
LJED TABSOL

for GE-225 CARD SYSTEM

David T. Schmidt

Adv. Mfg. Eng. Services

and

Paul Margaritis

Large Jet Engine Department

NOVEMBER 1961

GENERAL ELECTRIC

COMPUTER DEPARTMENT

PHOENIX, ARIZONA

PRINTED IN U.S.A.

TABLE OF CONTENTS

INTRODUCTION

I

II

III

IV

V

CONSTANTS AND VARIABLES
A Variables (Parameters)
B. Constants

THE DICTIONARY

TABLE ENTRIES
A. Stub Entries
B. Table Row Entries

STRUCTURE TABLE FORM

OPERATION CODES ...
A . Test Operation Codes
B . Result (or Action) Operation Codes .

1 . Arithmetic Operation Codes
2 . Shifts
3 Indexing
4 The AND Instruction
5 The Convert Instruc tion (C(>N)
6 . Transfer Instructions
7 . Output Instructions
8 The STOP Instruction

VI PROBLEM INPUT DATA FORMAT

VII OUTPUT FORMAT ...

VIII ERROR IDENTIFIC ATION

IX SETTING UP A TABSOL SYSTEM

•

•

. .

Page

1

3
3
4

5

6
8

11

15

20
20
21
21
23
23
28
28
28
30
30

31

32

33

33

TABLE OF CONTENTS (CONT .)

x KEYPUNCIDNG
A . Dictionary
B . Table Forms

1. Header (Descriptor) Card
2 . Noise Cards.
3 . Table Cards.

C . Problem Input ..

XI MACHINE REQUIREMENTS

XII TABCON TABLE TRANSLATOR PROGRAM
A. The Three Phas es
B . LJED- 225 TABCON Error Print-outs

XIII TABSOL TABLE SOLVING PROGRAM

A.
B.
C.

TABSOL Executive Program
TAB SOL Subroutines
T ABSOL Error Printouts . .

XIV TABCON AND TABSOL RUNNING INSTRUCTIONS
A . Dec k Set- Up for TABCON
B . Running TABCON
C . Deck Set- Up for TABSOL
D . Running TABSOL
E . TABCON a nd TABSOL Messages

Page

34
34
34
34
35
36
36

36

37
37
37

39

39
40
40

41
41
41
41
41
42

LIST OF FIGURES

Figure No. Page

1. Example of Table Entry 6

2. Example of TabLe Row • • 7

3. Example of Table Column. 7

4. Examples of Stub Entries . 9

5. Corresponding Examples of the Conditions in Figure 4 10

6. Examples of Table Row Entries 13

7 . Corresponding Examples of the Condition in Figure 6 14

SA . Sample Structure Table Form 16

BB . Sample Structure Table Form 17

9. Example of Indexing Operation Code 25

INTRODUCTION

There has been a continued and increasing interest in TABSOL (Tabular Systems
Oriented Language) by functional specialists, systems people, and Computer
Department personnel as they apply and extend the decision structure table to more
and more problems within the General Electric Company . A parallel development
has been the interest in structure tables by the Conference on Data Systems
Languages (CODASYL) whose membership includes representatives from all
computer manufacturers and many of the leading computer users , As a result
of this interest outside the General Electric Company there is strong reason to
believe that the systems group of CODASYL will recommend that decision structure
tables be the next systems oriented language replacing COBOL .

This report describes a TABSOL processor for the GE-225 Computer developed by
the Data Processing Techniques Unit, Large Jet Engine Department (LJED), Evendale,
Ohio . Early in 1962 LJED plans to implement an extensive body of structure
tables covering complete manufacturing planning for complex gears used in high-speed
transmissions for aircraft jet engines , Original feasibility work on the project was
done late in 1960 using LJED's existing computer , As work on the project continued,
the department made plans to replace the ex~sting computer with a GE 225 The
GE 225 was installed in October 1961.

When the decision was made to install the GE 225, it was realized that the GECOM­
TABSOL Compiler being written for the GE 225 by the Computer Department would
not b e available in time for the gear project In order not to delay the implementation
of the project results, the Data Processing Techniques Unit, working jointly wi th
various Services' components and the Computer Department, determined to develop
a structure table format and table processor that would be upward compatible with
the GECOM-TABSOL program scheduled for release early in 1962 _ As a result of
this decision, LJED successfully ran their structure table processor in August 1961 ,
thus allowing them to continue with their plans for initial implementation of automatic
gear planning by January 1962

The history of TABSOL and the decision structure table, following their conceptual
development by the ISP Team in 1958, is extensively c overed by TIS Reports and
Computer Department publications . It is strongly recommended that the reader,
prior to studying this report, gain a better understanding of developments, both
technical and historical, in the TABSOL field by reviewing some of the following
literature:

-1-

r

•

TABSOL - The Fundamentals of a Systems
Oriented Language (TIS Report R59MS302)

702 TABCON - A Table Conversion Procedure
(TIS Report R59MS303)

305 TABSOL - A Structure Table Processor for
the 305 RAMAC (TIS Report R59MS310)

305 TABCON - A Structure Table Converter for
the 305 RAMAC (TIS Report R60MS309)

650 TABCON-TABSOL (TIS Report R60MS312)

LOGTAB - A Logic Table Technique (DF-59LS23)

Preliminary TASSOL Manual (CPB-147)
Published by the Computer Departmen t

In addition, applic ation examples in which the decision structure table was
employed to document the functional logic are described in the following
publications:

Automatic Planning for the Turning Process
(TIS Report R 61-X-8)

Publish ed by the X- Ray Department

Medium AC Motor and Generator Department -
Rotor Assembly Planning (TIS Report R60MS401)

TABSOL Application Manual (CPB-147A)
Published by the Computer Department

Much of the work on the LJED-225 TABSOL program was based on previous TABSOL
development: primarily the 650 TABSOL program and the GECOM-TABSOL language
specification developed by F . D . McNeill, Defense Systems Department, and D . Klick,
Computer Department Messrs . L . Haines and E . Criddle, Data Processing
Techniques Unit, Large J e t Engine Department, had primary responsibility for
writing the generalized table solving program. Original specifications for the LJED
program were developed with the aid of D . F. Langenwalter, Engineering Service,
E. F . LaChance , Quality Control Service, T . F . Kavanagh, Production Control
Service, and H . W Nidenberg and J . R Zinchak, Advanced Manufacturing
Engineering Service .

- 2-

I CONSTANTS AND VARIABLES

A . Variables (Parameters)

A "variable" or"parameter'l is a named field containing a value The value
contained is known as the contents of the variable field or the contents of the
parameter .

Space in memory is reserved for 499 variables, numbered 001, 002, ------
499 . All input variables (problem input), intermediate variables (stored or
created data used within the program and not as output). and output variables
must be stored and defined in this space . Special assignment is given to
portions of the variable area as follows :

Parameter Number
001 - 484

485
486-499

Unrestricted variable area
Variable clear
Output area (Variables 11498 and #499 contain
the problem number from the input data unless
destroyed by the coder .)

The variable clear (parameter 485) allows for the holding (non-zeroing) of
parameters between problems . A more detailed explanation of the variable clear
is contained in Section II , The Dictionary

All variables are referred to in the structu re tables by their name rather than
number Usually the variable names are made mnemonic for ease of interpre­
tation and understanding Variable names are limited to a maximum of six
characters -- each character may be a numeric (0-9), an alphabetic letter
(A-Z). or a blank Each variable name must include at least one alphabetic
character Examples of variable names are given below :

LENGTH
WIDTH
Wq)RDOI
Wq)RD 2

Variable names must be used consistently throughout the data. If a name does
not occupy the full six positions , justification to the r ight or left must be
established and used Specia l characters other than bLanks and hyphens cannot
be used in variable names

-3-

Each variable is stored in two GE-225 memory locations . Numeric variables
that will be used for arithmetic calculations must be stored in the binary mode:
these variables have a capacity of ten decimal digits internally but are limited
to six digits on input. The input data is stored as the six low order positions
of the internal ten digit field . All ten digits of the variable are available as
output by using the Convert (C(lIN) command described later ,

Numeric variables that are not used in arithmetic calculations (testing is not
an arithmetic calculation) are stored in the binary coded decimal (BCD) mode
and are limited to six characters on input, internally, and on output . Thus ,
numeric input variables are limited to values from 000000 to 999999 . Numbers
that could occupy less than the allowed six digits must contain leading zeroes
to complete the data field

Alphabetic variables presumably are never used for arithmetic calculations
and hence are stored in the BCD mode , Alphabetic variables are also limited
to six characters on input. internally, and on output.

The LJED-225 TABSOL program operates in fixed-point arithmetic . Thus,
the table writer must establish and maintain control of the decimal point
location (referred to as decimal notation) of each variable at all times .

B . Constants

Constants . as opposed to variables, are fixed values written directly in the
structure tables They may be either numeric, alphabetic, or a combination
alpha-numeric Alphabetic constants and alpha-numeric constants are
treated identically .

Numeric constants are six characters in length . Constants normally occupying
less than the maximum six digits must have leading zeroes printed, and hence
can range in positive values from 000000 through 999999

Alphabetic or alpha-numeric constants (hereafter referred to as alpha
constants) also contain a maximum of six characters It is not necessary to
fill in leading characters or zeroes on alpha constants All alpha constants,
however, must be enclosed in quotation marks on the table form

One additional comment The table writer must organize and write tables
based on a knowledge of what variables will be used for arithmetic calculations
-- and thus must be stored in the binary mode -- and those that will be used
only for testing or output and therefore can remain in the BCD mode . Tables
should not be written that mix tests and/or arithmetic operations of binary
values and alpha-numeric values

-4-

II THE DICTIONARY

A dictionary of all the variable names used in any set of tables is written to
define the variables and to assign parameter number 5 to them . The assign­
ment of parameter numbers to the variables is arbitrary except for the
special assignment of the areas mentioned previously .

Numbers 001-484 are relatively unrestricted. 485 is the variable clear, and
486-499 is the output area . Numbers 498 and 499 contain the problem number
from input data. Parameter numbers 001-484 can be used as desired to define
input or intermediate variables In this area the assignment of parameter
numbers is not critical unless using indexlRg, where it is desirable to set up
an array or list of variables so that the IIi II variable can be referenced from
a known parameter, "i" itself being a variable .

The variable clear parameter (#485) is used for controlling the number of
variables to be cleared (set to zero) by the zeroing routine as part of the
executive program . The zeroing of parameters by the executive program is
normally done between problems. P a rameter 485 w ill contain the parameter
number of the last parameter to be cleared (starting with parameter 001) by
the initializing routine . The output area (parameter 485-499) wi 11 always be
cleared If parameter 485 is left blank (zero), 50 parameters (parameter
numbers 435-484) will automatically be treated as the hold area for the
problem and param eters 1-434 and 485-499 will be cleared .

When writing the dictionary , it is desirable to group all parameters that
require holding and assign parameter numbers 435-484 as they automatically
will be held . If more than 50 parameters need holding it is suggested that
they be numbered in descending sequence starting with 434, 433 , 432 , . . . q

etc . This allows simplici ty in establishing the value for the variable clear
parameter, normally less than 485 .

As previously stated, if the variable c lear parameter (485) is left blank
(zeroes), then 50 parameters (435-484) will be held . Because the variable
clear parameter contains the number of the last parameter to be cleared,
and since a zero in 485 indicates hold 50 parameters, it is not possible to
hold every parameter . By specifying 001 in parameter 485 a ll parameters
(002-484) except parameter 001 will be held . This is the maximum number
of parameters that can be held .

Note that the variable clear parameter is cleared by the initializing routine;
thus, if it is being used it must be input with each problem . Note also that
the variable clear parameter can vary from problem to problem, if required,
by changing the contents of the parameter through new input.

-5-

Parameters 486-499 are defined as the output parameters . Any data
desired to be output must be stored in the parameters 486-497, usually
given a name such as OUTWD1, OUTWD2 ...•. OUTWD12, and then
"punched" into columns 1-72 (12 words of 6 c olumns each). Parameters
498 and 499 are normally reserved for the problem number identification
and/or problem error identification.

The dictionary format requires th e parameter number to be written and
punched in columns 9-11 , the parameter name in columns 13-18. and a
"D" in column 80 , The remaining columns are for notes. explanation. or
definition of parameters . It is often desirable to indicate the decimal point
location of each paramete r in this area .

1lI TABLE ENTRIES

Each table entry is composed of a stub entry, an operation code, and an
operand (as soown in figure 1) . One stub entry may apply to more than one
operation code and operand for multi-row tables .

stub entry

r~----------A~~'---------\

operand

Figure 1 . Example of Table Entry

operation
cOde

*The operation code may be included in either of the
locations indicated, as explained later.

- 6 -

, "
',,. ,,'I ,J."

r

stub
row

table
row

A table!5!:!!. is comprised of many table entries (table blocks) in succession
horizontally each having a separate stub entry as shown in figure 2 .

I I I I

1 I I I I t I I I ' I I ! i I 1 ! I I I I II I I \ \ I I i I

"
' , ,

u..l I I : I I I I I ' I I , I I I I ' I I I I I I I I , I I I 1\ I ' -

Figure 2. Example of Table Row

A table column is defined as one stub entry and one or more operands
beneath the stub entry, all referencing the stub entry, as shown in figure 3 .

stub entry
\ operation code

operation cod

~ \
Operand - 1 .' ,

pperation cod Operand - 2
, pperation cod Operand - 3

~'----------------- ---------------/ - v -

T able Column

Figure 3. Example of Table Column

-7-

Stub or primary row

Table Row - 1
Table Row - 2
Table Row - 3

r

A . Stub Entries

The stub entry is always one of the fo llowing:

1. A parameter name
2 . A parameter name plus operation code
3. A dash (---)
4 . I1GO TOll

or 5. I1PERFORM II

Th e parameter name as the stub entry is the general usage . Usually stub
parameters are being tested against other values (conditions) or the stub
parameters are having r e sults (actions) performed on them such as values
stored in the stub parameter, added to the parameter, etc .

The use of the dash (or tilde) in th e first position of the stub entry is
limited to supplementary indexing rows or to programs where a punch (PCH).
punch and clear (PCC). transfer (TRA), end or stop action operation is used .

The words "GO TO II are used as the stub entry where it is desired to transfer
control of program to another table . The words IIGO TOll in the stub entry
must be followed by a IITABLE XXXX II in the table row (Figure 5, example 8),

The word "PERFORM II is used as the stub entry where it is desired to only
temporarily transfer control of the program to another table or series of
tables . This also must always be followed by a "TABLE XXXX" in the table
row. The end of the logic being "PERFORMED 11 is indicated by the operation
code IIEND ", Upon encountering an "END 11, the program will transfer
control to the next result action in the same row of the table that contained
the last executed IIPERFORM". If no result actions exist. the program then
executes the universal transfer . Examples of possible stub entries are
shown in figures 4 and 5.

-8-

1

I 2 3 4 5 6 7 8 9 10 II 12

(I) I 6 Digit Parameter Name I Blank 3 Digit Operation I Blank I H I Code

(2) 1 6 Digit Parameter Name Blank 2 Digit
I Blank 1):::(Operation

Code

(3) I 6 Digit Parameter Name I Blank 1)::::/
(4) I~ (Blank For Indexing and Punching) I;:::{

(5) P E R F 0 R M Blank I H
(6) G 0 T 0 Blank 1;:::(

,
'" I 2 3 4 5 6 7 8 9 10 11 12 ,

Figure 4 . Examples of Stub Entries

1
, , , , , , . 1

1 2 3 4 5 6 7 8 9 10 11 12

(1) T E S T 1 N G R i' ' 1):::1 1 --~,J:~': r .-, .~'
(2) T E S T 1 G R :::-~'~I H 1

~., .
~;-,;-'.' ..

IT I "'<>" 1 r::::{ 1 (3) E S T 1 '" ':>
~."'-'" ." 1 H (4) 1"-' 1 .,,'.::.:'':'~ .
~-...,~.~ ':-..

(5) Ip E R F 0 R M I :. 1)::(,~:: .. ~-
~. ',-..,.

(6) IG 0 T 0
~" .'

~" 1 r:::z 1 '<, '" <'"
·,S.~"S

1 2 3 4 5 6 7 8 9 10
.~:'- ,"' ",:,,:::? , ,-,11 .. ': 12

~ -~
0 ,

Figure 5 , Corresponding Examples of the Conditions in F i gure 4

B . Table Row Entries

As shown in figure 1, the operation code may exist in one of two positions:
either in the stub row or the table row .

• If the operation code is identical for aU of the table rows, then it
may be written in the stub row operation code location instead of
the table row location . By so doing, the amount of table writing
required is minimized .

• If the operation code is included on the stub row, that operation
code (whether result or action) will be applied to all succeeding
table rows and hence there should be no operation code included
in the table rows . An operation code in a table row will super­
sede any operation codes in th e stub row .

• If, however, the operation codes are different for various rows
in the table, and hence cannot be written in the stub row they
must be written in the table row operation code location for each
row even if the same code is repeated in several rows . As long
as there is any exception to the operation code , it must be written
in each table row

In either location a 2-digit operation code must be left justified in the 3
position field -- leaving the blank digit on the right.

The permissible operation codes and an explanation of their function is
contained in Section V, Operation Code .

T he operand can have one of three forms:

1 . alpha-numeric constants (BCD)
2 . numeric constants (binary)
3 . parameter names

Alpha- numeric constants, as stated previously, are alpha, numeric, or a
combination alpha-numeric data that will not be used in arithmetic calculations
and can therefore be stored in the decimal mode . Alpha-numeric constants
must be identified by quotation marks around the operand in the shaded-format
columns. Literal data need not have leading zeroes filled in ; unused columns
may be left blank. Literal data is stored in the BCD mode .

-11-

Numeric data to be converted to the binary mode does not require quo tation
marks around the operand but must have unused columns filled with zeroes .

P arameter names (1) are not enclosed in quotation marks , (2) must contain
at least 1 alphabetic character, and (3) need not have leading zeroes filled in .

It is very important to describ e and distinguish between numeric constants,
alpha-numeric constants, and parameter names . Any errors w ill definitely
be indicated either th rough the editing features of th e LJEI>-2 25 TABCON
program or through invalid data during a LJE D-225 TABSOL run

ExampLes of possible table row entries are shown in figures 6 and 7.

-12-

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

~

'" ,

I

, , ,

The table rows or secondary rows may be as follows :

1 2 3

3 Digit Operation
Code

4 5 6 7 8

1 ~.:' ·' ! Alpha-numeric literal
~\~ !>:.:'

""-' <;'" ' ,:, ~~~'~.

9 10

3 Digit Operation
Code

, .;. -. '\.
I~i:hl> ,"} Numeric literals or parameter names

~""
2 Digit
Operation
Code

2 Digit
Operation
Code

Blank ~~X'~-{"" Alpha-numeric literal
",,:, ~."
:'\.~ ;,e;,:
~~R '
,h'~" ~,,:~

Blank ~'''~'':~ .Numeric literals or parameter names
'i.", ~' I ,,," i .- ., "' ... > , .
~~ , ..
~~iAIPha- numeric literal

I
I~JI

IT A

~; "'" ' ~~~~~INumeric literals or parameter names

(Blank (F~:;''bperation»
-~- .. ~. . ' -

B I j., IE ! Blankl X X X X
4-Digit Table Number

1 2 3 4 5 6 7 8 9 10

Figure 6. Examples of Table Row Entries

II 12

~~~--., , 

) ", I 
", :" 'j:::( .-::~, ... ':.. .. 
'" .,~., 

I ~-'-" -', 
, ','Blank I ,.-,. 
K ......... -' ~ .. ,.':" ' 

~ '... ~( ..... 
;,- ..... ',~ 

., ,' r=J ':. l~ --::-' j' " ..:,' . 
~;-' 
' . ~~. 

L,:;-. Blarlk I ):::::( 
l~ " ~ 

,~, 

I~,·· 's. I <---> .:::o-, . ~ ::.:: ~ 
'~ " x., .'. 
~Blan'k I r=:l 
~ .... -". '\ , .... > ...... ~ ". 
~ " ~, 

lS;,iBI;n'R: I H I 

11 1 2 

, 1 



1 I 1 -

1 2 3 4 5 6 7 8 9 10 11 12 

(1 ) IN E Q I " A B C " I 'j:::{ 1 
(2 ) IN E Q IW I D T H S I 1;:::( 

(2 ) IN E Q 1
0 0 1 2 5 0 I H I 

(3) IE Q I " A B C " 7=r 1 

(4) IE Q Iw I D T H S I I t:::( I 
(4 ) IE Q 10 0 1 2 5 0 I I r::r 1 
(5 ) 'I I " A B (' " I ;::r I 

(6) I Iw I D T H S I I J::( I 
, 

( 6) 10 0 2 I I J;::( I - 1 5 0 .. , 
(7) I~ I , 1 ;:::( 1 

(8) IT A B L E 2 0 0 5 I I ):::( I 
1 2 3 4 5 6 7 8 9 10 11 12 

Figure 7 . Corresponding Examples of the Condition in Figure 6 . 



-

IV STRUCTURE TABLE FORM 

Once decision logic has been defined through establishment of parameters 
or constants and their relationships along wi th the associated r esults or 
actions, this logic can be documented in a structure table and/or on the 
structure table form within the limits of the table entries as described 
previously . All structu re tables, sooner or later, must be written on the 
Structure Table Form for processing. A sample of the form is shown in 
figure 8 . 

The table form provides for program identification, name , and date at the 
top of the form . This information is not key-punched, it is only for use of 
the table w rite r . Directly beneath this is a column count representing the 
80 c olumns on a punched card . The form provides for a maximum of six 
table columns and a maximum of fourteen table rows plus a single stub row 
per page . The six iI-character column w:idths are separated by a sp:!cial 
character ( 'J:={ ) representing a 12-4-8 punch in the cards . 

T he tab le header or descriptor row includes table number, conditions , 
actions, rows, universal transfer (UTRA) and the error transfer (ETRA). 
This information is required only once per table and must be entered on 
the first page of the table . 

The table number is a 4 digit, alpha-numeric value in positions 16-19 o f 
the descriptor row . If an all-numeric value is used as the table number, 
the leading zeroes must be filled in ; if the table number is alphabetic or 
alpha-numeric , unused positions need not be filled in, but the table number 
must be used consistently within the 4-digit field . 

Examples : 

Table 0050 
Table 2000 
Table A500 
Table SQRT 
Table PAY (Must always be right justified) 
Table ABC (Must a lways be left justified) 

Table numbers cannot contain special characters (# I ( e) 

-15-



• 

-
~ c-
• 
I~ 
• I­, c · -· ~ ~ = 
• • • 

I ~ 
- " • • • 

" 

-
• 
~ 

• o · -: c-
• • • • • • • • • • 

~ 

z 
o 

· -
: f-
• R 

• 
" • • • • • • 

~ 

z 
o 

o 
z 
o 
v 

• • • • , 
• C­o -· -.. !! ~ 

r - -
• _ C 

S! !;! t-

• 

= 

-

-

-

t 

-16-

I--

t 

.... 
~ , 

~ - -
J 

P 

f-

-

-

- : 

- - • 
-

-
-

-

-

-

000000 

-



~ 

• • -~ ~ -" .: -• -" " 0 • z 
• -- > 
• --• 

! 
• 0 

~ 
• • • • - . 

~ 1 ~ 
- ~ 

• • • • • • • • • 
" • • • 

! = - ; 
• I: 
• •• • • • • • • • ; 

• • • • • • • • • 
• • • • • • • 
" • r-- • 

• , 
~ 
~ 
• 
" • 
~ 
• • 
~ 
u , 
• ~ 
~ 

• • • • • 

r: - - - - : - -

r- t-
• ---- -
r -
t-
• - t-- -
~ 

-- -
0 

z -
0 -• -

0 - -

l-
t- --z 

0 

--u 

• 
r-
r -• -

0 ----
0 -z 
0 -u 

t-
-

t-
o -

t-
- ----

-17-



With the allotted four positions for table numbers and figuring for alpha A-Z 
(except I , (/J , and Z) and numeric 0-9 , there are over one million unique 
combinations for table numbers . 

The number of conditions in a table is defined as the number of table columns 
performing tests , th erefore having test operation codes . In the usual quadrant 
representation of a structure table, the number of conditions is the number of 
columns to the left of the vertical double line _ T he number of conditions in 
the table is written in positions 22 and 23 of the table descriptc r row-­
preceding the word CONDITIONS Tables containing no conditions (uncon­
ditional tables) must have CONDITIONS entered as 00 and not left blank , 

The number of actions is the number of result or action columns in the table 
(columns to the right of the vertical double line) and is written in positions 
36 and 37 of the table descriptor preceding the word ACTIONS . For any 
tabLe the sum of CONDITIONS plus ACTIONS is Limited to 54 (nine pages at 
six columns per page) 

The number of tabLe rows is defined as th e number of hor izontal rows in the 
ta ble proper not counting the stub row, the table descriptor row I or any rows 
containing notes The number of rows is written in positions 47 and 48 ahead 
of the word ROWS, and is limited to two digits, and therefore a maximum 
of 99 . 

The universal transfer (UTRA) i s the next tab Le to go to if the table exit is 
identical for each solution of the table . If each tabLe row has its own GO TO, 
then the UTRA must be written as 00 00 . 

The error transfer (E TRA) is the next table to go to if there is 11no solution II 
to the table : "no-solution II indicating failure to pass all of the te sts in anyone 
table row If the "no-solution" possibility does not exist, zeroes may be 
written in this field . Do not leave it blank The ruLes pertaining to table 
numbering apply to the UTRA and ETRA When completed, th e table 
descriptor row might read as follows: 

TABLE 0001 02 CONDIT IONS 02 AC TIONS 02 ROWS NOTE 
UTRA 0 000 ETRA ST\')P 

Following the descriptor row of the table are seven additional rows identified 
only by a "0" in position 7 These seven rows are left for the table writer to 
include notes, expressions, statements or any other information desired to 
include with the table but not in the table The information written in these rows 
will be ignored by t he computer during processing There is no limit on any of 
the data included in this area 

-18-



-

r 

The rows in which this information is written are known as "noise-rows 11 ; 
the cards that it is punched into Itnoise-cards ". More than the allotted 
seven noise cards preceding the t able body may be included but must be done 
so on another table form . Five !lnoise rows II are also included after the table 
body for notes or other information. Again. additional noise cards after the 
table may also be included on additional forms. 

The table number must be repeated in positions 1-4 of each row including the 
header row and each used noise or table row . 

The row number is assigned in positions 5 and 6 of the table form . The 
row numbering must be in ascending sequence from the top of the form 
(header row) through the noise rows, stub row. table rows, and finally a ny 
trailing noise rows , Row number 00 may not be used . The rows do not have 
to be numbered consecutively; in fact, it is suggested that they are not 
numbered consecutively to allow for additions or changes . Unused rows, 
whether in noise rows or table rows, need not be numbered . 

The page number is entered in position 7 of each used row of the table body . 
The page numbering must begin with 1 and must be consecutive . The page 
number is inc reased only when an additional form is used for more table 
columns (sheets a dded to the right). Sheets added to allow for more table rows 
(added at the bottom) have the same page number as the sheet they follow . 

If additional pages are added to allow more columns, the rows on the additional 
pages must be given the same row number as the corresponding row on the first 
page . For instance, if the stub row was numbered 15 and the first table row 
20 on page I , then on all succeeding pages the stub row must also be numbered 
15 and the first t able row 20 , 

If additional pages are added to allow more rows (added at the bottom). the 
row numbering must continue in ascending order from the first page to 
succeeding pages, each page itself in ascending sequence from top to bottom 
Anyone table is limited to a maximum of 9 pages, and therefore to the 54 
columns as indicated previously . 

-19-



V OPERATION CODES 

A . Test Operation Codes 

The test operation codes 
listed and defined below. 
GECPM. 

available in the LJED-225 TABSOL program are 
All of the test operations are compatible with 

Symbol 

EQ 

GR 

LS 

NEQ 

NGR 

NLS 

M eaning 

Equal 

Greater Than 

Less Than 

Not Equal 

Not Greater 
Than 

Not Less Than 

-20-

Effect 

The contents of the stub parameter are 
EQUAL to the contents (constant or 
variable) of the operand field in a 
secondary row entry. 

The contents of the stub parameter are 
GREATER T H AN the contents (constant or 
variable) of the operand field in a 
secondary row entry. 

The contents of the stub parameter are 
LESS THAN the contents (constant or 
variable) of the operand fie ld in a 
secondary row entry. 

The contents of the stub parameter are 
NOT EQUAL to the contents (constant or 
variable) of the operand field in a 
secondary row entry. 

The contents of the stub parameter are 
NOT GREATER THAN the contents (constant 
or variable) of the operand field in a 
secondary row entry. 

The contents of the stub parameter are 
NOT LESS THAN the contents (constant or 
variable) of the operand field in a 
secondary row entry. 



B. Result (or Action) Operation Codes 

The available result or action operation codes for the LJED-225 TABSOL 
program are listed below: 

Symbol 

(blank) 

Meaning Effect 

Put the constant or contents of the variable 
field into the stub parameter. 

No Operation No action or test performed. 

1. Arithmetic C{>eration Codes: (These codes are valid only for binary mode 
arithmetic operations . ) 

Symbol Meaning 

ADD Add 

SUB Subtract 

MPY Multiply 

DIV Divide 

EXP Exponentiate 

Effect 

Add the constant or the contents of the 
variable named in the data field to the 
contents of the stub parameter . 

Subtract the constant or the contents of 
the variable named in the data field from 
the contents of the stub parameter. 

Multiply the contents of the stub parameter 
by the constant or by the conten ts of the 
variable named in the data field . 

Divide the contents of the stub parameter 
by the constant or by the con ten ts of the 
variable named in the data field. 

Using the notation of AX > the exponentiation 
routine requires A to be represented as 
XXXXXX and X. 

As previously stated, the LJED-225 TABSOL program operates in fixed point 
arithmetic . It is extremely important to note that use of the five result or 
operation codes listed above require the table writer to control or position 
(housekeep) all constants and variables so that the !!decimal points II are in the 
proper order for the arithmetic operations. For instance, two numbers when 
being added or subtracted must have the same number of positions to the 

- 21-



-

right of the decimal (decimal notation>. To aid in maintai ning the correct 
decimal notation for various arithmetic operations the following rules apply : 

Add 

In executing an ADD, both the augend and the addend must have the 
sam e decimal notation . The sum will also have the same notation . 

Subtract 

Augend 
Addend 
Sum 

1. 234 
1. 234 
2 . 468 

In subtracting, both the minuend and the subtrahend must have the 
same decimal notation . The remainder will also have this notation . 

Multiply 

Minuend 
Subtrahend 
Remainder 

2 . 468 
1. 234 
1. 234 

When multiplying, the product will have a decimal notation equal to 
the sum of the decimal notation of the multiplicand and the multiplier . 

Divide 

1. 250 
123 . 4 

Multiplicand 
Multiplier 
Product 156 . 2 500 

(decimal notation) 
3 

+ 1 
4 

In dividing, the quotient will have a decimal notation equal to the 
decimal notation of the dividend less the notation of the divisor . 

Divisor 

Quotient (Remainder) 

Dividend 

-22-

40 . 0 (1) 

48 . 0000(4) (4-3 =1) 

(decimal notation in 
parenthesis) 



2 . Shifts 

Symbol 

SRN 

SLN 

SRD 

SRA 

SLA 

SRV 

SLY 

3 . Indexing 

Symbol 

PXV 

Meaning 

Shift Right 
Numeric 

Shift L eft 
Numeric 

Shift Right and 
Round 

Shift Right 
Alphabetic 

Shift Left 
Alphabetic 

Shift Right 
Variable 

Shift Left 
Variable 

Meaning 

Put an Indexed 
Variable 

Effect 

Shift the numeric contents of the stub 
parameter right k positions. (k ~ 10) 

Shift the numeric contents of the stub 
parameter left k positions,(k <. 10) 

Shift the numeric contents of the stub 
parameter right (k-l) positions, add 5 
to the low order (units) position then 
shift right one position, (k < 10) 

Shifl the alphabetic contents of the stub 
parameter right k positions. (k ~ 6) 

Shift the alphabetic contents of the stub 
parameter left k positions. (k -S 6) 

Shift right the numeric contents of the 
stub parameter k positions where k is 
the numeric content of the parameter 
named in the operand_ (k ;:S; 10) 

Shift left the numeric contents of the 
stub parameter k positions where k is 
the numeric content of the parameter 
named in the operand. (k ~ 10) 

Effect 

Ind ex the data field parameter number by 
the contents of the Ind exer and store the 
contents of the indexed parameter in the 
contents of the stub parameter. 

-2 3-



-

Symbol 

PYX 

Meaning 

Put a Variable 
in an Indexed 
Stub 

Effect 

Put the contents of the parameter na med 
in the data field into the parameter derived 
by indexing the pa rameter number of the 
stub parameter by the contents of Indexer 

In addition, two additional operation codes, AXV and AVX, are available that 
perform the same basic indexing function except they add the contents of a 
data field parameter to a stub parameter instead of putting (reset to zero 
and add) the contents . The AXV and AVX operation codes may be used 
effectively for totaling or summarizing . 

Symbol 

AXV 

AVX 

Meaning 

Add an Indexed 
Variable 

Add a Variable 
to an Indexed 
Stub 

Effect 

Index the data field parameter number by 
the contents of the indexer and add the 
contents of the indexed parameter to the 
contents of the stub parameter, 

Add the con ten ts of the parameter named 
in the data field to the parameter derived 
by indexing the parameter number of the 
stub parameter by the contents of 
Indexer, 

In all cases the parameter numbers as defined in the dictionary are used as 
a tag to reference one parameter with relationship to another . As mentioned 
in the dictionary formulation, it is suggested that parameters employing 
indexing be grouped for purposes of clarity and simplicity It is in this 
respect that the assignment of parameter numbers is no longer arbitrary . 

Indexing allows the use of generalized tables containing specific values that 
vary with time . For instance, it might be desired to calculate the areas 
for one to ten circles, represented by DIAMETER 1 (DIA-t), DIAMETER 2 
(DIA-2), DIAMETER 10 (DIA-I0)' Separate tables could be written for 
the calculation of each area expressed in terms of DIA-I , DIA-2 . . . .. 
DIA-IO, but this could become lengthy and redundant. Instead, if the 
variables DIA-I, DIA-2, etc . were entered in the dictionary as a list (see 
below) and if indexing is used, one generalized table can be written to test 
for the presence of DIA-I .. " DIA-IO . The area can then calculate for 
all existing diameters . 

-24-



Dictionary 

Parameter Number Parameter Name 

011 DIA-l 
012 DIA-2 
013 DIA-3 
014 DIA-4 
015 DIA-5 
016 DIA-6 
01 7 DIA - 7 
018 DIA- 8 
019 DIA -9 
020 DIA-I0 

111 AREA 1 
112 AREA 2 
113 AREA 3 
114 AREA 4 
115 AREA 5 
11 6 AREA 6 
117 AREA 7 
118 AREA 8 
119 AREA 9 
120 AREA 10 

The indexing routine requires three types of tables: an initializing table , an 
indexing table, and a finalizing table. The indexing o peration codes are 
special in that their format requires two table columns to re present the 
comple te operation as shown in figure 9. 

Column 1 Column 2 

STUB I ~ I 
~ DATA F IELD .~ . INDEXER 

.~ 

Figure 9. Example of indexing operation code 

- 25-

Stub Row 

Table Row 



The initializing table is used to establish a value for the indexer . 

TABLE 50 UTRA 60 

INDEXER 

Put 0 

(Initializ ing Table) 

The indexing table does the actual indexing as a function of the particular 
indexing operation code used. For purposes of the example the PXV and 
PVX codes w ill be used . 

=T=A=B4iL;=:=I=:=:===l=, __ =~=T=R=A=7=°4=P::~FORM I AREA-= 1 __ b-, _ _ lIN~E~::~ 
I PXV DIA-1 INDEXER -~AB~~ -;~;I' . -;:;~ AREAl INDEXER! ADD 1 

TABLE 100 

DIAM 

I 0 

= 0 

TABLE 70 

INDEXER 

< 10 

= 10 

I 
I 
\ 

(Finalizing Table) 

(Indexing Table) 

AREA 

3 . 14 DIAM2 
4 

GOTO 

TABLE 60 

STOP 

-26-

j , 

GO TO 

END 

STOP 



• 
Using the dictionary and the four tables above , the indexing operations would 
work as follows : 

a . Table 50 is the initializing table and is always executed at the 
beginning of the routine to establish the correct value in INDEXER . 
Table 50 universally transfers to Table 60 . 

b . The PXV operation in Table 60 does the following: 

(1) Adds the previously established contents of Indexer (second 
table column) to the parameter number of the data field 
parameter (first table column) as defined in the dictionary , 

(2) Puts the contents of indexed parameter in the contents of the 
stub parameter. 

(The first time through Table 60 with INDEXER = D. zero is 
added to Oll, the parameter number of DIA-l as defined in the 
parameter dictionary . Then the co ntents of the indexed 
parameter DIA-l (011 I 0 = 011) are put in DIAM . ) 

c Next, Table 100 is "PERFORMED" and, providing a diameter 
exists (DIAM f 0), the area of the circle represented by DIA-1 
is calculated and stored in AREA . If no diameter exists 
(DIAM = 0) the area calculation is not performed and the indexing 
stops . 

d , The fourth and fifth table columns of Table 60 store the contents of 
area in AREA-1 as follows : 

(1) Adds the contents of Indexer to the parameter number of the 
stub parameter as defined in the dictionary . 

(2) Puts the contents of the data field parameter into the contents 
of the indexed stub parameter . 

(The first time through Table 60 with INDEXER = 0, zero is 
added to 111 (0 I 111 = 111), the parameter number of AREA-l 
as defined in the dictionary. Then the contents of the data field 
are stored in the indexed stub parameter . ) 

-27-



e . One is added to the contents of Indexer (0 I 1 . 1) and control is 
transferred to Table 70 

f . Table 70 tests the contents of INDEXER ._ finds it less than 10 and 
goes back to Table 60; this time going through Tables 60 and 100 
with INDEXER = 1 calculating AREA from DIA-2 and finally storing 
the result in AREA-2 . 

This process continues through each succeeding diameter storing the resuLt 
in the corresponding AREA When the contents of INDEXER becomes equal 
to 10, the indexing Loop is completed 

4 The AND Instruction 

The AND operation code is used to add either an alpha-numeric constant 
or a BCD variable to the contents of the stub parameter The AND operation 
code should only be used to add BCD information, usually for output purposes . 

5 . The Convert Instruction (CON) 

The convert operation code is used to convert a variable in binary mode to 
an equivalent 10-digit value in the BCD mode . The four high order (left) 
digits of the variable vi 11 be stored in the parameter named in the stub. 
the six low order digits in the parameter whose parameter number is the 
next sequential value in the dictionary . 

6 . Transfer Instructions 

PERFORM Perform and 
Return 

-28-

Go to the table or series of tables 
beginning wi th the table number in 
the data field and perform their 
tests and actions. When an END 
operation code is encountered, 
return to the next action in the 
table row containing the last 
PERFORM. 



Symbol Meaning 

END Return 

NOTE 

Effect 

Return control to the next action 
in the table row containing the last 
executed PERFORM instruction . 
The END operation code is only 
used in conjunction 'Wi th the 
PERFORM instruction ~ 

The PERFORM instruction is very powerfuL and can be used very 
effectiveLy . For instance, one table may PERFORM another table or 
series of tabLes linked by GO TOls, each containing any necessary t es ts 
or results . The end of the series is identified by an END instruc tion . 
Or one table may PERFORM another, the second table also containing a 
PERFORM, and so on, to a limit of 15 PERFORMS -- one cascading to 
another . For each PERFORM there must also exist a corresponding 
END. 

GO TO Transfer Control To 

NOTE 

Go to the first test or action if no 
tests exist of the table identified 
in the data field. 

Both the PERFORM and GO TO instructions must have TABLE XXXX 
in the data field 

TRA Transfer 

-29-

GO TO the first test or action, if 
no tests exist, of the table identi­
fied in the data field .. (Accomplishes 
the same function as GO TO . ) 



7,. Output Instructions 

Meaning 

PCH Punch 

PCC Punch and Clear 

NOTE 

Effect 

Punch the c.ontents of the 14 
variables #486-499 as output. 

Punch the contents of the 14 
variables #486-499 as output and 
reset variables 486-497 to zero 
after punching. 

Parameters 498 and 499 normally contain the problem number obtained 
directly from the input data cards. If the table writer has entered other 
data in parameters 498 and 499, the entered data will be punched. 

The operand of the punch or punch and clear instruction may also 
include a GO TO address; i. e •• the number of the table to go to next. 
If so. the punch instruction must De the last entry in the row. The 
table number is written as the last four digits of the operand, If the 
transfer is not used. the operand may be left blank. 

8. The STOP Instruction 

Symbol Meaning 

STOP STOP 

-30-

Effect 

Cease processing the existing 
problem, execute the finalizing 
routine and start processing the 
next set of data. If no additional 
data exists, halt the computer. 
The operand of a STOP instruction 
is left blank. 



VI PR02LEM INPUT DATA FORMAT 

The LJED-225 TABSOL program utilizes a punched card input. There are two 
input formats available : one for numeric input to be converted to the binary 
mode for arithmetic operations; the other for data that can remain the BCD mode. 

The first seven columns of the input card contain the problem number . Any 
unused columns must be filled with zeroes , The eighth card column contains---

A 11 0" punch if the card contains numeric data to be converted to the binary 
mode for processing. 

A 111 " if the card contains alpha-numeric data to r emain in the BCD mode. 

The remaining seventy-two card columns are divided into eight 6-digit data 
fields and eight 3-digit parameter number fields for data input. 

Corresponding 3 Digit 
6 Digit Data Fields Parameter Number Fields 

9-14 
18-23 
27-32 
36-41 
45-50 
54-59 
63-68 
72-77 

15-17 
24-26 
33-35 
42-44 
51-53 
60-62 
69-71 
78-80 

Numeric input data cards (identified by 1t011 in column 8) require all unused data 
field positions and all unused parameter number fields to be filled with zeroes. 

Unused data field positions of alpha-numeric input cards (identified by Itllt in 
column 8) may be left blank. but all unused 3-digit parameter number fields 
must be filled with zeroes . 

The parameters on input data cards may be arranged in any order, and the in­
put cards themselves may be submitted in any order. Specialized input sheets 
can be made for particular problems as desired. each within the limits and 
specifications described above. 

-31-



• 

VII 

• 

OUTPUT FORMAT 

The LJED-225 TABSOL program may be obtained either on punched cards 
or through an "on-line ll printer. TABSOL running instructions, Section XIV 
indicate the procedures for obtaining on-line printer output . 

The output format normally consists of twelve 6-digit data fields (para­
meters #486-497) in columns 1-72, followed by an error identification column 
(73) , and then a seven digit problem number field, columns 74-80 . The error 
identification and problem number are contained in parameters 498 and 499. 

The twelve 6-digit data fields may be mixed alpha-numeric as desired. The 
error identification c olumn will contain an B punch if the card is a problem error 
card as explained in Error Identification . The seven digit problem number 
field contains the problem number from the data input card. 

It is possible for the table writer to use parameters 498 and 499 for output 
data -- realizing that the problem number will be destroyed if not stored else­
where and will not appear on problem e rror or output cards . When using 
parameters 498 and 499 for data output. the six digits of parameters 498 will 
be output in columns 73 through 78 . Only the 2 high orders (left) positions 
of a parameter 499 can be obtained as output: they will appear in columns 
79&80. 

As described previously. the conversion (CQ)N) instruction must be used to 
output a variable in the binary mode~ occupying two parameters to obtain all 
ten characters . 

The AND instruction will be used to pack or add BCD variables for output. 

Negative output values will be distringuished by a ll-X over the units I position 
of the data field . Leading zeroes are not punched in the card output nor printed 
in the printer output 

It is possible by data manipulation to use output from one program or core load 
as input to a subsequent program with no additional processing. This requires 
output data manipulation by the table writer . 

-32-



VIII ERROR IDENTIFICATION 

If any table solved during the processing of one problem has an "error!! in 
solution, a "512" will be typed on the typewriter along the table number in 
which the error occurred. All subsequent output will have an 8 in column 
73. As defined previously, an error is a failure to pass all the tests in any 
single table row. All error messages are described in the TABCON and 
T ABSOL Error Identification Sections, 

IX SETTING UP A TABSOL SYSTEM 

The following information is from TIS Report No. R60MS312, 650 TABSON­
TABSOL, by T . F . Kavanagh, J, H. Kelly. and P. G. Margaritis. 

A. Des ign the System 

Develop the required output, input, and the logic required to convert the input 
data to the appropriate output. If the system is too large to be handled by a 
single group of tables, plan the division into logical, self-sufficient segments, 
each to be expressed in a group. 

B. Write The Tables 

Write the structure tables , and their associated parameter dictionary in the 
tabular systems oriented language (TABSOL). 

If the system contains several groups of tables, it is probably wisest to start 
with a single group and carry it through to completion before starting detail 
work on the remaining groups, since the experience gained from actually 
writing and using tables will prove more helpful in understanding how to use 
TABSOL than any amount of reading . 

C. The parameter dictionary and the tables must then be keypunched . Key­
punching instructions are given in Section X. 

D . Check the parameter dictionary cards to see that there is no unintentional 
duplication of parameter numbers or names . 

E. Check that all the variables used in the tables are listed in the dictionary. 

F. The dictionary cards are not required to be in any sequence for processing. 

-33-



G. The table description cards and table cards soould be checked for any 
obvious errors that can be corrected before processing. 

H . The table descriptor cards must be extracted from the table cards . The 
descriptor cards should then be sorted to ascending sequence on table number, 
card columns 1-4, or 16 - 19 . 

1. Sort the remaining table cards to ascending sequence on t able numbers, 
row number and page number; i. e . , columns 1- 7 . 

J ~ If the cards are then re-assembled dictionary cards first, header cards 
next, and then table cards, the deck is ready for processing . 

X KEYPUNCHING 

A. Dictionary 

The parameter dictionary is keypunched directly from the dictionary form -­
row by row . 

Card Columns 

B. Table Forms 

1- 8 
9-11 

12 
13-18 
19-79 

80 

Blank 
Parameter Number 
Blank 
Parameter Name 
Blank or any desired notes or 
comments 

The structure tables are also keypunched directly from the table forms -­
row by row . 

L Header (Descriptor) Card 

Card Columns 

1- 4 
5- 6 

7 
8- 9 

10-14 

-34-

Table Number 
Row Number 
"0" 
Blank 
"TABLE " 



Card Columns 

2 . Noise Cards 

15 
16-19 

20 
21 

22-23 
24 

25-34 
35 

36- 37 
38 

39- 45 
46 

47-48 
49 

50-53 
54 
55 

56-59 
60 

61-64 
65 

66 - 69 
70 

71-74 
75 

76-79 
80 

Card Columns 

1-4 
5-6 
7 

8-80 

-35 -

Blank 
Table Number 
.(period) 
Blank 
Number of Conditions 
Blank 
"CONDITIONS" 
Blank 
Number of Actions 
Blank 
"ACTIONS" 
Blank 
Number of Rows 
Blank 
"ROWS" 
.(period) 
Blank 
"NOTE" 
Blank 
"UTRA" 
Blank 
Universal Transfer Table Number 
Blank 
"ETRA" 
Blank 
Error Transfer Table Number 
.(period) 

Tabl e Number 
Row Number 
Page Number 
These columns are left for any 
statements, expressions, or other 
information the table writer may 
desire to include but not have 
processed. 



• 

3. Table Cards 

Card Columns 

1-4 
5-6 

7 
8- 80 

C. Problem Input 

Card Columns 

1-7 
8 

9-80 

Xl MACHINE REQUIREMENTS 

Table Number 
Row Number 
Page Number 
Columns 8-80 are punched 
directly as written on the table 
form . Columns 8, 20, 32, 44, 
56, 68, and 80 must have a 
12 - 4- 8 punch. 

Problem Number 
11 a" for numeric data 
111 It for alpha-numeric data 
Problem input data and 
parameter numbers 

Corresponding 
Data Fields Parameter Numbers 

9-14 15-17 
18-23 24-26 
27-32 33-35 
36-41 42 - 44 
45-50 51-53 
54-59 60-62 
63-68 69-71 
72-77 78-80 

The minimum machine configuration for the LJED-225 TABCON and TABSOL 
programs is a 8000 word card in - card out GE225 with a BCD package . If 
other hardware is available, (tapes, printers, etc . ) it may be used to increase 
the effectiveness and efficiency of the programs . 

-36-



r 

XII TABCON TABLE TRANSLATOR PROGRAM 

A. The Three Phases 

The first phase of the LJED-225 TABCON program processes and edits the 
Parameter Dictionary c ards. A parameter list is c reated of all parameter 
names with their corresponding symbolic locations. 

The second phas e processes the table descriptor cards; a list is established 
of all the information in the descriptor cards (conditions, actions, rows, 
UTRA, ETRA). At the end of this phase , the list is edited and diagnostic 
comments are typed. 

If any errors were found in either the Dictionary or Descriptor cards, 
(phas e 1 and 2). the computer stops at this point so the errors can be 
corrected and then the cards rerun, repeating phase 1 and 2 until all errors 
are corrected. 

The third phase processes the table cards. These cards are processed 
entry and edits are made on the blocks themselves and against information in 
Desc riptor table from the second phase. As the t able blocks are processed, 
General Assembly Program (GAP) cards are punched (or printed on line. Two 
types of errors can occur in the table entries. One type is noted, the punching 
or printing of GAP cards stopped, but processing is continued with diagnostic 
comments being typed; the other requires t hat all processing be stopped until 
the e rror is corrected . 

The third phase is terminated by an END card C'ENO!l in columns 1-3) causing 
the program to revert back to the first phase and start processing parameter 
dictionar y cards for the next set of tables. If, however, the card following the 
"E NDI! card is an "END SENTINAL" card, processing stops and !lEND" is 
typed. 

B . LJED-225 TABCON Error Print-outs 

Error Code 

AOl 

Errors in Main Program 

UTRA in Descriptor card not in table 
number list. Table number and UTRA 
are printed. 

-37-

Action 

Continue 



Error Code 

A02 

A03 

A04 

BOI 

COl 

001 

002 

003 

004 

EOI 

E02 

E03 

Errors in Main Program 

ETRA in Descriptor card not in table 
number list . Table number and ETRA 
are printed 

Action 

Continue 

At least one AOl, A02 and/or BOl Error Restart 
was found in descriptor table edit. 

Invalid card in deck. Restart 

Error in Dictionary Card Processor 

Parameter number greater than 499 
Parameter number printed . 

Error in Description Card Processor 

Descriptor card out of required 
ascending sequence . 

Errors in Table Card Pre-Processor 

Table out of ascending order 
Table number printed . 

More rows in table than indicated in 
Descriptor. Table number printed . 

Continue 

Restart 

Restart 

Restart 

Second table entry for indexing command Restart 
not furnished . Table number printed. 

No GO TO intable descriptor or UTRA 
in tabl e row Table number printed. 

Errors in Processing Table Blocks 

Restart 

Stub missing from table column Table Restart 
number printed . 

Parameter name not in parameter Continue 
dictionary. Table number and missing 
parameter printed. 

Character other than quotation marks Continue 
or blank in column used to denote 
LITERALS, and column is not a GO 
TO or PERFORM. Table number and 
bad character printed 

-38-



• 

E04 

E05 

E06 

E07 

Invalid operation code 
Table number and operation code printed . 

Invalid table number in table operand 
Table number and invalid number printed. 

Table entry is TABLE XXXX but s tub is 
neither 11PERFORM", nor l1GO TO", 
Table number and operand are printed. 

More columns in row than indicated in 
Descriptor Table number J)l' ! i ed 

Continue 

Continue 

Continue 

Restart 

XIIJ TABSOL TABLE SOLV1NG PROGRAlVl 

A. TABSOL Executive Program 

The first phase of the TABSOL program sets specified parameters to zero 
and then begins reading problem input cards The information contained in 
the input cards is stored into the specified parameters During this pro­
cessing, the following edits are made : 

1. Make sure that there is either a 110" or "1" in Columns 8 of the 
input card to signify numeric or alphanumeric information to be 
stored, 

2 . Parameter number specified is not greater than 499 . 

3. Problem numbers are in ascending sequence . 

The second phase is initiated when a change in problem number is encountered. 
At this point, input card reading is ceased and control is transferred to the 
table solving area to solve the problem. 

After completion, of a problem, specified parameters are again set to zero 
and the next set of problem input cards are read as described in Phas e 1. 
This process is continued until an end sentinal card is encountered, at 
which time the last problem is processed and code" 50511 will be typed to 
signify end of job 

-39-



B, T ABSOL Subroutines 

All the subroutines for the arithmetic and logical table operations are included 
in TABSOL. These subroutines are assembled in fixed areas in lower memory. 
The GAP program produced by TABCON calls on these subroutines and on the 
parameter area symbolically , Therefore it is necessary, when assembling 
this program, to provide "LINKAGE CARDS" which gives the absolute loca­
tions of these subroutines and of the paramete r are a by the use of the pseudo­
operation llEQOlI. The above subroutines maintain a ten decimal digit 
register in all operations. 

C. TABSOL Error Printouts 

Error Code 

501 

502 

503 

504 

510 

512 

Meaning 

Input card out of sequence 
by problem number 

Character other than 1 or 0 
in Col. 8 of input card 

Error on BCD to binary 
conversion (machine error) 

Parameter number greater than 
499 specified on input card 

Arithmetic table error, 
Table number printed and 
program continues at ETRA 

A transfer was made to ETRA 
Table number printed and program 
continues at ETRA. 

-40-

Action 

Stop 

Stop 

Stop 

Stop 

Continue 

Continue 



XIV TABCON AND TABSOL RUNNING INSTRUCTIONS 

A . Deck Set- Up for TABCON 

1 TABCON binary deck . 
2. Card with lITABCON" in Col. 1- 6 . 
3 Dictionary cards (any sequence). 
4 Descriptor cards (ascending sequence). 
5 T able cards (must be in same order as descriptor cards) 
6 Card with "END!I in Col 1-3 and for last set of tables being processed , 
7. End senlinal card (all punches in Col . 1- 3 and !lEND" in Col. 4-6 . 

B . Running TABCON 

1 . Load dec k from above in card reader 
2 Before any processing, the typewriter will print, "SWIg to PRINT II 
3 . T o start at this point -

F or punched cards - toggle sign switch 
For printed output - depress SW 19 and toggle sign switch 

4 Program will proceed to produce GAP output and w ill type IIEND II at 
end of job 

5 When all the table cards have been processed through step 4 with no 
errors, place the TABSOL ItLINKAGE CARDS!! in front of output 
deck from step 4 and assemble using GAP . 

C . Deck Set- Up for TABSOL 

1 TABSOL binary deck 
2 . T ABCON generated binary deck from StepB 5 above. 
3 Transfer card 
4 Card with ItTABSOL INPUT It in Col. 1-12 . 
5. Problem input cards 
6. End sentinal card (aU p1.lnches in Col 1-3 and "ENDII in Col 4-6). 

D . Running TABSOL 

1 . Load dec k on c ard reader 
2 . Before any output is produced, the typewriter will print ItSW 19 to 

PRINT It 
3 . T o start from thIS point --

For punched cards - Toggle sign switch 
F or prmted output - depress SW 19 and toggle sign switch 

4 . Program will c ontinue in the mode selected and will type 11505 11 at 
end of Job 

-41-



E . TABCON and TABSOL Messages 

The following typed messages from card input subroutine are used in both 
T ABCON and T ABSOL 

Typed Codes Meaning 

CARD (Input Label) 

Card (Input Label) No 

Load (Input Label) FD 

Bad Card Read 

CRD 

-42-

OK -GoOn 

Compare card label to program label 
If not acceptable, reload proper deck in 
c ard reader and set switch a If labeL is 
ac ceptable . set switch 19 and then 0 

Non-matching label has been for c ed 

Remove deck from reader Place last c a rd 
read in front of deck and replace cards in 
reader Depress switc h 0 

Hopper empty . but no END SENTINAL 
card has been read Reload hopper with 
remaining cards and depress switch a 


