOle
also that exponentiation with fractional expo
nents, e.g., 0.5 for a square rOOl, exists in
COBOL8S.)

TANOEM S Y S T E M S

The REA D Stolemenl, READ allows shon
records to be read from fixed-length files,
while COBOl74 aborts a run if it encounters
these . No compiler diagnostic can be pro
vided, but a me status value is defined for
such an operation.
Action. None can be taken. Do not 3S'iUme the
run will be aborted if a file with short records
is read. COBOL8S allows a check for file status
"04." COBOl74 programs can be modified at
any time to check for status code "04," .. ince
it has no effect until the program is run on
COBOl8S. In any case, there should ne er be
such records .

UNSTRING and STRING. UNSTRING and
Sf RING evaluate all subscripts al the start of a
statement. COBOL74 defers some subscript
evaluations until before their use. A compati
bility warning diagnostic is provided
Action. Do not rely on the deferment of the
evaluation. In general, using value~ changed
during the execution of a statement as \ub
scripts within the statement (except in
SEARCH and PERFORM) is poor prOf"ram
ming practice.

Multiple Source Programs Per Compilalion.
Multiple source programs in one compiler
input file that are not separated by ?ENDUNIT
directives are perceived differently by {he twO
compilers. COB0L74 views them as 5(.·parately
compiled programs. COBOL8S assume'i them
to be nested within the first program. Since
the END PROGRAM headers arc not there, a
diagnostic is produced. Also , other diagnos
tics may be produced for constructs banned
from conta ined programs.
AClion. Place an ?ENDUNIT directive a fter
each program. This is a good practice for any
COBOL 74 program or COBOl8S program that
is separately compiled. In COBOL8S, do not
place an ?ENDUNIT directive in front o f any
contained program, since the direc tive termi
nates all nesting. TI1ere are no contained pro
grams in COBOL74, so using ?ENDUN IT
directives does not cause problems.

F E BR U AR Y I , 8 6

OPEN 1-0 or EXTEND on Q NOllex;steftt File.
OPEN 1-0 or EXTEND on a nonexistent rile
results in an unsuccc~sful open if OPTIONAL
is nOI specified in the SELECT clause.
COBOL74 creates the file and does not allow
OPTIONAL in the SELECT clause for indexed
or relative files. CQHOl8S creates the file if
OPTIONAL is specified. No diagnostic can be
provided.
Action. Add OPTIONAl to the SELECT clause
for the file, if it is ~quential. For indexed and
relative files this cannot be done in COBOL74,
so it will have to be add~d when the program is
converted to COBOl 85

Incompallbililies ThaI \fay Cause I'roblems

I. A store to a group 'ish an OCCURS
DEPENDING ON dil"f(.·r-o, based on whether
or not the "depending-on" ilem is in thai
group.

2. ALPHABET should arpear in froOl of an
alphabel clause

3. The initialization order of muhiple
VARYING idemifleTs in PERFORM differs.

OCCURS DEPE.\'D"G 0.\. A store to a
group wilh an OCCuRS L)£.:PlNDING ON
(ODO) uses the mcuimum \ize if the group
contains the depending-on ilem. and it uses
the specified size if the group docs nOI contain
that item. COBOL74 ~ the maximum size
e~cept in UNSTRINU. ,\ compatibi lity warning
dlagnoslic is provided.
Action. Do nOI usc a group COnta ining an
OCCURS DEPENDING ON as a receiver in
UNSTRI NG. This operation would not be usc
ful and would be very mi~leading to a mainte
nance programmer. Ir it is uscd, make su re the
depending_on item has the maximum value
before UNSTRI NG is executed. Also, do not
assume thai any items with subscripls grealer
~han the re~uhing value in the depending-on
Item COnlam useful infonnalion.

ALPHABET. The ~ord ALPHABET should
appc.ar before an alphabel clause. This
requlr~ manual conversion. since COBOL74
doesn t recognize ALPHABET. Ahhough lhe
~~ndard requi~es ALPHABET in all instances,

BOL8S requires il only when "ALPHABET
~habel-name IS system-name" is specified.
(rrently, lhe only system-name in COBOL8S

is EBCDIC. NATIVE, STANDARD-I, and
STANDARD·2 are nOi sYSlem-names.) A
diagnostic is given for "alphabet-name
IS EBCDIC" if ALPHABET does not
precede it.
Action. Since COBOL8S accepts all const ructs
that are legal in COBOL74, no aClion is neces
sary. II is recommended, however. thai
ALPHABET be insened in such clauses when
programs are convened. in order 10 make
lhem compatible with the standard.

Multiple t?o1R }' ING Idelltifiers i" PERFORM.
The inilialization order of multiple VARY ING
identifiers in PERFORM has changed. This
only affects a program using such an identifier
in a FROM or BY phrase (e.g., PERFORM PI
VARY ING X FROM I BY I UNTIL X _ 3
AFTER Y from X BY I UNTIL Y _ 3). A com
patibililY warning diagnostic is provided.
Action. Do nOI usc constructs like this. It is
poor programming praclice, and the results
are nonobvious.

Incompatibilities Unlikely 10 CIlU~ Problems

I. "A LL literal" produces differenl results if
associated with a numeric ilem.

2. A figuralive conSlant is not allowed in the
CU RRE CY SIGN clause.

3. "P" is nOI allowed in PIC strings for a
relative key.

4. LINAGE cannot be specified for a file
opened with EXTEND.

S. CLOSE REEL/UNIT WITH NO REWIND
is no longer legal.

6. Changes have been made in READ or
RETURN INTO.

7. ADVANCING PAGE and AT EOP are not
allowed in the same WR ITE statement.

8. Independent segments have been delcled.
9. An index data item is four bytes rather

than two.
10. ON OVERFLOW in a CALL is taken if lhe

program cannOI be found .
II. TIle size of LINAGE-COUNTER has

changed from PIC 9(5) 10 PIC 9(4).

" 1"6 · TA/IIDEM ------ ---------------~

46

ALL Literal. "ALL literal," as in

ALL "9"
may produce differem results when associated
with a numeric or numeric-edited data item.
In COBOL8S, the literal is repeated; in
COBOL74 it is not. In COBOL74,

MOVE ALL "9" TO PIC 99V9
produces 09.0. Some implementors produce
99.9 and some 99.0. COBOL8S produces 99.0.
A compatibility warning diagnostic is
provided.
Action. Don ' t use "ALL literal" with such
items. It is misleading and of no use. Also, it
is an obsolete item and will be deleted from
the next standard .

Figurative Constants in CURRENCY SIGN
Clauses. A figurative constant is not a llowed
in a CURRENCY SIGN clause. For example,

CURRENCY SIGN IS ALL "I.:'
is invalid, and a diagnostic is given.
Action. Do not use this type of construct.
Since ALL means nothing in this context, it is
confusing and redundant.

"p" in PIC Strings. "P" is not allowed in PIC
strings for a relative key data item (e.g ., PIC
99PP to access every 1000h record). A diag
nostic is given.
Action. Do not use a construct of this sort. Il
is misleading, and the results are not defined.

LINAGE Clause. The LINAGE clause cannot
be specified for a file opened with EXTEND.
A diagnostic is given.
Action. Do not use LINAGE for files opened
with EXTEND. The results are undefined and
not what one would expect.

CLOSE REEL/UNIT WITH NO REWIND.
This construct is not allowed. A di agnostic is
given .
Action. Do not use this construcl. In
COBOL74, it leaves the reel at the end during a
reel swap, requiring the operator to rewind the
reel manually. This makes no sense and i an
extra burden on the operator.

IN TO Phrase in READ and RETUR N.
READ and RETURN now allow an INTO
phrase if only one record description is c; Jbor
dinate to the file-description entry, or if ill
subordinate record-description en trie~ a •
a lphanumeric or group entries and the IN fO
item is also an alphanumeric or group entry.
For example, multiple record descriptions. with
an edited INTO item are no longer allo~'d A
d iagnostic is given.
Action. 00 not use the INTO phrase in uch
instances. The results are not what woultll:>e
expected, anyway, as no editing or scali I
takes place.

ADVANCING PAGE and rop with WRITE.
WRITE no longer allows ADVANCING PAGE
and AT EOP in the same sta tement . COBOL74
always takes the EOP. A diagnostic is gi"cn.
Aclion. Do not use this construct . Since the
EOP is always executed, the AT EOP phrase is
redundant .

Independent Segmenls. Independent segments
have been deleted . This affects only the targets
of ALTER statements. A di agnostic is pro
duced for ALTER statements that refe rence
paragraphs in independent segments.
Action. Do not use ALTER. It is extremely
poor programming practice to do so . It is
obsolete and will be deleted from the next
standard, as will segmentation.

TA N D E M S Y STE M S REV I EW . FEBRUARY 19.6

Index Data Items. An index data item is now
4 bytes rather than 2. A compatibility warning
diagnostic is provided .
Action. Do not usc index data items. (They
are defined by USA(j~ IS INDEX.) Such items
are nOI useful and can easily cause nonobvious
bugs. NOle that an index defined by the
INDEXED BY phr&e "'!thin an OCCURS
clause is not the <;snl{" as an index data item.
No compatibili ty problem exists for indexes.

ON OVERFLOWIF\CEPTION. The ON
OVERFLOW/EXCfPT,O 'branch is taken if a
CALL identifier reftfrncc..t; a program that
cannot be found . ('lIUOr74 aborts the run. A
compatibility warning diagnostic is provided.
Action. Do not u'< the ON OVERFLOW
phrase, since the condit lona l code is never
executed. If it is u~d, for complete compat i·
bility, specify STOP Rl N along with it (or
some other mean!'o to lbon the run in the con·
ditional code). \Vh I COBOL8S is used, the
code is executed in IOd :ated case.

PICTURE!or U\A(i/o·COUNTER. The
implied PICfU Rl:. fl , I INAGE·COUNTER has
changed from 9(5) 10 9(4). The ma~imum
allowable number i now 9999 rather than the
previous value of 32761 No diagnostic is
given.
~c(ion. Make sure the liNAGE value specifted
In the FD does nOI exceed 9999. Since any
numbers greater than 66 or ~o make liule or
no sense, it is doubLfulthat a problem will
OCcur.

Conclusion

COBOL8S will help to reduce the development
and maintenance costs associated with COBOL
programming. The new features are not hard
to Jearn, better programs will result from their
use, and conversion from COBOL74 to
COBOLSS is simple (probably about 80"10 of
the COBOL74 programs will run on COBOL8S
with no changes). For further information
about the new COBOL standard or other more
advanced COBOL developments, contact Don
Nelson at Tandem Computers Incorporat ed ,
10555 Ridgeview Court, Cupertino, CA
95014.

Hdul'nno
COSOL8' N~M(Jnuai. YOI" land 2, Pafll105, 82'20
11.00 and 82521 11.00. lindem Compulmlnrorporalcd.

Don NeI __ till worUd al TatKlem lor Illree years, IIIe lasllwO
0/ ",hlef! __ CIeWOleCllO I,.. "'rUIng 0/ 11'11 ~llon
ph&M 0/ '''' T~ COBOI.J.5 campu. Before joinIng Tandem
helge"t 18)'Mrs ",II,. .nol'" mainframe otIIndor. 1II'OrIIlng on
campi and QPeflllng ,pfem .. Whllethefa.1'II WOfked on IIYe
dlll.,.,..1 COBOL compIlefa. He"u been on 11'11 COOASYL
COBOL COmmlu .. llnce t97lend"u been III ch,lrman ,lnee
,on

I

I

I

4J
I • • • TANDEM S'r'STB M S --------------...

48

Managing System Time
Under GUARDIAN 90

he timekeeping services
offered by the GUARDIAN
operating system were signif
icantly enhanced in the BOO
sort ware release. As
explained in the article,
"New GUARDIAN 90 Time

keeping Facilities" (Tandem Systems Review,
June 1985), GUARDIAN 90 now supports:

• Four-,,"'Ord, microsecond-resolution time
stamps based on the Julian date.

• CPU clock-rate averaging.

• Clock-rate adjustment.

• Automatic Daylight Savings Time (OST)
adjustments .

• Julian-date conversion routines.

• A callable procedure to set system clocks.

• An optional IN file for the cold-load Com
mand Interpreter.

This article focuses on techniques for the
accurate and reliable initiali zation of system
time on Tandem computers usi ng the
GUARDIAN 90 operating system. Familiarit y
with the timekeeping terminology defined in
the previous article is assumed .

System Time
Software designers and users of masl com·
puler systems usually assume thaI sy..tcm lime
is a lways sufficiently accurate for their pur·
poses. Implicit assumptions are that sy .. tem
lime is monotonically increasing (i.e., Ihallhe
clock never runs backwards), that "y'Stem time
is kepI accuralely by the compUler, and that
the system clock is somehow aJwa)'~ ialized
accurately.

It is important to understand hoy, 'articular
systems keep lime in order to verify whether
these assumptions are ... aljd.

The Tandem Syslem Clock
In Tandem computer systems. there b no "sys
tem clock" per se; instead, each processor has
its own hardware clock. Becau.!IC all docks are
kepI synchroni zed, programs can be designed
as if there ere a single system clock.

The operating system is responsible for
keeping these clocks synchronized.
GUARDIAN 90 accomplishes this task byaver
aging the values of all processor clocks an~
adjusting the individual clocks to agree with
the average. By averaging the processor clocks,
GUARDIA N 90 keeps system time more accu
rately than pre-BOO versions of GUARDIAN
did. Measurements indicate that processor
clocks in GUARDIAN 90 systems are usually
synchronizccl to within 5 ms of each other ;
however, even with the averaging mechanism.
clock times nuctuate, and differences of 15 rnS
bet\\-een processors are sometimes present.
Thus. applications should be designed so as
not to rely on perfect synchronization of
c locks in all processors.

TANDEM SYSTEMS ItEVIE FEBItUARV .986

The GUARDIAN 90 clock-rate-adjustment
algorithm requi res that clocks runnin~ ~asler
than the average be slowed down. This IS

accomplished in a manner transparent to
all programs. Successive calls on the
JULiANTIMESTA\lP procedure within the
same processor alway!!)'ields monotonically
increasing values (unlcv~, of course, the clock
is reset). TIle same is true of the RCLK instruc
tion, with one exception' because the RCLK
instruction returns the Local Civil Time
(LCf), it "jumps" whcnf\cr a Daylight Sav
ings Time (DST) tram.ilion occurs. Applica
tion designers are therefore encouraged to use
the JULiA NTIMESTAMP procedure. It returns
the Greenwich Mean TmlC (GMT). which is
not subject to DST fluctuations .

Microsecond-resolution rime keep ing
Some applications u,~ fUTlc!'tlamps as unique
identi fiers of transactions. In such a situation,
it is important to not,. that the resolut ion of
the clock may be mOTe importanlthan the
accuracy of the eloct J~ more than one event
can OCcur within a clock "tick," the resolution
of such a timestamp prohibits its use as a
unique ident ifier. r·ol uample, in most com
puter systems, a timesl amp ha\'i ng a resolution
of one second is not uft Ie icnt for use as a
unique identifier, because !iCveral events may
OCcur within one second
. The timestamps provIded by GUARDIAN 90

tlmekeeping scrvice~ are fouf.\\o'ord time
stamps, based on (he Julian date, and they
have microsecond resolution (which, as sug
gested above, is nOf the same as microsecond
accuracy).

Recovery of Clocks after fI Po\\ocr Fai lure
As mentioned earlier, each processor in a
Tandem system has its own clock, supported
by t~ operating S)'Mem and microcode and
relYing upon the prOCC\sor hardware. If power
to the ~rocessor is lost. the clock stOps. When
PO~er IS restored , the clock starts running
again .

If POwer is restored before the battery
bac~up is exhausted, a Tandem system auto
matically performs po\\oer-failure recovery If
POwer . .
b remams off for so long that the battery
ackup is unable to preserve the contents of
~Ory, however, it is impossible to recover
rom t~ POwer failure, and a cold load of the

sYStem IS required.

When power is restored (assuming the bat
tery backup was not exhausted), the clock in
each processor takes up exact ly where it left
off when the power went down. As part of the
power·failure recovery process, the operating
system then resynchronizes the clock.

If all processors lose power and power
failure recovery is performed, GUA RDIAN 90
synchroni zes all clocks to the fastest clock in
the systcm. In th is case, the clocks are syn
chronized, but system time is incorrect by an
amount equal to the du ration of the power
oUlage. The front panel lights indicatc that a
power-failure recovcry has occurred.

If the power loss is transient , it is possible
that only some processors lose power (and
subsequently undergo powcr-failure recovery).
In this case, as long as at least one processor
in the system does not lose power, the operat
ing system synchroni zes the clock of each
processor that lost power with the clocks of
the processors that continued to run.

Selling the Clock-An Operations Headache
The operations slaff traditionally is responsi
ble for initializing the system clock. With SOllle
exceptions. discussed later, system time is sel
by an operator at cold-load time, after a
po"er failure recovery, or when somcone
notices that the syslem time is incorrect.
Unfort unately, every time someone enters lhe
date and time manually. il is possible that the
system clock is being sct incorrectl y. At best,
the clock is being SCt within a few seconds of
the wall clock time or the operator's wrist·
watch. At worst, the operator may enter the
wrong date.

One new feature provided by GUARDIAN 90
is the SETS YSTEMClOCK procedure. Another
useful feature is (he abi lity to spec ify an input
file for the initial (cold- load) Command [nter
preter. Together, these features provide sev~ral
alternatives 10 the familiar method of reqUL r·
ing the operator to SCt the system clock. (~ee
the GUARDIAN 90 Software Documentallon,
or Softdoc. and ellen. 1985. for details on
the SETSYSTEMClOCK procedure and the
cold-load Command Interprcler IN file .)

50

The COM INT SETTIME command checks
the syntax or date and time specifications,
requiring only that they be reasonable (i.e.,
nOt impossible) and unambiguous. For exam·
pie, it does not allow the system clock to be set
10 a Local Civil Time that is within a Daylight
Savings Time (DST) transition period, because
such a time specification is ambiguous. Ir it is
necessary to sel the system clock to a time that
is within a DST transition period, the operator
must speciry the lime as Local Standard Time
(LST) or Greenwich Mean Time (GMT),
which are nOI ambiguous.

Ir it is not acceptable ror an operalor to sct
the system clock (because or the inaccuracies
inherent in this approach), there are IWO basic
alternatives. One method is to allow the opera·
tor to set the clock in itially, during the cold
load, and then run a program to veriry and
possibly adjust the ti me aFter the cold load is
complete (but berore applications are a llowed
10 start). The other method is 10 set the system
clock programmatically, using an external
clock.

Checking the System Clock
Even if a system does not have an external
clock, there are ways or checking the system
time as set by the operator. Ideally, one would
like 10 validate the time when the SETTIM E
command is entered by the operator. SETTIME
is perrormed during lhe cold load, however,
and there are complications that make this
impractical. Thus, it is necessary to write a
program (call it CLOK CH EK ror purposes or
discussion) that compares the system time
against some other time rererence aFter the
cold load has been completed .

CLOKCHEK would have to get a timestamp
rrom some rererence sou rce, obtain the current
system time by calling JU LIA NTIM ESTAMP:
compare the two values, and then determine'
whether or not the current system time was
reasonable. Further protection could be
arforded by having CLOKCHEK inhibit the
start·up of applications if it found the system
time to be in error.

To implement a CLOKC HEK program, one
must first find a reliable source of timestamps
that can be compared with those provided by
the JUUANTIMESTAMP call . The following
might be used:

• A file containing the oldest and nc~est
dates allowable. The CLOKC HEK program
would compare the current date with ent ries
in this file.

• The SYSGEN time obtained via the
JULIANTIMESTAMP procedure (..... hich is
returned as a GMT timestamp). A\~uming the
time was correct at the time of the SYSGEN,
the SYSGEN time could be used as a lower
bound for the current time.

• Another node in the network . Current ly,
one can send a request to a server on another
node for the cu rrent GMT from the other
node. The requester must, of course measure
the amOUnt of time it takes to get a I :ply from
a remote server and adjust the GMT .• due by
the transit time. This method should ~ accu·
rate to within a few seconds , but it 3.'or,umes
that another node" it.b a server is ICC ... ible
and that the lime is set correctly on LO other
node .

• An X.IS network. Some public X.2 packet·
switching networks maintain a clod, that can
be read via a special request packet. The: accu·
racy of the time received is influenced by sev·
eral factors, such as the accuracy of the clock,
the type of communication lines used, and the
Iransmission delays involved. Generally. the
Lime should be accurate to within a rc"" sec·
onds of the network clock's actual ti me , which
may be sufficient for many applications. Pro·
spcctivc users should discuss these problems
with the vendor of such network services.

External Clocks

External clocks provide a much more reliable
way of initializing system time. By con fig·
uring a system 10 use the initial cold· load
Command Interpreter IN file, one can run a
program that obtains the time from an e.'~ter·
nal clock and calls lhe system procedure
SETSYSfEMCLOCK to initialize the system
clock. Refer to the GUARDIAN 90 Software
Documentation, or Softdoc, and Nellen, 1985,
for details on the SETSYSTEMCLOCK proce·
dUfe and the cold·load Command Interpreter
IN file .

TANDEM SYSTEMS
IIEVIEW ' FEBRUAIIY I 9 • ,

I.

For purposes of this discussion. an external
lock is a hardware de\-'ice that has, minimally, c . .

the following charactenstlcs:

• It contains a precision digital clock and
calendar.
• It can be attached \- ia a .(andard interface
10 a computer syslem

• It can be interrogated for the date and
time by programs runmng on that computer
system.

Selecting an External Clock
Many external clock arc a\-'ai lablc. Selecting
an external clock (hal "ork!. well at a specific
site is nOI a trivial tH~ The following is a
general discussion of som or the features one
should consider.

Accuracy
The primary requirt lent for any clock is to
keep time accuratel) As a minimum, the
clock should be accurate to wilhin one second
per day; however, «>me applications require
greater accuracy.

Electronic clock) Ie ~ommonly driven by
one of three mechani m .. , lch of which offers
a different level of a""'lJ"ncy.

• An internal oscillator. u\ually crystal.
controlled and temperat ITe.compensated for
reasonable accuracy.

• Synchronization to ttl<: power·li nc
frequency.

• Synchronization 10 radio broadcasts of a
time standard.

Most crystal--comrolled clocks arc accurate
to within 100 ms per day or better, depending
on the quality of the cry .. tal. Such clocks need
a battery backup in case external power is lost.
~ second tYPe of clock phase-locks its

OSCillator to the line frequency. This is a sim
ple and effective way of keeping time aceu.
rately because the utility companies must
synchronize their power grid \'cry closely in
~d~r 10 share power. The Line frequency in the

nned States is maintained to within one
cycle (1 / 60 of a second, or 6.7 ms) per day.
the Ext:r:nal.eJocks capable of synchronizing to
ab'I!'O er-Ime frequency generally have the

I lIy to Switch to their internal oscillator

, , .

automatically and run on an internal backup
banery if the line power is lost. Then, when
external power is avai lable, they synchronize
to the line frequency again.

If power for the computer system is supplied
by an Uninterruptable Power Supply (UPS),
one should determine whether the UPS OUIPUI

is synchronized to the commercial power.li ne
frequency. If it is not, Ihis may create prob·
lems for a clock that relics on the line fre
quency as a standard, because frequency
regulation in the UPS system may nOt be as
accurate as that of the commercial power grid.
In such a case, one would want either to con
nect the external clock to the commercial
power line or to disable the synchronization of
the clock to the li ne frequency and allow it to
use its internal c lock.

Some clocks that
rely on the power
line frequency can
be fooled by tran·
sient noise spikes.
They run fast
because they detect
the noise in addition
to the line voltage
peak. If a particu·
lar clock is affected

External clocks are much
more reliable for initial

izing system time than
checking the system time
set by the operator.

by such noise, a simple power-line noise filter
may solve the problem.

Distributed applications (Le., those that
must access several geographically separated
computer systems connected in a network)
often require that system times at each node
be in agreement. That is, each system must be
able [0 ca lculate the correct Greenwich Mean
Time.

Some distributed applications may tolerate
differences of a few seconds between nodes, in
which case it is possible to send messages to
remote nodcs 10 requcst the time (or to request
the time from public packet-switching net·
works). Some applications require grea~er .
accuracy than this, however. One solullon IS to
use an external clock that is designed to
recei\'c and decode radio transmissions of
standard time signals .

" It U A I. Y
I." . TANDEM SYSTE M S It I:. v lEW

I

There are radio stations throughout the
world that broadcast encoded time signals .
Most of these stations are operated by govern
mental agencies . In the United States, the
National Bureau of Standards (NBS) transmits
the nalionallime and frequency standard from
station WWVB located in FOri Collins. Colo
rado. The NBS uses an atomic clock to keep
the daY-la-day deviation of their lime signal to
within 5 parts in JOlI, This is equivalem 10
432 os per day. The NBS also transmits a lime
signal from the National Oceanic and Atmo
spheric Administration's geostationary satel
lites, known as GOES. Some radio-receiver
clocks are capable of detecting and decoding
the GOES transmissions.

The carrier frequencies and encoding lech
niQues used by the U.S. NBS are nOi an inter
national standard. The British governmem
operates radio station MSF, which broadcasts
a standard time signal from Rugby, England,
The West German governmcm station DCF77
broadcasts the time from Mainflingen. The

Some vendors of external clocks. *
Chrono· Log Corporal ion
2 West Park Road
Ha\'ertown, PA 1908]

Phone: (2 15) 85]- 11]0
T~tex: 83 I 579

Digital Pathways Incorporated
1060 East Meadow Circle
Palo Alto. CA 94]03
Phone; (413) 493-5344
TWX 910]79·5034

Hayes MicrocompUler Products. Inc.
705 Weslech Drive
Norcross, GA 30092
Phone; (404) 449-8791
Telex: 703500 (Hayes USA)

Hopf Elektronik KG
Postfach 1847
1m Hasle) 14 c
0-5880 luedenscheid
West Germany
Phone: 2351122201
Telex: 82669]

KinemelricslTrue Tim:
324] Santa Rosa A\'enue
Santa Rosa. CA 95401

Phone: (701) 795-2220
Telex: 675402 (Kinemelrics PSD)

Specuacom Corporation
101 Despalch Drh'e
East Rochester, Y t4J45
Phone; (716)]81-4827
Telex: 9103509587

frequencies and codes used in the United
States , Britain. and West German), all differ
from each other. A few stations in other parts
of the world use the same frequencies and code
as lhe U .. NBS. Prospeclh;e purchao;ers of
radio-recei\'er clocks would be ",ell adv ised to
determine which stations the clock can receive
and decode, and what type of antenna is
required for their specific location

An importam feature of any arlin-receiver
clock is a visible indicator, such a a light. thaI
indicates that the device is recei\'i Ie: [he stalion
and has synchronized its clock , ~ me a lso
provide protocols that allow the ... Imputer
system to query the clock and detl Illine
",hcther it is synchronized to the r: dio signal.

Additionally. one should be sun thai the
c lock automatically switches OWl ,\ an inter
nal crystal-comrolled oscillator in IhL' event of
a reception failure (and to a balle backup in
the event of a concurrent power f lure).

1any radio·receiver c1ock~ hay an adjust
ment that permits compensation f the propa
gation dela)'. Ir the distance bct\~c :1 the
receiver and the transmitter i!> knt n. onc can
computc ho", long it look the ~ignal to travel
that distance and. with the propa on-delay
adjustment, correct the clock to (.'(tpcnsate
ror this delay.

Some radio-receiver clocks alSi
adjustmemthat allo\\s correction

:':e an
Local

Standard Time. For our purpo~ .. this is not
necessary.

Other Considerations
Resolutioll . A resolution in the ranltc of o ne
tenth to one-hundredth of a second i", useful.

Calelldar. The clock should be able to cor·
rectly compute the date. even in leap)'ears.

lIuman IIIIerface. Non-radio-receiver clockS
should have a simple control panel for setting
the date and lime (and a display to show the
current date and time) . It may also be desir·
able to have a lock and key to pre\,ent unau·
thonzed persons from setting the clock.

Computer Interface. A standard interface,
such as RS-232 or current-loop. is required. A
simple protocol for interrogating the clock is
also desirable.

-12--------~~~~~~~------------------------~-
52 TANDEMSYST£MS ".,

ItE\II; fEBRUARY --_

Price. Last, but not lea", onc should consider
how much the clock co~t~ and ",hal the war·
ranly provisions are.

Commercialll Available External
Clocks
The list on page 521i~1 companies that sell
external clocks. As the Ii,t i~ not comprehen·
sive, customers should cOIl,idcr it on ly a Sian·
ing point when researching ,ource, for
external clocks. Also. before purchasing any
device, they should cOllSuli a Tandem customer
engineer and a Tandl.·m systems analyst about
the feasibility of using Ih;u device with a
Tandem computer system.

Configuring an External Clock
Most external cloch tire configured in the
same way as an a yl1(;hronoo" term inal. The
following example is typkal:

SCLOCK TAT~P ASYNCTI: RM
n PE 6. SUBTYPE O.
RSIZE '0.
BALD9600.
"OECHD.
Cl

Note that this is not if. uflIvcr.,al c:>.:ample.
SYSGEN configuration options should reflect
the characteristics of the specific device as
described in the manulacturcr's installation
manual.

The CLOCK Program
Tandem ·d be pravi es a sample program t hat can

use~ to initialilc the s~tem clock . The
~lrce IS distributed in a file called SCLOCK
~: GlJAR02 distribution subvolume of
PI ROl AN 90 Site Update Tapes (SUTs).
AI~~ n~t~ that SCLOCI..:: is an example on ly.
'd I to g It works Correct I)' it may nOI be lea ,Ora . ,
f h

particular site. Also the UV'Iuence
o c aracte h . .--'1
clock· d -:s t at It trammilS to an external
cIOCk;~:~~e.dependent; not all external
SCLOCK same Codes. Note too that
to the assumes that the externa l clock is set

correct Greenwich Mean Time.

. If SCLOCK is modified ror a specific user
site and compi led into an object file called
CLOCK, and the basic logic of the program
has not been a ltered, it can be used in one or
twO ways. The first is to run it as follows:

,RU CLOCK f iN K LOCKf

where SCLOCK is the device name of the exter·
nal clock . When run in this mode, CLOCK
reads the external clock (wice and (hen, if
there a re no 110 errors, calls SETSYSTEM·
CLOCK to set system time. It reads the exter·
nal clock twice in order to eliminate the effect
of potential page faults in the user program .
This mode of execution within the initia l cold·
load Command 100 erpreler IN file can be used
to perform the initial setting or system time.

I r the lime is to be SCt via the externa l clock
at some lime ot her than during the cold load ,
CLOCK should be run at a priorit y high
enough to avoid competition with other
processes.

The alternate way to run CLOCK is:'

,RUN CLOCK f iN SCLOCK. &
PRI 160. OWAIT. CPU x / y

Specification of a backup CPU number (y)
causes CLOCK to behave differently than in
the first example. In this case , it reads the
c):ternal clock and calls SETSYSTE~lCLOCK
immediately and also every five minutes. (It
does not terminate.) CLOCK also SCtS the sys·
tem clock whenever it receives a POWERON
system message, which indicates that power·
failure recovery has occurred.

This alternate mode of execution can a lso
be used within thc initial cald· load Command
Interpreter IN file to perrorm the initial setti ng
of system time and to maintain the synchroni·
zation of system time with the external clock.

;--~E-:,-:,~u~~--------______________________________________ ~~~~~----------------5:53

All Y"., T,o,NDEM S YSTEMS REVIEW

54

The following commands could be placed at
(he beginning of (he initial cold·load Com·
mand Interpreter IN file :

RUN CLOCK I NAME STIME, IN SCLOCK, &
PRI 160. NOWA IT. CPU 0 / 1

RUN CLOCK I NAME STlME, IN SCLOCK, &
PRI 160. NOW AlT. CPU 1 / 0

DELAY 4 SECONDS
SYSTIMES

This example assumes one can cold load via
either CPU 0 or i . The DELAY is present in
order to allow (he CLOCK program to initial·
ize the system time before anything else is
allowed to run.

Note that calling SETSYSfEMCLOCK every
five minutes should not result in a reset of the
system clock every five minutes. instead. if
the time difference between the system clock
and the requested time is small , as one would
expect . GUARDIAN 90 uses the time differ·
ence 10 adjust the processor clocks over a ten·
second interval. This adjustment algorithm
makes small adjustments transparent and
facilitates synchronization to an external
clock.

TANDE M S Y STEMS

Conclusion
The GUARDIAN 90 operating system provides
a rich procedural interface to facilitate
retrieval of system time . transformations of
timestamps. initialization of system time. and
retrieval of process execution time. By using
an accurate and secure external clod ... one can
eliminate the possibility of human error in
setting the system clock. For geographica lly
distributed systems. the use of external clocks,
which can recei ve and decode standard time
broadcasts. provides 3 simple and reliable
method for synchronizing system tim closely
across the nodes of a network.

Rtftn'nm
Ne-lIcn, E. 1985. New GUARDiAN 9OTIInC'keep hdlil ies.
11111~m 5y1fmtS R~;,w. YOI . I, no. 2. Tandnn (~[cn
Inrorponttd .

Sharma. Sunil. 198'. Ntw Process-limh", Feal:"'n Tantkm
5y1/6nS Rro·~w. \'01 . I. no. 2. liIndem Comrutcn
Incorponltd.

Spfrm Dr$cnpt/Ofl .\1011Il0l. 1985. Patl no. 1250" AllO. Tamem
Compulm I ncorponIltd.

SpfmtProcwJu"C4llh~Malluol.19!1' Pan no.
82359 AOO.1inckm Ccmpulcn IlII,':(IrJl(nled.

Eric Hellen }Olned Tlnoem In F«Irulry liN as 1"*'It)II of 1111
SOIIW.,I aullily Anuranc:1 Group. HI h.IS worlted In opIfllll'lg
IY'lems de¥eloplnenl lot 1SCWeI''')'hrI11>d.1 ell '"'"tty I mern
bit 01 thl OperIUng SplllM Kernel Group

FEBRUARY I 9 a 6

hiS IS first of a series of
7Ond~m Systems Review
column .. devoted to new and 1-= en haJU.'e'<i Tandem products.
Each .:olumn will briefly
de nbe the ne'-' or enhanced
sof ware and hardware prod·

ucts that Tandem h· rrQ.·ntly annou nced to
ilS users and the com zer ndwary.

Product Overvie
Tandem has recently 1 ~ the following
new or enhanced prQCJuCIS.

• An 8·Mbyte memory board for
NonStop TXP proces 1Of"S.

• The 6600 Intelligent Cluster Cont roller.
• A C compiler.

• COBOL and FORTR AN separate run-time
libraries.

• A COBOL85 compiler (planned for release in
the first pan of 1986).

• DYNAMITE'" workstation color models 6548
and 6549.

• EM3270 terminal emulator (enhanced IBM
3270 emulation software) .

• FASTSORT, a high-performance sort / merge
program.

• Information Management Technology {lMT}
~rodUCts FAXlINK"', PC LINK, PS MAIL

S TEXT EDIY", and PS TEXT FORMAT"'.

Tandem's New ProdJ

• A Pascal compiler (planned for release in
the first part of 1986).
• PATHWAY intelligent device support (IDS).

• TACL. a flexible command interpreter.
• An enhanced TAL compiler.

Literature is available for these products
from Tandem sales representatives. The
Programmer Productivity Longuages and
Tools product guide describes the languages
and tools. Separate data sheets are available
for FA~T. the 6600 I ntelligent Cluster
Controller, the EM3270 Terminal Emulator,
and the DYNAMITE 6548 and 6549 Worksta·
tions. Information sheets are also available ror
the IMT products.

Throughout this article, the rollowing t~rms
are used to describe the software releases m
which the new products are (or will be)
available:

• 810 the release or the GUARDIAN 90 oper
ating ;ystem made available in mid- 1985.
• 820 a new release of GUA RDIAN 90 made
available in the last calendar quarter of 1985.
• 830, a release of GUARDIAN 90 planned ror
the first half of 1986.

Brief descriptions or the new or enhanced
products follow. alphabetized by product
name. (AlIlhe IMT prodUCLS are located under
the subheading of that name.)

,.

8-Mbyte Memory Board
An 8-Mbyte memory board is now available
for NonStop TXP processors. This product
can increase the capacity of main SlOrage to
a maximum of 16 Mbytes per processor. For
large. high·perfonnance applications, (he
8-Mbyte board allows a NonStop TXP proces
sor to store large amounts of data in memory,
thus minimizing or eliminating the need for
disc access during a transaction.

6600 Intelligent Cluster Controller
The 6600 inlelligcm Cluster ComroJlcr allows
cl ustering of terminals and workstations to
reduce communications line COStS and to
allow sharing of expensive communications
resources such as phone lines and modems.
The 6600 comrols and helps manage communi
calions between a Tandem host computer and
up to eight terminals, workstations, or printers
plus one additional dedicated printer. The 6600
can support any combination of Tandem 6S3X
terminals, DYNAMITE 6S4X \\.orkstalions, and
IBM PCS or PC-compatible workstations. It is
compatible with NonStop TXP, NonStop U,
and NonStop EXT processors.

The 6600 controller communicates with a
Tandem system via SNAX or SNAX6600.
Those CUStomers who do not use SNAX cur.
remly can benefit from the 6600. SNAX6600 is
available for applications that do nO(need to
communicate with IBM SNA com rollers.

TAN 0 E M

C Compiler
With the 920 release of GUARDIAN 90, the
popular, portable C language became a\'a ilable
on Tandem NonStop systems. I 11K. Tandem C
compiler and run-time library are a~ compati
ble as possible with those in other C envi ron
mentS. Since the ANSI X3J II committee is still
working on a C language standard, Tandem C
follows the de/acto standard defined in The C
Programming Longuoge by f\erni Ian and
Ritchie.

The Tandem C compiler is derh from the
Lattice C compiler currently a\'ailahlc for the
DYNAMITE workstation and olh~1 .:omputers.
This compiler makes it pos!'ible fOl C program
modules (0 be developed on the DYII,J'A.\IITE
or a PC, transferred to a Tandem NonStop
system, and recompiled for exeCUllOI on the
NonStop system. On a NonStop S) 1',:m. a C
program can call TAL" or GUARDI \N proce
dures to gain access to more function". Small
programs running on a NonStop 'S~ I~m can
be recompiled to run on a DYNA.\tITr or Pc.

COBOL and FORTRAN
Run-lime Libraries
Before the 820 software release, the (OBOL
and FORTRAN compilers were only a\ailable
as a sel. The full set was unnece~\ary ror pro
duction systems, as they only require lhe run·
time library. With the 920 relea~, the run·(ime
library can be ordered separately, allowing
Customers to order the low-er priced run-time
library for their production S}~tems and the
completc compiler package for their deyelop
ment system.

The new Pascal and C compiler~ do not
havc separate run-time libraries. 1be library
routine.s are bound to the object program, and
thus, customers do nOt have to order the com
piler for their production systems.

Pricing for compilers has been revised.
Compilers and run·time libraries are now
charged on a per-system basis with a one- time
initiallicensc fee and a monthly license fee.

t f B R U A R l I 9 • (0

s

-
COB0L85 Compiler
I he 830 software rCIc3'iC. Tandem is
o~f~ring the COBOL8.'i compiler. (Sec the
accompanying article. "Tandem's Nc\'.
COBOl85. ") COBOLKS 'UPPO~'lS all of, the
required modules in the A.men~an National
Standards Institute (Al\iSI) rC\"l'iCd ?BOL
standard X3 .23·1985. nd ha~ extenSions for
access lO'standard r<lndC'm facilities. The
ANSI standard provld lTIany new features to
increase programmer p!'loduLli\.' il), and pro
gram maintainabilil\' A .. mentioned above,
Tandem COBOl8S contains a run-time library
which is available '>(1 tr.lte from the compiler.

COBOL8S support Ihe ((lliowing modules:

• Nucleus.
• Table handling.
• Sequential 110.
I Relative 110.

• Indexed 1/0.
I Son/ merge.

I Imerprogram com IUOlcmion.

• Source lext manirm1al on

It supports Level I 0' the Opt iona! debug mod
ule, also. Two oplio Iw.xIules of the ANSI
standard have not be, II Implemented in
Tandem COBOl8S: t rl \\-riler and com·
munications. The -.cgn • lallon module i ~
aimosl entirely implemc11led.

DYNAMITE Color Workstations
The DY NAM ITE workstation produci line
has been enhanced by the addit ion of twO
color models. Both color "Or\...I,(3Iion5 have
l4-inch color monitor"!!. The model6S48 has
IwO 360-Kbyte di~\...elle dri\'e\; the model6S49
has one J6()..Kbyte di~kclle drh'e and one
I()..Mbyte hard di,sk drh'c.

When emulating a 653X terminal, the color
models display system information in high.
Quality white characters on a black back.
ground (or, in reverse video, black on white).
Color text applications can be developed
locally with IS-DOS and BASIC. The bil
mapped graphics oplion is required (a develop
color graphics applications or to run third
party soflware for the I BM PC.

The color DYNAMITE workstation (with
the graphics oplion) provides five ways of for
malting information into color text, chartS,
and graphs. There are twO coior-texi modes
(40 x 25 and 80 x 25), twO IBM-compat ible
graphics modcs (320 x 200 and 640 x 200),
and an extendcd high-resolution graphics
mode (800 x 300) exclusive to [he DYNAM ITE.

The two color lext modcs display texi in up
to 16 different colors on one sc reen. The dual
mode design of the color monilor allows both
alphanumeric and graphic information to be
shown on the screen at the same time. Third
party color printers or color plotters can be
supported if they have RS-232 serial interfaces
and DTR n O" control.

Also available is an upgrade option, which
coO\'eriS a DYNAMITE monochrome unil 10 a
color unit. Finally, Information Xchange
Facility (IXF) software is now included wilh
all DYNAMITE models.

------------ _________________ ~~~~~~~--------~57
fE8 _ S JlEVII!W

••••• ". A_ •• _, __ '_. • .. • T " NO"" __ _ '_ '_'_'_'_'.' •. ______

58

EM3270 Terminal Emulator
The enhanced EM3270 terminal emulator per
mits Tandem users, from a single terminal, 10
access IBM 3270 applicat ions on up to six IBM
host computers using either SNA or bisynchro
nous communications. EM3270 supports IWO
way (Tandem lerminallo IBM system) and
simultaneous three-way (Tandem terminal to
both the Tandem and IBM systems) communi
cations. Terminal users can switch between
sessions by pressing the SWITCH key. or the
switch can be made programmatically from
the Tandem application.

Users of Tandem 653X terminals,
DYNAM ITE 654X workstations, or IBM pes
can run IBM 3270 and Tandem PATHWAY
applications concurrenLiy. and they can alter
nate between IBM SNA and bisynchronous
hosts through menus activated by a HOST key.

EM3270 also allows Tandem printers 10
emulate the IBM 328X famjly of printers in
both bisynchronous and SNA applications.
Each EM3270 process can support a combina
tion of 15 10 20 devices configured as termi
nals and printers.

If EM3270 is to be used in an SNA environ
ment , the BlO release of the GUARDIAN 90
operating system is requi red . EM]270 can
reside on a system that is not running SNAX
and access SNAX on a separate s~tem
through an EXPAND'" network.

FASfSORT
FASTSORT is a high-performance sort / merge
program for Tandem NonStop systems. Avail
able with the BlO release of the GUARDIAN 90
operaling system, it is an optional produci and
must be purchased separately. It provides all
lhe functions of the standard SORT program,
but it performs better and offers additional
features. FASTSORT will eventually replace
SORT.

When installed on a system, FASTSORT is
used in:

• Conversational sorts.

• Sorts invoked from TAL or COBOL
applications.

• FUP manipulation of alternate-key files.

• ENFORM sorts during report generation.

FASTSORT sorts faster seria lly than
Tandem's standard SORT program, and it
offers the high performance of parallel sorting
as well. By sorting in parallel, FASTSORT
significantly reduces the elapsed time of a
sort run by distributing the work load among
multiple processors and discs. Parallel
sorting with FASTSORT is more than seven
times faster than serial sorting with SORT.
Optimum performance can be auained by
using NonStop TXP processors, 3107 disc
controllers , the DP2 disc process, and
extended memory.

IMT Products
E~X LlNK
FAXLlNK, an image storage, forwarding, and
retrieval facility made available in June 1985,
allows users to move primed documents o r
pictures through a Tandem network using any
CCITT group 1lI facsimile machine. In addi
tion, documents created on any 327X. com'er
sational, or ITY termina l, IBM PC or
PC-compatible workstation, o r Tandem's own
6S3X terminals and DYNAMITE wor~ ~tations
can be sent to a remote facsimile de\ ICe with
OUt the need for a terminal o r worbtation at
the receiving site. Thus, elect ronic mail can be
sent together with signed letters, diagrams, or
other documents. FAX LI NK is ideal for busi
ness operations that require the routine deliv
ery of information such as orders, invoices,
shipping instructions, or design changes.

FAXLINK delivers facsimiles via a Thndem
network reliably and at low COSt , integrates
facsi miles with PS MAIL. simpli fies document
addressing, accepts input without a terminal,
stores facsimiles on-line, offers flexible deliv
ery options, achieves high performance with
out expensive devices, turns facsimile
machines into remOte printers, and includes
all required hardware and software.

PC LINK
PC LINK is a collection of software programS,
both host-resident and diskette-based. that
allows IBM PCS and PC-compatible worksta
tions that are connected to a Tandem system
to emulate a Tandem 6S3X terminal or a n IBM
327X terminal. PC LINK allows PC users to
send and receive electronic mail, trans fer files
and manipulate information stored in a
Tandem data base, and access both Tandem
and IBM host applications . These services
significamly increase a user's productivity.

TANDEM S V ST' M S ., ..
~ [EW. fE BR U"I.V I 9 • ,

PC LINK accesses Tandem and 3210 applica
tions on-line, Use5 PS \1AIL. takes advantage
of system peripheral<., and integrates syst~m
data with PC application.,. PC LINK conStSts
of four software tool<. (E\16530P • IXF/ PC,
peFORMAT"', and L:.< 11270) made ava ilable in
August 1985 ,

PS MAIL
P$ MAIL is a dilo.\ bu j elect ronic mail
system. desig.ned to provide ca")'-tD-use elec
Ironic communica Ion ,unong users of a wide
varielY of def-ktop leVI • PS \IAII lets users
of IBM 327X and n t mlinal". IBM PCs and
PC-compatible WI I ,tI n , and Tandem
653X terminals am: ~)y A lITE \\orkstal ions
10 send and receh:, 'It: [;·onk mail and 10
store. forward . ani ,I d<x'umenls electroni -
cally. P$ MAIL fo "as released in 810.
and PS MA IL for I ""Os and Tandem ter-
minals was relen.: 8,,0. PS MA IL is built
on the TRANSFER n.,[aged information
delivery software. hipped by Tandem
in 1982.

PS MAIL featur ndude built-in help. a
directory of PS \1 "IL u • fon.,ard and reply
features, user-defme d lribut ion lists,
assured delivery, ddlvt":'V certification, fac
simile and PC dcx, rot dtlhery, riling and
retrieval, efficient f ouree utilization, an
easy-to-use editor, utomal ic filing and
response facility fOI on \iacation, and
customized admin l tum.

PSTEXT EDIT
PS TEXT EDIT, avail.lble in the 820 relcase. is
an advanced, full ·'I;rcen tcx.l-ediling system
for creating reports. lb.:ulllcnls. mcmos. Ict
lers, .and computer rrogram'i. PS TEXT EDIT
provides a complcte ~t of powcrful. built-in
fe~lUres for producing 311)' kind of documem
qUIckly and easily. It orfers on-line help for all
~S TEx-r: EDIT function s, easy transfer of
I~formatlon bct\loccn documcms or within a
Single document (with a 'iplit-scrcen option)
and funclion keY3lhat can be redefined .
around YOUr particular need ... PS TEXT EDIT
can extend its po er through .;;evcral compati
bl: programs, including the PS TEXT FORMAT
pnnt formatter,

PS TEXT FORMAT
PS TEXT FORMAT. avai lable in the BIO
release, gives users complete control over the
layoUi of documcnts printcd on any Tandem
printer. A wide range of features. such as pro
portionally spaced characlcrs, subscripts, and
superscripts. lets uscrs take full advantage of
the capabilities of the Tandem 5530 daisy·
wheel printer. PS TEXT FORMAT is a sophisli
cated text formattcr. and it is very easy to use,

With PS TEXT FORMAT, users can translate
command names and error messages from
English to another language and change
parameler defaulls for paper sizes and margin
widlhs. Users can also modify the appearance
of type , design page layouts. aher leiters and
documents, formal reports, store cuslomized
formats, lime-slamp and extract information,
perform arithmetic computations in text, cus·
tomizc PS TEXT FORMAT itsclf, merge infor
malion into leXI from a distribution lisl for
mass mailings, and print and move fi les.

Pascal Compiler
The Pascal language was designed to support
modern high-level programming lechniques. II
is well siructured, casily understood. portable,
and, yct, relatively efficient. Pasca l pr08;rams
tend 10 be correct and robust. The compiler
actively assists in finding logic errors or inter
face errors at compi lation time, and optional
run-time checks help find any remaining
errors. Pasca l has especia lly good support for
multilevel data Siructures that usc pointers or
nested records.

Tandem Pascal. avai lable with the B30 soft
ware rele3SC, is a superset of the 1983 ANSI
dcfinition of Pascal, formally known as
ANSI/ IEEE 770 X3.97·1983. It also complies
with Level 0 of the Intcrnational Standards
Organization (ISO) Pascal (I~ 7185). Com
pliancc wilh both standards IS mcasu.r~ by
lhe Pascal Validation Suile of the BTltl~h
Siandards Institution . Tandem Pascal IS
extended wilh features thai facilitale large
programs, business applical ions. and systems
programming.

59
I 9 • • TA OEM SYSTEMS

--------------.~

60

PATHWAY Intelligent Device
Support (IDS)
Before the BIO software release, (he PATHWAY
transaction processing system supported only
terminal-type devices (6530, 3270. conversa
tional, 6520, and 6510 terminals and the
DY AMITE workstation). The user environ
ment has evolved over [he lasl several years,
and PATHWAY applications now need to inler
face with intelligent workstations, ATMs. POS
devices. and GUARDIAN processes.

Initially. programmers handled this require
ment by implementing muhilhrcadcd fronl
end processes, which stood between the
intelligent device and the Terminal Control
Process (Tep). These fronl-cnd processes con
verted messages into the formal required by
the message receiver. Control and device
specific information was added or deleled
as appropriate.

PATHWAY IDS, available with the BID
release of PATHWAY, eliminates the need for
front-end processes by providing increased
Screen COBOL support for intelligent devices.
With it, the TCP transmits a message to an
intelligent device when the Screen COBOL
program requests the action. This action is
translated into the appropriate GUARDIAN
write, read, or writeread procedures to trans
mit the correct data. Screen COBOL programs
are responsible for message resynchronization
(error trapping, error recovery, 1/ 0 retries,
and so on) and for adhering to the intelligent
device's protocol.

TACL
TACL. the Tandem Advanced Comma nd
Language (pronounced lockle), is a ('·:xible
command interpreter that can be cU51('1mized
for a parlicular user or installation -\CL
is a standard product for GUARDI .\ 'Kj

users (as are Tandem's olher pragr .. :l
development tools. INSPECf·¥. 81)rR"',
and CROSSREF"'). These siandard oo ucts
a re provided at no additional char
TACL is automatically ineluded in
GUARDIAN 90 shipments.

T,\ CL provides all the capabilit ieo;
Tandem's command interpreter. (' ,
will eventually replace CO~f1 NT) . II
it allows users 10 "rite mac ros to dL
quently used commands. These 01;

other functions can then be mapp'
lion keys. AI its most advanced Ie
becomes a po\\erful high-Ic\-d int
language.

TAL Compiler

120

~T (and
Idition .

fre ·

" , func
• H e l

cd

TAL, the Transaction Application lm,j \lage,
is Tandem's systems-programming ar uage.
As of the 820 software release, it h~ .my
new features :

• The elapsed time for compilatiol
reduced as much as 200'0 .

a been

• A labeled CASE statement make. 1'1 ~rams
much easier to write, debug, and maint ai n .

I In compi lations with the ?ERRORl- llE
directive, syntax errors are written to 1 d isc
file, allowing programmers to use
PS TEXT EDIT to display the source program
in one window and the error messages in
another.

• It has additional support for data declared
in e'nended memory.

• A new data type U SIGNED, for declaring
bit fields, allows pointers to be declared
within a Structure and templates to be used
as substructures .

CO<lnne Robinson 1,0. Product M.o.~!OI' T.nc»m', •• n·
gu"ll" PClIOoI, ShI joined T.ndem In June: li83.s' soltWiri
OHIgI'Ief Before 104011'10 T.neem, Cormne: Spilio t leVan yellS
WOfI(log In ml(: roplogr.mm.ng, dlagoostlCl..nd laog~ for
llOOt1lll' ~Iet' vendor. Coonne hll . B.S.I" Inform.lion and
Corri(:ou tet' Selertcl lrOlTl 11'11 Un lYet's,ly 01 calilomi' II IrvlOl

S Y S TEM S
R EV I " W F Ea R U A R Y I 9 • 6

n ~I; J 8.~ randem imroduced
a ne.... b l:ripl ion scrvice and a
new Jjldatc: ',(n ice for ils soft ·
"'are manu, I~. fhcir purpose is
to I I 11 III customers keep
thei r T: !ld mftware documen·
tali(n jate ith lhe latest

software releasc!>.
The So/twore .\J ,

provides the set\ c
binders) that des\
ucts. It includes 0

UpdOIe Service.

'\ubscriptiOll Sen'ice
l!J.ls {including

dem \Oft ware prod·
r'" lhe .'''10111101

The Manual Upda c \. ice provid~
updates (rcplacefTl/ nl ges) and revisions
(entire replacement nuals) for .-,cIS of
Tandem SOftware m '1u3ls (bu t no binders).

In addition , Tano :n u~tomers in the
United States can 1· ~ order manuals via a
toll·free 800 phone: mhcr (if a blanket pur.
chase order has alrca~:., been submiucd to
Tan~cm ~alcs Admi niqralion in C upertino.
Cahf?mla) . This pro clure can be used for
ordenng individual manuals or addit ional
subsc riptions.

Soft ware Manual Subscriplions
One SOftware man ual \ubscription now emi.
lies a subscriber to one or more 5Cts of man.
uals (d ·b·

I escn 109 spec ific ~oftware products as
se ected by the SUbscriber) and one year of'
updates/or the manuol selS ordered.

Subscription Policy for
Software Manuals

A basic SCt of manua ls is available for each
Tandem operating systcm (GUARDIAN and
GUARDIAN 90). as well as for the cxtended
function combination, GUARDIAN 9OXF'"
(which includes GUARDIAN 90, ENCOMPASS"',
EXPAND. and TRANSFER). For each optional
software prCYIuct or package of products,
smaller manual SCtS are offered. If a software
product is described in three manuals (e.g., a
reference manual, a user's guide, and an oper·
alions guide), all three are included in the sub·
sc ription service and update serv ice. Table 1
(page 62) lists the 5Cts available for NonStop
systems (NonStop U and TXP processors).

Renewing lhe Manual Update
Ser vice
Renewals for the Manual Update Service are
for a term of onc year. Three months before
the term ends, a renewal letter is sen l to the
subscriber, detailing the sets of manuals that
will require updates.

Customers must send in a purchasc order
for lhe renewal; without it, update service
expires. They can change quantities when they
renew.

--------------_ ..

62

T.ble 1.

Product Identification numbers fOf' the Software
Manual Subscription Service and Manual Update
Service, NonStop software (NonStop II and
NonStop TXP processOf's).'

Softw ... M.nu.' :~; ;;:;;" Subscrlpllon
Son1u'

'Tha , ubS<;',plion sefVl«l lncludel .1(manUill1 lor 11IIi11lOt1 ,
ptOduoe\ 01' package .nd Manual UPdate Servq for _ year

Ordering by Phone in the
United States

As memioned earlier, U.S. customers CAn now
order individual software manuals and .ub.
script ions through a toll· free 800 tclephr Ie
number. Those who wanllhis f1exibili 'l1 US(

send an open (or blanket) purchase Or or
equivalem documem to:

Sales Administration . Manuals Grou p
Tandem Computers Incorporated
19191 Valleo Parkway, MS 4-05
Cupertino. California 95014

The open purchase order should spc. the
dollar amoum and duration of the ord rhis
proteclS the customer and Tandem .) II lould
also specify other pertinent informatiol '>uch
as the names of customer personnel au u ed
to place phone orders. The Manuab S~ -rip
tion Group will send the customer the
phonc number with an acknowledgme,)f
the purchase order and will keep the (1 pur-
chase order on file for reference on all lual
invoices.

Billing

J:trices for ubscription and Update Scr 'ces
Individual Tandem software manuals re
repriced in April 1985. The current pnc~'s are
available from Tandem sales representalhes
and also from the Manuals Group in Tandem
Sales Administration memioned above.

Prices for the software manual se,,:i ... 'e"'> are a
fixed percentage of the list price of the manual
SCt(s) ordered. The price of the Software \ 1an·
ual Subscription Service is 130070 of the cur·
rent list price of the manuals (that is , 20010 less
than if the manuals and the Manual Update
Service were purchased separately), plus ship·
ping and handling.

The charge for the Manual Update Service
alone is 500'10 of the current list price of the
manuals, plus shipping and handling. Tandem
software manuals (especially the basic set of
manuals for lhe operating system) are updated
at least every (wO years. Although the fre
quency and size of the updates vary, sub.
scribers receive substantial updates and
revisions commensurate with price, on a
timely basis .

Shipping Bnd IIllndling
For both the initial subscript ion service and
the Manual Update Service. shipping and han·
dling charges are added to the orders and
billed in advance. (When individual manuals
are ordered. hm .. co.'u. hipping and handling
arc billed aI the time of ~hipmcnt.)

Shipping and handling ha .. ·c nOt been incor·
porated into the pnce of the manua ls because
if each manual wefC priccd to fully recover its
individual shippi,." and handl ing costs, the
total price y.ould be unrca.wnably high for
large orders.

Invoicing
Subscription ~r\J j P. are invoiced in
full, upon shipIT'll t of th nitial set of man·
uals. Update <oervl('C rtnc allt are invoiced
upon receipt of the cncw.1I pun:hao;e order.

No Volume Di3COtlllt
No volume discoun re a"'ailable, as compar·
atively lillie ccono IY 1 achieved in filling an
order for 50 SCt!'. 01 manual<. a\ opposed to
filling one set. espccLally hen (a~ i~ common
in large orders) tho- <0 al to be.!.em to 25 dif
ferent addresses .

Billing for Addition II ub-.criplion~
When subscriber\ pI orden. for additional
subscriptions aftel rail an initial order
(c:.g., 10 get a SCI ot l1!U1uallo they did nOt pre.
vlously order or to gel II second sct of some
manuals they had ordered). they arc billed for
a fu ll one·year subscriptinn at the time of the
order. Then when they rene"" their Manual
~pdate Service. the rate for thc renewal period
IS ~ro~atcd (to account for the unused sub.
s~n~t.lon service months indudcd in their
~ dillonal order) and a common renewal date
IS established.

For e~ample. if an initial "iubscriplion ere
ordered 10 Ap'l d dd" . . rt nn a II10nai subscnpt lons
were ordered in Augu';t, the rene al for the
upd~te service would include a year of update
service for the Aprilloubscription and eight
mO.nt~s of updatc service for the August sub.
!cnptlon(s). Thi.!. allows the update servi,
.or all sub
he ~CTlptlons to come up for renewaJ at

I same Inne.

I 9 • 6

Cancellalion Policy
Subscription ervlce
I f customers return all packages unopened and
u~d~maged to Tandem's distribution poim
wnhlO 60 days of the order, credit is issued for
the price of the subscription, less a 15'10
restocking charge. The shipping and hand ling
charge is not refunded. and the CuStomer must
pay the return freight.

If a subscription is cancelled within the first
six momhs, Tandem refunds 200'/0 of the sub.
scription price. excluding the shipping and
handling charges. The customer can keep the
initia l sct of manuals.

Update Service
I r a customer cancels update service during
the first six months, Tandem refunds half of
the update service price, excluding handling
charges. After six mOOlhs. a refund cannot
be issued, and the updale service runs to
completion.

8n1l Manual Sets
Before the BOO release, the last general distri·
bution of Tandem software manuals occurred
with the A06/ E07 release of the GUARDIA N
operating system in February 1984. At that
time " system manual kits." consisting of one
of every manual, were seOltO all customers.
Umil May 1985. subsc riptions wcre available
only for these manual kits . In the United
States. the kit subscriptions were priced well
below currcnl printing costs.

63

64

Tabl.2-
Bnn software manual sets for subscription and
update services.'
Producl lO Descrlpllon

9nnnMS SOftware Manual Subscription Service lor the
soflware product ·'9nnn.~ Including the Inilial NIt
01 current manuals de$crlblng II and one year 01
Manual Updale service.

9nnnMU Manual Update service for the software product
"9nnn~ for one year. PrO'tldes u~tes for In
lassumed} existing NIl of manualL

9Bnn Lalest versions 01 all soltware manuals. No
updale NlrvIce.

9BnnMS SOftware Manual Subscrlpllon Service Ihat
Includes lhe lalest versions 01 all manuals and
one year 01 Manual Update service.

9BnnMU Manual Update service 101' all soflware manu.'s
for one year. ProYldesthe updales bul nOllhe
Initial sel 01 manuals.

'In Ihl' lable, ~8ntt" represenlS any soflware release In 1M 8 _lea,
'.g .. 810, 820, 'IC.

With the BOO sofiware release. 6S of 83
NonStop manuals (describing NonStop II and
NonStop TXP software) were changed , rcquir·
ing either updated pages or complete revi
sions. I Table 2 lists the two Bnn manual sets
available. (Bnn is used in this article to repre
sem all releases of the "B series" software,
e.g., BIO, 820, etc.) Below, three BIIII update
sit uations are explained.

Updating Ma nuals Prov ided wilh the System
Customers who are licensed 10 use Tandem
software, and who pay for software mainte·
nance or pay the monthly license fee, automat·
ically receive one set of Bnn updates for the
set of manuals Tandem provides with a
Tandem system.

Those who wam Bnn updates for software
for which they are not licensed can order them
through the Manual Update Service.

'NoIISi(IJI1' _DaIs..., "'" indIdod in lilt 8OOtdI ... _ 1JIJ
diwn1>Ulion.

Rcpl tlci ng A·Seri es Software Ma nual Seh
In addition to the updates for the set of man
uals Tandem provides with a Tandem S} lem,
mentioned above, most customers have
ordered additiona l manuals. Those who ave a
current subscription to A-Series manual :ts
(under the old subscription policy) reccil,. Bnn
updates until the end of that subscriptio
term. To keep that set of Bnn man uals ~.' ·to
date when the old subscription expires. ' 1lC"<oe
customers must order the 9nnnMU Manual
Update Service for the manual s to be ul lied
(where 9111111 corresponds to the Tandem lft
ware product numbers). They can keep n·
plete sets current by ordering the 9Bn"r-1l
Manual Update Service.

Customers whose subscriptions are nl
longer current have several choices. Thl .. 10:

• Order ind ividual manuals by manual Im
ber. up to and including full sets. (Ordcl
full sets in this way would be the least e om-
ical alternative in the long run ,)

• Order Software ManuaJ Subscription
vice products by Tandem software prod I
number for the number of sets needed . ll~
method allows specific cuStomizalion lC

manuals most needed. For example. ort ring
one 9103 MS yields the current \'ersion 0

PATHWAY manuals plus update service Jr
these manuals for one year.

• Order a complete replacement set of up· Io
date Bnn manuals, including manual updates
for one year, with Software Manual Sub5. ... rip
tion Service product 9BnnMS.

Ordering Individ ual Manuals
Tandem customers who want to order individ·
ual manuals (as opposed to manual sets based
on a software product) can order lhem by
Tandem part number. (See the Catalog of So/t
ware Publications and Related Products. part
number 82522 BOO, for the tilles, descriptions,
and part numbers.) O rders for individual
manuals are not viewed as subscription service
orders and do not include update service.

Tim McS~ Is manage!" oflhe PrIcing Anal)'$11 Group In
Tandem. MarXellng orgaml.ltlon. He has 11$0 wotked "'
seniOf marketIng .na/yslln the COmpetlt An.'YSIS Group.
Befor. joining T.ndem In 1983, TIm we. aSSOCiated with a starl
up IOftw~ • .s-Iopmenl company. Before Ihal he wotked 101'
nine ye for anolher computer vendor In _aJ cat)acilles,
Including Internatlon.' hie •• nd computer I5UPporl.

TANDEM SYSTEMS ItE\IEI'.
fEBRUARY I 9 , ,

=

Tandem Systems Review Index February 1986

The Tandem JOllrnal became the TOl/dem Systems Review in February 1985. Four issues of the
Tandem Journal were published:

Volume 1, number I
Volume 2, number 1
Volume 2, number 2
Volume 2, number 3

Fall 1983
Winter 1984
Spring 1984
Summer 1984

Pan No. 83930
Pari No. 83931
Pari No. 83932
Pan No. 83933

A., of February J 986, three issues of the Tal/dem Sysfems Review have been published:

Volume 1, number I
Volume 1, number 2

Volume 2, number I

February 1985
June 1985
February 1986

Part No. 83934
Pan No. 83935
Part No. 83936

rile arliclc!II published in all seven issues 3rc arra nged by subject below. (Tandem JOlimal is abhre
\ i.lled ao, 1'J and 71mdem Systems Rei/jew as T R.) For those articles whose subject matter falls
In more than one area, the title may be listed in more than one area (notably, those articles about
\'\tcm and application performance).

"'IIC .. IiIIt

OpefIUng Ipl.,.,

CfI..;Invo ~ In FOX

At' ''''I0Il 011,. OPI Ind OP2 DIsc Pfoca ...
PPT'()P2F,leConverslOn ArlOverv_

Opt HlgtI"Onll

OP2 K"V-Mquenc.o F,.

~~torm'no.

DP2 [th,.,en, UN of CKtlII

Ott ,m'nlng FCP eon "1On TImet

"neGUARDI ... '" M"Age System,nd H~~~ Ontgn lor II
tmp. .-..d JWloIm,ncllor BACKUP2 Ind AESTORE2

tnCIIIINd coo. Spec,

Introducing TM05. linaem·, N_ On·llne
O,.gnosUc System

M.n'Q'"!l Sy!IIft'I_!tlM Un<!!! GUARDIAN go

"'_ GUARDIAN 110 TllnekMPl1IO FaclllllU
';_ Proc ... ,ng·Umll'lg Fe.'ures

NorISlop n Memory OrgIl\U':.11On arod Exl~
AddIMs,"O _

Opt,mlZlng SeQuent .. ,",OC::ISI~~ ~ ..!.,._ T'~ S~lIm
RoOustroeato Ouh '". Oos,nbu*' 0.,. Base
... ~1I1d·memory AQora.ch

TAel. Tat\dem·, Nft Exlen.t,bli COmmand LaIlOUIQI

U"IIO FOX 10 M0't8' F.ulllOlefant ~lteaUon

Butllung tot Bell" AppiteahOIl Pw10rmarce _

Vt~VS All OfH,,... Sys-Iem.ruouree MOrlll~

UIIQu.O"

"" InlroducllOn to Tandem mENDED BA~
TACl, T,nO,fI'I', N_ Exten.lbII Comm,nd Ul'IOu.ge

TIlWJIm', N_ coB0i.s5

Author(,j

T Sen,dllll

J T.tl
K. C.,tyll,
LMc:Gow.n
T Sdllcntlf

J Enllo"'
1 SdladlI ...

M en.nd,.
A Kh,"1.
M McClIne

.... Jofdan

J T,olS'
E Nallen
E Nt'llIn

S Shllm.

0. Thornl'

A Wltlh
'J-c.mpaall.
R Gt.lCOtk

RCn
C Blatoh~
R. M, II/11n

-
0. Montgomery,

J. M.,son
J-C;mpt)all,
R GIIICOC::~

0. Nelson

Volume,
Publlc.lIon Iliut

Sanon
or Month
'nd Ye.r

TSRC=='~·2C==J~"~~~'~985~==839~'[S
TSR

TJ
TJ

TSA

TJ
TSA

TSA

'.1 .,
"
"

2.2
2.1

Fall 1983
Summar 19BoC

June 1985
Feb. 1986

8J93O

83933

"""

SprIng 1984 83932
Feb. 1986 83936

Ftb. 1986 83936

Conlloued 011 ned page

65

Se .. on
VOlume, Of Month P.rl

Arllel. till. Author1s) Publk: 'llon In u. .nd YI.r Number

D ... ITI.In'GImIflI
The ENABLE Program Ganef.lor lor Multi-llie

TSR •• Feb t985 .,.,.
Applieltlons

TJ Wlnler t98A
Junet985 8393S

Soring 1984 83032 ,,8$ """ 2.' Winter lli164 .,""
F.tII883 83930

"" """
2.2
2.2

R TJ •• Winter 19&10
2.2 Spring tlil64 83932

Junel98S 83933

Tho I TJ •• Wlnler 19&t .,."

Perlph l.

Introducing Ihe3207 Tape ConTroller S. Ollndr.n TSR •• Juneli85 ",.,.

The Model6VI VOice Inout Option: lIS Design
and I~menlliion 8. Huggett TJ 2.3 "'" The VB Disc Storage FICIUry. SeIUng a New Slan$ord
for Qn.Une Disc Slorege M. Whiteman TSR 2' June 1985 83935

Worbl.Uons
Atllntroduct lon 10 DYNAMITE Work$lIl1on Host

TSR " June 1985 83935
June 1985 83935

2.' F'b.l988 """ ••• F.n 1983 """ 2.' Summef 1984 83933

High Perform.nee
T.Chmlel, TSR 2. ' Feb. 1986 83936

., June 1985 83035
TJ •• Wln 'er 198<1 8393.

' .2 June 1985
2.3 83933

"" '08S """
TJ Fall 1083

TSR

66

TAN DEM PUBLICAT I ONS ORD E R FORM

The Tandem Systems Review and the Tandem Application Monograph Series are combined in
one subscription. Usc this form 10 subscribe, change a subscription, and order back copies .

For requests within Ihe U.S., scnd this
form to:

Tandem Computers Incorporated
Salts J-\ dministralion
\9191 Valko Parkway, MS ~S
Cupert ino. CA 95014- 2599

I IT requests owside file U.s., send this form
o your local Tandem sa les office.

the appropnalc box(cs):

Se" \ubscriplion (- of copies ooirtd
Sub~nption chaole (- of copies lksired
Requc<il for bacl copies. (Shipmen! \ubjeci 10
d\'ailnbility.)

I'rint your current addrcs here:

.. 11. l \11M 1.11,; '>1

Ir your address has changed, print the old
one here:

I\rn'TJOI\<

To order back copies, write the number of
copies next to the title(s) below.

~~~ Tam/em JOllrnal 
Part No. 8]9]0. Vol. 1, No. I. Fall 1983 

Part No. 8]9] I. Vol. 2, No. I. Winter 1984 

Part No. 8]932. vol. 2. No.2, Sprin& 1984 

Part No. 8]93]. Vol. 2, No. ]. Summer 1984 

Tamlem SystemS Relliew 

Part No. 8]934. Vol. I. No.1. February 1985 

Part No. 839]5, Vol. 1. No.2, June 1985 

Pari No. 839]6. Vol. 2, No. I. February 19S6 

Tam/em Application MOtlograph 

Series 
Pari No. 8]900, i:>fn-e/oping TMF·PrOlecl(.'d 
ApplicoliOlI $qflwore. March 1983 , AM-005 

Pari No. 8]901. Designing a 7bndf>m / llbrd 
Pr(XtSS()f Interface. March 198], AM-006 

Pan No. 8]902. Integruling Corporate Infor
malion Sytlems: The Imelligenl-Net",,-ork 
Stroteg}'. March 198]. AM ·OO7 

Pari No. 8]903. App/icoliOll Data /JQse Design 
m a Ttmdem Em'irOllll1em, August 1983 

Part No. 8]m. Capaciry Planning for Tandem 
Compuler Systems. October 1984 

Part No. 8]905. Sociable Systems: A Look 01 
Ihe 7bndem Corporate Nelwork, May 1985 

Part No. 8]907 . Iksigning Q NC1 wor.k.Based 
TrunsocfiOtI-Proctssing System, Apn1 1982, 
SEDS.()()2 

ROUGH YOUR \IARKETING LlTERATURE COOROINA~ 
TA"D[\II:.\lPlO\'EES: PLEASe OROCIl YOUR COPIES TH 

-----------------------------_ ... 



/lITANDEMCOMPUTERS 

.J 


