
IBM CONFIDE NTIAL'

TECHNICAL REPOR T

16.01.001.043
February 26, 1962

TABLES, FLOW CHARTS, AND PROGRAM LOGIC

M. S. Montalbano

ABSTRACT

Doto process ing problems to be so lved by computers must now be
descr ibed twice: first dur ing the identification and defin ition of the problem,
and then during actual programming . The he terogeneous a c ti v ities which pre­
cede programming are commonly coil ed II systems anal ys is." In its present
state, the art of systems anal ys is is characterized ch ie fl y by being neither
systemat ic nor anal ytic . Tobular techniques con help make it both . The basic
groupings of information in a program toble are functio nall y s imilar to stages in
the orderl y acquis ition of informat ion about busi ness systems . This structural
similarity, added to the anal ytical and logi cal power whi ch a table possesses,
provides a promis ing basi s for a trul y II problem-oriented U language -- one
useful in talking about and describ ing problems from the outset, rather than in
converting one k ind of detailed problem description to another.

, This paptlr hOi been wbmilled for publicotion elwtw ond hall bHn iuued en on ASDD T.chnical
leport for early diu.minotion of its eontenll. It is iiWltd os IBM Confidentiol os 0 cour tesy to tn. intended pub­
lidler ond may be con1idered d.elonified upon the dote of 1uch outside publicotion. The subilgnce of tile informa­
tion contoined here may be free ly communicoted ot ony time. Departures from normal repor t format hove been
made in deference to the monuscript it)'le '1toblisMd b)' lhe intended publ iiher .

International Bus iness Machines Corporation
Advanced Systems Deve lopment Division Loboratory

Son J ose, Coli fornio

CONTENTS

1. INTRODUCTION 1

II. A PRELIMINARY EXAMPLE 3

1II. EFFICIENCY , COMPLETENESS,
AND CONSISTENCY 9

A . Programming 10

B. Analysis 20

C. Debugging 30

D. Modification 31

IV. THE USE OF TABLES 32

V. CONCLUSION 34

REFERENCES 3S

•

TABLES, FLOW CHARTS, AND PROGRAM LOGIC

I. INTRODUCTION

The objective of this paper is to describe how program

tables can be used to develop. display, implement and record

the logical structure of digital computer procedures.

Data processing problems to be solved by computers must

now be described twice: first dUFing the identification and defini-

tion of the problem, and then during actual programming. The

heterogeneous activities which precede programming are commonly

called "systems analysis." In its present state, the art of systems

analysis is characterized chiefly by being neither systematic nor

analytic. Tabular techniques can help make it both. T h e basic

groupings of information in a program table are functionally

similar to stages in the orderl y acquisition of information about

business systems. This structural similarity, added to the analytical

and logical power which a table possesses, provides a promising

basis for a truly "problem-oriented" language--one useful in talk-

ing about and describing problems from the outset, rather than in

converting one kind of detailed problem description to another.

-2-

The kind of tables which form the basis of tabular program­

rning l a nguages sort the information they display into four groups,

which are customarily described as follows:

The " condition stub, 11 which names logical variables.

The "condition entry, 11 which lists permissibl e combinations

of values of these logical variables.

The Iraction stub, II which names action variables.

The traction entry, II which lists sequences of values of these

action variables .

Each set of logical-variable values in the condition entry is

associat ed with a set of action-variable values in the action entry.

Such an association is called a II rule . II A rule is thus of the form:

"If A 'and B and C and .. . are true, then take consecutive actions P

and Q and R and ... II In other words, a rule is an "iI. .. then ... II

statement in which the "if" is followed by a conjunction of values for

a prescribed set of logical variables, a nd the "then" is followed by a

conjunction of values for a prescribed set of action variables.

We shall be concerned primarily with the condition entry

portion of program tables and , in particular, with how the condition

entry idea can most effectively be used to analyze, describe, program

and document computer procedures with complicated branching structures .

- 3-

II. A PRELIMINARY EXAMPLE

A concrete (though hypothetical) example will perhaps elucidate

t he abstractions of the preceding section and help set the stage for

the abstractions of the next one. Consider the billing procedure of

a wholesaler with th ree product lines, several classes of customer.

and a discount and payment structure which depends upon class of

cust om er , product line and dollar amou nt of invoice . These variables

are as follows:

Product Lines: 1. Engi nes

2. Pumps

3. Fans

Classes of Customers:

I. RetaiJ 4. Pump Agents

2. Government Agencies 5 . Pump Distributors

3. Engine Agents 6. Fan Distributors

Dollar Ranges: I. Less than $10.00 3 . $50 . 00 to $99.99

2. $ 10.00 to $49.99 4. $100.00 or more

The information we have listed in the example thus far is the

raw material for all decisions about discount and terms. It is a l so.

-4-

except for minor differences in arrangement, a completed condition

stub for a tabular program.

This point is important. The act of specifying the grounds

on which a program's decisions are to be based is, functionally, the

same as the act of filling out a condition stub in a tabular program­

rning language. To this extent, at least, the development of a

tabular program is parallel to the system analysis phase of computer

program development. Both are concerned with specifying the

logical variables on which decisions are to be based and the values

which these l ogical variables can assume.

Before we examine this example further, note the ready-made

code by which we can now refer to the varying combinations deter­

mining the wholesaler 1 s billing decisions. A three-digit number,

whose positions each represent a value for one of the three kinds of

variable listed (product, customer and dollar range, in turn), can

now completely describe any set of factors : The code number 334,

for example, designateS! an order from an engine agent for a fan

costing $100.00 or more.

What is the next step? In analyzing a system, one next

determines which significant combinations of logical-variable values

occur. Our example shows three product lines, six classes of

-5-

customer and four dollar-amount ranges. Thus, the total number of

possible product-customer-amount combinations is 72 --the product

of three, s i x and four . Generally. however, not all possibilities will

occur . If, for example, no engine stocked costs less than $50. DO,

no combinations which include both engine and either code value 1 or

2 in the dollar range would ever occur in actual practice . All such

combinations could either be omitted from consideration in the

computer program, or included only to check clerical consistency.

Or the combinations which do occur, some may not be

significant. Retail purchasers, for example, may all be billed

identically whatever they order and however much it costs. The

product - line and dollar-amount tests are thus not significant in this

case, since, although different logical combinations do occur, they

do not affect the action to be taken.

This requires a further extens ion of our coding scheme. In

the case of tests which are not significant, X replaces one of the

digits in the code. For .example , X l X will indicate that retail pur­

chasers have only one rule applied to them whatever they order and

how ever much it costs.

One further convention completes the code for our present

purposes. A bar () over a digit indicates that it is the only one

-6-

not admissible in the position it occupies. Government agencies,

for example. may get discounts only on purchases totalling $100 . 00

or more, irrespective of product class. The corresponding coding

would thus be X24 when the discount applied and X24 when it did not.

In this second stage of our system analysis - -the stage of

spelling out the combinations of logical values which actually occur

and are significant in a given situation--we are. in substance. filling

out the condition entry portion of a table. The information is the

same in both cases: it is merel.y th(~ manner of presentation which

may be different. Thus, we again find a correspondence between a

functioned section of a table and a functional stage in the analysis of a

system for computer solution or processing. And, again, the

correspondence is important. The closer we can make the structure

of our programming language correspond to the structure of a system

analysis, the closer we can come to constructing an effective

problem -oriented language for business problems.

It should now be possible to interpret Table 1, which displays

all the relevant fact s about our hypothetical cas e.

This table is divided into four quadrants by intersecting

vertical and horizontal double lines. The northwest quadrant is

the condition stub. The northeast is the c ondition entry. The

- 13-

procedure of Fig. 3 might be called the "delayed rule!! method, In

the delayed- rule method, our objective is to delay as long as

possible the tests which isolate rules for us.

Let us first consider Fig . 1. At the top of the page we have

the condition entry portion of our original table. represented now

as a set of ten Rule Identifiers, labelled, as they were in Table 2,

with the Roman numerals I-X. To its right is a seven-b)-five array

which displays a row -by-row count of digit occurrences in the

condition entry . We call this array the Row Count Matrix. The

entries in this matrix tell us, for the row in which they appear, how

many times a 1 occurs in the condition entry, how many times a 2

occurs, etc .

Looking at the first row of the Row Count Matrix, we learn

that 1 occurs five times in the first row of the condition entry, and

so does 2. The third row is similarly seen to be made up of two l's,

two 2's, five 3's and one 4.

In th e procedure illustrated in Fig. 1, we ask those questions

which will determine a rule for us as quickly as possible . We do

this by looking for the smallest number in the Row Count Matrix and

asking the question associated with this number. In Fig. 1, there

are three equally small numbers in the Row Count Matrix--all 1'5.

TABLE I
BILLING PROCEDURE FOR SAMPLE WHOLESALE PROBLEM

, , • , • , • ,
I. Engine 3. F an

X X X • • T , , ,
~. Pump

L. ReU.n 1. En,. Alt. S. Pump DiU. • , , , , , • • ,
2. GOy't. 4. Pump All. 1:>. Fan Diat.

I. Leu than $10.00). $50.00 to $'1'1. '19
X • • , • X X X • Z. $10. 0010$49.99 4. SIOa.OOormon

Oi&<:o",,1 0 ... 0 n, ." ... ' .. ." ".
Conai,oment No No No Y .. Y .. No Y .. No No

N" No> No' NO' No ' No' N"
,,-

Term. C. O. D. 80_

" " " " " " " 90 -

" " "
, , ,

, , •
, X X

,,. ... ' ..
No No No

,,-
No. No. 80_

90- " "

" ,
•
X

. ..
No

No.

"

..
Elu

Error

•
-.>

- 8-

southwest is the action stub; the southeast the action entry. The

columns to the right of the vertical double line describe the rules.

These are lIif. .. then ... " statements in which the "it' portion is

described above the horizontal double line and the "then" portion is

described below it .

To help further our understanding, let us interpret a few of

the rules.

Rule No. 1 says: "If order is from a retail purchaser, then

allow no discount, do not ship on consignment, ship C . O. D. "

Rule No.2 says : "If order is from a government agency and

totals $100 . 00 or more, then allow 150/0 discount, do not ship on

consignment, terms are net 30 days. II

Rule No . 6 says: "If order is from an engine agent, but is

not for an engine, allow 100/0 discount, do not ship on consignment,

terms are net 30 days . ..

Rule No. 14 is a catch-all If.no one of the previous rules

applies, a coding error .has been made. The code 132, for example,

would be an error, since this company does not stock engines which

cost less than $50.00.

!

-9-

Ill. EFFICIENCY, COMPLETENESS, AND CONSISTENCY

The remainder of this paper will focus largely on the portion

of a table in which logical relationships are .displayed--the condition

ent:r;y . For business problems characterized by a complex l ogical

structure, the condition entry can provide an analytical, logical and

descriptive tool useful in system analysis, programming, debugging

and modification.

Some of the benefits we can derive from an effective exploita­

tion of the condition entry are:

1. Programming. The ability to compile sets of branching

instructions which occupy minimum space in computer memory and

which" require a minimum average number of executions.

2. Analysis. The ability to make easy, comprehensive

c hecks on the completeness and consistency of sets of logical alterna­

tives.

3 . Debugging. The ability to maintain identifiers which will

display in short compass the prior "branch history" of a program

without expensive breakpoint or statement - by-statement monitoring.

4. Modification. The ability to modify sets of branching

instructions quickly, accurately and with a full realization of all the

implications of such a modification .

-10-

For convenience, let us call the codes we identified in the

previous section Rule Identifiers. The condition entry of Table 1 is

made up of Rule Identifiers: XIX, X2 4. X24. 133 .. . 36X. Else. (This

last is in a special category which we discuss below.)

(In the terminology of symbolic logic, the Rule Identifiers

would be called the disjuncts of a logical statement in disjunctive

normal form. The case most frequently considered, permitting

only the values 0 a nd 1 for each logical variable, is the true-false

propositional calculus or Boolean algebra. We have generalized

this to permit more than two values for logical variables and to per­

mit sums of disjuncts to be included by use of the not and don't-care

conventions.)

Let us consider how we might exploit the logical ability of

the condition entry - -regarded as a set of Rule Identifiers--to achieve

some of the benefits we listed above.

A. PROGRAMMING

Table 2 shows the condition stub and condition entry for

another hypothetic al example --a program which requires identifica­

tion of ten pipe products. An example with highly redundant inform a -

han was chosen intentionally to illustrate how we can eliminate

-11-

TABLE 2
CONDITION STUB AND CONDITION ENTRY FOR SAMPLE PIPE PROBLE M

I nmmV'2I.WllIIIlXX

1. B l ack
1 1 1 I 1 2 2 2 2 2

2 . Galvanized

1. Singl e Length
1 1 1 2 2 I 1 1 1 2

2 . Double Length

1. Plain End 3. Threaded and Coupled
1 2 3 3 3 1 2 3 3 4

2. Threaded Only 4 . Threaded One End

1. L ight Wall 3 . Heavy Wall
1 2 2 2 3 2 2 2 2 2

2. Standard Wall

1. Unoiled
1 2 2 2 2 1 1 1 1 1

2. Oiled

1. Uniform 3.
2 . Semi - random

Random
1 2 2 3 3 1 2 2 3 3

1. i - inch 3. 2-inch 5. 4 - inch
3 4 4 5 5 1 1 2 2 3

2. I 1/2 - inch 4 . 2 1/2 - inch

-12-

redundancy by means of Rule Identifiers.

The two programming objectives we wish to achieve are:

1. Minimum number of branching instructions in memory.

2 . Minimum average number of executed branching instructions.

For simplicity, we assume binary branching, though the

arguments given would be equally valid for other types.

Since we wish to differentiate among ten proquets, the mini­

mum number of binary branching instructions we can get by with will

be nine.

If the ten products occur with equal frequency. the theoretical

minimum average number of branching instructions we could execute

would be log210 = 3.32.

How close can we come to these two objectives?

Figures 1 and 3 illustrate two different methods of converting

the condition entry of Table 2 to a set of branching instructions.

Figures 2 and 4 display the resulting flow charts. Both flow charts

have nine branchpoints (the minimum number); but one will require

an average of 5. 4 executed branch steps, the other will require 3.4.

The procedure we follow in Fig. 1 might be called the ttquick

rule" method. In the quick-rule method, our objective is to make as

soon as possible those tests which will isolate a rule for us. The

1

I

I

I

I

1

3
r

1

2

3

3

2

3

5

I

2

3

2

2

3

5 ,.

+
2

2

1
2

a;

- 14-

1 1 1 1 1 2 2 2 2 2

1 1 1 2 2 1 1 1 1 2

1 2 3 3 3 1 2 3 3 4

1 2 2 2 3 2 2 2 2 2

1 2 2 2 2 1 1 1 1 1

1 2 2 3 3 1 2 2 3 3

3 4 4 5 5 1 1 2 2 3

~mn
2 1 1 1 2 2

2 I I 2 I I

4 2 3 3 I 2

2 2 2 2 2 2

I 2 2 2 I I

3 2 2 3 I 2

1<111]J:

2 2

3 3

2 2

3 4 4 5 I I

2 3

2 2
,,~~~

1I m w 1lIII IX

2 I I 2 2 2

I I I 1 I I

I 2 3 2 3 3

2 2 2 2 2 2

I 2 2 I I I

I v 2 2 2 2 3

1 4 4 I 2 2
]!I

~
2 I I 2

I I I 1

3 2 3 3

2 2 2 2

1 2 2 I v

'j\ 2 2 2

"'i 4 4 2 v
..0

"" tt

, Z :3 4 5

5 5

7 3

2 2 5 I

I 8 I

6 4

2 4 4

2 2 2 2 2

2 :3 4 5

3 4

6 CD
1 2 4

7

4 3

I 4 2

2 2 2 Ifj"I

I 2 3 4 !5

2 3

5

2 3

5

3 2

4 I

I 2 2

I 2 3 4 5

2 I

3

I 2

3

I 2

3

CD 2

Fig. 1. Quick- Ru le Method of Deri ving Fl ow Charts from Tabl es

-15-

These l's tell us that there is one occurrence of a 4 in Row 3; one

occurrence of a 3 in Row 4, and one occurrence of a 1 in Row 4.

The corresponding questions are: "Is this product threaded on one

end? 1\; Ills this product heavy-wall? II; If Is this product light-wall? 'I

If the answer to one of these questions is "yes, " the pipe is corre ­

spondingly identified as product X, V or I. The first three branch­

points of Fig. 2 ask these questions .

These products are now eliminated from further consideration.

The condition entry is thus reduced to seven columns. The Row

Count Matrix for this reduced condition entry shows four l's . In

this case, however, we are not as fortunate as we were the first

time. The l's occur in pairs, so only two rules can be isolated at

this stage; Rules IV and VI. We can select Rule IV on the basis

either of a 2 in the second position or a 5 in the seventh position.

Similarly~ Rule VI can be picked out on the basis either of a 1 in the

third position or a 1 in the sixth position. The circles in selected

Rules IV and VI show w.hich tests we actually make in the flow char t

of Fig. 2; the checkmarks show the alternative tests we could have

made . The remaining steps follow in the same manner. The com­

pl ete flow chart (Fig. 2) is the end result of the process.

THREADED
ONE END?

-
=

x

(2)

l-INCH?A

D7 = 1
?

=

VII

(8)

HEAVY LIGHT DOUBLE
WALL? WALL? LENGTH?

• • • •
D4 = 1 D2 = 2

? ?

v IV

(7) (I) (9)

RANDOM THREADED
LENGTH? GALVANIZED? ONLY?

, , • D3 = 2",,> % D6 '" 3 Dl '" 2
? ? ?

= =

IX VIII II

(6) (5) (3)

Fig. 2. Flow Chart Derived from Table 2 by Quick- Rule Method: Average
Decisions Per Rule - 5.4 (with Un iform Rule Distribution)

PLAIN
EN D?

D3 = 1
?

=

VI

(10)

.1 III I (4)

,

-'" ,

- 17 -

As we have previously noted, this flow c hart is efficient with

respect to s torage but not efficient with respect to average execution

time. Let us consider Fig . 3 to see how we can schedule our tests so

as to minimize average execution time.

In Fig. 3 (in which we omit the Row Count Matrix and the un­

tested rows in the condition entry), we schedule our tests so as to

delay rule identification as long as we can. T o do this, we employ a

procedure which might b e described as: "Ask those questions first

which will m ake the two differentiated groups of Rule Identifie rs as

similar in size as possible. II This procedure is illustrated in

Figs . 3 and 4. If the rules are of equal frequency, the flow chart

of Fig . 4 will result in an average numbe r of 3.4 branch-instruction

executions per product. Like its predecessor, the now chart of

Fig. 4 also requires a minimum memory space . (The numbers in

brackets and parentheses which are shown in Fig. 4 will be discussed

later.)

If the rules wer~ not of equal frequency , but their relative

frequencies were known, the "minimum-average-path" principle we

have just described would require only minor modification. Each

rule would have its relative frequen cy associated with it as a " weight. ..

Ins t ead of a Row Count Matrix, one would have a Row Weight Count

-1 8 -

tnm:r;ry

Il lTI 212

I 212 313

/ \ ~\
I II m l'I IX X

I I 2

I 210 2 3

2 3

I \ / \
I n m III "

2 3 I 3

Fig . 3. Delayed-Rule (Minimum-Averoge-Poth) Method of Deriving
Flow Charts from Tobles

03" 2

03 = 2

ill

II

(11(1,2)XXXX)
[180]

03 '!oj; 1

(112XXXX)
[90]

04'" 2
IS[

(11x2XXX)
[120]

I
(Ill XXXX)

[90]

03 = 1

(1 1XXXXX)
02 ' I I [360]

01 = 1
02 '" 1 ?

(IXXXXXX)
[720J

(1IXXXXX)
[360J

°4,2

::sz:

(I1X2XXX)
[240J

01 \ 1

(IXXXXXX)
[720J

[60J
i I (IX2XX2X)

03 ' 2

~
03,2 I I --= (IX2XX2X)

[180J ,
(IXXXX2X)

[240J

A

I
(IXXXX2X)

[480J

°2 "' 2 Q X (I2XXX2x)
[240J ,

02" 21 (12XXX2X)
[240J

03 '" I I EJ (121 XXiX)

, [60]

03 \ I I (121 XX'X)
[180J

~
:IX:

Fig. 4. Fl ow Chart Derived from Tobie 2 by Delayed-Rule Method:
Average Decisions Per Ru le - 3.4

,
~

'" ,

-20-

Matrix. The objective would then become to divide the condition

entry into groups of as nearly equal weight as possible.

(The procedure we have described is equivalent to the

Shannon-Fana coding procedure in information theory.)

B. ANALYSIS

Descriptions of complicated sets of interacting decisions are

liable to be inconsistent or incomplete. This is particularly true of

descriptions made up of the kind of statements which are recorded

during the course of a system analysis--statements which are most

often dredged from a busy man while he is simultaneously trying to

keep ,abreast of the procedure he is describing and plumbing his .

unconscious for relationships he feels rather than knows.

The Rule Identifiers provide a ready means to check sets of

such statements for both completeness and consistency. This kind

of checking can be done:

First, by the system analyst to establish his own under­

standing;

Second, by the programmer to c heck the system analysis;

Third, by the compiler to check the program.

-21-

These are brave claims. Can they be justified?

A sketchy attempt at justification is given in the remainder of

this section. A more thorough discussion would require a paper in

its own right. In dealing with the completeness and consistency of

programming statements, we are dealing with a problem which is a

central and major source of programming difficulty. The cause of

this difficulty is "combinatorial complexity . 11 This same combina­

torial complexity plagues any discussion of the difficulty itself. As

a result, such a discussion must chart a hazardous course between

tedium and obscurity. The most common landfall for such a course

is one shoal or the other - -or both.

Let us start our voyage by?ealing with a point of difficulty

which' we avoided in the previous section. This is the occurrence of

a IIdon't-care" indication in the condition entry . How does such an

indication affect the "table-to-flow-chart" procedure discussed above?

Consider Rule 2 in our wholesaling example (Table 1). The

Rule Identifier for this rule is X24. What does the X--the "don't­

care" indicator- -signify in this case? It signifies that any permissible

digit in the first position will lead to Rule 2; in other words, 124, 224,

and 324 are equivalent rules - -as long as our order is from a

government agency and is for a total amount of $100.00 or more,

-22-

the 15% discount will apply, whether the article purchased is an

engine, a pump, or a fan. Thus, the effect of a IIdonlt-carell indicator

is to consolidate several columns into one--the number of columns

depending upon the number of alternatives possible for the logical

variable to which the tldonlt-care" applies. If two ttdon't-carell

indications occur in the ~ame column, the number of columns con-

50lidated into one is !n x fl, where!!} and !l are the number of alterna­

tive values for the first and second logical variables respectively.

The extension to three or more "don't-carel! entries is done similarly.

Table 3, and Figs. 5 and 6 may make this clearer by illustrating the

relationship between compound rules--those in which "don't-carel!

entries occur- -and simple rules - -those in which each variable is

specified exactly.

Table 3 is an uncoded table or, rather, the uncoded con-

dition stub and condition entry of a table. The l!donlt-care" condition

is indicated by the absence of an entry in any cell where the test is

not significant. Note that one of the rules in this table is a catch -all

rule called rrElserr --this is the rule that applies when none of the others

does.

Figure 5 shows just the condition entry portion of the same

table, first as a coded set of compound rules in which rrdon't-carel!

A

8

C

D

1

1

1

1

- 23 -

TABLE 3
CON DITI ON STUB AND CONDI TI ON ENTRY OF SAMPLE TABLE

CONTAIN ING "DON 'T CARE " ENTRIES

1 2 3 4 5 6 7 8

A eg. 2 . 5 Y Y Y N N N El se

B vs . 19 < < = = = = >

C =p =p =Q

Dis pOSe Y N Y N

2 3 4 5 6 7 8

A (2) 1 1 1 2 2 2 X E

B (2) 1 1 2 2 2 2 3

C (2) X X X 1 1 2 X

D (2) 1 2 X 1 2 X X

~/~/ ~
1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2

1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3

2 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

~~' - ,
'--.r---' ' v ,,--.r-----'

2 3 456 7 8

Fig.5. Coded Condition Entry Por tion of Tobie 3, Showing Relationship
Between Compound and Simple Rules

-24-

is indicat ed by the presence of an ~ in a cell and, second, as the

e quivalent set of s im ple rules into which the compound-rule table

can be analyzed.

In the simple-rule table, we have allowed four columns for

Rule 8--the Else rule. How do we know that Rule 8 breaks down

into four columns ?

The total numbe r of s imple rules possible is the same as the

total number of Rule Identifiers we can write. In this case, our

Rule Identifiers are of the form abc d. whe re !!. can be either 1 o r

2; £ can be either I, 2, or 3; ~ can be either 1 or 2; and ~ can be

e ither 1 or 2. The total number of different Rule Identifiers we can

write is thus 2 x 3 x 2 x 2 = 24 . We get 20 of these 24 when we de ­

compose compound rules 1-7 into simple rules. The r emaining four

must therefore make up the simple rules combin ed into Rule 8.

Figure 6 illustrates some of the further analysis possible.

Part I of Fig. 6 i s m erely a copy of the compound-rule table of

Fig. 5 written in more com pact form, with a number under each

com pound rule which tells how many simple rules it represents.

Part II is a Row Count Matrix for Rules 1-7. Note that the

count is not the actual number of occurrences of X , I, 2, or 3 in

Part I, but the weighted number of occurrences--eac h occurrence o f

-25-

a digit adds the column weight (the number at the foot of the column

in Part 1) to the Row Count.

Part III shows the Row Count Matrix for Rules 1-7 after the

X's have been converted into the 1'5 and 2'5, or 1's, 2'8, and 3 ' s they

represent. In the first row of Part II , for example, the count in the

X-column is 8. Since A, the variable in the first row. takes on only

the values 1 and 2, half of the simple rules covered by the X have l's

in this digit position and half have 2 IS. We thus add 4 to the I-count and

4 to the 2-count to get the' Part III entries in that row : twelve 1' 8 and

eight 2's.

(Part III could, of course. have been obtained directly from the

simple-rule table of Fig. 5.)

Part IV of Fig. 6 displays the Row Count Matrix for Rule 8.

the Else rule. This is obtainable directly from the Part ~ Row

Count Matrix. In the digit positions corresponding to two-valued

variables, the 24 simple rules will divide into twelve l's and twelve

2's. In the three-varia.ble position, the simple rules will divide into

eight 1'5, eight 2 ' s, and eight 3'5.

An inspection of Part III readily shows which digit values are

mfssing in each row. These missing digit values must occur in the

Else column . This information is e nough to enable us to make out the

A

B

C

D

(I - 7)
X 1 2 3

8 8 4

0 4 8 8

16 2 2

14 3 3

PART II

-Z6-

2 345 678

1 1 1 2 2 2 X E

1 1 2 2 2 2 3

X X X 1 1 2 X

1 2 X 1 2 X X

(2) (2) (4) (I) (I) (2) (8) [4]

PART 1

(I - 7)
123

12 8

4 8 8

10 10

10 10

PART III

(8) (Else)

4

4

2 2

2 2

PART IV

Fig . 6 . Analysis of "Else" Ru le in Table 3

-27-

Else Row Count Matrix. (We could also go on to write out all the

simple rules which make up the Else column, if we chose,)

At the end of a procedure such as this - -one which can be

carried out easily by the system analyst, the programmer, or the

computer--we have carefully checked the complete set of alternatives

implicit in the set of logical variables we specified in the condition

stub. For every possible combination, we have specified which action

we should take .

We can c heck consistenc:y as well as completeness--as part of

the same procedure . Suppose the original Tabl e 3 had contained a rule

R with these entries

y

The Rule Identifier for this is 1212. Rule R is thus seen to be in­

consistent with Rule 3, since the Rule Identifier of Rule 3 is 12XX-­

which includes 1212 as one of the simple rules of which it is made up.

In other words, the statement that one action is to be taken whenever

A = 1 and B = 2 is inconsistent with the statement that a different action

-30-

Rules 1 through 8 occur with equal frequency, we have an average

of 3.25 branch instruction executions per rule.

C, DEBUGGING

Figures 4 and 7 display digital codes which are associated

with the lines connecting branchpoint symbols. These codes record

the branch history of the line segment next to which they appear. A

code like 12XXX2X (Fig. 4), for example, tells us that variables

one, two and six have been tested prior to the point in the flow chart

at which this number appears, and that the tests have determined that

the current value of the first variable is not 1, the second variable is

not 2, and the sixth variable is not 2.

These codes are, in effect, incomplete Rule Identifiers when

they occur between successive branchpoints, and complete Rule

Identifiers when they occur between branchpoints and action boxes.

If a computer program were written so as to maintain the current

Rule Identifier (complete or incomplete) in a standard location avail­

able to a debugging program, the information provided by such a

Rule Identifier would be a powerful and economical debugging aid. It

would also provide assistance in systematic program checkout and

diagnostics, since an automatic means to cycle through all permissible

-31-

Rule Identifiers could readily be devised for each program so

construc:ted.

(As we have previously noted, the numbers in square brackets

which accompany the Rule Identifiers merely record how many simple

rules are contained in them. The large numbers associated with the

rules of Fig . 4 measure the large amount of redundancy in the system .)

D. MODIFICATION

The point about modification can readily be made. Consider

the pipe program described by Table 2. Suppose we wished to discon­

tinue manufacturing light-wall pipe and wished to substitute a new

product: galvanized, double-length, threaded one end, heavy-wall,

oiled, semi-random, 4-inch pipe. All we need do is strike one column

from the table and add another--an easy transition compared to the

frantic redrawing which this same problem would require of a flow

chart .

-32-

IV. THE USE OF TABLES

The preceding discussion. in which tables and their corre ­

sponding flow charts have been prepared side-by-side, serves to

indicate the relative merits of the two forms of display of logical

structure . The table is superior to the flow chart in displaying

computer-independent information; the flow chart is superior in

displaying computer-dependent information. If the problems we

discussed above were to be programmed for machines which did

branching by some other method than binary choice, the flow charts

would be different but the tables would be unchanged. In this sense,

tables are problem -oriented; flow charts are computer-oriented.

There is another aspect in which tables are problem -oriented.

We have been considering primarily the condition entry portion of

the table, since this is the point of greatest difference with past

practice. But the division of the table into its four sections is, in

itself, a useful aid in problem description . The condition stub is a

list of all the questions and permissible answers pertinent to a parti­

cular problem . The condition entry is a list of all permissible com­

binations of answers. The action stub is a list of all the actions

pertinent to a particular problem. The action entry is a list of the

permissible sequences of actions. The rules serve to associate a

•

- 33 -

specific set of answers with a particular sequence of actions .

The advantages in problem description seem to be very

great . In practice, how does one codify the kind of information

about which data-processing programs are written? Would not stages

characterized by the following four kinds of question describe many

of the common elements in what are, admittedly, varied, irxlividual,

and complicated interactions?

1. "How do you know when to or how to do such-and-such?"

2. "Do this condition and that condition ever occur together? II

3. "What steps might you have to take in doing such -and-

such? "

4. tlWhen this condition and this condition and this condition,

etc., occur together, which steps do you actually take?"

These questions. stated generally to avoid restricting their

applicability unduly, are representative of the different kinds of

question which are important in a procedural study. The four sections

of a table correspond, functionally, to these four kinds of question.

/

- 34-

V. CONCLUSION

There are, of course, many problems meriting further in ­

vestigation: tables in their present form can become unwieldy when

problem segments are prefaced by one or two simple decisions rather

than six or seven complicated ones; it would sometimes be convenient

to have rules in a table refer to other rules in the same table; Rule

Identifiers in which the variable values are connected by !lor" rather

than "and!! would sometimes be a convenience, and so on . Such

further investigation would be desirable, since it would enhance the

a l ready considerable merit of tables as a means to implement program

logic.

- 35 -

REFERENCES

1. Grad, Burton, I1Tabular Form in Decision Logic, I' Datamation,

July, 1961.

2. Kavanagh, Thomas F., "TABSOL--A Fundamental Concept for

Systems Oriented Languages, 11 Proceedings of the 1960 Eastern

Joint Computer Conference.

3. Evans, Orren Y .• tlAdvanced Analysis Method for Integrated

Electronic Data Processing. II IBM General Information Manual,

#F20-8047.

