
March 1, 1960 

A PROPOSED PROGRAM 

FOR RESEARCH 

ON TWO-DIMENSIONAL 

PROGRAMMING CONCEPTS 

Burton Grad 
Programming Systems 
International Business Machines Corp. 



TABLE OF CONTENTS 

Section A- Two-Dimensionol Progromming 

Section B- Two-Address Logic 

Section C- Controlled Two-Directional Branching 

Section D- Relative Addressing and Contained Constants 

Section E- Suggested Minimum Language 

Section F- Recommendations 

References 

(1) D.O. McCracken, et 01; Programming Business Computers; 
J. Wiley, 1959 

(2) B. Grad and R. G. Canning; Information Process Analysis; 
Journal of Industrial Engineering; November- December, 1959 

(3) Kemeny, S~ell, Thompson; Introduction to Finite Mothematics; 
J. Wiley, 1958 

(4) Harold Wolpe; An Algorithm for Analyzing Logical Statements 
to Produce a Truth Function Table; ACM Communications, 
March 1958 

(5) Orren Y. Evans; Advanced Anal sis Method for Integrated 
Electronic Data Processing Draft); not publis ed, 1959 

(6) R. W. Murphy; A Definition of Block Diagrams; IBM Report 
IR-00065, 1956 

(7) J. Jeenel; A Standardized Re resentation for Business Problems; 
Watson ReseOrc La oratory Report, 1958 



Section A - Two-Dimensional PrOgramming 

It is the purpose of this paper to discuss the concept of two­
dimensional programming. This implies some non-serial programming 
structure to permit taking advantage of the ability of people to 
see relationships in two-dimensional form. While it is true that 
a sequence of statements can describe uniquely any operational 
procedure, this is really not the most important criterion. The 
two critical elements are: 

(1) Does the representation technique 
in preparation and communication? 
form for humans to prepare? 

provide for ease 
Is it a "natural" 

(2) Does the representation technique provide advantages 
in terms of preparing appropriate Processors? In 
other words, will the Processors be simple or faster 
or will the Processor running time be lessened or 
will the resultant object program be faster in 
operation or require less memory space. 

A-l 

Examination of tools used to date by systems designers, procedures 
analysts and computer programmers gives a revealing insight into the desired 
structure of a representational scheme which is properly "human-engineered" . 
There are four popular forms currently in use for systems description: 

(1) Schematic Flow Charts: These illustrate, in essentially 
a two-dimensional form, the significant systems elements, 
using lines and connectors to show interrelationships 
among these elements. The concept of precedence is 
established either through converting the lines to arrows 
or by conventions such as flow from left to right and 
top to bottom. This form has been extensively used by 
computer programmers and factory layout personnel. Often 
special symbols are adopted to represent a particular 
class of operation and typically extensive abbreviation 
is required to fit the procedural description within the 
available symbol forms. A sample schematic flow chart 
is shown on page B-5. A good explanation of this type 
of charting is given in chapter 3 of reference (1). 

(2) Serial Flow Charts: This technique permits only one 
direction of flow, often from top to bottom. Again, 
various symbols are used to characterize the different 
types of operations and special coding is introduced 
to handle this reference to branch procedures. There 
are a number of minor variations on this basic theme, 
but all share the common concept of restrained 
arrangement of symbols. Serial flow charts are used 
for process descriptions and paperwork procedures 
diagrams. One such system is described in detail 
in reference (2). 



(3) Logical Equations: Used primarily by design engineers for 
complex electronic equipment, the application of Boolean 
Algebra has grown considerably since 1940. Tending to 
be highly symbolic and abstract, this format permits 
various sophisticated teclmiques to be applied leading 
to systems minimization. Unfortunately, this approach 
(together with the extensive use of alsebraic formulas) 
apparently l eaves most non-technical personnel somewhat 
dubious and does not provide a suitable means for 
communication and reference. Conversely, the essential 
simplicity and analytic structure of logical equations 
do much to recommend it. 

(4) Tabular Arrangements: In some areas, a tabular form has 
been adopted in order to clearly show the relationships 
between sets of conditions and sets of actions or results. 

Since this paper is centered around the concepts of two-dimensional 
programming as embodied in tabular arrangements, we will explore a 
number of examples of this type of approach. 

The foundation for much of the current work can be traced to the 
logical truth table as described in reference (3). Though used as an 
analysis tool (rather than directly for programming), this format has 
offered systems designers a technique for avoiding ambiguity and 
insuring comprehensiveness. Used in conjunction with logical 
equations, it provides a clear, easy-to-understand framework for 
describing and communicating analysis material. In general, a truth 
table consists of a series of columns in which the independent 
variables are used as column titles and the various combinations 
of Truth (T) and Falseness (F) of these variables are itemized in 
these "condition" columns (see Figure 1). 
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These columns are separated from a series of intermediate columns 
by a double line. These intermediate columns are titled by the 
particular portion of the initial equation whose truth or falseness 
is being analyzed . This is always done from the simplest to the most 
complex relation. Finally, the result is again separated by a double 
line and marked true or false as appropriate. 
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There is a sense. of totality and straight forwardness in this 
format which is appealing t o many systems analysts. For example , 
Harold Wolpe of IBM (reference 4) used a form a truth table to 
explain the operation of a relatively elaborate algorithm which 
he devised for automatically handling l ogical equations . 

A dir ect outGrowth of this concept is described in reference (5) 
by Orren 1vans of Hunt Foods and Industries. As part of his excellent 
paper describing a comprehensive set of techniques for systems 
analysis (systems flow charts, data layout, field definition, etc . ) 
he uses a "Data Rl.\le" concept. This is covered by an example shown 
in figure (2), below : . 

F'i S .... ,.Q. 2.. , 
Rule Prior Freq . Cl C2 C

3 Al A2 A3 
No. Rule . . . . . 

No . 

001 100 Y Y Y Y 

002 30 y N Y Y Y 

003 5 y N N Y 

004 2 N Y 

ClI C2 and C
3 

each represent some conditional statement such 
as : Due ""Balance .. Amount .-'of ~ this ··Jorder "Cr edi t .... Maximum. In 
each column a Y (for yes), and N (for no ) or a blank(for "doe s 
not matt er") is shown. To the right of a double line a series of 
Action columns are used. Al , A2 , and A3 each indicate some 
particular action like: 

Mark Order "OK to ship" 

A Y is used to. indicate that this action is to be executed while a 
blank i~dicates that it is not to be carried out. Each row is 
called a Data Rule and has certain identifying material to the left 
of the condition columns. These are: rule number, which is the 
row number ; prior rule number to indicate precedence r elationships; 
and frequency, which denotes the number of times per week (or month 
or year) this particular data rule will be satisfied. The structure 
is such that one and only one rule can be sati sfied for a given set 
of input values and the sequence of analyzing the Data Rules is not 
important in determining the proper Data Rul e. This work has been 
presented t o the Intermediate Range Task Force ' of CODASYL 
(Committee on Data Syst ems Language ) and is presently being st udied 
by this gr oup. 
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1¥hile this fom has much to recommend it from an analysis standpoint, 
there are a number of questions which can be raised concerning its usefulness 
as a programming device: 

(1) Since each condition statement must resuJ.t in either a "Yes" 
or a "No" answer, extra columns are needed to handle "ar" values 
and muJ.tiple ranges. For example, Cl might represent: Marital­
status is "single"; C2: Marital- status is "divorced"; C,: 
Marital- status is "married". Suppose the logic is as fOllows: 
If Marital- status is either "single" or "divorced", then put 1 
in column 17; if Marital - status is "married", then put 2 in column 
17. Figure (3) represents the Data RuJ.e table needed for this 
problem. 

C
l 

C C A A 
2 3 1 2 

Y Y 
---~ 

Y Y 

Y Y 

It is apparent that this couJ.d become a serious problem as extensive 
muJ.tiple ranges entered the picture. It is also evident that 
slightly varying alternative actions can cause the same difficulty. 
This also may resuJ.t in a more than linear increase in the number of 
rows required, since provision has to be made for all logical com­
binations of the conditions. On this basiS, I believe that there 
is a major weakness in the handling of condition and action state­
ments. 

(2) The tables tend to be quite empty and extremely space consuming. 
In his write-up, Mr. Evans suggests one physical solution to this 
problem through muJ.tiple column identification. However, I don't 
believe this comes to grips with the underlying problem. 

A-4 

(3) The existence of a third state (blank for "not significant") prevents 
the direct use of a binary representation for the individual Data 
RuJ.es. This binary coding wouJ.d obviously offer very attractive memory 
reductions together with the pOsSibility of direct binary word manipu­
lation to detect the appropriate solution row. Further work in this 
direction might prove valuable. 

(4) The table-to-table flow is not explicitly defined, therby leaving 
at least one critical aspect of a total data system open to question. 

(5) Apparently, Commercial Translator Statements couJ.d be used as the 
language of the condition and action statements though this then 
requires the power of a Commercial Translator Processor to provid.e 
an object program. 



(6) The connective between Condition Statements is 
only "AND" and the only sequence for executing 
action statements is that implied by the order 
of th~ir listing. 

In spite of these drawbacks, this technique does seem to offer 
many of the "human-engineering" advantages which we seek in a two­
dimensional programming system: 

(1) There is implicit indication of the 
path to be followed on successful Q[ 
unsuccessful completion of a test. On 
success you continue across the current 
row. On failure you drop to the first 
test in the next row. 

(2) There is a built-in error detecting function. 
If no solution is found, then failure on 
the last row could kick the program into 
a special error reporting routine. 

(3) The truth table features aid in preventing 
and detecting logical errors or omissions. 

(4) The formal structure is an aid to program 
communication. 

(5) Through proper sequencing of the columns 
and Data Rules, a reasonably efficient 
operating procedure could be evolved. 

There is other work in this direction which may be of use to us. 
For example, Bob Murphy of IBM proposed in 1956 a similar tabular 
technique for stating logical decisions without the restraint of 
explicitly defining all procedural sequences (as has to be done in 
a flow chart). His proposed technique had the same general properties 
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as the Evans' work described above except that he used 0 for Nand 1 for Y. 
He also experimented with a construction which permitted multiple success 
rows. The concepts which underly this work are described in reference (6). 
In a different direction, he explored briefly the use of a single column 
to represent multiple states or ranges of a particular variable. This 
is shown in figure 4. It appears that this might solve one of the 
serious problems in the Evans' approach. 

Figure 4 

Marital Status Al A2 -
Single X 

Divorced X 
- --

Married X 



I n 195H, .Toe Jeenel , alGo of IB~I , prol'oced a aystem delineation technique 
which included a modified t.ruth t.able for 10Bical decision rule description . He 
also presented a tabuJ.ar approach to the control of program segments and loop 
hierar chies . This concept :t~ explained in r eference (7). 
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In 1957, I'erry Crttwford of IDM led an extensive st.udy involving a full 
description of t.he various procedures invol ved in a particular customer applicat.ion. 
In certain parts of the system, the rules were GO complex t hat a tabular definition 
of the logic was used . One of the chart s is shown in figure 5 (next page ). 

This is a far more compact representation of the problem than could have been 
obtained t hroush the Evans ' technique . However, it still, has nwnerous weaknesses 
in terms of ease in preparat.ion, ease in understanding, and efficiency in processing 
and operating . 

Another ar ea of t abular development has been in the fi~ln, of product standard­
izat ion . There i s a well-knc"'n form used called a Collation Chart . This is nothing 
more than a l isti ng of values for various critical specifications in the top rows 
of the sheet (see figure 6 below) and the names of the parts down the left-hand 
column. In 'the various intersections, the appropria'te drawing number is entered. 
A dot is used as a horizontal ditto mark. Oftentimes the quantity, if variable , 
will be shown \lithin "the intersection. otherwise , it appear s adjacent to the 
part name . 

C l l ati on Chart for Electric Clock a 

Vol tage 110 110 220 220 220 220 

No.of lIn . 12 J.2 12 21f 21f 2'4-

Radium Dial No Yes No Yes No Yes 

Glass 37BtfO . . . . 
Case 31B20 . 
Face .31J3.60 37BGl 37B60 ..3'm.61 .JlB62 37B63 

Hands 371370 37J371 371370 37B71 371370 37B71 

Gear:.; 37B80 . ..3'm.81 . 
Mot or ...Im2.0 37B..2.1 . . 



SHIPPING SCHEDULE DETERMINATION 

CONDITIONS: 

Stockage Delivery Availability Further Conditions Action Shipping Schedule Date 

S DI or DN QA Ship at once Today 

QN Back order DRO 

DD Not applicable OH-QR~QO Defer order without DD 
reserving 

Not applicable OH-QRP<QO Defer order without DD 
and DD~ DRO reserving 

Not applicable OH-QRP<QO Defer order without DRO ~ 
and DD<DRO reserving 

NS DIorDN QA QA ~ 1/4 QO Ship at once Today 

QA<1/4 QO Defer order and 
reserve Today + SLT 

QN Suspend order and Today + SLT 
order replenishment 

DD QA QA~QO Defer order and DD 
reserve 

> DD = Today + SLT Defer order and reserve DD 
and QA<QO 
DD<Today + SLT Defer order and reserve Today + SLT 
and QA<QO 

QN DD?; Today + SLT Defer order DD r 
DD <Today + SLT Defer order Today + SLT -'l 

- -
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A similar approach has been used to simplify and standardize shop 
routines and time otandards. 

All of these tabular techniques offer a natural mode for a two­
dimensional programming language. It seems apparent, though, that the 
use of the intersection blocks for more than just a true-false indicator 
would extend the span of the table and might provide significant memory 
reductions. Since there is a variety of particular problems within the 
framework of a computer program, it may be desirable to analyze tabular 
formats for each of the key modes of operation: Input, Output, Formula 
Evaluation, Decision-making, Search, File Maintenance, and Supervisory 
(Execut ive ) . 

Given this background of material, the balance of the paper will 
be concerned with particular aspects of the problem of creating a suitable 
two-dimensional programming language: 

(1) 

(2) 

(3) 

(4) 

(5) 

Section B discusoes variOUS address modes. It is 
evident that if a "fixed" format is to be used (like 
a table) then a standardized address (or operand) 
system will probably be required. The conclusion 
of this section is that a two-address logic seems 
to be a reasonable solution to a two-dimensional 
programming system. 

Section C is brief analysis of the concept of 
controlled two-directional branching and its impact 
on the instructions needed in a two-address system. 

Section D is concerned with relative addressing and 
"contained" constants. These techniques make a 
programming language easily separable so as to 
permit a segmental approach to debugging. 

Section E describes a suggested minimum language 
embodying the principles described in the previous 
sections and then briefly indicates a few of the 
more important extensions and sophistications 
possible. 

Finally I Section F recommends a study program aimed at 
developing a useful two-dimensional programming language. 
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Section B - Tl-IO ADDRESS LOGIC 

In considering a two-dimenstional programming scheme, the number 
of operand nddresses can be of significance . Most computers have been 
constructed with a one-address l ogic . Exampl es include all of the 
IDM 700 Series, Univac I and II and Burroughs 205. The IBM 650 is a 
special case where a second address is included in the instruction 
word jUl1'1; .ror instruction sequence control:: V,::rious of the newer 
computers have used (l. multiple operand. tw.ilrcr:s lneic . . The IBM 305, 
11101, and 1620 as well as the NCR 304, HoneY',ell 800 and Univac 1103 
all use two or more operand addresses - sOlll.etimes I;he number of 
addresses is variable . 

It is the purpose of this Section to explore one, two and three· 
address logic for various classes of instructions n.IiU to try to show 
certain of the advantageB and disadvantages of ",,>eh mode of oper ation. 

Any instruction system mu~L '·"'l' l :leltly stat e in each instruction 
the operation to be executed and must also state, either explicitly 
or impliCitly, the memory location of the field (s) to be operated 
upon. In a one-address machine the basic instruction format is: 

x .... x x ..... x 
Instruction Code Field Address 

In operation, the computer's control element recognizes the 
instruction code and executes it using the information stored at the 
field address indicated. The computer then proceeds to the subsequent 
instruction location (which may not be in numerical order). There are 
many variations on this theme with index registers, partial word 
definitions, additional control data, etc ., but essentially all single 
address machines have this basic pattern. 

For three-address machines, the basic construction is: 

X .. ... x 
Instruction 

Code 

x .... x 
Field Address 

A. 

x ..... x 
Field Address 

B 

x ••• x 
Field Address 

C 

The ceneral mode of operation is for the computer to carry out the 
operation indicated by the instruction code on the 1nformat10n stored 
at locations A and B and then either store the results at location C or 
switch control to location C. The same comments relative to variations 
is also applicable here with the added complexities of indexing multiple 
fields, defining partial word lengths for multiple fields, etc. 



A two-address machine would have its instruction word composed 
as follows: 

x ••• x 
Instruction Code 

x ... x 
Field Address 

A 

x .. . x 
Field Address 

B 
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Operation would vary considerably depending upon the nature of the 
instruction code. To illustrate, various classes of two-address instructions 
are noted below; one suggested operation and mode for representative members 
of each class is then described: 

1. Move instructions -
any instruction which moves information from one 
location to another. Examples include: 

READ Move information from deSignated input source 
(A) to destination location (B). 

WRITE Move information from source location (A) to 
designated output unit (B). 

ASSIGN Move information from source location (A) to 
destination location (B). 

These instructions could, of course, specify the movement 
of partial words or multiple words at once. 

2 . Relational Instructions -
any instruction which compares two fields of information . 

Compare Greater Test to see if the contents of Field A 
are greater than the contents of Field B. 
Many other relational comparisons are possible, smaller, 
equal, not equal, greater or equal, and smaller or equal . 
Their operation mode would be identical to the Compare Greater 
instruction. Another possibility would be to have a 
generalized Compare instruction which would set a series of 
binary indicators like greater, smaller, etc. 

3. Branch instructions -
any instruction which changes the normal sequence of 
instruction execution. 

Branch Based on the contents of location A either switch 
control t o location B or continue the normal operational 
sequence. Location A might designate some type of memory 
which has been preset by a previous test such as equals, 
not equals, overflow, etc . 



4. Arithmetic instructions -
any instruction which performs an arithmetic function like 
add, subtract, multiply, divide, exponentiation, sine, 
cosine , etc. 

Binary operations: 

ADD Add the contents of location A to the contents 
of location B. Store the result in location B. 
The same approach would be followed for subtract, 
multiply, divide or exponentiation. 

Unary operations: 

SINE Determine the sine of the contents of location A. 
Store the result in location B. 

Certain normally binary operations can be restated as unary 
operations if it is useful because of frequency of 
application. (B) 
For example: (A) can be restated as: 

Square Root (A) if (B) = 1/2 

Other examples of unary operations are those which are 
performed for decimal (or binary) pOint location or for 
format modification (either input or output). 

Shift Right (I) Shift the information in location A to 
the right by a predeSignated number of pOSitions (I). 
Store the contents in location B. 

The same reasoning could be applied to shift left, shift 
right and round, shift left and test for overflow, etc. 
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In arithmetic operations (and actually in any of the others) 
we can certainly consider the accumulator (a) as being 
merely special field locations so that there ia no necessity 
for storing information in regular memory after an operation. 
For instance, MUUT A, B where B was an accumulator address 
would simPly mean to re~tiply the contents of the selected 
accumulator (B) by the contents of location A and store 
the result back in the selected accumulator (B). 

5. Logical instructions -
any instruction which performs a normally defined Boolean 
function such as logical AND, logical INCLUSIVE OR, logical EXCLUSIVE OR, 
logical NOR, logical NOT, etc. The mode of operation would be 
similar to that of the arithmetic operations and could recognize 
both binary and unary logical instructions. Logical Not would be 
an example of a unary logical instruction . These could be used for 
control, masking, extracting, etc . 



AnotlJer possibUity for logical operations might include 
the presetting of either a logically true or logically 
false indicator which could be tested in a subsequent 
Dranch instruction . One implication of this type of 
operation is that the computer ohould be capable of 
operation in a binary number mode (0,1), though this 
is not necessary for the other operations. It suggests 
Gome way of defining structure at the bit level rather 
than at the character level. Definition could be impliCit 
in the instruction code itself; for example , regular 
arithmetic might always refer to a 4 bits per character 
construction; but logical operations might always use 
a one bit per character construction; but on move and 
compare operations character construction would not be 
significant except as required for partial word operands. 
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This list is not an attempt to be definitive nor are the suggested modes 
of operation necessarily optimal for a given class of problems . Nevertheless, 
I believe that they show the comprehensiveness and potential scope of a 
two-address logic as well as indicating the simplicity and ease with which 
many frequent business data processing operations could be handled . It is 
also obvious that any programming system constructed with this logic could 
provide for any of the modifications possible in a one-address or three­
address language, including: indexing, partial word selection, debugging 
stops, etc . 

To examine further some of the potential advantages and disadvantages 
of this approach we mj.ght review the following example which has been 
coded in each address mode. I have aHsumed a simple mnemonic instruction 
code set for each configuration. Except for initializing, ending, and 
handling transactions with identification numbers greater than the 
largest valid inventory nwnber, the pl'oblem is flow charted as follows: 
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Start 

~ 

, Ii 

Read next 
Inventory 
Record 

Write Inven-

cp 
tory Record 

I I' , / 
Read next Invent. No: End 
transaction of File ~ Stop I = ..... 

J 
:F 

I 
Hrite Error .- G.~ > Invent. No: <-

Message 
, 

'frans. No. 

\V 
A ::: 

- _ .... _ .. 

\ / 

Trans. Code: , :F Trans . Code: 
Receipt Code , Withdrawal 

:-F Code 
::: -

, / / 

Invent. Qty :t Invent. Qty. -
Trans . Qty.- Trans. Qty . ~ 
Invent . Qty. Invent. Qty. 

J J 
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Within the framework of the flow chart and except for the start and stop 
routines I have delineated one possible program for solving this problem on 
a one-address machine: 

Address 

01 

02 

03 

04 

05 

06 

07 

08 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Inst. Code 

Read 

Relocate 

Bring 

Compare 

Branch Equal 

Bring 

Compare 

Branch Greater 

Branch Smaller 

Bring 

Compare 

Branch Not Equal 

Bring 

Subtract 

Store 

Read 

Relocate 

Branch Uncond. 

Relocate 

Write 

Field Address Comments 

Input 1 Move next inventory record 
to input buffer 

Invent. work area Move info. in input buffer 
to invent. work area 

Invent. No. Move invent. no. into 
accumulator 

End of File No. Test accum. vs. end of file no. 

Stop Routine If set proper comparison 
indicators equal, comparison 
indicator is "on", Stop Routine 
address 

Invent. No. 

Trans. No. 

28 

19 

Trans. Code 

Wit hdrawal Code 

22 

Invent. Qty. 

Trans. Qty. 

Invent. Q,ty. 

Input 2 

Trans Work Area 

06 

Invent. Work Area 

Output 1 

Test accum. VB. trans. no., etc . 

To Transaction Error Routine 

To write inventory ~ecord routine 

To Receipt Test Routine 

Subtract trans. qty. from accum. 
result in accum. 

Store contents of accum. at Invent. 
Qty. Location 
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Address Inst. Code Field Address Comments 

21 

22 

23 

24 

25 

26 

'Z7 

28 

29 

30 

Branch Uncond. 01 

Compare Receipt Code 

Branch Not Equal 28 To transaction Error Routine 

Bring ' Invent. Qty. 

Add Trans. Qty. 

Store Invent. Qty. 

Branch Uncond. 06 

Relocate Trans. Work Area 

Write Output 2 

Branch Uncond. 06 

On the basis of 2 deci~ digits for the instruction code and 4 decimal 
digits for the address, this program would require 30 x 6 • 180 memory 
location units. 

In a similar way, I have prepared a possible program for a tbree-address 
machine. 

Address Inst. Code Field Address A Field Add. B Field Add. C 

01 Read 

02 Compare Equal 

03 Compare smaller 

04 Compare greater 

05 Compare not equal 

06 Subtract 

07 Read 

08 Branch Uncond. 

09 Write 

10 Branch Uncond. 

Input 1 

Invent . No. 

Invent. No. 

Invent. No. 

Trans. Code 

Invent. Qty. 

Input 2 

Invent. Work 
Area 

Invent . Work Area 

End of File No . Stop Routine 

Trans. No. 09 

Trans. No. 14 

WithdrawalCode 11 

Trans. Qty. Invent. Qty. 

Trans. Work Area 

03 

Output 1 

01 
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Address Inst. Code Field Add. A. Field Add. B Field Add. C 

11 

12 

13 

14 

15 

Compare Not equal 

Add 

Branch Uncond. 

Write 

Branch Uncond. 

Trans. code 

Invent. Qty. 

Trans. Work 
Area 

Receipt code 14 

Trans. Qty. Invent. 

03 

Output 2 

03 

On the basis of two decimal digits for the instruction code end 
four decimal digits for each of the addresses this program would 
take 15 x 14 = 210 memory location units. 

For comparison, the same problem is programmed for a two-address 
machine: 

Address Instruction Code Field Address A· Field Address B 

01 Read Input 1 Invent. work area 

02 Compare Invent. No. End of file no. 

03 Branch Equal Stop Routine 

04 Compare Invent. No. Trans. No. 

05 Branch Smaller 12 

06 Branch Greater 18 

07 Compare Trans. Code \oIi thdrawal code 

08 Branch Not Equal 14 

09 Subtract Trans. Qty. Invent. Qty. 

10 Read Input 2 Trans. work area 

11 Branch Uncond. 04 

12 Write Invent. work area Output 1 

13 Branch Uncond. 01 

14 Compare Trans. Code Receipt code 

15 Branch Not equal 18 

16 Add Trans. Qty. Invent. Qty. 

17 Branch Uncond. 04 

Qty. 

:8-8 



(cont. ) 

Address Instruction Code Field Address A Field Address B 

18 

19 

Write Trans. work area Output 2 

Branch Uncond. 04 

On the basis of two decimal digits for the instruction code and 
four for each address, this program would require 19 x 10 2 190 
memory location units. 

Let's examine these programs at least superficially to draw some 
tentative conclusions. 

1. There is no striking difference in memory space 
required for either of the three programming modes. 

2. The three-address lIIode does well because of the 
. arithmetic capability and the combined compare and 
branch instruction. 

3. The one-address system is a little more difficult 
and time consuming to ,rrite and requires more words 
of instructions (though not necessarily more memory 
space, dependent on the internal word structure). 

4. Two-address logic does very well on move type 
instructions (read, write) and on "add-memory" 
operations. 

5. There were 13 different instruction codes used 
for the one-address program. The three-address 
system used nine different instruction codes 
while the two-address system used only six • . 
This is not necessarily significant, · but it may 
be indicative of a somewhat simpler instruction 
code structure. 

6. Almost half (9) of the 19 instructions in the two­
address system were branch instructions. Suppose 
it were possible to change the concept of the 
compare instruction so that a specific indicator 
was examined to see if it was on ur off, and 
suppose that the "success" branch was always 
the next regular instruction while the "failure" 
branch was a fixed interval away; then it would be 
feasible to eliminate virtually every branch except 
"here three or more alternate exits existed or where 
the branch waS unconditional. In the program under 
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discuGsion, this would have eliminated four branch 
instructions. This may be feasible to accomplish 
through the two-dimensional programming approach. 
This aspect of success-failure physical location 
will be discussed in the next section. 

On the basis of these comparisons, I believe it is eVident that intensive 
study of two-address programming systems may offer important ways to reduce 
computer logic cost while providing more efficient programming instructions. 
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Section C- Controlled Two-Directional Branching 

In normal programming methods with a one-address or multlple­
address machine, the succeeding instruction in serial sequence 
is always imp11ed as the alternate address on a branch instruct10n. 
The explicit branch is stated directly in the instruction. This 
is all that can be expected of anyone-dimensional programming 
scheme. 

In contrast, a two-dimensional programming system imp11es 
a two-dimensional branch. If the test succeeds, then the proper 
subsequent instruction follows next in the same row (or column). 
If the test fails, then the subsequent instruction is the first 
test in the next row (or column). Since the total number of 
columns per row is known, it 1s a straight-forward matter to 
compute the next instruotion location for a test failure. 

With this concept, we can think of a two-address instruction 
of "compare greater", which implicitly def1nes the success 
instruction address and the failure instruction address. This 
would require defining a complete set of th~ Compare instruct1ons, 
wh1ch were of significance (greater, smaller, equal, not equal, 
greater or equal, smaller or equal). 

Avoided would be the definition of any Branch instructions. 
Us1ng this approach, the two-address program for the simple 
inventory problem used as an illustration could be reduced by 
elim1nating 03, 05, oa, 15. However, it would require Compare 
Equal, Compare Smaller, Compare Greater and Compare Not Equal 
instructions. With th1s change, the program would be reduced 
to 15 instructions; with 10 charaoters each, 150 memory 
location units would be needed. 

C-l 
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Section D - Relative Addressing and "Contained" Constants 

All digital computers which have been announced up to now have had an 
instruction structure, which has called for stating one or more specific 
operand addresses. Some provision has been made for modification of 
these through the use of index registers, but the operating program 
presupposes absolute addresses. 

In preparing new programming languages (symbolic assembly programs, 
compilers, etc.), one of the major efforts has been to enable the programmer 
to avoid this fixed address aSSignment . Two basic approaches have been 
taken to solving this problem. The first and less sophisticated, is to 
use a relative address like V014, which means the 14th word after that 
location designated as VOOO. This enables the program to be segmented, 
yet during the compiling stage, there is just the quite simple job of 
calculating the actual address of V014 as the location of VOOO + 14. 
This is a very common practice. It does require, however, that the 
programmer in effect sub-structure the memory assignment and remember 
to use the correct relative address whenever he refers to that 
information. 

A second approach has attempted to improve this area further. 
This is the concept adopted for FORTRAN and the Cpmmercial Translator 
Language. Here, a mnemonic code name is assigned to the information 
field. For Example, EMPNO might refer to the Employer Pay Number field. 
FORTRAN restricts this to a six (6) character code. Commerical Translator 
allows the use of up to thirty characters plus adjectival modification to 
indicate file and record hierarchy. Because of the mnemonic a1d,it is 
expected that the programmer will have far less trouble writing the 
correct pseudo-address, which the field name, of course, has become. 
During the compiling, each of these names will be assigned an actual 
address and each time the name occurs, this same actual address will 
be assigned. This is significantly easier for the programmer, parti­
cularly in explaining or communicating the program to someone else. 
It would also be a great aid in debugging except that the program debugs 
at the machine language level, which implies fixed addressing; this in 
turn means that the programmer has to convert from the absolute address to 
the field name that he has been using. 

In preparing machine language programs, it has also been historically 
necessary to store any constants required and then call them out through 
using the appropriate absolute address . With relative addressing,the 
problem is only helped slightly since a memory location must still be 
used to store the needed constant. With FORTRAN, etc ., the programmer may 
use a constant directly in his instructions; e .g. Y • 16 X. The compiler 
assigns this constant a location and, in the object program, refers to 
this location. ~fuile this is a big improvement for the programmer, it 
still uses up memory SPace for all the various constants needed. One 
interesting Variation is to use the addresses themselves as constants; 
this yields the most commonly used integers. It is proposed in this 
paper that a new programming language be constructed so as to permit 
direct use of mnemonic addressing and so as to contain constants within 
the instruction word, t.hereby r equiring no additional memory space for 
their storage. 
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(cont. ) 

It is further proposed that during compiling the computer may assign a 
relative address to each mnemonic address and that the internal computer logic 
should be structured so as to operate directly on this relative address. 
Furthermore, that the contained constants, where possible, be retained within 
the instruction and not independently stored. This would require that the 
instruction code recognize that one of the operands was a constant and not a mnemonic 
address. 

If we consider these suggestions in context with the two-address logic 
recommendation, we can consider that the instruction structure for the programmer 
might appear as follows: 

1. Move Instructions 

Move (Field Name A) to (Field Name B) 

or 

Move Constant to (Field Name B) 

2. Relational Instructions 

Compare (Field Name A) with (Field Name B) 

or 

Compare Constant with (Field Name B) 

3. Branch Instructions 
Not affected 

4. Arithmetic Instructions 

Add (Field Name A~ to (Field Name B) 

[and store in (Field Name iTI 
or 

Ado Constant to (Field Name B) 

~nd store in (Field Name ~ 
Unary aritlnnetic would also have both configurations. , 

5. Logical Instructions 
Similar to the arithmetic operations. 



(cont. ) 

During compiling, the only changes would be to convert the operation name 
to an operation code and translate the field names into relative addresses. 
For example: 

Move 

might become 

Move 

might become 28 

(Field Name A) 

VOOl 

to 

to 

(Field Name B) 

YQ22 
(Field Name B) 

V009 

The major reason for converting to a relative address is that current-day ' 
machines lose significant time in performing a dictionary look-up operation. 
It is quite conceivable, of course, that new machine components may change 
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this picture considerably in which case it might be advantageous to store the mnemonic 
address rather than a relative location. 

A major concern, which has been alluded to earlier is the difficulty of 
debugging in a machine oriented language. It is therefore believed worth 
considering the preparation of interpretive programs, which allow the computer 
to debug in the systems oriented language itself. Once the program has run 
satisfactorily, then the regular compiler could be used to prepare a set of 
instructions suitable to the particular computer. To ~eneralize this point 
it would, for example, seem worthwhile to construct an interpretive FORTRAN 
processor which would permit direct debugging in the FORTRAN language, even 
though eventually an object program will be compiled. Such progr8D1S should 
be relatively inexpensive to prepare and will increase significantly the 
desire of many experienced programmers to use these advanced progrAmm1ng 
languages. This concept is tied somewhat to the idea of relative addressing 
and contained constants, since with these two tools the interpretive program 
can be quite simple and the analysis of results quite straight-forward. 



Section E - A Suggested Minimum Two-Dimensional Language 

For the purpose of establishing a cOllllllon frame of reference, a "minimum" 
language is described, which would enable a computer to rapidly execute the 
bulk of the operations, which seem to be required in two-dimensional 
programming. There is obviously nothipg magical about this particular set 
of instructions. Hen1ever, industrial computing experience indicates that 
these would permit a one to one translation of many relations and actions 
into computer instructions. The original set has intentionally omitted 
indexing, partial or multiple word operations, and logical (Boolean) 
manipulations. These items are discussed ls.ter in this section.!n the 
symbolic statements included after each instruction definition, () means 
"contents of location designated" and ~ means "replaces': 

Move Instructions 

READ A, B 

Move the next record from input source A to a series of internal 
locations beginning with location B. Source A may be a card reader, 
punched tape reader or any selected magnetic tape transport. This instruction 
could operate with fixed record length (N words or characters or bits), 
variable record length (separated by a recognizable record mark ), or with 
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defined record length as a modifier to the READ instruction (such as Read 60 to imply 
Read 60 consecutive words). 

(A) ~ (B) 

WRITE A, B 

Move the next record from a series of internal locations beginning with 
location A to output destination B. Destination B may be a card punch, tape 
punch, printer or any selected magnetiC tape transport. The same statements 
about record length that were made in the READ instruction would apply to the 
WRITE instruction. 

(A)~ (B) 

ASSIGN A, B 

Move the contents of the Field A designated locatioll to the Field B designated 
location; this instruction moves information from one memory location to another 
memory location. 

(A) ~ (B) 

ASSIGN CONSTANT A, B 

Move the contents of Field A to the Field B designated location; this 
instruction transfers a constant to a memory location. 

A ~ (B) 
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(cont.) 

COMPARE E);tUAL A, B 

Compare the contents of the Field B designated location with the contents of 
the field A designated location. If these are identically equal, then branch to 
the preassigned success location (8); if these are not identically equal, then 
branch to the preassigned failure location (F). 

if (B) - (A) then next instruction at 8 -
if (B) = (A) then next instruction at F 

COMPARE 8MALLER A, B 

if (B) < (A) then go to 8 

if (B) >" (A) then go to F 

COMPARE GREATER A, B 

if (B) > (A) then go to 8 

if (B) , (A) then go to F 

COMPARE NOT EQUAL A, B 

if (B) -j. (A) then go to 8 

if (B) : (A) then go to F 

If the machine's internal characteristics lend themselves to a slightly more 
elaborate mode of operation, then the instruction set may also include: 

COMPARE 8MALLER OR EQUAL 

COMPARE GREATER OR EQUAL 

COl-lPARE CON8TAlfr EQUAL A, B 

Compare the contents of the Field B designated location with the contents of 
Field A. If these are identically equal, then branch to the preassigned success 
location (8); if these are not identically equal then branch to the preassigned 
failure location (F). 

if (B) : A then go to 8 

if (B) t A then go to F 

CO~~ARE CONSTANT SMALLER A, B 

if (B) <: A then go to, 8 

if (B»., A then go to F 



COMPARE CONSTANT GREATER A, B 

if (B) > A then go to S 

if (B)~A then go to F 

COMPARE CONSTANT NOT EQUAL A, B 

if (B) t A then go to S 

if (B) : A then go to F 

If the internal machine characteristics lend themselves to this mode of 
operation, the instruction set may also include: 

COMPARE CONSTANT SMALLER or El:1,UAL 

COMPARE CONSTANT GREATER or El:1,UAL 

GO TO A 

transfer program control to location designated in Field A. 
This is an unconditional branch instruction. The reason it 
is needed rests with the limitations of a two-dimensional 
programming system (in contrast to an n-dimensional system). 

Arithmetic Instructions 

ADD .A,B 

Add the contents of the Field B designated location to the 
contents of the Field A designated location. Store the result 
in the Field B designated location. Either Field A or Field B 
may be a special high-speed accumulator. 

(B) + (A) ~ (B) 

SUBTRACT A, B 

(B) - (A) ~ (B) 

MULTIPLY A, B 

(B) x (A) .. (B) 

DIVIDE A, B 

(B) -:- (A) ~ (E) 
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We have omitted in this instruction set exponentiation or unary arithmetic 
operations. In the problems which we have handled to date, their frequency of 
use has been such that this need could be best served through use of stored 
subroutines. 



ADD CONSTANT A, B 

Add the contents of the Field B designated location to 
the contents of Field A. Store the result in the 
Field B designated location. 

(B) + A~ (B) 

SUBTRACT CONSTANT A, B 

(B) - A~ (B) 

MmrIPLY CONSTANT A, B 

(B) x A~ (B) 

DIVIDE CONS~ANT A, B 

(B) : A ~ (B) 

SIIIFT LEFT A, B 

Shift the contents of the Field B designated location 
to the left by A positions.C.onceptually this operates 
on a predefined word length. The result is stored in 
the Field B deSignated location. If there is an over­
flow oonsider this as a failure; if no overflow, this 
is a success. 

SHlFl' RIGlfr A, B 

Shift the contents of the Field B deSignated location 
to the right by A positions. The result is stored in 
the Field B designated location. 

If deSired, a SIIIFT RIGlfr and ROUND instruction may be 
included. 

Logical (Boolean) Instructions have been omitted. 

Miscellaneous Instructions 

NO OPERATION 

STOP 
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Sinrole Extensions of the /-linimwn Language 

Among additional features vhich may be desirable in a tvo-dimensional program­
ming system are: address indexing; partial vord movement; multiple vord movement; 
error control (debugging stops and input variance detection);· extended arithmetic 
capability including square root, integral exponentiation (square and cube) and 
certain trigonometric functions (sin, tan). A simple approach to some of these 
features is described in this section. 

One problem 1n address indexing has been the attempt to consider multiple 
subscripts. Writing a compiler to automatically recognize and handle multiple 
subscripts is a relatively complex chore. A simple concept vhich handles any 
number of subscripts is through a calculated index vhich is the function of the 
subscript values. 

INDEX ASSIGN I,A,B 

Modify the Field A designated location by the contents 
of the F1.eld I deSignated location. /-love the contents 
of this modified Field A designated location to the 
Field B designated location. 

{A + (I)) -7 (B) 

ASSIGN INDEX I,A,B 

Modify the Field B designated location by the contents 
of the Field I designated location. Move the contents 
of the Field A deSignated location to the modified Field B 
designa~ed location. 

(A) -7 (B ...- (I)) 

The contents of the Field I designated location can, of course, be previously 
defined by any acceptable operation. Let's assume ve have a three dimensional 
matrix stored in consecutive locations first by column, then by row, then by table. 
There are three parameters to be defined: R (max Rows), C (max Columns ), T (max 
Tables). We viII define r as the row subscript, c as the column subscript, and 
t as the table subscript. 

I " f (r,c,t) 

I ~ Initial Location .... r + cR ", tRC 

Test for completion vould be I versus Initial Location + R (1~C {I.T)). 
This principle can, of course, be extended to any n-dimensional subscripting plan. 
It could, of course, also be applied in concept to any arithmetic or comparison 
operations. 

Partial vord movement could be handled through a similar approach: 

PARTIAL ASSIGN I,F,A,B 

/-love the Ith (Initial) through the Fth (Final) position 



of the contents of the Field A designated location into the Field B 
designated location starting at the left-most position. 

ASSIGN PARTIAL I, F, A, B 

~!ove the contents of the Field A designated location 
starting from the left-most position into the Ith 
through the Fth position of the Field B designated 
location. 

Multiple word movement could be handled as follows: 

MULTIPLE. ASSIGN M, A, B, 

Move M words starting at the Field A designated 
location into a series M words beginning at the 
field B deSignated location. 
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Error Control for debugging stops and input variance detection could 
be handled as follows: 

ERROR GO TO A, B 

Transfer control to the Field A designated location. 
Set up to return control to the Field B designated 
location upon completion of processing the next table. 

Unary Arithmetic could follow the following form: 

.SQRT A, B 

Find the square root of the contents of the 
Field A designated location; store the result 
in the Field B deSignated location. 



Section F-l 

Recommendations 

It seems evident that present approaches to systems-oriented 
languages do not appear to be capable of making a basic break­
through in the one really critical programming problem: Systems 
description. Until a technique is developed which supersedes 
flow charting and yet is read,ily computer-understandable we shall 
not have achieved an effective application language. 

Because the logic of two-dimensional programming seems 
irrefutable from a users standpoint it certainly seems worthwhile 
to aggressively pursue a research and development program aimed 
at exploring and advising techniques in this general area. 
The program below would, I believe, have a reasonably good 
chance at full success: 

(1) Propose a specific two-dimensional language 
bnsed on the Hunt Foods', Aeronutronics and 
IBM work (particularly the direction suggested 
by Perry Crawford) ..... 'he language may differ 
for various types of usage (Input, Output, 
File Maintenance, Decision-making, Arithmetic, etc.) 

(2) Prepare a simple interpretive program to solve 
two-dimensional programs. Also prepare a converter 
for translating from a Commercial Translator 
level of word choice to a machine-oriented level. 

' (3) Program a variety of problems using the language. 
, Try to teach the language to non-progrannning 

personnel; have them write programs for areas 
of knowledge using the language. 

(~) Run a few trial problems with the programs 
written in the two-dimensional language. 
Explore techniques for debugging and program 
modification. 

(5) Revise the language; this may include permitting, 
but not requiring, certain desirable special 
features like SORT, UPDATE, MERGE. 

(6) Prepare a "bootstrapped" compiler for two or 
more different computers. This will give a 
deeper inSight into the language structure. 
Prepare a new Interpreter and Converter. 

(7) Conduct further experimentation bringing in 
appropriate Field Sales personnel. 



(8) Prepare manuals on the language covering 
the following areas: 

(l) pr:!lller 
(2) reference 
(3) application experience 
(4) Interpretive, Converter, CompUer Programs. 

(9) Publish the results and present to CODASYL or 
other appropriate professional groups. 

This is obviously an ambitious program and would probably involve 
3-5 full time people together with appropriate help from many others 
on a part-time basis. Because the need is so great, I feel that 
the time schedule should be intentionally brief with completion 
targeted at 12-18 months from initiation. 

I would estimate that the total cost of such a project including 
computer time, programming, technical writing, outside consultants, 
office support, and salaries for full-time personnel (but not for 
part-time) would approximate $300,000. 

If the project worked out as I would hope then the reward 
should be a major advance in the progrrumning (in contrast to 
the coding) art. We would have a basic new tool for systems 
design and a firm basis for language standardization. 
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1. 

A certain computer manufacturer has a variety of machines in its 
product line. The 140 1 , a solid state machine, has many thou sands of 
units on order . A large -scale binary machine, the 7090, uses the same 
instruction set as the 704, which is no longer in production. The 7080 , 
a logical successor to the 705 and 702 can use up to ten advanced disc 
memory units be side s magnetic tape units. Already announced, but not 
yet delivered is the 1410, a medium scale machine compatible with the 
small scale 1401 . 

Now with this type of information what are the characteristic values 
for each of the seven machined mentioned? In narrative form, of course, 
the information is disjointed, probably incomplete, a nd certainly not con­
cise. Tabular form, with its clear structure suggests itself as one means 
of effectively organizing this data. 

To construct a table from the information in this narrative, we first 
identify the names of the characteristics: 

Machine identification 
Order statistics 
Solid state 
Ir.struction logic 
Disc memory units 
Magnetic tape units 
Scale of machine 
Type of machine 

Then we fill in the values described for each characteristic: 

Machin e Ident. 1401 7090 704 7080 705 

lOCO ' s 
not in 

Order Btatistics 
O!l order 

pro-
duction 

S"lici stata yes 

Instruction logic same as arne as ame 

704 705 702 

Disc memory units p to 10 
dvanced 

Magnetic tape units yes 

Scale of machine small large 

Tyre of machine binar.y 

702 14 10 

not yet 
del'd . 

as same as 
1401 

medium 



2. 

This tabular arrangement restores order to the information while con­
serving space, displaying meaningful relationships, and explicitly 
indicating missing values. 

Although tabular form recording has been known and practiced for 
hundreds and even thousands of years it has been used mainly for sum­
marizing facts and previous experience in statistical tables and 
accounting reports. Subsequent to the development of Boolean Algebra 
came truth tables, using tabu lar form for anal yzing logical implications . 
More recently tables have been used instead of narrative, flow charts, 
and logical equations to express complex decision logic . These are called 
decision tables to connote the subject and the form - - tabular form for 
recording decision logic. In the more elemental examples a decision 
table strongly resembles a statistical or financial table; consequently the 
form and terminology of those tables has been adopted . 

The following insurance premium deCision table illustrates the 
pertinent features; 

Health Excellent Excellent ! Poor 

Age ~25, ~35 ~ 25, < 35 ( ~65 

Section of 
Country East East ~ West 

Sex Male Female l Female 

Pl"emium 
Rate 

1. 27 1. 18 9 .82 

Policy 
200 , 000 100 , 000 

L imit 
( 10,000 

Upon examination, the decision table reveals that insurance 
premium rate and policy limit are a function of health , age, section 
of count ry, and sex. If the applicant is in excellent health, between 25 
and 35 years of age , from the East, and is a male, then his rate is $ 1. 27, 
and th" insurance limit is $200, 000. All. of the othe~ alternatives are 
then clearly set forth, one by one, across the table . 

To clearly show the essential elements of a decision table, i ts basic 
arrangement and tCT.min::>logy may be outlined as follows; 
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Decision Rule 

"\ 
T ABLE HEADER RULE HEADER , 

Condition ~OI dit ' on 

Stub E tr 

Action f'ct on 

Stub En ry 

The heavy lines serve as demarcation: CONDITIONS are shown above 
the heavy horizontal line. ACTIONS below. The ST U B is to the left of 
the heavy vertical line. ENTRIES to the right . A condition states a 
relationship. An action states a comma.nd. If all the conditions in a 
column are satisfied then the actions in that column are executed . E ach 
such vertical combination of conditlOns and actions is called a RU LE. In 
the same column with the entries for each rule. there may b e specialized 
data relating to that rule; t.his is called the RULE HEADER. Similarly. 
each table rna~r have certain specialized information which is called the 
TABLE HEADER. 

Using this general structure . an increasing number of companies 
have begun to state complex logical processes in decislon tabl es. Since 
product de8ign engineenng is a complex logical process, it seems 
reasonable to investigate this area for the pos sible use of decision tables . 

The design engineer has the task of determining product character­
istics a~ 2. function of customer specificaticns. With all the help of 
previolls designs , standard modele , and so on , he ia still hequer.tly 
requil'ed to apply certain rules ar.d formulas to develop special models 
or variations to \neet spec.ial customer requi.rements. 

The basic application of deciaion tables wOllld be to record design 
engineering logic so completely and accurately that,given a set of specifica­
tiems, a corr"ct set. of produ.::t characteristics could be generated. Such 
an engineering decision table would look like th,S: 



Customer 
Specification 
Names 

Product 
Characteristics 
Names 

Specification 
Values and Ranges 

Characteristic 
Values and 
Formulas 

4. 

The design of a product like a switchboard instrument might involve 100 
different specifications. 500 variable characteristics. with the logic 
expressed in 100 decision tables of 10 rules and 10 rows each. 

To illustrate the use of decision tables. an armature coil of a 
hypothetical switchboa rd instrument will be used. The customer 
specifications include possible values or ranges. 

Customer Specification Names 

Service 
Application 
Rating Units 
Rating Value 
Number of Pha.ses 
Scale Size (in.) 

The product characteristics are: 

Number of windings 

Specification Values and Ranges 

"AC'I or "DCII 
"Telnperature tl or 11Speed ll 

IllvlV" or "M~" 

10-900 
I - 3 
4 or 8 

Main Winding Number of Turns 
Damper Winding Number of Turns 
Main Winding Wire Material 
Dampe r Winding ;;'fire Material 
M . .::.in VI indir •. g Wi=e Diameter (mils) 
Damper Winding Wire Diameter (mils) 
Main Winding Number of Layers 

The first decision table develops certain common data (intermediate 
values ) which are n:eeded for subsequent decision tables. 
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Table III 

Rule No. 1 2 3 4 

c::. . '" "DC" "DC" !lAC" II AC" 

Application 11 Terr.perature" "Speed" 

Rating Units ".tvlV" IIMV" IIMV" li MA!! 

Number of 
Phases 

1 1 1 ~ l 

Type of 
"Moving Coil" 

"Electro t'Jnductive" 
Armature 

"Moving Coil" Dynamic" 
Number of 2 

I + Number 

Windings 
1 2 of Phases _.-

Next Table 2 2 2 2 

Rule 3 reads: if the Service is "AC", and the Rating Units is "MV ", and 
the Number of Phas es is 1, then the Type of Armature is "Electro 
Dynamic", and the Number of Windings is 2, and Go To Table 112 . 

Notice particularly four features which give decision tables potency 
far beyond the traditional truth table: 

(1) "Not pertinent" conditions can be ignored as shown by the 
blanks for Application in rules 3 and 4 . 

(2) Value limits can be used rather than each individual value 
such as in rule 4: Number of Phases greater than or equal 
to 1. 

(3) Formulas can be used to give many results where a mathe­
matical pattern exists as shown in Number of Phases in 
rule 4. 

(4) Actual values are either numeric or they are shown inside 
quote marks as "Moving Coil". 

Now turn to TabJe 112 ; every arnlature coil has a main winding; 
consequently its characteristics are determined first. These are all 
distinguished by an MW for M ain Winding. 
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Table 112 - Next Table 113 

Rule No. 1 2 3 

Type of Armature "Moving Coil" "Moving Coil" "Electro Dynamic" 
Rating Units "MVII IIMV" 
Rating Value 10-75 76-200 

MW Number of Turns 52 13 Formula 5 
MW Wire Material "Alum'1 ItAlum" II Cu" 

MW Wire Diameter 16 16 4 

MW Numbe r of Layers 4 1 MW Number of 
Turns /26 

Rule 2 r e ads: if the Type of Armature is "Moving Coil", and Rating Units 
is "MV", and Rating Value is between 76 and 200, then the Number of 
Turns is i'3,'"' and Wire Material is "Alum", and Wire Diameter is 16 mils, 
and Number of Layers is I, and go to Table 113 next . 

Features shown in this decision table include: 

(1) Direct indication of value range as in Rating Vah,e. 
(2) Use of a formula name as for Number of Turns. 
(3) Next Table indication in the table header . 

The final table covers the key chara c teristics for the damper winding. 

Table 113 

Rule No. 1 2 3 

Scale Size 4 4 8 
Rating Units "MV '1 IIMV" "MV" 
Rating Value 10-75 76-200 10-200 
Number of Windings ~2 >2 22 

DW Number of Turns 24 45 . 5~' MW Number of Turns 
DW Wire Material "Cu" IICU '1 "Alum" 
DW Wire Diameter 16 8 12 
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Out of necessity this instrument armature coil example was rather 
briefly outlined; it is intended only to convey the concept of tabular 
form as applied to one small part of the design engineering process. To 
solidify the meaning and us e of decision tables the reader may try a 
simple example: 

Determine the Armature Coil characteristics given the following 
customer specifications: 

Service - tlDCH 
Application - "Speed" 
Rating Units - "MV" 
Rating Value - 1 00 
Number of Phases - 1 
Scale Si ze - 8 

In Table Iii we find that Rule 2 is satisfied: 

Type of Armature - "Moving Coil" 
Number of Windings - 2 

Then we go to Table #2 where we determine that Rule 2 is the 
proper one: 

MW Number of Turns = 13 
MW Wire Material • "Alum" 
MW Wire Diameter • 16 
MW Number of Layers. 1 

Then in Table 1/3 we find that Rule 1/3 is the correct one: 

DW Number of Turns • 7 
DW Wire Material • "Alum" 
DW Wire Diameter = 12 

Without much argument. design engineering is one of the most 
appealing and intriguing of the many varied applications for decision 
tables. Here the potential of the decision table is not just in the dis­
placement of routine engineering effort. but in the significant and 
challenging task of improving product quality and performance while 
lowering cost. 

For the first time. the inherent design logic of a product can be 
unlocked from musty files of blueprints. bills of material. and engineer­
ing inntructions . It can then be readily communicated to succeeding 
functions of the business with a consequent cascading of its benefits to 
all areas. With this sort of contribution to make. the decision table. 
as a method for displaying product design logic stimulates better product 
design--in lees time--at lower cost. 
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Decision tables have attracted widespread interest in the relatively 

short 'time since the first siqnificant experiments were announced. Experi­

ence now indicates that they often have clear-cut advantaqes over other 

techniques in three rather diverse areas: systems analysis, documentation, 

and proqramminq. 

In this wper we display the concept of a decision table, cite several 

successful experiments, and suggest a course of action for further exploration 

of the advantaqes offered by decision tables. 

THE TABLE CONCEPI' 

The basic idea of how a decision table is orqanized and ul;led is fairly 

familiar to many, but perhaps not to all. Examples will suffice to demonstrate 

the principal concepts. 

Fiqure 1 il;l part of a table defininq the rate and policy limit of an 

insurance company, as a function of aqe, health, and section of country. 
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Rule 1 Rule 2 Rule 30 

Age ~ 25 ~25 ~65 

< 35 <: 35 

Health Excellent Excellent Poor 

Section of Coun East West West 

Rate/lOOO 1. 57 1.72 5.92 

Policy Limit 200,000 200,000 20,000 

agure 1 

The first decision rule can be paraphrased as follows: If age is greater than 

or equal to 25 and less than 35, and health is excellent, and section of country 

is East, then the rate per thousand is $1. 57 and the policy limit is $200,000. 

The underlined words are implied by the table structure. The either rules are 

alternatives to this one; thus it does not matter which rule is examined first: 

only one rule can be satisfied in a single pass through this decision table . 

The information in Figure 1 is shown in an exploded view in Figure 2, in­

dicating more clearly the parts of a table and the terms that are used to describe 

them. The double lines serve to separate conditions above the horizontal double 

line fr om actions below, and to separate the stub to the left of the vertical 

double line from entries on the right. The essential nomenclature is completed 

by adding at the top a title section, called a table header, and by adding a 

rule header over the entries. 
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STUB 
Rule 1 Rule 2 Rule 30 

Age ::"25 ~25 ~65 
<35 <35 

CONDITIONS / . ~ - ~xc~llent Excellent 

, II East West 
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• Health 
L- -- --- " 
lSection of -Country 
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West 
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----
.---

RULE 
'- - - ----.: 

-- "",,-, -----
~- ", ----- ---- -----.: \. "'- " " -" -,- ------.- ------ ,-, '" .... - ", ----','-..... ~ ... ,...... ..-~ 

~-•. _ - " , J - --, ~',t~~:aoo-I-~~ooo~=i~! I 5.92 

,Rate/lOOO t:- -------. 
IPolicy Limit 

ACTIONS 
20,000 

STUB 
ENTRY 

f" 

Figure 2. Exploded view of the table of Figure 1. 
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Tables may be used in a slightly different form as shown in Figure 3, 

which is a table documenting the decision logic for a charge desk at a depart-

ment store. 

TABLE: CREDIT Rule 1 Rule 2 Rule 3 Rule 4 
Credit limit y N N N is o. k. 
Pay experience y N N i. [avora ble 
Special clearance y N is obtained 

Approve order · X X X 

Return order 
X to Sale. 

Figure 3 

The first rule reads: If credit limit is OK then approve the order. The 

second rule reads: If credit limit is not OK and pay experience is favorable 

then approve the order. The other two rules can be read just as easily as 

these. 

APPLYING DECISION TABLES 

Decision tables seem to offer significant advantages in three areas: 

analysis, documentation, and programming. 

They were originally developed for system analysis, as an alternative to 
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flow charting. In addition to aiding in effective analysis decision tables also 

.proved useful for communicating the system logic thus, serving as a docu­

mentation technique. Progra=ers, seeing the form, began using it for 

writing source programs, recognizing that with the clear structure, a compiler 

could be readily prepared. 

A few examples of the use of tables in the areas of analysis, dO~)lID.entation, 

and programming will indicate how successful field experiments have been. 

Analysis 

Mr. Leo O'Leary, ·.a member of ·IBM's Applied Programming staff, was 

faced with a di~icult logical problem in the data division of one of IBM's COBOL 

processors. He was reluctant to use normal techniques for doing this analysis 

and progra=ing job because of its complexity. He felt he needed a powerful 

organizational tool in order to see clearly the numerous alternatives. He had 

no extensive experience with the use of decision tables, but he had attended a 

one-day semiri"ar on the subject and decided to give it a try. 

After some preliminary. study he discovered that there were only seven 

independent conditions in the problem, and that each of them was of a binary 

nature. He mechanically wrote down all 128 combinations of these seven 

variables in the form of a table. He then proceeded to discard the combina­

tions that were impossible because of the construction of the language or be­

cause they had been handled by previous processing runs. During this process 

he discovered a number of cases that called for the same actions; these he 
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grouped together 'by using" not pertinent" entries in the table. For each 

rule he wrote the actions required and discovered, somewhat to his slU'prise, 

that there were only 20 distinct actions required. The completed table had 

70 rules and 20 actions; by the way the table had been constructed, he was 

certain that all relevant combinations had been handled properly. This table 

, provided the basis for a very simple transition to machine code, in a manner 

that is quite interesting in itself but unfortunately not relevant here. The 

soundness of the whole approach was completely justified by the speed with 

which the resulting program was checked out. 

The original space 'estimate for this job had been 1200-1500 positions; 

the completed program took 530. Analysis and machine coding required four 

days, and the job was checked out in just one day. 

As an analysis technique they seem to be more manageable than flow 

charts or narrative descriptions. They present logical alternatives in an 

easily-understood graphical form. Since the alternatives are so clearly dis­

played, they are easy to check for completeness and consistency, leading to 

thoroughness and accuracy. 

Documentation 

Mr. John Czerkies, of IBM Corporate Data Processing, had just been 

informed that one of his programmers was to be promoted and would be leaving 

within a week. The programmer had just finished his seventh program for 

their 1401; none of these programs had yet been documented to the point where 
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another proqrammer could take over. While Mr. Czerkies first considered 

,asking the programmer to prepare the usual flow charts, he rejected this 

possib1l1ty because he estimated the job would take three weeks. He had just 

heard a talk on decision tables and while he had no experience with them he 

wondered whether they might not provide a solution to his problem. He spent 

one hour with the proqrammer, instructing him in decision tll-ble technique 

and selecting a particular table format. Mr. Burton Grad, one of the 

developers of the decision table concept, spent half an hour with them to check 

out their approach, which seemed good. 

TM proqrammer than went to work. In just two days he wrote the 

decision tables necessary to display the logic of all seven proqrams. Since 

then, the proqrams have required modification and correction. The proqrammer 

taking over, using just the decision tables, in cOnjunction with the machine 

listings has had no trouble making the changes. 

To indicate how effectively a decision table can document system logic, 

consider the cbmmon file maintenance problem: processing a detail file against 

a master file, both in sequeI:1ce on identification number. Special actions are 

required at the beginning and end of each file, and the various combinations of 

high, low, or equal must be taken into account. Figure 4 is a decision table 

showing the logic of this problem. 
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Rule 1/ 
TABLE: Update 01 02 03 04 05 06 07 08 

Star t Y N N N N N N E:lse 
End of Detail Y Y N N N N 
End of Master Y N 'y N N N 
Detail vs. Master < > .. 
Detail is an 

"addition It y Y 

Do Error R.outine X 

Move Master to 
New MJ.ster x 

Move D e ta il to 
New Master x x 

SP.t Addition Switch On On Off 
Write MastcH x x 
Read Master x x x 
Read Det.\iJ. x x x x 

Go to Tabl" 
Up-

End 
Up -

Chg. Chg. 
Up - Up-

1" 'ltP date date Chg, date 

Figure 4 

Rule 1 states the starting condition. Rule 2 handles the end of job 

conditions. Rule 3 describes the situation when the end of detail has been 

reached, but not the end of muster. Since there can be no further changes, 

additions, or deletions to the original master, the actions are to write the up-

dated master from the master area, read another master, and then return to 

the beginning of the table. 

In Rule 4, the end of master has been found, but not the end of detail. 

Rules 5, 6, and 7 are concerned with cases where neither the detail nor the 

inaster file has ended. ,Rule 5 considers th7 event when the detail is less 
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than the master. In Rule 6 the detaii is greater than the master. Rule 7 

·covers the case where . master and detail are equal. 

The final rule, Rule 8, is the ELSE situation. When this occurs some­

thing has gone wrong, since allleqitimate possibilities have already been 

examined. Rule 8 will take care of cases involving sequence errors in the 

master file and certain types of sequence errors in the detail file. 

This example shows clearly how a decision table may be valuable for 

system documentation. Decision logic cannot be presented as concisely with 

a block diagram. Drawing a block diagram would take longer than developing 

this table. There is a much higher probability that the block diagram would 

contain logic errors and omissions. Decision tables can be read by other 

people with a minimum of training and explanation. 

Programming 

Eastman Kodak has used tables extensively in many areas of data pro­

cessing. For purposes of comparing tabular-form programming with 

conventional methods, two similar problems were prepared by equally experi­

enced programmers. Mr. E. O. Althoff, of the Eastman Kodak data pro­

cessing staff, provides the time comparison shown in Figure 5. 
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Autocoder-level Programming Tabular-form Programming 

Analysis 80 hours 40 

Learning 40 21 

Flow Charting 62 44 *Includes time 

Coding 136 39 
to write an inter-
pretive table pro-

Testing 174 21 
cessing routine. 

492 198* 

Figure 5. Comparison of times for programming two equivalent jobs using 
standard programming methods and tabular programming. 

A number of additional experiments have produced similar savings. Based 

upon this, Mr. Althoff indicates that future work in his group will utilize 

tabular-form programming as a regular practice. 

Mr. Harry Cantrell, Manager, Data Processing for the Large Steam 

Turbine-Generator Department of the General Electric Company, after careful 

investigation has instructed his computer people to use decision tables as their 

basic programming system. 

Mr. Cantrell indicates that they have completed twenty-five 704 applications 

and are extremely enthusiastic about the savings in time that have resulted. 

They are getting 40 to 80 checked out program steps per hour. 

As a programming method, decision tables used with a suitable language, 

reduce program definition, coding, and debugging time. By rearranging the 

rules in a table, efficient programs can be produced. Tables also provide a 

natural method of segmenting the program leading to easier debugging and 

maintenance. 
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THE IBM 1401 TABULAR PROORAMMING SYSTEM 

During the last year IBM has developed an experimental tabular pro-

gramminq system including a processor to compile source program tables 

into machine language instructions. This system is currently designed to 

run on a 4000 character 1401 with a 1405 ( RAMA~ disk file). 

The language is built on the foundation of the decision table concepts 

presented earlier. Figure 6 shows a typical 1401 decision table. 

OP NA.ME. OP NAME OP NAME OP NAMe op N"M~ OP NAMe 

AG.E L E loS. E>.". ~,R z.J', "R 2..r. 
S,E.lC. E.Q, ' .... ' ' .~ .' 
ACDNTS E,~ D .. AD 

;.~,T, !l,AT!!' t.. 1 • . srrcAG - Isp ,R FA ,e. 
S.~,r. ID.I/,AA T,. E,Q, IR.A ,TE IA,A,.,.,.- IRA,"" E IR.A.T.£'. 

' •• TE ''',AT E,~·" I~ Iv x, x 

Figure 6 

Rule 1 reads: If age is less than or equal to 25 and sex is male, re­

gardless of number of accidents then increment rate by the risk factor and 

set punch rate equal to rate and write a rate card. 

This table illustrates the use of abbreviations for relational operators 

(LE, EQ, GR); the ability to include literals; a few of the English language 

action operators (SET ... EQ, WRITE); the ability to specify two-address 

arithmetic in the body of a procedure table; and the ability to mix extended 
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entry, where the actions "extend" into the action area, with limited entry, 

where the entire action is written in the stub and X's are placed in the entry 

portion. 

Some of the other features of the lanquaqe may be listed in summary 

fashion. A data description table is used to specliy the characteristics of 

files, records, and fields. It may also contain specifications for constants 

and autopoint arithmetic computations, in a simple FORTRAN-like form. The 

full editinq power of the 1401 is easily available . Word marks in the 1401 

are conveniently handled by a LAYOUT operator that resets word marks in 

accordance with a designated record format; li a file has only one record for­

mat, no attention to word marks is required. Tables may be executed on a 

"DO" basis from other tables, allowing closed subroutines. The sequence of table 

execution is controlled by GO TO action commands. Extremely large pro-

qrams can be written, since the tables are stored in 1405 RAMAC and brought 

to core storage as needed. Because of this automatic program storage al­

location feature, the programmer need not be concerned about program storage 

problems--even in a machine with small core capacity. 

At this time (November 10, 1961), the 1401 Tabular: Programming System 

is being evaluated in the field. The results of this work will be included in 

the final version of the paper and discussed in the oral presentation at the 

Conference. 
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SUMMARY 

There has been much progress made in the short time since decision 

tables were first publicized. Widespread field experiments have demonstrated 

their strength in analysis, documentation, and programming. 

We feel that decision tables deserve even wider study and application, 

and that such work will lead to significant improvements in the power and ap­

plicability of the technique. In particular, we would like to emphaSize that 

the structure of a decision table 1s distinct from the language used within it. 

Any suitable language can be used. Furthermore, the table structure concept 

is distinct from the characteristics of any larger programming system of 

which it may be a part. 

We feel that the time is ripe for full-scale investigation of how decision 

tables can best be combined, in many different ways, with other types of pro­

gramming systems. We do not propose tables as the replacement for all 

other systems,. but we do feel that tables can be used with other concepts -­

perhaps in ways not now envisioned -- to produce a combination much more 

powerful than any single part. 
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Decision Table Procossor (DATP ) 
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Presentation 1-1aterial on DATP by Dave Pfuetze 
':+ I ~ J-).f.~ 

0 ....... 
J.F. Bult 

The reference document describing the Decision Table processor 
was submitted to David Low of the L.A. Scientific Center for 
evaluation. Uis conclusions are summarized in the following: 

The general idea is good. However, certain points need 
clarification, like the testing procedures. The use of 
a 3270 is desirablo, but technical difficulties in the 
design and implementation must be expected in the pre­
sence of tables larger than the size of the screen. It 
is felt that the table entries should not be restricted 
to YES/NO values and should allow for numeric values. 

The resource requirements seem to be seriously under­
estimated. In particular, the definition of a language 
is not an easy task. 

D. Low recommends that a feasibility study, if any, be 
based on the use of an existing interpretive language 
(e.g., APL) so as to cut down the cost of the study by 
skipping ~le translation part of the project. 

I reconwend tilat the L.A. Scientific Center (D.Low) be associated 
with any study or developmen~ of this project, since knowledge 
and exp~rience in the subject matter reside there, while no such 
talent can be found in Development. 

A.A. Dubrulle 

AAD:kep 
cc: Mr. B. Grad "'-

Mr. D. Pfuetze (Raleigh) 


