DESIGNER’S OVERVIEW
OF
TRANSACTION PROCESSING

Lloyd Smith
Tandem Computers
19333 Vallco Parkway
Cupertino, California 95014

Copyright © 1979 Tandem Computers Inc.

Abstract

This paper presents information for the individual responsible for designing
a transaction oriented system. It covers the major design considerations that
should be taken into account. The paper is divided into the following topics:

I. Introduction

II. A Transaction Processing System Model
III. System Control

IV. Implementation Considerations

V. TANDEM's Transaction Processing System

. Introduction

One of the important points in any design, and the most important in a transaction environ-
ment, is that the system as a whole should be viewed as a "SERVICE". In any service
organization the first goal is to find a service that people need. The second goal is to offer a
service that people can depend on, and the third goal is to respond to the changing demands of
those who use the service, If all three goals are not established from the beginning the success of

NOTE: TANDEM, GUARDIAN, EXPAND, NonStop, and PATHWAY are trademarks of Tandem Computers
Incorporated.

the service may be negligible. The one goal most neglected in the past has been responding to
change. The combination of user needs, building a reliable system, and the ability to react to

change quickly are explored in this paper. The intent of this paper is to offer a better under-
standing of transaction processing and suggest general guidelines for successful implementations

in the future, by examining these three points.
The first design consideration must be to fulfill a user defined need. This need or service is
referred to as a “USER FUNCTION". Once a function is offered, a user gains confidence in the

service based on reliability and the system's responsiveness to change as the needs of the
business change. This ability to change and evolve is referred to as “REACTION TIME". The

following design considerations have a direct impact on reaction time.

INSTALLABILITY:
A system can succeed only if it can be installed in a reasonable amount of time. Ease of
installation also applies to any major enhancements or user functions.

FLEXIBILITY:
Determines how well the system reacts to change. If a system is designed properly with change in
mind, changes can be applied quickly. Reaction time is reduced significantly.

EXPANDABILITY:

Allows the system to accommodate new u

two events typically occur:
1. More users want to use the system. A well-designed system must incorporate the ability to

handle an increase in the number of users.
to handle new user functions without affecting the

sers and new functions. After a system’s initial success,

2. New functions are requested. The ability
current user functions must also be considered.

MAINTAINABILITY:

The ability to correct problems and “tune” a run ning application. Too often, this consideration is
overlooked in the original design. The problems that occur not only affect the existing functions
but future functions as well. If significant resources are required to maintain existing functions,
the ability to provide changes and enhancements is reduced. The total reaction time increases

and the probability of overall success decreases.

RELIABILITY:
" to the user, the system must be reliable. The best implementations fail if the

To ensure “service
In addition to being constantly available, the system must ensure

user cannot access his system.
the integrity of its data base.
Note: Performance considerations are important; however, the above mentioned considerations

should not be sacrificed for efficiency. The key to performance is through a good design.

Il. A Transaction Processing System Model

Figure 1 shows the components of a typical transaction oriented system. A video display unit
provides the human interface to the system. The remainder of the diagram describes the
software components of a computer system including a Data Base stored on a direct access
device external to the computer. Notice that the flow of control in this diagram is bi-directional.
Notice also that operator request may not need the services of all five components. For example,
if an operator enters non-numeric data into an entry field defined as numeric data only, the
terminal 1/0 and the field validation routines are the only two components exercised. The
request for a new function might involve the display of a new format. In this case four
components are exercised: terminal I/0, field validation, data mapping, and transaction control.

This diagram is used as the foundation for the design of a transaction oriented system. The
components describe the functional activities that are common to all transaction oriented
applications. A brief definition of each component follows the diagram.

HUMAN INTERFACE
\ TO THE SYSTEM
- VIA A TERMINAL

\
TERMINAL _ (TERMINAL 1/O
INTERFACE i HANDLER)

\

FIELD _ (DATA CONSISTENCY

VALIDATION ik CHECKS)
\
DATA (DATA CONVERSION AND

MAPPING PR et FORMATTING)

A\

TRANSACTION (APPLICATION AND
CONTROL TRANSACTION FLOW)

A\

DATA BASE LS (ACCESS/UPDATE
SERVICE OF THE DATA BASE)

\
ol

DATA
BASE

FIGURE 1. TRANSACTION PROCESSING SYSTEM MODEL

Major Program Components

1. Terminal Interface
The terminal interface is responsible for the following general functions:

® All physical terminal I/0
® Control of device-dependent characteristics

Because the physical 1/0 to various terminal types often involves different protocols, it is
advantageous to isolate the code that actually communicates with terminals into one place. This
approach enhances the capability to test and install new terminal types, isolate and fix problems,
and easily take advantage of new features that may become available on existing terminal types.

The data transmitted by the physical 1/0 also requires different handling by different terminal
types, e.g., the codes to delimit a field may differ.

2. Field Validation

The field validation facility is responsible for data consistency on a field-by-field level.
Normally these edits are defined when the screen format is built.

Field validations should be applied as close to the actual operator as possible. Notification of a
problem with a data field entered should be timely, and its impact on the running system should
be kept to a minimum,

The mechanism by which field edits are defined should be independent of physical terminal
type. There should be one consistent way to define a field as numeric data only, a field that must
be entered, or a range of acceptable values for a particular field. By separating the type of edit
from the physical mechanism of applying the edits, which are defined at the terminal interface,
terminal types can be added to the system without altering the logical view of entry fields and
their associated edits.

3. Data Mapping

This facility is responsible for the conversion and formatting of data from an external to an
internal representation and back again. By developing application tasks which refer to the data
in its internal form the external characteristics of a system may change without affecting existing
applications.

Data mapping is the key to writing terminal independent applications which process requests
with no concern as to how that request was actually constructed. Therefore, whether requests are
stored in a batch file on disc or entered through a video display should have no bearing on the
application design below this point.

The data mapping facility should be at the symbolic field name level. This allows the ordering of
fields to change on a particular screen display; however, the order in which the fields appear in
the logical request will remain the same.

4. Transaction Control

This facility is responsible for the overall application flow. It is analogous to the top level
implementation of a structured program which:

® [nitiates all logical terminal 1/0;

® Interprets and validates the request received from the data mapping facility;

® If Data Base access is required to service the request, the appropriate data along with the
proper control information is passed to the appropriate Data Base routine; and

® Interprets and validates the Data Base routine replies.
The main function of transaction control is application flow, along with the routing of requests to

one or more Data Base routines, It is a relatively small portion of actual application code;
however, it is the heart of any application. The major benefits of this approach are:

® Since the actual amount of code necessary to control any one function is relatively small, it
is a simple task to add and change user functions;

® Since the approach is structured in a modular fashion, new functions can be integrated and
tested easily as part of the whole application; and

® Application flow and control can be tested as a separate piece of the total application and
therefore have little or no impact on the Data Base services.

5. Data Base Service

This facility is responsible for all activity on a Data Base. This is normally a very important
application function because it alters the state of the Data Base.

A Data Base service routine should be written using the simplest approach possible. The most
straightforward and simple approach contains the following components:
® Get a request from a transaction control facility:

This is the point of entry for a Data Base service. Getting a request from the transaction
control facility is similar to reading a record from a disc file,

® Access the Data Base:

The request may be for a read, write, update, delete or any combination of the four. The
specified requests are applied against the Data Base.

® Build a reply based on the results of the Data Base access:

The reply could contain actual data from the Data Base, control information describing any
error condition that occurred, or any combination of the two.

® Reply to the transaction control facility:

This is the exit point of the Data Base service. Replying to the transaction control facility is
similar to writing a record to a disc file.

Moreover, each Data Base service should process requests uniformly from one or more user
functions. By doing so the Data Base service will be independent of any particular user function,
and the service can be viewed as a general utility, accessible by any user function. This
eliminates redundant code and simplifies the implementation of new user functions requiring
Data Base services already established.

The Data Base service must be written in a context free environment. The Data Base service
should not be responsible for the retention of data between requests. Once a request is received,
the Data Base service should be able to process the complete request and then forget about it.
This approach simplifies the code significantly and creates an environment that is easy to
understand and maintain.

One critical part of any transaction oriented system is input validation. There are three major
types of input validation:

TYPE OF VALIDATION EXAMPLE
| FI_E_LE)J = NUMERIC
MUST FILL

RANGE 100 THRU 199

|l"IEQUEST|L = INTER-FIELD RELATIONSHIPS
(IF PAYMENT-METHOD = “CASH" THE AMOUNT
ENCLOSED MUST BE - 0)

(IF CITY WAS ENTERED STATE AND ZIP CODE MUST
ALSO BE ENTERED)

|DATA BASEI » DOES ACCOUNT # 12345 EXIST IN THE DATA BASE?

DOES THIS SALES TRANSACTION IN THE AMOUNT
$245.00 FOR ACCOUNT # 12345 EXCEED THE
ESTABLISHED CREDIT LIMIT? ‘

Figure 2 shows each level of edit within the transaction processing system model.

TERMINAL
INTERFACE

\

FIELD VALIDATION |« ([FIELD|VALIDATION)

A

DATA MAPPING

\
TRANSACTION
ool le—— (REQUEST]vaLiDATION)
X
DATA BASE | ([DATA BASE|VALIDATION)

SERVICE

FIGURE 2. EDIT LEVELS '

{4

(a

At this point the model is defined. The following illustrations show the use of the model in an
application environment.
The internal components of the transaction processing system model can be grouped into the

following categories:

Regquest oriented:
Components 1 through 4 have the combined responsibility for gathering, interpreting and

responding to requests. From this point on the combination of components 1 through 4 will be
referred to as the “REQUESTOR" portion of our model.

Service oriented:
Component 5, the Data Base services, are written as general utility functions accessible by any

user function within a REQUESTOR. The Data Base services will be referred to as
“SERVERS".

Figure 3 shows the REQUESTOR/SERVER relationships:

HUMAN INTERFACE TO THE SYSTEM

*** THIS IS WHERE THE ACTUAL REQUEST

I
Q ORIGINATES. . . .

1Y

TERMINAL INTERFACE |

FIELD VALIDATION | REQUEST
REQUESTOR |:> ORIENTED
DATA MAPPING | COMPONENTS

TRANSACTION CONTROL |

SERVICE
[::>[DATA BASE SERVICE | | ORIENTED

COMPONENTS

DATA
BASE

FIGURE 3. REQUESTOR/SERVER RELATIONSHIPS

e |

Figure 4 illustrates an order entry application with three basic functions: credit checking a
customer, adding a new order, and updating an existing order,

REQUESTOR SERVERS

| J |

%

ORDER
ENTRY
REQUEST

ADD

NEW ORDER CORPORATE

DATA
BASE

REQUESTOR

L=

UPDATE ORDER

FIGURE 4. ORDER ENTRY APPLICATION

This example illustrates a terminal operator building an order entry request and sending it to the
system. It also shows the relationship established between the requestor, who is responsible for
the overall application control, and the Data Base servers, which are responsible for all Data
Base activity. The system is partitioned into small modular components that are easy to define,
write, debug and enhance. Because of its modularity, the system is extremely easy to maintain.

Figure 5 shows the relationships established between multiple applications running under the
control of one transaction processing system.

REQUESTORS
i |

CUSTOMER
ENTRY
REQUEST

ORDER
ENTRY
REQUESTOR

ORDER ENTRY”
REQUEST

SERVERS

b

N
W

ADD NEW
CUSTOMER

UPDATE A
CUSTOMER

ADD NEW
. ORDER

ORDER

\ UPDATE
B
1

FIGURE 5. MULTIPLE APPLICATIONS IN A SINGLE SYSTEM

The above example illustrates the following points:

e Multiple application requestors can exist within a transaction processing system.

e Each terminal operator should have access to the number of application requestors needed.

e Data Base Servers may be shared among requestor applications.

lll. System Control

Taking advantage of modular design techniques improves the overall quality of the system.

However, as the components of a system are divided into smaller, more manageable segments,
the problem of overall control becomes increasingly difficult.
The solution to this problem is to create a command center that has a global view of the entire
application and, therefore, can create, delete and monitor the total application environment.
This facility will be referred to as the APPLICATION MONITOR. Figure 6 illustrates the
application monitor’s view of the system:

Lo R

REQUESTORS SERVERS

ADD NEW
CUSTOMER

/-'b

UPDATE A
CUSTOMER

CREDIT CHECK)= t DATA
BASE

ADD NEW < /]

ORDER

UPDATE < /

ORDER

_/
-~

S~

APPLICATION
MONITOR

FIGURE 6. SYSTEM CONTROLLED BY APPLICATION MONITOR

10

(The transaction processing system model established previously can be viewed in the following

way:
TRANSACTION PROCESSING SYSTEM
APPLICATION
REQUESTOR 1
SERVER 1
SERVER 2
APPLICATION 3 :
REQUESTOR 2 SERVERS | A
$
USER : A
TERMINAL ;
- - B
; A
4 ' | &
| . : 2
SERVER n
APPLICATION
REQUESTOR n

FIGURE 7. TRANSACTION PROCESSING SYSTEM OVERVIEW

The application monitor's view of a transaction processing system is analogous to the view a
system operator might have at his console. The system operator controls the hardware environ-
ment and the application monitor controls the application environment.

The application monitor should maintain control over the following functions within a transaction
processing system:

® Overall Transaction Processing System
® Each Application REQUESTOR
® Each Data Base SERVER

{p ® Each Operator TERMINAL

11

IV. Implementation Considerations

Once the system is designed, its timely implementation, plus its ability to change as the needs
of the business change, will be the deciding factors that determine its ultimate success or failure.
Each system may be composed of many applications and each application will require the
following components:

APPLICATION

TERMINAL INTERFACE

FIELD VALIDATION
(ONE COMPONENT OF THE SCREEN DEFINITION)

COMPONENTS OF A SCREEN DEFINITION:
1. INFORMATIONAL DATA FOR PROMPTS (PROTECTED
2. DATA ENTRY FIELDS (UNPROTECTED
3. INITIAL ENTRY FIELD VALUES
4, ENTRY FIELD VALIDATION SPECIFICATIONS

DATA MAPPING (TO AND FROM THE SCREENS AND MEMORY)

TRANSACTION CONTROL WHICH IS RESPONSIBLE FOR:

INITIATING ALL LOGICAL TEAMINAL 1O

INTERPRETING AND VALIDATING REQUESTS

ROUTING REQUESTS TO THE PROPER SERVER
INTERPRETING AND VALIDATING REPLIES FROM THE SERVER

DO-HummcCcoOom>D
o

B Wk -

DATA BASE SERVICE WHICH IS REPONSIBLE FOR:

1, ACCEPTING AND INTERPRETING REQUESTOR MESSAGES
SERVER(S) 2. ANY DATA BASE ACTIVITY
(READ, WRITE, REWRITE OR DELETE)
3. BUILDING A REPLY BASED ON THE SUCCESS OR FAILURE OF THE DATA
BASE ACTIVITY
4. REPLYING TO A REQUESTOR

L]

FIGURE 8. FUNCTIONS OF REQUESTORS VERSUS SEAVERS WITHIN AN APPLICATION

Requestor Procedures

Because the requestor provides the logic that communicates with the end user, it must be the
most flexible component of the system. A means of designing, changing and deleting screen
formats is essential. Internal record formats produced through data mapping should be kept and
maintained in a data definition library similar to those libraries associated with record definitions
on a Data Base Management System. The actual transaction control might be written in a
procedural language that is easy to use but flexible enough to handle total application flow.

All the above facilities should be maintained in a library accessible at run time. This allows
smooth integration of each function within a requestor. It also allows modular expansion of
functions within an application with little or no impact on current running functions.

(This approach to implementing an application requestor ensures the reaction time necessary to
effectively handle user demand. Moreover, it allows the system to expand in small, well-
controlled increments, thus increasing the integrity of the overall system.

Server Procedures

The back-end component of any application is the Data Base server. Back-end functions must
be handled with care, for they maintain the most critical aspect of any application, the Data
Base. One of the principal advantages of this design concept is that it greatly simplifies the
implementation. Server procedures can be designed and tested in the familiar — read a record,
update the Data Base and Write a reply — fasion. Input transactions can be read from a disc file !
or magnetic tape. Test Data Bases can be created for the purposes of testing, and server
procedure testing can take place independent of the overall application implementation.

The following diagram illustrates the two step integration of any Data Base server:

DATA BASE SERVER DEVELOPMENT AND IMPLEMENTATION
STEP ONE — TEST THE DATA STEP TWO — INTEGRATE THE |
BASE SERVER IN DATA BASE
A TOTALLY SERVER IN THE |
BATCH LIVE
' ENVIRONMENT ENVIRONMENT
BATCH OPERATOR
REQUEST TERMINAL
FILE
REQUESTOR
SERVER SERVER
TEST CORPORATE
DATA BASE DATA BASE

FIGURE 9. INSTALLING A DATA BASE SERVER

The integration of both REQUESTORS and SERVERS into the live system should be handled
via the APPLICATION MONITOR. The application monitor should be able to logically start
{(. and stop any component within the system.

13

V. The TANDEM Transaction Processing System

TANDEM offers a total environment for transaction processing. The GUARDIAN OPERAT-
ING SYSTEM was specifically designed with NonStop transaction processing in mind. The
FILE SYSTEM within Guardian allows separately running processes (in the same CPU,
different CPUs within a single system or different systems with an EXPAND network) to
communicate with each other at a simple READ/WRITE level. Guardian allows one logical
computer system to incorporate up to 16 processors. The EXPAND network allows the intercon-
nection of as many as 255 logical systems within a network and still maintains the simple
READ/WRITE level communications between application processes. With this as a base,
TANDEM has introduced a new product called PATHWAY. PATHWAY allows a user to take
advantage of the unique TANDEM architecture, and it significantly reduces the time necessary
to develop a transaction processing system. The functions enclosed within the inner box are

addressed by the PATHWAY product.

& HUMAN INTERFACE
S/ / TO THE SYSTEM
S VIA A TERMINAL

TERMINAL » (TERMINAL
INTERFACE /O HANDLER

\

FIELD » (DATA CONSISTENCY
VALIDATION CHECKS)

\

DATA (DATA CONVERSION AND
MAPPING 3 FORMATTING)

\

TRANSACTION » (APPLICATION AND
CONTROL TRANSACTION FLOW)

\
A\

DATA BASE |, (ACCESS/UPDATE
SERVICE OF THE DATA BASE)

\
<

DATA
BASE

FIGURE 10. THE PATHWAY SYSTEM WITHIN THE TRANSACTION PROCESSING SYSTEM MODEL

PATHWAY Product Overview

The goal of the PATHWAY product is to simplify the design and development of transaction
oriented applications. The PATHWAY product addresses four of the major components neces-
sary to implement a transaction oriented application.

1. Terminal Interface (Multi-terminal I/0 handler)
2. Field Validation (Data consistency checks)
3. Data Mapping (Data conversion & formatting)
4. Transaction Control (Application & transaction flow)

The fifth component (Data Base Server) can be implemented using any of the TANDEM
standard languages — COBOL, FORTRAN, TAL, or MUMPS.

The PATHWAY product has the following components:

® [nteractive Screen Builder

Allows the user to build screens interactively at a terminal.

® Screen COBOL compiler

A COBOL-like terminal oriented language. The compiler creates and maintains a pseudo code
library accessed by the Terminal Control Process at run time.

® Terminal Control Process

Interprets the pseudo code-library created by the Screen COBOL compiler and performs the
four major application functions mentioned above in a NONSTOP environment.

® Application Monitor
Responsible for creating, monitoring and altering the application run time environment.

® AMCOM - Application Monitor Command Language

The mechanism by which an operator may communicate with an active Application Monitor.

If we assume a successful installation of a transaction oriented system, we now must deal with
EXPANDABILITY. By using the unique TANDEM architecture, an application can be written
and then expand smoothly as the demands placed on the system increase. Most successful
systems first expand because of an increase in the number of users who need to use it. Figure 11
shows the addition of new users and interjects a new question: “Do I run more than one copy of

the total application or do the users share the application?” Figure 11 shows users sharing the
application. It should be noted that TANDEM's terminal control process, a part of PATHWAY,
handles all the multi-tasking between more than one terminal of the same type. In Figure 11,
notice that the application remains unchanged even though the number of users Increases,

REQUESTOR SERVERS

w*
\ b
3 ~
: | «—» ORDER ENTRY ADD
4 REQUESTOR NEW ORDER
’ -~

UPDATE ORDER

FIGURE 11. ADDING USERS TO PATHWAY SYSTEM

In a successful application, the addition of users can degrade system performance. At that point,
most systems go through either a major change or a rewrite. The unique TANDEM approach
offers an alternative,

To alleviate the problem of increased user load, the system must be able to distribute the
application into more than one physical process. This is the key to expandability.

The description of the system to this point views the system as one self-contained application.
However, all expansion limitations can be eliminated if one logical application can comprise

The following diagrams illustrate the various ways of functionally distributing the application to
allow f:l[t‘xpilllﬁinﬂj

® Terminal operators can be connected to multiple requestors running the same application.
® Multiple copies of the same server can be created to increase throughput.

® Sharing a server between more than one application requestor.

REQUESTORS SERVERS

ORDER ENTRY
REQUESTOR

ADD NEW CORPORATE
ORDER F DATA BASE

ORDER ENTRY —»(UPDATE ORDER)<’

REQUESTOR

FIGURE 12. SYSTEM EXPANSION BY ADDING REQUESTOR

Notice that the users are distributed between two requestors and that the requestors share the
server functions. Therefore, the total number of servers remains constant even though the
system includes multiple requestors.

17

Another expansion problem is caused by increased demand on any one server. This problem can
be overcome by duplicating a particular server to create what is known as a “SERVER CLASS".
For example, if the majority of user demand on the system is to run credit checks, using a single
server for credit checking could create a bottleneck and impact the total applicaton. This
bottleneck can be eliminated by creating another copy of the credit check server and distributing
the requests between the two copies. Figure 13 illustrates a server class;

REQUESTORS SERVERS

U

SERVER
CLASS

ORDER ENTRY
REQUESTOR

ADD
>\ NEWORDER)) §

ORDER ENTRY

REQUESTOR | UPDATE ORDER)¢——

Y

/i.

[
/
(

e e e =D

CORPORATE

DATA BASE

FIGURE 13. SERVER CLASSES

Figure 14 illustrates the addition of a new application. Notice that even though there are two
unique applications, the requestors can still share servers or server classes.

REQUESTORS SERVERS

ADD NEW
CUSTOMER

UPDATE A
CUSTOMER

ORDER ENTRY
REQUESTOR

ADD
NEW ORDER

ORDER ENTRY

P R
REQUESTOR UPDATE ORDER)

CORPORATE
DATA BASE

FIGURE 14. ADDING A NEW APPLICATION REQUESTOR

Figure 14 shows that both the order entry and customer entry applications need to be able to
check credit. The credit check server class is therefore shared by both applications, yet each
application also has its own private servers to fulfill the individual requirements of a particular

application.

®”

————T

One of the major reasons for distributing an application into multiple processes was for expanda-
bility. Figure 15 illustrates the distribution of application functions within a local TANDEM
system. Terminals, Requestors and Servers may be distributed among multiple CPU’s,
maximizing parallel operations and increasing throughput. It should be clear th
forces the system to grow that no design changes will be necessary.

at when demand

s (

.
&y)
~ CPU O
. H'l._,, \, | |, (REQUESTOR)
&y A |
- \ ey
' . - J
= >
. " CPU 1
i/)
- ._ | —> REQUESTOR i
__.

CPU 2

DISTRIBUTED — Terminals

Requestors
Server:s CORPORATE
Data Files over physical volumes DATA
: BASE
with NO DESIGN CHANGES

FIGURE 15. DISTRIBUTED LOAD BALANCING ON A LOCAL TANDEM SYSTEM

20

;—4

("

The next step in distributing applicat

communicating between processes within the

Write). Therefore, distributing application functions over

PAND does not impact the original design. Figure 16 illustrates the

functions over a simple EXPAND network.

ion functions is over a network., The 1
TANDEM environment 1S consistent (Read
a TANDEM network using EX-

nechanism for

distribution of application

R<
R

—

REQUESTOR @
A

SERVER 2

k\})

NEW YORK SYSTEM e

.

S
COMMUNlCATION
LINE

CHICAGO SYSTEM

DATA

BASE

LOCAL
CHICAGO
FILES

%’ TRUE DISTRIBUTED APPLICATIONS with [EO DESIGN CHANGEgl

* | REQUESTOR SERVER 3
B8

STRIBUTED LOAD BALANCING ON A SIMPLE EXPAND N

FIGURE 16. DI

ETWORK

In summary TANDEM offers a total solution to transaction processing:

RELIABILITY:

NonStop transaction processing assures continuous system availability and data integrity

INSTALLABILITY:

PATHWAY offers a quick and easy way of developing transaction oriented applications, which
significantly reduces the cost of applications development.

FLEXIBILITY:

PATHWAY offers the ability to make on-line additions, modifications, or deletions of transac-
tion types, screen characteristics, applications, and terminals.

EXPANDABILITY:

The combination of the GUARDIAN Operating system and the EXPAND network offers true
distributed processing, which allows applications to run in any processor in any system without
regard for the physical location of terminals or the data base.

MAINTAINABILITY:

Because of the structured approach taken by the PATHWAY product, modules may be written
and implemented in small, single threaded, and easy to understand components. Therefore, the
maintenance task will be kept to a minimum.

