LJED TABSOL
for GE-225 CARD SYSTEM

David T. Schmidt
Adv. Mfg. Eng. Services
and
Paul Margaritis
Large Jet Engine Department

NOVEMBER 1961

GENERAL ELECTRIC
COMPUTER DEPARTMENT
PHOENIX, ARIZONA

PRINTED IN U.S.A.

TABLE OF CONTENTS

INTRODUCTION R R T U D R

I

II

III

v

VI

VII

VIII

IX

CONSTANTS AND VARIABLES
A Variables (Parameters)
B. Constants S R e RN E BT §E

THE DICTIONARY

TABLE ENTRIES 5 2l R
A. Stub Entries

B. Table Row Entries,

STRUCTURE TABLE FORM

OPERATION CODES . .+ « ¢ « &« &« « «
A, Test Operation Codes

...............

........

.............

.............

.........

............

...............

B. Result (or Action) Operation Codes . . .

1. Arithmetic Operation Codes
O s mes v mnes o w6
MdeRing: < 4 s 43 4 a4 5 @
The AND Instruction
The Convert Instruction (CON)
Transfer Instructions
Output Instructions
The STOP Instruction

IV W]

00 =3 Oy U W

PROBLEM INPUT DATA FORMAT
QUTEPOT PORMAT ¢ o s @ o9 99 o0

ERROR IDENTIFICATION

SETTING UP A TABSOL SYSTEM -

...............

........

.............

..............

nnnnnnnn

...........

.........

.......

...........

15

20
20
21
21
23
23
28
28
28
30
30

31

32

33

33

TABLE OF CONTENTS (CONT.)

X

XII

XIII

X1V

EEYPUNCHING ¢ v s o9 a5 s 5 595
A, Dictonaty . « o v v o5 v o « »
B. Table FOXme s+ + 5 ¢ o s s 5 » &

C.

MACHINE REQUIREMENTS

1. Header (Descriptor) Card .

2. NoiseCards
3. MableCards + « s 4 3 = s & 3
Problem Input - o 2 sca « 5+ « o

...............

...............

...............

TABCON TABLE TRANSLATOR PROGRAM .« « « « « « « « + « o &
A, The Throe PhEBEE « « o o % 5 s & & & 5 & e (w5 e @ w0 0 % & ¢ @
B. LJED-225 TABCON Error Print-outs . . « « « « « . « « . .

TABSOL TABLE SOLVING PROGRAM

...............

A. TABSOL Executive Program . « « + « v « s o « s ¢ s 4 + 4+ =«
B. TABSOL Subroutines .« o « 5 s 5 s o 5 & 5 % ¢ 8 6 & 8 & & & »
C. TABSOL Error Printouts - « « + ¢« ¢« s s ¢« w0 ¢« o0 2 « o o s
TABCON AND TABSOL RUNNING INSTRUCTIONS . . . « - « « - .
A, Deck Set-Up for TABCON . - + « « ¢ ¢ = ¢ s v o 0 o s s o+ =
B. Running TABCON . ¢ o s o ¢« « 4 ¢ s ¢ 6 60 2% & 5 8 ¢ s 1 s
Cc, Deck Set-Up for TABSOL « - « ¢ = s ¢ ¢ ¢« o o s s s s s s s« s
1 8 Running TABSOL) . ¢« « s 3 « 0.8 s o 6 66 8 8 + 0 & a0
E. TABCON and TABSOL MeSSages .« - + « « s« » s « « « « « « -

34
34
34
34
35
36
36

36

37
37
37

39

39
40
40

41
41
41
41
41
42

LIST OF FIGURES

Figure No.

1. Exampleof Table BOLEY & ¢ o o 6 5 6 v 0 o4 ¢ o 0 0 s & ¢ 9 »
2. Exarople of TabIe RoW & s 3 s v o o pm e o o @@ o8 8
35 Exampleof Table Column . . « + « v s o 5 o9 4 s 6 v 6 s s & &
4, Eszgmplesof Stub Bniries « ¢ o s v v 6 v s 4% o w B &% 0 b
5. Corresponding Examples of the Conditions in Figure 4

6. Examples of Table Row Entries . . . « + « « « + ¢« &« ¢ » « « =
Te Corresponding Examples of the Condition in Figure 6
8A. Sample Structure Table Form « « « ¢« v & + « o« « - =
8B. Sample Structure Table Form ¢« +« v « s o = = s + » »

9. Example of Indexing Operation Code

10

13

14

16

17

25

INTRODUCTION

There has been a continued and increasing interest in TABSOL (Tabular Systems
Oriented Language) by functional specialists, systems people, and Computer
Department personnel as they apply and extend the decision structure table to more
and more problems within the General Electric Company. A parallel development
has been the interest in structure tables by the Conference on Data Systems
Languages (CODASYL) whose membership includes representatives from all
computer manufacturers and many of the leading computer users. As a result

of this interest outside the General Electric Company there is strong reason to
believe that the systems group of CODASYL will recommend that decision structure
tables be the next systems oriented language replacing COBOL.

This report describes a TABSOL processor for the GE-225 Computer developed by

the Data Processing Techniques Unit, Large Jet Engine Department (LJED), Evendale,
Ohio. Early in 1962 LJED plans to implement an extensive body of structure

tables covering complete manufacturing planning for complex gears used in high-speed
transmissions for aircraft jet engines. Original feasibility work on the project was
done late in 1960 using LJED's existing computer. As work on the project continued,
the department made plans to replace the existing computer with a GE 225. The

GE 225 was installed in October 1961,

When the decision was made to install the GE 225, it was realized that the GECOM-
TABSOL Compiler being written for the GE 225 by the Computer Department would
not be available in time for the gear project. In order not to delay the implementation
of the project results, the Data Processing Techniques Unit, working jointly with
various Services' components and the Computer Department, determined to develop

a structure table format and table processor that would be upward compatible with

the GECOM-TABSOL program scheduled for release early in 1962. As a result of
this decision, LJED successfully ran their structure table processor in August 1961,
thus allowing them to continue with their plans for initial implementation of automatic
gear planning by January 1962

The history of TABSOL and the decision structure table, following their conceptual
development by the ISP Team in 1958, is extensively covered by TIS Reports and
Computer Department publications. It is strongly recommended that the reader,
prior to studying this report, gain a better understanding of developments, both
technical and historical, in the TABSOL field by reviewing some of the following
literature:

TABSOL - The Fundamentals of a Systems
Oriented Language (TIS Report R59MS302)

702 TABCON - A Table Conversion Procedure
(TIS Report R59MS303)

305 TABSOL - A Structure Table Processor for
the 305 RAMAC (TIS Report R59MS310)

305 TABCON - A Structure Table Converter for
the 305 RAMAC (TIS Report R60MS309)

650 TABCON-TABSOL (TIS Report R60MS312)
LOGTAB - A Logic Table Technique (DF-59LS23)

Preliminary TABSOL Manual (CPB-147)
Published by the Computer Department

In addition, application examples in which the decision structure table was

employed to document the functional logic are described in the following
publications:

Automatic Planning for the Turning Process
(TIS Report R61-X-8)
Published by the X-Ray Department

Medium AC Motor and Generator Department -
Rotor Assembly Planning (TIS Report R60MS401)

TABSOL Application Manual (CPB-147A4)
Published by the Computer Department

Much of the work on the LJED-225 TABSOL program was based on previous TABSOL
development: primarily the 650 TABSOL program and the GECOM-TABSOL language
specification developed by F. D. McNeill, Defense Systems Department, and D. Klick,
Computer Department Messrs. L. Haines and E. Criddle, Data Processing
Techniques Unit, Large Jet Engine Department, had primary responsibility for
writing the generalized table solving program. Original specifications for the LJED
program were developed with the aid of D. F. Langenwalter, Engineering Service,

E. F. LaChance, Quality Control Service, T. F. Kavanagh, Production Control
Service, and H. W. Nidenberg and J. R. Zinchak, Advanced Manufacturing
Engineering Service,.

=D

CONSTANTS AND VARIABLES

A. Variables (Parameters)

A 'variable" or''parameter'' is a named field containing a value The value
contained is known as the contents of the variable field or the contents of the
parameter. :

Space in memory is reserved for 499 variables, numbered 001, 002, ------
499. All input variables (problem input), intermediate variables (stored or
created data used within the program and not as output), and output variables
must be stored and defined in this space. Special assignment is given to
portions of the variable area as follows:

Parameter Number

001 - 484 Unrestricted variable area
485 Variable clear
486-499 Output area (Variables #498 and #499 contain

the problem number from the input data unless
destroyed by the coder.)

The variable clear (parameter 485) allows for the holding (non-zeroing) of
parameters between problems. A more detailed explanation of the variable clear
is contained in Section II, The Dictionary.

All variables are referred to in the structure tables by their name rather than
number. TUsually the variable names are made mnemonic for ease of interpre-
tation and understanding. Variable names are limited to a maximum of six
characters -- each character may be a numeric (0-9), an alphabetic letter
(A-Z), or a blank. Each variable name must include at least one alphabetic
character. Examples of variable names are given below:

LENGTH
WIDTH
WORDO1
WORD 2

Variable names must be used consistently throughout the data. If a name does
not occupy the full six positions, justification to the right or left must be
established and used. Special characters other than blanks and hyphens cannot
be used in variable names

=B

Each variable is stored in two GE-225 memory locations. Numeric variables
that will be used for arithmetic calculations must be stored in the binary mode:
these variables have a capacity of ten decimal digits internally but are limited
to six digits on input. The input data is stored as the six low order positions
of the internal ten digit field. All ten digits of the variable are available as
output by using the Convert (CQ)N) command described later,

Numeric variables that are not used in arithmetic calculations (testing is not
an arithmetic calculation) are stored in the binary coded decimal (BCD) mode
and are limited to six characters on input, internally, and on output. Thus,
numeric input variables are limited to values from 000000 to 999999. Numbers
that could occupy less than the allowed six digits must contain leading zeroes

to complete the data field.

Alphabetic variables presumably are never used for arithmetic calculations
and hence are stored in the BCD mode. Alphabetic variables are also limited
to six characters on input, internally, and on output.

The LLJED-225 TABSOL program operates in fixed-point arithmetic. Thus,
the table writer must establish and maintain control of the decimal point
location (referred to as decimal notation) of each variable at all times.

B. Constants

Constants, as opposed to variables, are fixed values written directly in the
structure tables. They may be either numeric, alphabetic, or a combination
alpha-numeric. Alphabetic constants and alpha-numeric constants are
treated identically.

Numeric constants are six characters in length. Constants normally occupying
less than the maximum six digits must have leading zeroes printed, and hence
can range in positive values from 000000 through 999999.

Alphabetic or alpha-numeric constants (hereafter referred to as alpha
constants) also contain a maximum of six characters. It is not necessary to
fill in leading characters or zeroes on alpha constants All alpha constants,
however, must be enclosed in quotation marks on the table form

One additional comment The table writer must organize and write tables
based on a knowledge of what variables will be used for arithmetic calculations
-- and thus must be stored in the binary mode -- and those that will be used
only for testing or output and therefore can remain in the BCD mode. Tables
should not be written that mix tests and/or arithmetic operations of binary
values and alpha-numeric values

il

II

THE DICTIONARY

A dictionary of all the variable names used in any set of tables is written to
define the variables and to assign parameter number s to them. The assign-
ment of parameter numbers to the variables is arbitrary except for the
special assignment of the areas mentioned previously.

Numbers 001-484 are relatively unrestricted, 485 is the variable clear, and
486-499 is the output area. Numbers 498 and 499 contain the problem number
from input data. Parameter numbers 001-484 can be used as desired to define
input or intermediate variables. In this area the assignment of parameter
numbers is not critical unless using indexH_}g, where it is desirable to set up
an array or list of variables so that the 'i ' variable can be referenced from
a known parameter, "i'" itself being a variable.

The variable clear parameter (#485) is used for controlling the number of
variables to be cleared (set to zero) by the zeroing routine as part of the
executive program. The zeroing of parameters by the executive program is
normally done between problems. Parameter 485 will contain the parameter
number of the last parameter to be cleared (starting with parameter 001) by
the initializing routine. The output area (parameter 485-499) will always be
cleared. If parameter 485 is left blank (zero), 50 parameters (parameter
numbers 435-484) will automatically be treated as the hold area for the
problem and parameters 1-434 and 485-499 will be cleared.

When writing the dictionary, it is desirable to group all parameters that
require holding and assign parameter numbers 435-484 as they automatically
will be held. If more than 50 parameters need holding it is suggested that
they be numbered in descending sequence starting with 434, 433, 432,
etc. This allows simplicity in establishing the value for the variable clear
parameter, normally less than 485.

As previously stated, if the variable clear parameter (485) is left blank
(zeroes), then 50 parameters (435-484) will be held. Because the variable
clear parameter contains the number of the last parameter to be cleared,
and since a zero in 485 indicates hold 50 parameters, it is not possible to
hold every parameter. By specifying 001 in parameter 485 all parameters
(002-484) except parameter 001 will be held. This is the maximum number
of parameters that can be held.

Note that the variable clear parameter is cleared by the initializing routine;
thus, if it is being used it must be input with each problem. Note also that
the variable clear parameter can vary from problem to problem, if required,
by changing the contents of the parameter through new input.

-5-

III

Parameters 486-499 are defined as the output parameters. Any data
desired to be output must be stored in the parameters 486-497, usually
given a name such as OUTWD1, OUTWD2..... OUTWD12, and then
"punched" into columns 1-72 (12 words of 6 columns each). Parameters
498 and 499 are normally reserved for the problem number identification
and/or problem error identification.

The dictionary format requires the parameter number to be written and
punched in columns 9-11, the parameter name in columns 13-18, and a
"D" in column 80. The remaining columns are for notes, explanation, or
definition of parameters. It is often desirable to indicate the decimal point

location of each parameter in this area.

TABLE ENTRIES

Each table entry is composed of a stub entry, an operation code, and an
operand (as shown in figure 1). One stub entry may apply to more than one
operation code and operand for multi-row tables.

stub entry opergiion l{’ & f{
AL A l 3 !
{ W (\I5 3
L | L L1 | 1)
tion |/ £ i
OPEoae '?r ' operand SEEE
el N I W o %, I M WU, DR N | s
Figure 1. Example of Table Entry

*The operation code may be included in either of the
locations indicated, as explained later.

-

A table row is comprised of many table entries (table blocks) in succession
horizontally each having a separate stub entry as shown in figure 2.

stub‘ . \ a \
row |
SRRLSIEEmB N R EAE N SESATRETA MR W L N

table

row \\ "IN \ .' \
L RIL st At g betloatg i i b bt d ek bEDD DY

Figure 2, Example of Table Row

A table column is defined as one stub entry and one or more operands
beneath the stub entry, all referencing the stub entry, as shown in figure 3.

1 stub entry operation code _ Stub or primary row
operation cod€:’'| Operand - 1 Table Row - 1
operation code. Operand - 2 Table Row - 2
pperation cod Operand - 3 Table Row - 3

b ~

Table Column

Figure 3. Example of Table Column

A, Stub Entries

The stub entry is always one of the following:

A parameter name

A parameter name plus operation code
A dash (=)

"GO Toll

"PERFORM'"

(%) I S O I N

or

The parameter name as the stub entry is the general usage. Usually stub
parameters are being tested against other values (conditions) or the stub
parameters are having results (actions) performed on them such as values
stored in the stub parameter, added to the parameter, etc.

The use of the dash (or tilde) in the first position of the stub entry is
limited to supplementary indexing rows or to programs where a punch (PCH),
punch and clear (PCC), transfer (TRA), end or stop action operation is used.

The words "GO TO'" are used as the stub entry where it is desired to transfer
control of program to another table. The words "GO TO" in the stub entry
must be followed by a "TABLE XXXX'" in the table row (Figure 5, example 8).

The word "PERFORM ' is used as the stub entry where it is desired to only
temporarily transfer control of the program to another table or series of
tables. This also must always be followed by a "TABLE XXXX" in the table
row. The end of the logic being "PERFORMED" is indicated by the operation
code "END'"., Upon encountering an "END', the program will transfer
control to the next result action in the same row of the table that contained
the last executed "PERFORM'. If no result actions exist, the program then
executes the universal transfer. Examples of possible stub entries are
shown in figures 4 and 5.

1 2 3 4 5 6 7 8 9 10 11 12

(1) | 6 Digit Parameter Name I Blank 3 Digit Operation | Blank);:I
Code
(2) | 6 Digit Parameter Name Blank 2 Digit Blank =
‘ Operation
Code
(3) l 6 Digit Parameter Name | Blank | =T
4) |~ | (Blank For Indexing and Punching) | =T
(5) | P E R F O | R M| Blank | ‘=t
6) | G O T 0 Blank | =(
1 2 3 4 5 6 7 8 9 10 11 12

Figure 4., Examples of Stub Entries

_U'[...

(1)
(2)
(3)
(4)
(5)

(6)

Figure 5.

T 1 | l N G
T 1| | G R
T 1|
F o R M |
P 0

5 6 7 8 9

Corresponding Examples of the Conditions in Figure 4

B. Table Row Entries

As shown in figure 1, the operation code may exist in one of two positions:
either in the stub row or the table row.

« If the operation code is identical for all of the table rows, then it
may be written in the stub row operaﬁ-an code location instead of
the table row location. By so doing, the amount of table writing
required is minimized.

« If the operation code is included on the stub row, that operation
code (whether result or action) will be applied to all succeeding
table rows and hence there should be no operation code included
in the table rows. An operation code in a table row will super-
sede any operation codes in the stub row.

» If, however, the operation codes are different for various rows
in the table, and hence cannot be written in the stub row they
must be written in the table row operation code location for each
row even if the same code is repeated in several rows. As long
as there is any exception to the operation code, it must be written
in each table row.

In either location a 2-digit operation code must be left justified in the 3
position field -- leaving the blank digit on the right.

The permissible operation codes and an explanation of their function is
contained in Section V, Operation Code.

The operand can have one of three forms:

1. alpha-numeric constants (BCD)
2. numeric constants (binary)
3. parameter names

Alpha-numeric constants, as stated previously, are alpha, numeric, or a
combination alpha-numeric data that will not be used in arithmetic calculations
and can therefore be stored in the decimal mode. Alpha-numeric constants
must be identified by quotation marks around the operand in the shaded-format
columns. Literal data need not have leading zeroes filled in; unused columns
may be left blank. Literal data is stored in the BCD mode.

-11-

Numeric data to be converted to the binary mode does not require quotation
marks around the operand but must have unused columns filled with zeroes.

Parameter names (1) are not enclosed in quotation marks, (2) must contain
at least 1 alphabetic character, and (3) need not have leading zeroes filled in.

It is very important to describe and distinguish between numeric constants,
alpha-numeric constants, and parameter names. Any errors will definitely
be indicated either through the editing features of the LJED-225 TABCON
program or through invalid data during a LIJED-225 TABSOL run.

Examples of possible table row entries are shown in figures 6 and 7.

-12-

(1)

(2)

(3)

(4)

(5)
(6)
(7)
(8)

o Rl

The table rows or secondary rows may be as follows:

1 2

3 Digit Operation

Code

3 Digit Operation

Code

2 Digit
Operation
Code

2 Digit
Operation
Code

|~

& A

3 4

o

e . S
Blank Q\\\‘“ %

Blank |\

o
.
B

RGN
R

e

B L
3 4
Figure 6,

1 W

1.;:Blar‘1-k,_“1Numeric literals or parameter names
SN 4

5 6 7 8

L ‘Alpha—numeric literal

Alpha-numeric literal

SN
- |

’&\\ |Alpha-numeric literal

(Blank (Fai‘f\\ﬁf@peration))

J> | Blank| X X

4-Digit Table Number

5 6 < 8

Examples of Table Row Entries

X

9

10

'\\{:,’"—'-"_;’.Numeric literals or parameter names
b

\]Numeric literals or parameter names

X

10

.

oy
&\‘C“\

11

| Blank | ™= |

—ﬁ.'{ -

(1)
(2)
(2)
(3)
(4)
(4)
(5)
(6)
(6)
(7)
(8)

=

O O L o

o o L

Figure 7.

| A B C LI =

| | W I D T H S | | B |

N N e =

[A B C SV =

|w I D ;) H S | 1;1'

K 0 1 2 5 o | | =T 1

B A B S S =

|lw I D G H s |. | =C |

|0 0 1 2 5 0 | =

=g

i E |] 2 0 0 5 | | = |
4 5 6 7 8 9 10 11 12

Corresponding Examples of the Condition in Figure 6,

v

STRUCTURE TABLE FORM

Once decision logic has been defined through establishment of parameters
or constants and their relationships along with the associated results or
actions, this logic can be documented in a structure table and/or on the
structure table form within the limits of the table entries as described
previously. All structure tables, sooner or later, must be written on the
Structure Table Form for processing. A sample of the form is shown in
figure 8.

The table form provides for program identification, name, and date at the
top of the form. This information is not key-punched, it is only for use of
the table writer. Directly beneath this is a column count representing the
80 columns on a punched card. The form provides for a maximum of six
table columns and a maximum of fourteen table rows plus a single stub row
per page. The six 11-character column widths are separated by a spe cial
character (¥) representing a 12-4-8 punch in the cards.

The table header or descriptor row includes table number, conditions,
actions, rows, universal transfer (UTRA) and the error transfer (ETRA).
This information is required only once per table and must be entered on
the first page of the table.

The table number is a 4 digit, alpha-numeric value in positions 16-19 of
the descriptor row. If an all-numeric value is used as the table number,
the leading zeroes must be filled in; if the table number is alphabetic or
alpha-numeric, unused positions need not be filled in, but the table number
must be used consistently within the 4-digit field.

Examples:

Table 0050

Table 2000

Table A500

Table SQRT

Table PAY (Must always be right justified)
Table ABC (Must always be left justified)

Table numbers cannot contain special characters (# . (! e)

24 Ba

91419313 @ 1vuanig W0 21qEL, damonng Sldures v sandig

19/1/6

R LR R BEE LS LR RS LR L E LB B UL S LR L L S I L 0 I | [G |
| LA LR S L L AL . I T L G L T R L L A I L R N L L R I L R AR B L B L O . A 0 T 1 I T
| FE A M B S B B BRI I S A SN T G i) S E S S S RN S) M B R S SR SR B S I R M) S e O BN RN) A N PR R (e FEN DA N S G S G SR VRN GRS ST IR (R [CH A S SR S REN e R R | 0 L] LI
S O S L S T S O S LA, i R o L . L T L . G (L T L L R I L ST L L L T T L A T S O O L 0 T L
| T SR L | B e o I T e e e s e e e PO | ol | = i
rir 1 rrra | BE L L L L B L L L OO . L L S 0 1 LI]
—H—__ﬁ_f___.. T ™ 4_____mﬂ_._ﬁ o T T
Ern LI _ L B - T T 1 rr = T 1 T e L T LB i |

: X \ a|
7 LU v ! B i L | -m.m_ uﬂﬁm E e i HH 1= I { D S |
L] T 1 T T T 1 LD | L L L T L]

g 1, Lt N |
I ~ B T O

=
m = : Hﬂ T T
0 UL | LR W

4] | B
B . B L ITrTTT11 T 1 HM T 11
“Mu“ T 1 T u_ LR WWM|-. I LI T RN |

L ‘

L AL T O LU L L 0 T L L
| I OO T I G = N U D e e i = M (o e B R o = e e i] M G e [B i S e RERD (RN S e e amy ma et) S R pm M M pe e it N T I Y St S s i I N K | 0 I I B |
| L L T L . L . L . T T . L. (L L L I T L i . OO B L L R R L L. L LG L i L T G L . G G T T L LT S i | ! I I Gl 0 | 1
"L AT HE T PP ST LY E T T T ELILTI TR T T L TR LT T TN TR T RV R AT A R TN AR T NN T T rT T rrrrrrrrrorrimrmy ¢ 0 T T 1 1
v+ 1IFrrl FirrTrqgir44HrrreEr1rTrrttrsrrrerrrrrfrrrrrrrrrrrrryrrrryrrrerrrrrrryrorria o T L B
NEEE RN RN R N L L L LR P T T ¥ 1
¢ V¥ ¥ 3P ¥ k- ey rr ey e - erg s eyl f r3IT1rrr 1T Py T T TTT T PR VP PR rreTr §FT 1 v 1 v % |7 F 5T 3 7108 ¢ T T 7 1

| LR L} VgV Vi bk Tl Wbl = g e ¥ L PR [R A [[T | [P e el e S TP P P P I I LR | Talalalbatal | i LIS
] 'L YILN 310N *SMOY | swo1dy | snol1ianod | | 119yl o
e CELTT T & L T Ty r T T I Yy rrirrrorr FTT rFPTELRELLET T 313 T [S K T D [NS M B N am Emn 2o s RS B B | | 2 pm e B I K "o Tom |
_W+ﬂﬂ bl J
-ﬂ_ﬁ_w_n_nn_on_.nn_vh_ﬂ_ﬂnn—h_P..._wo.s.hﬂ_ou_uv_z_aéq«q__.w_3_3.3__B.em-wn_-_n_nn_un__m—a_mv_ww_hv_*-nv_;_nv.NQ-_-_.Quunaﬂ_._R.ﬂ_ﬂ.-n_nnaun_—w_a_m«_ﬁ_k_on.ﬂ.-a_an_ﬁ.__ﬂ_a_m___u___h___ﬂ__n__v__n__«_.:_ﬂ_a_ qu P -_._a.n _.

WYHOOUd

¥~ W¥04 118V1 ANLONALS

=16~

urxo 91qe.L 2Imonaig ojdureg °*gg eandrg

RELALEL]
rrervvrrrrrirvrerrervraryervrorerre iy v i i e reirverriinryrrr ey e i rrri i i ey vy ievyrre I R L
L L R LR LU LA R L E RS R L LS RS LU L LR L LU L LI UL

L it N O

111171 IREEE ﬂﬁ}:{nunnnﬁﬁ 11117

=
-
=
—
-
—
-
-
-
-
-
-
—
-
-
=
-
=

T I o o

-

o|lo|lo|lo|e

=1
-
=
=
-
-
=
-

RN (D5

RO T 1 1

JEAPEDE(DEDRADudDu{Dn/

LU

]
RO PEOEOEOEEOEOTOEE

JEd) EAPEA PR DEPEA DRI E(DEAI Pl DudDE

TR nmﬁ EPEADEDE{)x{

ﬁH LR TR i 1 0 kT =i i .__HH_ Fry i T 1
—HHH S I JCH S G | LI TT 1 &1 UL | T O L __E R U N L { | L L ! L) S O S | T I [R |
E O O A LI LR L L LI T T UL L __E I L A | | | L L] L] d | B O L L 1 T ¥l
T T T i LI T /I | __—I-_ B § B T T T T LI LB 1 L L] T THEL B
L i i L L
T T 1 | R [it A T T [= Eme e i ad JHEN T V=t ¥ Tha=r T 1 | S W NN R D s L | e e i R R e | B NN) B A T T 1
T T S o A R s (S [i) A IR S s N Mo N M (i S ERTT S R M SR S o ke YL YR P i TR S S R T NP TR R F 1 i M ooy S TR R B o e /N S N TE S S0 B d= B S M S o T |) VT

-

u__._--______n--—-_ﬁ___——__«—_—-l_nh—_—_____—__W«________._________.___

T T 2 Fr T rr syt rrJgrrryarrrsyryrrrrrryryrTrrrrrorrrrryrrrrrrrrrroRErrryr v rvrvrrocrornory

__——_—l—_________________———_—«._.—_q.—lﬂn_l._—._l.__._.___._______-_____.__—_«—._.4

o|lo|lo|lo|lo|lo| o

% ERN W O e R D PR RN B R P A O LT T R G . L i L T L L B . B, B L L, L N L L L . T L . L T S L T N, R . T T L. L T L T T L L T L B

—Iﬂ T — _C-_._._u_ T 711 — _du-_.—__.—“ uu_.—_o_:_ _c_m_’_o__ﬂ. — T _ _m_t_oq—_._._u_d. — 1— _qu_o___hn__nﬂl_o_u_ — T _ :— LI | _ _m_.—_nﬂq_._.-lu o T T 1 1
LI | | | 1 L]]] i L L]] L I L | i LI B! | | L] L L 1 LI I |]] LI | | B B | i] LB] ¥ LI | L | LI L] LI LI} | T I L] LI] L L] LI | 5 .Or _l.ﬂz~
L] | e | = | | o |] I T] L]] T L] LI | T L —{.F

0a%ac"oe 2292 6s Twees 2e T1s "o 69789 19 199 69 W9 €9 29 19 09165 85 ' £S 9SS ¥S S 25 1S 05 6% By Ly 9% Sy WYICY 2y 1y OF 6L BE ZE 9C ST ¥CEL 28 ICOC 62 82 £Z 9Z'SZ WL CZZZ 1202 6181 £1 91 SL PLELZL 11016 8 £ 9 S v € Z 1

=1T=

2-Wd0d 3T78YL ANLONYLS

ilva INVYN WYHOOUd

—
008T L0

LNV1d 3TVONIAI
11913 @ 1vuanas

With the allotted four positions for table numbers and figuring for alpha A-Z
(except I, @, and Z) and numeric 0-9, there are over one million unique
combinations for table numbers,

The number of conditions in a table is defined as the number of table columns
performing tests, therefore having test operation codes. In the usual quadrant
representation of a structure table, the number of conditions is the number of
columns to the left of the vertical double line. The number of conditions in
the table is written in positions 22 and 23 of the table descriptcr row --
preceding the word CONDITIONS Tables containing no conditions (uncon-
ditional tables) must have CONDITIONS entered as 00 and not left blank.

The number of actions is the number of result or action columns in the table
(columns to the right of the vertical double line) and is written in positions
36 and 37 of the table descriptor preceding the word ACTIONS, For any
table the sum of CONDITIONS plus ACTIONS is limited to 54 (nine pages at
six columns per page)

The number of table rows is defined as the number of horizontal rows in the
table proper not counting the stub row, the table descriptor row, or any rows
containing notes. The number of rows is written in positions 47 and 48 ahead
of the word ROWS, and is limited to two digits, and therefore a maximum

of 99.

The universal transfer (UTRA) is the next table to go to if the table exit is
identical for each solution of the table. If each table row has its own GO TO,
then the UTRA must be written as 0000.

The error transfer (ETRA) is the next table to go to if there is ''no solution"
to the table: ''mo-solution'' indicating failure to pass all of the tests in any one
table row If the "no-solution'' possibility does not exist, zeroes may be
written in this field. Do not leave it blank. The rules pertaining to table
numbering apply to the UTRA and ETRA When completed, the table
descriptor row might read as follows:

TABLE 0001. 02 CONDITIONS 02 ACTIONS 02 ROWS NOTE
UTRA 0000 ETRA STOP

Following the descriptor row of the table are seven additional rows identified
only by a ""0" in position 7. These seven rows are left for the table writer to
include notes, expressions, statements or any other information desired to
include with the table but not in the table The information written in these rows
will be ignored by the computer during processing There is no limit on any of
the data included in this area

=] 8=

The rows in which this information is written are known as "noise-rows'’

the cards that it is punched into "'noise-cards''. More than the allotted

seven noise cards preceding the table body may be included but must be done
so on another table form. Five "noise rows'' are also included after the table
body for notes or other information. Again, additional noise cards after the
table may also be included on additional forms.

The table number must be repeated in positions 1-4 of each row including the
header row and each used noise or table row.

The row number is assigned in positions 5 and 6 of the table form. The

row numbering must be in ascending sequence from the top of the form
(header row) through the noise rows, stub row, table rows, and finally any
trailing noise rows. Row number 00 may not be used. The rows do not have
to be numbered consecutively; in fact, it is suggested that they are not
numbered consecutively to allow for additions or changes. Unused rows,
whether in noise rows or table rows, need not be numbered.

The page number is entered in position 7 of each used row of the table body.
The page numbering must begin with 1 and must be consecutive. The page
number is increased only when an additional form is used for more table
columns (sheets added to the right). Sheets added to allow for more table rows
(added at the bottom) have the same page number as the sheet they follow.

If additional pages are added to allow more columns, the rows on the additional
pages must be given the same row number as the corresponding row on the first
page. For instance, if the stub row was numbered 15 and the first table row

20 on page 1, then on all succeeding pages the stub row must also be numbered

15 and the first table row 20

If additional pages are added to allow more rows (added at the bottom), the
row numbering must continue in ascending order from the first page to
succeeding pages, each page itself in ascending sequence from top to bottom.
Any one table is limited to a maximum of 9 pages, and therefore to the 54
columns as indicated previously.

-19-

OPERATION CODES

A. Test Operation Codes

The test operation codes available in the LIJED-225 TABSOL program are

listed and defined below.

GECOM.
Symbol

EQ

GR

LS

NEQ

NGR

NLS

Meaning
Equal

Greater Than

Less Than

Not Equal

Not Greater

Than

Not Less Than

Sl

All of the test operations are compatible with

Effect

The contents of the stub parameter are
EQUAL to the contents (constant or
variable) of the operand field in a
secondary row entry.

The contents of the stub parameter are
GREATER THAN the contents (constant or
variable) of the operand field in a
secondary row entry.

The contents of the stub parameter are
LESS THAN the contents (constant or
variable) of the operand field in a
secondary row entry.

The contents of the stub parameter are
NOT EQUAL to the contents (constant or
variable) of the operand field in a
secondary row entry,

The contents of the stub parameter are

NOT GREATER THAN the contents (constant
or variable) of the operand field in a
secondary row entry.

The contents of the stub parameter are
NOT LESS THAN the contents (constant or
variable) of the operand field in a
secondary row entry.

B Result (or Action) Operation Codes

The available result or action operation codes for the LJED-225 TABSOL
program are listed below:

Symbol Meaning Effect

(blank) - Put the constant or contents of the variable

field into the stub parameter.
No Operation No action or test performed.

1. Arithmetic OperationCodes: (These codes are valid only for binary mode
arithmetic operations.)

Symbol Meaning Effect

ADD Add Add the constant or the contents of the
variable named in the data field to the
contents of the stub parameter.

SUB Subtract Subtract the constant or the contents of
the variable named in the data field from
the contents of the stub parameter.

MPY Multiply Multiply the contents of the stub parameter
by the constant or by the contents of the
variable named in the data field.

DIV Divide Divide the contents of the stub parameter
by the constant or by the contents of the
variable named in the data field.

EXP Exponentiate Using the notation of AX, the exponentiation
routine requires A to be represented as
XXXXXX and X.

As previously stated, the LIED-225 TABSOL program operates in fixed point
arithmetic. It is extremely important to note that use of the five result or
operation codes listed above require the table writer to control or position
(housekeep) all constants and variables so that the ""decimal points'' are in the
proper order for the arithmetic operations. For instance, two numbers when
being added or subtracted must have the same number of positions to the

ol

right of the decimal (decimal notation). To aid in maintaining the correct
decimal notation for various arithmetic operations the following rules apply:

Add

In executing an ADD, both the augend and the addend must have the
sam e decimal notation. The sum will also have the same notation.

Augend 1.234
Addend 1.234
Sum 2.468

Subtract

In subtracting, both the minuend and the subtrahend must have the
same decimal notation. The remainder will also have this notation.

Minuend 2.468
Subtrahend 1.234
Remainder 1,234

Multiply

When multiplying, the product will have a decimal notation equal to
the sum of the decimal notation of the multiplicand and the multiplier.

(decimal notation)
Multiplicand 1.250 3
Multiplier 123.4 =
Product 156.2 500 4

Divide

In dividing, the quotient will have a decimal notation equal to the
decimal notation of the dividend less the notation of the divisor.

Quotient (Remainder) 40.0 (1)
Divisor | Dividend 1.200,, | 48.0000(4) (4-3=1)

(decimal notation in
parenthesis)

=90

2.

3.

Shifts
Symbol

SRN

SLN

SRD

SRA

SLA

SRV

SLV

Indexing

Sxmbol
PXV

Meaning

Shift Right
Numeric

Shift Left
Numeric

Shift Right and
Round

Shift Right
Alphabetic

Shift Left
Alphabetic

Shift Right
Variable

Shift Left
Variable

Meaning

Put an Indeied
_Yariable

Effect

Shift the numeric contents of the stub
parameter right k positions.(k £ 10)

Shift the numeric contents of the stub
parameter left k positions.(k £ 10)

Shift the numeric contents of the stub
parameter right (k-1) positions, add 5
to the low order (units) position then
shift right one position, (k < 10)

Shift the alphabetic contents of the stub
parameter right k positions. (k £ 6)

Shift the alphabetic contents of the stub
parameter left k positions, (k € 6)

Shift right the numeric contents of the
stub parameter k positions where k is
the numeric content of the parameter
named in the operand. (k < 10)

Shift left the numeric contents of the
stub parameter k positions where k is
the numeric content of the parameter
named in the operand. (k < 10)

Effect

Index the data field parameter number by
the contents of the Indexer and store the
contents of the indexed parameter in the
contents of the stub parameter,

~2G.

Symbol Meaning Effect

PVX Put a Variable Put the contents of the parameter named
in an Indexed in the data field into the parameter derived
Stub by indexing the parameter number of the

stub parameter by the contents of Indexer

In addition, two additional operation codes, AXV and AVX, are available that
perform the same basic indexing function except they add the contents of a
data field parameter to a stub parameter instead of putting (reset to zero
and add) the contents. The AXV and AVX operation codes may be used
effectively for totaling or summarizing.

Symbol Meaning Effect
AXV Add an Indexed Index the data field parameter number by
Variable the contents of the indexer and add the

contents of the indexed parameter to the
contents of the stub parameter,

AVX Add a Variable Add the contents of the parameter named
to an Indexed in the data field to the parameter derived
Stub by indexing the parameter number of the
stub parameter by the contents of
Indexer,

In all cases the parameter numbers as defined in the dictionary are used as
a tag to reference one parameter with relationship to another. As mentioned
in the dictionary formulation, it is suggested that parameters employing
indexing be grouped for purposes of clarity and simplicity. It is in this
respect that the assignment of parameter numbers is no longer arbitrary.

Indexing allows the use of generalized tables containing specific values that
vary with time. For instance, it might be desired to calculate the areas
for one to ten circles, represented by DIAMETER 1 (DIA-1), DIAMETER 2
(DIA-2), ... DIAMETER 10 (DIA-10). Separate tables could be written for
the calculation of each area expressed in terms of DIA-1, DIA-2,

DIA-10, but this could become lengthy and redundant. Instead, if the
variables DIA-1, DIA-2, etc. were entered in the dictionary as a list (see
below) and if indexing is used, one generalized table can be written to test
for the presence of DIA-1 DIA-10. The area can then calculate for

all existing diameters.

.y o

Dictionag

Parameter Number Parameter Name
011 DIA-1
012 DIA-2
013 DIA-3
014 DIA-4
015 DIA-5
016 DIA-6
017 DIA-T7
018 DIA-8
019 DIA-9
020 DIA-10
111 AREA 1
112 AREA 2
113 AREA 3
114 AREA 4
115 AREA 5
116 AREA 6
117 AREA 7
118 AREA 8
119 AREA 9
120 AREA 10

The indexing routine requires three types of tables: an initializing table, an
indexing table, and a finalizing table. The indexing operation codes are
special in that their format requires two table columns to represent the
complete operation as shown in figure 9.

Column 1 ' Column 2
STUB Stub Row
ﬁﬁDATA FIELD i \ INDEXER Table Row
R4 X ¥

Figure 9. Example of indexing operation code

-25-

The initializing table is used to establish a value for the indexer.

TABLE 50 UTRA 60

. |

(Initializing Table)

INDEXER

Put 0

The indexing table does the actual indexing as a function of the particular

indexing operation code used. For purposes of the example the PXV and
PVX codes will be used.

TABLE 60 UTRA 70 | |
- DIAM 5 - PERFORM | AREA-1 JL‘*J | INDEXER
- PXV DIA-1 | INDEXER | TABLE 100 I PVX AREA], INDEXER | ADD 1

§ i

(Indexing Table)

TABLE 100
DIAM AREA GO TO e
t 0 304 DIAM2 | END
4
w (i . STOP
TABLE 70
INDEXER |; GO TO
< 10 { TABLE 60
= 10 |1 STOP

(Finalizing Table)

-8

Using the dictionary and the four tables above, the indexing operations would
work as follows:

a.

Table 50 is the initializing table and is always executed at the
beginning of the routine to establish the correct value in INDEXER.
Table 50 universally transfers to Table 60.

The PXV operation in Table 60 does the following:

(1) Adds the previously established contents of Indexer (second
table column) to the parameter number of the data field
parameter (first table column) as defined in the dictionary.

(2) Puts the contents of indexed parameter in the contents of the
stub parameter.

(The first time through Table 60 with INDEXER = 0, zero is
added to 011, the parameter number of DIA-1 as defined in the
parameter dictionary. Then the contents of the indexed
parameter DIA-1 (011 # 0 = 011) are put in DIAM.)

Next, Table 100 is "PERFORMED" and, providing a diameter
exists (DIAM # 0), the area of the circle represented by DIA-1

is calculated and stored in AREA. If no diameter exists

(DIAM = 0) the area calculation is not performed and the indexing
stops.

The fourth and fifth table columns of Table 60 store the contents of
area in AREA-1 as follows:

(1) Adds the contents of Indexer to the parameter number of the
stub parameter as defined in the dictionary.

(2) Puts the contents of the data field parameter into the contents
of the indexed stub parameter.

(The first time through Table 60 with INDEXER = 0, zero is
added to 111 (0 # 111 = 111), the parameter number of AREA-1
as defined in the dictionary. Then the contents of the data field
are stored in the indexed stub parameter.)

o

e. One is added to the contents of Indexer (0 { 1 - 1) and control is
transferred to Table 70.

f. Table 70 tests the contents of INDEXER. finds it less than 10 and
goes back to Table 60; this time going through Tables 60 and 100
with INDEXER = 1 calculating AREA from DIA-2 and finally storing
the result in AREA-2.

This process continues through each succeeding diameter storing the result
in the corresponding AREA. When the contents of INDEXER becomes equal
to 10, the indexing loop is completed

4, The AND Instruction

The AND operation code is used to add either an alpha-numeric constant
or a BCD variable to the contents of the stub parameter. The AND operation
code should only be used to add BCD information, usually for output purposes.

5. The Convert Instruction (CON)

The convert operation code is used to convert a variable in binary mode to
an equivalent 10-digit value in the BCD mode. The four high order (left)
digits of the variable w 11 be stored in the parameter named in the stub,
the six low order digits in the parameter whose parameter number is the
next sequential value in the dictionary.

6. Transfer Instructions

Symbol Meaning Effect
PERFORM Perform and Go to the table or series of tables
Return beginning with the table number in

the data field and perform their
tests and actions. When an END
operation code is encountered,
return to the next action in the
table row containing the last
PERFORM-

-28-

Szrnbol Meaning Effect

END Return Return control to the next action
in the table row containing the last
executed PERFORM instruction.
The END operation code is only
used in conjunction wi th the
PERFORM instruction.

NOTE

The PERFORM instruction is very powerful and can be used very
effectively. For instance, one table may PERFORM another table or
series of tables linked by GO TO's, each containing any necessary tests
or results. The end of the series is identified by an END instruction.
Or one table may PERFORM another, the second table also containing a
PERFORM, and so on, to a limit of 15 PERFORMS -- one cascading to
another. For each PERFORM there must also exist a corresponding
END.

GO TO Transfer Control To Go to the first test or action if no
tests exist of the table identified
in the data field,

NOTE

Both the PERFORM and GO TO instructions must have TABLE XXXX
in the data field

TRA Transfer GO TO the first test or action, if
no tests exist, of the table identi-
fied in the data field. (Accomplishes
the same function as GO TO.)

-29-

7. Output Instructions

§z.mbol
PCH

PCC

Meanin

Punch

Punch and Clear

NOTE

Effect

Punch the contents of the 14
variables #486-499 as output.

Punch the contents of the 14
variables #486-499 as output and
reset variables 486-497 to zero
after punching.

Parameters 498 and 499 normally contain the problem number obtained

directly from the input data cards.

If the table writer has entered other

data in parameters 498 and 499, the entered data will be punched.

The operand of the punch or punch and clear instruction may also
include a GO TO address; i.e., the number of the table to go to next.
If so, the punch instruction must pe the last entry in the row. The
table number is written as the last four digits of the operand. If the
transfer is not used, the operand may be left blank.

8. The STOP Instruction

Symbol

Meaning

STOP

STOP

-30-

Effect

Cease processing the existing
problem, execute the finalizing
routine and start processing the
next set of data. If no additional
data exists, halt the computer.
The operand of a STOP instruction
is left blank.

VI

PROELEM INPUT DATA FORMAT

The LJED-225 TABSOL program utilizes a punched card input. There are two
input formats available: one for numeric input to be converted to the binary
mode for arithmetic operations; the other for data that can remain the BCD mode,

The first seven columns of the input card contain the problem number. Any
unused columns must be filled with zeroes. The eighth card column contains---

A "0" punch if the card contains numeric data to be converted to the binary
mode for processing.

A "1" if the card contains alpha-numeric data to remain in the BCD mode.
The remaining seventy-two card columns are divided into eight 6-digit data

fields and eight 3-digit parameter number fields for data input.
Corresponding 3 Digit

6 Digit Data Fields Parameter Number Fields
9-14 15-17
18-23 24-26
27-32 33-35
36-41 42-44
45-50 51-53
54-59 60-62
63-68 69-71
72-77 78-80

Numeric input data cards (identified by "'0" in column 8) require all unused data
field positions and all unused parameter number fields to be filled with zeroes.

Unused data field positions of alpha-numeric input cards (identified by ""1'" in
column 8) may be left blank, but all unused 3-digit parameter number fields
must be filled with zeroes.

The parameters on input data cards may be arranged in any order, and the in-
put cards themselves may be submitted in any order. Specialized input sheets
can be made for particular problems as desired, each within the limits and
specifications described above.

. I

VII

OUTPUT FORMAT

The LJED-225 TABSOL program may be obtained either on punched cards
or through an "on-line'" printer. TABSOL running instructions, Section XIV
indicate the procedures for obtaining on-line printer output.

The output format normally consists of twelve 6-digit data fields (para-
meters #486-497) in columns 1-72, followed by an error identification column
(73), and then a seven digit problem number field, columns 74-80, The error
identification and problem number are contained in parameters 498 and 499.

The twelve 6-digit data fields may be mixed alpha-numeric as desired. The
error identification column will contain an 8 punch if the card is a problem error
card as explained in Error Identification. The seven digit problem number

field contains the problem number from the data input card.

It is possible for the table writer to use parameters 498 and 499 for output
data -- realizing that the problem number will be destroyed if not stored else-
where and will not appear on problem error or output cards. When using
parameters 498 and 499 for data output, the six digits of parameters 498 will
be output in columns 73 through 78. Only the 2 high orders (left) positions

of a parameter 499 can be obtained as output: they will appear in columns
79&80.

As described previously, the conversion (CQN) instruction must be used to
output a variable in the binary mode, occupying two parameters to obtain all
ten characters.

The AND instruction will be used to pack or add BCD variables for output.
Negative output values will be distringuished by a 11-X over the units' position
of the data field. Leading zeroes are not punched in the card output nor printed
in the printer output.

It is possible by data manipulation to use output from one program or core load

as input to a subsequent program with no additional processing. This requires
output data manipulation by the table writer,

289<

VIII

ERROR IDENTIFICATION

If any table solved during the processing of one problem has an "error' in
solution, a "512" will be typed on the typewriter along the table number in
which the error occurred. All subsequent output will have an 8 in column
73. As defined previously, an error is a failure to pass all the tests in any

single table row. All error messages are described in the TABCON and
TABSOL Error Identification Sections.

SETTING UP A TABSOL SYSTEM

The following information is from TIS Report No. R60MS312, 650 TABSON-
TABSOL, by T. F. Kavanagh, J. H. Kelly, and P. G. Margaritis,

A. Design the System

Develop the required output, input, and the logic required to convert the input
data to the appropriate output. If the system is too large to be handled by a
single group of tables, plan the division into logical, self-sufficient segments,
each to be expressed in a group.

B. Write The Tables

Write the structure tables, and their associated parameter dictionary in the
tabular systems oriented language (TABSOL).

If the system contains several groups of tables, it is probably wisest to start
with a single group and carry it through to completion before starting detail
work on the remaining groups, since the experience gained from actually
writing and using tables will prove more helpful in understanding how to use
TABSOL than any amount of reading.

C. The parameter dictionary and the tables must then be keypunched. Key-
punching instructions are given in Section X.

D. Check the parameter dictionary cards fo see that there is no unintentional
duplication of parameter numbers or names.

E. Check that all the variables used in the tables are listed in the dictionary.

F. The dictionary cards are not required to be in any sequence for processing.

=88

G. The table description cards and table cards should be checked for any
obvious errors that can be corrected before processing.

H. The table descriptor cards must be extracted from the table cards. The
descriptor cards should then be sorted to ascending sequence on table number,

card columns 1-4, or 16-19,

I. Sort the remaining table cards to ascending sequence on table numbers,
row number and page number; i.e., columns 1-7.

J. If the cards are then re-assembled dictionary cards first, header cards
next, and then table cards, the deck is ready for processing.

KEY PUNCHING
A. Dictionary

The parameter dictionary is keypunched directly from the dictionary form --
row by row.

Card Columns

1- 8 Blank
9-11 Parameter Number
12 Blank
13-18 Parameter Name
19-79 Blank or any desired notes or
comments
80 1IDII

B. Table Forms

The structure tables are also keypunched directly from the table forms --
row by row,

1. Header (Descriptor) Card

Card Columns

1- 4 Table Number
5- 6 Row Number
7 IIOH

8- 9 Blank

10-14 "TABLE"

~34-

Card Columns

15
16-19
20
21
22-23
24
25-34
35
36-37
38
39-45
46
47-48
49
50-53
54
55
56-59
60
61-64
65
66-69
70
71-74
75
76-79
80

Noise Cards

Card Columns
1-4
5-6

8-80

-35-

Blank

Table Number
[period)

Blank

Number of Conditions
Blank
"CONDITIONS"
Blank

Number of Actions
Blank

"ACTIONS"

Blank

Number of Rows
Blank

HRowsll

J[period)

Blank

“NOTE”

Blank

I'IUTRAII

Blank

Universal Transfer Table Number
Blank

”ETRA”

Blank

Error Transfer Table Number
[(period)

Table Number

Row Number

Page Number

These columns are left for any
statements, expressions, or other
information the table writer may
desire to include but not have
processed.

3. Table Cards

Card Columns
1-4
5-6

8-80

C. Problem Input

Card Columns

1=-7
8

9-80

XI MACHINE REQUIREMENTS

Table Number

Row Number

Page Number

Columns 8-80 are punched
directly as written on the table
form. Columns 8, 20, 32, 44,
56, 68, and 80 must have a

12-4-8 punch.

Problem Number

"0" for numeric data

"1" for alpha-numeric data
Problem input data and
parameter numbers

Corresponding
Data Fields Parameter Numbers
9-14 15-17
18-23 24-26
27-32 33-35
36-41 42-44
45-50 51-53
54-59 60-62
63-68 69-T71
72-77 78-80

The minimum machine configuration for the LJED-225 TABCON and TABSOL
programs is a 8000 word card in - card out GE225 with a BCD package. If
other hardware is available, (tapes, printers, etc.) it may be used to increase
the effectiveness and efficiency of the programs.

X1I

TABCON TABLE TRANSLATOR PROGRAM

A, The Three Phases

The first phase of the LIJED-225 TABCON program processes and edits the
Parameter Dictionary cards. A parameter list is created of all parameter
names with their corresponding symbolic locations.

The second phase processes the table descriptor cards; a list is established
of all the information in the descriptor cards (conditions, actions, rows,
UTRA, ETRA). At the end of this phase, the list is edited and diagnostic
comments are typed.

If any errors were found in either the Dictionary or Descriptor cards,
(phase 1 and 2), the computer stops at this point so the errors can be
corrected and then the cards rerun, repeating phase 1 and 2 until all errors
are corrected.

The third phase processes the table cards. These cards are processed

entry and edits are made on the blocks themselves and against information in
Descriptor table from the second phase., As the table blocks are processed,
General Assembly Program (GAP) cards are punched (or printed on line., Two
types of errors can occur in the table entries. One type is noted, the punching
or printing of GAP cards stopped, but processing is continued with diagnostic
comments being typed; the other requires that all processing be stopped until
the error is corrected.

The third phase is terminated by an END card ("END" in columns 1-3) causing
the program to revert back to the first phase and start processing parameter
dictionary cards for the next set of tables. If, however, the card following the
"END" card is an "END SENTINAL" card, processing stops and "END" is
typed.

B. LJED-225 TABCON Error Print-outs

Error Code Errors in Main Program Action
AO01 UTRA in Descriptor card not in table Continue

number list. Table number and UTRA
are printed.

-

Error Code

AO02

A03

A04

BO1

Co1

D01

D02

D03

D04

EO1

EO02

EO03

Errors in Main Program

ETRA in Descriptor card not in table
number list, Table number and ETRA
are printed

Action

Continue

At least one A01, A02 and/or BO1 Error Restart

was found in descriptor table edit.
Invalid card in deck,

Error in Dictionary Card Processor

Parameter number greater than 499
Parameter number printed,

Error in Description Card Processor

Descriptor card out of required
ascending sequence

Errors in Table Card Pre-Processor

Table out of ascending order
Table number printed.

More rows in table than indicated in
Descriptor. Table number printed.

Restart

Continue

Restart

Restart

Restart

Second table entry for indexing command Restart

not furnished. Table number printed.

No GO TO intable descriptor or UTRA
in table row Table number printed.

Errors in Processing Table Blocks

Stub missing from table column Table
number printed.

Parameter name not in parameter
dictionary. Table number and missing
parameter printed.

Character other than guotation marks
or blank in column used to denote
LITERALS, and column is not a GO
TO or PERFORM. Table number and
bad character printed

-38-

Restart

Restart

Continue

Continue

X1II

E04 Invalid operation code Continue
Table number and operation code printed.

E05 Invalid table number in table operand Continue
Table number and invalid number printed.
EO06 Table entry is TABLE XXXX but stub is Continue

neither "PERFORM", nor "GO TO",
Table number and operand are printed.

EO07 More columns in row than indicated in Restart
Descriptor. Table number pr:«iad

TABSOL TABLE SOLVING PROGRAM

A. TABSOL Executive Program

The first phase of the TABSOL program sets specified parameters to zero
and then begins reading problem input cards. The information contained in
the input cards is stored into the specified parameters. During this pro-
cessing, the following edits are made:

1. Make sure that there is either a ""0" or "1" in Columns 8 of the
input card to signify numeric or alphanumeric information to be
stored,

2. Parameter number specified is not greater than 499.
3. Problem numbers are in ascending sequence,

The second phase is initiated when a change in problem number is encountered.
At this point, input card reading is ceased and control is transferred to the
table solving area to solve the problem.

After completion, of a problem, specified parameters are again set to zero
and the next set of problem input cards are read as described in Phase L.
This process is continued until an end sentinal card is encountered, at
which time the last problem is processed and code "'505" will be typed to
signify end of job

-39-

B. TABSOL Subroutines

All the subroutines for the arithmetic and logical table operations are included
in TABSOL. These subroutines are assembled in fixed areas in lower memory.
The GAP program produced by TABCON calls on these subroutines and on the
parameter area symbolically. Therefore it is necessary, when assembling
this program, to provide "LINKAGE CARDS'" which gives the absolute loca-
tions of these subroutines and of the parameter area by the use of the pseudo-
operation "EQO'. The above subroutines maintain a ten decimal digit

register in all operations.

C. TABSOL Error Printouts

Error Code Meaning Action
501 Input card out of sequence Stop

by problem number

502 Character other than 1 or 0 Stop
in Col. 8 of input card

503 Error on BCD to binary Stop
conversion (machine error)

504 Parameter number greater than Stop
499 specified on input card

510 Arithmetic table error, Continue
Table number printed and
program continues at ETRA

512 A transfer was made to ETRA Continue

Table number printed and program
continues at ETRA.

~40-

X1V TABCON AND TABSOL RUNNING INSTRUCTIONS

A. Deck Set-Up for TABCON

1 TABCON binary deck.

2. Card with "TABCON" in Col. 1-6.

3 Dictionary cards (any sequence),

4. Descriptor cards (ascending sequence).

5 Table cards (must be in same order as descriptor cards).

6 Card with "END" in Col 1-3 and for last set of tables being processed.
7. End sentinal card (all punches in Col. 1-3 and "END" in Col. 4-6,

B. Running TABCON

1. Load deck from above in card reader
2. Before any processing, the typewriter will print, "SW19 to PRINT"
3. To start at this point -
For punched cards - toggle sign switch
For printed output - depress SW 19 and toggle sign switch
4 Program will proceed to produce GAP output and will type "END'" at
end of job
5 When all the table cards have been processed through step 4 with no
errors, place the TABSOL "LINKAGE CARDS" in front of output
deck from step 4 and assemble using GAP,

(O Deck Set-Up for TABSOL

TABSOL binary deck

TABCON generated binary deck from Step B 5 above.

Transfer card.

Card with "TABSOL INPUT" in Col. 1-12.

Problem input cards.

End sentinal card (all punches in Col. 1-3 and "END' in Col 4-6).

o IS 1 Y SV I I

D. Running TABSOL

—

Load deck on card reader
2. Before any output is produced, the typewriter will print "'SW 19 to
PRINT"

3. To start from this point --

For punched cards - Toggle sign switch

For printed output - depress SW 19 and toggle sign switch
4. Program will continue in the mode selected and will type 505" at
end of job

41~

E. TABCON and TABSOL Messages

The following typed messages from card input subroutine are used in both

TABCON and TABSOL

Typed Codes

CARD (Input Label)

Card (Input Label) No

Load (Input Label) FD

Bad Card Read

CRD

-42-

Meaning
O K -GoOn

Compare card label to program label

If not acceptable, reload proper deck in
card reader and set switch 0 If label is
acceptable, set switch 19 and then 0

Non-matching label has been forced

Remove deck from reader Place last card
read in front of deck and replace cards in
reader Depress switch 0

Hopper empty. but no END SENTINAL
card has been read Reload hopper with
remaining cards and depress switch 0

