
I
•

•

DESIGNER'S OVERVIEW
OF

TRANSACTION PROCESSING

Lloyd Smith
Tandem Computers

19333 Vallco Parkway
Cupertino, Califomia 95014

Copyright © 1979 Tandem Computers Inc .

Abstract

This paper presents information for the individual responsible for designing
8 transaction oriented system. It covers the major design considerations that
should be taken into account. The paper is divided into the following topics:

I. Introduction

I. Introduction

II. A T ransaction Processing System M odel

III. System Control

rv. Implementation Considemtions

V. TANDEM's Transaction Processing System

One of the important points in any design, and the most important in a transaction environ·
menl, is that the system as a whole should be viewed as a "SERVICE". In any service
organization the first goal is to rmd a service that people need . The second goal is to offer a
service that people can depend on, and the third goal is to respond to the changing demands of
those who use the service. If all three goals are not established from t he beginning the success of

NOTE: TANDEM . GUARDIAN. EXPAND. NonStop. and PATHWAY are trademarks of Tandem Computers
_ Incorporated.

the aervtCe may be nelhllbl . Th one C~I I1lOft n~11 ed In the ". .. ha' bee-n responchn& to

chana . The combination or user net'Cll. bUlldanl a rehabl. ,y'tem. and lhe ablhty to react 10

chance qUickly are explored 10 lhn pa~r. Th Int nl or Chll paper II to orrer a better unde-r·
.tandlnC or traruactlon proeelStnland lUlie-It a n raicuid hne. (or .uceeou(ullmplementalton.

In the rutur , by eUrnlO'"l IheR Ihree POints.

The fir'll d I&n con.lderacJon must be 10 fulfill • u~r defined n~. ThlJ n~ or service II
r rerred 10 a,. " USER FUNCTION". Once a (unctIon I. orre~, a UJf'r Cams confidence In the
service baled on rehablhty and the system's re pon'lvenf'1S to chanae at the needs or the
bUlme .. chanee. Thl, ability 10 chon& and evolve II r ferred to a. "REACTION T CME", The
follow'"l dellln conflderotlons hove 8 direct Impact on reacllon time.

INSTAI..I..AB/L. ITY:

A system can succeed only If It c.an be m.talled in 8 reSlonable amount of time. Ease of
IOllallaltOn allO applie. to any mSJor enhancemenlt or user function ..

Fl.EXIB/L.ITY:

Detennme. how well the .ystem reacu to change. If. system is designed p roperly with change in
mind, chance. can be applied q uickly. ReactIon time is red uced sigmficantly .

EXPANDAB/L.IT Y:

Allows the .ystem to accommodate new users and new functions. Afte r a system's initia l success,

two events typIca lly occur:
I . More use,. want to use the system. A well.designed .ystem m ust incorporate the ability to

handle an increase in the num ber of users.

2. New functions a re requested . The abil ity to handle new user functions without affecting the

current user functions must a lso be considered.

MAiNTAINAB II..ITY:

The ability to correct problems and "tune" a running application. Too often. thi s conside ra tion is
overlooked in the original design. The problems that occur not only affect the e xisting functions
but future functions as well. If significant resources a re req uired to mainta in existing functions,
the ability to provide changes and enhancements is red uced . The total reaction time increases
and the probability of overa ll success decreases.

REI../ABII..ITY:

To ensure "service" to the user, the system must be rel iable. The best implementations fa il if the
user cannot access his system. In addition to being constantly ava ilable. the system must ensure

the integrity of its data base.
Note: Perfonna nce considerations are important; however. the above mentioned conside rations

should not be sacrificed for efficiency. The key to performance is through a good design.

2

II. A Transaction Processing System Model

Figure 1 shows the components of a typical transaction oriented system. A video display unit
provides the human interface to the system. The remainder of the diagl'"am describes the
IOftware comlX>nents of 8 computer system including a Data Base stored on 8 direct access
device external to the computer. Notice that the now of control in this diagram is bi-directional.
Notice also that operator request may not need the services of all five components. For example,
if an operator enters non-numeric dats into an entry field defined as numeric data only, the
terminal I/O and the field validation routines are the only two components exercised. The
request for 8 new function might involve the display of a new format. In this case four
components are exercised: terminal I/O, field validation, data mapping, and transaction control.

This diagram is used as the foundation for the design of a transaction oriented system. The
components describe the functional activities that are common to all transaction oriented
applications. A brief definition of each component follows the diagram.

.~

\

HUMAN INTERFACE
TO THE SYSTEM
VIA A TERMINAL

TERMINAL
INTERFACE

\
FIELD

VALIDATION

\
DATA

MAPPING

TRANSACTION
CONTROL

\
DATA BASE

SERVICE

\
\

DATA
BASE

(TERMINAL 110
HANDLER)

(DATA CONSISTENCY
CHECKS)

(DATA CONVERSION AND
FORMATTING)

(APPLICATION AND
TRANSACTtQN FLOW)

-. (ACCESS/UPDATE
OF THE DATA BASE)

FIGURE 1. TRANSACTlQN PROCESSING SYSTEM MODEL

3

Major Program Components

I. Terminal Interface

The terminal interface is responsible for the follOWing general func tions:

• All physical terminal I/O

• Control of device-dependent characteristics

Because the physical I / O to various terminal types often involves different protocols. II IS

advantageous to isolate the code that actually communicates with terminals into one place. This
approach enhances the capability to test and install new terminal types, isolate and fix problems.
and easily take advantage of new features that may become available on existing terminal types.

The data transmitted by the physical I/O also requires different handling by different terminal
types, e.g .. the codes to delimit a field may differ.

2. Field Validation

The field validation facility is responsible for data consistency on a field·by·field level.
Normally these edits are defined when the screen format is buill.

Field validations should be applied as close to the actual operator as possible. Notification of a
problem with a data field entered should be timely. and its impact on the running system should
be kept to a minimum.

The mechanism by which field edits are defined should be independent of physicaJ terminal
type. There should be one consistent way to define a field as numeric data only, a field that must
be entered, or a range of acceptable values for a particular field. By separating the type of edit
from the physical mechanism of applying the edits, which are defined at the terminal interface.
terminal types can be added to the system without altering the logical view of entry fields and
their associated edits.

3. Data MappjnA

This facility is responsible for the conversion and formatting of data from an external to an
internal representation and back again. By developing application tasks which refer to the data
in its internal form the external characteristics of a system may change without affecting existing
applications.

Data mapping is the key to writing terminal independent applications which process requests
with no concern as to how that request was actually constructed. Therefore, whether requests are
stored in a batch file on disc or entered through a video display should have no bearing on the
application design below this point.

The data mapping facility should be at the symbolic field name level. This allows the ordering of
fields to change on a particular screen display; however, the order in which the fields appear in
the logical request will remain the same.

4

(

4. Tran!laction Control

This facility is responsible (or the overall application now. It is analogous to the top level
implementation of 8 structured program which:

• Initiates all logical terminal JlO;

• Interprets and validates the request received from the data mapping facility;

• If Data Base access is required to service the request, the appropriate data along with the
proper control infonnation is passed to the appropriate Data Base routine; and

• Interprets and validates the Data Base routine replies.

The main function of transaction control is application now, along with the routing of requests to
one or more Data Base routines. It is a relatively small portion of actual application code:
however, it is the heart of any application. The major benefits of this approach are:

• Since the actual amount of code necessary to control anyone function is relatively small. it
is a simple task to add and change user functions;

• Since the approach is structured in a modular fashion, new functions can be integrated and
tested easily as part of the whole application; and

• Application flow and control can be tested as a separate piece of the total application and
therefore have little or no impact on the Data Base services.

5. Data Base Service

This facility is responsible for all activity on a Data Base. This is normally a very important
application function because it alters the state of the Data Base.

A Data Base service routine should be written using the simplest approach possible. The most
straightforward and simple approach contains the following components:

• Get a request from a transaction control facility:

This is the point of entry for a Data Base service. Getting a request from the transaction
control facility is similar to reading a record from a disc file,

• Access the Data Base:

The request may be for a read, write, update. delete or any combination of the four. The
specified requests are applied against the Data Base.

• Build a reply based on the results of the Data Base access:

The reply could contain actual data from the Data Base, control information describing any
error condition that occurred. or any combination of the two.

• Reply to the transaction control facility:

This is the exit point of the Data Base service. Replying to the transaction control facility is
similar to writing a record to a disc file.

Moreover. each Data Base service should process requests uniformly from one or more user
functions. By doing so the Data Base service will be independent of any particular user function.
and the service can be viewed as a general utility, accessible by any user function. This
eliminates redundant code and simplifies the implementation of new user functions requiring
Data Base services already established.

5

The Data Base service must be written in a context (ree environment. The Data Base service
shou ld not be responsible (or the retention o(data between requests. Once a request is received.
the Data Base service should be able to process the complete request and then (orget about it.
This approach simplifies the code significantly and creates an environment that is easy to
understand and maintain.

One critical part o(any transaction oriented system is input validation. There are three major
types of input validation:

TYPE OF VALIDATION EXAMPL.E

I FIELD 1---------- NUMERIC
MUST FILL
RANGE 100 THRU lt11

r.[A~E~Q~U~E~S~T}I---------;_~ INTER·AELD RELATIONSHIPS
L! (IF PAYMENT.METHOO _ MCASH" THE AMOUNT

ENCLOSED MUST BE ,. 0)

(IF em WAS ENTERED STATE AND ZIP CODE MUST
ALSO BE ENTERED)

~D~A~T~A~B~A~S~ED---------<. DOES ACCOUNT. 12345 EXIST IN THE DATA BASE?

DOES THIS SAI.ES TRANSACTlOH IN THE AMOUNT
$245.00 FOR ACCOUNT .12345 EXCEED THE
ESTABUSHED CREDIT UMIT?

F igure 2 shows each level of edit within the transaction processing syste m model.

TERMINAL
INTERFACE

FIELD VALIDATION dFIELDlvALIDATION)

\

DATA MAPPING

\
TRANSACTION

dREQUESllVAUDATION) CONTROL

\

DATA BASE _ (IDATA BASEIVAUDAlION)
SERVICE

FIGURE 2. EDIT LEVELS

•

At this point the model is defined. The following illustrations show th e use of the model in an
application environment.

The internal components of the transaction processing system model can be grouped into the
(ollowing categories:

Request oriented:
Components I through 4 have the combined responsibility (or gathering, interpreting and
responding to requests. From this point on the combination of components 1 through 4 will be
referred to as the "REQUESTOR" portion of our model.

Service oriented:
Component 5, the Data Base services, are written as gene ral utility functions accessible by any
user function within a REQUESTOR. The Data Base se rvices wi ll be referred to as
"SERVERS",

F igure 3 shows the REQUESTOR/ SERVER relationships:

HUMAN INTERFACE TO THE SYSTEM

REQUESTOR

••• THIS IS WHERE THE ACTUAL REQUEST
." ORIGINATES ••..

SERVER

TERMINAL INTERFACE

FIELD VALIDATION

DATA MAPPING

TRANSACTION CONTROL

q I DATA BASE SERVICE

DATA
BASE

FlGURE 3. REOUESTOR/SERVER RELATlONSHIPS

7

REQUEST
ORIENTED

COMPONENTS

SERVICE
ORIENTED

COMPONENTS

Figure 4 illustrates an order entry application with three basic (unction,; credit checking _
customer, adding a new order, and updating an existing order.

~ ORDER
.n~ ENTRY

~I

REQUESTOR

ORDER ENTRY
REQUESTOR

SERVERS

CREDIT CHECK

ADO
NEW ORDER r --7 -j CORPORATE

DATA
BASE

UPDATE ORDER '---'

FIGURE 4. ORDER ENTRV APPLICATION

This example illustrates a terminal operator building an order entry request and sending it to the
system. It also shows the relationship established between the requestor, who is responsible ror
the overall application control, and the Data Base servers. which are responsible for all Data
Base activity. The system is partitioned into small modular components that are easy to define.
write. debug and e nhance. Because of its modularity. the system is extremely easy to maintain.

8

Figure 5 shows the relationships established between multiple applications running under the
control o(one transaction processing system.

REQUESTORS

CUSTOMER CUSTOMER
ENTRY

REQUEST
ENTRY

REQUESTOR

* ORDER
ORDER ENTRY ENTRY

REOUEST REOUESTOR

FIGURE 5. MULTIPLE APPUCATIONS IN A SINGLE SYSTEM

The above example illustrates the (ollowing points:

SERVERS

0-
ADD NEW

CUSTOMER

UPDATE A
CUSTOMER

ADO NEW
ORDER

UPDATE
ORDER

CORPORATE
DATA
BASE

• Multiple application requestors can exist within a transaction processing system.

• Each terminal operator should have access to the number o(application requestors needed.

• Data Base Servers may be shared among requestor applications .

•

III. System Control

Taking advantage of modulaT design techniques improves the overall quality of the .y.tem.
However, as the components of a system are divided into smaller. more manageable segments,
the problem of overall control becomes increasingly difficult.

The solution to this problem is to create a command center that has a global view of the entire
application and, therefore, can create, delete and monitor the lotal application environment.
This facility will be referred to as the APPLICATION MONITOR. Figure 6 illustrate. the
application monitor's view of the system:

r--------,....(,REouesTORs SERVERS

cRE~TCHEck l.O--+----r1~~
~

ORDER
ENTRY

ReOUESTOR

ADD NEW
ORDER

-----~" ,

FIGURE I . SYSTEM CONTROLLED BY APPUCAnoN MONITOR

10

The transaction processing system model established previously can be viewed in the following
way:

TRANSACTION PROCESSING SYSTEM

APPLICATION

REQUESTOR 1

SERVER 1
SERVER 2

APPLICATION · · 0
REQUESTOR 2 SERVER 5 A · · T

USER · A
TERMINAL · · B · · A · · S · · · E

SERVER n

APPLICATION
REQUESTOR n

FIGURE 7. TRANSACTKlN PROCESSING SYSTEM OVERVIEW

The application monitor's view of a transaction processing system is analogous to the view a
system operator might have at his console. The system operator controls the hardware environ
ment and the application monitor controls the application environment.

The application monitor should maintain control over the following functions within a transaction
processing system:

• Overall Transaction P rocessing System

• Each Application REQUESTOR

• Each Data Base SERVER

• Each Operator TERMINAL

II

IV. Implementation Considerations

Once the system is designed, its timely implementation. plus its ablhty to chang~ 8S the needs
of the business change, will be t he deciding factors that determine its ultima te success or fa ilure.
Each system may be composed of many applications and each app lication will require the
following components:

APPLICATION

• TERMINAL INTERFACE

• FIELD VALIDATION
(ONE COMPONENT OF THE SCREEN DEFINITION)

R
COMPONENTS OF A SCREEN DEFINITION:

E , INFOAMAT)QNAL OArA FOR PROMPTS (PROTECTED) a 2 DATA ENTRY AElDS (UNPROTeCTeD,
U , INITIAl ENTRY FIELD VALueS

E 4 ENTRY FIELD VAUOATION SPECIFICATIONS

S
T • DATA MAPPING (TO AND FROM THE SCREENS AND MEMORY)
0
R • TRANSACTION CONTROL WHICH IS RESPONSIBLE FOR:

, INITIATING All lOGICAl TERMINAL 10
2 INTERPRETING AND VALIDATING REOUESTS , ROUTING REOUESTS TO THE PROPER SERVER
4 INTERPRETING AND VALIDATING REPliES FROM THE SERVER

• DATA BASE SERVICE WHICH IS REPONSIBLE FOR:

, ACCEPTING AND INTERPRETING REOUESTOR MESSAGES
SERVER(S) 2 ANY DATA BASE ACTIVITY

(READ, WRITE. REWRITE OR DELETE) , BUILDING A REPlY BASED ON THE SUCCESS OR FAILURE OF THE DATA
eASE ACTIVITY

4 REPLYING TO A REOUESTOR

FIGURE L FUNCTIONS OF REOUESTORS VERSUS SERVERS WITHIN AN APPLICATION

Requestor Procedures

Because the requestor provides the logic that communicates with the e nd user, it must be the
most n exible component of the syste m. A means of d esigning. changing and deleting screen
fonnats is essentia l. Inte rnal record fonnats produced through data mapping should be kept and
mainta ined in a d ata definition libra ry similar to those libra ries associated with record definitions
on a Data Base Management System. The actual tra nsaction control might be written in a
procedural language that is easy to use but flexible enough to handle tota l application flow.

All the above facilities should be mainta ined in a libra ry accessible a t run time. This a llows
smooth integra tion of each function within a requestor. It also a llows modula r expansion of
functions within an application with little or no impact on curre nt running functions.

12

This approach to implementing an application requestor ensures the reaction time necessary to
effectively handle user demand. Moreover, it allows the system to expand in small, well
controlled increments, thus increasing the integrity of the overall system.

Server Procedures

The back-end component of any application is the Data Base serve r. Back-end functions must
be handled with care, for they maintain the most critical aspect of any application. the Data
Base. One of the principal advantages of this design concept is that it greatly s implifies the
implementation. Server procedures can be designed and tested in the familiar - read a record .
update the Data Base and Write 8 reply - f8sion. Input transactions can be read from a disc file
or magnetic tape. T est Data Bases can be created for the purposes of testing. and se rver
procedure testing can take place independent of the overall application implementation.

The following diagram illustrates the two step integration of any Data Base server:

DATA BASE SERVER DEVELOPMENT AND IMPLEMENTATION

STEP ONE - TEST THE DATA STEP TWO - INTEGRATE THE
BASE SERVER IN DATA BASE
A TOTALLY SERVER IN THE
BATCH LIVE
ENVIRONMENT ENVIRONMENT

BATCH OPERATOR
RECUEST TERMINAL

FILE I
REQUESTOR

I
SERVER SERVER

I I
TEST CORPORATE

DATA BASE DATA BASE

FIGURE 1. 1NSTAlUNG A DATA aASE SERYER

The integration of both REQUESTORS and SERVERS into the live system should be handled
via the APPLICATION MONITOR. The application monitor should be able to logically start
and stop any component within the system.

13

V. The TANDEM Transaction Processing System

TANDEM offers 8 total environment (or transaction processing. The GUARDIAN OPERAT
ING SYSTEM was specifically designed with NonStop tranl8ction processing in mind. The
FILE SYSTEM within Guardian allows separately running processes (in the same CPU,
different CPUs within 8 single system or different systems with an EXPAND network) to
communicate with each other at a simple READ/WRITE level. Guardian allows one logical
computer system to incorporate up to 16 processors. The EXPAND network allows the intercon
nection of 8S many 8S 255 logical systems within a network and still majotains the simple
READ/WRITE level communications between application processes. With this as 8 base,
T ANDEM has introduced 8 new p roduct called PATH WAY. PATHWAY allows a user to take
advantage of the unique TANDEM architecture, and it significantly reduces the time necessary
to develop a t ransaction processing system. The functions enclosed within the inner box are
addressed by the PATHWAY product.

\

\
TERMINAL
INTERFACE

\
FIELD

VALIDATION

\

DATA
MAPPING

\

HUM AN INTERFACE
TO THE SYSTEM
VIA A TERMINAL

TRANSACTION
CONTROL

(TERM INAL
110 HANDLER

(OAT A CONSISTENCY
CHECKS)

(DATA CONVERSION AND
FORMATTING)

(APPLICATION AND
TRAN SACTION FLOW)

DATA BASE f-.. (ACCESSIUPOATE
SERVICE OF THE OAT A BASE)

\
\

DATA
BASE

AQURE 10. THE PATHWAY SYSTEM WITHIN THE TRANSACTION PROCESSING SYSTEM MODEL

'4

(

PATHWAY Product Overview

The goal of the PATHWAY product is to simplify the design and development of transaction
oriented applications. The PATHWAY product addresses fOUT of the major components neces
sary to implement a transaction oriented application.

I. Terminal Interface (Multi-terminal VO handler)

2. Field Validation (Data consistency checks)

J . Dala Mapping (Oats conversion & formatting)

4. Transaction Control (Application & transaction now)

The rlfth component (Data Base Server) can be implemented using any of the TANDEM
standard languages - COBOL. FORTRAN, TAL, or MUMPS.

The PATHWAY product has the following components:

• J nteracl;ve Screen Builder

Allows the user to build screens interactively at a terminal.

• Screen COBOL compiler

A COBOL-like terminal oriented language. The compiler creates and maintains a pseudo code
library accessed by the Terminal Control Process at run time.

• Terminal Control Process

Interprets the pseudo code· library created by the Screen COBOL compiler and performs the
rour major application functions mentioned above in a NONSTOP environment.

• Application Monitor

Responsible for creating, monitoring and altering the application run time environment.

• AMCOM - Application Monitor Command LanAuaAe

The mechanism by which an operator may communicate with an active Application Monitor.

If we assume a successful installation or a transaction oriented system, we now must deal with
EXPANDABILITY. By using the unique TANDEM architecture. an application can be wrinen
and then expand smoothly as the demands placed on the system increase. Most successrul
systems first expand because of an increase in the number ofusen who need to use it. Figure 11
shows the addition or new users and interjects a new question: ·'Do I run more than one copy of

15

the tota l application or do the users sha re the application?" Figure 11 shows users sharing the
appl ication. It should be noted that TANDEM's terminal control process, a pan of PATHWA Y,
handles a ll the multi-tasking between more than one terminal of the same type. fn F igure 11 ,
notice that the application remains unchanged even though the number of users increases.

REQUESTOR

ORDER ENTRY
REQUESTOR

SERVERS

CREDIT CHECK

ADO
NEW ORDER

UPDATE ORDER

FIGURE 11 DDlNG USERS TO PATHW ... Y SYSTEM

r---~~--1CORPORATE
DATA
BASE

In a successful application , the addition of users can degrade system performa nce. At that point,
most systems go through either a major change or a rewrite. The unique TANDEM approach
offers an alternative.

To alleviate the problem of increased user load, the system must be able to distribute the
application into more than one physica l process. This is the key to expandability.

The description of the system to this point views the system as one self-contained application.
However, a ll expansion limitations can be eliminated if one logical application can comprise
mUltiple physical processes or running programs. This leaves the original design of the system
unchanged. but increases system throughput by expanding the modularity of the application
beyond the physica l boundaries of a single program unit.

' 6

,

(t

(~

The (0110,",,10& diagrams illustrate the various ways of functionally distributing the application to
allow for expansion:

• Terminal operators can be connected to multiple requestors running the same application.

• Multiple copies of the same server can be created to increase throughput.

• Sharing 8 server between more than one applica tion requestor.

REQUESTORS SERVERS

· - ~ ~ J~ ORDER ENTRY

• REOUESTOR
CREDIT CHECK .--

J • j

ADD NEW CORPORATE
OROER DATA BASE

* ORDER ENTRY

• REQUESTOR

J
AllURE 12. SYSTEM EXPANSION 8Y ADDING REQUESTOR

Notice that the users are distributed between two requestors and that the requestors sha re the
server functions. Therefore. the total number of servers remains constant even though the
system includes multiple requestors.

17

Another expansion problem is caused by increased demand on anyone server. This problem can
be overcome by duplicating a particular server to create what is known 8S a "SERVER CLASS",
For example. if the majority of user demand on the system is to run credit checks. using a single
server for credit cheeking could create a bottleneck a nd impact the total applicaton. This
bottleneck can be eliminated by creating another copy of the credit check server and distributing
the requests between the two copies. Figure 13 illustrates a server class:

*
*

*
*

REQUESTORS

>-.(ORDER ENTRY }.--~ o\
REQUESTOR

SERVERS

o
SERVER
CLASS

ADD
NEW ORDER

>-.(ORDER ENTRY }._-' __ .(UPDATE ORDER \ .-..J
REQUESTOR r

FIGURE 13. SERVER CLASSES

18

CORPORATE
DATA BASE

(~

FiKUre 14 Illustrate. the addition of 8 new application. Nolice thai even though there are two
unique a pplications. the requestors can still share servers or server classes.

REQUESTORS SERVERS

ADD NEW
CUSTOMER

UPDATE A
CUSTOMER

SERVER
CLASS

ADD
NEW ORDER

\.---'--+i UPDATE ORDER\-+-,I

AQURE 14. AOOIHG A NEW APPUCATlOH REQUESTOR

CORPORATE
DATA BASE

Figure 14 shows that both the order entry and customer entry applications need to be able to
check credit. The credit check server class is therefore shared by both applications. yet each
application also has its own private servers to fulfill the individual requirements of a particular

application.

'9

One of the major reasons for distributing an application into multiple processes was for expand. ~
bility. Figure 15 illustrates the distribution of application functions within a local TANDEM
system. Terminals, R equestors and Servers may be distributed among multiple CPU's.
maximizing parallel operations and increasing throughput. It should be clear that when demand

forces the system to grow that no design changes will be necessary.

CPU 0 ----

CPU 1

_-++l.t REQUESTOR ~~
~'f' B

CPU 2

DISTRIBUTED - Terminals
Requestors
Servers

SERVER 3

Data Files over physical volumes

with II NO DESIGN CHANGES II
AGURE 15. DISTRIBUTED LOAD BALANCING ON A LOCAL TANDEM SYSTEM

20

CORPORATE
DATA
BASE

(

The next .t p in di.lnbuUnl applicauon functJons IS over a ne' "Ork. The mechanism for
communicatlOl betw n proct"lte. wlthan the TANDEM environment is conllstent (Read /
Wnte). Therefore, dlstnbulln& application function. over 8 TANDEM network uSing EX·
PANO doe. no' Impact the Orig1081 design . Fi&ure 16 illustrates the distribution of applicauon

functions over a simple EXPAND netwOrk.

NEW YORK SYSTEM

• • • COMMUNICATION
• LINE • • •

CHICAGO SYSTEM

SERVER 2

SERVER 3

•
•
• • • •
•

DATA
BASE

LOCAL
NEW YORK
FILES

LOCAL
CHICAGO
FILES

TRUE DISTRIBUTED APPLICATIONS wilh \I NO DESIGN CHANGES] \

FIGURE 11. DISTRIBUTED LOAD BALANCING ON It SIMPLE EXPAND NETWORtC

21

In summary TANDEM offe rs a tota l solution to transaction processing:

RELIABILITY ..

NonStop transaction processing assures continuous syste m a vail ability and data integrity

INSTALLABILITY ..

PATHWAY offers a quick and easy way of deve loping transaction oriented a pplications. which
significantly reduces the cost of applications development .

FLEXIBILITY ..

PATHWA Y offers the ability to make on-line additions. modifications. or d ele tions of transac
tion types. screen characte ri stics, applications. and te rmina ls.

EXPANDABILITY ..

The combination of the GUARDIAN Operating system and the EXPAND network offers true
distributed processing. which allows applications to run in any processor in any system without
rega rd for the physical location of te rminals or the da ta base.

MAINTAINABILITY:

•

Because of the structured approach taken by the PATHWAY product , mod ules may be written e
and implemented in small, single threaded. and easy to understa nd compone nts. The refore. the
maintenance task will be kept to a minimum.

j

I

•
22

',1<if

