Application Program

IBM 1401 Decision Logic Translator (1401-SE-05X) Program Reference Manual

Design logic is captured using a FORTRAN-oriented decision table language. The logical statements of this language are the input to the Decision Logic Translator system. After decoding the statements of a table, the system sorts them according to commonalities in rows and columns in order to produce an efficient output program. The sorted rules are then translated into FORTRAN statements. This process is continued table by table until all tables of any single run are translated into FORTRAN statements.

This manual illustrates the use of two IBM forms: "Decision Logic Coding Form" (X20-8024) and "Decision Table" (X28-1630).

Copies of this and other IBM publications can be obtained through IBM branch offices. Address comments concerning the contents of this publication to
IBM, Technical Publications Department, 112 East Post Road, White Plains, N. Y. 10601

CONTENTS

General Description of Program 1
Purpose and Objectives 1
Control and Audit Techniques 1
Tape Error Routines 1
Timing 2
Restrictions and Range 2
Program Systems Chart 3
Input/Output Description 4
Input 4
Output 13
Intermediate Data Storage 13
Input/Output Summary 14
Sample Problem 16
Suggested Coding Practices 47
Program Setup 48
Console Operating Instructions 48
Error Codes and Messages List 49
Error and Restart Procedures 53
Storage Map 54

GENERAL DESCRIPTION OF PROGRAM

The Decision Logic Translator reads, lists and validity-checks each condition row. Extended entry rows are reduced to limited entry. The number of "don't care" cells in each row is counted; the rows are sorted so that the rows with the fewest "don't care" cells come first. However, extended entry rows are sorted to the top unless there is only one nonempty cell in the row. Treating each Y as a $1, \mathrm{~N}$ as a 2, and . or E as a 3 , the columns are sorted on their value. These sorts bring together similar groups of conditions. The condition area is scanned to detect identical groups of conditions within two or more columns. Insofar as possible, only one set of IF statements is generated for each pattern of conditions even though the pattern appears in more than one column. This process minimizes the size of the object program and maximizes its efficiency.

To process the action area the Decision Logic Translator reads, lists and validitychecks each action row. Extended entry rows are reduced to limited entry, and the action area as a whole is validity-checked. Each formula and list is read, edited and stored on tape. The relationship between the sorted and unsorted columns of the condition area is stored within the computer. Each action rule can then be correlated with the proper condition rule without sorting the actions. One or more FORTRAN statements are generated for each nonempty cell in the action area. To conserve space in the FORTRAN object program, complicated formulas and all I/O operations are coded out of line if they appear more than once. The RETURN action is also coded out of line.

When all tables have been processed, the user must supply FORTRAN control cards, correct nonfatal errors, supply FORMAT statements where necessary, and compile the object program.

PURPOSE AND OBJECTIVES

The program was designed to ease the burden placed upon those who are responsible for implementing an Automated Design Engineering system. The Decision Logic Translator substantially reduces the time and cost required to implement such systems by minimizing the amount of programming required to convert from decision tables to FORTRAN program.

CONTROL AND AUDIT TECHNIQUES

The Decision Logic Translator has complete error routines to handle tape read/write errors. These routines are hand-coded to conserve storage. No audit trails are maintained in the strict sense of the word, but counts are kept of the number of records written on tape and the number of tape errors encountered.

TAPE ERROR ROUTINES

For a tape error condition, the tape is backspaced over the error record. The numbers 771 (for tape 1) or 772 (for tape 2) are placed in the A and B registers and the machine halts. Pushing START causes the program to execute the tape command again and
proceed if an error condition does not recur. The end-of-file or end-of-reel condition follows the same procedure except that the A and B registers contain 991 or 992 for tape 1 or tape 2, respectively.

TIMING

After a program load time of 40 seconds, each table takes between five seconds and four minutes to translate. The average time per decision table is one minute. Most errors are detected within the first quarter of the processing time for a table.

RESTRICTIONS AND RANGE

- The number of columns (rule) must be less than or equal to 40 .
- After reduction of extended entry rows to limited entry, the number of condition rows and the number of action rows must be less than or equal to 90 .
- After reduction to limited entry, the net size of the condition area and the action area must be less than 1,000 cells.
- No more than 50 references to any table may be made by the DO TABLE instruction.
- No more than 100 FORTRAN statement numbers may be required by the object code. If more than 100 numbers are needed, alphabetic symbols have to be used.
- The number of closed tables requested in one run must be less than or equal to 20 .

PROGRAM SYSTEMS CHART

INPUT/OUTPUT DESCRIPTION

INPUT
Coding Sheet
Figure 1 shows the coding sheet to be used.
Figure 2 contains examples of source language instructions inserted in a coding sheet. This illustration is not a program but a listing of the various ways in which each command may be coded.

Acceptable Source Language Instructions

Condition area

GE -- Greater than or equal to.
GR -- Greater than.
EQ -- Equal.
NE -- Not equal.
LR -- Less than.
LE -- Less than or equal to.

Action area

SET -- Set operand 1 equal to operand 2.
INCREMENT -- Increment operand 1 by operand 2 .
MOVE -- Replace operand 2 by operand 1.
DO FORMULA -- Compute the formula specified by the formula number in operand 2.
DO TABLE -- Perform the logic and computations described in the table specified by operand 2. Then perform the next requested instruction within this table. All closed tables (those tables performed by a DO TABLE command) must always have a RETURN statement to return control to the calling table.

READ -- Equivalent to a FORTRAN read instruction.
PUNCH -- Equivalent to a FORTRAN punch instruction.

SYSTEM
ANALYST
DATE

COMMENTS

Figure 1. Coding Sheet

IBM

SYSTEM \qquad
PAGE \qquad OF \qquad

ANALYST
DATE
entar

COMMENTS

Figure 2. Examples of source language instructions

IBM

DECISION LOGIC CODING FORM

SYSTEM
PAGE \qquad OF

ANALYST
DATE

Entry

tableTate No.	Row	stus			Entry																							
		${ }^{8}$			OPI OPERAND 1					OPERAND 2			00^{0}	OPERANO 3			${ }^{\text {OP4 }} 1$	OPERAMD 4			OPS	OPERAND 5			OP6	Operano 6		
					01	02	03	04		06	07	08		10	11	12		14	15	16	17	18	19	20	21	22	23	24
	\cdots		REA ${ }_{\text {L }}$,	L, 1, ST, 14,		x	,	1	1	-	1	,		\times	1	,	,	,	,		,		,	,				
	,		READ	L, , S, T,		1.4				13		,		1.4														
	,		111.1.1.1.1.1	1.1.	,		,	,	,	,	,	,	,		,	,	,	,	,									
			PUNC,	$1.15 T, 3$,		x				-				x			,											
			$\mathrm{PU},{\mathrm{N}, \mathrm{CH}_{1}}^{1}$,	L. 1.5 T,		2.				3.				2.														
	,		,	1.1.1.1								,			,		,	,	,									
	,		PR, INT,	L, ST, 7		\times				-				\times														
			$P R, N, N$,	L. S ST,		7.				8				9														
	,			1.1			,	1	1	1		1					,											
			READ,$~ N P$,	$5, L, 1, S, T, 2$		X,				-		1		x			,				,				1			
			$R, A, D, 1$ NPUT, TAPE	5, L, 1, S, T,		2,				3.	1			4.	,	1	1		,									
											1						1	1	1		1							
			WR, T, T, OUTPUT TAPE	4, L, 1, ST, 4,		x				$\stackrel{1}{1}$				\times														
			WR, TE OUTPUT, TAPE	$4, L, 5, T$,		4.				1.				4.			1	,	1		1							
				1, 1,																								
			RE, AD , TAPE, , , , , ,	2, L, ST, 3,		\times				$\stackrel{1}{4}$				\times	,		,											
			READ TAPE,	2. LI, ST,		3.				4				5	,	,	1		,		,							
				111.1.																								
1.			WR, $, T, E, T A P E, \ldots$,	2, L, 1, S, T, 1,		x				-				\times														
			WR, I, T,,$_{1}$ TAPE,,\ldots,	2., LIST,		10				1,1				12														
1			111111111	11.111																								
			1,1.1.1.1.1	$\ldots 1.1$																								
1	5		$10 \quad 15 \quad 20$	$25 \quad 30$		35		40					50					60			5		70					80

COMMENTS

Figure 2. (Continued)

DECISION LOGIC
 CODING FORM

SYSTEM
PAGE
GE - OF

OF

COMMENTS

Figure 2. (Continued)

READ INPUT TAPE -- Equivalent to the FORTRAN statement.
WRITE OUTPUT TAPE -- Equivalent to the FORTRAN statement.
READ TAPE -- Equivalent to the FORTRAN statement.
WRITE TAPE -- Equivalent to the FORTRAN statement.
PAUSE -- Equivalent to the FORTRAN statement.
STOP -- Equivalent to the FORTRAN statement.
ERROR -- This action is taken because of an error in data. Go to the table specified by operand 2.

GO TO TABLE -- Go to table specified by operand 2 .
RETURN -- This table was performed via a DO TABLE instruction. Transfer control back to the instruction after the DO TABLE instruction in the calling table.

Operand 1 is the first variable after a command, operand 2 is the second variable(s) after a command, operator (OP) is the action to be performed between operands 1 and 2 in a condition row. For example,

SET ALPHA = BETA

Operand 1 is ALPHA
Operand 2 is BETA
IF ALPHA
LE BETA
Operand 1 is ALPHA
Operator (OP) is LE
Operand 2 (OPERAND) is BETA
Keywords
All keywords (condition operators and action codes) are compulsory. They must be spelled the standard way except that embedded blanks may be inserted or deleted. (GOTOTABLE is as acceptable as GO TO TABLE.)

Limited entry condition options
Y -- Yes.
N -- No.
. or E -- "don't care" or "else".
"Don't care" means it does not matter whether this test is true or false (that is, a "don't care" is the same as having both yes and no for this test). "Else" means that all conditions other than those which were tested for in preceding rules will apply to this rule.

Limited entry action options

. -- Don't do this action for this rule.
X -- Do this action for this rule.

Use of the Coding Sheet
Table number--cc. 1-3

- Must be numeric and less than 999. Tables need not be supplied in table number sequence.
- No two tables may have the same number in any given run.

Row number--cc. 4-5

- Must be numeric.
- Rows must be in ascending sequence of row number.
- Row numbers need not be consecutive.

Card code--cc. 6

- This field is used to number the continuation cards of a row that extends over more than one card. The maximum number of cards per row is ten.
- This field is also used to indicate the type of row:

I -- Indicates the run identification card.
C -- Indicates a comments card.
A -- Indicates the first action row.
F -- Indicates a formula row.
L -- Indicates a list row.

- Formulas and lists may be in any order but must follow the last action row.
- A comments card may appear anywhere except between two cards of the same row.
- A run identification card has I in cc. 6, the run I. D. character in cc. 7, and comments in cc. 8-80.

Stubs and entries

- The table must be complete. Empty cells are not allowed.
- Coding need not be left-justified within the allotted space.
- Stubs appear in cc. 7-32.
- Entries appear in cc. 33-80.

Condition rows

- The left half of the stub must contain IF followed by a variable name.
- If the right half of the stub contains blanks, the row is an extended entry row, type 1. If it contains an operator, it is an extended entry row, type 2. If it contains an operator plus an operand, it is a limited entry row.
- If a table contains a mixture of limited and extended entry rows or only extended entry rows, each row must be spaced in long format (one rule in each eight card columns starting in column 33). If the table contains only limited entry rows, it may be in long or short form (one rule in each two columns starting in column 33).

Action rows

- For arithmetic actions (SET, MOVE, INCREMENT), the left half of the stub must contain an operand.
- All keywords necessary to complete the action operator must be present. If any nonblank fields exist in the right-hand half of the stub after keywords are removed, the row is assumed to be limited entry. The right-hand half of the stub (minus keywords) becomes the second operand.

Formulas and lists

- Formulas must be written as legitimate FORTRAN arithmetic statements. Lists must be written as legitimate FORTRAN lists. Figure 3 shows some samples.
- The words formula and list must start in column 7 and must not contain any embedded blanks. They must be followed by a one- or two-digit number.
- If two or more formulas (or lists) have the same formula (or list) number, only the last one is processed. However, one formula and one list may both use the same number and be correctly processed.

Variables Names

Variable names must be valid FORTRAN names, that is, of six or fewer characters, the first character being alphabetic and indicating the mode (fixed-point or floating-point).

COMMENTS

Figure 3. Formulas and lists in FORTRAN

Names of the form IIInnn and JJJnnn, where nnn is a three-digit number, are forbidden. The program will not detect variable names which do not meet the FORTRAN specifications.

Constants

All constants must follow FORTRAN rules. The E format for floating-point constants is allowed. If the left-hand operand is a floating-point name, the program will insert a decimal point in the right-hand operand if necessary.

Restrictions on Table Size and Constants

- The number of columns must be ≤ 40.
- After reduction of extended entry rows to limited entry, the number of condition rows and the number of action rows must be ≤ 99.
- After reduction to limited entry, the net size of the condition area and the action area must be $<1,000$ cells.
- No more than 50 references to any table may be made by the DO TABLE instruction.
- No more than 100 FORTRAN statement numbers may be required by the object code. If more than 100 numbers are needed, alphabetic symbols must be used.

Logic Requirements

If the RETURN operator occurs in the action area, the table is closed. In a closed table, a GO TO TABLE action is valid only if operand 2 is the current table number.

OUTPUT

1403 Printer

- An 80-80 listing of the input table.
- A listing of the FORTRAN II source program.
- A list of diagnostics, where pertinent.

1402 Punch

- The generated FORTRAN II source program deck.

INTERMEDIATE DATA STORAGE

Tape 1

- A record of each called closed table and the number of times it has been called.

Tape 2

- The reduced input table.
- The formula and list input.

INPUT/OUTPUT SUMMARY
Input

Input	Program Name for Input	Source of Input	Input Format
Source table	(Card read in area)	Keypunch	80-column cards
Reduced condition area	STUB (stub list)	Tape 2--phase I	$18 \times \mathrm{N}$ character record $\mathrm{N}=$ no. of condition rows
	AMTRX (condition array)	Tape 2--phase I	$\mathrm{N} x$ M character record $\mathrm{M}=$ no. of columns
Reduced action area	STUB (action stub)	Tape 2--phase I	$18 \times \mathrm{L}$ character record $\mathrm{L}=$ no. of action rows
	AMTRX (action array)	Tape 2--phase I	L x M character record $\mathrm{M}=\mathrm{no}$. of columns
Formulas and lists	FLAREA	Tape 2--phase II	$67 \times \mathrm{K}$ character records $K=$ no. of FORTRAN card images in formula or list
DO TABLE references	DOREC	Tape 1--phase II	8-character records

Output

Output	Program Name for Output	Disposition of Output	Output Format
Reduced condition area	STUB	Tape 2--phase II	$18 \times \mathrm{N}$ character record $\mathrm{N}=$ no. of condition rows
	MATRXA	Tape 2--phase II	N x M character record $\mathrm{M}=$ no. of columns
Reduced action area	STUB	Tape 2--phase II	$18 \times \mathrm{L}$ character record $\mathrm{L}=$ no. of action rows
	MATRXA	Tape 2--phase II	Lx M character record $\mathrm{M}=$ no. of columns
Source listing	(List of input)	Printer	80-80 list

Output (Continued)			
Output	Program Name for Output	Disposition of Output	Output Format
FORTRAN II source listing		Printer	80 -character list
FORTRAN II source deck	.	Punch	80-column punch
Formulas and lists	FLAREA	Tape 2--phase II	67 x K character records K = no. of FORTRAN cards required for formulas and list
DO TABLE references	DOREL	Tape 1--phase II	8-character records

SAMPLE PROBLEM

The problem employed for illustration here involves a set of 15 tables used to design the low-voltage winding of a transformer. The first (input) and last (output) tables in Figure 5 (the translator coding) were added merely to illustrate the use of the input/ output statements in the coding language. These two tables read all necessary input data and print computed values.

The original decision tables appear in Figure 4, their coding for input to the translator appears in Figure 5, and Figure 6 contains the printed output from the run.

The I.D. for the run, the first card of the input deck, is A, which was punched in cc. 7. This character is punched in cc. 73 of every output card from this run, and thus helps distinguish output decks from different runs.

The first thing that appears during the run is a listing of the input, one table at a time. All input is listed with the exception of formulas and lists. These are printed only in the generated FORTRAN program. After the first table has been read and listed, it is checked for errors, and if none can be found the two matrices, condition and action, are reduced and stored on tape. The translator then generates the FORTRAN program for the sorted condition area, which will consist entirely of IF statements.

The action area coding then takes place rule by rule. A comments card is printed and punched before the coding of each rule begins to indicate which rule's coding is immediately to follow. All out-of-line coding (of formulas and input/output statements) is indicated as being out of line by a comments card immediately preceding the out-ofline statement.

The translator continues to generate FORTRAN source programs one table at a time until every table in a run has been translated. When the run is completed, the source deck needs only to have the FORMAT information added to the FORMAT card before it can be compiled.

The user should be careful to use good scratch tapes and clean tape drives for the runs because of the heavy use of the tapes by the translator system.

The translator coding (Figure 5) of the decision tables (Figure 4) was straight line for line coding.

This sample problem is intended for use not only as a demonstration but, more important, as an educational tool. It would benefit the user to code from the decision tables (Figure 4) onto the translator coding form, checking each table as coded with its coding in Figure 5, before using the translator for his own tables. After completely coding all tables of the sample problem, the user should have enough familiarity with the coding language to begin writing his tables directly onto the coding form.

Figure 4. Original decision tables

IBM \qquad DECISION TABLE
Analyst
Fom $\times 28-1600$
Printed in U.S.A.

Figure 4. (Continued)

IBM \qquad DECISION TABLE
Analyst

Figure 4. (Continued)

Figure 4. (Continued)

Figure 4. (Continued)

Figure 4. (Continued)

Figure 4. (Continued)

TABLE 28	!		,			i		,									
'SK < . 078	Y		N					,		+							
!								1									
DO FORMULA I	x		-														
CORR $=.00089$	\cdot		x														
DO FORMULA 2	x		x														
DO FORMULA 3	x		X														
DO FORMULA 4	x		x														
DO FORMULA 5	X		x														
DO FORMULA 6	\times		x														
DO FORMULA 7	x		x														
DO FORMULA 8	x		X														
DO FORMULA 9	x		x														
DO FORMULA 10	x		X														
DO FORMULA II	x		x														
GO TO TABLE 29																	
FORMULA II SLOSSB $=.3$ (XIS)																	
FORMULA I CORR $=.21(S K)^{2}$																	
FORMULA 2 AACT $=(S L$ (SK)-			(SN	SNS	STRW	W)(\$	NS	STRT)									
FORMULA 3 SACT $=$ XIS/AACT																	
FORMULA 4 WTS $=$ XLS (AAC			22)		PHA	ASE)	(XN										
FORMULA 5 SLOSSD $=2.54(W$			SAC		T) ${ }^{2}(1$	(10)											
FORMULA 6 SLOSSS = SLOSSS		YC	Le/														
FORMULA 7 SLOSSC = SLOSSD			-0	S	SS/10	100)											
FORMULA 8 SRAS $=4.0$ (PHASE			-6)		SL)	(SNS	TRW	W) (X	NS/	SLA							
FORMULA 9 SWATIN = SLOSSC		R															
FORMULA 10 STEMPR $=1.3512$	(S	SW	ATIN														

Figure 4. (Continued)

Figure 4. (Continued)

Figure 4.

SYSTEM
ANALYST \qquad
PAGE 1 OF 8

DATE

COMMENTS

Figure 5. Coding of the decision tables

IBM

ANALYST
DATE
\qquad
SYSTEM

COMMENTS

Figure 5. (Continued)

SYSTEM
ANALYST \qquad
PAGE 3 _OF \qquad 8

DATE \qquad

COMMENTS

Figure 5. (Continued)

Figure 5. (Continued)

DECISION LOGIC CODING FORM

\qquad
PAGE 5 \qquad OF 8 8 DATE \qquad

COMMENTS \qquad

Figure 5. (Continued)

IBM

DECISION LOGIC CODING FORM

Printed in U.S.A.
form $\times 20-8024$

SYSTEM
PAGE \qquad 6 OF \qquad 8

ANALYST \qquad
DATE \qquad -

COMMENTS

Figure 5. (Continued)

```
IBM DECISION LOGIC
    CODING FORM

ANALYST
SYSTEM

PAGE \(\qquad\)
\(\qquad\) OF \(\qquad\) 8

DATE \(\qquad\)


COMMENTS

Figure 5. (Continued)

\section*{IBM} DECISION LOGIC
CODING FORM

SYSTEM
PAGE 8
PAGE of 8

ANALYST
DATE
entay


COMMENTS
Figure 5. (Continued)
\begin{tabular}{|c|c|c|c|c|}
\hline 00000IA SAMPLE PR & & & \multirow[b]{2}{*}{PAGE} & \\
\hline TABLE 010 INPUT & \multicolumn{2}{|c|}{INPUT} & & 1 \\
\hline 01001 AREAD & LIST1 & X & & \\
\hline 01002 READ & LIST2 & X & & \\
\hline 01003 READ & LIST3 & X & & \\
\hline 01004 GO TO TABLE & 11 & X & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TABLE 011 INPUT & & & . & & & \multirow[t]{2}{*}{PAGE} & \multirow[t]{2}{*}{3} \\
\hline 01101 IF XKVA & GR & 500 & 750 & 1000 & 1500 & & \\
\hline 01102 IF XKVA & LE & 750 & 1000 & 1500 & 2000 & & \\
\hline \(01103 A S E T\) C & \# & - 5 & . 5 & . 625 & . 625 & & \\
\hline 01104 SET D & \# & . 5 & . 5 & .625 & .625 & & \\
\hline OIIO5 DO FORMULA & & 1 & 2 & 2 & 2 & & \\
\hline 01106 SET E & 等.625 & X & X & X & X & & \\
\hline 01107 SET A & \#.125 & X & \(x\) & X & X & & \\
\hline 01108 SET B & \#. 1875 & X & X & X & X & & \\
\hline 01109 SET SSEC & \% & 2650 & 2550 & 2350 & 2200 & & \\
\hline 01110 GO TO TABLE & 19 & X & X & X & X & & \\
\hline
\end{tabular}

\section*{Figure 6.}

\begin{tabular}{|c|c|c|c|}
\hline TABLE 019 INPUT & & \multirow[t]{2}{*}{PAGE} & 5 \\
\hline 01901 IF SECVL & LE 600 Y N & & \\
\hline 01902 IF SECVL & LE 2400 - Y & & \\
\hline O1903ASET SLAY & \#2 2 . & & \\
\hline 01904 SET SLAY & \# 4 . X & & \\
\hline 01905 GO TO TABLE & \(20 \times \times\) & & \\
\hline
\end{tabular}

Figure 6. (Continued)
\begin{tabular}{|c|c|c|}
\hline & & PAGE 6 \\
\hline \(C\) & TABLE 019 CONDITION AREA & A0190058 \\
\hline 01900 CONTINUE & & A0190059 \\
\hline 01903 IFISECVL -600. & 401905,01905,01904 & A0190060 \\
\hline C1904 IF\%SECVL -2400. & -01906,01906,01901 & A0190061 \\
\hline C & RULE 1 & A0190062 \\
\hline 01905 SLAY 2. & & A0190063 \\
\hline GO TO 02000 & & A0190064 \\
\hline C & RULE 2 & A0190065 \\
\hline 01906 SLAY 4. & & A0190066 \\
\hline GO TO 02000 & & A0190067 \\
\hline C & OUT-OF-LINE & A0190068 \\
\hline 01901 STOP 019 & & A0190069 \\
\hline
\end{tabular}


\begin{tabular}{|llllll|}
\hline TABLE O21 & INPUT & & & PAGE & 9 \\
\hline & & & & \\
\hline O2101ASET & ITERAL & 1 & \(x\) & \\
02102 & SET SNSTRW & 1 & \(x\) & \\
02103 & DO FORHULA & 1 & \(x\) & \\
02104 & DO FORMULA & 2 & \(x\) & \\
\hline O2105 GO TO TABLE & 22 & \(x\) & \\
\hline
\end{tabular}

Figure 6. (Continued)
\begin{tabular}{|c|c|c|}
\hline & & PAGE 10 \\
\hline C & TABLE 021 CONDITION AREA & A0210090 \\
\hline 02100 CONTINUE & & A0210091 \\
\hline C & RULE 1 & A0210092 \\
\hline 02103 ITERA2 \#1 & & A0210093 \\
\hline SNSTRW\#1. & & A0210094 \\
\hline SLIIWLVMAX/SNS TRW-. 003 & & A0210095 \\
\hline TEMP \#SNSTRW*ZSLE.003n & & A0210096 \\
\hline GO TO 02200 & & A0210097 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{TABLE 022 INPUT} & \multirow[t]{2}{*}{PAGE} & \multirow[t]{2}{*}{11} \\
\hline 02201 IF SNSTRW & & & LE4.0 & EQ6.0 & EQ8.0 & EQ10.0 & \(E\) & & \\
\hline 02202 IF TEMP & LE & WLVmax & Y & Y & Y & Y & E & & \\
\hline 02203 IF TEMP & GR & WLVMIN & \(Y\) & \(Y\) & \(Y\) & \(Y\) & E & & \\
\hline 02204 IF SL & LE & . 660 & \(Y\) & \(Y\) & \(Y\) & Y & E & & \\
\hline 02205 IF SL & GE & . 070 & \(Y\) & \(Y\) & \(Y\) & Y & E & & \\
\hline 02206A INCREMENT SNSTRW & BY & 1 & - & - & . & . & X & & \\
\hline 02207 DO FORMULA & 1 & & \(\bar{x}\) & X & X & X & . & & \\
\hline 02208 DO FORMULA & 2 & & X & X & X & X & - & & \\
\hline 02209 GO TO TABLE & & & 24 & 24 & 24 & 24 & 23 & & \\
\hline
\end{tabular}


Figure 6. (Continued)


\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{TABLE 024 INPUT} & PAGE & 15 \\
\hline O2401ASET SNSTRT & 11 & X & & \\
\hline 02402 DD FORMULA & 1 & X & & \\
\hline 02403 DO FORMULA & 2 & X & & \\
\hline 02404 DO FORMULA & 3 & x & & \\
\hline 02405 GO TO TABLE & 25 & X & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & & PAGE 16 \\
\hline c & TABLE 024 CONCITICN AREA & AO240142 \\
\hline 02400 CONTINUE & & A0240143 \\
\hline c & RULE 1 & A0240144 \\
\hline 02403 SNSTRTM1. & & A0240145 \\
\hline SKETSEC/SNSTRT & & A0240146 \\
\hline TEMPIE.68*SL & & A0240147 \\
\hline TEMP 2 - 13-SL & & A0240148 \\
\hline GO TO 02500 & & A0240149 \\
\hline
\end{tabular}

Figure 6. (Continued)
\begin{tabular}{|c|c|c|}
\hline TABLE 025 INPUT & & PAGE 17 \\
\hline 02501 IF SNSTRT & LE 4 YE & \\
\hline 02502 IF SK & LE . 120 Y \({ }^{\text {P }}\) & \\
\hline 02503 IF SK & GE . 040 Y E & \\
\hline 02504 IF TEMP1 & GE SK YE & \\
\hline 02505 IF TEMP2 & LE SK YE & \\
\hline C2506AINCREMENT SNSTRT & BY 1 - X & \\
\hline 02507 60 TO TABLE & 26 - X & \\
\hline 02508 GO TO TABLE & \(27 \times\). & \\
\hline
\end{tabular}




Figure 6. (Continued)
\begin{tabular}{|llllll|}
\hline TABLE 027 & INPUT & & & PAGE & 21 \\
\hline & & & & \\
\hline O2701ADO & FORMULA & 1 & \(x\) & \\
O2702 & DO & FORMULA & 2 & \(x\) & \\
\hline O2703 & GO TO TABLE & 28 & \(x\) & \\
\hline
\end{tabular}



Figure 6. (Continued)

\begin{tabular}{|c|c|c|c|c|c|}
\hline TABLE 029 & INPUT & & & PAGE & 25 \\
\hline 02901 IF & STEMPR & LE 150 Y & N & & \\
\hline 02902AD0 & FORMULA & 2 & 1 & & \\
\hline 02903 GO & TO TABLE & 40 & 30 & & \\
\hline
\end{tabular}


Figure 6. (Continued)


\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{TABLE 040 INPUT} & PAGE & 29 \\
\hline 04001 APRINT & LIST1 & \(X\) & & \\
\hline 04002 PRINT & LIST2 & X & & \\
\hline 04003 PRINT & LIST3 & X & & \\
\hline 04004 STOP & 999 & X & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & & PAGE 30 \\
\hline C & TABLE 040 CONDITION AREA & A0400233 \\
\hline 04000 CONTINUE & & A0400234 \\
\hline C & RULE 1 & A0400235 \\
\hline 04003 PRINT 04004, & SL, SK, SNSTRH, SNSTRT, WYS,SLOSSC \%STENPR & A0400236 \\
\hline 04004 FORMAT & & A0400237 \\
\hline PRINT 04005, & HCOIL \%SECVC , XNS , XLS, SRAS, SWATIN & A0400238 \\
\hline 04005 FORMAT & & A0400239 \\
\hline PRINT 04006, & SSEC, SLAY, XIS, AS, XMPS, ODS & A0400240 \\
\hline 04006 FORMAT & & A0400241 \\
\hline STOP 999 & & A0400242 \\
\hline
\end{tabular}

Figure 6. (Continued)

\section*{SUGGESTED CODING PRACTICES}

Several ways by which fast and efficient use can be made of the Decision Logic Translator are described below.
- Formulas and lists need not be sequence-numbered (have row numbers) but must be table-numbered.
- As stated in the Input/Output Description above, table numbers must be lower than 999. However, 999 can be used if it is not the number for the last table of the input to a translator run.
- In order to get the most efficient FORTRAN coding of the action portion of a table, tables with a large number of sequential actions which are common to all rules of the table may be split into two tables. The first of the two split tables would contain the conditions and the uncommon actions; the second would be an unconditional table containing the set of common actions. Thus, splitting enables the translator to code the common actions once only, whereas without splitting they would be coded as many times as there are rules.
- The statement numbers for FORMAT statements and the FORMAT cards are supplied by the translator, but the user must insert the correct FORMAT information into each FORMAT card. All FORMAT cards immediately follow their respective input/ output cards. An easy way to determine which list number a given FORMAT number came from is as follows:
1. If the input/output coding is inline and the statement in question is the third input/cutput statement executed in rule 2, then the list number is the number of the list of the third I/O command in the actions for rule 2.
2. If the input/output coding is out of line, the number of statement numbers in the computed GO TO following the FORMAT indicates the number of Xs in the entry portion for the I/O command in question. It is then fairly easy to discover which list in the original coding had that many references to it and thus to be able to identify the correct correlation between an I/O coding list and its FORMAT statement.
3. The variables in the list of the FORTRAN I/O statement may also be used to correctly identify the FORMAT statement with the original I/O coding and list number in the input table.
- Closed tables may be called by closed tables as well as by open tables. The user must be careful not to have a GO TO TABLE command in a closed table. The only exit commands which can be used in a closed table are STOP, PAUSE, ERROR and RETURN. As was stated earlier in the manual, every closed table must have a RETURN command as its last row. This command serves to define a table as being a closed table, as well as to allow the translator to correctly code the statement to return to the correct calling table.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{1401} \\
\hline \multicolumn{7}{|c|}{INPUT} & \multicolumn{3}{|c|}{OUTPUT} \\
\hline Unit & \multicolumn{3}{|l|}{I. D. or Description} & \multicolumn{3}{|c|}{Source} & Unit & I. D. or Description & Disposition \\
\hline 1402 D & \multicolumn{3}{|l|}{Decision table cards} & \multicolumn{3}{|l|}{Keypunch} & 1402 & FORTRAN source prog. & Compilation \\
\hline TU 1 & \multicolumn{3}{|l|}{Closed table references} & \multicolumn{3}{|l|}{Output phase I} & 1403 & Input list and FORTRAN source list & Eng. \\
\hline TU 2 R & \multicolumn{3}{|l|}{Reduced table} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Output phase I}} & TU 1 & Closed table references & Input phase II \\
\hline & & & & & & & TU 2 & Reduced table & Input phase II \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Sense Sw. \\
On \\
Off
\end{tabular}} & \multirow[t]{3}{*}{} & B & C & D & E & F & G & & \\
\hline & & & & & & & & & \\
\hline & & X & X & X & X & X & X & & \\
\hline
\end{tabular}

\section*{Setup}
1. Reset computer.
2. Place translator program deck in 1402 reader followed by decision table cards.
3. Ready tapes on tape units 1 and 2.
4. Press load.

\section*{CONSOLE OPERATING INSTRUCTIONS}
1. Mount tapes on units 1 and 2. Ready printer and punch. Sense switch A on, B-G off.
2. Load deck in card read hopper - program deck followed by identification card (if supplied) followed by source tables. The object deck must be supplied each time. The program is never loaded from tape.
3. Reset computer and program load.
\begin{tabular}{|c|c|c|c|}
\hline Error Code & Description & Action Taken & \begin{tabular}{l}
Translator \\
Source List \\
Page/Line No.
\end{tabular} \\
\hline 001 & Row is out of sequence. & Go to next table. & 03/04 \\
\hline 002 & Continuation number is out of sequence. & Go to next table. & 03/20 \\
\hline 003 & Table has no rows. & Go to next table & 02/43 \\
\hline 004 & Table has no action area (NOTE: formula or list cards could be in front of the action area). & Go to next table. & 02/50 \\
\hline 005 & IF keyword missing, or A missing in first action row. & Go to next table. & 03/52 \\
\hline 006 & Operand 1 of condition row is not a variable name. & Go to next table. & 03/54 \\
\hline 007 & Operand 1 variable name is too long. & Go to next table. & 03/56 \\
\hline 008 & Condition operator in stub is invalid. & Go to next table. & 03/77 \\
\hline 009 & Invalid entry code in action row. & Go to next table. & 04/19 \\
\hline 010 & Invalid entry code in condition row. & Go to next table. & 04/15 \\
\hline 011 & Extended and limited entry format in the same table. & Go to next table. & 04/51 \\
\hline 012 & Invalid operator code in extended entry condition row. & Go to next table. & 05/29 \\
\hline 013 & Number of rows exceeds the maximum allowed. & Go to next table. & 08/66 \\
\hline 014 & Number of rows exceeds 40. & Go to next table. & 08/18 \\
\hline 015 & One column in conditional table or no columns in unconditional table. & Go to next table. & 08/16 \\
\hline
\end{tabular}

\footnotetext{
*Translator continues processing after printing the error number.
}
\begin{tabular}{clll} 
Error Code & \multicolumn{1}{c}{\begin{tabular}{c} 
Description
\end{tabular}} & \begin{tabular}{c} 
Translator \\
Source List
\end{tabular} \\
Page/Line No.
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Error Code & \(\underline{\text { Description }}\) & Action Taken & \begin{tabular}{l}
Translator \\
Source List \\
Page/Line No.
\end{tabular} \\
\hline 029 & = missing in a SET instruction. & Ignore condition. & 07/04 \\
\hline 030 & BY missing in an INCREMENT instruction. & Ignore condition. & 07/19 \\
\hline 031 & Action is illegitimate, or operand 2 is punched in wrong position. & Go to next table. & 07/31 \\
\hline 032 & Tape number is greater than two digits or LIST is not present in tape instruction. & Go to next table. & 07/56 \\
\hline 033 & LIST is not the first four characters in a nontape I/O instruction. & Go to next table. & 07/71 \\
\hline 034 & RETURN row is not the last row in the table. & Go to next table. & 03/39 \\
\hline 035 & Closed table has a GO TO TABLE or ERROR director action outside of the table. & Go to next table. & 10/01 \\
\hline 036 & Two or more director actions for one column. & Go to next table. & 09/76 \\
\hline 037 & Variable of the form IIInnn or JJJnnn in operand 1 of condition stub. & Go to next table. & 03/84 \\
\hline 038 & Variable of the form IIInnn or JJJnnn in operand 2 of a condition stub or arithmetic statement. & Go to next table. & 06/17 \\
\hline 039 & Trying to adjust the value of a constant with an extended entry MOVE instruction (see error 25 ). & Go to next table. & 06/21 \\
\hline 040 & Mixed instruction--contains both a fixed- and floating-point expression. & Ignore condition. & 06/36 \\
\hline 041 & Variable of type IIInnn or JJJnnn in operand 1 of action row. & Go to next table. & 07/86 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Error Code & Description & Action Taken & Translator Source List Page/Line No. \\
\hline 042 & Column does not have director action. & Go to next table. & 10/07 \\
\hline 043 & Extended entry row contains a variable name with more than six digits. & Go to next table. & 05/506 \\
\hline 501 & Two condition columns are identical. & Go to next table. & 07/170 \\
\hline 503 & An action column can never be reached by the object program. & Go to next table. & 18/280 \\
\hline 504 & Word FORMULA or LIST is missing. & Try to interpret remainder of card. & 52/150 \\
\hline 505 & Formula (list) number missing on formula (list) card. & Go to next table. & 27/040 \\
\hline 506 & More than seven continuation cards in text of formula (list). & Ignore any additional continuation cards. & 52/020 \\
\hline 507 & Formula (list) requested but not supplied. & Treat missing formula (list) as blank but valid input. & 54/150 \\
\hline 508 & More than 20 closed tables requested. & Go to next table. & 35/090 \\
\hline 509 & More than 50 references to a closed table. & Ignore all references except the first 50 . & 53/150 \\
\hline 510 & Closed table referenced after being processed. & Ignore condition. & 52/240 \\
\hline 511 & Closed table never referenced. & Ignore condition. & 53/180 \\
\hline 512 & Formulas and lists not last in table. & Go to next table. & 26/033 \\
\hline
\end{tabular}

Halts
\begin{tabular}{cl}
\(\frac{\text { A and B Registers }}{}\) & \multicolumn{1}{l}{\begin{tabular}{l} 
Meaning \\
77 x
\end{tabular}} \\
99 x & Tape error on tape unit x . Push START to try again. * \\
999 & End of file or reel on tape unit \(\mathrm{x} .^{*}\) \\
End of job.
\end{tabular}
*If the error condition persists, the run can be continued by mounting another tape on the drive that caused the error and rewinding both tapes. A new input deck needs to be created by placing the run identification card (if present) in front of all unprocessed tables, including the table in which the error occurred. The program followed by the new input deck is then loaded. Since the program makes heavy use of the tapes, it is recommended that the tapes be in good condition.

Locations

333-600

601-791

850-926

1000-1999

2000-3999

4000-5999

6000-7999

8000-15997

8000-12999

13000-13998

14000-15997

15998

Phase 1

Constants used by both phases.

Print, Read and Error routines.

Loader (EXECU).

Area where a row is assembled.

Not used.

Not used.

Not used.

Phase 1 coding.

MATRXA--array area.
STUB.

Groupmark used to write program on tape.

Phase 2

Constants used by both phases.
Print, Read and Error routines.

Loader (EXECU).

AMTRX--array area.

CMTRX--source cell number.

DMTRX--failure path number.
STUB.
Phase 2 coding.

Groupmark used to write program on tape.```

