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NO.
COMPUTER DEPARTMENT TECHNICAL INFORMATION BULLETIN 600-82
JBIECT: REF. T1B600-66
Correctio E-600 Series FORTRAN IV Math Library SSI CPB-1083

This Technical Information Bulletin replaces TIB 600-66 and provides changes that
affect four of the FORTRAN IV Math Library programs. Corrections should be made by
pen and ink insertions to the existing pages of the manual. These changes will be
incorporated in any future revised editions of the subject manual.

Instructions for making corrections:

Program Page

; iv

v

CD600D2,001 1
2

CD600D2,002 L B
2

In the 3rd line, lst word, change XPl to read:
FXP1

In the 7th, 8th, and 9th lines, lst words, change
XPl, XP2, and XP3 to read: FXPl, FXP2, and FXP3,
respectively.

In the program title heading, lst word, change XPl
to read: FXP1

paragraph I1I, item 1, change .XPl. to read: .FXPIl,
item 2, change XPl to read FXP1

In the circle at the upper left-hand part of the
page, change .XPl, to read: .FXPl,

In the program title heading, lst word, change
XP2 to read: FXP2

paragraph II, item 1, change XPl to read: FXP1l
item 4, lst line change .XP2, to
read: .FXP2,
item 4, 2nd line, change .DXPl. to
read: .FDXPl,

paragraph III, item 1, lst line change .XP2. to
read: .FXP2,
item 1, 2nd line change .DXPl. to
read: ,FDXP1,
item 2, change XP2 to read FXP2

Find the two circles at the upper left-hand part of
the page.
In the circle with .XP2,, change to read: ,FXP2,
In the circle with .DXPl,, change to read: .FDXPI,



T.1.B. NO:__ 600-82

Program
CD600D2,003

CD600D2, 004

CD600D2,005

CD600D4, 001

In the program title heading, lst word, change XP3
to read: FXP3

paragraph III, item 1, change .XP3, to read: .FXP3.
item 2, change XP3 to read: FXP2

In the circle at the upper left-hand part of the page,
change .XP3., to read: .FXP3,

In paragraph I}I, item 1, change .CXPl. to read: .FCXPl,

In the circle at the upper left—hané part of the page,
change .CXPl, to read: ,FCXPl,

In paragraph III, item 1, change .DXP2. to read: ,FDXP2,
In the circle at the upper left-hand part of the page,
change ,DXP2, to read: .FDXP2,

In paragraph III item 1, line 1, change .CFMP,
to read: .FCFMP.
item 1, line 2, change ,CFDP, to read: .FCFDP,

In the circle at the upper left-hand part of the page,
change .CFDP. to read: ,FCFDP,

In the circle at the upper right-hand part of the page,
change .CFMP. to read: .FCFMP,
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DATE
GENERAL @ ELECTRIC GE-600 SERIES Jan. 1966
NO.
SPNTITRA GRS THENT TECHNICAL INFORMATION BULLETIN 600-66
SUBJECT: REF.
Corrections to GE-600 Series FORTRAN IV Math Library SSI CPB-1083

This Technical Information Bulletin provides changes that
affect four of the FORTRAN IV Math Library programs. Corrections
should be made by pen and ink insertions to the existing pages of
the manual. These changes will be incorporated in any future

revised editions of the subject manual.

Instructions for making corrections:

Program Page

»@% " Fxel

v In the 7th, 8th, and 9th lines, lst words, chan
XPl, XP2, and XP3 to read: FXPl, FXP2, and FXP
respectively.
CD60 Dl;OOl L In the program title heading, lst word, change
XPl to read: FXPl

, "iii) In the 3rd line, lst word, change XPl to read:

e A ‘%:‘/ﬁl

5

DZ paragraph III, item 1, change .XPl. to read: .FXPl.
item 2, change XPl to read FXPl

2 In the circle at the upper left-hand part of the

page, change .XPl. to read: .FXPl.

CD600D2.002 1 In the program title heading, lst word, change

XP2 to read: FXP2

paragraph II, item 1, change XPl to read: FXPl
item 4, 1lst line change .XP2. to

read: .FXP2.

item 4, 2nd line, change .DXPl.to

read: .FDXPl.

paragraph III, item 1, lst line change .XP2. to

read: .FXP2.

item 1, 2nd line change .DXPl. to

read: .FDXPl.

im 2 Change xXP2- & TXPZ-
2 Find the two circles at the upper left-hand part

of the page.

In the circle with .XP2., change to read:

« FXP2.,

In the circle with .DXPl., change to read:

. FDXP1.



T..B. NO;___600-66 SH_2  of SH_2
Program Page

CD600D2.003 1

2

b

CD600D2.004 -" 1

2

(4
CD600D2.005" 1

CD600D4.001 1

1 —_—
b one G M R Aldwe A

In the program title heading, lst word, change
XP3 to read: FXP3

paragraph III, item 1, change .XP3. to read:
. FXP3.

item 2, change XP3 to read: FXP2

In the circle at the upper left-hand part of the
page, change .XP3. to read: .FXP3.

PR 5 y Chiwy  UD? WK BXPZ = "
In paragraph III, item 1, change .CXPl. to read:
.FCXP1.

In the circle at the upper left-hand part of the
page, change .CXPl. to read: .FCXPl.

Purc. . E-;,L"_-_T. . L{,t_:-'_-__I-‘ _'\‘51.-;'.»-~:-; : ‘:..F’ =T i_-:_.‘-\{:":-’-

In paragraph III, item 1, change .DXP2. to read:
. FDXP2.

In the circle at the upper left-hand part of the
page, change .DXP2. to read: .FDXP2.

In paragraph III item 1, line 1, change .CFMP.
to read: .FCFMP.
item 1, line 2, change .CFDP. to read: .FCFDF

In the circle at the upper left-hand part of the
page, change .CFDP. to read: .FCFDP.

In the circle at the upper right-hand part of the
page, change .CFMP. to read: .FCFMP,
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DATE

GENERAL @ ELECTRIC GE-600 SERIES August 1965

NO.
CRMPUTER DEPARTMENT TECHNICAL INFORMATION BULLETIN 600-33
SUBJECT: REE.
Corrections to GE-600 Series FORTRAN IV Math Library CPB-1083

Please insert the attached page in your FORTRAN IV Math
Library manual,
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PREFACE

The FORTRAN IV Math Routines described in this manual are part of an integrated programming
system available for the Compatibles/600. The numbers assigned to the writeups are the same
as those assigned to the actual programs which they explain, The numbering system is des-
cribed on the following page,

As is true of all programs for the GE-600 Series, The FORTRAN IV Math Library Routines
are upward compatible, Any program described in this manual can be executed by any central
processor in the GE-600 Series of computer systems,

The FORTRAN IV Math Library Manual is distributed in loose leaf form to facilitate the in-
corporation of additions and changes, As soon as new programs are completed, corresponding
writeups will be made available to users, When changes become necessary, change pages will
be distributed. Revised pages will be identified by the date at the top of the page, and revisions
within pages will be identified by a bar in the margin beside the sentence or sentences changed.

@E = 6@@ gE [E [I ES PROGRAMMING ROUTINES
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NUMBERING SYSTEM

The FORTRAN 1V Math Routines included in this publication are each assigned a number in
) accordance witha numbering system used for all 600-Series programming routines, For example,
I »XP1=-Exponential--Integer Base and Exponent is assigned the number CD600D2,001, This
—' number is described to illustrate the numbering system,

€D600D2.001 The last three digits, which always follow a decimal point, make a sequential

listing of the routines in the order they are made available to the Program
Library, The sequence is within the classification of the number and letter
to the left of the decimal point,

The digit before the decimal point makes a grouping of routine types within
the alphabetic classification described in the following paragraph, The Math
Routines are classified in eight categories:

Programmed Arithmetic

Elementary Functions

Statistical Routines

Operations on Matrices, Vectors and Simultaneous Equations

Polynomial and Special Functions

Curve Fitting and Other Approximations

Operations Research

Numerical Integration and Differentiation and Solutions of Differential
Equations

P—JO’!U‘I;&WNH

The alphabetic letter in the center of the number classifies the routines according
to the following list:

Diagnostic Routines
Service Routines
Internal Data Manipulation
Math Routines
Input/OQutput Routines
Assembly Systems
Generators
Compilers/Translators
Simulators

. Service Systems

K. Special Systems

0

-

“REQMEUOm

The 600 means that the programs are programmed for use on the GE-600
Series Computer Systems.

The CD means that the program was originated by the General Electric
Computer Department,

BE-600 SERIES PROGRAMMING ROUTINES
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CONTENTS
VERS 104 CD600 P
—— Program No. -
FDMD--Double-Precision Modulus T (5 D1. 001
FDXP--Double-Precision Exponential o D1.002
FDSQ--Double-Precision Square Root D1. 003
FDSC--Double-Precision Sine and Cosine D1. 004
\ FDAT--Double-Precision Arctangent D1.005
~.. FDLG--Double-Precision Logarithm D1. 006
| AT / ,:Xﬁ1‘¥_¥ﬁxponential-—Integer Base and Exponent D2. 001
Y - FXP2--Exponential--Floating-Point Base, Integer Exponent ' D2. 002
° [XP3--Exponential--Real Base and Exponent D2. 003
FDXI --Exponential--Complex Base, Integer Exponent D2. 004
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FATN-—Real Arctangent D3. 003
FSCN——Real Sine and Cosine - D3. 004
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FCAB--Complex Absolute Value 0 2 oa( D4. 002
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-~ 1 Cpddo]
Dy .olo
MADD  Th-dlvex ('---'L.*-T DY
" N/ dd oLl
[}]5 Y P)’ - e | & D d O 7l
mrafy . : y .ol3
r\_« ’r'l Y ” o N Tt i T S \ et o
Vi .‘E'.’-I T SRS FDL =l
T‘f\ N\(_')\/ » / N s "b g“ + 00 T
A VLA L ) e o vl -D L : U.J =

PROGRAMMING ROUTINES

8E-600 SEhiks-



CD600D1, 001
June 1964
Page 1

T e e
FDMD--DOUBLE-PRECISION MODULUS

| PURPOSE
To compute A = X (mod Y) for DMOD(X,Y) in an expression.
II. METHOD

1. HY =0, then A =X. Otherwise, compute
Z = the greatest integer < |§l and give
4

Z the same sign as that of Then A=X-Y * Z,

X
Y

2. A, X and Y are double-precision numbers, with values

127 to 2127—264 inclusive.

from -2
3. A isaccurate to 63 binary positions.

III. USAGE

1. Calling Sequence--CALL DMOD(X,Y)

¥

2. FDMD uses 16 words.
3. No error conditions.
IV. RESTRICTIONS

None.

@ [E o @@@ SE [R |] E S PROGRAMMING ROUTINES




CD600D1. 001
June 1964
Page 2

COMPUTE X (MOD Y) FOR DOUBLE PRECISION X AND Y

MgDo

.AV.'\S‘NE\- = x

Z= greatest
integey £ 2

% = greatest
ih*cgef- 5"2

(2 = -INT($) )

a

Answer =X — Y2

@E“@@@ SERIES PROGRAMMING ROUTINES




CD600D1, 002
June 1964
Page 1

FDXP--DOUBLE-PRECISION EXPONENTIAL

¥e PURPOSE
To compute ex for EXP(X) in an expression.
II. METHOD

1. Use the same method as in FXPF--Real Natural Exponential, CD600D3. 001,
except that 2F o147 log 2 + (F log 2 )2 +o.o. o+ (F log 2 )13
T2 N

2. Xande> are double-precision numbers, with |X| < 88.028
3. eX is accurate to 16 decimal positions.

II1. USAGE
1. Calling Sequence--CALL DEXP(X)
2. FDXP uses 68 {v-c-ard.-s.

3. The error condition is:

FXEM Error #19 if [X| > 88.028. Then e~ = X,

IV. RESTRICTIONS

The subprogram FXEM must be in memory.

BE-600 SERIES PROGRAMMING ROUTINES



CD600D1. 002
June 1964
Page 2

COMPFUTE eX FOR DOUBLE PRECISION X

| Answer =0 @

Y= X% leg,€ Call ,FXEM.

W Eieor #19
T = greatest Answer = X
integer §

Fe2Y=I @

1F= |+A|!|+"'+“ﬁ)(”

= \

Answerdd a2k

@E a 6@@ g[E lE [| Eg PROGRAMMING ROUTINES
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CD600D1,-003—
June 1964
Page 1

FDSQ--DOUBLE-PRECISION SQUARE ROOT

I. PURPOSE
To compute \[Efor DSQRT(X) in an expression.
I1. METHOD

1. Use the same method as in FSQR--Real Square Root, CD600D3. 006

except that P, = 1 * (P, + F) and /X = A1« (P, + E).

: Py P3
2. Xand Jfa.re double-precision numbers, with values of X from
0to 2l a1, 264 inclusive.

3. ﬁis accurate to 18 decimal positions.

I1I. USAGE
1. Calling Sequence--CALL DSQRT(X)
7/

2. FDSQ uses _So’gvords.

3. The error condition is:

FXEM Error #22 if X < 0. Then VX = |X] .

IV. RESTRICTIONS

The subprogram FXEM must be in memory.

@E. 6@@ gEl}% ﬂ ES PROGRAMMING ROUTINES




CD600D1. 003
June 1964
Page 2

COMPUTE (X FOR DOUBLE

Answer = 0

GE-G00 SERIES

PRECISION X

ERR

Call

Errer #1323

.FKE:1>_) X =

BEGIN

ItEXPQnng- of X
F= Mantissa of X

N
Answer=2'% (P; t_F;)

Is I even? F = F
No £
Yes
v
H= Z_1I H = I=|\
- 2
v N
P°=Ei_ +12.. Pﬂ = F""_:i..
b 4
-
ﬂ:lﬁ(?o‘i‘l_:)
fo

PROGRAMMING ROUTINES




CDB00D1-004
June 1964
Page 1

‘I

FDSC--DOUBLE-PRECISION SINE AND COSINE

PURPOSE

To compute sin X or cos X for DSIN(X) or DCOS(X) in an expression,
where X is in radians.

METHOD

1. Use the same method as in FSCN--Real Sine and Cosine, CD600D3. 004,
with the following exceptions:

a. Donot make X < 1 a special case. Use g instead of 0.3 as the
256 2
breakpoint,
b. Use a Taylor Series approximation instead of a Continued Fraction:

sinX=X—X3+§§-... orcos X =1 —ﬁd-_)_é—...

B & 2 i
Include enough terms in the series until)_(n_ < first term.
T
(When first term = 0, include only the first term in the series.)
18
10

2. X, sin X, and cos X are double-precision numbers with |X| < 254.

3. The answer is accurate to 18 decimal positions.

USAGE

1. Calling Sequence--CALL DSIN(X) for sin X
CALL DCOS(X) for cos X

1) T e

2. DSCN use/szgﬁ'words. (2(/

3. The error condition is:

FXEM Error #23 if [X!Z 254. Then the answer is 0.

RESTRICTIONS

The subprogram FXEM must be in memory.

@ Ee @@@ gE R [ [ES PROGRAMMING ROUTINES



CD600D1, 004
June 1964
Page 2

COMPUTE SIN X OR COS X FOR DOUBLE PRECISION X

DSIN o e o

A lOla
X=X+T
2
M = |X|
+
Y=-M*
Coll .FXEM.
Errovr #& 213
/
LSAP
I = greatest Answer =0 T =RY Answer = Sy
infeger £ M Sa
kg
Is I even? RETURM
Yes <
Na 2
] | |
X= -X 53 = Sa'l"T Answer = —Sa
v a\l
S‘ = S‘ +8 @
M= M = Ism
W
& Sz = SJ RS S:

@ED @@@ gEIE I] Eg PROGRAMMING ROUTINES



CD600D1. 005
June 1964
Page 1

FDAT--DOUBLE-PRECISION ARCTANGENT

PURPOSE

To compute the principal value of arctan X or arctan Y (in radians) for DATAN(X)
or DATAN2 (Y,Z) in an expression. Z

METHOD

1. Use the same method as in FATN--Real Arctangent, CD600D3. 003
with the following exceptions:

a. The intervals are 0°- 7.5°, 7,5°- 22,57, 22.5°~- 37.5°,
37.5°-52.5°, 52.5°- 67.5°, and 67.5°- 82.5°, For 82.5°- 90°,
compute 7 - arctan 1 , where arctan 1 is in the first interval.

2 X X
b. For 0°-7.5°,T=AL6*X. 0therwise,T=ALI-BETAI.
GI+X
= = 2
c; a.rctanX-NI+ Clz*T ,whereC14-—B+T,
* =
C12" C14 - Cg
X 2 . 2 _ 2 -
C=By+T,Cy=By+ T, Cy=Bg+ T, Ce=Cy*Cy- Ay
= N = * = -
Cg =A% CgCqp=C*® Cg, Cra=Cyp-83%Cy

2. X,Y, and Z are double-precision numbers, with values from

- (2127) to (2127 - 264) inclusive. The answer is a double-precision number.

3. The answer is accurate to 16 decimal positions.

USAGE

1. Calling Sequence--CALL DATAN(X) for arctan X
CALL DATAN2(Y,Z) for arctan Y
- _1. - Z
2. FDTN uses 204 words.
3. The error condition is;

FXEM Error #24 if Y=0and Z = 0. Then arctan % =0.

RESTRICTIONS

The subprogram FXEM must be in memory.

@I [E a @@@ gE [% [| ES PROGRAMMING ROUTINES



CD600D1, 005
June 1964
Page 2

COMPUTE ARCTAN X OR ARCTAN_'%_ FOR DOUBLE PRECISION X, Y, AND Z

T:s'/
; - Call . FXEM.
Errov & 24 7,

SPEC

\
\
STIGNX
X:0 V=V
-
>
=
>
START Ancwer = V | RETURN)
\ /
M=|X| N
|
Xl
Set I from arctan M:
0( o7 - 7.5 1(7.5"-22.57 I=0
2(225"-315°),3@15-01.5]
4 (52.5%475%, 5(£15-82.5)
XX2
AL, Y= V- Q
o0 AL AM ==
> E=Ay :
3
+ v N,

- 3
XXX3 Y
C”: BT%:,C:BJ.“-%‘ C‘ - Clﬂ.c‘ -ﬁ" > ,Cﬁ = AH—E\S
C,= B, 15, C= B +21 e = CF 4

PROGRAMMING ROUTINES

GE-600 SERIES




II.

II1.

Iv.

B2 8¢S

CD600D1,-006—
June 1964
Page 1

FDLG--DOUBLE-PRECISION LOGARITHM

PURPOSE

—
-

. To compute log X for DLOG(X) or DLOG10(X) in an expression.

METHOD

1. log,X = log, %P =1+ log, F, where X = 2'*F.

(logyX)
- logeX = loge2 = (10g2X) * (loge2)
=] # loge2 + (longj ¥ (logEZ)

P (log, F)
=1 logez + loge2
=1* logez + logeF
3. Let A = most significant 5 bits of Fandlet Z=F - A
F+A
- 3 11
Then log F=1log A+2* (Z+Z" +...4+2
s s 3 11

4. log X = (logeX) * (logloe)
5. X and log X are double-precision numbers; values of X range from
2—129 " 127 64 . °
027" -

277 inclusive.

6. log X is accurate to 16 places.

USAGE

1. Calling Sequence--CALL DLOG(X) for log X
CALL DLOG10(X) for 16g, /X

f

2. FDLG uses 120 words.

3. The error conditions are:
a. FXEM Error #20if X =0. Then log X =0.
b. FXEM Error #21 if X <0, Then log X = log [X| .

RESTRICTIONS
The subprogram FXEM must be in memory.

@E“ 6@@ SE[E ” Eg PROGRAMMING ROUTINES



CD600D1. 006
June 1964
Page 2

COMPUTE logeX OR logypX FOR DOUBLE PRECISION X

@

Set Set
lo. It

DLgas

Normalize X

ERR2

Call .FXEM. X = =X
Error 21

Call .FXEM.
Evvor #20

UNITY

Ansher = 0 I-‘-EXPG!\E!’\* of X
F=Mantissa of X

[ h:mggl ;an:'ft'can
five bits of F

logg F= |09cA+

Jn(£+2_’+---+-2_"
3 i

i ° Kicawovin Tiiad @
INDIC

log X =log F+Ixlag2 o

° Answer= Bg‘xlh,‘ e RETURN
L]
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CD600D2. 001
June 1964

Page 1

~XP1--EXPONENTIAL--INTEGER BASE AND EXPONENT
S S S S S S S s ]

1. PURPOSE
J : -
To compute I" for I**J in an expression.

1I. METHOD

1. For positive values of J, let km. . 'kzk1ko be the binary representation of J, where

0smg34.

m
ThenI'I:I(k{)"'z*k + 4%k, +...+ 2 *km)

1 2
- (R0 1 xidEox .+ )Em

= the product of those powers of I above for which kn =1, where 0 < n < m.

2. For negative values of J, IJ =0 if|I|£1. Use the method above with J (mod 2)
if|I|= 1.

3 35

3. I,J, and IJ are integers with values from -2 8 to 277-1 inclusive.
4. The algorithm uses integer multiplication (MPY) exclusively.
i IJ is accurate to 35 binary positions.

III. USAGE

1. Calling Sequence--CALL ”. ;{.‘;'IPIH..(I,J]
2. T XP1 uses 52 word-é.r‘ e '
3. The error conditions are:
a, FXEM Error #1 f I=0and J =0. Then IJ =0.

b. FXEM Error #2ifI=0andJ <0. ThenI’ =0.
Iv. RESTRICTIONS

The subprogram FXEM must be in memory.
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COMPUTE I’ FOR INTEGERS I AND J

ERRI

Call

Evrvor

« FREM,
#® |

AI“\SWEI" = O

Call .;F*E.H.
Evrveor # 2

Answer = |

UVAITY UNTIT
T = vemunder = F=1
of T2
= N
N
L& P EVEHN
I= T even? J=3/2 lignoring I=1IxT
Yes any remainder)
No
4
F = Fa#1

PROGRAMMING ROUTINES
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|~ XP2--EXPONENTIAL--FLOATING-POINT BASE, INTEGER EXPONENT

I.

II.

III.

)

PURPOSE
To compute AK for A*¥*K in an expression.

METHOD

1. For positive values of K, use the same method as lanPl--EXpOnential-—Integer Base

and Exponent, CD600D2. 001.

2. For negative values of K, proceed with |[K| as above, and then take the reciprocal
of the result.

35

3. K is an integer with values from -2"" to 235—1 inclusive; A and AK are floating-point

127,127 ,64

numbers with values from -2 2 277 inclusive,

4, AK is accurate to 8 decimal positions for, ; XP2.
or 16 decimal positions for -DXP1. ||

USAGE

1. Calling Sequence--CALL.}tXP2, (A,K) for Real A
CALL,:DXP1. (A,K) for Double-Precision A

2. FXP2 uses 60 words.

3. The error conditions are:
a. FXEM Error #3if A=0and K =0. Then AX =0,

b. FXEM Error #4 if A=02and K < 0. Then AK =0,
RESTRICTIONS

The subprogram FXEM must be in memory.
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COMPUTE AK FOR FLOATING POINT A AND INTEGER K

Answer =0 @

Call - FXEM.
H4

Evvror

Ar\'-_'-.we.r* = | @

Lpgr EVEN

Is M even?
Nes

No
Y

M=M/2 ( ignoring

iy cemainden b

A*:.A*A

F = FxA Answer = F

—
1
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""XP3--EXPONENTIAL--REAL BASE AND EXPONENT
B e S ]

I. PURPOSE

To compute AB for A**B in an expression.

II. METHOD

B (B*log_A)
L A (elogeA) =e €

2. A, B,and AB are real numbers with values from -2

3. AB is accurate to 7 decimal positions.

I1I. USAGE
1. Calling Sequence--CALL.I XP3. (A,B)
‘r-f:‘

2. XP3 uses 50 words. 120 ¢

3. The error conditions are:

CD600D2, 003
June 1964
Page 1

127 , 5127 ,100

2 inclusive.

a. FXEM Error #5if A <0and B # 0. Then AP = |A|B.

b. FXEM Error #6if A=0and B=0. Then AP

=0.

c. FXEM Error #7 if A=0and B «<0. Then AB =0.

V. RESTRICTIONS

The subprograms FLOG, FXPF, and FXEM must be in memory.

PROGRAMMING ROUTINES
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COMPUTE AP FOR REAL A AND B

’ ERR2
o

Answer =0

SPEC

Ancwer = | Call .FXEM, '
Ervar & 7

Call _FXEM.
Error & S
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e ey TS e
FDX1--EXPONENTIAL--COMPLEX BASE, INTEGER EXPONENT

£ PURPOSE

To compute AK for A**K in an expression.
IL METHOD 9 X

1. Use the same method as infXP2--Exponential-- Floating Point Base,
Integer Exponent, CD600D2.002.

2. A is a complex number (X, Y), with values of X and Y from

127,127 ,100

-2 to 2

-23“5| to 235 - 1 inclusive.

2 inclusive. K is an integer, with values from

3. AK is accurate to 8 decimal positions.
III. USAGE

1. Calling Sequence--CALL, FCXP1. (A,K)

2. FDX1 uses 68 words.

3. The error conditions are:
a. FXEM Error #14 if A =(0,0) and K = 0.
Then AX = (0,0).

b. FXEM Error #15 if A =(0,0) and K < 0.
Then AK = (0,0).

1v. RESTRICTIONS

The subprograms FCAS and FXEM must be in memory.
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COMPUTE AK FOR COMPLEX A AND INTEGER K

Call .FXEM.
Error #I14

Answer =(0,0)

Call .FXEM,
Ervor % IS

Answer= (, O)

LPpP ¥ EVEN NEXT
Is M even ? > > H= M/2 (isﬂ:ﬂfl‘l\s A= AXA n
Yes A any remainder) Ccmplex Mede.

@D DISP

=

F=AKF in
Ccmp'.q Mode

Arnswer =F i
Cump\nx Mede

Answer = * in
cnmr\tg Mode
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B e e ]
_FDX2--EXPONENTIAL--DOUBLE-PRECISION BASE AND EXPONENT

I. PURPOSE
To compute AB for A**B in an expression.

II. METHOD _

1. Use the same method as ianPS«-—Exponential--Real Base and
Exponent, CD600D2.003." . -~

2. A, B,and AB are double-precision numbers, with values from

127 5127 ,64

-2 to 2 inclusive.

3. AB is accurate to 16 decimal digits.

III. USAGE
/
\/ 1. Calling Sequence--CALL,/DXP2. (A, B)
2. FDX2 uses 52 words. ] 2 2~

3. The error conditions are:

a. FXEM Error #16if A< 0 and B # 0. Then AP = |a| B,

b. FXEM Error #17 if A =0 and B =0. Then AB =0.

c. FXEM Error #18 if A =0and B <0. Then AB =0.
v, RESTRICTIONS

The subprograms FDLG, FDXP, and FXEM must be in memory.
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COMPUTE AB FOR DOUBLE PRECISION A AND B

ERR2

Call .FXEM.
=17,

Answer = O

SPEC

Call . FXEM,
Error I8

Answer = |

Call .FXEM.
Errer # lb

Coll DLgG
to compute logeh

C=B%log,A

Call DEXP
+o comp.te £

Answer = e
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REAL AND DOUBLE-PRECISION LOGARITHM, BASE 2 (ALGT)

PURPOSE

Real and Double-Precision Logarithm (ALGT) computes A = log, X in a FORTRAN
expression.

METHOD

The double-precision log A X is divided by log 2 and the result returned. Because of the
hardware representation, this result is valid for both double and single precision.

USAGE
ALGT is designed to be used as a FORTRAN IV function:
A = ALOG2(X) for single precision;

A = DLOG2(X) for double precision.

RESTRICTIONS
The argument for ALGT must be = 0,
If X =0, FXEM Error #20 is returned and log X =0.

If X <0, FXEM Error #21 is returned and log X =1log, |XI| .

GE-600 SERIES RTINS
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ARCSINE AND ARCCOSINE (ASIN)

PURPOSE

Arcsine and Arccosine routine (ASIN) computes sin=1X or cos-1X in a FORTRAN IV
expression.

METHOD

The arcsine or arccosine is calculated by computing the complementary function (sine or
cosine), and calling ATAN2 (sin,cos) to get the resulting angle in radians. The computation
is done entirely in double precision.

USAGE

ASIN is used as a FORTRAN IV function in the following ways:
® A = ASIN(X) for real arcsine;
) A = ACOS(X) for real arccosine;
® A = DASIN(X) for double-precision arcsine;

° A = DACOS(X) for double-precision arccosine.

@IE" 6@@ SER [I Eg PROGRAMMING
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TANGENT & COTANGENT (TANG)

PURPOSE

The Tangent and Cotangent routine (TANG) computes tan X or cot X in a FORTRAN IV
expression.

METHOD

Using double-precision arithmetic, tan X and cot X are computed from the trigonometric
identities:

° Tan X = sin X/cos X

° Cot X =cos X/sin X
If the divisor is zero, the largest possible floating-point number is returned.

USAGE

TANG 1is used as a FORTRAN IV function in the following ways:
® A = TAN(X) for real tangent;
° A = COT(X) for real cotangent;
° A = DTAN(X) for double-precision tangent;

° A =DCOT(X) for double-precision cotangent.

RESTRICTIONS

TANG produces FXEM Error #23 if |X| s 254,
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HYPERBOLIC SINE AND COSINE (SINH)

PURPOSE

The Hyperbolic Sine and Cosine routine (SINH) computes sinh X or cosh X in a FORTRAN IV
expression.

METHOD
Sinh X and cosh X are computed, using double-precision arithmetic, from the definitions:
° Sinh X =0.5(e* - e-¥)

° Cosh X =0.5(e* +e-¥%)

USAGE

SINH is used as a FORTRAN IV function in the following ways:
° A = SINH(X) for real hyperbolic sine;
® A = COSH(X) for real hyperbolic cosine;
® A = DSINH(X) for double-precision hyperbolic sine;

o A = DCOSH(X) for double-precision hyperbolic cosine.

RESTRICTIONS

SINH produces FXEM Error #19 if |X| > 88.028.
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MATRIX ADDITION ROUTINE (MADD)

PURPOSE

The Matrix Addition routine (MADD) performs addition of two real matrices.

USAGE

The matrices A and B and the result C are assumed to be stored as i by j matrices in m by
n arrays. Associated with each matrix is a dimension vector of four integers (i, j, m, n).

The calling sequence to MADD is:
CALL MADD (A,IA,B,IB,C,IC,IND) to calculate LC1 = [A] + [B]

with IA, IB, and IC being the dimension vectors of A, B, and C, respectively.

IND is an error indicator set as follows;
° IND = 0 for correct results;
® IND =1 if results would have been larger than m, by n;

° IND = 2 if the dimensions are not consistent.

Consistent dimensions are i, =i, =i, andj, =j, =j..
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MATRIX SUBTRACTION ROUTINE (MSUB)

PURPOSE

The Matrix Subtraction routine (MSUB) performs subtraction of two real matrices.

USAGE

The matrices A and B and the result C are assumed to be stored as i by j matrices in m by
n arrays. Associated with each matrix is a dimension vector of four integers (i, j, m, n).

The calling sequence to MSUB is:
CALL MSUB (A,IA,B,IB,C,IC,IND) to calculate [Cc] = [A] - [B]

with IA, IB, and IC being the dimension vectors of A, B, and C, respectively.

IND is an error indicator set as follows:

[} IND =0 for correct results;
(] IND =1 if results would have been larger than m_ by n_;
° IND =2 if the dimensions are not consistent.

Consistent dimensions arei, =i, =i,  andj, =j, =j..
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MATRIX MULTIPLY ROUTINE (MMPY)

PURPOSE

The Matrix Multiply routine (MMPY) calculates the product of two real matrices.

USAGE
The matrices A and B and the result C are assumed to be stored as i by j matrices in m by
n arrays. Associated with each matrix is a dimension vector of four integers (i, j, m, n).
The calling sequence to MMPY is: .

CALL MMPY (A,IA,B,IB,C,IC,IND) to calculate [c] = [A] x [B]

with IA, IB, and IC being the dimension vectors of A, B, and C, respectively.

IND is an error indicator set as follows:
° IND =0 for correct results;
° IND =1 if results would have been larger than m_ by n_;

o IND = 2 if the dimensions are not consistent.

Consistent dimensions are j, =i,, i, =i,,and j. =j,.
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MATRIX TRANSPOSE ROUTINE (MTRN)

PURPOSE

The Matrix Transpose routine (MTRN) transposes a matrix.

USAGE

The matrix A and its transpose C are stored as i by j matrices in m by n arrays.

with each matrix is a dimension vector of four integers (i, j, m, n).

The calling sequence to MTRN is
CALL MTRANS (A, IA,C,IC, IND) to form [C] = [A]T

with IA and IC being the dimension vectors of A and C, respectively.

IND is an error indicator set as follows:
a IND = 0 for correct results;
° IND = 1 if results would not have fit within an m¢ by n¢ array.

° IND = 2 if the dimensions are not consistent.

Consistent dimensions are i, = j. and j¢ = ic.

Associated

PROGRAMMING
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MATRIX MOVE ROUTINE (MMOV)

PURPOSE

The Matrix Move routine (MMOV) moves a submatrix to another matrix.

USAGE

The sending matrix A and the receiving matrix C are stored as i by j matrices in m by n
arrays. Associated with each matrix is a dimension vector of four integers (i, j, m, n).
The calling sequence to MMOV is:

CALL MMOV (A,1IA,C,IC, IS, JS, IR, JR, I, J, IND) to move an I by J submatrix whose

upper left element is A,,, ,; into an area whose upper left element is C 4, 4s.

IND is an error indicator whose value is 0 for normal execution and 1 if this call would
have stored any elements beyond C , .
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BESSEL FUNCTIONS SUBROUTINE (BESSL)T

PURPOSE

The Bessel Functions subroutine (BESSL) calculates the two Bessel Functions of the first
kind quickly and accurately. This method is particularly adapted to the problem of
calculating more than one order for a given X. For p = NMIN, NMIN+1,...,NMAX, where
NMIN and NMAX are zero or positive integers, and for X > 0, either Jp(X) or Ip(X) is
calculated depending on a parameter ITYPE,

METHOD

The method used by BESSL is discussed in an article by Irene Stegun and Milto.n Abramowitz, *
It consists of three steps for Jp which are:

A. ks chosen the larger of 1.5X and NMAX,
then k = k+10 for sufficient accuracy,
then Jk+2 =0
Jk+1 = g, an arbitrarily small constant which is 0. 1000E-10
in this program.
B. The recursion formula

Jp = 2p+1) Jp+1 - Jp+2

is used to generate Jp for p =k down to p =0.
C.  The results can be normalized, since

Jo+2r  J2m=1,

=1 T ke
therefore a constant ¢ =Jo + 2 11;1=1 J2m
is determined and then

Jp =Jp/c for p = NMIN, NMIN+1,...,,NMAX

The procedure for Ip is essentially the same except that in step B the recursion formula is:

b =281 Hu1 4 a2

TPortions of this routine have been reprinted from C. B. Chandler's "BESSL - Bessel
Functions Subroutine, ' TIS No. 64TIP5, issued by the Telecommunications & Information
Processing Department of the General Electric Company at Schenectady, New York.

*Stegun, Irene A., and Abramowitz, Milton, "Generation of Bessel Functions on High Speed
Computers, ""Mathematics and Other Aids to Computation, 1957, 11:255-257.
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and in step C the normalization is due to:

TIo+2 :):;1:1 Im = e*
k
and therefore the constant ¢ = (To+2 £=1 Im)/e*.
USAGE

The calling sequence for this routine is:

CALL BESSL (ITYPE,X,NMIN,NMAX, BESJI)

where ITYPE = 1 for Bessel Function Jp(X);
ITYPE = 2 for Modified Bessel Function Ip(X);
X = independent variable > 0;
NNNL!.? =0, 1, 2,... giving range of orders of Jp(X) or Ip(X) desired;
BESJI() = a vector where answers are stored in increasing order. The
maximum size of this vector is determined by the user.
RESTRICTIONS

The generated Jp (or Ip) must fall within the limits 10-2% and 10+3%, If either » 10+3

then ITYPE is set equal to zero and control is transferred to RETURN. If Jp (or Ip) < 10-28
then that term is set equal to zero and the program continues. The user can check on
overflow by branching on ITYPE although normally overflow will not occur.
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INTERPOLATION ROUTINE (INTP)

PURPOSE
Using a vector of X values in ascending order and a corresponding vector of Y values, the

Interpolation routine (INTP) finds, by three-point interpolation, the value of Y for a given
value of X.

METHOD
The routine first finds the first X equal to or greater than the given value (X,). If there
is no X meeting this requirement, exit is made with a dummy Y value of plus bits. If X_
is one of the end points of the X vector, the next value is choosen as X_,. The preceding X
is chosen as X, and the following as X,. Assuming a curve of the form

Y =a + bx + cx?

to pass through these three points, the unknown constants a, b, and c can be expressed in

termsofX,, ¥,, X, Y,,X,, ¥,.

Substituting these known values and the given value of X yields a value of Y,

USAGE
INTP is called by a sequence of the form:
CALL INTPL (X,Y,N,XVAL,YVAL)

where X and Y are the vectors required, each of dimension N.
XVAL is the given X value, and the interpolated value of Y will be stored by INTP into YVAL.

RESTRICTIONS

The vector of X values must be stored in ascending order.
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CREDITS

The source material used in this manual is taken from a document published by the General Elec-
tric Telecommunications and Processing Department, titled EIGENJ - A FORTRAN Subroutine to
Calculate EIGEN Systems of Symmetric Matrices by H. W. Moore. Permission to use the origi-
nal document was given by D. L. Shell, Manager, Computer Applications and Processing of the
Telecommunications and Information Processing Department, General Electric Company.

Comments on this publication may be addressed to Technical Publications, Computer Department,
General Electric Company, P. O. Box 2961, Phoenix, Arizona, 85002,
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3. USAGE

CALL AND DIMENSION STATEMENTS
Normally, the subroutine is called by CALL EIGENJ (A, M, N, V, IV, E) where

A is a one-dimensional array containing the elements of the symmetric matrix to be placed
in columns.

N is the order of the matrix A (that is, N = the number of rows)
M is the maximum order of matrix to be solved
V is the NxN matrix of eigenvectors
IV is an indicator; if IV = 0, the vectors will not be included. If IV equals 1, the routine
will calculate all of the vectors.
Only the upper triangle of elements is to be stored. The elements are to be stored in the natural
order--each row I begins with element X,,. For example, the matrix
xll xl’. X13 xldr
XE‘L x?! x‘!a Xﬁl-
Lo X X Koy
xlii X&‘-@ xu x“

is set up as follows
A‘l Aa Aa A.g AH Ae A‘l’ Aa AQ Aw

xll xlﬂ xla x!M xﬂ xaa x?-t x:!a xal x“

Therefore, the length of the array must be N(N + 1)/2.
The vectors are stored in columns in the same order as the values are stored.

The subroutine stores the eigenvalues in the E array. To conserve space, the programmer is
free to overlay the matrix A with the eigenvalues (that is, use A instead of E).

The foregoing discussion shows that the dimension statement should be

DIMENSION A(K), V(M, M), E(M)
where K = M(M + 1)/2 and M is the maximum order to be solved.

GE-G00 SERIES Blony
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As explained in Chapter 2, the statement MAX = 6 (which is two statements above statement 31
in the listing) controls the accuracy of the calculation. For double precision compilation, this

. must be changed to MAX =7. For less accuracy with a moderate increase in speed, MAX can
be set equal to 5. If the value of M = 5 is used, the vectors may not be very good, although
this does not affect the eigenvalues as much.

EXTENSIONS AND MODIFICATIONS

The discussion of the Jacobi method for Symmetric Matrices in Chapter 3 included a proof that
the matrix T in equation (17), T=0,05 .....0O,, was the matrix of eigenvectors. The Program-
ming Considerations discussion noted that the program computed T simultaneously with the de-
velopment of eigenvalues, starting with the identity matrix and successively multiplying on the
right by the orthogonal matrix O,, as shown in equation (48).

Obviously,
T = 0,05 ccuuss 0,1 (49)

yields exactly the same results. However, equation (49) implies that T is calculated by start-
ing with the Identity matrix and multiplying by the O,'s on the left using them in the reverse or-
der; that is, multiplying by the last O, , then by the next to last, and so forth, until O, is used.
This latter approach has two significant advantages:

1 This approach develops the matrix T by columns, and the Ith column is the eigenvec-
tor corresponding to the Ith eigenvalue. Therefore, if only selected vectors are wanted
(like those corresponding to the five largest eigenvalues), they can be developed inde-
pendently, since there is no need to calculate any of the remaining columns. The work
thus saved can be considerable. To do this, the program must save the O,'s and use
them in reverse order; it only uses the columns of the Identity matrix corresponding
to the desired eigenvalues. For each O, , only four numbers need to be saved (name-
ly, I,, J,, CosO,, and SinO,). These can be stored on tape or DSU or punched on
cards.

2. This approach can allow the solution of a much larger matrix, even though all of the

vectors are needed. Since only half of the vectors must be in memory at a given
time, they can overlay the area originally occupied by the matrix A.

EIGENP PROGRAM

EIGENJ is also available as a free-standing program package called EIGENP. Input to EIGENP
is as follows:

One card containing identification alphanumerics
A second card containing further identification
$SIZE/N= IV $

where N and IV are as above

$DATA/I= 4 J= ,LL/BUF= , , . o $ (basic input card.)
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1. GENERAL DESCRIPTION

EIGENJ is a FORTRAN subroutine which calculates the eigenvalues and eigenvectors of a real
symmetric matrix. It uses a modified Threshold Jacobi Method that does not require a square
root and stores only the upper triangle of coefficients. An option to omit the calculation of the

vectors is provided.

Chapter 3 on Usage, and the Programming Considerations discussed in Chapter 2 provide infor-
mation on the modifications of the subroutine to provide more efficient calculation when only se-
lected vectors are needed (such as those corresponding to the 10 largest or 10 smallest eigen-
values).
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2. MATHEMATICAL METHOD

GENERAL INFORMATION ON EIGEN SYSTEMS

The latent roots or eigenvalues of a square matrix A are defined as the values of ) for which the
set of homogeneous equations _ N

AX = X (1)
has a nonzero solution X. Equation (1) may be written

(A-A1) X =0 2)
and in this form it is clear that for a nonzero X the determinant must be zero; that is,

A-2I =0 3)
Explicit expansion gives the algebraic equation

a +a; X +...a A0+ 1) =0 (4)

which clearly shows that any square matrix A with real or complex coefficients has n eigenvalues.

Equation (4) is called the characteristic equation of the matrix A and is always of degree nfor a
matrix of nth order.

If all the roots of the characteristic equation are distinct, then the following results can be
proved:

(a) If the roots are denoted by x,xs . - . A, then for each equation i
(A - X)X, =0 (5)
has only one independent solution, determined apart from an arbitrary multiplier.

(b) The vectors X, form an independent set, so that an arbitrary vector may be e:pressed
as a linear combination of the X;,.

(¢) A matrix T exists such that
TP AT =|A\ 0

(6)

The calculation of the eigenvectors for a characteristic equation with repeated roots is more
complicated and is not discussed here. However, these properties can be shown to hold for
symmetric matrices. Symmetric matrices recur frequently and their eigen systems have impor-
tant special properties. The most fundamental property of symmetric matrices is that all their




elementary divisors are linear. This means that although the matrix may have coincident roots

there is never any deficiency in the number of independent eigenvectors. There is always a ma-
trix T so that (6) applies even when some of the roots are multiple roots. In particular, the ma-
trix T can be chosen so that

T-* = T' (the transpose of T) (1)
which implies TT' = I = T'T.

Such a matrix is called an orthogonal matrix. The eigenvectors corresponding to different values
of ) are orthogonal.

JACOBI'S METHOD FOR SYMMETRIC MATRICES

If T is any nonsingular matrix, then the matrix
8 = ‘T3 AT (8)

has the same eigenvalues as A. For if

AT = X% 9)

T-1AX = AT™X (10)
giving . N

TA(TE2I X = WI3K (11)
or _ _

(T1AT) T = 1 (T2 X) (12)

) is, therefore, an eigenvalue of T~*AT, and the corresponding eigenvector is T™*X. If the ma-
trix T is orthogonal,

TE* = L (13)
T'herefore,
T = IPPRL (14)
The product of two orthogonal matrices O, and O, is itself orthogonal.
For
(0,0:) (0, 0:)" = 0,0.0: Of
= 0, (0:0%)0]= 0,0; =1 (15)

Jacobi's method depends on the choice of a sequence of simple orthogonal matrices Q, such that

A, =0l ...0l0f AO,0,. . .0,  =diagonal matrix (16)

3

The roots of each of the A, are the same as the roots of A, so that, when the process has been
continued until A . is effectively diagonal (thatis,intil all of the off diagonal elements are zero to
machine accuracy), the diagonal elements are the eigenvalues of A.

T =0,0,...0, (17)

T'AT =| X,
A

(18)

GE-600 SERIES sroy



giving - %

TT'AT = T [y
1}\3
. (19)
25 .An
or AT =T |3, i
kz
. (20)
e l“ -

Hence, the columns of T are the eigenvectors of A
Each of the orthogonal matrices O's is chosen to be a simple rotation in the (i, j) plane and i # j.
They take the form — . . =

1 ! J
1
1
i C -S
1
0, = 1 (21)
1
j S C
1
— 1 =
where C = Cos 6and
S = Sin 8
This gives A; = 0] A,_,0,.

A, may be constructed from A,_, in two stages: (1) multiplying on the right by O, and (2) mul-
tiplying on the left by O!. In the first stage, only the ith and jth row can be altered. The (i, 1)
(i, i) (§,1) and (j, j) elements are altered by both transformations.

Denoting the (p, q) element of the matrix A,by al3 gives the relations

agf)= a:i_%os 8 + ap(;_llsin 8 p # i,j (22)
a£:1=—ap{:_%in 6 + agrljcos 8 p #1i,j (23)
ati:"' = alt;’_l)cos 6 + ajt:#l}sin 8 p # i, (24)
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afy = - (54:-} sin 8 + 3-1(:'1) cos 6 p F i,] @s)

af = E{si_;l} cos® & + 28-(::1)005 6 sin & + a?i-l)sma g @e)

a‘:;’ a 3-(31)3 -ab7) sin & cos -a{i?l) sin® ¢ + al{jiﬁcosa B # 3'5'1_1} sin g cos & (27)

aly) = a(';:l) sin® 6 - 23&]’3 sin 6 cos 6 + a(jgl) cos® o (28)
From (26) and (28)

2+ - e D 2

This relation is to be expected since the transformation leaves the roots, and, therefore, the
spur (trace), unchanged. The matrix also remains symmetric since

O! A_, O, =0! Al.,0, =0] A, O, (30)
Equation (27) gives
at:: = aﬁul) (cos® & - sin® @) + sin & cos 8 (a(:;q} - a(’,_,ll) (31)
If 6is chosen so that
tan2 g = 23.1(:—3
(32)

3= =1
3(111‘ 'a(.u )

thenal} = 0. Squaring (22) and (23) and adding gives

[a:?] 2 [aprﬂa = [a S-l)]a % [a pgrl]]"" P # iy ) (33)
Squaring (24) and (25) and adding gives
R L Y D T SRS @)

The sum of squares of nondiagonal terms excluding the (i, j) term has, therefore, remained con-
stant while the (i, j) term will have become zero if 8is chosen to satisfy (32). Jacobi's method
is based on the choice of a sequence of rotations, each of which is chosen to make an off-diagon-
al element equal to zero. The element of the current matrix which has the largest absolute val-
ue should be chosen as the (i, j) term.

SEQUENTIAL AND THRESHOLD MODIFICATIONS

Since a computer takes considerable time to search for the largest current a,,, EIGENJ uses
the Sequential Jacobi Method. This method utilizes off diagonal elements in the natural sequence
to make a,, equal to zero. The order is (1,2)(1,8) e - « (1;0) (2;8) (2;4) . . . (20). » . (n=1,0);
a return to (1, 2); and another sweep. The subroutine also uses a further improvement because
of the following condition: Suppose that at an early stage of the iteration an a,, to be made zero
is already small. Making this zero has little value, since the sum of the squares of the off dia-
gonal terms will not be decreased appreciably. Therefore, assuming that at least 6 sweeps will
be necessary, rotation may be omitted as follows: During the r th sweep, a rotation is omitted
if|la,,|sE.. The set of E, will be a decreasing set such that E .= 0 (to 9 significant figures) for
r>6, so that after the 6th sweep no ""nonzero' locations are skipped.

@E“@@@ gEIE[HES EIGENJ



An appropriate choice is

E, = 278
E: = 273,
Ea = 2"5.
(35)
E, = 2-°,
EE = 2_17.
E, = 2-%,

where a is the largest off diagonal element of the original matrix. This is known as the Threshold
Jacobi Method.

Equation (32) gives
ok = :
Tan 26 = 4 |%| (36)
where a' = + a according to the sign of b. The following is written for convenience:

a' = pand |b| = q so that q is positive.

Then
Sec?28 = 1 + p?/q® (37)
Cos?28 = .z_qf_z (38)
p* t q

Cos 26 = P;—‘i—qa (39)
2 Cos®p =1 +ﬁ (40)
AL + g 41
COSB+J;( = g (41)

and using &
Sin® 26 =P (42)

pa + qz

Sin 28 = (43)
P * gf

Sing= P . =L (44)
2 Cos 8 yp? + ¢?
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MODIFICATION TO ELIMINATE SQUARE ROOTS

Any plane rotations may be applied without altering the eigenvalues. There is no need to bring
an off diagonal term exactly to zero at each stage. If the sin & and the cos gof the rotation are
correctly related and the derived matrix is produced accurately, the derived matrix remains
equivalent to the original matrix. In order to avoid computation as complex as that in (41) and
(44), the angle used is computed from the formula

= a,
2(ay - a“)

tan /2 or (45)

Sign{a, /(a, - a.”)}ta.nﬂ/B

whichever has the smallest absolute value. If the second case is chosen, 6 = + n/4, which is
clearly the largest useful rotation, is used.

This scheme has the advantage that the functions

Sing - 2tang/2 (46)
1 + tan® &/2

1 - tan® g/2 (47)
1 + tan® §/2

and
Cos 8§

may be computed without extracting square roots.

REFERENCES FOR CONVERGENCE, ERROR ANALYSIS

Convergence is proved for this method by D. Pope and C. Tompkins, Maximizing
Function of Rotation. J. Assoc. Comput. March 4 (1957) pp 459-466

2. An error analysis is given by J. H. Wilkinson, Error Analysis of Eigenvalue Techniques.
J.S. 1. A.M. March 1962, pp 162-195
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PROGRAMMING CONSIDERATIONS

Characteristics

Successive derived matrices in the EIGENJ program are symmetric. This feature provides for
an economical storage procedure in which only the upper triangles of the original matrix are
stored and all subsequent matrices are overwritten in the same storage location. Bent lines such
as those shown in the following diagram are considered instead of the rows and columns of the
original matrix and its derivatives. Therefore, n(n + 1) /2 storage locations are sufficient for
the eigenvalue calculations.

6 6 0 X 0 X 06 o0
0 0 X 0 X 0 o0
0 X 6 X 0 0
X X X E X
0 X 0 0
X X X
0 o0
0
The eigenvectors are the columns of the matrix 0,0, Oy= T where Ok is the last rota-

tion performed (see Equation (20)). If A . is the rth dia.gonal element of A, (the ultimate matrix
resulting from the rotation) then the eigenvector corresponding to ) is the rth column of T. The
vectors, when desired, are calculated by starting with the unit matrix I of order n and performing

the rotation on the right; that is,
T = 10,0;. .. 0, (48)
Therefore, the full n x n matrix for the eigenvector must be held in storage and is developed at

the same time as the eigenvalue. The elements of the rotation matrices are discarded when
used. (See Extensions and Modifications Chapter 3 for an alternate procedure)

Calculation

The calculation procedure is as follows:

1. Initialize subroutine and set vector matrix equal to Identity. K is the index for the
A(L J) term.

2. Search for the largest off diagonal element and set threshold. Threshold = E, from
the equation (35).

3. Compute for each successive off diagonal element greater than E,

Sin & from equation (46)

Cos ¢ from equation (47)

a,, from equation (26)

a,, from equation (28)

a,, from equation (31), A(K) =a,,
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4, Reset threshold to E,_, and repeat step 3 until threshold becomes equal to minimum
(Eg).

5. Repeat step 3 until every off diagonal is less than E4.
6. Copy eigenvalues into eigenvalue array.

7. Return

The logic for finding the largest off diagonal element in step 2 and the logic for finding succes-
sive elements greater than E, in step 3 is the same. Therefore, the search is programmed only
once and a switch (GO TO (7,8), IND) on IND is used to proceed to the resetting of AMAX or to
the calculation.

The option of bypassing the vector calculation is provided by the indicator IV. The setting of the
vector matrix to the Identity in steps 1 and 3 is bypassed if IV = 0.

If the input matrix is already diagonal (if off diagonals all equal zero) statement 29 in the listing
provides a quick return with the correct answer.

In the subroutine the variable MAX is set equal to 6. This value controls the size of the mini-
mum threshold, so that it is equal to 2722 (1.16 X 10~**) times the largest off diagonal element
of the original matrix. If less accuracy is needed (say only 4 significant figures in the eigen-
values) and some speedup is wanted, the programmer can set MAX = 5. This will make the
minimum threshold equal to 277 (or 7.6 X 10~°) times the largest off diagonal elements.
CAUTION: The eigenvectors will be considerably less accurate than the eigenvalues since they
are much more sensitive. If this routine is to be compiled in the Double Precision Mode the
programmer should set MAX = 7 which will make the minimum threshold equal to 2725 (or 2.7
X 10722) times the largest off diagonal element.

GE-600 SERIES S
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3. USAGE

CALL AND DIMENSION STATEMENTS

Normally, the subroutine is called by CALL EIGENJ (A, N, V, IV, E) where

A is a one-dimensional array containing the elements of the symmetric matrix to be placed
in columns.

N is the order of the matrix A (that is, N = the number of rows)
V is the N XN matrix of eigenvectors
IV is an indicator; if IV = 0, the vectors will not be included. If IV equals 1, the routine

will calculate all of the vectors.

Only the upper triangle of elements is to be stored. The elements are to be stored in the natural
order--each row I begins with element X.,. For example, the matrix

Xn Xp X5 Xy
Xz X Xos Xpy
Xay Xp Xan Xgy
Xo X Xg Xy

is set up as follows
A, A, A; A, Ag A; A, Ay A, A,

B Bro Xop Woy Ko Big Xio B Ba T

Therefore, the length of the array must be N(N + 1) /2.

The vectors are stored in columns in the same order as the values are stored.

The subroutine stores the eigenvalues in the E array. To conserve space, the programmer is
free to overlay the matrix A with the eigenvalues (that is, use A instead of E).

The foregoing discussion shows that the dimension statement should be

DIMENSION A (K), V(M, M), E(M)
where K = M(M + 1)/2 and M is the maximum order to be solved.
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As explained in Chapter 2, the statement MAX = 6 (which is two statements above statement 31
in the listing) controls the accuracy of the calculation. For double precision compilation, this
must be changed to MAX = 7. For less accuracy with a moderate increase in speed, MAX can
be set equal to 5. If the value of M = 5§ is used, the vectors may not be very good, although
this does not affect the eigenvalues as much.

EXTENSIONS AND MODIFICATIONS

The discussion of the Jacobi method for Symmetric Matrices in Chapter 3 included a proof that
the matrix T in equation (17), T=0,0; ..... O, was the matrix of eigenvectors. The Program-
ming Considerations discussion noted that the program computed T simultaneously with the de-
velopment of eigenvalues, starting with the identity matrix and successively multiplying on the
right by the orthogonal matrix O,, as shown in equation (48).

Obviously,
T = 0,0;...... LI | (49)

yields exactly the same results. However, equation (49) implies that T is calculated by start-
ing with the Identity matrix and multiplying by the O,'s on the left using them in the reverse or-
der; that is, multiplying by the last O, , then by the next to last, and so forth, until O, is used.
This latter approach has two significant advantages:

4 1 This approach develops the matrix T by columns, and the Ith column is the eigenvec-
tor corresponding to the Ith eigenvalue. Therefore, if only selected vectors are wanted
(like those corresponding to the five largest eigenvalues), they can be developed inde-
pendently, since there is no need to calculate any of the remaining columns. The work
thus saved can be considerable. To do this, the program must save the O,'s and use
them in reverse order; it only uses the columns of the Identity matrix corresponding
to the desired eigenvalues. For each O, , only four numbers need to be saved (name-
ly, I,, J,;, CosO,, and SinO,). These can be stored on tape or DSU or punched on
cards.

2. This approach can allow the solution of a much larger matrix, even though all of the

vectors are needed. Since only half of the vectors must be in memory at a given
time, they can overlay the area originally occupied by the matrix A.

EIGENP PROGRAM

EIGENJ is also available as a free-standing program package called EIGENP. Input to EIGENP
is as follows:

One card containing identification alphanumerics
A second card containing further identification
$SIZE/N= ,IV $

where N and IV are as above

$DATA/I= o 2 ,LL/BUF= , , ., . $ (basic input card.)

GE-600 SERIES S

-12-



I and J are row and column numbers, and the remaining blanks are elements of the input matrix.
Elements not read in are set to zero by the program. The packing into the triangular form men-
tioned above is done by the program. (Note that J is never read in less than I; that is, only the
upper elements are entered.)

The end of a case is signaled by a $DATA card with I=0.

Further cases may be read in, starting with the two cards of identification. The end of run is
signaled by a $SIZE card with N=0.

Several test matrices of various orders through 25 have been run. These have been checked with
the results of the other subroutines and with analytical solutions. Those with analytical solutions
checked to 8 significant figures.

Input for one case is illustrated on the following pages. Additional input sheets are furnished at
the back of this manual. A listing of input cards and an output listing are also included in this
section.

GE-BO0 SERIES S
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Input Coding Form (With Sample Data)

EIGENP INPUT
Col
7EST CASE FOR EIGENF
ID CARD 1
ID CARD 2

$SIZE/N=_6 , 1v=_"T$
spata/1=_{_, 3=_/, 1L/Bur=.5)/79022  0GU446%) & [54903559

; $

$DATA/1=<Z , J= R, LL/BUF=:4372372%  T./l0E/724 , 0.0 , 057441047,
~0723§57224 $

$DATA/1=_3 , J=3 | 1L/BUF=L/4&5992 | 0.0 , 5072385723 10155824
. $

spata/1=2 | =4, 1i/BUr=-SHT7028 | ~.0CIKH2EY), T./5690355 ,
" $

SDATA/T= | 1=_5, 11/BUF=.42823729 —/06/7%4) , ,
5 $

$DATA/I=6 ., 3=_b , LL/BUF- [/4554R], ; ; ;
, $

spaTA/1=0F , J=__, LL/BUF= ) , ,
: $

$DATA/I=___, J=__, LL/BUF= " . " .
3 $

$DATA/I=___, J=__, LL/BUF= 5 s > >
" s

$DATA/I=___, J=__, LL/BUF= ; ; ; ;
; $

$DATA/I=___, J=___, LL/BUF= , ; ; )
> $

Note to Keypunch: Discontinue after written §
First two cards must be included, even if blank.
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EIGENP INPUT

Col

Y JEST éaw Fp myesps (Gor)
ID CARD 1
ID CARD 2

$SIZE/N=.—2£, =__%

$DATA/I=__ J=__, LL/BUF= z 3
i $

$DATA/I=—  J=— LL/BUF= s s
; §

$DATA/I=—, J=—r  LL/BUF= = ’
, $

$DATA/I=— J=—  LL/BUF= s ,
N $

$DATA/1=__, J=__, LL/BUF= ) ,
s $

$DATA/I=—, J=—_, LL/BUF= ; )
, §

$DATA/I=__, J=__, LL/BUF= . ,
s $

$DATA/I=—, J=—, LL/BUF= ) s
s $

S$DATA/I=__, J=__, LL/BUF= ; )
: 3

$DATA/I=_, J=__, LL/BUF= 3 g
; $

$DATA/I=__, J=__, LL/BUF= i ’

$

Note to Keypunch: Discontinue after written §
First two cards must be included, even

if blank.

EICENS
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Listing of Input Cards

TEST CASE FOR EIGEN

SEE MANUAL
SSIZE/N=6+IV=TS%
SDATA/I=1,J=1'LL/BUF=.51179022¢ .061142881,.15690355%
SDATA/I=2¢J=2LL/BUF=.43923729¢=,11061734+0,0,-.051441047»=-.072385722%
SDATA/I=3¢J=3+'LL/BUF=1.1485492+0:0+=.072385722:=+.1018582%
SDATA/I=U,J=4sLL/BUF=,51179022¢=+0611428811=415690355%
SDATA/I=5»J=5¢LL/BUF=.43923729¢=+11061734%
SDATA/I=6+J=6+LL/BUF=1.1485492%
SDATA/I=0%
SSIZE/N=0%
s ENDJOB
s EXECUTE
s INCODE IBMF

Output Listing

EIGENVALUES ANU VEUTAKS

TES]

T J &N

LASE FO® EIGEN
SEE MAN-AL

CG2YueYltE-U 4.5y9U54v1e-ul
/oy 1bBaE-Ue 1.1/15%494/E-u0

1 LAMBUA(] .

i D, DU SI0 =y

4 z.%.104Y1¥~=-U1

) 1. 28307 Wi

“ 2.¢999%¢d%~-41

= <.l d702 -1

€ L,.1€2.337.= U

J Etlu) ECl.d+%) tllsdec) EllsJd+3) Ellsg+a)
1 4.730uvlube= -S.1493 /908~ ! 1.99145YbokE-y1 -t.3344141-t-Us 5.U0498yU20E-u:
I DuzcevYeyndk-=ul D.9/28u28B3F-ul —c.ebYee /4 E-u/l =3.9990bDE-u: =4.70909261E-U1
1 =7.89£02¢¢2E~0 deUuruflde-ui G.Y9Z2%UY0saE~uy E.3/O%000. k~Ur =1.17/19%Y354E-y
1 8.73%4U%326E-, S$.:9937 /18 =u s PL9Y184uD<2E-Ur 019421 0U4E-U: S U89/ 9976k-u
]
1

H.r s Y999~ 2.-223U2498F=y CecDY23iElE~ue =
L.2UU alUYE~-0D - Y2Y4YY o -uL

(I ¥

/e 0323 1LE- 0/

EClsoen)
1.200614834E-01
-1l.23840298t-U1
6. B494D3F~uiL
-1.260148B18c-U:
-1.2384029<4t ~v1
6. c164232F-U




APPENDIX A
PROGRAM LISTING

3 IDEHT  AAVIGE +FORTRANETGENP EIGP0000
% OPTION  FORTRAII GO EIGP0OO10
% FORTIAM LSTOU»DECK + STAH EIGP0020
% 1HCOVE  IRMF EIGP0030
*ETOENP EIGEN PROGICAM EIGPO040
v CUBUONY + LA DATE 05/05/65 EIGP0OS0
DIMERSTION V12001200 0AC7260) o E(120) f NAME (12) # ID(12) 1 BUF (6) EIGPO060
LOGICAL IV EIGP0070
MAMELIST/STZE/Ne IVZUATAZT v Jr BUF rLL EIGP008O

1 WRITE(602) E16P0090

2 FOKMAT(26H1 EIGENVALUES AND VECTORS) EIGP0100
READ 3+ HAMF EIGP0110

READ 310 EIGP0120

3 FOKMAT (12A6) EIGP0130
WRITE (6¢3) HAME EIGP0140

WRITE (60 3) 1D EIGPO150
READ(5¢SIZF) EIGP0160
MRISI4N+3 EIGPO170

IF (N.EQ.0)CALL EXIT EIGP0180

11=Me (M+1) /2 EIGP0190

DO 13 I=1¢11 EIGP0200

13 ALI)=0.0 EIGP0210

5 READ(5¢DATA) ' EIGP0220
IF(1.EQ+0)GO TO 9 EIGP0230

K= (1% (H23=1))/2+J=1i-1 E16P0240

DO 6 L=1sLL E1GP0250
ACK)ZBUF (L) EIGP0260

8 K=K+1 EIGP0270

60 TO 5 E1GP0280
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9 CALL EIGENJ(Ar120+NeVeIVeE) EIGPU290

WRITE(6¢10) EIGP0300

10 FORMAT (23H0 1 LAMBDA (1)) EIGP0310
WRITE(6011) (I+E(I)sI=1sN) EIGP0O320

11 FORMAT(I7¢1PE20.8) EIGP0330
IF(«NOT.IVIGO TO 1 EIGPO340
WRITE(6+12) EIGP0350

12 FORMAT(98HO I J E(I.J) E(IrJ+l) E(1eJd+2) EIGPO0360

1 E(IrJ+3) E(Ird+y) E(1:,J45)) EIGP0O370

CALL PMAT(V»12001202NeN) EIGP0380

GO TO 1 EIGP0390

END EIGPO400

5 FORTRAN LSTOU+DECK+STAB EIGJO00O
3 INCODE IBMF EIGJ0010
*EIGENY EIGENVALUE AND EIGENVECTOR SUBROUTINE EIGJO020
* Cp600D4.009 DATE 05/05/65 EIGJO030
SUBROUTINE EIGENJ(A+MSIZE+NNeVeIVeE) EIGJOO4O
DIMENSION A(20100)+V(MSIZE,MSIZE) rE(MSIZE) EIGJOOS0
LOGICAL 1V EIGJO06EO

® EIGENJ FINDS THE EIGENVALUES AND EIGENVECTORS OF EIGJOO70
* A SYMMETRIC MATRIX (A) USING A MODIFIED THRESHOLD JACOBI METHOD EIGJ0O0BO
B ONLY THE UPPER TRIANGLE IS STOREDL EIGJ0090
* DIMENSION A(K=M(M+1)/2)sV(MeM)rE(M) WHERE M=MAXIMUM ORDER EIGJO100
* DIMENSION A(K=M(M+1)/2)esVI(MeM)rE(M) WHERE M=MAXIMUM ORDER EIGJO110
N=NN EIGJ0120

IND=1 EIGJO130
NM2=N=2 EIGJO140
AMAX=0.0 EIGJ0150
NM=N=-1 EIGJU160
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10

11

12

GE-G00 SERIES

IF(«NOT.IVIGO TO 5
SET UP VECTOR MATRIX
DO 3 I=1+N

DO 2 J=1¢N
VIiIrJ)=0.0
VIIrI)=1.0

K=2

poO 28 I=1¢NM

IP=I+1

DO 27 J=IP#N

Y=A(K)

X=ABS(Y)
IF(X=AMAX)27:2716

GO TO (7+:8)IND
AMAX=X

60 TO 27
TRANSFORMATION SETUP FOLLOWS
TI=K+1=J

JU= (U* (N#N=J+3) ) /2=N
ITEST=1
X=al1I)=-aAlJd)
IF(X)10r11,10

X=Y/X

Y= 5%X
IF(ABS(Y)=.414213562)14,11,11
C=.707106781
IF(Y)12+12+13

s==C

GO TO 15

EIGJO170
EIGJ0180
EIGJO190
EIGJ0200
EIGJO210
EIGJ0220
EIGJ0230
EIGJ0240
EIGJ0250
EIGJO0260
EIGJO270
EIGJ0280
EIGJ0290
EIGJO300
EIGJO310
EIGJ0320
EIGJO330
EIGJO340
EIGJO0350
EIGJO360
EIGJO370
EIGJ0380
EIGJO390
EIGJO400
EIGJO410
EIGJO420
EIGJO430
EIGJOLLD
EIGJO450
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RGeS EIGJO46E0

GO To 15 EIGJO4TO

1y x=y*xy EIGJO4B0
C=letX EIGJO490
S=2.%Y/C EIGJOS00
c=(1l.=X)/C EIGJO510

15 x=5*S EIGJ0520
Y=C*C EIGJO530
XY=S%*C EIGJO540
AXY=2+ %A (K)*XY EIGJO550
ZEACTII) *#YHAXY+A(JJ) *X EIGJO560
WEACTI) *X=AXY+A(JJ) *Y EIGJO570
ALK)IZA(K) *:(Y=X)+XY*(A(JJ)=A(I1)) EIGJ0580
AlII)=Z EIGJ0O590
AlJJ)=w EIGJ0600
IF(NM2) 24241 16 EIGJO6E10

le IT=I EIGJ0620
JT=d EIGJ0630

* TRANSFORM A EIGJO6YD
DO 23 M=1rNM2 EIGJ0650
NP=N=M EIGJ0660
IF(JT=-K)20,17r18 EIGJOD6ET0

17 1T=17+1 EIGJ0680
JT=JT+NP EIGJ0690
ITEST=2 EIGJO700

1 IF(IT=K)120:19¢19 EIGJO710
19 IT=IT+1 EIGJO720
JT=JT+1 EIGJO730
ITEST=3 EIGJO740

@E"@@@ QIEERI][ES EIGENJ
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21

22

23
4

26
27

28

21

GE-600 SERIES

X=A(IT) #C+A(JT) %S
ALJTIZA(UTI*C=ALIT) %S
ALITI=X

GO TO (21¢22+23) 2 ITEST
IT=IT+NP

JT=JT+NP

G0 To 23

IT=IT+1

JT=JT+NP=-1

CONTINUE

IF(«NOT.IV)GO TO 27
TRANSFORM V

DO 26 M=1+H
X=VIMeI)*C+V (M J) %S
VIMed)=VIMed) *C=V IMs 1) %S
VIiMeI)=X

K=K+1

K=K+1

SEQUENCE TO ADJUST THRESHOLD FOR EACH SWEEP
GO To (29+:31)+IND
IF(AMAX) 30+ 35+ 30
AT=AMAX

IND=2

F=.25

AMAX=F ®=AT

MAX=6

GO TOo 5

MAX=MAX=1

IF(MAX) 34r 33032

EIGJO750
EIGJO760
EIGJO770
EIGJO780
EIGJO790
EIGJOBOO
EIGJOB10
EIGJ0B20
EIGJOB30
EIGJOBHO
EIGJOB50
EIGJOBEO
EIGJO870
EIGJOBS0
EIGJOB90
EIGJO900
EIGJO910
EIGJ0920
EIGJ0930
EIGJOS40
EIGJ0950
EIGJ0960
EIGJO970
EIGJ0980
EIGJ0S990
EIGJ1000
EIGJ1010
EIGJ1020

EIGJ1030

EIGENJ
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B RESIREFTE E16J1040

AMAX=AT4F EIGJ1050

33 Cc=0.0 EIGJ1060

G0 To 5 EIGJ1070

34 IF(C)33+35:33 EIGJ1080

* COPY EIGENVALUES INTO E EIGJ1090
35 MM=1 EIGJ1100
NM=N+1 EIGJ1110

DO 36 M=1'N EIGU1120
E(M)=A(MM) EIGJ1130

36 MM=MM+NM=M EIGJ1140
RETURN EIGJ1150

END EIGJ1160

s FORTRAN LSTOU»DECK PMATO00O
% INCODE IBMF PMAT0010
*PMAT SUBROUTINE TO PRINT MATRIX PMAT0020
* CD600DY.009 DATE 05/04/65 PMAT0030
SUBROUTINE PMAT(ArMMsNNeNRsNC) PMATO0040
DIMENSION A(MMyNN) P (6) PMAT0050
NROW=NR PMAT0060
NCOL=NC PMAT0070

I=1 PMAT0080

J=1 PMATO090

1 IP=1 PMATOL100
JP=J PMATO110

DO 2 K=1+6 PMAT0120

KK=K PMATO0130
PIK)=A(IrJ) PMATO140

JTJ+1 PMAT0150

GE-600 SERIES Erony.
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IF(J.GT«NCOL)IGO TO 3 PMATO160

¢ CONTINUE PMATO0170
WRITE(Ee4)IP»JP» (PIK) rK=1rKK) PMATO180
4 FORMAT(214:6(1PE16.8)) PMATO0190
G0 To 1 PMATO0200
S WRITE(624)IP»JPr (P(K)rK=11KK) PMAT0210
I=1+1 PMAT0220
J=1 PMAT0230
IF(I.LE.NROW)GO TO 1 PMATO240
RETURN PMAT0250
END PMAT0260
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APPENDIX B
FLOW CHARTS

EIGENP

2

Print Heading

v

Read Name, ID
and Print
Them

v

Read N, IV

5

2%N+3 —P N23

No

Clear Matrix

%

Read I,J,LL
Values

1 Equal Zero?

Store Values
in Matrix

EIGENP

®

GE-600 SERIES sromy

~25-



L2,

Print
EIGEN Values

PMAT
Print Vectors

EIGENP

®
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NN—®N

N=-2—& NM2
0—» AMAX
N-1—8 NM

Vectors Wanted?
No

Store Nth
Order Unit
Matrix in V

O

2—pK
l—21

I+l—pIP
IP—bJ

—q

Ay —pY
Yy ! —ex

EIGENJ

®

EIGEN)
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4 .
Fd \‘
g @—. X—p AMAX _.®
5

K+I-J—» 11
J¥*(2N-J+3)+2-N
—_— JJ

Y/X—»X
SEK—2 Y

Y:.4142135

.707106781—»C

-C—»S5

C—»S

EIGENJ

®
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a3

Y—sX

1. +X—»C
2Y:C—» S
(1.-X)~C—=C

§°—p X
o
SHC =——p XY
24, KXY =t AXY
Ay ¢ FY+AKY+HA, J*X
—»Z
Ay FX-AXYHA) ( *Y
_. w
AK* (Y-X)+XY* (A} 3 =&y )
—
Z—» Ay
W—>A,,

GE-600 SERIES

I—»IT
J—»JT

l—»M

N-M —» NP

EIGENJ

®

-29-
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IT+l1—»IT
JTHNP—> JT

:

set

[ITEST]

IT+1— IT
JT+1 —» JT

et
ILTES

®
3

Agy ¥CHAy  *S —> X
AJL*C“A[; *S—PA‘“
X—> A

o

EIGENJ

®
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IT+NP —» IT
JT+NP —» JT

IT+l —»1IT
JT+NP~1 —»JT

M+1—+ M

®;
3

Vectors Wanted?

Yes

A J
[Va sy *CH+V, , 5 *S
—»X
Vg 5y *C-V, ,1 *S
—>
X—»V, , | for

M=1.N

K+1—» K
J+l—» J

EIGENJ
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K+1=—»K
I+l=—p1

AMAX —b AT

set
IND =
‘ 25 —p F

i AT*F —p AMAX
25— F 't
F*AT— AMAX 33
6 —» MAX 7

0,.0—C

EIGENJ

®
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-32-



C Equal Zero?

Yes

Copy
Eigen Values
from A to E

Eigenj
Out

ZIGENJ

®
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EIGENP INPUT

Col

2
ID CARD 1
ID CARD 2

$SIZE/N=__, IV=__§

$DATA/I=___, J=__ , LL/BUF= : ;
; $

$DATA/I=___ , J=__ , LL/BUF= ; s
5 $

$DATA/I=___, J=__ , LL/BUF= , 5
; $

$DATA/I=___, J=___, LL/BUF= ; s
, $

$DATA/I=__ , J=___, LL/BUF= ’ )
; $

$DATA/I=___, J=__ , LL/BUF= 3 >
> $

$DATA/I=___, J=__ , LL/BUF= ; ’
5 $

$DATA/I=___, J=___, LL/BUF= , ,
s $

$DATA/I=___, J=__, LL/BUF= i ’
5 $

$DATA/I=__, J=__ , LL/BUF= ’ ’
5 $

$DATA/I=___, J=___, LL/BUF= ; ;
" $

Note to Keypunch: Discontinue after written $
First two cards must be included, even if blank.



EIGENP INPUT

Col
2
ID CARD 1
ID CARD 2
$SIZE/N= , Iv= §

$DATA/I= > J= » LL/BUF=

] $
$DATA/I=___, J=___, LL/BUF= ’ ,
b ] $

$DATA /1= ’ J= , LL/BUF=

$SDATA/I= 3 J= , LL/BUF=

5 $

$DATA/I=___, J=__, LL/BUF= ’ ;
; $

$DATA/I=__, J=__ , LL/BUF= ; )
s $

$DATA/I=__ , J=__ , LL/BUF= ’ ,
; $

$DATA/I=___, J=___, LL/BUF= " .
; $

$DATA/I=___, J=___ , LL/BUF= > »
5 $

$DATA/I=__, J=__ , LL/BUF= ‘ ,
; $

$DATA/I=___, J=__ , LL/BUF= ) »
s $

Note to Keypunch: Discontinue after written $
First two cards must be included, even if blank.



EIGENP INPUT

Col

2
ID CARD 1
ID CARD 2

$SIZE/N=__ , Iv=__ §

$DATA/I=___, J=___, LL/BUF= > ’
, $

$DATA/I=___, J=___, LL/BUF= ¢ s
; $

$DATA/I= . J= » LL/BUF=

) §

$DATA/I=___, J=__, LL/BUF= 3 s
s $

$DATA/I=__, J=___, LL/BUF= ’ )
, $

SDATA/I= , J=_, LL/BUF= 5 )
s $

$DATA/I=__ , J=__ , LL/BUF= ; )
) $

$DATA/I=___, J=__ , LL/BUF= > s
, $

$DATA/I=___, J=___, LL/BUF= > >
s $

$DATA/I=___, J=___, LL/BUF= ’ )
5 $

$DATA/I=___, J=__, LL/BUF= i 5
, $

Note to Keypunch: Discontinue after written $
First two cards must be included, even if blank.



EIGENP INPUT

Col

2
ID CARD 1
ID CARD 2

$SIZE/N=___, Iv=__ §

$DATA/I=___, J=__, LL/BUF= ; ;
, $

$DATA/I=___, J=___, LL/BUF= y 4
s $

$DATA/I= 5 J= , LL/BUF= >

) $

$DATA/I=___, J=___, LL/BUF= ; 5
; $

$DATA/I=__ , J=__, LL/BUF= 5 ’
s $

$DATA/I=__, J=___, LL/BUF= " ;
5 $

$DATA/I= , J= , LL/BUF= " >
’ $

$DATA/I=___, J=__ , LL/BUF= s >
, $

$DATA/I=__, J=__, LL/BUF= 5 ’
; $

$DATA/I=___, J=__, LL/BUF= ’ 5
, $

$DATA/I=___, J=___ , LL/BUF= 4 ,
> $

Note to Keypunch: Discontinue after written $
First two cards must be included, even if blank.



EIGENP INPUT

Col

2
ID CARD 1
ID CARD 2

$SIZE/N=___, IV=__ §

$DATA/I=___, J=__ , LL/BUF= ; X
, $

$DATA/I=___, J=__, LL/BUF= y ;
) $

$DATA/I=__, J=__ , LL/BUF= ; 5
, 9

$DATA/I=___ , J=___, LL/BUF= 5 .
s $

$DATA/I=__, J=__ , LL/BUF= ; s
s $

$DATA/I=___, J=__, LL/BUF= > ;
, $

$DATA/I=___, J=__ , LL/BUF= ’ )
; $

$DATA/I=___, J=___, LL/BUF= 5 >
i $

$DATA/I=___, J=__ , LL/BUF= ; >
’ $

$DATA/I=___, J=__, LL/BUF= ; ,
> $

$DATA/I=__, J=__, LL/BUF= g ’
: $

Note to Keypunch: Discontinue after written §
First two cards must be included, even if blank.
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CREDITS

The source material used in this manual is taken from a document published by the General Elec-
tric Telecommunications and Information Processing Department, titled SIMEQ: A Set of FOR-
TRAN Subroutines for Solving Linear Systems by H.W. Moore and R, F, Jordan. Permission to
use the original document was given by D, L., Shell, Manager, Computer Applications and Proces-

sing of the Telecommunications and Information Processing Department, General Electric Com-
pany.

Comments on this publication may be addressed to Technical Publications, Computer Department,
General Electric Company, P. O. Box 2961, Phoenix, Arizona, §5002.
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INFORMATION SYSTEMS DIVISION o [
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[SUBJECT: REF.
Correction to CPB-1167 CPB-1167

Update the GE-625/635 Math Routines SIMEQ, CPB-1167, by
removing pages 11/12 and replace with the attached revised
pages of the same numbers.

It is suggested that this cover sheet be placed in the front
of the manual at the time the attached pages are inserted

in the manual so it may serve as a quick check to indicate
the changes made by this TIB have been incorporated in the
manual.
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3. PROGRAM USAGE

METHOD

A user employing the SIMEQ routines for the calculation of the determinant or the inverse of a
matrix A must head his program with the statement

DIMENSION A(n, n), INTR (n)

where n is an integer not less than the order of the matrix. If the user employs SIMEQ to solve
a system of linear equations having the column vector B as a constant term, he must head his
program with the statement

DIMENSION A(n, n), INTR (n), B (n, m)

where m is an integer equal to or greater than 1. B is treated as a matrix with double subscripts
rather than as a vector or a single-subscripted array, to permit the solution of the system for

M sets of constant terms with only one call for the SOLV subroutine. Of course,m must always
be equal to or greater than M.

Prior to calling any other SIMEQ subroutines, the user must call DECCM to prepare his matrix
for further calculation. This may be done with the statement

CALLDECOM (A, INTR, MSIZE, N)

where A is the name of the matrix, INTR is the name of the auxiliary vector, MSIZE is the di-
mension of A given in the DIMENSION statement, and N is the order of the matrix. DECOM
destroys the original matrix in the process of calculating the decomposed matrix. Therefore,
the user must provide additional storage for his matrix if he needs the matrix for later calcula-
tion. If the user's matrix has been determined lo be singular, a return will be mace to the main
program with the Nth element of the INTR array set equal to 0. Therefore, the user should test
INTR () for C before proceeding further, since the olher SIMEQ subroutines return directly to
the calling program without performing any calculation if INTR (N) is 0. If INTR (N) is 0 upon
return from DECOM, the user may determine the row in which the matrix was found singular by
examining the INTR vector for an element satisfying the relation INTR (K) = K, indicating
that the singularity was discovered in the Kth row of the matrix.

Once the user's matrix has been decomposed by DECOM, any of three subroutines may be
called, subject only to the restriction that no subroutine can be called after INVRS, which
destroys the decomposed malrix in the process ol calculating the inverse matrix. (DTMN and
INVRS are included in the MINV routine CD600D4.007.)

GE-600 SERIES g
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In order to find the determinant of his matrix, the user calls the DTMN subroutine with the

statement
CALL DTMN (A, INTR, MSIZE, N, DET)

where DET is the storage location reserved for the answer. The subroutine returns Lo the main
progrim with the scaled value of (he determinant stored in DET and the integral power of ten by
which DET is to be multiplied stored in INTR (N). This form is choscn to avoid overflow or
underflow in the calculation of exiremely large determinants.

In order to calculate the inverse ol this matrix, the user calls the INVRS subroutine with the
statement
CALL INVIIS (A, INTR, MSIZE, N)

The subroutine returns with the inverse stored in the locations originally occupied by the original
matrix, TFor this reason no other subroutine of SIMEQ, except possibly DECOM, can be called
after INV2S has been called.

SIMEQ will probably be used most often Lo obtain the solutions of systems of simullancous linear
cquations.  Frequently, several such syslems must be solved in one program, all having the
same matrix of coefficients and differing only in the constants on their right-hand sides. The
SOLV subrouline has been arranged to handle this situation efficiently by allowing the various
right-hand sides to be entered as a single matrix each of whose columns represents a right-hand
side of the system of equations to be solved. All of the systems are solved simultaneously with
a single call of the subroutine.

The user calls SOLV with the statement
CALL SCLV (A, B, INTR, MSIZE, ISIZE, N, M)

where B is the name of the matrix of constant vectors, ISIZE is the maximum number of vectors
allowed by the DIMENSION statement, and M is the number of right-hand sides to be solved.

The user stores the right-hand sides in the manner indicated above in the B matrix referred to
in the opening DIMENSION statements.

If there is only one right-hand side to be solved for, M is, of course, set equal to 1. Before
returning to the main program, the SOLV subroutine stores the solutions of the unknowns in the
corresponding positions of the B matrix, destroying in the process the original right-hand sides.

Note that both the right-hand side constants and the unknowns finally obtained must be stored in
a double subscripted array even when there is only one right-hand side and one vector of unknown
quantities.

CAUTION: Do not solve a system of linear equations by first using DECOM and INVRS to get the
inverse of a matrix of coefficients and then multiplying the right-hand side by the inverse to find
the solution of the system. This procedure is far more inefficient and time-consuming than the

more direct method outlined above, using DECOM and SOLV,

GE-600 SERIES ==
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.1. GENERAL DESCRIPTION

SIMEQ consists of an input/output program and four FORTRAN subroutines called DECOM, SOLV,
INVRS, and DTMN. The SIMEQ program uses DECOM and SOLV to solve sets of simultaneous
linear equations. The routines may be incorporated in a user's program for equation solutions,
matrix inversion, or determinant evaluation.

Storage requirements for the entire system, exclusive of the program instructions, consist of n®
locations for the user's matrix plus n locations for an auxiliary vector used by all the subroutines,
In addition, the SOLV subroutine requires n x m locations for the storage of m vectors, each
representing a set of constant terms (a right-hand side) for the system of simultaneous equations
to be solved. The required dimensions are passed to the subroutines via the calling sequences,
eliminating the necessity of recompiling them for use with different programs.

The basic subroutine of the system is DECOM, and it must, in general, be called before any of the
other subroutines may be used. DECOM decomposes the user's matrix into the upper and lower
triangular matrices which are used by the other subroutines for further calculation. The user's
original matrix is destroyed in the process. This subroutine uses the single library function ABS.

The SOLV subroutine uses the decomposed matrix given by DECOM to solve up to m sets of right-
hand sides for the given matrix. The constant terms (right-hand side) of each of the m sets is
destroyed in the process.

The DTMN subroutine calculates the determinant of the user's matrix merely by multiplying to-
gether the diagonal elements of the decomposed matrix. In order to ensure that this product does
not underflow or overflow the arithmetic capabilities of the machine, the determinant is calculated
as a fraction and an integral power of ten.

The INVRS subroutine calculates the explicit inverse of the user's matrix from the decomposed
matrix, assuming that the original matrix is not singular. The decomposed matrix is destroyed
in the process.

GE-G00 SERIES =




2. MATHEMATICAL METHOD

SAMPLE PROBLEM
Although the basic method used by SIMEQ is known as "'left-right decomposition, " or the decom-
position of a matrix into the product of an upper triangular and a lower triangular matrix, it will
be advantageous to explain the method initially in terms of an equivalent method created by C. F.
Gauss, known as Gaussian elimination.
The following discussion covers the solution of the linear algebraic system

Ay, Xy + 83Xe + AyaXa + A3,Xe = by

Ay Xy + AgXp + AgaXy + AzX, = by

A5 X, + AzgXy + AaaXa + AgX, = ba

Ay Xy, + AgpXy + A,Xs + AuXy = by
The Gaussian elimination method uses the first equation, which is known as the pivot equation, to
eliminate x, from each of the other three equations in turn. This is done by dividing the pivot
equation by its leading element, known as the pivot element, multiplying it by the leading element
of the equation from which x, is to be eliminated, and then subtracting it from that equation. In

the example below, the first x, is to be eliminated from the second equation. The procedure gives

. B a a
(a2 - 22) X3 + (@5 = 232 " a,) X, + (Aga = 28 ¢ a39) Xy + (2ge = 22 - ay)x%, =
a3y ayn an

a
a1

That is,
0 +alaxa + 2hi®y + akixy = b,
where

a a
a'g: = aa: = _21. 3.1, and bé = ba 3= _21-. bl'
an 411
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Applied to each of the remaining equations in turn, this procedure results finally in the complete
elimination of x, from all but the first equation:

AyXy + AypXp + A33Xa + AyeXg = by

0 + ab,Xy + alXg + alyxy = bl
0 + ahaXs + aduXs + aluxy = bi
0 1 1 ' = b!

+ ApXa + 24X3 *t AyuX, 4

The second equation may be used as a new pivot equation to eliminate x, from equations three and
four. The procedure used before (that is, dividing the new second equation by its leading element,
multiplying it by the leading element of the equation from which x, is to be eliminated, and sub-
tracting) gives the new reduced system

A, Xy + 23Xz + 233Xg + 23.Xe = by
0 + alaXs + kX + ad. Xy =b]
(¥] + 0 ks a;;xs + 23X, = bl
0 + 0 + allx, + allx, =DbY

Finally, the new third equation may be used as the pivot equation and the same procedure may be
applied to equation four, giving :

Ay Xy + QypXg + Q15X + 235Xy = by

0 + abpXp + 22sXs + 24X = b3
0 + C + azgXs + az;X, = bl
4] + 0 + 0 + a'llx, = bBY

At this point, the system of equations is virtually solved. The only unknown in the last equation
is x,, which can, therefore, be determined. When x, is known, the only unknown in the third
equation is x5, which can similarly be determined and used to find x, from the second equation.
Finally, x, can be determined from the first equation. The above example shows that Gaussian
elimination consists of two basic processes:

(1) A forward course in which the matrix of coefficients is reduced to an upper triangular
matrix,

(2) A return course, or "back substitution, ' in which the unknowns are found recursively,
starting with the last equation, which contains only a single unknown quantity.

i
The pivot element, or leading coefficient of the pivot equation might be 0 or a very small number
and, consequently, unsuitable for use in dividing the pivot equation. Thus, one slight modifica-
tion of the procedure is desirable. As shown above, the first step of the procedure is to eliminate
X ¢ from all equations after the ith. When the pivot element is 0, it is only necessary to choose an
equation after the ith with a nonzero coefficient for x, as a substitute pivot equation and proceed
as before. It can be shown that if at the ith step all the coefficients of x, are 0, the original ma-
trix of coefficients is singular, and, consequently, the system of equations does not have a unique
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solution. Hence, assuming the system has a unique solution, a nonzero pivot element can always

be found. In practice, partly to avoid numerical problems, the steps listed below are used in
choosing the ith pivot equation:

(1) Examine the ith column for the largest coefficient of x,.

(2) Move the equation containing this coefficient to the ith row as the new pivot equation.

(3) Move the old ith equation down to the row originally occupied by the new pivot
equation.

This procedure is known as "'pivoting on the largest element. "

With this modification, Gaussian elimination becomes a highly efficient method of solving linear
algebraic systems and is extremely well adapted to digital computers. In fact, it is vastly superi-
or to the more familiar ""Cramer's Rule, " even for hand calculation, since the number of opera-

tions required by Cramer's Rule to evaluate n + 1 determinants is far greater than the number of
operations required by Gaussian elimination.

In addition, Gaussian elimination enables any number of sets of equations having the same matrix
of coefficients to be solved simultaneously; this problem arises frequently in practice. Suppose,

for example that the system of equations given as the original example was to be solved not only
with the right-hand side,

b,
b,
bgs
by
but also for the right-hand sides
c, d, e,
Cao d, (-9
and and
Cs ds €3
Csq dg €4

It would only be necessary to write the system of equations as
81,X, + 215Xz + 2.3X5 + 2.4X4 = by, €y, d;, €4
Ay X, + 8 Xy + B53Xg + 2zaXy = by, €y, da, €3
83X, + QzXp + 2z9Xs + 2g:Xa = by, Cg, dg, €4

ApX, + ApXy + A,Xs + AuXy = by, C4 dy, €y
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and then perform the ith pivot operation, previously performed onb,, simultaneously on b, c,,
d, and e, The back substitution process would consist of simultaneously obtaining the values of
each of the four unknowns corresponding to each distinct right-hand side. A comparison of this
simple procedure with the steps which would be required by Cramer's Rule to handle this pro-
blem demonstrates the power of Gauss' method.

A discussion of one further extension of Gaussian elimination leads almost directly to the pro-
cess known as left-right decomposition. The elimination process can be performed on the ma-
trix of coefficients before the right-hand sides for the equations are known, and, if certain nec-
essary information is retained, the back substitution process can later be performed when the
right-hand sides have been specified. To see what information must be retained from the for-
ward course, consider again the problem of eliminating x, from the ith equation, assuming that
the first equation is being used as a pivot:

Q3 Xy + 25Xy + Ay9X5 + AyeX, = by

Ry X, + QAiaXg + AaXs + X, = by

Dividing the first equation by a,,, multiplying it by a,,, and performing subtraction gives for
the ith equation

0 + (A - ayy'ap/ a2y, )x2 + (2,5 - 2y .am/au)xs + (2 = 2y .2y, /an)x4 = b, - a,
.b1/&u

Now if m,, = - 31141, is defined, then the ith equation may be written

0 + (ae + @30 Myl + (A + 233 My )Xs + (@4 + @3y My )xe = by + by my,

and, in this case, it is only necessary to know the multiplier m,, to be able to perform the nec-
egsary reduction on the right-hand side of the ith equation. In general, assuming that no inter-
changes have been made, the new right-hand side can be calculated from the multipliers m,
_saveri frlom c%he jth pivot operation, as j goes from 1 to N-1, That is, when j = 1, the following
is calculate

b{ =b, + my, . b, fori=2, N
and then
by = b} + mpb) fori = 3, N

ete.

Except for the necessity of storing all the multipliers m,,, this delayed calculation of the new
right-hand side is just as efficient as the concurrent calculation of the right-hand side and the
upper triangular matrix, since it requires no additional operations. Note also that only one set
of stored multipliers is required no matter how many different right-hand sides are to be solved
for, since the transformation is completely determined by the matrix of coefficients.

Finally, if the rows of the matrix are to be interchanged at any point in the reduction to an upper
triangular matrix, it is only necessary to interchange right-hand side elements at the corres-
ponding point in the calculation. For example, suppose that on the ith pivot operation on the ma-
trix of coefficients, the (i + j)th row was chosen as the new pivot row, causing the ith and

(i + j)th rows to be interchanged. If a record of this fact is preserved when the corresponding
point in the calculation of the right-hand side is reached, b, and b, + j are merely interchanged
and the calculation proceeds as before. Establishing an interchange vector consisting of N ele-
ments, one for each row, facilitates preserving the record of the interchanges. If an interchange
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of the ith and (i + j)th rows takes place, the ith element of the interchange vector is set equal
toi + j; otherwise, it is 0. In calculating the right-hand side, before performing the ith pivot
operation, the ith element of the interchange vector is examined, and, if it is not 0, the indicated
interchange is made before proceeding.

The multipliers m,, may also be stored conveniently by using the positions in the matrix of coef-
ficients where 0's have been introduced. For example, when the first pivot operation is per-
formed on the second row, the leading coeffi;;.ie t of that row becomes 0 and will not be used
again. This permits the multiplier m,, = -"% L o be stored in the leading coefficient's posi-
tion ; similar action may be taken for remaining rows. Hence, after the first pivot operation is
concluded, the matrix of coefficients for the fourth degree system used above as an example
takes the form

aqy A2 dys v
m, a; aj 4l
1 = 23 24

1 1 I}

Moy A das Aag
mg ak aly al

This may be repeated for the second pivot operation until finally, at the conclusion of the third
pivot operation, when the matrix has been completely reduced to upper triangular form, the
multipliers are all stored in the lower half as follows:

dyy 232 aqa A14
my, az as aly
" 1"

m gy m g A3 Aday
m a"f

mﬂ_ 42 m‘3 44

If an interchange vector has also been made, the above matrix may be used to solve the system
of equations represented for any right-hand side or group of right-hand sides.

The DECOM and SOLV subroutines of the SIMEQ system use the above method for solving sys-
tems of linear equations as follows:

(1) DECOM initially reduces the matrix of coefficients to the above form recording row
interchanges in an interchange vector.

(2) SOLV applies the multipliers m,, and the interchange vector in the manner indicated
above to perform the corresponding operations on the right-hand side, and solves the
system completely by recursively calculating x_, X,,, ----- X, by the above men-
tioned process of '"back substitution. "

The process known as left-right decomposition must be examined before the methods that
SIMEQ uses in securing the determinant and the inverse of a matrix can be clarified.
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The Gaussian elimination process which has been discussed above can also be represented by a
series of matrix multiplications according to the following steps:

(1) Starting with the fourth order matrix of coefficients used as an example above, define
a multiplying matrix M, as

1 0 0 0
mg, 1 0 0
i mg, 0 1 0
me, 0 0 1

where the elements m,, are as previously defined.
If the original matrix is represented as

Ay A3a a3 34

an A A og Aoy
A =

R B B 2

It is easily verified that the matrix product M, A is given by

axj a-m 3-1,3 al‘
0 al als als
M1A = = AE
0 ai ads 2l
0 ak als als

where the elements a,, are exactly the same as those secured from Gaussian elimina-
tion.

(2) Define a new multiplying matrix M,

1 0 0 0

0 1 0 0
M, =

0 Maz 1 0

0 m 4 0 4

where mg, =-a' R/a;a as before, and form the product

A a2 ST A4
0 al, als ab,
Ma Ag =A3
0 0 ald agh
0 0 aly aly
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Again the elements a ;| are exactly the same as those secured at this step by Gaussian

elimination.
(3) Proceed in the same fashion for the final step. This gives
Ay 12 d13 214
0 ay a%s ale
M a A a = = A 4
0 0 Az s
0 0 0 ay,

where A, = MMM, A

Now, the following equation may be set up to secure the representation of A as a product of an
upper triangular and a lower triangular matrix

M = Ma' Ma 2 M1-

Since each matrix M, is lower triangular, with 1's on the diagonal, it is easy to show that the
product matrix M is also lower triangular with 1's on the diagonal. Therefore,

A.. =M. A
and
A = M“1A4

where the inverse matrix M~' is also lower triangular with 1's on the diagonal. Thus, A is
represented as the product of an upper and a lower triangular matrix. Further, although the ma-
trix M and its inverse are not calculated explicitly in the Gaussian process, it is obviously sim-
ple to do so from the multipliers m,, used to reduce the matrix A to upper triangular form.

Having represented the matrix A as the product of an upper and a lower triangular matrix, the
solution of a set of linear equations is simple, for, if the equations are represented as

A X = B,
substituting M™ A, for A gives

M_l - A‘ - X = B
so that
A‘ o x = M . B.

Having calculated A, and M, the matrix product M - B forms the right hand side and Ay the left
hand side ready for the same process of back substitution used in the Gaussian elimination.

Finding the inverse of the matrix A once the decomposition has taken place is also quite simple,
for since

A-A? =1,
making the substitution

A= M1.A,
gives

M- A" At = I’
so that

A, + A =M
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Since A, and M are known and triangular, the elements of A could easily be solved for recur-
sively, starting with the last row and working up just as in back substitution. However, it is
also possible to proceed by operating further on A, and M in the above equation until A, becomes
the identity matrix; at this point, M must equal A"*. As a first step in accomplishing this, the
elements of A, above the diagonal must be replaced by 0's; this may be done by the method of
elimination used to introduce 0's below the diagonal in obtaining A .. After these steps have been
performed on A, and M, division of A, and M by the corresponding diagonal element completes
the reduction of A, to the identity matrix and leaves the inverse matrix stored in M.

The INVRS subroutine of the SIMEQ system uses this method to calculate the inverse of a matrix,
once the DECOM subroutine has reduced the matrix to triangular form. DECOM does not, how-
ever, calculate explicitly the matrix M shown in the equation on the preceding page, but rather
merely stores the multiplier m,, in columns below the diagonal of the reduced matrix. Hence,
before further reductions can take place, the INVRS subroutine must first multiply these columns
together in the manner required to produce the matrix M which is the product of the multiplier
matrices M,, M,, and M;. The complete reduction of A, then proceeds in a manner which
allows the newly calculated elements to be stored over the original matrix, making provision of
additional storage locations for the inverse unnecessary. If any row interchanges were recorded
in the interchange vector in the process of reducing A to triangular form, the corresponding
column interchange must be made in the inverse matrix.

Finally, the determinant of the matrix A may be found almost immediately from the decomposed
matrix, for

det (A;) = det (M- A)
det (M) - det (A)

But
det (M) =1

since M is lower triangular, and its determinant is consequently the product of its diagonal ele-

ments, which are all 1's. Hence
det (A) = det (A,).
But A, is upper triangular, so that its determinant also is given by the product of its diagonal

elements; therefore
det (A) = a,, " ak * am * ay

If row interchanges took place in the reduction of A because of pivot operations, the sign of the
calculated determinant must be changed only once for each such interchange, as is well known
from the theory of determinants. The DTMN subroutine of the SIMEQ system uses this method
to calculate the determinant of a given matrix once DECOM has reduced it to triangular form.

REFERENCES

Further descriptions of Gaussian elimination and left-right decomposition can be found in almost
any standard book on numerical analysis. An excellent discussion is contained in "Computationgl
Methods of Linear Algebra' by V.N. Faddeeva, Dover Publications, 1959.
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3. PROGRAM USAGE

METHOD

A user employing the SIMEQ routines for the calculation of the determinant or the inverse of a
matrix A must head his program with the statement

DIMENSION A(n, n), INTR (n)

where n is an integer not less than the order of the matrix. If the user employs SIMEQ to solve
a system of linear equations having the column vector B as a constant term, he must head his
program with the statement

DIMENSION A(n, n), INTR (n), B (n, m)

where m is an integer equal to or greater than 1. B is treated as a matrix with double subscripts
rather than as a vector or a single-subscripted array, to permit the solution of the system for

M sets of constant terms with only one call for the SOLV subroutine. Of course, m must always
be equal to or greater than M.

Prior to calling any other SIMEQ subroutines, the user must call DECOM to prepare his matrix
for further calculation. This may be done with the statement

CALL DECOM (A, INTR, MSIZE, N)

where A is the name of the matrix, INTR is the name of the auxiliary vector, MSIZE is the di-
mension of A given in the DIMENSION statement, and N is the order of the matrix. DECOM
destroys the original matrix in the process of calculating the decomposed matrix. Therefore,
the user must provide additional storage for his matrix if he needs the matrix for later calcula-
tion. If the user's matrix has been determined to be singular, a return will be made to the main
program with the Nth element of the INTR array set equal to 0. Therefore, the user should test
INTR (N) for 0 before proceeding further, since the other SIMEQ subroutines return directly to
the calling program without performing any calculation if INTR (N) is 0. If INTR (N) is 0 upon
return from DECOM, the user may determine the row in which the matrix was found singular by
examining the INTR vector for an element satisfying the relation INTR (K) = K, indicating
that the singularity was discovered in the Kth row of the matrix.

Once the user's matrix has been decomposed by DECOM, any or all of the other three SIMEQ
subroutines may be called, subject only to the restriction that no subroutine can be called after
INVRS, which destroys the decomposed matrix in the process of calculating the inverse matrix.

SIMEQ
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In order to find the determinant of his matrix, the user calls the DTMN subroutine with the
statement
CALL DTMN (A, INTR, MSIZE, N, DET)

where DET is the storage location reserved for the answer. The subroutine returns to the main
program with the scaled value of the determinant stored in DET and the integral power of ten by
which DET is to be multiplied stored in INTR (N). This form is chosen to avoid overflow or
underflow in the calculation of extremely large determinants.

1In order to calculate the inverse of this matrix, the user calls the INVRS subroutine with the
statement

CALL INVRS (A, INTR, MSIZE, N)

The subroutine returns with the inverse stored in the locations originally occupied by the original
matrix. For this reason no other subroutine of SIMEQ, except possibly DECOM, can be called
after INV3S has been called.

SIMEQ will probably be used most often to obtain the solutions of systems of simultaneous linear
equations. Frequently, several such systems must be solved in one program, all having the
same matrix of coefficients and differing only in the constants on their right-hand sides. The
SOLV subroutine has been arranged to handle this situation eificiently by allowing the various
right-hand sides to be entered as a single matrix each of whose columns represents a right-hand
side of the system of equations to be solved. All of the systems are solved simultaneously with
a single call of the subroutine.

The user calls SOLV with the statement
CALL SGLV (A, B, INTR, MSIZE, ISIZE, N, M)

where B is the name of the matrix of constant vectors, ISIZE is the maximum number of vectors
allowed by the DIMENSION statement, and M is the number of right-hand sides to be solved.

The user stores the right-hand sides in the manner indicated above in the B matrix referred to
in the opening DIMENSION statements.

If there is only one right-hand side to be solved for, M is, of course, set equal to 1. Before
returning to the main program, the SOLV subroutine stores the solutions of the unknowns in the
corresponding positions of the B matrix, destroying in the process the original right-hand sides.

Note that both the right-hand side constants and the unknowns finally obtained must be stored in
a double subscripted array even when there is only one right-hand side and one vector of unknown
quantities.

CAUTION: Do not solve a system of linear equations by first using DECOM and INVRS to get the
inverse of a matrix of coefficients and then multiplying the right-hand side by the inverse to find
the solution of the system. This procedure is far more inefficient and time-consuming than the
more direct method outlined above, using DECOM and SOLV.
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INPUT/OUTPUT

SIMEQ is also available as a free-standing package program, with input as follows:

$P/NAME=6GCH Alphanumeric identification

. (Note comma on separate card)
CASE=060H Second card of identification

y (Note comma on separate card)
TITLE=60H Third card of identification

. (Note comma on separate card)
N= , M= ,NEW=  §

where
N is the number of equations
M is the number of constant vectors (up to 6)
If this is a new case, NEVW is T
If this is only a new set of constant vectors, NEW is F

$x/L /c=, , , , , , $ (basic input card)

The blank after L is filled with A for as many cards as needed to read in the coefficients, then

with B for the constant vectors, and, finally, with E to mark the end of the case. The first two
blanks after the = sign are for row number and column number. Succeeding blanks are filled with
elements, by rows. Any elements not entered are set to zero by the program.

Further cases may be read in by repeating the above, starting with the $P card.

Input for a sample case is illustrated on the following page. Additional input sheets are furnished
at the back of this manual for the user’s convenience. A listing of input cards and an output list-
ing are also included in this section.

SIMEQ
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Input Coding Form

Col
2

SIMEQ

INPUT CODING FORM

$p/NAME=60H__MAa7R/x Solurion

3
CASE=60H

3
TITLE=60H

N=_© , M= _/L , NEW=_T_3§

$X/LA Je=_L , L , =#75:69 , =22.§54 I, 453 -, Hod Lk 755
- 4538 " s s » $
$X/LA _Je=s2Z , L, _Ld2q | 4P T |, L2282 2, ~ihe2y 1899 R
L BDE - s ; S $
$x/Ld je=3 , /L , _£-53 £ s43" | 44,593 | - g.292 foss
Sy ATE 4 , 3 : $
$X/LA _[c=4_, ¢ deobot | 5L 6 .2/ #9354 f Le2d
- ¢t 8 , s . . $
$X/LA [C=_T, £ S35/ . 43§ 4 £33 -5.00F - 494 7
- f72F " . 5 = $
$X/L /o=, /L, 2285 , _=3.44 2. 84 —sod 4 0T5
295 N 2, s 5 - < $
SK/LEL fom L, [, 39808, , ) ,
, s s . $
SX/LB.lo=2 L ., 2TI5 A, , , ; ,
s , , . ' $
$X/LB Jc=3_, L, Lu3ccck, : g . '
s s 5 s $
SXL fo=d4 , L., 2d3221, oy . "
i , ; ) A $
$X/LB Je=.3 , L , R2S5EL | 3 i ; ;
s , " " . $
$X/Li fe= &, £, L AKdIE ’ ’ s s
s ) ) 5 s $
SX/LE Je=2 , N > s ; )
> ; s s s §
$X/L_/C=__, i 5 s s s 3
) s s s $
$X/L__/Cc=—_, 5 i ’ 3 s s
, ' , ; , $
$X/L__/C=___, 5 3 s s
$

Notes: 1.

Values not entered are set to zero
2. Punch all data starting in column 2

3. Discontinue punching after handwritten $

SIMEQ
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SIMEQ
INPUT CODING FORM

Col
2

sp/NAME=600_AATRIX _ SolutTion

CASE=60H

TITLE=60H

N=_& M=_/ NEW=T__$
SKILA JC=t , L ., =R25:09 , =d2.874 , 20.493  f-Ado¥ = _L[b.ISS |

=45 3% | ; ? ' s E

SX/LA_ /je=2& , L ., U427  287.47 , (2.223  —//.628  _410.99

=/0.32 | , g : " $

$X/LA /=3, ) , _6.83 |, -f.)4¢ | 29,793 -£292 K _L.055 |

=ZePs ; ; ’ : $

SKILA Je=4 | L, Heboor | 5P |, &2/ , R73.6f  _L-2b

b0l S - : : s $

SXIWA Jc=5, /., B3:351 | =43¢ , 4833  -spof | =299

-4 frz s . s . 5 §

$SX/LA_Jc=_t , [, _2.85 | 3.4 , 274 , =4od | 4075

299.9¢ % . . , , $

SX/ILB. Je=_L , [, 39.328£, ; X N 5
s — . » ) ’ $

SX/L B je=c2 L ., L2ESSH, 5. . s >
s s ’ s A $

$SX/LA [Cma2, L, budcoiZ, ; - $ »
s . . , g $

$SX/LB. Je=4., L., 2L322F, ; ; ; >
; ; ; : 5 - $

$X/ILE Jc=z , L, 289%cE, . ; y § "
, ; N % > $

$X/LB. [c=6 , L, LERME | ; ‘ , ,
, S p . , $

$X/LL /c=% | A s ; , 5 ,
. ’ . g ) $

$X/L_/C= ., 5 * s s —
! ; " * i $

) gAY | = R, _ g s ’ > 8
> s ; . . $

$X/L__/C= . 3 " = 5 y
s s ) 5 3 $

Notes 1. Values not entered are set to zero
2. Punch all data starting in column 2
3. Discontinue punching after handwritten §

GE-600 SERIES =

-15-



Listing of Input Cards

SP/NAME=60HMATRIX SOLUTION

CASE=60H
L
TITLE=60H

'

N=B'M=1NEW=TS
SX/LA/C=1119=475.691=22:854¢1204493r=18+404r16.755¢=15.3%
SX/LA/C=2r1+1144274B7.47+112:2221=11.628¢10.99+,~=10.32%
SX/LA/C=311+6¢B83r=8.148+-491.593+-8.292¢8.055+1-7.68%
SX/LA/C=U41114+6019=5.814+16.2191493,.68:6:261~6.06%
SX/LA/C=5+11¢3:351+=4.3814.8331-5.008r-494,9,-4,872%
SX/LA/C=6+1112+551=3.44+3.84r=4.04r4.0759499,96%
$X/LB/C=1%1+39.308%

$X/LB/C=2+1+12.555%

$SX/LB/C=3)1+6:3006%

sXJ‘LB/C:‘I v1:3.8327%

$X/LB/C=511+12.5966%

SX/LB/C=67r1:,1.8844%

$X/LE/CS

$P/NAME=60HMATRIX SOLUTION

'
CASE=60H

1]

TITLE=60H

"

N=6+M=1NEW=TS
SX/LA/C=141+-275.69,=22.854420.493+~18.-404+16.755/=15.3%
SX/LA/C=2+1+11.427+287.47+112.222+=11.628+10.,99,-10.32%
SX/LA/C=3+1+16¢83+-8.148r=-291:593+~8.292¢8.0551-7.68%
SX/LA/C=Ur1+4:601r=5:.81l416.2191293.6816.26r-6.06%
$X/LA/C=5¢1+34351r=U4.3814.833+=-5.008r-294,.9,-4,872%
SX/LA/C=611+12:55r=3.U493.84r=4.04r4.7051r299,96%
$X/LB/C=1+1+39.308%

SX/LB/C=2+1+112.555%

$SX/LB/C=311+6+3006%

$X/LB/C=Ur1¢3483279%

$X/LB/C=511+2.5966%

$SX/LB/C=6+1,1.8844%

$X/LE/CS
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SIS 009-3

DAWIS

MATRIX SOLUTION

TTTINPUT MATRIX -

1 1 -4.756B9999E 02
2 1 1.14270000E 01
3 1 6.82999998E 00
4 1 4.60100001E 00
5 1 3.35100001E 00
g1  2,55000001E" 00
‘CONSTANT VECTORS
1 1 3.930B0001E 01
—=—2 1 1.25549999E"
3 1 6.30059999€ 00
-4~ 1 3.83270001E 00"
5 1 2.59660000€ 00
6 1 1,88440000E 00
SOLUTION
1 1 -8,53752512E=02
1 2.85896577E-02
3 1 «1,48090016E-02
ST gL 7922009815603
5 1 =6,36143453E-03
6 1

4,64135903E~03

01

1.67550001F 01 ~1,53000000E

-2.28540001E 01 2.n4930000E 01 -1.84040000E 01 01
4.87470001E-02 1722220000661 —1:16280000E- 01 1.09900000E 01 -1,.03200001E 01
-8.14AU0000E 00 =-4.91592999E 02 -8.29200006E 00 B8.05499995E 00 =-7.6B8000001E 00
~5.81400001LE 00 ~6:21t899998FE 00 4 93680000E—02 6.25999999E 00 =-6.06000000E 00
-4.3B000000E 0U 4.83300000FE 00 -5.00800002E 00 =4.94900002E 02 =4.87199998E 00
=3 440000006 003 840U0U00E 00 =45 04000002E 004 07499999E- 00 —4,99959999E02~

-
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SYAS 009-39

DAWIS

TINPUT WMATRI¥Y
1 1 -2.75689999E
2 T IVI4270000E
3 1 6.82999998E
T4 71 4.60100001E
5 1 3.35100001E

T8 T2.5500000TE"

MATRIX SOLUTION

~CONSTANT VECTORS

3.93N8UONDLE

1.25549999E

6.30059999E

1 3.832700601E

2.59660000E
1.88440000E

02
01
0o
00
00

1]

01
01
00
na
00
0o

-2.28540001E 01
2.87470001E
~8.14800000E
-5.81400001E 00
-4 ,380G0000E 0O

4,A3300U0D0E 0D

2.04930000F 01 -1.84040000F 01
02 "1.22220000F 01 =1.,16280000E 01
00 =2.91592999F 02 -B.29200006E_ 00
6,21899998BE 00 2,93680000E 02
-5.00800002E 00
=3.44000000E U0 S.B4000000E 00 -4.04000002E U0

1.67550001F
1.09900000E
8.05499995¢
6.25999999F
=2,94900U02E

T4, 70499998F

1 -1,51385216E-01

1 1
— g
3 1
ey
5 3
% s
"SOLUTION
1
.
s _ 1
a1
5
6 1

5.23641114E~-02
1 -2.76868069E-02

1.74900496E~-
1 -1,22016157E~-02
8.95102869E-03

0z

8"
01
00
00
02
00

=1,53000000F
=1,03200001E
-7.6B800N001F
-6.06000000F
~4,87199998F

2,99959999F

01
01
00
00

02



APPENDIX A
PROGRAM LISTING

k1 TLENT ARV GErFORTHRANSTHEQ

% OPTION FORTRANGO

B FURTRAM LSTOU'DECK+STAR

k3 INCODE  IRMF

*SIEO SOLUTION OF SIMULTANLOUS EQUATIONS

* CDAUUD4 . 0B DATE 05/04/65

LOGICAL MEwsLAST
COMMGOH A(1500150) #1it150¢6) » INTR(15U)
DIMEMSION C(33)
DIMENSTION HAMECLO) v CASE(L10) e TITLE(L0D)
NAMELIST/P/NAME «CASE e« TITLE oMo Mo HNEW
NAMELIST/X/ArkeCeLAPLI3eLE
CALL FLGEOF(5+/LAST)
1 READ(5:P)
IF(LASTICALL EXIT
WRITE(&2)LAME»CASETITLE
2 FORMAT(1H1SXr 10AE/ (1HN5Xe 10AB))
IF(eMNOTHEW)GO TO 4
* CLEAR MATKIX
DO 3 J=1l:N
DO 3 I=1.1
3 AlIed)=0.U
* CLLAR VECTORS
4 pO0 5 J=1.M
DO 5 I=1+N
5 HiIrdI=0.0
* READ DATA
b LAZO
READ (5 X)
IF(LAER.0)GO TO A

1=ct1)

SIMEQOQOD
SIMEGO10
SIMEWO20
SIMEGO30
SIMEGO40
SIMEQOS0
SIMEwO6U
SIMEGO70
SIMEROBU
SIMEQOSO
SIMEQ100O
SIMEQL110
SIMEQ120
SIMEGL30
SIMEQL40
SIMEG1S0
SIMEQL60
SIMEG170
SIMEG180
SIMEQ190
SIMEG200
SIMEQ210
SIMEG220
SIMEG230
SIMEQ242
SIMEG250
SIMEQ26U
SIMEQ270
SIMEG280
SIMEQ290

SIMEG300

SIMEQ

GE-600 SERIES
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J=C(2) SIMEQ310

DO 7 K=3rLA SIME@320
AlIrd)=C(K) SIMEQ@330

7 JEJH1 SIMEQ340
GO TO 6 SIMEQ350

* ONE CARD FROM B READ WHILE READING A SIMER360
8 1=c(1) SIMEQ370
J=ci(2) SIMEQ380

DO 17 K=3rLB SIMEQ390
B(Ird)=C(K) SIMEQ4D0

17 g=J41 SIMEQU410
LB=0 SIMEQ420
READ (50 X) SIMEQ430
IF(LB«NEs0) GO TO & SIMEQ440
IF(«NOT«NEW)GO TO 10 SIMEQYS50

= PRINT MATRIX AND CALL DECOM SIMEQUE0
WRITE(6¢9) SIMEQ470

9 FORMAT(///13H INPUT MATRIX) SIMEQ480
CALL PMAT(A»150+150¢NsN) SIMEQ490
CALL DECOM(A»INTR#»150¢N) SIMEQ500

* PRINT VECTORS AND CALL SOLV SIMEQS510
10 wRITE(6r11) SIMEQS520
11 FORMAT(///17H CONSTANT VECTORS) SIMEQ530
CALL PMATI(Bs150¢67N2M) SIMEQS40
CALL SOLV(A+BrINTRr150+6+NeM) SIMEQS550
IFCINTRIND ) 14012014 SIMEQ560

12 WRITE(E#13) SIMEQ@570
13 FORMAT(//9H SINGULAR) SIMEQS580
GO TO 1 SIMEQ590

14 WRITE(6+15) SIMEQ600
15 FORMAT(///9H SOLUTION) SIME@610
CALL PMAT(B»150r67NsM) SIME@620

GO To 1 SIMEQ630

GE-600 SERIES —
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e SIMEQ6E40

% FORTRAN LSTOUrDECK+STAB DECOMOQO
% INCODE IBMF DECOMD10
#*DECOM SUBROUTINE TO DECOMPOSE MATRIX FOR SIMULTANEOUS EQUATIONS DECOMO20
* Cp600D4.008 DATE 05/04/65 DECOMOD30
SUBROUTINE DECOM(A+INTR¢MSIZE«NN) DECOMO40
DIMENSION A(MSIZE+MSIZE)»INTR(MSIZE) DECOMO50

* MATRIX DECOMPOSITION USED WwITH SOLV SUBROUTINE FOR SOLUTION DECOMO60
* OF LINEAR SYSTEMS DECOMO70
* IF MATRIX A IS SINGULAR INTR(N) WILL BE SET TO ZERO DECOMOB0
N=NN DECOMO30

NTR=1 DECOM100
NM=N=-1 DECOM110

DO 10 J=1+NM DECOM120
AMAX=ABS(A(JrJ)) DECOM130
JP=J+1 DECOM140

IN=0 DECOM150

DO 2 I=JP'N DECOM160
AT=ABS(A(I,J)) DECOML70
IF(AMAX=AT)1r202 DECOMigo

1 AMAX=AT DECOM190
IN=I - DECOM200

2 CONTINUE DECOM210
IF(AMAX) 4r 30ty DECOM220

3 INTR(J)=J DECOM230

GO T0 11 DEcOM240

4 IF(IN)Se7r5 DECOM250

5 NTR==NTR DECOM260

DO 6 I=JdeN DECOM270
AT=A(J 1) DECOM280
ACJrI)I=ACINCI) DECOM290

6 AUINSI)=AT DECOM300

7 INTR(J)=IN DECOM310

@E“@@@ gERHE% STMEQ
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AMAX==1.0/a(JrJ)
DO 10 I=JPeN
IF(ACI»J))Be10r8

8 AT=A(IrJ)*AMAX
AL P J)=AT
DO 9 K=JPeN

G ALIeK)I=A(IPKYFATHACIIK)

10 CONTINUE
IF(A(NeN) ) 12r11012

11 NTR=0

12 INTR(N)=NTR

RETURN
END
k] FORTRAN LSTOU*DECK+STAB
% INCODE IBMF
*SoLV SUBROUTINE TO SOLVE LINEAR SYSTEMSe CALL DECOM FIRST
* Cpe00D4.008 DATE 05/04/65

SUBROUTINE SOLV(ArBrINTRIMSIZE» ISTZEsNNeMM)

DIMENSION A(MSIZE+MSIZE) »B(MSIZE#»ISIZE) » INTR(MSIZE)

* DECOM SUBROUTINE MUST BE CALLED BEFORE SOLV TO GET SOLUTIONS
* OF M SETS OF N EQUATIONS IN N UNKNOWNS

N=NN

M=MM

IFCINTRIN) ) 101501

1 NM=N-1
DO 8 K=1sNM
L=INTR(K)
IF(L)2e402

2 p0 3 I=1:M
X=B(Ke 1)
B(K?I)=B(L»1)

3 BlLeI)=X

4 KP=K+1

DECOM320
DECOM330
DECOM340
DECOM350
DECOM360
DECOM370
DECOM380
DECOM390
DECOM400
DECOM410
DECOM420
DECOMA430
DECOMH440
SoLVOo00D
SOLV0010
SoLvVo020
SOLV0O030
SOLVO0040
SOLVO0050
SOLVO006e0
SoLvVoo70
soLvooso
SOLVO0090
SOLVvV0100
SOLV0110
SoLV0120
SOLV0130
SOLVO140
SOLVO0150
SOoLVO0160
SOLV0170
soLvo1s0
soLvo190

SIMEQ
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® <~ o w

10

11
12
13
14
15
$
$
*PMAT

*

BE-600 SERIES

DO 7 I=KP'N
X=A(1sK)

IF(X)5¢7¢5

DO & J=1¢M
BlIrJI=B(KsJ)*X+B(Ir )
CONTINUE

CONTINUE

BACK SUBSTITUTION
DO 14 K=1rN

L=N=K

KP=L+1
X=1+0/A(KP+KP)

DO 9 J=1+/M
B(KPeJ)=B(KP»J) *X
IF(L)10r14,10
DO 13 I=KP'N
X=A(LrI)
IF(X)11,13,11
DO 12 J=irM
BILeJ)=B(LrJ)=B(I0d)*X
CONTINUE
CONMTINUE
RETURN
END

FORTRAN LSTOU:DECK
INCODE IBMF

SUBROUTINE TO PRINT MATRIX

SUBROUTINE PMAT(A?MMeNNsNRNC)

DIMENSION A(MMsNN)eP(6)

NROW=NR
NCOL=NC

1=1

Cp600D4%.008

DATE 05/04/65

SOLV0200
SoLvo210
SOLV0220
SOLV0230
SOLVO240
soLvo02s0
SOLV0260
SOLVD0270
S0LvV0280
S0LV0290
SOLV0300
SOLV0310
SOLV0320
SOLV0330
SOLVO0340
SOLV0350
SOLV0360
SOLV0370
SOLV0380
SOLV0390
SOLVO400
SOLVO410
SoLvou20
SOLVO430
PMATO000
PMAT0010
PMATO0020
PMATO0030
PMATOO40
PMAT0050
PMATO0060
PMATO070
PMAT0080

SIMEQ
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J=1 PMATO090

1 IP=1 PMATO0100
JP=dJ PMATO110
DO 2 K=1su PMATO0120
KK=K PMATO0130
PlkIZA(Id) PMATO140
JIJ+1 PMATO150
IF(J.GT«NCOLIGO TO & PMATO160

2 CONTIRUE PMATO0170
WRITE(ee4) TP+ JP e (PUR) 2 K=1KK) PMATO180

4 FORMAT(2I4+6(1PE16.8)) PMAT0190
GO To 1 PMAT0200

3 WRITE(& 4) TP eI (P(R) 1K=1rKK) PMAT0210
I1=1+1 PMAT0220
J=1 PMAT0230
IF(I.LE«NRCWIGO TO 1 PMATO240
RE TURT, PMAT0250
END PMATO0260

BE-600 SERIES —
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SIMEQ

APPENDIX B
FLOW CHARTS

Read and Print
Problem
Identification

New Matrix ?

O,

Clear Matrix

Clear Vectors

Read Data

Any C's Read 7

No

Print Matrix

DEC@M
Decompose
Matrix

Store in A

SIMEQ

SIMEQ
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Il 1

Print Vectors

S@LV
Solve
Equations

Print Answers

Last Case ?

SIMEQ

SIMEQ
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J —DINTRj

DECAM

SIMEQ
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—NTR—sNTR
Exchange
[Aj‘i and Ain,i]for

i_—'jIION

s

IN—DINTRj
-1/A: . —» AMAX
JP I

Y

Ay *AMAX—sAT
AT —»A;
[,k *AT +A; | —»

Ai k] for K=JPtoN

DEC@M

SIMEQ
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NTR—» INTRn

DEC@PM
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NN—» N
MM—p M

Exchange
Lth and Kth
Rows

——

K+l —»KP
KP —>I

0

2

SOLV

SIMEQ




I+1—>»1

K+1l—» K

—_—

Back
Substitution

-
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N-K—L
L+1 —»KP

!

Divide KPth
Row by

A
kp, kp

B -B, "X
R ' I |

—»B. . for
1,3

j=i,M

I+l —»1 —

SPLV

SIMEQ
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SOLV
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1.E38 —»EP
38 —» NE
NN—p N
INTR“—b NTR

-10.—» DTT

0,0—»DIT
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DIT#EP— DTT
NTR-NE —» NTR

10

DTMN

SIMEQ
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DTT+EP —DIT
NTR+NE — NTR

O

ATTxi\i £ DIT
I+l —»l

v
NTR —pINTR
1 4
DIT — DET

DTMN
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O——1
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N=-1—» KM
2—»1

IN'l“Iti—b K

K:0 =
4

I-1—»KP
1—pJ

g

Exchange

hi.j and Ak,j

J+1 —»J

INVRS

SIMEQ
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I+1—>1

3
7 e
— — —J Complete
Reduction
Below Diagonal
K+1 —»KP -
KP —»I

INVRS

@
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1]

Divide Kth Row
by Diagonal
Element

Reduce

Terms
Above Diagonal

INVRS

®

SIMEQ
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K+1—»K

Interchange
—— Columns

INVRS
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7

Exchange
KPth and Kth
Columns

INVRS
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SIMEQ
INPUT CODING FORM

Col

$P/NAME=60H

CASE=60H

TITLE=60H

»

Nee ., M=, NEW=_$

3 ) P | S —— 3 s
$xiL_lc=’_,._. l 5 ’ A ’
Sx!L_)’C=,_,_.. , s 3 ‘
$XIL_.’C=I._,_, ’ , ’ > ‘
$KFL_.’C='_,_. ’ ’ l s I
$XIL._JC='_, > , > . > .
$x/!._/C=’_ 3 ‘ , . ) ,
SKIL_../C;_. X ‘ 5 , 5 ’

2 ¥ ¥ E]

S e

2 3

» L] ] 3
L 4 VO | . N — ¥ »

3 » £l 3
$X/I.._fC=_,__, 1 )
$X/L_;’C=__,_, 3 ]

» » 1
$fo_!c=_c » » »
$X/L__Jfe=__, ; " -

t 1 » ]
SX/L. G . : .

3 » » ?
- o) DU+ S 5 :

3 3 L} 3
Notes: 1. Values not entered are set to zero

Punch all data starting in column 2
3. Discontinue punching after handwritten $



SIMEQ
INPUT CODING FORM

$P/NAME=601

L]
CASE=60H

»

TITLE=60H

»

N, M=, NEW=_§

SEID e e 5 ) )

$X/L _fc=,_, == ‘ , ' - '
$X!L_;’C=;_.__...., ‘ > i ’
S}U’L_!C=’_,_, l 3 , ) '
$K!L_IC=:_.,_, ' , ’ » ‘
$X}L_{'C=.,_. s ' s , , ’
$K!L__.;’C=’_ 5 ’ ) ' , ’
S)U'L—,’C=|__ A ’ > , 5 ‘
$R/L_._/C=’_.,_, ’ » ’ s '
$K.-‘L_fC=’__,._, ’ > ‘ ’ '
$x/L_/c=;_,_, , ; = i '
$XfL_/C=,_,_, ’ > ’ ’ ,
$x/1._/c=)_., 8 I s : s ’
SK/L_/C=;,___, ’ s , ) l
$X/L_/C=,_,_, ’ s ’ , ‘
SK;’L_K'C=’_,,_, ‘ . ’ " ‘
Notes: l. Values not entered are set to zero

2. Punch all data starting in columm 2
3. Discontinue punching after handwritten §



SP/NAME=60U

SIMEQ
INPUT CODING FORM

CASE=060H

]

TITLE=60H

N=___, M=____, NEW=
300 P (ol

— 3

SX/L_;’C=.-__, —y

SK b fb= 5o -y

£

SX/L—fC=

S5 N R,

SHfle_fi0e ey

SX/L—/C=— 5

$X/L—Z(C: — ]

3.4 N oI

$X/L—/C 0,

$X/L_/C=— .,

5 ' P {0 _

$Xf]._/C=_, ]

SX/L___/Cc=___

3 —y

]

L3405 Y | o/

]

3

SX/L__/C=__,____,

L]

Notes: 1. Values not entered are set to zero

[§%]

Punch all data starting in column 2
3. Discontinue punching after handwritten $



SIMEQ
INPUT CODING FORM

Col

SP/NAME=60I

CASE=60H

TITLE=60H

]

NE——y M=, NEW=__§

Ly 4 PR | oS S 8 5

2 2 3 3
$X)’L._.__-’{C:-——-,——‘, 3 L]
SEX/LfC e 3 ;
SXJL——fC= sy ; 5
$XJHL—}C:—:—: ] ]
SX’(L—;C:—) 3 ) ]
$XIIL—(!C=— 3 3 3
SXKL—-“C:—:— 3 3 E]
SX’IL_;C:_-)_-') 3 3

3 3 3 3
$X/L__/Co_, E ,
$XIL_’!C:_)‘-‘""‘—" 3 3

3 X ] t] 3
SK/L_;C:——,—) 3 ]
$XJ{L—J(C=_: 3 3 3
Sfo_f'C:_j_’ El 3
G R | S . .
$K;“L_J{C=_,-—_, f »

3 2 3 3
Notes: 1. Values not entered are set to zero

a8

Punch all data starting in column 2
3. Discontinue punching after handwritten $



SIMEQ
INPUT CODING FORM

Col

$P/NAME=60H

CASE=60H

TITLE=60H

3

Ne Moy NEW=_§

SR B e g iy » »
$K!L.__J'C=.,_,_, , 5 ’ ) ,
$XFL_HXC=,_,_, ! s » ,
sx/r._/(::’_, - ’ ) , ’ :
SX/L_/C=,_,_, : s , s ’
$XKL_/C=’_, A , ) ’ s ,
$x/L_fc=; , , | : ’ ; :
.$){;‘L_/C=,_,_, : , , 5 }
SX/Li fC=,_.,_, , s , > ,
$X/L_/C=,_,_, , . , » ,

: ] ] ] £l

SR Gy oy

L] L] L] 3

) 7 S| PR S ; 5
$X}{L__,‘!c=--—-1 ) Fl )
$X/L__/fe=__, ___, , ,

L] L] 3 ]

SR O sy

3 £l ] ?

SX/L___/C=__,

] ] :} 3

Notes: 1. Values not entered are set to zero
Punch all data starting in column 2
3. Discontinue punching after handwritten $
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CREDITS

The source material used in this manual is taken from a document, published by General Electric,
titled DIFFE--Computer Program for Solution of a System of N First-Order Ordinary (Linear or
Nonlinear) Differential Equations, by R. G. Claussen. Permission to use the original document
was given by D. L. Shell, Manager, Computer Applications and Processing, G-E's Telecommun-
ications and Information Processing Department.

Comments on this publication may be addressed to Technical Publications, Computer Department,
General Electric Company, P. O. Box 2961, Phoenix, Arizona, 85002.
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GENERAL @ ELECTRIC GE-600 SERIES | March 1966

NO.
COMFLTER DEFARTMENT TECHNICAL INFORMATION BULLETIN 600-86

REF.

GE-625/635 Math Routines - DIFFE, Additions to Existing Manual CPB-1168

INSTRUCTIONS

Clip and add the following note to pages 18 and 20 of the GE-625/635 Math
Routines - DIFFE, CPB-1168.

Page 18.
Special Use of NAMELIST Input

In this case, the first two lines of identification are retained from the previous
case (page 16). The 60H on the third line of the form is changed to 59H to

allow the input with the additional dollar sign to be placed within 72 columns

(see NAMELIST in the GE-625/635 FORTRAN IV Reference Manual, CPB-1006.)

Page 20.
Special Use of NAMELIST Input

In this case, the first two lines of identification are retained from the previous
case (page 16). The 60H on the third line of the form is changed to 59H to
allow the input with the additional dollar sign to be placed within 72 columns
(see NAMELIST in the GE-625/635 FORTRAN IV Reference Manual, CPB-1006.

TIB DISPOSITION

The revised pages will appear in the next edition of GE-625/635 Math Routines-
DIFFE, CPB-1168.
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1. INTRODUCTION

DIFFE is a program for the solution of a system of N first-order ordinary (linear or nonlinear)
differential equations. Equations to be solved are written in the FORTRAN language, observing
certain minor rules. Nth order equations are written as N first-order equations. Input data,
such as initial conditions, error bounds, and values of the independent variable at which print-
out is required are entered on a simple input sheet.

Some of the features of the program are: automatic restart when singularities are encountered
in the dependent variable calculations, negative integration, relative error bounds, easily coded
input sheets and a simple output format.

BE-600 SERIES



2. RESTART

A signal is set to tell the main program when a singularity occurs in the calculation of the depen-
dent variables. Then, depending upon the direction of integration, new initial conditions are set
up and integration is continued.

Suppose singularity at x,. The values 6f. y (dependent variables) at x, are assumed to be the con-
ditions at xo (x, + E)

E = (x,-x,) (0.1) (ERI)
where ERI is the number of times singularity occurred at x,. The present limit on this number
is 3.
The calculated values of the dependent variables (y) are compared with the predicted values (yp)
and, if each agrees within EMAX, the calculated value is assumed correct.
If EMAX is positive:  |yp-y| < |EMAX| to pass.
If EMAX is negative: | yp-y| < |EMAXy| to pass.

Note: When y goes to zero, care must be taken in using relative error bounds.

@E"@@@ gERHES DIFFE




3. MATHEMATICAL METHOD

DIFFE is programmed using the Adams-Moulton method as modified by Shell. This is a polyno-
mial predictor-corrector method in which the interval size is automatically controlled by desired
accuracy.

Since the Adams-Moulton method requires several starting values, the integration is initiated by
using a special start-up procedure to obtain the first set of derivatives. Then, calling the user's
routine for derivative calculations, the program predicts and corrects a further point and checks
the result against the given tolerance. If more accuracy is needed, the program reduces the in-
terval size and tries again. If excess accuracy is found, the program increases the interval size.
The gaéculation proceeds in this manner until the given final value of the independent variable is
reached.

The Adams-Moulton method is discussed in ""Advanced Calculus for Engineers' by F. B.
Hildebrand, Prentice Hall, 1948.

GE-600 SERIES prere



4. EXPLANATION OF INPUT SHEETS

There are three input sheets; one describes the differential equations, and two are devoted to
program control, covering initial conditions and constants, respectively.

In filling out the sheets, the independent variable is X and the dependent variable is Y. There-
fore, all equations are to be in the _d}.‘t'(_ format. For the following equation:

dx
FEE= 0
simply substitute and get

dy
— =0
s y

INPUT SHEET 1--FORTRAN DIFFERENTIAL EQUATIONS

;I‘hhe diffeirential equations used in the program must be written in FORTRAN notation observing
ese rules:

1. Signs are denoted as follows:

plus +
minus -
multiplication *
division
exponentiation **

2. F is the value of the derivative.
3. Y is the dependent variable.
Thus,
_ dy
1 =l
F) = &
d2
P@) = —2
dx¢
d n
F(N) = a3
dxn
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and

Y1) = Yy
Y@ = 9
ax
vy = 4%
dxa
dn—ly
Y= =

As shown later in the example equation

2
d®x 4, 4 4 x 4+ x® + x% = sint
dat® dt

This may be rewritten in one of the following two ways:

d*y + &% L y + y® 4+ y° = sinx
dx dx

or s
d®y =-dy -y - y2 - y® + sinx
dx dx

Then, using the FORTRAN notation, the above equation can be written as two first-order equa-
tions as follows:

F (1) Y (2)

F (2) -Y(2) - Y(1) - Y(1)**2 - Y (1**3 + SIN (x)

INPUT SHEETS D1 AND D2

The input sheet formats are shown below.

Input Sheet D1

ORDER must be filled in and it signifies the highest order of the equation or the number of first-
order equations. SIZMAX* and SIZMIN are optional. If they are not filled in, they are set to
16-2 and 1079 respectively. XO and as many YO 's as necessary (depending on the size of
ORDER) must be filled in. As many EMAX's as necessary must be filled in.

$/NAME=60H (Alphanumeric identification)
’
ADDRES=60H  (More identification) Comma denotes separate card.

]
IDENT=60H (Further identification)

*If SIZMAX is negative, integration will be negative.

DIFFE
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ORDER-= , SIZMAX= , SIZMIN= i

X0= i
YO= ; ; ; ; ; (as needed)
EMAX = 3 " ; ; (as needed)

Input Sheet D2

The step size for printout may be selected in two ways, constant step or variable step. DELTA
is the constant step size terminated at FINAL, If DELTA = 0, the values found in VAR are used.
The last VAR terminates integration.

DELTA= , FINAL= ;
VAR= ) ) ’ y , (as needed)
A= ' ) ) , (optional constants for
the equations)
IOF= $ (T if last case, F if more cases follow. )
Input Coding

After the input sheets are completed, the program is run as a FORTRAN compile and execute joh.
Of course, the binary deck from the equations can be retained for further use with new input
sheets D1 and D2.

As an example, the FORTRAN coding for the previous example is shown:

SUBROUTINE DE (X, Y, F)

DIMENSION Y (25), F(25)

COMMON A(200)

F(1)=Y(2)

F(2)=-Y(2)-Y(1)-Y(1)**2- Y(1)**3+A(1)*SIN(X)
RETURN

END

In this example, the term A(1) is used because two cases are to be solved, the previous example
and a similar equation without sin x. On the input sheets for one case A(1) is entered as 1, and
for the other, as 0.

GE-600 SERIES



5. PRODUCTION DECK SETUP

The following deck setup is used for compiling and executing the DIFFE program:

$ IDENT

$ COMMENT

$ OPTION FORTRAN

3 FORTRAN DECK, LSTOU
$ INCODE IBMF

Binary Deck (main program, other subroutines)
DE Subroutine deck (input sheet 1)

3 EXECUTE
(input sheets D1, and D2)
3 ENDJOB

idolelo

The following deck setup is used for executing a previously compiled DE program:

$ IDENT
$ COMMENT
$ OPTION FORTRAN

BINARY DECK (main program, other subroutines including DE)
$ EXECUTE
(input sheets D1, D2)

$ ENDJOB
***¥EQF

GE-600 SERIES
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6. TEST CASE EXAMPLES

The following examples show that the same derivative (DE) subroutine can be used for several

different equations:

Eq. 1) %3—‘4--3%‘—+x+x3+x3=sin (t)
d® dx
Eq. 2) dt:‘+-c-lt—-+x+x3+xa=0

Note that all terms in the equations above are alike except those to the right of the equals sign.

The equation can, therefore, be determined by controlling A in the term A sin(t).
2
dx+£+x+xa+x3

A sin (t)
dt? dt

Thus, in equation 1) A =1 and in equation 2) A =0
Example (1)

Solve the differential equation

i Y- §
dt® dt

+ x + x® + x° sin t,

with the initial condition that att =0

= dx _
x—Oanddt

The required values of the independent variables are:

VAR = 0,878, 1.216, 1.469, 1.700, 1.941, 2.262, 2.589, 2.911, 3,200, 3.438, 3.626,
3.795, 3.953, 4.105, 4.253, 4.397, 4.538, 4.678, 4.819, 5.106, 5.938, 6.220

Thus, for this example,

ORDER = 2

SIZMAX = 1/-3 (10-2)
SIZMIN = 1/-10 (107*)
DELTA = 0

FINAL = 6.220

DIFFE

GE-600 SERIES
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X0 =0
EMAX = 1/-17, 1/-7 (10-7)
YO = 0,0 (x=0,£=0)
dt
A = 1.0
Example (2)

Solve the differential equation

d®x 4% 4 x + x2? + x® = 0,
dat®  dt

with the initial condition that att = 0

x =1 and & = 0
at

The required values of the independent variable are:

VAR = 0.290, 0.418, 0.527, 0.629, 0.729, 0.829, 0.933, 1.043, 1.163, 1.297, 1.451,
1. 635 1 8'?5 2. 295 2. 643 3. 069, 3. '?41 4, 260 4, 812 5. 552 6. '?97

Thus, for this example,

ORDER = 2

SIZMAX = 1/-3 (1072)

SIZMIN = 1/-10 (10-%)

DELTA =0

FINAL = 6.797

X0 =0

EMAX = 1/-1, 1/-1 (10-7)

YO = 1.0, 0 (x = 1,3=0)
dt

A =0

GE-600 SERIES —
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SAMPLE INPUT FORMS

GENERAL @B ELECTRIC

PROBLEM DIFFE INPUT (EQUATIONS)

FORTRAN CODING FORMS

PROGRAMMER DATE PAGE OF

Sl’.aéemem
0 FORTRAN STATEMENT

o Continuation

1

i SUBROUTINE DE(X, Y, F)
COMMON A
DIMENSION Y(25), F(25)

E(1) = Y(2)
EFla)= =Y(2) =Y (1)-Y(I)#B-Y()# %34+ A)*SIN (X)

RETURN

=t-F1r=-~r1+1-I-T1-FrTT-1"I __1__..-..

@E“@@@ SEER[HES DIFFE

a«lbh=




DIFFE INPUT (SHEET D1)

$5 /NAME=60H DIFFE 7ES7 CASE

ADDRES=60H TE s £

1DENT=60H EXANPLE /

orpER= — 82, sizmax=LEB, stamin-LE/0,

X0= [ 7 -

YO= 0 , o) , , , )
EMAX=<2 *.E-7

. o ow o
W e w W

GE-600 SERIES
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DIFFE INPUT (SHEET D2)

FINAL=

L

DELTA=

3 ..j' J‘L

) Vi 4 vl BHS

L 469

LAL6

78

VAR=

!!!!!!!!!!!!!!!!!!!!

||||||||||||||||||||

!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!

A 74

lllllllllllllllllll

)))))))))))))))))))

lllllllllllllllllll

:::::::::::::::::::

sssssssssssssssssss

F

T if last case

I0F=

F is not last case

DIFFE
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DIFFE INPUT (SHEET D1)

$5/NAME=60H

ADDRES=60H
fS}IDENT=& EXAMPLE /B
6RDER= o |, sizMAX=_/. E-3 , SIzMIN=_/- E-/0,

xo=__ 0 ,

YO= o o)

N oW W W

EMAX= oL ‘*J.E—?

. e e e oW

GE-600 SERIES e
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DIFFE INPUT (SHEET D2)

XS~

FINAL

DELTA:

VAR=

JJJJJJJ E
P T T
L T

. B Y

I0F=

T if last case

F if not last case

DIFFE

GE-600 SERIES
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DIFFE INPUT (SHEET D1)

$S/NAME=60H

ADDRES=60H

ﬁ/IDENT=£{?}1 LEXAMPLE R

ORDER=__ o2, sizmax=_LE=3 | siavin=L- E-/0,

X0=__ 0
YO= [-0 3 o 5 : s ,
EMaX=_/. E£~7 /i E-T7

. m e M ow

o ow ouw ow
- ow e ow oW

@IE“@@@ gE[FSﬂE§ DIFFE
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. 629 . 729 . 829

SR7

DIFFE INPUT (SHEET D2)

418

FINAL=

.29

DELTA=
VAR=

LY
NN
I
W
N
Nm
oy
9‘_
Q)
|
[0 0. by
\gf
/ N
11
™My
Hof Y
Q| 4.0
N o
|
ol )
Y ENES
|...c.1.u.m- [}
-

DIFFE

-

F if not last case

T if last case

I0F
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LISTING OF INPUT CARDS

*DE DE ROUTINE FOR DIFFEE TEST CASE DE 0020

* CD6E00 . XX DATE 05/06/65 DE 0030
SUBROUTINE DE(XeYrF) DE 0040
coMMbN Al(200) DE 0050
DIMENSION Y(25)¢F(25) DE 0060
Fli1)=y(2) DE 0070
F(2)==Y(2)=Y(1)=Y (1) %%2=Y (1) %*¥3+A(1)*SIN(X) DE 0080
RETURN DE 0090
END DE 0100

% EXECUTE

$ INCODE IBMF

$S/NAME=60HDIFFE TEST CASE

L3

ADDRES=60HUSING THE TEST CASES FROM EVENDALE WRITE-UP

r

IDENT=60HEXAMPLE 1

r

ORDER=2+rSIZMAX=1.E=3¢SIZMIN=1.E~10+

X0=0rY0=070sEMAX=2%1+E=T"
VAR=OB7B'1021691146991-7!1.941!2.262'2.589!2091103.22!3.“38'5.626!
3-795!3-953n4n105!4.253!4.397.4.538!“.678.“.819!5-106’5-“3!5-933!6-22:
n:l-ﬂ'

10F=Fs

$S/IDENT=S4HEXAMPLE 1B

[}
ORDER=2¢SIZMAX=1.E-3+/SIZMIN=1.E~10r
X0=0eY0=0r 00EMAX=2%1.E=7>
DELTA=1.0,FINAL=25"
A=le
I0F=Fs
$S/IDENT=54HEXAMPLE 2
L]
ORDER=21S1ZMAX=1+E=3¢SIZMIN=1,E-10"
X0=0rY0=1.0¢0?EMAXZSLeE=Tr1:E=T»
VAR=-29t-u1801527r.629|.729-.829:.933'1-043:1.163!1-297'1-451!1o635!
1.%75-2.295.2.6u5'3.059o3.741.4.26.4-812-5-552-6o?97-
A=00¢
10F=Ts
$ ENDJOB

BE-600 SERIES ...
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OUTPUT FOR SAMPLE CASES

SOLUTION OF A SYSTzZM nF OJDINAAY LINEAR OR PAGF
NON=LINEAR DIFFZRENTIAL SJ4JAT]ONS

NATE OF RUN 052365

DIFFE TEST CASE

USING THE TEST CASES FROM EVENDALZT WITE=-UP

EXAMPLE 1
& “ * o m # o INPUT DATA W “ [ i [ o o
NUMBER QOF EQATIONS. 2
MAXIMUM STArTING INTERVaAL S|k (S1Z24a%) 1.000N0F=03
MINIMUM PEIMITTED INTERVAL SIZE (S1ZMIN) 1.00000E=10
INITIAL VALUE OF THE INDEPENDENT VAR]ABLZ 0.

INITIAL CONDITIONS OF TWHE NEPENDENT VARLABLES

1) 0, 2) 0.

ERROR BOUNDS OF THE JFPENDENT VARIA3LZ>

1) 1,00000E=07 2) 1.00000E=07

INTEGRATE FROM 0, AT THESE VALUES

1) 8,78000E=01 2) 1,21629€ 30 3) 1,46900E 00
4) 1.79000E 00 5) 1.94120¢ 30 6) 2,26200E 00
7) 2,58900E 00 8) 2,91120€ 10 9) 3,22000E 00
10) $,43800E 00 11) 3,62500E 00 12) 3,79500E 00
13) 3.95300E 09 14) 4,10320E 00 15) 4,25300E 00
16) 4,39700E 00 17) 4,55830€ 00 18) 4,67800E 00
19) 4,81900F 00 20) 5,10500E 30 21) 5,43000E 00
22) 5,93800E 00 25) 6,22000E 00

CONSTAVNTS USED IN THE DE SJARDJJTINE EQUAT]ONS

1) 1,00G000E 0O

DIFFE
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APPENDIX A
PROGRAM LISTING

*+%EQF
$ IDENT  AAV+GE+FORTRAN+DIFFE DIFF0000
% OPTION FORTRAN!GO DIFF0010
3 FORTRAN LSTOU*DECK+STAB ~ DIFF0020
3 INCODE IBMF DIFF0030
*DIFFE DIFFERENTIAL EQUATIONS SOLVER DIFFO0040
* CD600D7.002 DATE 05/06/65 DIFF0050
COMMON A(200) DIFF0060
DIMENSION YO(25) sEMAX(25)rY(25) 1 VAR(300) DIFF0070
DIMENSION NAME(10)+ADORES(10) ¢ IDENT(10) DIFF0080
LOGICAL IOF DIFF0090

INTEGER HOURS*SECNDS+STIME ¢ SSEC»STIMEP»SSECP»STIMEL»SSECLSTIMEN DIFF0100
INTEGER SSECN!ETIME(ESEC DIFFO110

NAMELIST/S/NAME » ADURES » IDENT r ORDER ¢ EMAX » STZMAX » STZMIN» X0+ YOrDELTA+DIFF0120

1FINAL?VAR?A»NeHO»HMINe IOF DIFF0130
CALL EFMOUT DIFF0140
NER=3 DIFFO0150
CALL CLOCK(DATEHOURS»SECNDBS) DIFFO160
STIME=HOURS DIFFO0170
SSEC=SECNDS DIFF0180
1P=0 DIFF0190
CALL MABRI(BITS) DIFF0200
SIZMAX=1.E-3 DIFF0210
SIZMIN=1.E-10 DIFF0220
1 NA=O0 DIFF0230
NV=0 DIFF0240

GE-600 SERIES _ m
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CALL CLOCK(DATE»HOURS»SECNDS) DIFF0250

STIMEP=HOURS DIFF0260
SSECP=SECNDS DIFF0270
STIMEL=HOURS DIFF0280
SSECL=SECNDS DIFF0290

DO 405 I=1.200 DIFFO0300

405 A(I)=BITS DIFFO0310
DO 406 I=1.300 DIFF0320

406 VAR(I)=BITS DIFF0330
DELTA=BITS DIFFO0340
IER=0 DIFF0350
I0OF=.FALSE. DIFF0360
READ(5¢5S) DIFF0370

DO 407 I=1.200 DIFF0380
IF(ALI) «EQ.BITS)GO TO 408 DIFF0390

407 CONTINUE DIFFO400
408 NAZI=-1 DIFFO410
IF(DELTA.EQ.BITS)GO TO 411 DIFFO0420

420 IF(DELTA)412s411s412 DIFFO430
411 DELTA=0.0 DIFFOL440
DO 409 I=1,300 ! DIFFO450
IF(VAR(I)+EQ.RITS)GO TO 410 DIFFO4e0

409 CONTINUE DIFFO470
410 nV=I-1 DIFFO480
IF(NV)2017,20172040 DIFFO490

2040 CONTINUE DIFF0500
FINAL=VAR{NV) DIFFO0510

GO TOo 2042 DIFF0520

412 IF(DELTA)2045+r411r2046 DIFFO0530
2045 IF(XO+DELTA=-FINAL)2017,2017.2042 DIFF0540
2040 IF(XO+DELTA=FIMNAL)2042,2017,2017 DIFF0550
2042 N=ORDER DIFF0560

GE-600 SERIES ==

-26-



NLL=ORDER/3.+.9 DIFF0570

IF(N.GT.10)G0 TO 2017 DIFF0580
HO=SIZMAX DIFF0590
HMIN=SIZMIN DIFFO0600
IF(N«GT«6)60 TO 4l DIFF0610
K=N DIFF0620
GO To u2 DIFF0630
41 K=6 DIFF06&40
42 1P=IP+1 DIFF0650
WRITE(6+100) IP»DATE+NAME, ADDRES» IDENT DIFF0660

100 FORMAT(1H1,14Xs»42HSOLUTION OF A SYSTEM OF ORDINARY LINEAR ORv+8Xr DIFF0670
AYHPAGE ¢+ 13/18%» 33HNON-LINEAR DIFFERENTIAL EQUATIONS//2X+11HDATE OF DIFF0680
BRUI* 3X» AG///BX» 10A6//8X1 1046/ /8Xe10A6///) DIFF0690

WRITE(6+99)Ns+HOrHMINS XOr (12 YO(I) e I=14N) DIFF0700

99 FORMAT(1Xre7(U4H* )r12HINPUT  DATAr7(4H  *)///6Xr»19HNUMBER OF EQDIFFO0710
1ATIONS» I8/6X 1 41HMAXIMUM STARTING INTERVAL SIZE (SIZMAX)1PE17+5/6DIFF0720
2xr41HMINIMUM PERMITTED INTERVAL SIZE (SIZMIN)1PE17.5//42H INITIALDIFFO0730

3 VALUE OF THE IMDEPENDENT VARIADBLEr1PE17.5/6X»45HINITIAL CONDITIONDIFFO740
45 OF THE DEPENDENT VARIABLES//(1XeI7:1H)1PE15.5¢17¢1H)1PE15.5¢17¢1DIFF0750
SH) 1PE15.5)) DIFF0760
WRITE(6298) (I EMAX(I) »I=1reN) DIFF0770

95 FORMAT(1HO/7X»39HERROR BOUNDS OF THE DEPENDENT VARIABLES//(1X+I7»1DIFFO780

IH) 1PE15.5¢17¢1H) 1PE15.5¢ 179 1H) 1PE15.45)) DIFF0790
NLA=D DIFFO0800
NLV=0 DIFF0810
IF(NV)2017.,2000,2001 DIFF0820

2001 VN=NvV DIFF0830
VLNZVYN/3,:+.9 DIFF0840
NLV=VLN DIFF0850
IF(NLV.GT«161G0 TO 2003 DIFF0860
WRITE(H+96)X0r (I VAR(T) v IZ12NV) DIFF0870

96 FOKRMAT(1HO/7X+1SHINTEGRATE FROMs1PE19.5,7X»15HAT THESE VALUES/(1XDIFF0880

ArI701H)1PE15.5¢ 17+ 1H) IPELS5.5¢17¢1H)1PE15.5)) DIFF0890

GE-600 SERIES prees
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NPVZ=20=NLV DIFF0900

GO To 2007 DIFF0910
2003 WRITE(6¢r96)X0r (I1¢VARII)rI=1s48B) DIFF0920
IF(NV.GT.201)G0 TO 2005 DIFF0930
IPZIP+1 DIFFO940
WRITE(6+961)IPe (I+VAR(I) s IZ49sNV) DIFF0950

961 FORMAT (1H1+5BX»4HPAGE» I7/9X+37THINTEGRATION (INDEPENDENT) VARIABLDIFF0960

LES//(1XreI17+1H) IPEL15.5+17¢1H) 1PE15:5: 17+ 1H) 1PE15.5)) DIFF0970
NPV=67=NLV DIFF0980
GO To 2007 DIFF0990
2005 IP=IP+1 DIFF1000
WRITE(6r961)IPe (I+VAR(I) »I=49,201) DIFF1010
IF(NV.GT.300)G60 TO 2017 DIFF1020
IP=IP+1 DIFF1030
WRITE(6+951)IP (I+VAR(I)»I=202sNV) DIFF1040
NPV=118=NLV DIFF1050
GO To 2007 DIFF1060
2000 WRITE(6¢+97)X0+FINAL,DELTA DIFF1070

97 FORMAT(L1HO/7X¢s15HINTEGRATE FROM1PE16.5¢5H TO1PE19.5/14X»11HIN SDIFF1080

1TEPS OF1PE19.5) DIFF1090
NPV=16 DIFF1100

2007 IF(NA)2008.2009,2008 DIFF1110
2008 AN=NA DIFF1120
ALN=AN/3.%+.9 DIFF1130
NA=AN DIFF1140
IF(NPV.GT«16)G0 TO 2011 DIFF1150
IF(NLA.GT+12)G0 TO 2013 DIFF1160
WRITE(6:95) (I,A(I) ¢ I=1rNA) DIFFL170

95 FORMAT(1HO0/12Xs49HCONSTANTS USED In THE DE SUBROUTINE EGQUATIONDIFF1180

16//7(1Xe 172 1H)1IPE15+5¢ 179 1H) 1PELS5:.5¢17¢1H)1PE15.5)) DIFF1190
GO0 To 2021 DIFF1200
2013 WRITE(6r95)(I+A(I)sI=1036) DIFF1210

GE-600 SERIES S
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IF(NA«GT.1R9)G0 TO 2015 DIFF1220
IP=IP+1 DIFF1230
WRITE(6¢951)IP» (I+ALI)rI=37eNA) DIFF1240

951 FORMAT(1H1»11Xs49HCONSTANTS USED IN THE DE SUBROUTINE EQUATIONDIFF1250

18//€1Xe 170 1H) 1IPEL1S.5¢ 17+ 1H) 1PE15.5¢17+1H) 1PEL5.5)) DIFF1260

G0 To 2021 DIFF1270

2015 IP=IP+l DIFF1280
WRITE(6+951) IP+ (I2A(I)+I=37+189) DIFF1290
IF(NA+GT.200)G0 TO 2017 DIFF1300
IP=IP+1 DIFF1310
WRITE(6r951)IP» (I+A(I)»I=190+NA) DIFF1320

G0 To 2021 DIFF1330

2011 IF(NA.GT.153)60 TO 2019 DIFF1340
IP=IpP+1 DIFF1350
WRITE(6+951)IPs (I+ACI)»I=1,NA) DIFF1360

GO To 2021 DIFF1370

2019 IP=IP+1 DIFF1380
WRITE(62951)IP» (I+A(I)sI=1,153) DIFF1390
IF(NA«GT.200)G0 TO 2017 DIFF1400
IP=IP+1 DIFF1410
WRITE(6¢951)IPs (IrALI) s I=154sNA) DIFF1420

GO To 2021 DIFF1430

2009 NPA=0 DIFF1440
2021 IF(NLA+NLV=5)2022r2022+2023 DIFF1450
2022 WRITE(6+101) DIFF1460

101 FORMAT(1HO//1Xe24(3H* )//13X+9HVARIABLES//2Xr11HINDEPENDENTO9X»9HDDIFF1470

1EPENDENT//) DIFF1480
NCT=U5 DIFF1490
GO To 2024 DIFF1500
2023 IP=IP+1 DIFF1510
WRITE(6+1010)IP DIFF1520

1010 FORMAT(1H164Xs4HPAGEI3/13Xs9HVARIABLES/ /72X 11HINDEPENDENT9X » 9HDEPEDIFF1530

INDENT/ /) DIFF1540

GE-600 SERIES puere

=20~



NCT=5 DIFF1550

2024 1X=1 DIFF1560
IF(DELTA)Sr6:5 DIFF1570

5 XF=XOQ+DELTA DIFF1580

GO To 9 DIFF1590

6 L=1 DIFF1600
XF=VAR(L) DIFF1610

9 WRITE(6+102)X0r (I¢YO(I)sI=1rN) DIFF1620

102 FORMAT(1PE13.4¢2X?3(I4r1H) 1PE13:5)/(15Xe 14+ 1H) 1PEL3.5¢ 14+ 1H)1PEL13.DIFF1630

ASrI4+1H)1PEL13.5)) DIFF1640

10 IERR=0 DIFF1650
CALL AMSINT(IX+XFrY+EMAX#NosHO9»XO0rYOrHMIN X» IERR) DIFF1660
IF(IERR)2060+2070r2060 DIFF1670

2060 IER=IER+1 DIFF1680
IF(IER=1)2062+2061,2062 DIFF1690

2061 XFP=xF DIFF1700
IER=1 DIFF1710

GO TO 2064 DIFF1720

2062 IF(XFP=XF)2061¢2063r2061 DIFF1730
20063 IF(IER=NER)2064,2064+301 DIFF1740
301 WRITE(6105) DIFF1750
105 FORMAT(1HO//12(6H *) /6X»S5HERROR FOUND IN THIS CASE == WILL DIFF1760
1PROCEED TO NEXT CASE/12(6H *)) DIFF1770

GO TO 80 DIFF1780

2064 DO 2065 J=1+N DIFF1790
2065 YO(J)=Y (W) DIFF1800
ERI=IER DIFF1810
XO=X+(XF=X)*0.1*ERI DIFF1820

IX=1 DIFF1830

GO To 10 DIFF1840

2070 CONTINUE DIFF1850
WRITE(62102)XFr(I2Y(I)»I=1,N) DIFF1860

@IE“@@@ SEI}RUES DIFFE
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NCT=NCT#+NLL
IF(NCT+LT+50)G0 TO 61
IP=IP+1
WRITE(6¢1010)IP
NCT=5

61 CONTINUE

30 IF(HO)2051,2017+2050

2050 IF(FINAL=XF)12,12+11
2051 IF(FINAL=XF)11r12r12

11 IF(DELTA)15/16+15

15 XF=XF+DELTA
I1X=2
GO0 To 10

l6 L=L+1
XF=VAR(L)
1x=2
GO To 10

12 CONTIMUE

30 CALL CLOCK(DATErHOURS»SECNDS)
STIMEN=HOURS
SSECN=SECNDS
ETIME=STIMEN=STIMEP
ESEC=SSECN=-SSECP
IPZIP+1
ITIME=ESEC

WRITE(6+103) IP*ETIME» ITIME

DIFF1870
DIFF1880
DIFF1890
DIFF1900
DIFF1910
DIFF1920
DIFF1930
DIFF1940
DIFF1950
DIFF1960
DIFF1970
DIFF1980
DIFF1990
DIFF2000
DIFF2010
DIFF2020
DIFF2030
DIFF2040
DIFF2050
DIFF2060
DIFF2070
DIFF2080
DIFF2090
DIFF2100
DIFF2110
DIFF2120

103 FORMAT(1H163Xr4HPAGEI4/6X»44HALL DEPENDENT VARIABLES HAVE BEEN CALDIFF2130

1CULATED//6X+33HFOR THE PREVIOUS INPUT QUANTITIES////1u4Xr19HELAPSEDDIFF2140

2 TIME OF RUNI10+12H HOURS #***I6+12H SECONDS )
IF(IOF)GO TO 300
GO To 1

2017 WRITE(6+955)NA#IIV NI DELTA»HO

DIFF2150
DIFF2160
DIFF2170

DIFF2180

DIFFE

GE-600 SERIES

-31-



955 FORMAT(1H15Xs34HERROR IN NUMBER OF INPUT VARIABLES/6X:3HNA=I17/6X»3DIFF2190

IHNV=17/6X*2HN=18/6X+6HDELTA=1PE12:5/6X? 3HHO=1PE15:5) DIFF2200
300 IETIME=STIMEN-STIME DIFF2210
IESEC=SSECN=-SSEC DIFF2220
ITIME=IESEC DIFF2230
WRITE(6.104) IETIMEr ITIME DIFF2240

104 FORMAT(1HO//8X»25HTOTAL ELAPSED TIME OF RUN#I10¢12H HOURS *#*#%,I6DIFF2250

Ar12H SECONDS ) DIFF2260
STOP DIFF2270
END DIFF2280
% FORTRAN LSTOU*DECK+STAB AMSNOODO
B INCODE IBMF AMSNO010
*AMSINT DIFFERENTIAL EQUATION SUBROUTINE AMSNO020
* Cp600D7.002 DATE 05/06/65 AMSNOO030
¥ SOLVES A SET OF N SIMULTANEOUS FIRST ORDER DIFFERENTIAL EQUATIONSAMSNOO4O
k3 USING THE GEWERALIZED ADAMS=MOULTON METHOD AMSNO0S50
SUBROUTINE AMSINT(IXrsXFrYrEMAXeNsHLrX0rYOrHF#Xr IERR) AMSNOOgD
DIMENSION Y(25)EMAX(25)Y0(25) ¢ YP(25)Y1(25)rY2(25) AMSNOO70
DIMENSION F(25¢6)rDYP(25) »DYC(25)rE(25) ¢P(6227)¢C(5¢9) AMSNO080

DATA P/16128:+22808:¢B218+91645¢9107,9,0203+3840,¢v5512:¢21354¢ AMSNO090
AST0er10747.0277911524¢1675:9694¢927847107¢¢+0339¢768e¢1163er AMSNO100
Bo4Ber 27847257 :03351192:0297 ¢ 1870110712547 04319647151401064¢ AMSNO110
C91l.erl4Dero0502936015B9.1625¢1455:¢59,¢,0497¢9607161e¢206.¢200.¢ AMSND120
D5947,05977 126121541322+ 46941236++.0663+2016.+38804723664+7539+7 AMSNO130
E37.7.0358r48079524+625091906¢37ar«0477r144:2293.9206.¢94.237ar AMSNO140
FaD57319669211+12004994,1949 405631241 5549159¢937e19are0704r304r AMSNO150
G71.¢854+1B0.936e¢.0804+90.¢229«¢415:90320¢rl4lecrc0792¢60¢16+135e¢ AMSNO160
H364¢11.94002401126+9347:¢889:11372++ 7044710087504+ ¢164B84r152641¢ AMSNO170
J413¢93109005880120491 4160741509150 310¢e0756¢360r1310¢140e07607 AMSNO180
K31er.0BB27641250¢360119e12,0+0861260+27r1U44er31e0Bsre1033730.¢ AMSNO190
L143++260+472754012Ber 114814540 242¢1665¢7550782+0911270642354¢ AMSND200
M116++128arlilerel268¢63:¢388471505:024924.+1312.041353/ AMSNO0210

DATQ C/2016. 1856, 1246991, v5.196. 40, Ib],- vBerlarllly, lsgn'gul L AMSN0220

@EU@@)@ gEER”Eg DIFFE
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AlUer5ers96er37¢r 720018, 010128¢9¢94919495,2142300011.925.7100l0r AMSNO230
HaNer31er95. 0400 rberber2arTorbarlerl260rblerlBblerllQarbl./ AMSNO240

GO TO (1¢3)01IX AMSN0250

* COMPUTE A STARTING H AMSNO260
1 ASSIGN 12 TO ICHOCE AMSNO270
H=32. AMSNO280

LU H=H/2. AMSNO290
IF(ARS(H1)=-H)10r11r11 AMSNO300

11 H=H*ALS(H1)/H1 AMSNO310

* GO THROUGH IMITIAL EXTRAPOLATION AMSNO0320
12 CALL DE(XO»YO(1)sF(1:2)) AMSNO330

DO 101 I=1N AMSNO340

101 YLUI)=YO(L)+H*F(1+2) /4., AMSNO350
XTXO+H/ 4, AMSNO360

CALL DE(XrY1(1)eF(1e3)) AMSND370

DO 102 I=1sN AMSNO380

102 Y2(MI)=YL(I)+H* (3. *F(1+3)=F(1:2))/8. AMSNO 390
XZX+H/ 4. AMSNO400

CALL DE(XrY2(1)rF(Llen)) AMSNO410

DO 103 I=1en AMSNO420

1U3 YPLI)SY2(I)+H* (19 «F (1e4)=20.%F (1+3)47.%F(1r2)) /12, AMSNO430
1031 X=X+1172. AMSNO440
¥ PERFORM INITIAL COKRECTION AND TEST AMSNOH450
CALL DE(XeYP(1)eF(105)) AMSNO460
ASSIGN 107 TO ITEST AMSNO470

NO 104 I=1.n AMSNO480
YOLI=YOUI)4H* (37 *F (I12)+724*F(T1¢3) =14, *F(Ie4)+F(1+5)) /384, AMSNO490
IF(EMAX(I))1059,104001040 AMSNO500

1639 IFABSIYL(I)=Y(I))=ABS(EMAX(I)*Y(I)))104,104,1084]1 AMSNO510
1040 IFCARSIYL(I)=Y(I))=EMAX(I))104104r1041 AMSNDS520
1041 ASSIGN 1031 TO ITEST AMSNOS30
1o y1(I)=YI(]) AMSNO540
X=X0+11/4, AMSNO550
GE-600 SERIES
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1049
1050
1051

105

1059
106U
1061

lio

117

20

200

201

GE-600 SERIES

CALL DE(XrY1(1)eF(1:+3))

DO 105 I=1sn

YOI)=YLUI)+H* (=5 *%F(I1+12) 450 %F (1 3)+Ub e *F(I1e&4)=F(1¢5)) /384,
IF(EMAX(I))1049+,1050r1050
IF(ARS(Y2(T)=Y(I))=ABS(EMAX(I)*Y(I)))105,105+1051
IF(ABS(Y2(I)=Y(I))=EMAX(I))105r105,1051

ASSIGN 1031 TO ITEST

y2(I1)=y(1)

X=R+H/ 4.

CALL DE(X+sY2(1)rF(1r4))

DO 106 I=1sH

YOIDSY2(I)4H* (FUIr2) =t o *F(1o3)+T7*F(Tol)42.%F(1+5)) /12,
IF(EMAX(I)11059+1000r1060
IF(ARS(YP(I)=Y(I))=ABS(EMAX(I)*Y(I)))106+106+1061
IFLARS(YP(I)=Y(I))=EMAX(I))106r106r1061

ASSIGIH 1u31 Tu ITEST

YPLI)=Y (D)

GO TO ITEST»(1031:107)

X=X+H/ 2.

CALL DE(X YPLL)rF(1r5))
ITC=3*1IT1+1T2
ITP==3*1TC-1IT3+14
ITC=5=1ITC

DO 201 I=1lsN

DYPLI)I=(P(2oITPIAF (L eS) =P (3 ITPI*F (Io4)+P (4 ITPI*F (T1+3)=-P(5: ITP) %

IF(1e2) ) $H/P (L ITR)

YI(I)=YP(I)+DYP(])
X=K+H
CALL DE(XxrY1(1)rFllrp))

Do 202 J=1l+H

AMSNOS60
AMSNOS570
AMSNO580
AMSNO590
AMSNO600
AMSNO610
AMSN0620
AMSNO630
AMSNO640
AMSNO650
AMSNO660
AMSNO670
AMSNO680
AMSHD690
AMSNO700
AMSNO710
AMSNO0720
AMSNO730
AMSNO740
AMSNO750
AMSNO760
AMSNO770
AMSNO780
AMSNO790
AMSNOB00
AMSNOB10
AMSNOB20
AMSNOB30
AMSNOBLD
AMSNOBS0
AMSNOB60
AMSNOB70

AMSNOBBOD

DIFFE
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2Nz

2Ny

2lls

GE-6O0 SERIES

DYCU =(C(2o ITCIAF(JsR)+C U3+ ITCI*F(JeS)=Clus ITCIF (Jott)+C (5. ITC)*= AMSNOB9O

IF(Sr 3 ) *R/CU1ITC)

E(JI=P (6 ITP)*(DYC(J) =DYP(J))

IF(EMAX (U =-ABS(E(J))) 2102020202

Y(JI=DYC(J)=E(JI+YELY)
ASSIGH 204 TO LOw

L 203 T=l-1
Y2l =yp(In)
YyRPeti=y(1)
FULr1)ZF(Te2)
FULI*P2)ZF(I03)
Flle3)=F(Iery)
FUIru)=F(I.5)

Fll¢5)=F(Is5)

IFIEMAXITI) /u0.=AES(E(T)))Z2031+2031,203

ASSIGH 205 TO LOw
CONTIMUE

ITT=1

1TG=0

GO TO LOwe (2010205)
1To==1

H=11%2.

IT4=IT3

1T3=172

I1Te=1T1

ITI=ITO

ASSIGH 211 TO ICHOLL
IFCUIX=XF) /1) 270 2(1h e 250
RE TURII

IFCIX=XF)/H) 202300250
pe 31 I=1ien
y(I)=yp(1)

60 TCc 206

AMSHOS00
AMSNO910
AMSNO920
AMSNO930
AMSNO940
AMSH0950
AMSNO960
AMSNO970
AMSNO980
AMSN0O990
AMSH1000
AMSNMN1010
AMSN1020
AMSHN1030
AMSHI1040
AMSHI1050
AMSI1I1060
AMSHN1070
AMSN1080
AMSN1090
AMSN1100
AMSHM1110
AMSN1120
AMSHN1130
AMSN1140
AMSN1150
AMSH1160
AMSN1170
AMSN1180
AMSN1190
AMSN1200

AMSH1210
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¥ REDUCE INTERVAL SIZE AND RECALCULATE AMSN1220

210 H=H/2. AMSN1230
IF (ABS(HF)=ABS(H))2100,2100#220 AMSN1240

2100 GO To ICHOCE+s(12+211) AMSN1250
211 IF(IT1)212+212+213 AMSN1260
212 ITI=IT1+1 AMSN1270
X=X=2+*%H AMSN1280

GO To 200 AMSN1290

213 IF(ITT)I220+2131+2131 AMSN1300
2131 IF(IT2)214+214¢220 AMSN1310
214 IT1=IT2+1 AMSN1320
IT2=1T3 AMSN1330
1T3=1Ty AMSN1340

HE2 e %H AMSN1350
X=X=3.#H AMSN1360

DO 215 I=1+N AMSN1370
YP(I)=Y2(1) AMSN1380
FUIeSIZF(Is4) AMSN1390
FCIv4)=F(Ie3) AMSN1400
FULI13)=F(1,2) AMSN1410

215 FlI+2)=F(I+1) AMSN1420
ITT==1 AMSN1430

G0 To 200 AMSN1440

B TAKE CARE OF SIMGULARITY OUTPUT AMSN1450
220 CALL SING(XeYrHed) AMSN1460
IERR=J AMSN1470

GO To 206 AMSN1480

* COMPUTE SPECIAL VALUES OF Y AMSN1490
250 IF(IT1)2503,2501+2502 AMSN1500
2501 HIzH AMSN1510
GO To 251 AMSN1520

2502 HI=2.*H AMSN1530
GO0 To 251 AMSN1540

GE-600 SERIES
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2503 HI=H/2. AMSN1550
251 IF(IT2)2511+2513,2512 AMSN1560
2511 H2=H1/2. AMSN1570
GO To 252 AMSN1580
2512 H2=2.*HI AMSN1590
G0 To 252 AMSN1600
2513 H2=H1 AMSN1610
2be2 IF(IT3)2521+2523,2522 AMSN162U
2521 H3=H2/2. AMSN1630
G0 To 253 AMSN1640
2522 H3=2.%H2 AMSN1650
G0 To 253 AMSN1660
2523 H3=H2 AMSN1670
253 0l=H2+HI AMSN1680
Q2=H2+H3 AMSN1690
R1=H3+Ql AMSN1700
USAF=X+HI AMSN1710
ULZC(U/ZG .+ (H2+Q2) /34 ) *U+H2%02/24 ) *U/ (HI*Q1+R1) AMSN1720
U= (UG =(1I=12=02) /3. ) U= (HI*H2=H2*Q2+Q2+H1) /2. ) #U/ (111 #H2%Q2) =1 . AMSN1730
U= (U/4.=(HI=-Q2)/3.) *U=-HI*Q2/2.) *U/ (H2*H3*A1) AMSN1740
UU= (U8 =(HI=H2) /3. ) *U=HI*H2/24 ) *U/ (H3*Q@2*R1) AMSM1750
CO 260 I=1+N AMSN1760
00 Y(II=Y2(I)4U* (ULAF(115)=U2+F (T 4) +US*F (12 3)-UL*F(1,2)) AMSN1770
GO To 206 AMSN1780
EML AMSN1790
% GiHAP DECK EFMO0000
SEFVMOUT SUBROUTINE To INHIBIT FLOATING FAULT EFMO0010
* Cp600D7.002 NATE 05/06/65 EFM00020
LisL EFMOUT EFMOU030
SYMDLF EFMOUT EFM0O0040
EFWOUT STI Irp EFM00050
LuA (ouno0rDL EFM00060
OKSA IMD EFM0O0070

DIFFE
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IND

%
*CLOCK
*

*

CLOCK

+MAD

MAR

BITS

GE-G00 SERIES

LDI
TRA
BSS
END

GMAP

LBL
SYMDEF
STX1
MME
LUX1

STA

STA
TRA
END

GMAP

LBL

SYMDEF

LDA
STA
TRA
ocT
END
FORTRAN

INCODE

IND EFM00080
01 EFMO0090
1 EFM00100
EFMO0110
DECK CLCKO0O00O
FORTRAN CLOCK ROUTINE CLCKOD10
Cp600D7.002 DATE 05/06/65 CLCKOD020
CALL CLOCKLDATErIHOUR?ISEC] CLCKDO030
CLOCK CLCKODO40
CLOCK CLCKO0O050
A CLCKOO&0
GETIME CLCKO0OD70
0rDU CLCKOO0BO
21 1% STORE MODAYR IN DATE CLCKOO090
(64000 DL TOTAL SECONDS TO @ CLCKO100
(3600+0L HQURS TO @r SECONDS TO A CLCKO110
3r1% PUT HOURS IN IHOQUR CLCKO0120
Gelx PUT SECONDS IN ISEC CLCKO130
Orl CLCKO140
CLCKO150
DECK MAB 0000
SUBROUTIME TO GIVE PLUS BITS MAB 0010
Cpe00D7.002 DATE 05/06/65 MAB 0020
MAB MAB 0030
MAB MAB 0040
caLL MABLBITS] MAB 0050
8ITS MAB 0060
2r1% MAB 0070
0r1 MAB 0080
377777777777 MAB 0090
MAB 0100
LSTOU»DECK*STAB SINGOOODO
IBMF SING0010
DIFFE
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*S1t6 SINGULARITY SUBROUTINE FOR TEST CASE SINGO020

* Cpe00D7.002 DATE 05/06/65 SINGOO30
SUBROUTINE SINGIXsYeMeJ) SINGOOD4O
DIMENSION Y(25) SING0050
WRITE(6r100)JeXe (Y(I)pI=1epN) SINGO0O060O

100 FORMAT(1HOS5X»25HSTNGULARITY DETECTED IM YIS/6X UHTIMELIPEL1S5.6/6Xs SINGOO70

AQHFUNCTIONS/ (4 (1PE1646))) SING0080D
RETURN SING0O0S0

ENu SINGO0100

% FORTRAN LSTOU(DECKSTAD DE 0000
% THCODE IBMF DE 0010
*DE DE ROUTINE FOR DIFFEE TEST CASE DE 0020
* Cp600D7.002 DATE 05/06/65 DE 0030
SUHROUTINE DE(XrYrF) DE 0040
cOMMOM A(200) DE 0050
DIMENSION Y(25)F(25) DE 0060
Fl1)=Y(2) DE 0070
FU2)==Y(2)=Y(1)=Y (1) *+2=Y (1) *x3+A (1) *SIN(X) DE 0080
RETURHM DE 0090

EMND DE 0100

GE-600 SERIES prre
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APPENDIX B
FLOW CHARTS

CLOCK
Get Initial
Run Time

Initialize
Storage

CLOCK
Get Time This
Case Started,

Read Input
Sheets D1
and D2

DELTA Given?

NV=number of
VAR Values > @
FINAL=VAR(NV) 5

DELTA=0

GE-600 SERIES oz
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XF=X0
+DELTA

5 |
XF=VAR(2)

+1
Print
Initial
Conditions

AMSINT
Integrate to
XR

Print out
Calculated
Points

FINAL Reached?

CLOCK
Running Time
0f Case

DIFFE
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DIFFE INPUT (SHEET D2)

FINAL=

DELTA=

VAR=

A=

10F=

case

T if last

F if not last case



?

FINAL=

DIFFE

INFUT (SHEET D2)

'
» 2
» »
? »
;] »
’ L
L ] »
L] ]
» 1
»
»
] »
] 3
E] 1
' Ll
2 ]
s »
] »
3 ]
2 b
» ]
L]
] ’
1 L
» »
2 L]
» »
» 1 1
3 ¥
2 ]
1 ]
L] »
1 1 3
2 1
» L
] L]
r ]
] ’
] L]
» "
] »

DELTA=
VAR= ,

]

3
A=

]

]

1]

]
10F= $
T if last case

F if

not last case



DIFFE

INPUT (SHEET D2)

DELTA= , FINAL=

VAR= 2 ]
» L] »
] L] »
1 ] ]
1 L] 1
» ] ]
E] » ]
» 3 ]
» 3
» 3 »
3 ] ]
3 ? 3
3 3 L]
’ » ]
L] 3 3
] E] ]
L 2 L
] ] ]
’ ] ]
' ’ ]
] ] ’

A=

¥ »

L] ’ ]
3 £l ]
L ? 3
» ] ]
¥ » ]
] 3 ]
» b ¥
’ 3 1
1 2 ¥
] ] ]
] 3 ]
] 3 »
L] 3 ]
2 ] L]
L] ] ]
] 3 1
] ] ]
’ 3 '
» 3 '

10F= $

T if last case

FiE

not last case



3

FINAL=

DIFFE

INPUT (SHEET D2)

3 ¥
L 3
2 3
3 k]
3 3
2 2
2 2
3

] 2
t] 3
] ]
E] i
3 H
3 3
2 2
3 3
3 3
2 2
3 1
3 L]

]

2 3
3 3
3 2
+] 3
3 3
2 3
3 Ll
E ]
3 3
3 3
3 3
3 .}
] tl
3 ]
t] ¥
3 t]
3 b
3 1
3 3

DELTA=
VAR= ,
]
A=
3
3
t]
]
I0F= 5
T if last case

F if

not last case



FINAL=

DIFFE

INPUT (SHEET D2)

» ]
] L]
1 ]
] ]
] H
] ]
] »
L] »
» 3
] 2
» ]
’ ]
" L]
’ 3
: ]
1 ]
3 ]
’ ]
1 ]
] ]

] L]
] ]
L] 3
L] 3
] 3
¥ L
] ’
] ]
3 ]
] ]
] ]
] |
] L]
» ?
] ]
» 3
] 1
] "
" »

DELTA=
VAR= .

»

]

]

1]

]

]

]

¥

»

E]
A=

1]
10F= S
T if last case

Fif

not last case









GE-625/635
MATH ROUTINES
LSPF

LEAST SQUARES POLYNOMIAL FIT

Program  Number
CD600D6. 001

October 1965

GENERAL @3 ELECTRIC

COMPUTER DEPARTMENT



CREDITS

The source material used in this manual is taken from a document published by the General Elec-
tric Telecommunications and Information Processing Department, titled Sequential Least Squares
for Polynomials by C. B. Chandler and J. T. Godfrey. Permission to use the original document
was given by D. L. Shell, Manager, Computer Applications and Processing of the Telecommuni-
cations and Information Processing Department, General Electric Company.
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General Electric Company, P. O. Box 2961, Phoenix, Arizona, 8§5002.
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1. GENERAL DESCRIPTION

The sequential least squares for polynomials program determines the coefficients of a polyno-
mial in X which give the least squares fit to given data.

Five features make this least squares curve fitting program unique:

(1)  Virtually any polynomial model in one variable may be specified. For example, a mod-
el such as y =a,+a,x” +a,x%+a,x? could be specified.

(2)  All reduced models of the original can be obtained with a few additional calculations.
Thus, in the example y = b, +b,x” +b,x% y=c,+c,x”and y=d, could also be obtained.

(3) Predictions are computed for all models.

(4) A complete set of statistical parameters are computed for each model such as F-test,
t-test for coefficients and standardized deviates for predictions.

(5) The program is free standing and simple to use. No programming is required of the
user.
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2. MATHEMATICAL METHOD

The method used to solve the simultaneous equations represented by the product moment matrix
and vector is called left-right decomposition. A complete inverse of the product-moment matrix
is not needed. This method is as efficient as a normal approach for a given M and provides a
much faster procedure for the calculation of the reduced models.

Briefly, the method is as follows:

The original equation is AR =

where A = product-moment matrix S
= product-moment vector Sy
& = vector of coefficients--the unknowns

The matrix A, which is symmetric, can be reduced to the product of 2 matrices L and R. That
is, A = LR where

L=[1 0 0 i 0—‘ and R = —ru Ty, Tig ? b ]
1, 1 0 : 0 0 ) Tas s Tay
1, | 1 3 0 0 0 Tas :
I__1,“ lia Lia 1 0 0 0 e

and where 1,, = r,/r,
and for i=1ry = Aywithj = LN

1_
for i>1, ry = Ay - i Tt r-.(_,_./n.mwithj = i, N
K=1

This gives the equation A2 = LR® = f
Let § = Rr8
Then 1y =8

A
and ? can be determined by forward substitution. That is, consider L? = b.

LSPF
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1 0 0 . 0] v, ] by ] Theny, = b,

1 . (U 0 Y2 b Y2 = bz - la y,

lay, 1l 1 0 Yal| = | ba ¥Ya=Dbsy - 1y, - 1l ¥z
ete.

[l I lee - - 1] B [y

Now, since RR = ?, 2 -~ the desired coefficients -~ can be determined by backward substitution.

Ty oo Ty, Ta,n X, Ya Then, X, = Yu/rn,n

Xya = (FuaTu-1 ¥y )/rn—l., N1

ete.
0 . Ty-1,n0-1 Tu-a,n X1 Y

0o . 0 - X, Ya

— e — o -

The diagonal of the inverse ofAA, needed for the variance and t-test calculations, is obtained by
the same method. Thatis, AX = LRR =

H b is successively EX [0 | [0 ] 8]
0 1 0 0
01}, 0|, 14, 0
| 0] |0 | 0 | 1

then the resulting 2 vectors will give the inverse although only the diagonal is saved.

The primary advantage of this method is provided by its use of left-right decomposition. For the
reduced models, the representation discussed above (reduced accordingly) is correct. There-
fore, the forward substitution need not be repeated.

SAMPLE PROBLEM

A sample output is included in Chapter 3, Usage. The model was

A
Y=0u +CuaX® + 01X +CuX +CuX® +04X"*
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The reduced models were then
@=Ca + CuX®+ Coa X® +Cse X +CagX®
2=Cu + CaX®+ Cas X° +Cas X

@=Ca +CaX® +CwuX®
Q=C|;!."'C|aa}{5

A

Y= Ca

The data for this problem was taken casually from €% that is y ~ e*
The data, with weights used, was:

X ¥ W
-2.50 0.05 1.0
-1.50 0.20 2.0
-0.50 0.50 3.0

0.75 2.10 3.0
1. 00 2.7182818 4.0
1.75 5.50 4.0
2.00 7.3890560 5.0
2.75 15.50 5.0
3.00 20.085536 5.0

The additional output under the option IOP2 includes the moment matrix S (NS) and the moment
vector SY(NT). The listing also includes the coefficients desired and the diagonal of the inverse
of the product moment matrix of each reduced model in sequence.
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3. USAGE

RESTRICTIONS

The restrictions listed below govern the construction of the polynomial model:
1. The number of terms in the model being fitted may not exceed 15; that is, NT <15.
2. The number of observations specified may be from NX = NT up to NX = 9999.
3. If the number of observations is greater than 200, a tape 3 is required.

4, If the number of observations is less than 201, all data is stored in core memory rather
than on tape. Therefore, tapes will not be used.

5. The exponents K,, K,, Kz, ..., K, must be positive integers or 0. No two of these
exponents may be equal.

6. The fit obtained for lesser order models will not necessarily suffer from ill-
conditioning which can oceur with higher order models.

. Conditioning of the product-moment matrix may be improved by subtracting a number
X, close to the mean of the X, 's, from each of the ;'s prior to obtaining the model.
The model would then be of the form
=0, X - Xt Co (X - Xo)*® 4 ... + C, (X - X527

This program permits the user to specify an arbitrary "X, " which will be subtracted
from each of the X,'s as they are read.

8. The maximum value for any "K,'" is 30.

9. The weighting factor W, if used, may be any floating-point number -- not necessarily
an integer.

DEFINITIONS AND OUTPUT DESIGNATION

The glossary on the following page defines the statistical parameters computed and gives the
symbols used. If no weighting is used, the definitions are true for W = 1.

LSPF
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Parameter Program Symbol Definition

Degree of Freedom NX NX =1l

s ol total

Sum of Squares SYSQ SYSQ = pwy?

Total

Sum of Squares SSREG SSREG = C, s WX'" Y+C,
due to regression TWXK2 ¥ +...

+C,TWX Y

Sum of Squares SSYX SSYX = SYSQ-SSREG
due to residual

Degrees of Freedom DFREG DFREG = M

due to regression

Degrees of Freedom DFYX DFYX = NX-DFREG
due to residual

Mean Square S2REG S2REG = SSREG/DFREG
due to regression

Mean Square S2YX S2YX = SSYX/DFYX
due to residual

F-value F F = S2REG/S2¥YX

In addition, the term NS gives the number of elements in the upper half of the product moment
matrix.

NS = (NT*NT - NT)/2 + NT.

When the analysis of variance table is complete, the coefficients and their variances are printed
and a t-test for statistical significance different from zero is computed and printed.

Coefficient Variance of Coefficient t-tegt
c, v(Cy) = ey . S2YX tq = C,/Vv(Cy)
Ca. v(Ca) = cm . S2YX te = Co/ Vv (Ca)
(s v (Cs) = Cas tes = Ca/ Vv (Cyp)

Com -« S2YX te,,= Cu/V v (Cps)

The "t;.!" in the table has DFYX degrees of freedom. The ¢y, Cz, Casy - . . , Cyy form the
diagonai of the inverse of the product-moment matrix.

C!M 3 v (C M)

This information, including the above analysis of variance calculations, is repeated for each of the
lesser models (if that option was %{en)vﬂn@uy, X,and Y, are printed with the determined Y,.
The standardized deviate, (Y, - ¥,)/V S2YX, is calculated and printed.

All of the models and their corresponding standardized deviates are calculated for each point

2 .Y, -

GE-600 SERIES
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INPUT/OUTPUT

Input is as follows:
$PARA/NX = ,NT= ,NP=  NW= ,[IOP1= ,IOP2= , XZER=§

Where
NX is the number of points to be read in
NT is the number of terms in the model
NP is the highest exponent of X
NV is 1 for weighting, O for no weighting
IOP1 is 1 for reduced models, 0 for original model only
IOP2 is 1 for intermediate printout, 0 for results only
XZER, if nonzero, is the value of X to be used as zero for the resulting curve.

EXP/KSEQ= , , , , $
A list of the exponents in the desired order
$DATA/X= ,Y= ,W= , §
One card per input point. W is optional, depending on NW
Another case may be entered by beginning with another $PARA card. If no more cases are to be

run, a $PARA card with NX=0 will stop the run.

Input for a sample case is illustrated on the following two pages. Additional input sheets are fur-
nished at the back of this manual for the user's convenience. A listing of input cards and an out-
put listing are also included in this section.

LSPF
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Input Coding Form (With Sample Data)

Col
2

$PARA/NX= G | NT= 6 ,

NP:--—.‘S-.) NW=_L,

$EXP]KSEQ=£, is ‘-_?s _.L: is i’s

$DATA/X=
$DATA/X=
SDATA/X=
$DATA/X=
$DATA/X=
$DATA/X=
$DATA/X=
$DATA/X=
$DATA/X=
$DATA/X=
SDATA/X=
$DATA/X=
$DATA/X=
$DATA/%=
SDATA/X=
SDATA/X=

$DATA/X=

GE-600 SERIES

LSPF INPUT
IQ)P 1= L 3
W= /
, W= 2
3 W= -.?
. e o8
W= <
e
it
N W= le

» W=

w5, Y= 0.05
/.5 | y=__0.2
0.5 . ¥ 25
075 | y-__ R/
/ , Y= UERE/E
/.75 ya S5
=% , Y=2. 289¢5¢
275, yu I5-5
3 , Y=LRC.085536 | y=
s Y=
y =
s Y=
-
"
L] 4
» Y=
i Y=

1gP2=_0O,

“ 4 4w 4w W W 4w 4 A A A A A W W Ay W

LSPF
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LSPF INPUT

Col

2

SPARA/NXO# , NT=___, NP=__, NW=__ , I@Pl=__, 1I@P2=__, XZER=__ §
$EXP/KSEQ=__ , _ , _ ., __ ., _ , __§%

$DATA/X= , Y= , W= $
$DATA/X= , Y= » W= $
$DATA/X= g Tm , W= $
$DATA/X= o , W= $
$DATA/X= ; Y= s W= $
SDATA/X= , Y= , W= §
$DATA/X= , Y= , W= $
$DATA/X= Y= , W= $
$DATA/X= , Y= s W= $
$DATA/X= , Y= , W= $
SDATA/X= ;s Y= , W= $
$DATA/X= ; Y= s W= $
$DATA/X= , Y= , W= $
$DATA/X= , Y= , W= $
$DATA/X= , Y= s W2 $
$DATA/X= , Y= s We $
$DATA/X= , Y= s W= $

BE-600 SERIES s
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Listing of Input Cards

FOE*x%

] EXECUTE
$ INCODE IBMF
SPARA/NX=9'NT=6¢NP=S+NW=1»I0P1=1+I10P2=0¢ XZER=0%
SEXP/KSEQ=0+513r1r2045%

SDATA/X==2:5¢Y=0,05/W=15%
SDATA/X==1:5¢Y=0.2¢W=2%

SDATA/X==0+5¢Y=0.5¢W=3%

SDATA/X=0.75¢/Y=2.11W=35%
SDATA/X=1+Y=2.7182818sW=43%

5[)A1'ﬁa’X::1.'75r Y::Sl 5|'WZZQ5

SDATA/X=2+Y=T7:3B9056¢W=5%
SDATA/X=2,75?¥Y=15.5¢ W=5%
SDATA/X=3,Y=20.085536¢rW=5%

SPARA/NX=0%

% ENDJOB
$ EXECUTE
$ INCODE IBMF

Output Listing

POLYNOMIAL FITTING BY
SEQUENTIAL LEAST SQUARES

GIVEN HMODEL
3 1 2
YsC X +C X +C X #C X +C X +C
i 2 3 4 5

5Y5G= 3,65400320E p3 NX= 9 M=

ANALYSIS OF VARIANCE
SSAEG S5YX
365579779 03 2,0541381BE-01
K COEFFICJENT
9,37171698E-01
2,08703391E-02
7,38368556E=02
1,12666719E 00
4,90458202E-01
5,25407619E-02
ANALYS1S OF VARIANCE
SSREG

O g P e

S5YX
3,65520215€ 03  8,01055908E-01

K COEFFICIENT
1 6,6B115020E-01
2  4,02950835E-02
3 -5,912194B7E-02
4 1,231793%1E 00
5  8,35810430E-01

ANALYSIS OF VARIANCE

SSREG S5YX
3.59964279E 03  5,63604126E 01

K COEFFICIENT
2,563474232E 00
5,48953409E-02
9,28254686E-02
A 7,8B094081E~01
ANALYSTS OF VARIANCE

R

SSAEG S5y
3.59684B60E 05 5,91546021F 04
[3 CUEFFIC)ENT
L 2,75364906E 00
2 2,B9138339E-02
3 3,76B1974B8E-01
ANALYS1S OF VARIANCE
SSREG

3,57273666E 03

K
i

S5YX
8,32665405E 01

COEFFJCIENT
3,23539412E 00
7,49571728E~02

OFREG

VARIANCE
1,72527863E~02
4,19765480E-05
4,44022584E-03
1.,673278596=02

1,45713576€E=02

3,17335940E-04
OFREQ

VARIANCE
2,61214166E=02
3,44062609E-05
7,04304385E=03
4,52240995E=02
2:51803122E=03

DFRES

VARTANCE
5,85596123E=01
3,03301615E-03
3,91741440E-01
2,50554755E 00

DFREG

VARTANCE
5,49767420E-01
7.91038539E=04
5,80593478E=p2

DFREG
VARLANCE

5,4B814580E=01
4,03931740E=05

DFYX

T=TEST
7,13492715E 00
2,65103719E 00
1,10807885E oo
B,709846700E 00
4,06304836E 00
2,94942078E 00

DFYX
T=TEST

4,13383245E 00
5.46295494E€ 00

~7.04479806E-01

5,79232717€ 00
1,66562500E 01

DFYX

T=TEST
3,18202782E 00
9,41993408E-01
1,4B308961E-01

4,97882362E-01
DFYX
6
T-TEST

3,71380496E 00
1,02803254E 00
1.,56385894E 00

DFYX

T=TEST
4,36731350E
1,13219%205E

oo
01

S2REG
6.09299629E 02

S2REG
7.31040428E 02

S2REG
B8.99910698E 02

S2REG
1.,19894952E 03

S2REG
1.7B636833E 03

s2vx
6,84712725E-02

52YX
2,00263977E-01

sa2yXx
1,12720824E 01

52YX
9,85%910034€ 00

S2yx
1,18952200E 01

F
6,89861694E 03

F
3,85038403E 03

F
7,98353539E 01

F
1,21608420€E D2

F
1,50175306E D2

2
ANALYS15S OF VARIANCE

LSPF
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SSREG
2.04793738E

PREDICTED Y AND STANDARDIZED DEVIATE

K
i

MODEL"

END OF DATA

END OF PROGRAM

GE-600 SERIES

4

P pa e &

L S

Lol CRZ R [T R R

PGV O PO A G BRGSO

-

L R

PR FFENT Y

SSYX
1.60B065B3E 03

COEFFICIENT
7.99987769E 00

YHAT

4,64210035En02
-4,98B40929E-01
-5,85379529E 00
=-5,95777613E 00
=3,79467354E 00
7,99987769E 00

2,09005948E-01
5,94543397E-01
7.452349B81E~01
1,26234756E 00
2,68896931E 00
7.99987769E 00

A,B9B544638E-01
2,67301686E=01
2,22747031E 00
2,70544300E 00
3,23314545E 00
7.99987769E 00

2,11078155E 00
2,04672393E 00
3,27728859E 00
2,91948122E 00
3,25246987E 00
7,99987769E 00D

2,70154500E 00
2,71689248E 00
3.56755716E 00
3.,45938261E 00
3.30735429E 00
7.99987769E 00

5.,64190835E 00
5.72793370E 00
5,36315608E 00
5,24773256E 00
4,41643333E 00
7,999877569E 00

7,25453667E 00
7,29141164E 00
6.,6141B509E 00
6,6934496BE 00
5.53802365E 00

7.99987769E 00

1,55674634E 01
1,54842770E 01
1,48943912E 01
1,51377850E 01
1,4552556BE 01
7,99987769E 00

2,00521860E 0L
2,00812030E 0L
2,01158798E 01
1,9953843BE 01
2,07209871E 01
7,99987769E 00

DFREG

VARIANCE
4,28150713€ 00

ST.DEY

1.,367751036=02
3.55058384E=01
1,758444671E 00
1,91335298E 00

1,11386925E 00  ~ T

~5,60729668E=01

-3.44171803E=02
-8,81644219E=01
-1,62398361E=01

=3.38326398E=00

-7,21661121E301
-3,50149702E=01

3,B77156B83E=02
5,19986197E=01

=5.14527410E=01"

-7,02451885E=01
-7,92458467E=01
-5,28989762E=01

=-4,12028506E=02

1,19050356E=01

=3,505555867E=01
-2.50987898E=01
=3,34151447E=01
-4,16136771E=01

§,396145603E=02

3,10457520E=03
=2,52956852E=01
-1,40481526E=01
=1,70797020E=01
=3,72527428E=01

=5,42317566E=01
-5,09339236E=01
4.07589911E=02
B8.03419789E=02
3,141733689E~01

=1,756324470E=01"

5,255444684E=01
2.18195541E=01
2,30795477E=01
2,21536299E=01

541 35695279E=01

e VR

TTEST
3,19191575€ 00

-4,30831569E-02

=2,57818464E=01
3.51344952€-02
1,80380719E=01
1,15358032E=-01
2,74705254E=01
5.29007010E=01

1,27450494E01
9,682537756=03
-9,03789865E=03
4,19412446E=02
-1,B4245074E=01
8,52439165E=01

HC
1

S2REG
2.04793738E 03

»

=2,50000000E 00

=1.50000000E 00

=5.00000000E~01

7.50000000E~01

1.00000000E 00

1.75000000E 00

2.00000000E 00

2.75000000E 00

3.00000000E 0O

s2YX
2,01008228E 02

Y
4,999999%98E-02

1,99999999E-01

5,00000000E=-01

2.0999999%E 00

2,71828181E 00

5,50000000E 00

7,38905603E 00

1,55000000E 01

2.00855360E 01

v
1,01883260E 01

LSPF
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APPENDIX A
PROGRAM LISTING

**xEOF

5 IDENT  AAV+GE+FORTRAN®LSPF LSPF0000
% OPTION FORTRAN:GO LSPF0010
% FORTRAN LSTOU*DECK+STAB LSPF0020
3 INCODE IRMF LSPF0030
*LSPF LEAST SGUARES POLYNOMIAL CURVE FIT LSPF0040
* Cp600D6.001 DATE 05/05/65 LSPF0050
* SEQUENTIAL LEAST SGQUARES LSPF0060
* DIMENSIONS FOR NX=ANY VALUEe: NT=15¢,NP=30 LSPFO0070
* FOR NX LESS THAN 201» NO TAPES ARE USED LSPFO0080
* AND XX PRODUCTS ARE REGENERATED LSPF0090
* OTHERWISE X¢Yr AND XX ARE WRITTEN ON TAPE 3 LSPFO0100
* AND READ BACK FOR PREDICTIONS IN LOTS OF 25 LSPFO0110
* FOR NW=1r READ X+Y+W WHERE W=WEIGHT LSPF0120
* FOR NW=0r¢ READ X¢Y WITH WO WEIGHT LSPF0130

DIMENSION YY(15)¢B(15)KSEQ(15)»JXSEQ(15) ¢ XXT(15)rSXX(15)rA(120) LSPFO140

DIMENSION KORD(31)+SRSYX(15) e XYT(1h)sSXY(15)C(120) LSPF0150
DIMENSION STXN(1S)rYSAVE(15) e XYS(426)sSY(15)2S5(120) LSPFO0160
DIMENSION WXXT(15) rWXYT(15) rWSXX(15) s wSXY(15) LSPFO0170
DIMENSION CNX(15) LSPF0180

DATA CNX/BH=C X ¢BH+C X +6H+C X 16H+C X ¢BH¥C X #BH+C X #B6H+LSPF0190

AC X 1BH+C X r6HHC X #6H+C X #BH¥C X r6H¥C X »6H+¥C X ¢6H*C LSPF0200

BX r6H*C X / LSPF0210
NAMELIST/PARA/NX+MNT2NPsNwe IOP1210P2¢ XZER LSPF0220
NAMELIST/DATA/X» Y+ W/EXP/KSEQ LSPF0230

2 FORMAT(IB+16¢16016016116¢160 16016017+ 17017+17+17417) LSPF0240

3 FORMAT(2H YAGrABr A1 ABIABPAGBIABIAGIABIAG LX s ABILIXPAG» 1X2 AB 1 X Ay ILSPF0250

AXrAB) LSPF0260
4 FORMAT(12HOGIVEN MOLEL/) LSPF0270
5 FORMAT(25H SEQUENTIAL LEAST SCUARES) LSPF0280
& FORMAT(2211 POLYNOMIAL FITTING BY) LSPF0290
7 FORMAT(IS? 160160160160 160 162160160172 17217¢17¢17+17) LSPFO0300
79 FORMAT(15HOEND OF PROGRAM) LSPF0310

GE-600 SERIES =



39 FORMAT(12HOEND OF DATA) LSPF0320

102 FORMAT(1PEL17.8r1PE17+8¢1PE178¢1PE17.8+1PE17:8+1PE17:8) LSPF0330
109 FORMAT (13HOMATRIX S(NS)) LSPFO0340
112 FORMAT (14HNDVECTOR SY(NT)) LSPF0350
113 FORMAT(7HO SYSO=1PEL5:8¢5H NX=IhetdH M=I4eS5H NSZIU4] LSPF0360
114 FORMAT(21H ANALYSIS OF VARIANCE) LSPFO370C
115 FORMAT(109H SSREG SSYX DFREG LSPF0380
1 DFYX S2REG S2YX Fl LSPF0390
120 FORMAT(1PE17+8¢1PE17.8¢211791PE17+8+1PE17.891PE1748) LSPFO400
121 FORMAT(63H0 K COEFFICIENT VARIANCE LSPFO410
1 T=-TEST) LSPFO420
124 FORMAT(I17.1PE17.8+1PE17.8,1PE17.8) LSPFO430
128 FORMAT(37HOPREDICTED Y AND STANDARDIZED DEVIATE) LSPFO440
129 FORMAT (92H MODEL YHAT ST.DEV LSPFO450
1 MC X Y) LSPFOu460
134 FORMAT(I68+1PE17.8+1PE17.8) LSPF0470
142 FORMAT(29HORIGHT DECOMPOSITION OF S{NS)) LSPF0480
143 FORMAT(21HOPRODUCT VECTOR BI(NT)) LSPFO490
148 FORMAT(14HOFORWARD YY(N)) LSPFO0500
162 FORMAT(13HOCOEFFICIENTS) LSPF0510
163 FORMAT (5H J=13¢6H YJ=1PE15.8) LSPF0520
164 FORMAT(10HODIAGONALS) LSPF0530
165 FORMAT(5H 1IB=I3:,6H YIB=1PE15.8) LSPFO540
166 FORMAT (37HOCOEFFICIENTS AND DIAGONALS COMPLETED) LSPF0550
175 FORMAT(7HO SSYX=1PE15.8¢27H SET SS5YX=1.0 AND CONTINUE) LSPF0560
* BEGIN LSPF0570
97 READ(5¢:PARA) LSPF0580
IF(NX)75¢75¢31 LSPF0590

¥ READ MODEL DESCRIPTION LSPF0600
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31 READ(5+EXP) LSPF0610

NS= (NT*NT=NT) /24NT LSPF0620
I0P1=I0P1-1 LSPF0630
10P2=10P2~1 LSPF0640
NW=Ny=1 LSPF0650

* ZERO S»SYrKORD LSPF0660
LK=0 LSPF0670

DO 33 LR=1,15 LSPF0680

DO 32 L=LRs15 LSPF0690
LK=LK+1 LSPF0700

32 S(LK)=0.0 LSPF0710
33 SY(LR)=0.0 LSPF0720
DO 80 LR=1,31 LSPFO730

80 KORD(LR)=0 LSPFO740
* FORM KORD FROM KSEQ LSPF0750
DO 34 M=1¢NT LSPF0760
KL=KSEQ (M) - LSPF0770

34 KORD(KL+1)=1 LSPF0780
WRITE(6+6) LSPF0790
WRITE(6+5) LSPF0800
WRITE (604) LSPF0810
WRITE(6+2) (KSEQ(I) s I=1sNT) LSPF0820
WRITE(693) (CNX(I)sI=1sNT) LSPF0830
WRITE(6+7) (I+I=1¢NT) ' LSPF0840

* FORM JXSEQ- LSPF0850
NST=NT LSPF0860

18 KMX=0 LSPF0870
15=1 LSPF0880

DO 20 IL=1¢NT LSPF0890
KST=KSEQ(IL) LSPF0900

IF (KST=KMX) 20,19+ 19 LSPF0910

19 KMX=KST LSPF0920
IS=IL LSPF0930

GE-600 SERIES —
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20 CONTINUE LSPF0O940

JXSEQ(NST)=IS LSPF0950
NST=NST=1 LSPF0960
IF(NST) 9829891 LSPF0970

91 KSEQ(1S)==1 LSPF0980

GO0 To 18 LSPF0990

* START LSPF1000
98 N=0 LSPF1010
NP1=NP+1 LSPF1020
NXYMX=201 LSPF1030

IF (NX=NXYMX)11,101+101 LSPF1040

* X¢YeXX ON TAPE 3 LSPF1050
- POSITION TAPE 3 LSPF1060
101 ICASE=0 LSPF1070
REWIND 3 LSPF1080
NXMAX=26 LSPF1090

G0 TO 85 LSPF1100

* X*Ye IN COREr XX REGENERATED LSPF1110
11 ICASE==-1 LSPF1120
NXMAX=NXYMX LSPF1130

85 NT1=NXMAX=1 LSPF1140
LNI=NT1+NT1 LSPF1150
NT2=LN1+NTL1*NT LSPF1160
IDY=NT1 LSPF1170

NTR=0 LSPF1180

NXX=0 LSPF1190
NXY=IDY LSPF1200
LN=LN1 LSPF1210
SYSQ=0.0 LSPF1220

* READ Xr¢Y OR XrYeW LSPF1230
99 N=N+1 LSPF1240

41 READ (5¢DATA) LSPF1250

56 X=X=XZER LSPF1260

&E-600 SERIES -
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NXX=ENXX+1 LSPF1270

NXY=NXY+1 LSPF1280

IF (NXX=NXMAX) 45+ 4L, 44 LSPF1290

* WRITE XrY+XX ON TAPE 3 LSPF1300
44 WRITE(3) (XYS(I)PIS1eNT2) LSPF1310
NXX=1 LSPF1320
NXY=NXMAX LSPF1330
LN=LN1 LSPF1340
NTRENTR+1 LSPF1350

45 XYS(NXX)=X LSPF1360
XYSINXY)=Y LSPF1370

* SEQUENTIAL POWERS OF X LSPF1380
L=1 LSPF1390

M=0 LSPF1400
XX=1.0 LSPF1410
XY=Y LSPF1420

35 IF(KORD(L))36+36,103 LSPF1430
103 mM=iM+1 LSPF 1440
XXT (M) =XX LSPF1450

IF (NW) 76¢57¢57 LSPF1460

57 WXXT(M)=XX*W LSPF1470
WXYTIM)=XY*Y LSPF1480

GO TO 36 LSPF1490

76 XYT(M)=XY LSPF1500
36 IF(L=NP1)104+37¢37 LSPF1510
104 L=L+1 LSPF1520
XX=XX*X LSPF1530
XY=XY#X LSPF1540

GO To 35 LSPF1550

B DESIRED ORDERS LSPF1560
37 DO 38 LJ=1#NT LSPF1570
JX=JXSEQ(LJ) LSPF1580
IF(NW) 1117777 LSPF1590

BE-600 SERIES
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77 WSXY (JX)=WXYT(LJ) LSPF1600

WSXX (JX)=WXXT (LJ) LSPF1610

60 To 38 LSPF1620

111 SXY (UX)=XYT(LJ) LSPF1630
38 SXX(JX)=XXT(LJ) LSPF1640

* FORM S AND SY LSPF1650
LK=0 LSPF1660

DO 10 LI=1¢NT LSPF1670
IF(NW) 168167+ 167 LSPF1680

167 SXXLI=WSXX(LI) LSPF1690
G0 To 169 LSPF1700

168 SXXLI=SXX(LI) LSPF1710
169 DO 39 LJ=LI#NT LSPF1720
LK=LK+1 LSPF1730

39 SILK)I=S(LK)+SXXLI*SXX(LJ) LSPF1740
IF(NW)173r172¢172 LSPF1750

172 SXYLI=WSXY(LI) LSPF1760
GO TO 10 LSPF1770

173 SXYLI=SXY(LI) LSPF1780
10 SY(LI)=SY(LI)+SXYLI LSPF1790
WYTYZY*Y LSPF1800
IF(NW) 17121700170 LSPF1810

170 WYTYSW*WYTY LSPF1820
171 SYSQ@=SYSQ+WYTY LSPF1830
IF(ICASE) 86126126 LSPF1840

* STORE XX IN XYS LSPF1850
26 DO 27 L=1¢NT LSPF1860
LN=LN+1 LSPF1870

27 XYS(LN)=SXX(L) LSPF1880

* IF LAST XrY READs GO TO SECTION JTG WITH S AND SY LSPF1890
86 IF(N-NX)99s105¢105 LSPF1900
105 IF(NTR)28728¢106 LSPF1910

E WRITE XsYeXX AND EOF ON TAPE 3 AND REWIND LSPF1920
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106 NTR=NTR+1 LSPF1930

IXX=NXX LSPF1940
IXY=NT1 LSPF1950
ITST=NXY ‘ LSPF1960
LASTX=IXX LSPF1970
ICNT==1 LSPF1980

B7 IXX=IXX+1 LSPF1990
IXYSIXY+1 LSPF2000
XYS(IXX)=XYS(IXY) LSPF2010
IF(IXY=ITST)87+107+107 LSPF2020

107 IF(ICNT)108¢88:88 LSPF2030
108 LASTY=SIXX LSPF2040
IXY=LN1 LSPF2050
ITST=LN LSPF2060
ICNT=0 LSPF2070

GO To 87 LSPF2080

88 WRITE(3) (XYS(I)eIZ1rIXX) LSPF2090
END FILE 3 LSPF2100
REWIND 3 LSPF2110
LSTXX=IXX LSPF2120

28 IF(I0P2)100s81¢81 LSPF2130
81 WRITE(6+109) LSPF2140
WRITE(62102) (S(MP) e MP=1+NS) LSPF2150
WRITE(6r112) LSPF2160
WRITE(6¢102) (SY(MP) +MP=1sNT) LSPF2170

GO To 100 LSPF2180

* RETURN FROM SECTION JTG WITH A(COEFF) AND C(DIAG) LSPF2190
* ANALYSIS OF VARIANCE TABLE LSPF2200
13 NF=NT LSPF2210
LK=1 LSPF2220
MK=1 LSPF2230
M=NT LSPF2240
WRITE(6+113)SYSGsNXrMINS LSPF2250

GE-600 SERIES
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IVFIT==-1

14 NY=1
WRITE(6r114)
WRITE(6r115)
IFIT==1
SSREG=0.0

15 SSREG=SSREG+A (LK) *SY(NY)

IFINY=NF)116+16+16
116 NY=NY+1
LK=LK+1
GO To 15
16 SSYX=SYSQ@-SSREG
IF(SSYX)176¢176¢177
176 WRITE(6r175)55YX
SSYX=1.0
177 DFREG=NF
NF YX=NX=NF
S2REG=SSREG/DFREG
IFINFYX)117+,117+118
117 S2YX=0.0
FF=0.0
TTEST=0.0
VAR=0.0
SRYX=0.0
IFIT=0
IVFIT=0
GO TOo 119
118 DFYX=NFYX
S2YX=SSYX/DFYX
FF=S2REG/S2YX
SRYX=5QRT(S52YX)

119 SRSYX(NF)=SRYX

WRITE(6+120)SSREG* SSYXINFrNFYX?S2REGrS2YXPFF

GE-600 SERIES

LSPF2260
LSPF2270
LSPF2280
LSPF2290
LSPF2300
LSPF2310
LSPF2320
LSPF2330
LSPF2340
LSPF2350
LSPF2360
LSPF2370
LSPF2380
LSPF2390
LSPF2400
LSPF2410
LSPF2420
LSPF2430
LSPF2440
LSPF2450
LSPF2460
LSPF2470
LSPF2480
LSPF2490
LSPF2500
LSPF2510
LSPF2520
LSPF2530
LSPF2540
LSPF2550
LSPF2560
LSPF2570
LSPF2580

LSPF
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21

122

123

125

126

127

17

130

Y]

131

GE-600 SERIES

WRITE(6r121)

MN=0

MN=MN+1

COMK=A(MK)
IF(IFIT)122+,1230123
VAR=C (MK) *S2YX
SRVAR=SQRT(VAR)
TTEST=COMK/SRVAR
WRITE(6+124)MNsCOMKr VAR TTEST
MK=MK+1
IF(MN=NF)21,125¢125
IF(IOP1)17.126¢126
NF1=NF=1
IF(NF1)17+17.127
NF=NF 1

LK=LK+1

GO TO 14

PREDICTED Y AND STANDARDIZED DEVIATE
WRITE(6r128)
WRITE(6r129)

MT=0
IF(MTR)130+130:29
XX REGENERATED

LX=0

MCX=0

MCY=NTL

MSTRT=LN1

NTL1=NX

IF(ICASE) 1312222
LN=LN1

LX=LX+1

X=XYSILX)
SEQUENTIAL POWERS OF X

L=1

LSPF2590
LSPF2600
LSPF2610
LSPF2620
LSPF2630
LSPF2640
LSPF2650
LSPF2660
LSPF2670
LSPF2680
LSPF2690
LSPF2700
LSPF2710
LSPF2720
LSPF2730
LSPF2740
LSPF2750
LSPF2760
LSPF2770
LSPF2780
LSPF2790
LSPF2800
LSPF2810
LSPF2820
LSPF2830
LSPF2840
LSPF2850
LSPF2860
LSPF2870
LSPF2880
LSPF2890
LSPF2900
LSPF2910

LSPF2920

LSPF
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92

132

93

133

94

95

%

22

23

GE-600 SERIES

M=0

XX=1.0

IF(KORD(L))93¢93,132

M=M+1

XXT(M)=XX

IF(L=-NP1)133,94,94

L=L+1
XX=XX*X

GO To 92
DESIRED ORDER
DO 95 LJ=1+NT
JXSJXSEQ(LY)
SXXCUX)=XXT(LY)
STORE XX IN XYS
DO 96 L=1¢NT
LN=LN+1
XYSILN)=SXX (L)
MM=MSTRT

GO To 22

MCX=0

MCY=NXY
MM=MSTRT
MCX=MCX+1
MCY=MCY+1
MT=MT+1

DO 23 NM=1NT
MM=MpM+1
STANINN)=XYS(MM)
X=XYS(MCX)

Y=XYS(MCY)

WRITE(6r134)MTeXe Y

IFIT=IVFIT

MF 1=NT

LSPF2930
LSPF2940
LSPF2950
LSPF2960
LSPF2970
LSPF2980
LSPF2990
LSPF3000
LSPF3010
LSPF3020
LSPF3030
LSPF3040
LSPF3050
LSPF3060
LSPF3070
LSPF3080
LSPF3090
LSPF3100
LSPF3110
LSPF3120
LSPF3130
LSPF3140
LSPF3150
LSPF3160
LSPF3170
LSPF3180
LSPF3190
LSPF3200
LSPF3210
LSPF 3220
LSPF3230
LSPF3240
LSPF3250

LSPF




24

25

135

136

137

43

138

139

29

Hne

30

GE-600 SERIES

MK=0

MF=MF1

SRYX=SRSYX(MF)

YHAT=0.0

DO 25 MN=1.MF

MK=MK+1

COMK=A(MK)

XNP=STXN(MN)
YHAT=YHAT+COMK*XNP
IF(IFIT)135,110.110
IFIT==1

STD=0.0

GO TO 136
STD=(Y=YHAT)/SRYX
WRITE (62 120)MFr YHAT»STD
IF(IOP1)43,1370137
MF1=MF=1
IF(MF1)43r43,24
IF(MCX=-NT1)90+138+138
IF(ICASE)40r139,139
IF(NTR)40r40:29
NTR=NTR=1
IFINTR) 30+ 3082

READ XeYeXX FROM TAPE 3
READ(3) (XYS(I)eI=1rNT2)
NXY=NTL

MSTRT=LN1

G0 To 12

READ XrYe XX FROM TAPE 3=-LAST ENTRY

READ(3) (XYS(I)»IZ1eLSTXX)

NXY=LASTX
MSTRT=LASTY

NTL1=LASTX

LSPF3260
LSPF3270
LSPF3280
LSPF3290
LSPF3300
LSPF3310
LSPF3320
LSPF3330
LSPF3340
LSPF3350
LSPF3360
LSPF3370
LSPF3380
LSPF3390
LSPF3400
LSPF3410
LSPF3420
LSPF3430
LSPF3440
LSPF3450
LSPF3460
LSPF3470
LSPF3480
LSPF3490
LSPF3500
LSPF3510
LSPF3520
LSPF3530
LSPF3540
LSPF3550
LSPF3560
LSPF3570
LSPF3580

LSPF
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GO To 12 LSPF3590

* SEQ LEAST SQUARES SECTION JTG LSPF3600
* RIGHT DECOMPOSITION OF S(NS) AND SY(NT) LSPF3610
100 N=NT LSPF3620
I=1 LSPF3630

L=N LSPF3640

51 IF(I=N)140,54s54 LSPF3650
140 g=1 LSPF 3660
I=1+1 LSPF3670

53 J=uti1 LSPF3680
K=1 LSPF3690
I1D=0 LSPF3700
IT=N LSPF3710
SUM=0.0 LSPF3720

52 1ID=I+ID L.SPF3730
JID=J+ID LSPF3740
KID=K+ID LSPF3750
SUM=SUM+S(IID)*S(JID)/S(KID) LSPF3760
IT=IT=-1 LSPF3770
ID=ID+IT LSPF3780
K=K+1 LSPF3790
IF(K=I)52r141,141 LSPF3800

141 L=L+1 LSPF3810
s{L)=S(L)=-SuM LSPF3820
IF(J=N)S53¢51¢51 LSPF3830

54 KS=0 LSPF3840
1B=0 LSPF 3850
IPM=0 LSPF3860
IDS=0 LSPF3870
IKS=0 LSPF 3880
1P=1 LSPF3890

DO 55 J=1rN LSPF3900

55 glJ)=sY(J) LSPF3910

GE-600 SERIES
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50

49
58

59

60

144

61

145
146
147

ug

47

GE-G00 SERIES

IF(IOP2)49,50¢50
WRITE(6+142)
WRITE(6+102) (S(MP) fMP=1¢NS)

WRITE(69143)

WRITE(60102) (B(MP) +MP=1sNT)

FORWARD SUBSTITUTION
1PP=-1

J=1P=-1

JEJ+1

SUM=0.0

K=0

1D=0

IT=NT

K=K+1
IF(K=J)1l4l4s61r61
JID=U+ID

KID=k+ID
SUM=SUM+S(JID) *YY(K)/S(KID)
IT=IT-1

ID=ID+IT

GO TO 60
YY(J)=B(J)=-SUM
IF(J=N)S59+ 145+ 145
IF(IPP)146+63163
IF(IOP2)48, 147147
WRITE(6r148)
1DDS=1D

IDD=1D

DO 62 J=1'N

YJ=YY (J)
YSAVE (J) =Yy
IF(IOP2)62¢4T7047

WRITE(6r102)YJ

LSPF3920
LSPF3930
LSPF3940
LSPF3950
LSPF3960
LSPF3970
LSPF3980
LSPF3990
LSPF4000
LSPF4010
LSPF4020
LSPF4030
LSPF4040
LSPF4050
LSPFu4060
LSPF4070
LSPF4080
LSPF4090
LSPF4100
LSPF4110
LSPF4120
LSPF4130
LSPF4140
LSPF4150
LSPF4160
LSPF4170
LSPF4180
LSPF4190
LSPF4200
LSPF4210
LSPFu220
LSPF4230

LSPF4240

LSPF
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62
63

64

65

66

149

67

150

151

152

68

83

174

GE-600 SERIES

CONTINUE

ID=1pD

DO 64 I=1rN
B(1)=0.0

BACKWARD SUBSTITUTION
SUM=0+0

K=J

IT=N

ID=ID=1IKS

K=K+1
IF(K=N)149:149:67
JID=J+ID
SUM=SUM+S (JID) *YY (IT)
IT=IT~1

1D=1D~1

GO To &6

JID=J+ID
YY(J)=(YY(J)=SUM) /5(JID)
J=J=1
IF(J=IPM)150¢150¢65
IF(IPP)151+69+69
COEFFICIENTS

IPP=0
IF(IOP2)68+152¢152
WRITE(62162)

DO 174 J=1rN

YJ=YY (J)
IF(IOP2)83¢153r153
WRITE(6¢163)JrYJ
KSJ=KS+J

AKSJ)I=YJ

CONTINUE

LSPF4250
LSPF4260
LSPF4270
LSPF4280
LSPF4290
LSPF4300
LSPF4310
LSPF4320
LSPF4330
LSPF4340
LSPF4350
LSPF4360
LSPF4370
LSPF4380
LSPF4390
LSPFu4400
LSPFu410
LSPFu4420
LSPF4430
LSPFU440
LSPF4450
LSPF4460
LSPF4470
LSPF4480
LSPF4490
LSPF4500
LSPF4510
LSPF4520
LSPF4530
LSPF4540
LSPF4550
LSPF4560

L
]
rd
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* DIAGONALS LSPF4570

IF(I0P2)70,154+154 LSPF4580

154 WRITE(6r164) LSPF4590
GO To 70 LSPF4600

69 YIB=YY(IB) LSPF4610
'IFIIOP2184!155s155 LSPF4620
155 WRITE(6+165) 1B+ YIB LSPFu4630
84 KSB=KS+I1B LSPF4640
c(KsB)=YIB LSPF4650

70 IF(IB=N)156¢71¢71 LSPF4660
156 1B=IB+1 LSPF4670
B(IB)=1.0 LSPF4680
IP=18 LSPF4690
IPM=IP=1 LSPF4700
IF(IPM)58¢58¢ 157 LSPF4710

157 DO 78 J=1r1PM LSPF4720
78 YY(J)=0.0 LSPFu4730
GO To 59 LSPF4740

* COMPLETION OF COEFF AND DIAG FOR ONE N LSPF4750
71 KS=KS+N LSPF4760
IF(I0P2)46,1581158 LSPF4770

158 WRITE(6r166) LSPF4780
DO 72 J=1+KS LSPF4790
WRITE(6+102)A(J)CLY) LSPF4800

72 CONTINUE LSPF4810
46 IF(IOP1)745159+159 LSPF4820
159 N=N=1 LSPF4830
IF(N) 749740160 LSPF4840

160 IPM=0 LSPF4850
IPP==1 LSPF4860
18=0 LSPF4870
IKSTIKS+1 LSPF4880
IDS=IDS+IKS LSPF4890

GE-G00 SERIES =
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IDD=IDDS+IKS=IDS LSPF4900

ID=1IDD LSPFu4910
DO 73 J=1rN LSPF4920
73 YY(JI=YSAVE(J) LSPF4930
GO TO 65 LSPF4940
T4 IF(IoP2)13s161rlel LSPF4950
161 WRITE(6+166) LSPF1960
(c19] Tb i3 LSPF4970
40 WRITE(6r89) LSPF4980
G0 To 97 LSPF4990
75 WRITE(6279) LSPF5000
SToP LSPF5010
END LSPF5020

BE-600 SERIES—
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APPENDIX B
FLOW CHARTS

Read
Parameters

Op

=
Print "END |
of Program'

>

Read KSEQ

.

(NTZ -NT )+ 28T
—» NT
10P1-1—»I0P1
10P2-1—pI0P2
NW- 1 —pNW

v

Clear
S,SY, KORD

v

[KSEQ—KL
1-KORD, , ., T€ox
M=1,NT

Print
Heading

o

NT—»NST

LSPF

GE-600 SERIES s
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(),

00— KMK
1—IS
1—»IL

£ >l

KS EQi 1—--51( ST

KST—2FKMX
IL—sIS

IL+1——IL

IS—p JXSEQ__,
NST-1—pNST

v

-1 —bKSEQis

LSPF

GE-600 SERIES =
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O0—>N
NP+1——pNP
201 —>» NXYMX

Rewind 3
0 __»ICASE
26—pNXMAX

NXMAX-1—»NT1

2%NT1—pLN1

LN1+NT1#NT —pNT2

NT1——>IDY
0 ——NTR
0——NXX
IDY—p NXY
IN1—p LN
0.0 —»5YSQ

GE-600 SERIES

>

N+l —pN
Read Data

v

X-XZER—»X
NXX+1 —pNXX
NXY+1 —eNXY

LSPF

LSPF

=33~



[WRITE XYS;]

for I=1,NT2 on|
Tape 3

1—pNXX
NXMAX —apNXY
LNI —pLN

NTR+1 —»NTR

X——»XiS

Y —pXYS
nyx

1—>»L
0—pM
1.0—XX
Y—p XY

®
5

M+l———=M
XK—DKXTm

XX*W-——bWXXTm
XY*W——;EMYTm

LSPF

LSPF

GE-600 SERIES
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36

®
2
s?_pl
v 93

L+l—pL
XN —p XX
XY*X—pXY
1 L
TS .
£ N
JKSEQlj—.JK
2 mle—bWSKij
H}O{le_.wsxxjx
<
mlj -—pSX’YJx
v
XXT, , —»SXX
1j jx
LI+]l —p L]
= >
00— »IK
< LJ:NT 1 NT

LSPF

GE-600 SERIES —
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WSJ{Kli—rSXXLI

SKX, ; —p SKXLI

Lle—p1.J

WSXYl — SXYLI

SXY

1'._. SXYLI

1

LSPF

GE-600 SERIES =
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SYIi'I-SKYLI

LI+l —»LI

WEWYTY—p WYTY

SYSQHWYTY—pSYSQ

Store XX
in XYS

locations)

(i,nt)

(next nt

I

LSPF

LSPF

BE-600 SERIES
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NTR+1 — pNTR
NXX ——pIXX
NT1— 3 IXY
NXY— 5 ITST
IXX —pLASTX
=1 ICNT

IXK+]l — IXX
IXY+1 ——pIXY
XYS, __pXVS

iy ixx

ICNT negative!?

IXY:ITST

Write XYSi for
i=1,1IXX to
Tape 3

l

End File 3
Rewind 3
IXX —pLSTXX

@)

GE-600 SERIES

P

Yes

IXX—»TASTY
LN1—5IXY
LN ——pITST
0 —— ICNT

Print S,8Y

l

16

LSPF

LSPF
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NT — _pNF
l— 1K
1—pMK
NT__pM

Print SYSQ,
NX,M, NS

!

-1— IVFIT

11

>
v

1—pNY
-1 — B IFIT
0.0—»SSREG

-

Print Variance
Heading

:

SSREGHA,, *5Y
1k ny
——»SSREG

'

SYSQ-SSREG
—» S5YX

NY+]l —» NY
LK+l —» LK

GE-600 SERIES

LSPF
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177

GE-600 SERIES

(9

9

Print SSYX

I

1.0—»SS5YX

g

NF ———p DFREG
NX-NF—-=sNFYX
SSREG: DFREG

=——————p S2REG

NFYX ——sDFYX

SSYX+DFYX—pS2YX
S2REG+S2YX —pFF
A/ S2Y¥X—p SRYX

iZero to S2YX,FF
[TTEST, VAR, SRYX,
[IFIT, IVFIT

l#

SRYX—>SRSYX
nf

!

Print SSREG,
SSYX,NF,NFYX,
S2REG, S2YX, FF

I

0 ——>MN

11

LSPF

LSPF
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10

M+ ] —p M
Amk-—-+-COMK

C , #*S2YX ——pVAR
mk

VVER—— SRVAR
COMK+SRVAR-BTTEST

n
Print MN,
COMK, VAR, TTEST
MK+] ————p MK
B
Yes
4— I0P1 negative?
NF - 1 et NF 1
NF 1————p NF
LK+l ——» LK
v

LSPF

GE-600 SERIES
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11

Print Y Heading

:

0——pMT

— (=)

0—»LX
0—pMCX
NT1—pMCY
LN1—3MSTRT
NX — NT1

ICASE negative?

13

Yes

LSPF

LSPF

GE-600 SERIES

=2



for LJ=1,NT

’

Store NT values|

L+l —pL
XX#Y ——p XX

12

of SXX in
XYS
MSTRT — MM
15
0—— s MCX
NXY ——p MCY <
MSTRT —— MM
MCX+1 ———» MCX
MCY+1 — »MCY
MT+1 —— MT

GE-600 SERIES

I

Store NT Values
of XYS in STXN

XYsS —> X
mcx

XYSs — 1

B

LSPF

LSPF
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13

Print MT,X,Y

!

IVFIT—IFIT
NT—pMF1
0 —pMK

@

15

MF 11— MF
] RSYKmf —3 SRYX
0.0 ——p YHAT

1 e—pMN

v
ME+] ———p MK

A . ——p COMK
mk

STXN“m_-_.KNP

YHAT+COMK*XNP
—> YHAT

1 MN

No -1——»IFIT
Bl 0.0 » STD

IFIT negative? }

Yes

A 4

(Y-YHAT)+SRYX
——»STD

LSPF

GE-600 SERIES ==



14

Print MF,YHAT,STD)

I0P1 negative? MF-1 ———pMF

Yes

2

Y
ICASE negative? I‘“

>

Print "END o
of DATA"
1

()

12

NTR-1—3NTR

Read Last Set Read NT2 values

of XYS from of XYS from
Tape 3 Tape 3
LASTX ———p NXY
NT1—F NXY
LASTY —p MSTRT
LASTX——»NT1 el MERRY

LSPF

13 @

GE-600 SERIES
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I—>»J
I+l —pl

JHl—=sJ
l—pK
0—>»ID
N—=sIT
0.0—pSUM

4

T+ID—3IID
J+ID—p JID
K+ID—pKID
. ¥
Sm’siid Sj id
%Skid —» SUM
IT-1——IT
IDH+HIT —=>ID
E+1—2K

GE-600 SERIES

L+l ——>L
S.L-SUM—-D Sl

J:N

LSPF

LSFF

45~



Zero to KS,IB,
IPM,JDS, IKS
le——pIF

'

[SYj—’Bj]for
j=1,N

I10P2 negative?

of B

Print NS wvalues
of §, NT values

v

®
21

IP-1 —pJ

G)

GE-600 SERIES

18,21

J+l—>pJ
0.0 —pSUM
0—»K
0—pID
NT—IT

K+l ——pK

J+ID—= JID

K+ID —»KID

- +*
SUHrSjid Hic
TSkid ——»5IM

IT-1—»IT

| IDHIT___»ID |

LSPF

LSPF
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I0P2 negative?

Yes

19

Print Forward
Heading

’

ID ——»IDDS
ID——»IDD
l—0pJ

!

YYj —_—¥J
YT ———DYSAVEj

I0P2 negative?

Print YJ

v

GE-600 SERIES

19

LSPF

LSPF
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18
IDD—»ID
Zero to Bi for
22 i=1,N
A
0.0—»SUM
J—>K
N—-opsIT

ID-IKS ——ID

K+tl——K

J+ID——»JID
SUMHS 44 4" Xge
— s
IT-1 —»IT
iD-1 —ID

?

J+ID ——— JID
(YYJ "SUH)-.'SJid

—dYY

i

J:IPM

5

IPP negative?
21

Yes

20

LSPF

&E-600 SERIES Lse
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19

0——>IPP

ative?

Print
Coefficient
Heading

J

l—>pJ

YYj———;YJ

Yes

I0P2 negative?

Print J,YJ

y

KS+J —» K5J
YI——pA

J+l—J

ksj

GE-600 SERIES

I0P2 negative?

Print

" DIAGONALS"

LSFF
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Print IB,YIB

v

KS+1B —b KSB
YIB —p cks b

I0P2 negative?

g
20
2
KS+HN——» KS
<

No
:]IEB-(I)-I —B.I.B Print
I3 —p1p 10 Saatens Bonttis
IP-1—pIPM l
Print A,,C
h |
< for j=1,KS
17
>
Zero YYj for 2
j=1,IPM

(2 )e—

17

LSPF

BE-600 SERIES
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GE-600 SERIES

21

IOP1 negative?

No

N-1—>»N

0—>IPM
-1—»IPP
0—>IB
IKS+1—>IKS
IDS+IKS —5»1IDS
1DDS+IKS-1DS
— > 1DD
IDD —»ID

[YSAVEJ__.Yy_]
J
for j=1,N

19

I0P2 negative?

No

Print
Coefficient and
Diagonals
Message

l
®©

LSPF

LSPF
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LSPF INPUT

Col

2

$PARA/NX__ , NT=__, NP=__, Nw=___ , 1I@Pl=__, 1I¢P2=__ , XZER=__ %
$EXP/RSEQ= ., o o g B

$DATA/X= , Y= , W= $
$DATA/X= , Y= , W= $
$DATA/X= , Y= , W= $
$DATA/X= , Y= , W= $
$DATA/X= , Y= , W= §
$DATA/X= , Y= , W= $
$DATA/X= ; X= ,y W= 3
$DATA/X= , Y= y W= 3
$DATA/X= s X5 ; W= ¥
$DATA/X= , Y= » W= $
$DATA/X= , Y= , W= $
$DATA/X= ; Y= , W= ¥
$DATA/X= Y= , W= $
$DATA/X= , Y= y W= $
$DATA/X= 5 HE » W= $
$DATA/X= , Y= W= $

$SDATA/X= , Y= , W= $




LSPF INPUT

Col

2

$PARA/NX__ , NT=__, NP=__ , Nw=___, I¢pPl=__, I@P2=__ , XZER=__§
SEXP/KSEQ=  , _ ., __ 5 s %

$DATA/X= , Y= , W= $
$DATA/X= , Y= , W= $
SDATA/X= y Y= s W= $
SDATA/X=, y Y= , W= $
SDATA/X= y ¥= , W= $
$DATA/X= , Y= , W= 3
$DATA/X= , ¥= » W= $
$DATA/X= , Y= , W= $
SDATA/X= , Y= , W= $
SDATA/X= s Y= , W= $
SDATA/X= , Y= , W= §
$DATA/X= i Y= , W= $
SDATA /X= ¥ | , W= $
SDATA/X= y , W= $
$DATA/X= , Y= s W= $
SDATA/X=  X= , W=

SDATA/X= , XY= , W= $




LSPF INPUT

Col

2

$PARA/NX___, NT=__ , NP=__, Nw=__ , I@Pl=___, 1I¢pP2=__, XZER=__$§
$EXP/KSEQ=__ , _ , _ ., _ ., __ ,__§

$DATA/X= , Y= , W= $
$DATA/X= , Y= , W= 3
$DATA/X= , Y= » W= $
$DATA/X= 5 X= y We $
$DATA/X= , Y= , W= $
$DATA/X= Y= , W= $
$DATA/X= , Y= s W= $
SDATA/X= , Y= , W= $
$DATA/X= , Y= , W= $
$DATA/X= , Y= , W= $
$DATA/X= , Y= s W= $
$DATA/X= , Y= , W= $
$DATA/X= , Y= s W= $
$DATA/X= y = ,» W= $
$DATA/X= , Y= 5 W= $
$DATA/X= , Y= , W= $
SDATA/X= , Y= , W= §




LSPF INPUT

Col

2

$PARA/NX___, NT=__, NP=__, Nw=___, I@Pl=_, 1I@P2= , XZER=__ §
SEXP/KSEQ=__ , _ , _ , . __, _8§

SDATA/X= , Y= , W= $
$DATA/X= Y= , W= $
$DATA/X= , Y= , W= $
$DATA/X= , Y= , W= $
$DATA/X= , Y= , W= $
SDATA/X= , Y= s W= $
SDATA/X= , Y= , W= §
$DATA/X= , Y= , W= $
$DATA/X= , X= , W= $
SDATA/X= , Y= , W= ]
$DATA/X= , Y= , W= $
$DATA/X= , ¥= , W= ]
$DATA/X= Y= , W= $
$DATA/X= , ¥= , W= $
$DATA/X= 5 X , W= $
$DATA/X= . ¥= , W= $

SDATA /X= , Y= y W= $




LSPF INPUT

Col

2

$PARA/NX__, NT=___, NP=___, NW=__ , I@Pl=__, 1I¢P2=__, XZER=__§
$EXP/KSEQ=__ , _ , _ , _ , __ ,__%

$DATA/X= , Y= y W= $
$DATA/X= 0 TR , W= §
$DATA/X= . Y= , W= $
$DATA/X= s B , W= $
$SDATA/X= ; Y= , W= $
$DATA/X= , Y= , W= $
$DATA/X= , Y= , W= $
SDATA/X= Y= s W= §
$DATA/X= , Y= , W= $
$DATA/X= v A= , W= $
$DATA/X= , Y= , W= $
$DATA/X= , Y= , W= $
$DATA/X= s W= , W= $
$DATA/X= ; = , W= $
$DATA/X= s X , W= $
$DATA/X= g ¥ ;W= $
$DATA/X= i Y= y W= $
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1. GENERAL DESCRIPTION

The POLRTS subroutine is a FORTRAN subprogram for finding all the roots (both real and com-
plex) of polynomials with real coefficients. The method used is a form of the Bairstow iteration
algorithm for reducing the polynomial to quadratic factors which are readily solved by the quad-
ratic formula. The subroutine accepts polynomials of any positive degree, subject only to the
trivial restriction that the polynomial must have no zero roots. The initial guesses required to
start the iteration are provided by the subroutine.

The POLRTS subroutine uses the two library routines, ABS and SQRT. In addition, the user
must provide storage for three arrays as part of his main program. Each array must be of di-
mension at least n + 1, if n is the highest degree polynomial o be solved.

These arrays are used to store the coefficients of the polynomial and the real and imaginary parts
of each root, as well as for intermediate working storage. The subroutine destroys the coeffi-
cients of the original polynomial in the course of the root-finding process.

The roots are usually found to at least six significant figures and the iteration normally con-
verges at every stage. However certain ill-conditioned polynomials and polynomials having
roots of high multiplicity require more elaborate routines employing multiple-precision arithme-
tic. In practice, the POLRTS subroutine has given very satisfactory results for polynomials of
degree as high as 20 and, no doubt, will succeed at even higher degrees in favorable cases.

The subroutine performs approximately 4n + 10 multiplications and 4n + 10 additions per itera-
tion in removing a quadratic factor from a polynomial of degree n. Once a factor has been re-
moved, the following set of iterations will be performed on the reduced polynomial of degree n-2,
and so forth, so that the number of operations will decrease rapidly as the factors are succes-
sively removed. The number of iterations required to find one quadratic factor cannot be predic-
ted in advance. However, in practice a figure of 5 to 20 iterations is typical for a factor of a
polynomial of moderate degree. If a factor is not found within 100 iterations, the subroutine ex-
ecutes a return to the main program with any roots previously found.

The Bairstow method appears to be the most satisfactory technique now known for finding roots
of arbitrary polynomials. In practice, it has been found to be several times as fast as the more
familiar Newton Raphson method, succeeding at least as often and giving results of equal or
greater reliability. The program POLY is written to perform input/output for POLRTS, creat-
ing a free-standing package.

GE-600 SERIES povsrs



2. MATHEMATICAL METHOD

PROBLEM ANALYSIS

The discussion below describes Bairstow's method for finding the roots of the following polyno-
mial:

" -1
P(z)=c12"+Cc22" " 4. . .4CpZ + Cp+1.

In Bairstow's approach, the roots are not looked for directly. Instead, an attempt is made to
find an exact quadratic divisor of P (z), say Z (z) = 2® + p*¥z + g* so that P(z) = Q(z) - R(z) where
R(z) is of degree n - 2. The roots of Q(z) are readily found from the familiar quadratic formula.
Any such root is clearly also a root of P(z), for if Q(r) = 0, then P(r) = Q(r) - R(r) = 0.

The problem may be solved by repeating this process (that is, finding an exact quadratic divisor
of R(z) whose roots will similarly be roots of P(z) and continuing in this fashion until all the roots
of P(z) are found.

The first step in finding the exact quadratic divisor of P(z) is to make an initial guess (p, q) and
divide P(z) by the factor z* + pz + q):

P(z) = (z2 + pz + q) - R(z) + Az + B.

If A =B =0, then z2 + pz + q is the desired factor. In general, however, this will not be the
case, and, therefore, the initial guess of (p, q) must be improved to make A and B as close to 0
as possible.

Since A and B are functions of p and q possessing continuous partial derivatives of all orders (as
will be seen below), A (p*, g*) and B (p*, g*) may be represented by Taylor's series about the

point (p, q):

3A A
R ¥ .
(pJq) (P,CI)*"app]q ﬁp+aqp’qﬁq+
3B 3B
B(p*) q*) =B(D,CI) +_BE < AP +?q- « A e
b,q P, q
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Because the expression B(p*, q*) = A(p*, q*) = 0 must be true, if the higher order terms in the
Taylor's series are ignored, a first approximation shows:

#, o0
. bp + . bg=-Alp, q)
3Plp, ¢ P ol g ?

E.’ A aB i
P+ 3ql. . &a=-B(p, q).
Py, q U, q i

Since A (p, q) and B (p, q) are simply the coefficients of the remainder when P (z) is divided by
z% + pz + q, these two linear equations may easily be solved by Cramer's rule for Ap and 4q,
after the partial derivatives are evaluated. This gives the corrections to be made to p and q to
cause A (p + &p, q + 4q) and B (p + &p, q + &q) to be 0. Naturally, since only the first order
terms of the Taylor's series have been retained, A and B are not expected to be exactly 0. How-
ever, p + &p and q + 4q should be closer to p* and g* than p and g are, and may, therefore, be
used as a basis for a further prediction. Convergence to p* and g* may be considered to have
taken place when the magnitude of the change in Ap and 2q has ceased to be significant. The
values of p and q at that point make z® + pz + q an almost exact divisor of P(z), and, thus, two
of the roots of P(z) may be found by solving the quadratic.

The following discussion describes the evaluation of the partial derivatives:
3A 3A 3B 3B

ap L] aq L ap L] aq -

Suppose that the division of P(z) by z* + pz + q gives the quotient:
biz™™® 4822 Y. . « $Bg-a ZEBga

and the remainder:
b,z + by +1 = Az + B.

It can be easily verified that the coefficients bi are given by the relations:

b =C1
bz =ca -pba
by =Ci -pb;-: —qb;—a l=3,l1

Pan+1 =Cps1 =gby -2

where the c. are the coefficients of P (z). Differentiating these relations with respect to p and
q gives the partial derivatives:

Bbl. =373 =0

op 3p

2% - by -p 30y = -by

op P

i= =bi-1-p abl-l -Q3 a3 i=3,n
ap ap op

3 ps1 = =(q ab,,_;

op op
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and:

8P w4%, o3

9q aq

Bba =21=0

aq aq

Bbiz b1a—pobil-q abi—e, i=3,n

F) 3q oq

abni-l = "bn—l -q abn—:l.

aq aq
where:

2 _ 0

3p °p

24 _ 20

°oq 8q

B B

3p op

8B _ 3%

8q oq

Hence, the partial derivatives of A and B may be evaluated recursively by means of the above
formulas. However, an inductive argument shows that:

ale:ab;!
3q 3p =1 e ey 1

Thus, the partial derivatives must be calculated only with respect to p. This may be done by

an algorithm whose form is similar to that of the calculation of the coefficients bs. In fact, the
complete calculation of the remainder Az + B and the partial derwatwes of A and B is essential-
ly accomplished by two successive divisions of P(z) by the factor a® + pz + q. If the symbol Dy
is used to represent the partial derivative of b, with respect to p, the calculation may be ar-
ranged as shown on the following page.

GE-600 SERIES ——
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i by D,

1 Ca » 0

2 cz - pb: -by

3 ca - pbz -gb: -ba -pD; - qD:

4 cs - pbs - gbz -bs - pDs - gD

n cu = pbn—l o qbu-i _bn—l "pDu—l = an--?
n+l Cas+r - Qbp-2 -q Dy

Then, use of the relation

3b1+1 = ab|

3 q p

gives
R=p
ap .

2A_D
Bq n=1

3B

5 D+

2B

3q s

and the equations for 4p and &4q become
D, * 6p+D,-1* 8q=-b,
Dps1 = 8p+ Dy = A= -bn+r,

sp and Aq may readily be found from this equation.

Bairstow's method is discussed further in Numerical Methods for Scientists and Engineers by

R.W. Hamming, McGraw Hill 1962, pp. 356-359, and in most standard texts on numerical anal-

ysis.

EOLRIS
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SUBROUTINE DESCRIPTION

The POLRTS subroutine begins by testing the degree of the polynomial to insure that it is positive.
If it is 0 or negative, a return to the main program is executed with the IND indicator set to 0
(see page 9), Otherwise, the polynomial is converted to a monic polynomial by dividing every
coefficient by the leading coefficient. The leading coefficient is thereafter assumed to be equal

to 1 and is, consequently, not represented in the array of coefficients. Every coefficient is
moved down into the preceding coefficient location to fill the vacancy thus created. The indicator
ISW is calculated; it is -1, if the degree of the polynomial is odd, and 0, otherwise. The starting
guess for p and q is formed by setting p=c.-1/ca-2 andq= cn/Cn-2, unless c,-2 is 0: in this

case, p=q=_cCc,., Inorder toprevent the initial guess for p from being 0, a small quantity is
added to it.

If the polynomial at this point is of first degree, its real root, found without calculation, is
placed in the appropriate position in the array of real roots and 0 is placed in the corresponding
position of the array of imaginary roots (see Chapter 3, POLRTS Subroutine). A return to the
main program is executed with the IND indicator set equal to N. If the degree is two, a branch

is made to the section of the subroutine which solves for the roots of the quadratic factors.
(This section is described below. )

Otherwise, the iteration counter IC is set equal to 1 and the iteration loop is entered. Using the
algorithm explained in the discussion of the Sample Problem and the notation used in that discus-
sion, the iteration loop calculates the values of A, B, D,-1,D,,D,+1. The loop uses the follow-
ing as temporary storage locations: the variable Bl, B2, B3, B4, and the portions of the real
and imaginary arrays which have not yet been occupied by roots. The b, coefficients of the first
quotient are stored in the RR array after each division and become the coefficients of the reduced
polynomial when the iteration converges. Using Cramer's rule, the two simultaneous linear
equations defining ip and Aq are solved and the results are stored in B2 and B3, respectively.

The magnitudes of B2 and B3 are tested relative to P and Q, respectively, when the magnitudes
of P and Q are greater than 1, and are tested absolutely, otherwise. When the tested magnitudes
of B2 and B3 are both less than 5 x 107 convergence is considered to have taken place. Other-
wise, B2is added to P; B3 is added to @; and IC, the iteration counter, is increased by 1.

Assuming that IC is not now greater than 100, the iteration is repeated, using the new P and Q as
a starting guess.

When IC becomes greater than 100, a convergence failure has occurred. Convergence failures
can sometimes be caused by the presence of a single real root among complex roots; therefore,
if ISW is equal to -1, indicating that the polynomial is of odd degree and, hence, has a real root,
the polynomial is multiplied by the factor (z + 1). This introduces the extra real root -1. ISW is
then set equal to +1 as an indicator for future use, the IND indicator is set equal to the number
of roots found prior to the convergence failure, and the present degree of the polynomial is in-
creased by 1. The iteration procedure is then restarted with the new polynomial.

However, if ISW is equal to 0 or +1 after a convergence failure, indicating that the polynomial is
of even degree, a return is executed to the main program; the IND indicator is set equal to the
number of roots found before the convergence failure occurred, if ISW is 0, or to the number of
roots found before the extra root was introduced, if ISW is +1.

When the test of B2 and B3 indicates that convergence has taken place, the polynomial could be
reduced by dividing it by the factor z® + Pz + Q, using the last computed values of P and Q.
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However, this division was already performed as the first step in the iteration loop, and the re-
sults were stored in the unused portion of the array of real roots. They may now be transferred
from the array of real roots to the coefficient array (see Chapter 3, POLRTS Subroutine), thus
destroying the coefficients of the previous polynomial. The coefficients are always stored up to
location N of the coefficient array, and N remains constant. The counter I, which will be incre-
mented by 2 before the next set of iterations, is used to mark the location of the first coefficient
of the new polynomial in the coefficient array. Hence, I may also be used to mark the location
of the last root found in the real and imaginary arrays.

Once the polynomial has been reduced in this fashion, the factor z“ + Pz + Q is solved by the
quadratic formula. The two roots are stored in locations I and I + 1 of the realand imaginary
arrays and I is incremented by 2. If I is not yet greater than N, a return is made to the iteration
section with the reduced polynomial, in order to remove another quadratic factor. If I is greater
than N, the polynomial has been completely reduced and all roots have been found.

Therefore, a return is made to the main program unless ISW is equal to +1. In this case, the
extra root -1, which was previously introduced by the subroutine, must be removed from the
array of real roots and the array of imaginary roots before a return to the main program can be
made. If for any reason this root cannot be found, the return is made with the IND indicator set
equal to the number of roots found before the extra root was introduced.

@E“@@@ gEE%UIES POLRTS



3. PROGRAM USAGE

POLRTS SUBROUTINE

Before calling the POLRTS subroutine, the user must dimension three arrays in his main
program to contain the coefficients and the roots of the polynomials, These arrays are called the
C (coefficient), RR (real-root), and RI (imaginary-root) arrays, and must be dimensioned at
least n + 1, if n is the degree of the polynomial to be solved. Larger dimensions than necessary
are acceptable. The POLY subroutine, which performs the input/output for POLRTS, is written
to allow a 30th degree polynomial.

The polynomial itself must be written in descending powers of the independent variable:

n-1

ci1zZz"+Caz +o0oaotCrZ+Cusn,
In addition, the polynomial must have no 0 roots; that is, the coefficient ¢ , +, must not be 0.
If c,+1 is 0, the polynomial must be rewritten as a polynomial of degree m:

Ci2® #eaT "% e i b FCaBHEC i

wherem=n - 1. If c.+: is 0, this must be repeated.

The coefficients are placed in the C array in order withe; = C(I) fori=1, 2, , . . n+ 1. Since
the subroutine will destroy the orginal coefficients in the course of solving the polynomial, they
should also be stored in some other array if they are to be used again by the main program.

The user does not have to specify the elements of the RR and RI arrays before calling the sub-
routine,

The subroutine is called by the statement:

CALL POLRTS (C, RR, RI, N, IND)

where N is the degree of the polynomial and IND is a dummy fixed point variable. Before re-
turning to the main program, the subroutine sets the variable IND equal to the number of roots
which have been found, and stores the real and imaginary parts of the roots in the first IND loca-
tions of the RR and RI arrays, respectively.
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SAMPLE PROBLEMS

As many cases as desired may be stacked in one run.

The following six sample cases were used to test POLRTS. The first five sample cases have

roots of 1, 2, 3, 4, and 5.

Case 1:
Case 2:
Case 3:
Case 4:
Case 5:

Case 6:

x-1=0

x°-3x+2=0

The sixth case has both real and imaginary roots.

x? -6x% + 11x-6=0

x* - 10x° + 35x°

-50x +24=0

x° - 15x* +b5x® -225x% +274x - 120= 0.

1.5x7 + 2.906x° + 10.6x° + 25.877x* + 2.3x2 + 33x2 + 1.234x + 543.2 =0

Input Preparation

Figure 1 shows how the sample cases are coded. Coding sheets are provided in the back of this
manual for the user's convenience.

GE-600 SERIES

case 1 SDATA/NX=_d

Nefee L, =2 %

Case 2 $DATA/NX=_<2 _,

nefe=2 =3 . 2
Case 3 SDATA/NK=__3 |

nefe=— 2, =6, 11 | =€ s
Case 4 SDATA/NX=_4%__,

Nc/c=_2 , =20, 35 ,6-50, 24§

Case 5 SDATA/NX=_&§ ,

Ne/e=_ 1, =15 | ®5 _-aas,
274 , =120
Case 6 $DATA/NX=_7 _,

Nc/e=_21.8  2.906 ,_10.6 25§77 ,

23 ,_ 33, 1.23% §43.a5

Last card| SDATA/NX=0$%

Figure 1.

POLRTS Coding Form with Sample Input

POLRTS
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Column 1 is always blank.
Each case starts with $DATA/NX = highest power of x (maximum of 30) followed by a comma.

The list of coefficients starts with NC/C = followed by the coefficients of the equation in descending
order of the powers of x. Each coefficient is followed by 2 comma except the last entry which is
followed by a $§. Columns 73 through 80 may not be used for coefficient entries but may be used
for identification. Coefficients may be continued on as many cards as necessary as shown in

cases 5 and 6. All coefficients must be entered even though they are zero.

Leading or trailing blanks are allowable in any of the numeric entries.
The last card in the deck must have NX set equal to zero followed by a $ to indicate the end of file.

Figure 2 is a listing of the input data deck.

3 EXECUTE

3 INCODE IBMF
SDATA/NX=1+NC/C=1+=1%
SDATA/NX=2/NC/C=1r=3:2%
SDATA/NX=3rNC/C=1r=6r11r=6%
SDATA/NX=U4»NC/C=1r=10+35:,=50r243%
FDATA/NX=5/NC/C=1+,-15¢85¢,-225,274,=120%
SDATA/NX=0%

3 ENDJOR

Figure 2, Input Data Deck

Output Listings.

In the output each polynomial to be solved and its roots is printed on a new page.

Figure 3 shows the output for the sample problems.

POLYNOMIAL TC_EE _SOLVED 1S S SRS
1.000000E 00 X
-1,000000€ VO
ROOTS ARE AS FOLLOWS
REAL FORTION {MAGINARY PORTION

s 1,C000000F CO g. i

M\W—A’“J

Case 1

Figure 3. Output from Sample Problems
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FMMM

POLYNOMIAL TQ BE _SOLVED IS
- 1.,000000F 00 Xae?2 — e e e S
..—=3,0000008 00 % S PR

2,000000E 00

BOOTS ARE AS FOLLOWS = = ———

—— . Real PORTION IMAGINARY PORTION

— ot 4, 99000RF O0. .. 0, | (SN e e
2 1.0000041E 00 0, Sy I —
._..-——--_--"—"‘——-"_'-'\.__._ — — e N — |
Case 2
—- — ——— —_—— e

_POILYNOMYAI TD BE SOI YED [S

 _4,000000E 00 Xee3
=6, 000000F 00 Xueo?2

1,100000fg 031 X

=6,000000E 0O

R 8 0 S
= REAL PORTION IMAGINARY PORT]ION
i 2,000000F 0O 0, i
2 1,000000F 00 0% I
3 3,000000E 0O 0. 1
. - @ — T

Case 3

Figure 3. Output from Sample Problems (cont.)

POLRTS
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POLYNOXIAL -TC--5E-SOLVRE--1S

M\M/\_/—\—/’_\”W\‘

1.000000E.00 Xoud

=1,000000E 01 Xa#d_ .

______ _3,500000F 01 Xee2 .
-5.000000E 01 X . .. ____ —
....R2400000E 01 SR rass S raper e

ROGTS ARE AS FOLLUMS _

REAL FOKTION

t . B HUOBORE.OR o s e s
2  1,000000E 00 0, ! . ~ .
3 3,999996E 00 0, k. .- - .

_ .. 4 _3,0000038E 0 Q. ) - . _

Case 4

POLYNOMIAL TD BE SOLVED .1S.- ; S
1.000000E 00 X#45 e T

-1,500000E 01 Xuu4

—e--B,500000E. 01 Xuu3 _

e e e e o Do esteesee———oeems o S

«2,2500U0E. 02 Xuu2 SRR P SIS

2,740000E 02 X e

=1.200000E 02 ..

ROOTS ARF AS FOLLOWS
REAL_POXTION... IMAGINARY PORTION §37 L
i 2,000000F 00 O, I
2 1.000000E 00 0. I
_ 3. 3.969995E U 0. i S SR
4 3.000003E 0U 0. I
5 _ 5,000003E 00 0. 1 U
Output Listing
Case 5
Figure 3. Output from Sample Problems (cont.)

POLRTS

GE-600 SERIES

i



POLYNOMIAL TO BE SOLVED IS
1,500000E 00 X*#7
2,906000E 00 X##6
1.060000E 01 X##5
2,587700E 01 X##4
2,300000€ 00 x##3
3,300000E 01 X##2
1,234000E 00 X

5,432000E 02

ROOTS ARE AS FOLLOWS
REAL PORTION  IMAGINARY PORTION
1 2,137941E-01 2,873626E 00]
2  2,137941E-01 -2,873626E 001
3 1,441992E 00 1,153711E 001
4  1,441992E 00 ~1,153711E 001
5 -1,244203€ 00 1,756273E 001
6 -1,244203€ 00 =~1,756273E 001
7 -2,760499E 00 0, I

Case 6

Figure 3. Output from Sample Problems (cont.)

@Et’@@@ gIE[PB[”Eg POLRTS
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Control Cards and Deck Setup

Figure 4 shows the cards used to run the sample problem on the GE-625/635 computers.

e

—
&

Data

POLRTS deck
§ OBJECT

$ DKEND

GE-600 SERIES

<1



APPENDIX A
PROGRAM LISTING

% IDENT  AAV»GE +FORTRAN/FOOTS OF A POLYNOMIAL POLYOO00D
% OPTION FORTRAN!GO POLYO0010
] FORTRAN LSTOU(DECK+STAB POLY0020
% INCODE IEMF POLY0030
*POLY POLYNOMIAL ROOTS PROGRAM POLYDO040
* Cp600N5.001 DATE 05/05/65 POLYO0050

DIMENSION C(31),RR(31),RI(31),X(31) POLY0060

DATA X/6H X**3016H X*%29,6H X**2816H X**¥2716H X**2616H X#%25s POLY0070

ABH X*%2U4,6H X**¥23r6H X¥%¥22,6H X**21e6H X**2006H X**¥19¢6H X*%18¢ POLYO0DB0
BeH X*¥*1796H X*¥*¥16r6H X*%x15,6H X**¥14s6H X¥kx1306H X¥%12:6H X**11r POLY0090

CaH X**x10s6H X*%9 16H X**¥8 ,6H X**%7 s6H X**6 t6H X*%5 p6H X**4 » POLYO100

D6H X**3 16H X*%2 16H X »6H / POLY0110
NAMELIST/DATA/NCNXsC POLY0120

* SAMPLE INPUT POLY0130
* SDATA/NX=3/NC/C=12.314.45r74:51123% POLYO140
* NX IS HIGHEST POWERs C IS LIST OF NX+1 COEFFICIENTS (DESCENDING) POLY0150
* NX=0 SIGNALS END OF DATA POLY0160
1 READ(5+DATA) POLY0170

IF (NX+EQ.0)G0 TO 16 POLY0180

IF (NC+EQ. (NX+1))GO TO 3 POLY0190

2 WRITE(6ry4) POLY0200

4 FORMAT (34H1 WRONG NUMBER OF COEFFICIENTS) POLY0210

GO To 1 POLY0220

3 IF(C(NC))5+6+5 POLY0230

6 WRITE(6+7) POLY0240

7 FORMAT(29H1 ZERO ROOT+ REDUCE POWER) POLY0250

GO TO 1 POLY0260

5 WRITE(6+8) POLY0270

8 FORMAT(31H1 POLYNOMIAL TO BE SOLVED 1S/) POLY0280
J=31=NX POLYD290

DO 9 I=1,NC POLY0300
WRITE(6¢10)C(I)eX(d) POLY0310

9 J=J+1 POLY0320

GE-600 SERIES roLrs
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10

12

11

FORMAT(1HUL10Xr 1PEL13.brAB)

CALL POLRTS(CeRR+RI+NXrIND)
IF(IMD«LTenNX)GO TO 11

WRITE(Hr12)

WRITE(Ge17)

FORMAT(//1H0+5X»20HRODTS ARE AS FOLLOWS)
GO To 13

WRITE(6r14)

WRITE(Gr17)

14 FORMAT(//1H0+5X»27HPARTIAL SOLUTION AS FOLLOWS)
13 WRITE(6+15)(I+RR(TI)+RICII»I=1sIND)
15 FORMAT(1IHOL10X»I2¢1PELS.6+1PELSHr1HI)
17 FORMAT(1HUO13Xr»32HREAL PORT]ION IMAGINARY PORTION)
G0 To 1
16 STOP
END
5 FORTRAN LSTOU*DECK'STAB
% INCODE IBMF
*POLRTS POLYNOMIAL ROOTS BY BAIRSTOW:S METHOD

*

30

BE-600 SERIES

Cp600D5.001
SUBROUTINE POLRTS(C+RRsRI*NN+IND)
BAIRSTOWS METHOD FOR FINDING POLYNOMIAL ROOTS
POLYNOMIALS HAVE N+1 COEFFICIENTS STORED IN C IN
ORDER OF DESCEMDING POWERS: ZERO ROOTS NOT PERMITTED
DIMENSION C(1)¢RR(1)RI(1)
N=NN
1=1
IF(N)23¢23+30
P=1.0/C(1)
pO 4 J=1r¢N
clJI=P*C(J+1)

ISW=N/2

POLYO0330
POLYO0340
POLY0350
POLY0360
POLYO0370
POLYOD380
POLY0390
POLYO40U
POLYOH410
POLYO420
POLY0430
POLYOH44O
POLYO450
POLYOu460
POLYO0470
POLYO0480
POLR00OOO
POLROO10
POLRO020
POLROD30
POLROO40
POLR00S0
POLR0O06D
POLR0O070
POLR008O
POLR0O090
POLRO100
POLRO110
POLRO0120
POLRO130
POLRO140

POLRO150

POLRTS
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ISWSISWHISW=N POLRO160

1 P=CIN-1)+1.E~6 POLRO170
Q=C (N} POLRO180
IF(I=N+1)5r14,2 POLRO190

2 RR(I)==q POLR0O200
RI(I)=0.0 POLR0210
IND=N POLR0220
GO TO 24 POLR0230

5 1C=1 POLR0240
BR1=C(N=2) POLR0250
IF(B1)7:28:7 "POLRO260

7 Bl=1.0/81 POLRO270
P=P*g1 POLRO280
Q=0*Bl POLR0290

& Bl=1.0 POLR0300
B3=1.0 POLRO0310
B2=0.0 POLR0320
B4=0.0 | POLR0330
DO 10 J=IrN POLRO340
RR(JI=C(J)=-P*B1=-0*B2 POLRO0350
IF(J=N)9s10+10 POLR0360

9 RI(J)=RR(J)=P*B3~-Q*B4 POLRO0370
B2=B1 POLR0380
B4=B3 POLR0390
B1=RR(J) POLRO400
B3=RI(J) . POLRO410

10 CONTINUE POLRO420
RI(N=1)=RI(N=1)=RR(N=1) POLRO430
B2=1.0 " POLRO440
B3=RI(N-1) POLRO450
B4=RI(N=2) POLRO460
IF(I=-N+2)3+6+3 POLRO470

3 B2=RI(N=3) POLRO480

GE-600 SERIES rousrs

=17=



11

12

13

31

32

33

34

14

27

15

16

17

GE-600 SERIES

Bl=Bu*Bu=-B3+*42 POLRO490
Bl=1.0/81 POLRO500
B2=(RIR(N=-1) #34=RR () *32) *B1 POLR0510
B3=(RR(N=1)#B3=RR(N) *34)*B] POLR0520
IF(ABS(B2)/ (ABSIP) +1.0)=5.E=6) 12,1213 POLR0S30
IF(ABS(R3) /(ANSIQ)I+140)=5.E=6)21r21013 POLRO540
P=P+B2 POLRO550
G=G-B3 POLR0560
IC=IC+1 POLR0O570
IF(IC-100)8+8+31 POLR0580
IF(ISW)32r23,24 POLR0OS90
ISW=1 POLRO600
IND=I-1 POLR0610
J=h POLR0620
N=N+1 POLRO630
CIN)=0. POLRO640
clu+1l)=c(Jd+1)+C () POLR0650
J=J=-1 POLR0O660
IF(J) 34934433 POLR0670
cll)=C(1)+1.,0 POLR0680
GO To 1 POLR0690
IF(P)I2T7r16:27 POLRO700
BY4=4,0%Q/ (P*P) POLRO710
IF(ARS(BU4)=1.E=6)15+15+16 POLRO0720
RR(I)==P POLRO730
RR(I+1)=-Q/P POLRO740
GO To 19 POLRO750
RR(I)==.5%p POLRO760
RR{I+1)=RR(I) POLROD770
Bl=P#P-4,0%Q POLRD780
IF(B1)17¢12s18 POLRO790
RI(I)=.5%SGRT(=B1) POLR0OB0OO
RI(I+1)==RI(I) POLRO810
POLRTS

-18-



)

19

20

35

3o

37

38

39

40

21

22

23

24

28

GE-600 SERIES

GO To 20
B1=+5%SQRT(B1)
RRIID=RR(I)+B1
RROI+1)I=RR(I+1)=B1
RI(I)=0.0
RI(I+1)=0.0

I=I+2
IF(I=-N)1ele35
IF(ISW)23r23+ 36
K=IND+1

DO 38 J=KrN
IF(ABS(RI(U))=1.E-6)37+37+38
IF(ABS({RR(J)+1.0)=1.E~6)39,39,38
CONTINUE

GO To 24

DO 40 K=JrN
RR(K)=RR(K+1)
RI(K)=RI(K+1)
IND=N=-1

GO To 24

DO 22 J=I'N
c(J)=RR(J=2)

GO To 14

IND=I=1

RETURN

P=Q

GO To 8

END

POLROB20
POLRO830
POLRO8B40
POLR0B50
POLRO860
POLR0O870
POLROB80O
POLR0890
POLRO900
POLR0910
POLR0S20
POLRO930
POLR0O940
POLR0950
POLR0960
POLRO970
POLR0O980
POLR0990
POLR1000
POLR1010
POLR1020
POLR1030
POLR1040
POLR1050
POLR1060
POLR1070

POLR1080

POLR1090

POLRTS

=10



APPENDIX B
FLOWCHARTS

NN—» N
l—pI

[Cj+1‘:'C]_—ij]for
J=1,N
N-2—pISW

@ 9*TSH=N—pISW
Ry
5.5

Cn_ 1+1 .E=-6—»P
Ch—»Q

[-C—RR; |
0.0 —pRI{ _.@
N —>IND 6

= Q—»P
#
1+B1—»B1
B*B1—P
Q*B1—Q
2
POLRTS

®

@E“ @@@ @E R I] ES | POLRTS

=21 -



1.0 —» Bl
1.0—B3
0.0 —»B2
0.0 —»B4
I—pJ

"

C} -P*B1-Q*B2
—-DRRj

J:N

<

RR,-P*B3-Q*B4

RI
Bl—bllz
B3 —»B4
RRj—.Bl

RIj:tBB

J+1=—pJ

GE-600 SERIES

RI;-1-RRy.q
—>RI, .
1.0—582
RI'I'I‘ 1 —.33

R1n~2—|»3fa

POLRTS

®

POLRTS

-929.



RIn_3-—.Bz

!

B42-B3*B2—pB1
1.0:B1—s Bl
(RRp-1%B4-RRn*B2)
*Bl—
(R, B3 RR*B4 )
*Bl—pB3

CRR, ,—»C
J=1,N

Jfor

GE-GO0 SERIES

P+B2—»P
Q-B3—»Q
1CH+H1 —»IC

I-1=—»IND

POLRTS

®

POLRTS

. b,



GE-600 SERIES

1 —ISW
I-1—3IND
Ne—p J
N+l—eN
0—»C,

Cl-l-l. 0-—-»(31

4, 0%Q:P2—pB4

..P_..RR]..
“Q-P—»RR; 4

POLRTS

®

POLRTS

-924-



1,4

-P+2 —»RR;
RRi —pRRj 47
P24, %Q—pB1

=
s i /B1:2—pBl
-RLj —»RI 4 RR;+B1—pRRy
RR; 41 -Bl—PRR; 4]
&

0.0—pRI;
0.0—#RI;4y

IND+1 —K
K—pJ

POLRTS

®

BE-600 SERIES roLis
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> J+1—»J

[ RR[(+1 —-bRRk]and
[ RIj 4 —RI}]Eor 0 <
K=J,N
N-1—pIND ( : )5

!

POLRTS

®

GE-600 SERIES PoLrs
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POLRTS Coding Sheet Instructions

For the general equations:

Aox® kg TP e

Enter data as:

NX = highest power of x (maximum value of 30)

NC/C = coefficients in descending order starting with A, through A, followed by $ after A,

NX =0 after last case to terminate run.

Example:
Equations to be solved:

Casel: x-1=0
Case 2: x* -3x+2 =0
Case 3: x°-6x° +11x-6 =0

Case 41 x* -10x® + 35x? -50x +24 =0
Case 5: x° -15x* +85x® -225x° +274x - 120 =0
Case 6:

1.5x7 +2.906x°% +10.6x° +25.877Tx* +2.3x® +33x® +1,234x + 543.2 =0

Above equations coded for POLRTS:

Case 1 $DATA/NX=_1 |
Ne/e=d _, =1§
Case 2 $DATA/NX=_2 |
Ne/e=—L =3 | 2 &
Case 3 $DATA/NK=_3_,
Ne/e=_L1 , -6 M1 -6
Case 4 $DATA/NX=_%__,
Nc/c=_L =10 3§ -350 24
Case 5 $DATA/NX=_<"_,
Nc/c=_21 =25, 85 225,
274,120
Case 6 $DATA/NX=_7_,
NC/c=1.5 ,2.90b , 20.6 A 25.877,
23,33 1239 5Y32g
Last card | $DATA/NX=0$

GE-600 SERIES

POLRTS




POLRTS Coding Sheet

Col. CASE 1
2
SDATA/NX=_____,
NC/C= - 3 ;
An An-l An-2 An-3 An-4
E ] ] £ ]
3 ] >
3 3 2
Col. CASE 2
2
$DATA/NK=_____,
NC/C= . s ,
An An-l An-Z Al'l"3 An"‘l
» 3
3 ]
3 3 £
Col. CASE N
2
SDATA/NX=___,
Nc/c= » 3
An An-l An-2 &n-3 An-4

TERMINATION CARD

Col.
2
$DATA/NX= 0$

NOTE TO KEYPUNCH OPERATOR:

Start all cards in column 2.
Terminate punching after $§ in a given case.



POLRTS Coding Sheet Instructions

For the general equations:

A+l X Seiieasses +A x+A =0

Enter data as:

NX = highest power of x (maximum value of 30)

NC/C = coefficients in descending order starting with A, through A, followed by $ after A,

NX =0 after last case to terminate run.

Example:

Equations to be solved:

Casel: x-1=0

Case2: x® -3x+2 =0

Case 3: x°%-6x° +11x-6 =0

Case 4: x* -10x® +35x® -50x +24 =0

Case 5: x°-15x* +85x° -225x2 +274x - 120 =0
Case 6: 1.

5x7 +2.906x° + 10.6x°% +25.87Tx* +2.3x° +33x® +1.234x + 543.2 =0

Above equations coded for POLRTS:

Case 1 $DATA/NX=_1 |
Ne/e=d_, =1 §
Case 2 SDATA/NX=_2 |
Ne/e=—d =3 2 §
Case 3 SDATA/NX=_3 |
Ne/e=_Z_, =6 M1 -6
Case 4 SDATA/NX=_%_,
Nc/c=_L =10 3§  -30 24
Case 5 SDATA/NK=_s5_,
Nc/c=_Z =18 , 85 225
274,=120%
Case 6 SDATA/NX=_7__,
Nc/c=1.5 ,1.906 106 25.877
23,33 1239 SY324
Last card | $DATA/NX=0$

GE-600 SERIES

POLRTS




Col.
2
SDATA/NX=____,

NC/c=

POLRTS Coding Sheet

Col.

2
SDATA/NX=____,

NC/c=

n=3

n=4

Col.
2
$DATA/NX=_____,

NC/Cc=

CASE 1
]
An-l An-2
t ] E]
2 3
CASE 2
An-l An-2
3 3
3 3
CASE N
an-l An-2

n=3

Col.

2
SDATA/NX= 0%

TERMINATION CARD

NOTE TO KEYPUNCH OPERATOR:

Start all cards in column 2.
Terminate punching after $ in a given case.



POLRTS Coding Sheet Instructions

For the general equations:

AeR® & Koy B $uasens vee A X+A =0

Enter data as:
NX = highest power of x (maximum value of 30)
NC/C = coefficients in descending order starting with A, through A, followed by § after A,
NX =0 after last case to terminate run.

Example:

Equations to be solved:

Casel;: x-1=0

Case2: x° -3x+2 =0

Case 3: x°-6x° +11x-6=0

Case 4: x* -10x® + 35x? -50x +24 =0

Case 5: x° -15x* +85x 7 -225x? +274x - 120 =0

Case 6: 1.5%7 +2.906x° + 10.6x° +25,877x* +2.3x® +33x? +1.234x + 543.2 =0

Above equations coded for POLRTS:

Case 1 $DATA/NX=_1 |
Nc/e=d_, =L $
Case 2 $DATA/NK=_2 |
Nc/e=—d_,=3 | 2 %
Case 3 SDATA/NX=_3_,
Nc/e=_1 -6 M1 -6
Case 4 $DATA/NX=_%¥__,
No/e=_2_,=20 3§ =50, 244
Case 5 $DATA/NK=_&"_,
Nc/c=_1 =28 , 85 7225,
274,=2204
Case 6 SDATA/NX=_7_,
Nc/c=2.5 ,1.906 K 10.6 25.877,
23,33 1.23% 5932
Last card| $DATA/NX=0$%

@E"@@@ SERHES POLRTS



POLRTS Coding Sheet

Col. CASE 1
2
$DATA/NX=_____,
NC/C= 3 ¥ s
An An- 1 An-Z A1:1-3 An"t'o
£ ] 3 3
] 3 t ]
» 3 b ]
Col. CASE 2
2
$DATA/NX=_____,
NC/C= ¥ s »
An &n- 1 An-2 A11-3 An-ﬁ
3 ]
] 3 3
Col. CASE N
2
$DATA/NX= :
Nc/c= 3 s
An kn- 1 An-Z An-fi an -4

TERMINATION CARD
Col.

2
$DATA/NX= 0§

NOTE TO KEYPUNCH OPERATOR:

Start all cards in column 2.
Terminate punching after § in a given case.



POLRTS Coding Sheet Instructions

For the general equations:

A,

Enter data as:

G SRR S T SR + A X+A =

NX = highest power of x (maximum value of 30)

NC/C = coefficients in descending order starting with A, through A, followed by $ after A,

NX =0 after last case to terminate run.

Example:

Equations to be solved:

Casel: x-1=0

Case2; x° -3x+2 =0

Case 3; x°-6x° +11x-6=0

Case 4;: x* -10x® +35x% -50x +24 =0

Case 5: x°-15x* +85x 2 -225x° +274x - 120 =0
Case 6: 1.

x” +2.906x°% + 10.6x° +25.877x* + 2.3x°% + 33x2® + 1.234x + 543.2 =0

Above equations coded for POLRTS:

GE-600 SERIES

case 1 $DATA/NX=_1 |
Nc/c=L_, =L $
Case 2 SDATA/NX=_2 _,
Ne/e=—L ,=3 |, 2 ¢
Case 3 $DATA/NX=_3_,
NC/o=_L , =6 M1 -6
Case 4 spaTA/Nx=_%¥_,
Ne/e=_4 _, 20 35 -350 243
Case 5 SDATA/NX=_&" |
Nc/c=_1_,=25 , 85 225,
274, ,=120%
Case 6 $DATA/NX=_7_,
Nc/c=1.5 ,1.906 , 10.6 A 25.877,
23,33 1234 S$Y324
Last card | S$DATA/NX=0$

POLRTS




POLRTS

Coding Sheet

Col. CASE 1
2
$DATA/NX= =
NC/Cc= s )
An An- 1 An— 2 An-3 An-ﬁ
] ] 3
] ] »
? ] ]
Col. CASE 2
2
SDATA/NX= ;
NC/ C= ] 3 »
An An-l An-Z A'n--3 n=4
3 3
] ]
2 t ] ]
Col. CASE N
2
SDATA/NX=_____,
NC/c= s ’
hn A'n- 1 An-2 an-B An-4
3 3 E ]
£ ] 3 ]
3 ] ’
TERMINATION CARD
Col.
2
$DATA/NX= 0§

NOTE TO KEYPUNCH OPERATOR:

Start all cards in column 2.
Terminate punching after $ in a given case.



POLRTS Coding Sheet Instructions

For the general equations:

Ax® Ay O F Jouueemis

Enter data as;

NX = highest power of x (maximum value of 30)

NC/C = coefficients in descending order starting with A, through A, followed by $ after A,

NX =0 after last case to terminate run.

Example:
Equations to be solved:

Casel: x-1=0
Case 2: x® -3x+2 =0
Case 3: x?-6x° +11x-6 =0

Case 4: x* -10x® +35x° -50x +24 =0
Case 5: x° -15x* 485x° -225x? +274x - 120 =0
Case 6:

1.5%7 +2.906x° + 10.6x° +25.87TTx* +2.3x° + 33x® +1.234x +543.2 =0

Above equations coded for POLRTS:

case 1 SDATA/NX=_1 |
nc/e=d_, =1 §
Case 2 $DATA/NX=_2 |
Nc/e=—L_, =3, 2 s
case 3 $DATA/NX=_3 _,
Nc/e=_L , -6 M1 -6
case 4 SDATA/NX=_%_,
Nc/c=_d_, =20 3§  -50 244
Case 5 SDATA/NX=_3__,
NC/c=_1 =215 85 225,
274 ,=1208
Case 6 SDATA/NX=_T7 _,
Ne/c=21.5 ,2.906 , 10.6 AL 25.877,
23,33 12349 59324
Last card| SDATA/NX=0%

GE-600 SERIES

POLRTS




POLRTS Coding Sheet

Col. CASE 1
2
$DATA/NX=_____,
NC/c= B > >
4 by Aieg Byes Ao
3 2 »
» : ] )
3 ;] 3
Col. CASE 2
2
SDATA/NX=__,
NC/c= s i 2
A A Aip R A
2 k]
] > »
] 2 »
Col. CASE N
2
$DATA/NK=____,
NC/c= ; .
Ilkn Ill1'1- 1 Au-2 ll“11-3 An-k

TERMINATION CARD

Col.
2
$DATA/NX= 0$

NOTE TO KEYPUNCH OPERATOR:

Start all cards in column 2.
Terminate punching after $§ in a given case.



line

Please cut along this

TITLE: GE-625/635 Math Routine
cPB #: 1152A

FROM:®

Name:

Position:

Address:

Comments concerning this publication are solicited for use in improving future
editions. Please provide any recommended additions, deletions, corrections, or
other information you deem necessary for improving this manual. The following
space is provided for your comments.

COMMENTS:

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
Fold on two lines shown on reverse
side, staple, and mail.








