
• ?

•

•

•

Joel P. Bartlett
Tandem Computers Inc.
1,))3 Valleo Parkway
Cupertino, C.liforni.

Copyright Ie) 1977, Tandem Coeputera Inc.
All Riqhts Reserved

ABSTRACT

The Tandem/16 computer syetea 1a an attempt at provldlnq •
94n.ral-purpose, multiple-compute, system which is at leaat one
order ot magnitude more ,ellable than conventional coma_rel.l
otteringe. Through software abatractions a multiple-compute,
structure, d •• irable tor tallure tolerance, 1. tr.n.tor.~ 1nto
aa-athing approaching a symmetric multiproce •• or. d •• irable to r
prog,am.inq ••••• Section 1 of this paper provide. an overview of
the hardware structure . In •• ction 2 are found the d •• 19ft goal. tor
the ope,atlnq sy.tea. -Guardian - . Section J provide. a bottom-up
view at Guardian. The user-level interface 1s then discussed 1n
section 4. Section 5 provides an i ntroduction to the mechanism us.d
to provide tailure tolerance at the application level and to
app lication structurinq. Finally, section 6 contain. a fe w comments
on .yetea reliability and ~ple.entat ion.

1. INTRODUCtION

1.1 Backqround

On-line co~puter processinq has become a
way of ltte tor many businesse.. Ae they
make the transition from manual or batch
methods to on- line syst~ms. they become
lncreaa i nqly vulnerable to computer
tailures. Where •• in a batch syste~ the
direct cos ts of a failur~ miqht simply be
i ncreas~ overtime toe the operations
statf. a tallure of an on-line syst~m
re.ults in immediate businesa 10s5es .

1 .2 Syste~ Ov erv i ew

~he ~an~em/ l6 (1.21 was desiqned to
~rovlde a system for on-line applicatlOns
that would be slqnificantly ~ore rel i able
than currently aveilable commercial
computer .ysteme. The hardvar. structure
coneists of multiple processor ~odules
in terconnected by redundant in terprocessor

bu.... A PKS ell definition of the
hardware i. tound i n Fiquee 1.

Each proceeeor ha. ita own power supply,
memory. and I /O channel and i. connected
to all other processorl by redundant
inte rproce •• or buses. Each I / O controller
is redundantly pov.red and connected to
tvo diff.rent I / O channels. As a result,
any i nterproceseor bUl failure does not
att.ct the ability of e processor to
communicate vith any other processor. ~.
tailure of an I/O channel or of a
processor does not cause the los. of an
I/O device. Likevise. the failure ot a
module (processor or I /O controller) does
not disable any other module or disable
any inter-module communlcation. Finally.
certain I /O devices such as disc drive.
~ay be connected to tva differ.nt I /O
controll.r., and disc drive. may in turn
b. duplicated such that the fa~lure of an
I / O controller or disc drive v ill not
result in 10sI at data •

• -NonStop · i. a trad~ark of Tand_= Comput.rs Inc.

1

SINTERDROCESSOR

SI'~TErlFOOCESsa<

Bar d~a re Structure
Figura 1

The systea is not a true ~ultip r oces sor
14}, but rather a "multiple cOllputer "
lySted. The lIIultiple ccmputer approach is
preterable for several reasons. First,
since no lIIodule is shared by the entire
system. it increases the systelll's relia
bllity. Second, a lIIultiple cOlllputer
system does nOt require the comple.
hardware needed to handle lIIultiple access
paths to a common memory. In smaller
systelll., the cost ot such a ~ultiported
m~ory is undesir.ble: and in larger
systeos. performance suffers because of
melllory accels interference.

On-line rep~ir is as necessary as
reli.bility in .lluring system
avail.bility. The modular Itructure of
the Tandem/ 16 systelll allows processors,
I / O. controllers. or buses to be rep.ired
or replaced while the rest of the systelll
continues to operate. Once repaired. they
ilay then be reintegrated into the system .

!he syst~ structure allows a wide r ange
of systelll sizes to be supported . As many
lS slXteen proc.s.ors. each with up to
~12~ bytes of ~emory. may be connected
lnto one system. Each processor lIIay also
~ave up to 256 I/O devices ~onnected to
It. T~is provides for treNendous growth
of application progr~s and processlng
loads wittout t~e requirement that the
application be reilllple~ented on a l3rger
systeN with II different architecture.

Finally. the syatelll Is meant to provide a
general solution :0 the problelll of
provldlng a fill lure-tolerant. on-line
enVlton=ent sUltaDle for co~ercial use.
~s such, ~he sysrem IUPFOrtS conventional
.,cOCjralMllnq langu41leS and peripherals and
is oriented tovard pcovidlng large numbers
of rerllllnals w~th access to large data
bues.

2

2. SYSTEM DESIGN COALS

2. 1 Inteqrated Hllrdware/Software Oesllln

the Tand .. /16 syatea was designed to solve
II specifiC probl.... This problem was not
stated in terms of hsrdwere and sottvare
requir .. ents. but rather in tenss ot
systea requiresents. The hardwllre and
software desi9ns then proceeded in tandem
to provide a unified solution. The
hardwllra desilln concerned ltself with the
contents of each module. their inter
connections to the common buses. and error
detection lind correction within modules
and on the cOClllunication paths. The
software desilln was given the problem of
control: that ls, selection of which
module. to us. and which buses to use to
cOmllunicate with thelll. Furthermore. as
errors are detected. it ~as the respons
ibility of the soft."a r e to control
recovery actlons.

2. 2 Operating Systee oesilln Goals

The first and foremost goal ot the
operating syste •• Guardian. was to provide
a failure-tolerant system. 'l'~is trans
lated into the follOwing destlln ~allloms":

- the operating sy5tem should be able
to remain operational after IIny
single detected :Bodule or bus
failure

the operatin9 system should allow
any zodule or bus to be repaired
on - lIne and then ceinteqtated into
the syste ...

•

•

•

· --

•

•

•

- the oper~tin9 system should be
implemented in 4 reliable manner .
Inece.sed reliability provided by
the hardware architectu re must not
b. negated by soft~4r. problems.

A second set of ,equirements came from the
qreat numbecs and .i: •• of hard ware
confiqurations that are possible:

- the operating system should support
all possible hardware confiq
uracions, ranging frOID a ''''0-
processor. disciess syst~ through
a sixteen-proce.soc system with
billions of byte. of disc Storage.

- the operating system should hide
the physical confiquracion as much
as possible such that applications
could be written to run on a greac
variety ot system confiqurations.

3. OPERATINC SYST~~ STRUCTURE

To satisfy these requirements, the
operating syst.e'II as desiqned t.o have t.he
appearance of a t.rue multiprocessor at the
user level. the design of the syst.em as
.tronqly influenced by Di)kst.ra's ork on
the ·tHE- sys teM (5t, and Brinch Hansen's
implementatlon of an operating syst.em
nucleus for a sinql.-processor system (6).
the primary abstract.ions are processes.
.... hich do work. and .e •• ages hich .110
interproce •• communication.

3.1 Processes

At. the lo st level of the system is t.he
basic hardware as urHer described. It
provides the capability for redundant.
modules, i.e. I/O controllers, I / O
devices. and procesaor modules consl.tinq
of a processor. memory, and a po er
supply. The.e redundant modules are in
turn i nt.erconnect.ed by redundant. buses.
Error detection is provided on all
communlcat.ion ~ath. and error correct.ion
lS prOVided it.hin each processor's
memory. the hard are does not. concern
It.self it.h t.he select.l0n of communication
pat.hs or t.he a.signment. of t.asks t.o
specific modules.

~he first abst.ract.ion provided is t.hat. of
t.he ~roce... Each processor module may
have one or more peocesses re.ldlnG 1n it. .
A process i. Initially created in a
specific proce.sor and may not execute in
anot.her proces.or . Each process has an
execution priority a •• igned to it .
Proce.sor time is allocated on a st.rict.
~riority baSIS t.o the hiqhest. priorit.y
ready process .

Process syncnronu:ation ?rll'll1t.iv~s include
·count.lng semaphores- and process local

3

-event- flaqs. Semlphore oper. tions are
performed via the functions PSEM and VSEM.
correspond in; t.o Dljkstra'. P and V
op.rat.ion.. S.m.phores may only be u •• d
for synchroniJation bet. n processes
.... it.hin the same proce.sor. They are
typically used to cont.rol acce.s to
re.ourc.s .uch aa resident memory buffer.,
messag. control blocks, and I /O
controUers.

When cert.aln lo -level .ctions such .a
device interrupt., processor po er-on,
mes.age completion or mes.age arrival
occur, they result in -event- flags being
set for the appropriat.e process. A
process may it for one or more events to
occur via the function WAIT. The peoce ••
is activated •• • oon as the first WAITed
for event occur.. Event.s are sign.led via
the function AWAKE. Event signals are
queued usinq • • ake up valting - mech.ni.~
so that t.hey are not lo .t. if t.he event is
.igna led hen the proce •• is not iting
on it. . Like s.maphores, event signals may
not b. p.ssed betw.en proce.sors . Event.
fl49S are pr~efined for eight. different
events .nd ~ey not. be r.defined.

Ilhen a process block. itself to ."ait for
some event. to occur or for a se.aphoee to
be allocated to it. it. may specifiy a
1113zimum t.lme to block. If the tiae Ii_it
expire. and the event has not occurred or
the resource ha_ not. b.en obtained. tben
the proce.s will continue .secution but. an
erro r condition ill be returned to it .
This timeout allow. • tch dog - t.imers to
be easily plac.d on device interrupt.s o r
on re.ource alloc.tior.s here a failure
may occue .

Each proc.s. in the syste. has a unique
identifie r or ·procus id- in the forlll:
<c pu I,proceas 0, hich allows it to be
referenced on a system- id. basis. This
leads to the nest .b.traction, the mes5ag.
syst.em, hich provides a proces50r
i ndependent, fallu(.~tolerant method for
lnrerproces. communication.

3.2 Message.

The lIIessag e Iyst.em provides five peilllitive
operations hich can be lilustrat.ed in the
context of a proce.s ~aking a request t.o
some server proce •• , Pigure 2. The
process ' request for s.r·lice ill send a
~ess4ge to the appropriate server process
via the peocedure LiNK. The message ill
conSISt of parameters denoting the type of
request and any needed data. The messa;e
.... ill be qu.ued for the server process,
s.t.tin; an event. flag. and t.hen the
requestor process ~ay cont.inue executing .

When t.he seeve r proc.ss lshe. to check
foe any lIIessages. it calls LISTEN. LISTE~

L
L I

REQUESTOR I /"ESSAGE - S SERVER
N T
K E

N

R L

r-- MTA COPIED REQUESTOR - E I SERVER A N

B L
R I

OK

W L
R I

REQUESTOR E N f- RESl.lr COPIED
A K

- I N SERVER
T K

K E

M ••• aq8 Syate. Prlmitiv. Operation.
'1gun 2

returns the first m •• saqe queued or an
indication that no ~.ssage. are queued.
The server proce •• will then obtain a copy
of the ,equestor'. data by callinq the
procedure READLINk.

Next, the server proce •• will pr oc ••• the
request. the atatue of the operation and
any result will then be returned by the
~RIT£LINk procedure, which will signal the
reque.tor proce •• via another event flag.
rinally. the requestor proce •• vlll
complete its end of the tran •• ction by
calling !REAItLINIt.

A communications protocol v •• de fined foc
the inre rpr ocesaor bus •• that would
tolerate any single bus error during the
executlOn of any meslage sy.tem primitive.
This design alsures that a communications
fat lure i11 occur If and only it the
sender or r.ceive r processes or their
processors tail. Any bus errors hich
occur during a m ••• • g. system operation
w111 be autolut ic ally corrected 1n a
~.nner transparent to the communicating
processes .nd loqqed on the syste~
console . The inter processor buses are not
used tor coltlllunication b.t een proc •• ses
i~ the s a~e proc.s.or, ntch can be done
!aster in memory. How.ver. t!'!e proceases
involved in the lIIess.qe transfer ar.
un lole to d.tect thiS difference.

Th. oe.saqe systelll is desiqned such th.t
resources n.eded (or lIIess .qe transmiSSion
Icon trol blocks' are oOtained at tne st3rt
o(a lIIess aqe transfer request. Once LI~l
has been succe.sfully completed, bot!'!
processes are .ssured th.t sutficient
resources are 1n hand to be able to

4

cc:.pl.t. the lIIelll9. tr ansfer , Furth.r
liar. , a process may reaerve control block.
to quarant.e that it ill .l ay. Mable
to .end m •• saqe. to proce.. a requ.st that
it p1ck. up from its •••• ag. queu., Such
re.ourc. control I a •• ure that deadlocks
can be prevented in complex producer/
con.umer interaction •• it the programmer
correctly analyzes and anticipates pot.n
tial deadlocks ithin the application,

1.1 Pr ocess - pa ir.

With the lmpl .. entation of proc ••••• and
lIIe ge . , the .ySto is no longer seen ••
separate .odule. . Inatead, the Iyltea can
be vie ed a. I let of proce •• es which lIIay
Interact via lIIessaqe. in any arbitrary
lIIanner, a •• hown 1n Figure 3 ,

By defining lIIe g.s al the only legit
imate method for proces.-to-proces.
interaction , interproces8 cOlllmunica tion Is
not limited by the lIIultiple- compu t er
orqanizatlon of the system . Tbe system
then st.rts to take on the appeaeAnce of •
true multiprocessor. Processoe bounda r ies
have been blurred. but I /O device •• re
still not acce.sible to all pr ocesses .

SYltem-wide ICC.S. to I /O devices i.
provided by the =echanisD of ·peocesl
pa ies · , An I /O procels-p. i r consi'ts of
two cooperatlng proc.s.es located in tWO
dif!erent peoce.sors that control a
particul.r I/O deVIce. One of the
processes viII be considered the · pri.ary ·
and on. wtll be conSidered the -b.ckup· ,
Th. prilllary process handles eequests sent
to it and controls the I/O device, When.
requ.st !or an operation such as a !ile

• •

•

•

•

• •

•

•

•

PROCESS PROCESS

r- PROCESS ---l
PROCESS PROCESS PROCESS

1--------Kolsc ---I

Syste. Structure Alte, the Addition
ot Proc ••••• and Mea •• q ••

Piqure 1

open or cloa. occur., the primary will
send this Intor~ation to the backup
procell via the measage .yst.~. The ••
·checkpoint.- asaure that the backup
proce •• wl11 have all intor.ation needed
to take over control of the device 1n the
event ot an I/O channel errOr or a tailure
o! the primary proce •• ' proce.Sor. A
proce •• -paie fOr a redundantlY-recorded
disc volume 1s illustrated in Fiqure 4.

aecaus. of the di.tcibuted nature of the
syaulI, it 1. not poadble to provide a
block of -driVer- code that could be
calhcl directly to acc_sa the devlc ••
While potentially more efficient. such an
approach would preclude Iccess to every
device in the systam by every process in
t.he system.

~e I/O proceas-pair and a •• ociated I/O
devicel.' are known by a logical device
n~e 'uc~ a. ·SDISCl· or by a 109icil
device number rather th.n by the proce.aid
at eithet process. I / O device nlllles are
l'IIapped to the appropriate proce •• e. via
t~e logical devlce table (LOT) in every
proces.or, which supplies two processids
tor e.ch device. A l'IIes •• ge request .ade
on the basis ot a device name or number
results in the messlge being sent to the
first process in the tlble. It the
~.sslge cannot. be sent or it the message
is sent to the b.ckup procesa. an error
Lndication will be retutned. The
proce .. id entries in the LOT will then be
reversed and the me"age resent.. Note two
t.hings: first, the error recovery can be
done in .n .utomatic manner; .nd second,
the requestor is not concerned wit~ what
process .ctu.lly handled the request.
Error recovery c.nnot .lways be done
automatically. For example. t~e ?r1m3ry
proceu of a pair controlling a line

5

PRI/"AAV SAC
PROCESS QECKPOINTS • PROCESS

- KOISC ----------j
TOISC

Proc ••• -pair tor a Redundantly
Recorded Di.c VolUII.

rigure 4

print.r tail. while handling a raque.t to
print a lin. on a ch.ck. ~he application
proce •• would prefer to •• e the proces.
taUure a. &II error rather than have the
reque.t auto~atic.lly retried, which .ight
result in two check' b.inq pclntlld.

~he twO prl_itive •• proc.' •• 1 and
.e •• ages, blur the boundaries betveen
proce •• ors and provide a failure-tolerant
aethod for Interproce •• comsunication. By
defining a .ethod of grouping proc •••• s
(proce •• -pairsl. a .echani •• for unifor.
.ccesl to an I/O device or oth.r
sy.te.-wide r.source i. provided. Thl.
.cce •• method is independent of the
function. p.rfo[lucf within the proce
their location., or their i.pleaentations .
Within the process-pair, the ••••• 9.
.y.te. is u.ed to checkpoint state change.
so that the backup proce.' .ay take over
1n the event ot a tailure. This check
point ~ech.nl'm is 1n turn independ.nt of
all other proce •• e •• nd •••• a9 •• in the
system.

Th. ay.t •• structure can be s~ •• riz.d a.
tollovs. Guardian is con.tructed of
proce ••••• hich communic.te u.ing
lIIe •• age.. Fault tolerance ia provided by
duplication of component. in both the
hardware .nd t~e softwar.. Access to I/O
devices is provided by proce,s-pair.
consisting of • pr imary process and a
b.ckup proc.... The prim.ry proce •• must.
checkpoint st.te infor=ation to the b.ckup
process so th.t the b.ckup may t.ke over
on • failur.. Reque.ts to the •• devic ••
.re routed u.i ng the logic.l device n .. e
or number so th.t the reque.t is .lw.ys
routed to the cu rrent pri.ary proce •••
The result is a set of primitlves .nd
~rotocols wh ich allow recovery and
continued processing 1n spite of bus.

I

processor. I/O controller. or I/O d.vice
fulures . Furt..1.r_ou, these pri.cait i ves
peovide . cc ••• to all sy.t .. resources
!eOCll everv proce .. in the sy.tell.

l .• Systea Processes

The next step in s tructuring the system
come. in assig ning functions to peocesaes.
As peeviously shown, I/O devices are
controlled by pr ocess·pairs. Another
peocess-pcle known as tre -ope rator- i s
present in the system. This paie is
ruponaible foe fo rlDatting and peinting
.eeoe mess ages on the system consol ••
H.ee is an example of whe re Guardian h.a
not foll owed. str ict level structuee.
The operatoe ~ak •• e.que.ts to a teemin.l
process to print tb e m.ssag.s, yet the
t.r.cain.l process wi .hes to send meas.ge.
to the operatoe to rapor t I/O ch.nnel
eeroes. An infinite cycle is peevented by
h.ving the t.rllin.l proce. s not send
a.ss.g.s fo e eerorl on the operator
t.eainal and h.ving I/O peoceaaes nev.r
w. it for message cOCllpl.tions when s.nding
.erors to the opee.tor . While it may be
pr.feeable to pre"ent cycles of any type
in systea desig n , they ha ve been allowed
1n Guardian vhen it can be shown that they
viII t.rllinate. The ab1 li ty to res.eve
mess age control blocks assures that no
cycl . will be block.d because of resouec.
problell ••

Each proc.s.or h.s a -systea =onitoe·
proc.ss which h. nd les such functions a.
proc.ss c reation and deletion, setting
time of d.y, .nd processor failure and
relo.d c leanup oper.tions.

A .caemory lIIanage.ent pe ocess is .lso
r.sident in e.ch procesSOr. Th i s process
lS responsible for alloc.ting a page of
phys ic.l me.caory and then sending mes •• qe.
to the appropriate disc proc.s.es to do
the actual disc I /O. ?ges are brought in
on • demand basis and pages to overlay are
selected on • ·le.st recentl y used- b.sis
over the entire memory of the processor.

~he choice of relat ively unso Fhist i c.ted
.lgor1thm. foe .chl!'duling and ,ulllory
.caan.gelllent vas. r.sult of the fact th.t
the system v.s not intended to be a
gener.l -purpo se tisesh.re syStem. Rather,
it vas to o. a system vhich SUPForted
multiple pr oce •• e. and t e r31nals in an
extremely flexible m.nn.r.

J. 5 Appl {c. t ion Procus In ter!ace

Above the proc.s. and cOeDunlcation
steucture the ee ex is t. a librar? of
procedur.s which .re used to access system
resources. These procedures run in the
c ~1 11ng process' envi eonaent .nd ~ay or
may not •• nd mess ag •• to o th.r processes

6

in the .yat... ror e.ample, the file
sys~ •• procedures do not do ~he .ctual I/O
operation.. Instud, they check the
caller ' . patnetee., and if .11 is in
order. message is s.nt to the appropriate
I/O proce •• -pa l r. Likewise. process
creation is seen as a procedure call to
NEWPROCtSS. which do.s nothing but check
the caller's parameter. and then send a
me •• age to the system monitor procels 1n
the proces.or wh.r. the proceas is to b.
ceeated. On the other band, a peocedure
such as tIME which returns the current
time of d.y does not •• nd .ny •• s •• gea .
In eithee ca.e, the acce •• to system
re.ourca. app.ar. aiaply as procedure
call •• effectively hicHnq the proce ..
structure, •••• ag. system, hardvae.
organization, and a •• ociated failure
r.co"eey .echanis •••

3.6 Initiallzation and Proce •• or Reload

SySt_ initialization st.rts vith on.
proc ... or ba i n9 cold loaded fro. SOIll. dhc
on the systell. The load fUe contains a
meaory ia.ga of the operating systea
res ident cod. and data, vith all syste.
proce •••• in existence and at their
i niti al states. Th. sy.t .. lIIonitoe
proc ••• then cr •• t.s • command interpr.t.e
proc ••••

Gu.rdian may be broU9ht up even though.
proc ••• or or peripheral device is down.
This is pos. i bl. b.cause opera~ing sYSt ••
diec i.age. lIay be ~.pt on multiple disc
drlve •• I/O control l ers •• y be accea •• d by
two diffar.nt peocessors, and the terminal
that ha. the initial coa.and inteeprater
on it i. s.l.cted by using the processor's
svitch register.

After. cold load, the .yatea logically
consi.ts of one proces.or and .ny periph
erals attached to it. More processoes and
peripheral. may be added to the system via
tha com.and int.rpreter co •• and:

: RELOAD I, SDISC

This co •• and viII re.d the disc image fOr
peocessor 1 frem the di.c SDISC and send
it over elther interprocessoe bus to
proce.sor 1. Once it i.s loaded, all
processes residing in other processors in
t he sySt .. wlll be no titil!'d that processor
1 is up.

This co .. and i. also used to reload a
processoe .fter it has been repaired.
Guardian does not differentiate between an
initial load of a processoe and a l.ter
e.load. In e.ch case, resources are being
loqlcally added to the system and
proc.sses must be notitied so that they
may .ake use of t h.D .

•

•

•

•

• •

•

•

•

The previous example ot a reload mess.qe
being sent to all proc •• s.s is an example
of hOY functions are split in Guardian. A
mechanism 1s provided for lnfo rming a
process of a system status chanqe. It may
then take some unspecitied action
I including doinq nothing). Similarly, a
system power-on Simply sets the PON event
flag for all proc •••• s. The operating
system kernel must only insure thet the
proce •• structure and me.s",. system are
correctly saved and rutor...J. 11:. is then
the responsibility of incHvidua. peoc
to do such thinq. a. ,einitlalize their
I / O controllers.

3.7 Operating System Error Detection

Besides the hardware-provided 51n91e error
detection and correction on memory, and
s1ngl. error detection on the inter
proces.or and I / O bu •••• additional
sottwar~ error check. ace provided. Th.
tirst ot these is the d.t.ction ot a down
processor. Ev.ry s.cond. each proc ••• or
in the system •• nd ••• p.cial -I '. aliv.
m •••• ge over each bus to all proce •• or. in
the system. Every two seconds , each
processor checks to s.e th.t it has
received one at th.s. messag~. trom .ach
processor. If a messag. has not been
received, then it •• sumes that that
proces.or i. down.

Additionally, the op.rating system mak.s
checks on the correctness at data
structures such •• linked list . when
operations are don. on the. . Any
proc.ssor det.cting .uch an error will
hdt.

All I / O interrupts .re bracketed by ~
-watch doq- t imer such that the sy.tem
viII not hanq up if an I / O operation do ••
not complete with the upected inteuupt.
It an I / O bus error occurs then the backup
process viII take ovar control at th~
daYlce usinq the ucond I / O bus.

As previously noted, the interproc~ssor
bu. protocol Is de.iqn.d to correct .ingle
bu. eerors. In addition to t~is •• xt.n
.ive checks are ~ade on the control
lntormation rec.ived over the buses to
'arHy that it i s conshtent with the
.tat. ot the receiving proc •• sor.

Pow.e-tail/automatic restart to provided
within each proc ••• or , A power-failure i.
detected independently by each processoe
module and .s a re.ult i. not. systell
wlde, synchronous event. The system was
designed to recover trom eithe r a complete
syst.a pow~r-tail, or a transient which
will cause some of the proce •• or. to
?O~r-tail and then immediately restart.

7

4. USER-LeVEL SYSTEM INTERFACE

Tools are provided for interactiv~ progr ..
development using COBOL or a block
structured implementation lapquage, T/TAL.
A tile sy.tem with facilities comparable
to or exceeding those offered by other
-midi- computer systems allows ace e •• to
disc fil •• and other I/O davie... Proce.s
creation , intercolllllunication, and
checkpointing prl~itive. are alao
illlplemented •

Th. application proce •• level facllitie.
and the int.ractive progcUII development
~ools have been heavily influenced by the
ap 3000 ,7) and by UNIX fa).

4.1 Interactive System Acce ••

Gener.l~pucpo.a , interactive acce •• to the
.ystem is provided by the comaand inter
preter, COM INT , .i_ilar in lIIany vays to
the Shell ot UNIX. Nor.ally a com.and
interpreter ts run interactively trOlll a
terlllinal, but co.mands may be read fro.
any type of tile. Th. command interpret.r
is s.en by the operating .ysteA a. siaply
another type of application proces ••

Commands ace read from the t.rminal.
prompted by a colon f -;.):

If the co nd h recognized. it will b.
directly executed. A cOlllaand of this type
h:

: LOGON SOP'noIARI!:. JOEL

which is used to qain acc.s. to the
syst~m. It the co .. and is not recognized,
then a process vill be cr.ated using the
proqram file -SSYSTEH.SYSTEM.com~and- and
:.~e arqulII.nt. for the comlllAnd will be s.nt
to this new process. The command inter~
preter will then suspend it.elt until a
1II •• sag. 1s received indicating that the
proc ... has stOpped. If this proc ...
cannot be created, th.n .n error 1II ••• ag.
is pr i nted. Por axaaph, the text edi tor
i. acce •• ed by typinq EDIT followed by any
co .. and Itrin9:

I EDIT FILE:

This will re.ult In a proc •• s bein9
created usinc} the progru til. SSYSTEH.
SYSTEM.EDIT and the coamand strinq.
-FILE·, b.ing sent to it, Al.o a part ot
this co .. and Itring 1II •••• q. are the name.
at the tiles that are beil\9 used for input
and OUtput by the cocmand int.rpreter.
These are then used by the process for its
input and outPUt. If the previous ca.mand
was typed at a t.rminal, the input and

output tiles woul d ~~ ~~ device name of
the terain.!. Alt ... ; Hlve nun tor the
input .nd output tllee =ay be .pecitied.
ror lXazlple,

,[DIT lIN .. OI'II"'AHDSI

wUl cr"'atl 4n .dator proce .. end pa •• it
the tile n&21 -COMKANDS· tor the input
tih Ind thl t.rainl1 '. tU. nUl., the
d.fIUlt, tor the outPUt ti l.. rinally,
the proc.aaor to un and the priority It
which to run the procee. may al.o b.
• peci fied I

IEDIT / PRI laO , CPU 1/

Tllh '11111 cre.t. an edt tor pt"oceu in
proc ••• or tbr.e with a priority of 100.

Additional te. tu r •• Illow multiple
proc ••••• to be .tlrt.d from one com.and
interp re ter and .llow the pr.viou.ly typed
cO .. lnd lin. to be .d ited.

'.2 Proqre_in9 tlngul9a.

Compilar. hav e beln ia~l e~.ntad tor two
Ilnqulge., T/TAt, and ANSI 74 COBOL.
T/TAL i. a blOck-. tructured imple
.entation Ilnquage. I t. capabilities .re
• i_il ar to tho.e o tf.red by C on UNIX or
SPL on the HP)OOO. All Tand.- sottware i.
wr it ten in T/TAL •• are .o. t u.ar
application ••

Code gen.rat.d by either compiler .ay be
shared by multiple proce •••• 1n the .ame
proces.or. 80th compilers generatl an
object tile wh ich .IY be i .. ediat.ly run
wit hou t Iny intervlnin9 link edit
operltion. How.ver. the object tile 11.0
contlins .nou9h i nformation .0 that an
obj.ct ed i tor. UPDATE, may coabine the
obj.cts produc.d by s.ver.l compilation.
or •• lectively repllc. procedures 1n an
object tile.

4.1 Tools

Pr09ram d.v.lop.ent tool. include an
interactive tUt editor. obJect file
editor, t.l(t torlutt.r, .nd interactive
debu9ger. A scr •• n 9.nerltion pr09ram and
ace ••• rout in •• ar. Frovided to f.cllitate
applic.tion 1nt.r.ct lon wi th page mod. CRT
ter~lnals. Pil_ utilities exiat which
allow file backup and reHore, tile
coPyin9 and dumpin9. and 1ni t1al 10adin9
of k.y- s equenced til.s. A p.ripheral
utility is provided to do such operation.
a. disc for:llat.tinq, disc track .parift9.
a nd Doun t in9 or d.30unt in9 di.c volu.es.

4.' Process Creat ion .nd Deletion

Proce •• e. are creat.d by the command
in t.rpret.r or by 4ft appl i cation process

8

call to tne procedure NEWPROCESS.
Para.et.c •• uppli.d includ. the name ot
the fil. holdin9 the obj.ct cod. tor the
proc •••• the proc ••• or nusb.c to u ••• and
the priority at wh1ch to run the proc ••••
Th. parMet.u ..,Ul b. ch.ck.cJ .nd th.n
aant to the .y.t ••• onitor proc ••• in the
appcopriat. proc ••• or. Th •• y.t .. lIonitor
will then cr •• t. tha proc ••• and r.turn a
-cr •• tionid- id.ntitying the new proc •••
to the call1n9 ptoc.... Part of this
vAlue 11 the proc ... ld pr.vioudy d.fined,
and the r •• t 1s the value ot the proce •• or
clock at the ti.e at proc.ss cr •• tion •
Th. clock i. kept I' a 48 bit value which
i. the nuabar of 10 •• int.rval. sinc. 12
•••• on Dec .. b.r)1. 1975, which a •• ut.s
that creationid'. will be unique ov.r the
lif. at the .y.te ••

Proc ••••• ar. not 9roup.d in cla •• ical
anc •• try tr.... No proc ••• 1. consid.red
sub •• rvient to any other proc ••• on the
ba.i. of p.r.nt.a9" Two proc ••••• , on.
cr •• t.d by the oth.r , ..,111 b. tr.at.d ••
equala by the syst... Wh.n a proce •• , A.
cr,lt •• anoth,r proce •• , B, no r.cord at 8
h attachad to.\. Th. only record k.pt is
In proc.s. B wh.r. the cr.ationid ot .\ i.
saved. Thi. cr •• tionid Is known a. B"
-30m -. Wh.n proce •• B stop., pt"oc ••• A 1 •
sent a stOP •• s.a9_ indlcatinq that
proc ••• B no long.r .xi.t.. A ptoc ••• '.
sea 11 n.:libla and a proc ... lIay .dopt
.noth.r proc.... Par .xasple, (P19ure 5),
proce .. A cr.at .. proc ••• B. Proc ••• B In
tu rn cr •• t.s I coop.ratin9 proc •••• C.
Since C would like to know if B stops. C
will adopt 8.

A proc •••• ay .top it •• lf or soa. oth.r
proc ... by call1n9 STOP . Proce •• del.tion
is a9ain • function ot the sy.te •• onitor
proc.s.. R •• ourc.s will be r.leased and a
atop ••••• 9. will be sent to the proce •• '
DOID. It the 11011 proc.s. doea not el(ist ,
then no ••••• 9. will be sent.

' . 5 Application Proc ••• -paira

The process-pair conc.pt introduced
earlier is a po..,erful m.thod tor lIIak1ng
sam. r •• ourc. available to all process ••
in the .ystem in a f.ult-tolerant m.nner.
It I, .xtended to the application
proce •••• as fol Io'll'. When a process Is
c reat.d via NEWPROCESS, a proces.- pair
n.me III.Y be suppl ied . Th. creationid
returned tor this process con.ists ot the
proc ••• id and the process nUle rather than
the proc ••• or clock value. For exalllple.
(Fi9ure Ii) . process" ishes to create.
proc ••• with the nam. ·SSPOOL- . Once B
has been created, any process in the
system may send 1 m.saage to that proc •••
Vl. the nalll. -SSPOOL-.

• •

•

•

•

•

•

•

A CREATES 6:
a CREATES C:
C "»OOPTs" 6:

A •
A-
A

1<>1-- 6
,'01 -- 6--

6 •
K>I-

K>I - -

C
C

Fl ex i ble Pr oc • •• Re lationsh lp.
Fi gure 5

A - AOCE~ ISPOOl

SA A - "" - A' ~ AI<OEST'"
16

Applica tion Proce •• -pairs
Fiqure 6

Process B May now wish to create a process
8' in another proce •• or to be its backup.
S would then call NEWPROCESS , supplying
the name ·SSPOOL- , Process B will keep 8'
updated via checkpoints so that 8' may
becolIIl! the primary It B fails. Band B'
each wish to receive an indication it the
othor process is deleted. Therefore, B
and S' Will be auto •• tically .et to be
each other'. IIIO~S.

When the last process with the name
~SSPOOL· is d.l.t~. process A will be
Jant "messaqe. Procesa A is known .a the
-ancesto r R by the fact that this process
was the one which created the first
proclfsa by the nama of ·SSPOOL - . Proces.
A in turn may b. a named proc ••• • in which
case A's name will be sent the termtnation
~esslge. This 1110ws a process-pair. · SA"
consisting of processes ~ and A'. to
create a ~amed proce.s, "S8" consisting of
8 and optionally 8'. and guarantee that it
~ill be sent I ~e.slge when the process
name S8 no longer exists . This will occur
even If the process which ftrst crelted S8
no longer nists.

~ . 6 rile System

The Cu~rdian file syste~ provid es a
uniform method for acclss to disc fillS.
unit record dev ices. and processes. All
fill. are named: disc files have na=es
such as "SDISCI.SUBVOL.PILE" and unit
record deVices and processes have names
such IS ·S~p· . ~ccess oy name allows any
proclss runnlnq 1n any ~cocesso c to access
any file 1n the system. Direction to the
approprlltl process of the process- palr is

handled by the fil. system i n a .ann e r
transpar.nt to the r.que , t inq pr ocess.

Pill. of all typel are open.d by calling:

CALL OPEH(fU.nu.,filenldl ••••)

Th. calling procls, suppli.s the til.
nau. s.curity Ul be checked and th.n a
tile numb.r ill be r.turn.d to the
callinq proce.s. This tile number is then
u.ed for .11 furthur access.s to the till.
A file may be opIned for • it · or "no
wait" Iccess. If ·wait· Icce.s Is chos.n.
the procell ill be suspended until the
requested operation on the file hi. been
cOClplet~. On the oth.r hand, it the
· no-..... it · ICC ••• is requested then once
the operation has been initiated. the
requesting process may continue
processing.

4.7 Disc Files

Each disc file is compoaed ot bet n one
and sixt •• n pa r titions . Each partition
reside. on I specifiC disc volume Ind i.
in turn co.posed of up to shteen .xtents.
Each ext.nt is one or ~ore contiquous disc
pages of 2048 bytes each . Disc files
co~es in •• veral types. The first is
·unstructur.d· . Sllll11a' to UNIX . ~he r e the
fill is treated as a contiguous set of
bytes. A current file pointer is kept
which is the byte addre •• of the beqinninq
of the n.xt tran.fer. ~fter each read or
write operation:

CALL R£AOCfillnum,buffer.cnt .t ronsfe r cnt)
CALL ~RITE'filenum.butfe r .cnt,t r an5fercntl

9

the fih pointer is incremented by the
number of bytes tranlferred . The file
polnter may be moved explicitly by :

C,\U POS ITION I filenum. f !lepes i t ion I

The second type of file Is a -relative
record~ t11e, The tUe consists of fixed
or variable-size records ~nd may be
randomly accessed. Rather t~an
positionlnq to an ar~itrary byte in the
!ile, the proce .. positions to the stu·t
of a specific record. If the process
reads less than the record lize, then the
file pointee advance. to the start of the
next eecoed.

The third type of file 1s "entry
sequenced" . Recorda wc[tten to this file
may be of varying lengths and ace always
appended to the end of the file. This
type of file 1s normally used as a log
fUe.

The !lnal type of dilc file is ~key
sequenced". A file at this type may have
a unique peimaey key and up to 255
alternate keys, Entey-sequenced and
relative-record files may also have
alteenate keys, Each key may be up to 255
bytes lonq. Acce •• to this file may be
done on aflY key using thlf peocedure:

CALL KEYPOSITIONffilenum,key,keytag.
klfy lefl • po a! t iOflllod e I

The parametee "key tag" identifies which
key is being used. The pointer "key"
designates the value of the key which is
'keylen~ bytes long. The "positioflllode '
descr i bes what type of accell is to be
made to the file, The first type of
access IS "approximate", Using this,
succelsive reads to the file will eeturfl
al l eecords vhose key valuel ace qreater
than Or equal to the "key" for "key len" .
The second type of positioninq is
"gener i c·. Here. successive reads will
retuen all records whose key value is
equal to "key" for "kllylen", The final
type of poSitioning is "exact".
Successive reads will rlfturn all records
vhoae keys are "keylen" long and equal to
"key· •

Files or individual recordl may be locked
~y:

CALL LOCKFILEffilenum)
CALL t.OCKRECORD(fflenUlIIl

Record lockinq and unlocklnq may be
comoin.-d · ... ith the actual I / O opeeation
desfeed for Increased efnc~ency :

CALL READUPDA~ELCCK i fil~num, ..• l
CALL WRiTEU?DA7EUtIL:)Cl l fihnua, . ,.)

The dist r ibuted nature of the system doe.
not allow efficient detection of deadlocks
caused by file lockinq. AS a result, this
type of checking is not done, A lock
request on a Eile that has been opened
with "no-vait " accea. will allow the
application to do other processing if the
requested file is not immediately
available. A proce:a may use this
mechanism to assuee that it will not vait
indefinitely In the case of a deadlock,

4.8 Oisc I / O

The disc processes ifl each processor share
an area of .aln memory called the "disc
cache " , Each block read fcom the disc is
placed in this area. Space il reused on I

weighted " least recently u.ed " basis.
Thua. such item. as ifldu blocks for key
sequenced filea are ~IIPt available in
memory 10 that succeaaive accelses do not
require that they be reread.

A logical disc volume, "$DISCl", may be
recorded onto two different disc drlves
usinq tWO different t / O contcollees . This
second, or "mirror" volu.e provides a
tranlparent duplication of data which
peotects a data base against losa via a
failed disc drive or controller. All file
writes ace performed on both disc drives
and file reads .ay be done from eithee
drive . When a failed drive has been
repair.-d, it may be "revived" whlle the
application continues Icce.ses and update.
to files on that logical device .

4.9 Oevice I/O

I/O operations are done to unit eecord
devices in a simUar lIIanner to disc HIe
Iccesses, Bere. Guardiafl doe. flat support
4 record-structured. device-independeflt
lIIode of access and a. 4 result operatiofls
such a. unblocking tape records must be
done by the application program. w~ile
this lack of device-independent I / O can be
conaidered a liability in so.e applica
tions, it allows easy addition of new
types of I/O devices to the syatem without
requiring changes to the file system afld
allovs device-dependent control by the
IppllCation program.

Read Ind write operltion3 are done in In
i.dentical :lanfler for all files. Device
dependent opeeations such as skippinq on
veetical form channels on a Ifne printee
lIay be done by:

CALL CONTROLffilenum,control t .parameterl

Enabling or disabling terminal pa r ity
checkinq or other such access options ace
done by:

CALL SETMODf(filenum.~odetype, . • . l

10

•

•

•

•

• •

•

•

•

Guardian provides an extremely gener«1
purpose interfAce to async hr onous RS - 232
or current loop devices . The fil e s ystem
anJ asynch r onous terminal process provide
" read after write operation:

CALL WRITEREAOltllenum,buffer,wrltecnt,
readcnt,countreadl

which allows a character sequence to be
OUtput to a device followed immed i ately by
a read trom the device. This allove the
characte r sequence wh ich causes a CRT
te r ~inal to transmit to be sent to it.
The line will then be turned around and
the terminal' s butte r read into the
processor. Since t his write/read turn
around 1S done in the devi c e controller.
no data is lost because the read could not
be started soon enough.

Normally. oper ating systems wish to
enfo r ce certain term inal cha racte ristics
such as insereing a carriage return and
lineteed atte r each line wr itten or inter
preting cere",in characters on input for
such operation. as line and character
delete. · ... hile Guatdian provides suc~
facilltles . they may be disabled at the
tioe :he systelll is configured or atter the
tile is opened. Other characteristics
such as type at connection, character
sl%e, parity, speed. and characte r echoing
are completely conflgurable. This a llows
arbitrary char acter lequences to be input
~nd output without any interpre tation or
c~aracter editing be ing done oy the
operatlng system.

Communication sottware 15 also provided to
handle multi-point asynchronous terminals.
rOlnt-to-point and multi-poine Bisync
soft'otace 15 dlso provided . Rather than
attempt1ng to emulate specific devices.
t~e applicatlon program is dlloved ta
speclfy ~h8 Ilne control used .

Each ?rocess in the system may have
~essages from ather ?rocesses queued tor
1:. Access to this message queue 1S
pcovu:!ed vi.l the fih " SRECE IVE". A re ad
on thiS file Will return the firs t
;Dessage. A .. rocels ;aay check eo see i t
any ~esl~ges are queued and then continue
!;Irocesslng If none are present. A ? rocess
lIay lIcerealn t!le identity ot the sending
process '114 the p rocedure:

C;'LL ~STRECElVE !sender)

~~IS returns the "creationld" of the
sending pr ocess. It IS sup.,lted by the
operating system and thus :lIay no t be
torged by the sending process . ;. process
.... 111 receive indication of such events as
a process being s t opped. a processor

tailir:9 or being reloaded, or the break
key bein9 pressed on • terminal that thi.
proce5s has open in the torm at messages
rud trolll this tile .

A pro~e •• may open another pro~esl as a
·t i le". On~. opened, the proc ess may use
the file SystM proc.clures WR IT E,
WRIT&R£AD. S£TMOO£, and CONTROL to send
messages to that process. The recei vin9
process wlll read thele requests from lts
·SRECEIV£" file. It ill then process
them and possibly return an error
indication to the sending process. This
allows the "server- process to simulate
some arbitrary device . Using these tools,
an ou tput spooler or a ptocess wh ich could
allow access to labeled magnetic tapes
written on sane other systelll ca n be
constructed. The requesting process
believes that it is communicating with a
device, and the Ie rver process i s able to
simulate that device without r equ iring
special privileged "hooks· in the flle
systelll.

5. APPLICATION PROGRAMS

5.1 App lication Program Checkpoin tin9

Application process-paIrs are used to
provide sOllie service on a failure-tolerant
basis . aequests are processed by the
prima ry process and results are returned
to the tequestor process. On a fa ilure of
the primary proces •• t he backup must be
able to cont inue olfe tlng this service.
Thil requ ire. that any state change. i n
the primary proces. be .ent (~h ec kpoi n ted)
to the backup pr ocess . ~hl1e such
checkpoints could be s ent on an
Inst ructlon-by-insrruction ba sis . this is
clea r ly not feasible because at the
ove rhead invol ved. Instead. a process
need only checkpoint its s tate hen it is
about ta make a non-retryable req ues t to
ano t her process .

Par elample. a t tlme Tl. when the primary
~rocess and its backup are in the same
state. the pr imacy process s tarts so~e
ope rat ion . Later. at t illle T2, when it is
ready to write t!le result to a disc file.
it wl1 1 checkpoint changes ~ade since time
Tl to ItS backup . The pr ocesses 111 then
again be in t!le SllClie state. If t~e
pr imary ~roceSS fatled at any pOint before
T2. the backup pr ocess could r e start .It
the las t checkpotnt. made at fl . T~e
sel ection ot states to checkpoint i s
analogous to detlning testatt poin ts for
jobs in a Da t ch processing systell . In a
bat ch environment. these checkpoints ace
saved in a duc file; in process- pairs
they are saved in a bac kup pt ocess .

Guardian provides systell func:lons for
chec kpoin t inq ptocess state i~for~ation

11

b.tw •• n peoceslel ot a peocesa- paie. The
f irst. type ot itelll checkpolnted is
portion. ot the procesl ' data space. Thi.
includ •• 910bal data and/ or the curr.nt
St.1ck, holdlnq" .,rocedure r.turn addre •••••
procedure local v.ruble •• and prOCldure
parameters . Conlid.r the followin9
pro9r03 se9~ent, wr itten in T/ TAL. who.e
purpo.e is to outpu t to a ter~inal the
first 100 ite~s ot an array. -butt.r-I

FOR i : - 1 TO 100 DO
BtGI!'!
CALL WRITE Iterainal,buHer (1), lte.len) I
E~D:

Thi. op.rltion could be lIIad e tailurs
tolerant by tvO call. to the CHECKPOINT
proc~ure. The first checkpoint copies
the entire butter to the bsCkup proce •••
This need only be done once as the data is
not chan9ed by later processln9. The
second checkpoint, betore each vrite.
s.ves the current process state, includin9
the variable -i - . This allovs the backup
process to take over the operation,
dupllcatln9 at IIIO.t one line o f output .

CALL CHEC KPOlln' I .buffer (l J ,buttersi u) :
FOR 1 : - 1 TO 100 DO

BEGIN
C~LL CHECKPOINTI.tackbaael:
CALL WRITEloutflle.buffer!!) ,itellllenl:
EHD:

Whln the prilllary procesa fa il s, the backup
vl11 take ove r at the l aet checkpoint.
The nlrt l09ical artension to the ori9ina1
se9111ent would bl it the procesl were
coPyin9 the one hundred valUes to be
OUtPUt trOlll 1000e dilc tile:

POR i: · I TO 100 DO
8EGIN
C~LL READlintlle,butter.itelDlen):
C~LL WRlTE(outf!.le,butfer. itera1enll
END:

ACTION

In this ca.e, not only ~uld the process'
dati space contents need to be check
pointed al bltorl, but so would the
cur ant fH e pointers tor the Input lind
OUtput til.s. Thl. enlure. that they are
corrlctly set when the backup process
takea over. tn order tor file pointers to
be checkpointed, both processes of the
process-paie mUlt have thl tiles open.
Special functionl are peovided which allow
the primary proclss to cause a file to be
opened oe closed by the blckup procel' :

CALL CHECICOPEN'tHenUle •••• 1
CALL CHEC1CLOSE(filenalDe ••••)

In the ... ple prQ9ru. CH!CKOP£N would be
called tollowinq the cill to OPEN when the
prl$ary proc ••• Itarted . The pr09rAm
se9~ent would now look likll

CALL CHtCJPOINTI,bufter[ll.buffec sl zel,
tOR 1 : - 1 TO 100 DO

BEGIN
CALL CHECKPOINTlstackbale.,infile , .

outfilell
CALL RtADlinfi1e,buthc,it .. 1en);
CALL WRITE'outfile.buffe r ,itealen),
EHDI

It I filiure occucred aftec the read but
belon the writ., the blckup would take
ov.r and r.peat the read usln9 the same
file pointer U Wal Uled by the prillary.
In both of thele .xUlple., a failure
to11owinq the write but preceding the next
checkpoint could relult in I record b.ing
wrltten twke . This would caule no
probl •• it tn. rlcord v •• bein9 vritten to
sOlIe ablolute polition in the file;
hovever, an error would occur when wrltln9
to a key-.equenced disc file . In thll
cas., the pr im ary would luccesstully wr ite
the record to the tile , but it. backup
process would get I -duplicate key· error
when repelltinq" the welte. Thi. problem is
solved by having Guardian automatically

SEOUENCE
PRIMARY

VALUES
BACXUP

AFTER ACTIOH:
DISC PROCESS

'::HECKPOINTI Itackbaae. ,i ntile, , outfile
sequence' of prilllary sent to backup

o o o

CALL "RITEI outftle, outtu, itelll.n 1
sequ.nc. "s O~t~h. operation Is done,
sequence . ' s advanced

•• • ,RIMARY PRCC!SS FAI~. 8ACKU P TAKES OVER •••

CALL WRITtC outf11e, bu!ter. itemlen)
sequence " 5 ~on't ~atch, operation il not done.
backup's sequence , is advanc ed

1

tile Systeo Sequence Numbers
Fiqu r e 7

12

o 1

1 1

• •

.,

•

•

•

•

generate an op tional sequence number tor
disc fl1. wr ites.

A part of the in !ormation copied to the
bac~up process when a file 1s checkpointed
is the sequence numbe r (or the ne xt write
to the file. When a write i s done to 4
flie that has been opened with this
optton. the seque nce number P,llSsed by the
f ile system is compared wlt h the copy he ld
by the disc process . If it 19 the s ame,
then the operation is done and the statu.
(enor lndic:iltion and transfer count) 1s
returned to the applicatlOn process and a
copy l5 saved by the dlSC process. On the
other hand, 1~ seque nce numbers do not
aqcee, then no oper ation is do ne and a
copy of the prev ious operation's statue is
retu r ned. UlIinq the previous example, the
use of file sequence numbers is s hown in
rlqure 7.

When a process-pair has a fi le open, any
records locked ln the file will be
conSidered locked by the process-pair.
When the primary fails, the backup ~ay
finish tile moditications with loc ks s t ll1
in effect, preservinq the lnteqtity of the
data base .

Whtle the primary process oper ates, the
backup process receives the checkpolnt
information via a call to the procedure
CHECKMONITOR. When the prlma ry proces _
sends oil checkpoin t message Vl a a call to
CIIECKPOINT, this procedure lIIoves
chec~pOln ted portions of the primary
proc ••• ' data space into the backup 's data
space and saves the latest file
l:1tormat.lon. If a lIIessage is direct ed to
the backup process and the p ri~ary process
Itill extsts, it 1. re j ected with a
-ownersnlp" e r ror WhlCh info rms the sender
th"t the message is to be sent to the
other memoer of the pr ocess- pa1r .
Finally. when the pOlllary process falls.
CHECKMON ITOR will transfer contr ol to the
correct restart ~oint .

The Tandem implementation of COBOL
provides a Slmila r checkpointing facilit y.
In each C.lse. checkpointlnq 15 not an
automatic oper at ion . Careful attention
dunng the .Jpplica tion design phase wi ll
result in fewer checkpOints and will i'ield
a checkpoint scheme that can be analy : ed
for correct~s. . Conside r atlon ~USt a lso
be qlven to how the appl1c a tion 111
recover ~rom failures occur lng wnlle a
wrlte ope ra tion is ~n progress to non- disc
deVices . Recoveri' when acceSS I ng a CRT
:er~inal could be automat ic"l ly done by
rewritIng the enti re scteen. Recove r y
whtle printing ch ecks on a It ne ?rln ter
would ~equire sone ~anu.:!:l tnt.ec·Jention and
operator inte raction 101\ t.n che ap pl icatlOn
proq ralll .

13

S.l ApplIcation Structurinq

Th. process, process-pair, and inter
process communication primitive s of
Gu ardian provide extremely general tools
for appl ication structuring. For example,
consider an inqui ry application such as
hotel reservations. Requests COMe in f rolll
Va r io us types of term i nals fo r reser
vat ions. cancellations, and hotel r~IS
tration. Other requests come ln for item.
such as manage~ent reports showinq the
numb er ot room. ava il able at s ome hotel on
some date . The application could be
structure<! as tollows.

Process-paire will be defined for each
type of terminal to handle actual terminal
I /O Cincludinq any requIred line protocol
and character conversion) and init i al
reque.t verification. Each proc~ss·pair
wi l l be deeigned to handle some numbe r of
terllli nais. When a valid request has been
received frem a terminal, the terminal
process-pair wi ll route the messaqe to the
app ropriate server process-pair.

Each se rver procees- pair will be assigned
a c erta in part ot the applicatIon. In
some cases, multlple co p ies of a lerver
proq ram will be run to allow CIIul tiple
requestS to be processed i n parallel.

The r . are several advantagel to this
app r oac h. First , the hand ling of
termin a ls and processinq of requests have
been cl eanl y separated . New types o f
terminals can be added by simply adding a
type of terlllinal control process-pair.
New type. o f requests can be handled by
adding another type of se rv e r procese
pal[. Like wlSe, softwa re modifications
and testi nq can be do ne on A 1II0duiar
basis . ,ina11y. nowhe re in thlS structure
is ther e an y requlrement for a specific
numbe r of processo r s in the systelll or to r
the ,e latlVe iocations ot processes . As
the system load or the applicat ion
changes , the numbe r of processors, amount
of memo ry, or phYSical location ot
processes may be changed WIthout
disturblnq the application'S 1nte rn a l
structure.

6. SOrT~ARE RELIABILITY

When delign ot the ope ratlnq sySt~ was
started , we hoped to eliminate as much as
pos.lble the archetypal syst elll c ra sh .
~hat is. once o r twice a day , o r week . the
sYl t em c ra shes in a non-repeatable
fashion. Our experience on an in - house
sYSteM used prl=arily for software
development and manual writ i ng shows that
.... e holve achieved that qod . Ourir.q A
th re e- month perlod in the summer of 1971.
01 peocessor falled because o f a sottw~re

problfHII on t wO occas ions. In .ach cas.,
the problell w.,IS found .It that t1/l1e and the
failure could be r epe .ned by running a
part1cular prog ram.

t propose the following ellphnatl on o t
th l! reliability. Ftrst. tne syste!ll w,u
very c.H~ful1y structured and lIIuc n tlme
..,as spent in initi all y specifying
primitivea. As ellperi enc e wes ga ined in
t r ying to .pply these prfllitlves at higher
levels , proble::!s ..,ere !ound. This
resulted in design changes at lo..,er l.vela
rather than " kludg es~ at a higher level.
Implementation "'.s also forced to stey
.., ith i n the designed structures because of
the distributed nature o f the hardware .
I! a problem could not be solved using
processes interacting Vla messages, then
it could not be "kludged " by turning off
I.nte rc upts and changing 80me flaq in
~emo ry. Given a single processor system,
tnere i s • very strono; temptation to so lve
difficult probl ems in thiS manner.

Second, as the op.rating systa and
har dware ..,ere developed at the s~e time.
another vendor's system "'a8 used to
provide inter active t ext editing, a croas
T/ TAL compiler, a Tandem/16 processor
si;aulator. and a down loade r to r th e
'randem/ 16 prototypes. Ii:lplellentat !on and
chec~out "'ere not imped ed by unre li able
prototypes and a. each Ilvel ot the system
..,.s implelllent.d , it could be extensively
chiC ~ed . These tools allowed In!. t l al
implementat ion and Ch eckout o f a ll
functions ot the sy.t~ t hrough tne l .vel
of the command interpreter. The wisdom o f
t~ts approach c an best be shown by t he
lact that when the first prototype
processors ""ece =ade ava ilable to t he
ope r~tlnq system s grou p. all opeCat lnq
syst~ functions whic h can on the
sl=ulator ran on the prototypes.

Third. debuggi ng too ls were built in to the
opecating system (r om the st~r:. A 10"'
level Interactive debugg er ..,as implemented
which allowed breakpoin ts to b. s et at any
level of the ope rat ing system. Including
Int. rr upt handlers. Once t hl S low- lev el
debugger is entered in one pcocessor,
clocks 1n . 11 other processers in th e
system are stOpped sO that they 011 11 not
decide t~at the ~icst ? rocesso r is down.
When tt.e ~irst processor COntinUes, so
~lll tte rest o(tne systell . II full
~alntenance ?anel only had to be u sed to
track proble~s that ~anaqed to destroy the
low- level debugg er. Consistency checks
"'ere also coded Into low- level routines .
for ell~?l e, betore an element is Insetted
in • ~ouDly - llnced l is t , the t15t li~ks of
the element that the ne.., element i s being
lnse cted Dehlnd are v.rified . These
cnecks have ? r oved to ~e ~lItre.ely
v~luaole in traCklng prOb lems or when

impl em.nti ng new features in the .y.tem .
Even ..,hen ellt.nalve changes ace being .ad.
to the Iylltelll, it hal the property that it
wil l Stop at o ne of these consistency
checkS very loon aft.r something has gone
wr ong, allowing the problem to be rapidly
!ound.

Fourth. forll.l testin9 ..,.s carried out at
all levels of the sYlte •• 1 they "'.r.
implemented . A third per.on, ""hos. only
,Ob vas teating, ..,as "dded to the initid
prD'ect ..,el1 be tore cOllpletion . By
teating not luet the external sp.cifi
cations ot the system but also the
underlying syste/ll primitiv.s, it vas
a.suted that all system functions at all
levell could be checked.

Finally, the primary desiqn goal of the
entire sYSt ... vas reliability. When the
sy. tem deeign goals are clearly defined
and understood by all involved, they can
control implellentation on a daily basis .
I~p ll ed 90als on the other hand are otten
forgotten ..,hen seem ingly sllal1 dec i sions
ar. lIad ••

7. CONCLUSIONS

The in novative aspects of Guardian 11e not
1n any nev concepts int roduced , but cather
in th. synthes i s o f pre -ex isting iden.
Of particular no te .r. the low- level
abstractions, procen .nd lIe.sage . By
using th •••• al l prCC.llor boundariel Cln
be hidd en frOlll both th. app licHion
program s .nd 1I0lt o f the operating syatell.
The .. in it l d abstract ions are the key to
the systell's'ability to t olecat. failures.
They .Iso provide the conflgut.tion
Ind ependence that i. necessary in order
for the systell and applications to run
over a wi d. range of s)'stell sizes.

Guardian provides the applicat ion
proqtlmller ..,ith extremely general
approaches to proce •• structuring,
interprocesa communication. and failure
tolerance. Much h ~. been said about
st r ucturing programs uSln9 ~ultiple
co=municatinq p r ocesses, but f • .., operating
systems are able to support such
st r uctures.

Finally, the desiqn goals of the system
have been . et to a l arqe d~ree. Syste/llS,
with oet..,e.n t ""o and ten pr oceesors. have
been installlKl and are tUnn1ng on-line
app lica tions. They are recover i ng fr om
f.silures and fail ures are belng repaired
on- l\ne .

8. ACKNOWLEDGEMENTS

An ope rat lnq system is the work of lIIany
people. In particular 1 would like to
acknowledge the contributions of CennlS

14

- .

•

•

• •

•

•

•

McEvoy , Oave Hinders, Jerry Held, and
Robert Sh~w in ita desi~n. implementation,
<lind testinq .

9. REE'ERESCES

1. Kat'llun, J. A" Svstem Architecture
(or !lonStop Computing, COlllpeon,
(Feb ruary 19771 . pp 77-60.

2. Tandem Computers Inc • • Tandem/ 16
SyStem Oesctiption. 1976.

3. Bell, C. C. and Newell. A ••
Computer Structures: Readinqs and
Examples, McGraw-Hill, Inc .,
(1911), pp 15 -]6 .

4. Enslow, P. H. J r., Multiprocessor
Organizat10n - 4 Survey, COlllputinq
Surveys 9, IM /lC cl'! 19171.
pp 103-129.

S. otjkstra, E. W . • The St ructu r e of
the -THE- Hult ip r oqramminq System,
COIIUII . ACl1 11, (:ol ay 1968).
pp)U-1U.

6 . Br ineh Hansen. 51., The Nucleus of •
Hulti-proqramminq System, Comm.
ACM 13 . ("pdl 19701. pp 238-24 1,
250 .

1. Hewlett-Packard 3 0u r nal. 3a nuar y
3anuary 1971.

8. Thompson, K. and Ritchie, o. M ••
The UNIX Time-Sharinq System, ComtII.
,\CH 17 , {3uly 19741, pp)65 -)75.

Bioq ra phy . The author received his !'I.S.
deqree in Compute r SCIence : Computer
£nqineetinq 4nd 9.5 . deqree in StatisticS
at St4nford Unive rsity in 1972 . 8efore
jolninq Tandu Computers in 197 4 , he ~as
employed by He~lett- Packard. Member o f
the ACM.

15

