A "NonStop"* Operating System

Joel P. Bartlett
Tandem Computers Inc.
19333 Vallco Parkway
Cupertino, California

Copyright (C) 1977, Tandem Computers Inc.
All Rights Reserved

ABSTRACT

The Tandem/16 computer system is an attempt at providing a
general-purpose, multiple-computer system which is at least one
order of magnitude more reliable than conventional commercial
offerings. Through software abstractions a multiple-computer
structure, desirable for failure tolerance, is transformed into
something approaching a symmetric multiprocessor, desirable for
programming ease. Section 1 of this paper provides an overview of
the hardware structure. In section 2 are found the design goals for
the operating system, "Guardian®. Section] provides a bottom—-up

view of Guardian.
section 4.

The user-level interface is then discussed in
Section 5 provides an introduction to the mechanism used

to provide failure tolerance at the application level and to

application structuring.

Finally, section 6 contains a few comments

on system reliability and implementation.

1. INTRODUCTION
1.1 Background

On-line computer processing has become a
way of life for many businesses. As they
make the transition from manual or batch
methods to on-line systems, they become
increasingly vulnerable to computer
failures. Whereas in a batch system the
direct costs of a failure might simply be
increased overtime for the operations
staff, a failure of an on-line system
results in immediate business losses.

1.2 System Cverview

The Tandem/16 (1,2) was designed to
provide a system for on-line applications
that would be significantly more reliable
than currently available commercial
computer systems, The hardware structure
consists of multiple processor modules
interconnected by redundant interprocessor

* "NonStop"

buses. A PMS (3) definition of the
hardware is found in Pigure 1.

Each processor has its own power supply,
memory, and I/0 channel and is connected
to all other processors by redundant
interprocessor buses, Each I/0 controller
is redundantly powered and connected to
two different 1/0 channels. As a result,
any interprocessor bus failure does not
affect the ability of a processor to
communicate with any other processor. The
failure of an 1/0 channel or of a
processor does not cause the loss of an
I/0 device. Likewise, the failure of a
module (processor or I/0 contreoller) does
not disable any other module or disable
any inter-module communication. Finally,
certain I/0 devices such as disc drives
may be connected to two different I/0
controllers, and disc drives may in turn
be duplicated such that the failure of an
I/0 controller or disc drive will not
result in loss of data.

is a trademark of Tandem Computers Inc.

g

" INTERPROCESSOR
| | SINTERFD.ocsssm
E’csm rcsnmn_
Sio Si0
— K51sc
Toisc
Toisc

K

DIsC

Hardware Structure
Figure 1

The system is not a true multiprocessor
(4), but rather a "multiple computer®
system. The multiple ccmputer approach ls
preferable for several reasons. PFirst,
since no module is shared by the entire
system, it increases the system's relia-
bility. Second, a multiple computer
system does not require the complex
hardware needed to handle multiple access
paths to a common memory. In smaller
systems, the cost of such a multiported
memory is undesirable; and in larger
systems, performance suffers because of
memory access interference.

On-line repair is as necessary as
reliability in assuring system
availability. The modular structure of
the Tandem/l6 system allows processors,
I1/0. controllers, or buses to be repaired
or replaced while the rest of the system
continues to operate. Once repaired, they
may then be reintegrated into the systenm.

The system structure allows a wide range
of system sizes to be supported. As many
3s sixteen processors, each with up to
512k bytes of memory, may be connected
into one system. Each processor may also
have up to 256 I/0 devices connected to
it. This provides for tremendous growth
of application programs and processing
loads without the requirement that the
application be reimplemented on a larger
system with a different architecture.

Finally, the system i{s meant to provide a
general solution to the problem of
providing a failure-tolerant, on-line
environment suitable for commercial use.
AS such, the system supports conventional
programming languages and peripherals and
is oriented toward providing large numbers
of terminals with access to large data
bases.

2. SYSTEM DESIGN GOALS
2.1 Integrated Hardware/Software Design

The Tandem/l6 system was designed to solve
a specific problem., This problem was not
stated in terms of hardware and software
requirements, but rather in terms of
system requirements. The hardware and
software designs then proceeded in tandem
to provide a unified solution. The
hardware design concerned itself with the
contents of each module, their inter-
connections to the common buses, and error
detection and correction within modules
and on the communication paths. The
software design was given the problem of
control; that is, selection of which
modules to use and which buses to use to
communicate with them. Furthermore, as
errors are detected, it was the respons-
ibility of the software to control
recovery actions.

2.2 Operating System Design Goals

The first and foremost goal of the
operating system, Guardian, was to provide
a failure-tolerant system. This trans-
lated into the following design “"axioms":

- the operating system should be able
to remain operational after any
single detected module or bus
failure

= the operating system should allow
any module or bus to be repaired
on-line and then reintegrated into
the system.

- the operating system should be
implemented in a2 reliable manner.
Increased reliability provided by
the hardware architecture must not
be negated by software problems.

A second set of requirements came from the
great numbers and sizes of hardware
configurations that are possible:

- the operating system should support
all possible hardware config-
urations, ranging from a two-
processor, discless system through
a sixteen-processor system with
billions of bytes of disc storage.

- the operating system should hide
the physical configuration as much
as possible such that applications
could be written to run on a great
variety of system configurations.

3. OPERATING SYSTEM STRUCTURE

To satisfy these requirements, the
operating system was designed to have the
appearance of a true multiprocessor at the
user level. The design of the system was
strongly influenced by Dijkstra's work on
the "THE" system (5), and Brinch Hansen's
implementation of an operating system
nucleus for a single-processor system (6).
The primary abstractions are processes,
which do work, and messages, which allow
interprocess communication.

3.1 Processes

At the lowest level of the system is the
basic hardware as earlier described. It
provides the capability for redundant
modules, i.e. I/0 controllers, I/0
devices, and processor modules consisting
of a processor, memory, and a power
supply. These redundant modules are in
turn interconnected by redundant buses.’
Error detection is provided on all
communication paths and error correction
is provided within each processor's
memory. The hardware does not concern
itself with the selection of communication
paths or the assignment of tasks to
specific modules.

The first abstraction provided is that of
the process. £tach processor module may
have one or more processes residing in
A process is initially created in a
specific processor and may not execute in
another processor. Each process has an
execution priority assigned to it.
Processor time is allocated on a strict
priority basis to the highest priority
ready process.

i:’

Process synchronization primitives include
"counting semaphores” and process local

"event” flags. Semaphore operations are
performed via the functions PSEM and VSEN,
corresponding to Dijkstra's P and V
operations. Semaphores may only be used
for synchronization between processes
within the same processor. They are
typically used to control access to
resources such as resident memory buffers,
message control blocks, and I/0
controllers.

when certain low-level actions such as
device interrupts, processor power-on,
message completion or message arrival
occur, they result in "event" flags being
set for the appropriate process. A
process may wait for one or more events to
occur via the function WAIT. The process
is activated as soon as the first WAITed
for event occurs. Events are signaled via
the function AWAKE. Event signals are
queued using a "wake up waiting” mechanism
so that they are not lost if the event is
signaled when the process is not waiting
on it. Like semaphores, event signals may
not be passed between processors. Event
flags are predefined for eight different
events and may not be redefined.

When a process blocks itself to wait for
some event to occur or for a semaphore to
be allocated to it, it may specifiy a
maximum time to block. If the time limit
expires and the event has not occurred or
the resocurce has not been obtained, then
the process will continue execution but an
error condition will be returned to it.
This timeout allows "watch dog" timers to
be easily placed on device interrupts or
on resource allocations where a failure
may Occut.

Each process in the system has a unique
identifier or "processid" in the form:
<cpu #,process #>, which allows it to be
ceferenced on a system-wide basis. This
leads to the next abstraction, the message
system, which provides a processor-
independent, failure-tolerant method for
interprocess communication.

3.2 Messages

The message system provides five primitive
operations which can be illustrated in the
context of a process making a request to
some server process, Figure 2. The
process' request for service will send a
message to the appropriate server process
via the procedure LINK. The message will
consist of parameters denoting the type of
request and any needed data. The message
will be queued for the server process,
secting an event flag, and then the
requestor process may continue executing.

When the server process wishes to check
for any messages, it calls LISTEN. LISTEN

L
L |
REQUESTCR | } | — messace —=f 3 SERVER
RL
REQUESTOR |— opatacorted —=5 x| SERVER
DK
B L LS
R 1 R I
REQUESTOR |E N jem—= RESULT COPIED = I N SERVER
AK E K
K

Message System Primitive Operations
Figure 2

returns the first message queued or an
indication that no messages are gqueued.
The server process will then obtain a copy
of the requestor's data by calling the
procedure READLINK,

Next, the server process will process the
request. The status of the operation and
any result will then be returned by the
WRITELINK procedure, which will signal the
requestor process via another event flag.
Finally, the requestor process will
complete its end of the transaction by
calling BREAKLINK.

A communications protocol was defined for
the interprocessor buses that would
tolerate any single bus error during the
execution of any message system primitive.
This design assures that a communications
failure will occur {f and only if the
sender or receiver processes or their
processors fail. Any bus errors which
occur during a message system operation
will be automatically corrected in a
manner transparent to the communicating
processes and logged on the system
congole. The interprocessor buses are not
used for communication between processes
in the same processor, which can be done
faster in memory. However, the processes
involved in the message transfer are
unable to detect this difference.

The message system is designed such that
resources needed for message transmission
{control blocks) are obtained at the start
of a message transfer request., Once LINK
nas been successfully completed, both
processes are assured that sufficient
resources are in hand to be able to

complete the message transfer. Further-
more, & process may reserve control blocks
to guarantee that it will always be able
to send messages to process a request that
it picks up from its message gqueue. Such
resource controls assure that deadlocks
can be prevented in complex producer/
consumer interactions, if the programmer
correctly analyzes and anticipates poten-
tial deadlocks within the application.

3.3 Process-pairs

With the implementation of processes and
messages, the system is no longer seen as
separate modules. Instead, the system can
be viewed as a set of processes which may
interact via messages in any arbitrary
manner, as shown in Figure 3.

By defining messages as the only legit-
imate method for process-to-process
interaction, interprocess communication is
not limited by the multiple-computer
organization of the system. The system
then starts to take on the appearance of a
true multiprocessor. Processor boundaries
have been blurred, but I/0 devices are
still not accessible to all processes.

System~wide access to I/0 devices is
provided by the mechanism of “"process-
pairs®. An 1/0 process-pair consists of
two cooperating processes located in two
different processors that control a
particular I/0 device. One of the
processes will be considered the “primary"
and one will be considered the "backup”.
The primary process handles requests sent
to it and controls the I/0 device. Wwhen a
request for an operation such as a file

PROCESS | PROCESS
PROCESS
PROCESS mo:lzr-:ss ———————— PROCESS
— Koisc
Tisc
Toisc
Koisc

System Structure After the Addition
of Processes and Messages
Figure 3

open or close occurs, the primary will
send this information to the backup
process via the message system. These
“"checkpoints™ assure that the backup
process will have all information needed
to take over control of the device in the
event of an I/0 channel error or a failure
of the primary process' processor. A
process~pair for a redundantly-recorded
disc volume {s illustrated in Figure 4.

Because of the distributed nature of the
system, it is not possible to provide a
block of "driver®™ code that could be
called directly to access the device.
While potentially more efficient, such an
approach would preclude access to every
device in the system by every process in
the system.

The I/0 process-pair and associated I/0
device(s) are known by a logical device
name such as "SDISCl1" or by a logical
device number rather than by the processid
of either process. I/0 device names ace
mapped to the appropriate processes via
the logical device tabla (LDT) in every
processor, which supplies two processids
for each device. A message request made
on the basis of a device name or number
results in the message being sent to the
first process in the table, If the
message cannot be sent or if the message
is sent to the backup process, an error
indication will be returned. The
processid entries in the LDT will then be
reversed and the message resent. Note two
things: first, the error recovery can be
done in an automatic manner; and second,
the requestor is not concerned with what
process actually handled the request.
Error recovery cannot always be done
automatically. For example, the drimary
process of a pair controlling a line

BACKUP
CHECKPOINTS s PROCESS

PRIMARY
PROCESS

Koisc

DISC

DISC

K - —

DIsC

Process-pair for a Redundantly-
Recorded Disc Volume
Pigure 4

printer fails while handling a request to
print a line on a check. The application
process would prefer to see the process
failure as an error rather than have the
request automatically retried, which might
result in two checks being printed.

The two primitives, processes and
messages, blur the boundaries between
processors and provide a failure-tolerant
method for interprocess communication. By
defining a method of grouping processes
(process-pairs), a mechanism for uniform
access to an I/0 device or other
system-wide resource is provided.
access method is independent of the
functions performed within the processes,
their locations, or their implementations.
Within the process-pair, the message
system i3 used to checkpoint state changes
so that the backup process may take over
in the event of a failure. This check-
point mechanism is in turn independent of
all other processes and messages in the
system,

This

The system structure can be summarized as
follows. Guardian is constructed of
processes which communicate using
messages, Fault tolerance is provided by
duplication of components in both the
hardware and the software. Access to I/0
devices is provided by process-pairs
consisting of a primary process and a
backup process. The primary process must
checkpoint state information to the backup
process so that the backup may take over
on a failure. Requests to these devices
are routed using the logical device name
or number so that the request is always
touted to the current primary process.
The result is a set of primitives and
protocols which allow recovery and
continued processing in spite of bus,

processor, I/0 controller, or I/0 device
failures. Furthermore, these primitives
provide access to all system resources
from everv process in the sSystenm.

J.4 Syscem Processes

The next step in structuring the system
comes in assigning functions to processes.
As previously shown, I/0 devices are
controlled by process-pairs. Another
process-pair known as trhe “"operator” is
present in the system. This pair is
responsible for formatting and printing
error messages on the system console.

Here i{s an example of where Guardian has
not followed a strict level structure.

The operator makes requests to a terminal
process to print the messages, yet the
terminal process wishes to send messages
to the operator to report I/0 channel
errors. An infinite cycle is prevented by
having the terminal process not send
messages for errors on the operator
terminal and having 1/0 processes never
wait for message completions when sending
errors to the operator. While it may be
preferable to prevent cycles of any type
in system design, they have been allowed
in Guardian when it can be shown that they
will terminate, The ability to reserve
message control blocks assures that no
cycle will be blocked because of resource
problems,

Each processor has a "system monitor”
process which handles such functions as
process creation and deletion, setting
time of day, and processor failure and
reload cleanup operations.

A memory management process is also
resident in each processor. This process
is responsible for allocating a page of
physical memory and then sending messages
to the appropriate disc processes to do
the actual disc I/0. Pages are brought in
on a demand basis and pages to overlay are
selected on a "least recently used" basis
over the entire memory of the processor.

The choice of relatively unsophisticated
algorithms for scheduling and memory
management was a result of the fact that
the system was not intended to be a
general-purpose timeshare system. Rather,
it was to be a system which supported
multiple processes and terminals in an
extremely flexible manner.

3.5 Application Process Interface

Above the process and communication
structure there exists a library of
procedures which are used to access systenm
resoucrces., These procedures run in the
calling process' environment and may or
may not send messages to other processes

in the system. For example, the file
system procedures do not do the actual I/0
operations. Instead, they check the
caller's parameters, and if all is in
order a message is sent to the appropriate
I1/0 process-pair. Likewise, process
creation is seen as a procedure call to
NEWPROCESS, which does nothing but check
the caller's parameters and then send a
message to the system monitor process in
the processor where the process is to be
created. On the other hand, a procedure
such as TIME which returns the current
time of day dces not send any messages.

In either case, the access to system
resources appears simply as procedure
calls, effectively hiding the process
structure, message system, hardware
organization, and associated failure
recovery mechanisms.

3.6 Initialization and Processor Reload

System initialization starts with one
processor being cold loaded from some disc
on the system. The load file contains a
memory image of the operating system
resident code and data, with all system
processes in existence and at their
initial states. The system monitor
process then creates a command interpreter
process.

Guardian may be brought up even though a
processor or peripheral device is down.
This is possible because operating system
disc images may be kept on multiple disc
drives, I/0 controllers may be accessed by
two different processors, and the terminal
that has the initial command interpreter
on it {s selected by using the processor's
switch register.

After a cold load, the system logically
consists of one processor and any periph-
erals attached to it. More processors and
peripherals may be added to the system via
the command intecrpreter command:

:RELOAD 1,SDISC

This command will read the disc image for
processor 1 from the disc $DISC and send
it over either interprocessor bus to
processor 1. Cnce it {5 loaded, all
processes residing in other processors in
the system will be notified that processor
1l is up.

This command is also used to reload a
processor after it has been repaired.
Guardian does not differentiate between an
initial load of a processor and a later
teload. 1In each case, resources are being
logically added to the system and
pProcesses must be notified so that they
may make use of them.

The previous example of a reload message
being sent to all processes is an example
of how functions are split in Guardian, A
mechanism is provided for informing a
process of a system status change. It may
then take some unspecified action
(including doing nothing). Similarly, a
system power-on simply sets the PON event
flag for all processes. The operating
system kernel must only insure that the
process structure and mess-je sSystem are
correctly saved and restor.d. 7Tk is then
the responsibility of individua. processes
to do such things as reinitialize their
I/0 controllers.

3.7 Operating System Error Detection

Besides the hardware-provided single error
detection and correction on memory, and
single error detection on the inter-
processor and I/0 buses, additional
software error checks are provided. The
first of these is the detection of a down
processor. Every second, each processor
in the system sends a special "I'm alive"
message over each bus to all processors in
the system. Every two seconds, each
processor checks to see that it has
received one of these messages from each
processor, If a message has not been
received, then it assumes that that
processor is down.

Additionally, the operating system makes
checks on the correctness of data
structures such as linked lists when
operations are done on them. Any
processor detecting such an error will
halt.

All I/0 interrupts are bracketed by a
"watch dog" timer such that the system
will not hang up if an 1/0 operation does
not complete with the expected interrupt.
If an I/0 bus error occurs then the backup
process will take over control of the
device using the second 1/0 bus.

As previously noted, the interprocessor
bus protocel is designed to correct single
bus errors. In addition to this, exten=-
sive checks are made on the control
information received over the buses to
vecrify that it is consistent with the
state of the receiving processor.

Power-fail/automatic restart to provided
within each processor., A power-failure is
detected independently by each processor
module and as a result is not a system-
wide, synchronous event. The system was
designed to recover from either a complete
system power-fail, or a transient which
will cause some of the processors to
power-fail and then immediately restart.

4. USER-LEVEL SYSTEM INTERFACE

Tools are provided for interactive program
development using COBOL or a block-
structured implementation lapguage, T/TAL.
A file system with facilities comparable
to or exceeding those offered by other
"midi" computer systems allows access to
disc files and other I/0 devices. Process
creation, intercommunication, and
checkpointing primitives are also
implemented.

The application process level facilities
and the interactive program development
tools have been heavily influenced by the
HP 3000 (7) and by UNIX (8).

4.1 Interactive System Access

General-purpose, interactive access to the
system is provided by the command inter-
preter, COMINT, similar in many ways to
the Shell of UNIX. Normally a command
interpreter is run interactively from a
terminal, but commands may be read from
any type of file. The command interpreter
is seen by the operating system as simply
another type of application process.

Commands are read from the terminal,
prompted by a colon (":"):

: command / process parameters / arguments

If the command is recognized, it will be
directly executed. A command of this type
is:

:LOGON SOFPTWARE.JOEL

which is used to gain access to the
system. If the command is not recognized,
then a process will be created using the
program file “SSYSTEM.SYSTEM.command" and
the arguments for the command will be sent
to this new process, The command inter-
preter will then suspend itself until a
message is received indicating that the
process has stopped. If this process
cannot be created, then an error message
is printed. For example, the text editor
is accessed by typing EDIT followed by any
command string:

tEDIT FILE

This will result in a process being
created using the program file SSYSTEM.
SYSTEM.EDIT and the command string,
"FILE", being sent to it. Also a part of
this command string message are the names
of the files that are being used for input
and output by the command interpreter.
These are then used by the process for its
input and output. If the previous command
was typed at a terminal, the input and

output files would he the device name of
the terminal, Altesritive names for the
input and output files may be specified.
For example:

tEDIT JIN COMMANDS/

will create an edlitor process and pass it
the file name "COMMANDS® for the input
file and the terminal's file name, the
default, for the outpur file. Finally,
the processor to use and the priority at
which to run the process may also be
specified:

:EDIT /PRI 100, CPU 3/

This will create an =ditor process in
processor three with a priority of 100.

Additional features allow multiple
processes to be started from one command
interpreter and allow the previously typed
compand line to be edited.

4.2 Programming Languages

Compilers have been implemented for two
langquages, T/TAL, and ANSI 74 COROL.

T/TAL is a block=-structured imple-
mentation language. 1Its capabilities are
similar to those offered by C on UNIX or
SFL on the HP3000. All Tandem software is
written in T/TAL as are most user
applications.

Code generated by either compiler may be
shared by multiple processes in the same
processor. Both compilers generate an
object file which may be immediately run
without any intervening link edit
operation. However, the object file also
contains enough information so that an
object editor, UPDATE, may combine the
objects produced by several compilations
or selectively replace procedures in an
object file.

4.1 Tools

Program development tools include an
interactive text editor, ocbject file
editor, text formatter, and interactive
debugger. A screen generation program and
access routines are provided to facilitate
application interaction with page mode CRT
terminals, File utilities exist which
allow file backup and restore, file
copying and dumping, and initial loading
of key-sequenced files. A peripheral
utility is provided to do such operations
as disc formatting, disc track sparing,
and mounting or demounting disc volumes.

4.4 Process Creation and Deletion

Processes are created by the command
intecpreter or by an application process

call to tne procedure NEWPROCESS.
Parameters supplied include the name of
the file holding the object code for the
process, the processor number to use, and
the priority at which to run the procesa.
The parameters will be checked and then
sent to the system monitor process In the

appropriate processor. The system monitor
will then create the process and return &
"creationid" identifying the new process
to the calling process. Part of this
value is the processid previously defined,
and the rest is the value of the processor
clock at the time of process creation.

The clock is kept as a 48 bit value which
is the number of l0ms intervals since 12
a.m. on December 31, 1975, which assures
that creationid's will be unigque over the
life of the system.

Processes are not grouped in classical
ancestry trees. No process is considered
subservient to any other process on the
basis of parentage. Two processes, one
created by the other, will be treated as
eguals by the system. When a process, A,
creates another process, B, no record of B
is attached to A. The only record kept is
in process B vwhere the creationid of A is
saved. This creationid is known as B's
"zom®". When process 8 stops, process A is
sent a stop message indicating that
process B no longer exista. A process's
mom is flexible and a process may adopt
another process. Por example, (FPigure 5),
process A creates process B, Process B {n
turn creates a cooperating process, C.
Since C would like to know if B stops, C
will adopt B.

A process may stop itself or some other
process by calling STOP. Process deletion
is again a function of the system monitor
process. Resources will be released and a
stop message will be sent to the process'
mom. If the mom process does not exist,
then no message will be sent.

4.5 Application Process-pairs

The process-pair concept introduced
earlier is a powerful method for making
some resource available to all processes
in the system in a favlt-tolerant manner.
It is extended to the application
processes as follows. When a process is
created via NEWPROCESS, a process-pair
name may be supplied. The creationid
recurned for this process consists of the
processid and the process name rather than
the processor clock value. For example,
(Figure 6), process A wishes to create a
process with the name "SSPOOL". Once B
has been created, any process in the
system may send a message to that process
via the name "“SSPOOL".

A CREATES B: Ao MM ————B
B creates C: A MOM B - MM C
C "apoers” B: A B - MOM C
Flexible Process Relationships
Pigure 5
A == ANCESTOR B «— MM — B’ | $SPOOL
SA A e— v —= A’ ANCESTOR B MM — B' | $B

Application Process-pairs
Figure 6

Process B may now wish to create a process
B' in another processor to be its backup.
B would then call NEWPROCESS, supplying
the name "SSPOOL®". Process B will keep B'
updated via checkpoints so that B' may
become the primary if B fails. B and B'
each wish to receive an indication if the
other process is deleted. Therefore, B
and B' will be automatically set to be
each other's moms.

When the last process with the name
“SSPOOL" is deleted, process A will be
jent a message. Process A is known as the
"ancestor” by the fact that this process
was the one which created the first
process by the name of "$SSPOOL®. Process
A in turn may be a named process, in which
case A's name will be sent the termination
message. This allows a process-pair, "SA"
consisting of processes A and A', to
create a named process, "SB" consisting of
B and optionally B', and guarantee that it
will be sent a message when the process
name $SB no longer exists, This will occur
even if the process which first created SB
no longer exists.

4.6 File System

The Guardian file system provides a
uniform method for access to disc files,
unit record devices, and processes. All
files are named: disc files have names
such as "SDISC1.SUBVOL.FILE®" and unit
record devices and processes have names
such as "SLP". Access Dy name allows any
process running in any processor Lo access
any file in the system. Direction to the
appropriate process of the process-pair is

handled by the file system in a manner
transparent to the requesting process.

Files of all types are opened by calling:
CALL OPEN(filename,filenum,...])

The calling process supplies the file
name. Security will be checked and then a
file number will be returned to the
calling process. This file number {s then
used for all furthur accesses to the file.
A file may be opened for "wait®" or "no-
wait” access. If "wait®™ access is chosen,
the process will be suspended until the
requested operation on the file has been
completed. On the other hand, if the
"no-wait" access is requested then once
the operation has been initiated, the
requesting process may continue
processing.

4.7 Disc FPiles

Each disc file is composed of between one
and sixteen partitions, Each partition
resides on a specific disc volume and is
in turn composed of up to sixteen extents.
Each extent is one or more contiguous disc
pages of 2048 bytes each. Disc files
comes in several types. The first is
"unstructured®, similar to UNIX, where the
file is treated as a contiguous set of
bytes. A current file pointer is kept
which is the byte address of the beginning
of the next transfer. After each read or
write operation:

CALL READ(filenum,buffer,cnt,transfercnt)
CALL WRITE(filenum,buffer,cnt,transfercnt)

the file pointer {s incremented by the
number of bytes transferred. The file
pointer may be moved explicitly by:

CALL POSITION(filenum,fileposition)

The second type of file is a "relative~
record™ file. The file consists of fixed
or variable-size records and may be
randomly accessed. Rather than
positioning to an arbitrary byte in the
file, the process positions to the start
of a specific record. If the process
reads less than the record size, then the
file pointer advances to the start of the
next record.

The third type of file is "entry-
sequenced™. Records written to this file
may be of varying lengths and are always
appended to the end of the file. This
i{?e of file is normally used as a log

e.

The final type of disc file (s "key-
sequenced”. A file of this type may have
a2 unique primary key and up to 255
alternate keys. Entry-sequenced and
relative-record files may also have
alternate keys. Each key may be up to 255
bytes long. Access to this file may be
done on any key using the procedure:

CALL KEYPOSITION (filenum,key,keytag,
keylen,positionmode)

The parameter "keytag®" identifies which
key is being used. The pointer “"key"
designates the value of the key which is
“keylen® bytes long. The "positionmode”
describes what type of access is to be
made to the file. The first type of
access is “"approximate®. Using this,
successive reads to the file will return
all records whose key values are greater
than or equal to the "key" for "keylen”.
The second type of positioning is
"genecric". Here, successive reads will
return all records whose key value is
equal to "key" for "keylen". The final
type of positioning is "exact”.
Successive reads will return all records
u:ose keys are "keylen®" long and equal to
- .y-h

Files or individual records may be locked
by:

CALL LOCKFILE(filenum)
CALL LOCKRECORD(filenum)

Record locking and unlocking may be
combined with the actual I/0 operation
desired for increased efficiency:

CALL READUPDATELCCK (filenum,...)
CALL WRITEUPDATEUNLOCKX(filenum,...)

The distributed nature of the system does
not allow efficient detection of deadlocks .
caused by file locking. As a result, this
type of checking is not done. A lock
request on a file that has been opened
with "no-wait" access will allow the
application to do other processing if the
requested file is not immediately
available. A process may use this
mechanism to assure that it will not wait
indefinitely in the case of a deadlock.

4.8 Disc I/0

The disc processes in each processor share
an area of main memory called the “disc
cache®”. Each block read from the disc is
placed in this area. Space is reused on a
weighted "least recently used" basis.
Thus, such items as index blocks for key
sequenced files are kept available in
memory so that successive accesses do not
require that they be reread.

A logical disc volume, "SDISC1l", may be
recorded onto two different disc drives
using two different 1/0 controllers. This
second, or "mirror® volume provides a
transparent duplication of data which
protects a data base against loss via a
failed disc drive or controller. All file
writes are performed on both disc drives
and file reads may be done from either
drive. When a failed drive has been
repaired, it may be “"revived" while the
application continues accesses and updates
to files on that logical device. .

4.9 Device I/0

I/0 operations are done to unit record
devices in a similar manner to disc file
accesses. Here, Guardian dces not support
a record-structured, device-independent
mode of access and as a result operations
such as unblocking tape records must be
done by the application program. While
this lack of device-independent I/0 can be |
considered a liability in some applica-
tions, it allows easy addition of new
types of I/0 devices to the system without
requiring changes to the file system and
allows device-dependent contrcl by the
application program.

Read and write operations are done in an
identical manner for all files. Device-
dependent operations such as skipping on
vertical form channels on a line printer
may be done by:

CALL CONTROL(filenum,controli,parameter)
Enabling or disabling terminal parity
checking or other such access options are
done by:

CALL SETMODE (filenum,modetype,...)

10

Guardian provides an extremely general
purpose interface to asynchronous RS-232
or current loop devices. The [ile system
and asynchronous terminal process provide
a read after write operation:

CALL WRITEREAD(filenum,buffer,writecnt,
readcnt ,countread)

which allows a character sequence to be
output to a device followed immediately by
a read from the device. This allows the
character sequence which causes a CRT
terminal to transmit to be sent to it.

The line will then be turned around and
the terminal's buffer read into the
processor. Since this write/read turn=
around 15 done in the device controller,
no dacta (s lost because the read could not
be started soon enough.

Normally, operating systems wish to
enforce certain terminal characteristics
such as inserting a carriage ceturn and
linefeed after each line written or inter=-
preting certain characters on input for
such operations as line and character
delete. While Guardian provides such
facilities, they may be disabled at the
time the system is configured or after the
file is opened. Other characteristics
such as type of connection, character
size, parity, speed, and character echoing
are completely configurable. This allows
arbitrary chacacter sequences to be input
and output without any intecrpretation or
character editing being done by the
operating system.

Communication software i{s also provided to
handle multi-point asynchronous terminals.
Point-to-point and multi-point Bisync
software is also provided. Rather than
actempting to emulate specific devices,
the application program is allowed to
specify "he line control used.

4.10 Interprocess [/0

£ach process in the system may have
messages from other processes gueued for
1t. Access to this message gueue is
provided via the file “"SRECEIVE". A read
on this file will return the first
message. A process may check to see if
any messages are gueued and then continue
orocessing if none are present. A process
may ascertain the identity of the sending
process via the procedure:

CALL LASTRECEIVE (sender)

This recurns the “creationid" of the
sending process., It is supplied by the
operating system and thus may not be
forged by the sending process. A process
will receive indication of such events as
a4 process being stopped, a processor

failing or being reloaded, or the break
key being pressed on a terminal that this
process has open in the form of messages
read from this file.

A process may open another process as a
"file". Once opened, the process may use
the file system procedures WRITE,
WRITEREAD, SETMODE, and CONTROL to send
messages to that process. The receiving
process will read these requests from its
"SRECEIVE" file. It will then process
them and possibly return an error
indication to the sending process. This
allows the “"server” process to simulate
some arbitrary device, Using these tools,
an output spooler or a process which could
allow access to labeled magnetic tapes
written on some other system can be
constructed. The requesting process
believes that it is communicating with a
device, and the server process is able to
simulate that device without requiring
special privileged "hooks" in the file
system.

5. APPLICATION PROGRAMS
5.1 Application Program Checkpointing

Application process-pairs are used to
provide some service on a failure-tolerant
basis. Reguests are processed by the
primary process and results are returned
to the requestor process. On a failure of
the primacry process, the backup must be
able to continue offecring this secvice.
This requires that any state changes in
the primary process be sent (checkpointed)
to the backup process. While such
checkpoints could be sent on an
instruction-by-instruction basis, this is
clearly not feasible because of the
overhead involved., Instead, a process
need only checkpoint its state when it is
about to make a non-retryable request to
another process.

For example, at time Tl, when the primary
process and its backup are in the same
state, the primary process starts some
operation. Later, at time T2, when it is
ready to write the result to a disc file,
it will checkpoint changes made since time
Tl to its backup. The processes will then
again be in the same state. If the
primary process failed at anv point before
T2, the backup process could restart at
the last checkpoint, made at T1l. The
selection of states to checkpoint is
analogous to defining restart points for
jobs in a batch processing system. In a
batch environment, these checkpoints are
saved in a disc file; in process-pairs
they are saved in a backup process.

Guardian provides system functions for
checkpointing process state information

11

between processes of a process=-pair. The
firsc type of item checkpointed is
portions of the process' data space. This

includes global data and/or the current
stack, holding procedure return addresses,
procedure local variables, and procedure
parameters., Consider the following
program segment, written in T/TAL, whose
purpose 13 to output to a terminal the
first 100 items of an array, "buffer”:

FOR { := 1 T 100 DO
BEGIN
CALL WRITE (terminal ,buffer(i),itemlen);
END;

This operation could be made failure-
tolerant by two calls to the CHECKPOINT
procedure. The first checkpoint copies
the entire buffer to the backup process.
This need only be done once as the data is
not changed by later processing. The
second checkpoint, before each write,
saves the current process state, including
the variable "i". This allows the backup
process to take over the operation,
duplicating at most one line of output.

CALL CHECKPOINT(,buffer(l) ,buffersize):
FOR { := 1 TO 100 DO

BEGIN

CALL CHECKPOINT (stackbase):

g:;L WRITE(outfile buffer(i] ,itemlen);

When the primary process fails, the backup
will take over at the last checkpoint.

The next logical extension to the original
segment would be If the process were
copying the one hundred values to be
output from some disc file:

FOR { := 1 TO 100 DO
BEGIN
CALL READ(infile,buffer,itemlen);
CALL WRITE (outfile, buffer,itemlen);
END;

ACTION

CHECKPOINT(stackbase, ,infile,

sequence § of primary sent to backup

CALL WRITE(outfile, buffer,

itemlen)

In this case, not only would the process'
data space contents need to be check-
pointed as before, but so would the
current file pointers for the input and
coutput files. This ensures that they are
correctly set when the backup process
takes over. In order for file pointers to
be checkpointed, both processes of the
process-pair must have the files open.
Special functions are provided which allow
the primary process to cause a file to be
opened or closed by the backup process:

CALL CHECKOPEN(filename,...)
CALL CHECKCLOSE(filename,...)

In the sample program, CHECKOPEN would be
called following the call to OPEN when the
primary process started. The program
segment would now look like:

CALL CHECKPOINT(,buffer(l],buffersize);
FOR { := 1 TO 100 DO
BEGIN
CALL CHECKPOINT (stackbase,,infile,,
outfile);
CALL READ(infile, buffer,itemlen);
CALL WRITE (outfile,buffer,itemlen);
END;

If a failure occurred after the read but
before the write, the backup would take
over and repeat the read using the same
file pointer as was used by the primary.
In both of these examples, a failure
following the write but preceding the next
checkpoint could result in a record being
written twice. This would cause no
problem {f the record was being written to
some absolute position in the file;
however, an error would occur when writing
to a key-sequenced disc file. In this
case, the primary would successfully write
the record to the file, but its backup
process would get a “"duplicate key" error
when repeating the write. This problem is
solved by having Guardian automatically

SEQUENCE VALUES AFTER ACTION:
PRIMARY BACKUP DISC PROCESS

sequence J's nmatch, operation is done,

sequence #'s advanced

*** PRIMARY PRCCESS FAILS, BACKUP TAKES OVER **e

CALL WRITE(outfile, buffer, itemlen)

» outfile) 0 0 0
1 0 1
1 1

sequence #'s con't match, operation is not done,

backup's seguence ¢ is advanced

File Systen Sequence Numbers
Figure 7

generate an optional sequence number for
disc file writes.

A part of the information copied to the
backup process when a file is checkpointed
is the sequence number for the next write
to the file. When a write is done to a
£ile that has been cpened with this
option, the sequence number passed by the
file system is compared with the copy held
by the disc process. If it is the same,
then the operation is done and the status
(ecror indication and transfer count) is
returned to the application process and a
copy is saved by the disc process. On the
other hand, if sequence numbers do not
agree, then no operation is done and a
copy of the previous operation's status is
returned. Using the previous example, the
use of file sequence numbers is shown in
Figure 7.

When a process-pair has a file open, any
records locked in the file will be
considered locked by the process-pair.
When the primary fails, the backup may
£inish file modifications with locks still
in effect, preserving the integrity of the
data base.

While the primary process operates, the
backup process receives the checkpoint
information via a call to the procedure
CHECKMONITOR. When the primacry process
sends a checkpoint message via a call to
CHECKPOINT, this procedure moves
checkpointed portions of the primary
process' data space into the backup's data
space and saves the latest file
information. If a message is directed to
the backup process and the primary process
still exists, it is rejected with a
"ownership" error which informs the sender
that the message is to be sent to the
other member of the process-pair.

Finally, when the primary process fails,
CHECKMONITOR will transfer control to the
correct restact point.

The Tandem implementation of COBOL
provides a similar checkpointing facility.
In each case, checkpointing is not an
automatic operation. Careful attention
during che application design phase will
result in fewer checkpoints and will yield
a checkpoint scheme that can be analyzed
for correctrmess. Consideration must also
be given to how the application will
recover from failures occuring while a
write operation is in progress to non-disc
devices. Recovery when accessing a CRT
terminal could be automatically done by
rewriting the entire screen. Recovery
while printing checks on a line printer
would require some manual intervention and
operator interaction with the applicartion
program.

13

5.1 Application Structuring

The process, process-pair, and inter=-
process communication primitives of
Guardian provide extremely general tools
for application structuring. For example,
consider an inquiry application such as
hotel reservations. Requests come in from
various types of terminals for reser-
vations, cancellations, and hotel regis-
cration. Other requests come in for items
such as management reports showing the
number of roocms available at some hotel on
some date. The application could be
structured as follows.

Procesa-pairs will be defined for each
type of terminal to handle actual terminal
1/0 (including any required line protocol
and character conversion) and initial
request verification. Each process-pair
will be designed to handle some number of
terminals. When a valid request has been
received from a terminal, the terminal
process-pair will route the message to the
appropriate server process-pair.

Each server process-pair will be assigned
a certain part of the application. In
some cases, multiple copies of a server
program will be run to allow multiple
requests to be processed in parallel.

There are several advantages to this
apptoach. First, the handling of
terminals and processing of requests have
been cleanly separated. New types of
terminals can be added by simply adding a
type of terminal control process-pair.

New types of requests can be handled by
adding another type of server process=-
pair, Likewise, software modifications
and testing can be done on a modular
basis. Pinally, nowhere in this structure
is there any requicement for a specific
number of processors in the system or for
the relacive locations of processes. As
the system load or the application
changes, the number of processors,
of memory, or physical location of
processes may be changed without
disturbing the application's intecnal
structure.

6. SOFTWARE RELIABILITY

amount

When design of the operating system was
started, we hoped to eliminate as much as
possible the archetypal system crash.
That is, once or twice a day, or week, the
system crashes in a non-repeatable
fashion. Our experience on an in-house
system used primarily for software
development and manual writing shows that
we have achieved that goal. During a
three-month period in the summer of 1977,
3 processor failed because of a software

problem on two occasions: In each case,
the problem was found at that time and the
failure could be repeated Dy running a
particular program.

1 propose the following explanation of
this reliability. First, the system was
very carefully structured and much time
was spent in initially specifying
primitives. As experience was gained in
trying to apply these primitives at higher
levels, problems were found. This
resulted in design changes at lower levels
rather than “"kludges® at a higher level.
Implementation was also forced to stay
within the designed structures because of
the distributed nature of the hardware.

If a problem could not be solved using
processes interacting via messages, then
it could not be "kludged" by turning off
interrupts and changing some flag in
memory. Given a single processor system,
there is a very strong temptation to solve
difficult problems in this manner.

Second, as the operating system and
hardware were developed at the same time,
another vendor's system was used to
provide interactive text editing, a cross
T/TAL compiler, a Tandem/l16 processor
simulator, and a downloader for the
Tandem/16 prototypes. Implementation and
checkout were not impeded by unreliable
prototypes and as each level of the system
was implemented, it could be extensively
checked. These tools allowed {nitial
implementation and checkout of all
functions of the system through the level
of the command intecpreter. The wisdom of
this approach can best be shown by the
fact that when the first prototype
processors were made available to the
operating systems group, all operating
system functions which ran on the
simulator ran on the prototypes.

Third, debugging tools were built into the
operating system from the start. A low=
level interactive debugger was implemented
which aliowed breakpoints to be set at any
level of the operating system, including
interrupt handlers, Once this low-level
debugger is entered in one processor,
clocks in all other processcrs in the
system are stopped so that they will not
decide that the first processor is down.
when the first processor continues, 5O
will the rest of the system. A full
maintenance panel only had to be used to
track problems that managed to destroy the
low-level debugger. Consistency checks
were also coded into low-level routines.
For example, before an element is insected
in a doutly-linked list, the list links of
the element that the new element is being
inserted behind are verified. These
checks have proved to be extremely
valuaole in tracking problems or when

implementing new features in the system.
Even when extensive changes are being made
to the system, it has the property that it
will stop at one of these consistency
checks very soon after something has gone
uzong, allowing the problem to be rapidly
found.

Fourth, formal testing was carried out at
all levels of the system as they were
implemented. A third person, whose only
job was testing, was added to the initial
project well before completion. By
testing not just the external specifi-
cations of the system but also the
underlying system primitives, it was
assured that all system functions at all
levels could be checked.

Finally, the primary design goal of the
entire system was rellability. When the
system design goals are clearly defined
and understood by all involved, they can
control implementation on a daily basis.
Implied goals on the other hand are often
forgotten when seemingly small decisions
are made.

7. CONCLUSIONS

The innovative aspects of Guardian lie not
in any new concepts introduced, but rathar
in the synthesis of pre-existing ideas.

Of particular note are the low-level
apbstractions, process and message. By
using these, all processor boundaries can
be hidden from both the application
programs and most oOf the operating system.
These initial abstractions are the key to
the system's*ability to tolerate failures.
They also provide the configuration
independence that is necessary in order
for the system and applications to run
over a wide range of system sizes.

Guardian provides the application
programmer with extremely general
approaches to process structuring,
interprocess communication, and faflure
tolerance. Much has been said about
structuring programs using multiple
communicating processes, but few operating
systems are able to support such
structures.

Finally, the design goals of the system
have been met to a large degree., Systems,
with between two and ten processors, have
been installed and are rtunning on-line
applications. They are recovering from
failures and failures are being repaired
on-line.

8. ACKNOWLEDGEMENTS
An operating system is the work of many

people. 1In particular I would like to
acknowledge the contributions of Cennis

14

.

McEvoy, Dave Hinders, Jerry Held, and
Robert Shaw in its design, implementation,
and testing.

9., REFERENCES

1. Katzman, J. A., System Architecture
for NonStop Computing, Compcon,
(February 1977), pp 77-80.

2. Tandem Computers Inc., Tandem/l6
System Description, 1976.

3e Bell, C. G, and Newell, A,,
Computer Structures: Readings and

Examples, McGraw-Hill, Inc.,
(1971), pp 15-36.

4. Enslow, P. H. Jr., Multiprocessor
Organization - a Survey, Computing
Surveys 9, (March 1977),
pp 103-129.

S Dijkstra, E. W., The Structure of
the "THE" Multiprogramming System,
Comm. ACM 11, (May 1968),
pp 341-346.

6. Brinch Hansen, P., The Nucleus of a
Multi-programming System, Comm.
ggg 13, (April 1970), pp 238-241,

7. Hewlett-Packard Journal, January
January 1973.

8. Thompson, K. and Ritchie, D. M.,
The UNIX Time-Sharing System, Comm.
ACM 17, (July 1974), pp 365-375.

8iography. The author received his M.S.
degree in Computer Science : Computer
Engineering and B.S. degree in Statistics
at Stanford University in 1972. Before
joining Tandem Computers in 1974, he was
employed by Hewlett-Packard. Member of
the ACM.

15

