
T A N o E M

SYSTEMS REVIEW

800 Software

Dala Communications

Workstations

Peripherals

Technical Paper

JUNE 191{5

Editor's Note

I'd like to thank the many individuals and
groups within Tandem iliat worked together
to create this special issue. Some worked
many extra hours to complete the articles
and ensure their timely publication. Special
thanks to: Mala Chandra, Joanne Danforth,
Jim Eakin, Hank Hugeback, Kent Madsen,
Sarah Rood, Carol Schaffer, Dick Thomas,
Ann WhiteseIJ, the 25 authors, the entire
Illust ration and Typesetting groups, and the
technical reviewers in the Field Productivity
Programs, Hardware Developmenl, InslaJ­
lability, Large Systems Suppon, Product
Management, Product Marketing, Software
Development, and Systems Suppon groups.

Carolyn Turnbull White

Syntax notation used in this publication.
NOIJllon

UPPERCASE
lrnERS

-=~
Ietl8l'S

BracketS r I
Braces I }
Effipses ..

Enlp$8S

~"""" '" scomma,.

Correct ion:

U .. nltlg

Re!:lresent keywords and reserved words.

Enclose opllOnal syntax Items.

Enclose r9qlAred synlllX IIems
FoUow syntax IIernS Ihal can be repeated any
numbeI" 01 limes.

Follow syntax Items thaI can be repealed any
numbef 01 limes and requlr8 • comma 10
sepaHil8 each repelltion..

BASE24, an electronic funds transfer sys­
tem, was mentioned in the anicle, "Using
FOX to Move a Fault-tolerant Application,"
published in the February 1985 issue of
the Tandem Systems Review. BASE24 is a
software product offered by Applied Com­
munications, Inc. (not Advanced Communi­
cations, Inc., as stated). The product has a
muJtinodal. expandable structure analogous
to Tandem's hardware structure and is
designed for fail-safe, 24-hour processing
seven days a week .

............. -----------------------------.

.-
Carolyn Turnbull V. hile

T«UirII "
\bllChandn

Did """'" _r-.
Knit Madsm
Ann WhitesclJ
.\ IIhtIM.:6w

""" Rood '"-TemHm
Joanrw: Danforth
Carol SdlaffCT
........... 1.-, ...
Uiurit Mmden
Gayk Rkllardson
Tandem lI1uslrB\;on Group
C. .. An
Sltphen Sta''aS1
n,.... ...
Tandem T)"ntllilll Group
n.. S-Rn_.
~ '" ~ CIlMl'lllIln '-,n.. s,....
R-.. palIWa t«Uo;aIlllrcw-­
_ .. ~toI'I ~
..., p!OdoaL ... pwpoM: 1O",1!dp
~-'Yti .. ho _,.....10"._
-.--,....,.~
~~ ... ~
~ __ f'"'f_1O.w_
or __ 10 dor dtotnlIu-

1.-... '-. """'"" ... Il10.-
U_S. bo_lO~
C........,J~.StM
.w-u--. .'191 \
~ C'lopm_. CA 95(11' -.-... __ .. U.s. *""" /Ir
_ ... /orwI q{fin
c_., no. __ ..a.-.
IIIIUftlIIIM .. _ Ionna!
""- _"'10 1M ~
~-...-.I)09SO ,..,
AoaIut,~. CA 947

~ ''''!lt1Mclrm
Co.pwn hl.penCe'II. All riahu
ND ~ olll,. """"'1 l1li) lit
1'<1Ift!IIIICII1II-r fcnI, "dud" ..
~or 1tImIaI 10
_110 ~houIl'" I"'IOf
.m .. _oI C_. -'-t1If _~bDr
---urJl ... C cn
~ lI"OEl,
CI(lS5I.Ef. OOL, m'SAM6..
1l'I'''"-\un. EtlfT, ESABI E.
ENCOIoI~ [,'II'OIlM.
Oo'SCI.l1IE, exClV. "«jE.

E.'O'I\.'1D, E\'T. f""J't.:. FOX.
()I..;,I,RDlA GliIoRotA,'I190.
1'I5P£CT. "'-S&op, ~ a.
~ \'. ".,TliVoA".1'CfOR
\tAT, TAL. ~ TMF.
nA.'ISFE.t.. H£XT. TXP, XRAY
IB.\I. lB." PC I'C-OOS_
~1II1 __ -'a...­
~C"""_ MS.DOS
... C ·lASlCftl uof
MImIIOI\C~_ 1_2_1
•• ~ ollGl", Ilndop­
_ C dIlASE

Ir-.rt 1Il.w.o..TaIc- MOl"'"
......... mIda.r.f/I
......... 11<.

TANDEM SYSTEMS REVIEW

2

114

127

144

152

800 Soflware
Highligili s of the BOO Software Release

Dala-base Soflware
DP2 Highlights
DP2's Efficient Use of Cache

DP2 Key-sequenced Files

Improvements in TMF

DP2 Perfornl<lnce

A Comparison of the BOO
DPI and DP2 Disc Processes

Operating System
Increased Code Space

NcwGUA RDIA N 90Timekeeping Facilities

New Process-ti ming Features

Writing a Command Intcrpreter

The Tandcm Global Updatc Protocol

Changcs in FOX

Improved Performance for BACKUP2 and RESTORE2

VIEWSYS: An On-linc Systcm-resou rce Monitor

Introduci ng TMDS, Tandem's Ne\\
On-line Diagnostic Systcm

Manuals and Courses
BOO Software Manuals

New Software Courses

Dala Communications
SNAX/ H LS: An O\'ervicw

Workstations
The DYNAM ITE Workstation: An Overview

An Introduction to DYNAM ITE Workstation Host
Integration

Periphernls
The V8 Disc Storage Faci li ty: Setting
a New Standard for On-linc Disc Storage

Introducing the 3207 Tape Controller

Technical Paper
Robustness to Crash in a Distributed Data Base:
A Nonshared-mcmory Multiprocessor Approach

2

9
14

19
25
33
44

46
54
64

68
74
86
89
94

98

106
109

114

127

135

144

146

152

2

Highlights of the
BOO Software Release

andem's BOO software ru ns
,_ on NonStop n , NonStop

TXP, and NonStop EXT
systems. Many new prod-

___ ucts and enhancemen ts to
• existing producls make up

(he release . This article
highlights the major ones, including those
listed below:

New products

Disc Process 2 (DP2)

EXCHANGE/ SNA

Tandem Maintenance and Diagnostic
System TMDS)

Enhanced or changed products

ATP6100 Asynchronous Terminal Process

BASIC

COBOL

FORTRAN

FOX 6700 Fiber Optic Extension

GUARDIAN 90 operating system

ENABLE program generator

EXPAND networking software

PATHWAY transaction processing system

Program Development Tools (PDn

Transaction Application Language (TAL)

Transaction Monitoring Facility (TMF)

TRANSFER and TRANSFER/ MAll

With the BOO soflware release, Tandem
has completed a new, more powerful version
of (he GUARDIAN operating system. To
emphasize this milestone, the operating sys­
tem software, including DP2, has a new

name: GUARDIAN 90. This new version of
the operati ng system yields a significant
improvement in on-l ine tra nsaction pro­
cessing performance in a TMF envi ronment.
The GUARDIAN 90 operat ing system is
upward ly compat ible with previous releases
of the software, a llowing users to migrate to
it without rewriting their applications. I

Data-base Software
Disc Process 2 (DP2)
DP2 is the new GUARDIAN 90 disc process
for NonStop n, NonStop TXP. and
NonStop EXT systems. (It is not available
for NonStop 1+ systems.) The job of both
DP2 and DPI is to manage data and hard­
ware within Tandem disc subsystems. Both
disc processes implement the various
ENSCRIBE file types, manage the space on
discs, and manage lhe contro\1ers and paths
to the discs.

DP2, however, is a complete redesign and
reimplementation of the disc process, aimed
at achieving improved performance,
throughput, recoverability, reliability, main­
tainability, and extensibility. All discs and
disc controllers for onStap U, TXP, and
EXT systems are supported by DP2. TMF,
the file system, and many utilities have been
appropriately modified and enhanced in
connection with its development.

I

To achieve the goals mentioned above ror
DP2, developers have changed the basic ri le
structure. Thus, those user riles on wh ich
DP2 is to be used must be changed from
DPl format to DP2 rorma!. New utilities are
provided for this purpose. Other architec­
LUral changes have been made to integrate
the T~IF and DP2 subsystems, resulting in
increased perrormance in lhe T~'IF
environment.

Note: Because or Ihe changes in the struc­
ture or riles, programs that open structured
riles in unstruclllred mode must be modified
if DP2 is to be used with them. See the
ENSCRIBE Programming Manllal ror the
details or the new block structure.

ENAHLE Program Generator
The BOO release includes major enhance­
ments to ENABLE. ENABLE can now gener­
ate applications that access multiple files
organized in a hierarchical fashion.

Another new realure is its ability to dis­
play and update multiple records within a
file. Optionally, ENABLE can display this
inrormation in tabular format.

Finally, ENABLE makes the process of
designing screens more flexible. Users can
suppress different fields rrom the screen
display ror security purposes and can rear­
range the layout of fields on the screen.

For a discussion of these new capabilities,
see Chapman and Zimmerman. 1985.

PATHWAY Transaction Processing System
The BOO release or PATHWAY includes a new
version or the Screen COUOL compi ler. This
new compiler runs only on NonStop 11,
TXP, and EXT systems because it takes
advantage of extended memory. By using
extended memory features. the new compiler
permits a significant increase in the number
or symbols allowed in Screen COBOL run
units.

Several new command options are
a\ailable:

• AUTORESfART, a new optional parameter,
allows the PATHWAY system to restart termi­
nals, TCPs, and servers automatically when
abnormal errors are encountered.

• An exclamation mark (!) has been added
to the SHUTDOWN command as an optional

__________________ ~BOQSoft"~~

parameter. It is the equivalent or a STOP
TERM·, followed by a STOP TCP ., rol­
lowed by a SHUTDOWN.

• An ERRORS command has been added to
PATH COM to allow errors to be tolerated in
IN/ OBEY file processing.

• The INFO command now has an optional
keyword, OBEYFORM, which rormats the
output as a syntact ically correct PATHCOM
command wilh the proper SET < entity
type> prefix. One use of this option is to

create new cold-start obey riles arrer exten­
sive modirications to an existing PATHWAY
COil rigurat ion.

• A new CONTROL PATHMON and CON­
TROL TCP command has been added to

allow changing or object desc riptions wh ile
the objects are active .

• New I'RIMARY and SWITCH commands
aid in the load balancing or a PATHWAY
system.

PATHWAY now supports double-width
screen sizes ror Tandem 6520 and 6530 ter­
minals, and it recognizes the BREAK key on
conversational terminals. Also, it is now
permissible for Screen COBOL programs of
dirferent terminal types to call each other.

Transaction Monitoring facility (TI\U)
BOO includes significant enhancements to
TMF in the areas or recovery, fault tolerance,
and operational r1exibility.

TMF now includes autorollback, a rast
mechanism ror recovering a data base that is
protected by TM F. Autorollback starts auto­
matically at TMF start-up time and operates
on all audited and logically inconsistent
riles. It does not require the mounting or
tapes, and no operator intervention is
needed once recovery is under way.

Thanks to autorollback, the loss or a disc­
process pair no longer causes a TMF crash.
If both processors are lost, all active trans­
actions that the disc process might have
been working on are aborted. When the pro­
cessors are subsequently reloaded, auto­
rollback recovers the volume. (For more
detail on autorollback, see Pong, 1985 .)

1A'OE\I SYSTFMS RFYIFVI' 3

BOO Software

4

TMF has several new features that provide
greater operational flexibility:

• A new command has been added to
TMFCOM to allow the user to add one or
more volumes to the set of volumes that are
up for TMF. This command might be used if
the volumes were down at START TMF time,
if they went down while TMF was running,
or if they failed to start earlier.

• Audit-trail-file, extent-size, and MAX­
FILES parameters can be altered while TMF
is stopped, and new volumes can be added
to a TMF configuration without reinitializ­
ing TMF.

A significant portion of TMF has been
rewritten in conjunction with the develop­
ment of DP2, and many of the new TMF
featu res, including volume reintegration and
autorollback, are available with DP! as well.

TRANSFER and TRANSFER/ MAIL
Changes or new features in the TRANSFER
delivery system and T/MAIL include:

• Increased user friendliness and perfor­
mance for T I MAI L.

• Support for T-TEXT.

• Support for FAXLINK.

• A Queue Manager for queuing items 10
agents.

• A repair facility for TRANSFER data
bases.

• Dated item "unsave."

• Ordered folders.

• Return codes from agents.

• Staged item deletion.

The Operaling Syslem
User and S),slem Code Space
In GUARDIAN 90, user-code, user-library,
and system-library spaces have been
enlarged. This change permits larger pro­
grams to run and allows large programs
writlen for other vendors' systems to migrate
more easily to Tandem systems.

User-code and user-library spaces can
each now comain up to 16 code segments of
128K bytes each for a total of 32 segments
of user code (4M bytes). In addition, 33
system-code segmems (4.125M bytes) can be
provided, 32 of which are available for the
system library and one for system code. In
connection with this expansion, imernal and
external changes have been made to
BINDER, TAL, FORTRAN, DEBUG, LOBUG.
INSPECT, XRAY, CRUNCH, and SYSGEN.

To accommodate these enhancements,
application programs that modify [he Slack
marker ENV Register must be modified ,
as must privileged programs that access
the Destination Control Table, or Dcr
(including user-written 110 processes). All
Olher programs run successfully under
GUARDIAN 90 without recompilalion.

.-OX Prolocol
Changes to operating-system software asso­
ciated with the 6700 Fiber Optic Extension
(FOX) provide automat.ic ring-topology gen­
eration, automatic path management, and
support for on-line diagnostics. These
changes require that all nodes in a FOX
ring be upgraded to the GUARDIAN 90
operating system simultaneously if FOX
communications are to be maintained.
(This is explained further in a later
section and in the accompanying anicle,
.. Changes in FOX . It)

TA/IoIDE!"1 S ' STF M S ft EV I E 'A

Nc\\ Tandcm Maintenance and
Diagnoslic Syslem (T~Il)S)
TMDS provides a foundalion for integrated,
on·line fault diagnoslics for the hardware
componenls of Tandem sYSlcms. This first
release includes a FOX diagnostic subsystem.
Other products will be added in subsequent
releases. Major fealures of this release are a
centralized, diagnostic command inlerpreter
with eXlensive "help" facilities, a diagnostic
resource monitor, and automatic logging of
hardware faults.

Command Inlcrprclcr (COMINT)
Several features have been added to enhance
the Command InterprCler (COtvIlNT):

• A HELP command is now available to aid
users in the proper use of COM INT.

• Users can now control system access
during slart·up through a SYSGEN·
defined input file to the starHlp command
inlcrprctcr.

• CO~lINT now runs as a non privileged pro·
cess. Its privileged functions are imple·
mented as procedures that can be called or
processes that can be run. Also, password
management, system logon, and the in for·
mation passed to a SCMON process have
been enhanced.

• The manner in which start·up messages
are handled is different. Consult the Softdoc
for details.

S)'Slem Timing
Time services have been enhanced to
include:

• Automatic Daylight Savings Time (DST)
adjustments.

• Improved process timing.

• Julian date conversions.

• Timestamps based on Greenwich Mean
Time (GMT) .

Other s}'Stem·lime enhancements include
CPU clock-rate averaging, clock·rate adjust·
ments. and a callable procedure to set sys·
tern clocks. This procedure makes it easier
to keep accurate time when external clocks
(e.g., that of the U.S. government radio
station, WWV) are used.

Also, four·word. microsecond·resolution
timestamps are now available, in addition to
the old three·word timestamps. The GMT
Limestamps and new time·conversion rou­
tines are all based on the new four-word
timestamp.

Other GUARDIAN 90 Enhancements
SYSGEN can now process configurations
with a greater number of named en(ities
(devices and named processes) .

The performance of RELOAD has been
improved, and thus, systems can be started
more quick ly.

The ocr has been moved to extended
memory and has been increased in size.
Also. it is now accessed via a hashing algo­
rithm, which improves speed. New
GUARDI AN 90 procedures have been pro·
vided to access the DCT'.

Processes can now be started in parallel in
any processor. This, combined with the
enhancements to RELOAD, improves system
start·up time dramatical ly. However, appli­
cations that previously serialized their
nowait process initializations by directing
them all to the same CPU can no longer rely
upon that method of serialization.

Data Communications
ATr6100
Software is included in this release to sup·
port asynchronous poinHo·poinl communi­
cations with the 6100 Communicat ions
Subsystem. Included in ATP6100 is support
for both Line Interface Unit I (lIU I) and
the new LI U4 .

EXCHANGE/ SNA
The new EXCHANGE/ SNA is a logical and
compatible extension to the EXCHANGE
com munications subsystem for handling
SNA RJE communications. Basically, it
provides an emulation of an IBM 3777·3
Multiple Logical Unit (MLU) Data Entry
Subsystem, interfacing primari ly to IBM
operating systems that support JES2
and JES3.

T ,, "I)~· M SY S TEM S R~: VIF" 5

6

EXPAND
A new network-access interface now
improves communications between EXPAND
and "network service-provider processes"
(c.g . • X25AM and FOX). The handling of
X .2S Switched Virtual Circuits (SVCs) has
been enhanced to include:

• Auto-establishment and take-down with­
out operator intervention.

• Auto-recovery from SVC loss.

• SVC take-down and reestablishment dur­
ing inactive periods, without an interruption
of the EXPAND "session. "

Languages
Transaction Application Language (TAL)
TAL suppOrtS the increased code space now
ava ilable with the GUARDIAN 90 operating
system. A program produced by a single
compi lation can have up to 16 code segments
of up to 128K bytes each. No one procedure
can exceed 64K bytes of code.

conOL
COBOL (T925 1) for on Stop'" systems is
validated at the Federal Information Pro­
cessing Standards (FIPS) high level. It is
upwardly compatible with the original
COBOL compiler (T9201), which is now
available only for NonStop 1+ systems. The
original compiler is validated at the
FI PS low-intermediate level.

COBOL supports the increased code space
now available with GUARDIAN 90. Code
sp~ce available to an individual program
umt can be as large as 128K bytes. A run
unit can occupy up to 16 code segments,
each containing 128K bytes. Data items
greater than 32K bytes are permitted.

COBOL programs can use the sequential
block-buffering provided by ENSCRIBE.

The CALL identifier and CA eEL identi­
fier statements have been implemented (e.g.,
"CALL program-! DIt where program-IO is a
variable in working storage).

Additional SORT/ MERGE fealUres ha\-c
been implemented, including:

• SOft / merge lo/ from a blocked tape.

• Son/ merge lo/ from a multirecllapc file.

• Sort/ merge to/ from multifile tapes.

• Sort / merge by a user-specified collating
sequence.

fo'ORTRAN
FORTRAN now allows users 10 define large
COMMON blocks that reside in extended
memory, providing 128M bytes of data stor­
age. FORTRAN programs can have up 1016
code segments of up to 128K bytes each.
(GUARDIAN 90 support is implicit.)

HAS IC
Most GUARDIAN 90 procedures can be
called directly with the new CALL state­
ment. The standard CRO$SREF utility is used
to produce cross-reference listings. The
floating-point arithmetic package is auto·
matically used if present on the system.

Program Development Tools (POT)
PDT products provide the necessary support
for increased code and library space.
INSPECT and DEBUG have been changed to
allow references to all 16 code segments in
user-code and user-library spaces.

Notes on Installation, Conversion
and Tuning ,

System managers and application program·
mers at sites planning to migrate to the BOO
Limited Customer Distribution should be
aware of the following considerations.

T A ~ D E ~ 5 ¥ 5 T (M S J l' .. F I q " ~

InSlaliulion

Procedure. Users running A20 (and later)
software releases can upgrade using the
standard INSTALL procedure. Special proce­
dures must be followed to upgrade from
releases earlier than A20. Sec the Sofldoc for
details.

FOX Ring Upgrades. All nodes on an ex ist­
ing FOX ring must be upgraded to Ihe
GUARDIAN 90 operating syslem simultane­
ously. If this is not possible for some rcason.
then the nodes on the ring that cannot be
upgraded mUSI be removed from the ring,
and if communications with the other nodes
are still required, they must be made via
EXPAND.

DP} File-colll'ers;oll Utilities. With DP2. the
formal of structured riles has changed bUI
the disc format has not. This feature allows
greater flexibility for TMF. Conversion utili­
ties are provided.

Con\ersion

Programs that Modify the ENV Register.
Any programs that ran on previous releases
and modify the ENV register saved in Lhe
stack marker do not run with GUARDIAN 90.
The CODEY utility on the GlJARD2 DSV
identifies any object files thai require modi­
fication and recompilation of their source
because they address L-I direcLly.

It does not idenLify those programs that
modify the saved ENV register via indirect,
relocatable, or absolute addressing, nor does
it identify those programs that use PUSH.
SETL CODE sequences to effect the modifica­
tion. CODEY has a complete "help" file,
and unless restricted by the start-up mes­
sage, il searches all volumes and subvolumes
for offending code.

Changes (0 ERROR 70 and STAHTUP
Messages. The manner in which COM tNT
handles ERROR 70 and STARTUP messages
has changed. Refer to the Softdoc for
details. The old mechanism generates an
eITor message, but still works and shouJd not
negatively affect users. In a future release,
the old mechanism will be removed.

____________ ~BOO~SOft"~~

Product Dependencies. A table of product
interdependencies can be found in the Soft­
doc Highlights file. TAL programs shouJd
source in Ihe proper EXTDECS in order lO
run successfu lly. If necessary (i.e., if the
code was last compiled with A03 software),
the proper EXTDECS should be retrieved
from backup tape.

COBOL Compiling Considerations. COBOL
allows "compile-time binding," Basically,
the compiler detects a CLiBOBJ file in its
subvol and directs BINDER 10 resolve exter­
na l references from the CLiBOBJ fi le before
forming the run-time library. AI run time the
SVSTEMMON ITOR resolves a ll other ex ternal
references from LIB and system code.

Any old versions of modules in CLIBOBJ
that violate GUARDI AN 90 address ing rules
fo r extended code space prevent the success­
ful execution of run-time libraries that were
with thai CLiBOBJ. Therefore, users should
first recompile (if necessary), or remove
CUBOBJ and then recompile a ll the COBOL
run-time libraries affected.

Privileged Processes that Access the ocr.
Privileged processes that update the Dcr do
not run under GUARDIAN 90. A conversion
checklist is avai lable from your Tandem ana­
lyst for any user-written privileged processes.
Privileged code should be carefully reviewed
against this document.

More eNFORM Reserved HiJrds. The list of
ENFORM reserved words has grown , which
may cause unpredictable results when
ENFORM queries a re recompiled. Record
names, file-name component s, and section
names that are the same as any question­
mark (?) command keyword cause a syntax
error message to be issued for the 1ASSIGN,
1AITACH,1COMPtLE, 1EXECUTE, 10UT,
1RUN, 1SHOW, and 1SOURCE commands.
This affects on ly these commands.

The only solut ion for this syntax error is
to change the name of the record, file, or
section. For records, opening another record
as a copy of the conflicting one and then
using the new name suffices.

J U N to ' 'III S ' T Ar-: O E M S Y ST EM S R£VIPW 7

800 Sol/ware

8

FU/~ INFO OUIPUI MOdified. FUP I 'FO ou t­
put has been expanded. Any application
that depends on the output formal should be
rev iewed and changed if necessary. An
interim version of FUP that runs under
GUARDIAN 90 bUi produces its output in the
old format is avai lable from Tandem ana­
lysts. This version will be supported for a
limited t ime only, 10 permit customers 10
make an orderly transit ion to the new,
enhanced format.

Capacily Planning and Tuning

More Pages Locked. Tests have shown that
the GUARDIAN 90 operat ing system locks
between 20 and 35 pages more than A20 or
A06 GUARDIAN (depending on the configu­
ration). (Note that as these tests did not
include DP2. (hey do not reflect the addi­
tional pages locked when it is used.)

X RAY PRES PACES and PRES R-ICESM. The
fields PRES PAGES and PRES PAGESM are
nO! recorded with this release of the XRAY
performance measurement tool. They will be
added in a future release .

Other Sources of BOO Information

More information about the products dis­
cussed in this article is avai lable elsewhere
in this issue, in the appropri ate software
manuals, and in the BOO Software Documen­
tation (Softdoc) included on the Site Update
Tape (SUT). Users needi ng even more infor­
mation should comact their Tandem
analYSIS.

Ad,nO" Ird&'ntnl.'l
The aUlhon would liLe 10 lhank lhe many $Ofl"VC' droodorm
and produci fI\lI,nal~ ",,110 conlribultd mrormation to till!.
articlC'_

KrfrnoPl'ft
Chapman. U. and Zimmmnan. J_ 1985. The ENA.8LE PJo.
lram Qnrralor ror \luJlifile "pplicatioo1_ Tandnn ~1'SIro1IJ
Rt'l'/l'k \01. I. no. 1 Tandnn Compultn Int«poratnl,

I~ • • \1 1985. T'1F Aulorollbad.,,, ~ RtCO\'C'I) FCal\l/t
llmdem $.I".'ilems R~'IC''''' \'01. I. no. 1 T:andtm COntptittfl
I noorporaltd,

Tandem Sort"ilf't Docummlliion. 1985. BOOSnr UpdaltT~
(sun. Tandc:m Compulcn IllCOfl)Oraltd,

lbndtm ~I""TC' manuals for the 800 sofllfl"lrt rdttit. In~
Tandem Compull'l"\ Incorponllf'd.

Ie ln Coughlin h1lS DeeIl a syslem. analy$l UlIr.tlnllIIlUiIoIJ'
Ind OUlllly gmup.OI' lhe PISI)'HI He JOIned Tlnclenfl Sot1-
wa,. EdUoCllion ()epartmenl th,ee)'1Ial"l 100 I. an mstlucl« 101
In. GUARDIAN Inlernal. II COUlle, bung'ng w'tl'll'l.m 12,.ursol
expenente wl1h In. product. of Olher malnllanle ¥endorS
Belore joining Tandem. lie W1IS I MrlIC.buIUU programmel','
vendOl' lepre.enlll'Ye, and aliekl ana'ystlocusmg on p1'K;e/
pellOlmance Istues

Rober, Monlanldo I. tile lyS/em, pmduct man:lQClf ,"pons''''
lor Itle BOO aoltwarl release He /Oined TanOem In Septembat
1980 II a ptOduct manager IOf Tandem', 6530 'Mmln ... nd lalM
beelme ttle ptodUCI m.nagellor '''' Non'Iop TXP ')'Ilam
Robert 1'1 .. oYer 15 yll" 01 e:ocpellenceln lh1 computer IndUStry

TA"')EM SYST J."I S Rt'\lfW

he new optional disc pro­
cess for Tandem systems,
DP2, comprises a complete
redesign and reimplemen­
tation of the earl ier
Tandem disc process, DP!.
The design changes were

made to i?'lprove performance, throughput,
recoverabll.it~,. reliability, maintainabi lity,
and exten~lbility. The new disc process sup­
ports all diSC controllers and discs for
Tandem Nonstop 11, NonStop TXP, and
NonStop EXT systems.

DP2's job is to manage data and hardware
within the disc subsystems. It implements
E~SCRI8E file types, manages the space on
diSCS, and manages the controllers and paths
to the discs.

The n:w disc process is accompan ied by
appropnately modified and enhanced utili­
ties and File System. As the file structure
has ~en c~an~ed for DP2, a new util ity is
provided wllh II to convert ri les from DP! to
DP2 format.

Other architectura l changes have been
~ade to integrate the Transaction Monitor­
IIlg F~cili.ty ~TMF) and DP2 subsystems,
resultmg III mcreased performance in the
TMF environment.

DP2 handles takeover, crash recovery, and
rollforwar~ consistently, in that it physically
~acks out mcomplete requests. Checkpoint­
IIlg for DP2 is analogous 10 auditing to the
backup process. While DPI checkpoints
enough information to the backup to carry
f0r.ward the interrupted updates, DP2 check­
POllllS enough information to the backup
~rocess so that the backup can back out any
l~lerrUpted multistep updates. This tech­
mque considerably reduces the number of
messages sent to the backup process.

DP2 Highlights

Performance and Throughput
Improvement
DP2 allows multiple processes to control a
disc volume. The new disc process consists
of a group of single-threaded disc processes
each having it s own data space. The numbe~
of disc processes in a group is specifiable at
SYSGEN. (The derault is threc' thc max i-
mum is eight.) ,

DP2.aJlows for overlapping CPU set-up
execullon and better utili zat ion of the disc
cache in memory. A request to the disc that
requires physical 110 can now overlap with
a request that is satisfied by a cache hit.
P~ra lle l executi~n a lso provides the opportu­
OIty for sequenclOg 1/ 0 requests for seek
opt imization.

A new att ribute for open fi les, BUF­
FERED, allows write requests for audited
and nonaudi ted files to be buffered in the
disc-process cache rather than being forced
LO d isc at each request. At fi le creation the
default is to buffer audited files and not to
buffer nonaudited files . The BUFFERED
option provides a substantial performance
improvement for applications that write
sequent ia ll y to a file and for those using
audited files in general.

The BUFFERED attribute can be altered/
examined via a SETMODE call. In addition,
the BUFFERED attribute has a file-label
default used to select buffered writes for a
nonaudited file without requiring the addi­
tion of a SETMODE call to the applications
that access Ihe file.

9

10

Other performance imprO\'cmem fealUres
include the fo llowing:

• The number and size of checkpoints per
data-base update sequence have been
reduced.

• Auditing is more efficient and reduces the
number of writes at commit.

• Audit checkpoint records are optionally
compressed, reducing CPU and mcmor)
cycles, as well as audiHraii consumption.

• At the disc-driver level, the next-queued
EIO is issued when the completion of the lasl
EIO is handled. This results in higher de\ icc
ut ilization and fasler response times.

• Independent read requests may be satis­
fied concurrently by parallel reads issued
against a mirrored pair. (This is only possi­
ble if there is a path to each half of the mir­
rored pair through a separate controllcr.)

• The selection of the disc drh'c (primary or
mirror) used 10 satisfy a read request is no",
based on minimum seek cost. This should
minimize head movement and imprO\'c
response times. (Rotational delay.., are not
accounted for in this algorithm.)

• When 3107 controllers arc used, DP2 can
perform data transfers up to 30K bytes in
length in a single disc-transfcr operation.
This fac ility is available on ly to utilities sup­
plied by Tandem , such as BACKUP2,
RESTORE2. FUP OUP, and TMFTAPE. (Otc
that when a logica l volume is COni rolled by
a pa ir of disc controllers, both controllers
must be 31 07s for DP2 to Support this
feat ure.)

Recoverabilit y [mprovement
The struc tu ral integrity of nonauditcd key­
sequenced files and the volume directory is
protec ted by a volume-resident "undo
area, .. Befo re a multiblock updatc (e.g .•
B.-tree block split or collapse) is begun, a
hlghl ~ co~pacted encoding of the intended
steps IS Written to the undo area in one 1 O.

Q

U ing this undo area, the disc Droctss backs
OUt any multiblock operations that \\ere
intcrrupted b) a double failure (e.g., railure
of ,he prim3f) and backup disc.JlrOC<>s
CPUs). This processing lakes platt automat_
ically '" hen the \'olume is brought up. 'Or
structural integrity of audited files is IX'CI­
lectro by T\lF.

When a DP2 disc-proctS.S group is idle (<r

a sufficient pe:riod of time, a oc\\ algorithm
is invoked to nush dirty cache buffers
(including dirty File Control Blocks, or
Fens) until the ncxt wtr request i reOO\td.
This helps minimize the risk of data lo~
and l or the recovery cffort required should a
system failure OCcur. In addition, ir the disc
is st ill id Ie '" hen all dirty cacht buffers ha\c
been flu<hed, DP2 (lCriodically upd.,,, the
\'Olumc-Iabcllimestamp. This facilitates
early detection of hard",are failures as Vorll
a pro iding a more accurate lirw;tamp for
usc in detecting inconsistent mirrors.

Other Featu res and Changes
The folio", ing features art also included in
DP2:

• The maximum record ize of the diml(X)'
and key·sequenced files is limited only b)
the: u~blc block sizc ("hcreas OP) limits lhe
ma,imum record size to halfthc: usablc
btock size).

• The directory. the free-sp.1cr table. and
nonpartitioned filh are dynamically e,Illend·
able. The directory can 00" ha\e up 10 981
extents. The maximum number of extents
for a nonparlitiooed file is dynamically ,
aJterabtc and i limited by the space remain­
ing in the file label after (he ahemate-kc)·
filc mformation is recorded. This al~s for
over 900 e,'tcnLS in mo t insla.nctS.

• Bloc.L. sizes are limited to pQ\\er-of-t o
multiples of the sector size (S12, t024,l()tS,
or -1096 bytes). For example, JK·byte i>J<l<U
are nol upported by DP2.

• I n<lex and data blocls in a DPHey· .
sequenced filc must be the same ize, This
rcstriction "'as introduced to simplify cac~
management for kcy-scquCfk,'td file;.

I • ~ ,

•

Finall y, (he following file atlributes have
been added:

• BUFFERED, as described above, controls
the use of writc-through cache on a per-
OPE basis. A file-label default may also be
set for each file .

• ACCESSTYP£ specifies the type of access
the user in lends to usc, allowing the disc
process 10 optimize cache management
approprialCly. ACCESSTYPE values include
system-managed (lhe default), which allows
lhe disc process to determine the best buf­
fering techniques; random-access, which
PUIS the blocks on an LRU (Icasl recently
used) list in the cache; sequelllial-access,
which protecls Ihe disc process from fi lling
up the cache with blocks that will not be
used again; and direct-1I0, which allows
exclusive or protected read-only openers to
bypass the cache for unstructured accesses.

• AUDlTCO,\1PRESS specifies for a particu­
lar file Ihal DP2 is to produce a representa­
tion of the change to Ihe record (rather Ihan
an image of the entire record). II lhen pUIS
lhe smaller of the change informalion or the
record image in the audit record or check­
point message.

Compatibility and Conversion
Between OP2 and OPt

The usc of DP2 should not require changes
10 ex isting applications; however, several
DP2 features (such as buffered cache, file

,>\CCESSTYPE, and AUDITCOMPRESS)
requ ire uscr aClion to enable and/ or tune
them. This aClion is described in the
ENSCRIBE Programming Manual.

The volume label , the directory. and the
internal structure of structured files on a
DP2 volume are all different from those on a
DPI volume. This requires thai a DP) vol­
ume be convened to the DP2 format.
Programs that access structured and
unstruct ured files in the ordinary ways
should not encounter any incompalibilities
due to DP2. On the other hand, programs
that read structured files with unstructured
access will find that the block structure has
changed.

The new BACKur2 and RESTORE2 utili­
ties support automatic conversions so that a
backup tape from a DPt volume can be
restored to a DP2 volume and vice versa. As
RESTORE2 can read lapes created by
BACKUP, it can be used to convert any file.
The File Utilily Program (FUr) Dur com­
mand also performs the necessary conver­
sions, based on the source and destination
volume Iypes.

The File Conversion Program (FCP) is
provided to conven multiple fi les and ll1ul~
tiple volumes in parallel. It was designed to
conven volumes faster than BACKUP2 and
RESTORE2 by making the conversions disc
to disc. When Fe p is used , all fi les and vol­
umes must be on the local node.

Fep COll vens to and from OPt and DP2,
allowing a site to return to a DPt volume
if necessary. The conversion takes about
90 minutes for 240M bYles of dala. (The
conversion may be slower if most of the files
are key-sequenced. Also, this time does not
include the lime to do a PUP REVIVE on the
other half of the mirror.) The converted file
may require more space than Ihe original as
a result of the DP I block size being changed
10 meel Ihe DP2 size rules (power-of-two
multiples) and bit-map blocks being added
(used for free-space allocation in structured
files).

Within a single node, a system can con~
tain both DPI and DP2 volumes, with cer­
tain reslrictions. All volumes configured for
a controller must be of one type or the other.
Also, if a volume is configured with a pri­
mary and a backup com roller, all volumes
configured for bOlh comroliers must be of
Ihe same disc-process type .

All partitions of a file must be of the
same disc-process type. If a file has alter­
nate keys, the primary file and the alternate­
key files muSI all be of the same disc-process
type. Unstructured access to a struclUred
DP2 file from another node Ihat is running
an earlier (pre-BOO) version of Ihe File Sys­
lem is prohibited.

TA"OEM S l STE M S R r VlfW

Daw-ixlSl! Software

II

12

DP2 unstructured files arc transparently
blocked with one of four valid DP2 block
sizes (512, 1024, 2048, or 4096 bytes, the
defauh). This transparent block size, known
as BUFFERSIZE, is the transfer size used
against an unstrllclUred file.

While BUFFERSIZE does not change
the maximum unstructured transfer
(4096 bytes), multiple 1I0s may be per­
formed to sat isfy a user's request, depending
on the BUFFERSIZE chosen. For example, if
the BUFFERSIZE wcre 512 bytes, and a
requcst were made to read 4096 bYles, at
least eight transfers (each 512 bytes long)
would be made. More than eight transfers
would occur, in this instance, if the
requested transfer did not start on a
BUFFERSIZE boundary.

DP2's performance with unstructured files
is best when requested transfers begin on
BUFFERSIZE boundaries and are integral
multiples of the BUFFERSIZE.

OP2 and TMF
~ne of the design goals for DP2 \ \ as to pro­
Vide support for quick crash-open filc recov­
ery after a system crash. This ne" form of
crash recovery. called aUlorollbad: is done
"in place" and requires no file or ~udit
dumps to be loaded, as is required by the
roll forward process.

Autorollback is initiated automatica lly as
part ofTMF start-up processing. 0 tapes
need be mounted; all data needed to per­
for":l autorollback is kept on disc. The gran­
ulanty of autorollback is an audited volume.

TASDE\\
S'STI'tS

T'1r on-line dump and rollfory"ard bolh
run much faster on DP2 because the data
transfer for DP2 is physical railler than logi.
cal, as it is for DPI. Since autorollbad han.
dies double CPU failure, on-line dump~ and
roll forward should only be required for
recO\'ery from media failure.

OP2 implements a buffertd cache that
obeys the write·ahead-audit protocol. Bcfcn
writing a modified data bloclto disc, lhe
cache manager makes sure that the audit
re ords for the updalo, to thai block h<l\'e
been written to the audit·file disc. DP2 gt'Il.

crates physical audit records based on blod
changes rather than generating logical audit
records as OPI docs. This allo 5 DP2
autorollback to recover the physical integrilY
of files. \\hile DPI cannot feCmcr files
crashed in the middle of block splils.

OP2 implements a control· point mecha­
nism that limits the length of the audit trail
to be prOte sed during the "redo" phase or
autorollback. The control-point mechani~m
enables aUlorollback to find, in each audit
trail, a redo start point. such that the
changes for all the redo audit records that
precede the redo start point are guarantttd
to be renected in the corresponding data·file
blocks on disc at the time of the crash.

BOO TMF software supports tither a OPI or
DP2 configuration, but OOt a mixed configu·
ration. When TMF is used, to make the tran·
sition from DPI to DP2 (or \'ice \crsa), all
volumes to be configured for TMF (including
audit -trail volumes) must be comefled to
the same type (OP I or OP2) and an INITIAL·
IZE TMF must be used to purge all configu,
ration and catalog information.

I • ~ I

When a DP2 system is configured for
TMF, audit trails cannot be conrigured on
volumes that are to contain audited riles.
That is, volumes can contain either audited
files or audit trails, but nOt both. This
restriction was made to climinate possible
deadlocks with the new write·ahead- audit
protocol and to make the DP2 software more
reliable.

The OPt MonilOr Audit Trail contains
only commit records. Within a DP2 con ngu­
ration, however, thc TMF command pro·
cessor (n.'lFcor-.·1) allows users to direct
data·audit records to a Mastcr Audit Trail,
which conta ins both commit a nd data-audit
records. By allowing all or most of the audit
to be directed to lhe Ma ter Audit Trail,
DP2 reduces lhe number of writes required
for a transaction commi t , thereby increasing
transaction throughpu l.

A new TMFCOM ENABLE VOLUMES com­
mand has been added to a llow the manual
initiation of the DP2 aUlOroliback process .

Conclusion
DP2 provides substantial performance. reli ·
ability. and flexibility improvcmcnts over the
current disc process. Particularl y for TMF,
performance and recovery speed are dramat·
icall y improved, a llowing TMF to be used
more effect ively, with much larger data
bases and higher·pc:rformancc transact ion­
processing applicat ions than before. DP2
also provides substantial performance
improvements for applications that use bur·
fered cache.

Utilities such as BACKUP2, RESTORE2,
and REVIVE are much faster with DP2 and
3107 controllers . DP2 provides double fault
tolerance by protecting the structural intes·
rity of files. Finall y, DP2 provides compati­
bility in a network since it can coexist with
DP t on a system or in a nct\\'ork.

More detailed information can bc found
in Lhe accompanying DP2 ankles, the Soft·
doc, and the appropriate software manuals.

Ack_~I:mt'nb
~ authors 1''tllIld lile to thanlthc DP2 sortwarc dellClopcn
for inronnalioo used in this article. Special thanks to \Iike
II:mrkh ho "'l'()Ie thceJw:mal specirlCation.

Ka., Carl.,le, !offTler!., the DP2 "'oduct Managar. has recantly
become lhe managar 01. Softwara Developmenl data·bllp
group. She }olned Tandem In June 1981 III. reglooaJ data·b.se
specialist In Fall. Churen. Vlrglnl •. after spending &eYen years In
product management and d lopm.nt. She has a B.A. III Math·
.mallCi from the Ulllversi l y of Kanln and Maste" [)agreelln
both Computer Selenca and Buslnesa Admillistratioo from
Arlzooa State Unlv.nlily.

Larry McGowan joined Tandem In Nov.mber t983 a. the DP2
Sol tware Development Manager. He has over 20 years experl·
ence In operatlng·system development and management. larry
has a as. In Mathematlca from Itle University 01 Washing too.

J lJ ... F t OJ II S TANorM SYSTfMS REVI I' W

Orlla-bose Sof/ware

13

DP2's Efficient Use of Cache

ith the BOO release.
Disc Process I
(DPI) has been
enhanced lO use
bu rfered cache
memory for audited
files. I n the new

Disc Process 2 (DP2), the use and manage·
ment of cache is even morc efficienl. Also,
DP2 makes it easy to examine and change
the configuration of cache La meet varying
processing loads.

This article briefly describes:

• How DP I and DP2 use cache.

• How DP2 cache can be configured.
• How DP2 handles files.
• How DP2 manages cache.

• How DP2 cache-performance is reported.

For more information on buffered cache and
DP2 performance, see the accompanying
art i~ le. "DP2 Performance," by Jim
Ennght.

How OPt and OP2 Use Cache

Write-through and Buffered Cache
By caching the most frequently used data so
that it can be quickly accessed, a disc pro­
cess ~akes efficient usc of memory. \Vhen
the diSC process uses buffered cache (as
opposed to write-through cache), it uscs
mem<;>ry ev~n more efficiently.

USing wrue-through cache, a disc process
stores ~Iocks of data in cache (where they
are ~vailab~e to sati~fy read requests quickly)
but. Immediately Wntes to disc data blocks in
which any data has been changed by a write
or update request.

---------14
TA/IID E M

Using buffered cache, a disc process can
leave the changed (or dirtied l

) data blocks in
cache for a period of time. In this way, it
may be able to schedule the physical write
for a time when it is not processing user
requests. By delaying the write to disc, it
may also reduce the number of physical
writes it has to perform, as se\'eral records in
the same block may be changed before the
write takes place.

Versions of OPt released before the BOO
software release use write-through cache
only. BOO OPt has been enhanced 10 use buf­
fered cache [or audited files. The new DP2
uses buffered cache for audited files , by
default, and, in addition, it allows users to
decide whether unaudited files are to use
buffered cache or write-through cache, or to
bypass cache entirelY. Table I summarizes
these differences,

UP I and 01)2 Cuche-block Sizes
Disc-process cache is a pool of memory
buffers containing images of disc blocks.
OPt (BOO and earlier \'ersions) uses one large
cache that contains data and inde:< blocks of
various sizes as well as audit-trail informa­
lion. Valid DPI block sizes are 512, 1024,
1536,2048,2560.3072. 3584, and 4006
bytes.

DP2 uses a separate buffer for each ~iz(of
cache block and a separate area for audit
blocks. It uses only four cache-bloc~ siz~:
512 bytes (seclOrsize), 1024 (IK) b)tes, .
2048 (2K) bYles, and 4096 (4K) byl" (ma<>
mum transfer il.e).

Rr\-I(.... ••

TJblt I.
<::ompanson 01 cache use by three verSIons 01 the dIsc process.

PI.·BOO OPI BOO OPI .P2
Caene WIef IIUS ion byleSl 512.1024,1536.

~8. 2560. 3072.
3581,4096 --' SonwIe bullef area lor ClIChe
IInd.t

0yr\Wn0(: cort1ogurJ.I0'1 """ PIlrIol_' ,nely$illOQll; 'RAY

~~.-. lASI·recenl"" usect (LRU)

tVDf! oISMlc;fI rftIOI! or 1f'11t!Inal

~C~~Il,,!!,
oIOoIoly 10 ~ Ilulletec1.

~~ --c--c----
T)'t18S 01 caelll WIll, tor WlI~1t1'01igt1 """"" ,.,.
TVO" 01 ear:'" W' lie lor
JIJdolfOhIM==;-__ _
l'VDf! 01 t;IC/'II fNd -,-
l,!a • .o'!'V'I~oIdosc
rror:tsSIS acc-.ng • <d.IITI8
illonet_
SYSGEN 1l'1 ___

Bul~ed ____ _

N~

Hashing \s. Binary-search Algorilhm
DP1 uses a hash·code access to determine
which blocks are in cache. orl uses a less
effic ient binary search to determine this.

Configuring Cache
With OP1. users can specify cache size only
al SYSGEN. To change cache sizc, they must
perform a SYSGEN and cold load Ihe system.
Also, the only tool available with DP1 for
examining cache performance is lhe XRAY
performance measurement 1001.

When OP2 Cache Can Be Conrigured
DP2 is much more versatile al cache configu­
ration and management. Users can specify
the size of each of the four cache buffers at
thesc limes:

• When labelling the volume. with Ihe
Peripheral Uti lilY Program (PUP) command
LABEL.

• When sclling up the SYSGEN configura­
tion fi le for system volumes, in the ALL­
PROCESSORS section with the keyword
SYSTEM VOLUME. CACHE. SIZES.

512.1024.1536. 512.1024.
2048.4096 ~8. 2560. 3072.

3584.4096

Slng1e buller al" 101 cache Sapa"!i:l buller area JOI each size or
caclle block and separate ere. !of
allOt bIoco.s

and audit

N~ Perlormed Wlrtl PUP SETCACHE

XRAY ,RAY

LRU
PUP ltSTCACH£
LRU
Sequential
0118(:11/0
SYSIOOH'I'lanaged

"""
Spec,118d Wllh FUP SET. ALTER
BUFFERED

W"lethlough Wrn .. Vuough or bulle,ad

Bul1arad

WRtTETHRUCACHE
CACHEPAGeS

N~

One 10 eighl!delaull ~ 111100)

SYSTEM IfOLUMLCACHLStZES

Soectrred Wllh FUP SET. AlTER
BUFFERSllE

• While the system is running, with the new
PUP SETCACHE and L1STCACHE com­
mands. (L1STCACHE is used to examine Ihe
cache configuration first.)

Any DP2 cache size nOI configured with
SYSGEN or PUP LABEL defaults to 16
blocks.

A I)J'2 Conriguralion Example
The command syntax allows the user to
specify cache size as the number of bYles or
as a multiple of 1024 bYles. where .5K repre­
sentS 512 (decimal) bYICS, I K represents
1024 bytes, 2K represents 2048 bytes, and
4K represents 4096 bytcs.

To set cachc on volu me $DATA to 16 512-
byte cache blocks and 128 4096-bytc cache
blocks, and leave thc number of I K-byte and
2K-byte cache blocks the same, the user
would use the fo llowing commands:

PUP SETCACHE SDATA, .51< - 16.41< - 128

or

PUP SETCACIIE SDATA, 512 - 16,4096 - 128

J t· ... r. I 'f II ~ TA ~I) E M SYSTE M S Rf' V l f W

DatQ~base StJffM'QfT!

/JcJw-haJi' Softwm-e

16

Internal Cache.selling Algorithm
While users can request a certain number of
cache blocks. an internal cache-setting algo­
rithm ensures that there is enough cache for
DP2 to do certain critical operations and
that space is not wasted. There must always
be room for at least t\\lO cache blocks for
some complicated operations. such as block
splits of a key-sequenced file_

Since each process in the group can be
working on a different block-split operation,
each disc process in a disc-process group
must have a minimum of tWO blocks for
each of the four block sizes for which it has
buffers_ Thus, if there are three processes in
the DP2 disc-process group, even if the user
were to request only one cache bloc\'" for
each of the four block sizes, the internal
algorithm would calculate a minimum of six
blocks in cache for each of the four block
sizes.

DP2 also allocates cache in multiple!' of
pages, so all cache allocations are rounded
up 10 the next whole page to 3\oid wasting
memory_ A request for six Sl2-bytc blocks.
for example, is rounded up to eight block
or twO pages, Thc maximum number of
cache buffers that can be allocated for OPl
cache is 8191.

How DP2 Ha ndles Files

As mentioned earlicr, A06 DP t uses \\ rite­
t~roug~ cache .for both audited and unau­
dited files, while BOO OPt uses it for
unaudited files only. Also. BOO OPt requires
audite~ f~les to use buffered cache, "'hilc: in
DP~ this IS the default setting of a user
optlon_

For more information about BOO TI\1f
~nd DP2, see the accompanying anicle.

Improvements in TMF," by Tony
Lemberger.

\vhe~ Does DI)l " 'rite Burrei'td BIOtk!
to DISC?

<

When DP2 u~at~ a rtrord in a buffotd_
cache block. 11 wailS for one oflhe r~ .. '
con~Jtlons to occur before writing lhe~
to diSC:

• Any opener closes the file.

~ A cont,rol point is processed. (For.
mformallon about control-point pr(n(/
see Pong. 19 5.) .

• The user requests a nush (Sml()(f ~).

• No morebloclsart frttandthc bkxtil
the least reetntly used.

• The disc process is idle and cache~
cleaned.

• The user changes the cache conligurm
with the t'UP SETCACHE commaro.

naud ited. Burrt'rtd FiIt'S and CPl r"rt
If a di5c-proccs t3keo\"troccuru~ tlr
resul! of a CPU f.ilul< and the fik hal ""
opened ~ ith a sync depth of zero. or ifl
,'OIume i. broughl down incornctly. aDoI
the unnushed updates made to an UBaU­

diled. buffered file al< losl . Thr 'l'PI
is returned a Jle" error code, Fffi\TAlOOS
(122), w IIh the next opcnllion on WI fiI<,

Ho" OP2 1annges Cache
DPI managC:) cache bh:~ __ "'s on a Ieast­
"""ntll u<Cd (LRU) basi •. ,' • "",, 11I>k!
enable DP2 to uo;e cache: mort dT«tJ\d}.
The ac= mode"on bt dcfin«! tiIha ""
grammaticall) by u~ (.... ith a call 10
SET\tODf:I or d<termin<d b) Ii'< ~'IC1D.
ba..cd on I<luol u.<age. Th< """,.,., If
d«cribcd be""' :
• SequenllolocctSS mastS the same ca.1t
buffer. I! ' useful for S<Quctllial-b31<b·

, ' ' h'hdx dl11'
pI'OCC\ 109 apphcallOll In....)C .

the buffer i DOt Ii~ellio bt """'" "'" , bm ll
• Random QInSS usc< an LRU algOI11 [1!'

\Clectina cache buff",· II ro5l1'" ~
quentll acces><d dl iJiod.. art ~
Thi i the same method used b) oPt.

----- -- ~------~

• System-managed access determines
whether to use sequential or random access
based on actual rile usage.

• Direct 110 access bypasses cache.

How DP2 Cache Performance
Is Reported

There are two ways lO examine DP2 cache
performance. The DISC and DISCOPEN com­
mands can be used with XRAVSCAN, just as
they're used for DPI. Also, the new PUP
USfCACHE command can be used. In gen­
eral, XRAY rcPOriS rates and L1STCACHE
reports percentages, although some of the
same statist ics arc reporled by both.

New XRAY Counters
New counters have been added to the XRAY
DISCOPEN and DISC reporls to track disc­
cache usage. They were added for both DP I
and DP2, but as DPl and DP2 manage cache
differently, they use some of the counters
differently. A complete description of the
XRAY counters can be found in the XRAY
User's Manual.

Sample DISC Report
A sample of the DISC report for a single DP2
disc process and a controller appears in Fig­
ure 1. Four sets of cache counters are pro­
vided, one for each DP2 cache-block group.
(For example, CHITO, or cache hit 0, is the

Figur. ,

average number of cache hilS per second for
the cache that contains 512-bytc blocks.)
The counters represented inc lude:
Counter
name

CHtTn RATE

MISSn RATE

CFlTn RATE

ABFNn RATE

CBKSn AllOC

CBKSn 0 1 RTV

MAX5n DIRTY

Counter

Number of cache hits per
second

Number of cache misses per
second

Number of cache faulls per
second

Number of audit-buffer forces
per second

TOlal number of cache blocks
alloc81ed

Average number or d irty cache
blocks
Maximum number of dirly
cache blocks

Some counter names end in a number
(0-3) that indicates the block size of the
cache-block group. This number is some­
times called the cache /D. The four cache IDs
and the block sizes they represent are:

Cache 10

o
1
2
3

Block size
or cache !troup

512
1024
2048
4096

SSVSTEM LDEV. PlDO.7 eTC. UN'TO OP2 FEB508:3' ;OOF~ 130

"'SC REO REO REO READ WRITE SEEK DISC READ WRITE SEEK
BUSY OLEN OI.£NM RATE BUSY BUSY BUSY RATE RATE RATE RATE

'.21% "'. '''' ." '.90% 1.59% .718% , . .,. I.., '.02
.YTE IBYTE CBYTE SWAP DPICB DPICB DPIAB DPIAB CHITO
~ATE FlATE RATE RATE .NUSE MAX INUSE MAX RATE

"'SSO CHTO AB'" CBKSO CBKSO MAX. CHin MISS' CFIT, ABfl CBKSI
A'E RATE RATE ALLOC DIRTY .. RTY RAT RAT RATE RATE ALLOC

.0'5 18.0-roo 18.01

co •• "A'" CHIl2 M'SS> CF1.2 ABF2 caKS2 CBKS2 MAX'

"'RTY O,RT'(RATE RATE RATE RATE ALLOC DIRTY DIRTY . '" .32' , ""
CH1T3 "'553 cro, ABf3 CBKSJ CBKS3 ""'" CP CPWRY FREE STAL
RATE RATE RATE RATE All O'RTY RATE RATE RATE RATE

"0 ... 16.Of .7181 ,030

JU" F 1911 ~ .T"I\OI' M SYSTEMS RPVlrw

Da/a-base Sal/ are

Flgur.'.

Sample oulPUi from the
XRAY DISC report,
generoted with the
TABLE OFF command.
Blank fields indicate a
mlut> of zero. (The rtport
has been edited /0 fit this
space).

17

/)ala-base So/lWllrT:

Figur. 2

DATE: JAN 91964, 11:33
CACHE STATISTICS: $DATA
COUNTERS INITIALIZED :JAN 9 1964, 11:00
ELAPSED TIME : 0"
CACHE BLOCK SIZE : "2 102' ,...
BLOCKS REOUESTED:
BLOCKS ALLOCATED: " ..
BLOCKS DIRTY: 0% 0% '" 0 ..

CACHE READ HITS : '''' '" "" CACHE READ FAUcrS : 0% 0% 0% 0"
CACHE READ MISSES : ,,% ,,% 93% .,,,
CACHE WRITES: 26 .. "" '"
CACHE WRITE HITS : 16"t. 0 •• 0 .. 0%

CACHE CALLS : "58 "" . .., 6_
AUDIT FORCES: 0 0 0 0

BYTES ALLOCATED TO CACHE: 300' WRITEs/CONTROL POINT 000

Flgur. 2-

Somple QIIIPIll from Ihe
PUP LlSTCACH£
command, gel/eraled to,';lh
the STAT oplion.

New PUP lISTCACHE Command
The PUP LlSTCACHE command, with the
STATISTICS option, shows more clearly some
of the information reported by XRAY. A
sample PUP LlSTCACHE report is shown in
Figure 2. The GUARDIAN Operating System
Utilities Reference Manual describes the
report in detail.

The CACHE WRITE HITS information
reponed by the PUP LlSTCACHE command
represents the percentage of time the block
was found dirty in cache when a write was
performed. This gives an indication of the
number of writes saved by the use of buf­
fered cache. The XRAY CWHIT RATE
(cache-write hit rate) in the DISCOPEN
report gives the same information on a pcr­
file basis.

Two useful TMF statistics in the LIST­
CACHE report are the number of audit
forces and the number of writes per control
point. AUDIT FORCES represents the number
of times an audit trail had (0 be written to
permit a data block to be writlen . A high
value usually indicates insufficient cache
memory. A similar statistic, ABFn RATE is . ,
m the XRAY DISC report.

WRITES/ CONTROL POINT represents the
number of writes forced by comrol·point
processing. In a system that is properly
tuned and nOI overloaded, this counter
should be zero.

Conclusion
The use of buffered cache is an important
part of bOlh BOO DP I and DP2. DP2
improves on this basic enhancement by man·
aging cache much more efficiently lhan DP!.
DP2 also allows users to configure cache use
for a particular application's needs. Finally,
DP2 makes more information about cache
ulilizalion available, aJlowing users 10 adjust
the usc and size of cache to accommodate a
variety of work loads.

... ,.."...
Pone. \l ichad. 19U, T\if AUloroilbad. A ~ RMfta)
Feature. T",ndrm ~,t'mS Rn'j('W, vol. I. DO. I TaadanC ..
puteR Inmrponlcd ,

A~_~llntfttj

".. <lrWnal desi,n (or DP2 as Cft'Ilcd by Andrei Barr and
"nmoo PulZoIu . ".. author would lib tQ thlnl all 0(tilt DPl
lk\clopers for hrlplI'I& him 10 undmtand OP2. ThInk' ahoII'
to Did: 'ThomaJi Ind Jim TIIC for their hdp in prcparint 1M
article.

Ted Seh.c:'U., joined Tandem In Mit lt83. ... 1S I rn.moer d
1/'11 F~ ProdUClrv,ly PfogrIJT\$ group and kI cu~tty ~
titdlnlcal klpporIlor DP2 by leachlng Bell clasMt Belin
)ojnlng Tandem, Ted went nine yeatS as a llIn •• ,.*'"
PfOgfImlTllf. H. has an M.A In math 'rom IIIe lHInws'IYd

""""

TANDEM SYSTFMS RFV,£\\ J l' r- f I' ~

T

...................... ------------------------~.

J ~ he design of Disc Process 2
i!-l- 1_ , (DP2) has introduced scv·
It--- eral changes in the struc·
~. ture and processing of
F--- key-sequenced files. This
~ anicle explains some of the

new features resulting from
\hese changes. It is intended for the technical
reader who is already familiar with the file
.structures of Disc Process 1 (DPI).

Differences Between DP I and DP2
!The main differences between DPI and DP2
key-sequenced files are outlined below:

. DP2 blocks have a new header that can be
used 10 distinguish a key-sequenced block
from a relative or entry-sequenced block.
While the block header for DPI is the
same for all blocks. the DP2 header is dif­
ferent for each block type. II contains
information identifying the type of block
and its relative position in the file, and an
imemal timestamp for the last update,
called the Volume Sequence umber
(VSN). The header varies in s ize depend­
ing on the type of structurcd block.

l. OP2 data blocks have forward and back­
ward pointers, while OP) data blocks con­
tain only forward pointcrs. (The File
System in the BOO release, however, uses
only forward pointers.)

DP2 Key-sequenced Files

3. DP2 block pointers contain relat ive secLQr
numbers (RSNs) that are 3 bytes long in
place of the 4-bytc relati ve-by te add resses
(RBA') used by DP I.

4. DP2 data records can be larger than onc­
ha lf the block s ize. DP) requires that a
block be able 10 contain at least two
rccords. but DP2 uses a new block-split
algorithm that makes it possible to relax
this restriction .

5. DP210cales free blocks by using bit maps
rather than by chaining blocks in a "free
list" as DP) does. DP2 can detect bit-map
errors and correct them. while DPI can­
not repair the free-list chain when it
breaks.

6. To simplify space allocation within fi lcs.
DP2 requires index and data blocks in the
same file to be of the same size. wh ile
DP) permits them to be of different sizes.

7. There are no fo rward (horizontal)
pointers in DP2 index blocks. These
pointers are present in DP), but are never
used by it or by the Fi le System.

,
SYS TEMS REVII'.W U \f'19 I1S ' TAND e M

19

/Jaw·base SO/l'omre

20

Consistency
Consistency refers to the state of a data base
after a failure. There are three kinds of con­
sistency: structural, file, and data-base. The
DP2 design, together with the closely inte­
grated features provided by TMF, ensures all
three .

Structural Consistency
Structural consistency applies to key­
sequenced files that can break during the
addition or deletion of a record as the result
of a block split or block collapse . A key­
sequenced fi le has structural consistency if
the index pointers point to the correct blocks
and if the forward and backward pointers in
data blocks are consistent. If a failure
occurs during a multiblock update, OP2
undoes any partial changes that have been
made.

File Consistency
If a file has only structural consistency, its
internal pointers are always consistent, but
updates to the data may be lost. File consis­
tency means that no updates are lost.

Data-base Consistency
File consistency and structural consistency
may exist, but data-base consistency may be
lacking because not all the file updates for a
transaction are completed. A transaction
can update multiple blocks in multiple files.
TMf provides data-base consistency for
audited fi les.

Block Structure of Files
OP t key-sequenced files consist of index and
data blocks that are either in use or are on a
free list. These blocks can be of different
sizes, but they have the same block formal.

OP2 key-sequenced files consist of index
blocks, bit-map blocks, data blocks, and
free blocks. The headers of the different
blocks are illustrated in Figure 1.

VSNs are internal timestamps used by DPl
to help implement the write-ahead-audit
protocol, autorollback recovery, and mUfor­
ward recovery used by the Transaction Mon·
itoring Facility (TMF). OP2 also uses \'S~s
when processing records in the "undo" area,
an area used to ensure (he structural consis­
tency of unaudited OP2 key-sequenced files.

Block Splits
Block splits occur when the disc process tries
to add a record to a block when there is nOI
enough room. I n the most complex case, the
insertion of a new data record can cause (he
split of a data block, index blocks, and the
root block. The OPt aJgorithm is imple­
mented so (hat splits are handled recursh'el)',
starting al the data level.

OPI splits data blocks and then splits
index blocks when necessary. DP2, on the
other hand, looks ahead to see if an index­
block split will be necessary and divides a
complex split operation into a sequence of
simpler split operations.

OP I requires records in key-sequenced
files to be less than one-half the size of the
block so that the insertion of a record results
in no more than t\ .. ·o data blocks after the
record is inserted (via a block split). DP2
relaxes this restriclion: insertion of a large
record can result in three data blocks after
the record is inserted. Within OP2, all oper­
ations on a key-sequenced file are classified
as either simple or complex.

Simple vs. Complex Spli t Opera tions
Simple operations are reads or \\Tites on one
disc block. Complex operations are wrile
operations that modify twO or more blocks,
such as block splits, block collapses, inser­
tions of the first record in an empty file, and
deletions of the last remaining record in a
file.

TANDEM SVSTFMS REVIE'A. JL'''{ I'~ '
I
•

-...
"" ""-- DP2 kty-Mquene_ - 1NIe.o; and IfM block ei8t11 block

0 , RSN RSN

• - -, , --- --.....
"
" """'- C_

,. /UTW;)!~ Numbef of _d$

"
" "'" ,
" ,. No:·.IRSN

"
"

_RSN

A block split occurs when an allempt to
insert Of update a record in a data or index
block requires the block to be split into mul­
tiple blocks because the inserted/ updated
record does nOI fil in the original block. A
block collapse occurs when the last record of
a data or index block is deleled, causi ng the
blocl to be freed. The insertion 0/ the first
record in an empty file causes the formalling
of three blocks (bit map, index fOOl, and
data block). The deletion oj the lost and only
record causes (he resetting of the end-of-file
(EOF) pointer and the number-or-levels
fields in the file label.

0P2 blt-mIP OPI Indel

""" and dIollo bIoo:kt

,-. --RSN ._-,.,. ----. -~ '" -- --- _ - """"" _ ..
"'"""

Block-split Decomposition
The DP2 block-splil algorithm breaks up a
complex split operation into a number of
simpler operations. In genera l, a DP2 split is
implemented as a sequence of internal oper­
ations, each of which (I) creates only o ne
new block (affects on ly one level) and
(2) ensures that consistency is maintained
after the operation is completed. The DP2
split algorithm is more costly in di sc activity
than the DPI recursive method only if the
split of an index block occurs. The DP2 split
algorithm, together with the recovery proce­
dures provided by the undo area, auditing,
and check pointing, ensure that a file a lways
has structural consistency.

J l .. F l'IIi S ' T4NI)rM S~~TEMS
R I' V I I' W

Dala-base So!tv.'(J.fe

Figure 1.
The block headersjor
DPI and DP2 key­
sequenced files. Thejirsr
14 byres o/the DP2 block
header are common to
relative, entry-sequenred,
and key-sequenredfiles.
In Ihejirst byte of rhe
header is an "eye
catcher": a "gremer
Ihan" symbol (». The
relative seclor number
(RSN) in the next 3 byres
nllmbers all the blocks in
afile. The "Flugs" word
COIIlains information
abolll the type of jife,
type of block, and level of
index.

21

Dma-buse Software

FIgure 2-

The struclUre oj a /ile
iJ40re a block split.

FIgure 3.

The s lructure oj the /ile
in Figure 2 q{ter the split
of block 82 into blocks 82
and 84.

22

FIgure 2

e,

B3

Flgur.3

.,
-84-83

DDta·block Split

---,
oata bIoc:k'

-..... -

Figure 2 depicts the structure of a sample
DP2 file, and Figure 3 shows the file's struc­
Lure after a block split. The steps involved in
splitting the block are outlined bclow.

If there is not enough room to insert
record R into block B2, a new block, B4,
must be created. Half of the records arc
~oved from B2 to 84, and then record R is
mserted into block 82. In this example, it is
assumed that the record is inserted into
block B2 rather than block B4 (depending on
the primary key, however, the record could
have been inserted into either).

Before the split begins, it is necessary to
verify that there is room in the parent index
block for another record. If there is no
room, one (or more) index-block splits must
be done before proceeding.

Free Blocks and Bit Maps
The disc process finds a free block by scan­
ning the bit maps that are stored in the bit­
map blocks. DP2 auempts to find space for
a new block "near" the block being split by
beginning the bit-map search "near" thcold
block. Each bit in the bit map represents one
block in the file. If the bit is SCI, the block is
in use.

When the disc process finds a bit in the
bit map that is not set, it reads the corre­
sponding block header, whose status infor­
mation indicates whether or not the block is
indeed free. If the block is free, the disc pr0-

cess proceeds Wilh the block splil.lfthe
block is not free, the disc process correctly
setS the bit in the bit map and the search
continues with the block indicated by the
next free bit.

This bit-map search replaces the linked
list of free blocks used by OPt. If the linked
list breaks. DPI cannot add new blocks to
the file. If there are bits in the DP2 bit-map
block that should be set but an: not, ho.·
ever, DP2 is able to correct the situation ash
is dctccted.

The teps in plilting a Block
The following step are invoh'cd in splitting
block 82:

I . Allocate block B4; move half of the
records in B2 to 84.

2. Update the back pointcr in B3 so that it
points to B4 (instead of 82).

3. Insert a pointer record in the parent indtl
block, BI.

4. Insert record R in B2. update thenumbcf
of record in the header, and update tit
forward pointer to point to B4 (rather
than B3).

Three·wlI) pi it .
In DP2, a data block may havt to be ~plit
into three blocks when a long ~.IS •
inserted or updated and its posmon 15 !XlI
the beginning or end of the block. For''''''
pie, assume that the block size is 512 b)t6

TA/IIDP"-1 SYST, •• S " ,., Rf':\If:.",·ll
. ,

and a data block contains two records, R 1
and Rl. each 200 bytes long. The inserted
record R has a length of 400 bytes, and its
point of insertion is between R I and R2.
The three-way split is implemented as a
sequence of two-way split operations, each
of which preserves file consistency. The steps
im'Oh'td are:

1. Split the block into twO blocks, at lhe
point a(which (he new record is to be
inserted or in front of the record that is to
be updated.

2. Now the position of the inserted or
updated record is al the beginning or end
of (he block, so only a two-way split is
needed 10 complete the operation.

Ind,,·block Split
An index-block split is similar to a data­
block split except thaI index blocks, unlike
dala blocks, do not have horizontal
pointers. Figure 4 shows the Structure of a
file before an index-block split, and Figure 5
show.s the structure of the file afterward.

For record R to be inserted into B4, B4
mUSI be split, requiring that a new index
record be inserted into 82. Before B4 is
split, 82 must also be split so that there is
enoogh room to insert the new index record.
To have enough room for the new index
record, block 88 muSt be added and hair or
(he records must be moved from B2 to B8.

The following steps are involved in split­
ting block 82.

I. ~lIoc3le block 88; move half the records
In 82 to 88. (Because this is an index
block, there is no back pointer.)

2. Insert into the parent index block 8 I a . . ' ,
record pomung to 88.

J. Truncate 82. (Change the number or
records in the block.)

4. Insert r~rd R in block 84, causing a
block spilt, as described above.

DP2 BlOCk-split Algorithm
The undo area is a small, preallocated area
~n a \'Olume t.hal.is reusable for every
equest r:sulung In a multiblock update. The

block:sPlu algorithm used by DP2 allows it
to Wnte the undo area to ensure the consis­
t""Yhe .Ofunaudited, key-sequenced fi les and
(directory.

-

FIgure.

.,

B2

.-J
B3 -

.,
85 - 88

"
~[L .. .,

2 ~
... - •• - ..

Rgure 4.

The SirllC'fllrt! of a file
Iha/ has MO index lew!ls.

Before a multiblock update to an unau­
dited, key-sequenced file or the directory,
DP2 writes into the undo area the informa­
tion needed to undo the operation, in case
the operat ion fails to complete. File consis­
tency exists only if the operation is write­
lhrough or audited; otherwise, only
structural consistency exists, and some data
may be lost.

I l,. , E
SYSTEMS

Dalll·ba~e Software

Olta blocks

o.tablocks

FIgure 5.

The SirllCfllre oj the jill'
in Figure 4 qfter fhe split
oj index block 82 into
blocks B2 and 88.

23

Data-base SO/hmlY!

24

T.bl.l .
Source and level of consistency for DP21i1es following (a) a takeover after the faIlure of Ihe prunary disc pro­
cess' CPU and (b) a recovery from a multiple-CPU failu~.

(.jCOnl.slency IoII1;M,ng takttoYel.lter
ta.lure 01 PfllTlllry dose PfOCn3' CPU

Soure. <-, "'"~.
Audited tiles ~1o~_ DaHI·base

..... , -

Unau6ted. buflered' lilesw,th sync depth ::> 0

UlWIUdileO, butlefed' lites WlIl'I sync ciepth _ 0

UllIIooited' Wlile-1l'I1'OUQh IiIes WIth sync deplh ::> 0

Unaudited Wllte-ttuough' ~ Ides with sync depth • 0

CheekI)OlnTIflII , .. UndOiI<eI .~---
Undo.rea Strucw.,1 UndO at .. SI'wcltAo
"""-,., , ... Undo"N , ..
Undo,r. ". Undo,rN ' ..

it '\
to ensure tIt t

'For un.aud<ted DI.ottered liles. un!1ushed updales may be Iosl II. CPU Ilirlure"_ IIledal'loss. tile ~1t1Or'l1ll retull'(l(l FEO,I,lAlOSS
(122) II FEPATHDOWN (20I) is lelulned, the US8I" IS .espotIIobie Io! letrytng Tile"" opIlitoOn

For unaudited files with a sync depth
greater than zero, the information in the
undo area is check pointed to the backup.
(Setting the sync depth to zero is a way of
turning off checkpoiming in unaud ited
files.) When a takeover occurs, the backup
disc process uses this information to undo
incomplete muhiblock updates and restore
structura l consistency.

TMF also takes advamage of the DP2
block-split algorithm when the primary disc
process sends physical undo information to
the audit disc process for audited files. The
audit disc process writes this information to
the aud iltrail for use by autorollback and
roll forward recovery.

The DP! audit trail contains only logical
information, requiring a roll forward to
recover from an incomplete multiblock
update. The DP2 audit trail conta ins the
physical undo information required to
restore the st ructural consistency of a file;
DP2 autorollback uses this physical infonna­
tion to restore the file_

Table I summarizes DP2 rile consistency
after (a) a takeover resulting from a failure
of the primary disc process' CPU and (b) a
recovery from a mulliple-CPU failure.

Conclusion

DP2 has introduced changes in the structures
and processing of key-sequenced files. The
new key-sequenced block format, together
with the block-split algorithm and the undo
area , increase the reliability and functional­
ity of key-sequenced files.

.Ad:_·I~I"""nl!i

~ author "'"OUld m.e to thank all the DP2 dc'1'Clopcn for IOOr
help. I'raooo Puuolu "'1U particula rl) helpful in e,pb,il'lllll key·
$CqUffi«d files. llle rcvjelOlcrs of this 'rtick. csp«iJJl) Jim
TIlle. also dtscr~~ thanh for their comment$ and !uggcsliOn$,
as docs Did. Thomas for lhe final n ision.

Tid Schlchl., ""rote This 1I11c1e, the artICle enlltilcl. '·OPT.
Ellicient Use 01 CaeN .. · and ThI! etwl entltiJd, '''~rrson
01 tne BOO OPt and OP2 Oisc Processes-

T AN DE M SYSTf-" M S RF \ I F \\ J l " I I " II ~

he BOO software release
_ introduces many changes

in the Transact ion Moni­
__ loring FacililY (TMF). This

article provides an over­
view of the mOSI sign ifi ­
cant oncs, including:

I Aulorollback reco~'e'y. This mechanism
brings a data base back [0 a consistenl Slate
much more rapidly than the existing rollfor­
ward recovery mechanism (and wilhoUl
operator imervcntion). Autorollback rceov­
ery is possible because TM F now guarantees
!Ita! audit information needed to pc:rfonn
recorery operalions resides on disc.

I Disc Process 2 fDP2) Implemel1lotioll.
~new, high-performance disc process is
desIgned to streamline accesses to disc vol­
umes. The impact of TMF on disc-process

has been reduced significanlly
result of this implementation.

I'i~~~;~'~:~~:~~~/~~ TMF now pro-iV much more flexibility in
disc volumes. Selected volumes can

,",,"'aned initially and others activated later.
it is now possible to specify that a

)uJ,,~ .. available for nonaudited pro.
~;;'i:;~ unavailable for audited

Improvements in TMF

• Improved crash protection/or TMF. W ith
the BOO release, even the 105s of the crus in
which a disc·process pa ir resides does not
generally resull in a TMF crash.

• Restarlable TMF processes. The loss of the
backou! or auditdump process no longer
results in a TMF Shutdown, because now
these processes are automatically restaned
when necessary.

This anicle provides information on all of
the above. Refer to the TMF Sondoe for
more details and for information on other
changes to TMF software.

Aulorollback Recovery
Before the BOO release, there was only onc
way of recovering a data base that had been
contaminated as a result or a catastrophic
railure: roll forward recovery. BOOTMF offers
an additional method or recovery, autoroll ­
back. which is far more cfricient. Roll for­
ward recovery is now required only in the
case of media failures thal actually destroy
the data base.

, , ,
SYSTEMS

2S

Daro-JxJSe Sofrwure

Fig 1.

~ the BOO softYt'are
release, 0 change to an
audited jill' resulted in the
da/a-bose change being
It'ritren immediately to
disc (write-rhrough­
coche). The audit that
Yt'as generated as a resul,
of this change was buj­
fered in Ihe memory of
the disc process (audil
buffer).

Flgurt 2.

Bt10re BOO, Ihe failure of
a disc-proctss pair Wore
Ihe end Qj a tranS(l('lion
destroyed Ihe audit that
It'as generated by the
change 10 Ihe audited jill'.
To restore data-bose
consistency, the change 10

/he do/a boSl' had to be
backed out. Because the
audit Yt'as lost as a result
oj'rhejaifure, roI/jQrl\'ard
rerm-ery It'OS required.

26

FIg ... rt I --." .. ".""'"

Flgur.2

"""""'"
'= .-
'::II:

-BOO
Pre-900 OPI

OPI It.;Iu.cIl

I Wrtte-1IWOugh CIChI

00"-
BBS ..

To understand why aUlorollback has been
so long in coming, it is imponam to notc
that Disc Process I (OPI) implemented a
write-lhrough--cache algorithm until the BOO
release. With this algorithm, every file
change was immediately written to disc,
and, when updates were made 10 TMF
auditcd files, the disc process buffered Ihc
before/after images of all changes made.
(This audit information was written to disc
during ENDTRANSACTION processing.)

Figure 1 shows the contents of an audit
buffer generaled by a change to an audited
file. The original record in the data-base rile
was AAA, and it was cbanged to BBB. As
explained above, A06 OPt writes the change
to the data-base file and buffers thc before
and after images for the change. Thus, if the
disc-process pair cOnlrolling the data volume
fails before the transaction ends, data-base
changes that have been made (as part of the

uncompleted transaction) have 10 be backed
out to restore t he logical consistency of the
data base_

As shown in Figure 2, however, the audit
information needed to back out the changes
to the data base has been lost as a result of
the railure or the disc-process pair_ Thus,
there is no recourse but to reS10re a known
good copy of the data base and audit trails
(rrom dump tapes) and use rollfof'W'3.rd 10
recover.

If 311 the audit information needed to
recover the data base were on disc, a fast
recovery mechanism could be implemented
thaI would make use of the existing data
base. If the disc process could guarantee that
all audit information generated while servic­
ing audited requeslS was indeed recorded on
disc that audit information could be used 10

redd completed transactions_ Uncommitted
transactions, however, might or might nol
have audit information recorded in the audit
trail.

If audit information were recorded on d&
for these transactions, that data could be
used to undo their effeclS in the (Vent of a
failure. The only way to ensure that such
information is available on disc in the event
or a failure is to require that il be writt~n 10

disc before any data-base update aSSOClat~
with it. Thc scheme that ensures that audit
information is on disc before the associated
data-base updates is referred to as a write­
ahead-audit protocol.

The most straightforward way of imple­
menting a write-ahead-audit protocol IS to
rorce a write to the audit trail berore t~
physical 110 to the data base is performed.
However, the performance implications of
an extra disc 1/ 0 for each write to the data
base make this approach unworkable.
Clearly. another solution must be ~ound.

BOOTMF uses burfered cache 10 Implemenl
a write-ahead-audit protocol. Unless data
blocks are buffered, audit cannot be buf­
rered. Thus, when an application issues a .
logical l i D, the data is not immediateIY .>Allt­
ten to disc. It is burfered in cache, and It
remains there until after the audit informa­
Lion reaches disc. This approach to imple­
menting a write-ahead-audit protocol is
attractive because it allows applications 10
access updated blocks in cache. resulting in
a savings in physical 110.

TANDEM SVSTfMS REVIF\\,

As a result of this change, a fast autoroll­
bad reoovcry mechanism can be imple­
l1Y!I1ted efficiently. Autorollback recovers the
data base first by reading the audit trail for­
ward (reapplying completed . lran~~tions)
and then by reading the audit trail In reverse
(bading out data·base updates associated
with uncompleted transactions).

To perform an autorollback recovery,
usen start up TMF after the crash, and then
TMF'sTransaction Monitor Process (TMP)
determines whether a recovery is nceded.
The existing copy of the data base is used,
and all necessary audiHraii files arc on disc.
This alleviates the need for operators to
mOUn! tapes.

As explained above, autorollback reads
the audiltrail forward to the end and reap­
plies all changes made to the data base. This
is called the redo phase. Aftcr all changes
ha\'e been reapplied, any data-base changes
made by transactions that were uncommit­
ted at the time of the failure are backed out.
This phase is called lhe /Indo phase.

During the undo phase, autorollback
readstheauditlrail in reverse, starling at
th: end. This phase ends \\ hen all changes
made by transactions that "ere active at the
time of the failure have been backed out. At
the end of the undo phase, the data base has
hem restored to a logically consistcnt state,
and applicalion processing can begin. For
more information about autorollback recov­
ef)" '" Por\8, 1985.

TMF is now capable of supporting either
DP] \"Olumesor DP2 volumes. and TMF
aUioroilback recovery is available for either
OPt or Dpt1 However, the format of the
audiltrails, the formal of many illlernal
messages, and the behavior of TMF differs
signirtcamly for DP] and DP2. Thus, there
are ~any incompatibilities that preclude the
audited operation of a OPI volume and a
OP2 ~ume at the same time. Users mUSt
s~~Y which disc process is to be used for
audltmg when they initialize and configure
lMF.

DP2 Implementation
DP2 is a new, high-performance disc process
for Tandem systems. In this section some
of the differences in using TMF with'DPt
and DP2 are discussed and then the perfor­
mance improvements offered by DP2 are
described.

OP2 vs . OPI
As explained above, there are a number of
differences between DPI and DP2 audit
trails, and TMF itself operates differently in
a DP2 environment.

Volumes Containing A udit 1Tails. Any DP2
disc volume may hold unaud ited files . How­
ever, when a DP2 volume holds an audit
trail, it may not hold audited files. This
restriction stems from the very active role
lhat DP2 plays in the movement of audit
information to disc. In DP], the audit trai l is
a simple unstructured file into which each
of the auditing disc processes performs inde­
pendeOl writes. In DP2, the disc process that
owns the audit trail acts as a collector, buf­
fering the contributions of many other audit­
ing di c processes. These contributions are
then written into the audit trail together. A
single DP2 process does not act both as a
collector and an audit generator.

A udit1Tails. DP] audit trails are different
from DP2audil Lrails. With DP], TMF
makes use of the Monitor and Disc Process
Audit Trails. The Monitor Audit Trail is
used to hold the commit and abort records
for completed transactions. The Disc Pro­
cess Audit Trail holds the before and after
images of changes made to aud ited files.

DP2 makes use of the Master Audit Trail,
which holds commit and aboT! records as
well as the before and after images of
audited changes.

Performance Improvements
DP2 is much faster than 01'1. This is espe­
cially true when the files being updated are
TMF files. A number of changes have been
made in checkpointing and auditing strate­
gies to achieve this. Also! the ~esign of ~P2
allows it to perform phYSIcal diSC 110 whi le
at the same time accessing data blocks
in cache or performing olher 110 set-up
operations.

, , ,
s v S T EMS

{)aul""base Sol/wall.'

27

DuIU·base Softwure

28

Reduced Checkpoillfing. DPI incorporates
(he idea rhar any operation in progress at
the time of the failure of the primary disc
process should be carried forward to com­
pletion by the backup disc process. This idea
leads inevitably 10 incrementa l check­
point ing. That is, the primary disc pro-
cess informs its backup of every step of an
operation that changes a file. As a result,
a single READUPDATELOCK­
WR ITEUPDATEUNLOCK sequence generates
five checkpoint messages. If a failure of the
primary disc process occurs, the backup has
a ll the information it needs to continue Ihe
cu rreOl operations 10 completion.

DP2 uses an enti rely different approach.
All operaLions in progress at the lime of a
fai lu re are backed OUI (including TMF trans­
act ions being processed by the primary disc
process at the time of its fa ilure). Thus, the
DP2 deSign a llows for deferred checkpoint­
ing. This reduces the IOtal number of check­
poinls needed per READUPDATELOCK­
WRITEUPDATEUNLOCK sequence to a max­
imum of two messages for an entire transac­
tion, regardless of the number of physical
1I0s or lock requests made by the transac­
tion. The primary disc process needs only to
inform the backup of the new transaction
initially. If a failure of the primary disc
process occurs , the backup takes over
and knows which transactions arc active.
Those lransactions can then be aborted and
backed out.

Because the primary disc process does not
lell its backup about a ll the work il is per­
forming on audited fi les, DP2 spends much
less lime checkpoim ing. O nly two check­
points per transaction are req ui red. Also, if
the CPU in which the primary disc process is
run ning fa ils, the backup d isc process has
no idea what the primary was doing.

The primary may ha\'e Processed SOfrlt
requests on behalf of these transactions and
promised 10 make some changes to the data
base, "hich actually got no further than the
primary's buffers. Those buffers are 00\\
gone, and consequently, the backup disc pro.
cess cannot fulfill the failed primary's pr0m­

ises (because it doesn'l knov. whal they
",cre). Thus. it aborts every aClire transac.
lion that the primary had worked on. This
ensures Ihat the failed primary's promises
don't harm the data base.

DP2's higher performance in an on-line
environmenl has a cost. Recovering from
CPU failures lakes a lillie longer.

Ol'eriapped Disc and CPU Proctssing. DP2
has been implemented in prOctss groups,
which consist of from one to eight disc pro­
cesses. all of which work. together 10 control
a singlc disc volume. While one di~c pr~
in the group is in the process of performing
physical 10, another can be servicing a
request by accessing data already in cache 01'

performing other I/ O SCI-Up operations. This t

is a major performance advantage.
Also. DP2's use of buffered cache helps to

reduce the total number of physical I ' o~
required. (For more detail on the ad antages
of using buffered cache,.see the accompany·
ing article, "DP2's Efficiem Use of Cache,"
by Ted Sch.ch,er.)

Fewer A udir-trail IlOS. With OPI, whene\'l'f
a transaction is in Phase One of abort or
commit processing, each disc process thaI
participated in the transaction must flush i1s
audil to its associated Disc Process Audit
Trail. This flush results in a physical I 0 to
the audit-trail. The DPI disc process control·
ling the audit-trai l volume has no kno\\ledgc
of TMF audit trails.

a

Thus, the requeslS of each disc process art F
treated by the audit-trail disc process simpl)' •
as a write to an unsLructured file; there is
one physical 110 for each disc process that
participated in the transaction. In addition
to the 110 performed to the Disc Process
Audit Trail, a physical 110 is performed to
the Monitor Audit Trail to write either the
commit or abort record for every
transaction.

,

•
c
~

TA/I;DEM SlSTFMS Ml'.\II'W

With DP2, (he disc proce~s controll ing the
Master Audit Trail volume IS aware of the
~udit.trail files. This doesn't change lhe
requiremenl that each.disc proc~ss tha.t par­
ticipated in a transacl10n f.lush li S audi!o at
Phase One abort or commn. However, 11
00es rrean Ihatthe Master Audit Trail disc
~ does not have to \\ rite each audil
buffer 10 tbe audit trail immediately.
Instead, it can buffer the audit from all t~e
discprOCtSSeS, and then, when the commll
or abon record is wrinen to the Master
Audil Trail, append that record to the audit
buffers already present in memory. Thus, all
[he audit information can be written with
one physical 110.

With DP2, the use of the Master Audit
Trail to hold both before and after images as
welt as commit and abort records eliminates
a great deal of extra physical 110 10 the
Monilor Audit Trail performed by DP I.
Also, as juSt explained, the knowledge pos­
sessed bytbe Master Audit Trail disc proces
of the audit·trail files allows the buffering of
audit information sem by many different
disc proctSSeS and thus reduces dramatically
the number of physical l/Os required .

Disc Yolume Flexibilil y
WithA~ ThIF, a disc volume was considered
~ther "up" (or processing or "down."
There was no intermediate state (e.g., that
Jfbeing active for nonaudited processing

,at the same time, unava ilable for
i work).

With BOO, a disc volume can be in one of
, different states:

Down (e.g., in response to an operator's
. command).

. accessible for nonaudited pro­
not for audited processing).

TMF(Le., TMF has been staned
audited .urk can be performed).

~::~tO~T\~.~lF~Wit~~e~re required to suppon i state. The following
this new flexibility.

Selected Volumes Can Be Slarted
New syntax has been added to the START
TMF command, allowing the user lO specify
the SCt of disc volumes that are to be started .
Only those volumes specified wi ll be able to
perform audited work . This means that users
also need a mechanism Lhat allows them to
stan separately any volumes that were om it­
led from the set of volu mes specified in the
STARTTMF command.

ENA BLE VOLUM ES Command
To fu lfill the need described above, an
ENABLE VOLUMES command has been
added to TMFCOM. It allows users to add
one or more volumes lO the set of volumes
that are up for TMF. T he ENABLE VOLUMES
command can be used to bring up any of the
following :

• Volumes that were not requested at START
TMF.

• Volumes whose CPUs were down at START
TMF lime.

• Volumes that went down while TMF was
running.

• Volumes that failed to start earlier.

ENABLE VOLUMES initiates autorollback
for any of the volumes Lhat may require
recovery. If autorollback is incapable of
recovering the volume, a message is dis­
played on the operator's console. The opera­
tor should then rectify the problem and issue
another ENABLE VOLUMES command .

The ENABLE VOLUMES command
includes syntax to specify a se t of volumes
that should be enabled. Th is syntax is ident i­
caIto that used with the STARTTMF com­
mand. Only the disc volu mes specified in
[he command are enabled .

Down Volume Reintegra1ion
If a disc volume goes down while it is up for
TMF, it is possible to reintegrate th~ volu'!le
into TMF. This is accomplished by mcludmg
the volume in the specified set of volumes
for an ENABLE VOLUMES command .

, ,
I , 8 5

TA"'DEM SYSTEMS

Data'base Soft wore

Dara·oo.w Software

30

When reintegrating such a volume, TMF
examines aU of the transactions that have
worked on the volume. It must guarantee
that all of these transactions are ended or
aborted before the volume is enabled (to
ensure that transaction backout and auto­
rollback don't interfere with each other by
working on the same records while undoing
a transaction).

If an ENABLE VOLUMES command is
received, the disc process looks to see if any
old transactions (left over from before it
went down) are st ill around. I f any still
exist, the disc process rejects the atlempt to
bring the volume up for TMF, and an Error 2
is returned. When these transactions are
gone, the ENABLE VOLUMES command can
be retried.

Addi ng New Volumes
With A06 TMF, the addition of new disc vol­
umes to the system requires an initialization
of TMF.

With BOO, TMF makes use of a new file
called VOLlNFO. This file contains a list of
all the volumes that are known to TMF.
Should a new volume be added, the next
STARTTMF command simply appends the
new volume's name to the end of the
VOLlNFO file . The volume will then be
enabled for TMF processing.

There are twO restrictions on volumes that
are not present when TMF is started:

• . First, the volume must have been present,
with that name, at some execution of START
TMF. (This puts the name into the VOLINFO
file.)

• Second, the volume's LDEV number must
not change during a TMF session. For exam­
ple, if $DATA was LDEV 6 and it has to be
changed to LDEV 7, TMF must be slOpped
and then started again.

TMF Crashes

When a disc process does some work on
behalf of a transaction, it must mark that
transaction in such a way as to indicate that
the transaction has audit information in the
disc process' buffers. This marking is then
used to determine which disc processes
must flush their audit to end the transaction
successfully.

TMF records which disc processes have
audit to flush within the two CPUs that con·
tain the disc process, eliminating the need to
tell other CPUs.

When the two CPUs in which a disc·
process pair are running fail (or, if only one
was up, when it fails), TMF has no idea
which transactions may have audit in the
now I~st disc-process buffers. Before BOO,
TMF simply gave up under these conditions,
declaring a TMF crash. This forced the
user to cold load the system and perform a
roll forward.

BOOTMF still doesn't know which transac·
tions might be in uouble in this situation,
but if it can abort every transaction that
might possibly have audit in the lost disc
process' buffers, it can still ensure the cor·
rectness of the data base.

When TMf wants to end a transaction,
each of the disc processes nushes the audit
for that transaction to disc. When the last
un flushed process in a particular CPU has
flushed its audit to disc, a message Ihatthe
disc process' CPU has finished flushing is
sent to the DEGINTRA SACfION CPU.

If both CPUs in which a disc-process pair c
is running are lost, n.'IF needs to know c
whether any audit information has been 1051. c
I f the last CPU to fail has sent to the BEGIN· l

" TRANSACTION CPU the message that the 1
disc process' CPU is flushed, no audit has
been lost. If that message hasn't been
received, the transaction must be abortrd
because some audit may have been lost.

TAf"DEM SYSTEMS

II shOOJd be noted that flushing occurs
only hile the transaction .is ending (or
aborting). Active transaclJons are not
(lushed; therefore, when TMF delect~ that
t1rserond CPU of a disc-process pair has
failed, it marks every transa~tion on the
slslem(.... ith vet)' few excepllons) as
aborting.

[wrption I: DPI'S Master Audit Trail
Above, the flushing of the audit to disc and
T\IF'S management of the knowledge of
who nushed was discussed. For DP), the
audit must be on disc before the disc is con­
sidered flushed. For DP2, however. any audit
~ considered flushed when it has been sent
to the DPl disc process that owns the Master
Audit Trail.

No , suppose thai some audit has been
sent [0 this DP2 collector. Normally, the
commit reoord must be written to the end of
ibe audit buffer. It is then written to disc. If
the DP2coUector's CPUs are lost, whelher
the da[a audit or commit record reached the
disc is unknown.

This ""'" a problem. If the data audit
~"3S lost, a commil record must not now be
"TIllen.1f the commit record has arrived at
:lise, lhe transaction must not now be
aborted. The only way OUt of this dilemma
~ to look into the audit trail. If the commit
:eoord did reach the disc. the transaction
:ommiutd.lrnot,thc transaction aborted.

Since A06 ThIF has no mechanism ror
landling this, when the dilemma arises, the
~ release rorces a TMF crash, requiring a
iold load and the execution of autorollback
Xl every \'OIume. Hence, on DP2 systems rly, the ~ or the CPU pair containing the
laster Audit Trail's disc process causes a
.IF Crash.

v ., E

Exception 2: The TMI'
The TI\.'IP maimains many coordination
functions, such as audit-trail management
and TMF process management. Because of
this, the loss of the TMP pair's CPus causes
a TMF crash.

This restriction is not serious. The TMP
pair is placed by SYSGEN into the same
CPUs as the operator process. While it is
possible to SYSGEN a system in which the
operator process is not placed in the same
pair of CPUs as SSYSTEM, this configura­
tion would make cold loading difficult and,
hence, is not a serious option. This implies
that Ihe TMP resides in the same pair of
CPUs as $SYSTEM.

Restartablc TMF Processes
Before the BOO software release, the TMP was
the custodian of three processes: backout,
TMFTAPE, and catalog. The BOO release has
added autorollback to this IiSL

The A06 release had backout, TMFTAPE,
and catalog functioning as process pairs.
Backout and TMFTAPE would sometimes
fail, which would cause TMF to attempt to
stop TMF because the processes were gone.

With BOO, backout, TMFTAPE. and auto­
rollback arc not process pairs, but single
processes. If the TMP sends a request to one
of them, and Lhey are gone, Ihe TMP merely
restarts them. Both the primary and backup
TMP keep the current incarnation of the pro­
cess open. I f the TM P finds it necessary to
restart one of these processes, it issues a
message stating that the process was
restarted.

S Y S TEM S

DaUl"ixLSe Sof,ware

31

Dllla·baSi'So/III'(,re

The catalog process is still implemented as
a process pair for two reasons:

• It maintains information across request s
that would be losl in a restart.

• There wasn't a problem with the catalog
fai ling to survive.

Should the cataJog process pair fail, the
TMP stops TMF. To recover from this situa­
tion, the operator can simply issue a START
TMF command.

Conclusion
Several additionaJ changes besides those
mentioned in this article are also a part of
BOO TMF. They relate to:

• TMP slart-up and shutdown processing.

• Audit-trail management.

• New error messages.

• New TMF control files.

For details on the above changes, refer to the
TMF Softdoc.

TA N I) E M SYST J.' M S

Rtftnnce.'l
Pona. '1. 1985. T\lr AUloroilbacl:: A ~ Rtto-.Cf) FtalUtt.
1bndnn S)'ll~ Rrnr \'01. I. no. I. Tlnckm ComPluCf\
Incorporales:!.

Ad:_ ·ltdltmtnU
The IUlhor ""~ '0 ,haol Pal ~Iland for hiJ ideas. COllI­

lTEI1lS. Ind crw:ou~l . all or _hil:h helped '1m! deal ill
,he "'1ili"l of Ihis Irticle.

R EV'E W J U .. F , ~ • I

he performance of Disc
Process 2 (DP2) is signifi·
cantly beuer than that of
the A06 version of Disc
Process I (DPI). This
article presents several
types of DP2 performance

data, as .. rell as a performance comparison
of A06DPI and BOO DP2. It discusses some
of~rev. features responsible for the per·
formaoct imprm'etnems and then describes
specinc performance resuJts from several
tests.1

Performance Features
The following new features of the disc pro­
ress (listed in order of their impact) have
irnprm'ed its performance dramatically:
I. Writes can now be buffered in cache

memory for both nonaudited and audited
disc files,

. Multiple disc processes can now service
requests for a single volume.

3. "Bulk-I /O" service is now used by
Gu\ROIAN 90 operating system utilities
for sequential and "bulk" processing.

, , ,

DP2 Performance

Another feature of the BOO re lease that has
helped 10 significantly improve the perfor­
mance of the disc process is the enhanced
implementation of the Transaction Monitor·
ing Faci lilY (TMF) .

Fina ll y. three other new featu res are
indirectly related LO performance:
I. Users can examine and configure disc

cache size on- line .
2. To ensure the integrity of the data resid­

ing on disc volumes, DP2 uses an " undo"
area lO keep information about the struc­
tural changes to the volumes until the
changes have been completed.

3. Disc-volume labels are refreshed (rewrit­
ten) every 30 seconds when nOLhing has
been written to or read from Lhose vol­
umes during thaL period.

All of these new features are discussed
below.

Buffered Cache
Buffered cache, the opposite of write­
through cache, provides a tremendous per~
formance advantage to applicat ions that
write and update disc fi les. All appl ications
audited by TMF can take advantage of th is
new feature.

s v 5 T EMS REVIPW
33

Dota-base Software

J4

For unaudited applicat ions, the applica­
tion itself must provide the data base with
protect ion from failure and concurrency
problems. To provide protection from pro­
cessor fai lures of the primary disc process,
TMF employs a write-ahead-audit protocol.
This protocol, implemented in the disc pro­
cess, ensures that the audit trail is written
before the transaction commit is accepted.
A06 TMF does not use the write-ahead-audit
protocol.

It is worth noting that, in most cases, TMF
audit-trail writes are done serially to
mi rrored-d isc drives; a write to one disc
drive completes before the write 10 the mir­
ror is requested. Thjs is true even when the
disc has been SYSGENed in a parallel or
simultaneous write configuration.

As would be expected, buffering can dra­
matically reduce the number of physical
writes required to a disc volume. The most
improvement is reaJized when an audited
cache-resident file is buffered; that is, when
sufficient cache is configured for the entire
file to fit into the disc cache. Most data
bases are tOO big to fit entirely in cache,
however. The cache blocks are written 10 disc
either in "spare time" (as decided by the
disc process) or when the file is closed.

There is another means by which buffered
writes are sent 10 disc. At selected intervals
(currently every five minutes) a search is
made through the disc cache for cache blocks
that have been updated but not writlen to
disc (dirty blocks). When a dirty block is
found, it is marked fo r writing to disc during
the next interval. If a block is found to
already have th is mark, it is immediately
written to disc.

The reason for this "mark, then write"
mechanism is to prevent a wholesale cactw!
write, which could have a serious impact on
requests to the disc volume. If a large cache
were configured, say 1M byte or 2M bYles,
several hundred writes would be required 10
flush OUI dirty blocks_ With this method
most updates can be made in spare moments
between the five-minute control-point peri·
ods, and fewer writes are required at
control-point time.

Most of the physical 110 savings realized
from buffering are essentially free of addi·
tional system cost. Reads previously made
from cache memory can now be followed by
writes 10 the identical cache·memory loca·
tions. This saves a physical disc 1/0 or two 1
writes when mirrored discs are used. c ,
Mult iple Disc Processes il
DP2 provides the capability of multiple (one d
to eight) primary and backup disc processes 1
per logical volume. It pennits some disc pro- n
cesses in the disc-process group to prepare c
requests to the disc while other requests to
the disc or cache are being serviced by Other d
disc processes. This allows higher utilizalion e
of the disc hardware and disc cache. When b
physical reading is required (for a cache·read p
miss or a bulk 110 transfer) on a mirrored II
volume, eachof the discs in the pajr can pro- ti
vide a separate access path to files on the
volume simultaneously. T ,
Bulk 1/ 0 n

•
d

The new bulk-I / O features of DP2 allow
Tandem uti lities to transfer up to 30K bytes
wilh a single request to [he disc process. The It
uti lities that use this feature are the File aI
Conversion Utility (FCP), BACKUP2,
RESTORE2, and the File Utility Program
(FUP). TMF on-line dumps also use this
interface to transfer up to 8K bytes of data
per request.

Ii

• •
~

TAl"IDEM SYSTEMS REVIEW

With bulk 10, the disc ~rc~ess by~as~s
/Jeta S3\t time and avoid swamping

:disc cache with blocks that will probably
"" bereuse<i. ln addition, the 3107 disc
""uoIIercan request up to 30K bytes of
dala from the controller in a single request.
ru-the 3106 controller, the disc driver
issueS 5e\'eral4K requests from which the
WK b)1eS are assembled and, upon comple­
:KIn. the disc process gives a single response
lf 3QK bytes to (he application.

DPI does not support the bulk-transfer
:apabilityof the 3107 controller. In OPI, a
;ingle reqlIe5110 the disc process can only
",ide 4K bytes of data.

rMF Cbanges
)P2 provides a tremendous savings in the
't5OUrteS required by TMF. Most of the sav­
ngs result from reduction in the number of
lise liOS rtQuired 10 audit a transaction.
Ibis and 0100" enhancements provide a
uaj« rtduction in CPU busy fales per
ransaction.
Onechangt in TMF for DP2 is the use of

b!\\Tlte-ahead-audit protocol mentioned
:arlier. This method all""s ,he dala base '0
)f restored after a crash by removing incom­
!ktt transactions (autorollback) rather than
~ all transactions from a previous on­
ine dump (rollforward).
A single audit trail can now provide full

1lFfunctionality, whereas DPI requires two
E'paratc TMF audit trails, one for commit
eoords (the Moni,or Audit Trail) and
fk>lher for before and after images of the
.. a-base record, (,he Da,a Audi' Trail). In
iI'SI cases a single mirrored physical", rile is
n lhat is required to complcte the auditing
1IlCtSS.

L~it mils can also be compressed in
~o funha- redUct the amount of data
~ pointed and wrillen to the audit trail.
.: OOItlPRSlion, only ,he changed por­:z/ of rttords are logged. A new con-
, mt enforced by DP2 is that a volume
~ contain both audit trails and
""ned flies.

DP2 combines the construct ion of audit­
ing and checkpoint messages, which reduces
the number and size of these messages
significantly.

Finally, TMF autorollback provides recov­
ery ~f an audited file by correcting inconsis­
tenCies rather than reconstructing the data
base a transaction at a time. When TMF is
restarted after a failure, an autorollback is
automatically performed.

Improved Data Integrity
While data integrity may nOl be considered
an attribute of performance, it does have a
significant impact on it. First, DP2 main­
tains an undo area. Here, operations, which
if not completed cou ld resuh in a structural
problem for the volume, are written before
the file/ directory is updated. If a failure
occurs, the operation can be undone and
attempted later.

Another DP2 feature that ensures data
integrity is the rewriting of disc volume
labels every 30 seconds, if no other read or
write requests have been issued to the disc
within that time.

On·line Configuration
Users of DP2 can configure cache and exam­
ine cache performance data on-line, without
using the XRAY performance measurement
tool. DP2's cache-management scheme pro­
vides four fixed lengths for cache blocks.
The available sizes are 512, 1024,2048, or
4096 by,es per block.

The number of blocks for each size can be
configured through an interface in the
Peripheral Utility Program (PUP). PUP
reports current cache performance for lUn­
ing. This fixed-length management sc.heme,
with separate buffers for each block SIze.
prevents fragmentation of the cache. The
user now must configure four separate
caches per volume LO suit the application's
distribution and access of file blocks.

U " E I. ' ~ ' TA N OE M 5 V ,s T IO M ,s

Data-base SOftware

Dato-base SO/Mare

F1gur. 1.

CQrljigllrotion for the
BACKUP} and
RESTORE2 tests.
A jour-processor
NonStop TXP syStem
used two 3107 disc
controllers 10 tlCt:fiS a
single mirfOf'(!(} disc
drire configured f«
porollel wriles. II used a
TRIDENT tape dril't! and
controller combinalion 10
read and write Ihe 6250
bpi lope during the teSts.

F1gure 2

Flgur. 1

\

3107
DI$c C<.lI'1tlOlot

....... ~ ''''- -
~

H-~;';"J-
-.l -.....

BAC KUP2 a nd RESTORE2 Perform ance

350 ... ________ ~_~-,

,.,. "'"

A large (25M-byte) file, h"'ing one thou­
sand page extents was \I. ritten from disc to
tape and then restored from tape to disc.
Measurements were made \\ ith XRAY to
confirm the results obtained. This was done
first with DPI, under the A06 version of the
GUARDIAN operating system, with the
BACKUP and RESTORE utilities. The same
operation was then performed with DP2,
under GUARDIAN 90, with BACKUP2 and
RESTORE2, The TAPEBLOCKSIZE pararnet~
was used with BACKUP2, and 30K-byte
blocks were wrinen to [ape by DP2.

1:
l 1 ISO . ""

50

o

F1gure 2-

Data rotes/or A06
BACKUPund RESTORE
and BOO BACKUP2 and
RESTORE2. A 25M-byte
/if I' with one thollsond
page extenlS was wril/en
from disc to lope and Ihen
restored from tupe 10
disc.

."

Results of Performance Tesls
The results of three major tests are reported
here:

I. A backup and restore operation.
2_ A sequemial-copy operation.

3. An on-line transact ion-processing (OLTP)
appl ication.

For each , the work load is described first;
then a description of the configurat ion is
prov ided ; and fina lly, the results of the test
are given and observations are made.

Identical hardware was used for both
tests . Figure J shows that the configuration
consisted of a four-processor onSlop TXP
system using two 3 107 disc controllers to
access a single mirrored disc dri\'c config­
ured for parallel writes. A TRIDENT lape
drive and COni roller combination was used
to read and wrile the 6250 bpi (bits-per­
inch) tape during the tests.

In Figure 2, the per-second data rate for
writing and reading back the tape are shown.
The data rates relate directly 10 the amount
of time taken to read and write the data 10
the tape drive. See the accompanying article,
" Improved Performance for BACKUP2 and
RESTORE2." by Ani l Khatri, for more inror­
mation on BACKUP2 and RESTOREZ per­
formance. The bulk-I/O interface to DP2
and the algorithm changes in BACKUP2 and

TAl'/OEM S'I'STE\lS REVIEW

REST~El are responsible for most of
dt performance impr~\'ement .. The
bUI~-I ' O interface a\'O\ds copymg the data
"""",,"I).

While BACKUP can write only 540M bytes
of dal3 10 tape in an hour, BACKUP2 can
"lite 1041M bytes of data to tapc in the
_amount of lime. Similarly, while
RlSfOREcan wri!eonly 234M bytes or data
[0 disc in an hour, RESTORE2 can write
1033M b)·tes in that amount of time.

Sequenti lll-copy Performance
For ttr sequential-copy applicat ion, a lOOK­
b'!1e file was copied from one fi le to another
~ tbe same disc. This was done from a pro­
gram wrilten in the Transaction Application
language (TAL). A single extent was used
for each liIe. All DP2 tests were run with
buffered-cache writes . (As mentioned ear­
lier, buffered cache is not available in DPI.)
Asingiemirrored volume contained both
files. Sequential block-buffering was used
roc reads.

Results for three versions of this applica­
tion are presented here. The first version
used unstructured access to the file. For this
"mion, 2S blocks of 4K bytes were read and
wrillen to move the lOOK bytes. For the twO
versions using structured access, one thou­
sand 1000byte records were read and then
wrillen 10 move the lOOK bytes.

Identical hardware was used for all tests.
Figure 3 shows that the configuration con­
sisled of a four-processor NonStop TXP
system using two 3106 disc controllers to
access a single mirrored disc drive config­
ured for parallel writes.

The results in Figure 4 show the elapsed
time 10 copy the file. In the unstruclUred
test, OP2 showed a 10% improvement in
elapsed time over DPI. This modest
improvement can be explained by the fact
that unstructured access is very efficient
under OPI and, therefore, difficult to
Improve upon.

Figure 3

H06
a....: ,-O',lrQier

j \

310e
[)sc conlfOlo r

50 AoeOP1
0'"

"

"
o

22 20 -Unstructured

31,0

"
Sttuc1ured

I U ... E. I 'I II 5 T A " 0 EMS Y S T EMS
R F.: V I F W

Datu·base Sofnmfe

Flgure 3.

Configuration for tile
sequelllia!-ropy tests.
A four-processor
NonStop TXP system
used t",03106 disc
COlllroJlers to access a
single mirrored disc dri~'e
CQIIfl8ured for parallel
""rites.

43.S

9.'

StOJctured ... rrMf

figure 4.

The elapsed time required
for A06 DP! and BOO
DP210 copy 100 byles
sequentially from one file
10 allolher on tile same
disc.

Dmo-ba.w SO/limN!

38

T.bl.l .
The elapsed time required by A06 OP1 and BOO OP2
10 copy 100 bytes sequentially from one trle to
another on the same disc .

Me DP' 800 DP2

, .
" .

,
2

"

,
2.

In the first st ructured test, DP2 reduced
the elapsed lime by 75010, to a faclor of four.
This is due primarily to the effect of buf­
fering and, to a lesser extent, to more effi­
c ient checkpointing. In the second
structured test, in which TMF was used, a
still more significant performance gain was
observed: the elapsed time was reduced from
43.5 seconds to 9.4 seconds. The increased
efficiency of TMF auditing and checkpoint­
ing are the primary reason for this improve­
ment. Table I shows the full sequence of all
the file operations.

OLTP Performance with TMF
The performance of a large retail-banking
application that used the full ENCOMPASS
line of application-development products
was tested. A Screen COBOL (SCOBOL)
requester was used by the Terminal Comrol
Process (TCP), a part of the PATHWAY
transaction-processing system. The TCP sem
requests to a server written in COBOL. All
TCPs and disc processes were run as fault­
tolerant processes.

TAN 0 E! M 5YSTf':MS

All application files were audited by TMF.
The ENCORE stress-test generator was used
to simulate 500 terminals submitting trans.
actions. XRAY was used to collect perfor.
mance data . ENCORE provided response
time and transaction-rate dala. The
ENFORM relational query language was used
10 process the performance data. The trans­
action flow is oUllined below:

Requcster now

Accept 100 bYlcs.
Perform "depending on" algorilhm.
Begin TMF Iransaclion.

Send 100 bYles 10 server'" ilh
1000bYIe reply.

Perform 10 move sl3leITlCnlS.
Perform 10 ifstalemenls.
Perform 10 simple calculaliOM.

End T\fF Iransaclion.
Display 100 bYles.

Sen f r rio,",

Read 100 bYIe5 from TCP.
READ Account file (random, 001 cached).
UPDATE Account file.
WRITE Hislory file (sequential, cached).
READ Teller file (random, cached).
UPIl-\TE Teller file.
READ Branch file (random, cactlrd).
UPD.\TE Branch file.
Send 1000byte reply 10 TCP.

Data-base Description. The applicalion
base in this test consisted of over 100M bytes
of application data in four files. Three of
the application data-base files were accessed
randomly. The rourth file, an entry­
sequenced log, was written sequentially,
one record for each transaction. All three
structured-file types were used. Table 2
contains a complete description of each
applicalion file.

J l , E I • I '

""'" Inlorm.llon

'Of --­... ~---
to< ---
~

S)'SltJn Dt.scription. In Figure 5 is a dia·
gramofaproceoor pair. The system con­
sisted of NonStop TX P processors with
4M b)'te5of memory each. There were four
31()s disc controllers per processor pair. Six­
teen disc drives were used to make eight
mirrored mJumes. Five hundred simulated
terminals m equally distributed on the
S)'llem.

Pn:Jctss Ulj'OUt. Processes "cre evenly dis­
tnbuted (0 balance the processing load. Two
disC\'oIumeswert "primarioo" in each CPU.
An equal number of TCPS per CPU "cre
mol lfi,tfor DPI and three for DP2). The
TCPcoo.figuration under DP2 was changed
to IJOVide additional monory for the disc
jIOCtSl<S. Approximalely 100 pages of
m:mory Wert saved by reducing the number
ofTCPs in a CPU. Three DP2 disc processes
JI" ,llIu,", (the clefaull) "ere SYSGENcd.
Simulators and servers Wefe evenly
disJriblJled .

Ptr/Olmanct Results. The: number of physi­
tall/Os required to complete a transaction
i'" reduC<d by 12.3 wilh DP2. In the leSl,
18.9 dISC I(OS were required by DPI, while
~Y6.6dISCilO,.ere required by DP2 for
t. ~transaction, This is a 65070 reduc·
IIOIl In total disc li DS.

~~nt or CPU time required per
I0Il was neduced by 25'1. for DP2.

l~ ~ test. ~ DP2 system required a
IOCR:3Se In the tOlal amount of memory

'" ibaJ • "'Iulred by the DPI system. (Disc
~ "ne not included in this figure. J f
dloc~~?e sizes. this increase

roo. bemaddJllon to the: 10070 increase
i'QIl1red by DP1.)

~All disc caches were between 64K bytes
iJ,i 128K bytes. For bOlh the DPI and DP2

ems, adequate cache was provided.

r---­
t: \ E

I , , ! ' TANO(M

Dma-basc SOjt are

~- L..- ,_

SYSTEMS

-""
.................... ~

3>06 ____ -j
Otec (IC)fIlroIai"

'--___ 3>06 ------i r o.c COf1lro1er

//1 \~
-...

/ /
/

/

1-
______ 3>00

OIec;(lC)fllI'oIIr

FigureS.
A processor pair. In the
on.line IruflSiJ('lion·
processing (OLTP) tesls,
the system consisted Q/'
NonStop TXP processor
poirs with 4101 bytes oj
memory in (!Q('h
processor. There were

jour 3 I 06 disc coni rollers
per processor pair.
Sixteen disc drives were
used to make eight
mirrored volumes. Five
hundred simulated
terminals were equally
distributed on the system.

39

"

Dalil'basi> Soltware

FJgure 6.

Respollse rime I'S.
throughpUT Jor Ihe OLTP
app/icalion. The 1I.'S1
application, pol/ern(!{/ on
a large retail-banking
applicofiOll, used Jhe 11111
EA'COMPASS line of
app{icariofl-del'efopment
prodllCtS, indllding TMF.
The datu base ronSiSIM
0/ 0I'er 100M bytes in
[ollr files; Ihne we"
accessed randomly, and
OfJe "'os wTil/en
sequentially. All three
stTllclllred-flle Iypes weN'
used. Pro<l'SSi's were
evenly dislributed to
bal(lIIC'e Ihe /oa(I.

Flgur.6

3.'

3.0

" ,,"CP'
• '.0

1 "
>.0

0 .'

0.0
0 , •

Response Time and Throughput. Response
time and throughput improvements are pre­
sented in Figure 6. For applications with a
parricuJarly suingent response-lime require­
ment, DP2 offers a significant reduction. In
the test, at six transactions per second (for
95% of the transactions processed), DP2
provided a response time of .75 seconds,
while, at the same transaction rate, DP!
yielded a response time of 1.25 seconds.

A more interesting and meaningful obser­
vation can be made by comparing the work
load that the system can process at nearly
iden tical response times. If a 1.25-second
response lime is requ ired for 95010 of the
transact ions, A06 DP! provides six transac­
tions per second (TPS). DP2 can deliver
10.2 TPS at this same response t ime. This is
a throughput improvement of approximately
1.7 times, when identical hardware is used.
The improvement is similar at higher and
somewhat lower transaction rales and for
average response times.

,
"

110 Reductio" . The TMF audiHrail write
activity has the most dramatic reduction of
1I0s per transaction . Where DPI required
nine audit writes to three files. DP2 required
two writes to a single file (i.e., a single write
to a mirrored disc). This 1/ 0 reduction, in
combination with the buffering of the appli­
cation data base (three mirrored writes to
cached files or six I/ 0s), accounts for the
reduction in disc-busy time per transaction
of 130 ms. DPI required 300 disc ms per
transaction, DP2 only 170 ms.

Decrease i" Messages. More efficient check·
pointing of messages to the backup disc pro­
cess, audit disc process (ADP), and backup
ADP is the reason for the balance of the
CPU-busy reduction. The decrease in mes­
sage traffic had many other side effects as
we ll.

Since the dispatcher is responsible for lhe
sending portion of an interproce s commu·
nicalion (iPC), a reduction in dispatches per
transaction was measured. The dispatches
per transaction were reduced from 367 to
222 (40070) as a direct result of the overall
reduction of 3.710 I in message bytes per
transaction. The disc process experienced
a 5 to I reduction in message bytes per
transaction.

TANDEM SYSTfMS REVIEW

............ ________________________ ~l

Table 3 shows the message traffic in more
detail. DP2 sends one-hair as many messages
as OPt; furthermore, the remaining mes­
sages are one-ha lf their previous size .
(These figures were obta ined without audit
compression.)

Imerrupts. Interrupts serve many purposes;
one of these is the completion of interprocess
communications via BUSRECEIVE inter­
rupts, and another is the processing of previ­
ously requested EXECUTE 110 (EIO) requests
to and from the channel. Because of the
reduction in disc 110 and message traffic,
CPU lime spent processing interrupts has
been reduced by 33OJo. A breakdown of
CPU time for both DP2 and DP! appears in
Figure 7.

Surprises and Items of Imerest. System bal­
ancing and luning with DP2 was quick ly
accomplished. Whereas with DPI, resource
consumption depended upon many physical
file characteristics, DP2 displayed a "generic
access" pattern. Thus, in DP2, an access was
simply an acce s. A scqueOlial or random
write to a cached file required approxi­
mately equivalent re ources. This made disc­
process balancing with DP2 easy.

Allure 1

,eo ...
".
"" !

K80
80

"

• ""'-

Processes and files were carefull y bal­
anced in the tests for both OPt and DP2.
Substantial ba lancing and rebalancing (such
as tuning cache, moving processes to less
busy Cpus, and moving files to less busy
discs) is normally required to gain maxi­
mum system performance, but with DP2.
only the in itial balancing after insta llation
was necessary.

The first DP2 benchmark showed all
processor-busy limes within 2% of each
other. The last benchmark, with a CPU-busy
of 90070, showed a response time of less than
three seconds for 95070 of the transactions,
and the CPU-busy was still ba lanced
within 3010,

T. ble3.

Number of messages and message bytes dispatched
per transaction In the OLTP teslsc' --;;:=::::-:::::,-_

"~ ... Message byres
per tr.naael1011

ADS OP1 BOO OP2
OIK Pfl)Ce$9 " 36

ll:P 8 8 _.
8 8

Flepley {s-nulllOIj , , -- ,
"" "" 56

OP'
• OP.

-......

pel" tr'/lNC!lon

AGe OPt BOO OP2
~,771 10.120 .. ,.. ,,,.,
." '" 677 '" '" '" 61.088 16.581

-'MF

TA-'DE M S Y STE M S RP V I E W

D(/fa·ha~,' Softwure

F1gure 1.

A breakdown qf CPU
time for A 06 DPI and
BOO DP1, os meosurtd in
rhe OLTP applicotion
tests. TMF wos used with
bolh disc processes .

"

DoUt-base Sol/ware

42

The throughput improvement of 1.7 times
for equivalent response times measured for
DP2 can be allribUied to several factors . As
shown in Figure 6, at a three-second
response time (for 95"10 of the transactions)
the average cpu-busy for DP! was 75010. As
a result of cache buffering and disc-process
multithreading, DP2 operated in excess of
90% utilization and still delivered the same
response times . This ability LO operate at
higher CPU Ulilizations, coupled with the
decreased CPU requirements per transac­
tion, explains the improvements measured
for DP2.

In other tests, configured with three DP2
disc processes on a single volume, two inter­
esting observations were made. When physi­
cal access was required to retrieve records
from disc, three disc processes could swamp
the disc with requests. When cache access
was provided, these three disc processes
could swamp the CPU with requests. It
should also be noted that the number of
requests per second that could be sat isfied
unde.r these conditions improved from 1.3 to
7.5 urnes, depending on the file type and
access mode.

Use of a single audit trail improves the
perforf!1ance C!f m~st a~plications as long as
~he enllfe audlt-trali wnte (per transaction)
IS les.s .than 4K bytes . For applications
requlI:mg more than 4K bytes of before and
after Ima~es and commit records, audit
compressIOn may shrink the audit buffer
do~n to less than 4K bytes per transaction.
ThiS 4~-byte boundary is important because
t~e entire buffer is written for each transac­
tIon commi.t. When more than 4K bytes
mu~t.be wrillen for each transaction, an
auxlhary audit trail should be configured on
a ~parate volume. (Also, auxiliary audit
tral~s sho~ld be configured if parallel recov­
ery IS deslred_)

Configuration Issues
For most applications running on NonStop
TXP processors, three DP2 disc processes
fully utilize the disc and CPU hardware.
When buffering is fully utilized, process­
balancing provides maximum system
throughput. File balancing (in accordance
with the new physical-access requirements of
the system) is also required to improve
throughput.

As DP2 uses buffered cache for writes
small 10 medium files that are randoml;
accessed should now be entirely cached, and
adequate cache should be configured for
them.

Also, in general, larger caches for all files
should be provided. There are two reasons
for this. One is that writes can now be
"hits" in cache. In DP!, a physicaJ write
would have been required to nush the write,
no matter how large a cache was configured.
The second reason is that the additional disc
servers provide more access 10 the cache,
making a larger cache more useful. The
enhancements to PUP mentioned earlier
make it easy to configure and measure larger
caches on-line_ (Note that when cache is
reconfigured, it is f1ushecL)

Also, cache can be more effectively uti­
lized when multiple servers are used. The
same is true of disc drives when more appli­
cation files are placed on a disc volume.

Application Issues
The performance of many different types of
user application will improve with OP2.
Applications that wiU benefit most are those
that write sequentially and use buffered
cache. Those that write randomly and use
buffered cache will also benefit greatly.

Any application audited by TMF will
experience major performance improve·
ments, and those requiring periodic backups
or restorations will find the amount of time
these require to be dramatically reduced.

S Y S T E M S

The performance of read-intensive applica­
tions that use mirrored-disc and multi­
threaded requests will improve, si nce the
mirror copy can now service a separate read
request.

Applications that will benefit least from
DP2 are those that cannot usc any of its new
features. If an application does not use TMF
or buffered cache, has only one request out­
standing to a volume at one time, or is
already Cpu-bound, its performance should
not be significantly improved with DP2.
Even for this type of application, however,
reliability and recoverabi lity are improved
with DP2.

Future Work
DP2 performance in many different modes
of operation has been examined . As per­
formance studies cominue, more will be
learned about DP2's operational characteris­
tics. Some of the performance areas being
studied are:

I. BOO DPl vs. DP2 performance.

2. DP2 performance on OLTP applications
that do not usc TM F.

3. DP2 performance on the NonStop 0
processor.

4. The time and resources required by File
System atoms (basic units of work).

5. Audit-trail compress ion and its effects on
CPU-busy, message Lraffic, and audit trail
size .

AJso, as more user applications convert 10
DP2, more data about its performance will
be available for anaJysis.

Conclusion

DP2 performance is substantially improved
over that of A06 DPI, as a result of the sig­
nificant improvements in its implementa­
tion. Applications using DP2 with BOOTMF
will realize tremendous savings in disc 1/0.
Those applications using cached or sequen­
tial writes will see a dramatic reduction in
disc 110.

In the tests described in this article, less
CPU time was required by DP2 for equal
work. With DP2, fewer messages are sem,
fewer CPU interrupts are generated, and
more CPU time is available for use . Also,
BACKUP2, RESTORE2, and FUP provide
substantial performance gains. These
improvements in performance are accompa­
nied by the improved reliability. recoverabil­
ilY, and functionality provided by OP2.

Adm_-Irdgmral$
Much of lilt information in lhis arlklc "''8$ derh'ed from ()',tt
six mOlllhs of performance meaSUTemenl and analysis by Ihr
Performance Analysis and Measuremenl irouP in Software
I)eo.-clopmenl. Ttv: mcmbn's of lhe group ate Pal Beadles, Anil
Khal ri. Dennis Markl. Prarul Shah. Susan Truong, and Ihr
amOOr. Many other i roups contriblnal informalion as ell.

JIm ElIrighl. Manager ollhe P9rtormance Analyala and Measure­
menl group In SOltware Developmenl, Joined Tandem In August
1983. His group has reeenily been Involved In lesllng and analYl-·
ino lhe performance 01 OP1 and DP2, along with Ihal of olher
Tandem soflware and hardware product!.

JUNE 198 5 TANDEM SYSTE M S RP.VIEW

/)lltll-ixlSe SO/tWllre

43

44

A Comparison of the BOO
DPI and DP2 Disc Processes'

Maximum extents per file:
Nonparlilioned

Partitioned

Maximum number of
partitions

Number of directory extents

Largest extent

Legal block sizes

Block-header length:
Relative

Entry-sequenced
Key-sequenced data
Key-sequenced index

Bit-map blocks (Relative,
key-sequenced)

Maximum number of
records in a block (N)
for different record
lengths!

DPI

16

J 6 x the number of
partitions

16

65535 pages,
134,215,680 bytes

512,1024,1536,
2048, 2560, 3072,
3584, 4096 bytes

20 bytes

Do not exisl

N ~ (B-22)/ (R + 2)
where
B - block lengt h
T = record length

'A - ~.jlo:d "<rlion oflhisdoan appnn ill I"" £VSCRIBF. ~ ,\ "."wtI, Pan No. rut) AOO

'IQ [)P2 . nloml and .l!ft'ftlIIO-kcyinfomwioll shart tilt _ .. ~.

'The ma.imulII number oI'm,o"h in anyblcd.;' 51 L

DP2

Variable (more than 16)1

16 x the number of
partitions

16

978

65535 pages
(includes bit maps nO(
available for data storage)

512,1024,2048,
4096 bytes

) 20 bytes

30 bytes
24 bytes

18 bytes

N - B-X/ (R + 2)
where
X "" 22 for relative files
X = 22 for cntry-scquenced
X - 32 [or key-sequenced

{)ma-base Soft are

I)P I DI'2

• Maximum record length
(Block size - 4096):
Relative) 4072 bytes) 4072 bytes
Entry-sequenced

Key-sequenced 2035 bytes 4062 bytes

Unstructured 4096 bytes 4096 bytes

Controllers 3106 3106

3107 (treated li ke 3 107 (long transfers)
3106)

Key-sequenced index and May be different sizes Must be the same size
data blocks

Lock search Sequential search Hash-code access to
on locks by file lock table

Audited files and Audited files and Audit-trai l fi les
audit-trail files aud it-trail files cannot exist on the

may exist on the same volume as audited
same volume riles

Audit-trail file contents Monitor Audit Trai l: Master Aud it Trail:
Commit and abort Commit , abort. and
records data records

Data Audit Trail: Optional Auxiliary
Data records Audit Trails:

Data records

Cache Binary search Hash-code access

Not dynamic Dynamic

Write-through. Buffered option
buffered for
audited files

L RU Access Mode LRU , sequential,
direct 110 access
modes

JUNE 198 .. . T ANOE M SYS T E M S RE V I E W

Increased Code Space

Flgul1I1.

A U8er proceu C01l8Ut8
of ll8er-code 8pace fUe}.
Uler-library 8pace ruL).
and a u-ter-dala
8egment fUDJ.

Figure 1

UHr-eode apac. (tICl

'"""''''''' .-... """"'.

..

andem NonStop U,
NonStop TXP, and
NonStop EXT systems
were originally designed
with a limit of 64K words
of user code and 64 K
words of user-library code

(128K words in tolal) per process. With the
BOO software release, this limit has increased
to 2M bytes for user code and 2M bytes
for user-library code (4M bytes lotal) per
process. Also, system-code area has been
expanded from 128K words to
4.125M bytes.

These enhancements were added in
response to user requests for morc user-code
space and in response to the need for
system-code expansion. They are an integral
pari of the GUARDIAN 90 operat ing system
and are not an optional product. DEBUG,
INSPECT, and BINDER are the only products
in which the user interface has been changed
as a result of the enhancemenls.

User~ltnry 'PaC_(ULI lMM-'IUoti Mgmenl fUDI - """"-..... "" -- """"'.

I

Users having programs that require more
code space will find creating and managing
mu lLisegment program files very simple. File
creation and maintenance for programs with
single-segment files have nor changed.
Multisegment program files are juSt an
extension of single-segment program files.

Uscr Code and Library Code
A running process consists of compiled
instructions in code space in memory that
manipulate data contained within a separate
data segment in memory. Code for a process
consists of user-code space (Ue) and
optional user-library space (UL). The user­
code space contains the code from the pro­
gram file and the user-library space contains
the code from the library file specified in the
RUN command. Figure 1 illustrates this.

In the GUARDIAN 90 release. user-code
space and user-library space have been
increased from one 64K-word segment each
(i.e., J 28K words of total code per process)
(0 up to sixteen 64K-word segments each.
That makes 2M bytes (I024K words) of
user-code space and 2M bytes (I024K
words) of user-library space, adding up to
4M bytes (2048K words) of total code space
per process.

As illustrated in Figure 2, each of the J 6
segments in the uscr-code space or user­
library space is defined by a space identifier
or SPACEID. The SPACEID is made up of an
identifier (UC for uscr code or UL for uscr
library) and an octal index number in [he
range of 0/00 to 070 17. For example, a
SPACEID of UCA specifies segmelll 0104 in
lhe uscr·code space.

TANDEM S Y S TEM S REVIEW J U 'E I <I
,

Each segment within a code space consists
of sections of compiled source code called
code blocks. Some code blocks are Limited to
32K words because of language resLricLions.
Code blocks cannot cross segment bounda·
ries. Each language defines code blocks and
their sizes differenLly.

COBOL defines a code block as the main
program or a subprogram. The maximum
size of a code block is now 64K words, mak·
ing this the maximum size of a main pro­
gram or a subprogram. (A20 COBOL is
limited to a code block of 32K words.)

FORTRAN also defines a code block as a
main program or subprogram, but it ca lls
Ihemprogram ullirs. The maximum size of a
FORTRAN code block is 32K words.

TAL defines a code block as a procedure.
The maximum size for a TAL code block is
32K words.

Consideralions for
Multisegment Programs
The code·space enhancements do not affect
the designing of applicaLion programs. The
only change is that now more code blocks
can be added to a program fi le. General
rules for creating multiscgment-program
files are discussed be low; they apply to all
languages.

Code~block Location
Multiple code blocks can res ide in the same
segment as long as the tota l size is less Lhan
64K words.

Code blocks lhat are frequently called
should reside within the same segment as the
calling code block. Arranging code blocks
with this in mind increases the performance
of the application (see the section called
"Performance l

').

Figure 2

lJC.17

U(" UL, ·n uc. ULO

--., ""'""'" "" "., ... ""
II -"". ,. , -

P~rclati\'e Code Arrays
Two guidelines exist for ha ndling P-relative
code a rrays in multiscgment program files:

• Each global P·relative code array is repli·
caled in every segment Ihat conta ins a refer·
ence 10 Ihe array by BINDER. Code~space
requirements shouJd be eva luated with this
in mind.

• The passing of code arrays in a call 10
another code block is not supported; how­
ever, ex isling single·segmenl programs will
continue 10 work.

Maximum Code~block Size
As mentioned earli er, the maximum size for
code blocks is different for each language.
For FORTRAN and TAL, it is now 32K
words; for COBOL it is 64K words.

Code~block N (I mes
The names of code blocks cannot be the
same wi thin a mullisegmcnt program .

JUN E 1 911 5 . TANDEM S Y S TEM S R E VIEW

Operotillf(System

"""'---

Figure 2.

With muUuegment
program files, the
'Kser-code space and
user-library .pace can
contain up to 2M byte.
of code (sixteen
64K-word ctxk
segments) each.

47

Oper«lil1}t System

FIgure 3

ENTRY POINT MAP BY NAME

SP PEP BAS< LIMIT EN"'" ArrAS NAME

" 002 (X"OOO 174627 00"03 '""""SA
" 00' 00"100 174627 001403 ,"""SB

" 002 00'000 174627 00''''' '"""'SC
" 002 00'000 17-4$27 001403 '"""'SO
" 002 00'000 174627 00''''' """'Sf

" 002 00'000 174627 00''''' """,,,'F

" 002 00'000 174627 001403 '"""SG " 002 00'000 174627 001403 ,""",SH
07 002 00'000 174627 00''''' SFW;CSI
06 002 00'000 174630 00''''' SP.o(;f"
OS 002 00'000 174630 00''''' ,"",,'K

" 002 00'000 174630 001403 """"" 03 002 00'000 174630 00"03 ,""",'M
02 00' 00'000 "..., 001403 SPACESN

" 002 00'000 174630 001403 ,,,,",,,SO
00 002 00'000 114630 001403 """SP
" 003 174630 114702 174640 M nsue
t The . tgment number In oc tal

BINDER - OBJECT Fi lE BIND - T9621BOO - f,?8JAN85) SYSTEM' TEST
Object hie name Is $DISC1.COBTESTRUNUNfT

FIgure 3.

Number ot Binder error •• 0
Number ot Srno;ter warnings _ 0
Primary dela _ 16 words
Secondary data. 11527 words
COde area sile - l008pages _ _____ N umbtr OI pag .. requIred
ResIdent code size _ 0 pages for the coo.
Da .. elea sile _ 35 pages
Numb&r of code aegmenrs _ 16segmenrs _ Number of aegmenll uHd

COBOl - 19251800- (28 JAN 85)
The objecl file ~ executable orwy on a NonS;op II ptOC8SSOI
Numbef ot COBOL errors _ 0
Numl;Jer of COBOL walniogs _ 0
Number of source lineS read _ 27570
MaKimUm symboIlabie Ill. _ 4<180 words
Elapsed lime - et31:39

The compiler listing 0/
this multisegment
program file contains
16 segments. Each
subprogram, SPA CESB
through SPACESP.
resides in its own
segment and consu,nes
approxinwtely 63,895

words (decimal) 0/ each
segment. Su.bprogram
SPACEA also contains
the main code block,
T/6UC, which
consumes 63,938 words
(decimall 0/ segment
%17.

CURR ENTSPACE Procedure
A program can determine which segment h
is currently executing by calling the new pro­
cedure CURRENTSPACE. This procedure
relUrns the stack-marker environment (ENV)
register and an ASCII version of the
SPACEJD, 11le syntax for this procedure is:

CALL CURRENTSPACE «ASCU-spact.id»;

ASCII-space-id contains an ASCU string in
the form of <space> . <,> where
<space> equals ue, Ul, SC, or SL. and
< w > equals the octal segment number in
ASCII characters, < Spaceid > is an integer
that contains the SPACEI 0 in ENV register
formal, as fo llows:

SPACEII> Di l (s)

ENV.< 4>
ENV. <7>
E V.< ll:15>

Library bif
SYSlem-code bit
SPACEID biu

Example of a Mu llisegmenl I' rogrllm Fill'
Figure 3 contains an example of a muhiseg­
ment program file created by COBOl. The
source code for the main program and all
subprograms were contained in one EDIT
fi le. The command COBOL I <edit file>,
OUT SS.6LP/ was used to compile the source
and produce the compiler and BIDER
repons.

The tOlal size of the code area is 1008
pages or 2,064M bYles, contained in 16 seg­
ments. In the BINDER repon t "Entry Point
Map by Name," the segment in which a code
block resides is shown under the heading
"Sp," (The segment numbers listed are in
oclaL)

Calling Subprograms and
System Procedures
A nonprivileged process' vie"" of virtual
memory is divided into six short-address
spaces (SASs). The SASs contain (he current
executing user-process envi ronment and part
of the operating-system environmenl. They
are defined in Figure 4.

TANDEM SYSTFMS RE\'IFW Jl'NE 1,,~5

48

Before a process can execute, the mini­
mum number of required pages of the uscr­
code segment and user-data segment are
placed into the appropriate SAS. The user­
library segment is mapped only if the user
has spcciried a library rile and it is refer­
enced (via an XCAl). SYSlem data and sys­
tem code are always mapped (because each
is contained in a single segment). In
GUAR DIAN 90, lhe system library has been
expanded to two segments (SL.O and SL.I).

When a compiler calls a code block Ihat
resides wilhin the same segment, it generates
an internal-procedure reference (PCAl)
instruction. When it calls a code block out­
side of its segment, it generates an external­
procedure reference (XCAl) instruction.

Executing an XCAl instruction for a code
block that is not mapped takes longer than it
docs for one Ihal is mapped. In order for
code 10 execute, it must be mapped into one
of the SASs, If a code block in Uc.o were to
call a code block in a UC segment other than
UC.o (e.g., UC. I through UC.17) or in an
unmapped UL or Sl segment. the call would
lake longer than it would if the called code
block resided in UC.O or if the Ul or SL seg­
ment were mapped.

For example , if the called code block
resided in UC.I, UC.I would first have to be
mapped into SAS 2 (overwriting Uc.o with
UC.I). Once SAS 2 contained the code for
UC.I, the called code would execute. On the
return to UC.O, UC.O would have to be
remapped into SAS 2. This would obviously
require more lime lhan that required for
ueo to call a code block that was already
mapped in an SAS (e.g., UL, SC, or SL) .

Performance
The performance of an appl icat ion can be
affected by the placement of code blocks
within segments in a muhisegment program.
The genera l rule for the placement of code
blocks within segments is: code blocks that
frequent ly call each other should be placed
in the same segment.

Operating 5:I'5/l.'m

Flgllre"

---, IUD) ----'SCI

-....." ...­
'UU

." '" '" '"
"""

To illustrate the effect of code-block
placement on the performance of the
NonStop II and NonStop TXP processors,
two TAL programs with nearly identical code
were written. The only difference between
the two was that the main program and sub­
program of the first program (PROGA) were
contained in the same segment (requiring
only a peAL insLruction) and the main pro­
gram and subprogram of the second pro­
gram (PROGB) were placed in different
segments (necessitating an XCAL
instruction).

Because PROGS'S subprogram resided in a
different segment, segment switching in
SAS 2 occurred between the main program
and the subprogram (creating a longer exe­
cution time). Each program ran alone, pass­
ing no paramcters , and the called
subprogram contained no code, causing an
immediate rcturn 10 the main program. The
code for the twO programs was as follows:

Main loop

Call T1ME(timel);
"'hile count
< 500000 do begin

COUnl: - count+ ID;
call subprog""lcsl;
end;

cal l T1ME(limc2);

PRQC SU I3PROG "'TEST:
begin cnd;

." ."
SAS' "'" 5

Flgllre 4.

For a nOJ/privileged
proce ... viTtawl
memory is divided into
six shOTt·addrelJ8
spaces (SASs). The user
procelJ8 can ezecute
code within Uc, UL,
Sc. OT SL spaces. The
code can manipu/6te
data in the UD or SD
segments.

JU"'(I,,, !I ·TANDEM SYSTEMS RfYIEYo 49

Operolillg System

so

Tabl.1.
Execu(ion time for internal-procedure (PCAL) and
external-procedure (XCAL) reference instructions for
two TAL programs running under GUARDIAN 90.

NonStop II processor
ExecutIOn tme

Microsecond. Cana

"

10.0

The perfonnance timings for the execution
of PROGA and PROGB on the NonStop IJ
and NonStop TXP processors are reported
in Table 1.

The results for both processors show that
an XCAl instruction takes longer to execute
than a PCAl instruction. Programmers
concerned about the increased execution
time caused by inefficient code-block
placement should use BINDER to place code
blocks that frequently call each other within
the same segment .

Note that the NonStop TXP processor
executes PCAl and XCAL instructions faster
than the NonStop 0 processor. This is
mainly because the NonStop TXP processor
maps segments differently in the SASs.
Further information about this can be found
in the System Description Manual for
NonStop systems. in the section entitled,
"Addressing and Memory Access."

Binding a Mullisegmenl
Program File
A muhisegment program file can be buill by
default during compilation (the compiler
invokes BINDER) or manually by using
81 DER to place the code blocks within the
appropriate segments.

Below are a few considerations for using
BIDER with muhisegmem program files:

• The main code block (COBOL, TAL, or
FORTRAN main program) does not havc to
reside within the firs t segment.

• An unused segment cannot reside between
two used segments (e.g., segment 2 cannOt
contain code blocks if segment 0 contains
code blocks but segment I is empIY).

• The STRIP command is not allowed on a
multiscgmeflt program file. To produce a
multisegmcnt program file without symbols,
the compiler directive ?NOSYMBOLS must
be used or the SYMBOLS OFF parametcr
must be specified with the BINDER SET
command.

Figure 5 comains an example of a COBOL
application in which the code blocks have
been arranged to maximize performance.
A diagram of the code-block arrangement is
shown in Figure 6 .

The program consis ts of six code block,
one main program and five subprograms,
SUBI through SUBS. SUB3 is called
frequently from the main program, SUB2
usually calls SUBS, and SUB) and SUB4 are
called only when errors occur. Each of the
six code blocks are 25K words in length . For
maximum performance, MAIN and SUB3
should reside in the same segment, SUB2
should reside with SUBS , and SUB I and SUB4
can reside anywhere.

TA I'I D E M SY S TEM S RF V I E W
JU "; E 1'8.5

\
1
\

!
\

1

!

Compatibility
The usc of multisegment program files
has introduced one incompatibility:
NonStop 1+ programs using procedure
labels Ihal were compiled with a pre-Eo8
compiler do not execute on NonStop n,
TXP, or EXT systems.

Procedure labels are a third mechanism
for calling external or internal code blocks.
They are coded in this way:

STACK @<code-block-name > ;
CODE (Opel);

The first line loads the code block's
address into the register slack (register A).
Register A now contains a procedure label.
The second line makes a dynamic procedure
call. Control is transferred to the code block
specified in the register slack.

When the above code is compiled on a
pre-EOS onStap 1+ compiler, Ihe STACK
operation of the code-block name does not
generate a sct-codc-map (SCMP) instruction.
Because of this, the procedure label is not in
proper form and docs not execute correctly
on a NonStop n, TXP, or EXT system.
Both BOO and pre-BOO onStop n, TXP. or
EXT compilers automatically generate
SCMP instructions after the STACK
code-block-name operation .

The following NonStop 1+ programs
compiled with a pre-EOB compiler are not
transportable to BOO NonStop U, TXP, or
EXT systems without being recompiled by a
BOO/ E08 compiler:

• FORTRAN and TAL programs containing
external-procedure labels.

• FORTRAN and TAL programs containing
internal procedure labels used as a user
library or programs combined with other
program files to create a multisegment
program file.

• COBOL programs that have had the
pre-BOO COBOL run-time library bound into
the program file.

FIIIU" 5

Agurl"

Allure S.

Operati/lg S),SU?l1!

BiNDER - OBJECT FtLE BIND - T9621600 _ 128JAN85} SYSTEM \TEST

_______ Addlnll eode In legment 0 (delsun)
OADO CODE • FROM MAIN
OADD CODE' F. ,""'=::SU::"=--__ _
• ...00 SPACE - AdVlne .. to Mgmenl1
OAOD CODE • FROM SUB2

OADD OODE • F.""'_-'-SU'-"' ___ _
OADD SPACE _ Adune .. to .egmenl2
OADDC'ODE • FROM SUBI
OADD CODE • FAOI.4 SU84
OBUILD PROGFILE

ENTRY POiNT MAP BY NAME

SP PEP BASE liMIT ENTRY ATmS NAME

00 002 000006 060656 000570 " WJN

" 002 000006 _56 000327 SUBI

" OIl' 000006 """56 000327 SU"
00 003 060656 141526 000327 SU83
02 003 060656 14t526 000327 SU ..

" "" 060656 141526 000327 SUB5

UH<~ .~. (UC)

MAIN 9JB2 SUBt --,.,'''".
..iE.'

LlCO UCt UC2

Agure 8.

The ADD SPACE.'
command i. vIet/to
jncn!ment the .egment
number in which code
blocks are odded. The

BINDER "Entry Point
Map by Name M report
show. where each code
block 'IOOS placecL

A diogram of tlte
example COBOL
application in Figll.re 5.

J U -';E 1 9.!iS TA/'lDEM SYSTEMS R EV IEW 51

~-'.-.~ - ---.....-. -------------------------,.

Operolillg SYSlem

52

The transportabi lity of multisegmenl
program files is restricted in the following
way:

• Multisegment program and ljbrary fi les do
not execute on a NonStop I+ system. They
fail with an Illegal Program File Formal
error message at run time .

• The condition code (CC) and register
pointer (RP) fields of the ENV register in the
stack marker now comain the encoded space
identifier. Therefore, any program that reads
the CC or RP from the stack-marker ENV
register must be recoded to obtain those
values from the hardware ENV register.
(Trap handlers, the only exception 1.0 this
rule, are d iscussed in the fo llowing section .)

T he BOO TAL compiler reports warning
messages when it detects an equivalence to
L(-I J (the location of the saved ENV register
in the stack marker) in the declaration of
variables.

• TAL programs that comain private trap
hand lers (by calling ARMTRAP) may have to
be modified. Trap handlers also require that
the stack be one word larger.

Compatibility problems within existing
program files can be detected with CODEY, a
program supplied with the BOO release.
CODEY is a utility that detects programs that
inspect or modify the cc or RP bits in the
stack-marker copy of the ENV. It searches
program files for references to variables at
L(- IJ and displays a warn ing if the CC or RP
(bits 10- 15) arc used. Any warnings reported
should be closely examined to determine if
thc use of the ENV works correctly on a BOO
system.

CODEY has the option of checking one
file, a subvolume, or all program files on a
volume. It also has the ability of dumping
selected code or displaying procedure names
within a program file. CODEY can be run
from $ <volume> .GUARD2.CODEY. Docu­
memalion is on S < volume> .GUARD2.
CODEYDOC. The HELP command within
CODEY is also useful.

Trap Handlers
DEBUG is the default trap handler for all
processes; however, a program can run with
a private trap handler by calling ARMTRAP,
as follows:

Call ARMTRAP «traphndlr-addr>,
<t rapstack-addr>);

In multisegment program files. the call to
ARMTRAP to initially arm a trap handler
must be in the same segment as the trap
handler code. A simple way to insu re this is
to put the call to ARMTRAP in the
trap-handler procedure:

PRQC arm"'thc"'traphndlr;
BEGtN

ENTRY trap"'handler; !Emered here to initially
set up the trap handler.

CALL ARMTRAP(@trap"'handler,

RETURN;
Irnp"handt~:

SLMIN(LASTADDR.r,77777)
- 350):

END: !ann"'the"'traphndlr

Existing trap handlers work on BOO
NonStop systems unchanged. A trap
handler might need to be modified to run
on these systems only if the programmer
wants to access the SPACEID located at
L(-SJ in the trap handler' s stack. The
pseudomarker for the trap handler is
allocated as follows:

Trap-handler
pscudomarker

Li(-6(
Li(-S(

U(--4(

U(-J(
Li(-2)
Li(-I)

Li[O(
Li(+ Il:LiI+81

Allocation

< trapstack-addr >
Slack marker ENV with
SPACtO al trap
Mask register
Sal the time or trap
P at the time of trap
Hardware ENV at the time or
'niP
L at the lime of lrap
Registers (RO through R 7)

TAI'IDEM SYSTEMS REVIEW

,

l

l
i

"

Because onc word was added to the
pseudomarker in the trap handier's stack,
the amount of space avai lable to the trap
handler is reduced by one word. This has an
impact only on those programs that allocate
exactly the number of words necessary in the
trap handler's stack.

To insure that a trap handler can execute
on all systems , the word referenced by
<trapstack-addr> must not be used.

DEBUG, INSPECT, and XRAY

DEBUG, the operating-system debugging
facility, has been enhanced to support
muhisegment program files.

INSPECf, the interactive symbolic
debugger, also handles multisegment
program files. A low-level-command syntax
has been extended to allow references to
specific segments within the user-code and
user-library spaces. The high-level syntax is
unchanged. References to code blocks are
mapped to the correct user-code or
user-library segment.

The XRAY performance measurement tool
has been changed to adapt procedure- or
code-range measurement to user-code or
user-library spaces. All existing key words
except SYSTEM LIBRARY CODE MAP are
accepted. New key words allow the
measurement of a specific segment within
the user-code or user-library spacc.

SYSGE

The system-code area now consists of up to
32 segments in the system-library space and
one segment in the s),stem-code space.
GUARDIAN 90 has used only three segments
of the possible 33 segmenLS: SC.O, SL.O, and
SL.1. The number of segments required will
change with each release of the operating
system.

In earlier versions of GUARDIAN,
SYSGEN builds one work file for each of the
two system-code spaces, SYSGEND and
SYSGENE. SYSGEN (using BINDER) now

builds as many work files as necessary to
contain all of the system procedures. The
single system-code segment (SC.O) is built in
the work fi le SYSCODOO. The system-l ibrary
segments (SL.O - SL.37) are built in the work
files SYSLIBOO through SYSUB37.

SYSGEN builds the system code and
library segments from the object files named
in TANDEM"SYSTEM L1BRARy FILES in
the CON FAUX file. SYSGEN uses the order of
the object files in this list to determine the
segment to which the code should be added
(SL.O or SL.I). The most frequently
referenced procedures are in object files at
the front of the list ; infrequently called
procedures are at tile end of the lisl. With
infrequently called procedures located in
SL.I, the number of map switches is
minimized since SL.O is usually mapped.

Conclusio n

The suPPOrt of multisegmel1l programs in
the GUARDIA 90 operating system has
greatly increased the maximum size of a
program (10 4M bytes). This new capability
obviates the need to break up large
applications into several processes that must
communicate via the Message System.

The enhancement 10 the GUARDIAN 90
operating system is a standard one,
preserving the forward compatibility of
existing applications. The implementation
has minimal impact on the way users
currently create and maintain applications,
requiring liltle user education .

Ack_kdglnC'nU
Dennis Aiello. Marsha Brewer. Mal:!. Chandra. JdT I.ichtman.
Don Me)'er. Bob Montevaldo. Carl Niehaus, and Ann Whitesell
pI"O\'icled valuable review comments. A speciallhanks to Cindy
Sidaris 10.00 provided tl:('hnkat expertise and was largely
responsible fOf Ihis anicle.

Arthur Jordan haa suppcwled the GUARDIAN operating
system In the Corporate Support Services group Since 1983.

JOlliE Iqti ~ ·TA~OEM S,(ST[MS RE\IE~

Operating System

53

New GUARDIAN 90
Timekeeping Facilities

xtensive enhancemcms
to the timekeeping
services offered by the
GUARDIAN 90 operating
system have been added in

-::~~_ ... L the BOO software release. I
_ These features include:

• Four-word, microsecond-resolution time­
stamps based on the Julian date (GMT).

• CPU clock-rate averaging.

• Clock-rate adjustment.

• Automatic Daylight Savings Time (DST)
adjustments.

• Julian-date conversion routines.

• A callable procedure to set system clocks.

• An optionai lN file for the cold-load
Command In terpreter.

This artic le discusses these new timekeeping
fea tures and the rationale behind them.

'Tho prODe$,.rimifli bI" 011"" IlOO trioaot >101 ~ of r""
Ol;.\RDlAN 9O'i~ f.,ililios rt..... arc _ d~ hrrt. S«
I"" .,.,It. MNc-.o- Pn>ocsHimitw Fi:2lPIft. - b)- Sunil SIwma. ra.. ~
« r/lis r(;1l~"".

Terminology

Knowledge of (he following definitions is
helpful for understanding the discussion:

• Greenwich A1ean Time (GMT) is the pop­
ular name for UTe, Coordinated Universal
Time.

• Local Standard Time (LST) is GMT
adjusted by the time-zone dirrerence for the
local time zone. It does not include DST.

• Local Civil Time (LeT) is Local Standard
Time, including the adjustment for DST.

• Daylight Savings Time (DST), also Sum­
mer Time, is a system that extends the
amount of daylight in the evenings by
advancing the civillimc. Usually. but not
always, this is done periodically in hour
increments. In the United States, DST begins
at 2:00 A.M. on the lasl Sunday in April and
ends at 3:00 A.~1. (DST) on the 1asl Sunday in
October. The United States advances the
time by one hour.

• Julia" Day Number (JDN) is the integral
number of days since B.C. 4713 January 1,
according to the Julian proleptic calendar.
The formal definit ion of the JD states that
the JD starts at noon, Greenwich. For sim­
plicity, the GUARDIA 90 timekeeping fea­
tures assume the J D starts at midnight
local or Greenwich lime, depending on the
base of the timestamp.

• Gregorian Calendar is the common civil
calendar. It was instituted in 1582 by Pope
Gregory XW. It has been adopted by and is
in use as the civi l calendar of almost all
countries .

TANOEM S \ ST£ M S R E VI E W

t
I

•

I

In addition, the fo llowing terms are used
in this article:

• GUARDIAN 90 timekeeping facilities refers
to one or all of the enhanced timekeeping
features provided in the BOO release of
GUARDIAN 90. It does not refer to a system
process; there is no single GUARDIAN 90
timekeeping process.

• Three-word timestomp or old timestamp
refers to the three-word timestamp used
by the TIME and CONTI~'IE procedures.
This timestamp representS the number of
cemiseconds (.0 1 second) since 00:00
December 31, 1974.

• Julian timestamp, four-word timestamp,
or new timestamp refers 10 the four-word,
microsecond-resolution timestamp based on
the Julian Dale that is provided by the new
timekeeping facilities. Its va lue represems
the number of microseconds since B.C. 4713
January I, 12:00 (Julian proleptic calendar),
GMT.

Motivation for the New Facilities

As Tandem's software products and cus­
lamer applications have become more
sophisticated, and particularly as networks
have been implemented across comincms
and around the world, a need has evolved
for more extensive timekeeping facilities
than those offered by the GUARDIAN operat­
ing system. The GUARDIAN 90 timekeeping
facilities are Tandem's response to this need.

The new four-word timestamps, in addi­
tion 10 providing greater resolution, are eas­
ier to manipulate. Computations using the
new timestamps are performed simply by
treating the timestamps as decimal (quad)
quantities.

Applications can now enjoy the support
of GMT, conversion to and from Local Civil
Time or Local Standard Time, automatic
correction of Local Civil Time for Daylight
Savings Time adjustments, and the ability to
determine the local time at other nodes.

A procedure to set the syslem clock pro­
vides for the interrogation of an externa l
clock and the setting of system time accord­
ingly. h may be used simply to avoid having
an operator initia lize the system time after a
cold load. Electronic clocks that monitor
government broadcasts of standard time
(WWV in Ihe United States) are available.!
Use of such a clock provides a method for
synchronizing the system clocks of geo­
graph ically distributed Tandem systems.

Compatibility with Existing Facilities

The GUARDIAN 90 time keeping raci lit ics are
upward ly compatible; no changes are neces­
sary to ex isting programs that use earlier
GUARDIAN timekeep ing faci lities.

Support of Existing I' roccdurcs
The existing GUARDtAN TIMESTAMP and
CONTIME procedures (which use the old
three-word timestamp) and the TIME proce­
dure will continue to be supported.

Use of the RetK Inst ruclion
The RCLK instruction returns a four-word
integer, representing the number of micro­
seconds that have elapsed since 00:00
December 31, 1974. Some programs attempt
to usc this instruction for elapsed-time mea­
surements. This method is potentially unre­
liable, as processes arc subject 10

interruption, unless they are privileged and
running under interruption. Users are
encouraged 10 employ the new BOO process­
timing facilities, specifically the procedure
MYPROCESSTIME, instead of using RCLK .

'\\;wv ~ d",c:oll IrIlen <II"'" u.s. f'MI'nmml "'1c><l1III1oa. ThiI_ioD
~ 11"'1;""" botl. iu .. aCldio in binary ~iOII.

J U~E ICJII~.TA~ I)E M S Y S T E M S RE V I E W

Opero.lillg ~)'slem

"

OperolillK SPWIII

Figure 1

New J ULIANTrMESTAMP
Procedure

One of the key addit ions to the timekeeping
fac ilities is the JULJANTH\lI ESTA~IIP proce­
dure. It returns a four-word, mic rosecond­
resolution timestamp based on the Julian
dale (GMT). The external declaration for
Ihis procedure is defined in Figure I.

FIXED PROC JUUANTIMESTAMP (TYPE. TUID) EXTENSIBLE, CALLABLE;
tNT TYPE;
INT .TUID;
EXTERNAL;

FIXED PROe COMPUTETIMESTAMP (OATE"N"'nME. ERRORMASK) EXTENSIBLE:
INT .DATE"N"TlME;
INT .ERRORMASK: ! Optlona!. Returned
EXTERNAL;

Figure 1.

The external declarations
for Ihe nek' pt'(K'e(lures
JULIANTIM/;-STAMP
and CO,\I/PUTETIME.
STAMP.

TYPE is an optiona l parameter; if sup­
plied, it indicates which timestamp the ca ller
is requesting:

Tn)(' Ju lian limcslamp relurned

o Current GMT (defauh)
I SYSlem load GMT
2 SYSGEN GMT

TUIO is also an opt ional pa rameter; if it
is suppli ed, a " ti me-update 10" is ret urned
in TUIO. The 10 can be used with the proce­
dure SETSYSTEMCLOCK, desc ri bed later.
The time-update ID is used iIHerna ll y for
consistency checking; it has no ex terna l use.
(The timestamp base conversion prov ided by
the new timekeeping faci lities is desc ri bed
later.)

C lock Adjustments

The new timekeep ing systems differ signifi­
cantly from previous GUARDIAN systems in
how clocks are SCt a nd synchronized, how
the user obtains and interprets timestamps,
and how processes can obtain clock­
adj ustmem informat ion.

Clock Selti ng
A20 GUARDIAN provides on ly one (nonprivi­
leged) method fo r sclling system clocks: lhe
Command Interpreter (CI) command SET·
TIME. GUARDIAN 90 t imekeeping facilities
include a ca llable procedure, SETSYSTEM.
CLOCK. Also, the SETTIME command has
been enhanced to a llow an additiona l field
with which the uscr can specify the lime
base, GMT or LCT. The SETSYSTEMCLOCK
procedure setS the system clock only if called
by a process ru nning under the SUPER group
10. Simi larly, the SElTIME command can be
executed on ly by SUPER group users.

Clock A\rcraging
A20 GUARDIAN systems synchronize the
system clock in Ihe CPUs within a system by
making forward adjustmel1ls of (he slower
clocks. This has the effect of having (he sys­
tem time fo llow the fastest clock in the sys­
(em. Since one expects a normal distribution
of clock rales around the nominal one
expects this met hod 10 result in fa~t-running
system c1ocks.s

In the GUARDIAN 90 ti mekeeping systems,
the clocks of the various CPUs in a given
sys tem arc averaged . T he resull should be
system-clock rates much closer 10 nomina l
espec ia ll y in systems with a large number ~f
CPUs.

Clock-ra le Adj ustment
T he new timekeeping systems provide a user­
cal lable procedure, SETSYSTEMCLOCK to
set and/ or adjust the system clocks. If t'he
system time is SCt, a SEITIME message is
sent to System processe and those user pro­
cesses Ihat .have requested "new" system
messages via MO ITORNEW. These pro­
ces~s can then respond appropriately 10 the
scll mg of the clock.

TANOEM SY S TEMS RI- \IEW

If the requested time change is small, i.e.,
less than two minutes, the timekeeping
facilities may decide to temporarily adjust
the clock rates to ach ieve the same result .
Adjustment of clock rates is transpare11l to
all processes.

Users who have an external clock will find
this feature useful. A process can poll the
external clock at regular intervals (every
hour, for example), and ca ll SETSYSTEM­
CLOCK to synchronize the system clocks
with the external clock. Presumably, the
clocks will differ very lillie, and the new
timekeeping facilities wi ll adjust the system
clocks rather than reset them,

Daylight Savings Time Adjustmcnt
A20GlJARDIAN timekeeping systems requi re
lhe system operator 10 set the system clock.
Most sites SCI their clocks to the Local Civ il
Time, and when a Daylight Savings Time
transition occurs, it is necessary for someone
to remember to usc SETTI~IE and reset the
system clocks.

With the GUARDIAN 90 timekeeping facil­
ities . the system can be configured to auto­
matically apply the DST correction . by using
either the standard u.s. 1966 rules or a table
of arbitrary DST transitions defined by the
user.

The Local Civil Time, which includes any
OST adjustments in effect, can be retrieved
via the CONVERTTIMESTAMP procedure.
(The results of an RCLK instruction executed
in Ihe vicinity of a DST change arc unpre­
dictable, however. RCLK's result is adjusted
for the DST transition by the SYSTEM
Jl.10NITOR soon after the DST change. It is
not possible to guarantee exact correspon­
dence 10 the microsecond.)

SEITIME Messagc Formal
Five words have been added to the SETTIME
(message type -10) system message to allow
processes to determine Ihe magnitude of and
reason for a time change. The words added
are:

<s}'Smsg > 121 FOR 4 - signed change in micro­
seconds (FIXED imegcr).

<s~msg> 161 - reason

The reason codes are:

o .. initial SElTIIIo'IE, G1IolT & local changed
I - Subsequcm SETTtME, G1Io iT & local changed
2 .. DST change, local only changed.

Time and D.le Conversion
Procedures
Time-conversion IJroccdures
The new timekeeping facilities provide users
of the GUARDIAN 90 operating system with
three conversion routines for manipulating
Julian timestamps. The first computes a
Julian timestamp from an integer array rep­
resenting the date and time. The second con­
vens a Julian timestamp 10 an integer array
representing the date and time. The third
routine converts Julian timestamps from
GMT to local time or vice versa.

The fi rst two procedures reference an inte­
ger array that represents the date and li me.
The array has eight clements conta ining:

Elemcrll Cont ents

ElementlOJ Gregorian year (1984. 1985)
Element JI) Gregorian l110mh (1- 12)
Elemem(2) Gregorian day of month (1-31)
Element(3) Hour of the day (0-23)
Element (4) Minute or the hour (0-59)
Elemelll151 Sccond of the minutc (0-59)
Elemcm(61 Millisecond of the second (0-999)
Elemenl[71 Microsecond orlhe millisecond

(0-999)

Note that the range of the year is restricted:
1 <= Year <= 4000.

COMPUTETIMESTAMP Procedure. This
procedure (see Figure I) computes a Julian
timestamp from an imcgcr array that repre­
sents a Gregorian date and the lime of day.

DATE N ... TlM E is a required parameter
supplied by the ca ller; it is an array of eight
clements containing the year, mont h, day,
elc., as described above.

ERRORMASK is an optional parameter. If
supplied , COMPUTETIM ESTAMP checks
each element of DATE"'N"TIM E for va lidity
and sets a bit corresponding to each element
of DATE"'N"'TI~I E that was out of range;
e.g., ERRORMASK - 070100000 means the
year was out of range.

Operatillg System

57

Op OpemliflK 5)'slem

-Fi<
n
jo
J[

58

INTERPRETTIMESTA M P Procedure. This
procedure (see Figure 2) converts a Julian
timestamp lO an array of integers represent­
ing the same Gregorian date and time of day.
In addition, it returns (as its value) the
32-bir Julian day number.

JUllAN TlMESTAMP is a required
parameter supplied by the caller; it should
contain a valid Julian timestamp.

DATE N TIME is an array of eight ele­
ments containing the year, month, day, etc.,
as described above. It is returned by
INTERPRETTIMESTAMP and contains the
equivalent of the JULl AN TlMESTAMP
value.

The value returned by the procedure is the
Ju lian day number of the Julian timestamp.

CONVERTTIMESTAMP Procedure. This
procedure converts a Julian limestamp to or
from a local Julian timesLamp at any acces­
sible node in the network. The external de­
claration is given in Figure 2.

JUlIAN"'TlMESTAMP is a required
parameter supplied by the caller; it should
contain a valid Julian timestamp.

.DlRECTION is a parameter optionally sup­
plied by the caller. It specifies which conver­
sion is requested and may take the following
values:

Value Con\'ersion

0 GMTlO LCT (derault)
1 GMTIO LST
2 LCf toGMT
J LST to GMT

NODE is an optional parameter supplied
by the caller. It is used lO specify the node
for which the conversion is requesled; it
defaults 10 the local node.

ERROR is an optional parameter, If il is
supplied, CONVERTTIMESTAMP returns the
following va lues:

Va lue Error

-2 Impossible LCT
-I Ambiguous LCT

0 OK
OST Range in doubt

2 DST Table not loaded
>2 FS error to NODE

CONVERTTIMESTAMP returns a Julian
timestamp in the requested base.

Juli an-date Con\'ersion Procedures
The new timekeeping facilities provide users
of GUARDIAN 90 with twO conversion rou·
tines for converting from Gregorian calendar
dates to Julian day number and vice versa.

COMPUTEJULIANDAYNO Procedure. This
procedure computes the Julian day number
from a Gregorian calendar dale on or after
01 January 0001. The Gregorian calendar
dale must be valid. The external declaration
of the procedure is given in Figure 2.

YEAR, MONTH, and DAY are required
parameters and contain the Gregorian year,
month, and day of month, respecti\'eJy,

ERROR is an optional parameter. If sup·
plied, COMPUTEJULIANOAYNO chc\:ks each
element of DATE'\ "'T1l\'IE for validity and
sets a bit corresponding to the parameter
whose value was out of range. Bit 0 indicates
YEAR was OUI of range, bit 1 corresponds to
~10NTH, and bit 2 to DAY.

COMPUTEJULlANDAYNO returns a Julian
day number.

INTERPRETJULIANDAYNO Procedme. This
procedure (see Figure 2) converLS a Julian
day number (0 the year, month, and day in
the Gregorian calendar. The Julian day nurn·
ber must be greater than 1,721,119
(00 March 00(0).

JULIA DAY 0 is initia lized by the caller;
il should cOnlain a valid Julian day number.

YEAR, MONTH, and DAY are used by
INTERPRETJULlANDAYNO to return the
equivalent Gregorian year, month, and day
respectively.

TANDEM SY S TEM S J U~E 19~~

Selling lhe Syslem Clocks

n'lC GUARDIA N 90 timekeeping faci lities
provide twO methods of sc lling the system
clocks. The SETTIME command for the CI
has been modified, and a new callable pro­
cedure, SETSYSTE~'ICLOCK , has been added
to the system libraries.

SETrIME Command
An optional field, the timebase, has been
added to the SETTIM E command of the CI.
The valid va lues a rc GMT, LCT, and LST.
They may be upper, lower, or mi xed case.
The default cont inues to be LCT.

Two new error messages have been added:
Ambiguous Time Specification and Impos­
sible Time Specified. These messages are
output if the LCT time specified is a mbigu­
ous or imposs ible because of a DST transi­
tion. (In U.S. areas where DST is used , 02:30
on the last Sunday in April is impossible
and 2:30 on the last Sunday in October is
ambiguous.)

In addition , users can specify the time to
the second, e.g. :

SEITIME 10Aug 1984. 12:13: 14 GMT

SETSYSTEMCLQCK Procedure
The new SETSYSTEMCLOCK procedure (see
Figure 2) allows the SUPER group or privi­
leged caller to change the system clock.

JULIANGMT is supplied by the caller. It
contains the GMT, in JULIANTIMESTAMP
form, to wh ich the sys tem clock is to be set.

MODE is supplied by the ca ller. It
describes the mode and source:

Value Mode Source

0 Absolute GMT Operator input
I Absolute GMT Hardware clock
2 Relalive GMT Operator input
) Relative GMT Hardware clock

The relalive mode implies that the param­
eter JULIANGMT contains a microsecond
correction, not an actual timestamp. This is
useful for very precise time synchronization
with a hardware clock or for a modera tely
precise method of operator time adjust ment.

Openllillg System

FIIIlIre2

INT(32) PROC INTERPRETTIMESTAMP (JUllAN"TIMESTAMP, DATE"N"TIME):
FIXED JUUAN"TlMESTAMP:
INT .OATE"N"TIME;
EXTERNAL:

FIXED PROC CONVERTTIMESTAMP (JUlIAN"TIMESTAMP. DIRECOON, NODE, ERROR)
EXTENSIBLE. CALLABLE;

FIXED JUUAN"TlMESTAMP:
INT DIRECTION:
INT NOOE;
INT .ERROR:
EXTERNAL;

INT(32) PROC COMPUTEJULIANDAYND (YEAR. MONTH, DAY, ERROR) EXTENSIBLE;
1t(T YEAR;
INT MONTH;
INT DAY:
INT .ERROR:
EXTERNAL;

PROC INTERPRETJULIANDAYNO (JULIANDAYNo, YEAR, MONTH, DAY):
INT(32) JULIANDAYNO:
INT .YEAR;
INT .MONTH:
1t(T .DAY;
EXTERNAL;

!>ROC SETSYSTEMCLDCK (JULIANGMT, MODE. TUID) EXTENSIBLE. CALLABLE;
FIXED JUUANGMT;
INT MOOE;
INT TurD:
EXTERNAL;

Tum is optional. If supplied by the caUer,
it should conta in a time update J D obtained
by ca lling JULIA NTIM ESTAMP. TUID is rec­
ommended when modes 2 and 3 are used to
avoid conflicting changes. The resulting con­
dilion codes imply:

Code Meaning

> TUID mismatch; retry after
redetermini ng relative error.
Time set as requested.

< Insuffic ient capabi lity.

Agure 2.

TM Ull!rno/ dec/orations
./or Ihe new procedures
/NTERPRE1TtMESfAMp,
CONVER1TIMESTAMP,
COMPUTEJULlA N-
DA YNa. and SET-
S YSfEMCLQCi(.

J U NE 1 \l1I~ . T A~OE.M SY STE M S REvlFw 59

-" TI
fa
J[

'" S7

"

Operutitll(Sl'flem

Figure 3

Daylight Savings Time
Consideralions
The nc" timekeeping facilities require
kno" ledge of Daylight Savings Time transi­
lions for the system's location. This infor­
mation allows them to com pUle the Local
Civil Time from GMT and vice versa. For
example, if an operator cold loads the sys­
(cm and does a SETTIME using (he Local
Civil Time, the S)'Slem calculates G~ IT.

One of three options can be specified at
SYSGEN: NONE, TABLE, or USA66. They are
described below:

Option

NONE

U$A66

TABLE

Erreci

DST is nOI observed'lI the system's
location.
The rules used in the United Stales
since the adoption of the Uniform Time
Act of 1966 are 10 be follo"cd.
A table of DST transitions nrc to be
loaded al system-cold-load lime.

DST Table Loading Procedure
The new facil ities include the callable procc·
dure ADDDSTTRANS ITION (see Figure 3)
that allows the SUPER group caller to add an
en try 10 [he DST Transition table.

PROC ADDDSTTRANSlTlON !lOWGMT. HIGHGMT. OFFSET) EXTENSIBLE. CALLABLE;
FIXED lOWGMT:
FIXEO HIGHGMT:
INT OFFSEl!
EXTERNAL:

Figure 3.

The e.rlemol dec/oratio"
/or the new procedure
ADDDSITRANSITION.

o

LOWGMT contains a Julian timc~tamp
that is the GMT" hen OFFSET is first appli.
cable.

HIGHGMT cOnlains a Julian timestamp
that is [he G~1T when OFFSET is no longer
applicable.

OFFSET contains the difference in 5e'l'OOO!
bel\\ecn Local Civil Time and Local Stand.
ard Time (LCT _ LST + orF ET).

The DSf Table must be loaded in lime
sequence and with no gaps; i.e .• except fer
the first call, the LOWGMT of each call mu:
be the same as the H IGHGMT of the pre\ia
call. Thus, many calls have an OFFSET
parameter of zero.

The DST [able mUSI be initialized \\ilhal
leasl one DST transi tion lhal is less Ihan thr:
currenl dale and lime, and at least IWO DST
transitions lhal are greater Ihan the currenl
date and lime. If Ihis is not done before the
SETTIME is enlered, the error message
I lIcorrecl Daylight Savings Tillie COIH'ersiM.
is displayed when [he SETTIME is enlered.

NOle lhal CONVERTTIMESTA,\IP assumo
[hal Iransilions are separated by one day or
more.

ADDOS1TRANSITION Command
A new command, ADDDSTTRANSITIO
has been added to the C I to allow SUPER
group users lO add ent ries lO the DST Tran·
sition Table. The syntax of the new com·
mand is shown in Figure 4. The limits and
sequence restrict io ns for Ihe ADDDSTTRAN ­
SIT ION procedure a lso apply ror this
com mand.

SYSGEN Changes

T hree new clauses have been added (0 the
ALLPROCESSORS paragraph of [he SYSGE\,
inpu t:

• I ITIALCOM INT-I FILE (Optional)

• T Ir.1E.....ZONE.....OFFSET (Required)

• DAYLlGHT_SAVINGS_TIME (Required)

T"~DEM SYSTEMS RE\IF.:\'o

Cold-load Command Interpreter
IN File
An oplional input file spec ified al SYSGEN
has been added for the initial (start·up)
Command Interpreter. I r this option is spec·
iried in the SYSGEN inpul, the file mUSt
exist. It is copied to the SYSnn subvolume
and named e ll FILE. The syntax of the
clause is:

INITIALCOM1NT_INFILE <fi lename >

Sites having an external clock that choose
[0 use the CIIN file option can automate all
of the system·restart activity. After the cold
load is completc, the CII N file is executed
by the cold· load el, running under the
SUPER.SUPER user ID.

The CI IN file typically performs the fol­
lowing activit ies :

1. Sets the system lime by executing a pro­
gram that reads the externa l clock and
sets system time. A sample program,
SClOCK, is provided. II is recommended
that the system clock be set before
any other activity is started. on ly to
ensure that other processes retrieve valid
timestamps.

2. Performs various system stan·up func·
tions, such as starti ng the spooler, start·
ing Command Interpreters, and perhaps
starting the Transaction Monitoring
Facility (TMF) a nd the PATHWAY trans­
action processing system.

3. Starts another Cion the Operations and
Serv ices Processor (OSP). This is because
the initia l cold-load CI terminates when it
has finished reading the CI IN file.

Note that us ing a CII N file does not leave
a CI running and logged on under
SUPER. SUPER, as is the case when the CI IN
fil e configuration optio n is not used.

O"errllill~ System

Figure "

ADOOSTTAANSITION < I tart-date-tlme >. < stop-date-tlme >. < ollset >

< Start-date-t lme > II the beginning ot the period when
< ollset > II applicable and < llop-<Iate-Ume> Is tlla end
01 the period when < oI'sel > Is applicable. The formal
01 <s tarl4ate-lIme > and <lt09-date-llme> II:

I < month·name> < day> I < year >. < hour >:< mln > I:<sec > J I GMT I
I < day > < month·name > I I LST I

< ollsel > Is the dllf'"Jflce betWflfln Itandard lima and
Daylight Savlngl time and Is ot the IOfm

I + I < lIour >:< mln >
[- [

Notl thst < OUSII > must be betweln 8:59 and +8:59.

ExamplBl
ADDDsnRANStTION 28 OCT t984. 02:00 LST. 28 APR 1985. 02:00 LST. +0:00

AOODSnRANSlTtON 28 APR 1985. 02:00 lST. 21 OCT 1985. 02:00 LST. + 1:00

ADODSnRANSlTtON 27 OCT 1985. 02:00 LST. 27 APR 1986. 02:00 LST, +0:00

lSf O ffse t from GMT
The GUA RDIA N 90 timekeeping facilities
require that the spec ification o f lhe orrsct of
LST from GMT be made in hours and min­
utes. The offset must be speci fied in the
ALL PROCESSORS clause as

TIME_ ZONILOFFSET + hh:mm

or

TIMLZONILOFFSET - hh:mm

where "" is an unsigned integer less than 24
and mill is an unsigned integer less than 60.
The following arc some examples:

o rrsel liS specified in
ALLI'ROCESSORS cla use

TIMLZONILOFFSET + 01:00
TIMLZONLOFFSET + 05:30
TIMLZONILOFFSET + 09:00
TIMLZONLOFF$ET - 08:00
TIMLZONLOFFSET - 05:00

Cil l'

Paris
Bombay
Tokyo
San Francisco
New York

figure 4.

The syntax oj the IU'W
ADDDSTTRANSITION
CQmmand for Ihe
Command Interpreter.
This rommantl alJows
SUPER group users 10
add entries to the DST
Transilion 7i1b1e.

JUNE I 'III~ T A ND e M S Y S TPM S HE!VI I! W 61

a

56

Operoli"g~S),,"::c"""'-' _______________ _

Da)'lighl Savings Time Selection
With the new facilities, the selection of one
of three options for Daylight Savings Time
is required: none, a table-d riven method, or
the rules followed in the United States since
1966. As other algorithmic rules arc
required, the appropriate options will be
added.

The new clause to the ALL PROCESSORS
paragraph is:

DAYUGHT3AV1NG~TlME I NONE IUSA66 I
TABLE~

Command Interpreter Changes
The new timekeeping facilities have affected
the Command Interpreter in four areas:

• An additional field in the SETTIM E com­
mand has been added.

• The ability 10 specify the initial CI'S input
file has been added.

• A new command to add an entry to the
DST Transition Table has been added.

• Command execution is now restricted
before !.he first SETTIME.

All bUi the last modification have already
been discussed.

The initial (cold-load) CI executes only
ADDDSTRANSITION, SETTIME, and HELP
commands untillhe first SETTIME com·
mand has been entered successfully. Other
commands result in the message, Please Stt
System Time. If the system was configured
with an initial CIIN file (using the
INITIALCOMINLINFILE SYSGEN _
ter), however. there is no restriction on c0m­

mands executed from the IN rile. This
allows the IN rile to start a process that
communicates with an external clock and
then call SETSYSTEMClOCI\ to sct the S}'S'
tern time .

Sample External Clock
Reading Process
TAL source code for a sample user proce~
that reads an external clock is supplied "ilb
GUARDIA 90. This program, SClOCK,
reads the external clock and setS the s)~lem
clock immediately. every rive minutes, and
whenever a CPU is powered on.

Benefits of the ew Facililies
The new timekeeping facilities significanth
enhance the timekeeping services of
GUARDIAN 90 in several areas.

Application Des ign
The use of GMT timestamps facilitates the
design of applications in a geographically
distributed network. Procedures that con·
vert timestamps between GMT, LST, and
LCT, on both local and remote nodes. as
well as being aware of Daylight SavingS
Time, simplify the design of global-nelv.or~
applications.

.2 TAN D EMS Y S T E ~ S REV IF'" J l' '" F
, ..

The enhancemellts to the SETTI1\·tE mes­
sage permit applications to detect when and
why the system clock was reset and deter­
mine the magnitude of the change.

The microsecond resolution of Julian
timestamps makes them more useful for
identification of events. If twO events occur
within .01 second. the old TIMESTAMP pro­
cedure might have returned the same value
10 both. making the timestamp useless for
determining the sequcnce of events.

Programming
Four-word Julian timestamps and Julian
date conversion routines simplify program­
ming tasks that involve timekeeping.

System Management
Automalic adjustment for Daylight Savings
Time changes eliminates Ihe need for an
operator to do a SETTIME when these
changes occur, reducing potcI1lial operator
errors .

The ability to read an external clock and
set system time completely eliminates the
possibility of the operator's making an error
when setting the system time. Users lhat
have an external clock and choose to use the
CIIN file option can automate all system
restart activity.

Finally. the new algorithm for CPU
dock-rate averaging should provide more
accurate system times than those provided
by previous releases.

Conclusion

GUARDIAN 90 timekeeping services contrib­
ute significantly 10 the effectiveness of
Tandem systems for appl ications thaI require
accurate timekeeping and for geograph icall y
distributed networks.

Ackno ... lfilgmtnIS
Glenn Peter50fl is responsible for the design, documentation.
and initial impicmentation ortheGlIARDIAN 9Otimckeepil13
facililies,

Eric H.II.n joined Tandem In Ftbruaty 1979 as a member 01 thl
Soltwaft Ou.'lly Assurance group. He d.slgned and Imple­
mented 1 llrst Tandem terminal slmultlor, which was used lor
QA tesllng and belll;hmarlll, H. ha.s worked In operating sya­
lems dewlopmenllor sev.ral years and Is cun.ntty 8 m.mber 01
lilt OS Kttnel group.

J U ,.. F.: I 'iI II ~ TANDEM SYSTEMS HI' V IEW

OpermillR System

63

o

J

4

New Process-timing Features

he GUARDIAN 90 operating
system incorporates greatly
enhanced fealUres for pro­
cess liming. I Earlier ver­
sions of GUARDIAN pro­
vide IWO facilities for pro­
cess timing: the XRAY

performance measurement lool and the
procedure SETLOOPTIMER. Both have
shortcomings:

• XRAY is cumbersome to usc, and the over­
head of slafting an XRAY measurement is
not justified for small measurements such as
obtaining the execution lime of a single pro­
cess . Moreover, XRAY does not have a pro­
grammatic interface.

• SETLOOPTIMER, a programmatic inter­
face, is designed only for delccling loops in
a program. In addition, in earlier versions of
GUARDIAN, the SETLOOPTll\'IER mecha­
nism includes interrupt time and is inaccu­
rate due to rounding errors.

GLIARDIA N 90 provides process-timing
facilities in addition to XRAY and vastly
improves the accuracy of the SETLOOPTI·
MER mechanism. Process-execution time~
now a fundamental pan of the processsta!C
This permiLS the following additional func·
tionality:

• Any process can query the operating 5)'S·

tem for the process time of any process.
including its own.'

• A process can specify that it be notified
via a system message when it has e,ecutrci
for a cenain amount of lime.

• Some processor-utilization statistics
(amount of time spent by the processor c-v­
cUling processes, servicing interrupts. and
remaining in the idle state) can be obtained .

• Accuracy of the SETLOOPTIMER mecha­
nism has been improved because interrupt·
servicing time is excluded and microsecond
resolution is used.

User Interface
The following procedures are now available
for the timing of processes: ETLOOPTI\1ER
SIGNALTIMEOUT, SIGNALPROCESSTI\IE·
OUT, MYPROCESSfIME. and PROCESSTI\IE
In addition, a new procedure called cpU·
TIMES is available to provide utilization
statistics for a processor. (See the System
Procedure Calls Re~rence Monllol for
delails).

The funct ions o f the procedures are
briefly described below:

• SETLOOPTIMER now sets a timer that is
based on process time. When the timer times
aul, il mggers a process-loop-limeoullrop
(trap number 4). Control then transfers to
the user trap handler (if specified) or to
DEBUG/ INSPECT.

• SIGNALTlMEOUTsets an elapsed-ti me
timer. When the timer times out, a system
message (see the System Messages MOlluof)
is queued on the SRECEIV E queue of the
process (see the Sysfem Procedure Calls Ref­
erence Mom/of). The functionality and the
underlying mechanism for this procedure
have nOl changed in GUARDIAN 90.

I SIGNALPROCESSTIMEDUT, a new proce­
dure, is similar to SIGNALTIM EOUT but is
based on process time inslead of elapsed
time. It setS a process-time timer. When the
timer times out , a system message is queued
on the SRECEIVE queue of the process.

• MYPROC£SSTlM£, a new procedure, gives
the process time (in microseconds) of the
calling process.

• PROC£SSTIME, a new procedure , gives
the process time (in microseconds) of any
process in the network that runs on a system
operating under GUARDIAN 90. The proce­
dure PROCESSINFO can also be used to
obtain the process time of a process.

I CPUTIMES, a new procedure, gives the
following processor utilization statistics (in
microseconds, since the last processor load)
of any processor in the network lhat is oper­
ating under GUARDIA N 90: the amount of
time since the processor loaded and the
amount of time spent by the processor exe­
cuting processes, servicing interrupts, and
remaining in the idle stale.

Implementation
The GUARDIAN 90 kernel and data Struc­
tures mainlain accurate process-execution
time as an intrinsic part of the process state.
They incorporate an internal facility to
cause an eVent 10 occur, based on the

amount of process-execution t ime that has
passed. This facility is used to support the
following:

• S£TLOOPTIMER procedure (whose corre­
sponding event is to cause a trap after a
specified amount of process-execution
time).

• SIGNALPROC£SSTIMEOUT procedure
(whose corresponding event is to cause a
system message to be queued on the
SRECEIV E queue of the calling process afler
the process has executed for a specified
amount of time).

• Process-priority adjllsrmem mechanism.

The facility may a lso be used in the
fu ture to suppo rt additional capabilities. For
example, the parent process could request
the operating sYSlem to not ify it when a spe­
cific chi ld process has executed for a certa in
amount of time. (This feature is not presen!
in GUA RDIAN 90 cu rrent ly but is an example
of something that could now be easi ly
implemented.)

Each process has a 32-bit counter
(referred 10 in this article as PCBPTIMER)
that is part of the process state. When a pro­
cess is inact ive, PCBPTIMER is stored in the
field PCBPTlMER in the Process Control
Block (PCB) for the process. (The layout for
the PCB is given in the GUARDIAN 90 file
DPCfL, listed in CDECLARE.) When the
process is dispatched, the dispatcher uses the
new Set Process Time (SPT) instruction to
give PCBPTIMER 10 the firmware. The
cached firmware va lue, which represents
the cu rrent va lue of PCBPTIMER, can be
read via the new Read Process Time (RPT)
inst ruction. The SPT and RPT inst ructions
are defined in the System Description
Manual.

J U N E 1 9 8 ~ T A l'> OE M S Y S TEM S R EV IEW

OperotillK System

65

"' ,
J
}
J ,
5

Operating System

66

PCBPTIMER accumulates process­
execution time as the process executes and is
adjusted for any processor lime used by soft­
ware interrupt handlers . If PCBPTlr-.-IER
overflows from a positive to a negative num­
ber, a process-fimeout dispatcher interrupt
occurs.

Every time the dispatcher deactivates a
process, the dispatcher accumulates the
elapsed process time for the last dispatch to
a quad-word counter (PCBXPTlME) in the
Process Control Block Extension (PCBX) for
the process . The dispatcher also accumulates
the elapsed process time to a quad-word
counter called SUMPROCESSBU5Y in the
system data segment. This counter contains
the lotal processor lime spent in executing
processes. (The elapsed process lime is the
difference between the cached value of
PCBPTIMER and the saved value in the
PCBPTIMER field in the PCB.) The dis­
patcher also saves the cached value of PCBP­
TIMER in the field PCBPTIMER of the PCB
for the process.

Thus, the purposes of PCBPTIMER are to
cause a dispatcher interrupt after a specified
amount of process-execulion time and to
track elapsed process time in a dispatch. The
purpose of PCBXPTIME is to accumulate
process-execution lime as the process exe­
cutes. It will overflow only if the process
executes for over .29 million years.

The unit of measure for both counters is
microseconds. At any instant, the process
time of the process is given by the sum of the
PCBPTIMER and PCBXPTIME. When the
process is active. PCBPTIMER is cached in
a processor register and can be accessed
via the new instructions; otherwise, the
PCBPTIMER is stored in the PCB fie ld
PCBPTlMER.

Each process has a doubly-linked list.
called the process-time list (PTL), composed
of process-time-Iist elements (PTLEs). A
PTLE contains the process time at which the
process should time OUL The list header of
the PTL is a field in the PCBX. The PTlES
are listed in order of increasing process-time
value. Two PTLEs. one for process-priority
adjustment and one for the SETLOOPTIMER
procedure, are allocated in the PCBX. PTLEs
for use by SIGNALPROCESSTIMEOUT are
a llocated out of the PTlE table, which is in
the same absolute segment as the PCBXs.

For a process-timeout dispatcher inttl'·
rupt. the dispatcher (I) processes each PTU
that has timed out . (2) deletes the PTlE
from the PTL. and (3) takes action bascd(l'
the event indicated by the PTLE type:

• I f the PTlE was set by a caU to SETL<n'.
TIMER, a trap #4 is signaled.

• If the PTLE was set by a caJlto SIGN U·
PROCESSTIMEOUT, a system message is
queued on the SRECEIVE queue of the pr0-

cess. This message indicates to the prOC'ffi
that the timer set by a call to SIGNALPRO­
CESSTIMEOUT has timed out.

• If the PTlE is for system-loop liming, Itt
dispatcher adjusts the priority of the proms
and requeues the PTLE on the PTL with a
time value of the current process lime or tlr
process plus two seconds (the time when the
priority is to be adjus ted next) .

The dispatcher then initializes the 32-bit
counter (PCBPTI~IER) so that it will O\'tr·
flow when the current leading PTLE in the
PTL times OUt, and then it dispatches the
process.

I DLEPROCESS executes on the processor
when there is no process on the ready lis!.
Although IDLEPROCESS is actually a
pseudoprocess because it does not ha\ c a
PCB and Olher resources allocated to it, the
processor maintains execution time for it
because the firmware views it as a proctSs.
The PCBPTlMER and PCBXPTIME enlri~
for I DLEPROCESS are allocated in the
system-data segment. These entries and the
SUMPROCESSBUSY counter are used 10 sup­
port the CPUTIMES procedures.

Applications
SETLOOPTIMER can be used (0 (I) deIcct
whether or not the process is looping,
(2) perform a certain set of operations
(defined in the user trap handler) afler the
process has executed for a specified amounl
of time, and (3) perform a set of operations
periodically by having the user trap handkr
aJways call SETlOOPTlMER before retumil1
to the interrupted operation.

TAN D E M S Y S T E M S R EV I E W

SIGNALTIMEOUT can be used for schedul­
ing real-t ime operations since it notifies a
process when a certain amount of realtime
has elapse<l.

SIGNALPROCESSTIMEOUT can be used
for scheduling operations based on the
amount of time the process has executed. It
queues a system message on the process'
SRECEIVE queue to nOlify that process a fter
it has executed for a spec ified amOllnt of
time. The process can ca ll the procedure
READ to read the message whenever it wants
to. (SFTLOOPTIMER can also be used for
mis purpose; however, it causes a Irap that
interrupts the process and immed iately
transfers comrollo the trap handler.)

MYPROCESST IM E can be used by a pro­
cess to monilor ils activity and to determine
lhe lime spent by the process in performing
various operations. For example, a Com­
mand Interpreter could print the time it took
10 execute the last command before prompt­
ing for the next comma nd .

PROCESSfIME can be used to (I) mo nitor
the activity of any process running on a
GUARDIAN 90 system in the network,
(2) deteet a looping process, and (3) detect
whether or not a process is a recent invoca­
tion of !.he program after an old invocation
died, especially if the reeem in vocation has
the same Process JD (PI D) as the old process
and the same name. (For unnamed pro­
cesses, the timestamp form of the PID can be
used for assigni ng a process a unique PID).
See lhe GUARDIAN Operating System Pro­
grammer's Guide for information on process
names.

CPUTIMES can be used 10 display a pro­
cessor's uti li zation . This would help in bal­
ancing the load across the processors in the
s~te,:", For example, a high interrupt-busy
lime 111 a processor might ind icate that a
great deal of 110 was being done through
that processor. PEEK can be used to confirm
this.

The information obtained from the above
routines may indicate whether or not the
substantial capabi lities of XRAY should be
used for a performance eva luat ion of the
system or of a process that is a heavy user of
processor time.

Conclusion

The process-timing features of the
GUA RDIA N 90 operating system are a signifi­
cant enhancement. Process-execution time is
maintained with microsecond resolution and
interrupt-processing time is excluded. Proce­
dures are provided to retrieve the process
time of processes and to enable a process to
be notified when it has executed for a speci­
fied amount of time. Also, the accuracy of
the SETLOOPTIM ER has been greatly
improved. Finally, a procedure is now avail­
able for retrieving processor-utilization
characterist ics .

RtftrtllCM
GUARDIANOperotlfl8 System Progromml'l"s Guide. ParillO.
82357 AOO. Talldcm Compulcn IlIoorpOllued.

S)'stem M essages Alllnuili. ParillO. 82409 AOO. Tandrm Com·
PUlers]noorllonut'd.

S)'$lem Proc«IlIre Calls R~ M(mua/. Part 110. 82359 AOO.
Tandem Compulen InrorpoNllcd.

Acknoooltd&1l1t1I15
Tht basic idt-as for the GUA ROlAN 90 prQCeS$·timill& enhance·
matti wcre cooctil't'(j by Richard Carr. The aUlhor would like to
thank Richard for his suggtsliOf\$ durill& the impkmenllllion
phase. Gary Campbell and Richard Harri~ for makil1$ the
(irmwarechanges. aod last bul not least. Heidi Kuehn for
arcatly improvinsthe readability of this article.

Sunil Sh.rm. Joined Tandem In August 1983 as. SOllwate
deYelopet In the Operallng Systems group. He h.s.n M.S. In
COmpul8f Engineering Irom AetlSMI.er Polytechnic Inslllule In
Troy. New 'Ibrk.

1t,; E lfjll~.'A""DEM SYSTI! M S KF V IEW

Opera/illg System

67

•
F

1
fi
J

" S

(

Writing a
Command Interpreter

andem has received many
requests [0 extend I he

==== capabilit ies o f its com·
_ mand interpreter, COMINT.

These req uests have been
for a variety of capabili­
ties, including:

• Additional commands.

• Changes in the syntax and / or functional.
ity of existing commands.

• A history buffer of previous commands
(for their reexecution or later examination).

• Macro substitut ion within commands.

• Assignmem of commands to function
keys.

Custom Command Interpreters
It is nOI possible to implement these new
features while maintaining the compatibility
between old and new versions of COMI NT,
however. Also, the need or desire for these
new capabilities varies from customer to
customer, Therefore, users requ iring special
features should consider develop ing their
own command interpreters. In fact, several
users have already written their own .

One drawback to most of the command
interpreters written by users so far, however,
is that they are nonprivileged and, thus, do
not have the full functionality of COMINT

(until now a prh1i/eged process).1 Their
command interpreters cannot modify the
USERIO fi le, or take a bus dump, fore'(artI­
pie. Umi l now, these users had to switch
from their cuStom command interpreters 10

COM I NT when they needed to execute a
privi leged function.

New Nonprivileged COMI T
With the GUARDIAN 90 operating systml,
COMINT no longer contains privileged coX
and does not have to be FUP licensed.
CO~1INT'S privileged processing has been
moved into new system-library procedum,
existing system procedures have been mod~
fjed, and new privileged server programs
have been written. CO!\lI NT now invokes
these new procedu res or server programs to
execute privileged functions.

Users can now take advantage of these
new procedures and server programs to
develop their own custom command inter·
preters, complete with all the functionality
of Tandem's COM I NT.

The following sections:

• Present an overview of the flow of contrd
in COM INT.

• Explain how to get a sample skeletal COOl"
mand interpreter that can be expanded and
customized as needed.

• Describe COMI NT (including its nowait
operations and new server programs) in
detail.

--------------~-TANDEM SYSTEMS REVIE" JU>;E I'~·

Flow of Cont rol
CO~IJNT was designed as a transaction­
oriented process. It does the following:

I. Gets the transaction (command).

2. Deciphers the command and appl ies user
constraints (e.g., checks to see if a user
can issue the ADDUSER command).

3. Invokes the appropriate procedures or
dispatches the proper program (COMINT
server, Tandem subsystem, or user­
developed program) 10 complete the pro­
cessing of each command .

Figure I charts this flow of control.
All command imerpreters should have a

top-level controlling procedure. COM INT's
version of this procedure, COMMAND­
INTERPRETER, loops continuously on ca lls
to read and process each command.

Command interpreters should also have a
centralized procedure for getting com­
mands. COM INT's PROMPT contains code
for reading from a temlinal, a disc file, or
another process.

Finally, COMI T has a separate proce­
dure, PROCESSCOMMANO, to process each
command, although this is not required of
all command interpreters. PROCESS­
COMMAND does some initial parsing and
validation checking and then invokes the
appropriate procedure or program. It is lhen
the responsibility of each procedure or pro­
gram to fully parse and validate the com­
mand string or RUN parameter string before
processing the command.

Simple Command Interpreter
A simple command interpreter that recog­
nizes the EXIT, TIME, and WHO commands
is available on tapc from your Tandem
anal)'St.

Note that, although the sample command
interpreter was written in TAL, command
imerprelers can be written in any language.
II is advisable, however, to develop the com­
mand interpreter in a language that provides
easy access to GUARDIAN 90 system proce­
dures, as it is through these procedures that
the command interpreter will do most of its
work.

Operating .s:I'stem

Figure 1

Prom,.

--
Nowait Operations
Perhaps the most difficult aspect of develop­
ing a command interpreter is the handling of
its operations in a "nowail" manner. One of
the design goals of a command interpreter is
that it be able to respond to messages and
maintain a fault-tolerant configuration
while:

• Prompting for a command.

• Communicat ing with another process.

• Waiting for a process 10 terminate.

• Writing to its OUT file .

To accomplish this, a ll the above operat ions
must be done in a nowait manner, thus
requiring the command interpreter 10 be a
multithreaded process.

COM1NT'S solution to the problem is to
perform all the above as nowait operat ions
and to have one centrali zed procedure 10
wait for completion of these operations.
This procedure calls AWA ITIO with a file
number of - I so that AWAITIO returns when
any outstand ing lI D request completes . The
cent ralized procedure then determines which
I/O has completed and does the proper
processing.

Figure 1.

Thejlow of COIItroi in
COM/NT. COMMAND­
INTERPRETER, the
main procedure, calls
PROMPT to get a COnl­
mand. This command is
then passed to PRO­
CESSCO,\IMAND hich
calls/ runs the appropriate
procedllre(sj/ program to
process the command.
(The dOlled lines indicate
additiOilal procedures/
programs tllat process
other commands.)

I U NE 1 911S .TA N DEM SYSTEM S REVIEW 69

(

•
A

T
ft
j.

" s

5i

Opera/il/K System
(

For example. afleT starting a new ~roccss,
COM INT opens the process in a nawalt m~n­
nero COM INT then calls a procedure to walt
for the completion of the OPEN before send­
ing (he start-up message. If the user presses
the BREAK key before the open completes.
AWAITIQ completes on $RECEIVE before
completing on the OPEN. This causes
COMINT to cancel the open request and tef·
minate the start-up sequence.

COMINT Server Programs
Although major changes were made LO make
COM INT nonprivileged, externally little has
been changed. All the commands from the
previous version of COM INT are slill availa­
ble and perform the same function. InteT­
nally. however, the following commands now
invoke the corresponding CO~IINT server
programs:

Command

ADDUSER
{XIY}BUS{DOWN~P}
DEFAULT
DELUSER
PASSWORD
RECEIVEDUMP
RELOAD
REMOTEPASSWORD
USERS

Sener program

ADDUSER
BUSCMD
DEFAULT
DELUSER
PASSWORD
RCVDU~IP
RELOAD
RPASSWRD
USERS

When these programs are rUn from a user.
written command interpreter or from
COM I NT, the following rules apply:

• All of the server programs should reside
on the same subvolume as the command
interpreter. (For user·written command
interpreters this is not necessary, bUI for
cO~II NT it is .)

• All server programs must be FUP licensed
to run because they contain privileged code.

• The server programs cannot be rUn
remotely because they contain code to pre.
vent execution by remote users .

• All RUN options are allowed, except that
NOWAIT should not be used with any of the
server programs (as the results of running
the servers wouJd be unknown).

COMINT Commands
In Table I , all of the commands retogo~
by CO~tJNT are listed. For each, the f~.
tion of and the G RDIA~ 90 proctdur~
CO~IINT server programs in\'Oked b}Ur
proccdure arc given. (Procedures used 10
parse and validate command parameters
not included in the list.)

Although ,he lis, of CO\IINT corn
is extens ive, user·writlen command inter.
preters need not implement e\'CT)' commao:.
It may be bes t to lea\c OUt the rarely used
commands such as ADDUSER, BUSCMo,
DELUSER, and SETTIME. These can ''''''.
issued from a running COM INT.

Note that if an error occurs at an} point
while the command is being processed, ttr
command i aborted and PRO\lPTis callnl.

ate also that command strings not ret­
ognizcd as valid CO~IINTcommandsart
treated as implicit RUN commands. Fora
desc ription of CO~tlNT's commands. refer
to the GUARDIAN Operating System titulo
ties Reference A1onuol. For a descripl iond
each G RDIA 90 procedurc, rtrertodr
S)'stem Procedure Colis Reference MonurJ.

Conclusion
With the GUARDIA 90 operating s),stem.
all of COf\ IJNT's privileged runctions h:r.t
been incorporated within lhe system or sup­
plied in separate programs. Users can OO'A
develop their own command inlerpreters
with all [he functionalilY of CO~'IINT and
add extra features tailored 10 their needs.

IWftmK"b

GUA RDH v~"'" S)3'(('''' U,,1011n R~ ll#AW
Pan 00. 8240] AOO_ Tandem Computm Ino:orporaIN.

SYSlt"f1l Procrdurp Calls R~ .\lrl1l/ld. PMlIlO. Cl9l"
Tandem Computers Incorporated

Drrid Wong /O'nedTanc:tem In April ,.,. t.gonn."".o\~ III
aUlon"\ateG ,ele.54t producta. sud'! .. INSTALL fACTRLSf.
CUSTRLSE He "al IltICfI ttanll~ 10 the Opetll''''' ~
IIfOUP where he wortw.d on COMINT and IS now worI!''t':'_,
!eYe1 kernel code O..,ki recetvecla B.S. 1/1 PhyscIIn ,
M.S In Appt...:! Malhematlcs In 1878, boltllrom SwI~C:­
Un'-lily Belar. joining r.ndem. he did COflU.ct"'­
various teSNtd1 PtO}fICt •.• nc;:i!Ht,1"IO ~ IO..-.cl II.U
redlK:llon. IRAS lelescOpe IlmulatlOn. anct .. rtICfTIt cltlJ
.equ • .,t.on.

TANt)l:;M SYSTF\lS RF\'E~ - JL"'F ,.'

'N''''''''''

IXlUSEA

Em

Fe

'ELf

J l: H f

AOOOSTTAANSITlON
OOf,IPUTETluESTAMP
CONVEArnuE$TAMP

CHECI<OPEN
CHECKPOINT.
GEtcRTPlD.
NEWPROCESS
f>AClGRAMI'ILENAME
SlOP
SWAPf'ILENAME

"'BUG

"'"""""""" orn>m'>D
LOOKUPP!'KlC£SSNAM(.
MVTERU

DEFNJU'

OElUSER

GETRE.MOftCRTPlD.
GETSYSTEMN"'M~
IoIYPID,
SlOP
FIXSTRING

NEXTFILENAME

S£T""'"
SENDLIGHTS

I , II !I TANDE M

1 Pa,se and validate Ihe lim,ts and ollsel ot t/1e Daylight 5aVlrlgS Trne period.
2 Call COMPUTETlt.4ESTAMP 10 convelt IlrYlita 11110 Ju~an microseconds
3 Call CONVERTTIMESTAMP 10 COOY8ft UmllalOGreenwlch Mean Time
• caJl ADDDST"TRANSITtON 10 acla ttle pe<1Od 10 tile Daylight saYIngs Time ,-
c.vse Itle AODUSfR serve< ptogram to run f'aq ADDUSER command
palamet8fS d"ectly as a RUN parame!elatrong 10 the ADDUSEA process

t Parse and validate \he name 01 <cpu.pm> 01 the process whole priority is to
becha~

2 Call PROCESSINFO lor InlOlmaloon to be sent 10 SCMON 10 IOgIYalidale the
"LTPRI reouesl

3 call AlTERPR~nV 10 Change the priOrity ot the process

1 PaIse an<! validate the new ASSIGN
2 Save tile Inlormattonlfl the ASSIGN CIlia bu!1er onCOMINTa CIlia stack

1 Ctleck tor a backup CPU numbef
2 II no CPU number IS llwen. call STOP to Slop COMINTs bac~up
3 II CPU nun'lbtl, IS grven. call GElCRTPlD. PROGRAMFILENAME. and

SWAPFILENAME 10 get COMINrs process name. obJect· llle name. and swap
volume so tha t NEWPROCESS can start the bac~uP

• I sta"ed.caUCHECKOPEN and CHECKPOINT to

1 li t
2 Delete t/1e ASSIGN(s)IPAR.t.M(s) lrom the" dell oullerlS) on COMINTs dela

.""
Ignored by COM1NT COMINT promota tor!he neJct command

t Parse anc:Ivalldateltle oame Ol!he hie 10 be cleated
2 ca_ CREATE 10 creall the loll
1 FO.r .. andvabdate!hl oame or <CI)U.DIf'I> 01 the process 10 be detIugoged
2 lithe TERM parameter III entered w,thout. termlfl8ll1111T11. cell M YTEAM 10

get tne neme 01 !hi currerrt home tetmin81
3 II. Pl'OC8S$ name was specrtoed cetlLDOKUPPAOCCSSNAME 10 lind !hi

ptllNry process
• call GETCRTPlD, II me C\.Ifrenl commend II betng 08Du00ed. c.11 DEBUG:

0It\efWISe, ca' DEBLIGPROCESS 10 cMbuII the spec,lIed process.
Cause the DEFAULT serY8f Pl'og"m 10 be run. Past the command parameters
dorectly as I RUN parameter Stflf'llllO the CDE",FAU~'~T~"""~~_~=",,,,===_
Cause the DELUSER S8fYIIr PfOII,am to be run Pass the commend PI"meters
dore<:tiy as a FtU N PiI,ameter Slfong 10 the DELUSER process.

1 Call MYPlD. GETREMOTECRTPIO, and GETSVSTE IoINAME to Iofm8l a
termlflltlOll conl"fnltion promfIt

2 call STOP 10 slOp COM INT (PI'rmary and t)ackup)

1 DISPlay the old command end PI'OfTlPIIor modrhcalions
2 can FIXSTAING 10 uPdate the old command
3 PrQCeSl ttle new command

1 Pa,se and validate ttle name 01 the subvolume containing the trIeS to be
lISted

2 NEXTFllENAME. 10 get me list 01 hies In the SQElClliad

, ,
2 CaN Sf NOUGHTS 10 lesel thlioghts WIth Ihe new paramel8rs

t PIlI'lt any ~ messages whICh have been 88111 to(X)MINT

2 Not'fy SCUON 01 a Iogol. and cloee $CMON
3 Clear 1oC81 butlers and caq CHECKPOINT 10 synchlomze the backup

• s.mulate \he TIME COf'I'II'I\alld 10 dISQIIIy tne tome
5 II In. "'(:lUI device was a termu'l8l, caM SETMODE .unctoon 2810 reset It
6 II the ~! doMee WIIS I tefmonal. cell CONTROL ,eouest 12 on the Input

I.monIllO discOnn8Cl
1 II tNs was a remote COMINT. e<t' STOP 10 alOp the ptimary and bac~up
8 II the Ifl)I,It deYlCewa. I terrrunal, CIII CONTROL ,equest t t on the Wlput

termonallO reouesla reconnect

ConurlUed on neJct pillI8

S Y S T E !oj S • • V F W

Operatiflg System

71

Opel

Figu

~

Agun

The ~

Jor II
JUL.
and (
STA I

56

Operolifll{ S)'Sle~,,~, _____________ _

lOGOH CHECKPOI'H. I 11,....;- ''YPO'T'CIIOr-a.,." -arG_h
VEAIFYUSEJI ~ -

c...\'(RIFl'I,IS{P w IOOcn

3 "!IW ~"&5 "'~ ~ ratI)' SCu ~ "'~lI'Cfa. • cn.c !11 $C.I.ION 10 .. " tovarw .. -=-..:.
5 CIIIICHfCXPOlNT 10 IJ1'It~!IW P»l. CI
e o..c:.t 11'>1' lOgon taennIIt

~q;;;";;YJ;;----------;EOrTAEADtNIl.
7 SornIN,..". nl,l£ CIQI'i.i6IId 10 II$p&ey ~,

1~~~"'ne-~,!

PAUSE

PMOO

PURGE

ACVDUMP

RECEIVEDUMP

REIDAO

RENAME

RPASSWRO

[RUN(On

OPEN

PASSWORD

Grn'POENTRY.
GE'TSYSTEMNAME

PUAGE

AC'roUMP

"ElOAD

ClOSE.
Of'£N
RENAME

RPASSWAO

CLOSE.
NEWffiOCEss.
OPEN
WRITE.
WIUTEREAD

2 Cal OPfN ID QalnICUA k» ".. _ ..

3 II.". _1np,j1101e EOfT AI EDtTJtEAD<t, T CI'I.
I Pa'~ ~ tr>e"..,., P\IVlAJ"I
2 Saw.,. l'llormaQCln., the fWlAIoI_~ D.IItI en CCOU ,<r.
c.u. ';"~WOAO W,... P"09'_IO~ PHI llleC--.tJiQ!llts
doo~ U..!.. RUN !M •• ".... 5""'"1110'" ~YtQIO ~ _

I h,. and IIaIdIle_ rwrot ot < ~.DI'I> of _"",,",blll'lC:'II
dMtcloty .. ., bI dIIoIiI.,..,

2 eal' OETPPoENTR'V cn rr. ~ PflXna. (II ~ ~'_"_"'.I cn IIII111Nd Qf'OC

3 Ca. G£lSVSTEt,f~E IDQOrI.,.. tyDm,.,.10r""
do.~y rtoe r--.

LaOO IPI~ ~ .. -.-0, 'oIe~, '*MIO. ~ ';'~1'lRI '""
C. ... ""RCVOOUP~~ID~IhI~~
dofec~"'AUN~I"I ... r&trWIglO"'~"'~
I PI,,....,. .. tr-.~~

2 Rt-roomal"'IM'~_'''N,*_",b''''1iQIX» -1 fVI tnt ACVOuJ.lp __ ~

c._v..IneRf:~ __ ~ID~ P...""~DP'*'I
Otec:ty IS. RUN ~ arw.g ID.,. R£lOf.O ~
c.uae !he ~WAD DPOgf_ 10 run ,... lie CIO'mWId lin"*!
dlfeclty ... AUN '*"""* Ding 10 h RM$SWJlO piOCIIII

1 Plf.arIC!vPd�_.n.ott...., ____ oI .. ,.

2 Ca. Of'£N JO ICt:eI$ "" 101&
3 C.n RENAME 10 '.wrte the h,a
.. C.II CUJ5£ an lhe hie

C.UMllhe RAt.SsWRD __ PI'l:Ig to M pU.-h COI"I!W'd~
dutc1ty". RUN PIIfamt!lfII' 5!f1ng 10 In. RAt.SSWfID ~
1 PI,w and VI_', the ptOg •, ,..",. and RUN OCIIo.
2 set up lne oa,.,.,......1ot and call NE~SS 1O_11fOt1C!ldfd

progfam
3 C.U OPEN IfIOw1tJII 1O.cceu !he ~ II'\'ICaI.

.. c.. WArTEREAOlfIOw1t.lj IOMndthe 5la" ICI~
5 II r~l«l, call WFlrTE tnow.", 1O...a Ihe A5SI(.N t'NIAgIl
6 11'~IId-ca"wmTElnowarnIOMnO!he~_.
7 CaH QDSE an IN! ~ PfOCea

8 II,,,,,, ... _'lad run IXII5I a...., an SRfarvE .,w-' tor,. '""""~ -

S Y STE M S • E V E w I l! 'I E
, . ,

Tabili. rc;orw:tu:lIIdl
TheconvnandS recognized by COMINT, the procedures they use, and the functions 01 the commands.

ProcHurlll1 u... Function. 01 the command

1 Parse and validate the INSPECT parameters

""'"' ______ C2c";: .. :;': .. :;'N:SPEOOOC:T~ .. :'C·:mo::'~~'C"=·O'"'"'"''''"' ... ~C· __________________ __
~S£T1l;;;;;;""----------,C<>Iiii"P\ITrn;u;mI.lEST,tNP: 1 Parse and valdate the cunent l,me

CQNVERTTIMESTAMP 2 Call OOMPUTETlMESTAMP to cortvefllhe speclheCl time 1n10 Julian
SETSYSTEMClOCK mICroseconds

3 ClIft CONVEATTIMESTAMP IOccnvert the speerlled hme 10 GreenwICh
MeanTme

• c.n S£TSYSTEMCtOCK 10 sellhe oew lIme
1 Parse and valda,. the INSPECT Ilagls} whole 8lat. illObe displayed.
2 DISPlay me SUII.of the INSPECT IIag(S)

=-------;=;;;; --- - -~=;:::;:;~=~=:;::-:;===== SWUS CQNVERTPROCESSTIME 1 Parse and vabOlte 1M name Of < cpu.pln > 01 the J)I'OC8SS 01 CPUs for which

SUSPEND

GETSVSTEM~E, tile 'UltU$ 1$ 10 be displayed
PFIOCESSINFO 2 Gel 1!'Ie search cmltlll
USfAIOTOOSERNAME

"""
SUSPENOPAOCESS

CHECKSWITCH

3 ". process IS specIfied. call PfKlCESSINfO on It with the search criteria
• It one or moreCPU. are spe(alted. cal(PROCESSlNFO with the searCh

C"Utflil on every process In tne CPU
5 CaH GETSYSTEMNAME 10 cooveflayalem nUmtM!<8 10 nllmes
6 Can USERIOTOUSERNAME 10 convert use, 10110 use, names
7 CaN CONVERTPROCESST1ME 10 coove,t p!'ocess1ime 10 hours. mlnules.

SKoncts. and m,l1iseconds
8 Ol$pl8y the status In1orma1lort

1 Paise and vallclilte the name or <cpu.pin> ollhe p!'ocess 10 be stopped.

2 C." STOP 10 slOp the specllted p!'ocea

1 Pa,se and validate the name or <cpu.Pln> 01 lhe process 10 be suspended
2 e.n SUSPENOPROCESS on the pmcesa.
e.g CHECKSWITCH 105W'ICh the ~ o' me primary and backup
convnand-tntlll'P"eter processes
1 Parse and valdate the NOme 01 lhe new clelault system , ,

"
2 CQNVERTTII,IESTAMP 10 convert lhe tomes to Local CIvIl Tlme.
3 CaIt INTERPRmlMESTAMP to convert the tomes 10)'fIar. mooltl. day. elc

" 0t$pIay!he I
-----~= TIIoI(COHVERTTtI,lESTA,Mf' t Call JULIANTIMESTAMP 10 get the cur/erIt GrIeflWlch Mean Time (GMT).

2 e._ CONVERTTIMESTAMP tocorMlfl GMT to Local CIvIl Trne (LeT).

""""

-
J U ~ E

INTERPRETItl,lESTAMP
JULIAN1'1I,1ES1AI,IP

PROCESSFtUSECUAITY.
VEAtFYUS£A

G£TSYSTEMNAME.
MYpjO.
PRJCESSINFO

3 Cd INT£RPRmIMESTAMP to convert Let 10 yN', month, day. etc.

" Ol~!he date and lime

Csuse me tUfV\II'III 01 t1'le USERS server Pl'OQ.am. Pass the command
PIIramel8fS duKlty as II RUN paramele' SIring 10 1M USERS proceIS.

t PaIse lind vallda!lIlhe new delaull voIume.lIUbYoIume, andlor 1,1e security
2 Call VERtFYUSER to gellhe omitted values
3 Reset CQMINT's Internal cletaull volume and subYoIume
" Call PAOCESSFllESECURrTY 10 change theaecu,lty lor IIIe c,eallon

I PalM and validate the wakeup 00-01111110

2
MmolO_ I,

2 e.n lhe system numbe, 10 the system name.

3 Olsotay the WHO In\Ofmauon

, Reformat Ille p'ramete<1 onto a RUN parameter tiring tor tne BUSCMO

~"'~
2 Run the BUSCMO serve. prog,am

TA~OI'M S Y STEMS

Operating S:1'.I'tem

73

Flguro

-Flgu ..

Thee;
for the
lULl,
ondC
STAM

56

The Tandem
Global Update Protocol

he Tandem Global Update
Protocol is an efficient
mechanism for synchroniz­
ing and broadcasting
updates to a collection of 10;:== independent CPUs. It guar­
antees atomic updates to

replicated information in a system withom
shared memory. Information consistency is
preserved despite any number of CPU
failures.

Consistency in the Ta ndem
System

Tandem's approach to fault tolerance and
ease of expansion is based upon independent
CPUs in coord inated operation. Correct
operation of applicat ions requires a consis­
tent view of key system componems. For
example, access 10 an I/O device depends on
locating the process responsible for the
device, which depends on a consistem
description of the device-process mapping.

In many mult iple-Cpu systems, consis­
tency is achieved th rough shared memory
but in a Tandem system, the absence of '
shared memory is a fundamental aspect of
the ~ystem design. Shared memory is
aVOIded for fault tolerance, expandability
and simplicity. '

One might ensure cO~5iSl"OCY by""", I
izing information in a ingle cPU: thij~,
useful method when the information~1d
accessed tOO often and ",hen the: 5)'"'' bl i
some capability (0 recO\er from the kru d
the CPU. In order to achic\c siflll~·faub
tolerance. the information can be rrpi""! I
in a second CPU.

In the Tandem }'Stem, the goal is
lain consistent copies of \'3.rious s)\tem
information in all CPUs. Such informaticl
is accessed frequently. but infrequent!)
updaled. Through Ihis approach. boIhlx<·
ter performance and some measurt
fault LOlerance. paIlicularly 311he Io\ICSl
le\'el (kernel) of the operating s)'.~tem,
achieved.

Consistency of an update to informal""
replicaled in e\'ery CPU depends
atomicity (see Gray.)978). As .oolied 110 "'
Tandem system, an atomic uodal"OI""'''1
has the following characteristics:

I. The update is completed" ithin ~
maximum time boundary.

2. Either every CPU is successfully updated
or no CPU is updated.

3. The updates occur serially; ifthe~
data is updated sewral tjmes. the~'
are the same in all CPUs.

Replicated Information

In many cases, the Tandem system doeS
tralize system information. For exam~.!:~
data-base file or record is locked b) mw
ing the lock information in a ,'m,II" I",""'"
the disc process for that file or record.

o l' M .'iYSTF\I S
RF\IE~ ' Jl\E

, . ,

The system information that is of interest
in this article is that \\hich is replicated in
e\1:f)' CPU. Examples of this information
include:

I. Device-process mappiflg. To acces a ter­
minal, a file on a disc, or a communica­
tions line, for example. a program must
communicate with the process responsible
for that device. In every CPU, the operat ­
ing system maintains a system table, the
Destination Control Table (OCT), that
contains the name of each 1/ 0 device and
the process(es) that control the device .

A device is often referred to by it s rela­
tive location in the OCT, so a given device
name must occupy the same location in
the OCT of every CPU.

2. Process pairs. The process pair is a basic
building block of fault tolerance on a
Tandem system. Each fault-toleranl sys­
tem process or uscr application is a pair
of processes, the primary and the backup,
v.hich reside on different CPUs. The ocr
contains the name of each process pair
and location of each process in a pair.
Each change in the system, such as a pro­
cess creation or stop, CPU failure or
reload, or a "switch" of function
between primary and backup processes,
causes an update to the OCT.

1 Notification o!process!oilure. Although
a process pair is single-fau lt -tolerant,
multiple faults can cause the process pair
to fail. For multifauh tolerance, the pro­
cess' ancestor must be notified when the
process is no longer executing. When the
ancestor-descendent relationship is repli­
cated in every CPU, ancestor notification
is guaranteed even in the prescnce of mul­
tiple CPU failures.

4. System messoges. Various system events
(e.g., CPU ups and downs and time-of­
da)' changes) are Jogged in a system-status
buffer in every CPU. It is important that
entries in this buffer be in the same order
in all CPUs, so updates to the status
buffer must be atomic.

5. Timeo/day. Thccurrent lime of day
should agree closely in all CPUs. Any
Operation to change the time of day must
be atomic .

I U ,. f 1 A "I 0 F M

6. Process-reload coordinatiofl. Multiple
CPUs can be reloaded in parallel (by one
or more RELOAD programs), but a criti­
cal section of each reload must be per­
formed serially and atomically. This is
performed by notifying each CPU when
this operation is about to occur; notifica­
tion must be atomic.

Global Updates
Replicated system information must bc
changed only by broadcasting an update to
every CPU . This operation is referred to as a
globol update.

A typical situation requiring a globa l
update is the creation of a named process.
To make the process name known through­
out the system, the operating system must
allocate an entry in the Destination Control
Table (OCT) of every CPU and place the
name and process identifier in the entry.
Since a process may be referred to by its
relative location in the OCT, the process
name must occupy the same relative location
in the OCT in every CPU.

Il is possible for two or more CPUs to
attempt to create processes with the same
name; all but one of these auempts must fail
with a Nome Already Exists error. Thus, the
global update must be atomic, so that the
update attempts occur in the same order on
all CPUs.

In the past, global-update operations on
the OCT were required to be single-fault ­
tolerant. Experience has shown that some
critical operations, especially those that
affect overall system consistency, should be
muhifault-tolerant if possible. Thus, it is
important that the OCT (as well as other .
information replicated in every CPU) remal11
consistent despite any number of CPU or
bus failures.

Although the intcrprocessor bus is fast
and does not constitute a bottleneck, the
global-update operation should use a mini­
mal number of messages . OCT updates are
not very frequent, but that might not be the
case for some future use of the global-update
mechanism.

SYSTE M S It P V I .. W

Opem/ilZR System

75

O,>eml Operating Sy.ftcm

Rgl,Il.

-Figl,lltl 1

Thl'l'x
for the
JULIA
and CC
STAM.

56

This article describes the method used in
the GUARDIAN 90 operating system to
update replicated system information by
broadcasting an update to all CPUs. The
following sections introduce those facHitie
of the Message System that are important 10

the discussion of global updates. For a more
detailed description of the Message System,
see Chandra, 1985.

GUARDIAN 90 Message System
The GUARDIAN 90 Message System manages
traffic across the Interprocessor Buses, a
pair of 100M-bit/second transfer media that
connects aU CPUs in a single Tandem sys­
tem. Using a pair of these buses , any CPU
can transfer a message to any other CPU at
speeds approaching the speed of a memory­
lO-memory transfer within a CPU. Various
levels of protocol to control message flow
cause the effective transfer rate to be some­
what less than the raw bus speed, so the con­
servation of messages is an important factor
in system performance.

Three types of message are supported by
the Message System: the interprocess mes­
sage, the PIO message, and the unsequenced
packet. Each has different levels of protocol ,
and therefore, each has a different cost.

The imerprocess message is the most gen­
eral form of communication, supporting a
full requester-server protocol in which a
requester process sends a variable-length
request to a server process and receives a
variable-length reply. A process may be
~nding many imerprocess messages at one
lime.

In order to provide faulltolerance and to
manage resources effective ly, a total of nine
contro l packets, data blocks, and acknowl­
edgments may be transmitted for each full
messa¥e; in addition , as many as five pro­
cess d ispatches are required.

The PIO message allows a Pf'OCt5s
municate \\ith the GUARDIAN 90 kemelli
some CPU. This messagt has a rl\ed silt '
and the only reply is a simple ACK /N~
acknowledgment. A procrss may """""'II
one PIO message at a time and must
its completion, but such rtltssagesusualh
require a very mall time to be J'I'OCtWd'
and acknowledged. Within the rteti~'iog
CPU, mutua) exclusion of PIO l'OeS.iI
guaranteed; the CPU must completefro'
cessing of one PIO message btfort it an
receive another one.

The unsequenccd packet is a simpiez
sage consisting of one ph)'~ical bus padt!
is used to ackno" ledge lht receipt or OIM
message and for "I'm AJi\'e" "'::~~:I
below). The unsequenced packe!
explicit acknowledgment.

The Message System guarantet5 ddi\~
of both inlerprocess messagrs and YIU III> I
sages. An unacknowledged message ij
retried unlil it is ad,nowledgtd or untilllr
receiving CPU is declared down.

Message Oroadcasling
The GUARDIA 90 operating S)'Sttm coo­
tains a new Message)'Stem facilit)',I~ It­
Broadcast, that allows a proctss to ItQtrSI
thai UPIO I Plomcssages(~hmNislir
number of CPUs in the system) be sent b:l
the Message System kernel.

When 3 proce s \\ ishcs to send an ~I
Broadcast, it specific a starting cPU, TIl:
PIO message i sent to each CPU in a)ltCi­
termined order (see below). including I~
CPU that is sending the messagt. Finally, Ii'
message is again sent to the starting CPtJ.

While the messages are being sent,the
process must wait and has no conlrol O\tr
the operation. In particular, it may not C3lI'
eel the operation before it is completed. TIll!'
only action thal prevents the messages f~
being sent is the failure of either the send~
or receiving cpu.

When the message is complete, a set or
N+I acknowledgment codes (ACKsor

ACKs) are returned to the originating JIll"
cess. As described below, the N-'-I B~
facility also performs a fe" specialoper·
ations that are required for sending global
updates.

SYSTEMS REl.lf" ' Jl' 'oif' ' ·

Although "broadcasting" orten implies
sending messages to all CPUs at once, the
N'-I Broadcast is actually a serial operation
ilial appears to the sending process as an
atomic operation. Unless the CPU to which
t~ message is being sent is declared down,
each PIO message must be accepted and
acknowledged before it is sent to the next
CPU. This serialization is required to pro­
vide fault tolerance of the Global Update
Protocol.

The Ntl Broadcast is more efficient than
normal messages. With the laller, two pro­
cesses would be dispatched for each mes­
sage. With the Ntt Broadcast, each receiv­
ing CPU accepLS and acknowledges each
message in an inlcrrupt routine. The sending
CPU receives each acknowledgment and
immediately sends the next message from
an interrupt routine. Entering an interrupt
routine suspends execution of other pro­
cessing, but does not cause expensive pro­
cess switching.

Processor-suuus Consislency
A fundamental basis for guaranteeing con­
sistency in the Tandem system is that all
operating (or "up") CPUs must agree as 10
which CPUs are up. This is referred to as
proctSSQNtotus consistellcy. Each CPU
maintains a list of other CPUs Ihat are con­
sidered to be up. The system's processor
status is consistent if every up CPU has an
identical list of "up CPUs." Processor-status
consistency is achieved through the Message
S)'Stem's "I'm Alive" protocol. Once a sec­
ond, each up CPU in a system sends an unse­
quenced "I'm Alive" message to every other
up CPU. Every two seconds, each CPU
brings down every CPU from which it has
not received an " I'm Alive" message in the
Iastlwo-second interval.

Since a CPU never sends an "I'm Alive"
message to a CPU mat it considers down,
this simple protocol ensures symmetry.
Except dUring a shon period following a
cpu failure, any two CPUs have identical
status information about each other ' either
~h considers the other to be up or ~ach
thlOks the Other is down.

J U , E
I' II~ ' TAI'/OEM

Once a CPU has been declared down by
the system. it must be reloaded in order to
rejoin the system as an up CPU.

Although it is expected that processor
status may be inconsistent for a few seconds,
the system eventually achieves a consistent
state. The short period of inconsistency is an
important consideration when global
updates are performed atomically.

Overview of the Global
Update Protocol
The Global Update Protocol (GLUP) is
Tandem's multifauh-tolerant mechanism by
which an atomic update can be broadcast to
every CPU in an efficient manner. GLUP
components include state information main­
tained in each CPU, a standard global­
update message Format, and a set of rules
that specify how global updates should be
processed and what steps should be taken
when failures occur.

A primary element of the GLUP state is
the identity of a unique CPu , known as the
locker. As is described below, all crus must
agree as to which CPU is the locker.

The fundamental operation of the GLUP is
to use the N+l Broadcast mechanism to send
the same global-update message to every
CPU. The first message is always sent to the
locker, which ensures that only one global
update is in progress at any time. The loc~er
either allows the update to proceed or nOti­
fies the sender that an update "collision"
has occurred. A coll ision terminates the
broadcast; the sender must retry the update.

Iflhe update is allowed to proceed, the
message is sent to every other CPU and,
finally, it is sent once more to the locker. The
locker recognizes the second copy of the
update as notification that the update is
complete.

S Y S T EMS

Operoling System

77

Opel

R,.

-R,.
Th,
for
JU,
on,
S-U

Operaling Sysfem_

Flgur.l.

GLUP,on/er. fhe ()t'der Q{
CPUsjora global II/Xlufe.
This order begins lI'ifh fhe
GLUP·LockerUlld
includes each CPu. The
seqlleflct'isL, L+t, L+2 .
.... N-l. O • ... , L-I.
· ... here L is fhe number Q{
fhe locker CPU un(1 N is
fhe number qf CPUs.

, ,

The following sections explore various
aspects of the GLUP, including how consi -
tency is maintained when (I) multiple send­
ers attempt an update atlhe same lime,
(2) one or more CPUs fail during an update,
and (3) a CPU is reloaded and must be syn­
chronized with the other CPUs.

Technical Description
The GLUP state consists of the following
elements:

I. A designated CPU, known as the GLUP­
Locker, !O coord inate gJoba l updates.
The first-loaded CPU is the init ia l locker.
II remains the locker until it fails; the
remaining CPUs then select a new locker,
as described below.

2. A well-defined ordering of all CPUs,
known as the GLUP-Order. This order
must begin with the GLUP-Locker and
include each other CPU exactly once. Any
ordering would do, but for simplicit y, the
chosen sequence is the natural ordering:
L, L+t. L+2, .'" N-J. 0, ... , L-J

where L is the number of the locker CPU
and N is the number of CPUs. GLUP­
Order is illustrated in Figure I.

Figure 1

"'" CI"" CI'U 2

c

3. In each CPU, a one·y/ord .semapiloR
<?Ll!P-Lock, which contains either .j, lCI
mdlcate that the update loc~ is nOlIrkl
or a process ID (PI D), 10 indicatr thai ~
lock is currently held by that Procts.s.

The value of GLUP-Lock in Iii< loa.
CPU determines whelher the updatrixt
is held, The GLUP-Locks in Iile od",
CPUs are, however, essential for 1'tCO\'ft'j
of failures.

4. In each CPU, a one·word GLUP 5eQum:r

number. GLUP·Seq. Whennrr tile Gll'P­
Lock is not held (in lhe GLUP-Lock"
CPU). all CPUs have identical GLUP·
Seqs. During an updatc, each CPU thai
receives and processes the update mes~
increments its GLUP-$cq by I.

5. In each CPU, a small array, GLUP·
Updote, that contains the lasl updalelXQ­
cessed by the CPU. This is simply a ~
of the PIO message that was sent b)'lIr
updating CPU.

A standard update message contains feu
elements:

I . The process 10 of the updating ~~
2. A " lock bit." 10 distinguish a "lading

updale" from a nonlocking updatr.
3. A GLUP-$cq copied from the sending

CPU,

c,'" CI'U • "'" .

TAN D ~ M S Y ST· ., S
" A I: \ lEW • J l ' .. E I"

4 A fLxed·length array containing a descrip­
. lion of the update; the format of this

arraY depends on the type of update.

Th.'update message is a special type of the
PIOIT<SS38' described abovc. The GLUP
st31eand the sending of an update me sage
areillustr3ted in Figure 2.

SUndin! Update Sequence
Th.' normal steps (in the absence or failures)
for performing a global update are:

I. A process (in the "sending" cPU) con­
structs a message containing an update
and a GLUP-Seq copied rrom the sending
CPU. The message is given 10 the sending
cpu's Message System as an N+I Broad­
cast. The process is blocked.

2. Th: sending CPU sends the updatc mcs­
sage to the locker CPU. This first message
cfan "#1 Broadcast is marked as a "lock­
ing update" message.

3. The locker CPU examines the GLUP-
Lock. If the semaphore is already held,
the message is simply NACKed; the N+t
Broadcast is terminated in the sending
CPU and the sending process is notified.
Typically, the process delays for one hun­
dredth of a second and reattempts the
updale.

4. The locker compares the GLUP-Seq in the
message with its own GLUp-Seq. If they
OO~I malch,lhc message is NACKed.
whICh also tenninatcs the broadcast.
~nally. ~hc locker ensurcs that the update
~ a lockmg update; a non locking update
• also NACKed.

). ;ne ~ocker CPU setS the sending process'
JO m the GlUP-Lock, increments its

GLUp.Seq by I, and saves the update
~ge in its GlUP-Update storage. It
then processes the update and ACKs the
trtssag,.

J t; , E
1'I8 ~ 'TA"DrM

-

Figure 2

Loeh, CPU

Sending L.oek Gt.~
"""",=10 __ ..::",:.....,......::'"'

6. The sender CPU sends a non locking
update to every other CPU in GLUP­
Order. When the update is received, each
CPU sets the sending process' PID in the
GLUP-Lock, increments its GLUP-Seq by
1, and saves the update message in its
GLUP-Update storage. It then processes
the update and ACKs the message.

7. Finally, the sender sends a nonlocking
update message, recognized as thc
update-termination message, to the locker.
The locker stores - I (meaning unlocked)
in GLUP-Lock and ACKs the message.

S. The originating process is unblocked and
allowed to execute. The update is
complete .

5 v S T EMS

Operaring .s:J'slem

GLuP­
Updato

Flgure 2-

The GLUP siale and the
spnding of an update
message. The message
conSiSlS oj (he process I D
of Ihe sending process.
(he "kx:k bil" which
distinguishes a locking
updale jrom a nOl/locking
update, a GLUP-Seq
copied from Ihe sending
CPU, and a fixed-Ienglh
array containing a
descriplion oj the updOle.

79

Flgur(

-Figun

The r

"" II l VL
and I
STAI

OperotillM System

FigureS

,.,

CPu.

~)

figure 5.

(a) The locker CPU dies
qjier CPUs J, 1, and J
haw rereil'ed an update
f rom CPU 3. (b) The nell'
locker (CPU 2) resends
the last update to Of/liP
CPUs. CPU 3 ignores the

4. When the last message of the broadcast is
re·sent LO the new locker, it resets the
GLUP-Lock semaphore to -I. ew
updates can now be accepted by the new
locker.

Since the new locker is always the next
CPU in GLUP-Order following the old
locker, no CPU oilier than the old locker has
received any update that has not been
received by Lhe new locker.

~
,. I 1

"'''

IIpdate because it is 0
(Jup/icme of the previous
updme, CPU 0 ~pts
eilher Mes.soge 1 from
CPU 2 or Message <I from
CPU 3, depending on
which orr;I'('s first; ilthen

, 11 •
"'. ~

, r""-.......

ignores Ihe Olh" m~ge.
When the new kxker
sends Message J 10
itself. il fl'/N5i'.$ the
GLUP·Lock.

When ,he new locker broadcasu th. ..
update, the originating CPL may stiD be
sending ,he update. Upda,es rrom ,he",
locker may o\'enake updates from ~1X1t
nal sender; some of the sender' upda[~
get ACKed due lO mismatching GllP.~
and duplicate updates. Thus, the sender
ignores NACKs (0 broadcast ~00a
.han ,he locking-upda,e "",sage. Ont:t,.
sender is through broadcasting, the updaJt
has been comple.ed.

On .he o,her hand, o.her CPUs m.1) ""
locking update to the ne\\. locker bd'orttlr
new locker discover the old locker 15 cbn.
These updates are terminated immedial~
because any CPU NACKs a locking update ~
it doesn't consider itself to be the ladt!'.
updating processes continue to reuytbrir
updates until the new locker discO\'tt\ ill
true identity. resends the last update, atKI
permits new updatcs to be procrned.

Figure Sa illustrates the failure of the
locker CPU af,er CPUs I, 2, and J !w.
receh'ed an update from CPU 3. ln
Figure Sb, ,he nf" locker (CPU 2) """'"
,he las, upda,e to all up CPUs. CPU J
ignores the update because it is a duplical~
of the previous update. CPU 0 accepts eilM
Message 2 from CPU 2 or Message 4 froo!
CPU 3, depending on which arrives first: it
then ignores the other message. Whmtbe
new locker sends Message 3 to i~lf, it
releases the GLUP-Lock.

Failure or Another CP
If a CPU other than the sender or the locker
fai ls, the update proceeds normally. The
Message System either succeeds or fails 10

transmit the update 10 the failing CPU, bUi
in either case, it continues to send theupdalt
10 all other CPUs.

Multiple CPU Failures
The most interesting cases of muJtiple CPt
failure are (I) concurrent failure of the .
sender and locker and (2) concurrent fadUlt
of the current locker and the CPU that
should become the new locker. The remain·
ing cases are simply dealt with and artleft ~
an exercise for the reader.

SlSTFMS ----------, , . '
REVIE""JL;,E

In the event of a concurrent fai.lure of th~
seOOer and locker, if the sender fa lls before II
has~ucctSsfully updated the locker. the
updale does not succeed because no up CPU
t\'tfacttpIS the update. If the sender fai ls
aflel it has updated the locker, the locker
tnows aboollhe update and tries to resend it
10 tlt remaining CPUs. If the updatc is
receirtd by the CPU that will become the
[lew\od;er, either from the original sender or
b)·tlt locker ",hen the sender fails. the
ujX!atecommits; when the old locker fails.
lIrnew locker resends the last updale to all
• herCPUs.lfboth the sender and old
lod:er fail before either of them send the
update to the new locker, the update is con­
fined to down CPUs and might as we ll have
not happened.

Theconcurrent failure of an old and new
Ioder is simply handled because updates arc
ahlil)"S sent in GLUP-Order and CPUs
b«oo1ethe loder in GLUP-Ordcr. The CPU
[tIt in order following the nev. locker
IX'I:omes the locker, and if the sending CPU
(II 00f of the locker CPUs follo\\ ing the fail­
ureofthe sending CPU) upd3lCS this CPU
before iltakes o\er as the new locker, the
UjXIalecommits; otherwise. no up CPU is
updated.

Failures of three or more CPUs are easily
troken OOv.n into the previously described
cases. ~essential rules are:

I. If the sender CPU does not fail the
update is successful. '

2. If the sender CPU fails, the update is suc­
cessful if it is transmitted to a CPU Ihal
becomes the locker and docs nOI fail ·
OIl'rrwise,the update is confined oniy to
IkNn CPus and has no effect on the rest
ofthes)"Stem.

Reloading and Synchronizing a Down CPU
In the Tandem system, a down CPU is
reloaded in the following manner:

I . The CPU is rese t and placed in a state to
receive a memory image across the inLer­
processor bus.

2. A RELO~D process is cxecuted in an up
CPU, whIch sends a memory image of the
GUARDIAN 90 kernel and some special
processes LO the down CPU. It also sends
a message to every other CPU noti fy ing it
to expect the down CPU to come up .

3. The RELOAD progra m nolifies the CPU 10
begin executing; its Mcssage System is
activated 10 send " " m Alive" messages
and to rece ive other messages, part icu­
larly global updates. Every other CPU
recognizes that the down CPU is now up
and begins 10 exchange " I'm Ali ve" mes­
sages with it.

4. The RELOAD program sends somc addi­
tional shared data messages (e.g., the
ocr) to synchronize the reloaded CPU
with the system. When the CPU is fully
synchronized, it starts executing
processes.

When a down CPU is rcloaded , operations
must be carefully sequenced 10 ensure that
the CPU has exact copies of all shared data
and that no significant updates are missed
during the synchronization phase.

The reloading strategy used in the
GUARDIAN 90 operating system assumes
thaI (1) the copying of shared data from the
reloading CPU to the reloaded CPU is an
operation that can be ret ried and (2) shared­
data copy operations req ui re less time than
the typical time between global updates .

U \ E I ~" \ . T"'1I)IM SlSTEMS RFVI1v.'

Operatillg System

83

aI'''"
OIH!ffllillg System

In the sending (reloading) CPU, the Basically, the shared-data copy Operation (

RELOAD process performs the following is protected by the GLUP·Seq mechanism.
operations: No global update can occur between the

I. It obtains a copy of the current beginning of the shared-data copy and
receipt of the make-shared-data-valid updaIe

GLUP-Seq.
in the reloaded CPU. AI thai lime, the repli·

2. It sends shared-data copy messages to the cated data in the reloading CPU and the
reloaded CPU. These are not global- reloaded CPU agree and are kept in agree·
update messages and are not subject to men! by the standard global· update
the GLUP processing described above. mechanism.

'Fi;; 3. II sends a global update to all CPUs J f the amount of replicated data is too
(including the reloaded CPU) that con- large, then it will be necessary to divide tile
tains the copied GLUp-Seq and the shared data inlo sections, and each section
update operation code to make the shared will require its own shared-data-is-valid flag
data valid. and make-shared-d3ta-valid global-update

4. If the global update fails due to an operation.
expired GLUp-Seq or update colli sion, it One must be careful that the CPU being
returns to step I. reloaded does not reference shared data

In the reloaded CPU, the GUARDIAN 90
before it is validly copied from the reloaded •

kernel performs the following operations: cpu. In GUARDIA 90, this is easily actorn· Q

plished by disabling process dispatching •
I. If a normal global update is receivcd, it uOli! all shared data is \alid. •

L- consults a local flag, shared data is \'alid. Finally, if some other CPU dies during a
This flag is not set when the CPU is reload operation, the CPU being reloaded - reloaded; if it is st ill not set, the kernel kills itsclf unless all of its shared-data-is-

AllY" discards the global update but ACKs it as valid flags have been set.
Thee. if it were acceptable. ,
Jor Ihl
JULI. 2. If a shared-data copy message is received •
andC from the RELOAD process, the CPU stores Performance STAN. the shared data in the proper table . The

CPU mUSt be prepared lO receivc dupJi- Figure 6 compares the performance of the •
DCT update operation for both the Al0 · caLe shared-data copy messages and can- 1

eel the effect of all such duplicates except GUARDIAN and BOO GUARDIAN 900perat-
ing systems. The A20 version obtains a • the last.
global semaphore before sending the update

1

3. When the make-shared-data~valid update to every CPU. In a single-CPU system, 00
is received, the CPU sets the shared-data- messages are required to obtain the serna- •
is-valid flag and processes all subsequent phore, so its performance is equi\'alent to

,
global updates in a normal fashion. Note that of GUARDIA 90. In a multiple-CPU
that it is the responsibility of the RELOAD sys tem , obtaining the semaphore causes tile
program (by using a global update) to fixed overhead of A20 GUARDIAN to be
determine that the reloaded CPU has much greater than that of GUARDIAN 90.
received the current replicated data.

56

~~ T __ A __ N __ D __ E ___ " ___ S __ Y __ S __ T ___ P M S

I • ~ ,

~usion
tGlARDlA\~operaling SYSIC~ incor~
ytt:Ialt" algori~hm for updatln~ repl! ·
uddala in adistnbuted s),stem with no
~m:morY. This algorithm is very effi­
~wiiX'O"ides consistency and atomicity
:5jieany number of CPU or link failures.
~akailbrn perform, considerably beller
IlIIICoo\'e!ll ional, semaphore-based algo­
thmtbai SUf\;\'C$ only a limited number of
imtS,

-..... "'_I!IS!. TkGllARDlAN OptraWI& S)~(It1 and
,,"~_b 11. TMdrII! SJSIt"IS brlrt'll' YOI_ I. no. I
-=~la:orpcnICd-

-..i\ In \cIa(llDlt. B.OpmiUq& S,...lcmi. In
r::~::_=:"Co..,.. td~ R Ba)'Cf, tt

. , ,

....
!
!

•

flgur. e .
A romptmSOfl Q/ the
tlapsed lime/ora global
updote on the AZO
GU4RDIANand BOO
GUARDIAN 90 op4!rul-
1111 systems. Tht' A 20
version obtulns Q g/ooo/

2 , • ,
Numbtt" 01 CPU.

semaphore before sending
the update 10 every CPU.
III 0 single-CPU system,
no messages ore required
10 OblUifl the semaphore.
$0 irs performance is
eqlliwJlent 10 lhot qf

6

Operating .s:l'slem

7 6

GUARDIAN 90. In a
multiple-CPU system,
obtaining the semaphore
couses the faed overhead
Q{ A20 GUARDIAN 10
be much greater Ihan thai
Q{GUARDlAN90.

OjX!rtll

Fillure

-Allur. l

Theex
Jor the
JULl~
andC<
STAM

56

Changes in FOX

he low·levcl handshaking
protocols used by the
6700 Fiber Optic Exten­
s ion (FOX) have been com·
pletely reimplemellled in
the BOO soflware release to
provide beller monitoring

of avai lable paths to different clusters. A'i
the changes make BOO FOX incompatible
with the A06 and A20 versions of the
GUARDIA operating system . it is necessary
for users to upgrade all of the systems on a
FOX ring to GUARDIAN 90 (BOO release) at
the same time. (Future modifications to !-OX
will remain compatibile with GUARDIA 90.)

This article describes some of the fealUres
of the new FOX protocols and their effect on
FOX users.

FOX Handshaking Prolocols

The software that controls the operation of
a FOX ring includes the IPO monitor pro.
cess, EXPAND line handlers, and the
Message System. The interprocessor bus
(IPO) monitor processes in the various sys­
tems in a ring communicate with one
another using low·levcl handshak ing proto.
cols. The network line handlers on A06 and
A20GUARDIAN/ EXPAND systems also com.
municate using handshaking protocols.
These prOiocols are used to establish a net ­
work connection between FOX s)'Slcms.

T A ~ 0 F M S, S 1 f " S

Original Protocols
The origina l (A06 and A20) protocols 00 ~
consider any charaeterislics of the uoderl}·
ing physical hardware of a system, such ~
the bus controllers and the ring lopolog).
The information available 10 the IPB moni·
tor process and FOX line handlcrs do not
permit the sofl\\are to deduce the layout oi
the lOX ring. These protocols are adequate
10 establish a network connection, bUlIt.e:.
do nOl permit the localization of failing
componcnlS \\ hen hard\\are failures occur.
especially for rings with morc than t~O oc
three systems or for rings \\ ith s)~tcrm ph!\­
ically far apart.

Nc\\ Prolocols
The BOO protocols provide a better mood of
the ring configuration of a FO:-" network to
aid in the diagnosis of problems and also ((I
provide beller recovery from errors. Each
I PB monitor process monitors all four palID
(X LEFT. X RIGHT. Y LEFT. and Y RIGHT)
and maintains a vie\\ of the FOX ring con·
sisting of an ordered list of all s),stems thai
are up on each path. Since a FO)" ring con·
figuration may change as clustcrs arc cold
loaded or taken do\\n. each IPO monitor
process builds up the view dynamically fmII
the information exchanged by the lo\\·!e,t!
protocols.

Each IPB monitor also monitors the bill
controllers and the FOX links for errors. Tlr
bus-controller microcode makes informatial
available to the IPB monitor about theslal~i
of the links and error counts. The IPS mOIll'
tor uses this information to detcnnine
whether the link is usable or not. For exam'
pic, if it detects a link that is cross' wired

RI""" ' Jl" , ..

jfrorn the X bus to the Y bus) or if certain
error counts (such as that for dropped pack­
d5)exctedaccnain threshold , it declares
IIr link unusable. When this happens, .Ihe
information is propagated over the enure
fO,\ ring so thai no more message traffic is
~t on the bad link, minimizing error
""",,,.

This mechanism also enables a link to be
rellx)':ed from service for maintenance or 10
insert a llC\\ system onlO the ring \\ ithout
causing an e'(ccssive number of errors and
~at other systems on the ring. The IPB
monitor process also aUlOmaticall y declares
t«Hlll [0 be usable if the error condition
disappears; for example, if the cross-wired
~nk is rewired properly. The error informa­
tion is also made available to users through
Communications Management Interface
(CMJ)Status-display commands.

An additional benefit of Ihe logical-ring
roofiguration information is that the Mes­
sageSystCffi auempts to use the path wilh
t1rsmal1est number of intervening systems
fir message communications.

nH~.-ox Diagnostic Subs)stcm
OOlFOX also supportS the Tandem Mainte­
nance and Diagnostic System (TM OS). The
ffiX diagnostic subsystem allows a Tandem
CUStomer engineer (CE) 10 take a bus con­
troller (lBU) OUt of service and diagnose
~ors, using downloadable microdiagnos­
lies. Normal message trafric continues
thl'OiJgh the other controller. This is useful
in localizing hardware f aulis.

~eed ror Simultaneous
Upgrade to GUARDIAN 90

Tk moSt imponant effeci of I he new protO­
cols on FOX users is thai in order to use
r:c>x with GI.1\RDIAN 90; all systems on the
~must be upgraded to GUARDIAN 90
SUttultantously. This is necessary because the
~ prOtOCOls arc incompatible with the old
!lles. As explai ned above the information
~chan ed . ' . g 111 BOO FOX is much more elabo-
rate than Ihal exchanged in A06 and A20
~x. Also, t~ new prolocols now require

COOperat ion of other IPB monitors.

l"II~'TA/'oOIM

b

Dircct-conneCI EXPAND Line Handlers
Users who do not wish to upgrade all sys­
tems to GUARDIAN 90 simultaneously can
use other communications lines (e.g., direct­
connect EXPAND line handlers) to maintain
~ommunications until the complete upgrade
IS made.

L.eaving 000 EX IJAND Linc Handlers Down
A GUARDIAN 90 system cannot commu­
nicate over a FOX ring with an A06 or
A20GUARDIAN sys tem. Similarly, a
GUARDIAN 90 system cannot communicate
with another GUARDIAN 90 system if the
twO are separated from each other on the
FOX ring by an A06 or A20GUARDIAN
cluster. I

If the EXPAND line handlers in the
GUARDIAN 90 systems on a ring are not
brought up (with the Peripheral Ut ility Pro­
gram, PUP), however, GUARDIAN systems
can use the FOX ring 10 communicate with
each other. This works even if these clusters
are separated from each other by
GUARDIAN 90 clusters. Similarly, if the
GUARDIAN 90 systems on a ring are adja­
cent to one another (i.e., there are no inter­
vening GUARDIAN systems) and the
EXPAND li ne handlers at the GUARDIA N
systems are not brought up with PUP, the
GUARDIA N 90 systems can com municate
over the FOX ring.

Users can thus usc the ring in a limited
fashion before they have upgraded all sys­
tems 10 the GUARDIAN 90 operating system.
Caution is recommended to users who do
this, however, si nce unpredictable resulls can
occur if both GUARDIAN/EXPAND and
GUARDIAN 9O/EXPAND line handlers arc
brought up with PUP simultaneously. Users
should also note that some eM I display
information may be spurious if a ring con­
tains both GUARDIAN 90 and GUARDIAN
operating systems.

'In I~ r(:\I or Ihi< ""'lion. GU.4RJ)/-" i, ,)"""""'w"" .. illl 106 ,-1M
GIk1Rt)M \.

"VSTFII.I S Rf" I IW

Operotillg .s:.'stCIII

Of/em/illg SYJIIJIII ---

Flgule'

Fi1I u",l.

Theexu
for the n
JULIAI
and CO,
STAMP.

::::------
- -

Other External Changes
Other external changes in the BOO release of
FOX inc lude changes to SYSGEN modifiers
for the IPB monitor and the FOX l ine han­
dlers, and changes to C!\ II commands and
displays. The SYSGEN modiriers have been
changed 10 delete certain modifiers for the
line hand ler that are specific 10 FOX (e.g. ,
NEXTSYSCLUSTER).

The eM ! commands and displays arc
modified to include the new information
ava ilable [0 the IPB monilOr process. For
example, the CfI.'II command STATUS
SUBNET now d isplays 3n ordered view of the
ring from the loca l system on each bus and
d irect ion, as we ll as a n indicalion of whe ther
the ri ng is comi nuous or there is a break. H
the ring is broken, the reason for the break
is also displayed (e.g., DOWNED BY OPER·
ATOR). This information is useful to opcr·
at ions and service personnel.

Conclusion

The new FOX protocols make the FOX ring
easier to diagnose and maintain . Error han­
dling and recovery are also improved. Trese
prOlocois can no\\ be enhanced in future
releases ,\ hile their compatibility with the
GUARDIA ' 90 operating system is main­
tained. The implementation of these proto­
cols results in an incompalibiiit) between
A06 and A20 GUARDIAN and GllARDlA\IXI,
but this one·time incompatibility i!l justified
by the extended functionality and future
expandability of FOX.

Adt_Jttlj(lTK'n t,
Tilt au thor 1I 0001Iti li l t 10 ad.OO\\lnIJIC Ih.:h I ~I'IOI\ help ..
de\ianilllillt 1100 FOX JlfOiocoh_

Hilin Oonde jOllied T&n(Iem In Jul)' 11182 He -orI<s on II'Itb
.lIngSYSlem$grouo,"Sofhnl.~1 N ,mila ..
M S ,n Compuler Sc~e from the Un'~'t)' 01 WIICCJ$I_ ... -

TA"l)r\I S ' ST EM S •
R E \ I E \\ • J l' 'f I' " r,:;J ~

'--'";~. ·ra...;:.~~===--__ ~ _ _ _

c\\ high-performance
\crsions of the BI\CKUI'
and RESTORe progralllli
arc a\ ailable 3!1 part of
the: GlN\RDIA N 90 operat·
ing syMem. Ot\cKUP2 is
used to copy disc tiles

OOlGmagnetK tape; RESTORE:! is used to
remm!hose files 10 disc.

B<:,LPI and RESTOREl handle bolh
DPI ami IJP~ filfi, bUllhcir significant per­
Ioor.m.-c improvements are most c\ ident
'ithwIaU(l'. Still available, BACKLI) and
RESTIl!E handk only DPI meso
.Tl'tj:tJformance impro\,ements achic\cd

'ilh BACKlP2 and RESTORE2 arc a result
,I:

I. llIIJ'Olt<\ ",II"are (DPl. BAC~ UPl. and
RESTOREl).

1. [lItjlO\'tti hardware (3 107 disc cont roller).

1.lm~OIoo microcode (3206 lape
"""~Ier).

D Results of performance tests show that
·<:'LPl perlorm 2' DP:l flies sup 10 .5 limes faster on
~ I than BACKUP performs on 01)1
nme; :mOREl (on DPl me,) is up 10 4.5
Also as""han RESTORE (on DPI Files).
Dr"; Usmgan imprQ\ed algorithm
~IOREl r •
lXlOPl1il per orms up to 1.6 limes faster
.. 'es Ihan RESTORE does. BACWPl
DP] ~~KI,;P have identical performance on
Figure I~~. resuhs are illustrated in

, I ,

b

lmproved Performance
for BACKUP2 and RESTORE2

This art iclc discusses the performance
analyses made on BACKU P, RESTORE,
IlAC KUP2. and RESTORE2 and quant ifies the
improvements result ing fro lll each of the
hardware and software features ment ioned
above . II ends with a mention of areas for
possible fUlure improvcment.

Fl",ure 1 FI",ure 1. ,.,
.00

1
¥

JOO

l 200
• •
~ '00

• •
10'

'00

I 300

l '00

I
~ ,00

• •

Sy~TF\lS

.... , . ""
".

BACKUP

."
• OP'

••
RESTORE

".
8ACKUP2

,IX)

, ..
RESTORE2

fa) Performance compar·
ison of backup oper­
ations on large files .
BACK UP U'il8 Tun on
DPI Jiles. and
BACK UP2 was Tun
fi rst onDPI and then
on DP2files. (bl The
same comparison for
restaTe operations.

89

Flgul

-Figur'

The (
jorlf.
JUL.
and!
STAJ

56

BACKUP2 Performance

Backing up a disc file involves:

I . Opening the file.

2. Writing the file label to tape.

3. Copying the contents of the file to tape.

4. Closing the file.

The performance analysis of BACKUP was
restricted to [he backing up of large files, as
that is the area in which the greatest improve­
ment could be made. Also, for the purposes
of this performance study, the backup pro­
cessi ng was considered to be the copying of
the contents of the di sc file to tape. The over­
head associated with opening and clos ing
files was not measured.

Dump-loop Algorithm
The dump loop is the code \\ ithill BACKUP
thai is responsible for copying the file con­
tent s. The algorithm it uses (minus the
detai ls of loop termination and buffer man­
agemelll) call be described as fo llows:

LOOP

READ(Discfile. Buffer, Wail);
AWAtTIO(Tape):

! Compute tape record ehcd,sum for "Buffer".

WRITE(Tape. Buffer. Nowail):

ENDLOOP:

The performance analysis "as based on a
comparison of the time required 10 read a
block of data from disc and the time needed
to writ e the same data block to tape. Since
DPI disc reads (and writes) arc limited to
4K bytes, eight disc reads were required to
fi ll a 30K-byte tape record.

TAN\} I- M

The BACKUP dump-loop algorithm can ~
"iewed as a combination of two 'lemi·
independent processing loops, the
DISC"'LOOP and the TAPE"LOOP. The
DISC."'LOOP consists of all the processing
reqUIred to get a data block (\\hich \\as to
be wrillen LO tape) from the di~c; the
TAPl:."'LOOP comprises the processing
between tWO tape writes. These loops operate
at different speeds and are synchronized b\
the A\\AITIO procedure. .

For the DISC"'LOOP, it was assumed thaI
the "nowait" tape \\rite \\ould be completed
\\hen AWAITiO was called. The DISC"'i.QOP
time would be its best-case time.

The DISC"'LOOP consists of the ait"
disc read and other components that are
executed serially with it in the dump loop.
These other components are the proct!lsing
time required by A\\AITIO. the checksum
calculation of the tape record, and the nQ\Iatt
tapc write call (but not the time rcquirtd~­
the tape process to \\ rite the record) .

Similarly, for the TAPE"'LOOP, it was
assumed that the disc read \\ould be
finished before the tapc \Hite finished. TIt
TAPE"'LOOP consists of the no\\ait tape ",rite
call, the time required by the tapc proces,to
complete the tape: \\ rite. the processing lim:
required by A\\AITIO, and the checksum cal·
culation of the tape record.

Software measurements for \arious com·
ponents of the disc and tape loops, along
with calculated timings for the channel. disc.
and tapc hard\\'are, \\cre used to obtain the
times required to execute the disc and the
tapc loops for 30K-byte blocks. With a
TRI DENT tape: drive, 3106 disc controller,
4104 disc drives, on Stop TXP proct~·
and 800 software. the time required 10
execute the DISC"'LOOP was 211 .7 ms and
the time to execute the TAPE"LOOP was
125.4 ms.

For BACKUP, since the DISC"LOOP tale
more time to process a blod than the
TAPE"'LOOP, the rate at which the data can
be backed up is determined by the ratC at
which the DISC"'LOOP can get data from
the disc. It look 211.7 ms to process ont'
30K·by,e block: ,herefon:. ,he prediCled

._' dalaratc as 1.45.000 b) ICS , "iCcond.
~~ fa\orably '" ith the mca~ur~
!!J!ltof 1,w,£XXl byles ,' r,c(.'O.nd. \ ~~~d.allng
;riJ)ilof the ba~kup operation U:"JI.-U 111

x:~

UIlBllKIO • .
~!lrflJtgOinganaIY~I~.1I \\3., clear that
:dsC"lOOP nctded 10 beimpro\c'~d 10
,,"upba.iiup processing. rile dump-loop
... :Jiharnstxamined, and it \\3S nOlcd
mi._gh the tape record \\as \\ rillcn
liiarfiIeS)'~tffi1 "rite. the di~ record
Airtad 'Ailh eight reads. One obvious \\ay
,If"d up tl1e DlSC'LOOP "ould he to
• tlr algorithm to usc only one disc
«alkre'otr) iteration of the dump loop.
m1:"P~\I .. asdesigned to do this by mal<.ing
Of"tb:DP!BlJlK IO feature. \\hich 01110\\\
1lr.flblo be read and \Hitten in 3m~ -bytc
f.urd >ize\.

luidilion 10 allowing large record size",
llltre:llarKi riucn. OPl BUl"IO pro\idcs
&i~tial data acms. The OP2 disc
~\~~cachc ",hen it is performing
or.lIKJO.Ii ~assumcd that (he number
d l1ir hill would Ix 100 10\\ for 01)2
a.UK)to justif)- the performance penall)
II 'OItIting ",he.
~ •• Ihe f1~ S)""" docs not buffer 01'2

1~k)recooI~. For normal readli and
lTJies, IRe File S)'~lcm 'iCnds and receives :1 from temporary buffers in its private

space. For UP! BULKIQ, the File System
fIKb ~ receheHecords directly from the
~ sdata ~pace, eliminating the time :rrm to copy the data into its 0\\ n

l!\.IProgramsthat usc DPl UULKIQ
""'be "1 _ Jr\VI eged and must obey certain
·"on rules.)
I;~ both tlte DISC'I OOP and the
~ Include time to compute the
.. =~hecksum. With DPl, this check­
....0 lion tan be eliminated ho\\e\'cr
~ pl "
~iI -computes the checksum of e\cry
~~eads. For BULKREAO. it combines
~tbe Wm~ o.f ailihe sectors read and
dt~~Ultmg checksum bad •. Thus.
B'(KlPl m returned by BULK READ to
... ,. - 'P<tds up both the DISC'LOOP

ua:TAPE LOOP.

, "

b

\Vith the DP2 BULK'Q fealure, the
01 C "'LOOP time was 170.5 inS and the
TAPE ' OOP time remained 125.4 ms . This
made the backup speed 180,000 bytes/
second . providing approx imately a 300'/0
improvement.

Note that even \\ith DIl2 BULKIO, the
DISC I OOP time was longe r lhan the
TAPE 1.00P time; hence, the DISC LOOP
time needed to be reduced even further for
beller performance.

Longer Tr'J nsfers
An ana lysis of the different componcnts of
Ihe DISC LOOP showed Ihal a long time was
spent in ge lling the data fr0111 the di sc 10 the
processor's memory. Also, although the use
of I)P2 BULKIO reduced the number of logi ­
cal reads of the disc file from eighl 10 onc
for every tapc block write, it st ill look eighl
disc accesses to geltbe data for one tape
record from the disc. The amount of time
required for each disc access had the follow­
ing componems:

I. Seek time. the amount of lime required 10
get the disc head to Ihe correc t cylinder. It
is usually zero for backup. since the data
is read sequentiall y from disc.

2. Latency lime, the amount of lime spen~
waiting for Ihe correct sector to bc POSI­

tioned under the di sc head.

3. OtlfO-lraTls!er lime, the amount of li.me
required to transfer Ihe data from diSC 10

the disc-controller buffer.

4. Channel lime, the amount of time
required 10 burst the data from the con­
troller buffer to the processor over the

channel.

An analysis of the components revealed
that the amount of time required 10 a~cess
data from disc could be reduced conslde~abl y
by reducing the number of accesses reqU ired
to gel 30K bytes from disc. If the number
\\crc reduced from eight to one, Ih~ 1~lency
time for seven accesses would be el11111natcd.

,\ S

OpermjllR System

91

Operot,

Figure

-Figure

The e.
for (hi

lULl.
andC
STAN

Operating Sy!!em

It was possible to do this with the longer
transfer capability of the 3107 disc controller.
DP2 uses this capability when performing
BULKIOs. With a 3107 controller, the
DISC"LOOP took 112.4 ms, making it
faster than the TAPE LOOP. This meant
the backup speed, now determined by
the TAPE LOOP time , was 243,000
bytes/ second.

Larger Channel Burs ts
The bOlileneck had shirred from the
DISC LOOP 10 the TAPE LOOP, requiring a
reduction in the lime taken by the latter. An
examination of the components of the
TAPE LOOP revealed thaI 78010 of the
TAPE LOOP lime was consumed by hardware
componenrs. in transferring the data from
the CPU to the tape-controller buffer and
wriling Ihe lape record to tape.

The lime required to transfer Ihe data
from lhe processor to the lape controller
could be reduced considerably by transfer­
ring the data in larger bursts, since the tape
controller uses 16-word bursts and has a
large hold-off time after every burst. A chan­
nel burst size of 128 words resuited in a
TAPE LOOP time of 78.5 ms while the disc
time remained at 112.4 ms, making the
backup speed 273,000 bytes/ second.

Redesign of the Dump Loop
The bottleneck had shifted back (0 the
DISC LOOP. Measurements showed the disc
drive to be idle about half the time, when
any of the following occurred:

I. The record was sent from the disc process
to BACKUP.

2. The previous tape write was awaited.

3. The record was writtcn to tapc.

4. The next disc read request was sent 10 the
disc process .

5. The disc process prepared the read
request.

DISC LOOP throughput would improve if
the next read request were queued at the disc
process when the current read finished. This
would ailow steps 2 and 3 to proceed in
parallel with steps 4 and 5. In BACKUP2, the
dump loop was redesigned to accomplish
this.

BACKUP2 opens the fi le twice and iss~
nowait disc reads on both OPENs. (It is net­
essary to open the file twice, as only one
nowait operation can be outstanding against
a disc-file OPEN at one time.) A nowai! read
is a lways outstanding on one of the OPENs
for the next record while the current record
is awaited and used. The BACKUP2 DP2
dump·loop algorithm is as follows:

BUU\READ(Disc filcl , Bum:rl. No\\ail);
LOOP

IlUlKREAD(Disdi le2. Buffer2. owait);
A\VA tTIO(Discfilc I)
A\\AITIO(Tape);
WRITF(Tape, Buffer!, Nowait):
BUlKREAD(Discfilcl. Buffer!, No\\ail);
AWAITIO(Discfilc2)
A\\AITtO(Tape);
WRITE(Tape:. Buffcr2. owait);

ENDLOOP:

With this ne\\ dump-loop algorithm.
the DISC LOOP time for BACKUP2 is 83.3 1m

and the TAPE"'LOOP time remains 78.5 ms,
making the expected backup speed
369,000 bytes/ second. The measured
throughput is 351.000 bytes/ second, \\hicb
is near the predicted throughput.

RESTORE2 Performance

Restoring a disc file involves:

I. Reading its lape-file label.

2. Purging the o ld disc file (if necessary).

3. Creating the filc.

4. Opening the file.

5. Preallocating its extents .

6. Copying the contents of the rile from tapt
10 disc .

7. Closing the file.

As with the BACKUP2 measurements, the
RESTORE2 measurements were restricted to
large files, and the overhead associated \\ilb
such operations as purging, creating, and
opening was not included.

TA'DE \I S'STFMS RI'VIEW

Dump-loop Algorithm
The RESTORE dump-loop a lgorithm is as
follows:

lOOP
READ(Tape. Bufrer. Wail):
, Verif)' la~ record cllecksum.
-\\\o\JTK>(Disdile);

\\ RITE(D~file. Buffer. Nowail);
E\DlOOP:

Rtdbign of Dump Loop
Because of the DP I 4K-byte limitation, the
nowait write of a 30K-byte record in this
dump loop consists of seven wait disc writes
and only one nowait write. This limits
RESTORE'S performance, as desc ribed below.

The RESTORE dump loop is essentially the
BACi.:LP dump loop with the roles of the
tape and disc file reversed. Measurements
'showed, ho\\ever, that DP! BACKUP is over
,wice as [as' as DP' RESTORE (140,000
byt~ second \'s. 65,000 bytes/ second). The
difference was commonl y attributed 10 the
longer amount of time required for a disc
\\ RITE (especially if the drive were mirrored)
Ihan for a disc read.

\leasuremenLS showed that parallel
mirrored-disc writes took only 43~o longer
han disc reads. A major part of the differ­

ence in speed bet\\een BACKUP and
ESTORE was attributable to the seven wait

disc writes that were executed seria ll y with
the wait tape read (and, thus, were part of
the TAPE'LOOP).

RESTOREl's dump loop was redesigned to
perform a nowait tape read in addition to
performing the last disc write as a nowait
~le. This improved the performance of

lFSTOREl 62~o over that of RESTORE
im DPI.

P2 Bl LKIO. Longer Transfers, a nd Larger
Channel Bursls
lESTORE2 takes advantage of DP2 BULK 10 .
h uses one no"fait write for a 30K·byte
record, thus eliminating the seven waited
K-byu:: writes required with DP!. With the

ger transfers of the 3107 disc controller
and the larger bursts of the TRIDENT tape
controller, the data can now be restored at
~.OOO bytes/second, resulting in a 3460/0
~provement over the performance of
f1ESTORE.

Conclusion

The usc of DP2 BULKIO, longer data transfers
avai lable wit h the 3107 disc controller, larger
channel bursts avai lable with the TRIDENT
tape controller, and the redesign of the
BACKUP and RESTORE dump loops have
resulted in significanll y improved perform­
ance for the new GUARDIAN IJ BACKUP2
and RESTORE2 programs.

T he performance or these IWO programs
can be improved even further with improve­
ments to the mic rocode and software.
Enhancements under consideration for future
releases include larger channel bursts on the
3107 cOnlroller and furt her improvements to
the RESTORE2 algorithm.

Ack'MlOO Il'dKllM' nIS
T heautOOrs lluuld lil.e 10 Ihanl. 10 J im I:nrighl. Jim Gra).
Praful Shah. Andrea Barr. '1itch Butler. Tim H allod.. Franco
Put:l:oIu. Pal Ikadln. [knnii ~la.rkl. Su~n Troulll. LafT)
McGo-.-an. Peler Oltinick. and Gil Siegel for lheir help in
collt'l:lin& the IJACKUP2 and RESTOR.El performllnce informa·
tion and for Tr'Iir...ing thisaTlidc:.

Ani! Khllrl la a member 01 the Performlnee group In Software
Development. Before Joining Tandem In t983, he obtained a B.S.
In Eteelilcal Engineering from the Indian Inatltute of Technology
at Kanpur and an M.S. In Computer Science Irom the Unlyoraity
of MalYland.

Mall McCUne jolr.ed Tandem Sof tware Development In septem·
ber 1982. At ttlaltJme, he entlanced and malntaJoed lhe File
Utility Pfogram (FUP). Peripheral Ulillty Pfogram (PUp). and
BACKUP and RESTORE utilllles. In lhe past }'fIar. he worMd on
BACKUP:! and RESTORE2. Recenliy, he began working In lhe
Transaction Monitoring FacUlly (TMF) group. Matt has a B.S. In
Electrical Engineering and Computer Sc::lence lrom U.c. Berkeley.

•• F TA"OI!M SYST£MS REVlfW

Opcra/jng S),.f(cm
.-

93

Flgulll

-I'1gUIlI·

Th~ex

for the
lULl;
ondO
STAM

56

f

VIEWSYS: An On-line
System-resource Monitor

new Tandem utility pro-
gram, VIEWSYS, now
a llows users to monitor
system resources whi le
their system is running.
VIEWSYS displays the
percentage used of

selected resources in bar-graph form on a
Tandem 6520 or 6530 terminal. Users can
display a variety of screens showing the
usage of one resource across all processors
in a system or all resources within a set of
processors. Users define which processors in
a system are to be monitored.

VIEWSYS is useful as a first-cut system­
balancing tool because it provides a dynam ic
view into the system while applicat ions are
running. It is especially helpful for monitor­
ing the effects of program or fi le relocat ion.
This article provides a brief overv iew of the
functions and commands available with
VIEWSYS.

Syslem Moniloring

To assure the best performance possible
from its systems, Tandem has made available
a number of ba lancing and tuning tools. At
one end of the spectrum is XRAY, a very
detailed performance-analysis tool. An
XRAY measurement is taken on an active
system , and the subsequent output is studied
to determine bottlenecks or imbalances
within that system. Although users can vie'll
XRAY output as it makes the measurements,
common practice is 10 interpret the resul ts
after the measurement so Ihatlhe process of
viewing the output has no effect on the sta·
tist ics gathered.

AI the other end of the spectrum are the
lights on the processor panel . which users
can view to obtain stat istics on processor
performance. From the command interprelCf
(COMINT) , users can issue the LIGHTS ON
command 10 cause the percentage of pro­
cessors busy to be displayed by the panel
light s. Lights one through tcn indicatc the
percentage of lime that that processor was
not idle during the polling period (gcnerall)'
one second); each lighl indicates 10 percen!.

SYSTrMS RF\IEW ' JUIliF TANOEM , , ,

,

f
PEEK is anOl her utility for monitoring

processor performance. It reports statistical
infomtation about GUARDIAN and
GUA~DIAN 90 control blocks, pools, and
phYSical memory. PEEK produces single or
multiple "snapshOls" containing current
a,nd maximum resource use within a speci­
fied processor. Its maximum counters ini­
tialized with the PEEK INIT command'
report the maximum use of those reso~rces
over time. For statistics such as page faults,
users can generate a "snapshot t> at a known
time, generate another "snapshot" later and
~elermine average usc during the elapsed
time.

The need for a utility that monitors and
displays current resource usage on-line led to
the creation of VIEWSVS. Intended as an
addition [0 the above tools. it reports a sub­
set o.f the s t~listics they provide, in a graphi­
cal, mteractlve, on-line fashion. VIEWSYS is
available for NonSwp II, TXP, and EXT
systems running the GUARDIAN 90 operaling
system .

Support

YIEWSYS is an economically priced, limited­
support software product. There is no local
Tandem office support for this product;
instead, users can submit questions or prob­
lems by filling OUI the form in the back of
the VIEWSYS manuaJ and mailing it directly
[0 Tandem headquarters. Generally, a reply
[0 a Query is returned within two weeks.

VIEWSYS is an added-va lue utility that
has no potential impact on the operating
system or user applications and therefore
does not require locally based systems­
analyst support. Offering the product with
this limited support permits Tandem to offer
j[at an auractive price.

C ustomers contractuall y agree to the sup­
port terms and are licensed to use VIEWSYS
for a Doe-time fee . V1EWSYS is part of the
Bnn software-release series, but there is no
guarantee that it will be part of subsequent
release series.

I " 8 !I

-

Program Function
VIEWSYS is designed to dynamica lly reflect
system-resource use. Users can view the cur­
rent or maximum allocation of control
blocks, system pools, and physical memory.
Information is available on page-fault rates,
CPU-busy rates, dispatch rales, disc-I /O
rates, and interprocessor send-busy rates.
Processor Queues and page-fault queues are
displayed.

Users can display the HELP screen (shown
in Figure I) by pressing a function key. This
screen displays function-key assignmems
and the current attributes of the V1EWSYS
program. Users can select individual
resources with unshifted function keys and
individual processors Wilh shifted function
keys . They can alter other VIEWSYS pro­
gram attributes with special function keys .

VIEW$YS - T9071800 - 2&.1 NBS

__ -,Operalillg System

Figure I .

The VIEWSYS HELP
screen. Users rontrollh,
nmniflg program by pYS.\·

ins/unclion keys. Th, lop
section sho 'S Ihe keYj
used 10 COIII,o/ f1t'OJ:TOm
attributes. The £,(>lIIer
S«liOfllislS the emillt's
reporled by tht: prORfflm
and Ihe jllflCIIOII ke~'
depressed 10 select thl'
elllilies. The OOllom
seclion depicts Ihe cum''''
program allribules.

FIOlt UP OIsptay all pI~ t_ r • - .' ~'Id
FIOltUPsMIed Disola~·he4p·IrrI'llm;n:',·' ·:~I
ROLL DOWN Display ~"IlUfl\ use SI.: ._
IIOLL OOWN sMI8C1 Disolay Current use SU"~IC$
NEXT PAGE -- 100;II rotil1~ NEXT PAGE sh 11&0 1.loers
PREV PAGE - Mxt cou set PREV PAGE sh11ted log 1Ot.JleqlUS
INS UHE - reset 1!Ii'.-nums DEL LJ~E·1OOl .

FKI th h FKt6 shilled CPU o. CPU l. CPU IS

fKI -CPU BUSY
FlO - PAGE FAULT RAlE
FK~ - DISPATCH RATE
FK7 -CACHE hlJ /tAU
FK9 -PCBs
fKll - SYSI'OOL
FKI3-LCBs
H15· BPTs

HZ • CPU Ol/CUE LENGTH
fK4 ~- !.!EMOfW OIlEU[LEMiTH
FK6 • SHl~ BUSY
fK8 • - DISC 110 RAtE
FKtO --lOCKfD t.lE\!O!IY
FKtZ MAPPOOl
FK14 -lLEs
FI(IS unu~8CI

VIEWSYS STATUS

(pus beJng J!lailSUled: 0 1.2.3.4.5.8.7
prOCt$$Ol" S\ilUSlOI:S maximum in use
~IIon$: rotallon on COUS8\s 2. I1)lalecpus on
GPlIOIlS: extIaltar 185. unSlowa~ on. luncllonlte>.'Son
0CI1OnS: sw~chb«~ 011. tiers Oft

SYSTEMS RE VIEW
95

o Opel'Ulillf,l Sy.fWm

Flgutt2..

VIE IVSYS rommOlld
syntax. Users isslll? kpy­
'I\'fJfd ('ommunds /0 dl'/er­
mine the progrom
(J//ribwes. They CQrI st!1

the items highlighted in
gra)' 01 rull lillll.' or dllring
program exet.'lIfioll willi
/ uncli()fl keys.

96

T.bl" .
Enlities measured by VIEWSYS.

CPUBUSY

CPUOUEUE

PAGEFAULT

MEMOUEUE

DISPATCH

SENDBUSV

Mnnlng
The pe!'cemage 01 lime a proce$$OI' 115 not ICM
OJf"'O \tie POllIng penod (proce5SOt DuSy •
,.,ter~-ousy tmel
The average nurT'OeI' ot plQCet5eS on tile ready
list dunnglhe I)OIhnojj pellod (0/0Ces<iM <twit lJle
read)' 10 lUll)

The aWllaoe nurT'Oef 01 page ,..,11$!hit OCCUfled
p&I second- dum-.g ItIe pOIhng penod

The average numbef 01 ptocesses ,willhng
~faull5eMCing dunng tIM! DOIIInII Dellod

The _age numbef 0 1 dispalChe5.. '* 5e<;OI'I(I
dullng U'\8 polling penod

The percentage 01 I,me duung II'M! DOIIong !)ellod
W I II se<ldwas be,,'10 P8rlofmeod wIth", a

~~-
CACHEHITS The aYel'age number Or dlSC.c,acne MS. pel

second. dunng tile polling penod
OtSCIO TI'Ie average number 01 d,SC 11Os. per second.

dun~ 1I1e pOlling penod

PCB The nUrTlOOf 01 Process Cor1!rol BIoc~s allocll llKl
l Ithe Mle the processor IS POlled

LCX:KEDMEM The numl)et 01 p,aoes of pnyslUl memory 1M! .re
locked Bi llie tune the procesaot IS POlled

SVSPOOl The numbel 01 pages 01 SYSPOOl.IIoc.ted ,I
ttle limE' the processor IS polled

MAPPCX>l The I'IUfI"()er ot p;tgeS 01 MAPf'OOl allOCaled,1
tne tlfl108 \he Pfocessot 15 POlled

LCB The I'\UI'I"Cer or lJnI(Conuol Bloc'" ,qoc.;ned al llIe
t.me the PfOC_ IS POlled

TlE The IUT1ber 01 Time lISt Elefneonts allocaled II llIe
tlfTl8 tne PfOC8SSOI' IS polled

BPT The nurroOO! 01 break po,nts alloc~lI!ed at tile tme
me orocessor IS POIecI

Flgu .. 2

VIEWSYS I I < run-<lOtJon > I . < run.()p!lon 1-- II
[< command > [. < command :> I ..

< run.()pl lon > Is one 01:

NAME IS< PHxess·nama :> I
CPU < cpu·number :>
PAl < priori ty >

< command> Is one of:

BACKUPCPU < cpu-number :>

CPUSETS <number >

DELAY < number·seconds >

DISPlAY <dlsplay·type>

EXITAFTEA <number>

FUNCTIONKEVS [ON OFF I
MUlJ"ITYPE [ON OFF I
NUMCPUS < number :>

AESEAVELCBS I ON OFF I
AOTATECPUS I ON OFF I
AOTATION [ON OFF:

SWITCHBACK I ON OFF I
TlERSlt 21
UNSTOPPABLE [ON OFF I
UPCPUS I ON ' OFF ,

USEACPUS <cpu·number> [< cpu·number > ~ •.

Measurement Techniques
Table I shows the entities measured by
VIEWSYS. The values displayed are taken
from GUARDIAN 90 counters also used by
XRAY and PEEK. VIEWSYS does not alter
any of these counters and, therefore, can be
run concurrently with these programs. More
I han one V I EWSYS program can run
concurrently on a system.

Using VIEWSYS
The Ihree standard run options for VIEWSYS
are: NAME, CPU, and PRL Following the
run options, optiona l commands can be
entered to configure VIEWSYS (see Fig·
ure 2) . The run commands allow users to
specify program atlributes such as the
processors to be monitored (USERCPUS I 2
3), the initial display format (DISPLAY
CPU BUS Y) , the polling period in seconds
(DELAY 5) , and wheLher 10 rotate from
display to display (ROTATtO ON).

Once VIEWSYS is running, its allribules
can be altered with function keys. In Fig­
ure 2, attributes thal can be sct with bOlh
run· time commands and function keys are
highlighted in gray.

Current/ maximum Mode
When first started , VIEWSYS reports current
usage. This is Ihe percentage and amoun t of
each resource in use during that polling
period; each display reflects the average use
since the last display.

Users can press a function key to alter the
display to maximum mode. For this mode,
inlcrnal maximum counters arc kepI for
each resource in each processor being
monitored. When users select maximum
mode, VIEWSYS displays the highest
percentage and amount of each resource
recorded. These counters are initialized
when the process starts, and users can a lso
initialize at any lime by pressing a function
key. This allows them to reset the
maximums at a recorded time and then
display the maximum values occurring since
that Lime. This can be useful in finding
under·utilized resources.

T"'I'1DE M SYSTl' M S R EVlf V.

ROTATION and ROTAT t::CI' U5 Commands
Users can set the program to rotate through
all possible display ty pcs by setting
ROTATION ON, Selling it ON causes the
sequentia l d isplay of all processors being
monitored . SCliing it OFF causes the
currently selec ted display to be repealed.
Function keys are used as toggles to alter the
stale of these twO attributes.

Bar-graph Percentages
Figure 3 shows the screen display generated
by the USERCPUS command. Nine of the
percentages reported are based on the ac tua l
configured amoun ts of the resource . System­
pool sizes are determined at system genera­
tion (SYSGEN) time, as are the number of
control blocks allocated. These amounts are
used to determine the percentage used.
CPU BUSY and SENDBUSV percentages are
determined by dividing the busy ti me by the
total elapsed lime.

Six em ities have no absolute maximums,
so maximums have been established for
them for use by VIEWSYS. Table 2 lists
these maximums for the NonStop U and
NonStop TXP processors. The va lues have
been selected so lhal the display of a high
percentage indicates poten tia l problems
resuJting from contention for processor
resources. Because of the fasLer processing
speed of the NonStop TX P processor, the
estimated maximums for its dispatch and
disc 1/ 0 rates are set higher than those for
the NonStop II processor.

Conclusion

VIEWSYS extends the capability of Tandem's
system-monitoring faci lit ies by provid ing
flexible, real-time, graphical displays of
system-resou rce usage. It is usefu l for both
locat ing problems and ba lancing resource
use within a system.

D.1e Montgomery Is.n .ccount .nllyst In the SeaUIe dIstrict.
When he wrote th iS IlItlcle, f_ months ago. he was a staff
,nalysl for Ihe FIeld Productlvlly P10grams oroop In Sunnyvale.
HIS previous duties al Tandem ["cluded InstrucllOO bolh System
Managemeot and GUARDIAN Operllloo S~lem courses and
PfOO'ammmg In the Tandem ApplICation lanouaoe (TAll.

Operali,,!: System

Figure 3

system \ ""'1 process nonatIIIIpi\ll os.0e6p1a~ lenTllnl· STlII E15
~y 1OO.-.ds CURRENT last ~"',*' ,IJIAog,I!la.sl~U1U

CPU 01 SlAlUS

0 1 2:..3:. .•.• ·5·· ·6· .,. -·8·· ·9
tPli busy
t~ QU8IIt lin
I)Ige flilB 1.le
rrem queue lin
C'Soalth r~te
Wldl!Usy
Cltllt M rille
dlSClIOflite
process t b - -' kicked pages ,-..... • .,,~ t b
r~llS1 etBm • IIre..~potnl C II

Figure 3.

A screen gC'fleruled b), Ihe
VIEII'SYS USERCPUS
command. The bars
"pr-esem pemmtages Q/

lIfili~uti()lI. Tile "lImbers
to Ihe righl o/Ille bars
"present either Ille Ul'U­
age IIIIII/ber qf comroi

nble2.
Vatues for entities used as maximums in VtEWSYS'

NonStop II NonStopTXP
proceuor processor

CPU qll8l18
"

10
P8g&-laul!'all " " Memory queue , •
DISPatch rate "'" 800

Cache-h,t .ete 100 '00
DIsc·1K) rlre 50 100

'Nombet m QIHIUfI Of numbel DIf.seeonc:l

'100%

"

"

" .. ,
178

• lro ,
1

blocks, memOfY pages,
etc., or the rUle (~r
$l'COlld) of page/olilts.
cache hilS, elc.

JUNr 1911 5 TAr-O E \1 SYST EMS REVlf"W 97

98

Introducing TMDS,
Tandem's New
On-line Diagnostic System

he Tandem Maintenance
and Diagnostic System
(TMDS), a new diagnostic
software system for
Tandem hardware, is ava il ­
able in the BOO release. The
FOX diagnostic, a TMDS

subsystem for diagnosing problems with the
6700 Fiber Optic Extension (FOX), is also
available.

TM DS aids Tandem customer engineers
(CEs) and users in many ways. To CES,
TMDS provides a uniform interface to its
diagnostic subsystems and an extensive
"help" facility for using these diagnostics .
The diagnostics themselves provide a safe
on-line mechanism for finding and repairing
broken hardware. TMDS can run concur­
rently with user applications, causing fewer
interruptions in system activity. System
managers who have TMDS running on their
systems will find that less time is now
required by CEs to determine the location
and causes of hardware faults.

System-management considerations for
installing and running TMOS software are
minimal. The installation instructions, in a
step-by-step format, are included in the
TMDS software documentation (Softdoc). It
is important thal system managers install
TMDS as soon as possible, instead of waiting
until a CE needs to use it. As described in
this anicle, (WO processes (SZENO and
SZLOG) should be running at all times.

For Tandem users interested in diagnos­
tics, the rest of Ihis article describes the
design ofTMDS and the faciJities it provides
for Tandem CEs. A brief description of the
FOX diagnostic is included as an example of
a TMDS application . The article concludes
with a discussion of pOienriai enhancements
to TMDS.

On-line Diagnostics
for Fault-tolerant Systems
On-line diagnostics are important to the
smooth and uninterrupted functioning of
fault-tolerant systems. Users of Tandem
systems demand high availability of their
applications. Hav ing to curtail all or even a
portion of their normal activity to analyze a
failure presents a major hardship to their
operations staff.

The need for concurrent execution of
diagnostics and user applications places sev­
eral restrictions on on-line diagnostics. The

TAI'DEM SYSTE M S RE\,IE\\ · JUN E 198 !1

diagnostics must not usurp any computer
resource, from CPU cycles to disc-access
paths, without good reason and user permis­
sion. In addition, the running of these diag­
nostics must not compromise data security:
control must be given only to aUl horized
users.

Fault-tolerant machines ease the diagnos­
tic task. In these machines, normal system
activity continues even after a hardware
component fails. The faulty component
freezes its state, allowing diagnostics to
search for the cause of the fault.

To find the fault, on-line diagnostics must
have support from hardware controllers.
When possible, fault detection and fault
isolation should occur in the hardware, firm­
ware, or software where the fault occurs.
Many times, the location of the fault is
known at the controller level and should
simply be reported to the user. On-line diag­
nostic systems must support a method of
gelling this information to the user.

Other faults, such as disc retries, may not
stop a system from continuing, but informa­
tion about their causes can be lost when the
system continues. In any case, pertinent
information about faults must be stored for
future reference by diagnostics.

The TM DS Approach

The design goals for TMDS were to:

• Support diagnostics that allow a CE to
diagnose hardware in the shortest possible
time while not interfering with normal sys­
tem activity.

• Decrease the time required by a CE to
learn how to usc a new or infrequently used
diagnostic .

• Minimize the potential for CE diagnostic
errors and provide a mechanism for explain­
ing the errors that do occur.

• Create a facility that records information
about unexpected hardware faults, provid­
ing the CE with all information relevant to a
particular failure.

The des ign of TMDS includes the follow­
ing features associated with these goals:

• Utilization of hardware and firmware
features that allow diagnostics to lest one
part or path of the hardware while leaving
the other parts avai lable for normal system
activity.

• Testing that identifies the correct field­
replaceable unit (FRU) to be replaced.

• A standard command interpreter for all
TMDS diagnostics that provides consistent
syntax and extensive help for all TMDS
commands.

• A mechanism that stores information on
abnormal events thaI occur during the sys­
tem's activ it y. This information is accessible
both by the CE and, more importantly, by
the diagnostic code, to determine the cause
of the problem, and , in certain cases, the
action required to fix it.

• Use of NonStop processes and fault­
tolerant Tandem hardware to insure that
TMDS is a lways available. I f any component
of a Tandem system or network fai ls, the
system continues and a CE can use TMDS to
diagnose the faulty hardware. In addition ,
TMDS ensures that diagnostics cannot leave
a device in a diagnostic state.

Implementation

TMDS, by itself, does no direct diagnostic
work. This is done by its diagnostic subsys­
tems and the CEs that use them. It provides
the CEs with a single, powerful, consistent
command interpreter for all diagnostics that
run under the TMDS umbrella.

TMDS is designed to handle two types of
activity. The first is activ ity requested by the
CE through diagnostic commands. The sec­
ond is the activity initiated when TMDS is
notified of a fai lure in the system .

JUNE 19I1S · TAI'O£ M S Y S T E M S R EV l f W

Operotillg System

O"ertuillR Syslem

FIgure 1

Flgur. 1.

, -= 3

Compt)lU!IIIS qf TAt DS. A
diagnostic command is
emerW by Ihe CE It'ilh
the end·user inlerf~
(EUI) and is ''erified
aguinSllhe ,·OC'Qblllary.
Ne:r:llhe resollrce

100

Diagnoslics Run b)' the CE
Figure I shows the interaction of the Tl\1OS
components initiated when a CE uses TMDS.
The components are desc ribed below.

End-llser liller/ace. The end-user interface
(EUI) is the TMDS process started by a CEo It
is a general-purpose command interpreter,
which, as a front end to all TMDS diagnostic
subsystems, guarantees that diagnostic com­
mands have a consistent syntax.

The commands consist of a command
name and optional parameters. A parameter
has twO parts: an optional name and a man­
datory value. For example, the following are
valid commands in TMDS:

TM D$> TEST LOU x. TESTNAME all
TMDS> TEST x, a ll

where TEST is the command name, LBU and
TESTNAME are parameter names, and x and
off are parameter values. (TMDS> is the
TMDS prompL)

'"'

manager and scheduler
(SlENO) SlariS Ihe
application monitor (AM)
in which Ihe command
is exec-wed. Then
Ihe test mierocode is
downloot/ed in/a the

, -
"

'0 --

del'itt and Ihe tesl is nllf.
The reSOlI~ manager is
a NonStOf) process poir
Ihal relllTnS resol/rces
allocoled dllriflg diagnos­
lie It'ark to their initial
stale if an error ('JIXI/f$.

A benefit of the two-pan parameters used
in n.1OS is that a parameter's name can be
given in any position in the command. The
following example, which has its parameters
specified in a different order from that of
the first example above, is also valid:

Ttl-ID$> TEST TESTNAM E all, LOU x

Another benefit of two-part parameters is
that a de/aull parameter can be set. In
n.1OS. it is possible to specify that all com­
mands having the parameter PARM are to
have the value VALUE for that parameter.
This mechanism is useful when a parameter
is used frequently in several d ifferent
commands or in the repetit ion of a Single
command.

The command DEFAULT is used to estab­
lish this relationship. The name of the
parameter in the DEFAULT command is the
parameter name to be defaulted; the va lue is
the default value. For example,

Ttl-1DS> DEFAULT LOU x

associates the parameter name LBU to the
value x. After this DEFAULT command is
issued, the LBU parameter defaults 10 the
value x for all commands thai use that
parameter unless the user specifies a va lue
for LBU on the command line. The follow ing
example is now equivalent to the first exam­
ple given above:

TMDS> TESTTESTNAMEal1

The EUI a lso presents a unified "help"
facilit y for all diagnostics. There are two
ways to obtain help information in TMDS.
Use of the help operator, ?, is one way. Any­
where in a command line, the help operator
can be used 10 ask, "What are my options?"
For example, if CEs cannot remember the
va lues for the LBU parameter in the TEST
command, they can use the help operator 10
obtain this information as shown in the fol­
lowing example:

TMDS> TEST LBU ?

TAI'IDE \\ SYSTf'MS REVIEW

I f they can no! remember the name or val­
ues of the second parameter for TEST, they
call type? in the second paramcter location
10 gctlhis information:

TMDS> TEST LBU x, ?

If thc help operator is used in place of the
command name, a list of all avai lable com­
mands is displayed. The help operator is
best applied to obtain a particular piece of
information.

The HELP command and the ERROR com­
mand can also be used to get assistance in
issuing commands and analyzing crrors. The
HELP command supplies information in
many areas, including genera l information,
rules, and commands for TMDS, and general
information about the FOX diagnost ic.

For each of these areas, specific informa­
tion on many subjects is available. One can
get help on entering commands by asking
for the rules about a general command:

n,IDS> IIELP RULES command-entry

One can get an overview of the commands
available 10 diagnose FOX hardware by ask­
ing for the FOX overview:

TMDS> HELP FOX overview

Typing HELP without any parameters dis­
plays an introduction to TMDS. Included is
assistance on all aspects of HELP. One can
always find the complete details of any par­
ticular command by typing:

TMDS> HELP COMMAND <command-name >

or
ThIOS> HELP <com mand-name >

The ER ROR command explains error mes­
sages. All TMDS errors are printed in this
format:

.... FOX999: Example FOX error message

The number of asterisks (one to four) indi­
cates the severity of the error. The asterisks
are followed by an error identifier (in th is
example, FOX999) and a short description of
the error.

A more complete description of the error
can be obtained by using the ERROR com­
mand with the error idelllifier as a parame­
ter. For lhe above error, one would enter the
following to get a description of the error:

TMDS> ERROR FOX999

_____ --'O"''P''=roli/lg 5.'!...'Stem

Vocabular)'. When Tandem developers create
a TMDS diagnostic subsystem, they define its
commands in the Tr>.ms vocabulary, a data
base for information about command
names, command parameters, and the loca­
lion of the diagnostic code that executes a
particular command. When the CE enters a
command, lhe EUi asks the vocabulary to
val idate the command. The command is
compared with the information stored in the
vocabulary, and if it was incorrectly or
incompletely specified, the EUI displays an
explanation of the error. J f the command is
valid, the information associaled with thal
command is used to run the command.

Commands for a particular hardware
device are grouped together with in the
vocabulary into subsystems and can only be
used within that subsystem. For example,
the FOX TEST command for testing FOX
hardware can only be started in the FOX
subsystem. TEST commands for other hard·
ware devices are avai lable in Olher subsys­
tems. The commands provided by the EU I
can be executed in all subsystems.

TMDS provides two ways to switch
between subsystems. The first is lO specify
the subsystem on the TMDS run line. The
command sequence below starts TMDS in the
FOX subsystem where all FOX commands
can be run:

:n,mSFOX

The other way to switch to a d ifferent sub­
system is 10 use the SWITCHTO command:

TMDS > SWITCIITO fox

Resource M anager al/d Scheduler (SZI:.,I"Oj.
When a resource is being diagnosed, it
shou ld not be available to normal users or
other diagnostics; if it were, the diagnostic
might act unpredictably. To eliminate con­
tention for the resource being diagnosed, the
resource is always al/oeared to a diagnostic
before it is used . Once the allocation is
made, the diagnostic can be run. When it
completes, the resource must be deallocated.
(For lhe FOX hardware, allocation consists
of putting the hardware into the diagnose
state; deallocation returns the device to Ihe
SlOpped or started state.)

JlNE. 1\l1I ~ ·TA"OEM SYSTrMS RI'VrFW 101

Operating System

102

The device must be deallocated regardless
of whether the diagnostic succeeds or fails.
If a diagnostic ends abnormally, the TMDS
resource manager and scheduler (SZENO)
makes the required deallocation. SZENO
handles all allocation and deallocation of
resources.

SZENO is a licensed NonStop process pair.
It can recover from any single hardware fail·
ure. If a diagnostic process stops prema·
turely, SZENO stops all associated diagnostic
work on that resource and restores the
resource to a known state (e.g., the stopped
state with the standard microcode loaded .)
The CE can then restart testing . SZENO mUSt
run at all times for TMDS to work.

SZENO also handles all TMDS process
creation. In later releases of TMDS, this may
include the ability to schedule TMDS com­
mands to run at a particular time.

Application Monilors. TMDS runs all diag·
nostics separately from the EUJ. Each of
these processes is called an application
monitor (AM). An AM consists of TAL
proced u res.

When a command is validated, the name
of the AM and the procedure that imple­
ments the command (as stored in the vocab·
ulary) are returned to the EUI. The AM is
created, the parameters of the command are
passed to this AM process as a parameter
stack stored on the AM's stack, and the
speciFied procedure is called. The mecha·
nism used 10 pass parameters to a procedure
in a different process is ca lled a remOle­
procedure cal/.

Executing the diagnostic as a process sep·
arale from lhe EU I has the advantage that, if
a diagnostic ends abnormally for any rea­
son, the EUI remains unaffected, allowing
the CE to continue. This advantage would be
oUlweighed by the disadvantage of having to
create and communicate with an AM every
time a command is run if it were not for the
remote-procedure call that handles this
work. The remote-procedure call mechanism
uses SZENO to save information on AMs. In
this way, AMs can be reused, thus minimiz­
ing the number created .

The procedure name to execute, the values
for the parameters for that procedure, and
the AM where that procedure's code can be
found must be supplied to the remote­
procedure-cal l mechanism . This mechanism
creates the stack frame (identical to that
created by the TAL compi ler when a normal
procedure call is made) by using BINDER
information about the specified procedure
call. This stack frame is sent (via a standard
GUARDIA N 90 message) to the remote­
procedure-call mechanism in the AM where
the specified procedure is to be run. In this
AM, the remote·procedure-call mechanism
receives the stack frame and adds it to the
stack . A call is then made to the appropriate
procedure.

Siandard utility procedures bound into
every AM simplify the allocating of
resources, formatting of text output, and
printing and formatting of standard errors.
Only one copy of these procedures need be
present in an Allil for all commands in an
AM to use them. Having these utility rou·
tines common throughout all device diag·
noslics creates coherence and consistency,
thus making it easier for the CE 10 trouble­
shoot problems.

AMs also provide a convenient way of
securing diagnostics. As it is unacceptable 10
allow just any user to run a diagnostic,
TMDS uses GUARDIA ' 90 operating-system
security to limit diagnostic use. The object
code of the EUI and the Ar-.'I associated wilh
a diagnostic command can be secured so
that only a certain set of users can run a
particular diagnostic . (For example, while
the FOX STATUS command can be executed
by anyone, only SUPER.CE can execute the
TEST command.) The system administrator
controls access to these diagnostics through
the allocation of user passwords.

ExecllIing a T/HDS Command. The follow·
ing is an example of what happens when a
TMDS command is executed. In this exam·
pie, a FOX LBU has encountered an error
and the CE uses TMDS to diagnose it. The
CE starts TMDS in the FOX subsystem,
obta ins help on the TEST command, and
tests the interprocessor-controller (I PC)
board in LBU X by looping it through the
appropriate microcode test five times.

TAND E M S Y S T E M S H F VIFW J II N I

First, the CE runs the FOX diagnostic:

:TMDSFOX

TMDS responds with:

Welcome to Tandem's Maintenance and Diagnostic
System ...

The CE asks for help on the TEST command :

TMDS> HELP tesl

TMDS responds with an explanation of the
TEST command:

The TEST command downloads and runs micro­
coded diagnostics in the FOX LBU. The TESf com­
mand has ...

Before running the TEST command, the CE
defaults the LBU parameter so tha I the TEST
command will test LBU X. (This parameter
now need not be specified in any further
commands.) The CE enters:

TMDS> DEFAULT LBU x

Then, the CE uses the TEST command :

TMOS> TESfTESTNAl'o,E ipc.looP 5.
DETAIL on

As is illustrated in Figure I, first the EUI
checks the syntax of the command entered
at the termina l (1). Command and parame­
ter names in TMDS consist of an a lphanu­
meric sequence of 36 characters or less.
Since lhis command has a command namc
and parameter names that look va lid to !.he
EUI, the command is passed to thc vocabu­
lary (2) for a semantics check.

The vocabulary checks the FOX subsystem
for a command named TEST (3). Il fills the
defaults sct by the user and checks each
parameter to see that the TEST command
has a specified or defaulted value for that
parameter. The vocabulary also checks the
value of each parameter aga inst its accept­
able range of values. I f the EUI check or
vocabulary check fails, a message explaining
the error is displayed and the EUI reprompts
the CEo

In this example, the command validation
succeeds, causing the EUI to make a remOle
procedure call to $ZENO (4) to have it start
the appropriate AM that implements the
TEST command (5). The appropriate proce­
dure in the AM is then called (6) with the
parameter values x. ipc, 5, and 0".

The TEST command first tr ies to allocate
LBU X through $ZENO (8). I f the LBU were
already being diagnosed, the a llocation
would fa il . and SZENO would inform the CE
(v ia the AM) that someone else was already
diagnosi ng that LBU (7).

In this example, the allocation succeeds,
and a check of LBUs X and Y is made to
verify that bringing down LBU X wouldn't
isolate the system. As the system would be
isolated if LBU X were down, the CE is
warned (7) and confirmation for cominuing
the test is requested.

The CE confirms that the test should con­
tinue. The LBU is stopped, and the micro­
code that implements the IPC test is
downloaded into it (9, 10). All errors found
while the FOX microcode is down loaded and
executed are displayed for the CE (1 1,7).

When the diagnostic completes, the LBU
is returned (deallocated) (8) to either the
slopped or started state as specified by the
CEo If the diagnostic ends abnormally for
any reason, SZENO returns the LBU to the
stopped state.

TMDS AClh'ity Iniliated Aulom:llica lly
When a device fails during normal sYSlem
activity, it is important 10 be able to save
information aboutlhe failure for later exam­
ination. Figure 2 shows the TMDS compo­
nents that save this information; their
interact ion is desc ribed below.

FIgure 2

L - L~ --

JUNE 1911~ . TAIIIO£M SVSTE \1 <; RI·V I"-W

Opcrming SYSfem

FIgure 2.

In addition to perform­
ing diagnostic activity
initiated by the CEo
TAIDS recordl and
stores information
about unexpected hard·
ware failure, for liJler
examination. TAe in/or­
mation is pa.lled from
an I/O procell to the
TAIDS logger and is
"oTed in an event log.

SZlOO

10J

Of/ern/iug 5)'$lelll

1("

Table 1.
Syntax for the FOX TEST command
Parlmeler

ceu
TESTNAME
LOOP
SYSTEM
OETNC

Values

!XIY I
< re!l1'li1ffl1!:>
<-,
<S'fJttm:>
ION OFF I

Oelaull

INone iI pa!an'lele! 1S'1lQo.. ,ed I
ALL (AU res's a', run, ""',
The local sysletn
OFF INa delil,1eI;I OlJIOUl t po "lea I

In TMD5, an e~'el1f is any occurrence about
which information must be retained for
examination by a CE or diagnostic. An
occurrence of a hardware error and the run·
ning of a test are both considered to be.
events. All information about an event IS
encapsulated in an e\'elll sigllolllre (ES), a
standard, variable·length message.

An l i D process that detects an error (1)
uses procedures supplied by TMDS to create
an event s ignalUre. To send this information
to TMDS, the l i D process passes the ES to
the GUARDIAN 90 operating system messen·
ger process (2) via a procedure ca ll. The liD
process then continues execution.

The messenger process implements the
communications protocol needed to pass the
evelll signature to the TMDS logger process,
SZLOG (3); for example, it handles path
retries when necessary. This minimizes the
overhead the JI O process incurs when send·
ing messages.

The TMDS logger receives the event signa·
tures and stores them in a TMDS event log
(4). They can be retrieved by the TMDS com·
mands FIND (used to view event signalUrcs
in the event log) and PURGE (used 10 delete
event signatures).

The logger is a nonprivileged NonSlOp
process pair. II should be run at all times
to gather as much fault information as
poss ible.

The FOX Subsystem
The FOX diagnostic is used in diagnosing
FOX hardware fauhs. It has four commands:
REPAIR REVUPDATE, STATUS, and TEST.
Descrip;ions of these commands are availa·
ble from the TMDS HELP facility. The
parameters for the TEST command, their
possible values, and their defaults are listed
in Table I.

As the previous example has shown. the
FOX diagnostic' s TEST command is used to
download microcode tests into the FOX LBU
once that LOU is in the stopped state. Tests
for each FOX board are available; a list
of TEST names is available in the HELP
information.

Note thaI the TEST command uses the
TMDS two-part notation. Each parameter
has a name (e.g., DETA IL) and a set of
allowable va lues (e.g., ON or OFF). This
feature allows the CE 10 enter the DETAIL
parameter in the third position instead of
the fifth poSition where it is defined to be.
(See the TEST command used in the previous
example.)

The TEST parameters a re used for other
FOX commands as wel l. Common parameter
names ailow CEs to default 3 parameter for
a number of commands in 3 subsystem.

Figure 3 is an example of the infor'!l3tion
displayed with the TEST command. FI~st~
the TEST command prints a header (wnllln a
box) thai summarizes the command the CE
specified , including the estimated amount of
time it will take the command 10 complete.
After the header, short error messages are
displayed; in Figure 3, the messages are for
errors FOX400, FOX450, and FOX402. The
TEST command finishes with a summary of
Ihe tests run and errors returned.

In Figure 3, the CE requests more com­
plete information about the error condition
displayed as "·FOX450 and find s that the
error message identifies the board that prob­
ably caused the error. The CE can now
replace that board and try the TEST com·
mand again.

TMDS Today
The FOX diagnostic subsystem is a good
example of the power and funclion~Jity of
T~IDS because it uses TMDS extensively. All
command interaction is managed by TMDS.

FOX diagnostics use the abilities of SZE fa
to allocate and deallocate the FOX hardware.
The FOX diagnostics and the EUI both use
the remote·procedure·call mechanism to
minimize the work involved in starting AMs.

I q II '

Future Enhancements
Future changes in TM DS will focus on three
major areas: simplifying the CE's use of
TMDS, adding new diagnostic functionality.
and providing fault analysis.

Command entry to T~lDS can be made
easier. An optional menu imcrface to n..,IDS
is under consideration. Also, a method of
having T~IDS request command parameters
(instead of requiring the user 10 supply them
with the command name) is being examined.
As more commands arc added to T~lDS, (his
would keep command entry uncomplicated
and straightforward.

Commands for maintaining hardware
(not just diagnosing problems) may be
included in future TMDS releases. With this
type of command, a hardware device could
be checked periodically to verify that it is in
running order. Scheduling maintenance
commands to run at a particular time migh t
be supported, allowing the CE 10 pinpoint a
problem area berore a problem occurs.

Also, a fault analyzer might be developed
to monitor the event log. When possible, the
fault analyzer would determine the solution
to a problem when it occurred. This cou ld
provide the CE with much useful infonna­
tion. The ana lyzer cou ld include an a larm
that would alert the CE aI CE headquarters
of failures at a user site.

Most importantly, TrvlDS will be used for
all future Tandem diagnostics. Diagnostics
specifications have been proposed for discs
and CPUs, as well as other subsys tems.

Rtffn'orts
Tantktn \'(1inl~nan« and Diagnostic Spfl~'" R(/'~I!('f' Mali/lUI.
ParI no. 82386AOO. Tandem Computers Incorporated.

Ado_lfcIgll1f1lu
The author ~'OU1d lilt to lhanl Urtnda Troisi, RiHi WCStt'f­
schulte. and Tom \uthicsoo. Wilhoutlhrir hdp. this article
could not ha''t' bem ~rinen,

Jim Trolll joined Tandem In September 1982 as a softwa,a
de$lgnoe, Since then, he ha, WOfIted on the design and Imple·
mentallon 01 TMOS. 8&IOIe working 101 Tandem. Jim wa, a
graduate student allhe Manachuse '" Institute of Tedlnology.

OpeTTItillg System

figure 3

'MOS> TEST LBU x. TESTNAMElpe
It.l15 FOX I ~;I,QS1' JA/i8 (l9DE;.;s.cl

I FOX 1(~ '~YA~[',PU1 INFORMAl)11

~J". ~
TEsnw,l! II'(.
lOOP I TII,II
SVSIW \t_aJ

T<TNIal'II~telll.~IO!I. ,,~~1
~ 'II ~ iI.tMIul H 2{1 311 (01 "'!Jell BREAK IS M)

FO~~OO Irst1ll om IIUt\'II)tIl ,t.l!ltd ilI6 18 12,
"'FOUSO 'est flTO!' 173 m 1TIOi1u!t IPCDlAG 113. t F~US IPC

FOU01 I£SI AfSUI IS SU~'-IARV fDA SVS1EM \LASJ L8IJ X

TIttt 5el1I.l;!'\e

SIOPI,me
Slal1l,""
loUIle-slI,""
, tOr!IP!tl6 "" 11$
ToUl,mln

• 'PC
_ 1& 2{1 ~5
_ 16 1151

o 02 ~ , ,
\ l.l83 ItlU x II tuff,lIIly ,n It.~ STOPPED ' •
llayou",'stl'OPUlrtonhlltl!V!I~, Y

H.!I '> ERROR 10 •• 50

3JAN 1985
3 JAN 1985

A I!IIC'~:" . '1CI~" .ror", II'IIIiIrC II'IIII'IOCIuIf I\MTIe 1$

...... "II , 11'11 II\! ,.' 1 SUC::~S1 ",QIr"1\e ttror w.n Iound Tile
fRU:. !litl GI tile II'II..:..o,/f gM:s MorCtted ~1 ot tile FAUs "'lX.h are 11!1

I~e/y eo!: Sf! at dIt IffIIf

Agure 3.

The output of the
TEST command can
include information
about a number of
errors. To conserve
space. short message,
about each error
are displayed. When

the ERROR commalld
it ell/ered for any of
the eP'TOr menagel,
(J mOn? detailed
explanation of the eP'TOr
me8Sage i, displayed.
In (hil example. the
ERROR command was

entered for FOX450.
/The commands entered
by the CE are repre·
sented in boW type.
FRU stands for field·
replaceable unit.)

JU"E 1\l1I~ ' T"r'1I)EM SYSTEMS ItE\II'" 105

106

BOO Software Manuals

ilh the BOO release,
Software Publica­
tions offers you a
new manua l set:
85 software man­
uals sporting a new
design, presenting

information in a new formal, and represent­
ing the continuing efforts of the writers, edi­
tors, designers, and staff to produce a
qualit y product.

The manual covers are now black , dis­
playing the new Tandem logo and a stripe of
color to represent the manual library to
which ,hey belong.

To better aid users, Software Publications
has produced separate user's guides and
reference manuals for many of the Tandem
products it supports. The Operating System
writers have reworked much of the
GUARDIAN 90 information, moving system
messages, utilities, and procedure calls into
separate manuals.

The Languages writers have reorganized
the EXTENDED BASIC and COBOL reference
manuals. They've added examples, a second
color to highlight sample programs, and
even more system information to improve
the new EXTENDED BASIC and COBOL
user's guides and reference manuals.

For new system users, there is the TGAL
tutorial. Experienced TAL programmers have
a revised TAL manual. There are also new
reference manuals for users of the PATHWAY
lransaclion·processing system and Screen
COBOL.

You'll find many morc additions and
improvements to the software manuals.
Table I li sts the tille , pan number and vcr·
sian, and SlalUS of all the software manuals
pertaining to the BOO software release.

Sunoy Old. was 8 lead edl to!: 'Of So!twilre Publica lions when
She wrote this article. She coordinated edIlOflaleHO!:" IO!: the
BOO sottware Release. edited the Languages and Operetln.g
System IIbreries. and authored the Mardl l985 c.ta/og 01 Soll­
w.r" PuIJ/kulllon.and R"lBlad ProductS.

TA 1'oD E M SYSTE M S REV I I:.W J UNE 'CIt! '

Alanuals alia COUf$i!$

Table 1.
BOO software manuals (NonStop n, TXP. and EXT systems).

Pnl no. P.rt no. ". , ..
TIlt. ..nlon Stllu. Title version St.lu,

~per.ung....!.YSlem

GUARDIAN Operallng System System Description Manual 82507 ADO Newedl1Jon
Pocket Gukie 82506AOO New manual System Management Manual 8206'ADO New manual
GUARDIAN ()p&r111,ng System System Messages Manual 82409AOO New manual
Prognllnrner"s Guide 82357 AOO New manual

GUARDIAN Operatong System
System Operator's Guide 82.01 AOO Newmanl,l/ll

Use'" GJ/cIe .2396AOO New manual System Procedure CaI15 Reterence

GUARDIAN ap..lIng System
Maftill 82359AOO New manual

U!1~loes Ae!erence MiIIlUal '''03AOO Neowmanual Tandem Marntenance and Oiagnosllc

IlltfOdu(:llOIllO TlIndem CoI'!'oute<
System Re!&!ence Manual II2386AOO Now '

'''''"'' """AOO Newed,loon XRAY User's ManUilI 82018 DOO Updated

SpooIef Progf8IT11T11Jf', Guide .239< AOO NewmarlllCll

Newedl1lQn INSPeCT InteractIVe SymbolIc

Newed,Hon
Debugger U6&I'aGulde 82315AOO Unchanged

DEBUG Manual 82S88AOO NewedltlOl'l
SOffTIMERGE USe/'S GlIIde 8209' AOO Unctwll'9&d

EDIT Manual 82079 BOO Unchanged TGALMal'll.lll1 82S26ADO Newedl\lon
- -- 100Is and Utll!!_ Pocke1 Guadt 82""AOO New edmon ENmY Sc,.., Formatl« ()pefil\Jllg
and Ptog,atTVTlIO!I Manual

"""" AOO
Unchanged UPOOElXA:EF M¥IUiII 82080800 U_

ENTRY520 Screen FOfln811e1'
~totlg and ProgIIllT'tlWlg Manual 82OS3NJO U~_

LIII'IgU~

C090L Pocket GuIde 82575AOO NewedrliOl'l FORTRAN f'I:lckeI GuiOe 82577 NXJ NeweOluon

C090L Relerence Manual. Intel'lm Sr.r&lpIement 10 tile , 82589NXJ Newmanval FORTRAN 77 RIlI'rence Manual 82"36AOO '"-,
COBOL Refj)fC!f'1C8 Manual MUMPS Pock" Guide 82578AOO New fidltlOt'l -, "'OOAOO New manual MUMPS Reference Manual 825oC2AOO Now fidrtlOt'l
COBOL U-", Guide """NJO New manual TAl Pocket GuICle 82376AOO New manual
EXTENDED BASIC Pocket GuIde 82379AOO New manuaJ

Ta~ FORTRAN 77 Reference
EXTENDED BASIC Aelerenee M 8203OAOO Unchanged ... - """NJO New edillOf'l nal"lAClion AppiIcahonlanguage
EXTENDED BASIC U5ef"sGurOe

""'" NJO
Newmanuat (TAll Re~ence Manuat "'" NJO N8YI' ed!100n

oala ml n' gemenl

Dell Delonotl(ll'l Language iDOl) PATHAlO Refefence Manual 82428AClO Newma~J
Reler.-.::e Manual 82S3< AOO Newedrllon PATHWAY SCfIEEN COSOL
O.ta Mana\lel'netlt Pocket Gulde 82302 DOO Unchanged Reference Manual 82.24 AOO New manual

ENABLE Reltlrenee Manual 82560NXJ Newfldrtton PATHWAY System Managemerll

Ef'{A6LE U5ef"s GuIde 8257IAOO New edrtiOtl RetGfence Manual 82365AClO New manual

ENCORE use GuIde 823SONJO Unchanged.
TransactlOf'l MorlrlOfmg Fac~,ty
(TMF) Reterence Manual 82'" AOO New edrtlOf'l

ENFORM Reference M3IlUa1 82'''800 Updated Tr80AC:tron MO!"IItonng Facd,1y
EHFORt.I Uset". Gude 823<, BOO U",'''''' (TMF) System Mafl8QOlTlel'lt and

a.scFIlBE Pfogranmrng u.nual 82583AOO Newed!tlOl'l
()peratrona Guide ,NJO New edllIorl

Introcl.octron 10 ENFORM 82313900

""""'-
TRANSfER OeIo\I8fY System
Management Ina AcIminl$tratiOtl

tnlrodllelron 10 PATHWAY 82339AOO Hew manual """" 82S22NJO Newedrllon

InlfOductlOf1lo IhI TranstcllOl'l TRANSFER OeINery System
t.4onItorotlg Facility (TMF) ""'AOO Hewed,lron Proglamm.ng GuiOe 82525AOO Hewedl1lorl

intr()(luctron 10 TRANSFER DelMIfY TRANSFERJMAlL UsefS GulOO 82599AOO Hewed,lron
System 82323(;00 Unchanged

Conltnued ne:rct paOlI

J U ,'01 E 1 9 II 5 T A .. D F.: M SYSTI"MS REV I EV. 107

=-
MOl/ll(ll~ and Courses

Tabl. I . (COI'ICk.oded)
BOO software manuals (NonStop n. TXP, and EXT s,yslems).

P.rl no. P,rl no.
,od ,od

Tltl, "rslon SI.IUI TIll. wlrslon 51.11"

Int. communications

6100AOCCf' F'roglarmtitlg Manual 82411 NXJ NewlTllllnual EXCHANGE: ReIe<8I'ICI Manual ""''''''
_ .. ,

6100 t.A PS-B prog.arrwning M_' 82413AOO New manual EXPAND Reiefence Manual 82370AOO ---6100 sse Prog.1I/TIITIOIlg Manual 82.c,2,tr,(l() Newmanuat InlfOductoOl'110 ralD!m Dall

6100 nNET Prog13i'TWT111'1g Ma1luaJ 8241.cAOO --, """""",,,,- 82511 AOO --COmmuniCations Management Inlr(JduChOI'lIO tne Tandem 6100
ConYT'IUnocalOO1'\S Subsystem ICSSI 82373AOO Unchll~ InterlacelC!.ll1 Opefa\Of's Guide 825.uAOO Nl!'Neouon

CommumcaliDflS U1J~1Y Proglilm Relelence MII'IU81 lor MP6100 anol
Non-61oo TermlflilVPllnler P'OCesse5 824l5AOD N ,.,.,..

(CUP) Reteretlce Manual 82"301>00 Newmanu.J
CP6100 110 Process Progr8rT1fT\1ng

SNAX PfogIIltl'll'THllg and NelWOfk

Manual 82410AOO -"""""
Manegemenl 025" "'" Hewed!"')'!

Dev!ce-Spec'JIC Access
SNAX Reler8nCa Summary 82591 AOO N~_

MelhOO-AM327QfTR3271 82432NXJ New manual Tandem Hype< LlIlk (THl) Reterence

[)ey1C~1I1c Access M anual 82056"'"
U __

Melhod-M46520 62433AOO New manual Tan(llfTHQ-IBM link (TIl) Aelerenee

ENVOY Byre·Ollln!e(i PrOlocois Manual lor IBM User. 82050000 Ur>C1'II1'IQed

ReleretlCe Manual 82582 ADO N_edlllOO TanOefYHo-lBM link (TIL) Refefef1C8

ENVOYACP 81t.QOented ProlOCOIs Manual lor Tandllm Use', 82055800 Ur>Ch80"98<l

Reklrence MaIlUilI ""'''''' New eolllOtl X 25 Access MethOO-X25AM 82.31 NXJ --T.l1YIinail

6V1 Voice Input Option lor 65lX Genlf'lQ 10 Know Y. TEXT "'" "'" N~ """""
Termmal Famoly InslallarlOtl and

Model 6820 TerllW\lll auslef Operallon GuIde 82671 NXJ Newmal'lUlll
COnctl>lfalor (TtC)-lnsUillaroon

6530 All8I'nate Input ()puorI and ()pefatoQtl Guide .,." BOO U"""",.,
InslallabOn and OperatlOtl Gudt 82652"", ~~ngecI ... ""
6530 Vocklo MonoIOf OpcIOn
InsUillatlOn lind ()pefa\JDn GuIde 82653"'" U""",_
653X Integra!ed OpcIOflS InsUillaloon
and Operallon GuIde 82617 NXJ Npwmilnual

U"
8S3X J.4U1I1-Page TerrnmaJ InstallatIOn Manual 820" "'" U"""",",
ar'IdOperatlon Gutde """AOO NeweorllOl'l VideO OtIp6Iy lJnrl$ Ope<atlf'lg GwOe "'" uncl'll~
653X Muru.f>aoe

~d process.ng Opllon lor 6S3X Terrrunal-Prograrrrner's GuoOe 82310800 Ur>Cl'llnoe<! In&111111100n and ()pefatlOO Guide "'" --EM3270 OptIOn lor 653X
Famlly-Usef'S Gtnde " ... "'" Unchanged

DYNAMITE 654X woRst'llon

654X Workstal>OO--GW-BASIC 6!).fX WOIkslarrOrt--MS,DOS
User's GuIdO "'" New manual Us.r'SGuldo 82661 NXJ NowmiVIUII

654X'M:)rkSlatron--lnIOfmalron 654X WOIltsrallon-OperallOOS
Xcl"!.ange FacrLI)' 82669AOO New manual "" .. 82658AOO New ITIIII"IIAI

654X WorlIslallOn-Macro 654X Workslabon PCFORMAT
~ Programmef'S Gude 82662AOO New manual Use<', Gurde 82679NXJ -~,
654X WorkstailOn .<['OS 654X 'M:)rkslauon-Techmcal
P<Og,ammer's GuIOe .,..."'" New manual Refe,ence 82665 "'" New m.l'"

Suppltm.nl,1 public,lIon,

catalog of Sof\WBrfI F'UtIIIeabOflS Mastel" II\delIIor me NonStop
Ilnd Reraled Products 82552"'" New8ditlOn "',~ "'" "'" Newecf.-

lOS TAI'IDE\1 SYSTFMS REV E \\ U .. E

andem's Corporate Educa­
tion Group has added
eight interesting new
courses to its software edu­
cation curriculum. It has
also revised and improved
the PATHWAY course, one

of the most popular software classes.
The new courses offered in 1985 are

described below. Following their descrip­
tions is a list of all Tandem Education
Centers.

As more new courses are offered Ihrough­
out the year, information about them will be
made available. To obtain course informa­
tion, enroll, or order any self-paced course,
COlllact your Tandem sales representative or
your nearest Tandem Education Center.

PATHWAY (38404-800)

The popular PATHWAY course for applica­
tion developers has been improved . The new
class st ill covers all the topics described in
the Soltu'tEre Education Catalog , and it
cOlllains the following new material:

• Use of the INSPECf symbolic debugger lO
isolate problems.

• Stress tesling and tuning applications.

• More comprehensive labs so Ihal each
studenl develops a complete working
PATHWAY system .

New Software Courses

DPI-DP2 Conversion C ourse
(38449-AOO)

This five-day course provides a descript ion
of the d ifferences be tween Disc Process 1
(DPl) and Disc Process 2 (DP2), and a
description of Ihe new featu res of DP2. Top­
ics include conversion issues and strategies,
new features of the Transaction Monitoring
System (fMF), and DP2 support lools.

At the end of the course students will be
able to plan for a conversion of a system
from DPl to DP2, do the appropriate
SYSGENs in order 10 implement the conver­
sion, and be able 10 configure and test a
DP2-TMF system.

Audience
The course is des igned for analysts and sys­
tem managers who will be supporting a DP2
installation.

Prerequisites
A working knowledge ofTMF and experi­
ence as a system manager are requ ired.

Multifile ENABLE - Self-paced
(384SS-AOO)

This is an intensive independenl slUdy course
to familiarize analysts and programmers
with the newest version of the ENABLE pro·
gram generator. Studems will learn the dif­
ferences between single and mult ifi le
ENABLE, the ENABLE syntax, its capabili·
ties, and how to integrate programs gener­
ated by ENABLE into a unified PATHWAY

J U ,.. E 1 9 I1 S - TIlIo/DfM SYSTE\l S RF.V1FW 109

M/JImals IIlId Courses

environment. The course provides an in­
depth look al the generated Screen COBOL
code and the benefits of making easy (and
not so easy) code changes with EDIT. The
material also reviews the ENABLE skeleton
command language, alteration of the skele­
ton file, and use of the SET BOX FLAG
command.

Audience
This course is designed for programmers and
application developers who will be generat­
ing interactive applications with ENABLE.

Prerequisites
A knowledge of FUP, EDIT. DOL, and
PATHWAY would be beneficial.

TRANSFER (38440-AOO)
This five-day course covers installation and
programming of TRANSFER, Tandem's
delivery system for staged information dis­
tribution. Topics include: processes that
comprise the TRANSFER environment ,
installation procedures, and programming
clients and agents . Lab sessions supplement
classroom lectures and provide hands-on
practice.

Aud ience
This course is intended for system adminis­
trators and application programmers. The
modular design of the course permits each
group to attend that ponion of the class rele­
vant to its job functions.

Prerequisites
Prerequisites include:

• Concepts and Facilities (38401)

• PATHWAY (38404)

• Transaction Monitoring Facility (38413)

• System Resource Management (38411 or
38419). This is a prerequisite for system
administrators.

TAL Syntax - Self-paced
(38433-AOO)
This independent-study course covers the
fundamentals of TAL (Tandem's systems
programming language) syntax structure
and use. Topics include: data types and
expressions, statements, addressing proce­
dures and parameter passing, program
organization, debugging programs with
INSPECT. and the TAL programmatic inter­
face to the GUARDIAN operating system.

Audience
This course is designed for systems program­
mers, application developers, system opera­
tors, or anyone involved in writing programs
in a high-level systems language. It is recom­
mended as a prerequisite to the TAL Pro­
gramming course for people with no
previous experience of block-structured
languages.

Prerequisites
The prerequisites include:

• Knowledge of at least one other program­
ming language.

• Familiarity with Tandem EDIT.

• Completion of the Concepts and Facilities
course. (This would be helpful, but is not
mandatory.)

T-TEXT - Self-paced (384S6-AOO)
This self-paced tutorial course complements
the 'r-71;'XT User 's Manlltll by providing
hands-on instruction in the basics of docu­
ment preparation using Tandem's word
processing software. The course can be com­
pleted in just twO or three hours.

Ten lessons step the user through the most
commonly used T·TEXT functions. The
T-TEXT menus are explained, along with the
options available from each menu. Also
included is a handy quick-reference guide on
T-TEXT commands.

Audience
This course is aimed at nontechnical person­
nel who use word processing in their jobs .

Prerequisites
There are no prerequisites for this course.

TA N D E M S Y STE M S R E \I E W·J USE , , ,

•

An Introduction to SNAX -
Setf-paced (38438-AOO)

Tandem's System Network Architecture
Communications Services (SNAX) enables
SNA devices and host computers to commu­
nicate and share applications with Tandem
systems and EX PA ND networks. This self­
paced course introduces SNAX and how it
relates to the IBM environment.

Students learn how to perform a SYSGEN
to set up an SNA environment , how to use
e MI to alter the SNAX environment, and
how to perform first-level troubleshooting.

Audience
This course is intended ror system managers,
operators, ana lysts. data communications
specia lists, and anyone who needs to sel
up or maintain a SNAX applicat ion. The
course does not teach or assume a know­
ledge of SNA.

PrereQuisiles
The only prerequis ite is an abililY to perform
a SYSGEN.

6100 Communications
Subsystem Primer -
Self-paced (38441-AOO)

This is an intensive independent-study
course which introd uces the 6100 subsystem
to system operators and system managers.
Students learn the required components of
SYSGEN and a naming convention.

This course provides a comprehensive
overv iew of CMIICMP as they re late to the
6100. an overview of system-management
procedures. and the use of DIAG6100 as a
system management tool. The material also
provides an overview of TRACE and
PTRACE functions, and a detailed overview
of the 6100 hardware.

Audience
This course is intended for system operators
and system managers.

PrereQuisiles
There are no prerequisites.

Int roduction to the DYNAMITE
Workstation - Self-paced (9405)

This self-paced tutorial course includes a
gett ing-started booklet and a floppy disc. It
allows students to learn about and experi­
ment with the DYNAM ITE 654X workstat ion
in an interactive, protected environment .

Topics include: the DYNA MITE keyboard .
starting DYNAMITE, an introduction to the
Microsoft Disk Operating System (MS-DOS).
how 10 name files, how to use the 6530 ler­
minal emulalOr, and how to efller and exil
BASIC. The course takes about two hours.

Audience
This tutorial is des igncd for nOIHcchnical
users who have had no previous experience
with a personal computer.

Prerequisites
There are no prerequisites.

M.rUyn Janow la the M.naoer or Corporate Education Services.
She Is responsible for publication 01 50ftwere and llardw'fI
training courses and educ.tlon I(!mlnistflllion. She la .Iso
responsible IOf producing educ.llon c.taloga. schedules. and
brochures .bout T.ndem t/llnlng: suppor1tng speel.1 edllcllion
requirements /of certain customer pro/eelS; .nd administering
the Am.nce coupon PfOg/lm lor software house • . M.r1lyn
transferred to the Cotpor.te EducatIon group In September 1982
and hilS been with T.ndem .Ince April 1981 .

IUI'iE 198~ 'T"NO E M SYSTEMS REVIEW

Mallllais alld COllrseS

111

.~-----------------------------
Mall/ltlis a"d CQIII'lC.f

112

Tandem Worldwide Education Centers
United States
Arizona
3300 N. Central, Suite 700
PhocniJ<, AZ 85012
(602) 264-2206
California
6160 Bristol Parkway
Culver City, CA 90230
(213) 417-3922

2820 San Tomas Expressway
Santa Clara, CA 95051
(408) 970-4324

1309 South Mary Avenue
Sunnyvale, CA 94087
(408) 73()-3700

Colorado
5300 DTC Parkway
Englewood, CO 80111
(303) 779-6766
Florida
1408 N. Westshore. Suite 804
Tampa, FL 33607
(813) 877-7466
Georgia
100 Galleria Parkway, Suite 680
Atlanta, GA 30339
(404) 951-0199
Illinois
Hamillon Lakes
500 Park Blvd., Suite 1400
itasca, IL 60143
(3 12) 773- 1750

Massachusells
7 Wells Avenue
NeWlOn, MA 02159
(617) 964-6500
Michigan
3001 State Street, Suite 1010
Ann Arbor, MI48104
(313) 622-2200
32540 Schoolcraft Avenue
Livonia, M I 48150
(313) 425-4110

Minnesota
3050 Metro Drive, Suite 205
Minneapolis, MN 55420
(612) 854-5441

New Jersey
777 Terrace Avenue, Second Floor
Hasbroock Heights, NJ 07604
(20 I) 288-6050

New York
One Penn Plaza, Suite 4334
250 W. 34th Street
Ncw York, NY 10119
(212) 760-8440
Pennsylvania
Commerce COUrt Office Building
4 Station Square, 7th Floor
Pittsburgh, PA 15219
(412) 562-0262
Texlls
4225 Wingren, Suite 100
Irving, TX 75062
(214) 257-9744

Virginia .
12100 Sunrise Valley Dnve
Reston, VA 22091
(703) 476-3154
Wllshinglon
14711 NE 29th Place, Suite 100
Bellevue, \VA 98007
(206) 881-8636
Washington , D.C.
5201 Leesburg Pike, Suite 700
Falls Church, VA 2204 1-3280
(703) 379-7900

International
Australia
3 Bowen Crescent
Melbourne, Victoria 3004
011-61-3-267-1577

22 Atchinson Street
51. Leonards, Sydney, NSW 2065
011-61-2-438-4566
Belgium
Louizalaan 306-310
1050 Brussels
011-32-2-6487330

T A~ D f'M S Y S TIM S II.EVrI"W · J U ~1' , , ,

Canada
7270 Woodbinc Avenuc, Sccond Floor
Markham, Ontario L3R-4B9
(416) 475-8222
6500 ROUle Trans-Canadicnnc
51. Laurcnt, Quebec H4T IX4
(5 14)342-6711

Denmark
Helgeshoj Aile 55
DK-2630 Taaslrup
011-452-5252-88
Engl::llld
Tandem House, Mendy Street
High Wycombe, Buckinghamshire
HPI12NZ
011-44-494-2 1277
France
2 - 4 Rue Victor Noir
92200 Ncuilly Sur Seine, Paris
011-33-1-738-29-29

Cermany
GeschaeflSStelle Duesseldorf
Heinrich-Hertz-Strasse 2
4010 Hilden
011-49-2103-572-100
011-49-2 103-572-101

Berner Strassc 34
6000 Frankfurt/Main 56
11 -49-69-50003-0

Hong Kong
448 Wing On Plaza
Tsim Sha Tsui East, Kowloon
011-852-3-7218136

I'all
Viale del Ghisallo, 20
20151 Milano
01 1-39-2-3087386
Japan
Yasukuni Kudan Minimi Bldg. ,
3rd Floor
2-13-14 Kudan Minami, Chiyoda-Ku
Tokyo 102
03-237-953 1
Nelherlands
"Plus Point"
Jupiterstraat 146-3
2132 HG Hoordorp
02503-30294

New Zealand
Level 20, Wi ll iams City Centre
Boulcott Street, Wcll ington
011-644-723286
Norway
0. H. Bangsvei 51
N-1322 Hoevik
2-123330
Sweden
Norgegalan I
Box 1254
S-163 13 Spaanga
o I 1-46-8-7507540
Switzerland
Zwcicrstrasse 138
8036 Zuerich
0 11 -41-1-461-3025

Oislribulors
Finland
Oy DavaAB
Box 458
00101 Helsinki 10
011-358-0-42021

Mexico
Tandem Computers de Mexico,
S.A. de C. V.
Ave. Juarez No. 14-2 piso
06050 Mexico, D.F.
(905) 585-8688

I'hilippines
Mini Systems, Inc.
LBH Building, 4,h Floor
1431 A. Mabini Street
Ermila, Melro Manila
722-27316
Taiwan
Syscom Computer Engineering Co.
9th Floor
53 Jen Ai Road, Sec. 3
Taipei, Taiwan , R.o.C. iso
(02) 7731302-9

, \.. " . I'IH~ · TA 1'" IlF '1 SrSTf'MS Mt\IEW

Manllals ami CorU:feS

113

SNAX/ HLS: An Overview

significant add ition to
SNAX (Tandem 's fault­
tolerant interface 10 the
Systems etwork Archi­
tecture, SNA), is availa­
ble with the BOO software
release. This is SNAX

High Level Support (SNAX/ H LS), an easy­
to-use interface that allows programmers
with linle knowledge of SNA to develop
SNA-relaled applications on Tandem net­
works. SNAXlHL$ dramatically reduces the
lime required to develop such applications.

This article describes the design and
implementation of the SNAX/ HL$ system.
Topics include:

• The components of the SNAXlHLS
system.

• The SNA capabi lities it supports.

• lIS potential applicat ions.

• An appl ication benchmark employ ing
SNAXIHLS.

This information is imended for technical
managers, application programmers , sys­
tems analysts , and others who need an over­
view of SNAX/ HLS capabi lities. Readers are
assumed [0 have a genera l understanding of
SNA, IBM SNA products , and SNAX. In fo r­
mation on IBM SNA products and dev ices,
SNAX, and SNAX/ HLS is avai lable in [he
references listed at the end of the article. I

Oesign Goals

With the illlroduct ion of SNAX, Tandem
systems acquired the ability to comm unicate
directly with SNA sof"vare products, such
as the In formation Management System
OMS), and SNA devices, such as the IBM
3624. SNAX is unique within the industry in
prov iding both a gateway [0 SNA software
products and SNA device support on a CPU
that is not 18M-compatible .

SNAX offers two application in terfaces:

• The SNA3270 inter/ace, a high-level inter­
face connecting the Command Interpreter
and Spooler subsystems with SNA display
stations and primers.

• The SNALU inter/ace, a general-purpose,
low- level interface similar to the application
in terface of IBM's Virtua l Telecommunica­
tions Access Method (VTAM). The SNALU
interface was designed to function as the
base interface for new SNAX prod ucts as
well as to provide the basic framework for
specialized offerings from Tandem software
houses.

SNAX also supports SNA Session
Passt hrough , a feature that permits SNA
devices attached to a Tandem network to
access SNA application programs res idelll in
an I BM host without changes to or repro­
gramming of the application.

The SNA3270 interface and S AX
Passthrough ga ined quick acceptance by
Tandem customers. Many Tandem installa­
tions worldwide use them.

Tandem users and software houses also
saw the generality of the SNALU interface as
a positive featu re. Using SNALU, applica­
tions could control the flow of SNA messages

T A \ 0 E ~ S Y S T E ~ S R r \ I ~ w , U 'iI I

and acknowledgments and cou ld send and
process special SNA commands, making the
interface well suited for custom applica­
tions. SNALU application development
required that programmers be highly knowl­
edgeable in SNA message formats and proto­
cols, however, making program development
for simple business applications complex.

HLS was developed to fill the need for a
high-level addit ion to the SNALU interface
for generic business applications. Its design
resuhed direct ly from meetings between
Tandem developers and users of Tandem
systems. The des ign goals were:

• High-Ie\'el support for SNA communica­
tions. HLS was to hand le all aspects of SNA
protocols and formats. The programmer
interface was to be simple and easi ly under­
stood by applications programmers with
little knowledge of SNA or SNAX. The SNA
protocol had to be consistent with the pub­
lished Slandards on SNA communications
architecture.

• Consistent interface to the PATHII~Y sys­
[em and olher environments. HLS was to
support an interface that allowed both those
applications based on the PATHWAY transac­
tion processing system and those not based
on it to take fu ll advantage of SNAX
capabilities.

• Supporr for SNA gateways and SNA
devices. HLS was LO SUPPOr! logical sessions
to IBM subsystems (e.g., IMS) as well as
advanced IBM devices (e.g. , the 4700,3624,
and 3650).

• A full complement of cOlllrol and support
lools. HLS was to provide easy-to-use utili­
lies to configure, control, and trace the
operational environment. Significant inter­
est in a protolyping/ simulation tool was
also expressed.

implementation

HLS is a system of processes that addresses
the product requirements stated above. The
implementation of H LS takes full ad vamage
of Tandem products such as the PATHWAY
system and the ENABLE program generator
to provide high-level SNA communications.

The HLS process is implemented as an
intermediate process between the user appli­
cation and the SNALU interface of SNAX.
This makes the power of the SNALU inter­
face available to programmers while shield ­
ing them from the SNA complexities of the
interface . Figure I illustrates a conceptual
overview of HLS in a Tandem nel\\'ork
environment .

Verbs
HLS implemem s an application interface
that is independent of requester language. A
set of verbs at the interface level handles all
SNA communications functions requested by
the application. The verbs, in essence, make
up the high-level applicat ion la nguage.

An HlS verb is merely a fo rmalted mes­
sage from the application program that
describes to HLS the function 10 be per­
formed on behalf of the application. Specifi­
cally, it is a sct of indicator fields that
precede optional user data. The indicator

figure 1

NonS,op II , up, or EXT 11"''''''

~THWAV -(SCOOOlI -(T,t,LCOOOl)

"' /

/ "'

SNA ~ 5NA ga'lIW8')'S
C3eXX .• 7XX) ,'MS,. CICS)

Figure 1.

The SNAX/H LS
environment in a
Tandem netWQrk. 1JLS
upports both those
applicatwns based on
the PATH WAY
transaction proce"ing

system and tho,e not
bued on. it. The
reque, lers can be
located anywhere in
the Tandem network.
HLS a/'.o supports
communil, from the

J l'''E , 9115 · TANDEM SY ST EM S R I, \II-W

Data Communications

NonStop" II . TXP.
or EXT q'S'I<!!

command and .tatu.
processor HLSCOM.
The HL S procell mu.t
execute on a Thndem
NonStop II or TXP
proce"or.

1<5

Do/a Commllllial/ions

Aiur• 2

RtqlJ"'"

•

Fliu~2.

Tlte proceui7lg of a
verb tltat ,ends a
request to the ,euion
partner and receives a
reply. PIC and LIe are
SNA indicato,., relat·

fields can be either verb requests (requesting
the function to be performed) or verb mocli·
riers (modifying the action of the verb). To
ensure that HLS functions in a PATHWAY
environment, the indicators are always byte
values, typically Y or N, and not bit masks.

Each verb is associated with a reply. The
verb reply is a formaued message from HLS
to the application program that indicates the
result or status of the verb request. Verb
replies can also contain indicator rields and
optional data. The most important field of
the verb reply is the RETURN·CODE field.
The RETURN-CODE is a generalized mecha­
nism for standard error and status reporting,
much like the condition code or file error in
the Tandem operating systems.

Since verbs elicit a two-way message
between the requester and HLS, the
operating-system call WRITEREAD is used
for message delivery. Any Tandem language
that supports the equivalent of WRITEREAD
can communicate to HLS. Currently, all lan­
guages supplied by Tandem support WRITE­
READ or its equivalent.

SNA~F1C 2 "'AX

Juc I
I

,
ACI

UC

L I· "'"

i1lg to meuage-chain
element groupings. PIS
and LIS are SNA indi­
cators relating to
me8Sage·,egmen.t
element groupin.g,.

~
•

~

+RSPiaan SNA
aclawwledgment. The
proceuing .tep, are
de,cribed in detail in
the text.

To ensure that H LS would be readily
accepted and easily used by applications
programmers, considerable attention was
paid to the naming conventions for the verb
requests and modiriers. SNA communica­
tions are replete with arcane constructs such
as brackets, chains, and request shutdown
sequences, and much of the difficulty in
understanding SNA has stemmed from this
jargon. Most of these constructs relate
directly to important and easily understand­
able concerns of transaction processing,
however: brackets are uninterruptable units
of work (i.e., transactions), chains are logi­
cal messages, and request shutdown
sequences arc orderly terminations of com­
munications. HLS, whenever possible, uses
the most understandable and meaningful
name for each verb modifier. For example:

• When a bracket is in progress, HLS sets
the indicator TRANSACTJON-IN-PROGESS
to Y.

• If a complete chain is received rrom the
session partner, HLS sets the ind icator
MESSAGE-COMPLETE to Y.

• Whenever programmers wish to terminate
the session in an orderly fashion , they
invoke the PREPARE-TO-CLOSE verb.

The Verb Message Sequence
The HLS system was designed to be erfi·
cient. A single request from an HLS applica­
tion can send a transaction to the session
partner as well as receive the reply. Figure 2
illustrates this as follows:

I . The requester delivers a "message" (Le.,
a verb request with data) to HLS for
transmission to the sess ion partner.

2. HLS formats the message into appropriate
SNA message units (chain elements), han­
dles required aspects of SNA protocol,
and delivers each chain element to SNAX
with a SNAX header.

3. SNAX formats each chain element into
the appropriate Synchronous Data Link
Control (SDLC) frames, handles SDLC
addressing, and tranSmiLS each frame on
the data link.

TAr-O E M S Y S TEM S RE V IE\\ · J U ~ E ' 911'

4. S: AX receives a series of SDLe frames
constituting the session panner's reply.
S~AX assembles these frames into chain
elements and delivers them to HLS.

5. HLS receives chain elements from SNAX.
assembles the chain elements into a logi­
cal message, and delivers an SNA
ackno\\ledgrnent to the session partner,
if required.

6. The HLS requester receives a verb reply
consisting of a " message" (i.e., a verb
reply with data).

Compatibility with S A Environments
HLS supports a wide range of SNA commu­
nications environments, including the
following;

• F\1 and TS profiles 2, 3,4, and 7.

• Multiple RU chains managed by HLS or
the user.

• Half-duplex flip-flop and contention
send 'receive mode.

• Full-duplex send/receive mode,

• Immediate and delayed request mode.

• Bracket suppon under both termination
rules.

• Primary-Io-secondary and secondary-to­
primary pacing.

• ~'1AXRU up to 4096 bYles.

• LUtypesO, 1,2,3,4,and7.

• Pipeline LUs.

HLS has been implemented in strict
accordance with the architectural specifica­
lions of SNA, as documented in the SNA
Format and Profocol Reference Manual. Its
internal usage checks and slale machines arc
equivalent to those documented in the Pro­
locol Reference Manual for SNA, ensuring
that HLS state interpretations match exactly
those provided by IBM. Figure 3 illustrates
the similarity between HLS source code and
published SNA documentation.

Datu CommullicaliollS

Flgur. 3

Fin!!. tI.t. machln.

SOA

STATE NAMES ern: INC :---PU-RGE
INPUTS " 02 03

R,RO.-CANCEL. BC,EC 'R) ,A,
R,RO,-CANCEL. BC.-EC 2 'R) ,R)
R,RO,-CANCEL.-BC, EC 'R) , ,
R,RO,-CANCEL.- BC,- EC ,A,

R,RO, CANCEL ,A,
- - , ,

S,-RSp,TO _CURRENT_CHAIN , -
-

'RESET' / . FROM OFC_RESET'/ ,

OUTPUT FUNCTION
CODE

R RECEIVE_CHECK_SENSE",X'2002'/, CHAINING ERROR'I

END FSM_CHAIN_RCV;

SNAXlHlS

INTCHAIN"flCV" '" 'P':". I
STATE NAMES

INPUTS

R,AO,-CANCEL. BC,EC
R,RO,-CANCEL. BC.- EC
R,RO,-CANCEL.-BC. EC
R,RO, -CANCEL. - BC,- EC

R,RO, CANCEL

S,- RSP.TO _CURRENT_CHAIN

'RESET' /' FROM OFC_RESET'I

OUTPUT r FUNCTION
CODE

ern:

" ,
2
'+A
HA

HA

INC PURGE
02 03

2+A ,+ A
2+A '+A , ,
2 ,

, ,

R RECEIVE_CHECK_SENSE",X'2002'I ' CHAINING ERROR"/

"

F1gur. 3.

A finite .tate machine
(FSM) a& 'peci/ied/or
SNA (documented in
the SNA Format. and
Protocol Reference
Manual) and a.s imple­
m~ted in SNAX/JILS.
(The punctuation 0/ the
JlL$ code ha.s been
modified slightly to lit
the figure /ormat.} An

FSM i" used in SNA to
-rememberHfHUt
ewnt" and control the
operationolSNA pro­
cene •. The memory 0/
the FSM i.! it. current
.'ate (the clLrrent .tate
map. to one 01 the
FSM'. columns). When
pre.ented with an
input {shown on TOWS}

the FSM produce. a
new CltJTent "tate and
output f.houm at the
intersection. 01 the
input TOW and current
state columnJ. The
striking .!imihlrity
between the two
FSMs en.ure. that
SNAX/IILS correctly
enforce. SNA protocoL

J l' '" F TANorM SYSTI':MS RI\II' " JJ 7

Data Communications

118 --

Tlbl.1.
SNAXlHlS verbs.
v ... FunetlOfl

sellion .. tlbllshmenllnd termin.tlon

OPEN-sESSION EstaDllShes eommunocabons ':n Itle
sesSIOn p&Jlner

8n Qloetly sessoon shut·

Reu_ datll,om \.ISef·s .ee_
SCND-AND-RECElVE·DATA Sendsdall 10 tl'Ie sessooo partner and

Ih8fo queues 8 RECEIVE·DATA Y8fb

Stalul reqlllil

REOUESTSENO-5TAJE Requests perffllUlOfllO send r;la19
(used only' 1fI11al1-dup11x flows)

SENO-5TATUS sends In SNA LUSTATUS to SessIOI'I
partOEtl

RECEIVE-CONTROL Queues Ine 100 eIemefIl at Itle r~r'IIe ,-
Utll1l)'

CQNIIERT·EAAQR.cooE C(Irr.oerts helI8deetn'lallelds 10 0SpIay
101'1'111 .nd decodes 5NA sense codes
Into Engillft IY-..ge5

GET.ATTRIBUTES Obtlll'll proille Ind BIND IfltormalJOn

SET·ATTRIBUTES Sels pl"ol<lo OO!IOOS oynamoc:aJIy

It is important to note that whi le HLS
eliminates SNA communications protocol
from the application program, it does !lot
eliminate data presentation and formatting
requirements . Message formats are the
responsibility of the HLS application. In
other words, SNA/ RJE (LU Type I) support
is possible under HLS, but users must format
the data buffer with appropriate SNA Char­
acter String (SCS) control codes before trans­
mission. Similarly, word-processing support
(LU Type 4) is supported under HlS, but the
user is responsible for the format require­
ments for the device.

System Components
HLS Process
The HlS process is a multithreaded TAL
process that acts as an interface between the
HLS application and the SNAX SNAlU inter­
face. lis primary activ ity is 10 perform verb
requests and produce verb replies. Typically.
verb requests result in one or more SNA meso
sages flowing to the session partner on
behalf of the HLS application. HLS also pro­
vides a message queue for each application.
Incoming messages are buffered by the HLS
process if the application does not have an
outstanding verb.

H lS verbs do the follow ing:

• Establish communications with a session
partner.

• Manage the transmission and reception
of data.

• Terminate communications with a session
partner.

Table I lists the verbs supponcd by the HLS
process.

HLS also supportS a "command" il1ler­
face. Using command-interface verbs, a user
process can programmatically control and
inspect the HLS operating environment.
Command-interface verb replies contain bit
masks and are primarily intended for appli­
cations written in TAL.

Finally, HLS has been designed as a
generic, self-configuring system applicable
to a wide range of SNA environments. HLS
always examines the session-establ ishing
SNA message termed lhe BIND. The BIND
contains a variety of option fields thai detail
the specifics of a given logical communica­
tions channel between two session partners.
If the BI D is within the range of acceptable
values to HlS, internal control blocks are
customized automatically to fit the specifics
of the current session.

T A ~I)E \t SYSTF \t S R[\ IFW, Jl ~ l; 14"S

RtsOUfCt Definition Table (ROT)
The Resource Definition Table (ROT)
describes the characteristics of the I-ILS envi­
ronment It is a table wherein all scssion
prolile information , SNA message formats,
and global data are stored. At HLS initiali ­
zation. the RDT is opened and read into an
e.,(lended data segment. While this means
lhal e\ef)' HLS process has the complete
ROT in virtual memory, the size of the RDT
is relativel), small (less than 2K bytes) for
IIl()<;t configurations. The ROT in virtual
mmlOf)' can be dynamically replaced with­
oot requiring the H LS process to be stopped
or affecting active sessions.

When HLS receives an OPEN-SESSION
requeSt from the application program, the
profile sc:ction of the ROT is scanned for the
specified profile name. Pointers in the pro­
file point to the location of spec ial SNA mes­
sages that are used to establish the session,
The application programmer need only
k.no\l. the profile name to speci fy the details
of thc S A sess io n.

The ROT is an unstructured file produced
\'ia the "compilation " of an ENSCRIBE file
called ROTKSFLE. The maintenance of the
RDTK FLE is performed by a set of pro­
grams supplied with HLS that are generated
by E~ABLE. Thus, the PATHWAY system and
the E:'-IABLE program generator are required
for the user to use the standard ROT mainte­
nance sYMem.

HLS is delivered with a sample
RDTKSFLE, comaining several useful pro­
file, BIND, a nd INITSELF records. The user
i~ free to insta ll the sample RDTKSFLE or
create a null ROTKSFLE and add only those
records needed for planned applications .

HlSCO\1 Process
HLS provides a command interface to uscr
processes. A standard command process,
HLSCO\1, is delivered with the producl.
Users are a lso free to design their own com­
mand processes using the verbs available
with Lhe command interface.

HLSCOM is des igned to support a wide
range of commands suitable for operator
control , error recovery, and system tuning,
Optionally, HLSCOM can configure trace
files for HLS traces, 1-1 LSCOM supportS
"wild-card" name constructs so Lhal com­
mands ean affect:

I. A single LU.

2. All LUs on a given SNAX line.

3. All LUs running under an HLS process.

Table 2 lists the HLSCOM commands.

T.ble 2.
HLS command Eroc_e~sor (HLSCOM) comma~d~.
Command Funcllon

ABENO Abends cunenl SNA.XIHLS prOCK'

ABORT AbofIS one or more 5eSSIOnI

A$SUUE sell oalaulll,ne name

CMOVOl SOls dellullS lor '.name expiIllSIOn" cornrnal'lClS

EXIT EJ;'IS CUI rent obey Ide or proglam

Fe FIJI" lUI cornrnand lone 01 currenllnpul "Ie
HELP OISPUIVS help mk;wmallon

INFO Relurnl sessIOn conhguralJOn InlofmallOn

USTOPENS uSIa all process opltr>ers lor spec,hed SEl$s+onl8)

OBEY Reads eorM\Irods 'rom spec,hed Me

OBEYVQl seta delaullS lot ~ 0' obey 1,1e names

OPEN Spec.!! .. name 01 curren' HLS prClC ...

PEEK Snows current SNAXlHLS process Il'llormallOn

OUSG Btoedc.sts meauge 10 .-..c:led HLS eppbea,1OftS

SHOW snow. curren! CUOVOl and OBE~ selh~

STATUS

SWITCH

TRAe<

AI'urnS IMtSSIOII-SlalUS tnlonnatJOn

DynalllfC.llly replaces lhe CUllenl ROT In YlflUilI
1I00.ge

Conhgurel. &181IS. and &lops 5elSOOO Irlc'ng (Ina,
yHju81 l UI can be tr.ced)

J l , I TA N I)FM S Y ST fM S NEVIl'"

Dala CommunicaliOllS

"'

Dara CQmlllllnicalions

FiguflI4

$II.U H~ TI(lI9.Io'l 29OC11I<I1

.lIIft · • 111.' 1

,U CI\lIIO PfIIdt
1l'1li ~*

wu.T. 1 SlU ~ IIoACaVT

FJguflI 4

A sample INFQ
DETA IL screen from
HLSCOM. The
operator requeds
in/ormation/or all L Us
" .• ' with this INFO

FlguflIS

command. although the
in/ormation/or only
one LU is shount in this
figure. The session ID.
the L U name. and all
critical session'pm/iie

S'U/IltSCl ~ T9Q81jA?l 2IOC1&l1

eSTAIU$ ' • DHI,Il

~ •• ''P ,U ...
• •

in/ormation ir
displayed. Note also
that all relevant BIND
fields are displayed.

SNioI U"",," SUI.. t,... ~~ s....CoO!oI
PO Trw CoOl SfIoI Ao;-.c

$S~AlIi oJl ASP WIoll AI 5efId_~

--- ... "'"" ~ s-, .. ~ - .,.
Bo:'.Cll.~ - Sltctl.S -- - tIkI.tlLl - SIl.CLR

_s- O<
., .. "'~ .. ctCO. - ""' .. - Ofe.SIno ---- • ~ o.- 0 II<Y. ':I(I -- , ",".eo- I ~~ •

HLS supports extensive SNA-prOtocol
stale interpretation with the DETAI L option
of the STATUS and INFO commands. Using
DETAIL, users involved in systems program­
ming and technical support can examine
each state machine and major control bloc~
of an HLS process . Figure 4 illustrates a
sample INFO command. All c ritical configu·
ration information is displayed for the
session .

Because on-line inspection of SNA state
information is critica l to rapid problem iso­
lation and determination , the STATUS com­
mand is provided to display the current state
of the HLS sess ion. Figu re 5 contains a sam·
pic of the information displayed by the
STATUS command. In this particular sample,
the HLS application is sending a message to
its session partner (the current verb is SEND·
DATA), and the HLS application is blocked,
waiting for message acknowledgment from
the session partner (the current status is
RSP _WAIT). This type of display greatly
accelerates problem resolution.

Applica tion Prololyping and Simulation
Using the Application Prototyping and Sim­
ulation (A PS) system, applications program­
mers can interactively execut e verb requesLS
and immediately see verb replies. Using this
featu re, programmers can create a prolOtyJX'
of an application in minutes without writing
any code. They ean easily simulate error
recovery, message contention , and verb exe­
cution conditions.

Figure 5.

A sample STATUS.
DETAIL screen. The
operator requests in/or'
motion/rom all LU,
" . • ' wilh this STATUS
command. although
Imlyone LU is shown
here. Note Ihat the
CIlrrent verb for the
HLS application is
SEND-DATA (shown
in the Verb Code
field) and completion
0/ the tlerb is blocked:
SNAX/HLS is waiting

for mesaage acknowl·
edgment/rom the .u·
,ion partner (,hoU11l11t
the Status /ieldJ. The
state in/ormation ,ec'
tion displays the .tatll
0/ all SNA protocol
control blocks. The
con trol ill/orma lion
show. the value 0/
variOIl.S counter.fe.g ..
jUsg_Queue is the Itlllli'
ber 0/ message, quevtd
for the application).

120 TAI"Ol'.M SY~Tr " S KI:VIEW

APS is also a useful educational tool. Pro­
grammer:; unfamiliar with HLS can be
shown verb dynamics in a few hours of
il\SU1lction .

.\PS is a Screen COBOL requester, present­
ing one screen per verb request. The APS
uscrmerely selects the function key repre­
StIlting the verb lO be executed, fills in the
\tfb indicators . directs APS to send the verb
loan HLS process, and observes the result.

APS includes extensive display fields to
trip identify errors and problems. It inter­
poets S~A sense codes in both hexadecimal
notation and English. The display fields a re
quitt useful for learning the HLS system.
Figure 6 represents an APS sc reen after an
OPE~·SESSION failure has occurred. The
SM sense code for the failure (hex 080 I) is
automatically decoded to message text
(Resource Not Available). With this feature,
problem resolution can begin immediately;
~ programmer does not have to decode the
smsr code by using one of several SNA
manuals.

HLS Trace Analysis Process
The HLS Trace Analysis Process (HLSTAP)
allov.s the user to formal and display trace
infonnation in a meaningful, high-level for­
mat. First, the user configures trace require­
ments using HLSCOM. Four levels of trace
information can be configured:

1. ~rb inpllI and output. At thi s level, a
trace of all verb requests into HLS and all
verb replies out of HLS can be config­
ured. This trace is intended for usc in
determining application-program
problems.

2. LU service calls. At this level, a trace of
internal scheduling events that HLS exe­
CUtes on behalf of the user can be config­
ured. This is. in essence, a " dispatcher"
trace and is intended for HLS inlernai­
problem determination.

Agul1l6

l _ ll'ill "....., L' -, ~ ... ,

""""

.......
JIItu'1lCIIM 10 IIC·S£S:;; rAl;..LIRI
s,-.... lO"~ .' IIlSOURCI NC'IMlAl,.AU u__ 0 DOOCI

IIWy .IdIIn 1 '1<1I1'IasoaII s.od __ no 0

1Ic:._:QI1ID 0 --.-

Agur.6.

A 'CN'en from an A PS
.e"ion. ill wAich a
.!enion failure
occurred. TIle top Italf
of the ,creen .how. the
OPEN·SESSION verb
parameten ,upplied by
tlte IIser. Tlte bottom
half of tlte screen show.
the verb reply from

HLS Note that Ihe
return code IJ
RCSESSION·FAILURE .
7'lte .y.tem error field
dow. the refUon/or
tlte .euionfailure. A
negatit:e re.pome from
the leuion partner wal
received. indicating
that the seuion

3. Dataflow control (DFC). At this level, a
trace of "before and after" Dre finite
state machines can be configured during
lhe course of message processing. This is
intended for HLS internal-problem
determ inat ion .

4. SNALU I/O. At this level, a trace of mes­
sages to and from SNAX can be
configured.

IU'f 1<l1I~ · T""O£\I SYSTI:.MS Rf\ Irw

Do/a Communications

partner cOlLld not be
contacted (RESOURCE
NOT AVAILABLE/.
The retry-action/ield
prouides i'll/ormation on
whether the
OPEN·SESSION verb
... retryable; in thil
instance no verb retry
i.t pouible.

121

~~---
Dutu Commulli('UliOll$

Figure 7

»»»OfC"I!£S£T

LU"- lSIIAT ' Ltl!

- -... "', -..-
"--"'" -""', "'"

_CIODIII,19£lIdUlli 2' 29 31 < < < < < < ,
-Sla"---'-.... .. """,'" Bo.LCI_S SILCI_S

OoL"-' SIlCl.~ _ OK_"
""-.. ,",,'"

-- ... '-
,"'-..

""'- - - MuJIrn - "-"iI

figure 1.

03 Pr--, Al s.d 10;2. SIrot.W_ 0
03 s...:ury All ,..... 1024 ~ w_ 0

c- "" --, 1lft...IIID_IIC'I ~ DFt.ClC_AtY 1i0i1illowN SC.CLW __
IlfC."D.S£~ D 1io1 __ OFe.DEe.SOIO "oUIo_ 5C.FIOfI HOI*"'CId
Oft.HlUltV Il0l..... DfC.'lElOJICV Il0l_ SC.SOT __
0fC.8IS.SE~ D Il0l __ Ofe.RHD,SHoO I<OI*'- SC_S1S~ Il0l
OfC.&.l~CEl._JICY ~ DfCJISHUTO.IC'I H01.Ollo_ SC.CIW Il0l_
ort..CAIIC{LSUdl ~ DfC.N$HUlD.SEIID "'-
OFC.CMASl.1ICV __ OfC,.S8L1I(:'1 1<01_
OfC.CHASl,WoD __ OFC.SIII.$EIID /Il0l __
PFC.lUSTAL'ICV ,..._ DfC.SIIUltJICV HoI*­
OfC.lU$TJ.LSEIIO __ OfC.SltU'lt.SOIO __
OfCJX.RCV _ OfC.SilUTO.1IC'I __
Dft.OC.$VIO !$DI_ Dft.SHUTD.SEI\'O NoII __
OfC.AtRJICV 1o.aII_ OfC.SlG...ACV ~
OFC.RTR.SE"O __ DFC...SIG..SOID __
USlfroG.8RACoctTS TIIISJWj .SI.S$ION.IIO. IoICIlf. ___
flIISl.SI'UWI..... PAAT~R.IVoU'_S£SSIOI'I,1IIQ.JIODE ___

»»»VEAB"fI£I'I.l'

LII_ $SNATftUl

...... .,. •. s.----"" -,"" ",,",,

""-­SoMI.SIq ,..,
""'.StII.1Io -

•
• • • ..,.'"

_.

Two record8 from (l

SNAX/HLS trace file .
formatted with
HLSTAP. The/ir.'
record (record 1) dow.
the initialization of
,eB6ion control blocb
for LU SSNAT.ILU1.
The State In/ormation

BIND mellBageJ. The
SeBBion Parameters
.ection shows which
types of SNA mel8age
SNAX/HLS is allowed
to .e1ld and receive
under the rules 0/ the
current .e88ion. The
second record show'
the completion 0/ an
OPEN-SESSION verb
for the .ame La. Note
that aU verb reply
indicators are/ormat­
ted by HLSTAP.

• ection dow. the ini­
tial.etting. for SNA
control/low,. The Bind
In/ormation section
dow. the vailles of the
,el8iQn-e, to blishing
SNA menage (i.e .. the

Once the trace of selected LUs is com­
plete, the user can stop the trace and begin
ana lysis with HLSTA P. HLSfAP allows indi­
vidual LUs or groups of LUs to be selected
for processing. Formatted displays decode
all verb indicators , the session BIND, DFC
states, SNA request/ response headers, and
user data. Several convenience commands
are also included in HLSfAP. Figure 7 repre·
sents a page from a sample HLSfAP report.

Potential Applications

HLS was designed to func tion in a wide
range of envi ronments, including SNA
device support , SNA gateway applications,
selec tive passthrough applications, and
"intell igent-networki ng" applications. The
following is a descri ption of how HLS fits
into each environment.

Device-support applications
In this type of application, an SNA device is
connected to a Tandem application (e.g., ttl:
PATHWAY transaction processing system).
SNAX includes native support for IBM 327:\
display devices and 328X printers. The HLS
system adds support for the following IBM
products:

• 3600 Financial System.

• 3624 Financ ial System .

• 3630 Plant Communications System.

• 3640 Manufacturing System.

• 3650 Reta il Store System.

• 3660 Supermarket System.

• 3680 Programmable Store System.

• 3767 Communicat ions Terminal.

• 3770 Data Entry System .

• 4700 Financial System.

• 5520 Informat ion Display System .

• 6670 Information Distributor .

• 8100 Information System.

• Series/ I General Purpose DP System.

• Series/ 32 General Pu rpose DP System.

• Serics134 General Purpose DP System.

• Series/ 36 Genera l Purpose DP System.

• Series/ 38 Genera l Purpose DP System.

122 TA>III1EM S V S TF'\I S RI'VIFW J U N E , . ,

Ifhis SNA device support allows the business
application to reap the benefits of the
andem system (i.e .• availabi lity, expand­
bility, and programmabilit y) whi le still

making use of the SNA terminal or devicc.
It is important to note that HLS provides

only the SNA support for these devices. Spe­
cific device control and data formatting is
the responsibility of the HLS application.

Gatewa) Applicalions
Gateway applications are processes resident
011 a Tandem system that are in communica­
tion with a foreign computer/network. HLS
prm'ides an easy-to-use interface for
Tandem applications to communicate with
(he fo llowing SNA applications:

• Customer Information Control System
(CICS).

• Host Command Facility (HCF).

• Information Management System (lMS).

• Job Entry System 2 (JES2) .

• Job Entry System 3 (JES3).

• Network Communications Control Facil­
itHNCCF).

• Network Routing Facility (NRF).

• Time Sharing Option (TSO).

In gateway-application environmems,
HLS provides SNA protocol support for
applications running on Tandem systems.
In such environmenlS, Tandem transaction
processes can have on-line access LO data
located on the IBM system and vice versa .
In other words. each system can function as
a data-base "server" for the other. Critical
data bases can be located on the Tandem
system for fast, reliable access while batch­
processed data can be located on the IBM
system. Thus, neither sysl.em need be iso­
lated from the data bases.

Often SNA device-suppon applications
are closely integrated with SNA gateway
applications . For example, in a shared
automated-teller (ATM) network, Tandem
S)'Stems could suppon a network of SNA
ATMs using the device-support features of
HLS. The routing of ATM transactions wou ld
be done by Tandem applications, and t.rans­
action delivery to SNA hosts would be sup­
paned by the gateway SNA features of HLS.

Gateway sessions to the Network Routing
Facility (NRF) deserve special mention. NRF
is an IBM software product that runs in an
SNA front-end processor (e.g., the 3725). It
allows traJlsactions to be routed through an
SNA nCl\vork with no IBM host-application
involvement. HLS supports NRF sessions, an
example of which is given in the next
section.

Selecti ve Transacl ion- passthrough
A pplicati ons
SNA gateway support can a lso involve a ver­
sion of transaction processing termed selec­
tive passfilrougil. In this type of application,
the critical data bases are strategically
located on Tandem and IBM computers .
HLS applications provide the gateway access
to the IBM systems. Transaction programs
on the Tandem system control the device
(Tandem, SNA, or other) and route requests
for data to the appropriate source. Terminal
operators are unaware of the locat ion of
data and/ or programs. The dcmonstration
of HLS in October 1984 to the International
Tandem Users' Group (ITUG) in Orlando,
Florida, featured se lective transaction
passthrough. In it, terminal operators could
retrieve and update records on either a
Tandem ENCOM PASS or an IBM C ICS
data base.

In telligent-network Applicat ions
Although the term intelligent "efwork is
ambigl,lous. there is a consensus that an
intelligent network provides, between
d iverse terminals and hosts. an interface
that contains value-added network func­
tions. HLS provides the SNA gateway and
SNA device support this type of endeavor
requires. For example, one HLS user is sup­
porting cuSLOm X.25 terminal s with a net­
work of Tandem processors. The user
employs HLS to connect the terminal s to
TSO running in IBM SNA hosts. In essence.
the HLS application bridges the gap between
the SNA application in the IBM host and
foreign X .25 terminals.

TA'oIDI- M SYSTEMS RE\IP"

0010 Communicalions

12..1

Doto Commllnicotioos

Flgu,.8.
A 8chematic diagram
0/ the ekments in the
retailer', network (U

,imu14ted in the bench­
mark. SNA and non­
SNA point-o/-,ale {POSJ
device, are concen­
trated by IBM Seriel/l
minicomputers at retail
'tore 10catio1tS. Tandem
'ystem8 running SNAX
and ilLS connect to the
SNA backbone network
and perform credit
authorizations for
C1Illomers.

... ,...,
5'" -
11M ,
",,5 -

'4

SNAX/ HLS in an
Application Benchmark

SNAX/HLS was used in an application
benchmark of a large retail credit·
authorization system. The section below
describes the HLS design used in the bench·
mark and the HLS performance results.

The user had a large SNA network in place
and requested a demonstration of Tandem's
SNA transaction-processing capabilities
before undertaking full-scale application
development .

Credit transactions from point-of-sale
(POS) devices were 10 be concentrated by
IBM Series/ l minicomputers at the store
level. Credit-card transactions from the
store's POS devices were to be routed
through the SNA network to the Tandem
systems for credit authorization or rejection.

NRF was selected to route transactions
between the Tandem systems and the
Series/! computers. It provides transaction
switching with no IBM host-program
involvement. NRF also supports transaction
pipelining, permitling the transactions from
several POS devices to be multiplexed 10 the
Tandem application through a single LU in
the Series/ t. Figure 8 shows the elements of
the planned network.

"'"
T_

""" """""' TXP

!---
"" 3125

?
~]L,

The PATHWAY transaction processing sys_
tern was selected to control and support
credit·authorization processing on the
Tandem system. Using HLS, PATHWAY pro­
grams were [0 accept transactions from NRF,
perform credit processing, and reply lO NRF
with approval or rejection.

The detailed design focused on three
major aspects of the HLS application: ses­
sion establishment, data transfer, and ses­
sion termination. Session establishment and
termination were straightforward. The
OPEN-SESStON and CLOSE-SESSION verbs
were to be used to start and stop SNA com·
municat ions. The data transfer phase was to
usc an initial "priming" RECEIVE-DATA
verb to acquire the first transaction , fol­
lowed by a SEND-AND-RECEIVE-DATA verb
to reply to the first transaction (the SEND
ponion of the verb) and prepare for a new
transaction (the RECEIVE portion of the
verb). The SEND-AND-RECEIVE-DATA verb
was to be used in this fashion to minimize
the number of interprocess messages
between the HLS application and t.he HLS
process.

A summary diagram of the applicat ion
logic is prescnted in Figure 9. (In the dia­
gram, the verb structures have been simpli­
fied (0 enhance clarity. More information
about HLS verbs can be found in [he docu·
mentation accompanying the software.)

Figure 9 represents the following dialogue
and actions:

I. The application issues the OPEN-SESSION
verb, which defines the SNAX LU name to
be used for session commun ication. The
PROFI LE field of this verb poin ts (0 an
entry in the RDT that specifies the session
parameters. The PIPELI E=YESoption
field indicates to HLS that the LU is [0 be
handled in a pipeline manner.

The execution of the OPEN-SESSION
verb causes HLS 10 send a special SNA
message, INITSELF. The INITSELF mes­
sage requests NRF to establish a session
(Le., send the SNA BIND message). After
the session is established, HLS compleles
the OPEN-SESSION verb with RETURN·
CODE=OK (i.e., the session was success­
fully established).

TAN D I \1 S' S T E \1 S R '" V 1 £.... • J l ' 1\ r I ~ ~ \

2

",.,..

r--
YEt.!;,t '>."JON

LV NAVe. SHLS If>/IiAPW
PROFILE • loA' PROf
:"f>!UNE _ YES

'£'LR'< CQ)E _ OK

REQM DATA

• Q.l.TA I'YPE Rf(;EMD •
IWlTNEA-o.-.1A

,.oop.START

P -P£RFOAM CR£OIT AUTHORIZATION ...

Q.~flECf:rVf-OATA ,
· · ·

OA.TATYPE Rl'C£IVED •
PMTNEn~f'"

I I
- ,0& S£SSIQN

•
·

~'l\mN COOE • OM.

12. The application issues a RECEIVE-DATA
verb (0 accept the rirsl transac tion. HLS
then accepts a transaction from NRF,
deUvers SNA acknowledgment if neces­
sary, and completes the RECEIVE· DATA
\"erb with DATA·TVPE·RECEIVED=
PARTNER·DATA to indicate the source of
!.he message.

L llJe application now enters its main pro­
cessing loop, continuing the processing
Uflliilhe session is ended or the applica­
tion is terminated.

First, the transac tion is subjected to
credit processing. Next the application
issues a SENO-ANO-RECEIVE-DATA verb .
TIle SEND portion of the verb sends the
transaction reply to NRF for transmission

SNAxtHLS 'RF

to the requesting terminal. The RECEIVE
portion of the verb accepts the nexltrans·
action for processing.

4. When the HLS application wishes to ter­
minate the session, it issues the CLOSE·
SESSION verb. This verb causes HLS to
send the SNA message TERMSELF to NRF.
The session is ended when the SNA
UNBIND message from NRF is received
by HLS.

The credit aUlhorization system desc ribed
above was constructed by CICS application
programmers using Tandem program·
developmenltOols. The system was sub·
jected 10 extensive tests by the Telepro·
cessing Network Simulator (TPNS),

L , , TANllfM SYSTEMS RFV

0010 Communicatiolls

Flgul'lli.

An overview 0/ the
SNAX/HLS proceuing
rogie/or the benchmark
credit-authonzation
application. Verb. have
been ,impli/ied for
clarity. There arefour
major ,(ep,: (1J the
e,tablilJnnent of a
se.,ion between the
SNAX/HLS application
and NRF. IBM', Net·
work &uting Facility,
(2J an initial "priming"
RECEIVE-DATA to
obtain tlte first traruac­
(ion, IS! an. iterative
loop 0/ credit process­
in.g and execution of a
send/receive verb, and
''I termination of the
,ellion with NRF. Verb
execution iI de,cribed
in detail in the terl.

125

Data Comlllllni('tJtions

an IBM software product. TPNS testing
showed that SNA sessions could be estab­
lished bel ween IBM processors and Tandem
systems and thai the HLS application cor­
rectly processed SNA pipeline transaclions.

The sYSlem was subjecled 10 a significanr
performance benchmark. Along with the
transaction-throughpul and response-time
measurements, some SNAX/ HLS measure­
mems were taken. Based on measurements
made wilh the XRAY performance­
measurement tool, the COSI of a SEN D­
AND-RECEIV E-DATA verb in a pipeline
environment was caJculaled at II ms per
transaction on the NonStop TXP processor.!
!his figure can be interpreted in the fo llow­
mg ways:

• A NonSlOp TXP processor is capable of
processing a lmost 100 SEND-AND-RECElvE­
DATA verbs per second in the environmenr
measured .

• HLS process ing overhead is very small.
The measurement above was obtained from
a sYSlem of ~2 onStop TXP processors, at
120 Iransactlons per second. AI the mea­
sured rale, only 4.1 percent of the tota l
processing power of the syslem was con­
sumed by HLS verb processing.

'Tbe C PU IIIiIIi5t'COIId r';l';',! was obWned bytllmnll,. lhrCPU BUSY fj~
lOr aD H t..S ~ cin-id"l1 d .. MIIQ by lOll 10 y;rid lcul ~ lime
1Iad. finally. di.jd,,. by thru.ns:at1 11111 raIt" per ocmnd. '

'Ia ~;,ion I? I.hr mcm>ta Imcd. If\mollU;len 1OOftwan:ak tor
IOC'IIOnS 0(0$'" maa..ak) on SNAX / Ht..S will hr pubiishod . Ref .. to ta
.. '11m tloey btalmo .. ~.

Conclusions
SNAX/ HLS brings the power of Tandem
on-l ine transaction processing to SNA
networks. Tandem users can use the featu res
of SNAX/ HLS to SUPPOr! advanced SNA
terminals and / or communicate to IBM SNA
subsystems. Critical data bases and applica·
tions can now be positioned where business
needs dictate.

SNAx/HLS support tools such as the APS
system bring application programmers up 10

speed rapidly, allowing applications to be
developed in a minimum amount of time. In
a production environment, lools such as
HLSCOM and HLSTAP assist in rapid prob·
lem isolation, determination, and resolut ion.

With SNAX/ HLS, Tandem solutions to
crit ical business problems can be more easily
designed, developed, and maintained in an
SNA environmenl.

Rrft'n'nftS'
Kirk, D. 1984. A SNAX Puslhrough Tutorial . ~ •.
nal. YOI. 2, no. 2. Tandem Computers Inoorponlled.

SNA.X Programminl and ~worl: }.fanagmwN. Pan no.
82326 AOO. Tandem Computers Incorporated .

SystmlS Nnworlr Ardtit«/urr - Snsio#ls bt'/IOWW l.QptYi
Units. GC2O-1868. IB~1 Corponnion.

Syst~ms N~worlt Archittttun ConcrplS and Products. OCJG.
3072. IBM Corponnion.

Systems N~/work Ardtit«turr Format and ProIoroI RI!/trrtttt
ManllQ/; Aff:hlt«lurr Logic. SCJO-) 11 2. IBM Corponllion.

Watson. L. and Madsen. K. 1984. Cllp«;ty P/anmngp
7bntkm ComplII~r SYSI~ms. Tandem AppliclUion MOOOIraplt
Series. Pan no. 8)904. Tandem Computet'S Incorporated.

AcknowledllllM.'nlS
The author would like to thank AUen /'.laxwell and Dd K\Jnt
for their painSlaking ~icws and OOflstructh-e t'Omments (1\ this
article.

SI n E. Sallwlck Is an adVisory analysl on the Soulh ~traI
Regional Staff in DaUas. Texas. Since joinIng Tandem In 1982.
Steve has supported major ilCcounlsln the Dallas District and
the South Central Regloo. He was a member of lhe group ~
sible lor lhe design and implementalloo of SNAXlHlS. He II
curranllya member of Tandem'S Inlelligeni Networ1t Task FQR:e,
Before joining Tandem, he was a sYSlemB engineer and SNA
developer for another computer vendor.

TA~I}EM SYSTEMS REVIEW J U N E t CI R 1

esigned as an integrated
part of the Tandem sys­
tem, the DYNAMITE 654X
workstation combines the
local processing capability
of a personal computer
and the capabilities of lhe

Tandem 65)X terminal. This allows Tandem
users to use their Tandem system, transfer
information [0 and from the system and
their "orkstations, and use the workstations
locally, taking advantage of the business
sofl\ .. are currently avai lable for personal
computers.

Standard Software and Hardware
Components

lbe workstation comes in twO models: the
6541 workstation, which includes two disk­
eue drives, and the 6546 workstation, which
includes one diskctle drive and one IOM­
byte Winchester (hard) disc. BOlh models
include all of the following standard soft­
ware and hardware components:

• \lS·DOS operating system (Microsoft).

• GW·BASIC language.
• 65)X terminal-emulation so ftware.

• 256K ·byte memory.

• 8086 processor (8 MH z).

The DYNAMITE Workstation:

• 26 function keys (IBM PC and
Tandem 653X).

• 12-inch monitor.
• Low-profile keyboard,
• Tilt-and-swivelterminal base,

• Serial printer interface.

An Overview

• RS-232-C, RS-422, o r Tandem current-loop
communications ports.

• Audio speaker,
• Power-up diagnostics.

Options

Several product options are also available to
complement the workstation. Firs t, a new,
low-cost printer (available in twO models)
can be used either as a screen printer or as
an outpllt device for loca l applications. BOlh
printer models have two switch-selectable
print formats: normal 9 X 9 formal or the
near letter-quality 18 x 17 dOL-matrix for­
mat. The models arc:

• Model 5540, a serial-matrix printer that
prints 80 columns at 158 cps, when the 9 x
9 matrix is selected (94 cps, when the 18 x
17 format is selected),

• Model 5541, a serial-matrix printer that
prims 132 columns al 158 cps, when the
9 x 9 matrix is selected (94 cps, when the
18 x 17 format is selected).

TAr-'I)I'M SYSTEMS NI\I[W 127

WOrksUliiolu

Flgul1l1 .

The hardware ('ompo­
nen/s Q[/he DYNA ,IrIIT£
works/atiOl/. The elec­
tronics modI/Ie can be
placed awoy from the res/
Q[fhe t'Oln/)()Ilen/s 10 saw!
desk space.

FIgure 1

128

12.n:n mantor with
t'Hln;}av.tYe! _

A second option is the bit-mapped graph­
ics board lhal runs third-partY,IBM­
compatible graphics, offering high
resolution and a mouse interface.

Finally, twO system-integration software
packages, the Information Xchange Facility
(IXF) and rCFORMAT, are also available.
IXF software transfers information between
system and local files. PCFORMAT cOllvens
Tandem system files to one of several for­
mats used by third-party PC software.

Features
The DYNAM ITE workstation enhances the
on-line information capabilities of Tandem
systems. Its benefits for the Tandem user
include:

• Economy. The workstation provides the
user with several information tools in one:
(I) An on-line 653X transaction terminal.
(2) a personal computer, (3) a 3270 terminal,
when the optional EM3270 sohware is used,
(4) a graphics terminal, when the graphics
option is used, and (5) a word-processing
terminal, when third-party software is used.

• IBM PCcompatibiliry. Most IBM PC
applications can be run on the DYNAMITE
workstation.

• Modular. ergonomic design. The electron­
ics module call be placed off the work space
to save space, and the terminal can be
swiveled and tilted.

• High-resolution graphics. The DYNAMITE
workstation provides 800 x 300 resolution
(in pixels).

• Display of both alphanumerics and
graphics on a standard video screen, Unlike
some personal computers and workstations,
it does not require a separate graphics
terminal.

• Third-party software that performs signif­
icantly faster than other third-party emula­
tion software (up to ten times fastcr for
some operations), Also, the DYNAMITE
workstation third-party software is designed
to work with future, as well as existing,
Tandem soft ware.

Hardware Component.s
The DYNA~IITE 6546 workstation is shown
in Figure I. Both Model 6546 and Model
6541 have a 12-inch monitor, electronics
module, keyboard, and disc module. The
difference is in their disc drives: the 6541
disc module comains two diskette drives.
each having a capacity of 360K bytes, while
the 6546 disc module contains one diskette
drive and one 10M-byte Winchester disc.

Figure 2 illustrates the basic components
and three option-board slots of the electron·
ics modules for the two models. For both
models, the upper slot of the electronics
module comains the controller board,
including the following:

• Processor.

• Monitor imerface (display controller).

• Keyboard interface,

• 128K bytes of memory,

• Communications interface,

• Serial primer interface,

• Bus interface to the additional options.

The middle slot contains a disc controller
board (either the dual-floppy controller for
the Model 6541 or the floppy/ hard disc con­
troller for the Model 6546). This board con­
trols disc drives and contains another 128K
bytes of memory. If the user needs more
than 256K bytes of memory, additional

TAN!)EM S ~'S T"M S R f \ I E " I l N I

memory can be added to this board in
blocks of 128K bytes. There is room for
three more blocks of memory (384K bytes),
for a maximum workstation memory size of
640K by,es.

The boltom slot is available for opLion
boards. Currently. the only option boards
available are the multifunction board and
the graph ics board. I The multifunction
board contains:

I. An IBM parallel printer port used with
IBM-compatible printers.

2. An IBM serial port used with third · party
communication packages.

3. A real·time clock (bauery·backed).

The graphics option board contains a ll the
capabilities of the multifunction board in
addition to graphics.

NOle that options currently used with the
653X terminal family (Le., the alternate·
input and voice options) are not compatible
with the DYNAMITE workstation. The main
reason for this is thai the architec ture of the
6530 is based on the Z80 chip while that of
the DYNAMITE workstation is based on
,he 8086.

Compatibility with the IBM PC

The DYNAMITE workstation is compatible
with applications wrinen to run on MS-DOS
or IBM's PC-DOS operating systems. Appli·
cat ions written within the constraint s of the
MS-DOS or PC- DOS system are hardware·
independent and compatible. Most popular
third-party applications follow these con­
stra int s and, thus, run on the DY NA MITE
Yo'Orkstation. If software has been written
to add ress specific hardware attributes of
the PC, it may not be compatible wit h the
workstation .

'TIcAIOI", 1 tdaKoflht r __ ooft~. _,red ror both
apr_boIrdoi

FIgure 2

DYNAMITE
electronlce module /'" ~ controh' board

- DIec controh' boIIrd
(1IcIppv OF I'MI)

~r!LftI.lI.n=ticw'l -

Levels or Computibilit y
The article, "How Compatible is Compati·
hie? " (Cook, 1983), desc ribes seven levels
of compatibility for the I BM PC. Below is a
brief description of these levels and infor­
mation aboul the compatibilit y of the
DYNAMITE workstation at each level. (NOIe
that as the level number increases, the degree
of compatibility also increases .)

Le~'I!I I: Media compatibility. This is the
ability to read and write discs in the format
used by the I BM Pc. A disc rormatted on
the PC can be read and written 10 on the
DYNAMITE workstation and vice versa.

Le~'f!l l: Processor compatibility. This is
instruction·set compatibility (8088,8086,
80 t 88, and 80186 chips). Ah hough 'he
instruct ion sel of the DYNAM ITE work·
stalion is compatible with thal of the PC,
the processor clocks of the PC and the work­
station differ. The PC processor has a
4.77 MH z clock while the workstation has
an 8.00 MHz clock . This means that pro­
grams that implement processor-based tim·
ing loops on the PC may not work on the
DYNAM ITE workstation. If, however, the
timing loop is based on the counter timer
(the same for both systems), the program
should work.

Jl N f 1 "f1~ ' T A NO f. '" S Y S Tf'M S K EV I E W

U,()rksl(J/ioIlS

FIgure 2.

Boord s/ots in /111.' elec­
tronics modlile of the
DYNAMITE lI'orksta­
lion . The main controller
board COII/ains Ihe pro­
ress«, monilOr inter/ace,
keyboard inter/OCt!. 128K
bYles oj memory, commu­
nications inter/OCt!. serial
printer inter/IKf!, and blls
inter/ace to the oplions.
The disc COIIlrolfer boar(1
contains the COII/rolfer for
the //()PPy diskme or
hard disc dri~'es and
anotller f28K bylesq/'
memory. The OOllom slOi
is/oroptioll bourds.
Currently the mulli!imc­
tion and graphics boards
areavaifable.

129

~"'h,*slalionf

~~~~t;"Hlty of the DYNAMITE workstation with the 

I 
component 

Processor Instructl«1 ~t 

Character set and keyboard 

Compatible 
wllhlBM PC? 

"" No 

Level 3: Operating-system compatibility. 
This means compatibility with MS·DOS or 
other popular PC operating systems. The 
DYNAMITE workstation is compatible with 
MS·DOS. Tandem has licensed MS·DOS 
(version 2.11), which has external 
commands equivalent to those of the IBM 
PC, compatible function caUs, identical 
file· protection schemes, and equivalent 
run·time libraries. 

Lel"e14: Option·board compatibility. This 
level refers to the use of PC option boards. 
PC option boards cannOt be used in the 
DYNAMITE workstation. Hardware options 
for DYNAMITE workstation electronics 
modules are designed and provided by 
Tandem . Tandem does, however, provide 
some functionally equivalent options (e.g . , 
the graphics board, which is compatible with 
the IBM optional graphics board). The 
workstation graphics board can be run in 
monochrome or color mode. Third·party 
software packages that directly access 
monochrome or color display hardware 
should work on the DYNAMITE workstation. 

Level 5: Character·set and keyboard 
compatibility. This level of compatibility 
requires that the product use the same 256 
display codes and the same keys used by the 
Pc. The DYNAMITE workstation has a 
compatible keyboard; in addition, it has 
other function keys for 653X terminal 
emulation. 

Lel'eI6: Video compatibility. This level of 
compatibility requires that the video 
interface used by the PC be used, including 
memory mapping and controller addresses . 
The DYNAMITE workstation's video inter. 
face is compatible with that of the IBM PC. 

The characler·display controller on lhe 
processor board is compalible with the IBM 
monochrome alphanumeric graphics, and it 
has color capability for alphanumeric and 
bit·mapped color graphics. 

Lel'el 7: System compatibility. This means 
duplication of the entire PC architecture, 
including random·access memory (RAM), 
read·only memory (ROM), 1/ 0 addresses. 
and the PC Basic Input/Output System 
(BIOS). The system compatibilities and 
incompatibililies of the DYNAMITE worksta· 
tion with the IBM PC are listed in Table I. 

The DYNAMITE workstation is partially 
compatible with the PC at this level. It uses 
the same interrupt system, direct·memory· 
access (DMA) system, and timer counter. In 
addhion, the key 110 addresses are the same 
as those for the PC (including the addresses 
for the keyboard, display, and diskette). 
Finally, the memory of the DYNAMITE 
workstation has the same layout as that of 
the pc. 

The portions of the DYNAMITE worksta· 
tion system architecture that differ from the 
PC include, for example, the system bus, the 
processor clock, and the soft-configuration 
menu stored in nonvolatile RAM (the PC 
uses dip switches) . 

Input/ Output Compalibility 
A brief discussion of the IBM PC software 
called BIOS would be helpful before examin· 
ing compatibility further. BIOS is contained 
in ROM. Its primary function is to handle 
low·level aspects of 1/ 0 (such as interrupts) 
to the display controller, floppy, hard disc, 
keyboard, and printer on behalf of an appli· 
cation. To state this in a differeOl way, an 
application can make calls to BIOS to per· 
form 110, and BIOS handles all direct com· 
munications to the device. 

Using BIos. the application does not have 
to know the physical characteristics of a 
device. It simply passes the data to BIos, 
which knows the device's physical character· 
istics and how to communicate with it. As 
long as the application's calls to BIOS remain 
consistent, the application is able to access 
the device, regardless of changes in the hard· 
ware interface. 

TA/'lt>EM SYSTEMS REvrE\\, 



As a general rule, if a workstation's BIOS 
is compatible with PC BIOS, a third-party 
application accessing the hardware through 
BIOS should run successfully on both units. 
Note that, for an application to run success­
fully, the interface between the applicat ion 
and 810S must be the same, while the inter­
face between 810S and the device can be 
different. For example, while the PC printer 
interface is parallel, the printer interface for 
the DYNAMITE workstation is serial. As long 
as a third-party package calls 8 105 to use the 
printer, however, the printer interface works. 

The Tandem serial printer port, therefore, 
is equivalent to the IBM parallel port when 
BIOS is used. Third-party configuration 
instructions for serial printers shouJd only be 
followed when a serial printer is attached to 
the IBM PC COM I or COM2 seria l ports. 

A PC application can, however, bypass 
the BIOS and access the hardware directly. 
The DYNAMITE workstation was designed 
so ilial its key hardware elements (the dis­
play controller, diskette. and keyboard) are 
compatible with those of the IBM PC. 
Applications that access these components 
directly should run successfully on the 
DYNAMITE workstation.! 

Table 21islS the software products that 
have been tested on the DYNAM ITE worksta­
tion and have run successfully. This list is by 
no means exhaustive. More applications arc 
scheduled for testing. (Note that the list is 
not a commitment from Tandem to warrant 
or support the software.) 

DYNAMITE Workstations in the 
Tandem Environment 
While the DYNAMITE workstation provides 
local processing and is compaLible with the 
IBM PC, it is much morc than a personal 
computer. The basic product includes alllhe 
hardware and software necessary to commu­
nicate with a Tandem system. 

Included in the basic product is Tandem 
653X terminal emulation for both conversa­
tional mode and block mode, in an asyn­
chronous, TERM PROCESS environment. The 

~ ""'_18", ...... ~..,.._"'\III __ pOftand 

1*aIkII,.;- pan .. p/MIwd "'" thr [)Yf't.\),UTE _blM_ ","'ulllllCum -.--

T,ble 2. 

I software that have been tested 
I the 

ThlnlcTank LIving VideOtex! 

~1c2 SOrclm 
VISiCaIc IV SohwareArts 

LoIus \-2·3 lollIS 0ewI0pmen! 

Mult,PIan MlcfOlJO/l 

lotus DeYeIopmenI 

Mi(:r(ll'lm 

AanIOn-Tale 
AshlOn·Ta'e 

~~~"'f) Info Unlimited 

_-=;~V'~""'~P~~~ Mlcroeon

D,spI')/WIlt'r 2 IBM

Mulhm.te MuitlffiOl8lnll

Framework Ashton·Tate

ManagIng Buslne&$ wlrh LoIus 1·2·3 L.o1us ~I
EDIX Texl Processor Emergong TechnO\l;lgy

Harvard PTOi&C1 Manager HalV8ld Sonwar,

IBM Ptr&onal EdttOi IBM COrJ)Ol'ltron

Microsoft MICIO Ass8IT'deI II 25) MICI1)8QI1

Nonon U!~J!I. Peter NOf!on

PC TulOf 1101 uS-DOS 2.0) ComoI8here1v8 SW
PfS.FILE Software Pr.bIIstung

PfSWRITE SOItw.rI f>IbIishIng -.. -.
SIOeIuck Bottand SW
PC Maslef Coursewar.

Dow Jones RepOIltl Dow Jones Software

vert!atm Ol$lt An.a'tZ.!' Verbatll11
COpy" II PC central Poinl SW

VEDIT CompuVlew

Cf'Mt86 Ooer'1>1Ig System DIgItal Reseafctr

Correu".,,' Cf'M186 Dlgl1al Research

Tuft)() Pascal 12 0) BOIlllnd SW

LaIlICI C COmp4ler f2 0) Lanlee COrp

workstation call be attached to any port
already configured for an asynchronous
653X termina l, and it can be used in any
manner appropriate for that terminal. (More
detailed information about DYNAMITE host
integration is given in the accompanying
article by Stan KosinSki.)

EM3270
Communication with an IBM 3270
application via a DYNAMITE workstation
can be accomplished using EM3270 software
(not included in the basic product). This
requires the 6530 emulation software (a
standard software component).

JUN!': 198~ ' TA"'DE M SYSTE M S R EV 1 !:"' "

WorksWI;O/l.l'

131

..!::!:ork_.~/(I_'_io_,,, __ _

Flgu,. 3.

File trt1nsfer between a
7bndem syslem and a
DYNAMITE workstation
wilh Ihe lnj<Jrmulion
Xchange Facility (lXFj.
(The communicalions
control system is 10 a set
of software components
on the workSIOlio" Ihut
prOlride a liigh-Ie\'el.
sQ/lWare inter/ace to llie
datu-commllflications
hardware.)

132

Information Xchangc Facilit y
The Information Xchange Facility (IXF),
which is used for file transfer, is also
available at an additional cost. With it, both
ASCII and binary files can be transferred
between the Tandem system and DYNAM ITE
workstations. File transfer is useful for data
integrity (copying the workstation data to a
mirrored volume for safety) and for security
(copying a file to the host and purging it
rrom [he Floppy).

IXF is easy to use. To transfer files one
follows these steps:

J. Boot MS-DOS.

2. Start 653X emulation.

3. Log on lO COM INT.

4. Return to MS-DOS.

5. Initiate file transfer with the MS-DOS
external command.

Note that, to accomplish the file transfer,
software executes on both the DYNAMITE
workstation and the host system. (See
Figure 3.)

Flgure 3

DYNAMITE WotksWIorl -

DtF

I X F provides:

• Powcrfulline-oriented commands to
direct operations.

• Command origination from the command
line or from a file .

• Sophisticated pattern matching for file
names on the DYNAMITE workstation and
the host .

• Multiple file transfers with one command.

• A full set of options for customized
tailoring.

• A sophisticated communications prOLocol
for data integrity.

• Process-lo-process communications
between the host and workstation
applications.

• A protocol that is transparent to
applications.

• Translation of nongraphic data.

~,~-----II

-
.1
7.J

"-------1-
..... -

T A NDEM S Y S TEM S RE \. IF Jll ' F I"~

peFORMAT
Finally, an even greater degree of integration
can be achieved between the DYNAMITE
workstat ion and the Tandem host with
peFORMAT, a data-extraction utililY.
peFORMAT runs on any Tandem host,
accepls data from any Tandem rile, and
converts the data into any of these IBM PC
formats: OfF (Data Interchange Format),
SYLK (Symbolic Link) , BASIC, and ASCII.

Once converted . the rile can be
downloaded to the workstation with IXF.
The downloaded file can then be accessed by
any PC program that recognizes the format.
This process is illustrated in Figure 4.

(npullo peFORMAT is typically a fi le
described by the Tandem Data Defin ition
Language (DOL). The input file can be
unst ructured, entfy-sequenced, relalive, or
key-sequenced.

End-uscr Supporl

Tandem provides end-user support for Lhe
DYNAMITE workstation via iLS C uslOmer
Assistance Cen!er (CAe) in Aust in , Texas,
and the Customer Focal Poin! (CFP)
employee at the customer site. Figure 5
shows the relationship between the CAe,
CFP, and end user.

Customer Assistance Center (CAC)
The CAC is a source of information ,
expertise, and assistance to workstation
users for problems for which the users can
find no solu tion in the product manuals and
educational materials.

Assistance provided by the CAe includes:

I Hardware and software trouble-shoot ing .
• Problem isolation and resolution.
I Operational assistance.
I Information about product use.

The CAC main!ains a data base of known
problems, customer calls, commonly asked
questions, and third-party software that has
been tested and run successfu lly on the
DYNAMITE workstation. With ils expert
staff, data base, testing program, and
support facilities, its goal is 10 ensure Ihat
users of the DYNAMITE workstation are
fully supponed.

______ ..:.::" brkSfOliOrlf

Figure.

EN"'" - -­..

IBM PC a'lWDf"mInt

Figuri • .

DolO ex/roctioll ith
PCFORMAT.
PCFORMAT runs on all>'
dolo from Qlly 7/",{/em
flle, and con\'erts Ihe dulO

;"'0 a Jorll/OI 1ISf1b/e by
IBM PC programs. File
'YIWS CUll be /l1IS/ruell/red.
f!ntry·sequenced. relu/i\'e.
und key-sequeflct>d.

Customer "~oca l Point (CFI) Employee
Instead of individual end users calling the
CAe direcLl y, customers choose at least one
end-user employee to be Tandem's CFP. The
CFP is the liaison between Tandem and the
customer for all support needs for the
DYNAMITE workstat ion.

.,

r'Ol"1II01S Jor PC dise flIes
include DIP, SYLK.
BASIC, olld ASCII.

JU /lif Iqll ~ ' T"~DEM SYSTEMS REVIEW 133

lVorkstllliofl.!'

Figure 5.

The relationship betI\-eefl
Tandem's Customer
Assistance Cenrer (CAC),
Customer Focul Point
(CFP) employee, and end
users oj the DYNAMITE
I\Y)rk.'itati()tl. The CFP is
the liaison be/\\-een thE'
end user and the Tandem
CAe Large customer
sites may hal'e more than
one CFP.

134

Figure 5

I
Customa focaIl't*lI ICFP) --
-""'-­",_~~.",'CACI

When an end user comes to the CFP with
a workstation question or problem that does
not require rhe expertise of the CAC, the CFP
is responsible for answering the question or
solving the problem. When expert help is
required, the CFP contacts the CAC via a
loll-free 800 telephone number, and the CAC
provides the assistance needed. The CFP
then communicates the information or solu­
tion to the end user.

Sofiware Supported by the CAC
Note that, while Tandem CAC support ana­
lysts have a working knowledge of the popu­
lar third-party software that runs success­
fully on the workstation, they do nOl sup­
port this software. Thei r function is to sup­
port the hardware and software suppli ed
with the DYNAMITE 654X workstation. If
they find that a user's problem results from
a problem in third-party software, they refer
the CFP to the appropriate vendor.

Conclusion
The DYNAMITE 654X workstation is several
information tools in one. It provides
Tandem users with a single-vendor solution
for connecting microcomputers with a main­
frame system, It has many features, includ­
ing high-resolution graphics; high
performance; fast access; compatibility with
the IBM PC; a modular, ergonomic design;
and popular third-party software.

The DYNAMITE workstation can:

• Emulate the Tandem 653X terminal.

• Execute PCFORMAT to convert data from
Tandem host format to IBM PC format.

• Transfer files between a Tandem system
and the local envi ronment with IXF.

• Communicate with IBM 3270 applica­
tions with EMJ270.

• Run third-party business software for
personal computers.

All of these capabilities make it an excellent
business tool for users of Tandem systems.

Tandem has a continuing commitment to
imegr3le workstations into its systems.
Future products and enhancemenlS are
planned to further automate the sharing of
host and workstation information.

Rd~rtncts

Cook. S. 1983. Uow Compatible is Compatible? 11C 1I!:wld.
\'01 . 1. 110. L

6J4X II brkstuIIOII-PCFORMAT U~'s Guidt-. l'an 110. &2679
AOO. Ttlodem ComPUIef'S lnoorpon.led.

GInny Smith III a senior systems a/lalyslln 1M Dala Comrnul'"
cations group of Soflware Educ8l1On. whefa Ihe cMYelOpl
courses Iof CUStomers and systems an.tysts Belofe this. IhI
spec,aJl2:ed on Tandem letrTllnaJ products In tM Lalgll Systems
S<.lpport group Dorlng thilll,me, one of her contributions ... "
the support strategy !Of the DYNAM1TE worbt.tlon. ShejOllWd
T8IIdem In Octobel 1980 as an Instructor anG cour .. d~
Iof Tandem Application Language (TAll and GUARotAN openl
Ing Iyslem courses. Belore joining Tan6em. Ginny a.,..
tems engineer /or another nIImlrame.....oor

TAI"D E M SYSTE M S M EV I E Yo

-

remcndous advances in
_ microelectronics during the

19705 have come to frui-
lion in the '80s. Digital
watches, video gamcs, and
even automobiles with syn­
thesized voice warnings are

no" commonplace. Perhaps the most excit­
ing development has been that of Lhe per­
sonal computer. Its rapid prolifcration. bolh
at home and in the workplace, has brought
an entire society into Lhe computer age
almost overnight. This revolution prompted
Time magazine to select the computer
recently as its first nonhuman "Man of
the Year."

Few institutions have remained untouched
by the PC revolution, least of all the infor­
mation industry. Large, centralized
machines are giving way to smaller com­
puters, located in individual orrices a nd
homes. We are witnessing an Industria l Rev­
olution in reversc.

The personal computer has allowed end
users to design and custom-tailor applica­
tions to meet their unique needs. Such
machines increase productivity because they
need not be shared with Olher users. How­
ever, the speed with which personal com­
puters have proliferated has created some
problems as well.

An Introduction to
DYNAMITE Workstation

Host Integration

In business, government , and educat ion,
personal computers are largely isolated,
cut off from important applications and
information resources still resident on main­
frames. Many data bases can not be dist rib­
uted. (They may be 100 large to insta ll on
every personal compUler that needs access.
Also, the nature of the application may
make distribution difficult, if not impos­
sible, because of data-base consistency
problems .)

PC users have difficulty exchanging infor­
mation with one another, and they long for
the convenience of mainframe-based elec­
tronic mai l systems. They a lso need access
to expensive periphera ls, such as laser
printers, which cannot pract ically be
attached to every personal computer.
Finally, personal computers can not provide
the peace of mind that comes with fault­
tOlerant f ile stOrage.

135

Workstations

FIgure 1.
HOSt on:t!ss through
the £M6SJO terminal
emll/ator.

FIgure 1

136

DY NAMITE 'MlIIc$tatlon ""

The Tandem DYNAMITE 654X workstation
was designed from the beginning to provide
users not only with substantial local com­
put ing power, bur also with full access to
existing Tandem mainframes. This flexibil­
ity allows a business to take advantage of
the possibilities presented by personal com­
puting without abandoning the substantial
investment already made in host applica­
tions, data bases, and hardware.

The EM6530 Terminal Emulator
The first important element in the
DYNAMITE host-integration package is the
6530 termina l emulator, EM6530. As shown
in Figure I, EM6530 is a program residing on
the DYNAMITE workstation that can trans­
form (he workstation into a 6530 terminal.
This emulat ion capability allows the work­
station to access all facilities associated with
(he local Tandem mainframe, including the
ENCOMPASS data-base system, TRANSFER
delivery system, and the EXPAND network to
which the mainframe is attached. Data
residing in the host network may, of course,
be accessed just as easily by other
DYNAM ITE workstations equipped with the
EM6530 program.

PATHWAY
.,.,~

"­-
-

Data-base Formal Conversion
The EM6530 terminal emulator is very useful
because it provides access to a Tandem hosl.
Its ability 10 move information from the ho~t
environment to the workstation environmem
(and vice versa) is very limited. however.
Information to be sent to the host must be
entered manually while the workstation is
operating as a terminal. Information from
the host may be displayed, but it cannot be
stored permanently at the workstation (for
access and manipulation later, when the
workstation is operating in a stand-alone
mode). These limitations not only prevent
information coming from the mainframe
from being processed locally (e.g., by a
spreadsheet program), but they also prevent
the output of a workstation program from
being entered into the host environment so
that it can be accessed by other workstation
users.

Thus, the next element in our DYNA,\IITE
host integration package is a facility that
allows the host to transfer information in
bulk to the workstation so that the worksta­
tion can process that information locally.
Such a transfer is not as easy to erfect as one
might think. One big problem is the fact
that the format of data-base files on a
Tandem mainframe is quite different from
that of the files used by third-party pro­
grams that run on the DYNAMITE
workstation.

The Tandem PCFORMAT program solves
the data-base-format trans formation prob­
lem. PCFORMAT is a host-resident program
that can convert Tandem data-base files into
files that are structured so as to be usable
with common third-party PC programs.
Various conversion formats can be specified,
including:

• ASCII. This rormat, typically used by
\~'ord-processing programs, consists of te.xl
hnes separated by carriage return/linefced
couplets .

• BASIC. This format is compatible with the
INPUT statement in BASIC. It may also be
used by such third-party programs as
Lotus 1-2-3 and dBASE u.

SYSTE"tS TANDEM
R E " t E W • J U ... F I III ~ ,

• DfF(Dara 'merchonge Format). This for­
mat is used by third-party programs such as
Lotus 1-2-3 and VisiCalc.

• SYLK (Symbolic Link). This format is
used by certain Microsoft programs.

The use of the peFORMAT program is
illustrated in Figure 2. The terminal emula­
tor program, EM6530, can be used first to
access the host. Then, the IlCFORMAT pro­
gram is invoked. It uses the DDL data dic­
tionary to establish the proper formal for the
records, Ihus eliminating the need for a sep­
arate user specification. The output of the
peFORMAT program is an unstructured host
file in one of the above-mentioned formats.

If there is a need to convert a restricted
set of data-base records (for example, those
for all the married employees in an employee
data base), the ENFORr.., program can be
used to extract them from the data base
before the peFORMAT program is run.

The Informalion Xchange Facilily
Once the information is in a format suitable
for Vt'Orkstation processing, the problem
becomes one of access. To solve the prob­
lem, Tandem has developed the Information
Xchange Facility (IXF) program. IXF allows
a user 10 transfer files between a DYNAM ITE
workstation and a Tandem mainframe over
asynchronous communications links
(TERM PROCESS) or X.2S via an X.3 PAD
(packet assembler/disassembler). IXP
features:

• Powerful, Hne-oriented commands, which
can Come either from the command line or a
command file.
I Sophisticated pattern matching, which
can be used to restrict file searches.
I The ability to move multiple files to the
same or dirferent locations with one
command.

I A rich set of options for tailoring
commands.

Figure 2

DYNAMITE
WQlksIa!tOfl

~

- TEAMPAOCESS _

• A sophisticated communications protocol,
which not only ensures end-to-end integrity,
but also increases the information-transfer
rate by condensing streams of duplicatc
characters.
• The ability to transfer files direclly
between devices. For cxample, a disc file on
a Tandem system may be printed directly
on a printer attached to a DYNAM ITE
workstation.
• The ability to transfer binary (8-bil) and
communications control characters.
• Data compression to increase the transfer
rate.
• Automatic conversion of EDIT fi les to text
files when they are moved to a workstation
(and vice versa).
• The ability to print workstation files con­
taining workstation-printer control charac­
ters on a Tandem system printer.

WorkstatiOlls

Agura 2.

Doto-bose COfII'ersion
with PCFORMAT.

JU~E 191i ~ ' TA~I)[M SYSTEMS MEl/IF\\'
137

----------------........ '

.. ~~--..
WorbWlioll.l'

Flgul1I3.

The Informolion
Xchunge Facility (IXF).

J<_.;.13_8

FiguI1I3

""'EX'

/

IX.' Components
As shown in Figure 3, the Information
Xchange Facility consists of two compo­
nents: the workstation ponion (lXEEXE)
and a host portion (SSYSTEM.SYSTEM.lXF) .
For security. IXF always requires that
transfer operations be initiated from the
workstation. The workstation portion of IXF
processes most of each command and, by
UseT option, initiates the host portion to
commence the transfer. Errors that occur at
either end are aUlOmat ically reported to the
other end (and therefore to the user).

Three commands are currently supported :
GET, PUT, and PRI NT. These commands are
discussed in more detai l below.

GJ:.7 Command. The I XF GET command is
used to import files or data from the host to
a workstation . The general format of the
GET command is:

GET [(oplion (, ... J)] TandCllLfilelisl
AS DOS_filename I, ...)

where TandelTLfilelist is a list of Tandem
file names separated by commas, and
DOS_riIename is an MS-DOS rile name.

Each of the Tandem rile names may desig'
nate a disc rile, a process, or a device
located anywhere within the host system to
which the workstation is attached (or within
the network to which the host system is
attached). The Tandem riles are read sequen­
tially to the end-or-rile (EOF) and written to
the workstation device or disc file specified.
Note that IXF allows a host process to be
spec ified. This process might be a user­
writlen preprocessor that tailors the infor­
mation to be transferred. For example, such
a process might be programmed to fetch
from a personnel data base onJy records for
employees with children.

All disc files are read according to their
structure. That is, unstructurcd files are
read unstructured, EDIT files (code 101) arc
read as EDIT files, and ENSCRIBE files are
read as struclUred files. This default can be
overridden by means of the BINARY option
(described below). AJso, by default, every
file is read with a record size of 132 bytes.
Thus, in structured riles with record sizes
longer than 132 bytes, records are truncated
unless the default is overridden by means of
the REC option.

TANOEM SYSTEM S R E \IE\\ . JU " (I ~~S

In tb: command syntax outlined above,
users can insert p.1ucrn·malching or .. \~ ild·
card" characters into the name of any disc
me in the Tandcm file list, and IXF will use
them to select specific files from a larger set.
The characters used are either an asteri k (.)
or a question mark (1), where an astcri k
signifies zero or marc characters and a ques·
lim mark signifies exactly one character.

For example . assume that a sub\'olume on
the host s)~lcm contains the follo\\ ing files
and that those file names containing the
JeuerCfollowed by at least one character
areemployees' "children riles":

CO
EMPA
E.\IPB
tliPC
E,\IPD
tllPCIDEP
E.\IPOT\lP
E.\IPTITLE
S\IRHlPC]

Under these circumstances. if users
""alIted 10 transfer only the chi ldren files to
Ur",iorkstation, they could give -C?' as the
~Ue name, and in response to that designa·
(J0Il, IXF would select those files that can·
lain a C (follo ed by at least one character)
anywhere in the name. Thus, the files CO,
E\IPCIDEP, EMPC2TMP, and SMRHLPC]
.uuld be selected. (File EMPC would not be
selected because the question mark in the
file·name designation ind icates that the C
musl be followed by anOlher character.)
. ~rc are many different ways of combin·
109 wlld-card characters. The result is a very
powerful file-selection 1001. Also, since the
syntactic grOUp
Tandem.Jiltlis! AS DOS_filename

can be repeated any number or times a vir­
tually limitless transfer of informatio~ can
be effe(:led with one command. AIIIXF
commands apply the default volume and
sub\'oIume (when necessary) to Tandem file
~,and likewise. they apply the current
lrectory to DYNAMITE file names.

;:--;~,~---------
19. s · TA~OE"1

•

Another feature of IXF is automatic file­
name mapping. Mapping occurs when an
asterisk is specified as the file·namc part of
the DOS file name, as in A:'.DAT, B:·, or -.
J n response to the above DOS file·name des­
ignations, the Tandem file name would be
used as the DOS rile name. For example,
if A:'.DATwere given as the DOS file name
in the wild·card example above, the result·
ing DOS files would be A:CO.DAT,
A:EMPCIDEP.DAT, A:EMPC2TMP.DAT. and
A:SMRHLPC3.DAT.

Yet another mapping feature is the ability
10 preserve DOS file·name extensions. As
will be explained in connection with the PUT
command , DOS file·name extensions are
normally appended 10 the end of the DOS
file name to form the Tandem file name
when mapping is requested. These ex len·
sions may then be ex tracted during GET
operations by specifying a file·name exten­
sion consisting entirely of quest ion marks.
For example, if one wanted to move the
EMPA, EMPB, EMPC, and EMPD files men·
tioned above, one could use the command,
GETEMP? AS -.1

which would result in the DOS files EMP.A,
EMP.B, EMP.C, and EMP.D.

Options associated with the GET com·
mand are: BINARY, PU RGE, REC, and WAIT.
The BINARY option overrides the structured
reading of structured files. As a rcsuh, EDIT
and ENSCRII3E files are read and transferred
"unstructured." Note that the BINARY
oplion does not control the type or data
transferred, but rather the manner in which
structured files are read.

The PURGE option allows IXF to purge
files when it must overwrite existing ones.
The REC option is used to specify the input
record size.

SYSTEMS

Hbrkstmiolls

139

WorkstatiOlls

Perhaps most interesting is the WAIT
option, which allows the transfer to be
delayed until the host portion of IXF is initi­
ated separately. This option could be used if
workstation users wanted to have fi les that
were updated during overnight administra­
tive processing transferred to their worksta­
tions when they were ready. To make this
happen, they could simply run IXF before
leaving for the evening, specifying the
appropriate GET command with the WAIT
option. Then, when the host files have been
updated, the host portion of IXF could be
automatically invoked by the host applica­
tion that updated the files .

If the workstation IXF initiation were
included as pan of a "batch" file , it would
even be possible to post-process the trans­
ferred information automatically on the
workstation, where it could be ready for
immediate use when lhe user returned the
next morning. The asynchronous initiation
of the host portion of IXF is discussed later
in this article.

PUT Command. The IXF PUT command is
used to export fi les or data from the work­
station to the host. The general format of
the PUT command is:
PUT [(oplion (, ... J)] DOS_fi lclisl

AS Tandem ... Jilename t J

where DOS_fiIelist is a list of MS-DOS
file names separated by commas, and
TandemJilename is a single Tandem file
name.

Each of the DOS file names may designate
a disc file or device on the workstation. The
Tandem fi le name may specify a disc file a
process, or a device. Each DOS file is read
sequentially to the Eor and written to the
Tandem. ~ile specified . Since a process may
be specified by the Tandem file name a
user-provided post-processor could b~ writ­
ten under that name to custom-tailor the
transferred information. For example such
a process might be programmed to u~date a
d.ata base automat ically in response to the
file transfer.

I f the destination file specifies a disc file ,
an EDIT file is created by default , since there
is no file code associated with DOS disc
files. Note that when writing EDIT files, IXF
automatically resets the high-order bit of
each byte. imerprets and discards some con­
trol characters, and simply discards the
remaining control characters. Also, trailing
blanks in each record are discarded. Thus.
data will probably be lost if a user transfers
a non text file without invoking the BINARY
option (desc ribed below).

Horizontal lab characters are treated spe·
cially, however. By default. a tab stop is set
every eight characters. When a horizontal
tab character is encountered, blanks are
insert ed up to the next tab SlOp.

Carriage return / linefeed couplets are also
treated specially and interpreted as record
separators. This means that IXF will nOt
start a new EDIT file record until a record
separator is encountered. Since EDIT files
are limited to 255-byte records. truncation
may occur. Also, trailing blanks are deleted
from EDIT files. which means that oos text
files that are sent to the host and retrieved
wi ll not compare if they origina ll y contained
trailing blanks in any records . To avoid the
EDIT file characteristics or to mo\'C nonteXI
infornlalion. the users should ill\'Oke the
BINARY option (described bela").

To select a group of files for transfer from
the workstation to the host , users can use
pattern-matching or "'Wild-card" characters.
As in the GET command, these characters
are either an asterisk or a question mark,
where the asterisk denOtcs zero or more char·
acters and the Question mark dCnOle5 exact!)
one character. However, DOS-style paltern
matching is used, which means thallhc
workstation interprets these charactm ~
"hat differently than the host did. In panko
ular, it is important to realize that when a
Question mark is used at the end of a file
name designation, the Question marl. will
also match zero characters.

TAt-;OE\1 SYSTEMS I l \ (
, ..

=

The following example illustrates the dif·
ferences bet\\cen DOS and host pattern
matching, Assume Lhal a dircct!>ry ~n the
'Aorhtalion contains the following files:

C.J:\\T
C1J.J:\\T
CO\IP,TXT
E\lP.A
E.\IP.B
E.\IP.C
E.\IP.D
E..\1PC10EP.DAT
E\IPC2TMP.DAT
E.\lPTITLE
S\IRHlPC3.DAT

In such a case, the pauern C? • would
select bOlh CO. OAT and C. OAT (but it would
not select CO\lP.TXT). The pattern matches
C.Qo\T because the question mark matches (0
zero characters in that case. A question
mark only maps charactcrs to zero when it is
attheendofa rile· name part (e.g., C?DAT
or C.?). Thus, COM?P.TXTwould not select
CO\1P.TXT from the abovc files .

Also, the pattern ·C?·, illustrated in the
GET command example, could not be used
with the PUT command, because the asterisk
may only be used as the last character in a
pattern with DQS·style pattern matching.
The pattern C?·. - "'QuId select C.DAT,
CO.DAT, and CO\tP.TXT.(C-. - would also
select the same filcs). 'The pattern -.DAT
could be used to select all files that have an
exlcnsion of OAT. As with Ihe CET com·
mand, the syntactic group of

DOS_rilelist AS TandclTLfilename

can be repeated any number of times.
The PUT command also provides file·

name mapping. Mapping occurs when
an asterisk is specified as the file·name
pan of the Tandcm file name (for
example, S VOLUME. SUB VOL. -, SUB VOL. "
or simply *). In each case, the DOS file·
name extension (if any) is appended to the
DOS file name (after the DOS file name has
been truncated as needed to preserve the
extension and yet produce an eight·
character Tandem file name). For example,
a seven<haracter file name with a two·
charactcr extension (EMPFILE.DB) would be
truncated to form the eight<haracter name
(EMPFILDB).

When the preservation of file·name exten­
sions is not desired, it may be suppressed
wilh the use of the NOEXTS option described
below. The combination of differences in
pattern matching and possible truncation of
DOS file names means Ihat careful thought
should be given LO file· naming conventions
with an eye 10 simple transitions between
DOS and Tandem file names.

The available oplions for the PUT com·
mand include BINARY, NOEXTS, NOTABS,
PURGE, REC, TABS, and WA IT.

The BINARY option causes an odd­
unstructured file to be created when the host
destination is a disc fi le. Odd-unstructured
is used 10 avoid adding data when odd
record lengths or the amollnt of information
transferred results in an odd byte count.
BINARY also causes a ll control characters to
be ignored and simply passed through.

The NOEXTS option inhibits the concate·
nation of file· name extensions when host
names are formed. In the above example,
EMPFILE.DB would then be formed
as EMPFILE.

NOTABS inhibits horizontal·tab-characler
interpretation. Horizontal tabs are simply
stripped out (except with the BINARY
option). .

The PURGE, REC, and WAIT options. are
identical in function to the correspondmg
options associated with the GET command,
except that REC also affects the output
(host) record size. .

The TABS option provides for the selecllon
of tab·stop locations.

PRINT Commlmd. T he IXF PR INT com·
mand is similar LO the PUT command,
except that it is tailored for priming fi les.
The general format of the PR INT
command is:
PRtNT « option It ... J)) OOS_filclist

TO Taoocm_Jilename I •... J

where DOS_ fiIelisl is a list of MS· DOS
file names separated by commas, and.
Tandem_ filename is a single Tandem file
name.

REVIEW

li'(:Jrhlal;olls

141

----------------........

H-",,.hUlliOI1.I'

142

Each of the DOS file names may designate
a disc file or device on the workstation. The
Tandem fi le name is resLricted 10 either a
process or device. Each DOS file is read
sequentially until Lhe EOF and written 10 the
Tandem file specified. The control charac­
ters (form feed, backspace, carriage return,
and linefeed) are interpreted as primer con­
trol characters in the same way they would
be interpreted by a printer attached to a
workstation. In addition, horizontal tab
characters are interpreted (or, optionally,
ignored) in the same way they arc interpreted
by the PUT command.

Pattern matching to direct the file search
is available and is identical in its functions
and restrictions to that described for the
PUT command. File-name mapping is also
a llowed and works just as it did with the
PUT command. Fi le-name mapping can be
useful for tagging files sent to a spooler pro­
cess with lhe source file name. For example.
the command

PRINT PI.LSf, P2.LST, PJ.LST, P4.LSf
TO SS,"HOLD.·

would cause the names SS.#HOLD.PI LST,
SS.tHOlD.P2lST, etc., 10 be formed . These
names would show up in lhe JOB command
of PERUSE.

The avai lable options for the PRINT com­
mand include NOEXTS, NOSKJP, NOTABS,
TABS, and WAIT. The NOEXTS, NOTABS,
TABS, and WAIT options are identical in
funct ion to the corresponding PUT options.

The NOSK I P Opt ion causes a SETMODE 5
t,o be perfo rmed (see the GUARDIAN Operat­
mg System Programmer's Guide). Essen­
tially, this option inhibits the automatic
f~rm feed a~ the bOH<?m of each page, pro­
vided the pnnter carnage-comrol tape is SCI

~p properly. This option is usefu l for print­
mg many documents produced by third­
party programs (hat do nOt expect
automatic form feed.

Running IXF
IXF must be initiated from the workstation
(i.e., by an externaJ command). The work­
station must be connected to a Tandem host
through an asynchronous connecLion using
TERM PROCESS. The host must be in conver­
sationaJ mode, and it must be running a

command interpreter (COMINT). IXF
attempts 10 solicit a prompt from CO~1INT
and, when it is successful, auempts to initi­
ate the host ponion of IXF (if the \\i\IT
option is not being used).

Once the host portion is running, it
switches into its information-exchange pro­
tocoito transfer data. When contact is suc­
cessfully made with the host IXF, a banner
comaining the host version is displayed.
Following lhat are displays of the files cop­
ied or any error messages. If an existing file
is overwritten, a "purge" message is dis­
played, along with the file name.

If Ihe WAIT option is invoked, the hosl
portion of IXF must be initiated separately.
This can be performed from a different ter­
minal (or DYNAMITE workstation running
EM6.530) connected to the host and running
a Command Interpreter. The device name of
the DYNAM ITE workstation must be passed
as a parameter (for example, IXF STNTOI).
The OUT file is used for error messages, and
it may be any disc file, process, or device
(e.g., IXF l OUT IXFLOGI STNTOI).

The host portion of IXF can also be initi­
ated by any process running on the host. All
that is required is to call NEWPROCESS and
pass a "start-up" message 10 IXF containing
the information required in the output-file­
name and parameter-string fields.

The destination for error messages should
be specified as the output file name, and the
device name of the DYNAMITE workstation
waiting for the host should be in the parame­
ter string (terminated with a null byte). If
the home terminal of the process initiating
IXF is the same as the DYNAMITE worksta­
tion, however, the key word REMOTE should
be used in place of the device name in the
parameter string. The output file name
passed in the start-up message may be (he
process that is doing the NEWPROCESS call.

The format of the start-up message is
described in the GUARDIAN Operating
System Programmer's Guide. The

EWPROCESS procedure, process control,
and imerprocess communications are also
described in detail in this manual. Remem­
ber that the workstation portion of IXF must
always be initiated first (with the WAIT
option).

TANDEM SYSTEM S
REVIEW·J U "E

Regardless of the manner in which IXF is
initiated. its stalUS may be checked at the
\\'Orkstation by typing CONTROL-Q (hol~ the
CTRL key down and press Q). The resultmg
display gives informat ion on the .nu~ber of
packets exchanged and communications
errors encountered. A nonnal exchange
causes the number of packets to steadily
increase. ...

An occasional communications error IS no
cause for alarm. as the aUlomatic detec tion
and retry mechanisms of IXF recover from
nearly all error conditions. If, however. a
\'ery high number of errors is noted, or if
IXFterminates with an EXCEEDED RETRIES
error, this may indicate that the communica­
tions link is broken or sufficientl y error-
prone that an exchange is difficult or
impossible. In such cases, it is beSt to retry
the exchange a few times to see if the prob­
lem persists. Dial-up modem connections
are particularly susceptible to poor line con­
ditions. Often, hanging up and redialing
resoh'eS the problem.

When IXF is exchanging information with
a process on the host, the host process must
function as a server. That is, IXF calls the
GUARDIAN roUline OPEN to open the server
process as a file. The server process receives
an OPEN system message through its
SRECEIVE file and must reply to it with the
GUARDIAN REPLY routine. The server pro­
cess must also expect to receive 1/ 0 requests
through itsSRECEIVE file, interpret them ,
perhaps perform other 1/0 or computation,
and respond to the requests. To terminate a
GET function from a server process. the pro­
i:e5S should respond to a READ request with
an EOF indication (File System error I) .

When IXF is fin ished. it severs the connec­
tion to the server process with a CLOSE sys­
tern message. In the case of a PUT function,
the CLOSE message is the only indication the
server receives to mark the termination of
theexchange. Note thallhe server process
may be the object of multiplc exchanges and
"' shadd be prepared 10 handle mulliple
0PEl'-1I0-ClOSE sessions. For example,

multiple exchanges would OCcur to process
SSRVR I with the following IXF command
issued at a DYNAMITE workstation:
PUT a t PTtTLE.SM RI-I LPC3. DAT

ASSSRVRI,-PUT.--

Full details on interprocess communications
and SRECEIVE file hand ling can be found in
the GUARDIAN Operating System Program­
mer's Guide_

Conclusion

The DYNAMITE workstation host-integration
package closes many of the gaps between
workstations and host systems. The EM6530
terminal emulalOr allows worksLation users
to sec host data and imeract with other host
users. The PCFORr..'1AT filcMconversion utility
allows host data bases to be converted into a
form more acceptable to workstat ion soft­
ware packages. Finally, the Information .
Xchange Facility provides the means to effl­
ciently exchange data betwecn. host and
workstation and, with user-written pre- and
post-processing programs, can be tailored to
many differcm applications. In short, the
DYNAM ITE workstation can provide the best
of both worlds: efficient, personal, local
computing with quick access to ~werful ,
centralized, and fault -tolerant mamframe
computing.

Rtfrrcnlb . G .-'- P rt no
GUARDIANOiJl!fUllng System Programmer s IIIfK. a .
82)57 AOO. Tandem CornputerS Incorporated.

6$4X lI 'Orkstu/iOfl-I rt/!Jrmutiofr X('hUltg(' FUcili/)'. Pan no.
82669 AOO. Tandem Cornputerl Incorporated.

654X Worlcr/Qtiotl-Operu//otu GUIl¥. Pan no. 82658 AOO.
Tandem Computn"S Incorporated.

654X lIorks/otion-PCFORMAT User ·sGuirk. Part 00. 82679
AOO. Tandem Compuln"S Incorporated .

Electk I Engineering Irom the 51an KOllnl1ll haa an M.S. In r a member 01 the
Unlverslly 01 cal1!Qrnla. Currently, he II aT whera he davet.

" __ I nl stall In Austin, ,axas.
OVNAMITE opme F lilt Sinca }olnlng Tandam In
oped the tnlOfmatlOl"l Xs~~~: a :~flaIY 01 projects. Including
Oecambef 1980. ~ ~~ ENCORE Itrlss.last goneralOf. BOIOf

f
•

the development '" . ars workln.g In the areas 0
/OInln.g Tandem. Stan spent tan f-Ia computar hardware snd

rtormanee prediction Ilnd ana ,¥ . datil
:Itwate arehlleetur81. opar.tln.g lyeteme. and
communlcatlonl.

J U , E
S Y S T E M S

-

IVorkslari01Lf

143

The V8 Disc Storage Facility:
Setting a New Standard
for On-line Disc Storage

n January 15, Tandem
introduced (he V8 Disc
SlOrage Fac ility. The V8
uses a unique new pack­
aging design LO opt imize
disc performance for
high-volume on-line

transaction-processing applications. It pro­
vides both large storage capacity and high
throughput by packaging eight 168M-byte
disc drives in a single cabinet (see Figure I) .
This adds up to a lotal of 1.3G bytes for
slOring large amounts of information with
the added benefit of eight aClUators for high
performance.

The V8 speeds data access by minimizing
disc-access Lime and queuing . This makes
the COSI per disc access per second lower
(and the number of transact ions serviced per
second higher) than thal obtained with
standard disc-storage faci lities.

The V8 provides parallel paths to data
through multiple actuators. When a file is
partitio ned across eight discs (and overlap­
ping seeks are accounted for), eight I/O
requests can be serviced simultaneously.
When a file resides on one disc volume of a
conventio na l disc, concurrent disc accesses
must be queued and serviced separately,
resulting in s lower response time and
reduced system throughput.

The average seek time per drive for the V8
is on ly 20 ms, which, when added to latency,
gives an average time-to-data of only 28 ms.

To ensure dala availability, disc mirroring
on the V8 allows duplicate data to be stored
on an independent disc drive so it can be
accessed even if one drive should fail. Since
the V8 conta ins multiple disc drives and
two power cords, one for each of four
drives, mirrored discs can reside in the same
cabinet.

The V8 sets new standards of reliability
with very h igh mean lime between failure
for both the disc drive and the power supply.
The sealed head and disc assemblies of the
Winchester drives require no preventive
maintenance.

144
TANDIiM S'ST[MS RE\IEW 'I V'" 14"

•

\\'J):n service is required, the V8~s field­
replaCe3ble drives and ~wer s.upphes re u,lt
in fast and efficient serVice, Smce ea~h d~lVe
bas its ID'in power supply, a malfunction, In
1U00es nol shut down the others. On-line
~i.:ealso allows a unit to be replaccd with
ooinlerruption to current opcratlo~s. ..

The high reliability and easy ser\lccabillty
of the \'8 rtSult in a significant ly lo\.\cr cost
ofOl\nership and higher s}'Stem availability
fcrUsefS, EI'en if a drive without a mirror
fails only a small pari of the data base
~ unavailable, whereas a failure in a
roDl-entional disc drive results in a substan­
[ialloss of data.

The V8's unique design packs eight disc
drilts in a cabinet that occupies only ten
S<luart rett of noor space (including service
clearance), making it the most efficient user
of computer· room space in the industry. It
stores 134M bytes per square foot, com­
l""'i [0 100M bytes per square foot for
units with a comparable storage capacity.
EI'tII more significantly. it houses eight acw-
31OI'S in ten square fett of floor space, mak­
ingit fil'e limes more space-efficicnt than
compeli!il'c drives.

Consistent with Tandem's system modu­
larity, the v8 Disc Storage Facility is offered
with four, six, or eight drh'es. Additional
Wiochester drives can be added in incre-
o:rnl5 of [11,'0 10 a maximum of eight per
cabinet. Expansion is easy because each
dril'c isa separate plug-in unit [hal can be
quickly added on-line. Price/ performance is
?ptimal since uscrs need only buy the capac-
1\Y1hey need when they need iL.

, U \ f

Flgurll

SYSTE MS

Figure 1.
By packaging eigh.t d~c
drives in a single cab"
net, the VB provides
the large capacity and
high throughput
needed Jor high·volume
on.line transaction,
processing applications.

145

146

Figure'

Introducing the
3207 Tape Controller

he 3207 Tape Controller is
a new-generation 1/ 0 con­
troller designed to provide
complete data integrity for
any single-point raul! and
LO locate fauhs as a pan of
its normal operating

sequence. Its features include:

• Lock-stepped microprocessors.

• A fully prOlccred internal bus.

• Firmware containing embedded fault­
isolation sequences in the operational code
and power-on diagnostic sequences.

• Loop-back checking in the device
interface.

• Self-checking logic in Siale machines . .
counlers, registers, and OIher logic elcmcnls.

""88000

''''''

T18l00 _

"""'"" T16101 _ interlace

For this new, morc complex design, the
number of basic COlli roller gales has
increased by 31 Icast 30'". and the number of
interconnects by at least 200':'0 o\'er tOOse or
its predecessor. Even with Ihis complex;I),
power consumption and real estate remain
low and reliability high.

These seemingly conrlicting design goals
"ere mel by the use of state-of-the-art \lSI
gate·array technology. 1\1051 of the logic in
the 3207 Tape Controller is pacled imo [ell

galc-array modules; the rest is contaiJle'd in
appro'\':imatcly 190 comentional \1 1 SSI
chips, memory, and twO Motorola 6800)

microprocessors. In terms of basic romplrx·
ity. this is equivalent [0 apprO\imatcly
30,000 gates (excluding microprocessors and
memory).

FunClionalDescriplion
A Tandem data-base 10 controller controls
the transfer of data between a mass storagr
device and onc of t\\O I 0 channels. Tlx'
3207 Tape ControlJer supports (\\045- or
125-ips (inches-per-sccond) NRZI PE lap'
drives. The concepts and design methcxkllo­
gies used arc easily adaptable to OIher oon·
troller deSigns. Figure I sho\\s a block
diagram of the 3207 Tape COnlroller.

Flgullll_

A jultmonal bIod: diD.
grom qf I"~ 1107 Ttl/W
Comrolln; Th~ jour
fJt'lfnOT)' JogI(' groups t:(
,h,. 1107 0" ,h,. micro­
fJTO('eS.Son and Iheir

-

TANDE\!
s y S TIM S It F , I E Yo •) l' 0.; [••

One of the design requiremel1ls for the
3207 Tape Controller was the usc of off-the­
srelfmicroproce~sors. The Motorola 68000
microprocessor ",as choscn because it has
these characterist ics:

J. A 16-bit data bus, allowing word­
oriented architecture for data transfers.

2. A po erful instruction set suited to a
high-Ie\'el-Ianguage implementation of
the firmware.

3. Built-in protection to separate memory
spaces (code vs. data or supervisory vs.
user) based on external function-control
pins.

4. A powerful error-exception capability
using an error-exception input pin.

5. Existing in-house program-development
lools for firmware, based on thc Tandcm
Programming Language (TPL).

Orr-the-shelf microprocessors seldom
implement built-in fault-detcction circuits,
and the MC68000 is no exception. To pro­
\'ide fault detection, the: 3207 Tape Control­
ler uses twO of the ~1C68000 processors in
lOCk-stepped mode. This allows it 10 isolate
faults simply and accurately by localizing
them in time and place. It checks the data
bus, the address bus. the control strobes for
data read/ write, the interrupt lines, and the
bus-arbitration lines independently, on each
bus cycle. This approach is a comprehensive
one, differing from any other known mcthod
of lock slepping.

The Motorola 68000 microprocessor is a
16-bit processor (externally) with 24 address
lines. The strobe lines it uses for memory­
mapped 110 reads and writes are AS'. UDS·.
lOS', DTACK', and R/W'. It uses the arbi­
tration lines, BR', BG', and SGACK e

, for
direct·mcmory-access (Dtl.1A) activities. It
supportS seven levels of interrupts by using
lPLO', IPUe, and tPL2',

The MC68000 also has a RESEP line and
two other lines, SERR' and HALT', which
are very effectively used in the 3207 Tape
Controller for faull detection on the lines
mentioned above. The architecture of the
3207 is closely coupled with the firmware to
process data from the error-detection logic.

The two types of error processing used by
the 3207 Tape COlli roller are:

I. Lock-stepping MC68000s and associated
logic. The primary motive in this archi­
tecture is to create a protected, modified
MC68000 bus and perform data transfers
on it. This is accomplished by using two
MC68000s and selr-checking logic. Any
miscompare between the two MC68000s
or any error in the associated self­
checking logic is considered fatal and the
processor is halted.

2. Acting as an interface to the protected
internal bus. If the two MC68000s lock
step without errors and the associated
checking logic functions normally, the
internal bus is good, Memory-mapped
registers and other logic that make up the
interface to the internal bus may detect
errors caused, for example, by faults in
internal logic, interface buffers, and
printed wiring.

The checking logic for such faults is
part of thc external c ircuitry (particularly
the VLSI module), and such errors are
reported to the microprocessors. They
process these errors as nonfatal ones and
enter into a diagnostic mode of exception
processing to locate the faults. These
faults can be accurately located more
than 90% of the time.

Definitions
In this article, the terms check and lest are
used frequently. In order to understand the
context in which these terms a rc used, the
following definitions are provided:

• Error. A condition in observable output
that is abnormal for normal input at the time
of observation.

• Fault. An abnormal condition in a physi­
cal element of a logic circuit.

• Check. To detect faults made through the
observation of errors. In highly checkable
circuits, every physical fault should result in
abnormal OUlPUt for some normal input.

• Test. To locate faults. (The input need not
necessarily be normal.)

J U Nf 19" ~ 'T"'NDr'1 SYSTEMS RF'\IPW
147

148

Pen'plwrrtlf ____________ _

Flgu~2

Flgu,. 3

... """""" ... I"",,

r
",'" ~ -]"""'''' bus 1Il'~ ..., ...

---... --+--------------- ~~

D'.j but (true)

SoII_ F'n',-''''''' do. -

"" ""'"

I Do. L bu. (complement)

Prolecled Address Bus

Figure 2 shows lhe implementation of the
protected address bus. The address lines
from Ihe MC68000 called the true processor
are buffered with noninvefling buffers,
while the address lines from the other
MC68000, called the complement processor,
are buffered with invefling buffers. The
3207 Tape Controller's checking logic uses
morphic-reduclion circuits to check these
IwO sets of address lines.

This checking logic produces a pair of
signals called Fatal Address Errors. These
signals arc galed along wilh other falal
crrors (explained later). The Outpul of Ihis
logic appears on a pair of Fatal Error lines,
which are respectively connected to the halt
lines of the two proces ors. Then, if an
address mismatch occurs, the processors art
hailed. All address errors are detected on
the same bus cycle and are considered falal,
causing a halt on the follO\\ ing bus cycle.

The checked lrue or complement address
lines are used to generate odd parity across
lhe address bus. The [rue address bits, with
an odd-parity bit, constitule the internal
address bus of the controller. All the other
peripheral circuits are designed to check
parity on the address bus with every read
and wrile . These address-parilY errors are
considered nonfatal and are processed by the
microprocessor as exceptions in order to
locate the faulty circuit.

Prolecled Dala BIIS

The comparison or Lrue and complement
data buses with (rue and complemenl micro­
processors is similar to the address compari­
son described in [he previous section. All
data miscompares between the microproces­
sors, and errors from the associated check­
ing logic are considered fatal. Figure 3
contains a diagram of a proteclcd data bus.

Rgu~2.

Implementation qf the
proU!('tro address bus.

Agur.3.

Imp/emeniotlOn 0/0
pro/ectt'i/ data bus.

lbechtcked data-bus lines are used to
~te a 10\\cr-bYlc, e\cn-data-parity bit
ID:I an upper-byte. e\'cn-parity bit. Two
data-parity bits arc used both to improve the
crtec1ion of data errors and to a\1o\\ for
b)1e or ord operations on data .

Alll ,Q-mappcd registers check for correct
data parit~ while being written to and report
(!TOO bacl to the microprocessor on the
sanr bus cycle. Also, an external parity­
cheding circuit monitors the data bus for
errors during reads by the microprocessor
and rqJOI'lS the errors to the microprocessor
011 the same bus cycle. The dnta-parity
errors art treated as nonfatal errors, and the
firmware processes them on an exception
basis 10 locate the faulty circuit.

Dual·railed Cont rol 5t robes
Fh-e control strobes (A ., UOS-, LOS-,
DTACKo, and R W-) arc related to data
reads and writes from cach microprocessor.
The tM copies of each of these signals
should be synchronous within the tolerance
limits of the twO microprocessors. These
COIllroilincs are compared through the usc
of self-chcckers; any mi.scomparison is con­
sidered falai.

The independent checking of the conlrol
strobes, one of the uniquc features of the
320: Tape Controller's lock-stepping design,
achle\'cs these design goals:

I. Isolation of errors to the control bus. This
makes it easy to troubleshoot during
faulty controller operation.

2. Prevention of error propagation. The
context under which the error occurred is
~ved. This is an important aid to locat­
mg transient and intermittent error
conditions.

3. Ab.i1it)' to disable the lock-step circuit.
~IS allows for the isolation of the failing
mlc.roprocessor and the debugging of the
design and code with an in·circuit
emulator.

J lJ ... E

The checking of the control strobes pre­
sented several design challenges. Even
though both microprocessors are timed with
the same clock, one of the processors may be
operating at the minimum delay specifica­
tion while the other operates at the maxi­
mum delay specification because of process
variations in parts fabrication .

The effect of the difference in delay on
data reads and writes is to necessitate more
stringent sel-UP and hold margins. Modified
strobes are generatcd to take care of the new
stringent timing rcquirement for reads and
writes. The generation itself is done in a self­
checking manner and is dual-railed. All
these challenges are met in the 3207 Tape
Controller by unique circuit -implementation
techniques.

All peripheral circuits that have an inter­
face 10 these modified control strobes arc
designed so that they check these lines on a
read or write. Any error detected is reported
to the microprocessor for nonfatal exception
processing.

Protection Techniques Used
in Interrupt Handling
Three interrupt lines exist for each proces­
sor, making scven levels of interrupt possi­
ble. All the interrupt lines are dual-railed,
a unique feature of the lock-stepping
technique.

Interrupts to the processors are normally
considered asynchronous. When twO micro·
processors receive asynchronous interrupts
caused by tolerance differences in set-up
times. one of the processors may see the
interrupt and respond, whi le the other may
not. This can result in address, data, or
control-strobe errors. To eliminate this
possibility all interrupts arc handled
synchron~uslY, and each interrupt signal is
dual.railed and handled independently by
each processor. The only types of error that
can result in an address, data. or conlr<?1
error are transient or permanent faults III the
interrupt lines themselves.

SYSTEMS

Peripherals

149

Pen'phero/s

ISO

Protection Techniques Used
in Bus Arbitration and DMA
There are three bus-arbilration lines in Ihe
MC68000 microprocessor. They are Bus
Request, Bus Grant, and Bus Gram
Acknowledge. The rirst and Ihe lasl are
inpUi 10 the microprocessor; Ihe second is
OUiPUI rrom il. The DMA controller is
designed so thai dual-railed bus-request and
bus-gram-acknowledge signals are given
independently 10 the two processors , and
bus-gram signals received rrom bOlh proces­
sors are checked. Bus-requesl and bus-graOl­
acknowlege signals are synchronized wilh
the processor clock .

The DMA-conlroller state machine is
duplicated and checked on every Slate­
machine clock cycle. DMA address genera­
tion is prOlected by parity-predicted binary
coumers. Any error detected in any or the
logic described above is logged imo an inter­
naJ register and rorces the DMA machine
imo an error stale. When an error stale
occurs, the DMA gives up the bus.

During DMA, Ihe data bus is also moni­
tored by an independent parity-checking
circuit, and any error is logged into a regis­
ter. Arler the operation completes, Ihe
microprocessor reads Ihe Dt\'IA status and
data-parity status 10 see ir Ihe DMA Com­
pleted normally. This helps isolale the rault
quickly and minimizes the chance or Con­
taminaling massive blocks or data. DMA
handshake li nes that have rauhs are hand led
thro~gh a time-oul mechanism by which Ihe
bus IS rorced back to the microprocessor.

Checking and Testing of
Gate-array Modules

Earlier secl ions or Ihis article outlined
various aspeCts or checking in both the
3207 Tape COntroller and the micropro_
7essor, and s~mmarized how a prolected
tnte:nal bus IS produced. This section Sum­
manzes the checking circuits needed in the
peripheral ci rcuitry to check bOlh the imer­
nal b~s and other logic dependenl on I he
runctlon or each circuit.

TAN D EMS Y S T EMS

The three major runctional bloch in th~
controller are:

I. The proceSSing elemem, consisting of t
MC68000 microproces ors, a O\1A g31e.
array module, and a Processor uppon
Module (PSM) containing the self­
checking and strobe-generation circuih.

2. The channel interface, COllsisling of ~
ror dual-channel pons. Each porr COn.
lains a pon-register module CPR"'I), a
port-control module (PCM), and comro.
tional MSJ bufrer chips.

3. The device inter/ace, consisling or inler.
race and formatter circuils 10 support 1110
45- or I 25-ips NRZI/PE tape drh'es.
phase-locked loop circuits, lape inrerfact
burrers, and Ihe rollowing rour gale-arra)
modules:

a. Formatter timing module (FTM).

b. Wrile formatter module (WFM).

c. Read COnlroJ module (RCM).

d. Read rormatter module (RF\I).

Checking Techniques Used in
3207 GUle A rrays
The checking techniques used by the IllIer.
nal Bus !nrerrace include the rollo\\ing:

• Address parity check on dala reads
and \\ riles.
• Dala parity check on wriles.
• Con t rol Strobe check on reads and writes.

Those ror the T16 Channel ' nrerracc
include:

• Sequence check on T-Bus (done wilh a
sequence deteclor).
• Parity-predict protection on all counlers.
• Parity-predict protcclion on stale
machines.

• DMA-handshake-inlerlock monilOring.

Finally, those ror the Device inlerface
include:

• Parity-predict protection on slate
machines.
• Parily-predicl protection on counter~
and registers.
• Loop-back capability ror device-inlerrace
signals, used by firmware ror in-line lesling.

-

Trsliq Trchniquts U~d in
l!t11G'lf .\rra)~
Jb:,('A'OJXimal)' tesling techniques used
.ith til< llOJ Tap< Controller are:

1. Sam. The internal registers of five of I.he
gate arrays can be scanned. The scannmg
technique j primarily used to test gate
aIT1)'S at the: component level.

2. Rtad ·,,:rift. Storage elements that cannot
Ix' scanned can be wriuen and read back
b)-the microprocessors over the internal
bu~. Rtad.onl} status registers can be
initialized with master reset.

Other standard testability practiccs, such as
theabilit)' to clock from external sources
and sort pull-Up; pull-down. ha\'c also becn
adopted,

Checkabilil) and Testability
Colerllge in V!.s\ Module
Table I ~ho s checkabililY and testability
c(werage in the VLSI modules of the
3207 Tape Controller. The coverage is
e~pressed as the percentage of the total
number of gates used in the design that arc
checkable or testable.
~ardwareself-checking is defined as the

ability of t~ chip to detect an crror in nor­
mal operation that results in one or more of
the following actions by the chip:

I. An error flag is set in an internal register.

2. To locate the fault, the bus-error line is
pulled acth'e for error-exception process­
Ing by the MC68000s,

3. The halt line is pulled active to freeze the
microprocessors, indicating fatal errors.

19I1S · TA'IIDI.'I.1

Tlb .. '
Checkablilly and lestabihly In 3207 Tape ConlroUer
VlSI modules

feo"labohl'f of Hlrdwlr.
SlOt. EIelMnII •• u· Stl.K:k·nodl

Chip SU" R"d--Wtl te ch.c.klng coyenl9"

""" • .00 '00" ,,,. .00 ..
PCM •• .. ~ "' .. eo'" '00"
"'" • '" "" ,00" " .. -
PS" "' .. 7." "
'1M ,. .. '00" .00 .. "'

-
W' " '00" ,.lI, '00" ," '000. '00" " ..
RO" '00" 'OO~ " .. '00"

Conclusion
The development of the 3207 Tape Control­
ler is a pioneering effort in the design and
implementation of VLSI-based products. By
using VLSI technology. the design engineers
were able to usc the complex design tech­
niques required to improve the data-integrity
and fault-isolation capabil ities of the basic
1/ 0 controller wi thout incurring the penal­
ties of reduced reliability, increased real
estate. and power consumption that would
have accompanied similar efforts a few years
ago. Many of the techniques outlined in this
article will also be used in future Tandem
products.

Ack_ledarmnls
"The 3207 Tape ConlrollcT ...-a$ primari ly developed by four
deslln entincef5. includill& Ihc IUlhof. The aUlhor wishes 10
Itkl'lO'" ledgc lhc c()f\lribulions made by We OIlier II'ICIllbcn of
Ihc: designltam: Ed Rhodes. Alberllui. and Mark Walker.

Sri Clllndrl" I. I member 01 the Hardware Engineering group.
He 11 the leader ollhe 3207 Tape Controtler deYelopme

nl
p!'oject.

SYSTEMS Rr V1EW

PeriphelTJis

151

152

Robustness to Crash
in a Distributed Data Base:
A Nonshared-memory
Multiprocessor Approach

- - ince atlemion first turned to
the problem of dam-base

-- recovery following system
----= crash, computer arcl~itecturcs

l=~ - have undergone conSIderable
~ - evolution. One direction such
-... - evolution has taken is toward

fault-tolerant, highly available, distributed
data·base systems. One such architecture is
characterized by a single system composed
of multiple independent processors , each
with its own memory. This paper examines
the inadequacy of both the traditional defio
nition of system crash and the com'cntional
approaches to crash recovery for this archi­
tecture. Il describes an approach to recovery
from failures that takes advantage of the
multiple independent processor memories
and avoids system restart in many cases. I

'CCI\II'IiIIIII' lit n.. VI OB E--.. no. _~I) ~ ,
~"IM·,..".I----C~ ... L.tr:',,_o-&o
AIaJIIIII984..II.~heft:in"'(nIim) .. do ~ufThr \"1.08 EDdo<o_.

Introduction

With the emergence of on-line update
transact ion-processing applications, I
based dat3-base-recovcry techniques
evolvcd to providc robustness to crasl
system failure. Log-based crash-recm
tcchniques have recch'cd considerable
tion in the literature 14,6,8,9, 10j.

The strategies adopted by the prope
of these techniques fall imo two basic
gories. Both postu late the existence 01
types of memory (4):

I. Main memory. which is volatile, he
does not survive system failure.

2. Secondary storage. \\hich is stable (
volatile, hence usually surv ives S}'Sli
failure.

In the first strategy, a transaction w
an intentions list rather than updating
base pages in real time. The applicatio
transaction's imended updates to the;:
data-base pages is deferred until trans;:
commit, at which time the transaction
intentions list is written to a secondary
age log, following which the updates a:
applied to the actual data-base pages.
failure occurs during the application 0
imcmions list. the recO\:ery procedure,
sists of restarting the application of tm;
imentions list from the beginning. Thi:
nique has been described by Lampson
Sturgis in (8).

TAN 0 E M !'i' S T F \1 <; R f V I I' Yo • J l' NF'l •

In

: allen-

POCI1I S
: calC,

[\10

cc

or non­
ern

f iles
1 ~'lI a.
In or a
:lewal
Je[ioo
Is

slOT­
re
Ilf'
r'll< con-

, '

.. he stl:ond strategy, a (ransael ion
~,}I[~da[a-base updates in rea l lime, bUi
atO-alled 'Mitt-ahead-log protocol governs

IIlj~ralion of (he updated data-base
lito from a memory buffer pooilo second­
.,soragt. According 10 this protocol,

.rilxtl by Gray in 14), no updated data
'" permitted 10 be written (0 secondary
c: befort the log records describing the

~[~ IO [hat page have been written 10 the
Jt\: ldaI)-slorage log. AI commit time.
IJI;. '><k:lion rccoverabilil), is achieved by
bdna (0 stable storage all log records
r$i.td 10 the committing transaction.

!;\lng either of the above strategies, data­
ttb: ItOOI-ery following a crash is character­
tztd b)-haling recourse to the Jog stored on
EI.'OOdary storage in order to cosu rc I hal
COOl lTliued transactions are applied and
aocummilled transactions are removed from
the data base. A difference between the twO
Itr.ll qie~ Ii~ in the type of log information
rtqUlrW for crash recovery. In the case of
dd'entd update. only redo information need
be kt~td. In the case of real-time update
'filth \Io'rite-ahead log, both undo and redo
mformalion must be logged 15J.

Ret .. min. tion of the Term Crash

CemraJ to the strategies used in the conven­
lJ01'l.lI approaches to crash recovery is the
ddimlion of a crash or system/ai/ure as the
Ios\ of the contents of main memory 191.
Tht inadequacy of this definition of system
failu re beromcs evident when applied to a
oonshartd-mcmory multiprocessor architec­
tu~ . The concept of main memory as a
IIIIlq~ and mared resource constituting a
~ poim of failure is inappropriate for
multICOmputer systems. In a system archi­
ktture in \10 hich multiple independent pro­
ct\~ , each with its own memory, arc con­
Declcd to (orm a single system or node via

ttrprocessor buscs or local area network,
the tue of the term ('Tash to denote an all-or­
.. hina SUit of the system loses ilS validity.

The term becomes e\en less meaningful
when applied to a long-haul net\\ork con~iM .
ing of multiple shared-memory nodes. or
even of multiple multicomputer node Such
configurations raise the possibility of partial
crashes caused by individual prQce\sor fail ­
ures within a node or cau'iCd by node fnll ­
ures within a network . A fault-tolerant
system design may allow cerlain failure~
within a node to be handled withollt requir·
ing S~tem restarl. If a partial failure does
nOI require syStem reslart, neither ~hould it
require full data-base rcstan. l-Iowever, lhe
problem of the 101.11 failure or cra.\h of a
multicomputer node slill remains and muM
be handled_

A corollary to the generalization of the
concept of crash is (he generalization of the
concept of crash rCCQvery. I f, ill. in the abo\'e!
definition, secondary Slorage is viewed ns
the only SlOrage that survives failure'i. then
crash recovery must be based on a
secondary-storage log and syslem restnn i~
required.

If, on the other hand, a processor failure
does nOt imply the failure of other pro­
cessors, then recovery techniques nOI requir­
ing systcm restart or recourse to secondary
storage are possible. If a portion of Ihe
"'og" were copied from the memory of one
processor to that of another during normal
processing, and one of these proce~sors sur­
vived the failure of the other, reCO\o'ery from
the partial system failure could be effected
using the \08 infomlation from the memory
of a surviving processor while s)'~tem oper·
alion continued "on-line_"

Tandem Computers has implemented 3

multiprocessor architecture using the abo\c
concepts. The next section presents a. brief
description of Tandem's s)~tem archlte,tuTC
in order to motivate a more general
approach to identifying and rec<.'\,ering from
both partial and 10talsY5tem failures . . Sub­
sequent seclions define ro~u5tn~Ss to Single
and multiple processor failures In a Tandem
system. A discussion of Tandem's imple­
mentation of fault tolerance and the evolu­
tion of its design follow S.

R I \ I I W
I 1

Techlllt:a/ P!!1H!!:.- -------
Figure 1

r-~::::::~I::~::::~~::~::::~I::~= ~N~
J L t-.I... J

~""'""...., -- ---
"'" -- r -

Agu .. 1.

Tandem hardwa~
architectu~. A .y.tem
C07UUt8 of from 1 to 16
proceuor module •.
each with it. own memo
ory. interconnected
via the duplexed
DYNABUS. The
hardware configuration
provide. redund4nt
paths to the
peripheraLs.

15'

Architectural Overview

The hardware architecture of a Tandem
system is described in [7]. Illustrated in
Figure 1, it is based on mulliple independem
p:ocessors that are interconnected by dual
high-speed buses to form a single system
(node). The goals of the archit ecture a re
fault tolerance, high availability, and modu­
larity. Hardware redundancy is pfQ.Vided
such ~hal the failure of a single module does
~ot disable any other module or disable any
mtermodule communication.

Normally. all cornponems are active in
process~ng the work load. When a compo­
nent fails, however, the remaining system
components automatically take over the
work load of the faiJed component. Each of
the (up [016) processors in a sys tem has its
own power supply, memory, and 1/ 0 chan­
nel. Memory has bauery backup power
capabl~ of saving system state for several
hours In the event of power failure. Each
110 controller is connected to the 110 chan­
nels of two processors, and each 110 device
such as a disc drive, may be connected to '
two controllers. A given disc volume is

directly accessible from two processors.
Disc-volume ava ilabilit y, despite media fail.
ures, is provided by optional duplication or
mirroring, of drives. •

System resources are managed by a
message-based operating system described
in (I) . The Message System, a c~mponent of
the operating system, provides communica.
tion between processes executing in the sa~
or different processors, making the distribu.
t ion of hardware components transparent to
processes. Through its Message and File
Systems, the operating system makes the
multicomputer structure appear as a unified
mUltiprocessor to higher levels of software.'

Buill on this architecture is a distributed
data-management and transaction.
management system cal led ENCOMPAss.
Described in (3], ENCOM P ... \ SS al lows data
to be diSlributed across mUltiple processors
and discs within a single node, or even
\\ ithin multiple nodes of a Tandem long­
haul network. It supportS the 1fOnsoction
concept (5) in this distributed environment.
The transact ion concept is implememed by
means of a log and rea)-lime (as opposed 10

deferred) update. Transactions can span
multiple discs (connected to muhiple pro­
cessors) within the same node or on multiple
nodes of a Tandem long-haul nemork.

Updates to a file mayor may not be pro·
tected by transaction auditing, depending on
the va lue of the file allribute ca lled audited.
(Henceforth, the lerms logl logging and audit
trail/ auditing will be used interchangeably).

ENCOMPASS supportS three kinds of
structured file o rganizat ion: (I) key­
sequenced, (2) relative·record, and (3) entry·
sequenced. A key-sequenced fi le is organized
as a B-tree on the primary key field. All
three file organ izations can have ahemate
keys. Alternate keys are implemented as sep­
arate key-sequenced files that "point" 10
primary file records via a field thai contains
t~ value of the primary key. Alternate key
files and the primary files that they index
can reside on separate disc volumes. Parti·
tioning files, by primary-key value range,
across multiple disc volumes (possibly on
multiple nodes) is also supported.

Ont' of the basic implementation compo­
nents of ENCOMPASS is a process that acts
~ a serrer for riles on a particular disc vol­
u~. This process, designated the disc pro­
cesr, is an example of an 1/0 process pair
PI. An I '0 process pair is a mechanism that
)JOvides fault-tolerant systemwide access 10

I Odeviccs. It consists of two cooperating
processes that run in the twO processors
ph),sicallyconnected to a particular 1/ 0

device.
One of these processes, designated the

primary process, controls the 1/ 0 device,
handling all requests 10 perform 1/ 0 on the
device. The other process, designated the
backup process, functions as a standby,
ready to take over control of the device in
case of fai lure of the primary path to the
device. The processor in which the primary
110 process resides is an integra l const ituent
of the primary path 10 the device. Should lhe
primary's processor crash, the backup pro­
cess must have information sufficient to
take over control of the device. This critica l
information is sent from the primary process
to the backup process during the course of
normal processing in the form of so-called
checkpoim messages.

The process pair that controls a disc vol­
ume is called the disc-process pair, or simply
the disc process. Its primary and backup
members run in the " primary" and
"backup" processors for the disc volume,
respectively. The disc process has an active
rather than a passive backup process. The
term active backup process refers to the fact
that the information the backup process
receives via checkpoint messages dri ves its
execution control flow. This is in contrast to
a possible alternative design in which the
backup process passively rece ives copies of
recently dirt ied port ions of the primary pro­
cess' memory. The active backup concept is
central to the design of single-fault toler­
ance, as described below. Figure 2 illustrates
the concept.

From the point of view of a given disc
process, afile is a single partition of an
ENC~\'I PASS "file" (if, indeed, the latter is
P3!1Jtloned). Partitions of key·sequenced
rnma~ data files and of alternate key files
ook ahke to the disc process: each is struc­
tured as a single B-tree. The higher-level
COfK:ept of a file with partitions and / or
alternate keys is implemented by the File

I li \ £
1911~.TA"OI'M

Technical Pi/I'er

Figure 2

"""~ p
u_ ...-- -

"""'" c_,
"'" ,- COo

"""'" """'"
""""" ~ """''''' '--

System. The File System is a se t of user·
callable procedures that execute in the envi­
ronment of the user process. These
procedures (e.g., OPEN, READ, KEYPOS I­
TION, LOCKREC, WR ITE, etc .) accomplish
an operation by sending one or more request
messages to the appropriate disc process(es).
In a requester-server model, the invoker of
the File System is the requester and the disc
processes are the servers.

The primary interface to the di sc process
is record-oriented, ahhough a block-oriented
interface is also provided . Most update
requests resuh in the updating of a single
record within a single block of a given file.
In the case of key·sequenced fi les, however,
lhe possibility that a single request message
from lhe File System could cause a B-trec
split or collapse means that the request may
be execUled as a series oj micro-update
steps. Since an incomplete series of m.icro­
update steps leaves a file structu.rally IIlcon­
sistent robustness to crash reqUIres a
method of assuring its atomicity. This atom­
icity is provided for both audi~ed and non·
audited files, but the means dIffer, as
explained later.

SYSTFMS

-

Figure 2.

The hardware configu·
rotwn for a disc-process
pair. In the primary a7ld
backup proceBSors are
the primary G1ld backup
disc processes fOT a
mirrored disc volume.
The primary disc pro­
cess peTfoTms 110s 1.0
move pages to and fTom
its memory buffer poot.
Reads go to the disc
closest to the cyli7uler:
writes go to both discs.
The backup (lisc pTO­
cess maintains the
backup buffeT poo~
based on. checkpoint
messages receive(t from
the primary disc
process.

15:

------------_

Failure Modes
The system architecture described supports
fault tolerance for a variety of failure modes
other than processor c rash. Fault tolerance
extends from failures of single hardware
components (discs, 1/ 0 channels, 1/ 0 con·
trollers) to fai lures of system or application
software (programmatic processor halt, user
process error, transact ion abort). The curA

rent discussion, however, will be limited to
failures that result in the loss to a single
muhiproccssor node of one o r more of its
constituent processors. Loss in this context
means [he invalidation of everything stored
in the failed processor's memory. 111is could
actually be caused by the failure of any
hardware o r software component associated
with that processor.

The failure model supported can be char·
acterized as Jail Jasi. Consistency checks arc
an integral part of [he system hardware and
software. If such a check fails, the bad com·
ponent is halted. This approach makes fail.
ures "clean" and makes it unlikcly that a
failed component would contaminate other
components 12,5J.

Definition of Robustness
to Single-processor Failure
The failure of a single processor in the
described environment results in the
lakeOl'er of its functions by the remaining
processors. In particular, the failure of a
primary disc process' processor results in the
takeover of ilS function by the backup disc
process' processor. If [he failed processor
contained other primary disc processcs with
diffcrent backup processors, the failed pro.
cessor might have its work taken over by
several other processors .

The disc process is designed to provide
robustness [0 single-processor failure. This
robustness is implemented by means of
(I) checkpoin t messages sent from the pri­
mary process to the backup process during
normal processing and (2) a takeover algo.
rithm described later.

T A ~ 0 ~ M S Y S T F. M S

T he followi ng elements constit Ule robUlt.
ness to single·processor failure:

I. "Sessions" between the disc process and
requesters ca lling the File System sur\'i\'e
the failure of the disc process' primary
processor. Thus , any file open before
takeover still appears open after the­
takcover.

When updates are not protected by
transaction auditing (i.e., updates to non·
audited files), a mechanism of tagging
messages bet"'ccn the File System and the
disc process with sequence numbers can
opt ionally be used to guarantee that a
requcst message is ncver lost during the
takeover and [hat a non idempotent oper­
ation is never duplicatcd (2).

When updates are protccted by trans­
action aud iting (Le., updates to audited
file s), the file·open session survives the
takeover, but updates executed under thai
open by a given transaction surviVe the
takeover if and only if that [ransaction
commilled before the takeover.

The tolerance of sessions to single­
processor failure obviates the need to
perform system restart in the event of
such a failure. For nonaudited files, the
takeover is transparent to the caller of the
File System. For audited files . the
takeover is not transparent to the caller of
the transaction management system (since
transactions may be aborted), but higher·
level software makes the abort and restart
o f such a transaction transparent to the
end uscr (3).

2. The struc tural integrity of both audited
and nonaud ited files on the volume is
guaranteed. Thus, if the primary's pro­
cessor fail s in lhe middle of performing a
series of micro-update steps to a rile,
takeover processing restores the me's
structure to a consistent state by backing
Olll the steps performed before the failure.

J. The transactional consistency of the data
base as a who le is guaranteed. Thus, if a
transaction that was uncommitted at the
time o f takeover had updated audited
fil es on the failed primary disc process'
volume, takeover processing aborts the
transact ion and backs out its changes
every\\here (on other volumes on this or
o lher nodes). II should be noted that

does nol
. backout i

transaction 1 feted B_tree .
undoing a Cf!" Pnse (ran sac(I
ation.1n thts ~an physical.
logicO/ rather

, ' f Robustness
I)efinllJon 0 'r e rasl
lO Disc_process-pa.

. ocess-pair crash is dcf
~~~:cous failure of both il s 
backup processors. The cra~h 0 

cess pair and (he failure, of lIS P 
backup processors arc vI7wcd ,a 
because the disc process IS an IT 

ofche operat ing system , and, a: 
becomes operational whenever t 
ctSsor is restarted. Conversely. 
disc-process primary or backup 
(\etects an internal consistency­
ure, it halts its processor in ace, 
Ire fail- fast principle . While su 
~ighl be deemed Draconian in 
~lOTlal ~rchilCc t ure, this aspect. 
IS predicated on the principle th 
a\aila.bility is not compromised 
of a smgle processor. 

~ufn~~~IYing assumption i' 
mary an~lb~~~~pen~ently and; 
~I f 'I P disc prOCesse' al ure mod 0 . 
assuITIPtion would ~~. f ,COur 
!lresence of a " h d in validate 
tl..... ar"(" 
-I't'OOen!) a1go . h . I.e" nOm 
~~'OUld inevi~~bl~~ bug pre 
r r of the r e exeCUtt 
~ SUch bugs h p OCess pair. Thl 
1tl1p~actical gO~ nhot proven to 
so ""ere Ih • oWev 
running inC IPrhnary and e~ This 
cess Pass" Ockstep ° ackur 
dirtied I Ve ~y rece i~in r were th( 
Itktnory~rt lons of th g e~Pi es ( 

When e prllllary 
. ad· at10n is· ISC·Prac 
~ lhe cr~~ilar to th~SS Pair era 
Ilrorrn of a" State d 
t~ alion s ared esc 
~ ~OtiesStorcd in ~rnernor 
It\~SOrs) is ff bOth P ~Il1ory I 

~ teSon to os\. An/1mary a 
di'A ,SlJ1cc II Second me thod 

""';°Pt Scs . ary 
FileS Ocess p . SIOns" beStorag 
~~tetn ha~r and re t\\leen 
iIIlaJO&~al rcq~.been bQuesten 

vet..... Irelll rOken 
ce" lh enl of " ' I 

e e1elll rC! 
I I eOts 

1I1I1I1I1I1I1I1I1I ................................ ____________________ Jl ____ ~~ t ~ a 



, include 
_ndex oper­
ion backout is 

'incd as the 
primary and 

f a disc pro­
Irimaryand 
s equivalent 
ltegra l part 
:; such, 
the the pro­
whenever a 
process 

check ra il­
ordance with 
ch a measure 
a conven-
of the design 
lal system 
by the loss 

i that pro­
hat the pri­
:; have inde­
·se, this 
,d by the 
timing-
sem in code 
ed by either 
e elimination 
be an 
might not be 

) processors 
! backup pro­
;,f recently 
process' 

.shes, the situ­
:ribed earl ier 
y system. 
(in this case 
md backup 
I of recovery 
:e. Further­
I the cra~hed 
:; call ing the 
there is the 
Hart." The 
If robustness 

to single-processor failure and robustness to 
disc-process-pair crash is as rollows: 

1. "Sessions" between the disc process and 
requesters calling the File System do not 
survive the disc-process-pair crash. 

2. The structura l integrity or both audited 
and nonaudiled riles on the volume is 
guaranteed. Thus, if the disc-process pair 
crashes in the midd le of performing a 
series of micro-update steps to a rile, 
crash recovery restores Ihe filc's struclUre 
10 a consistent state . 

3. The transactional consistcncy of the data 
base as a whole is guaranteed. Thus, if a 
transact ion lhat was uncommitted at the 
time or the d isc-process-pair crash had 
updated audited files on the crashed disc­
process pair's volume, crash recovery 
backs out that transaction 's changes 
everywhere (on othcr volumes on this or 
other nodes). 

Conversely. ir a transaction that was 
committed at the lime of the disc­
process- pa ir crash had updated audited 
fi les on the crashed disc-process pair's 
volume, but those updates were still in 
memory bufrers (rather than reFlected 
in the corresponding data-base pages on 
secondary SlOrage) at the time or the 
crash, crash recovery retrieves t~ose 
updates (from the log) and applies them 
10 the data-base pages on secondary 
storage. 

As in the case of Ihe single-processor 
fa ilure, transact ion backout does n~l 
undo completed B-tree index operations. 

Evolution of the Disc-process Design 
The above description renects a rearchi­
lecture of the disc process. The goals or the 
new design were to provide quick recovery 
from disc-process-pair crash a l~d less costly 
tolerance or single-processor failure . . The old 
disc process provided rob~stness to slOgle­
processor rail ure as desc~l bcd a~ove. How­
ever the old implementat ion of smgle-
processor-failure tolerance made a trade-orf 
in favor of fast takeover recovery from 
single-processor fa ilure at the ::xpense or 
long recovery in the event or dlsc-process­
pair crash. 

t5 



T(!ch"il'llJ PU(H'f 

The only method of recovery from disc­
process-pair crash was the time-consuming 
technique of reloading previously archived 
copies of audited data-base files and "roIl­
ing forward" these files to a state of transac­
tional consistency by the application of 
after-images from the audit trail. The dura­
tion of volume unavailability implied by this 
procedure was justified by the assumption 
that double-processor failure is rare. In fact, 
however, double failures are more common 
than would be predicted by consideration of 
hardware mean time between failures. Most 
processor failures are in fact caused by soft ­
ware bugs or operational errors. 

Two characteristics of the original design 
dictated Ihe "roll forward" approach to 
crash recovery and tolerated single-processor 
failure at the expense of extra disc II 0s and 
extra checkpoim messages during normal 
processing. These were as follows: 

I. The decision [0 synchronous ly wrile 
through to disc all updated data-base 
pagcs rather than buffering them in 
memory. 

2. The technique of incrementol checkpoilll­
ing (sending messages from primary to 
backup disc process during normal pro­
cessing), which provided the backup pro­
cess with the information needed in Ihe 
event of the primary processor' s failure to 
carry forward any interrupted series of 
micro-update steps and to cominuc for­
ward processing on transactions active on 
the disc volume. 

Wrire-Ihrough cache was originally con­
ceived as a means of simplifying the implc­
mention of single-processor- failure 
tolerance. However it made the write-a head­
log protocol [4] infeasible because unaccept ­
able performance would result if every 
data-base update resulted in t\I,.'O writes : 
first, the before-image log necessary for 
undo in case of failure; second, the modified 
data-base page. The absence of write-ahead 
log. made the fast crash-recovery technique 
of m-place rollback of crashed transactions 
impossiblc. WriLing through every data-base 
update also had negative implications for 
throughput and response lime. Rather lhan 
allowing the "piggy-backing" of several in­
memory modifications on the same 1/ 0 it 
meant that each time a page was "dirti~d" 

in memory, it " oolJ 
nOllsly (while the apr' 
waited). 

Incremental ~ hc:·d. 
(he backup pr(Kc" 1\ I 
event of thc priOlilf)' 
any instant) 10 carn 
series of micro-upd.Ut 
rupted (ranc;ac tion In 
process , thc appro'h.'h t 
vide (he backup I"rtX""C1. 
mation to enable it Il' 
to carry forward 3n), In 
micro-update !)Iep\ , a 
to continue proce"l11~ 
tion active on the dl 
approach, d(j"errl!tI fit 
ble. According to 111I\. 1 
formation that would I 
chronous, incrcmc m al 
in the old architcc lUIt' I 

the primary procc\\' I 

at such timcs 3 \ tran' I 
This tcchnique rcJut. 

cost of singlc-proc,,· .. 
terms of number of" 
it saves sending ch...'(k 
inform (he backup Jlft 
changes in the primar • 
not reach sccondnf1 .or. 
backed OUl any"a,'"m 
example of such u· ,h'lI 
in memory by a tran 
commitled and for " 
YCI been forced . n lC b.. 
havc no knowledgc 01 
the transaction Ihal ClUJ 
and ba~ked OUI (g loNllv~ 
mary dIsc procesc;' Jlf 

In explaining t~ lu 
b.y the new disc pr<'k: Ie 
singie-proccssor fnilu~. 
an analogy bct" Cc:'n the 
convcl11ional Cf3\h· 

and the usc of chcdJ'llllnl 
takeo~cr procesc;in~ ( 
new disc proce'i\ j , 

the backup prace".. \ 1Jd 
records have a comm )Q r 
son, they are kno" " u 
recorc(s. ':- typica l a lit. 
COntams IdClllificall( 0( 
number within file , fro 
page, and the 'xfore 
changed rccord . \ \ 

T A ~ 0 E M S \ S TFM S 

• • 



• 



n-ch"icII/I'tIIIfH' 

of the latest twO control·point records are 
remembered at a known place on the disc 
volume. 

When recovering a given crashed disc vol· 
ume, autorollback finds that volume' s ~edo 
start point by obtaining the pointer to ItS 
nexHo·last control point. When recovering 
a set of crashed volumes, autorollback stans 
its forward pass of the log al the earliest 
redo start point for any of the crashed vol· 
urnes . Autorollback then sends to the di sc 
process of a crashed volume all redo Jog 
records il finds from that volume' s redo 
start point through the end of the log. 

After the redo phase, the backward pass 
begins. Reading the log backwards from Lhe 
end, autorollback sends 10 the appropriate 
disc process those undo log records Ihat rep· 
resent incomplete series of micro·update 
steps. When all of the changes represented 
by these log records have been physically 
undone, all audited files open on the crashed 
volume(s) will have been restored to a state 
of structural integrity. 

During the same backward pass, 
autoroUback sends to the appropriate disc 
process those undo log records that represent 
logical operations on data blocks (e.g. , 
record insert, modify, or delete) that were 
executed by transactions uncommilted at 
crash lime. When all of the changes repre­
sented by these log records have been logi· 
cally backed out (Le., using compensating 
operations at disc-precess-request level) , 
global transactional integrity will have been 
achieved. 

Conclusion 

The concepts of crash and crash recovery 
have been seen to require generalization in 
order to find applicability to a nonshared­
memory multiprocessor architecture, in 
which some processors may survive the crash 
of other processors in the system . The archi­
tecture of the Tandem computer system was 
described as a case in point. A technique of 
logging to another processor's memory that 
tolerates single-processor failure and obvi­
ates the need to perform system restan was 
described. An analogy was drawn between 
the technique used in a Tandem system to 
recover from a single-processor failure and 
conventional crash-recovery techniques that 
rely on a secondary-storage-resident log. 

Itdt",n«"l> 
I. Ilartk n . J. F. 1978. A "NooSlop" OpCI'alll1fs,­

Proctfflinpq{lhl' E/I'I't'lllh Ilu,,·ull /lllrr_""( 
l'n~ 0fI Syslrm Sciences. 

2. . 198 1. A NonSlop Ktrnd I ....... •• 
thr EigJrth Symposium on Operoll", S)"rm""" 
ACM . 

3. Barr. A. J. 1981. Transaclion Monnorilllllll ;::::: 
Rcliablt' Distribuu~d Transaction P~ ..... Ir 
q thr SnYrllh Intrrnationul Con/m'n«OJI II'\' 
Bases, St-pttmbC'f 1981. Rcpubli~ I~ 1 

4. Gray, J. N. 1978. NOll'S on Dala·base ()pfm 
IB~I Rnta~h Rt'porl. RJ 21 88. 

$. • 198 1. The Transaclion c:n;. 
Limila lions. In Proceedings 0/ tM Sn'NIIA , .. 
CfN!/r""~ 011 !tory Large DolO & J6. Stp 
Rrpubli~ht'd as Tanckm TR 81.1 . 

6. Gray, J. N., t'l al. 1979. The Rt"I.'O\t'f)' Mana, 10... 
Managt'mtnl S)'SIt'm. IBM Research Rt'pofl . RJ ., 

7. Ka lzman. J. A. 1978. A Fauh-IOitranl Corn"" s,.-
In Prot:"«dlnp r¥ thr Elel'enth lIuII'ulI Imrr ( 

/m'1IfY 011 $)"$11'111 Sciences. 

8. Lampson. 9. , and Slllrgis . H. E. 1976. CI'I.~ II • 
Dislriblued Data Slorage S),:stem. Xero\ ..... , " 
Rest'a~h Cmttr. Also appears in Ucturr\(-..· '" C_ 
puler Sc,rna': Distributed Syslems _ Arrillrn r __ 
Impirmrnlulion. ed. B. W. Lampson. YOI . 1Cl' ,tI. 
Sprinaa-" trlag. 

9. \ '!masce. D. A .• and landes, O. E. 1980. On ~ 
a Rdiablt' Storage Componenl for Distnbutcd o.a ... 
!l.lanaacmal\ S)'Slans. In Prr.Kffdi",s (j 1M .\1 •• ,.... 
11OfIQ/ COII/rrrncr 011 l {ory La~ DoIU &JeJ, 0.. ... 

10. \ tthofStad. J. S. M. 1978. Recm~Ttchn"","" ar.. 
btirt S)lIlC11lS. Computer SIIn."!'),S. \'01. 10. no 1 

Ad,_ltdlmtnl.s 
Man) of thl: idtas incorporated into the nc ... d.".r' .. 
... -ere angmated by Franco Putzolu. Thanll. Irt d\. M 
GrI). Chris Dule. and John Nauman ror tduorw 
... hose implcmmtation impro\"ed tlx: pmtrltlllOl'l ... 
matena!. 

Anelrea 80rr haos WOfUd on ttle design and t\e'IOekIpIo ., 
ENCOMPASSproducll ENFORM alld TMF. Indorl _ 
GUARDIAN IKl dISC process. DP2, since ~)OI,*" 
t978. She tscurrenllYflflgaged III a projec t allOCJ ........ ~:-
Before toinlng TIn<Iem e"_ • • .... .., spent 8\1 year. es 11dI .... .. 
oper .nd lIeld analys t for two other maln frlme.......o<.n. ... ... 
~1~!:OB.=I::s~~613 In Mathematics from I,. ;;;';;',. 
UniYersLty of W1sconsl ~egree In Computer $C., I .... 
Stanford Unlve' lity n. he was also a doctOf~ ........ _ 

T A h D E M S Y S T £ ~ S 
J U 1'1 I , . , ............ ---------------



T \ ... 0 (\1 I' U II 1 1 ( 

The TIm,1nn \, /t'1IU R ... ·/t'wand I"" 1 
one JUbkupC k)ft. l st IhlS (c.lf1n 10 W 

1<" r<qUn1 .,thm tht liS, ""'" Ih' 
f""" 10: 

I ..... <. omrua,n luwpw.lC'd 
Sab '\..tmiantrM.an 
1t191 \afkg I'., ... ., 
(UJlfI1ua>, <." ""'0).1 ~w 

, ... rtq .... I' ''''I1I1~'tht (/, \ .. >cnd Ih' 
to ~U.lt lotl,1 Tonckm \4.11 01111."(' 

( Ibr .",w'UJ'fWdIO\C~) 
~ IliNflfCkJIIC' ~ • ..,. dnimI 
~Ion (iwttt " of c:upn dnucd ) 
~ lor t.l cqU1, j~iJ'Imml wbitcl to 
~II)) 

Pnnt )our CUrrtf1t Dllures'§. hert! 

•• 
"" .... _ ... 
If )'OUr add"" 
ooc: hcn:: 

•• • _ .. 

ha chans<d. pr'ntl"" old 

1o onkr 

1.1td"" Jou,"", 

' .... ..... 
I "' ..... 

I I 
I 

I 
I 

lilnJ,,,. \ntrmJ lin ,. 
I'att ,. , 

!'on 

Iii"*,,, t,."t .,/oIr 1./oIropO# 

t,,-.OI \t [\IPI. OH I: 
11"11 TU." t ".I U ... n 

PI fA'" 1.1I"l'Ol" 
I • 



• 

/1TANDEMCOMPUTERS 

Pari No. 83935 

400096 06185 Printed In USA 


