A 2450 10/62

The views, conclusions, orf recommendafions expressed in this document do not neces o
sarily reflect the official views or 105 of agencies of the United States Government, Mo 2288{ 000[’ 00
This documant was uroduci:d by SDC in performance of contract u.s. GO T CONTRRCT""”. QA«A@‘

C. J. Shaw

TECHMICAL A\
E. H. Ja.col&‘ AMZ

o E. H. Jacd{g\ Xga(/
a working paper D. Drukey

Systam Davelopment Corporation /2500 Colorado Ave./Santa Monica, California DATE 4-12-65 PMGE 1 0r 1k ra

b /15

DECISION TABLES--AN ANNOTATED BIBLIOGRAPHY

ABSTRACT

Decision tables allow complex decision rules to

be represented in easily grasped, tabular form,
meking it easy to see what actions are to be

taken for each possible combination of conditions.
This bibliography contains a brief introduction

and 42 references, mostly annotated, to the subject.

Although this document contains no classified information, it has not besn cleared for
open publication by the Department of Defsnse. Open publication, wholly or in part, is
prohibited without the prior approval of the System Development Corporation.

12 April 1965 2 ™-2288/000/00

ANIRODUCTION

A decision table is a way of representing complex decision rules in an easily
grasped, tabular form, which makes it easy to see vhat actions are to de
taken for each possible combination of conditions. Let us look at a typicel

decision rule.

if CONDITION-A and CONDITION-B and
CONDITION-C hold, them do ACTION-1
and ACTION-2, and ACTION-3.

This same rule could be expressed as & column in a decision table.

rule

CONDITION-A ; 4

CONDITION-B Y

CONDITION-C X

ACTION-1 X
ACTION-2 X
ACTION-3 X

In such a table, the top rows represent conditions, the bottom rows represent
actions. The entries in a column corresponding to a rule are chosen from the

following symbols:

symbol meaning
i § Yes, this condition must hold for the rule to apply
N No, this condition must not hold for the rule to apply

- don't care if this condition holds

X do this action if the rule applies

(blank) | do not do this action if the rule applies

With these symbols, we could add other rules to the decision table.

12 April 1965

™-2288/000/00

CONDITION-A Y|Y|N]|-
CONDITION-B Y|-|N|-
CONDITION-C Y|N| -|-
ACTION-1 X X
ACTION=2 x|x
ACTION-3 X

Conventionally, the rules are examined one at a time from left to right, only
the first applicable rule is applied, and the actions are taken one at a time

in the order they are listed.

Other conventions are feasible, though.

Decision tables where the entries are limited to the symbols used in the table
Extended entry tables are poesible

above are called limited entry tables.

vherein part of the condition or action is entered in the rule columns. The
following taxonomy is an example of an extended entry decision table.

number of legs =h =l =k > ”
length of nose long short long - =
lengih of neck short long long - -

then animal is |} elephant giraffe hallucination | centipede unknown
go to zookeeper | zookeeper | psychiatrist | exterminator | biologist

Extended entry tables can be much more compact than limited entry decision
tables, as you would see by expanding the table above into limited entry form.

12 April 1965 L T™-2288/000/00

BIBLIOGRAPHY

Armerding, G. FORTAB: A DECISION TABLE LANGUAGE FOR SCIENTIFIC COMPUTING
APPLICATIONS. in Proceedings of the Decision Tables S sium, pages 81-87.
20-21 September 1962. Also RAND Corp., RM-3300-PR, 3] pages, September 1962.

Scientific computer programs, like business programs, often involve programmed
decision logic. Decision tables, which have seen use in business and commer-
cial computer applications, can alsn be applied to scientific and engineering
problems. FORTAB is a decision table language based on the FORTRAN scientific
computing lenguage. Programs written in the combined FORTAB and FORTRAN lan-
guages can be compiled for a FORTAB pre-processor program which has been con-
structed for the IBM TOS0 computer. Initial experiments conducted using the
FORTAB language indicate that a decision table language added to a scientific
computing language results in a powerful combination of programming tools.

Brown, L.M. DECISION TABLE EXPERIENCE ON A FILE MAINTENANCE SYSTEM. in
Proceedings of the Decision Tables Symposium, peges 75-80., 20-21 September 1962.

A decision table language and computer program pre-compiler were developed at
the Insurance Company of North America to facilitate design, implementation
and maintenance of a large file maintenance program. The results of this
effort indicate that decision tables can have application over the entire
systems design-programming area. Decision tables also force a disciplined
modularity in the design of a program which can enable a compiler to accom-
plish some of the program organization function.

Clakins, L.W. PLACE OF DECISION TABLES AND DETAB-X in Proceedings of
the Decision Tables Symposium, peges 9-12. 20-21 September 1962.

Cantrell, H.N., J. King and F.E.H. King. LOGIC-STRUCTURE TABLES. in
Communications of the ACM, Vol. 4, No. 6, pages 272-275. June 1961.

Logic tables are an excellant way of developing and expressing the logic re-
quired in procedures, operations, systems and circuits. A set of rules for
writing and using logic tables is explained by means of some simple examples.
Then the logic structure of a vending machine is given in which two logic
tables are used. Logic tables are two-dimensional in nature, enabling us to
fully express and consider both the sequential and parallel aspects of logic.
They can be compiled directly into a computer program and. so eliminate the
need for flow charting and hand coding.

12 April 1965 5 ™-~2288/000/00

Cantrell, H.N. COMMERCIAL AND ENGINEERING APPLICATIONS OF DECISION
TABLES. in Proceedings of the Decision Tables Symposium, pages 55-61.
20-21 September 1962.

This paper covers our experience with decision tables, from the time we first
heard about them through experiments in different application areas, to our
present rather widespread use of tables in systems design and programming.

We will discuss some of the difficulties we have had in using decision tables
and some of the advantages we think we have gained from them.

DECISION TAELES-A SYSTEMS ANALYSIS AND DOCUMENTATION TECHNIQUE. IBM
Corp., F20-8102, 21 pages. 1962.

Describes the basic concepts: of decision tables and a minimum set of conven-
tions for thelr use in pystems analysis, procedure design, and documentation.
Such tables provide informetion in a concise format that is easy to read and
understand. The tabular approach is used to express complex decision logic
in a manner that encourages the analyst to reduce a problem to its simplest
form by arranging and presenting logical alternatives under various condi-
tions, While the concepts in the text are presented on a level for compre-
hension by students in basic computer courses, the techniques are epplicable
at all levels of scphistication by everyone in a data processing environment,

DECISION TAELES, PRACTICE PROBLEMS AND SOLUTIONS. IBM Corp., R25-1685-1,
11 pages. 1963,

These four practice problems, with solutions, are designed to aid the student
in learning how to use and prepare limited entry Decision Tebles.

DETAB-X, PRELIMINARY SPECIFICATIONS FOR A DECISION TABLE STRUCTURED
LANGUAGE; CODASYL Systems Group, 1962.

The Systems Group of the Development Committee of the Conference on Data Sys-
tems Languages (CODASYL), as a first step in creating a data-processing lan-
guage based on decision tables, has developed DETAB-X, a decision table lan-
guage based on COBOL-6l. Because decision tables are structured differently
from the free-form procedure statements of COBOL-6l, some modifications to
COBOL-61 are required; however, these are held to & minimum and are of such

a nature as to enable a relatively simple preprocessor to convert the decision
tables statements to COBOL-6l statements which can then, in turn, be processed
by a COBOL-61 compiler (or processor).

12 April 1965 6 ™-2288/000/00

The benefits to be derived from a tabular format are many. First, it is most
important that, by the very nature of the table format, omissions in problem
logic are easily spotted. Second, the analysis inherent in listing the condi-
tions upon which a given action is based tends to clarify complicated parts

of a problem. Third, the format simplifies a total systems organization
through modularity. Fourth, this format is easy to use and for others to
understand. In addition, the Group believes that the tabular format can be

a significant tool in the building of compiling systems themselves.

This DETAB-X manual has been prepared as & language specification reference
publication, supplementary to the official COBOL-61 manual published by the
United States Govermment Printing Office. It provides sufficient information
to permit experimentation by many COBOL users.

Dixon, P. SPECIAL REPORT, DECISION TAEBLES SYMPOSIUM. in Standard EDP
Reports, Vol. 1, pages 23:030.100-23:030.601. December 1962.

Dixon, P. DECISION TAELES AND THEIR APPLICATION. in Computers and
Automation, Vol. 13, No. L, pages 14-19. April 196k,

Describes the fundamental principles of decision table design, with examples.
Indicates the power and applicability of the technique to increese the effi-
ciency of systems analysis and programming. Includes directions for further
development and an eleven=-point summary of the advzntages.

Egler, J.F. A PROCEDURE FOR CONVERTING LOGIC TABLE CONDITIONS INTO AN
EFFICIENT SEQUENCE OF TEST INSTRUCTIONS. in Communications of the ACM, Vol. 6,
No. 8, pages 510-514. September 1963.

Evans, 0.Y. REFERENCE MANUAL FOR DECISION TABLES. IBM Corp. September
1961.

This manual is written to provide a base language (point of departure) for
using decision tables. The language is not all-inclusive and in many in-
stances has been arbitrary in the interest of simplicity. It provides a
language that interested persons can use to experiment with decision tables
in documenting problem definitions. This language is very rigorous in order
that it may be used at the detail level of documentation. People experi=-
menting at higher levels of man to man communication can adjust this rigor
to their needs.

12 April 1965 T ™-2288/000/00

Evens, 0.Y. A METHOD FOR SYSTEMATIC DOCUMENTATION--KEY TO IMPROVED DATA
PROCESSING ANALYSIS. In Computer Applications=-1961, The Macmillan Co.,
New York, pages 1h-34. 1962,

Evans, 0.Y. GENERAL INFORMATION MANUAL, ADVANCED ANALYSIS METHOD FOR
INTEGRATED ELECTRONIC DATA PROCESSING. IBM Corp., F20-8047, 21 pages. 1960.

The analysis method presented here can be best described as a systematic
method for collecting, recording and maintaining all pertinent information
regarding a complete data processing system. The method is particularly
useful in that it requires a complete explanation of the characteristics and
utilization of each piece of data involved in the system. In addition, it
introduces a tebular format for the definition of procedures.

Among the advantages gained through the use of such a documenting analysis

are:

1. A definite and orderly method of documenting analysis data 1s achieved.

2. The analysis is virtually independent of the processing media (i.e.,
manual, unit record, or high speed computer).

3. The tabular approach to procedure definition aids the analyst in visual-
izing the numerous relationships and alternatives.

L. The documented analysis and the cross-reference listings permit the data
rules to be readily reviewed for omissions and inconsistencies before
they are buried in detailed flow charts, control panel wiring and tech-
niral machine instructions.

. TL provides flexibility in changing any portion of the analysis.

. By requiring the frequency of execution of a procesa, the best processing
medium, procees organization, programming and equipment requirements can
be more readily determined.

T. The analysis provides material for auditing procedures.

This method of analysis was conceived and experimented with in the fall of
1958, The experiment was to restate an analysis of a computer process which
contained 200 typewritten pages of parrative, tables, flow charts and block
diagrams. The analysis was characterized by omissions, inconsistencies and
errors. The restated analysis was depicted in tabular format on five 3' x 5'
sheets. From this experiment the above and other advantages were gained.
Many other concepts with great potential in the design of automatic program-
ming systems have resulted.

Grad, B. TABULAR FORM IN DECISION LOGIC. 4in Datamation, Vol. 7, No. 7,
pages 22-26. July 1961.

Tabular form has shown promise of being an effective way to 'organize and pre=-
sent decision logic for systems analysis and computer programming. Experience

12 April 1965 8 ™-2288/000/00

to date clearly indicates the need to determine its range of application and
asgess its future potential. This report has the dual purpose of sketching
the historical background on the development of tabular form, and indicating
its possible advantages.

Grad, B. STRUCTURE AND CONCEPT OF DECISION TABRLES. in Proceedings of
the Decision Tables Symposium, pages 19-28. 20-21 September 1962.

Decislon Tables, a recent development, provide a means of presenting complex
decision logic in a way that is relatively easy to prepare and understand. A
decision table shows the specific alternative courses of action to be taken
under various combinations of conditions. This permits an analyst or pro=-
grammer to concisely and completely record logical decision rules for analysis,
documentation and programming.

Hawes, M.X. THE NEED FOR PRECISE PROBLEM DEFINITION. in Proceedings of
the Decision Tables Symposium, pagee 13-18. 20-21 September 1952.

The need for precise problem definition is one of the greatest facing the
users of electronic computer systems today. Experience indicates over 65% of
the costs asgsociated with programming data processing problems can be attri-
buted to this need. Looking shead to real-time information processing sys-
tems, the need becomes even greater and, furthermore, must be handled at the
systems level.

Hawes, M.K., et. al. DECISION TABLE TUTORIAL USING DETAB-X. CODASYL
Systems Development Group, 49 pages. 1962.

Holstein, D. DECISION TAELES, A TECHNIQUE FOR MINIMIZING ROUTINE
REPETITIVE DESIGN. in Machine Design, Vol. 34, No. 18, pages 76 -79. 2
August 1962.

IBM 1401 DECISION LOGIC TRANSLATOR (1401-SE-05X), APPLICATION DESCRIP-
TION. IBM Corp., H20-0063-0, 2 pages.

This program accepts decision tables written in a FORTAN-oriented language
and automatically translates them into a FORTRAN II source program, giving

12 April 1965 9 ™-2288/000/00
pertinent diagnostics in the process.

IEM 1401 DECISION LOGIC TRANSLATOR (1401-SE-05X), PROCRAM REFERENCE
MANUAL. IBM Corp., H20-0068-0, 54 peages.

Design logic is captured using a FORTAN-oriented decision table langusage.

The logical statements of this language are the input to the Decision Logic
Translator system. After decoding the statements of a table, the system
sorts them according to commonalities in rows and columns in order to produce
an efficient output program. The sorted rules are then translated into
FORTRAN statements. This process is continued table by table until all tables
of any single run are translated into FORTRAN statements.

Kavanagh, T.F. TABSOL, A FUNDAMENTAL CONCEPT FOR SYSTEMS-ORIENTED LAN-
GUAGES. in Proceedings of the Eastern Joint Computer Conference, Vol. 18,
pages 11T7-136. 13=15 December 1960.

Lack of efficient methods for thinking-through and recording the logic of
complex information systems has been a major obstacle to the effective use of
computers in manufacturing businesses. To supply this need, this paper intro-
duces and describes decision structure tables, the essential element in
TABSOL, a tebular systems-oriented language developed by the General Flectric
Company., Decision structure tables can be used to describe complicated,
multi-variable, multi-result decision systems. Various approaches to the
automatic computer solution of decision structure tables are presented. Some
benefits which have been observed in applying this language concept are also
discussed. Decision structure tables appear broadly applicable in information
systems design. In addition, they are of interest because they revise many
earlier notions on problem formulation and systems enalysis techniques. De-
cision structure tables will be an available feature in GECOM, General
Electric's new General Compiler, which will be first implemented on the GE 225.

Kavanagh, T.F. TABSOL--THE LANGUAGE OF DECISION MAKING. in Computers
and Automation, Vol. 10, No. 9, pages 15, 18-22. September 1961.

Kavanagh, T.F. MANUFACTURING APPLICATIONS OF DECISION STRUCTURE TABLES.
in Proceedings of the Decision Tables Symposium, pages 89-97. 20-21 September
1962.

12 April 1965 10 ™-~2288/000/00

Kirk, H.W. USE OF DECISION TABLES IN COMPUTER PROGRAMMING. in Communi-
cations of the ACM, Vol. 8, No. 1, pages L1-43. January 1965.

A decision table is e tabular form for displaying decision logic. Decision
tahles have many inherent advantages from the programming point of view: (1)
amount of computer memory used is drastically reduced, (2) programming is
simplified, and (3) documentation is brief and clear.

The technique to be illustrated puts these advantages to use in that it en-
ables one to program directly from a decision table. The technique is based
on the creation of a binary image of a limited entry decision table in com-
puter memory. A binary image of a given set of input conditions can also be
created. This data image is used to scan the decision table image to arrive
at the proper course of action.

Klick, D.C. TABSOL: A DECISION TABLE LANGUAGE FOR THE GE 225. in Pre-
prints of Summaries of Papers Presented at the 16th National Meeting, Asuu»i-
ation for Computing Machinery, paper 10B-2. 5-8 September 1.1 .

Lombardi, L.A. A GENERAL BUSINESS-ORIENTED LANGUAGE BASED ON DECISION
EXPRESSIONS. in Communications of the ACM, Vol. 7, pages 10k-111. February
196k,

Montalbano, M. TABLES, FLOW CHARTS, AND PROGRAM LOGIC. in IBM Systems
Jourpal, Vol. 1, pages 51-63. September 1962.

Decision tables are introduced with reference to business data processing. A
method of verifying both the completeness and consistency of a problem de=-
scription is given. The conversion of tables to computer programs is con=-
sidered and a technique of obtaining a computer program which minimizes the
branching requirements with respect to both memory and execute time is in-
cluded. Program debugging and program modification are also discussed.

Naramore, F. APPLICATION OF DECISION TABLES TO MANAGEMENT INFORMATION
SYSTEMS. in Proceedings of the Decision Tables Symposium, pages 63-Tk.
20-21 September 1962.

Since 1958, Sutherland Company has been employing decision tables for docu~-
menting management information systems. Major advantages realized through

12 April 1965 11 ™-2288/000/00

these techniques may be enumerated as follows: (1) The ability to clearly and
concisely state system requirements totally independent of procedures and
processing media; (2) A uniformly high quality in the statement of system
requirements; (3) The ability to associate defined decisions with responsible
organizational entities; (4) An effective method for man-to-man communications;
(5) The ability to establish an information repository for system specifica-
tions. The composite result may be summarized as the capability for complete
and accurate definition of the "vwhat" of a system, independent of, but relat-
able to, the myriad of procedural details constituting the "how.”

Nickerson, R.C. AN ENGINEERING APPLICATION OF LOGIC-STRUCTURE TAHLES.
in Communications of the ACM, Vol. 4, No. 11, pages 516-520. November 1961.

Polleck, S.L. and K.R. Wright. DATA DESCRIPTION FOR DETAB-X (DECISION
TAELE, EXPERIMENTAL). RAND Corp., RM-3010-PR, 46 pages. March 1962.

Pollack, S.L. DETAB-X: AN IMPROVED BUSINESS-ORIENTED COMPUTER LANGUAGE.
RAND Corp., RM=3273-PR, 18 pages. August 1962.

This Memorandum describes DETAB-X (Decision-Tables, Experimental). In an
effort to illustrate some of the features of DETAB-X, it is compared with
COBOL-61 (Common Business-Oriented La.nguage), using examples of data and
procedures written in both 1anguaaea

Pollack, S.L. WHAT IS DETAB-X? in Proceedinge of the Decision Tables
Symposium, pages 29-39. 20-21 September 1962.

DETAB-X is an experimental language that combines COHJL-G]. and decision
tables. It is a proposed supplement to, not a replacement of, COBOL-61.

Pollack, S.L. ANALYSIS OF THE DECISION RULES IN DECISION TARLES.
RAND Corp., RM-3669-PR, €0 pages. May 1963.

This memorandum develops a theoretical structure for decision tables. The
theorems developed in this paper provide a basis for system analysts and pro-
grammers to verify the logic of their analysis. Rules are established that
enable them to insure the following: (1) that all possible combinations of

12 April 1965 12 ™-2288/000/00

conditions for the problem have been considered; (2) that the system does not
prescribe different actions for the same situation; and (3) that the system
describes each situation and its action once only.

The immediaste effect of achieving the above is an improvement in computer
programming by reducing the number of computer instructions, shortening com-
puter running time, and decreasing programming and debugging time. In the
future, we can expect computers to take over the task of checking decision
tables for completeness, redundancies, and inconsistencies, using the rules
developed here. The text also presents an extension of decision table theory.
Most current decision tables consist of decision rules for which every condi-
tion in a set of conditions must be satisfied before a series of actions can
be taken. This memorandum provides a basis for having additional decision
rulegs in which a series of actions can be taken if any one of a set of speci-
fied conditions is satisified. This type of decision rule can be extremely
useful in editing and information retrieval. This extension should prove
valuable in many data processing areas.

Pollack, S.L. HOW TO BUILD AND ANALYZE DECISION TABLES., RAND Corp.,
P-2829, 17 pages. 12 November 1963.

Describes the conversion of system applications to decision tables, a process
which entails making declsions on how large the individual tables should be
and wvhat system parameters should be included. A technique for reducing the
number of written decision rules is also described.

Once decision tables are written, they should be checked for completeness and
consistency. This paper will describe and illJustrate the rules that enable
system analysts to insure the following: (1) that all possible combinations
of conditions for the problem have been considered; (2) that the system does
not prescribe different actions for tne same situation; and (3) that the
gystem describes each situation and its actions once only.

Pollack, S.L. CONVERSION OF LIMITED-ENTRY DECISION TABLES TO COMPUTER
PROGRAM. RAND Corp., RM-4020-PR, 15 pages. May 196k.

Decision tables are useful for describing complex decision rules based on
given sets of conditions. Algorithms that can efficiently convert the tables
into computer programs will extend the usefulness of decision tables to com-
puter users. This Memorandum describes two such algorithms, based on work
done by M.S. Montalbano and extended here to handle dashes and ELSE-decision
rules. The first algorithm minimizes the computer storage space required for
the resultant program, the second minimizes computer running time. During
the conversion process, both pinpoint any contradictions or redundancies
among the rules in a table.

12 April 1965 13 ™-2288/000/00

A necessary adjunct to minimizing computer storage or running time is the
allowable reduction of the number of rules in a decision table. This Memo-
randum describes a technique to effect this reduction for pairs, triplets

and quadruplets of rules. The system analyst will find this method most help-
ful for pairs, and generally unprofitable for n-tuplets greater than three.
The technigue can be done manually or accomplished by the computer as a pre-
lude to executing one of the two algorithms.

Pomeroy, L.K. Jr. ROAD MAPS TO DECISIONS. in Navy Management Review,
Vol. 10, No. 1, pages 4-5. January 1965.

PROCEEDINGS COF THE DECISION TABLES SYMPOSIUM. Sponsored by the CODASYL

Syg;ems Croup and the Joint Users Group of ACM, 116 pages. 20-21 September
1962.

This document contains the proceedings of a Symposium on Decision Tables pre-
sented September 20-21, 1962 in New York City. The Symposium was co-sponsored
by the Systems Group of CODASYL, and by the Joint Users Group.

Schmidt, D.T. and T.F. Kavanagh. USING DECISION STRUCTURE TABLES. in
Datamation, Vol. 10, Nos. 2 and 3, pages 42-49 and 48-54, Fedbruary and March
1635.

These articles emphasize manufacturing applications because most of our ex-
perience is in this area. Decision structure tables coupled with computers
are paying off because they allow you to: define and think through manufac-
turing problems, often providing new insights and understanding which have led
to improved performance; formulate and record decision systems for subseguent
use and communication; simplify computer implementation where mechnization is
desirable; get manufacturing to using computers.

There is a wealth of potential computer applications in manufacturing. They
offer great opportunity. Without structure tables, application costs would
be exorbitantly high. It is easy to learn how to use decision structure
tables, and, further, the user requires minimum computer knowledge and back-
ground. Later in these articles a structure table application using computers
is described--PRONTO.

12 April 1965 14 T™-2288/000/00
(Last page)

TABSOL APPLICATION MANUAL, INTRODUCTION TO TABSOL. GE Computer Dept.,
CPB-14TA, 23 pages. June 1961.

TIME TO CONSIDER DECISION STRUCTURE TABLES AND EDP DESICN SESSIONS. in
EDP Analyzer, Vol. 1, No. 4, Canning Publications, Inc., 10 pages. May 1963.

Decision structure tables provide a powerful tool for systems analysis, for
prescribing clerical procedures, and for programming. Design sessions can
help develop the vitally necessary support of middle management for your EDP
program. What's more, both are easy to use.

Wright, K.R. APPROACHES TO DECISION TABLE PROCESSORS. in Proceedings
of the Decision Tables Symposium, pages 4l-4k., 20-21 September 1362.

Discusses the four basic types of processors or methods of converting decision
tables to a machine language. These are (1) the manual processor, (2) the in-
terpretive processor, (3) the translator, and (4) the compiler.

DETAB-65 USER'S MANUAL

1. INTRODUCTION

Decision Tables endow a user with the ability to provide a graphical representa-
tion of a complex procedure in such a way that one individual is able to readily
understand a program written by another.

DETAB-65 is the decision table langusge which the preprocessor converts to

COBOL statements for subsequent processing by an appropriate COBOL campiler.
This manual's purpose is to describe to a user how a DETAB-65 decision table
should be written for inclusion within a COBOL program. It also describes the
necessary linkages, formats, and restrictions used in construction of the decisiom
table.

Since not all definitions will be defined in this manual, it is recammended

that the user first study the DETAB-65 documents accompanying this manual,

In addition, a test program is documented in Appendix B.

2, STRUCTURE OF A DECISION TABLE

A decision table can be logically divided into four sections (See Figure 1
below). The upper two sections (Condition Stub and Condition Entry) describe
the set or string of conditions that is to be tested. The lower two sections
(Action Stub and Action Entry) describe the set or string of actions that is

to be taken upon satisfaction of a set of conditions. A rule consists of a set

of conditions plus a set of actions, and & decision table typically consists of

several rules,

Condition Condition Entry
Stub
—_— -]
Action Action Entry
Stub

I
Figure 1

n2-

The three types of decision tables in current use today are the limited-,
extended-, and mixed-entry types (see Figure 2 below). Eventually it will be
possible to convert all three types of tables vie the preprocessor; however, at

the present time the preprocessor is restricted to limited-entry tables.

Rl Ra R.'l_ RE Ry I RE
c, N ¢, [=58 | =25 y | =58 ¥
C, Y Cs ﬁ J = K C # J LN
A X E A X - A, X -~
A, - |x A, - X A, | - X
LIMITED ENTRY EXTENDED-ENTRY MIXED-ENTRY
Figure 2

3. PROGRAM FORMAT

The formet for a COBOL progrem containing DETAB-65 decision tables must conform
to the requirements for any COBOL program, except that & decision table is
inserted in the COBOL PROCEDURE DIVISION as a SECTION, and is referred to by
an sppropriate COBOL statement (see Table Linkage).

The DATA DIVISION of a COBOL program incorporating a DETAB-65 decision table

is treated as is any other COBOL DATA DIVISION. Any symbolic data reference,
data structure, constant, or working storage used in a decision table must be
declared in the DATA DIVISION.

The decision teble(s) are placed at the end of the PROCEDURE DIVISION since they
are to be treated as COBOL subroutines. This is the only difference between a
COBOL program and a COBOL with decision table(s) program.

4., TABLE LINKAGE

In compilation a decision table will be treated as a closed COBOL subroutine.

Thus, & decision table should not be entered via the normal operating sequence,

-3=

but only by using COBOL GO TO or PERFORM verbs. *

Since a GO TO results in an uncondition transfer, a return or transfer point
must be specified by the user in the decision tables action stub or the pro-
cessing sequence will be lost. It is recammended that the GO TO verb not be
used when referring to a table from the main sequence of the program.

When transferring control to & decision table by the use of a COBOL PERFORM
verb, & normal return to the processing sequence will be made by the campiler
unless the user specifies otherwise in his actions. Specifically, the preprocess:
will generate & "GO TO DEXIT.", for every rule whose last action does not end
in a "GO TO ---.", no matter how the table was entered.

Tables may be chained together by placing GO TO's and PERFORM's in the Action
Stub of one or more tables. However, it is advisable to keep very, very close
track of this as it is possible to generate errors due to the way various
COBOL compilers set up their procedure sections.

5. DEFINITIONS

The following is a series of decision table definitions to be used in describ-
ing a DETAB-65 decision teble:

5.1 TABLE-ID
Identifies to the preprocessor that a DETAB-65 decision teble has been
encountered. The ID is always 4 numeric characters consisting of 4
zeros (0000).

5.2 RULE-ID
Identifies to the preprocessor that the rule-card is present (for
error checking purposes). The ID is always 4 numeric characters in
length and comsists of (0001).

5.3 TABLE-NAME
This is a 30 alphanumeric character or less name which is then used to
identify the COBOL section generated by the preprocessor.

1 It is possible to enter a table from the main sequence but the trouble
this can entail does not make it worthwhile.

5.4

545

5.6

5T

5.9

5.10

5.11

5.12

FORM

Designates the kind of table is present (i.e., limited-, extended-,
and mixed-entry tables) and is always an alphabetic character (L, E,

M, left-justified).

COND ROWS

Designates the number of conditions in the Condition Stub of the table.
This is 3 numeric characters (right-justified).

ACTION ROWS

Designates the number of actions in the Action Stub of the table.

This is 3 numeric characters (right-justified).

RULES

Designates the number of rules in a table. This includes the ELSE-RULE
and is 3 numeric characters (right-justified).

RULE NUMEERS

These are 3 numeric characters each used to identify each rule. The
ELSE-RULE is the only excetion and is designated by the 3 alphsbetic
characters ELS.

CONDITICN STUB

Contains logical, arithmetic, or relational conditions answerable by

a yes (Y) or a no (N).

CONDITION ENTRIES

These indicate which condition must be met to satisfy a rule., This
can be & Y, N, BLANK (), or DASH (~). A blank or dash means that

the user does not care if the rule is Y or N as it makes no difference.

Also known as the elements of a task.

ACTION STUB

Contains imperative statements to be performed as indicated by the

ACTION ENTRIES of a rule when the rule is satisfied.

ACTION ENTRIES

These indicate which actions must be performed if a rule is satisfied.

The character used to signify this is an X.

6. CONVENTIONS AND RESTRICTIONS

When writing DETAB-65 decision tables the following words camnot be used (this

is in addition to COBOL restricted words) 6.1 - 6.6.

6.1
6.2
6.3
Bals
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.1k

DXN (where N is a 3 digit number)

AZM (where M is a 3 digit number)

AZP (where P is a 3 digit number)

ELOOL

DEXIT

ELS

Maximum of 50 entries in Condition Stub.

Maximum of 50 entries in Action Stub.

Meximum of 50 rules (includes ELSE-RULE).

Maximum of 12 and minimum of 3 columns in a rule.
Meximum of 58 and minimum of 12 columns in the Condition & Action Stubs
ELSE-RULE (ELS) must always be present.

TABLE END card ($ in Column 7) must always be present.
EOF card (999X in Columns 4-7 must always be present.

7. DETAB-65 DECISION TABLE

The table itself is written in a mixture of fixed and free formats. The followin

lists the various sections showing theproper way to set up a DETAB-65 decision

table.

Tl

Header

The header contains information used by the preprocessor to initate the
conversion of the table and allow it to check for errors.

COLUMN(S DEFINITI ON
h -7 TABLE ID
9~ 38 TABLE NAME

39 - 40 FORM
41 - 43 COND-ROWS
b - 46 ACTION-ROWS

b7 - bo RULES

e

All other columns in the heeder are blank, 4

T.2 Rule
The rule part of the DETAB-65 table contains information which allows
the preprocessor to determine the size of the stub area. The size of
the largest entry in either the condition or action stub determines the
size of the stub area.

COLUMN(S DEFINITION
L -7 RULE-ID
9 - XX Blank, This is the size of the stub area,

The rules (RULE-NUMELIRS) start immediately after the last column in the
stub erea and are terminated by & dollar sign ($). The only exception is
if the last rule occupies column 80, thus putting the dollar sign in
column 81.

7.3 Body
The body part of the table contains the Conditi on and Action Stubs and
Entries. All actions are performed in the order of their occurrence;
if it is desired to do series of action in a different order, it is
necessary to repeat them in that order in the action stub.

T.4 End
The end part notifies the preprocessor when: the input is over
end conversion is to begin. It consiste of & dollar sign ($) in column 7.

Preprocessor Output
The preprocessor will convert a DETAB-65 decision table into COBOL statements

of the following formet:

DXN AZP
IF C_ GO TO AZM " EISE GO T0 por - .
ELOOL

Where C 1is the condition to be tested, and the brackets output formats.

Errors
All errors detected during the preprocessors operation will be listed upon
the list tape. For & full description of all errors see Appendix A.

4 NOTE: Columns 1-3, 4-6 may contain a sequence number (except for header
and rule cards).

8. EOF Card

To tell the preprocessor when to terminate operations a special card is used
called the EOF card. This consists of a 999X in columns 4 - 7, and is the last
card processed. This means that if more than one program is to be processed
the EOF card is placed after the last program.

Deck Outline

The following shows the deck structure of a COBOL program containing a

DETAB-65 decision table.

y.d
flOBOL PROGRAM

CARDS
Semple COBOL, DETAB-65 Program Deck

1.

2.

3.

5.

AFPPENDIX A
-8-

PRESENTLY TABLE RESTRICTED TO LIMITED ENTRIES
FORM does not contain an 'L',

TABLE-NAME MISSING FROM HEADER CARD
Processing will be halted and table skipped.
RULES CARD MISSING

Processing will be halted and table skipped.
LESS THAN 3 RULE COLUMNS SPECIFIED

A rule contains 2 or less columns for processing, conversion will be
halted and table skipped.

PRESENTLY, CONTINUED RULES NOT IMPLEMENTED

Column 8 has an entry.

CONDITION STUB EXCEEDS 58 COLUMNS

Condition stub exceeds limit processing halted and table skipped.
NUMBER OF RULES ENCOUNTERED DISAGREES WITH RULE CARD

Number of rules entered in header card (RULES) differs fram that
specified by the user.

MORE THAN 50 ACTION OGR CONDITION ENTRIES

Action or Condition studb contains more than 50 entries, processing
halted and table skipped.

DECISION TABLE LOGIC ERROR. PROCESSING HALTED.

Check over rules for either redundancy, inconsistency or both.

«BEGIN JOB 306 08/10/65
«CO0P,90101,DETARB65,8/18,56,55555,4,
«COBOL,X.
IDENTIFICATION DIVISIBN,
PROGR‘H"Dl PLA*BOY.
AUTHOR, OMARLES OREE,
DAYE~COMPILED, 08/10/65)
REMARKS. THIS I8 A SIMPLE DAYA RETRIEVAL PROGQRAM TO
ILLUBTRATE THE USg OF DEYaAB/6B,
ENVIRONMENT DIVISION,
CONFIGURATION SECTION,)
SOURCE=COMPUTER, CONTROL DAYA 1604=A,
OBJECY«COMPUTER, OONTROL DATA 1604=A,
INPUT=QUTRUT SECTION,
FILE=OONTROL,)
SELECT CANDIDATES ASSIGN 70 SBYSTEM=INRUT=TAPE,
SELEET RATED=FILE ABSIGN Y0 SYSTEM«OUTPUT=TAPE,
DATA DIVISION.
FILE SECTION,
FD CANDIDAYES
LABEL RECORDS ARE OMITTED
DATA RECORD 18 INREC.
01 INREQ. ,
02 FILLER 'PICTURE X(80),
FD RATED=FILE
LABEL RECORDS ARE OMITTED
DATA RECORD I8 EVAL.
01 -EVAL,
02 FILLER PICTURE X(48),
WORKING=8TORAGE SECTION, _
77 TOP=QYR ‘PICTURE 9(7) COMPUTATIONAL,
SYNCHRONIZED RIGHT, VALUE 2ER0,
77 NEXT«BEST«CTR ‘PICTURE 9(7) COMPUTATIONAL,
SYNCHRONIZED RJGHT, VALUE 2ERO,
77 LAST=RESORT«CTR 'PICTURE 9(7) COMPUTATIONAL,
SYNCHRONIZED R1@HT, VALUE Z2ERO,
77 TOTAL=NO PICTURE 9(85) COMPUTATIONAL,
SYNCHRONIZED RI@HT, VALUE ZERO,
01 HWBR.
02 SKIp=CTL PICTURE X,
02 RATING PICTURE X(12),
02 W8Ry,

-10-

03 |1DNO PICTYTURE 9t7).

03 SEX PICTURE X,
88 FEMALE VALUE #Fz,
03 AGE PICTURE 999,

03 HEIGHT PICTURE 999,
03 MWEJGHT PICYURE 999,
03 HAIR PICTURE Xt9),

88 BLOND VALUE #BLONDg,
03 EYES PICTURE X(5),

88 BLUE=EYES VALUE WBLUEp,
03 1I=0 PICTURE 999
03 FILLER PICTURE X,

PROCEDURE DIVISION.

PNODA,

OPEN INPUT CANDIDATES.
OPEN OUTPUY RATEDFILE.

PND2,

READ CANDIDATES INTO WSRY, AT END GO YO PNEOJ,
PERFORM CHOICE=PlcK,
G0 To PNp2,

PNEOJ., ’
CLOSE CANDIDATES WITH LOOK» RATED«FILE WITH LOCK.
DISPLAY #TQOPS COUNT = # ToP=CYR,

DISPLAY ¢NEXT COUNT = # NEXT=BESTCTR,
DISPLAY #LAST COUNT = # LAST=RESORT=CYR.
DISPLAY #TOTAL = 4 YOTALeNO.

STOP RUN,

-ll-

ooico00
010001
010101
010102
040103
040104
010105
040106
010107
040108
040109
010110

010142
040202
010203
040204
010204
040206
010201
010207

prepep—————r L L e L L L E L Dl Ll Rk Ll h kb el

CHOICE=pPICK

L 010008008

00400200300400%5006007ELBS

Y
Y
N

FEMALE

AGE GREATER THAN 18
AGE LESg THAN 38

BLOND

BLUE=EYES

WEIGHT GREATER THAN 8%
WEIGHT LEBS THAN 133
HEIGHT GREATER THAN 89
HE!GMT LESS THAN 68
I=0 GREATER THAN 99

€ - € L L - - =

- < < < <

MOVE #TORS¥ TO RATING

ADD 1 To TOP-CTR

MOVE #NEXT BEST# TO RATING
ADD 4 To NEXT=BEST=CTR

MOVE #LASY RESORT# To RATING
ADD 1 To LAST=RESORTCTR
WRITE EVAL FROM WS8R X
ADD 4 Tp YOTAL=NO X

> >

2 2 X X

CHOICE=PICK SECTION.
DXxo0o0o0,

IF FEMALE

60 T0 DXo01i ELSE GO TO ELOOL.
DX004. |

IF AGE GREATER THAN 18

60 T0 DXp02 ELSE GO Yo ELOO1.
Dxoo2.

IF AGE LESS THAN 38

60 TO DXxoo03.

IF BLOND

GO0 YO DXxoo04,

IF BLUE=EYES

G0 70 DXxopo05,

IF WEIGHT GREATER TMAN 8¢

@0 YO Dxo06 -ELSer GO TO ELOOi.
DX006. |

IF WEIGHT LESS THAN 133

- B

\
Y
Y

zz <

=<

M X X

|
Y
Y

WM L€ L

ZZALAZZZT <A< <

X

Y
Y
Y

ZZ <<=

*Generated output follows

G0 YO Dxpo07,

IF HEIGHT GREATER THAN 59

G0 70 EL0O1,

IF -0 GREATER THAN 99

G0 70 ELp0L ELSE GO TO
pXxoo7,

IF HEIGHY GREATER THAN 59

GO YO DXp08 ELSE GO To
Dxoo08.

IF HEIGHT LESS THAN 68

G0 70 DX009 ELSE GO ToO
DXpo09o,

IF 1«0 GREATER THAN 99

GO YO A2002 ELSE GO To
DX005,

IF WEIGHT GREATER THAN 89

GO 76 DXni0 ELSE GO To
DXo04i0.)

IF WEIGHT LESS THAN 133

G0 70 DXnii ELSE GO TO
DX04i1.

IF HEIGHT GREATER THAN 59

G0 70 DXpi2 ELSE GO TO
DXoi2.

IF HEIGHT LESS THAN 68

60 7O DXpi3 ELSE GO To
DX013, _

IF l«0 GREATER THAN 99

G0 TO AZp02 ELSE GO YO
DX004,

IF WEIGHT GREATER THAN 89

60 YO Dxpi14 ELSE GO TO
DX044,

IF MEIGHT LESS THAN 133

G0 TO DXopi5 ELSE GO TO
DX045,

IF HEIGHT GREATER THAN 59

G0 7O DXpi6 ELSE GO TO
DX046. _

IF HEIGHT LESS THAN 68

GO0 YO DXni7 ELSE GO TO
DX047.

AZ0D06,

ELOO1.,

ELDOY,

ELOO1.,

ELOOL,

ELO0Y,

ELOOL.

ELOOL.

ELO0L.

ELODL.

ELODL,

ELOO1.

ELO01,

13

IF l<Q GREATER THAN 99

G0 TO AZp02 ELSE GO ToO
DX003,

IF BLOND

G0 70 Dxopis,

IF BLUE=EYES

60 7O DXpi9.

IF WEIGHY GREATER THAN 89

@0 Y0 Dx020 ELSE GO TO
DX0RO.

IF WEIGHT LEBS THAN 133

@0 YO0 Dxp21,

IF HEIGHT QREATER THAN 8¢

a0 v0 EL001, |

IF 1«0 GREATER THAN 99

G0 TO AZo04 ELSE GO TO
DX021.

IF HEIGHY GREATER THAN 59

@0 70 DXp22 ELSE GO TO
DXx022.

IF HEIGHT LESS THAN 68

60 TO DX023,

IF: 1«0 GREATER THAN 99

G0 70 ELOOL ELSE GO To
DX023.

IF l«0 GREATER THAN 99

@0 YO0 AZp05 ELSE GO To
Dxoi9.

IF WEIGHT GREATER THAN 89

@0 10 DXp24 ELSE GO TB
DXoR4,

IF WEJGHT LEBS THAN 133

G0 Y0 DXp25,

IF HEIGHT GREATER THAN 5¢

G0 70 ELOO1,

IF l«0 GREATER THAN 99

G0 70 AZ2004 ELSE GO ToO
DX025,

IF HEIGHT GREATER THAN 59

G0 Y0 DXp26 ELSE 6O TO
DX026.,

IF HEIGHT LEES THAN 68

ELONY.,

ELOOL.

ELODOL,

-ELOOL.,

AZ007.

AZ003.

ELOOY.,

ELO0L,

ELOOL.,

G0 Y0 ELnoO01,

IF 1«0 GREATER THAN 99

GO T0 EL001 ELSE GO TO
DXpis8.

1F BLUE=EYES

GO YO Dxp27,

IF WEIGHT GREATER THAN 8¢

GO YO Dxp28 ELSE GO TO
Dxo2s.

IF WEIGHT LESS THAN 133

60 TO Dxp29.

IF HEIGHT GREATER THAN 59

60 YO0 EL0D1,

IP 1-0 GREATER THAN 99

G0 TO AZp04 ELSE GO TO
DXo029.

IF HEIGHT GREATER THAN 5S¢

60 YO DX030 ELSE GO TO
DX030.

IF HEIGHT LESS THAN 68

B0 Y0 DXp31.

IF I=0 GREATER THAN 99

GO 70 ELOOL1 ELSE GO ToO
DX031.

IF 1=0 GREATER THAN 99

G0 TO AZp05 ELSE GO TO
DXp27.

IF BLUE=EYES

G0 YO Dxo32,

IF WEIGHT GREATER THAN B89

GO0 TO DX033 ELSFE GO TO
DX033.

IF WEIGHT LESS THAN 133

GO TO DXp3d,

IF HEIGHT GREATER THAN 5¢

GO0 YO EL001,

IF I=0 GREATER THAN 99

GO TO A2004 ELSE GO YO
DX034,

IF HEIGHT GREATER THAN 5S¢

60 T0 DXn35 ELSE GO TO
DX035,

AZ007,

ELOOY.

ELOOY,

ELOO1,

AZ007.

ELOOL.

ELODY,

ELOOL.

ELOOL.,

«15=

IF HEIGHT LESS THAN 68
60 YO ELOO1.
IF 1«0 GREATER THAN 99

60 Y0 EL001 ELSE GO Tp AZO07.

DX032.
IF WEIGHT GREATER THAN B89

@0 TO DX036 ELSE GO To ELOO4.

DX036.
IF WEIGHT LESS THAN 133

@0 TO DX037 ELSE 60 To ELDO%.

DX037.,
IF HEIGHT GREATER THAN 59

G0 70 Dxo038 ELSF GO To ELOOY.,

DXp38.
IF HEIGHT LESS THAN 68

60 TO AZo01 ELSE GO To ELODY.

AZ001.
MOVE #TOPS# TO RATING.
ADD 4 YO TOP=CTR,
WRITE EVAL FROM WS8R,
ADD 4 TO TOTAL=NO,
GO To DEXIT.

AZDO02. i
MOVE #LAST RESORTy 'TO RATING,
ADD 4 TO LAST=RESORT-CTR,
WRITE EVAL FROM WS8R,
ADD 4 TO TOTAL=NO,
60 To DEXIT.

AZ0O03.,
MOVE #NEXT BEST# T0 RATING.
ADD ¢ 70 NEXT«BEST«CTR.,
WRITE EVAL FROM WS8R,
ADD ¢ TO TOTAL=NO,
G0 To DEXIT.

AZ004. ;
MOVE #LAST RESBORT# 'TO RATING,
ADD 1 TO LAST«RESORT-CTR,
WRITE EVAL FROM WS8R,
ADD ¢ TO TOTAL=NO,
GO To DEXIT.

AZ005,
MOVE #TOPS# TO RATING.

ADD 4 TO TOP=CTR,
WRITE EVAL FROM WS8R,
ADD 4 TO TOTAL=NO,
GO To DEXIT.
A2006.
MOVE #TOPS® TO RATING.
ADD ¢ TO TOP=(TR,
KRITE EVAL FROM WSR,
ADD 1 TO YOTAL=NO,
GO TOo DEXIT.
AZ2007,
MOVE #NEXT BEST# YO RATING.
ADD 4 TO NEXT=BEST=CTR.
WRITE EVAL FROM WSR,
ADD 1 70 TOTAL=NOD,
GO To DEXIT,
ELOOY,
ADD 1 TO TOTAL=ND,
DEXIT. EXIT.

END PROGRAM,
999X

END DETAB/65 PREPROCESSOR RUN,

N

DETAB-65 TABLE FOR PROGRAM

0040000 CHOICE=PICK L oi00p8008
010004 001002003004005006007ELSS

040101 FEMALE Y ¥ ¥ ¥y ¥ ¥ 9
050102 AGE GREATER THAN 18 ¥ Y Y ¥y ¥ Y
010103 AGE LESg THAN 38 Y N Y ¥ Y N Y
010104 BLOND \ N N
010105 BLUE~EYES Y N _ N N
040106 WEIGHT GREATER TWAN 8¢9 ¥ Y ¥ % ¥ ¥ X
010107 WEIGHT LESS THAN 133 Y Y Y N Y N Y
040108 HEIGHT GREATER THAN 89 Y Y Y N Y N Y
010109 HE!GWT LESS THAN 68 Y Y ¥ _ ¥ N
010110 F=0 GREATER THAN 99 Y N ¥ Y N N
010112 MOVE #TORSF TO RATING X X X
040202 ADD 1 Tp YOP-CTR _ X X X
040203 MOVE #NEXY BEST¢ TO RATING X X
010204 ADD 1 Tp NEXT=BEST=CTR X : X
010204 MOVE #LABY RESORT# To RATING X X
010206 ADD 1 To LAST=RESORTCTR X o
010204 WRITE: EVAL FROM WSR X X X x X X X
040207 ADD 1 To YOTAL=NO X X X ¥ X X X X
s
END PROGRAM.
999X

~16-

INPUT TO GENERATED PROGRAM

3278215F031067118BLACK
0567982F025065149BLOND
1425893F021062110RED
0053247050055148BALD

GREEN106
BLUE 103
GRRY 101
BROWNSS

«19-

OUTPUT FROM GENERATED PROGRAM

TOPS 3278245F0350671158LACK GREEN10S6
YORS 14258093F021062110RED GREY 104
YORS 0867¢82F025065119RLOND BLUE 103

YOPS COUNT = 0000003
NEXT COUNT = 0000000
LAST COUNT = 0000000
YOTYAL = 00004

Draft SP-19290%
September v, 1u(5

A DESCRIPTION OF THE BASIC ALGORITHM USED IN
THE DETAB/65 PREPROCESSOR

By A. E. Chapman and M. Callahan

INTRODUCTION

While many papers and articles have been written on the uses and advantages of
decision tables, only a few have been written on the algorithms used for converting

a decision table to computer instructions.l Additionally, except for a few

of the algorithms used in current decision table campilers or preprocessors?,

none have yet been formally described. This paper describes the conversion algorithm

used in the DETAB/0S preprocessor, which converts decision tables into COBOL.

Since the preprocessor and the language associated with it were developed for
COBOL users, the preprocessor was written in a modular form in required COBOL-v1.
Thus, any COBOL user on any computer can use the preprocessor or easily modify

it for his use.

While the use of & preprocessor introduces inefficiencies due to the compile-time
of the preprocessor and the run-time associated with COBOL, the advantages of this

method were great enough to have warranted the effort.

1 M. S. Montalbano, "Tables, Flow Charts, and Program Logic,'" IBM Systems Journal,
September 1962.

S. L. Pollack, "Conversion of Limited-Entry Decision Tables to Computer
Pfograms." RAND Corporation Memo RM-4020-PR, May 196k,

J. F. Egler, "A Procedure for Converting Logic Table Conditions into an Efficient
Sequence of Test Instructions." Communications of the ACM, September 1963.

7 FORTAB by the RAND Carporation, TABSOL and LOGTAB by the General Electric
Corporation, DTS by the IBM Corporation.

-2-

PREPROCESSOR DESIGN CRITERIA

The preprocessor accepts & decision table within COBOL language called DETAB/(S3,
which was itself developed from a langusge called DETAB-X. 4 It operates prior to
the COBOL campilers and, in operation, does not process regular COBOL statements,
but merely passes them along to the campiler. However, any decision tables found
within the COBOL program are converted by the preprocessor into COBOL statements
that are then passed along to the compiler. Each decision table will be considered

a8 COBOL Section, thus making any basic change to the COBOL compiler itself unnecesary.

Although the generation of efficient code from decision tables may require careful
selection of the sequence for testing conditions, and may even involve intermixing
of decision and actions, it was felt that this type of optimization would require
the preprocessor to be too camplex, especially since the preprocessor was basi-
cally built to allow a great variety of users to experiment with using decision
tables.

The preprocessor will accept limited-, extended-, and mixed entry decision tables

(see Figure 1 below).

[R.|R_ | R, | ELS R 1 | R, R, | ELs | R, [R, | R | ELS
A=B - Y N| - A= - B cl - A= - - O .
C=D ' N -1 - C= D - -] - C=D || Y N =1 -
i=F | N - Y| - B¢ || F - Fl - kg || F - Fl -
X X - X| - X X | - X - X X & B
Y - X X| X Y - X | Xt X Y - X X1 X
Limited-Entry Extended-Entry Mixed-Entry

DECISION TABLES
Figure 1

3 Developed by SIGPLAN Working Group 2 of the Los Angeles Chapter
of the ACM, 1965.

% Developed by the Systems Group of CODASYL, September 1962.

Since the algorithm only handles limited-entry decision tables, both extended-

and mixed-entry tables are transformed into limited-entry decision table., wirich

are then converted. It is not the purpose of this paper to explain this transforma-
tion; suffice it to say that both extended-and mixed-entry tables can be described
as limited-entry decision tables.

DECISTON TABLE CHARACTERISTICS

Condition Condition
Stub Entry
Action Action
Stub Entry

A decision table (hereafter known as a DT) can be logically divided into four
sections (See Figure 2 above). The upper two sections (Condition Stub and Condi-
tion Entry) describes the set or string of conditions that is to be tested. 7The
lower two sections (Action Stub and Action Entry) describe the set or string of
actions that is to be teken upon satisfaction of a set of conditions. A ruic
consists of a set of conditions plus a set of actions, and a IT typically consists
of several rules,

kvery DETAB/65 DT must contain a special rule called the ELSE-RULE. The KLSE-RULF
must not have any entries in the condition-entry section of the DT, but may or
may not have entries in the action entry of the table 5, It is generally con-
sidered the error exit of the DT. Same decision-table definitions are defined
below:

L. A redundancy exists in a decision table if two or more rules do not have

5 If the table contains 2" rules (where n = no. of conditions), there will not
be any actions specified as the table will be camplete., However, it must be
present.

2.

T-

He

at least one Y,N pair in any of the rows and the actions specified are

identical. R_‘l Ra
Cy - N
€. Y Y |
A X X
A_ = =

A contradiction or logic error exists in a decision table if two or more
rules do not have at least one Y,N pair in any of the rows and the actions

specified are not identical.

2 32
Cl = N
#ﬂ—‘%
Al). 4 -
A_ = X

Any rules not specified or implied in the table are assumed to be part of
the ELSE-RULE. Only the action part of the ELSE-RULE 1s pertinent.

An incomplete decision table is one where there are less than 2" non-redundant

rules (n equals the number of conditions in the table). The ELSE-RULE,
however, does not count as one af the 2" rules.
Each rule number, except for the ELSE-RULE, will be denoted by Rl, R2, R3 goese

where R istherulemmber,i:l,Q,S,---?n.

i
Each condition will be denoted by Cl, 02, 03, ees WiETE Ci is any string of
conditional COBOL statements; 1 = 1, 2, 3, «ss, N.

Each action will be noted by Al, A2, A3, e+ Where Ak is any string of non-
conditional COBOL statements; K = 1, 2, 3, soe

Any entry in the condition and/or action-entry section of & rule will be

referred to as an element of the DT; thus, & rule can be considered a column

of elements of the DT,

-5=

A rule may consist of any one of the five following entries:

Entry Definition
1. "Y" meaning YES This condition is to be tested to see if it is true.
2. '"N" meaning NO This condition is to be tested to see if it is false.
3. " " meaning BLANK This condition does not epply, or this action is not
to be taken when this rule is satisfied.
4. " " meaning DASH Same as 3.
Yo "X" meaning X This action is to be taken when all conditionc for

this rule are satisfied.

INPUTS

The inputs to the algorithmic generator (hereafter called the generator) consists
of:
1. A matrix (which will be called the DT) composed of Y's, N's, and blanks
(dashes are converted to blanks). There are the elements of the DT.
e« N vector, Cl’ C2, 03, consisting of the n conditions to be satisfiled.
3. A vector, Z,, Z,, 23, s+« 2 consisting of the series (or string) of
actions to be performed depending upon the conditions to be satisfied.
L., An ELSE-RULE (which is, however, not considered an integral part of the
DT matrix).

QUTPUT

All output from the generator consists of simple COBOL conditional statements

of the following type:

DXN [T 7 AZP
IF C_ GO TO | AZM . || BsEGo o |Ei. ;
ELOOL

where:
1. Cn is the nth condition being tested.
2. DXN is the statement label designating the paragraph name where further

checks are to be made by the conditions (N is a 3-digit mumber).

3. ATM is the statement label that precedes user-defined actions for specified
rules (ATP is another action label; the two are not the same)., M and P
are 3-digit no.'s which are based upon the no. of the rule for which the

solution was generated.

L, FKLOOL is the error or condition not covered exit. The brackets are used to
group the possible cambinations.

THE ALGORITHM

With the above table characteristics, definitions, and easily deducible corollaries,
we can now describe the steps involved in converting a typical decision table
(Figure 3) to a series of test instructions. Except for elimination of obviously
unnecessary tests, no test optimization is attempted.
G INJERAL
ienerally, several "passes" are made through the DT, with each pass generating
COBOL code, that makes tests on the various conditions and leads to actions that
constitute a solution for one or more of the rules. These rules are then deleted
from the DT and the process continues until no more rules exist in the DT.
The DT is then considered to be solved. The number of passes will never be more
than 21, (vhere n = ' number of conditions in the DT) and may in fact be less.
ach condition-entry section will contain one of the following classes of Y's,
N's and blanks. It is their satisfaction which will provide information for the
generation of output code.

Class 1 - contains one or more y's, N's and blanks in any cambination.

Class 2 - contains one or more Y's and N's in any combination.

Class 3 - contains one or more Y's and blanks in any combination.

Class 4 - contains one or more N's and blanks in any cambination.

Class 5 - contains all Y's.
Class 6 - contains all N's.

Class T - contains all blanks,

For each pass through the DT, we start with the nth condition in the DT. The

"n" is initially set to one and the following steps are done:

Step 1 - Examining the Condition Entry Section

The nth condition entry section elements are examined for one of the above T

classes. The following rules are then applied to determine what COBOL code to

generate.

1.

2.

30

If et least one Y and/or at least one N and any, but not all blanks
are found in any cambination the generated code will be:

IF C, GO TO DXN.
(where DXN is a generated label which is saved in all cases by placing
it in a push-down list from which it can be "popped" up to provide a COBOL
statement label when needed. This provides for a "last in-first out"
requirement).
If only Y's are found the generated code is:

IF g GO TO DXN ELSE GO TO ELOOl.
and a statement label is '"popped" fram the push-down list.
If only N's are found the generated code is:

IF Cn GO TO ELOOl.
If only blanks and/or 'B's'® are found, no COBOL code is generated. The
elements above the blanks (or B) ere then examined and the following tests
performed:
a. If there are no blanks sbove this condition, that condition's element

is changed to a 'Y'.

N ic B8 Aalimitnar vthmra vmn 20 ccmm T a3 » -~

-8-

b. If there are any blanks above this condition, a 'B' is placed in that
condition's element.

This continues until all elements of that condition have been examined.

Then the next step is performed.

Step 2 - Preventing Unnecessary Testing of Rules

Before the above mentioned code is 1mplemented & check is made after a Y or an
N is found in a rule to determine if the remaining elements in that rule con-
tain all blanks. If they are not all blanks we go to Step 3; otherwise, since
one solution far this rule has been found we generate either an AZM or AZP
action label for inclusion within the previously generated code (if a Y-generate
AZM, or if an N-generate AZP). The number of the rule determines what M or P

will be; i.e., Rule 1 - Generate AZOOl; Rule 2.~ AZ002, etc.).

Step 3 - Last Condition Analysis

If this is not the last condition go to Step 4; otherwise, the following analysic
is made:
l. If the DT contains only one rule whose last condition equals Y generate
the following code:
IF C GO TO AT ELSE GO TO ELOOl
2. If the DT contains one rule whose last condition equals N generate the
following code:
IF C GO TO ELOOL ELSE GO TO ATP.
3. If the DT contains two rules whose last conditions contain a Y and an N
generate the following code:
IF C GO TO ATM ELSE GO TO ATP (M='Y' rule no., P='N' rule no.)
i, TP anything else is indicated there exists an inconsistency or redundancy

in the logic of the DT. Error messages are gererated but conversion is continued.

«Q-

After this step is performed control goes to Step 6.

Step 4 - Modifying the DT

Each time a condition-entry section has been examined a modified DT is formed
(the original DT is saved). This is done by deleting from the DT ell rules whose
nth condition-entry section have a Y in it. However, if only Y's are found in
this condition entry section, no deletions are done and the modified DT remains
the same as the original (ummodified) DT.

Step 5 - Iteration

Next increase n by 1 and go back to Step 1.

Step 6 - Hondling the Solutions

When the last condition-entry section has been examined, one or more solutions
to the original DT have been found. These solutions are then deleted by examin-
ing the rules which correspond to these solutions and applying the following
criteria:
1. If a SOLUTION rule contains only 'Y's' and 'N's’, oriif the only blanks
found are contained in the last consecutive elements (i.e., n, n-1, etc.,
contains blanks) of the rule, it is deleted from the original DT.

Any other case indicates that there is more than one solution to the rule.
The solution just found is deleted by introducing a delimiter, which we shall
call 'B'. By setting blanks equal to 'B', the generator is able to stepr back-
wards up the rule (once each pass) and generate code for all possible combinations
of conditions in a given rule., The stepping is dore in STEP 7, where the solu-
tion vector is campared with the original DT and a modified DT formed contain-
ing the next solution for this rule and possibly solutions to other rules.

This is done in the following manner.

=10

2. The rule is examined for 'B's' and:

a., If a 'B' is found and there are no blanks in the elements above 'L’
in the rule, the element containing the 'B' is changed to 'Y' and Step ©
is repeated. If there are one or more blanks above the 'B', then the
blank nearest the 'B' is changed to & 'B' and all other 'B's' are re-
placed with blanks,

b. If no 'B's' but any blanks are found, the lowest blank in the rule is
replaced with a 'B'.

Step 7 - Setting Up for Next Pass

If the original DT now does not contain any rules, all of the code necessary

for testing the conditions has been generated and a complete solution of the

DT has been found. The generators work is complete. If one or more rules still
exist within the original DT conversion of the DT continues.

First, a statement label is "popped" from the push-down list. Next, one of the
solutions (Rules) just found is saved, n is set to one, and all blanks in the
rule (hereafter called the solution vector) are set to 'N'. Following that,

the nth element in the solution vector is campared with each element in the nth
condition entry section of the original DT. If there are any elements in the
nth condition-entry section equel to either blanks or the nth element in the
solution vector, a special modified DT is found by deleting all rules (from

the original DT) whose nth element is not equal to either blanks or the nth
element in the solution vector. The n is set equal to n + 1 and the above
process repeated until a DT is found which does not satisfy the above conditions.
The n is set to n + 1 and the next "pass" started at Step 1 using the specisal

modified DT.

T
Note: If n equals the last condition, redundancy exists within
the DT and is so flagged.

7

ERROR CHECKING

COBOL code is always generated. Errors in the logic of the DT may or may not
produce errors in the generated code. Redundancies and inconsistencies are
checked for and all errors detected are flagged. Same of these will prevent
completion of the conversion, others serve only as a warning.

CONVERGION EXAMPLE

The following is & step by ategq exam%le of the conversion of a DT:

C, * X N N -

Ca_ Y Y p £ N -

Ca L 1'=¢NF—-¢:=: R, = ELSE-RULE
Al X - X = =
Z_ = action string to
A X X - = = be performed.

A, - X - X -

g Nl o lo Lo | 3%

Z, Z, Za R B,

Set n = 1 and perform Step 1 for C Since there is both a2 ¥ and an N in

l.
Cl , the following code 1s generated:

IF C, GO TO DXO0OL,

3
Since DXOOl will be used later as a statement label, it is saved in the pui :.wn
list,.
Next, Step 4 is performed and the DT becomes:
Ry R,
Cy N N
_C, - N
2.3 24

N is set equal to 2 and Step 1 is performed for C2. There is both a Y and an

N in Ca, but C3 in R3 is blank and Step 2 is aepplied resulting in the following

generated code:

IF 02 GO TO AZ0O3
Step 4 is again applied and the DT becames:
R,
c, || n
C3 N
C;3 N
2'4

N is set to 3 and Step 1 is performed for 03. Since this is the last condi-
tion Step 3 is performed and the resulting code is

IF c:3 GO TO ELOOL ELSE GO TO AZOOL .
Now since one pass has been made through the DT, Step 6 is performed and the

original DT becames .

R_'I_ r RE

cl Y Y

C, Y Y
CS

%, | %

Since there are 2 rules left in the DT, Step 7 i1s performed resulting in n
being set to 2.
First, 02 is examined, which generates the following code:

IF C, GO TO DX0O2 ELSE GO TO ELOOL
The label DX002 is saved in the push-down list and a modified DT is formed;
however, since 02 contains only Y's the DT remains the same.
Since there are no N's in the 02 condition-entry section, the statement label
DX002 is set up from the "push-down" 1list. Then n is set to 3 and Step 1 is
contains both a Y and an N, and is also the last

performed for C Since C

3 3

=13

condition, Step 3 states that the output code will be:

IF 03 GO TO AZOO2 ELSE GO TO AZOOl.

Steps 6 and 7 are then performed resulting in an original DT with no rules in
it. This signifies that all rules have been solved and a camplete solution of
the DT exists. The generator is now finished with its Jjob.

The generated COBOL code is thus:

(PASS #1) IF C, GO TO DXOOl. (Step 1.1)

1
IF C, GO TO AZ0O3. (Step 1 and Step 2)

IF C, GO TO ELOOLl ELSE GO TO AZOOk. (Step 3.2)

3
(PASS #2) DX0Ol. (Step 7)

IF C2 GO TO DX002 ELSE GO TO ELOOL. (Step 1.2)

DX002,

IF 03 GO TO AZOO2 ELSE GO TO AZ00l. (Step 3.3)

ACTION PROCESSING

Upon the generator's campletion, each of the series of actions specified for
each of the rules (including the ELSE-RULE, which is labeled ELOOl) are set up

as individual COBOL paragraphs, to be performed in the occurring sequence (1i.e.,

A, A

17 Ans A3, «es) Each rule thus has its own sequence of actions (same of which
may be redundant with another rule). As an example, the following would be
generated for the example above:

AZOQO1.

=Tli=

AZ0O3.

GO TO DEXIT.
AZOOL
A
3

GO TO DEXIT.
ELOOL.
Ay

DEXIT. EXIT.

GO TO DEXIT is almost always generated since a branch may not exist to allow
normal exit fraom the DT. DEXIT is the normal return fram the declision table
if" the DT is operated as a closed COBOL subroutine. If it is not, Lhe lant
action performed by any rules actlon string must be an unconditlonal GO TO.

Il it 15, then the "GO TO DEXIT" will not be generated.

THE DETAB/65 LANGUAGE

PREFACE

In June of 1963, Work Group 2 of the Special Interest Group on Programming Languages
(SIGPLAN) of the Los Angeles Chapter of the Association for Computing Machinery was
formed to develop a preprocessor for DETAB-X, a COBOL-oriented decision table language.
The results of that effort are partially reflected in this manual, a revised set of
specifications that, since they differ significantly from those originally set forth
for DETAB-X, is denoted as DETAB/65.

The source document for this manual is "Preliminary Specifications for a Decision
Table Structured Language-DETAB-X," issued by the CODASYL Systems Group at a symposium
on decision tables co-sponsored by CODASYL Systems Group and JUG (Joint Users Group)
in New York in September 1962. Upon these specifications the SIGPLAN work group has
based further efforts to develop detailed program specifications. In doing so, these
basic deviations from DETAB-X have resulted:

1. DETAB-X prescribed extensive revisions to the structure of the COBOL
Data Division, most notably a fixed format for data declaration. 1In
view of the efforts of other groups in developing fixed formats for
COBOL, this portion of the DETAB-X language specifications was deemed
an unnecessary and redundant effort.

2. In the interests of conserving space, DETAB-X specified several short
forms and substitute expressions (DO rather than PERFORM, SET rather
than COMPUTE, etc.) and placed restrictions upon allowable COBOL ex-
pressions within decision tables. In the interests of maintaining
maximum compatibility with the COBOL language, placing as few restric-
tions on the programmer as possible, and keeping the decision table
processor as simple as possible, these short forms and limitations
have been removed. Any COBOL expression (legal or illegal) is per-
missible and may be used at the programmers' discretion.

1 3. The expression NOT has been added to Extended Entry Condition Entries,
meaning all conditions not otherwise specified.

k. A special section of table-specific formulae were specified in DETAB-X.
In DETAB/65, formulae too long to be part of the Condition or Action
Stubs or Entries are relegated to COBOL code.

5. In DETAB/65, a decision table input to the preprocessor results in a
COBOL Section being generated. These sections are set up as closed
subroutines and must be treated as such by the accompanying COBOL
code.

6. Several other changes of a more minor nature are treated in the text
that follows.

-2

SIGPLAN (DETAB) Working Group 2 was chaired by Wim Boerdam of Richfield 0il The
principal participants were:

Mike Callahan System Development Corporation
Anson Chapman System Development Corporation
Charles M. N. Cree International Business Machines
Robert L. Dover Control Data Corporation
Stanley Naftaly Lockheed Aircraft

Solomen L. Pollock North American Aircraft

Wylie Robertson International Business Machines (originally Northrop)
Richard W. Senseman UNIVAC

Ralph Shoffner Informatics

Barry Smith Control Date Corporastion

N. E. Willmorth System Development Corporation

Other participants have been George Amerding of RAND Corporation, who edvised the
group on FORTAB, R. T. Fife (now of UNIVAC), Leonard Longo (then of Douglas),

C. J. Shaw of SDC (and presently Chairman of SIGPLAN), Charles Powell of Richfield,
and Ed Manderfield of North American Aviation and previously Chairman of SIGPLAN.

These specifications and the DETAB/65 processor are being distributed through JUG.
Requests for copies of the specifications or for the DETAB/GS processor should be
addressed to:

Miss Joan Van Horn
Secretary, JUG

MITRE Corporation
Bedford, Massachusetts

or an affiliate of the JUG organization. Correspondence on technical error, comments,
criticisms and suggestions may be directed to:

Mr. Wim Boerdam
Richfield 0il Corporation
645 South Mariposa

Los Angeles, California

CHAPTER I
THE DETAB/65 LANGUAGE

PURPOSE

The purpose of DETAB/65 is to provide a practical foundation for experimenting with a
decision-table based language. The language is designed to be convenient for pre-
paring a preprocessor to go from DETAB/GB to COBOL-6l. As such, many restraints and
limitagions have been placed upon the language to make it readily compatible with
COBOL-61.

The DETAB/65 languege is designed to fit within the framework of the COBOL language.
Decision tables input to the DETAB/GS processor will be output as closed subroutines
and treated as COBOL sections. Normel COBOL program formats are used. Symbolic
data references made inside decision tables must be declared in the DATA DIVISION
Just as for non-decision table sections. Formulae whose names are given in a table
must be expressed in the PROCEDURES DIVISION prior to entering the DETAB/65 section
that gives the formulae values. Within a decision table all normal COBOL expressions
may be used, plus a few minor language extensions and symbology necessary to the
direction of the DETAB preprocessor and construction of DETAB expressions.

DECISION TABLES

Of the various activities that go into setting up a data-processing procedure for a
computer, one of the more difficult is the development of a definition of exactly
what is to be done under all combinations of circumstances of the data processing
problem. Every problem step must be specified. The conditions to normsl processing
must be identified. Necessary sequences of operations must be precisely indicated.

Determining what is required of the computer system is called analysis; deciding how
to go about meeting these requirements is the area of system design; and communicating
the chosen procedure Lo the computer is called programming. In each of these areas

a language is needed for defining the data-processing procedures. Ideally, a lunguage
form or structure should be suitable for man-to-man and man-to-machine communication.

Many languages are used for these purposes. Procedures are often communicated to the
machine in a form closely resembling the language of the machine. Symbolic logic and
equations are sometimes used, but this imposes a heavy and unnecessary burden on the
person writing the procedures. This condition occurs because human language, used for
man-to-man communication, and machine language are quite different. Flow charts are
widely used for man-to-man communication about data-processing procedures. However,
such charts have several drawbacks: Flow charts can becane confusing in complex
situations; it is relatively difficult to check all possible paths; and the flow chart
form is not particularly suitable for direct communications with the machine. Flow
charts sometimes present logical equations, but they do not display relationships in
as graphical a form as one might wish. Furthermore, they are not a comfortable fomm
of expression for most system designers, except to the person who designed the program.

Decision tables offer the promise of nullifying and correcting many of these language
objections. Decision tables provide a graphical representation of camplex procedures
in a way that is easy to visualize and understand. They show alternatives and ex-
ceptions much more explicitly than other language forms. They present relationships
among variebles clearly. They show the necessary sequences of conditions and actions
in an unambiguous manner. Decision-teble form can be used with equal effectiveness

<l

for system analysis, procedure design, and computer coding. Thus, a computer pro-
cedure written as a set of decision tables is, to a large extent, its own documentation.

"~
RULE 1 RULE 2 RULE 30

AGE GREATER THAN 25 25 65

AGE LESS THAN 35 35

HEALTH EQUALS " EXCELLENT" " EXCELLENT" " POOR"
SECTION-OF-COUNTRY EQUALS || “EAST" "WEST" "WEST" |
SET RATE-PER-1000 EQUAL Toff 1.57 1.72 5.92
SET POLICY-LIMIT EQUAL TO || 200000 200000 20000

FIGURE 1. AN EXAMPLE OF A DECISION TABLE

There is a growing body of evidence to indicate that these claims are JustLifled. Those
who have used decislon Lables for man-to-machine work say that:

L. programmling li much raster;
2. program checkout. time 1s significantly reduced;

3. the use of tables leads to greater accuracy and completeness in
problem formulation;

., program maintenance is simpler; and

5. & program written in tabular form is indeed a powerful communication
and documentation device.

STRUCTURE OF A DECISION TABLE

Figure 1 is an example of a simple decision table. The use of such a table is illus-
trated in the following statements about Rule 1;

Rule 1 says: If age is greater than or equal to 25 and age is less than 35, and
health is excellent, and section of country is east, then rate per thousand is
1.57 and policy limit is 200,000. The underlined words are implied by the table
layout. The quote marks in the table are used to differentiate non-numeric values
from names (as in COBOL-61). Each rule of a decision table is an alternative to
each other rule. Therefore, logically it does not matter which rule is examined
first; at most, one rule can be satisfied by a single set of conditions.

To more clearly indicate the parts of a table and the terms that are used to describe
them, the information in Figure 1 is shown in an exploded view in Figure 2. The
double lines serve as demarcation: The condition stub is shown in the upper left
corner; the action stub below; the condition entry is in the upper right portion; and
the action entry is in the lower right. Each vertical combination of condition and
action entries is called a decision rule. The essential nomenclature is completed

by adding at the top of the table a title section, called a table header, and by
adding & rule header over the entries.

A more detalled description of decision table structure showing the actual location
of the various segments of this sample teble on a coding form mey be found in Chap-
ter III.

As shown in Figure 2, tables may be used in a slightly different way to state decision
logic.

. u RULE NO.
TABLE-CREDIT-APPROVAL : 2 3 [&
CREDIT-LIMIT-0K Y N N N
PAY -EXPERIENCE-FAVORABLE ¥ N N
SPECIAL-CLEARANCE-OBTAINED Y N

PERFORM APPROVE-ORDER X X X
PERFORM RETURN-ORDER-TO-SALES X

FIGURE 2. A LIMITED ENTRY TABLE

Note that the form of the individual conditions and actions is somewhat different
between Figure 1 and Figure 2. In a limited entry table the entire condition or
action is written in the stub; the condition entry is limited to 'Y,' 'N,' '=' or
blank. That is, asserting (Y), reversing (N), or ignoring (- or blank) a con-
dition. An action entry is limited to 'X' or '-' or blank. That is, executing
(X) or skipping (- or blank) an action. In contrast, an extended entry fomm

(as in Figure 1) has part of the condition or action extended directly into the
condition or action entry area. Both forms may be used within one table, but any
one horizontal row (condition or action) must be entirely limited or entirely
extended.

6=

This example points out that the basic concept of a single rule in a table is quite
straightforward, being used on the "if...then..." relationship. If A = B, and C is
greater than 5, and...then assign the value 7 to X, and GO TO Teble 10. The i interpre-
tation is: If all the conditions in rule 1 are not met, then try rule 2, ete.
Continue for rules 2 and 3, 3 and 4, etec., until a rule is satisfield. The program
must still be told what to do if all rules have been considered and the set of con-
ditions that exist do not satisfy any of them. Therefore, the last rule in every
decision table is the ELS-rule in which we tell the program what "else" to do if no
rule is satisfied. An ELS is written in the rule header entry as the last rule in
the table. If no ELS is given, the program will enter an sutomatic error routine.
The flow chart in Figure 2 shows schematically the way in which a table is executed.

In practice, the actual solution technique may wvary, but the logical result remains
the same.

Stub
H \
g Age GE| ',
o Age IR
Health EQ
Section-of -
E Country EQ
- ~ ~
-~ » s\ ~
- - ~
~ ~
-
E =
-~
-~
-~
- -
o -~
" pETAB-X
—_—
E Coding Form
”
Fd
-
s ’
~
(=] s,
” = ’ d
4 s
s i
’ P
Set Rate-
per-1000 0
Set Policy-
Limit e

Stub

ﬂghons

Entry

f Rule 1 Rule 2 X Rule 30
25 25 \ \ 65
35 35 \ \
"Excellent'|"Excellent’ \ \ "Poor"
"East" "West") } "West"”

Decision Rule

-~ - -
-~
— . -
1.57 1,72 \ 5,92
200000 200000) J 20000

-L-

=8a

DECISION TABLE

Rule 1 Rule 2 Rule 3 Rule N
Cond 1 Y Y Y N
Cond 2 Y N
¥ N Y
Action 1 X X X
Action 2 X X X X

FLOW CHART OF ABOVE DECISION TABLE

Rule 1 Rule 2 Rule 3 Rule N

Cond 1

Cond 2

Cond 3

Action 1

Action 2

' I I I

FIGURE 4. SCHEMATIC REPRESENTATION OF THE SEQUENCE OF
TESTS AND ACTIONS IN EXECUTING A DECISION TAELE

ORGANIZATION OF THE MANUAL

The balance of this language specification manual covers the individual areas of the
language, indicating the characteristics and restrictions. In general, the rules
of COBOL-61 are followed explicitly except in matters of format. Where there are
differences, these are noted or are self-evident through the text itself.

=-10=

CHAPTER II
SOURCE PROGRAM FORMAT

The format for a COBOL program containing DETAB/65 decision table expressions must
conform to the requirements for any COBOL program, except that a decision table may

be inserted in the PROCEDURES DIVISION as a SECTION. In compilation a decision table
will be treated as a closed subroutine; that is, as & closed COBOL PROCEDURE. Within
the table, of course, transfers to other than the normal return point may be specified.

IDENTIFICATION DIVISION

A normal COBOL division name followed optionally by a PROGRAM-ID and other identifying
information must be given. No special requirements are levied by DETAB/65.

ENVIRONMENT DIVISION

The Environment Division must be filled out as required by the particular implemen-

tation of COBOL-61. Minimum reguired entries are CONFIGURATION SECTION with SOURCE-
COMPUTER, OBJECT COMPUTER and SPECIAL NAMES, INPUT-OUTPUT SECTION with FILE CONTROL

and I-0-CONTROL.

DATA DIVISION

The Data Division for a program incorporating DETAB/65 sections is treated as is any
other COBOL Data Division. Any symbolic data references used in a decision table
must be declared in the Data Division as for any other COBOL procedures section. Any
data structures, working storage and constants used by the program must be described
in the Data Division. Symbolic references used within a decision table must conform
to the requirements of COBOL data references. Any COBOL data description forms that
have been implemented in a particular COBOL processor may be used.

The normal COBOL character set, as implemented in a particular computer, may be used
to form NAMES.¥ One such name will be a DECISION-TABLE-NAME, which is a name given
to the procedure table that describes a series of conditions and actions, and which
is equivalent to a PROCEDURE-NAME in COBOL-6l. A DECISION-TABLE-NAME is a SECTION-
NAME and may be composed of alphabetic, numeric, alphanumeric, or combinations of
these characters joined by one or more hyphens (-). The DECISION-TABLE-NAME must
be used to call a table from the main sequence of COBOL instructions.¥*

¥NOTE: Special symbols suggested by the DETAB-X Manual have been rejected in favor
of normal COBOL forms, i.e., /= (not equal), <= (less than or equal), >= (greater
than or equal to) are rejected.

**NOTE: The so-called "short form" of decision table names specified in DETAB-X
will not be implemented in DETAB/65. Neither will the capability of calling the
TABLE-ID (e.g., GO TO TAB XXX) rather than the table name.

U

PROCEDURES DIVISION

The Procedures Division of a COBOL source program is used to specify the logical
decisions and actions that provide the desired processing. Procedures are normally
written as COBOL SENTENCES that are combined to form COBOL PARAGRAPHS, one or more
of which mey be combined to form a COBOL SECTION.

However, within a section that 1s a decision table, the normal sentence structure

of the COBOL language is abandoned in favor of the more formel structure of the
decision teble. The syntactic content of the decision table structure may be
interpreted as a complex set of conditional statements, plus the information
necessary to initialize the closed subroutine that the table represents. A decision
table may not be entered vie the normal operating sequence and mey be referenced

by a GO TO, or a PERFORM, but not by an ENTER. A GO TO results in an unconditional
or conditional transfer to the specified decision table. For & GO TO from the main
processing sequence from another table, a return or transfer point must be specified

by the programmer in the decision table actions or the processing sequence will be
lost.

If the transfer to the table is accomplished by a PERFORM, & normal return to the
processing sequence wlll be made unless the programmer specifies otherwise. Spe-
cifically, the DETAB/65 processor will generate & GO TO DEXIT for every rule that
does not end in a GO TO, however the table was entered.

=12~

CHAPTER III
DECISION TABLES

This chapter describes the decision taeble format expected by the DETAB/65 processor.
The processor will accept both extended_and limited entry tables.

Each of the sections of a decision table will be discussed and each of the entries
permissible in a section will be described and the reasons for the various require-
ments and rules governing the entries are given. The description assumes that punched
card or card images are used as the input mode. If punched tape, typewriter keyboard
or other continuous input mode is adopted considereble revision of the DETAB/65
processor Data Division would have to be respecified.

A decision table consists of 6 parts or sections: a Table Header, a Rule Header,
a Condition Stub, a Condition Entry Area, an Action Stub, and an Action Entry Area.
The functions of these sections are demonstrated briefly in Chepter I. A sample
DETAB/65 specification form is shown in Figure 5 to provide a ready reference for
the reader as the decision table sections and entries are discussed.

FORM HEADER
The Form Header serves to ldentify system, program, and suthor of completed Decision

Teble Input Forms, and to specify the data of completion end enumerate the pages.
None of this information is part of the decision table proper.

TABLE HEADER

Each table has two header lines: 1) a Table Header that serves to identify the table
and provide informetion that covers the table as a whole and 2) & Rule Header that
is used to indicete rule numbers.

A table may require more than one page, either because of a large number of rules,
or because of a large number of conditions and actions. The table header card for
the subsequent pages should not be filled in, but, in the case of row continuation
(i.e., due to more rules than will fit on a page), a continuation flag - the number
"1" - should be set in the RSET rules set entry area of the initial header card.
The flag should not be set for multiple pages due to condition and action overflow
(i.e., overflow of the entries for a rule or other column onto another page).

The entries in the Table Header are:

TABLE ID

Esch table must be identified by a three-diglit number (e.g., 001, OTL, 694). This
number is rominative only and table ID's need not be sequential nor ordered in any

way, but each table ID must be unique within a program.¥ The Table ID is repeated
for every row of a table.

¥NOTE: DETAB-X specifications permitted the TABLE ID to be substituted for the Decision
Teble Name in calls to the table. This has not been implemented in DETAB/65. TABLE ID
serves only to distinguish one table from another in sequence checking or EAM processing

of cards.

=3h=

Row No.

The Row Number is a three-digit number that for the Table Header is always 000. This
designation indicates to the processor that this is & Header Card.

Line

The Line entry is one alphanumeric character that for the Table Header is always "0".
This designation indicates to the processor that this is a Table Header Card.

RSET

The Rules Set (RSET) entry is left blank unless more rules than can be specified on
one page (i.e., card) are required. If more than one page is used, a numersl "1" is
entered in the RSET entry of the Teble Header Card. If an entry is made in the RSET
entry of the Teble Header, a single numeric digit must appear in the RSET entry of
all other rows of the decision table.

Table Name

A table may be given any name that conforms to the specifications of COBOL for a
procedure-name, usually indicating the function or content of the table. That is,
a procedure-name may be composed of alphabetic, numeric or alphanumeric characters
(at least one but not more than thirty) or sets of such characters separated by
hyphens (-). However, a hyphen may not begin or end e neme. Names must be unique.
The Table Name mey be referenced by GO TO and PERFORM operators. The DETAB/65
processor will use this name in generating a COBOL section-name for the table. A
dummy paragraph-name must also be generated and inserted after the section-name.

Form

Three basic formats are permitted for decision tables: limited entry (L), extended
entry (E), and mixed entry (M). The format of the decision table being specified
is indicated by placing one of these three values (L, E, or M) in the Form entry.
That is, one alphabetic character.

Cond Rows

A three-digit number containing the number of conditions rows (not lines) in the table.
That is, this entry specifles the number of conditions that are contained in the table.
Lead ing zeros must be glven.

Action Rows

A three-digit number containing the number of action rowe (not lines) in the table.
That 1s, this entry specifies the numbér of actions that are contained in the table.
Leeding zeros must be given.

Rules

A three-digit number specifying the total number of rules in the table. The ELS rule
should be included in the count. Leading zeros must be given.

=15

RULE HEADER

The second header card is the Rule Header used to specify the rule numbers for the
table. Besides rule numbers, it will contain the identifying information given for
every line of a decision table. As many Rule Header cards will be used as are re-
quired to specify all rules.

Table ID

Always the same as the Table Header.

Row No.

The Row Number (ROW-NO.) for a Rule Header Card is always 000, indicating that this
is a Header card.

Line

The Line (LINE) entry for a Rule Header is always "1" indicating that this is a Rule
Header.

RSET

The Rules Set (RSET) entry will be blank except when the number of rules specified
requires more than one page. If more than one page is required, the RSET entry will
be "1" for the first page (or card) and following pages will be numbered sequentially.

Rule No.

A Rule Number must be a three-digit number (e.g., 001, 002, 142, etc.) or ELS.
(Bvery table must have an ELS-rule as the last rule to be given.) The first Rule
Number is entered in the Rule Header Card in the first space available beyond the
longest entry in the Condition Stub, although blanks may be left between the last
character of the longest condition and the first Rule Number. The column that the
first digit of the first Rule Number occupies defines the point at which the
DETAB/65 processor construes the Condition Entry Area to begin. Spaces occupied

by Rule Numbers may vary from three through twelve, but the Rule Number must begin
in the leftmost column of the area to be reserved ror the rule. The spaces beginning
with the first digit of one Rule Number and ending at the last digit before the next
is interpreted by the DETAB/65 processor as the number of spaces that are reserved
for the condition entries subsumed under that Rule: The number of spaces thus
reserved must be equal to or greater than the longest Condition Entry in that rule.
The number of spaces reserved may vary from rule to rule, but must not be less than
three nor more than twelve. The end of the last rule, and the end of the rules, is
indicated by placing a "$" in the first space beyond the last space required by the
last rule (i.e., the ELS-rule).* A rule entry may not be split between pages.

*NOTE: An exception is made in the case where the last (ELS) rule includes the 80th
column of the card. That is, if RSET = 0, the card column count = 80, the rule header
entry is ELS, and the spaces reserved less than or equal to 12, then this is the last
rule. Otherwise, an error has occurred.

w LB

If, in an extended entry table, there are not enough calumns left on a page to contain
all of a particular rule, a new page must be started and an intermediate end-of-rule
marker (a "$") set to define the end of the preceding rule and to inform the processor
to go on to the next card. When the processor encounters a $, it will check the pre-
ceding rule for an ELS-rule. If the preceding rule is an ELS, search for further rules
is stopped and the processor proceeds to the next card. NOTE: Although Rule Numbers
should be sequential and entered in ascending order (e.g., 001, 002, 003, etc.), this
does not imply that the rules will be executed in that order. The DETAB/65 processor
evaluaetes the matrix of condition entries and optimizes the decision tree for effieient
processing.

CONDITION AREA

The cards following the Rule Header Card are used to specify sets of conditions. Each
row speclfies the states, specific values, or ranges of values that a particuler piece
of data may assume, or relationships to other data or combinations of these states
that the data may assume, and upon which decisions are to be based.

Structurally, a condition consists of two parts: (1) a Condition Stub and (2) a Con-
dition Entry. The Condition Stub area consists of the entries for Teble ID, Row No.,
Line, RSET, and a conditional statement, or portion thereof. The Condition Entry
area consists of entries specifying the values of the data or condition specified in
the stub that will satisfy the decision requirements of the rules.

The presence of a Condition Area in a table is not required; however, if it is absent,
the table can have only one rule in the action area.

TABLE ID
As sbove, a three-digit entry uniquely identifying a particular decision table.
Fow

Row number is a three-digit number used to identify particular conditions, actions,

or notes. Condition and ‘action row numbers may vary from 00l to 899; 900 to 999

will designate Notes. Conditions must have lower row numbers than do actions. Row
numbers should be, but need not be, assigned in ascending order. Sequential numbering
improves legibility of tables for later reference, but the processor may reorder the
conditions in sorting to minimize the decision tree. Leading zeros must be filled in
and duplicate row numbers are not permitted.* A row may cover as many lines on a
specification form as are required to write out the operators and operands of an
expression, up to the maximum permissible value of LINE (1.e., 9).

¥NOTE: Presently, the number of conditions is limited to 50, although row numbers
may run much higher.

Line

Line is a one-digit entry used to specify continuations of & row. A Line entry may
be blank or range from 1 to 9. Lines, if specified, must be specified in exact
sequence because following lines are considered as a continuous description of the
condition, action, or comment being given. A blank entry signifies that only one
line will be used; if a digit is given, the DETAB/65 processor will look for con-
tinuations of the line until the Row Number changes. For limited entry tables,

line numbers greater than 1 may be dropped on continuation pages. For extended entry
tables, lines not required by the condition entries may be dropped.

RSET

The Rules Set entry mey be either blank or contain a digit from 1 to Q@ or the symbol
"$." As specified above, RSET is used to number the sub-tables required to specify
all the rules of a table. If more than one sub-table is required, they are numbered
sequentially; that 1s, the RSET entry will be the same for each condition, action or
comment of any sub-teble. RSET applies to row continuation horizontally and not
vertically. The sheets containing the Condition and Action stubs are considered
sub-table 1 no matter how many physical sheets are used. If more rules are reguired
than can be contained in nine sub-tables, a new table must be created, using the same
conditions and actions, and to which the ELS-rule may trensfer if none of the rules
in the first table are satisfied. The $ is used to indicate the end of the table.
The entry for the end card will contain 99993.

Deck Seguence

The entries for row, line and continuation are used in sequencing the deck for pre-
sentation to the processor. The expected deck order will be a sort on (1) row,
(2) RSET, and (3) Line. The deck make-up is illustrated in Figure 6.

[999X
E - DETAB/65 FILE ENDCARD

s 2 DETAB/65 TABLE END CARD
(«———— DETAB/65 SOURCE DECK

0001

[<«—————— DETAB/65 RULES CARD

0000
[<«—————— DETAB/65 HEADER CARD

[<«¢—————— COBOL SOURCE DECK

TTAtET A TROY WARMAT FOR A DETAB/65 PROGRAM

w1 8s

Condition Stub

Beginning in column 9 of the specification sheet and continuing for as many lines of
a row (up to 9) as are necessary to contain it, any conditon that constitutes a
legitimate COBOL conditional statement (with the IF implied) mey be specified. A
condition stub must contain at least one operand. A condition stub entry is bounded
by column 9 of the input card format and the first column of the first rule, but may
be continued on several lines. A condition stub entry must be contained entirely
upon one page (i.e., the first logical sub-teble) in row-line length, but additional
lines may be given on subsequent physical pages. Continuation of lines do not require
hyphenation since continuations are treated as part of a single entry. Blanks other
than those required because of language specifications are ignored at the beginning
and end of lines, permitting the user to indent or organize operands in various ways
to increase legibility.

Despite this flexibility in specifying conditions, it is recommended that condition
stub entries be kept as short and concise as possible. Any lengthy calculations

should be relegated to a separste expression and assigned a name that may be referenced
in a condition stub entry.

Entry

A condition entry is specified within the bounds of a rule. That is, it begins in the
column conteining the left-most digit of its rule number and ends where the rule
immediately to its right begins. A rule must not be less than three nor more than
twelve columne in width, but ean entry may be continued on the subsequent linees of a row.

Three kinds of condition entries are permitted: Limited, Extended, and Mixed. In a
limited entry form, each rule or entry i1s three columns wide. Permissible entries
are (a) Y Ei .., Yes), signifying that the stated condition must be true to satisfy
the rule, (b) N (T.e., No), signifying that the condition must be false to satisfy,
(¢) = (1.e., a hyphen or blank), signifying that the condition may be either true

or false, thet the programmer doesn't care which it is. The entry must be made in
the second column of the rule and have a blank space both to the right and to the
left within the rule.

In extended entry form, leading and following blanks are permissible, but not regquired.
Permissible entries are (a) and operator and an operand, (b) an operand, (c) -, or

(d) a blank. In mixed entry format, the entries for any one condition may be either
ext nded or limited, but not both.

In extended and mixed entries, a condition entry too long to be contained within the
allotted 12 spaces may be continued on successive lines of a row. Limited entries in
a mixed table must still contain a leading and trailing blank and appear in the second
column of the rule.

The last rule will be the ELS-rule. The ELS-rule must be given, but all condition
entries for the ELS-rule must be blank (or "-").

Neither names nor values mey be split between stub and entry. At least one operand
or operand and verb must appear in the stub, and at least one condition entry must be
given for each condition. (Except in the case of the 'empty' teble in which case no
entries are made.)

=15

A condition entry may not be split between pages or "sub-tables." (See Rule No.,

Rule Header section.) If there is less than 12 spaces left on a page and the entry
exceeds the available space, the entry must either be made on a new page or sub-table,
or multiple lines may be used.

Formula references must not duplicate any data references made in the data division.

On sub-tables beyond the first (i.e., RSET <1), condition entries must begin in
column 9 of the DETAB specification sheet; that is, the first rule number on continu-
ation pages should begin in column 9. Limited entries must still be in the middle
column of the entry and extended entries may or may not have leading and trailing
blanks.

In all sub-tables, condition entries must start in the first line of a row. For
limited entry tables, only Line 1 of a row need be given in sub-tables beyond the
first since all condition entries on other lines would be blank. The programmer
may wish to retain the vertical alignment, however, to help avoid mistakes. 1In
constructing a condition matrix for a limited entry table all lines except Line 1
will be rejected (i.e., not read into the matrix) and entries so misplaced will be
lost.

For extended entries, the programmer may include as many lines as are necessary (up
to nine) to express the longest entry; however, this number of lines may vary as
required from sub-table to sub-table of the specifications. In writing extended
entries, no continuation marks, such as hyphens, need be given since each line is
picked up as a continuation of the row. Blanks should therefore be inserted where
appropriate to avoid two words being read as one. In setting up the condition matrix,
the input editor will continue reading cards into the matrix until a new row number
is encountered, creating an image of the input condition matrix area.

In an extended entry table, the programmer may desire to specify a condition such
that the value specified is not any of the values specified in any other condition
entry in that row. He may do this by specifying "NOT." In the processor this
expression will be expanded into an "N" entry and row in combination with every other
condition in the row for which a value is given. Don't care entries ("-" or blank)
will be ignored. In illustration, consider this example:

-20-

CONDITION STUB RULE NO.
COND. 001| 002 | 003 | OOk | 005| 006 | 007 | 008| 009 | 010 | O11| 012 | ELS
001 12 AR EEEEBBESRESENE IR B SE N
002 5 10 {NgT| 5 10| NgT | 5 10| Ngr | 5 10| NgT
003 OPEN YL ¥ (¥ i % |1 8¥] %
ook SUNDAY 4 S N
This expands to:
001| 002 |003 | 0Ok {005| 006 | 007 | 008| 009 | 010 | 011 | 012 | ELS
001 12 Y| ¥ j¥y 1 ¥ | ¥l ¥ ivinwl i ni Nl N
002 5 Y| v {[N|] Y |N|N]|]Y|[N|]N|]Y|N|N
003 10 Y | N Y| N Y| N Y| N
00k OPEN Y| ¥ |Y| N |N| N
005 SUNDAY Y | Y| Y N | N| N
After optimization this table will read:
001 | ook [002 | 005 | 003| 006 | 00T | 010| 008 | 011 | 009 | 012 | ELS
001 12 Y| Yy |Yy|Yy |Y|] Y |N|[N| N|N|[N|N
002 Y| ¥Y |{N| N |N|N|[]Y|]Y|]N|N|[N]|]N
003 10 Y | Y | N| N Y | Y| N| N
00k OPEN Y N Y N 5 4 N
005 SUNDAY Y I ¥l X Iinj¥l >
FIGURE 7. EXAMPLE OF THE EXPANSION OF "NOT" AND OF OPTIMIZATION

B

Action Ares

The action area is used to specify the actions the program is to teke when the con-
ditions satisfying the various rules are met. The actions represent the "THEN" part
of the conditional statements for which the conditions esre the "IF" portion. All

the rules and principles stated for conditions apply equally to the action area. The
action area consists of an Action Stub and an Action Entry area just as the Condition
Area consisted of a Condition Stub and a Condition Entry area.

Table ID
The Table ID entry must be the same unique identifier as for the rest of the table.
Row

Row Number entries are a continuation of Row Numbers for the Conditions. However,
while the rows need not be numbered in sequential order, it is recommended that they
be so ordered, for they will be compiled and executed in the numbered sequence. That
is, while condition rows are subject to reordering in the optimization process, actions
are not, thus insuring that the program will teke a sequence of actions in the order
specified by the programmer. That is, the processor will not create any logical errors
by reordering actions. (The programmer, however, is free to create his own.)

Line

The Line entry should be left blank if an action can be specified on a single line;
otherwise the digits 1, 2, 3, etc., must be used in precise sequence so that the
proper action statement is picked up.

RSET

The RSET entry is left blank if only one sub-table is required. If more than one
sub-table is required to contain the additonal rules, RSET will be numbered 1, 2, 3,
as required, up to 9.

Action Stub

The Action Stub must contain at least an operator. In a limited entry table it will
contain the entire action in 2 single "row" using as many lines as re required to
specify the entire action to be taken. In extended entry tables an expression may
be split between the Action Stub and the Action Entries. Although names and values
may be broken and continued from line to line, they may not be split between the Stub
and an Entry. This does not prevent subscript values of a name being used as entry
values to specify different table destinations resulting from different rules being
satisfied. ’

While no restriction is placed on the kind or length of actions taken (with a procedure
or another conditional, if you wish), it is recommended that all lengthy Action Stub
and Action Entry entries be defined outside the table and referenced by an appropriate
neme.

Although, again, no restrictions are imposed, it is recommended that all calls to system
(COBOL) subroutines be made in a general fashion. E. G., an I/0 order should be ex-
pressed PERFORM READ, PERFCORM WRITE, etc. This convention will enable the programmer

to write a program that is compatible with the manner in which various COBOL I/0
madifiare (AT FND. ROF. ON SIZE. ETC.) have been implemented in different COBOL pro-

-22.

Action Entry

For limited entry tables, any action that is assoclated with a given rule will be
indicated by placing an "X" in the central column of the three column entry space
of 1ine 1 (the first line) of the action row. The "X" must be followed and pre-
ceded by & blank.

Extended action entries will be treated in the same manner as extended condition
entries. Cere will be taken in generating COBOL statements not to disturb the
basic operating sequence specified by the programmer.

NOTES

A note is a descriptive statement thet has no functional significance and that carries
the same uses and restrictions as notes in COBOL-6Ll. A note has the same Table ID

as the table that it is applied to. Notes are given a row number of 900 to 999 and
note lines are rmumbered 1, 2, 3, etc., as for other rows and lines to maintain their
sequential order. Notes may be written anywhere in the table except between the Table
Header and Rule Header Cards. When the processor encounters a note row designator,

it will transfer the card into the COBOL code area as a note without further processing.

Note, however, that as presently constituted all notes would be sorted to the end of
the table by preprocessing to put the cards in order. If it is desired that notes

be inserted 'in place, the cards may be hand-ordered if more than one psge or sub-table
is used, or not sorted if only one sub-teble (the first) is used.

RESTRICTIONS AND USAGES

Certain restrictions and peculiarities of usage became apparent as decision table
specifications are used in combination with the COBOL languages. These restrictions
are, in general, not serious, but minor logical errors may be avoided if the programmer
is aware of these.

LINKAGES

A decision teble may be entered in a variety of ways. The preferred mode of entry is
through a PERFORM verb, in which case a linkage back to the main control sequence

may be generated. If the table is to be used lteratively on a succession of inputs
or cases (as in a scan routine), then PERFORM is the logical choice. If tables are
nested, the PERFORM verb should be used to step from one table to the next and back.
If a table may be entered from any one of a set of points, the PERFORM verb and RETURN
entry are most convenient.

A teble may be entered through a GO TO, but in this case the processor has no means
of knowing what location to return to in the main control sequence unless this loca-
tion is explicitly stated in conjunction with the separate rules. Of course, if one
of the functions of the table is to switch control to various program regions depend-
ing upon the conditions encountered, this may be the preferred mode of specification.
A sequence of tables may be stepped through with a series of GO TO's, but it is felt
that this mode is inferior to the use of PERFORM's.

=23«

Note that a table .may not be entered via an ENTER verb, nor may an ENTER verb be
used within a teble without creating difficulties. All information neceseary for
the processing of the table and its COBOL statements are contained in the header
cards.

Note also that tables cannot be entered at any point except at the beginning. If
entry is desired at intermediate points in a set of conditions, this effect may be
achieved by creating a sequence of tables and chaining them together. If tables

are nested, however, returns to points in the Action Area of previocus tables may be
mede through the operation of the PERFORM verb and normal exits, or may be specified
directly by a GO TO.

Note that if a GO TO teble-name-l is given within the range of a COBOL PERFORM...
THRU that the sequence of control may be lost unless the programmer has esteblished
instructions that will get the sequence back within ghe loop. However, no such
trouble should be encountered when a PERFORM table-name-l is given unless the table
contains only explicit GO TO's that pick up the sequence elsewhere.

000000
000005
000010
200015
000020
000025
J00D030
200035
200040
200045
200050
200055
300060
200065
200070
000075
200080
000085
J00090
200095
000100
000105
200110
000115
000120
200125
200130
000135
000140
000145
200150
000155
200160
000165
000170
000175
000180
000185
200190
000195
000200
000205
200210
000215
000220
200225
200230
200235
000240
000245
000250
200255

DETAB/65 COBOL PREPROCESSOR LISTING

IDENTIFICATION DIVISION.

PROGRAM-1D. PREPROCESSOR FOR DETAB-65.

AUTHOR. ANSON CHAPMAN.

DATE-WRITTEN. 12/30/6%.

DATE-COMPILED.

REMARKS ;
THE GENERATOR PORTION OF THE PREPROCESSOR ANALIZES A
DECISION TABLE AND GENERATES SIMPLE CONDITIONAL STATEMENTS
FOR Y®Se NS AND BLANKS AND WILL GENERATE IF STATEMENTS FOR
ONE PATH THRU THE TREE THE ACTION CORRESPONDING TD THE PATH
[S GENERATED IN STMTS 0XO0l14 THRU DX032 THIS PATH IS DELETED
FROM THE TREE IN DXOl6 THRU DX020 DX30L THRU DX061
REINITIALIZES THE TREEes FINDS THE LAST NOOE CONNECTED TO
THIS PATH AND COMES: BACK 7O DX003 FOR ANDTHER PASS THRU THE
NEXT PATH THIS PROCESS IS REPEATED UNTIL IF STATEMENTS
HAVE BEEN GENERATED FOR ALL PATHS THRU THE DECISION TABLE
TREE. STRUCTURE.

ENVIRCNMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. CONTROL DATA 1604A.

JBJECT-COMPUTER. CONTROL DATA 1604A.

SPECIAL—NAMES.
SYSTEM-INPUT-TAPE IS SIT.

INPUT-DUTPUT SECTION.

FILE-CONTROL.

DETAB-6"%
DETAB-6"
DETAB-b6"
DETAB-6
DETAB-6'
DETAB-6¢
DETAB-6!
DETAB-6'
DETAB-6!
DETAB-6!
DETAB-0b!
DETAB-6'
DETAB-6'
DETAB-6!'
DETAB-6
DETAB-6'
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-&
DETAB-"

SELECT CARD-INPUT, ASSIGN TO SYSTEM-INPUT-TAPE MULTIPLE REEL.DETAB-~

SELECT CARD-DUTPUT, ASSIGN TO SYSTEM—~PUNCH-TAPE.
SELECT LIST-0UTPUT, ASSIGN TD SYSTEM-OUTPUT-TAPE.
DATA DIVISION. j
FILE SECTION.
FD CARD-INPUT
LABEL RECORDS ARE OMITYTED.
DATA RECORDS ARE TEST-CARD.
01 TEST-CARD.
02 FILLER PICTURE X(80).
FD CARD-0QUTPUT
LABEL RECORDS ARE OMITTED.
DATA RECORDS ARE CRD-JUT, DETAB-CRDs DUM-l.
01 CRD-DUT.
02 FILLER PICTURE X(7).
02 BODY.
03 FILLER PICTURE X(4).
03 B-MARG PICTURE X{(6l).
02 IDFLD PICTURE X(8).
01 DETAB-CRD.
02 FILLER PICTURE XXXe.
02 IDENT.
03 ROW-NO PICTURE 999.
03 LINE-ID PICTURE Xe.
02 FILLER PICTURE X(73).
01 DUM-l.
02 CRD-COL PICTURE X OCCURS 80 TIMES.

DETAB-6
DETAB=-6
DETAB-6
DETAB-6
DETAB-6
DETAB-06
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-¢€
DETAB-¢
DETAB~€
DETAB~E
DETAB-€
DETAB-¢
DETAB-¢

000260
J00265
000270
200275
000280
200285
200290
200295
200300
200305
200310
000315
200320
200325
200330
J00335
000340
J00345
J00350
200355
200360
200365
000370
200375
000380
000385
J00390
200395
000400
000405
000%&10
200415
D00A&20
000425
000430
000435
000440
000445
000450
000455
000460
000465
D00&70
000475
000480
000485
200490
200495
000500
000505
000510
000515
000520
000525
200530
000535
000540
200545

SARAE TN

FD LIST-0UTPUT
LABEL RECORDS ARE OMITTED.
DATA RECORD IS TAPE-LIST.
01 TAPE-LIST.
02 FILLER PICTURE X(1ll).
02 CARDX PICTURE 999.
02 FILLER PICTURE X{66).
WORKING-STORAGE SECTION.
77T AZ PICTURE XX VALUE 'AZ°.
77 CARDCNT PICTURE 999 COMPUTATIONAL
77 COLIX PICTURE 999 COMPUTATIONAL
77 COLUM PICTURE 999 COMPUTATIONAL
77 DUMIX PICTURE 999 COMPUTATIONAL
7T ELMCT PICTURE 999 COMPUTATIONAL
77 ELMCX PICTURE 999 COMPUTATIDNAL
7T ELMRX PICTURE 999 COMPUTAT IONAL
77 EXIX PICTURE 999 COMPUTATIONAL
717 KEY-1 PICTURE 999 COMPUTATIONAL
T KEY=2 PICTURE 999 COMPUTATIONAL
T4 KEY=3 PICTURE 999 COMPJTATIONAL
77 LABIX PICTURE 999 COMPUTATIONAL
77 LABNOD PICTURE 999 COMPUTATIONAL
77 NACTS PICTURE 999 COMPUTATIONAL
77 NCOLS PICTURE 999 COMPUTATIONAL
77 NORLS PICTURE 999 COMPUTATIONAL
77 NOCON PICTURE 999 CONPUTATIONAL
TT7T NRLS PICTURE 999 COMPUTATIONAL
77 NROWS PICTURE 999 COMPUTATIONAL
77 ROWIX PICTURE 999 CDMPUTATIDNAL
01 DUM-2.
02 FILLER OCCURS 50 TIMES.
03 STRTCOL PICTJRE 99 COMPUTATIONAL
03 NMCOLS PICTURE 99 COMPJUTATIONAL
0L DUM-3.
02 COLS PICTURE X OCCURS 12 TIMES.
0L DUM-4.
02 EGOTO PICTURE X OCCURS 5 TIMES.
02 TEMP PICTURE X DCCURS 58 TIMES.
01 DUM-10 PICTURE X(8) VALUE °SECTION.'.
01 DUM-12 REDEFINES DUM~10.
02 NMSEC PICTURE X OCCURS 8 TIMES.
01 HEADER.
02 FILLER PICTURE X{B).
02 TBLNME PICTURE X(30).
02 FORMID PICTURE XX.
02 NCOND PICTURE 9i3).
02 ACTNS PICTURE 9(3).
02 NORULS PICTURE 9(3).
02 FILLER PICTURE X{51).
01 DPRINT.
02 DLABEL.
03 FILLER PICTURE X(7) VALUE SPACES.
03 DUM-6.
04 LABNM PICTURE XX.
04 LABVL PICTURE 9(3).
03 FILLER PICTURE X VALUE *.'.
02 DGOT0w

- ~ "4 s mn

LR R - e -

s mE aem -

SYNCHROMIZED
SYNCHRONIZED
SYNCHRONIZED
SYNCHRONIZED
SYNCHRONIZED
SYNCHRONIZED
SYNCHRONIZED
SYNCHRONIZED
SYNCHRONIZED
SYNCHRONIZED
SYNCHRONIZED
SYNCHRONIZED
SYNCHRONIZED
SYNCHRONIZED
SYNCHRONIZED
SYNCHRONIZED
SYNCHRONIZED
SYNCHRONIZED
SYNCHRONIZED
SYNCHRONIZED

SYNCHRONIZED
SYNCHRONIZED

DETAB-65
DETAB-65
DETAB—-65
DETAB-65
DETAB-65
DETAB=65
DETAB-65
DETAB=-65
DETAB-65
RIGHT.DETAB-65
RIGHT.DETAB-65
RIGHT.DETAB=65
RIGHT.DETAB-65
RIGHT .DETAB-65
RIGHT.DETAB-65
RIGHT.DETAB-65
RIGHT.DETAB~65
RIGHT.DETAB=-65
RIGHT.DETAB-65
RIGHT.DETAB=-65
RIGHT.DETAB=65
RIGHT .DETAB-65
RIGHT.DETAB=65
RIGHT.DETAB~65
RIGHT.DETAB-65
RIGHT.DETAB-565
RIGHT.DETAB=65
RIGHT.DETAB=65
RIGHTDETAB=65
DETAB-65
DETAB-65
RIGHT.DETAB-65
RIGHT.DETAB-65
DETAB~65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB~-65
DETAB-55
DETAB-65
DETAB-65
DETAB=-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-565
DETAB-65
DETAB-b65

200555
200560
200565
000570
000575
200580
000585
200590
200595
200600
000605
000610
000615
000620
000625
200630
000635
200640
000645
200650
000655
000660
000665
000670
000675
D0068O
000685
200690
000695
000700
000705
000710
DOO715
000720
000725
000730
000735
000740
000745
000750
000755
000760
000765
ooo770
000775
000780
000785
200790
200795
200800
000805
0Q0810
000815
000820
200825
200830
000835
000840
2008465

01

o1

o1
o1

01

01

01

oL

01

a

02 DGDLN.
04 DGOLB PICTURE XXe
04 DGOND PICTURE 999.
02 HOUSTON.

03 CNOI PICTURE X{58) OCCURS 50 TIMES.

03 ATBL PICTURE X(58) OCCURS 50 TIMES.
LINEl. -
02 FILLER PICTURE X{l14) VALUE * - IF
02 COND PICTURE Xi{58).
TEXAS.
02 LINEZ2.

03 FILLER PICTURE Af(ll).
03 CDOPR PICTURE X(12).
03 PIF PICTURE X.
03 DELSE PICTURE XI(6).
03 ELOPR PICTURE X{12).
03 PELSE PICTURE Xeo
03 FILLER PICTURE Al29).
02 LINE3 REDEFINES LINE2.
03 FILLER PICTURE X(7).
03 DNAME.
04 TCOLS PICTURE X
03 FILLER PICTURE X(T).
02 FILLER REDEFINES LINE2.
03 FILLER PICTURE X(1ll).
03 BNAME PICTURE X(58).
03 FILLER PICTURE XXXe
02 DECISION-TABLE.

OCCURS 58 TIMES.

03 ROW OCCURS 50 TIMES.
04 COLMN PICTURE X OCCURS 100 TIMES.

ELIMT.
02 ELIMC PICTURE 999 OCCURS 25 TIMES.
MATIT.
02 MATIX PICTURE 999 OCCURS 25 TIMES.
MICDESCR.
02 PDPUL PICTURE 999 OCCURS 128 TIMES.
02 SAVCL PICTURE X OCCURS 25 TIMES.
WRNING~PRINT.
02 FILLER PICTURE X{(17) VALUE

* %xxxxs WARNING. ®o
02 WRNING-IMAGE PICTURE X(52).
WARNING-MESSAGES.
02 WRNING-1 PICTURE X(52) VALUE

*NQ ELSE RULE CARDe LAST RULE PROCESSED AS ELSE RULE.'.

02 WRNING-~2 PICTURE X(31) VALUE
*REDUNDANCY. CHECX THESE RULES -'.
ERR-PRNT.
02 FILLER PICTURE X{(30) VALUE
' %%4%%% ERRIR. TABLE SKIPPED. ‘.
02 ERR-IMAGE PICTURE XI(53).
ERROR-MESSAGES.
02 ERR-1 PICTURE X(48) VALUE

"PRESENTLY, TABLES RESTRICTVED TO LIMITED ENTRIES.'.

02 ERR-2 PICTURE X{42) VALUE

*TABLE-NAME MISSING FROM TABLE HEADER CARD.'.
02 ERR-3 PICTURE X(19) VALUE

*RULES CARD MISSING."'.
02 ERR—-& PICTURE X%(39) VALUE

*LESS THAN THREE RULE COLUMNS SPECIFIED.".

DETAB-6!

DETABR-6!

DETAB-6!

DETAB-6!

DETAB-6!

DETAB-6!

DETAB-6!

DETAB-6!
DETAB~6!
DETAB-6!
DETAB-6!
DETAB-6!
DETAB-6!
DETAB-6¢
DETAB-6°
DETAB-6%
DETAB-6%
DETAB-65
DETAB-6F
DETAB-65
DETAB-6%
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB~-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB~65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB~-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65

000850
200855
200860
200865
J00R70
000875
000880
000885
000890
200895
000900
000905
000910
000915
000920
000925
000930
000935
000940
000945
000950
000955
000960
000965
000970
000975
000980
000985
000990
000995
001000
001005
001010
001015
001020
201025
001030
001035
001040
001045
201050
201055
001060
001065
001070
001075
001080
001085

02 ERR-5 PICTURE X(4&3) YALUE

"PRESENTLY, CONTINJED RULES NOT IMPLEMENTED.'.
02 ERR-6 PICTURE X[40) YALUE

"CONDITIIN STUB ENTRY EXCEEDS 58 COLUMNS.'.
02 ERR-T PICTURE X(26) VALUE

*MORE THAN 12 RULE COLUMNS.'.
02 ERR-8 PICTURE X(53) VALUE

*NUMBER OF RULES ENCOUNTERED DISAGREES WITH RULE CARD.'.

02 ERR-9 PICTURE XI[41) VALUE
*MORE THAN 50 ACTION OR CONDITION ENTRIES.'.
02 ERR-=10 PICTURE X(4&6) VALUE

"DECISION TABLE LOGIC ERROR. PROCESSING HALTED.'.

PROCEDURE DIVISION.
DETAB6S.

OPEN INPUTY CARD-INPUTe QJQUTPUT CARD-DOUTPUT, LIST-0UTPUT.

DT001.
PERFORM READ-1.
IF *0000°" = IDENT OF DETAB-CRD GO TO MONITOR.
WRITE DETAB-CRD.
GO TO DTOO1.
MONITOR.
MOVE DETAB-CRD TD HEADER.
IF TBLNME = SPACES GO TO EMO2.
IF FORMID OF HEADER NOT = *L® GD TO EMOl.
MOVE SPACES TO HOUSTON, TEXAS.
MOVE ZEROES TO DUM-2.
MOYE TBLNME TO DUM-5, DNAME.
PERFORM RSCAN.

PERFORM DT00S5 VARYING EXIX FROM 1 BY 1 UNTIL EXIX = 9,

PERFORM READ-1.
IF IDENT OF DETAB-CRD NOT = *0001* GO TO EMO3.

NOTE RULES CONVERSION SECTION.

MOVE O TO CARDCNT.
MOVE 1 TO NRLS.
MOVE 9 TO COLUM, STRTCOL (NRLS?).

DTO050.
IF CRD-COL (COLUM) = SPACE GO 7O DTO053.
IF CARDCNT IS LESS THAN 3 GO TO EMO%4.
MOVE CARDCNT TO NMCOLS (NRLS).
IF CRD-COL (COLUM) = *$* GO TO DTOS55.
ADD 1 TO NRLSe.
MOVE COLUM TO STRTCOL (NRLS).
MOVE 3 TO CARDCNT.
ADD 3 TO COLUNM.
IF COLUM IS GREATER THAN 80 GO TO EMOS.
G0 TO DTO50.

001090 DTOO5.

001095
001100
001105
001110
201115
001120
201125
001130
001135
201140

MOVE NMSEC (EXIX) TO TCOLS (DUMIX).

ADD 1 TD DUMIX.
DT053.

ADD 1 TO CARDCNT, ADD 1 TO COLUM.

IF CARDCNT IS NOT GREATER THAN 12 GO TO DT050.

IF CARDCNT IS GREATER THAN 58 GO TO EMOé6.

IF NRLS = 1 G) TO DT050 ELSE GO TD EMO7.
DT055.

SUBTRACT 1 FROM NMCOLS (NRLS)y SUBTRACT 1 FROM NRLS.

IF NRLS NOT = NORJLS GO TO EMOS.

DETAB-65
DETAB-65
DETAB-AK5
DETAB-65
DETAB=-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAR-65
DETAB-65
DETAB-65
DETAB-65
DETAB=-65
DETAB=-65
DETAB-65
DETAB-65
DETAB-65
DETAB=-65
DETAB~-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB=-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB=-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-6E
DETAB-65
DETAB-65
DETAB=-65
DETAB-65
DETAB—-6%
DETAB-55

001145
001150
001155
001160
001165
201170
001175
001180
201185
201190
001195
001200
001205
001210
001215
201220
001225
001230
001235
001240
001245
001250
001255
001260
001265
001270
001275
201280
0oL285
001290
001295
001300
001305
001310
001315
001320
00L325
001330
001335
001340
001345
001350
001355
001360
201365
001370
001375
oo1380
001385
001390
001395
001400
001405
001410
001415
001420
00L425
201430
001435

NOTE

DETAB CARD SECTION.

ADD L TO NRLS.

MOVE

STRTCOL {(NRLS) Y0 COLUM.

[F CRD-COL ICOLUM) = "E* GO TOD DTOS6.

MOVE

WRNING-1 TO WRNING-IMAGE.

WRITE TAPE-LIST FROM WRNING-PRINT,

DT056.
MOVE
DTOS57.

1 TO KEY-2, KEY-3, ROWIX.

PERFORM READ-1l.

IF ROW-NO OF DETAB-CRD =

MOVE

999 GO TD DYO57.
1 T3 KEY-1, COLIX.

IF LINE-ID OF DETAB-CRD = *$* GO 7O TBLPROC.

MOVE
NOTE

MOVE
MOVE
CONDACT.
MOVE

STRTCOL (KEY-1) TO COLUM.
CONDACT SECTIDON.

SPACES TJ DUM-5.
1 TO EXIX.

CRD-COL (COLUM) TO TEMP {EXIX). -

[F EXIX GREATER NMCOLS (KEY-1) GO 7D DYT057-1.
ADD 1L TD EXIXs, ADD L TO COLUMy GD TO CONDACT.

DYT0OS57-1.

IF KEY-2 IS GREATER THAN S50 GD TO EMO9.
[F KEY-2 IS GREATER THAN NCOND GO TO DTO58.

MOVE

DUM-5 TO CNDI (XEY-2).

ADD 1 TO KEY-2.
GO TO DTO059.

DT058.

IF KEY-3 IS GREATER THAN 50 GO TD EMO9.

MOVE

DUM-5 TO ATBL (KEY-3).

ADD L TO KEY-3.

DT059.

PERFORM DT060 THRU DTO61 VARYING KEY-L FROM 2 BY 1 UNTIL

KEY=1 IS GREATER THAN NRLS.
ADD 1 TO ROWIX.
GO TD DTO57.

DT060.
MOVE

NOTE

MOVE
MOVE
VARAMVE.
MOVE

STRTCOL (XEY-1) TO COLUM.
VARAMOVE SECTION.

SPACES T2 DuUM-3.,
1 TO EXIX.

CRD-COL (COLUM) TO COLS (EXIX).

IF EXIX GREATER NMCOLS [(KEY-1) GO TO DT060-l.
ADD 1 TO EXIX, ADD 1 TOD COLUMs GO TD VARAMVE.

DT060-1.

EXAMINE DUM-3 REPLACING ALL *~* BY SPACES.

[F DUM-3 = SPACES GO TO DTO61.

EXAMINE DUM-3 TALLYING UNTIL FIRST *N°'.

IF TALLY = 12 MOVE °*Y" TO COLMN {ROWIX, COLIX)
MOVE *N®* TO COLMN (ROWIX, COLIX).

DTO61.

ADD 1 TO COLIX.

ELSE

DETAB-6%
DETAB-65
DETAB~65
DETAB-65
DETAB-6S
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-61
DETAB-6°
DETAB-6°¢
DETAB~6¢
DETAB-6!
DETAB~-6'
DETAB-6!
DETAB=-6!
DETAB-6!
DETAB-6'
DETAB-6'
DETAB=6'
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETABS-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-&
DETAB-6
DETAB-¢
DETAB-¢
DETAB-¢
DETAB-¢
DETAB~¢
DETAB-{
DETAB-t
DETAB~-t
DETAB~-i
DETAB-
DETAB-
DETAB-

- DETAB-

DETAB-
DETAB~-
DETAB~
DETAB~-
DETAB~-
DEYTAB-
DETAB~
DETAB-
DETAB-
DETAB~-

001440
J01445
201450
201455
201460
001465
001470
001475
001480
001485
001490
201495
001500
001505
001510
001515
001520
201525
201530
JOoL535
001540
001545
001550
J01555
001560
JO1565
Q0L570
201575
J01580
001585
201590
301595
001600
001605
201610
001615
001620
201625
201630
201635
001640
101645
01650
201655
001660
201665
001670
001675
001680
201685
201690
001695
oo0o1700
001705
001710
001715
001720
001725
001730

TBLPROC.
PERFDORM L20UT THRJ RITAB.
MOVE ®DX000' TO DJM-6.
PERFORM DLOUT THRU RITAB.

NOTE DECISION SECTION.

MOVE ZERD TD LABIXs LABNOG.
MOVE ACTNS TO NACTS.
COMPUTE NORLS = NORULS - l.
MOVE NCOND TO NJCON.

PERFORM DX042 VARYING COLIX FROM 1 BY 1 UNTIL COLEX = NORLS.

DX042.
MOVE COLIX TO MATIX (COLIX).
DX00l.

PERFORM DX002 VARYING COLIX FROM 1 BY 1L UNTIL COLIX = NORLS.

X002

MOVE COLIX TO ELIMC (COLIX).
DX050.

MOVE NOCON TO NROMWS.

MOVE NDRLS TO NCOLS.

MOVE 0 TO ROWIX.

GO TO DX004.
DX003.

PERFDRM L1DUT THRJ RITAB.
PERFORM L20UT THRU RITAB.
DX004.
MOVE SPACES TJO LINE2.
DX005.
ADD 1 TD ROWIX.
MOVE ZERO TO DUMIX.
IF ROWIX = NDCON GO TJ DXOl4%.
MOVE 1 TO COLIX.
NOTE ARE THERE ALL BLANKS IN THIS ROW.
DX005-1.
I[F COLIX GREATER NCOLS GO TO DXD05-2.
MOVE ELIMC (COLIX) TO ELMCX.
IF COLMN (ROWIX, ELMCX) = * ®* OR *B*
NEXT SENTENCE ELSE GO TO DXO05l.
ADD 1 TO COLIX.
GO TO DX005-1l.
DX005-2.

PERFORM DX400 THRU DX402 VARYING COLIX FROM 1 BY
UNTIL COLIX IS GREATER THAN NCOLS. -
GO TO DX005.
DX400a.
MOVE ELIMC (COLIX) TO ELMCT.
MOVE 1 TO ELMRX.
DX400~-1.
IF ELMRX = ROWIX GO TO DX400-2.
[F COLMN (ELMRX, ELMCT) = ¢ ¢
MOVE *B* TO COLMN (ROWIX, ELMCT)
GO TO DX402.
ADD 1 TO ELMRX.
GO TO DX400-1.
DX400-2.
MOVE *Y* TO COLMN (ROWIX, ELMCT).

DETAB-65
DETAB-65
DETAB-65
DETAB-65
DE1 AB=-65
DETAB=-6"
DETAB-65
DETAB-65
DETAB-65
DETAB-55
DETAB-65
DETAB-65
DETAB—-65
DETAB-6%
DETAB-6%
DETAB-65
DETAB=-65
DETAB-6%
DETAB-65
DETAB-6%
DETAB-6

DETAB-6>
DETAB-65
DETAB-L"
DETAB-&»
DETAB-&S
DETAB-65
DETAB-6G42
DETAB-65
DETAB-63
DETAB-6=
DETAB-65
DETAB-A"
DETAB=6S
DETAB-6S
DETAB-6°
DETAB-6L
DETAB-6"
DETAB-L"
DETAB=-!°
DETAB=-6%
DETAB-#"
DETAB-"

DETAB-"
DETAB-4"
DETAB-64
DETAB-65
DETAB-65
DETAB-6<
DETAB=-5>
DETAB=-6%
DETAB-65
DETAB-¢ «
DETAB-»5
DETAB-4 .
DETAB-G:
DETAB—-A"
DETAB-%"

001735
001740
001745
001750
201755
001760
201765
00L770
01775
001780
201785
001790
201795
001800
001805
001810
ooir815
001820
001825
001830
001835
001840
001845
001850
001855
001860
001365
DoL870
001875
oor880
001885
ooL8%90
001895
001900
001905
201910
001915
00L920
001925
001930
001935
DO1940
001945
001950
001955
001960
001965
001970
001975
201980
001985
001990
201995
002000
002005
002010
002015
002020
002025

DX402.
EXIT,
DX051.
MOVE CNDI {ROWIX)} TO COND.
NOTE (IS THERE A Y OR N IN THIS ROW.
MOVE 1 TO COLIX.
DX051-1.
IF COLIX GREATER NCOLS GO TC DX0S51-2.
MOVE ELIMC (COLIX) TO ELMCX.
IF COLMN (ROWIX, ELMCX) NOT = *N* GO YO DX052.
ADD 1 TO COLIX.
GO TO DX051-1.
DX051-2.
MOYE "ELOOL' TO DGOLN.
MOVE DGOTO TO CDOPR.
GO TD DXx202.
DX052.

MOVE ROWIX TO ELMRX.

NOTE ARE THE REST DOF THE ELEMENTS IN THIS COLUMN BLANK.
DX052-1.

IF ELMRX = NDCON GO TO DX052-2.

COMPUTE ELNCT = ELMRX ¢+ 1.

IF COLMN (ELMCT, ELMCX) NOT = * * GO TO DX201.

ADD 1 TO ELMRX.

GO TD DX052-1.
DX052-2.

IF NCOLS = 1 THEN MOVE ROWIX TO NOCON GO TD DXDl4.
MOVE COLIX TO DUMIX.
GO TO DX202.
NOTE PUSH LAST-IN-FIRST-0OUT LIST.
DX201.
MOVE °DX* TD DGOLB.
ADD 1 TO LABNOs ADD 1 TO LABIX.
MOVE LABNO TO DGONO, PDPUL (LABIX).

MOVE D0GOTO TO CDOPR.
DX202.

MOVE 1 TO COLIX.

NOTE IS THERE A N OR A BLANK IN THIS ROW.
DXx202-1.

IF COLIX GREATER NCDLS GO TO DX202-2.

MOVE ELIMC (COLIX) TO ELMCX.

IF COLMN (ROWIX, ELMCX) NOT = *Y* GO TO DXO053.

ADD 1 TO COLIX.

GO TD DX202-1.
DX202-2.

MOVE *ELOOQOL* TO DGOLNe
MOVE * ELSE ' TO DELSE.
MOYE DGOTO TO ELOPR.
PERFORM DX204 THRU DX205.
GO TO DX300.

DX053.

DETAB-6!
DETAB-6!
DETAB-6!
DETAB-6
DETAB~6'
DETAB-6'
DETAB-6'
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB=-6
DETAB-6
DETAB~-6
DETAB-6
DETAB-6
DETAB~-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB-6
DETAB~-6
DETAB-&
DETAB-¢
DETAB~-¢
DETAB-¢
DETAB-¢
DETAB-€
DETAB~-¢
DETAB-€
DETAB-€
DETAB~-£
DETAB~€
DETAB=¢
DETAB-¢
DETAB-¢
DETAB-¢
DETAB-¢
DETAB~!¢

202030
202035
002040
302065

22050
aG2055
002060
202065
002070
202075
202080
202085
002090
002095
002100
002105
202110
002115
002120
602125
202130
002135
202140
002145
202150
202155
202160
302165
002170
202175
oo2180
202185
002190
202195
002200
302205
202210
202215
002220
002225
002230
202235
002240
002245
002250
002255
202260
002265
002270
002275
002280
~02285
202290
002295
002300
002305
002310
202315
G02320

MOVE ROWIX TO ELM3X.
NOTE ARE THE REST DOF THE ELEMENTS IN THIS COLUMN BLANK.
DX053-1.
[F ELMRX = NOCON 50 TD DX053-2.
COMPUTE ELMCT = 1 + ELMRX.
IF COLMN (ELMCT, ELMCX) NOT = ¢ ¢
MOVE *.* TO PIFy GO TO DX204.
ADD 1 TO ELMRX.
GO TO DX053-1.

MOVE ROWIX TO NOCON.
IF DUMIX NOT = ZERD OR NCOLS = 1 THEN GO TO DXOlé.
MOVE COLIX TO ELMRX.
MOVE AZ TO DGOLB.
MOVE ELMCX TO DGONO.
MOVE * ELSE * TD DELSE.
MOVE DGOTO TO ELOPR.
PERFORM DX016 THRU DX020.
PERFORM DX011 THRY DX055e.
MOVE NOCON TO ROWIX.
MOVE NROWS TO NOCON.

DX300.
MOVE *".* TO PELSE.
PERFORM LLOUT THRU RITAB.
PERFORM L20UT THRU RIFAB.
IF NORLS = ZERO GO 7O DXO038.
MOVE *DX*' TO LABNM.
MOVE PDPUL (LABIX) TD LABVL.
SUBTRALCT 1 FROM LABIX.
PERFORM DLOUT THRU RITAB.
GO TO DX004.

DX20%.
IF DUMIX = ZERO GO TO DX205.
MOVE ROWIX TO NOCON.
MOVE AZ 7O DGOLBe.
MOVE ELIMC (DUMIX) TO DGONO.
MOVE DGOTO YO CDOPR.
MOVE DUMIX TO COLIX.
PERFORM DX0O1l6 THRU DX020.
MOVE NOCON TO ROWIX.
MOVE NROWS TO NOCON.

DX205.
EXIT.

DX009.
PERFORM DX010 THRU DX055 VARYING ELMRX FROM 1 BY 1 UNTIL

ELMRX IS GREATER THAN NCOLS.
GO TD DX003.

NOTE DELETE FROM PATH INDEX ALL COLUMNS THAT HAVE A Y
IN THIS ROW.

0X010.
MOVE ELIMC (ELMRX) TO COLIX.
IF COLMN (ROWIX, COLIX) NOT = *Y* GO TO DXJ55.
DX0ll.
SUBTRACT 1 FROM NC.ULS.
PERFORM DX0l2 VARYING ELMCX FROM ELMRX BY L UNTIL ELMCX

DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB~65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65

002325
002330
002335
002340
202345
002350
202355
002360
002365
002370
002375
002380
002385
002390
002395
002400
002405
002410
002415
002420
002425
002430
002435
002440
002445
002450
002455
002460
002465
002470
002475
002480
002485
202490
002495
002500
002505
002510
002515
002520
002525
002530
202535
002540
002545
002550
002555
302560
002565
002570
002575
002580
002585
002590
002595
002600
002605
002610
002615

GREATER THAN NCOLS.
SUBTRACT 1 FRIM ELMRX,
ODX0l12.

SUBTRACT 1 FROM COLIX.

COMPUTE ELMCT = 1 ¢ ELMCX.

MOVE ELIMC (ELMCT) YD ELIMC (ELMCX).
DX055.

EXIT.
DX01l4.

MOVE ELIMC (1) T0 COLIX.

PERFORM DXOLl5 YARYING ROWIX FROM 1 BY 1 UNTIL ROWIX = NROWS.
DX015.

MOVE COLMN (RDWIX,
DX056.
MDVE 4 TO DUMIX.
PERFORM DX022 THRU DX031 VARYING COLIX FROM 1 BY 1 UNTIL
COLIX IS GREATER THAN NCOLS.
TO DX032.

COLIX) TD SAVCL (ROWIX).

GD

NOTE DETERMINE ACTION LABELS AND CHECK FOR REDUNDENCY.

DXx022.
MOVE ELIMC (COLIX) TO ELMCX.
[F COLMN {(NDCON, ELMCX) NOT = *Y® GO TO DX029.
IF DUMIX = 3 DR DUMIX = 1 THEN GO TO DX059.
[F DUMIX = 2 MOVE 3 TO DUMIX ELSE MOVE 1 TO DUMIX.
MOVE AZ TO DGOLB.
MOVE * ELSE " TO DELSE.
MOVE ELMCX TO DGONO.
MOVE 0OGOTO TOD CDOPR.
GO TO DX031.
DX059.
MOVE WRNING-2 TOD WRNING-IMAGE.
WRITE TAPE-LIST FROM WRNING-PRINT.
PERFORM DX028 VARYING ELMRX FROM 1 BY 1 UNTIL ELMRX
DX028.
MOVE °* RULE®* TO TAPE-LIST.
MOVE ELIMC (ELMRX) TO CARDX.
WRITE TAPE-LIST.
DX0l3.
EXIT.
DX029.
IF COLMN INOCON, ELMCX) NOT = *N* GO TO DXO031.
IF DUMIX = 3 DR DUMIX = 2 PERFORM DX059 THRU DXOl13,
GO TO DXx031l.
IF DUMIX = 1 MOVE 3 TO DUMIX ELSE MOVE 2 TOD DUMIX.
MOVE AZ TO DGOLB.
MOVE * ELSE ' TD DELSE.
MOVE ELNCX TO DGOND.
MOVE DGOTO TO ELOPR.
DX031.
EXIT.
DX032.
MOVE "ELOO1* TO DGOLN.
MOVE *."' TO PELSE.
IF DUMIX = 2 MOVE DGOTO TO CDOPR ELSE
IF DUMIX = 1 MOVE DGOTO TO ELOPR.
MDYE CNDI (NOCON) TD CONDa
PERFORM DXO0l6 THRU DX020 VARYING COLIX FROM L BY L UNTIL
COLIX IS GREATER THAN NCOLS.

= NCOLS.

DETAB-6!

DETAB~6!

DETAB-6!

DETAB-6!

DETAB-6"

DETAB-6
DETAB-6¢
DETAB-6%
DETAB-6¢
DETAB-6F
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB~-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB=65
DETAB-65
DETAB-65
DETAB-65
DETAB=-65
DETAB-65
DETAB~65
DETAB-65
DETAB-65
DETAB-65
DETAB~-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65

002620
002625
002630
002635
202640
002645
002650
002655
002660
202665
002670
002675
002680
202685
202690
202695
002700
002705
002710
002715
002720
002725
002730
002735
002740
002745
002750
002755
002760
002765
002770
002775
002780
002785
002790
002795
002800
002805
002810
002815
002820
002825
002830
002835
002840
002845
002850
002855
002860
002865
002870
002875
002880
002885
002890
002895
002900
002905
002910

GO TO DX30l.

DX0L6w
MOVE ELIMC {COLIX) TO DUMIX.
MOVE 1 TO ROWIX.

DX0l6-1.

IF ROWIX GREATER NOCON GO TO DXOl6-2.
IF COLMN (ROWIXe, DUMIX) = ®"B' GO TD DX504.
ADD 1 7O RDWIX.
GO0 TD DX0l6~1.
DX016-2.
MOVE O TO ROWIX.
DXOl6~3.
[F ROWIX = NOCON GO TO DX0l6-4%.
COMPUTE ELMCX = NOCON - ROWIX.
IF COLMN (ELMCX, DUMIX) = * ® THEN
MOVE °*B°®* TO COLMN (ELMCX. DUMIX)e G2 TO
ADD 1 TO ROWIX.
GO TD DX01l6-3.
DX016-4.

SUBTRACT 1 FRDM NORLS.
PERFORM DX100 VARYING ELMCX FROM 1 BY 1
UNTIL ELMCX IS GREATER THAN NORLS.
GO 70 DX020.
DX100.

COMPUTE ELMCT = ELMCX + 1
IF MATIX (ELMCX) IS NOT LESS THAN DUMIX
MOVE MATIX {ELMCT) TO MATIX (ELMCX).
DX504.
MOVE 1 TO ELMCT.
DX5064~-1.
IF ELMCT = ROWIX GD TO DX504-2.
COMPUTE ELMCX = ROWIX - ELMCT.
IF COLMN (ELMCX, DUMIX) = ®* * GO TO DX507.
ADD 1 TO ELMCT.
GO TD DX504-1.
DX504-2

MOVE *Y®* TD COLMN (ROWIX, DUMIX).
GO TO DXOl6.
DX507.
MOVE *B® TO COLMN (ELMCX, DUMIX).
PERFORM DX508 VARYING ELMCX FROM ROWIX BY 1
UNTIL ELMCX = NOCON.
GO TO DX020.
DX508.
IF COLMN (ELMCX, DUMIX) = *B°
MOVE * ®* TD COLMN {ELMCX. DUMIX).
DX020.
EXIT.

NOTE POP LAST-IN-FIRST-0UT LIST.

DX301.
PERFORM L10UT THRJ RITAB.
PERFORM L20UT THRJ RITAB.
IF NORLS = ZERDES GD 7O DX038.
MOVE *DX® TO LABNM.
MOVE PDPUL (LABIX) TO LABYL.
SUBTRACT 1 FROM LABIX.
PERFORM DLOUT THRU RITAB.

DX020.

DETAB-65
DEVAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB—-65
DETAB-65
DETAB-65
DETAB-65
DETAB=-65
DETVAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-6%
DETAB~-6>
DETAB~GS
DETAB—-65
DETAB-65
DETAB-65
DETAB-65
DETAB=65
DETAB-65
DETAB-65
DETAB-65
DETAB=-65
DETAB-65
DETAB-65
DETAB—-65
DETAB-65
DETAB=-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB~-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65

‘002915
002920
002925
002930
002935
002940
002945
002950
002955
002960
002965
002970
002975
002980
002985
002990
002995
003000
003005
003010
003015
003020
003025
003030
003035
003060
003045
303050
003055
003060
203065
003070
003075
003080
003085
003090
003095
003100
003105
003110
003115
003120
003125
003130
003135
003140
003145
003150
003155
003160
003165
003170
003175
003180
003185
003190
003195
003200
003205

NOTE SETUP INDEXES FOR NEXT PASS.
DX302.
MOVE NORLS TO NCOLS.
MOVE NROWS TO NOCON.
MOVE MATIT TO ELINMT.
MOVE 1 TO ROWIX.
DX302~-1.
[F ROWIX = NOCON
MOVE ERR-10 TO ERR-IMAGE
WRITE TAPE-LIST FROM ERR-PRNT
60 70 DTO0O1L.
NOTE DELETE THAT PATH GENERATED ON THE LAST PASS AND
FIND THE NEXT HIGHER NODE ON THE TREE.
MOVE 1 TO COLIX.
DX034~-1.
[F SAYCL (ROWIX) = ®* * MOVE °*N* TD SAVCL (RONIX).
IF COLIX GREATER NCOLS GO TOD DX004.
MOVE ELIMC {COLIX) TO ELMCX. ;
IF COLMN (ROWIX, ELMCX) = ¢ * DR COLMN (ROMIX, ELMCX)
= SAVCL (ROWIX) GO TO DX034-2.
ADD 1 7O COLIX.
GO TO DX034-1.
DX034-2. '
PERFDRM DXO037 VARYING COLIX FROM 1 BY 1 UNTIL COLEIX = NCOLS.
DX037.
MOYE ELIMC [COLIX) TO ELMCX.
MOVE COLIX TO ELMRX. ‘
IF COLMN (ROWIX, ELMCX) NOT = * * AND COLMN (ROWIX, ELMCX)
NOT = SAVLCL (ROWIX) PERFORM DXOL1l THRU DX055.
DX061.
ADD 1 TO ROMWIX.
GO TD DX302-1.
DX038.
MOVE SPACES TO LINE3.
COMPUTE KEY-2 = NORULS - 1.
PERFORM DXO039 THRU DX0398 VARYING COLIX FROM 1 BY 1
UNTIL COLIX = KEY-2.
DX039.
MOVE AZ TO LABNM.
MOVE COLIX TO LABVL.
PERFORM DLOUT THRU RIFAB.
ADD 1 NCOND GIVING KEY-1l.
PERFORM DXAOL THRU DXAO4 VARYING EXIX FROM 1 BY 1 UNTIL
EXIX IS GREATER THAN NACTS.
MOVE SPACES TD CRD-0UT.
EXAMINE DUM—5 TALLYING UNTIL FIRSY °G*.
IF TALLY = 58 GO TD DXO039H.
IF TALLY NOT = ZEROes THEN
IF TEMP (TALLY) NOT = SPACE GO TO DX039H.
COMPUTE DUMIX = TALLY ¢ 1.
PERFDRM DXO039F VARYING TALLY FRON 1 BY 1 UNTIL TALLY = 6.
GO TO DX0Q39G.
DX039F.
MOVE TEMP (DUMIX) TOD EGOTD (TALLY).
ADD 1 TD DUMIX.

DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB—-65
DETAB-65
DETAB—-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB—-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB~-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65

003210
203215
003220
003225
003230
003235
003240
003245
203250
003255
003260
003265
003270
003275
003280
003285
003290
003295
003300
003305
003310
003315
003320
003325
003330
003335
003340
003345
003350
003355
003360
003365
003370
003375
003380
003385
003390
203395
003400
503405
203410
003415
003420
203425
003430
003435
003440
003445
003450
203455
003460
003465
003470
003475
003480
003485
003490
003495
003500

DXAOl.
IF COLMN (KEY-le
MOVE ATBL (EXIX)
PERFDRM RSCAN.
ADD 3 TO DUMIX.
MOVE *.* TO TCOLS (DUMIX).
PERFORM L20UT THRU RITAB.
DXAOD4%.
ADD 1 TO KEY-l.
DX039G.
IF DUM-4 = *GO TO*
DX039H.
MOVE °*GO TO DEXIT.*' TD 3—-MARG OF CRD-0QUT.
MOVE CRD-0OUT TO TAPE-LIST.
PERFORM RITAB.
DX0398.
EXIT.
DX040.
MOVE SPACES TO LINE3.
COMPUTE KEY-1 = NICOND + 1l.
MOVE NDRULS TO COLIX.
MOVE 1 TO EXIXe
MOVE KEY-1 TO TALLY.
MOVE O TO NRLS.
DX040-2.
[F EXIX GREATER NACTS GO TO DX040-3.
IF COLMN (TALLY, COLIX) NOT = * * ADD 1 TO
ADD 1 TO TALLY, ADD 1 TO EXIXe.
GO TO DX040-2.
DX040-3.
IF NRLS = ZEROES GO TO DX040-1l.
MOVE *ELOOL1* TD DUM-6.
PERFORM DLOUT THRJ RITAB.
DX040-1.
PERFORM DXAQl THRU DXAO4 VARYING EXIX FROM
EXIX IS GREATER THAN NACTS.
MDVE SPACES TO CRD-0DUT.
MOVE °*DEXIT. EXIiT.*' TO BODY OF CRD-DUT.
MOVE CRD-0UT TO TAPE-LIST.
PERFORM RITAB.
GO TO DTOOl.
L10DUT.
MOVE LINEL
L20UT.
MOVE LINEZ2
DLOUT.
MOYE DLABEL TO CRD-0UT,
RITAB.
WRITE TAPE-LIST.
WRITE CRD-0OUT.
RSCAN.
MOVE 58 TO DUMIX.
PERFORM RS001 THRU RS003.
RS001.
IF TEMP {DUMIX) = SPACE GO TO RSO002.
ADD 2 TD DUMIX.
GO TO RS5003.
RS002.
IF DUMIX = 1 GO TO RS003.

COLIX) = * * GO TO DXAO%.
TO DUM-5, BNAME.

GO TD DX0398.

TO0 CRD-0UT, TAPE-LIST.

TAPE-LIST.

NRLS.

1 BY 1 UNTIL

GD TO RITAB.

TO CRD-OUT, TAPE-LIST. GO TOD RITAB.

DETAB-65
DETAB~-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAL-65
DETAB-65
UETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB—-65
DETAB-6:
DETAB-6'

DETAB-65
DETAB-65
DETAB=65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65

‘003505
003510
203515
003520
003525
003530
003535
003540
003545
003550
003555
003560
003565
003570
003575
003580
003585
003590
003595
003600
003605
003610
003615
003620
003625
003630
003635
003640
003645
003650
003655
003660
003665
003670
003675
003680
003685
003690
003695
003700
003705
003710
003715
003720
003725
003730
003735
003740
003745
003750
003755
003760

sSToP

SUBTRACT 1 FROM DUMIX.

GO TO RSOOl.
RS003.
EXIT.
NOTE DIAGNDSTIC SECTION.
EMOl.
MOVE ERR-1 'O ERR-IMAGE.
GO TO EM99.
EMO2.
MOVE ERR-2 TO ERR-IMAGE.
GO 7D EM99.
EMO3.
MOVE ERR-3 TO ERR-IMAGE.
GO TD EM99.
EMO&.
MOVE ERR-4 TO ERR-IMAGE.
GO TO EM99.
EMOS.
MOVE ERR-5 TO ERR-IMAGE.
G0 TD EM99.
EM0O6.
MOVE ERR-6 TO ERR-IMAGE.
GO TO EM99.
EMO7.

MOVE ERR=-T TD ERR-IMAGE.
GO TO EM99.
EMO8.
MOVE ERR-8 TO ERR-IMAGE.
GO Td EM99.
EM09.
MOVE ERR-9 TD ERR-IMAGE.
EM99.
WRITE TAPE-LIST FROM ERR-PRNT.
READ-1.
READ CARD-INPUT INTO DETAB-CRD, AT END GO TO EOF.
MOVE SPACES TO IDFLD.
IF IDENT OF DETAB-CRD = *0000°*
MOVE *0* TO TAPE-LIST,
WRITE TAPE-LIST.
WRITE TAPE-LIST FROM DETAB-CRD.
IF IDENT OF DETAB-CRD = *999X* GO TD EOF.
SKIPOL.

IF LINE-ID OF DETAB-CRD NOT = *$* GD TO READ-1l.
GO TD DTOOl.
EOF.
MOVE *0OEND DETAB/65 PREPROCESSOR RUN.® TO TAPE-LIST.
WRITE TAPE-LIST.
CLOSE CARD-INPUT WITH LOCK.
CLOSE CARD-QUTPUT WITH LOCKe LIST-0UTPUT WITH LOCK.
STOP RUN.

DETAB~65
DETAB-63
DETAB-6¢
DETAB-65
DETAB~-65
DETAB-65
DETAB-65
DETAB-65
DETAB-635
DETAB-65
DETAB~-65
DETAB~-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB=~65
DETAB-65
DETAB-65
DETAB~-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB~-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65

DETAB/65 COBOL PREPROCESSOR TEST DECK LISTING

0000 TABLEXX L 004001003
0001 00LO002ELSS
Cl N N
c2 N
c3 N
Céd Y N
Al X
$
0000 TABLEXXX L 004001004
0001 001002003ELSS
€l ¥ ¥ ¥
c2 Y N
c3 N N
Cé Y N N
Al X
$
0000 TABLEXXXX L 006001004
0001 001002J003ELSS
cL vy Y Y
cz Y N
C3 N N N
Cé N N
C5 N N
C6 N Y N
Al X X X
$
ocoo0o0 TEST-001 L 003001004
0001 001002003ELSS
C~-1 Y Y N
c-2 Y Y ¥
C-3 Y N Y
ACTIDON-1 X X X X
$
0000 TEST-002 L 002001005
0001 001002003004ELSS
C-1 Y N Y N
C=-2 N Y Y N
ACTION-1 X X X X X
$
0000 TEST-003 L 003001009
0001 001002003004005006007008ELS S
c=1 Y Y Y N Y N N N
C-2 Y Y N Y N N Y N
C~3 Y N Y Y N Y N N
ACTION-1 X X X X X X X X X
$
o000 TEST-004 L 004001017
0001 001002003004005006007008009010011L012013014015016ELSS
C-1 Y Y Y Y N Y Y N Y N NY NN NN
c-2 Y Y Y N Y Y N NN Y Y N NN Y N
c~3 Y Y N Y Y N N Y Y N Y NNY NN
C-4 Y N Y ¥ ¥ N Y Y N Y N N Y N NN
ACTION-1 X X X X X X X X X X X X X X X X X
$
0000 TEST-005 L 004001003
0001 D01002ELSS
C=1 Y ¥

=2 Y Y

0000
0001

0000
0001

0000
0001

0000
0001

0000
o001l

0000
0001

0000
oool

c-3
C-4
ACTION-1

TEST-006

AC N=1

TEST-007

TEST-009

C-1

L2

c-3
ACTION-L

TEST-010

C-1

C-2

€=3
ACTION-1

TEST-0L1

aEeEnEnEs]
W N -

ACTION-1
TEST-012

c-1

c-2

Cc-3
ACTION-1

TEST-013

-1
-2
c-3
C-4
c-5
ACTION=-1

Y ¥

Y N

X x X
0010VU2003ELSS

¥ ¥ Y

¥ ¥ ¥

Y ¥ N

Y N ¥

X X X X
001002003004ELSS

Y ¥ N =

Y ¥ v ¥

Y Y Y N

Y N Y Y

X X X X X

001002003004005006007008ELSS

X < < =<

x Z < =<

N

Y
: §
X

N
N

X <Z=<

x2Z22Z 2

001002003004005006007008ELSS

Y Y Y Y N
Y Y N N Y
Y N Y N N
X X X X X
001002003003ELSS
Y Y Y N
Y ¥ ¥ ¥
Y ¥ ¥ ¥
Y Y N Y
Y N Y Y
X X X X X

N
N
Y
X

001002003004005006007008ELSS$

N N N N Y
N N Y N Y
N Y N Y N
X x X X X
001002003004ELSS
¥ ¥ ¥ ¥
Y ¥ ¥ N
Y Y Y Y
Y Y N ¥
Y N Y ¥
X X X X X

< Z<

L 004001004
L 004001005
L 003001009
N Y

Y N

N N

X X X X
L 007001009
N N

Y N

Y N

X X X

L 005001005
L 003001009
Y Y

N Y

N Y

X X X

L 005001005

TEST-014

0000

1

L 01000L010

001002003004005006007008009ELSS

0001

»

Z2Z>>> | | >>>X

N

| Z2Z2>ZZZ>>»X

Do e 3 e 3 Z | 3= 3= e X

Y

1L Z2Z> |) >>>x
Z > 2 N
S 3= 3 e = 3 3e 3 > Z X
> | | Z>>X

Z > > > 2> > >

P 3w 3= e 3= 3= 3= = = X
-t
|

(=

M ANM N OO0~ O

S (0 T, (O A O T

CruCruCruCruCpuU
<

TEST-015

o
owv
o =
o w
- Oh
CO>>> | | 2>>»2ZFx
oo
oo
_H O ZETZTrZ2Z | Z2X
o8
LWYYY.NYYYYYX
O
Wv..v-v._ | >Z2Z) »x
T3
WYV-YNNYYVYNI
o
WNYYTYYYYYYI
m
O>>2Z | | >>>»X
o
o~

© > > 3= >3 3 3= 3 3 Z ¢

L]
nOUV-V-V-V.Y.V..Y.Yv-Y.vA

C-1
C-2
c-3
c-4
C-5
c-6
-7
c-8
c-9
Cc-10
ACTION-1

0000
0001

1

L 005001005

001002003004&4ELSS.

TEST-016

0000
0001

>
e o 3o e Z X
> F X
>))M
>Z |)t X
Lol
|
r4
-0 M nDO
.04) |
LOUOLOLUOW
(]
o

$
0000

L 005001005

TEST-017

1

001002003004ELSS

0001

»

> B >m > > > Z 7 X
TR P ZEZRTZ Zx
> > > > > > > > %

B O >ZZ >
R B ESESEE
e 3= 3= 3 3= 3= D= 3 > X

»Z > 3= > >

L 010011010
001002003004005006007008009ELSS

>
=
>
b ol ol o ol o
>

S e 3= 3= 3 3w > e > X

c2
c3
Cé
c5
Ccé
c7
cs
c9o
c1o0
Al

0000 TEST-018 (CHOISE-PICK)
cl

0001

1

ISIX

a2
AT
A4
AS
A6
A7
A3
A%
£i0
ALl

> X X

> x>

> x x

