LISP F1l: a FORTRAN
implementation of LISP 1.5
by
Mats Nowdstrém, Erik Sandewall and Diz Bresl

LISP Fl1: a FORTRAN
implementation of LISP 1.5
by
Mats Nowdstrém, Erik Sandewall and Diz Breslaw

The research reported here was supported in part by the Swedish
Research Institute of national Defence (FOA P) under contract 101-218:1

Summary

Program name:

ose :

Programming languace :

Programmed by :

Completed:

Memory requirements :

LISF F1

Read LISP S-expressions, evaluate them by
interpretation, and print the values as

S-expressions, all in interaetive mode.

IBM Basic FORTRAN IV (for a RAX-type TS system)

Diz Breslaw, Mats Nordstrém, and Frik Sandewall

Program and minor data areas: 36 K bytes,
Memory for push-down stack, atom printnames
(8 bytes/atom), and free memory (8 bytes/LISP
cell) must be added.

Table of contents

1. Introduction

2. Conversation with LISP F1
2.1 The read-eval-print loop
2.2 Input format
2.3 Output format
2.4 Alternative top levels

3. Error messages
3.1 Read errors
3.2 System errors
3.3 LISP errors A2 - A9

4, Tools for debugging LISP programs
4.1 The function break
4.2 The functions a2 - a9
4.3 The function peek
4.4 The LISP editor
4.5 The LISP tracing routine

5. Differences from LISP 1.5
6. Representation of atoms and list structures

T. Recursive programming in FORTRAN
T.1 The stacks

7.2 Recursive calls and returns

8. The main program in the interpreter
8.1 The top level loop
8.2 Transmission of arpuments for recursive functions

8.3 Representation of SUBR's and FSUBR's

9. TFunctions and subroutines i the interpreter
10. Implementation guide

10.1 Memory requirements

10.2 The COMMON area

10.3 Constants set in INIT

10.4 Logical units for I/0

10.5 Non-standard FORTRAN routines

10.6 Use of LISP Fl1 in interactive mode

10.7 Use of LISP Fl in batch mode

11. How to add new SUBR's and FSUBR's

12. References

Appendices:

A. M-expression definition of the LISP F1l interpreter

B. Tables of atoms and functions defined in LISP F1

C. Flowcharts for IREAD, and GARB

D. Listing of data deck containing priﬁtnames of system atoms

E. S-exvpression listing of the edit and trece package

1. INTRODUCTION

The LISP interpreter (LISP F1) describad here was written in Basic
FORTRAN IV for IBM machines by Mats Nordstrdm and Frik Sandewall. An
editor and tracine packane was then written in LISP hy Diz Breslaw and
added to the system. The work was performed at the University of Upnszla
(Department of Computer Sciences). LISP ¥l is desirmed for interactive
use, but can also be run in batch mode. It accerts a dialect of LISP
which is essentially LISP 1.5, but contains some of the "small" amend-
ments to LISP that have been proposed and irmplemented at BBN, i.e.
no-spread lambde expressions, break functions, user control of errors in

interpretation, etec. (Cf. reference L)

Sections 2 - 5 of this report are intended as a user manual;

sections 6 - 9 as a propram description; and sections 10 - 11 as an
implementation puide ("how to get the system runnine, and how to chanre
it"). All parts of the renmort presume a knowledee of LISP 1.5. Sections
6 - 11 also presume knowledme of FORTRAN.

2. CONVERSATION WITH LISP Fl

2.1 The read-eval-print loon

Welcome to the F1 system. In order to use it, 7o over to your (teletyre)
computer terminal. Load LISP Fl1 by following the instructions that your

systems =roup wrote after they had set up the system on your computer.
When Fl has initislized, it asks you for innut. (Here in Uppsala, this

is indicated by a question mark). Type an S-expression that is suitable

for evaluatinn. (Wext section specifies details about the input format).
Fl reads this expression, evaluates it, and prints the result._Type

ancther expression. It is also evaluated, and the value is printeé back.

Here is =n example:

(DE REVERSE(S U)(comn((NULL S)U)(T(REVFRSE(CDR S)(CONS
?2(CAR 8) U>
REVERSE
?(REVERSE(QUOTE(A(B C)D(E F)G>
(G (EF)D(BC)A)
?(CDR(QUOTE REVERSE))
(EXPR (LAMBDA (S U)
(cop ((NULL S)U)
(T (REVERSE (CDR S)
(coNs (CAR s)u))))))

Thus the behavioral pattern of the Fl system is a read-eval-print loon.
The opurpose of sections 2 - 5 in this report is to describe how you as

a user can utilize and modify this behavior.

2.2 Input format

S-exnressions are typed-in in free format in col. 1-T2 on the stendard

input unit (i.e. the value of the variable LUNIN, which is 9 initially).

The following rules apply to S—expressions:

A separator is one of the characters "space" , . ([)]

(In some of the examples, [] are replaced by <>)

A numerical atom: is a sequence of digits between two separators.

Before the first digit + or - may occur. Floating point does not exist.

An alphanumeric atom is any character string with at least one non-digit,

all between two separators. Only the first 8 characters in the string
will be read and used by the LISP-system. The character % has a special
meaning for the function break, and should never bs used in any other

situation. The "$8" facility of some LISP systems does not exist here.
A dotted list has the form (sexpr sexpr ---sexpr . atom). Note that a
dotted list must be terminated by) . The following "S-expr" is meaning-

less and will cause a read error: (A B.C D)

S-expressions are then formed in the normal way.

Example:
ABCDEFGHI the alphanumeric¢al atom ABCDEFGH
k23 numerical atom 123
(123.4) a dotted pair (123 . L)
123A+ an alphanumeric atom

To facilitete the matching of parentheses, there is a bracket feature
using "[" and "]". " " closes the last "[". If "1" occurs, and no
corresponding "[" exists, "1" closes the whole expression. "[" also
stands for one left parentheses.

Ex. The following S-expressions given as an input are identical:

(L1 (((Ls Lk 14))) L1 (L2 (L3 (Lk))))
(L1 (((nb Th Lh))) 11 (L2 (L3 (L]
[L1 [((L4 n4 4] 11 (L2 (L3 (L4]
(1 [((L4 nh L4] 11 (L2 (L3 (L4l

2.3 Outout formet

The velue of an S-exnression is printed in asimple form of pretty-print
on the standard output unit (i.e. the value of the variable LUNUT,
which is 6 initially). The rules for the pretty-print programmed in the
system are given on page 40.

An example of output:

?2(FAK (LAMBDA (¥)(COND((ZEROP N) 1)(T(TIMES N(FAK(SUBL N1

will be printed as
(FAK (LAMBDA ()
(conDd ((ZEROP N) 1)
(T (TIMES N (FAK (SUBL ™)))))))

System printout (value from eval, but not printouts from

print and terpri) is switched off by evaluating

(SILENCE)

and switched on arain by doing
(TALK)

Both functions have NIL as value.
Error-messares are always printed on logical unit 6, and cannot be
switched off (except sometimes by redefining the functions A2 ~ A9, see

section L.2).

2.4 Alternative top levels.

In standard usese, the Fl system does read, eveal, and print, like e.g.
MIT PDP-10 LISP. Some other systems (e.g. 7090 LISP, 3600 LISP) prefer
to do read, read, evalquote, nrint. The Fl system can be changed to this

evalquote mode by evaluating

(MODE 2)

Nfter evalustion of this expression, you are in evalquote mode.
To pet back to eval mode, say
MODE (1)

This is the same function mode, but now you are talking to evalquote.

In some situations, it is desirable to redefine the top-level loop in
another fashion. This happens e.g. if you wish to read natural language
sentences one at a time, and apply some lanrmuare processing operaticns
to it. This can be accomplished by first defining the function SYS, and
then doing (MODE 3). (The order is important). After these two opera-
tions, the system will do sys,print in each cycle. Therefore, sys
should be & function of no armuments which reads text from the teletype
according to its own conventions, and then does something to it. The
value from sys will be sutomatically printed, so sys does not need to

call print. For examnle, one reasonable definition of sys would be

(LamMBpA () (PROG (U)
L (SETQ U (coNS (RATOM) U))
(comp ((EQ (CAR U)(QUOTE STOP))
(RETURN (ANSBWFRTO (CDR U)))))
(co 1)))

3. FRROR MESSAGES

3.1 Read errors

~=--READ ERROR. S-EXPR. BEGINS WITH)

---READ ERROR . NOT FOLLOWED BY ATOM
--—READ FRROR .ATOM NOT FOLLOWED BY)

3.2 System errors

OBJECT STACK IS EXEEDING n.

FUNCTION PDL IS EMPTY

DONT USE 7 — YOU ARE NOT IN A BREAK

MODE=3 BUT SYS UNDEF? TALK TO EVAL

BIT ARRAY USED OUT OF BOUNDS, INDEX=n

DIVIDE n BY ZERO

PUT OUTSIDE ITS DOMATN

RETURN OUTSIDE I'ROG

I HAVE UNDERFLOW IN NUMERICAL OFERATION

the first char. in an S-expr
is). Re-tyre the S-expr!

the rules for forming a
dotted pair are not setisfied.
Re-type the S-expr.

No more atoms can be defined.
A1l further attempts to define

an atom will mive NIL as result.

The function stack is empty
and the system restarts.

The system restarts.

See paze for proper use of
mode. The system acts as an
evalsystem.

When using clearbit(n),
setbit(n) or testbit(n), n

is outside (1,24). The system
goes down in a break.

In quotient(m,n), n is equal
to zero. The system goes down
in a bresk.

In put(a,l,e), a is not an atom.
Put will be ipnored.

return(lab) is used outside
a prog. The system restarts.

could be found in any numerical
Lisn-function. The system
restarts.

I HAVE S-EXPRESSION WHOSE INDEX <0

BAD ARTTHM IN ARG: m IN PROGRAM POS N: n

INDEX OUTSIDE (0,NFREE) IN POSITION n
OF INTERPRFTER

ARGUMENTS PDL IS FULL; JP=n

FUNCTION PDL IS FULL'Y! 1IP=n

3.3 Lisp errors A2 - AQ.

I FAIL, DIAGNOSTIC AS
I FAIL, DIAGNOSTIC A8
FIRST ARG OF SET/SETQ NOT ON A-LIST

GO TO xxxx NOT DEFINED

10.

what should he = list is in
fact (terminated by) =a
numerical atom. The system
restarts.

the interpreter is entirely
confused by the data it has
set up for itself. Could be
wrong use or rplaca or rplacd.
The system restarts.

a non-numerical arpument is
given to a numerical function.
n stands for the statement-
number in the main program
and m is the value of ARG.
The system goes down in a
break.

an argument, supposed to be
an atom or list, is not an
atom or list. The system re-
starts.

the arpument stack is full.
The system restarts.

the function stack is full.
The system restarts.

undefined function.
undefined variable.
error AL

error A6

A2,A4, 06,08 and A9 are ordinary SUBR's, which call break() after
printine the error message. For explenetion of breask() see next

page.

L. TOOLS FOR DEBUGGING LISP RROGRAMS

4.1 The function break

When errors A2 - A9 (and some ot'.e*s) occur, the system goes down in a
break. This means that the system stores that point in the program where
the error occurs, so that evaluation can be continued at a later stage.
It then pgoes into a read-eval-print loop (similar to the top-level loop).
Thus the user has here a facility to look at the values of the variables
in the S-expression, which caused the error, or of just looking around in
that S-expression. When wishing to terminate a break, i.e. restart from
the point where the break occured, type

7 S-exvression

and the evsluation of the earlier S-expression will econtinue with the

value of the undefined variable or function.

If an error occurs in a break, the system pgoes down in a break and
% S-expression

will take the system up to the first break. No special limit for the
depth of a break is pgiven, but as the depth of breaks increases, the
pushdown list will ultimately be exceeded.

It is also possible to call break from LISP by the LISP-function break().
Example of using break. (? stands for input-lines)

?2(DE FOO (A)(PROG (N) (SETQ N (QUOTE ABC)) L1 (SETQ N (CAR H))
? (BREAK) (RETURN N]

7(FOO NIL)

T FAIL DIAGNOSTIC A8 UNDEFINED VARIABLE H

BREAK

N look at variable N.

ABC

2% (QUOTE (X Y 7)) give (X Y Z) as value to H and return

from break

12.

BREAK CALLED FROM PROGRAM

?N look at ¥
7% NIL return from break
X value of (FOO NIL)

?(DE FAK (N) (coND((EQ N 1)A)(T(TIMES N(FAK(SUB1 W>

FAK

2(FAK 3)

I FAIL DIAGNOSTIC A8 UNDEF VARIABLE:

BREAK

N look at variable N

1

?(FUNCT ION) look at the association-list
(FUNARG NIL ((W .1)(N .2)(N .3)(NIL FAK)))

?(CDR (QUOTE FAK> look at the definition of FAK

(EXPR (LAMBDA (N)
(conp ((EQ N 1)A)
(T (TIMES W (FAK (SUB1L N)))))))

7% 1 give 1 as value to A and return from
break
6

4.2 The functions A2 - A9

As A2 - A9 are defined as normal SUBR's, it is nossible to re-define them
as EXPR's and let one's own LISP-functions take care of those kinds of
errors. For suggestions how to use this feature, see the 3600 LISP U3

user's manual.

4.3 The function peek

There is a LISP-function called peek(), which calls the subroutine TESTUT.
With TESTUT it is possible to see how the list-structures are represen-

ted internally. For using TESTUT see pare Lk,

13.

4.4 The LISP editor

The editor is & very simplified version of the one used in the BBN
on-line LISP system (see refersnce U, chepter IX). In its present rather
primitive fnrm, the editor provides a number of commands for modifving
fMnction definitions only of the EXPR or FEXPR variety (the BBN editor
can be used not only on all functions but also on variables, property
lists, and arbitrary expressions). Nor, for the sake of economy of
implementetion, is there complete error checking - see Error Checking

below.

The Structure of the Editor Language. There are three types of command

available -

a. those for looking around inside the definition of a function, that
is for accessing list and sub-list structures.

b. those for changing the components of lists anéd sub-lists.

c. those for modifying the structure of lists.

We will consider the first here.

Entering the Fditor. To enter the editor, type

(EDIT FNAME)

where FNAME is the name of the function to be edited.

At any moment the editor is lcoking at some subexpression of the function
definition list, called the Current Level (CL), while the lambda expres-
sion of the function, viz. (LAMBDA), is the value of what is
called the Current Top Level (CTL), that is the reference point from
which lower level suhexpressions are accessed. (But see Changing the
Value of CTL, below). When the editor is first entered both CL and CTL
point tc the same list, namely (LAMBDA).

Sub-1list Attention Commands. The current level of attention (CL) is chansmed

by typing an interer n, where n sets CL to the nmth subexpression of the
current level's present value. For exarple, if the current level is the

list (A B C (D (E)) F), then 3 will set CL pointing to the element Cj;

1k,

while 4 will set it to the expression (D (E)), etc. To access a sub-
expression at any depth, one merely types in a succession of integers
until CL points to the right level. Thus, to point to the element F in

the =2bove example, it is necessary to tyve
?h21
Whereas to point to the list (E), type only

L2

The Print Commands. The list or element to which the current level is

pointing, is printed on the console by typing the command P. To avoid
wasteful printing, any list with sub-lists nesting to greater than a
depth of 3, is printed only to depth 2, after which a couple of

0¢ signs are printed to indicate continuation of the list. Thus if CL
points to» (A (B (¢ (D)))), then

TR
(A (B (0o ¢)))

will occur. For purpnoses of clarity full lists will sometimes be shownm

in the examples below.

The other print command is PR n where n is a positive integer or zero.
The current level is printed to depth n and then »e&x signs are substi-

tuted for the CDR if n>o. If n=o the current level is printed in full.

Changing the Value of the Current Top Level. It may sometimes be useful
to have CTL pointing to a level lower than the (LAMBDA) level, for

example when editing is being performed on some deenly embedded sub-

structure and it will never be necessary to return right to the top. To
set CTL to some lower level, access the required level hy suitable

integer attention commands, then type the command UP, thus :-

? P
(ABCc (D (E)) F)
24 UP2P

(E)
?70P

(D (R))

15-

But note that the command UP destroys all memory of hisher levels, so
it is impossible to met back up arain without exiting and re-entering

the editor.

Exiting the Editor. When editing is completed, type OK which =xits the

editor =snd returns the name of the edited function to the console.

Compcnent Changing Commands. There are 3 component chancing commands -

Replacing Cormmand. To replace the nth subexpression of the current level

by one more expressions, type

(n e e, ...) vhere n is an integer and e;, e, ... are arbitrary

S-expressions. Por example

?7 P

(ABC (2 (E))F)

? 4 (2 (G) H (J K))

20P

(ABC (D (G) H (JT K)) F)

Inserting Ccmmand. To inscrt one or more expressions irmmediately before

the nth subexpression of the current level, type

(-n e; e, ...) where -n is a negative inteper and e;, e, ... are

arbitrary S-expressions. For example

70P

(. BC (D (FE)) F)

24 (-2 (G) H)OP
(nBCc (D (G) H (E)) F)

Deletins Command. To delete the nth subexpression, apply the replacingz

commend with null replacements, i.e. type

(n) where n is a positive integer. e.#

20°P
(rBC (D (R)) F)
2(3)0F)

(4 B (D (E)) F)

16.

Structure Chanzing Commands. There are six commands which allow alter-
ation of the list structure itself. We will use the list
(. BC (D (E)) F) as an example throughout.

Left Parenthesis Out. The command (LO n) where n is a positive integer,

takes out a left parenthesis at the nth subexpression and deletes all

elements past the matching rirht parenthesis. Thus typing
? (Lo L)

produces (A B C D (E))

Left Parenthesis In. The command (LI n) where n is a nositive integer,

inserts a left parenthesis at the nth subexpression and a corresponding

rizht parenthesis at the end of the list. Thus
7 (LT 3)

produces (A B (€ (D (E)) F))

Right Parenthesis Out. The commend (RO n) where n is a positive inte-

ger, moves the risht parenthesis of the nth subexpression out to the

end of the list. Thus
? (RO L&)

produces (A B C (D (E) F))

Right Parenthesis In. The command (RI m n) where m and n are both posi-

tive integers, moves the right parenthesis at the end of the mth sub-
expression up to the nth subexpression of the mth subexpression, and

subordinates the remaining elements one level. Thus
? (RI 4 1)

produces (A B C (D) (E) F)

Both Parenthesis Out. The command (BO n) where n is a positive integer,

removes both parenthesis of the nth subexpression and subordinates its

elements to the preceding level. Thus
2 (BO k)

produces (A R C D (E) F)

17.

Both Parenthesis In. The command (BI m n) where both m and n are

positive integers and n> m, raises the level of the mth through to the
nth subexpression by putting a lerft parenthesis before the mth and a

right parenthesis after the nth. Thus
7 (BI Z 3)

produces (A (B ¢) (D (E)) F)

Error Checking. Should the user attempt to execute

8. a cormand that does not exist in the editor's repetoire

b. an attention command which is impossible, e.g. point to the third
subexpression of a list containing only two

c. a replacing command which is impossible, e.z. insert expressions
before the third subexpression of a list containing only one.

then the message

2119

...

will be output, and the value of CL will remain unchanged.

However, for eccnomy of implementation and speed of execution of the
editor, the error checkinsz mechanism does not extend to impossible
structure changing commands. Any attempt to execute such will either
cause a break, destroy the function, or bring F1 down. Therefore great

care must be used when changing the structure of a list.

Functions and Atoms Used by the Editor

EDIT, XEDIT, XCHANGE, XADJUST, SPRINT, SPR, APPEND, COPY, MINUS, NTH,
LISTN, ILLGC.

4.5 The LISP tracing routine, TRAC

TRAC is a simple tracing package for use on EXPR's and FEXPR's. Any
traced function results in the name of the function, the
name of each parameter and its value, and the value of the function,

being printed whenever the function is called.

18

Using DBUG. To set the trace on functions f1, f2, ..,, type
? (TRACE £1 £2)
which returns the value CK when complete. e.f.

? (DE cOPY (L) (conp ((NULL L) NIL) (T (cons (cAR (T (CONS (CAR L)(COPY (CDF

(CDR L
COPY
? (TRACE COPY)
0K
? (coPY (QUOTE (A B)))
+ COPY L= (AB)
+ COPY L = (B)
+ COPY L = NIL

+< COPY (A B)
+« COPY (A B)
« copPY (A B)
(A B)

?
To remove the trace from funections f1, f2, ... , type
? (UNTRACE f1 £2 ...)

which also returns the value OK when complete.

Method Used. Fach function to be traced is transformed into a PROGN
containinz the print statements for name and parameters and finally a
call to the function itself (called by a different name - this is dealt
with by a GENSYM). /'t the same time, the renamed oririnal function is
stored under the indicator TRFL in the atom whose print-name is the name
of the function beines traced. Because TRACE changes the structure of the
function body, it is unwise to attempt any computation on the function
body of a treced function.

Untracing puts into the correet function type whatever is stored in the
GENSYM atom which itself is in TRFL of the function atom.

Functions and Atoms Used by DBUG.

TRACE, UNTRACE, TRCl, UTRCl1, DMAP, FLIST, OUTP, COPY, PRINL, QUOTEx,
uor, MAPCAR1, PRINZ, LPAR, RPAR, SPC, BLANK, DOT, INT, UNT.

N

5.

19.

DIFFERENCES FRCM LISP 1.5

The following general changes have been made to the system specified

in the LISP -1.5 programmer's manual :

l.

Functions may be called with too many or too few arguments.
Missing arguments are taken as NIL. Extra arguments are evaluated

but not used.

Expressions of the type (LAMBDA U (---)) are permitted. U is then
bound to the list of evaluated arguments ("no-spread lambdas").
Expressions like (LAMBDA (U V . W) (=--)) are also permitted. U is
then bound to the first argument, V to the second argument, and W

to the list of remaining arguments.

If we "pass through the bottom" of a COND (i.e. no condition is
satisfied), the value of the whole expression is NIL. (In LISP 1.5,

an error message is obtained).

The top-level loop and the responses to errors can be controlled

by the user.

The system only handles fixed-point (integer) arithmetic. QUOTIENT

truncates its value to the nearest lower integer.

A number of functions have been deleted and added to the system.
In particular, the following functions have been added:

BREAK
DE

DF

DUMP
EXIT
GENSYM
GOTO
MEMB
MODE
OBLIST
PACKLIST, UNPACK
PRINTPCS
READPOS

20.

PROGN

RESTART

SETBIT, CLEARBIT, TESTBIT
SILENCE, TALK

TERFRI

The details of these functions are:

BREAK (See sec. L4.1 at page 11)

DE and DF ~

The simplest way to define s-expressions as expr's and fexpr's is to
use DE or DF (where DE stands for Define Expr and DF for Define Fexpr).
Use DE as follows:

(DE ARG1 ARG2 ARG3)
where
ARGl is the atom to be defined.
ARG2 is a parameter-list.
ARG3 is an S-expression.
The value of DE is ARG1.
Example : For defining addl(x):=plus(x,l) type
(DE ADD1 (X) (PLUS X 1))
DE will =add
(EXPR (LAMBDA (X)(PLUS X 1)))

to the property-list of ADD1.

DUMP

The function dump(l s) is used for dumping previousky defined EXPR's
and FEXPR's. 1 is the output unit number and s is a list of EXPR's and
FEXPR's which will be dumped. Note that DUMP itself is a SUBR.

EXIT

Evaluation of exit (with no arpuments) terminates the execution of the
LISP interpreter.

GENSYM
The function gensym(x) differs from gensym() in Lisp 1.5 in that a new
atom is created, whose printname consists of two parts. The first part

is the first U4 characters in the atom x. The second part is a running

21.

number, starting from 0000, Example :

?(GENSYM (GQUOTE ABCD))
ABCDO00O

?(GENSYM (QUUTE Xx¥X))
YXOX0001

If x has less than four characters, it is padded zeroes:

? ?(GENSYM T)
T0000002

GOTO
goto(x) is defined as go(x) in Lisp 1.5 but will evaluate x first.

(The conventional GO slso exists).

MEMB

The function memb(x,y) is analogous to member(x,y), (see Lisp 1.5).
The only difference is that memb is defined with eq and member is
defined with equel.

MODE
The function mode(n) sets the variable MODE to n. The variable MODE
stands for the kind of top-level function. See page 31.

OBLIST

oblist(x) will generate an objectlist from the object stack (see fig
page 24) starting with the atom x. As the atom T is the last system
atom, oblist(T) will generate a list with T at the beginning and then
all atoms defined by the user.

PACKLIST
Given a list x of single-character atoms, packlist(x) will create =
new atom, whose printname consists of the characters in the list x.

Note that only the first 8 characters are used. Example:

(PACKLIST (QUOTE (A B C D)))

e ABCD
Packlist can also be used on a list of numerical atoms, or on a list of
both numerical and non-numerical atoms. In the first case, the result will

be a numerical atom, in the latter case a non-numerical atom.

22.

PRINTPOS

When creeting an output line, the variable PRTPNT points to the place
in the outputbuffer, where the next character is to be placed.

The value of printpos() is the actual value of the variable PRTPNT - 1.
Printpos(n) sets PRTPNT to n (and returns with n as value).

Note : Printpos(60) will skip to a new line.

READPOS

The input line is first placed in an inputbuffer: Then succesive charac-
ters are read from this buffer. The characternointer is the variable
RDPNT, and it points to the next character to be read.

The value of readpos() is the actual value of the variable RDPNT-1.
Readpos(n) sets the variable RDPNT to n (and returns with n as value).
Note : Readpos(7l) will cause the system to skip to the next input line.

UNPACK

This function "explodes" the name of an atom. If the atom ALPHA is

given as argument, unpack(ALPHA) will return the list (AL P H A) of
character-atoms. If you went to modify a printname (e.g. remove the last
letter), use unpack, modify and then use packlist. The atom to eplode may
be a numerical atom,

PROGN

progn(xl,x2,x3,xl4,....,xn) evaluates all arpuments and returns the value
of the last argument. (ef. prog2(x,y)).

RESTART
restart() will restart the Lisp-Fl system to the same status as at the

beginning of the run except that all user-defined atoms are left.

SETBIT, CLEARBIT, TESTBIT
In Lisp-F1 there is & simulated 24-bit register to maintain compatibility
with 3600 LISP. The system now uses bit nr 24 for silence() and talk().

The user can maninulate and test the bits by using
setbit(n) puts the n'th bit on. The value of setbit is NIL.
clearbit(n) puts the n'th bit off. The value of clearbit is NIL.
testbit(n) T if the n'th bit is on, else NIL.

23.

SILENCE, TALK

System printout (value from eval, but not printouts from print and

terpri) is switched off by evaluating silence(), and switched on again
by doine talk(). Both functions have NIL as value. The system uses bit

nr 24 in the simulated register for controlling this.

2k,

6. REPRESENTATION OF ATOMS AND LIST STRUCTURES

The following arrays and pointers are used by the system:
Figure 6.1

NILCAR NILCDR NILPN1 NILPN2

{ | | T || |
CAR CDR PNAME1 PNAME
..I, 1 :

o

W

NRPOMP—“hHH““uhﬁﬁﬁq object stack

NATOM g \

NFREEB

NFRE'’J:'!P._,a',,f-""/f--;a free memory

NFREET

¥

R

All free memory and the object stack are represented by the integer
vectors CAR and CDR. The contents of CAR are (mostly) used as indices

to the vector CAR for pointins in car-direction. CDR is analogous. NIL

is represented by zero. To make it possible to use NIL (= zero) as an
index in CAR and CDR, NILCAR and NILCDR are placed immediately before

CAR and CDR respectively in the common area.

All atoms are represented by integers between 0 and NATOM (=500 for the
present). For atoms, there are two corresponding BCD-vectors PNAMEL

and PNAME2, containing the printnames (in this system max. 8 characters).
We are now ready to illustrate the representation of a list-structure

by an example

25.

Figure 6.2

index CAR CDR PNAME1 PNAME2

0 NIL
1 -6000 0 A
2 -6000 0 B
3 -6000 0 C
L -6000 0 ABCD EFGH
505 506 507
506 1 0
507 508 0
508 2 509
509 3 510
510 i 0

Index 505 represents the list ((A)(B C ABCDEFGH)).

Pl

4 <

L AL L]

v L P N

A B C ABCDEFGH

The value of an atom is stored in CAR(ATOM). The contents of
CAR(ATOM) are

UNDEF (=-6000) until the atom is defined.

The property-list of an atom is stored in CDR(ATOM). When the property-
list is empty, the contents of CDR(ATOM) are NIL (= zero)

The printname of an atom is stored in PNAMEl (ATOM) and PNAME2(ATOM).
If the printname contains less than 8 characters, the end of the print-—

name is marked by the BCD character stored in the FORTRAN variable
ATEND(=%, for the moment). Note, that this character can never be printed.

26.

Numerical atoms are not stored like the ordinary atoms, but are repre-
sented directly in the list-structures by integers greater than

NFREET (=4500). To get the value of on numericel atom, the system first
subtracts NUMADD (=50000). All numerical atoms have integer values.

ATEND and NUMADD can be changed by giving them new values in routine
INIT.

Fortran representation of stoms &nd other S-expressions

Figure 6.3
!_ NATOM (= 500)
— NIL (= 0) ' . NFREET (= 4500)
= | i (_ * o
S —— e S un — e =3 — ot
marked negstive non-numeric non-atomic numeric atoms
during garbare atoms S-expressions
collection

Progrem-variables used as pointers in the free memory (see fig. 6.1)

NATOMP the last atom in the object stack.

NATOM top of the object stack (=500)

NFREEB the first cell in the free memory (=NATOM +1)
NFREEP points to the beginning of the free list.

NFREET the last cell of the free memory (=L500)

A property-list in this system is a straight list where indicators and

corresponding properties alternate, like in T090 LISP. For each atom,

car(atom) points to the value for that atom (set by cset or csetq) and

cdr(atom) points to the propertylist.
(P1 V1 P2 v2 P3 V3......)

Pl is the first indicator and V1 is the first property and so on.

27.

Example of a typical propertylist of the atom X.

X "‘ﬁgl

I]
value |/

If you do

bl [P irmed b

S—-expr S—-expr

(PUT (QUOTE X)(QUOTE ABC)(QUOTE EXPR))

the propertylist will become

X
\S 2
Y I Y
value V g-exnr
and if you do
(PUT (QUOTE X)(QUOTE DEF)(QUOTE IND))
the propertylist will become
X e 1 .
‘ Pz - {rexerl 21 | Pl =p
value&” §;expr é—expr

=1

DEF

/|

The function put(x,y,z) puts y on the propertylist of x under the indi-

cator z, and is defined as follows:

put(x,y,2={if cdr(x)=NIL then rplacd(x, list(z,y))

elseif eadr(x) = z then rplaca(cddr(x), y)
else put(cddr(x), y, 2z) 5 y}

e

T. RECURSIVE PROGRAMMING TN FORTRAN

The LISE Fl interpreter is an almost direet translation from the defi-
nition of LISP in LISP 1.5 (see ref. 1, pageS5) to FORTRAN. That defi-
niticn is highly recursive. This chapter explains how recursion has
been programmed in FORTRAN.

T.1 The stacks.

There are two stacks for recursive calls of "sub-programs". One stack
contains saved armuments (the arsument stack), and the other contains
saved return-jump indicators (the function stack). They are both physi-
cally stored in the vector STACK. The size of STACK is NSTACK (=900).
IP and JP are the pointers, which hold the current sizes of each stack.
To push dcwn in the function stack increase IP and store. To push down

on the arpument stack decrease JP and store. Vice versa for pop up.

Figure 7.1

NSTACK _STACK _
7

;EEEE; j arfuments

o, (this part is refered to as the argument stack)
" 1 o/ NSt

NN
AN

t

|
A\

return-jump indicators (this part is refered to
as the function stack

N\

o

N
AN

The following 4 routines hendle the stack:
APUSH(J) Push down one argument in argument stack.

APOP(J) Pop up one argument from argument stack.

FEUSH(1,J) Push down one return—jump indicator I in the function
stuck. J is a dummy varisble, only used in a call to
have the pirogram more reedsble for the programmer. Ex.
FPUSH(5,1302) means tha: 5 is an indicator for the

stutement aumber 1302.

998 I=STACK(IP) T:is piece of code (lines 62,63 in the main program)
IP=IP-1 povs vp one return-jump indicator and vlaces it in I.
Stotenent 928 is the stendard retnrn for all recursive

routines.

T.2 Recursive calls snd returns.

All recursive functicns (leop,evqb, appyl,eval,evlis,evcon,cassoc,sassoc
and mach) are coded in the main program. It means that they are not

FPORTRAN-subroutines, but just pieces of I'ORTRAN code.

A call is made by saving necessary arguments with APUSH(ARG) and by

saving the rsaturniump irdicetor with FPUSH(IND,statement number). IND

stands for an indica*or in a computed GO TO (),T'D were IND corresponds “o

to the correct return stetement number. After seving, there is en
vnconditicnal GO ©0 to the "subroutine", and then follows the return-
statemant (with tle same statement number as indiceted by IND); there,
corresponding unseving of arguments is done by APU?(ARG).

A_retnmm foom a recursive function is normally done by GO TO 998. At
098 s sletenent nimber indi-ntor is popped up from the function stack
and vsad in a comruted 77 TO which leaves the program control to the
calling sequenre.

30.

Example from eval-zpply:

1 998 =STACK(IP)

2 IP=IP-1

3 GO T0(500,1103,3000,3501,..... o Ik
L 3500 CALL APUSH(ARG2)

5 CALL APUSH(ARG3)

6 CALL FPUSH(L,3501)

7 GO TO k000

8 3501 CALTL APOP(ARG3)

9 CALL APOP(ARG2)

10 kooo T1F(...)

11 60 70 998

Begin at line 4! The lines 4-9 are tsken from apply. The lines 10,11

are taken from eval.

line 4,5 save ARG2 and ARG3 (EVAL perhaps destroys them).

line 6 save return-jump indicator 4 (corresponding to statement
rumber 3501).

line T jump to eval

line 10 entry in eval. After doing eval,

line 11 CO TO 998, which takes us to the standard return

line 1 there the jump-indicator k4

line 2 is now popped up from the function stack and used in the
GO TO() statement. We now jump to the 4'th statement in
GO TO () and reach 3501 CALL APOP.

line 8,9 Unsave ARG3 and ARG? (note the reverse order).

Sl

8. THE MAIN PROGRAM IN THE INTERPRETER

8.1 The top level loop

In the ton level loop, the system behaves slightly differently according
to the velue of the FORTRAN variable MODE:

MODE behavior in each cycle

: 8 read an S—-expression, send it to eval, and
(unless SILENCE has been ordered by the user)
print the result

2. read two S-expressions, send them to evalquote,

and (unless SILENCE) print the result

3. get the EXPR property of the LISP atom SYS and
call epply with it as the first argument (and
the other arsuments NIL). Print the result unless
SILENCE has been ordered. The function SYS must
do all reading itself.

The value of MODE is set to 1 by INIT (the FORTRAN subroutine that
performs initialization in the interpreter). The user can change the
velue of MODE, using the LISP function mode.

Most of the work in the interpreter is done in the sections of the main
program that are I~beled eval, appyl, etc. The MODE feature is a super-
ficial thing, and can be thought of as specifying three different entry
points to the eval /appyl complex.

8.2 Transmicsion of arguments for recursive functions

In the main program, 21l arpuments for the recursive routines are held
in ARG, ARC2, ARG3, ARGL. Except for sassoc and cassoc, ARG is the first
argument, ARG2 is the second, and so on. In sassoc and cassoc the order
is ARG,/ARG2,ARGL.

32.

Instc~d of apply, the interpreter uses appyl(fn,a,args)=apply
{fn.cwz=,2) and instead of sassoc the interpreter uses cassoc(atm,z,erf)
=odz(senzoa(atm,a,erf)).

1 this vayr, ARG2 always means the association-list. A call is then
Qome Uy Fivings values to £KG, ARG2...., and using the calling-technique

o Ty RS x5
mES e 0Nas on 'Sﬂ;e « .

Ly

Rrprzreatation of SURR and FSUBR

Gyoclauw decle 2d funetions are numbered from 1 upwards.

Tigore 2.3
SUBR's . FSUBR's system-—
7T e O o G R WOEINGG. o o
3 JUERD SUGR 1 SUER2 SUBR3 SUBR FSUBR
nger denlared
chons atoms free merory
o 4 e e e e, gy = ~ -
MATOM

SUDR's vith ro armuments are numbered in the intervel (1,SUBRO). SUBR's
with 1 arpument ere numbered in the interval (SUBRO+1,SUBR1) and so on
for £UNR's with tvo and three arguments. In the interval (SUBR3+1,SUBR)

plus). FEUBR's are numbered in the interval (SUBR+1,FSUBR) and after
FSUBR come all syrtem and user-declared stoms.
ZUBTD,0USR1,SUBR2. .. are FORTRAN variables, set by the routine INIT

when the atoms are read from logical unit 5.

These .onventions meke it easy for eval to determine the type of a given
Z-expi'. Vnen eval is celled, the S-expr. is held in ARG. If the value
of ARG in greater then NFREET it stends for a numerical atom (whose
Integer value i~ JRG-NUMADD), there NUMADD is a constant set by routine
WIT).

I7 the vaiue of ATG lies in the interval (NFREEB,NFREET) it stands for

a S-exor. If it 1fes in (O,NATOM) it stands for an atom. The interval

33.

co~tairing the value of ARG, defines the kind of atom. For example, if

the v2lue of ARG lies in (SUBR1+1,SUBR2), ARG stands for a SUBR with

2 arguments. 3y subracting SUBR1 from ARG we can use the computed value
in 2 comuted GO TO-statement and jurmp Airectly to the code corre-jpon-

dirs to “he actual SUBR.

3L,

9. FUKRCTIOKRS AND SUBROUTINES IN THE INTERPRETER

Input routines:
IREAD
JATOM
RATOM
SHIFT
SBYT
MATOM
GETCH
PUTCH

Output routines:
IPRINT
PRINAT
OUTSTR

Routines used at garbage-collection:
GARB
MAKFRE
COoNS
LISTNB

Routines uszd from eval:
MEMB
NEOX
0K
ADDAL
KAR
KDR
GET
APUSH
FPUSH
APOP

Others:
INIT
TESTUT
FXCUSE

9.1 FUNCTION IREAD(DUMMY)
IREAD ie the subroutine, which constructs new lists from the S-notation

input. IREAD uses the routine RATOM, ITYP=RATOM(NAT) gives the kind of
atom in ITYP and the atom value in NAT. For ITYP-codes see papme 33.

32.

Typed _input Value of IREAD and the COMMON-variable ARG
a) S-exrr. IREAD=value of S-expr. ARG undefined.
b) % S-expr. IREAD=-1. ARG=value of S-expr.

The latter return b) is used by the break-function (page 11)

IREAD ornstructs new lists non-recursively, and the main idea behind

IREAD is described by the following exampleg

In general, start with a lisp-cell

Then let (mean "o down one level (add a new cell in car-direction)”.
let atoms mean "add at this level (add a new cell in cdr-direction)".

let) wean "eo up one level".

For zoingz up one level, a pointer is always kept to the level above
in the cdr of the last cell of the sublist.
Let us now construct the list ((A B) C).

a2, start with :;Eflzzfj NEW,LAST

b. (gives . corresponding to (

c. (gives o corresponding to ((

d. A pives corresponding to ((A

36,

e. B gives _ corresrondine to ((A B)
i
i 1
].._____.!.n;
1
R S
LAST T . 1
l_i T8] ! w§m
£.) —
|
|
[
e
o | jf‘
i - .
| & -{-—> |2 || s
g. C mives —— corresponding to ((A B) C
L —
4” 1
LAST N ! >
oo
Mo] | B
| —+ 17
h.) gives corresponding t~ ((A B) C)
NEW -
L
B Z
T ¢ J//i LAST
IJ
flf‘ — B i: 1

cdr(HFW) = NIL now indieates, that no more hicher levels =xist. Th

list-structur: is complets, and the value is stored in car(NEW).

In a dotted n=ir etoml.atom?),etoml is treated as a new atom on its sub~-

list level and .atom2) is treated as) [or you can say, that) is
treated es .NIL)]

The flowehart for IREAD is given in appendix C, narn 65,

310

9.2 SUBROUTINE JATOM(ITYP, IATOM)

Reads an atom or a break character. The type of the item is returnecd
by setting ITYF to an intemer. If the item type is "atom", then this
atom is returned by settinz IATOM. This routine is used by RATOM.

The details are : JATOM obtains an input character using SBYT and SHIFT.

It classifies the chsracter and sets ITYP as follows :

character set ITYP to
(2
3
. IR
[5
1 6
% T
ctherwise 1

If ITYP is set to 1 the character is assumed to be the first character
of an atom. (Blanks are disremarded). The atom is then completed (con-
tinue reading up to = blank or one of the break characters above), and
the character-string for the atom sent to MATOM. The index of the

generated atom is returned throush IATOM.

9.3 FUNCT ION RATOM(IATOM)

RATOM is basically like JATOM, with a few differcnces:
(a) RATOM keeps "["™ and "]" in a separate bracket stack;

(b) RATOM combines the tip of a dotted list, i.e.]. atom) j , into

cne single item, a "generalized right parenthesis";

(¢) Beins a function, RATOM returns the type (ITYP) as the value of the

function rather than in an argurment.

The details are: RATOM calls JATOM once (with some exceptions), and

returns 2 value given by the following table:

characters encountered value put into value of RATOM

by JATOM ITYP by JATOM

(2 i
) 3 2

. atom) I 2
aton 1
yA 7 5
[
1

In the case of atom and .atom) , IATOM is set to the index of this atom.
In the case of) nnd], IATOM is set to NIL (zero). When it sees a left
bracket, RATOM make- a push operation on its local bracket stack. When
it sees a right bracket, it mekes a pop and starts a countdown. During
the countdown, each call <7 RATOM will return a rightpar without calling
JATOM. Thus RATOM generates the necessary right parentheses until the

brackets have been matched.

9.4 SUBROUTINE SHIFT(IC)

Used by JATOM. Uses PUTCH.
SHIFT takes one BCD character from the input string and gives it to
JATOM, ancé then, if necessery. reads one new input string from the

standard input unit.

9.5 SUPROUNILE SBYT(L,IB,K)

Used by JATOM. Uses PUTCH.
Stores one BCD character in an 8-byte buffer, used later by MATOM to

form the printname o an atom.

9.6 FUKCTION MATCM(DN1,PN2)

Used by <4AT0M.

MATOM makes en atcin., If an aton with the same printname already exists,
that atom will be the value; otherwise, a new atom is stored on the
object stack.

The value of MATOM is the index of the atom (the existing or the new one).

39.

9.7 GETCH and PUTCH

These arc the two assembly-coded routines for character-manipuleting.
CALL GETCH(LIN,IC,N)

puts the N'th character in LIN (counting from the left) into IC, left
justified. The rerainder of IC is filled with the blank cheracters.

LIN and IC are supposed to contain at least 4 BCD characters.

Emaple:

+ABCD |
efter CALL GETCH(LIN,IC,3) IC will be [g__]
CALL PUTCH(LIN,IC,N)
puts the leftmost character of IC into the N'th place in LIN.

Example:
LIN= [ABCD

e

Ic= &1

after CALL PUTCH(LIN,IC,3) , LIN will be TABAD'..

9.8 SUBROUTINE IPRINT(I)

“PRINT is a non-recuw.sive routine, which performs a print-by-scan on

a list I. The scan method is the same as in routine GARB (see page 41).
The only difference is that the forward scan is done in the car-directicn,
while searching fo:r branch-points is done in the cdr-direction.

IPRINT, of course, leaves the list unmarked after the printing. (The
reader is now recormended to read page 41 for explanation of forward

scan and backward scan)

Forward scan (car direction).

I CAR(I) is en atom, print atom and start reverse scan, other-

wise print (and go on with forward scan.

Reverse scan:

If CDR(I) is en atom or NIL, print .atom) or) and go on with

reverse scan, otherwise start forward scan on the sublist.

The print described briefly above is done by call to routine PRINAT(I,IATOM)

L AV

there
I=1 means (
I=2 means)
I=3 means .atom)
I=l means atom

and IATOM is the value of the atom in cases 3 and k.

9.9 SUBROUTINE PRINAT (I, IATOM)

Used by IPRINT. Uses PCHAR,GETCH and OUTSTR.
Depending onI, PRINAT puts the following in an output buffer, which is
then written by OUTSTR.

I__ATOM _to put in buffer
- (
=)

1
2
3 satom value .atom)
l

" atom atom here is the printname

of the atom

PRINAT =lso puts spaces in the output buffer in order to get a pretty-
print looking output. The rules for pretty-vrint programmed in PRINAT

are as follows:

a) the combination)(gives a new line.
b) a label in a prog gives a new line.
c) every new line beszins with spaces, indicating the depth of this

level, This is done by calculating the number of unbalanced left

parentheses printed previously and printing 2 blanks for each.

9.10 SUBROUTINE OUTSTR(IBUFF, IBL, IND)

Used by PRINAT.
First writes one output line on standard output, and then puts a correct

nurber of spaces in the output buffer (IBUFF).

Jued By PRIJAT. Tses FUTCH.

PCELR to¥kesy ore RID chass.

IR

GFY. Rheds ko pat b, Lo
12 dacbage-onllecsiu.

Wwren OCAS iw

--=l| (l ‘

LR &¥a |

£0G2
e Pt s |
i

STAC
CaR{

+

th o the followinz

S ——

x(1)

x)

CDR{T)
LASET

eallad, end the free-

23 AN’

& PCLAR(IR, NPL, D)

4=

and puts i% in the ECD wvector

indlceated Ly Jab.

irsts

1int is emnty, the routine GARB(I)

-

i

The tvo erguaents for CONS

nos

neceaxrarily saved Yy EVAL

¢ in the argunent siack

Tach clement in the object shack (i.2. 2ar end ede

cl evary

The izt

atom)
unier

sanstrnetion T IRPAD

AFB(T) tnon merks there lists. After i

wh

ilo*e. I'o» Lhe pre-ert no ateor—-gorbase-collection exista.

CUBRCTT il CATIS! 2.

naArk o Sha
Thara 207.10Ws
FoL INT_Begh: !
K03 ol ik A4 SR PAO N

e w
Ex

Jak »EL?

-

anp.l.z 4

non-vesnrsive soobine

1int T, ha id=

Lorz: onl7 & brief

¥hile éoing

Lhis there is & eell to MAYIRE,

mche - free 1list of 211 wmeiked cells.

asad at garboze-collection time for

s ig Aeserited v CACH Lyz 57 (nr 8) and so

" " - * - L]
eiahs (In ade-diractiecn;

explanaiion.,

wnbil the lists ends, or & merked

that, rmeverse the edr's, printing them to

leic, mod moris Lae cells as examined (here indicated »57%

ey

t | e 7]

L2,

after the forward scan:

] JT’ . L& | sm—

*5'
!
T
=B
%

Backward scan:

Go in cdr-direction (which is now to the left) and restore old cd»-values.
While doing that, search for any car's pointing to sublists. Call such a
cell a branch-point. When a branch-point is found, put old cdr-value in
cdr, and put the "reverse cdr" (which just before was the contents of
edr) irn car, end mark this cell as a branch-point (here indicated as E§$).

Then do the “nrward scan of the sublist found.

Example :
After forward scan of the bottom branch the list above will be
l —I — v 7
%Z N B4 |
/"Tﬁ —
gz %7

A flowchart for this procedure is given in appendix C page 68.
Tor marking a cell as examined, do

car(i) :=—car(i)-1

and for marking e cell as a branch-point, do
cdr(i) i=-cdr(i)-1

.13 FUNCTION MEMB(I,JJ)

FORTRAN-routine for the Lisp-function memb(x,y). See also page 21.

¢.1% FUNCTION NBOX(I,J)

NBOX(TI,J) = I-NUMADD., The function checks if the value of I lies in the

intervol defined for numerical atoms.

43.

9.15 FUNCTION ADDAL(IA,IV,E)

Adds dctted pairs, taken from the elements of IA and IV, to the
association list E. M-expression definition:

addel [ia,iv,el= nconc [pair [ia.ivl, el

9.16 FUNCTION KAR(I)

Dees car(i).

9.17 FUNCTION KDR(I)

Does cdr(i).

In critical points in the program, KAR and KDR are used instead of just
the vectors CAR and CDR. The reason for this, is that when debusmging
the Lisp-system, tests on I could be used in KAR and KDR, (When
debugeing the system, it turned out that this special test was not

necessary and the function may be removed).

9.18 FUNCTION GET(J,I)

FORTRAN-routine for the Lisp-function pet(x,y).

9.19 SUBROUTINE APUSH(J)

Puts one value on the arpument stack and increases the stack-pointer.

9.20 SUBROUTINE FPUSH(I,J)

Puts one value on the function stack and increases the stack-pointer.

J is a dummy-variable.

9.21 SUBROUTINE APOP(J)

Takes one value from the argument stack and decreases the stack-pointer.

More about AFUSH, FPUSH, and APOP can be read on page 28.

9.22 SUBROUTINE INIT(IRESTA)

This routine initiates the Lisp-system by doing the following:

a) Sets pointers to correct initial values. For actual pointers
see page L6.

b) Reeds BCD charscters (),. and so on from logical unit 5. The

characters sre used for reference later on.

c) Reads BCD characters used as printnames for system atoms. This will

also be from logical unit 5.
d) Puts system atoms on the object stack.
e) Makes o free list by calling MAKFRE.
) Initistes the routines SHIFT, GETCH and JATOM.

7) Definc a cell ALIST used as a pointer to the association list in
eval.

If IRECSTA<0, INIT resterts the system by doing a, e,f,g.

9.23 ESURROUTINE MAKFRE

Generates a free list of all unmarked cells in the free memory spsace.
A marked cell is a cell with negative car. MAKFRT also unmarks all

previously marked cells,

9.24 FUNCTION CONS(Il,I?)

Does cons(x,y). In the case of an empty free list, garbage collection is
called.

9.25 FUNCTION LISTNB(LISTST)

Counts the rlements insea one-way list.

9.26 SUBROUTINE TESTUT

TESTUT is an auxiliary routine for debugging the system and, in some
cases, for debugzing LISP-functions. From LISP, it is entered by the

LISP-function peek(). With TESTUT you can see how list-structures are
represented in core. After calling TESTUT, the following will be written
on standard output:

IT MIN MAX

L]

You now have to type in inteper values for IT, MIN, and MAX in free
format.

If IT is positive, the object stack and/or the free memory, represented
by CAR(I) and CDR(I) will be printed with I varying from MIN to MAX.

If IT is zero, the printnames of the atoms, represented by the vectors
PNAMEL(I) and PNAME2(I) will also be printed.

If IT is negative, TESTUT mekes an ordinary return.

Example:

?(PEEY) Lines followed by ? are input-lines.
IT MIN MAX The example is taken from the example
20 1 Mk of list structures on page 25.

-6000
-6000
-6000
-6000
IT MIN MAX
? 1 505 507
505 506 50T
506 i D
507 508 0

swmn -
o000
U

ABCD TFGH

Note: For the present, TESTUT uses IINPUT(IT,MIN,MAX) for input in free
format. This is 2 library function of Datema timesharing service in
Stockholn (see also pame UT).

9.27 SUBROUTINE EXCUSE

Writes out an excuse-messare when the system is confused by the data it

has set up for itself.

10. IMPLEMENTATION GUIDE

LISP-Fl1 is at present provided as a FORTRAN program on punched cards
(in EBCDIC format). It is written in Basic FORTRAN IV for IBM. For
implementation of the LISP Fl-system on other computers observe the
following rules:

10.1 Memory requirements

For the present, the system needs about 85 k bytes in an IBM 360/L0.

The space is divided into
Prcgram space 35k bytes
Cormon space LSk bytes

The common space can be chanpged, and in fact this is recommended in

order to get as much free memory as possible.

10.2 The COMMOIT area

The vectors CAR and CDR contain the stom space and the free memory
space. The total space for this is now 4500 fullwords. The vectors
PNAME1l and PNAME2 contain the printnames for atoms (now 500 fullwords
each) and STACK contains the argument-function stack (900 fullwords).
Changing the COMMON area must be done in the main program as well as

in 211 subroutines and functions.

Chansmes in COMMON statements must be supplemented by changes of certain

constants that are set in the routine INIT. See the following section.

10.3 Constants set in INIT

The following constants are set in the initialization routine INIT:

Fortran veriable Meaning

NFRIET The size of the vectors CAR and CDR.
(NFREET stands for the total atom and free memory space).

NATOM The size of the vectors PNAMEL and PNAME2., (NATOM
divides thes total space in atom space and free memory
space).

NSTACK The size of the vector STACK.

10.k Logical units for I/O

The verisble LUNIN indicates the standard input unit, and LUNUT the
standard output unit. The variebles LUNIN and LUNUT are set by routine
INIT to 9 and 6, respectively. This can be changed by setting the variab-
les LUNIN and LUNUT to any desired values.

Standard I/0 units can also be chanped from LISP by the LISP-functions

inunit(n) and outunit(n) where n is the unit number wanted.

Note: All S-oxpressions are printed on standard output, but all system-
nessages (i.e. error messages, dump messages, etc.) are printed on

logical unit 6.

The initislization phase of the LISP-system involves reading all system
atoms from logical unit 5 via the routine INIT. Also BCD-codes for
(),.[]1 and sc con, are read from unit 5 et initialization. The required

input for this is given in appendix D page 69.

10.5 Non—-standard FORTRAN-routines

The routines PUTCH and GEICH are coded in assembly lenruage for IBNM-360,
and have to be re-coded in the case of other computers. For definiticns
of PUTCH and GITCH see page 39. The routine IINPUT used in routine TESTUT
is a library routine for format-free input at the Datema time-sharing
service in Stockholm. In other systems this may have to be re-written.
For example in TESTUT, change

1 EE A
CALL IINPUT(IT,MIN,MAX)
to
l - & 8 8"

READ(LUNIN,100) IT,MIN,MAX
100 FORMAT(3IL)

10.6 Use of LISP-F1 in interactive mode

Before compiling the program (after taking care of points 1 to 5) the
data deck containing the system-atoms (appendix T pare 69) should be
read to lopical unit 5. Then compile the program and run it as an

ordinary interactive FORTRAN-rrogram.

10.7 Use of LISP-F1 in batch mode

The system is written for interactive use, but can be used as = batch-

program as well. In that case, notice the following:

10.7.1 If you get a LISP-error A2 - A9, the debusging function break()
wants input from the standard input unit. This input is of course not
available (in peneral) on e batch-run. It is therefore recommended to

avoid this by replacing the statements

GO TO 1000
in A2 - A9 by the statement
GO TO 998

The code for A2 - A9 is placed in the main procram between statements

nr 9201 and nr 9820+1.

This will have the seme effect as if % NIL was given to break(), i.e.

NIL is given to the undefined atom (or function) and the system continues
the evaluation.

Another way of bypassing the break-function, is to define the LISP-

functions A2 - A9 as EXPR's, (see section 4.2).

10.7.2 As the interpreter is written for interactive use, S—expressions
given as input are not printed out (since they are normally typed in
on the same medium as is used for output). To have the interpreter vrint
out input S—-expressions, add the following FORTRAN-statements to the

main program:

Ly,

after statement 1100 IARG=IREAD(O)

insert IF(DREG(24)) 1150,1150,1151
1150 WRITE(TLUNUT,1160)
1150 FORMAT ('ARGUMENT FOR EVAL...')
CALL IPRINT(IARG)
1151 CONTINUE

ch-nre statement 1104 CALL IPRINT(IRES)
’L"l
1104 WRITD(LUNUT,1161)

1161 FORMAT(' VALUE IS...'
CALI, IPRINT(IRES
after statement 1200 IARG=IREAD(O)

insert IF(DREG(24)) 1152,1152,1153
1152 WRITE(LUNUT,1160)
CALL IPRINT(TIARG)
1153 CONTINUE

Instead of changing the FORTRAN program the top-level function can be

changed as described in the example given below

(DE 8YS NIL (EVAL (PRINT (READ))NIL))
(MODE 3) eval

(DE SYS NIL (PROG (L)
(SEPQ L (PRINT (READ)))
(conn {(OR (GET L (QUOTE FEXPR))
(GET L (QUCTE FSUER)))
(EVAL (COES L (PRINT (READ)))NIL))
(T (APPLY I (PRINT (READ))NIL))))) evalquote
(MODE 3)

11 EOW TO ADD NEW SUBR'S AND FSUBR'S

In order to follow the instructions bhelow, the reader is recommended to
read chapter 8, especially chapter 8.3 (Repr. of SUBR and FSUBR) on
page 32,

To add a new SUBR (or FSUBR) you have to:

a) Insers the function name in the data deck (see list, ~ppendix D
page 69). The location of the name is important and must correspond
to o computed GO TO-statement. More about that under point b.
The card shall bz punched in the format (A1l,2X,2AL). The first

charzcter describes the type of the function:

0 SUBR no arguments

1 o 1 sar-ment

2 ¥ 2 arguments

3 " 3 arguments

N " no limit in the number of arguments
F FSUBR

b) Change the corresponding computed GO TO-statement, determined by

the type of .he function:

type: change statement:
0 o004 + 1
1 =" (yes, it is the same)
2 9200 + 3
3 9309 + 4
N okoo + 1
F 9591 +1

In the corresponding GO TO-statement, insert the statement number

refering to your own piece of code, so that the order in the data deck
(after insertion) still corresponds to the GO TO-statement. It is also
recommended tn change the comment card, telling which statement number

refers to which function.

¢) Put in your piece of code somewhere.

When entering the arsuments is hold in ARG,ARG2,ARG3 as shown

below:
type: arguments are in
0 =
1 ARG
2 ARG, ARG3
3 ARG, ARG2 ,ARG3
N ARG3(1ist of the armuments)
F ARG,ARG2, (arg. list and association-list)

Formal return is then done by setting IRES to the result value and
then deing GO TO 998 (in fact, ARG and IRES are equivalent)

Here is an example:

The function lastelem[x] = if cdrlx]=NIL then car[x]else
lasteleml edrlx]]

is to be implemented.

a) In the data deck, chanpe:

1 INUNIT
1 NULL
to
1 INUNIT
1 LASTELEM
1 NULL
b) Change: Part of
x 9180, 0109, 9110, 9111, 9112, 9113, 911k ,{ the com-
- CDDR CLEARB GENS INUN NULL NUMBP OUTUN { puted
GO TO
to

x 9108, 9109, 9110, 9111, 91115, 9112, 9113, 911k,
c CDDR CLEARB GENS INUN LASTE NULL NUMBP OUTUN

c) Insert the following code somewhere in the main program (i.e. after
the code for INUNIT)
C
C21115 LASTELEM

91115 IF(CDR(ARG)) 91116,91117,91116
91116 ARG=CDR(ARG)

GO TO 91115

91117 IRES=CAR(ARG)
GO TO 998

Warning: If you use CONS(,), variables which earlier have been given

a list as a value may afterwards be pointing to the wrong list structure
in case of garbage-collection. The following lists are saved at a
garbage—collections

argunents toc CONS

ARG ,ARCG2,AFG3,LASTR

the ersument stack

all lis%s which are referenced by an atom

Example :

a) TEMPl= CAR(ARG)
IRES= CONS(I,J)

. TEMP1 may now have been destroyed

b) TEMP1 = CAR(ARG)
TEMP2 = CONS(I,J)
’ TEMP1 may have been destroyed. TEIP2
: cannot be destroyed by these statements
e¢) TEMP1l = CAR(I)
TEMP2 = CONS(TEMP1,J)

either TEMP1l or TEMP2 can be destroyed
by these statements

12,

References

John MeCarthy et al.
LISP 1.5 Manual
MIT Press, 1962

Carl Weissman
LISP 1.5 Primer
Dickenson Publ. Co., 1968

Information Internaticnal, Inc.
The Programming Language LISP
MIT Press, 196k

Daniel G. Bobrow et al.
The BBN-LISP system

Bolt, Beranek, and Newman, Inc., Cambridge, Mass.

Jaak Urni
3600 LISP U3 User's Manual

Uppsala University, Computer Sciences Dept.

An Efficient Machine-Independent Procedure for Garbage
Collection in Various List Structures
(CACM, Aug. 1967, No. 8)

23

54,

Appendix A

The LISP-F1 interpreter (defined in LISP M-expressions).

loop() = if mode=1 then print(eval(read(),NIL))
e€lseif mode=2 then print(evalquote(read(),read())
elseif TEMP:= get(SYS,EXPR) then print(eppyl(TEMP,NIL,NIL))
else prog2(print(TPROR), print(eval(read(),NIL)))

evalquote(fn,args) = if pet(fn,FEXFR) V get(fn,FSUBR) then
eval(cons(fn,args), NIL)
¢” == appyl(fn,NIL,args)

appyl(fn,a,args) = if null(in) then KRIL

elseif atom(fn) then
if TEMP := gmet(fn,EXPR) then appyl(temp,a,arss)
elseif TEMP := get(fn,SUBR) then mach(temp,a,args)
else apnyl(cassoc(fn,a,N2) , a, args)

elseif car(fn) = LABEL then
appyl(caddr(fn), cons(cons(cadr(fn), caddr(fn)),a),args

elseif car(fn) = FUNARG then
appyl(cadr(fn), caddr(fn),args)

elseif car(fn) = LAMBDA then
eval(caddr(fn), addal(cadr(fn),args,2))

else apnyl(eval(fn,a), a, args)

mach(le,a,args) = as appyl but for SUBR's and FSUBR's

addal(a,b,c) = nconc(pair(cadr(fn),srgs),a)

For nconc and pair see the Lisp 1.5 manual.

eval(form,a) = if null(form) then NIL

elseif numberp(form) then form

elseif atom (form) then
if value(form) then car(form)
else cassoc(form,a,A8)

elseif atom(car(form)) then
if TEMP := pet(car(form), EXPR) then
appyl(temp, a, evlis(ecdr(form), a))
elseif TEMP == get(car(form), FEXPR) then
appyl(temp, a, list(cdr(form),a))

elseif TEMP := get(car(form), SUBR) then

mach(temp, e, evlis(ecdr(form),a))

elseif TEMP := get(car(form), FSUBR) then
mach(terp, a, cdr(form))

else eval(cons(cassoc(car(form),a,A9),cdr(form)),a)

else eppyl(car(form),a,evlis(ecdr(form),a))

cassoc(atm,a,erf) =cdr(sassoc(atm,a,erf))

sassoc(atm,a,erf) = if null(a) then eppyl(erf,a,cons(atm,cons(a,NIL)))
elseif caar(a) = =tm then car(a)

else sassoc(atm,cdr(a),erf)

value(atm) = if car(atm) ="undefined" then NIL else car(atm)

Errorfunctions a2,al,n6,a8 and 29

a2,a9 undefined function

ali first argument of set/setq not on the association list.
ab undefined label in progz

a8 undefined veriable

a2(atm,a) = proz()
print (ERROR A2)
print(atm)
return(break())

ali,a6,a8,29 are analogue.

A

break() = prog()
if "next expression is in the form % S-expr"

then return (loop()) else looo()

Appendix B

Table of atoms and functions defined in LISP F1

This appendix contains three tables:

(1) =2 list of all functions which are defined in the systemg
(2) a list of all special-purpose atoms
(3) e list of I/0 and cheracter handling functions with more detailed

deseriptions of each function.
In table ., the various columns use the following conventions :

value : the valvue is defined under the convention that the evaluated
first argument to the function is called x, the seccnd
ergument is called y, etc. (This convention is used even for
FEXPR's, so that e.g. plus is said to have 3 arguments =z, 7,

ard z in the expression
(PLUS A B C)

and we let x stand for the value of A, rather than 4 itself.
The association-list, or the list of arguments never get

involved).

When nothing is said in this column, it means that ire have

nothing to say (not that the function does not have a value).

side-effects : When nothing is said in this column, it means that there

are no side-effects.

7090 reference: This is a refercsnce to pages in the LISP 1.5 manual

(reference 1) where the function:is further described.

reference here: This is = reference to sections (smiven as numbers) cor

appendices (given as letters) in this manual. 23 stends for

table 3 in appendix B (i.e. this appendix).

function

Tsble BL

type nr of value side-effects TO90 reference
name arg:s reference here
(page ##) (section)
A2 SUBR 2 prints out 3.3
error message
and does a
break
Ab SUBR 2 se A2
A6 g 2 -" -
A8 SUER 2 - " -
A9 SUBR 2 -" -
ADD1 SUBR 1 x+1 26,64
ADVANCE SUBR O next input advances input &8 B3
character (as pointer; does
8. character- not set CURCHAR
atom) or CHARCOUNT as
in 7090 LISP.
Note The first
char. following
an S~expr will
never be reached
by edvance
AND FSUBR arb 21,58
APPLY SUBR 3 T0
ATOM SUBR 3 3597
BREAK SUBR 0 The LISP-inter- % 3
preter goes down
in a break
ggg’ SUBR 1 the following 2,3,56
S exist : CAR,CIR
CAAR,CADR,CDAR,
CDDR
CLEARBIT SUBR 1 NIL clears the x'th 5.6
bit in a simula-
ted 2L4-bit
register
COND - arb 18 5.3
CONS SUBR 2 2,56

Table Bl

function type nr of value side-effects T090 reference
name are:s reference here
(page ##) (section)

DE FEXFR 3 X defines new 5.6
EZPR

DF FEXPR 3 x defines new 5.6
FEXFR

DIFFERENCE SUEBR 2 x = 26,6h

ClMP SUBR 2 NIL Dumps EXPR's 5.8
and FEXPR'r

ETECT SUBR O NIL page eject on B2
print

EQ SUBR 2 T when x and 3.22.57

¥y are same
address, NIL

otherwvise
EQUAL SUBR 2 31,86,57
EVAL SUER 2 Ta.
EVLIS SUBR 2 T+
FUI'CT TOW FSUFR 1 21,71
FORCIGBC SULR 0 number of free causes a gar-
cells left bage collection
"enanificd. as o
numeric zom)
GEUSTM SUER 1 new stom with increases 66 SR
a fresh name gensym counter
(£32D2000, to cbtain neme
77E000001, ete.)
GET SUBR 2 b1,5¢
GO FSUBR 1 30,72
GOTO SUBR 1 as GO, but the 5.6
GO-label is the
avaluated arpgu-
ment
CREATERP SUBR 2 if x>y then T 26,64
else NIL
IUNIT SUBR 1 x switches stan- 0.h

dard input to be
taken frcom logicel
unit =

Table Bl

function type nr of value side-effects 7090 reference
name arg:s reference here
(page #t) (sestion)
LABEL TSUBR 2 ¥ binds x to ¥ 8,18.70
on the associa-
ticn-list
LESSP SUER 2 if x4y then T 26,64
else NIL
LIST FSUBR arb 57
MEMB SUBR 2 defined with 5.6
EQ
N TI3ER SUBR 2 defined with
EQUAL 11,62
{ODE SUBR 1 X sets type of d.l
top-level
function
NCZTD SUBR 2 like APPEND attaches y tc 62
the ead of x
with RPLACD
type operation
IIULL SUBR 1 if x=NIL then 1157
T else NIL
NUMBERP SUBR 1 if x is en 26,6k
nurerical ztom
then T
elee NIL
OBLIST SUBR 1 en objectlist, 5.6
starting wit> x
CR FSUBR ardb 21,58
OUTUNIT SUBR 1 x switches s 7
standard (print)
output to be
given to
logical unit x
PACKLI ™D SUEBR 1 a new atom o
PAIR SUBR 2 60

‘ﬁ’

Table Bl

funsticn type nr of value side-effecte 7090 referenco
nane arg :s reference here
(page) (section)
PEEK SUBR O I'TL calls the .3
routine
TESTUT
PLUS TSUBR &b X+, 25,63
PRIF1 SUBR 1 x puts x in 55,8L s
cutput huffer
FOINT SUBR 1 x prints x and 65,84
terminates
record,
cestroys pre-
vicus contents
of outpnt tnifexr
PROG FEUPR arpgunent of 29.71
RETURN. If
there is no
RETURII eclause :
cdr of the prog-
expression it-
self
PROGN TSUBR arb value of the evals all 5.6
last argument arpuments
PUT SUBR 3 x adds the
prenerty y
under the indi-
cator - on r''z
property-list
QuUOT & FUBR 1 18.,22,71
QUOT ITNT SUBR 2 x/y 25,64 =5
READ SUBR O The S-expr. 65,8k
Just read. _
RTIATART SUBR O - restarts the WG
sys*em
PG L3 SULR 1 - causens exit 39,72

from o PROG

with x a=
value of the
PROG expression

62.

Table Bl
function type onr of value side—effects T090 reference
name arg :s reference here
(page ##) (scetion)
RPLACA SUBR 2 cons(y,cdr(x)) modifies x 41,58
RPLACD SUBR 2 cons(car(x),y) modifies x 41,58
SASSOC SUBR 3 60
SET SUBR 2 ¥y changes the
value of x 30,71
SETBIT SUBR 1 NIL sets the x'th 9 5.6
bit in the D
register. Can
be used e.g.
to control
tracing
SETQ FSUBR 2 Y like SET, but 30,71
the first
argument is not
evaluated
SILENCE SUBR 0O NIL turns off system 5.6
printout
SUHRL SUBR 1 x-1 26,64
TALK SUBR O NIL turns on system 5.6
printout after
SILENCE
TERPRI SUBR 0 NIL writes present 65,84 5.6, B3
contents of
output buffer
as one record
on printoutput
TESTBIT SUBR 1 state of x'th 5.6
bit in = simu-
lated 2h-bits
register
(represented as
T or NIL)
T IMES FSUBR arb product of all 26,64
arpuments
UNPACK SUBR 1 list of letters 871 5.6

in the printname

Af o [Tott+are

63.

Table B2 (LISP-CONSTANTS)
constant name value purpose reference here
(section’
NIL NIL
T T
FUNARG - used in eval.
When (FUNCTION
S) is used,
(FUNARG S av.) is
returned, vhere
al is the current
association-list.
SYS NIL or set by if MODE=3 the 2.%,8.1,10.7.3
the user value of SYS is
the top-level
function.
EXPR -

6.

TABLE B3: DETAILS OF I/0 FUNCTIONS

(supplements table Al)

function nr of argument(s) side~effects

name arg:s

HEAD(K) 0 reads from standerd input, "2 charsce-
- - | = - -t - - =L G
ters per record, until a correct
parenthesis match is obtained.
Replenishes the input buffer by
reading a new record whenever
necessary.

PRINT 1 arbitrary converts x to a sequence of

S—-expression

(2)

characters and puts it in the cutput
buffer starting in positicn n (i.e.
overwriting what may previously
have been in the buffer). n depends
on the devth of thes list-structure,
and causes the ouvtputs look like a
pretty-printed output. Vrites the
buffer on standard output each time
it fills up, and after operation

is coneluded.

ADVANCE 0 reads one character from standard
input and refurns it as & character-—
atonm

PRIN1 1 alphameric puts its arpgument in the output

etom buffer. If this fills the buffer, st
is printed on standard nutput as one
record; and the buffer is cleared.,

TERPRT 0 writes the output buffer on stsidaréd
output and clears the buffer.

EJECT 0 writes a page cject {a record with
an 1 in the first position) on
standard output. Does not sffect the
output buffer.

(x)

For the interface between READ, or evael reading of S—expressions on the one hand,
and ADVANCE reading on the other, notice the following. READ and eval take in one
S-expression plus one character each time they read (this extra charascter is bufTered
in a separate plece). Therefore, one blank should be allowed between the final
parenthesis or character that ADVANCE is to read. Example: the system obtains

EVAL ((CSETQ cOoMMA (ADVANCE)) NIL) ,

There is one blank between parenthesis and the

"mon
.

A e WY A b A aed Wk WAL e
—_—

. i
initialg ¢ ___{ :)
RATOM

|

ik ITYP see lO

-

I // ARG :=
250 ATOM V&LUE

PROC. IHD ﬁ:[‘OM? \ rRoc o
%

: IREAD=
L T\ } ATOM VALUE

/
P g
RETURN (RITTRN]
NO

——>——— ITYP:= LASP:=LASP§:= LASTR seves the read-list
ITYP1 consNIL, NI in case of garbage coll.
1{_
E b
1mnm:=nam1 | —
! S| YRl =e
i NAT1 ! arsor
' | 1rYP? atomel) %

<::::Ef \\\\\\x_.IES___/ ci¢[1asu]—

IREAD :=N-L

i=)?

1000
=z NAT :=NIL ead-
cons{ 7IL| LAST]) routine
|
| | i
car[LAST] |= ITYP1 see 1°

@
’
!

LAST :=NEW @
R — atom-
routine

ob.

YES
o cdr[LAST] = 1
cons|[NIL NAT1
cdr[LAST]]
car[LAST] := . |
b LAST :=NEW
I 1
LAST ;=KW /\ N
" -
car{1asria, 0 || TTTHL sk
NIL?
NFYT TYPE i@
99
end-
routine
ITYP=
READ EXROR 5 JITYP=%
|
READ-ERRCR PROC . TND 04
N smy wme ()
S-EXPR.
| ARG :=IRFAD
6 T IRZAD :=-1
END-routines =g | o
F I \[’
TREAD := LASTR :=NIL . .
S PROC. TID
car[LAST} r_ nw;
o A {

N

\ RETURN

2

1
| ITYP
NAT

means a call to RAYOM, which

gives the “:2 ia ITYP

end the atom value in NAT (in case
of atom-read)

The code for ITYP is
1 means (
2 n)
3 = atom
L " read error
5 " z
|
IRipl ! are analomous to ITYP + NAT
AT I

.atom) is always treated as)

(which is the same as .NIL)

O{-

L LUWLOAINL PUR GIARBL 1) 58.

(and for IPRINT)

Forward scan:

v

set I to
first celll

af 'ijl._q‘I'

set I to
| left cell

set I o rark it!
right cell

|
reverse
pointer of
’ cell T

|

cell T the.

lest elen &
7
‘ £

RS
2

Dackward scan:

Restore (:;;:>

-~
e 7 ;
Rgigfzr of polnter in
I : car of T
S o o I S
N2 ! |
£ Ty Clear brangh- [set I to i
i ;1 pointmark] left cell |
eIt Ce
|

a

— ;
o) 'ﬁgig\\\ TES | rovorse -_7 mari coll s?t ¥ g (/Ef\\
7 qx/if:f {I) \ff'" pointerin |9+ es branch |3 “lrat ceoll \\E_/)
- B %o 2 st ceslT] poivis of brench
o
N

psiat

Appendix D.

This deck should he read to logical unit 5 before running the system.

Note : The order is very important.

Col 123h5678901
0123TF~+
NIL
ADVANCE
3} REAK
W ECT
MODE
TORCHGBC
FPEEK
ORLIST
REA
RESTART
SILENCE
TALK
TERPRI
EXIT
ADD1
ATOM
CAR
CDR
CAAR
CADR
CUDAR
CDDR
CLEARDIT
CENSYM
INUNIT
MULL
NUMBERP
QUTUNIT
PACFLIST
FRIN1
PRINT
FRINTPOS
RIEADPOS
RETURN
SETBIT
SUB1
TESTBIT
UNPACK
ZEROP
GOTO
DUMP
A2
A8
1".9
AL
A6
OCNS
DITFERANCRE
FG,
EQUAL

MW MNRONMNRNORNIHR SR HHRHHEHERRERHERAEREREEERRERREFRPOO0O0CD00000000O0

EVAL
EVLIS
GET
GREATERP
LEE3P
MEMBER
NCONC
PAIR
QUOT TENT
RPLACA
RPLACD
SET
MEMB
APPLY
PUT
SASSOC
LIST
PLUS
PROGN

T IMES
COND
PRCG
AND

DE

DF

FUNCT ION
GO

OR
QUCTE
SETQ
LAMBDA
LABEL
FUNARG
- SYS

~ EX

- FEXPR

g e] e g EE W WNNNONONDMNDMNDND DN W

()..019+0123456789%

. The lzet card defines "system characters". The card shall contain

in c»der

one space character

1 left par. character
right par. character
comma ¥
cot

left bracket
* i {,h‘t " ki

character used for return from break (here %)
plus sizn character

minus sign character
ten figures

one character used as end mark in printnames (here %)
four space characters

"
it
" ”n

T

"

Appendix T _
S-expression listing of the edit and trace package.

El. "he d1t t_paclage

(D2 ¥FDIT (F TT) (PROG (X Y CL €TL)
(S"TQ C7L (LIST (GED? F TT)))

(8B2Q Y ¢7L) (SETC, Ci CTL) A (SETQ X (READ))

(conp ({OR (ATCM X)(NUMBERP X))(GO B))

({ATOM (CAR CL))(PR’NT ILLGC))

((w2 (CAR %)) (XCHANGE CL X))

(T (X& J0s? cL X)) (GO A) B (COND

((anp (ATGH (CAR CL))(NUMBERP X)(GREATERP X 0))
(PRINT ?;:cc))

((PQ X (QuOomM OK))(GO ¢))

((ra % (ou;r: UP))(SETQ CTL CL))

({20 ¥ (QuoTk P“(SPRINT (CAR CL) 2))

(. (QUOTE PR))(SPRINT (CAR CL)(READ)))

((7LROP ¥) (82TQ CL CTL))

é(muwnrs‘ X)(comp ((WULL (SETQ X (NTH X (CAR CL))%)
(

(

~—
=
£
>A

P IILLeC)) (T (SETQ CL X))))(T (PRINT ILLGC))
G2 &) € (RETURN (PUT T (CAR Y) TT>

DE SPRINT (L N) (coND (OR (ATOM L){ZEROP N))
(PRINT L))(T (PRINT (SPR (COPY L) O N>

(DE SPR (L N1 N2, (covD ((NULL L) NIL)

((ATOM L) L)f(EQ N1 N2)(RPLACA (RPLACD L

(“UOTE (sr==))) (QUOTE ==x))) (T (CONS (SPR

(CAR L)(ADD1 N1) N2)(SPR(CDR L)N1 N2>

(DE XCHANGE (L AL) (PROG (X)

(conND ((GREATERP (CAR AL) 0) (conND ((NULL (SETQ
¥ (NTH (CAR AL)(CAR L))))(PRINT ILLGC))

(T (RPLACA L (APPEND (LISTN (SUBL (CAR AL))(CAR L))
(APPEND (CDR AL)(CDR X)))))))

((LESSP (CAR AL) 0)(coND ((NULL (SETQ X (NTH (MINUS

(Cax £2))(03R L))) }M{FRINY ILIG)

(0 (AFLACA L 4 VKD (LISTN (SUBL (MINUS (CAR AL)))
(cAn TY)(APFZND (UDR AL) -

(2 ¥ADJUST (L AL (PROG (X) (cowp

((Wurn (62TQ X (0 (CAUA AL)(CAR L))))(PRINT ILLG"))
((zq {crn AL)(QUO™S 20))(RTTURN (RFLACA (RPLACD X
ua,. ;v{mn x..;; L(_m {CAk #L) (QUOTE LI))

(RELIER RSTACD {7ASA ¢ (COPY X)) WX))}

({23 fw,.: ALY I r\o-){n,wﬁr (hPTN' 'FPLACA X
gowy (roanae (CAR X)(CoR X)))) min)))

——

(ams fue faaom po) Srien (osR .’.'-'..)(QT-OTE 1))

(Sp1n X (oAn 1)))': { oOL

§ e ‘jc--. 825 Q. VA KL (PSURN{RZLAZA (RPLACD X

(oor! (FOOme Oy (;:)m {CAR {CDDR AL)))(CAR X))

(CR =23)lncontt oaR (enTr AL)Y(caR X))

({1 (ehr st (Quo 20) YA URy (NPLACA (RPLACD

X (oo Greone (CoAR X) (ooh X)))) (caaxr X))))

((Zy (e AN euesn 21, MATURN (RPLACD (RPLACA

£ (A (AT (L‘ FEITTACR (cm (CDOR AL))

.’._c‘m‘:-l. 233V RS (e (Anv (AR (DDR AL)))

AR T

"‘i;’ ('J s‘J (‘)‘"‘

’(r"f " LBUMQULID EXPR)) (IDIT (CAR U)(QUOTE EXPR)))
'T(f.u.im i ,\,au,_, FEXPR)) (3EDIT(CAR U)(QUOTE FEXPR)))
((G2 cAR b;(SUGT) EUBR) Y {XEDIT(CAR U)(Q OTE SUBR)))
(e AR) OTI0w) TSURR)) (XEDIT(CAT U)(QUOTE FSUBR)))>
(Rorsca w' S8 TLoeCH (QUGTE >

(D5 wzz (W 1) (ecep ((LECBP N 2)L)

{((SuZhn %) w7

(5 tare gl 2Y(MR 1)))

(0 7o (W n) (ord ((ZEROP N)NIL)

((LOTTL T :qz-t:.)
(T (oo {(eAr n) (LIS (BUB1 K)(CDR L))))))
(DR ovy fr, (a0 ((Runl n) ¥IL)
{ {ATCH .'.,} :-)
f-:? {oong (00T (R L)) (CCRY (CDR L))))))

§ MTme \..‘ (rTms X -n))
ety B AN -l
\m"; ({ronn W) 22)
,.L (ONC ('H‘u {\u T
(Faunsr ¢

) (APEND (CDR L1) 12)))))

E2. The trace package

(DE DMAP(L TRFN) (PROG (X Y)
LIP (SETQ X (QUOTE (EXPR FEXPR SUBR FSUBR)))
LOP (COND ((GET (CAR L)(CAR X)) (TRFN (CAR L)(CAR.X)))
(T (PROGN (SETQ X (CDR X)) (GO LOP))))
(COND ((NULL (SETQ L (CDR L)))(RETURN (QUOTE 0K)))
(T (GO LIP)))))
(DF TRACE (FL AL) (DMAP FL (FUNCTION TRC1)))
(DF UNTRACE (FL AL) (DMAP FL (FUNCTION UTRC1)))
(DE TRC1 (F TT) (PROG (X Y)
(SETQ X (GET F TT))
(SETQ Y (GENSYM (QUOTE GGGG)))
(PUT Y (COPY X)(QUOTE EXPR))
(PUT F Y (QUOTE TRFL))
(RETURN (RPLACD (CDR X) (LIST(NCONC(QUOTEx(PROGN
(PRIN2 INT) (PRIN2 (QUOTE (=.F)))))
(wcoNC (FLIST (CADR X)) (LIST
(QUOTEx (OUTP (x.F)(%.Y)(% CADR X)>
(DE FLIST (L) (COND
((NULL L) (LIST (QUOTE (TERPRI))))
(T (NCONC (LIST (QUOTEx (PRIN2 (QUOTE (x CAR L))))
(QUOTE% (PRIN2 (QUOTE =)))
(QUOTE+« (PRINL (x CAR L)))
(QUOTEx (PRIN2 SPC)))(FLIST (CDR L>
(DF QUOTE= (U V) (UOT (CAR U
(DE UoT {X) (COND
((ATOM X) X)
((EQ (CAR X) (QUOTE =))(EVAL (CDR X) V))
(T (cons (UoT (CAR X))(UOT (CDR X>
(DE PRINL (L) (COND
((ATOM L) (PRINZ2 L))
(T (RPOGN (PRIN1 LPAR)(MAPCAR1 L (FUNCTION PRINL))
(PRIN1 RPAR>
(DE MAPCAR1 (L F) (coND ((NULL L) NIL)
((ATOM L) (PROGN (PRIN1 DOT)(F L)))
(T (coNS (F (CAR L))(MAPCARL (CDR L) F>
(DF OUTP (U V) (PROG (X)
(SETQ X (EVAL (CONS (CADR U)(CAR (CDDR U))) V))
(PRIN2 UNT)(PRIN2 (CAR U))
(PRINL X) (TERPRI) (RETURN X>
(DE UTRC1 (F TT) (PROG (X)
(COND ((NULL (SETQ X (GET F(QUOTE TRFL))))(RETURN F)))
(RETURN (PUT F (GET X (QUOTE EXPR)) TT))))
(DE COPY (L) (coND ((NULL L) NIL)((ATOM L) L)
(T (coNs (COPY (CAR L))(COPY (CDR L))))))
(DE PRIN2 (X) (PROGN (PRIN1 X)(PRIN1 BLANK>
(RPLACA (QUOTE LPAR) (ADVANCE> (
(RPLACA (QUOTE RPAR) (ADVANCE>)
(RPLACA (QUOTE SPC) (ADVANCE> .
(RPLACA (QUOTE BLANK) (ADVANCE>
(RPLACA (QUOTE INT)(PACKLIST (LIST
(ADVANCE) (ADVANCE) (ADVANCE)> -->
(RPLACA (QUOTE UNT) (PACKLIST (LIST
(ADVANCE) (ADVANCE) (ADVANCE)> <=-
(RPLACA (QUOTE DOT)(ADVANCE> .
(INUNIT 9)

	doc00174920221004083458.pdf
	doc00175020221004083536

