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CODING FOR NOISY CHANNELS" 

Peter Elias 
Department of Electrical Engineering and Research Laboratory of Electronics 

Massachusetts Institute of Technology 
Cambridge, Massachusetts 

Summary: Shannon's and Feinstein's versions of 
the channel capacity theorem, specialized to the 
binary symmetric channel. are presented. A much 
stronger version is proved for this channel. It is 
shown that the error probability as a function of 
delay is bounded above and below by exponentials, 
whose exponents agree for a considerable range of 
values of the channel and the code parameters. In 
this range the average behavior of all codes is 
essentially optimum, but for small transmission 
rates this is not true. The results of this analysis 
are shown to apply to check-symbol codes of four 
kinds which have progressively simpler coding 
procedures . The last of these 15 error-free, and 
makes it possible to transmit information at a rate 
equal to the channel capacity with a probability one 
that no decoded symbol will be in error. 

Introduction 

Since Shannon I , 2 showed that information could 
be transmitted over a noisy channel at a positive 
rate with an arbitrarily low probability of error at 
the receiver. there has been considerable interest 
in constructing specific transmission schemes that 
exhibit such behavior. 

For a signal transmitted over a channel per-

turbed by Gaussian nqise, GOlay3 and Fano 4 found 
schemes which in the limit had the desired 
behavior, but it was a limit of infinite bandwidth 

or vanishing transmission rate. RiceS investigated 
the characteristics of transmission using randomly 
selected noise waveforms. and got an indication of 
exponential decrease in error probability with 

increasing time delay. Feinstein 6 showed that the 
same sort of behavior. at least as an upper bound, 
held t r ue for more general channels. 

For the binary channel. Hamming 7, GilbertS, 

Plotkin 9, and GolaylO investigated a variety of 
codes, and found some basic properties of the 

binary symmetric channel. Laemmel1l , Muller 12, 
13 and Reed also constructed specific codes and 

classes of codes. The first constructive code for 
transmission at a nonzero rate over a noisy binary 

channel was discovered recently by the author 14 

The investigation reported in the present paper 
started as a continuation of that work, and an 
investigation of the rate at which the error prob­
ability decreased with delay originally developed 
from a comparison of check-symbol codes with 
codes of less restricted types. It seems more 

• This work was supported in part by the Signal 
Corps; the Office of Scientific Research. Air 
Research and Development Command; and the 
Office of Naval Research. 
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sensible to present the results in reverse order. 
After a definition of the channel and general COding 
procedures, Shannon's and Feinstein'S channel 
capacity theorems are stated. and a stronger 
theorem is given for the binary symmetriC channel. 
which shows in considerable detail the behavior of 
error probability at the receiver as a function of 
the parameters of the channel and the code, and the 
delay time. It is then shown that most of these 
results carryover to a variety of kinds of check­
symbol codes. One of these. of primarily academic 

interest, is error_free l4, and permits the trans­
mission of an infinite sequence of message symbols 
at an average rate equal to the channel capacity with 
a probablity one that no decoded digit is in error. 

The Channel 

The coding problem we will discuss is illus­
trated in Fig . 1. The problem is to match the out­
put of an ideal binary message source to a binary 
symmetric noisy channel. 

The message source generates a sequence of 
binary symbols. say the binary digits zero and one . 
Zeros and ones are selected with equal probability, 
and successive selections are statistically inde­
pendent. 

The channel accepts binary symbols as an input 
and produces binary symbols as an output. Each 
input symbol has a probability Po < liz of being 

received in error, and a probability qo = I - Po of 

being received as transmitted. The transmission 
error probability Po is a constant. independent of 

the value of the symbol being transmitted: the 
channel is as likely to turn a one into a zero as to 
turn a zero into a one. The channel. in effect, 
adds a noise sequence to the input sequence to pro­
duce the output sequence; the noise is a random 
sequence of zeros and ones, synChronous with the 
signal sequence, in which the ones have probability 
Po' and the addition is addition modulo two of each 

signal digit to the corresponding noise digit 
(1+1 = 0+0 = 0, 0+1 = 1+0 = 1). 

If the message source were connected directly 
to the channel. a fraction p of the received symbols 
would be in error. A codin~ procedure for reducing 
the effect of the errors is shown in Figs. I and 2. 
The output of the message source is segmented into 

consecutive blocks of length M. There are 2M 
such blocks, and they arC selected by the source 
with equal probability. To each input block of M 
binary symbols is assigned an output block of N 
binary symbols, N > M. 

The input sequences of length M are the 
messages to be sent; the output sequences of 
length N are the transmitted Signals, and the cor­
respondence between input and output blocks is the 
code used. The use of the word "code" is justified 



by Fig . Z, where the correspondence between input 
and output blocks is given in the form of a code-

book. On the left is a column of the zM possible 
messages, listed as M-digit binary numbers in 
numerical order. Following each message is the 
N -digit binary number which is the corresponding 

M 
signal so that the codebook has Z entries, each 
of whi~h lists a message and the corresponding 
signal. 

The system in operation is shown in Fig. 1. 
The source selects a message that is coded into a 
transmitted signal and sent over the noisy channel. 
The received block of N -- the received, or noisy, 
signal __ differs from the transmitted signal in 
about p N of its N symbol values. The decoder 
receive~ this noisy signal and reproduces one of 

the zM pO'ssible messages, with an average prob­
ability P e of making an incorrect choice. 

The most general type of decoder is shown in 

Fig. 3. It is a code book with zN entries, one for 
each of the possible received signals. The left 
column is the received sequence, arranged as an 
N -digit binary number in numerical order. This 
is followed by the M-symbol message block that 
will be reproduced when that sequence is received 
as a noisy signal. 

In order to minimize P , the codebook must be e . 
so constructed that the message that is selected 
when a given noisy signal is received is the one 
corresponding to the signal most likely to have 
been transmitted. For the binary symmetriC 
channel, the signal most likely to have been trans­
mitted is the one that differs from the received 
signal in the smallest number of symbol positions. 
This follows from the fact that a particular group 

of k errors has probability P~ q~ -k of being intro­

duced by the channel; this probability decreases 
as k increases, for Po < liz. 

For this channel, the codebook may be sim- :> 
plified. In fact, the transmitter code book may oe 
used in reverse order. The noisy signal is com­
pared with each of the possible transmitted Signals, 
and the number of positions in which they differ is 
counted. The signal with the lowest count is 
assumed to have been transmitted, and the cor­
responding message block is reproduced as the 
best guess at the transmitted message. This 
guess may, of course, be incorrect, and will be if 
the noise has altered more than half of the positions 
in which the transmitted signal differs from some 
other listed signal. 

This decoding procedure may be described in a 

geometrical language introduced by Hamming 
7

. 
Each signal is taken as a point Or a vector in an 
N-dimensional space, with coordinates equal to the 
values (zero or one) of its N binary symbols. The 
distance between two points is defined as the 
number of coordinates in which they differ. In this 
language, the noisy signal is decoded as the 
nearest of the signal points, and the corresponding 
message is chosen. 

For given M and N, the error probability P e 

depends on the set of points that are used as 
signals. If these are clustered in a small part of 
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the space, P e will be large; if they a r e far from 

one another, P e will be small. As specialized to 

this channel, Shannon's second coding theorem 
states an asymptotic relationship between M, N, 
and P e for a suitable selection of signal points. 

Channel Capacity and Error Probability 

First, some definitions are required. Given 
a binary symmetric channel with transmission 
error probability p and q = 1 - P , the equivoca .. o 0 0 
lion Eo = E(po) and the capacity Co = C(po) of the 

channel, both measured in bits per symbol, are 
given by 

Eo = -Po log Po - qo log qo 

C = I - E o 0 

(Here and later. all logarithms are to the base 
two.) 

(I) 

Given a coding procedure like that illustrated 
by Figs. I. 2, and 3, the redundancy El and the 

transmission rate C I' also in bits per symbols, are 
given by 

E 
_ N - M 

1 - N 
(2) 

CI=I-El=~ 

It is convenient to introduce the probability PI 

which is the upper bound of the transmission error 
probabilities for which this particular code can be 
expected to work, and ql = 1 - Pl' These are 
uniquely defined by 

since a plot of E(p) or C(p) is monotonic for 
O .s; p <: I/2. 

(3) 

Finally, the average probability of an error in 
decoding, which was written as P e above, will in 

general be a fUnction of the block length N, the 
channel capacity Co or error probability Po' and 

the transmission rate C I or the probability Pl' It 

w!11 be written as Pe(N;po,PI) ' 
1 

Shannon's second coding theorem. as applied 
to this channel, follows. 

Theorem I. Given any fixed C I < Co and any 

fixed € > 0, for all sufficiently large N there are 
codes which will transmit information at the rate 
C 1 bits per symbol and will decode it with an error 

probability per block of N, P e(N. Po' PI) < <. This 
cannot be done for C 1 > Co' 

Shannon's proof of the theorem proves more 
than the theorem states. A code is a selection of 



NC I N 
Z signal sequences from among 2 possibilities. 
Including those codes that select the same signal 
two or more times to represent several different 

NC I N · Z messages" there are 2 different codes. 
Each of these will have an average decoding error 
probability (averaa-ed over the different messages, 
with equal weights). Shannon shows that the aver .. 
age of all of these (averaged over the different 
codes, with equal weights) is less than €. Since 
the error probability for each code is positive, it 
follows that at least one code has an average error 
probability less than £; and it also follows, as 
Shannon remarks, that, at most, a fraction f of 
the codes can have an average error probability 
as great 85 E/f. 50 that almost all of the codes 
have arbitrarily small error probability; that is, 
almost all codes are "good" codes. although some 
I'bad" codes do exist. By the same argument, in 
anyone good code the error probability for most 
of the individual messages is less than E/f. so that 
by discarding a few of the signal sequences and 
transmitting at a very slightly slower rate, any 
good code can be made into a uniformly good code. 
This result has considerable practical importance, 
since a uniformly good code will transmit with the 
specified small error probability, regardless of 
the probabilities with which message sequences 
are selected, and there are many information 
sources whose statistics are not known in detaiL 

The major question left open by this theorem 
is how large N must be for given Po' PI' and €. 

Feinstein 6 has proved a stronger version which 
provides an upper bound for P (N. P • P ). As 
specialized to the binary symJietricochAnnel it may 
be written as: 

Theorem Z. Given any C I < Co' an «PO,P I) > 0 

can be found. For any sufficiently large N. a code 
may be constructed which will transmit information 
at the rate C I bits per symbol which can be decoded 

with P e(N. Po. P I) < Z-€N . 

Feinstein' s proof consists of the construction 
of a code that satisfies the requirements of the 
theorem and is uniform in the sense that all signals 
are good signals . Some indication of the relation 
of E to the channel and code parameters is also 
given. 

The next theorem is much stronger than this, 
but unlike Shannon's and Feinstein'S it does not 
apply to the general discrete noisy channel with­
out memory, but only to the binary symmetric 
case. Some more definitions are needed. It turns 
out that the error probability P e is bounded not 

only above but below by exponentials in N. and 
that for a considerable range of channel and code 
parameters the exponents of the two bounds agree. 
The error exponent for the best possible code is 
defined as 

(4) 

and "avg(N, Po' PI) is defined as t~e same function 

of the average of the error probabilities of all 
codes . 
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An additional probability value is also needed, 
along with the values of ". C. and E which go with 
it: 

P -----
crit - I/Z 1/2 

P +q 
qcrit = 1 - P crit 

Ecrit = E(pcrit )' Ccrit = I - Ecrit 

·crit = lim ·opt (N, Po· Peril) 
N-oo 

(5) 

Finally. the margin in error probability and 
the margin in channel capacity need labeling: 

6 = PI - Po 

A=Co-C I 

( 6) 

For a binary symmetriC channel with capacity 
C and transmission rate C l' the following state­
m2nts hold. 

Theorem 3. (a) For Po < PI < Pcrit ' Co> C I 
> C crit' the average code is essentially as good as 

the best code: 

Po 
-A - 6 log­

qo 
( 7) 

(b) For Pcrit < PI < I/Z. the average code is 

not necessarily optimum; for Pl near 1/2 it is 
certainly not. Specifically. 

= Clcrit + Ccrtt - C 1 (8) 

where. 't is the .(p • PI) of Eq. (5) with PI = en 0 

Pcrit' while for "opt there are two upper and two 

lower bounds: 

{

• ·t + C ·t - C I 
Ii i f (N P p) ~ cn crl m n "opt ' 0' 1 .... 

P I I 
T log 4pq - C I 

{

Po 
-A - 6 log­

qo 
lim sup ·opt(N, Po' PI)<S E 

I I -Iog-
4 4pq 

(9) 

( I 0) 

As PI - I/Z. the second bound in (9) approaches 

the second bound in (10); 



_,---,rc 

.... I i , 

lim 
N-oo 

which is always greater than 

aavg(po ' ~) = acrlt + ecrit 

( 11) 

( IZ) 

The content of this theorem is illustrated by 
Fig . 4. This is a plot of the channel capacity C(p) 
vs. transmission error probability p for a binary 
symmetric channel. A dashed line is drawn tan­
gent to the curve at the point given by the channel 
parameters p . C . This tangent line has the o 0 
slope log (po/qo). The critical point PcrU' Ccrlt 

is the point at which the slope of the curve is 
(I/Z) log (po/qo). For Po < PI < Pcril' the .(Po,PI) 
of (7), which is both the average and the optimum 
error exponent, is the length of a vertical dropped 
from the channel capacity curve to the tangent line 
at the ordinate Pl' 

At PI = P .t' the dotted line that determines crl 
• (p, PI) diverges from the tangent line. For avg 0 
Pcril < PI < I/Z the exact value of .0pt(N, Po' PI) 

is not known. but is given by the length of a verti­
cal at ordinate Pl' dropped from the channel 

capacity curve and terminating in the shaded 
region. The upper and lower bounds of this region 
provide lower and upper bounds, respectively, on 
the value of U t. These bounds converge to op 
(1/4) log (1/4pq) at PI = I/Z, and near this point 

aopt is definitely> aavg' 
The value of a given by the tangent line at 

PI = liz, although not approached for the trans­
mission of information at any nonzero rate, is the 
correct value of U t for transmission of one bit 

op :> 
per block of N symbols. 

An outline of the proof of Theorem 3 appears 
in the Appendix. A more detailed presentation, 
giving bounds on P e(N, Po' PI)' as well as on ., 

will appear elsewhere. 

Check-Symbol Codes 

The preceding three theorems are interesting 
in theory but discouraging in practice. They imply 
that a good code will require a transmitting code-

NC I book containing N· Z binary digits in all, and 

either a receiver codebook containing N' zN binary 
digits or another copy of the transmitter codebook 

NC I and 2 comparisons of the received signal with 
the possible transmitted signals. Since in inter­
esting cases NC I may be of the order of 100, the 

requirements in time and space are unmanageable. 
Furthermore, it would be quite consistent with 
these theorems if no code with any simplicity or 
symmetry properties were a good code. 

The theorems that follow show that this is 

fortunately not the case. Four kinds of codes of 
increasing Simplicity and convenience from the 
pOint of view of realization are demonstrated to 
have essentially the same behavior, from both a 
channel capaCity and an error probability point of 
view, as the optimum code. The last of the four 
is of theoretical interest as well, since it permits 
the receiver to set the decoding error probability 
arbitrarily low without consulting the transmitter. 

A check_symbol code of block length N is a 
NC I code in which the Z signal sequences have in 

NC 
their initial NC 1 positions all Z 1 possible com-

binations of symbol values. The first NC I posi­

tions will be called information positions and the 
last NE I w!ll be called check positions. The signal 

corresponding to a message sequence is that one 
of the signal sequences whose initial symbols are 
the message. 

A parity check-symbol (pcs) code i s a check­
symbol code in which the check positions are filled 
in with digits each of which completes a parity 
check of some of the information positions. Such 

I 
codes were discussed in detail first by Hamming , 
who calls them systematic codes . A pcs code is 
specified by an NC 1 X NE 1 matru 01 zeros and 

ones, the ones in a rOw giving the locations of the 
information symbols whose sum modulo two is the 
check digit corresponding to that row. The process 
is illustrated in Fig. 5. Such a code requires 

NC I X NE I = N
Z 

C IE I ~ t NZ 
binary digits in its 

code book, these being the digits in the check_sum 
matrix. 

A Sliding pcs code is defined as a pes code in 
which the check-sum matrix is constructed from a 
sequence of N binary symbols by using the first 
Ne 1 of them for the first row, the second to 

(NC
I 
+ I)st for the second row ... , the NElth to the 

Nth for the NE I th row. This code requires only 

an N -binary-digit codebook. 
Finally a convolutional pes code is defined as 

one in which check symbols are interspersed with 
information symbols, and the check symbols check 
a fixed pattern of the preceding NC I information 

positions if C I ~ liz; if E I > I/Z, the information 

symbols add a fixed pattern of zeros and ones to 
the succeeding NE I check positions. Such a code 

requires max(NC I' NE I) " N binary digits in its 

codebook. It is illustrated by Fig. 6. 
Theorem 4. All the results of Theorem 3 apply 

to check-symbol codes and to pcs codes. The 
results of part (a) of that theorem apply to sliding 
pcs codes. 

In reading Theorem 3 into Theorem 4, the 
average involved in uavg is the average of all codes 

of the appropriate type; that is, all combinations 
of check symbols for the check-symbol codes, all 
check-sum matrices for the pcs codes, all 
sequences of N binary digits for the sliding pcs 
code. 

Theorem 5. The results of part (a) of 
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Theorem 3 apply to convolutional pes codes, if 
P (N, P J PI) is interpreted as the error probability 
plr dec'lidea symbol. For infinite memory (each 
check symbol checking a set of prior information 
symbols extending back to the start of transmission 
over the channel) the N in P e(N. Po' PI) for a par-

ticular decoded information symbol is the number 
of symbols which have been received since it was 
received. 

This theorem shows that error_free coding can 
be attained at no loss either in channel capacity 
or in error probability, a question raised by the 
author when the first error-free code was 

introduced 14. By waiting long enough, the receiver 
can obtain as Iowa probability of error per digit 
as is desired, without a change of code being nec­
essary. By gradually reducing the ratio of check 
to information symbols toward EclC . using the 
law of the iterated logarithm for bi8ary sequences. 
it can be shown that in an infinite sequence of mes­
sage digits transmission is obtained at average 
rate Co with probability one of no errors in the 
decodeCl message. 

Conclusion 

An appreciable gain in simplicity has been 
achieved in going from an arbitrary average code 
to a convolutional or sliding pcs code. It is 
possible to encode and decode either of these codes 
with a codebook of only N or fewer binary digits. 
However. the decoding operation will require 

NC I NEI 
Z or 2 (whichever is smaller) comparisons. 
which will take a great deal of time in interesting 
cases. No decoding procedure that replaces this 
operation by a small amount of computing has yet 
been discovered. although the iterated Hamming 

code, which is error-free 14, gives hope that it 
may be possible to manage this while stm keeping 
optimum behavior in terms of channel capacity 
and error probability -- a feature which the iter­
ated Hamming code lacks. 
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Appendix 

1. Outline Proof of Theorem 3 

Using the symbols and definitions of Eqs. (I). 
(3). (5). and (6). let kl = NPI be an integer. 

Define VN(k). the volume of an N-dimensional 

sphere of radius k, by 

(A. I) 

Select 2N /VN(k l ) sequences as signaling 

sequences. Then the signaling rate is 

(A.2) 

If the selection of signal sequences can be made 
so that every possible received sequence differs 
from one (and only one) signal sequence in ki or 

fewer positions, then the probability of a detection 
error will be just the probability P1(N. Po' PI) that 

more than ki out of N errors are made in trans­

mission . This is the tail of the binomial distri­
bution: 

N 

P1(N·po·P I ) = I 
j=k\+1 

(A.3) 

Such a selection is not, in general, possible. How­
ever. P1(N. Po' PI) of (A. 3) is a lower bound to the 

average decoding error probab!l!ty P e(N. Po' PI) 

for any actual selection of signal points: this 

follows directly from the fact that ~ ~ -j is a 

monotOnically decreasing function of j. 
The average of all possible codes is used to 

provide an upper bound to the decoding error 
probability of the best code. The average prob­
ability of a detection error. Plll(N. Po' PI)' is the 

probab!l!ty Pll(N. j. k l ) of a decoding error when 

just j transmission errors have occurred, 
averaged over the binomial distribution of j. With 
Eq. (A. 3) this gives 

N 

Pm(N.PO·P I ) = I Pll(N.j.k l ) P~ q~-j m 
j=O 

kl 

~ I Pll(N.j.kl)p~q~-jm 
j=O 

(A.4) 



The probability PU{N, j, k l ) of a decoding error 

when just j transmission errors have occurred is 

the probability that One of the {ZN IV N{k l )} - 1 
incorrect signal sequences differs in j 6r fewer 
places from the received sequence. There are a 
total of V N{j) sequences which differ from the 

received sequence in as few as j positions, and 
the probability of missing all of them in 

{ZN IV N{k l )} - I tries Is, for j < k l , bounded by 

{ZN IV N{kl)}-I 

(I _ V:~j») ~ I (A.5) 

Equation (A.5) gives the probability of no 
decoding error: P u Is the probability of a decoding 
error, so 

V (j) m 
PU{N, j. k l )" VN~kl)'; (~) 

Equations (A.4) and (A. 6) give 

(A.6) 

(A.7) 

Now the sums In Eqs. {A. I) and (A.3) are 
bounded below by the value of their largest term 
and above by a geometric series multiplied by that 
term -- the last term In Eq. {A. I). the first In 

Eq. (A.3). (See Fe11er I5, p. lZ6 for the bounds 
for Eq . (A.3).) The sum In Eq . (A. 7) Is similarly' 
bounded above and below. if PI is less than Perit' 
which is the condition guaranteeing that the last 
term in the sum i s the largest. Using these 
results, taking logarithms, and using Stirling's 
approximation for the binomial coefficients gives, 
from (A. Z). 

lim {I - ~ log VN{k l )} = I - EI = C I N-oo 

I 
from (A. 3). for Po < PI < 2' 

and from (A. 7). for Po < PI < Pcril' 

(A . 8) 

(A.9) 
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(A.IO) 

Together. Eqs. (A.9) and (A.IO) prove the first 
part of the theorem, and cover the region in which 
the dashed-line and the dotted curves of Fig. 4 
coincide. 

Since the lengtb represented by .opt In this 

region is the difference between the curve and its 
tangent, U is second-order in 6 or 6. In fact, 
for small 6 and 6, 

For PI > PerU' the largest term in the sum in 

Eq. (A. 7) Is not the last. but Is that term for which 

jZ I{N_j)Z is most nearly equal to po/~. This term 

is larger than P1{N. Po' PI) for large N. and the s um 

is bounded above by k l , the number of terms, Urnes 

the largest term. Taking tbe Umlt of (I/N) 
multiplied by the logarithm and using Stirling's 
approximation gives upper and lower bounds for 
.avgfN. Po' PI) whicb coincide. giving for Pcrit < 

I 
PI < 2' 

lim infN .0pt{N. Po' PI) ~ lim ·avg{N. Po' qo) 
N-oo 

= Ccrlt + ·crit - C {A. II) 

This gives the remainder of the dotted curve in 
Fig. 4. 

For PI less than Pcrl!' the probability of a 
detection error as computed above is essentially 
the probability of escapin~ from a s phere of radius 
k I = NPI' For P I near I/Z. a different point of 

view is possible and leads to the two solid curves 
In Fig. 4. 

The probability that transmission errors will 
cause one transmitted signal to be decoded as 
another is the probability that the noise will alter 
half or more of the positions in which they differ. 
If they differ in NP I = kl positions. this probab!Uty 

Is just the upper half of the binomial. PI (Np I ' Po' !) 
as given In Eq. (A.3). This Is the probability of a 
particular transition; the total error probability is 
certainly less than this multiplied by the number 

of signal sequences. Gilbert 8 has shown that it is 

always possible to find ZN Iv N{k I - I) signal 

sequences each of which differs in at least k 1 



positions from every other. For large N, by 
Eq. (A.8), this corresponds to a signaling rate 

NC I of C I bits per symbol, or 2 signal points. 

Thus 

and asymptotically, from Eqs. (A. 8) and (A. 3), 

-log Pe(N,po,PI) { (I) Po} 
lim N =-PI C-O+Z-polog -
N-oo qo 

P I I 
= - Iog -Z 4pq (A. 13) 

and 

(A.14) 

This is the upper solid curve in Fig. 4. For 

an upper bound to Cl opt we use a result of Plotkin 9 

which shows that there are at most 2N signal 
points whose mutual minimum distance is as great 
as N/z. This means that the transmission rate 
for signal pOints at this distance is (I + log N)/N 
and approaches zero for large N. This result sets 
a limit to the number of signal points at s maller 
distances as well. As Plotkin pointed out, if B{N,k) 
is the number of signal points at mutual distance 
~ k, then at least half of these agree in their first 
coordinate. Eliminating the n first coordinates 
gives 

(A.18) 

which gives the lower solid curve in Fig. 4 . At 
PI = I/Z, Eqs. (A. 18) and (A. 14) give the same 

value, so that 

(A.19) 

These results prove the remainder of the 
theorem. It should be noted that Eq. (A . 19) does 
not imply that it is impossible to transmit any 
information with an error probability less than 

N I -:rlog 4 approximately Z pq for finite N. It is only 
impossible to do so while transmitting at a positive 
rate in the limit ot large N. The transmission of 
one bit per block of N symbols can be accom­
plis hed by piCking two signal sequences that differ 
in every position, with an error probability equal 
to Pr(N, Po' I/Z) for which, from Eq. (A.3), 

. -logPr(N,Po'~) I I 
hm N = 2 log 4pq (A. ZO) 
N-oo 

This error exponent is twice as great as that 
for the limit (as PI - I/Z) of ' opt for positive 
transmission rates. Other points for the trans­
mission of 2, 3, .. . log N bits per block of N 
symbols fall between the value of Eq. (A. ZO) and 
that of Eq. (A.19). 

B(N-n, k) ;0 Z-n B(N, k) (A. IS) Z. Outline Proof of Theorems 4 and 5 

Using Eqs. (A .14) and (A . 15), let n = N - Zk. 
Then 

B(N, k) '" zN-Zk B(Zk, k) = 4k . zN-Zk (A.16) 

For a transmission rate C 1 this determines k: 

C - I E - I' log B(N,k) , l - -l-lm N .q 
N-oo 

N 
or k '" Z E I (A. 17) 

Now the error probability for such a set of 
signal points is certainly greater than the prob­
ability of a single transition, which is, in turn, at 
least as great as the upper half of the binomial 

Thus 
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A large part of the proof of Theorem 3 carries 
over directly for Theorems 4 and 5. Any upper 
bound on Clopt for the best possible code is auto-

matically an upper bound for the more restricted 
class of check -symbol codes. Thus Eqs. (A.9) 
and (A. 18), the tangent line and the lower solid 
curve in Fig . 4, still apply. To get the upper 
solid curve, Eq. (A. 14), it is necessary to show 
that Gilbert's result, and thus Eq. (A.IZ), holds 
for the kind of code considered. This is obvious 
for pcs codes; Gilbert's proof requires only 
trivial modifications in this case. Since the pcs 
codes are a special case of check-symbol codes, 
the result follows for these as well. For sliding 
and convolutional pcs codes Gilbert's result is 
not obvious, although probably still true; that is 
why only the first part of Theorem 3 is extended 
to these cases. 

The difficult point in Theorems 4 and 5 is the 
demonstration that the average of all possible 
codes, of each of the four types consideredi is 
still given by Eqs. (A. 10) and (A.Il) and the 
dotted Curve in Fig. 4. This requires a demon­
s tration that the inequality of Eq. (A.6) still 



-
applies; that is. that the probability of a decoding 
error when j transmission errors have occurred 
is essentially the same, on the average, for the 
different types of check-symbol codes as for the 
average of all codes. The remainder of the deri­
vation then follows as before. 

This will be done for the pes codes. When a 
noisy signal is received, the parity-check sums 
are recomputed at the receiver and added modulo 
two per position to the received check symbols, as 

in the Hamming code 7. The resulting check­
symbol pattern is the pattern caused by the trans­
mission errors alone. The probability that this 
check-symbol pattern will be misinterpreted when 
j transmission errors have occurred is the prob­
ability that some other collection of j or fewer 
errors has the same check-symbol pattern. There 
are V N(j) - lather patterns of j or fewer errors, 

and the probability that one of these has the same 
check-sum pattern is the probability that one of the 
V N(j) .. I differences has a check-sum pattern of 

all zeros. Now, if the check-sum matrix is filled 
in at random, any error pattern may produce any 
check-symbol pattern with equal probability. 
Therefore the probability of anyone error pattern 
having a check-symbol pattern that vanishes is 
the reciprocal of the total number of possible 
check . symbol patterns. This number is VN(k l ). 

since 2N Iv N(k I) messages are being sent. and the 

total probability of a decoding error when j trans­
mission errors have been made is less than this 
multiplied by the number of difference patterns: 

VN(j ) • I 

Pn(N. i. k l ) ~ (A.21) 

which is the inequality of (A. 6) obtained by a dif. 
ferent route. . 

The essential point in this argument is that ~ 
every transmission error pattern, in the ensemble 
of possible codes, may cause every check-symbol 
pattern, with equal probability. Given this, the 
rest of the argument presented above follows. 
This is easy, but tedious, to show for sliding and 
convolutional pcs coding; the proofs will be omitted 
here. 
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