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Editor's Note 

I'd like to thank the many individuals and 
groups within Tandem iliat worked together 
to create this special issue. Some worked 
many extra hours to complete the articles 
and ensure their timely publication. Special 
thanks to: Mala Chandra, Joanne Danforth, 
Jim Eakin, Hank Hugeback, Kent Madsen, 
Sarah Rood, Carol Schaffer, Dick Thomas, 
Ann WhiteseIJ, the 25 authors, the entire 
Illust ration and Typesetting groups, and the 
technical reviewers in the Field Productivity 
Programs, Hardware Developmenl, InslaJ­
lability, Large Systems Suppon, Product 
Management, Product Marketing, Software 
Development, and Systems Suppon groups. 

Carolyn Turnbull White 

Syntax notation used in this publication. 
NOIJllon 

UPPERCASE 
lrnERS 

-=~ 
Ietl8l'S 

BracketS r I 
Braces I } 
Effipses .. 

Enlp$8S 

~"""" '" scomma,. 

Correct ion: 

U .. nltlg 

Re!:lresent keywords and reserved words. 

Enclose opllOnal syntax Items. 

Enclose r9qlAred synlllX IIems 
FoUow syntax IIernS Ihal can be repeated any 
numbeI" 01 limes. 

Follow syntax Items thaI can be repealed any 
numbef 01 limes and requlr8 • comma 10 
sepaHil8 each repelltion.. 

BASE24, an electronic funds transfer sys­
tem, was mentioned in the anicle, "Using 
FOX to Move a Fault-tolerant Application," 
published in the February 1985 issue of 
the Tandem Systems Review. BASE24 is a 
software product offered by Applied Com­
munications, Inc. (not Advanced Communi­
cations, Inc., as stated). The product has a 
muJtinodal. expandable structure analogous 
to Tandem's hardware structure and is 
designed for fail-safe, 24-hour processing 
seven days a week . 

............. -----------------------------. 
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Highlights of the 
BOO Software Release 

andem's BOO software ru ns 
,_ on NonStop n , NonStop 

TXP, and NonStop EXT 
systems. Many new prod-

___ ucts and enhancemen ts to 
• existing producls make up 

(he release . This article 
highlights the major ones, including those 
listed below: 

New products 

Disc Process 2 (DP2) 

EXCHANGE/ SNA 

Tandem Maintenance and Diagnostic 
System TMDS) 

Enhanced or changed products 

ATP6100 Asynchronous Terminal Process 

BASIC 

COBOL 

FORTRAN 

FOX 6700 Fiber Optic Extension 

GUARDIAN 90 operating system 

ENABLE program generator 

EXPAND networking software 

PATHWAY transaction processing system 

Program Development Tools (PDn 

Transaction Application Language (TAL) 

Transaction Monitoring Facility (TMF) 

TRANSFER and TRANSFER/ MAll 

With the BOO soflware release, Tandem 
has completed a new, more powerful version 
of (he GUARDIAN operating system. To 
emphasize this milestone, the operating sys­
tem software, including DP2, has a new 

name: GUARDIAN 90. This new version of 
the operati ng system yields a significant 
improvement in on-l ine tra nsaction pro­
cessing performance in a TMF envi ronment. 
The GUARDIAN 90 operat ing system is 
upward ly compat ible with previous releases 
of the software, a llowing users to migrate to 
it without rewriting their applications. I 

Data-base Software 
Disc Process 2 (DP2) 
DP2 is the new GUARDIAN 90 disc process 
for NonStop n, NonStop TXP. and 
NonStop EXT systems. ( It is not available 
for NonStop 1+ systems.) The job of both 
DP2 and DPI is to manage data and hard­
ware within Tandem disc subsystems. Both 
disc processes implement the various 
ENSCRIBE file types, manage the space on 
discs, and manage lhe contro\1ers and paths 
to the discs. 

DP2, however, is a complete redesign and 
reimplementation of the disc process, aimed 
at achieving improved performance, 
throughput, recoverability, reliability, main­
tainability, and extensibility. All discs and 
disc controllers for onStap U, TXP, and 
EXT systems are supported by DP2. TMF, 
the file system, and many utilities have been 
appropriately modified and enhanced in 
connection with its development. 

I 



To achieve the goals mentioned above ror 
DP2, developers have changed the basic ri le 
structure. Thus, those user riles on wh ich 
DP2 is to be used must be changed from 
DPl format to DP2 rorma!. New utilities are 
provided for this purpose. Other architec­
LUral changes have been made to integrate 
the T~IF and DP2 subsystems, resulting in 
increased perrormance in lhe T~'IF 
environment. 

Note: Because or Ihe changes in the struc­
ture or riles, programs that open structured 
riles in unstruclllred mode must be modified 
if DP2 is to be used with them. See the 
ENSCRIBE Programming Manllal ror the 
details or the new block structure. 

ENAHLE Program Generator 
The BOO release includes major enhance­
ments to ENABLE. ENABLE can now gener­
ate applications that access multiple files 
organized in a hierarchical fashion. 

Another new realure is its ability to dis­
play and update multiple records within a 
file. Optionally, ENABLE can display this 
inrormation in tabular format. 

Finally, ENABLE makes the process of 
designing screens more flexible. Users can 
suppress different fields rrom the screen 
display ror security purposes and can rear­
range the layout of fields on the screen. 

For a discussion of these new capabilities, 
see Chapman and Zimmerman. 1985. 

PATHWAY Transaction Processing System 
The BOO release or PATHWAY includes a new 
version or the Screen COUOL compi ler. This 
new compiler runs only on NonStop 11, 
TXP, and EXT systems because it takes 
advantage of extended memory. By using 
extended memory features. the new compiler 
permits a significant increase in the number 
or symbols allowed in Screen COBOL run 
units. 

Several new command options are 
a\ailable: 

• AUTORESfART, a new optional parameter, 
allows the PATHWAY system to restart termi­
nals, TCPs, and servers automatically when 
abnormal errors are encountered. 

• An exclamation mark (!) has been added 
to the SHUTDOWN command as an optional 

__________________ ~BOQSoft"~~ 

parameter. It is the equivalent or a STOP 
TERM·, followed by a STOP TCP ., rol­
lowed by a SHUTDOWN. 

• An ERRORS command has been added to 
PATH COM to allow errors to be tolerated in 
IN/ OBEY file processing. 

• The INFO command now has an optional 
keyword, OBEYFORM, which rormats the 
output as a syntact ically correct PATHCOM 
command wilh the proper SET < entity 
type> prefix. One use of this option is to 

create new cold-start obey riles arrer exten­
sive modirications to an existing PATHWAY 
COil rigurat ion. 

• A new CONTROL PATHMON and CON­
TROL TCP command has been added to 

allow changing or object desc riptions wh ile 
the objects are active . 

• New I'RIMARY and SWITCH commands 
aid in the load balancing or a PATHWAY 
system. 

PATHWAY now supports double-width 
screen sizes ror Tandem 6520 and 6530 ter­
minals, and it recognizes the BREAK key on 
conversational terminals. Also, it is now 
permissible for Screen COBOL programs of 
dirferent terminal types to call each other. 

Transaction Monitoring facility (TI\U) 
BOO includes significant enhancements to 
TMF in the areas or recovery, fault tolerance, 
and operational r1exibility. 

TMF now includes autorollback, a rast 
mechanism ror recovering a data base that is 
protected by TM F. Autorollback starts auto­
matically at TMF start-up time and operates 
on all audited and logically inconsistent 
riles. It does not require the mounting or 
tapes, and no operator intervention is 
needed once recovery is under way. 

Thanks to autorollback, the loss or a disc­
process pair no longer causes a TMF crash. 
If both processors are lost, all active trans­
actions that the disc process might have 
been working on are aborted. When the pro­
cessors are subsequently reloaded, auto­
rollback recovers the volume. (For more 
detail on autorollback, see Pong, 1985 .) 
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TMF has several new features that provide 
greater operational flexibility: 

• A new command has been added to 
TMFCOM to allow the user to add one or 
more volumes to the set of volumes that are 
up for TMF. This command might be used if 
the volumes were down at START TMF time, 
if they went down while TMF was running, 
or if they failed to start earlier. 

• Audit-trail-file, extent-size, and MAX­
FILES parameters can be altered while TMF 
is stopped, and new volumes can be added 
to a TMF configuration without reinitializ­
ing TMF. 

A significant portion of TMF has been 
rewritten in conjunction with the develop­
ment of DP2, and many of the new TMF 
featu res, including volume reintegration and 
autorollback, are available with DP! as well. 

TRANSFER and TRANSFER/ MAIL 
Changes or new features in the TRANSFER 
delivery system and T/MAIL include: 

• Increased user friendliness and perfor­
mance for T I MAI L. 

• Support for T-TEXT. 

• Support for FAXLINK. 

• A Queue Manager for queuing items 10 
agents. 

• A repair facility for TRANSFER data 
bases. 

• Dated item "unsave." 

• Ordered folders. 

• Return codes from agents. 

• Staged item deletion. 

The Operaling Syslem 
User and S),slem Code Space 
In GUARDIAN 90, user-code, user-library, 
and system-library spaces have been 
enlarged. This change permits larger pro­
grams to run and allows large programs 
writlen for other vendors' systems to migrate 
more easily to Tandem systems. 

User-code and user-library spaces can 
each now comain up to 16 code segments of 
128K bytes each for a total of 32 segments 
of user code (4M bytes). In addition, 33 
system-code segmems (4.125M bytes) can be 
provided, 32 of which are available for the 
system library and one for system code. In 
connection with this expansion, imernal and 
external changes have been made to 
BINDER, TAL, FORTRAN, DEBUG, LOBUG. 
INSPECT, XRAY, CRUNCH, and SYSGEN. 

To accommodate these enhancements, 
application programs that modify [he Slack 
marker ENV Register must be modified , 
as must privileged programs that access 
the Destination Control Table, or Dcr 
(including user-written 110 processes). All 
Olher programs run successfully under 
GUARDIAN 90 without recompilalion. 

.-OX Prolocol 
Changes to operating-system software asso­
ciated with the 6700 Fiber Optic Extension 
(FOX) provide automat.ic ring-topology gen­
eration, automatic path management, and 
support for on-line diagnostics. These 
changes require that all nodes in a FOX 
ring be upgraded to the GUARDIAN 90 
operating system simultaneously if FOX 
communications are to be maintained. 
(This is explained further in a later 
section and in the accompanying anicle, 
.. Changes in FOX . It) 
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Nc\\ Tandcm Maintenance and 
Diagnoslic Syslem (T~Il)S) 
TMDS provides a foundalion for integrated, 
on·line fault diagnoslics for the hardware 
componenls of Tandem sYSlcms. This first 
release includes a FOX diagnostic subsystem. 
Other products will be added in subsequent 
releases. Major fealures of this release are a 
centralized, diagnostic command inlerpreter 
with eXlensive "help" facilities, a diagnostic 
resource monitor, and automatic logging of 
hardware faults. 

Command Inlcrprclcr (COMINT) 
Several features have been added to enhance 
the Command InterprCler (COtvIlNT): 

• A HELP command is now available to aid 
users in the proper use of COM INT. 

• Users can now control system access 
during slart·up through a SYSGEN· 
defined input file to the starHlp command 
inlcrprctcr. 

• CO~lINT now runs as a non privileged pro· 
cess. Its privileged functions are imple· 
mented as procedures that can be called or 
processes that can be run. Also, password 
management, system logon, and the in for· 
mation passed to a SCMON process have 
been enhanced. 

• The manner in which start·up messages 
are handled is different. Consult the Softdoc 
for details. 

S)'Slem Timing 
Time services have been enhanced to 
include: 

• Automatic Daylight Savings Time (DST) 
adjustments. 

• Improved process timing. 

• Julian date conversions. 

• Timestamps based on Greenwich Mean 
Time (GMT) . 

Other s}'Stem·lime enhancements include 
CPU clock-rate averaging, clock·rate adjust· 
ments. and a callable procedure to set sys· 
tern clocks. This procedure makes it easier 
to keep accurate time when external clocks 
(e.g., that of the U.S. government radio 
station, WWV) are used. 

Also, four·word. microsecond·resolution 
timestamps are now available, in addition to 
the old three·word timestamps. The GMT 
Limestamps and new time·conversion rou­
tines are all based on the new four-word 
timestamp. 

Other GUARDIAN 90 Enhancements 
SYSGEN can now process configurations 
with a greater number of named en(ities 
(devices and named processes) . 

The performance of RELOAD has been 
improved, and thus, systems can be started 
more quick ly. 

The ocr has been moved to extended 
memory and has been increased in size. 
Also. it is now accessed via a hashing algo­
rithm, which improves speed. New 
GUARDI AN 90 procedures have been pro· 
vided to access the DCT'. 

Processes can now be started in parallel in 
any processor. This, combined with the 
enhancements to RELOAD, improves system 
start·up time dramatical ly. However, appli­
cations that previously serialized their 
nowait process initializations by directing 
them all to the same CPU can no longer rely 
upon that method of serialization. 

Data Communications 
ATr6100 
Software is included in this release to sup· 
port asynchronous poinHo·poinl communi­
cations with the 6100 Communicat ions 
Subsystem. Included in ATP6100 is support 
for both Line Interface Unit I (lIU I) and 
the new LI U4 . 

EXCHANGE/ SNA 
The new EXCHANGE/ SNA is a logical and 
compatible extension to the EXCHANGE 
com munications subsystem for handling 
SNA RJE communications. Basically, it 
provides an emulation of an IBM 3777·3 
Multiple Logical Unit (MLU) Data Entry 
Subsystem, interfacing primari ly to IBM 
operating systems that support JES2 
and JES3. 
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EXPAND 
A new network-access interface now 
improves communications between EXPAND 
and "network service-provider processes" 
(c.g . • X25AM and FOX). The handling of 
X .2S Switched Virtual Circuits (SVCs) has 
been enhanced to include: 

• Auto-establishment and take-down with­
out operator intervention. 

• Auto-recovery from SVC loss. 

• SVC take-down and reestablishment dur­
ing inactive periods, without an interruption 
of the EXPAND "session. " 

Languages 
Transaction Application Language (TAL) 
TAL suppOrtS the increased code space now 
ava ilable with the GUARDIAN 90 operating 
system. A program produced by a single 
compi lation can have up to 16 code segments 
of up to 128K bytes each. No one procedure 
can exceed 64K bytes of code. 

conOL 
COBOL (T925 1 ) for on Stop'" systems is 
validated at the Federal Information Pro­
cessing Standards (FIPS) high level. It is 
upwardly compatible with the original 
COBOL compiler (T9201), which is now 
available only for NonStop 1+ systems. The 
original compiler is validated at the 
FI PS low-intermediate level. 

COBOL supports the increased code space 
now available with GUARDIAN 90. Code 
sp~ce available to an individual program 
umt can be as large as 128K bytes. A run 
unit can occupy up to 16 code segments, 
each containing 128K bytes. Data items 
greater than 32K bytes are permitted. 

COBOL programs can use the sequential 
block-buffering provided by ENSCRIBE. 

The CALL identifier and CA eEL identi­
fier statements have been implemented (e.g., 
"CALL program-! DIt where program-IO is a 
variable in working storage). 

Additional SORT/ MERGE fealUres ha\-c 
been implemented, including: 

• SOft / merge lo/ from a blocked tape. 

• Son/ merge lo/ from a multirecllapc file. 

• Sort/ merge to/ from multifile tapes. 

• Sort / merge by a user-specified collating 
sequence. 

fo'ORTRAN 
FORTRAN now allows users 10 define large 
COMMON blocks that reside in extended 
memory, providing 128M bytes of data stor­
age. FORTRAN programs can have up 1016 
code segments of up to 128K bytes each. 
(GUARDIAN 90 support is implicit.) 

HAS IC 
Most GUARDIAN 90 procedures can be 
called directly with the new CALL state­
ment. The standard CRO$SREF utility is used 
to produce cross-reference listings. The 
floating-point arithmetic package is auto· 
matically used if present on the system. 

Program Development Tools (POT) 
PDT products provide the necessary support 
for increased code and library space. 
INSPECT and DEBUG have been changed to 
allow references to all 16 code segments in 
user-code and user-library spaces. 

Notes on Installation, Conversion 
and Tuning , 

System managers and application program· 
mers at sites planning to migrate to the BOO 
Limited Customer Distribution should be 
aware of the following considerations. 
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InSlaliulion 

Procedure. Users running A20 (and later) 
software releases can upgrade using the 
standard INSTALL procedure. Special proce­
dures must be followed to upgrade from 
releases earlier than A20. Sec the Sofldoc for 
details. 

FOX Ring Upgrades. All nodes on an ex ist­
ing FOX ring must be upgraded to Ihe 
GUARDIAN 90 operating syslem simultane­
ously. If this is not possible for some rcason. 
then the nodes on the ring that cannot be 
upgraded mUSI be removed from the ring, 
and if communications with the other nodes 
are still required, they must be made via 
EXPAND. 

DP} File-colll'ers;oll Utilities. With DP2. the 
formal of structured riles has changed bUI 
the disc format has not. This feature allows 
greater flexibility for TMF. Conversion utili­
ties are provided. 

Con\ersion 

Programs that Modify the ENV Register. 
Any programs that ran on previous releases 
and modify the ENV register saved in Lhe 
stack marker do not run with GUARDIAN 90. 
The CODEY utility on the GlJARD2 DSV 
identifies any object files thai require modi­
fication and recompilation of their source 
because they address L-I direcLly. 

It does not idenLify those programs that 
modify the saved ENV register via indirect, 
relocatable, or absolute addressing, nor does 
it identify those programs that use PUSH. 
SETL CODE sequences to effect the modifica­
tion. CODEY has a complete "help" file, 
and unless restricted by the start-up mes­
sage, il searches all volumes and subvolumes 
for offending code. 

Changes (0 ERROR 70 and STAHTUP 
Messages. The manner in which COM tNT 
handles ERROR 70 and STARTUP messages 
has changed. Refer to the Softdoc for 
details. The old mechanism generates an 
eITor message, but still works and shouJd not 
negatively affect users. In a future release, 
the old mechanism will be removed. 

____________ ~BOO~SOft"~~ 

Product Dependencies. A table of product 
interdependencies can be found in the Soft­
doc Highlights file. TAL programs shouJd 
source in Ihe proper EXTDECS in order lO 
run successfu lly. If necessary (i.e., if the 
code was last compiled with A03 software), 
the proper EXTDECS should be retrieved 
from backup tape. 

COBOL Compiling Considerations. COBOL 
allows "compile-time binding," Basically, 
the compiler detects a CLiBOBJ file in its 
subvol and directs BINDER 10 resolve exter­
na l references from the CLiBOBJ fi le before 
forming the run-time library. AI run time the 
SVSTEMMON ITOR resolves a ll other ex ternal 
references from LIB and system code. 

Any old versions of modules in CLIBOBJ 
that violate GUARDI AN 90 address ing rules 
fo r extended code space prevent the success­
ful execution of run-time libraries that were 
with thai CLiBOBJ. Therefore, users should 
first recompile (if necessary), or remove 
CUBOBJ and then recompile a ll the COBOL 
run-time libraries affected. 

Privileged Processes that Access the ocr. 
Privileged processes that update the Dcr do 
not run under GUARDIAN 90. A conversion 
checklist is avai lable from your Tandem ana­
lyst for any user-written privileged processes. 
Privileged code should be carefully reviewed 
against this document. 

More eNFORM Reserved HiJrds. The list of 
ENFORM reserved words has grown , which 
may cause unpredictable results when 
ENFORM queries a re recompiled. Record 
names, file-name component s, and section 
names that are the same as any question­
mark (?) command keyword cause a syntax 
error message to be issued for the 1ASSIGN, 
1AITACH,1COMPtLE, 1EXECUTE, 10UT, 
1RUN, 1SHOW, and 1SOURCE commands. 
This affects on ly these commands. 

The only solut ion for this syntax error is 
to change the name of the record, file, or 
section. For records, opening another record 
as a copy of the conflicting one and then 
using the new name suffices. 
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FU/~ INFO OUIPUI MOdified. FUP I 'FO ou t­
put has been expanded. Any application 
that depends on the output formal should be 
rev iewed and changed if necessary. An 
interim version of FUP that runs under 
GUARDIAN 90 bUi produces its output in the 
old format is avai lable from Tandem ana­
lysts. This version will be supported for a 
limited t ime only, 10 permit customers 10 
make an orderly transit ion to the new, 
enhanced format. 

Capacily Planning and Tuning 

More Pages Locked. Tests have shown that 
the GUARDIAN 90 operat ing system locks 
between 20 and 35 pages more than A20 or 
A06 GUARDIAN (depending on the configu­
ration). (Note that as these tests did not 
include DP2. (hey do not reflect the addi­
tional pages locked when it is used.) 

X RAY PRES PACES and PRES R-ICESM. The 
fields PRES PAGES and PRES PAGESM are 
nO! recorded with this release of the XRAY 
performance measurement tool. They will be 
added in a future release . 

Other Sources of BOO Information 

More information about the products dis­
cussed in this article is avai lable elsewhere 
in this issue, in the appropri ate software 
manuals, and in the BOO Software Documen­
tation (Softdoc) included on the Site Update 
Tape (SUT). Users needi ng even more infor­
mation should comact their Tandem 
analYSIS. 
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he new optional disc pro­
cess for Tandem systems, 
DP2, comprises a complete 
redesign and reimplemen­
tation of the earl ier 
Tandem disc process, DP!. 
The design changes were 

made to i?'lprove performance, throughput, 
recoverabll.it~,. reliability, maintainabi lity, 
and exten~lbility. The new disc process sup­
ports all diSC controllers and discs for 
Tandem Nonstop 11, NonStop TXP, and 
NonStop EXT systems. 

DP2's job is to manage data and hardware 
within the disc subsystems. It implements 
E~SCRI8E file types, manages the space on 
diSCS, and manages the controllers and paths 
to the discs. 

The n:w disc process is accompan ied by 
appropnately modified and enhanced utili­
ties and File System. As the file structure 
has ~en c~an~ed for DP2, a new util ity is 
provided wllh II to convert ri les from DP! to 
DP2 format. 

Other architectura l changes have been 
~ade to integrate the Transaction Monitor­
IIlg F~cili.ty ~TMF) and DP2 subsystems, 
resultmg III mcreased performance in the 
TMF environment. 

DP2 handles takeover, crash recovery, and 
rollforwar~ consistently, in that it physically 
~acks out mcomplete requests. Checkpoint­
IIlg for DP2 is analogous 10 auditing to the 
backup process. While DPI checkpoints 
enough information to the backup to carry 
f0r.ward the interrupted updates, DP2 check­
POllllS enough information to the backup 
~rocess so that the backup can back out any 
l~lerrUpted multistep updates. This tech­
mque considerably reduces the number of 
messages sent to the backup process. 

DP2 Highlights 

Performance and Throughput 
Improvement 
DP2 allows multiple processes to control a 
disc volume. The new disc process consists 
of a group of single-threaded disc processes 
each having it s own data space. The numbe~ 
of disc processes in a group is specifiable at 
SYSGEN. (The derault is threc' thc max i-
mum is eight.) , 

DP2.aJlows for overlapping CPU set-up 
execullon and better utili zat ion of the disc 
cache in memory. A request to the disc that 
requires physical 110 can now overlap with 
a request that is satisfied by a cache hit. 
P~ra lle l executi~n a lso provides the opportu­
OIty for sequenclOg 1/ 0 requests for seek 
opt imization. 

A new att ribute for open fi les, BUF­
FERED, allows write requests for audited 
and nonaudi ted files to be buffered in the 
disc-process cache rather than being forced 
LO d isc at each request. At fi le creation the 
default is to buffer audited files and not to 
buffer nonaudited files . The BUFFERED 
option provides a substantial performance 
improvement for applications that write 
sequent ia ll y to a file and for those using 
audited files in general. 

The BUFFERED attribute can be altered/ 
examined via a SETMODE call. In addition, 
the BUFFERED attribute has a file-label 
default used to select buffered writes for a 
nonaudited file without requiring the addi­
tion of a SETMODE call to the applications 
that access Ihe file. 
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Other performance imprO\'cmem fealUres 
include the fo llowing: 

• The number and size of checkpoints per 
data-base update sequence have been 
reduced. 

• Auditing is more efficient and reduces the 
number of writes at commit. 

• Audit checkpoint records are optionally 
compressed, reducing CPU and mcmor) 
cycles, as well as audiHraii consumption. 

• At the disc-driver level, the next-queued 
EIO is issued when the completion of the lasl 
EIO is handled. This results in higher de\ icc 
ut ilization and fasler response times. 

• Independent read requests may be satis­
fied concurrently by parallel reads issued 
against a mirrored pair. (This is only possi­
ble if there is a path to each half of the mir­
rored pair through a separate controllcr.) 

• The selection of the disc drh'c (primary or 
mirror) used 10 satisfy a read request is no", 
based on minimum seek cost. This should 
minimize head movement and imprO\'c 
response times. (Rotational delay.., are not 
accounted for in this algorithm.) 

• When 3107 controllers arc used, DP2 can 
perform data transfers up to 30K bytes in 
length in a single disc-transfcr operation. 
This fac ility is available on ly to utilities sup­
plied by Tandem , such as BACKUP2, 
RESTORE2. FUP OUP, and TMFTAPE. ( Otc 
that when a logica l volume is COni rolled by 
a pa ir of disc controllers, both controllers 
must be 31 07s for DP2 to Support this 
feat ure.) 

Recoverabilit y [mprovement 
The struc tu ral integrity of nonauditcd key­
sequenced files and the volume directory is 
protec ted by a volume-resident "undo 
area, .. Befo re a multiblock updatc (e.g .• 
B.-tree block split or collapse) is begun, a 
hlghl ~ co~pacted encoding of the intended 
steps IS Written to the undo area in one 1 O. 

Q 

U ing this undo area, the disc Droctss backs 
OUt any multiblock operations that \\ere 
intcrrupted b) a double failure (e.g., railure 
of ,he prim3f) and backup disc.JlrOC<>s 
CPUs). This processing lakes platt automat_ 
ically '" hen the \'olume is brought up. 'Or 
structural integrity of audited files is IX'CI­
lectro by T\lF. 

When a DP2 disc-proctS.S group is idle (<r 

a sufficient pe:riod of time, a oc\\ algorithm 
is invoked to nush dirty cache buffers 
(including dirty File Control Blocks, or 
Fens) until the ncxt wtr request i reOO\td. 
This helps minimize the risk of data lo~ 
and l or the recovery cffort required should a 
system failure OCcur. In addition, ir the disc 
is st ill id Ie '" hen all dirty cacht buffers ha\c 
been flu<hed, DP2 (lCriodically upd.,,, the 
\'Olumc-Iabcllimestamp. This facilitates 
early detection of hard",are failures as Vorll 
a pro .... iding a more accurate lirw;tamp for 
usc in detecting inconsistent mirrors. 

Other Featu res and Changes 
The folio", ing features art also included in 
DP2: 

• The maximum record ize of the diml(X)' 
and key·sequenced files is limited only b) 
the: u~blc block sizc ("hcreas OP) limits lhe 
ma,imum record size to halfthc: usablc 
btock size). 

• The directory. the free-sp.1cr table. and 
nonpartitioned filh are dynamically e,Illend· 
able. The directory can 00" ha\e up 10 981 
extents. The maximum number of extents 
for a nonparlitiooed file is dynamically , 
aJterabtc and i limited by the space remain­
ing in the file label after (he ahemate-kc)· 
filc mformation is recorded. This al~s for 
over 900 e,'tcnLS in mo t insla.nctS. 

• Bloc.L. sizes are limited to pQ\\er-of-t .... o 
multiples of the sector size (S12, t024,l()tS, 
or -1096 bytes). For example, JK·byte i>J<l<U 
are nol upported by DP2. 

• I n<lex and data blocls in a DPHey· . 
sequenced filc must be the same ize, This 
rcstriction "'as introduced to simplify cac~ 
management for kcy-scquCfk,'td file;. 

I • ~ , 
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Finall y, (he following file atlributes have 
been added: 

• BUFFERED, as described above, controls 
the use of writc-through cache on a per-
OPE basis. A file-label default may also be 
set for each file . 

• ACCESSTYP£ specifies the type of access 
the user in lends to usc, allowing the disc 
process 10 optimize cache management 
approprialCly. ACCESSTYPE values include 
system-managed (lhe default), which allows 
lhe disc process to determine the best buf­
fering techniques; random-access, which 
PUIS the blocks on an LRU (Icasl recently 
used) list in the cache; sequelllial-access, 
which protecls Ihe disc process from fi lling 
up the cache with blocks that will not be 
used again; and direct-1I0, which allows 
exclusive or protected read-only openers to 
bypass the cache for unstructured accesses. 

• AUDlTCO,\1PRESS specifies for a particu­
lar file Ihal DP2 is to produce a representa­
tion of the change to Ihe record (rather Ihan 
an image of the entire record). II lhen pUIS 
lhe smaller of the change informalion or the 
record image in the audit record or check­
point message. 

Compatibility and Conversion 
Between OP2 and OPt 

The usc of DP2 should not require changes 
10 ex isting applications; however, several 
DP2 features (such as buffered cache, file 

,>\CCESSTYPE, and AUDITCOMPRESS) 
requ ire uscr aClion to enable and/ or tune 
them. This aClion is described in the 
ENSCRIBE Programming Manual. 

The volume label , the directory. and the 
internal structure of structured files on a 
DP2 volume are all different from those on a 
DPI volume. This requires thai a DP) vol­
ume be convened to the DP2 format. 
Programs that access structured and 
unstruct ured files in the ordinary ways 
should not encounter any incompalibilities 
due to DP2. On the other hand, programs 
that read structured files with unstructured 
access will find that the block structure has 
changed. 

The new BACKur2 and RESTORE2 utili­
ties support automatic conversions so that a 
backup tape from a DPt volume can be 
restored to a DP2 volume and vice versa. As 
RESTORE2 can read lapes created by 
BACKUP, it can be used to convert any file. 
The File Utilily Program (FUr) Dur com­
mand also performs the necessary conver­
sions, based on the source and destination 
volume Iypes. 

The File Conversion Program (FCP) is 
provided to conven multiple fi les and ll1ul~ 
tiple volumes in parallel. It was designed to 
conven volumes faster than BACKUP2 and 
RESTORE2 by making the conversions disc 
to disc. When Fe p is used , all fi les and vol­
umes must be on the local node. 

Fep COll vens to and from OPt and DP2, 
allowing a site to return to a DPt volume 
if necessary. The conversion takes about 
90 minutes for 240M bYles of dala. (The 
conversion may be slower if most of the files 
are key-sequenced. Also, this time does not 
include the lime to do a PUP REVIVE on the 
other half of the mirror.) The converted file 
may require more space than Ihe original as 
a result of the DP I block size being changed 
10 meel Ihe DP2 size rules (power-of-two 
multiples) and bit-map blocks being added 
(used for free-space allocation in structured 
files). 

Within a single node, a system can con~ 
tain both DPI and DP2 volumes, with cer­
tain reslrictions. All volumes configured for 
a controller must be of one type or the other. 
Also, if a volume is configured with a pri­
mary and a backup com roller, all volumes 
configured for bOlh comroliers must be of 
Ihe same disc-process type . 

All partitions of a file must be of the 
same disc-process type. If a file has alter­
nate keys, the primary file and the alternate­
key files muSI all be of the same disc-process 
type. Unstructured access to a struclUred 
DP2 file from another node Ihat is running 
an earlier (pre-BOO) version of Ihe File Sys­
lem is prohibited. 

TA"OEM S l STE M S R r VlfW 
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DP2 unstructured files arc transparently 
blocked with one of four valid DP2 block 
sizes (512, 1024, 2048, or 4096 bytes, the 
defauh). This transparent block size, known 
as BUFFERSIZE, is the transfer size used 
against an unstrllclUred file. 

While BUFFERSIZE does not change 
the maximum unstructured transfer 
(4096 bytes), multiple 1I0s may be per­
formed to sat isfy a user's request, depending 
on the BUFFERSIZE chosen. For example, if 
the BUFFERSIZE wcre 512 bytes, and a 
requcst were made to read 4096 bYles, at 
least eight transfers (each 512 bytes long) 
would be made. More than eight transfers 
would occur, in this instance, if the 
requested transfer did not start on a 
BUFFERSIZE boundary. 

DP2's performance with unstructured files 
is best when requested transfers begin on 
BUFFERSIZE boundaries and are integral 
multiples of the BUFFERSIZE. 

OP2 and TMF 
~ne of the design goals for DP2 \ \ as to pro­
Vide support for quick crash-open filc recov­
ery after a system crash. This ne" form of 
crash recovery. called aUlorollbad: is done 
"in place" and requires no file or ~udit 
dumps to be loaded, as is required by the 
roll forward process. 

Autorollback is initiated automatica lly as 
part ofTMF start-up processing. 0 tapes 
need be mounted; all data needed to per­
for":l autorollback is kept on disc. The gran­
ulanty of autorollback is an audited volume. 

TASDE\\ 
S'STI'tS 

T'1r on-line dump and rollfory"ard bolh 
run much faster on DP2 because the data 
transfer for DP2 is physical railler than logi. 
cal, as it is for DPI. Since autorollbad han. 
dies double CPU failure, on-line dump~ and 
roll forward should only be required for 
recO\'ery from media failure. 

OP2 implements a buffertd cache that 
obeys the write·ahead-audit protocol. Bcfcn 
writing a modified data bloclto disc, lhe 
cache manager makes sure that the audit 
re ords for the updalo, to thai block h<l\'e 
been written to the audit·file disc. DP2 gt'Il. 

crates physical audit records based on blod 
changes rather than generating logical audit 
records as OPI docs. This allo .... 5 DP2 
autorollback to recover the physical integrilY 
of files. \\hile DPI cannot feCmcr files 
crashed in the middle of block splils. 

OP2 implements a control· point mecha­
nism that limits the length of the audit trail 
to be prOte sed during the "redo" phase or 
autorollback. The control-point mechani~m 
enables aUlorollback to find, in each audit 
trail, a redo start point. such that the 
changes for all the redo audit records that 
precede the redo start point are guarantttd 
to be renected in the corresponding data·file 
blocks on disc at the time of the crash. 

BOO TMF software supports tither a OPI or 
DP2 configuration, but OOt a mixed configu· 
ration. When TMF is used, to make the tran· 
sition from DPI to DP2 (or \'ice \crsa), all 
volumes to be configured for TMF (including 
audit -trail volumes) must be comefled to 
the same type (OP I or OP2) and an INITIAL· 
IZE TMF must be used to purge all configu, 
ration and catalog information. 

I • ~ I 



When a DP2 system is configured for 
TMF, audit trails cannot be conrigured on 
volumes that are to contain audited riles. 
That is, volumes can contain either audited 
files or audit trails, but nOt both. This 
restriction was made to climinate possible 
deadlocks with the new write·ahead- audit 
protocol and to make the DP2 software more 
reliable. 

The OPt MonilOr Audit Trail contains 
only commit records. Within a DP2 con ngu­
ration, however, thc TMF command pro· 
cessor (n.'lFcor-.·1) allows users to direct 
data·audit records to a Mastcr Audit Trail, 
which conta ins both commit a nd data-audit 
records. By allowing all or most of the audit 
to be directed to lhe Ma ter Audit Trail, 
DP2 reduces lhe number of writes required 
for a transaction commi t , thereby increasing 
transaction throughpu l. 

A new TMFCOM ENABLE VOLUMES com­
mand has been added to a llow the manual 
initiation of the DP2 aUlOroliback process . 

Conclusion 
DP2 provides substantial performance. reli · 
ability. and flexibility improvcmcnts over the 
current disc process. Particularl y for TMF, 
performance and recovery speed are dramat· 
icall y improved, a llowing TMF to be used 
more effect ively, with much larger data 
bases and higher·pc:rformancc transact ion­
processing applicat ions than before. DP2 
also provides substantial performance 
improvements for applications that use bur· 
fered cache. 

Utilities such as BACKUP2, RESTORE2, 
and REVIVE are much faster with DP2 and 
3107 controllers . DP2 provides double fault 
tolerance by protecting the structural intes· 
rity of files. Finall y, DP2 provides compati­
bility in a network since it can coexist with 
DP t on a system or in a nct\\'ork. 

More detailed information can bc found 
in Lhe accompanying DP2 ankles, the Soft· 
doc, and the appropriate software manuals. 
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DP2's Efficient Use of Cache 

ith the BOO release. 
Disc Process I 
(DPI) has been 
enhanced lO use 
bu rfered cache 
memory for audited 
files. I n the new 

Disc Process 2 (DP2), the use and manage· 
ment of cache is even morc efficienl. Also, 
DP2 makes it easy to examine and change 
the configuration of cache La meet varying 
processing loads. 

This article briefly describes: 

• How DP I and DP2 use cache. 

• How DP2 cache can be configured. 
• How DP2 handles files. 
• How DP2 manages cache. 

• How DP2 cache-performance is reported. 

For more information on buffered cache and 
DP2 performance, see the accompanying 
art i~ le. "DP2 Performance," by Jim 
Ennght. 

How OPt and OP2 Use Cache 

Write-through and Buffered Cache 
By caching the most frequently used data so 
that it can be quickly accessed, a disc pro­
cess ~akes efficient usc of memory. \Vhen 
the diSC process uses buffered cache (as 
opposed to write-through cache), it uscs 
mem<;>ry ev~n more efficiently. 

USing wrue-through cache, a disc process 
stores ~Iocks of data in cache (where they 
are ~vailab~e to sati~fy read requests quickly) 
but. Immediately Wntes to disc data blocks in 
which any data has been changed by a write 
or update request. 

---------14 
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Using buffered cache, a disc process can 
leave the changed (or dirtied l

) data blocks in 
cache for a period of time. In this way, it 
may be able to schedule the physical write 
for a time when it is not processing user 
requests. By delaying the write to disc, it 
may also reduce the number of physical 
writes it has to perform, as se\'eral records in 
the same block may be changed before the 
write takes place. 

Versions of OPt released before the BOO 
software release use write-through cache 
only. BOO OPt has been enhanced 10 use buf­
fered cache [or audited files. The new DP2 
uses buffered cache for audited files , by 
default, and, in addition, it allows users to 
decide whether unaudited files are to use 
buffered cache or write-through cache, or to 
bypass cache entirelY. Table I summarizes 
these differences, 

UP I and 01)2 Cuche-block Sizes 
Disc-process cache is a pool of memory 
buffers containing images of disc blocks. 
OPt (BOO and earlier \'ersions) uses one large 
cache that contains data and inde:< blocks of 
various sizes as well as audit-trail informa­
lion. Valid DPI block sizes are 512, 1024, 
1536,2048,2560.3072. 3584, and 4006 
bytes. 

DP2 uses a separate buffer for each ~iz(of 
cache block and a separate area for audit 
blocks. It uses only four cache-bloc~ siz~: 
512 bytes (seclOrsize), 1024 (IK) b)tes, . 
2048 (2K) bYles, and 4096 (4K) byl" (ma<> 
mum transfer il.e). 
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Hashing \s. Binary-search Algorilhm 
DP1 uses a hash·code access to determine 
which blocks are in cache. orl uses a less 
effic ient binary search to determine this. 

Configuring Cache 
With OP1. users can specify cache size only 
al SYSGEN. To change cache sizc, they must 
perform a SYSGEN and cold load Ihe system. 
Also, the only tool available with DP1 for 
examining cache performance is lhe XRAY 
performance measurement 1001. 

When OP2 Cache Can Be Conrigured 
DP2 is much more versatile al cache configu­
ration and management. Users can specify 
the size of each of the four cache buffers at 
thesc limes: 

• When labelling the volume. with Ihe 
Peripheral Uti lilY Program (PUP) command 
LABEL. 

• When sclling up the SYSGEN configura­
tion fi le for system volumes, in the ALL­
PROCESSORS section with the keyword 
SYSTEM VOLUME. CACHE. SIZES. 

512.1024.1536. 512.1024. 
2048.4096 ~8. 2560. 3072. 

3584.4096 

Slng1e buller al" 101 cache Sapa"!i:l buller area JOI each size or 
caclle block and separate ere. !of 
allOt bIoco.s 

and audit 

N~ Perlormed Wlrtl PUP SETCACHE 

XRAY ,RAY 

LRU 
PUP ltSTCACH£ 
LRU 
Sequential 
0118(:11/0 
SYSIOOH'I'lanaged 

""" 
Spec,118d Wllh FUP SET. ALTER 
BUFFERED 

W"lethlough Wrn .. Vuough or bulle,ad 

Bul1arad 

WRtTETHRUCACHE 
CACHEPAGeS 

N~ 

One 10 eighl!delaull ~ 111100) 

SYSTEM IfOLUMLCACHLStZES 

Soectrred Wllh FUP SET. AlTER 
BUFFERSllE 

• While the system is running, with the new 
PUP SETCACHE and L1STCACHE com­
mands. (L1STCACHE is used to examine Ihe 
cache configuration first.) 

Any DP2 cache size nOI configured with 
SYSGEN or PUP LABEL defaults to 16 
blocks. 

A I)J'2 Conriguralion Example 
The command syntax allows the user to 
specify cache size as the number of bYles or 
as a multiple of 1024 bYles. where .5K repre­
sentS 512 (decimal) bYICS, I K represents 
1024 bytes, 2K represents 2048 bytes, and 
4K represents 4096 bytcs. 

To set cachc on volu me $DATA to 16 512-
byte cache blocks and 128 4096-bytc cache 
blocks, and leave thc number of I K-byte and 
2K-byte cache blocks the same, the user 
would use the fo llowing commands: 

PUP SETCACHE SDATA, .51< - 16.41< - 128 

or 

PUP SETCACIIE SDATA, 512 - 16,4096 - 128 
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Internal Cache.selling Algorithm 
While users can request a certain number of 
cache blocks. an internal cache-setting algo­
rithm ensures that there is enough cache for 
DP2 to do certain critical operations and 
that space is not wasted. There must always 
be room for at least t\\lO cache blocks for 
some complicated operations. such as block 
splits of a key-sequenced file_ 

Since each process in the group can be 
working on a different block-split operation, 
each disc process in a disc-process group 
must have a minimum of tWO blocks for 
each of the four block sizes for which it has 
buffers_ Thus, if there are three processes in 
the DP2 disc-process group, even if the user 
were to request only one cache bloc\'" for 
each of the four block sizes, the internal 
algorithm would calculate a minimum of six 
blocks in cache for each of the four block 
sizes. 

DP2 also allocates cache in multiple!' of 
pages, so all cache allocations are rounded 
up 10 the next whole page to 3\oid wasting 
memory_ A request for six Sl2-bytc blocks. 
for example, is rounded up to eight block 
or twO pages, Thc maximum number of 
cache buffers that can be allocated for OPl 
cache is 8191. 

How DP2 Ha ndles Files 

As mentioned earlicr, A06 DP t uses \\ rite­
t~roug~ cache .for both audited and unau­
dited files, while BOO OPt uses it for 
unaudited files only. Also. BOO OPt requires 
audite~ f~les to use buffered cache, "'hilc: in 
DP~ this IS the default setting of a user 
optlon_ 

For more information about BOO TI\1f 
~nd DP2, see the accompanying anicle. 

Improvements in TMF," by Tony 
Lemberger. 

\vhe~ Does DI)l " 'rite Burrei'td BIOtk! 
to DISC? 

< 

When DP2 u~at~ a rtrord in a buffotd_ 
cache block. 11 wailS for one oflhe r~ .. ' 
con~Jtlons to occur before writing lhe~ 
to diSC: 

• Any opener closes the file. 

~ A cont,rol point is processed. (For. 
mformallon about control-point pr(n(/ 
see Pong. 19 5.) . 

• The user requests a nush (Sml()(f ~). 

• No morebloclsart frttandthc bkxtil 
the least reetntly used. 

• The disc process is idle and cache~ 
cleaned. 

• The user changes the cache conligurm 
with the t'UP SETCACHE commaro. 

naud ited. Burrt'rtd FiIt'S and CPl r"rt 
If a di5c-proccs t3keo\"troccuru~ tlr 
resul! of a CPU f.ilul< and the fik hal "" 
opened ~ ith a sync depth of zero. or ifl 
,'OIume i. broughl down incornctly. aDoI 
the unnushed updates made to an UBaU­

diled. buffered file al< losl . Thr 'l'PI .... 
is returned a Jle" error code, Fffi\TAlOOS 
(122), w IIh the next opcnllion on WI fiI<, 

Ho" OP2 1annges Cache 
DPI managC:) cache bh:~ __ "'s on a Ieast­
"""ntll u<Cd (LRU) basi •. ,' • "",, 11I>k! 
enable DP2 to uo;e cache: mort dT«tJ\d}. 
The ac= mode"on bt dcfin«! tiIha "" 
grammaticall) by u~ ( .... ith a call 10 
SET\tODf:I or d<termin<d b) Ii'< ~'IC1D. 
ba..cd on I<luol u.<age. Th< """,.,., If 
d«cribcd be""' : 
• SequenllolocctSS mastS the same ca.1t 
buffer. I! ' useful for S<Quctllial-b31<b· 

, ' ' h'hdx dl11' 
pI'OCC\ 109 apphcallOll In.... )C . 

the buffer i DOt Ii~ellio bt """'" "'" , bm ll 
• Random QInSS usc< an LRU algOI11 [1!' 

\Clectina cache buff",· II ro5l1'" ~ 
quentll acces><d dl iJiod.. art ~ 
Thi i the same method used b) oPt. 

----- -- ~------~ 



• System-managed access determines 
whether to use sequential or random access 
based on actual rile usage. 

• Direct 110 access bypasses cache. 

How DP2 Cache Performance 
Is Reported 

There are two ways lO examine DP2 cache 
performance. The DISC and DISCOPEN com­
mands can be used with XRAVSCAN, just as 
they're used for DPI. Also, the new PUP 
USfCACHE command can be used. In gen­
eral, XRAY rcPOriS rates and L1STCACHE 
reports percentages, although some of the 
same statist ics arc reporled by both. 

New XRAY Counters 
New counters have been added to the XRAY 
DISCOPEN and DISC reporls to track disc­
cache usage. They were added for both DP I 
and DP2, but as DPl and DP2 manage cache 
differently, they use some of the counters 
differently. A complete description of the 
XRAY counters can be found in the XRAY 
User's Manual. 

Sample DISC Report 
A sample of the DISC report for a single DP2 
disc process and a controller appears in Fig­
ure 1. Four sets of cache counters are pro­
vided, one for each DP2 cache-block group. 
(For example, CHITO, or cache hit 0, is the 

Figur. , 

average number of cache hilS per second for 
the cache that contains 512-bytc blocks.) 
The counters represented inc lude: 
Counter 
name 

CHtTn RATE 

MISSn RATE 

CFlTn RATE 

ABFNn RATE 

CBKSn AllOC 

CBKSn 0 1 RTV 

MAX5n DIRTY 

Counter 

Number of cache hits per 
second 

Number of cache misses per 
second 

Number of cache faulls per 
second 

Number of audit-buffer forces 
per second 

TOlal number of cache blocks 
alloc81ed 

Average number or d irty cache 
blocks 
Maximum number of dirly 
cache blocks 

Some counter names end in a number 
(0-3) that indicates the block size of the 
cache-block group. This number is some­
times called the cache /D. The four cache IDs 
and the block sizes they represent are: 

Cache 10 

o 
1 
2 
3 

Block size 
or cache !troup 

512 
1024 
2048 
4096 

SSVSTEM LDEV. PlDO.7 eTC. UN'TO OP2 FEB508:3' ;OOF~ 130 

"'SC REO REO REO READ WRITE SEEK DISC READ WRITE SEEK 
BUSY OLEN OI.£NM RATE BUSY BUSY BUSY RATE RATE RATE RATE 

'.21% "'. '''' ." '.90% 1.59% .718% , . .,. I.., '.02 .... 
.YTE IBYTE CBYTE SWAP DPICB DPICB DPIAB DPIAB CHITO 
~ATE FlATE RATE RATE .NUSE MAX INUSE MAX RATE 

"'SSO CHTO AB'" CBKSO CBKSO MAX. CHin MISS' CFIT, ABfl CBKSI 
A'E RATE RATE ALLOC DIRTY .. RTY RAT RAT RATE RATE ALLOC 

.0'5 18.0- .... .roo 18.01 

co •• "A'" CHIl2 M'SS> CF1.2 ABF2 caKS2 CBKS2 MAX' 

"'RTY O,RT'( RATE RATE RATE RATE ALLOC DIRTY DIRTY . '" .32' , .. .... .. "" 
CH1T3 "'553 cro, ABf3 CBKSJ CBKS3 ""'" CP CPWRY FREE STAL 
RATE RATE RATE RATE All O'RTY RATE RATE RATE RATE 

"0 ... 16.Of .7181 , .... .030 

JU" F 1911 ~ .T"I\OI' M SYSTEMS RPVlrw 

Da/a-base Sal/ .... are 

Flgur.'. 

Sample oulPUi from the 
XRAY DISC report, 
generoted with the 
TABLE OFF command. 
Blank fields indicate a 
mlut> of zero. (The rtport 
has been edited /0 fit this 
space). 
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Figur. 2 

DATE: JAN 91964, 11:33 
CACHE STATISTICS: $DATA 
COUNTERS INITIALIZED :JAN 9 1964, 11:00 
ELAPSED TIME : 0" 
CACHE BLOCK SIZE : "2 102' ,... .... 
BLOCKS REOUESTED: .. .. .. .. 
BLOCKS ALLOCATED: .. .. " .. 
BLOCKS DIRTY: 0% 0% '" 0 .. 

CACHE READ HITS : .... '''' '" "" CACHE READ FAUcrS : 0% 0% 0% 0" 
CACHE READ MISSES : ,,% ,,% 93% .,,, 
CACHE WRITES: 26 .. "" '" .... 
CACHE WRITE HITS : 16"t. 0 •• 0 .. 0% 

CACHE CALLS : "58 "" . .., 6_ 
AUDIT FORCES: 0 0 0 0 

BYTES ALLOCATED TO CACHE: 300' WRITEs/CONTROL POINT 000 

Flgur. 2-

Somple QIIIPIll from Ihe 
PUP LlSTCACH£ 
command, gel/eraled to,';lh 
the STAT oplion. 

New PUP lISTCACHE Command 
The PUP LlSTCACHE command, with the 
STATISTICS option, shows more clearly some 
of the information reported by XRAY. A 
sample PUP LlSTCACHE report is shown in 
Figure 2. The GUARDIAN Operating System 
Utilities Reference Manual describes the 
report in detail. 

The CACHE WRITE HITS information 
reponed by the PUP LlSTCACHE command 
represents the percentage of time the block 
was found dirty in cache when a write was 
performed. This gives an indication of the 
number of writes saved by the use of buf­
fered cache. The XRAY CWHIT RATE 
(cache-write hit rate) in the DISCOPEN 
report gives the same information on a pcr­
file basis. 

Two useful TMF statistics in the LIST­
CACHE report are the number of audit 
forces and the number of writes per control 
point. AUDIT FORCES represents the number 
of times an audit trail had (0 be written to 
permit a data block to be writlen . A high 
value usually indicates insufficient cache 
memory. A similar statistic, ABFn RATE is . , 
m the XRAY DISC report. 

WRITES/ CONTROL POINT represents the 
number of writes forced by comrol·point 
processing. In a system that is properly 
tuned and nOI overloaded, this counter 
should be zero. 

Conclusion 
The use of buffered cache is an important 
part of bOlh BOO DP I and DP2. DP2 
improves on this basic enhancement by man· 
aging cache much more efficiently lhan DP!. 
DP2 also allows users to configure cache use 
for a particular application's needs. Finally, 
DP2 makes more information about cache 
ulilizalion available, aJlowing users 10 adjust 
the usc and size of cache to accommodate a 
variety of work loads. 

... ,.."... 
Pone. \l ichad. 19U, T\if AUloroilbad. A ~ RMfta) 
Feature. T",ndrm ~,t'mS Rn'j('W, vol. I. DO. I TaadanC .. 
puteR Inmrponlcd , 

A~_~llntfttj 

".. <lrWnal desi,n (or DP2 ..... as Cft'Ilcd by Andrei Barr and 
"nmoo PulZoIu . ".. author would lib tQ thlnl all 0( tilt DPl 
lk\clopers for hrlplI'I& him 10 undmtand OP2. ThInk' ahoII' 
to Did: 'ThomaJi Ind Jim TIIC for their hdp in prcparint 1M 
article. 

Ted Seh.c:'U., joined Tandem In Mit lt83. ... 1S I rn.moer d 
1/'11 F~ ProdUClrv,ly PfogrIJT\$ group and kI cu~tty ~ 
titdlnlcal klpporIlor DP2 by leachlng Bell clasMt Belin 
)ojnlng Tandem, Ted went nine yeatS as a ..... llIn •• ,.*'" 
PfOgfImlTllf. H. has an M.A In math 'rom IIIe lHInws'IYd 

"""" 
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J ~ ...... he design of Disc Process 2 
i!-l- 1_ , (DP2) has introduced scv· 
It--- eral changes in the struc· 
~. ture and processing of 
F--- key-sequenced files. This 
~ anicle explains some of the 

new features resulting from 
\hese changes. It is intended for the technical 
reader who is already familiar with the file 
.structures of Disc Process 1 (DPI). 

Differences Between DP I and DP2 
!The main differences between DPI and DP2 
key-sequenced files are outlined below: 

. DP2 blocks have a new header that can be 
used 10 distinguish a key-sequenced block 
from a relative or entry-sequenced block. 
While the block header for DPI is the 
same for all blocks. the DP2 header is dif­
ferent for each block type. II contains 
information identifying the type of block 
and its relative position in the file, and an 
imemal timestamp for the last update, 
called the Volume Sequence umber 
(VSN). The header varies in s ize depend­
ing on the type of structurcd block. 

l. OP2 data blocks have forward and back­
ward pointers, while OP) data blocks con­
tain only forward pointcrs. (The File 
System in the BOO release, however, uses 
only forward pointers.) 

DP2 Key-sequenced Files 

3. DP2 block pointers contain relat ive secLQr 
numbers (RSNs) that are 3 bytes long in 
place of the 4-bytc relati ve-by te add resses 
(RBA' ) used by DP I. 

4. DP2 data records can be larger than onc­
ha lf the block s ize. DP) requires that a 
block be able 10 contain at least two 
rccords. but DP2 uses a new block-split 
algorithm that makes it possible to relax 
this restriction . 

5. DP210cales free blocks by using bit maps 
rather than by chaining blocks in a "free 
list" as DP) does. DP2 can detect bit-map 
errors and correct them. while DPI can­
not repair the free-list chain when it 
breaks. 

6. To simplify space allocation within fi lcs. 
DP2 requires index and data blocks in the 
same file to be of the same size. wh ile 
DP) permits them to be of different sizes. 

7. There are no fo rward (horizontal) 
pointers in DP2 index blocks. These 
pointers are present in DP), but are never 
used by it or by the Fi le System. 

, 
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Consistency 
Consistency refers to the state of a data base 
after a failure. There are three kinds of con­
sistency: structural, file, and data-base. The 
DP2 design, together with the closely inte­
grated features provided by TMF, ensures all 
three . 

Structural Consistency 
Structural consistency applies to key­
sequenced files that can break during the 
addition or deletion of a record as the result 
of a block split or block collapse . A key­
sequenced fi le has structural consistency if 
the index pointers point to the correct blocks 
and if the forward and backward pointers in 
data blocks are consistent. If a failure 
occurs during a multiblock update, OP2 
undoes any partial changes that have been 
made. 

File Consistency 
If a file has only structural consistency, its 
internal pointers are always consistent, but 
updates to the data may be lost. File consis­
tency means that no updates are lost. 

Data-base Consistency 
File consistency and structural consistency 
may exist, but data-base consistency may be 
lacking because not all the file updates for a 
transaction are completed. A transaction 
can update multiple blocks in multiple files. 
TMf provides data-base consistency for 
audited fi les. 

Block Structure of Files 
OP t key-sequenced files consist of index and 
data blocks that are either in use or are on a 
free list. These blocks can be of different 
sizes, but they have the same block formal. 

OP2 key-sequenced files consist of index 
blocks, bit-map blocks, data blocks, and 
free blocks. The headers of the different 
blocks are illustrated in Figure 1. 

VSNs are internal timestamps used by DPl 
to help implement the write-ahead-audit 
protocol, autorollback recovery, and mUfor­
ward recovery used by the Transaction Mon· 
itoring Facility (TMF). OP2 also uses \'S~s 
when processing records in the "undo" area, 
an area used to ensure (he structural consis­
tency of unaudited OP2 key-sequenced files. 

Block Splits 
Block splits occur when the disc process tries 
to add a record to a block when there is nOI 
enough room. I n the most complex case, the 
insertion of a new data record can cause (he 
split of a data block, index blocks, and the 
root block. The OPt aJgorithm is imple­
mented so (hat splits are handled recursh'el)', 
starting al the data level. 

OPI splits data blocks and then splits 
index blocks when necessary. DP2, on the 
other hand, looks ahead to see if an index­
block split will be necessary and divides a 
complex split operation into a sequence of 
simpler split operations. 

OP I requires records in key-sequenced 
files to be less than one-half the size of the 
block so that the insertion of a record results 
in no more than t\ .. ·o data blocks after the 
record is inserted (via a block split). DP2 
relaxes this restriclion: insertion of a large 
record can result in three data blocks after 
the record is inserted. Within OP2, all oper­
ations on a key-sequenced file are classified 
as either simple or complex. 

Simple vs. Complex Spli t Opera tions 
Simple operations are reads or \\Tites on one 
disc block. Complex operations are wrile 
operations that modify twO or more blocks, 
such as block splits, block collapses, inser­
tions of the first record in an empty file, and 
deletions of the last remaining record in a 
file. 

TANDEM SVSTFMS REVIE'A. JL'''{ I'~ ' 
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"" ""-- DP2 kty-Mquene_ - 1NIe.o; and IfM block ei8t11 block 

0 , RSN RSN 

• - -, ..... ..... , --- --..... ..... 
" 
" """'- C_ 

,. /UTW;)!~ Numbef of _d$ 

" 
" "'" , ... .. 
" ,. No:·.IRSN 

" 
" 

_RSN 

A block split occurs when an allempt to 
insert Of update a record in a data or index 
block requires the block to be split into mul­
tiple blocks because the inserted/ updated 
record does nOI fil in the original block. A 
block collapse occurs when the last record of 
a data or index block is deleled, causi ng the 
blocl to be freed. The insertion 0/ the first 
record in an empty file causes the formalling 
of three blocks (bit map, index fOOl, and 
data block). The deletion oj the lost and only 
record causes (he resetting of the end-of-file 
(EOF) pointer and the number-or-levels 
fields in the file label. 

0P2 blt-mIP OPI Indel 

""" and dIollo bIoo:kt 

, ... ..-. --RSN ._-,.,. ----. .... -~ .... '" ..... -- ....... --- _ .... - """"" ........ _ .. 
"'""" 

Block-split Decomposition 
The DP2 block-splil algorithm breaks up a 
complex split operation into a number of 
simpler operations. In genera l, a DP2 split is 
implemented as a sequence of internal oper­
ations, each of which (I) creates only o ne 
new block (affects on ly one level) and 
(2) ensures that consistency is maintained 
after the operation is completed. The DP2 
split algorithm is more costly in di sc activity 
than the DPI recursive method only if the 
split of an index block occurs. The DP2 split 
algorithm, together with the recovery proce­
dures provided by the undo area, auditing, 
and check pointing, ensure that a file a lways 
has structural consistency. 

J l .. F l'IIi S ' T4NI)rM S~~TEMS 
R I' V I I' W 

Dala-base So!tv.'(J.fe 

Figure 1. 
The block headersjor 
DPI and DP2 key­
sequenced files. Thejirsr 
14 byres o/the DP2 block 
header are common to 
relative, entry-sequenred, 
and key-sequenredfiles. 
In Ihejirst byte of rhe 
header is an "eye 
catcher": a "gremer 
Ihan" symbol (». The 
relative seclor number 
(RSN) in the next 3 byres 
nllmbers all the blocks in 
afile. The "Flugs" word 
COIIlains information 
abolll the type of jife, 
type of block, and level of 
index. 
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FIgure 2-

The struclUre oj a /ile 
iJ40re a block split. 

FIgure 3. 

The s lructure oj the /ile 
in Figure 2 q{ter the split 
of block 82 into blocks 82 
and 84. 
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FIgure 2 

e, 

B3 

Flgur.3 

., 
-84-83 

DDta·block Split 

---, 
oata bIoc:k' 

-..... -

Figure 2 depicts the structure of a sample 
DP2 file, and Figure 3 shows the file's struc­
Lure after a block split. The steps involved in 
splitting the block are outlined bclow. 

If there is not enough room to insert 
record R into block B2, a new block, B4, 
must be created. Half of the records arc 
~oved from B2 to 84, and then record R is 
mserted into block 82. In this example, it is 
assumed that the record is inserted into 
block B2 rather than block B4 (depending on 
the primary key, however, the record could 
have been inserted into either). 

Before the split begins, it is necessary to 
verify that there is room in the parent index 
block for another record. If there is no 
room, one (or more) index-block splits must 
be done before proceeding. 

Free Blocks and Bit Maps 
The disc process finds a free block by scan­
ning the bit maps that are stored in the bit­
map blocks. DP2 auempts to find space for 
a new block "near" the block being split by 
beginning the bit-map search "near" thcold 
block. Each bit in the bit map represents one 
block in the file. If the bit is SCI, the block is 
in use. 

When the disc process finds a bit in the 
bit map that is not set, it reads the corre­
sponding block header, whose status infor­
mation indicates whether or not the block is 
indeed free. If the block is free, the disc pr0-

cess proceeds Wilh the block splil.lfthe 
block is not free, the disc process correctly 
setS the bit in the bit map and the search 
continues with the block indicated by the 
next free bit. 

This bit-map search replaces the linked 
list of free blocks used by OPt. If the linked 
list breaks. DPI cannot add new blocks to 
the file. If there are bits in the DP2 bit-map 
block that should be set but an: not, ho.· 
ever, DP2 is able to correct the situation ash 
is dctccted. 

The teps in plilting a Block 
The following step are invoh'cd in splitting 
block 82: 

I . Allocate block B4; move half of the 
records in B2 to 84. 

2. Update the back pointcr in B3 so that it 
points to B4 (instead of 82). 

3. Insert a pointer record in the parent indtl 
block, BI. 

4. Insert record R in B2. update thenumbcf 
of record in the header, and update tit 
forward pointer to point to B4 (rather 
than B3). 

Three·wlI) pi it . 
In DP2, a data block may havt to be ~plit 
into three blocks when a long ~.IS • 
inserted or updated and its posmon 15 !XlI 
the beginning or end of the block. For'''''' 
pie, assume that the block size is 512 b)t6 

TA/IIDP"-1 SYST, •• S " ,., Rf':\If:.",·ll 
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and a data block contains two records, R 1 
and Rl. each 200 bytes long. The inserted 
record R has a length of 400 bytes, and its 
point of insertion is between R I and R2. 
The three-way split is implemented as a 
sequence of two-way split operations, each 
of which preserves file consistency. The steps 
im'Oh'td are: 

1. Split the block into twO blocks, at lhe 
point a( which (he new record is to be 
inserted or in front of the record that is to 
be updated. 

2. Now the position of the inserted or 
updated record is al the beginning or end 
of (he block, so only a two-way split is 
needed 10 complete the operation. 

Ind,,·block Split 
An index-block split is similar to a data­
block split except thaI index blocks, unlike 
dala blocks, do not have horizontal 
pointers. Figure 4 shows the Structure of a 
file before an index-block split, and Figure 5 
show.s the structure of the file afterward. 

For record R to be inserted into B4, B4 
mUSI be split, requiring that a new index 
record be inserted into 82. Before B4 is 
split, 82 must also be split so that there is 
enoogh room to insert the new index record. 
To have enough room for the new index 
record, block 88 muSt be added and hair or 
(he records must be moved from B2 to B8. 

The following steps are involved in split­
ting block 82. 

I. ~lIoc3le block 88; move half the records 
In 82 to 88. (Because this is an index 
block, there is no back pointer.) 

2. Insert into the parent index block 8 I a . . ' , 
record pomung to 88. 

J. Truncate 82. (Change the number or 
records in the block.) 

4. Insert r~rd R in block 84, causing a 
block spilt, as described above. 

DP2 BlOCk-split Algorithm 
The undo area is a small, preallocated area 
~n a \'Olume t.hal.is reusable for every 
equest r:sulung In a multiblock update. The 

block:sPlu algorithm used by DP2 allows it 
to Wnte the undo area to ensure the consis­
t""Yhe .Ofunaudited, key-sequenced fi les and 
( directory. 

-

FIgure. 

., 

B2 

.-J 
B3 -

., 
85 - 88 

" 
~[ L .. ., 

2 ~ 
... - •• - .. 

Rgure 4. 

The SirllC'fllrt! of a file 
Iha/ has MO index lew!ls. 

Before a multiblock update to an unau­
dited, key-sequenced file or the directory, 
DP2 writes into the undo area the informa­
tion needed to undo the operation, in case 
the operat ion fails to complete. File consis­
tency exists only if the operation is write­
lhrough or audited; otherwise, only 
structural consistency exists, and some data 
may be lost. 

I l,. , E 
SYSTEMS 

Dalll·ba~e Software 

Olta blocks 

o.tablocks 

FIgure 5. 

The SirllCfllre oj the jill' 
in Figure 4 qfter fhe split 
oj index block 82 into 
blocks B2 and 88. 
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T.bl.l . 
Source and level of consistency for DP21i1es following (a) a takeover after the faIlure of Ihe prunary disc pro­
cess' CPU and (b) a recovery from a multiple-CPU failu~. 

(.jCOnl.slency IoII1;M,ng takttoYel.lter 
ta.lure 01 PfllTlllry dose PfOCn3' CPU 

Soure. <-, "'"~. ..... 
Audited tiles ~1o~_ DaHI·base 

---
..... , ... ... -

Unau6ted. buflered' lilesw,th sync depth ::> 0 

UlWIUdileO, butlefed' lites WlIl'I sync ciepth _ 0 

UllIIooited' Wlile-1l'I1'OUQh IiIes WIth sync deplh ::> 0 

Unaudited Wllte-ttuough' ~ Ides with sync depth • 0 

CheekI)OlnTIflII , .. UndOiI<eI .~ ... .---
Undo.rea Strucw.,1 UndO at .. SI'wcltAo 
"""-,., , ... Undo"N , .. 
Undo,r. ". Undo,rN ' .. 

it '\ 
to ensure tIt t 

'For un.aud<ted DI.ottered liles. un!1ushed updales may be Iosl II. CPU Ilirlure"_ IIledal'loss. tile ~1t1Or'l1ll retull'(l(l FEO,I,lAlOSS 
(122) II FEPATHDOWN (20I) is lelulned, the US8I" IS .espotIIobie Io! letrytng Tile"" opIlitoOn 

For unaudited files with a sync depth 
greater than zero, the information in the 
undo area is check pointed to the backup. 
(Setting the sync depth to zero is a way of 
turning off checkpoiming in unaud ited 
files.) When a takeover occurs, the backup 
disc process uses this information to undo 
incomplete muhiblock updates and restore 
structura l consistency. 

TMF also takes advamage of the DP2 
block-split algorithm when the primary disc 
process sends physical undo information to 
the audit disc process for audited files. The 
audit disc process writes this information to 
the aud iltrail for use by autorollback and 
roll forward recovery. 

The DP! audit trail contains only logical 
information, requiring a roll forward to 
recover from an incomplete multiblock 
update. The DP2 audit trail conta ins the 
physical undo information required to 
restore the st ructural consistency of a file; 
DP2 autorollback uses this physical infonna­
tion to restore the file_ 

Table I summarizes DP2 rile consistency 
after (a) a takeover resulting from a failure 
of the primary disc process' CPU and (b) a 
recovery from a mulliple-CPU failure. 

Conclusion 

DP2 has introduced changes in the structures 
and processing of key-sequenced files. The 
new key-sequenced block format, together 
with the block-split algorithm and the undo 
area , increase the reliability and functional­
ity of key-sequenced files. 
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he BOO software release 
_ introduces many changes 

in the Transact ion Moni­
__ loring FacililY (TMF). This 

article provides an over­
view of the mOSI sign ifi ­
cant oncs, including: 

I Aulorollback reco~'e'y. This mechanism 
brings a data base back [0 a consistenl Slate 
much more rapidly than the existing rollfor­
ward recovery mechanism (and wilhoUl 
operator imervcntion). Autorollback rceov­
ery is possible because TM F now guarantees 
!Ita! audit information needed to pc:rfonn 
recorery operalions resides on disc. 

I Disc Process 2 fDP2) Implemel1lotioll. 
~new, high-performance disc process is 
desIgned to streamline accesses to disc vol­
umes. The impact of TMF on disc-process 

has been reduced significanlly 
result of this implementation. 

I'i~~~;~'~:~~:~~~/~~ TMF now pro-iV much more flexibility in 
disc volumes. Selected volumes can 

,",,"'aned initially and others activated later. 
it is now possible to specify that a 

)uJ,,~ .. available for nonaudited pro. 
~;;'i:;~ unavailable for audited 

Improvements in TMF 

• Improved crash protection/or TMF. W ith 
the BOO release, even the 105s of the crus in 
which a disc·process pa ir resides does not 
generally resull in a TMF crash. 

• Restarlable TMF processes. The loss of the 
backou! or auditdump process no longer 
results in a TMF Shutdown, because now 
these processes are automatically restaned 
when necessary. 

This anicle provides information on all of 
the above. Refer to the TMF Sondoe for 
more details and for information on other 
changes to TMF software. 

Aulorollback Recovery 
Before the BOO release, there was only onc 
way of recovering a data base that had been 
contaminated as a result or a catastrophic 
railure: roll forward recovery. BOOTMF offers 
an additional method or recovery, autoroll ­
back. which is far more cfricient. Roll for­
ward recovery is now required only in the 
case of media failures thal actually destroy 
the data base. 
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Fig ..... 1. 

~ the BOO softYt'are 
release, 0 change to an 
audited jill' resulted in the 
da/a-bose change being 
It'ritren immediately to 
disc (write-rhrough­
coche). The audit that 
Yt'as generated as a resul, 
of this change was buj­
fered in Ihe memory of 
the disc process (audil 
buffer). 

Flgurt 2. 

Bt10re BOO, Ihe failure of 
a disc-proctss pair Wore 
Ihe end Qj a tranS(l('lion 
destroyed Ihe audit that 
It'as generated by the 
change 10 Ihe audited jill'. 
To restore data-bose 
consistency, the change 10 

/he do/a boSl' had to be 
backed out. Because the 
audit Yt'as lost as a result 
oj'rhejaifure, roI/jQrl\'ard 
rerm-ery It'OS required. 
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To understand why aUlorollback has been 
so long in coming, it is imponam to notc 
that Disc Process I (OPI) implemented a 
write-lhrough--cache algorithm until the BOO 
release. With this algorithm, every file 
change was immediately written to disc, 
and, when updates were made 10 TMF 
auditcd files, the disc process buffered Ihc 
before/after images of all changes made. 
(This audit information was written to disc 
during ENDTRANSACTION processing.) 

Figure 1 shows the contents of an audit 
buffer generaled by a change to an audited 
file. The original record in the data-base rile 
was AAA, and it was cbanged to BBB. As 
explained above, A06 OPt writes the change 
to the data-base file and buffers thc before 
and after images for the change. Thus, if the 
disc-process pair cOnlrolling the data volume 
fails before the transaction ends, data-base 
changes that have been made (as part of the 

uncompleted transaction) have 10 be backed 
out to restore t he logical consistency of the 
data base_ 

As shown in Figure 2, however, the audit 
information needed to back out the changes 
to the data base has been lost as a result of 
the railure or the disc-process pair_ Thus, 
there is no recourse but to reS10re a known 
good copy of the data base and audit trails 
(rrom dump tapes) and use rollfof'W'3.rd 10 
recover. 

If 311 the audit information needed to 
recover the data base were on disc, a fast 
recovery mechanism could be implemented 
thaI would make use of the existing data 
base. If the disc process could guarantee that 
all audit information generated while servic­
ing audited requeslS was indeed recorded on 
disc that audit information could be used 10 

redd completed transactions_ Uncommitted 
transactions, however, might or might nol 
have audit information recorded in the audit 
trail. 

If audit information were recorded on d& 
for these transactions, that data could be 
used to undo their effeclS in the (Vent of a 
failure. The only way to ensure that such 
information is available on disc in the event 
or a failure is to require that il be writt~n 10 

disc before any data-base update aSSOClat~ 
with it. Thc scheme that ensures that audit 
information is on disc before the associated 
data-base updates is referred to as a write­
ahead-audit protocol. 

The most straightforward way of imple­
menting a write-ahead-audit protocol IS to 
rorce a write to the audit trail berore t~ 
physical 110 to the data base is performed. 
However, the performance implications of 
an extra disc 1/ 0 for each write to the data 
base make this approach unworkable. 
Clearly. another solution must be ~ound. 

BOOTMF uses burfered cache 10 Implemenl 
a write-ahead-audit protocol. Unless data 
blocks are buffered, audit cannot be buf­
rered. Thus, when an application issues a . 
logical l i D, the data is not immediateIY .>Allt­
ten to disc. It is burfered in cache, and It 
remains there until after the audit informa­
Lion reaches disc. This approach to imple­
menting a write-ahead-audit protocol is 
attractive because it allows applications 10 
access updated blocks in cache. resulting in 
a savings in physical 110. 
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As a result of this change, a fast autoroll­
bad reoovcry mechanism can be imple­
l1Y!I1ted efficiently. Autorollback recovers the 
data base first by reading the audit trail for­
ward (reapplying completed . lran~~tions) 
and then by reading the audit trail In reverse 
(bading out data·base updates associated 
with uncompleted transactions). 

To perform an autorollback recovery, 
usen start up TMF after the crash, and then 
TMF'sTransaction Monitor Process (TMP) 
determines whether a recovery is nceded. 
The existing copy of the data base is used, 
and all necessary audiHraii files arc on disc. 
This alleviates the need for operators to 
mOUn! tapes. 

As explained above, autorollback reads 
the audiltrail forward to the end and reap­
plies all changes made to the data base. This 
is called the redo phase. Aftcr all changes 
ha\'e been reapplied, any data-base changes 
made by transactions that were uncommit­
ted at the time of the failure are backed out. 
This phase is called lhe /Indo phase. 

During the undo phase, autorollback 
readstheauditlrail in reverse, starling at 
th: end. This phase ends \\ hen all changes 
made by transactions that "ere active at the 
time of the failure have been backed out. At 
the end of the undo phase, the data base has 
hem restored to a logically consistcnt state, 
and applicalion processing can begin. For 
more information about autorollback recov­
ef)" '" Por\8, 1985. 

TMF is now capable of supporting either 
DP] \"Olumesor DP2 volumes. and TMF 
aUioroilback recovery is available for either 
OPt or Dpt1 However, the format of the 
audiltrails, the formal of many illlernal 
messages, and the behavior of TMF differs 
signirtcamly for DP] and DP2. Thus, there 
are ~any incompatibilities that preclude the 
audited operation of a OPI volume and a 
OP2 ~ume at the same time. Users mUSt 
s~~Y which disc process is to be used for 
audltmg when they initialize and configure 
lMF. 

DP2 Implementation 
DP2 is a new, high-performance disc process 
for Tandem systems. In this section some 
of the differences in using TMF with'DPt 
and DP2 are discussed and then the perfor­
mance improvements offered by DP2 are 
described. 

OP2 vs . OPI 
As explained above, there are a number of 
differences between DPI and DP2 audit 
trails, and TMF itself operates differently in 
a DP2 environment. 

Volumes Containing A udit 1Tails. Any DP2 
disc volume may hold unaud ited files . How­
ever, when a DP2 volume holds an audit 
trail, it may not hold audited files. This 
restriction stems from the very active role 
lhat DP2 plays in the movement of audit 
information to disc. In DP], the audit trai l is 
a simple unstructured file into which each 
of the auditing disc processes performs inde­
pendeOl writes. In DP2, the disc process that 
owns the audit trail acts as a collector, buf­
fering the contributions of many other audit­
ing di c processes. These contributions are 
then written into the audit trail together. A 
single DP2 process does not act both as a 
collector and an audit generator. 

A udit1Tails. DP] audit trails are different 
from DP2audil Lrails. With DP], TMF 
makes use of the Monitor and Disc Process 
Audit Trails. The Monitor Audit Trail is 
used to hold the commit and abort records 
for completed transactions. The Disc Pro­
cess Audit Trail holds the before and after 
images of changes made to aud ited files. 

DP2 makes use of the Master Audit Trail, 
which holds commit and aboT! records as 
well as the before and after images of 
audited changes. 

Performance Improvements 
DP2 is much faster than 01'1. This is espe­
cially true when the files being updated are 
TMF files. A number of changes have been 
made in checkpointing and auditing strate­
gies to achieve this. Also! the ~esign of ~P2 
allows it to perform phYSIcal diSC 110 whi le 
at the same time accessing data blocks 
in cache or performing olher 110 set-up 
operations. 
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Reduced Checkpoillfing. DPI incorporates 
(he idea rhar any operation in progress at 
the time of the failure of the primary disc 
process should be carried forward to com­
pletion by the backup disc process. This idea 
leads inevitably 10 incrementa l check­
point ing. That is, the primary disc pro-
cess informs its backup of every step of an 
operation that changes a file. As a result, 
a single READUPDATELOCK­
WR ITEUPDATEUNLOCK sequence generates 
five checkpoint messages. If a failure of the 
primary disc process occurs, the backup has 
a ll the information it needs to continue Ihe 
cu rreOl operations 10 completion. 

DP2 uses an enti rely different approach. 
All operaLions in progress at the lime of a 
fai lu re are backed OUI (including TMF trans­
act ions being processed by the primary disc 
process at the time of its fa ilure). Thus, the 
DP2 deSign a llows for deferred checkpoint­
ing. This reduces the IOtal number of check­
poinls needed per READUPDATELOCK­
WRITEUPDATEUNLOCK sequence to a max­
imum of two messages for an entire transac­
tion, regardless of the number of physical 
1I0s or lock requests made by the transac­
tion. The primary disc process needs only to 
inform the backup of the new transaction 
initially. If a failure of the primary disc 
process occurs , the backup takes over 
and knows which transactions arc active. 
Those lransactions can then be aborted and 
backed out. 

Because the primary disc process does not 
lell its backup about a ll the work il is per­
forming on audited fi les, DP2 spends much 
less lime checkpoim ing. O nly two check­
points per transaction are req ui red. Also, if 
the CPU in which the primary disc process is 
run ning fa ils, the backup d isc process has 
no idea what the primary was doing. 

The primary may ha\'e Processed SOfrlt 
requests on behalf of these transactions and 
promised 10 make some changes to the data 
base, "hich actually got no further than the 
primary's buffers. Those buffers are 00\\ 
gone, and consequently, the backup disc pro. 
cess cannot fulfill the failed primary's pr0m­

ises (because it doesn'l knov. whal they 
",cre). Thus. it aborts every aClire transac. 
lion that the primary had worked on. This 
ensures Ihat the failed primary's promises 
don't harm the data base. 

DP2's higher performance in an on-line 
environmenl has a cost. Recovering from 
CPU failures lakes a lillie longer. 

Ol'eriapped Disc and CPU Proctssing. DP2 
has been implemented in prOctss groups, 
which consist of from one to eight disc pro­
cesses. all of which work. together 10 control 
a singlc disc volume. While one di~c pr~ 
in the group is in the process of performing 
physical 10, another can be servicing a 
request by accessing data already in cache 01' 

performing other I/ O SCI-Up operations. This t 

is a major performance advantage. 
Also. DP2's use of buffered cache helps to 

reduce the total number of physical I ' o~ 
required. (For more detail on the ad .... antages 
of using buffered cache,.see the accompany· 
ing article, "DP2's Efficiem Use of Cache," 
by Ted Sch.ch,er.) 

Fewer A udir-trail IlOS. With OPI, whene\'l'f 
a transaction is in Phase One of abort or 
commit processing, each disc process thaI 
participated in the transaction must flush i1s 
audil to its associated Disc Process Audit 
Trail. This flush results in a physical I 0 to 
the audit-trail. The DPI disc process control· 
ling the audit-trai l volume has no kno\\ledgc 
of TMF audit trails. 

a 

Thus, the requeslS of each disc process art F 
treated by the audit-trail disc process simpl)' • 
as a write to an unsLructured file; there is 
one physical 110 for each disc process that 
participated in the transaction. In addition 
to the 110 performed to the Disc Process 
Audit Trail, a physical 110 is performed to 
the Monitor Audit Trail to write either the 
commit or abort record for every 
transaction. 

, 
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With DP2, (he disc proce~s controll ing the 
Master Audit Trail volume IS aware of the 
~udit.trail files. This doesn't change lhe 
requiremenl that each.disc proc~ss tha.t par­
ticipated in a transacl10n f.lush li S audi!o at 
Phase One abort or commn. However, 11 
00es rrean Ihatthe Master Audit Trail disc 
~ does not have to \\ rite each audil 
buffer 10 tbe audit trail immediately. 
Instead, it can buffer the audit from all t~e 
discprOCtSSeS, and then, when the commll 
or abon record is wrinen to the Master 
Audil Trail, append that record to the audit 
buffers already present in memory. Thus, all 
[he audit information can be written with 
one physical 110. 

With DP2, the use of the Master Audit 
Trail to hold both before and after images as 
welt as commit and abort records eliminates 
a great deal of extra physical 110 10 the 
Monilor Audit Trail performed by DP I. 
Also, as juSt explained, the knowledge pos­
sessed bytbe Master Audit Trail disc proces 
of the audit·trail files allows the buffering of 
audit information sem by many different 
disc proctSSeS and thus reduces dramatically 
the number of physical l/Os required . 

Disc Yolume Flexibilil y 
WithA~ ThIF, a disc volume was considered 
~ther "up" (or processing or "down." 
There was no intermediate state (e.g., that 
Jfbeing active for nonaudited processing 

,at the same time, unava ilable for 
i work). 

With BOO, a disc volume can be in one of 
, different states: 

Down (e.g., in response to an operator's 
. command). 

. accessible for nonaudited pro­
not for audited processing). 

TMF(Le., TMF has been staned 
audited .urk can be performed). 

~::~tO~T\~.~lF~Wit~~e~re required to suppon i state. The following 
this new flexibility. 

Selected Volumes Can Be Slarted 
New syntax has been added to the START 
TMF command, allowing the user lO specify 
the SCt of disc volumes that are to be started . 
Only those volumes specified wi ll be able to 
perform audited work . This means that users 
also need a mechanism Lhat allows them to 
stan separately any volumes that were om it­
led from the set of volu mes specified in the 
STARTTMF command. 

ENA BLE VOLUM ES Command 
To fu lfill the need described above, an 
ENABLE VOLUMES command has been 
added to TMFCOM. It allows users to add 
one or more volumes lO the set of volumes 
that are up for TMF. T he ENABLE VOLUMES 
command can be used to bring up any of the 
following : 

• Volumes that were not requested at START 
TMF. 

• Volumes whose CPUs were down at START 
TMF lime. 

• Volumes that went down while TMF was 
running. 

• Volumes that failed to start earlier. 

ENABLE VOLUMES initiates autorollback 
for any of the volumes Lhat may require 
recovery. If autorollback is incapable of 
recovering the volume, a message is dis­
played on the operator's console. The opera­
tor should then rectify the problem and issue 
another ENABLE VOLUMES command . 

The ENABLE VOLUMES command 
includes syntax to specify a se t of volumes 
that should be enabled. Th is syntax is ident i­
caIto that used with the STARTTMF com­
mand. Only the disc volu mes specified in 
[he command are enabled . 

Down Volume Reintegra1ion 
If a disc volume goes down while it is up for 
TMF, it is possible to reintegrate th~ volu'!le 
into TMF. This is accomplished by mcludmg 
the volume in the specified set of volumes 
for an ENABLE VOLUMES command . 

, , 
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When reintegrating such a volume, TMF 
examines aU of the transactions that have 
worked on the volume. It must guarantee 
that all of these transactions are ended or 
aborted before the volume is enabled (to 
ensure that transaction backout and auto­
rollback don't interfere with each other by 
working on the same records while undoing 
a transaction). 

If an ENABLE VOLUMES command is 
received, the disc process looks to see if any 
old transactions (left over from before it 
went down) are st ill around. I f any still 
exist, the disc process rejects the atlempt to 
bring the volume up for TMF, and an Error 2 
is returned. When these transactions are 
gone, the ENABLE VOLUMES command can 
be retried. 

Addi ng New Volumes 
With A06 TMF, the addition of new disc vol­
umes to the system requires an initialization 
of TMF. 

With BOO, TMF makes use of a new file 
called VOLlNFO. This file contains a list of 
all the volumes that are known to TMF. 
Should a new volume be added, the next 
STARTTMF command simply appends the 
new volume's name to the end of the 
VOLlNFO file . The volume will then be 
enabled for TMF processing. 

There are twO restrictions on volumes that 
are not present when TMF is started: 

• . First, the volume must have been present, 
with that name, at some execution of START 
TMF. (This puts the name into the VOLINFO 
file.) 

• Second, the volume's LDEV number must 
not change during a TMF session. For exam­
ple, if $DATA was LDEV 6 and it has to be 
changed to LDEV 7, TMF must be slOpped 
and then started again. 

TMF Crashes 

When a disc process does some work on 
behalf of a transaction, it must mark that 
transaction in such a way as to indicate that 
the transaction has audit information in the 
disc process' buffers. This marking is then 
used to determine which disc processes 
must flush their audit to end the transaction 
successfully. 

TMF records which disc processes have 
audit to flush within the two CPUs that con· 
tain the disc process, eliminating the need to 
tell other CPUs. 

When the two CPUs in which a disc· 
process pair are running fail (or, if only one 
was up, when it fails), TMF has no idea 
which transactions may have audit in the 
now I~st disc-process buffers. Before BOO, 
TMF simply gave up under these conditions, 
declaring a TMF crash. This forced the 
user to cold load the system and perform a 
roll forward. 

BOOTMF still doesn't know which transac· 
tions might be in uouble in this situation, 
but if it can abort every transaction that 
might possibly have audit in the lost disc 
process' buffers, it can still ensure the cor· 
rectness of the data base. 

When TMf wants to end a transaction, 
each of the disc processes nushes the audit 
for that transaction to disc. When the last 
un flushed process in a particular CPU has 
flushed its audit to disc, a message Ihatthe 
disc process' CPU has finished flushing is 
sent to the DEGINTRA SACfION CPU. 

If both CPUs in which a disc-process pair c 
is running are lost, n.'IF needs to know c 
whether any audit information has been 1051. c 
I f the last CPU to fail has sent to the BEGIN· l 

" TRANSACTION CPU the message that the 1 
disc process' CPU is flushed, no audit has 
been lost. If that message hasn't been 
received, the transaction must be abortrd 
because some audit may have been lost. 
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II shOOJd be noted that flushing occurs 
only .... hile the transaction .is ending (or 
aborting). Active transaclJons are not 
(lushed; therefore, when TMF delect~ that 
t1rserond CPU of a disc-process pair has 
failed, it marks every transa~tion on the 
slslem( .... ith vet)' few excepllons) as 
aborting. 

[wrption I: DPI'S Master Audit Trail 
Above, the flushing of the audit to disc and 
T\IF'S management of the knowledge of 
who nushed was discussed. For DP), the 
audit must be on disc before the disc is con­
sidered flushed. For DP2, however. any audit 
~ considered flushed when it has been sent 
to the DPl disc process that owns the Master 
Audit Trail. 

No .... , suppose thai some audit has been 
sent [0 this DP2 collector. Normally, the 
commit reoord must be written to the end of 
ibe audit buffer. It is then written to disc. If 
the DP2coUector's CPUs are lost, whelher 
the da[a audit or commit record reached the 
disc is unknown. 

This ""'" a problem. If the data audit 
~"3S lost, a commil record must not now be 
"TIllen.1f the commit record has arrived at 
:lise, lhe transaction must not now be 
aborted. The only way OUt of this dilemma 
~ to look into the audit trail. If the commit 
:eoord did reach the disc. the transaction 
:ommiutd.lrnot,thc transaction aborted. 

Since A06 ThIF has no mechanism ror 
landling this, when the dilemma arises, the 
~ release rorces a TMF crash, requiring a 
iold load and the execution of autorollback 
Xl every \'OIume. Hence, on DP2 systems rly, the ~ or the CPU pair containing the 
laster Audit Trail's disc process causes a 
.IF Crash. 

v ., E 

Exception 2: The TMI' 
The TI\.'IP maimains many coordination 
functions, such as audit-trail management 
and TMF process management. Because of 
this, the loss of the TMP pair's CPus causes 
a TMF crash. 

This restriction is not serious. The TMP 
pair is placed by SYSGEN into the same 
CPUs as the operator process. While it is 
possible to SYSGEN a system in which the 
operator process is not placed in the same 
pair of CPUs as SSYSTEM, this configura­
tion would make cold loading difficult and, 
hence, is not a serious option. This implies 
that Ihe TMP resides in the same pair of 
CPUs as $SYSTEM. 

Restartablc TMF Processes 
Before the BOO software release, the TMP was 
the custodian of three processes: backout, 
TMFTAPE, and catalog. The BOO release has 
added autorollback to this IiSL 

The A06 release had backout, TMFTAPE, 
and catalog functioning as process pairs. 
Backout and TMFTAPE would sometimes 
fail, which would cause TMF to attempt to 
stop TMF because the processes were gone. 

With BOO, backout, TMFTAPE. and auto­
rollback arc not process pairs, but single 
processes. If the TMP sends a request to one 
of them, and Lhey are gone, Ihe TMP merely 
restarts them. Both the primary and backup 
TMP keep the current incarnation of the pro­
cess open. I f the TM P finds it necessary to 
restart one of these processes, it issues a 
message stating that the process was 
restarted. 
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The catalog process is still implemented as 
a process pair for two reasons: 

• It maintains information across request s 
that would be losl in a restart. 

• There wasn't a problem with the catalog 
fai ling to survive. 

Should the cataJog process pair fail, the 
TMP stops TMF. To recover from this situa­
tion, the operator can simply issue a START 
TMF command. 

Conclusion 
Several additionaJ changes besides those 
mentioned in this article are also a part of 
BOO TMF. They relate to: 

• TMP slart-up and shutdown processing. 

• Audit-trail management. 

• New error messages. 

• New TMF control files. 

For details on the above changes, refer to the 
TMF Softdoc. 
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he performance of Disc 
Process 2 (DP2) is signifi· 
cantly beuer than that of 
the A06 version of Disc 
Process I (DPI). This 
article presents several 
types of DP2 performance 

data, as .. rell as a performance comparison 
of A06DPI and BOO DP2. It discusses some 
of~rev. features responsible for the per· 
formaoct imprm'etnems and then describes 
specinc performance resuJts from several 
tests.1 

Performance Features 
The following new features of the disc pro­
ress (listed in order of their impact) have 
irnprm'ed its performance dramatically: 
I. Writes can now be buffered in cache 

memory for both nonaudited and audited 
disc files, 

. Multiple disc processes can now service 
requests for a single volume. 

3. "Bulk-I /O" service is now used by 
Gu\ROIAN 90 operating system utilities 
for sequential and "bulk" processing. 

, , , 

DP2 Performance 

Another feature of the BOO re lease that has 
helped 10 significantly improve the perfor­
mance of the disc process is the enhanced 
implementation of the Transaction Monitor· 
ing Faci lilY (TMF) . 

Fina ll y. three other new featu res are 
indirectly related LO performance: 
I. Users can examine and configure disc 

cache size on- line . 
2. To ensure the integrity of the data resid­

ing on disc volumes, DP2 uses an " undo" 
area lO keep information about the struc­
tural changes to the volumes until the 
changes have been completed. 

3. Disc-volume labels are refreshed (rewrit­
ten) every 30 seconds when nOLhing has 
been written to or read from Lhose vol­
umes during thaL period. 

All of these new features are discussed 
below. 

Buffered Cache 
Buffered cache, the opposite of write­
through cache, provides a tremendous per~ 
formance advantage to applicat ions that 
write and update disc fi les. All appl ications 
audited by TMF can take advantage of th is 
new feature. 

s v 5 T EMS REVIPW 
33 



Dota-base Software 

J4 

For unaudited applicat ions, the applica­
tion itself must provide the data base with 
protect ion from failure and concurrency 
problems. To provide protection from pro­
cessor fai lures of the primary disc process, 
TMF employs a write-ahead-audit protocol. 
This protocol, implemented in the disc pro­
cess, ensures that the audit trail is written 
before the transaction commit is accepted. 
A06 TMF does not use the write-ahead-audit 
protocol. 

It is worth noting that, in most cases, TMF 
audit-trail writes are done serially to 
mi rrored-d isc drives; a write to one disc 
drive completes before the write 10 the mir­
ror is requested. Thjs is true even when the 
disc has been SYSGENed in a parallel or 
simultaneous write configuration. 

As would be expected, buffering can dra­
matically reduce the number of physical 
writes required to a disc volume. The most 
improvement is reaJized when an audited 
cache-resident file is buffered; that is, when 
sufficient cache is configured for the entire 
file to fit into the disc cache. Most data 
bases are tOO big to fit entirely in cache, 
however. The cache blocks are written 10 disc 
either in "spare time" (as decided by the 
disc process) or when the file is closed. 

There is another means by which buffered 
writes are sent 10 disc. At selected intervals 
(currently every five minutes) a search is 
made through the disc cache for cache blocks 
that have been updated but not writlen to 
disc (dirty blocks). When a dirty block is 
found, it is marked fo r writing to disc during 
the next interval. If a block is found to 
already have th is mark, it is immediately 
written to disc. 

The reason for this "mark, then write" 
mechanism is to prevent a wholesale cactw! 
write, which could have a serious impact on 
requests to the disc volume. If a large cache 
were configured, say 1M byte or 2M bYles, 
several hundred writes would be required 10 
flush OUI dirty blocks_ With this method 
most updates can be made in spare moments 
between the five-minute control-point peri· 
ods, and fewer writes are required at 
control-point time. 

Most of the physical 110 savings realized 
from buffering are essentially free of addi· 
tional system cost. Reads previously made 
from cache memory can now be followed by 
writes 10 the identical cache·memory loca· 
tions. This saves a physical disc 1/0 or two 1 
writes when mirrored discs are used. c , 
Mult iple Disc Processes il 
DP2 provides the capability of multiple (one d 
to eight) primary and backup disc processes 1 
per logical volume. It pennits some disc pro- n 
cesses in the disc-process group to prepare c 
requests to the disc while other requests to 
the disc or cache are being serviced by Other d 
disc processes. This allows higher utilizalion e 
of the disc hardware and disc cache. When b 
physical reading is required (for a cache·read p 
miss or a bulk 110 transfer) on a mirrored II 
volume, eachof the discs in the pajr can pro- ti 
vide a separate access path to files on the 
volume simultaneously. T , 
Bulk 1/ 0 n 

• 
d 

The new bulk-I / O features of DP2 allow 
Tandem uti lities to transfer up to 30K bytes 
wilh a single request to [he disc process. The It 
uti lities that use this feature are the File aI 
Conversion Utility (FCP), BACKUP2, 
RESTORE2, and the File Utility Program 
(FUP). TMF on-line dumps also use this 
interface to transfer up to 8K bytes of data 
per request. 

Ii 

• • 
~ 
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With bulk 10, the disc ~rc~ess by~as~s 
/Jeta S3\t time and avoid swamping 

:disc cache with blocks that will probably 
"" bereuse<i. ln addition, the 3107 disc 
""uoIIercan request up to 30K bytes of 
dala from the controller in a single request. 
ru-the 3106 controller, the disc driver 
issueS 5e\'eral4K requests from which the 
WK b)1eS are assembled and, upon comple­
:KIn. the disc process gives a single response 
lf 3QK bytes to (he application. 

DPI does not support the bulk-transfer 
:apabilityof the 3107 controller. In OPI, a 
;ingle reqlIe5110 the disc process can only 
",ide 4K bytes of data. 

rMF Cbanges 
)P2 provides a tremendous savings in the 
't5OUrteS required by TMF. Most of the sav­
ngs result from reduction in the number of 
lise liOS rtQuired 10 audit a transaction. 
Ibis and 0100" enhancements provide a 
uaj« rtduction in CPU busy fales per 
ransaction. 
Onechangt in TMF for DP2 is the use of 

b!\\Tlte-ahead-audit protocol mentioned 
:arlier. This method all""s ,he dala base '0 
)f restored after a crash by removing incom­
!ktt transactions (autorollback) rather than 
~ all transactions from a previous on­
ine dump (rollforward). 
A single audit trail can now provide full 

1lFfunctionality, whereas DPI requires two 
E'paratc TMF audit trails, one for commit 
eoords (the Moni,or Audit Trail) and 
fk>lher for before and after images of the 
.. a-base record, (,he Da,a Audi' Trail). In 
iI'SI cases a single mirrored physical", rile is 
n lhat is required to complcte the auditing 
1IlCtSS. 

L~it mils can also be compressed in 
~o funha- redUct the amount of data 
~ pointed and wrillen to the audit trail. 
.: OOItlPRSlion, only ,he changed por­:z/ of rttords are logged. A new con-
, mt enforced by DP2 is that a volume 
~ contain both audit trails and 
""ned flies. 

DP2 combines the construct ion of audit­
ing and checkpoint messages, which reduces 
the number and size of these messages 
significantly. 

Finally, TMF autorollback provides recov­
ery ~f an audited file by correcting inconsis­
tenCies rather than reconstructing the data 
base a transaction at a time. When TMF is 
restarted after a failure, an autorollback is 
automatically performed. 

Improved Data Integrity 
While data integrity may nOl be considered 
an attribute of performance, it does have a 
significant impact on it. First, DP2 main­
tains an undo area. Here, operations, which 
if not completed cou ld resuh in a structural 
problem for the volume, are written before 
the file/ directory is updated. If a failure 
occurs, the operation can be undone and 
attempted later. 

Another DP2 feature that ensures data 
integrity is the rewriting of disc volume 
labels every 30 seconds, if no other read or 
write requests have been issued to the disc 
within that time. 

On·line Configuration 
Users of DP2 can configure cache and exam­
ine cache performance data on-line, without 
using the XRAY performance measurement 
tool. DP2's cache-management scheme pro­
vides four fixed lengths for cache blocks. 
The available sizes are 512, 1024,2048, or 
4096 by,es per block. 

The number of blocks for each size can be 
configured through an interface in the 
Peripheral Utility Program (PUP). PUP 
reports current cache performance for lUn­
ing. This fixed-length management sc.heme, 
with separate buffers for each block SIze. 
prevents fragmentation of the cache. The 
user now must configure four separate 
caches per volume LO suit the application's 
distribution and access of file blocks. 
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F1gur. 1. 

CQrljigllrotion for the 
BACKUP} and 
RESTORE2 tests. 
A jour-processor 
NonStop TXP syStem 
used two 3107 disc 
controllers 10 tlCt:fiS a 
single mirfOf'(!(} disc 
drire configured f« 
porollel wriles. II used a 
TRIDENT tape dril't! and 
controller combinalion 10 
read and write Ihe 6250 
bpi lope during the teSts. 

F1gure 2 
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A large (25M-byte) file, h"'ing one thou­
sand page extents was \I. ritten from disc to 
tape and then restored from tape to disc. 
Measurements were made \\ ith XRAY to 
confirm the results obtained. This was done 
first with DPI, under the A06 version of the 
GUARDIAN operating system, with the 
BACKUP and RESTORE utilities. The same 
operation was then performed with DP2, 
under GUARDIAN 90, with BACKUP2 and 
RESTORE2, The TAPEBLOCKSIZE pararnet~ 
was used with BACKUP2, and 30K-byte 
blocks were wrinen to [ape by DP2. 

1: 
l 1 ISO . "" 

50 

o 

F1gure 2-

Data rotes/or A06 
BACKUPund RESTORE 
and BOO BACKUP2 and 
RESTORE2. A 25M-byte 
/if I' with one thollsond 
page extenlS was wril/en 
from disc to lope and Ihen 
restored from tupe 10 
disc. 

." 

Results of Performance Tesls 
The results of three major tests are reported 
here: 

I. A backup and restore operation. 
2_ A sequemial-copy operation. 

3. An on-line transact ion-processing (OLTP) 
appl ication. 

For each , the work load is described first; 
then a description of the configurat ion is 
prov ided ; and fina lly, the results of the test 
are given and observations are made. 

Identical hardware was used for both 
tests . Figure J shows that the configuration 
consisted of a four-processor onSlop TXP 
system using two 3 107 disc controllers to 
access a single mirrored disc dri\'c config­
ured for parallel writes. A TRIDENT lape 
drive and COni roller combination was used 
to read and wrile the 6250 bpi (bits-per­
inch) tape during the tests. 

In Figure 2, the per-second data rate for 
writing and reading back the tape are shown. 
The data rates relate directly 10 the amount 
of time taken to read and write the data 10 
the tape drive. See the accompanying article, 
" Improved Performance for BACKUP2 and 
RESTORE2." by Ani l Khatri, for more inror­
mation on BACKUP2 and RESTOREZ per­
formance. The bulk-I/O interface to DP2 
and the algorithm changes in BACKUP2 and 
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REST~El are responsible for most of 
dt performance impr~\'ement .. The 
bUI~-I ' O interface a\'O\ds copymg the data 
"""",,"I). 

While BACKUP can write only 540M bytes 
of dal3 10 tape in an hour, BACKUP2 can 
"lite 1041M bytes of data to tapc in the 
_amount of lime. Similarly, while 
RlSfOREcan wri!eonly 234M bytes or data 
[0 disc in an hour, RESTORE2 can write 
1033M b)·tes in that amount of time. 

Sequenti lll-copy Performance 
For ttr sequential-copy applicat ion, a lOOK­
b'!1e file was copied from one fi le to another 
~ tbe same disc. This was done from a pro­
gram wrilten in the Transaction Application 
language (TAL). A single extent was used 
for each liIe. All DP2 tests were run with 
buffered-cache writes . (As mentioned ear­
lier, buffered cache is not available in DPI.) 
Asingiemirrored volume contained both 
files. Sequential block-buffering was used 
roc reads. 

Results for three versions of this applica­
tion are presented here. The first version 
used unstructured access to the file. For this 
"mion, 2S blocks of 4K bytes were read and 
wrillen to move the lOOK bytes. For the twO 
versions using structured access, one thou­
sand 1000byte records were read and then 
wrillen 10 move the lOOK bytes. 

Identical hardware was used for all tests. 
Figure 3 shows that the configuration con­
sisled of a four-processor NonStop TXP 
system using two 3106 disc controllers to 
access a single mirrored disc drive config­
ured for parallel writes. 

The results in Figure 4 show the elapsed 
time 10 copy the file. In the unstruclUred 
test, OP2 showed a 10% improvement in 
elapsed time over DPI. This modest 
improvement can be explained by the fact 
that unstructured access is very efficient 
under OPI and, therefore, difficult to 
Improve upon. 

Figure 3 
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Flgure 3. 

Configuration for tile 
sequelllia!-ropy tests. 
A four-processor 
NonStop TXP system 
used t",03106 disc 
COlllroJlers to access a 
single mirrored disc dri~'e 
CQIIfl8ured for parallel 
""rites. 
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figure 4. 

The elapsed time required 
for A06 DP! and BOO 
DP210 copy 100 byles 
sequentially from one file 
10 allolher on tile same 
disc. 
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T.bl.l . 
The elapsed time required by A06 OP1 and BOO OP2 
10 copy 100 bytes sequentially from one trle to 
another on the same disc . 

Me DP' 800 DP2 
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2 

" 
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In the first st ructured test, DP2 reduced 
the elapsed lime by 75010, to a faclor of four. 
This is due primarily to the effect of buf­
fering and, to a lesser extent, to more effi­
c ient checkpointing. In the second 
structured test, in which TMF was used, a 
still more significant performance gain was 
observed: the elapsed time was reduced from 
43.5 seconds to 9.4 seconds. The increased 
efficiency of TMF auditing and checkpoint­
ing are the primary reason for this improve­
ment. Table I shows the full sequence of all 
the file operations. 

OLTP Performance with TMF 
The performance of a large retail-banking 
application that used the full ENCOMPASS 
line of application-development products 
was tested. A Screen COBOL (SCOBOL) 
requester was used by the Terminal Comrol 
Process (TCP), a part of the PATHWAY 
transaction-processing system. The TCP sem 
requests to a server written in COBOL. All 
TCPs and disc processes were run as fault­
tolerant processes. 

TAN 0 E! M 5YSTf':MS 

All application files were audited by TMF. 
The ENCORE stress-test generator was used 
to simulate 500 terminals submitting trans. 
actions. XRAY was used to collect perfor. 
mance data . ENCORE provided response 
time and transaction-rate dala. The 
ENFORM relational query language was used 
10 process the performance data. The trans­
action flow is oUllined below: 

Requcster now 

Accept 100 bYlcs. 
Perform "depending on" algorilhm. 
Begin TMF Iransaclion. 

Send 100 bYles 10 server'" ilh 
1000bYIe reply. 

Perform 10 move sl3leITlCnlS. 
Perform 10 ifstalemenls. 
Perform 10 simple calculaliOM. 

End T\fF Iransaclion. 
Display 100 bYles. 

Sen f r rio,", 

Read 100 bYIe5 from TCP. 
READ Account file (random, 001 cached). 
UPDATE Account file. 
WRITE Hislory file (sequential, cached). 
READ Teller file (random, cached). 
UPIl-\TE Teller file. 
READ Branch file (random, cactlrd). 
UPD.\TE Branch file. 
Send 1000byte reply 10 TCP. 

Data-base Description. The applicalion 
base in this test consisted of over 100M bytes 
of application data in four files. Three of 
the application data-base files were accessed 
randomly. The rourth file, an entry­
sequenced log, was written sequentially, 
one record for each transaction. All three 
structured-file types were used. Table 2 
contains a complete description of each 
applicalion file. 
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S)'SltJn Dt.scription. In Figure 5 is a dia· 
gramofaproceoor pair. The system con­
sisted of NonStop TX P processors with 
4M b)'te5of memory each. There were four 
31()s disc controllers per processor pair. Six­
teen disc drives were used to make eight 
mirrored mJumes. Five hundred simulated 
terminals .... m equally distributed on the 
S)'llem. 

Pn:Jctss Ulj'OUt. Processes "cre evenly dis­
tnbuted (0 balance the processing load. Two 
disC\'oIumeswert "primarioo" in each CPU. 
An equal number of TCPS per CPU "cre 
mol lfi,tfor DPI and three for DP2). The 
TCPcoo.figuration under DP2 was changed 
to IJOVide additional monory for the disc 
jIOCtSl<S. Approximalely 100 pages of 
m:mory Wert saved by reducing the number 
ofTCPs in a CPU. Three DP2 disc processes 
JI" ,llIu,", (the clefaull) "ere SYSGENcd. 
Simulators and servers Wefe evenly 
disJriblJled . 

Ptr/Olmanct Results. The: number of physi­
tall/Os required to complete a transaction 
i'" reduC<d by 12.3 wilh DP2. In the leSl, 
18.9 dISC I(OS were required by DPI, while 
~Y6.6dISCilO,.ere required by DP2 for 
t. ~transaction, This is a 65070 reduc· 
IIOIl In total disc li DS. 

~~nt or CPU time required per 
I0Il was neduced by 25'1. for DP2. 

l~ ~ test. ~ DP2 system required a 
IOCR:3Se In the tOlal amount of memory 

'" ibaJ • "'Iulred by the DPI system. (Disc 
~ "ne not included in this figure. J f 
dloc~~?e sizes. this increase 

roo. bemaddJllon to the: 10070 increase 
i'QIl1red by DP1.) 

~All disc caches were between 64K bytes 
iJ,i 128K bytes. For bOlh the DPI and DP2 

ems, adequate cache was provided. 
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FigureS. 
A processor pair. In the 
on.line IruflSiJ('lion· 
processing (OLTP) tesls, 
the system consisted Q/' 
NonStop TXP processor 
poirs with 4101 bytes oj 
memory in (!Q('h 
processor. There were 

jour 3 I 06 disc coni rollers 
per processor pair. 
Sixteen disc drives were 
used to make eight 
mirrored volumes. Five 
hundred simulated 
terminals were equally 
distributed on the system. 
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FJgure 6. 

Respollse rime I'S. 
throughpUT Jor Ihe OLTP 
app/icalion. The 1I.'S1 
application, pol/ern(!{/ on 
a large retail-banking 
applicofiOll, used Jhe 11111 
EA'COMPASS line of 
app{icariofl-del'efopment 
prodllCtS, indllding TMF. 
The datu base ronSiSIM 
0/ 0I'er 100M bytes in 
[ollr files; Ihne we" 
accessed randomly, and 
OfJe "'os wTil/en 
sequentially. All three 
stTllclllred-flle Iypes weN' 
used. Pro<l'SSi's were 
evenly dislributed to 
bal(lIIC'e Ihe /oa(I. 
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Response Time and Throughput. Response 
time and throughput improvements are pre­
sented in Figure 6. For applications with a 
parricuJarly suingent response-lime require­
ment, DP2 offers a significant reduction. In 
the test, at six transactions per second (for 
95% of the transactions processed), DP2 
provided a response time of .75 seconds, 
while, at the same transaction rate, DP! 
yielded a response time of 1.25 seconds. 

A more interesting and meaningful obser­
vation can be made by comparing the work 
load that the system can process at nearly 
iden tical response times. If a 1.25-second 
response lime is requ ired for 95010 of the 
transact ions, A06 DP! provides six transac­
tions per second (TPS). DP2 can deliver 
10.2 TPS at this same response t ime. This is 
a throughput improvement of approximately 
1.7 times, when identical hardware is used. 
The improvement is similar at higher and 
somewhat lower transaction rales and for 
average response times. 

, 
" 

110 Reductio" . The TMF audiHrail write 
activity has the most dramatic reduction of 
1I0s per transaction . Where DPI required 
nine audit writes to three files. DP2 required 
two writes to a single file (i.e., a single write 
to a mirrored disc). This 1/ 0 reduction, in 
combination with the buffering of the appli­
cation data base (three mirrored writes to 
cached files or six I/ 0s), accounts for the 
reduction in disc-busy time per transaction 
of 130 ms. DPI required 300 disc ms per 
transaction, DP2 only 170 ms. 

Decrease i" Messages. More efficient check· 
pointing of messages to the backup disc pro­
cess, audit disc process (ADP), and backup 
ADP is the reason for the balance of the 
CPU-busy reduction. The decrease in mes­
sage traffic had many other side effects as 
we ll. 

Since the dispatcher is responsible for lhe 
sending portion of an interproce s commu· 
nicalion (iPC), a reduction in dispatches per 
transaction was measured. The dispatches 
per transaction were reduced from 367 to 
222 (40070) as a direct result of the overall 
reduction of 3.710 I in message bytes per 
transaction. The disc process experienced 
a 5 to I reduction in message bytes per 
transaction. 

TANDEM SYSTfMS REVIEW 
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Table 3 shows the message traffic in more 
detail. DP2 sends one-hair as many messages 
as OPt; furthermore, the remaining mes­
sages are one-ha lf their previous size . 
(These figures were obta ined without audit 
compression. ) 

Imerrupts. Interrupts serve many purposes; 
one of these is the completion of interprocess 
communications via BUSRECEIVE inter­
rupts, and another is the processing of previ­
ously requested EXECUTE 110 (EIO) requests 
to and from the channel. Because of the 
reduction in disc 110 and message traffic, 
CPU lime spent processing interrupts has 
been reduced by 33OJo. A breakdown of 
CPU time for both DP2 and DP! appears in 
Figure 7. 

Surprises and Items of Imerest. System bal­
ancing and luning with DP2 was quick ly 
accomplished. Whereas with DPI, resource 
consumption depended upon many physical 
file characteristics, DP2 displayed a "generic 
access" pattern. Thus, in DP2, an access was 
simply an acce s. A scqueOlial or random 
write to a cached file required approxi­
mately equivalent re ources. This made disc­
process balancing with DP2 easy. 

Allure 1 
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Processes and files were carefull y bal­
anced in the tests for both OPt and DP2. 
Substantial ba lancing and rebalancing (such 
as tuning cache, moving processes to less 
busy Cpus, and moving files to less busy 
discs) is normally required to gain maxi­
mum system performance, but with DP2. 
only the in itial balancing after insta llation 
was necessary. 

The first DP2 benchmark showed all 
processor-busy limes within 2% of each 
other. The last benchmark, with a CPU-busy 
of 90070, showed a response time of less than 
three seconds for 95070 of the transactions, 
and the CPU-busy was still ba lanced 
within 3010, 

T. ble3. 

Number of messages and message bytes dispatched 
per transaction In the OLTP teslsc' --;;:=::::-:::::,-_ 

"~ ... Message byres 
per tr.naael1011 
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A breakdown qf CPU 
time for A 06 DPI and 
BOO DP1, os meosurtd in 
rhe OLTP applicotion 
tests. TMF wos used with 
bolh disc processes . 
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The throughput improvement of 1.7 times 
for equivalent response times measured for 
DP2 can be allribUied to several factors . As 
shown in Figure 6, at a three-second 
response time (for 95"10 of the transactions) 
the average cpu-busy for DP! was 75010. As 
a result of cache buffering and disc-process 
multithreading, DP2 operated in excess of 
90% utilization and still delivered the same 
response times . This ability LO operate at 
higher CPU Ulilizations, coupled with the 
decreased CPU requirements per transac­
tion, explains the improvements measured 
for DP2. 

In other tests, configured with three DP2 
disc processes on a single volume, two inter­
esting observations were made. When physi­
cal access was required to retrieve records 
from disc, three disc processes could swamp 
the disc with requests. When cache access 
was provided, these three disc processes 
could swamp the CPU with requests. It 
should also be noted that the number of 
requests per second that could be sat isfied 
unde.r these conditions improved from 1.3 to 
7.5 urnes, depending on the file type and 
access mode. 

Use of a single audit trail improves the 
perforf!1ance C!f m~st a~plications as long as 
~he enllfe audlt-trali wnte (per transaction) 
IS les.s .than 4K bytes . For applications 
requlI:mg more than 4K bytes of before and 
after Ima~es and commit records, audit 
compressIOn may shrink the audit buffer 
do~n to less than 4K bytes per transaction. 
ThiS 4~-byte boundary is important because 
t~e entire buffer is written for each transac­
tIon commi.t. When more than 4K bytes 
mu~t.be wrillen for each transaction, an 
auxlhary audit trail should be configured on 
a ~parate volume. (Also, auxiliary audit 
tral~s sho~ld be configured if parallel recov­
ery IS deslred_) 

Configuration Issues 
For most applications running on NonStop 
TXP processors, three DP2 disc processes 
fully utilize the disc and CPU hardware. 
When buffering is fully utilized, process­
balancing provides maximum system 
throughput. File balancing (in accordance 
with the new physical-access requirements of 
the system) is also required to improve 
throughput. 

As DP2 uses buffered cache for writes 
small 10 medium files that are randoml; 
accessed should now be entirely cached, and 
adequate cache should be configured for 
them. 

Also, in general, larger caches for all files 
should be provided. There are two reasons 
for this. One is that writes can now be 
"hits" in cache. In DP!, a physicaJ write 
would have been required to nush the write, 
no matter how large a cache was configured. 
The second reason is that the additional disc 
servers provide more access 10 the cache, 
making a larger cache more useful. The 
enhancements to PUP mentioned earlier 
make it easy to configure and measure larger 
caches on-line_ (Note that when cache is 
reconfigured, it is f1ushecL) 

Also, cache can be more effectively uti­
lized when multiple servers are used. The 
same is true of disc drives when more appli­
cation files are placed on a disc volume. 

Application Issues 
The performance of many different types of 
user application will improve with OP2. 
Applications that wiU benefit most are those 
that write sequentially and use buffered 
cache. Those that write randomly and use 
buffered cache will also benefit greatly. 

Any application audited by TMF will 
experience major performance improve· 
ments, and those requiring periodic backups 
or restorations will find the amount of time 
these require to be dramatically reduced. 
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The performance of read-intensive applica­
tions that use mirrored-disc and multi­
threaded requests will improve, si nce the 
mirror copy can now service a separate read 
request. 

Applications that will benefit least from 
DP2 are those that cannot usc any of its new 
features. If an application does not use TMF 
or buffered cache, has only one request out­
standing to a volume at one time, or is 
already Cpu-bound, its performance should 
not be significantly improved with DP2. 
Even for this type of application, however, 
reliability and recoverabi lity are improved 
with DP2. 

Future Work 
DP2 performance in many different modes 
of operation has been examined . As per­
formance studies cominue, more will be 
learned about DP2's operational characteris­
tics. Some of the performance areas being 
studied are: 

I. BOO DPl vs. DP2 performance. 

2. DP2 performance on OLTP applications 
that do not usc TM F. 

3. DP2 performance on the NonStop 0 
processor. 

4. The time and resources required by File 
System atoms (basic units of work). 

5. Audit-trail compress ion and its effects on 
CPU-busy, message Lraffic, and audit trail 
size . 

AJso, as more user applications convert 10 
DP2, more data about its performance will 
be available for anaJysis. 

Conclusion 

DP2 performance is substantially improved 
over that of A06 DPI, as a result of the sig­
nificant improvements in its implementa­
tion. Applications using DP2 with BOOTMF 
will realize tremendous savings in disc 1/0. 
Those applications using cached or sequen­
tial writes will see a dramatic reduction in 
disc 110. 

In the tests described in this article, less 
CPU time was required by DP2 for equal 
work. With DP2, fewer messages are sem, 
fewer CPU interrupts are generated, and 
more CPU time is available for use . Also, 
BACKUP2, RESTORE2, and FUP provide 
substantial performance gains. These 
improvements in performance are accompa­
nied by the improved reliability. recoverabil­
ilY, and functionality provided by OP2. 
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A Comparison of the BOO 
DPI and DP2 Disc Processes' 

Maximum extents per file: 
Nonparlilioned 

Partitioned 

Maximum number of 
partitions 

Number of directory extents 

Largest extent 

Legal block sizes 

Block-header length: 
Relative 

Entry-sequenced 
Key-sequenced data 
Key-sequenced index 

Bit-map blocks (Relative, 
key-sequenced) 

Maximum number of 
records in a block (N) 
for different record 
lengths! 

DPI 

16 

J 6 x the number of 
partitions 

16 

65535 pages, 
134,215,680 bytes 

512,1024,1536, 
2048, 2560, 3072, 
3584, 4096 bytes 

20 bytes 

Do not exisl 

N ~ (B-22)/ (R + 2) 
where 
B - block lengt h 
T = record length 

'A - ~.jlo:d "<rlion oflhisdoan appnn ill I"" £VSCRIBF. ~ ,\ "."wtI, Pan No. rut) AOO 

'IQ [)P2 . nloml and .l!ft'ftlIIO-kcyinfomwioll shart tilt _ .. ~. 

'The ma.imulII number oI'm,o"h in anyblcd.;' 51 L 

DP2 

Variable (more than 16)1 

16 x the number of 
partitions 

16 

978 

65535 pages 
(includes bit maps nO( 
available for data storage) 

512,1024,2048, 
4096 bytes 

) 20 bytes 

30 bytes 
24 bytes 

18 bytes 

N - B-X/ (R + 2) 
where 
X "" 22 for relative files 
X = 22 for cntry-scquenced 
X - 32 [or key-sequenced 



{)ma-base Soft .... are 

I)P I DI'2 

• Maximum record length 
(Block size - 4096): 
Relative ) 4072 bytes ) 4072 bytes 
Entry-sequenced 

Key-sequenced 2035 bytes 4062 bytes 

Unstructured 4096 bytes 4096 bytes 

Controllers 3106 3106 

3107 (treated li ke 3 107 (long transfers) 
3106) 

Key-sequenced index and May be different sizes Must be the same size 
data blocks 

Lock search Sequential search Hash-code access to 
on locks by file lock table 

Audited files and Audited files and Audit-trai l fi les 
audit-trail files aud it-trail files cannot exist on the 

may exist on the same volume as audited 
same volume riles 

Audit-trail file contents Monitor Audit Trai l: Master Aud it Trail: 
Commit and abort Commit , abort. and 
records data records 

Data Audit Trail: Optional Auxiliary 
Data records Audit Trails: 

Data records 

Cache Binary search Hash-code access 

Not dynamic Dynamic 

Write-through. Buffered option 
buffered for 
audited files 

L RU Access Mode LRU , sequential, 
direct 110 access 
modes 
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Increased Code Space 

Flgul1I1. 

A U8er proceu C01l8Ut8 
of ll8er-code 8pace fUe}. 
Uler-library 8pace ruL). 
and a u-ter-dala 
8egment fUDJ. 

Figure 1 

UHr-eode apac. (tICl 

'"""''''''' .-... """"'. 

.. 

andem NonStop U, 
NonStop TXP, and 
NonStop EXT systems 
were originally designed 
with a limit of 64K words 
of user code and 64 K 
words of user-library code 

(128K words in tolal) per process. With the 
BOO software release, this limit has increased 
to 2M bytes for user code and 2M bytes 
for user-library code (4M bytes lotal) per 
process. Also, system-code area has been 
expanded from 128K words to 
4.125M bytes. 

These enhancements were added in 
response to user requests for morc user-code 
space and in response to the need for 
system-code expansion. They are an integral 
pari of the GUARDIAN 90 operat ing system 
and are not an optional product. DEBUG, 
INSPECT, and BINDER are the only products 
in which the user interface has been changed 
as a result of the enhancemenls. 

User~ltnry 'PaC_(ULI lMM-'IUoti Mgmenl fUDI - """"-..... "" -- """"'. 

I 

Users having programs that require more 
code space will find creating and managing 
mu lLisegment program files very simple. File 
creation and maintenance for programs with 
single-segment files have nor changed. 
Multisegment program files are juSt an 
extension of single-segment program files. 

Uscr Code and Library Code 
A running process consists of compiled 
instructions in code space in memory that 
manipulate data contained within a separate 
data segment in memory. Code for a process 
consists of user-code space (Ue) and 
optional user-library space (UL). The user­
code space contains the code from the pro­
gram file and the user-library space contains 
the code from the library file specified in the 
RUN command. Figure 1 illustrates this. 

In the GUARDIAN 90 release. user-code 
space and user-library space have been 
increased from one 64K-word segment each 
(i.e., J 28K words of total code per process) 
(0 up to sixteen 64K-word segments each. 
That makes 2M bytes (I024K words) of 
user-code space and 2M bytes (I024K 
words) of user-library space, adding up to 
4M bytes (2048K words) of total code space 
per process. 

As illustrated in Figure 2, each of the J 6 
segments in the uscr-code space or user­
library space is defined by a space identifier 
or SPACEID. The SPACEID is made up of an 
identifier (UC for uscr code or UL for uscr 
library) and an octal index number in [he 
range of 0/00 to 070 17. For example, a 
SPACEID of UCA specifies segmelll 0104 in 
lhe uscr·code space. 

TANDEM S Y S TEM S REVIEW J U 'E I <I 
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Each segment within a code space consists 
of sections of compiled source code called 
code blocks. Some code blocks are Limited to 
32K words because of language resLricLions. 
Code blocks cannot cross segment bounda· 
ries. Each language defines code blocks and 
their sizes differenLly. 

COBOL defines a code block as the main 
program or a subprogram. The maximum 
size of a code block is now 64K words, mak· 
ing this the maximum size of a main pro­
gram or a subprogram. (A20 COBOL is 
limited to a code block of 32K words.) 

FORTRAN also defines a code block as a 
main program or subprogram, but it ca lls 
Ihemprogram ullirs. The maximum size of a 
FORTRAN code block is 32K words. 

TAL defines a code block as a procedure. 
The maximum size for a TAL code block is 
32K words. 

Consideralions for 
Multisegment Programs 
The code·space enhancements do not affect 
the designing of applicaLion programs. The 
only change is that now more code blocks 
can be added to a program fi le. General 
rules for creating multiscgment-program 
files are discussed be low; they apply to all 
languages. 

Code~block Location 
Multiple code blocks can res ide in the same 
segment as long as the tota l size is less Lhan 
64K words. 

Code blocks lhat are frequently called 
should reside within the same segment as the 
calling code block. Arranging code blocks 
with this in mind increases the performance 
of the application (see the section called 
"Performance l

'). 

Figure 2 

lJC.17 

U(" UL, ·n uc. ULO 

--., ""'""'" ..... "" "., ... "" 
II -"". ,. , -

P~rclati\'e Code Arrays 
Two guidelines exist for ha ndling P-relative 
code a rrays in multiscgment program files: 

• Each global P·relative code array is repli· 
caled in every segment Ihat conta ins a refer· 
ence 10 Ihe array by BINDER. Code~space 
requirements shouJd be eva luated with this 
in mind. 

• The passing of code arrays in a call 10 
another code block is not supported; how­
ever, ex isling single·segmenl programs will 
continue 10 work. 

Maximum Code~block Size 
As mentioned earli er, the maximum size for 
code blocks is different for each language. 
For FORTRAN and TAL, it is now 32K 
words; for COBOL it is 64K words. 

Code~block N (I mes 
The names of code blocks cannot be the 
same wi thin a mullisegmcnt program . 

JUN E 1 911 5 . TANDEM S Y S TEM S R E VIEW 

Operotillf( System 

"""'---

Figure 2. 

With muUuegment 
program files, the 
'Kser-code space and 
user-library .pace can 
contain up to 2M byte. 
of code (sixteen 
64K-word ctxk 
segments) each. 
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FIgure 3 

ENTRY POINT MAP BY NAME 

SP PEP BAS< LIMIT EN"'" ArrAS NAME 

" 002 (X"OOO 174627 00"03 '""""SA 
" 00' 00"100 174627 001403 ,"""SB 

" 002 00'000 174627 00''''' '"""'SC 
" 002 00'000 17-4$27 001403 '"""'SO 
" 002 00'000 174627 00''''' """'Sf 

" 002 00'000 174627 00''''' """,,,'F 

" 002 00'000 174627 001403 '"""SG " 002 00'000 174627 001403 ,""",SH 
07 002 00'000 174627 00''''' SFW;CSI 
06 002 00'000 174630 00''''' SP.o(;f" 
OS 002 00'000 174630 00''''' ,"",,'K 

" 002 00'000 174630 001403 """"" 03 002 00'000 174630 00"03 ,""",'M 
02 00' 00'000 "..., 001403 SPACESN 

" 002 00'000 174630 001403 ,,,,",,,SO 
00 002 00'000 114630 001403 """SP 
" 003 174630 114702 174640 M nsue 
t The . tgment number In oc tal 

BINDER - OBJECT Fi lE BIND - T9621BOO - f,?8JAN85) SYSTEM' TEST 
Object hie name Is $DISC1.COBTESTRUNUNfT 

FIgure 3. 

Number ot Binder error •• 0 
Number ot Srno;ter warnings _ 0 
Primary dela _ 16 words 
Secondary data. 11527 words 
COde area sile - l008pages _ _____ N umbtr OI pag .. requIred 
ResIdent code size _ 0 pages for the coo. 
Da .. elea sile _ 35 pages 
Numb&r of code aegmenrs _ 16segmenrs _ Number of aegmenll uHd 

COBOl - 19251800- (28 JAN 85) 
The objecl file ~ executable orwy on a NonS;op II ptOC8SSOI 
Numbef ot COBOL errors _ 0 
Numl;Jer of COBOL walniogs _ 0 
Number of source lineS read _ 27570 
MaKimUm symboIlabie Ill. _ 4<180 words 
Elapsed lime - et31:39 

The compiler listing 0/ 
this multisegment 
program file contains 
16 segments. Each 
subprogram, SPA CESB 
through SPACESP. 
resides in its own 
segment and consu,nes 
approxinwtely 63,895 

words (decimal) 0/ each 
segment. Su.bprogram 
SPACEA also contains 
the main code block, 
T/6UC, which 
consumes 63,938 words 
(decimall 0/ segment 
%17. 

CURR ENTSPACE Procedure 
A program can determine which segment h 
is currently executing by calling the new pro­
cedure CURRENTSPACE. This procedure 
relUrns the stack-marker environment (ENV) 
register and an ASCII version of the 
SPACEJD, 11le syntax for this procedure is: 

CALL CURRENTSPACE «ASCU-spact.id»; 

ASCII-space-id contains an ASCU string in 
the form of <space> . <,> where 
<space> equals ue, Ul, SC, or SL. and 
< w > equals the octal segment number in 
ASCII characters, < Spaceid > is an integer 
that contains the SPACEI 0 in ENV register 
formal, as fo llows: 

SPACEII> Di l (s) 

ENV.< 4> 
ENV. <7> 
E V.< ll:15> 

Library bif 
SYSlem-code bit 
SPACEID biu 

Example of a Mu llisegmenl I' rogrllm Fill' 
Figure 3 contains an example of a muhiseg­
ment program file created by COBOl. The 
source code for the main program and all 
subprograms were contained in one EDIT 
fi le. The command COBOL I <edit file>, 
OUT SS.6LP/ was used to compile the source 
and produce the compiler and BIDER 
repons. 

The tOlal size of the code area is 1008 
pages or 2,064M bYles, contained in 16 seg­
ments. In the BINDER repon t "Entry Point 
Map by Name," the segment in which a code 
block resides is shown under the heading 
"Sp," (The segment numbers listed are in 
oclaL) 

Calling Subprograms and 
System Procedures 
A nonprivileged process' vie"" of virtual 
memory is divided into six short-address 
spaces (SASs). The SASs contain (he current 
executing user-process envi ronment and part 
of the operating-system environmenl. They 
are defined in Figure 4. 
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Before a process can execute, the mini­
mum number of required pages of the uscr­
code segment and user-data segment are 
placed into the appropriate SAS. The user­
library segment is mapped only if the user 
has spcciried a library rile and it is refer­
enced (via an XCAl). SYSlem data and sys­
tem code are always mapped (because each 
is contained in a single segment). In 
GUAR DIAN 90, lhe system library has been 
expanded to two segments (SL.O and SL.I). 

When a compiler calls a code block Ihat 
resides wilhin the same segment, it generates 
an internal-procedure reference (PCAl) 
instruction. When it calls a code block out­
side of its segment, it generates an external­
procedure reference (XCAl) instruction. 

Executing an XCAl instruction for a code 
block that is not mapped takes longer than it 
docs for one Ihal is mapped. In order for 
code 10 execute, it must be mapped into one 
of the SASs, If a code block in Uc.o were to 
call a code block in a UC segment other than 
UC.o (e.g., UC. I through UC.17) or in an 
unmapped UL or Sl segment. the call would 
lake longer than it would if the called code 
block resided in UC.O or if the Ul or SL seg­
ment were mapped. 

For example , if the called code block 
resided in UC.I, UC.I would first have to be 
mapped into SAS 2 (overwriting Uc.o with 
UC.I). Once SAS 2 contained the code for 
UC.I, the called code would execute. On the 
return to UC.O, UC.O would have to be 
remapped into SAS 2. This would obviously 
require more lime lhan that required for 
ueo to call a code block that was already 
mapped in an SAS (e.g., UL, SC, or SL) . 

Performance 
The performance of an appl icat ion can be 
affected by the placement of code blocks 
within segments in a muhisegment program. 
The genera l rule for the placement of code 
blocks within segments is: code blocks that 
frequent ly call each other should be placed 
in the same segment. 

Operating 5:I'5/l.'m 

Flgllre" 

---, IUD) ----'SCI 

-....." ...­
'UU 

." '" '" '" 
""" 

To illustrate the effect of code-block 
placement on the performance of the 
NonStop II and NonStop TXP processors, 
two TAL programs with nearly identical code 
were written. The only difference between 
the two was that the main program and sub­
program of the first program (PROGA) were 
contained in the same segment (requiring 
only a peAL insLruction) and the main pro­
gram and subprogram of the second pro­
gram (PROGB) were placed in different 
segments (necessitating an XCAL 
instruction). 

Because PROGS'S subprogram resided in a 
different segment, segment switching in 
SAS 2 occurred between the main program 
and the subprogram (creating a longer exe­
cution time). Each program ran alone, pass­
ing no paramcters , and the called 
subprogram contained no code, causing an 
immediate rcturn 10 the main program. The 
code for the twO programs was as follows: 

Main loop 

Call T1ME(timel); 
"'hile count 
< 500000 do begin 

COUnl: - count+ ID; 
call subprog""lcsl; 
end; 

cal l T1ME(limc2); 

PRQC SU I3PROG "'TEST: 
begin cnd; 

." ." 
SAS' "'" 5 

Flgllre 4. 

For a nOJ/privileged 
proce ... viTtawl 
memory is divided into 
six shOTt·addrelJ8 
spaces (SASs). The user 
procelJ8 can ezecute 
code within Uc, UL, 
Sc. OT SL spaces. The 
code can manipu/6te 
data in the UD or SD 
segments. 
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Tabl.1. 
Execu( ion time for internal-procedure (PCAL) and 
external-procedure (XCAL) reference instructions for 
two TAL programs running under GUARDIAN 90. 

NonStop II processor 
ExecutIOn tme 

Microsecond. Cana 

" 

10.0 

The perfonnance timings for the execution 
of PROGA and PROGB on the NonStop IJ 
and NonStop TXP processors are reported 
in Table 1. 

The results for both processors show that 
an XCAl instruction takes longer to execute 
than a PCAl instruction. Programmers 
concerned about the increased execution 
time caused by inefficient code-block 
placement should use BINDER to place code 
blocks that frequently call each other within 
the same segment . 

Note that the NonStop TXP processor 
executes PCAl and XCAL instructions faster 
than the NonStop 0 processor. This is 
mainly because the NonStop TXP processor 
maps segments differently in the SASs. 
Further information about this can be found 
in the System Description Manual for 
NonStop systems. in the section entitled, 
"Addressing and Memory Access." 

Binding a Mullisegmenl 
Program File 
A muhisegment program file can be buill by 
default during compilation (the compiler 
invokes BINDER) or manually by using 
81 DER to place the code blocks within the 
appropriate segments. 

Below are a few considerations for using 
BIDER with muhisegmem program files: 

• The main code block (COBOL, TAL, or 
FORTRAN main program) does not havc to 
reside within the firs t segment. 

• An unused segment cannot reside between 
two used segments (e.g., segment 2 cannOt 
contain code blocks if segment 0 contains 
code blocks but segment I is empIY). 

• The STRIP command is not allowed on a 
multiscgmeflt program file. To produce a 
multisegmcnt program file without symbols, 
the compiler directive ?NOSYMBOLS must 
be used or the SYMBOLS OFF parametcr 
must be specified with the BINDER SET 
command. 

Figure 5 comains an example of a COBOL 
application in which the code blocks have 
been arranged to maximize performance. 
A diagram of the code-block arrangement is 
shown in Figure 6 . 

The program consis ts of six code block, 
one main program and five subprograms, 
SUBI through SUBS. SUB3 is called 
frequently from the main program, SUB2 
usually calls SUBS, and SUB) and SUB4 are 
called only when errors occur. Each of the 
six code blocks are 25K words in length . For 
maximum performance, MAIN and SUB3 
should reside in the same segment, SUB2 
should reside with SUBS , and SUB I and SUB4 
can reside anywhere. 
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Compatibility 
The usc of multisegment program files 
has introduced one incompatibility: 
NonStop 1+ programs using procedure 
labels Ihal were compiled with a pre-Eo8 
compiler do not execute on NonStop n, 
TXP, or EXT systems. 

Procedure labels are a third mechanism 
for calling external or internal code blocks. 
They are coded in this way: 

STACK @<code-block-name > ; 
CODE (Opel); 

The first line loads the code block's 
address into the register slack (register A). 
Register A now contains a procedure label. 
The second line makes a dynamic procedure 
call. Control is transferred to the code block 
specified in the register slack. 

When the above code is compiled on a 
pre-EOS onStap 1+ compiler, Ihe STACK 
operation of the code-block name does not 
generate a sct-codc-map (SCMP) instruction. 
Because of this, the procedure label is not in 
proper form and docs not execute correctly 
on a NonStop n, TXP, or EXT system. 
Both BOO and pre-BOO onStop n, TXP. or 
EXT compilers automatically generate 
SCMP instructions after the STACK 
code-block-name operation . 

The following NonStop 1+ programs 
compiled with a pre-EOB compiler are not 
transportable to BOO NonStop U, TXP, or 
EXT systems without being recompiled by a 
BOO/ E08 compiler: 

• FORTRAN and TAL programs containing 
external-procedure labels. 

• FORTRAN and TAL programs containing 
internal procedure labels used as a user 
library or programs combined with other 
program files to create a multisegment 
program file. 

• COBOL programs that have had the 
pre-BOO COBOL run-time library bound into 
the program file. 

FIIIU" 5 

Agurl" 

Allure S. 

Operati/lg S),SU?l1! 

BiNDER - OBJECT FtLE BIND - T9621600 _ 128JAN85} SYSTEM \TEST 

_______ Addlnll eode In legment 0 (delsun) 
OADO CODE • FROM MAIN 
OADD CODE' F. ,""'=::SU::"=--__ _ 
• ...00 SPACE - AdVlne .. to Mgmenl1 
OAOD CODE • FROM SUB2 

OADD OODE • F.""'_-'-SU'-"' ___ _ 
OADD SPACE _ Adune .. to .egmenl2 
OADDC'ODE • FROM SUBI 
OADD CODE • FAOI.4 SU84 
OBUILD PROGFILE 

ENTRY POiNT MAP BY NAME 

SP PEP BASE liMIT ENTRY ATmS NAME 

00 002 000006 060656 000570 " WJN 

" 002 000006 _56 000327 SUBI 

" OIl' 000006 """56 000327 SU" 
00 003 060656 141526 000327 SU83 
02 003 060656 14t526 000327 SU .. 

" "" 060656 141526 000327 SUB5 

UH<~ .~. (UC) 

MAIN 9JB2 SUBt --,.,'''". 
..iE.' 

LlCO UCt UC2 

Agure 8. 

The ADD SPACE.' 
command i. vIet/to 
jncn!ment the .egment 
number in which code 
blocks are odded. The 

BINDER "Entry Point 
Map by Name M report 
show. where each code 
block 'IOOS placecL 

A diogram of tlte 
example COBOL 
application in Figll.re 5. 
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The transportabi lity of multisegmenl 
program files is restricted in the following 
way: 

• Multisegment program and ljbrary fi les do 
not execute on a NonStop I+ system. They 
fail with an Illegal Program File Formal 
error message at run time . 

• The condition code (CC) and register 
pointer (RP) fields of the ENV register in the 
stack marker now comain the encoded space 
identifier. Therefore, any program that reads 
the CC or RP from the stack-marker ENV 
register must be recoded to obtain those 
values from the hardware ENV register. 
(Trap handlers, the only exception 1.0 this 
rule, are d iscussed in the fo llowing section .) 

T he BOO TAL compiler reports warning 
messages when it detects an equivalence to 
L(-I J (the location of the saved ENV register 
in the stack marker) in the declaration of 
variables. 

• TAL programs that comain private trap 
hand lers (by calling ARMTRAP) may have to 
be modified. Trap handlers also require that 
the stack be one word larger. 

Compatibility problems within existing 
program files can be detected with CODEY, a 
program supplied with the BOO release. 
CODEY is a utility that detects programs that 
inspect or modify the cc or RP bits in the 
stack-marker copy of the ENV. It searches 
program files for references to variables at 
L(- IJ and displays a warn ing if the CC or RP 
(bits 10- 15) arc used. Any warnings reported 
should be closely examined to determine if 
thc use of the ENV works correctly on a BOO 
system. 

CODEY has the option of checking one 
file, a subvolume, or all program files on a 
volume. It also has the ability of dumping 
selected code or displaying procedure names 
within a program file. CODEY can be run 
from $ <volume> .GUARD2.CODEY. Docu­
memalion is on S < volume> .GUARD2. 
CODEYDOC. The HELP command within 
CODEY is also useful. 

Trap Handlers 
DEBUG is the default trap handler for all 
processes; however, a program can run with 
a private trap handler by calling ARMTRAP, 
as follows: 

Call ARMTRAP «traphndlr-addr>, 
<t rapstack-addr> ); 

In multisegment program files. the call to 
ARMTRAP to initially arm a trap handler 
must be in the same segment as the trap 
handler code. A simple way to insu re this is 
to put the call to ARMTRAP in the 
trap-handler procedure: 

PRQC arm"'thc"'traphndlr; 
BEGtN 

ENTRY trap"'handler; !Emered here to initially 
set up the trap handler. 

CALL ARMTRAP(@trap"'handler, 

RETURN; 
Irnp"handt~: 

SLMIN( LASTADDR.r,77777) 
- 350): 

END: !ann"'the"'traphndlr 

Existing trap handlers work on BOO 
NonStop systems unchanged. A trap 
handler might need to be modified to run 
on these systems only if the programmer 
wants to access the SPACEID located at 
L(-SJ in the trap handler' s stack. The 
pseudomarker for the trap handler is 
allocated as follows: 

Trap-handler 
pscudomarker 

Li(-6( 
Li(-S( 

U(--4( 

U(-J( 
Li(-2) 
Li(-I) 

Li[O( 
Li(+ Il:LiI+81 

Allocation 

< trapstack-addr > 
Slack marker ENV with 
SPACtO al trap 
Mask register 
Sal the time or trap 
P at the time of trap 
Hardware ENV at the time or 
'niP 
L at the lime of lrap 
Registers (RO through R 7) 
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Because onc word was added to the 
pseudomarker in the trap handier's stack, 
the amount of space avai lable to the trap 
handler is reduced by one word. This has an 
impact only on those programs that allocate 
exactly the number of words necessary in the 
trap handler's stack. 

To insure that a trap handler can execute 
on all systems , the word referenced by 
<trapstack-addr> must not be used. 

DEBUG, INSPECT, and XRAY 

DEBUG, the operating-system debugging 
facility, has been enhanced to support 
muhisegment program files. 

INSPECf, the interactive symbolic 
debugger, also handles multisegment 
program files. A low-level-command syntax 
has been extended to allow references to 
specific segments within the user-code and 
user-library spaces. The high-level syntax is 
unchanged. References to code blocks are 
mapped to the correct user-code or 
user-library segment. 

The XRAY performance measurement tool 
has been changed to adapt procedure- or 
code-range measurement to user-code or 
user-library spaces. All existing key words 
except SYSTEM LIBRARY CODE MAP are 
accepted. New key words allow the 
measurement of a specific segment within 
the user-code or user-library spacc. 

SYSGE 

The system-code area now consists of up to 
32 segments in the system-library space and 
one segment in the s),stem-code space. 
GUARDIAN 90 has used only three segments 
of the possible 33 segmenLS: SC.O, SL.O, and 
SL.1. The number of segments required will 
change with each release of the operating 
system. 

In earlier versions of GUARDIAN, 
SYSGEN builds one work file for each of the 
two system-code spaces, SYSGEND and 
SYSGENE. SYSGEN (using BINDER) now 

builds as many work files as necessary to 
contain all of the system procedures. The 
single system-code segment (SC.O) is built in 
the work fi le SYSCODOO. The system-l ibrary 
segments (SL.O - SL.37) are built in the work 
files SYSLIBOO through SYSUB37. 

SYSGEN builds the system code and 
library segments from the object files named 
in TANDEM"SYSTEM .... L1BRARy .... FILES in 
the CON FAUX file. SYSGEN uses the order of 
the object files in this list to determine the 
segment to which the code should be added 
(SL.O or SL.I). The most frequently 
referenced procedures are in object files at 
the front of the list ; infrequently called 
procedures are at tile end of the lisl. With 
infrequently called procedures located in 
SL.I, the number of map switches is 
minimized since SL.O is usually mapped. 

Conclusio n 

The suPPOrt of multisegmel1l programs in 
the GUARDIA 90 operating system has 
greatly increased the maximum size of a 
program (10 4M bytes). This new capability 
obviates the need to break up large 
applications into several processes that must 
communicate via the Message System. 

The enhancement 10 the GUARDIAN 90 
operating system is a standard one, 
preserving the forward compatibility of 
existing applications. The implementation 
has minimal impact on the way users 
currently create and maintain applications, 
requiring liltle user education . 
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New GUARDIAN 90 
Timekeeping Facilities 

xtensive enhancemcms 
to the timekeeping 
services offered by the 
GUARDIAN 90 operating 
system have been added in 

-::~~_ ... L the BOO software release. I 
_ These features include: 

• Four-word, microsecond-resolution time­
stamps based on the Julian date (GMT). 

• CPU clock-rate averaging. 

• Clock-rate adjustment. 

• Automatic Daylight Savings Time (DST) 
adjustments. 

• Julian-date conversion routines. 

• A callable procedure to set system clocks. 

• An optionai lN file for the cold-load 
Command In terpreter. 

This artic le discusses these new timekeeping 
fea tures and the rationale behind them. 

'Tho ....... prODe$,.rimifli bI .. .." 011"" IlOO trioaot .... >101 ~ of r"" 
Ol;.\RDlAN 9O'i~ f.,ililios . ... rt..... arc _ d~ hrrt. S« 
I"" .,.,It. MNc-.o- Pn>ocsHimitw Fi:2lPIft. - b)- Sunil SIwma. ra.. ~ 
« r/lis r(;1l~"". 

Terminology 

Knowledge of (he following definitions is 
helpful for understanding the discussion: 

• Greenwich A1ean Time (GMT) is the pop­
ular name for UTe, Coordinated Universal 
Time. 

• Local Standard Time (LST) is GMT 
adjusted by the time-zone dirrerence for the 
local time zone. It does not include DST. 

• Local Civil Time (LeT) is Local Standard 
Time, including the adjustment for DST. 

• Daylight Savings Time (DST), also Sum­
mer Time, is a system that extends the 
amount of daylight in the evenings by 
advancing the civillimc. Usually. but not 
always, this is done periodically in hour 
increments. In the United States, DST begins 
at 2:00 A.M. on the lasl Sunday in April and 
ends at 3:00 A.~1. (DST) on the 1asl Sunday in 
October. The United States advances the 
time by one hour. 

• Julia" Day Number (JDN) is the integral 
number of days since B.C. 4713 January 1, 
according to the Julian proleptic calendar. 
The formal definit ion of the JD states that 
the JD starts at noon, Greenwich. For sim­
plicity, the GUARDIA 90 timekeeping fea­
tures assume the J D starts at midnight 
local or Greenwich lime, depending on the 
base of the timestamp. 

• Gregorian Calendar is the common civil 
calendar. It was instituted in 1582 by Pope 
Gregory XW. It has been adopted by and is 
in use as the civi l calendar of almost all 
countries . 
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In addition, the fo llowing terms are used 
in this article: 

• GUARDIAN 90 timekeeping facilities refers 
to one or all of the enhanced timekeeping 
features provided in the BOO release of 
GUARDIAN 90. It does not refer to a system 
process; there is no single GUARDIAN 90 
timekeeping process. 

• Three-word timestomp or old timestamp 
refers to the three-word timestamp used 
by the TIME and CONTI~'IE procedures. 
This timestamp representS the number of 
cemiseconds (.0 1 second) since 00:00 
December 31, 1974. 

• Julian timestamp, four-word timestamp, 
or new timestamp refers 10 the four-word, 
microsecond-resolution timestamp based on 
the Julian Dale that is provided by the new 
timekeeping facilities. Its va lue represems 
the number of microseconds since B.C. 4713 
January I, 12:00 (Julian proleptic calendar), 
GMT. 

Motivation for the New Facilities 

As Tandem's software products and cus­
lamer applications have become more 
sophisticated, and particularly as networks 
have been implemented across comincms 
and around the world, a need has evolved 
for more extensive timekeeping facilities 
than those offered by the GUARDIAN operat­
ing system. The GUARDIAN 90 timekeeping 
facilities are Tandem's response to this need. 

The new four-word timestamps, in addi­
tion 10 providing greater resolution, are eas­
ier to manipulate. Computations using the 
new timestamps are performed simply by 
treating the timestamps as decimal (quad) 
quantities. 

Applications can now enjoy the support 
of GMT, conversion to and from Local Civil 
Time or Local Standard Time, automatic 
correction of Local Civil Time for Daylight 
Savings Time adjustments, and the ability to 
determine the local time at other nodes. 

A procedure to set the syslem clock pro­
vides for the interrogation of an externa l 
clock and the setting of system time accord­
ingly. h may be used simply to avoid having 
an operator initia lize the system time after a 
cold load. Electronic clocks that monitor 
government broadcasts of standard time 
(WWV in Ihe United States) are available.! 
Use of such a clock provides a method for 
synchronizing the system clocks of geo­
graph ically distributed Tandem systems. 

Compatibility with Existing Facilities 

The GUARDIAN 90 time keeping raci lit ics are 
upward ly compatible; no changes are neces­
sary to ex isting programs that use earlier 
GUARDIAN timekeep ing faci lities. 

Support of Existing I' roccdurcs 
The existing GUARDtAN TIMESTAMP and 
CONTIME procedures (which use the old 
three-word timestamp) and the TIME proce­
dure will continue to be supported. 

Use of the RetK Inst ruclion 
The RCLK instruction returns a four-word 
integer, representing the number of micro­
seconds that have elapsed since 00:00 
December 31, 1974. Some programs attempt 
to usc this instruction for elapsed-time mea­
surements. This method is potentially unre­
liable, as processes arc subject 10 

interruption, unless they are privileged and 
running under interruption. Users are 
encouraged 10 employ the new BOO process­
timing facilities, specifically the procedure 
MYPROCESSTIME, instead of using RCLK . 

'\\;wv ~ d",c:oll IrIlen <II"'" u.s. f'MI'nmml "'1c><l1III1oa. ThiI_ioD 
~ 11"'1;""" botl. iu .. aCldio ............ in binary ~iOII. 
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Figure 1 

New J ULIANTrMESTAMP 
Procedure 

One of the key addit ions to the timekeeping 
fac ilities is the JULJANTH\lI ESTA~IIP proce­
dure. It returns a four-word, mic rosecond­
resolution timestamp based on the Julian 
dale (GMT). The external declaration for 
Ihis procedure is defined in Figure I. 

FIXED PROC JUUANTIMESTAMP (TYPE. TUID) EXTENSIBLE, CALLABLE; 
tNT TYPE; 
INT .TUID; 
EXTERNAL; 

FIXED PROe COMPUTETIMESTAMP (OATE"N"'nME. ERRORMASK) EXTENSIBLE: 
INT .DATE"N"TlME; 
INT .ERRORMASK: ! Optlona!. Returned 
EXTERNAL; 

Figure 1. 

The external declarations 
for Ihe nek' pt'(K'e(lures 
JULIANTIM/;-STAMP 
and CO,\I/PUTETIME. 
STAMP. 

TYPE is an optiona l parameter; if sup­
plied, it indicates which timestamp the ca ller 
is requesting: 

Tn)(' Ju lian limcslamp relurned 

o Current GMT (defauh) 
I SYSlem load GMT 
2 SYSGEN GMT 

TUIO is also an opt ional pa rameter; if it 
is suppli ed, a " ti me-update 10" is ret urned 
in TUIO. The 10 can be used with the proce­
dure SETSYSTEMCLOCK, desc ri bed later. 
The time-update ID is used iIHerna ll y for 
consistency checking; it has no ex terna l use. 
(The timestamp base conversion prov ided by 
the new timekeeping faci lities is desc ri bed 
later.) 

C lock Adjustments 

The new timekeep ing systems differ signifi­
cantly from previous GUARDIAN systems in 
how clocks are SCt a nd synchronized, how 
the user obtains and interprets timestamps, 
and how processes can obtain clock­
adj ustmem informat ion. 

Clock Selti ng 
A20 GUARDIAN provides on ly one (nonprivi­
leged) method fo r sclling system clocks: lhe 
Command Interpreter (CI) command SET· 
TIME. GUARDIAN 90 t imekeeping facilities 
include a ca llable procedure, SETSYSTEM. 
CLOCK. Also, the SETTIME command has 
been enhanced to a llow an additiona l field 
with which the uscr can specify the lime 
base, GMT or LCT. The SETSYSTEMCLOCK 
procedure setS the system clock only if called 
by a process ru nning under the SUPER group 
10. Simi larly, the SElTIME command can be 
executed on ly by SUPER group users. 

Clock A\rcraging 
A20 GUARDIAN systems synchronize the 
system clock in Ihe CPUs within a system by 
making forward adjustmel1ls of (he slower 
clocks. This has the effect of having (he sys­
tem time fo llow the fastest clock in the sys­
(em. Since one expects a normal distribution 
of clock rales around the nominal one 
expects this met hod 10 result in fa~t-running 
system c1ocks.s 

In the GUARDIAN 90 ti mekeeping systems, 
the clocks of the various CPUs in a given 
sys tem arc averaged . T he resull should be 
system-clock rates much closer 10 nomina l 
espec ia ll y in systems with a large number ~f 
CPUs. 

Clock-ra le Adj ustment 
T he new timekeeping systems provide a user­
cal lable procedure, SETSYSTEMCLOCK to 
set and/ or adjust the system clocks. If t'he 
system time is SCt, a SEITIME message is 
sent to System processe and those user pro­
cesses Ihat .have requested "new" system 
messages via MO ITORNEW. These pro­
ces~s can then respond appropriately 10 the 
scll mg of the clock. 
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If the requested time change is small, i.e., 
less than two minutes, the timekeeping 
facilities may decide to temporarily adjust 
the clock rates to ach ieve the same result . 
Adjustment of clock rates is transpare11l to 
all processes. 

Users who have an external clock will find 
this feature useful. A process can poll the 
external clock at regular intervals (every 
hour, for example), and ca ll SETSYSTEM­
CLOCK to synchronize the system clocks 
with the external clock. Presumably, the 
clocks will differ very lillie, and the new 
timekeeping facilities wi ll adjust the system 
clocks rather than reset them, 

Daylight Savings Time Adjustmcnt 
A20GlJARDIAN timekeeping systems requi re 
lhe system operator 10 set the system clock. 
Most sites SCI their clocks to the Local Civ il 
Time, and when a Daylight Savings Time 
transition occurs, it is necessary for someone 
to remember to usc SETTI~IE and reset the 
system clocks. 

With the GUARDIAN 90 timekeeping facil­
ities . the system can be configured to auto­
matically apply the DST correction . by using 
either the standard u.s. 1966 rules or a table 
of arbitrary DST transitions defined by the 
user. 

The Local Civil Time, which includes any 
OST adjustments in effect, can be retrieved 
via the CONVERTTIMESTAMP procedure. 
(The results of an RCLK instruction executed 
in Ihe vicinity of a DST change arc unpre­
dictable, however. RCLK's result is adjusted 
for the DST transition by the SYSTEM 
Jl.10NITOR soon after the DST change. It is 
not possible to guarantee exact correspon­
dence 10 the microsecond.) 

SEITIME Messagc Formal 
Five words have been added to the SETTIME 
(message type -10) system message to allow 
processes to determine Ihe magnitude of and 
reason for a time change. The words added 
are: 

<s}'Smsg > 121 FOR 4 - signed change in micro­
seconds (FIXED imegcr). 

<s~msg> 161 - reason 

The reason codes are: 

o .. initial SElTIIIo'IE, G1IolT & local changed 
I - Subsequcm SETTtME, G1Io iT & local changed 
2 .. DST change, local only changed. 

Time and D.le Conversion 
Procedures 
Time-conversion IJroccdures 
The new timekeeping facilities provide users 
of the GUARDIAN 90 operating system with 
three conversion routines for manipulating 
Julian timestamps. The first computes a 
Julian timestamp from an integer array rep­
resenting the date and time. The second con­
vens a Julian timestamp 10 an integer array 
representing the date and time. The third 
routine converts Julian timestamps from 
GMT to local time or vice versa. 

The fi rst two procedures reference an inte­
ger array that represents the date and li me. 
The array has eight clements conta ining: 

Elemcrll Cont ents 

ElementlOJ Gregorian year (1984. 1985 .... ) 
Element JI) Gregorian l110mh (1- 12) 
Elemem(2) Gregorian day of month ( 1-31) 
Element(3) Hour of the day (0-23) 
Element (4) Minute or the hour (0-59) 
Elemelll151 Sccond of the minutc (0-59) 
Elemcm(61 Millisecond of the second (0-999) 
Elemenl[71 Microsecond orlhe millisecond 

(0-999) 

Note that the range of the year is restricted: 
1 <= Year <= 4000. 

COMPUTETIMESTAMP Procedure. This 
procedure (see Figure I) computes a Julian 
timestamp from an imcgcr array that repre­
sents a Gregorian date and the lime of day. 

DATE .... N ... TlM E is a required parameter 
supplied by the ca ller; it is an array of eight 
clements containing the year, mont h, day, 
elc., as described above. 

ERRORMASK is an optional parameter. If 
supplied , COMPUTETIM ESTAMP checks 
each element of DATE"'N"TIM E for va lidity 
and sets a bit corresponding to each element 
of DATE"'N"'TI~I E that was out of range; 
e.g., ERRORMASK - 070100000 means the 
year was out of range. 
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INTERPRETTIMESTA M P Procedure. This 
procedure (see Figure 2) converts a Julian 
timestamp lO an array of integers represent­
ing the same Gregorian date and time of day. 
In addition, it returns (as its value) the 
32-bir Julian day number. 

JUllAN .... TlMESTAMP is a required 
parameter supplied by the caller; it should 
contain a valid Julian timestamp. 

DATE .... N .... TIME is an array of eight ele­
ments containing the year, month, day, etc., 
as described above. It is returned by 
INTERPRETTIMESTAMP and contains the 
equivalent of the JULl AN .... TlMESTAMP 
value. 

The value returned by the procedure is the 
Ju lian day number of the Julian timestamp. 

CONVERTTIMESTAMP Procedure. This 
procedure converts a Julian limestamp to or 
from a local Julian timesLamp at any acces­
sible node in the network. The external de­
claration is given in Figure 2. 

JUlIAN"'TlMESTAMP is a required 
parameter supplied by the caller; it should 
contain a valid Julian timestamp. 

.DlRECTION is a parameter optionally sup­
plied by the caller. It specifies which conver­
sion is requested and may take the following 
values: 

Value Con\'ersion 

0 GMTlO LCT (derault) 
1 GMTIO LST 
2 LCf toGMT 
J LST to GMT 

NODE is an optional parameter supplied 
by the caller. It is used lO specify the node 
for which the conversion is requesled; it 
defaults 10 the local node. 

ERROR is an optional parameter, If il is 
supplied, CONVERTTIMESTAMP returns the 
following va lues: 

Va lue Error 

-2 Impossible LCT 
-I Ambiguous LCT 

0 OK 
OST Range in doubt 

2 DST Table not loaded 
>2 FS error to NODE 

CONVERTTIMESTAMP returns a Julian 
timestamp in the requested base. 

Juli an-date Con\'ersion Procedures 
The new timekeeping facilities provide users 
of GUARDIAN 90 with twO conversion rou· 
tines for converting from Gregorian calendar 
dates to Julian day number and vice versa. 

COMPUTEJULIANDAYNO Procedure. This 
procedure computes the Julian day number 
from a Gregorian calendar dale on or after 
01 January 0001. The Gregorian calendar 
dale must be valid. The external declaration 
of the procedure is given in Figure 2. 

YEAR, MONTH, and DAY are required 
parameters and contain the Gregorian year, 
month, and day of month, respecti\'eJy, 

ERROR is an optional parameter. If sup· 
plied, COMPUTEJULIANOAYNO chc\:ks each 
element of DATE'\ "'T1l\'IE for validity and 
sets a bit corresponding to the parameter 
whose value was out of range. Bit 0 indicates 
YEAR was OUI of range, bit 1 corresponds to 
~10NTH, and bit 2 to DAY. 

COMPUTEJULlANDAYNO returns a Julian 
day number. 

INTERPRETJULIANDAYNO Procedme. This 
procedure (see Figure 2) converLS a Julian 
day number (0 the year, month, and day in 
the Gregorian calendar. The Julian day nurn· 
ber must be greater than 1,721,119 
(00 March 00(0). 

JULIA DAY 0 is initia lized by the caller; 
il should cOnlain a valid Julian day number. 

YEAR, MONTH, and DAY are used by 
INTERPRETJULlANDAYNO to return the 
equivalent Gregorian year, month, and day 
respectively. 
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Selling lhe Syslem Clocks 

n'lC GUARDIA N 90 timekeeping faci lities 
provide twO methods of sc lling the system 
clocks. The SETTIME command for the CI 
has been modified, and a new callable pro­
cedure, SETSYSTE~'ICLOCK , has been added 
to the system libraries. 

SETrIME Command 
An optional field, the timebase, has been 
added to the SETTIM E command of the CI. 
The valid va lues a rc GMT, LCT, and LST. 
They may be upper, lower, or mi xed case. 
The default cont inues to be LCT. 

Two new error messages have been added: 
Ambiguous Time Specification and Impos­
sible Time Specified. These messages are 
output if the LCT time specified is a mbigu­
ous or imposs ible because of a DST transi­
tion. (In U.S. areas where DST is used , 02:30 
on the last Sunday in April is impossible 
and 2:30 on the last Sunday in October is 
ambiguous.) 

In addition , users can specify the time to 
the second, e.g. : 

SEITIME 10Aug 1984. 12:13: 14 GMT 

SETSYSTEMCLQCK Procedure 
The new SETSYSTEMCLOCK procedure (see 
Figure 2) allows the SUPER group or privi­
leged caller to change the system clock. 

JULIANGMT is supplied by the caller. It 
contains the GMT, in JULIANTIMESTAMP 
form, to wh ich the sys tem clock is to be set. 

MODE is supplied by the ca ller. It 
describes the mode and source: 

Value Mode Source 

0 Absolute GMT Operator input 
I Absolute GMT Hardware clock 
2 Relalive GMT Operator input 
) Relative GMT Hardware clock 

The relalive mode implies that the param­
eter JULIANGMT contains a microsecond 
correction, not an actual timestamp. This is 
useful for very precise time synchronization 
with a hardware clock or for a modera tely 
precise method of operator time adjust ment. 

Openllillg System 

FIIIlIre2 

INT(32) PROC INTERPRETTIMESTAMP (JUllAN"TIMESTAMP, DATE"N"TIME): 
FIXED JUUAN"TlMESTAMP: 
INT .OATE"N"TIME; 
EXTERNAL: 

FIXED PROC CONVERTTIMESTAMP (JUlIAN"TIMESTAMP. DIRECOON, NODE, ERROR) 
EXTENSIBLE. CALLABLE; 

FIXED JUUAN"TlMESTAMP: 
INT DIRECTION: 
INT NOOE; 
INT .ERROR: 
EXTERNAL; 

INT(32) PROC COMPUTEJULIANDAYND (YEAR. MONTH, DAY, ERROR) EXTENSIBLE; 
1t(T YEAR; 
INT MONTH; 
INT DAY: 
INT .ERROR: 
EXTERNAL; 

PROC INTERPRETJULIANDAYNO (JULIANDAYNo, YEAR, MONTH, DAY): 
INT(32) JULIANDAYNO: 
INT .YEAR; 
INT .MONTH: 
1t(T .DAY; 
EXTERNAL; 

!>ROC SETSYSTEMCLDCK (JULIANGMT, MODE. TUID) EXTENSIBLE. CALLABLE; 
FIXED JUUANGMT; 
INT MOOE; 
INT TurD: 
EXTERNAL; 

Tum is optional. If supplied by the caUer, 
it should conta in a time update J D obtained 
by ca lling JULIA NTIM ESTAMP. TUID is rec­
ommended when modes 2 and 3 are used to 
avoid conflicting changes. The resulting con­
dilion codes imply: 

Code Meaning 

> TUID mismatch; retry after 
redetermini ng relative error. 
Time set as requested. 

< Insuffic ient capabi lity. 

Agure 2. 

TM Ull!rno/ dec/orations 
./or Ihe new procedures 
/NTERPRE1TtMESfAMp, 
CONVER1TIMESTAMP, 
COMPUTEJULlA N-
DA YNa. and SET-
S YSfEMCLQCi(. 
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Daylight Savings Time 
Consideralions 
The nc" timekeeping facilities require 
kno" ledge of Daylight Savings Time transi­
lions for the system's location. This infor­
mation allows them to com pUle the Local 
Civil Time from GMT and vice versa. For 
example, if an operator cold loads the sys­
(cm and does a SETTIME using (he Local 
Civil Time, the S)'Slem calculates G~ IT. 

One of three options can be specified at 
SYSGEN: NONE, TABLE, or USA66. They are 
described below: 

Option 

NONE 

U$A66 

TABLE 

Erreci 

DST is nOI observed'lI the system's 
location. 
The rules used in the United Stales 
since the adoption of the Uniform Time 
Act of 1966 are 10 be follo"cd. 
A table of DST transitions nrc to be 
loaded al system-cold-load lime. 

DST Table Loading Procedure 
The new facil ities include the callable procc· 
dure ADDDSTTRANS ITION (see Figure 3) 
that allows the SUPER group caller to add an 
en try 10 [he DST Transition table. 

PROC ADDDSTTRANSlTlON !lOWGMT. HIGHGMT. OFFSET) EXTENSIBLE. CALLABLE; 
FIXED lOWGMT: 
FIXEO HIGHGMT: 
INT OFFSEl! 
EXTERNAL: 

Figure 3. 

The e.rlemol dec/oratio" 
/or the new procedure 
ADDDSITRANSITION. 

o 

LOWGMT contains a Julian timc~tamp 
that is the GMT" hen OFFSET is first appli. 
cable. 

HIGHGMT cOnlains a Julian timestamp 
that is [he G~1T when OFFSET is no longer 
applicable. 

OFFSET contains the difference in 5e'l'OOO! 
bel\\ecn Local Civil Time and Local Stand. 
ard Time (LCT _ LST + orF ET). 

The DSf Table must be loaded in lime 
sequence and with no gaps; i.e .• except fer 
the first call, the LOWGMT of each call mu: 
be the same as the H IGHGMT of the pre\ia 
call. Thus, many calls have an OFFSET 
parameter of zero. 

The DST [able mUSI be initialized \\ilhal 
leasl one DST transi tion lhal is less Ihan thr: 
currenl dale and lime, and at least IWO DST 
transitions lhal are greater Ihan the currenl 
date and lime. If Ihis is not done before the 
SETTIME is enlered, the error message 
I lIcorrecl Daylight Savings Tillie COIH'ersiM. 
is displayed when [he SETTIME is enlered. 

NOle lhal CONVERTTIMESTA,\IP assumo 
[hal Iransilions are separated by one day or 
more. 

ADDOS1TRANSITION Command 
A new command, ADDDSTTRANSITIO 
has been added to the C I to allow SUPER 
group users lO add ent ries lO the DST Tran· 
sition Table. The syntax of the new com· 
mand is shown in Figure 4. The limits and 
sequence restrict io ns for Ihe ADDDSTTRAN ­
SIT ION procedure a lso apply ror this 
com mand. 

SYSGEN Changes 

T hree new clauses have been added (0 the 
ALLPROCESSORS paragraph of [he SYSGE\, 
inpu t: 

• I ITIALCOM INT-I FILE (Optional) 

• T Ir.1E.....ZONE.....OFFSET (Required) 

• DAYLlGHT_SAVINGS_TIME (Required) 
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Cold-load Command Interpreter 
IN File 
An oplional input file spec ified al SYSGEN 
has been added for the initial (start·up) 
Command Interpreter. I r this option is spec· 
iried in the SYSGEN inpul, the file mUSt 
exist. It is copied to the SYSnn subvolume 
and named e ll FILE. The syntax of the 
clause is: 

INITIALCOM1NT_INFILE <fi lename > 

Sites having an external clock that choose 
[0 use the CIIN file option can automate all 
of the system·restart activity. After the cold 
load is completc, the CII N file is executed 
by the cold· load el, running under the 
SUPER.SUPER user ID. 

The CI IN file typically performs the fol­
lowing activit ies : 

1. Sets the system lime by executing a pro­
gram that reads the externa l clock and 
sets system time. A sample program, 
SClOCK, is provided. II is recommended 
that the system clock be set before 
any other activity is started. on ly to 
ensure that other processes retrieve valid 
timestamps. 

2. Performs various system stan·up func· 
tions, such as starti ng the spooler, start· 
ing Command Interpreters, and perhaps 
starting the Transaction Monitoring 
Facility (TMF) a nd the PATHWAY trans­
action processing system. 

3. Starts another Cion the Operations and 
Serv ices Processor (OSP). This is because 
the initia l cold-load CI terminates when it 
has finished reading the CI IN file. 

Note that us ing a CII N file does not leave 
a CI running and logged on under 
SUPER. SUPER, as is the case when the CI IN 
fil e configuration optio n is not used. 

O"errllill~ System 

Figure " 

ADOOSTTAANSITION < I tart-date-tlme >. < stop-date-tlme >. < ollset > 

< Start-date-t lme > II the beginning ot the period when 
< ollset > II applicable and < llop-<Iate-Ume> Is tlla end 
01 the period when < oI'sel > Is applicable. The formal 
01 <s tarl4ate-lIme > and <lt09-date-llme> II: 

I < month·name> < day> I < year >. < hour >:< mln > I:<sec > J I GMT I 
I < day > < month·name > I I LST I 

< ollsel > Is the dllf'"Jflce betWflfln Itandard lima and 
Daylight Savlngl time and Is ot the IOfm 

I + I < lIour >:< mln > 
[ - [ 

Notl thst < OUSII > must be betweln 8:59 and +8:59. 

ExamplBl 
ADDDsnRANStTION 28 OCT t984. 02:00 LST. 28 APR 1985. 02:00 LST. +0:00 

AOODSnRANSlTtON 28 APR 1985. 02:00 lST. 21 OCT 1985. 02:00 LST. + 1:00 

ADODSnRANSlTtON 27 OCT 1985. 02:00 LST. 27 APR 1986. 02:00 LST, +0:00 

lSf O ffse t from GMT 
The GUA RDIA N 90 timekeeping facilities 
require that the spec ification o f lhe orrsct of 
LST from GMT be made in hours and min­
utes. The offset must be speci fied in the 
ALL PROCESSORS clause as 

TIME_ ZONILOFFSET + hh:mm 

or 

TIMLZONILOFFSET - hh:mm 

where "" is an unsigned integer less than 24 
and mill is an unsigned integer less than 60. 
The following arc some examples: 

o rrsel liS specified in 
ALLI'ROCESSORS cla use 

TIMLZONILOFFSET + 01:00 
TIMLZONLOFFSET + 05:30 
TIMLZONILOFFSET + 09:00 
TIMLZONLOFF$ET - 08:00 
TIMLZONLOFFSET - 05:00 

Cil l' 

Paris 
Bombay 
Tokyo 
San Francisco 
New York 

figure 4. 

The syntax oj the IU'W 
ADDDSTTRANSITION 
CQmmand for Ihe 
Command Interpreter. 
This rommantl alJows 
SUPER group users 10 
add entries to the DST 
Transilion 7i1b1e. 
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Da)'lighl Savings Time Selection 
With the new facilities, the selection of one 
of three options for Daylight Savings Time 
is required: none, a table-d riven method, or 
the rules followed in the United States since 
1966. As other algorithmic rules arc 
required, the appropriate options will be 
added. 

The new clause to the ALL PROCESSORS 
paragraph is: 

DAYUGHT3AV1NG~TlME I NONE IUSA66 I 
TABLE~ 

Command Interpreter Changes 
The new timekeeping facilities have affected 
the Command Interpreter in four areas: 

• An additional field in the SETTIM E com­
mand has been added. 

• The ability 10 specify the initial CI'S input 
file has been added. 

• A new command to add an entry to the 
DST Transition Table has been added. 

• Command execution is now restricted 
before !.he first SETTIME. 

All bUi the last modification have already 
been discussed. 

The initial (cold-load) CI executes only 
ADDDSTRANSITION, SETTIME, and HELP 
commands untillhe first SETTIME com· 
mand has been entered successfully. Other 
commands result in the message, Please Stt 
System Time. If the system was configured 
with an initial CIIN file (using the 
INITIALCOMINLINFILE SYSGEN _ 
ter), however. there is no restriction on c0m­

mands executed from the IN rile. This 
allows the IN rile to start a process that 
communicates with an external clock and 
then call SETSYSTEMClOCI\ to sct the S}'S' 
tern time . 

Sample External Clock 
Reading Process 
TAL source code for a sample user proce~ 
that reads an external clock is supplied "ilb 
GUARDIA 90. This program, SClOCK, 
reads the external clock and setS the s)~lem 
clock immediately. every rive minutes, and 
whenever a CPU is powered on. 

Benefits of the ew Facililies 
The new timekeeping facilities significanth 
enhance the timekeeping services of 
GUARDIAN 90 in several areas. 

Application Des ign 
The use of GMT timestamps facilitates the 
design of applications in a geographically 
distributed network. Procedures that con· 
vert timestamps between GMT, LST, and 
LCT, on both local and remote nodes. as 
well as being aware of Daylight SavingS 
Time, simplify the design of global-nelv.or~ 
applications. 
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The enhancemellts to the SETTI1\·tE mes­
sage permit applications to detect when and 
why the system clock was reset and deter­
mine the magnitude of the change. 

The microsecond resolution of Julian 
timestamps makes them more useful for 
identification of events. If twO events occur 
within .01 second. the old TIMESTAMP pro­
cedure might have returned the same value 
10 both. making the timestamp useless for 
determining the sequcnce of events. 

Programming 
Four-word Julian timestamps and Julian 
date conversion routines simplify program­
ming tasks that involve timekeeping. 

System Management 
Automalic adjustment for Daylight Savings 
Time changes eliminates Ihe need for an 
operator to do a SETTIME when these 
changes occur, reducing potcI1lial operator 
errors . 

The ability to read an external clock and 
set system time completely eliminates the 
possibility of the operator's making an error 
when setting the system time. Users lhat 
have an external clock and choose to use the 
CIIN file option can automate all system 
restart activity. 

Finally. the new algorithm for CPU 
dock-rate averaging should provide more 
accurate system times than those provided 
by previous releases. 

Conclusion 

GUARDIAN 90 timekeeping services contrib­
ute significantly 10 the effectiveness of 
Tandem systems for appl ications thaI require 
accurate timekeeping and for geograph icall y 
distributed networks. 
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New Process-timing Features 

he GUARDIAN 90 operating 
system incorporates greatly 
enhanced fealUres for pro­
cess liming. I Earlier ver­
sions of GUARDIAN pro­
vide IWO facilities for pro­
cess timing: the XRAY 

performance measurement lool and the 
procedure SETLOOPTIMER. Both have 
shortcomings: 

• XRAY is cumbersome to usc, and the over­
head of slafting an XRAY measurement is 
not justified for small measurements such as 
obtaining the execution lime of a single pro­
cess . Moreover, XRAY does not have a pro­
grammatic interface. 

• SETLOOPTIMER, a programmatic inter­
face, is designed only for delccling loops in 
a program. In addition, in earlier versions of 
GUARDIAN, the SETLOOPTll\'IER mecha­
nism includes interrupt time and is inaccu­
rate due to rounding errors. 

GLIARDIA N 90 provides process-timing 
facilities in addition to XRAY and vastly 
improves the accuracy of the SETLOOPTI· 
MER mechanism. Process-execution time~ 
now a fundamental pan of the processsta!C 
This permiLS the following additional func· 
tionality: 

• Any process can query the operating 5)'S· 

tem for the process time of any process. 
including its own.' 

• A process can specify that it be notified 
via a system message when it has e,ecutrci 
for a cenain amount of lime. 

• Some processor-utilization statistics 
(amount of time spent by the processor c-v­
cUling processes, servicing interrupts. and 
remaining in the idle state) can be obtained . 

• Accuracy of the SETLOOPTIMER mecha­
nism has been improved because interrupt· 
servicing time is excluded and microsecond 
resolution is used. 

User Interface 
The following procedures are now available 
for the timing of processes: ETLOOPTI\1ER 
SIGNALTIMEOUT, SIGNALPROCESSTI\IE· 
OUT, MYPROCESSfIME. and PROCESSTI\IE 
In addition, a new procedure called cpU· 
TIMES is available to provide utilization 
statistics for a processor. (See the System 
Procedure Calls Re~rence Monllol for 
delails). 



The funct ions o f the procedures are 
briefly described below: 

• SETLOOPTIMER now sets a timer that is 
based on process time. When the timer times 
aul, il mggers a process-loop-limeoullrop 
(trap number 4). Control then transfers to 
the user trap handler (if specified) or to 
DEBUG/ INSPECT. 

• SIGNALTlMEOUTsets an elapsed-ti me 
timer. When the timer times out, a system 
message (see the System Messages MOlluof) 
is queued on the SRECEIV E queue of the 
process (see the Sysfem Procedure Calls Ref­
erence Mom/of). The functionality and the 
underlying mechanism for this procedure 
have nOl changed in GUARDIAN 90. 

I SIGNALPROCESSTIMEDUT, a new proce­
dure, is similar to SIGNALTIM EOUT but is 
based on process time inslead of elapsed 
time. It setS a process-time timer. When the 
timer times out , a system message is queued 
on the SRECEIVE queue of the process. 

• MYPROC£SSTlM£, a new procedure, gives 
the process time (in microseconds) of the 
calling process. 

• PROC£SSTIME, a new procedure , gives 
the process time (in microseconds) of any 
process in the network that runs on a system 
operating under GUARDIAN 90. The proce­
dure PROCESSINFO can also be used to 
obtain the process time of a process. 

I CPUTIMES, a new procedure, gives the 
following processor utilization statistics (in 
microseconds, since the last processor load) 
of any processor in the network lhat is oper­
ating under GUARDIA N 90: the amount of 
time since the processor loaded and the 
amount of time spent by the processor exe­
cuting processes, servicing interrupts, and 
remaining in the idle stale. 

Implementation 
The GUARDIAN 90 kernel and data Struc­
tures mainlain accurate process-execution 
time as an intrinsic part of the process state. 
They incorporate an internal facility to 
cause an eVent 10 occur, based on the 

amount of process-execution t ime that has 
passed. This facility is used to support the 
following: 

• S£TLOOPTIMER procedure (whose corre­
sponding event is to cause a trap after a 
specified amount of process-execution 
time). 

• SIGNALPROC£SSTIMEOUT procedure 
(whose corresponding event is to cause a 
system message to be queued on the 
SRECEIV E queue of the calling process afler 
the process has executed for a specified 
amount of time). 

• Process-priority adjllsrmem mechanism. 

The facility may a lso be used in the 
fu ture to suppo rt additional capabilities. For 
example, the parent process could request 
the operating sYSlem to not ify it when a spe­
cific chi ld process has executed for a certa in 
amount of time. (This feature is not presen! 
in GUA RDIAN 90 cu rrent ly but is an example 
of something that could now be easi ly 
implemented.) 

Each process has a 32-bit counter 
(referred 10 in this article as PCBPTIMER) 
that is part of the process state. When a pro­
cess is inact ive, PCBPTIMER is stored in the 
field PCBPTlMER in the Process Control 
Block (PCB) for the process. (The layout for 
the PCB is given in the GUARDIAN 90 file 
DPCfL, listed in CDECLARE.) When the 
process is dispatched, the dispatcher uses the 
new Set Process Time (SPT) instruction to 
give PCBPTIMER 10 the firmware. The 
cached firmware va lue, which represents 
the cu rrent va lue of PCBPTIMER, can be 
read via the new Read Process Time (RPT) 
inst ruction. The SPT and RPT inst ructions 
are defined in the System Description 
Manual. 
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PCBPTIMER accumulates process­
execution time as the process executes and is 
adjusted for any processor lime used by soft­
ware interrupt handlers . If PCBPTlr-.-IER 
overflows from a positive to a negative num­
ber, a process-fimeout dispatcher interrupt 
occurs. 

Every time the dispatcher deactivates a 
process, the dispatcher accumulates the 
elapsed process time for the last dispatch to 
a quad-word counter (PCBXPTlME) in the 
Process Control Block Extension (PCBX) for 
the process . The dispatcher also accumulates 
the elapsed process time to a quad-word 
counter called SUMPROCESSBU5Y in the 
system data segment. This counter contains 
the lotal processor lime spent in executing 
processes. (The elapsed process lime is the 
difference between the cached value of 
PCBPTIMER and the saved value in the 
PCBPTIMER field in the PCB.) The dis­
patcher also saves the cached value of PCBP­
TIMER in the field PCBPTIMER of the PCB 
for the process. 

Thus, the purposes of PCBPTIMER are to 
cause a dispatcher interrupt after a specified 
amount of process-execulion time and to 
track elapsed process time in a dispatch. The 
purpose of PCBXPTIME is to accumulate 
process-execution lime as the process exe­
cutes. It will overflow only if the process 
executes for over .29 million years. 

The unit of measure for both counters is 
microseconds. At any instant, the process 
time of the process is given by the sum of the 
PCBPTIMER and PCBXPTIME. When the 
process is active. PCBPTIMER is cached in 
a processor register and can be accessed 
via the new instructions; otherwise, the 
PCBPTIMER is stored in the PCB fie ld 
PCBPTlMER. 

Each process has a doubly-linked list. 
called the process-time list (PTL), composed 
of process-time-Iist elements (PTLEs). A 
PTLE contains the process time at which the 
process should time OUL The list header of 
the PTL is a field in the PCBX. The PTlES 
are listed in order of increasing process-time 
value. Two PTLEs. one for process-priority 
adjustment and one for the SETLOOPTIMER 
procedure, are allocated in the PCBX. PTLEs 
for use by SIGNALPROCESSTIMEOUT are 
a llocated out of the PTlE table, which is in 
the same absolute segment as the PCBXs. 

For a process-timeout dispatcher inttl'· 
rupt. the dispatcher (I) processes each PTU 
that has timed out . (2) deletes the PTlE 
from the PTL. and (3) takes action bascd(l' 
the event indicated by the PTLE type: 

• I f the PTlE was set by a caU to SETL<n'. 
TIMER, a trap #4 is signaled. 

• If the PTLE was set by a caJlto SIGN U· 
PROCESSTIMEOUT, a system message is 
queued on the SRECEIVE queue of the pr0-

cess. This message indicates to the prOC'ffi 
that the timer set by a call to SIGNALPRO­
CESSTIMEOUT has timed out. 

• If the PTlE is for system-loop liming, Itt 
dispatcher adjusts the priority of the proms 
and requeues the PTLE on the PTL with a 
time value of the current process lime or tlr 
process plus two seconds (the time when the 
priority is to be adjus ted next) . 

The dispatcher then initializes the 32-bit 
counter (PCBPTI~IER) so that it will O\'tr· 
flow when the current leading PTLE in the 
PTL times OUt, and then it dispatches the 
process. 

I DLEPROCESS executes on the processor 
when there is no process on the ready lis!. 
Although IDLEPROCESS is actually a 
pseudoprocess because it does not ha\ c a 
PCB and Olher resources allocated to it, the 
processor maintains execution time for it 
because the firmware views it as a proctSs. 
The PCBPTlMER and PCBXPTIME enlri~ 
for I DLEPROCESS are allocated in the 
system-data segment. These entries and the 
SUMPROCESSBUSY counter are used 10 sup­
port the CPUTIMES procedures. 

Applications 
SETLOOPTIMER can be used (0 (I) deIcct 
whether or not the process is looping, 
(2) perform a certain set of operations 
(defined in the user trap handler) afler the 
process has executed for a specified amounl 
of time, and (3) perform a set of operations 
periodically by having the user trap handkr 
aJways call SETlOOPTlMER before retumil1 
to the interrupted operation. 
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SIGNALTIMEOUT can be used for schedul­
ing real-t ime operations since it notifies a 
process when a certain amount of realtime 
has elapse<l. 

SIGNALPROCESSTIMEOUT can be used 
for scheduling operations based on the 
amount of time the process has executed. It 
queues a system message on the process' 
SRECEIVE queue to nOlify that process a fter 
it has executed for a spec ified amOllnt of 
time. The process can ca ll the procedure 
READ to read the message whenever it wants 
to. (SFTLOOPTIMER can also be used for 
mis purpose; however, it causes a Irap that 
interrupts the process and immed iately 
transfers comrollo the trap handler.) 

MYPROCESST IM E can be used by a pro­
cess to monilor ils activity and to determine 
lhe lime spent by the process in performing 
various operations. For example, a Com­
mand Interpreter could print the time it took 
10 execute the last command before prompt­
ing for the next comma nd . 

PROCESSfIME can be used to (I) mo nitor 
the activity of any process running on a 
GUARDIAN 90 system in the network, 
(2) deteet a looping process, and (3) detect 
whether or not a process is a recent invoca­
tion of !.he program after an old invocation 
died, especially if the reeem in vocation has 
the same Process JD (PI D) as the old process 
and the same name. (For unnamed pro­
cesses, the timestamp form of the PID can be 
used for assigni ng a process a unique PID). 
See lhe GUARDIAN Operating System Pro­
grammer's Guide for information on process 
names. 

CPUTIMES can be used 10 display a pro­
cessor's uti li zation . This would help in bal­
ancing the load across the processors in the 
s~te,:", For example, a high interrupt-busy 
lime 111 a processor might ind icate that a 
great deal of 110 was being done through 
that processor. PEEK can be used to confirm 
this. 

The information obtained from the above 
routines may indicate whether or not the 
substantial capabi lities of XRAY should be 
used for a performance eva luat ion of the 
system or of a process that is a heavy user of 
processor time. 

Conclusion 

The process-timing features of the 
GUA RDIA N 90 operating system are a signifi­
cant enhancement. Process-execution time is 
maintained with microsecond resolution and 
interrupt-processing time is excluded. Proce­
dures are provided to retrieve the process 
time of processes and to enable a process to 
be notified when it has executed for a speci­
fied amount of time. Also, the accuracy of 
the SETLOOPTIM ER has been greatly 
improved. Finally, a procedure is now avail­
able for retrieving processor-utilization 
characterist ics . 

RtftrtllCM 
GUARDIANOperotlfl8 System Progromml'l"s Guide. ParillO. 
82357 AOO. Talldcm Compulcn IlIoorpOllued. 

S)'stem M essages Alllnuili. ParillO. 82409 AOO. Tandrm Com· 
PUlers ]noorllonut'd. 

S)'$lem Proc«IlIre Calls R~ M(mua/. Part 110. 82359 AOO. 
Tandem Compulen InrorpoNllcd. 

Acknoooltd&1l1t1I15 
Tht basic idt-as for the GUA ROlAN 90 prQCeS$·timill& enhance· 
matti wcre cooctil't'(j by Richard Carr. The aUlhor would like to 
thank Richard for his suggtsliOf\$ durill& the impkmenllllion 
phase. Gary Campbell and Richard Harri~ for makil1$ the 
(irmwarechanges. aod last bul not least. Heidi Kuehn for 
arcatly improvinsthe readability of this article. 

Sunil Sh.rm. Joined Tandem In August 1983 as. SOllwate 
deYelopet In the Operallng Systems group. He h.s.n M.S. In 
COmpul8f Engineering Irom AetlSMI.er Polytechnic Inslllule In 
Troy. New 'Ibrk. 

1t,; .... E lfjll~.'A""DEM SYSTI! M S KF V IEW 

Opera/illg System 

67 



• 
F 

1 
fi 
J 

" S 

( 

Writing a 
Command Interpreter 

andem has received many 
requests [0 extend I he 

==== capabilit ies o f its com· 
_ mand interpreter, COMINT. 

These req uests have been 
for a variety of capabili­
ties, including: 

• Additional commands. 

• Changes in the syntax and / or functional. 
ity of existing commands. 

• A history buffer of previous commands 
(for their reexecution or later examination). 

• Macro substitut ion within commands. 

• Assignmem of commands to function 
keys. 

Custom Command Interpreters 
It is nOI possible to implement these new 
features while maintaining the compatibility 
between old and new versions of COMI NT, 
however. Also, the need or desire for these 
new capabilities varies from customer to 
customer, Therefore, users requ iring special 
features should consider develop ing their 
own command interpreters. In fact, several 
users have already written their own . 

One drawback to most of the command 
interpreters written by users so far, however, 
is that they are nonprivileged and, thus, do 
not have the full functionality of COMINT 

(until now a prh1i/eged process).1 Their 
command interpreters cannot modify the 
USERIO fi le, or take a bus dump, fore'(artI­
pie. Umi l now, these users had to switch 
from their cuStom command interpreters 10 

COM I NT when they needed to execute a 
privi leged function. 

New Nonprivileged COMI T 
With the GUARDIAN 90 operating systml, 
COMINT no longer contains privileged coX 
and does not have to be FUP licensed. 
CO~1INT'S privileged processing has been 
moved into new system-library procedum, 
existing system procedures have been mod~ 
fjed, and new privileged server programs 
have been written. CO!\lI NT now invokes 
these new procedu res or server programs to 
execute privileged functions. 

Users can now take advantage of these 
new procedures and server programs to 
develop their own custom command inter· 
preters, complete with all the functionality 
of Tandem's COM I NT. 

The following sections: 

• Present an overview of the flow of contrd 
in COM INT. 

• Explain how to get a sample skeletal COOl" 
mand interpreter that can be expanded and 
customized as needed. 

• Describe COMI NT (including its nowait 
operations and new server programs) in 
detail. 
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Flow of Cont rol 
CO~IJNT was designed as a transaction­
oriented process. It does the following: 

I. Gets the transaction (command). 

2. Deciphers the command and appl ies user 
constraints (e.g., checks to see if a user 
can issue the ADDUSER command). 

3. Invokes the appropriate procedures or 
dispatches the proper program (COMINT 
server, Tandem subsystem, or user­
developed program) 10 complete the pro­
cessing of each command . 

Figure I charts this flow of control. 
All command imerpreters should have a 

top-level controlling procedure. COM INT's 
version of this procedure, COMMAND­
INTERPRETER, loops continuously on ca lls 
to read and process each command. 

Command interpreters should also have a 
centralized procedure for getting com­
mands. COM INT's PROMPT contains code 
for reading from a temlinal, a disc file, or 
another process. 

Finally, COMI T has a separate proce­
dure, PROCESSCOMMANO, to process each 
command, although this is not required of 
all command interpreters. PROCESS­
COMMAND does some initial parsing and 
validation checking and then invokes the 
appropriate procedure or program. It is lhen 
the responsibility of each procedure or pro­
gram to fully parse and validate the com­
mand string or RUN parameter string before 
processing the command. 

Simple Command Interpreter 
A simple command interpreter that recog­
nizes the EXIT, TIME, and WHO commands 
is available on tapc from your Tandem 
anal)'St. 

Note that, although the sample command 
interpreter was written in TAL, command 
imerprelers can be written in any language. 
II is advisable, however, to develop the com­
mand interpreter in a language that provides 
easy access to GUARDIAN 90 system proce­
dures, as it is through these procedures that 
the command interpreter will do most of its 
work. 

Operating .s:I'stem 

Figure 1 

Prom,. 

--
Nowait Operations 
Perhaps the most difficult aspect of develop­
ing a command interpreter is the handling of 
its operations in a "nowail" manner. One of 
the design goals of a command interpreter is 
that it be able to respond to messages and 
maintain a fault-tolerant configuration 
while: 

• Prompting for a command. 

• Communicat ing with another process. 

• Waiting for a process 10 terminate. 

• Writing to its OUT file . 

To accomplish this, a ll the above operat ions 
must be done in a nowait manner, thus 
requiring the command interpreter 10 be a 
multithreaded process. 

COM1NT'S solution to the problem is to 
perform all the above as nowait operat ions 
and to have one centrali zed procedure 10 
wait for completion of these operations. 
This procedure calls AWA ITIO with a file 
number of - I so that AWAITIO returns when 
any outstand ing lI D request completes . The 
cent ralized procedure then determines which 
I/O has completed and does the proper 
processing. 

Figure 1. 

Thejlow of COIItroi in 
COM/NT. COMMAND­
INTERPRETER, the 
main procedure, calls 
PROMPT to get a COnl­
mand. This command is 
then passed to PRO­
CESSCO,\IMAND ..... hich 
calls/ runs the appropriate 
procedllre(sj/ program to 
process the command. 
(The dOlled lines indicate 
additiOilal procedures/ 
programs tllat process 
other commands.) 
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For example. afleT starting a new ~roccss, 
COM INT opens the process in a nawalt m~n­
nero COM INT then calls a procedure to walt 
for the completion of the OPEN before send­
ing (he start-up message. If the user presses 
the BREAK key before the open completes. 
AWAITIQ completes on $RECEIVE before 
completing on the OPEN. This causes 
COMINT to cancel the open request and tef· 
minate the start-up sequence. 

COMINT Server Programs 
Although major changes were made LO make 
COM INT nonprivileged, externally little has 
been changed. All the commands from the 
previous version of COM INT are slill availa­
ble and perform the same function. InteT­
nally. however, the following commands now 
invoke the corresponding CO~IINT server 
programs: 

Command 

ADDUSER 
{XIY}BUS{DOWN~P} 
DEFAULT 
DELUSER 
PASSWORD 
RECEIVEDUMP 
RELOAD 
REMOTEPASSWORD 
USERS 

Sener program 

ADDUSER 
BUSCMD 
DEFAULT 
DELUSER 
PASSWORD 
RCVDU~IP 
RELOAD 
RPASSWRD 
USERS 

When these programs are rUn from a user. 
written command interpreter or from 
COM I NT, the following rules apply: 

• All of the server programs should reside 
on the same subvolume as the command 
interpreter. (For user·written command 
interpreters this is not necessary, bUI for 
cO~II NT it is .) 

• All server programs must be FUP licensed 
to run because they contain privileged code. 

• The server programs cannot be rUn 
remotely because they contain code to pre. 
vent execution by remote users . 

• All RUN options are allowed, except that 
NOWAIT should not be used with any of the 
server programs (as the results of running 
the servers wouJd be unknown). 

COMINT Commands 
In Table I , all of the commands retogo~ 
by CO~tJNT are listed. For each, the f~. 
tion of and the G RDIA~ 90 proctdur~ 
CO~IINT server programs in\'Oked b}Ur 
proccdure arc given. (Procedures used 10 
parse and validate command parameters 
not included in the list. ) 

Although ,he lis, of CO\IINT corn ..... 
is extens ive, user·writlen command inter. 
preters need not implement e\'CT)' commao:. 
It may be bes t to lea\c OUt the rarely used 
commands such as ADDUSER, BUSCMo, 
DELUSER, and SETTIME. These can ''''''. 
issued from a running COM INT. 

Note that if an error occurs at an} point 
while the command is being processed, ttr 
command i aborted and PRO\lPTis callnl. 

ate also that command strings not ret­
ognizcd as valid CO~IINTcommandsart 
treated as implicit RUN commands. Fora 
desc ription of CO~tlNT's commands. refer 
to the GUARDIAN Operating System titulo 
ties Reference A1onuol. For a descripl iond 
each G RDIA 90 procedurc, rtrertodr 
S)'stem Procedure Colis Reference MonurJ. 

Conclusion 
With the GUARDIA 90 operating s),stem. 
all of COf\ IJNT's privileged runctions h:r.t 
been incorporated within lhe system or sup­
plied in separate programs. Users can OO'A 
develop their own command inlerpreters 
with all [he functionalilY of CO~'IINT and 
add extra features tailored 10 their needs. 

IWftmK"b 
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AOOOSTTAANSITlON 
OOf,IPUTETluESTAMP 
CONVEArnuE$TAMP 

CHECI<OPEN 
CHECKPOINT. 
GEtcRTPlD. 
NEWPROCESS 
f>AClGRAMI'ILENAME 
SlOP 
SWAPf'ILENAME 

"'BUG 

"'"""""""" orn>m'>D 
LOOKUPP!'KlC£SSNAM(. 
MVTERU 

DEFNJU' 

OElUSER 

GETRE.MOftCRTPlD. 
GETSYSTEMN"'M~ 
IoIYPID, 
SlOP 
FIXSTRING 

NEXTFILENAME 

S£T""'" 
SENDLIGHTS 

I , II !I TANDE M 

1 Pa,se and validate Ihe lim,ts and ollsel ot t/1e Daylight 5aVlrlgS Trne period. 
2 Call COMPUTETlt.4ESTAMP 10 convelt IlrYlita 11110 Ju~an microseconds 
3 Call CONVERTTIMESTAMP 10 COOY8ft UmllalOGreenwlch Mean Time 
• caJl ADDDST"TRANSITtON 10 acla ttle pe<1Od 10 tile Daylight saYIngs Time ,-
c.vse Itle AODUSfR serve< ptogram to run f'aq ADDUSER command 
palamet8fS d"ectly as a RUN parame!elatrong 10 the ADDUSEA process 

t Parse and validate \he name 01 <cpu.pm> 01 the process whole priority is to 
becha~ 

2 Call PROCESSINFO lor InlOlmaloon to be sent 10 SCMON 10 IOgIYalidale the 
"LTPRI reouesl 

3 call AlTERPR~nV 10 Change the priOrity ot the process 

1 PaIse an<! validate the new ASSIGN 
2 Save tile Inlormattonlfl the ASSIGN CIlia bu!1er onCOMINTa CIlia stack 

1 Ctleck tor a backup CPU numbef 
2 II no CPU number IS llwen. call STOP to Slop COMINTs bac~up 
3 II CPU nun'lbtl, IS grven. call GElCRTPlD. PROGRAMFILENAME. and 

SWAPFILENAME 10 get COMINrs process name. obJect· llle name. and swap 
volume so tha t NEWPROCESS can start the bac~uP 

• I sta"ed.caUCHECKOPEN and CHECKPOINT to 

1 li t 
2 Delete t/1e ASSIGN(s)IPAR.t.M(s) lrom the" dell oullerlS) on COMINTs dela 

."" 
Ignored by COM1NT COMINT promota tor!he neJct command 

t Parse anc:Ivalldateltle oame Ol!he hie 10 be cleated 
2 ca_ CREATE 10 creall the loll 
1 FO.r .. andvabdate!hl oame or <CI)U.DIf'I> 01 the process 10 be detIugoged 
2 lithe TERM parameter III entered w,thout. termlfl8ll1111T11. cell M YTEAM 10 

get tne neme 01 !hi currerrt home tetmin81 
3 II. Pl'OC8S$ name was specrtoed cetlLDOKUPPAOCCSSNAME 10 lind !hi 

ptllNry process 
• call GETCRTPlD, II me C\.Ifrenl commend II betng 08Du00ed. c.11 DEBUG: 

0It\efWISe, ca' DEBLIGPROCESS 10 cMbuII the spec,lIed process. 
Cause the DEFAULT serY8f Pl'og"m 10 be run. Past the command parameters 
dorectly as I RUN parameter Stflf'llllO the CDE",FAU~'~T~"""~~_~=",,,,===_ 
Cause the DELUSER S8fYIIr PfOII,am to be run Pass the commend PI"meters 
dore<:tiy as a FtU N PiI,ameter Slfong 10 the DELUSER process. 

1 Call MYPlD. GETREMOTECRTPIO, and GETSVSTE IoINAME to Iofm8l a 
termlflltlOll conl"fnltion promfIt 

2 call STOP 10 slOp COM INT (PI'rmary and t)ackup) 

1 DISPlay the old command end PI'OfTlPIIor modrhcalions 
2 can FIXSTAING 10 uPdate the old command 
3 PrQCeSl ttle new command 

1 Pa,se and validate ttle name 01 the subvolume containing the trIeS to be 
lISted 

2 NEXTFllENAME. 10 get me list 01 hies In the SQElClliad 

, , 
2 CaN Sf NOUGHTS 10 lesel thlioghts WIth Ihe new paramel8rs 

t PIlI'lt any ~ messages whICh have been 88111 to(X)MINT 

2 Not'fy SCUON 01 a Iogol. and cloee $CMON 
3 Clear 1oC81 butlers and caq CHECKPOINT 10 synchlomze the backup 

• s.mulate \he TIME COf'I'II'I\alld 10 dISQIIIy tne tome 
5 II In. "'(:lUI device was a termu'l8l, caM SETMODE .unctoon 2810 reset It 
6 II the ~! doMee WIIS I tefmonal. cell CONTROL ,eouest 12 on the Input 

I.monIllO discOnn8Cl 
1 II tNs was a remote COMINT. e<t' STOP 10 alOp the ptimary and bac~up 
8 II the Ifl)I,It deYlCewa. I terrrunal, CIII CONTROL ,equest t t on the Wlput 

termonallO reouesla reconnect 

ConurlUed on neJct pillI8 

S Y S T E !oj S • • V F W 

Operatiflg System 

71 



Opel 

Figu 

~ 

Agun 

The ~ 

Jor II 
JUL. 
and ( 
STA I 

56 

Operolifll{ S)'Sle~,,~, _____________ _ 

lOGOH CHECKPOI'H. I 11,....;- ''YPO'T'CIIOr-a.,." -arG_h 
VEAIFYUSEJI ~ -

c...\'(RIFl'I,IS{P w IOOcn 

3 "!IW ~"&5 "'~ ~ ratI)' SCu ~ "'~lI'Cfa. • cn.c .... !11 $C.I.ION 10 .. " tovarw .. -=-..:. 
5 CIIIICHfCXPOlNT 10 IJ1'It~!IW P»l. CI 
e o..c:.t 11'>1' lOgon taennIIt 

~q;;;";;YJ;;----------;EOrTAEADtNIl. 
7 SornIN,..". nl,l£ CIQI'i.i6IId 10 II$p&ey ~, .... 

1~~~"'ne-~,! 

PAUSE 

PMOO 

PURGE 

ACVDUMP 

RECEIVEDUMP 

REIDAO 

RENAME 

RPASSWRO 

[RUN(On 

OPEN 

PASSWORD 

Grn'POENTRY. 
GE'TSYSTEMNAME 

PUAGE 

AC'roUMP 

"ElOAD 

ClOSE. 
Of'£N 
RENAME 

RPASSWAO 

CLOSE. 
NEWffiOCEss. 
OPEN 
WRITE. 
WIUTEREAD 

2 Cal OPfN ID QalnICUA k» ".. _ .. 

3 II.". _1np,j1101e .... EOfT .... AI EDtTJtEAD<t, T CI'I. 
I Pa'~ ~ ........ tr>e"..,., P\IVlAJ"I 
2 Saw.,. l'llormaQCln., the fWlAIoI_~ D.IItI en CCOU ,<r. 
c.u. ';"~WOAO W,... P"09'_IO~ PHI llleC--.tJiQ!llts 
doo~ U..!.. RUN !M •• ".... 5""'"1110'" ~YtQIO ~ _ 

I h,. and IIaIdIle_ rwrot ot < ~.DI'I> of _"",,",blll'lC:'II 
dMtcloty .. ., bI dIIoIiI.,.., 

2 eal' OETPPoENTR'V cn rr. ~ PflXna. (II ~ ~'_"_"'.I cn IIII111Nd Qf'OC ..... 

3 Ca. G£lSVSTEt,f~E IDQOrI.,.. tyDm ....,.,.10 ...... ..r"" 
do.~y rtoe r--. 

LaOO IPI~ ~ .. -.-0, 'oIe~, '*MIO. ~ ';'~1'lRI '"" .... 
C. ... ""RCVOOUP~~ID~IhI~~ 
dofec~"'AUN~I"I ... r&trWIglO"'~"'~ 
I PI, .. ....,....,. .. tr-.~~ 

2 Rt-roomal"'IM'~_'''N,*_",b''''1iQIX» -1 fVI tnt ACVOuJ.lp __ ~ 

c._v..IneRf:~ __ ~ID~ P...""~DP'*'I 
Otec:ty IS. RUN ~ arw.g ID.,. R£lOf.O ~ 
c.uae !he ~WAD ....... DPOgf_ 10 run ,... lie CIO'mWId lin"*! 
dlfeclty ... AUN '*"""* Ding 10 h RM$SWJlO piOCIIII 

1 Plf.arIC!vPd�_.n.ott...., ____ oI .. ,. 

2 Ca. Of'£N JO ICt:eI$ "" 101& 
3 C.n RENAME 10 '.wrte the h,a 
.. C.II CUJ5£ an lhe hie 

C.UMllhe RAt.SsWRD __ PI'l:Ig ..... to M pU.-h COI"I!W'd~ 
dutc1ty". RUN PIIfamt!lfII' 5!f1ng 10 In. RAt.SSWfID ~ 
1 PI,w and VI_', the ptOg • ...., ,..",. and RUN OCIIo. 
2 set up lne oa,.,.,......1ot and call NE~SS 1O_11fOt1C!ldfd 

progfam 
3 C.U OPEN IfIOw1tJII 1O.cceu !he ~ II'\'ICaI. 

.. c.. WArTEREAOlfIOw1t.lj IOMndthe 5la" ICI~ 
5 II r~l«l, call WFlrTE tnow.", 1O...a Ihe A5SI(.N t'NIAgIl 
6 11'~IId-ca"wmTElnowarnIOMnO!he~_. 
7 CaH QDSE an IN! ~ PfOCea 

8 II,,,,,, ... _'lad run IXII5I a...., an SRfarvE .,w-' tor,. '""""~ -
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Tabili. rc;orw:tu:lIIdl 
TheconvnandS recognized by COMINT, the procedures they use, and the functions 01 the commands. 

ProcHurlll1 u... Function. 01 the command 

1 Parse and validate the INSPECT parameters 

""'"' ______ C2c";: .. :;': .. :;'N:SPEOOOC:T~ .. :'C·:mo::'~~'C"=·O'"'"'"''''"' ... ~C· __________________ __ 
~S£T1l;;;;;;""----------,C<>Iiii"P\ITrn;u;mI.lEST,tNP: 1 Parse and valdate the cunent l,me 

CQNVERTTIMESTAMP 2 Call OOMPUTETlMESTAMP to cortvefllhe speclheCl time 1n10 Julian 
SETSYSTEMClOCK mICroseconds 

3 ClIft CONVEATTIMESTAMP IOccnvert the speerlled hme 10 GreenwICh 
MeanTme 

• c.n S£TSYSTEMCtOCK 10 sellhe oew lIme 
1 Parse and valda,. the INSPECT Ilagls} whole 8lat. illObe displayed. 
2 DISPlay me SUII.of the INSPECT IIag(S) 

=-------;=;;;; --- - -~=;:::;:;~=~=:;::-:;===== SWUS CQNVERTPROCESSTIME 1 Parse and vabOlte 1M name Of < cpu.pln > 01 the J)I'OC8SS 01 CPUs for which 

SUSPEND 

GETSVSTEM~E, tile 'UltU$ 1$ 10 be displayed 
PFIOCESSINFO 2 Gel 1!'Ie search cmltlll 
USfAIOTOOSERNAME 

""" 
SUSPENOPAOCESS 

CHECKSWITCH 

3 ". process IS specIfied. call PfKlCESSINfO on It with the search criteria 
• It one or moreCPU. are spe(alted. cal( PROCESSlNFO with the searCh 

C"Utflil on every process In tne CPU 
5 CaH GETSYSTEMNAME 10 cooveflayalem nUmtM!<8 10 nllmes 
6 Can USERIOTOUSERNAME 10 convert use, 10110 use, names 
7 CaN CONVERTPROCESST1ME 10 coove,t p!'ocess1ime 10 hours. mlnules. 

SKoncts. and m,l1iseconds 
8 Ol$pl8y the status In1orma1lort 

1 Paise and vallclilte the name or <cpu.pin> ollhe p!'ocess 10 be stopped. 

2 C." STOP 10 slOp the specllted p!'ocea 

1 Pa,se and validate the name or <cpu.Pln> 01 lhe process 10 be suspended 
2 e.n SUSPENOPROCESS on the pmcesa. 
e.g CHECKSWITCH 105W'ICh the ~ o' me primary and backup 
convnand-tntlll'P"eter processes 
1 Parse and valdate the NOme 01 lhe new clelault system , , 

" 
2 CQNVERTTII,IESTAMP 10 convert lhe tomes to Local CIvIl Tlme. 
3 CaIt INTERPRmlMESTAMP to convert the tomes 10 )'fIar. mooltl. day. elc 

" 0t$pIay!he I ..... 
-----~= TIIoI( COHVERTTtI,lESTA,Mf' t Call JULIANTIMESTAMP 10 get the cur/erIt GrIeflWlch Mean Time (GMT). 

2 e._ CONVERTTIMESTAMP tocorMlfl GMT to Local CIvIl Trne (LeT). 

"""" 

-
J U ~ E 

INTERPRETItl,lESTAMP 
JULIAN1'1I,1ES1AI,IP 

PROCESSFtUSECUAITY. 
VEAtFYUS£A 

G£TSYSTEMNAME. 
MYpjO. 
PRJCESSINFO 

3 Cd INT£RPRmIMESTAMP to convert Let 10 yN', month, day. etc. 

" Ol~!he date and lime 

Csuse me tUfV\II'III 01 t1'le USERS server Pl'OQ.am. Pass the command 
PIIramel8fS duKlty as II RUN paramele' SIring 10 1M USERS proceIS. 

t PaIse lind vallda!lIlhe new delaull voIume.lIUbYoIume, andlor 1,1e security 
2 Call VERtFYUSER to gellhe omitted values 
3 Reset CQMINT's Internal cletaull volume and subYoIume 
" Call PAOCESSFllESECURrTY 10 change theaecu,lty lor IIIe c,eallon 

I PalM and validate the wakeup 00-01111110 

2 
MmolO_ I, 

2 e.n lhe system numbe, 10 the system name. 

3 Olsotay the WHO In\Ofmauon 

, Reformat Ille p'ramete<1 onto a RUN parameter tiring tor tne BUSCMO 

~"'~ 
2 Run the BUSCMO serve. prog,am 

TA~OI'M S Y STEMS 

Operating S:1'.I'tem 

73 



Flguro 

-Flgu .. 

Thee; 
for the 
lULl, 
ondC 
STAM 

56 

The Tandem 
Global Update Protocol 

he Tandem Global Update 
Protocol is an efficient 
mechanism for synchroniz­
ing and broadcasting 
updates to a collection of 10;:== independent CPUs. It guar­
antees atomic updates to 

replicated information in a system withom 
shared memory. Information consistency is 
preserved despite any number of CPU 
failures. 

Consistency in the Ta ndem 
System 

Tandem's approach to fault tolerance and 
ease of expansion is based upon independent 
CPUs in coord inated operation. Correct 
operation of applicat ions requires a consis­
tent view of key system componems. For 
example, access 10 an I/O device depends on 
locating the process responsible for the 
device, which depends on a consistem 
description of the device-process mapping. 

In many mult iple-Cpu systems, consis­
tency is achieved th rough shared memory 
but in a Tandem system, the absence of ' 
shared memory is a fundamental aspect of 
the ~ystem design. Shared memory is 
aVOIded for fault tolerance, expandability 
and simplicity. ' 

One might ensure cO~5iSl"OCY by""", I 
izing information in a ingle cPU: thij~, 
useful method when the information~1d 
accessed tOO often and ",hen the: 5)'"'' bl i 
some capability (0 recO\er from the kru d 
the CPU. In order to achic\c siflll~·faub 
tolerance. the information can be rrpi""! I 
in a second CPU. 

In the Tandem }'Stem, the goal is 
lain consistent copies of \'3.rious s)\tem 
information in all CPUs. Such informaticl 
is accessed frequently. but infrequent!) 
updaled. Through Ihis approach. boIhlx<· 
ter performance and some measurt 
fault LOlerance. paIlicularly 311he Io\ICSl 
le\'el (kernel) of the operating s)'.~tem, 
achieved. 

Consistency of an update to informal"" 
replicaled in e\'ery CPU depends 
atomicity (see Gray. )978). As .oolied 110 "' 
Tandem system, an atomic uodal"OI""'''1 
has the following characteristics: 

I. The update is completed" ithin ~ 
maximum time boundary. 

2. Either every CPU is successfully updated 
or no CPU is updated. 

3. The updates occur serially; ifthe~ 
data is updated sewral tjmes. the~' 
are the same in all CPUs. 

Replicated Information 

In many cases, the Tandem system doeS 
tralize system information. For exam~.!:~ 
data-base file or record is locked b) mw 
ing the lock information in a ,'m,II" I",""'" 
the disc process for that file or record. 

o l' M .'iYSTF\I S 
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The system information that is of interest 
in this article is that \\hich is replicated in 
e\1:f)' CPU. Examples of this information 
include: 

I. Device-process mappiflg. To acces a ter­
minal, a file on a disc, or a communica­
tions line, for example. a program must 
communicate with the process responsible 
for that device. In every CPU, the operat ­
ing system maintains a system table, the 
Destination Control Table (OCT), that 
contains the name of each 1/ 0 device and 
the process(es) that control the device . 

A device is often referred to by it s rela­
tive location in the OCT, so a given device 
name must occupy the same location in 
the OCT of every CPU. 

2. Process pairs. The process pair is a basic 
building block of fault tolerance on a 
Tandem system. Each fault-toleranl sys­
tem process or uscr application is a pair 
of processes, the primary and the backup, 
v.hich reside on different CPUs. The ocr 
contains the name of each process pair 
and location of each process in a pair. 
Each change in the system, such as a pro­
cess creation or stop, CPU failure or 
reload, or a "switch" of function 
between primary and backup processes, 
causes an update to the OCT. 

1 Notification o!process!oilure. Although 
a process pair is single-fau lt -tolerant, 
multiple faults can cause the process pair 
to fail. For multifauh tolerance, the pro­
cess' ancestor must be notified when the 
process is no longer executing. When the 
ancestor-descendent relationship is repli­
cated in every CPU, ancestor notification 
is guaranteed even in the prescnce of mul­
tiple CPU failures. 

4. System messoges. Various system events 
(e.g., CPU ups and downs and time-of­
da)' changes) are Jogged in a system-status 
buffer in every CPU. It is important that 
entries in this buffer be in the same order 
in all CPUs, so updates to the status 
buffer must be atomic. 

5. Timeo/day. Thccurrent lime of day 
should agree closely in all CPUs. Any 
Operation to change the time of day must 
be atomic . 

I U ,. f 1 A "I 0 F M 

6. Process-reload coordinatiofl. Multiple 
CPUs can be reloaded in parallel (by one 
or more RELOAD programs), but a criti­
cal section of each reload must be per­
formed serially and atomically. This is 
performed by notifying each CPU when 
this operation is about to occur; notifica­
tion must be atomic. 

Global Updates 
Replicated system information must bc 
changed only by broadcasting an update to 
every CPU . This operation is referred to as a 
globol update. 

A typical situation requiring a globa l 
update is the creation of a named process. 
To make the process name known through­
out the system, the operating system must 
allocate an entry in the Destination Control 
Table (OCT) of every CPU and place the 
name and process identifier in the entry. 
Since a process may be referred to by its 
relative location in the OCT, the process 
name must occupy the same relative location 
in the OCT in every CPU. 

Il is possible for two or more CPUs to 
attempt to create processes with the same 
name; all but one of these auempts must fail 
with a Nome Already Exists error. Thus, the 
global update must be atomic, so that the 
update attempts occur in the same order on 
all CPUs. 

In the past, global-update operations on 
the OCT were required to be single-fault ­
tolerant. Experience has shown that some 
critical operations, especially those that 
affect overall system consistency, should be 
muhifault-tolerant if possible. Thus, it is 
important that the OCT (as well as other . 
information replicated in every CPU) remal11 
consistent despite any number of CPU or 
bus failures. 

Although the intcrprocessor bus is fast 
and does not constitute a bottleneck, the 
global-update operation should use a mini­
mal number of messages . OCT updates are 
not very frequent, but that might not be the 
case for some future use of the global-update 
mechanism. 
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This article describes the method used in 
the GUARDIAN 90 operating system to 
update replicated system information by 
broadcasting an update to all CPUs. The 
following sections introduce those facHitie 
of the Message System that are important 10 

the discussion of global updates. For a more 
detailed description of the Message System, 
see Chandra, 1985. 

GUARDIAN 90 Message System 
The GUARDIAN 90 Message System manages 
traffic across the Interprocessor Buses, a 
pair of 100M-bit/second transfer media that 
connects aU CPUs in a single Tandem sys­
tem. Using a pair of these buses , any CPU 
can transfer a message to any other CPU at 
speeds approaching the speed of a memory­
lO-memory transfer within a CPU. Various 
levels of protocol to control message flow 
cause the effective transfer rate to be some­
what less than the raw bus speed, so the con­
servation of messages is an important factor 
in system performance. 

Three types of message are supported by 
the Message System: the interprocess mes­
sage, the PIO message, and the unsequenced 
packet. Each has different levels of protocol , 
and therefore, each has a different cost. 

The imerprocess message is the most gen­
eral form of communication, supporting a 
full requester-server protocol in which a 
requester process sends a variable-length 
request to a server process and receives a 
variable-length reply. A process may be 
~nding many imerprocess messages at one 
lime. 

In order to provide faulltolerance and to 
manage resources effective ly, a total of nine 
contro l packets, data blocks, and acknowl­
edgments may be transmitted for each full 
messa¥e; in addition , as many as five pro­
cess d ispatches are required. 

The PIO message allows a Pf'OCt5s 
municate \\ith the GUARDIAN 90 kemelli 
some CPU. This messagt has a rl\ed silt ' 
and the only reply is a simple ACK /N~ 
acknowledgment. A procrss may """""'II 
one PIO message at a time and must 
its completion, but such rtltssagesusualh 
require a very mall time to be J'I'OCtWd' 
and acknowledged. Within the rteti~'iog 
CPU, mutua) exclusion of PIO l'OeS.iI 
guaranteed; the CPU must completefro' 
cessing of one PIO message btfort it an 
receive another one. 

The unsequenccd packet is a simpiez 
sage consisting of one ph)'~ical bus padt! 
is used to ackno" ledge lht receipt or OIM 
message and for "I'm AJi\'e" "'::~~:I 
below). The unsequenced packe! 
explicit acknowledgment. 

The Message System guarantet5 ddi\~ 
of both inlerprocess messagrs and YIU III> I 
sages. An unacknowledged message ij 
retried unlil it is ad,nowledgtd or untilllr 
receiving CPU is declared down. 

Message Oroadcasling 
The GUARDIA 90 operating S)'Sttm coo­
tains a new Message )'Stem facilit)',I~ It­
Broadcast, that allows a proctss to ItQtrSI 
thai UPIO I Plomcssages(~hmNislir 
number of CPUs in the system) be sent b:l 
the Message System kernel. 

When 3 proce s \\ ishcs to send an ~I 
Broadcast, it specific a starting cPU, TIl: 
PIO message i sent to each CPU in a)ltCi­
termined order (see below). including I~ 
CPU that is sending the messagt. Finally, Ii' 
message is again sent to the starting CPtJ. 

While the messages are being sent,the 
process must wait and has no conlrol O\tr 
the operation. In particular, it may not C3lI' 
eel the operation before it is completed. TIll!' 
only action thal prevents the messages f~ 
being sent is the failure of either the send~ 
or receiving cpu. 

When the message is complete, a set or 
N+I acknowledgment codes (ACKsor 

ACKs) are returned to the originating JIll" 
cess. As described below, the N-'-I B~ 
facility also performs a fe" specialoper· 
ations that are required for sending global 
updates. 
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Although "broadcasting" orten implies 
sending messages to all CPUs at once, the 
N'-I Broadcast is actually a serial operation 
ilial appears to the sending process as an 
atomic operation. Unless the CPU to which 
t~ message is being sent is declared down, 
each PIO message must be accepted and 
acknowledged before it is sent to the next 
CPU. This serialization is required to pro­
vide fault tolerance of the Global Update 
Protocol. 

The Ntl Broadcast is more efficient than 
normal messages. With the laller, two pro­
cesses would be dispatched for each mes­
sage. With the Ntt Broadcast, each receiv­
ing CPU accepLS and acknowledges each 
message in an inlcrrupt routine. The sending 
CPU receives each acknowledgment and 
immediately sends the next message from 
an interrupt routine. Entering an interrupt 
routine suspends execution of other pro­
cessing, but does not cause expensive pro­
cess switching. 

Processor-suuus Consislency 
A fundamental basis for guaranteeing con­
sistency in the Tandem system is that all 
operating (or "up") CPUs must agree as 10 
which CPUs are up. This is referred to as 
proctSSQNtotus consistellcy. Each CPU 
maintains a list of other CPUs Ihat are con­
sidered to be up. The system's processor 
status is consistent if every up CPU has an 
identical list of "up CPUs." Processor-status 
consistency is achieved through the Message 
S)'Stem's "I'm Alive" protocol. Once a sec­
ond, each up CPU in a system sends an unse­
quenced "I'm Alive" message to every other 
up CPU. Every two seconds, each CPU 
brings down every CPU from which it has 
not received an " I'm Alive" message in the 
Iastlwo-second interval. 

Since a CPU never sends an "I'm Alive" 
message to a CPU mat it considers down, 
this simple protocol ensures symmetry. 
Except dUring a shon period following a 
cpu failure, any two CPUs have identical 
status information about each other ' either 
~h considers the other to be up or ~ach 
thlOks the Other is down. 

J U , E 
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Once a CPU has been declared down by 
the system. it must be reloaded in order to 
rejoin the system as an up CPU. 

Although it is expected that processor 
status may be inconsistent for a few seconds, 
the system eventually achieves a consistent 
state. The short period of inconsistency is an 
important consideration when global 
updates are performed atomically. 

Overview of the Global 
Update Protocol 
The Global Update Protocol (GLUP) is 
Tandem's multifauh-tolerant mechanism by 
which an atomic update can be broadcast to 
every CPU in an efficient manner. GLUP 
components include state information main­
tained in each CPU, a standard global­
update message Format, and a set of rules 
that specify how global updates should be 
processed and what steps should be taken 
when failures occur. 

A primary element of the GLUP state is 
the identity of a unique CPu , known as the 
locker. As is described below, all crus must 
agree as to which CPU is the locker. 

The fundamental operation of the GLUP is 
to use the N+l Broadcast mechanism to send 
the same global-update message to every 
CPU. The first message is always sent to the 
locker, which ensures that only one global 
update is in progress at any time. The loc~er 
either allows the update to proceed or nOti­
fies the sender that an update "collision" 
has occurred. A coll ision terminates the 
broadcast; the sender must retry the update. 

Iflhe update is allowed to proceed, the 
message is sent to every other CPU and, 
finally, it is sent once more to the locker. The 
locker recognizes the second copy of the 
update as notification that the update is 
complete. 
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GLUP,on/er. fhe ()t'der Q{ 
CPUsjora global II/Xlufe. 
This order begins lI'ifh fhe 
GLUP·LockerUlld 
includes each CPu. The 
seqlleflct'isL, L+t, L+2 . 
.... N-l. O • ... , L-I. 
· ... here L is fhe number Q{ 
fhe locker CPU un(1 N is 
fhe number qf CPUs. 
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The following sections explore various 
aspects of the GLUP, including how consi -
tency is maintained when ( I) multiple send­
ers attempt an update atlhe same lime, 
(2) one or more CPUs fail during an update, 
and (3) a CPU is reloaded and must be syn­
chronized with the other CPUs. 

Technical Description 
The GLUP state consists of the following 
elements: 

I. A designated CPU, known as the GLUP­
Locker, !O coord inate gJoba l updates. 
The first-loaded CPU is the init ia l locker. 
II remains the locker until it fails; the 
remaining CPUs then select a new locker, 
as described below. 

2. A well-defined ordering of all CPUs, 
known as the GLUP-Order. This order 
must begin with the GLUP-Locker and 
include each other CPU exactly once. Any 
ordering would do, but for simplicit y, the 
chosen sequence is the natural ordering: 
L, L+t. L+2, .'" N-J. 0, ... , L-J 

where L is the number of the locker CPU 
and N is the number of CPUs. GLUP­
Order is illustrated in Figure I. 

Figure 1 

"'" CI"" CI'U 2 

c 

3. In each CPU, a one·y/ord .semapiloR 
<?Ll!P-Lock, which contains either .j, lCI 
mdlcate that the update loc~ is nOlIrkl 
or a process ID (PI D), 10 indicatr thai ~ 
lock is currently held by that Procts.s. 

The value of GLUP-Lock in Iii< loa. 
CPU determines whelher the updatrixt 
is held, The GLUP-Locks in Iile od", 
CPUs are, however, essential for 1'tCO\'ft'j 
of failures. 

4. In each CPU, a one·word GLUP 5eQum:r 

number. GLUP·Seq. Whennrr tile Gll'P­
Lock is not held (in lhe GLUP-Lock" 
CPU). all CPUs have identical GLUP· 
Seqs. During an updatc, each CPU thai 
receives and processes the update mes~ 
increments its GLUP-$cq by I. 

5. In each CPU, a small array, GLUP· 
Updote, that contains the lasl updalelXQ­
cessed by the CPU. This is simply a ~ 
of the PIO message that was sent b)'lIr 
updating CPU. 

A standard update message contains feu 
elements: 

I . The process 10 of the updating ~~ 
2. A " lock bit." 10 distinguish a "lading 

updale" from a nonlocking updatr. 
3. A GLUP-$cq copied from the sending 

CPU, 

c,'" CI'U • "'" . 
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4 A fLxed·length array containing a descrip­
. lion of the update; the format of this 

arraY depends on the type of update. 

Th.'update message is a special type of the 
PIOIT<SS38' described abovc. The GLUP 
st31eand the sending of an update me sage 
areillustr3ted in Figure 2. 

SUndin! Update Sequence 
Th.' normal steps (in the absence or failures) 
for performing a global update are: 

I. A process (in the "sending" cPU) con­
structs a message containing an update 
and a GLUP-Seq copied rrom the sending 
CPU. The message is given 10 the sending 
cpu's Message System as an N+I Broad­
cast. The process is blocked. 

2. Th: sending CPU sends the updatc mcs­
sage to the locker CPU. This first message 
cfan "#1 Broadcast is marked as a "lock­
ing update" message. 

3. The locker CPU examines the GLUP-
Lock. If the semaphore is already held, 
the message is simply NACKed; the N+t 
Broadcast is terminated in the sending 
CPU and the sending process is notified. 
Typically, the process delays for one hun­
dredth of a second and reattempts the 
updale. 

4. The locker compares the GLUP-Seq in the 
message with its own GLUp-Seq. If they 
OO~I malch,lhc message is NACKed. 
whICh also tenninatcs the broadcast. 
~nally. ~hc locker ensurcs that the update 
~ a lockmg update; a non locking update 
• also NACKed. 

). ;ne ~ocker CPU setS the sending process' 
JO m the GlUP-Lock, increments its 

GLUp.Seq by I, and saves the update 
~ge in its GlUP-Update storage. It 
then processes the update and ACKs the 
trtssag,. 
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Figure 2 
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6. The sender CPU sends a non locking 
update to every other CPU in GLUP­
Order. When the update is received, each 
CPU sets the sending process' PID in the 
GLUP-Lock, increments its GLUP-Seq by 
1, and saves the update message in its 
GLUP-Update storage. It then processes 
the update and ACKs the message. 

7. Finally, the sender sends a nonlocking 
update message, recognized as thc 
update-termination message, to the locker. 
The locker stores - I (meaning unlocked) 
in GLUP-Lock and ACKs the message. 

S. The originating process is unblocked and 
allowed to execute. The update is 
complete . 
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Flgure 2-

The GLUP siale and the 
spnding of an update 
message. The message 
conSiSlS oj (he process I D 
of Ihe sending process. 
(he "kx:k bil" which 
distinguishes a locking 
updale jrom a nOl/locking 
update, a GLUP-Seq 
copied from Ihe sending 
CPU, and a fixed-Ienglh 
array containing a 
descriplion oj the updOle. 
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figure 5. 

(a) The locker CPU dies 
qjier CPUs J, 1, and J 
haw rereil'ed an update 
f rom CPU 3. (b) The nell' 
locker (CPU 2) resends 
the last update to Of/liP 
CPUs. CPU 3 ignores the 

4. When the last message of the broadcast is 
re·sent LO the new locker, it resets the 
GLUP-Lock semaphore to -I. ew 
updates can now be accepted by the new 
locker. 

Since the new locker is always the next 
CPU in GLUP-Order following the old 
locker, no CPU oilier than the old locker has 
received any update that has not been 
received by Lhe new locker. 

~ 
,. I 1 

"''' 

IIpdate because it is 0 
(Jup/icme of the previous 
updme, CPU 0 ~pts 
eilher Mes.soge 1 from 
CPU 2 or Message <I from 
CPU 3, depending on 
which orr;I'('s first; ilthen 

, 11 • 
"'. ~ 

, r""-....... 

ignores Ihe Olh" m~ge. 
When the new kxker 
sends Message J 10 
itself. il fl'/N5i'.$ the 
GLUP·Lock. 

When ,he new locker broadcasu th. .. 
update, the originating CPL may stiD be 
sending ,he update. Upda,es rrom ,he", 
locker may o\'enake updates from ~1X1t 
nal sender; some of the sender' upda[~ 
get ACKed due lO mismatching GllP.~ 
and duplicate updates. Thus, the sender 
ignores NACKs (0 broadcast ~00a 
.han ,he locking-upda,e "",sage. Ont:t,. 
sender is through broadcasting, the updaJt 
has been comple.ed. 

On .he o,her hand, o.her CPUs m.1) "" 
locking update to the ne\\. locker bd'orttlr 
new locker discover the old locker 15 cbn. 
These updates are terminated immedial~ 
because any CPU NACKs a locking update ~ 
it doesn't consider itself to be the ladt!'. 
updating processes continue to reuytbrir 
updates until the new locker discO\'tt\ ill 
true identity. resends the last update, atKI 
permits new updatcs to be procrned. 

Figure Sa illustrates the failure of the 
locker CPU af,er CPUs I, 2, and J !w. 
receh'ed an update from CPU 3. ln 
Figure Sb, ,he nf" locker (CPU 2) """'" 
,he las, upda,e to all up CPUs. CPU J 
ignores the update because it is a duplical~ 
of the previous update. CPU 0 accepts eilM 
Message 2 from CPU 2 or Message 4 froo! 
CPU 3, depending on which arrives first: it 
then ignores the other message. Whmtbe 
new locker sends Message 3 to i~lf, it 
releases the GLUP-Lock. 

Failure or Another CP 
If a CPU other than the sender or the locker 
fai ls, the update proceeds normally. The 
Message System either succeeds or fails 10 

transmit the update 10 the failing CPU, bUi 
in either case, it continues to send theupdalt 
10 all other CPUs. 

Multiple CPU Failures 
The most interesting cases of muJtiple CPt 
failure are (I) concurrent failure of the . 
sender and locker and (2) concurrent fadUlt 
of the current locker and the CPU that 
should become the new locker. The remain· 
ing cases are simply dealt with and artleft ~ 
an exercise for the reader. 
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In the event of a concurrent fai.lure of th~ 
seOOer and locker, if the sender fa lls before II 
has~ucctSsfully updated the locker. the 
updale does not succeed because no up CPU 
t\'tfacttpIS the update. If the sender fai ls 
aflel it has updated the locker, the locker 
tnows aboollhe update and tries to resend it 
10 tlt remaining CPUs. If the updatc is 
receirtd by the CPU that will become the 
[lew\od;er, either from the original sender or 
b)·tlt locker ",hen the sender fails. the 
ujX!atecommits; when the old locker fails. 
lIrnew locker resends the last updale to all 
• herCPUs.lfboth the sender and old 
lod:er fail before either of them send the 
update to the new locker, the update is con­
fined to down CPUs and might as we ll have 
not happened. 

Theconcurrent failure of an old and new 
Ioder is simply handled because updates arc 
ahlil)"S sent in GLUP-Order and CPUs 
b«oo1ethe loder in GLUP-Ordcr. The CPU 
[tIt in order following the nev. locker 
IX'I:omes the locker, and if the sending CPU 
(II 00f of the locker CPUs follo\\ ing the fail­
ureofthe sending CPU) upd3lCS this CPU 
before iltakes o\er as the new locker, the 
UjXIalecommits; otherwise. no up CPU is 
updated. 

Failures of three or more CPUs are easily 
troken OOv.n into the previously described 
cases. ~essential rules are: 

I. If the sender CPU does not fail the 
update is successful. ' 

2. If the sender CPU fails, the update is suc­
cessful if it is transmitted to a CPU Ihal 
becomes the locker and docs nOI fail · 
OIl'rrwise,the update is confined oniy to 
IkNn CPus and has no effect on the rest 
ofthes)"Stem. 

Reloading and Synchronizing a Down CPU 
In the Tandem system, a down CPU is 
reloaded in the following manner: 

I . The CPU is rese t and placed in a state to 
receive a memory image across the inLer­
processor bus. 

2. A RELO~D process is cxecuted in an up 
CPU, whIch sends a memory image of the 
GUARDIAN 90 kernel and some special 
processes LO the down CPU. It also sends 
a message to every other CPU noti fy ing it 
to expect the down CPU to come up . 

3. The RELOAD progra m nolifies the CPU 10 
begin executing; its Mcssage System is 
activated 10 send " " m Alive" messages 
and to rece ive other messages, part icu­
larly global updates. Every other CPU 
recognizes that the down CPU is now up 
and begins 10 exchange " I'm Ali ve" mes­
sages with it. 

4. The RELOAD program sends somc addi­
tional shared data messages (e.g., the 
ocr) to synchronize the reloaded CPU 
with the system. When the CPU is fully 
synchronized, it starts executing 
processes. 

When a down CPU is rcloaded , operations 
must be carefully sequenced 10 ensure that 
the CPU has exact copies of all shared data 
and that no significant updates are missed 
during the synchronization phase. 

The reloading strategy used in the 
GUARDIAN 90 operating system assumes 
thaI (1) the copying of shared data from the 
reloading CPU to the reloaded CPU is an 
operation that can be ret ried and (2) shared­
data copy operations req ui re less time than 
the typical time between global updates . 

U \ E I ~" \ . T"'1I)IM SlSTEMS RFVI1v.' 

Operatillg System 

83 



aI'''" 
OIH!ffllillg System 

In the sending (reloading) CPU, the Basically, the shared-data copy Operation ( 

RELOAD process performs the following is protected by the GLUP·Seq mechanism. 
operations: No global update can occur between the 

I. It obtains a copy of the current beginning of the shared-data copy and 
receipt of the make-shared-data-valid updaIe 

GLUP-Seq. 
in the reloaded CPU. AI thai lime, the repli· 

2. It sends shared-data copy messages to the cated data in the reloading CPU and the 
reloaded CPU. These are not global- reloaded CPU agree and are kept in agree· 
update messages and are not subject to men! by the standard global· update 
the GLUP processing described above. mechanism. 

'Fi;; 3. II sends a global update to all CPUs J f the amount of replicated data is too 
(including the reloaded CPU) that con- large, then it will be necessary to divide tile 
tains the copied GLUp-Seq and the shared data inlo sections, and each section 
update operation code to make the shared will require its own shared-data-is-valid flag 
data valid. and make-shared-d3ta-valid global-update 

4. If the global update fails due to an operation. 
expired GLUp-Seq or update colli sion, it One must be careful that the CPU being 
returns to step I. reloaded does not reference shared data 

In the reloaded CPU, the GUARDIAN 90 
before it is validly copied from the reloaded • 

kernel performs the following operations: cpu. In GUARDIA 90, this is easily actorn· Q 

plished by disabling process dispatching • 
I. If a normal global update is receivcd, it uOli! all shared data is \alid. • 

L- consults a local flag, shared data is \'alid. Finally, if some other CPU dies during a 
This flag is not set when the CPU is reload operation, the CPU being reloaded - reloaded; if it is st ill not set, the kernel kills itsclf unless all of its shared-data-is-

AllY" discards the global update but ACKs it as valid flags have been set. 
Thee. if it were acceptable. , 
Jor Ihl 
JULI. 2. If a shared-data copy message is received • 
andC from the RELOAD process, the CPU stores Performance STAN. the shared data in the proper table . The 

CPU mUSt be prepared lO receivc dupJi- Figure 6 compares the performance of the • 
DCT update operation for both the Al0 · caLe shared-data copy messages and can- 1 

eel the effect of all such duplicates except GUARDIAN and BOO GUARDIAN 900perat-
ing systems. The A20 version obtains a • the last. 
global semaphore before sending the update 

1 

3. When the make-shared-data~valid update to every CPU. In a single-CPU system, 00 
is received, the CPU sets the shared-data- messages are required to obtain the serna- • 
is-valid flag and processes all subsequent phore, so its performance is equi\'alent to 

, 
global updates in a normal fashion. Note that of GUARDIA 90. In a multiple-CPU 
that it is the responsibility of the RELOAD sys tem , obtaining the semaphore causes tile 
program (by using a global update) to fixed overhead of A20 GUARDIAN to be 
determine that the reloaded CPU has much greater than that of GUARDIAN 90. 
received the current replicated data. 
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~usion 
tGlARDlA\~operaling SYSIC~ incor~ 
ytt:Ialt" algori~hm for updatln~ repl! · 
uddala in adistnbuted s),stem with no 
~m:morY. This algorithm is very effi­
~wiiX'O"ides consistency and atomicity 
:5jieany number of CPU or link failures. 
~akailbrn perform, considerably beller 
IlIIICoo\'e!ll ional, semaphore-based algo­
thmtbai SUf\;\'C$ only a limited number of 
imtS, 
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flgur. e . 
A romptmSOfl Q/ the 
tlapsed lime/ora global 
updote on the AZO 
GU4RDIANand BOO 
GUARDIAN 90 op4!rul-
1111 systems. Tht' A 20 
version obtulns Q g/ooo/ 

2 , • , 
Numbtt" 01 CPU. 

semaphore before sending 
the update 10 every CPU. 
III 0 single-CPU system, 
no messages ore required 
10 OblUifl the semaphore. 
$0 irs performance is 
eqlliwJlent 10 lhot qf 
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GUARDIAN 90. In a 
multiple-CPU system, 
obtaining the semaphore 
couses the faed overhead 
Q{ A20 GUARDIAN 10 
be much greater Ihan thai 
Q{GUARDlAN90. 
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Changes in FOX 

he low·levcl handshaking 
protocols used by the 
6700 Fiber Optic Exten­
s ion (FOX) have been com· 
pletely reimplemellled in 
the BOO soflware release to 
provide beller monitoring 

of avai lable paths to different clusters. A'i 
the changes make BOO FOX incompatible 
with the A06 and A20 versions of the 
GUARDIA operating system . it is necessary 
for users to upgrade all of the systems on a 
FOX ring to GUARDIAN 90 (BOO release) at 
the same time. (Future modifications to !-OX 
will remain compatibile with GUARDIA 90.) 

This article describes some of the fealUres 
of the new FOX protocols and their effect on 
FOX users. 

FOX Handshaking Prolocols 

The software that controls the operation of 
a FOX ring includes the IPO monitor pro. 
cess, EXPAND line handlers, and the 
Message System. The interprocessor bus 
(IPO) monitor processes in the various sys­
tems in a ring communicate with one 
another using low·levcl handshak ing proto. 
cols. The network line handlers on A06 and 
A20GUARDIAN/ EXPAND systems also com. 
municate using handshaking protocols. 
These prOiocols are used to establish a net ­
work connection between FOX s)'Slcms. 

------
T A ~ 0 F M S, S 1 f " S 

Original Protocols 
The origina l (A06 and A20) protocols 00 ~ 
consider any charaeterislics of the uoderl}· 
ing physical hardware of a system, such ~ 
the bus controllers and the ring lopolog). 
The information available 10 the IPB moni· 
tor process and FOX line handlcrs do not 
permit the sofl\\are to deduce the layout oi 
the lOX ring. These protocols are adequate 
10 establish a network connection, bUlIt.e:. 
do nOl permit the localization of failing 
componcnlS \\ hen hard\\are failures occur. 
especially for rings with morc than t~O oc 
three systems or for rings \\ ith s)~tcrm ph!\­
ically far apart. 

Nc\\ Prolocols 
The BOO protocols provide a better mood of 
the ring configuration of a FO:-" network to 
aid in the diagnosis of problems and also ((I 
provide beller recovery from errors. Each 
I PB monitor process monitors all four palID 
(X LEFT. X RIGHT. Y LEFT. and Y RIGHT) 
and maintains a vie\\ of the FOX ring con· 
sisting of an ordered list of all s),stems thai 
are up on each path. Since a FO)" ring con· 
figuration may change as clustcrs arc cold 
loaded or taken do\\n. each IPO monitor 
process builds up the view dynamically fmII 
the information exchanged by the lo\\·!e,t! 
protocols. 

Each IPB monitor also monitors the bill 
controllers and the FOX links for errors. Tlr 
bus-controller microcode makes informatial 
available to the IPB monitor about theslal~i 
of the links and error counts. The IPS mOIll' 
tor uses this information to detcnnine 
whether the link is usable or not. For exam' 
pic, if it detects a link that is cross' wired 

RI""" ' Jl" , .. 



jfrorn the X bus to the Y bus) or if certain 
error counts (such as that for dropped pack­
d5)exctedaccnain threshold , it declares 
IIr link unusable. When this happens, .Ihe 
information is propagated over the enure 
fO,\ ring so thai no more message traffic is 
~t on the bad link, minimizing error 
""",,,. 

This mechanism also enables a link to be 
rellx)':ed from service for maintenance or 10 
insert a llC\\ system onlO the ring \\ ithout 
causing an e'(ccssive number of errors and 
~at other systems on the ring. The IPB 
monitor process also aUlOmaticall y declares 
t«Hlll [0 be usable if the error condition 
disappears; for example, if the cross-wired 
~nk is rewired properly. The error informa­
tion is also made available to users through 
Communications Management Interface 
(CMJ)Status-display commands. 

An additional benefit of Ihe logical-ring 
roofiguration information is that the Mes­
sageSystCffi auempts to use the path wilh 
t1rsmal1est number of intervening systems 
fir message communications. 

nH~.-ox Diagnostic Subs)stcm 
OOlFOX also supportS the Tandem Mainte­
nance and Diagnostic System (TM OS). The 
ffiX diagnostic subsystem allows a Tandem 
CUStomer engineer (CE) 10 take a bus con­
troller (lBU) OUt of service and diagnose 
~ors, using downloadable microdiagnos­
lies. Normal message trafric continues 
thl'OiJgh the other controller. This is useful 
in localizing hardware f aulis. 

~eed ror Simultaneous 
Upgrade to GUARDIAN 90 

Tk moSt imponant effeci of I he new protO­
cols on FOX users is thai in order to use 
r:c>x with GI.1\RDIAN 90; all systems on the 
~must be upgraded to GUARDIAN 90 
SUttultantously. This is necessary because the 
~ prOtOCOls arc incompatible with the old 
!lles. As explai ned above the information 
~chan ed . ' . g 111 BOO FOX is much more elabo-
rate than Ihal exchanged in A06 and A20 
~x. Also, t~ new prolocols now require 

COOperat ion of other IPB monitors. 

l"II~'TA/'oOIM 

b 

Dircct-conneCI EXPAND Line Handlers 
Users who do not wish to upgrade all sys­
tems to GUARDIAN 90 simultaneously can 
use other communications lines (e.g., direct­
connect EXPAND line handlers) to maintain 
~ommunications until the complete upgrade 
IS made. 

L.eaving 000 EX IJAND Linc Handlers Down 
A GUARDIAN 90 system cannot commu­
nicate over a FOX ring with an A06 or 
A20GUARDIAN sys tem. Similarly, a 
GUARDIAN 90 system cannot communicate 
with another GUARDIAN 90 system if the 
twO are separated from each other on the 
FOX ring by an A06 or A20GUARDIAN 
cluster. I 

If the EXPAND line handlers in the 
GUARDIAN 90 systems on a ring are not 
brought up (with the Peripheral Ut ility Pro­
gram, PUP), however, GUARDIAN systems 
can use the FOX ring 10 communicate with 
each other. This works even if these clusters 
are separated from each other by 
GUARDIAN 90 clusters. Similarly, if the 
GUARDIAN 90 systems on a ring are adja­
cent to one another (i.e., there are no inter­
vening GUARDIAN systems) and the 
EXPAND li ne handlers at the GUARDIA N 
systems are not brought up with PUP, the 
GUARDIA N 90 systems can com municate 
over the FOX ring. 

Users can thus usc the ring in a limited 
fashion before they have upgraded all sys­
tems 10 the GUARDIAN 90 operating system. 
Caution is recommended to users who do 
this, however, si nce unpredictable resulls can 
occur if both GUARDIAN/EXPAND and 
GUARDIAN 9O/EXPAND line handlers arc 
brought up with PUP simultaneously. Users 
should also note that some eM I display 
information may be spurious if a ring con­
tains both GUARDIAN 90 and GUARDIAN 
operating systems. 

'In I~ r(:\I or Ihi< ""'lion. GU.4RJ)/-" i, ,)"""""'w"" .. illl 106 ,-1M 
GIk1Rt)M \. 
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Other External Changes 
Other external changes in the BOO release of 
FOX inc lude changes to SYSGEN modifiers 
for the IPB monitor and the FOX l ine han­
dlers, and changes to C!\ II commands and 
displays. The SYSGEN modiriers have been 
changed 10 delete certain modifiers for the 
line hand ler that are specific 10 FOX (e.g. , 
NEXTSYSCLUSTER). 

The eM ! commands and displays arc 
modified to include the new information 
ava ilable [0 the IPB monilOr process. For 
example, the CfI.'II command STATUS 
SUBNET now d isplays 3n ordered view of the 
ring from the loca l system on each bus and 
d irect ion, as we ll as a n indicalion of whe ther 
the ri ng is comi nuous or there is a break. H 
the ring is broken, the reason for the break 
is also displayed (e.g., DOWNED BY OPER· 
ATOR). This information is useful to opcr· 
at ions and service personnel. 

Conclusion 

The new FOX protocols make the FOX ring 
easier to diagnose and maintain . Error han­
dling and recovery are also improved. Trese 
prOlocois can no\\ be enhanced in future 
releases ,\ hile their compatibility with the 
GUARDIA ' 90 operating system is main­
tained. The implementation of these proto­
cols results in an incompalibiiit) between 
A06 and A20 GUARDIAN and GllARDlA\IXI, 
but this one·time incompatibility i!l justified 
by the extended functionality and future 
expandability of FOX. 

Adt_Jttlj(lTK'n t, 
Tilt au thor 1I 0001Iti li l t 10 ad.OO\\lnIJIC Ih.:h I ~I'IOI\ help .. 
de\ianilllillt 1100 FOX JlfOiocoh_ 
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c\\ high-performance 
\crsions of the BI\CKUI' 
and RESTORe progralllli 
arc a\ ailable 3!1 part of 
the: GlN\RDIA N 90 operat· 
ing syMem. Ot\cKUP2 is 
used to copy disc tiles 

OOlGmagnetK tape; RESTORE:! is used to 
remm!hose files 10 disc. 

B<:,LPI and RESTOREl handle bolh 
DPI ami IJP~ filfi, bUllhcir significant per­
Ioor.m.-c improvements are most c\ ident 
'ithwIaU(l'. Still available, BACKLI) and 
RESTIl!E handk only DPI meso 
.Tl'tj:tJformance impro\,ements achic\cd 

'ilh BACKlP2 and RESTORE2 arc a result 
,I: 

I. llIIJ'Olt<\ ",II"are (DPl. BAC~ UPl. and 
RESTOREl). 

1. [lItjlO\'tti hardware (3 107 disc cont roller). 

1.lm~OIoo microcode (3206 lape 
"""~Ier). 

D Results of performance tests show that 
·<:'LPl perlorm 2' DP:l flies sup 10 .5 limes faster on 
~ I than BACKUP performs on 01)1 
nme; :mOREl (on DPl me,) is up 10 4.5 
Also as""han RESTORE (on DPI Files). 
Dr"; Usmgan imprQ\ed algorithm 
~IOREl r • 
lXlOPl1il per orms up to 1.6 limes faster 
.. 'es Ihan RESTORE does. BACWPl 
DP] ~~KI,;P have identical performance on 
Figure I~~. resuhs are illustrated in 

, I , 

b 

lmproved Performance 
for BACKUP2 and RESTORE2 

This art iclc discusses the performance 
analyses made on BACKU P, RESTORE, 
IlAC KUP2. and RESTORE2 and quant ifies the 
improvements result ing fro lll each of the 
hardware and software features ment ioned 
above . II ends with a mention of areas for 
possible fUlure improvcment. 
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fa) Performance compar· 
ison of backup oper­
ations on large files . 
BACK UP U'il8 Tun on 
DPI Jiles. and 
BACK UP2 was Tun 
fi rst onDPI and then 
on DP2files. (bl The 
same comparison for 
restaTe operations. 
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BACKUP2 Performance 

Backing up a disc file involves: 

I . Opening the file. 

2. Writing the file label to tape. 

3. Copying the contents of the file to tape. 

4. Closing the file. 

The performance analysis of BACKUP was 
restricted to [he backing up of large files, as 
that is the area in which the greatest improve­
ment could be made. Also, for the purposes 
of this performance study, the backup pro­
cessi ng was considered to be the copying of 
the contents of the di sc file to tape. The over­
head associated with opening and clos ing 
files was not measured. 

Dump-loop Algorithm 
The dump loop is the code \\ ithill BACKUP 
thai is responsible for copying the file con­
tent s. The algorithm it uses (minus the 
detai ls of loop termination and buffer man­
agemelll) call be described as fo llows: 

LOOP 

READ( Discfile. Buffer, Wail ); 
AWAtTIO( Tape): 

! Compute tape record ehcd,sum for "Buffer". 

WRITE( Tape. Buffer. Nowail ): 

ENDLOOP: 

The performance analysis "as based on a 
comparison of the time required 10 read a 
block of data from disc and the time needed 
to writ e the same data block to tape. Since 
DPI disc reads (and writes) arc limited to 
4K bytes, eight disc reads were required to 
fi ll a 30K-byte tape record. 

TAN\} I- M 

The BACKUP dump-loop algorithm can ~ 
"iewed as a combination of two 'lemi· 
independent processing loops, the 
DISC"'LOOP and the TAPE"LOOP. The 
DISC."'LOOP consists of all the processing 
reqUIred to get a data block (\\hich \\as to 
be wrillen LO tape) from the di~c; the 
TAPl:."'LOOP comprises the processing 
between tWO tape writes. These loops operate 
at different speeds and are synchronized b\ 
the A\\AITIO procedure. . 

For the DISC"'LOOP, it was assumed thaI 
the "nowait" tape \\rite \\ould be completed 
\\hen AWAITiO was called. The DISC"'i.QOP 
time would be its best-case time. 

The DISC"'LOOP consists of the ...... ait" 
disc read and other components that are 
executed serially with it in the dump loop. 
These other components are the proct!lsing 
time required by A\\AITIO. the checksum 
calculation of the tape record, and the nQ\Iatt 
tapc write call (but not the time rcquirtd~­
the tape process to \\ rite the record) . 

Similarly, for the TAPE"'LOOP, it was 
assumed that the disc read \\ould be 
finished before the tapc \Hite finished. TIt 
TAPE"'LOOP consists of the no\\ait tape ",rite 
call, the time required by the tapc proces,to 
complete the tape: \\ rite. the processing lim: 
required by A\\AITIO, and the checksum cal· 
culation of the tape record. 

Software measurements for \arious com· 
ponents of the disc and tape loops, along 
with calculated timings for the channel. disc. 
and tapc hard\\'are, \\cre used to obtain the 
times required to execute the disc and the 
tapc loops for 30K-byte blocks. With a 
TRI DENT tape: drive, 3106 disc controller, 
4104 disc drives, on Stop TXP proct~· 
and 800 software. the time required 10 
execute the DISC"'LOOP was 211 .7 ms and 
the time to execute the TAPE"LOOP was 
125.4 ms. 

For BACKUP, since the DISC"LOOP tale 
more time to process a blod than the 
TAPE"'LOOP, the rate at which the data can 
be backed up is determined by the ratC at 
which the DISC"'LOOP can get data from 
the disc. It look 211.7 ms to process ont' 
30K·by,e block: ,herefon:. ,he prediCled 



._' dalaratc .... as 1.45.000 b) ICS , "iCcond. 
~~ fa\orably '" ith the mca~ur~ 
!!J!ltof 1,w,£XXl byles ,' r,c(.'O.nd. \ ~~~d.allng 
;riJ)ilof the ba~kup operation U:"JI.-U 111 

x:~ 

UIlBllKIO • . 
~!lrflJtgOinganaIY~I~.1I \\3., clear that 
:dsC"lOOP nctded 10 beimpro\c'~d 10 
,,"upba.iiup processing. rile dump-loop 
... :Jiharnstxamined, and it \\3S nOlcd 
mi._gh the tape record \\as \\ rillcn 
liiarfiIeS)'~tffi1 "rite. the di~ record 
Airtad 'Ailh eight reads. One obvious \\ay 
,If"d up tl1e DlSC'LOOP "ould he to 
• tlr algorithm to usc only one disc 
«alkre'otr) iteration of the dump loop. 
m1:"P~\I .. asdesigned to do this by mal<.ing 
Of"tb:DP!BlJlK IO feature. \\hich 01110\\\ 
1lr.flblo be read and \Hitten in 3m~ -bytc 
f.urd >ize\. 

luidilion 10 allowing large record size", 
llltre:llarKi .... riucn. OPl BUl"IO pro\idcs 
&i~tial data acms. The OP2 disc 
~\~~cachc ",hen it is performing 
or.lIKJO.Ii ~assumcd that (he number 
d l1ir hill would Ix 100 10\\ for 01)2 
a.UK)to justif)- the performance penall) 
II 'OItIting ",he. 
~ •• Ihe f1~ S)""" docs not buffer 01'2 

1~k)recooI~. For normal readli and 
lTJies, IRe File S)'~lcm 'iCnds and receives :1 from temporary buffers in its private 

space. For UP! BULKIQ, the File System 
fIKb ~ receheHecords directly from the 
~ sdata ~pace, eliminating the time :rrm to copy the data into its 0\\ n 

l!\.IProgramsthat usc DPl UULKIQ 
""'be "1 _ Jr\VI eged and must obey certain 
·"on rules.) 
I;~ both tlte DISC'I OOP and the 
~ Include time to compute the 
.. =~hecksum. With DPl, this check­
....0 lion tan be eliminated ho\\e\'cr 
~ pl " 
~iI -computes the checksum of e\cry 
~~eads. For BULKREAO. it combines 
~tbe Wm~ o.f ailihe sectors read and 
dt~~Ultmg checksum bad •. Thus. 
B'(KlPl m returned by BULK READ to 
... ,. - 'P<tds up both the DISC'LOOP 

ua:TAPE .... LOOP. 

, " 

b 

\Vith the DP2 BULK'Q fealure, the 
01 C "'LOOP time was 170.5 inS and the 
TAPE .... ' OOP time remained 125.4 ms . This 
made the backup speed 180,000 bytes/ 
second . providing approx imately a 300'/0 
improvement. 

Note that even \\ith DIl2 BULKIO, the 
DISC .... I OOP time was longe r lhan the 
TAPE .... 1.00P time; hence, the DISC .... LOOP 
time needed to be reduced even further for 
beller performance. 

Longer Tr'J nsfers 
An ana lysis of the different componcnts of 
Ihe DISC .... LOOP showed Ihal a long time was 
spent in ge lling the data fr0111 the di sc 10 the 
processor's memory. Also, although the use 
of I)P2 BULKIO reduced the number of logi ­
cal reads of the disc file from eighl 10 onc 
for every tapc block write, it st ill look eighl 
disc accesses to geltbe data for one tape 
record from the disc. The amount of time 
required for each disc access had the follow­
ing componems: 

I. Seek time. the amount of lime required 10 
get the disc head to Ihe correc t cylinder. It 
is usually zero for backup. since the data 
is read sequentiall y from disc. 

2. Latency lime, the amount of lime spen~ 
waiting for Ihe correct sector to bc POSI­

tioned under the di sc head. 

3. OtlfO-lraTls!er lime, the amount of li.me 
required to transfer Ihe data from diSC 10 

the disc-controller buffer. 

4. Channel lime, the amount of time 
required 10 burst the data from the con­
troller buffer to the processor over the 

channel. 

An analysis of the components revealed 
that the amount of time required 10 a~cess 
data from disc could be reduced conslde~abl y 
by reducing the number of accesses reqU ired 
to gel 30K bytes from disc. If the number 
\\crc reduced from eight to one, Ih~ 1~lency 
time for seven accesses would be el11111natcd. 
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It was possible to do this with the longer 
transfer capability of the 3107 disc controller. 
DP2 uses this capability when performing 
BULKIOs. With a 3107 controller, the 
DISC"LOOP took 112.4 ms, making it 
faster than the TAPE .... LOOP. This meant 
the backup speed, now determined by 
the TAPE .... LOOP time , was 243,000 
bytes/ second. 

Larger Channel Burs ts 
The bOlileneck had shirred from the 
DISC .... LOOP 10 the TAPE .... LOOP, requiring a 
reduction in the lime taken by the latter. An 
examination of the components of the 
TAPE .... LOOP revealed thaI 78010 of the 
TAPE .... LOOP lime was consumed by hardware 
componenrs. in transferring the data from 
the CPU to the tape-controller buffer and 
wriling Ihe lape record to tape. 

The lime required to transfer Ihe data 
from lhe processor to the lape controller 
could be reduced considerably by transfer­
ring the data in larger bursts, since the tape 
controller uses 16-word bursts and has a 
large hold-off time after every burst. A chan­
nel burst size of 128 words resuited in a 
TAPE .... LOOP time of 78.5 ms while the disc 
time remained at 112.4 ms, making the 
backup speed 273,000 bytes/ second. 

Redesign of the Dump Loop 
The bottleneck had shifted back (0 the 
DISC .... LOOP. Measurements showed the disc 
drive to be idle about half the time, when 
any of the following occurred: 

I. The record was sent from the disc process 
to BACKUP. 

2. The previous tape write was awaited. 

3. The record was writtcn to tapc. 

4. The next disc read request was sent 10 the 
disc process . 

5. The disc process prepared the read 
request. 

DISC .... LOOP throughput would improve if 
the next read request were queued at the disc 
process when the current read finished. This 
would ailow steps 2 and 3 to proceed in 
parallel with steps 4 and 5. In BACKUP2, the 
dump loop was redesigned to accomplish 
this. 

BACKUP2 opens the fi le twice and iss~ 
nowait disc reads on both OPENs. (It is net­
essary to open the file twice, as only one 
nowait operation can be outstanding against 
a disc-file OPEN at one time.) A nowai! read 
is a lways outstanding on one of the OPENs 
for the next record while the current record 
is awaited and used. The BACKUP2 DP2 
dump·loop algorithm is as follows: 

BUU\READ( Disc filcl , Bum:rl. No\\ail ); 
LOOP 

IlUlKREAD( Disdi le2. Buffer2. owait); 
A\VA tTIO( Discfilc I ) 
A\\AITIO( Tape); 
WRITF( Tape, Buffer!, Nowait ): 
BUlKREAD( Discfilcl. Buffer!, No\\ail); 
AWAITIO( Discfilc2 ) 
A\\AITtO( Tape ); 
WRITE( Tape:. Buffcr2. owait); 

ENDLOOP: 

With this ne\\ dump-loop algorithm. 
the DISC .... LOOP time for BACKUP2 is 83.3 1m 

and the TAPE"'LOOP time remains 78.5 ms, 
making the expected backup speed 
369,000 bytes/ second. The measured 
throughput is 351.000 bytes/ second, \\hicb 
is near the predicted throughput. 

RESTORE2 Performance 

Restoring a disc file involves: 

I. Reading its lape-file label. 

2. Purging the o ld disc file (if necessary). 

3. Creating the filc. 

4. Opening the file. 

5. Preallocating its extents . 

6. Copying the contents of the rile from tapt 
10 disc . 

7. Closing the file. 

As with the BACKUP2 measurements, the 
RESTORE2 measurements were restricted to 
large files, and the overhead associated \\ilb 
such operations as purging, creating, and 
opening was not included. 

TA'DE \I S'STFMS RI'VIEW 



Dump-loop Algorithm 
The RESTORE dump-loop a lgorithm is as 
follows: 

lOOP 
READ( Tape. Bufrer. Wail ): 
, Verif)' la~ record cllecksum. 
-\\\o\JTK>( Disdile); 

\\ RITE( D~file. Buffer. Nowail ); 
E\DlOOP: 

Rtdbign of Dump Loop 
Because of the DP I 4K-byte limitation, the 
nowait write of a 30K-byte record in this 
dump loop consists of seven wait disc writes 
and only one nowait write. This limits 
RESTORE'S performance, as desc ribed below. 

The RESTORE dump loop is essentially the 
BACi.:LP dump loop with the roles of the 
tape and disc file reversed. Measurements 
'showed, ho\\ever, that DP! BACKUP is over 
,wice as [as' as DP' RESTORE (140,000 
byt~ second \'s. 65,000 bytes/ second). The 
difference was commonl y attributed 10 the 
longer amount of time required for a disc 
\\ RITE (especially if the drive were mirrored) 
Ihan for a disc read. 

\leasuremenLS showed that parallel 
mirrored-disc writes took only 43~o longer 
han disc reads. A major part of the differ­

ence in speed bet\\een BACKUP and 
ESTORE was attributable to the seven wait 

disc writes that were executed seria ll y with 
the wait tape read (and, thus, were part of 
the TAPE'LOOP). 

RESTOREl's dump loop was redesigned to 
perform a nowait tape read in addition to 
performing the last disc write as a nowait 
~le. This improved the performance of 

lFSTOREl 62~o over that of RESTORE 
im DPI. 

P2 Bl LKIO. Longer Transfers, a nd Larger 
Channel Bursls 
lESTORE2 takes advantage of DP2 BULK 10 . 
h uses one no"fait write for a 30K·byte 
record, thus eliminating the seven waited 
K-byu:: writes required with DP!. With the 

ger transfers of the 3107 disc controller 
and the larger bursts of the TRIDENT tape 
controller, the data can now be restored at 
~.OOO bytes/second, resulting in a 3460/0 
~provement over the performance of 
f1ESTORE. 

Conclusion 

The usc of DP2 BULKIO, longer data transfers 
avai lable wit h the 3107 disc controller, larger 
channel bursts avai lable with the TRIDENT 
tape controller, and the redesign of the 
BACKUP and RESTORE dump loops have 
resulted in significanll y improved perform­
ance for the new GUARDIAN IJ BACKUP2 
and RESTORE2 programs. 

T he performance or these IWO programs 
can be improved even further with improve­
ments to the mic rocode and software. 
Enhancements under consideration for future 
releases include larger channel bursts on the 
3107 cOnlroller and furt her improvements to 
the RESTORE2 algorithm. 
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VIEWSYS: An On-line 
System-resource Monitor 

new Tandem utility pro-
gram, VIEWSYS, now 
a llows users to monitor 
system resources whi le 
their system is running. 
VIEWSYS displays the 
percentage used of 

selected resources in bar-graph form on a 
Tandem 6520 or 6530 terminal. Users can 
display a variety of screens showing the 
usage of one resource across all processors 
in a system or all resources within a set of 
processors. Users define which processors in 
a system are to be monitored. 

VIEWSYS is useful as a first-cut system­
balancing tool because it provides a dynam ic 
view into the system while applicat ions are 
running. It is especially helpful for monitor­
ing the effects of program or fi le relocat ion. 
This article provides a brief overv iew of the 
functions and commands available with 
VIEWSYS. 

Syslem Moniloring 

To assure the best performance possible 
from its systems, Tandem has made available 
a number of ba lancing and tuning tools. At 
one end of the spectrum is XRAY, a very 
detailed performance-analysis tool. An 
XRAY measurement is taken on an active 
system , and the subsequent output is studied 
to determine bottlenecks or imbalances 
within that system. Although users can vie'll 
XRAY output as it makes the measurements, 
common practice is 10 interpret the resul ts 
after the measurement so Ihatlhe process of 
viewing the output has no effect on the sta· 
tist ics gathered. 

AI the other end of the spectrum are the 
lights on the processor panel . which users 
can view to obtain stat istics on processor 
performance. From the command interprelCf 
(COMINT) , users can issue the LIGHTS ON 
command 10 cause the percentage of pro­
cessors busy to be displayed by the panel 
light s. Lights one through tcn indicatc the 
percentage of lime that that processor was 
not idle during the polling period (gcnerall)' 
one second); each lighl indicates 10 percen!. 
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PEEK is anOl her utility for monitoring 

processor performance. It reports statistical 
infomtation about GUARDIAN and 
GUA~DIAN 90 control blocks, pools, and 
phYSical memory. PEEK produces single or 
multiple "snapshOls" containing current 
a,nd maximum resource use within a speci­
fied processor. Its maximum counters ini­
tialized with the PEEK INIT command' 
report the maximum use of those reso~rces 
over time. For statistics such as page faults, 
users can generate a "snapshot t> at a known 
time, generate another "snapshot" later and 
~elermine average usc during the elapsed 
time. 

The need for a utility that monitors and 
displays current resource usage on-line led to 
the creation of VIEWSVS. Intended as an 
addition [0 the above tools. it reports a sub­
set o.f the s t~listics they provide, in a graphi­
cal, mteractlve, on-line fashion. VIEWSYS is 
available for NonSwp II, TXP, and EXT 
systems running the GUARDIAN 90 operaling 
system . 

Support 

YIEWSYS is an economically priced, limited­
support software product. There is no local 
Tandem office support for this product; 
instead, users can submit questions or prob­
lems by filling OUI the form in the back of 
the VIEWSYS manuaJ and mailing it directly 
[0 Tandem headquarters. Generally, a reply 
[0 a Query is returned within two weeks. 

VIEWSYS is an added-va lue utility that 
has no potential impact on the operating 
system or user applications and therefore 
does not require locally based systems­
analyst support. Offering the product with 
this limited support permits Tandem to offer 
j[ at an auractive price. 

C ustomers contractuall y agree to the sup­
port terms and are licensed to use VIEWSYS 
for a Doe-time fee . V1EWSYS is part of the 
Bnn software-release series, but there is no 
guarantee that it will be part of subsequent 
release series. 
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Program Function 
VIEWSYS is designed to dynamica lly reflect 
system-resource use. Users can view the cur­
rent or maximum allocation of control 
blocks, system pools, and physical memory. 
Information is available on page-fault rates, 
CPU-busy rates, dispatch rales, disc-I /O 
rates, and interprocessor send-busy rates. 
Processor Queues and page-fault queues are 
displayed. 

Users can display the HELP screen (shown 
in Figure I) by pressing a function key. This 
screen displays function-key assignmems 
and the current attributes of the V1EWSYS 
program. Users can select individual 
resources with unshifted function keys and 
individual processors Wilh shifted function 
keys . They can alter other VIEWSYS pro­
gram attributes with special function keys . 

VIEW$YS - T9071800 - 2&.1 NBS 

__ -,Operalillg System 

Figure I . 

The VIEWSYS HELP 
screen. Users rontrollh, 
nmniflg program by pYS.\· 

ins/unclion keys. Th, lop 
section sho .... 'S Ihe keYj 
used 10 COIII,o/ f1t'OJ:TOm 
attributes. The £,(>lIIer 
S«liOfllislS the emillt's 
reporled by tht: prORfflm 
and Ihe jllflCIIOII ke~' 
depressed 10 select thl' 
elllilies. The OOllom 
seclion depicts Ihe cum'''' 
program allribules. 

FIOlt UP OIsptay all pI~ t_ r • - .' ~'Id 
FIOltUPsMIed Disola~·he4p·IrrI'llm;n:',·' ·:~I 
ROLL DOWN Display ~"IlUfl\ use SI.: ._ 
IIOLL OOWN sMI8C1 Disolay Current use SU"~IC$ 
NEXT PAGE -- 100;II rotil1~ NEXT PAGE sh 11&0 1.loers 
PREV PAGE - Mxt cou set PREV PAGE sh11ted log 1Ot.JleqlUS 
INS UHE - reset 1!Ii'.-nums DEL LJ~E·1OOl . 

FKI th h FKt6 shilled CPU o. CPU l. .......... CPU IS 

fKI -CPU BUSY 
FlO - PAGE FAULT RAlE 
FK~ - DISPATCH RATE 
FK7 -CACHE hlJ /tAU 
FK9 -PCBs 
fKll - SYSI'OOL 
FKI3-LCBs 
H15· BPTs 

HZ • CPU Ol/CUE LENGTH 
fK4 ~- !.!EMOfW OIlEU[ LEMiTH 
FK6 • SHl~ BUSY 
fK8 • - DISC 110 RAtE 
FKtO --lOCKfD t.lE\!O!IY 
FKtZ MAPPOOl 
FK14 -lLEs 
FI(IS unu~8CI 

VIEWSYS STATUS 

(pus beJng J!lailSUled: 0 1.2.3.4.5.8.7 
prOCt$$Ol" S\ilUSlOI:S maximum in use 
~IIon$: rotallon on COUS8\s 2. I1)lalecpus on 
GPlIOIlS: extIaltar 185. unSlowa~ on. luncllonlte>.'Son 
0CI1OnS: sw~chb«~ 011. tiers Oft 
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T.bl" . 
Enlities measured by VIEWSYS. 

CPUBUSY 

CPUOUEUE 

PAGEFAULT 

MEMOUEUE 

DISPATCH 

SENDBUSV 

Mnnlng 
The pe!'cemage 01 lime a proce$$OI' 115 not ICM 
OJf"'O \tie POllIng penod (proce5SOt DuSy • 
,.,ter~-ousy tmel 
The average nurT'OeI' ot plQCet5eS on tile ready 
list dunnglhe I)OIhnojj pellod (0/0Ces<iM <twit lJle 
read)' 10 lUll) 

The aWllaoe nurT'Oef 01 page ,..,11$ !hit OCCUfled 
p&I second- dum-.g ItIe pOIhng penod 

The average numbef 01 ptocesses ,willhng 
~faull5eMCing dunng tIM! DOIIInII Dellod 

The _age numbef 0 1 dispalChe5.. '* 5e<;OI'I(I 
dullng U'\8 polling penod 

The percentage 01 I,me duung II'M! DOIIong !)ellod 
W I II se<ldwas be,,'10 P8rlofmeod wIth", a 

~~-
CACHEHITS The aYel'age number Or dlSC.c,acne MS. pel 

second. dunng tile polling penod 
OtSCIO TI'Ie average number 01 d,SC 11Os. per second. 

dun~ 1I1e pOlling penod 

PCB The nUrTlOOf 01 Process Cor1!rol BIoc~s allocll llKl 
l Ithe Mle the processor IS POlled 

LCX:KEDMEM The numl)et 01 p,aoes of pnyslUl memory 1M! .re 
locked Bi llie tune the procesaot IS POlled 

SVSPOOl The numbel 01 pages 01 SYSPOOl.IIoc.ted ,I 
ttle limE' the processor IS polled 

MAPPCX>l The I'IUfI"()er ot p;tgeS 01 MAPf'OOl allOCaled,1 
tne tlfl108 \he Pfocessot 15 POlled 

LCB The I'\UI'I"Cer or lJnI( Conuol Bloc'" ,qoc.;ned al llIe 
t.me the PfOC_ IS POlled 

TlE The IUT1ber 01 Time lISt Elefneonts allocaled II llIe 
tlfTl8 tne PfOC8SSOI' IS polled 

BPT The nurroOO! 01 break po,nts alloc~lI!ed at tile tme 
me orocessor IS POIecI 

Flgu .. 2 

VIEWSYS I I < run-<lOtJon > I . < run.()p!lon 1-- II 
[ < command > [ . < command :> I .. 

< run.()pl lon > Is one 01: 

NAME IS< PHxess·nama :> I 
CPU < cpu·number :> 
PAl < priori ty > 

< command> Is one of: 

BACKUPCPU < cpu-number :> 

CPUSETS <number > 

DELAY < number·seconds > 

DISPlAY <dlsplay·type> 

EXITAFTEA <number> 

FUNCTIONKEVS [ ON OFF I 
MUlJ"ITYPE [ON OFF I 
NUMCPUS < number :> 

AESEAVELCBS I ON OFF I 
AOTATECPUS I ON OFF I 
AOTATION [ON OFF: 

SWITCHBACK I ON OFF I 
TlERSlt 21 
UNSTOPPABLE [ ON OFF I 
UPCPUS I ON ' OFF , 

USEACPUS <cpu·number> [ < cpu·number > ~ •. 

Measurement Techniques 
Table I shows the entities measured by 
VIEWSYS. The values displayed are taken 
from GUARDIAN 90 counters also used by 
XRAY and PEEK. VIEWSYS does not alter 
any of these counters and, therefore, can be 
run concurrently with these programs. More 
I han one V I EWSYS program can run 
concurrently on a system. 

Using VIEWSYS 
The Ihree standard run options for VIEWSYS 
are: NAME, CPU, and PRL Following the 
run options, optiona l commands can be 
entered to configure VIEWSYS (see Fig· 
ure 2) . The run commands allow users to 
specify program atlributes such as the 
processors to be monitored (USERCPUS I 2 
3), the initial display format (DISPLAY 
CPU BUS Y) , the polling period in seconds 
(DELAY 5) , and wheLher 10 rotate from 
display to display (ROTATtO ON). 

Once VIEWSYS is running, its allribules 
can be altered with function keys. In Fig­
ure 2, attributes thal can be sct with bOlh 
run· time commands and function keys are 
highlighted in gray. 

Current/ maximum Mode 
When first started , VIEWSYS reports current 
usage. This is Ihe percentage and amoun t of 
each resource in use during that polling 
period; each display reflects the average use 
since the last display. 

Users can press a function key to alter the 
display to maximum mode. For this mode, 
inlcrnal maximum counters arc kepI for 
each resource in each processor being 
monitored. When users select maximum 
mode, VIEWSYS displays the highest 
percentage and amount of each resource 
recorded. These counters are initialized 
when the process starts, and users can a lso 
initialize at any lime by pressing a function 
key. This allows them to reset the 
maximums at a recorded time and then 
display the maximum values occurring since 
that Lime. This can be useful in finding 
under·utilized resources. 
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ROTATION and ROTAT t::CI' U5 Commands 
Users can set the program to rotate through 
all possible display ty pcs by setting 
ROTATION ON, Selling it ON causes the 
sequentia l d isplay of all processors being 
monitored . SCliing it OFF causes the 
currently selec ted display to be repealed. 
Function keys are used as toggles to alter the 
stale of these twO attributes. 

Bar-graph Percentages 
Figure 3 shows the screen display generated 
by the USERCPUS command. Nine of the 
percentages reported are based on the ac tua l 
configured amoun ts of the resource . System­
pool sizes are determined at system genera­
tion (SYSGEN) time, as are the number of 
control blocks allocated. These amounts are 
used to determine the percentage used. 
CPU BUSY and SENDBUSV percentages are 
determined by dividing the busy ti me by the 
total elapsed lime. 

Six em ities have no absolute maximums, 
so maximums have been established for 
them for use by VIEWSYS. Table 2 lists 
these maximums for the NonStop U and 
NonStop TXP processors. The va lues have 
been selected so lhal the display of a high 
percentage indicates poten tia l problems 
resuJting from contention for processor 
resources. Because of the fasLer processing 
speed of the NonStop TX P processor, the 
estimated maximums for its dispatch and 
disc 1/ 0 rates are set higher than those for 
the NonStop II processor. 

Conclusion 

VIEWSYS extends the capability of Tandem's 
system-monitoring faci lit ies by provid ing 
flexible, real-time, graphical displays of 
system-resou rce usage. It is usefu l for both 
locat ing problems and ba lancing resource 
use within a system. 

D.1e Montgomery Is.n .ccount .nllyst In the SeaUIe dIstrict. 
When he wrote th iS IlItlcle, f_ months ago. he was a staff 
,nalysl for Ihe FIeld Productlvlly P10grams oroop In Sunnyvale. 
HIS previous duties al Tandem ["cluded InstrucllOO bolh System 
Managemeot and GUARDIAN Operllloo S~lem courses and 
PfOO'ammmg In the Tandem ApplICation lanouaoe (TAll. 
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CPU 01 SlAlUS 

0 ...... 1 ... . 2 . ...:..3 . ...:. .•.• ·5·· ·6· .,. -·8·· ·9 
tPli busy 
t~ QU8IIt lin 
I)Ige flilB 1.le 
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Wldl!Usy 
Cltllt M rille 
dlSClIOflite 
process t b - -' kicked pages ,-..... • .,,~ t b 
r~llS1 etBm • IIre..~potnl C II 

Figure 3. 

A screen gC'fleruled b), Ihe 
VIEII'SYS USERCPUS 
command. The bars 
"pr-esem pemmtages Q/ 

lIfili~uti()lI. Tile "lImbers 
to Ihe righl o/Ille bars 
"present either Ille Ul'U­
age IIIIII/ber qf comroi 

nble2. 
Vatues for entities used as maximums in VtEWSYS' 

NonStop II NonStopTXP 
proceuor processor 

CPU qll8l18 
" 

10 
P8g&-laul!'all " " Memory queue , • 
DISPatch rate "'" 800 

Cache-h,t .ete 100 '00 
DIsc·1K) rlre 50 100 

'Nombet m QIHIUfI Of numbel DIf.seeonc:l 

'100% 

" 

" 

" .. , 
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blocks, memOfY pages, 
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Introducing TMDS, 
Tandem's New 
On-line Diagnostic System 

he Tandem Maintenance 
and Diagnostic System 
(TMDS), a new diagnostic 
software system for 
Tandem hardware, is ava il ­
able in the BOO release. The 
FOX diagnostic, a TMDS 

subsystem for diagnosing problems with the 
6700 Fiber Optic Extension (FOX), is also 
available. 

TM DS aids Tandem customer engineers 
(CEs) and users in many ways. To CES, 
TMDS provides a uniform interface to its 
diagnostic subsystems and an extensive 
"help" facility for using these diagnostics . 
The diagnostics themselves provide a safe 
on-line mechanism for finding and repairing 
broken hardware. TMDS can run concur­
rently with user applications, causing fewer 
interruptions in system activity. System 
managers who have TMDS running on their 
systems will find that less time is now 
required by CEs to determine the location 
and causes of hardware faults. 

System-management considerations for 
installing and running TMOS software are 
minimal. The installation instructions, in a 
step-by-step format, are included in the 
TMDS software documentation (Softdoc). It 
is important thal system managers install 
TMDS as soon as possible, instead of waiting 
until a CE needs to use it. As described in 
this anicle, (WO processes (SZENO and 
SZLOG) should be running at all times. 

For Tandem users interested in diagnos­
tics, the rest of Ihis article describes the 
design ofTMDS and the faciJities it provides 
for Tandem CEs. A brief description of the 
FOX diagnostic is included as an example of 
a TMDS application . The article concludes 
with a discussion of pOienriai enhancements 
to TMDS. 

On-line Diagnostics 
for Fault-tolerant Systems 
On-line diagnostics are important to the 
smooth and uninterrupted functioning of 
fault-tolerant systems. Users of Tandem 
systems demand high availability of their 
applications. Hav ing to curtail all or even a 
portion of their normal activity to analyze a 
failure presents a major hardship to their 
operations staff. 

The need for concurrent execution of 
diagnostics and user applications places sev­
eral restrictions on on-line diagnostics. The 
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diagnostics must not usurp any computer 
resource, from CPU cycles to disc-access 
paths, without good reason and user permis­
sion. In addition, the running of these diag­
nostics must not compromise data security: 
control must be given only to aUl horized 
users. 

Fault-tolerant machines ease the diagnos­
tic task. In these machines, normal system 
activity continues even after a hardware 
component fails. The faulty component 
freezes its state, allowing diagnostics to 
search for the cause of the fault. 

To find the fault, on-line diagnostics must 
have support from hardware controllers. 
When possible, fault detection and fault 
isolation should occur in the hardware, firm­
ware, or software where the fault occurs. 
Many times, the location of the fault is 
known at the controller level and should 
simply be reported to the user. On-line diag­
nostic systems must support a method of 
gelling this information to the user. 

Other faults, such as disc retries, may not 
stop a system from continuing, but informa­
tion about their causes can be lost when the 
system continues. In any case, pertinent 
information about faults must be stored for 
future reference by diagnostics. 

The TM DS Approach 

The design goals for TMDS were to: 

• Support diagnostics that allow a CE to 
diagnose hardware in the shortest possible 
time while not interfering with normal sys­
tem activity. 

• Decrease the time required by a CE to 
learn how to usc a new or infrequently used 
diagnostic . 

• Minimize the potential for CE diagnostic 
errors and provide a mechanism for explain­
ing the errors that do occur. 

• Create a facility that records information 
about unexpected hardware faults, provid­
ing the CE with all information relevant to a 
particular failure. 

The des ign of TMDS includes the follow­
ing features associated with these goals: 

• Utilization of hardware and firmware 
features that allow diagnostics to lest one 
part or path of the hardware while leaving 
the other parts avai lable for normal system 
activity. 

• Testing that identifies the correct field­
replaceable unit (FRU) to be replaced. 

• A standard command interpreter for all 
TMDS diagnostics that provides consistent 
syntax and extensive help for all TMDS 
commands. 

• A mechanism that stores information on 
abnormal events thaI occur during the sys­
tem's activ it y. This information is accessible 
both by the CE and, more importantly, by 
the diagnostic code, to determine the cause 
of the problem, and , in certain cases, the 
action required to fix it. 

• Use of NonStop processes and fault­
tolerant Tandem hardware to insure that 
TMDS is a lways available. I f any component 
of a Tandem system or network fai ls, the 
system continues and a CE can use TMDS to 
diagnose the faulty hardware. In addition , 
TMDS ensures that diagnostics cannot leave 
a device in a diagnostic state. 

Implementation 

TMDS, by itself, does no direct diagnostic 
work. This is done by its diagnostic subsys­
tems and the CEs that use them. It provides 
the CEs with a single, powerful, consistent 
command interpreter for all diagnostics that 
run under the TMDS umbrella. 

TMDS is designed to handle two types of 
activity. The first is activ ity requested by the 
CE through diagnostic commands. The sec­
ond is the activity initiated when TMDS is 
notified of a fai lure in the system . 

JUNE 19I1S · TAI'O£ M S Y S T E M S R EV l f W 

Operotillg System 



O"ertuillR Syslem 

FIgure 1 

Flgur. 1. 

, -= 3 

Compt)lU!IIIS qf TAt DS. A 
diagnostic command is 
emerW by Ihe CE It'ilh 
the end·user inlerf~ 
(EUI) and is ''erified 
aguinSllhe ,·OC'Qblllary. 
Ne:r:llhe resollrce 

100 

Diagnoslics Run b)' the CE 
Figure I shows the interaction of the Tl\1OS 
components initiated when a CE uses TMDS. 
The components are desc ribed below. 

End-llser liller/ace. The end-user interface 
(EUI) is the TMDS process started by a CEo It 
is a general-purpose command interpreter, 
which, as a front end to all TMDS diagnostic 
subsystems, guarantees that diagnostic com­
mands have a consistent syntax. 

The commands consist of a command 
name and optional parameters. A parameter 
has twO parts: an optional name and a man­
datory value. For example, the following are 
valid commands in TMDS: 

TM D$> TEST LOU x. TESTNAME all 
TMDS> TEST x, a ll 

where TEST is the command name, LBU and 
TESTNAME are parameter names, and x and 
off are parameter values. (TMDS> is the 
TMDS prompL) 

'"' 

manager and scheduler 
(SlENO) SlariS Ihe 
application monitor (AM) 
in which Ihe command 
is exec-wed. Then 
Ihe test mierocode is 
downloot/ed in/a the 

, -
" 

'0 --

del'itt and Ihe tesl is nllf. 
The reSOlI~ manager is 
a NonStOf) process poir 
Ihal relllTnS resol/rces 
allocoled dllriflg diagnos­
lie It'ark to their initial 
stale if an error ('JIXI/f$. 

A benefit of the two-pan parameters used 
in n.1OS is that a parameter's name can be 
given in any position in the command. The 
following example, which has its parameters 
specified in a different order from that of 
the first example above, is also valid: 

Ttl-ID$> TEST TESTNAM E all, LOU x 

Another benefit of two-part parameters is 
that a de/aull parameter can be set. In 
n.1OS. it is possible to specify that all com­
mands having the parameter PARM are to 
have the value VALUE for that parameter. 
This mechanism is useful when a parameter 
is used frequently in several d ifferent 
commands or in the repetit ion of a Single 
command. 

The command DEFAULT is used to estab­
lish this relationship. The name of the 
parameter in the DEFAULT command is the 
parameter name to be defaulted; the va lue is 
the default value. For example, 

Ttl-1DS> DEFAULT LOU x 

associates the parameter name LBU to the 
value x. After this DEFAULT command is 
issued, the LBU parameter defaults 10 the 
value x for all commands thai use that 
parameter unless the user specifies a va lue 
for LBU on the command line. The follow ing 
example is now equivalent to the first exam­
ple given above: 

TMDS> TESTTESTNAMEal1 

The EUI a lso presents a unified "help" 
facilit y for all diagnostics. There are two 
ways to obtain help information in TMDS. 
Use of the help operator, ?, is one way. Any­
where in a command line, the help operator 
can be used 10 ask, "What are my options?" 
For example, if CEs cannot remember the 
va lues for the LBU parameter in the TEST 
command, they can use the help operator 10 
obtain this information as shown in the fol­
lowing example: 

TMDS> TEST LBU ? 
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I f they can no! remember the name or val­
ues of the second parameter for TEST, they 
call type? in the second paramcter location 
10 gctlhis information: 

TMDS> TEST LBU x, ? 

If thc help operator is used in place of the 
command name, a list of all avai lable com­
mands is displayed. The help operator is 
best applied to obtain a particular piece of 
information. 

The HELP command and the ERROR com­
mand can also be used to get assistance in 
issuing commands and analyzing crrors. The 
HELP command supplies information in 
many areas, including genera l information, 
rules, and commands for TMDS, and general 
information about the FOX diagnost ic. 

For each of these areas, specific informa­
tion on many subjects is available. One can 
get help on entering commands by asking 
for the rules about a general command: 

n,IDS> IIELP RULES command-entry 

One can get an overview of the commands 
available 10 diagnose FOX hardware by ask­
ing for the FOX overview: 

TMDS> HELP FOX overview 

Typing HELP without any parameters dis­
plays an introduction to TMDS. Included is 
assistance on all aspects of HELP. One can 
always find the complete details of any par­
ticular command by typing: 

TMDS> HELP COMMAND <command-name > 

or 
ThIOS> HELP <com mand-name > 

The ER ROR command explains error mes­
sages. All TMDS errors are printed in this 
format: 

.... FOX999: Example FOX error message 

The number of asterisks (one to four) indi­
cates the severity of the error. The asterisks 
are followed by an error identifier (in th is 
example, FOX999) and a short description of 
the error. 

A more complete description of the error 
can be obtained by using the ERROR com­
mand with the error idelllifier as a parame­
ter. For lhe above error, one would enter the 
following to get a description of the error: 

TMDS> ERROR FOX999 

_____ --'O"''P''=roli/lg 5.'!...'Stem 

Vocabular)'. When Tandem developers create 
a TMDS diagnostic subsystem, they define its 
commands in the Tr>.ms vocabulary, a data 
base for information about command 
names, command parameters, and the loca­
lion of the diagnostic code that executes a 
particular command. When the CE enters a 
command, lhe EUi asks the vocabulary to 
val idate the command. The command is 
compared with the information stored in the 
vocabulary, and if it was incorrectly or 
incompletely specified, the EUI displays an 
explanation of the error. J f the command is 
valid, the information associaled with thal 
command is used to run the command. 

Commands for a particular hardware 
device are grouped together with in the 
vocabulary into subsystems and can only be 
used within that subsystem. For example, 
the FOX TEST command for testing FOX 
hardware can only be started in the FOX 
subsystem. TEST commands for other hard· 
ware devices are avai lable in Olher subsys­
tems. The commands provided by the EU I 
can be executed in all subsystems. 

TMDS provides two ways to switch 
between subsystems. The first is lO specify 
the subsystem on the TMDS run line. The 
command sequence below starts TMDS in the 
FOX subsystem where all FOX commands 
can be run: 

:n,mSFOX 

The other way to switch to a d ifferent sub­
system is 10 use the SWITCHTO command: 

TMDS > SWITCIITO fox 

Resource M anager al/d Scheduler (SZI:.,I"Oj. 
When a resource is being diagnosed, it 
shou ld not be available to normal users or 
other diagnostics; if it were, the diagnostic 
might act unpredictably. To eliminate con­
tention for the resource being diagnosed, the 
resource is always al/oeared to a diagnostic 
before it is used . Once the allocation is 
made, the diagnostic can be run. When it 
completes, the resource must be deallocated. 
(For lhe FOX hardware, allocation consists 
of putting the hardware into the diagnose 
state; deallocation returns the device to Ihe 
SlOpped or started state.) 
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The device must be deallocated regardless 
of whether the diagnostic succeeds or fails. 
If a diagnostic ends abnormally, the TMDS 
resource manager and scheduler (SZENO) 
makes the required deallocation. SZENO 
handles all allocation and deallocation of 
resources. 

SZENO is a licensed NonStop process pair. 
It can recover from any single hardware fail· 
ure. If a diagnostic process stops prema· 
turely, SZENO stops all associated diagnostic 
work on that resource and restores the 
resource to a known state (e.g., the stopped 
state with the standard microcode loaded .) 
The CE can then restart testing . SZENO mUSt 
run at all times for TMDS to work. 

SZENO also handles all TMDS process 
creation. In later releases of TMDS, this may 
include the ability to schedule TMDS com­
mands to run at a particular time. 

Application Monilors. TMDS runs all diag· 
nostics separately from the EUJ. Each of 
these processes is called an application 
monitor (AM). An AM consists of TAL 
proced u res. 

When a command is validated, the name 
of the AM and the procedure that imple­
ments the command (as stored in the vocab· 
ulary) are returned to the EUI. The AM is 
created, the parameters of the command are 
passed to this AM process as a parameter 
stack stored on the AM's stack, and the 
speciFied procedure is called. The mecha· 
nism used 10 pass parameters to a procedure 
in a different process is ca lled a remOle­
procedure cal/. 

Executing the diagnostic as a process sep· 
arale from lhe EU I has the advantage that, if 
a diagnostic ends abnormally for any rea­
son, the EUI remains unaffected, allowing 
the CE to continue. This advantage would be 
oUlweighed by the disadvantage of having to 
create and communicate with an AM every 
time a command is run if it were not for the 
remote-procedure call that handles this 
work. The remote-procedure call mechanism 
uses SZENO to save information on AMs. In 
this way, AMs can be reused, thus minimiz­
ing the number created . 

The procedure name to execute, the values 
for the parameters for that procedure, and 
the AM where that procedure's code can be 
found must be supplied to the remote­
procedure-cal l mechanism . This mechanism 
creates the stack frame (identical to that 
created by the TAL compi ler when a normal 
procedure call is made) by using BINDER 
information about the specified procedure 
call. This stack frame is sent (via a standard 
GUARDIA N 90 message) to the remote­
procedure-call mechanism in the AM where 
the specified procedure is to be run. In this 
AM, the remote·procedure-call mechanism 
receives the stack frame and adds it to the 
stack . A call is then made to the appropriate 
procedure. 

Siandard utility procedures bound into 
every AM simplify the allocating of 
resources, formatting of text output, and 
printing and formatting of standard errors. 
Only one copy of these procedures need be 
present in an Allil for all commands in an 
AM to use them. Having these utility rou· 
tines common throughout all device diag· 
noslics creates coherence and consistency, 
thus making it easier for the CE 10 trouble­
shoot problems. 

AMs also provide a convenient way of 
securing diagnostics. As it is unacceptable 10 
allow just any user to run a diagnostic, 
TMDS uses GUARDIA ' 90 operating-system 
security to limit diagnostic use. The object 
code of the EUI and the Ar-.'I associated wilh 
a diagnostic command can be secured so 
that only a certain set of users can run a 
particular diagnostic . (For example, while 
the FOX STATUS command can be executed 
by anyone, only SUPER.CE can execute the 
TEST command.) The system administrator 
controls access to these diagnostics through 
the allocation of user passwords. 

ExecllIing a T/HDS Command. The follow· 
ing is an example of what happens when a 
TMDS command is executed. In this exam· 
pie, a FOX LBU has encountered an error 
and the CE uses TMDS to diagnose it. The 
CE starts TMDS in the FOX subsystem, 
obta ins help on the TEST command, and 
tests the interprocessor-controller (I PC) 
board in LBU X by looping it through the 
appropriate microcode test five times. 
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First, the CE runs the FOX diagnostic: 

:TMDSFOX 

TMDS responds with: 

Welcome to Tandem's Maintenance and Diagnostic 
System ... 

The CE asks for help on the TEST command : 

TMDS> HELP tesl 

TMDS responds with an explanation of the 
TEST command: 

The TEST command downloads and runs micro­
coded diagnostics in the FOX LBU. The TESf com­
mand has ... 

Before running the TEST command, the CE 
defaults the LBU parameter so tha I the TEST 
command will test LBU X. (This parameter 
now need not be specified in any further 
commands.) The CE enters: 

TMDS> DEFAULT LBU x 

Then, the CE uses the TEST command : 

TMOS> TESfTESTNAl'o,E ipc.looP 5. 
DETAIL on 

As is illustrated in Figure I, first the EUI 
checks the syntax of the command entered 
at the termina l (1). Command and parame­
ter names in TMDS consist of an a lphanu­
meric sequence of 36 characters or less. 
Since lhis command has a command namc 
and parameter names that look va lid to !.he 
EUI, the command is passed to thc vocabu­
lary (2) for a semantics check. 

The vocabulary checks the FOX subsystem 
for a command named TEST (3). Il fills the 
defaults sct by the user and checks each 
parameter to see that the TEST command 
has a specified or defaulted value for that 
parameter. The vocabulary also checks the 
value of each parameter aga inst its accept­
able range of values. I f the EUI check or 
vocabulary check fails, a message explaining 
the error is displayed and the EUI reprompts 
the CEo 

In this example, the command validation 
succeeds, causing the EUI to make a remOle 
procedure call to $ZENO (4) to have it start 
the appropriate AM that implements the 
TEST command (5). The appropriate proce­
dure in the AM is then called (6) with the 
parameter values x. ipc, 5, and 0". 

The TEST command first tr ies to allocate 
LBU X through $ZENO (8). I f the LBU were 
already being diagnosed, the a llocation 
would fa il . and SZENO would inform the CE 
(v ia the AM) that someone else was already 
diagnosi ng that LBU (7). 

In this example, the allocation succeeds, 
and a check of LBUs X and Y is made to 
verify that bringing down LBU X wouldn't 
isolate the system. As the system would be 
isolated if LBU X were down, the CE is 
warned (7) and confirmation for cominuing 
the test is requested. 

The CE confirms that the test should con­
tinue. The LBU is stopped, and the micro­
code that implements the IPC test is 
downloaded into it (9, 10). All errors found 
while the FOX microcode is down loaded and 
executed are displayed for the CE (1 1,7). 

When the diagnostic completes, the LBU 
is returned (deallocated) (8) to either the 
slopped or started state as specified by the 
CEo If the diagnostic ends abnormally for 
any reason, SZENO returns the LBU to the 
stopped state. 

TMDS AClh'ity Iniliated Aulom:llica lly 
When a device fails during normal sYSlem 
activity, it is important 10 be able to save 
information aboutlhe failure for later exam­
ination. Figure 2 shows the TMDS compo­
nents that save this information; their 
interact ion is desc ribed below. 

FIgure 2 
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FIgure 2. 

In addition to perform­
ing diagnostic activity 
initiated by the CEo 
TAIDS recordl and 
stores information 
about unexpected hard· 
ware failure, for liJler 
examination. TAe in/or­
mation is pa.lled from 
an I/O procell to the 
TAIDS logger and is 
"oTed in an event log. 
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Table 1. 
Syntax for the FOX TEST command 
Parlmeler 

ceu 
TESTNAME 
LOOP 
SYSTEM 
OETNC 

Values 

!XIY I 
< re!l1'li1ffl1!:> 
<-, 
<S'fJttm:> 
ION OFF I 

Oelaull 

INone iI pa!an'lele! 1S'1lQo.. ,ed I 
ALL (AU res's a', run, ""', 
The local sysletn 
OFF INa delil,1eI;I OlJIOUl t po "lea I 

In TMD5, an e~'el1f is any occurrence about 
which information must be retained for 
examination by a CE or diagnostic. An 
occurrence of a hardware error and the run· 
ning of a test are both considered to be. 
events. All information about an event IS 
encapsulated in an e\'elll sigllolllre (ES), a 
standard, variable·length message. 

An l i D process that detects an error (1) 
uses procedures supplied by TMDS to create 
an event s ignalUre. To send this information 
to TMDS, the l i D process passes the ES to 
the GUARDIAN 90 operating system messen· 
ger process (2) via a procedure ca ll. The liD 
process then continues execution. 

The messenger process implements the 
communications protocol needed to pass the 
evelll signature to the TMDS logger process, 
SZLOG (3); for example, it handles path 
retries when necessary. This minimizes the 
overhead the JI O process incurs when send· 
ing messages. 

The TMDS logger receives the event signa· 
tures and stores them in a TMDS event log 
(4). They can be retrieved by the TMDS com· 
mands FIND (used to view event signalUrcs 
in the event log) and PURGE (used 10 delete 
event signatures). 

The logger is a nonprivileged NonSlOp 
process pair. II should be run at all times 
to gather as much fault information as 
poss ible. 

The FOX Subsystem 
The FOX diagnostic is used in diagnosing 
FOX hardware fauhs. It has four commands: 
REPAIR REVUPDATE, STATUS, and TEST. 
Descrip;ions of these commands are availa· 
ble from the TMDS HELP facility. The 
parameters for the TEST command, their 
possible values, and their defaults are listed 
in Table I. 

As the previous example has shown. the 
FOX diagnostic' s TEST command is used to 
download microcode tests into the FOX LBU 
once that LOU is in the stopped state. Tests 
for each FOX board are available; a list 
of TEST names is available in the HELP 
information. 

Note thaI the TEST command uses the 
TMDS two-part notation. Each parameter 
has a name (e.g., DETA IL) and a set of 
allowable va lues (e.g., ON or OFF). This 
feature allows the CE 10 enter the DETAIL 
parameter in the third position instead of 
the fifth poSition where it is defined to be. 
(See the TEST command used in the previous 
example.) 

The TEST parameters a re used for other 
FOX commands as wel l. Common parameter 
names ailow CEs to default 3 parameter for 
a number of commands in 3 subsystem. 

Figure 3 is an example of the infor'!l3tion 
displayed with the TEST command. FI~st~ 
the TEST command prints a header (wnllln a 
box) thai summarizes the command the CE 
specified , including the estimated amount of 
time it will take the command 10 complete. 
After the header, short error messages are 
displayed; in Figure 3, the messages are for 
errors FOX400, FOX450, and FOX402. The 
TEST command finishes with a summary of 
Ihe tests run and errors returned. 

In Figure 3, the CE requests more com­
plete information about the error condition 
displayed as "·FOX450 and find s that the 
error message identifies the board that prob­
ably caused the error. The CE can now 
replace that board and try the TEST com· 
mand again. 

TMDS Today 
The FOX diagnostic subsystem is a good 
example of the power and funclion~Jity of 
T~IDS because it uses TMDS extensively. All 
command interaction is managed by TMDS. 

FOX diagnostics use the abilities of SZE fa 
to allocate and deallocate the FOX hardware. 
The FOX diagnostics and the EUI both use 
the remote·procedure·call mechanism to 
minimize the work involved in starting AMs. 
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Future Enhancements 
Future changes in TM DS will focus on three 
major areas: simplifying the CE's use of 
TMDS, adding new diagnostic functionality. 
and providing fault analysis. 

Command entry to T~lDS can be made 
easier. An optional menu imcrface to n..,IDS 
is under consideration. Also, a method of 
having T~IDS request command parameters 
(instead of requiring the user 10 supply them 
with the command name) is being examined. 
As more commands arc added to T~lDS, (his 
would keep command entry uncomplicated 
and straightforward. 

Commands for maintaining hardware 
(not just diagnosing problems) may be 
included in future TMDS releases. With this 
type of command, a hardware device could 
be checked periodically to verify that it is in 
running order. Scheduling maintenance 
commands to run at a particular time migh t 
be supported, allowing the CE 10 pinpoint a 
problem area berore a problem occurs. 

Also, a fault analyzer might be developed 
to monitor the event log. When possible, the 
fault analyzer would determine the solution 
to a problem when it occurred. This cou ld 
provide the CE with much useful infonna­
tion. The ana lyzer cou ld include an a larm 
that would alert the CE aI CE headquarters 
of failures at a user site. 

Most importantly, TrvlDS will be used for 
all future Tandem diagnostics. Diagnostics 
specifications have been proposed for discs 
and CPUs, as well as other subsys tems. 

Rtffn'orts 
Tantktn \'(1inl~nan« and Diagnostic Spfl~'" R(/'~I!('f' Mali/lUI. 
ParI no. 82386AOO. Tandem Computers Incorporated. 
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figure 3 

'MOS> TEST LBU x. TESTNAMElpe 
It.l15 FOX I ~;I,QS1' JA/i8 (l9DE;.;s.cl 

I FOX 1(~ '~YA~[ ',PU1 INFORMAl )11 

~J". ~ 
TEsnw,l! II'(. 
lOOP I TII,II 
SVSIW \t_aJ 

T<TNIal'II~telll.~IO!I. ,,~~1 
~ 'II ~ iI.tMIul H 2{1 311 (01 "'!Jell BREAK IS M) 

FO~~OO Irst1ll om IIUt\'II)tIl ,t.l!ltd ilI6 18 12, 
"'FOUSO 'est flTO!' 173 m 1TIOi1u!t IPCDlAG 113. t F~US IPC 

FOU01 I£SI AfSUI IS SU~'-IARV fDA SVS1EM \LASJ L8IJ X 

TIttt 5el1I.l;!'\e 

SIOPI,me 
Slal1l,"" 
loUIle-slI,"" 
, tOr!IP!tl6 "" 11$ 
ToUl,mln 

• 'PC 
_ 1& 2{1 ~5 
_ 16 1151 

o 02 ~ , , 
\ l.l83 ItlU x II tuff,lIIly ,n It.~ STOPPED ' • 
llayou",'stl'OPUlrtonhlltl!V!I~, Y 

H.!I '> ERROR 10 •• 50 

3JAN 1985 
3 JAN 1985 

A I!IIC'~:" . '1CI~" .ror", II'IIIiIrC ...... II'IIII'IOCIuIf I\MTIe 1$ 

...... "II ..... , 11'11 II\! ,.' 1 SUC::~S1 ",QIr"1\e ttror w.n Iound Tile 
fRU:. !litl GI tile II'II..:..o,/f gM:s MorCtted ~1 ot tile FAUs "'lX.h are 11!1 

I~e/y eo!: Sf! at dIt IffIIf 

Agure 3. 

The output of the 
TEST command can 
include information 
about a number of 
errors. To conserve 
space. short message, 
about each error 
are displayed. When 

the ERROR commalld 
it ell/ered for any of 
the eP'TOr menagel, 
(J mOn? detailed 
explanation of the eP'TOr 
me8Sage i, displayed. 
In (hil example. the 
ERROR command was 

entered for FOX450. 
/The commands entered 
by the CE are repre· 
sented in boW type. 
FRU stands for field· 
replaceable unit.) 
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BOO Software Manuals 

ilh the BOO release, 
Software Publica­
tions offers you a 
new manua l set: 
85 software man­
uals sporting a new 
design, presenting 

information in a new formal, and represent­
ing the continuing efforts of the writers, edi­
tors, designers, and staff to produce a 
qualit y product. 

The manual covers are now black , dis­
playing the new Tandem logo and a stripe of 
color to represent the manual library to 
which ,hey belong. 

To better aid users, Software Publications 
has produced separate user's guides and 
reference manuals for many of the Tandem 
products it supports. The Operating System 
writers have reworked much of the 
GUARDIAN 90 information, moving system 
messages, utilities, and procedure calls into 
separate manuals. 

The Languages writers have reorganized 
the EXTENDED BASIC and COBOL reference 
manuals. They've added examples, a second 
color to highlight sample programs, and 
even more system information to improve 
the new EXTENDED BASIC and COBOL 
user's guides and reference manuals. 

For new system users, there is the TGAL 
tutorial. Experienced TAL programmers have 
a revised TAL manual. There are also new 
reference manuals for users of the PATHWAY 
lransaclion·processing system and Screen 
COBOL. 

You'll find many morc additions and 
improvements to the software manuals. 
Table I li sts the tille , pan number and vcr· 
sian, and SlalUS of all the software manuals 
pertaining to the BOO software release. 

Sunoy Old. was 8 lead edl to!: 'Of So!twilre Publica lions when 
She wrote this article. She coordinated edIlOflaleHO!:" IO!: the 
BOO sottware Release. edited the Languages and Operetln.g 
System IIbreries. and authored the Mardl l985 c.ta/og 01 Soll­
w.r" PuIJ/kulllon.and R"lBlad ProductS. 
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Table 1. 
BOO software manuals (NonStop n, TXP. and EXT systems). 

Pnl no. P.rt no. ". , .. 
TIlt. ..nlon Stllu. Title version St.lu, 

~per.ung....!.YSlem 

GUARDIAN Operallng System System Description Manual 82507 ADO Newedl1Jon 
Pocket Gukie 82506AOO New manual System Management Manual 8206'ADO New manual 
GUARDIAN ()p&r111,ng System System Messages Manual 82409AOO New manual 
Prognllnrner"s Guide 82357 AOO New manual 

GUARDIAN Operatong System 
System Operator's Guide 82.01 AOO Newmanl,l/ll 

Use'" GJ/cIe .2396AOO New manual System Procedure CaI15 Reterence 

GUARDIAN ap..lIng System 
Maftill 82359AOO New manual 

U!1~loes Ae!erence MiIIlUal '''03AOO Neowmanual Tandem Marntenance and Oiagnosllc 

IlltfOdu(:llOIllO TlIndem CoI'!'oute< 
System Re!&!ence Manual II2386AOO Now ...... ' 

'''''"'' """AOO Newed,loon XRAY User's ManUilI 82018 DOO Updated 

SpooIef Progf8IT11T11Jf', Guide .239< AOO NewmarlllCll 

Newedl1lQn INSPeCT InteractIVe SymbolIc 

Newed,Hon 
Debugger U6&I'aGulde 82315AOO Unchanged 

DEBUG Manual 82S88AOO NewedltlOl'l 
SOffTIMERGE USe/'S GlIIde 8209' AOO Unctwll'9&d 

EDIT Manual 82079 BOO Unchanged TGALMal'll.lll1 82S26ADO Newedl\lon 
- -- 100Is and Utll!!_ Pocke1 Guadt 82""AOO New edmon ENmY Sc,.., Formatl« ()pefil\Jllg 
and Ptog,atTVTlIO!I Manual 

"""" AOO 
Unchanged UPOOElXA:EF M¥IUiII 82080800 U_ 

ENTRY520 Screen FOfln811e1' 
~totlg and ProgIIllT'tlWlg Manual 82OS3NJO U~_ 

LIII'IgU~ 

C090L Pocket GuIde 82575AOO NewedrliOl'l FORTRAN f'I:lckeI GuiOe 82577 NXJ NeweOluon 

C090L Relerence Manual. Intel'lm Sr.r&lpIement 10 tile ...... , 82589NXJ Newmanval FORTRAN 77 RIlI'rence Manual 82"36AOO '"-, 
COBOL Refj)fC!f'1C8 Manual MUMPS Pock" Guide 82578AOO New fidltlOt'l -, "'OOAOO New manual MUMPS Reference Manual 825oC2AOO Now fidrtlOt'l 
COBOL U-", Guide """NJO New manual TAl Pocket GuICle 82376AOO New manual 
EXTENDED BASIC Pocket GuIde 82379AOO New manuaJ 

Ta~ FORTRAN 77 Reference 
EXTENDED BASIC Aelerenee M ..... 8203OAOO Unchanged ... - """NJO New edillOf'l nal"lAClion AppiIcahonlanguage 
EXTENDED BASIC U5ef"sGurOe 

""'" NJO 
Newmanuat (TAll Re~ence Manuat "'" NJO N8YI' ed!100n 

oala ml n' gemenl 

Dell Delonotl(ll'l Language iDOl) PATHAlO Refefence Manual 82428AClO Newma~J 
Reler.-.::e Manual 82S3< AOO Newedrllon PATHWAY SCfIEEN COSOL 
O.ta Mana\lel'netlt Pocket Gulde 82302 DOO Unchanged Reference Manual 82.24 AOO New manual 

ENABLE Reltlrenee Manual 82560NXJ Newfldrtton PATHWAY System Managemerll 

Ef'{A6LE U5ef"s GuIde 8257IAOO New edrtiOtl RetGfence Manual 82365AClO New manual 

ENCORE use .... GuIde 823SONJO Unchanged. 
TransactlOf'l MorlrlOfmg Fac~,ty 
(TMF) Reterence Manual 82'" AOO New edrtlOf'l 

ENFORM Reference M3IlUa1 82'''800 Updated Tr80AC:tron MO!"IItonng Facd,1y 
EHFORt.I Uset". Gude 823<, BOO U",'''''' (TMF) System Mafl8QOlTlel'lt and 

a.scFIlBE Pfogranmrng u.nual 82583AOO Newed!tlOl'l 
()peratrona Guide .... ,NJO New edllIorl 

Introcl.octron 10 ENFORM 82313900 

""""'-
TRANSfER OeIo\I8fY System 
Management Ina AcIminl$tratiOtl 

tnlrodllelron 10 PATHWAY 82339AOO Hew manual """" 82S22NJO Newedrllon 

InlfOductlOf1lo IhI TranstcllOl'l TRANSFER OeINery System 
t.4onItorotlg Facility (TMF) ""'AOO Hewed,lron Proglamm.ng GuiOe 82525AOO Hewedl1lorl 

intr()(luctron 10 TRANSFER DelMIfY TRANSFERJMAlL UsefS GulOO 82599AOO Hewed,lron 
System 82323(;00 Unchanged 

Conltnued ne:rct paOlI 
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MOl/ll(ll~ and Courses 

Tabl. I . (COI'ICk.oded) 
BOO software manuals (NonStop n. TXP, and EXT s,yslems). 

P.rl no. P,rl no. 
,od ,od 

Tltl, "rslon SI.IUI TIll. wlrslon 51.11" 

Int. communications 

6100AOCCf' F'roglarmtitlg Manual 82411 NXJ NewlTllllnual EXCHANGE: ReIe<8I'ICI Manual ""'''''' 
_ .. , 

6100 t.A PS-B prog.arrwning M_' 82413AOO New manual EXPAND Reiefence Manual 82370AOO ---6100 sse Prog.1I/TIITIOIlg Manual 82.c,2,tr,(l() Newmanuat InlfOductoOl'110 ralD!m Dall 

6100 nNET Prog13i'TWT111'1g Ma1luaJ 8241.cAOO --, """""",,,,- 82511 AOO --COmmuniCations Management Inlr(JduChOI'lIO tne Tandem 6100 
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andem's Corporate Educa­
tion Group has added 
eight interesting new 
courses to its software edu­
cation curriculum. It has 
also revised and improved 
the PATHWAY course, one 

of the most popular software classes. 
The new courses offered in 1985 are 

described below. Following their descrip­
tions is a list of all Tandem Education 
Centers. 

As more new courses are offered Ihrough­
out the year, information about them will be 
made available. To obtain course informa­
tion, enroll, or order any self-paced course, 
COlllact your Tandem sales representative or 
your nearest Tandem Education Center. 

PATHWAY (38404-800) 

The popular PATHWAY course for applica­
tion developers has been improved . The new 
class st ill covers all the topics described in 
the Soltu'tEre Education Catalog , and it 
cOlllains the following new material: 

• Use of the INSPECf symbolic debugger lO 
isolate problems. 

• Stress tesling and tuning applications. 

• More comprehensive labs so Ihal each 
studenl develops a complete working 
PATHWAY system . 

New Software Courses 

DPI-DP2 Conversion C ourse 
(38449-AOO) 

This five-day course provides a descript ion 
of the d ifferences be tween Disc Process 1 
(DPl) and Disc Process 2 (DP2), and a 
description of Ihe new featu res of DP2. Top­
ics include conversion issues and strategies, 
new features of the Transaction Monitoring 
System (fMF), and DP2 support lools. 

At the end of the course students will be 
able to plan for a conversion of a system 
from DPl to DP2, do the appropriate 
SYSGENs in order 10 implement the conver­
sion, and be able 10 configure and test a 
DP2-TMF system. 

Audience 
The course is des igned for analysts and sys­
tem managers who will be supporting a DP2 
installation. 

Prerequisites 
A working knowledge ofTMF and experi­
ence as a system manager are requ ired. 

Multifile ENABLE - Self-paced 
(384SS-AOO) 

This is an intensive independenl slUdy course 
to familiarize analysts and programmers 
with the newest version of the ENABLE pro· 
gram generator. Studems will learn the dif­
ferences between single and mult ifi le 
ENABLE, the ENABLE syntax, its capabili· 
ties, and how to integrate programs gener­
ated by ENABLE into a unified PATHWAY 
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M/JImals IIlId Courses 

environment. The course provides an in­
depth look al the generated Screen COBOL 
code and the benefits of making easy (and 
not so easy) code changes with EDIT. The 
material also reviews the ENABLE skeleton 
command language, alteration of the skele­
ton file, and use of the SET BOX FLAG 
command. 

Audience 
This course is designed for programmers and 
application developers who will be generat­
ing interactive applications with ENABLE. 

Prerequisites 
A knowledge of FUP, EDIT. DOL, and 
PATHWAY would be beneficial. 

TRANSFER (38440-AOO) 
This five-day course covers installation and 
programming of TRANSFER, Tandem's 
delivery system for staged information dis­
tribution. Topics include: processes that 
comprise the TRANSFER environment , 
installation procedures, and programming 
clients and agents . Lab sessions supplement 
classroom lectures and provide hands-on 
practice. 

Aud ience 
This course is intended for system adminis­
trators and application programmers. The 
modular design of the course permits each 
group to attend that ponion of the class rele­
vant to its job functions. 

Prerequisites 
Prerequisites include: 

• Concepts and Facilities (38401) 

• PATHWAY (38404) 

• Transaction Monitoring Facility (38413) 

• System Resource Management (38411 or 
38419). This is a prerequisite for system 
administrators. 

TAL Syntax - Self-paced 
(38433-AOO) 
This independent-study course covers the 
fundamentals of TAL (Tandem's systems 
programming language) syntax structure 
and use. Topics include: data types and 
expressions, statements, addressing proce­
dures and parameter passing, program 
organization, debugging programs with 
INSPECT. and the TAL programmatic inter­
face to the GUARDIAN operating system. 

Audience 
This course is designed for systems program­
mers, application developers, system opera­
tors, or anyone involved in writing programs 
in a high-level systems language. It is recom­
mended as a prerequisite to the TAL Pro­
gramming course for people with no 
previous experience of block-structured 
languages. 

Prerequisites 
The prerequisites include: 

• Knowledge of at least one other program­
ming language. 

• Familiarity with Tandem EDIT. 

• Completion of the Concepts and Facilities 
course. (This would be helpful, but is not 
mandatory.) 

T-TEXT - Self-paced (384S6-AOO) 
This self-paced tutorial course complements 
the 'r-71;'XT User 's Manlltll by providing 
hands-on instruction in the basics of docu­
ment preparation using Tandem's word 
processing software. The course can be com­
pleted in just twO or three hours. 

Ten lessons step the user through the most 
commonly used T·TEXT functions. The 
T-TEXT menus are explained, along with the 
options available from each menu. Also 
included is a handy quick-reference guide on 
T-TEXT commands. 

Audience 
This course is aimed at nontechnical person­
nel who use word processing in their jobs . 

Prerequisites 
There are no prerequisites for this course. 
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An Introduction to SNAX -
Setf-paced (38438-AOO) 

Tandem's System Network Architecture 
Communications Services (SNAX) enables 
SNA devices and host computers to commu­
nicate and share applications with Tandem 
systems and EX PA ND networks. This self­
paced course introduces SNAX and how it 
relates to the IBM environment. 

Students learn how to perform a SYSGEN 
to set up an SNA environment , how to use 
e MI to alter the SNAX environment, and 
how to perform first-level troubleshooting. 

Audience 
This course is intended ror system managers, 
operators, ana lysts. data communications 
specia lists, and anyone who needs to sel 
up or maintain a SNAX applicat ion. The 
course does not teach or assume a know­
ledge of SNA. 

PrereQuisiles 
The only prerequis ite is an abililY to perform 
a SYSGEN. 

6100 Communications 
Subsystem Primer -
Self-paced (38441-AOO) 

This is an intensive independent-study 
course which introd uces the 6100 subsystem 
to system operators and system managers. 
Students learn the required components of 
SYSGEN and a naming convention. 

This course provides a comprehensive 
overv iew of CMIICMP as they re late to the 
6100. an overview of system-management 
procedures. and the use of DIAG6100 as a 
system management tool. The material also 
provides an overview of TRACE and 
PTRACE functions, and a detailed overview 
of the 6100 hardware. 

Audience 
This course is intended for system operators 
and system managers. 

PrereQuisiles 
There are no prerequisites. 

Int roduction to the DYNAMITE 
Workstation - Self-paced (9405) 

This self-paced tutorial course includes a 
gett ing-started booklet and a floppy disc. It 
allows students to learn about and experi­
ment with the DYNAM ITE 654X workstat ion 
in an interactive, protected environment . 

Topics include: the DYNA MITE keyboard . 
starting DYNAMITE, an introduction to the 
Microsoft Disk Operating System (MS-DOS). 
how 10 name files, how to use the 6530 ler­
minal emulalOr, and how to efller and exil 
BASIC. The course takes about two hours. 

Audience 
This tutorial is des igncd for nOIHcchnical 
users who have had no previous experience 
with a personal computer. 

Prerequisites 
There are no prerequisites. 

M.rUyn Janow la the M.naoer or Corporate Education Services. 
She Is responsible for publication 01 50ftwere and llardw'fI 
training courses and educ.tlon I(!mlnistflllion. She la .Iso 
responsible IOf producing educ.llon c.taloga. schedules. and 
brochures .bout T.ndem t/llnlng: suppor1tng speel.1 edllcllion 
requirements /of certain customer pro/eelS; .nd administering 
the Am.nce coupon PfOg/lm lor software house • . M.r1lyn 
transferred to the Cotpor.te EducatIon group In September 1982 
and hilS been with T.ndem .Ince April 1981 . 
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Tandem Worldwide Education Centers 
United States 
Arizona 
3300 N. Central, Suite 700 
PhocniJ<, AZ 85012 
(602) 264-2206 
California 
6160 Bristol Parkway 
Culver City, CA 90230 
(213) 417-3922 

2820 San Tomas Expressway 
Santa Clara, CA 95051 
(408) 970-4324 

1309 South Mary Avenue 
Sunnyvale, CA 94087 
(408) 73()-3700 

Colorado 
5300 DTC Parkway 
Englewood, CO 80111 
(303) 779-6766 
Florida 
1408 N. Westshore. Suite 804 
Tampa, FL 33607 
(813) 877-7466 
Georgia 
100 Galleria Parkway, Suite 680 
Atlanta, GA 30339 
(404) 951-0199 
Illinois 
Hamillon Lakes 
500 Park Blvd., Suite 1400 
itasca, IL 60143 
(3 12) 773- 1750 

Massachusells 
7 Wells Avenue 
NeWlOn, MA 02159 
(617) 964-6500 
Michigan 
3001 State Street, Suite 1010 
Ann Arbor, MI48104 
(313) 622-2200 
32540 Schoolcraft Avenue 
Livonia, M I 48150 
(313) 425-4110 

Minnesota 
3050 Metro Drive, Suite 205 
Minneapolis, MN 55420 
(612) 854-5441 

New Jersey 
777 Terrace Avenue, Second Floor 
Hasbroock Heights, NJ 07604 
(20 I) 288-6050 

New York 
One Penn Plaza, Suite 4334 
250 W. 34th Street 
Ncw York, NY 10119 
(212) 760-8440 
Pennsylvania 
Commerce COUrt Office Building 
4 Station Square, 7th Floor 
Pittsburgh, PA 15219 
(412) 562-0262 
Texlls 
4225 Wingren, Suite 100 
Irving, TX 75062 
(214) 257-9744 

Virginia . 
12100 Sunrise Valley Dnve 
Reston, VA 22091 
(703) 476-3154 
Wllshinglon 
14711 NE 29th Place, Suite 100 
Bellevue, \VA 98007 
(206) 881-8636 
Washington , D.C. 
5201 Leesburg Pike, Suite 700 
Falls Church, VA 2204 1-3280 
(703) 379-7900 

International 
Australia 
3 Bowen Crescent 
Melbourne, Victoria 3004 
011-61-3-267-1577 

22 Atchinson Street 
51. Leonards, Sydney, NSW 2065 
011-61-2-438-4566 
Belgium 
Louizalaan 306-310 
1050 Brussels 
011-32-2-6487330 
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Canada 
7270 Woodbinc Avenuc, Sccond Floor 
Markham, Ontario L3R-4B9 
(416) 475-8222 
6500 ROUle Trans-Canadicnnc 
51. Laurcnt, Quebec H4T IX4 
(5 14)342-6711 

Denmark 
Helgeshoj Aile 55 
DK-2630 Taaslrup 
011-452-5252-88 
Engl::llld 
Tandem House, Mendy Street 
High Wycombe, Buckinghamshire 
HPI12NZ 
011-44-494-2 1277 
France 
2 - 4 Rue Victor Noir 
92200 Ncuilly Sur Seine, Paris 
011-33-1-738-29-29 

Cermany 
GeschaeflSStelle Duesseldorf 
Heinrich-Hertz-Strasse 2 
4010 Hilden 
011-49-2103-572-100 
011-49-2 103-572-101 

Berner Strassc 34 
6000 Frankfurt/Main 56 
11 -49-69-50003-0 

Hong Kong 
448 Wing On Plaza 
Tsim Sha Tsui East, Kowloon 
011-852-3-7218136 

I'all 
Viale del Ghisallo, 20 
20151 Milano 
01 1-39-2-3087386 
Japan 
Yasukuni Kudan Minimi Bldg. , 
3rd Floor 
2-13-14 Kudan Minami, Chiyoda-Ku 
Tokyo 102 
03-237-953 1 
Nelherlands 
"Plus Point" 
Jupiterstraat 146-3 
2132 HG Hoordorp 
02503-30294 

New Zealand 
Level 20, Wi ll iams City Centre 
Boulcott Street, Wcll ington 
011-644-723286 
Norway 
0. H. Bangsvei 51 
N-1322 Hoevik 
2-123330 
Sweden 
Norgegalan I 
Box 1254 
S-163 13 Spaanga 
o I 1-46-8-7507540 
Switzerland 
Zwcicrstrasse 138 
8036 Zuerich 
0 11 -41-1-461-3025 

Oislribulors 
Finland 
Oy DavaAB 
Box 458 
00101 Helsinki 10 
011-358-0-42021 

Mexico 
Tandem Computers de Mexico, 
S.A. de C. V. 
Ave. Juarez No. 14-2 piso 
06050 Mexico, D.F. 
(905) 585-8688 

I'hilippines 
Mini Systems, Inc. 
LBH Building, 4,h Floor 
1431 A. Mabini Street 
Ermila, Melro Manila 
722-27316 
Taiwan 
Syscom Computer Engineering Co. 
9th Floor 
53 Jen Ai Road, Sec. 3 
Taipei, Taiwan , R.o.C. iso 
(02) 7731302-9 
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SNAX/ HLS: An Overview 

significant add ition to 
SNAX (Tandem 's fault­
tolerant interface 10 the 
Systems etwork Archi­
tecture, SNA), is availa­
ble with the BOO software 
release. This is SNAX 

High Level Support (SNAX/ H LS), an easy­
to-use interface that allows programmers 
with linle knowledge of SNA to develop 
SNA-relaled applications on Tandem net­
works. SNAXlHL$ dramatically reduces the 
lime required to develop such applications. 

This article describes the design and 
implementation of the SNAX/ HL$ system. 
Topics include: 

• The components of the SNAXlHLS 
system. 

• The SNA capabi lities it supports. 

• lIS potential applicat ions. 

• An appl ication benchmark employ ing 
SNAXIHLS. 

This information is imended for technical 
managers, application programmers , sys­
tems analysts , and others who need an over­
view of SNAX/ HLS capabi lities. Readers are 
assumed [0 have a genera l understanding of 
SNA, IBM SNA products , and SNAX. In fo r­
mation on IBM SNA products and dev ices, 
SNAX, and SNAX/ HLS is avai lable in [he 
references listed at the end of the article. I 

Oesign Goals 

With the illlroduct ion of SNAX, Tandem 
systems acquired the ability to comm unicate 
directly with SNA sof"vare products, such 
as the In formation Management System 
OMS), and SNA devices, such as the IBM 
3624. SNAX is unique within the industry in 
prov iding both a gateway [0 SNA software 
products and SNA device support on a CPU 
that is not 18M-compatible . 

SNAX offers two application in terfaces: 

• The SNA3270 inter/ace, a high-level inter­
face connecting the Command Interpreter 
and Spooler subsystems with SNA display 
stations and primers. 

• The SNALU inter/ace, a general-purpose, 
low- level interface similar to the application 
in terface of IBM's Virtua l Telecommunica­
tions Access Method (VTAM). The SNALU 
interface was designed to function as the 
base interface for new SNAX prod ucts as 
well as to provide the basic framework for 
specialized offerings from Tandem software 
houses. 

SNAX also supports SNA Session 
Passt hrough , a feature that permits SNA 
devices attached to a Tandem network to 
access SNA application programs res idelll in 
an I BM host without changes to or repro­
gramming of the application. 

The SNA3270 interface and S AX 
Passthrough ga ined quick acceptance by 
Tandem customers. Many Tandem installa­
tions worldwide use them. 

Tandem users and software houses also 
saw the generality of the SNALU interface as 
a positive featu re. Using SNALU, applica­
tions could control the flow of SNA messages 
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and acknowledgments and cou ld send and 
process special SNA commands, making the 
interface well suited for custom applica­
tions. SNALU application development 
required that programmers be highly knowl­
edgeable in SNA message formats and proto­
cols, however, making program development 
for simple business applications complex. 

HLS was developed to fill the need for a 
high-level addit ion to the SNALU interface 
for generic business applications. Its design 
resuhed direct ly from meetings between 
Tandem developers and users of Tandem 
systems. The des ign goals were: 

• High-Ie\'el support for SNA communica­
tions. HLS was to hand le all aspects of SNA 
protocols and formats. The programmer 
interface was to be simple and easi ly under­
stood by applications programmers with 
little knowledge of SNA or SNAX. The SNA 
protocol had to be consistent with the pub­
lished Slandards on SNA communications 
architecture. 

• Consistent interface to the PATHII~Y sys­
[em and olher environments. HLS was to 
support an interface that allowed both those 
applications based on the PATHWAY transac­
tion processing system and those not based 
on it to take fu ll advantage of SNAX 
capabilities. 

• Supporr for SNA gateways and SNA 
devices. HLS was LO SUPPOr! logical sessions 
to IBM subsystems (e.g., IMS) as well as 
advanced IBM devices (e.g. , the 4700,3624, 
and 3650). 

• A full complement of cOlllrol and support 
lools. HLS was to provide easy-to-use utili­
lies to configure, control, and trace the 
operational environment. Significant inter­
est in a protolyping/ simulation tool was 
also expressed. 

implementation 

HLS is a system of processes that addresses 
the product requirements stated above. The 
implementation of H LS takes full ad vamage 
of Tandem products such as the PATHWAY 
system and the ENABLE program generator 
to provide high-level SNA communications. 

The HLS process is implemented as an 
intermediate process between the user appli­
cation and the SNALU interface of SNAX. 
This makes the power of the SNALU inter­
face available to programmers while shield ­
ing them from the SNA complexities of the 
interface . Figure I illustrates a conceptual 
overview of HLS in a Tandem nel\\'ork 
environment . 

Verbs 
HLS implemem s an application interface 
that is independent of requester language. A 
set of verbs at the interface level handles all 
SNA communications functions requested by 
the application. The verbs, in essence, make 
up the high-level applicat ion la nguage. 

An HlS verb is merely a fo rmalted mes­
sage from the application program that 
describes to HLS the function 10 be per­
formed on behalf of the application. Specifi­
cally, it is a sct of indicator fields that 
precede optional user data. The indicator 

figure 1 

NonS,op II , up, or EXT 11"'''''' 

~THWAV -(SCOOOlI -(T,t,LCOOOl) 

"' / 

/ "' 

SNA ~ 5NA ga'lIW8')'S 
C3eXX .• 7XX) ,'MS,. CICS) 

Figure 1. 

The SNAX/H LS 
environment in a 
Tandem netWQrk. 1JLS 
upports both those 
applicatwns based on 
the PATH WAY 
transaction proce"ing 

system and tho,e not 
bued on. it. The 
reque, lers can be 
located anywhere in 
the Tandem network. 
HLS a/'.o supports 
communil, from the 
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command and .tatu. 
processor HLSCOM. 
The HL S procell mu.t 
execute on a Thndem 
NonStop II or TXP 
proce"or. 
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Do/a Commllllial/ions 

Aiur• 2 
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Tlte proceui7lg of a 
verb tltat ,ends a 
request to the ,euion 
partner and receives a 
reply. PIC and LIe are 
SNA indicato,., relat· 

fields can be either verb requests (requesting 
the function to be performed) or verb mocli· 
riers (modifying the action of the verb). To 
ensure that HLS functions in a PATHWAY 
environment, the indicators are always byte 
values, typically Y or N, and not bit masks. 

Each verb is associated with a reply. The 
verb reply is a formaued message from HLS 
to the application program that indicates the 
result or status of the verb request. Verb 
replies can also contain indicator rields and 
optional data. The most important field of 
the verb reply is the RETURN·CODE field. 
The RETURN-CODE is a generalized mecha­
nism for standard error and status reporting, 
much like the condition code or file error in 
the Tandem operating systems. 

Since verbs elicit a two-way message 
between the requester and HLS, the 
operating-system call WRITEREAD is used 
for message delivery. Any Tandem language 
that supports the equivalent of WRITEREAD 
can communicate to HLS. Currently, all lan­
guages supplied by Tandem support WRITE­
READ or its equivalent. 

SNA~F1C 2 "'AX 
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i1lg to meuage-chain 
element groupings. PIS 
and LIS are SNA indi­
cators relating to 
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+RSPiaan SNA 
aclawwledgment. The 
proceuing .tep, are 
de,cribed in detail in 
the text. 

To ensure that H LS would be readily 
accepted and easily used by applications 
programmers, considerable attention was 
paid to the naming conventions for the verb 
requests and modiriers. SNA communica­
tions are replete with arcane constructs such 
as brackets, chains, and request shutdown 
sequences, and much of the difficulty in 
understanding SNA has stemmed from this 
jargon. Most of these constructs relate 
directly to important and easily understand­
able concerns of transaction processing, 
however: brackets are uninterruptable units 
of work (i.e., transactions), chains are logi­
cal messages, and request shutdown 
sequences arc orderly terminations of com­
munications. HLS, whenever possible, uses 
the most understandable and meaningful 
name for each verb modifier. For example: 

• When a bracket is in progress, HLS sets 
the indicator TRANSACTJON-IN-PROGESS 
to Y. 

• If a complete chain is received rrom the 
session partner, HLS sets the ind icator 
MESSAGE-COMPLETE to Y. 

• Whenever programmers wish to terminate 
the session in an orderly fashion , they 
invoke the PREPARE-TO-CLOSE verb. 

The Verb Message Sequence 
The HLS system was designed to be erfi· 
cient. A single request from an HLS applica­
tion can send a transaction to the session 
partner as well as receive the reply. Figure 2 
illustrates this as follows: 

I . The requester delivers a "message" (Le., 
a verb request with data) to HLS for 
transmission to the sess ion partner. 

2. HLS formats the message into appropriate 
SNA message units (chain elements), han­
dles required aspects of SNA protocol, 
and delivers each chain element to SNAX 
with a SNAX header. 

3. SNAX formats each chain element into 
the appropriate Synchronous Data Link 
Control (SDLC) frames, handles SDLC 
addressing, and tranSmiLS each frame on 
the data link. 
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4. S: AX receives a series of SDLe frames 
constituting the session panner's reply. 
S~AX assembles these frames into chain 
elements and delivers them to HLS. 

5. HLS receives chain elements from SNAX. 
assembles the chain elements into a logi­
cal message, and delivers an SNA 
ackno\\ledgrnent to the session partner, 
if required. 

6. The HLS requester receives a verb reply 
consisting of a " message" (i.e., a verb 
reply with data). 

Compatibility with S A Environments 
HLS supports a wide range of SNA commu­
nications environments, including the 
following; 

• F\1 and TS profiles 2, 3,4, and 7. 

• Multiple RU chains managed by HLS or 
the user. 

• Half-duplex flip-flop and contention 
send 'receive mode. 

• Full-duplex send/receive mode, 

• Immediate and delayed request mode. 

• Bracket suppon under both termination 
rules. 

• Primary-Io-secondary and secondary-to­
primary pacing. 

• ~'1AXRU up to 4096 bYles. 

• LUtypesO, 1,2,3,4,and7. 

• Pipeline LUs. 

HLS has been implemented in strict 
accordance with the architectural specifica­
lions of SNA, as documented in the SNA 
Format and Profocol Reference Manual. Its 
internal usage checks and slale machines arc 
equivalent to those documented in the Pro­
locol Reference Manual for SNA, ensuring 
that HLS state interpretations match exactly 
those provided by IBM. Figure 3 illustrates 
the similarity between HLS source code and 
published SNA documentation. 

Datu CommullicaliollS 

Flgur. 3 

Fin!!. tI.t. machln. 

SOA 

STATE NAMES ern: INC :---PU-RGE 
INPUTS " 02 03 

R,RO.-CANCEL. BC,EC 'R) ,A, 
R,RO,-CANCEL. BC.-EC 2 'R) ,R) 
R,RO,-CANCEL.-BC, EC 'R) , , 
R,RO,-CANCEL.- BC,- EC ,A, 

R,RO, CANCEL ,A, 
- - , , 

S,-RSp,TO _CURRENT_CHAIN , -
-

'RESET' / . FROM OFC_RESET'/ , 

OUTPUT FUNCTION 
CODE 

R RECEIVE_CHECK_SENSE",X'2002'/, CHAINING ERROR'I 

END FSM_CHAIN_RCV; 

SNAXlHlS 

INTCHAIN"flCV" '" 'P':". I 
STATE NAMES 

INPUTS 

R,AO,-CANCEL. BC,EC 
R,RO,-CANCEL. BC.- EC 
R,RO,-CANCEL.-BC. EC 
R,RO, -CANCEL. - BC,- EC 

R,RO, CANCEL 

S,- RSP.TO _CURRENT_CHAIN 

'RESET' /' FROM OFC_RESET'I 

OUTPUT r FUNCTION 
CODE 

ern: 

" , 
2 
'+A 
HA 

HA 

INC PURGE 
02 03 

2+A ,+ A 
2+A '+A , , 
2 , 

, , 

R RECEIVE_CHECK_SENSE",X'2002'I ' CHAINING ERROR"/ 

" 

F1gur. 3. 

A finite .tate machine 
(FSM) a& 'peci/ied/or 
SNA (documented in 
the SNA Format. and 
Protocol Reference 
Manual) and a.s imple­
m~ted in SNAX/JILS. 
(The punctuation 0/ the 
JlL$ code ha.s been 
modified slightly to lit 
the figure /ormat.} An 

FSM i" used in SNA to 
-rememberHfHUt 
ewnt" and control the 
operationolSNA pro­
cene •. The memory 0/ 
the FSM i.! it. current 
.'ate (the clLrrent .tate 
map. to one 01 the 
FSM'. columns). When 
pre.ented with an 
input {shown on TOWS} 

the FSM produce. a 
new CltJTent "tate and 
output f.houm at the 
intersection. 01 the 
input TOW and current 
state columnJ. The 
striking .!imihlrity 
between the two 
FSMs en.ure. that 
SNAX/IILS correctly 
enforce. SNA protocoL 
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Data Communications 

118 --

Tlbl.1. 
SNAXlHlS verbs. 
v ... FunetlOfl 

sellion .. tlbllshmenllnd termin.tlon 

OPEN-sESSION EstaDllShes eommunocabons ..... ':n Itle 
sesSIOn p&Jlner 

8n Qloetly sessoon shut· 

Reu_ datll,om \.ISef·s .ee_ ...... 
SCND-AND-RECElVE·DATA Sendsdall 10 tl'Ie sessooo partner and 

Ih8fo queues 8 RECEIVE·DATA Y8fb 

Stalul reqlllil 

REOUESTSENO-5TAJE Requests perffllUlOfllO send r;la19 
(used only' 1fI11al1-dup11x flows) 

SENO-5TATUS sends In SNA LUSTATUS to SessIOI'I 
partOEtl 

RECEIVE-CONTROL Queues Ine 100 eIemefIl at Itle r~r'IIe ,-
Utll1l)' 

CQNIIERT·EAAQR.cooE C(Irr.oerts helI8deetn'lallelds 10 0SpIay 
101'1'111 .nd decodes 5NA sense codes 
Into Engillft IY-..ge5 

GET.ATTRIBUTES Obtlll'll proille Ind BIND IfltormalJOn 

SET·ATTRIBUTES Sels pl"ol<lo OO!IOOS oynamoc:aJIy 

It is important to note that whi le HLS 
eliminates SNA communications protocol 
from the application program, it does !lot 
eliminate data presentation and formatting 
requirements . Message formats are the 
responsibility of the HLS application. In 
other words, SNA/ RJE (LU Type I) support 
is possible under HLS, but users must format 
the data buffer with appropriate SNA Char­
acter String (SCS) control codes before trans­
mission. Similarly, word-processing support 
(LU Type 4) is supported under HlS, but the 
user is responsible for the format require­
ments for the device. 

System Components 
HLS Process 
The HlS process is a multithreaded TAL 
process that acts as an interface between the 
HLS application and the SNAX SNAlU inter­
face. lis primary activ ity is 10 perform verb 
requests and produce verb replies. Typically. 
verb requests result in one or more SNA meso 
sages flowing to the session partner on 
behalf of the HLS application. HLS also pro­
vides a message queue for each application. 
Incoming messages are buffered by the HLS 
process if the application does not have an 
outstanding verb. 

H lS verbs do the follow ing: 

• Establish communications with a session 
partner. 

• Manage the transmission and reception 
of data. 

• Terminate communications with a session 
partner. 

Table I lists the verbs supponcd by the HLS 
process. 

HLS also supportS a "command" il1ler­
face. Using command-interface verbs, a user 
process can programmatically control and 
inspect the HLS operating environment. 
Command-interface verb replies contain bit 
masks and are primarily intended for appli­
cations written in TAL. 

Finally, HLS has been designed as a 
generic, self-configuring system applicable 
to a wide range of SNA environments. HLS 
always examines the session-establ ishing 
SNA message termed lhe BIND. The BIND 
contains a variety of option fields thai detail 
the specifics of a given logical communica­
tions channel between two session partners. 
If the BI D is within the range of acceptable 
values to HlS, internal control blocks are 
customized automatically to fit the specifics 
of the current session. 
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RtsOUfCt Definition Table (ROT) 
The Resource Definition Table (ROT) 
describes the characteristics of the I-ILS envi­
ronment It is a table wherein all scssion 
prolile information , SNA message formats, 
and global data are stored. At HLS initiali ­
zation. the RDT is opened and read into an 
e.,(lended data segment. While this means 
lhal e\ef)' HLS process has the complete 
ROT in virtual memory, the size of the RDT 
is relativel), small (less than 2K bytes) for 
IIl()<;t configurations. The ROT in virtual 
mmlOf)' can be dynamically replaced with­
oot requiring the H LS process to be stopped 
or affecting active sessions. 

When HLS receives an OPEN-SESSION 
requeSt from the application program, the 
profile sc:ction of the ROT is scanned for the 
specified profile name. Pointers in the pro­
file point to the location of spec ial SNA mes­
sages that are used to establish the session, 
The application programmer need only 
k.no\l. the profile name to speci fy the details 
of thc S A sess io n. 

The ROT is an unstructured file produced 
\'ia the "compilation " of an ENSCRIBE file 
called ROTKSFLE. The maintenance of the 
RDTK FLE is performed by a set of pro­
grams supplied with HLS that are generated 
by E~ABLE. Thus, the PATHWAY system and 
the E:'-IABLE program generator are required 
for the user to use the standard ROT mainte­
nance sYMem. 

HLS is delivered with a sample 
RDTKSFLE, comaining several useful pro­
file, BIND, a nd INITSELF records. The user 
i~ free to insta ll the sample RDTKSFLE or 
create a null ROTKSFLE and add only those 
records needed for planned applications . 

HlSCO\1 Process 
HLS provides a command interface to uscr 
processes. A standard command process, 
HLSCO\1, is delivered with the producl. 
Users are a lso free to design their own com­
mand processes using the verbs available 
with Lhe command interface. 

HLSCOM is des igned to support a wide 
range of commands suitable for operator 
control , error recovery, and system tuning, 
Optionally, HLSCOM can configure trace 
files for HLS traces, 1-1 LSCOM supportS 
"wild-card" name constructs so Lhal com­
mands ean affect: 

I. A single LU. 

2. All LUs on a given SNAX line. 

3. All LUs running under an HLS process. 

Table 2 lists the HLSCOM commands. 

T.ble 2. 
HLS command Eroc_e~sor (HLSCOM) comma~d~. 
Command Funcllon 

ABENO Abends cunenl SNA.XIHLS prOCK' 

ABORT AbofIS one or more 5eSSIOnI 

A$SUUE sell oalaulll,ne name 

CMOVOl SOls dellullS lor '.name expiIllSIOn" cornrnal'lClS 

EXIT EJ;'IS CUI rent obey Ide or proglam 

Fe FIJI" lUI cornrnand lone 01 currenllnpul "Ie 
HELP OISPUIVS help mk;wmallon 

INFO Relurnl sessIOn conhguralJOn InlofmallOn 

USTOPENS uSIa all process opltr>ers lor spec,hed SEl$s+onl8) 

OBEY Reads eorM\Irods 'rom spec,hed Me 

OBEYVQl seta delaullS lot ~ 0' obey 1,1e names 

OPEN Spec.!! .. name 01 curren' HLS prClC ... 

PEEK Snows current SNAXlHLS process Il'llormallOn 

OUSG Btoedc.sts meauge 10 .-..c:led HLS eppbea,1OftS 

SHOW snow. curren! CUOVOl and OBE~ selh~ 

STATUS 

SWITCH 

TRAe< 

AI'urnS IMtSSIOII-SlalUS tnlonnatJOn 

DynalllfC.llly replaces lhe CUllenl ROT In YlflUilI 
1I00.ge 

Conhgurel. &181IS. and &lops 5elSOOO Irlc'ng (Ina, 
yHju81 l UI can be tr.ced) 

J l , I TA N I)FM S Y ST fM S NEVIl'" 

Dala CommunicaliOllS 

"' 



Dara CQmlllllnicalions 

FiguflI4 

$II.U H~ TI(lI9.Io'l 29OC11I<I1 

.lIIft · • 111.' .... 1 

,U CI\lIIO PfIIdt 
1l'1li ~* .... 

wu.T. 1 SlU ~ IIoACaVT 

FJguflI 4 

A sample INFQ 
DETA IL screen from 
HLSCOM. The 
operator requeds 
in/ormation/or all L Us 
" .• ' with this INFO 

FlguflIS 

command. although the 
in/ormation/or only 
one LU is shount in this 
figure. The session ID. 
the L U name. and all 
critical session'pm/iie 

S'U/IltSCl ~ T9Q81jA?l 2IOC1&l1 

eSTAIU$ ' • DHI,Il 

~ •• ''P ,U ... 
• • 

in/ormation ir 
displayed. Note also 
that all relevant BIND 
fields are displayed. 

SNioI U"",," SUI.. t,... ~~ s....CoO!oI 
PO Trw CoOl SfIoI Ao;-.c 

$S~AlIi oJl ASP WIoll AI 5efId_~ ....... ... .... 

--- ... "'"" ~ s-, .. ~ .. .... - .,. 
Bo:'.Cll.~ - Sltctl.S .... -- - tIkI.tlLl - SIl.CLR .... 

_s- O< 
_., .. "'~ .. ctCO._ - ""' .. - Ofe.SIno ---- • ~ ..... o.- 0 ....... II<Y. ':I( I -- , ",".eo- I ~~ • 

HLS supports extensive SNA-prOtocol 
stale interpretation with the DETAI L option 
of the STATUS and INFO commands. Using 
DETAIL, users involved in systems program­
ming and technical support can examine 
each state machine and major control bloc~ 
of an HLS process . Figure 4 illustrates a 
sample INFO command. All c ritical configu· 
ration information is displayed for the 
session . 

Because on-line inspection of SNA state 
information is critica l to rapid problem iso­
lation and determination , the STATUS com­
mand is provided to display the current state 
of the HLS sess ion. Figu re 5 contains a sam· 
pic of the information displayed by the 
STATUS command. In this particular sample, 
the HLS application is sending a message to 
its session partner (the current verb is SEND· 
DATA), and the HLS application is blocked, 
waiting for message acknowledgment from 
the session partner (the current status is 
RSP _WAIT). This type of display greatly 
accelerates problem resolution. 

Applica tion Prololyping and Simulation 
Using the Application Prototyping and Sim­
ulation (A PS) system, applications program­
mers can interactively execut e verb requesLS 
and immediately see verb replies. Using this 
featu re, programmers can create a prolOtyJX' 
of an application in minutes without writing 
any code. They ean easily simulate error 
recovery, message contention , and verb exe­
cution conditions. 

Figure 5. 

A sample STATUS. 
DETAIL screen. The 
operator requests in/or' 
motion/rom all LU, 
" . • ' wilh this STATUS 
command. although 
Imlyone LU is shown 
here. Note Ihat the 
CIlrrent verb for the 
HLS application is 
SEND-DATA (shown 
in the Verb Code 
field) and completion 
0/ the tlerb is blocked: 
SNAX/HLS is waiting 

for mesaage acknowl· 
edgment/rom the .u· 
,ion partner (,hoU11l11t 
the Status /ieldJ. The 
state in/ormation ,ec' 
tion displays the .tatll 
0/ all SNA protocol 
control blocks. The 
con trol ill/orma lion 
show. the value 0/ 
variOIl.S counter.fe.g .. 
jUsg_Queue is the Itlllli' 
ber 0/ message, quevtd 
for the application). 
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APS is also a useful educational tool. Pro­
grammer:; unfamiliar with HLS can be 
shown verb dynamics in a few hours of 
il\SU1lction . 

.\PS is a Screen COBOL requester, present­
ing one screen per verb request. The APS 
uscrmerely selects the function key repre­
StIlting the verb lO be executed, fills in the 
\tfb indicators . directs APS to send the verb 
loan HLS process, and observes the result. 

APS includes extensive display fields to 
trip identify errors and problems. It inter­
poets S~A sense codes in both hexadecimal 
notation and English. The display fields a re 
quitt useful for learning the HLS system. 
Figure 6 represents an APS sc reen after an 
OPE~·SESSION failure has occurred. The 
SM sense code for the failure (hex 080 I) is 
automatically decoded to message text 
(Resource Not Available). With this feature, 
problem resolution can begin immediately; 
~ programmer does not have to decode the 
smsr code by using one of several SNA 
manuals. 

HLS Trace Analysis Process 
The HLS Trace Analysis Process (HLSTAP) 
allov.s the user to formal and display trace 
infonnation in a meaningful, high-level for­
mat. First, the user configures trace require­
ments using HLSCOM. Four levels of trace 
information can be configured: 

1. ~rb inpllI and output. At thi s level, a 
trace of all verb requests into HLS and all 
verb replies out of HLS can be config­
ured. This trace is intended for usc in 
determining application-program 
problems. 

2. LU service calls. At this level, a trace of 
internal scheduling events that HLS exe­
CUtes on behalf of the user can be config­
ured. This is. in essence, a " dispatcher" 
trace and is intended for HLS inlernai­
problem determination. 

Agul1l6 

---
l _ ll'ill "....., L' -, ~ ... , 

"""" 

....... 
JIItu'1lCIIM 10 IIC·S£S:;; rAl;..LIRI 
s,-.... lO"~ .' IIlSOURCI NC'IMlAl,.AU u__ 0 DOOCI 

IIWy .IdIIn 1 '1<1I1'IasoaII s.od __ no 0 

1Ic:._:QI1ID 0 --.-

Agur.6. 

A 'CN'en from an A PS 
.e"ion. ill wAich a 
.!enion failure 
occurred. TIle top Italf 
of the ,creen .how. the 
OPEN·SESSION verb 
parameten ,upplied by 
tlte IIser. Tlte bottom 
half of tlte screen show. 
the verb reply from 

HLS Note that Ihe 
return code IJ 
RCSESSION·FAILURE . 
7'lte .y.tem error field 
dow. the refUon/or 
tlte .euionfailure. A 
negatit:e re.pome from 
the leuion partner wal 
received. indicating 
that the seuion 

3. Dataflow control (DFC). At this level, a 
trace of "before and after" Dre finite 
state machines can be configured during 
lhe course of message processing. This is 
intended for HLS internal-problem 
determ inat ion . 

4. SNALU I/O. At this level, a trace of mes­
sages to and from SNAX can be 
configured. 

IU'f 1<l1I~ · T""O£\I SYSTI:.MS Rf\ Irw 

Do/a Communications 

partner cOlLld not be 
contacted (RESOURCE 
NOT AVAILABLE/. 
The retry-action/ield 
prouides i'll/ormation on 
whether the 
OPEN·SESSION verb 
... retryable; in thil 
instance no verb retry 
i.t pouible. 
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Two record8 from (l 

SNAX/HLS trace file . 
formatted with 
HLSTAP. The/ir.' 
record (record 1) dow. 
the initialization of 
,eB6ion control blocb 
for LU SSNAT.ILU1. 
The State In/ormation 

BIND mellBageJ. The 
SeBBion Parameters 
.ection shows which 
types of SNA mel8age 
SNAX/HLS is allowed 
to .e1ld and receive 
under the rules 0/ the 
current .e88ion. The 
second record show' 
the completion 0/ an 
OPEN-SESSION verb 
for the .ame La. Note 
that aU verb reply 
indicators are/ormat­
ted by HLSTAP. 

• ection dow. the ini­
tial.etting. for SNA 
control/low,. The Bind 
In/ormation section 
dow. the vailles of the 
,el8iQn-e, to blishing 
SNA menage (i.e .. the 

Once the trace of selected LUs is com­
plete, the user can stop the trace and begin 
ana lysis with HLSTA P. HLSfAP allows indi­
vidual LUs or groups of LUs to be selected 
for processing. Formatted displays decode 
all verb indicators , the session BIND, DFC 
states, SNA request/ response headers, and 
user data. Several convenience commands 
are also included in HLSfAP. Figure 7 repre· 
sents a page from a sample HLSfAP report. 

Potential Applications 

HLS was designed to func tion in a wide 
range of envi ronments, including SNA 
device support , SNA gateway applications, 
selec tive passthrough applications, and 
"intell igent-networki ng" applications. The 
following is a descri ption of how HLS fits 
into each environment. 

Device-support applications 
In this type of application, an SNA device is 
connected to a Tandem application (e.g., ttl: 
PATHWAY transaction processing system). 
SNAX includes native support for IBM 327:\ 
display devices and 328X printers. The HLS 
system adds support for the following IBM 
products: 

• 3600 Financial System. 

• 3624 Financ ial System . 

• 3630 Plant Communications System. 

• 3640 Manufacturing System. 

• 3650 Reta il Store System. 

• 3660 Supermarket System. 

• 3680 Programmable Store System. 

• 3767 Communicat ions Terminal. 

• 3770 Data Entry System . 

• 4700 Financial System. 

• 5520 Informat ion Display System . 

• 6670 Information Distributor . 

• 8100 Information System. 

• Series/ I General Purpose DP System. 

• Series/ 32 General Pu rpose DP System. 

• Serics134 General Purpose DP System. 

• Series/ 36 Genera l Purpose DP System. 

• Series/ 38 Genera l Purpose DP System. 
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Ifhis SNA device support allows the business 
application to reap the benefits of the 
andem system (i.e .• availabi lity, expand­
bility, and programmabilit y) whi le still 

making use of the SNA terminal or devicc. 
It is important to note that HLS provides 

only the SNA support for these devices. Spe­
cific device control and data formatting is 
the responsibility of the HLS application. 

Gatewa) Applicalions 
Gateway applications are processes resident 
011 a Tandem system that are in communica­
tion with a foreign computer/network. HLS 
prm'ides an easy-to-use interface for 
Tandem applications to communicate with 
(he fo llowing SNA applications: 

• Customer Information Control System 
(CICS). 

• Host Command Facility (HCF). 

• Information Management System (lMS). 

• Job Entry System 2 (JES2) . 

• Job Entry System 3 (JES3). 

• Network Communications Control Facil­
itHNCCF). 

• Network Routing Facility (NRF). 

• Time Sharing Option (TSO). 

In gateway-application environmems, 
HLS provides SNA protocol support for 
applications running on Tandem systems. 
In such environmenlS, Tandem transaction 
processes can have on-line access LO data 
located on the IBM system and vice versa . 
In other words. each system can function as 
a data-base "server" for the other. Critical 
data bases can be located on the Tandem 
system for fast, reliable access while batch­
processed data can be located on the IBM 
system. Thus, neither sysl.em need be iso­
lated from the data bases. 

Often SNA device-suppon applications 
are closely integrated with SNA gateway 
applications . For example, in a shared 
automated-teller (ATM) network, Tandem 
S)'Stems could suppon a network of SNA 
ATMs using the device-support features of 
HLS. The routing of ATM transactions wou ld 
be done by Tandem applications, and t.rans­
action delivery to SNA hosts would be sup­
paned by the gateway SNA features of HLS. 

Gateway sessions to the Network Routing 
Facility (NRF) deserve special mention. NRF 
is an IBM software product that runs in an 
SNA front-end processor (e.g., the 3725). It 
allows traJlsactions to be routed through an 
SNA nCl\vork with no IBM host-application 
involvement. HLS supports NRF sessions, an 
example of which is given in the next 
section. 

Selecti ve Transacl ion- passthrough 
A pplicati ons 
SNA gateway support can a lso involve a ver­
sion of transaction processing termed selec­
tive passfilrougil. In this type of application, 
the critical data bases are strategically 
located on Tandem and IBM computers . 
HLS applications provide the gateway access 
to the IBM systems. Transaction programs 
on the Tandem system control the device 
(Tandem, SNA, or other) and route requests 
for data to the appropriate source. Terminal 
operators are unaware of the locat ion of 
data and/ or programs. The dcmonstration 
of HLS in October 1984 to the International 
Tandem Users' Group (ITUG) in Orlando, 
Florida, featured se lective transaction 
passthrough. In it, terminal operators could 
retrieve and update records on either a 
Tandem ENCOM PASS or an IBM C ICS 
data base. 

In telligent-network Applicat ions 
Although the term intelligent "efwork is 
ambigl,lous. there is a consensus that an 
intelligent network provides, between 
d iverse terminals and hosts. an interface 
that contains value-added network func­
tions. HLS provides the SNA gateway and 
SNA device support this type of endeavor 
requires. For example, one HLS user is sup­
porting cuSLOm X.25 terminal s with a net­
work of Tandem processors. The user 
employs HLS to connect the terminal s to 
TSO running in IBM SNA hosts. In essence. 
the HLS application bridges the gap between 
the SNA application in the IBM host and 
foreign X .25 terminals. 
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SNAX/ HLS in an 
Application Benchmark 

SNAX/HLS was used in an application 
benchmark of a large retail credit· 
authorization system. The section below 
describes the HLS design used in the bench· 
mark and the HLS performance results. 

The user had a large SNA network in place 
and requested a demonstration of Tandem's 
SNA transaction-processing capabilities 
before undertaking full-scale application 
development . 

Credit transactions from point-of-sale 
(POS) devices were 10 be concentrated by 
IBM Series/ l minicomputers at the store 
level. Credit-card transactions from the 
store's POS devices were to be routed 
through the SNA network to the Tandem 
systems for credit authorization or rejection. 

NRF was selected to route transactions 
between the Tandem systems and the 
Series/! computers. It provides transaction 
switching with no IBM host-program 
involvement. NRF also supports transaction 
pipelining, permitling the transactions from 
several POS devices to be multiplexed 10 the 
Tandem application through a single LU in 
the Series/ t. Figure 8 shows the elements of 
the planned network. 
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The PATHWAY transaction processing sys_ 
tern was selected to control and support 
credit·authorization processing on the 
Tandem system. Using HLS, PATHWAY pro­
grams were [0 accept transactions from NRF, 
perform credit processing, and reply lO NRF 
with approval or rejection. 

The detailed design focused on three 
major aspects of the HLS application: ses­
sion establishment, data transfer, and ses­
sion termination. Session establishment and 
termination were straightforward. The 
OPEN-SESStON and CLOSE-SESSION verbs 
were to be used to start and stop SNA com· 
municat ions. The data transfer phase was to 
usc an initial "priming" RECEIVE-DATA 
verb to acquire the first transaction , fol­
lowed by a SEND-AND-RECEIVE-DATA verb 
to reply to the first transaction (the SEND 
ponion of the verb) and prepare for a new 
transaction (the RECEIVE portion of the 
verb). The SEND-AND-RECEIVE-DATA verb 
was to be used in this fashion to minimize 
the number of interprocess messages 
between the HLS application and t.he HLS 
process. 

A summary diagram of the applicat ion 
logic is prescnted in Figure 9. (In the dia­
gram, the verb structures have been simpli­
fied (0 enhance clarity. More information 
about HLS verbs can be found in [he docu· 
mentation accompanying the software.) 

Figure 9 represents the following dialogue 
and actions: 

I. The application issues the OPEN-SESSION 
verb, which defines the SNAX LU name to 
be used for session commun ication. The 
PROFI LE field of this verb poin ts ( 0 an 
entry in the RDT that specifies the session 
parameters. The PIPELI E=YESoption 
field indicates to HLS that the LU is [0 be 
handled in a pipeline manner. 

The execution of the OPEN-SESSION 
verb causes HLS 10 send a special SNA 
message, INITSELF. The INITSELF mes­
sage requests NRF to establish a session 
(Le., send the SNA BIND message). After 
the session is established, HLS compleles 
the OPEN-SESSION verb with RETURN· 
CODE=OK (i.e., the session was success­
fully established). 
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12. The application issues a RECEIVE-DATA 
verb (0 accept the rirsl transac tion. HLS 
then accepts a transaction from NRF, 
deUvers SNA acknowledgment if neces­
sary, and completes the RECEIVE· DATA 
\"erb with DATA·TVPE·RECEIVED= 
PARTNER·DATA to indicate the source of 
!.he message. 

L llJe application now enters its main pro­
cessing loop, continuing the processing 
Uflliilhe session is ended or the applica­
tion is terminated. 

First, the transac tion is subjected to 
credit processing. Next the application 
issues a SENO-ANO-RECEIVE-DATA verb . 
TIle SEND portion of the verb sends the 
transaction reply to NRF for transmission 

SNAxtHLS 'RF 

to the requesting terminal. The RECEIVE 
portion of the verb accepts the nexltrans· 
action for processing. 

4. When the HLS application wishes to ter­
minate the session, it issues the CLOSE· 
SESSION verb. This verb causes HLS to 
send the SNA message TERMSELF to NRF. 
The session is ended when the SNA 
UNBIND message from NRF is received 
by HLS. 

The credit aUlhorization system desc ribed 
above was constructed by CICS application 
programmers using Tandem program· 
developmenltOols. The system was sub· 
jected 10 extensive tests by the Telepro· 
cessing Network Simulator (TPNS), 
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an IBM software product. TPNS testing 
showed that SNA sessions could be estab­
lished bel ween IBM processors and Tandem 
systems and thai the HLS application cor­
rectly processed SNA pipeline transaclions. 

The sYSlem was subjecled 10 a significanr 
performance benchmark. Along with the 
transaction-throughpul and response-time 
measurements, some SNAX/ HLS measure­
mems were taken. Based on measurements 
made wilh the XRAY performance­
measurement tool, the COSI of a SEN D­
AND-RECEIV E-DATA verb in a pipeline 
environment was caJculaled at II ms per 
transaction on the NonStop TXP processor.! 
!his figure can be interpreted in the fo llow­
mg ways: 

• A NonSlOp TXP processor is capable of 
processing a lmost 100 SEND-AND-RECElvE­
DATA verbs per second in the environmenr 
measured . 

• HLS process ing overhead is very small. 
The measurement above was obtained from 
a sYSlem of ~2 onStop TXP processors, at 
120 Iransactlons per second. AI the mea­
sured rale, only 4.1 percent of the tota l 
processing power of the syslem was con­
sumed by HLS verb processing. 

'Tbe C PU IIIiIIi5t'COIId r';l';',! was obWned bytllmnll,. lhrCPU BUSY fj~ 
lOr aD H t..S ~ cin-id"l1 d .. MIIQ by lOll 10 y;rid lcul ~ lime 
1Iad. finally. di.jd,,. by thru.ns:at1 11111 raIt" per ocmnd. ' 

'Ia ~;,ion I? I.hr mcm>ta Imcd. If\mollU;len 1OOftwan: ...... ..ak tor 
IOC'IIOnS 0( 0$'" maa..ak) on SNAX / Ht..S will hr pubiishod . Ref .. to ta 
.. '11m tloey btalmo .. ~. 

Conclusions 
SNAX/ HLS brings the power of Tandem 
on-l ine transaction processing to SNA 
networks. Tandem users can use the featu res 
of SNAX/ HLS to SUPPOr! advanced SNA 
terminals and / or communicate to IBM SNA 
subsystems. Critical data bases and applica· 
tions can now be positioned where business 
needs dictate. 

SNAx/HLS support tools such as the APS 
system bring application programmers up 10 

speed rapidly, allowing applications to be 
developed in a minimum amount of time. In 
a production environment, lools such as 
HLSCOM and HLSTAP assist in rapid prob· 
lem isolation, determination, and resolut ion. 

With SNAX/ HLS, Tandem solutions to 
crit ical business problems can be more easily 
designed, developed, and maintained in an 
SNA environmenl. 
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esigned as an integrated 
part of the Tandem sys­
tem, the DYNAMITE 654X 
workstation combines the 
local processing capability 
of a personal computer 
and the capabilities of lhe 

Tandem 65)X terminal. This allows Tandem 
users to use their Tandem system, transfer 
information [0 and from the system and 
their "orkstations, and use the workstations 
locally, taking advantage of the business 
sofl\ .. are currently avai lable for personal 
computers. 

Standard Software and Hardware 
Components 

lbe workstation comes in twO models: the 
6541 workstation, which includes two disk­
eue drives, and the 6546 workstation, which 
includes one diskctle drive and one IOM­
byte Winchester (hard) disc. BOlh models 
include all of the following standard soft­
ware and hardware components: 

• \lS·DOS operating system (Microsoft). 

• GW·BASIC language. 
• 65)X terminal-emulation so ftware. 

• 256K ·byte memory. 

• 8086 processor (8 MH z). 

The DYNAMITE Workstation: 

• 26 function keys (IBM PC and 
Tandem 653X). 

• 12-inch monitor. 
• Low-profile keyboard, 
• Tilt-and-swivelterminal base, 

• Serial printer interface. 

An Overview 

• RS-232-C, RS-422, o r Tandem current-loop 
communications ports. 

• Audio speaker, 
• Power-up diagnostics. 

Options 

Several product options are also available to 
complement the workstation. Firs t, a new, 
low-cost printer (available in twO models) 
can be used either as a screen printer or as 
an outpllt device for loca l applications. BOlh 
printer models have two switch-selectable 
print formats: normal 9 X 9 formal or the 
near letter-quality 18 x 17 dOL-matrix for­
mat. The models arc: 

• Model 5540, a serial-matrix printer that 
prints 80 columns at 158 cps, when the 9 x 
9 matrix is selected (94 cps, when the 18 x 
17 format is selected), 

• Model 5541, a serial-matrix printer that 
prims 132 columns al 158 cps, when the 
9 x 9 matrix is selected (94 cps, when the 
18 x 17 format is selected). 
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A second option is the bit-mapped graph­
ics board lhal runs third-partY,IBM­
compatible graphics, offering high 
resolution and a mouse interface. 

Finally, twO system-integration software 
packages, the Information Xchange Facility 
(IXF) and rCFORMAT, are also available. 
IXF software transfers information between 
system and local files. PCFORMAT cOllvens 
Tandem system files to one of several for­
mats used by third-party PC software. 

Features 
The DYNAM ITE workstation enhances the 
on-line information capabilities of Tandem 
systems. Its benefits for the Tandem user 
include: 

• Economy. The workstation provides the 
user with several information tools in one: 
(I) An on-line 653X transaction terminal. 
(2) a personal computer, (3) a 3270 terminal, 
when the optional EM3270 sohware is used, 
(4) a graphics terminal, when the graphics 
option is used, and (5) a word-processing 
terminal, when third-party software is used. 

• IBM PCcompatibiliry. Most IBM PC 
applications can be run on the DYNAMITE 
workstation. 

• Modular. ergonomic design. The electron­
ics module call be placed off the work space 
to save space, and the terminal can be 
swiveled and tilted. 

• High-resolution graphics. The DYNAMITE 
workstation provides 800 x 300 resolution 
(in pixels). 

• Display of both alphanumerics and 
graphics on a standard video screen, Unlike 
some personal computers and workstations, 
it does not require a separate graphics 
terminal. 

• Third-party software that performs signif­
icantly faster than other third-party emula­
tion software (up to ten times fastcr for 
some operations), Also, the DYNAMITE 
workstation third-party software is designed 
to work with future, as well as existing, 
Tandem soft ware. 

Hardware Component.s 
The DYNA~IITE 6546 workstation is shown 
in Figure I. Both Model 6546 and Model 
6541 have a 12-inch monitor, electronics 
module, keyboard, and disc module. The 
difference is in their disc drives: the 6541 
disc module comains two diskette drives. 
each having a capacity of 360K bytes, while 
the 6546 disc module contains one diskette 
drive and one 10M-byte Winchester disc. 

Figure 2 illustrates the basic components 
and three option-board slots of the electron· 
ics modules for the two models. For both 
models, the upper slot of the electronics 
module comains the controller board, 
including the following: 

• Processor. 

• Monitor imerface (display controller). 

• Keyboard interface, 

• 128K bytes of memory, 

• Communications interface, 

• Serial primer interface, 

• Bus interface to the additional options. 

The middle slot contains a disc controller 
board (either the dual-floppy controller for 
the Model 6541 or the floppy/ hard disc con­
troller for the Model 6546). This board con­
trols disc drives and contains another 128K 
bytes of memory. If the user needs more 
than 256K bytes of memory, additional 
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memory can be added to this board in 
blocks of 128K bytes. There is room for 
three more blocks of memory (384K bytes), 
for a maximum workstation memory size of 
640K by,es. 

The boltom slot is available for opLion 
boards. Currently. the only option boards 
available are the multifunction board and 
the graph ics board. I The multifunction 
board contains: 

I. An IBM parallel printer port used with 
IBM-compatible printers. 

2. An IBM serial port used with third · party 
communication packages. 

3. A real·time clock (bauery·backed). 

The graphics option board contains a ll the 
capabilities of the multifunction board in 
addition to graphics. 

NOle that options currently used with the 
653X terminal family (Le., the alternate· 
input and voice options) are not compatible 
with the DYNAMITE workstation. The main 
reason for this is thai the architec ture of the 
6530 is based on the Z80 chip while that of 
the DYNAMITE workstation is based on 
,he 8086. 

Compatibility with the IBM PC 

The DYNAMITE workstation is compatible 
with applications wrinen to run on MS-DOS 
or IBM's PC-DOS operating systems. Appli· 
cat ions written within the constraint s of the 
MS-DOS or PC- DOS system are hardware· 
independent and compatible. Most popular 
third-party applications follow these con­
stra int s and, thus, run on the DY NA MITE 
Yo'Orkstation. If software has been written 
to add ress specific hardware attributes of 
the PC, it may not be compatible wit h the 
workstation . 
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Levels or Computibilit y 
The article, "How Compatible is Compati· 
hie? " (Cook, 1983), desc ribes seven levels 
of compatibility for the I BM PC. Below is a 
brief description of these levels and infor­
mation aboul the compatibilit y of the 
DYNAMITE workstation at each level. (NOIe 
that as the level number increases, the degree 
of compatibility also increases .) 

Le~'I!I I: Media compatibility. This is the 
ability to read and write discs in the format 
used by the I BM Pc. A disc rormatted on 
the PC can be read and written 10 on the 
DYNAMITE workstation and vice versa. 

Le~'f!l l: Processor compatibility. This is 
instruction·set compatibility (8088,8086, 
80 t 88, and 80186 chips). Ah hough 'he 
instruct ion sel of the DYNAM ITE work· 
stalion is compatible with thal of the PC, 
the processor clocks of the PC and the work­
station differ. The PC processor has a 
4.77 MH z clock while the workstation has 
an 8.00 MHz clock . This means that pro­
grams that implement processor-based tim· 
ing loops on the PC may not work on the 
DYNAM ITE workstation. If, however, the 
timing loop is based on the counter timer 
(the same for both systems), the program 
should work. 
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Level 3: Operating-system compatibility. 
This means compatibility with MS·DOS or 
other popular PC operating systems. The 
DYNAMITE workstation is compatible with 
MS·DOS. Tandem has licensed MS·DOS 
(version 2.11), which has external 
commands equivalent to those of the IBM 
PC, compatible function caUs, identical 
file· protection schemes, and equivalent 
run·time libraries. 

Lel"e14: Option·board compatibility. This 
level refers to the use of PC option boards. 
PC option boards cannOt be used in the 
DYNAMITE workstation. Hardware options 
for DYNAMITE workstation electronics 
modules are designed and provided by 
Tandem . Tandem does, however, provide 
some functionally equivalent options (e.g . , 
the graphics board, which is compatible with 
the IBM optional graphics board). The 
workstation graphics board can be run in 
monochrome or color mode. Third·party 
software packages that directly access 
monochrome or color display hardware 
should work on the DYNAMITE workstation. 

Level 5: Character·set and keyboard 
compatibility. This level of compatibility 
requires that the product use the same 256 
display codes and the same keys used by the 
Pc. The DYNAMITE workstation has a 
compatible keyboard; in addition, it has 
other function keys for 653X terminal 
emulation. 

Lel'eI6: Video compatibility. This level of 
compatibility requires that the video 
interface used by the PC be used, including 
memory mapping and controller addresses . 
The DYNAMITE workstation's video inter. 
face is compatible with that of the IBM PC. 

The characler·display controller on lhe 
processor board is compalible with the IBM 
monochrome alphanumeric graphics, and it 
has color capability for alphanumeric and 
bit·mapped color graphics. 

Lel'el 7: System compatibility. This means 
duplication of the entire PC architecture, 
including random·access memory (RAM), 
read·only memory (ROM), 1/ 0 addresses. 
and the PC Basic Input/Output System 
(BIOS). The system compatibilities and 
incompatibililies of the DYNAMITE worksta· 
tion with the IBM PC are listed in Table I. 

The DYNAMITE workstation is partially 
compatible with the PC at this level. It uses 
the same interrupt system, direct·memory· 
access (DMA) system, and timer counter. In 
addhion, the key 110 addresses are the same 
as those for the PC (including the addresses 
for the keyboard, display, and diskette). 
Finally, the memory of the DYNAMITE 
workstation has the same layout as that of 
the pc. 

The portions of the DYNAMITE worksta· 
tion system architecture that differ from the 
PC include, for example, the system bus, the 
processor clock, and the soft-configuration 
menu stored in nonvolatile RAM (the PC 
uses dip switches) . 

Input/ Output Compalibility 
A brief discussion of the IBM PC software 
called BIOS would be helpful before examin· 
ing compatibility further. BIOS is contained 
in ROM. Its primary function is to handle 
low·level aspects of 1/ 0 (such as interrupts) 
to the display controller, floppy, hard disc, 
keyboard, and printer on behalf of an appli· 
cation. To state this in a differeOl way, an 
application can make calls to BIOS to per· 
form 110, and BIOS handles all direct com· 
munications to the device. 

Using BIos. the application does not have 
to know the physical characteristics of a 
device. It simply passes the data to BIos, 
which knows the device's physical character· 
istics and how to communicate with it. As 
long as the application's calls to BIOS remain 
consistent, the application is able to access 
the device, regardless of changes in the hard· 
ware interface. 
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As a general rule, if a workstation's BIOS 
is compatible with PC BIOS, a third-party 
application accessing the hardware through 
BIOS should run successfully on both units. 
Note that, for an application to run success­
fully, the interface between the applicat ion 
and 810S must be the same, while the inter­
face between 810S and the device can be 
different. For example, while the PC printer 
interface is parallel, the printer interface for 
the DYNAMITE workstation is serial. As long 
as a third-party package calls 8 105 to use the 
printer, however, the printer interface works. 

The Tandem serial printer port, therefore, 
is equivalent to the IBM parallel port when 
BIOS is used. Third-party configuration 
instructions for serial printers shouJd only be 
followed when a serial printer is attached to 
the IBM PC COM I or COM2 seria l ports. 

A PC application can, however, bypass 
the BIOS and access the hardware directly. 
The DYNAMITE workstation was designed 
so ilial its key hardware elements (the dis­
play controller, diskette. and keyboard) are 
compatible with those of the IBM PC. 
Applications that access these components 
directly should run successfully on the 
DYNAMITE workstation.! 

Table 21islS the software products that 
have been tested on the DYNAM ITE worksta­
tion and have run successfully. This list is by 
no means exhaustive. More applications arc 
scheduled for testing. (Note that the list is 
not a commitment from Tandem to warrant 
or support the software.) 

DYNAMITE Workstations in the 
Tandem Environment 
While the DYNAMITE workstation provides 
local processing and is compaLible with the 
IBM PC, it is much morc than a personal 
computer. The basic product includes alllhe 
hardware and software necessary to commu­
nicate with a Tandem system. 

Included in the basic product is Tandem 
653X terminal emulation for both conversa­
tional mode and block mode, in an asyn­
chronous, TERM PROCESS environment. The 
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I software that have been tested 
I the 

ThlnlcTank LIving VideOtex! 

~1c2 SOrclm 
VISiCaIc IV SohwareArts 

LoIus \-2·3 lollIS 0ewI0pmen! 

Mult,PIan MlcfOlJO/l 

lotus DeYeIopmenI 

Mi(:r(ll'lm 

AanIOn-Tale 
AshlOn·Ta'e 

~~~"'f) Info Unlimited 

_-=;~V'~""'~P~~~ Mlcroeon 

D,spI')/WIlt'r 2 IBM 

Mulhm.te MuitlffiOl8lnll 

Framework Ashton·Tate 

ManagIng Buslne&$ wlrh LoIus 1·2·3 L.o1us ~I 
EDIX Texl Processor Emergong TechnO\l;lgy 

Harvard PTOi&C1 Manager HalV8ld Sonwar, 

IBM Ptr&onal EdttOi IBM COrJ)Ol'ltron 

Microsoft MICIO Ass8IT'deI II 25) MICI1)8QI1 

Nonon U!~J!I. Peter NOf!on 

PC TulOf 1101 uS-DOS 2.0) ComoI8here1v8 SW 
PfS.FILE Software Pr.bIIstung 

PfSWRITE SOItw.rI f>IbIishIng -.. -. 
SIOeIuck Bottand SW 
PC Maslef Coursewar. 

Dow Jones RepOIltl Dow Jones Software 

vert!atm Ol$lt An.a'tZ.!' Verbatll11 
COpy" II PC central Poinl SW 

VEDIT CompuVlew 

Cf'Mt86 Ooer'1>1Ig System DIgItal Reseafctr 

Correu".,,' Cf'M186 Dlgl1al Research 

Tuft)() Pascal 12 0) BOIlllnd SW 

LaIlICI C COmp4ler f2 0) Lanlee COrp 

workstation call be attached to any port 
already configured for an asynchronous 
653X termina l, and it can be used in any 
manner appropriate for that terminal. (More 
detailed information about DYNAMITE host 
integration is given in the accompanying 
article by Stan KosinSki.) 

EM3270 
Communication with an IBM 3270 
application via a DYNAMITE workstation 
can be accomplished using EM3270 software 
(not included in the basic product). This 
requires the 6530 emulation software (a 
standard software component). 
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Flgu,. 3. 

File trt1nsfer between a 
7bndem syslem and a 
DYNAMITE workstation 
wilh Ihe lnj<Jrmulion 
Xchange Facility (lXFj. 
(The communicalions 
control system is 10 a set 
of software components 
on the workSIOlio" Ihut 
prOlride a liigh-Ie\'el. 
sQ/lWare inter/ace to llie 
datu-commllflications 
hardware.) 
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Information Xchangc Facilit y 
The Information Xchange Facility (IXF), 
which is used for file transfer, is also 
available at an additional cost. With it, both 
ASCII and binary files can be transferred 
between the Tandem system and DYNAM ITE 
workstations. File transfer is useful for data 
integrity (copying the workstation data to a 
mirrored volume for safety) and for security 
(copying a file to the host and purging it 
rrom [he Floppy). 

IXF is easy to use. To transfer files one 
follows these steps: 

J. Boot MS-DOS. 

2. Start 653X emulation. 

3. Log on lO COM INT. 

4. Return to MS-DOS. 

5. Initiate file transfer with the MS-DOS 
external command. 

Note that, to accomplish the file transfer, 
software executes on both the DYNAMITE 
workstation and the host system. (See 
Figure 3.) 

Flgure 3 

DYNAMITE WotksWIorl -

DtF 

I X F provides: 

• Powcrfulline-oriented commands to 
direct operations. 

• Command origination from the command 
line or from a file . 

• Sophisticated pattern matching for file 
names on the DYNAMITE workstation and 
the host . 

• Multiple file transfers with one command. 

• A full set of options for customized 
tailoring. 

• A sophisticated communications prOLocol 
for data integrity. 

• Process-lo-process communications 
between the host and workstation 
applications. 

• A protocol that is transparent to 
applications. 

• Translation of nongraphic data. 
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peFORMAT 
Finally, an even greater degree of integration 
can be achieved between the DYNAMITE 
workstat ion and the Tandem host with 
peFORMAT, a data-extraction utililY. 
peFORMAT runs on any Tandem host, 
accepls data from any Tandem rile, and 
converts the data into any of these IBM PC 
formats: OfF (Data Interchange Format), 
SYLK (Symbolic Link) , BASIC, and ASCII. 

Once converted . the rile can be 
downloaded to the workstation with IXF. 
The downloaded file can then be accessed by 
any PC program that recognizes the format. 
This process is illustrated in Figure 4. 

(npullo peFORMAT is typically a fi le 
described by the Tandem Data Defin ition 
Language (DOL). The input file can be 
unst ructured, entfy-sequenced, relalive, or 
key-sequenced. 

End-uscr Supporl 

Tandem provides end-user support for Lhe 
DYNAMITE workstation via iLS C uslOmer 
Assistance Cen!er (CAe) in Aust in , Texas, 
and the Customer Focal Poin! (CFP) 
employee at the customer site. Figure 5 
shows the relationship between the CAe, 
CFP, and end user. 

Customer Assistance Center (CAC) 
The CAC is a source of information , 
expertise, and assistance to workstation 
users for problems for which the users can 
find no solu tion in the product manuals and 
educational materials. 

Assistance provided by the CAe includes: 

I Hardware and software trouble-shoot ing . 
• Problem isolation and resolution. 
I Operational assistance. 
I Information about product use. 

The CAC main!ains a data base of known 
problems, customer calls, commonly asked 
questions, and third-party software that has 
been tested and run successfu lly on the 
DYNAMITE workstation. With ils expert 
staff, data base, testing program, and 
support facilities, its goal is 10 ensure Ihat 
users of the DYNAMITE workstation are 
fully supponed. 

______ ..:.::" brkSfOliOrlf 

Figure. 
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IBM PC a'lWDf"mInt 

Figuri • . 

DolO ex/roctioll ..... ith 
PCFORMAT. 
PCFORMAT runs on all>' 
dolo from Qlly 7/",{/em 
flle, and con\'erts Ihe dulO 

;"'0 a Jorll/OI 1ISf1b/e by 
IBM PC programs. File 
'YIWS CUll be /l1IS/ruell/red. 
f!ntry·sequenced. relu/i\'e. 
und key-sequeflct>d. 

Customer "~oca l Point (CFI) Employee 
Instead of individual end users calling the 
CAe direcLl y, customers choose at least one 
end-user employee to be Tandem's CFP. The 
CFP is the liaison between Tandem and the 
customer for all support needs for the 
DYNAMITE workstat ion. 

., 

r'Ol"1II01S Jor PC dise flIes 
include DIP, SYLK. 
BASIC, olld ASCII. 
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Figure 5. 

The relationship betI\-eefl 
Tandem's Customer 
Assistance Cenrer (CAC), 
Customer Focul Point 
(CFP) employee, and end 
users oj the DYNAMITE 
I\Y)rk.'itati()tl. The CFP is 
the liaison be/\\-een thE' 
end user and the Tandem 
CAe Large customer 
sites may hal'e more than 
one CFP. 

134 

Figure 5 

I 
Customa focaIl't*lI ICFP) --
-""'-­",_~~.",'CACI 

When an end user comes to the CFP with 
a workstation question or problem that does 
not require rhe expertise of the CAC, the CFP 
is responsible for answering the question or 
solving the problem. When expert help is 
required, the CFP contacts the CAC via a 
loll-free 800 telephone number, and the CAC 
provides the assistance needed. The CFP 
then communicates the information or solu­
tion to the end user. 

Sofiware Supported by the CAC 
Note that, while Tandem CAC support ana­
lysts have a working knowledge of the popu­
lar third-party software that runs success­
fully on the workstation, they do nOl sup­
port this software. Thei r function is to sup­
port the hardware and software suppli ed 
with the DYNAMITE 654X workstation. If 
they find that a user's problem results from 
a problem in third-party software, they refer 
the CFP to the appropriate vendor. 

Conclusion 
The DYNAMITE 654X workstation is several 
information tools in one. It provides 
Tandem users with a single-vendor solution 
for connecting microcomputers with a main­
frame system, It has many features, includ­
ing high-resolution graphics; high 
performance; fast access; compatibility with 
the IBM PC; a modular, ergonomic design; 
and popular third-party software. 

The DYNAMITE workstation can: 

• Emulate the Tandem 653X terminal. 

• Execute PCFORMAT to convert data from 
Tandem host format to IBM PC format. 

• Transfer files between a Tandem system 
and the local envi ronment with IXF. 

• Communicate with IBM 3270 applica­
tions with EMJ270. 

• Run third-party business software for 
personal computers. 

All of these capabilities make it an excellent 
business tool for users of Tandem systems. 

Tandem has a continuing commitment to 
imegr3le workstations into its systems. 
Future products and enhancemenlS are 
planned to further automate the sharing of 
host and workstation information. 
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remcndous advances in 
_ microelectronics during the 

19705 have come to frui-
lion in the '80s. Digital 
watches, video gamcs, and 
even automobiles with syn­
thesized voice warnings are 

no" commonplace. Perhaps the most excit­
ing development has been that of Lhe per­
sonal computer. Its rapid prolifcration. bolh 
at home and in the workplace, has brought 
an entire society into Lhe computer age 
almost overnight. This revolution prompted 
Time magazine to select the computer 
recently as its first nonhuman "Man of 
the Year." 

Few institutions have remained untouched 
by the PC revolution, least of all the infor­
mation industry. Large, centralized 
machines are giving way to smaller com­
puters, located in individual orrices a nd 
homes. We are witnessing an Industria l Rev­
olution in reversc. 

The personal computer has allowed end 
users to design and custom-tailor applica­
tions to meet their unique needs. Such 
machines increase productivity because they 
need not be shared with Olher users. How­
ever, the speed with which personal com­
puters have proliferated has created some 
problems as well. 

An Introduction to 
DYNAMITE Workstation 

Host Integration 

In business, government , and educat ion, 
personal computers are largely isolated, 
cut off from important applications and 
information resources still resident on main­
frames. Many data bases can not be dist rib­
uted. (They may be 100 large to insta ll on 
every personal compUler that needs access. 
Also, the nature of the application may 
make distribution difficult, if not impos­
sible, because of data-base consistency 
problems .) 

PC users have difficulty exchanging infor­
mation with one another, and they long for 
the convenience of mainframe-based elec­
tronic mai l systems. They a lso need access 
to expensive periphera ls, such as laser 
printers, which cannot pract ically be 
attached to every personal computer. 
Finally, personal computers can not provide 
the peace of mind that comes with fault­
tOlerant f ile stOrage. 

135 



Workstations 

FIgure 1. 
HOSt on:t!ss through 
the £M6SJO terminal 
emll/ator. 

FIgure 1 
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The Tandem DYNAMITE 654X workstation 
was designed from the beginning to provide 
users not only with substantial local com­
put ing power, bur also with full access to 
existing Tandem mainframes. This flexibil­
ity allows a business to take advantage of 
the possibilities presented by personal com­
puting without abandoning the substantial 
investment already made in host applica­
tions, data bases, and hardware. 

The EM6530 Terminal Emulator 
The first important element in the 
DYNAMITE host-integration package is the 
6530 termina l emulator, EM6530. As shown 
in Figure I, EM6530 is a program residing on 
the DYNAMITE workstation that can trans­
form (he workstation into a 6530 terminal. 
This emulat ion capability allows the work­
station to access all facilities associated with 
(he local Tandem mainframe, including the 
ENCOMPASS data-base system, TRANSFER 
delivery system, and the EXPAND network to 
which the mainframe is attached. Data 
residing in the host network may, of course, 
be accessed just as easily by other 
DYNAM ITE workstations equipped with the 
EM6530 program. 

PATHWAY 
.,.,~ 
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Data-base Formal Conversion 
The EM6530 terminal emulator is very useful 
because it provides access to a Tandem hosl. 
Its ability 10 move information from the ho~t 
environment to the workstation environmem 
(and vice versa) is very limited. however. 
Information to be sent to the host must be 
entered manually while the workstation is 
operating as a terminal. Information from 
the host may be displayed, but it cannot be 
stored permanently at the workstation (for 
access and manipulation later, when the 
workstation is operating in a stand-alone 
mode). These limitations not only prevent 
information coming from the mainframe 
from being processed locally (e.g., by a 
spreadsheet program), but they also prevent 
the output of a workstation program from 
being entered into the host environment so 
that it can be accessed by other workstation 
users. 

Thus, the next element in our DYNA,\IITE 
host integration package is a facility that 
allows the host to transfer information in 
bulk to the workstation so that the worksta­
tion can process that information locally. 
Such a transfer is not as easy to erfect as one 
might think. One big problem is the fact 
that the format of data-base files on a 
Tandem mainframe is quite different from 
that of the files used by third-party pro­
grams that run on the DYNAMITE 
workstation. 

The Tandem PCFORMAT program solves 
the data-base-format trans formation prob­
lem. PCFORMAT is a host-resident program 
that can convert Tandem data-base files into 
files that are structured so as to be usable 
with common third-party PC programs. 
Various conversion formats can be specified, 
including: 

• ASCII. This rormat, typically used by 
\~'ord-processing programs, consists of te.xl 
hnes separated by carriage return/linefced 
couplets . 

• BASIC. This format is compatible with the 
INPUT statement in BASIC. It may also be 
used by such third-party programs as 
Lotus 1-2-3 and dBASE u. 

SYSTE"tS TANDEM 
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• DfF(Dara 'merchonge Format). This for­
mat is used by third-party programs such as 
Lotus 1-2-3 and VisiCalc. 

• SYLK (Symbolic Link). This format is 
used by certain Microsoft programs. 

The use of the peFORMAT program is 
illustrated in Figure 2. The terminal emula­
tor program, EM6530, can be used first to 
access the host. Then, the IlCFORMAT pro­
gram is invoked. It uses the DDL data dic­
tionary to establish the proper formal for the 
records, Ihus eliminating the need for a sep­
arate user specification. The output of the 
peFORMAT program is an unstructured host 
file in one of the above-mentioned formats. 

If there is a need to convert a restricted 
set of data-base records (for example, those 
for all the married employees in an employee 
data base), the ENFORr.., program can be 
used to extract them from the data base 
before the peFORMAT program is run. 

The Informalion Xchange Facilily 
Once the information is in a format suitable 
for Vt'Orkstation processing, the problem 
becomes one of access. To solve the prob­
lem, Tandem has developed the Information 
Xchange Facility (IXF) program. IXF allows 
a user 10 transfer files between a DYNAM ITE 
workstation and a Tandem mainframe over 
asynchronous communications links 
(TERM PROCESS) or X.2S via an X.3 PAD 
(packet assembler/disassembler). IXP 
features: 

• Powerful, Hne-oriented commands, which 
can Come either from the command line or a 
command file. 
I Sophisticated pattern matching, which 
can be used to restrict file searches. 
I The ability to move multiple files to the 
same or dirferent locations with one 
command. 

I A rich set of options for tailoring 
commands. 

Figure 2 

DYNAMITE 
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• A sophisticated communications protocol, 
which not only ensures end-to-end integrity, 
but also increases the information-transfer 
rate by condensing streams of duplicatc 
characters. 
• The ability to transfer files direclly 
between devices. For cxample, a disc file on 
a Tandem system may be printed directly 
on a printer attached to a DYNAM ITE 
workstation. 
• The ability to transfer binary (8-bil) and 
communications control characters. 
• Data compression to increase the transfer 
rate. 
• Automatic conversion of EDIT fi les to text 
files when they are moved to a workstation 
(and vice versa). 
• The ability to print workstation files con­
taining workstation-printer control charac­
ters on a Tandem system printer. 

WorkstatiOlls 

Agura 2. 

Doto-bose COfII'ersion 
with PCFORMAT. 
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Flgul1I3. 

The Informolion 
Xchunge Facility (IXF). 

J<_.;.13_8 

FiguI1I3 

""'EX' 

/ 

IX.' Components 
As shown in Figure 3, the Information 
Xchange Facility consists of two compo­
nents: the workstation ponion (lXEEXE) 
and a host portion (SSYSTEM.SYSTEM.lXF) . 
For security. IXF always requires that 
transfer operations be initiated from the 
workstation. The workstation portion of IXF 
processes most of each command and, by 
UseT option, initiates the host portion to 
commence the transfer. Errors that occur at 
either end are aUlOmat ically reported to the 
other end (and therefore to the user). 

Three commands are currently supported : 
GET, PUT, and PRI NT. These commands are 
discussed in more detai l below. 

GJ:.7 Command. The I XF GET command is 
used to import files or data from the host to 
a workstation . The general format of the 
GET command is: 

GET [( oplion (, ... J)] TandCllLfilelisl 
AS DOS_filename I, ... ) 

where TandelTLfilelist is a list of Tandem 
file names separated by commas, and 
DOS_riIename is an MS-DOS rile name. 

Each of the Tandem rile names may desig' 
nate a disc rile, a process, or a device 
located anywhere within the host system to 
which the workstation is attached (or within 
the network to which the host system is 
attached). The Tandem riles are read sequen­
tially to the end-or-rile (EOF) and written to 
the workstation device or disc file specified. 
Note that IXF allows a host process to be 
spec ified. This process might be a user­
writlen preprocessor that tailors the infor­
mation to be transferred. For example, such 
a process might be programmed to fetch 
from a personnel data base onJy records for 
employees with children. 

All disc files are read according to their 
structure. That is, unstructurcd files are 
read unstructured, EDIT files (code 101) arc 
read as EDIT files, and ENSCRIBE files are 
read as struclUred files. This default can be 
overridden by means of the BINARY option 
(described below). AJso, by default, every 
file is read with a record size of 132 bytes. 
Thus, in structured riles with record sizes 
longer than 132 bytes, records are truncated 
unless the default is overridden by means of 
the REC option. 
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In tb: command syntax outlined above, 
users can insert p.1ucrn·malching or .. \~ ild· 
card" characters into the name of any disc 
me in the Tandcm file list, and IXF will use 
them to select specific files from a larger set. 
The characters used are either an asteri k (.) 
or a question mark (1), where an astcri k 
signifies zero or marc characters and a ques· 
lim mark signifies exactly one character. 

For example . assume that a sub\'olume on 
the host s)~lcm contains the follo\\ ing files 
and that those file names containing the 
JeuerCfollowed by at least one character 
areemployees' "children riles": 

CO 
EMPA 
E.\IPB 
tliPC 
E,\IPD 
tllPCIDEP 
E.\IPOT\lP 
E.\IPTITLE 
S\IRHlPC] 

Under these circumstances. if users 
""alIted 10 transfer only the chi ldren files to 
Ur",iorkstation, they could give -C?' as the 
~Ue name, and in response to that designa· 
(J0Il, IXF would select those files that can· 
lain a C (follo ..... ed by at least one character) 
anywhere in the name. Thus, the files CO, 
E\IPCIDEP, EMPC2TMP, and SMRHLPC] 
.uuld be selected. (File EMPC would not be 
selected because the question mark in the 
file·name designation ind icates that the C 
musl be followed by anOlher character.) 
. ~rc are many different ways of combin· 
109 wlld-card characters. The result is a very 
powerful file-selection 1001. Also, since the 
syntactic grOUp 
Tandem.Jiltlis! AS DOS_filename 

can be repeated any number or times a vir­
tually limitless transfer of informatio~ can 
be effe(:led with one command. AIIIXF 
commands apply the default volume and 
sub\'oIume (when necessary) to Tandem file 
~,and likewise. they apply the current 
lrectory to DYNAMITE file names. 

;:--;~,~---------
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Another feature of IXF is automatic file­
name mapping. Mapping occurs when an 
asterisk is specified as the file·namc part of 
the DOS file name, as in A:'.DAT, B:·, or -. 
J n response to the above DOS file·name des­
ignations, the Tandem file name would be 
used as the DOS rile name. For example, 
if A:'.DATwere given as the DOS file name 
in the wild·card example above, the result· 
ing DOS files would be A:CO.DAT, 
A:EMPCIDEP.DAT, A:EMPC2TMP.DAT. and 
A:SMRHLPC3.DAT. 

Yet another mapping feature is the ability 
10 preserve DOS file·name extensions. As 
will be explained in connection with the PUT 
command , DOS file·name extensions are 
normally appended 10 the end of the DOS 
file name to form the Tandem file name 
when mapping is requested. These ex len· 
sions may then be ex tracted during GET 
operations by specifying a file·name exten­
sion consisting entirely of quest ion marks. 
For example, if one wanted to move the 
EMPA, EMPB, EMPC, and EMPD files men· 
tioned above, one could use the command, 
GETEMP? AS -.1 

which would result in the DOS files EMP.A, 
EMP.B, EMP.C, and EMP.D. 

Options associated with the GET com· 
mand are: BINARY, PU RGE, REC, and WAIT. 
The BINARY option overrides the structured 
reading of structured files. As a rcsuh, EDIT 
and ENSCRII3E files are read and transferred 
"unstructured." Note that the BINARY 
oplion does not control the type or data 
transferred, but rather the manner in which 
structured files are read. 

The PURGE option allows IXF to purge 
files when it must overwrite existing ones. 
The REC option is used to specify the input 
record size. 

SYSTEMS 
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WorkstatiOlls 

Perhaps most interesting is the WAIT 
option, which allows the transfer to be 
delayed until the host portion of IXF is initi­
ated separately. This option could be used if 
workstation users wanted to have fi les that 
were updated during overnight administra­
tive processing transferred to their worksta­
tions when they were ready. To make this 
happen, they could simply run IXF before 
leaving for the evening, specifying the 
appropriate GET command with the WAIT 
option. Then, when the host files have been 
updated, the host portion of IXF could be 
automatically invoked by the host applica­
tion that updated the files . 

If the workstation IXF initiation were 
included as pan of a "batch" file , it would 
even be possible to post-process the trans­
ferred information automatically on the 
workstation, where it could be ready for 
immediate use when lhe user returned the 
next morning. The asynchronous initiation 
of the host portion of IXF is discussed later 
in this article. 

PUT Command. The IXF PUT command is 
used to export fi les or data from the work­
station to the host. The general format of 
the PUT command is: 
PUT [( oplion (, ... J)] DOS_fi lclisl 

AS Tandem ... Jilename t .... J 

where DOS_fiIelist is a list of MS-DOS 
file names separated by commas, and 
TandemJilename is a single Tandem file 
name. 

Each of the DOS file names may designate 
a disc file or device on the workstation. The 
Tandem fi le name may specify a disc file a 
process, or a device. Each DOS file is read 
sequentially to the Eor and written to the 
Tandem. ~ile specified . Since a process may 
be specified by the Tandem file name a 
user-provided post-processor could b~ writ­
ten under that name to custom-tailor the 
transferred information. For example such 
a process might be programmed to u~date a 
d.ata base automat ically in response to the 
file transfer. 

I f the destination file specifies a disc file , 
an EDIT file is created by default , since there 
is no file code associated with DOS disc 
files. Note that when writing EDIT files, IXF 
automatically resets the high-order bit of 
each byte. imerprets and discards some con­
trol characters, and simply discards the 
remaining control characters. Also, trailing 
blanks in each record are discarded. Thus. 
data will probably be lost if a user transfers 
a non text file without invoking the BINARY 
option (desc ribed below). 

Horizontal lab characters are treated spe· 
cially, however. By default. a tab stop is set 
every eight characters. When a horizontal 
tab character is encountered, blanks are 
insert ed up to the next tab SlOp. 

Carriage return / linefeed couplets are also 
treated specially and interpreted as record 
separators. This means that IXF will nOt 
start a new EDIT file record until a record 
separator is encountered. Since EDIT files 
are limited to 255-byte records. truncation 
may occur. Also, trailing blanks are deleted 
from EDIT files. which means that oos text 
files that are sent to the host and retrieved 
wi ll not compare if they origina ll y contained 
trailing blanks in any records . To avoid the 
EDIT file characteristics or to mo\'C nonteXI 
infornlalion. the users should ill\'Oke the 
BINARY option (described bela"). 

To select a group of files for transfer from 
the workstation to the host , users can use 
pattern-matching or "'Wild-card" characters. 
As in the GET command, these characters 
are either an asterisk or a question mark, 
where the asterisk denOtcs zero or more char· 
acters and the Question mark dCnOle5 exact!) 
one character. However, DOS-style paltern 
matching is used, which means thallhc 
workstation interprets these charactm ~ 
"hat differently than the host did. In panko 
ular, it is important to realize that when a 
Question mark is used at the end of a file 
name designation, the Question marl. will 
also match zero characters. 
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The following example illustrates the dif· 
ferences bet\\cen DOS and host pattern 
matching, Assume Lhal a dircct!>ry ~n the 
'Aorhtalion contains the following files: 

C.J:\\T 
C1J.J:\\T 
CO\IP,TXT 
E\lP.A 
E.\IP.B 
E.\IP.C 
E.\IP.D 
E..\1PC10EP.DAT 
E\IPC2TMP.DAT 
E.\lPTITLE 
S\IRHlPC3.DAT 

In such a case, the pauern C? • would 
select bOlh CO. OAT and C. OAT (but it would 
not select CO\lP.TXT). The pattern matches 
C.Qo\T because the question mark matches (0 
zero characters in that case. A question 
mark only maps charactcrs to zero when it is 
attheendofa rile· name part (e.g., C?DAT 
or C.?). Thus, COM?P.TXTwould not select 
CO\1P.TXT from the abovc files . 

Also, the pattern ·C?·, illustrated in the 
GET command example, could not be used 
with the PUT command, because the asterisk 
may only be used as the last character in a 
pattern with DQS·style pattern matching. 
The pattern C?·. - "'QuId select C.DAT, 
CO.DAT, and CO\tP.TXT.(C-. - would also 
select the same filcs). 'The pattern -.DAT 
could be used to select all files that have an 
exlcnsion of OAT. As with Ihe CET com· 
mand, the syntactic group of 

DOS_rilelist AS TandclTLfilename 

can be repeated any number of times. 
The PUT command also provides file· 

name mapping. Mapping occurs when 
an asterisk is specified as the file·name 
pan of the Tandcm file name (for 
example, S VOLUME. SUB VOL. -, SUB VOL. " 
or simply *). In each case, the DOS file· 
name extension (if any) is appended to the 
DOS file name (after the DOS file name has 
been truncated as needed to preserve the 
extension and yet produce an eight· 
character Tandem file name). For example, 
a seven<haracter file name with a two· 
charactcr extension (EMPFILE.DB) would be 
truncated to form the eight<haracter name 
(EMPFILDB). 

When the preservation of file·name exten­
sions is not desired, it may be suppressed 
wilh the use of the NOEXTS option described 
below. The combination of differences in 
pattern matching and possible truncation of 
DOS file names means Ihat careful thought 
should be given LO file· naming conventions 
with an eye 10 simple transitions between 
DOS and Tandem file names. 

The available oplions for the PUT com· 
mand include BINARY, NOEXTS, NOTABS, 
PURGE, REC, TABS, and WA IT. 

The BINARY option causes an odd­
unstructured file to be created when the host 
destination is a disc fi le. Odd-unstructured 
is used 10 avoid adding data when odd 
record lengths or the amollnt of information 
transferred results in an odd byte count. 
BINARY also causes a ll control characters to 
be ignored and simply passed through. 

The NOEXTS option inhibits the concate· 
nation of file· name extensions when host 
names are formed. In the above example, 
EMPFILE.DB would then be formed 
as EMPFILE. 

NOTABS inhibits horizontal·tab-characler 
interpretation. Horizontal tabs are simply 
stripped out (except with the BINARY 
option). . 

The PURGE, REC, and WAIT options. are 
identical in function to the correspondmg 
options associated with the GET command, 
except that REC also affects the output 
(host) record size. . 

The TABS option provides for the selecllon 
of tab·stop locations. 

PRINT Commlmd. T he IXF PR INT com· 
mand is similar LO the PUT command, 
except that it is tailored for priming fi les. 
The general format of the PR INT 
command is: 
PRtNT « option It ... J)) OOS_filclist 

TO Taoocm_Jilename I •... J 

where DOS_ fiIelisl is a list of MS· DOS 
file names separated by commas, and. 
Tandem_ filename is a single Tandem file 
name. 
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Each of the DOS file names may designate 
a disc file or device on the workstation. The 
Tandem fi le name is resLricted 10 either a 
process or device. Each DOS file is read 
sequentially until Lhe EOF and written 10 the 
Tandem file specified. The control charac­
ters (form feed, backspace, carriage return, 
and linefeed) are interpreted as primer con­
trol characters in the same way they would 
be interpreted by a printer attached to a 
workstation. In addition, horizontal tab 
characters are interpreted (or, optionally, 
ignored) in the same way they arc interpreted 
by the PUT command. 

Pattern matching to direct the file search 
is available and is identical in its functions 
and restrictions to that described for the 
PUT command. File-name mapping is also 
a llowed and works just as it did with the 
PUT command. Fi le-name mapping can be 
useful for tagging files sent to a spooler pro­
cess with lhe source file name. For example. 
the command 

PRINT PI.LSf, P2.LST, PJ.LST, P4.LSf 
TO SS,"HOLD.· 

would cause the names SS.#HOLD.PI LST, 
SS.tHOlD.P2lST, etc., 10 be formed . These 
names would show up in lhe JOB command 
of PERUSE. 

The avai lable options for the PRINT com­
mand include NOEXTS, NOSKJP, NOTABS, 
TABS, and WAIT. The NOEXTS, NOTABS, 
TABS, and WAIT options are identical in 
funct ion to the corresponding PUT options. 

The NOSK I P Opt ion causes a SETMODE 5 
t,o be perfo rmed (see the GUARDIAN Operat­
mg System Programmer's Guide). Essen­
tially, this option inhibits the automatic 
f~rm feed a~ the bOH<?m of each page, pro­
vided the pnnter carnage-comrol tape is SCI 

~p properly. This option is usefu l for print­
mg many documents produced by third­
party programs (hat do nOt expect 
automatic form feed. 

Running IXF 
IXF must be initiated from the workstation 
(i.e., by an externaJ command). The work­
station must be connected to a Tandem host 
through an asynchronous connecLion using 
TERM PROCESS. The host must be in conver­
sationaJ mode, and it must be running a 

command interpreter (COMINT). IXF 
attempts 10 solicit a prompt from CO~1INT 
and, when it is successful, auempts to initi­
ate the host ponion of IXF (if the \\i\IT 
option is not being used). 

Once the host portion is running, it 
switches into its information-exchange pro­
tocoito transfer data. When contact is suc­
cessfully made with the host IXF, a banner 
comaining the host version is displayed. 
Following lhat are displays of the files cop­
ied or any error messages. If an existing file 
is overwritten, a "purge" message is dis­
played, along with the file name. 

If Ihe WAIT option is invoked, the hosl 
portion of IXF must be initiated separately. 
This can be performed from a different ter­
minal (or DYNAMITE workstation running 
EM6.530) connected to the host and running 
a Command Interpreter. The device name of 
the DYNAM ITE workstation must be passed 
as a parameter (for example, IXF STNTOI). 
The OUT file is used for error messages, and 
it may be any disc file, process, or device 
(e.g., IXF l OUT IXFLOGI STNTOI). 

The host portion of IXF can also be initi­
ated by any process running on the host. All 
that is required is to call NEWPROCESS and 
pass a "start-up" message 10 IXF containing 
the information required in the output-file­
name and parameter-string fields. 

The destination for error messages should 
be specified as the output file name, and the 
device name of the DYNAMITE workstation 
waiting for the host should be in the parame­
ter string (terminated with a null byte). If 
the home terminal of the process initiating 
IXF is the same as the DYNAMITE worksta­
tion, however, the key word REMOTE should 
be used in place of the device name in the 
parameter string. The output file name 
passed in the start-up message may be (he 
process that is doing the NEWPROCESS call. 

The format of the start-up message is 
described in the GUARDIAN Operating 
System Programmer's Guide. The 

EWPROCESS procedure, process control, 
and imerprocess communications are also 
described in detail in this manual. Remem­
ber that the workstation portion of IXF must 
always be initiated first (with the WAIT 
option). 
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Regardless of the manner in which IXF is 
initiated. its stalUS may be checked at the 
\\'Orkstation by typing CONTROL-Q (hol~ the 
CTRL key down and press Q). The resultmg 
display gives informat ion on the .nu~ber of 
packets exchanged and communications 
errors encountered. A nonnal exchange 
causes the number of packets to steadily 
increase. ... 

An occasional communications error IS no 
cause for alarm. as the aUlomatic detec tion 
and retry mechanisms of IXF recover from 
nearly all error conditions. If, however. a 
\'ery high number of errors is noted, or if 
IXFterminates with an EXCEEDED RETRIES 
error, this may indicate that the communica­
tions link is broken or sufficientl y error-
prone that an exchange is difficult or 
impossible. In such cases, it is beSt to retry 
the exchange a few times to see if the prob­
lem persists. Dial-up modem connections 
are particularly susceptible to poor line con­
ditions. Often, hanging up and redialing 
resoh'eS the problem. 

When IXF is exchanging information with 
a process on the host, the host process must 
function as a server. That is, IXF calls the 
GUARDIAN roUline OPEN to open the server 
process as a file. The server process receives 
an OPEN system message through its 
SRECEIVE file and must reply to it with the 
GUARDIAN REPLY routine. The server pro­
cess must also expect to receive 1/ 0 requests 
through itsSRECEIVE file, interpret them , 
perhaps perform other 1/0 or computation, 
and respond to the requests. To terminate a 
GET function from a server process. the pro­
i:e5S should respond to a READ request with 
an EOF indication (File System error I) . 

When IXF is fin ished. it severs the connec­
tion to the server process with a CLOSE sys­
tern message. In the case of a PUT function, 
the CLOSE message is the only indication the 
server receives to mark the termination of 
theexchange. Note thallhe server process 
may be the object of multiplc exchanges and 
"' shadd be prepared 10 handle mulliple 
0PEl'-1I0-ClOSE sessions. For example, 

multiple exchanges would OCcur to process 
SSRVR I with the following IXF command 
issued at a DYNAMITE workstation: 
PUT a t PTtTLE.SM RI-I LPC3. DAT 

ASSSRVRI,-PUT.--

Full details on interprocess communications 
and SRECEIVE file hand ling can be found in 
the GUARDIAN Operating System Program­
mer's Guide_ 

Conclusion 

The DYNAMITE workstation host-integration 
package closes many of the gaps between 
workstations and host systems. The EM6530 
terminal emulalOr allows worksLation users 
to sec host data and imeract with other host 
users. The PCFORr..'1AT filcMconversion utility 
allows host data bases to be converted into a 
form more acceptable to workstat ion soft­
ware packages. Finally, the Information . 
Xchange Facility provides the means to effl­
ciently exchange data betwecn. host and 
workstation and, with user-written pre- and 
post-processing programs, can be tailored to 
many differcm applications. In short, the 
DYNAM ITE workstation can provide the best 
of both worlds: efficient, personal, local 
computing with quick access to ~werful , 
centralized, and fault -tolerant mamframe 
computing. 
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The V8 Disc Storage Facility: 
Setting a New Standard 
for On-line Disc Storage 

n January 15, Tandem 
introduced (he V8 Disc 
SlOrage Fac ility. The V8 
uses a unique new pack­
aging design LO opt imize 
disc performance for 
high-volume on-line 

transaction-processing applications. It pro­
vides both large storage capacity and high 
throughput by packaging eight 168M-byte 
disc drives in a single cabinet (see Figure I) . 
This adds up to a lotal of 1.3G bytes for 
slOring large amounts of information with 
the added benefit of eight aClUators for high 
performance. 

The V8 speeds data access by minimizing 
disc-access Lime and queuing . This makes 
the COSI per disc access per second lower 
(and the number of transact ions serviced per 
second higher) than thal obtained with 
standard disc-storage faci lities. 

---------------------

The V8 provides parallel paths to data 
through multiple actuators. When a file is 
partitio ned across eight discs (and overlap­
ping seeks are accounted for), eight I/O 
requests can be serviced simultaneously. 
When a file resides on one disc volume of a 
conventio na l disc, concurrent disc accesses 
must be queued and serviced separately, 
resulting in s lower response time and 
reduced system throughput. 

The average seek time per drive for the V8 
is on ly 20 ms, which, when added to latency, 
gives an average time-to-data of only 28 ms. 

To ensure dala availability, disc mirroring 
on the V8 allows duplicate data to be stored 
on an independent disc drive so it can be 
accessed even if one drive should fail. Since 
the V8 conta ins multiple disc drives and 
two power cords, one for each of four 
drives, mirrored discs can reside in the same 
cabinet. 

The V8 sets new standards of reliability 
with very h igh mean lime between failure 
for both the disc drive and the power supply. 
The sealed head and disc assemblies of the 
Winchester drives require no preventive 
maintenance. 
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\\'J):n service is required, the V8~s field­
replaCe3ble drives and ~wer s.upphes re u,lt 
in fast and efficient serVice, Smce ea~h d~lVe 
bas its ID'in power supply, a malfunction, In 
1U00es nol shut down the others. On-line 
~i.:ealso allows a unit to be replaccd with 
ooinlerruption to current opcratlo~s. .. 

The high reliability and easy ser\lccabillty 
of the \'8 rtSult in a significant ly lo\.\cr cost 
ofOl\nership and higher s}'Stem availability 
fcrUsefS, EI'en if a drive without a mirror 
fails only a small pari of the data base 
~ unavailable, whereas a failure in a 
roDl-entional disc drive results in a substan­
[ialloss of data. 

The V8's unique design packs eight disc 
drilts in a cabinet that occupies only ten 
S<luart rett of noor space (including service 
clearance), making it the most efficient user 
of computer· room space in the industry. It 
stores 134M bytes per square foot, com­
l""'i [0 100M bytes per square foot for 
units with a comparable storage capacity. 
EI'tII more significantly. it houses eight acw-
31OI'S in ten square fett of floor space, mak­
ingit fil'e limes more space-efficicnt than 
compeli!il'c drives. 

Consistent with Tandem's system modu­
larity, the v8 Disc Storage Facility is offered 
with four, six, or eight drh'es. Additional 
Wiochester drives can be added in incre-
o:rnl5 of [11,'0 10 a maximum of eight per 
cabinet. Expansion is easy because each 
dril'c isa separate plug-in unit [hal can be 
quickly added on-line. Price/ performance is 
?ptimal since uscrs need only buy the capac-
1\Y1hey need when they need iL. 

, U \ f 

Flgurll 

SYSTE MS 

Figure 1. 
By packaging eigh.t d~c 
drives in a single cab" 
net, the VB provides 
the large capacity and 
high throughput 
needed Jor high·volume 
on.line transaction, 
processing applications. 
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Figure' 

Introducing the 
3207 Tape Controller 

he 3207 Tape Controller is 
a new-generation 1/ 0 con­
troller designed to provide 
complete data integrity for 
any single-point raul! and 
LO locate fauhs as a pan of 
its normal operating 

sequence. Its features include: 

• Lock-stepped microprocessors. 

• A fully prOlccred internal bus. 

• Firmware containing embedded fault­
isolation sequences in the operational code 
and power-on diagnostic sequences. 

• Loop-back checking in the device 
interface. 

• Self-checking logic in Siale machines . . 
counlers, registers, and OIher logic elcmcnls. 

""88000 

'''''' 

T18l00 _ 

"""'"" T16101 _ interlace 

For this new, morc complex design, the 
number of basic COlli roller gales has 
increased by 31 Icast 30'". and the number of 
interconnects by at least 200':'0 o\'er tOOse or 
its predecessor. Even with Ihis complex;I), 
power consumption and real estate remain 
low and reliability high. 

These seemingly conrlicting design goals 
"ere mel by the use of state-of-the-art \lSI 
gate·array technology. 1\1051 of the logic in 
the 3207 Tape Controller is pacled imo [ell 

galc-array modules; the rest is contaiJle'd in 
appro'\':imatcly 190 comentional \1 1 SSI 
chips, memory, and twO Motorola 6800) 

microprocessors. In terms of basic romplrx· 
ity. this is equivalent [0 apprO\imatcly 
30,000 gates (excluding microprocessors and 
memory). 

FunClionalDescriplion 
A Tandem data-base 10 controller controls 
the transfer of data between a mass storagr 
device and onc of t\\O I 0 channels. Tlx' 
3207 Tape ControlJer supports (\\045- or 
125-ips (inches-per-sccond) NRZI PE lap' 
drives. The concepts and design methcxkllo­
gies used arc easily adaptable to OIher oon· 
troller deSigns. Figure I sho\\s a block 
diagram of the 3207 Tape COnlroller. 

Flgullll_ 
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One of the design requiremel1ls for the 
3207 Tape Controller was the usc of off-the­
srelfmicroproce~sors. The Motorola 68000 
microprocessor ",as choscn because it has 
these characterist ics: 

J. A 16-bit data bus, allowing word­
oriented architecture for data transfers. 

2. A po .... erful instruction set suited to a 
high-Ie\'el-Ianguage implementation of 
the firmware. 

3. Built-in protection to separate memory 
spaces (code vs. data or supervisory vs. 
user) based on external function-control 
pins. 

4. A powerful error-exception capability 
using an error-exception input pin. 

5. Existing in-house program-development 
lools for firmware, based on thc Tandcm 
Programming Language (TPL). 

Orr-the-shelf microprocessors seldom 
implement built-in fault-detcction circuits, 
and the MC68000 is no exception. To pro­
\'ide fault detection, the: 3207 Tape Control­
ler uses twO of the ~1C68000 processors in 
lOCk-stepped mode. This allows it 10 isolate 
faults simply and accurately by localizing 
them in time and place. It checks the data 
bus, the address bus. the control strobes for 
data read/ write, the interrupt lines, and the 
bus-arbitration lines independently, on each 
bus cycle. This approach is a comprehensive 
one, differing from any other known mcthod 
of lock slepping. 

The Motorola 68000 microprocessor is a 
16-bit processor (externally) with 24 address 
lines. The strobe lines it uses for memory­
mapped 110 reads and writes are AS'. UDS·. 
lOS', DTACK', and R/W'. It uses the arbi­
tration lines, BR', BG', and SGACK e

, for 
direct·mcmory-access (Dtl.1A) activities. It 
supportS seven levels of interrupts by using 
lPLO', IPUe, and tPL2', 

The MC68000 also has a RESEP line and 
two other lines, SERR' and HALT', which 
are very effectively used in the 3207 Tape 
Controller for faull detection on the lines 
mentioned above. The architecture of the 
3207 is closely coupled with the firmware to 
process data from the error-detection logic. 

The two types of error processing used by 
the 3207 Tape COlli roller are: 

I. Lock-stepping MC68000s and associated 
logic. The primary motive in this archi­
tecture is to create a protected, modified 
MC68000 bus and perform data transfers 
on it. This is accomplished by using two 
MC68000s and selr-checking logic. Any 
miscompare between the two MC68000s 
or any error in the associated self­
checking logic is considered fatal and the 
processor is halted. 

2. Acting as an interface to the protected 
internal bus. If the two MC68000s lock 
step without errors and the associated 
checking logic functions normally, the 
internal bus is good, Memory-mapped 
registers and other logic that make up the 
interface to the internal bus may detect 
errors caused, for example, by faults in 
internal logic, interface buffers, and 
printed wiring. 

The checking logic for such faults is 
part of thc external c ircuitry (particularly 
the VLSI module), and such errors are 
reported to the microprocessors. They 
process these errors as nonfatal ones and 
enter into a diagnostic mode of exception 
processing to locate the faults. These 
faults can be accurately located more 
than 90% of the time. 

Definitions 
In this article, the terms check and lest are 
used frequently. In order to understand the 
context in which these terms a rc used, the 
following definitions are provided: 

• Error. A condition in observable output 
that is abnormal for normal input at the time 
of observation. 

• Fault. An abnormal condition in a physi­
cal element of a logic circuit. 

• Check. To detect faults made through the 
observation of errors. In highly checkable 
circuits, every physical fault should result in 
abnormal OUlPUt for some normal input. 

• Test. To locate faults. (The input need not 
necessarily be normal.) 
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Prolecled Address Bus 

Figure 2 shows lhe implementation of the 
protected address bus. The address lines 
from Ihe MC68000 called the true processor 
are buffered with noninvefling buffers, 
while the address lines from the other 
MC68000, called the complement processor, 
are buffered with invefling buffers. The 
3207 Tape Controller's checking logic uses 
morphic-reduclion circuits to check these 
IwO sets of address lines. 

This checking logic produces a pair of 
signals called Fatal Address Errors. These 
signals arc galed along wilh other falal 
crrors (explained later). The Outpul of Ihis 
logic appears on a pair of Fatal Error lines, 
which are respectively connected to the halt 
lines of the two proces ors. Then, if an 
address mismatch occurs, the processors art 
hailed. All address errors are detected on 
the same bus cycle and are considered falal, 
causing a halt on the follO\\ ing bus cycle. 

The checked lrue or complement address 
lines are used to generate odd parity across 
lhe address bus. The [rue address bits, with 
an odd-parity bit, constitule the internal 
address bus of the controller. All the other 
peripheral circuits are designed to check 
parity on the address bus with every read 
and wrile . These address-parilY errors are 
considered nonfatal and are processed by the 
microprocessor as exceptions in order to 
locate the faulty circuit. 

Prolecled Dala BIIS 

The comparison or Lrue and complement 
data buses with (rue and complemenl micro­
processors is similar to the address compari­
son described in [he previous section. All 
data miscompares between the microproces­
sors, and errors from the associated check­
ing logic are considered fatal. Figure 3 
contains a diagram of a proteclcd data bus. 

Rgu~2. 

Implementation qf the 
proU!('tro address bus. 

Agur.3. 

Imp/emeniotlOn 0/0 
pro/ectt'i/ data bus. 



lbechtcked data-bus lines are used to 
~te a 10\\cr-bYlc, e\cn-data-parity bit 
ID:I an upper-byte. e\'cn-parity bit. Two 
data-parity bits arc used both to improve the 
crtec1ion of data errors and to a\1o\\ for 
b)1e or .... ord operations on data . 

Alll ,Q-mappcd registers check for correct 
data parit~ while being written to and report 
(!TOO bacl to the microprocessor on the 
sanr bus cycle. Also, an external parity­
cheding circuit monitors the data bus for 
errors during reads by the microprocessor 
and rqJOI'lS the errors to the microprocessor 
011 the same bus cycle. The dnta-parity 
errors art treated as nonfatal errors, and the 
firmware processes them on an exception 
basis 10 locate the faulty circuit. 

Dual·railed Cont rol 5t robes 
Fh-e control strobes (A ., UOS-, LOS-, 
DTACKo, and R W-) arc related to data 
reads and writes from cach microprocessor. 
The tM copies of each of these signals 
should be synchronous within the tolerance 
limits of the twO microprocessors. These 
COIllroilincs are compared through the usc 
of self-chcckers; any mi.scomparison is con­
sidered falai. 

The independent checking of the conlrol 
strobes, one of the uniquc features of the 
320: Tape Controller's lock-stepping design, 
achle\'cs these design goals: 

I. Isolation of errors to the control bus. This 
makes it easy to troubleshoot during 
faulty controller operation. 

2. Prevention of error propagation. The 
context under which the error occurred is 
~ved. This is an important aid to locat­
mg transient and intermittent error 
conditions. 

3. Ab.i1it)' to disable the lock-step circuit. 
~IS allows for the isolation of the failing 
mlc.roprocessor and the debugging of the 
design and code with an in·circuit 
emulator. 

J lJ ... E 

The checking of the control strobes pre­
sented several design challenges. Even 
though both microprocessors are timed with 
the same clock, one of the processors may be 
operating at the minimum delay specifica­
tion while the other operates at the maxi­
mum delay specification because of process 
variations in parts fabrication . 

The effect of the difference in delay on 
data reads and writes is to necessitate more 
stringent sel-UP and hold margins. Modified 
strobes are generatcd to take care of the new 
stringent timing rcquirement for reads and 
writes. The generation itself is done in a self­
checking manner and is dual-railed. All 
these challenges are met in the 3207 Tape 
Controller by unique circuit -implementation 
techniques. 

All peripheral circuits that have an inter­
face 10 these modified control strobes arc 
designed so that they check these lines on a 
read or write. Any error detected is reported 
to the microprocessor for nonfatal exception 
processing. 

Protection Techniques Used 
in Interrupt Handling 
Three interrupt lines exist for each proces­
sor, making scven levels of interrupt possi­
ble. All the interrupt lines are dual-railed, 
a unique feature of the lock-stepping 
technique. 

Interrupts to the processors are normally 
considered asynchronous. When twO micro· 
processors receive asynchronous interrupts 
caused by tolerance differences in set-up 
times. one of the processors may see the 
interrupt and respond, whi le the other may 
not. This can result in address, data, or 
control-strobe errors. To eliminate this 
possibility all interrupts arc handled 
synchron~uslY, and each interrupt signal is 
dual.railed and handled independently by 
each processor. The only types of error that 
can result in an address, data. or conlr<?1 
error are transient or permanent faults III the 
interrupt lines themselves. 
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Protection Techniques Used 
in Bus Arbitration and DMA 
There are three bus-arbilration lines in Ihe 
MC68000 microprocessor. They are Bus 
Request, Bus Grant, and Bus Gram 
Acknowledge. The rirst and Ihe lasl are 
inpUi 10 the microprocessor; Ihe second is 
OUiPUI rrom il. The DMA controller is 
designed so thai dual-railed bus-request and 
bus-gram-acknowledge signals are given 
independently 10 the two processors , and 
bus-gram signals received rrom bOlh proces­
sors are checked. Bus-requesl and bus-graOl­
acknowlege signals are synchronized wilh 
the processor clock . 

The DMA-conlroller state machine is 
duplicated and checked on every Slate­
machine clock cycle. DMA address genera­
tion is prOlected by parity-predicted binary 
coumers. Any error detected in any or the 
logic described above is logged imo an inter­
naJ register and rorces the DMA machine 
imo an error stale. When an error stale 
occurs, the DMA gives up the bus. 

During DMA, Ihe data bus is also moni­
tored by an independent parity-checking 
circuit, and any error is logged into a regis­
ter. Arler the operation completes, Ihe 
microprocessor reads Ihe Dt\'IA status and 
data-parity status 10 see ir Ihe DMA Com­
pleted normally. This helps isolale the rault 
quickly and minimizes the chance or Con­
taminaling massive blocks or data. DMA 
handshake li nes that have rauhs are hand led 
thro~gh a time-oul mechanism by which Ihe 
bus IS rorced back to the microprocessor. 

Checking and Testing of 
Gate-array Modules 

Earlier secl ions or Ihis article outlined 
various aspeCts or checking in both the 
3207 Tape COntroller and the micropro_ 
7essor, and s~mmarized how a prolected 
tnte:nal bus IS produced. This section Sum­
manzes the checking circuits needed in the 
peripheral ci rcuitry to check bOlh the imer­
nal b~s and other logic dependenl on I he 
runctlon or each circuit. 

TAN D EMS Y S T EMS 

The three major runctional bloch in th~ 
controller are: 

I. The proceSSing elemem, consisting of t 
MC68000 microproces ors, a O\1A g31e. 
array module, and a Processor uppon 
Module (PSM) containing the self­
checking and strobe-generation circuih. 

2. The channel interface, COllsisling of ~ 
ror dual-channel pons. Each porr COn. 
lains a pon-register module CPR"'I), a 
port-control module (PCM), and comro. 
tional MSJ bufrer chips. 

3. The device inter/ace, consisling or inler. 
race and formatter circuils 10 support 1110 
45- or I 25-ips NRZI/PE tape drh'es. 
phase-locked loop circuits, lape inrerfact 
burrers, and Ihe rollowing rour gale-arra) 
modules: 

a. Formatter timing module (FTM). 

b. Wrile formatter module (WFM). 

c. Read COnlroJ module (RCM). 

d. Read rormatter module (RF\I). 

Checking Techniques Used in 
3207 GUle A rrays 
The checking techniques used by the IllIer. 
nal Bus !nrerrace include the rollo\\ing: 

• Address parity check on dala reads 
and \\ riles. 
• Dala parity check on wriles. 
• Con t rol Strobe check on reads and writes. 

Those ror the T16 Channel ' nrerracc 
include: 

• Sequence check on T-Bus (done wilh a 
sequence deteclor). 
• Parity-predict protection on all counlers. 
• Parity-predict protcclion on stale 
machines. 

• DMA-handshake-inlerlock monilOring. 

Finally, those ror the Device inlerface 
include: 

• Parity-predict protection on slate 
machines. 
• Parily-predicl protection on counter~ 
and registers. 
• Loop-back capability ror device-inlerrace 
signals, used by firmware ror in-line lesling. 

-



Trsliq Trchniquts U~d in 
l!t11G'lf .\rra)~ 
Jb:,('A'OJXimal)' tesling techniques used 
.ith til< llOJ Tap< Controller are: 

1. Sam. The internal registers of five of I.he 
gate arrays can be scanned. The scannmg 
technique j primarily used to test gate 
aIT1)'S at the: component level. 

2. Rtad ·,,:rift. Storage elements that cannot 
Ix' scanned can be wriuen and read back 
b)-the microprocessors over the internal 
bu~. Rtad.onl} status registers can be 
initialized with master reset. 

Other standard testability practiccs, such as 
theabilit)' to clock from external sources 
and sort pull-Up; pull-down. ha\'c also becn 
adopted, 

Checkabilil) and Testability 
Colerllge in V!.s\ Module 
Table I ~ho ..... s checkabililY and testability 
c(werage in the VLSI modules of the 
3207 Tape Controller. The coverage is 
e~pressed as the percentage of the total 
number of gates used in the design that arc 
checkable or testable. 
~ardwareself-checking is defined as the 

ability of t~ chip to detect an crror in nor­
mal operation that results in one or more of 
the following actions by the chip: 

I. An error flag is set in an internal register. 

2. To locate the fault, the bus-error line is 
pulled acth'e for error-exception process­
Ing by the MC68000s, 

3. The halt line is pulled active to freeze the 
microprocessors, indicating fatal errors. 
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Tlb .. ' 
Checkablilly and lestabihly In 3207 Tape ConlroUer 
VlSI modules 

feo"labohl'f of Hlrdwlr. 
SlOt. EIelMnII •• u· Stl.K:k·nodl 

Chip SU" R"d--Wtl te ch.c.klng coyenl9" 

""" • .00 '00" ,,,. .00 .. 
PCM •• .. ~ "' .. eo'" '00" 
"'" • '" "" ,00" " .. -
PS" "' .. 7." .. .. " .. .. .. 
'1M ,. .. '00" .00 .. "' .. .. .. 

-
W' " '00" ,.lI, .... '00" .... . ," '000. ... ... '00" " .. 
RO" '00" 'OO~ " .. '00" .... 

Conclusion 
The development of the 3207 Tape Control­
ler is a pioneering effort in the design and 
implementation of VLSI-based products. By 
using VLSI technology. the design engineers 
were able to usc the complex design tech­
niques required to improve the data-integrity 
and fault-isolation capabil ities of the basic 
1/ 0 controller wi thout incurring the penal­
ties of reduced reliability, increased real 
estate. and power consumption that would 
have accompanied similar efforts a few years 
ago. Many of the techniques outlined in this 
article will also be used in future Tandem 
products. 
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Robustness to Crash 
in a Distributed Data Base: 
A Nonshared-memory 
Multiprocessor Approach 

- - ince atlemion first turned to 
the problem of dam-base 

-- recovery following system 
----= crash, computer arcl~itecturcs 

l=~ - have undergone conSIderable 
~ ...... - evolution. One direction such 
-... - evolution has taken is toward 

fault-tolerant, highly available, distributed 
data·base systems. One such architecture is 
characterized by a single system composed 
of multiple independent processors , each 
with its own memory. This paper examines 
the inadequacy of both the traditional defio 
nition of system crash and the com'cntional 
approaches to crash recovery for this archi­
tecture. Il describes an approach to recovery 
from failures that takes advantage of the 
multiple independent processor memories 
and avoids system restart in many cases. I 

'CCI\II'IiIIIII' lit n.. VI OB E--.. no. _~I) ~ , .. .... 
~"IM·,..".I----C~ ... L.tr:',,_o-&o ... . 
AIaJIIIII984..II.~heft:in"'(nIim) .. do ..... ~ufThr \"1.08 EDdo<o_. 

Introduction 

With the emergence of on-line update 
transact ion-processing applications, I 
based dat3-base-recovcry techniques 
evolvcd to providc robustness to crasl 
system failure. Log-based crash-recm 
tcchniques have recch'cd considerable 
tion in the literature 14,6,8,9, 10j. 

The strategies adopted by the prope 
of these techniques fall imo two basic 
gories. Both postu late the existence 01 
types of memory (4): 

I. Main memory. which is volatile, he 
does not survive system failure. 

2. Secondary storage. \\hich is stable ( 
volatile, hence usually surv ives S}'Sli 
failure. 

In the first strategy, a transaction w 
an intentions list rather than updating 
base pages in real time. The applicatio 
transaction's imended updates to the;: 
data-base pages is deferred until trans;: 
commit, at which time the transaction 
intentions list is written to a secondary 
age log, following which the updates a: 
applied to the actual data-base pages. 
failure occurs during the application 0 
imcmions list. the recO\:ery procedure, 
sists of restarting the application of tm; 
imentions list from the beginning. Thi: 
nique has been described by Lampson 
Sturgis in (8). 
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.. he stl:ond strategy, a (ransael ion 
~,}I[~da[a-base updates in rea l lime, bUi 
atO-alled 'Mitt-ahead-log protocol governs 

IIlj~ralion of (he updated data-base 
lito from a memory buffer pooilo second­
.,soragt. According 10 this protocol, 

.rilxtl by Gray in 14), no updated data 
'" permitted 10 be written (0 secondary 
c: befort the log records describing the 

~[~ IO [hat page have been written 10 the 
Jt\: ldaI)-slorage log. AI commit time. 
IJI;. '><k:lion rccoverabilil), is achieved by 
bdna (0 stable storage all log records 
r$i.td 10 the committing transaction. 

!;\lng either of the above strategies, data­
ttb: ItOOI-ery following a crash is character­
tztd b)-haling recourse to the Jog stored on 
EI.'OOdary storage in order to cosu rc I hal 
COOl lTliued transactions are applied and 
aocummilled transactions are removed from 
the data base. A difference between the twO 
Itr.ll qie~ Ii~ in the type of log information 
rtqUlrW for crash recovery. In the case of 
dd'entd update. only redo information need 
be kt~td. In the case of real-time update 
'filth \Io'rite-ahead log, both undo and redo 
mformalion must be logged 15J. 

Ret .. min. tion of the Term Crash 

CemraJ to the strategies used in the conven­
lJ01'l.lI approaches to crash recovery is the 
ddimlion of a crash or system/ai/ure as the 
Ios\ of the contents of main memory 191. 
Tht inadequacy of this definition of system 
failu re beromcs evident when applied to a 
oonshartd-mcmory multiprocessor architec­
tu~ . The concept of main memory as a 
IIIIlq~ and mared resource constituting a 
~ poim of failure is inappropriate for 
multICOmputer systems. In a system archi­
ktture in \10 hich multiple independent pro­
ct\~ , each with its own memory, arc con­
Declcd to (orm a single system or node via 

ttrprocessor buscs or local area network, 
the tue of the term ('Tash to denote an all-or­
.. hina SUit of the system loses ilS validity. 

The term becomes e\en less meaningful 
when applied to a long-haul net\\ork con~iM . 
ing of multiple shared-memory nodes. or 
even of multiple multicomputer node ... . Such 
configurations raise the possibility of partial 
crashes caused by individual prQce\sor fail ­
ures within a node or cau'iCd by node fnll ­
ures within a network . A fault-tolerant 
system design may allow cerlain failure~ 
within a node to be handled withollt requir· 
ing S~tem restarl. If a partial failure does 
nOI require syStem reslart, neither ~hould it 
require full data-base rcstan. l-Iowever, lhe 
problem of the 101.11 failure or cra.\h of a 
multicomputer node slill remains and muM 
be handled_ 

A corollary to the generalization of the 
concept of crash is (he generalization of the 
concept of crash rCCQvery. I f, ill. in the abo\'e! 
definition, secondary Slorage is viewed ns 
the only SlOrage that survives failure'i. then 
crash recovery must be based on a 
secondary-storage log and syslem restnn i~ 
required. 

If, on the other hand, a processor failure 
does nOt imply the failure of other pro­
cessors, then recovery techniques nOI requir­
ing systcm restart or recourse to secondary 
storage are possible. If a portion of Ihe 
"'og" were copied from the memory of one 
processor to that of another during normal 
processing, and one of these proce~sors sur­
vived the failure of the other, reCO\o'ery from 
the partial system failure could be effected 
using the \08 infomlation from the memory 
of a surviving processor while s)'~tem oper· 
alion continued "on-line_" 

Tandem Computers has implemented 3 

multiprocessor architecture using the abo\c 
concepts. The next section presents a. brief 
description of Tandem's s)~tem archlte,tuTC 
in order to motivate a more general 
approach to identifying and rec<.'\,ering from 
both partial and 10talsY5tem failures . . Sub­
sequent seclions define ro~u5tn~Ss to Single 
and multiple processor failures In a Tandem 
system. A discussion of Tandem's imple­
mentation of fault tolerance and the evolu­
tion of its design follow S. 

R I \ I I W 
I 1 



Techlllt:a/ P!!1H!!:.- -------
Figure 1 

r-~::::::~I::~::::~~::~::::~I::~= ~N~ 
J L t-.I... J 

~""'""...., -- ---
"'" -- r ..... -

Agu .. 1. 

Tandem hardwa~ 
architectu~. A .y.tem 
C07UUt8 of from 1 to 16 
proceuor module •. 
each with it. own memo 
ory. interconnected 
via the duplexed 
DYNABUS. The 
hardware configuration 
provide. redund4nt 
paths to the 
peripheraLs. 
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Architectural Overview 

The hardware architecture of a Tandem 
system is described in [7]. Illustrated in 
Figure 1, it is based on mulliple independem 
p:ocessors that are interconnected by dual 
high-speed buses to form a single system 
(node). The goals of the archit ecture a re 
fault tolerance, high availability, and modu­
larity. Hardware redundancy is pfQ.Vided 
such ~hal the failure of a single module does 
~ot disable any other module or disable any 
mtermodule communication. 

Normally. all cornponems are active in 
process~ng the work load. When a compo­
nent fails, however, the remaining system 
components automatically take over the 
work load of the faiJed component. Each of 
the (up [016) processors in a sys tem has its 
own power supply, memory, and 1/ 0 chan­
nel. Memory has bauery backup power 
capabl~ of saving system state for several 
hours In the event of power failure. Each 
110 controller is connected to the 110 chan­
nels of two processors, and each 110 device 
such as a disc drive, may be connected to ' 
two controllers. A given disc volume is 

directly accessible from two processors. 
Disc-volume ava ilabilit y, despite media fail. 
ures, is provided by optional duplication or 
mirroring, of drives. • 

System resources are managed by a 
message-based operating system described 
in (I) . The Message System, a c~mponent of 
the operating system, provides communica. 
tion between processes executing in the sa~ 
or different processors, making the distribu. 
t ion of hardware components transparent to 
processes. Through its Message and File 
Systems, the operating system makes the 
multicomputer structure appear as a unified 
mUltiprocessor to higher levels of software.' 

Buill on this architecture is a distributed 
data-management and transaction. 
management system cal led ENCOMPAss. 
Described in (3], ENCOM P ... \ SS al lows data 
to be diSlributed across mUltiple processors 
and discs within a single node, or even 
\\ ithin multiple nodes of a Tandem long­
haul network. It supportS the 1fOnsoction 
concept (5) in this distributed environment. 
The transact ion concept is implememed by 
means of a log and rea)-lime (as opposed 10 

deferred) update. Transactions can span 
multiple discs (connected to muhiple pro­
cessors) within the same node or on multiple 
nodes of a Tandem long-haul nemork. 

Updates to a file mayor may not be pro· 
tected by transaction auditing, depending on 
the va lue of the file allribute ca lled audited. 
(Henceforth, the lerms logl logging and audit 
trail/ auditing will be used interchangeably). 

ENCOMPASS supportS three kinds of 
structured file o rganizat ion: (I) key­
sequenced, (2) relative·record, and (3) entry· 
sequenced. A key-sequenced fi le is organized 
as a B-tree on the primary key field. All 
three file organ izations can have ahemate 
keys. Alternate keys are implemented as sep­
arate key-sequenced files that "point" 10 
primary file records via a field thai contains 
t~ value of the primary key. Alternate key 
files and the primary files that they index 
can reside on separate disc volumes. Parti· 
tioning files, by primary-key value range, 
across multiple disc volumes (possibly on 
multiple nodes) is also supported. 



Ont' of the basic implementation compo­
nents of ENCOMPASS is a process that acts 
~ a serrer for riles on a particular disc vol­
u~. This process, designated the disc pro­
cesr, is an example of an 1/0 process pair 
PI. An I '0 process pair is a mechanism that 
)JOvides fault-tolerant systemwide access 10 

I Odeviccs. It consists of two cooperating 
processes that run in the twO processors 
ph),sicallyconnected to a particular 1/ 0 

device. 
One of these processes, designated the 

primary process, controls the 1/ 0 device, 
handling all requests 10 perform 1/ 0 on the 
device. The other process, designated the 
backup process, functions as a standby, 
ready to take over control of the device in 
case of fai lure of the primary path to the 
device. The processor in which the primary 
110 process resides is an integra l const ituent 
of the primary path 10 the device. Should lhe 
primary's processor crash, the backup pro­
cess must have information sufficient to 
take over control of the device. This critica l 
information is sent from the primary process 
to the backup process during the course of 
normal processing in the form of so-called 
checkpoim messages. 

The process pair that controls a disc vol­
ume is called the disc-process pair, or simply 
the disc process. Its primary and backup 
members run in the " primary" and 
"backup" processors for the disc volume, 
respectively. The disc process has an active 
rather than a passive backup process. The 
term active backup process refers to the fact 
that the information the backup process 
receives via checkpoint messages dri ves its 
execution control flow. This is in contrast to 
a possible alternative design in which the 
backup process passively rece ives copies of 
recently dirt ied port ions of the primary pro­
cess' memory. The active backup concept is 
central to the design of single-fault toler­
ance, as described below. Figure 2 illustrates 
the concept. 

From the point of view of a given disc 
process, afile is a single partition of an 
ENC~\'I PASS "file" (if, indeed, the latter is 
P3!1Jtloned). Partitions of key·sequenced 
rnma~ data files and of alternate key files 
ook ahke to the disc process: each is struc­
tured as a single B-tree. The higher-level 
COfK:ept of a file with partitions and / or 
alternate keys is implemented by the File 
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System. The File System is a se t of user· 
callable procedures that execute in the envi­
ronment of the user process. These 
procedures (e.g., OPEN, READ, KEYPOS I­
TION, LOCKREC, WR ITE, etc .) accomplish 
an operation by sending one or more request 
messages to the appropriate disc process(es). 
In a requester-server model, the invoker of 
the File System is the requester and the disc 
processes are the servers. 

The primary interface to the di sc process 
is record-oriented, ahhough a block-oriented 
interface is also provided . Most update 
requests resuh in the updating of a single 
record within a single block of a given file. 
In the case of key·sequenced fi les, however, 
lhe possibility that a single request message 
from lhe File System could cause a B-trec 
split or collapse means that the request may 
be execUled as a series oj micro-update 
steps. Since an incomplete series of m.icro­
update steps leaves a file structu.rally IIlcon­
sistent robustness to crash reqUIres a 
method of assuring its atomicity. This atom­
icity is provided for both audi~ed and non· 
audited files, but the means dIffer, as 
explained later. 
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Figure 2. 

The hardware configu· 
rotwn for a disc-process 
pair. In the primary a7ld 
backup proceBSors are 
the primary G1ld backup 
disc processes fOT a 
mirrored disc volume. 
The primary disc pro­
cess peTfoTms 110s 1.0 
move pages to and fTom 
its memory buffer poot. 
Reads go to the disc 
closest to the cyli7uler: 
writes go to both discs. 
The backup (lisc pTO­
cess maintains the 
backup buffeT poo~ 
based on. checkpoint 
messages receive(t from 
the primary disc 
process. 
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Failure Modes 
The system architecture described supports 
fault tolerance for a variety of failure modes 
other than processor c rash. Fault tolerance 
extends from failures of single hardware 
components (discs, 1/ 0 channels, 1/ 0 con· 
trollers) to fai lures of system or application 
software (programmatic processor halt, user 
process error, transact ion abort). The curA 

rent discussion, however, will be limited to 
failures that result in the loss to a single 
muhiproccssor node of one o r more of its 
constituent processors. Loss in this context 
means [he invalidation of everything stored 
in the failed processor's memory. 111is could 
actually be caused by the failure of any 
hardware o r software component associated 
with that processor. 

The failure model supported can be char· 
acterized as Jail Jasi. Consistency checks arc 
an integral part of [he system hardware and 
software. If such a check fails, the bad com· 
ponent is halted. This approach makes fail. 
ures "clean" and makes it unlikcly that a 
failed component would contaminate other 
components 12,5J. 

Definition of Robustness 
to Single-processor Failure 
The failure of a single processor in the 
described environment results in the 
lakeOl'er of its functions by the remaining 
processors. In particular, the failure of a 
primary disc process' processor results in the 
takeover of ilS function by the backup disc 
process' processor. If [he failed processor 
contained other primary disc processcs with 
diffcrent backup processors, the failed pro. 
cessor might have its work taken over by 
several other processors . 

The disc process is designed to provide 
robustness [0 single-processor failure. This 
robustness is implemented by means of 
(I) checkpoin t messages sent from the pri­
mary process to the backup process during 
normal processing and (2) a takeover algo. 
rithm described later. 
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T he followi ng elements constit Ule robUlt. 
ness to single·processor failure: 

I. "Sessions" between the disc process and 
requesters ca lling the File System sur\'i\'e 
the failure of the disc process' primary 
processor. Thus , any file open before 
takeover still appears open after the­
takcover. 

When updates are not protected by 
transaction auditing (i.e., updates to non· 
audited files), a mechanism of tagging 
messages bet"'ccn the File System and the 
disc process with sequence numbers can 
opt ionally be used to guarantee that a 
requcst message is ncver lost during the 
takeover and [hat a non idempotent oper­
ation is never duplicatcd (2). 

When updates are protccted by trans­
action aud iting (Le., updates to audited 
file s), the file·open session survives the 
takeover, but updates executed under thai 
open by a given transaction surviVe the 
takeover if and only if that [ransaction 
commilled before the takeover. 

The tolerance of sessions to single­
processor failure obviates the need to 
perform system restart in the event of 
such a failure. For nonaudited files, the 
takeover is transparent to the caller of the 
File System. For audited files . the 
takeover is not transparent to the caller of 
the transaction management system (since 
transactions may be aborted), but higher· 
level software makes the abort and restart 
o f such a transaction transparent to the 
end uscr (3). 

2. The struc tural integrity of both audited 
and nonaud ited files on the volume is 
guaranteed. Thus, if the primary's pro­
cessor fail s in lhe middle of performing a 
series of micro-update steps to a rile, 
takeover processing restores the me's 
structure to a consistent state by backing 
Olll the steps performed before the failure. 

J. The transactional consistency of the data 
base as a who le is guaranteed. Thus, if a 
transaction that was uncommitted at the 
time o f takeover had updated audited 
fil es on the failed primary disc process' 
volume, takeover processing aborts the 
transact ion and backs out its changes 
every\\here (on other volumes on this or 
o lher nodes). II should be noted that 
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to single-processor failure and robustness to 
disc-process-pair crash is as rollows: 

1. "Sessions" between the disc process and 
requesters calling the File System do not 
survive the disc-process-pair crash. 

2. The structura l integrity or both audited 
and nonaudiled riles on the volume is 
guaranteed. Thus, if the disc-process pair 
crashes in the midd le of performing a 
series of micro-update steps to a rile, 
crash recovery restores Ihe filc's struclUre 
10 a consistent state . 

3. The transactional consistcncy of the data 
base as a whole is guaranteed. Thus, if a 
transact ion lhat was uncommitted at the 
time or the d isc-process-pair crash had 
updated audited files on the crashed disc­
process pair's volume, crash recovery 
backs out that transaction 's changes 
everywhere (on othcr volumes on this or 
other nodes). 

Conversely. ir a transaction that was 
committed at the lime of the disc­
process- pa ir crash had updated audited 
fi les on the crashed disc-process pair's 
volume, but those updates were still in 
memory bufrers (rather than reFlected 
in the corresponding data-base pages on 
secondary SlOrage) at the time or the 
crash, crash recovery retrieves t~ose 
updates (from the log) and applies them 
10 the data-base pages on secondary 
storage. 

As in the case of Ihe single-processor 
fa ilure, transact ion backout does n~l 
undo completed B-tree index operations. 

Evolution of the Disc-process Design 
The above description renects a rearchi­
lecture of the disc process. The goals or the 
new design were to provide quick recovery 
from disc-process-pair crash a l~d less costly 
tolerance or single-processor failure . . The old 
disc process provided rob~stness to slOgle­
processor rail ure as desc~l bcd a~ove. How­
ever the old implementat ion of smgle-
processor-failure tolerance made a trade-orf 
in favor of fast takeover recovery from 
single-processor fa ilure at the ::xpense or 
long recovery in the event or dlsc-process­
pair crash. 
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The only method of recovery from disc­
process-pair crash was the time-consuming 
technique of reloading previously archived 
copies of audited data-base files and "roIl­
ing forward" these files to a state of transac­
tional consistency by the application of 
after-images from the audit trail. The dura­
tion of volume unavailability implied by this 
procedure was justified by the assumption 
that double-processor failure is rare. In fact, 
however, double failures are more common 
than would be predicted by consideration of 
hardware mean time between failures. Most 
processor failures are in fact caused by soft ­
ware bugs or operational errors. 

Two characteristics of the original design 
dictated Ihe "roll forward" approach to 
crash recovery and tolerated single-processor 
failure at the expense of extra disc II 0s and 
extra checkpoim messages during normal 
processing. These were as follows: 

I. The decision [0 synchronous ly wrile 
through to disc all updated data-base 
pagcs rather than buffering them in 
memory. 

2. The technique of incrementol checkpoilll­
ing (sending messages from primary to 
backup disc process during normal pro­
cessing), which provided the backup pro­
cess with the information needed in Ihe 
event of the primary processor' s failure to 
carry forward any interrupted series of 
micro-update steps and to cominuc for­
ward processing on transactions active on 
the disc volume. 

Wrire-Ihrough cache was originally con­
ceived as a means of simplifying the implc­
mention of single-processor- failure 
tolerance. However it made the write-a head­
log protocol [4] infeasible because unaccept ­
able performance would result if every 
data-base update resulted in t\I,.'O writes : 
first, the before-image log necessary for 
undo in case of failure; second, the modified 
data-base page. The absence of write-ahead 
log. made the fast crash-recovery technique 
of m-place rollback of crashed transactions 
impossiblc. WriLing through every data-base 
update also had negative implications for 
throughput and response lime. Rather lhan 
allowing the "piggy-backing" of several in­
memory modifications on the same 1/ 0 it 
meant that each time a page was "dirti~d" 
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of the latest twO control·point records are 
remembered at a known place on the disc 
volume. 

When recovering a given crashed disc vol· 
ume, autorollback finds that volume' s ~edo 
start point by obtaining the pointer to ItS 
nexHo·last control point. When recovering 
a set of crashed volumes, autorollback stans 
its forward pass of the log al the earliest 
redo start point for any of the crashed vol· 
urnes . Autorollback then sends to the di sc 
process of a crashed volume all redo Jog 
records il finds from that volume' s redo 
start point through the end of the log. 

After the redo phase, the backward pass 
begins. Reading the log backwards from Lhe 
end, autorollback sends 10 the appropriate 
disc process those undo log records Ihat rep· 
resent incomplete series of micro·update 
steps. When all of the changes represented 
by these log records have been physically 
undone, all audited files open on the crashed 
volume(s) will have been restored to a state 
of structural integrity. 

During the same backward pass, 
autoroUback sends to the appropriate disc 
process those undo log records that represent 
logical operations on data blocks (e.g. , 
record insert, modify, or delete) that were 
executed by transactions uncommilted at 
crash lime. When all of the changes repre­
sented by these log records have been logi· 
cally backed out (Le., using compensating 
operations at disc-precess-request level) , 
global transactional integrity will have been 
achieved. 

Conclusion 

The concepts of crash and crash recovery 
have been seen to require generalization in 
order to find applicability to a nonshared­
memory multiprocessor architecture, in 
which some processors may survive the crash 
of other processors in the system . The archi­
tecture of the Tandem computer system was 
described as a case in point. A technique of 
logging to another processor's memory that 
tolerates single-processor failure and obvi­
ates the need to perform system restan was 
described. An analogy was drawn between 
the technique used in a Tandem system to 
recover from a single-processor failure and 
conventional crash-recovery techniques that 
rely on a secondary-storage-resident log. 
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