IBM

Data Processing Techniques

Decision Tables-A Systems Analysis and Documentation Technique

The basic concepts of decision tables and a minimum set of conventions for their use in systems analysis, procedure design, and documentation are described. The purpose of such tables is to provide information in a concise format that is easy to read and understand. The tabular approach is used to express complex decision logic in a manner that encourages the analyst to reduce a problem to its simplest form by arranging and presenting logical alternatives under various conditions. The resultant tables present a system's logic in a concise manner that is easy to visualize and grasp. While the concepts in the text are presented on a level for comprehension by students in basic computer courses, the techniques are applicable at all levels of sophistication by everyone in a data processing environment.

The decision table (Form no. X28-1630) is a convenience in standardizing documentation.

Data Pracessing Techniques

Decision Tables-A Systems Analysis and Documentation Technique

The basic concepts of decision tables and a minimum set of conventions for their use in systems analysis, procedure design, and documentation are described. The purpose of such tables is to provide information in a concise format that is easy to read and understand. The tabular approach is used to express complex decision logic in a manner that encourages the analyst to reduce a problem to its simplest form by arranging and presenting logical alternatives under various conditions. The resultant tables present a system's logic in a concise manner that is easy to visualize and grasp. While the concepts in the text are presented on a level for comprehension by students in basic computer courses, the techniques are applicable at all levels of sophistication by everyone in a data processing environment.

The decision table (Form no. X28-1630) is a convenience in standardizing documentation.

Note

While the concepts in this text are presented on
a level for comprehension by students in basic
computer courses, the techniques are applicable
at all levels of sophistication by the systems
analyst, the programmer and all those in a data
processing environment for developing, implementing
and documenting systems.

The use of data processing equipment has focused attention upon the necessity for an orderly represent tion of information flow from elementary decisions to final actions. The sequence in which operations are to be executed must be precisely stated and the lostions to normal processing must be iarge number of to carry out a meaningful data processing task: The to carry out a meaningful data processing aserformed upon it, are the information which constitutes the system
Decision tables are a means of bringing togethe and presenting this related information to express complex decision logic in a way that is easy to visualize and follow. By presenting logical alternative courses of action under various combinations of conditions, a decision table enables the analyst to think through a problem and present its solution effectively. He is encouraged to reduce the documentation to its simplest form. The basic objective of decision tables is to arrange and present a system's logic in such a way that its meaning can readily be grasped.
The term "data processing" has become associated with all recordkeeping, decision-making and and the sciences. In each of these fields, decision tables can be used indenendently of or to complement, flow charts and block diagrams.
Decision tables can be used effectively for system analysis, procedure design and documentation. Their use expedites and simplifies the time-consuming functions of problem definition and system analysis Once the system is established, it is easy to maintain, and the documentation is easy to change.
The value of decision tables is independent of the equipment used, and the tables may, in fact, be used by people with little knowledge of equipment. An understanding of the tables shown in this text can, in itself, provide the student with an insight into the f the art of data processing provided with a different approach to a problem and its solution than that given by other methods.
This manual describes a minimum set of decision table conventions to be used in defining systems or portions of systems. The principles involved can lead to standardization by the individual user, which in turn can lead to standardization within the data processing community.
This description of the structure and interpretation of decision tables should demonstrate the value of the technique, since the decision tables speak fo hemselves, as indeed all documentation system are intended to do.

Tables of Information
Tables as a means of displaying information are use for such diverse purposes as railroad timetables, stock market quotations, logarithms and racetrac results. An example from a United States Government publication on tabular presentation techniques is shown:

Figure 1. A Table of Information

The primary purpose of such tabular presentation is to provide information in a format that is concise yet easy to read and to understand.

Similarly, some orderly arrangement of data is ecessan complex prolow does not lend itself to easy solutions

$$
\begin{aligned}
& \text { Andy dislikes the catcher. Ed's sister is engaged } t \\
& \text { the second baseman. The center fielder is taller }
\end{aligned}
$$ live in the same building. Paul and Allen each won $\$ 20$ from the pitcher at pinochle. Ed and the outfielders play poker during their free time. The pitcher's wife is the third baseman's sister. All the

battery and infield, except Allen, Harry and Andy, are shorter than Sam. Paul, Andy and the shortsto lost $\$ 50$ each at the racetrack. Paul, Harry, Bill and the catcher took a trouncing from the second baseman at pool. Sam is undergoing a divorce suit. children. Ed, Paul, Jerry, the right fielder and the center fielder are bachelors. The others are married. The shortstop, the third baseman and Bill each cleaned up $s 100$ betting on the fight. One of the outfieldeng Mike is shooter than Bill. Each of the is in heavie than the third baseman. With these facts determine the names of the men playing the various positions on the baseball team.

The puzzle is, however, far less complex than it appears when the problem is broken down into a series of steps based on the facts which determine the solution. For example, the first sentence of the puzzle implies that Andy is not the catcher; the second sentence implies that Ed is not the second
baseman; the fourth sentence, that Harry is not third baseman; the fifth, that neither Paul nor Allen is pitcher. These negative facts may be recorded as follows:

Figure 2. Data Organization

The recording of all such implied facts leads to the puzzle's solution:

Figure 3. Baseball Puzle Solution

The implications of the narrative description have been abstracted to solve the problem using a tabular format for organization. This format ha permitted an orderly and rapid solution of the problem.
A more familiar use of tabular techniques is shown in Figure 4.
The "if . . . then" relationship is inherent in the table showing geographic areas and farm acreage, in the baseball puzzle, and in the income tax table. The tables shown thus far, however, have all been tables of information dealing with specific subject matter from which facts may be abstracted, such as "Your tax is . . ." In contrast, decision tables are concerned with, for example, all the records on or any of myriad files, for each of which some action or series of actions may be required. While decision tables are to be contrasted with tables of information, the "if . . . then" relationship is a significant feature of both types.

In summary, on a decision table, the "if" conditions, instead of providing an answer (as in the puzzle), cause some action or actions to be taken: for example, if an employee worked overtime, then compute his overtime pay. The format of a decision table separates conditions from actions. As in the puzzle, the format in which notations are made facilitates the analysis of the problem.

3

SITUATION 1

To begin to see the structure of a decision table consisting of conditions separated from actions, consider an aspect of an airlines reservation system. might aspear as stated below, where each column to the right of the vertical double line is regarded as a rule. A single rule at a time is examined, reading from top to bottom. Y and N mean yes and no, and X indicates execute. Actions to be taken for each rule are expressed in rows beneath the horizontal double line.

Rule No.		2	3	4
REPUEST IS FOR	1st CLASS	1st CLASS	TOURIST	TOURIST
ISTCLASS AVAILABLE	Y	N		
TOURIST AVAILABLE			Y	N
ISSUE	1 1st CLASS		TOURIST	
PLACE ON WAIT LIST		x		x

Situation 1. Airlines Reservations

To read this table, examine a single rule at a time in conjunction with the statements to the left. No matter how many alternative rules exist, only one rule can be satisfied in a single pass through the decision table. The first decision rule (the column numbered 1) can then be paraphrased: If the request is for a first-class reservation and if a first-class seat is available, then issue a first-class ticket. The underlined words are implied by the table layout is requested and there are no first-class seats
available, then place the passenger's name on a wait list.

The third and fourth rules apply to tourist class. t where conditions are not to be considered, no entry is made in the rules column. The table "onsiders each

The information in the above table is shown in an exploded view in the following figure to indicate the terms that are used to describe the various parts of a table.
The horizontal and vertical double lines serve as demarcation: conditions are shown above the horizontal double line, actions below; the portion to the left of the vertical double line is called the "stub", and entries are to the right. tion of rule.

There are three types of tables: limited entry, extended entry and mixed entry. This table serves to illustrate the format of a mixed entry table In limited entry form, the entire condition or action is written in the stub, and the entry is limited to showing, for each case whether the particular condition is true, false or not pertinent (Y, N or blank), and whether a particular action should be performed (X or blank). In the table shown here, the second and third condition rows and the secon are expressed in limited entry form.

In contrast, an extended entry expresses a part the cos the first condion ow and the first action row of the table shown.

Note that this table, being partly limited entry and partly extended entry, is a mixed entry table. Expressed entirely in limited entry form, the table would read:

Situation 1. Airlines Reservations Expressed in Limited Entry
The original mixed entry table is shown again for contrast.

Rule No. $\longrightarrow 1$		$2{ }^{3}$		4
REOUEST IS FOR	$1+$ CIASS	12t CLASS	TOUPIT	
15t CLASS AVAILABLE	$\frac{\mathrm{Y}}{}$	${ }_{\text {Lt }}$	TOURI	TOU
TOURIST AVAILABLE			Y	N
ISSUE	1st CLASS		TOURIST	
PLACE ON WAIT LIST		x		x

Situation 1. Airlines Reservations
In summary, a decision table defines all conditions (the prerequisites for an action) and separates them from all actions. Further, it relates given conditions to the appropriate actions, with a column of entries which form a rule. Alternative conditions that result in other actions constitute other rules which are written side by side. Tables may be limited, extended or mixed entry form.

SITUATION 2

Situation 1 has shown the format and terminology used to describe the parts of a decision table. Situaion 2 again considers an aspect of airlines reseradded to provide the passenger with alternate cla eservations, if he request them when no space is available in the class he chooses. The first rule states: If the request is for first-class (condition 1), and first-class space is available (condition 3), then issue a first-class ticket (action 1), and subtract 1 from the first-class seats available (action 3).
In rule 2 the request is for first-class, but no frst-class seats are available. Tourist space is pen and the passenger will accept tourist accommodations. The actions call for the issue of a tourist icket and the subtraction of 1 from the number of rist seats available.
through 4 all cover first-class . Th firough 8 cover tourist analyst to an examination of all the possibilities for the given set of conditions.

$$
\text { it pule } 1 \text { no entries ar }
$$

In rule 1, no entries are made for the second ourth and fifth condition rows, because these conditions are not applicable. If the request is for first-class and first-class space is available, there is no reason to consider whether tourist class is cceptable or whether tourist space is available. Notice that not only is the combination of entries for each rule different from that for all other rules but also that there is no combination of entries that satisfies the conditions of more than one rule. This est up that onls ore rule ca be caried out eh time table is examined. This means that

rules are true alternatives, so that they may be examined in any order. If a first-class ticket is equested, for example, and first-class space is available, rule 8 may be examined first, and ule will fail. Similarly, each rule except rule will fail.

Notice further that each detail of the decisionmaking process has been explicitly stated and ever ondition considered in a direct way. The decisio able format has definitely simplified the problem involved.
The table could have been shortened by combining conditions 1 and 2 as below:
$\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \text { 1ST CLASS REQUEST } & \mathrm{Y} \\ \mathrm{Y} & \mathrm{Y} & \mathrm{Y} & \mathrm{N} & \mathrm{N} & \mathrm{N} & \mathrm{N}\end{array}$ ince, for this case, there are only two chases, the negative entry asserts that the request is for tour the class.

SITUATION 3
ituation 2, with the table expressed entirely in imited entry form, has shown the power of decision tables in expressing complex decision logic. Situa tion 3, like situation 1 , is a mixed entry table containing both limited and extended entry rows. The versatility of expression allowed within the table ormat further increases the table's power as a communication m

In setting price, the determining factors are (1) whether
the sale is retail or wholesale, (2) the quantity ordered
the sale is retail or wholesale, (2)
and (3) the distance of the shi

The table is written on a standard decision table orm (X28-1630). The vertical double line separating the stub and entry is predrawn, but had more space een required for the stub or for the entry, the use could simply have drawn in his own double line, gnoring the original double line. The double horihould be drawn by the user -
first line with use
The first line within the table gives the table name. ables may be named and/or numbered, and the ame or number is used in other tables or within the table itself to reference the table.
Rule 1 is satisfied when the customer is a
wholesaler but the quantity ordered is less than (LT) 10. Distance is not considered when the quanity is less than 10 , and no discount is allowed. The first action row (row 5) for this rule says to record the gross price so that it will be available for use by
another table. The last action row (row 7) reference another table named "Prepare Invoice". This table tilizes the net price developed by the current table
There is a decision table convention (ignored in the previous situations to simplify the tables) that each rule must specify where to go next. In he each rule - it is indicated in the last, and limited entry action row with "Go To". In other tables the "where to go next" might be different for each rule. One rule, for example, might specify some other table, while another rule might specify a repetition f the same table.
When different rules specify different tables in extended entry form, the words "Go To" could ppear in the stub, and the next table for each rule could be listed in the entry portion of the table, as shown below:
Stub
CO TO PREPARE INVOICE PRICE COMPUTATION

In limited entry form, a series of action rows ould be added, each referencing a different table, as below:

Rule 1 Rule 2
co To prepare invoice

GO TO PRICE COMPUTATION

x
x

The ability to reference other tables allows the problem to be divided into logical segments and make analysis. At the highest level the overall system is analyzed by referencing lower-level tables. These ables, in turn, can express the logic of the problem ot the degree of detail necessary at that level; thes ables may, in turn, call upon lower-level table with even more detailed conditions and actions. Alternatively, a fow and and ion tables.
In the present situation, rule 2 states that the customer is entitled to wholesale rates; that the quantity ordered is greater than or equal to (GE) 10 and that a 15% discount is to be applied. The net price is computed by multiplying the gross price by 100% less the discount determined. In other words the net price here is computed by multiplying the gross price by 85%. Action rows 5 and 6 cause the net price and the discount percentage to be stored for se by the prepare invoice routine
Rule 3 is similar to rule 2 except that the delivery he discount is reduced o 10%.
In rule 4 no discount is allowed on retail sales regardless of quantity or delivery distance
In this table it would be illogical to execute the ations in any other order except the order in which they are written. This, again, is a decision table which they are written.

Note that mnemonics (LT and GE) and symbols (have been used in the table. The vocabulary and grammar of the language used within the decision table are left to the discretion of the user. It is his responsibility to insure that the language used in describing the system will be understandable to those using the documentation.

As in the examples given, a condition must be or no. Some typical conditio Transaction is listed below

Transaction is a change ite
Department number equals $276,302,736$, or 914 mount is positive
Switch 1 is on
End of detail file
Start
In like manner, actions may be expressed in an language which will connote proper meaning to the reader. Examples:

Add FrA total to FCA total
Do gross-to-net procedu
Write detail line
Go to update procedure
Go to Table A
Set A equal to $\mathrm{B}+\mathrm{C}-\mathrm{D}$
$\mathrm{A}=\mathrm{B}+\mathrm{C}-\mathrm{D}$
The decision table form (X28-1630) is shown in its entirety on page 20 .

Remarks: $\angle T=\angle E S S$ THAN

The asteris $k * 1 s$ used here to denote multiplication.
ituation 3. Price Computatio

In each of the previous situations a problem has been stated, and the text has then presented a decision table followed by an explanation of the table. Situation 4, on the other hand, is one approach to the writing of a decision table.

The procedure the systems analyst follows in preparing a decision table may be simply to identify conditions and actions of the problem statement as top half of the form; actions on the bottom half Consider the following problem narrative:

When the quantity ordered for ars not exceed the order limit and the credit approval is
"OK", move the quantity-ordered "OK", move the quantity-ordered amount to the a shipment release. Of course, there must be a sufficient quantity on hand to fill the order.
When the quantity ordered exceeds the order limit, go to a table named "Order Reject". Do the same if the credit approval is not "OK".
Occasionally, the quantity ordered does not exceed the order limit, credit approval is "OK", but there is
insufficient quantity on hand to fill the order. In this case, go to a table named "Back Order".

Note that this is not written with all conditions first, prefixed by "if", and with all actions following prefixed by "then". The narrative was written casually with conditions and actions scrambled, much like the original baseball problem. Words like "when" and "occasionally" are used instead of the more precise "if". Such ambiguity is typical o most narratives. For illustrative purposes the conditions and a broken line under actions.

When the quantity ordered for a particular item does not exceed the order limit and the credit approval is "OK", move the quantity-ordered amount to the quantity-shipped field, then go to a table to prepare a shipment release. Of course, there must be a

When the quantity ordered exceeds the order limit, $\frac{g 0}{}$ to a table named "Order Reject"• Do the same if the
credit approval is not " $"$ "K".

Occasionally, the quantity ordered does not exceed the order limit, credit approval is "OK", but there $\frac{\text { is insufficient quantity on hand to fill the order }}{\text { this case, zo toa table named "Back Order". }}$

A count shows eight conditions and five actions for the problem.

C1 OTY ORDERED IS LESS THAN OR EQUAL TO ORDER LIMIT C2 CREDIT APPROVAL IS "OK"
C3 OTY ON HAND IS GREATER THAN OR EQUAL TOQTY ORDERED
C4 OTY ORDERED IS GREATER THAN ORDER LIMIT
C6 OTY ORDERED IS LESS THAN OR EQUAL TO ORDER LMIT
C7 CREDIT APPROVAL IS "OK"
C8 OTY ON HAND IS LESS THAN OTY ORDERED
A1 MOVE OTY ORDERED TO QTY SHIP
A2 GO TO SHIP RELEASE
A3 GO TO ORDER REJEC
A4 GO TO ORDER REJEC
A5 GO TO BACK ORDER

Notice that C1 and C2 are identical to C6 and C7, and that A3 is identical to A4. This occurs because a narrative describes rules one after another (serially). Thus two sets of two conditions common to two rules, appear in the narrative. On the other (parall) . several rules need appear only once. Furthermore, C 5 is not necessary since it is the negative of C 2 . Similarly C4 and C8 are the negatives of C1 and C3. Negative entries after the positive statements of C1, C2 and C3 cover the other cases.

The next step in preparing the table might be to identify and consolidate similar rows. C1, C6 and C 4 are combined. $\mathrm{C} 2, \mathrm{C} 5$ and C 7 are combined. Finally, C3 and C8 are combined.
In the action half of the decision table form, A3 and A4 are combined. After consolidation there are only three condition rows and four action rows.

Condition Stub

OTY ORDERED IS LESS THAN OR EQUAL TOORDER LIMIT CREDIT APPROVAL IS "OK"
QTY ON HAND IS GREATER THAN OR EQUAL TOQTY ORDERED

Action Stub

MOVE QTY ORDERED TO QTY SHIP
GO TO PREPARE SHIP REIEASE
GO TO ORDER REJECT
GO TO BACK ORDER

The stub portion of the table is now completed. In order to fill out the entry portions, the analyst must determine the rules expressed in the narrative. In this example, the first paragraph describes a single rule. The analyst enters the appropriate Y, N or X in the entry portions for rule 1. The secon paragraph contains two rules. The analyst etion fo rules 2 and 3 . Finally, the last paragraph become rule 4 of the decision table. The final result is shown below:

Situation 4. Order Approval, Reject or Back Order
A comparison of this decision table with the arrative statement of the problem makes it evident that the table is more concise, while pointing up ogical and-effect relationships a limited entry form. If there are many rules in table, the use of limited entry usually permits more rules on a single decision table form than is possible with extended entries
In general, limited entries compress a table horizontally while extended entries compress a table vertically. The table shown, for example, could be compressed vertically by combining the hree "Go To" action statements into one extended entry row

Rule 1	Rule 2	Rule 3	Rule 4	
GO TO	PREPSHIPREL	ORDERREJECT	ORDERREJECT	BACKORDER

A compromise using rows of both types - that is, mixed entry table - is often useful as in situation (airlines reservations).

Aside from the terms used to describe tables according to the type of entries made, there are two other table types classified by the control they have on the sequence of execution or flow from table to able. Just as actions within a table are executed in he order in which they are stated, there must be executed.

Within a set of tables, it may be desired for one table to permanently pass control to another table.

This is accomplished by using appropriate terminology such as "Go To". On the other hand, it is often desir return to the original table so that remaining actions can be executed. A notation such as "Do" can be used to accomplish this. For example, in a table it may be desirable to call other tables to perform certain functions such as determine net price, compute shipping charges, and prepare invoice. Each of these tables can be called and executed by actions in this calling table, for example - "Do determine net price". The tables to be executed by actions in another table with an implied return to the calling table are desig nated "closed" tables and may be compared with closed subroutines. Tables which are entered by a retum is implied

urn is implied.

Figure 6 shows within the numbered circles the sequence of execution of four tables.
Each of the open tables states where to go next. The closed table is referenced with a "Do" command in tables 002 and 004 . When the closed table is referenced by table 002 , it returns control to the by table 004, it returns control to the next action of table 004

Not only may more than one table reference a closed table, but frequently more than one rule withi a given table references the same closed table.
Closed tables make it unnecessary to repeat trie ors and ans ing the conditions and actions to form a closed table, Further, they permit re-entry to the table which referenced them without starting at the top of the table - the normal entry point.

The analyst should check to see that rules are not omitted. In extended entry, for example, in an insurance application where each policy type forms a rule, the analyst should check to see that all policy types issued by the company are included. similarly, he should check to see that all the logical situations are covered. If, for instance, one rule states "greater than" and another rule states "less than", the analyst should note that the "equal to" situation has not been covered and should then determine either that the "equal to" situation is pertine should be added
In limited entry form, for many tables simpl arithmetic indicates whether every possibility has been considered. Each entry for a single condition has two possible values: yes or no (a blank covers both). Therefore, to determine the maximum number of possible rules, two is multiplied by itsel as many times as there are conditions. Given thre conditions, for example, this number is 2^{3} or 8 . The analyst knows before the table is written that he must examine eight possible combinations.

In the following situation there are three conditions and eight rules to cover all possible combinations:

Three files of undetermined length are to be examined. As each record is read in, it is checked to see whether it signals the end of the particular file. When one file of any combination of the files is exhausted, a specific series of actions is required, depending on which file
or combination has reached its end.
The table below provides for all end-of-file possibilities.

Situation 5. End-of-File Test

The logic in a decision making process for a typical function of data processing equipment is documented with a decision table describing a merging function.

Three decks of punched cards are arranged in numeri
 cally ascending sequence. The three decks are to be combined in a single sequence with all cards bearing
 the same number from any of the decks placed together.

In a manual operation, the first card from each of the decks would be compared and the lowest card of the three selected. Removing the card selected from one deck and placing it in the merged which it
would reveal the next card in the deck from whic was taken. This newly exposed card would then be compared with the two cards already exposed. Again the lowest of the three would be selected. Where duplications occurred, they would be assembled ogether; that is, both or all three cards would be selected if they had the same number
It would also be desirable, after reading a new
last card filed. If the card just read has a lower number than the last card placed in the merged deck then the cards in the input deck were not in ascending sequence as assumed. This is, of course, an error condition.

Analyzing this merging and checking operation for machine processing makes it apparent that initial reading only ore the time read, depending on the file from which a record was selected.

To return to the initial conditions, when the first three records are read and the lowest one selected, there is no previous record in the merged file with which to compare the record to be filed. Therefore, in machine processing, provisions must be made not only for the repetitive operations, but for these initial conditions of reading three records instead of one, and for the fact that there is no previous card with which to compare the first record selected All these conditions are provided for in the tables shown on page 13

Figure 7. Merging Three Files

Since more than one decision table has been written on a single form, the beginning of each table has been indicated by a number in its heading and cross-hatching in the row reference area next to the number and the rule designations.

Table 1 has only one rule and no conditions: all the rows (1 through 5) are actions. This is indicated by the double line above row 1 . Such a table is called an "unconditional" table. As in all decision tables, the actions are to be executed in the order in which they are written. Table 1 is executed only once. Before the repetitive operations of table The first condition row me executed. whether the area designated "New Record" is less than the area designated "Test Area." On the first pass through table 2, one card has been read from each of the decks and both test areas have been set to zero by table 1 . Condition row 1 will determine that the "New Record" identification is not less than "Test Area" which is filled with zeros; so that rule 4 will not be satisfied. This test performed by condition row 1 is meaningful only on succeeding passes through the table.
Rules 1,2 and 3 in combination with condition rows 2, 3 and 4 are the crux of the whole operation. A is less than or equal to C, then select (specified as "write" in action row 6) record A. Before recording A as the lowest number in the seque however, action row 5 sets the test area to the dentification number on record A. Row 6 write this record. Row 7 then reads a new record from file A. The test area designated "New Record" is then set to the identification number of the record just read in. On the next pass through the table a check is made in row 1 to see whether the new record is lower than the previously selected record. This is the check to make sure that the records in he input are in sequence.
The actual merge abstracted from the overall operations appears as below:

Rule No.	1	2	3
2. A LE B	Y	N	
3. BLEC		Y	N
4. AIEC	Y		N
6. WRITE	RECORD A	RECORD B	RECORD C
7. READ	RECORD A	RECORD B	RECORD C
8. CO TO TABLE 2	x	x	x

Figure 8. Abstracted Merge

There are three conditions, and the analyst will have noted that the maximum number of possible rules is 2^{3} or 8 . As he makes these entries, howillogical because they assert that a number is both greater than and less than another number, and (2) several rules result in the same action and the conditions are such that the elimination of entries consolidates the table.*
To return to the overall operation of table 2, if condition 1 is satisfied, then the new record has a lower number than the previous record written, and this represents an out-of-sequence number in the input. The action specified for rule 4 is action row , care of this situation.
Following the table header in table 2, an unexplained line states "Frequency" and has an entry of 0 for rule 4,25 for rules 1 and 2 , and 50 for rule 3. These entries total 100%, representing complete execution of the table. When it can be estimated how often each rule will be satisfied, such an entry may be made. For rule 4 it is anticipated that an out-ofsequence item will occur less than $.5 \%$ of the time; hence an entry of 0 for frequency is made. File C is known to be approximately equal to the size of Files A and B combined. Files A and B are known to be 1 and 2 , and the entry of 50 for rule 3 indicate this Frequency information is useful to the programme in writing efficient coding from the tables.
To summarize the merge as stated in ta
d 2 , table 1 is executed only once and has no conditions. Table 1 sets up the initial conditions for table 2 which will be repeated for each record in the three files. Provisions are made to check to see that the input is in sequence. The table is not complete, however, since the end-of-file conditions (as shown in situation 5) would have to be
considered. considered.
*A full explanation of methods for checking tables for completeness
is beyond the scope of this manual. It should be noted, however, that in some cases, such as the end-of-file situation, an arithmetic
check is easily made. For other tables it becomes a complex computation, and is more easily checked by a logical examination

Situation 6. Merging Three Files

In phase 1 of an inventory control situation, unsorte ranssaction records for various items are received
rom a number of branch offices. The branch makes a count of the number of records, and this numerical count becomes another record which is sent with the
transaction records to the central office.

At the central office, the transaction records, along with the batch slips from each office, are put on tape. The number of transactions from each branch is
checked by the system against the batch slip.

The primary purpose of phase 1 of the system is to sort all records into ascending sequence by inventor
number in blocks of 27 . No consideration is made of the branch from which the record originated, aftethe records are counted. After sorting the records in blocks of 27 , a standard output routine not des

Sorting applications involve a wide range of achines, problems and special considerations Highly efficient sorting programs are available from IBM, and the accompanying table is presented to show decision table techniques and some of the general considerations involved in data processing It was designed as a teaching aid rather than as an example of fully sophisticated sorting.
ther it checked and discarded items from another branch are added to fill the block to 27 .
It is unlikely that the items in the last batch will be an exact multiple of 27 . In this case, the sort area is filled with 9 s to identify the short record fo the next phase when further processing is done.

Two tables are used to describe the process. As previously discussed, tables spell out detail to the degree necessary for communications at a specified level. Phase 1 is an analysis of the overall peration. It references a table named "Sort", which describes procedures and references othe ables not shown (action rows $8,13,17,18,19$ Whe
When it is desirable to specify more detail than level table is referenced and the details specified the lower table.
The controlling routine for the sort is phase 1 , which has, as its first rule, a condition to determine
whether the operation is beginning. For this star condition, the first action specified is the closed routine "Initialize". Before the actual process oquip, perd peripheral

Situation 7. Phase 1 of Sort

situation 7. Sort

Such requirements would be spelled out in the "Initialize" table. The next action sets a counter to zero, so that in subsequent rules a count may be properly incremented. After a portion of tape is read, the final action is "Go To Phase 1 ", so that the table will be re-executed
On the next pass through the table, rule 2 is satisfied, since this is not the start, the read operaon has flled the input area, and the first ilmil Note first condition of rule 2 has a nega tive entry (rules 3, 4, 5, 6 and 7 also have this negative entry). Since this test is made in rule 1 it may not be obvious why a negative entry is made in these rules. The entry is necessary because rules may be considered in any order. Rule 2 can be examined first, without regard to rule 1, and if no entry for condition row 1 were made, then this condition would not be considered. If this were the start and some rule other than rule 1 were satisfie because the start condition was ignored, the table would become meaningless.
The actions for rule 2 call for the movement of (set to to by rule 1) The for adaing 1 to "Count" a re-entry to this table. Normally, rule 2 would be repeatedly executed until 27 items were accumulated in the sort area. Condition row 5 determines when the sort area is filled, and rule 3 is then satisfied. The actions for rule 3 call for setting N EQ 1, setting a switch equal to A , and for the transfer to the sort table. The settings are necessary for the execution of the sort table. The sort table, being an open table, takes control and, after sequencing 27 items, returns control to phase 1
In the fourth and fifth rules of phase 1, a batch slip is encountered. Condition row 4 checks the count on the batch slip against the count made as the items were transferred from the input area to the satisfied, the counter is reset to zero, and the table is re-entered. When the count on the batch slip does not mato the transfer count, then control is transferred to an error table.
In rule 6 the input area is empty and it is not the end of the file or the end of this phase of the process ing, and the only actions called for are for reading the tape and re-entering the table.

In rule 7 the input area is empty and the entir le has been read, but the processing for this phase is not complete. The actions call for filling the remaining storage locations in the sort area with 9 s , and setting an indicator to show that afte this rule is executed, this phase of the processing will be over. Rule 7 also calls for the setting of controls for the sort, and then for a transfer to the sort table to perform the sort on any remaining items in the sort area as well as the 9 s added by action ow 12 in the sort table returns the program to phase 1. After rule 7 is executed, the only rule which can be satisfied is rule 8, because rule 7 has set the end-of-phase- 1 indicator. The actions for rule 8 call or executing the "close routine", which performs whatever operations are necessary to complete the run, such as rewinding tapes, and finally for the entry f phase 2 , which is not shown.

The sort table, like most sorting routines, is based on a succession of merges such as the one shown in situation 6. In this sort table, three records are merged, then three more, and the merge is repeated until nine strings of three records each are accumulated
$\begin{array}{ll}3 & 1 \\ 4 & 2\end{array}$
$\begin{array}{rrrrrrrrr}4 & 2 & 5 & 7 & 6 & 13 & 11 & 1 & 3 \\ 9 & 8 & 10 & 14 & 6 & 14 & 13 & 3 & 8 \\ 9 & 10 & 16 & 15 & 5 & 15\end{array}$

The first three strings from the group of nine are then merged, then the next three strings, and then the last three strings; so that the result is three strings of nine records:

1	6	1
2	6	3
3	7	3
3	10	5
4	11	8
5	13	11
8	14	13
9	16	15
10		15

The three strings of nine are then merged as the last step, forming one string of 27 records.

The basic ideas of decision table usage have been illustrated with examples which show some aspect of a data processing operation. Such tables may be used in conjunction with flow charts and block diagram Decision tables may also be employed to describe an the system.
At the highest level the overall logic of the system is described, and references are made to lower-leve decision tables which describe more completely the activities to be accomplished and the conditions unde which more detailed actions are to be performed.
The problem presented here shows various level lete, since only a single path covered at lower level of the multi-level structure.

The purpose of this system is to perform all file maintenance functions required for the policy master
file in an insurance application. An index file is used to locate reconds within the policy master file. There is an input file of current activity records. In addition to updating the master file to reflect current
activities, there is a daily date check. Each record contains the next date on which some processing for that record is required, and the file is examined to see whether the current date matches the date when some activity such as billing is required for that record. In addition to an updated policy master file, systems.

While the vocabulary and grammar of the language used within the table are left to the discretion of the user, some qualification or specification of names which could apply to more than one file or record is ecessary. (A record is a collection of fields where
fields contain a value or unit of information. A file is collection of one or more records associated with an input or output device.) The analyst chose to associate fields with records and files by qualifyng the field name with the record or file name and ity dell ity date" in row 1 of the activity determination
for example, is associated with the file index.

The first table, numbered 001 and named "Start" is an unconditional table. The first action row uses the word "Do" to reference a closed routine entitled Housekeeping procedure". This routine, which is ever else is necessary to begin the processing run. Being a closed routine, it causes an automatic retur to the table which called it (table 001). The second action row uses the words "Go To" to enter the open table called "Activity Determination".

Table 002, named "Activity Determination", has as its first condition a check to see whether the current date coincides with a date from the record on which some activity is required. The second condition checks to see whether an input transaction item is applicable to this record. The four possible combinations of entri shour rules
o illustrate the single path followed in this explanation, an area is shaded to indicate that it is Such shading is not a decision table technique and is used here only as a teaching aid. Rule 1 says that the curfrent date coincides with the date on the record on which some activity is required, but there is no input transaction applicable to this record. Two actions are indicated for rule 1: "Do set up procedure" (a closed table, not shown) and "Go To automatic changes", an open table expressed in limited entry form.

Table 32, named "Automatic Changes", determine which of five types of automatic changes is required. of rule 3. The only action called for by rule 3 is "Go To nonpayment routine".
To the right of rule 5 , an unexplained column has an entry " E ". Decision tables provide two alternative means of handling situations in which provisions are not made for all possible combinations of conditions:

1. If it expected that cases will arise fairly frequently which do not satisfy any of the rules, an "all others" or "else" rule can be provided as in this situation where the E indicates else
2. Where failure to satisfy any of the rules represents an error in the logic of the table to consider some error table. This can be noted in the table header.

Situation 8. Automatic Changes

Situation 8. Nonpaymeni

Table 50, named "Nonpayment", is an open table. determines, on the basis of two conditions, which of three other tables will be called. The first rule see whether the policy has been in effect less than or equal to a year, and for such policies the only action specified in this table is to "Go To the table named "Lapse". If rule 2 is satished, he policy status entitles the holder to an automatic loan.
If the third rule applies, the policy has been in effect for more than a year but it is not automatically entitled to a loan. Five actions are specified for this rule. Here, to demonstrate a closed table, a single (5) is traced.

Duration calculation（Table 82），the closed table referenced in the previous table with a＂Do＂command will，after execution，return program control to the table which referenced it．Table 82 determines the duration of the policy in the month of the last payment which was stored by the previous table is compared with the date of issue of the policy．

In rule 2 the months coincide，so that the two ac－ ions called for are to subtract the year of the date of issue from the year of the last payment．Zero is specified for months，since there are no extra months to be counted（as a person born in June 1930 is 32
years old in June 1962）．
In rule 1 the last payment was made in some month after the anniversary of the policy．The num－ ber of months is computed by subtracting；for example a policy on which a payment was in August（1he year，would be two months older than the yearly calculation indicates．

In rule 3，the anniversary month has not been reached，one year is subtracted from the number of years of the policy＇s duration computed in row 2. A policy issued in June of iss，for example，is not $1955=7$ ）．It is not seven years old until June 1962； so that one year must be subtracted after the initial calculation．Again，the months must be computed． Here the months from the previous year，which have been paid，plus the months paid in the current year are computed by row 4 ．

Each record processed will satisfy one of the rules of the table．After execution of this table，the remain－ ing actions of the table which called on it are executed－ in this case row 6 of table 50 ，which states＂Do cash value procedure＂．This table，which is not shown， would compute the cash value utilizing the duration time computed by the＂Duration Calculation＂table．

DECISION TABLE FORMAT
The four basic elements which constitute the structure of a decision table are shown in a schematic diagram below：

IF。○。	$\begin{aligned} & \text { CONDITION } \\ & \text { STUB } \end{aligned}$	CONDITION ENTRY
『にENo．．	$\begin{aligned} & \text { ACTION } \\ & \text { STUU } \end{aligned}$	action entry

Figure 9．Basic Elements of a Decision Table

The double horizontal and vertical lines separate the four basic elements：Above the horizontal double line is the condition area；below，the action area．I the left of the vertical double line is the stub；to the right，the entry area．
The relative position of each element should re－ main consistent－that is，the stubs are always to the lef entries，and the conditions are always aced above the actions．
A table can be entered only at the top（a single Therefore，note that a table must be used in its entirety．There is no way of executing a selected rule isolated from the table．

Conditions and actions have an＂if ．．．then relationship；no actions may appear in the condition area，no conditions may be indicated in the action area．No values may be changed by conditions．
In a limited entry condition or action，the entire condition or action must be written in the stub；the entry is used to show，for each case，whether the particular condition is true，false or not pertinent （ Y, N, or blank），and whether a particular action
should be performed（X or blank）．
polion to the par
limited and entry．
Limited and extended entry form may be freely A condition must be answerable by either a yes or no．
Actions are to be written in the order in which they are executed

RULES WITHIN THE DECISION TABLE
rule is one vertical column（or group of associated Alumns numbered as a single rule）of the entry绪

For a rule where multiple conditions exist，al conditions must be satisfied before the actions are executed．

Figure 10．Further Elements of a Decision Table

Each decision table must indicate where to go next－to another table or to the table itself．

LANGUAGE OF THE DECISION TABLE
The vocabulary and grammar of the language used within the decision table are left to the discretion of the user．It is his responsibility to insure that the language used in describing the system will be under－ standable to those who use the documentation．

DECISION TABLE FORM

A decision table form（X28－1630）is available for those including decision tables in their documentation．The vertical lines in the entry area are printed in two weights．The lighter，close－together vertical lines are used to separate rules written entirely in limited entry form．The wider－spaced，slightly heavier vertical lines may be used to separate the rules for
extended entry form. If the user desires to have narrower or wider columns, he indicates this by drawing in his own vertical lines. Thus in a single table, space for one rule may be different from th space indicated for another rule. The preprinted uniform format is convenient.

In writing on the form, it is not necessary to allow only one character per square on the grid. The vertical lines may be ignored, so that more than one character may appear in a square or a single character may span two squares

The vertical double line separating the stub and
entry is predrawn, but may be ignored when the user
aws in his own line. The user should draw the horizontal double line separating conditions from actions.

As a convenience to the user it is permissible to nclude more than one decision table on a single decision table form. The beginning of each table is indicated by separating it from preceding tables with blank lines and, if desired, cross-hatching the reference area next to the table header information. Table and rule reference information is supplied for each table just before the writing of the decision table proper. Multiple tables per page should be made in the vertical direction only - that is, the stubs of all tables on a single form should be aligned.
\qquad

 -
\qquad

RECOMMENDED AND OPTIONAL USES OF THE various elements of the decision table R - Recommend

- Optional

1. Table header

R - Table number and/or table name.

- Table dimensions, i. e., number of rules, conditions, of actions; next table to be considered; error table; comments; order
of rules.

2. RULE REFERENCE

- Rule number.
- Rule name; frequency.

3. ROW REFERENCE

O-Row identification; footnote indication.
4. Remarks

O- Comments, definitions, abbreviations, explanations, formulas.
5. CONDITION STUB

R - All or part of a condition statement, i. e.
a logical question, or relational or state a logical question, or relational or state
O- The condition operators may be repesesmed by symbols ($=, \boldsymbol{\lambda}, \leq)$, mnemonics than).
6. CONDITION ENTRY

R - Completion of the condition statement (extended entry) or $\mathrm{Y}, \mathrm{N}, .$, , -, or blank

- An "all others" or "else" rule to provide a nconditional rule to be taken wirr none of the other rules are satisfied.

7. ACtIon STUB

R - All or part of an action statement. An explicit tratement of where to go next for each rule,

- If not specified in the table header. actions to be taken; i.e., input-output, equence control or value assignments. Arithmetic expressions may be written using pormal mathematical notation.

8. ACTION ENTRY

R - Completion of the action statement (extended entry), or $\mathrm{X}, .,-$, or blank (limited entry).
O- Any language may be used to complete the action statement.

International Business Machines Corporation Data Processing Division
112 East Post Road，White Plains，N．Y． 10601

