SYSTEMS REVIEW

LANE MEDICAL LIBRARY TBCHNICAL :
MAR 2 51987 SERVICES
COLLECTION

STANFORD UNIVERSITY

WTIN Y

i W

AR

Credit-authorization Benchmark for
High Performance and Linear Growth

Buffering for Better Performance
DP2 Conversion » TACL = COBOLS5
Managing System Time
New Products » Manual Subscriptions

Index

s “amber |, bebruary 1986
'
| Turnbull White
Aol v
1t
bdlisrs

cn
rielle-Tréholian

E o

e Layoul
lenden

ypesetting Giroup

i Keview i

bem L owmpsutons

wnical imlorma
software releases

purpose s (o help

5 whititions and changes:
$ free. To add mames
s 10 Uhe dstribe
questy within the
wni 10 Tandem

rporated, Sabes
N9 Valko

the kvl Tandem

Con he editor welcomes
r comtent and format
P " 10 the Tamdem
S w, 1309 So, Mary
Ase wiyvale, CA 94087
Lom 1986 by Tandem
Incorporated. All rights

hus document may be
1w any form, including
transdat lon 1o
without the prior
{ Tandem Comn
od

O pH
are trademarks of

T narks of Tandem Computers

Incorporsted: BINDER,

CROSSREF, DYNAMITE,

ENAHRLE, ENCOMPASS,

EN E, ENSCRIBE

EXPAND, FAXLINK, FOX,

Gl

Gl

ARDIAN, GUARDIAN 90,
SUARDIAN SOXF, INSPECT
NoaStop 11, NoanSiop TXE,
PCRFORMAT, P'S MAIL
PS TEXT EINT, TACL, TAL,
Tandem, TMF, TRANSFER, XRAY
IBM and 1M PC are trademarks of
Internationa! Business Machines
Corporation. UNIX s a trademark
of ATAT Bell Laboratories

TANDEM SY¥YSTEMS REVIEW

2 Credit-authorization Benchmark
for High Performance and Linear
Growth

Tony Chmiel, Tom Houy

9 Buffering for Better Application

Performance
Randy Mattran

18 DP1-DP2 File Conversion: An Overview

Jim Tate

24 Determining FCP Conversion Time

Jim Tate

30 TACL, Tandem’s New Extensible

Command Language
Julia Campbell, Robin Glascock

39 Tandem’s New COBOLSS

Don Nelson

48 Managing System Time
Under GUARDIAN 90

Eric Nellen

5 5 Tandem’s New Products

Corinne Robinson

1 Subscription Policy for Software
Manuals

Tim McSweeney

@)

O\

5 Index

Credit-authorization Benchmark
for High Performance and
Linear Growth

n benchmark tests conducted for
— amajor U.S. retailer interested in
—— building a nationwide credit-
____ authorization system, Tandem™
NonStop TXP™ systems demon-
= Strated a linear increase in pro-
— — cessing power as additional pro-
cessor modules were added. In the tests,
an 8-processor Tandem system processed twice
as many transactions per second as a
4-processor system, and a 32-processor system
processed twice as many as a 16-processor
system.

The benchmark tests also demonstrated the
high performance of Tandem NonStop TXP
systems: on the 32-processor system, 149
transactions were processed per second, with a
CPU utilization of 80.6% . Response time was
less than two seconds for at least 90% of the
transactions.

This article discusses the importance of
linear growth in processing power and then
describes the retailer’s proposed credit-
authorization application, the hardware and
software configurations used in the tests, and
the results of the performance measurements.

Importance of Linear Growth
in Processing Power

The results indicating the linear growth in
processing power are significant. They mean
that users can expand their NonStop TXP sys-
tems to meet growing transaction-processing
needs without incurring the nonlinear increase
in system costs encountered when most other
computer systems are expanded. Also,
Tandem systems are expandable in small steps
so that the amount of processing power avail-
able need never greatly exceed that required.
The expansion of the test system stopped at
32 processors, as that was the total needed to
satisfy the retailer’s requirements. There is no
indication that the linear behavior of the
NonStop TXP system stops there, however.
It conceivably extends to 224 NonStop TXP
processors, the maximum number that
can be linked by FOX™, Tandem'’s fiber optic
extension.

Project Overview

The retailer, interested in meeting stringent
requirements for its credit-authorization sys-
tem, asked Tandem to run simulations of the
application on Tandem hardware. The key
requirements were a fast response time and a
high transaction volume.

' A NDEM 35 ¥YS 7T EMS R E

1

—

Specifically, the retailer proposed to create
a network consisting of three host systems and
to divide the national transaction volume
among them. This credit-authorization net-
work would receive transactions from the
retailer’s existing SNA environment through
an 1BM 3705725 Communications Controller.
Initally, the peak transaction volume for each
host system would be 60 transactions per sec-
ond (tps), with a potential for growth to
120 1ps. The retailer required a response time
under two seconds for at least 90% of the
transactions.

['wo benchmark evaluations were conducted
to validate the system design. The first,
relerred to as Bl, was conducted at the
Tandem Performance Center in Sunnyvale,
California. The second, a retailer-developed
volume test referred to as B2, was conducted
at the Tandem manufacturing facility in Santa
Clara, California.

The Benchmarks

Benchmark Bl

In 1, a standard benchmarking application
was modified by Tandem to simulate the SNA
interface and data-base 170 requirements for
the proposed credit-authorization system. This
application was first run on a 4-processor
NonStop TXP system and then on an
8-processor NonStop TXP system.

Figure | illustrates the hardware configura-
tion used in the 8-processor Bl tests. Two
systems (A and B), each consisting of
4 NonStop TXP processors, were connected
with FOX. The two systems were identically
configured, with the exception that some
application files were partitioned across disc
volumes resident in both systems. The credit-
authorization files and negative files for other
national credit cards were divided into eight
partitions, based on the primary key. Four of
the eight partitions resided on system A and
four on B. The byte-synchronous lines and
modem eliminators connecting the two
machines were used to simulate the processing
of credit-authorization requests for national
credit cards.

4 Ines

B
£od
'_T_
Ra

4 lnes

I Disc controller
% Disc
4. Byte-synchronous controlier

In the 4-processor tests, only system A was
used, and the files were partitioned over the
four disc volumes resident on that system.
Credit-authorization requests for national

credit cards were simulated by programs

within system A.

Benchmark B2

In B2, the retailer provided an application
similar to that used in B1. This application

was stress-tested on 16- and 32-processor

NonStop TXP systems.

e e ——
Figure 1.

Hardware configuration
used in the 8-processor
B1 tests. In the 4-
processor lests, only
svstem A was used, (For
simplicity, the asynchro-
nous controllers and
terminals, a printer
controller and printer,
and tape controllers and
tape drives are not
shown.)

R B RN A KLY IS & ¢

T A NDUZEM

5 Y8 7 BEMS

R

E

Figure 2. Figure 2
Hardware configuration @
used in the 32-processor
B2 tests. (a) An over- 10 SNA ines - - -
view. In the 16-processor DSEANS L —— 14 Mirored volumes, 28 disc controllers
tests, the same configu- 5 Bsync ines 16 NonStop TXP
ration was used, with ‘ m 3mw
half the number of CPUs B
and SNA lines. (b) The Orives syshorn
ey = : 16 e FOX Ink
distribution of disc processors
drives, byte-synchronous b
controllers, and bit- |——.- System —— 14 Mirrored volumes, 28 disc controllers
synchronous controllers | ST . a;ﬁﬁ:m
in the 16-processor r s - oocessos —— 5 Byte-synchvonous controliers
systems. (For simplicity, U BR-aynciuonis oovioles
asynchronous controllers
and terminals, a printer
controller and printer,
and tape controllers and o
tape drives are not J
shown.) : s
T i
o 7\ | _;‘ Ul 7\ Fal 7\ | Pal
avd (7 | A 1\ | w3y \/ | (7]
Faf Pa Fas Fa® 7\ | Brad
avd ¥4 3l { ¥
e [4 | L 4 |
—| Disc controlier
Disc
Byte-synchronous controller
Bi-synchronous controlier
Figure 2 provides a high-level overview of In the 16-processor tests, the same conligu
the hardware configuration used in the 32- ration was used except that two 8-processo!
processor B2 test. This time, FOX was used to systems were linked together instead of two
connect two fully configured, 16-processor 16-processor systems. Again, the files were
NonStop TXP systems. The credit- partitioned across both nodes. There were ten
authorization and bankcard negative files were partitions (five per system).
again partitioned across both nodes; this time It was the goal of B2 to provide as realistic a
ten partitions were used (five per system). test environment as possible. Thus, a driver
system consisting of 16 NonStop TXP proces-
sors was used in both the 16- and 32-processor
tests. The driver system sent transactions to
the benchmark nodes using 20 lines driven by
SNAX, Tandem'’s standard SNA interface (ten
lines were used in the 16-processor tests).
4

SNAX was used because, as explained above,
transactions would come to the proposed
Tandem credit-authorization system from the
retailer’s existing SNA environment through
an 1BM 1705/25 Communications Controller.
in addition to the SNA lines (which used the
3650 protocol), ten bisynchronous lines were
evenly distributed between the two nodes in
both the 16- and 32-processor tests. These
lines were used to simulate the transmission
and servicing of transactions to national
bankcard-authorization centers.

Application Overview

As cxplained above, two separate application
desizns were used in the evaluation. The first
(B! was an application simulation developed
by Tandem, and the second (B2) was a more
real customer-written simulation.

e design used in Bl is summarized in
Figure 1. As shown, both the terminal simula-
tors and an SNA 3650 simulator ran in the
sarmc «vatem as the application, The major
differcnces in B2 were that (a) a separate
driver system and a real SNA interface
replaced the Bl terminal simulator and SNA
3650 ulator shown in Figure 3, and (b) the

servers in B2 were provided by the customer.
Except for these differences, the structure of
the B2 application was the same as that shown

Application Components

SNA 3650 Simulation. The Bl terminal simu-
lators (resident in the same node as the appli-
cation software) and the B2 terminal
simulators (resident in a separate driver sys-
tem) both generated transactions containing
random data at specified time intervals and
captured response-time statistics. The Bl sim-
ulators accounted for expected SNA
communications-software overhead by con-
suming CPU cycles, however, while the B2
terminal simulators used SNAX.

Figure 3

Bankciard

Terminal Control Process (TCP). The Termi-
nal Control Process (TCP) is a multithreaded
process supplied by Tandem to control multi-
ple terminals and terminal types. In both Bl
and B2, one TCP resided in each CPU at each
node. Application programs executed by the
TCP were written in Screen COBOL.

e
Figure 3.

Structure of the applica-

tion run in benchmark

Bl. The B2 application

had essentially the same
structure, excepi that a

driver system and a

real SNA interface were I
used in place of the |
terminal and SNA 3650
simulators. |

k-
| "

lIItLrARYIGHh-'I.—\NDEM

s vy & T 8B MBS REVIEW

Table 1.
The transaction mix used in the B1and B2
benchmarks.
Transaction of mix O requirements
Read-only of 1% 1 terminal read
customer's 5 table lookups
credit record 1 read of Auth file
1 write to Log file
4 interprocess V/Os
1 reply to terminal
Processing for 73% 1 terminal read
charge-authorization 5 table lookups
and update 1 read of Auth file
1 update of Auth file
1 write to Log tile
4 interprocess 1Os
1 reply to terminal
Out-of-area 1% 1 terminal read
authorization 2 table lookups
(2-sacond delay) 1 read of Auth file
1 read of Index file
1 write to pipeline
7 interprocess VOs
1 reply to terminal
Out-of-area 1% (Same as above)
authorization
(3-second delay)
Out-ol-area 1% (Same as above)
authorization
request
(4-second delay)
Bankcard 4% 1 terminal read
authorization 3 table lookups
(1-second delay) 1 write to bankcard line
1 read of bankgard line
1 write to bankcard log
5 interprocess VOs
1 reply to terminal
Bankcard 3% {(Same as above)
aulhorization
(2-second delay)
Bankcard 3% [Same as above)
authorization
(3-second delay)
Customer file inquiry 1% 1 terminal read
4 table lookups
1 read of Auth file
1 write 1o Log file
3 interprocess VOs
1 reply 10 terminal
Customer file 2% 1 terminal read =
inquiry and update 4 table lookups
1 read of Auth file
1 update of Auth file
1 write to Log file
3 interprocess VOs
roe 1 reply 10 terminal
thorization from 2% Pt —
remote system 1 table lookup
1 read of Auth tile
1 update of Auth file
1 write to Log file
3 interprocess 1/0s
- 1 reply to pipeline
Authorization from 8% 3 torminal teed
oision 1 table lookup
process/system 1 write to Catalog file

1 interprocess VO
1 reply o terminal

Servers. The functions listed below are repre-
sentative of typical servers used in the tests
(although not all servers performed every func-
tion listed):

= Edit and reformat incoming transactions.
s Make yes/no decisions for local requests.

s Determine the need for remote or bankcard
authorizations.

= Perform fallback processing.

= [og transactions.

= Format responses.

= Simulate going to a remote ADC for
authorization.

= Format messages to the bankcard interface.
= Log remote authorizations.

» Log catalog requests for laier processing.

= Log operational (as opposcd (o application)
exception conditions.

s Provide table-lookup services 1o other
Servers.

Bankcard Interface. In both 121 and B2, the
bankcard interface provided the multithreaded
interface to various bankcard-authorization
networks. It isolated application servers from
communications-protocol concerns.

Bankcard Echo. In both B! and B2, the
bankcard echo simulated a bankcard-
authorization network. It imposed response-
time delays based on transaction type and
resided in a separate node (or, in the 4-
processor tests, in a different CPU) from the
node containing the bankcard interface.

The Transaction Mix

The transaction mix used in our tests is shown
in Table 1. It reproduced the retailer’s require-
ments as closely as possible, incorporating a
specified percentage of each type of transac-
tion that the production system would be
required to process.)

As shown in Table 1, all of the transactions
used table lookups. These tables werc loaded
into extended data segments within each pro-
cessor's memory. The application then calcu-
lated which table it should reference L0 read the
necessary information. (The use of in-memory
tables is a high-performance design alternative
to storing data tables on disc; when this tech-
nique is used, table access can be at memory
speed rather than at 1/0 speed.)

Benchmark Results

One way of comparing the capacities of
multiple-processor computer systems of vari-
ous sizes is to measure the average CPU utili-
zation at different transaction rates. Given
transaction rates and corresponding CPU utili-
zation averages for a system with n processors,
the system’s performance behavior is consid-
ered linear if, with twice as many processors
and 1O peripherals, it can handle twice as
many transactions per second at the same level
of C¥LU utilization. The results of Bl and B2
show that Tandem systems behave in this way.

Figure 4 and Table 2 summarize the per-
formance of the systems in Bl. The data shows
that, at given levels of CPU utilization, the
8-processor system was consistently able to
handle twice as many transactions per second
as the 4-processor system.

‘lTlt;ir. 2 =
B1 transaction rate versus CPU utilization
(NonStop TXP processors).

-
Figure 4.

Summary of perfor-
mance data obtained in
benchmark Bl for (a) the
4-processor system and
(b) the 8-processor sys-
tem. The 8-processor
system consistently han-
dled twice as many trans-
actions per second as the
4-processor sysiem al
identical levels of CPU
utilization.

Tranapctions CPU utilization
per second (%)
!gmca.uara
90 9.7
148 72.7
101) 50.0
E;’ 36.3
57 283
a7 23.4
8 processors
38.0 ' 93.6
292 725
202 50.0
147 _ 36.2
15 28.3
4 233
i
[}
FE B8 R UARY 4986 «+ TANDEM 8§YSTEMS REVIE 7

h—_;

| peee————t Figure 5 Table 3.
Figure 5. B2 transaction rate versus CPU utilization

| Summag querm ; (NonStop TXP processors).

} mance data obtained in Transactions ~ CPU utill
benchmark B2 for (a) the L per second %) i
16-processor system and 16 processors 2
(b) the 32-processor 72.0 B0.2

] svstem. The 32-processor 8.0 ==
system consistently han- = =
dled twice as many trans- 61.0 882
actions per second as the 55.0 61.1
. l6-processor system al 48.0 54,4 .
identical levels of CPU e — e m—
utilization. = — =
1490 30,6
124.0 = 574
! 110.0 T 0.6
200 45.0

| 70,0 O 4.3

I’ 57.0 24,0

1

(b)
i Acknowledgments
g Many Tandem employees contributed their 11me and energy to
B the success of the Bl and B2 performance «(udies. The authors
& would like 10 recognize the staff and manascment of the New
g York Uptown Branch and South Central Distict, wha contrib-
uted the bulk of the software to the benchmarks: Jolly Young,
Stephen Dudley, and John Haverland for managing the bench-
== marks: Richard Vnuk of the Large Swic Support Perfor-
mance Group for his assistance in tuning (e PATHWAY sys-
tem; Gary Hugo for his contribution of the Benchmark Monitor
| (BMON); and the entire staff and manascoent of the Santa
Clara manufacturing facility for their ot visnce throughout the
benchmarks.
Figure 5 and Table 3 summarize the per-
formance of the systems in B2. The data
shows that, at given levels of CPU utilization,
the 32-processor system was able to handle s
twice as m i Tony Chmiel is a senior staff analyst in 1he Tandem Per
” any transactions per second as the Center and has been with Tandern since January of 1984. Tony
processor system. In the 32-processor tests, has 11 years experience in data processing, with more than hall
the system easily exceeded the benchmark of that on Tandem NonStop syslems
30815. Sll'lcc 149 lpS “"as Obtaincd Wilh tlw Tom Houy has been with Tandem for over live years and is cur-
first benchmark test, it was not necessary to rently a performance advisor for the Tander Perlormance’ s
1cat Batore this, Tom worked on anothar major mainframe
{' gg:—tune the application to meet the goal of performance m,.lmt:",gms and performance enhance:
tps. ments for the operating system
|
|
) T A
N D E 10} S ¥ s T E M S R BV . B - 2 . . > % U A Y 1 9] L]

Buffering for
Better Application Performance

- To simplify the discussion, this article
Yo equential block buffering assumes a processing environment composed
é “ and buffered cache are of NonStop TXP processors, the BOO
o GUARDIAN 90™ File System GUARDIAN 90 operating system, B00 DP2,
- options that can significantly and B00O COBOL.' It presents a detailed view
) improve the performance of on- of the use of sequential block buffering and
L ~— line and batch applications that buffered cache in this environment. Tandem
process structured files sequen- systems analysts can help users to apply the
tiall: iddition to improving the perfor- information to other processing environments.
manc: of specific applications, they reduce the
per-! wiion utilization of CPU and disc
resoures, thus indirectly improving the per- . .
formunce of all other appliczﬂions {giral sll'?;rc How Sequemlal Block Buffermg
those resources, Works
In this article, the following topics are ENSCRIBE™ structured files are a set of data
discussed: records. To provide an efficient means of
* The implementation of sequential block moving the records bcm:cen djsc and memory,
buffering. the records are grouped into fixed-length data
» The iinplentabion of biiffered caths structures called blocks. Blocks can be as large
b - as 4096 bytes and can hold as many records
® The 800 COBOL enhancements that make as space permits (minus room for control
both features easy to use. information).

* The use of sequential block buffering in a
read-only environment.

2 Cone ST Jeetisg Btl . z
C onc urréncy 1ssucs rcldlmg 1o !’cqucn“al Tandem will release s new COBOL compliler and run-time Iibrary in the first
*k buffen calendar quarter of 1986, COBOLSS, described in the accompanying article,
block buffering. o s New COBOLES,” will be based on the new ANSI COBOL 1985
a (s J TS ~) - - - tandard, Its use in the sequential block buffering and buffered cache methods
(' OII.\idLTdIIOI‘lh rﬁr using wqucn“al bIOCR :.h:scrihcd in this article will be identical with those of B0OO COBOL.

buffering and/or buffered cache when records
are updated.

Sequential block buffering is available with
both GUARDIAN™ and GUARDIAN 90 oper-
ating systems, both Disc Process 1 (DP1) and
Disc Process 2 (DP2), and a variety of pro-
gramming languages. Some performance and
implementation details vary from one Tandem
hardware and software environment to
another. In B00 DP1, buffered cache is avail-
able for TMF™ audited files only; in DP2 it is
available for all files.

s 'Yy $$ T E M 8 R E ¥V I E W 9

Pp g A ¥ 19 88 =« TAaNDEM

Sequential block buffering is a File System

Figure 1 option that allows a process to read a struc-
| tured file one block at a time instead of one
| @ record at a time, while retaining the conve-

nience of automatic record deblocking (see
Figure 1). Since a structured block often has
many records (the ratio of records 1o blocks is
known as the blocking factor), reading a file
with sequential block buffering reduces the
number of requests for service that must be
sent to the disc process.

While many disc-process requests for
sequential reads are likely to be satisfied from
cache, the requests still must enter a queue for
disc-process services. The more applications
there are contending for disc service, the
greater the opportunity for queuing and the
greater the chance of a cache “miss.”

Also, each time the process senils a request
to the disc process, it incurs the overhead asso-
ciated with an interprocess message and enters
an 170 wait state. This means that it must give
e up the CPU to any other processes waiting for
Data occess (a) without time instead of one record structured block, reading it. When the 170 compietes, [-!w PO

/ enter the ready list and wait for (he CPU to

sequential block buffering at a time, while retaining a file with sequential 7 o

and (b) with it. This File the convenience of auto- block buffering reduces become available to resume execution.

Svstem option allows a matic record deblocking. the number of requests When sequential block buffering is in effect,
process fo read a struc- Since there are often Jor service that must be the File System requests service from the disc
tured file one block at a many records in a sent fo the disc process. process only when a new block is needed, not

for every record logically read by the program.
As shown in Figure 1, the File System main-
tains a buffer in the process [ile scament
(PFS), a private data area established for every
process. When a running program issues a
sequential read request, the File System satis-

| fies the request by deblocking the next record
from the buffer and moving the information
into the data area of the process. Thus, no
messages have to be sent to the disc process,
and the requester does not have 1o wait for

a reply.

[f update operations are performed on a
file opened for sequential block buffering, the
update does not simply change the record in
the program'’s private sequential block buffer.
The update is also passed directly to the disc
process.

The buffer is discarded when an update
occurs, so the next sequential read results in a
message to the disc process, and possibly a
physical 170 to retrieve the next block. The
performance is no worse than when a program
reads without sequential block buffering, but
no benefit is received either.

With the exception of some concurrency
issues (discussed later), sequential block buf-
fering is transparent to programmers.

I a program uses sequential block buffering
to open a file with alternate keys, the
alternate-key file is also opened with sequen-
tial block buffering. When a file is accessed
sequentially by alternate key, the alternate-key
file can be read sequentially. The primary file
must then be read by key, however, a nonse-
quential access. Overall performance is thus
improved, but the disc process must still be
involved with every request to read a new
record. The same file can also be accessed
sequentially by primary key and receive the
normal benefits of sequential block buffering.

How Buffered Cache Works

The BOO software release offers a new File Sys-
tem and disc-process feature known as buf-
fered cache, which must not be confused with
sequential block buffering. Buffered cache
allows data-base updates to be written to
cache without immediately being written to
disc. This is a significant performance advan-
tage for an application that writes sequential
data. Instead of writing each record to disc
separately, the application can build blocks of
records in cache without having to do any
physical 170 until after the block is complete.
The total number of physical 1/0s is thus
reduced by a factor that approaches the block-
ing factor of the file. Of course, this assumes
that enough cache is available to let the block
stay in cache without disturbance until the
block is finished and that records are written
in the sequence in which they are organized.

Updated cache blocks are written when the
disc process goes idle, when they are forced
out by a least recently used algorithm, or when
periodic (every five minutes) control points
are processed by the disc process. The longer a
data block stays in cache, the more opportu-
nity there is to update it multiple times in
memory and post all of the updates with a
single write to the disc. The performance bene-
fit of buffered cache comes from the applica-
tion's ability to write to buffered cache
without waiting for the mechanical delay of
the disc drive, and from the batching of multi-
ple updates (cache-write hits).

If a file is audited by TMF, buffered cache is
automatically used for all updates to the file.
TMF ensures file consistency by using audit
trails to back out aborted transactions or to
recover inconsistent files. The File System
permits applications to request buffered cache
for DP2 unaudited files as well, however.

Application designers must carefully con-
sider the use of buffered cache for unaudited
files because, if it is used, a CPU failure that
causes the loss of a primary disc process is
likely to result in loss of the updates made to
the file, if the sync depth is zero. Loss of buf-
fered cache data can occur if a volume is
brought down incorrectly, or if a double fail-
ure causes loss of the disc-process pair. If this
happens, the File System returns Error 122,
FEDATALOSS, to the application. Operations
procedures should be established or the appli-
cation should be written to implement a
“restore and rerun” type of recovery when
this error is encountered.

Sequential block buffering and buffered
cache are separate and independent functions.
Sequential block buffering is designed to
improve read performance, while buffered
cache is intended to improve write
performance.

PIE B R UA KY 19 88§ « T AN

D E M g ¥ ST B M3 R B YT EW

11

B00 COBOL Enhancements

Sequential block buffering has been supported
by the File System for many years, but not by
COBOL. Some programmers have called File
System procedures directly from COBOL to
take advantage of sequential block buffering.
Although this works, the method is somewhat
cumbersome. The B0O version of COBOL has
been enhanced to fully support the feature.

Sequential block buffering is now selected
through the RESERVE n AREAS clause in the
FILE-CONTROL entry. When # is greater than
1 and the open mode is INPUT or 1-O, sequen-
tial block buffering is selected. The number
specified as n does not vary the number or
size of buffers. A number greater than 1 sim-
ply selects the feature. The file opened must
be a structured disc file, and the access mode
must be SEQUENTIAL. Organization can be
SEQUENTIAL, INDEXED, or RELATIVE,
however. If for any reason sequential block
buffering cannot be invoked, normal 1/0 is
used, and no diagnostic is issued.

RESERVE n AREAS is also used to select
the buffered-cache feature, so programmers
should take care to select the correct open
mode. Sequential block buffering is selected
when the open mode is INPUT or 1-O; buffered
cache is selected when the open mode is I-O or
OUTPUT. Thus, buffered cache and sequential
block buffering are both selected when the
open mode is I-O. The only way to read a file
with sequential block buffering and update it
without the risk involved with unaudited buf-
fered cache is to use two separate file defini-
tions (FDs), one open for INPUT with
RESERVE 2 AREAS and another open for [-O
with no RESERVE n AREAS clause.

The same COBOL verbs, READ and START,
used for normal sequential 1/0 are used for
sequential block buffering. The fact that
sequential block buffering or buffered cache is
turned on is transparent to programmers.

The following program is a simple example
of the new COBOL implementation:

IDENTIFICATION DIVISION.
PROGRAM-ID. SBB-EXAMPLE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. TANDEM/16.
OBJECT-COMPUTER. TANDEM/16.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT TEST-SBB ASSIGN TO
TESTFILE
ORGANIZATION IS SEQUENTIAL
ACCESS MODE IS SEQUENTIAL
RESERVE 2 AREAS
DATA DIVISION.
FILE SECTION,
FD TEST-SBB
LABEL RECORDS ARE OMITTED.
01 TEST-SBB-RECORD PIC X(100).
WORKING-STORAGE SECTION
01 EOF-FLAG Pl
PROCEDURE DIVISION.
MAIN-LINE.
OPEN INPUT TEST-SBB.
PERFORM PROCESS-FILE UNTIL
EOF-FLAG = 1.
CLOSE TEST-SBB.
STOP RUN.
PROCESS-FILE.
READ TEST-SBB AT END MOVE |
TO EOF-FLAG.

VALUE 0.

Reading with Sequential Block
Buffering

The main reason Tandem offers sequential
block buffering is to improve the performance
of programs that read structured files sequen-
tially. This feature is most commonly uscc_! in
batch processing. Sequential block buffering
can improve the performance of most batch
programs substantially. The performance
improvement varies with the blocking factor of
the files read: the bigger the block and the
smaller the record, the better the performance
improvement.

Without sequential block buffering, in tests
on a NonStop TXP system running B0O soft-
ware, DP2, and code written in COBOL, it
took 11.99 seconds to read 2500 records (each
of which was 100 bytes long) from a key-
sequenced file with a 5-byte key, a block size
of 4096, and an average blocking factor of
3R8.5. That same operation can be completed
in 3.77 seconds with sequential block buf-
fering. Thus, sequential block buffering pro-
vides better than a factor-of-three
improvement.

It is important to note that sequential read-
ing can be important to on-line programs as
well as batch programs. Many on-line pro-
grams present lists of information or conduct

brief file scans. For example, an order-
processing application may contain a screen
with order-header information and room for
nine detail lines. The application can use
sequential block buffering to read the detail
lines and improve response. Thus, an order
displav that used to require ten disc-process

services (one for the header and nine for the
details), can be changed to require only two
(one for the header and one for the block of
detail records). Sequential block buffering can
and should be used to improve the perfor-
mance of this type of read-only operation.

The only issue that requires consideration
when sequential block buffering is being evalu-
ated for a read-only application is whether or
not other processes are updating the file while
it is being read.

Concurrency Issues Related to
Sequential Block Buffering

Because records are read from a private buffer
with sequential block buffering, there is always
a chance that the buffer may be out of date
when another process updates a file that is
being read with sequential block buffering.
For this reason, the ENSCRIBE Programming
Manual warns against using sequential block
buffering with access modes other than “read-
exclusive™ or “read-protected.” The File Sys-
tem allows other types of access, however. The
following considerations are important if
shared access is allowed with sequential block
buffering.

Sequential block buffering cannot detect
record or key locks. This can be both a benefit
and a burden. The benefit is that the process
reading with sequential block buffering is not
impeded by another process’ locks. It views
the record in its current state as of the time the
block is read from disc, and the process does
not have to wait to see it, The problem is that
if the record is locked, it probably is involved
in an update. The process cannot tell if the
record image it read is the before image or the
after image. It may view inconsistent data,
and there is no way to know if it has.

If one process deletes, adds, or updates
records while another reads with sequential
block buffering, an additional problem may
occur. The process
using sequential block
buffering may see
data that is recently
deleted or skip
records recently
added. Depending on
the application, these
anomalies may be
acceptable.

In a key-sequenced file, the above opera-
tions are potentially multiblock operations.
This means that new blocks are added to make
room for new or larger records, or that old
blocks are emptied and returned to the pool of
free blocks. If one of these multiblock opera-
tions is performed at or near the same file
position as sequential block-buffered reads,
one might be concerned about the structural
continuity of the file. Sequential block buf-
fering is not confused by block splits, however,
as it passes positioning information along with
requests to read a next block.

se sequential block

buffering to improve
the performance of read-
only on-line operations.

E-E BB UANRY 198 8 -

T AN D EM 8 %

S TEMS REV I EW

Buffering and Buffered Cache

There are many applications that perform
update operations as they process a l_"lle ;
sequentially. One example is an application
that purges a key-sequenced customer-order
history file. Assume the application is
designed to keep 12 months of history on file
and delete everything older. Since the primary
key is the customer number followed by the
order number, and there are no alternate keys,
a program must search sequentially for
records to purge. Since the job runs monthly,
it deletes about 8% of the records in the file
each time it is run.

It is possible to take advantage of sequential
block buffering and buffered cache in this type
of application. The best method to use
depends on the type of access allowed to the
file. If the file can be opened for exclusive (or
protected) access, there is no need to consider
the effect of other processes updating the file
concurrently. If the file must be opened for
shared access, however, programmers should
select a method of processing that protects the
process from concurrent updates.

The Single-file, Single-read Method

A single-file, single-read method is best when
exclusive access is possible. The method is
quite straightforward: simply read the record,
decide if it should be processed, and then pro-
cess the record. The same file open used to
read the file is used to update it. A sample
implementation follows:

MAIN-LINE.

OPEN I-O TEST-SBB PROTECTED.
PERFORM PROCESS-FILE UNTIL EOF.
CLOSE TEST-SBB.

STOP RUN.

PROCESS-FILE.
READ TEST-SBB NEXT RECORD

AT END MOVE 1 TO EOF-FLAG.
IF NOT EOF

IF UPDATE-NEEDED
REWRITE TEST-SBB-RECORD.

The file is opened for protected 1/0 access,
and RESERVE 2 AREAS is specified in FILE-
CONTROL. Thus, both sequential block buf-
fering and buffered cache are invoked. The
former speeds up the reads, while the latter
speeds up the updates.

On a NonStop TXP system with B0O soft-
ware, DP2, and code written in COBOL, tests
were run to measure the time required to pro-
cess a file sequentially (with updates of vary-
ing percentages of the records) by various
methods.” In these tests, a kev-sequenced file
with 2500 records and a 5-bvie key was used.
Each record was 100 bytes long, the block size
was 4096, and the average blocking factor was
38.5. Elapsed time was measured by a COBOL
program, and each test was run at least twice
on a dedicated system.

The design of the tests provides a worst case
scenario, because updates are evenly distrib-
uted throughout the file. 11 5% of the records
are reported updated, every 20th record is
changed. This means there is no “clumping”
of updates in a block, i.c., some blocks receiv-
ing multiple updates while resident in buffered
cache (cache-write hits) and others remaining
untouched. In a real application clumping
would occur, allowing for better performance.

Figure 2 shows how the time required to
process the 2500 records varied (under l-he
single-file, single-read method) depending on
the percentage of records that were updated
during the sequential pass. The dashed curve
shows the time required when sequential block
buffering and buffered cache were used. The
solid curve shows the time required when nor-
mal reads and updates were performed (with-
out sequential block buffering or buffered
cache). ;

In Figure 2, the processing time increases
(in both cases) as the percentage of records
updated increases. If every record read is
updated, the entire operation takes 2.5 nmeS_f
as long with normal reads and updates than i
the reads and updates were performed with
sequential block buffering and buffered cache.

- a
The performance mumbens preserted in ths artcle thoukd ";‘}“,mf the
abscibute values, valid in sy apphication environment. They .':'cn,mrl -
relative performance that might be cxpectnd from vanods ni:-h‘
Performance questions relating Lo apecif apphcations shouid ronment in
thiough the 1exting of various file-acces techaiques in the €a¥l
which they are to be used

T ANDEM

S X ST M 3 R E

B

If every 20th record is updated (5% of the
total), the entire operation takes 1.8 times as
long with normal reads and updates than if the
reads and updates were performed with
sequential block buffering and buffered cache.
As mentioned earlier, if no updates are per-
formed, a threefold improvement is realized
with sequential block buffering.

The Double-file, Double-read Method

A double-file, double-read method serves two
purposes. First, it makes sequential block buf-
fering easier to use in a shared update environ-
ment because concurrency protection can be
provided with selective record locking. Sec-
ond, it allows sequential block buffering to be
used without buffered cache. The second file,
used for the update and locking operations, is
opened for normal 1/0.

The method involves first reading through
the file with sequential block buffering and
selecting records. Then, the key from the
selected record is used to reread the record
through a second open of the same file. The
FILE-CONTROL for this second file open spec-
ifies RESERVE 1 AREA (or no RESERVE
clause at all), so sequential block buffering
and buffered cache are not used. The second
read may or may not specify WITH LOCK,
depending on the need for concurrency protec-
tion. If shared access is specified in the open
statement, record locking should be used, and
the record image retrieved in the second read
should be verified as current; otherwise, pro-
tected access should be specified in the open
of the second file. The record can then be
rewritten, and any lock can be released.

Although this method is less efficient than
the single-file, single-read method (in terms of
the code that is executed when a record is
updated), it eliminates the possibility of over-
laying another process’ update because a non-
current record image was used from a
sequential block buffer. It also eliminates any
risk involved in using buffered cache.

Time required to process 2500 records (seconds)

A sample implementation of the double-file,
double-read method follows:

MAIN-LINE.
OPEN INPUT TEST-SBB SHARED.
OPEN [-O TEST-FILE SHARED.
PERFORM PROCESS-FILE UNTIL EOF.
CLOSE TEST-SBB.
CLOSE TEST-FILE.
STOP RUN.

PROCESS-FILE.
READ TEST-SBB NEXT RECORD
AT END MOVE 1 TO EOF-FLAG.
IF NOT EOF
IF UPDATE-NEEDED
MOVE TS-KEY TO TF-KEY
READ TEST-FILE RECORD
WITH LOCK
KEY IS TF-KEY
REWRITE TEST-FILE-RECORD
WITH UNLOCK.

eesee———se———
Figure 2.

Processing time for 2500
records (each 100 bytes
long) with the single-file,
single-read method. The
time varies, depending
on the percentage of
records that must be
updated during the
sequential pass. A key-
sequenced file with a
5-byte key was used. The
block size was 4096, and
the average blocking
Jfactor was 38.5. A
NonStop TXP processor,
B00 software, DP2, and
COBOL code were used.

PR BER A RY 9 &6 b

T A NDEM

s

S Y ST EMS R BV kH W

15

| el
Figure 3.

Processing time for the
double-file, double-read
method. When 100% of
the records read are
updated, the benefit of
sequential block buffering
is insignificant. When
only 5% of the records
read are updated, how-
ever, a 44% throughput
improvement is realized.
(The test environment
and file were identical to
those for Figure 2.)

]
Figure 4.
A comparison of the
processing times for
various double-file and
single-file methods.
When only 5% of the file
is updated in a sequential
pass, the double-file
method is about 11%
stower than the single-file
method with buffered
cache and sequential
block buffering. (Under
those same circum-
stances, however, the
double-file method is still
about 37% faster than
the single-file method
using normal 1/0.) As
the percentage of records
updated increases past
20%, the performance of
the double-file method
degrades. (The test envi-
ronment and file were
identical to those for
Figure 2,)

Figure 3

140

TEST-FILE is opened for shared 170 access,
and RESERVE n AREAS is nor specified in
FILE-CONTROL. TEST-SBB is opened for
shared input access, and RESERVE 2 AREAS
is specified in FILE-CONTROL to invoke
sequential block buffering.

_ 120 Figure 3 summarizes the results of a per-
§ formance test of a NonStop TXP system doing
$ = sequential block buffering by the double-file,
8 double-read method. The test was conducted
§ in the same environment and with the same
g file as that described earlier. When 100% of
S the records read were updated, the benefit of
E 80 sequential block buffering was insignificant.
2 When only 5% of the records read were
§ " updated, however, a 44% throughput improve-
g ment was realized. (Note: The test also
g showed that elimination of record locking
c g when protected access is available is slightly
more efficient.)
0
SRl G R RS Comparing the Various Methods
. oo e As the tests described so far have shown, both
sequential block buffering and buffered cache
consistently improve performance, although
the level of improvement varies from one situ-
= ation to another. _ ;
Figure 4 compares the periormance of var-
ous double-file and single-file methods. When
Comparison of methods only 5% of the file is updated in a sequential
140 pass, the double-file method is approximately
11% slower than the single-file mclhod‘wil.h
_ 120 buffered cache and sequential block buffering.
(Under those same circumstances, however,
% the double-file method is about 37% faster
g & than the single-file method when normal 1/0
g 1s used.) :
2 &0 The advantage of the double-file method is
% that there is no risk from using buffered cache,
g 60 and shared update access is ;sllmvfzd.’ The
= 11% additional cost (in which 5% of the file
B is updated in a sequential pass) is relatively
g% small in light of these advantages. AS the per-
é centage of records updated increases past -
=L 20%, however, the performance of ‘!“3 dp uble
file method degrades. This degradation 1S "
0 caused by the additional read and record loc
0 20 40 80 B0 100 requests sent to the disc process.
Percentage of records updated
QUNg Sequental pass
"The risk associated with buffered cache is 'l=.li: -'Il"""’.‘"‘:dl;'w":‘u:m?rg::-t::
files. Buffered cache i always ued ‘-I"A'JJ:'-' o "':_‘ ['_' fanisms
release), but the files are protected by TMF recovery met
=
TANDEM sy g B u —— S =0 kR 3] 9 8 6

This means that the fastest way to process a
file sequentially is to rely on the single-file
method (using both sequential block buffering
and buffered cache and opening the file for
exclusive or protected access). The choice of a
nexi-best alternative (from the standpoint of
performance) depends on the characteristics of
the file and the percentage of records updated.
If a low percentage of records is to be
updated, the double-file method with sequen-
tial block buffering is probably best. If a large
number of records is to be updated, however,
the single-file, unbuffered method is best. The
exact “break-even" percentage varies from
application to application and can only be
determined through testing.

Conclusion

Sequential block buffering and buffered cache
are important File System features for improv-
ing application performance. The new B00
enhancements to COBOL make the features
easy for programmers to use.

While it is generally intended for read-only
applications, sequential block buffering can
help other applications as well. Buffered cache
improves the performance of most applications
that write, delete, and update. Before selecting
the techniques for accessing a file, application
designers should (1) analyze the file's charac-
teristics, (2) determine the possibility of con-
current updates to it, and (3) calculate the
percentage of its records that are updated.

References

B Software Documentation (Softdoc) on COBOL. 1985. B0O
software release Site Update Tape (SUT). Part no. T9251B00.
Tandem Computers Incorporated.

COBOL Reference Manual. 1985, Section 9, Procedure
Division—Verbs. Part no. 82589 A00. Tandem Computers
Incorporated.

ENSCRIBE Programming Manual. 1985, Section 4, File
Access. Part no. 82083 B0O. Tandem Computers Incorporated.

Welsh, R. 1984. Optimizing Sequential Processing on the
Tandem System. Tandem Journal. vol. 2, no. 3.

Acknowledgments

The author would like to thank Mike Noonan for his helpful
suggestions for the technical content of the article. Thanks also
to Jim Enright, Jim Gray, Guy Haas, Rich Lynn, Chris
Ohland, Emile Roth, Harold Sammer, Dick Thomas, and Rob
Welsh for their help in reviewing the article.

Randy Mattran is a senior staff analyst in the Minneapolis
District. His activities include application-design support,
support for data-base products, performance, and capacity
planning. Before joining Tandem in 1981, he spent five years with
a consulting firm, designing and developing distributed on-line
transaction processing applications. Randy holds a B.B.A. In
business computer systems from Eastern Michigan University.

F B B A ¥ e

DP1-DP2 File Conversion:
An Overview

e = —— =
: - hen systems are
converted from
— Tandem's Disc Pro-
Ml I cess 1 (DP1) to Disc
Process 2 (DP2), the
~ disc volumes must be
— converted to DP2
format. This is because the volume label,
directory, and internal structure of structured
files on a DP2 volume are different from those
on a DP1 volume.!

Tandem’s DP1-DP2 file-conversion utilities
support all conversion requirements, from the
simplest to the most complex. Note that while
this article emphasizes the more complex file-
conversion issues, most DP1-DP2 file conver-
sions will not be complex. An understanding
of the issues explained here, however, will
enable those responsible for DP1-DP2 con-

version to fully plan for the conversion of
their files,

'A conversion from DPI 10 DP2 does not require changes 1o the appdcat iom
that used DP|, All Programn that access structured and unstructured files in
ordinary ways are fully compatible with DP2. As the block structure hun
changed for structured files, however, those few programs that read wructured
fikes with unstructured accews will require changss to accommodate thin, Ao
as DP and DP2 andit-trail formats differ any programs that directly scoess
the sudit trail will require modification

Conversion Utilities

The following Tandem utilities are available
for file conversion from DP1 to DP2 (and
from DP2 to DP1):

® BACKUP has two new options (DP1FOR-
MAT and DP2FORMAT) that write a file to
tape in the specified format. If neither option

is specified, the format of the tape file will be
the same as that of the source disc file.
® RESTORE converts files automatically if the

format of the tape file differs from that of the
destination disc file. Since RESTORE can read
all tapes created by BACKUP, it can be used to
convert any file.

® The File Conversion Program (FCP) is_a
new utility designed to convert multiple files
and volumes in parallel. It converts files from
disc to disc, which allows it to convert vol-
umes faster than BACKUP and RESTORE. It
should be used to convert mirrored volumes,
and can be used to convert nnmnirrorecl'vol-
umes. (For a discussion of the time required to
convert files with FCP, refer to the accompa-
nying article, “Determining FCP Conversion
Time.")

® The File Utility Program (FUP) DUP com-
mand converts files automatically if the for-
mat of the destination file differs from that of
the source file.

File Conversion Assistance
Program (FCAP)

The File Conversion Assistance Program
(FCAP) automates DP1-DP2 file conversion. It
is similar in function to INSTALL, a utility
that provides an automated means of generat-
ing and installing the GUARDIAN operating
system. FCAP invokes the DP1-DP2 conver-
sion utilities at the appropriate time during the
CONVErsion process.

FCAP may be used for conversion planning
as well. It generates a set of reports from data
produced by an FCP ADVISE operation. The
reports categorize the FCP data, making it
much easier to identify files that require
special consideration before starting their
conversion.

s FCAP's documentation is an integral
part of the program itself, no separate hard-
copy manual accompanies it. Instead, one of
the options on FCAP's initial menu is to print
the user's guide. Refer to the B20 Software
Documentation (Softdoc) for further informa-
tion about FCAP and the user’s guide.

DP2 Resource Requirements

Tests have shown that processors containing
DP2 typically require more than 2 Mbytes of
memory. DP1 requires 80 Kbytes for its code
space, whereas DP2 needs 200 Kbytes. Also,
DP2 requires additional memory to support a
potentially larger cache size.

Before installing DP2, use XRAY™ to evalu-
ate DP1’s memory utilization. If the XRAY
results indicate memory pressure, add more
memory before installing DP2. Excessive page
faults can significantly degrade performance.

For DP2 TMF, a volume can contain either
audited files or audit-trail files, but not both.
This restriction was made to make DP2 soft-
ware more reliable than that of DP1. The DP1
TMF practice of “cross-auditing” is not
allowed with DP2. If all DP1 volumes contain
audited files, an additional mirrored volume is
required unless all the audited files on a mir-
rored volume can be moved to other volumes.

Restrictions on Mixing
DP1 and DP2 Volumes

As there is no requirement for all volumes on a
node to have the same format, a single node
can contain both DPI1 and DP2 volumes. This
means that, if appropriate, one or two volumes
can be converted at a time, as opposed to all
volumes being converted at once. The follow-
ing are the restrictions associated with mixing
DP1 and DP2 volumes on the same node:

= All volumes connected to the same disc con-
troller must have the same disc-process type.
A controller string must not contain a mix of
DP1 and DP2 volumes.

= [f a file has alternate keys, the primary file
and the alternate-key files must have the same
disc-process type.

= All partitions of a file must have the same
disc-process type. This includes files that are
partitioned across nodes.

= For TMF, audited files and audit-trail files
must be on volumes with the same disc-process
type. This usually means that all volumes on a
node that uses TMF must be converted at the
same time.

Changes in File Characteristics

DP2 introduces several changes in file charac-
teristics. In some instances, described below,
these changes will require special consider-
ation and action before conversion.

Fewer Valid Block Sizes

DP2 block sizes are limited to power-of-two
multiples of the sector size (512, 1024, 2048,
or 4096 bytes). This means DP2 does not sup-
port four DP1 block sizes: 1536, 2560, 3072,
and 3584 bytes. The conversion utilities adjust
the block size of any structured file having one
of the invalid DP1 sizes to the next highest
DP2 block size. (Thus, block size 1536 is
adjusted to 2048, and block sizes 2560, 3072,
and 3584 are adjusted to 4096.)

T EM § R E Y1l EBE W

R — S CCR

'*NDEM

This adjustment may not be optimum for a
particular file. To avoid this condition, run the
FCP ADVISE command on all files first to
identify those whose block sizes will change
(or use FCAP; the planning reports that it gen-
erates identify these files). Using a valid DP2
block size, restructure those files whose block
size would be adjusted inappropriately during
conversion; then convert the files.

Index and Data Block-size Requirements

for Key-sequenced Files

DP2 requires index and data blocks in a key-
sequenced file to be the same size, while DP1
does not.

DP1 Block-size Requirements. A DP| file uses
different index and data block sizes primarily
to achieve optimum performance. DP1 was
designed to use write-through cache, in which
every write operation causes an immediate
disc 1/0. (With the B0O software release, DP1
began using buffered cache for audited files
only.) Optimum block sizes for a DPI file are
determined by its write-through cache require-
ments, as discussed below. (For a comparison
of DP1 and DP2 cache, see Schachter, 1985.)

For random access of a DP1 file for which
write-through cache is used, a small data block
size is desirable because few, if any, read cache
hits are expected. Less of the finite cache
resource is used to hold the block, and the
number of bytes written to disc for a write
Wion is minimized. If the index block size
is also small, however, an excessive number of
index levels have to be accessed when a data
block is retrieved. In this case, a large index
block size is appropriate.

!—‘or sequential writes to DP1 files for which
wr_ltg-tprough cache is used, a small block size
minimizes the number of bytes written to disc
for each write operation.

DP2 Block-size Requirements. In DP2,
because all of a file's blocks are cached in the
same buffer and a separate cache buffer is
used for each block size, block sizes for pp2
index and data files must be identical.

Also, DP2 cache can be either write-through
or buffered. The default is buffered for
audited and write-through for nonaudited
files. Nonaudited files may be buffered, if
appropriate, however. A buffered file that is
written to sequentially should use a large
block size to take advantage of cache write
hits. Even files that are written to randomly
benefit from using buffered cache because
the disc 170 does not have 1o be performed
immediately,

Conversion Considerations, Because DP2
requires the index and data blocks of key-
sequenced files to have the same block size, the
conversion utilities automatically change the
block sizes of DP1 files with differing index
and data block sizes.” During the conversion,
the block size becomes the larger of the DPI
data and index block sizes rounded upto a
valid DP2 block size. (For example, a DPI file
with an index block size of 1536 and a data
block size of 512 would have a DP2 index and
data block size of 2048.)

Before converting files from DP1 to DP2,
use FCAP to identify all files whose index and
data block sizes are different. For each of
these, determine which is optimum for the
DP2 cache scheme: the block size it will auto-
matically be given by the conversion utility or
one of the other valid DP2 block sizes.

It is best to restructure, before conversion,
those files whose post-conversion block size
would be inappropriate. For a large file, how-
ever, it may be more practical to rcstruc{ureP
the file while converting it. Use the FCP DU
command’s BLOCKSIZE option for this.

- = FCP and FUP)
AL DI DIP2 file-comversion wtilines (BACKUP. ﬂl:s'«lf:f- FC 3
fodiow the sanme rules when sk ing block and eutent u:lt gy j
regardiess of the comveruaon wiiliny wsed, the ad st ments ame

FXE T RS RN

Preserving a File's Address Space

Bit-map Blocks and Address Space. DP2
relative and key-sequenced files contain bit-
map blocks in addition to index (key-
sequenced) and data blocks. Bit-map blocks
are used for free-space allocation within the
file. With the addition of these bit-map
blocks, it becomes necessary to distinguish
between address space and total file space.
Address space can be defined as the total
amount of space in a file that is available for
the storage of data and index (key-sequenced)
information when all the file’s extents are allo-
cated. It excludes any space required for bit-
map blocks. Total file space can be defined as
the total amount of space available in a file
when all the file’s extents are allocated,
including address space and bit-map block
space. Within these definitions, DP1 address
space equals the total file space, as it does not
use bit-map blocks. Thus, for DP2
address space = total file space - bit-map
block space,
for DPI

address

while
space = total file space.

Conversion Considerations. For relative and
kev-sequenced files, the file conversion utili-
ties attempt to preserve address space by
adjusting the size of the total file space to
compensate for the presence (DP1 to DP2) or
absence (DP2 to DP1) of bit-map blocks in the
converted file. They increment a file’s primary
extent size when converting it from DPI to
DP2 or decrement its primary extent size when
converting it from DP2 to DPI.

The adjustment factor is a multiple of the
file's block size. The smallest unit of alloca-
tion in a disc file is one page (2048 bytes).
Thus, if the adjustment factor is not a
2048-byte multiple (possible for block sizes of
512 or 1024), the conversion utility rounds up
the factor to the next highest page value for
DP1-to-DP2 conversions and the next lowest
page value for DP2-to-DP1 conversions. After
an extent adjustment, a converted file has the
same amount of address space as the source
file or slightly more.

It is evident that DP2 relative and key-
sequenced files require slightly more disc
space than their DP1 counterparts. If few of
these files reside on a volume, the additional
space requirement is minimal (1% or less). If
a volume contains a
large number of
these files, however,
the additional space
requirement could
be significant, espe-
cially if the volume
is almost filled to
capacity. The addi-
tional space required
could be as much as
5% but typically is in the range of 1% to 2%.
Use the FCP ADVISE command as an aid in
estimating the additional space needed for
conversion. One or more additional disc vol-
umes may be needed if the additional space is
not available.

n conversion, block size
becomes the larger of the
DPI data and index block
sizes rounded up to a valid
- DP2 block size.

DP2 Blocks Must Reside in the Same Extent
There are other reasons that a file’s extent
sizes may be adjusted during conversion. For
DP2, a block must reside in the same extent,
while for DP1, a block may be split between
two extents, such that the first half of a block
can fall at the end of one extent and the last
half reside at the beginning of the next. This
occurs if, for a file whose block size is 4096,
either the primary or secondary extent size is
an odd number. For any structured file in this
condition, the DP2 conversion utilities incre-
ment the extent size to the next even value.

U S OO R H R TR C A

N DEM S5

¥ 8 T B M S RIEBE N F R W

21

Difference in Number of Extents Allowed
A DPI file may only have a maximum of 16
extents allocated (1 primary and 15 second-
ary). This limit is not adjustable. Thus, for

DP1,

total file space (in pages)
= primary extent size
+ (15 « secondary extent size).

The maximum number of extents for a
DP2 nonpartitioned file is dynamically
alterable and is limited by the space available
in the file label. This allows for over 900
extents in most instances. A new file charac-
teristic, MAXEXTENTS, dictates the maxi-
mum number of extents allocatable for a DP2
file. Thus, for DP2,

total file space (in pages)
= primary extent size

+ ((MAXEXTENTS - 1)
+ secondary extent size)

To accommodate this difference, when con-
verting a DP2 file whose MAXEXTENTS value
is greater than 16 back to DP1, the conversion
utilities adjust the primary and secondary
extent sizes so that the total file space fits into
16 extents. For example, Table 1 shows the
characteristics of a DP2 unstructured file
whose MAXEXTENTS value is greater than 16
and the new values for these characteristics
after the file has been converted to DP1. Note
that the total file space has been maintained
but the extent sizes have changed considerably.

Table 1.
Characteristics of a DP2 unstructured file whose

MAXE){TENTS value is greater than 16, before and
after it is converted to DP1.

Atter
Characteristics Under DP2 to DP1
Primary extent size 10 pages 20 pages
Secondary extent size 10 pages) 139&6:3_ '
MAXEXTENTS 200 = = ey
Total file space 2000 pages ar_ A ﬁ;ws_or 3
(104 (200-1).10] (20 + 15. 13

Partitioned Files

While the parts of any key-sequenced parti-
tioned file can be converted individually, for
entry-sequenced and relative partitioned files,
all parts might have to be converted as a unit,

Key-sequenced Files

Key-sequenced files are partitioned at file cre-
ation when the primary key values for the
range of records that are to reside in each part
of the file are specified. It is not absolutely
essential that address space be preserved in
each part during file conversion. Records des-
tined to reside in one part before file conver-
sion reside in the same part after conversion,
even if that part’s address space is incre-
mented slightly by the conversion process.
Thus, regardless of any changes in a key-
sequenced file’s characteristics, it is always
possible to convert each part individually.

Entry-sequenced and Relative Files

For an entry-sequenced or relative partitioned
file, the position of a record in the file is
dependent on each part's address space. If
an individual part’s address space were not
preserved during conversion, records in one
part might fall into another part. If this
would occur for any part of a file, all parts
of the file must be converted as a unit; the
conversion utilities will not convert each
part individually.

Also, the parts of an cnu-,\'-scquencpd or
relative partitioned file whose block size would
change as a result of conversion must be con-
verted together. An individual part may not be
converted separately because it is highly prob-
able that some records would fall into different
parts after conversion.

Conversion Example 1. A part of a DP1
entry-sequenced partitioned file has these
characteristics:

Characteristics Vﬂ'_“;__ =
Primary extent size :5 ﬁages
Secondary extent size bytes

Block size

For this file, a 15-page secondary extent SIZ€ 9
not valid for DP2 because the b]ock size 1‘8ze
4096 (as explained earlier). This extent st
must be an even number, but if it were i
adjusted to 16 pages, the address space
not be preserved. Thus, the part cannot
converted individually.

T&NDEMS\'S

[

Conversion Example 2. A part of a relative
partitioned file has a block size of 512 bytes.
When it is converted, space must be added
(DP1 to DP2) or subtracted (DP2 to DPI) to
compensate for bit-map blocks. The block size
is not a multiple of a disc page (2048 bytes),
however. In all probability, address space
would not be preserved if the primary extent
were adjusted; therefore, the part cannot be
converted individually. This is also true for a
relative partitioned file with a block size

of 1024,

Converting Files Whose

Parts Must Be Converted as a Unit

Use FCAP to identify those files whose parts
can be converted individually with FCP and
those that must be converted as a unit with
BACKUP and RESTORE or FUP DUP. (FCP is
not capable of converting all parts as a unit.)

Files That Cannot Be Converted

FCAP produces reports identifying all files
that cannot be converted, (It runs the FCP
ADVISE command and generates the reports
upon completion of the ADVISE operation.)
The {ollowing describes the files that cannot
be converted.

Broken Files

A file must have structural integrity before it
can be converted, as none of the conversion
utilities convert broken files. (The FCP
ADVISE command’s VERIFY option identifies
such files. Note that this option checks only
for errors that would prevent a file from being
converted: it does not check for all possible
structural errors.)

TMF Audit-trail Files

The internal format for TMF audit-trail files is
different for DP1 and DP2; also, after a con-
version, the required TMF initialization invali-
dates all previous audit trails. For these
reasons, audit-trail files (those with a file code
of 134) must not be converted. (FCP does not
convert these files. The other conversion utili-
ties do, but the contents of the converted files
are useless.)

DP2 Records Longer Than 2035 Bytes

DP2 key-sequenced files may have records
longer than 2035 bytes, the maximum record
length for DP1. These files cannot be con-
verted to DP1.

DP2 Primary Files Having More Than

26 Alternate-key Files

A DP2 file label is larger than a DP1 file label,
allowing the specification of more alternate
keys and alternate-key files than are allowed
under DP1. As a rule, a DP2 primary file with
more than 26 alternate-key files is not convert-
ible to DP1.

Conclusion

An understanding of DP1-DP2 file-conversion
issues is essential for the successful conversion
of a data base. While not all file conversions
will be complex, it is important that those
responsible for a conversion understand the
file-conversion process and the changes in the
physical implementation of the data base that
may result.

References

B20 Software Documentation (Softdoc) on the File Conversion
Assistance Program (FCAP). 1985. B20 software release Site
Update Tape (SUT).

Carlyle, K. and McGowan, L. 1985. DP2 Highlights.
Tandem Svstems Review. vol. 1, no. 2. Tandem Computers

Incorporated.
DPI-DP2 File Conversion Manual. 1985, Part no. 82407 B0O.
Tandem Computers Incorporated.

DP2 Class. 1985. Course no. 38448-A00. Tandem Computers
Incorporated.

Schachter, T. 1985. DP2’s Efficient Use of Cache.
Tundem Systems Review. vol. 1, no. 2. Tandem Computers
Incorporated.

Jim Tate developed the File Conversion Program (FCP) and the
File Conversion Assistance Program (FCAP). He joined Tandem
in 1979 as an instructor and course developer in Hardware
Training. After that, he bacame a course developer in Software
Education and, then, District Systems Manager in Phoenix. Heis
currently an advisory staff analyst for the Large Systems Sup-
port Group. Before joining Tandem, Jim supported automated
warehousing systems. He has 17 years of compuling experience.

FEBRUARYI'?EIE‘TANDEM

g Y 8T8 M S R BV 1T B W

23

Determining FCP Conversion Time

S
~ he File Conversion Program
(FCP) is a Tandem utility for
converting files from Disc
Process 1 (DP1) format to
——— Disc Process 2 (DP2) format
_ — (and vice versa).' This article
— — explains how to determine
the amount of time it will take to convert files
with FCP. It provides a model that can be used
to estimate the amount of time that will be
required to convert any volume. The model
was derived from conversion tests also
described in the article.

"For a description of the DP1-DP2 conversion utilities and an OVETY hew
of conversion considerations, see the previous article, *DP1-DP2 Fike
Conversion: An Overview,” alwo by Jim Tate

'For a complete list of DP1-DP2 file-conversion seps, e the DPLDP?
File Conversion Manual

Basic File Conversion Steps

Below is an abbreviated list of DP1-10-DP2
file-conversion steps, containing those steps
that take the most time to perform.? This arti-
cle focuses on Step 8. (Note that this step may
take as little as a quarter of the time needed to
perform all of the conver steps listed.)
The list below assumes that a BOO or later
release of the GUARDIAN yperating system
has been installed and that the SYSGEN for
DP2 has been performed. It also assumes that
all volumes to be converted are mirrored,
although FCP can be used on nonmirrored
volumes if an extra disc drive is available as

the destination disc.

1. Shut down all applications and
subsystems.

. Back up all files (usually to tape, but a
disc can be removed to accomplish this
step).

3. Run FCP ADVISE, VERIFY on all vol-

umes being converted.,

4. Use BACKUP to back up files not convert-

ible by FCP. (This will be a small subset
of the files backed up in Step 2.)

(]

Shut down the “old™ system.

i

6. Copy the “new” system-image tape to
disc and cold load the system.

7. Convert the files that must be converted
by RESTORE.

[Jse FCP to CONVERT all other files.

9. Run INSTALL and perform the REPSUB-
SYS phase.

o0

10. Run FILCHECK to insure the structural
integrity of all structured files.

11. Start up all subsystems and applications.

12. Revive the volumes,

Main Factors Affecting FCP
Conversion Time

The main factors that may influence the
amount of time needed for an FCP conversion
are;

= Processor type (NonStop II™ or
NonStop TXP) and disc-controller type
(3106 or 3107).

= Number of files on the volume.
= Average file size on the volume.
s File type.

Processor and Disc-controller Types

The tvpes of processor (NonStop Il or
NonStop TXP) and disc controller (3106 or
3107) are the primary hardware factors. They
dictate the conversion transfer rate. The
amount of time required to create and update
the converted files is dependent on the proces-
SOr type.

Number of Files on the Volume

The number of files on a volume correlates
directly with the time required to convert the
volume. The greater the number of files, the
longer it will take to convert the volume. For
every file, FCP must create the destination
file, allocate disc space, and update the file
label after conversion.

Average File Size on the Volume

Large files convert at a higher rate than do
small files (28 Kbytes or less), for two rea-
sons:

1. For small files, the time required for file
creation, disc-space allocation, and the
update of the file label is a significant por-
tion (perhaps 50% or more) of the total
time required to convert the file. This
lowers the file’s overall conversion rate.

2. Each file is converted by a pair of FCP
processes (FCP1 and FCP2). The two pro-
cesses are designed to overlap reading from
the source file and writing to the destina-
tion file. For small files (28 Kbytes or less)
there is no overlap, however, because of the
small amount of data involved. Thus, the
file’s overall conversion rate is lower.

File Type
Unstructured files are the fastest to convert
because only their file labels need to be modi-
fied. Data is simply copied from the source
file into the destination file without changes.
For a DP1 entry-sequenced or relative file,
the logical and physical block positions within
the file are the same. The file can thus be read
sequentially, simplifying conversion. Multiple
blocks can be read in a single read operation.
A key-sequenced file is the slowest to con-
vert because the source file must be read via
the index so that records can be extracted in
logically ascending order. This means only one
block can be read with each read operation.
For this reason, a key-sequenced file with a
4096-byte block size converts at a higher over-
all rate than a key-sequenced file with a 512-
byte block size.

E BR'E U & RY 19 86 » TTA NDEM

25

—

&0 Table 1. : B
Characteristics of the file sets generated for the DP1-DP2 File Conversion Program (FCP) tests.
File sot 1 File set 2 File set 3 Filosetd
Records/tile 20 2500 200 125,000
Average file size 24KB __220KB 22ME ¥]}14‘533_'_
Total number of files —— _2930 B : 200 20 ‘_
Number of unstructured fles 500 50 5 K _—__
Number of entry-sequenced files ‘ —
512-byte block 125 12 _
1024-byte block 125 12 1 o
2048-byte block 125 13 : "
4096-byte biock 5 s 13 1
Number of relative files
512-byte block 125 12 1 _
1024-byte block 125 12 1 =
2048-byte biock 125 13 1 —
4096-byte block I | _ 13 2 1 "
Number of key-sequenced files
512-byte block 125 12 1 ==
1024-byte block 125 12 1 ==
2048-byte block 125 13 1 5
4006-byte block 1B 13 2 i T
] File extent sizes (both primary _
and secondary) in pages 6 80 800 | 6000
FCP Conversion Tests Each file set consisted of 500,000 80-byte
! records distributed evenly among the four dif-

The FCP conversion tests were designed to

i - ferent types of file. The total size of each file
take into account the main factors that affect set was 'a';,srmimmch 45 Mbvtes. This was
5 o o g The BOO versions of DP2 geemed 10 be sufficiently large to yield mean-
s ¥ ingful FCP conversion-time dala.

Desc All files in a file set contained the same
e T number of 80-byte records. This included the

Four different file sets were generated (see
Table 1), with average file sizes ranging from
small (24 Kbytes) to large (10.4 Mbytes).
Each file set was individually loaded onto a
DPI mirrored volume, which was then con-

unstructured files, whose end-of-file value
equalled the number of records per file m.ulu-
plied by 80 bytes. Only valid DP2 block sizes
were used for the structured files (512, 1024,

2048, and 4096 bytes). All key-sequenced files
verted to DP2. were generated with a block SLACK value of
10%.

Configuration Figure 1
Figure | represents the hardware configuration
for the test system. Only volumes $DATAI and
SDATA2 were used for the conversion tests.
They were both mirrored 4114/4115 volumes.

For each of the four file sets, the FCP CON-
VERT operation was run twelve times, measur-
ing the elapsed conversion times for one, two,
and three FCP1-FCP2 process pairs, on either
a NonStop II or a NonStop TXP processor
connected to either a 3106 or a 3107 disc
controller.

Only one volume was converted at a time,
and no other activity was present on the sys-
tem during the tests. All FCP output data was
directed to a disc file on $SYSTEM. Volume
SDATA T was used for the tests of file sets 1 and
3, and SDATA2 for the tests of file sets 2 and 4.

Test Results]] i A ——— Secondary access path
The eclapsed time required to convert a file set

with FCP for each hardware configuration is
listed in Table 2. These results show that there =
is almost a linear relationship between the i i
average file size and the average conversion i I
rate. As the average file size increases, the
average conversion rate also increases (elapsed
conversion time decreases).

I:;bla 2 Figure 1.
Elapsed time (In minutes:seconds) required to convert four file sets from DP1 to DP2 format with the File The hardware configura-
Conversion Program (FCP). tion used in the DPI-
NonStop II processor NonStop TXP processor DP2 File Conversion
Num Program (FCP) tests.
ch%%'z 3106 disc 3107 disc 3106 disc 3107 disc
File sot process pairs controller controller controller controller
File sal 1 1 50:47 45:31 35:22 31:29
(24 Kbytas, 2000 files) 2 42:28 ag:27 31:34 28:58
3 42:21 39:33 31:57 20:14
Fiie sat 2 1 17:58 15:11 11:06 10:39
(220 Kbytes, 200 files) 2 15:50 14:27 11:31 11:06
3 16:16 14:50 12:27 11:29
File set 3 1 14:41 11:23 9:48 8:00
(2.2 Mbytes, 20 files) 2 14:12 11:37 11:15 9:24
3 14:25 11:33 11:36 9:07
File set 4 1 10:05 7:40 5:32 5:20
(10.4 Mbytes, 4 files) 2 :10 7:31 7:24 5:26
3 10:10 7:29 6:45 5:30
PE BR UK RY {9 4 6 + TAMNDE M &£ ¥I§T BEMSE RENILEBEW 27

s e L

Table 3.

—_—

Hardware-dependent values_t_or_vgia_ble_s f1, 12, and 13 of FCP conversion-time model.

—__Nondtop [l processor NanStop TXP processor
3106 disc 3107 disc 3106 di e
Variable controller controller ¢ ontroll.:t :;2;::::'
{1 (file creation disc-space 07 07 7 o5
allocation, and file-label update
time, in secslfile) L
12 (FCP overhead)) 178 16.9 _‘_——1;;———
13 (transfer rate in Kbyles/sec) 50.7 615 A 4 ——-a—z—-—-
Figure 2 Estimating File-conversion Time
| Conversion-time Model
:DSAP /OUT $S/ SCAT, BYSUBVOL Based on the test results, the following model
[PAGES] DSAP — SCAT on \SUPPORT — to estimate the amount of time required to
Disc Space Analysis Program — T9074B00 - (28JANBS} !) . 18 deve e+
olling SCAT 1 logicad Cotca convert a volume was developed:
Device type is 3, subtype 3(4104 — 240MB)
114,026 pages (2048 bytes) on volume Conversion time in seconds
| 233,525,248 bytes on volume
as+ J2
| Summary of space use on SCAT = (f! 4 J] e 1/
| 1' free pages in 642 extents (9.5%), _f.?
10 ated pages In 8, Bl 17,088 extents (87,9%) = :
2,27 uniised pages in 3,131 files (10.7%) where fl1 = file« reation, dlsg-space
1,949 deallocatable extent pages in 33 files (1.7%) allocation, and file-label
sdate time i /file
Spaos Allooation Conslitiocy Anibyeli update time in seconds
No space allocation anomalies. f2 = an FCP overhead factor
Media Failure Analysis: f3 = transfer rate in Kbytes/
Primary disc has no unspared defective sector(s) second
Mirror disc has no unspared defective sector(s) as = average file sizein Kbytes/
- DSAP — SCAT on \SUPPORT — file
= J:;a! u;:,m Deslioc Large Min nf = number of files
es ges Pa F
e 10308 wigag Gy 0 e The values of /7, /2, and /3 depend on the
i - % : hardware configuration, i.e., the processor
ABURUNB4 ‘1‘ 3;5 Sgg 0 83 446 and disc-controller types. Use Table 3 to
ﬁggﬁifs 6 106 - - gg " determine these for a specific hardware
ADVENT 12 3;2 i 0 8 807 configuration. I
ADVENT2 2 74 3 2 62 a8 In determining the value of f/, a modifie
AIDDEV 0 1008 0 72 614 : s : ¢ the actual
ALGORITH ‘ o e 0 28 14 version of FCP1 was used to capturt i
: LI time required to create the destination fi ;. :
allocate disc space, and update the file gt ﬂ;-
The value proved to be processor depen fl?e
! In calculating the values of /2 andf- .
h elapsed times for file sets 1 and 2:’“ on
: ‘CP1-FCP2 cess pair were used.
Example Disc Space as (. o e ROFI-RCRS peocess i
Analysis Program average file size) and
(DSAP) report used in :lhf (number of files) for
i e conversion-1j,
defﬂ'mmmg the values of model. ime
28
TANDEM g TR e
S NCALTIR e I EW . FEBRUATRY

Other Factors Affecting Conversion Time
Many other factors, besides those previously
mentioned, can affect conversion time. If a
volume has a predominance of unstructured
files, it will probably convert in less time than
the model would indicate. Conversely, if key-
sequenced files predominate, more time will
probably be required.

If FCP is to be used to convert multiple
volumes in parallel (as it was designed to do),
resource contention may cause the conversion
time for a volume to increase. Thus, the
model-based estimate should be viewed as an
approximation with an accuracy of £25%.

Using the Model

The values for the average file size (as) and
number of files (nf) can be determined with
the Disc Space Analysis Program (DSAP), a
GUARDIAN 90 utility. For this explanation,
the DSAP output example in Figure 2 is used
as the basis for determining the values of as
and nf.

Page 0 of the DSAP example indicates
100,258 pages are allocated to 8771 files. Of
this total, however, 12,297 pages are unused;
i.e., they do not currently hold any data. To
find out the number of disc pages that contain
data, subtract the unused pages from the allo-
cated pages (in this example, 100,258 - 12,297
= 87,961).

Then determine the average file size in
Kbytes. (Set aside the six temporary files men-
tioned on page 1 of the report for later consid-
eration.) To calculate the average file size,
multiply the total data pages by 2 Kbytes (the
size of a disc page) and divide the result by the
number of files on the volume. For this exam-
ple, the average file size is

87,971 pages » 2 Kbytes
8771 files

Now consider the temporary files mentioned
on page 1. As FCP does not convert tempo-
rary files, subtract them and the space they use
from the totals. In this example, the total
number of files is 8771 - 6, or 8765 files, and
the total space used is 87,961 - (198 - 54), or
87,817 pages. Thus, the average file size is

87,817 pages * 2 Kbytes
8765 files

= 20.1 Kbytes/file.

= 20.0 Kbytes/file.

To calculate the time required to convert the
volume, use 20 Kbytes/file as the average file
size (as) and 8765 as the number of files (nf).
Also, for this example, assume the system has
NonStop TXP processors and 3106 disc con-
trollers. Thus, the approximate time required
to convert the volume is

20.0 + 24.5
86.4

or 8897 seconds (148.3 minutes or 2.5 hours).

Time = (0.5 +) * 8765

If this volume were on a NonStop II system
using 3106 controllers, the approximate time
required for conversion would be

20.0 + 17.8

Time = (0.7 +
50.7

) * 8765

or 12,670 seconds (211.2 minutes or 3.5 hours).

Conclusion

The amount of time required to convert a vol-
ume from DPI to DP2 is dependent on many
factors. This model for estimating FCP con-
version time takes into consideration the main
factors affecting FCP conversion. It should be
helpful for calculating the amount of time it
will take FCP to convert a specific volume.

Relerences
DP1-DP2 File Conversion Manual. 1985, Part no. 82407 B0O.

Tandem Computers Incorporated.

Jim Tate wrote this article, as well as the accompanying article,
“DP1-DP2 Flle Conversion: An Overview."

BB R WA RN 4986 s

T A N D E M 8 ¥ S ° B M @8 R E Y1l E W

29

TACL, Tandem’s
New Extensible
Command Language

= === 5= ek
or some time, users of
Tandem systems have asked
for an interface to the
GUARDIAN operating sys-
tem that is more flexible and
powerful than COMINT,
— Tandem's command inter-
preter. To answer this need, Tandem has devel-
oped a new integrated command language that
can be used to perform simple interactive
functions as well as to automate complex pro-
cedures. TACL™, the Tandem Advanced Com-
mand Language, is available for use with
GUARDIAN 90 in the B20 software release.

TACL's basic command-interpreter features
include:

= Support of COMINT commands.

= Support of user-defined alternate command
names (aliases).

® A command history, allowing reexecution
and/or modification of previously entered
commands.

= Function-key definitions.
* Prompts containing status information.

TACL's advanced command-language fea-
tures include:

» Extensibility, allowing user-written com-
mands with full functionality

® A “help” facility that describes the syntax
expected next.

= Support of wild cards for file naming.

= Support of macro files (files containing a
series of commands in the order and format
they would be typed in interactively)

* An implicit RUN command, allowing pro-
grams or macro files to be invoked by file
name only.

= Support of functions that return a value,
allowing the results of one command to be
used as the arguments of another (similar to
UNIX pipes).

TACL's extensibility is achieved through the
following features traditionally available only
in programming languages:

* Transparent type conversion between
numeric and string data.

® Arithmetic and logical expressions.

* Variables (which can be used as stacks).

= Procedural constructs (macro, text, and
routine functions).

= Control structures (IF, labeled CASE, recur-
sion, WHILE-DO, and DO-UNTIL loops)-

* Exception handling.

* A debugging facility which allows step-by-
step or breakpoint debugging.

= Sequential 1/0.
= GUARDIAN 90 interface procedures.

= Support of variables used for process
communication.

= Text-editing primitives.
= Aids for parsing complex argument strings.

The basic command-interpreter features are
described in the TACL manuals listed at the
end of this article. The more advanced fea-
tures and the programming features are
described in the following sections. Examples
of how they can be used are included.

Advanced Command-language
Features

Extensibility

All commands in TACL are implemented as
functions, the TACL equivalent of procedures.
Each TACL user’s environment is initialized
with & standard set of functions, the
TACLBASE functions, that implement com-
mands compatible with COMINT. Users can
add 1o or replace these functions at any time
by creating new functions that use existing
commands and built-in functions. The new
functions can be as simple as COMINT com-
mands or as complex as programs.

I'he built-in functions are TACL's predefined
building blocks. Many of these functions pro-
vide a high-level interface to GUARDIAN 90
procedures such as FILEINFO and PROCESS-
INFO. Others allow new, more flexible ways of
using the system, such as selecting sets of files
using wild-card notation (TACLs file-name
templates).

Help Facility

TACL provides three facilities for aiding inter-
active users. First, users can display a list of
the available built-in functions by typing the
command BUILTINS, They can also press the
predefined “help” key, F16, to display the
syntax options of any command, including
that of user-defined commands. Finally, as
TACL evaluates an incorrectly typed com-
mand, it issues an error message indicating the
syntax it was expecting. Users can then correct
the command without having to refer to a
manual. (This feature is also available to
TACL programs.)

Figure 1

?SECTION print ROUTINE

TGALs all files matching the file-name template
passed to the routine.

#FRAME {Make it easy to clean up PUSHed variables.}
#PUSH template {Prepare a variable to hold the argument.}

#PUSH arg_type, filename {Prepare variables used by DO_EACH routine.}
SINK [fFARGUMENT /VALUE template/ TEMPLATE] {Get the template argument. }

|#DEF do_each ROUTINE

BODY|
[#LOOP {Loop once for each flle name passed to this routine.}
2]e]

== Find out If the argument Is a file name (1)
= = of the end of the argument string (2)
== and save the value of it

#SET arg_type [FJARGUMENT /VALUE filenamel FILENAME END]

[#IF (arg_type = 1) {If a file name, TGAL it.}
[THEN|

TGAL /in [fllenama], out $s.#tgal, nowait/
] ()

UNTIL|
(arg_type = 2) {When no more file names, quit.}

= = Execute the routine that TGALs each file, passing it
= = the complete list of file names that match the template
== We were given.

do_each [#FILENAMES [template]]

FUNFRAME |Clean up all variables we created here.}

File-name Templates (Wild Cards) me_-_

Users of Tandem systems have requested a way . pp/nr Ametion

to perform an operation, such as purging or Cenmonstiates the

printing, on a set of files without having to argument-handling

type each file name in the set. With TACL, capabilities of a TACL
routine.

users can do this by giving a file-name tem-
plate as an argument to a function. For
instance, the command FILENAMES accepts a
file-name template and prints the names of the
files the template specifies in a format similar
to that used by the familiar COMINT FILES
command. The example in Figure 1 illustrates
the contents of a routine named PRINT that
accepts a file-name template as an argument
and TGALs each file name that matches it.

FiBBORY A WY § 9 e TEAL WD OB

Macro Files .
A desirable trait of any command language is
the capability of executing commonly used
sequences of commands without typing them
each time. Some of the tools used in the
Tandem environment to accomplish this are
OBEY, STREAM, and EXEC. TACL allows
users access to these tools, but introduces
macro files as a simpler means of accomplish-
ing this goal.

A macro file is simply an edit file that con-
tains one or more commands. These com-
mands are executed in sequence when users
invoke the macro file by its file name. A
macro file can contain a few commands typed
in the same format as they would be typed
interactively or a few thousand commands
utilizing some of TACL's more sophisticated
features. It can also contain definitions of new
functions to be used as subroutines.

Users can define dummy arguments in
macro files and pass arguments to the macros
at start-up time. They can achieve even more
sophisticated argument handling in macro
files by using routines within the macro files.

Finally, through macro files, TACL can
determine which actions to take dynamically,
based on the results of previous actions and
the characteristics of the current environment,
rather than basing its actions solely on the

environment that existed when a process
started.

Implicit RUN or Function Invocation

TACL users can execute a macro file or pro-
gram (object) file simply by typing the file's
name. If the name is not fully qualified, TACL
searches a user’s current search list of subvol-
ume names. The default search list contains
SSYSTEM.SYSTEM only (simulating the way
COMINT handles program file names). Users
can modify their individual search lists, how-
ever, to have TACL look for programs and
macros in other subvolumes before or after
searching SSYSTEM.SYSTEM. The list can

contain a I.!SCI"S current subvolume and/or any
other locations.

For program files, all RUN options (includ-
ing DEBUG) are available with this implicit
RUN feature. The search feature is not avail-
able when the RUN command is explicitly
used.

Explicit Invocation and Pipe-like Usage

The TACL User’s Guide and TACL Quick Start
explain how users can load libraries of com-
mands to customize their individual environ-
ments. They then execute these commands by
typing the command name and command
arguments on a single line and pressing
RETURN. (This method of invoking com-
mands or functions can be considered implicit
invocation.)

Explicit invocation provides additional
functionality. Users can invoke commands
explicitly by surrounding them in square
brackets ([]). TACL evaluates any command
surrounded by square brackets as soon as all
left and right square brackets match. This
allows users to place multiple commands on a
single line and to spread a single command
over multiple lines.

For instance, the commands

1> [time] [status *, user]

cause the time and then the status information
to be displayed.' Similarly, TACL does not
evaluate the command

2> [status
2> -
2> user |

until the square brackets match.

Explicit invocation also allows users to nest
commands so that the output of one function
can be passed as input directly to another.
Before TACL was available, it was necessary to
store the results of a command in an lpterme-
diate process, variable, or file so that It could
be altered into acceptable input for another
function.

appearing to the
of commands
fior the first

*The TACL promgs is 8 “grester than™ sign (>). The number
keft ol the proemgx is the count of the command in the soquence
the user has typed (c.g., 8 number | dmunt!xlﬁhlfl*‘m
command typed in, & 2 for the second command typed i8. etc.)

32

T ANDEM 5 vy

STEMS »BYvY

I E W » rua s R UXR

For example, to obtain a timestamp and
display it in a format of month, day, year, and
time, users had to call TIMESTAMP, save the
result, pass it to CONTIME, save CONTIME's
results, and convert them to date and time
format. In TACL the timestamp conversion
can be done in a single command, as illus-
trated below:

3> #0UTPUT [_Contime_To_Text
3> [#CONTIME

3> [#TIMESTAMP]]]

June 23, 1985 12:35:06

In the above example, TACL executes the func-
tion # TIMESTAMP and passes the value
returned as an argument to # CONTIME. It
then executes #CONTIME and passes its value
as an argument to the TACLBASE function

_Contime_To_Text. TACL then passes the
result to #OUTPUT and executes it, displaying
the formatted date on the user's terminal.

Programming Facilities

Transparent Data Type Conversions
From a TACL user's point of view, all data is

textual. In fact, TACL recognizes integers as
well and can perform arithmetic and logical
operations on integers. TACL makes any con-
versions between numeric values and ASCIH
that might be required. In addition, whenever

users need to supply a number as an argument
to a TACL routine, they can use the name of a
variable containing a number.

Arithmetic and Logical Expressions

TACL also allows the use of an arithmetic
expression wherever a number or numeric vari-
able name is expected. Such an expression
must be enclosed in parentheses, and can
include other arithmetic expressions, integer
numbers, numeric variables, and operators.
Operators can be arithmetic (+ , -, *, /) or
logical (NOT, AND, OR, <, >, =, <=,
>=, < >), Parentheses can be used to con-
trol the order of evaluation. The value of a
logical expression is either -1 (true) or 0
(false).

Variables

In most programming languages, variables are
used to store values. A variable’s current value
is substituted for its name each time it is
encountered. Some languages also allow a
variable to be a function or procedure that is
executed whenever its name is used. Generally,
a variable is defined to be of a specified type,
for example, integer or string. All these capa-
bilities are also true of TACL variables. In
TACL, however, a variable’s value and type
and the manner in which it is used can be quite
different from those in other programming
languages.

In TACL, variables are actually stacks, and
the number of levels in a variable is limited
only by the fact that they must fit into the
user’s data area.
Any existing level of
a variable can be
referenced. Variables
can be created,
assigned values, and
destroyed either
interactively or from
within a TACL pro-
gram. By default,
all variables are
global within a TACL program, although it is
possible to create local variables for a particu-
lar procedure.

The method TACL uses to substitute a vari-
able’s value for its name is somewhat different
from that of most languages. The value that is
substituted for the variable name depends on
its type: alias, text, macro, routine, or delta.
Text, macro, and routine variables can contain
commands or function invocations as well as
text; they then can be viewed as procedures.

An alias variable is used as another name
for a word. The word may be the name of a
built-in function, TACLBASE command, user-
defined command, or file name. When the
variable name is used, the word for which it is
an alias is substituted.

can be altered while
the process is running so
that concurrent processes
can be managed flexibly.

—
Wth TACL, variables

I ERT T T T T T ¥ &N

D E M

5 Y ST EM S R EBE V1 EBE W

33

Text, the default, is the type most similar to
types found in other languages. The value of a
text variable is simply the value of the text to
which the variable is set or defined. It can be
numeric or character.

Like a text variable, a macro variable can
contain numeric or character text. Macros
allow the substitution of dummy arguments
based on the positions of their actual argu-
ments. A macro variable's value then becomes
its textual content plus the argument substitu-
tions. (Macros are most often used to execute
other commands, however, in the same way
that routines are used.)

A routine variable is used to execute other
commands, much like a procedure is used in
other languages. It determines its own value
through calls to the built-in function
#RESULT. A routine has the option of not
returning a value.

Delta variables are discussed in the section,
“TACL Text Editor (#DELTA).”

TACL variables can be used in ways not
commonly offered in other programming lan-
guages. For example, variables can be used as
input and output files to one or more other
processes. They can be used strictly as files:
that is, the entire input contents are contained
in the input variable when the process is
started and the output variable is examined
when the process’ output is complete.

These variables can also be altered dynami-
cally, however; their contents can be changed
while the process is running. This provides
great flexibility in managing one or more con-
current processes. TACL variables can also be
used easily to perform sequential 1/0 to files,

?;s glsboraled upon in the section, “Sequential

Procedural Constructs

Text, macro, and routine TACL variables can
be used as procedures because they themselves
can contain command or function invoca-
tions. All three can be constructed with func-
tions of any type as building blocks; each can
be used to fill particular needs.

Text functions, the simplest of the three to
build and use, can contain collections of com-
mands and/or built-in functions that are
invoked as a unit; thus the name of the func-
tion becomes a shorthand notation for the
sequence of functions within it. The invoca-
tion of a text function produces only those
results generated by its constituents.

A macro can contain different functions or
function arguments every time it is invoked,
through the argument-substitution scheme
mentioned in the previous section. The results
of a macro invocation consist of the results of
the functions contained within it, after the
actual arguments have replaced the dummy
arguments.

Routines are the most versatile of the proce-
dure types in TACL. Users can vary the con-
tents of a routine (in the same way they can
vary the content of a macro) by having TACL
pass arguments to it. In addition, TACL can
check routine arguments automatically for
syntactic (and in some cases, semantic) cor-
rectness through the buiit-in function {MRGU-
MENT. Note that the writer of the routine
determines syntactic correctness; the syntax
rules for routine arguments need not be identi-
cal to those for TACL commands.

The writer of the routine also has complete
control over the values (or results) produced
by the invocation of the routine. If needed,
values must be generated explicitly with the
built-in function #RESULT.

Control Structures ;
All of TACL's procedural function types can

make use of the control built-in functions llges

perform different actions, based on thﬁe\'a
of control expressions (whgch can bet
results of function invocations).

TANDEMS

YSTEMS p gy

|l EW « F E B R UAR

TACL supports block IF-THEN-ELSE state-
ments, labeled CASEs, and two loop types
(WHILE-DO and DO-UNTIL). Recursion is
also possible.

Routines alone can be programmed to
#RETURN at any time to their invoking func-
tion (or simply terminate, if they were invoked
directly from the keyboard).

Exception Handling

Another facility unique to routines is the abil-
ity to detect and handle exception conditions
programmatically. Exceptions are generated
(“raised™) by TACL or by functions when an
unexpected event prevents normal processing.
Routines may cause (#RAISE) exceptions at
any time they are being executed.

If a routine needs to handle exceptions itself
(and this can include exceptions raised by it or
by any routine it invokes), it uses the #FILTER
built-in function to name the exceptions for
which it will accept responsibility.

When an exception is raised, TACL ceases
invoking the current routine and checks
whether the exception is filtered by it. If not,
TACL cancels execution of the routine that
invoked the current one (if there is such a rou-
tine) and checks that routine’s filters. It passes
the exception “up” the chain of routine invo-
cations in this manner until it finds a filtering
routine,

When TACL finds the routine that filters the
desired exception, it reinvokes that routine.
The routine must use #EXCEPTION to find
out whether it is being invoked normally or as
the result of its filtering a raised exception.

In some instances, TACL handles exceptions
fpr users. One frequently encountered excep-
tion is called _ERROR, which is raised when
TACL detects an error. One cause of a raised
—ERROR is the attempt to invoke a routine
with arguments not recognized as correct by
its #ARGUMENT processing. If such an argu-
ment error occurs when no routine has
declared it will handle _ERROR problems,
TACL responds by returning the error message

expecting..." followed by a list of the argu-
ment types expected.

Debugging Facility

TACL supplies a debugging facility for TACL
code. Users have the option of stepping line by
line or setting breakpoints at an invocation.
The debugger itself is written in TACL code
and resides in TACLBASE. Users may create

a modified version by copying it from
TACLBASE, making the desired changes, and
LOADiIng it into their individual environ-
ments. Any TACL command can be evaluated
at a debugger prompt; thus, users can obtain
information about the TACL process or any of
its variables.

Sequential 170
TACL functions can pass information to and
use information from other processes, devices,
and files of all
types, including edit
files. The #INPUT
(and #INPUTV) and

he TACL variables can

#OUTPUT (and be altered while the
FOUTPUTY) func ' process is running so

read from and write
to the IN and OUT
files of a TACL pro-
cess. The function
#REQUESTER can be used to open other

files for reading or writing, perform the oper-
ations, and close the files. The function
#REQUESTER 1/0 can occur asynchronously;
that is, other functions can be invoked while
TACL completes the 1/0. It is also possible to
wait for the operation to finish.

that concurrent processes
can be managed flexibly.

E
BB U OAE Y o oo ¥

A N DEM

S Y8 T EMS g BV 0 OE W

35

Figure 2

?SECTION program_timer ROUTINE
#FRAME

{Set up variables for controlling)

#PUSH program__in
{the process to be timed.)

#PUSH program_status

#PUSH source_flle

#SET source_file smallob)
#PUSH Inspect_in {Set up variables for controlling INSPECT process.)
#PUSH inspect_out

#PUSH inspact_server

[#SET inspect_in &

b#bo*build *object Mile + %247
b#bo*bulldobject Mile + %434
b#bo™build“objectMile + %461
b#bo*bulld“object *Mile + %471
b#bo*build*object “ile + %504
resume

1

#PUSH breakpoint_name
#SET breakpoint_name Start

{Set up varlables for data relating}
{to timing and breakpoints, }

#PUSH start_time, stop_time, elapsed_time

== Get a server file name 10 use for INSPECT
== (tha TERM of the timed process)
#SET inspect_server [#’SERVER /IN inspect_in, OUT inspect_out/]

== Start the process to be timed under INSPECT

RUND $system.system.bind/STATUS program_status, NOWAIT, &
INV program_in DYNAMIC, OUT $s.#temp, &
TERM [inspect_sarver)/

== Wait for it to be started up (ready for input)
sink [#WAIT program_in]

== Send it the commands to start work
#APPEND program_in add * from [source_file]
#APPEND program_in build testobj

FEOF program_in

==Send It an end of file

#SET start_time [#imestamp] {Record the starting time. }

= = Print headers, first "breakpoint” name (Start)

#OUTPUT

#OUTPUT /COLUMN 5, HOLD/ breakpoint
#OUTPUT /ICOLUMN 40, HOLD/ start
#OUTPUT /COLUMN 55, HOLD/ end
#OUTPUT ICOLUMN 70/ elapsed
#OUTPUT /COLUMN 5, HOLD/ name
#OUTPUT /COLUMN 40, HOLD/ time
#OUTPUT ICOLUMN 55, HOLD/ lime
#OUTPUT /COLUMN 70/ time
#OUTPUT

#OUTPUTVICOLUMN 5, HOLD! breakpoint_name

= = Begin loop which waits for breakpoints to be hit and
= = records the lime spent between each pair
wait_for_breakpoints

SUNFRAME

7SECTION print_breakpoint_times TEXT

= Function to print the breakpoints encounterad and the
= time elapsed between each pair of breakpoints

LU 1]

#SET elapsed_time [WCOMPUTE stop_time - start_time]

= = Print elapsed time for code AFTER last breakpoint,

== then name of the breakpoint we just hit

#OUTPUT /ICOLUMN 40, HOLD/[contime_to_text_time
[#contime [start_time]])

#OUTPUT /COLUMN 55, HOLD/[contime_to_text_time
[#contime [stop_time]])

#OUTPUT /COLUMN 70! [contime_to_text_time
[#contime [elapsed_time]]]

#OUTPUTVICOLUMN 5, HOLD/ breakpoint_name

GUARDIAN 90 Interface Functions

A .
s TACL implements many of the most useful
PROGRAM_TIMER =
o Dé ssed 10 ake GUARDIAN 90 procedures as built-in func-
elapsed-time performance tions. These functions are easy to use, as
measur:hmems on pro- TACL converts the values supplied as input
cesses ose actions are 1 1 -
Sotria throuth (nutme?E Oanlam _tﬁc}g) to the Froper {;)r
INSPECT breakpoints. mats, fills in required parameters, calls

This version of the rou-
tine was used to measure
BIND performance. The
routine's implicit
#SERVER is the IN file
of the process (supplying
commands to it). The
explicit server-file name
is used as the TERM of
the process so that
INSPECT s input and
output can be manipu-
lated. PROGRAM _
TIMER also has a sub-
Jfunction (get_break-
point_routine) that uses
#DELTA to extract infor-
mation from INSPECT's
ourput,

GUARDIAN 90, and converts the returned
values to text. On GUARDIAN 90 calls that
return multiple values (FILEINFO, for exam-
ple), TACL obtains only the items users spec-
ify. Some of the GUARDIAN 90 procedures
TACL supports are shown in Table 1.

Using Variables for Process 1/0
When users start a process with TACL (by
explicit or implicit RUN, or by using
#NEWPROCESS), the process can use TACL
variables as its IN, OUT, and/or TERM files.
In addition, if the program uses logical file
names, users can direct the program to use
TACL variables in place of other physical files,
as well. This is the server-file feature of TACL.
When server files are used, TACL can deter-
mine the contents of the process’ input vari-
able programmatically while the process is
running, and it can examine the contents of
the process’ output variable at any time; that
is, TACL is in complete control of the process.
An example of the use of both explicit and
implicit server files to control a program run-
ning under INSPECT is shown in Figure 2.
Figure 3 demonstrates how a program that
gets its file location by reading an ASSIGN
message might use a TACL variable instead of
a disc file.

7SECTION wall_for_breakpoints TEXT

= = Recursive function that walls for breakpoints to be hit and

= = reports on them

;: stop
[#CASE [#VARIABLEINFO IVARIABLE/

[WWAIT inspect_in program_status]]

Inspect_in|
#SET stop_lime [#timastamp)|

Wail lor INSPECT to be ready for input (meaning a
breakpoint has been hit) O for the program to

= = get breakpolnt location from INSPECT output

= = and print statistice
get_breakpoinl_name
print_breakpoini_ times

== throw away INSPECT output
#sel inspect_ou!

== resume execulion and walt for next breakpoint

RSET start_time (Mimestamp]
#APPEND Inspecl_IN msume

wail_for_breakpoinis

lprogram_status|
#SET stop_time [Mimestamp]

7SECTION get_breakpoint_name ROUTINE

L § 3 3 F 53 ===================================
#FRAME
#PUSH delta_commands
#SET ITYPE DELTA/delta_commands &
Ginspect_out$ & = Get the text from inspect_out

0J&

= Go to the beginning

S-BREAKPOINTS &

HK
= clear the buffer.

SINK [#DELTA JCOMMANDS delta_commands/]
FUNFRAME

= = Search for -BREAKPOINT-
N Xbreakpoint_name$’ & == If found, put the rest of the text
= = Into breakpoint_name,

#SET breakpoint_name Stop { Print statistics on}

print_breakpoint_timas [last breakpoint.)

#OUTPUT

ROUTPUT Killing sarver [inspect_server]: &

[#SERVER /XILLI [inspacl_server]) | Delete the server)
{file for INSPECT.|
] {case|

Table 1, 5
GUARDIAN 80 procedures and the equivalent TACL built-in functions.
GUARDIAN 90 procedurs TACL bullt-in function GUARDIAN 90 procedure TACL built-in function
File system = Process control (continued)
Sroate (partiaily supported) #createfile suspendprocess #suspendprocess
deviceinfo] sdeviceinto T™F
fleinfo #fileinto aborttransaction #aborttransaction
Dotlename #nextillename begintransaction #begintransaction
Processfilesecurity #processfilesecurity endtransaction #andtransaction
—_— _: ~ #rename Other
ven, wrlereadiroad. and close ____ READ #requesier e s
M. and close = WRITE #requester convertprocesstime #convertprocesstime
etk NG i locatesystem (number only) #systemnumber
Nritscand _— #input, Minputy mom #mom
open and close #out mypid Sonyped
s 4 foutput, #outputy mysystemnumber plus getsyslemname #mysystem
Process control myterm plus setmyterm #myterm
st - ¥activateprocess setmode 28 flinitterm
alterpriority Falterprioity shiftstring #shiftstring
Createprocessname #createprocessname getsystemname oyee
:"53 e Fcreateremolename timestamp #timestamp
;:unrocm #debugprocess tosversion T
oupprocessname o gelppdentry _Wlookupprocess userametouserid il

Process or newprocessnowait #newprocess useridtousarname #username
:::uslnfo Sprocessinio verityuser (log on only) #changeuser
—_ #stop
MR

37

h—___;

9

8§ 6 + T A NDEM

g ¥'§'T B M S R BE VI EW

Figure 3
7TACL MACRO
#FRAME
#PUSH prog_name, prog_stat, data_var {Create variables 1o run the program. |
#SET [IN datafile / data_var {Load data into the data varlable.}

== Set up variables to control the servers simulating logical files
#PUSH server_in_name, server_out_name, server_in, server_out

== Get server file names for 2 logical files, the program will
== use one as an Input file and the other as an output file
#SET server_in_name [#SERVER | IN server_in /]

#SET server_out_name [#SERVER | OUT server_out /]

== Save a copy of the current ASSIGNSs, then assign the logical
== files 1o the server names

#PUSH #ASSIGN

ASSIGN 11005, [server_in_name]

ASSIGN 11006, [server_out_name]

== Run the program using a status variable to tell when it finishes
ptforol STATUS prog_stat, nowalt /

== Append the contents of the data file, now contained in data_var,
== to the IN variable of the server simulating the logical file being
== used for input. This allows the program access to the data.
#APPENDV server_In data_var

= = When all the data has been read from the IN variable {server_in) or

= = the program terminates (prog_stat), we can examine the OUT variable
== (server_out), to see the rasults of the program.

SINK [#WAIT server_in prog_stat]

#OUTPUT
#OUTPUT The results of the program are:
OUTVAR server_out

= = Stop the servers which were running and #POP the current logical file
= = assigns, These commands and the #UNFRAME will leave the environment
== as it originally was.

SINK [#SERVER/ KILL / [server_in_name]]
SINK [#SERVER! KILL | [server_out_namae]|

#POP #ASSIGN
SUNFRAME

This macro demonstrates The server names are Jilled with the data for
two TACL server files passed to the program the program, and the
simulating 1/0 files for a with ASSIGNs, The IN OUT variable receives
FORTRAN program. server-file variable is the program's outpu.

TACL Text Editor (#DELTA)

Although it is possible to use the FARGUMENT
feature of routines to interpret textual argu-
ment strings, TACL has a much more powerful
text manipulation facility called #DELTA. This
facility is a programmable text editor that
allows the use of IFs, loops, and macros. It
can read and write TACL variables as well as
files of all types (using sequential 1/0). The
usual editing functions, such as insert, delete,
and search, are also supported, along with
upshifting and downshifting.

The #DELTA facility can be used interac-
tively or as a low-level tool in the creation of
higher-level multipurpose (or specialized) text
editing functions. (The latter is done by stor-
ing #DELTA commands in a variable of type
DELTA.)

Figure 2 contains a routine using #DELTA
(get_breakpoint_name) which extracts a
breakpoint name from INSPECT process out-
put and places it in a variable for use in other
routines.

Conclusion

TACL has many features that make it wel!
suited for implementing complex procedures,
especially those requiring process control or
access to the GUARDIAN 90 operating system.
While it is not a replacement for compiled
languages, as an interpreted high-level lan-
guage it is ideal for quick prototyping. For the
development of applications whose perfor-
mance is not critical but whose flexibility 1s
(such as a command processor), TACL pro-
vides a complete solution.

Julia Campbell has worked in Tandem's Languages and Tools
Quality Assurance Group for two years, supporting PATHWAY,
the Product Development Tools (PDT), the FORTRAN complier,
and TACL. Before working in Software Development, Julla
worked in Tandem's Manufacturing MIS Group as a programmar/
analyst for the PATHWAY application EMPACT.

Robin Glascock joined Tandem in 1983 as a member of the
Languages and Tools Quality Assurance Group of Software
Development. Since then she has been responsible for the QA
and performance evaluation of several products, Including TACL.
She has recently moved into the Work Group Software Quality
Assurance project, where she is writing tools to facilitate the
testing of screen-based interactive software. Robin spent four
years in software development at other companies before com:
ing to Tandem.

W « FEBRUATRY 1 9 86

[]
n the first calendar quarter of
1986, Tandem will release a new
COBOL compiler and run-time
library called COBOLSS.
COBOLSS will not immediately
replace the current COBOL com-
piler and run-time library
(referred to in this article as COBOL74). Both

products will be available for the next few
years, after which COBOL 74 will gradually be
phased out.

COBOLSS runs only on the GUARDIAN 90
operating system. It is based on the new Amer-

ican National Standards Institute (ANSI)
COBOL 1985 standard. It supports all of the
required modules in the revised American
National Standard Programming Language
COB_OL, X3.23-1985, and has extensions to
provide access 1o standard Tandem facilities.
COBOLSS supports the following ANSI
standard modules: nucleus, table-handling,
sequential 1/0, relative 170, indexed 170,
sort/merge, interprogram communication,
anc[source text manipulation. Level 1 of the
optional debug module (which allows para-
graph traces) is also supported by COBOLSS.
Two optional modules of the ANSI standard
have not been implemented: report writer and

;(I)mmunic.:ilions. The segmentation module is
most entirely implemented.

Tandem’s New COBOL85

COBOLSS and the New Standard

The new COBOL standard has been in the
making for some time. The previous standard
was approved in 1974; work on the new one
began in 1978, and it was approved in Septem-
ber 1985. Most of the problems in completing
the new standard had to do with its incompati-
bilities with the previous standard. Several
review cycles were needed to resolve the prob-
lems, and there are still several areas in which
the two are incompatible.

Most COBOL programmers feel that the
changes are necessary, however, and that they
will cause few (if any) conversion problems.
This is especially true for Tandem COBOL,
since Tandem implemented COBOL74 in a
logical fashion in the main areas affected by
the changes. Also, Tandem tended to follow
the clarified specifications as they were placed
in the CODASYL COBOL Committee Journal
of Development (JOD). Unfortunately, some
other implementors did not, and almost all of
the complaints came from their users. If
Tandem COBOL users have any conversion
problems at all, they should be minor ones.

i1 5% @ » T AN D E N s ¥

39

One might well ask why there should be a
new standard. The answer lies in the simple
fact that COBOL has existed for 25 years. As a
result, it lacks many of the aids for “struc-
tured programming” that other languages
have. This has caused maintenance night-
mares and long development times for applica-
tions written in COBOL.

The new standard includes most of these
missing facilities, which aid in program
design, implementation, and maintenance.
Digital Equipment Corporation (DEC) and
Control Data Corporation (CDC) presently
offer compilers containing many of the new
features, and some of their users estimate up
to a 50% reduction in implementation time
and maintenance costs. A cost/benefit study
published by the U.S. Department of Com-
merce (NBSIR 83-2639) indicates that the fed-
eral government could save approximately
$90 million over a ten-year period by adopting
the new standard, primarily because of such
reductions.

In the 1974 standard, there were many unde-
fined areas and rarely used features. In the
new standard, the undefined areas have been
defined and the rarely used features made
obsolete (although not deleted). These obso-
lete features will be deleted when the next
standard is completed (in the 1990s).
COBOLSS flags obsolete features upon
request.

New Features in the
COBOL 1985 Standard

The most important changes are those com-
monly called “the structured programming
features.” These comprise:

= Explicit scope terminators.

= NOT options for the “one-legged” branches,
such as AT END.

®= [n-line PERFORM.
= Nested programs.
®= The EVALUATE statement.

Explicit scope terminators are reserved
words that can be used to terminate condi-
tional statements. There is one for every such
statement. The form is END-verb, where
“verb" is IF, ADD, READ, and so on. When
an explicit terminator is specified, the state-
ment becomes an imperative statement and
can be used anywhere an imperative statement
can be used. The following example illustrates
the use of explicit scope terminators (and two
other minor new features):

IF Action - “Delete” THEN
DELETE Trans-file RECORD
INVALID KEY
CALL Inv-key-process
NOT INVALID KEY
SET Some-deleted TO TRUI
ADD 1 TO Records-deleted
END-DELETE
END-IF

The explicit scope terminators in this example
are END-DELETE and END-IF.

Note also that no periods are used 10 termi-
nate the conditional statements. One of the
biggest problems with COBOL has been the
period terminator. It is hard to see, it termi-
nates everything, and it is a source of many
program bugs. If a period were inserted after
“ADD 1 TO Records-deleted,” COBOL 74
would terminate the IF and DELETE and cause
a syntax error. The only periods necessary in
the Procedure Division in COBOLSS, however,
are after section and paragraph headers and at
the end of a paragraph.

The previous example also illustrates the use
of a new NOT branch that has been provided
for phrases such as SIZE ERROR, INVALID
KEY, and AT END. (These were formerly one-
legged branches, but now, in each case, a NOT
branch is available.) Also illustrated is the use
of the optional word THEN after the condition
in the IF statement, and the use of SET to set
the conditional variable associated with a
condition-name to a value that makes the
condition-name true. In the example, “SET
Some-deleted TO TRUE” moves the value that
makes “Some-deleted” true to the associated
conditional variable.

ToA NI B M S X ST BOM 8 3R

FR2WwW » 7 EBROARY 4§ 980

The in-line PERFORM is similar to a “DO
loop” in other languages. An example is:

PERFORM WITH TEST AFTER
VARYING I1 FROM 1 BY 1 UNTIL I1 = 12
ADD 1 TO Counter-1
CALL Something
END-PERFORM

Obviously, this is much easier than creating a
paragraph to contain the performed code.
Note the TEST AFTER phrase. This indicates
that the loop test is (o take place after the
loop. The default is before the loop (the
COBOL74 method), and the words TEST
BEFORE are available if the programmer wants
to be more explicit

A nested program 15 one that is embedded
in some other program. Other languages have
offered this facility for years, and now COBOL
does too. Nested programs enable the pro-

grammer to structure the task easily. They are
superior to performed paragraphs since the
programmer can prevent unwanted side effects

such as the changing of a variable that was not
meant to be changed. A paragraph can refer-
ence everything in the Data Division of the
performing program. A nested program
cannot.

A simplified example of a nested program
follows:

IDENTIFICATION DIVISION.
PROGRAM-ID. Containing-Program.
DATA DIVISION
WORKING-STORAGE SECTION.
Note that the following has a global
name. It can be referenced in a
* contained program.
01 FI GLOBAL PIC XXX.
The following does not have a global
& name. It cannot be referenced in a
contained program.
01 F2 PIC XXXXX.
PROCEDURE DIVISION,
STARTT.
CALL Contained-1.
STOP RUN.

*
*

%
*

lDENTIFICATlON DIVISION
PROGRAM.-ID. Contained-1.
WORKIN_G-ST(’)RAGE SECTION.
PROCAn-uem PIC 99,

EDURE DIVIS
STARTT. i

MOVE *“xxx"
EXITT. xxx" TO F1.

EXIT PROGRAM.
END PROGRAM Contained- ks

END PROGRAM Containing-Program.

This example illustrates the use of a GLOBAL
name. If GLOBAL is not specified for a name,
it cannot be referenced in a contained pro-
gram. Thus, that data can be protected.

Note that the structure is top-down, not
bottom-up as it is in other languages, such as
Pascal and Ada. This makes for easier reading
and construction.

Finally, note that no ENVIRONMENT
DIVISION is needed in any program, contained
or containing. The nesting limit is seven, but
using more than two or three levels is
unpractical.

The new EVALUATE statement allows the
testing of one or more items and the selection
of different paths depending on various cri-
teria. It is similar to the CASE statement in
other languages, but is much more powerful.
By using EVALUATE, the programmer can
avoid very complex nested IF statements. An
example of the EVALUATE statement is shown
in Figure 1.

The example illustrates the use of two
“selection subjects.” The first is the condi-
tional expression *“Balance NEGATIVE,” and
the second is the data name “Customer-type.”
Each WHEN phrase must contain the same
number of “selection objects™ as there are
selection subjects, and these objects are paired
with the subjects positionally. In the example,
the selection objects in the first WHEN phrase
are the truth condition FALSE and the match-
anything word ANY.

Figure 1

EVALUATE Balance NEGATIVE ALSO Customer-type

WHEN FALSE ALSO ANY
CONTINUE
WHEN TRUE ALSO Preferred

PERFORM Dunn-preferred-customer
WHEN TRUE ALSO Always-late
PERFORM Dunn-late-customer
WHEN OTHER
DISPLAY “Error”
GO TO Abort-run
END-EVALUATE

(s

Figure 1.

An example of the
EVALUATE statement
that uses two selection
subjects.

FEBNUAR‘_

;

1 % 8 &

T & N D EM

s T E M S R E V I E

5 Y

41

e ey ———

The first WHEN phrase is selected if the
data item referenced by Balance is positive or
zero and the data item referenced by
“Customer-type” has any value. The word
FALSE indicates that the corresponding selec-
tion subject must evaluate to a false condi-
tion. The word ANY indicates that the
corresponding selection subject is ignored;
that is, any value at all is considered to match.
Note that the action taken is null. The word
CONTINUE is a no-op instruction. The execu-
tion continues after END-EVALUATE.

The second WHEN phrase is selected if the
data item referenced by “Balance” is negative
and the value of “Customer-type” is the value
“Preferred.” *“Preferred” can be another data
item, or it can be a constant defined with the
REPLACE statement (for example,
“*REPLACE == Preferred == BY ==1==."),

The third WHEN phrase selection is similar
to the second. If no WHEN phrase is selected,
the WHEN OTHER phrase is selected.

An equivalent IF statement in COBOL74
would be:

IF Balance NOT NEGATIVE
NEXT SENTENCE
ELSE
IF Balance NEGATIVE
AND Customer-type = 1
PERFORM Dunn-preferred-customer
ELSE
IF Balance NEGATIVE
AND Customer-type = 2
PERFORM Dunn-late-customer
ELSE
DISPLAY “Error™
GO TO Abort-run,

Note that this is harder to read than the EVAL-
UATE statement. When many WHEN phrases
and selection subjects and objects are used,
the equivalent nested IF becomes quite com-
plex. From 1 to 255 selection subjects and a
corresponding number of selection objects can
be used.

Some of the other major changes in
COBOLS5 are summarized below:

= [NSPECT CONVERTING enables the pro-
grammer to convert one character string to
another. This feature is commonly used (o
convert lowercase to uppercase.

= Reference modification (commonly referred
to as substring or byte slicing in other lan-
guages) allows the programmer to reference a
part of a data item. Although it can be mis-
used, reference modification can be a very
powerful and useful feature.

= External files and data enable the pro-
grammer to share data and files among pro-
grams without passing the files or data as
parameters.

® CALL has been enhanced to allow the pass-

ing of any elementary item as a parameter and
to allow the protection of parameters by speci-
fying that they are passed by content.

= The INITIALIZE statement allows the pro-
grammer to set items to predefined values. For
example, by referencing a group item, the pro-
grammer can set each elementary item to an
appropriate predefined value.

® Variable-length records can be written under
explicit control, and the length can be deter-
mined when the record is read.

® The REPLACE statement allows the pro-
grammer to replace one or more words with
another. This feature is often used to define
constants, such as the length of a table.

Incompatibilities

_ln the detailed discussion below, COBOLSS's
incompatibilities with COBOL 74 are grouped
according to whether they:

= Are likely to cause problems.

= May cause problems.

= Are unlikely to cause problems.

In eagh case, first the incompatibility is
described. Then an action is recommended o
help programmers avoid future problems

caused by that incompatibility when they write
COBOL74 programs.

42

TANDEM S Y STEMS R B

Incompatibilities Likely to Cause Problems

1. COBOLSS has 49 new reserved words.
2. SEARCH ALL now does a binary search,
3. Many new [-O status codes have been

added.
4. Numeric exceptions may abort a run.

5. Arithmetic results may differ (because of
greater precision in COBOLSS).

6. Short records on fixed-length files do not
abort a run.

7. Subscript evaluation differs in STRING
and UNSTRING

8. Multiple source programs in a compiler
input file now require terminators.

9. OPEN I-O or EXTEND on a nonexisting
file does not create the file.,

New Reserved Words. The 49 new reserved
words are listed at the right. Of them, 19 are
END-xxx statements (where xxx is a verb like
IF) and the rest are other words. TEST, ANY,
TRUE, and FALSE are probably the most likely
to cause problems. Diagnostics are given when
these words are misused, but the diagnostics
may be confusing (since incorrect syntax is
being diagnosed).

Action. This incompatibility has proven to be
a minor problem. Avoid using the new words.
When the transfer 1o COBOLSS is made, the
REPLACE statement can be used to help
alleviate the problem. Also, several conversion
programs should be available from various
software vendors to change reserved words
(and make other changes) automatically.

SEARCH ALL. COBOL74 does a serial
Search. SO an item may be found even if the
items in the table are in incorrect order. A
compatibility warning diagnostic is provided.
Also, if the standard SEARCH ALL rules are

not followed in the syntax of the statement, a
serial search is done.

Action. Make sure that the table is in order

::fi[,thal all rules are followed for SEARCH

New I-O Status Codes. COBOL74 produces
status codes “00,” ““30,” “90,” and “012
instead of the new codes. Two situations are
most likely to cause problems:

* Opening an optional file that is not present
produces 1-O status code 05 when status code
00 was produced in COBOL74. (Also, for an
optional file opened for 1-O or EXTEND, 1-O
status code 05 is returned by COBOLSS if the
file was created.)

= Executing an OPEN or CLOSE statement
with options such as NO REWIND,
REEL/UNIT, or FOR REMOVAL for a device
that does not support the options results in
status code 07 rather than status code 00.

In both cases, the operation is successful, A
list of the differences is provided in the
COBOLSS Reference Manual. No diagnostics
can be provided.

Action. Take care in testing for specific codes
of 00, 30, 90, and 91,

|New reserved words in COBOL 85.

ALPHABET END-DIVIDE
ALPHABETIC-LOWER END-EVALUATE
ALPHABETIC-UPPER END-IF
ALPHANUMERIC END-MULTIPLY
'ALPHANUMERIC-EDITED ~ END-PERFORM
'ANY END-READ

| BINARY END-RECEIVE
CLASS END-RETURN
COMMON END-REWRITE
CONTENT END-SEARCH
CONTINUE END-START
CONVERTING END-STRING
DAY-OF-WEEK END-SUBTRACT
END-ADD END-UNSTRING
END-CALL END-WRITE
END-COMPUTE EVALUATE
END-DELETE EXTERNAL

_——q

FALSE

GLOBAL
INITIALIZE
NUMERIC-EDITED
ORDER

OTHER
PACKED-DECIMAL
PADDING

PURGE
REFERENCE
REPLACE
STANDARD-2
TEST

THEN

TRUE

|
{ Numeric Exceptions. Numeric exceptions The READ Statement. READ allows short
| (such as an arithmetic overflow) may abort a records to be read from fixed-length files,
run if SIZE ERROR is not specified. COBOL74 while COBOL 74 aborts a run if it encounters
| does not detect these. No compiler diagnostic can be pro-
these, and thus, vided, but a file status value is defined for

incorrect values may such an operation.

OBOLS5 ensures more be produced. Also, Action. None can be taken. Do not assume the

accuracy for arithmetic invalid data in a run will be aborted if a file with short records
' . numeric data item is read. COBOLS8S allows a check for file status
{ oper ations than dOG'S (such as being ini- “04.” COBOL74 programs can be modified at
| COBOL4, and it never tialized to spaces) any time to check for status code “04," since

may cause an abort. it has no effect until the program is run on
COBOLSS. In any case, there should never be

|| truncates digits from the left. copolr74 would

process the bad
data, giving undefined results (spaces would
be treated as zeros, however). No diagnostics
can be provided.
Action. Use care in calculations, and use SIZE
ERROR when exceptions are possible. Make
sure numeric data items are initialized
correctly.

Arithmetic Results. Arithmetic results may
differ. COBOL74 does not produce as many
digits to the right as COBOLSS does, and it
sometimes truncates significant digits from the
left without any indication, if SIZE ERROR is
not specified.

COBOLSS ensures more accuracy for
arithmetic operations, and it never truncates
digits from the left. Note that a run may be
aborted as the result of an arithmetic overflow
condition in conditions that previously
resulted in left truncation or right zero pad-
ding. No diagnostics can be provided.

Action. 1If the accuracy in an arithmetic
expression is questionable (especially for divi-
sion), use individual ADD, SUBTRACT, MUL-
TIPLY, and DIVIDE statements to control the
accuracy. Use the SIZE ERROR clause to detect
any possible left truncation, if necessary.

(Note that it involves more overhead. Note
also that exponentiation with fractional expo-
nents, e.g., 0.5 for a square root, exists in
COBOLRS.)

such records.

UNSTRING and STRING. UNSTRING and
STRING evaluate all subscripts at the start of a
statement. COBOL74 defers some subscript
evaluations until before their use. A compati-
bility warning diagnostic is provided

Action. Do not rely on the deferment of the
evaluation. In general, using values changed
during the execution of a statement as sub-
scripts within the statement (except in
SEARCH and PERFORM) is poor program-
ming practice.

Muiltiple Source Programs Per Compilation.
Multiple source programs in one compiler
input file that are not separated by JENDUNIT
directives are perceived differently by the two
compilers. COBOL74 views them as separately
compiled programs. COBOLSS assumes them
to be nested within the first program. Since
the END PROGRAM headers are not there, a
diagnostic is produced. Also, other diagnos-
tics may be produced for constructs banned
from contained programs.

Action. Place an ZENDUNIT directive after
each program. This is a good practice for any
COBOL74 program or COBOLSS program that
is separately compiled. In COBOLSS, do not
place an PENDUNIT directive in front of any
contained program, since the directive termi-
nates all nesting. There are no contained pro-
grams in COBOL74, so using 2ENDUNIT
directives does not cause problems.

:

TANDEM XS FEME X

OPEN I-0 or EXTEND on a Nonexistent File.
OPEN 1-0 or EXTEND on a nonexistent file
results in an unsuccessful open if OPTIONAL
is not specified in the SELECT clause,
COBOL74 creates the file and does not allow
OPTIONAL in the SELECT clause for indexed
or relative files. COBOL85 creates the file if
OPTIONAL is specified. No diagnostic can be
provided.

Action. Add OPTIONAL to the SELECT clause
for the file, if it is sequential. For indexed and
relative files this cannot be done in COBOL74,
so it will have to be added when the program is
converted to COBOLSS

Incompatibilities That May Cause Problems

1. A store to a group with an OCCURS
DEPENDING ON differs, based on whether
or not the “depending-on™ item is in that
group.

2. ALPHABET should appear in front of an
alphabet clause

3. The initialization order of multiple
VARYING identifiers in PERFORM differs.

OCCURS DEPENDING ON. A store to a
group with an OCCURS DEPENDING ON
(ODO) uses the maximum size if the group
contains the depending-on item, and it uses
the specified size if the group does not contain
that item. COBOL 74 uses the maximum size
except in UNSTRING. A compatibility warning
diagnostic is provided

Action. Do not use o group containing an
OCCURS DEPENDING ON as a receiver in
UNSTRING. This operation would not be use-
ful and would be very misleading to a mainte-
nance programmer. If it is used, make sure the
depending-on item has the maximum value
before UNSTRING is executed. Also, do not
assume that any items with subscripts greater
than the resulting value in the depending-on
item contain useful information.

ALPHABET, The word ALPHABET should
appear before an alphabet clause. This
ﬁulr::s manual conversion, since COBOL74
staf&‘ai chogr_lize ALPHABET. Although the
COBOL gs rouires ALPHABET in all instances,
alphaes requires it only when “ALPHABET
(Cu -name IS system-name” is specified.
rrently, the only system-name in COBOLSS

is EBCDIC. NATIVE, STANDARD-1, and
STANDARD-2 are not system-names.) A
diagnostic is given for “alphabet-name

IS EBCDIC" if ALPHABET does not

precede it.

Action. Since COBOLSS accepts all constructs
that are legal in COBOL 74, no action is neces-
sary. It is recommended, however, that
ALPHABET be inserted in such clauses when
programs are converted, in order to make
them compatible with the standard.

Multiple VARYING Identifiers in PERFORM.
The initialization order of multiple VARYING
identifiers in PERFORM has changed. This
only affects a program using such an identifier
in a FROM or BY phrase (e.g., PERFORM P1
VARYING X FROM | BY 1 UNTIL X = 3
AFTER Y from X BY | UNTIL Y = 3). A com-
patibility warning diagnostic is provided.
Action. Do not use constructs like this. It is
poor programming practice, and the results
are nonobvious.

Incompatibilities Unlikely to Cause Problems

1. “ALL literal” produces different results if
associated with a numeric item.

2. A figurative constant is not allowed in the
CURRENCY SIGN clause.
3. “P” is not allowed in PIC strings for a
relative key.
4. LINAGE cannot be specified for a file
opened with EXTEND.
5. CLOSE REEL/UNIT WITH NO REWIND
is no longer legal.
6. Changes have been made in READ or
RETURN INTO.
7. ADVANCING PAGE and AT EOP are not
allowed in the same WRITE statement.
8. Independent segments have been deleted.
9. An index data item is four bytes rather
than two.
10. ON OVERFLOW in a CALL is taken if the
program cannot be found.

11. The size of LINAGE-COUNTER has
changed from PIC 9(5) to PIC 9(4).

L 9.8 6 ¢4 T A N DEBM s X

S TEMS R E VI EW

45

ALL Literal. “ALL literal,” as in

ALL*%9”

may produce different results when associated
with a numeric or numeric-edited data item.
In COBOLSS, the literal is repeated; in
COBOL74 it is not. In COBOL74,

MOVE ALL “9" TO PIC 99V9

produces 09.0. Some implementors produce
99.9 and some 99.0. COBOLSS produces 99.0.
A compatibility warning diagnostic is
provided.

Action. Don't use “ALL literal” with such
items. It is misleading and of no use. Also, it
is an obsolete item and will be deleted from
the next standard.

Figurative Constants in CURRENCY SIGN
Clauses. A figurative constant is not allowed
in a CURRENCY SIGN clause. For example,

CURRENCY SIGN IS ALL “L”

is invalid, and a diagnostic is given.

Action. Do not use this type of construct.
Since ALL means nothing in this context, it is
confusing and redundant.

“P" in PIC Strings. “P” is not allowed in PIC
strings for a relative key data item (e.g., PIC
99PP to access every 100th record). A diag-
nostic is given.

Action. Do not use a construct of this sort. It
is misleading, and the results are not defined.

LINAGE Clause. The LINAGE clause cannot
be specified for a file opened with EXTEND.
A diagnostic is given.

Action. Do not use LINAGE for files opened
with EXTEND. The results are undefined and
not what one would expect.

CLOSE REEL/UNIT WITH NO REWIND.
This construct is not allowed. A diagnostic is
given.

Action. Do not use this construct. In
COBOL74, it leaves the reel at the end during a
reel swap, requiring the operator to rewind the
reel manually. This makes no sense and is an
extra burden on the operator.

INTO Phrase in READ and RETURN.
READ and RETURN now allow an INTO
phrase if only one record description is subor-
dinate to the file-description entry, or if all
subordinate record-description entries are
alphanumeric or group entries and the INTO
item is also an alphanumeric or group entry.
For example, multiple record descriptions with
an edited INTO item are no longer allowed. A
diagnostic is given.

Action. Do not use the INTO phrase in such
instances. The results are not what would be
expected, anyway, as no editing or scaling
takes place.

ADVANCING PAGE and EOP with WRITE,
WRITE no longer allows ADVANCING PAGE
and AT EOP in the same statement. COBOL74
always takes the EOP. A diagnostic is given.
Action. Do not use this construct. Since the
EOP is always executed, the AT EOP phrase is
redundant.

Independent Segments. Independent scgments
have been deleted. This affects only the targets
of ALTER statements. A diagnostic is pro-
duced for ALTER statements that reference
paragraphs in independent segments.

Action. Do not use ALTER. It is extremely
poor programming practice to do so. It is
obsolete and will be deleted from the next
standard, as will segmentation.

TANDEM S YSTEMS R E

LB W o+« TE BRK UANRY 93

Index Data Items. An index da{a il_em is now
4 bytes rather than 2.}.-\ compatibility warning
i stic is providec
.ijc?ng?. Do ngl use index data items, (Tt}cy
are defined by USAGE IS INDEX.) Such items
are not useful and can casily cause nonobvious
bugs. Note that an index defined by the
INDEXED BY phrase within an OCCURS
clause is not the same as an index data item.
No compatibility problem exists for indexes.

ON OVERFLOW/EXCEPTION. The ON

OVERFLOW/EXCEPTION branch is taken if a
CALL identifier references a program that
cannot be found. COBOL 74 aborts the run. A
compatibility warning diagnostic is provided.
Action. Do not use (he ON OVERFLOW
phrase, since the conditional code is never

executed. If it is used, for complete compati-
bility, specify STOP RUN along with it (or

some other means to abort the run in the con-
ditional code). When COROLES is used, the
code is executed in the indicated case.
PICTURE for LINACE-COUNTER. The
implied PICTURE for LINAGE-COUNTER has
changed from 9(5) to 9(4). The maximum
allowable number is now 9999 rather than the

p'revious value of 32767, No diagnostic is
given.

Action. Make sure the LINAGE value specified
in the FD does not exceed 9999, Since any
numbers greater than 66 or so make little or

no sense, it is doubtful that a problem will
occur.

Conclusion

COBOLSS will help to reduce the development
and maintenance costs associated with COBOL
programming. The new features are not hard
to learn, better programs will result from their
use, and conversion from COBOL74 to
COBOLSS is simple (probably about 80% of
the COBOL74 programs will run on COBOLSS
with no changes). For further information
about the new COBOL standard or other more
advanced COBOL developments, contact Don
Nelson at Tandem Computers Incorporated,
10555 Ridgeview Court, Cupertino, CA
95014.

Reference
COBOLSS Reference Manual, vols. | and 2. Part nos. 82520
A00 and 82521 A00. Tandem Computers Incorporated.

Don Neison has worked at Tandem for three years, the last two
of which were devoted 10 the writing of the code-generation
phase of the Tandem COBOLBS compller. Before joining Tandem
he spent 18 years with another mainframe vendor, working on
compllers and operating systems. While there, he worked on five
different COBOL compilers. He has been on the CODASYL
COBOL Committee since 1971 and has been its chairman since
1977.

FEBRU

R e v P AaANDREM Y% ETE

47

| Managing System Time
[Under GUARDIAN 90

=]|
he timekeeping services
offered by the GUARDIAN
——— operating system were signif-
icantly enhanced in the B0O
——— software release. As
explained in the article,
— “*New GUARDIAN 90 Time-
keeping Facilities” (Tandem Systems Review,
June 1985), GUARDIAN 90 now supports:

* Four-word, microsecond-resolution time-
stamps based on the Julian date.

® CPU clock-rate averaging.

* Clock-rate adjustment.

* Automatic Daylight Savings Time (DST)
adjustments.

= Julian-date conversion routines.
» A callable procedure to set system clocks.

= An optional IN file for the cold-load Com-
mand Interpreter.

This article focuses on techniques for the
accurate and reliable initialization of system
time on Tandem computers using the
GUARDIAN 90 operating system. Familiarity
with the timekeeping terminology defined in
the previous article is assumed,

System Time

Software designers and users of most com-
puter systems usually assume that system time
is always sufficiently accurate for their pur-
poses. Implicit assumptions are that system
time is monotonically increasing (i.c., that the
clock never runs backwards), that system time
is kept accurately by the computer, and that
the system clock is somehow always initialized
accurately.

It is important to understand how particular
systems keep time in order to verify whether
these assumptions are valid.

The Tandem System Clock

In Tandem computer systems, there is no “sys-
tem clock™ per se; instead, each processor has
its own hardware clock. Because all clocks are
kept synchronized, programs can be designed

as if there were a single system clock.

The operating system is responsible for
keeping these clocks synchronized.
GUARDIAN 90 accomplishes this task by aver-
aging the values of all processor clocks and
adjusting the individual clocks to agree with
the average. By averaging the processor clocks,
GUARDIAN 90 keeps system time more accu-
rately than pre-B00 versions of GUARDIAN
did. Measurements indicate that processor
clocks in GUARDIAN 90 systems are usually
synchronized to within 5 ms of each other;
however, even with the averaging mechanism,
clock times fluctuate, and differences of 15 ms
between processors are sometimes present.
Thus, applications should be designed so as
not to rely on perfect synchronization of
clocks in all processors.

The GUARDIAN 90 clock-ratc-at!justmcnt
algorithm requires that clocks running faster
than the average be slowed down. This is
accomplished in a manner transparent to
all programs. Successive calls on the y
JULIANTIMESTAMP procedure within the
same processor always vields monotonically
increasing values (unless, of course, the clock
is reset). The same is true of the RCLK instruc-
tion, with one exception: because the RCLK
instruction returns the Local Civil Time
(LCT), it “jumps’ whenever a Daylight Sav-
ings Time (DST) transition occurs. Applica-
tion designers are therefore encouraged to use
the JULIANTIMESTAMYP procedure. It returns
the Greenwich Mean Time (GMT), which is
not subject to DST (luctuations.

Microsecond-resolution Timekeeping

Some applications use timestamps as unique
identifiers of transactions. In such a situation,
it is important to note that the resolution of
the clock may be more important than the
accuracy of the clock. If more than one event
can occur within a clock “tick,” the resolution
of such a timestamp prohibits its use as a
unique identifier. For example, in most com-
puter systems, a timestamp having a resolution
of one second is not sufficient for use as a
unique identifier, because several events may
occur within one second.

_ The timestamps provided by GUARDIAN 90
timekeeping services are four-word time-
Slaﬂws: based on the Julian date, and they
have microsecond resolution (which, as sug-

gested above, is not the same as microsecond
accuracy).

Recover).e of Clocks after a Power Failure
mentioned earlier, each processor in a

andem system has its own clock, supported
by the operating system and microcode and
relying upon the processor hardware. If power
tot processor is lost, the clock stops. When
POWer is restored, the clock starts running
again,

If Power is restored before the battery
mﬁgaﬂlls exhausted, a Tandgm system auto-
e y performs power-failure recovery. If

rremains off for so long that the battery
memﬁ?y lshunablc to preserve the contents of
» lowever, it is impossible to recover

from th_e Power failure, and a cold load of the
SYstem is required.

When power is restored (assuming the bat-
tery backup was not exhausted), the clock in
each processor takes up exactly where it left
off when the power went down. As part of the
power-failure recovery process, the operating
system then resynchronizes the clock.

If all processors lose power and power-
failure recovery is performed, GUARDIAN 90
synchronizes all clocks to the fastest clock in
the system. In this case, the clocks are syn-
chronized, but system time is incorrect by an
amount equal to the duration of the power
outage. The front panel lights indicate that a
power-failure recovery has occurred.

If the power loss is transient, it is possible
that only some processors lose power (and
subsequently undergo power-failure recovery).
In this case, as long as at least one processor
in the system does not lose power, the operat-
ing system synchronizes the clock of each
processor that lost power with the clocks of
the processors that continued to run.

Setting the Clock—An Operations Headache
The operations staff traditionally is responsi-
ble for initializing the system clock. With some
exceptions, discussed later, system time is set
by an operator at cold-load time, after a
power failure recovery, or when someone
notices that the system time is incorrect.
Unfortunately, every time someone enters the
date and time manually, it is possible that the
system clock is being set incorrectly. At best,
the clock is being set within a few seconds of
the wall clock time or the operator’s wrist-
watch. At worst, the operator may enter the
wrong date.

One new feature provided by GUARDIAN 90
is the SETSYSTEMCLOCK procedure. AI'IOthI'
useful feature is the ability to specify an input
file for the initial (cold-load) Comn}and Inter-
preter. Together, these features provide seve_ral
alternatives to the familiar method of requir-
ing the operator to set the system clock. (See
the GUARDIAN 90 Software Documentation,
or Softdoc, and Nellen, 1985, for details on
the SETSYSTEMCLOCK procedure and the
cold-load Command Interpreter IN file.)

1 986 » T A NDEN ¥ ST

1 E W

E M § kR E V¥

49

The COMINT SETTIME command checks
the syntax of date and time specifications,
requiring only that they be reasonable (i.e.,
not impossible) and unambiguous. For exam-
ple, it does not allow the system clock to be set
to a Local Civil Time that is within a Daylight
Savings Time (DST) transition period, because
such a time specification is ambiguous. If it is
necessary to set the system clock to a time that
is within a DST transition period, the operator
must specify the time as Local Standard Time
(LST) or Greenwich Mean Time (GMT),
which are not ambiguous.

If it is not acceptable for an operator to set
the system clock (because of the inaccuracies
inherent in this approach), there are two basic
alternatives. One method is to allow the opera-
tor to set the clock initially, during the cold
load, and then run a program to verify and
possibly adjust the time after the cold load is
complete (but before applications are allowed
to start). The other method is to set the system
clock programmatically, using an external
clock.

Checking the System Clock

Even if a system does not have an external
clock, there are ways of checking the system
time as set by the operator. Ideally, one would
like to validate the time when the SETTIME
command is entered by the operator. SETTIME
is performed during the cold load, however,
and there are complications that make this
impractical. Thus, it is necessary to write a
program (call it CLOKCHEK for purposes of
discussion) that compares the system time
against some other time reference after the
cold load has been completed.

CLOKCHEK would have to get a timestamp
from some reference source, obtain the current
system time by calling JULIANTIMESTAMP,
compare the two values, and then determine
whether or not the current system time was
reasonable. Further protection could be
afforded by having CLOKCHEK inhibit the
start-up of applications if it found the system
time to be in error.

To implement a CLOKCHEK program, one
must first find a reliable source of timestamps
that can be compared with those provided by
the JULIANTIMESTAMP call. The following
might be used:

= A file containing the oldest and newest
dates allowable. The CLOKCHEK program
would compare the current date with entries
in this file.

= The SYSGEN time obtained via the
JULIANTIMESTAMP procedure (which is

returned as a GMT timestamp). Assuming the

time was correct at the time of the SYSGEN,

the SYSGEN time could be used as a lower '
bound for the current time.

= Another node in the network, Currently,
one can send a request to a server on another
node for the current GMT from the other
node. The requester must, of course, measure
the amount of time it takes to get a reply from
a remote server and adjust the GMT value by
the transit time. This method should be accu-
rate to within a few seconds, but it assumes
that another node with a server is accessible
and that the time is set correctly on the other
node.

® An X.25 network. Some public X.25 packet-
switching networks maintain a clock that can
be read via a special request packet. The accu-
racy of the time received is influenced by sev-
eral factors, such as the accuracy of the clock,
the type of communication lines used, and the
transmission delays involved. Generally, the
time should be accurate to within a few sec-
onds of the network clock’s actual time, which
may be sufficient for many applications. Pro-
spective users should discuss these problems
with the vendor of such network services.

External Clocks

External clocks provide a much more reliable
way of initializing system time. By config-
uring a system to use the initial cold-load
Command Interpreter IN file, one can run a
program that obtains the time from an exter-
nal clock and calls the system procedure
SETSYSTEMCLOCK to initialize the system
clock. Refer to the GUARDIAN 90 Software
Documentation, or Softdoc, and Nellen, 1985,
for details on the SETSYSTEMCLOCK proce-

dure and the cold-load Command Interpreter
IN file,

50

T A NDEM S Y ST EM S R B ¥

I ' B W' & ¥ E 8 R U A RY % 8

For purposes of this discussion, an external
clock is a hardware device that has, minimally,
the following characteristics:

s [t contains a precision digital clock and

calendar.

= [t can be attached via a standard interface
to a computer system

= It can be interrogated for the date and
time by programs running on that computer
system.

Selecting an External Clock

Many external clocks are available. Selecting
an external clock that works well at a specific
site is not a trivial task. The following is a
general discussion of some of the features one
should consider.

Accuracy
The primary requirement for any clock is to
keep time accurately. A« a minimum, the
clock should be accurate to within one second
per day; however, some applications require
greater accuracy.

Electronic clocks are commonly driven by
one of three mechanisms, each of which offers
a different level of accuracy:

* Aninternal oscillator, usually crystal-
controlled and temperature-compensated for
reasonable accuracy,

* Synchronization to the power-line
frequency.

. Synchronization 1o radio broadcasts of a
time standard,

Mpsl_ crystal-controlled clocks are accurate
to within 100 ms per day or better, depending
on the quality of the crystal. Such clocks need
a battery backup in case external power is lost.

The second type of clock phase-locks its
oscillator to the line frequency. This is a sim-
Ple and effective way of kccpi-ng time accu-
rately because the utility companies must

SYnChronize their . v
power grid very clo
order to sh g y closely in

¢ are power. The line frequency in the
United States s maintained to wi(:hin gnc
Cytll:-le (1/60 of a second, or 6.7 ms) per day.
: ;;f::flrclocks capable of synchronizing to
e frequency generally have the
Y to switch to their internal oscillator

automatically and run on an internal backup
battery if the line power is lost. Then, when
external power is available, they synchronize
to the line frequency again.

If power for the computer system is supplied
by an Uninterruptable Power Supply (UPS),
one should determine whether the UPS output
is synchronized to the commercial power-line
frequency. If it is not, this may create prob-
lems for a clock that relies on the line fre-
quency as a standard, because frequency
regulation in the UPS system may not be as
accurate as that of the commercial power grid.
In such a case, one would want either to con-
nect the external clock to the commercial
power line or to disable the synchronization of
the clock to the line frequency and allow it to
use its internal clock.

Some clocks that
rely on the power-
line frequency can
be fooled by tran-
sient noise spikes.
They run fast
because they detect
the noise in addition
to the line voltage
peaks. If a particu-
lar clock is affected
by such noise, a simple power-line noise filter
may solve the problem.

Distributed applications (i.e., those that
must access several geographically separated
computer systems connected in a network)
often require that system times at each node
be in agreement. That is, each system must be
able to calculate the correct Greenwich Mean
Time.

Some distributed applications may loleralg
differences of a few seconds between nodes, in
which case it is possible to send messages to
remote nodes to request the time (or to request
the time from public packet-switching net-
works). Some applications require greater
accuracy than this, however. One solution is to
use an external clock that is designed to
receive and decode radio transmissions of
standard time signals.

more reliable for initial-
izing system time than
checking the system time
set by the operator.

ANDEMN S YET

xternal clocks are much

51

There are radio stations throughout the
world that broadcast encoded time signals,
Most of these stations are operated by govern-
mental agencies. In the United States, the
National Bureau of Standards (NBS) transmits
the national time and frequency standard from
station WWVB located in Fort Collins, Colo-
rado. The NBS uses an atomic clock to keep
the day-to-day deviation of their time signal to
within 5 parts in 10", This is equivalent to
432 ns per day. The NBS also transmits a time
signal from the National Oceanic and Atmo-
spheric Administration’s geostationary satel-
lites, known as GOES. Some radio-receiver
clocks are capable of detecting and decoding
the GOES transmissions.

The carrier frequencies and encoding tech-

. niques used by the U.S. NBS are not an inter-

' national standard. The British government
operates radio station MSF, which broadcasts
a standard time signal from Rugby, England.
The West German government station DCF77
broadcasts the time from Mainflingen. The

_
Some vendors of external clocks.*

| Chrono-Log Corporation Hopf Elektronik KG
| 2 West Park Road Postfach 1847
Havertown, PA 19083 Im Hasley 14 ¢
Phone: (215) 853-1130 D-5880 Luedenscheid
; Telex: 831579 West Germany

Phone: 2351/22201

Digital Path I
igital Pathways Incorporated Telex: 826693

| 1060 East Meadow Circle

Palo Alto, CA 94303 Kinemetrics/ True Time
Phone: (415) 493-5544 3243 Santa Rosa Avenue
TWX 910 379-5034 Santa Rosa, CA 95401

| Hayes Microcomputer Products, Inc. Phonc: (707) 795-2220

705 Westech Drive Telex: 675402 (Kinemetrics PSD)
Norcross, GA 30092 Spectracom Corporation

Phone: (404) 449-8791 101 Despatch Drive

Telex: 703500 (Hayes USA) East Rochester, NY 14445

! Phone: (716) 381-4827
‘ Telex: 9103509587

*This list has been compiled from advertiscments in vanous clectronics and computer trade publications. Tandem

makes no recommendation for, or endorsement of of
el o i e e + amy of these devices, nor does Tandem intend to imply anything by

frequencies and codes used in the United
States, Britain, and West Germany all differ
from each other. A few stations in other parts
of the world use the same frequencies and code
as the U.S. NBS. Prospective purchasers of
radio-receiver clocks would be well advised to
determine which stations the clock can receive
and decode, and what type of antenna is
required for their specific location

An important feature of any radio-receiver
clock is a visible indicator, such as a light, that

indicates that the device is receiving the station
and has synchronized its clock. Some also
provide protocols that allow the computer

system to query the clock and determine

whether it is synchronized to the radio signal.
Additionally, one should be sure that the

clock automatically switches over (o an inter-

nal crystal-controlled oscillator in the event of
a reception failure (and to a battery backup in
the event of a concurrent power failure).

Many radio-receiver clocks have an adjust-
ment that permits compensation [or the propa-
gation delay. If the distance between the
receiver and the transmitter is known, one can

compute how long it took the signal 10 travel
that distance and, with the propagation-delay
adjustment, correct the clock 1o compensate

for this delay.

Some radio-receiver clocks also have an
adjustment that allows correction for Local
Standard Time. For our purposes, this is not
necessary.

Other Considerations
Resolution. A resolution in the range of one-
tenth to one-hundredth of a second is useful.

Calendar. The clock should be able to cor-
rectly compute the date, even in leap years.

Human Interface. Non-radio-receiver clocks
should have a simple control panel for setting
the date and time (and a display to show the
current date and time). It may also be desir-
able to have a lock and key to prevent unau-
thorized persons from setting the clock.

Computer Interface. A standard interface,
such as RS-232 or current-loop, is required. A
simple protocol for interrogating the clock 1S
also desirable.

Price. Last, but not least, one should consider
how much the clock costs and what the war-
ranty provisions are.

Commercially Available External
Clocks

The list on page 52 lists companies that sell
external clocks. As the list is not comprehen-
sive, customers should consider it only a start-
ing point when researching sources for

external clocks. Also, belore I“lu[‘chahing any
device, they should consult a Tandem customer
engineer and a Tandem systems analyst about
the feasibility of using that device with a
Tandem computer system

Configuring an External Clock

Most external clocks are configured in the
same way as an asynchronous terminal. The
following example is typical:

SCLOCK TATM.7 ASYNCTERM
I'YPE 6, SUBTYPE 0.
RSIZE 80,
HAUD9600,
NOECHO,

=L

Note that this is not a universal example.
SYSGEN configuration options should reflect
the characteristics of the specific device as
described in the manufaciurer's installation
manual,

The CLOCK Program

Tandem provides a sample program that can
be used to initialize the system clock. The
source is distributed in a file called SCLOCK
In the GUARD? distribution subvolume of
GlUARDIAN 90 Site Update Tapes (SUTS).
Aﬁi@unﬁl_c thal :“3('[_(_)(.‘1\' is an example only.
$h001 fogr it works correctly, it may not be
ol a Darllcul_ar site. Also, the sequence
e ;;ir_s‘ that it transmits to an external
ok ac il:.e-dcpendr:nt: not all external
€ same codes. Note too that

e K assun3c5 thal_ the external clock is set

correct Greenwich Mean Time.

. If SCLOCK is modified for a specific user
site and compiled into an object file called
CLOCK, and the basic logic of the program
has not been altered, it can be used in one of
two ways. The first is to run it as follows:

:RUN CLOCK /IN SCLOCK/

where SCLOCK is the device name of the exter-
nal clock. When run in this mode, CLOCK
reads the external clock twice and then, if
there are no 1/0 errors, calls SETSYSTEM-
CLOCK to set system time. It reads the exter-
nal clock twice in order to eliminate the effect
of potential page faults in the user program.
This mode of execution within the initial cold-
load Command Interpreter IN file can be used
to perform the initial setting of system time.

If the time is to be set via the external clock
at some time other than during the cold load,
CLOCK should be run at a priority high
enough to avoid competition with other
processes.

The alternate way to run CLOCK is:'

:RUN CLOCK /IN $CLOCK, &
PRI 160, NOWAIT, CPUX / y

Specification of a backup CPU number (y)
causes CLOCK to behave differently than in
the first example. In this case, it reads the
external clock and calls SETSYSTEMCLOCK
immediately and also every five minutes. (It
does not terminate.) CLOCK also sets the sys-
tem clock whenever it receives a POWERON
system message, which indicates that power-
failure recovery has occurred.

This alternate mode of execution can also
be used within the initial cold-load Commal_'ld
Interpreter IN file to perform the initial setting
of system time and to maintain the synchroni-
zation of system time with the external clock.

i : t following one denole the
"The ampersands (&) used in this example and the 1 :
continuation of a command string that is broken across two lines. They are not
needed if the command is entered on an B0-character line

The following commands could be placed at
the beginning of the initial cold-load Com-
mand Interpreter IN file:

RUN CLOCK /NAME STIME, IN SCLOCK, &
PRI 160, NOWAIT, CPU 0/ 1

RUN CLOCK /NAME STIME, IN SCLOCK, &
PRI 160, NOWAIT, CPU 1 /0

DELAY 4 SECONDS

SYSTIMES

This example assumes one can cold load via
either CPU 0 or 1. The DELAY is present in
order to allow the CLOCK program to initial-
ize the system time before anything else is
allowed to run.

Note that calling SETSYSTEMCLOCK every
five minutes should not result in a reset of the
system clock every five minutes. Instead, if
the time difference between the system clock
and the requested time is small, as one would
expect, GUARDIAN 90 uses the time differ-
ence to adjust the processor clocks over a ten-
second interval. This adjustment algorithm
makes small adjustments transparent and
facilitates synchronization to an external
clock.

Conclusion

The GUARDIAN 90 operating system provides
a rich procedural interface to facilitate
retrieval of system time, transformations of
timestamps, initialization of system time, and
retrieval of process execution time. By using
an accurate and secure external clock, one can
eliminate the possibility of human error in
setting the system clock. For geographically
distributed systems, the use of external clocks,
which can receive and decode standard time
broadcasts, provides a simple and reliable
method for synchronizing system times closely
across the nodes of a network.

References

Nellen, E, 1985. New GUARDIAN 90 Timekeeping Facilities,
Tandem Systems Review. vol, 1, no. 2. Tandem Computers
Incorporated.

Sharma, Sunil. 1985, New Process-timing Feature
Systems Review. vol. 1, no. 2. Tandem Compuier:
Incorporated.

System Description Manual, 1985, Part no, 82507
Computers Incorporated.

System Procedure Calls Reference Manual. 1985 Part no,
82359 A00. Tandern Computers Incorporated

landem

V(). Tandem

ber of the
perating
a mam-

Eric Nellen joined Tandem In February 1979 as & man
Software Quality Assurance Group. He has worked
systems development for several years and is currently
ber of the Operating Systems Kernel Group

TANDEM 8% 51T &8 M08 =

tE W » PEBRRUARY 1988

his is the first of a series of
Tandem Systems Review
columns devoted to new and
enhanced Tandem products.
Each column will briefly
describe the new or enhanced
software and hardware prod-

ucts that Tandem has ntly announced to

its users and the computer industry.

Product Overview

Tandem has recently relcased the following
new or enhanced products:

* An 8-Mbyte memory board for
NOI'!SIO]J TXP processors,

* The 6600 Intelligent Cluster Controller.
* A C compiler.

» COPOL and FORTRAN separate run-time
libraries.

- A_COBOLRS compiler (planned for release in
the first part of 1986).

* DYNAMITE™ workstation ¢
and 6549, station color models 6548

; EM3270 lgrminal emulator (enhanced 1BM
270 emulation software).

: FAS_FS()RT: a hi ‘h" srfi s o
program. gli-periormance sort/merge

* Information Man: :
Management Technology (IMT)
Products FAXLINK™, PC LINK, PS MAIL™,

P -
STEXT EDIT™, and PS TEXT FORMAT™.

Tandem’s New Products

* A Pascal compiler (planned for release in
the first part of 1986).

= PATHWAY intelligent device support (IDS).
= TACL, a flexible command interpreter.
= An enhanced TAL compiler.

Literature is available for these products
from Tandem sales representatives. The
Programmer Productivity Languages and
Tools product guide describes the languages
and tools. Separate data sheets are available
for FASTSORT, the 6600 Intelligent Cluster
Controller, the EM3270 Terminal Emulator,
and the DYNAMITE 6548 and 6549 Worksta-
tions. Information sheets are also available for
the IMT products.

Throughout this article, the following terms
are used to describe the software releases in
which the new products are (or will be)
available:
= BI0, the release of the GUARDIAN 90 oper-
ating system made available in mid-1985.
= B20, a new release of GUARDIAN 90 made
available in the last calendar quarter of 1985.
= B30, a release of GUARDIAN 90 planned for
the first half of 1986.

Brief descriptions of the new or enhanced

products follow, alphabetized by product
name. (All the IMT products are located under

the subheading of that name.)

F
EHRUAR\‘
!

g v 1 (B W

si'ﬁTﬁ“"Sn

55

8-Mbyte Memory Board

An 8-Mbyte memory board is now available
for NonStop TXP processors. This product
can increase the capacity of main storage to
a maximum of 16 Mbytes per processor. For
large, high-performance applications, the
8-Mbyte board allows a NonStop TXP proces-
sor to store large amounts of data in memory,

‘ thus minimizing or eliminating the need for
disc access during a transaction.

| 6600 Intelligent Cluster Controller

The 6600 Intelligent Cluster Controller allows

clustering of terminals and workstations to

reduce communications line costs and to

allow sharing of expensive communications

resources such as phone lines and modems.

The 6600 controls and helps manage communi-

cations between a Tandem host computer and

| up to eight terminals, workstations, or printers
plus one additional dedicated printer. The 6600

|} can support any combination of Tandem 653X

: terminals, DYNAMITE 654X workstations, and

| IBM PCs or PC-compatible workstations. It is
compatible with NonStop TXP, NonStop II,
and NonStop EXT processors.

| The 6600 controller communicates with a
Tandem system via SNAX or SNAX6600.
Those customers who do not use SNAX cur-
rently can benefit from the 6600. SNAX6600 is

. available for applications that do not need to

communicate with IBM SNA controllers.

C Compiler

With the B20 release of GUARDIAN 90, the
popular, portable C language became available
on Tandem NonStop systems.' The Tandem C
compiler and run-time library are as compati-
ble as possible with those in other C environ-
ments. Since the ANSI X3J11 committee is still
working on a C language standard, Tandem C
follows the de facto standard defined in The C
Programming Language by Kernighan and
Ritchie.

The Tandem C compiler is derived from the
Lattice C compiler currently available for the
DYNAMITE workstation and other computers.
This compiler makes it possible for C program
modules to be developed on the DY NAMITE
or a PC, transferred to a Tandem NonStop
system, and recompiled for execution on the
NonStop system. On a NonStop system, a C
program can call TAL™ or GUARDIAN proce-
dures to gain access to more functions. Small
programs running on a NonStop svstem can
be recompiled to run on a DYNAMITE or PC.

COBOL and FORTRAN
Run-time Libraries

Before the B20 software release, the COBOL
and FORTRAN compilers were only available
as a set. The full set was unnecessary for pro-
duction systems, as they only require the run-
time library. With the B20 release, the run-time
library can be ordered separately, allowing
customers to order the lower priced run-time
library for their production systems and the
complete compiler package for their develop-
ment system,

The new Pascal and C compilers do not
have separate run-time libraries. The library
routines are bound to the object program, and
thus, customers do not have to order the com-
piler for their production systems.

Pricing for compilers has been revised.
Compilers and run-time libraries are now
charged on a per-system basis with a one-time
initial license fee and a monthly license fee.

"The term “NonStop systems™ refers 1o all Tandem processors and the software
that runs on them except for NonStop 1 + processons and software

COBOLS85 Compiler

In the B30 software release, '_I‘undc‘m is
offering the COBOLSS compiler. (See the
accompanying article, “Tandem’s Nc\f
COBOLS85.") COBOLSS SUpports all oi_lhc
required modules in the American National
Standards Institute (ANSI) revised COBOL

standard, X3.23-1985, and has extensions for
access to standard Tandem facilities. The
ANSI standard provides many new features to
increase programmer productivity and pro-
gram maintainability. As mentioned above,
Tandem COBOLS8S contains a run-time library
which is available separate from the compiler.
COBOLSS supports the following modules:

= Nucleus.

» Table handling.

= Sequential 1/0.

= Relative 1/0.

Indexed 1/0,

= Sort/merge.

® Interprogram communication,
® Source text manipulation

It supports Level 1 of the optional debug mod-
ule, also. Two optional modules of the ANSI
standard have not been implemented in
Tandem COBOLSS: the report writer and com-
munications. The segmentation module is
almost entirely implemented

DYNAMITE Color Workstations

The DYNAMITE workstation product line

has been enhanced by the addition of two
colgr models. Both color workstations have
14-inch color monitors. 'he model 6548 has
two 360-Kbyte diskette driv es; the model 6549
has one 360-Kbyte diskette drive and one
10-Mbyte hard disk ive.

When emulating a 653X terminal, the color
models display system information in high-
quality white characters on a black back-
ground (or, in reverse video, black on white).
Color text applications can be developed
locally with MS-DOS and BASIC. The bit-
mapped graphics option is required to develop
color graphics applications or to run third-
party software for the IBM PC.

The color DYNAMITE workstation (with
the graphics option) provides five ways of for-
matting information into color text, charts,
and graphs. There are two color-text modes
(40 x 25 and 80 x 25), two IBM-compatible
graphics modes (320 x 200 and 640 x 200),
and an extended high-resolution graphics

mode (800 x 300) exclusive to the DYNAMITE.

The two color text modes display text in up
to 16 different colors on one screen. The dual-
mode design of the color monitor allows both
alphanumeric and graphic information to be
shown on the screen at the same time. Third-
party color printers or color plotters can be
supported if they have RS-232 serial interfaces
and DTR flow control.

Also available is an upgrade option, which
converts a DYNAMITE monochrome unit to a
color unit. Finally, Information Xchange
Facility (IXF) software is now included with
all DYNAMITE models.

EM3270 Terminal Emulator

The enhanced EM3270 terminal emulator per-
mits Tandem users, from a single terminal, to
access IBM 3270 applications on up to six IBM
host computers using either SNA or bisynchro-
nous communications. EM3270 supports two-
way (Tandem terminal to IBM system) and
simultaneous three-way (Tandem terminal to
both the Tandem and IBM systems) communi-
cations. Terminal users can switch between
sessions by pressing the SWITCH key, or the
switch can be made programmatically from
the Tandem application.

Users of Tandem 653X terminals,
DYNAMITE 654X workstations, or IBM PCs
can run IBM 3270 and Tandem PATHWAY
applications concurrently, and they can alter-
nate between IBM SNA and bisynchronous
hosts through menus activated by a HOST key.

EM3270 also allows Tandem printers to
emulate the IBM 328X family of printers in
both bisynchronous and SNA applications.
Each EM3270 process can support a combina-
tion of 15 to 20 devices configured as termi-
nals and printers.

If EM3270 is to be used in an SNA environ-
ment, the BI0 release of the GUARDIAN 90
operating system is required. EM3270 can
reside on a system that is not running SNAX
and access SNAX on a separate system
through an EXPAND™ network.

FASTSORT

FASTSORT is a high-performance sort/merge
program for Tandem NonStop systems. Avail-
able with the B10 release of the GUARDIAN 90
operating system, it is an optional product and
must be purchased separately. It provides all
the functions of the standard SORT program,
but it performs better and offers additional
features. FASTSORT will eventually replace
SORT.

When installed on a system, FASTSORT is
used in:
= Conversational sorts.

= Sorts invoked from TAL or COBOL
applications.

* FUP manipulation of alternate-key files.
* ENFORM sorts during report generation.

FASTSORT sorts faster serially than
Tandem’s standard SORT program, and it
offers the high performance of parallel sorting
as well. By sorting in parallel, FASTSORT
significantly reduces the elapsed time of a
sort run by distributing the work load among
multiple processors and discs. Parallel
sorting with FASTSORT is more than seven
times faster than serial sorting with SORT,
Optimum performance can be attained by
using NonStop TXP processors, 3107 disc
controllers, the DP2 disc¢ process, and
extended memory.

IMT Products

FAXLINK
FAXLINK, an image storage, forwarding, and
retrieval facility made available in June 1985,
allows users to move printed documents or
pictures through a Tandem network using any
CCITT group IIl facsimile machine. In addi-
tion, documents created on any 327X, conver-
sational, or TTY terminal, IBM PC o
PC-compatible workstation, or Tandem's own
653X terminals and DYNAMITE workstations
can be sent to a remote facsimile device with-
out the need for a terminal or workstation at
the receiving site. Thus, electronic mail can be
sent together with signed letters, diagrams, or
other documents. FAXLINK is ideal for busi-
ness operations that require the routine deliv-
ery of information such as orders, invoices,
shipping instructions, or design changes.
FAXLINK delivers facsimiles via a Tandem
network reliably and at low cost, integrates
facsimiles with PS MAIL, simplifies document
addressing, accepts input without a terminal,
stores facsimiles on-line, offers flexible deliv-
ery options, achieves high performance with-
out expensive devices, turns facsimile
machines into remote printers, and includes
all required hardware and software.

PC LINK

PC LINK is a collection of software programs,
both host-resident and diskette-based, that
allows IBM PCs and PC-compatible worksta-
tions that are connected to a Tandem system
to emulate a Tandem 653X terminal or an 1BM
327X terminal. PC LINK allows PC users to
send and receive electronic mail, transfer files
and manipulate information stored in a
Tandem data base, and access both Tandem
and IBM host applications. These services
significantly increase a user’s productivity.

PC LINK accesses Tandem and 3270 applica-
tions on-line, uses PS MAIL, takes advantage
of system peripherals, and integrates system
data with PC applications. PC LINK consists
of four software tools (EM6530PC, IXF/PC,
PCFORMAT™, and EN3270) made available in

August 1985.

PS MAIL

PS MAIL is a distributed electronic mail
system, designed (o provide easy-to-use elec-
tronic communications among users of a wide
variety of desktop devices. PS MAIL lets users
of IBM 327X and TTY terminals, IBM PCs and
PC-compatible workstations, and Tandem
653X terminals and DY NAMITE workstations
to send and receive ¢lectronic mail and to
store, forward, and file documents electroni-

was released in B0,
1705 and Tandem ter-
0, PS MAIL is built
staged information
hipped by Tandem

cally. PS MAIL for
and PS MAIL for |
minals was released
on the TRANSFER
delivery software, {1
in 1982.

PS MAIL featur¢ ide built-in help, a

directory of PS MAIL users, forward and reply
features, user-defined distribution lists,
assured delivery, delis certification, fac-
simile and PC document delivery, filing and
retrieval, efficient resource utilization, an
easy-to-use editor, an automatic filing and

response facility for users on vacation, and
customized administration,

PS TEXT EDIT

PS TEXT EDIT, available in the B20 release, 1s
an advanced, full-screen text-editing system
for creating reports, documents, memos, let-
ters, and computer programs. PS TEXT EDIT
provides a complete set of powerful, built-in
feqtures for producing any kind of document
quickly and easily, It offers on-line help for all
PS TEXT EDIT functions, easy transfer of
information between documents or within a
single document (with a split-screen option),
and function keys that can be redefined
around your particular needs. PS TEXT EDIT
an extend its power through several compati-

le programs, including the PS TEXT FORMAT
print formatter.

PS TEXT FORMAT
PS TEXT FORMAT, available in the B10
release, gives users complete control over the
layout of documents printed on any Tandem
printer. A wide range of features, such as pro-
portionally spaced characters, subscripts, and
superscripts, lets users take full advantage of
the capabilities of the Tandem 5530 daisy-
wheel printer. PS TEXT FORMAT is a sophisti-
cated text formatter, and it is very easy to use.
With PS TEXT FORMAT, users can translate
command names and error messages from
English to another language and change
parameter defaults for paper sizes and margin
widths. Users can also modify the appearance
of type, design page layouts, alter letters and
documents, format reports, store customized
formats, time-stamp and extract information,
perform arithmetic computations in text, cus-
tomize PS TEXT FORMAT itself, merge infor-
mation into text from a distribution list for
mass mailings, and print and move files.

Pascal Compiler

The Pascal language was designed to support
modern high-level programming techniques. It
is well structured, easily understood, portable,
and, yet, relatively efficient. Pascal programs
tend to be correct and robust. The compiler
actively assists in finding logic errors or inter-
face errors at compilation time, and optional
run-time checks help find any remaining
errors. Pascal has especially good support for
multilevel data structures that use pointers or
nested records.

Tandem Pascal, available with the B30 soft-
ware release, is a superset of the 1983 ANSI
definition of Pascal, formally known as
ANSI/IEEE 770 X3.97-1983. It also complies
with Level 0 of the International Standards
Organization (1SO) Pascal u;;o 7185). Com-
pliance with both standards is measu'r_ed by
the Pascal Validation Suite of the Brmgh
Standards Institution. Tandem Pascal is
extended with features that facilitate large
programs, business applications, and systems

programming.

F
EH“UJ\H\«l

59

front-end processes by providing increased
Screen COBOL support for intelligent devices. TAL Com p“ or

|

|

‘ : PATHWAY Intelligent Device TACL

| Support (IDS) TACL, the Tandem Advanced Command

‘ Before the B10 software release, the PATHWAY Language (pronounced fackle), is & [lexible
transaction processing system supported only command. interpreter th_at can b}: cus omized
terminal-type devices (6530, 3270, conversa- for a particular user or installation TACL

|‘ tional, 6520, and 6510 terminals and the is a standard Pl‘OdUCl‘ for GUARDIAN 90

il DYNAMITE workstation). The user environ- users (as are Tandem's other prograi

‘ ment has evolved over the last several years, development tools, INSPECT™, BINDER™,

‘ ' and PATHWAY applications now need to inter- and CROSSREF™). These standard products

‘ face with intelligent workstations, ATMs, POS are provided at no additional char;
devices, and GUARDIAN processes. TACL is au!omaugally included in all B20

: Initially, programmers handled this require- GUARDIAN 90 shipments.

l ment by implementing multithreaded front- Tf\(-L'PFOVldf-‘S all the capabilitics _

I end processes, which stood between the Tandem’s command interpreter, C NT (and
intelligent device and the Terminal Control will eventually replace COMINT). I «ddition,
Process (TCP). These front-end processes con- it allows users to write macros to define fre-

! verted messages into the format required by quently used commands. These macros and

i the message receiver. Control and device- other functions can then be mapped (o func-

| specific information was added or deleted tion keys. At its most advanced leve!, TACL
as appropriate. becomes a powerful high-level interpreted

J PATHWAY IDS, available with the B10 language.

‘ release of PATHWAY, eliminates the need for

With it, the TCP transmits a message to an

intelligent device when the Screen COBOL TAL, the Transaction Application L anguage,
| translated into the appropriate GUARDIAN As of the B20 software release, it has many
write, read, or writeread procedures to trans- new features:

mit the correct data. Screen COBOL programs

. N = - 1 . tlations 15 been
are responsible for message resynchronization The elapsed time for compilations has bee

(error trapping, error recovery, 1/0 retries, reduced as much as 20%.
and so on) and for adhering to the intelligent * A labeled CASE statement makes programs
device's protocol. much easier to write, debug, and maintain.
® In compilations with the ZERRORFILE
directive, syntax errors are written 1o a disc
file, allowing programmers to use
PS TEXT EDIT to display the source program
in one window and the error messages in
another.
® It has additional support for data declared
in extended memory.

| ! ® A new data type UNSIGNED, for declaring
l bit fields, allows pointers to be declared
|
|
|
|

: program requests the action. This action is is Tandem’s systems-programming lanzuage.
|

within a structure and templates to be used
as substructures.

Corinne Robinson is the Product Manager for Tandem's lan-

' guages and tools. She joined Tandem in June 1983 as a software
designer. Before joining Tandem, Corinne spent seven years
working in microprogramming, diagnostics, and languages for
another computer vendor. Corinne has a B.S. in Information and
Computer Science from the University of California at Irvine.

| 60 TANDEMSYS

TEMNMSES RENVN I 8 W «

n M: 55 Tandem introduced
a new ription service and a
new L ¢ service for its soft-
wWart als, Their purpose is
to he ndem customers keep
their T 1 software documen-
tatior -date with the latest

software releases

The Software M, Subscription Service

provides the sets
binders) that des
ucts. It includes on
Update Service,

The Manual Upda

updates (replacem

(entire replacement

ils (including

idem software prod-

of the Manual

rvice provides
's) and revisions
1als) for sets of

Tandem software manuals (but no binders).
In addition, Tand ustomers in the
United States can now order manuals via a
toll-free 800 phone number (if a blanket pur-
chase order has alreads been submitted to
Tandem Sales Administration in Cupertino,

Cal.r(_)r,1i?), This procedure can be used for
orderlrllg individual manuals or additional
subscriptions,

Software Manual Subscriptions

One software manuyal subscription now enti-

tles a subss..:riber 10 one or more sets of man-

l;ailescigssgnbgghs '-.;i?'ic software products, as

s Y the subscriber) and one year of
paates for the manual sels ordered.

Subscription Policy for
Software Manuals

A basic set of manuals is available for each
Tandem operating system (GUARDIAN and
GUARDIAN 90), as well as for the extended
function combination, GUARDIAN 90XF™
(which includes GUARDIAN 90, ENCOMPASS™,
EXPAND, and TRANSFER). For each optional
software product or package of products,
smaller manual sets are offered. If a software
product is described in three manuals (e.g., a
reference manual, a user’s guide, and an oper-
ations guide), all three are included in the sub-
scription service and update service. Table 1
(page 62) lists the sets available for NonStop
systems (NonStop 1l and TXP processors).

Renewing the Manual Update
Service

Renewals for the Manual Update Service are
for a term of one year. Three months before
the term ends, a renewal letter is sent to the
subscriber, detailing the sets of manuals that
will require updates.

Customers must send in a purchase qrdcr
for the renewal; without it, update service
expires. They can change quantities when they
renew.

61

Table 1. = Ordering by Phone in the

Product identification numbers for the Software United States

Manual Subscription Service and Manual Update

Service, NonStop software (NonStop II and As mentioned earlier, U.S. customers can now

NonStop TXP processors).’ —order individual software manuals and sub-
st B TN update SCTiptions through a toll-free 800 telephone
Service® Service (only) number. Those who want this flexibility must

Software product product D il send an open (or blanket) purchase order or

S tog ieles Softwere equivalent document to:

GUARDIAN 90 package 8072MS 8072MU .) 3

GUARDIAN 90XF package 9090MS 2090MU Sales Administration, Manuals Group

Optional software — Tandem Computers Incorporated

EXCHANGE DSIMS 9054MU 19191 Vallco Parkway, MS 4-05

EM3270 05oMS 8oseMu Cupertino, California 95014

XRAY 9056MS 9056MU

EXPAND 057MS 9057MU The open purchase 0rc§cr shc_yuld specify the

X.25 Access Method 9060MS " B0680MU dollar amount and duration of the order. (This

AM3270 8061MS 2061MU protects the customer and Tandem.) It should

TR3271 9062MS soe2vu — also specify other pertinent information, such

AME520 9063MS 9063MU__ as the names of customer personnel authorized

SNAX 9064MS 9064MU _ to place phone orders. The Manuals Subscrip-

TME. 9066MS __9066MU tion Group will send the customer the %00

il oty i phone number with an acknowledgment of

:ﬁigﬁcp i:;’:z g—:—:g the purchase 0rdpr and w‘ill keep the open pur-

e OTINE SEoT chase order on file for reference on all manual

CP§100 9079MS go7oMU imnvoices.,

ENCOMPASS 9116MS 9116MU

TTEXT = 9120MS - 9120MU

TRANSFER 9160MS 9160MU e

DDL 9150MS 9150MU Billing

Spooler oL Prices for Subscription and Update Services

1 T s _J0MU_ Individual Tandem software manuals were

PATHWAY 9103MS 9103MU I :

ENABLE B e repriced in April 1985. The current prices are

COBOL 920IMS 90IMU available from Tandem sales representatives

FORTRAN 9202MS S02MU and also from the Manuals Group in Tandem

MUMPS _ 9203MS 0203MU Sales Administration mentioned above.

BASIC 9204MS T 9204MU Prices for the software manual services are a

cosoL_ i 9251MS estmu fixed percentage of the list price of the manual

FORTRAN 9252M5 9252MU set(s) Ofdf.'l:ed. The price of the Software Man-

(NonStop systems) ual Subscription Service is 130% of the cur-

:r';ﬂra e 2",','}?; ;39;’;22:"‘:':;‘1%1%1?:}Dg;t'nurnb?rs?Hnmvruual rent |jSl price of the manuals (that is, 20% less

Publications and Related Products, part number soass e than if the manuals and the Manual Update

“The subscription service Includes all manuals for that software Service were purchased scparalcl)'}, plll‘\ \'hi[]‘

product or package and Manual Update Service for ane year. ping and hand] i ng.

The charge for the Manual Update Service
alone is 50% of the current list price of the
manuals, plus shipping and handling. Tandem
software manuals (especially the basic set of
manuals for the operating system) are updated
at least every two years. Although the fre-
quency and size of the updates vary, sub-
scri_b'ers receive substantial updates and
revisions commensurate with price, on a
timely basis,

Shipping and Handling .= _
For both the initial subscription service and
the Manual Update Service, shipping and han-
dling charges are added to the orders and
billed in advance. (When individual manuals
are ordered, however, shipping and handling
are billed at the time of shipment.)

Shipping and handling have not been incor-
porated into the price of the manuals because

if each manual were priced to fully recover its
individual shipping and handling costs, the
total price would be unreasonably high for

large orders.

Invoicing

Subscription service orders are invoiced in
full, upon shipment of the initial set of man-
uals. Update service renewals are invoiced
upon receipt of the renewal purchase order.

No Volume Discounts

No volume discounts are available, as compar-

atively little economy is achieved in filling an
order for 50 sets of munuals as opposed to
filling one set, especially when (as is common

in large orders) the 50 are to be sent to 25 dif-
ferent addresses.

Billing for Additional Subscriptions

When subscribers place orders for additional
subscriptions after placing an initial order
(e_.g.. to get a set of manuals they did not pre-
viously order or to get a second set of some
manuals they had ordered), they are billed for
a full one-year subscription at the time of the
order. Then when they renew their Manual
deate Service, the rate for the renewal period
IS prorated (to account for the unused sub-
Scription service months included in their
:addmonal order) and a common renewal date
1s established.

For example, if an initial subscription were
ordered in April and additional subscriptions
were ordered in August, the renewal for the
update service would include a year of update
Service for the April subscription and eight
moptl]s of update service for the August sub-
Seription(s). This allows the update services

tfx all subscriptions to come up for renewal at
same time,

Cancellation Policy

Subscription Service

If customers return all packages unopened and
undamaged to Tandem’s distribution point
within 60 days of the order, credit is issued for
the price of the subscription, less a 15%
restocking charge. The shipping and handling
charge is not refunded, and the customer must
pay the return freight.

If a subscription is cancelled within the first
six months, Tandem refunds 20% of the sub-
scription price, excluding the shipping and
handling charges. The customer can keep the
initial set of manuals.

Update Service

If a customer cancels update service during
the first six months, Tandem refunds half of
the update service price, excluding handling
charges. After six months, a refund cannot
be issued, and the update service runs to
completion,

Bnn Manual Sets

Before the B0O release, the last general distri-
bution of Tandem software manuals occurred
with the A06/E07 release of the GUARDIAN
operating system in February 1984. At that
time “system manual Kits,” consisting of one
of every manual, were sent to all customers.
Until May 1985, subscriptions were available
only for these manual kits. In the United
States, the kit subscriptions were priced well
below current printing costs.

Table 2.
Bnn software manual sets for subscription and
update services.!

Product ID Description

SnnnMS Software Manual Subscription Service for the
software product “8ann,” including the initial set
of current manuals describing it and one year of
Manual Update Service.

SannMU Manual Update Service for the software product
“Bnnn" for one year. Provides updates for an
{assumed) existing set of manuals.

8Bnn Latest versions of all software manuais. No
update service.

9BnnMS Software Manual Subscription Service that
includes the latest versions of all manuals and
one year of Manual Update Service.

9BnnMU Manual Update Service for all softwara manuals '
for one year. Provides the updates but not the
initial set of manuals.

‘In this table, “Bnn" represents any software release in the B series,
e.g., B10, B20, elc.

With the B0O software release, 65 of 83
NonStop manuals (describing NonStop I and
NonStop TXP software) were changed, requir-
ing either updated pages or complete revi-
sions.! Table 2 lists the two Bnn manual sets
available. (Bnn is used in this article to repre-
sent all releases of the *“B series” software,
e.g., B10, B20, etc.) Below, three Bnn update
situations are explained.

Updating Manuals Provided with the System
Customers who are licensed to use Tandem
software, and who pay for software mainte-
nance or pay the monthly license fee, automat-
ically receive one set of Bnn updates for the
set of manuals Tandem provides with a
Tandem system.

Those who want Ban updates for software
for which they are not licensed can order them
through the Manual Update Service.

"NonStop 1+ manuals are not included in the BOO software manual
distribution.

Replacing A-Series Software Manual Sets
In addition to the updates for the set of man-
uals Tandem provides with a Tandem svstem,
mentioned above, most customers have
ordered additional manuals. Those who have a
current subscription to A-Series manual sets
(under the old subscription policy) receive Ban
updates until the end of that subscription’s
term. To keep that set of Ban manuals up-to-
date when the old subscription expires, these
customers must order the 9nnnMU Manua!
Update Service for the manuals to be updated
(where 9nnn corresponds to the Tandem soft-
ware product numbers). They can keep com-
plete sets current by ordering the 9BanN!
Manual Update Service.

Customers whose subscriptions are n
longer current have several choices. They can:

= Order individual manuals by manual num-
ber, up to and including full sets. (Ordering
full sets in this way would be the least econom-
ical alternative in the long run.)

® Order Software Manual Subscription “cr-
vice products by Tandem software prod:

number for the number of sets needed. | s
method allows specific customization o the
manuals most needed. For example, ordering

one 9103MS yields the current version o!
PATHWAY manuals plus update service
these manuals for one year.

® Order a complete replacement set of up-10-
date Bnn manuals, including manual updates
for one year, with Software Manual Subscrip-

tion Service product 9BnnMS.

Ordering Individual Manuals

Tandem customers who want to order individ-
ual manuals (as opposed to manual sets based
on a software product) can order them by
Tandem part number. (See the Caralog of Soft-
ware Publications and Related Products, part
number 82522 B00, for the titles, descriptions,
and part numbers.) Orders for individual
manuals are not viewed as subscription service
orders and do not include update service.

Tim McSweeney is manager of the Pricing Analysis Group In
Tandem's Marketing organization. He has also worked as a
senior marketing analyst in the Competitive Analysis Group
Before joining Tandem in 1983, Tim was associated with a start:
up software development company. Before thal he worked fof
nine years for another compuler vendor in several capacities,
Including international sales and computer support

64

VAN BB M S ¥ s oINS R E

¥

——:

Tandem Systems Review Index

February 1986

I'he Tandem Journal became the Tandem Systems Review in February 1985. Four issues of the

Tundem Journal were published:

Volume 1, number 1
Volume 2, number 1
Volume 2, number 2
Volume 2, number 3

Fall 1983 Part No. 83930
Winter 1984 Part No. 83931
Spring 1984 Part No. 83932
Summer 1984 Part No. 83933

\s of February 1986, three issues of the Tandem Systems Review have been published:

Volume 1, number 1
Volume 1, number 2
Volume 2, number 1

February 1985 Part No. 83934
June 1985 Part No. 83935
February 1986 Part No. 83936

I'he articles published in all seven issues are arranged by subject below. (Tandem Journal is abbre-
wted as TJ and Tandem Systems Review as TSR.) For those articles whose subject matter falls
i more than one area, the title may be listed in more than one area (notably, those articles about

syvstem and application performance).

Season
Volume, or Month Part
Article title Author(s) Publication Issue and Year Number
Operating system Y
wanges in FOX N. Donde TSR 1.2 June 19885 83835
umparison of the DP1 and DP2 Disc Processes T. Schachter TSR 1,2 June 1985 83035
DP1-DPZ File Conversion: An Overview J. Tate TSR 2,1 Feb, 1986 83936
P2 Highlights K. Carlyle, TSR 1,2 June 1985 83935
L MCGWE
P2 Key-sequenced Files T. Schachter TSR 1,2 June 1985 83935
172 Parformance ; J. Enright TSR 1,2 June 1985 B3935
DP2's Etficient Use of Cache T. Schachter TSR 1,2 June 1885 83935
Datermining FCP Conversion Time J. Tate TSA 21 Feb. 1986 aax
The GUARDIAN Message Systemn and How to Design forit M. Chandra TSR it Feb. 1985 83 .
mptoved Performance for BACKUP2 and RESTORE2 A. Khatri, TSR 1.2 June 1885 8383
M. McCline i
nereased Code Space A. Jordan TSR 1.2 June 1965 .
Intreducing TMDS, Tandem's New On-line
[‘--.'m:m-,hr?sygmm J. Troisi TSR 1.2 June 1::: 83935
- bl =S ——_ bt
Managing System Time Under GUARDIAN 90 E Nellen TSR 21 jene el 3383936935
New GUARDIAN 80 Timekeeping Facilities E.Nellen TSR 1,2 J”ne S
New Processing-timing Features i S.Sharma TSR 12 =
NonStop 1T Memory Organization and Extended 83930
Addressing o 0. Thomas T 1.1 Fall 1983
. e e T 23 Summer 1884 83933
Optimizing Sequential Processing on the Tandem System R Weish :
Robustness to Crash in a Distributed Data Base: TSR 12 June 1985 83935
A Nonshared-memory Approach Abor. TS 83936
- . - bell TSR 21 Feb. 1986
TACL, Tandem's New Extensible Command Language J. Campbell,
A. Glascock !
- - N TSR 1.2 June 1985 83935
The Tandem Giobal Update Protocol - RCar = = Fob. 1985 83934
Using FOX to Move a Fault-tolerant Application C. Breighner = 2'1 Feb. 1966 83936
Buffering tor Better Application Performance A Mattran ‘:2 June 1985 83935

VIEWSYS: An On-line Sysmm-re:omca Monitor

"D Montgomery TSR

June 1985 83935
D Wong TSR 1.2

Writing a Command Interpreter

Languages B pel 05
An Introduction to Tnndern_E;‘TENDE_D_Bi_\SE —_k
TACL, Tandem's New Extensible Command Language

— o 1904 83052
Em——— TJ 22 Spring 1
JMeyersan s ——roh 1988 83930

.I C;mpbell. TSR 21

Tandem's New COBOLES

A. Glascock
" D. Nelson TSR 2,1 Feb. 1986 83936
I Continued on nexl page.
65

4_—4

Season

Volume, or Month Part
Article title Author(s) Publication Issue and Year Number
Data management = = ——
The ENABLE Program Generator for Multi-file
Applications B. Chapman, TSR 1.1 Fab. 1885 83834
J. Zimmerman S oL SesE T
The ENCORE Stress Test Generator for On-line
Transaction Processing Applications S. Kosinski T 2 Winter 1€ 1984 83931
Improvements in TMF T. Lemberger TSR B 5 IR June 1985 83935
A New Design for the PATHWAY TCP R. Wong TJ‘ _%2 Spnng 1984 &'.'_932
The PATHWAY TCP: Performance and Tuning J. Vatz TSR 11 Feb 1985 83934
The Relational Data Base Management Solution G. Ow ™ 21 Wmtal or 1984 83
TMF and the Multi-threaded Requester T. Lemberger T L Fall 1983 83930
TMF Autoroliback: A New Recovery Feature M. Pong TSR 11 __Feb, 1985 B3834
The TRANSFER Delivery System for Distributed
Applications S. Van Pelt T = 2 2 _ Spring _1'9?;‘_ ~ Basaz
Understanding PATHWAY Statistics M. Pong Ty 2, 2 Spring 1984 B3832
Data communications L . =
The 6100 Communications Subsystam: A New
Architecture R. Smith TJ 21 Winter v 1864 _83931
A SNAX Passthrough Tutorial D. Kirk TJ 22 Spnnq 1984 B3932
SNAX/HLS: An Overview S. Saltwick TSR 21 June 1985 83035
Processors o s
The High-Performance NonStop TXP Processor W. Bartlett, Td 21 Winter 1984 83931
T. Houy,
- D Meyer
The NonStop TXP Processor: A Powerful Design =
for On-line Transaction Processing P. Oleinick Td 23 Summar 1384 B3933
Peripherals
introducing the 3207 Tape Controller _ S. Chandran TSR 29 June 1985 83935
The Model 6V Voice Input Option: Its Design TR el y
and Implementation B. Huggett T 23 Summer 1984 83933
The V8 Disc Storage Facility: Setting a New Standard = -
for On-line Disc Storage M. Whiteman TSR 2.1 June 1985 B3935
Workstations
An Introduction to DYNAMITE Workstation Host -
Integration S. Kosinski TSR 2.1 June 1985 83935
The DYNAMITE Workstation: An Overview G. Smith TSR 21 “June 1885 83935
Application development and performance
Buffering for Better Application Performance R. Mattran TSR 21 Feb, 1986 83036
PATHFINDER—An Aid for Application Development S, Benett ™ 1 Fall 1983 83930
Optimizing Sequential F'mcesslng on the Tandem System R. Welsh TJ) 23_ Summar 1984 83933
System performance and tuning
Credit-authorization Benchmark for High Performance = .
and Linear Growth T. Chmiel, TSR 2 Feb. 1986 B3936
T. Houy
DP2 Performance J. Enright TSR 12 “June 1985 ~ gagas
The High-Performance NonStop TXP Processor W. Bartiett, T 21 =T R
T. Houy, 2 ‘Winter 1984 83931
L s So000 D. Meyer
improved Performance for BACKUP2 and RESTORE2 A. Khatri, TSR 3 L e S
s M. McCline 2 SO TR
The NonStop TXP Processor: A Powerful Design = — —— —
for On-line Transaction Processing P Olginick TJ 23 summm 1984 83933
The PATHWAY TCP: F Perfo;manca and Tuning J.Vatz " TSR ST Fab 1985 s
The Performance Characteristics of —_— BB
Tandem NonStop Syslems J. Day T4 14 Fall 1083 83050
VIEWSYS: An On-line Sya!em resource Monitor D. Montgomery ISR SONN e
Manuals and courses
BOO Software Manuals » i —— =
i - S. Olds TSFI_ 1_2 "~ June 1985 33935
New Software Courses =N M. Janow TSR 12
. v June 1985 33935
Subscription Policy for Software Manuals T. McSweeney TSR TR -
Miscellaneous . 83936
Highlights of the B0O Software Release K. Coughlin " TSR = —
o : 1
R. Montevaldo ‘ June 1965 83935
Tandem's New Products C. Robinson TSR 21 T T =

e ———————,——

TANDEM PUBLICATIONS ORDER FORM

[he Tandem Systems Review and the Tandem Application Monograph Series are combined in
one subscription. Use this form to subscribe, change a subscription, and order back copies

For requests within the U.S., send this
orm (o
Tandem Computers Incorporated
Sales Administration
19191 Vallco Parkway, MS 4-05
Cupertino, CA 95014-2599

For requests outside the U.S., send this form
o vour local Tandem sales office.

ieck the appropriate box(es):
New subscription (# of copies desired)
Subscription change (# of copies desired)
Request for back copies, (Shipment subject to
availability.)

'rint your current address here:

FHONE NL

MBER (LL5)

If your address has changed, print the old
one here:

ADDRESS

ATTENTION

PHONE NLUMBER (U S)

TANDEM EMPLOYEES: PLEASE ORDER YOUR COPIES lﬂﬁ’}f‘}“ﬂ‘ﬂl‘i‘_“fgﬁ#ﬂ

To qrder back copies, write the number of
copies next to the title(s) below.

NUMBER
OF COPIES

Tandem Journal

Part No. 83930, Vol. 1, No. I, Fall 1983
Part No. 83931, Vol. 2, No. 1, Winter 1984
Part No. 83932, Vol. 2, No. 2, Spring 1984
Part No. 83933, Vol. 2, No. 3, Summer 1984

Tandem Systems Review

Part No. 83934, Vol. 1, No. 1, February 1985
Part No. 83935, Vol. 1, No. 2, June 1985
Part No. 83936, Vol, 2, No. |, February 1986

Tandem Application Monograph
Series

_ Part No. 83900, Developing TMF-Protected

Application Software, March 1983, AM-005

_ Part No. 83901, Designing a Tandem/ Word

Processor Interface, March 1983, AM-006

Part No. 83902, Integrating Corporate Infor-
mation Systems: The Intelfigent-Network
Strategy, March 1983, AM-007

 Part No. 83903, Application Data Base Design

in a Tandem Environment, August 1983

Part No. 83904, Capacity Planning Jfor Tandem
Computer Systems, October 1984

Part No. 83905, Sociable Systems: A Look at
the Tandem Corporate Nerwork, May 1985
Part No. 83907, Designing a Nefwo{k—Based
Transaction-Processing System, April 1982,
SEDS-002

; LITERATURE COORDINATOR.

1

_4_4

27
(TAN
DE

M
C
OMP
U
=
E
R
S

&0
00
DO
D9
28
02/8E
P
rin
1 [
ve)
in
LS

