e 3 Lf P
IBM Research Center e e
P. O. Box 218 " January 13, 1961
Yorktown Helghts, N.Y.

Subject: Tabular Techniques Development

In the past two years a number of people have explored the
possibility of using tabular form as a means of expressing decision
processes so as to present these logical decisions in a more under-
standable way. In order to keep IBM personnel acquainted with this
area of development, we are planning to distribute appropriate material
from time to time, reviewing current work in developing tabular
techniques. The people receiving this material have been selected
because of their interest in programming methods.

You may well ask, "What do you mean by tabular techniques?"
The full meaning of these techniques will be described in the various
papers to be distributed. For the present, let us define tabular techniques
as being the use of a table form to present the decision logic or operating
procedures. In other words, tabular techniques will present programming
and system descriptions in a table format. The material we distribute
will be of four types: (1) material obtained from customers experimenting
with tabular form, (2) material obtained from the Committee on Data
Systems Languages (CODASYL) concerning the work on tabular form
development, (3) material produced within IBM describing technical
developments or explaining the use of tabular form,and (4) material pro-
duced by competitors, describing their developments and applications.

Since this is the first release, we would appreciate suggestions as
to others who should be receiving this material, and any specific comments
or ideas concerning the attached work. If you have any questions concerning
these items, please call or write me.

This first distribution includes two items:
(1) A status report on current developments in tabular techniques.

(2) A copy of a speech given by Mr. T. F. Kavanagh, of General
Electric, at the Eastern Joint Computer Conference on
December 14, 1960. (Note that this speech differs from the
paper printed in EJCC proceedings).

Project Coordinator

NIFIED
YSTEMS
PPROACH

CLEARINGHOUSE REPORT

TABULAR TECHNIQUES DEVELOPMENT
STATUS--DECEMBER, 19860

January 13, 1961
Ref. No. 1A2

Burton Grad

This material is distributed to keep IBM personnel informed of
new developments. Selection is based on interest; this department
makes no claim for the desirability of this approach nor necessarily
recommends its use.

If additional copies are desired, please contact the Clearing-
house. No part of this material should be reproduced or distributed

outside IBM without approval of the Clearinghouse.

December, 1960

Tabular Techniques Development Status

Burton Grad
IBM

During 1960 the use of tabular techniques in systems and pro-
gramming languages has grown to become an area of significant experi-
mentation, The one thing all these developments share is a tabular (or
table) layout, in which the decision or program logic is recorded:
information has positional significance as well as meaning contained
within the statements.

However, just as machine languages are not the same, tabular
techniques are not all the same. A number of people have contributed
to these developments, and each person (or group) has followed a some-
what different path. Most of the developments have been limited to the
particular application for which they were intended and have not been
generalized.

This report serves to record in one place what has transpired during
the past two or three years in the development of tabular techniques,
and attempts to express major features and differences between various
techniques.

Orren Evans,of Hunt Foods and Industries, first published work
on using tabular form for computer programming. He had gained ex-
perience in the use of tabular form in his work with Sutherland and
Company. The Hunt Foods material was released in December of 1959
to CODASYL,and later was presented at a Guide meeting and to the
NMAA, it has been published by IBM as a General Information Manual,
The decision structure tables are of a "limited entry" variety; this
means that a complete condition or action statement is made in the
stub (argument) of the table while the tabular entries only make as-
sertions concerning the truth or falsity of the condition or indicate
whether an action should be executed.

The Evans work corresponds in many ways to the Sutherland
material., Copies of a current Sutherland proposal will be made available,
Sutherland has prepared a number of tables describing a particular
customer's decision rules; a 7070 program is being written from these
tables instead of from flow charts., The Sutherland tables are still of
the limited entry variety, though they are somewhat simpler in struc-
ture than the Hunt Foods' tables.

B 5

The CODASYL Systems Committee, prompted by the Hunt Foods
work, has also decided to exploit tabular form to provide a systems-
oriented language. Iam a member of this Committee which also includes
Les Calkins of U, S. Steel, Jack Strong of North American Aviation,
Carl Byham of Southern Railway, Sol Pollack of RAND and some 8 - 10
others including representatives of RCA, Remington-Rand,and GE. The
work which has been published to date in various intra-committee re-
ports describes tabular form, data description,and certain systems-
level operators. The tabular form material incorporates the limited
entry approach of Hunt Foods, but also takes care of "extended entry"
tables like those developed at General Electric: the table entries con-
tain actual values, names or functions.

The General Electric work was initiated by the Integrated Systems
Project in their Manufacturing Services Division (a staff group). As
part of the major project aimed at designing an automatic factory, the
need for describing complex, sequential, decision rules led this group
to the creation and use of decision structure tables.

For variables (named fields) which have many values (more than
two), the extended entry approach offers certain advantages; it is still
quite easy to teach and relatively easy to implement. In contrast, the
limited entry table may have substantial advantages for problems in-
volving primarily two state variables. Up to recently, General Electric
had not been willing to release any of the material which they have
developed. However, at the last CODASYL meeting (12/1/60) Charlie
Katz and Don Klick of General Electric's Computer Department, pre-
sented a paper, "Preliminary Reference Manual, TABSOL - 225 -

A Tabular Systems Oriented Language for the GE 225 Information
Processing System". This paper proposes a complete and quite com-
prehensive tabular form language which is to be directly processed on
a GE 225, I should like to quote briefly from the introduction to this
manual:

"Recent investigations by The Integrated Systems Project of
General Electric's Manufacturing Services uncovered an area of ap=-
plications which require neither extensive data file processing nor
profound mathematics, but rather an unwieldy number of sequential
decisions. To cope effectively with these decisions, the ISP team
devised a tabular language. The purpose of this language was to depict,
by means of tables, the relationships of logical decisions... Since
its creation, TABSOL has been used in many departments of G. E. to
analyze and solve problems of product engineering, manufacturing
methods, cost accounting, and production control. The application
of decision tables is continually growing. Recent studies show that
they provide a concise method for supporting the logic of other data

o 1

processing applications. For example, decision tables may be used
to specify the transfer of control associated with the values of one
or more fields, to control the printing of detail and summary lines
of a report, or to interrogate the sort keys in a multi-file system.

At the Computer Department we have found decision tables a valuable
tool in designing and implementing the General Compiler. "

"Decision tables represent a third language for the General
Compiler. These may be used by themselves or in conjunction with
the features of the compiler language. The specifications outlined
in this manual pertain mainly to the table entries and imply and require
a knowledge of the General Compiler ..."

General Electric has also permitted Mr, T, F. Kavanagh, who
worked on the Integrated Systems Project, to present a paper entitled,
"The TABSOL Concept" at the Eastern Joint Computer Conference on
December 14, 1960. It is known that General Electric has probably
thirty different departments (out of a total of 100) actually involved in
experimenting on the practical use of decision tables. The specific ex-
perience of the ISP team is such as to indicate that the use of tables
could save significant time in the programming and debugging of decision
rules. Work in General Electric up through 1959 involved the prepar-
ation and use of interpreters for the 702, 704, 650,and 3056 RAMAC,

It would be reasonable to assume that in 1960, work on the NCR 304
would have progressed far enough to have a processor available,and
there may be processors for other machines such as the Burroughs 206.

As a result of the CODASYL work, IBM was requested by North
American Aviation to support their development work on tabular form.
P. W. Knaplund, then Manager, Systems Marketing, DP Division, ob-
tained the half-time services of M. D. Rayner who was assigned by
R. V. Woodworth, then of the Inglewood office. Mr. Rayner is spending
the other half of his time working with Northrop (Norair Division) on the
development of another form of tables involving variable operation
sequence. Neither of these programs are far enough along yet to have
formal reports available.

W. M. Selden of IBM Corporate Systems Standards has been located
at Rochester to work with Eastman Kodak in testing and developing con-
cepts in the use of tables. Specifically, there are three projects either
under way or ready to start there, with Eastman Kodak providing the
bulk of the experimental work. One project has to do with the presenta-
tion of production control rules in their camera division. The second
project has to do with the validation and updating of files in the Data
Processing group. The third project is concerned with quality control
decisions.

CLEARINGHOUSE REPORT

TABSOL
A FUNDAMENTAL CONCEPT FOR
SYSTEMS ORIENTED LANGUAGES

Text of Speech Presented at EJ C C
December 14, 1960

Ts & Kavanagl:l
January 13, 1961 Manufacturing Services
Ref. No. 1Al General Electric Company

This material is distributed to keep IBM personnel informed of
new developments. Selection is based on interest; this department
makes no claim for the desirability of this approach nor necessarily
recommends its use.

If additional copies are desired, please contact the Clearing-
house. No part of this material should be reproduced or distributed

outside IBM without approval of the Clearinghouse.

TABSOL
A Fundamental Concept for Systems Oriented Languages

T. F. Kavanagh
Manufacturing Services
General Electric Company

Bulging file cabinets, the flow chart jungle, mounting clerical costs,
and the vast world where electronic computers haven't been successfully
applied -~ that's really what TABSOL and decision structure tables are
all about. Structure tables have special meaning for information systems
designers and programmers and they also have implications for hardware
engineers because both computer user and computer designer must work
together on the same information processing problems.

To date, the difficulties of communicating with electronic computers
have received much attention. The various pseudo-languages represent
great advances in this area, but a language is a great deal more than the
basic tool of communication. A good language, -- a good symbology, --
is an essential element in man's thought processes. In a sense it defines
his capacity for conceptualization and for abstract thought. It's no mystery
that the telephone wasn't invented in Tahiti or the airplane . in Afghanistan.
Today we face a similar language restriction in trying to analyze and
think about the complex decision-making systems required to operate a
business or control an industrial process. Our traditional techniques seem
inadequate. Flow charts quickly become a puzzle of lines, balloons, and
boxes whose secret lies hidden in the mind of the creator. Frequently,
programmers complain they would rather reprogram the job than take over
someone else's flow charts. '

In addition to flow charts, you often see matrix~ type displays. They
appear under a variety of names-~collation charts, tabulated drawings,
standard time data sheets, and so on. Often large and unwieldy, they
usually represent listings of past decisions or answers rather than the
logic used in making them. But none of these methods for thinking
about and communicating complex decision logic have been really effective.
Most business and professional people still communicate with the computer
world through an elaborate hierarchy of flow charters and programmers.
This is the problem which we feel TABSOL greatly simplifies. It combines
some of the characteristics of earlier methods and introduces a few new
features of tis own. After using TABSOL's decision structure tables in
numerous applications, we feel they are both good communicating tools,
and also valuable thinking tools. As one G.E. computer wag put it:

TABSOL is a thinking man's language.

Decision structure tables provide a standard, uniform methods for
clearly describing complex, multi-variable multi-result decision systems.

A structure table consists of a rectangular array of terms, sub-divided
into four quadrants. The vertical double line separates the decision logic
on the left from the result functions or actions which appear on the right.

A horizontal double line separates the structure table column headings
above from the table values recorded in the horizontal rows below. Thus,
the upper left qua.dra.nt records the names of the parameters effecting the
decision while the lower left quadrant records the specific values which

a decision parameter may have in a given situation. Similarly, the upper
right hand quadrant records the names of result functions -- or actions to
be performed -~ once the decision has been made, and the lower right
quadrant shows the actual result values which pertain directly opposite the
appropriate set of decision parameter values. Thus, each horizontal

row completely and independently describes one possible decision situation.
Each structure table becomes a complete statement of the logical and
quantitative relationships supporting a particular elementary decision.

There is no limit to the structure table columns or rows. The
dimensions of any specific structure table are completely flexible, and
are a logical consequence of the decision being described. A series of
these structure tables taken in combination will describe a complete
decision system.

Now let's look at a simple example (figure 1). Here we want to make
an elementary decision on transportation from New York to Boston. There
are three significant decision parameters: Weather, Plane Space, and:
Hotel Room. Weather has only two value states, Fair or Foul; Plane Space
is either O] OK or Sorry; and Hotel Room can be either Open or Filled. In
terms of resu.lts. Plane or Train are the only permissible means of
Transportation. If the weather was Foul, despite an OK on plane space
and an Open, Hotel Room, then we see by inspection that the solution appears
in the second row, Train is the correct Transportation. We are also instructed
to Cancel Plane, and this is the End of the decision.

This simple structure table provides a general solution to this particular
decision-making problem. If afternoon trips to Boston ever occur -- and
one must assume that they frequently do -~ then an operating decision can
quickly be made by supplying the current value of Weather, Plane Space,
and Hotel Room and solving the structure table,

e

Solving a structure table consists of comparing or '"testing" specific
values assigned decision parameters in the problem statement against the
corresponding sets of decision parameter values recorded in the structure
table. If all tests in a row are satisfied, then the solution is in that row.
The correct result values or actions appear in the same row, to the right of
the double line.

Once a particular structure table has been solved and the result
functions executed, it is often necessary to make more decisions. For
this reason, the last result column of the structure table provides a firm
link to the next decision structure table. Notice the last row specifies
that for all values .of Weather, with no Plane Space, and no Hotel Room,
the decision-maker is directed to solve another structure table, Transporta-
tion, New York-Boston in the morning.

Similarly, a system designer can build a whole system of structure
tables. He completely controls the make-up of each table, as well as its
position in the sequence of total problem solution. He may decide to skip
tables, or, he may re-solve tables to achieve the effect of iteration,

Getting from New York to Boston is a rather prosaic problem to
say the least; we certainly don'’t need a computer to make decisions like
this.

So let's look at how a systems designer might structure a real
operating decision.

Table 2015 (figure 2) completely describes time standards determination
for a certain coil winding operation. In this situation if the number of turns
is less than 10, the operator's time allowance in seconds is equal to the
number of turns. However, if the number of turns is greater than 10
but less than 15, the operator is allowed an additional 88 hundredths of
a second,

So you see that problem values and decision parameter test values
need not be simple identities. Actually, the problem values may be equal
to the table value, greater than, less than, not equal to, greater than or
equal to, less than or equal to the test value. This broad selection of
test types greatly increases the power of individual structure tables and
sharply reduces their size. Note than we can put the test type right in the
test block immediately proceding the test value, or in the column heading
after the decision parameter name. Of course, the test type in the column

heading applies to all test values appearing below. It is also possible to
formulate complex test blocks involving two or more decision parameters.

Structure table results are not limited to simple assignments of
alphabetic or numeric constants. As we've already seen if the solution
occurs in the first row, the current value of TURNS is assigned TIME.

If the solution occurs in the second row, the result of the arithmetic ex-
pression TURNS # 0.88 is assigned TIME. If the solution occurs in the
third or fourth row the result of the formula evaluation TIME 1 or

TIME 2 will be assigned to TIME. This is the significance of the

equal sign, appearing after the name in the result value block. These
formulas are recorded in the area just prior to the structure table proper.

In the next action column the result function PERFORM appears.
This means that the data processing or arithmetic operations named in
the result value block are to be executed. Notice that one of the result
values is another structure table. Should the solution occur in this row,
Table 2016 will be solved just as any other, only control will remain
within the framework of Table 2015 which is our illustrative table. When
completed, the next result function will be processed. In the next column
the result function GO links this structure table to the next structure table
to be solved. If there is no solution row found in the structure table proper,
then control passes to the area directly below the structure table. This
is usually regarded as an "error'", and most often indicates a failure of
the decision logic to cope with a certain combination of problem values.
The systems designer can -~ and should -~ notify himself whenever such
an error occurs by arranging for an error printout, identifying the table
that failed and the problem being solved at the time. With this source
language printout and other structure tables, the systems designer has
all the data he needs to trouble-shoot the system in his own professional
terminology.

We can also use the areas immediately before and after the structure
table proper to record any additional language statements that may be
required -~ input output operations, data movement, operator instructions
or any other data processing activities.

Of course, I cannot even attempt to completely describe decision
structure tables in this short talk; a much more complete explanation
appears in the Proceedings. There are many more features available for
formulating concise, complete decision systems. I can only give a quick
introduction to inherent Gestalt in this method of describing decision logic.

Structure tables did not start at their present state of development.
This language concept evolved through a series of experimental tabular
systems-oriented languages developed for the 305, 650, 702 and 704.

These experimental languages proved remarkably adequate; however,
the added power of a conventional language seemed very appealing, particu-
larly as the prospects for structure table application in all sorts of problem
areas brightened.

At this point, General Electric's Computer Department joined the
effort. The Computer Department had been developing a new compiler,
called GECOM, for use with General Electric computers. The first version
of this new General Compiler, will be avilable for the GE 225 in May, 196l.
It has been designed primarily around COBOL, with some of the basic
elements of ALGOL. It will now contain all of TABSOL. Simply stated, join-
ing TABSOL with GECOM places the power of a full-fledged conventional
language at the command of every structure table block.

We now have a rather substantial amount of experience in applying
structure tablesto a wide variety of operating decision-making problems.
But perhaps the most interesting, at least from the researcher's point
of view, was the very work which led to decision structure tables themselves.
In 1957 we were investigating the possibility of automating the essential
information and material processing required to directly transform customer
orders into finished products, We studied customer order editing, product
engineering, drafting, manufacturing methods, and time standards, quality
control, cost accounting, and production control. This accounts for a fairly
substantial portion of the operating decision system in a manufacturing
business. Fortunately, the inputs and outputs to this system are simple
and well-defined: the customer order comes in and the finished product goes
out. So it was possible to treat all activities within these bounds as one
integrated, goal-oriented operating decision system and develop decision
structure tables accordingly. Working with a small product section in one
of the Company's operating components, a significant portion of the: functional
decision logic was successfully structured. Then the resulting structure
tables were directly incorporated into a computer-automated operating
, decision system which transformed customer orders for a wide variety of
finished products directly into factory instructions for operators and numeri-
cally programmed machine tools. This prototype system was demonstrated
to General Electric management in November, 1958. Since then, structure
tables have been used to describe the operating decision logic in many
different applications. Structure tables appear to have great potential in
compilers and also in computer simulation programs.

2k

As a result of these efforts, we have come to believe that decision
structure tables are broadly applicable to nearly all classes of information
processing and decision-making problems because:

l. Structure tables for a disciplined decision analysis. The precise
structure table formmt highlights illogical statements and empha~
sizes the reasons why results are different.

2. They are easy to und‘erstand. The structure table format is so
simple and straight-forward that engineers, planners, and
other functional specialists can write structure tables for their
own decision-making problems with very little training. They
provide an excellent basis for program documentation and
communication,

3. Debugging simplified. Structure table errors can be reported
at the source language level, thus permitting the functional
specialist to debug without a knowledge of computer coding,

4. And structure tables are easy to maintain. Instead of changing
all the precalculated answers in all the files, it is often only
necessary to change a single value in a single table,

Structure tables solved automatically in an electronic computer
offer levels of accuracy unequalled in manual systems.

This discussion encompasses the efforts of over seventy-five men
and women representing five Service Components and some fifteen different
Operating Components within General Electric. In particular, credit
is due Burt Grad, who though no longer with General Electric, was a
principal originator of the decision structure table concept. Also Mal
Boggs, Charlie Katz, Dan Langenwalter, Herb Nidenberg, and Ted Schultz
and many others,

The best way to understand TABSOL is to try it yourself. Seriously,
let me recommend that you demonstrate the effectiveness of decision
structure tables to yourself by "structuring'" a few simple decisions. You
might write a structure table to help your wife to decide how to pack your
suitcase for a business trip. Frankly, if you will only take the time to
"'structure' a few decisions and actually experience the deeper insight
and clarity which this technique provides, then decision structure tables
will speak for themselves.

December, 1960,

Problem Statement: Select Transportation, New York - Boston, p.m.

Weather: Foul
Plane Space: OK
Hotel Room: OEen

Decision Structure Table: Transportation, New York - Boston, p.m.

Weather Plane Hotel Trans- Other In- Next
Space Room portation structions| Decision
Fair OK Open Plane End
‘ Cancel
Foul OK Open Train Plane End
Sorry ‘Open Train End
Cancel NY -Bost.
OK Filled Plane a.m.
Sorry Filled NY-Bost.
a- L] Imn.

Solution:

E‘ the value of Weather is _F_‘g_u_l, and
the value of Plane Space is OK, and
the value of Hotel Room is Open,

Then

the value of Transportation is Train, and

the value of Other Instructions is Cancel Plane, and

the value of Next Decision is End.

Figure 1

TABLE 2015. DIMENSION C2 A3 R4.
NOTE TIME STANDARDS FOR COIL WINDING
TIME ~1 = 125*DIA*TURNS,

TIME ~2 = 1000*DIA/SQRT (TURNS).

BEGIN

TURNS TURNS LS TIME PERFORM GO

LS 10 TURNS TABLE 2020
GREQ 10 15 TURNS + 0. 88 |SETUP TABLE 2025
GREQ 15 100 TIME~1 = SETUP TABLE 2025
GREQ 100 1000 TIME~2 = TABLE 2016 | TABLE 2030

IF NOT SOLVED GO ERROR ~COIL.
END TABLE 2015.

Figure 2

DP Systems Engineering Services
200 Mamaroneck Avenue
White Plains, N. Y.

February 15, 1961

Memorandum to:

Subject: Tabular Techniques Development
Distribution #2

This is the second release of material concerning the develop-
ment of tabular techniques for systems and programming description,
Enclosed are two items:

(1) A working paper by Mr. Earl Althoff of Eastman-Kodak
describing a tabular approach to a file updating problem.

(2) A preliminary report on TABSOL 225 by Mr. D. Klick
of General Electric's Computer Department, This
paper was given at the CODASYL Systems Committee
meeting in December, 1960,

Reference is also made to a third item which is available
through IBM Stationary Stores in Endicott and hence not attached:

(3) General Information Manual "Advanced Analysis Method
for Integrated Electronic Data Processing" by Mr. Orren
Y. Evans of Hunt Foods & Industries. This is Report
No, F20-8047,

f:" — Ches—

A
Burton Grad
Project Coordinator

YSTEMS
NGINEERING
S ERvVICES

CLEARINGHOUSE REPORT

A PRELIMINARY APPROACH
TO

TABULAR PROGRAMMING

E. O. Althoff
February 1, 1961 Data Processing Service
Reif, No. 1Bl Eastman - Kodak

INTERNATIONAL BUSINESS MACHINES CORPORATION
White Plains, New York

This material is distributed to keep IBM ﬁersonnel informed of
new developments. Selection is based on interest; this department
makes no claim for the desirability of this approach nor necessarily
recommends its use.

If additional coples are desired, please contact the Clearing-
house. No part of this material should be reproduced or distributed

outside IBM without approval of the Clearinghouse.

1.

8.

9.

10.

POINTS ABOUT PRELIMINARY APPROACH TO TABULAR PROGRAMMING

For each element used, prepare a 15-digit title to use in the English text
and a four-digit abbreviation to use in formulae. The four-digit abbrevia-
tion either starts with a letter or is numbered seqnentially 0001, 002,

0003, LR

Do not strain to over-abbreviate. For example, CTOl, CTO2, ... can be used
to stand for control totals of various types. It is usually best to give
mnemonic abbreviations only for the hundred or less most used elements.

Data sets can be listed on a data element sheet if desired. For example,
the data set "Target Date" abbreviated TRGT consists of the data elements:

"Target Month" abbreviated TMON
"Target Day" abbreviated TDAY
"Target Year" abbreviated TYR

In the above, four entries are made, one for each data element and one for
the data set.

The definition should be clear and unambiguous,.but above all must be com-
plete. Differentiate clearly between similar data elements.

Prepare a data file for each set of data (not going directly to a report).
Do not consider the machine in your preparation. As an example consider a
tape with records of Type A followed by several records of Type B; prepare
two data files, A and B, since having these on the same tape 1s pure machine
method.

For each data set or element listed, record a reference to set number and page
number of the data element sheets. Thus, 03-01 refers to data element set 03,
page O1l. Record both the title and the abbreviation. Record the length for
that file. A given element can require four digits on one data file and six
on another.

Give each data flle a letter designation A, B, C, .., record whether input or
output. In the case of an updated date flle, assign two letters, say A for
input and B for output.

Obtain a Data Processing Spacing Chart for all report lines (messages as well
as fancy reports). Label each report A, B, etc. Use a second letter for each
different type of line. Thus, Report A may have lines AA, AB, AC, ...

Tables must give all logic except how to start and how to stop. All the state-
ments which follow must be accomplished completely — no exceptions can be per-
mitted.

The table is divided into conditions and actions. On the left, one gives the
English statement of the condition or action, and on the right, one records the
precise formula fully and completely. Thus, on the right,

A-STAT = B-STAT clearly shows that the condition is true if and only if the
STAT element of data File A equals the STAT element of data File B.

C-0001 = O shows the condition is true only if the data element 0001l of data
File C is greater than the constant 0.

11. The formula for a condition can include any connectors desired to complete
"a single condition". Examples are:

F-TAX = 10 or 15
F-TAX = 10 and G-TAX = 15

12. The actions can be varied also. In general, one records data movement or
arithmetic actions first, then all data file advance actions, then all table
transfer actions.

13. Typical data movement actions are D -» B (ASG#, PROG, and TTOL) meaning
move from data File D to data File E the data elements ASGf, PROG, and TTOl.
In case of one move, D-ASG# -» E-ASCG#. Others are D-PDHR add to E-YRHR, etc.

14. When data is posted to report lines, increment is used as: D-ASG# -> ABlh4 mean-
ing post data element ASG# of data File D to position 14 (right-hand increment)
of line B of Report A.

15. Another action may be to do an actlon or actions from other tables. Thus,
Action 2 of Table 01-A5 can simply be "Do actions 3 and 6 of Table 03-B7.

16. Another action may follow the actions for a data rule from another table in
its entirety; if so, simply transfer to Rule XX of Table XX-XX.

17. The advance data files actions are abbreviated GIV X for input and TAK X for
output. In some cases posting a data element to a control total 1s included
as: C-AMI' add to TOT1l; TAK C. When an advance action is given, the next ac-
tion calling on that file from any table will be from the next record.

18. Tables are numbered NN-XN where NN denotes the project area; NN runs from
0l, 02, ,., X is a letter denoting a sub-project and runs from A to Z, while
the rightmost N is 1 to 9 and denotes table within sub-project. The last
action for any data rule is always a transfer to some table. (Do not trans-
fer to a rule within a table — leave this to the programmer,)

19. On any given table, possible entries opposite condition are ¥, N, and -.
Y = Yes, N = No, and - means "does not apply".

The matrix [¥ would indicate an analyst omission since the conbim.tion
Y |N| N| b
is not specified. One must specify enough data rules to account for every

combination of the conditions, whether possible or impossible (18 it really
impossible???)

The - is used primarily in two cases:

A. If condition 1 is A-STAT = O and condition 2 is A~STAT = 1, then lentry
=~ 1Y}

would show that, if A-STAT = O, we don't need to test for A-STAT = 1 and
vice versa.

B. The - may be used to indicate a plain transfer to another table, when the
only alternative would be to over-run the 6 X 10 matrix. Example:

Condition 1 [YTY[Y[Y[Y[Y[Y[Y[N] The data rule on the right simply
Condition 2 |Y|Y|Y|N|Y|N|N|N|~ transfers to another table vwhere
Condition 3 [Y|Y|NJY|N|Y|N|N|- the W's for Condition 1 are spelled out.
Condition &4 N[Y|Y|N[N|Y|N|[-]

20. In summary, the prellminary approach is designed to obtain from a job analyst
actions to follow for every combination of conditions. The conditlons and
actions are not to be vague — but must be 100 percent precise to every data
element involved. There is no thought given in the preliminary approach to
automating any of the steps:tables —> programs. Only a person with two -
three years actlve programming and computer systems experience can prepare
tables contalning many subtle traps which develop only in automatic E.D.P.
systems; for the next year or so, it 1s expected that these people will
return expanded tables (with these subtle points included) to the jJob analyst
and will, in addition, write programs in KodaKoder.

FOAlthoff:rds
October 11, 1960

DATA PROCESSING SEEKVICE Job Fo.

ELEMEN?S DEFINITION - Bt _meiy o granose
EEI‘ # 01 PAGE #01 l ' Project: D.P.S. Billing
[-DIGIT TITLE One Letter ABGHN 4-DIGIT ABBREY. m

DEFINITION:

15-DIGIT TITLE Agcignment Na. L-DIGIT ABBREV. ASGH
DEFIRITION: A four-digit number piven in sequence to non-perpetual assignments as they oceur.

The number has no structure of any sort.

15-DIGIT TITLE Billing Number 4-DIGIT ABEREV. BIL#
DEFINITION: A five-digit number assigned by the D.P.S. Accountant to each account or sub-

account whieh D.P.S. bills. It is structured as desired to yleld a meaningful report order.

15-DIGIT TITLE PROG-SYSTEM NO, (DATA SET) I DIGTT ABBREV, U7

A uniform job number which serves a variety of purposes. It is organized primarily

DEFINITION:
clements MFC, gggﬁ, and PRGL.

4-DIGIT ABEREV. TITL

15-DIGIT TITLE _ Project Title

DEFINITION:_A 4S-character title piven to each project having a four-digit assignment number.

e

k A R T AL C T T AR BN
15-DIGIT TITLE Project Type Code 4-DIGIT ABBREV. TYFE

DEFINITION: A two-character code enablipg us to group a prolject Ly new programs (!Q. changes
(c), or revision (R). The units position ig 1 for a business project, 6 for a program re-

search project.

15-DIGIT TITLE Major Fctn. Code 4-DIGIT ABBREV. MIFC
DEFINITION: A two-digit code used by D.P.S. to roughly distinguish between basic major project

_functions such as Merchandise Billing, Paper Finishing Scheduling, etc. It is the first two
—digits of ProgsSyatem No]

] .DIGIT TITLE _ Tarict Date 4-DIGIT ABBREV. _ TRGT
! INITION: _The date by which an assignment should be completed to the point that Eoduction
results & btainable, dipits as 011560,

DPATA PROCESSING SERVICE Job No.:

ELEMENTS DEFINITION Name: Earl Althoff
Exr # 01 PAGE # 02 | Project: D.P.8. Billing
g i 1
' DIGIT TITLE _Programmer 4-DIGIT ABBREV._ _ prog
DEFINITION: An official te : i

| _Methods Staff

i~
15-DIGIT M_Mtion # 4-DIGIT ABBREV. Rm#
DEFINITION: A six-digit number given to each employee of Kodak Rochester. The first three

digits indicate department and the last three are sequentially given by various rules.

15-DIGIT TITLE __ Prog-Syst.Descr. L-DIGIT ABBREV. ppso
DEFINITION: Refers to a 29-digit alphanumeric title or description given to each specific

program or computer systems sub-assignment.

15«-DIGIT TITLE EST. Man Months 4-DIGIT ABEREV. _ESTM
DEFINITION: Refers to a time estimate given for each program in an assignment. The time is

. ven ip four digits (opne decimal place),

m
15-DIGIT TITLE __ Due Date for V 4-DIGIT ABEREV. _DUEV

DEFINITION: A date given for each program to be ready for system volume testing. Six digits
as 011560 or 12B16l.

15-DIGIT TITLE Department 4-DIGIT ABBREV. DEPT
DEFINITION: A four-character alphanumeric abbreviation of the department a programmer belongs
—to. Examples are DPJ, MSDD, ALO, IC. .

15-DIGIT TITLE __ Computer Run # 4-DIGIT ABEREV. _RUNf
DEFINITION: The third and fourth digit of Prog-System No.. Delipeates the programs caonsititutit

a scheduled computer run.

W =TT
J° .DIGIT TITLE Program Letter 4-DIGIT ABEREV. PRGL

. INRITION: The fifth digi

given computier run,

DATA PROCESSING SERVICE Job No.:
DATA FILE LAYOUT Project: _D.P.3. Billing-

FILE DESCRIPTION __ Agsignment Master Data File:A in B out
Bawe: Far] Althoff
r For Programmer Use Onl

- TITLE REF. ABEREV, LENGTH REC § TNCR.
1._Assigoment No. 01-0L Asof Lk
2._Billine Number 0100 BIf _ S -
3. Proj. Ldr. Name 01-05 PLIR 10
| k. Project Title 01-01 TITL L5

MFC

| 9. Completion Code 01-03
10.
: I 8
12.

13.
14

15.
16.
17+
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
2.
30.
31.
3

33. -
34,
35.

PROCESSINKG SERVICE

DATA FILE LAYOUT
FILE DESCRIPTION Current Time Records

DATA

Data File: ¢ 45

BAme: Earl

£t
For Programmer Use Onl

1._Assignment No, ~01-01 AscF 4
2+_Prog=Systen No. ~01-01 g 3
3._Programmer —01-02 PROG 10
4._Department 01-02 DEPT L
5. Progress Code 01-03 STAT 1
6. Est. Date for V 01-03 ESTV 6
T-_Hra. This Period ~01-03 HRTP _ 4
8._CPU MIN V-Teat —01-05 _ ymer 4
9._K-108 This P4. 010k K10P 2
l0._K~208 This Pd. _01-04 K20P 2
-l._X-308 This Pd. 01-03 X30Pp 2
12._X-LOS Thia Pd. —01-0h XhOP _ 2
.3._K-508 This Pd. 01-04 K50P 2
" ASGL can be M and K only 01-01 ASCL 1
De

6.

T

8.

9.

0.

s

&

3.

b

54

6.

T

DATA PROCESSING SERVICE Job No.:

DATA FILE LAYOUT Project: _D.P,8. Billing ' ;
FILE DESCRIPTION _ Program System Master Data File:K in L out
o M:M&tMﬁ

For Programmer Use Onl)

1._Assignment No. } 01-01 Asof ks
2._Prog-System No. . 01-01 UJ# 5
3._Programmer 01-02 PROG 10
4. Prog+System Description 01-02 DESC 29
5. Est. Man Months 01-02 EIT™ L
6._Due Date for V - 01-02 DUEV 6
T-_Department. — =02 DEET 4
8. _Progresa Code 01-03 STar _ 1
9. Est. Date for V 01-03 ESTV 6
10._HRS to Date 01-03 HFTD 5
11._Bill-out Code 01-03 BIIC 1
12._V-TEST To Date 01-05 VITD 6
13._K-108 To Date 01-0k Kos . 3
1. X-208 To Date | 01-05 K208 3
1, K-308 to Date 01-0b K308 3

16._K-4OS To Date 01-0k K08 3
17._K-508 To Date 01-04 K508 3
18. ASGL will be M and N only 01-01 ASGL 1
9.

0.

2.

22.

23. "

2k,

5.

26.

b7,

k8.

R

30.

51.

3

33.

3.

35.

DATA PROCESSING SERVICE Job. No.;

TABLE LAYOUT Name: marl Althoff
TITLE Update Assignment Master Project: p.p.8., Billd
i Table Fa: Ql-AL
¢ NDITIONS FREQUENCY | Ol 1Q.1.11Q CONDITION
. RULE NO. 1 L |5 71819 |10 ABBREVIATIO
{, —&8 there a new assicoment master? | v | y|(w|N |N|N D-ASG# < A-ASOH
Fl
—ls there a change to the agslen-~
b. : -l-]e|x|Y]|n D-ASG# = A-ASGH
A—ment master :
4, —La the change record a deletion? | y | N|y |« |- |- D-OMPL = 2
. Is the change record a completion | _ | _|_|y|[.]- D-CMPL = 1
. notification?
g. Are we posting ¢ es to a com- ol wlals 12l D-CMPL = A
. Ppleted assignment?
6. '
e rompe sz T — e
ACTIONS
1., —Mave entire master record Lo serve Y Y A —> B
88 base.
o Post change assignment no. to up-
" lated master. riyl 1Y D-ASG# ~9-B-ASGH
j, Post corresponding parts of change Y Y BIL§, PLDR, TITL, TYPE,
to master. MFC, TRGT, BILC Dbl _
Set-up and write delete error D-ASG# ~PAA- 39
- * Write AA
- message.
CMPL (Mumeric portion)
. —Post completion code to master | | x|y D- (¢ portion)
N . —>B-CMPL
6. _Set-up and write deleting message Y D-ASG# —>AB-18
. Write AB
v Advance controls to next change T XY GIV D
8 Advance controls to next input masger Y| Y|Y|Y . GIV A
‘ Transfer to Table 0l-Al Y TR 01-Al
10 Transfer to Table Ol-A3 b 4 TR 01-A3
1 Teanafer to Teble Ol-A2 [[x|x TR 01-A2
12 Transfer to Table 01-Ak ' b 4 TR Ol-Ak
13+

DATA PROCESSING SERVICE Job. No.:

TABLE LAYOUT Name: Earl Althoff
TITLE _ Second Change Check Project: D.P.S. Billing .
- Table No:_ 0142

FREQUENCY | O] 0 T0 CONDITION
‘f“'””’“’“’ 0. 123? 8[9 10 ABBREVIATIO!
i, Is there a change to the updated |y |y|y|w D-ASO# = B-ASGH
. master? ‘
‘. 8 _this change a deletion? !. i b Vs D-CMPL = 2
ga- CMPL

31- tion? | 0 ol > s
" e we posti c es to a ¢ le-_ “lel- D-OMPL = A

ted assignment?

3.

A

6.

ACTIONSB

TR Rule 3 - OlAl

; ost completion code to master. Y D-CMPL (numeric part)
= B-CMPL

3. Advance controls to next cha.gge. TIY GIVD

; Follow actions 3 and 5 of Table .

| e Y Duplicate 3 and 5 of

| i 01"&1 0 =

5. ble 0)-A2 Ty TR 01-A2

6. _Transfer to Table Ol-Al : 4 TR Ol-Ak

1.

8.

9.

10.

1

12

DATA PROCESSING
TABLE LAYOUT

SERVICE

Job. No.:

Name: Earl Althoff

TITLE Update Prog-System Master Project:_p p.a, Rillirng
= Table Na:__01-Bl
[y | _oLoN 10 CONDITION
CPEBITIONS ULE §O. | 1] 2 S 89 |0 ABBREVIATIO!
1. . Y |Y N (N E-FLDL < K-FLDL
5, Is the new master for this assign-| . | . E-ASG# = B-ASGH
ment?
Is this a delete? YI|N - |=
3. E-DPGM = 1
Is the next master for this assign-
L. e - |- Y (Y K-ASG# = B-ASGH
5, —L8 there a change for the master? | . | - Y|y E-FLDl = K-FLDL
6 Is the change a delete? - | - Y|N E-DPGM = 1
e T X R A YT BT B T T I TN T U =
ACTIONS | l
= 3
~Mave entire master to serve as
1. Te— T 1Y K—>L
Pogt corresponding change flelds >1, gm, W#
2 to master. ¥ Y D&C, > s ﬁEﬁ,%iLC
” Blanks to STAT, ESTV Zerc
3. Post start-up constants to master. Y to HRTD,VTTD ld.OS,KEOS,
K308, Kh0S, k508
Set-up and write delete error E- ASG# >
b Y E-UJ# ﬂmg
message. Hrite AF
5. —Bet-up and write deleting message. Y E- ASGH -»AC19
. ‘ _ E-UJ#=>AG29
6. _Advance control to next change v |y v |y GIV E
recard.
7. Advance control to next master Y|y GIV X
record.
8. —kransfer to this Table Ol-Bl | o TR Ol-Bl
9 TRansfer to Table 01-B3 Y Y TR 01-B3
10 TRansfer to Table 01-Cl TR 01-C1
TRansfer to Table O0l-B2 Y TR 01-B2
12._TRansfer to Table Ol-Bh4 TR O1-B4

13.

DATA PROCESSBING SERVICE

JOb- m. :

TABLE = LAYOUT - Name: Earl Althoff
TITLE _pinish deleting on Prog-Syst. Delete. Project:_D.P.S. Billing
- Table Na: 01-B2
FRERQUENCY. CONDITIO
. wprrions 0. 819 o ABBREVIAN® I
i. Are there any more Prog-Syst. E-FLDL = L-FLD-1
es?
§= C-FLDl = L-FLDL
i
3.
i
';_.__
5
L5
R R ey e T e T T St [‘_
ACTIOKS
ohery SRS
te message AC E-UJH-2AC30

Action 6 of table 01-A3

Action T of table 01-A3

i write delete message.

4, —Advance contrals ta next Prog-Sysié y GIV E

o Change.

. Advance Controls to next time recoxd.

GIV X

6. _TRansfer to Table 01-82 TR 01-B2
TR 01-Bl

7. TRapsfer to Table Ol-Bl

8.

9.

[—

10.

1
12

DATA PROCESSING
ELEMENTS DEFINITION

15>-DIGIT TITLE

[SET_i# PAGE # |

SERVICE

Job No.:

Project:

DEFINITION:

4-DIGIT ABEREV.

15-DIGIT TITLE

DEFINITION:

4~DIGIT ABBREV.

15-DIGIT TITLE

DEFINITION:

4-DIGIT ABBREV.

15=-DIGIT TITLE

DEFINITION:

4-DIGIT ABBREV.

15-DIGIT TITLE

DEFINITION:

4-DIGIT ABBREV.

15-DIGIT TITLE

DEFINITION:

L4-DIGIT ABEREV.

15-DIGIT TITLE

DEFINITION:

4-DIGIT ABBREV.

‘DIGIT TITLE

DEFINITION:

L-DIGIT ABBREV.

