## CHAPTER 5

## INTEGRATING DECISION TABLES INTO A SYSTEM

The decision table, as it was discussed in Chapter 4, is a versatile tool for individual analysis and documentation situations. These same tables, now many hundreds in number describing the logic for a complete engineering design system, can be integrated into a total systems documentation package with little extra effort. To show how decision tables work in groups, and also to demonstrate a wider application for this systems techniqut a series of interrelated tables are descirbed as they automatically generate engineering design logic.

The case study, drawn fron races tabular applica-
tions over three major product assemblies, and shows computer printouts from test runs.

## CUSTOMER SPECIFICATION

The system is set in motion by the receipt of a customer order requestir :

## CUSTOMER ORDER

$$
\text { Catalog Number: } \quad 60353
$$

Product Description: Special 3 chart recorder with scale illumination.

Chart Range:
$1000^{\circ}-1100^{\circ} \mathrm{F}$ for iron constantan thermocouples (TC).
Number of Recording Points:3
(continuous)
Time per Point: ..... 15 seconds
Chart Drive: Standard 10:1Speed Reduction.
'hart Speeds: 120 " and 12 " per hour
Drive Shaft Speed: ..... 25 R. P. M.
Special Features:
(1) Calibration checking circuit with thermocouple key to check calibration.
(2) Fluorescent scale illuminating lamp with switch.

Figure 25
Note: Only the specification elements applying to this example have been included here. Otherwise, the specification would be much more detailed.

The specification is first reduced to punched cards in a format acceptable to the ADE system The verified card deck is then introduced to the computer and processed through three major assemblies of the product:

- measuring circuit
o scale design
- gear train selection

MEASURING CIRCUIT DESIGN
From table \#360, a wiring diagram for the measuring circuit is to be selected:

Table \#360-Drawing Selection

| Rule Number | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. Type of Element EQ | TH | TH | TC | TC | RAY | RAY |
| 2. Number Points EQ 1 | Y | N | Y | N | Y | N |
| 3. Select Drawing | $\begin{aligned} & \text { SSR-311- } \\ & A-100 \end{aligned}$ | $\begin{gathered} \text { SMR-311- } \\ \text { A-100 } \end{gathered}$ | $\begin{gathered} \text { SST-31.1- } \\ \mathrm{A}-11 \end{gathered}$ | SMT-311- | $\left\lvert\, \begin{aligned} & \text { SSA-311- } \\ & \text { A-10 } \end{aligned}\right.$ | $\begin{gathered} \text { SMA-311 } \\ \text { A-10 } \end{gathered}$ |
| 4. Go 'ro 'rable 361 | X | X | X | X | X | X |

In condition row \#1, TH refers to a thermohm element, TC to thermocouple, and RAY to a Rayotube. Instruments may be either single or multiple point recorders, 'and this condition is denoted in the second row by a " Y " for single, an " N " for multiple point. The only combination of conditions meeting the specification requirement of a multiple (3) point recorder with thermocouples is displayed in rule \#4, which is paraphrased:

IF . the type of element is a thermocouple
and
the number of points does not equal one (i.e., it is more than one; or multiple)

THEN select drawing number SMT-311-A-11 as the appropriate measuring circuit wiring diagram

## and

go to table \#361 for the next processing step.
The results of processing this table then can be printed out from the comprter as follows (as each table is discussed, the form of the printer output will be dis played at that point):

TABLE 360. BASIC DR.AWING SELECTION
SELECT DRAWING \# SMT-311-A-11
This wiring diagram is shown in figure 26.
The last action row is prefaced by a "GO TO" operator and signals a table transfer from \#360 to \#361 for the next series of operations. This second table is a typical example of limited entry tabular form, where the entire action statement is contained to the left of the vertical double lines, or stub area. Entries to the right of this line are simply an indication that the action is to be executed (X) or is not pertinent (blank).

Where the condition or action statement is shown partly in the stub and extended over into the entry (as in the first condition and first action rows of table \#360), the table is referred to as extended entry.

In table \#361, only rule \#5 is appropriate for the stated customer specification, and it reads:

IF the element is a thermocouple
and
the number of spans equals one
and
the number of charts equals three
THEN the "A" resistor is set equal to 46 ohms
and
formula \#1 is evaluated ${ }^{\circ}$ (the expression is shown in note \#1 at the bottom of the table).

- 5.4 -


Table \#361 - Measuring Circuit TC Resistance Calculation


## Notes:

1. Formula 1: DEADBAND = Start PT (2)-start PT (1)-scale width
2. Formula 2: $\mathrm{C}_{1}$
3. Formula 3: Beta
4. Formula 4: S
5. Formula 5: $\mathrm{C}_{1}$
6. Formula 6: $\mathrm{C}_{2}$
$=.2$ (scale width+deadband/scale width). Value span
$=$ (No. of charts-1) (Deadband) (Span value) /scale width
$=.204[($ No. of charts) (Span value) + Beta $]$
$=.2$ (Suppression 2 - suppression 1)
$=.2$ (Suppression $3-$ suppression 2)
formula \#2 is evaluated to determine the resistance values $\mathrm{c}_{\mathrm{E}}$ the C , resistor (resistance is in ohms).
and
The value of the $C_{2}$ resistor is set equal to the value of the C1 resistor
and
do formula \#3
and
set the $C$ resistor equal to 111.9 minus the resistance value of $C_{1}$, minus the resistance value of $C_{2}$
and
do formula \#4, which is the resistance value for the $S$ resistor.
and
Set the K resistance value equal to the formula: 200 times $S$ resistance value divided by 200 minus $S$ resistance value
and
set $G$ resistance value equal to the resistance value of K divided by 4.
and
set $B$ resistance value equal to 118 minus the resistance value of $S$.

> and
go to table \#344.

- 5.7 -

The computer printout shows the input parameters of the circuit and resulting resistance values for each of the resistors:


The term SPAN, as used for this measuring instrument, refers to the difierence between the end points of the range on the scale (ie., for this specification the range is $1000^{\circ}-1100^{\circ} \mathrm{F}$; therefore, the span equals 100). Although three separate critical points are being measured, only one span is involved in this problem. The recording chart looks like this:


The shaded area separating the chart into three segments is called the "deadband" area, since none of the three recording needles are permitted to print on these strips.

Resistance values for $\mathrm{B}, \mathrm{G}, \mathrm{K}$, and S resistors are determined by the process of "design;" choice of a resistance for the A resistor is made through the process of "selection", even though only one value is involved in this instance.

The next table (\#344) to be processed in the measuring circuit series is the wiring instruction for connecting the checking key (a special feature called for in the customer specification) to the basic circuit.

Table \#344-Special Condition - Thermocouple Group

|  | Rule Number | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 1 | Checking Key is Present | Y | N |
| 2 | GO TO 345 |  | $\bar{X}$ |
| 3 | . Select 4P-2T Telephone Key (\#3232-7) | X |  |
| 4 | Disconnect 12 and 13 | X |  |
| 5 | Connect $\mathrm{P}_{2}-\mathrm{C}$ to 13 b | X |  |
| 6 | Connect $\mathrm{P}_{4}-\mathrm{C}$ to 12 b | X |  |
| 7 | Connect P3-C to 12 a | X |  |
| 8 | Connect P1-C to 13 a | X |  |
| 9 | Connect P2-T1 to CK TERM + | X |  |
| 10 | Connect $\mathrm{P}_{1}-\mathrm{T} 1$ to CK TERM + | X |  |
| 11 | Connect P2-T1 to P1-T2 | X |  |
| 12 | Connect $\mathrm{P}_{4}-\mathrm{T}_{2}$ to $\mathrm{P}_{3}-\mathrm{T}_{2}$ | X |  |
| 13 | Connect $\mathrm{P}_{4}$-T1 to CK TERM - | X |  |
| 14 | Connect $\mathrm{P}_{3}-\mathrm{T} 1$ to CK TERM - | X |  |
| 15 | GO TO 312 | X |  |

This table is coded to the generic diagram SMT-311-A-11 called for in table \#360, and used in table \#361.

Rule \#1, the correct rule for this particular specification reads:
IF the checking key is present
THEN $\begin{gathered}\text { select a } 4 \text { pole, double throw telephone key, number } \\ 3232-7\end{gathered}$
and
disconnect points 12 and 13 in the basic circuit
and
connect the second pole common terminal of the checking key to 13 b of the measuring circuit

- (the two open ends of disconnected point 13 are identified as 13 a and 13 b ).
and
connect the fourth pole common terminal to 12 b
-etc.

The rest of the action rows read in much the same way (row nine: connect the second pole, single throw to the positive side of the checking terminal, which is not indicated here, but would be shown in the full system), and the table concludes with the instruction GO TO TABLE 312.

This table is essentially a list of directions for connecting the checking key to the basic circuit, and it is printed out from the computer for manufacturing as follows:

TABLE 344. SPECIAL CCNDITICN TC GROUP.
TEMPERATURE CALIBRATION CHECKING KEY.
THE FOLLOWING MCDIFICATICNS TO THE GENERIC WIRING CHART MUST BE COMPLETED 。

1. SELECT 4 POLE 2 THRCW TELEPYONE KEY. STD.-3232-7

| 2. | DISCONNECT | 12 TO | 13 |
| :---: | :---: | :---: | :---: |
| 3. | CONAECT | P2-C TO | 13-8 |
|  | CONNECT | P4-C TO | 12-B |
|  | CONAECT | P3-C TC | 12-A |
|  | CONNECT | Pl-C TO | 13-A |
|  | CONAECT | P2-T1 T0 | CK TERM PLUS |
|  | CONNECT | P1-TI 10 | CK TERM PLUS |
|  | CONNECT | P2-T2 T0 | P1-T2 |
|  | CONNECT | P4-T2 10 | -3- $\mathrm{T}^{2}$ |
|  | CONAECT | P4-T1 TO | CK TERM MINUS |
|  | CONAECT | P3-TI TO | CK TERM MINUS |

The conventional system alternative to this would be to draw a special wiring diagram for an iron constantan thermocouple with a checking key, and duplicate multiple copies for distribution to the manufacturing section.

The following table, \#312, establishes the routine for connecting the fluorescent illumination (with switch) to the measuring circuit, as requested in the customer specification.

Three conditions are necessary:

- Is illumination present?
o Is light switch present?
- Is a separate terminal present as called for by the sales engineer?

The specification indicates "yes" for the first two, but not the third, so rule \#1 is appropriate:

Table \#312-Special Conditions - TC


| Rule Number | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 1. Ilumination is present | Y | Y | Y | N |
| 2. Light SW is present | Y | Y | N |  |
| 3. Separate TERM is present | N | Y | Y |  |
| 4. GOTO 313 |  |  |  | X |
| 5. Select 2P-1T SW \#36715 | X | X |  |  |
| 6. Connect $\mathrm{P}-1$ between $\mathrm{J}_{2}-4$ and contact 1 | X |  |  |  |
| 7. Connect P-2 between $\mathrm{J} 2-5$ and contact 2 | X |  |  |  |
| 8. Insert TERM LT-1 adjacent İ1 |  | X | X |  |
| 9. Insert TERM LT-2 adjacent İ1 |  | X | X |  |
| 10. Connect P-1 between LT-1 and contact 2 |  | X |  |  |
| 11. Connect P-2 between LT-2 and contact 2 |  | X |  |  |
| 12. Connect LT-1 to contact 1 |  |  | X |  |
| 13. Connect LT-2 to contact 2 |  |  | X |  |
| 14. GO TO 201 | X | X | X |  |

Successively, rule \#1 selects a double - pole single - throw switch \#36715, and calls for connecting the first. pole between J2-4 and contact 1 of the light bulb, and the second pole between J2-4 and contact 2 .

Again, no separate wiring diagram is needed showing the connections to be made for this special product feature, since computer printout states:

| TABLE 312. SPECIAL CONCITION - CCMMON. |
| ---: |
| ILLUNINATICN WIRING |
| 1. SELECT DOUBLE POLE, SINGLE THROW SWITCH 36715 |
| 2. CCNNECT P-1 BETWEEN J2-4 AND LIGHT CONTACT 1 |
| 3. CONNECT P-2 BETWEEN J2-5 AND LIGHT CONTACT 2 |

Although there are many other measuring circuit tables, this is the last one included in this demonstration series.

## SCALE DESIGN

The five tables in scale design select the major line divisions of the instrument scale and indicate the distance these major divisions are to be located from the beginning of the scale. The output of these calculations is a printed scale diagram with supplementary packing instructions. Figure 28 is an engineering drawing of the scale with major line divisions marked off and numivered with large numerals. Semi - major and minor divisions are developed from another series of tables.

The first scale design table is an example of an unconditional table; i.e., it has no conditions and only one rule:
ES：－
VER
SCAL
1－VERTICAL DIME：
SCALES．
7－CALIBRATION LINES ARE TO BE LOCRTED WITHIN ． $010^{\circ}$

B－ERROR IN SPACING BETWEEN ADVACENT LINES IS LIMITED TO ERANCE OF $\pm .006$ MAY $Z E$ GIVEN WHERE LINES ARE MORE THAN $/ 16$ APART．
9－IF MASTER IS AVAILABLE，SINOE SCALE ON RATCHET MACHINE， USING SINGLE RANGE MIA GUIO IF MASTER IS NOT AVAIL－ ABLE，DIVIDE SCALE ON TANDNHEEL MACHINE，USING SD－150
LINE GUIDE．
10－EXTEND LINE AT ZERO MCNES／＂BELOW NORMAL LENGTH WHEN VALUE AT LON END JIVIS．ON IS NOT EQUAL TO AOUACENT
DIVISION（i．e．A FRACTIONAI PART．）SEE SNETCH BELOW． Q
2 xir

2．HORIZO
－HORIZONTAL LOEATION OF CALIBRATION LINES，
CHARACTER．OF UNESNS，PART NO．F LEGENDS
3－WHEN SPRCE LMITITION REQUIRES USE OF CON－ DENSED $=507$ FIDE，IT SHOULD NOT EE
4－WEIGHTS OF GFIENETION LINES AS SPECI
－WEIGHTS OF GFLENETION LINES AS SPECIFIED
ON THE DATA SMEET
5－PRRT NO IS SHOW IN THE TITLE BOX OF THE DRTA
SHEET
6－LEGEND＂B＇IS CENTENEO BETWEEN LEGENDS＂A＂ f ＇ NEW LEGEN：
I－CTC TYPEN
CHEOMEL－CONST：T TYFEL E＝11．L 1SNOS－73MCOMO Cv， －ッシ DIVISION（I．E．A RACTIONT－MRT．SEE SNETCH BELOW．

> GNATIONS
> EXANAK 565-1500号

> II-LETTERING GUIDES G PENS EV WOOD-REGAN 50 .
> 12- FINISHED SCALES TO BE SNZAYED ALL OVER PER E.5.5. 3.15.37. NEVERSE FRCE TO BE CIIZNED OF SMUDGES.
> $\begin{aligned} & \text { 13- PACK SEPIRATELY IN GLI SINE ENVELOPES, USING WHITE } \\ & \text { CARDBOARD PROTECTOR UN PRINTED FACE. }\end{aligned}$ DEG. FAHR


Table \#201 - Calculate Span

| 1 | Set SPAN EQ Max Range - Min Range | X |
| :---: | :--- | :---: |
| 2 | Do INCREMENT SELECT | X |
| 3 | Set FACTOR EQ Min Range/Increment | X |
| 4 | GO TO MAJOR DIV. CALC | X |

In the first action row, SPAN is set equal to maximum range minus minimum range (SPAN being the difference between end points on the range, or $1100^{\circ}-1000^{\circ}=100$ ).

Then in the second action row, another table is called upon for processing, entitled: INCREMENT SELECT, table \#202:

Table \#202 - Increment Select

| Rule Number | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 1. SPAN GE | 8.0 | 16.0 | 33.0 | 80.0 |
| 2. SPAN IR | 16.0 | 33.0 | 80.0 | 160.0 |
| 3. SET INCREMENT EQ | 1 | 2 | 5 | 10 |
| 4. SET MANTISSA EQ | 1 | 2 | 5 | 1 |
| 5. SET MULTIPLIER | 1 | 1 | 1 | 10 |

Another tabular feature is revealed in the relationship of these two tables. So far, all the decision tables have been entered at the top, and as a set of conditions was satisfied and executed by multiple actions, control was turned over to another table by the operator GO TO.

Now a DO operator appears in table \#201, temporarily transferring control to another table for a series of processing steps. When they have been completed, control reverts back to the original table. In this respect, table \#201
is an "open table, " while table \#202 is a "closed table, " since the latter has no influence over the order in which tables are executed; here, table \#202 is a slave to any table carrying an instruction to enter it, execute a rule, and return to the original table.

Some of the terms in table \#202 require explanation:
increment: numerical or algebraic difference between two neighboring major line divisions.
mantissa: decimal portion of the entire number (dimension)
multiplier: conversion of numbers to a higher order of values. (eg., hundreds to thousands).

SPAN in this problem equals 100, so rule \#4 is appropriate:
IF $\quad$ SPAN is greater than or equal to 80 , but less than or equal to 160

THEN set increment equal to 10
and
set mantissa equal to 1
and
set multiplier equal to 10
Since this is a closed table, control reverts back to action row 3 of table \#201:
Set FACTOR equal to minimum range divided by increment (i.e., $1000+10=100$; therefore, on this scale, the first line will be 100 ), and go to the table entitled: MAJOR DIVISION CALCULATION. FACTOR, in this case, is the numeral associated with the first line on the scale, or 0 for this scale Other scales can start with higher numbers.

The MAJOR DIVISION CALCULATION table appears as:

Table \#203 - Major Division Calculation

| 1 | Set FACTOR EQ INT (FACTOR) | X |
| :---: | :--- | :---: |
| 2 | Set N: EQ 1 | X |
| 3 | Set N: Value EQ FAC'IOR * Increment | X |
| 4 | GO TO VALUE CALCULATION | X |

This table is primarily for non - linear scales and scales which do not have numerals associated with the first line.

It reads:
Set FACTOR (selected above) equal to the integral of the FACTOR:
and

Set the number equal to 1 .
and

Set the number called value equal to the FACTOR times the increment.
and

GO TO the table called VALUE CALCULATION.

In this rule, FACTOR is the first numeral on the scale, and VALUE is an arbitrary reference to the particular numeral being worked on at the present time. It could be any numeral on the scale, except the first. The rather special actions in this table are needed to set the numeral in the right place for non - linear scales.

The VALUE CALCULATION table repeats itself over and over in the determination of:
o distance
o variable
o value
for each point progressively down the scale.


Notes:

1. Temp. Conv. $=$ WORK $A * 9 / 5+32$
2. Polynomial $=\mathrm{C}_{0}+\mathrm{C}_{1}$ * WORK A
$+\mathrm{C}_{2}$ (WORK A ** 2)
$+\mathrm{C}_{3}$ (WORK A ${ }^{* *} 3$ )
3. Dist. Calc $=$ Scale width * (N: Variable - Min. Variable) / (Max Variable - Min Variable).

Rule \#2, the carrect one for this table reads:
IF the number called VALUE is less than the maximum range (1100)
and
the units are measured in fahrenheit.
THEN $\quad$ Set the work field $A$ (a computer term) equal to a number called VALUE (this makes the work field worth 100, since the first value is 100)
and
line 4 is not pertinent (as denoted by the mark :), since no temperature conversion is required.
and
DO the table COEFFICIENT SELECTION:

Table \#205-Coefficient Selection

| Rule Number |  | 1 | 2 |
| :--- | :--- | :---: | :---: |
| 1. | Element | EQ | "Iron Const TC" |
| 2. | Set C0 | EQ | -.17285 |
| 3. | Set C1 | EQ | .076045 |
| 4. | Set C2 | EQ | -.0000436 |
| 5. | Set C3 | EQ | 0.0 |

This table selects the correct coefficients for primary elements such as iron constantan, chromel aluminum, etc. Data already existed in tabular form relating temperature to millivolt output for each element, but it was necessary to convert the tables for automatic processing. This was accomplished by modifying an IBM 1620 curve fit program to permit generation of a millivolt output from a given temperature through a polynomial type formula. The table then calculates four coefficients for the formula which produces a millivolt output.

With the coefficient selected in line 5 of table \#204, the reading continues:
set the number called variable equal to the millivolt output (or set the millivolt output equal to the result of computing the polynomial formula in note 2) to calculate a millivolt output for that particular value (in this case, 100)
and
set the number called distance equal to the distance calculation in note 3
and
increment the number by one (to get to the next numeral)
and
set the number called value equal to the number minus one times the value plus the increment
and
repeat the table again until the maximum range is reached.
The Division File instruction covers related calculations for semi - major and minor scale divisions.

From the following printed output, manufacturing would know that numeral 101, for example, would be located on the scale 1.138 inches from the scale starting point:

- 5.21 -

SCALE CESIGN
FOR GENERAL DESCRIPTICN CF SCALE SEE CRG, SC-150

| LEGENO A- | CEG CENT |
| :--- | :--- |
| LEGEND B- | NULTIPLY EY 10 |
| LEGEND C - | $I-C$ TC TYPE $J$ |




This display would replace drawing \#SD-150 shown earlier, as an instruction to manufacturing.

GEAR SELECTION
The first table in the gear series selects shafts for the gear drive mechanism:

Table \#1 - Chart Drive Shafts

| Rule Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 Chart Drive TYPE Equals | STAI | DAR |  |  | II | SCO | RAT | 10 | MP | 4:1 | RA | TIO |  | 4:1 |  |  |
| 2 Main Chart Dr. Shaft Speed Equals | $\begin{aligned} & 25 \\ & \mathrm{RPM} \end{aligned}$ | 50 | 100 | 1000 | 25 | 50 | 100 | 1000 | 25 | 50 | 100 | 1000 | 25 | 50 | 100 | 1000 |
| 3 Set Dr. Shaft EQ R-802-AW | X | X | X |  | X | X | X |  | X | X | X | E | X | 入 | X | E |
| 4 " " " " 059550 |  |  |  | X |  |  |  | X |  |  |  |  |  |  |  |  |
| 5 Set. Horiz. Dr. Shaft EQ 059524 | X | X | X | X |  |  |  |  |  |  |  |  | X | X | X |  |
| 6 " " " " 059560 |  |  |  |  | X | X | X | X | X | X | X |  |  |  |  |  |
| 7 Set Counter Dr. Shaft EQ 059525 | X | X | X | X | X | X | X | X | X | X | X |  | X | X | X |  |
| 8 Set Cluster Dr. Shft EQ 059526 | X | X | X | X | X | X | X | X | X | X | X |  | X | X | X |  |
| 9 Set Vertical Dr. Shft EQ R-501-6 | X | X | X | X | X | X | X |  | X | X | X |  | X | X | X |  |
| 10 " 10 " 11 " 059559 |  |  |  |  |  |  |  | X |  |  |  |  |  |  |  |  |
| 11 Assemble Per Dwg RS-1802-139 | X | X | X | X | X | X | X | X | X | X | X |  |  |  |  |  |
| 12 GO TO Table \# - | 5 | 5 | 5 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 5 |  | 5 | 5 | 5 |  |
| 13 Error |  |  |  |  |  |  |  |  |  |  |  | X |  |  |  | X |

Table \#1 is an example of "selection, " with rule one being the proper choice for the customer specification. The Else rule (E) in columns 12 and 16 of the entry area is another tabular convention used to transfer control to an error table when none of the conditions of this table are satisfied.

The printed output for table \#1:


The assembly drawing is illustrated in figure 29.
Table \#5 selects the variable parts for the speed changer, the first two conditions being specified by the customer, and the last by the sales engineer.

Action row line 14 demonstrates how a part quantity is handled in the table.
Lines 16 and 17 reveal how limited and extended entry tables can be combined with the drawing number placed in the stub, while the suffix is listed in the entry.

The output appears as:



## SHOP NOTES:



## ENG. AOTES:

1-SKETCH NUMBER DESIGNATES PAPER SPEED IN INCHES PERR H:OUR. (E = EKNCT, N=NOMVINAL.)


Table \#5 - Speed Changer Selection

| Rule Number |  | 3 |  |  |  | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 Main Chart Drive Shft Speed EQ 25 RPM | Y Y | Y | Y | N | N | N | N | E |
| 2 50RPM | N N |  | N | Y | Y | N | N |  |
| 3 ( 100 RPM | N N | N | N | N | N | Y | Y |  |
| 4 Line Frequency EQ or 50 CPS | Y Y |  | N | N | N | N | N |  |
| 5 - 60 CPS | N N | Y | $Y$ | Y | Y | Y | Y |  |
| 6 Auv: ary Shaft (RS-1804-7) is present | N Y | N | Y | N | $Y$ | N | Y |  |
| 7 Set Main Drive Gear EQ R-802-C2 |  | X | X |  |  |  |  |  |
| 8 " " " " " ${ }^{\text {c }}$ |  |  |  | X | X |  |  |  |
| 9' " " " " " PSS-1802-148B |  |  |  |  |  | X | X |  |
| [0 " " " " " RS-1802-148-1-A | X |  |  |  |  |  |  |  |
| 1 Spacer is (2) 001626 | X | X |  | X |  | X |  |  |
| 2 Position Pin is (2) STD 12638 | X |  | X |  | X |  | X |  |
| 13 Screw is 3/8 8-32 RHBCP | 2 |  | 2 |  | 2 |  | 2 |  |
| 4 Screw is 7/16 8-32 RHBCP | 21 | 2 | 1 | 2 | 1 | 2 | 1 |  |
| L. 5 Washer is \# 1208 SPLW | 23 |  | 3 | 2 | 3 | 2 | 3 |  |
| [¢ Assemble Per Dwg RS-1802-148-SK |  | 1A | 1B | 2A | 2B | 3A | 3B |  |
| 17 " " " RS-1802-148-1-SK | 1 A 1 B |  |  |  |  |  |  |  |
| 8 GO TO Table 40 | X X | X | X | X | X | X | X |  |
| . 9 Speed Changer error |  |  |  |  |  |  |  | X |

- 5.28 -

Table \#40 is a value list of fixed parts for the speed changer, complementing the variable list outlined in the previous table. When the two tables are combined, a complete speed changer material list or bill of materials becomes available to manufacturing.

The value list is then printed to show:

```
table \# 40 PARTS FCR SPEED CHANGERS
    ANTI-CLICK CEVICE R-206-Y
    SHAFT BUSHING R-502-C
    ACTLATOR ASSEMELY 161011
    SPUR GEAR 9-3-3-1
    THRUST \&ALL•BEARING 8-4-3-1
    GEAR - PLATE ASSEMBLY R-802-CP
    BALL BEARING 8-1-3-1
    BEARING SPACER 44-4-1-1
    SLEEVE R-802-CM
    CLUTCH \(\quad \mathrm{R}-802-\mathrm{CK}\)
    SCREW I 4-40FHBCRB
    SHAFT PIN \(5-2-3-4\)
    THRUST hASHER R-505-N
    SHAFT COLLAR
    R-66-N
    SET SCREW I/2 IN 10-32 SOC. SET SCREW CUP POINT
    ASSENBLE PER DWGS RS-1802-148 ANC RS-1802-148-1
```

The final table in the gear series (\#10) is a look-up table for selecting gears to go on the shaft in accordance with the main chart drive speed.

Table \#40 - Speed Changer Parts

| 1 Anti Click Device | R-206-Y | X |
| :---: | :---: | :---: |
| 2 Shaft Bushing (2) | R-502-C | X |
| 3 Actuator Assembly | 161011 | X |
| 4 SPUR Gear | 9-3-3-1 | X |
| 5 Thrust Ball Bearing | 8-4-3-1 | X |
| 6 Gear \& Plate Assembly | R-802-CP | X |
| 7 Ball Bearing | 8-1-3-1 | X |
| 8 Bearing Spacer | 44-4-1-1 | X |
| 9 Sleeve | R-802-CM | X |
| 10 Clutch | $\mathrm{R}-802-\mathrm{CK}$ | X |
| 11 Screw | 1" 4-40 F. H. B. | X |
| 12 Shaft Pin | 5-2-3-4 | X |
| 13 Thrust Washer | R-505-N | X |
| 14 Shaft Collar | $\mathrm{R}-66-\mathrm{N}$ | X |
| 15 Set Screw | $\begin{aligned} & 1 / 8 " 10-32 \mathrm{SOC} \\ & \text { Set Screw Cup } \\ & \hline \end{aligned}$ | X |
| 16 Assemble per Dwg | $\begin{array}{r} \text { RS-1802-148 \& } \\ 1802-148-1 \\ \hline \end{array}$ | X |
| 7 GO TO Table 10 |  | X |

Table \#10 - Gear Look up

| Rule Number | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 1 Main Chart Drive Speed EQ | 25 RPM | 50 RPM | 100 RPM | 1000 RPM |
| ${ }^{2}$ Set Chart Speed EQ | Chart spd | Chart spd/2 | Chart spd/4 | Chart spd/40 |
| 3 Look up Chart Speed in Generated Gear Table | X | X | X | X |
| 4 Print Drive Gears | X | X | X | X |
| 5 Assemble per DWG RS-1802-139 SK1 | X | X | X | X |
| 6 GO TO Table 11 | X | X | X | X |

- 5.31 -

Previous tables were of the regenerative type; i.e., only the logic is stored in the computer and data is regenerated as required. This table emphasizes that file reference, too, is a valid storage method in systems design. The table could have been structured around a formula which would regenerate a series of gears from a given chart speed. Actually, it was constructed by first compiling a list of all possible gear combinations for all chart speeds i.410), then reducing it to some $350^{-}$practical and logical combinations. The result was filed for reference as gear sets are required to maintain a given chart speed.

A typical printout from this table would be:

```
TABLE 10 .....CHART FAPER SPEEL GEARING SELECTION
    - GEAR IS 9362
    B GEAR IS 9365
    C GEAR IS 9345
    D GEAR IS 9362
    E GEAR IS 9314
    F GEAR IS 9316
    G Gear is 9374
    h Gear is 9356
    J GEAR IS 9325
    K GEAR Is 9314
    P-GEAR If 9345
    Q GEAR IS 9356
    ASSENBLE PER DWG \# RS-1802-139-SK 1
```

These 13 decision tables are representative of the variety of situations encountered in an ADE system. Complete systems will include hundreds of similar tables, each linked to the others to permit a continuous and integrated processing of data in which product characteristics are generated automatically from customer specifications.

The decision table is not the only form of documentation a study team can use, but it does demonstrate certain advantages in analysis, documentation, and man - to - man communication.

Regardless of the documentation format, the main theme of ADE systems design is the identification of a unique design logic, and the implementation of this logic into an operating engineering system which is far more effective and efficient than those in existance today.

