
.".

"
IOns e.prused in litis docUllltnt do 1101 neces 'lrlilil 88/ /

ItS of ',Inti" 01 lilt United 51,111 Gov.rrlmtn!. U II\1lJ D ?2 000 00

fl'lll doc"",," ' • ., produJt by SOC In IMrlorm,nu 01 ODntf.ct
I

U .S. GOVERNMENT CONTRACTAUTMOI &:;~
C. J . 5ha_

4/15 ~

~ lJ~~~ I~I@ a working paper

nCMMttAl ~ G:l
"' ... " E. H. JaC~M~¥'

E. H. Jacdbb'
1M

Sylt,,,, o,"IO''''llIt C."oratloll / 2500 Ctllfldt AH. / Slftta ""lei, Cllltt,..."

DECISION TABLES-..AII ANNOTATED BIBLIOGRAPHY

ABSTRACT

Decision t ables allow complex decision rules to
be repr esented 1n easily grasped, tabular ronn.,
making i t easy to see wbat actions are to be
t aken for each possible combination or conditione.
'!his bibliography- eontains a brief introduction
and 42 refe rences , mostly annotated, to the subject .

AlthOU11I IIIIS clocumlnl cont, in no tl'Ulfl~ information. it I'In not Hln d"m lor
open oubhc, llOI1 by " .. Ot~rtmt!'l l of Del.n,. . Open publlutlon, . !tony or it! 1I.It, IS
jJrO'llbll, d "1 1~oul Ih. pnor ' Plltovtl or til. SJ'lf1tfl'l Otveloom. 1I1 COfOOl' ltiOll.

D. Drukey

12 April 1965 2 'IM-2288/000/oo

II!TR9WCTIO!!

A decision table 1s a Yay ot representing complex decision rules 1n an easily
grasped, tabular form, which makes it easy to see lIhat actions are to 'be
taken for each possible combination of conditions. Let us look at a typical
decision rule.

if COIIDITION-A and COIIDITION-B and
CONDITION -<: hold, the .. do ACTION
and ACTION-2, and ACTION":3 .

This same ru1e coul.d be expressed 48 & column 1n a decis10n table.

rule

CONDITION -A Y

CONDITION - B Y

CONDITION -C Y

ACTION-l X

ACTION-2 X

ACTION- 3 X

In such a table, the top rows represent conditions, the bottom rovs represent
actions. The entries 1n a column corresponding t o a rule are chosen from the
following symbols:

SYmbol mea.nln~

y Yes, this cond! tlon must hold for the rule to apply

N No, this condition must ~ hold for the rule to apply

- don't care if this condition holds

X do this action if the rule applies

(blank) do not do - this action it the rule applies

With these symbols, we could add other rules to the decision table.

12 April 1965 3 TM-2288/ooo/oo

CONDITION-A Y Y N -
CONDITION-B Y - N -
CCIIDITION-C Y N - -

ACTION-l X X

ACTION- 2 X X

ACTICIII-3 X X

Conventionally, the rules are examined one at a time tram lett to right, only
the first applicable rule 111 applied, and the actions are taken one at a time
in the order they are listed. Other conventions are feasible, though.

Decision tables where the entries are limited to the symbols used 1n the table
above are called lim1ted entry tables . Extend.ed entry tables are pose1ble
wherein part ot the condition or action 18 entered in the rule columns. The
folleving taxonomy 1s an example or an extended entry decision table .

number of legs .4 .4 • 4 >4 -
length of nose long short long - -

- -
lcnct~. of neck short long long - -

then animal 1. elephant glraUe h&l.lucinatlon centipede unknovn

go to zook.eeper zookeeper psychiatrist extemlnator biologist

Extended entry tables can be much more compact than 111111 ted entry dec! sion
ta.bles, as you would see by expanding the table above into l1m1ted entry rom.

12 April 1965 4 TM-2288/ ooo/oo

BIBLIOGRAPHY

Armerding, G. FORTAB: A DE(:ISION TABLE LANOUAGE FOR SCIENTIFIC Ca.!FUTING
APPLICATIONS. 1n Proc:eed.ings of the Decision Tables Symposium, pagea 81- 87.
20-21 September 1962. Alao RAND Corp., RM- 3306- PR, 31 pages, September 1962.

Scientific computer programs, like business programs, otten 1nvol.ve programmed
dec1s10n 10g1c. Decision table., which have seen uae in bUSiness and coIll\ler­
c1al computer applications, can alan be applied to scientific and engineering
problems . FORTAB is a decision table language baaed on the FORTRAN scientific
computing language . Programs wr1 tten 1n the combined FORTAB and FORTRAN lan­
guages can be compiled tor a ~ pre-processor program which haa been con­
structed tor the IBM 1090 computer. Initial. experiments conducted. using the
FORTAB language indicate that a dec1s10n table language added to a scientific
cc:mput1na language relult. in & powertuJ. combination ~t programm1ns: tools.

Brown, L.M. DECISION TABLE EXPERIENCE ON A FILE MAINTEIIANCE SYSTDo!. in
Proceedingl of the Decision Table. S:epol1um, _" 75-80. 20-21 September 1962.

A dec1a1on table l.&nguaa:e and com.puter prosram pre- compiler vere developed at
the In.urance Cc::apany ot North America to facilitate design, implementation
and maintenance ot a large tile maintenance procram. The result. ot this
effort indicate that dee1110n table. can have application over the entire
ayateme de.1sn-pro~na area. Deel.ion table. alao torce a d1lc1p11ned
modularity in the deeign ot a program whiCh can enable a compiler to accom-
plish lome of the program orsan1zat1on tunction.

Cl&kinl, L.W. PLACE OF DECISION TABLES AND ~-X in Proceeding. of
the Decidon Table. Sympo.ium, pase. 9-12. 20·21 September 1962.

Cantrell, H.N., J . King and F.E.H. Kill6. LOGIC·STRUCTURE TABLES. in
Communications ot the ACM, Vol. 4, No.6, pages 272-275. June 1961.

Logic tables are an excellant way ot developing and expressing the 10g1c re­
quired in procedures , operations, systems and circuits. A set of rulea for
wri t ing and using 10g1c tables 18 explained by means of some simple examples .
Then the· logic structure of a vending machine i8 given in which tyo logic
tables are used. Logic tables are tWO- dimensional in nature, enabling us to
fUlly express and consider both the sequential and parallel aspects of logi c.
They can be compiled directly into a computer program and. Bo eliminate t he
need for flaw charting and hand coding.

12 April 1965 5 7.M-2288/000/00

Cantrell, H.N. CaolMERCIAL AND E19JINEERllIl APPLICATIONS OF DIX:ISION
TABLES. 1n Proceedings of the Decision Tables Symposium, pages 55~1.
20 -21 September 1962.

This paper covers our exper1ence with decision tables, from the time ve first
heard about them through experiments 1n different application areas, to our
present rather widespread use of tables 1n systems design and programming.
We w111 discuss some of the difficulties we have bad 1n using decision tables
and some of the advantages we think We have gained fran them.

DECISION TAlI.ES-A SYSTEMS ANALYSIS AND llOCUMENTATION Tl!CHNIQUE. IBM
Corp., F2C-8J.02, 21 page •• 1962.

Describes the basic concepts" of decision tables and a minimum set of conven ­
tions for their use 1n systems analysis, procedure design, and documentation.
Such tables provide information 1n a concise format that 1s easy to read and
understand. '!be tabular approach 1s used to express complex decision logic
in a manner that encourages the analyst to reduce a probl~ to its simplest
form by arranging and presenting logical. al. ternati ves under various cond:1-
t10ns. While the concepts in the text are presented on a level tor compre­
hension by students in basic co=puter courees, the techniques are applicable
at all levels ot sophistication by everyone in a data processing environment.

DECISION TAllLEB, PRACTICE PROBLEMS AND SOLUTIONS. Il!M Corp., R25-1685-1.
11 page.. 1963.

These four practice proble~, with solutions, are designed to aid the student
1n learning how to use and prepare limited entry · Deci8ion Tables.

DETAB-X, PRELIMINARY SPlX:I!"ICATIONS FOR A DECISION TABLE STRlC'lURED
LAlI:lUAGE; COllo\Sn. System. Gro..." 1962.

The Systems Group of the Development Committee of the Conference on Data Sys­
tems Languages (CODA.SlL) I as a first step in creating a data-processing lan­
guage based on decision tables, has developed D~-X, a decision table lan­
guage based on COBOL-6l. Because decision tables are structured differently
from the free-form procedure statements of COBOL-6l, some modifications to
COOOL -61 are required; however, these are held to a minimum and are of such
a nature as to enable a relatively simple preprocessor to convert the decision
tables statements to COBOL-61 statements which can then, in turn, be processed
by a COBOL-61 compiler (or processor).

12 April 1965 6 TM-2288jooojoo

The benefits to be derived from a tabular format are many. First, it 1s most
important that, by the very nature of the table format, omissions in problem
logic are easily spotted. Second, the analysis inherent 1n listing the condi­
tions upon vhich a given action 1s based tends to clarify complicated parts
of a problem. Th1rd, the fo~t simplifies a total systems organization
through modularity. Fourth, this format 18 easy to use and for others to
understand. In addition, the Group believes that the 'tabular format can be
a significant tool in the building of comp111ng systems themselves.

This D~-X manual has been prepared 8S a language specification reference
publication, supplementary to the official COBOL-61 manual published by the
United States Government Printing Office. It provides sufficient information
to permit experimentat10n by many COBOL users.

Dixon, P. SPECIAL REPORT, DECISION TAllLES SYMPOSIUM. in Standard EDP
Reports, Vol. 1, poge. 23:030.100-23:030.601. Deee,jber 1962.

Dixon, P. DECISION TAm.ES AND 'mEIR APPLICATION. in Computers and
Automation, Vol . 13, No. 4, pages 14-19 . April 1964.

Descr1bes the fundamental principles of decision table design, with examples.
Indicates the paver and applicability of the technique to increase the effi­
ciency of systems analysis and programming. Includ~c directions tor furth~~
development and an eleven-point summary of the ad·/e.:ltl\ges.

Egler, J. F . A PROCEIXJRE FOR CONVERTING LOOIC TABLE CONDITIONS mID AN
EFFICIENT SEQUENCE OF TEST INSTRUCTIONS. in C~unlcatlon5 of the ACM. Vol. 6,
No.8, pages 510 -514. September 1963.

Evans, OoY 0 REFERENCE MANUA.L FOR DECISION 'tABLES. Ill'!. CO!JI. September
1961.

This manual 1s vritten to provide a base language (polnt ot" departure) for
using decision tables . The language is not all-inclusive and 1n many in­
stances has been arbitrary in the interest of simplicity. It provides a
language that interested persons can use to experiment vith dec1~ion tables
in documenting problem definitions. Th1s language 15 very r!gorous in order
that it may be used at the detail level of documentation. People experi­
menting at higher levels of man to man communication can 'adjust this rigor
to their needs 0

•

12 April 1965 7 TM-2288/000/00

Evans, C.Y. A ME'lHOD FOR SYSTEMATIC DCX:UMENTATION~-KEY TO IMPROVED DATr,
PROCESSING ANALYSIS. In Computer Appllcatlons- -1961, The Macmillan Co.,
Nev York, pages 14 -34. 1962 .

Evans, O.Y. GENERAL INFORMATION MANUAL, ADVANCED ANALYSIS METHOD FOR
INTEGRATED EUX:TRONIC DATA PROCESSOO. Il!M Corp . , F20-8047, 21 pages. 1960.

The analysis method presented here can be best described 85 a systematic
method for collecting, recording and mainta1n!ng all pertinent information
regarding a complete data processing system. The method 1s particularly
useful 1n that it requires a complete explanation of the characteristics and
utilization of each piece of data involved in the system. In addition, it
introduces a tabular format for the def!n! t:lon of procedll"'~s.

Among the advantages gained through the use of such a documenting analysis
are :
1. A definite and orderly method of documenting analys1s data is achieved.
2 . The analYSis 1s virtually independent o~ the process1ng media (1.e' i

manual, un i t record, or high speed computer).
3. The tabular approach to procedure definition aids the analyst in visual­

izi ng t he numerous relationships and alternatives,
4. The documented analysis and the cross .. re~erence list1ngs pennit the date.

rules to be readily reviewed for omissions and inconsistencies before
they are buried in detailed flow charts, control panel vi ring and tech­
~1~al machine instructions.

'), It provides flexi bility in changing any portion of the an&lysi8,
lJ. l3y rcquiring t he frequency of execution of a process, the beat proceso1 np:

medium, process organization, programming and equipment requirement s can
be more readily determ1ned.

7 . The analysis provides material for auditing procedures.

This method of analysis vas conceived and expertmented vith in the fall of
1958. 'Ihe experiment vas to restate an analysis of a computer process Which
contained 200 typewritten pages of ~arrat1ve, tables, flow charts and block
diagrams. '!he &na.lys18 was characterized by omissions, inconsistencies and
errors. The restated analysis was depicted 1n tabular format on five 3' x 5'
sheets. From this experiment the above and other advantages were gained.
Many other concepts With great potential in the dedgn of automatic program­
ming systems have resulted.

Grad, B.
pages 22-26.

TABJLAR FORM IN DECISION LOGIC.
July 1961.

in Datamation, Vol. 7, No.7,

Tabular form has shown promise of being an effective way to 'organize and pre­
sent decision logic for systems analysis and computer prOSramming. Experience

12 April 1965 8 TM-2288/000/00

to date clearly indicates the need to determine its range of application and
assess its future potential. ~ls report has the dual purpose of sketching
the historical background on the development of tabular form, and indicating
ita possible advantages.

Grad, B. STRJC'ltTRE AND CONCEPT (E mI:ISI CIf 'tABLES. 1n Proceedings of
the Decision Tables Symposium, pages 19- 28. 20-21 September 1962.

Decision Tables, a recent development, provide a means of presenting complex
decision logic 1n a way that 1s relatively easy to prepare and understand. A
decision table shows the specific alternative courses of action to be taken
under various combinations of conditions. This pemits an analyst or pro­
grammer to concisely and completely record logical decision rules for analysis,
documentation and programming.

Hawes, M.K. THE NEED FOR PR.EI:ISE PROBLEM DEFINITION. in Proceedings of
the Decision Tables Symposium, pages 13 .. 18. 20 .. 21 September 1962.

The need for precise problem definition is one of the greatest facing the
users of electronic computer systems today. Experience indicates over 65~ of
the costs associated with programming datn processing problems can be attri ­
buted to this need. Looking ahead to real-time information processing sys­
tems, the need becomes even greater and, furthermore, must be handled at the
systems level.

Hawes, M.K., et. al.
Systems Development Group,

DECISION TABLE 'lUTORIAL USING DETAB-X.
49 pages. 1962.

COllASYL

Holstein, D.
REPETITIVE DESIGN.
August 1962.

DECISION TABLES, A TECHNIQUE FOR MINIMIZING RruTINE
1n Machine Design, Vol. 34, No. 18, pages 76 -79. 2

IBM 1401 DECISION LOGIC TRANSLATOR (1401-sE-Q5X), APPLICATION DESCRIP­
TION. IBM Corp., H20-oo63~, 2 pages.

This program accepts decision tables written 1n a FO~-oriented language
and automatically translates them into a FORTRAN II source program, giving

•

12 April 1965 9 TM-2288/o00/oo

pertinent diagnostics in the process.

IEM 1401 DECISION LOOIC TR'IlISLATOR (1401-8E-05X), PROORAM REFERENCE
MANUAL. IEM Corp., 1120-0068-0, 54 pages.

Design logic 1s captured using a FORn\Hweriented decision table language.
The logical statements of this language are the input to the Decision Logic
Translator system. Arter decoding the statements of a table, the system
aorts them according to commonalities in rows and columna in order to produce
an effic1ent output program. 'Dle Borted rules are then translated into
FORTRAN statements. This proce88 1s cont1nued table by table until all tables
of any single run are tranalated into FORTRAN statements.

KaV&nogh, T.F. TABSCL, A P'tJNllo\!o!ERrAL CONCEPT FOR SYS~-ORIENTED LAN­
GUAGES. 1n Proceedings ot the Eastern Joint CQ!PUter Conference, Vol. 18,
page. 117-136. 13-15 December 1960.

Lack ot efficient methods for thinking -through and recording the logic of
complex information 8yatems haa been a maJor ob8tacle to the effective use of
computers in manufacturing bUlinelsel. To lupply this need, this paper intro ­
duces and describes deCision Itructure tablel, the eSlential element in
TABSOL, a tabular sYlteml-or1ented languB88 developed by the General Electric
Company. Decilion Itructure tables can be used to delcribe complicated,
multi-variable, multi-result dec1.1on systems. Various approaches to the
automatic computer solution of deciSion structure tables are presented. Some
benefits Which have been observed in applying this language concept are also
discussed . Decision structure tables appear broadly applicable in information
systems design. In addition, they are of interest because they reV1Re many
earlier not tons on problem formulation and systems analysis techniques. Dc­
ciRton structure tables will be an available feature in GEraM, General
Electric ' s nev General ~iler, Vhich vill be first implemented on the GE 225.

Kavanagh, T..F.
and Automation, Vol.

TABSCL--'mE LAl«lUAGE OF DECISION MAKING. 1n Computers
lO,.No. 9, pages 15, 18-22. September 1961.

Kavanagh, T.F. MANUFACTURING APPLICATIONS OF DECISION STRUCTURE TABLES.
1n Proceedings of the Decision Tables Symposium, pages 89-97. 20 -21 September
1962.

12 April 1965 10 'IM-2288/ooo/oo

Kirk, H.W. USE OF D!X:lSION TABLES IN COI4PU'l'ER PROGRAMMlNl. in Communi ­
cations of the ACM, Vol. 8, No.1, pages 41 -43. January 1965.

A decision table 1s a tabular ro~ tor displaying decision logic. Decision
t ables have many lnhere~t advantages from the programming point at vie,,; (1)
amount of computer memory used 1s drastically reduced, (2) programming is
simplif1ed, and (3) documentation 1s brief and clear .

'!be technique to be illustrated puts these advantages to uae 1n that it en­
ables one to program directly fram a decision table. The technique 1s based
on the creat10n of a binary image at a limited entry decision table 1n com­
puter memory. A binary image of a given Bet of input conditions can aleo be
created. This data image 1s ueed to 8C&n the decision table tmage t o arrive
at the proper course of action .

Klick, D.C. TAIlSOL: A D!X: ISION TABLE LAN:lUAQE FOR '!lIE GE 225.
rints of S~~les of Fa ere Presented at the 16th National Meetln

ation for Computing Machinery, paper l OB ... 2 . 5 September - . ! •

Lombardi, L.A. A GENERAL BUSINESS-ORIENTED LAII:lUAGE BASED ON D!X:ISION
EXPRESSIONS. 1n Communications of the ACM, VoL 7, pages 104-111. February
196".

Montalb,ano, M. TABLES, FLOW CHARTS, AND PROORAM LOGIC. in IBM Systems
Journal, Vol. 1, pages 51 -63 . September 1962 .

Decision tables are introduced vith reference to business data processing. A
method of verifying both the completeness and consistency of a problem de­
scription 1s gi ven. The conversion of tables to computer programs 1s con­
sidered and a technique of obt aining a computer program which minimize s the
branching requirements with respect to both memory and execute time 1s in­
cluded . Program debugging and program modification are also discussed.

Naramore, F. APPLICATION OF DEX:ISION TABLES TO MANAGEMENT lNFO/t!ATlON
SYSTEMS. in Proceedings of the Decision Tables SympOSium, pages 63-74.
20 -21 September 1962.

Since 1958, Sutherland Company has been
ment1ng management information systems .

employing decision tables tor docu­
Major advantages ' realized through

. •

12 April 1965 11 TM-228fJ/OOO/OO

these techniques may be enumerated as follows: (1) The ability to clearly and
concisely state system requirements totally independent of procedures and
processing mediaj (2) A un1formly high quality 1n the statement of system
requirements; (3) The ability to associate defined decisions vlth responsible
or~anlzatlonal entities; (4) An effective method for man-to-man communications;
(5) The ability to establish an information repository for system specifica­
tions. 'lb.e c<XZIpos1te result may be summarized as the capability for complete
and accurate defin! ticn of the "what" of a system, independent of J but relat­
able to J the myriad of procedural details conet! tutlng the "hov. n

Nickerson, R.C. AN EllGlllEERll«l APPLICATION OF LOGIC -STRUCruRE TAm.ES.
1n Communications of the ACM J Vol. 4, No. 11, pas;es 516-520. November 1961.

Pollack, S.L. and
TAm.E, ElCPERDll!:NTAL).

K.R. Wright. Ilo\TA DESCRIPTION FOR llETAB-X (Dl'X:ISION
RAND Corp., R-I-3010-PR, 4~ pageB. March 1962.

Pollack, S.L. DETAB-X: AN IMPROVED ll1SINESS..()R= COMPUTER LANGUAGE.
RAND Corp., RM-3273-PR, 18 page •• AU6UBt 1962.

'nlis MemorandWl describes DE'l)\B-X (Decision-Tables, Exper1mental) . In an
effort to illustr~te some or the feature. of ~B-XJ it i. compared with
COBOL-51 (Common au'lneas.Qr1ented Language), us1ng examples of data and
procedures-Wr1tten 1n both-languages.

Pollack, S.L. WHAT IS D~B-X? in Proceedings of the Decision Tables
SympoBiUl1l, pageB 29 - 39. 20 -21 September 1962.

DETAB-X is an experimental language that combines COll>L-61 and decision
tables. It is a proposed supplement to, not a replacement of, COBOL-61.

Pollack, S .L. ANALYSIS OF THE DJ?X:ISION IDLES IN DJ?X:ISION TAlILES.
RAND Corp., RM-3669-PR, 69 pageB. May 1963.

This memorandum develops a theoretical structure for decision tables. The
theorems developed 1n this paper provide a basis for system analysts and pro­
grammers to verify the logic of their analysis. Rules are established that
enable them to insure the fo1lOV1ng: (1) that all possible combinations of

12 April 1965 12 'lM-2288/ooo/oo

cond1tions for the problem have been considered; (2) that the system does not
prescribe different actions for the same situat1on; and (3) that the system
describes each situation and its action once only.

The immediate eft'ect of achieving the above 1s an improvement in computer
programming by reducing the number of computer instructions, shortening com~

puter running time, and decreasing programming and debugging time. In the
future, we can expect computers to take over the task of checking decision
tables for completeness, redundancies, and inconsistencies, using the rules
developed here. The text also presents an extension of decision table theory.
Moat current decision tables consiat ot decision ~~e8 tor which every condi·
tion in a set of conditions must be satisfied betore a series or actions can
be taken. This memorandum provides a basis ror having ad.di tional decision
rules in which a series ot actions can be taken it anyone of a set or specj~
fied conditions is satisi!1ed. This type ot d.ecision rule can be extremely
useful in edi tins and intormation retz ieval. This extension should prove
valuable in many date processing areas.

Pollack, SeL.
p-2829, 17 pase ••

HOW TO BUILD AND ANALnE DECISION TABLES.
12 November 1963.

RAND Corp . I

Describes the conversion ot system application! to deci.ion tables, a process
..,hich entails 1!1Bk1.ns: dec,1s1on. on haw large the ind1vidual tables should be
and what system parameters ehould be included. A technique for reducing the
number of written decision rules i8 a180 described.

Once deCision tables are written, they should be checked tor completeness and
consistency. This paper ..,ill describe and ilJustrate the rules that enable
system analysts to insure the folloving: (1) that all possible combinations
of conditions for the problem have been consideredj (2) that the system does
not prescribe different actions for tne same situation; and (3) that the
system describes each situation and its actions once only.

Pollack, S.L. CONVERSION OF LIMITED-ENTRY DECISION TABLES TO CCMPUTER
PROGRAM. RAND Corp., R!!-4020-PR, 15 pages . Mal' 1964.

Decision tables are useful for describing complex decision rules based on
given sets ot conditions. Algorithms that can efficiently convert the tables
into computer programs wi~ extend the usefUlness of decision tables to com­
puter users. This Memorandum describes two such algorithms, based on worit
done by M.S . Montalbano and extended here to handle dashes and ~deci5ion
rw.es. The first algorithm minimizes the canputer storage space required for
the resultant program, the second minimizes computer rwming time. During
the conversion process, b~th pinpoint any contradictions or redundancies
among the rules in a table.

12 April 1965 13 TM -2288/000/00

A necessary adjunct to minimizing computer storage or running time is the
allowable reduction of the number of rules in a decision table. This Memo ·
randum describes a technique to effect this reduction for pairs, t riplets
and quadruplets of rules. '!be system analyst vill find this method most help ­
ful for pairs, and generally unprofitable for n-tuplets greater than three.
'Ihe technique can be done manually or accCl!llpllshed by the ccmputer as a pre­
lude t o executing one of the two algorithms .

Pomeroy, L.K. Jr. ROI\D MAPS TO D!X:ISIONS. 1n Navy Management Revlev,
Vol. 10, No.1, pag •• 4 -5. January 1965.

PROCEEDIJ«lS OF TIlE DJlrISION TAlILES SII!POSIUM. Spon.ored by the COIi\SYL
Systems Group and the Joint Ussrs Group ot ACM, 116 pages. 2O~21 September
1962 .

This document contain. the proceeding. or • Symposium on DeciSion Tables pre­
sented September 20 .. 21, 1962 1n New York City. 'lbe Sympoe1um. vas co-sponsored
by the Systems Group ot CODASn., and by the Joint Usere OroU}).

Schmidt, D.T. and T.r. Kav&nash. USIlll DECISION STRUC1VRE TABLES. in
Datamation, Vol . 10, NOl. 2 and 3, P 42-49 and 48 .. 54. february and March
196'.
These articles emphaSize manufactur1ng applIcations becaule moat of OUT ex­
perience ls 1n this area. Decis10n structure tables coupled with computers
are payin~ orr because they alloW' you to: det1ne apd think throush manufac ­
turing problems, otten prov1dine: new 1ns1ghts and understafldlng vhlch have led
to improved performance; formulate and record dec1sion systems tor subsequent
use and communication; sim;11ty computer ~lementation where mechn1~at10n is
desirable; get manufacturing to using computers.

There 1:5 a veeJ.th of potent1al caDputer applicat10ns in manufacturing. '!bey
offer great opportunity. W1thout structure tables, app11cation costs .. ould
be exorb1tantly high. It 1s easy to learn how to use dec1sion structure
tables 1 and, further 1 the user requires minimum computer knovledge and back ..
ground. Later in these articles a structure table application using computers
1s described--PRONTO .

-,

12 April 1965

TABSOL APPLICATION MANUAL,
CPB-147A, 2 3 pages_ June 1961.

14
(last page)

INTROIllCTION TO TABSOL_

'lY.- 2288/000/00

GE Computer Dept.,

TIME TO CONSIDER DEx::ISION STRUC'lURE TABLES AND EDP DESIGN SESSIONS. in
EDP Analyzer, Vol. 1, No.4, Canning Publications, Inc., 10 pages. May 1963.

Decision structure tables provide a powerful tool for systema analysis, tor
prescrib1ng clerical procedures, and tor programming. Design sessions can
help develop the vitally necessary support ot middle management tor your EDP
program. What's more, both are easy to use.

liright, K.R. APPRa.\CKES TO DEx::ISION TABLE PROCESSORS. in Proceeding.
of the Decision Tables SYDrRosium, pq:es 41 .. 44. 20-21 September 1962.

Discusses the four basic types ot processors or methods of converting decision
tables to a machine language . These are (1) the manual processor, (2) the i n­
terpretive processor, (3) the translator, and (4) the compiler .

,

DErAB-65 USER '5 MANUAL

1. INTRODUCTION

Decision Tables endow a user with the ability to provide a graphical represente-

tion of a complex procedure in such a we:;y that one individual is able to readily

understand a progre.m written by another.

D~65 1s the decision table language which the preprocessor converts to

COBOL statements for subsequent processing by an appropriate COBOL compiler.

This manual's purpose 1s to describe to a user hew a D~65 decision table

should be written for inclusion Within a COBOL program. It also describes the

necessary linkages, formats, and restrictions used in construction of the decisiol

table.

Since not all defin1tions will be defined in this manual, it 1s recommended

that the user first study the D~65 documents accompanying this manual.

In addition, a 1est program. 1s documented 1n Appendix B.

2 . STRUCTURE OF A DECISION TAllLE

A decision table can be log1cal.l.y divided into four sections (See Figure 1

belO'J). The upper two sections (Condition Stub and Condition Entry) describe

the set or string at condit1ons that 1s to be tested. The lower tvo sections

(Action Stub and Action Entry) describe the set or string of actions that 1s

to be taken upon satisfaction of a set of conditions. A rule consists of" a set

of conditions plus a set of actiOns, and a decision table typically consists of

several rules.

Condition
Stub

Action
Stub

Condition Entry

Action Entry

Figure 1

-2-

The three types of decision tables in current use today are the l.1m1ted- ,

extended-, and .mixed-entry types (see F:1e;ure 2 below). Eventually it will be

possible to convert all three types of tables via ~ preprocessor; however I at

the present time the preprocessor 1s restricted to limited-entry tables.

R, R2

C, N -Y

C? Y N

A X -
A - X

LDllTED ENTRY

3 . PRCCRAM FOlW\T

R R2

C -58 -25

C ~J - K

A X -
A - X

EXTENDED-ENTRY
Figure 2

• I R,

C, -58

C~ iJ
A, X

A? - I
MlXED-ENTRY

R2

Y

N

-
X

The format for a COBOL program containing DETAB-65 decision tables must con:form

to the requirements for srr::r COBOL program, except that a decision tabl.e 1s

inserted 1n the COBOL PROCEDURE DIVISION as a SECTION, and 1s referred to by

an appropriate COBOL statement (see Table 1.1 nkage).

The DATA DIVISION of a COBOL program 1ncorporat1ng 8. DE'rAB-65 decision table

is treated as 1s any other COBOL DATA DIVISION. Any symboJ.ic data reference ,

data s tructure, caostant, or vorkiDg storage used in a decision table must be

decl.a.red in the DATA DIVISION.

The decision tabl.e(s) are placed at the end or the PROCEDURE DIVISIC!l since they

are to be treated as COBOL subroutines. This is the only difference between a

COBOL program and a ·COBOL With decis ion table (8) program.

4. TABLE LINKAGE

In ccmpi1ation a decision table w1ll be treated as a cl.osed COBOL subroutine.

Thus, a decision table should not be entered Via the normal operat1Dg sequence,

•

-3-

but only by using COBOL GO TO or PERFORM verbs. 1

Since a GO TO resu.lts in an uncond1t1on transfer, a return or transfer point

must be specified by the user in the decision tables action stub or the pro-

cessing sequence will be lost. It is recamnended that the GO TO verb not be

used when referring to a table :fran the main sequence of the program.

When transferring control to a decision table by the use of a COBOL PERFORM

verb, a normal return to the processing sequence will be made by the compiler

unless the user speci1"1es otherwise in his actions. Spec1f1call,y, the preprocess1

will generate a flGO TO DEXIT. ", far every rule whose last action does not end

1n a "GO TO ---. ", no matter heM the table was entered.

Tables may be Cha1ned together by placing GO TO's and PERFORM's in the Action

Stub of one or more tables. However, it 1s advisable to keep very, very close

track of this as it 1e possible to generate errors due to the way various

COBOL compilers set up their procedure sections.

5 • DEFINITIONS

The following is a series of decision table definitions to be used in describ-

ing a DETAB-65 decision table:

5.l TABLE-m

Identifies to the preprocessor that a DmAB-65 decision table has been

encoWltered. The ID is always 4 numeric characters consist ing of 4

zeros (0000).

5.2 RULE-m

Identifies to the preprocessor that the ru1e-card is present (for

error checking purposes). The ID is always 4 numeric characters in

length and consist. of (OOOl).

5 -3 TABLE-NAME

This 1s a 30 alphanumeric character or less name which 1s then used to

identify the COBOL section generated by the preprocessor.

1 It 1(; pocoiblc to enter a table fran the main sequence but the trouble
th1S". cnn entail. does not lI"IO.ke it worthwhile .

-4-

5.4 FeD!

Designates the kind of table 1s present (i.e . , ~1m1ted-, I!xtended- ,

and miXed- entry tables) and 1s always an alphabetic character (L, E,

M, 1ert- justif1ed).

5 . 5 COND ROWS

Designates the number of conditions in the Condit1on Stub of the table.

This is 3 numeric character" (right-justified) .

5 . 6 ACTION ROWS

Des1gDates the number of act10ns in the Action Stub of the table.

This is 3 numeric characters (right- justified) •

5.7 RULES
Designates the number or rules in a table. Th1.s includes the ElSE- RULE

and is 3 numeric characters (right-justified).

5.8 RUIE NUMBEPS

These are 3 numeric characters each used to identify each rule. The

ELSE-RULE 1s the only excllt10n and 1s designated by the 3 alphabetic

characters EIS.

5 . 9 CONDITION STUll

Contains logical, arithmetic, or relational conditions answerable by

B yes (Y) or B no (N) .

5 . 10 CONDITION ENTRIES

'!heae indicate wh1ch condition must be met to satisty a rule. This

can be " Y, N, JlIAm((), or DASH (-). A blank or dash means _ t

the user does not care if the rule 1s Y or N as it makes no difference.

Al.so known as the el.ements of a task.

5 .il ACTION STUB

Contains imperative statements to be performed as 1nd1cated by the

ACTION ENrRIES of a rule when the rule 1s Sll.t1sf'1ed.

5 . 12 ACTION ElII'RIES

These 1n:l1cate wh1ch act10ns must be performed 1f a rule 1s satisfied.

The cb&racter used to signif'y th1s is an X.

-5-

6. CONVENI'IONS AND RESTRICTIONS

When writing DETAB-65 decision tables the following words camot be used (this

is in addition to COBOL restricted words) 6.1 - 6 . 6.

6.1 DXN (wher e N is a 3 digit number)

6 . 2 AZM (where M i s a 3 digit number)

6 . 3 ~ (wher e P i s a 3 digit number)

6 . 4 ELOO1

6 . 5 DEXIT

6 . 6 ELS

6 . 7 Maximum of 50 entries in Condition Stub.

6 .8 Max1:mum of 50 entries in Action Stub.

6 . 9 Msx1mum of 50 rules (includes ELSE-RUU:).

6 .10 Maximum of 12 and minimum of 3 columns in a rule .

6 . li Maximum of 58 and minimum of 1.2 columns 1n t he Condition & Action Stubs

6. 12 ELSE-RUU: (ELS) must always be present.

6 . 13 TABLE END card ($ in Column 7) must always be present.

6 . 14 EOF card (999)(in Columns 4-7 must alW83'S be present .

7. DErAB-65 DECISION TABLE

The table i t sel:f 1s wri tten in a miXture of :fiXed and free format s. The f ollOW'i n.

lists the various sections sbOW'ing tbeproper way t o set up a DEl'AB-65 deci sion

table .

1 .1 Header

The header contains information used by the preprocessor t o 1m tate the

convers ion of the table and aLlow it to check for errors.

COWIN(S) DEFINrnON

4 - 7 TABLE ID

9 - 38 TABLE NAME

39 - 40 FORM

41 - 43 COND-RaiS

44 - 46 ACTION- RaiS

47 - 49 Ruu:S

-6-

All other columns in the header are blank. 4

7 .2~

The rule part of the DE.'l'AB-65 table contains information Yhich allO'Js

the prepr ocessor to determine t he s ize of the stub area. The size of

the largest entry in either the condition ax' action s t ub determines the

size of the stub area.

COLUMN(S)

4 - 7
9 - XX

DEFllIITION

RIJLE- ID

Blank. This 16 the s ize of t he stub area .

The r ules (RIJLE- NUMllERS) s tart immediately after the las t column in the

stub area and are terminated by a dollar s ign ($). The onl.y exception 1s

if the last rul.e occupies column 50, thus putting the dollar sign in

column 81.

7.3 Body

The body part of the table c ontains the Cond.11:1 on and Act ion Stubs and

Entries. All actions are perfonned in the order of the ir occurrence;

if it 1s desired to do series of action in a different order, it 1s

necessary to repeat them i n t hat order in t he action stub .

7.4 End
The end part not i fies the preprocessor whe~: the input i s over

and conver sion 1s to begin . It consists of a dollar s ign ($) 1n column 7.

Preprocessor Output

The pr epr ocessor will convert a D~65 dec1s1on tabl e into COBOL statement~

of the f ollowing format :

DXN
A2loI
ELOOl

• EISE GO TO A2J!
ELOOl •

Where Cn 1s the cond1t1on to be tested, and the br ackets output f onn.e.tz .

Errors

All err or s detected during the preprocessors operation will be listed upon

the list tape . For a full description of 8.l.l. error s see Appendix A.

4 NOTE: Co~umns ~-3 , 4-6 may contain a sequence number (except for header
and rule cards) .

-7-

8. EOF Card

To tell the preprocessor when to terminate operations a special card 1s used

called the EOF card. This consists of a 999X in columns 4 - 7, and 1s t he lnst

card processed. This means that if more than one program 15 to be processed

the EOF card is placed after the last program.

Deck Outline

The following shows the deck structure of a COBOL program containing a

DET~65 decision table.

C EOF CARD

/-~OBOL PRooRiiif1
, CARre V

r------TABLE J,:)Il)
CARD

~ABLE HEADER ' I CARD __ _ J
rOBO~OORPM]

Sample COBOL, DETAB-65 Program Deck

APPENDIX A
-8-

1. PRESENTLY TABLE RESTRICTED TO LIMITED ENTRIES

FOR-1 does not contain an ILl.

2 . TABLE-NAME MISSm:; FRCJoI HEADER CARD

Processing will be halted and table skipped.

3 . RULES CARD MIssm:;

Processing will be halted and table skipped.

4 . LESS THAN 3 RUIE COLUMNS SPECIFIED

A rule contains 2 or less columns for processing, conversion will be
halted and table skipped.

5 • PRESENTLY, CONTINUED RULES Nor IMPI»!ENTED

Column 8 has an entry.

6 . CONDITION STUB El{CEEOO 58 COLtJoINS

Condition stub exceeds limit processing halted and table skipped.

7 . NUMBER OF RULES ENCOUNTERED DISAoREES WITH RUlE CARD

Number of rules entered in header card (RULES) differs fran tha.t
specified by the user.

8 . MORE THAN 50 ACTION OR CctIDITION ENTRIES

Action or Condition stub contains more than 50 entries, processing
halted and table skipped.

9 . DECISION TABLE LOGIC ERROR. PROCESSm:; HALTED.

Check over rules far e ither redundancy, inconsistency or both.

.BEG I N JOB ~f6 08/10/65

.CJOP, 90101,eETAB65 ,9/19, 5 6 . ~55 55.4,

.COBOL. X.
ID EN TIFICATION DIVISION,
PRDGRAM-I D, PLAYBOY.
AUT~O., OHARLES ·OREE.
DATi-OOMPILED. 08/10/65
REMARKB. THIS 18 A SIMPLE DA'A ReTRIEVAL PROGRAM TO

ILLUSTRATE THe US! OF DETAB/65,
ENVIRONH'NT DIVISION.
CONrlQuRATION SECTION.
SOURC!.COHPUT6R. CONTROL DATi 1604-A.
OB~&C'.COMPUT!R, OONTROL DATA 160'.A.
INPUT_OUTPUT S6CTION.
FIL&-OONTROL.

SILEOT CANDIDATES ASSIGN ;0 8ySTEM-INPUT-TAPE,
SILEOT RAT&D-'ILE AISIGN TO 8VSTEM-OUTPUT_7APE.

DATA DIVIIION.
FILE IHCTION,
FD OANDIDATES

LABEL RECORD8 ARE OMITTED
DATA RECORD II INA80.

01 INREO.
02 FILLER "ICTU~E X1801.

FD RATED-rILe·
LABEL RECORDI ARE OMITTED
DATA RECORD IS EviL.

~ 01 ·EVAL~
, 02 FILLER PICTU"E XI'SI.

WORKING-ITORAGE S!CTION,
77 TOP-OTR · ~rCTURE ~171 COMPUTATIONAL.

SYNOHRONIZED RIGHT, VA[UE ZERO.
77 NIKT_IEST_CTR · ~ICTURE ·0171 OOMPUTATIONAL.

SYNOHRONIZED RIOHT, VA[UE ZERO.
77 LASt_AESORT.OTR 'PICTURE 9171 COMPUTATIONAL,

SYNOHRONIZED RIGHT, VA[UE ZERO.
77 TOTAL.NO ·pICTURE .0(5) COMPUTATIONAL,

SYNOHRONIZED RIOHT. VA~uE ZERO.
01 WIR.
02 SKlp.CTL PICTURE X,
02 "ATING PICTURE XI121,
02 W8R1,

~
•

OJ I DNO PICTURE 9/7) ,
OJ SEX PI CTURE X.

88 FEMALE VALUE .r •.
03 AGe PI CTURE 999.
OJ HEIQHT PI CT URE 999.
OJ WE IOHT PI CTUR E 999 .
OJ HAIR PI CT URE X(9).

88 BLO ND VA LUE _B LOND_.
OJ EYeS PICTURE X(5) .

88 BLU E- EYES VALUE _BL UE_ .
03 1-0 PI CTU RE 999
03 FILL ER PIC TURE X.

PROCE DU RE DIVISIO N.
PN01 .

O'EN I NP UT CANDIDATES .
OPEN OUTPUT RAT ED. FILE.

PN02.
READ CA ND ID ATES INTO WSR1; AT END GO TO PNEO J.
P ~ RFORH CHOIce- PIcK.
GO To PN02.

PNE OJ .
CLOSE CANDIDATES wITH LOOK. RATED_F I LE WITH LOCK ,
DISPLAY _TOPS COU~T = , Top-eTR .
DISPLAY 'NEXT COUN T z • NFX T. BEST_CTR.
DISPLAY 'LAST COUNT = _ LAST-RESORT- eTR .
DISPLAY ,TOTAL' • TOTAL.NO .
STO P RUN.

00 1000 0 CHO I CE- PICK L 0100080 06
010001 0 01 0 0 2 003004 0 0~0 06 0 0 7ELSS
01 0101 FEM ALE Y Y Y Y Y Y Y
010 102 AGE ORE AT ER THAN 18 Y Y Y Y Y Y Y
0101 03 AG E LESs TH AN J 8 Y N Y Y Y N Y
010104 BLO ND Y N N
010105 BLUE-EYE! Y N N N
010106 WEI GW T ORi AT!R TWA N 89 Y Y Y Y Y Y Y
010107 WEIG WT LBSS THAN lJJ Y Y Y N Y N Y
010108 HEIGWT GREATER TWAN 59 Y Y Y N Y N Y
010109 HEIGWT LISS TWAN 68 Y Y Y Y N
010110 I-Q GREATER TWAN 99 Y N Y Y N N

010112 MOVE _TOPS_ TO RATINQ X X X
010202 ADD 1 TO TOP-OTR X X X
010203 MOVE _NEXT BE8T_ TO RATING X X
010204 ADD 1 TO NEXr-BEI'-CTR X X
010204 MOVE _LAlf Re80RT_ TO RATING X X
010206 ADD 1 TO LA8r-REIORl_CTR X X
010201 WRIn hAL ' FROM WSR X X X X X X X
010201 ADD 1 TO fOTAL-NO X X X X X X X M

S

* ---
CHOIO!-PIOK SECTION.

~
DXOOO.

IF FeMALE ,
GO TO DXOOI 'ELS! GO TO ELODI.

DXOO1.
IF AGE GREATSA THAN 18

GO TO DXD02 ELSi! GO TO ELODI.
DX002.

IF AGe LESS TWAN 38
00 TO DXOOl .

IF BLOND
GO TO DXD04.

IF BLue - EVSS
00 TO DXDO ~.

IF Wl tGHT GR EAT ER ~HAN 89
GO TO DXOO6 'ELS! GO TO ELOD1.

DXOO6.
IF WEIGHT LESS THAN lJJ

*Generat"!d output follO'lt's

00 TO aX007.
IF HEIGHT GREATER THAN 59

GO TO ELOO1.
IF 1.0 GREATER THAN 99

GO TO EL001 ELSF GO TO AZ006.
aX007.

IF HEIGHT GREATER THAN ~9
GO TO DX008 ELSP GO TO ELOO1.

DX008.
IF HEIGHT LESS TH AN 68

GO TO DX00 9 ELSF. GO TO EL001.
DX009.

IF 1.0 GREATER THAN 99
GO TO AZ002 ELS~ GO TO ELon.

DXOO5.
IF WEIGHT GRSATER THAN 89

GO TO Dxon ELS, GO TO EL001 .
DX010.

Ir WalGHT LS81 THAN 133
GO TO DX011 ELS~ GO TO ELon.

DXOU .
IF HEIGHT GREATER THAN "

GO TO DX012 ELS~ GO TO ELOO1.
DX012 •

• IF HeIGHT LE8S THAN 68 ~ , GO TO DX013 ELS! GO To EL001.
Dxon.

IF 1.0 GREATER THAN 99
OD TO AZ002 ELS, GO TO EL001 .

DX004.
IF WEIGHT GREATER THAN 89

GO TO DX014 ELSP GO TO ELOO1.
DX014.

IF WeIGHT LESS THAN 133
00 TO DX015 ELS~ GO TO EL001.

DX015.
IF H!IGHT GREATER THAN 59

GO TO DX016 ELSP GO TO ELOO1.
DX016.

IF H!IGHT LESS THAN 68
00 TO DX017 ELS, GO TO ELOO1.

DX017.

Ir I.a GREATER THAN 99
GO TO AZOO2 ELSP GO TO ELO O1.

OXOO3.
Ir BLOND

GO TO DX018.
I ' BLUE·EYES
GO TO OX01 9.

I' WIIGHT GREATER THAN 8,
aD TO DX020 ELS~ GO TO ELOO1.

OXOR O.
I" WIiGHT , ~681 THAN 133
ao TO DX02l .

I' HE I GHT GREATER THAN "
ao TO E~OOl.

I' 1.0 GR!ATE~ THAN 99
GO TO AZOO4 ELS! GO TO ELOO1.

OX021.
I' HEIGHT GREATER THAN ' 9
ao TO DX022 El9! GO TO ,ElOO1.

Dxon.
I'" HIIGHT ~E" THAN 68

GO TO DX023.
I" 1.0 GRE AT! A THAN 99

GO TO ElOO l " ElS ~ GO TO Al OO7.
Dxo n . , I ' 1.0 GREAT!A TH AN 99

~ GO TO AZOO' ELS! GO To AZOO3. ,
DX019 .

I ' WEIGHT GREATER THAN 8,
GO TO DX024 ELse GO TO ElOO1.

DXOR4.
I ' WEIGHT ~68S THAN 133

GO TO DX025.
I" HIIGHT GRUTER THAN ,.

GO TO ElOOi.
I' 1.0 GREAT8~ THAN 99

GO TO AZOO4 ELse GO To ELOO1.
oxon.

I' HEIGHT GREATER THAN 5,
GO TO DX026 ELse GO To ELOOt.

OX026.
I ' H81GHT LESI THAN 68

GO TO ELOOl.
IF 1.0 GREATER THAN 99

GO TO ELOOl ELSP GO TO AZOO?'
DX018.

IF BLUE·EYES
GO TO DX02?

IF WEIGHT GREATER TWAN 8Q
GO TO DX028 ELSE GO TO ELo01.

DX028.
IF WeiGHT LES S THAN 133

GO TO DX029.
I' HeIGHT GREATER THAN 5Q

GO TO ELOO1.
I' 1.0 GREATER THAN 99

GO TO AZOO4 ELS ~ GO To ELOO1.
DX029.

I' H&IGHT GREATER TWAN 5.
GO TO DXQJO ELS~ GO TO ELOO1.

DXOJO.
I' HEIGHT LESS THAN 68

GO TO DX031.
I' 1.0 GREATER THAN 99

GO TO ELOO1 ELS ~ GO TO AloO? , UX031 . ;". IF 1.0 GREATER THAN 99 ,
GO TO AZOO5 ELS~ GO TO ELo01.

DX027.
IF BLUE·EYES

GO TO DXOJ2.
IF WeIGHT GREATER TWAN 89

GO TO DXOJ3 ELSF GO To ELOOL
DXOJ3.

IF WEIGHT LESS THAN 133
GO TO DX034.

IF HEIGHT GREATER THAN 5Q
GO TO ELOO1.

IF 1.0 GREATER THAN 99
GO TO AZOO4 ELSP GO TO ELOOL

DXOJ4.
IF HEIGHT GREATER THAN 'Q

GO TO DXOJ5 ELS~ GO TO ELOO1.
DXOJ5.

,
~ ,

IF HEIGHT LESS THAN 68
00 TO ELOOt.

IF I_e GREATER THAN 99
00 TO ELOOl ELSF GO TO AZOO?

DX032.
IF WEIGHT GREATER T~AN 89
00 TO DX036 ELSP GO TO EL001.

DX036.
I' WeIGHT LBS! THAN lJJ
00 TO DXOJ7 ELse GO To EL001.

DXOH.
IF HEIGHT GREATER T~AN 59
00 TO DXOJ8 ELSF GO TO EL001.

DX038.
IF HEIGHT LES! THAN 68
00 TO AZOOl ELS~ GO TO EL001.

AlDOl.
MOVE _TOPS_ TO RATING.
ADD 1 fO TOP-CTR.
WRITe EVAL FROM weR.
ADD 1 TO TOTAl-NO.
ao TO DEXIT.

Al002.
MOVE _LAST RE!ORT_ "TO RATiNG.
ADD 1 TO LAST_RESORT-CTR,
W~ITE EVAL FROH MeR •
ADD 1 TO TOTAl-NO.
GO TO DEXIT.

AZ003.
MOVE _NEXT BE8 T~ TO RATING.
ADD 1 TO NEXT-BEST-CTR .
WRITE EVAL FROH W8R.
ADD 1 TO TOTAL-NO.
GO To DEXIT.

AlO 04.
MOVE _LAST RE80RT_ "TO RATiNG.
ADD 1 TO LAST_RESORT-CTR.
WRITe EVAL FROM W!R.
ADD 1 TO TOTAL-NO.
GO TO DEXIT.

AZ005 .
MOVE _TOPS_ TO RATING.

J,
"' ,

AD D 1 TO TOP -C TR.
WRITE EVAL FROM W. R.
AD D 1 TO TOTA L- NO .
GO TO DEX I T.

AZ0 06 .
MOVE _TOPS_ TO RAT I NG .
ADD 1 TO TOP - CTR.
WRITe EVAL FROM W~R.
ADD 1 TO TOTA L- NO .
GO TO DEXIT.

Al007.
MOVE _NEXT BES T_ TO RATINn.
ADD 1 TO NEXT-BEST - CTR .
WRITE EVAL FROM wsR.
ADD 1 TO TOTAL-NO.
GO TO DEXIT.

ELOH.
ADD 1 TO TOTAL-NO.

DEXIT. EXIT .

END PROGRAM.
999X

END DETAB/ 65 PRePR OceSSOR RUN.

I
~

~i
<&

~

0010000 CHOI~E-PICK
010001
010101 FEMALE
010102 AGE GREATER THAN 18
010103 AGE LES a THAN 38
01010~ BLOND
01010' BLUE-E~68
010106 WEIGH~ GREATER THAN e9
0101 07 WEIGHT LISS THAN 133
01010e HEIGHT GREATER THAN ,9
010109 HEIGHT Lass THAN 68
010110 1_0 GREATER THAN 99

019112 MOVE _To~S- TO RlTING
010202 ADD 1 TO TOp-CTR
010203 MOVE _NEXT BEST_ TO ' ~lTING
010204 ADD 1 TO NExT.Bal,·eTR
010204 MOVE _LAlT RE80RT_ TQ 'RATlNI
010206 lDD l ' To LAsr·RE90Rl.CTR
010201 WRITI ' EVAL F'RDM WSR
010207 ADD 1 TO 'OTA~·NO

S
END PROGRAM.

999X

L 010008008
0010020030Q 40 0,006007ELSS

Y Y Y Y Y Y Y
Y Y Y Y Y Y Y
Y N Y Y Y N Y
Y N N
Y N N N
Y Y Y Y Y Y Y
Y Y Y N Y N Y
Y Y Y N Y N Y
Y Y Y Y N

Y N y ' Y N N

X X X
X X X

X X
X X

X ' X
X ·X

X X X X X X X
X X X 'X X X X •

§
.~ 0: -
rl '" , I

g

~
r:i

32?8 215f03106?11'BLACK
0567982f025065119BLOND
1~25893f021062110RED
00532~?0500551~58ALD

GRFEN106
BLUE 103
GR~Y 101
BRnWN98

~
~ ~ , g

"
~

~

TO PS
TOPS
TO PS

327B215F03106'115RlACK
l'25803F021062110~8D
0~67082F02'06'119"lOND

TOPS COUNT • 0000003
NEXT COUNT • 0000000
LAST COUNT • 000 0000
TOTAL . 0000'

GREeN106
GREY 101
8lU! 103

,
•

INTRODUCTIOO

A DESCRIPTION OF THE BASIC ALGORITHM USED IN

THE DETAB/65 PREPROCESSOR

By A. E . Chapman and M. Callahan

Draft SP- l99'
September 9 , 1~~5

While many papers and articles have been written on the uses and advantages of

decision tables, only a few have been written on the algorithms used for converti ng

a decision table to computer instructions. 1 Additionally, except for a few

of the algorithms used in current decis ion table ccmpllers or preprocessors2 ,

none have yet been formally described. This paper describes the conversion algorithm

used in the DETAB/65 preprocessor, which converts decision tabl es into COBOL .

Since the preprocessor and the language associated with it were developed fOl'

COBOL users, the preprocessor was wri tten in a modular form in required COBOL-ul.

Thus, any COBOL user on any caaputer can use the preprocessor or easily mod .! f'y

it for his use.

While the use of a preprocessor introduces inefficiencies due to the compile-time

of the preprocessor and the run-time associated with COBOL, the advantages of this

method were great enough to have warranted the e l'l'ort.

1 H .• S . Montalbano, "Tables, Flow Charts, and Program Logic," :rm Systems Journal,
September 1962.

S . L. Pollack, "Conversion of Limited-Entry Decision Tables to Computer
Pf'ograms . " RAND Corporation Memo RM-4020-PR 1 May 1964 .

J. F . Egler, "A Procedure for Converting Logic Table Conditions into an Efficient
Sequence of Test Instructions." CcmnWlications of the ACM1 September 1963 •

.... FORTAB by the RAND Carporation, TABSOL and LCGTAB by the General Electric
COrporation, DTS by the IEM Corporation.

- 2-

PREPROCESSOR DESIGN CRITERIA

The preprocessor accepts a decision table Within COBOL language called DETAB/653 ,

which was itself developed from a language called D~X. · It operates prior to

the COBOL caDpi1.er.> and, in operation, does not process regular COBOL statements,

but merely passes them al.ong to the ccmpl1er. HCMever, 8Jly decis ion tables found

wi thin the COBOL pr ogram are converted by the preprocessor into COBOL state::lents

t hat are then passed along to the compiler. Each decision table will be considered

a COBOL Section, thus making any basic change to the COBOL compiler itself unnecesary.

Although the generation of efficient code fran decision tables may require careful

selection of the sequence for testing conditions, and may even involve intermixing

of decision and actiOns, it was felt that this type of optimization would require

t,e preprocessor to be too complex, especially since the preprocessor was bssl-

cally built to allow a great variety of users to experiment w1th using decision

tables .

~e preprocessor will accept limited-, extended- , and mixed entry decision tables

(see Figure 1 be lev) •

R, R R EI.S

A=B - Y N -
C=D Y N - -
E=F N - y -

X X - X -
Y - X X X

Lim1ted- Entry

R, R, R,

P- - R r.

C- D - -
F"I F - F

X X - X

Y - X x
Rlctended-Entry

DECISION TABLES
Figure 1

EI.S

- A_

- c.o

- ,;.i

- X

X Y

3 Devel oped by SIGPLAN Working Group 2 of the Los Angeles Chapter
of the ACM, 1965.

" Deve loped by the Systems Group of CCIlASYL, September 1962'.

R, R R

- R r

y N -
F - F

X - X

- X X

Mixed- Entry

Er.5

-
-

-
X

-3-

Since the a~orlthm only handles I1Jn1ted-entry decision tables, bo th extended-

and mixed-entry tables are transformed into limited-entry decision table~ , I.'!: ich

are then converted. It 1s not the purpose of this paper to explain this t.ransforma-

tionj suffice it to say that both extended-and mixed-entry tables can be described

as limited-entry decision tables.

!lECI~TOIl TABLE CHARACTERISTICS

Condition I
Stub

Action
Stub

Condition
Entry

Action
Entry

A decision table (hereafter known as a DT) can be logically divided into four

sections (See Figure 2 above). The upper tvo sections (Condition Stub and Conlii-

ticn E!ntry) describes the set or string of conditions that 1s to be tested. 'J'b.c

lower two sections (Action Stub and Action Entry) describe the set or Gtring of

actions that is to be taken upon satisfaction cd a set of cond! tlons. A n u c

consists of a set of conditions plus a set of actions, anll a DT typically consir;ts

of several rules.

I.o:very DF:l'AB/65 IYl' must contain a special rule called the ELSE-RULE . 'l.'he l~ll;Jo:-HUlJ-:

must not have an;y entries in the condition-entry section of the DT J but may or

may not have entries in the action entry or the table 5 . It is genera.lly con-

sidered the error exit of the DT. Sane decision-table definitions are defined

belCl'oo':

l. A redundancy exists in a deCision table if two or more rul.es do not have

5 If the table contains -;f1 rules (where D - no. of condi tiona), there will not
be arr::J actions specified as the table will be cQlIPlete. HOW'ever, it must be
present.

-4-

at least one Y,N pair in any of the rows and the actions specified are

Identlca1. R, RZ
C, - N

C" Y Y

A X X

A - -
2. A contradiction or logic error exists In a decision table if tvo or more

rul.es do not have at least ODe Y,N pair 1n 8D"Y o-r the rows and the actions

specified are not identical.

R, Rz
C - N
C Y y

A, X -
A

0 - X

3 . Any ruleD not specified or implied in the table are ass umed to be port of

the I!;LSE- RULE. Only the action pert of the ELSE- RUlE Is pertinent .

4.
n

An Incazrplete decision table Is one where there are less than 2 non- redundant

rules (n equals the number of conditions In the table). The ElSE- RULE,

n however, does not count as one d the 2 rules.

5. Each r ule number, except for the ELSE-RULE, will be denoted by R
I

, R
2

, R
3

, ••••

'Where Ri Is the rul.e number, 1 ::II 1, 2, 3, - - - ~.

6. Each condition will be denoted by CI, C2 ' C
3

, ••• vlE re C1 Is My string of

conditlon&l COBOL statements; 1 - 1, 2, 3, ••• , D.

7 . Each action Vill be noted by AI' A2 , A
3

, ••• where Ak is any string of non-

conditional COBOL statements; K - 1, 2, 3, ••• •

8 . Any entry in the condition BIii/ar action-entry section of a rule will be

ref"erred to as an element of the DT; thus, a ru.le can be considered a col umn

of elements of the DT.

-5-

A rule may consist of any one of the five following ~ntrle8:

Entry Definition

1. "y" meaning YES This condition iB to be tested to Bee H it 1s true.

2. liN" meaning NO ThiB condition is to be tested to see if it i s false.

3. " " meaning BLANK This condition does not apply, or this action is not
to be taken when this rule is satisfied.

4. " " meaning DASH Serne as 3.

:, . "X" meaning X This action 1s to be taken when all conditione for
this rule are satisfied.

INPUTS

The inputs to the algorithmic generator (hereafter called the generator) consists

of:

1. Ii matrix. (which will be co..U.ed the l1I') crn!poned of Y' CJ I N I 0 I tlmi u lllnk.:;

" , .
3.

(dfir.hcr; nre converted to blenkn). There are the elements of the lJl' .

/I. vector, el' c 2 ' c
3

' conSisting or the n conditions to be satisfied .

A vector, Zl ' Z2' Z3 ' ••• Zn consisting of the series (or string) of

actions to be performed depending upon the conditions to be satisfied.

4. An EIBE-RULE (which 1s, however, not considered an 1ntegrs.l part of the

DT matrix).

OUTPUT

All output fran the generator consists of simple COBOL conditional statements

of the fallowing type:

where:

1. C
n

is the nth condition being tested.

2. DXN is the statement label designating the paragraph name where further

checks are to be made by the conditions (N is a 3-dig1t number).

•

-6-

3. A'IM 1s the statement label that precedes user-defined actions for specIfied

rules (ATP 15 another action labeJ.; the tvo are not the same). M and P

are 3-d1g1 t no. I s which are based upon the no. of the rule :fb r which the

solution vas generated .

4 . F:lOOl 1s the error or condition nd covered exit. The brackets arc used to

gr oup the possible caub1nat1oDs.

THE ALGORITHM

With the above table characteristics, definitions, and eB,L;1ly deducible corollaries,

'We can nov describe the steps involved in convert1Dg a typical decision table

(Flp,lIre 3) to 0. series of teat 1nstructiOnD. Except for elimination of obvioUf;!.y

tumcceG~nry tests, no test optimization 1s attempted.

G!';NKHAL

Generally, several "panses" are made through the DT, vith each pass generating

COBOL code I that makes tests on the varioos conditions and leads to actions that

constitute a solution for one or more of t~ rules . These rules are then deleted

fran the DT and the process cont1nues until no more rules ex1st in the DT .

'l'he DT is then considered to be s01ved. The number of passes will never be more

0- 1) than 2 , (wher e n _ '8 number of cood1t1ons iD the 1JI' and ms:y 1n fact be les ~ .

~:ach cond it10n- entry sect10n will contain one or the following clossee of Y I 5 1

N's and blanks. It 1s their satisfaction which will prov1de information for the

generat10n of output code .

Class 1 - contains one ar more yls, N'B and bl.anks in any canb1mt1on .

Class 2 - contains one ar more Y'. and NIB in any canbiDation.

Class 3 - coota,1ns one or mare Y's and b.lanks in any canbination.

Class 4 - con.tains one or more N's and blanks io 8IlY canb1nat1on.

•

-7-

Cl.ass 5 - contains all yls.

Class 6 - conta.1ns all N's .

Class 7 - contains all blanks.

For each pass tm-ough the DT J we start with the nth condition ill the DT. The

"n" i. initially set to one and the follOW'iIlg steps 8['e done;

Step 1 - Examining the Condition Entry Section

The nth condition entry section elements are examined for one of the above 7

classes. The f'olloving rules are then applied to detennine what COBOL code to

generate.

1. If et least one Y a:nd/or at least one N and any, but not a.l.l blanks

are fOWld in any canb1nat1on the generated code will be:

IF C
n

GO TO DXN.

(where DXN 1s a generated label which 1s saved in all cases by placing

it in a push- dO\m list fran which it can be "popped" up to provide a COBOL

statement label when needed. This provides for a "last in- first out"

requirement) •

2 . If only Y I 5 are found the generated code 1s:

IF C
n

GO TO DXN EI.SE GO TO ELOOl.

ond 0. statement label 1s "popped" fran the push-dawn lint.

3. If only Nis are found the generated code is:

IF en GO TO ELOO1.

4. If only blanks and/or 'B'Sl6 are found, no COBOL code is generated. The

elements above the blanks (or B) are then examined and the following tests

performed:

a . If there are no blanks above this condition, that condit1on's element

is changed to a 'y'.

-8-

b . I f there are any blanks above this condition, a IB' is placed in tha t

condition's element .

TIlis continues until all elements of' that condition have been examined.

Then the next step 1s performed.

Step 2 - Preventing Unnecessary Testing of Rules

Before the above mentioned code 1s implemented a check 1s made after a Y or an

N is found in a rul.e to determine if the remaining elements in that rule con­

tain all blanks. If they are not all bl.anks we g o to Step 3 ; otheI"\ollse, since

one solution f ar this rule has been found we generate either an AZJ.1 or AZP

nction label for inclusion within the previously generated code (if a Y- p;enf.' Tfl.tc

AZlo1 , or if an N- generate AZP) . The number of the rule determines what M or P

will be; i.e., Rule 1 - Generate AZOOl; Rule 2 ·,- AZOO2, etc.).

titep 3 - Last Condition Analysis

If this is not the last condition go to Step 4; otherwise, the rolieving anal .Ys1 ::;

is made:

1. If the DT contains only one rule whose last condition equals Y generate

the following code:

IF C
n

GO TO A1}! ELSE GO TO ELOOl

2 . If the DT contains one r ule whose last condition equals N generate the

follCNing code:

IF C
n

GO TO ELOOl EWE GO TO ATP .

3 . If the IYr contains two rules whose last conditions contain a Y and an N

gene rate the :follOW'ing code:

IF Cn GO TO A1M ELSE GO TO ATP (M_' Y' rule no., P2'N' rule no.)

4 . If anything else is indicated there exists an inconsistency or redW'ld.e.nc.y

in the logic of the DT. Errar messages are generated but convers i on is continued .

-9-

After this step 1s performed contr ol goes to Step 6.

Step 4 - ModUying the DT

Each time a condition-entry section has been examined a modified DT is formed

(the or1g1J"l.a.l. DT 1s saved). This 16 dane by deleting fran the DT all rules whose

nth cond1 t ion-entry section have a Y in it. HOW"ever, if ~ Y I 8 are found in

thi s condition entry section, no deletions are done e.Id the modified DT remains

the same as the or1gineJ. (unmodified) DT.

Step 5 - Iteration

Next increase n by 1 and go back to Step 1.

Step 6 - Unndling the Solutions

When the last condition-entry section has been examined, one or more solutions

to the original DT have been fOWld. These solutjons are then deleted by examin­

ing the rules which correspond to these solutions and applying the following

criteria:

1. :r a SOWTION rule contains only ly le' and 'Nts', or if the only blanks

found are contained in the last cOXlSecutlve elements (i.e., n, n-1, etc.,

contains blanks) of the rule, i t is deleted !'ran tbe original M.

Any otber case indicates that there is mare than one s olution to the ru.le .

The solution just :found 1s deleted by introducing a del1m.1ter, which we shall

call 'D'. By setting b.l.a.Dks equal to 'B', the generator is able to step back­

wards up the rule (once each pass) and generate code for all possible ccrnhinations

of' conditions in a given rule. The stepp1ng 1s dore in STEP 7, where the solu­

tion vector is canparefl ",1th the original I1I' and a modified DT formed contain-

ing the next solution for this rule and possibly solutions to other rules.

This is done in the :follOlodng manner.

-10-

2 . The rule is examined for 'B's' and:

a. If a 'B' 1s found and there are no blanks 1n the elements above ' ~ I

1n the rule, the element containing the 'B' 1s changed to 'y' and Step 0

1s repeated. If there are one or more blanks above the 'B', then the

bl.ank. nearest the 'B' 1s changed to a 'B' and alJ. other 'B's' are re-

placed "'1 th blanks.

b . If no 'B's' but any blanks are found, the lowest blank in the rule 1s

replaced ..,1th a ' B' .

Step 7 - Setting up for Next Pass

If the original DT DOW' does not contain eny rules, all of the code necessary

for testing the conditions has been generated and a caaplete solution of the

DT has been frund. The generators work 1s ccmplete. If one or more rules still

exi st v1 thin the original lJl' conversion of the DT continues .

First, a statement label 1s "popped" f'ran the push-dO\m 1ist . Next, one 01' the

solutions (Rules) just found 1s saved, n is set to one, and all blanks in the

rule (hereaf'ter called the solution vector) are set to 'N t . Following that,

the nth element in the solution vector is canpared vith each element in the nth

condition entry section of the original DT. If there ere any el.ements in the

nth condition-entry section equal to either blanks or the nth element in the

solution vector, a special modified DT is found by deleting all rules (frem

the original DT) vhose nth element is not equal to either blanks or the nth

element in the solution vector. The n is set equal to n + 1 and the above

process repeated until a IYl' 1s found vhicb does not satiSfy the above conditions. 7

The n is set to n + 1 and the next "pass" started at Step 1 using the special

modified M .

7
Note: If n equals the last condition, redllndancy exists within

the IYI' and is so flagged.

•

-u-

ERROR CHECKING

COBOL code is always generated. Errors in the logic of the or mayor may not.

produce errors in the generated code. Redundancies and incons i stencies are

checked for and all error s detected are f1..agged. Scm'" of th('Ge 'Will pr e-vent.

cOI:lpletlon of the conversion, othcrn r.el'"V(" only o.n n wnrn1r¥<, .•

t.:ONVI~GION EXAMPLE

The fol lowing 1s a step by 6te~ e~le of the conversion of a DT:
Rl 2 , R. E!.S

C, Y Y

Co y y

Co y N

A, X -
A X X

A - X

A - -
Zl Z2

N N
y N

- N

X -
- -
- X

- -
Z Z ,

-
-
-
-
-
-
X

• Z6

Rs • ELSE- RUI.£

Zn = act i on string to
be perfoIT.1eti.

Set n = 1. and per1'onn Step 1. for C
1

" Since there is both a Y and an N 1n

CI , the following code 1s generated:

IF C
1

GO TO DXOOl ,

Since DXOOl will be used later as a statement l.abel, it 1s saved in the pu.;, .. 'WT1

list.

Next, Step 4 1s perfonned and the DT becanes: ,
R, R.

C1 N N

(' -, y N

~ - N - Z
3 Z •

N 1s set equal t o 2 and Step 1. is performed ror c
2

• There 1s both a Y and an

N in c2' but C
3

in ~ 1s blank and Step 2 1s applied resulting in the folleving

-12-

generated code:

IF C2 GO TO AZOO3

Step 4 is again applied and the DT becomes:
R

C, N

C2 N .

Co N

Z.

N is set to 3 and Step 1 1s per~~ed for C
3

- Since this 1s the last c ondi -

tion Step 3 is per:formed and. the resulting code 1s

IF C
3

GO TO ELOOl ELSE GO TO AZJJ04 •

Now since one pass has been made through the I1l', Step 6 1s performed and the

original DT be canes
Rl R2

C, Y Y

C Y Y

Co N y
. -

Z Z2 ,
Since there are 2 nlles left in the DT, Step 7 1s performed resulting in n

being set to 2 .

Fi r st, C
2

is examined, vhich generates the foll~lng code:

IF C
2

GO TO DXOO2 ELSE GO TO ELOOl

The label DXOO2 is saved in the push- down list and a modified DT is formed;

however, since C2 contains only Y I S the Dr remains the same.

Since there are no N's in the C2 condition-entry section, the statement label

DXOO2 1s set up f'ran the '1>ush-down " list. Then n 1s set to 3 and Step 1 1s

performed for c
3

• Since C
3

contains both a Y and an N, and 1s also the last

•

-13-

condition, Step 3 states that the output code will be:

IF C
3

GO TO AZ002 ELSE GO TO AZOOl.

Steps 6 and 7 are then performed resulting in an original IYI' with no rules 1n

it. This signifies that al.l rules have been solved and a canplete solution of

the IJl' exists. The generator 1s nOW' finished with its job.

The generated COBOL code is thus:

(PASS #1) IF C1 GO TO DXOO1. (Step 1.1)

I F C2 GO TO AZ003. (Step 1 and Step 2)

I F C
3

GO TO ELOOl ELSE GO TO AZOO4. (Step 3.2)

(PASS #2) DXOO1. (Step 7)

IF C2 GO TO DXOO2 ELSE GO TO ELOOl. (Step 1.2)

DXOO2.

IF C
3

GO TO AZ002 ELSE GO TO AZOOl. (Step 3.3)

ACTION PROCESSING

Upon the generator's completion, each of the series of acti ons specified for

each of the rules (including the ELSE-RULE, which is labeled ELOOl) are Get up

as individual COBOL paragraphs, to be performed in t he occurring sequence (i.e .,

AI' A2 , A
3

, .. •) Each rule th1.E has ita own sequence of actiom:; (sane of \oIhi ch

may be redundant \l1th another rule). As an example, the 1'ollO'W'ing would be

generated for the example above:

AZOOl.

A'liXJ2.

AZ003.

Al •

GO TO DElCIT.

AZ004

A3

GO TO DEXIT.

f:LOOl.

A4

DEXIT. EXIT.

-14-

GO TO DEXIT 1s almost always generated since a branch may not exist to allov

nol"Tl'V\l ex! t i'ran the IJI' a DEXIT 1& the no:rmal. return frcrn the dec le10n tabit!

if tlH' J)T if; operated se a c.losed COBOL subroutine. It it 1::; not, t.he luf;t

n<:tlOll peTfonnt"tl oy 'lI'\Y ruJ.oo actIon otrinv. mUDt be an Wlco ndltlonal GO 'l'lJ.

If 1t iG, then the "GO '1'U mXIT" vill not be generated.

•

• . ,

THE DETAB/65 LANGUAGE

PREFACE

In June or 1963, Work Group 2 of the Special Interest Group on Programming Languages
(SI GPLAN) of the Los Angeles Chapter of the Association for Computing Machinery was
formed to develop a preprocessor for DETAB-X, a COBOL-oriented decision table language .
The results of that effort are partially reflected 1n this manual, a revised set of
specifications that, since they differ significantly from those originally set forth
for DETAB-X, is denoted as DETAB/65 .

The Booree document for this manual 1s "Preliminary Specifications for a Decision
Table Structured Language-DETAB-X, " issued by the CODASYL Systems Group at a symposium
on decision tables co-sponsored by CODASYL Systems Croup and JUG (Joint Users Group)
1n New York in September 1962. Upon these specifications the SIGPLAN work group has
based further efforts to develop detailed program specifications. In doing so, these
basic deviations from DETAB-X have resulted :

1. DETAB-X prescribed extensive revisions to the structure of the COBOL
Data Division, most notably a fixed format for data declaration. In
view of the ef1'orts of other groups 1n developing fixed formats for
COBOL, this portion of the DETAB-X language specifications was deemed
an unnecessary and redundant effort .

2 . In the interests of conserving space, DETAB-X specified several short
forms and substitute expressions (DO rather than PERFORM, SET rather
than COMPUTE, etc.) and placed restrictions upon allowable COBOL ex­
pressions within decision tables . In the interests of maintaining
maximum compatibility vith the COBOL language, placing as few restric ­
tions on the programmer as possible, and keeping the decision table
processor as simple as pOSSible, these short forms and limitations
have been removed. Any COBOL expression (legal or illegal) is per­
missible and n1{\y be used at the programmers' discretion.

3. The expression NOT has been added to Extended Entry Condition Entries,
meaning all conditions not otherwise specified.

4. A special section of table-specific formulae were specified in DETAB-X.
In DETAB/65, formulae too long to be part of the Condition or Action
Stubs or Entries are relegated to COBOL code.

5. In DETAB/65, a decision table input to the preprocessor results in a
COBOL Section being generated . These sections are set up 8S closed
subroutines and must be treated as such by the accanpanying COBOL
code .

6. Several other changes of a mor e minor nature are treated in the text
that follows.

-2-

SICPLAN (DETAB) Working Group 2 vas chaired by "1m Boerdam of Richfield 0 11 The
principal participants were:

Mike Callahan
Anson Chapman
Charles M. N. Cree
Robert L. Dover
Stanley Naftaly
Soloman L. Pollock
Wylie Robertson
Richard W. Senseman
Ralph Shoffner
Barry Sm.! th
N. E. Willmorth

System Development Corporation
System Development Corporation
International Business Machines
Control Data Corporation
Lockheed Aircraft
North American Aircraft
International Business Machines (originally Northrop)
UNIVAC
Informatica
Control Data Corporation
System Development Corporation

Other participants have heen George Amerdlng of FUL~ Corporation, vho advised the
group on FURTAB, R. T. Fife (no\l of UNIVAC), Leonard Longo (then of Douglas),
C. J. Shaw of SOC (and presently Chatm.an of SIGPLAN), Charles Pavell of Richfield,
and Ed Manderfield of North American Aviation and previously Chairman of SIGPLAN.

'lhese specifications and the DETAB/65 processor are being distributed through JUG.
Requests for copies of the specifications or for the DE~/65 processor should be
addressed to:

Mien Joan Ven Horn
!;ecretary, JUG
MITRE Corporat1on
Bedford, Masaachusetta

or an affiliate of the JUG organization. Correspondence on technical error, comments,
criticisms and suggestions may be directed to :

Mr. Wim Boerdam
Richfield 011 Corporation
645 South Mariposa
Los Angeles, California

-3-

CHAPTER I
THE DETAB/65 LANGUAGE

PtJRPOSE

The purpose of DETAB/65 1s to provide 8. practical foundation for experimenting 'W1.th a
decision-table based language. The language is designed to be convenient for pre­
paring a preprocessor to go from DETAB/65 to COBOL-61. As such, many restraints and
limitations have been placed upon the language to make it readily compatible vith
COBOL- 61.

The DETAB/65 language 1s des igned to :fit within the framework of the COBOL language.
Decision tables input to the DETAB/65 processor will be output 8S closed subroutines
and treated as COBOL sections. Normal COBOL program romats are used . Symbolic
data references made inside decision tables must be declared in the DA~ DIVISION
just as for non- decision table sections. Formulae 'W'hose names are given 1n a table
must. be expressed in the PROCEDURES DIVISION prior to entering the DETAJj/65 St·~·Li.o n
that gives the formulae values . Within a decision table all nonnal canoL E'xpre!3I::liom;
may be used, plus u ff'w minor language extensions and symbology necessary t.o th~
dlrect.ion of the DETAB preprocessor and construction of DE.'TAB cxpresdon~.

DECISION TABLES

Of the various activities that go into setting up a data-processing procedure for a
computer, one of the more difficult is the development of a definition of exactly
what is to be done under all combinations of circumstances of the data processing
problem . Every problem step must be specified. The conditions to normal processing
must be i dentified. Necessary sequences of operations must be precisely indicated .

Determining what is required of the ccmputer system is called analysis; deciding how
to go about meetlng these requirements is the area of system des l.gn; and C'crnnllln j C' tl.t.1.ng
the chosen procedure to the computer is called programming . In each 01" t.11I'St ' o.t·\,llI;
a language Is needed for defining the data-processing procedures. Ideally I a lunguage
form or structure should be suitable for man-to-man and man-to-machine communication.

Many languages are used for these purposes . Procedures are often communicated to the
machine in a form closely resembling the language of the machine. Symbolic logic and
equations are sometimes used , but this imposes a heavy and unnecessary burden on the
person writing the procedures. This condition occurs because human language, used for
man- to-man communication, BIrl machine language are quite different. Flow charts are
widely used. for man- to-man ccmmunication about data-processing procedures. However,
such charts have several drawbacks: Flow charts can becane confusing in complex
situations; it is relatively difficult to check all possible paths; and the flov chart
form is not particularly suitable for direct communications vith the machine . Flow
charts sometimes present logical equations, but they do not diSplay relationships in
as graphical a form as one might wish . Furthermore, they are not a ccmfortable form
of expression for most system des1gners, except to the person who designed the program.

Decision tables offer the promise of nullifYing and correcting many of these language
objections . Decision tables provide a graphical representation of ccmplex procedures
in a way that is easy to visualize and understand. They show alternatives and ex­
ceptions much more explicitly than other language t'orms . They present rela tionships
among. variables clearly . They show the necessary sequences of conditions and actions
in an unambiguous manner. Decision- table fonn can be used with equal effectiveness

-4-

for system analysis, procedure design, and computer coding. Th'.lS, a computer pro­
cedure written as a set of decision tables is, to a large extent, its own documentation .

RULE 1 RULE 2 RULE ,0

AGE GREATER THAN 25 25 65

AGE LESS THAN ,5 35

HEALTH EQ:JALS 11 EXCELLENT" "EXCELLENT" "POOR"

SECTION- OF'- COUNTRY EQUALS "EAST" "WEST" "WEST"

SET RATE-PER- 10OO EQUAL 1"< 1.57 1.72 5 .92

SET POLICY- LTI>tIT EQUAL TO 200000 200000 20000

FIGV'RE 1. AN EXAMPLE OF A DECISION TABLE

There 1s a growing body of evidence to indicate that these claims are .Just.ified. 'l'hose
who howe ust.'tl dec:to lon t.ablE'!6 for man- to-machine \fork say t.ha t:

1. progru.rnmlnp; tn much faster;

2. program chcck:lul. time is significantly reduced;

3 . the use of tables Ip.ads to greater accuracy and completeness In
problem formulation;

4. program maintenance 1s simpler; and

5 . a program written 1n tabular form 1s indeed a powerful canmunication
and documentation device .

STRUCWRE OF A DECISION TABLE

Figure 1 1s an example of a simple decision table. The uae of Buch a table is illus­
trated in the following statements about Rule 1:

Rule 1 6~S : If age is greater than or equal to 25 and age is less than 35, and.
health is exceITent, am section of country is east, then rate per thousand. 1s
1.57 and. policy limi tis 200,000. The underlined. word."SBre implied by the table
l~ou~ The quote marks in the table are used to differentiate non- numeric values
from names (as in COBOL-61). Each rule of a decision table is an alternative to
each other rule . 'nlerefore , logically it does not matter which rul.e is exami ned
fi r sti at moat, one rule can be sati sfied by a single Bet of conditi ons.

-5-

To more clearly indicate t he parts of a table and the t erms tha t a re Ilsed to desc r ibe
them, the information 1n Figure 1 is shown in an exploded view in Figure 2 . The
double lines serve as demarcation: The condition stub is shown in the upper l e ft
corner; the action stub below; the condition entry is in the upper right por t i oo; and
the action entry 16 in the lower right. Each vertical combination of condition and
action entries is called a decision rule. The essential nomenclature is completed
by adding at the top of the table a title section, called a table header, and by
adding a rule header over the entries.

A more detailed description of decision table structure showing the actual location
of the various segments of this sample table on a coding form may be found in Chap~
ter III.

As shown in Figure 2, tables may be used in a slightly different way to state decision
logic.

RULE NO.
TABLE-CREDIT-APPROVAL 1 2 3 4

CREDIT-LIMIT-OK Y N N N

PAY~EXPERIENCE~FAVORABLE Y N N

SPECIAL-CLEARANCE-OBTAINED Y N

PERFORM APPROVE-ORDER X X X

PERFORM RETURN-ORDER-TO- SALES X

FIGURE 2. A LIMITED ENTRY TABLE

Note that the form of the individual conditions and actions is somewhat different
between Figure 1 and Figu~e 2. In a limited entry table the entire condition or
action is written in the stub; the condit ion entry 1s limited to 'Y,' 'N,' , ~ , or
blank. That is, asserting (Y), reversing (N), or ignoring (- or blank) a con~
dition. An action entry is limited to 'X' or ' - ' or blank. That is, executing
(X) or skipping (- or blank) an action. In contrast, an extended entry form
(as in Figure 1) has part of the conditi on or action extended directly into the
condition or action entry area. Both forms may be used within one table, but any
one horizontal row (condition or action) must be entirely limited or entirely
extended .

-6-

This example points out that the basic concept of a single rule in a t able is quite
straightforward, being used on the " if ... then ... " relationsh i p . If A :: B, and C 18
greater than 5, and . . . t..l}en assign the value 7 to X, and GO TO Table 10 . 'Ihe-Tnterpre ­
tat10n 1s : If arr-the conditions in rule 1 are not met, then try rule 2, etc.
Continue for rules 2 and 3, 3 and 4, etc., until a rule 1s satisf1eld. The program
must s t !ll be told what to do if all rules have been considered and the set of COD­
ditions that exist do not satisfy any of them . 'Iherefore, the last rule in every
decision table 1s the ELS-rule i n which \Ie tell the program what "else" t o do if no
rule 1s satisfied. An ELS 1s written in the rule header entry as the last rule in
the table . If no ELS 1s given , the program will ente r an automati c error routine.
The flow chart in Figure 2 shows schematically the way in which a table is executed.
In practice~ the actual solution technique may vary, but the logical result remains
the same.

i
co

I
i
~

~

~ ..

Stub

A,.

Ag.

Health

Section-or-
Coun.!.!::r. . ---, -

DETAB-X

Coding Form

, , ,

-

,

-,

, ,
, ,

GE

IR

EQ

EQ

--

• ,

,

, ,

,

, , ,

, , , ' , '

,

, ' , ' ,

---,

, , , , , , , , , , , , , ,
I ,

" ,
(" Set Rate- (] .Q

per-lOOO

Set Policy­
Limit

Stub

EQ

I

I

\

.

,

I

Conditions

\

,

\

\

, ,

, ,
\

, , ,

, ,

, , . , , , , , , , I

, ,
, ,

, , ,
, ,
\ , ,

,

,

,

, ,

,

,
, , ,

I
,

I
I

Achons

, ,

,

, ,

\ ,

, , , , , ,

, , ,
, ,

, , , , , ,
, , ,

\ ,

, ,

, , ,

,

,

,
, ,

, ,

, ,

--

Rule I

25

"
'Exc ellent "

"East"

-
--- , - -, - -

Entry

\~
Rule 2

25

35

Ru le 30

65

"Exc ellent ' \ "Poor "

"West " "West ..

.

-~
~

~

Decision Rule

---- ---- --- -
,

0) -,
1.57 1.72 5. 92

200000 200000 l i '"000 J
Entry

,
..... ,

-8-

DECISION TABL1':

Muir I Hull' 2 Hulf" J Rull' N

Cond I V Y Y N

Cond 2 Y N

Y N Y

Action 1 x x x

Action 2 x x x x

FLOW CHART OF ABOVE DECISION TABLE

Rule 1 Rule 2 Rule 3 Rule N

CORd 1 (

Cond 2

CORd 3 (

A cHon 1

A cHon 2

N J \N N

.J \ .J \
y y y N

'f (J-
y N

-y y ('f
y N Y

~ ! ! !
FICJURE 4. SCII]X4TIC REPRESENTATION OF THE SEQUENCE OF

TESTS AND ACTIONS IN EXECU'l'IlIG A DECISION =

\y

J

-9-

ORJANlZATION OF THE MANUAL

The balance of this language specification manual covers t he i ndlvidual areas 01' the
language, indicating the characteristics and restrictions. In general, the rules
of COBOL-61 are followed explicitly except in matters of format. Where there are
differences, these are noted or are selr-evldent through the t ext 1 teelf.

-10-

CHAPTER II
SOURCE PROGRAM FORMAT

The format for a COBOL program containi ng DETAB/65 decision table expressions must
conform to the requirements for any COBOL program, except that a decision table may
be inserted in the PROCEDURES DIVISION as a SECTION. In compilation a decision table
.... ill be treated as a closed subroutine; that is , as a closed COBOL PROCEDURE. Within
the table, of course, transfers to other than the nannal return point may be spedfied .

IDENTIFICATION DIVISION

A normal COBOL division name followed optionally by a PROGRAM-ID and other identifYing
information must be given . No special requirements are levied by DETAB/65.

ENVIRONMENT DIVISION

The Envi ronment Division must be filled out as required by the particular implemen­
tation of COBOL-61. Minimum required entries are CONFIGURATION SECTION vith SOURCE­
COMPUTER, OBJECT CCMPUTER and SPEX:IAL NAMES, INPUT- OUTPUT SECTION with FILE CONTROL
and I-O- CONTROL .

DATA DIVISION

The Data Division for a program incorporating DETAB/65 sections 1s treated as 1s any
other COBOL Data Division . Any symbolic data references used 1n a decision table
must be declared 1n the Data Division as for any other COBOL procedures section . Any
data structures, working storage and constants used by the program must be described
in the Data Division . Symbolic references used within a decision table must conform
to the requirement::. of COBOL data references . Any COBOL data description forms that
have been implemented in a particular COBOL processor may be used .

The nonnal COBOL character set, 8S implemented 1n a particular COOlpu ter, may be used
to form NAMES . '*' One such name ..,ill be a DECISION- TARLE- NAME, which is a name given
to the procedure table that describes a series of conditions and actions, and vhich
is equivalent to a PROCEDURE- NAME 1n COBOL- 6l . A DECISION- TABLE-NAME 1s a SECTION­
NAME and ma;y be composed of' alphabetic, numeriC, alphanumeriC, or combinations of'
these characters joined by one or more hyphens (-). '!he DECISION- TABLE-NAME must
be used to call n table from the main sequence of COBOL i nstructions.**

*NOTE: Special symbols suggested by the DETAB-X Manual have been rejected in favor
of nonnaJ. COBOL fanus, Le., /..: (not equal), <~ (less than or equal), >= (greater
than or equal to) are rejected.

**NCYrE : ~e so- called "short form" of decision table names specified in DETAB- X
vill not be implemented in DETAB/65. Neither vill the capability of calling the
TABLE-ID (e . g . , GO TO TAB XXX) rather than the table name .

..•

-11-

PROCEDURES DIVISION

The Procedures Division of a COBOL source program 1s used to specif.Y the logical
decisions and actions that provide the desired processing. Procedures are normally
written as COBOL SENTENCES that are combined to form COBOL PARAGRAPHS, one or more
of which may be combined to form a COBOL SECTION.

However, within a section that is a decision ta~le, the normal sentence structure
of the COBOL language is abandoned in favor of the more formal structure of the
decision table. The syntactic content of the deCision table structure may be
interpreted as a complex set of conditional statementa, plus the information
necessary to initialize the closed subroutine that the table represents. A decision
table may not be entered via the nor.mal operating sequence and may be referenced
by a GO W, or a PERroRM, but not by an ENTER. A GO TO results in an unconditional
or conditional transfer to the specified decision table. For a GO TO fran the main
processing sequence fram another table, a return or transfer point must be specified
by the programmer in the decision table actions or the processing sequence will be
lost.

If the transfer to the table is accanpliBhed by a ~, a nor.mal return to the
processing sequence ..,ill be made unless the programmer specifies otherwise. Spe­
cifically, the DETAB/65 processor w11l generate a GO TO DEXIT for every rule that
does not end in a GO TO, however the table was entered.

-12-

CHAPTER III
DECISION TABLES

This chapter describes the decision table format expected by the DE~/65 processor.
The proceSBor will accept both extended and I1mited entry tables.

Each of the sections or a decision table will be discussed and each of the entries
permissible in a section will be described and the reasons for the various require ­
ments and rules governing the entries are given. The description assumes that punched
card or card images are used as the input mode. If punched tape, typewriter keyboard
or other continuous input mode is adopted considerable revision of the DETAB/65
processor Data Division would have to be respecifled.

A decision table consists of 6 parts or sections: a Table Header, a Rule Header,
a Condition Stub, a Condition Entry Area, an Action Stub, and an Action Entry Area.
The functions of these sections are demonstrated briefly in Chapter I . A sample
DETAB/65 specification form is sho'\o1!l in Figure 5. to provide a ready reference for
the reader as the decision table sections and entries are discussed .

FORM HEADER

The Form Header serves to identifY system, program, and author of completed Decision
Table Input Forms, and to specifY the data of completion and enumerate the pages.
None of this information is part of the decision table proper.

TABLE HEADER

Each table has two header lines: 1) a Table Header that serves to identifY the table
and provide information that covers the table as a ~ole and 2) a Rule Header that
is used t o indicate rule numbers.

A table may require more than one page, either because of a large number of rules,
or because of a large number of conditions and actions. The table header card for
the subsequent pages should not be filled in, but, in the case of row continuation
(i.e., due to more rules than will fit on a pageL a continuation flag - the number
"1" - should be set in the RSET ruJ.es set entry area of the initial header card.
The flag should not be set for multiple pages due to condition and action overflow
(i .e., overflow of the entries for a rule or other column onto another page).

The entries in the Table Header are :

TABLE ID

Euch table must. be idcnti.fied by a three-digit number (e.g., 001 , 074, 694). 'Ibis
number 18 romtnutlve only and table ID's need not be sequential nor ordered 1n a~
way, but each table ID must be unique within a program.* The Table ID is repeated
for every row of a table .

*NOTE: DETAB-X specifications permitted the TABLE ID to be substituted for the Decision
Table Name in call s to the table. This has not been implemented in DETAB/65. TABLE In
serves only to distinguish one table from another in sequence checking or EAM processing
of cards.

•
-14-

Row No.

The Row Number 1s 8. three-digit number that for the Table Header is always 000 . This
designation indicates to the processor that this is a Header Card.

Line

The Line entry is one alphanumeric character that for the Table Header is always "0".
This designation indicates to the processor that this is a Table Header Card.

RSET

The Rules Set (RSET) entry 1s left blank unless more rules than can be specified on
one page (i.e., card) are required . If more than one page is used, a numeral "1" 1s
entered in t.l)e RSET entry of the Table Header Card. If an entry 1s made in the RSET
entrJ of the Table Header, a single numeric digit must appear 1n the RSET entry of
all other roWE of the decision table.

Table Name

A table may be given any name that confonns to the specifications of COBOL for a
procedure - name, usually indicating the fUnction or content of the table. That is,
a procedure-name may be composed of alphabetic, numeric or alphanumeric characters
(at least one but not more than thirty) or sets of such characters separated by
hyphens (-) . However, a hyphen may not begin or end a name. Names must be unique .
The Table Name may be referenced by GO TO and PERFORM operators. The DETAB/65
processor will use this name in generating a COBOL section-name for the table. A
dummy paragraph- name must also be generated and inserted after the section- name.

Form

Three basic formats are permitted for decision tables: limited entry (L), extended
entry (E), and mixed entry eM) . The format of the decision table being specified
is indicated by placing one of these three values eL, E, or M) in the Fonn entry.
That is, one alphabetic character.

Cond RO'oI"s

A three-digi t
'l'hnl.. It:, t.h1H
i.l'/':i(t LIlI-;': 't.t!rou

Ac tion Rows

rnwber containing the number of conditions rows (not lines)
('fl try oVec If'L~D the number of condl tionu thnttire ('ontt\1n~
must ue given.

in the table .
in the tA.ble.

A three-digit number containing the number of action rows (not lines) 1n the table.
That is, this entry specifies the number of actions ~are contained in the table .
Leading zeros must be given .

Rules

A three-digit number spec1f'ying the total number of rules in the table. The ELS rule
should be included in the count. Leading zeros must be given.

-15

RULE HEADER

'!he second header card. is the Rule Header used to specify t-l-te rule numhers for the
table. Besides rule numbers, it will contain the identifying information given f or
every line of a decision table. As many Rule Header cards will be used as are re ­
quired to specify all rules.

Table ID

Always the same as the Table Header .

Row No.

'!he RO\{ Number (ROW-NO.) for a Rule Header Card is always 000, indicating that this
is a Header carei.

Line

The Line (LINE) entry for a Rule Header 1s always "111 indicating that this is a Rule
Header.

RSET

The Rules Set (RSET) entry will be blank except when the number of rules specified
requires more than one page . If more than one page 1s required, the RSET entry ",111
be "1" for the first page {or card} and fallowing pages will be numbered sequentially.

Rule No.

A Rule Number must be a three-digit number (e.g . , 001, 002, 142, etc.) or ELS.
(Every table must have an ELS-rule as the last rule to be given.) The first Rule
Number is entered in the Rule Header Card in the first space available beyond the
longest entry in the Condition Stub, although blanks may be left betyeen the last
character of the longest condition and the first Rule Number . The column that the
first digit of the first Rule Number occupies defines the point at "Ihich the
DETAB/65 processor construes the Condition Entry Area to begin . Spaces occupied
by Rule Numbers may vary :fran three through tYelve, but t..'1e Rule Number must beg1n
in the leftmost column of the area to be reserved ror the rule. The spaces beginning
Yith the first digit of one Rule Number and ending at the last digit before the next
is interpreted by the DETAB/65 processor as the number of spaces that are reserved
for the condition entries subsumed under that Rule : The number of spaces thus
reserved must be equal to or greater than the longest Condition Entry in that ru1e.
The number of spaces reserved may vary fran rule to rule, but must not be less than
three nor more than twelve . The end of the last rule, and the end of the rules, is
indicated by placing a "$" in the first space beyond the l ast space required by the
last rule (i .e., the ELS-rule).* A rule entry may not be spl it between pages.

*NOl'E:
column
entry
rule .

An exception is made in the case were the last (ELS) :rule includes the 80th
of the card. That is, if RSET '" 0, the card column count E 80, the rule header

is ELS, and the spaces reserved less than or equal to 12, then this is the last
OtheN1se, an error has occurred.

-l6-

If, in an extended entry table, there are not enough columns left on a page to contain
all of' a part1cular rule, a new page must be started ani an intermediate end-or- rule
marker (8 "$") set to define the end of the preceding rule and to 1!lfonn the processor
to go on to the next carel. When the processor encounters a $, it ",111 check the pre ­
ceding rule for an ELS- rule. If the preced1ng rule 1s an ELS, search for further rules
1s stopped ani the processor proceeds to the next card. NOTE: Although Rule Numbers
should be sequential and entered 1n ascending order (e.g., 001 , 002, 003 , etc .) , this
does not imply that the rules will be executed in that order . The DETAB/65 processor
evaluates the matrix of condition entries and optimizes the decision tree for efficient
processing .

CONDITION AREA

'!he cards follo.,,1ng the alle Header Card are used to spec1fY sets of conditions. Each
row specifies the states, specific values, or ranges of values that a particular piece
of data may assume, or relationships to other data or combinations of these states
that the data may assume, and upon vhich decisions are to be based.

Structurally, a condition consists of two parts: (1) a Condition Stub and (2) a Con­
dition Entry . The Condition Stub area consists of the entries for Table ID, Rov No.,
Line, RSET, and a conditional statement, or portion thereof. 'Ul.e Condition Entry
area consists of entries specifYing the values of the da ta or condition specified in
the stub that will satisfy the decision requirements of the rules.

The presence of a Condition Area in a table i8 not required; hovever, if it is absent,
the table can have only one rule in the acti on area.

TABLE ID

As above, a three-digit entry uniquely identif'ying a particular decision table .

Rov

Row number is a three-digit number used to identity particular conditione, actions,
or notes. Condition and 'action row numbers may vary from 001 to 899; 900 to 999
will designate Notes. Conditions must have lover row numbers than do actions. Row
numbers should be, but need not be, assigned in ascending order . Sequential numbering
improves legibUi1:iY of tables for later reference, but the processor m8\Y reorder the
cond1 tions in sorting to minimize the decision tree. Leading zeros must be filled in
and duplicate row numbers are not permitted .. A rov may cover as many lines on a
spec1fication form as are required to write out the operators and operands of an
expression, up to the maximum permissible value of LINE (i.e ., 9).

*NOTE: Presently, the number of cOMi tiona is limited to 50, although rev numbers
m8\Y :run much higher.

-17-

Line

Line 1s a one-digit entry used to specifY continuations of a row . A Line entry may
be blank or range from 1 to 9. Lines, if specified, must be specified in exact
sequence because following lines are considered as a continuous description of the
condition, actton, or comment being given . A blank entry signifies that only one
line will be used; if a digit 1s given, the DETAB/65 processor will look for con­
tinuations of the line until the Row Number changes. For 1~1ted entry tables,
line numbers greater than 1 may be dropped on continuation pages. For extended entry
tables, lines not required by the condition entries may be dropped.

RSET

The Rules Set entry may be either blank or contain a digit fran 1 to 9 or the symbol
"$." As specified above, RSET is used to number the sub-tables required to specify
all the rules of a table. If more than one sub - table is required, they are numbered
sequentia.lly; that is, the RSET entry will be the same for each condition, action or
comment of any sub- table. RSET applies to row continuation hori zontally and not
vertically . The sheets containing the Condition and Action stubs are considered
sub - table 1 no matter hov many physical eheets are used . If more rules are required
than can be contained in nine sub- tables, a nev table muet be created, using the same
conditions and actions, and to vhich the ELS- rule may transfer if none of the rules
in the first table are satisfied. '!he $ is used to indicate the end of the table .
The entry for the end cam will contain 9999$.

Deck Sequence

The entries for row, line and continuation are used in seque ncing the deck for pre ­
sentation to the processor. The expected deck order v111 be a Bort on (1) row,
(2) RSET, and (3) Line. The deck make-up is illustrated in Figure 6.

r 999X

r ~

[0001 r-..
[0000 I--...

/ ...
I

"-;
'""-;-

..
DE

DETAB

DETAB/65 FILE ENDCARD

TAB/65 TABLE END CARD

/65 SOURCE DECK

DETAB/65 RULES CARD

DETAB/65 HEADER CARD

COBOL SOURCE DECK

•
-18-

Cond! ticD Stub

Beginning in column 9 of the specification sheet and continuing for as many lines of
a row (up to 9) as are necessary to contain it, any conditen that constitutes a
legitimate COBOL conditional statement (with the IF implied) may be specified. A
condition stub must contain at least one operand. A condition stub entry 1s bounded
by column 9 of the input card format and the first column of the first rule, but may
be continued on several lines. A condition stub entry must be contained entirely
upon one page (i,e., the first logical sub-table) in row-line length, but additional
lines may be given on subsequent physical pages. Continuation of lines do not require
hyphenation since continuations are treated 8S part of a single entry. Blanks other
than those required because of language specifications are ignored at the beginning
and end of lines, permitting the user to indent or organize operands in various ways
to increase legibility.

Despite this flexibility in specifYing conditions, it is recommended that condition
stub entries be kept as short and concise as possible. Any lengthy calculations
should be relegated to a separate expression and assigned a name that may be referenced
in a condition stub entry.

Entry

A condition entry is specified within the bounds of 8 rule. '!hat is, it begins in the
column containing the left-most digit of ita rule number and ends where the rule
1mmediately to its right begins. A rule mult not be less than three nor more than
twelve columna in width, but an entry m~ be continued on the subsequent lines of a row.

Three kind. of condition entries are pe:rmitted: L1mited, Extended, a.nd Mixed. In a.
l1mi ted entry form, each rule or entry is three columna wide. Perm.1ea1ble entries
are (a) Y (i .e . , Yes) , signifYing that the stated condition must be true to satisty
the rule, (b) N (I.e., No), signifying that the condition must be false to satisfy,
(c) - (Le., a hyphen or blank) , signif'ying that the condition may be either true
or false, that the programmer doesn't care which it is. The entry must be made in
t.1te s_econd, column of the rule and have a blank space both to the right and to the
left within the rule.

In extended entry form, leading and following blanks are permiSSible, but not required,
Permissible entries are (a) and operator and an operand, (b) an operand, (c) -, or
(d) a blank. In mixed entry format, the entries for any one condition may be either
ext nded or limited, but not both .

In extended and mixed entries, a condition entry too long to be contained within the
allotted 12 spaces may be continued on successive lines of a row. Limited entries in
a mixed table must still contain a leading and trailing blank and appear in the second
column of the :rule.

The last rule will be the ELS-rule. ihe ELS-rule must be given, but all condition
entries for the ELS-:ru1e must be blank (or "_") .

Neither names nor values mB\Y be split between stub and entry.
or operand and verb must appear in the stub, and at least one
given for each condition. (Except in the case of the ' empty'
entries are made.)

At least one operand
condition entry must be
table in which case no

A condition entry may
Rule Header section.)
exceeds the available
or multiple lines may

-19-

not be split between pages or "sub-tables." (See Rule No .,
If there 1s less than 12 spaces left on a page and the entry

space, the entry must either be made on a ney page or sub - table,
be used .

Formula references must not duplicate any data references made in the data division.

On sub - tables beyond the first (i.e" RSET ~l), condition entries must begin in
column 9 of the DETAB specification sheet; that ls, the first rule number on continu­
ation pages should begin in column 9. Limited entries must still be 1n the middle
column of the entry and extended entries may or may not have l eading and trailing
blanks.

In all sub - tables, condition entries must start in the first line of a rov. For
limited entry tables, only Line 1 of a row need be given in sub - tables beyond the
first since all condition entries on other lines would be blank . The programmer
may wish to retain the vertical alignment, however, to help avoid mistakes. In
constructing a condition matrix for a limited entry table all lines except Line 1
will be rejected (i.e . , not read into the matrix) and entries so misplaced will be
lost.

For extended entries, the programmer may include as many lines as are necessary (up
to nine) to express the longest entry; however, this number of lines may vary as
required from sub - table to sub - table of the specifications . In vriting extended
entries, no continuation marks, such as hyphens, need be given since each line is
picked up as a continuation of the row . Blanks should therefore be inserted where
appropriate to avoid two words being read &s one. In setting up the condition matrix,
the input editor will continue reading cards into the matrix until a new row number
is encountered, creating an image of the input condition matrix area.

In an extended entry table, the programmer may desire to specifY a condition such
that the value specified is not any of the values specified in any other condition
entry in that roW' . He may do this by specif'ying "NOT . " In the processor this
expression will be expa.roed. into an "N" entry and row in combination wi til every other
condition in the roW' for which a value is given. Don't care entries (" _" or blank)
'01111 be ignored . In illustration, consider this example :

••

-20-

CONDITION S1UB lULE NO.

CONDo 001 002 003 004 005 006 007 008 009 010 011 012 ELS

001 A : 12 y Y Y Y Y Y N N N N N N

002 B • 5 10 N¢T 5 10 N~ 2 10 N¢T 5 10 N¢T

003 C : OPEN y Y Y N N N

004 D: SUNDAY y Y Y N N N

This expBJ'lds to ' .

001 002 003 004 005 006 007 008 009 010 011 012 ELS

001 A : 12 y Y Y Y Y Y N' N N N N N

002 B : 5 y N N Y N N Y N N Y N N

003 B : 10 y N Y N Y N Y N

004 C : OPEN y Y Y N N N

005 D : SUNDAY y Y Y N N N

After optimization this tabl e will reed' .
001 004 002 005 003 006 007 010 008 011 009 012 ELS

001 A : 12 y Y Y Y Y Y N N N N N N

002 B : Y y N N N N Y Y N N N N

003 B : 10 Y Y N N Y Y N N

004 C : OPEN Y N Y N Y N

005 D • SUNDAY Y N Y N Y N

FIGURE 7. EXAMPLE OF TKE EXPANSION OF "NOTII AND OF OPl'IMIZATION

-21-

Action Area

The action area 15 used to specifY the Bctions the program is to take when the con­
ditions satisf'ying the various rules are met . '!he actions represent the "THEN" part
of the conditional statements for w:p.1ch the conditions are the IIIF" portion. All
the rules and principles stated for conditions apply equally to the action area. The
action area consists of an Action Stub and an Action Entry area just as the Condition
Area consisted of a Condition Stub and. a Condition Entry area.

Table ID

The Table ID entry must be the same unique identifier as for the rest of the table.

Row

Row Number entries are a continuation of Row Numbers for the Conditions. However,
while the rows need not be numbered in sequential order, it 1s recommended that they
be so ordered, for they will be ccmplled. and executed in the numbered sequence. That
is, while condition rows are subject to reordering in the optimization process, actions
are not, thus insuring that the program will take a sequence of actions in the orcler
specified by the programmer. That is, the processor will not create any logical errors
by reorclering actions. ('Jlle programmer, however, is free to create his 0'WIl .)

Line

'!he Line entry should be left blank if an action can be specified on a single line;
otherwise the digits 1, 2, 3, etc . , must be used in precise sequence so that the
proper action statement is picked up.

RSET

The RSET entry 1s left blank if only one sub-table is required . If more than one
sub-table is required to contain the additonal rules 1 RSET ..nll be numbered 1, 2 1 j,

as required, up to 9·

Action Stub

The Action Stub must contain at least an operator. In a limited entry table it will
contain the entire action in a single "rown using as many lines as re required to
specify the entire action to be taken. In extended entry tables an expression may
be split between the Action Stub ~~ the Action Entries . Although names and values
may be broken 8D:i continued !'rom line to line, they may not be split between the Stub
and an Entry. This does not prevent subscript values of a name being used as entry
values to specify different table destinations resulting from different rules being
satisfied.

While no restriction is placed on the kind or length of actions taken (with a procedure
or another conditional, if you wish) 1 it is :recamnended that all lengthy Action Stub
and Action Entry entries be defined outside the table and referenced by an appropriate
name .

Although, again, no restrictions are imposed 1 it is recommended that a.ll caJ.ls to system
(COBOL) subroutines be made in a general fashion . E. G., an I/O order should be ex­
pressed PERFORM READ, PERFORM WRITE, etc. This convention \lill enable the programmer
to write a program that is compatible \11th the manner in which various COBOL I/O
... M1 ""10",,, (".." mn. F.01i' . ON SIZE . me.) have been implemented in different COBOL pro-

-22-

Ac tion Entry

For limited entry tables, any action that is associated with a given rule will be
indicated by placing an !IX" in the central column of the three column entry space
of line 1 (the first line) of the action row , 'nle "X" must be followed and pre­
ceded by a blank.

Extended action entries Yill be t reated. in the same manner as extended condition
entries . Care will be taken in generating COBOL statements not to disturb the
basic operating sequence specified by the programmer.

NOTES

A note is a descriptive statement that has no functional s i gnificance and that carries
the same uses and restrictions as notes in COBOL-61. A note has the same Table ID
as the table that it is applied to. Notes are given a row number ot 900 to 999 and
note lines are numbered 1, 2, 3, etc., as for other rows and lines to maintain their
sequential order. Notes may be wr1 toten ~ere in the table except between the Table
Header and IW.le Header Cards . When the proceseor encounters a note row designator,
it ~ill transfer the card into the COBOL code area as a note Without fUrther processing.

Note, ho~ever, that as presently constituted all notes would be sorted to the end of
the table by preprocessing to put the cards in order. If it is desired that notes
be inserted ·in place, the cards may be hand- ordered if more than one page or sub- table
is used, or not sorted if only one sub - table (the first) is used.

RESTRICTIONS AND USAGES

Certain restrictions and peculiarities of usage became apparent as decision table
specifications are used in combination with the COBOL languages. These restrictione
are, in general, not serious, but minor logical errors may be avoided if the programmer
If: nwnre o f theev.

LINKAGES

A decision table may be entered in a variety of wa;ys. 'Ihe preferred mode of' entry is
through a PERFORM verb, in whiCh case a linkage back to the main control sequence
may be generated. It' the table is to be used iteratively on a succession of inputs
or cases (as in a scan routine), then PERFORM is the logical choice. If tables are
nested, the PERFORoi verb should be used to step fran one table to the next and back..
It a table m~ be entered fran any one of a set of points, the PERFORM verb and RE'lURN
entry are most convenient .

A table may be entered through a GO TO, but in this case the processor has no means
of knowing what location to return to in the main control sequence unless this loca­
tion is explicitly stated in conjunction with the separate rules . Of course, if one
of the functions of the table is to switch control to various program regions. depend­
ing upon the conditions encountered, this may be the preferred mode of specification.
A sequence of tables may be stepped through with a series of GO 'ro's, but it is felt
that this mode is inferior to the use of PERFORM's.

-23-

Note that a table . may not be entered via an ENTER verb, nor may an ENTER verb be
used within a table without creating difficulties. All information necessary f or
the processing of the table and its COBOL statements are contained 1n the header
cards.

Note also that tables cannot be entered at any point except at the beginning. If
entry 1s desired at intermediate points in a set of conditions, this effect may be
achieved by creating a sequence of tables and chaining them together. If tables
are nested, however, returns to points in the Action Area of previous tables may be
made through the operation of the PERFO:FM verb and normal. exits, or may be specified
directly by • GO TO.

Note that 11' a GO TO table~neme-l 1s given within the range of a COBOL PERFORM . ..
THRU that the sequence of control may be lost unless the programmer has established
instructions that will get the sequence back within ghe loop. However, no such
trouble should be encountered when a PERFORM table -name-l is given unless the table
contains only explicit GO TO's that pick up the sequence elsewhere.

·' .
,

/

,

000000
000005
000010
)00015
000020
0000Z5
)00030
)00035
loo040
0000~5
loo05o
)00055
JOo06o
)00065
JOo070
~00075
Jo008o
Joo085
)00090
)00095
JOoloo
000105
000110
Jo0115
ooolZO
000lZ5
JOol3o
000135
000140
000145
)00150
000155
JOol60
000165
000170
000175
000180
000185
JOOl90
000195
OOOZOO
000Z05
)OoZIO
000215
oo02Zo
000ZZ5
)OOZ]O
000215
000Z40
JooZ45
000250
000Z55

DETAB/65 COBOL PREPROCESSOR LIST} NG

10ENTIFICATION OIYISlaN.
PROGRAM- IO. PREPROCESSOR FOR OETAB-65.
AUTHOR. ANS~N CHAPMAN.
DATE-WRITTEN. IZ/3D/64 .
DATE-COMPILED.
REMARKS.

DETAS-b \
DETA8-"
DETAS-b '
DETAB-b
OeTAS-f) '
OETAB-6'

THE GENERATOR PORTIO N Of THE PREPRJCESSOR ANALIZ ES A
DECISION TA8L E AND GENERATES SIMPLE CONOITlaNAL STATEMENTS
FOR Y'S. N'S ANO aLAN KS AND WilL GENERATE IF STA TEMENTS FOR
ONE PATH TH~U TH E TREE THE ACTION CORRESPONDING TO THE PATH
IS GE '~ERATED IN STMTS DXDa HRU DX03Z TtIlS PATH I S DELETED
FROM THE TREE IN DX016 THRU OXDZO OX301 THRU DXD6 1
REINITlAlIZES THE TREE. FINDS THE LAST ,~JDE : ONNECTED TO
THIS PATH AND COMES , BACK TO DXOD] FOR ANOTHER PASS THRU THE
NEXT PATH THIS P~OC ES S IS REPEATED UNTIL IF ST ATEMENTS
HAYE BEEN GENERATED FOR ALL PATHS THRU THE DEC ISION TABLE
TREE STRUCTURE .

DETAS-6 '
DETA8-6 '
OETA8-6'
OETAS-ft'
DETAS-b'
OETA8-6 '
OETAS-6 '
DETAS-6'
DETAB-6
DETAB-6
DETAB-b

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CONTROL DATA 1604A.
JBJECT-COMP~TER . CONT ROL DATA 160~A.
SPEC I AL-NAMES.

SYSTEK-[NPUT- TAPE [S SIT.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CARD-INPUT , ASS [GN TO SYSTEM- INPUT-TAPE MULTI PLE
SELECT CARD-OUTPUT , ASSI GN TO 5YST£M-PUNCH-TAPE.
SELECT LIST- OUTPUT. AS SI GN TO SYSTEM-OUTPUT-TAPE.

DATA DIYI SIO~.
FILE SECTION.
FD CARD-INPUT

LABEL RECORDS AR E OMITTED.
DATA RECORDS ARE TE ST-CARD.

01 TEST-CARD.
OZ FILLER

FD CARD-OUTPUT
PICTUR E X1801.

LABEL RECORDS AR E OMIT TED.
DATA RECORDS ARE CRD- OUT. DETAB- CRD, DUM-I.

01 CRO-DUT.
OZ FILLER
DZ BODY.

03 FillER
03 B-HARG

OZ !DHD
01 OETAB-CRO.

OZ F[LLER
OZ IDE NT •

PICTUR E X1 71.

PIC TURE
PICTURE
PICTURE

XI~ I.
XI &11 .
XIS I.

PICTUR E XXX .

03 ROW-NO PICTURE 999.
03 LINE-ID PICTURE X.

07. FILLER PICTURE X173 1.
01 OUK-I.

OZ CRD-COL PICTURE X OCCURS 80 TIMES.

DETAS-b
DETAB-6
OETAB-6
DETAB-6
DETAB-b
OETAB-6
DETAB- b
OETA8- "

REEL . DETAB- '
DETAB-6
OETAB-6
DETAB-b
DETAB-6
DETAB-6
DETAB-b
DETAB-6
DETAB-&
DETAS-b
DETAB-6
DETAS-6
DETAS-a
DETAB-6
DETAB-6
DETA8-6
DETAB-6
DETAB-6
DETAB-6
OETAB-6
DETAB-6
OETAB-6
DETAB-f
OETAB-6
DETAB-t
DETAB-t
DETAB-t

000260 FD 1I S T-OUTPUT OETA8-65
)00265 LA8EL RECORDS ARE O~ITrED. DETA8-65
000270 DATA RECORD IS TAPE-LIST. DETA8-65
00021> 01 TAPE-LIST. DETA8-65
000280 02 FILLER PICTUU XI Ill. OETA8-65
000285 02 CAROX PICTU~E 999. OETA8-65
)00290 02 FILLER PICTURE X(661. DETA8-65
000295 .ORKING-STDRAGE SECTION. OETA8-65
)00300 77 AZ PICTU{E XX VALUE • AZ'. DETAB-65
JOO305 77 CARDeN J PICTURE 999 COMPUTATIONAL SYNCHRO~IZEO RIGHf.OETA8-65
)00310 77 CaLIX PI C TURE 999 COMPUTATIONAL SYNCHRONiZED RIGHT.DETA8-65
000315 77 COLUM PICTURE 999 COMPUTATIONAL SYNCHRONIZEO RIGHT .OETA8-65
)00320 77 DUM IX PICTURE 999 COMPUTATlJNAL SYNCHRONIZED RIGHT .DETA8-65
aD0325 77 ELMCT PICTURE 999 COMPUTATIONAL SYNCHRONIZEO RIGHT .DETA8-65
)00330 17 ELMCX PICTURE 999 COHP~TATlON.v.. SYNCHRONIZED RIGHT.OETA8-65
)00335 17 El"4RX PICTURE 999 COfiltPUJATl:JNAl. SYNCHRO~[lEO RIGHT.OETAB-6S
000340 77 EXIX PICTURE 999 COHPUTA TI ONAL SYNCHRONIZEO RIGHT .OETA8-65
)00345 17 KEY-1 PICTURE U9 COMPUTA TI ONAL SYNCHRJNIlEO RIGHT .OET 48-65
)00350 77 KEY-2 PICTURE 999 COMPUTATIONAL SYNCH{ONIZED RIGHT .DETA8-65
)00355 77 KEY- 3 PICTURE 999 CaHPJTATIONAL SYNCHRONIZED RIGHT .OETU-65
000360 77 LA81X PICTU~E 999 COMPUTATIONAL SYNCHRON IZEO RIGHT.DETA8-65
)00365 77 LUNO PICTURE 999 COMPUTATIONAL SYNCHRONIZEO RIGHT.OETA8-65
000370 17 NACTS PICTURE 999 COMPUTATIONAL SYNCHRONIZEO RI GHT. OET A8-65
)00375 77 ,~COlS PICTURE 999 COHPUTAllONAL SYNCHRONIZED RIGHT .DETA8-65
000380 77 NORLS PICTURE 999 COMPUTATIONAL SYNCHRON IZEO RIGHT .OETA8-65
000385 17 NOCON PICTURE 999 CJMPUTATIONAL SYNCHRON IlEO RIGHT.OETA8- 65
)00390 17 NRLS PICTURE 999 COHPUTAllO NAL SYNCHRONIZED RIGHT .OETA8-65
)00395 71 NROWS PICTU{E 999 COHPUTATlJNAL SYN~HRONlZEO RIGHT.OETA8-65
000400 77 ROW(X PICTURE 999 ~O~PUTATIONAL SYN~HRONIZEO RIGHT .OETA8-65
000405 01 OUM-2. DETA8-6~

0004.10 02 FILLER OCCURS 50 TI~ES. OETA8-65
)00415 O} STRTCOL PICTJRE 99 CO~PUTATIONAL SYNCHRO~ llEO RIr;HT .DETA8-65
000420 03 NMCOLS PICTURE 99 COMPJTATIONAL SYNCHRON ILED RIGHT .DETA8-~S
000425 01 OU~-3. DET4B-6~

000430 02 COLS PICTURE X OCCURS 12 TIMES . OETA8-65
000435 01 OU~-4. OETAS-bS
000440 02 EGOro PICTU~E X OCCURS 5 TI~ES. DETAS-65
000H5 01 OUM-5. OET48-6~

000450 02 TEMP PICTURE X OCCURS 58 TI MES. DETA8-65
000455 01 OU~- 10 PICTUOE XI81 VALUE ·SECrl()N.'. OETA8-65
000460 01 OUM-12 REDEFI~ES OUM-IO. DETAS-65
000465 02 NMSEC PICTURE X OC~URS 8 TIMES. DETAB-65
000410 01 HEADER. DETA8-65
000415 02 FILLER °ICTURE XIBI. DETAS-65
000480 02 TBLNME PICTU~E X1301. OETA8-65
000485 02 FORMID PICTURE xx. OETA8-65
JOO~90 02 NCONO PICTU.E 9131. OETA8-65
000495 02 AC TNS PICTURE 9131. OETA8-65
000500 02 NORULS PICTURE 9131. OETAB-65
000505 02 FILLER PICTURE XI511 . OETAB-65
000510 01 OPR I H. OETA8-65
000515 02 OLA8EL. OETA8-65
000520 03 FILLER PICTURE XI71 YALUE SPA~ES. OETA8-65
000525 03 DUM-b. OETA8-65
000530 04 LA8~M PICTURE XX. OETA8-65
000535 04 lAB'IIl PICTURE 9131. OETAB-65
000540 O} FILLER PICTURE X YALUE • • DET A8-65 • •
)00545 02 OGOTO. OETA8-b'
........... '" "' _ _ - . ~ - - - - - -

)00555
)00500
)00565
000570
000575
000580
000585 01
000590
000595
000000 01
000005
000610
000015
000020
000025
000630
000035
0000~0
OOOM5
000650
000055
000000
000605
000070
000075
000080
000685
000090
000095
000700
000705 01
000710
000715 01
000720
000n5 01
000730
000735
000740 01
000745
000750
000755
000760 01
000705
000170
000775
000780
000785 01
000790
000795
000800
000805 01
000810
000815
000820
000825
000830
000835
000840
000845

•

0] DGOL~.
04 OGOL8 PICTURE ~~.
04 OGO~O PICTURE 999.

02 HOUSTON.
03 CNOI
03 ATSL

LI NE 1 •.
02 FILLER
02 CONO
TEXAS.

PICT UtE XI58 1 OCCURS 50 TIMES.
PICTU~E XI581 OCCURS 50 TIMES.

02 LlNE2.

PICTURE Xl1'o1
PICTUR E XI 581.

03 FILLER PICT~RE AIll'.
0] COOPR PICTURE '1121.
03 PIF PICTURE~.
03 OELSE PICTUR E XI61.
03 ELOPR PICTU~ E ~I I21.
03 PELSE PICTUR E
03 FILLER PICTURE

02 LINE] REDEFINES
03 FILLER PICTURE
03 ONA~E.

X.
AI 291.

l1l1E2.
XI1I.

04 TCOLS PI CTU RE X
03 FILLER PICTURE XI 71.

VALUE ' .

02 FILLER REOEFINES LINE2.
03 FILLER PICTUR E Xl iiI.
03 8NANE PICT URE XI 581.
03 FILLER PICTUR E XXX.

02 DECISION- TABLE .
03 ROW

04 COLNN PI CTU RE X
ELIMT.
02 ELIMC
~ATIT •
02 MATIX
MICOESCR.

PI CTUR E 999

PICTUR E 999

02 POPUL PICT URE 999
02 SAVCL PICTURE X
WRNING-PRINT .
02 FILLER PICTUR E XII71

••••••• WARNI~G • ••

OCCURS 50 TI MES.
OCCURS 100 TIMES.

OCCURS 25 TIMES.

OCCURS 25 TIMES.

OCCURS 128 TINES.
OCCURS 25 TINES.

VALUE

02 WRNING- IMA;E PI CTURE XI521.
WARNING-MESSAGES .

VALUE

I F ' .

02 WRNING-l PICTURE XI521
'NO ELSE RULE CARD. lAST

02 WRNING-2 PICT URE XI311
'REOUNOA~CY. CHE CK THESE

ERR-PRNT.

RULE PROCESSED
VALUE

AS ELSE RULE.'.

RULES -'.

02 FILLER PI CTURE XI 301 VALUE
, •••••• E~RJt. TA BLE SKIPPED. t.

02 ERR-IMAGE PI CTURE XI531.
ERROR- MESSAGES.
02 ERR- I PICTURE XI481 VALUE

'PRESENTLY, TA8LE S RESTRICTEO TO llMITEO ENTRIES.'.
02 ERR- 2 PICTU~E XI 421 VALUE

'TA8LE- NAME MISS I NG FRON TA8lE HEADER CARa.'.
02 ERR-l PICTURE XI191 VALUE

'RULES CARD MIS SING.'.
02 ERR-4 PICTURE . 1391 VALUE

'LESS THAN THREE RULE COLUMNS SPECIFIED. '.

DE r AS-b!
OETAS-o'
DET AS-o!
DEl A8-0!
OETA6-6!
aeT AS-b!
DETAB-6~

DEU8-6!
DETA8-6!
OElA8-6!
DEUS-6!
oeT AB-6!
OETA8-6~
DErA8-b~
DEUS-o'
DETAS-ol
OerA8-0!
aETAS-bl
oeTA8-b~

OETA8-6!
DETAS-bl
DfTA8-oS
DETA8-6!
OEU8-oS
DEUS-oS
DEUS-oS
DfTA8-o5
OEU8-05
DElAS-05
DElA8-oS
aETAS-oS
aETAS-oS
DETAB-oS
OETA8-oS
DEU8-oS
DEl AS-oS
OEUS-05
DETAS-oS
aEUS-oS
DETAS-OS
aETAS-6S
DETAS-oS
DEl AS-oS
DEUS-oS
DElAS-6S
DEl AS-oS
DETA8-6S
aETAS-oS
OETAS-6S
DElAS-65
DEUS-oS
DETAS-oS
aEU8-oS
DfTA8-oS
DEUS-05
OETAS-oS
DEU8-6S
DfTAS-oS
DfTAS-05

000S50
)00B55
JOOBbO
)00Bb5
JOOA70
000B75
000880
000885
000890
J00895
000900
000905
000910
000915
000920
000975
000930
000935
0009.0
0009.5
000950
000955
000960
000965
000970
000975
000980
000985
000990
000995
001000
001005
001010
001015
001020
301025
001030
001035
0010.0
0010.5
001050
)01055
0010bO
aOlO b5
001010
001015
001080
001085
001090
001095
001100
001105
001110
JOlll5
001120
001125
001130
001135
001140

02 ERR-5 PICTURE XI.3) VALUE
'PRESENTLY, CO~TINJEO RULES NOI IMPLEMENTED.'.

02 ERR-b PICTURE X140' VALUE
'CONDITIJN STU8 ENTRY EXCEEDS 58 COLUMNS.'.

02 ERR-l PICTURE X12b) VALUE
'MORE IHAN 12 RULE COLUMNS.'.

02 ERR-B PICTURE XI 53' VALUE
'NUMSER ~F RULES ENCOUNTERED OISAGREES WITH RULE CARO.'.

02 ERR - 9 PICTURE XI.I/ VALUE
'MORE THAN 50 ACTION OR CONOITION ENTRIES.'.

02 ERR-IO PICTURE XI4b' VALUE
'DECISION TASLE LOGIC ERROR. PROCESSING HALTED.'.

PROCEDURE DIVISION.
DETA865.

OPEN INPUT CARD-INPJT. ~UTPUT CA'D-OUTPUT. LIST-OUTPUT.
OTDOI.

PERFORM READ-I.
IF 'DODO' • IDENT OF OETA8-CRD GO TO NDNITOR.
WRITE DElAS-CRD.
GO TO OTOOI.

MONiTOR.
MOVE OETAB-CRO TO HEADER.
IF TBLNNE • SPACES GO TO EN02.
IF FORMIO OF HEADER NOT • 'L' GO TO ENOl.
NOVE SPACES TO HOUSTON. TEXAS.
NOVE ZEROES TO OUM-2.
NOVE TBLNNE TO OUN-5, DNANE.
PHFORN RSCAN.
PERFORM OT005 VARYING EXIX FRON 1 BY 1 UNTIL Exlx • 9.
PERFORN REAO-I.
IF 10ENT OF OETAB-CRO NOT. '0001' GO TO EN03.

NOTE RULES CONVERSION SECTION.

NOVE 0 TO CAROCNT.
NOVE 1 TO NUS.
HOVE 9 TO COLUN. STRTCOL (NRLS/.

OT050.
IF CRD-COL ICOLUN' • SPACE GO TO DT053.
IF CAROCNT IS LESS THAN 3 GO TO END ••
NOVE CAROCNT TO NNCOLS (NRLS'.
IF CRD-COL ICOLUM' • 'S' GO TO DT055.
ADD 1 TO NUS.
NOVE COLUM TO STRTCDL INRLS/.
NOVE 1 TO CAROCNT.
ADO 3 TO COL UN.
IF COLUM IS GREATER THAN 80 GO TO EN05.
GO TO OT050.

Oro05.
NOVE NNSEC IExIX/ TO TCOLS (OUMIX/.
ADO 1 TO OUNIX.

DT053.
AOD 1 TO CAROCNT, ADO 1 TO COLUN.
IF CARDCNT IS NOT GREATER THAN 12 GO TO OT05D.
IF CAROCNT IS GREATER THAN 58 GO TO EN06.
If NRLS • 1 GJ TO OT050 ELSE GO Ta ENOl.

OT055.
SUSTRACT I FRON NNcaLS (NRLS', SUBTRACT 1 FRaN ~RLS.
IF NRLS NOT - NORJLS GO TO ENOB.

DETAS-b5
DETAS-05
OETAB-~5

OET 48-05
DETAB-b~

OEu8-05
OETAS-65
DETA8-6'
DETAS-oS
DEuS-65
DEUB-65
OETAB-65
OETAS-05
OETAS-65
DETAS-05
DETAB-05
DETA8-oS
DETAS-05
DETAS- 05
DETAS-05
OETAB-05
OETAB- 05
DEUB-05
OETAB-b5
OETAS-6S
OEUS-65
OEUS-lo5
OETA8-65
DETAS-65
DEU8-65
DETAS-1>5
OET AB-05
OETA8-65
DETA8-05
OEU8-65
DETAB-65
OETAS-1>5
OETA8-05
OETAS-65
DETA8-6'
DEU8-6;
OETAB-65
DETA8-b~

DET AS-65
OET AB-05
OETAS-b5
OET AB-65
DEI A8-65
DETAB-65
OETAB-6S
DETAB-b5
DETAB-b5
OETA8-6!
DETAS-65
OETAB-65
OETAS-oS
DETA8-6S
DeTA8-b~
OETAS-05

1l01l~5
001150
001155
0011&0
0011&5
~01170
001175
001180
~01l85

lOl190
001195
001200
001105
OOlliO
00lli5
001220
0012Z5
001230
001235
0012~0
0012~5

001250
001255
0012&0
001265
001270
001275
001280
001285
001290
001295
001300
001305
001310
001315
001320
001325
oOlno
001135
0013~ 0
0lHH5
001350
001355
001360
001365
00137 0
001375
001380
001385
001390
001)95
001~00
001~05

001410
001415
001420
001425
lOIHO
001435

•

~OTE OETAS CARD SECTION.

ADO I fa NRlS.
MOVE STRTCOl IN~l SI TO COlUM.
IF CRO-COl ICOl~H' • 'E' GO TO OT056.
MOVE wRNING-I TO WRNING- IHAGE.
WRITE TAPE-LIST FROM WR~ING-PRINT.

OT050.
MOVE I TO KEY-2, KEY-], ROWIX.

OT057.
PERFORH READ-I.
IF ROW-NO JF OETAS-CRO. 999 GO TO OT057.
MOVE I TJ KEY-I, COLIX .
IF LINE-IO OF OETAB-CR O • '$' GO TO TBLPROC.
MOVE STRTCOL IKEY-II TO tOlUM.

NOTE CONOACT SECTION.

HOVE SPAtES TJ OUM- 5 .
MOVE I TO EX U.

CONOACT.
MOVE tRa-tOL I COLUMI TO TEMP IEXIXI • .
IF EXIX GREATER NHCJLS (KEY-I I GO TO OT057-1.
ADD I TO EXIX, ADD I TO COlUM, GO TO CONOAtT.

OT057-1 .
IF KEY-2 IS GREATER THAN 50 GO TO EM09.
IF KEY-2 IS GREATER THAN NCONO GO TO OT058.
HOVE OUH-5 TO CNOI (KE Y-2 1.
AOO I TO KEY-2.
GO TO OT059.

OT058.
IF KEY-3 IS GREATER THAN 50 GO TO EM09.
MOVE OUM-5 TO ATBl IKE Y-31.
AOO I TO KEY-3.

OT059.
PERFORM OTOoO THRU OTO&I VARYING KEY-I FROM 2 BY I UNTil

KEY- I IS GREUH THAN NUS.
AOO I TO ROWIX.
GO TO OT057.

OTOoO.
MOVE STRTCOL (KEY- II TO COLUM.

NOTE VARAHOVE SECTION.

HOVE SPACES TJ OUH- 3 .
MOVE I TO EX U.

VARAMVE.
MOVE CRO-COl ICOlUMI TO COLS IEXIII.
IF EXIX GREATER NMCOLS IKEY-II GO TO OTOoD-l.
ADD I TO EXIX, ADO I TO COLUM, GO TO VARAMVE.

OT060- 1.
EXAMINE OUH-3 REPLACING ALL ,-, BY SPACES.
IF OUH- 3 - SPACES GO TO OT061.
EXAMINE OUM-3 TALLYING UNTIL FIRST 'N'.
IF TALLY' IZ M)VE 'Y' TO COLMN (ROWIX, COllXI ELSE

MOVE 'N' TO COlHN (R OWIX, COlIXI.
OT061.

ADO I TO COliX.

OETAB-65
OETA8-65
OETAB-65
OETAB-65
OETA8-65
OETAS-05
OETA8-6~
OErAB-6\
DETA8-6 ~
DETA8-6~
OETA8-6~

DE'A,S-6!
OETA8-6~
OETA8-6!
QETA,S-6!
oe'A8-6~
oer48-b!
DETA,8-6!
DErA8-6~

OE'AB-6~
DE'A,8-6'
OETAB-6
OETA8-6
OETA8-6
OEU8-0
OETA8-6
OETA8-6
OETA8-6
OETAB-6
OETAB-6
OETA8-6
OETA8-0
OETA8-6
OETAB-6
DETAS-6
OEUB-6
OETAB-6
DETAS-I
DETA8-/
OETA8-/
OETAS-t
OETAB-t
OETA8-t
OETA8-.
OETA8-.
OETA8-.
OETA8-.
OETA8-,
OEU8-
OETAB­
OETA8-
OETAB­
OEU8-
DETA8-
OEUB­
OEUB­
OETAB­
OETA8-
OETA8-

:)0144-0
JOl445
JOl4S0
JOl455
JOl460
001465
001410
001 475
001480
001485
001,,90
)01495
001500
001505
001510
001515
001520
JOl525
)01530
)01535
00lS40
001545
0 01550
J015SS
001560
)01565
001570
JOlS7S
)01580
001585
)01590
:>015Q5
001600
00t605
JOl610
001615
J OI020
)01625
101h 30
)01635
O()1b.O
101 645
11 01650
001655
OOlbbO
J016b5
00lb70
001615
0016S0
JOl6SS
J01690
00lb9S
JOl700
001105
001110
00111 5
001120
JOI12S
DOl no

TSLPROC.
PERFORM L20UT THRJ R[TAS .
~OVE 'OXOOO' TO OJM- b.
PERFORM OLOUT THRU RITAS.

NOTE OECISIJN SECTI~N .

MOVE ZERO TO LArIX, LASNO.
MOVE ACTNS TO NACTS .
COMPUTE NORlS z NORUlS - 1.
,.OVE NCO NO TO NJCG~ .
PERFORM OX042 VARYI~G CaLIX FROM 1 BY 1 UNTIL CaliX a NORlS.

OX042.
MOVE CalIX TO MATIX ICOLIX' .

OXOOI.
PERFORM OX002 VARYI~G CaLIX FROM 1 SY I UNTil Cal iX a NORlS.

GX002.
MOVE COLIX TO ELIHC ICOLIXI .

OXOSO.
MOVE NOCON TO NROWS .
HOVE NORlS TO NCOLS.
MOVE 0 TO RJWIX.
GO TO OX004.

OX003.
PERFORH LI0UT THRJ RITAB .
PERFORM L20UT THRU RITAB .

OX004.
MOVE SPACES TJ LINE2.

OXOOS.
ADO 1 TO RowiX.
MOVE ZERO TO aUMIX.
IF RaWIX z NOCON GO Tl aXO I 4.
MOVE 1 TO COLI X.

NOTE ARE THERE ALL BLANKS IN THIS ROW.

OX005-1.
IF caLIX GREATER ~CJLS GO TO aX005-2.
MOVE EllMC ICOLIX' TO ELMCX .
If COlMN IRO~IX, EtMCK •• , , OR '8'

NEXT SENTENCE ELSE GO TO OX051.
AOa I TO Call X.
GO TO axaos-I.

aX005-2.
PERFORM OX400 THRU DH02 VARYING COLU FROM I BY I

UNTIL COLIX IS GREATER THAN NCOLS. '
GO TO axa05.

aX400 .
MOVE ElIMC ICOLIX' TO ELMCT.
MOVE I TO ELMRX.

aX400- 1.
IF ELMRX z ROWIX GO TO aX400-2.
If eOlMN (EtMRX. ELMer) •• ,

MOVE IS' TO COL~N CROWIX . ELMCr)
GO TO OX402 .

ADD I TO ELMRX.
GO TO DX400-1.

OHOO-2.
MOVE 'Y' TO COL'1N IROW(X, ELMer) .

DETAB-b S
DET AB-b'
DETAB-6'
aETAB-b S
DEIAB-b)
OETA B- 6~

OETA8-b~
DETAS- b,
DETAS- be,
DETAS- bS
DETA8- bS
DET AS- b)
aETAB-b 5
aETAB-b S
aETAB-b 5
aETAB-0 5
aETA8-b S
DEUB-b ',
DETAS-b S
DETAS- 6')
aETA8-.
OETA8- b:'
aETAB- b S
aETAB- o',
Of!A8-to "J
O~T.B-6~

aETAB- 6?
OETA8-bj
aETAB-b S
oeTA8- b'i
OETAfJ- h ~
aETAB- 'S
aETA8- h
OETA8- b5
OErAB- 6';.
aET AB- t. S
OETA6-fn
OETA8- b'~

aET A8- I.',
aETAB-'
OET"'8 - c')~

DET A8- ',
OETAS- '·
DE T A6- (.·~

OErA8- ~t:

OETAB- c,-;.
aETAB-b~

aE TAS- bS
OETAS- be;
OETAB- »
aETA8-6~
aETAB- ,S
aETAB- I, ,
OET AB - ..,<t
OETA8 - ').,:..
OETAS- ';;
OETAS- .,r..
DETAB- ') .
aETAB- ..

001115
001740
001745
001750
JOl755
0017bO
J017b5
OOIHO
JOIH5
001780
~01785
001790
001795
001800
001805
001810
001815
001820
001825
001830
001835
001840
001845
001850
001855
o018bO
001865
001870
001875
001880
001885
001890
001895
001900
00190S
001910
001915
001920
001925
001930
001935
001940
o019H
0019S0
001955
001 960
001965
001970
00191S
001980
001985
001990
001995
002000
00200S
002010
002015
00Z020
0020Z5

•

OX402.
EXI T.

OX051.
MOVE CNO[[ROWIXI TO CONDo

NOTE [5 THERE A Y DR N [N THIS ROW.

MOVE 1 TO COLI X.
DXoSI-I.

IF COllX GREATER NCDlS GO TO DXoSI-2.
MOVE ELINe ICDllXI TO ElNCX.
If COlHN CROWIX, ElMCXI NOT. 'N' GO TO OX052.
ADD 1 TO COLI X.
GO TO DX051-1.

DX051-2.
NOVE 'EL001' TO DGOLN.
HOVE DGOTO TO CDOPR.
GO TO OX20Z.

DX052.
HOVE ROWIX TO ELNRX.

NOTE ARE THE REST Of THE ELEMENTS IN THIS eOLUM" SLANK.

DXOS2-1.
If ELMRX a NOCON GO TO DX052-2.
COMPUTE ElNer • ElNRX + 1.
IF COlHN CElNCT, ElNCXI NOT. , , GO TO DX201.
ADD I TO ELHRX.
GO TO DX052-1.

DX052-2.
If NCOLS a 1 THEN HOVE ROWIX TO HOCO" GO TO OXOI4.
HOVE COllX TO DUMIX.
GO TO OX202.

NOTE PUSH LAST-IN-fIRST-OUT LIST.

DX201.
Move -OX· to DGOL8.
AOO 1 TO LASNO, AOO 1 TO LABIX.
HOVE LA8NO TO OGONO, POPUL CLAB[XI.
HOVE DGOTD TO CDDPR.

DXZ02.
HOVE 1 TO COLI X.

NOTE IS THERE A N DR A BLANK IN THIS ROW.

DX202-1.
[F COLIX GREATER NCOlS GO TO DX2oZ-Z.
NOVE ELINC [COlIXI TO ELHCI.
If COLNN CROWIX, ElHCXI NOT • 'Y' GO TO DX053.
ADD 1 TO COL U.
GO TO DX202-1.

OX202-2.
HOVE 'ELoOl' TO DGOlN.
MOVE ' ELSE ' TO DELSE.
MOVE OGOTO TO ElOPR.
PERfORM 01204 THRU DI20S.
GO TO OX300.

DX053.

OETAB-6'
OETAB-b~

DETAS-b'
OETAB-b
DElAS-b'
OETAS-b
OEU8-6
OETAB-b
OETAB-b
OETA8-1>
OElA8-1>
OETAB-I>
DETAB-b
OEU8-b
OETAS-b
OEUS-I>
DETA8-b
OETAS-b
OETAB-I>
oETU-1>
DETAIl-I>
oEU8-b
DEU8-1>
OEU8-1>
OETA8-b
DETA8-1>
oETA8-b
oETAB-1>
DETAB-6
DETAS-I>
DEUS-I>
DETA8-b
DETAS-6
DEUS-b
DETAS-b
DETAB-b
DETAB-b
DETAB-b
DEUB-.
DEUS-.
DEUS-.
DETA8-.
DEUS-.
DETA8-.
DETAS-.
DETA8-1
DETA8-1
DETA8-1
DETAS-I
DETU-I
DEUS-I
DETAS-I
DEUB-I
DEUS-I
DEUS-I
DETAB-I
DETAB-I
DETA8-f
DETA8-1

)02030
0 02 0H
002040
".'04 5

~ 2 0 50

J02055
0 02060
0020 65
on010
0 02075
0 01.080
002085
002090
002095
002100
002105
002110
002115
002120
002125
002130
002135
102100
002145
002150
002155
0 02160
002165
002110
~OZ175
002180
002185
002190
002195
002200
l 02205
J 022I0
002215
002220
002225
002210
0 02215
002240
002H5
002250
002255
)02260
002265
002210
002215
002280
.... e 22s5
002290
002295
002300
002305
002310
:)02315
0 02320

MOVE ROWIX TO E lM~X.

NOT E AR E THE RES T OF THE ELEMENTS IN T~IS COLUM~ BLANK .

OX053-1 .
IF ELMRX • NOCON .0 TO OX053-2.
COMPUTE ELMC T • I + ELMRX .
IF COlMN (ELMer, ELMCXJ NOT •• I

Move' . ' fa PIF .. GO TO DX201t.
AOO I TO EL ~RX.
GO TO OX05)-I.

OX05l-2.
MOVE ROwlX TO NOCON .
IF OUMIX NOT • ZERO OR NCOlS • I THEN GO TO OXOI4.
MOVE COLIX TO ELMRX .
MOVE AZ TO OGOLB.
MOVE ELHCX TO OGONO .
Move ' ELSE • TO DElS E.
MOVE OGOTO TO ELOPR .
PERFORM OXOl6 THRU OX020 .
PERFQRM OXOll THR~ OX055 .
MOVE NOCON TO RowiX.
MOVE NROWS TO NOCON .

onoo.
HOVE '.' TO PElSE.
PERFORM LIOUT THRU RITAB.
PERFORM L20UT THRU RITAB .
IF NORLS • ZERO GO TO DXOl8.
MOVE 'OX' TO LA8NM.
MOVE POPUl ILA81XI TO lA8VL.
SUBTRACT 1 FRQM lA 81 • •
PERFORM OLOUT THRU RITA8.
GO TO OX004.

OX204-
IF OUMIX • ZERO GO TO DX2D5.
MOVE ROWIX TO NJCON .
MOVE AZ TO OGOL8.
MOVE EllMC 10UMIXI TO OGONO.
MOVE OGOTO TO COOPR.
NOVE DUMIX TO COlIX.
PERFORM OXOl6 THRU OX0 20.
MOVE NOCON TO RowiX .
MOVE NRO.S TO NOCON.

OX205.
EXIT.

OX009 .
PERFORM OXOIO THRU OX055 VARYING ELMRX FROM I 8Y I UNTil

ELMRX IS .REAIER THAN NCOLS .
GO TO OXOOl .

NOTE DELETE FROM PATH INDEX ALL COLUMNS THAI HAVE A Y
IN THIS ROW •

OXOIO.
MOVE ELIMC IElMRXI TO COlIX.
IF COLMN IRJWIX, COllX I NOT· ' Y' GO TO OX055.

OXOll.
SU8TRACT I FROM NCJ l S.
PERFORM OXOl2 VARYING ELMCX FROM ElMRX 8Y I UNTIL ELMCX

OETA8-6 5
OETA8-b5
OETA8-65
OET AB- b5
OET AB- 65
OETA8- b5
OETAB- b5
OETA8-6 5
OETA8-6 5
OETA8-65
OETAB-b5
OETA8-65
OETA8-65
OETAB- b5
OETA8- b5
OETA8- b5
OETAB- b5
DETA6- 6S
OETA8-b5
OETA8-b5
OETA8- 6 5
OETA8- 6 5
OETAB-65
OETA8-b 5
OETA8-b 5
OETAB-b5
OETA8-b 5
OETAB-b 5
OETA8-b 5
OETA8-b 5
OEU8-b5
DETAB-65
OETA8- 65
OETAB- 65
OETA8- b5
OETA8-b5
OETAB-6 5
OETAB- 65
OETAB-b5
OETAB-b 5
OETA8-b5
OETA8-65
OETAB-b5
OETAB- b5
OETA8-65
OETA8- 65
OETAB-b5
OETA8-b5
OETA8- b5
OETAB-b5
OETAB-b5
OETAB- b 5
OETA8- b ,
OETAB- b5
OETAB-b5
OETAB- 65
OETAB-65
OETAS-b5
OEIA 6-b 5

· 002)25
002330
002335
002340
J02345
002350
J02355
002360
0023b5
002370
002375
002380
00B85
)02390
002395
OOHOO
00H05
002410
00H15
00H20
002'>25
00H30
002H5
002440
002445
002450
002455
00H60
0024b5
002410
002'15
002480
002485
lOH90
002495
002500
002505
002510
002S15
002520
002525
00U30
002535
002540
002545
002550
002555
)02560
002565
002570
002575
002580
002585
002590
002595
002600
002605
002bl0
002615

GREATER THAN NCOLS.
SU8TRACT 1 FRJM ELMRX, SUBTRACT 1 FROM COLIX.

OXOI2.
COMPUTE ELMCT • 1 • ELMCX.
MOVE ELIMC IELMCTI TO ELIMC IELMCXI.

OXOS5.
EXIT.

OXOl".
MOVE ELIMC III TO COlIX.
PERFORM OXOl5 VARYING ROWIX FROM I 8Y 1 UNTIL .O~IX • NRO"S.

OXOI5.
MOVE COlMN IROWIX, COllXI TO SAVCL (RO"IXI.

OX056.
MOVE" TO OUMIX.
PERFORM OX022 THRU OXOll VARYING COLIX FROM I 8Y I UNTil

COllX IS ~REATER THlN NCOlS.
GO TO OX032.

NOTE DETERMINE ACTION LABELS AND CHECK FOR REOU~OENCY.

OX022.
MOVE ELIMC (COLIXI TO ELNtX.
IF COlMN INOCON, ELMCXI NOT • 'Y' GO TO OX029.
IF OUMIX • 3 OR OUMIX • I THEN GO TO OX059.
IF OUMIX • 2 MOVE 1 TO OUMIX ELSE MOVE I TO OUMlx.
MOVE AZ TO OGOL8.
MOVE ' ELSE ' TO OElSE.
MOVE ElMCX TO OGONO.
MOVE OGOTO TO COOPR.
GO TO OXOll.

OX059.
MOVE WRNING-2 TO "RNING-IHAGE.
oRITE TAPE-LIST FROM "RNING-PRINT.
PERFORM OX028 VARYING ELNRX FROH I BY I UNTil ElMRX • NCOLS.

OX028.
HOVE' RULE' TO TAPE-LIST.
HOVE ELIHC (ELMRXI TO CAROX.
"RITE TAPE-LIST.

OXOl).
eXIT.

OXOZ9.
IF COlMN (NOCON, ELHCXI NOT • 'N' GO TO OX031.
IF OUMIX • 3 OR OUMIX • 2 PERFOR~ OX059 THRU OXOI),

GO TO OXOH.
IF OUHIX • I MOVE 3 TO OUMIX ELSE HOVE Z TO OUMIX.
MOVE AZ TO OGOL8.
MOVE ' ELSE ' TO OELSE.
MOVE ELNCX TO OGONO.
HOVE aGora TO ElOPR.

OXOlt.
EXI r.

OX03Z.
MOVE 'ElOOI' TO OGOlN.
Move '.' TO PElSE.
IF OUMIX c 2 MOVE OGaTa TO COOPR ELSE

IF OUMIX • I MOVE OGOTO TO ElOPR.
HOVE CNOI (NOCONI TO CONO.
PERFORM GXOl6 THRU OXOZO VARYING :OLIX FROM I BY 1 UNTIL

CaLIX IS GREATER THAN NCOLS.

DET lS-6!
OETA8-b!
DE'A8-6!
DE r "S-6~
DEU8-6!
OETA8-6~
DETA6-6~

OETA8-6~

OETA8-6~
DETA8-6~
OETAB-65
OETAB-65
OET 4B-65
OETAB-b5
OETAB-b5
OETAB-b5
OETA8-65
OETAB-b5
DETA8-b5
OETAS-05
DETAB-b5
DETAB-oS
DETAB-b5
DETA8-6S
OETAB-6S
DETAB-b5
OETAB-b5
DETAB-b5
OETAB-65
DETAB-65
OETAB-65
OETAB-65
OEUB-b5
OEU8-b5
OEUB-b5
DETAB-~S

DETAB-b5
OETA8-65
DETAB-6S
OETAS-65
DETAB-65
DETAB-b5
OETAB-b5
OETAB-b5
OET AB-t.5
DETAB-bS
DETAB-65
OETA8-b5
GETAB-b5
DETAB-b5
OETAB-65
OETAS-b5
OETAB-65
OETAB-b5
OETAB-65
OETAB-b5
OETAB-b5
DETAB-65
OEUB-65

002620
002625
002030
002635
002640
0026~5

002650
002655
002660
002665
002670
002675
002680
J02685
002690
002695
002700
002705
002710
002715
002720
002725
002730
002735
002740
002145
002750
002755
002760
002765
002710
002775
002780
002785
002790
002795
002800
002805
002810
002815
002820
002825
002830
002835
002840
o028~5
002850
002855
002860
002865
002870
002875
002880
002885
002890
002895
002900
002905
002QlO

GO TO DOOL.
OXOL6.

MOVE EllMC (COLIXI TO OUNIX.
MOVE I TO ROWI x.

DXoI6-1.
IF ROWIX GREATER NOCON GO TO DXOI6-2.
IF COLMN (ROWIX, DUMIX) ~ 'S' GO TO OX 504.
AOO 1 TO ROW IX.
GO TO OXOI6-1.

OXOI6-2.
MOVE 0 TO ROWIX.

OXOI6-3.
IF ROWIX = NOCON GO TO OXOI6-4.
COMPUTE ELMCX ~ NJCON - ROWIX.
IF COLMN {ElHCX. OUMIXJ 2 •• THEN

MOVE'S' TO COLMN (ELMCX. OUMIX •• GJ TO OXOZO.
AOO I TO ROWIX.
GO TO OXOI6-3.

OX016-4.
SUSTRACT 1 FROM NORLS.
PERFORM OX100 VARYING ELMCX FROM I 8Y L
UNTil ELMCX IS GREATER THAN NORLS.
GO TO DX020.

OXIOO.
COMPUTE ELMCT ~ ELMex + 1
IF MATIX IELMeX) IS NOT LESS THAN DUMIX

MOVE MATIX lELMeT) TO MATIX IELMCX).
OX5D".

MOVE 1 TO ELMCT.
OX SO"-I.

IF ELMeT - ROWIX GO TO DX504-Z.
COMPUTE ELMCX - ROWIX - ELMeT.
IF COl HN {ELNCK, OUHIX) ••• GO Ta DX507.
ADD 1 TO ELMeT'
GO TO DX504-1.

DX5010-2
MOVE 'Y' TO eOlMN CROWIX. DUMIXI.
GO TO OX010.

OXS07.
Hove '8' TO COLMN IELHtX. OUHlxa.
PERFORM OX508 VARYING ELMCX FROM ROwlX 8Y 1

UNTIL EL~ex - NoeON.
GO TO OX020.

DX508.
IF COlMN CELMCX. OUMlX) • '8'

MOVE' , TJ eOLMN IELMex. DUMIX).
OX020.

EXIT.

NOTE POP LAST-I~-FIRST-OUT LIST.

OXlOl.
PERFO~M LLOUT THRJ RITAS.
PE~FORM lZOUT THRJ RITAS.
IF NORlS = ZEROES GO TO OXOl8.
MOVE ·ox· TO lA8NM.
MOVE POPUl IlA81XI TO LA8YL.
SUS TRACT 1 FROM LA8Ix.
PERFORM OLour THRU RITAB.

OETAS-65
DE'- AS-65
OE U S-oS
DETAS-6S
OETAS - 65
DETAS- 6S
DETAS - 05
OETAS-6S
OETA8-6S
DETAS-65
OEf.AS-6S
DETAS-65
OETAS-05
OETA8-oS
DETA8-oS
OETAS-oS
OETA8-oS
DETAS-05
DETA8-o5
DETA8-o'
OETA8-6:.
DETAS- b5
DETAS-oS
OETAS-65
DETA8-o5
OETAS-!>5
DETA8-oS
DETAS-65
DETAS-6S
DETA8-65
DETA8-oS
DETA8-6S
DETAS-6S
DETAS-oS
OETAS-6S
DETAS-oS
DETA8-6S
DETA8-6S
DETAS-6S
DETAS-oS
DETAS-05
OETAS-!>S
DETAS-05
OETAS-05
DETAS-6S
DETAS-6S
DETAS-65
OETAS-6S
DETAS-65
DETAS-oS
DETAS-65
DETAS-6S
DETAS-6S
DETAS-6S
DETAS-6S
OETAS-!>5
OETAS-6S
DETA8-6S
OET A8-65

002915
002920
002925
002930
J02935
00Z9~0
00Z9~5

002950
002955
002960
002965
002970
002975
002980
002985
002990
002995
003000
00)005
003010
003015
003020
003025
003010
003015
OO)O~O

00)045
30)050
00)055
003060
JO)065
00)070
003075
003080
003085
003090
003095
003\00
00)105
003110
00]U5
OOJ120
003\25
OOlUO
DOl U5
003\~0

00lH5
0011S0
003\S5
001160
003165
OO)HO
OO)17S
00)180
OO)l85
003190
003\95
OOHOO
00H05

•

NOTE SETUP INDEXES FOR NEXT PASS.

DX302.
MOVE NORLS TO NCOLS.
MOVE NROWS TO NOCON.
MOVE MATIT TO ElIMT.
MOVE I TO ROWI X.

OX302-1.
IF ROWIX • NOCON

MOVE ERR-IO TO ERR-IMAGE
WRITE TAPE-liST FROM ERR-PRNT
GO TO OTOOI.

NOTE DELETE THAT PATH GENERATED ON THE LAST PASS AND
FINO THE NEXT HIGHER NOOE ON THE TREE.

MOVE I TO COL/X.
DXOH-I.

IF SAVCL IROWIX' • , , MOVE 'N' TO SAVCl IROWIX'.
IF CaLIX GREATER NCOlS GO TO OXOO~.
NOVE ELINC ICOllX' TO ElNCX.
IF COlMN IROWIX, ElMCX' a , , OR COLMN IROWIX, ElHCX'

• SAVCl (ROWIX' GO TO OXO)~-l.
ADO I TO caLix.
GO TO OXO]4-I.

DX034-l.
PERFDRN OX037 VARYING COllX FROM I BY I UNTIL COllX a NtOlS.

OX031.
MOVE ELIMC ICOllX' TO ElNCX.
MOVE CaliX TO ElNRX.
IF COlMN IRoWIX, ElMCX' NOT • , , AND COlMN CROWIX, ElHeX'

NOT a SAVCL IROWIX' PERFORM OXOll THRU OXOSS.
OX061.

AOO I TO ROWIX.
GO TO DX302-1.

DX038.
NOVE SPACES TO LINE).
COMPUTE KEY-2 • NORUlS - . I.
PERFORM OXO]9 THRU DX039B VARYING COLI X FROM 1 BY I

UNTil COLIX • KEY-l.
OX019.

MOVE Al TO lA8NM.
MOVE COllX TO lABVl.
PERFORM OlOUT THR~ RITAB.
ADO 1 NCOND GIVING KEY-I.
PERFJRN DXAOI THRU oXAO~ VARYING EXIX FROM I BY I UNTIL

EXIX IS GREATER THAN NACTS.
MOVE SPACES TO CRe-OUT.
EXAMINE DU~S TAllYING UNTil FIRST 'G'.
IF TAllY • 58 GO TO DXD39H.
IF TALLY NOT • lERO, THEN

IF TEMP ITAllY' NOT. SPACE GO TO OXO]9H.
CONPUTE OUNIX • TAllY' 1.
PERFORM DX039F VARYING TAllY FRON I 8Y 1 UNTil TAllY· 6.
GO TO DX039G.

OX039F.
MOVE TEMP 10UNIX' TO EGOTO CTAllY'.
ADD I TO DUHU.

DHA8-65
OEU8-6S
OEUB-6S
OETA8-6S
DETA8-6S
OETAII-65
OETAB-6S
OETA8-6S
DETAB-6S
DEUB-6S
OETA8-6S
DEU8-65
DETA8-65
DETA8-6S
DETA8-6S
DETA8-6S
DETA8-6S
DETA8-6S
OETAB-6S
DETA8-6S
OEU8-65
OfTA8-6S
OEU8-6S
DETA8-65
DETA8-65
OETA8-6S
DETA8-U
DETA8-65
DETA8-6S
OETA8-6S
DETAB-65
OETA8-65
DETA8-65
DETA8-U
DETA8-65
DETAB-6S
DElA8-6S
DETA8-6S
DETA8-65
DETA8-6S
OETA8-6S
OETA8-65
DETA8-6S
DETA8-6S
D£TA8-6S
DETAB-65
DEU8-6S
DETA8-6S
0£TA8-6S
DEU8-6S
DETA8-6S
DETA8-65
DETA8-65
OETA8-65
DElA8-6S
DETA8-6S
D£U8-6S
DETAB-65
DETAB-6S

303710
)03215
003220
003225
003230
001235
003240
003245
003250
00'255
003260
303265
003270
003275
00H80
003285
003290
003295
003300
001305
003310
001315
003320
003325
003330
001335
003340
003345
003350
003355
003360
003365
003370
003375
003380
003385
001390
003395
003400
'1 J3,.05
303410
003415
003420
J03't~5
003430
003435
003HO
003445
003450
)03.55
003460
003465
0034 70
003475
00]480
003485
00}490
00)495
00)500

OXAOI.
IF COL~N (KEY-I, COLIX) : • , GO TO OXA04.
~OVE ATBL (EXIX) TO OUM- 5, SNAME.
PERFORM RSCAN.
ADO 3 TO oUMIX.
MOVE '.' TO TCOLS 10U~IX) .
PERFORM L20UT THRU RITAS.

oXA04.
ADO I TO KEY-I.

oXOHG.
IF oUM-4 = 'GO TO' GO TO OX039B.

OX039H.
MOVE 'GO TO oEXIT.' TO B-MARG OF CRa-OUT.
MOVE CRo-OUT TO TAPE-LIST.
PERFORM RITAS.

oXOH8.
EXIT.

OX040.
MOVE SPACES TO LINE).
COMPUTE KEY-I • N:ONo + I.
MOVE NORULS TO COL IX.
MOVE I TO EXIX.
MOVE KEY-I TO TALLY.
MOVE 0 TO NUS .

OX040-2.
IF EXIX GREATER NACTS GO TO OX040-3.
IF COLM~ ITAllY, COlIX) Nor. I • ADD 1 TO ~RlS.
ADD I TO TALLY, ADD I TO EXIX.
GO TO OX040-2.

OX040-3.
IF NRLS = ZEROES GO TO OX040- 1.
MOVE • ElQO l' TO OUM-6.
PERFORM oLOUT THRJ RITAB.

OX040-1.
PERFORM oXAOI THRU oXA04 VARYING EXIX FROM 1 BY I UNTIL

EXIX IS GREAT ER THAN NACTS.
MOVE SPACES TO CRO-OUT.
MOVE 'OEXIT. EXIT.' TO BODY OF CRo-OUT.
MOVE CRa-OUT TO TAPE-LIST.
PERFORM RIlAB.
GO TO OTOOI.

L10UT.
MOVE LINEI TO CRo-OUT, TAPE-LIST. GO TO RITA8.

L20UT.
MOVE LINE2 TO CRO-OUT, TAPE-LIST. GO TO RITA8.

oLoUT.
MOVE oLASEL TO CRo-OUT, TAPE-LIST.

RIlAS .
wRITE TAPE- LIST.
WRI Te CRO-OUT.

RSCAN.
MOVE 5B TO OUMIX.
PERFORM RSOOI THRU RSOO).

RSOOI.
IF TEMP 10UMIX' • SPACE GO TO RS002.
AOD Z TO OUMIX.
GO TO RSOO).

RS002.
IF OUMIX • I GO TO RS003.

OET AB-65
DETAB-65
DETAS-65
OETAB-!>5
DETAB-65
OETAB-65
DETAS-!>5
DETAS-!>5
DETA:..-!>5
oETAB-65
OEl AS-b5
DETA8-!>5
DETAS-65
DETAS-!>5
DETAS-65
DETAS-b5
DETAS-!>5
DETAS-65
OETAS-!>5
OETAS-65
DETA8-!>5
DETAS-6S
oETAB-!>5
OETAS-!>5
DETAS-!>5
oETAS-b'
DETAS-!>'
OETAB-!>5
oETAS-b5
oETAS-b5
oETAS-b5
DETAB-65
DETA8-!>5
DETAS-!>5
OETAS-!>5
DETA8-!>5
DETAS-65
oEU8-b5
DETA8-b5
DETA8-b~
DETA8-65
oETAS-b5
DETAB-b5
oETA8-bS
oETAS-bS
DETAS-b5
OETAS-b5
oETAS-6S
oETAS- !>5
OETAS-65
OETAS-65
OETAS-65
DETA8-b5
DETA8-oS
DETAS-!>5
DETAS-b5
DETA8-b5
DETA8-b5
DET AS-b5

003505
003510
J03515
003520
003525
003530
003535
003540
003545
~03550
003555
0035&0
0035&5
003510
003575
003580
003585
003590
003595
003&00
003&05
003&10
003&15
003&20
003625
003630
003635
003640
003645
003650
003655
003660
003665
003610
003615
003680
003685
003690
00n95
003100
003105
oonlo
00nl5
003120
003125
003130
003135
003HO
003145
003150
00]155
003160

SHOP

SUBTRACT I FRJM DUMIX.
GO TO RSOOI.

RS003.
EXIT •

NaTE DIAGNOSTIC SECTIJN.

EMOI.
MOVE ERR-l a ERR-IMAGE.
GO TO EM99.

EMD2.
MOVE.ERR-2 TO ERR-IMAGE .
GO TO EM99.

EMOl.
MOVE ERR-3 TO ERR-IMAGE.
GO TO EM99.

EM04.
MOVE ERR-4 TO ERR- IMAGE.
GO TO EM99.

EM05.
MOVE ERR-S TO ERR-IMAGE .
GO TO EM99.

EMOo.
MOVE ERR-6 TO ERR-IMAGE.
GO TO EM99.

EM01.
MOVE ERR-l TO ERR-IMAGE.
GO TO EM99.

EM08.
MOVE ERR-8 TO ERR-IMAGE .
GO Til EM99.

EM09.
MOVE ERR-9 TO ERR-IMAGE.

EM99.
WRITE TAPE-LIST FROM ERR-PRNT.

READ-I.
READ CARD-INPUT INTO OETAS-CRO, AT END GO TO EOF.
MOVE SPACES TO IDFLO.
IF IDENT OF OETAS-CRO • '0000'

Move '0' TO rAPE-LIST,
WRITE TAPE-li ST.

WRITE TAPE-LIST FROM DETAS-CRO.
IF IDENT OF DETAS-CRD • '999X' GO TO EDF.

SKIPDI.

EOF.

IF LINE-IO DF OETAS-CRO NOT. 'S' GO TO REAO-I.
GO TO DTOOI.

MOVE 'OENO OETABfo5 PREPROCESSOR RUN.' TO TAPE-LIST.
WRITE TAPE-LIST.
CLOSE CARD-INPUT WITH LOCK.
CLOSE CARD-aUT PUT WITH LOCK, LIST-OUTPUT WITH LOCK.
STOP RUN.

DETAS-65
OETA8-65
OETAB-65
DETAB-65
DETAB-65
DETAB-65
OETA8-65
DETAS-65
OETAS-65
DETAS-65
DETAB-65
DETAS-65
DETAS-&5
DETAS-65
DETAS-65
DETAS-65
DETAS-65
DETAS-65
DETAB-65
DETAS-65
DETAB-65
DHAB-65
DETAB-65
DETAB-65
DETAB-65
DETAB-65
DETAS-65
DETAS-6S
DETAS-65
DETAB-65
DETAS-65
DETAS-65
DETAB-6S
DETAB-65
DETAB-6S
DETAB-65
DETAS-6S
DETAB-6S
DETA8-6S
DETA8-6S
DETAS-65
DETAB-65
DETAS-65
DETAS-05
DETA8-65
DETAS-6S
DETAS-oS
OE TA8-605
OETAS-65
DETAS-65
DETAS-65
DETAS-oS

•
DETAB/65 COBOL PREPROCESSOR TEST DECK LISTING

I 0000 TA8LEXX l 00~OO1003
0001 001002ELSS

CI N N
C2 N
C3 N
C4 Y ~

Al X
S

I 0000 TA8LEXXX l OO~OOIOO~
0001 001002003ELSS

Cl Y Y Y
C2 Y N
C3 N N
C4 Y N N
Al X

S
I 0000 TABlEXXXX l 00600100~

0001 001002a03ELSS
Cl y Y Y
C2 y N
C3 N N N
C4 N N
C5 N N
C6 N Y N
Al X X X

S
I 0000 TEST-DOl l 00300100~

0001 001002003ElU
C-I Y Y N
C-2 Y Y Y
C-3 Y N Y

ACTION-I X X X X
S

I 0000 TEST-OOZ l 002001005
0001 OOIOOZOO}OO~ELSS

C-I Y N Y N
C-Z N Y Y N

ACTION-I X X X X X
S

I 0000 TEST-OO} L 003001009
0001 00100ZOO}00~0050G6001008ElSS

C-I Y Y Y N Y N N N
C-Z Y Y N Y N N Y N
C-} Y N Y Y N Y N N

ACTION-I X X X X X X X X X
S

I 0000 TEST-OOit l OO~OOIOll
0001 00100Z00300~0050060010080090100110Il01301"015016ElSS

C-l Y Y Y Y ~ Y Y N Y N N Y N N N N
C-Z Y Y Y N r y N N N Y r N N N Y N
C-3 Y Y N r y N N Y Y N Y N N Y N N
C-It Y N Y Y Y N Y Y N Y N N Y N N N

ACTION-I X X X X X X X X X X X X X X X X X
S

I 0000 TEST-005 L 00~001003
0001 OOlOOlELSS

C- l Y Y
C-2 Y Y

C- 3 Y Y
C-4 Y ~

AC T 10"-1 X X X
S

1 0000 TEST-OOb l 00~001004

0001 0010~2003HSS

C-l Y Y Y
C-2 Y Y Y
C-3 Y Y " C-4 Y N Y

AC T I O.~-l X X X X

•
1 0000 TEST-007 L 00~001005

0001 00(00200)00HlSS
C-l y Y N
C-2 Y Y Y Y
C-) Y Y Y N
C-4 y N Y Y

ACT(ON-l X • X X X
S

0000 TEST-009 L 00)001009
0001 001002003004005006007008ElSS

C-l Y Y N N Y N N y

C-2 Y Y Y N " N Y N
C-) y N y y y N N N

ACTION-I X K X X X X X X X X
S

I 0000 TEST-OIO l 007001009
0001 00100200)004005006007008ElSS

C-l Y Y Y Y N N N N
C-2 y Y " N Y " Y N
C-) Y N Y N N y Y N

ACTIO'4-1 X • X X X X X X X

•
I 0000 TEST-Oil L 005001005

0001 001002003003ElSS
C-I y Y Y N
C-2 y y y y

C-3 y y y y

C-4 Y Y N Y
C-5 y N Y Y

ACTIO~-l X • X X X
S

1 0000 TEST-all L 003001009
0001 001002003004005006007008ELSS

C-I N N N N Y Y Y Y
C-2 N N Y N Y N N Y
C-3 N Y N Y N y N Y

ACTION-l X X X X X X X X X
S

I 0000 TEST-Oil L 005001005
0001 001002003004HS$

C-I Y Y Y Y
C-2 y y y N
C-) y y y y
C-4 Y Y N Y
C-5 y , y y

ocr 10'-1 X X X X X
S

1 0000 TEST-014 l 010001010
0001 00100200]00~005006007008009ElSS

C-l Y N Y Y N Y Y N N
(-2 Y Y Y Y Y Y N
c-] y y y y y N Y N Y
(-4 Y Y Y Y Y N Y N Y
(-5 Y Y Y Y Y Y Y Y Y
C-6 Y Y Y N N N
(-7 Y Y Y N N
C-8 Y Y N Y Y Y Y N Y
(-9 Y Y Y Y Y Y Y Y Y
(-10 Y Y Y N Y Y Y Y Y

ACTION-I X X X X X X X X X X
S

1 0000 TEST-015 l 010001010
0001 00100200]00~OO5006001008009ElSS

C-I Y Y Y N Y Y Y Y Y
C-2 Y Y Y Y Y Y Y Y Y
(-] y Y N Y Y Y Y N Y
C-4 Y Y Y N N
C-5 Y Y Y N N N
C-6 Y Y Y Y Y Y Y Y Y
C-7 Y Y Y Y Y N Y N Y
C-8 Y Y Y Y Y N Y N Y
C-9 Y Y Y Y Y Y N
C-IO Y N Y Y N Y Y N N

AC II ON,. 1 X X X X X X X X X X
S

1 0000 TEST-016 l 005001005
0001 00100200]004ElSS ·

(-I Y Y y Y
(-2 N Y Y Y
(-] N Y Y
(-4 N Y
C-5 N

ACTION-l X X X X X
S

1 0000 TEST-Ol7 l 005001005
0001 00100200]004ElSS

(-I Y y Y Y
(-2 Y Y Y N
(-] y y N
C-4 Y N
C-5 N -.

ACTION-l X X X X X
S

1 0000 TEST-018 ICHOISE-PICKI l 010011010
0001 00IOO200]004005006001008009ElS$

Cl Y Y Y N Y Y Y Y Y
C2 Y Y Y Y Y Y Y Y Y
C3 Y Y N Y Y Y Y N Y
C4 Y Y Y N N
C5 Y Y y N N
C6 Y Y Y Y Y Y Y Y Y
C7 Y Y Y Y Y N Y N Y
C8 Y Y Y Y Y N Y N Y
C9 Y Y Y Y Y Y N
CI0 Y N Y Y N 'y Y N ~

Al X X X X X X X X X X

42
'-'
44
"5 X X

"6 X X
4 1 X X

•• X X X X
Ai X X X X
toiD X X X X
All X X

S
91i=1X

