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PREFACE 

This Memorandum is the fourth in a series of RAND publications 

on decision tables for the Air Force. S. L. Pollack and K. R. Wright, 

Data Description for DETAB-X (Decision Table, Experimental), RM-30l0-PR, 

March 1962, described the specifications for data ~escription for DETAB-X, 

an experimental decision table computer language. S. L. Pollack, 

Analysis of Decision Rules in Decision Tables, RM-3669-PR, May 1963, 

developed a theory for decision tables and described how to analyze them 

for completeness, redundancy and contradiction of decision rules. S. L. 

Pollack, How to Build and Analyze Decision Tables, P-2829, November 1~63, 

described the initial steps one must take to develop decision tables, 

a method for combining pairs of decision rules. and again how to 

analyze them for completeness, redundancies and contradictions. 

Like the earlier publications, this Memorandum is one more step 

toward the goal of developing the decision tables as a useful tool 

for Air Force management. But unlike the others, it is intended 

primarily for Air Force data processing specialists -- system analysts 

and computer programmers. 
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SUMMARY 

Decision tables are useful for describing a set of complex deci

sion rules based on given sets of conditions. Algorithms that can 

efficiently convert the tables into computer programs will extend the 

usefulness of decision tab le s to computer users. This Memorandum 

describes two such algorithms, based on work done by M. S. Montalbano 

and extended here to handle dashes and ELSE-decision rules. The first 

algorithm minimizes the computer storage space required for the 

resultant program, the second minimizes computer running time. Dur

ing the conversion process, both pinpoint any contradictions or re

dundancies among the rules in a table. 

A necessary adjunct to minimizing computer storage or running 

time is the allowable reduction of the number of rules in a decision 

table. This Memorandum describes a technique to effect this reduction 

for pairs, triplets and quadruplets of rules. The system analyst will 

find this method most helpful for pairs, and generally unprofitable for 

n-tuplets greater than three. The technique can be done manually or 

accomp lished by the computer as a prelude to executing one of the two 

algorithms. 
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1. INTRODUCTION 

The usefulness of decision tables for writing computer source 

programs can be increased by the availability of algorithms that can 

* convert any limited-entry decision table into a sequence of indivi-

dual comparisons and the series of actions associated with both branches 

of each comparison. This paper describes two such algorithms. One 

minimizes the number of comparison instructions required in the pro

gram, thus reducing the computer storage space required. The other 

minimizes the number of comparison instruction executions, thus reduc

ing the total computer running time. 

The availability of these algorithms gives the computer programmer 

a choice between the two for each of his decision tables. For example, 

the programmer might specify the first algorithm for those tables 

executed only a few times, thus possibly sacrificing some computer 

running time to reduce t he amount of memory storage required for his 

program. For those tables used in a tight loop, i.e., executed many 

times , he will probably use the second algorithm to cut down computer 

running time at the possible sacrifice of using additional computer 

storage. 

Before converting the decision table to individual comparisons 

and the series of actions associated with each branch, the number of 

written decision rules that result in the same series of actions must 

** be reduced to a minimum. As an example, 

R, R2 R3 R4 

C, Y Y N N 

C2 N Y Y N 

C3 Y H Y Y 

Al x - - x 

A2 - x x -

* For a description of decision table structure, see S. L. Pollack, 
Analysis of Decision Rules in Decision Tables, The RAND Corporation, 
RM-3669-PR, May 1963. 

** For consolidation of two rules with identical actions, see S. L. 
Pollack, How to Build and Analyze Decision Tables, The RAND Gorpora
tOion, P-2829, November 1963. 
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is equivalent to 

R". R2 R3 

C, - y H 

C:2 H Y Y 

C3 Y N Y 

A1 x - -

A2 - x x 

This latter table would then be converted to an object program by the 

algorithms described later in this paper. 

Section II discusses three procedures for reducing the number of 

written rules in a decision table. And Section III explains the 

algorithms for converting the decision tables to computer programs. \, . 
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II. PROCEDURES FOR REDUCING THE NUMBER OF WRITTEN 
DECISION RULES IN A DECISION TABLE 

After a system analyst has described the individual decision 

rules, he can reduce the number of written rules by grouping toget~er 

those that specify the same set of actions, and applying to each group 

the following procedures. 

First, any redundant rules must be eliminated. This is done by 

locating those pairs that do not have at least one Y, N pair in one of 

* their rows. In such cases (A), the two rules are decomposed (B); the 

redundant rule(s) eliminated (C), i.e. 2b duplicates lb; and the re

maining rules compressed, if possible (D). 

(A) (B) (C) (D) 

- - - - -
RULE RULE RlIl.,E RULE 

2 1B 2. 2s 2c 20 1A 1a 2A 2c 20 1 2A.2c 20 

y Y Y Y Y Y Y Y 
N N H Y H Y N 1- y y y y y y y y 

N II Y Y H H Y N 
N Y H N N N H Y N H N N - II II 

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 
N N H Y N N Y N N Y H Y H - Y , - ... . ... ... 

To arrive at step D, the system analyst checks all pairs of rules 

in the group. A pair of rules is equivalent to (c.an be combined into) 

one rule if the pair agrees in every row but one, and if, in that row, 

one rule contains a Y and the other contains an N. Then the rule is 

set up like the following example, with the same entry as the original 

pair in corresponding rows, and a dash in the dissimilar row. 

(A) [ ~ ], [ ~] . [ ~ ] 
(B) 

* Pollack, Analysis of Decision Rules in Decision Tables. 
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For those interested in further reducing the number of written 

rules, the following procedure is offered for combining into pai.rs, 

triplets of rules that specify the same series of actions. In many 

cases, reducing three rules to two will not be worth the additional 

effort i.nvolved. However, the algorithms for converting decision 

ta.bles to optimal object program do require that the table contai.n 

the mini.mum number of written rules. 

The procedure for converting triplets to pairs first locates 

pairs, one of which can be split into two rules, by virtue of a dash 

row. Two cases are then possible. 

(1) One of the rules resulting from the split can combi.ne 
with the second rule of the original pair. The other 
rule of the split can be combined wi.th a third rule , 
if available. 

(2) One of the rules resulting from the split can combine 
with the second rule of the ori.ginal pair, and this 
resultant rule can be combined with a third rule if , 
available. 

Case 1 can be achieved by executing the following procedure. 

With each rule that has one or more dsshes, test every other rule in 

the table to locate a second rule that agrees with i.t in every row 

but one (excludi.ng the dash row). In that row of disagreement one 

rule must centain a Y, the other an N. In the dash row, the second 

rule muat contsin either Y or N, but no dash. 

Then search among the remaining rules for a third rule that di.s

agrees with the second rule in the da.sh row, one havi.ng a Y, the other 

a.n N. Compare the first and third rules. If they agree in every row 

but one (excluding the dash row), and if, in that row, there is a Y, 

N pair, then the three rules are equivalent and can be combined into 

two rules (A in the following example). Split the first rule into 

two (B), and combin.e the appropriate pairs (e). 
(A) (B) (e) 
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Case 2 can be achieved by executing the following procedure. 

Agai.nst each rule that has one or more dashes, test every other rule 

in the table to locate a second rule that agrees with it in every row 

but one (excluding the dash row). In that row of disagreement one 

must contain a Y, the other an N. The second rule must cont~in either 

a Y or N in the dash row. 

Then search among the remaining rules for a third rule that 

agrees with the second rule in the dash row, that contains a dash in 

the row where the Y, N pair appeared for the first and second rules, 

and that contains a Y, N pair in conjunction with the first rule, 

agreeing everywhere else (A in the following example). Split the 

first rule into two rules (B). Combine one of them with the second 

rule (C), and combine the resultant rule with the third rule (D). 

(A) (B) (C) (D) 

Note that in reduci.ng triplets to pairs, a pair was required that 

met all the requirements for combining two into one, except that in 

one of the rows that should have had total agreement, one rule had a 

dash, the other a Y or N. In reducing quadruplets to triplets, again 

it is necessary to meet all the requirements for converting triplets 

to pairs, except that one of the triplets will have a dash instead of 

the Y or N that should be there. This rule can be split in two and 

one half joined to a fourth rule. This searching can be done for any 

n-tuplet. Generally, however, the system analyst will not find it 

profitable to attempt to reduce n-tuplets greater than three. In 

most cases the analyst will be satisfied to reduce pairs of rules to 

a single rule. 
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III. ALGORITJ:nIS FOR CONVERTIm LDIITED-KNTRY DECISION 
TABLES TO COMPUTER PROGRAMS 

To economize in writing this section, the author omitted the 

actions in the decision tables and in the flow charts that follow. 

Each rule number (RI , R
2

, R
3

, ••• ) shown in the flow charts can be 

replaced by the seri.es of actions specified for each decision rule. 

In addition, any rules not specified or implied are assumed to be 

part of an ELSE-Rule not shown in the table. 

To help the reader follow the two algorithms described below, we 

first present a general description of how to convert the decision 

table to flow chart form. 

One row of the original decision table is selected -- t he criterion 

for selection differs for the two algorithms.* The condition in that ~. 
row becomes the first comparison of the flow chart. The original 

decision table is then decomposed into two subtables (containing one 

les s row), or one sub table and one rule, or two rule s, and each of 

these is associated with each branch of the comparison. 

A row is then selected from each of these subtables and its con

dition becomes attached to the previously selected condition, as will 

be explained later. This process is con&inued unti l each rule of the 

original decision table or an ELSE-Rule appears as one of the branches 

of a condition, or a sub table indicates that the original table con

tained redundant or contradictory rules. 

We now describe the two algorithms, but offer no proof that they 

accomplish their ob j ectives. Hopefully, others will develop the 

necessary proofs or offer counter-examples to prove that the algorithms 

fail. 

* The two algorithms are based upon "the quick rule" and "delayed 
rule" methods described in M. S. Montalbano's "Tables, Flow Charts, 
and Program Logic," IBM Systems Journal, September 1962. This M.emo
randum extends these to handle dashes and ELSE-decision rules. 

I 
1 
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ALGORITHM I 

Objective 

To convert a decision table to a computer program and have this 

program use the minimum number of storage locations. 

Steps in the Algorithm 

Step 1. Check for redundancy or contradiction. If at any stage, 

a pair of rules does not contain at least one Y, N pair in any of its 

rows, redundancy or contradiction exists. Such is the case for Rules 

1 and 2 below. 

Rl RZ 

OJ - N 

C2 N N 

Depending on whether or not these rules have identical actions, 

they either contradict each other or contain redundant rule(s). If 

the actions for Rules 1 and 2 are the same, Rule 2 is redundant. If 

the actions for Rul es 1 and 2 are different, the rules contradict each 

other. 

Rather than check for redundancy or contradiction at every stage, 

it is better to wait until a tab l e is reduced to one condition. 

If there are more than two rules for a table with only one condition, 

contradiction or redundancy exists. Where the actions for Rule I 

differ from those of Rules 2 and 3, then either 2 or 3 is contradictory. 

Where t he actions of Rule 1 are the same as those of Rules 2 or 3, 

then either 2 or 3 is redundant. 
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Step 2. Determine those rows that have a minimum dash-count. A 

dash that appears in a rule (i.e. column) that contalns r dashes is 
r r 

counted as 2 dashes. For each rule, we denote the 2 as the column-

count. In each row, the sum of the column-counts corresponding to the 

dashes in that row is denoted as dash-count. A row's dash-count ls the 

sum of the column counts of those rules that have dash entries In the 

row. This is lliustrated in the following example, in which Row 2 has 

the minimum dash-count. 

R, R2 % OASH-COlllT 

C, H - Y 4-

C2 N Y - 2 

C3 - Y N 4-

C4 - - rl B 

Step 3. If two or more rows have a minimum dash-count, select 

that row that has the maximum delta, which is the absolute value of 

the difference of the Y-count and the N count. The Y-count is the sum 

of t he column-counts corresponding to the Y's in the row. The N-count 

is similar. 

COllHl-COUIT - " 2 0 2 2 2 

R, R2 1 R3 R4 R5 R6 DASH-COlJIT DaTA 

C, YiN , N rl N - 2 5 

~ Y 
, 

N Y - Y N 2 0 

~ N N N Y - Y 2 0 

C4 N - N rI Y Y 2 0 

All rows in the example have the minimum dash-count, so we check their 

deltas. Since Cl has the maximum delta, it is selected. The selected 

row is called k. In the following example C2 = C
k

" 
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ca.lHl-COllfT - 2 

R, R2 R3 DASH-COllff oaTA 

C, - Y rl 2 

C2 Y Y Y 0 4-

C3 Y rl rl 0 0 

Step 4. Discriminate on the condition in Row k; call it Ck • 

This discrimination has two branches, each of which leads to a sub

table contalning one or more rules, wlth one row less than the original 

table (Row k is deleted). 

As illustrated below, the Y-Branch leads to a subtable containlng 

all rules from the previous table that had a Y in row k. The N-branch 

worka in a simllar fashion. In addition, both subtables contain those 

rules that had a dash in row k of the previous table. 

R, R2 R3 

C, - Y N 

~ Y N - .... c
k 

~ Y - N . 

R, R3 R2 R3 

C, - H 
Yf ck 

, N 
C, y rl 

'" J 
~ y N c3 - rl 

Step 5. If a branch leads to a subtable containing more than one 

rule, go back to Step 1. 

Step 6a. If a branch leads to a subtable containing exactly one 

rule, and if that rule contains all dashes, then replace the subtable 

with the rule itself. 

rl 
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This becomes: 

y N 

Step 6b. If a branch leads to a subtable with one rule, and that 

rule contains one or more written dashes but does not contain all 

dashes, choose as Row k any row that has no dash. The selected branch 

will indicate a subtable with one less row in it. The opposing branch 

of the selected row will indicate an ELSE-Rule . 

r-
R6 

c3 - yr'-,N 

.Ick C7 Y 
, c5 J 

Cs N 

R6 

C3 
y 

C7 
II 

ELSE - .. • 

Step 6c. If a branch doesn't lead ~ a subtable, it l eads to an 

ELSE-Rule . 

R, R2 R3 R. R5 

C, Y Y Y Y Y 

~ Y ~ Ij N Y 

c3 
y y y N N 

c. - Y N N -

Rl R2 R3 R4 RS 

~ Y N H N Y Yf C, 
,\N 

EL 

c3 y y Y H 
\.. ./ 

N 

SE 

C4 - Y N N -

Step 6d. If a branch leads to a subtable containing only one rule, 

and that rule contains only one condition whose value is Y (or N), then 

one branch of the discrimination on that condition leads to the rule, 

-11-

the other branch leads to the ELSE-Rule. 

y 
)"N:;...._- ELSE 

Y 

We illustrate the procedure for Algorithm 1 in Fig. 1. Rules not 

specified in the written table are assumed to be contained in an ELSE

Rule. 

ALGORITHM 2 

Objective 

To convert a decision table to a computer program whose compari

sons can be executed in minimum time. 

Assumptions 

(1) Any rules not specified or implied in the table are assumed 
to be part of an ELSE-RULE (not necessarily shown in the table). 

(2) System analysts can provide estimates of how often each rule 
in the table will be satisfied by an average batch of trans
actions to be tested. 

(3) Relatively few transactions will satisfy the ELSE-Rule. 

Definitions 

(1) Again, column -count equals 2r where r is the number of dashes 
in a column. 

(2) Estimated relative frequency equals f. 

(3) Weighted dash-count (WDC) for any row is the sum of the pro
ducts of f and the column-counts for those columns that con
tain a dash in that row. 

(4) Dash-count for any row is the sum of the column-counts for 
that row. 

(5) Again, delta is the absolute value of the difference of the 
Y-count and the N-count. 
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COllJ1H-COlIIT - 2 • • 2 -
R-J R2 R3 R" D.ASH-COUIT 

C, Y II - - 6 

C2 H - Y N 4 

C3 Y - - N 8 
, 

C. - N Y Y 2 
COLlHf-rollfT ~ , " Ca.lJ'Ij-rollfT- , • 2 

R, R3 R" OASII-COlIfT R, R2 OASH-rollfT 

C, 

~ 
C3 

-
~ 

C, -
C3 -

t 

y - - 6 
y( 

C4 ,tl C, Y N 
\. .J 

~ y ~ 0 Ck ~ " -
Y - ~ " C3 Y -

1 -
y £ ~ , ~ 

R, R" R, Yi' '\ N 

~'- f- C, Y - C2 i N Ck '-
C, f-

C3 Y N ~k C3 Y 

-.t .1 
yC 

C3 ') yC ~ ) N 
II 

R, R4 ElSE R, 

C, Y C, - ~ 
y 

J C, C3 )N " Y N Y 

ElSE ElSE 

Fig. 1 -- Tran sforma tion of a Deci~on Tab l e to a Series of 
Comparisons by Algorithm 1. 

The flow chart for 
this decision table 
would be. 

ElSE 

0 Ck 

4 

" 
r--
~ 

Cz -
C3 -

t 
" 

ElSE 
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The above definitions are illustrated in the following example. 

COllHl-rolM" - 2 2 2 1 
f • 50 30 15 5 

R, R2 R3 R4 we DELTA OASH-C<IlIlT 

C, - y - tl 130 , 4 

C2 Y N Y N {) , 0 

C3 N - Y Y 60 , Z 

Steps in the Algorithm 

Step 1. Same as for Algorithm 1. 

Step 2. Determine those rows that have a minimum weighted dash

count. 

Step 3. If two or more rows have a minimum WDC, select from 

among them the row that has the minimum delta. If among these there 

stil l e.xists two or more rows, select the row with the minimum dash

count. If there are more than two such rows, select anyone of them. 

The test on dash-count does not affect computer running time, but can 

save -memory space without adding to computer running time. 

COLLt1U-courr · " " " 4 
r-4O 20 20 20 

R, R2 R3 R4 we oaTA OASH-COlM" 

C, - y N Y 150 4 

~ Y - N - '50 0 8 

S Y N - - '50 0 8 

c. y - - N '50 0 B 

Cs - y y N '50 " 

Since a ll rows in t he example have the minimum weighted dash-count, 

test their deltas. Since C
2

, C
3

, and C
4 

have the minimum delta, test 

their dash-counts. Since all three eligible rows (2,3, and 4) have 

the minimum dash-count , select anyone of them as Ck . 

Steps 4, 5 and 6. These steps are t he same as for Algorithm l. 

We i llustrate the procedure for Algorithm 2 in Fig. 2. 
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CI1Ltf1-COllfT - 2 4- 4- 2 
t - 50 ZS 10 10 5 

Rl R2 R3 R4- as \',{)C 

Cl Y N - - 60 Clc 

Cz N - Y " 100 

~ Y - - N 14-0 
OI1lffi~COlJfT - 2 2 1 - N Y Y 100 CI1I.WI-CGLtIT - 4- 2 

r = 50 10 10 
C4 t ~ 25 10 

C2 
C3 

C4 

I C3 

I C4 

yC 

~ 
I C3 I - I 

t 

Rl R3 R4 IoOC liz R3 

II Y II 0 C!c Cz - Y 
Y r , II 

Y - N 20 
\. 

Cl 
./ ~ - -

- Y Y 100 C4 II Y 

OI1. -COllfT = 2 1 OI1 . -COllfT - 2 , 
r - 50 10 r · 10 10 

"R 3 R, R4 WC R3 R4 we 
~ Y /I 0 Cic C2 Y H 0 - YJ l'l Ie Yr ,N 

\. 
C2 

./ \. 
C4 

./ Y Ck 
C4 - Y '00 C3 - H 20 

1 1 1 
C4 )N C3 ) tl y C Cz 

r£ ~ r£' ~ 
aBE ~ 

~I - I C4 Y j C3 1 - C3 II 

Rt C4 t C3 
Y U Y N 

4 a.SE a. 

Fig . 2 - - Tran sformation of a Deci sion Table to a Ser ie s of 
Comparisons by Algorithm 2. 

The flow chart for 
t his decision t able 
would be : 

1 
10 

R4 we 
N 100 

N 120 

Y 0 C}.; 

~ 2 

C2 -
C3 -

I, .J 
RZ 
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Note: For t he transformation shown in Fig. 1 , a batch of 100 

transactions t hat satisfy Rules 1-4 in the proportion 50, 25, 10, 10, 

respectively (and 5 f or ELSE) wil l requ ire a minimum 318 comparison 

executi ons, for t he transformation shown i n Fig. 2, the transactions 

wi l l require a minimum 288 comparison executions. See Table 1. 

Tab le 1 

COMPARISON EXECUTIONS OF FIGS. 1 AND 2 

Rule 
No. Fig. 1 Fig. 2 

a I b a I b 

1 4 x 50 = 200 3 x 50 = 150 
2 2 x 25 = 50 2 x 25 = 50 
3 2 x 10 = 20 3 x 10 = 30 
4 3 x 10 = 30 4 x 10 = 40 

ELSE (3.6fx 5 = 18 (3.6)x 5 = 18 

Total 318 288 

a. number of comparisons 
b. expect ed frequency 
c. average number of comparisons for 3 ELSE 

branches 


