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Section A - Two-Dimensional Programming

It is the purpose of this paper to discuss the concept of two-
dimensional programming. This implies some non-serial programming
structure to permit taking advantage of the ability of people to
see relationships in two-dimensional form. While it is true that
a sequence of statements can describe uniquely any operational
procedure, this is really not the most important criterion. The
two critical elements are:

(1)

(2)

Examination of tools used to date by systems designers, procedures

Does the representation technique provide for ease
in preparation and communication? Is it a "natural"
form for humans to prepare?

Does the representation technique provide advantages
in terms of preparing appropriate Processors? In
other words, will the Processors be simple or faster
or will the Processor running time be lessened or
will the resultant object program be faster in
operation or require less memory space.

analysts and computer programmers gives a revealing insight into the desired
structure of a representational scheme which is properly "human-engineered".

There are four popular forms currently in use for systems description:

(1)

(2)

Schematic Flow Charts: These illustrate, in essentially
a two-dimensional form, the significant systems elements,
using lines and connectors to show interrelationships
among these elements. The concept of precedence is
established elther through converting the lines to arrows
or by conventions such as flow from left to right and
top to bottom. This form has been extensively used by
computer programmers and factory layout personnel. Often
special symbols are adopted to represent a particular
class of operation and typically extensive abbreviation
is required to fit the procedural description within the
available symbol forms. A sample schematlic flow chart

is shown on page B-5. A good explanation of this type
of charting is given in chapter 3 of reference (1).

Serial Flow Charts: This technique permits only one
direction of flow,often from top to bottom. Again,
various symbols are used to characterize the different
types of operations and special coding is introduced
to handle this reference to branch procedures. There
are a number of minor variations on this basic theme,
but all share the common concept of restrained
arrangement of symbols. Serial flow charts are used
for process descriptions and paperwork procedures
diegrams. One such system is described in detail

in reference (2).
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(3) Logical Equations: Used primarily by design engineers for
complex electronic equipment, the application of Boolean
Algebra has grown considerably since 1940. Tending to
be highly symbolic and abstract, this format permits
various sophisticated techniques to be applied leading
to systems minimization. Unfortunately, this approach
(together with the extensive use of algebraic formulas)
apparently leaves most non-technical personnel somewhat
dubious and does not provide a suitable means for
communication and reference. Conversely, the essential
simplicity and analytic structure of logical equations
do much to recommend it.

(4) Tebular Arrangements: In some areas, & tebular form has
been adopted in order to clearly show the relationships
between sets of conditions and sets of actions or results.

Since this paper is centered around the concepts of two-dimensional
programming as embodled in tabular arrangements, we will explore a
number of examples of this type of approach.

The foundation for much of the current work can be traced to the
logical truth teble as described in reference (3). Though used as an
analysis tool (rather than directly for programming), this format has
offered systems designers a technique for avolding ambiguity and
insuring comprehensiveness. Used in conjunction with logical
equations, it provides a clear, easy-to-understand framework for
describing and communicating analysis material. In general, a truth
table consists of a series of columns in which the independent
variables are used as column titles and the various combinations
of Truth (T) end Falseness (F) of these variables are itemized in
these "condition" columns (see Figure 1).

Figure 1
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These columns are separated from a series of intermediate columns
by a double line. These intermediate columns are titled by the
particular portion of the initial equation whose truth or falseness
is being analyzed. This is always done from the simplest to the most
complex relation. Finally, the result is again separated by a double
line and marked true or false as eppropriate.
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There is a sense of totality and straight forwardness in this
format which is appealing to many systems analysts. For example,
Harold Welpe of IBM (reference U4) used a form a truth table to
explain the operation of a relatively elaborate algorithm which
he devised for automatically bandling logical equations.

A direct outgrowth of this concept is degcribed in reference (5)
by Orren Evans of Hunt Foods and Industries. As part of his excellent
paper describing a comprehensive set of techniques for systems
analysis (systems flow charts, data layout, field definition, etc.)
he uses a "Data Rule" concept. This is covered by an example shown
in figure (2), below? '

F'l Jure 2
Rule Prior | Freq. C,| Ch]| C_||A,| A5 |A
No. Rule _%‘ ? ‘3 I N
No.
001 100 N T ¢ o 4
002 30 Tl WY Y p 4
003 5 Y| N|N|I|Y
00k 2 N Y
1 e
Cy, C2 and C, each represent some conditional statement such

as: Due~Balance +3Amount.~f of ~ this ~order &« Credit~Maximum. In
each column a Y (for yes), and N (for no) or a blank(for "does
not matter") is shown. To the right of a double line a series of
Action columns are used. A,, AE’ and A3 each indicate some
particular action like:

Mark Order "OK to ship"

A Y is used to.indicate that this action is to be executed while a
blank indicates that it is not to be carried out. Each row is
called a Data Rule and has certain identifying material to the left
of the condition columns. These are: rule number, which 1s the
row number; prior rule number to indicate precedence relationships;
and frequency, which denotes the number of times per week (or month
or year) this particuler data rule will be satisfied. The structure
is such that one and only one rule can be satisfied for a given set
of input values and the sequence of analyzing the Data Rules is not
important in determining the proper Data Rule. This work has been
presented to the Intermediate Range Task Force of CODASYL
(Committee on Data Systems Language) and is presently being studied

by this group.



While this form has much to recommend it from an analysis standpoint,
there are a number of questions which cen be raised concerning its usefulness
as a programming device:

(1)

(2)

(3)

(&)

(5)

Since each condition statement must result in either a "Yes"

or a "No" answer, extra columns are needed to handle "Or" values

and multiple ranges. For example, Cy might represent: Marital-
status is "single"; Cp: Marital = status is "divorced"; Cs:
Marital— sgtatus is "married". Suppose the logic is as fgllcws:

If Maritel - status is either "single" or "divorced", then put 1

in column 17; if Maritael - status is "married", then put 2 in column
17. Figure (3) represents the Data Rule table needed for this
prcoblem.

¢, A ENEYEA
Y ol
Y Y
Y Y

It is apparent that this could become a serious problem as extensive
multiple ranges entered the picture. It is also evident that
slightly varying alternative actions cen cause the same difficulty.
This aleo may result in a more than linear increase in the number of
rows required, since provision has to be made for all logicel com-
binations of the conditions. On this basis, I believe that there

is a major weakness in the handling of condition and action state-
ments.

The tebles tend to be quite empty and extremely space consuming.
In his write-up, Mr. Evans suggests one physical solution to this
problem through multiple column identification. However, I don't
believe this comes to grips with the underlying problem.

The existence of a third state (blank for "not significent") prevents
the direct use of a binary representation for the individual Data

Rules. This binary coding would obviously offer very attractive memory

reductions together with the possibility of direct binary word manipu-

lation to detect the appropriate solution row. Further work in this
direction might prove valuable.

The table-to-table flow is not explicitly defined, therby leaving
at least one critical aspect of a total date system open to question.

Apperently, Commercial Translator Statements could be used as the
language of the condition and action statements though this then
requires the power of a Commercial Translator Processor to provide
an object program.



(6) The connective between Condition Statements is
only "AND" and the only sequence for executing
action statements is that implied by the order
of their listing.

In spite of these drawbacks, this technique does seem to offer
many of the "human-engineering" advantages which we seek in a two-
dimensional programming system:

(1) There is implicit indication of the
path to be followed on successful or
unsuccessful completion of a test. On
success you continue across the current
row. On failure you drop to the first
test in the next row.

(2) There is a built-in error detecting function.
If no solution is found, then fallure on
the last row could kick the program into
a speclal error reporting routine.

(3) The truth table features aid in preventing
and detecting logical errors or omissions.

(4) The formal structure is an aid to program
commmunication.

(5) Through proper sequencing of the columns
and Data Rules, a reasonably efficient
operating procedure could be evolved.

There is other work in this direction which may be of use to us.
For example, Bob Murphy of IBM proposed in 1956 a similar tabular
technique for stating logical decisions without the restraint of
explicitly defining all procedural sequences (as has to be done in
a flow chart). His proposed technique had the same general properties
as the Evans' work described above except that he used O for N and 1 for Y.
He also experimented with a construction which permitted multiple success
rows. The concepts which underly this work are described in reference (6).
In a different direction, he explored briefly the use of a single columm
to represent multiple states or ranges of a particular variable. This
is shown in figure 4. It appears that this might solve one of the
serious problems in the Evans' approach.

Figure U
Marital Status [ Al A2 il
Single X
Divorced X
Married X
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In 1958, Joe Jeenel, also of IBM, proposed a system delineation technique
which included a modified truth table for logical decision rule description. He
also presented a tabular aporoach to the control of program segments and loop
hierarchies. This concept is explained in reference (7).

In 1957, Verry Crawford of IBM led an extensive study involving a full
description of the various procedures involved in a particular customer application.
In certain parts of the system, the rules were so complex that a tabular definition
of the logic was used. One of the charts is shown in figure 5 (next page).

This is a far more compact representation of the problem than could have been
obtained through the Evans' technique. However, it still has numerous weaknesses
in terms of ease in preparation, ease in understanding, and efficiency in processing
and operating.

Another area of tabular development has been in the ficld of product standard-
ization. There is a well-known form used called a Collation Chart. This is nothing
more than a listing of values for various critical specifications in the top rows
of the sheet (see figure 6 below) and the nemes of the parts down the left-hand
column. 1In the various intersections, the appropriate drawing number is entered.

A dot is used as a horizontal ditto mark. Oftentimes the quantity, if varieble,
will be shown within the intersection. Otherwise, it appears adjacent to the
part name.

Figure 6

Collation Chart for Electric Clock

Voltage 110 110 220 220 220 220
No.of Hrs. 12 12 12 2l 2 2l
Radium Dial 1o Yes No Yes 1Mo Yes
Glass 37B4LO ; 4 . . a
Case 37850 i . . . 3
Face 37R60|  37BOL 37B60 37BOL 37862 | 37B63
Hands 37B70] 37871 | 37TBTO | 37B7L. | 37BTO { 37BTL
Gears 37RO - : i 37881 .
Motor 3T7BYO i ITB9L & . 2




SHIPPING SCHEDULE DETERMINATION

CONDITIONS:
4
Stockage| Delivery | Availability | Further Conditions Action Shipping Schedule Date
S DI or DN QA Ship at once Today
QN Back order DRO
DD Not applicablel OH-QRPZ QO Defer order without DD
reserving
Not applicablel OH-QRP<LQO Defer order without DD
and DD % DRO reserving
Not applicablel] OH-QRP<QO Defer order without DRO
and DD €£DRO reserving
NS DI or DN QA QA Z1/4 QO Ship at once Today
QA<1/4 QO Defer order and
reserve Today + SLT
QN Suspend order and Today + SLT
order replenishment
DD QA QA< Qo Defer order and DD
- reserve
DD = Today + SLT Defer order and reserve DD
and QALQO
DD<Today + SLT Defer order and reserve Today + SLT
and QA<QO
QN DD = Today + SLT Defer order DD
DD <Today + SLT Defer order Today + SLT

L=y
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A similar approach has been used to simplify and standardize shop
routines and time standards.

All of these tabular techniques offer a natural mode for a two-
dimensional programming language. It seems apparent, though, that the
use of the intersection blocks for more than just a true-false indicator
would extend the span of the table and might provide significent memory
reductions. Since there is a variety of particular problems within the
framevwork of a computer program, it may be desirable to analyze tabular
formats for each of the key modes of operation: Input, Output, Formula
Evaluation, Decision-making, Search, File Maintenance, and Supervisory
(Executive).

Given this background of material, the balance of the peper will
be concerned with particuler aspects of the problem of creating a suitable
two-dimensional programming language:

(1) Section B discusses various address modes. It is
evident that if a "fixed" format is to be used (like
a table) then a standardized address (or operand)
system will probably be required. The conclusion
of this section is that a two-address logic seems
to be a reasonable solution to a two-dimensional
programing system.

(2) Section C is brief analysis of the concept of
controlled two-directional branching and its impact
on the instructions needed in a two-address system.

(3) Section D is concerned with relative addressing and
"contained" constants. These techniques make a
programming language easily separable so as to
permit a segmental approach to debugging.

(4) Section E describes a suggested minimum language
embodying the principles described in the previous
sections and then briefly indicates a few of the
more important extensions and sophistications
possible.

(5) Pinally, Section F recommends a study progrem aimed et
developing a useful two-dimensional progremming language.
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Section B - TWO ADDRESS LOGIC

In considering a two-dimenstional programming scheme, the nunber
of operand addresses can be of significance. Most computers have been
constructed with a one-address logic. Ixamples include all of the
IBM 700 Series, Univac I and II and Burroughs 205. The IBM 650 is a
special case vhere a second address is included in the instruction
word just [for instruction sequence control. Virious of the newer
computers have used a multiple operand #ddrecs logic.. The IBM 305,
1401, and 1620 as well as the NCR 304, Honeywell 800 and Univac 1103
all use two or more operand addresses - sometimes bLhe number of
addresses is variable.

It is the purpose of this Section to explore one, two and three-
address logic for various classes of instructions and to try to show
certain of the advantages and disadvantages of euch mode of operation.

Any instruction system must «:plicitly state in each instruction
the operation to be executed and must also state, either explicitly
or implicitly, the memory location of the ield (s) to bve operated
upon. In a one-address machine the basic instruction format is:

xl'.x xi--x
Instruction Code Field Address

In operation, the computer's control element recognizes the
instruction code and executes it using the information stored at the
field address indicated. The computer then proceeds to the subsequent
instruction location (which may not be in numerical order). There are
many veriations on this theme with index registers, partial word
definitions, additional control data, etc., but essentially all single
address machines have this basic pattern.

For three-esddress machines, the basic construction is:

x.l.x x..-x xl!'x x-..x
Instruction Field Address TIield Address Field Address
Code A B C

The general mode of operation is for the computer to carry out the
operation indicated by the instruction code on the information stored
at locations A and B and then either store the results at location C or
switch control to location C. The same comments relative to variations
is also applicable here with the added complexities of indexing multiple
fields, defining partial word lengths for multiple fields, etc.
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A two-address machine would have its instruction word composed
as follows:

x--.x x".x x‘llx
Instruction Code Field Address Field Address
A B

Operation would vary considerably depending upon the nature of the
instruction code. To i1llustrate, various classes of two-address instructions
are noted below; one suggested operation and mode for representative members

of each class is then described:

1. Move instructions -
any instruction which moves information from one

location to another. Examples include:

READ Move information from designated input source
(A) to destination location (B).

WRITE Move information from source location (A) to
designated output unit (B).

ASSIGN Move information from source location (A) to
destination location (B).

These instructions could, of course, specify the movement
of partial words or multiple words at once.

2. Relational Instructions -
any instruction which compares two fields of iInformation.

Compare Greater Test to see if the contents of Field A

are greater than the contents of Field B.

Many other relational comparisons are possible, smaller,
equal, not equal, greater or equal, and smaller or equal.
Their operation mode would be identical to the Compare Greater
instruction. Another possibility would be to have a
generalized Compare instruction which would set a series of
binary indicators like greater, smaller, etc.

3. Branch instructions -
any instruction which chenges the normal sequence of
instruction execution.

Branch Based on the contents of location A either switch
control to location B or continue the normal operational
sequence. Location A might designate some type of memory
which has been preset by a previous test such as equals,
not equals, overflow, etc.
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4, Arithmetic instructions -
any instruction which performs an arithmetic function like
add, subtract, multiply, divide, exponentiation, sine,
cosine, etc.

Binary operations:

ADD Add the contents of location A to the contents
of location B. Store the result in location B.
The same approach would be followed for subtract,
multiply, divide or exponentiation.

Unary operations:

SINE Determine the sine of the contents of location A.
Store the result in location B.

Certain normally binary operations can be restated as unary
operations if it 1s useful because of frequency of
application. (B)
For example: (A) can be restated as:

Square Root (A) if (B) = 1/2

Other examples of unary operations are those which are
performed for decimal (or binery) point location or for
format modification (either input or output).

Shift Right (I) Shift the information in location A to

the right by a predesignated number of positions (I).
Store the contents in location B.

The same reasoning could be applied to shift left, shift
right and round, shift left and test for overflow, etc.

In arithmetic operations (and actually in any of the others)
we can certainly consider the accumulator (s) as being
merely special field locations so that there is no necessity
for storing information in regular memory after an operation.
For instance, MULT A, B where B was an accumulator address
would simply mean to multiply the contents of the selected
accumulator (B) by the contents of location A and store

the result back in the selected accumulator (B).

5. Logicel instructions -
any instruction which performs a normally defined Boolean

function such as logical AND, logical INCLUSIVE OR, logical EXCIUSIVE (R,
logical NOR, logical NOT, etc. The mode of operation would be

similar to that of the arithmetic operations ard could recognize

both binaery end unary logical instructions. Logical Not would be

an example of a unary logical instruction. These could be used for
control, masking, extracting, etc.



Another possibility for logical operations might include
the presetting of either a logically true or logically
false indicator which could be tested in a subsequent
Branch instruction. One implication of this type of
operation is that the computer should be capable of
operation in a binary number mode (0,1), though this

is not necessary for the other operations. It suggests
some way of defining structure at the bit level rather
than at the character level. Definition could be implicit
in the instruction code itself; for example, regular
arithmetic might always refer to a 4 bits per character
construction; bult logical operations might always use

a one bit per character construction; but on move and
compare operations character construction would not be
significant except as required for partial word operands.

This list is not an attempt to be definitive nor are the suggested modes
of operation necessarily optimal for a given class of problems. Nevertheless,

I believe that they show the comprehensiveness and potential scope of a
two-address logic as well as indicating the simplicity and ease with which
meny frequent business data processing operations could be handled. It is
also obvious that any programming system constructed with this logic could
provide for any of the modifications possible in & one-address or three-
address language, including: indexing, partial word selection, debugging
stops, etc.

To examine further some of the potential advantages and disadvantages
of this approach we might review the following example which has been
coded in each address mode. I have esssumed a simple mmemonic instruction
code set for each configuration. Except for initializing, ending, and
handling transactions with identification numbers greater than the
largest valid inventory number, the problem is flow charted as follows:



Start
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SN

Read next
Inventory
Record

Write Inven-
tory Record

S

Read next Invent. No: End
transaction of File
+*
~
i
|
Write Error a 0¥ > Invent. No:
Message Trans. No.
Trans. Code: Trans. Code:
Receipt Code S Withdrawval
g | Code
W

Invent. Qty:H
Trans. Qty.—
Invent. Qty.

6

n

\

Invent. Qty.-

Invent. Qty.

Trans. Qty.—
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Within the fremework of the flow chart and except for the start and stop
routines I have delineated one possible program for solving this problem on
a one-address machine:

Address Inst. Code
0l Read
02 Relocate
03 Bring
oL Compare
05 Branch Equal
06 Bring
o7 Compare
08 Branch Greater
09 Branch Smaller
10 Bring
11 Compare
12 Branch Not Equal
13 Bring
1L Subtract
15 Store
16 Read
h 7 4 Reloccate
18 Branch Uncond.
19 Relocate
20 Write

Field Address

Input 1

Invent. work area

Invent. No.

End of File No.

Stop Routine

Invent. No.

Trans. No.
28
19
Trans. Code

Withdrawal Code
22
Invent. Qty.

Trens. Qty.

Invent. Qty.

Input 2

Trans Work Area

06

Invent. Work Area

Output 1

Comments

Move next inventory record
to input buffer

Move info. in input buffer
to invent. work area

Move invent. no. into
accumulator

Test accum. vs. end of file no.

If set proper comparison
indicators equal, comperison
indicator is "on", Stop Routine
address

Test accum. vs. trans. no., etc.
To Transaction Error Routine

To write inventory trecord routine

To Receipt Test Routine

Subtract trans. qty. from accum.
result in accum.

Store contents of accum. at Invent.
Qty. Location




(Cont.)

Address Inst. Code
21 Branch Uncond.
22 Compare
23 Branch Not Equal
24 Bring
25 Add
26 Store
27 Branch Uncond.
28 Relocate
29 Write
30 Branch Uncond.

Fleld Address

01

Receipt Code

28

Invent. Qty.
Trans. Qty.
Invent. Qty.

06

Trans. Work Area
Output 2

06

B-T

Comments

To transaction Error Routine

On the basis of 2 decimal digits for the instruction code and 4 decimal
digits for the address, this program would require 30 x 6 « 180 memory
location units.

In a similar way, I have prepered a possible program for a three-address

machine.
Address Inst. Code
01 Read
02 Compare Equal
03 Compare smaller
ok Compare greater
05 Compare not equal
06 Subtract
o7 Read
08 Branch Uncond.
09 Write

10

Branch Uncond.

Field Address A

Field Add. B

Input 1
Invent. No.
Invent. No.
Invent. No.
Trans. Code
Invent. Qty.

Input 2

Invent. Work
Area

End of File No.
Trans. No.
Trans. No.
WithdrawalCode

Trans. Qty.

Fleld Add. C
Invent. Work Area
Stop Routine

09

1k

11

Invent. Qty.
Trans. Work Area
03

Output 1

o1



(Cont.)

Address

12
13
14

15

Inst, Code

Field Add. A.

Compare Not equal
Add
Branch Uncond.

Virite

Branch Uncond.

Trans. code

Invent. Qty.

Trans. Work
Area

B-8

Field Add. B Field Add. C
Receipt code 14
Trens. Qty. Invent. Qty.
03
Output 2
03

On the basis of two decimal digits for the instruction code and
four decimsl digits for each of the addresses this program would
take 15 x 14 = 210 memory location units.

For comparison, the same problem is programmed for a two-address

machine:
Address Instruction Code
01 Read
02 Compare
03 Branch
ok Compare
05 Branch
06 Branch
o7 Compare
08 Branch
09 Subtract
10 Read
11 Branch
12 Write
13 Branch
14 Compare
15 Branch
16 Add
17 Branch

Field Address A

Fileld Address B

Input 1
Invent. No.
Equal
Invent. No.
Smaller
Greater
Trans. Code
Not Equal
Trans. Qty.
Input 2

Uncond.

Invent. work area

Uncond.
Trans. Code
Not equal
Trans. Qty.

Uncond.

Invent. work area

End of file no.

Stop Routine

Trans. No.

12
18

Withdrawal code

1k

Invent. Qty.

Trans. work area

ol

01

Output 1

Receipt code

18

Invent. Qty.

ok



(cont.)

Address Instruction Code Field Address A Field Address B
18 Write Trans. work area Output 2

19 Branch Uncond. ok

On the basis of two decimal diglts for the instruction code and
four for each address, this program would require 19 x 10 = 190
memory location units.

Let's examine these programs at least superficially to draw some
tentative conclusions.

1.

2.

5.

There is no striking difference in memory space
required for either of the three programming modes.

The three-address mode does well because of the

‘arithmetic capability and the combined compare and

branch instruction.

The one-address system is a little more difficult
and time consuming to write and requires more words
of instructions (though not necessarily more memory
space, dependent on the internal word structure).

Two-address logic does very well on move type
instructions (read, write) and on "add-memory"
operations,

There were 13 different instruction codes used
for the one-address program. The three-address
system used nine different instruction codes
while the two-address system used only six.
This is not necessarily significant, but it may
be indicative of a somewhat simpler instruction
code structure.

Almost half (9) of the 19 instructions in the two-
address system were branch instructions. Suppose
it were possible to change the concept of the
compare instruction so that a specific indicator
wvas examined to see if it was on ur off, and
suppose that the "success" branch was alweys

the next regular instruction while the "failure"
branch was a fixed interval away; then it would be
feasible to eliminate virtually every branch except
vhere three or more alternate exits existed or where
the branch was unconditional. In the program under

B9
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discussion, this would have eliminated four branch
instructions. This may be feasible to accomplish
through the two-dimensional progremming approach.
This aspect of success-failure physical location
will be discussed in the next section.

On the basis of these comparisons, I believe it is evident that intensive
study of two-sddress programming systems may offer important ways to reduce
computer loglc cost while providing more efficient programming instructions.



Section C- Controlled Two-Directional Branching

In normal programming methods with a one-address or multiple-
address machine, the succeeding instruction in serial sequence
is always implied as the alternate address on a branch instruction.
The explicit branch is stated directly in the instruction. This
is all that can be expected of any one-dimensional programming
scheme.

In contrast, a two-dimensional programming system implies
a two-dimensional branch. If the test succeeds, then the proper
subsequent instruction follows next in the same row (or column).
If the test fails, then the subsequent instruction is the first
test in the next row (or columm). Since the totel number of
colums per row is known, it is a straight-forward matter to
compute the next instruction location for a test fallure.

With this concept, we can think of a two-address instruction
of "compare greater", which implicitly defines the success
instruction eddress end the failure instruction address. This
would require defining a complete set of the Compare instructionms,
which were of significance (greater, smeller, equal, not equal,
greater or equal, smeller or equal).

Avoided would be the definition of any Branch instructions.
Using this approach, the two-address program for the simple
inventory problem used as an illustration could be reduced by
eliminating 03, 05, 08, 15. However, it would require Compare
Equal, Compare Smaller, Compare Greater and Compare Not Equal
instructions. With this change, the program would be reduced
to 15 instructions; with 10 characters each, 150 memory
location units would be needed.



Section D - Relative Addressing and "Contained" Constants

All digital computers which have been announced up to now have had an
instruction structure, which has called for stating one or more specific
operand addresses. Some provision has been made for modificatlon of
these through the use of index registers, but the operating program
presupposes absolute addresses.

Tn prepering new programming languages (symbolic assembly programs,
compilers, etc.), one of the major efforts has been to enable the programmer
to avoid this fixed address assignment. Two basic approaches have been
taken to solving this problem. The first and less sophisticated, is to
use a reletive address like VO14, which means the 14th word after that
location designated as VOOO. This enables the program to be segmented,
yvet during the compiling stage, there is just the quite simple Job of
calculating the actual address of VOlL4 as the location of VOO0 4 1k.
This is a very common practice. It does require, however, that the
programmer in effect sub-structure the memory assignment and remember
to use the correct relative address whenever he refers to that

information.

A second epproach has attempted to improve this area further.
This is the concept adopted for FORTRAN and the Commercial Translator
Language. Here, a mmemonic code name is assigned to the information
field. For Example, EMPNO might refer to the Employer Pay Number field.
FORTRAN restricts this to a six (6) character code. Commerical Translator
allows the use of up to thirty characters plus adjectival modification to
indicate file and record hierarchy. Because of the mmemonic aid,it is
expected that the programmer will have far less trouble writing the
correct pseudo-address, which the field name, of course, has become.
During the compiling, each of these names will be assigned an actual
address and each time the name occurs, this same actual address will
be assigned. This is significantly easier for the programmer, parti-
cularly in explaining or communicating the program to someone else.
It would also be a great aid in debugging except that the program debugs
at the machine language level, which implies fixed addressing; this in
turn means that the programmer has to convert from the absolute address to
the field name that he has been using.

In preparing machine language programs, it has also been historically
necessary to store any constants required and then call them out through
using the appropriate absolute address. With relative addressing,the
problem is only helped slightly since & memory location must still be
used to store the needed constant. With FORTRAN, etc., the programmer may
use a constant directly in his instructions; e.g. Y = 16 X. The compiler
assigns this constant a location and, in the object program, refers to
this location. While this is a big improvement for the programmer, it
still uses up memory space for all the verious constants needed. One
interesting variation 1s to use the addresses themselves as constants;
this yields the most commonly used integers. It is proposed in this
paper that a new programming language be constructed so as to permit
direct use of mmemonic addressing and so as to contain constants within
the instruction word, thereby requiring no additional memory space for
their storage.
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It is further proposed that during compiling the computer may assign a
relative address to each mmemonic address and that the internal computer logic
should be structured so as to operate directly on this relative address.
Furthermore, that the contained constants, where possible, be retained within
the instruction end not independently stored. This would require that the
instruction code recognize that one of the operands was a constant and not a mmemonic

address.

If we consider these suggestions in context with the two-address logic
recommendation, we can consider that the instruction structure for the programmer

might appear as follows:

1. Move Instructions
Move (Field Name A) to (Field Name B)
or
Move Constant to (Field Name B)
2. Reletional Instructions
Compare (Field Name A) with (Field Name B)
or '
Compare Constant with (Field Name B)
3. Branch Instructions
Not affected
4, Arithmetic Instructions
Add (Field Name A) to (Field Name B)

[}md store in (Field Name %ﬂ

or

Add Constant to (Field Name B)

Eénd store in (Field Name é}]
Unary arithmetic would also have both configurations.

Se Logical Instructions
Similar to the arithmetic operations.
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During compiling, the only changes would be to convert the operation name
to an operation code and translate the field names into relative addresses.

For example:
Move (Field Name A) to (Field Name B)

might become 27 VOOl voog
Move 4728 to (Field Name B)
might become 28 4728 V009

The major reason for converting to a relative address is that current-day'
machines lose significant time in performing a dictionary look-up operation.
It is quite conceilveble, of course, that new machine components may change
this picture considerably in which case it might be advantageous to store the mnemonic
address rather than e relative location.

A major concern, which has been alluded to earlier is the difficulty of
debugging in a machine oriented language. It is therefore believed worth
considering the preparation of interpretive programs, which allow the computer
to debug in the systems oriented language itself. Once the program has run
satisfactorily, then the reguler compiler could be used to prepare a set of
instructions suitable to the particular computer. To generalize this point
it would, for example, seem worthwhile to construct an interpretive FORTRAN
processor which would permit direct debugging in the FORTRAN language, even
though eventually an obJjectprogram will be compiled. Such programs should
be relatively inexpensive to prepare and will increase significantly the
desire of many experienced programmers to use these advanced progreamming
languages. This concept is tied somewhat to the idea of relative addressing
and contained constants, since with these two tools the interpretive program
can be quite simple and the analysis of results quite straight-forward.
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Section E - A Suggested Minimum Two-Dimensional Language

For the purpose of establishing a common frame of reference, a "minimum"
language is described, which would enable a computer to rapidly execute the
bulk of the operations, which seem to be required in two-dimensional
programming. There is obviously nothing magical about this particular set
of instructions. However, industrial computing experience indicates that
these would permit a one to one translation of many relations and actions
into computer instructions. The original set has intentionally omitted
indexing, partial or multiple word operations, and logical (Boolean)
manipulations. These items are discussed later in this section.dn the
symbolic statements included after each instruction definition, () means
"contents of location designated" and —» means "replaces"

Move Instructions

READ A, B

Move the next record from input source A to a series of internal
locations beginning with location B. Source A may be a card reader,
punched tape reader or any selected magnetic tape tramsport. This instruction
could operate with fixed record length (N words or characters or bits),
variable record length (separated by a recognizable record mark ), or with
defined record length as a modifier to the READ instruction (such as Read 60 to imply
Read 60 consecutive words).

(A) = (B)
WRITE A, B
Move the next record from a series of internal locations beginning with
location A to output destination B. Destination B may be a card punch, tape
punch, printer or any selected magnetic tape transport. The same statements

about record length that were made in the READ instruction would apply to the
WRITE instruction.

(a)=> (B)
ASSIGN A, B

Move the contents of the Field A designated location to the Field B designated
location; this instruction moves information from one memory location to another

memory location.
(A) => (B)
ASSIGN CONSTANT A, B

Move the contents of Field A to the Field B designated location; this
instruction transfers a constant to a memory location.

A = (B)



(cont.)

COMPARE EQUAL A, B

Compare the contents of the Field B designated location with the contents of
the field A designated location, If these are identically equal, then branch to
the preassigned success location (S); if these are not identically equal, then
branch to the preassigned failure location (F).

"

1f (B) = (A) then next instruction at S

if (B) = (A) then next instruction at F
COMPARE SMALLER A, B
if (B) < (A) then go to S

if (B)

\d

> (A) then go to F
COMPARE GREATER A, B
if (B) > (A) then go to 8

i

H

(B) & (A) then go to F
COMPARE NOT EQUAL A, B
if (B) # (A) then go to S
if (B) = (A) then go to F

If the machine's internal characteristics lend themselves to a slightly more
elaborate mode of operation, then the instruction set may also include:

COMPARE SMALLER OR EQUAL

COMPARE GREATER OR EQUAL
COMPARE CONSTANT EQUAL A, B

Compare the contents of the Fleld B designated location with the contents of

Field A. If these are identically equal, then branch to the preassigned success
location (S); if these are not identically equal then branch to the preassigned
failure location (F).

if (B) = A then go to 8

if (B) ¥ A then go to F
COMPARE CONSTANT SMALLER A, B

if (B) < A then go to S

if (B) » A then go to F
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COMPARE CONSTANT GREATER A, B
if (B)> A then go to S
if (B)£A then go to F
COMPARE CONSTANT NOT EQUAL A, B
if (Bj Z A then go to S
if (B) = A then go to F

If the internal machine characteristics lend themselves to this mode of
operation, the instruction set may also include:

COMPARE CONSTANT SMALLER or BQUAL
COMPARE CONSTANT GREATER or HQUAL

GO TO A

transfer program control to location designated in Field A.
This is an unconditional branch instruction. The reason it
ie needed rests with the limitations of a two-dimensional
programming system (in contrast to an n - dimensional system).

Arithmetic Instructions

ADD A,B
Add the cbn‘t.ents of the Field B designated location to the
contents of the Field A designated location. Store the result

in the Field B designated location. Either Field A or Field B
mey be a special high-speed accumulsator.

(B) + (A) » (B)
SUBTRACT A, B
(B8) - (a) » (B)
MULTIPLY A, B
(B) x () > (B)
DIVIDE A, B
(8) = (A)-> (B)
We have omitted in this instruction set exponentiation or unary arithmetic
operations. In the problems which we have handled to date, their frequency of

use has been such that this need could be best served through use of stored
subroutines.



ADD CONSTANT A, B

Add the contents of the Field B designated location to
the contents of Field A. Store the result in the

Field B designated location.
(B) + A= (B)
SUBTRACT CONSTANT A, Bl
(B) - A= (B)
MULTIPLY CONSTANT A, B
(B) x A-» (B)
DIVIDE CONSTANT A, B
(8) +A-> (B)
SHIFT LEFT A, B
Shift the contents of the Field B designated location
to the left by A positions.Conceptually this operates
on a predefined word length. The result is stored in

the Field B designated location. If there is an over-
flow consider this as a fallure; 1f no overflow, this

is a success.

SHIFT RIGHT A, B

Shift the contents of the Fleld B designated location
to the right by A positions. The result is stored in
the Field B designated location.

If desired, a SHIFT RIGHT and ROUND instruction may be
included.

Logical (Boolean) Instructions have been omitted.

Miscellaneous Instructions

NO OPERATION

STOoP

=
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Simnle FExtensions of the Minimum Language

Among additional features which may be desirable In a two~dimensional program-
ming system ere: address indexing; partial word movement; multiple word movement;
error control (debugging stops and input variance detection); extended arithmetic
capebility including square root, integral exponentiation (square and cube) and
certain trigonometric functions (sin, tan). A simple approach to some of these
features is described in this section.

One problem in address indexing has been the attempt to consider multiple
subscripts. Writing a compiler to automatically recognize and handle multiple
subscripts is a relatively complex chore. A simple concept which handles any
number of subscripts is through a calculated index which is the function of the
subscript values.

INDEX ASSIGN I,A,B

Modify the Field A designated location by the contents
of the Field I designated location. Move the contents
of this modified Field A designated location to the
Field B designated location.

(A« (1)) = (B)
ASSIGN INDEX I,A,B

Modify the Field B designated location by the contents

of the Field I designated location. Move the contents

of the Field A designated location to the modified Field B
designated location.

(8) = (B + (1))

The contents of the Field I designated location can, of course, be previously
defined by any acceptable operation. Let's assume we have a three dimensional
matrix stored in consecutive locations first by column, then by row, then by teble.
There are three parameters to be defined: R (max Rows), C (max Colums), T (max
Tables). We will define r as the row subscript, ¢ as the colum subscript, and
t as the table subscript.

I= ¥ (r,c,t)
I - Initial Location.: r +cR-«tRC
Test for completion would be I versus Initial Location 4R (1+C(1-¥)).
This principle can, of course, be extended to any n-dimensional subscripting plan.
It could, of course, also be applied in concept to any arithmetic or comparison
operations.
Partial word movement could be handled through a similar approach:
PARTTAL ASSIGN I,F,A,B

Move the Ith (Initial) through the Fth (Final) position
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of the contents of the Field A designated location into the Field B
designated location starting at the left-most position.

ASSIGN PARTTAL I, F, A, B

Move the contents of the Field A designated location
starting from the left-most position into the Ith
through the Fth position of the Field B designated
location.

Multiple word movement could be handled as follows:

MULTIPLE ASSIGN M, A, B

Move M words starting at the Field A designated
location into a series M words beginning at the
field B designated location.

Error Control for debugging stops and input variance detection could
be handled as follows:

ERROR GO TO A, B

Transfer control to the Field A designated location.
Set up to return control to the Field B designated
location upon completion of processing the next table.

Unary Arithmetic could follow the following form:
SQRT A, B
Find the square root of the contents of the

Field A designated location; store the result
in the Fleld B designated location.



Section F-1

Recommendations

It seems evident that present approaches to systems-oriented
languages do not appear to be capable of making a basic break-
through in the one really critical programming problem: Systems
description. Until a technique 1s developed which supersedes
flow charting and yet is readily computer-understandable we shall
not have achieved an effective application language.

Because the logic of two-dimensional programming seems
irrefuteble from a users standpoint it certeinly seems worthwhile
to aggressively pursue a research and development program eimed
at exploring and advising techniques in this general area.

The program below would, I believe, have a reasonably good
chance at full success:

(1) ©Propose a specific two-dimensional language
based on the Hunt Foods', Aeronutronics and
IBM work (particularly the direction suggested
by Perry Crawford). “he language may differ
for various typee of usage (Input, Output,
File Maintenance, Decision-making, Arithmetic, etc.)

(2) Prepare a simple interpretive program to solve
two-dimensional programs. Also prepare a converter
for translating from a Commercial Translator
level of word choice to a machine-oriented level.

(3) Program a variety of problems using the language.
" Try to teach the language to non-programming
personnel; have them write programs for areas
of knowledge using the language.

(4) Run a few trial problems with the programs
written in the two-dimensional language.
Explore techniques for debugging and program
modification.

(5) Revise the language; this may include permitting,
but not requiring, certain desireble special
features like SORT, UPDATE, MERGE.

(6) Prepare a "bootstrapped" compiler for two or
more different computers. This will give a
deeper insight into the language structure.
Prepare a new Interpreter and Converter.

(7) Conduct further experimentation bringing in
appropriate Field Sales personnel.



(8) Prepare manuals on the language covering
the following areas:

(1) primer

2) reference

3) application experience

L) Interpretive, Converter, Compiler Programs.

(9) Publish the results and present to CODASYL or
other appropriate professional groups.

This is obviously an ambitious program and would probably involve
3-5 full time people together with appropriate help from many others
on a part-time basis. Because the need is so great, I feel that
the time schedule should be intentionally brief with completion
targeted at 12-18 months from initiation.

I would estimate that the total cost of such a project including
computer time, programming, technical writing, outside consultants,
office support, and salaries for full-time personnel (but not for
part-time) would approximate $300,000.

If the project worked out as I would hope then the reward
should be & major advance in the programming (in contrast to
the coding) art. We would have a basic new tool for systems
design and a firm basis for language standardization.
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A certain computer manufacturer has a variety of machines in its
product line. The 1401, a solid state machine, has many thousands of
units on order. A large-scale binary machine, the 7090, uses the same
instruction set as the 704, which is no longer in production. The 7080,
a logical successor to the 705 and 702 can use up to ten advanced disc
memory units besides magnetic tape units. Already announced, but not
yet delivered is the 1410, a medium scale machine compatible with the
small scale 1401.

Now with this type of information what are the characteristic values
for each of the seven machines mentioned? In narrative form, of course,
the information is disjointed, probably incomplete, and certainly not con-
cise. Tabular form, with its clear structure suggests itself as one means
of effectively organizing this data.

To construct a table from the information in this narrative, we first
identify the names of the characteristics:

Machine identification
Order statistics

Solid state

Instruction logic

Disc memory units
Magnetic tape units
Scale of machine
Type of machine

Then we fill in the values described for each characteristic:

Machine Ident. 1401 7090 704 7080 705 |702( 1410
t in T
' e t
Order statistics i pro- e Iyet
on order . del'd,
duction
Solid state yes
: : same as Eame as [same as same as
Instruction logic 204 705 r 702 1401
Disc memory units pp to 10
bdvanced
Magnetic tape units yes
Scale of machine small large medium
Type of machine binary




This tabular arrangement restores order to the information while con-
serving space, displaying meaningful relationships, and explicitly

indicating missing values.

Although tabular form recording has been known and practiced for
hundreds and even thousands of years it has been used mainly for sum-
marizing facts and previous experience in statistical tables and
accounting reports. Subsequent to the development of Boolean Algebra
came truth tables, using tabular form for analyzing logical implications.
More recently tables have been used instead of narrative, flow charts,

and logical equations to express complex decision logic.

These are called

decision tables to connote the subject and the form -- tabular form for

recording decision logic.

In the more elemental examples a decision

table strongly resembles a statistical or financial table; consequently the

form and terminology of those tables has been adopted.

The following insurance premium decision table illustrates the

pertinent features:

Health Excellent Excellent f [ Poor

Age 225, £35 >25, €35 > ( =65

Section of

Country East East g ? West

Sex Male Female S ( Female
Premium

Bate 127 1. 18 ; { 9,82

Poli

sy 200,000 100, 000 ( J 10, 000
Lirnit

Upon examination, the decision table reveals that insurance
premium rate and policy limit are a function of health, age, section
of country, and sex. If the applicant is in excellent health, between 25
and 35 years of age, from the East, and is a male, then his rate is $1.27,

and the insurance limit is $200, 000.

then clearly set forth, one by one, across the table.

All of the other alternatives are

To clearly show the essential elements of a decision table, its basic

arrangement and terminology may be outlined as follows:



Decision Rule

TABLE HEADER HEADER

Condition
Stub

The heavy lines serve as demarcation: CONDITIONS are shown above
the heavy horizontal line, ACTIONS below. The STUB is to the left of
the heavy vertical line, ENTRIES to the right. A condition states a
relationship. An action states a command. If all the conditions in a
column are satisfied then the actions in that column are executed. Each
such vertical combination of conditions and actions is called a RULE., In
the same column with the entries for each rule, there may be specialized
data relating to that rule; this is called the RULE HEADER. Similarly,
each table may have certain specialized information which is called the
TABLE HEADER.,

Using this general structure, an increasing number of companies
have begun to state complex logical processes in dacision tahles. Since
product design engineering is a complex logical process, it seems
reasonable to investigate this area for the possible use of decision tables.

The design engineer has the task of determining product character-
istics as 2 function of customer specificaticns. With all the help of
previous designs, standard models, and so on, he is still frequently
required to apply certain rules and formulae to develop special models
or variations to meet special customer requirements.

The basic application of decision tables would be to record design
enginzering logic so completely and accurately that,given a set of specifica-
tiens, a correct et of product characteristics could be generated. Such
an engineering decision table would lock like this:



Customer Specification
Specification Values and Ranges
Names

Product Characteristic
Characteristics Values and
Names Formulas

The design of a product like a switchboard instrument might involve 100
different specifications, 500 variable characteristics, with the logic
expressed in 100 decision tables of 10 rules and 10 rows each.

To illustrate the use of decision tables, an armature coil of a
hypothetical switchboard instrument will be used. The customer
specifications include possible values or ranges.

Customer Specification Names Specification Values and Ranges
Service IIACH or IIDCH
Application "Temperature'' or ''Speed"
Rating Units "MV or UMAN
Rating Value 10-900
Number of Phases 1 -3
Scale Size (in.) 4 or 8

The product characteristics are:

Number of windings

Main Winding Number of Turns
Damper Winding Number of Turns
Main Winding Wire Material

Lamper Winding Wire Material

Main Winding Wire Diameter (mils)
Damper Winding Wire Diameter (mils)
Main Winding Number of Layers

The first decision table develops certain common data (intermediate
values) which are nzeded for subsequent decision tables.



Table #1
Rule No. 1 2 3 4
HpCcH npeH nACH n"ACH
Application "Temperature' | ''Speed"
Rating Units "MV My MV ! TMA"
Number of 1 1 1 >1

Phases

Type of . W : | ' Electro "Inductive"
- '""Moving Coil Moving Coil DymamicH

Number of > 2 1 + Number
Windings of Phases

Next Table 2 z 2

Rule 3 reads:

if the Service is "AC",

and the Rating Units is "MV",

the Number of Phases is 1, then the 'I'ype of Armature is "Electro
Dynamic'', and the Number of Windings is 2, and Go To Table #2.

Notice particularly four features which give decision tables potency

far beyond the traditional truth table:

(1)

blanks for Application in rules 3 and 4.

(2)

'""Not pertinent' conditions can be ignored as shown by the

Value limits can be used rather than each individual value

such as in rule 4: Number of Phases greater than or equal

to 1.
Formulas can be used to give many results where a mathe-

(3)

matical pattern exists as shown in Number of Phases in
rule 4.

(4)

quote marks as "Moving Coil",

Now turn to Table #2;
consequently its characteristics are determined first.

distinguished by an MW for Main Winding.

Actual values are either numeric or they are shown inside

every armature coil has a main winding;
These are all

and



Table #2 - Next Table #3

Rule No. 1

2 3

Type of Armature
Rating Units
Rating Value

IIMVII
10-75

MW Number of Turns 52

MW Wire Material "Alum"
MW Wire Diameter 16

MW Number of Layers || 4

"Moving Coil"

""Moving Coil"
IIMVII
76-200

"Alum"

'""Electro Dynamic"

Formula 5

”Cu”

4

MW Number of
Turns /26

Rule 2 reads: if the Type of Armature is ""Moving Coil", and Rating Units
is "MV", and Rating Value is between 76 and 200, then the Number of

Turns is 13, and Wire Material is "Alum",

and Wire Diameter is 16 mils,

and Number of Layers is 1, and go to Table #3 next.

Features shown in this decision table include:

(1) Direct indication of value range as in Rating Value.
(2) Use of a formula name as for Number of Turns.
(3) Next Table indication in the table header.

The final table covers the key characteristics for the damper winding.

Table #3

Rule No. 1 2 3
Scale Size 4 4 8
Rating Units "MV "MV "MV
Rating Value 10-75 76-200 10-200
Number of Windings =2 =2 22

DW Number of Turns j§ 24
DW Wire Material "Cu"
DW Wire Diameter 16

45
I CuH

5% MW Number of Turns
IlAlumH
12




Out of necessity this instrument armature coil example was rather
briefly outlined; it is intended only to convey the concept of tabular
form as applied to one small part of the design engineering process. To
solidify the meaning and use of decision tables the reader may try a
simple example:

Determine the Armature Coil characteristics given the following
customer specifications:

Service - "DC"
Application - '""Speed"
Rating Units - "MV"
Rating Value - 100
Number of Phases -1
Scale Size - 8

In Table #1 we find that Rule 2 is satisfied:

Type of Armature - '"Moving Coil"
Number of Windings - 2

Then we go to Table #2 where we determine that Rule 2 is the
proper one:

MW Number of Turns 13

MW Wire Material = ""Alum"
MW Wire Diameter = 16

MW Number of Layers = 1

Then in Table #3 we find that Rule #3 is the correct one:

DW Number of Turns = 7
DW Wire Material = "Alum"
DW Wire Diameter = 12

Without much argument, design engineering is one of the most
appealing and intriguing of the many varied applications for decision
tables. Here the potential of the decision table is not just in the dis-
placement of routine engineering effort, but in the significant and
challenging task of improving product quality and performance while
lowering cost.

For the first time, the inherent design logic of a product can be
unlocked from musty files of blueprints, bills of material, and engineer -
ing instructions. It can then be readily communicated to succeeding
functions of the business with a consequent cascading of its benefits to
all areas. With this sort of contribution to make, the decision table,
as a method for displaying product design logic stimulates better product
design--in lees time--at lower cost.
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Progress in Decision Table Applications

by Thomas B. Glans
IBM
Decision tables have attracted widespread interest in the relatively
short time since the first significant experiments were announced. Experi-
ence now indicates that they often have clear-cut advantages over other
techniques in three rather diverse areas: systems analysis, documentation,
and programming.
In this paper we display the concept of a decision table, cite several
successful experiments, and suggest a course of action for further exploration

of the advantages offered by decision tables.

THE TABLE CONCEPT

The basic idea of how a decision table is organized and used is fairly
familiar to many, but perhaps not to all, Examples will suffice to demonstrate
the principal concepts.

Figure 1 is part of a table defining the rate and policy limit of an

insurance company, as a function of age, health, and section of country.
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Rule 1 Rule 2 f////% Rule 30

Age = 25 =926 =65
< 35 < 35 P

Health Excellent Excellent % Poor
Section of Country)| East West m West

Rate/1000 | 1.57 1.72 5.92

Policy Limit 200, 000 200, 000 W 20, 000
i |

Fig'ure 1

The first decision rulé can be paraphrased as follows: If age is greater than
or equal to 25 and less than 35, and health is excellent, and section of country
is East, then the rate per thousand is $1. 57 and the policy limit is $200, 000.
The underlined words are implied by the table structure. The other rules are
alternatives to this one; thus it does not matter which rule is examined first:
only one rule can be satisfied in a single pass through this decision table.

The information in Figure 1 is shown in an exploded view in Figure 2, in-
dicating more clearly the parts of a table and the terms that are used to describe
them. The double lines serve to separate conditions above the horizontal double
line from actions below, and to separate the stub to the left of the vertical
double line from entries on the right. The essential nomenclature is completed

by adding at the top a title section, called a table header, and by adding a

rule header over the entries.



STUB ) \ A A

Rule 1 Rule 2 )//////A Rule 30

Age 225 =325 x// ///Z{ 265
<35 <35 / Z
Al
;Healt‘hm_ - _ Excellent | Excellent Z/ Fa# Poor

Section of- Country "“.

_East B West | )//_/7// ( West--

Figure 2. Exploded view of the table of Figure 1.



Tables may be used in a slightly different form as shown in Figure 3,
which is a table documenting the decision logic for a charge desk at a depart-

ment store.

TABLE: CREDIT Rule 1 Rule 2 Rule 3 Rule 4
Credit limit
is o.k.
Pay experience
is favorable
Special clearance
is obtained

Approve order: X X

Return order
to Sales

Figure 3

The first rule reads: If credit limit is OK then approve the order. The
second rule reads: If credit limit is not OK and pay experience is favorable
then approve the order. The other two rules can be read just as easily as

these.
APPLYING DECISION TABLES

Decision tables seem to offer significant advantages in three areas:
analysis, documentation, and programming.

They were originally developed for system analysis, as an alternative to



flow charting. In addition to aiding in effective analysis decision tables also
proved useful for communicating the system logic thus, serving as a docu-
menta?;ion technique. Programmers, seeing the form, began using it for
writing source programs, recognizing that with the clear structure, a compiler
could be readily prepared.

A few examples of the use of tables in the areas of analysis, documentation,

and programming will indicate how successful field experiments have been.

Analysis

Mr. Leo O'Leary, -a member of IBM's Applied Programming staff, was
faced with a difficult logical problem in the data division of one of IBM's COBOL
processors. He was reluctant to use normal techniques for doing this analysis
and ﬁrogrammjng job because of its complexity. He felt he needed a powerful
organizational tool in order to see clearly the numerous alternatives. He had
no extensive experience with the use of decision tables, but he had attended a
one-day seminar on the subject and decided to give it a try.

After some preliminary study he discovered that there were only seven
independent conditions in the problem, and that each of them was of a binary
nature, He mechanically wrote down all 128 combinations of these seven
variables in the form of a table. He then proceeded to discard the combina-
tions that were impossible because of the construction of the language or be-
cause they had been handled by previous processing runs. During this process

he discovered a number of cases that called for the same actions; these he



grouped together by using "not pertinent" entries in the table. For each
rule he wrote the actions required and discovered, somewhat to his surprise,
that there were only 20 distinct actions required. The completed table had
70 rules and 20 actions; by the way the table had been constructed, he was
certain that all relevant combinations had been handled properly. This table
- provided the basis for a very simple transition to machine code, in a manner
that is quite interesting in itself but unfortunately not relevant here. The
soundness of the whole approach was completely justified by the speed with

which the resulting program was checked out,

The original space estimate for this job had been 1200-1500 positions;
the completed program took 530. Analysis and machine coding required four
days, and the job was checked out in just one day.

As an analysis technique they seem to be more manageable than flow
charts or narrative descriptions. They present logical alternatives in an
easily-understood graphical form. Since the alternatives are so clearly dis-
played, they are easy to check for completeness and consistency, leading to

thoroughness and accuracy.

Documentation

Mr. John Czerkies, of IBM Corporate Data Processing, had just been
informed that one of his programmers was to be promoted and would be leaving
within a week. The programmer had just finished his seventh program for

their 1401; none of these programs had yet been documented to the point where



another programmer could take over. While Mr, Czerkies ﬂrst considered
asking the programmer to prepare the usual flow charts, he rejected this
possibility because he estimated the job would take three weeks, He had just
heard a talk on decision tables and while he had no experilence with them he
wondered whether they might not provide a solution to his problem. He spent

- one hour with the programmer, instructing him in decision table technique
and selecting a particular table format. Mr. Burton Grad, one of the
developers of the decision table concept, spent half an hour with them to check
out their approach, which seemed good.

Theé programmer than went to work. In just two days he wrote the
decision tables necessary to display the logic of all seven programs. Since
then, the programs have required modification and correction. The programmer
taking over, using just the decision tables, in conjunction with the machine
listings has had no trouble making the changes.

To indicate how effectively a decision table can document system logic,
consider the common file maintenance problem: processing a detail file against
a master file, both in sequence on identification number. Special actions are
required at the beginning and end of each file, and the various combinations of
high, low, or equal must be taken into account. Figure 4 is a decision table
showing the logic of this problem.



Rule #
TABLE: Update 0l 02 03 | 04 |05 06 | 07 |08
Start Y N N N N N N [Else
End of Detail o 4 N N N N
End of Master 44 N i N N N
Detail va. Master < > =
Detail is an ¥

"addition"

Do Error Routine

Move Master to
New Master

Move Detail to
New Master

Set Addition Switch

Write Master

Read Master

Read Detail

On Off

x 5 X
Up- =
Go to Table .|Chg. dal.Jte Chg. dtiF:e

Figure 4

Rule 1 states the starting condition. Rule 2 handles the end of job
conditions. Rule 3 describes the situation when the end of detail has been
reached, but not the end of muster. Since there can be no further changes,
additions, or deletions to the original master, the actions are to write the up-
dated master from the master area, read another master, and then return to

the beginning of the table.
In Rule 4, the end of master has been found, but not the end of detail.

Rules b, 6, and 7 are concerned with cases where neither the detail nor the

master file has ended. Rule b considers the event when the detail is less



than the master. In Rule 6 the detail is greater than the master. Rule 7
-covers the caselwhere,m'aster and detail are equal.

The final rule, Rule 8, is the ELSE situation. When this occurs some-
thing has gone wrong, since all legitimate possibilities have already been
examined. Rule 8 will take care of cases involving sequence errors in the
master file and certain types of sequence errors in the detail file,

This example shows clearly how a decision table may be valuable for
system documentation. Decision logic cannot be presented as concisely with
a block diagram. Drawing a block diagram would take longer than developing
this table, There is a much higher probability that the block diagram would
contain logic errors and omissions. Decision tables can be read by other

people with a minimum of training and explanation.

Programming

Eastman Kodak has used tables extensively in many areas of data pro-
cessing. For purposes of comparing tabular-form programming with
conventional methods, two similar problems were prepared by equally experi-
enced programmers. Mr. E. O. Althoff, of the Eastman Kodak data pro-

cessing staff, provides the time comparison shown in Figure b.
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Autocoder-level Programming Tabular-form Programming
Analysis 80 hours 40

Learning 40 21

Flow Charting 62 44 *Tnoludes time

to write an inter-

: ey i <9 pretive table pro-
Testing 174 54 cessing routine.
492 198*

Figure 5. Comparison of times for programming two equivalent jobs using
standard programming methods and tabular programming.

A number of additional experiments have produced similar savings. Based
upon this, Mr. Althoff indicates that future work in his group will utilize
tabular-form programming as a regular practice.

Mr. Harry Cantrell, Manager, Data Processing for the Large Steam
Turbine-Generator Department of the General Electric Company, after careful
investigation has instructed his computer people to use decision tables as their
basic programming system.

Mr. Cantrell indicates that they have completed twenty-five 704 applications
and are extremely enthusiastic about the savings in time that have resulted.
They are getting 40 to 80 checked out program steps per hour.

As a programming method, decision tables used with a suitable language,
reduce program definition, coding, and debugging time, By rearranging the
rules in a table, efficient programs can be produced. Tables also provide a
natural method of segmenting the program leading to easler debugging and

maintenance.
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THE IBM 1401 TABULAR PROGRAMMING SYSTEM

During the last year IBM has developed an experimental tabular pro-
gramming system including a processor to compile source program tables
into machine language instructions. This system is currently designed to
run on a 4000 character 1401 with a 1405 ( RAMAC® disk file).

The language is built on the foundation of the decision table concepts

presented earlier. Figure 6 shows a typical 1401 decision table.

or Name | op | Name for| nameE |oP| Name |op| namEe [op| Name
..... BBl e Lo wia o BERE o oo o B AR s o RIS i
et S s EQ .. lw.M.' W ) P (e E— :
T h e R ST R Y P W I EQD ... leslo, ..,

o RATE L N e h g I T T YO P o m ISPREAC o L Ty osuy
wa._._igg. ciaiasd o pare 1 RazE. . )i earE il katE ]

E ) T T (ORI S r VOl S PSP () (NPT TR 1) 100 B O e Oy WD

Figure 6

Rule 1 reads: If age is less than or equal to 25 and sex is male, re-
gardless of number of accidents then increment rate by the risk factor and
set punch rate equal to rate and write a rate card.

This table illustrates the use of abbreviations for relational operators
(LE, EQ, GR); the ability to include literals; a few of the English language
action operators (SET...EQ, WRITE); the ability to specify two-address
arithmetic in the body of a procedure table; and the ability to mix extended
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entry, where the actions "extend" into the action area, with limited entry,
where the entire action is written in the stub and X's are placed in the entry
portion.

Some of the other features of the language may be listed in summary
fashion. A data description table 1s used to specify the characteristics of
files, records, and fields. It may also contain specifications for constants
and autopoint arithmetic computations, in a simple FORTRAN-1like form. The
full editing power of the 1401 is easily available. Word marks in the 1401
are conveniently handled by a LAYOUT operator that resets word marks in
accordance with a designated record format; if a file has only one record for-
mat, no attention to word marks is required. Tables may be executed on a
"DO" basis from other tables, allowing closed subroutines. The sequence of table
execution is controlled by GO TO action commands. Extremely large pro-
grams can be written, since the tables are stored in 14056 RAMAC and brought
to core storage as needed. Because of this automatic program storage al-

location feature, the programmer need not be concerned about program storage

problems--even in a machine with small core capacity.
At this time (November 10, 1961), the 1401 Tabular Programming System
is being evaluated in the field, The results of this work will be included in
the final version of the paper and discussed in the oral presentation at the

Conference.
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SUMMARY

There has been much progress made in thg short time since decision
tables were first publicized. Widespread field experiments have demonstrated
their strength in analysis, documentation, and programming.

We feel that decision tables deserve even wider study and application,
and that such work will lead to significant improvements in the power and ap-
plicability of the technique. In particular, we would like to emphasize that
the structure of a decision table is distinct from the language used within it.
Any suitable language can be used. Furthermore, the table structure concept
is distinct from the characteristics of any larger programming system of
which it may be a part. |

We feel that the time is ripe for full-scale investigation of how decision
tables can best be combined, in many different ways, with other types of pro-
gramming systems. We do not propose tables as the replacement for all
other systems,_ but we do feel that tables can be used with other concepts --

perhaps in ways not now envisioned -~ to produce a combination much more

powefful than any single part.
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Decision Table Processor (DATP)
Presentation Material on DATP by Dave Pfuetze

J.F. Bult

The reference document describing the Decision Table processor
was submitted to David Low of the L.A. Scientific Center for
evaluation. His conclusions are summarized in the following:

The general idea is good. lHowever, certain points need
clarification, like the testing procedures. The use of
a 3270 is desirable, but technical difficulties in the
design and implementation must be expected in the pre-
sence of tables larger than the size of the screen. It
is felt that the table entries should not be restricted
to YES/NO values and should allow for numeric values.

The resource regquirements seem to be seriously under-
estimated. In particular, the definition of a language
is not an easy task.

D. Low recommends that a feasibility study, if any, be
based on the use of an existing interpretive language
(e.g., APL) so as to cut down the cost of the study by
skipping the translation part of the project.

I reconmend that the L.A. Scientific Center (D.Low) be associated
with any study or development of this project, since knowledge
and experience in the subject matter reside there, while no such
talent can be found in Development.

A.A. Dubrulle

AAD:kep
ce: Mr, B. Grad —
Mr. D. Pfuetze (Raleigh)



