
MEMORANDUM
RM-4020-PR
MAY 1964

PREPARED FOR:

* , c7 .:J

• :A (r...t-z:

~
/J' • , ,(.

'1'1

CONVERSION OF LIMITED-ENTRY
DECISION TABLES TO

COMPUTER PROGRAMS

Solomon L. Pollack

UNITED STATES AIR FORCE PROJECT RAND

~-----------~R~nD~
SA N TA MO N iCA · CA lI FOR NIA---------j

.

MEMORANDUM

RM-4020-PR
MAY 1964

CONVERSION OF LIMITED-ENTRY
DECISION TABLES TO

COMPUTER PROGRAMS
SolOJDon L. Pollack

This research is sponsored by the United States Air Force under Project RA D
contract o. AF 49(638)·700 monitored hy the Directorate of Development Planning,
Deputy Chief of Staff, Research and Development, Hq USAF. Views or conclusions
contained in this Memorandum should not be interpreted as representing the official
opinion or policy of the United States Air Force.

DDC AVAILABILITY i OTICE
Qualified requesters may obtain copies of this report from the Defense Documentation
Center (DDC).

-------------------~Q~nD~

-11i-

PREFACE

This Memorandum is the fourth in a series of RAND publications

on decision tables for the Air Force. S. L. Pollack and K. R. Wright,

Data Description for DETAB-X (Decision Table, Experimental), RM-30l0-PR,

March 1962, described the specifications for data ~escription for DETAB-X,

an experimental decision table computer language. S. L. Pollack,

Analysis of Decision Rules in Decision Tables, RM-3669-PR, May 1963,

developed a theory for decision tables and described how to analyze them

for completeness, redundancy and contradiction of decision rules. S. L.

Pollack, How to Build and Analyze Decision Tables, P-2829, November 1~63,

described the initial steps one must take to develop decision tables,

a method for combining pairs of decision rules. and again how to

analyze them for completeness, redundancies and contradictions.

Like the earlier publications, this Memorandum is one more step

toward the goal of developing the decision tables as a useful tool

for Air Force management. But unlike the others, it is intended

primarily for Air Force data processing specialists -- system analysts

and computer programmers.

-v-

SUMMARY

Decision tables are useful for describing a set of complex deci

sion rules based on given sets of conditions. Algorithms that can

efficiently convert the tables into computer programs will extend the

usefulness of decision tab le s to computer users. This Memorandum

describes two such algorithms, based on work done by M. S. Montalbano

and extended here to handle dashes and ELSE-decision rules. The first

algorithm minimizes the computer storage space required for the

resultant program, the second minimizes computer running time. Dur

ing the conversion process, both pinpoint any contradictions or re

dundancies among the rules in a table.

A necessary adjunct to minimizing computer storage or running

time is the allowable reduction of the number of rules in a decision

table. This Memorandum describes a technique to effect this reduction

for pairs, triplets and quadruplets of rules. The system analyst will

find this method most helpful for pairs, and generally unprofitable for

n-tuplets greater than three. The technique can be done manually or

accomp lished by the computer as a prelude to executing one of the two

algorithms.

-vi-

CONTENTS

PREFACE

SUMMARY

Section
I. INTRODUCTION

II. PROCEDURES FOR REDUCING THE NUMBER OF WRITTEN
DECISION RULES IN A DECISION TABLE •

III. ALGORITHMS FOR CONVERTING LIMITED-ENTRY
DECISION TABLES TO COMPUTER PROGRAMS

Algorithm I •••••
Objective .••••
Steps in the Algorithm

Algorithm 2 • •
Objective
Assumptions
Definitions
Steps in the Algorithm

iii

v

1

3

6
7
7
7

11
11
11
11
13

-1-

1. INTRODUCTION

The usefulness of decision tables for writing computer source

programs can be increased by the availability of algorithms that can

* convert any limited-entry decision table into a sequence of indivi-

dual comparisons and the series of actions associated with both branches

of each comparison. This paper describes two such algorithms. One

minimizes the number of comparison instructions required in the pro

gram, thus reducing the computer storage space required. The other

minimizes the number of comparison instruction executions, thus reduc

ing the total computer running time.

The availability of these algorithms gives the computer programmer

a choice between the two for each of his decision tables. For example,

the programmer might specify the first algorithm for those tables

executed only a few times, thus possibly sacrificing some computer

running time to reduce t he amount of memory storage required for his

program. For those tables used in a tight loop, i.e., executed many

times , he will probably use the second algorithm to cut down computer

running time at the possible sacrifice of using additional computer

storage.

Before converting the decision table to individual comparisons

and the series of actions associated with each branch, the number of

written decision rules that result in the same series of actions must

** be reduced to a minimum. As an example,

R, R2 R3 R4

C, Y Y N N

C2 N Y Y N

C3 Y H Y Y

Al x - - x

A2 - x x -

* For a description of decision table structure, see S. L. Pollack,
Analysis of Decision Rules in Decision Tables, The RAND Corporation,
RM-3669-PR, May 1963.

** For consolidation of two rules with identical actions, see S. L.
Pollack, How to Build and Analyze Decision Tables, The RAND Gorpora
tOion, P-2829, November 1963.

-2-

is equivalent to

R". R2 R3

C, - y H

C:2 H Y Y

C3 Y N Y

A1 x - -

A2 - x x

This latter table would then be converted to an object program by the

algorithms described later in this paper.

Section II discusses three procedures for reducing the number of

written rules in a decision table. And Section III explains the

algorithms for converting the decision tables to computer programs. \, .

-3-

II. PROCEDURES FOR REDUCING THE NUMBER OF WRITTEN
DECISION RULES IN A DECISION TABLE

After a system analyst has described the individual decision

rules, he can reduce the number of written rules by grouping toget~er

those that specify the same set of actions, and applying to each group

the following procedures.

First, any redundant rules must be eliminated. This is done by

locating those pairs that do not have at least one Y, N pair in one of

* their rows. In such cases (A), the two rules are decomposed (B); the

redundant rule(s) eliminated (C), i.e. 2b duplicates lb; and the re

maining rules compressed, if possible (D).

(A) (B) (C) (D)

- - - - -
RULE RULE RlIl.,E RULE

2 1B 2. 2s 2c 20 1A 1a 2A 2c 20 1 2A.2c 20

y Y Y Y Y Y Y Y
N N H Y H Y N 1- y y y y y y y y

N II Y Y H H Y N
N Y H N N N H Y N H N N - II II

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
N N H Y N N Y N N Y H Y H - Y , -

To arrive at step D, the system analyst checks all pairs of rules

in the group. A pair of rules is equivalent to (c.an be combined into)

one rule if the pair agrees in every row but one, and if, in that row,

one rule contains a Y and the other contains an N. Then the rule is

set up like the following example, with the same entry as the original

pair in corresponding rows, and a dash in the dissimilar row.

(A) [~], [~] . [~]
(B)

* Pollack, Analysis of Decision Rules in Decision Tables.

-4-

For those interested in further reducing the number of written

rules, the following procedure is offered for combining into pai.rs,

triplets of rules that specify the same series of actions. In many

cases, reducing three rules to two will not be worth the additional

effort i.nvolved. However, the algorithms for converting decision

ta.bles to optimal object program do require that the table contai.n

the mini.mum number of written rules.

The procedure for converting triplets to pairs first locates

pairs, one of which can be split into two rules, by virtue of a dash

row. Two cases are then possible.

(1) One of the rules resulting from the split can combi.ne
with the second rule of the original pair. The other
rule of the split can be combined wi.th a third rule ,
if available.

(2) One of the rules resulting from the split can combine
with the second rule of the ori.ginal pair, and this
resultant rule can be combined with a third rule if ,
available.

Case 1 can be achieved by executing the following procedure.

With each rule that has one or more dsshes, test every other rule in

the table to locate a second rule that agrees with i.t in every row

but one (excludi.ng the dash row). In that row of disagreement one

rule must centain a Y, the other an N. In the dash row, the second

rule muat contsin either Y or N, but no dash.

Then search among the remaining rules for a third rule that di.s

agrees with the second rule in the da.sh row, one havi.ng a Y, the other

a.n N. Compare the first and third rules. If they agree in every row

but one (excluding the dash row), and if, in that row, there is a Y,

N pair, then the three rules are equivalent and can be combined into

two rules (A in the following example). Split the first rule into

two (B), and combin.e the appropriate pairs (e).
(A) (B) (e)

-5-

Case 2 can be achieved by executing the following procedure.

Agai.nst each rule that has one or more dashes, test every other rule

in the table to locate a second rule that agrees with it in every row

but one (excluding the dash row). In that row of disagreement one

must contain a Y, the other an N. The second rule must cont~in either

a Y or N in the dash row.

Then search among the remaining rules for a third rule that

agrees with the second rule in the dash row, that contains a dash in

the row where the Y, N pair appeared for the first and second rules,

and that contains a Y, N pair in conjunction with the first rule,

agreeing everywhere else (A in the following example). Split the

first rule into two rules (B). Combine one of them with the second

rule (C), and combine the resultant rule with the third rule (D).

(A) (B) (C) (D)

Note that in reduci.ng triplets to pairs, a pair was required that

met all the requirements for combining two into one, except that in

one of the rows that should have had total agreement, one rule had a

dash, the other a Y or N. In reducing quadruplets to triplets, again

it is necessary to meet all the requirements for converting triplets

to pairs, except that one of the triplets will have a dash instead of

the Y or N that should be there. This rule can be split in two and

one half joined to a fourth rule. This searching can be done for any

n-tuplet. Generally, however, the system analyst will not find it

profitable to attempt to reduce n-tuplets greater than three. In

most cases the analyst will be satisfied to reduce pairs of rules to

a single rule.

-6-

III. ALGORITJ:nIS FOR CONVERTIm LDIITED-KNTRY DECISION
TABLES TO COMPUTER PROGRAMS

To economize in writing this section, the author omitted the

actions in the decision tables and in the flow charts that follow.

Each rule number (RI , R
2

, R
3

, •••) shown in the flow charts can be

replaced by the seri.es of actions specified for each decision rule.

In addition, any rules not specified or implied are assumed to be

part of an ELSE-Rule not shown in the table.

To help the reader follow the two algorithms described below, we

first present a general description of how to convert the decision

table to flow chart form.

One row of the original decision table is selected -- t he criterion

for selection differs for the two algorithms.* The condition in that ~.
row becomes the first comparison of the flow chart. The original

decision table is then decomposed into two subtables (containing one

les s row), or one sub table and one rule, or two rule s, and each of

these is associated with each branch of the comparison.

A row is then selected from each of these subtables and its con

dition becomes attached to the previously selected condition, as will

be explained later. This process is con&inued unti l each rule of the

original decision table or an ELSE-Rule appears as one of the branches

of a condition, or a sub table indicates that the original table con

tained redundant or contradictory rules.

We now describe the two algorithms, but offer no proof that they

accomplish their ob j ectives. Hopefully, others will develop the

necessary proofs or offer counter-examples to prove that the algorithms

fail.

* The two algorithms are based upon "the quick rule" and "delayed
rule" methods described in M. S. Montalbano's "Tables, Flow Charts,
and Program Logic," IBM Systems Journal, September 1962. This M.emo
randum extends these to handle dashes and ELSE-decision rules.

I
1

-7-

ALGORITHM I

Objective

To convert a decision table to a computer program and have this

program use the minimum number of storage locations.

Steps in the Algorithm

Step 1. Check for redundancy or contradiction. If at any stage,

a pair of rules does not contain at least one Y, N pair in any of its

rows, redundancy or contradiction exists. Such is the case for Rules

1 and 2 below.

Rl RZ

OJ - N

C2 N N

Depending on whether or not these rules have identical actions,

they either contradict each other or contain redundant rule(s). If

the actions for Rules 1 and 2 are the same, Rule 2 is redundant. If

the actions for Rul es 1 and 2 are different, the rules contradict each

other.

Rather than check for redundancy or contradiction at every stage,

it is better to wait until a tab l e is reduced to one condition.

If there are more than two rules for a table with only one condition,

contradiction or redundancy exists. Where the actions for Rule I

differ from those of Rules 2 and 3, then either 2 or 3 is contradictory.

Where t he actions of Rule 1 are the same as those of Rules 2 or 3,

then either 2 or 3 is redundant.

-8-

Step 2. Determine those rows that have a minimum dash-count. A

dash that appears in a rule (i.e. column) that contalns r dashes is
r r

counted as 2 dashes. For each rule, we denote the 2 as the column-

count. In each row, the sum of the column-counts corresponding to the

dashes in that row is denoted as dash-count. A row's dash-count ls the

sum of the column counts of those rules that have dash entries In the

row. This is lliustrated in the following example, in which Row 2 has

the minimum dash-count.

R, R2 % OASH-COlllT

C, H - Y 4-

C2 N Y - 2

C3 - Y N 4-

C4 - - rl B

Step 3. If two or more rows have a minimum dash-count, select

that row that has the maximum delta, which is the absolute value of

the difference of the Y-count and the N count. The Y-count is the sum

of t he column-counts corresponding to the Y's in the row. The N-count

is similar.

COllHl-COUIT - " 2 0 2 2 2

R, R2 1 R3 R4 R5 R6 DASH-COlJIT DaTA

C, YiN , N rl N - 2 5

~ Y
,

N Y - Y N 2 0

~ N N N Y - Y 2 0

C4 N - N rI Y Y 2 0

All rows in the example have the minimum dash-count, so we check their

deltas. Since Cl has the maximum delta, it is selected. The selected

row is called k. In the following example C2 = C
k

"

-9-

ca.lHl-COllfT - 2

R, R2 R3 DASH-COllff oaTA

C, - Y rl 2

C2 Y Y Y 0 4-

C3 Y rl rl 0 0

Step 4. Discriminate on the condition in Row k; call it Ck •

This discrimination has two branches, each of which leads to a sub

table contalning one or more rules, wlth one row less than the original

table (Row k is deleted).

As illustrated below, the Y-Branch leads to a subtable containlng

all rules from the previous table that had a Y in row k. The N-branch

worka in a simllar fashion. In addition, both subtables contain those

rules that had a dash in row k of the previous table.

R, R2 R3

C, - Y N

~ Y N - c
k

~ Y - N .

R, R3 R2 R3

C, - H
Yf ck

, N
C, y rl

'" J
~ y N c3 - rl

Step 5. If a branch leads to a subtable containing more than one

rule, go back to Step 1.

Step 6a. If a branch leads to a subtable containing exactly one

rule, and if that rule contains all dashes, then replace the subtable

with the rule itself.

rl

-lO-

This becomes:

y N

Step 6b. If a branch leads to a subtable with one rule, and that

rule contains one or more written dashes but does not contain all

dashes, choose as Row k any row that has no dash. The selected branch

will indicate a subtable with one less row in it. The opposing branch

of the selected row will indicate an ELSE-Rule .

r-
R6

c3 - yr'-,N

.Ick C7 Y
, c5 J

Cs N

R6

C3
y

C7
II

ELSE - .. •

Step 6c. If a branch doesn't lead ~ a subtable, it l eads to an

ELSE-Rule .

R, R2 R3 R. R5

C, Y Y Y Y Y

~ Y ~ Ij N Y

c3
y y y N N

c. - Y N N -

Rl R2 R3 R4 RS

~ Y N H N Y Yf C,
,\N

EL

c3 y y Y H
\.. ./

N

SE

C4 - Y N N -

Step 6d. If a branch leads to a subtable containing only one rule,

and that rule contains only one condition whose value is Y (or N), then

one branch of the discrimination on that condition leads to the rule,

-11-

the other branch leads to the ELSE-Rule.

y
)"N:;...._- ELSE

Y

We illustrate the procedure for Algorithm 1 in Fig. 1. Rules not

specified in the written table are assumed to be contained in an ELSE

Rule.

ALGORITHM 2

Objective

To convert a decision table to a computer program whose compari

sons can be executed in minimum time.

Assumptions

(1) Any rules not specified or implied in the table are assumed
to be part of an ELSE-RULE (not necessarily shown in the table).

(2) System analysts can provide estimates of how often each rule
in the table will be satisfied by an average batch of trans
actions to be tested.

(3) Relatively few transactions will satisfy the ELSE-Rule.

Definitions

(1) Again, column -count equals 2r where r is the number of dashes
in a column.

(2) Estimated relative frequency equals f.

(3) Weighted dash-count (WDC) for any row is the sum of the pro
ducts of f and the column-counts for those columns that con
tain a dash in that row.

(4) Dash-count for any row is the sum of the column-counts for
that row.

(5) Again, delta is the absolute value of the difference of the
Y-count and the N-count.

-12-

COllJ1H-COlIIT - 2 • • 2 -
R-J R2 R3 R" D.ASH-COUIT

C, Y II - - 6

C2 H - Y N 4

C3 Y - - N 8
,

C. - N Y Y 2
COLlHf-rollfT ~ , " Ca.lJ'Ij-rollfT- , • 2

R, R3 R" OASII-COlIfT R, R2 OASH-rollfT

C,

~
C3

-
~

C, -
C3 -

t

y - - 6
y(

C4 ,tl C, Y N
\. .J

~ y ~ 0 Ck ~ " -
Y - ~ " C3 Y -

1 -
y £ ~ , ~

R, R" R, Yi' '\ N

~'- f- C, Y - C2 i N Ck '-
C, f-

C3 Y N ~k C3 Y

-.t .1
yC

C3 ') yC ~) N
II

R, R4 ElSE R,

C, Y C, - ~
y

J C, C3)N " Y N Y

ElSE ElSE

Fig. 1 -- Tran sforma tion of a Deci~on Tab l e to a Series of
Comparisons by Algorithm 1.

The flow chart for
this decision table
would be.

ElSE

0 Ck

4

"
r--
~

Cz -
C3 -

t
"

ElSE

-13-

The above definitions are illustrated in the following example.

COllHl-rolM" - 2 2 2 1
f • 50 30 15 5

R, R2 R3 R4 we DELTA OASH-C<IlIlT

C, - y - tl 130 , 4

C2 Y N Y N {) , 0

C3 N - Y Y 60 , Z

Steps in the Algorithm

Step 1. Same as for Algorithm 1.

Step 2. Determine those rows that have a minimum weighted dash

count.

Step 3. If two or more rows have a minimum WDC, select from

among them the row that has the minimum delta. If among these there

stil l e.xists two or more rows, select the row with the minimum dash

count. If there are more than two such rows, select anyone of them.

The test on dash-count does not affect computer running time, but can

save -memory space without adding to computer running time.

COLLt1U-courr · " " " 4
r-4O 20 20 20

R, R2 R3 R4 we oaTA OASH-COlM"

C, - y N Y 150 4

~ Y - N - '50 0 8

S Y N - - '50 0 8

c. y - - N '50 0 B

Cs - y y N '50 "

Since a ll rows in t he example have the minimum weighted dash-count,

test their deltas. Since C
2

, C
3

, and C
4

have the minimum delta, test

their dash-counts. Since all three eligible rows (2,3, and 4) have

the minimum dash-count , select anyone of them as Ck .

Steps 4, 5 and 6. These steps are t he same as for Algorithm l.

We i llustrate the procedure for Algorithm 2 in Fig. 2.

- 14-

CI1Ltf1-COllfT - 2 4- 4- 2
t - 50 ZS 10 10 5

Rl R2 R3 R4- as \',{)C

Cl Y N - - 60 Clc

Cz N - Y " 100

~ Y - - N 14-0
OI1lffi~COlJfT - 2 2 1 - N Y Y 100 CI1I.WI-CGLtIT - 4- 2

r = 50 10 10
C4 t ~ 25 10

C2
C3

C4

I C3

I C4

yC

~
I C3 I - I

t

Rl R3 R4 IoOC liz R3

II Y II 0 C!c Cz - Y
Y r , II

Y - N 20
\.

Cl
./ ~ - -

- Y Y 100 C4 II Y

OI1. -COllfT = 2 1 OI1 . -COllfT - 2 ,
r - 50 10 r · 10 10

"R 3 R, R4 WC R3 R4 we
~ Y /I 0 Cic C2 Y H 0 - YJ l'l Ie Yr ,N

\.
C2

./ \.
C4

./ Y Ck
C4 - Y '00 C3 - H 20

1 1 1
C4)N C3) tl y C Cz

r£ ~ r£' ~
aBE ~

~I - I C4 Y j C3 1 - C3 II

Rt C4 t C3
Y U Y N

4 a.SE a.

Fig . 2 - - Tran sformation of a Deci sion Table to a Ser ie s of
Comparisons by Algorithm 2.

The flow chart for
t his decision t able
would be :

1
10

R4 we
N 100

N 120

Y 0 C}.;

~ 2

C2 -
C3 -

I, .J
RZ

- 15-

Note: For t he transformation shown in Fig. 1 , a batch of 100

transactions t hat satisfy Rules 1-4 in the proportion 50, 25, 10, 10,

respectively (and 5 f or ELSE) wil l requ ire a minimum 318 comparison

executi ons, for t he transformation shown i n Fig. 2, the transactions

wi l l require a minimum 288 comparison executions. See Table 1.

Tab le 1

COMPARISON EXECUTIONS OF FIGS. 1 AND 2

Rule
No. Fig. 1 Fig. 2

a I b a I b

1 4 x 50 = 200 3 x 50 = 150
2 2 x 25 = 50 2 x 25 = 50
3 2 x 10 = 20 3 x 10 = 30
4 3 x 10 = 30 4 x 10 = 40

ELSE (3.6fx 5 = 18 (3.6)x 5 = 18

Total 318 288

a. number of comparisons
b. expect ed frequency
c. average number of comparisons for 3 ELSE

branches

