BASIC FOR THE NEWTON

gt el AL LA

HH | H TR .ﬂ .w ;mm
35 w .m -w

fhed ge! Hist _E .Nm .E

NS BASIC HANDBOOK

1

I B I I B D D B B B R N N

GOSUE
_LET

BASIC

J‘ REM

NS BASIC Handbook

December 15, 1995

© NS BASIC Corporation, 1995.
77 Hill Crescent
Toronto, Canada MIM 1)3
(416) 264-5999

This manual and the software described in it are copyright-
ed, with all rights reserved. Under the copyright laws, this
manual may not be copied, in whole or in part, without
the written consent of NS BASIC Corporation. Under the
law, copying includes translating into another language or
format.

Every effort has been made to ensure that the information
in this manual is accurate. NS BASIC Corporation is not
responsible for printing or clerical errors. Specifications
are subject to change without notice.

MessagePad, Newton and the Newton logo are trademarks
of Apple Computer, Inc., registered in the United States
and other countries.

Mention of third party products and their trademarks is for
informational purposes only and constitutes neither an
endorsement or recommendation. NS BASIC Corpora-
tion assumes no responsibility with regard to the perfor-
mance or use of NS BASIC or these products.

Special thanks to the following people for help in the testing
and development of NS BASIC and the preparation of this
manual: Peter Jensen, John Marman and Mark Holmes.

an Cataloguing In Publication Data

George W.P., 1954

program Language). 2. New-

(1]

ogramming

5.265C94-931542

@ & & & &6 ¢ & 0 0 0 0 0 0 s R s #m

LihG RN R O R EEMENT

PLEASE READ THIS LICENSE CAREFULLY BEFORE USING THE SOFT-
WARE. BY USING THE SOFTWARE, YOU ARE AGREEING TO BE
BOUND BY THE TERMS OF THIS LICENSE. IF YOU DO NOT AGREE
TO THE TERMS OF THIS LICENSE, PROMPTLY RETURN THE PROD-
UCT TO THE PLACE WHERE YOU OBTAINED IT AND YOUR MONEY
WILL BE REFUNDED

I, License. The appl - ation, system, and other software ac-
cwm“%mﬂmﬂﬁmwww
othes media (the “Soltware”). the reisted documentation and fonts are k-
cansed to you by NS BASIC Corporstion ("NSBC”). You own the media on
which the Software and fonts are recorded but NSBC and or NSBC's Li-
comser(s) reqain ttle to the Software, related documentaton and fonta. This
License allows you to use the Software and fonts on a ungle Newton Prod-
wct (which, for purposes of this License, shall mean a product bearing Ap-
ple's Newton logo), and make one copy of the Software and fonts in
machine-readable form for backup purposes only. You must reproduce on
wuch copy the NSBC copyright notice and any other proprietary legends
that were on the ongnal copy of the Software and fonts. You may alwo
transfer al your hcense rights in the Software and fonts, the backup copy of
the Soltware and fonta. the related documentation and a copy of this Li-
Cense 1o MnOther party, provded the other party reads and agrees Lo accept
the termi and condmiom of thn Licere.

1 Restricuons. The Software contaim copyrighted materal, trade secrets
and other proprietary materal and in order to protect them you may not
decomple, reverie enpineer, daastemble or otherwite reduce the Software
to & human-perceivable form. You may not modify, network, rent. leate,
load, diutribute or create derivative works based upon the Software in
whaole o in part. You may not slectronically tramamit the Software from
one device to another or over a network.

1 Termination Tha Licerse i effective untd termenated You may terminate
thas License at any tme by destroyping the Solware and related documenta-

4 Export Law Assurances You agree and certify that neither the Software
nor any other techrical data received from NSBC, nor the derect product
thereol will be exported cutisde the Urvted States except m authorized
and a1 permitted by the laws and reguiatiom of the United States. if the Sokt-
ware has been righthully obtained by you outside of the United States, you
agree that you will not reexport the Software nor any other technical data
receved rom NSBC. nor the direct product thereof, except 21 permitted
by the laws and reguiations of the United States and the laws and regulations
of the jurndiction in which you obtaned the Software

5. Government End Users. W you are acquiring the Software and fonts on be-
half of ary urit or agency of the Unitad States Government. the following
provisons apply The Government agrees: (1) i the Software and fonts are
supphed to the Department of Deferse (DoD), the Sofware and fonta are
ciarubed 1 “Commercial Computer Solware” and the Government is -
quiring only “restrictad nghts” in the Software. its documentation and fonts
= that term i3 defined in Clause 252.227-701 Jc)(1) of the DFARS; and (¥)
the Software and fonts are supphed to any unit or agency of the Unmted
Seates Governvment other than DoD. the Governments’ rights in the Sok-
ware, ity documentation and fonts will be as defined in Clause 51217

19{c)(2) of the FAR or, in the case of NASA, in Clause 18-52.227-86(d) of
the NASA supplement to the FAR.

6. NS BASIC will replace at no charge defective disks or manuals within 90
days of the date of purchase. NS BASIC warranties that the programs will
perform generally in compliance with the included documentation. NS BA-
SIC does not warrant that the programs and manuals are free from all bugs,
errors or omissions.

7. Dischaimer of Warranty on Software. You expressly acknowledge and
agree that use of the Software and fonts is at your sole risk. The Software,
related documentation and fonts are provided “AS IS” and without warranty
of any kind and NSBC and NSBC's Licenser(s) (for the purposes of provi-
sions 7 and 8, NSBC and NSBC's Licenser{s) shall be collectively referred
to as “NSBC™) EXPRESSLY DISCLAIM ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. NSBC DOES NOT WARRANT THAT THE FUNCTIONS
CONTAINED IN THE SOFTWARE WILL MEET YOUR REQUIREMENTS,
OR THAT THE OPERATION OF THE SOFTWARE WILL BE UNINTER-
RUPTED OR ERROR-FREE, OR THAT DEFECTS IN THE SOFTWARE
AND THE FONTS WILL BE CORRECTED. FURTHERMORE, NSBC
DOES NOT WARRANT OR MAKE ANY REPRESENTATIONS REGARD-
ING THE USE OR THE RESULTS OF THE USE OF THE SOFTWARE AND
FONTS OR RELATED DOCUMENTATION IN TERMS OF THEIR COR-
RECTMNESS, ACCURACY, RELIABILITY, OR OTHERWISE. NO ORAL OR
WRITTEN INFORMATION OR ADVICE GIVEN BY NSBC OR A NSBC
AUTHORIZED REPRESENTATIVE SHALL CREATE A WARRANTY OR
IN ANY WAY INCREASE THE SCOPE OF THIS WARRANTY. SHOULD
THE SOFTWARE PROVE DEFECTIVE, YOU (AND NOT NSBC OR AN
NSBC AUTHORIZED REPRESENTATIVE) ASSUME THE ENTIRE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. SOME JU-
RISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WAR-
RANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.

8. Limitation of Liability. Because software is inherently complex and may not
be free from errors, you are advised to verify the work produced by the
Program. UNDER NO CIRCUMSTANCES INCLUDING NEGLIGENCE,
SHALL NSBC BE LIABLE FOR ANY INCIDENTAL, SPECIAL OR CONSE-
QUENTIAL DAMAGES THAT RESULT FROM THE USE OR INABILITY
TO USE THE SOFTWARE OR RELATED DOCUMENTATION, EVEN IF
NSBC OR A NSBC AUTHORIZED REPRESENTATIVE HAS BEEN AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME JURISDIC-
TIONS DO NOT ALLOW THE LUMITATION OR EXCLUSION OF
LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES 50
THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU.
In no event shall NSBC's total liability to you for all damages, losses, and
causes of action (whether in contract, tort (including negligence) or other-
wise) exceed the amount paid by you for the Software and fonts.

9. Allocavon of Rusk: You acknowledge and agree that this Agreement allo-
cates risk between you and NSBC as authorized by the Uniform Commer-
cial Code and other applicable law and that the pricing of NSBC's products
refiects this allocation of risk and the | 1 of kability cc d in this
Agreement. if any remedy hereunder i3 determined to have failed of its es-
sential purpose, all limitations of liabiity and exclusions of damages as set
forth in this Agreement will remain in effect.

10. Support. NSBC may, at its option, provide support services at its standard
fees for such services. Such support services will be governed by the limita-

iv NS BASIC Handbook

-
-
-
-
-
-
-
-
L 4
[4
f
[4
r

“

vom of lability under this Agreement.

| 1. Addinonal Restrictions: Any upgrade or enhancement of the program
subsequently supphed by NSBC may only be used upon the destrucuion of
the prior version, and shall be governed by the terms of this Agresment

11 Comtrollng Law snd Severabsbty Tha Licerse shall be governed by and
comtrusd n scordance with the laws of the Unvted States and the Staite of
Delsware. 31 sppled to agreements sntered into and to be performed en-
trely within Delasware between Delaware rendents i for any reason a
court of competent jurisdicuon finds any provaion of this Liceme. or por
non thereol, to be unenforceable. that provison of the Licente shall be en
forced to the maxmum extent perminsible 10 a1 to effect the intent of the
parties, and the remainder of this License shall continue in hull force and of
fect

13 Complete Agreement Tha Licenss comtitutes the entire agreement be
rween the partied with respect to the use of the Software, related documen
tatron and fonts, and supertedes all prior or contemponanecus
understandings o agreement, written or oral, regarding such subject mat
ter No amendment to or modécaton of thi Licema will be binding unlen
w writing and signed by 3 duly authorized representative of NSBC

NS BASIC Handbook

AL I I I N I DR IR I I B I I I B I I I I

CONTENTS

B R dntlion cunaiuissaibasan L I LR |
1.1 All About BAS!C FPRTINTIN /2T Sy O e i 1 341 AR
NS SARIG i i s 2
NS BASIC and the Newton 2
|.2 System Requirements - 3
Newton System Compatibility ... mimccisend
1.3 Installation........ e e
Preparing to Install on thc Newton E
Preparing to Install on a Storage Card................. 5
Installing The NS BASIC Package 5
Entering Your Registration Number A= == 6
2 Getting Started With NS BASIC 3= e A
2| Conventions Used in this Handbook ... 7
1.2 Interacting With NS BASIC................ il
Using the Newton Keyboard ... TSRSt T L |
Picking Items Out of a List... WA
Using NS BASIC With a Computer or Termmal 10
Possible Problems .. : TET AT A DTt aesaal ||
Starting, Stopping, and Rescttmg NORURRUTUUNORNAOR §
2.3 Programming in NS BASIC.. " i I8
The NS BASIC Programming Enwronmem 12
The Elements of a NS BASIC Program.......cca 22
2.4 Immediate Statement EXCULION.......mmmmmmsmmms
Simple Calculations
B T SR —
3. NS BASIC Reference.............. R
4. Advanced Topics......... et e 203
4.1 Windows ' ——— Sy |
Buttons et
Hand Written Input.......... IR R
4.1 Widgets - — 1 4
4.3 Frames s R -
4.4 Files........... i PUTON, |
4.5 Serlal Inpul‘JOu{put IR e e L ¢
4.6 Infrared InpuU‘Output L wansdlS
4.7 Accessing and Using Other Fllﬂ Dau and
Applications.................. A i iuincd]S
3 L by b B B AR
Note Pad........... SRS R LT S 216
NS BASIC Handbook vii

Names... B R E e
48 Handllng Errors

Defensive programming....

Using ON ERROR ...

49 Calling NS BASIC frorn NewtonScrlpt 221
Appendix A: Error Messages ... iy A
Compile and RuUN-TIME wcccrrmrremsssssmsmmsssssssssssmsssssssssses

File...
Appendlx B Keywords
Appendix C: Special Charact.er Codes
INDEX... it
USER'S COMMENT FORM

¢ ¢ 0 ¢ @ @ & O 0 ° * v

L

wiil NS MIC Hand‘bock \

~
B
R
.
™
B
.
El
=
B
A
-
.
.
Q
e
-
-
4
”
.

CHAPTER

|. Introduction

Welcome to NS BASIC for the Newton. NS BASIC is de-
signed to meet the needs of Newton users. It is a simple yet
powerful language that can be used to write programs for al-
most any application,

There is a text file named READMETXT on the supplied
disk that contains any late-breaking information about NS
BASIC, including updates to the Handbook. Please read it
before installing NS BASIC.

If you'd like to get started using NS BASIC right away, then
read the Installation section, and then turn to the Getting
Started With NS BASIC chapter.,

Sample programs are provided with NS BASIC for you to
study and use. You can tallor these sample programs to your
particular needs. There is a text file named EXAMPLES. TXT
on the supplied disk that contains the programs used in this
Handbook.

You should be somewhat familiar with the basics of operat-
ing a Newton before you start using this Handbook. That is,
you should know about opening applications in the Extras
Drawer, using the stylus and other Newton features. If you
are not comfortable with these terms, review the Newton
Handbook.

A basic understanding of operating a desktop computer
(Macintosh or IBM Compatible) is needed to install the NS
BASIC software.

1.1 All About BASIC

BASIC has been around for over 30 years. Over that period,
hundreds of interpreters and compilers for BASIC have
been developed, and a mountain of application code has
been written. Many books continue to be published about
the language. BASIC Special Interest Groups exist in a num-
ber of forms.

BASIC is somehow good for the soul. As new waves of lan-
guages come and go, BASIC still runs almost everywhere:
without standards, it adapts to new environments easily and
keeps pace with the fancy new languages. The ones that
come and go.

Everyone, even Bill Gates, started with BASIC. Somehow,
we all keep coming home to it over and over again. It's still
the best language for quick programs and simple applica-
tions. BASIC interpreters, especially simple ones, can have
great charm,

The computer hardware that BASIC is programmed on has
wrned full circle since the days it was developed. The pow-
erful language to which only the computer scientists and
mainframe programmers had access to can now be runona
hand held device.

NS BASIC

NS BASIC for the Newton is a real programming language.
It implements all the commonly used BASIC Statements in a
straightforward manner, and has a number of powerful ex-
tensions.

As your Statements are entered into NS BASIC, they are
compiled into an intermediate representation. When you
run a program, each Statement is executed in turn, This type
of system is both compiled and interpreted.

NS BASIC Corporation maintains a World Wide Web page
athttp://www.nsbasic. com. If you have a Web
browser, check this site for important announcements,

technical information, and example NS BASIC programs.

NS BASIC and the Newton

When you bought your Newton, you probably thought that
you'd be able to replace many of your paper-and-pencil tasks
with it. You probably also hoped it would be able to function
as a small programmable computer. NS BASIC has been de-
signed for this purpose. Using it, you'll be able to create the
applications you need, in a language that is easy to use, right
on your Newton.

NS BASIC can provide access to all the information that is
in your built-in applications. Using it, you can write programs
that access your Names, Notes, and Dates information. You

- s CHmd_

e« @€ @€ @ ¢ ® ¢ ¢ & o

LI IR B I BN IS DN BN I N B B I I I I I

can write programs that find birthdays in the next week, by
accessing Names information. You can even write programs
that transfer Notes to your desktop computer.

NS BASIC can also be used for general purpose program-
ming. Any program that can be written in BASIC can be
written in NS BASIC. You can create customized databases,
perform complex calculations, or even write games. What
sets NS BASIC apart s its accessibility. You don't need to
learn a complex new language just to take advantage of the
powerful features built into your Newton.

1.2 System Requirements

In order to install NS BASIC you will need a Newton device,
a desktop computer (Macintosh or PC Compatible,) the
Newton Connection Kit or another package installer, and a
cable that can be used to connect the Newton to the desk-
top computer,

NS BASIC can be used with the serial port of the Newton
in several ways. If you want to use NS BASIC's serial con-
nection between your desktop computer and your Newton,
you will need a serial cable and communications software
for your desktop computer. The cable that is supplied with
all versions of the Newton Connection Kit is suitable for use
with NS BASIC. If you do not have a suitable cable, one may
be purchased at your local computer store.

Newton System Compatibility

NS BASIC version 2.5x is compatible with pre-2.0 Newtons
(the MessagePad, MP100, MP110, and MPI120 running ver-
sion 1.3 of the operating system) as well as MessagePads
running the 2.0 version of the operating system. NS BASIC
3.0x only works with Newton 2.0.

NS BASIC 3.0 support an expanded set of features. These
features are described in this handbook. They do not work
with NS BASIC 2.5x. These include:

« the EDIT, MAKEPACKAGE and SETICON Commands

» the APP, AZTABS, AZVERTTABS, CLOSEBOX, LARGE-
CLOSEBOX, DATEPICKER, DIGITALCLOCK, NUMBER-
PICKER, and PICTUREBUTTON widgets.

* the HEXDUMP, and NOTIFY Functions

T T I

. the DO, LOOP, EXIT DO, EXIT FOR, ELSE, END IF, and
block IF THEN Statements

Newton 2.0 includes additional functions that do not exist y
in older versions. These include:
« the "handwriting font >
« the MAKEBITMAP function v
Finally, version 2.5x uses a different method of creating run-

only programs using the LISTRUN and IMPORT Com- ('Y
mands. These are no longer documented in this handbook.

Please refer to the Technotes supplied on the software disk >
for information on using these Commands.

1.3 Installation »
NS BASIC is supplied on a software disk. You must install it

onto your Newton using 3 package installer. The example ®
shown here uses the Newton Connection Kit to instll the

NS BASIC package. Follow the directions in your package in- .
staller software manual when installing NS BASIC.

NS BASIC can be installed on your MNewton or on a storage »
card.

Preparing to Install on the Newton LY

Before you attempt to install the software on the internal

N

memory of your Newton, check the available memory in

your Newton. Open the Extras Drawer and tap “Prefs". In
the list that is displayed, tap *Memory". Verify that the free \
memory displayed is at least 185k. If you have less than this
amount, you should remove some information from your

Newton or consider installing NS BASIC on a storage card.
Refer to your Newton Handbook's Managing Memory sec-
tdon for more information on removing data and packages

from your Newton.

If you have a storage card installed in your Newton, open
the Extras Drawer and @ap Card.

L N I I I I BN I I I I IR I R I

.

LG I B

Verify that the checkbox "Store new items on card” is not

checked

Sterage card
$13K n wse, 435K free
Store new (tems oo Card

[Resmove sortmware | 1rase |

())

Preparing to Install on a Storage Card

Before you attempt to install the software, check the avail-
able memory on your card. Open the Extras Drawer and tap
“Card". Verify that the free memory displayed is at least
185k. if you have less than this amount, you should remove
some information from your card or consider installing NS
BASIC on another storage card. Refer to your Newton
Handbook's Managing Memory section for more informa-
tion on removing data and packages from your storage card.

Verify that the checkbox "Store new items on card” is
checked

Installing The NS BASIC Package

I Arttach your Newton to your desktop computer with an

appropriate cable. Insert the NS BASIC disk into your disk

drive. Start the Newton Connection Kit software on your

desktop computer. Choose “Install Package” From the Con-
nection Window or the Newton Menu

Fa: 9 sah Masne
Ho|2of&®o
Syni e onire Fsstors P achage
Carwwnt iy Net work
Comewct Sorially Via Prter Port

The connection software will open a window on your desk-
top computer where you may select a package to install. Se-
lect "NSBASIC PKG"” from the disk drive containing the NS
BASIC disk.

2 When the Connection Kit indicates that it is ready for you
to open a connection from your Newton, open the Extras
Drawer (if it is not already open.)

3 Tap "Connection.”

4 Choose the kind of connection you are using. If you are
using a "Macintosh LocalTalk" connection, select the com-
puter's name from the list of choices.

5 Tap "Connect”

6 After your connection kit indicates the installation was
successful, you'll see the NS BASIC icon in the Extras
Drawer.

REM |
BOSLE
LET
BASK

|
|
]

2 &

Entering Your Registration Number

The first time you start NS BASIC on your Newton, you will
be asked to enter your Product Registration Number. This
number is printed on the outside of the back cover of this
Handbook or on the bottom of the box, as well as on the

Product Registration Form. This form is the last page of the
Handbook. Please tear this form out now, fill it in, and send
it to the address printed on the form.

Open the Extras Drawer and tap on the NS BASIC icon. The
initial registration screen is displayed, along with the on-
screen keyboard. Use the keyboard to tap in your Product

Registration Number. You may use the | del | key to make
corrections. Once the number is correctly entered, tap the

return key. Your copy of NS BASIC is now installed

and ready to use.

N TNS BASIC Handbook

S TG TG NG TR T DR B B BN DN I B I I I B I B

CHAPTER

2

2. Getting Started With NS BASIC

2.1 Conventions Used in this Handbook
The following notation conventions are used in this Hand-
book:

KEYWORDS Capital letters indicate NS BASIC key-
words, symbols, and other text that must be typed exactly
as shown. For the purposes of this manual, uppercase text
indicates a required part of the Statement syntax. NS BASIC
is case-insensitive: keywords are accepted with either up-
percase letters, lowercase letters, or any mixture of the
two. A keyword such as GOTO may be entered into your
programs as goto, Goto, or GOTO

placeholders Italic text indicates a placeholder for
types of information that you must supply. In the following
Statement, lineNumber Is italicized to show that the GOTO
Statement requires a line number:

GOTO lneNumber

In an actual program Statement, ineNumber must be re-
placed with a specific line number, such as:

GOTO 40

Examples This Monaco typeface indicates example
program code and information that is printed on your NS
BASIC screen. The following example shows a line from a
NS BASIC program:

1@ PRINT “"Hello World!"

User Input 4 poid Monaco typeface is used to indi-
cate something entered by the user in response to a NS BA-

SIC prompt. It distinguishes between an on-screen prompt
and user input when both appear in the same example. For
instance. John is entered in response to the “Enter Your

NS BASIC Handbook 7

Name:" prompt
Enter Your Name:
7 John

[Optional] Brackets indicate that the enclosed
items are optional. In the following example. brackets are
used to show that entering a second item to display on the
screen is optional for the PRINT Statement

PRINT expression/ [,expression2 |

Both of these PRINT Statements are legal, since PRINT ac-
cepts One OF TWO eXpressions:

PRINT "Hello"
PRINT "Hello", “World"

! The vertical bar indicates that
the items are mutually exclusive. In the following example
the bar indicates that the RUN command can either be used
with a file name or a line number:

RUN [fileName | lineNumber]

Underlined Underlined text indicate that the items
are environment variables. In the following example, under-
lining is used to indicate that PRINTDEPTH is an environ-
ment variable:

PRINTDEPTH is used to control the amount of information
displayed using the PRINT Statement.

2.2 Interacting With NS BASIC
NS BASIC provides 2 powerful environment for program-

ming on the Newton.

You begin working with NS BASIC by opening the Extras
Drawer and tapping on the NS BASIC icon.

After briefly displaying an introduction screen, the NS BA-
SIC programming environment is shown:

\

¢
‘
-
.
.
+
’
k3
*
*
L4
4
L
’
’
.
.
’
’
-
L4

rgion J .01

o
A

Live & paviad terreunel

Cornct R

@@@‘apv

Mamad Dater [utras . Unds Find Asmnt

NS BASIC does not use handwriting recognition for pro-
gram entry. There are three ways to interact with the NS
BASIC environment:

Using the Newton Keyboard

An on-screen keyboard is displayed when you start NS BA-
SIC. You use the keyboard to enter and edit programs, en-
ter commands that the NS BASIC environment
understands, and enter information into running programs
in response to input prompts

You can hide and show the keyboard by tapping the key-
board button |

Picking Items Out of a List

Tapping out complex NS BASIC Statements and Commands
using the on-screen keyboard can be tedious. Several com-

mon Commands and Statements can be quickly entered by
selecting them from pop-up lists. To quickly enter a Com-

mand to the NS BASIC environment, tap the

button. A list of Commands is displayed. Tap the desired
Command. It is entered as if you had typed itin. You can en-

ter several Statements by using the button.

It displays a list of the more common Statements. You can
enter one by selecting it from this list.

Tapping the Overview Button (also known as the belly but-
ton) brings up a list of NS BASIC programs that are current-
ly saved on your Newton. Tapping on one of these programs
will LOAD and RUN it immediately.

Using NS BASIC With a Computer or Terminal

When you are using NS BASIC near a desktop computer,
you have a third option for interacting with the NS BASIC
environment. You may connect your Newton to your desk-
top computer via a serial cable, and use your computer's
keyboard and screen in place of those in NS BASIC. In order
to take advantage of this capability, you'll need a serial cable
(such as the one supplied with the Newton Connection Kit)
and communications software for your desktop computer.

| Connect your Newton to your desktop computer using
an appropriate serial cable.

2 Start the communications software on your desktop com-
puter. Examples of compatible communications software in-
clude ZTERM for Macintosh, Kermit for Macintosh and PC
Compatibles, Procomm, and MicroPhone Pro. Set your host
system's serial port to 9600 baud, 8 bits, no parity with soft-
ware flow control (also known as Xon/Xoff). Also, setit to
echo characters locally (also known as half duplex). If there
is an option for automatic newline or automatic line feed,
enable it

3 Tap [} U aserisiremindt . When it is selected, you should see
the word "Connected” on your desktop computer’s screen.
On the next line you will see NS BASIC's asterisk prompt
(*). This means the connection is working and NS BASIC is
ready for use.

a

e ®© © © ® & & & & % % % 8 % & v u

S U B B B BN NN DN NN BN JEE NEE NEE NN NN BN I RN B TR I

While you are using NS BASIC in this way, it does not du-
plicate the text display on the Newton. Newton-specific
Statements such as HWINPUT and WINDOW will still dis-
play on the Newton.

All text input and output (such as the input to INPUT State-
ments and the output from PRINT Statements) will now be
on your desktop computer.

You can use this connection to save your program text on
your desktop computer. If your communications software

SUppOrts capturing text, you can save a program by turning
on text capture, and then LISTing your program.

Text versions of NS BASIC programs may be created and
edited on your desktop computer. You can transfer these
programs to NS BASIC by typing NEW, and then pasting the
text of the program to your communications software.

Possible Problems

When using NS BASIC with your desktop computer, try not
to enter information while NS BASIC is outputting text
Your entry may be ignored, or the Newton may freeze. If
your Newton freezes (it will ignore all taps, and may not
turn off when you use the on/off switch) you will need to
press the reset button, Please refer to your Newton Hand-
book’s Tips and Troubleshooting section. As in all cases
when you reset your Newton, your information is not lost.
When you next start NS BASIC, your program will be there.

Starting, Stopping, and Resetting

NS BASIC stores each line of your program after you tap the
return key. You may close NS BASIC any time, and the next
time you start it your current program will still be in the en-
vironment. Remember to complete any program Statement
you have typed (by tapping the return key) before you close
NS BASIC,

When you are programming on a computer, even a New-
ton, it is possible to get into a state where no input will be
accepted. This is called “frozen™. When this happens, you
can thaw your Newton by pressing the reset button. Please
refer to your Newton Handbook’s Tips and Troubleshoot-
ing section,

B T

2.3 Programming in NS BASIC
The NS BASIC Programming Environment

NS BASIC provides a full featured BASIC programming en-
vironment for the Newton. In order to introduce you to

' these features, an example program will be developed in NS
BASIC. Each step in the process will introduce features of
the environment. Start NS BASIC and follow along!

Creating a Program

When you start working on a new program, you should al-
ways use the NEW Command. This clears any previous pro-
gram Statements from the environment. As stated before,
you may enter your program via the on-screen keyboard, by
picking from the Statement list, or by using an attached
desktop computer.

The example program is very simple. It computes the future
value of an investment based on the interest rate, amount,
compounding term, and number of years invested. We're
going to create the program with one small error, so that
we can show some of the debugging features of the environ-
ment.

Remember to start each new line with a line number. In NS
BASIC, line numbers are used to determine the order of
Statement execution. You can enter lines in any order, and
insert lines by assigning line numbers between existing lines.
It is usually a good idea to increment your line numbers by
10 or 20, so you have room to insert new lines later. Line
numbers start at | and end at 9999.

Enter the program shown below:

10 REM Future Value of an Investment

20 PRINT "Enter starting principal”

30 INPUT principal

40 PRINT "Enter interest rate as % (i.e. 10)"
50 INPUT rate

60 PRINT "Enter term (i.e. 12 for monthly)"
70 INPUT term

80 PRINT “Enter number of years"”

9@ INPUT years

100 REM Compute final interest .
110 rate = rate * 0.01 / term

120 balance = principal K
130 FOR y = 1 TO years

140 FOR ¢ = 1 TO term

e @ O & & & & & % O 9 & & & o

12 NS BASIC Handbook ¥

S T T T B TN D R BN JNE BEE BEE BN DN DN IR N I I

150 interest = rate * principal

160 balance = balance + interest

170 NEXT ¢

180 NEXT y

185 PRINT "Using our calculations:”

190 PRINT "After ";years;” years the balance
is: ";balance

200 REM The easy ond fast way

210 PRINT “Using the COMPOUND function:”
215 PRINT compound(rate, years*term) *
principal

220 END

Editing a Program

Changing Line Numbers

if you've run out of line numbers between Statements (or if
you'd just like an orderly program) the RENUM Command
will renumber your lines for you. Statements such as GOTO
that refer to line numbers will be updated to refer to the
new line number, so no additional editing is needed.

Use RENUM on the example program:

* RENUM
From 0001 TO 9999 BY 0010 BASE 0010

Editing Lines

The traditional way to edit a line in BASIC s to enter a new
line with the same line number containing the corrected
text. This method works in NS BASIC as well. If you are us-
ing a desktop computer, you can use cut and paste to edit
the line you wish to change, or even the entire program. On
the Newton, there is another way to edit a program line.
Tap on the line when it is displayed in the program window
and an Edit Box is displayed.

0t10 LET rate = rate * 0 01 /

NS BASIC Handbook . . 13

You may use the on-screen keyboard to update the State-
ment, as well as the standard Newton editing gestures for
inserting spaces, deleting words, and cut/paste. Tap

to save your changes, @ to discard them. If

you know the line number of the line you want to edit, use
the EDIT lineNo Command. This will load the specified line
into the Edit Box

If you wish to copy a line to another area of your program,
you can use the Edit Box. Just tap on the line, and then
change the line number shown in the Edit Box to the desired
value. When you tap enter, a copy of the line is created at
the new line number.

You may use the Edit Box on any line you entered into NS
BASIC, even those without line numbers. This is very handy
for re-executing Commands, or for entering a line number
if you forget to start a Statement with one.

Using the Newton Clipboard

You can write programs in the Notepad and copy them into
the Newton clipboard. If you run NS BASIC and paste them
to the main window, and then tap the return key, they will
be entered into the currently loaded program. You can also
select code in the NS BASIC window and drag it to the low-
er right hand corner of the Newton. Exit NS BASIC (the
BYE command can be used if the close button is covered by
the program clipping on the clipboard) and paste the pro-
gram text into the Notepad.

Deleting Lines

To delete a line from a program, simply enter that line num-
ber again with no Statement. If you wanted to delete the re-
mark line at the start of our example (line 10) you would
enter 10 and tap return:

* 10
L

To delete a range of lines use the ERASE Statement with be-
ginning and ending line numbers. For example to delete the
second way that interest is calculated:

* ERASE 200,215
-

NS BASIC Handbook

e © © ©® © O & % & % & & » & & s o

L I B D B B B D D D DR DR DR B R R BN BN R

Examining a Program

You can use the LIST Command to display your program in
the text window. If your program contains more lines then
can be displayed in the window, it is listed one window at a
time, followed by

-=More--

You continue the listing by tapping the return key. You can
display specific ranges of line numbers after a LIST Com-
mand to see just those lines. LIST the last 5 lines to see the
effect of the RENUM Command.

* LIST 200,

0200 PRINT "After ";years;" years the balance
is: “;balonce

0210 REM The easy and fast way

9220 PRINT "Using the COMPOUND function:®
9230 PRINT compound(rate, years®*term) *
principal

0240 END

L]

Executing a Program

You use the RUN Command to begin executing your pro-
gram at the first line number. Let's run our example pro-
gram:

* RUN

Enter starting principal

7 100

Enter interest rate os ¥ (i.e. 10)
7 10

Ent;r term (i.e. 12 for monthly)
71

Enter number of years

&

Using our calculations:

After 2 years the balaonce is: 120
Using the COMPOUND function:
122.039096137556

-

Debugging a Program

The balance we computed should have been the same as the

one using the COMPOUND Function. It seems we've gota
bugin our program. There are three types of errors possible
in NS BASIC: compiler-time errors, run-time errors, and
logic errors.

A compile-time error is made when you type in a Statement
incorrectly. NS BASIC signals this error immediately after
you tap the return key.

+ 200 prant “hello”
Error 2 -- Statement or syntax invalid

This error indicates that there is no PRANT Statement. We
misspelled PRINT and NS BASIC signaled the error.

A run-time error is caused when a situation arises that can-
not be known at compile-time. For example, you may divide
two variables (a/b). When NS BASIC compiles a Statement
such as

*= 200 c = a/b

It does not know the values of a and b. When you run this
program, if b is a string, there is an error (dividing by a string
is undefined.) In this case, NS BASIC will stop executing
your program at line 200 and display this message:

0200 :Error 29- Expression

A logic error is caused when your program is incorrect. It
produces results that are wrong or unexpected. This type of
error is common and NS BASIC cannot detect it. Unfortu-
nately, our error is a logic error. We did not receive any er-
ror messages when we ran it, but the two values displayed
at the end should have been the same. We'll have to debug
our program!

NS BASIC gives you a number of tools for debugging. You
can enable tracing of your program using the TRACE ON
Statement. Every Statement executed after TRACE ON will
have its line number printed into the display window. You
disable tracing using the TRACE OFF Statement. It may be
difficult to follow IF THEN ELSE, GOTO, and GOSUBs in
your code. You can use tracing to see where a program is
going.

The STOP Statement can be inserted into the area of the

L)
L)
.
.
.
Rl
.
°
el
El
o
El
.
L J
A
-
Ad
L4
-
-
L 4

program that is causing problems. STOP does just that it
stops the program. You may print and change the values of
program variables, check the memory statistics, and once
you have a good idea of what is happening, you can continue
execution at the next line number using CON.

if you are having problems with one section of a program,
you can begin execution at that point by using RUN lineno.
You may also set any necessary variables to any value prior
to starting the execution. Use STOP and RUN lineno togeth-
er to debug small parts of complex programs.

We know that our program is computing the interest incor-
rectly. Add a STOP Statement at line 95 and line 165:

* 95 STOP
* 165 STOP

This way we can check that our initial values are correct, and
then we can see how each loop changes these values. RUN
the program again, entering the values as shown:

* RUN

Enter starting principal

7 100

Enter interest rate as ¥ (i.e. 10)
710

Enter term (i.e. 12 for monthly)
7 A2

Enter number of years

When the program STOPs at line 95 your Newton will
beep. We can use the VARS Command to view the program
variables, and their values:

* VARS
PRINCIPAL: 100
Rate: 10

TERM: 12
Years: 2

-

Continue the execution of the program using the CON
Command. The program will STOP again at line 165. Use

the VARS Command again:

* CON

Stop at 0165

* VARS
PRINCIPAL: 100

Rate: 0.00833333333333333 X
TERM: 12

Years: 2 v
BALANCE: 100.833333333333

yi %
c: 1

INTEREST: ©.833333333333333

This looks fine. Continue the program using CON. It STOPs
at 165 again since we're in a pair of loops. Use the VARS

Command again:

* CON b
Stop at @165

* VARS »
PRINCIPAL: 100

Rate: ©.00833333333333333

TERM: 12 v
Years: 2

BALANCE: 101.666666666667

y: 1 by
c: 2

INTEREST: 0.833333333333333
-

Well, here’s the problem. It seems the interest we compute L
every period is the same! That's not how compounding in-

terest is supposed to work — it's supposed to increase. LIST =
the section of the program that computes interest:

* LIST 100, 180 v
0100 REM Compute final interest

0110 LET rate = rate * 9.01 / term 9
@120 LET balance = principal

@130 FOR y = 1 TO years

0140 FOR ¢ = 1 TO term

r
0150 LET interest = rate * principal
0160 LET balance = balance + interest
9165 STOP ’
0170 NEXT ¢

0180 NEXT y

P —

L)
K
Al
K
*
R
3
3
2
&
#
£l
a
&
-
.
L4
L4
-
-
4

Take a close look at this code, because we know the interest
is computed wrong. Notice line |150. It seems we're always
computing the interest based on the original principal, not
the current balance! Edit line 150 so that it is:

* 150 interest = rate * balance

Also remove the two STOP Statements:

*.95
* 165

RUN the program again, Notice that the values are the
same. We've debugged it!

Saving and Loading a Program

When you first create a new program (after a NEW Com-
mand) all the Statements you type in are saved in a tempo-
rary file. This is how NS BASIC saves your work - so that
you may quit any time you want, and then come back later
to continue where you left off. It also protects your work
for those rare occasions that you freeze your Newton de-
veloping a program.

When you are ready to save your new program, you must
use the SAVE Command, We'll save our example program
with the name Compound _Interest.

* SAVE Compound_Interest
Compound_Interest saved
-

Notice that file names cannot have spaces, but may contain
both upper and lower case letters, as well as special charac-
ters like underscore () and hyphen (-).

When you would like to edit a program you have already
saved, you use the LOAD Command. We'll LOAD our just-
saved program back into NS BASIC.

* LOAD Compound_Interest
-

Note: When you LOAD a program, NS BASIC performs a
“NEW" first. if you have not saved your current program,
any changes will be lost

NS BASIC allows you to edit a copy of your saved program,
or edit the original program in place. This option is con-

trolled using the ¥ fstacser setting, If you choose to edit a

copy, then any changes you make will not be saved until you
use the REPLACE Command. This will update the saved ver-
sion of the currently LOADed program with any changes
you have made. If you decide you'd rather not save the
changes, you may just LOAD the program again or use the
NEW Command to start working on a new program. The
advantage of this way of working is that your original file is
only updated when you want it to be. The disadvantage is
that you may accidentally discard changes you make, by for-
getting to use the REPLACE Command. Remember that the
NEW and LOAD Commands completely clear all unsaved
information from NS BASIC.

Let's try some changes on a very small program, so you can
see how NS BASIC works in these two ways. Enter in the

following program:

* NEW

10 a = 5

20 b = 10

30 ¢ = a/b

4@ PRINT c

SAVE Small_Example
Small_Example saved

-

Make sure ¥ Eatacopy is checked. Clear all the information
out of NS BASIC using NEW, and then LOAD
Small_Example:

* NEW

* LOAD Small_Example

Now change line 10 by entering a new line 10 as follows:
*10 a = 100

L

LIST your program and confirm that the change is in the pro-

gram. Clear all the information again using NEW, and then
LOAD Small_Example again, and finally LIST it

* NEW

* LOAD Small_Example
SLIST

0010 LET a = 5

0020 LET b = 10
0030 LET ¢ = a/b
0040 PRINT ¢

Notice that your change to line 10 was not saved. This is be-

20 NS BASIC Handbook

cause we did not use the REPLACE Command prior to
clearing all the information with the NEW Command. Try
making the change to line 10 again, but this time use the RE-
PLACE Command afterwards:

* 10 o = 100

* REPLACE

* Smaoll_Exomple saved.
-

Clear all the information again using NEW, and then LOAD
Small_Example again, and finally LIST it. Notice that this
time, since we specifically saved the changes we made, the
new line 10 is in the saved version of the program. If you
perform the same actions with “Edit a copy” not checked,
you'll find that your changes to line |0 are saved as soon as
you make them. There is no need to use the REPLACE
Command.

Saving Packages

Packages are programs that the Newton can execute direct-
ly. You can create programs that other people can run, even
though they do not own NS BASIC. Additionally, you may
want to create package versions of programs they you run
frequently, so they will appear in your Extras Drawer. You
can also make a program into the Newton backdrop appli-
caton,

The MAKEPACKAGE statement creates a stand-alone
package in the Extras drawer. The name in the Extras draw-
er is the name the program was SAVEd as. All stand-alone
packages use a default icon in the extras drawer:

You can use the SETICON Statement to use a custom icon.
The complete name of the package is progromName.pkg:NS-
BASIC. The name displayed in the Extras drawer is program-
Name.

We'll create a small program, save it, and then use the
MAKEPACKAGE Command to create the stand-alone
package. Enter the following program and save it as INVEST:

10 REM MAKEPACKAGE Example

20 PRINT "Enter starting principal”

30 INPUT principal

40 PRINT "Enter interest rate as % (i.e. 10)"
50 INPUT rate

6@ PRINT "Enter term (i.e. 12 for monthly)"
70 INPUT term

\\\\\\.“.‘......OOOO"

IR SSSeaamS—————————e

'——

80 PRINT "Enter number of years”

9@ INPUT years

100 REM Compute final interest

110 rate = rate * 0.01 / term

120 PRINT “"After ";years;" years the balance
is: "; compound(rate, years*term) * principal
130 END

* SAVE INVEST

INVEST saved.

* MAKEPACKAGE INVEST

-

The package will appear in the Extras drawer under Unfiled
Icons. You can use a stand-alone program as the backdrop
application of your Newton, provided it is stored in the in-
ternal memory of the Newton.

Moving a Program

When you SAVE a program, NS BASIC saves the program
in one of two places: either in your Newton's internal mem-
ory or on the storage card currently installed in the New-
ton. Please refer to the Memory and Storage section of your
Newton Handbook regarding controlling where new infor-
mation is stored.

If you have saved a program on a storage card, that program
will only be available when that storage card is inserted and
store new items on card is checked. If you would like to
move a program from one card to another, or from a card
to your Newton, or from your Newton to a card, you will
need to use the serial connection.

Copy a text version of your program by using the LIST
Command. Use copy and paste to save this text on your
desktop computer. Use the DELETE Statement to delete
the program on your Newton. Close NS BASIC, and use
Card in the Extras Drawer to select the desired location for
the program. Open NS BASIC and connect to the serial ter-
minal. Clear all memory using the NEW Command, and
then use cut and paste to enter the program into the com-
munications software on your desktop computer. Finally,
use the SAVE Command to save the program in the new lo-
cation.

The Elements of a NS BASIC Program

1 NS BASIC Handbook

LY
-
.
a
»
L
o
»
@
E
®
w
=
e
*
-
A d
L
»
°
“

A program in NS BASIC is a set of numbered Statements or
lines. Each NS BASIC program line may consist of the fol-
lowing elements:

line-number STATEMENT arguments // comment
A line number is any number from | to 9999.

A STATEMENT is an instruction for your program. Bxam-
ples are PRINT, INPUT and IF. The Statement and its argu-
ments determine what action (if any) will be taken by NS
BASIC when the line is executed,

Any text following // on a line is a comment, and is ignored
by NS BASIC.

Data Types, Literals, and Variables

The numbers, strings, and other data elements that your
program works with have an associated data type. A data
type is a way of describing a group of related items. For ex-
ample, the Integer data type describes all whole numbers.

Literals are just that, literal values you use in your programs.
You use them all the time: to set the initial value of a vari-
able, to establish the starting and ending values of a FOR
NEXT loop, and so on. You cannot change the value of a lit-
eral.

Variables are the named holders of your data. A variable's
value may be changed as needed.

NS BASIC supports the following data types:
Numeric Data Types

There are a several types of Numeric data, but they all share
the same behavior. You can generally mix and match among
the types of numeric data without difficulty.

F———-

Type Size Range Literal
Integer 30 bits | -53,6870911 o | 100

53,6870911
Real 16 bits |5‘|045 %o 125

3.4x 1038

1.7x103%8 .
Extended | 64 bits |_9‘|°-495I o 1.0e1000

11x10%%32 ‘
Boolean Data Types >
Booleans consists of two values: TRUE and NIL (false). This
data type is used with the IF Statement. It tests the Boolean -
value of an expression and selects the THEN Statement ifit
is TRUE, or the ELSE Statement if it is NIL. S5
String Data Types

>

Strings consist of a series of characters, Therearea number
of Functions that manipulate strings. The concatenation op-
erator (&) is used to join two strings together. The && op- ’
erator joins two strings as well, but inserts a space between
them. A string literal is enclosed in quotation marks:

"This is a string literal”

Array Data Types

Arrays are containers. They are lists of values stored with J
the same name. Each element in the array is referred to by
including a number in square brackets after the variable

name. Arrays start with a zero element and can have many
elements. ARR[2] refers to the third element in the ARR

array. Each element in an array can be of any type. Array lit-

erals are enclosed in square brackets, and each element is
separated by a comma. This is an array literalk:

[1, 2, "Even Strings", 3.14]

24 NS BASIC Handbook

|
F
|

.
.
.
B
e
B
2
@
@
L J
il
L4
@
-
.
B
L4
L 4
L4
[4
’

Frames

Frames are also containers, They are a collection of zero or
more fields enclosed in curly brackets and separated by
commas. Each field consists of a field name, followed by a co-
lon and its value. As with arrays, each field can be of any
type, including an array or another frame. This is a frame lit-
eral:

{fieldl: "String field", number: 12,
realnumber: 3,14}

Fields in a frame are referred to by the frame name followed
by a period and the field name in the frame. my -

Field. firstName refers to the value "john" in this
example:

10 myField = {firstNome: "John", lastName:
“Doe”}
2@ PRINT myField.firstName

You can add new fields to a frame at any time, simply by as-
signing the new field a value using the same notation. To add
myNickName tomyField, use:

30 myField.myNickName = "Johnny"

Frames are used extensively for files. Each record in a file is
a frame. Refer to the Frames section in the Advanced Topics
chapter of this Handbook for more information.

Symbols

Symbols are internal forms of identifiers. You use symbols

to access frame elements, and to create values that are not
evaluated. You specify a symbol by preceding it with a ', Sym-
bols may be assigned to variables, used in expressions, and

PRINTed.

* x="'symbolname
* PRINT x
symbolname

Variable Names

A variable is 2 name that holds a value. The name consists of
a sequence of alphabetic and numeric characters. There is
no limit to the length of a variable name in NS BASIC, and

NS BASIC Handbook 25

-——q

every character in the name is significant. We tell you this
because in some older BASICs you could only use short
names. Variable names are not case sensitive, and spaces and
other special characters may not be used. Variable names
must start with a letter.

NS BASIC keywords may not be used as variable names. For
a complete list of keywords, see Appendix B.

The following list shows some variable names that are al-

lowed by NS BASIC:

text

LLAMAS // same as llamas or Llamas
Lemons

WiSpec

worldl34

And some that are not allowed:

1table // starts with a number
X&Ycords // uses special character &

first counter // has a space

%correct // does not start with a letter |

size // this is a NS BASIC keyword

Second_Win_Num // more special characters ‘
|
|

Un-Typed and Typed Variables

If you use a variable name that does not specify a type, then
NS BASIC automatically determines the proper type of vari-
able to be used based on the type of the value you assign to
it. What this means is that a single variable may hold a string,
then a numeric, then a frame, etc.

If you end a variable name with $, then that variable will al-
ways (and only) contain a string value. Assigning a numeric
to one of these variables converts that numeric to 2 string
value first. Array variable names can not end in $.

Expressions and Operators
An expression is a literal, variable, formula or function call
that has a value. Here are some examples of expressions:

6/3 // result is 2
5+6/3 // result is 7
"This" && "that” // result is "This that"

26 NS BASIC Handbook

-

e o & 0 00 e »

F WA B Y - -

A string expression can be a string literal, a string variable,
or it may combine string literals, string variables and sub-
strings to produce a single string value. Similarly, a numeric
expression can be a numeric constant, a numeric variable, or
a function/variable that produces a single numeric value.

Arithmetic Operators

NS BASIC allows the following arithmetic operators in this
descending order of priority:

" / Multiplication and Division

+ - Addition and Subtraction

Parenthesis can be used to change the order of evaluation.

* PRINT 2+3%*4
14

* PRINT (2+3)*4
20

NS BASIC supports floating point arithmetic. All numeric
operations are carried out to 32 bit precision and are trun-
cated to |6 digits at the conclusion of the operation. The
REMAINDER Function may be used to find the remainder of
a division. The DIV Function is used for integer (whole num-

ber) division

Arithmetic operators can only be used with numeric ex-
pressions. They may not be used with strings.

Relational Operators

Relational operators compare two values and return a Bool-
ean value of TRUE or NIL (false). This result can be used to
change the flow of a program. Relational operators have a

NS BASIC Handbook 7

lower priority than arithmetic operators. The relational

operators are:

- Equal

<> Not Equal

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to
In the LET Statement the equal sign is used to assign a value
to a variable, not as a relational operator.

Boolean Operators

Boolean operators tie expressions together, returning a

TRUE or NIL answer. Arithmetic and relational operators

are evaluated before Boolean operators. Two of the opera- |
tors, AND and OR, require two expressions. The NOT op-

erator applies to one expression.

The Boolean operators are:

AND Returns TRUE if the two expressions
are both TRUE.

OR Returns TRUE if either expression or
both of the expressions are TRUE.

NOT Returns TRUE if the expression is
false or returns NIL if it is TRUE.

Examples of AND, OR, and NOT:

9210 INPUT a
9020 IF a >=1 AND a <=100 THEN PRINT
“Number Between 1 & 100."

9010 INPUT a

9020 INPUT b

2030 IF a = 10 OR b=10 THEN PRINT "One of the
numbers entered is 10"

0010 INPUT a
2020 INPUT b

9030 IF NOT a = 10 OR NOT b=10 THEN PRINT "One
of the numbers entered is NOT 10"

Boolean operators can be used with any expression that re-
turns a Boolean value. They may not be used in numeric ex-

pressions,
2.4 Immediate Statement Execution

Commands (such as RUN and LOAD) are always executed
immediately as they are entered. Statements entered with-
out a line number are also executed immediately. The re-
sults of assignment Statements are available for later use, but
the Statements themselves are not saved. There are two
uses for immediate Statement execution:

Simple Calculations

NS BASIC may be used as a full-featured calculator with a
very large memory. You may enter several calculations, as-
signing the results to variables. The variables will hold their
values until 8 NEW Command s issued. For example:

* b=5%2
* a=10*Db

Debugging

When you use the STOP or END Statement in your pro-
gram, you may PRINT the contents of individual variables,
use the VARS Command to see all current variables, and
even change the values in variables. An example of debugging
a program was given in section 2.4

NS BASIC Handbook

3

™I DAL MandDook

R

B
-
.
°
»
s
»
®
2
kS
L
@
£
o
L
L
L
€
e
.
.

CHAPTER

3. NS BASIC Reference

The Reference chapter contains an entry for every Com-
mand, Statement, Function, and Widget in NS BASIC, in al-
phabetical order. The entries are listed in the index grouped
under Commands, Statements, Functions, or Widgets.

Each entry in the Reference chapter consists of the following
information:

Name Category

ITEM parameters

DESCRIPTION

This section describes the ITEM and its parameters. Derails
concerning the uses of ITEM are given, as well as any con-
straints on its use.

EXAMPLE
A small program that uses ITEM is listed here.

ouUTPUT
This section shows the results of running the Example pro-
gﬂﬂ'l.

RELATED ITEMS

A list of zero or more NS BASIC Commands, Statements,
Functions, or Widgets that are related to ITEM. You may of-
ten gain a better understanding of ITEM by reviewing the re-
lated items.

Function

ABS(x)
FABS(x)

DESCRIPTION
ABS returns the absolute (positive) value of the integer
number x.

FABS returns the absolute (positive) value of the real
number x.

EXAMPLE

10 REM ABS Example

20 REM This program returns the positive value
of any number INPUT to it.

30 PRINT "Please enter any number:"

40 INPUT Number

50 PRINT “The absolute value of the number you
entered is = " ; ABS(Number)

OUTPUT

Please enter any number:

-20

The absolute value of the number you entered
is = 20

RELATED ITEMS

S

TR0 T YT YT T YYD Yy »

ADDARRAYSLOT Function

ADDARRAYSLOT (Array, item)

DESCRIPTION

ADDARRAYSLOT extends Array by adding a new element
to the end. The value of that element is item. ADDARRAY -
SLOT returns item

EXAMPLE

10 REM ADDARRAYSLOT Exomple

20 a = [1,2,3]

30 PRINT "Please enter any number:"
40 INPUT Number

S50 ADDARRAYSLOT(a, Number)

6@ PRINT "The new array is = " ; a

ouUTPUT

Please enter any number:

30

The new array is = [1, 2, 3, 30]
L]

RELATED ITEMS
ARRAYREMOVECOUNT

NS BASIC Handbook ' N

ANNUITY Function

ANNUITY (rate,periods)

DESCRIPTION

Calculates the present value factor of an annuity at a given
interest rate over the specified number of periods. The inter-
est rate is the rate per period. For example, 12% per year
would be expressed as a monthly rate of 0.01 (12%/12
months = .12/12 = 0.01).

EXAMPLE

10 REM ANNUITY Example

20 REM Compute annuity on monthly basis.
30 PRINT "Annual Interest Rate:"

40 INPUT Rate

5@ PRINT "Number of months:"

6@ INPUT NumMonths

70 PRINT "Cost of the item:"

80 INPUT Cost

90 PRINT "The cost for all payments is $";
ANNUITY((Rate * 0.01)/12, NumMonths) * Cost

OUTPUT

Arénua‘l Interest Rate:

1

Number of months:

50

Cost of the item:

1g00

The cost for all payments is $39,196.117531105
-

RELATED ITEMS
COMPOUND

34 NS BASIC Handbook

-
L)
L]
L]
2
El
®
E
&
£
-
&
-
-
.
A
-
L4
.
L4
”

APP

WINDOW winNum, windowSpec, “APP"

DESCRIPTION

The APP widget displays the standard Newton application
background. This includes a clock display and close box.
When the user taps the close box, theprogram branches to
the line specified in the GOTO field of the windowSpec.

The widget is controlled using the windowSpec. These fields
are supported:

t1it1e: the title to display for the application.

You may also use these fields in windowSpec viewF lags.
viewFont, GOTO

EXAMPLE
10 REM APP Example

20 wiSpec := {GOTO:100}

30 WINDOW wl, wlSpec, "APP"
49 SHOW wl

S0 WAIT 1000

60 GOTO 5@

100 REM tapped close box
110 HIDE

120 PRINT "Closed.”

OouUTPUT

| rem——

RELATED ITEMS
HIDE, SHOW, WINDOW

__III---.l....---___________________j

ARRAYREMOVECOUNT Function

ARRAYREMOVECOUNT (Array, index, numToRemove)

DESCRIPTION

ARRAYREMOVECOUNT deletes elements from Array .
The first element to remove is given by index, and the num-
ber of elements to remove is numToRemove. ARRAYRE-
MOVECOUNT returns NIL

EXAMPLE

10 REM ARRAYREMOVECOUNT Example

20 a= [1!2!3l4lsl6!?]

30 ARRAYREMOVECOUNT (a, 2,3)

40 PRINT "The new array is =" : a
OUTPUT

The new array is = [1, 2, 6, 7]

-

RELATED ITEMS
ADDARRAYSLOT

A NS T . T T T TRt TR D D D DR B N B B B R B R

ARRAYTOPOINTS Function

ARRAYTOPOINTS(shapeArray)

DESCRIPTION

ARRAYTOPOINTS creates a drawing using an array that
specifies the shape of the drawing and the X.Y points for it
The resulting drawing can be displayed in a window using
WDRAW once it Is converted into a shape with MAKE-
SHAPE().

The first element of shapeArray describes the overall shape
of the drawing:

]

Circle
Ellipse
Small open curve
Closed polygon
Open polygon
Closed curve
Open curve
Line
Triangle
0 Square
1 Rectangle

= = W 00 N O N W N

The second element specifies the number of XY points in
the shape. The remaining elements are the X and Y values
of each point

EXAMPLE

10 REM ARRAYTOPOINTS Example

20 shapeArray = [9.4,25.10.10,40,4@,48.25.10]
30 points := ARRAYTOPOINTS(shapeArray)

40 shape := MAKESHAPE(points)

5@ wspec := {viewBounds: SETBOUNDS(10, 10,

200, 200)}
6@ WINDOW wl, wspec
70 SHOWN wl
80 WDRAW wl, shape

OUTPUT

RELATED ITEMS
MAKESHAPE, POINTSTOARRAY, WDRAW, WINDOW

_——.‘

T8 8 Y Y Y Y Y Y

)

AZTABS widget

WINDOW winNum, windowSpec, "AZTABS"
WINDOW winNum, windowSpec, "AZVERTTABS"

DESCRIPTION

The AZTABS and AZVERTTABS widgets display the stan-
dard Newton selection tabs in the horizontal and vertical
orientations

These widgets are controlled using the windowSpec. These
fields are supported:

GOTO: the line number to goto if apped.

viewBounds: if not supplied, defaults to the top
(AZTABS) or left edge centered (AZVERTTABS). Note
that If this is specified, the height bottom - top)
must be at least 20 for AZTABS, and the width (right
- 1eft) must be at least 30 for AZVERTTABS,

EXAMPLE

10 REM AZTABS Example

20 wiSpec = {GOTO: 100}

30 WINDOW wl, wiSpec, “AZTABS"

40 SHOW wl

100 REM A selection was made

110 PRINT "Index: “; wlSpec.curlndex; “; Text:
", wilSpec.text

OUTPUT

M

1B:HEE

RELATED ITEMS
SHOW, HIDE, WINDOW

BEEP Statement

BEEP beepsound

DESCRIPTION

Causes the Newton to emit a single "beep” through the
Newton's speaker. The acwal sound of the beep is selected
by beepsound as follows:

Alarm Wakeup

Boot Sound

Click

Crumple

Extras Drawer Closing
Extras Drawer Opening
Notepad Scroll Sound
Trill

Highlight Sound

Xylo

10 Bell

I Wakeup

12 Plunk (Trash)

13 Poof!

WO SNOTD A WA — O

EXAMPLE

5 REM BEEP Example
10 FOR i = @ TO 13
20 BEEP i

30 WAIT 1

49 NEXT 1

OUTPUT

(Your Newton makes each "beep" sound)
-

RELATED ITEMS

40 NS BASIC Handbook

BEGINSWITH Function

BEGINSWITH(String |, String2)

DESCRIPTION
BEGINSWITH returns TRUE if String | begins with String2.

The comparison ignores the case of both strings.

EXAMPLE
5 REM BEGINSWITH Example

10 target = "YES or NO”

20 IF BEGINSWITH(target,"yes") THEN PRINT "It
starts with yes"

30 IF BEGINSWITH(target,"YES OR") THEN PRINT
"It starts with YES OR"

40 IF BEGINSWITH(target,"No OR™) THEN PRINT
“It storts with No OR"

OUTPUT
It starts with yes

It starts with YES OR
L]

RELATED ITEMS
STRCOMPARE, STREQUAL

L W T DL D BN NEENL BN B BN B B R B

BYE Statement

BYE [val]

DESCRIPTION

BYE ends the current program, and then quits NS BASIC. It
is valid within a program and as a Command entered using
the on-screen keyboard. If val is supplied, the value of the
expression is returned to the external caller of NS BASIC.
See the Advanced Topics section for more information on
calling NS BASIC from other Newton applications.

EXAMPLE

10 REM BYE Example

20 PRINT "Quitting NS BASIC"
30 BYE

OUTPUT
Quitting NS BASIC

The above appears momentarily. NS Basic then quits.

RELATED ITEMS
STOP, END

« NS BASIC Handbook

LI IR DR DL DL BN BEEE BN BEEE DN BN BN BN B BN N R

CEILING Function

CEILING(x)

DESCRIPTION
Returns the next integer greater than or equal to the real
number x

EXAMPLE

10 REM CEILING Exomple

20 PRINT "Please enter a number:"

3@ INPUT Number

40 PRINT "Next largest integer is..." ;
CEILING(Number)

OUTPUT

Please enter a number:

12.31

"Next largest integer is...13
-

RELATED ITEMS
FLOOR

CHAIN Statement

CHAIN fileName[lineNumber]

DESCRIPTION

CHAIN causes a NS BASIC program to LOAD a program
named by fileName from the default store and execute it.
fileName may be a string literal or a variable. Linenumber is
the line from which NS BASIC is to start execution in the
new program. The current values of all variables are pre-
served. You can use this form of CHAIN to break very large
programs into sections that are CHAINed in when needed.
If no lineNumber is given, a NEW is performed. Then NS
BASIC starts execution from the beginning of the program.
You can use this form of CHAIN to create menu-style pro-
grams, where unrelated programs are executed by a menu
program using CHAIN.

EXAMPLE

10 REM Programl

20 PRINT "This is Program 1"
30 CHAIN "Program2"

49 PRINT “"Return to Programl”
* SAVE Programl

Programl saved

* NEW

1@ REM Program2

20 PRINT "This is Program 2"
30 CHAIN "Programl” 40

* SAVE Program2

ProgramZ saved

OUTPUT

* Load Programl
* RUN

This is Program 1
This is Program 2
Return to Programl

RELATED ITEMS
RUN

44 NS BASIC Handbook

A I L D DR DL DR DR DN DN D N B NN BT B N B R

CHECKBOX Widget

WINDOW winNum, windowSpec, "CHECKBOX"
WINDOW winNum, windowSpec, "RCHECKBOX"

DESCRIPTION

The CHECKBOX and RCHECKBOX widgets display a small
square box that shows a check mark when selected. The
check box can be toggled by the user by tapping on it or the
label. CHECKBOX displays the label followed by the check
box, and RCHECKBOX shows the check box followed by
the label.

These widgets are controlled using the windowSpec. These
fields are supported:

viewValue: TRUE to display a checkmark.
text: The label text

Note: you can update the state of the CHECKBOX and
RCHECKBOX widgets using the following method:

U.windowSpec : TOGGLECHECK()

This expression causes the current setting of the checkbox

to toggle. For instance, a checked box becomes unchecked.

You may also use these fields in windowSpec
viewBounds, viewFlags, viewFont, GOTO,
GOSUB, viewFormat.

< RN UG e R

EXAMPLE

10 REM CHECKBOX Example

20 wiSpec = {}

3@ WINDOW wl, wlSpec, "CHECKBOX"
40 w2Spec = {viewValue: true}

5@ WINDOW w2, w2Spec, "RCHECKBOX™
60 SHOW wl, w2

OUTPUT

RELATED ITEMS
SHOW, HIDE, WINDOW

‘ 46 NS BASIC Hmdb;;[‘

44 NS BASIL Fanuuuum

CHR()

DESCRIPTION

CHR rewrns the ASCI| character equivalent of i. You must
use an integer with CHR. Refer to Appendix C of this Hand-
book for a list of useful character codes.

EXAMPLE

10 REM CHR Example

20 REM This demo asks the user for a number
and then displays the ASCII character
equivalent of it.

3@ PRINT "Please enter a number between 1 and
256"

4@ INPUT Number

5@ PRINT "The Character Equivalent of " ;
Number ; " 1s " ; CHR(Number)

OUTPUT
Please enter a number between 1 and 256

The Character Equivalent of 99 is ¢

RELATED ITEMS
ORD

CLASSOF Function

CLASSOF(x)

DESCRIPTION

CLASSOF returns the class of the variable x as a symbol.
You can use CLASSOF to check the class of a variable that
is INPUT by a user.

The symbols returned for each data type are:
Integer ‘int
Real ‘real
Character ‘char
Boolean ‘boolean
String 'string
Array ‘array
Frame ‘frame
Function function
Symbol ‘symbol

EXAMPLE

1@ REM CLASSOF Example

20a="5

30 PRINT CLASSOF(a)

40 a = "Hello"
5@ PRINT CLASSOF(a)

OuUTPUT

Int
String

RELATED ITEMS

NS BASIC Handbook

N5 BASIC Ha ndbook

NS BASIL Hanaboox

CLOSE Statement

CLOSE[chan] | [chanlist]

DESCRIPTION

CLOSE releases the single file channel chan or the list of
channels chanlist returned from an OPEN or CREATE state-
ment. If chan is omitted, all open file channels are released.
You cannot use a channel in a GET, PUT, or DEL statement
after you CLOSE it

EXAMPLE

10 REM CLOSE Example

20 CREATE chan, "EXAMPLEFile", keyname
30 CLOSE chan

OUTPUT
-

RELATED ITEMS
CREATE, OPEN

NS BASIC Handbook 49

CLOSEBOX Widget v

J
| WINDOW winNum, windowSpec, "CLOSEBOX" 9
| WINDOW winNum, windowSpec, "LARGECLOSEBOX"
)
DESCRIPTION
The CLOSEBOX and LARGECLOSEBOX widgets display 91
the standard Newton close box (small and large sizes) in the
lower right hand corner of the Newton screen.
»
These widgets are controlled using the windowSpec. These
fields are supported: %)
GOTO: the line number to goto if tapped.
viewBounds: if not supplied, defaults to the lower right =)

hand corner of the screen. Note that if this is specified, it

the bounds are relative to the lower right hand corner, so

you'll have to use negative numbers for all values to place »
it anywhere else on the screen.

-’
EXAMPLE
10 REM CLOSEBOX Example
20 wiSpec = {GOTO:100} »
3@ WINDOW wl, wlSpec, "CLOSEBOX"
40 SHOW wl o
S0 WAIT 1000
60 GOTO 50
100 REM tapped close box »
110 HIDE
120 PRINT "Tapped."
[
| o
.
®
»
»
RELATED ITEMS
SHOW, HIDE, WINDOW S
v
v

50 NS BASIC Handbook N

B— |
CLS Statement

CLS

DESCRIPTION

CLS causes the contents of the NS BASIC screen to be
erased. It will not clear any WINDOWs. You must use the
HIDE command to remove them from the Newton's display.

EXAMPLE

10 REM Clear Screen Example
20 CLS

OUTPUT

(The Screen is cleared)

RELATED ITEMS
HIDE

o —— .;;

COMPOUND Function »

COMPOUND(rate, periods) 2

DESCRIPTION
COMPOUND calculates the compound interest for a given .
rate over the specified number of periods.

EXAMPLE

1@ REM COMPOUND Example. This example assumes

that interest is being calculated monthly. .
20 PRINT "Please enter the Interest rate per

year:")
30 INPUT Rate

40 PRINT "Please enter the number of months

you wish interest to be calculated for:" '
50 INPUT Period

6@ PRINT "The percentage gain is " ;

COMPOUND((Rate*@.01/12), Period)* 100 ; %" 2
OUTPUT i
Please enter the Interest rate per year:

12

Please enter the number of months you wish >
izferest to be calculated for:

5 .
The percentage gain is 164.463182184388%

-

RELATED ITEMS

ANNUITY S
51 NS BASIC Handbook

—'—
CON Command

CON

DESCRIPTION

CON continues the execution of a NS BASIC program that
was halted by a STOP or END Statement. Execution re-
sumes at the next Statement in the program.

If an error halted the program, the CON Statement will also
continue execution at the next Statement after the one that
caused the error.

EXAMPLE

10 REM CON Example

20 PRINT "Before Stop"
30 STOP

40 PRINT "After Stop"

OUTPUT
Before Stop
* CON
After Stop

RELATED ITEMS
END, ON ERROR GOTO, RUN, STOP

NS BASIC Handbook] S

COS Function

COS(x)
COSH(x)
ACOS(x)
ACOSH(x)

DESCRIPTION
COS returns the cosine of the angle x in radians.

COSH returns the hyperbolic cosine of the angle x in
radians.

ACOS returns the arc cosine of the angle x in radians.

ACOSH returns the hyperbolic arc cosine of the angle x in
radians.

EXAMPLE

18 REM COS Example

20 PRINT "Please enter an angle:"

3@ INPUT Angle

40 PRINT "The Cosine of the angle is = " ;
COS(Angle) ; " radians”

OUTPUT

Please enter an angle:

63.7

The Cosine of the angle is = 0.646241795698775
radians

RELATED ITEMS
SIN, TAN

CREATE Statement

CREATE chan, fileName, key

DESCRIPTION

CREATE makes a new file. Files are stored on the Newton
in a similar manner to other computers. The location of the
file will be both in your Newton's internal memory and on
the storage card (if any) currently installed in the Newton.
Please refer to the Memory and Storage section of your
Newton Handbook regarding controlling where new infor-
mation is stored.

Files you create in NS BASIC remain on your Newton until
you delete them using the DELETE Statement. You use files
to store data that you would otherwise have to re-enter
every time you reset your Newton.

A file consists of zero or more frames. Each frame in a file
has a key field that is used for sorting and searching. This
means you must have an entry named key in every frame you
add to the file with the PUT Statement

CREATE uses the string in fileName as the name of the file.
fileNome may be a string literal or a variable holding a string.
It sets the variable chan to the number assigned to the file.
You use chan in subsequent GET, PUT and DEL statements
in your program, instead of the file name.

CREATE uses a variable named FSTAT to indicate that the
file was either created or not created. FSTAT will be set to
one of two values:

" 0 File successfully created "
"] File could not be created "

Note: You should avoid using a variable named FSTAT for
your own purposes.

EXAMPLE

10 REM CREATE Example

20 REM Creates a file...prompts for some
information, stores then deletes it.

40 CREATE chan, "EXAMPLEFile", keyname
45 IF FSTAT=1 THEN STOP // CREATE error
5@ PRINT "Please enter some key data..."
60 INPUT FileKey

7@ fileRecord = {}

80 fileRecord, keyname = FileKey // key
9@ PUT chan, fileRecord

100 IF FSTAT=1 THEN STOP // PUT error
110 PRINT “"Data now in file is..."

120 GET chan,FetchedDuta.FileKey

130 IF FSTAT=1 THEN STOP // GET error
149 PRINT FetchedData

15@ PRINT “"Deleting Record From File"
160 DEL chan,FetchedData

OUuUTPUT

Please enter some data. ..

? Lemons and Llamas

Data now in file is...

{KEYNAME : “Lemons and Llamas™, _uniquelD:0}
Deleting Record From File

-

RELATED ITEMS
GET, OPEN, PUT, DEL, DELETE

56 NS BASIC Handbook

-

DATA Statement

DATA datalist

DESCRIPTION

DATA Satements define the information used by the READ
Statement. They are not executed by NS BASIC. You may
place them anywhere in your program.

You may use any number of DATA Statements in a program.
They are accessed in sequential order by the READ State-
ment. The datolist is a comma separated list of literal values.
DATA Statements can contain only two types of literals:
strings and numerics. String literals must be enclosed in
quotation marks. Note that any special characters (\n, etc.)
in strings are not evaluated.

EXAMPLE

1@ REM DATA Example

20 DIM a[10]

30 DATA 4,5,6.5, "This", "Is"
49 DATA "String”, "Data™, -0.01
5@ DATA "1\n2"

60 FOR i = @ TO 7

70 READ a[i)

80 PRINT a[1]

90 NEXT 1

100 READ aString

110 PRINT "1\\nZ the some? ";
STREQUAL(aString, "1\n2")

OUTPUT
4

5

6.5

This

Is

String

Data

-9.01

1\n2 the same? NIL
-

RELATED ITEMS
READ, RESTORE

DATENTIME Function

DATENTIME(Time)

DESCRIPTION

DATENTIME returns a string containing the date and ume
as MM/DD/YY HH:MM. Time is the returned value from the
TIME Function. If time is NIL, then the current time is used.
The format of the date rewrned will depend on the locale
of the Newton being used. Please refer to the Setting Pref-
erences section of your Newton Handbook regarding

changing the locale.

EXAMPLE

10 REM DATENTIME Example
20 CurTime = TIMEQ)

3@ PRINT DATENTIME(CurTime)

OUTPUT
02/23/94 12:45 pm
-

RELATED ITEMS
HOURMINUTE, TIME

58 T NS BASIC Handbook

' T T T T T . e I B D D D B B I I

DATEPICKER

Widget

WINDOW winNum, windowSpec, "DATEPICKER"

DESCRIPTION

The DATEPICKER widget displays the standard Newton
date picker. The date or dates can be selected as in the
Dates application.

The widget is controlled using the windowSpec. These fields
are supported:

selectedDates: Anarray of integers (from the TIME()
function) representing the selected dates. The first date
determines which month is displayed. If no value is sup-
plied, the current month is displayed with the current day
selected.

noSelection: TRUE if DATEPICKER is display-only

singleDay: TRUE if only a single day may be selected

You may also use these fields in windowSpec: view-
Bounds. viewFlags, viewFont, GOTO,
GOSUB, viewFormat.

EXAMPLE

10 REM DATEPICKER Example

20 wiSpec = {GOTO:100@}

3@ WINDOW wl, wiSpec, “DATEPICKER"

40 SHOW wl
5@ WAIT 1000
60 GOTO S0
100 REM tapped close box
110 HIDE
120 PRINT DATENTIME(MSpec.selectedDates[O])
OUTPUT
@ Octeber 1995 »
s mt w et (&
1 2 3 48 67
g 9 101112 13 14
1S16 171819 20 21
2 23 24 25 26 27 28

RELATED ITEMS
HIDE, SHOW, TIME, MONTH, WINDOW

DEL Statement

DEL chan, recordFrame

DESCRIPTION

DEL deletes a record specified by recordFrame from file chon.
chan is the number of the file returned by the CREATE or
OPEN Statements. recordFrame is a frame containing at least
the key field. It may be a frame returned by the GET
Statement

DEL uses a variable named FSTAT to indicate that the
record was either deleted or not deleted. FSTAT will be set
to one of two values:

0 Record su_:c=mfuliy deleted ||
| Record could not be deleted ||

Note: You should avoid using a variable named FSTAT for
yOur own purposes.

)

7

T A S A A A A A A A A A A A A e

EXAMPLE
10 REM DEL Example

20 REM Creates a file...prompts for some
information, stores then deletes it.

40 CREATE chan, "EXAMPLEFile", keyname
45 IF FSTAT=1 THEN STOP // CREATE error
50 PRINT "Please enter some key data..."
60 INPUT FileKey

70 fileRecord = {}

80 fileRecord.keyname = FileKey

9@ PUT chan, fileRecord

100 IF FSTAT=1 THEN STOP // PUT error
110 PRINT "Data now in file is..."

120 GET chan,FetchedData,FileKey

130 IF FSTAT=1 THEN STOP // GET error
140 PRINT FetchedData

150 PRINT "Deleting Record From File"
168 DEL chan,FetchedData

OUTPUT

Please enter some data...

? Lemons and Llamas

Data now in file is...

{KEYNAME : "Lemons and Llamas”,_uniquelD:0}
Deleting Record From File

-

RELATED ITEMS
CREATE, OPEN, PUT, GET, DELETE

DELETE Statement

DELETE fileName
RM fileName

DESCRIPTION

DELETE removes the program or file named by the string
variable or string literal fileName from your Newton. The file
is removed from both the internal memory and storage
card. if fileName does not exist an /O error will result

To delete a NS BASIC program add the suffix ".bas" to the
program name. To delete a text file from the default store
use the suffix ".oxt”. To delete any files created using the
CREATE Statement, enter only the file name (no suffix.) RM
is a shorter name for DELETE.

EXAMPLE

DELETE "Llamas.bas"

RM Testfile.txt

DELETE MyProg.bas

10 REM DELETE Example

20 CREATE chan, "Somefile", key
30 DELETE Somefile

OUTPUT
.

RELATED ITEMS
SAVE, REPLACE, DIR, LOAD, ENTER, LIST, CREATE, GET,
STORE, PUT, OPEN, DEL

1\ DIGITALCLOCK Widget
.
(! WINDOW winNum, windowSpec, "DIGITALCLOCK"
(DESCRIPTION
{ The DIGITALCLOCK widget displays the standard Newton
time picker. The time can be selected as in the Dates appli-

(i \ cation,

The widget is controlled using the windowSpec. These fields
A are supported:

time: An integer (from the TIME() function) representing

{ the selected time. The initial value of this field determines
the initial display.
\ You may also use these fields in windowSpec view-
Bounds, viewFlags, viewFont, GOTO,
\ GOSUB.
EXAMPLE
3 10 REM DIGITALCLOCK Example

20 wiSpec = {GOT0:100, time:
STRINGTOTIME(C"3:10PM")}

30 WINDOW wl, wlSpec, "DIGITALCLOCK"
40 SHOW wl

100 REM Time changed

110 PRINT TIMESTR(wlSpec.time, @)

ouUTPUT

(3 H10/%

RELATED ITEMS
HIDE, SHOW, STRINGTOTIME, TIME, WINDOW

Q....-_....-o

DIM Sstatement

DIM variable [size]

DESCRIPTION -
DIM sets the number of elements (size) for an array (van-

able). All arrays start with the element zero and can have an =

unlimited number of elements. You access the data in an ar-
ray element using the expression variable [elementNumber].
Arrays can have elements of mixed type.

EXAMPLE -
10 REM Array Example
20 DIM Names[3]

30 Names[@] = "Peter”
40 Names[1] = "Paul”
5@ Names[2] = “"Mary" 2
60 PRINT "Contents of the Names Array:"

70 FOR i = @ TO 2

80 PRINT Names[i] -
99 NEXT i

OUTPUT

Contents of the Names Array:
Peter

Paul

Mary

-

RELATED ITEMS
PRINT, LET

S % 4§ & A 8 & & »

DIR Command

DIR

DESCRIPTION

DIR outputs a sorted listing of the NS BASIC programs and
text files currently saved in your Newton's internal memory
or on the storage card currently installed in the Newton.
Please refer to the Memory and Storage section of your
Newton Handbook regarding controlling where new
information s stored

EXAMPLE

DIR

OUTPUT

Calculator BASIC program
Calculator2 BASIC program
HelloWorld Text File
L1lamaCount BASIC program

RELATED ITEMS
SAVE, REPLACE, LOAD

DIV Function

xDIVy

DESCRIPTION
DIV returns the maximum number of times the integer y

can divide into the integer x.

EXAMPLE

10 REM DIV Example

20 REM This program tokes two numbers and
computes number of times the 2 numbers can be
divided.

3@ PRINT "Please enter two numbers.”

40 INPUT Numberl,Number2

5@ Result = Numberl DIV Number2

6@ PRINT "The number of times " ; Numberl ; "
can be divided by " ; NumberZ; " i{s " ; Result
OUTPUT

Please enter two numbers.

7 Y

The number of times 7 can be divided by S is 1.

-

RELATED ITEMS
REMAINDER, MOD

66 NS BASIC Handbook

D 5 5 5 5 5 5 %% % %2 % %" % " " s 0 0o

DO Statement

DO [WHILE expression [UNTIL expression]

DESCRIPTION

The DO statement begins a loop. The loop ends with a
LOOP statement. You may test for the ending condition of
the loop in the DO statement by using the WHILE expression
or UNTIL expression.

DO WHILE expression will evaluate the Boolean expression
each time before executing the loop. If expression is TRUE,
then the loop is executed. If it is NIL, the statement follow-
ing the LOOP statement is executed.

DO UNTIL expression will evaluate the Boolean expression
each time before executing the loop. If expression is NIL,
then the loop is executed. If it is TRUE, the statement fol-
lowing the LOOP statement is executed.

You can exit the loop by using the EXIT DO statement with-
in the loop.

EXAMPLE

10 REM DO Example

201 =0

30 DO WHILE 1 < 10

4’0 'I. - 'I + l

56 IF 1 > 5 THEN EXIT DO
6@ LOOP

70 PRINT 1

OUTPUT
6

RELATED ITEMS
LOOP, FOR, EXIT DO

DRAW Widget

WINDOW winNum, windowSpec, "DRAW"

DESCRIPTION
The DRAWY widget provides a user entry area that accepts
ink drawing. The input may be recognized as shapes (this is
the default) by setting windowSpecviewFlags to
vVisible + v(lickable + vGesturesal-
lowed + vShapesallowed, or just plain ink, by set-
ting windowSpecviewFlags o vVisible +
vClickable + vGesturesallowed +
vStrokesallowed

The widget is controlled using the windowSpec. These fields
are supported:

viewChildren: n array of frames describing the
drawing

viewChildren[n].viewBounds: the view-
Bounds of the nth shape drawn

viewChildren[n].points:the points of the
nth shape drawn

You may also use these fields in windowSpec view-
Bounds, viewFlags, viewFormat.

EXAMPLE

10 REM DRAW Example

20 wiSpec = {}

30 WINDOW wl, wlSpec, "DRAW"
40 SHOW wl

OUTPUT

g

X
‘r’
NE

‘I
£}-<
-

A\

"

RELATED ITEMS

POINTSTOARRAY, SHOW, HIDE, WINDOW

See the POINTSTOARRAY Reference section entry for an
example of extracting the x,y coordinates of the shapes and
strokes drawn in a DRAW widget.

68 NS BASIC Handbook

'S

')

J W I Y

]

@5 5 6 6 6 % %% e e 8 e e 0 00 0 e s

DRAWINTOBITMAP Function

DRAWINTOBITMAP(shape, options, bitmap)

DESCRIPTION

This function is used to create icons for the PICTUREBUT-
TON widget and the SETICON Statement. DRAWINTO-
BITMAP transfers the drawing in shape into bitmap. Use the
MAKEBITMAP function to create bitmap. Use one or more
of the MAKE functions (MAKELINE, MAKERECT, etc.) to
create shape. The options parameter should be NIL.

EXAMPLE

10 REM PICTUREBUTTON Example

20 shape=[MAKERECT(1,1,30,30), MAKETEXT("I",
12,10,21,21)]

30 myIcon:=MAKEBITMAP(32,632,NIL) |
40 DRAWINTOBITMAP(shape, NIL, mylIcon) |
5@ wiSpec = {icon: mylcon, GOTO: 200, |
viewBounds: SETBOUNDS(1@1, 101, 132, 132)}

6@ WINDOW wl, wilSpec, “PICTUREBUTTON"

70 SHOW wl

80 WAIT 1000

99 GOTO 80

200 HIDE

210 PRINT "Tapped."

OUTPUT

RELATED ITEMS
PICTUREBUTTON, MAKEBITMAP, SETICON, WINDOW

——
EDIT Command /

EDIT lineNo

DESCRIPTION

EDIT loads the program Statement line specified by lineNo
into the Edit Box. You may make any desired changes to the
line and then update the program by tapping Enter. Tap the
close box to discard the changes.

EXAMPLE
* EDIT 110

OUTPUT

RELATED ITEMS

70 NS B.l.kS#.C Hmdbool-:

e ——

S 5 5 5 2 2 %2 2" 2 " % 5 o s > 5

ENTER Statement

ENTER fileName

DESCRIPTION

ENTER loads a text file named by the string variable or
string literal fileName from the default store, and attempts
to enter each line in the program in exactly the same way
lines are typed with the keyboard. A program may be
merged with the currently LOADed program in this way.
The text file may have been created by another application,
sent over in serial mode, or by use of the LIST statement. If
a line number from the text file matches a line number of a
Statement already in memory, the line from the text file
overwrites the one in memory. To enter a program without
merging, type NEW before the ENTER Statement.

When you LOAD a program, NS BASIC does not re-inter-
pret the Statements. ENTER can be used to re-interpret a
program.

Previously saved NS BASIC programs have a ".bas” after
fileName. If the file was created by the LIST Command it has
a ".oct” afer fileName.

EXAMPLE

10 REM Simple Program
20 PRINT “"Line 1"

SAVE "SimpleProgram”
NEW

10 REM Second Program
20 PRINT "Line 3"

3@ PRINT "Line 4"

OUTPUT

* ENTER SimpleProgram.bas
* LIST

1@ REM Simple Program

20 PRINT "Line 1"

3@ PRINT "Line 4"

RELATED ITEMS
LIST, LOAD, SAVE

ELEMENTS Function

ELEMENTS(frame)

DESCRIPTION

ELEMENTS returns a sorted list of all element names in
frame. It is useful for getting the names of the elements with-
in a frame when they are not known.

The INTERN Function returns an internal reference that
may be used in an expression. It may be used along with
ELEMENTS to access the values stored in the elements
within a frame.

Line 50 of the example below demonstrates the use of
INTERN. This line shows that ELEMENTS returns an array
of strings representing the names of the elements in a frame,
while INTERN converts those strings into a form that is
used to access the values stored in the elements of the
frame.

EXAMPLE

10 REM Elements Example

20 X={a: 1, d: 4, b: 2, c:3}
30 Y=elements(X)

49 FOR i=@ TO length(Y)-1

SO PRINT Y[1]; x.CINTERNCY[1]))
60 NEXT I

OUTPUT
al
b2
c3
d4

RELATED ITEMS
HASSLOT, INTERN

T NS BASIC Handbook

U U ¥V VUV VYV VU VUV VUV VWV VWV VLV VY Y

v v v
- - L 4 «'v’

ELSE Statement

ELSE

DESCRIPTION

ELSE is used to separate statements to be executed when
the expression in an IF THEN statement is TRUE from those
to be executed when the expression is NIL

EXAMPLE
1@ REM Block IF Exomple

20a=5

30 b = 10

49 IF a=b THEN

S@ PRINT a, b

6@ PRINT "The numbers are equal.”

70 ELSE

80 PRINT ABS(b-a)

99 PRINT "The numbers are this far apart"
100 END IF

OUTPUT
5

The numbers are this far apart

RELATED ITEMS
IF THEN ELSE, END IF

T 58 5 2 2 2 2 2 82 & & & & & & » » » & »

-

END Statement

END [IF)

DESCRIPTION

END causes the program to stop executing without a beep.
The program can be continued from the Statement after the
END Statement by using the CON Command.

END IF marks the end of the current IF THEN block. END
IF is paired with the nearest IF THEN statement proceeding
it, when nested IF THEN blocks are used. There must be an
IF THEN statement at a lower line number than the END IF
statement. An ELSE statement may be used between an IF
THEN statement and an END IF statement. See the example
for the ELSE statement for an example of using IF THEN,
ELSE, and END IF statements in a program.

EXAMPLE

10 REM END Example

20 PRINT "Line Number 1"
30 END

40 PRINT "Line Number 2"

OUTPUT

Line Number 1
* CON

Line Number 2
-

RELATED ITEMS
STOP, CON, BYE, IF, ELSE

T4 NS BASIC Handbook

L 5

g ¢ ¢ ¢ ¢ ¢ ¢ vV v v

-~ .

S & & & & &4 & & & 8 8 e

ENTER Statement

ENTER fileName

DESCRIPTION

ENTER loads a text file named by the string variable or
string literal fileName from the default store, and attempts
to enter each line in the program in exactly the same way
lines are typed with the keyboard. A program may be
merged with the currently LOADed program in this way.
The text file may have been created by another application,
sent over in serial mode, or by use of the LIST statement. If
a line number from the text file matches a line number of a
Statement already in memory, the line from the text file
overwrites the one in memory. To enter a program without
merging, type NEW before the ENTER Statement.

When you LOAD a program, NS BASIC does not re-inter-
pret the Statements. ENTER can be used to re-interpreta

program.

Previously saved NS BASIC programs have a ".bas" after
fileName. If the file was created by the LIST Command it has
a ".oxt” after fileNome.

EXAMPLE

10 REM Simple Program
2@ PRINT “"Line 1"

SAVE "SimpleProgram”
NEW

10 REM Second Program
20 PRINT "Line 3"

30 PRINT "Line 4"

OUTPUT

* ENTER SimpleProgram.bas
-LIST

10 REM Simple Program

20 PRINT "Line 1"

30 PRINT “Line 4"

L

RELATED ITEMS
LIST, LOAD, SAVE

m - o

—_—
ENVIRON statement '

ENVIRON variableName = volueENV(variableName)

DESCRIPTION

The ENVIRON Statement allows you to create environ-
ment variables that retain their value even after closing NS
BASIC or resetting your Newton.

ENV(variableName) returns the value currently stored in en-
vironment variable variableName. The STATS Command
also shows a complete list of all environment variables and
their current values.

To remove an environment variable, set its value to NIL or
leave the right hand side of the Statement empty. It will be
removed the next time you close NS BASIC.

SPECIAL NS BASIC ENVIRONMENT VARIABLES

You can control just how much information is printed for
arrays and frames using the PRINTDEPTH environment
variable. The default is |, and valid values are 0 (no informa-
tion is printed for arrays and frames) to any desired depth.
When a variable that is an array or frame is used in a PRINT
Statement the individual elements of the array or items of
the frame will or will not be printed based on PRINT-
DEPTH.

You can read or write data to the serial port using NS
BASIC. The location for input and output is controlled using
the environment variable 10. If 1O is set to "SCREEN" then
INPUT and PRINT Statements refer to the Newton's
screen. If |O is set to "S0" then INPUT and PRINT State-
ments refer to the Newton's serial port. If IO is set to "IR"
then INPUT and PRINT Statements refer to the Newton's
infrared port. If you issue an INPUT Statement to the serial
or infrared port, the current inputPrompt is sent out the
port. The input that is read must be terminated by a CR
character. PRINT Statements that are output to the serial or
infrared port are terminated by a CR character. Control
characters can be sent as part of the output stream. For
example:

O U U U U U P WP W P Y Y Y e v v

76 NS BASIC Handbook

PRINT CHR(27)

will send the ESC character.

Note that the Newton needs a few seconds to switch its !
output from/to the serial or infrared port. '

The environment variable inputPrompt contains the charac-
ter that is displayed by an INPUT Statement when it is
prompting for input. This is especially useful for communica-
tions: setting inputPrompt to " will make the INPUT State-
ment display no character prompt at all. The default value
for inputPrompt is "7 * and it is set to this when starting NS
BASIC.

You may reset inputPrompt to its default setting using the
following statement:

ENVIRON inputPrompt="7 "

The environment variable s0 contains a frame that is used to
control the characteristics of the serial port. Any changes
you make to the elements of sOare used the next time serial
communications are established using the |O environment
variable. Changes you make will not affect the current serial
connection. This means you must set the s0 environment
variable before you set 1O to "S0".

The elements of the s0 frame are set to their default values
each time NS BASIC is started.

S & & & & & & & & & » oo~ m

Serial Port Settings

s0.connect

The message that is sent
when establishing a connec-
uon.

"Connect."&
CHR(10) &

s0.unPend

The character that is used to
terminate an input field.

Note: unPend must be a
character. You may use spe-
cial characters by using the
CHR Function.

CHR(13)

s0.byteCount

The number of characters to
accept before automatically
unPending.

Note: Either sO.unPend or
s0.byteCount must be NIL

NIL

s0.data

50.data[0)

The data representation, in
an array [bps,dataBits, stop-
Bits,parity]

The transmission speed
(bps). Allowed values are
300, 600, 1200, 2400, 4800,
7200, 9600, 12000, 14400,
19200, 38400, 57600,
115200, 230400

[9600, 8, 1,

“no"]

9600

sO.data[l]

The number of data bits. Al-
lowed values are 5, 6,7, 8

s0.data[2]

The number of stop bits. Al-

lowed values are 0, I, 2.

s0.data[3]

sQ.inputform

The parity. Allowed values
are "no", "even”, "odd"

The pre-processing style for
input. Set to ‘raw to receive
data of class ‘binary (such as
Unicode.) Set to 'string for
normal input.

*no"

'string

-

v U U YU Y VY Y Y W Y ¢

S S S % 8 a8 e e e e e s s s

The environment variable IR contains a frame that is used to
control the characteristics of the infrared port. Any changes
you make to the elements of IR are used the next time in-

frared communications are established using the |O environ-
ment variable. Changes you make will not affect the current
infrared connection. This means you must set the IR envi-

ronment variable before you set 10 to “IR".

The elements of the [R frame are set to their default values
each time NS BASIC is started.

Infrared Port Settings

IR.connect

The message that is sent
when establishing a connec-
tion.

“Connect."&
CHR(10) &
g

IR.unPend

The character that is used to
terminate an input field.
Note: unPend must be a
character. You may use spe-
cial characters by using the
CHR Function.

CHR(13)

IR.byteCount

The number of characters to
accept before automatically
unPending.

Note: Either IR.unPend or
IR.byteCount must be NIL

NIL

IR.CharDelay

The number of Ticks to
pause between the transmis-
sion of characters.

EXAMPLE: USING YOUR OWN ENVIRONMENT VARIABLES
* ENVIRON pie=3.1415926
* PRINT ENV("pie")

* ENVIRON pie=
-

STATS

OUTPUT
3.1415926

(STATS shows that there is currently a pie
environment variable with the value NIL)

EXAMPLE: USING THE SERIAL PORT FOR OUTPUT
10 REM List contents of spreadsheet to the
serial port

12 ENVIRON io0="s@"

15 OPEN ch,"gfig:donv"

20 GET ch,f1

30 GET ch,f2

50 x=ELEMENTS(f1.values)

6@ FOR i=0 TO length(x)-1

78 y=INTERN(x[1i])

80 PRINT x[i],fl.values.(y),
f2.data.(y).formula

10@ NEXT 1

110 ENVIRON io="screen"

EXAMPLE: USING THE SERIAL PORT FOR INPUT

10 REM collect data from serial port

20 f ={viewBounds:SETBOUNDS(100,100,130,110)}
30 tr = @

49 translist = ""

50 CLS

60 WINDOW wl,f

70 SHON wl

80 ENVIRON io="s@"

90 REM get a transaction

10@ INPUT trans

110 tr = tr+l

120 translist = translist & trans & CHR(13)
130 WPRINT wl, tr

140 IF trans < "BYE" THEN GOTO 90

150 ENVIRON io="screen"

160 PRINT translist

170 HIDE wl

RELATED ITEMS

g WU YU YUY YY Y VY Y Y Y

w» = &M M M M %" "TATATA AAaA AT A" AaAaAaa aa

ERASE Statement

ERASE from,to

DESCRIPTION
Deletes lines of the currently loaded program starting at
from and ending at to. ERASE can not erase itself.

EXAMPLE

10 REM ERASE Example
20 ERASE 30, 40

3@ PRINT "Line 30"
40 PRINT “"Line 40"
50 PRINT "Line 50"

OuUTPUT

Line 50

RELATED ITEMS

NS BASIC Handbook L1l

'——_

EXIT Statement)
)

EXIT DO)

EXIT FOR >

DESCRIPTION

EXIT leaves a loop at any point. If you have a specific condi- ?

tion that ends loop processing, you use EXIT to terminate
the loop and begin execution at the statement followin the
loop. You can use EXIT instead of a GOTO statement in this
case.

EXIT DO causes the statement following the LOOP state-
ment for the DO loop to be executed next, ending the DO
loop.

EXIT FOR causes the statement following the NEXT state-
ment for the FOR/NEXT loop to be executed next, ending
the FOR/NEXT loop.

EXAMPLE

10 i=0

20 DO

30 i=i+l

490 IF i>S THEN EXIT DO
50 LOOP UNTIL i=10

60 PRINT 1

OUTPUT
6
-

EXAMPLE

10 FOR i = 1 TO 10

20 IF i>5 THEN EXIT FOR
30 NEXT i

40 PRINT 1

OUTPUT
6

RELATED ITEMS
FOR, NEXT, DO, LOOP, GOTO

SR A B e D D B B I O B R

- W - &M M M % M %" AMTATA T AaAT AT & s & a

EXP Function

EXP(x)
EXPMI (x)

DESCRIPTION
EXP returns the natural (base -e) exponential for the real
number or integer x.

EXPMI returns EXP(x)-|

EXAMPLE

10 REM EXP Example

20 PRINT "Please enter a number"

3@ INPUT Number

40 PRINT "The Natural exponential is " ;
EXP(Number)

OUTPUT

Please enter a number

?7 7

The Natural exponential is 1,096.63315842846

RELATED ITEMS

NS BASIC Handbook 83

FLOOR Function

FLOOR(x)

DESCRIPTION
FLOOR returns the integer less than or equal to the real
number x.

EXAMPLE

10 REM FLOOR Example

20 PRINT "Please enter a number”

30 INPUT Number

40 PRINT "Next Smallest integer is..." ;
FLOOR(Number)

OUTPUT

Please enter a number

7o B

"Next Smallest integer is..12

RELATED ITEMS
CEILING

84 " NS BASIC Handbook

E S

g v 9 Y ¥V VYV ¥V v v @

v v 9

«
.
I
‘
‘
B
¢
¢
L]
¢

e

e

K.
¢
¢
¢

»T ™™ %

-

Statement

FOR variable =expression| TO expression2 [STEP
expression]]

DESCRIPTION

The FOR statement first sets variable to expression |. It starts
counting up to expression2 by adding expression3 to the vari-
able at the end of every cycle. If expression3 is a negative
number the counter will count down from expression/ to
expression2 in expression3 increments. If expression3 is omit-
ted NS BASIC assumes the default value of 1. Expression3
cannot be zero,

A FOR Statement must have a corresponding NEXT State-
ment somewhere after it in the program in order to make
the loop complete. FOR loops may be "nested” or placed
within one another. Any number of FOR loops may be nest-
ed within each other.

The final value of variable is equal to the first number the
loop reaches beyond expression2.

You can exit the loop by using the EXIT LOOP statement
within the loop.

EXAMPLE

10 REM FOR Loop Example
20 FOR i = 1 TO 10 STEP 3
30 FOR j =1 to 2

40 PRINT 1,3

5@ NEXT j

6@ NEXT i

Ll N
e g
-
c
-

P B s P s

RELATED ITEMS
DO, NEXT, EXIT FOR

FUNCTION Statement

FUNCTION functionName(args) expression
DEF FN functionName{args) = expression

DESCRIPTION

FUNCTION and DEF FN define a user function, Function-
Nome is a valid NS BASIC variable name and expression is a
valid NS BASIC expression or NewtonScript code. args are
parameter variables that are used in expression. User func-
tions retain their values in the same manner as any other
variable. Use of functions can greatly speed up your code.

Note: To use NewtonScript in expression, you'll need a

NewtonScript Manual. Programming for the Newton, by
McKeehan and Rhodes and published by AP Professional is
a good source of NewtonScript documentation.

Variables within your NS BASIC program are available with-
in expression, even if they aren't passed in via args: preface
them with “U . ",

To call a user function, use:

U: functionName(args)

:
E

L¢¢¢J-¢qu¢ydd-y-sssssa&a

% % % % 5 % %2 % % 8 8 % " % 8 0 0 0 o0

EXAMPLE

10

70

80

90

100
110
120
130
140
150
160
170
180
190

REM FUNCTION Example

DEF FNS(starttime)=(TICKS()-starttime)/60
FUNCTION tot(b) BEGIN LOCAL x:=@; FOR i:=0
LENGTH(b)-1 DO x:=x+b[i]; x END
iterations=1000
o=ARRAY(iterations, 25)
GOSUB 9@ //sum using NS BASIC loop
GOSUB 17@ //sum using function
STOP
REM sum using NS BASIC loop
tm=TICKS()

x=0

FOR i=@ TO LENGTH(a)-1

x=x+a[1i]

NEXT 1

PRINT "Method 1:", U:fns(tm)
RETURN

REM sum using function

tm=TICKS()

x=U:tot(a)

PRINT "Method 2:", U:fns(tm)
RETURN

OUTPUT

Met
Met
Sto

hod 1: 23.8833333333333
hod 2: ©.0833333333333333
p at 0080

RELATED ITEMS

GAUGE widget

WINDOW winNum, windowSpec, "GAUGE"

DESCRIPTION

The GAUGE widget provides a display of a relative value
(ie., the battery gauge). You can set the initial value of the
GAUGE, and update the value within a program.

The widget is controlled using the windowSpec These fields
are supported:

viewValue: The current setting (0-100% filled)
You may also use these fields in windowSpec view-
Bounds, viewFlags.viewFormat.

Whenever you change the viewValue of a GAUGE, you
must use

WPRINT winNum, “"

to update the display of the GAUGE.

EXAMPLE

10 REM GAUGE Example

20 wilSpec = {viewValue:0}

30 WINDOW wl, wlSpec, "GAUGE"
49 SHOW wil

50 FOR i = 1 TO 100

6@ wlSpec.viewValue = i

7@ WPRINT wil, ""

8@ NEXT i
OUTPUT

_——
(at the half-way point)
RELATED ITEMS

SHOW, HIDE, WINDOW, WPRINT

88 NS BASIC Handbook

Luuuqquid.#sd&&&&&&&&&a

—
Statement

|
!

0
Z

GET chan, variable[, key)

DESCRIPTION

GET retrieves information from file chan. Chan is a number
returned from the OPEN or CREATE Statement. Variable is
the variable in which the data retrieved from the file is
placed. If a record is saved with a key, specifying key will get
only that record. If key is not specified the next record will
be retrieved. To use a key with the GET Statement a key
must have been specified when OPEN was used for thechan
as well

GET uses a variable named FSTAT to indicate that the
record was either read or not read. FSTAT will be set to
one of three values:

0 Record successfully read, variable set to read
record

I End of file reached, variable is set to NIL

2 key not found, variable is set to next closest
record

Note: You should avoid using a variable named FSTAT for
your own purposes.

QQQQ‘QQ...’...‘...‘.O’

EXAMPLE

10 REM GET Example

20 PRINT "The first S first names of the names
file will be displayed.”

3@ OPEN CH, "Names"

40 IF FSTAT < @ THEN STOP
SO FORi =1T0S

60 GET CH, NameData

70 IF FSTAT = 1 THEN STOP

80 PRINT NameData.Name.first
99 NEXT i

R

UN

The first S first names of the names file will
be displayed.

John
Jane

(The names above will be the first S5 names of
the "Names" file on your Newton.)

RELATED ITEMS
CREATE, OPEN, PUT, DEL

90 NS BASIC Handbook

W W WYY Y YWY WYY VYV VYWYV Y W W

-

GETGLOBALS Function

GETGLOBALS().element

DESCRIPTION

GETGLOBALS retrieves element from your Newton's global
information area. The most common information that you
will want to retrieve is in the element named userCon-
figuration. However, other data is also available. A
list of some common fields is provided in the Accessing and
Using Other Files, Data, and Applications section (4.5) of
this Handbook. There are many other fields available for ad-
vanced users. Values can also be assigned to GETGLO-
BALS().element.

Note: Changing system values can have unexpected and un-
desirable consequences. Use great caution when changing
system values.

Warning: Caution should be used when accessing and
changing the userConfiguration element The ele-
ments may vary for different Newton devices.

EXAMPLE

1@ REM GETGLOBALS Example. Show User's name
ond address

20 PRINT

GETGLOBALS() .userConfiguration.company

3@ PRINT

GETGLOBALS() .userConfiguration.address

4@ PRINT

GETGLOBALS() .userConfiguration.cityzip

OUTPUT
NS BASIC Corporation
77 Hill Crescent
Toronto MIM 113

RELATED ITEMS

GLANCE Widget

WINDOW winNum, windowSpec, "GLANCE"

DESCRIPTION

The GLANCE widget provides a display of a text message in
a window for three seconds. This window is displayed when
the SHOW Statement is executed for the widget. Once the
window has shown and hidden itself, you must re-create it
with another WINDOW Statement. In other words, you
can never SHOW a GLANCE widget more than once.

The widget is controlled using the windowSpec. These fields
are supported:

text: The message text

You may also use these fields in windowSpec view-
Bounds,viewFlags, viewFont, viewFor-
mat.

EXAMPLE

10 REM GLANCE Example

20 wilSpec = {text:"Read me quickly"}
30 WINDOW wl, wlSpec, "GLANCE"

40 SHOW wl

OUTPUT

(a window displaying Read me quickly is displayed and
hidden)

RELATED ITEMS
SHOW, WINDOW

9 NS BASIC Handbook

L L T TR T DL B N BN AN AN BN N BN N OB N OB OB N

“»

GOSUB Statement

GOSUB lineNumber

DESCRIPTION

GOSUB causes execution to branch to the line of code
specified by lineNumber. A GOSUB must be paired with a
RETURN Statement. When a RETURN Statement is found,
execution continues from the line after the GOSUB. As with
the GOTO Statement, if the ineNumber specified in the
GOSUB Statement refers to a REM Statement, NS BASIC
will also display that comment at the end of the GOSUB
Statement as a line comment when the program is listed.
The example shows this automatic commenting behavior of
GOSUB.

EXAMPLE

10 REM GOSUB Example

2@ PRINT "GOSUB Routines-"
30 GOSUB 6@ //Routine #2
40 PRINT "Routine #1"

5@ END

60 REM Routine #2

7@ PRINT "Routine #2"

8@ RETURN

OUTPUT
GOSUB Routines-
Routine #2
Routine #1

-

RELATED ITEMS
REM, GOTO, LIST, RETURN

GOTO Statement

GOTO lineNumber

DESCRIPTION

GOTO causes execution to branch to the line of code spec-
ified by lineNumber. As with the GOSUB Statement, if the
lineNumber specified in the GOTO Statement refers to a
REM Smatement, NS BASIC will aiso display that comment at
the end of the GOTO Statement as a line comment when
the program is listed. The example shows this automatic
commenting behavior of GOTO.

EXAMPLE

10 REM GOTO Example

20 PRINT "Please enter a number..."
30 INPUT x

49 IF x >10@ THEN GOTO 8@

50 PRINT “The number is too small”
6@ PRINT "Please Re-enter..."

70 GOTO 30

80 END

OUTPUT

Please enter a number. ..
713

The number is too small
Please Re-enter...

? 137

RELATED ITEMS
REM, GOSUB, LIST

94 NS BASIC Handbook

v 9 @9 9 @9 »

v W @ w

T S MM A, ,m A, A, . e S S A " A e

HASSLOT Function

HASSLOT (frame, slotName)

DESCRIPTION
HASSLOT returns TRUE if the symbol in slotName is the

name of a field in frome. Returns NIL otherwise.

EXAMPLE

10 REM HASSLOT Example

20 testFrame := {name: “Fred", fridge: TRUE}
30 IF hasslot(testFrame, 'name) THEN PRINT "It
has a name"

40 IF HASSLOT(testFrame, 'size) THEN PRINT "It
has a size"

5@ IF HASSLOT(testFrame, 'fridge) THEN PRINT
"It has a fridge”

OUTPUT
It has a name
It has a fridge
-

RELATED ITEMS
ELEMENTS, REMOVESLOT

HEXDUMP Function

HEXDUMP(object, start, end)

DESCRIPTION

HEXDUMP returns a string containing a hex dump of the
string or binary object. The entire dump is created and
placed in the return string, so you may run out of memory
if you try and dump very large objects. You may use the
SUBSTR() Function to dump only a portion of a string, or
you may specify the start and end bytes to dump. If start and
end are NIL the entire object is dumped.

HEXDUMP is useful for Serial and IR programming.
EXAMPLE

10 REM HEXDUMP Example
20 dumpString = "This is a String"
3@ PRINT HEXDUMP(dumpString,@,20

OUTPUT
0000: 00540068 00690073 00200069 00730020
i, Yl

0016: 00610020 .a.
.

RELATED ITEMS

SUBSTR

vV J ¥V WV ¥V ¥ ¥ ¥ @ @ ¥ & v U G b e e

‘i'i'i_‘\\\\‘\““.........[

HIDE Statement

HIDE [winNum)] | [winNumiist]

DESCRIPTION

HIDE removes the single window winNum, or the list of win-
dows winNumlist from the screen. winNum and winNumlist
are the numbers created by the WINDOW Statement If
HIDE is used with no arguments, all currently displayed win-
dows are removed. Note that using HIDE without argu-
ments means that you must re-create windows with the
WINDOW Satement before showing them again.

EXAMPLE

10 REM HIDE Example

20 WiSpec = {ViewBounds: SETBOUNDS(1@, 50,
100, 100)}

30 WINDOW Winl, WiSpec

40 WINDOW Win2, W2Spec

5@ WPRINT Winl, "Window 1"
60 WPRINT Win2, "Window 2"
70 SHOW Winl

8@ SHOW Win2

90 WAIT

100 HIDE Win2

110 SHOW Win2

120 HIDE

OUTPUT

(Two windows are created and then removed from
the screen.)

-

RELATED ITEMS
SHOW, WINDOW, WPRINT, CLS

HITSHAPE Function

HITSHAPE(shape, X, Y)

DESCRIPTION

HITSHAPE returns TRUE if the point described by X, Y falls
within the supplied shape. Returns NIL if the point is outside
the shape. You create shape using MAKELINE, MAKEOVAL,

etc.

EXAMPLE
10 REM HITSHAPE Example

15 button = MAKEOVAL(10,10,40,40)

20 ws := {GOTO: 10@, DRAWING: button}

30 WINDOW wl,ws

S0 SHOW wl

70 WAIT 1000

80 GOTO 70

102 REM process user top

110 IF HITSHAPE(button, ws.firstX, ws.firstY)
THEN PRINT "You tapped in the button!" ELSE
PRINT "You missed the button!"

120 HIDE

OUTPUT
(A window with an oval is displayed. Tap
inside the oval.)

You tapped in the button!
-

RELATED ITEMS
SHOW, WINDOW, MAKELINE, MAKEOVAL, etc

NS BASIC Handbook

HOURMINUTE Function

HOURMINUTE(Time)

DESCRIPTION

HOURMINUTE returns a string giving the time as HH:MM.
Time is the returned value from the TIME Function. To get
the number of seconds, you must use the TICKS Function.

EXAMPLE

1@ REM HOURMINUTE Example
20 CurTime = TIME(Q) |
30 PRINT HOURMINUTE(CurTime)

QUTPUT
12:45 pm
-

RELATED ITEMS
TIME, TICKS

b T T T T T L. . TR TR DR TN TR U T T T W T W W)

NS BASIC Handbook 9

HWINPUT Statement

HWINPUT variable [,prompt [, popUpList]]

DESCRIPTION

HWINPUT opens a box for hand written input. It places the
result into variable. As with the INPUT Statement, if variable
ends in a "$", the result is made into a string,

Prompt is an optional argument. The value of prompt is dis-
played in the user box. If prompt is not supplied, a simple box
where the user may enter hand written input is displayed.

PopUpList is also an optional argument. It is only available if
prompt is supplied. HWINPUT creates a pop-up list similar
to the ones used in other applications on your Newton. The
user may display the popUpList by tapping on prompt in the
displayed box. PopUpList must be an array of strings. i.e.
['George", "Liz", "John").

EXAMPLE

10 REM HWINPUT Example

15 PopUp = [“Ford”, "Arthur", "Trillian",
"Zaphod"]

20 HWINPUT Name,"Please enter your
Name...",PopUp

3@ PRINT "Hello " ; Name

RELATED ITEMS
INPUT, WINDOW, SHOW, HIDE, WPRINT

100 NS BASIC Handbook

¢ @@V @ 9 U W @ @ @ W W VUV VYV VYV e

.

S % % 2 2" A 2 % 2 2 =2 =2 =2 =2 =2 = = & » »

IF THEN ELSE Statement

IF expression THEN [statement ! [ELSE statement2]]

DESCRIPTION

The IF THEN ELSE Statement allows conditional execution
of program code based on the evaluation of an expression.
If the result of expression is TRUE then statement/ is pro-
cessed, otherwise stotement? is executed.

When ELSE statement2 is not supplied, the next statement
in the program is executed if expression is NIL.

When no statements follow the THEN, this begins a block

IF THEN ELSE END IF. You may place as many statements

as you need between the IF THEN statement, and an option-
al ELSE statement. After the ELSE statement you may place
multiple statements, followed by the END IF statement. Use
this form if you need to execute more than one statement

if expression is TRUE or NIL.

EXAMPLE

10 REM IF THEN ELSE Example

20 PRINT "Please Enter a Number."

30 INPUT Number

40 IF Number>=10@ THEN PRINT "Number is
greater than or equal to 100" ELSE PRINT
"Number is less thaon 100"

50 IF Number=@ THEN PRINT "Number is equal to
zero"

OUTPUT

Please Enter a Number,

7 30

Number is less than 100.

* RUN

Pleas?e Enter a Number Between 1 & 100.
7 15

Number is greater than or equal to 100

RELATED ITEMS
ELSE, END IF

INPUT Statement

INPUT wvariable | [,variable] ... [.variableN]

DESCRIPTION

INPUT prompts the user for information. A question mark
followed by a blinking insertion point is displayed. The infor-
mation the user enters at the INPUT prompt is placed into
variable. Multiple inputs to different variables may be as-
signed using a single INPUT Satement. The variable type is
automatically assigned by NS BASIC to match the data en-
tered by the user. If any of the variable names ends ina "$"
then the type for that variable is string, and any data entered
by the user will be converted to a string prior to storing it
in the variable.

When the INPUT statement specifies a single string variable,
then the user may enter commas, or an empty string (i.e.,
just press return) at the input prompt.

EXAMPLE

10 REM INPUT Example

20 PRINT "Please enter two things."

30 INPUT a,b

40 PRINT "Please enter one more thing."

5@ INPUT c$

6@ PRINT “You typed in...", a; " & "; b; " &
s Ch

OUTPUT
Please enter two things.

7?5, Llamas

Please enter one more thing.

?712.8, see the comma!

You typed in... S & Llamas & 12.8, see the
comma !

RELATED ITEMS
PRINT, LET

iOi ; . . e NS BASIC Ham

INTERN Function

INTERN(string)

DESCRIPTION

INTERN returns an internal reference to string. It is most
commonly used to access elements within a frame through
a variable. INTERN returns a symbol.

Note: The result must be placed within parenthesis when
used in an expression that accesses a frame element.

EXAMPLE

1@ REM INTERN Example

20 frome:={a: 1, b:2, c:3}

30 frame_ele=INTERN("b")

49 PRINT frame.(frame_ele)

5@ frame_names=ELEMENTS(frame)
6@ FOR i=@ TO LENGTH(frame_names)-1
7@ PRINT frame_names[i],
frame. CINTERNCframe_names[i]))
80 NEXT 1

9@ PRINT frame

OUTPUT

2

a 1
b 2
c 3

RELATED ITEMS
ELEMENTS

LABELINPUT Widget

WINDOW winNum, windowSpec, “LABELINPUT"

DESCRIPTION

The LABELINPUT widget provides a label with a text entry
line. The widget may also contain a pick-list. If it does, then
a small diamond is displayed in front of the label. Tapping the
label displays the pick-list. Tapping an item in the list enters
it into the text entry line.

The widget is controlled using the windowSpec. These fields
are supported:

entryFlags: recognition flags for the entry field, as
used in viewFlags.

label: The label text

label Font: The label font

text: The initial entry field value

entrylLine.text: The user entered or updated entry
field value

labelCommands: The optional pick list (an array of
strings)

curlLabelCommand: The initial selection from the
optional pick list

viewValue: The current selection from the optional
pick list

Note: you can update the text displayed by the

LABELINPUT widget using the following method:

SETVALUE(U.windowSpec.entryLine, 'text, "New

Value")

This function changes the text displayed to New Value,

and re-draws the widget. You can retrieve the value entered

by the user using the following expression

fieldText = windowSpec.entryline.text

You may also use these fields in windowSpec V1 ew-

Bounds, viewFlags.viewFont, viewFor-
mat.

NS BASIC Handbook

v v ¥ 9 ¥ Y W Vv v v v v

EXAMPLE
10 REM LABELINPUT Example

20 wlSpec = {labelCommands:["one", "2",
“three"]}
30 WINDOW wl, wlSpec, "LABELINPUT"
40 SHOW wl
OUTPUT

l.)"f'

;lurf

®Label thrae

RELATED ITEMS
HIDE, SHOW, SETVALUE, WINDOW

Ty Hmdh‘m.ll. . A — .‘.os

LABELPICKER Wwidget

WINDOW winNum, windowSpec, “"LABELPICKER"

DESCRIPTION

The LABELPICKER widget provides a label with a text dis-
play line. The widget also contains a pick-list. A small dia-
mond is displayed in front of the label. Tapping the label
displays the pick-list. Tapping an item in the list displays it
next to the label

The widget is controlled using the windowSpec. These fields
are supported:

text: The label text

label Commands: The pick list (an array of strings)
viewValue: The current selection from the pick list
You may also use these fields in windowSpec V1 ew-

Bounds, viewFlags, viewFont, GOTO, GOS-
UB,viewFormat.

EXAMPLE

10 REM LABELPICKER Example

20 wiSpec = {labelCommands:["one", "two"
"three"]}

30 WINDOW wl, wiSpec, "LABELPICKER™

40 SHOW wl

]

OUTPUT

¥ One
Two
Three

®labelFuber (ne

RELATED ITEMS
HIDE, SHOW, WINDOW

106 NS BASIC Handbook

-

¥y ¥ 9 ¥ ¥ ¥ B B B B B D

v W vy v 9

Pl

LENGTH Function

LENGTH(x)

DESCRIPTION

Length returns the number of elements in array x.
Note: use STRLEN for strings.

EXAMPLE

10 REM LENGTH Example
20 a = [1,2,"Three", 4]

30 PRINT "a has "; LENGTH(a); " elements.'

OUTPUT
a has 4 elements.
-

RELATED ITEMS
STRLEN

Ns BASIC Handbook

LET Statement

[LET] variable = expression (Normal form)
[LET] variable := expression (Special use only)

DESCRIPTION

The LET statement evaluates expression and assigns it to
variable. NS BASIC automatically adds the word "LET ina
program listing if you do not enter it

The variable type (e.g., integer, real, string, etc.) is deter-

mined automatically by NS BASIC depending on the con-

tents of expression. If variable has a "$" after it the type will
always be a string.

The second form, using := as the assignment operator, as-
signs a reference to the right hand side instead of the value.
This is useful for saving memory when accessing large ob-

jects, such as getGlobals().

EXAMPLE

10 REM LET Example

20 PRINT “"WNhat is your Name?"

30 INPUT Name$

40 PRINT "What is your age?”

5@ INPUT age

60 LET aoge = age + 10

70 PRINT Name$; “...";"In 10 years your age
will be...";oge

OUTPUT

Whot is your Name?

? John

What is your age?

7 21

John...In 10 years your age will be...31

RELATED ITEMS

2% 2 % 2 A & A 5 % % 9 9 s o

»

LIST Command

LIST [stortline [.endline[.fileName]]]

DESCRIPTION

The LIST Command displays the currently LOADed pro-
gram'’s source code. The user may specify startline and end-
line together or separately, If a single number follows LIST,
only that one line will be displayed. If no starting or ending
line is given the LIST Command displays the entire program,
Only a single screen of code will be displayed by NS BASIC
at a time. If there is more than one screen to be listed then

--More--

will be displayed at the end of each screen. Tap the return
key to continue.

To save the listing to a file, place a comma and fileName after
the first two parameters. The resulting file can either be
used by other programs or can be exported to a desktop
computer. NS BASIC adds ".txt" to the end of fileName. The
file is created on the default store. These saved files can be
utilized in other programs by using the ENTER Statement.

EXAMPLE
= LESY

OUTPUT
0010 REM Counting Program
0020 FOR i = 1 TO 10
9030 PRINT i

0040 NEXT i

0050 PRINT "All Done"

-

EXAMPLE
* LIST 20

OUTPUT
0020 FOR i = 1 TO 10
L

EXAMPLE
* LIST 30,

OUTPUT
9030 PRINT i

0040 NEXT 1

0050 PRINT "All Done”
.

EXAMPLE
*LIST 20,30

OUTPUT

0020 FOR i = 1 TO 10
0030 PRINT 1

-

EXAMPLE
* LIST ,30

OUTPUT

0010 REM Counting Program
0020 FOR i = 1 TO 10
9030 PRINT i

L]

EXAMPLE
* LIST 10,50,"LISTProgram”

OUTPUT

Lsaawwwwuduuvur‘oobowwb

P DDDDDD

"

(R

LOAD Command

LOAD fileName

DESCRIPTION
LOAD recalls a SAVEd program named fileNaome to the
active memory. If file fileName does not exist an I/O error
will result.

EXAMPLE
LOAD "Llamas"

OUTPUT
.

RELATED ITEMS
DIR, SAVE

4

LOG Function

LOG(x)
LOGB(x)
LOGIP(x)
LOG10(x)
LGAMMA (x)

DESCRIPTION
LOG returns the Natural (base -e) logarithm of x.

LOGB returns the binary exponent of x.
LOGIP returns LOG(|+x).
LOGIO0 returns the base 10 log of x.

LGAMMA returns the base e log of the absolute value of the
gamma of x.

EXAMPLE

10 REM LOG Example

20 PRINT "Please enter a number”

30 INPUT Number

4@ PRINT "The LOG of the number entered is ";
LOG(Number)

OUTPUT

Please enter a number

100

The LOG of the number entered is
:.6051?018598809

RELATED ITEMS

1 NS BASIC Handbook

S S & @ @ & @ @ 9 B

v U

J ¥ 9 09 9 ¢

B DD D DD DDA DD DD DDDAND

<]

——

LOOP Statement

LOOP [WHILE expression |UNTIL expression)

DESCRIPTION

The LOOP statement ends a loop. The loop begins with a

DO statement. You may test for the ending condition of the
loop in the LOOP statement by using the VWHILE expression
or UNTIL expression. You can only use WHILE or UNTIL in
either the DO or the LOOP statement for a loop, but not

both. When you use WHILE or UNTIL in the LOOP state-
ment, the loop will always be executed at least once.

LOOP WHILE expression will evaluate the Boolean expres-
sion each time after executing the loop. If expression is TRUE,
then the loop is executed again. If it is NIL, the statement fol-
lowing the LOOP statement is executed.

LOOP UNTIL expression will evaluate the Boolean expression
each time after executing the loop. If expression is NIL, then
the loop is executed again. If it is TRUE, the statement fol-
lowing the LOOP statement is executed.

You can exit the loop by using the EXIT DO statement with-
in the loop. You can create an infinite loop by omitting
WHILE and UNTIL in both the DO and LOOP statements
of a loop. If you do, then you must use EXIT DO or a
GOTO within the loop to exit it

EXAMPLE

10 REM LOOP Example
201i=0

30 DO

40 1 - ‘i. + 1

S@ IF i > 5 THEN EXIT DO
6@ LOOP WHILE i < 10

70 PRINT i

OuUTPUT
6

RELATED ITEMS
DO, NEXT, EXIT DO

NS BASIC Handbook 13
SN Wibms s s i - I SLRI BN I s T 7. - S

MAKELINE Function

MAKEBITMAP(width, height, options)

MAKELINE(x/, y!, x2, y2)

MAKEOVAL (left, top, right, bottom)
MAKEPOLYGON(arrayOfPoints)

MAKERECT (left, top, right, bottom)
MAKEROUNDRECT (left. top, right, bottom, diameter)
MAKESHAPE (points)

MAKETEXT (string, left, top, right, bottom)
MAKEWEDGE(left, top, right, bottom, startAngle, arcAngle)

DESCRIPTION

The MAKE Functions create shapes that can be displayed in
windows with the WDRAW Satement. They each use pa-
rameters to describe the desired shape. For MAKEBITMAP,
the width and height in pixels of the blank bitmap are given.
The options parameter should be NI L. For MAKELINE, the
starting and ending X, Y coordinates are given. For MAKE-
OVAL and MAKERECT the coordinates of a bounding box
are given. For MAKEROUNDREC, an additional parameter
describes the diameter of the circle to use for the corners.
MAKETEXT uses a bounding box and a string to specify the
text. MAKEWEDGE uses a bounding box, the wedge angle
and arc angle. MAKESHAPE is used with ARRAYTO-
POINTS to create custom shapes.

NS BASIC Handbook

9 9 9 B B B S H

DD DD DD DD

A A A ?

EXAMPLE

10 REM WODRAW Example

ZB)P;ISpec-{viewBounds: SETBOUNDS(1@, 10, 150,
75

30 WINDOW WinNum, W1Spec

40 SHOW WinNum

50 WORAW WinNum, [MAKELINE(SS,15,75,45),
MAKEOVAL(10,10,40,40)], {penSize:2,
penPattern:vfGray, fillPattern:vfBlack}

OUTPUT

\
N
\
N\

RELATED ITEMS
ARRAYTOPOINTS, DRAWINTOBITMAP, SETICON,
WDRAW, WINDOW

MAKEPACKAGE Command

MAKEPACKAGE programName

DESCRIPTION

MAKEPACKAGE creates a stand-alone package in the Ex-
tras drawer. The name in the Extras drawer is the name pro-
gramNome was SAVEd as. All stand-alone packages use a
default icon in the extras drawer.

P 9 9 9 9 9

You can use the SETICON Statement to use a custom icon
for a stand-alone package. Set the icon to the desired bitmap
before you create the stand-alone package. The complete
name of the package is programName.pkg:NSBASIC. The
name displayed in the Extras drawer is programName.

EXAMPLE

10 REM MAKEPACKAGE Example

20 PRINT "Enter starting principal”

3@ INPUT principal

40 PRINT "Enter interest rate as % (i.e. 10)"
5@ INPUT rate

60 PRINT "Enter term (i.e. 12 for monthly)"
70 INPUT term

80 PRINT "Enter number of years"

99 INPUT years

100 REM Compute final interest

110 rate = rate * 0.01 / term

120 PRINT "After ";years;" years the balance
is: "; compound(rate, years*term) * principal
138 END

* SAVE INVEST

INVEST saved.

* MAKEPACKAGE INVEST

OUTPUT
-

RELATED ITEMS
SETICON

y @ P D99 vV 9 9 VvV VP YIDPDSYY

li; NS BASIC Handbook

MAX Function

MAX(x, y)
FMAX(x, y)

DESCRIPTION
MAX returns the maximum value of the two integers x and

Y-

L = FMAX returns the maximum value of the two real numbers
x and y.

-
EXAMPLE
10 REM MAX Example

3 20 PRINT "Please enter a number"”

3@ INPUT Numberl
40 PRINT "Please enter a second number”

. 5@ INPUT Number2
6@ PRINT "The largest number entered was " ;
- MAX(Numberl,Number2)
OUTPUT
€ Please enter a number
7 12
- Please enter a second number
" ?7 108.727
The largest number entered was 108.727
' -
RELATED ITEMS
e MIN
€
L&
L3
L3
t.
'—
v NS BASIC Handbook "

MIN Function

MIN(x, y)
FMIN(x, y)

DESCRIPTION
MIN returns the minimum value of the two integersx andy.

FMIN returns the minimum of the two real numbersx andy

EXAMPLE

10 REM MIN Example

20 PRINT "Please enter a number"

30 INPUT Numberl

49 PRINT "Please enter a second number"

S8 INPUT Number2

60 PRINT "The smallest number entered was " ;
MIN(Numberl,Number2)

OUTPUT

Please enter a number

7 72.820

Please enter a second number

7 102

The smallest number entered was 72.820
L]

RELATED ITEMS
MAX

e NS BASIC Handbook

MOD Function

x MOD y
x FMOD y

DESCRIPTION
MOD rewrns the modulus of the integers x and y.

FMOD returns the modulus of the reals x and y.

Note: MOD is not the same as REMAINDER.

EXAMPLE

10 REM MOD Example

2@ REM This program takes two numbers and
computes their modulus.

30 PRINT "Please enter two numbers."

49 INPUT Numberl,Number?2

50 Result = Numberl MOD Number2

60 PRINT "The modulus of ™ ; Numberl ; " and
" 5 Number2; " is " ; Result

OUTPUT
Please enter two numbers.

i g9

The modulus of 7 and 5 is 2.
L

RELATED ITEMS
REMAINDER, FMOD, DIV

NS BASIC Handbook " e

I

MONTH Widget

WINDOW winNum, windowSpec, "MONTH"

DESCRIPTION

The MONTH widget provides a display of a single month.
The days of the month can be selected as in the Dates appli-
cation.

The widget is controlled using the windowSpec. These fields
are supported:

selectedDates: Anarray of integers (from the TIME()
function) representing the selected dates. The first date
determines which month is displayed. if no value is sup-
plied, the current month is displayed

noSelection: TRUE if MONTH is display-only

singleDay: TRUE if only a single day may be selected

You may also use these fields in windowSpec view-
Bounds, viewFlags, viewFont, GOTO,
GOSUB, viewFormat.

EXAMPLE

10 REM MONTH Example

20 wiSpec = {}

30 WINDOW wl, wiSpec, “MONTH"

40 SHOW wl

OUTPUT
smtwe (s

1234

Sé6768 %011
12131415161718
19*-’22 324 25
26 ’anman

RELATED ITEMS

HIDE, SHOW, TIME, DATEPICKER, WINDOW

120 NS BASIC Handbook

® ® ® % & & & & & @ o

T T % %Y 980

NEW Command

NEW

DESCRIPTION

NEW clears the active memory of all program and variable
information. This allows you to create a new NS BASIC
program.

EXAMPLE

10 REM NEW Example

20 PRINT "Hello World!"
* NEW

* LIST

OUTPUT
.

RELATED ITEMS

NS BASIC Handbook 121

—ﬁ

| NEWSETCLOCK Widget
U)
WINDOW winNum, windowSpec, "NEWSETCLOCK" U
DESCRIPTION Pl

The NEWSETCLOCK widget provides the standard New-
ton clock face for time display and entry. The clock face is

drawn scaled to the supplied viewBounds, Whenever either e
clock hand is changed by the user, your GOTO or GOSUB
routine will be called. You access the user's selection using: L]
hours = windowSpec.hours
minutes = windowSpec.minutes L
The widget is controlled using the windowSpec. These fields
are supported: -
hours: current setting of the hour hand (or the current
hour if not supplied) -
| minutes: current setting of the minute hand (or the cur-
| rent minute if not supplied) -
You may also use these fields in windowSpec view-
Bounds, viewFlags, GOTO, GOSUB, view- -
Format.
EXAMPLE S
10 REM NEWSETCLOCK Example
20 wiSpec = {}
30 WINDOW wl, wiSpec, "NEWSETCLOCK" >
40 SHOW wl
100 REM A selection was made >
110 PRINT "Hours: "; wiSpec.hours; ", Minutes:
": wlSpec.minutes
»
OUTPUT
»
»
RELATED ITEMS »
HIDE, SHOW, SETCLOCK, WINDOW »
»
i S A s = L

T A NN T T YT T T T T %" " % ® % 8 8 & 8 &

NEXT Statement

NEXT variable

DESCRIPTION

NEXT causes another iteration of the nearest preceding
FOR Statement. The variable must match the variable used
in the corresponding FOR Statement.

EXAMPLE

10 REM FOR/NEXT Example
20 FOR 1 = 1 TO 5

30 PRINT 1

40 NEXT 1

OUTPUT

U BN

RELATED ITEMS
FOR

NS BASIC Handbook 123

NOTIFY Function ’

L4
NOTIFY (header, message) -
DESCRIPTION .
NOTIFY displays a standard Newton notification box con-
wining the header and message specified. Program execu-
tion continues after the notice is displayed. The function *
returns a frame. If the user closes the notification display,
the seenBylUser field of the frame is set to TRUE .
EXAMPLE
10 REM NOTIFY Example ®
20 NOTIFY("Demo Program”,"There has been an
unexpected error”) P
3@ END
OUTPUT »
‘ @ Demo Program 1 »
1 There has been an unenpedted ‘
errer }
>
|
!
) »
o)
o e T ®
RELATED ITEMS
L
LY
~
\
\
\
\

124 NS BASIC Handbook \

r

L N NN N E EEEEENE N BN BN B B

NUMBERPICKER Widget

WINDOW winNum, windowSpec, “NUMBERPICKER"

DESCRIPTION

The NUMBERPICKER widget displays the standard Newton
number picker. A number can be entered by tapping on the
number display.

The widget is controlled using the windowSpec. These fields
are supported:

value: An integer representing the selected number. The
initial value of this field determines the initial display.
minValue: The minimum allowed value.

maxValue: The maximum allowed value. This number is
used to determine how many digits to display. Seven digits
are shown if maxValue is not specified.

showlLeadingZeros: TRUE to display them, NIL to
hide them.

viewBounds: The width is calculated automatically
based onmaxValue. The Left value is then calculat-
ed from the supplied right value. The height
(bottom - top) should be 32.

You may also use these fields in windowSpec viewFlags.
GOTO, GOSUB.

EXAMPLE

10 REM NUMBERPICKER Example

20 wiSpec = {GOTO: 100, value: @}
30 WINDOW wl, wlSpec, "NUMBERPICKER"
40 SHOW wl

100 REM value changed

11@ PRINT “"Value is: "; wlSpec.value

0000000

RELATED ITEMS
HIDE, SHOW, WINDOW

NS BASIC Handbook 125

NUMBERSTR Function

NUMBERSTR (number)

DESCRIPTION

NUMBERSTR returns a string representation of number.
number may be of any numerical type. You may manipulate
the resulting string using the other string functions. Num-
bers in string format cannot be used in calculations or nu-
meric expressions.

EXAMPLE

10 REM NUMBERSTR Example

20 Number = 127.924

3@ PRINT "Number is " s Number

40 PRINT "String representation is -
NUMBERSTR(Number)

OUTPUT
Number is 127,924
String representation is 127.924

RELATED ITEMS
STRINGTONUMBER

NS BASIC Handbook

e

4

T EEEEEEEXX)

TAAT AT AT NYT T AN

ON ERROR GOTO Statement

ON ERROR GOTO lineNumber

DESCRIPTION

ON ERROR GOTO enables program error handling. Once
error handling has been enabled, all errors detected cause
NS BASIC to immediately GOTO lineNumber. If lineNumber
does not exist execution stops and an error message is dis-
played. Program error handling may be disabled using

ON ERROR GOTO @

This tells NS BASIC to perform standard error processing
from now on. Execution stops and the error number is
printed when there is an error.

Note: Division by Zero does not cause an error.

EXAMPLE

10 REM Error Checking Example
20 ON ERROR GOTO 6@

30 x = 1+"2"

49 ON ERROR GOTO @

5@ END

60 PRINT "Error Routine”

OUTPUT

Error Routine
-

RELATED ITEMS

NS BASIC Handbook 127

ON GOTO/GOSUB Statement

ON expression GOTO lineList
ON expression GOSUB fineList

DESCRIPTION

ON GOTO performs a GOTO to one of the lines in lineList,
depending on the value returned when expression is evaluat-
ed.

ON GOSUB performs a GOSUB in the same manner as ON
GOTO.

Expression can be any numeric expression. It is evaluated and
rounded to an integer, and is then used to select one line
from lineList. lineList consists of a list of program line num-
bers separated by commas. The value of expression deter-
mines which of these lines the program will branch to. The
value of expression is used as an index into lineList. The index
of the first line number in lineList is one. If expression evalu-
ates to more than the number of arguments in linelList, the

line following the ON GOTO/GOSUB Statement is execut-

ed.

128 . NS BASIC Handbook

EXAMPLE

1@ REM ON GOSUB/GOTO Example

20 PRINT "Please enter a value for
expression..."

30 INPUT Expression

49 ON Expression GOTO 5@, 7@, 9@
5@ PRINT "Routine #1"

6@ END

7@ PRINT "Routine #2"

80 END

90 PRINT "Routine #3"

ouTPUT
Please enter a value for expression...
72

Routine #2

* RUN

Please enter a value for expression...
?71.4

Routine #1

* RUN

Please enter a value for expression...
70

Routine #1
-

RELATED ITEMS
GOSUB, RETURN, GOTO

NS BASIC Handbook 129

Statement

OPEN chan, fileName [key]

DESCRIPTION

OPEN prepares file fileName for data storage, retrieval, and
deletion. The channel number for the open file is assigned to
chan. You must use chan to refer to the open file in GET,
PUT, and DEL Statements.

fileName is a quoted string literal or string variable contain-
ing the name of the file to be opened either in your
Newton's internal memory or on the storage card currently
installed in the Newton. Please refer to the Memory and
Storage section of your Newton Handbook regarding con-
trolling where new information is stored.

key is the name of the field used for ordering and fast access
The file must have been created with the same key used by
the CREATE Statement.

OPEN uses a variable named FSTAT to indicate that the file
was either opened or not opened. FSTAT will be set to one
of three values

0 fileName opened successfully

| fileNeme not found

2 fileName found, but key not valid

Note: You should avoid using a variable named FSTAT for
your own purposes

130 NS BASIC Handbook

r

-\ ™ m A A M AMewmThT e T T %" %" & ® ® 2 2

EXAMPLE

10 REM OPEN file Example

20 PRINT "A file will be opened for data
transfer."”

30 OPEN CH,"Names"

49 IF FSTAT < @ THEN STOP

50 GET CH,FIRSTNAME

60 PRINT FIRSTNAME.Name.last

OUTPUT
RUN
John

-

(The name above will be the first surname of
your “Names" record on your Newton)

RELATED ITEMS
CREATE, GET, PUT, DEL

NS BASIC Handbook 131

Function

ORD(x)

DESCRIPTION
ORD returns the numeric representation of character x.
You must supply a character for x.

EXAMPLE

10 REM ORD Example

20 PRINT "Please enter a string"

30 INPUT X

6@ PRINT "The ORD of the first character of X
is ";0RD(X[@])

OouUTPUT
Please enter a string

7 ABC

The ORD of the first character of X is 65
L]

RELATED ITEMS
CHR

132 NS BASIC Handbook \

4
R N % % B ® 2 ® o

PARAGRAPH widget

WINDOW winNum, windowSpec. "PARAGRAPH"

DESCRIPTION
The PARAGRAPH widget provides a text display area that
does not scroll, It is very similar to a WINDOW.

The widget is controlled using the windowSpec. These fields
are supported:

text: The text displayed

You may also use these fields in windowSpec view-
Bounds.viewFlags.viewFont.viewFor—
mat.

EXAMPLE

10 REM PARAGRAPH Example

20 wiSpec = {}
30 WINDOW w1, wiSpec, "PARAGRAPH"

49 SHOW wl

OUTPUT

aragraph

RELATED ITEMS
HIDE. SCROLLER, SHOW, TEXT, WINDOW

;—g

PICKER

WINDOW winNum, windowSpec, "PICKER"
DESCRIPTION

The PICKER widget provides a pop-up list of choices the
user may select from. Once a selection is made, the widget
is hidden

The widget is controlled using the windowSpec. These fields
are supported:

pickItems: The pick list, an array of strings, the symbol
"PICKSEPARATOR to draw a line, and frames.
Frames are in the form:
1tem: “item to display”,
pickable: TRUE, // or NIL if not pickable
mark: CHR(8730) // the checkmark to display
viewValue: The current selection (as a number from 0
to LENGTH(pickitems-1) from the pick list
You may also use these fields in windowSpec Bound (used
like viewBounds), viewFlags, viewFont,
GOTO, GOSUB, viewFormat

Note: Bound is a frame that contains the same four fields
as viewBounds. The Newton may actually move your

pop-up to a different location on the screen if it would not
fitin the location specified by Bound. The pickitems array
can contin up to 22 items for a MessagePad sized screen,
More than this will not fit

134 INiS BASIC Hamﬁ:ook »

R

EXAMPLE
10 REM PICKER Example

20 wlSpec = {GOTO: 200, pickItems:

["a","b","c"]}

30 WINDOW wl, wlSpec, "PICKER"
40 SHOW wl

50 WAIT 1000

60 END

200 PRINT "You picked item: ";

wlSpec.viewValue

You picked item: 2

OUTPUT

RELATED ITEMS
HIDE, SHOW, WINDOW

NS BASIC Handbook

" m|55

PICTUREBUTTON dget

WINDOW winNum, windowSpec, *PICTUREBUTTON"

DESCRIPTION

The NUMBERPICKER widget displays the standard Newton
number picker, A number can be entered by tapping on the
number display.

The widget is controlled using the windowSpec. These fields
are supported:

i con: the icon to display.
You may also use these fields in windowSpec

viewBounds, viewFlags, GOTO, GOSUB.

EXAMPLE

10 REM PICTUREBUTTON Example

20 shape-[MAKERE(T(I,1,30.30).
MAKETEXT("1",12,10,21,21)]

30 myIcon:-MAKEBITMAP(BZ.}Z.NIL)

40 DRAWINTOBITMAP(shape, NIL, mylcon)
5@ wiSpec = {icon: myIcon, GOTO: 200,
viewBounds: SETBOUNDS(101, 101, 132, 132)}
60 WINDOW wl, wlSpec, “PICTUREBUTTON"
70 SHOW wl

80 WAIT 1000

99 GOTO 8@

200 HIDE

210 PRINT "Tapped.”

OUTPUT

RELATED ITEMS
HIDE, SHOW, MAKEBITMAP, DRAWINTOBITMAP,
WINDOW

— e wc w -

_-_e- - s> s > > sy

POINTSTOARRAY Function

POINTSTOARRAY (points)

DESCRIPTION

POINTSTOARRAY returns a shapeArray. The format of
points is described in the reference page for the DRAW wid-
get, and shapeArray is described in the ARRAYTOPOINTS
Function.

EXAMPLE

10 REM POINTSTOARRAY Example

20 dSpec := {viewBounds: SETBOUNDS(1, 1, 239,
318), viewFlags: VSHAPESALLOWED + VCLICKABLE
+ VGESTURESALLOWED}

30 WINDOW drawWin, dSpec, "DRAW"

49 spec := {GOTO: 90}

50 WINDOW quitWin, spec, "LARGECLOSEBOX"

6@ SHOW drawWin, quitWin

70 WAIT 1000

80 GOTO 0070

9@ REM User Tapped Close Box

100 IF LENGTH(dSpec.windowSpec.viewChildren)
< 1 THEN GOTO @120

11@ PRINT "First Drawing: “;
POINTSTOARRAY(drawSpec.windowSpec.viewChildr
en[@] .points)

120 HIDE

130 END

OUTPUT
* run

(Draw a square and tap the Close box)

First Drawing: [11,5,0,0,0,45,60,45,60,0,0,0]
RELATED ITEMS

ARRAYTOPOINTS, DRAW, WINDOWS

NS BASIC Handbook 137

—77

POW Function g
L4
POW(x.y) B
DESCRIPTION
POW returns the value of x raised to the power of y. x and .
y may be integer or real numbers.
-
EXAMPLE
1@ REM POW Exomple
20 PRINT "Please enter o number” o
30 INPUT X
40 PRINT "Please enter power to raise to" -
5@ INPUT Y
60 PRINT "X to the power Y 1S " POW(X,Y)
»
OUTPUT
Please enter a number -
7 16
Please enter power to raise to
72 -
X to the power Y is 256
»
RELATED ITEMS
SQRT \
\

138 NS BASIC Handbook

S

®* % ® ® ® & & & &

- e, s m s s ™

PRINT Statement

PRINT [expression| [,expression2]]

: [expression| [,expression]]

DESCRIPTION
PRINT evaluates each expression and outputs it to the

screen. Variables, strings, and numerical expressions can all
be output by NS BASIC using the PRINT Statement. If the
PRINT Statement is used on its own, 2 blank line is output.
PRINT is automatically substituted by NS BASIC when a
semicolon is used as the first character in a line. A comma
between arguments moves the output to the next tab. Tabs
are 10 spaces apart. A semicolon between the expressions
leaves no spaces.

When a comma or a semicolon is placed at the end of a
PRINT Statement, the output from the next PRINT State-
ment will continue on the same line.

If the printed expression is longer than the screen width, it
will wrap around to the next line.

EXAMPLE

10 REM PRINT Example

20 PRINT "The PRINT Command"

30 PRINT

40 : "Can be used to separate”, "text"
59 ; "Or Join Numbers and Text"

6@ PRINT 10*10; " Llaomas"

OUTPUT
The PRINT Command

Can be used to separate text
Or Join Numbers and Text
10@ Llamas

RELATED ITEMS

NS BASIC Handbook 139

Statement

PUT chan, variable

DESCRIPTION

PUT writes data to a file. The file is specified by chan. chon is
the number returned from the OPEN or CREATE State-
ments. Variable is a frame to be written.

if you wish to update a record in a file, use GET to retrieve
the frame. Update the elements as needed, but do not
change the key element. Use PUT to replace the updated
frame.

If GET was not used to retrieve the frame, or if you change
the key element of the frame, a new record is created.

The key specified on OPEN must be an element in variable.
The key must be a string.

PUT uses a variable named FSTAT to indicate that the
record was either written or not written. FSTAT will be set
to one of two values:

0 variable written successfully

| varioble not written

Note: You should avoid using a variable named FSTAT for
yOUur Own purposes.

NS BASIC Handbook

EXAMPLE(S):

10 REM PUT Example

20 REM Creates a file...prompts for some
information, stores then deletes it.

49 CREATE chan, "EXAMPLEFile", keyname
45 IF FSTAT=1 THEN STOP // CREATE error
5@ PRINT "Please enter some key data...”
60 INPUT FileKey

70 fileRecord = {}

8@ fileRecord.keyname = FileKey

9@ PUT chan, fileRecord

10@ IF FSTAT=1 THEN STOP // PUT error
110 PRINT "Data now in file is..."

120 GET chan,FetchedData,FileKey

130 IF FSTAT=1 THEN STOP // GET error
140 PRINT FetchedData

150 PRINT "Deleting Record From File"
16@ DEL chan,FetchedData

OUTPUT

Please enter some data...

7 Lemons and Llamas

Data now in file 1is...

{KEYNAME : "Lemons and Llamas",_uniqueID:@}
Deleting Record From File

-

RELATED ITEMS
CREATE, OPEN, GET, DEL

NS BASIC Handbook 141

RANDOM Function ’

RANDOM (low, high) o

DESCRIPTION
RANDOM returns a random number between low and high.

EXAMPLE -
10 REM RANDOM Example

20 REM Displays 1@ random numbers between 5

and 15 e
39 FOR i = 1 to 10

49 PRINT RANDOM(S,15) -
5@ NEXT 1

OUTPUT >
6

8

13 -
7

g -
8

12 >
14

]

s >
RELATED ITEMS ~
RANDOMIZE

142 NS BASIC Handbook

RANDOMIZE Statement

RANDOMIZE [seed]

DESCRIPTION
RANDOMIZE seeds the random number generator with
seed. When seeded with the same number, the RANDOM
function will return the same sequence of numbers. To gen-
erate virtually random numbers do not enter seed. The de-
fault setting for seed is the number of ticks since system
startup.

EXAMPLE

10 REM RANDOMIZE Example
20 RANDOMIZE 34

30 FOR 1 = 1 to 10

40 PRINT RANDOM(1,10@)
S@ NEXT i

OUTPUT

U1 0o 0o WO W

10
10

NN

RELATED ITEMS
RANDOM

READ Statement

READ variable | [,variable2]...[,variableN]

DESCRIPTION
READ reads the next value or values from the DATA

Statement.

A READ Statement must always be used together with one
or more DATA Statements. READ assigns DATA Statement
values to variables

A single READ Statement may access one or more DATA
Statements, or several READ Statements may access the
same DATA Statement.

If the number of variables in the variable list (variable/ ... van-
ableN) exceed the number of elements in the DATA State-
ments an "End of Data" error results. If the number of
variables specified is fewer than the number of elements in
the DATA Statement(s), the next READ Statement will be-
gin reading data at the next unread element. If there are no
following READ statements, the extra data is ignored. To
reset the list of DATA items, use the RESTORE Statement.

144 NS BASIC Handbook

EXAMPLE

10 REM READ Example

20 DATA 0.76,3.55,7.80
25 DATA 9.96,6.32,8.15
30 FOR i = 1 TO 10

49 READ a

5@ PRINT a

6@ NEXT 1

on

PO DONNWES
O
o

RELATED ITEMS
DATA, RESTORE

T N e . T T U N S Y

(NS BASIC Handbook

Statement

REM remark

DESCRIPTION

REM Statements are used to insert comments into a pro-
gram. They are not processed when a program is executed
if a REM Statement is encountered while a program is run-
ning NS BASIC skips the line and continues with the execu-
tion of the program

Comments may also be added to the end of any Statement
(except GOTO and GOSUB) by preceding them with the
characters "/I"

When a REM Statement is the target line for a GOSUB or
GOTO Statement, NS BASIC places the remark after a dou-
ble backslash at the end of the GOSUB or GOTO
Statement.

EXAMPLE
10 REM REM Example 1

1S A=1 // Set A to 1

20 PRINT "This line is printed"”

30 REM But this line is not printed
40 REM Neither is this one

OUTPUT
This line is printed
-

146 NS BASIC Handbook

R

<
"
3
¢
¢
€
¢
¢
€
L §
€
L §
L8
<
(S
[
[
(S
~
-~
“

EXAMPLE

10 REM REM Example 2

20 REM It shows how the REM Statement is used
with

3@ REM GOSUB and GOTO Routines.
40 GOSUB 70

5@ PRINT "Return from GOSUB"
6@ END

70 REM Notice the Backslashes
80 PRINT "Here I Am!"

9@ RETURN

OUTPUT

* LIST

0010 REM REM Example 3

0020 REM It shows how the REM Statement is used
with

9030 REM GOSUB and GOTD Routines.

0040 GOSUB @@7@ //Notice the Backslashes
9050 PRINT "Return from GOSUB"

0060 END

0070 REM Notice the Backslashes

0080 PRINT "Here I Am!"

0099 RETURN

-

RELATED ITEMS
GOsuB, GOTO

NS BASIC Handbook 147

REMAINDER Function

REMAINDER(x.y)

DESCRIPTION
REMAINDER returns the remainder of x divided by y.

The result my be surprising: REMAINDER(12.7) is 2(12is
2 short of 14, a number that is evenly divisible by 7.) The
MOD function will return the modulo of two numbers.
MOD(12.7) is 5.

EXAMPLE

1@ REM REMAINDER Example

20 REM This program tokes two numbers and
computes the remainders of their division.
30 PRINT "Please enter two numbers.”

49 INPUT Numberl,NumberZ

5@ PRINT "The Remainder of “ ; Numberl ;
divided by * ; NumberZ; " 1s =8
REMAINDER(Numberl, Number2)

OUTPUT

Please enter two numbers.

1.7 o

The Remainder of 7 divided by 5 is 2.

RELATED ITEMS
MOD, FMOD, DIV

148 NS BASIC Handbook

B L

REMOVESLOT Function

REMOVESLOT (frame, slotName) |

DESCRIPTION
REMOVESLOT deletes the field specified by the symbol in
slotName. Returns NIL.

EXAMPLE

10 REM REMOVESLOT Example

20 aFrame = {name: "Fred", fridge: NIL}
30 REMOVEslot(aFrame, 'fridge)

40 PRINT aFrame

OUTPUT
{name: "Fred"}
-

RELATED ITEMS
ELEMENTS, HASSLOT

NS BASIC Handbook 149

RENUM Command

RENUM [startline [,endline [increment [base]]])

DESCRIPTION

RENUM renumbers the lines of the currently LOADed pro-
gram. stortline and endline mark the range of line numbers in
the program to be renumbered. increment is the numbering
difference to use between each line. base is the first line
number to use.

If a line already exists where a renumbered line is supposed
to be placed, error B — Renum overlap is signaled and the
program is left unchanged

if base is not specified NS BASIC starts numbering from line
10. RENUM will also correct references in GOTO and
GOSUB Statements which change as a result of the
RENUMbering.

EXAMPLE

10 REM RENUM Program

20 PRINT "This is line 0020"
3@ PRINT "This is line 0030"
40 PRINT "This is line 0040"
5@ PRINT "This is line 0050"

OuUTPUT

* RENUM 20,40,20,60

0010 REM RENUM Program

0250 PRINT "This is line 9050"
0060 PRINT "This is line 9020
0080 PRINT "This is line 9030"
0100 PRINT "This is line 9040"

RELATED ITEMS

150 NS BASIC Handbook

€
€
<
<
<
<
<
<
-~
“~
-~

. " "R

REPLACE Command

REPLACE fileName

DESCRIPTION

REPLACE overwrites a previously SAVEd program. Quota-
tion marks are required for fileName. If there is no file
named fileName, REPLACE simply creates a new file. If there
is a file named fileName REPLACE overwrites the file with
the program in active memory,

REPLACE with no fileName is not valid if the current pro-
gram has not been SAVEd yet

EXAMPLE
* REPLACE “"Llamas"

OUTPUT
Llamas saved
-

RELATED ITEMS
SAVE, LOAD, DELETE, RM, DIR

e

RESTORE Statement

RESTORE [lineNumber]

DESCRIPTION

RESTORE allows DATA Statements to be re-read from line
fineNumber

When a RESTORE Statement is executed with lineNumber,
the next READ Statement will access the first element in the
specified DATA Statement. When lineNumber is not given,
the next READ Statement will access the first element of the
first DATA Statement.

EXAMPLE

110 REM RESTORE Exomple
20 DATA ©.76,3.55,7.80,2.
25 DATA 9.96,6.32,8.15,6.
39 FOR i = 1 TO 4

40 READ a

S@ PRINT a

60 NEXT 1

70 RESTORE 20

BO FOR j = 1 TO 4

99 READ b

160 PRINT b

110 NEXT j

5,9.52
1,9.73

6
61,9.

OUTPUT
.76
.55
.80
.65
.76
i
.80
.65

NSNWESNNWS

RELATED ITEMS
DATA, READ

152 NS BASIC Handbook

A B e . . O TR, T, O R, U, N, I, B L L L

RETURN Statement

RETURN

DESCRIPTION
RETURN causes NS BASIC to return from a previous
GOSUB Statement.

A GOSUB causes NS BASIC to branch to a subroutine. RE-
TURN makes NS BASIC return from a GOSUB. Program
execution begins again at the line following the original
GOSUB.

EXAMPLE

10 REM RETURN Example

2@ PRINT "Beginning of Program'
30 GOSUB 0060 // Subroutine # 1
4@ PRINT "End of Program"

5@ END

60 REM Subroutine #1

70 PRINT "Here I am!"

8@ RETURN

OUTPUT

Beginning of Program
Here I am!

End of Program

L]

RELATED ITEMS
GOSUB, REM

NS BASIC Handbook 153

REVUP Command

REVUP

DESCRIPTION

REVUP converts all the programs on the default store of
your Newton to the current revision of NS BASIC. Enter
REVUP by itself after you install a new version of NS BASIC
This command can take a while to complete, depending on
how many and how long your programs are You can use
REVUP in version 2.04 or later of NS BASIC, so if you'd like
to install one of the older versions just enter REVUP again
after installing the application.

EXAMPLE
* REVUP

OUTPUT
.

RELATED ITEMS

|54 NS BASIC Handbook

L
¢
o
8
L 8
L 8
L S
LS
L §
LS
LS

R T R I T T B B N

l

Function

ROUND(x)

DESCRIPTION

ROUND returns a real number that contains the rounded
integral value. X is rounded upwards if it is greater or equal
to 0.5, otherwise it is rounded downward.

EXAMPLE

10 REM ROUND Example

20 REM ROUNDS three numbers and adds them
together.

30 PRINT "Please enter three numbers"

49 INPUT Numberl,NumberZ,Number3

5@ Total = ROUND(Numberl) + ROUND(Number2) +
ROUND(Number3)

6@ PRINT “The Total is = " ; Total

OUTPUT
Please enter three numbers
7 12,17.32,1.997

The Total is = 31

-

RELATED ITEMS

RUN Command

RUN [fileName | lineNumber]

DESCRIPTION
RUN begins execution of a program

If RUN is entered without arguments, NS BASIC executes
the entire program in active memory. if you provide
fileName, a NEW is performed and fileNome is then LOAD-
ed and executed.

if you provide lineNumber, NS BASIC starts execution of the
current program at fineNumber. Variables are not reset in
programs that are executed from a line

EXAMPLE

1@ REM Run Example
20 INPUT a

3@ PRINT a

* RUN

OUTPUT
7?7 Llamas
Llamas
* RUN 30
Llamas

RELATED ITEMS
CON

156 NS BASIC Handbook

SAVE Command
-
. SAVE fileName
. DESCRIPTION
Save writes the active program to the internal memory or
= storage card. You may include quotation marks around
fileName. NS BASIC automatically adds ".bas” to the end of
fileName. If fileName already exists an /O error will result.
. To replace an existing program, use the REPLACE
Command.
-
EXAMPLE
* SAVE "Llamas"”
-
OUTPUT
& Llamas saved
L]
< RELATED ITEMS
DIR, ENTER, LOAD, REPLACE
.
-
«
«
o«
«
<
«
<
«<
; o oo b S

T

_—7
SCROLLER Widget

WINDOW winNum, windowSpec, “SCROLLER™

DESCRIPTION

The SCROLLER widget provides a text entry area that
scrolls. When the user wishes to enter new text, they tap
on the mountain icon. The widget will expand to fill the en-
tire Newton screen, and the user can enter text. Tapping
the mountain icon again shrinks the widget back to its orig-
inal size. The scroll arrows scroll the widget in either view.
You extract the text entered by the user with this
expression:

enteredText = windowSpec.notes.text

The widget is controlled using the windowSpec. These fields
are supported:

text: The initial value

notes . text: The user entered or updated value

boxT1itle: The title on the edit box

ed1tO0K: TRUE if the user can edit the text

You may also use these fields in windowSpec V1ew-
Bounds, viewFlags

EXAMPLE

10 REM SCROLLER Example

20 wiSpec = {text: “"You can..."}
30 WINDOW wl, wlSpec, "SCROLLER"
40 SHOW wl

158 NS BASIC Handbook

- - - = =

- o~ - - E-2 - - E Y

- -,

Wous can enter text

wird ahd have 1
ecognized You can
lso scroll this
wndow to enter

s of text)

RELATED ITEMS

[Bewlite oW

You can enter text here and have il

recognized. You can also scroll this

window to enter lots of text!

HIDE, PARAGRAPH, SHOW, WINDOW

NS BASIC Handbook

-
SENDIRREMOTE Function

-
SENDIRREMOTE(irCode, count) -
DESCRIPTION &
SENDIRREMOTE uses the infrared port to transmit remote
control codes. A single remote control code is encoded in
the array irCode. This command will be transmitted count .
times, where count is at least one
The format of the contents of irCode is shown below. Each °
element is an integer.

e
irCode[0] you may place any value here
irCode(1] # of microseconds in each time unit
irCode[2] # of time units to pause before sending *
irCode[3] # of time units to pause before repeating
irCode[4] # of dme units to pause after sending E
irCode[5] must be zero
irCode[6..N] sequence of numbers representing the num- 2

ber of time units to remain in each state,

starting with OFF

Refer to the Technical Notes file on the disk for a detailed
description of infrared remote control programming.

NS BASIC Handbook

EXAMPLE
10 REM SENDIRREMOTE Example

20 t="01000101101110101110100000010111"

30 trans=[0,500,14,50,14,0,8]

35 zero="0"[0] // char @ (not string)}

40 FOR i=@ TO strlen(t)-1

5@ ADDARRAYSLOT(trans,1)

6@ IF t[i]=zero THEN ADDARRAYSLOT(trans,1)
ELSE ADDARRAYSLOT(trans,3)

70 NEXT 1

80 ADDARRAYSLOT(trans,1)

9@ ADDARRAYSLOT(trans,1)

100 SENDIRREMOTE(trans,1)

OUTPUT
(If you have a Pioneer CD, running this while

pointing the Newton at the CD Player will
cause it to start playing the disk)

RELATED ITEMS

SETCLOCK Widget

WINDOW winNum, windowSpec, "SETCLOCK"™

DESCRIPTION

The SETCLOCK widget provides a clock face for time dis-
play and entry. The clock face is always drawn such that it
uses a 64x64 pixel area. You must be sure that your supplied
viewBounds provides an area of this size. Whenever either
clock hand is changed by the user, your GOTO or GOSUB
routine will be called. You access the user’s selection using:

hours = windowSpec.hours
minutes = windowSpec.minutes

The widget is controlled using the windowSpec. These fields
are supported

hours: current setting of the hour hand (or the current
hour if not supplied)

minutes: current setting of the minute hand (or the cur-
rent minute if not supplied)

You may also use these fields in windowSpec v1ew-
Bounds, viewFlags, viewFont, GOTO, GOS -
UB,viewFormat.

EXAMPLE

1@ REM SETCLOCK Example

20 wiSpec = {}

30 WINDOW wl, wlSpec, "SETCLOCK"
40 SHOW wl

OuUTPUT

RELATED ITEMS
HIDE, SHOW, NEWSETCLOCK, WINDOW

162 NS BASIC Handbook

SETBOUNDS Function

SETBOUNDS(left. top, right, bottom)

DESCRIPTION

SETBOUNDS returns a viewBounds frame for use in a win-
dowSpec. When you use SETBOUNDS, you reduce the
amount of memory needed to store viewBounds frames. If
you create a large number of windows and widgets, the
memory savings can be significant.

EXAMPLE

10 REM SETBOUNDS Example

20 ngpec-{viewsoundsz SETBOUNDS(10, 5@, 200,
80)

3@ WINDOW Winl, WiSpec

40 SHOW Winl

OUTPUT
(a window with viewBounds: {left:10,
top:50, right:200, bottom:80} is
gisplayed)

RELATED ITEMS
WINDOW

NS BASIC Handbook 163

SETICON Statement

»
SETICON program, icon -
DESCRIPTION a
SETICON sets the icon that is displayed in the Extras draw-
er for a program. Use this Statement to supply a custom a

icon when creating a stand-alone package with the MACK-
PACKAGE Statement. the progrom paramater is a string val-
ue specifing the name of a previously SAVEd program. The a
icon parameter is a value returned from the MAKEBITMAP

f

uncuon .
EXAMPLE

10 REM SETICON Example Y
20 ws := {viewBounds: SETBOUNDS(100, 132, 100,

132)}

3@ shape := [MAKERECT(1,1,30,30), 5
MAKETEXT("$",12,10,21,21)]

40 icon:=MAKEBITMAP(32,32,NIL) \

5@ DRAWINTOBITMAP(shape ,NIL,icon)
60 SETICON "INVEST",icon

OUTPUT
(An icon of § is used by the INVEST program, \
when a stand-alone package is created from it)
.

RELATED ITEMS
DRAWINTOBITMAP, MAKEBITMAP, MAKEPACKAGE,

WINDOW

¢
«
«
L\
«
«
«
«
«

~ R R R R RO W A A A A

|

SETVALUE Function

SETVALUE(windowSpec, fieldName, value)

DESCRIPTION

SETVALUE updates a value of a field in a windowSpec for a
widget. The widget is re-displayed to reflect the new value.
NIL is always returned. If you just change the field value in
windowSpec without using SETVALUE, the Newton display is
not updated.

EXAMPLE

1@ REM SETVALUE Example

20 WiSpec={viewBounds:
SETBOUNDS(10,50,200,80)}

30 WINDOW Winl, WiSpec, "LabelInput"
40 SHON Winl

50 FOR i = 1 TO 10
GB&SETVALUE(NISper..entryline, ‘text, "Number:
" i.)

70 WAIT 100

80 NEXT 1

90 HIDE Winl

OUTPUT

(A label input widget is displayed and the
value in the entry line counts up from
Number:1 to Number:10.)

L]

RELATED ITEMS
WINDOW

NS BASIC Handbook 165

SHOW Statement

SHOW winNum | winNumibist

DESCRIPTION

SHOW displays the previously declared single window win-
Num or list of windows winNumiist on the screen winNum
and winNumlist use the number returned by the WINDOW
Statement. To hide windows use the HIDE Statement.

EXAMPLE

110 REM SHOW Example

20 W1Spec={ViewBounds: SETBOUNDS(10, 50, 100,
100)}

30 WINDOW Winl, WiSpec

40 WINDOW Win2, W2Spec

5@ WPRINT Winl, "Window 1"
6@ WPRINT Win2, "Window 2"
70 SHON Winl, Win2

80 WAIT

90 HIDE Win2

100 SHOW Win2

110 HIDE

OUTPUT
(Two windows are created and then removed from
the screen.)

RELATED ITEMS
HIDE, WINDOW, WPRINT

166 NS BASIC Handbook
T S e L N e TR

-~ T . R T T, -~ -~ -] -~ -~ - - - - - - -

SIGNUM Function

SIGNUM(x)

DESCRIPTION
SIGNUM returns the sign of x. It returns | if x is positive, 0
if x is zero, and -| if x is negative.

EXAMPLE

10 REM SIGNUM Example

20 PRINT "Please enter a number”

30 INPUT X

40 PRINT "SIGNUM of x is = " ; SIGNUM(X)

OUTPUT

Please enter a number
7 -4

SIGNUM of x is = -1

-

RELATED ITEMS

NS BASIC Handbook 167

SIN Function

SIN(x)
SINH(x)
ASIN(x)
ASINH(x)

DESCRIPTION
SIN returns the sine of the angle x in radians.

SINH returns the hyperbolic sine of x
ASIN returns the arc sine of x.

ASINH returns the arc-hyperbolic sine of x

EXAMPLE

1@ REM SIN Example

2@ PRINT "Please enter an angle”

3@ INPUT Angle

40 PRINT "The Sine of the angle is = " ;

SIN(Angle) ; radians”
OUTPUT

Please enter an angle
763.7

The Sine of the angle is = 9.763132715516785
radians

RELATED ITEMS
TAN, COS

168 NS BASIC Handbook

e e UL U T T U U SR U U U U U U U U - -, -

SLIDER Widget

WINDOW winNum, windowSpec, "SLIDER"

DESCRIPTION

The SLIDER widget provides a gauge that the user can set.
The value of the widget is a number from 0 (slider all the way
to the left) to 100 (slider all the way to the right). Whenever
the slider is changed by the user, your GOTO or GOSUB
routine will be called. You access the user's selection using:

setting = windowSpec.viewValue

The widget is controlled using the windowSpec. These fields
are supported:

viewValue: current setting of the slider from 0 to 100

You may also use these fields in windowSpec: view-
Bounds, viewFlags, viewFont, GOTO, GOS-
UB,viewFormat.

EXAMPLE

10 REM SLIDER Example

20 wlSpec = {}

30 WINDOW wl, wilSpec, "SLIDER"
49 SHOW w1

OUTPUT

RELATED ITEMS
GAUGE, HIDE, SHOW, WINDOW

NS BASIC Handbook 169

SORT Function ’

v
SORT (arroy, test, key) v
DESCRIPTION
SORT returns orroy sorted by test applied to the element '
key. Values for test are as follows
E
1<l Sort in ascending numerical order
=1 Sort in descending numerical order v
|str<| Sort in ascending string order °
'|str>| Sort in descending string order
L4
If key is NIL, the items of array are sorted directly by their
values. To sort an array where each element is a frame, put =
the name of the element to be sorted by as the third param-
eter, preceded by a " sign.
Ld
EXAMPLE |
10 REM SORT an array Example -
20 DIM A[3]
30 A[0]=23
49 A[1]=5 y
50 A[2]=54
60 A=SORT(A,'l<!,NIL) »
70 PRINT A[0],A[1],A[Z]
OUTPUT ’
5 23 54
»
v
v
0

170 NS BASIC Handbook

¢ EXAMPLE 2

10 REM SORT of array of frames Example
(Y 15 DIM a[4]

20 a[@]={name: "Arthur", seq: 2}
30 a[1]={name: "Ford", seq: 3}
40 a[2]={name: "Trill", seq: 1}
50 a[3]={name: "Zaphod", seq: 4}
60 o=SORT(a,'l<!, 'seq)
70 FOR i=0 TO 3
8@ PRINT a[i].name
99 NEXT i

OUTPUT
Trill
Arthur
Ford
Zaphod
-

RELATED ITEMS

m ® m e A PP

™ N N L Y T . . D T

NS BASIC Handbook m

SQRT Function

SQRT(x)

DESCRIPTION
SQRT returns the square root of the number x.

EXAMPLE

18 REM SQRT Example

20 REM This progrom returns the square root of
the number entered at the prompt.

38 PRINT “Please enter a number”

40 INPUT Number

50 PRINT “"Square root = " ; SQRT(Number)

OUTPUT
Please enter a number
72

ﬁquare root = 1.14121356237309

RELATED ITEMS
POW

W T A I T Y N TN Y Y Y N YT Y T rYY Y T

STATS Command
STATS

DESCRIPTION

STATS shows information on memory usage for the current
program.

Under the name of the currently loaded program are three
lines. The first line displays the number of lines of code for
the program, and how much active memory it uses.

The second line displays the memory used for code space.
The third line displays the remaining available memory.
Note: There is no direct correlation between the program
size and how much memory remains.

The remaining lines show the program build time and the
Environment Variables.

EXAMPLE
* STATS

OUTPUT
CurrentProgram: SCRATCH
410 bytes used for S5 statements
510 bytes used for code space
45232 bytes free,

Build:8/19/95 7:1@ am

ENV: {tag: "BASIC:NSBASIC", programName:
"SCRATCH,BAS:NSBASIC", serialNumber: xxxxxx,
useScratch: TRUE, io: "S@", inputPrompt: "? ",
s@:{ data:[9600 2 1 "no"] connect:
"Connected.

* " unpend:

}, Store: 1}

RELATED ITEMS
VARS

NS BASIC Handbook 173

STOP Statement

STOP

DESCRIPTION

STOP halts execution of the program, and plays a BEEP on
the Newton. The program may then be continued from the
line after STOP by using the CON Command. The STOP
Command can be used during debugging to STOP the pro-
gram at a certain line

EXAMPLE

10 REM STOP Example

20 PRINT "First Program Section”
30 STOP

40 PRINT “Second Program Section”

OUTPUT

First Program Section
Stop at 9030

* CON

Second Program Section

RELATED ITEMS
END, CON

174 NS BASIC Handbook

/A /A A R B A T s s, e e e e e @ e - e A

STRCOMPARE Function

STRCOMPARE(string |, string2)

DESCRIPTION

STRCOMPARE returns a negative number if string/ is less
than string2. It returns zero if string | and string2 are equal. It
returns a positive number if string | is greater than string2
This function is not case sensitive. The strings are compared
based on all the ASCII codes of the characters within them.

EXAMPLE
10 REM STRCOMPARE Example

20 REM User enters two items which are forced
into strings. Computer compares them.

30 PRINT "Please enter item 1"

40 INPUT Stringl$

50 PRINT "Please enter item 2"

6@ INPUT String2$

70 Result = STRCOMPARE(Stringl$, String2$)
80 IF Result = @ THEN PRINT "Strings are Equal"
9@ IF Result > @ THEN PRINT "Second string is
larger"

100 IF Result < @ THEN PRINT "First string is
larger”

OUTPUT
Please enter item 1

7 Hello World

Please enter item 2

? Llamas

First string is larger
L

RELATED ITEMS
STREQUAL

NS BASIC Handbook 175

STREQUAL Function

STREQUAL (string |, string2)

DESCRIPTION

STREQUAL returns TRUE if string| and string2 are equal. It
returns NIL for all other cases. This function is not case sen-
sitive. The strings are compared based on all the ASCil
codes of the characters within them

EXAMPLE

10 REM STREQUAL Example

20 REM User enters two items which are forced
into strings. Computer compares them,.

30 PRINT "Please enter item 1"

49 INPUT Stringl$

50 PRINT "Please enter item 2"

6@ INPUT String2$

70 Result = STREQUAL(Stringl$, String2$)

80 IF STREQUAL(Stringl$, String2$) THEN PRINT
"Strings are Equal” ELSE PRINT "Strings are

not Equal”

OUTPUT

Please enter item 1

? Hello World
Please enter item 2

? Goodbye World
Strings are not Equal
-

RELATED ITEMS
STRCOMPARE

176 NS BASIC Handbook

rﬁi

STRINGER Function

STRINGER(array)

DESCRIPTION

STRINGER returns a string containing all the elements in
array concatenated together. Numbers, characters, and
symbols are all converted to their string representation.
Elements that are frames, arrays or Booleans are converted
to an empty string.

EXAMPLE

10 REM STRINGER Example

20 REM Concatenates 3 array elements
30 DIM Array[3]

40 FOR i = @ TO 2

5@ PRINT "Please enter something”
6@ INPUT Element

70 Array[i] = Element

80 NEXT 1

90 PRINT "The result is..."

100 PRINT STRINGER(Array)

OUTPUT

Please enter something
? Hello

Please enter something
? World

Please enter something
7 17.9

The result is...
HelloWorldl7.9

L

RELATED ITEMS

NS BASIC Handbook 177

STRINGTOTIME Function ’

Al
STRINGTOTIME(string) »
DESCRIPTION »
STRINGTOTIME returns the TIME() value of string. string
must contain a string representation of a time, such as
"3:40 pm". L)
EXAMPLE L
10 REM STRINGTOTIME Exomple
20 theTime = STRINGTOTIME("3:40 pm")
30 PRINT theTime]
OuUTPUT ‘
48371980
-

A}

RELATED ITEMS
DIGITALCLOCK, TIME, TIMESTR

NS BASIC Handbook

STRINGTONUMBER Function

STRINGTONUMBER (string)

© DESCRIPTION

STRINGTONUMBER returns the real number value of
string. string MUST contain a string representation of a num-
ber, suchas "46" .

C EXAMPLE
10 REM STRINGTONUMBER Example
20 REM Places two "string" numbers together
and adds 5 to that number.
30 PRINT "Please enter 2 numbers”
« 49 INPUT Numberl$,Number2$
50 NewNumber = Numberl$ & Number2$
6@ PRINT "The numbers concatenated are... " ;
< NewNumber
7@ PRINT "The Numbers with 5 added are... " ;
STRINGTONUMBER(NewNumber)+5

OUTPUT
- Please enter 2 numbers
7557
The numbers concatenated are... 57
The Numbers with 5 added are... 62

RELATED ITEMS
NUMBERSTRING

d NS BASIC Handbook 179

="

STRLEN Function

STRLEN(string)

DESCRIPTION
STRLEN returns the number of characters in string

EXAMPLE

1@ REM STRLEN Example

20 PRINT “Enter a String”

30 INPUT string$

40 PRINT "There are " ; STRLEN(String$) ;
characters in the string”

OUTPUT

Enter a strin

7 Hello Hor?d

There are 11 charocters in the string

RELATED ITEMS

180 NS BASIC Handbook

STRPOS Function

STRPOS(string, substring, start)

DESCRIPTION

STRPOS returns the position of substring in string, or NIL if
substring is not found. The search begins at character posi-
tion start (the first character position is zero.) This function
is not case sensitive. The position returned is also numbered
from zero.

EXAMPLE

10 REM STRPOS Example

20 REM Looks for a substring in a user defined
string.

30 PRINT "Please enter a string”

49 INPUT String

50 PRINT "Please enter a string to look for"
60 INPUT Substring

70 Result = STRPOS(String,Substring,@)

80 IF Result = NIL THEN PRINT "Substring not
found" ELSE PRINT "Substring is at character
" ; Result

OUTPUT

Please enter a string

? This is a simple string
Please enter a string to look for
? Simple

Substring is at character 10

-

RELATED ITEMS
SUBSTR, STRLEN

NS BASIC Handbook 181

SUBSTR Function

SUBSTR(string, stort, count)

DESCRIPTION

SUBSTR returns a new string containing count characters

from string, starting at character stort. Character positions
begin with zero for the first character. if count is NIL, all

characters from stort to the end of string are returned

EXAMPLE

1@ REM SUBSTR Example

20 REM Creates a substring from the first 5
characters of a string.

30 PRINT "Please enter a string”

40 INPUT String

5@ Result = SUBSTR(String, 0, 4)

60 PRINT "The new substring 1s " ; Result

OUTPUT

Please enter a string

? Sample string

The new substring is "Somp"

RELATED ITEMS
STRPOS, STRLEN

a2 NS BASIC Handbook

TAN Function

e TAN(x)
ATAN(x)
ATAN2(x)

¢ TANH(x)
ATANH(x)

DESCRIPTION
- TAN returns the tangent of the angle x in radians.

ATAN returns the arc tangent of x.

ATAN2 returns the arc tangent of x/y in [-mx].

¢ TANH returns the hyperbolic tangent of x.
ATANH returns the arc-hyperbolic tangent of x.
‘I’
EXAMPLE
« 10 REM TAN Example
20 PRINT "Please enter an angle"
30 INPUT Angle
« 40 PRINT "The tangent of the angle is = " ;
TANCAngle) ; " radians"
F
OUTPUT
Please enter an angle
o« ? 72
The tangent of the angle is =
4 -0.262417377501932 radians
L
- RELATED ITEMS
COS, SIN
F
-
"
f

- NS BASIC Handbook 183

TEXT Widget

WINDOW winNum, windowSpec, “TEXT"

DESCRIPTION

The TEXT widget provides a text entry area that does not
scroll. Hand written entry in this area will be recognized and
converted into text. The viewFlags field of the window-
Spec can be used to indicate which recognition should be at-
tempted. You extract the text entered by the user with this
expression:

enteredText = windowSpec.text

The widget is controlled using the windowSpec. These fields
are supported:

text: The text displayed and entered by the user

viewlLineSpacing: spacing of the lines, in pixels

You may also use these fields in windowSpec V1 ew-
Bounds, viewFlags, viewFont, viewFor-
mat

EXAMPLE

10 REM TEXT Exomple

20 wiSpec = {text: "Input..."}
30 WINDOW wl, wlSpec, “TEXT"
40 SHOW wl

OUTPUT

RELATED ITEMS
HIDE, PARAGRAPH, SCROLLER, SHOW, WINDOW

184 NS BASIC Handbook

(« ¢ TICKS Function
£
d 1€ TICKS()
(€ DESCRIPTION
TICKS returns the number of ticks of the system clock. A
tick is 1/60th of a second. There is no defined starting time
(¢ for ticks. TICKS are used to measure intervals and durations
of time.
i M€
EXAMPLE
10 REM TICKS Example
¢ 20 Oldtime = TICKSQ)
30 PRINT "Tap any key, then the enter key when
(ready"
49 INPUT AS
50 Newtime = TICKS()
¢ 60 PRINT (Newtime-Oldtime) / 6@ ; " Seconds
passed”
(OUTPUT
Tap the enter key when ready
{ ?
12.83333333 Seconds passed
]
(
RELATED ITEMS
{ TIME, HOURMINUTE, DATENTIME
{
(
(
(
(
(
(

(NS BASIC Handbook 185

| T e

TIME Function

TIME() ~

DESCRIPTION

TIME returns the current time in minutes as an integer, This
is the number of minutes passed since midnight, January |,
1904, Use the HOURMINUTE and DATENTIME Functions -
to process the number returned by TIME

EXAMPLE

10 REM TIME Example

20 PRINT "The Number of Minutes passed since ~
01/01/04 is..." ; TIMEQ)

380 PRINT "The Current Date and Time is " ;
DATENTIMECTIME(C)) -
OUTPUT -

The Number of Minutes passed since @01/01/04

is... 47526491

The Current Date and Time is 5/20/94 2:05 AM -
-

RELATED ITEMS
DATENTIME, HOURMINUTE

184 NS BASIC Handbook

TIMESTR Function

TIMESTR (timeValue, option)

DESCRIPTION
TIMESTR returns a string representation of the timeValue.

The option paramaters controls how the string is formatted.

0 "HH:MM:SS AM/PM"
1 Hours

2 Minues

3 Seconds

4 AM/PM

The DIGITALCLOCK widget returns a timeValue, as does
the TIME() Function.

EXAMPLE

10 REM TIMESTR Example

20 theTime = TIME()

3@ PRINT TIMESTR(theTime, @)
40 PRINT TIMESTR(theTime, 1)
5@ PRINT TIMESTR(theTime, 2)
6@ PRINT TIMESTR(theTime, 3)
7@ PRINT TIMESTR(theTime, 4)

OUTPUT

* run
2:18:00 pm
2

18

00

pm

RELATED ITEMS
DATENTIME, DIGITALCLOCK, HOURMINUTE, TIME

NS BASIC Handbook 187

TRACE Statement

TRACE ON
TRACE OFF

DESCRIPTION
TRACE ON enables the tracing of line numbers during pro-
gram execution. TRACE OFF disables it

After processing the TRACE ON Statement, NS BASIC will
display each line number as that line is executed

The TRACE Statement is useful in debugging programs
where it can show you exactly where a problem happened.

If a program is executed from a point other than the begin-
ning, the condition (ON or OFF) of the TRACE Satement
is not reset. RUNning a program from the beginning always
wrns off tracing

|88 NS BASIC Handbook

EXAMPLE

10
20
30
49
50
60
70
80
90

REM TRACE Example

PRINT "“This is an EXAMPLE"
PRINT "Llamas"

TRACE ON

FOR1i =1T0 3

PRINT i

NEXT i

TRACE OFF

PRINT "End of program reached."

OUTPUT

This is an EXAMPLE
Llamas

[X0050]

[X0060]

1

[X0050]
EKG@B@]

[Xees50]
gxaeea]

[X0050]

[X0060]

End of program reached.
L]

RELATED ITEMS
RUN, STOP, CON

NS BASIC Handbook

189

VARS Command

VARS

DESCRIPTION
VARS displays a listing of all variables and their current
values.

VARS displays the elements of arrays created with the DIM
Sratement, and the fields of frames

The GOSUB stack is shown after all variables. This is a list
of the line numbers for each GOSUB statement executed
that has not yet reached a RETURN statement

EXAMPLE

10 X = 100

20 Y = 200

30 DIM 2[2]

40 I = { Nome:"John", Age: 12}
* RUN

* VARS

OUTPUT

x: 100

y: 200

Z:[0,0]
i:{nawe:'John“.hGizl?}
Gosub Stack:

RELATED ITEMS
LET, RUN, STATS

19 NS BASIC Handbook

WAIT Statement

WAIT [ticks]

DESCRIPTION

WAIT stops the program for ticks thousandths of a second.
If ticks is not supplied 500 (1/2 second) is used. The largest
value for ticks is 858993, around |4 minutes 20 seconds.

Once the number of specified ticks have passed the next
statement is executed. If the user taps on a WINDOW with
awindowspec.GOTO value defined while the program
is WAITing, the program will branch to the line number
specified in the value.

This feature can be used to program buttons. Define a
WINDOW with whatever size and boundaries you need,
with a GOTO line number defined for it.

Note: Since windows remain on the display even after the
program has stopped, the buttons remain active as well.

NS BASIC Handbook 191

EXAMPLE
10 REM WAIT Example

11 f={GOT0:1000, viewBounds:

100, 110, 110)}

15 CLS

20 WINDOW w1, f

30 SHOW wl

40 FOR 1=1 TO 3

45 PRINT 1

50 WAIT

70 NEXT 1

80 STOP

1000 REM toggle checkbox
1019 cbox = NOT cbox

SETBOUNDS(100,

1020 IF cbox THEN WPRINT wl, CHR(B730) ELSE

WPRINT wl, ™"

OUTPUT
1
2
3
Stop ot 0080

(Before Tap)

~a

(Afer Tap)

Note that in the above example CHR(8730) is the character
number that prints out as a checkmark. Refer to Appendix
C of this Handbook for a list of special character codes

RELATED ITEMS
GOTO, WINDOW

12

NS BASIC Handbook

WDRAW Statement

WDRAW windowNum, shapes [, styleFrame]

DESCRIPTION

WDRAW draws shapes in the window windowNum. win-
dowNum is the number returned by the WINDOW State-
ment. Shapes may be a single shape or an array of shapes.
The style used to display the shapes can be defined using
styleFrame. There are several elements in the frame which
can be set. If they are not set, defaults are used.

penSize:

PenSize specifies the size of the pen in pixels. An array can
be used to specify [width, height]. The default is 1.

penPattern: vfNone, vfWhite,
vflLtgray, vfGray,
vfDkgray, vfBlack

PenPattern defines the pattern drawn by the pen. The de-
fault is viBlack.

fillPattern: vfNone, vfWhite,
vflLtgray, vfGray,
vfDkgray, vfBlack

FillPattern defines the pattern inside of closed shapes. The
default is viNone.

NS BASIC Handbook 193

{family: fontNome, face: font-
Face, size: fontSize}

font defines the font for any text shapes displayed. See the
WINDOW statement for a complete list. The default is the
user's default font.

justification: 'left, 'right, 'cen-
ter

Justification defines the alignment of any text shapes dis-
played. The defaultis " left.

EXAMPLE

1® REM WORAW Example

20 WiSpec={viewBounds: SETBOUNDS(10, 10, 150,
75)}

30 WINDOW WinNum, W1Spec

40 SHOW WinNum

5@ WORAW WinNum, [MAKELINE(SS,15,75,45),
MAKEOVAL(10,10,40,40)], {penSize:2,
penPattern:vfGray, fillPattern:vfBlack}

OuUTPUT

RELATED ITEMS
SHOW, HIDE, MAKELINE, WINDOW

194 NS BASIC Handbook

WINDOW Statement

WINDOW winNum, windowSpec, [, widget]

DESCRIPTION

WINDOW creates a graphic window on the Newton. Each
window is given an unique number by NS BASIC. The
WINDOW Command returns this number in winNum. Use
this number for subsequent SHOW, HIDE, WPRINT, and
WDRAW Statements.

windowSpec is a frame containing information about the win-
dow. There are several elements in the frame which can be
set. If they are not set, defaults are used.

Note: Never use the same windowSpec variable in multiple
WINDOW Statements without first assigning a new frame
value to the variable.

viewBounds: {top: position/, 1eft:ﬁosf:ion2,
bottom: position3, right:
position4 }

ViewBounds defines the bounds of the window. Position | to
position4 is the location of the window on the screen. A
Newton MessagePad's screen is approximately 240 pixels
wide by 320 pixels high.

viewFlags: vVisible + vFloating +
v(lickable + vGesturesal-
lowed + vSingleunit +
vCharsallowed + vlietter-
sallowed + vPunctuation-
allowed + vShapesallowed
+ vStrokesallowed +
vCapsrequired + vNumber-
sallowed + vNamefield +
vPhonefield + vDatefield
+ vTimefield

viewFlags defines the special characteristics of the win-
dow. Not all combinations are valid. Each characteristic is

NS BASIC Handbook 195

described below.

vVisible TRUE to make window visible,
NIL to hide

vFloating TRUE to make window float over
all others, NIL for normal win-
dow suckung

vClickable TRUE if the window accepts pen
taps

vGesturesal lowed TRUE to accept Newton gestures

such as scrub

vSingleunit TRUE to accept only one word

vCharsallowed TRUE to use word recognition

viettersallowed TRUE to use letter-by-letter rec-
ognition

vPunctuational lowed

TRUE to accept punctuation

vShapesallowed TRUE two recognize Boxes, Lines,
and Circles

vStrokesal lowed TRUE to accept digital ink

vCapsrequired TRUEw capitalize first letter of
each word as entered

vNumbersal lowed TRUE to accept numbers
vNamefield TRUE if this is a name field
vPhonefield TRUE if this is a phone field
vDatefield TRUE if this is a date field
viimefield TRUE if this is a time field

Note: Not all combinations of these values are valid. if you
try a combination that does not look as expected, then
you've found an invalid combination

196 NS BASIC Handbook

194 TR e ¢

| TR e e e e T

viewFont: {family: fontName, face: font-
Face, size: fontSize}

viewFont defines the font to be displayed in the WIN-
DOW. fontName is the name of the font you wish to be used
in the window. Possible fonts on the Newton are ' espy,
'geneva, 'newyork, or "handwriting. Note:
The ' sign is required.

fontFace is the style of the font: 0 for plain, | for bold, 2 for

iralics, 4 for underline, 8 for outline, 128 for superscript, 256
for subscript. fontSize may be 9,10,12.14 or 18.

Note: Not all combinations of fontName, fontFace and fon-
tSize are valid. If you try a combination that does not look
as expected, then you've found an invalid combination.

viewFormat: frameColor + fillColor + x*vipen +
y*vfshadow + z%vfround

viewFormat defines the visual format of the WIN-
DOW.IfviewFormat is @, then the window is transpar-
ent. frameColor is the color (pattern) of the window border.
frameColor may be one of:

vfFramewhite vfFrameltgray
vfFrameGray vfFrameDkgray

vfFrameBlack vfFrameMatte (thick
gray bordered by
black)

filiColor is the color of the contents of the window. fillColor
may be one of:

vfFillWhite vfFillLtgray
vfFillGray vfFill1DkGray
vfFillBlack

x*vfPen sets the width of the border in pixels. X should
be between 0 and 15. Y*vfShadow sets the width of the

NS BASIC Handbook 197

TR e R R LS N

shadow in pixels. ¥ should be between 0 and 3.
Z*vfRound is the corner radius, in pixels. Z should be
between 0 and 15,

viewjustify:

JustifyCode

viewlustify defines the type of justification used for
the text displayed in WINDOW . justifyCode is 0 for text left.
| for text right, 2 for text centered and 3 for text stretched
across the entire width of WINDOW,

GOTO:

kneNumber

GOTO defines tap processing. ineNumber is the line of code
the program should GOTO if the WINDOW is tapped. A
click sound is played on the Newton when the user taps on
a WINDOW that has a GOTO defined for it

GOSUB: lineNumber

GOSUB defines tap processing, lineNumber is the line of
code the program should GOSUB if the WINDOW is
tapped. A click sound is played on the Newton when the
user taps on a WINDOW that has a GOSUB defined for it
A RETURN will return execution to the line following the
WAIT that was executing when the window was tapped.

You may examine the windowSpec frame after a tap has
been processed and a GOTO or GOSUB is performed. The
windowSpec will contain these four additional fields:

FIRSTX: The X coordinate of the first point on the New-
ton Screen where the user placed the pen down.

FIRSTY: The Y coordinate of the first point on the New-
ton Screen where the user placed the pen down.

LASTX: The X coordinate of the point on the Newton
Screen where the user lifted the pen.

LASTY: The X coordinate of the point on the Newton
Screen where the user lifted the pen

Whenever NS BASIC performs a GOTO or GOSUB in re-
sponse to a pen tap, the variable NSTAT is set to the win-
Num of the window that was tapped.

198

194 1R e

Note: You should avoid using a variable named WSTAT for
your own purposes.

text

text contains the current text displayed in the window us-
ing WPRINT.

drawing:

drawing contins the current graphic displayed in the
window using WDRAW,

This code fragment creates a valid windowSpec with many of
these elements:

1@ windowSpec:={viewBounds: SETBOUNDS(10, 10,
40, 30), viewFont: {family: "handwriting,
face: @, size: 12}, viewFormat: vfFrameBlack
+ vfFillWhite + 2*fPen + I*vfShadow + 6%vfRound,
viewJustify: @, GOTO: 2000, text: "Yo!"}

20 WINDOW wl, windowSpec

25 SHOW wil

30 WAIT 1000

40 GOTO 30

2000 REM Call me when tapped!

2010 END // just stop

widget is a string. If included, it must be one of the values
shown below. Each widget is described separately in the Ref-
erence section.

APP an application background
AZTAB an alphabet picker
AZVERTTARB an alphabet picker in a verical orientation
CLOSEBOX a small Newton close box
CHECKBOX a checkbox followed by a label
DATEPICKER a calendar display and date picker
DRAW a box that accepts pen drawings
GAUGE a linear display of a value
GLANCE a text window that appears for 3 seconds
LABELINPUT a labeled text entry field
LABELPICKER a labeled field with a pick list
LARGECLOSEBOX a large Newton close box.

- NS BASIC Handbook 199

MONTH a month display that accepts date selections

NEWSETCLOCK a clock that can be set
NUMBERPICKER a number display and picker
PARAGRAPH a window that displays styled text
PICKER a pick list, showing the current selection
PICTUREBUTTON a button that displays an icon
RCHECKBOX a label followed by a checkbox
SCROLLER a text entry field that expands and scrolls
SETCLOCK a clock that can be set
SLIDER linear display and entry of values
TEXT a plain text entry window

widgets may be hilighted (shown in inverse) once they are
displayed using the windowSpec for the widget. For example:

U.windowSpec:HILITE(TRUE)
U.windowSpec :HILITE(NIL)

The first line will invert the widget associated with window-
Spec, the second will revert it to a normal display.

200 NS BASIC Handbook

EXAMPLE

10 REM WINDOW Example

20 WiSpec := {viewbounds: SETBOUNDS(1@, 50,
150, 75), viewFont: {family: 'espy, face: 7,
size:14}, viewFormat: 4*vfRound +2*vfPen
+vfFrameBlack+vfFillWhite, viewlJustify: 2}
30 WINDOW WinNum, WiSpec

40 SHOW WinNum

5@ WPRINT WinNum, “"Slartybartfast"

OUTPUT

(Stactvarttast |

RELATED ITEMS

HIDE, HWINPUT, SHOW, WAIT, WDRAW, WPRINT
See WAIT for an example of using the GOTO elementin a
windowSpec.

NS BASIC Handbook 201

WPRINT Statement

WPRINT windowNum, expression

DESCRIPTION

WPRINT displays the contents of expression in window win-
dowNum, windowNum is the number returned by the
WINDOW Statement. The font and style used to display
the text will be those defined for window windowNum.

WPRINT can also be used to update the display of a
GAUGE widget once the viewValue has been changed

EXAMPLE

10 REM WPRINT Example

20 WiSpec := {viewbounds: SETBOUNDS(1@, 50,
150, 75), viewFont: {family: ‘espy, face: 7,
size:14}, viewFormat: 4*vfRound +2*vfPen
svfFromeBlack+vfFillWhite, viewlustify: 2}
30 WINDOW WinNum, WlSpec

40 SHOW WinNum

50 WPRINT WinNum, “Slartybartfast”

OUTPUT
[.\'_J.’JH voartlast J

RELATED ITEMS
SHOW, GAUGE, HIDE, WINDOW, HWINPUT

202 NS BASIC Handbook

CHAPTER

4

4. Advanced Topics

This chapter provides detailed examples showing the use of
the advanced and Newton-specific features of NS BASIC.
We'll present each topic, walk through a detiled example,
and give you advice on why you'd want to use these features
in your own programs. This section of the Handbook will be
much more informal. Curl up with your Newton, NS BASIC,
and the Handbook, and follow along!

4.1 Windows

The window capabilities of NS BASIC go far beyond what
you may be used to in other BASICs. You will need to ex-
periment with the use of windows to discover the many
ways they can be used. You will find graph paper or a draw-
ing program very helpful when creating the "layout” of your
windows. You'll need to know the exact positions of the up-
per left and lower right corners of every window you want
to create. Don't worry, it's not as bad as it sounds! Here are
just a few examples to get you started.

Buttons

A window can act like a button. You need to use the GOTO
or GOSUB element of windowSpec to branch to the code
that processes a user tap on the button. The following ex-
ample displays a button that changes its label when tapped.
The program ends after the button has been tapped 4 times:

10 REM Button Example

20 f = {GOTO: 130, viewBounds: SETBOUNDS(100,
100, 180, 120)}

30 buttonLabels = ["Hello", "World"]
40 taps = @ // no taps yet

50 CLS

60 WINDOW wil,f

70 SHOW wl

80 WPRINT wl, buttonlLabels[taps mod 2]
90 WAIT 1000

100 GOTO 9@ // Wait Loop

110 HIDE wl

120 END

130 REM toggle button

140 taps=taps+1
150 WPRINT wl, buttonlLabels[taps mod 2]
160 IF taps < 4 THEN GOTO 90 ELSE GOTO 110

This code uses a style of window programming known as
“Event loop” programming. Using this technique, you create
the windows that the user can interact with, and then you
enter an infinite loop. The only thing the loop does is WAIT.
This allows NS BASIC to process the user taps in windows
by branching to the lines specified in the GOTO or GOSUB
element of each windowSpec.

Hand Written Input

This next example shows how to allow user entry via
HWINPUT and display the result in a window:

10 REM Button/HNWINPUT Example

20 f={GO0T0:0200, viewBounds: SETBOUNDS(S5@,
100, 200, 120)}

30 buttonLabel = "Your Name:

40 nomeValue = "" // no name entered

50 CLS

60 WINDOW wl,f

70 g={GOT0:0170, viewbounds: SETBOUNDS(10,
100, 45, 120)}

80 g.viewFont={family: 'espy, face: @,
size:10}

9@ g.viewlustify=2 // centered

100 g.viewFormat = 6*vfRound
+2*vifPen+vfFrameBlock+vfFillWhite

110 WINDOW w2,g

120 SHOW wl, w?

130 WPRINT w2, "Done"

140 WPRINT wl, buttonLabel & nameValue

150 WAIT 1000

160 GOTO 150

170 HIDE wl, w2

18@ END

199 REM use HWINPUT

200 BEEP S // drawer open sound

210 IF STRLEN(nomeValue) > @ THEN currNome =
[nameValue] ELSE currName = NIL

220 HWINPUT nomeValue, buttonLabel, currNaome
23@ WPRINT wl, buttonlLabel & nameValue

240 GOTO 150

@ ®

This program displays two windows. The Done window acts
like a button. Tapping it ends the program. Tapping in the
other window opens a user input field that accepts hand
written input. The entered information is placed back into
the window when the user closes the input box.

4.2 Widgets

A widget is a Newton user interface element. In the New-
tonScript language, widgets are called protos and view tem-
plates. You can create programs that use many of the visual
elements found in Newton applications. Refer to the Refer-
ence section under WINDOW for a complete list of wid-

gets.

When you want to create an application that uses widgets,
you combine windows and widgets to create a single screen
that the user interacts with. This screen may consists of
many widgets. Once the widgets are displayed, the user can
interact with the screen using pen taps, hand-written input,
and the keyboard. Your screen must be designed so that the
user can indicate when they are finished entering informa-
tion. A window that looks like a Newton button can be
used. You can create a main window for your application us-
ing the APP widget. This widget includes a standard close
box. You can add one or more additional windows that look
like Newton buttons, such as an "OK" button. These win-
dows will use a GOTO field in their windowSpec to allow
your program to process the user entry in the form.

The following sample program creates a simple database
with a form for user entry. It supports searching for records
and adding new records. It uses several widgets for the
form.

The three sections of the program you should examine are
the creation of the widgets (lines 130-330), the extraction of
the user entered values from the widgets (lines 500-510),

NS BASIC Handbook 205

and the displaying of new values in widgets (lines 430-470).

Note: Never use the same windowSpec variable in multiple
WINDOW Statements without first assigning a new frame
value to the variable. This is done in the example below with
the spec variable. Each time this variable is used in a WIN-
DOW Statement, it is initialized with a new frame containing
the desired fields for the window.

The next section covers Frames, and the one after it
discusses Files.

10 REM WIDGET Example

20 OPEN exomple, "ExompleFile"”, Nome

30 IF FSTAT < © THEN CREATE exomple,
"ExampleFile”, Name

40 buttonFont := {family: ‘geneva, face: 1,
size:12}

70 spec := {GOTO: 610, title: "Somple App"}
80 WINDOW MainWindow, spec, “APP"

110 SHOW MainWindow

130 REM create and display blank form

150 spec := {GOTO: 360, text: "Search",
viewBounds: SETBOUNDS(6, 280, 66, 294),
viewFont: buttonFont, viewlustify: 2,
viewFormat: 4*vfRound+2*vfPen+vfFrameBlack}
160 WINDOW SearchBtn, spec

170 spec := {GOTO: 49@, text: "Save”,
viewBounds: SETBOUNDS(70, 280, 130, 294),
viewFont: buttonfFont, viewlustify: 2,
viewFormat: 4*vfRound+2*vfPen+vfFrameBlack)
18@ WINDOW SaveBtn, spec

19@ spec := {GOTO: 540, text: "New",
viewBounds: SETBOUNDS(134, 280, 191, 294),
viewFont: buttonFont, viewlustify: 2,
viewFormat: 4*vfRound+2*vfPen+vfFrameBlock}
200 WINDOW NewBtn, spec

210 NameSpec := {label: "Nome:", viewBounds:
SETBOUNDS(9, 30, 230, 64), viewFlogs:
VCLICKABLE}

220 WINDOW Name, NomeSpec, “"LABELINPUT"

238 RankLabelSpec := {text:"RANK\nl1 2 3456
7 8 9%, viewlustify:3, viewFormat:
vfPensvfFromeWhite, viewBounds: SETBOUNDS(21
65, 230, 109), viewFlags: VCLICKABLE}

240 WINDOW RankLabel, RanklLabelSpec,
“PARAGRAPH"

250 RankSpec := {viewValue:®, viewBounds:
SETBOUNDS(21, 110, 230, 119), viewFlags:
VCLICKABLE}

206 NS BASIC Handbook

‘
L]
(
(

_~ e m e, e, e, . ., -

o,

- e e m

26@ WINDOW Rank, RankSpec, "SLIDER"
270 ContactSpec := {label: "Contact:"
labelCommands: ["Now" "Soon", "Somed ay",
"Never"], viewBounds: SETBOUNDS(B 120, 230
144), viewFlags: VCLICKABLE}

280 WINDOW Contact, ContactSpec, "LABELINPUT"
290 CalledSpec := {text: "Called"”, viewBounds:
SETBOUNDS(21, 145, 110, 179), viewFlags:
VCLICKABLE}

300 WINDOW Called, CalledSpec, "CHECKBOX"
310 NotesSpec := {boxTitle:"Notes", text: ""
viewBounds: SETBOUNDS(21, 180, 230, 254),
viewFlags: VCLICKABLE}

320 WINDOW Notes, NotesSpec, "SCROLLER"

330 SHOW SearchBtn, SaveBtn, NewBtn, Name,
RankLabel, Rank, Contact, Called, Notes

340 Wait 1000

350 GOTO 340

360 REM user taps Search

370 searchKey = NameSpec.entryline.text

380 GET example, editRec, searchKey

390 IF FSTAT <> 1 THEN GOTO @420

400 BEEP 7

410 GOTO 340

420 REM found something!

430 SETVALUE(NameSpec.entryline, 'text, "" &
editRec.name)

449 SETVALUE(RankSpec, 'viewValue,

editRec. rank)

450 SETVALUE(ContactSpec.entrylLine, '"text, ""
& editRec.contact)

460 IF CalledSpec.viewValue < editRec.called
THEN U.CalledSpec:TOGGLECHECK()

470 SETVALUE(NotesSpec.notes, 'text, "" &
editRec.notes)

480 GOTO 340

490 REM user taps Save

500 newRecord =

{name :NameSpec.entrylLine.text,

rank : RankSpec.viewValue,
contact:ContactSpec.entryline.text, called:
CalledSpec.viewValue, notes:
NotesSpec.notes.texti
510 PUT example, newRecord

520 IF FSTAT <> @ THEN BEEP 7 ELSE BEEP 4
530 GOTO 0340

540 REM user taps New

550 SETVALUE(NameSpec.entrylLine, 'text, "")
560 SETVALUECRankSpec, 'viewValue, @)

570 SETVALUE(ContactSpec.entrylLine, 'text,

580 IF CalledSpec.viewValue THEN x =
U.CalledSpec: TOGGLECHECK()

59@ SETVALUE(NotesSpec.notes, et ™™
600 GOTO 340

610 REM user taps close box

620 HIDE

630 END

ouUTPUT

Sample App

N atme Dﬂ.m

:[Soofch] Save | New)

o— ®

4.3 Frames

The frame data structure is required for files and windows
It can be used for many other purposes as well. You can
think of a frame as a container. You can add as many named

items to the container as you'd like, and retrieve them by
name in any order

Our example shows creating a frame, adding several values
to it, and then accessing those values

10 REM frome Example

20 REM mylser is a variagble holding
30 REM all the info for a user

40 myUser = {} // an empty container
5@ PRINT "Enter your first name:"

6@ INPUT name$

70 myUser.firstName = name$

80 PRINT myUser // see elements added

90 PRINT "Enter your last name:"

100 INPUT name$

110 myUser.lastName = name$

120 PRINT myUser // see another element!
130 PRINT "Enter your age, or S to Skip:"
140 INPUT age$

150 IF age$ = "S" THEN GOTO 170

160 myUser.age = STRINGTONUMBER(age$)

170 PRINT myUser // final form

180 PRINT "First Name: "; mylUser.firstName
190 PRINT "Last Name: "; myUser.lastName
200 IF myUser.age = nil THEN GOTO 220

210 PRINT "Age: "; mylUser.age

220 PRINT "Try again? (Y/N):"

230 INPUT ans$

240 IF ans$ = "Y" THEN GOTO 30

OUTPUT

Enter your first name:

? Jane

{firstname:"Jane"}

Enter your last name:

? Doe
{firstname:"Jane",lastname: "Doe"}
Enter your age, or Q to Quit:

?7q
{firstname:"Jane",lastname: "Doe"}
First Name: Jane

Last Name: Doe

Try again? (Y/N):

7y

Enter your first name:

? John

{firstname:"John"}

Enter your last name:

? Doe
{firstname:"John",lastname: "Doe"}
Enger your age, or Q to Quit:

? 24
{firstname:"John",lastname: "Doe" ,AGE:24}
First Naome: John

Last Name: Doe

Age: 24

Try again? (Y/N):

7n

We were able to add the named items firstName,

NS BASIC Handbook 209

lastName, and age to the frame simply by assigning a
new named container inside the frame variable.

We also can test to see if a frame has a named item by test-
ing to see if that item is NIL Line 200 checks to see if there
is an age item for the frame, and if not, skips the print state-
ment on the next line. if you are testing a named item that
contains a Boolean, you can use the HASSLOT Function.

You must use frames in order to write information to a file
The frames you write to a file may have different items
stored in them

4.4 Files

This section discusses the use of indices to quickly locate a
particular entry in a file. We'll also use the techniques we
just learned in the previous section to create a file of
records with different elements in them

The program below is an expanded version of a program
that was first shown in the Reference Chapter for the
CREATE Statement. We've expanded it in lines 40-140 to
support entry of multiple records and both a key and a data
field.

The retrieval section (lines 150-230) also retrieves as many
records as you want.

10 REM File/Key retrieval Exomple

20 REM OPEN or CREATE a file...prompts for
some information, stores it, then allows
fetch.

30 OPEN chan, "EXAMPLEFile", keyname

40 IF FSTAT = 1 THEN CREATE chaon,
“"EXAMPLEFile"”, keyname

5@ IF FSTAT =1 THEN GOTO 300

60 PRINT "Please enter a Key, Q to finish"
70 INPUT FileKey

80 IF FileKey = "Q" THEN GOTO 210

99 fileRecord = {}

100 fileRecord.keyname = FileKey

110 PRINT "Please enter some data for this
Key"

120 INPUT FileDato

138 fileRecord.info = FileData

140 PRINT "Enter a number, or S to Skip:”
150 INPUT num$

160 IF num$ = "S"™ THEN GOTO 188

170 fileRecord.num = STRINGTONUMBER(num$)

110 NS BASIC Handbook

e —

180 PUT chan, fileRecord

190 IF FSTAT=1 THEN STOP

200 GOTO 60

210 PRINT "Please enter a Key to find, Q to
end"

220 INPUT FileKey

230 IF FileKey = "Q" THEN GOTO 29@

240 GET chan,FetchedData,FileKey

250 IF FSTAT=1 THEN STOP

260 IF FSTAT=2 THEN PRINT "Not found! Close
Record is..." else PRINT "Data is..."

270 PRINT FetchedData

280 GOTO 210

290 END

300 REM error, cannot OPEN or CREATE file!
310 PRINT "Error! Cannot OPEN or CREATE
EXAMPLEfile."

320 END

Enter the following data into the program. We're not show-
‘ ing the prompts in the Handbook.

RUN
test
mydata
s

abracadabera

this IS data

100

Zippy

The Smallhead

47

0K

Middle of the DB

7 -12.5

7 q

Please enter a Key to find, Q to end

(? abr
Not found! Close Record is...
{KEYNAME : "abracadabera”,info: "this IS

) fad) T tad e))))

(data" ,num:100, _uniquelD:1}
Please enter a Key to find, Q to end
(? abracadabera
Data 1is...
{KEYNAME : "abracadabera" ,info: "this IS
(data” ,num: 100, _uniqueID:1}
Please enter a Key to find, Q to end
7p
(Not found! Close Record is...
(
(NS BASIC Handbook 211

o i e e —— e L

{KEYNAME:“test“,info:“mydata",_uniquelD:G}

Please enter a Key to find, Q to end
?

‘q

* RUN

Please enter a Key, Q to finish

? Stimpy

Please enter some data for this Key
7 Happy! Happy! Joy! Joy!

Enter o number, or S to Skip:

?7s

Please enter a Key, Q to finish

7

?q

Please enter a Key to find, Q to end
7 stimpy

Data 1s...
{KEYN&NE:"Stimpy".lnfo:"Hoopy‘ Happy! Joy!
Joy!",_uniquelD:4}

Please enter a Key to find, Q to end
70

Not found! Close Record 1s...
{KETNAHE:“abracudobera”.lnfo:"thls IS
data” ,num:10@, _uniquelD:1}

Please enter a Key to find, Q to end
7

‘fq

There are several interesting things to look at in this
program:

Lines 30-50 attempt to OPEN or CREATE a data file. If the
OPEN fails, we try a CREATE. If that fails, we GOTO the
end of the program and give up

Lines 60-200 let the user input as many records as they
want. We build our frame in the same way as shown in the
previous section.

Lines 210-280 let the user enter a key to find. We check
FSTAT after the GET Statement fitis 2. then an oact
match was not found.

If you look at the output, you'll note that some of the frames
printed out (test and Stimpy) don't have an entry for num
This shows that you can store different kinds of frames in
the same file, as long as they all have the required key entry

We ran the program twice, and the data entered in the file
was still there in the second run.

Note: NS BASIC adds the item __uniquelD to every
frame that is PUT into a file. You should avoid using a field

1 NS BASIC Handbook

e ————————— e

with this name in any frame you want to PUT in a file. Never
change the value of this item in a frame you GET from a file.

4.5 Serial Input/Output

You can send and receive data via the serial port of your
Newton. NS BASIC can PRINT to the serial portand INPUT
from it. There are four steps to using the serial port

1 Initialize the port to the desired settings.

You control the settings for the serial port using the envi-
ronment variable sO.

2 Tell NS BASIC to use the serial port.

You control the input and output device (screen, serial port,
or infrared port) using the environment variable |O.

3 Exchange data or output information as desired using the
serial port.

You control the prompt displayed by NS BASIC using the
environment variable inputPrompt You send data using
PRINT and receive data using INPUT,

4 Tell NS BASIC to stop using the serial port.

You control the input and output device (screen, serial port,
or infrared port) using the environment variable 10.

It is very important that you perform these steps in this
order. If your program quits unexpectedly and leaves the se-
rial port open, other Newton applications may not be able
to use the port. If this happens, reset your Newton.

The first example program accepts input via the serial port.
This program leaves the serial port in its default configura-
tion.

You will need to connect your Newton to a desktop com-
puter to run this program. See the Using NS BASIC With a
Computer or Terminal section of this Handbook for more
information.

10 REM Serial Port Example

20 f={viewBounds:SETBOUNDS(10@,100,130,110)}
30 tr=0

49 translist = ""

50 CLS

60 WINDOW wl,f

NS BASIC Handbook 213

70 SHOW wl
80 ENVIRON i0="s0@"

9@ REM get a transaction

100 INPUT trans

110 tr = tr+l

120 translist = tronslist & trons & CHR(13)
130 WPRINT wl, tr

140 IF trans < "BYE"™ THEN GOTO 9@

150 ENVIRON io="screen"

160 PRINT translist

170 HIDE wl

The next exampie program dumps all of your appointments
from the Calendar file to the serial port. The port is set o
4800 bps first. See the next section for more information on
accessing Calendar and other built-in applications data.

12 REM Serial Dump Calendar Exaomple
20 REM set serial params

30 currPort = env("s@")

49 currPort.dota = [4800,8,1,"n0"]
5@ ENVIRON s@=currPort

60 ON ERROR GOTO 120

70 ENVIRON I0="s@" // switch to serial
80 OPEN ch,"calendar"” ,mtgstartdate
99 GET ch, n

108 PRINT n // dump record

110 GOTO 99

120 REM EOF or other problem

130 ENVIRON I0="screen"

140 END

To reliably accept larger amounts of data from the serial
port, a few things should be kept in mind. Keep the loop that
accepts the data as shortas possible, avoid doing PRINT and
WAIT statements, and turn off the inputPrompt For larger
amounts of data, a delay between lines or a baud rate lower
than 9600 may be necessary. Here an example that works
well

10 dim a[300]

15 environ inputPrompt=""
16 window w,ws

17 show w

20 for i=0 to 299

25 wprint w,1i

30 input af1]

35 if o[i]="END" then stop

214 NS BASIC Handbook

P T

el el e e e s s s ="

49 next i

4.6 Infrared Input/Output

You can send and receive data via the infrared port of your
Newton. NS BASIC can PRINT to the infrared port and
INPUT from it. There are four steps to using the infrared
port:

I Initialize the port to the desired settings.

You control the settings for the infrared port using the en-
vironment variable IR.

2 Tell NS BASIC to use the infrared port.

You control the input and output device (screen, serial port,
or infrared port) using the environment variable 10.

3 Exchange data or output information as desired using the
infrared port.

You control the prompt displayed by NS BASIC using the
environment variable inputPrompt You send data using
PRINT and receive data using INPUT,

4 Tell NS BASIC to stop using the infrared port.

You control the input and output device (screen, serial port,
or infrared port) using the environment variable 1O.

It is very important that you perform these steps in this or-
der. If your program quits unexpectedly and leaves the infra-
red port open, other Newton applications may not be able
to use the port. If this happens, reset your Newton.

4.7 Accessing and Using Other Files, Data, and
Applications

As shown in the previous section, you can examine the con-
tents of any file in your Newton. The table below lists the
names of the files used with the built-in applications.

Note: You can read these files. If you write to or delete en-
tries in these files you may lose data. Please be sure you have
backed up your Newton prior to deleting or writing records
to these files.

NS BASIC Handbook 215

P e e

Dates
File Name | Key Name Contents
calendar megSartDate daily meetings that

don't repeat

repeat meet- | migStopDate daily meetings that re-

ings peat
calendar mtgStartDate day notes (written to
notes the left of the calen-

dar) that don't repeat

repeat notes | megStopDate day notes that repeat

to do to-do entries
Note Pad

File Name | Key Name Contents
notes timestamp notepad data
Names

File Name | Key Name Contents
names sortOn name data

You can write a small program that OPENs these files, GETs
an entry, and PRINTS it. You can examine the output to
learn the item names within these files, and their contents.
This program displays an entry from the calendar file:

1@ OPEN ch,"calendar” ,mtgstartdate
20 GET ch, n
30 PRINT n // dump record

OUTPUT
{vienStationery:Meeting,mtgStartDate:4770198
@,mtgDuration:150,mtgText: "Some Meeting
Text!" ,mtgAlaorm:47701970, _uniquelD:35, modti
me: 47567291}

You can also examine and modify data within other applica-
tions installed on your Newton

216 NS BASIC Handbook

a4 & & & & & & 5 o o 0o o 00 90 0o v v o

ci

i

Note: As with files, extreme care should be taken when ac-
cessing, changing, or calling other applications. Data loss is
possible. Backup your data.

The GETROOT() Function returns the root frame of your
Newton. Every application currently installed on your New-
ton is accessible via this frame. Because of their large size,
you should always use the special := assignment operator to
point to this frame.

The first example program will display all of the items stored
in the root frame. The output of this list is quite large, and
will not be reproduced in this Handbook. This program is
completely safe. You can enter and run it on your Newton
with no risk of data loss.

10 REM getroot() Example

20 rootFrame := getroot()

30 rootElements := elements(rootFrame)
4@ numElements = length(rootElements)-1
50 FOR i = @ TO numElements

6@ PRINT rootElements[i]

70 NEXT i

The next example will open the Names application, and is
also completely safe:

10 getroot().cardFile:open()

The :open() in the above program tells the Names applica-
tion to open as if you had tapped Names. The built-in appli-
cations respond to :open() and :close(). The names of the
built-in applications are paperRoll (Note Pad), calendar
(Dates), cardFile (Names), extrasDrawer (Extras), and assis-
tant (Assist).

The last example program will display all of the fields in your
user configuration frame. The output of this list is quite
large, and will not be reproduced in this Handbook. This
program is completely safe. You can enter and run it on your
Newton with no risk of data loss.

10 REM GETROOT().userConfiguration Example
20 rootFrame :=

GETGLOBALS() .userConfiguration

30 rootElements := ELEMENTS(rootFrame)

40 numElements = LENGTH(rootElements)-1
50 FOR i = @ TO numElements

NS BASIC Handbook 217

TR e S PR s e

60 PRINT rootElements[i]
70 NEXT 1

There are several built-in functions that are not documented
in this handbook that my be used in NS BASIC.

Warning: Many of the built-in functions are not document-
ed. Others may freeze your Newton. Do not try to use any
function you do not understand. Be aware that the use of
these functions may cause data loss. Notall Newton devices
may have the same built-in functions

There are a number of sources for detailed information
about the Newton. If you have access to an on-line service,
check and see if there is a Newton programming section

4.8 Handling Errors

In a perfect world, there are never any errors. Our pro-
grams are seldom perfect worlds! We protect our users (of-
ten ourselves) from many errors using two techniques:
defensive programming and ON ERROR.

The basic idea with error handling is to anticipate which
parts of your program could have run-time errors. and to
set up special program code to deal with it

Defensive programming

You can use the CLASSOF Function to verify that a variable
contains the expected data type following an INPUT or
READ Statement.

You can check the value of FSTAT after each file input and
output statement.

You can verify that numeric values are within the valid range
before using them in numeric expressions. For example, you
can check that a variable is not zero before using it as the
divisor.,

Using ON ERROR

if you are prompting the user to enter a numeric value, the
user may well enter a string. Your program can do one of
two things at that point: spit out the standard NS BASIC er-
ror message and halt, or print a message that gently reminds
the user to enter a number and re-prompt for input again.

118 NS BASIC Handbook

4 4 & @& & o o0 0 o0 v v v 9

Let's look at both and see how they work.

NO ERROR CHECKING

10 REM simple user entry of a number
20 REM without error checking

30 PRINT "enter your age"

40 INPUT age

50 dogAge = age * 7

E@R%RNINT "You are "; dogAge; " in Dog Years!"
enter your age

33

You are 231 in Dog Years!

* RUN

enter your age

? frez

9050 :Error 29 - Expression

Everything looked fine until the user entered fred. Then we
got this cryptic error message. Add the following code to
catch the error and deal with it in a more user-friendly way:

* 42 ON ERROR GOTO 100

* 52 ON ERROR GOTO @

* 70 END // don't run into error handler

* 100 REM This error handler is for invalid
entry

* 105 BEEP 1 // error feedback

* 110 PRINT age; " is not a valid age, try
again."

* 120 GOTO 3@

Now that we are prepared for incorrect input, the program
behaves well. Let's RUN it and see:

* RUN
enter‘ dyt:aur- age
Yo

fred is not a valid age, try again.
enter your age

7 100

You are 700 in Dog Years!

L]

You could also use defensive programming to avoid this er-
ror. One technique is to use the CLASSOF Function to test
the class of the value INPUT by the user:

NS BASIC Handbook 219

42 IF CLASSOF(age) < 'int and CLASSOF(age) <
'real THEN GOTO 100

Alternatively, you can accept the INPUT data as a string by
using a variable ending in a § sign. Use the STRINGTONUM.
BER Function to convert that string into a number. if the re-
sult is NIL then the user did not enter a valid number

Either of these approaches avoids the need for ON ERROR
handlers

The technique shown above can handle every run-time er-
ror in NS BASIC. The strategy is simple. Just before you do
an operation that may fail, use an ON ERROR Statement to
set up a branch to a specific error handler. Just as soon as
you have passed the section that may fail, reset the error
handler to the default. Always end your program with an
END Statement to avoid running into your error handler
code

Your error handler code may:

* Display a helpful message and retry the operation, using
GOTO to return to the section of code (like our example
above),

* Correct the error by setting one or more variables to
some default value (i.e., you can limit an input to 2 maxi-
mum value) and then return to the section that failed via
GOTO, or

* Display an error message of your own design, perform
some clean up (perhaps update a file) and then end the
program

NN SN NN S PP

S

=

4.9 Calling NS BASIC from NewtonScript

Several Newton Applications (the spread sheet program
QuickFigure, for example) allow you to enter NewtonScript
code fragments. You may call NS BASIC and run a program
from these programs. Your NS BASIC program can return
a value using the BYE statement. You can pass a value into
your program from the NewtonScript code fragment as
well. This value is placed into a variable named
CHAINPARAM.

Note: You should avoid using a variable named
CHAINPARAM for your own purposes.

This example program in NS BASIC simply increments the
value passed in via CHAINPARAM, and returns itin the BYE
Statement: Save it with the name calltest.

10 REM calltest
20 BYE chainParam+1

If you want to call this program from QuickFigure, you
would insert the following NewtonScript code fragment
into a cell:

=GETROOT(). Ibasic:NSBASIC!:chain("calltest"”,
123);

When you press return, the NS BASIC program is executed
and the new value (124) is placed into the cell.

The general form of the NewtonScript expression to call NS
BASIC is:

GETROOT(). |basic:NSBASICI :chain(programName,
chainValue)

Where programName is a string that contains the name of
the program to run, without the BAS extension, and chain-
Value is the value to place in CHAINPARAM. NS BASIC
runs silently without changing the screen, unless you exe-
cute a PRINT or SHOW statement.

You can execute any kind of NS BASIC program, with one
proviso: if the NS BASIC program halts at any point, to get
input from the user for example, the calling NewtonScript

NS BASIC Handbook 221

code fragment will receive a return value of NIL. In other
words, as long as you are computing values, accessing files,
or creating displays, the calling code fragment will not re-
ceive a return value until the BYE Statement is reached. If
your program executes an INPUT, HWINPUT, or WAIT
Statement, the calling code fragment will receive a NIL re-
turn value at that point in your NS BASIC program

121 NS BASIC Handbook >

SH € £ &H & £ 6 £ 5 B S S 5 O B8 BN B OB BN

APPENDIX

A

A. Error Messages
Compile and Run-Time

Error | - Incorrect Data Type
The Statement or Function expects data of a different
type. Refer to the Reference Chapter of this Handbook
for the expected data type.

Error 2 - Statement or syntax invalid
NS BASIC cannot understand the Statement.

Error 4 - Invalid Checksum on Runtime
The RunTime program file is damaged.

Error 5 - Satement Number
An invalid line number was used.

Error 8 - Renumber overlap
When RENUMing a partial range of Statements, the new
number overlaps an existing program Statement.

Error || - Parenthesis
Mismatched parenthesis.

Error 13 - Line Number
Invalid line number was used.

Error 14 - Out of Memory
You have run out of memory. Reset your Newton to free
more memory.
Note: All variable values are cleared after this error.

Error |5 - End of DATA

A READ Statement attempted to read past the last ele-
ment of your DATA Statements.

Error 16 - Arithmetic
Numeric overflow or underflow.

NS BASIC Handbook 223

Note: Divide by Zero does not cause an error on New-
ton 2.0 units.

Error 19 - RETURN - No GOSUB
There is a RETURN that is missing the GOSUB.

Error 22 - NEXT - No FOR
There is a NEXT without a FOR, or the program has
branched to inside of a FOR NEXT loop

Error 29 - Expression
NS BASIC cannot understand the Expression. Try to
break complex Expressions into multiple Statements
Error 30 - Object is read only
An attempt to change a value of or add an item to a sys-
tem frame. Frames retrieved using GETROOT() are often
read only
Error 31 - Subscript or Frame error

Access to an array element that is larger than the array,
or a frame item that does not exist

Error 46 - Input Error
The user entered more items (separated by commas)
than were expected

Error 48 - Incorrect SAVE version
NS BASIC may change the internal form of SAVEd pro-
grams. If you get this error, use ENTER to load the pro-
gram and then SAVE the new version

Error 59 - Zero step
A FOR loop has a Zero step.

Error 63 - Incorrect number of args
The Statement or Function expects a different number of
arguments. Refer to the Reference Chapter of this Hand-
book for the expected number of arguments

File

VO Error | - liegal file name
The file name used is not valid. File names cannot have
spaces, but may contain both upper and lower case let-

ters, as well as special characters like underscore () and
hyphen (-).

124 NS BASIC Handbook

ddi T M ¢ —

\

T = e remme e TR SRR LR

I/O Error 2 - lllegal key

The data type of the key is not correct for the index of a
file.

I/O Error 3 - Opened without keys

A GET with a key was attempted on a file that was
OPENed without a key.

/O Error 4 - Incorrect key type

A GET or PUT was attempted that specified a key of the
wrong type.

/O Error 5 - File already Exists

SAVE specified a name already used for an existing pro-
gram.

/O Error 6 - End of file

A GET was attempted after the last record was read. Use
an ON ERROR handler to detect and handle the end of
file when reading every record in a file,

/O Error 10 - File not found

A file name was specified for a file or program and it does
not exist.

I/O Error 12 - no key on OPEN

A PUT with a key was attempted on a file that was
OPENed without a key.

I/O Error |13 - Channel not open

A GET or PUT was attempted using a channel that was
not returned from CREATE or OPEN

/O Error 14 - Error creating file

A problem (most often out of space, or card read-only)
occurred while attempting to CREATE a file.

NS BASIC Handbook 225

126

NS BASIC Handbook

NS BASIC Handbook

227

! APPENDIX
(B
{ B. Keywords
The following list of keywords are reserved for the use of
\ NS BASIC and should not be used as variable names.
\ AND NIL
BEEP NOT
. BYE OFF
CHAIN ON
CHAINPARAM OPEN
\ CLOSE OR
CLS PRINT
A CON PUT
CREATE RANDOMIZE
: DATA READ
\ DEF REM
DEL REPLACE
8 DELETE RESTORE
DIM RETURN
9 DIR REVUP
EDIT RUN
ELSE RM
] END SAVE
ENTER SHOW
@ ENVIRON STATS
ERASE STOP
ERROR THEN
* FOR TRUE
FUNCTION TRACE
@ GET VARS
GOSUB WAIT
° GOTO WDRAW
HIDE WINDOW
: HWINPUT WPRINT
< IF WSTAT
INPUT
@ LET
LIST
LOAD
° MAKEPACKAGE
NEXT
&
@

[APPENDI X
° C
¢ C. Special Character Codes
. These special characters may be generated using the CHR
Function.
[160 umlaut 201 € 238 i
161 i 202 t 239 i
[] 162 4 203 3 241 il
163 £ 204 i 242 o
@ 164 o 205 i 243 6
165 ¥ 206 i 244 o
e 167 @ 207 I 245 &
168 ' 209 N 246 0
169 o 210 O 247 .
® 170 s 21 0 248 0
171 « 212 O 249 i
@ T 213 0 250 i
174 © 214 () 251 0
& 175 - 216 © 252 @
176 # 217 V] 255 §
& 17dL, 218 U 305 i
180 ’ 219 §] 338 &
& 181 1 220 0 339 ®
182 f 223 A 376 '
& 183 . 224 a 402 /
184 ! 225 a 8706 @
186 “ 226 a 8710 A
® 187 » 227 a 8719 1
191 | 228 a 8721 I
& 192 A 220 & 8730
193 A 230 ® 8734 =
[194 A 231 s 8747 |
195 A 232 é 8776 =
& 196 A 233 é 8800 =
197 A 234 é 8804 =
e 198 3 235 e 8805 =
' 199 ¢ 236 i
° 200 E 237 i
. NS BASIC Handbook 229

130 NS BASIC Handbook

e EE————

P 0 0 0 0 0 0 0 0 0 0 0 0 9 9 9 0 0 0 0 o

INDEX
SYMBOLS Commands

CON 17,53,74,174
$ 26 DIR 65
& 24 EDIT 14,70
&& 24 LIST 15,71,75,109
= 108, 217 LOAD 19,71,75,111
: 139 MAKEPACKAGE 116
= 108 NEW 12,121
0 24 RENUM 13,150
{} 25 REPLACE 20, 151, 157
REVUP 154
A RUN 15,156
SAVE 19,157
ABS 32 STATS 76,173
ACOS 54 VARS 17,190
ACOSH 54 COMPOUND 16, 52
CON 17553

ADDARRAYSLOT 33 8
ANNUITY 34 £05 54
APP 35 COSH 54
CREATE 55

ARRAYREMOVECOUNT 36
ARRAYTOPOINTS 37

Creating a Program 12
Creating Packages 21

ASIN 168
ASINH 168
ATAN 183 P
ATANZ2 183
ATANH 183 DATA 57
Data Types 23
B Array 24
Boolean 24
Frame 25
ggguswm{ :(1) humeric 23
BYE ey 099 24
4 Symbol 25
DATENTIME 58
c Debugging 29
Debugging a Program 15
CEILING 43 DEF F%]g ¢ - 86
CHAIN 44 pEL 60
CHAINPARAM 221 DELETE 22, 62
CHR 47 desktop computer 1,3, 5
CLASSOF 48 Using NS BASIC With 10
CLOSE 49 DM 64
CLS 51 DIR 65
NS BASIC Handbook 231

DIV FMOD 119

DO FOR 85

DO UNTIL FSTAT 218

DO WHILE FUNCTION 86
DRAWINTOBITMAP Functions

ABS 32

E ACOS 54

ACOSH 54

EDIT 14. 70 ADDARRAYSLOT 33

ANNUITY 34
Editing a Program 13 ‘ E
ELEMENTS 72 ARRAYREMOVECOUNT

36
7
EPINI?JE ,vi ARRAYTOPOINTS 37

END IF 74 ASIN 168

ENTER 75 ASINH 168

ATAN 183

ENV o ATANZ 183
ENVIRON 76 %

ATANH 183

Environment Variables BEGINSWITH 41
Controlling Serial Port % EGINS

inputPrompt 77 CLII:!NG :3
10 76 ©C 7

-~ 79 CLASSOF 48, 218
PRINTDEPTH 76 COMPOUND 16, 52
- s €05 54

ERASE 14, 81 COSH 54

DATENTIME 58, 186
218 DV 27,66
DRAWINTOBITMAP 69

Errors
RunTime
Event loop 204
Examining a Program 15 EL F!‘-‘ENTS -;:2
Executing a Program 15 ENV 76
EXIT DO 82 EXP 83

EXPM1 83
EXIT FOR 82
EXP 83 FABS 32

EXPM1 B3 FLOOR B4
FMAX 117
FMIN 118
FMOD 119
GETGLOBALS 108
HASSLOT 210
HEXDUMP 96
HILITE 200
HITSHAPE 98
HOURMINUTE J
INTERN . 103
LENGTH

Expressions 26
F

FABS
FIRSTX
FIRSTY
FLOOR
FMAX
FMIN

® 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 00 e o0

LGAMMA 112 TIME 58,99, 186
LOG 112 TIMESTR 187
LOG10 112
LOGB 12 @
LOGIP 112
MAKEBITMAP 114 GeT 89
MARELINE 114 GETGLOBALS 91
MAKEOVAL 114 GosuB 93
MAKEPOLYGON 114 goTtO 13,94
MAKERECT 114
MAKEROUNDRECT 114
MAKESHAPE 114
MAKETEXT 114
MAKEWEDGE 114 HASSLOT 95
MAX 117 HEXDUMP 96
MIN 118 HEE 97
MOD 119 HILTE 200
NOTIFY 124 HITSHAPE 98
NUMBERSTR 126 HOURMINUTE 99
HWINPUT 100
ORD 132
POINTSTOARRAY 137
POW 138 |
REMAINDER
27,119,148 [F 101
REMOVESLOT 149 Immediate Statement
ROUND 155 Execution 29
SENDIRREMOTE 160 INPUT 102
SETBOUNDS 163 inputPrompt
SETVALUE 163, 165 76,213, 215
SIGNUM 167 Installing
SIN 168 On a Storage Card 5
SINH 168 On the Newton 4
SORT 170 INTERN 103
SQRT 172 10 76
STRCOMPARE 175 R 79,215
STREQUAL 176
STRINGER 120 L
STRINGTONUMBER 179
STRINGTOTIME 178 LASTX 198
STRLEN 107,180 LASTY 198
STRPOS 181 LENGTH 107
SUBSTR 182 LET 28,108
TAN 183 LGAMMA 112
TANH 183 usT 15, 109
TICKS 99, 185 Listing your program 11
NS BASIC Handbook 233

Literals
LOAD

LOG

LOG10
LOGB

LOGIP

LOOP

LOOP UNTIL
LOOP WHILE

MAKEBITMAP
MAKELINE
MAKEOVAL
MAKEPACKAGE 21,
MAKEPOLYGON
MAKERECT
MAKEROUNDRECT
MAKESHAPE
MAKETEXT
MAKEWEDGE

MAX

MIN

MOD

Moving a Program

NEW
NEXT
NIL

12,

Notation Conventions

Notepad
NOTIFY
NUMBERSTR

[+]

ON ERROR GOTO
ON GOSUB

ON GOTO
Operators

114
114
114
116
114
114
114
114
114
114
117
118
119

22

121

123

24
”
14

124
126

Arithmetic

Boolean

Relational
ORD

Picking Items Out
of a List 9
POINTSTOARRAY 137
POW 138
PRINT 139
PRINTDEPTH 76
Problems
host computer n
resetting Newton 11
Program
Creating New 12,19
Listing n
Loading Existing 19
Loading using desktop
computer n
PUT 140
R

RANDOM
RANDOMIZE
READ

REM
REMAINDER
REMOVESLOT
RENUM 13,
REPLACE 20,
Resetting Newton
RESTORE

RETURN

REVUP

M

ROUND

RUN

27,

R I ——— "

@ s EXIT FOR 82
FOR 85,123
L) s0 77,213 FUNCTION 86
SAVE 19. 157 GET 89, 130, 140
R) Saving and Loading GOSUB 93,94, 153
Programs 19 GOTO 13,93,94
SENDIRREMOTE 160 HDE 97,166, 195
(‘ Serial Cable 3 HWINPUT 100, 204
Serial Port Programming IF THEN ELSE 101
° 76 INPUT 48, 100, 102
SETBOUNDS 163 LET 28,108
- SETICON 21,116, 164 LooP 113
SETVALUE 165 LOOP UNTIL 113
SHOW 166 LOOP WHILE 113
. SIGNUM 167 NEXT 85, 123
Simple Calculations 29 ON ERROR 218
- SIN 168 ON ERROR GOTO 127
: SINH 168 ON GOSUB 128
SORT 170 ON GOTO 128
. SQRT 172 OPEN 60, 89,130, 140
Starting NS BASIC 8 PRINT 76,139
* Statements 23 PUT 55, 130, 140
: 139 RANDOMIZE 143
- BEEP 40,174 READ 144,152
BYE 42,221 REM 146
CHAIN 44 RESTORE 144, 152
- CLOSE 49 RETURN 93,153
CLS 51 RM 62
° CREATE 55,60,89, SETICON 164
' 130,140 SHOW 166, 195
DATA 57,144,152 STOP 16,174
L3 DEF FN 86 TRACE OFF 16, 188
DEL 60, 130 TRACE ON 16, 188
- DELETE = 22,55,62 WAIT 191, 204
DIM 64 WDRAW 193
e DO 67 WINDOW 97,166,191,
DO UNTIL 67 193, 195, 202
DO WHILE 67 WPRINT 195, 202
- ELSE 73 STATS 173
END 74 STOP 16,174
p END IF 74 STRCOMPARE 175
ENTER 71,75,109 STREQUAL 176
ENVIRON 76 STRINGER 177
g ERASE 14,81 STRINGTONUMBER 179
EXIT DO g2 STRINGTOTIME 178

3
@ NS BASIC Handbook 235

P ——

STRLEN 180 DIGITALCLOCK 63
STRPOS 181 DRAW 68, 199
SUBSTR 182 GAUGE 88, 199
GLANCE 92,199
T LABELINPUT 104, 199
LABELPICKER 106, 199
TAN 183 LARGECLOSEBOX
TANH 183 50, 199
Tap processing 198 MONTH 120, 200
The Newton Keyboard 9 NEWSETCLOCK
TICKS 185 122, 200
TIME 186 NUMBERPICKER
TIMESTR 187 125, 200
TRACE OFF 16. 188 PARAGRAPH 133, 200
TRACE ON 16,188 PICKER 134, 200
TRUE 24 PICTUREBUTTON
136, 200

RCHECKBOX 45, 200

¢ SCROLLER 158, 200
SETCLOCK 162, 200
Using NS BASIC with SUIDER 169. 200
Sper or TEXT 184, 200
Terminal 10 wiNnoow 195
WPRINT 202
v WSTAT 198
WWW 2
Vanables 23
Data Types 26
Names 25
VARS 17. 190

WAIT 191
WDRAW 193
Web Site 2
Widgets 199
APP , 199
AZTAB 199
AZTABS 39

AZVERTTAB 199
AZVERTTABS 39
CHECKBOX 45,199
CLOSEBOX o, 199
DATEPICKER 59,199

===

@ USER'S COMMENT FORM
Please use this form only to identify publication errors or to
K] request changes in publications, Please let us know if you

would like a reply. Return to:

NS BASIC Corporation
77 Hill Crescent
Toronto, Canada MIM 1)3
fax (416) 264-5888

Page |Comments

2T 9 © % % 0 0 0 00 0 0 0 o

NS BASIC Handbook 237

%9’0000000’.‘...’90000"0-

REM
Gosus
LET

NS BASIC

NS BASIC Corporation
77 Hill Crescent, Toronto, Canada M1M 1J3
Telephone: (416) 264-5999 Fax: (416) 264-5888
gh@hookup net

ISBNO-9695844-1-5
owmumc-n-
muumnpnm.cmc-w.u

—_—

