
,

THE SOURCERER

S II ltr 000 0

L.t /J, rH 0 ~ '30

f a I), l ,...01"'1 oc;JO H ';t.

•

L-___ 790 HAMPSHIRE ROAD, A + B • WESTLAKE VILLAGE, CA. 91361 • TEL: (805) 497.0733 ~

(

THE SOURCERER

The SOURCERER is a comprehensive dissassembler designed to
convert 8080 object code files to source code files, which are
easier to understand and modify. The code is systematically
converted to INTEL standard mnemonics, and the created file is
compatible with most 8080 assemblers, including ALS-8, Imsai,
ESP-1 and others based on the Processor Technology assembler. To
achieve this, the SOURCERER operates in two separate passes, one
to form a symbol table and the second to convert the code to
mnemonics. The symbols are placed at the beginning of the
appropriate lines as the second pass progresses. For maximum
versatility, the two p~sses are controlled separately. For
several of the formats, the symbols are simply hex addresses.
In those formats intended for use in an assembler, the symbol is
preceded by an H, (example - H237F) so that the assembler will
interpret them as labels, not numbers.

The SOURCERER forms the symbol table by e: ; ~mining all the codes
in a block of memory (specified by the command), collecting the
last two bytes of all three-byte codes, sorting these 16 bit
addresses in numerical order, and storing them in a file for
future use. It is important to note that all these codes are
treated as labels, even though some may be constants. During
reassembly, the constants may cause errors, but these must be
located the hard way; there is no way to distinguish a constant
from a label in an object code file. A similar problem occurs
with data tables buried in the object code; the SOURCERER will
treat these as commands and attempt to decode them. These must
be located and output using the D command (see description of
commands below) to prevent errors. Finally, the assembler will
require some labels that the SOURCERER will not locate. These
usually occur when a data table is used for command decoding.
It will be necessary after forming the file to locate these
areas and type in the required labels.

Despite the limitations listed above, the SOURCERER is a very
powerful tool. The author has used it to create source files
from object codes as long as 5000 bytes, and has used these
files to modify and reassemble programs both at the same address
as the original, and at new locations. Typically, a 1000 byte
object can be converted to source in one evening's work,
starting with very little knowledge of the program. I
recommend, however, that the SOURCERER be used on some of your
own software, preferably short programs, to get the necessary
familiarity wi th its operation.

COMMAND DESCRIPTION

There are 12 commands, consisting cf one letter each. Many of
the commands require addresses; these are typed directly
following the commands in hexadecimal notation. Commands are
executed by the carriage return, and may be edited or aborted up
to the time of execution.

page 1

(

Prompt string - when properly loaded, the program will respond
with a triangular bracket and space (>) .. This signifies that
the program is awaiting a command.

Entry and editing - Commands are typed in as single letters. If
a non-existent command letter is typed, it will be rejected by
the program. The rejected letter will be printed followed by an
underline character (hex 5F), which will erase on most video
terminals. Proper commands will not be erased. If address
fields are to be typed following the command, they must be in
hex. Any non-hex character will ' be rejected. Leading zeros are
not required. If more than four hex characters are typed, only
the last four will be used. Any character may be erased by
typing an underline (5F). Address fields are separated by
spaces, but the space between the command and the first field is
optional . . Any command may be aborted by Control-C ~ Commands
will be discussed in the order i~hich tney are most likely to
be used.

S BBBB EEEE - Form symbol table. (BBBB and EEEE are the
beginning and end of the code block to be accessed). The symbol
table is formed and stored on this pass through the code. If
there are tables or other non-code entries in the block, these
will be interpreted as code and erroneous entries will be made.
(Examining the symbol table for unusual addresses is one method
for locating tables.)

T - Display symbol table. Outputs symbol table as a series of
hex addresses. 0000 is always output; the dissassembler uses
this value to locate the beginnin g of the symbol table. Table
is listed sequentially, 8 addresses per line.

"l
X BBBB EEEE J - Display cross-reference table. This command lists
every symb~l in the symbol table followed by the address and
mnemonic code of every location that references the symbol.
This is very useful when programs are being modified. However,
when long programs are involved, this command is very slow, and
the user should be aware that long times may be involved. As gn
example, printing the cross-reference table for a 5K program canU
take up to 2 hours. (Note: if a third address field is used
with this command, the first symbol to be listed will be equal
to or higher than this third field.)

F AAAA - Set RAM file location. Initializes the counters for
creating files in RAM. If AAAA = 0, no file will be created. If
F is typed without any addresses, the starting and ending
address of the file will be displayed. Only two commands will
cause a RAM file to be built, D (Data Word) and L (List Format).
Other commands will not affect the RAM area.

o LLLL RRRR - Set location offset. If the program to be
disassembled is not located at it's usual running address, this
command will compensate. LLLL is the address where the object
code is located; RRRR is the address where the code normally
runs.

page 2

(

o BBBB EEEE - Data word format. Outputs code block as Intel
pseudo-op OW. Useful for forming tables for the assembler. This
command and the L command will form files in RAM if the ~ F
command has been used to set a starting address.

N BBBB EEEE - Mnemonic format. This command lists the program
with hex addresses, the hex version of the code, the ASCII code
equivalent, the label, mnemonic, arguments, and data fields, if
applicable. ASCII equivalents for two and three byte codes are
output on the same line. As with all formats (except L), the
listing will appear with all labels, mnemonics, arguments, etc.,
vertically aligned for easy reading. The N command is
recommended for preliminary decoding of a new program.

P BBBB EEEE - Print format. This command dumps code with
decimal line numbers, labels with leading H, mnemonics,
arguments and data fields. Two-byte data fields will have a
leading H to allow referencing to the labels. One-byte data
fields will have a leading zero and a trailing H, so that the
assembler will treat them as hex constants. This format is one
of two that will load directly into an assembler. This
particular format is useful only with short programs, as it does
add a lot of extra spaces. However, it is very easy to read.

L BBBB EEEE - List format. This command is the same as P except
all the excess spaces have been deleted. This command should be
used when dumping code onto paper tape for reload ing into an
assembler. This command is also the principle command for
creating a file in memory.

R DODD II - Reset line numbers. This command establishes the
first decimal line number (DODD) and the line number interval
that will be output with the P, Land 0 commands. Both DODD
and II should be decimal numbers. This command initializes to a
starting value of 1 and an interval of 1.

G AAAA - Goto. Transfers program control to the specified
address AAAA. This is a utility command included to allow
operating several programs in memory simultaneously without the
need for transfering with the front panel switches.

I - Initialize. The SOURCERER is self-initializing the first
time it is accessed. After this first initialization, I must be
used to re-initialize. When I is typed, followed by a carriage
return, the terminal will respond with a message which reads:
TYPE Y TO INITIALIZE. At this point, if a Y is typed, full
initialization will occur. Any formed symbol table will be
deleted, the 0 and F commands will be reset to zero (Offset and
RAM file) and the decimal number counter will be reset to it's
initial value. If any letter other than Y is typed, only the
decimal counter will be reset. (The message is output to
prevent inadvertent loss of the symbol table.)

page 3

{

LOADING AND PATCHING THE SOURtERER

I The SOURCERER requires a dedicated 4K.. tuock of memo-;;] The code
~serf occupies just over 2K, with another short section devoted

to scratchpad, input buffer and stack. The remainder of the 4K
block is used fo symbol table storage. The table is built from
the top down, thus even the smallest table will use the zone at
the end of the 4K block. There is room in the table for about
700 symbols, which is adequate for nearly any program you might
want to disassemble. (A 12K object code will have just about
700 symbols).

1/0 PATCHING

The SOURCERER is delivered with standard TTY 1/0 routines
because this is a starting point that most people are familiar
with. The output routine is located at Hex XOBO. (The X is the
first number of the version that you are uSing; 3 for the 3000H
version, 0 for the 0000 version). Four NOP's follow this
routine; they are available for use if necessary. The input
routine is located immediately following these NOP's at Hex
XOCO. Again, four extra bytes are available after this routine.
Be sure that your output routine does not modify any of the
registers, and that the input character is returned in the A
register.

Immediately following the input routine is the pause routine.
This routine allows dumps or listings to be interrupted by the
spacebar or aborted by control-C. At location XOD2 the keyboard
data port is read (input). This location is delivered with hex
code 01, (the TTY data port); change it to match your keyboard
port. This completes 1/0 patching. The inputloutput and pause
routines are listed on the next page.

SOURCERER EXAMPLE

A short program, designed to run at 3000 hex, has been loaded
into memory at location 1000. The SOURCERER is loaded at 3000,
thus an offset is required. A file of the program will be
formed at hex 4000. The program code is 32 hex bytes long.
Upper case letters represent the output when running the
SOURCERER; lower case comments were added later for clarity.

Hex Dump of program.

1000: 21 00 00 CD 22 30 DB FF E6 40 CA 13 30 CD 03 FO
1010: C3 03 30 DB FF E6 80 C2 2C 30 CD 03 FO 77 23 C3
1020: 03 30 DB 27 E6 08 C2 22 30 DB 26 C9 3E 5F CD 03
1030: FO cg

page 4

> I
TYPE Y TO INITIALIZE

> S 1000 1031

> T

SYMBOL TABLE

0000 3003 3013

> X 1000 1031

0000
1000 LXI H

3003
1010 JMP 101F JM P

3013
100A JZ

l 3022
1003 CALL 1026 JNZ

302C
1017 JNZ

F003
1000 CALL lOlA CALL

> F 4000

FILE 4000 4000

> 0 1000 3000

> N 1000 1031

1000: 21
1003: CD 3"0 3003
1006: DB
1008 : E6 @

100A: CA 0
1000: CD
1010 : C3 0
101 3 : DB 3013
1015 : E6

3022

102E

LXI
CALL
IN
ANI
JZ
CALL
JMP
IN
ANI

Initialize Command. Not re-
quired when first starting.

Form Symbol Table.

Display Symbol Table.

302C F003

Display Cross-Reference Table.

CALL

Set File Starting Address.

Set offset - Program Runs at
Address 3000 Hex

Use N Command for First Pass.

H,OOOO
3022
FF
40
3013
F003
3003
FF
80

Note Hex Addresses,
Hex Codes, ASCII.
Labels are Offset.
No Leading O's or
H's for this Format.

page 5

1017 : C2 ,0
lOlA: CD
101 D : 77 w
101 E : 23 II
101F: C3 0
1022: DB 3022
1024: E6
1026: C2 "0
102g: DB &
102B: cg
102C: 3E > 302C
102E : CD
1031 : cg

> F

FILE 4000 4000

R 0 10

> L 1000 1031

(0000 LXI H,HOOOO
0010 H3003 CALL H3022
0020 IN OFFH
0030 ANI 040H
0040 JZ H3013
0050 CALL HF003
0060 J~P H3003
0070 H3013 IN OFFH
0080 ANI 080H
oogo JNZ H302C
0100 CALL HF003
0 1 10 MOV M,A
0120 INX H
0 130 JMP H3003
0140 H3022 IN 027H
0150 ANI 008H
0160 JNZ H3022
0170 IN 026H
0180 RET
01g0 H302C MVI A,05FH
0200 CALL HF003
0210 RET

> F

FILE 4000 4175

> D 1000 1008

JNZ
CALL
MOV
INX
J~P

I N
ANI
JNZ
IN
RET
MVI
CALL
RET

302 C
F003
M,A
H
3003
27
08
3022
26

A,5F
F00 3

Examine File Length; File
not Formed by "N" Command.

Set Deci mal Line Numbers to
Start at Zero, Count by 10.

List Format. This Format has
Decimal Line Numbers, Proper
Spacing, Leading H, to form
Label From Hex Address Symbols.
Constants Have Leading 0 and
Tr ail ing H. This File Als o
Formed in RAM at Hex 400 0 .

Examine File Le ngth

Dump a Little in DW Format.

page b

0220 DW 00021H
0230 DW OCDOOH
0240 DW 03022H
0250 DW OFFDBH
0260 DW 040E6H

> R 1 Reset Decimal Line Numbers.

> P 1000 1008 Use the Print Format.

0001 LXI H,HOOOO
0002 H3003 CALL H3022
0003 IN OFFH
0004 ANI 040H
>

(

page 7

INPUT/OUTPUT ROUTINES FUR THE SOURCERER

~~BI1 F5 J735 CRT! PUS!-I PSvI OUTPU T ~OUTIt-JE
;J~[)l DA ;hJ P4~ 1"1 Il~
;::~133 Ell S,J ~745 ANI 8 ~ ~1
¢pB5 C2 8 1 ~0 ~751i JNl C~ T! +1
~)l138 Fl ~755 POP P;,vl
Ii~B9 D3 ~ 1 ~76~ OUT III
~)ieB C9 h7b5 RCT
IlI<lB C)l77~ ,. 1+ BYTES .USE.~VED

,J)JBC t!77 5 DS 4 FOR OUTPUT ROuTHIE
lllic0 J<i78)1 ..
p~C,1 DB l1yJ li7~5 KEn I ~~ ~.; I HPU TROUT! ,': E
P,lC2 E6 ~l J<i79yJ A:n ;)1
0iJC4 C2 C~ ~~ 07y5 JNt! KEYB
Il)iC7 Dll ~1 00)1,1 [N ~1

yJ 0 C9 Eb 7F ~805 ANI 7FH
;l0cr, C9 ~~l~ RET
,J)JCC ;iH15 ,. 1+ !lYTES RES::,VED
u0CC ~~2p D;, 4 FOR [:·IPUT ROUTp ·,:
,J,JD~)Jb25 ,.

;J~D" F5 ;J83~ P/\U S E PUSH PSi-, PAUSf ROUTI~:E

;ltDl DIl ,il p835 H : ~1 R FIICl DII TA po 'n
l1 .d D3 Eo 7F 084" ,~~ ! I 7FH

(

