YSTEMS
NGINEERING
S ERrRVICES

CLEARINGHOUSE REPORT

DECISION TABLES

A PRELIMINARY REFERENCE MANUAL

September 1961 Orren Y. Evans
Ref. No. 171 DP - Western Region

INTERNATIONAL BUSINESS MACHINES CORPORATION
White Plains, New York

PREFACE

This manual, DECISION TABLES, is a sequel to the paper, "An Advanced Analysis
Method for Integrated Electronic Data Processing", written in the fall of 1959.
The paper was first published by the National Machine Accountants Association
of Long Beach in March, 1960. Later in 1960, it was published by IBM in a
condensed version as a General Information Manual (Form Number F20-8047).

Since these publications and reviews in the Data Processing Digest and
Datamation, there have been numerous requests for more information on the

method. The frequency of these requests has prompted the writing of this
manual.

The manual is not written with the intention of making a processor available for
mechanizing its implementation. It is not intended to obligate IBM to provide
follow-on processors.

The purpose of this manual is to stimulate further interest in the DECISION
TABLES to such a degree as to prompt more persons to experiment with them
and prove or disprove their utility.

ACKNOWLEDGMENTS

There have been so many people who have contributed to ideas expressed in

this document as to preclude naming all of them. The two who hawe made major
contributions are Mr. Burton Grad, Manager of IBM Systems Engineering Services,
and Mr. Abner Copeland, Manager of Hunt Foods Planning and Analysis.

I have drawn heavily from IBM COMMERCIAL TRANSLATOR and COBOL, '61, since
the language in these manuals is and will be familiar to many people. I hawe
modified their language in (1) adding dimension and (2) when necessary, as a
convenience to the Decision Table format.

In addition, I have used ideas from the "Report Program Generator for the IBM
1401" for specifications of the report generation features.

In accordance with the requirements of the official government manual describing
COBOL-1961, the following extract from that manual is presented for the inform-
ation and guidance of the user:

"This publication is based on the COBOL System developed in 1959 bya committee
composed of government users and computer manufacturers. The organizations
participating in the original development were:

Air Materiel Command , United States Air Force

Bureau of Standards L United States Department of Commerce

Burroughs Corporation) _ _

Dawvid Taylor Model Basin, Bureau of Ships, United States Navy

Electronic Data Processing Division, Minneapolis-Honeywell
Regulator Company - ‘

International Business Machines Corporation

Radio Corporation of America

Sylvania Electric Products Inc.

UNIVAC Division of Sperry Rand Corporation

"In addition to the organizations listed above, the following other organizations
participated in the work of the Maintenance Group:

Allstate Insurance Company

The Bendix Corporation Computer Division
Control Data Corporation

E. I. du Pont de Nemours and Company
General Electric Company

General Motors Corporation

ACKNOWLEDGEMENTS

(Continued)

Lockheed Aircraft Corporation

The National Cash Register Company
Philco Corporation

Standard Oil Company (New Jersey)
United States Steel Corporation

"This COBOL-61 manual is the result of contributions made by all of the above~-
mentioned organizations. No warranty ,expressed or implied, is made by any
contributor or by the committee as to the accuracy and functioning of the
programming system and language. Moreover, no responsibilityis assumed by
any contributor , or by the committee , in connection therewith.

"It is reasonable to expect that many improvements and additions will be made to
COBOL. Ewery effort will be made to insure that improvements and corrections will
be made in an orderly fashion with due recognition of existing users' inwestments
in programming. However, this protection can be positively assured only by
individual implementors.

"Procedures have been established for the maintenance of COBOL. Inquiries con-
cerning the procedures and the methods for proposing changes should be directed
to the Executive Committee of the Conference on Data Systems Languages.

"The authors and copyright holders of the copyrighted material used herein:
FLOW-MATIC (Trade-mark of Sperry Rand Corporation) Programming for the
UNIVAC I and II Data Automation Systems @ 1958, 1959, Sperry Rand Corporation;
IBM Commercial Translator ,Form No. F28-8013 copyrighted 1959 by IBM, have
specifically authorized the use of this material, in whole or in part, in the COBOL
61 specifications. Such authorization extends to the reproduction and use of
COBOL specifications in programming manuals or similar publications.

"Any organization interested in reproducing the COBOL report and initial speci-
fications in whole or in part using ideas taken from this report or utilizing this
report as the basis for an instruction manual or any other purpose is free to do so.
However, all such organizations are requested to reproduce this section as part
of the introduction to the document. Those using a short passage as in a book
review are requested to mention 'COBOL' in acknowledgement of the source but
need not quote the entire section."

CONTENTS

Chapter 1: GENERAL DESCRIPTION OF THE DECISION
TABLE SYSTEM
Introductionveevveveeennenn
Plan of Manual ; ;cui s 5o 5 see e e

Chapter 2: THE STRUCTURE OF DECISION TABLES
Table BIEHBHES o vuwn vens ¢ vess weows suel ie e ¥ s
TR o yommk 0 i, SToecm X S is R RIS fe & 6 i
BRI oo 66 e Ba 6405 & Gemb Dot ANGH BEEmE seb b
CondItioOn ;ows vown 5 ous & o5 wes s e yes DTS §HE
DEFION & ovs wvww sl PwH 5 i & VORI DG U Se5E SN 3
Linited BAtty' "veces wows » wwm s v sieen e wie e R
Extonded Entriesses e 5500 5o & ihm st & a0 b
Mixed Entrieg eem s saem sveeis ae OB § IS LWL RS
Arithmetic EXpression «eeseeerareeenensenacanns
Operands seis o s e soes Sy YRR ST SR SRR
NAGmMes ++rctae s ooaeenssesssssnssnasens « wmiee #
Condition Names w5 sei§ aans vees & $5 shtEE VR b
LITBEA1E v wovesn & iva s snemers susnmin somsmon o W TR R

Chapter 3: THE STRUCTURE OF THE LANGUAGE

Character Set v+ + coeeveevenssenssens A ——
NAMEE v saue's s o el & £0%% & ST T ¥ S e e
Kinds of Namesseeeevesns
Data NameS. . veveuerrunoernoeennnnnnnes T
Condition NaMes s sovs o sons wons wewn ¢ 5o & Ko &
THlIe BB e weves Ko 5 omms aUmms QRIS % S RS 3
EXDression NAMESE & ccih i s s mebe wamd n ands wdies s
Formation of Names s v iress sams s 3w SR e 3
Compound NAGmMeS + v v v v v vnevnnnereeesanennenns
Placing Names in the Problem Definition
CONSTANED: sunroxsominm siwmse acismny smem s wonwems
Literals PR s e R e R R T
Rules for Forming Literals «.«vevveeens Sens WA

Numeric Literals v @ vsinn weses » ST SRR W

Alphabetic and Alphameric Literals ++«eve v .
Figurative Constants ++«..+...
Figurative'Condition'Names ., ,...... R, Ve
Figurative Class Condition'NamesS, c oo cvvsas . i

Verbs s s swws R I

— =
. .
I

N N DN

NN MNMNMNMNMNMNDND
B R N W W W W W W R B

8]

W WwWWwwwwww
« & 8 = m & 4« =

w

W W W w
@ WOTO OO U L WWRNN

(93]

w W ww

[o%]

CIDBINIOTE: 5 i s ad 061 56067 TEldwsbmn ws S 3:10
EEEHMEIC wiv ovvie o6 ¥ 055 4 606 5 SRINSE 5 BaTE8 & 3.10
REIAEFOHAT 0.0 o semn v nmsowaem el 6 wid T TR R4 4 T 3.10

EXDISREIONS 4 i b i st o, S o s sa s J Al
LEIRHAGTIE s onn e $amas S S W08 5.8 00%F Hee 311
CorrHIONAY o0 snsmenawesmees iy eseie e s 3.12

Repert Generation FEAtures v.vvvesvsscasannosss 3.15

Chapter 4: DECISION TABLE FORMAT AND VERBS

IDLIOOUCHION . 41555 Va5 & MGl e St AT 6 oemee 6 Bl & 0S8 88 4.1
COMMATIES oweesin s e i S 6 ihaela e el s il i 4.1
Format of Decision Table SR SR 4.1
Table Title cussacssansas A SR RS S 4.1
Systemn Begment .. cewaa s wene ¢ wuseis s e s se s 4.1
DUVSLOM [£a5 5995k avnsion msver s wsins B 5 e 4.1
PYSPATEA BY s svwwn sianss seab e mas bn o5 Wi s v 4.3
BB . o e e e TR e s e 4.3
CIoBed’ 5% §cessess sevis Beee s 4.3
DREE o5 veniow wowvs sere oww seny e o @ EaEaR e S 4.3
EIBE 500 5 S ETE 0B AS smmma GOS8 s b S 5k 4.3
INEXE 25 5 et was swea sEems Baess s §als s SEwE ¥ B 4.3
TaAbIE o o simmin sosmsin soamisa » wsces » wdsan & wwwa s i 4.3
Line Nz 5 oa5s saming aalhs 5o g Lommd seaime Sk 4.3
VEID: s s aswwn wiaksis Faeie s saleme Semes samsis slie 4.3
BDOERnE X s swomns vesmen sizem:s Swnie s Keamt Bl 4.3
OP ey ¢ e EReG ReieeE BeTElEE seeiee el Sk ke Bl
OPEranad 2 o vwiv vawn s seeas wesn s vubien aesu ase 4.3
RIS 55 608 580 ta00a soans naest Smaas 5w es 5 4.4
Fred waws v ‘ G 00 e el slas R o i 4.4
B TR0 i b 2 N I NI T PRI i SO A M 4.4
Input/Output Commands: <5 6005 sinens ssaess oo 4.5
RBBA w50 i o Sretsseeon 5g:S wandip @ waes 4@ e 4.6
L', 5 - - RSP I R P o S - 4.6
Data Transmission Commands + seeeeesescscnens 4.7
7 (5,5 R TR e S s .. 4.8
Betcssas TR R R T R R T SR 4,11
Arithmetic Commands o « swsde imsensin evoss e 4,12
MOVE cnsoeeeasessseeeseessse o8 R TR B BT 4.14
B8ét « vuve o B, 0 S 6 00 T 0 e 4,14
@General RULeE v o samim s wmws oo s wm ainaws s siees s 4,14
Table Sequence Control Commands . vo v v vvenesns 4,15
OB 06 amve woasaxmin @ggmee: S B0 BTN 50 e e 6 4.15
TGO 5. G0N 5 A RS R 1o b) B BB W T i B R L 4,16
Rt canw anves wpsred 8w . b Saieely &R e & 4.16
TXG 5 eters oy (o S secennie G (bR e el 4.16

oW

—+

O
o

.
1=9
o
@

Miscellaneous Characteristics of Tables & Rules...4.

Unconditional Table o s vsss sves sash e s 4.
NOIACELOR BME s suwvave. s e ion srasatney. o ouaivia wise 4,
A ERIIEY Jvs s innd pivai s ins sees an saed dlaes § 4,
One Rule Success per Tablecvvvvvececnnns 4,
Rule Independencecevevevonnonnnnncnns 4,
Condition Independenceceovveeeeevacess 4.

Table FOrm 81Ze ..cveesscocosccsccncnasncosssss 4,
Else Condition RUle c.us scsvsiives sesessassnes 4,

Chapter 5: DATA DESCRIPTION

Fields within Lines .. .o vve v vevnasra9.

PULBOBE < u. yravens Si s sy o -slvde e e R AT B 5.3
Files, Records and Fields ... ceee vonses sonssonsse T |
Pata ‘Dencription FOrMAL o o svis v ses sesaseens ies 5.3
BEGE toisiic me Tulona givsa bdiniase T olaaein BiEA e PR 8 |
PO PAGBL s cvus s v ass v enshs e seea peee 5.3
Gl and Barlel - . cuvivine s s esiiene snmsiee s onee 2 5.3
IR NEHID . 4 i 3 5008 ol b i o 8 R Sy o i 5.3
LV wouoiereis vinisio o e s oo Rieaeni #ene swene Vi ey 5.9
DFRG sioiv 0 00 iw0ce & o mibin anelia &-5) Ko-o/w 5 =000 6 wusiiesna o/ase 5.6
REGOYE . vwosenamariies e s oo ve emmis e salie des 5.6
ACEOREEY 01 0 e 97 0 B 5 R B 5.6
REOAE viasviassihne il st ismReies s s s v 5.9
TN o i o 76 00, 0 0 e i A B 5.10
BNETEIE: riTer's i o st . .o & ATt - ¥ e ek 3 4% o I
BEPOOBT vupiiairves wiwe eierelis wie o ueie el@am s 69 5132
BESCTIP LGN oovis som ouameilens dawie ss sre-eiexe wsmaraie:Hesn sles e S5.12
PIGHINE 5 sva s aanid i daianndesiosse 5w e 5512
NUDOTLE. onim e o rei aieemm-puens ahew i s e e i §5.13
RIPRADBLIT: 5555 0.5 van 605 Foiw 18 ¥us 00 550 v 00,60 5.14
BIPRAMGTEC: i sio o aasses @iedo e wie e ow s D 1D
Suppression & Insertion Characters5.15
Ploating Characters coweies s eeis vejma s weeive s 5.18
RON=SAIING oo 665000 v mmin me o iduminmsnen o oen o Nl
EAIING coswsmassias siame s Sraiiasaii s e i 5.21
Constants and InitialValuesc.covvvunn 5.22
Report Generation FEaturesS .o.. ve v vve v ve s vaas 0,22
Printer Spacing CHALL «icse s e o5 caesnswnsios 5.23
Report Definttion .« aoeeeen sose sasses s sss 5.26
Tdentification s isan s e dasioe o 5.26
BOUEER! fdh hoanies 5 Fiate i 5ub ede bbb i bt b a 5.26
Control FIelds: cvai v v s ssn i vaens s 5.26
REDOEL TAIDES: vi-aiaoin o aiowinns s7a e aia s asoue 5.26
Description Entriesci0vvvunn 5.27

[5e]
o

13

Chapter 1: GENERAL DESCRIPTION OF THE DECISION TABLE SYSTEM

INTRODUCTION A definite need exists for a method of determining and docu-
menting systems requirements.. Systems requirements should be differentiated
from procedures to accomplish the systems requirements . We have tended to
use procedures for stating and accomplishing systems requirements and thus
have hampered our understanding of the true systems requirements and our
consideration of alternate system solutions %

Documentation of systems requirements can be made at many lewels. There are
three major levels apparent (with multiple levels possible within each).

1. Machine run (or clerical activity) requirements and solution definition.
This level of definition describes in detail the solution including all
machine (Process media) considerations.

2. Machine run (or clerical activity) requirements with minimum emphasis

on the solution. After a systems flow has been determined as to machine

runs and decisions made as to what generallyis included in each run
the analyst defines the decision logic of the run relating output to input.
He does this with little, if any,regard to machine considerations of
accomplishing the decision logic.

3. Systems definition at the systems level which is virtually independent
of the systems solution (does not consider individual machine runs or
methods of accomplishing the decision logic). Definition at this level
includes not only decision logic relating input to output, but systems
constraints and acceptance criteria; i.e. systems operational data
resources for designing, implementing and operating systems, response
times in the system ,methods of evaluating alternate system solutions
etc.

Summarizing, we are faced with problem definition and problem solution (the
what and the how). This manual offers a method of documenting at any of these
levels, but it is a compromise between the what and the how. Procedure step
sequencing is almost non-existent within a decision table. However, take
sequence control is very specific and thus is,to a degree, procedure oriented.

Decision Table format, syntax and language have been kept simple enough to
learn and use easily but is sufficiently sophisticated to permit high level data
manipulation commands. The decision table documentation does not include
provisions for systems resources, constraints and scoreboard (method of eval-
uating different system solutions) .

1.2

PLAN OF MANUAL It is assumed that the reader has knowledge of the essential
characteristics of Data Processing Systems. The manual is written as a base
language (point of departure) for using decision tables. The language is not all
inclusive and in many instances has been arbitrary in the interest of simplicity.
It provides a language that interested persons can use to experiment with
decision tables in documenting problem definitions. Let us attempt some broad
field experience in using decision tables to describe problems at several levels
and then refine the language.

This language is wery rigorous in order that it may be used at the detail level of
documentation. People experimenting at higher levels of man to man
communication can adjust this rigor to their needs.

Chapter 2: THE STRUCTURE OF DECISION TABLES

2.

INTRODUCTION This chapter is concerned with a brief introduction to the
general concepts structure and elements of decision tables. Detail explanation
of procedure description using decision tables is found in Chapter 4.

DECISION TABLE

TABLE HEADER

STUB HEADER RULE HEADER

ENTRY HEADER

CONDITION || CONDITION
STUB ENTRY
ACTION ACTION
STUB ENTRY
FIGURE 2.1

TABLE ELEMENTS The main elements of the decision table are
above. The TABLE HEADER contains identification data such as title, prepared by,
date and system. The RULE HEADER is , primarily, for identifying each rule with a
number so that it can be referenced in written and oral communication. The STUB
HEADER identifies columns (verb, operand, operator) for condition and action data.
The ENTRY HEADER identifies columns (operator, operand, action sequence) for
further data of conditions and actions pertinent to a particular rule. The vertical
double line separates the STUB and ENTRY data. The double horizontal line

separates the CONDITIONS and ACTIONS.

by discussing an example (FIGURE 2.2) .

noted in Figure 2.1

These elements can be best clarified

2.2

] TABLE: CREDIT CHEGK
LIN RULE1 | RULE2 | RULE3 | RULE 4
NR.| VERB| OPERAND| OP |OPERAND|| OPERAND| OPERAND| OPERAND| OPERAND |
1 SPECIAL |EQ 1 o 0 0
CLEAR
2 CREDIT
LIMIT __|GE | OK* Y N N
5 PAY
EXPER- [EQ GOOD | BAD
! IENCE
4 | MOVE | APPRO- |TO | ORDER || X X X
VED' STATUS
s | MOVE |'REJECT' |TO | ORDER X
| STATUS|

*QOK = In process amount + Accounts Receivable amount + Order amount

INTERPRETATION OF RULES
1, then mowe the word 'approved' to order status.
rule one means: If special clearance is obtained, approwe the order.

FIGURE 2.2

Rule 1 reads: If special clearance is EQ (equal) to

In less precise terminology

Rule 2 reads: If special clearance is EQ (equal) to O and the credit limit is GE
(greater than or equal to) OK then move the word 'approved' to order status. Less
precisely , rule two means: If special clearance is not obtained and the credit

limit is OK then approve the order.

Rule 3 reads: If special clearance is EQ (equal) to O and the credit limit is not GE
(not greater than or not equal to) OK and pay experience is EQ (equal to) GOOD,
then move the word 'approved' to order status. Less precisely, rule three means:
If special clearance is not obtained and the credit limit is not OK and the pay

experience is good, then approve the order.

Rule 4 reads: If special clearance is EQ (equal) to O and the credit limit is not
GE (not greater than or not equal to) OK, and payexperience is BAD, then move
the word "reject" to order status. Less precisely , rule four means: If special
clearance is not obtained and credit limit is not OK and pay experience is bad,
then reject the order.

A RULE consists of a unique group of condition(s) and the action(s) to be taken
when those condition(s) exist. In FIGURE 2.2 each of the columns headed by
RULE 1, RULE 2, RULE 3 and RULE 4 depict vertical combinations of conditions

and actions.

23

A CONDITION is a state of existence of a specific piece of information. The
state of existence may be its presence or absence a specific walue or range of
values; or its relationship to other data; or combinations of these. Structurally,
in decision tables a condition consists of two factors (1) the data in the STUB
and (2) the data in a rule ENTRY, For instance, the condition in line 3 of rule 3
"pay experience equals good" is the complete condition. The condition in

line 3 of rule 4 is "pay experience equals bad " A line stub data serws as a
common factor for multiple conditions on that line.

ACTIONS are commands which perform operations (movement, arithmetic, etc)
on and with data as well as control the sequence of considering tables. The
structure of actions in decision tables is similar to the structure of conditions
explained above.

A LIMITED ENTRY CONDITION is shown in line 2. The entire condition (credit
limit is greater than or equal to OK) is stated in the STUB. Data in the ENTRY of
each rule, for line 2, is limited to "Y", "N" or left blank.

Y means yes the condition must be satisfied.
N means no the condition must not be satisfied.
Left blank means the condition is irrelevant.

A LIMITED ENTRY ACTION is shown in line 4. The entire action (move the word
"approved" to order status) is stated in the STUB. Data in the ENTRY of each
rule, for line 4, is limited to "X" or left blank.

X means take this action.
Left blank means do not take this action.

EXTENDED ENTRIES have a portion of the condition or action stated in the ENTRY
and the remainder in the STUB. See line 3.

MIXED ENTRIES A rule or a table may contain both limited and extended entries
whichever is more convenient for a particular condition or action.

ARITHMETIC EXPRESSION 1In line 2 the condition is "credit limit is GE (greater
than or equal to) OK." The word "OK" is the name of an arithmetic expression
which is defined just below the table as:

OK = in process amount + accounts receivable amount + order amount.

2.4

Since long expressions do not fit well in the decision tables, they are named and
the name is placed in the table while the expression is defined elsewhere. Each
time an arithmetic expression is called for in a condition or action, its walue is
recomputed. The value of an expression does not persist.

OPERANDS in Figure 2.2 contain:

name of an arithmetic expression
. limited entries
i names of variable data fields
: names of conditions

literals

Limited entries and arithmetic expressions have been explained. Names of
variable data fields are illustrated in FIGURE 2.2 by

special clearance
credit limit

pay experience
order status

Names must contain at least one alphabetic character. The name of a field is
quite different from the value of the field. To illustrate the difference:

FIELD NAME FIELD VALUE

credit limit $10,000

order amount $ 1,500

customer ABC Manufacturing Company

The name of a condition is illustrated in line 3, rules 3 and 4. This concept
will be explained in more detail in Chapters 3 and 5. Briefly, the field name
"pay experience" can have a code of 1 or 0 where

1 means favorable
0 means unfavorable

In the data description, provision is made to name the possible code walues of
a field. The names of the codes are called CONDITION NAMES. In FIGURE 2.2

codes are named:
FIELD NAME CODE VALUE CONDITION NAME

pay experience 1 good
0 bad

2.5

Literals are illustrated in the entries (1,0,0,0) of line one and the first stub
operands ("approved" , "reject") of lines 4 and 5. A literal is an unnamed
constant. It is the value rather than a name. Alphameric literals are identified
by quote marks. Alphameric literals may contain any character except quote

marks. Numeric literals contain only numerals and do not require quote marks
for identification.

This chapter has presented the concept and structure of Decision Tables and an
indication of its syntax and vocabulary.

Chapter 3: THE STRUCTURE OF THE LANGUAGE

The structure of the Decision Table language has a basic vocabulaty consisting
of words and symbols and implied words in conditional action statements.
(These are the interpretation of rules as discussed in Chapter 2.} It has a

set of rules by which words and symbols may be combined to express meaning.
In addition, it has punctuation rules to inject clarity into groups of words

and symbols,

The language consists primarily of nouns and verbs, The verbs are explicitly
defined and named, and are a part of the basic vocabulary. A few nouns are

thus defined and named but, for the most part, the nocuns are data names and

are generated and defined and placed into the decision logic by the user.

CHARACTER SET Words and symbols are the basic units of the language but
are, in turn, composed of individual letters, numerals and special characters
(basic character set). This set consists of the 26 letters of the alphabet, the
ten numerals from 0 through 9, and the special characters shown in the table
below, ;

Name Character .

Blank
Plus sign
Minus sign £
Multiplication sign
Division sign

Left parenthesis

Right parenthesis
Comma

Period and decimal point
Dollar sign

Equal sign

Quotation mark

—ANR O+

o

= || <

NAMES. Most of the words will be nouns, A noun, in the sirictest sense,
is a NAME, and the user will find it useful to accept that definition and all
its implications, He will prepare decision tables for handling data, but will
refer to the tables and data by name.

KINDS OF NAMES., Most of the names will fall into one of four kinds: data
names, condition names, table names and expression names. These names
are entered in decision table columns headed OPERAND,

DATA NAMES are names given to the data used in defining a problem or system.
Data names are assigned to KINDS of data; not (except in the case of constants)
to specific values, Thus, a name such as INTEREST. RATE would not refer to

a specific interest rate, but to a class of data known as interest rates.

3.2

Data-names may be assigned to sihgle classes of data or to groups of data
items, For example, the name PAYROLL, RECORD would probably refer to

a group of individual items having such names as EMPLOYEE. NAME, EMPLOYEE.
NUMBER, HOURLY, RATE, and so on. It is important to recognize that, in
general, the name refers not to any specific value, but only to the kind of
data.

Data-names are invented and assigned to data at the discretion of the user,
following the rules given below which govern the formation of names. All
data referred to in the problem definition must be named, but this does not
mean that all subdivisions of data must be named. For example, if the user
wishes to refer to a date, he will have to give it a name, but he does not
have to name the component parts, such as the day, the month, or the year,
unless he wishes to refer to them individually.

The general category of data=names may be broken down, for convenience,
into record~names, item-names, expression-names, named constants, and
so on., The meaning of these names will be explained later in this manual,

CONDITION NAMES are names assigned to specific values of a data name,
This naming is for the convenience of the user, The naming is at the
discretion of the user, but is usually done such that the name has a mnemonic
meaning associated with a specific value of the data name, In Chapter 2 an
illustration was described on page 2.5. The data name was PAY, EXPERIENCE
which has two possible values, 1 or 0, Where 1 means favorable and 0 means
unfavorable, The following table shows how the condition naming can give a
clue as to {ts value meaning and thus aid in the communication value of the

decision table rules,

Value Meaning Condition Name
0 Pay.Experience Bad
is unfavorable
1 Pay.Experience Good

is favorable

Rules 3 and 4 of Decision Table, Credit Check, FIGURE 2.2, illustrate its
use in decision logic.,

TABLE NAMES are names assigned to individual tables so they can be referred
to by table sequence control verbs and other portions of the problem definition.

EXPRESSION NAMES are names of arithmetic expressions, Since long arithmetic
expressions do not fit in the decision table, they are named for convenience
and the expression is defined in the data description.

3.3

FORMATION OF NAMES. Names are formed by combining any of the
characters from the basic list of alphabetic characters, numerals and the
period, subject to the following rules:

L Names must not contain blanks,

Ze Names, other than table names, must contain at least one
alphabetic character, Table names may consist entirely
of numerals if the user so desires,

3. They should be kept reasonably short since the operand space
in the table is quite small, Names should be limited to 6 or
less characters,

4, They may neitaer begin nor end with a period, However,
“imbedded" periods may be used within the name for the
sake of readability,

S5, They may be "qualified" (to make them unique within the
problem definition) by the use of other name s, This is
explained below under the heading "compound names,"

COMPOUND NAMES. In many cases a problem definition will contain
duplicate names, This often happens when an input file is "updated" to
produce an output file, since each file will usually contain the same kinds
of records,

Suppose that an input record is named IN,MAS and an output record is called
OT.MAS, Suppose, further, that each record contagns two dates, one called
ORD, DAT, the other called SHP, DAT,

If the problem definition involves both kinds of records, it would not be

possible to distinguish readily between the two ORD, DAT name s and the

two SHP, DAT names, All four names would be defined in the data description
(see Chapter 5), which gives the system the information it needs to locate
individual items of data., To indicate which of the ORD, DAT (or SHP, DAT)

names is meant, however, each such name can be "qualified," or "compounded, "
when used in a decision table, That is, the name of a larger data item of

which it is a part can be added to the name to identify it, Thus, IN. MAS

ORD, DAT would be clearly distinguishable from OUT, MAS ORD, DAT, Names
qualified in this manner are referred to as COMPOUND NAMES,

When names are to be compounded, the following rules apply:

Ls Each name must be separated from the next by at least one
blank space, (This distinguishes between compound and
simple names, since simple names may not contain blanks,)

3.4

24 The names must be written in increasing order from the general
to the specific, (If the reader is familiar with the concept of
level numbers, as discussed in Chapter 5 of this manual, he
will note that this means that the names must be listed in
order from the lowest to the highest level number.)

3. No qualifying names are required that do not contribute to the
uniqueness of the compound name, Thus, in the example
given, if there were only one date names in each of the input
and output files, €,g9., an ORD, DAT, but no SHP, DAT--it
would not be necessary to use the name ORD, DAT in forming
the compound name; the names IN, MAS DAT and OT, MAS DAT
would suffice,

The organization and structure of data for use in a data processing system
is further discussed in Chapter 5, entitled "Data Description." The reader
is referred, in particular, to the discussion of level numbers beginning on

page 5,5,

PLACING NAMES IN THE PROBLEM DEFINITION. The reader has seen that
this system uses names as a convenient==in fact, indispensable--means of
identifying data, decision tables, and conditions., It is now necessary to
indicate how each name is placed in the problem definition in a way that
permits the system to connect it with the item to which it refers.

A problem definition consists primarily of decision tables and "data
description, " The first of these is ma de up of rules, which is the actual
decision logic. The second consists of data description statements which
show the organization and nature of the data so that it can be located and
used when needed, These two sections are discussed in Chapters 4 and 5.

All statements must be written in a specified format, Two columnar forms
have been prepared for this purpose., One is used for decision tables and

the other for data description statements, The first is described in Chapter 4,
the second in Chapter 5,

For data=-names and condition-names, as will be seen in Chapter 5, the
system must know whether the data is numeric or whether it contains
alphabetic characters, It must know where decimal points, if any, are

to be placed, where to print dollar signs, and so on. There are a number

of such details which must be specified, It would have been possible to

set up rules for describing the data in the decision tables, but this would
have been inefficient, since the description of each item would have had

to be repeated each time its name appeared, Since the description is placed
in a separate section, however, each name need be described only once,
regardless of the number of times it is used in the problem definition,

3.5

It follows that each data-name and each condition-name used in the
procedure description must be properly accounted for in the data
description, following the rules given in Chapter 5. Once this has been
done, the programmer is free to refer to the name repeatedly throughout
the decision tables,

CONSTANTS. It has been emphasized that the data-names used in the
system generally refer to kinds of data, not to specific values. The actual
values represented by most data~-names are assumed to be variable, and
they will either be entered into the systems as parts of input files or will
be computed at some point when the system is in operation.

However, the user will often iind it useful to be able to place a specific
fixed value into the program definition instead of having to read it in as
data. For example, if a firm allows a discount on its bills, the discount
will usually be figured as a fixed percentage. The routine for computing

the discount, therefore, does not require any provisions for inserting varying
percentage rates, Thus, it would be convenient to be able to write this rate
directly into the problem definition.,

Any value-=or any group of symbols--which is to be used in the program
without alteration is called a "constant." The user will find many uses
for numeric constants such as the discount rate mentioned, for alphabetic
constants, such as names and titles to be printed out on final reports, and
for alphameric constants, which may serve any number of purposes,

In some circumstances, it will be convenient to write the constant directly
in a decision table. In this case it will be called a "literal." In other
cases, it will be more convenient to give the constant a name and store it
within the system so that it can be called for by name when required. In
this case it will be called a "named constant, "

As an aid to the user, certain standard constants, such as the value 0 and
the blank, have been "pre-named," These values are defined in the language
vocabulary and they have already been given names. Thus, the programmer
can write these names in the procedure statements without having to define
them in the data description, These special constants, called "figurative
constants," will be discussed later in this section.

Literals and named constants may be used in decision tables for the same
purposes for which data~names are used--that is, as "operands.” The
essential difference between them i§ that a literal expresses an actual

value--a value to be read "literally" at the point wh ere it is written--whereas

a named constant is the "name" of such a value, and it cannot be used, or
interpreted, in a decision table until it has been defined in the data description,

The following example will show the difference between literals and named
constants:

3.6
From FIGURE 2.2, page 2.2, the condition in line 1, rule 1 reads:
SPECIAL, CLEARANCE EQUALS 1

The condition indicates that the value for the data name SPECIAL.
CLEARANCE equals 1. In this case the 1 is a literal.

The value 1 could be placed in the data description and give it a
name "ONE." The condition is now stated as:

SPECIAL. CLEARANCE EQUALS ONE

The same result is obtained in either case, and it may appear at
first sight that it 1s more efficient to write literals than named
constants, This may or may not be so. If the constant is short,
as in this example, it will usually be more convenient to write it
as a literal., If it is long, and if it can be given a short name, it
may be more efficient to treat it as a named constant,

LITERALS. Although a literal may be written and used in a decision table
as if it were a data=name, it differs froam data-names (including named
constants) in that its value is the value literally stated--it is not used as
a name for some cther value.

RULES FOR FORMING LITERALS

Literals may be numeric,alphabetic, or alphameric. Some of the rules for
forming numeric literais differ slightly from the rules for alphabetic and
alphameric literals. For convenience of reference, the rules governing
each type are listed separately.

NUMERIC LITERALS

8 All literals are limited to 10 characters in length.

24 Numeric literals may contain only numerals, not more than one
decimal point, and a pius or minus sign to indicate wh ether the
value of the number is positive or negative. 'Floating point" numbers
also contain the letter F, as explained in Rule 3 below, and may
contain more than one plus or minus sign. The decimal point is
required except where it would be the last character of the literal;
in that case it must not be used. The decimal point will be noted
by the system in order to align the number properly for use, 'and it
is not counted in determining the length of the literal,

3. Numeric values may be entered as "floating point" numbers by
writing the "fraction" (i.e., the number or decimal fraction), then

3.7

the symbol F, and then the exponent. The fraction and the exponent

may each have a plus or minus sign, The symbol F. is not counted

in determining the length of the literal. The system will accept floating
point numbers using a base of 10 only, (A floating point number is a
number expressed as a decimal number or decimal fraction multiplied

by some power of 10, For example, the numbeg 1500 might be written

as 1.5F3, which is equivalent to 1,5 times 10¥*, the same number might
also be written as 15F2,.15F4, or in any other similar way that is
convenient. The number ,002, which is equivalent to 2 times 10'3,
might be written 2F-3.)

4, Numeric literals must not be enclosed in quotation marks.,
ALPHABETIC AND ALPHAMERIC LITERALS

1. An alphabetic or alphameric literal may contain any of the characters
from the basic character set except the quotation mark., A blank is
treated as a character and may be included in an alphameric literal,

2. Like numeric literals, alphabetic and alphameric literals are limited
to 10 characters in length,

3. All non-numeric literals must be enclosed in quotation marks to distinguish
them from names. This rule applies even should the literal contain
symbols (such as the arithmetic symbols and the blank) which may not
be used in names.

FIGURATIVE CONSTANTS resemble named constants except that their names
are already assigned values, so that the user need not write data description
entries for them,

Figurative constants are names for certain constant quantities which are used
frequently in data processing systems, The list includes names which
represent zeros and blanks. Following is a list of the figurative constants:

ZERO or ZEROS or ZERQOES
BLANKS or BLANKS

In general, a figurative constant is used to place the value it names in a
given storage area, although it is not limited to this usage., For example,

if the user wishes to reduce the value of a data item called COUNTER to

zero, he can do so by writing the instructions MOVE ZEROS TO COUNTER.

This procedure will replace all previous data in COUNTER by zeros. Similarly,
if he wished to erase all data in an area called AMOUNT, he could write

MOVE BLANKS TO AMOUNT. In each case, the specified area will be
completely filled with characters of the value named.

3.8

FIGURATIVE CONDITION NAMES are similar to figurative constants and
are used to facilitate the expression of conditions, They are used to test
for "sign conditions, " "class conditions" and "conditional expressions, "

The FIGURATIVE SIGN CONDITION NAMES ARE: POSITIVE
NEGATIVE
ZERO

The sign condition can be used only in conjunction with numeric data.
This form of condition may be used to express a test to see if an item
satisfies one of the following:

3.9

L A "negative condition" (is less than zero).
2. A "zero" condition (equals zero).
Je A "positive condition" (is greater than zero).

The general form for writing the sign condition is:

operand operator operand
NAME EQ NPOSITIVE
{ ZERO
NEGATIVE

The FIGURATIVE CLASS CONDITION NAMES are:

NUMERIC
ALPHABETIC

The class conditions are the same as defined in Chapter 5.

CLASS DESCRIPTION

NUMERIC Consists entirely of digits (0-9); may also
contain an operational plus or minus sign;
an actual decimal point is a non-numeric
character and is not permitted.

ALPHABETIC Consists entirely of letters of the alphabet;
may also contain one or more blanks.

ALPHAMERIC Consists of any characters from the basic
character set. May be wholly numeric or
alphabetic,

The class conditions are used primarily for validating input data.

The general format for writing the class

operand operator operand

NAME EQ NUMERIC
ALPHABETIC

NAME NE NUMERIC
ALPHABETIC

VERBS specify actions, Verbs are used in conjunction with names to form
commands, Specific rules governing verbs are in Chapter 4,

3,10

OPERATORS, Not all words that cause action are verbs, Consider the
sentence IF A =B THEN MOVE A TO OUTPUT, This sentence contains

only one verb, the ward MOVE, yet it implies two separate operations.

The MOVE operation, of course, is one of them; the other is a test to
determine if the condition A=B has been met. However, the user does

not have to write a verb directing a test for this ® ndition. The language
contains several words and symbols (such as the arithmetic symbols)

which are not verbs but which cause operations, They are called "operators,'
It is necessary to distinguish between verbs and operators, since they are
used in different ways.,

In general, operators specify "actions" or "relationships” without actually
expressing them in verb form, There are two basic kinds of operators:
ARITHMETIC OPERATORS and RELATIONAL OPERATORS,

ARITHMETIC OPERATORS. The complete list of arithmetic operators is
given below, They are used in forming arithmetic expressions, as explained
later in this chapter.

Operator Meaning
+ Addition
- Subtraction
* Multiplication
* 1 Division
ek Exponentiation

RELATIONAL OPERATORS, The need frequently arises to make tests in
order to determine what s ould be done next, This language provides a
number of "relational operators" which enable the user to express the
tests. he wants performed., For example, the statement IF SALARY = ZERO
is built around the relationship implied by the equal sign, which is a
relational operator,

A complete list of the seven relational operators follows:

Symbol Meaning

EQ Is equal to

NE Is not equal to

LT Is lesser than

LE Is lesser than or equal to
GT Is greater than

GE Is greater than or equal to
CMP Compared

Compared (CMP) is included in the list more as a convenience for the
decision table format than as a true relational operator.

3,11

Rale 1 Rules 2
ine Operand 1 OP | Operand 2 § OP] Operand 2 | OP| Operand 2
1 DETAIL CMP | MASTER EO GT
2 DETAIL EQ| MASTER GT | MASTER
| 3 TRANS. COD | EQ ADDITION | CHANGE |

This convenience is demonstrated by examining the conditions represented in
lines 1 and 2 above. Each line represents the same conditions: Detail is equal
to master (Rule 1) and detail is greater than master (Rule 2), In line 1, the
master is written only once, while in line 2 it is written twice, This allows
both operands to be placed in the stub and the relational operator placed in

the entry. In line 3, operand 1 (trans,code) and the operator (eq) are factored
into the stub and the different operand 2's placed in the entry,

Relational operators are combined with data names, literals, etc, to form
conditional expressions, The detailed rules for using the relational operators
are explained later under Conditional Expressions.,

EXPRESSIONS. An expression may be defincd as a meaningful comiination of
names, literals, and/or operators which may be reduced to a single val ue,
This definition will become clear after the reader has studied the two types of
expressions - the "arithmetic" expression and the "conditional" cxpression.

Since arithmetic expressions do not fit into the decision table conveniently,
they must be defined and named in the data description and the expression
name is used in the decision table, Each time an arithmetic expression is
called for in a condition or action, its value is determined anew, The value of
an expression does not persist.

ARITHMETIC EXPRESSION is a combination of data-names and numeric literals
joined by one or more arithmetic operators in such a way that the entire expression
can be reduced to a single numeric value. Special cases of arithmetic expressions
are combined with the data movement verbs SET and MOVE which are explained

in Chapter 4,

The following are examples of arithmetic expressions:
NET, PAY = (HOURS + OVERTIME * 1,5) * WAGE.RATE - FICA
VOL = PI * RADIUS ** 2 * HEIGHT / 3

SALES.C = WEEKLY, SALES * , 05

Note that 2ach of the above expressions is a combination of data-names and/or
literals joined by arithmetic operators, At object time, each data-name will

3.12

represent a value and, in each of the above examples, one numeric value
will result from the specified computation, Thus, if WEEKLY, SALES has the
value 574,20, the SALES, C would reduce to the value of 28,71,

ORDER OF COMPUTATION IN ARITHMETIC EXPRESSIONS. The way in which

an arithmetic expression is to be evaluated can be specified by parentheses,
Thus, the expression D = A * B + C might be consid ered ambiguous., Does the
user mean D= (A * B) + C, or does he mean D= A * (B + C)? The user may

use pairs of parentheses in order to describe exactly the way in which he wants
the computation to proceed,

If parentheses are not written to specify the order of computation, the
arithmetic expression is evaluated using the following rules:

1. All exponentiation is performed first,
2. Then, multiplication and divisiqn are performed.
3. Finally, addition and subtraction are performed.

4, In each of the three above steps, computation starts at the
left of the expression and proceeds to the right., Thus,
A* B/ Cis computed as (A*B) /C, andA /B * C is
computed as (A /B) * C,

5. When parentheses are present, computation begins with the
innermost set and proceeds to the outermost. Items grouped
in parentheses will be evaluated in accordance with the
above rules, and the result will then be treated as if the
parentheses were removed.

A CONDITIONAL EXPRESSION is an expression which, taken as a whole, may
be either true or false, depending on conditions existing when the expression
is examined, Generally, a conditional expression contains at least one
variable quantity, and the truth or falsity of the expression will depend on

the particular vd ue assumed by the variable or variables, For example, the
expression A IS GREATER THAN 10 is conditional, since it may or may not be
true, depending on the value of the quantity A, Obviously, if A had a value
of 12, the expression would be true; if the value were 7, the expression would

be false,

A conditional expression may contain data-names, condition-names, names of
arithmetic expressions, and expressions which show relationships between
values (such as the expression IS GREATER THAN).

Conditional expressions are always written in the decision table; never in

the data description. This is one of the major advantages of decision tables -
they offer a two dimensional visual aid in exploring the potential combinations
of conditions, Conditional expressions are discussed here in three categories:

3.13
1. Simple conditional expression.

2, "AND" compound conditional expression - simple conditional
expressions joined by "and's.,"

3. "OR" compound conditional expressions - conditional expressions
of category 1 and/or 2 joined by "or's."

Conditional expressions exist as that part of a data rule which must be satisfied
prior to taking the indicated actions of that same data rule,

The three categories can best be explained with an illustration.

Rule 1 Rule 2 Rule 3

Verb| Operand 1 |Op | Operand2ll Op|Operand2|Op Operand 2 |Op Operand 2
MAR, STATUS| EQ MARRIED DIVORCED SINGLE
AGE GT |21 GT | 30
AGE LT 39 Y Y
HRLY,.RATE |GT 3.50 4,00 2.00
HRLY,RATE |LT 5.00 Y ¥ Y

DO |STATISTICS X X X

O TOJCONTINUE \ X X P X

A SIMPLE CONDITIONAL EXPRESSION (category 1) is composed of two operands
connected by a relational operator and is illustrated by 10 different conditions
in the above example. They are:

Line 1 marital status is married
marital status is divorced
marital status is single

Line 2 age is greater than 21
age is greater than 30
Line 3 age is less than 39
Line 4 hourly rate is greater than 3.50

hourly rate is greater than 4. 00
hourly rate is greater than 2,00

Line 5 h ourly rate is less than 5.00

3. 14

An "AND" COMPOUND CONDITIONAL CONDITION is iliustrated by the inter-
pretation of Rule 1, If marital status is married and age is greater than 21 and
age is less than 39 and houriy rate is greater than 3.50 and hourly rate is less
than 5.00...this portion of Rule ! shows 3 simpie conditicnai expressions
connected by four "AND'S," Similar interpretations of Rule 2 and 3 can be made,

An "OR" COMPOUND CONDITIONAL EXFRESSION is never shcwn in one rule in
a decision table, We can see that all three of the above rules have the same
actions. Therefore, we have expressed the "OR" conditions for the same actions
as separate rules. All three rules could be stated in narrative in a single
sentence as follows. If {(marita! stetus is married and age is greater than 21
and age is less than 39 and hourly rate is greater than 3,50 and hourly rate is
less than 5.00) or (marital status is divorced and age is greater than 30 and
age is less than 39 and hourly rate is creater than 4,00 and hourly rate is less
than 5. 00) or (marital status is single and hcurly rate is greater than 2.00 and
hourly rate is less than 5,00} then do statislics routine and continue to next
step,

We can readily see that the tabular dispiay of the condition combinations has
much more human communication value.

In forming the simple conditional expressicn {operand 1, operator, operand 2),
operand 1 is always written in the left operand column in the table stub., The
relational operator may be written in the stub cr the entry, If the operator is
common to all rules for this line it may be factored intc the stub, see lines

1, 3, 4 and 5 above. If it varies from one rule to another then it must be written
in the entry, see line 2 above, Cperand 2 may be written in the right operand

of the table stub if it is common to all rules for this line, see lines 3 and 5 above.
Operand 2 must be written in the tabie entry if it varies from one rule to another,
see lines 1, 2 and 4 above,

The following table shcws the permissible combima tions of name-types for
condition operands 1 and 2:

o
— § 2 =|8 8 [3 5§ |5¢
per 2 .13 [0 a8 *3 To% . B g g 8o
Oper-~Ngnd2 | 0 2| BE|[D (¢! 2% | & _TYL 25050 e
S8l cE| o} BLElI Eg 5\5:553:52’:&'
and 1 @B OC| = | wd|] 0ol 0o mMPI0mO0 a
A2 02| 3la2! 20! AL OO0 L0 =
Data Y y | v
Name % ¥ ¥ ¥ B =
Y= Per-
Literal Y N | N| Y N N N N missible
Expression
Name Y YiYjYy 1% Y N ¥ N= Not
= = Per-
ame missible
Constants X N IR L N & W A

3.15

REPORT GENERATION FEATURES are included in this language to accomplish
such functions as:

Print Headings per page and per change in control fields data.
Automatically increment and print page number,

Print date on each page of report.

Group suppress printing of control field data.

Print selected field totals automatically per change in control
field data and at end of report,

Generally, edit fields in lines of print such as suppress leading
zeros, insert periods and commas in quantity fields, floating
dollar signs and asterisk check protection.

These functions are accomplished by data descriptions, The main flow of

the problem definition prepares a working storage of unedited data for a detail
line. The command DO REPT n (where n is the report number) assumes that the
detail line is edited for print in the manner specified by the data description
including the consideration of all the other repat functions defined in the
data description. At the end of the report the command DO END. REPT n is
given to effect the end of report functions such as printing all required levels
of totals (including report total).

Chapter 4: DECISION TABLE FORMAT AND VERBS

INTRODUCTION This chapter is concerned with the current verbs, commands,
format and sequence control of decision tables. Refer to Chapter 2 for

description and terminology of general concepts, structure and elements of
decision tables,

VERBS The list of verbs is given below:

Input = Output

READ
WRITE

MOVE } Data Transmission

SET

it
SET Arithmetic

MOVE }
GO TO
NEXT
ELSE Table Sequence Control
DO

STOP

This language is designed to be "open-ended." That is, the list of verbs
is never closed, For instance, it is known at this time that verbs should
be included for "data table operations™ such as "search, " "delete" and
“"insert, " but time does not permit this inclusion.

COMMANDS call for action(s) to be executed. Each verb in the preceding
list forms the basis for a specific command,. A command normally consists
of a verb followed by operand 1, an operator and operand 2,

FORMAT OF DECISION TABLE The decision portion of a problem definition
is written on the Decision Table Form designed for that purpose, The form
is shown on Page 4.2,

TABLE TITLE Indicative title of decision table contents,

SYSTEM SEGMENT A logical subdivision of the system being defined. It
may be a functional subdivision such as "material control," "credit clearing, "
etc., or further subdivisions, It may be computer runs, EAM processing or

a clerical activity.

SYSTEM A large functional or goal=oriented activity which is being defined,
Examples of functional activities (usually thought of as vertical slices of an
organization) are accounting, industrial relations, engineering, manufacturing,
marketing. Examples of goal-oriented activities (usually thought of as

horizontal slices of an organization which cross and absorb parts of many vertical

TABLE TITLE | SYSTEM SEGMENTSYSTEM |PREPARED [OPEN __|DATE [ELSE INEXT [ABLE

| BY CLOSED__
_INE VEpBlopanAnm 0P IPERAND2[[RULE_FREQ |RULE [FREQ [RULE [FREQ [RULE [FREQ [RULEFREQ |RULE JFREQ |
NR :

*JOPERAND 2| * [OPERAND?| *JOPERANDZ[* [OPERAND2|* JOPE RAND2| *[OPERAND?,

h

*For conditions: OPERATOR
For actions: SEQUENCE FICURE & ﬁ

(A 4

4.3

activities) are design, manufacture, marketing, etc. of specific products
or product groups, such as electrical transformers {size range), glass
products, canned foods, matches,

PREPARED BY Initials cf analyst.

OPEN A check mark is entered if the table is in-line (referred to in
other tables by the verb GOTO).

CLOSED A check mark is entered if the table is out of line (referred
to in other tables by the verb DO).

DATE Current date.

ELSE (TABLE) An entry may or may not be made. If no set of conditions
for any rule is satisfied, a table number or name is entered; thus directing
the consideration of the next table wh en no commands of the current table
have been executed.

NEXT (TABLE) An entry may or may not be made. An entry is made when
many or all of the rules GOTO the same next table. This eliminates the need
of writing the GOTO TABLE. NAME in each of the rules., However, if a GOTO
entry is made in a rule, it over-rides an entry the header NEXT.

TABLE (NAME OR NUMBER} A short identification of the table using either

a name or number, The beginning table of a problem definition is identified
by BEGIN if a name is used or by 001 if a number is used. This field appears
in two places on the form for convenience of referencing, depending upon the
manner of binding the definition material.

LINE NR Enter a different line number for each line used within a TABLE
IDENTIFICATION,

VERB This column is used only for the action part of the table. Specific
permissible verb entries are shown in the above list and in the expanded
discussion later in this chapter,

OPERAND 1 An entry is always made in this column for each conditional
expression and command. Permissible entries for conditional expression are
shown in Chapter 3, Permissible entries in operand 1 for commands
are defined with each verb discussion later in this chapter.

OP (OPERATOR) For conditional expressions, the permissible entries are
the seven relational operators discussed on Page 3.12, For commands, the
permissible eniries are described, with their associated verbs, later in
this chapter.

OPERAND 2 Heading appears in both the "stub" and "entry" parts of the
table. If operand 2 data is the same for all rules affected by the current

4,4

line, then the operand 2 data may be entered in the "stub"” and a "limited
entry" is made in the "entry" part of the table. If operand 2 data varies

from rule to rule for the current line, then operand 2 data must be written

in the "entry” part of the table, For conditional expressions, the permissible
entries in operand 2 are shown in Chapter 3, Permissible entries
in operand 2 for commands are defined with each verb discussicn later in this
chapter,

RULE (NUMBER) An identity number given tc each decision rule within a
table name (or number) for reference,

FREQ {(Frequency) An entry is made showing the number of times the action
part of a rule will be executed for a specific time interval. The time interval
should be specified as a constant for each problem definition; i.e., weekly,
daily, hourly, monthly, etc. If the frequency varies greatly, "note numbers"
can be entered and under the “note section" the frequency can be expanded
to reflect peaks and valleys in relation to time periods, Frequency data can
be used to assist in determining the best processing medium and equipment
requirements.

* This is a dual purpose column., For conditional expressions, it is used
to insert relational operators (similar to the "operator" column in the "stub").
For actions (commands), it is used to specify only the mandatory sequence
in which the actions must be executed, The method of numbering the actions
is such that a maximum degree of flexibilityis permitted in implementing the
action sequence in a step by step procedure,

Rule 1 Rule 2 Rule 3

Operand 1 | OP| Operand 2 | * Operand2 |* Operandzf* | Operand2
File 1 11X 11 X X

File 2 11X 3| X X

RCD 1 To | RCD 2 21 X X

FLD 1 EQ | FLD 2 X

TAB 006 2 | X 31 X X

TAB 020 3| X 4] X X]

Figure 4.2

Sequencing actions per rule will be explained by discussing the above example.

4,5

RULE 1 The ones entered in lines 10 and 11 indicate that the action on
either line 10 or 11 can be taken first, The 2 in line 14 indicates that the
action on line 14 must be taken after the actions on line 10 and 1l are
executed, Likewise, the 3 in line 15 indicates the action in line 15 must
be taken after the action in line 14, Summarizing, we can see that there
are two possible sequences of executing actions for rule 1: (1) lines 10,
11, 14, 15 or (2) lines 11, 10, 14, 15,

RULE 2 Following similar logic for Rule 1, we find that there are two
possible sequences of executing actions for Rule 2: (1) Lines 10, 12, 11,
14, 15 or (2) Lines 10, 12, 14, 11, 15.

RULE 3 When no data is entered for action sequence, it means that the
actions must be executed in the sequence written.

INPUT/OUTPUT COMMANDS In considering any level of data processing
problem definition, it is convenient to think of it in terms of inputs, reference
files, processing decision logic and outputs. These commands are involved
with the reading of records from input and reference files and writing records
on output and reference files, Since the language, at this time, is not
involved with providing for its mechanized implementation, such verbs as
"open" and "close" files are not included.

DECISION
ocic OUTPUTS

I

INPUTS

h

REFERENCE FILES
Figure 4.3

4,6

The READ command is used to fetch a record from an input or reference

file and make it available for processing. When a READ is executed, the
next record in the named file becomes accessible in the input area defined
by the associated Record Description in the Data Description., The record
remains available in the input area until the next READ (for that file) is
executed,

If a file contains more than one type of record, the READ verb delivers the
next record regardless of type, The differing records automatically share

the same input area; thus the user must provide for determining the type of
the current record and must refer only to information that is present in the

current record.

The format of the READ command is:

Rule 1 Rule 2 Rule 3

Verb Qgerand 1 OP | Operand 2 Opergnd 2 |Operand 2 |Operand 2

READ | RCD, NAME

READ | RCD,NAME| INTO |AREA, NAM

READ | RCD, NAME|INTO AREA, NAME 1|AREA, NAME Z AREA, NAME 3

Figure 4,4

The INTO area-name option converts the READ into a READ and MOVE. The
area-name specified must be the name of either a working area or an output
record area, If the format of the INTO area differs from that of the input
record, the data will be moved in accordance with the rules for the MOVE
verb without the CORRESPONDING option,

When the INTO area-name option is used, the current record becomes avail=
able in the input record area, as well as in the INTO area.

The WRITE command is used to release a record for insertion in an output
file, When a WRITE command is executed, the record-name record is
released, Accordingly, all the desired processing steps must be performed
before the WRITE occurs.

The format of the WRITE command is:

4,7

Rule 1 Rule 2 Rule 3
Verb | Operand 1 QP Ogerand 2 Operand 2 Operand 2 Operand 2
WRITE | RCD, NAME
WRITE | RCD, NAME |[FROM |AREA, NAME
EVRITE RCD. NAME [FROM IIAREA., NAME 1 | AREA, NAME 2 | AREA, NAME 3
Figure 4,5
The FROM "area-name" option of the WRITE command is comparable to the

INTO area-name option of the READ command.

It, effectively, converts the

WRITE into a MOVE and WRITE, The "area-name" must be the name of an
If the format of the
FROM area differs from that of "record-name, " the data will be moved in
accordance with the rules for the MOVE verb without the CORRESPONDING

input record area, a working area, or a constant area,

oprion,

"area-name" area continues to be available,

Note:
same,

When the FROM "area-name" option is used, the information in the

The names used for "record-name" and for "area-name" cannot be the

DATA TRANSMISSION COMMANDS
MOVE and SET. Both verbs are involved with the transmission of data from

one area to another.

of the source and receiving areas.

Verb
SET

MOVE

Source Area

Operand 2

Operand 1

Entries in the "source area" may be:

A variable name
A constant name

A condition na me

An expression name
A figurative constant (blank or zero)
A record name
A literal

The two data transmission verbs are

Differences in SET and MOVE are shown by the reversal

Receive Area

Operand 1

Operand 2

Entries in the "receiving area" may be:

-]

A variable name

A record name

4.8

The MOVE command is used tc transfer data from cne data area (operand 1)
to another area {operand 2). When a move ccmmand (1) is common to several
rules of a table and (2) has the same data (operand 1} to be moved into a
different data area (operand 2) for each rule, then this can be accomplished

on cne line,

The fermat of the MOVE command isg

The following rules must be cbserved !n writing MOVE commands:

1.

alphameric fields, and to report fields.

2,

other alphabetic or alphameric fields.

Ruie 1 Rule 2 Rule 3
Ene Verb Ogerand 1 OP] Operand 2 Operand 2 Ogerand 2 Ogerand 2
10 | MOVE ATA. NAME 1| TO| DATA, NAME 2
L ITERAL
11 MOVE [DATA, NAME 1| TO ATA, NAME 2 |DATA, NAME 3 | DATA. NAME4
[ITERAL
12 MOVE C} DATA, NAME 1| TO |DATA, NAME 2
13 MOVE C| DATA, NAMElITo DATA, NAME2|DATA, NAME3 [DATA, NAME4
Figure 4.6

Information from numeric fields may be moved to other numeric fields, to

Information from alphabetic or alphameric fields may be moved only to

When the simple MOVE (lines 10 and 11 above) i3 executed, the data represented
by DATA, NAME 1 cor the specified literal is moved to the area designated by
This movement does not destroy the original data - it

AREA.NAME 2, 3 or 4,

makes “"copies"” of it in the designated areas,

4.9

When both the source and the receiving areas are elementary items, editing
appropriate to the format of the receiving area occurs automatically in the
execution of the MOVE., The editing that is performed depends on wh ether
the source data (specified by data-name-1 or literal) is numeric or non-
numeric, as follows:

NUMERIC DATA ITEMS

19

3.

The data from the source area is aligned with respect to the decimal
point (assumed or actual) in the receiving area, This alignment may
result in the loss of leading digits or of low-order digits (or both if

the source area is larger than the receiving area).

If required by the format of the receiving area, zeros are replaced by
spaces (blanks); and dcilar signs, decimal points, and commas are
inserted,

If no decimal pcint has been specified, the data will be right justified
unless the data description of the item specifies JUSTIFIED LEFT,

NON-NUMERIC DATA ITEMS

1,

The data from the scurce area is placed in the receiving area beginning
at the left,.unless the data description of the receiving area specifies
JUSTIFIED RIGHT, Note that when a group item is moved, left justi-
fication is standard,

If the receiving area is not completely filled by the data being moved,
the remaining positions are filled with spaces.

if the receiving area cannot contain all of the data being transferred, the
MOVE terminates when the receiving area is filled,

FIGURE 4,7 contains several examples illustrating the editing feature of the
MOVE verb.

4,10

SOURCE AREA RECEIVING AREA
Data Data Data Data

icture before MOVE | after MOVEYl Picture _before MOVE | after MOVE|

9v9os 1234 1234 99Vv99 9876 1234
bovag 1234 1234 99v9 987 123
Poves 1236 1236 99v9 987 124
[eve 12 12 99Vv999. 98765 01200
XXX A2B A2B).9.0.0.0.¢ YIX8W A2B

VEE] 123 123 99,99 87.65 01.23

REPORT REPORT AAA JKL REP
99Vv99 1234 1234 $22Z9.99 $8765.43 $ 12.34
Figure 4,7

Examples of data before and after MOVE is executed. Standard justification
is assumed

Note that in each case in Figure 4.7 the data in the source area remains
unaltered after the MOVE has been executed. Note also, as in the fourth
example, that the information in any excess positions of a non-numeric
receiving area is replaced by spaces at the right.

The corresponding MOVEC option (Figure 4,6, lines 12 and 13) of the MOVE
command permits the user to specify the transfer & a group item containing
one or more elementary items that require editing in conjunction with the
MOVE. When a MOVEC command is executed, selected items within the
source area (data-name~1 area) are moved, with any required editing, to
selected areas within the receiving area (data-name-2, data-name-3, etc.).
Items are selected by matching the data-names of items within data-name-1
with likedata-names of areas within data=name-2, according to these rules:

1. At least one of the items of a selected pair must be an elementary
item.

2. The two data-names must be identical, including all qualification
up to but not including data-name-1 and data-name 2,

4.11

Each corresponding item in the source area is moved to its corresponding

receiving area. Editing appropriate to the format of the receiving area

takes place automatically. The rules stated for the simple MOVE apply
to each pair of corresponding items in the MOVEC; thus, the effect of a
MOVEC command statement is equivalent to a series of simple MOVE

commands..

To illustrate the use of MOVEC, suppose that the user wishes to transfer

corresponding items from a work area named INV, POSTING to an output area
designatéd INV, RCD,

Verb

Operand 1

MOVEC | INV.POSTING

INV, RCD

Figure 4.8

FIGURE 4.9 shows the movement of data that might result from this statement.
Note that non-corresponding items in the source area are not moved and that
non-corresponding items in the receiving area are not affected.

Movement of data resulting from execution of MOVEC

INV, POSTING
PART,NR | QTY,USED | ON,HAND | SHIPPED | RECEIVED | ORDER, PT
T l
v }
INV.RCD tART. NR | PART. NAME | ON,HAND | UNIT, COST QTY.USED | ORDER., PT
Figure 4.9

The SET command is used to transfer data from one data area (operand 2) to
another data area \operand 1).

The format of the SET command is:

The SET command has
unique utility in conjunction with decision tables in that, on one line, a
single "receive area" can obtain data from one of several "source areas."

4,12

Rule 2 Rule 3
Ene Verb Ogerand 1 OP _(_)_Eerand 2 Operand 2
10 SET |DATA,NAME 1 | EQ | DATA, NAME 2
LITERAL
11 SET |DATA,NAME1 | EQ DATA, NAME 2§ DATA, NAME3 | DATA, NAME4
LITERAL LITERAL LITERAL
12 SETC |DATA, NAME 1 | EQ | DATA, NAME 2
13 SETC |DATA, NAME 1 | EQ DATA, NAME2 |DATA, NAME3 | DATA, NAME4

Figure 4,10

Lines 10 and 11 are the simple SET command and have the same rules of data

transmission as the simple MOVE command,

Lines 12 and 13 are the SETC

(set corresponding) commands and have the same rules of data transmission
as the MOVEC command explained above,

ARITHMETIC COMMANDS

is via the name of an arithmetic expression,

There are two direct arithmetic commands MOVE and SET.
For convenience of the decision table format, the MOVE and SET command

functions are expanded to include arithmetic (addition, subtraction, division

and multiplication),

examples of how arithmetic operations can be accomplished,

An indirect method of performing arithmetic operations
Figure 4,11 shows several

The rules for numeric data transmission apply to the SET and MOVE arithmetic

commands,

When using the SETC and MOVEC commands the DATA, NAMES must

represent areas of storage which are composed of smaller units of fields, The
effect of the MOVEC DATA, NAME, 1 to + DATA, NAME, 2 is to cause each numeric
field in DATA, NAME, 1 to be added to its corresponding field (i.e. a field with

the same name) in the DATA, NAME, 2,

fields in DATA,. NAME, 1 and in DATA, NAME, 2 are not affected.

Non=-corresponding and non-numeric

Intermediate results are carried with an extra digit to both the right and left
Intermediate results are automatically truncated

of the receiving area field,

or rounded to the number of places indicated by the format description of the
receiving field,

TABLE TITLE | SYSTEM SEGMENT[SYSTEM g$EmRED OPEN ___|DATE SE NEXT [ABLE
LINE Jeon OPERAND ||OP IOPERAND2 FEUILE FREQ RUZLF_ FREQ RU?E_E fREQ_R LE |F E RULE
"R *IOPERAND 2| * JOPERAND2] *JOPERANDZI* [OPERANDZ ND2|[OPERA
10 SET |[DNIANAMEL EQ{z /DR NAVE2
11 SET Inm.mmm EQG‘: DAANAVEZ | [DAA.NAME3 | DHIA.NAME4
12 SETCIDKIA.MI EQ{;]m.MZ
13 SETc{Dm.m1 BQ{Z DA NAME2 | |DXA.NAME3 | DMA.NAME4
14 ||MOVE[DAA. NAVEL To{*‘;m.mz
15 ||MOVE DA NAMEL TO{:" DAA.NAVE2 | [DAA.NAVE3 | [DMA.NAME. 4
16 [MOVEQDAA,NAMEL TO{;DKIA.MZ
17 [MOVECDXA.NAMEL [TO (] DXA.NAME2 | [DMA NAME3 | |DAA.NAME4
18 SET [DMA.NAVE [EQ |EXP.NAME]
19 J|SET |DAA.NAVE |[EQ 70 VEL
20 ||SET |DNM.NAVE |[EQ | EXP.NAME 1 EXP. NAME2 EXP.NAME3
21 OVE |BP.NAME |TO |DEIA.NAVEL
22 ovE [peravE 1o {ZDem navEl
23 %ovn BP.NAME Toﬂ DAA NAVE]L | [DAANAME2 | | DAA.NAME3
i[I
:‘H} 3 I] >
Sl ruRs 4.1 :

ET'P

4,14
The SET command format is:

SET DATA,NAME 1 EQ A DATA, NAME 2
EXP, NAME

where "A" is (may be blank when operand 2 is an expression name), an
arithmetic operator +, -, / or x, Examples are shown in Figure 4,11 , lines
10, 11, 12, 13, 18, 19 and 20, Operand 1 (Data.Name 1) is the receiving
area and operand 2 (Data.Name 2 or Exp. Name) is the source area,

Receive Area + Source Area -» Receive Area
Receive Area - Source Area - Receive Area
Receive Area / Source Area = Receive Area
Receive Area x Source Area < Receive Area

The MOVE command format is

MOVE DATA. NAME 1

EXP. NAME To A DATA,NAME 2

where "A" is (may be blank when operand 1 is an expression name) an arithmetic
operator +, -, /, or x, Examples are shown in Figure 4,11 - lines 14,15, 16,
17, 21, 22 and 23, Operand 1 (Data,Name 1 or Exp. Name) is the source area
and operand 2 (Data,Name 2) is the receiving area.

Receive Area + Source # Receive Area
Receive Area / Source = Receive Area
Receive Area - Source + Receive Area
Receive Area x Source - Receive Area

GENERAL RULES FOR ARITHMETIC COMMANDS

1. All fields involved must be numeric, Constants cannot be the receiving
area,

2. The format of the operands may be different, Decimal point alignment is
automatically supplied throughout the computation.

3, The format of any item involved in computations cannot contain editing
symbols.,

4, Valid combinations of the "source area" and '"receiving area" are:

4,15

Receiving &
Area el o
o S
T E S E
Sz £ Z
EXPRESSION
NAME Y N
VARIABLE
NAME Y N
CONSTANT
NAME ¥ N
LITERAL o N
RECORD
NAME N X

5. An arithmetic expression is computed and the results are used as the
source, The expression is recomputed each time it is used in a command.,
Its value does not persist., '

FIGURE 4. 12 shows examples to clarify these rules:

SOURCE AREA Operator RECEIVING AREA
Data Data Data Data
Picture Before Move After Move Picture | Before Move | After Move
Or Set Or Set Or Set Or Set
D9V99 0110 0110 + 99Vv99 2120 2230
D9V99 1013 1013 - 99Vv9 333 232
OVI99 111 111 7 99V 990 892
OV9 55 55 X 99v99 1111 6111
Figure 4,12

TABLE SEQUENCE CONTROL COMMANDS Procedural sequence control is
accomplished, primarily, via table sequence control verbs, GOTO, DO, ELSE,
NEXT and STOP, (It is accomplished to a lesser degree within a rule by the
action, or command, sequence entries.)

The GOTO COMMAND appears in the body of the decisi on table and directs the
procedure to the next TABLE, NAME to be considered. The next TABLE.NAME
may be the same as the TABLE. NAME in the .current table, - The GOTO
command is always the last action of every rule., If the GOTO COMMAND does
not appear in a rule, then the next TABLE, NAME is taken from the table header
NEXT, A GOTO COMMAND will over-ride the NEXT COMMAND in the header,

4,16

The ELSE COMMAND also appears in the header and directs the procedure to
consider the next TABLE. NAME whenever no set of conditions for any rule is
satisfied.

The DO COMMAND provides a means of interrupting the actions in a rule of
the current table in order to consider another table, After the other table is
considered (and actions taken) control comes back to the next action of the

rule for the current table,

Special operands of the DO COMMAND are used to specify the execution of
report generation functions(RGF). The three operands are REPT.n, BEG, REPT.n
and END, REPT.n where "n" is a report number assigned in the data description.
The report generation features (DO REPT.n) are discussed in Chapters 3 and 5. The
DO BEG.REPT.n indicates' to the RGF that it is to process the beginning of
the report functions such as: write heading lines. The DO END,REPT.n
indicates to the RGF that it has processed the last detail record for the report
and commands it to accomplish the end of report functions such as printing
report totals, There are no tables written (by the person defining the problem)
with the names REPT,n, BEG,REPT,n and END,REPT,n, It is assumed that the
report data description, report planning sheet and the sample of the report in
conjunction with the report commands are sufficient specifications for a
programmer or procedure writer to implement the report.

TABLE TITLE | SYSTEM SEGMENTI|SYSTEM PREPARED X _|DATE SE INEXT LE
mﬂ%mlﬁ - INVENTORY [BY_OYE _) OSFD__| 8/30/61 TRAN |
LINE — OPERAND ||OP IOPERAND2|[RULE FREQ IR : EIF RlélLF_ FREQ_R%JLE F E RULE FREQ |
NR 1__ | = o) _ _ ik

*JOPERAND 2| * JOPERANDZ| *JOPERANDZ[* [OPERAND2 ND2| *[OPERANDZ]
1 1l NS, COLE [EQ ISSUE RECEIPT ORDER ELSE
10 ||sET |INVBAL [EQ- 1| ISSUE QTY
Wi " " EQ+ 1 |RCPT.QTY
12 OVE[INV BAL __[TO PRNT BAL |2 [X 2 |x
13 || SET [SSUE.YTD [EQ+ [ISSUE QTY || 1|X
14 “ SET |RCPT.YTD [EQ+ |RCPT QTY 1 [x
15 DO 1 |ORD. RTNE |1 [ERROR
EMATCH 3 X 3 K 2 X 2 X
|
*For conditions: OPERATOR FIGURE 4.13

For actions:

SEQUENCE

318V

14

&1

4,18

The STOP COMMAND is used to specify a temporary or final halt, Its
general format is:

Verb Ogerand X F=O;:a Operand 2 H Operand 2 Operand 2 Operand 2

STOP | LITERAL

STOP LITERAL 1 LITERAL 2 LITERAL 3

The literal is numeric, The STOP COMMAND can & pear anywhere in the action
sequence of a rule,

KINDS OF DECISION TABLES There are two major kinds of decision tables -
open table and closed table,

The OPEN TABLE has these uni que characteristics:

o It may be entered only by a GOTO COMMAND (the only exception
is the BEGIN table).

. It may not be entered by a DO COMMAND,
. It may contain DO COMMAND(S),

’ It will indicate the next table to be considered by a GOTO, NEXT
or ELSE COMMAND,

The CLOSED TABLE has these unique characteristics:
. It may be entered only by a DO COMMAND,
¥ It may not be entered by a GOTO, NEXT or ELSE COMMAND,
. It may not contain a GOTO, NEXT or ELSE COMMAND,
3 It may contain DO COMMANDS for tables other than itself,
> After having been considered (and actions taken), the sequence

control is transferred back to the next action of the rule in that
table from which control was transferred to this closed table.

4,19

MISCELLANEOUS CHARACTERISTICS OF TABLES AND RULES

UNCONDITIONAL TABLE

A table may contain only actions (commands) and no conditions (there would be
only one data rule). This is called an UNCONDITIONAL table and would be of
the closed or open kind of table,

NO ACTION RULE A rule may contain only condition(s) and the only action
is the next table,

TABLE ENTITY A decision table is always considered as an entity. A
transfer (via GOTO, DO, ELSE and NEXT) is always to a table as a whole =
not to a rule or condition within a table,

ONE RULE SUCCESS PER TABLE For any one pass through a table only a
single set of conditions for one rule can be satisfied and, therefore, only
a single set of actions for the same rule can be executed, The rule that is
satisfied may be the ELSE condition and the only action may be to go to the
next table via the ELSE NEXT, TABLE,

RULE INDEPENDENCE Each rule is stated as an entity separate from other
rules in the same table. A rule must contain sufficient conditions to insure

the execution of its action(s) when the conditions are satisfied regardless of
the sequence of considering rules in a table. This means that (1) all conditions
pertinent to a rule are indicated and (2) conversely, conditions that would auto=~
matically be met in a current rule due to the failure of a set of conditions in a
prior rule of the same table must still be indicated. The only exception to this
RULE INDEPENDENCE is when an action is required for the ELSE condition

other than "go to the next table," See discussion of ELSE below,

CONDITION INDEPENDENCE For a rule, the sequence of testing conditions

is not relevant since all indicated conditions must be satisfied before the
actions are executed, This is true from the viewpoint of defining a problem

at a level as independent of procedural steps as possible, When the problem
is implemented by a programmer or procedure writer, the sequence of testing
conditions may have a significant effect on the efficiency of the process media.

TABLE FORM SIZE is designed to the usual 8-1/2 X 11 inches. Our eyes are
trained for this size paper, It is believed that we can comprehend decision rules
more quickly when this size form is used, The "one rule success per table"
concept tends to keep the decision rules confined to this size form.

The ELSE condition rule is possible because of the "one rule success per
table" concept. The entries in the table header ELSE may be:

. a TABLE,NAME
. left blank

. STOP,n COMMAND

4,20

This field is generally used for error detection but may be a systems logical
sequence control, When an action is required for the ELSE other than "go to
the next table," the word ELSE can be entered as a condition in operand 2
in the ENTRY portion of the table and the necessary actions indicated, see
Rule 4 of FIGURE 4,13, page 4,17, In this case the ELSE rule has to be
last rule considered for the table,

Chapter 5: DATA DESCRIPTION

PURPOSE A major purpose of writing a "data description" is to furnish the
processing system with a means of identifying each item of data which has been

named in the decision tables. This description must include all items on which
the system is to operate.

Actually, the system needs more than a means of merely identifying the data.

If the data is numeric, for instance, there must be a means of showing where

the decimal point is located. If the system is to print out monetary values, it
must have information on where to place the dollar sign, and whether or not to
print leading zeros. Details of this sort are usually referred to as "editing,"

The actual commands for accomplishing details of this sort need not be stated
explicitly., It is assumed that sufficient intelligence exists in the implementation
to accomplish the implied transformations.

Writing a data description is not difficult, once a few basic principles are under-
stood, and these are explained in the following pages. The reader should
realize, moreover, that this method of describing data in a separate section of
the program has an important advantage, The typical problem definition will

deal repeatedly with data of the same kind. Use of a separate data description
permits the user to describe each kind of data once, instead of having to
describe each individual item as it occurs.

FILES, RECORDS AND FIELDS Before proceeding with the details of the data
description it is only necessary to define three terms as they are used in this
system: "file," "record," and "element,! The exact implication of these terms
varies from person to person and company to company.,

A FILE is a body of data stored in some external medium which can be made
accessible to the system. In this sense, an external medium is any medium
which provides input to the system from without. Data in such a medium cannot
be used by the system until it has been brought into it. The usual external

medium of electronic data processing systems is magnetic tape and random
access storage.

The concept of a file as "external" to the system carries certain implications
which should be considered. These arise, not from the definition of a file, but
rather from certain practical considerations.

For example, a file is usually a relatively large body of data, although there is
no implied relationship between the length of a file and the storage capacity of

a tape. Thus, there may be more than one file on a tape, and, on the other hand,
a file may extend over a number of tapes.

98

A file is commonly understood to consist of a number of individual records, the
records being generally similar to each other in size, content, and format.
(Sometimes a series of differing records may be grouped together in a file; in
such a case, the user must make provisions for distinguishing among them.)
The file itself may be unique, or it may closely resemble other files. Thus,

a file of-actuarial data might be the only one of its kind in a library, while

a file of insurance policy data might differ from another chiefly because it covers
a different area or a different period of time. In this sense, a file serves a
function like that of a ledger, or a filing cabinet containing a series of similar
papers. It is usually a rather large body of related information. Thus it is
convenient in most cases to treat such large bodies of data as complete and
separate units which can be identified externally by direct reference to the
physical media in which they are stored.

ELEMENTS AND GROUPS OF ELEMENTS An element of data (elementary item)
is a piece of data which is never further divided. DATE could be the name of
an elementary item if it were never referred to as anything but DATE. However,
if the Decision Tables ever referred to only a part of the date, say, the month,
then DATE would have to be broken into parts. These parts might be named
DAY, MONTH and YEAR, Then DATE would not be the name of an element,
because it is subdivided into DAY, MONTH and YEAR,

The term ITEM, as used in this manual, refers to any element or group of
elements. Thus, it is correct to say that DATE is the name of an item. How-
ever, it is not the name of an elementary item, because the item is actually a
group - DAY, MONTH, and YEAR, The terms ITEM and FIELD are used inter-
changeably.

An item can also be a group of groups. Suppose the item YEAR in the previous
example were divided into two parts, named DECADE and YR, for example.
YEAR would not bé the name of an element - it would be the name of an item
consisting of a group of elements. Then DATE would be the name of an item
that was a group containing a group.

To review, elements can be combined to form groups which, in turn, can form
groups of groups. Either an element cr a group may be regarded as an item.
An element is a unit of data which is never broken into smaller units. The
discussion of levels (later in this chapter) will help to clarify the concept of
elements and groups of elements.

Elements and groups of elements of data are combined to make up records. In

a program processing a payroll, the permanent data concerning each employee
would probably constitute a single record. Items in this record might be the
employee's man number, his name, shift, rate of pay, marital status, number
of dependents, etc. Thus, there would be a series of similar records, one for
each employee. All of these records would usually be of the same format, i.e.,
would contain the same items; but the items would have different values for
each emplovee,

5.3

Probably, they would all be stored together on a single reel of magnetic tape or

in a single deck of cards. Another series of records (again, one for each employee)
might contain the record of each man's time card for the past week. Thus, the
payroll program would have two records available pertaining to each employee,

one containing permanent information, the cther containing the record of the em-
ployee's past week of work.

An important characteristic of the record is that it is the unit of data which is
handled by the READ and WRITE verbs. (See Chapter 4.) If, in the above example,
the records containing the permanent information for all employees are stored in

a file called PERMANENT, PAYROLL.INFORMATION, then each time the statement
READ PERMANENT, PAYROLL, INFORMATION RECORD is encountered, one man's
permanent information would become available for processing. That is, it would
be "read" into the system. It is not possible to read only a fraction of a record
and not the rest of the record, Similarly, only an entire record can be "written, "
that is, made available for output to an external medium such as magnetic tape.

DATA DESCRIPTION FORMAT, Entries in each field shall be described completely

except for explaining most of the report description, It will be shown at the end
separately.

The heading information at the top of the form is completed similar to the cor-
responding fields on the decision table explained in Chapter 4.

PAGE Enter number of the data description.

TO PAGE. Enter page number of the next page of the data description. The use
of this field allows insertion of new pages (numbered with a decimal system)
with a minimum effort and still allows a user to know all pages are present for
the data description, For the last page enter the word FINAL.

CTL. and SERIAL. It is essential that each item of the data description be entered
into the system in proper sequence, since the sequence controls the internal
position of the data. Six characters are used for a serial number, which indicates
the sequence of the lines., This number is normally numeric. Its first three di-
gits are written, in the box marked "CTL" (for "control"). It is assumed that the
first three digits will be common to all serial numbers written on the same page.

The remaining digits are written in the box labeled "SERIAL". In normal practice,
only the left two digits are used initially, and the right most digit left blank.
This makes it possible to insert correction lines later,

DATA NAME is any name the user may have assigned to the data described in
the line. The rules for forming names are on page 3.3. If no name is assigned
the field should be left blank.

DEC

IDIUN_ TABLE UA A UL DUK I 1ITUN

CTL

SYSTEM

SYSTEM SEGMENT PREPARED BY

DATE

PAGE
IO PAGE

SERIAL

NAME

TYPE

m

DESCRIPTION

l-uo"

FIGURE 5.1
Sample Form of Data Description

g

s

5.5

Names may be assigned to any item of data, or to any group of data items stored
consecutively within the system. Thus, names may be given not only to groups
of items in the input files, but also to groups formed within storage as a result
of operations performed by the system. Any name so assigned may be used as
an operand in a decision table,

Data-names must not overlap, Each field within a record can be given a name,
and any group of consecutive fields can also be given a name. Thus, a single
field may be operated on individually by reference to its name, or collectively
as part of a group called by the group name. However, the same field may not
be included as a part of each of two overlapping named groups of fields.

For example, if three successive fields are named A, B, and C, the group name X
might be assigned to the pair A and B. If this were done, the name Y could not be
assigned to the pair B and C, since field B is already part of a named group of
fields. If the user needs to be able to refer to fields B and C by single name,
however, he can rename the entire group of three fields, using the REDEF type
code described later in this chapter. This procedure would not delte the origi-
nal names; the new names and the names originally assigned would all be
available for use thereafter.

LEVEL Level numbers are used to describe the way in which a body of data is
organized, Basically, level numbers are assigned to items of data to show their
relationship to other items of data--or, in other words, to show the structure of
a record. Any number from 1 to 99 can be used. All data description entries
must be assigned level numbers.

In general, each item is considered to be a subdivision of the last item preceding
it which has a lower number. Figure 5.2 shows how a typical series of files,
records, and fields might be organized, using the familiar method called out-
lining. The file structure is shown by the use of indentation, each item being
considered a part of the last item above it which is indented to a lesser degree.

The technique of indentation, in other words, is a visual way of showing level.
It may be used in the "Data Name" columns, but it will have no effect on the
implementation. However, since it helps to identify the various levels visually,
indentation may be useful in clarifying the file structure.

For comparison, two additional columns nave been provided at the right in Figure
5.2. These show the data classification of each item, togetner with hypothetical
level numbers such as might be assigned to a file structure of this kind. It
should be pointed out that entries for files and groups of files are not actually
used in the data description.

It is obvious from the outline that each item from EMPLOYEE NUMBER through
LOCATION is a part of PAY RECORD, and that each item from FICA through HOS-
PITALIZATION is a part of DEDUCTIONS, YEAR TO DATE. Had the principle of
indentation not been used, the reader might still determine these relationships
by examining the level numbers in the right hand column, following the rule
that each item is part of the next item above with a lower number.

5.6

It is not necessary that level numbers be assigned in consecutive order, although
it is done that way in Figure 5.2. The items at level 02, for example, might
have been assigned level 04, or any other convenient number, as long as it was
greater than 01. Similarly, items at level 03 could have been given any other
number as long as it was greater than the number of the next higher classifica-
tion, In fact, it is often useful to skip numbers when they are initially assigned,
to allow for possible regroupings or insertions at a later time.

The reader will also note that each item at the record level and below represents
a kind of data, not a specific item of information. Thus, although there will be
only one file called EASTERN REGION SALES FORCE, within that file there will
be many individual units called PAY RECORD, and each of these will contain
information of the same general character and format, as specified by the names
of fields within it. The purpose of the data description is to give information
about each of these kinds of data. The data description should be thought of as
a "pattern" which the files will follow,

Level numbers are not actually attached to the data in the sense that an employee
number is part of a pay recorde They are used to instruct the implementor to per-
form certain technical functions which need not concern the user. Essentially,
they are used before the actual data is read into the system, as a means of pre-
paring the system to receive it, Once the data description has been written,

the user need no longer concern himself with level numbers unless, owing to
changes in the data or the problem definition, a new data description should
become necessary.

TYPE This field is used, when necessary, to show that the data being described
is of a certain special type. If left blank, it will be assumed that the remainder
of the particular entry describes a data field or group of fields., The type codes
which may be used in these columns are the following:

RECORD
COND
REDEF
COPY
WORK
EXPRES

Each of these is discussed in the follawing pages.

RECORD This type code shows that the data being described is a record and is
therefore accessible by READ and WRITE COMMANDS. This is equivalent to
identifying an item of data as an input/output record.

COND The type code COND is used to show that the data referred to is one of
the possible conditions which a conditional variable may assume. In the dis-
cussion of conditional expressions in Chapter 3, it was pointed out that a con-
ditional variable is the name of a field which will contain, at different times,

any of a number of different values, depending gn conditions existing in the data.
Each of the values that may be placed in the field is a "condition."

5.7
ORGANIZATION OF PAYROLL FILES |

Standard Outline Equivalent in
this language
Data Level
Classification Number
*EASTERN REGION group of files
*SALES FORCE file
PAY RECORD record 01
EMPLOYEE NUMBER field 02
EMPLOYEE NAME field 02
LAST NAME field 03
FIRST NAME field 03
JOB TITLE field 02
COMMISSION. RATE field 02
GROSS PAY,YEAR TO DATE field 02
DEDUCTIONS, YEAR TO DATE 4 field 02
FICA field 03
FEDERAL INCOME TAX field 03
STATE INCOME TAX field 03
SAVINGS BONDS field 03
HOSPITALIZATION field 03
NET PAY, YEAR TO DATE field 02
LOCATION field 02
*PRODUCTION FORCE file
PAY RECORD record 01
EMPLOYEE NUMBER field 02
EMPLOYEE NAME field 02
LAST NAME field 03
FIRST NAME field 03
JOB TITLE field 02
HOURLY RATE field 02
GROSS PAY, YEAR TO DATE field 02
DEDUCTIONS, YEAR TO DATE field 02
FICA field 03
FEDERAL INCOME TAX field 03
STATE INCOME TAX field 03
SAVINGS BONDS field 03
HOSPITALIZATION field 03
NET PAY, YEAR TO DATE fleld 02
LOCATION field 02
*WESTERN REGION group of files
*SALES FORCE file
PAY RECORD record 01
EMPLOYEE NUMBER field 02
LOCATION field 02

*Files and groups of files are not actually entered as such in the data description.
Also, none of the names is in the proper format.

FIGURE 5.2. Typical File Structure (theoretical)

5.8

In the following example, the name MARITAL, STATUS is given as the name of a
conditional variable. This name refers to a specific field reserved in storage
into which values representing conditions will be entered, Typical conditions
for this field would be "single," "married, " and "divorced," While these words
could actually be placed in the MARITAL,STATUS field, it is more economical of
space, and generally more efficient, to use codes, The inititial letters M, S,
and D are used as codes in this example., Thus, the field MARITAL, STATUS might
contain any one of these letters at a given time.

However, so that the user can refer to these codes by their names, he must
specify in the data description which code corresponds to each name. This may
be done in the following manner:

Suppose that the field MARITAL, STATUS has been given the level number 06, The
names of the conditions which may be entered into the field must then be assigned
a lower level (i.e. a higher number) and entered in the data description immediate-
ly following the name of the field. This means that they will be treated as if

they were each a subdivision of the field, in accordance with the rules for as-
signing level numbers, although, in practice, only one condition will be con-
sidered at a time. A portion of the data description might then appear as follows:

Serial | Data Name i Type Description ‘
8 (

r —— 1
{

)

MARITAL, STATUS | 06 \

e SINGLE 07 |COND 3k)
MARRIED 07 |COND ‘M ! \

DIVORCED 07 |COND "D |

1

A i

-

The entries under "Description" will be explained later in this chapter, but, in
summary, the "A" indicates that the field will containene letter of the alphabet or
a blank, while the initials S, M, and D are enclosed in quotation marks to show
that they are the actual values to be used in the program.

In this example, the fact that the names SINGLE, MARRIED, and DIVORCED are the
names of conditions is shown by the use of the type code COND, The relationship
of these conditions to the field MARITAL, STATUS is shown by the fact that the
condition-names have a higher level number and follow the name of the conditional
variable immediately.

It should always be remembered that the condition-name is the name of the "value"
which can be placed in a field; it is not the name of the field itself. The condition-
name MARRIED, in this case, would be equivalent to MARITAL, STATUS='M",

5.9

REDEF The code REDEF is used whenever it is necessary to redefine an area or
an item of data that has previously been defined in some other way. This is
usually necessary whenever a portion of the data description "overlaps" another--
i.e., when it calls for the use, on a "time-sharing" basis, of data or storage
space which has previously been defined for some other purpose.

For example, it may be necessary to call existing data by a new set of names, or
to reorganize it by altering the groupings and/or the subordinate level numbers.
Frequently it is necessary to wipe out data to make room for other data. In any
such case, a new data description is required for the new items or the new names.,
However, the name or names of the areas being redefined must first be listed,
using the type code REDEF to show that the accompanying data description may
also be used to refer to the same area. The REDEF entry must have the same

level number as the entry being redefined.

Use of the REDEF code does not erase data in storage, unless an attempt is made
to place two or more different constants in the same area; however, it does super-
impose a new format upon the data already present. If the user wishes to change
an item in storage, he may do so by using a MOVE or SET instruction that specifies
the new data and the position in storage where it is to be placed.

Redefinition does not cancel the previous definition. It merely makes it possible
to refer to the same area by different names and for different uses. Once an area
has been defined, all names associated with the definition may be used at any
time, regardless of subsequent redefinitions.

Data Name Level |Type Description
RECPT 01 RECORD
TR.CODE 02
STOCK 02
LOC 02
QTY 02
02
ISSUE 01 REDEF | RECPT
TR.CODE 02
STOCK 02
LOC 02
QTY 02
DATE 02

In the illustration above the two types of records are read from a transaction file
into the same area of storage. The REDEF is used in the ISSUE description to
overlap the storage area reserved for RECPT,

5.10

COPY This type code is used to copy a data description previously defined in
the data description so that it can be used again elsewhere., This makes it
possible to use a data description with new data-names and, if desired, new
level numbers.

The COPY type code is used as follows: The new name of the data description
entry is written in the "Data Name" column cf the new entry. The code COPY
is placed in the "Type" column. The data description to be copied is specified
by writing its original name in the "Description" column. This description
must already have been read into the system for the COPY code to be able to
operate on it.

The implementor will then cbtain the original data description and copy it in its
entirety, except for the following modifications: (1) The original name will be
replaced by the new name. (2) If a new level number has been specified for the
new name, the level numbers of the original data description will be adjusied
so that they retain their original relationship to the named entry. Thus, if the
original sequence of level numbers had been 01, 03, 04, and if the new name
is assigned level 05, the other items would now be placed at levels 07 and 08,

respectively.

Suppose the user had previously written the following entries in the data
description:

)
Serial | Data Name 5 |Type (
3

PAY,RCD.,MASTER 01
EMPLOYEE.NAME | 02

JOB.TITLE 02
HOURLY . RATE 02
GROSS. PAY 02
TAXES 02

FICA 03

FED.INCOME G3 (
STATE.INCOME | 03)

NET. PAY 02

Suppose then that he wishes to set up an identical data description for a detail
record, except that the new description is to have the name PAY, RCD,DETAIL
and it will be placed at level 02. He could write the following entry:

Type Description ﬁ

= |

2| COPY PAY.RGD.MASTER)

Serial [Data Name

Level

o

PAY,.RCD, DETAIL

5.11

The effect of this entry would be as though the programmer had written an entirely
new set of entries in the following form:
Type (

T

Serial | Data Name

Level

PAY,RCD.DETAIL |02
EMPLOYEE.NAME |03

JOB.TITLE 03
HOURLY. RATE 03
GROSS. PAY 03
TAXES 03

FICA 04

FED.INCOME (04
STATE.INCOME |04
NET, PAY 03

WORK The type code WORK is used to describe areas of storage where interme-
diate results and other items are stored temporarily at object time. Initial values
may be assigned to an item in the working storage with the following restrictions:

1, The value must be compatible with the CLASS of the item. For example, if

the CLASS is NUMERIC, only a numeric value may be assigned as an initial
value.

2. The size of the initial value must not exceed the SIZE of the item. If the size
of the value is less, standard rules for justification apply.

3. If the initial value of a work area is not specified by a VALUE, its, initial
value will be unpredictable at object time.

Any item within a work area may be assigned condition-names.

Data Name [Level Type Description /
STOCK 01 WORK

PREV, BAL 02 9(6) ZEROS
BEG, BAL 02 9(6) '000000"

EXPRES The type code EXPRES is used to describe an arithmetic expression. The
expression is always one of equality. The expression name is entered as level 01.
The expression is entered as level 02 and can extend over as many lines as neces-

sary to accommodate the data.The expression OK=IN,PROC AMT + ACCT.REC AMT
+ ORD AMT would be entered as follows:

5.12

Data Nameg Level| Type Description Cont
OK 01 EXPRES
02 IN.PROC AMT + ACCT.REC C
02 AMT - ORD AMT

Of course, the names used in the expression must be defined in the data descrip-
tion elsewhere. |

DESCRIPTION This field is used to shows:

1. Picture-Format characters, These are explained below,
2. Initial values of work areas or constants.,

3. Data names associated with type codes REDEF and COPY.

General Note: If the description of a data item overflows from the "Description"
column, it may be continued on the next line, following the rules given for the
continuation indication column. The break at the end of a line must occur be-
tween words., If a constant or initial value is to be carried over onto a new line,
the portion on each line must be treated as a complete constant (i.e., enclosed
in quotation marks); the continuation indication is not used in this case.,

In a number of cases, a complete data description entry will require that more
than one of these kinds of information be listed on the same line. For example,
it is generally necessary to show both the format and the value of a constant,
In such a case, the various items should be written in the order shown above,
separated by one or more blanks.

The picture characters serve two basic functions: (1) They show the number of
character spaces to be occupied by a field. (2) They show the kind of character
that will occupy each space, '

If the item of data being described is one which will be brought into the system
at object time, the format characters must reflect the format of the data as it
already exists:; changes in input data cannot be effected by the picture. How-
ever, if the item is one produced as a result of the operation of the program--
as in moving the data or performing arithmetic on it. for example--the picture
has a direct effect on the manner in which the data will be handled.

With certain exceptions, which are explained below, one format character is
required for each data character for which storage space is to be reserved. The
particular format character chosen for each space prepares the system to receive
in that space data of the type explained below.

The PICTURE clause can be used to specify the editing ow data. Editing may be
described as an alteration of the format and/or punctuation of an item, usually
for such purposes as improving readability or protecting it against unauthorized
alteration. Editing involves the suppression of certain characters and/or the
addition of others. For example, after computation, the digits representing a
man's pay might be 0012531. However, they would be much more readable on

5.%3

a paycheck in an edited form, such as $**125.31; moreover, the use of the aster-
isks would hamper an attempt to alter the amount. Editing of data always requires
moving it to an item for which the proper editing symbols have been specified.

In the following discussion, each character which may appear in a PICTURE is
presented. Because the choice of characters in any given PICTURE depends on
the type of data item being described, the characters will be grouped for dis-
cussion according to the type of data item they describe.

A NUMERIC ITEM is an item which may contain only the numerals 0 through ¢ anc
an operational sign. As will be seen below, a numeric item may also have an
assumed decimal point associated with it. The PICTURE of any numeric data

item may contain combinations of only the following characters: 9, V, P, S, T,

L and R. An explanation of each of these characters and their uses is given relow,

Character Meaning and Use
g A 9 indicates that the character position will always con~

tain a NUMERIC character.

\Y AV indicates the position of an "aseumed decimal point.,"
Since a numeric item cannot contain any character other
than numerals and an operational sign, the actual decimal
point (the special character period} cannot appear. There-
fore, an assumed decimal peoint is used to provide the
implementor with information concerning the alignment of
items inuwolved in computation. An assumed decimal point,
thus, does not occupy a character position at object time
and is not counted in the size of an item. For example,
if a data item is described as having a PICTURE of 95VS
and the digits 123 are moved to it, the value would be
treated in calculation as 12.3, but the size of the item
would be three characters, not four. If it were printed, it
would print as 123 because the decimal point character is
not actually present.

S The character S indicates the presence of an "operational
sign." If used, it must always be written as the leftmost
character of the PICTURE. It is not counted in the size
of an item. :

P The character P indicates an "assumed decimal scaling
position." It is used to specify the location of an assumed
decimal point when the point is not within the number as
it appears in "input data." In effect, the item will be
treated as if a zero were substituted for each P and the
decimal point were placed "outside" the last P--i.e., to
the right if the zeros are on the right, to the left if the
zeros are on the left. The character V may be used or

Character Meaning and Use

omitted as desired. If it is used, it must be placed in the
position of the assumed decimal point. For example, an
item composed of the digits 123 would be treated by an
arithmetic procedure statement as 123000 if the PICTURE
were 999PPPV or as .000123 if the PICTURE were VPPP999,
The character P is never considered as part of the size ol
an item; in the above examples, the size would be threce
characters.

T Truncate. This symbol is optional and does not reserve
an actual space in storage; it informs the implementor
that when data is moved into this field with too many
digits, the low order numbers are truncated rather than
the usual rounding. Ii is placed after the above fcrmat
characters and before the justify character.

LorR Justify. These symbols are optional and do not reserve
an actual space in storage. L means left justify. R
means right justify. This entry need be used only when
the user wants the justify different from the normal
assumed justify.

An item of data may be moved within the system by means
of a MOVE or SET or as a result of computation or some
other operation. If the location to which it is moved is
larger in size than the data itself, it may be necessary
to specify the position the data is to occupy in its new
location. In the absence of instructions to the contrary,
NUMERIC data will be "right justified" under these cir-
cumstances, unless an assumed decimal point alignment
occurs. When an item is right justified, its rightmost
character will be placed in the rightmost position of the
new location, and any unused positions at the left will
be filled with zeros. ALPHABETIC and ALPHANUMERIC
data, on the other hand, will be "left justified" in the
absence of instructions to the contrary and any unused
character positions at the right will be filled with blanks.

An ALPHABETIC item can contain only the letters of the alphabet and the blank.
The PICTURE of an ALPHABETIC item can contain only the character A.

Character . Meaning and Use

A The character A, when used in a PICTURE, indicates that
the character position will always contain either a letter
or a blank.

5.15

An ALPHANUMERIC (ALPHAMERIC) item is an item which may contain any char-
acter in the character set. However, it is often convenient to think of ALPHA-
NUMERIC items as being divided into two types: "non-report" items and "report"
items. Non-report items are items for which editing is not specified. Report
items are items for which editing has been specified.

The PICTURE of an ALPHANUMERIC "non-report" item may contain only the

characters L, R, 9, A, and X. The character L, R, 9, and A have been discussed
above,

Character Meaning and Use

X The character X, when appearing in a PICTURE, indicates
that the character position may contain any character in
the character set. For example, the PICTURE AAAXXXX
indicates that the described item has a size of seven
characters, that the first three characters will always
be alphabetic, and that the last four characters may be
any characters,

It may be desirable to edit data which is being prepared for printing. Editing in-
volves the insertion of certain characters and/or the suppression of others.
Editing of data is accomplished by moving the data to a "report" item. A repor:
item is an ALPHANUMERIC item governed by the following rules:

1. Any data which is moved to a report item is automatically altered according to
the editing specifications given in the Data Description entry corresponding
to the item. Editing is specified by means of a PICTURE.

2. A report item can receive only data which is numeric in content.
The characters which may appear in the PICTURE of a report item are shown below,
LRTPY9V, . +-2* CRDBBUO §

All the characters in the PICTURE of a report item, with the exception of L, R, T,
P, and V, must be counted in determining the size of the item. The uses of L, R,
T, P, 9, and V have been discussed above. The remainder of the characters
will be explained in three groups, zero suppression, insertion, and replacement
characters.

Zero suppression and replacement characters are used to suppress and/or replace
characters in accordance with the rules given in this section. Two general rules
apply to these characters, as follows: (1) Except in the cases of 0 and B, sup-
pression and/or replacement terminates with the character iinmediately preced-
ing the first digit other than 0, or the decimal point, whichever is encountered
first; e.g., zeros following a significant digit will not be suppressed or replaced .
(2) If all data character positions in a PICTURE reserved for source data (as op-
posed to those additional positions used for insertion characters) contain sup-
pression and/or replacement characters (other than 0), then all characters will

5.16

be replaced by blanks if the value of the data is zero. Note that this rule is
equivalent in effect to the BLANK clause.
ZERO SUPPRESSION CHARACTER

" Character Meaning and Use

Z The character Z specifies "zero suppression" of the
indicated characters. Zero suppression is the process
of replacing unwanted left-hand zeros by blanks., The
following table indicates the effect of zero suppression:

Source Editing Edited
Item PICTURE Itei
12345 Z7278S 12345
.00123 ZZZSS 123
00100 ZZZ89 100
00000 272799 00
00100 2222Z 100
00000 227227 100

A Z must never be preceded by a 9, a B, ora 0.

An "insertion" character is one which is inserted into a report item. An insertion
character does not take the place of any data; it appears in addition to the infor-
mation moved: to the items The insertion characters are §$,. . + - CR DB, When
any of these characters is used, the size of the report item must be larger than
the maximum number of digits which might be moved to the item. This principle
is illustrated in the discussion of the dollar sign below,

Character Meaning and Use

$ The single dollar sign, placed in the leftmost position of
a PICTURE, specifies that a dollar sign character is to be
placed in that position in the data, as illustrated in the
following table:

Source Editing Edited

Ttem* PICTURE Item
123 $999 $123
012 $999 $012
012 $Z77Z $ 12
000 $Z272Z :
010 $Z77 $ 10

Note that the PICTURE of the item specifies four character
positions; however, a maximum of three digits of data
can be moved to the item.,

5.17

Character Meaning and Use
- If the minus sign is written as either the first character
or the last character of a PICTURE, a "display" minus
sign (as opposed to an operational sign) will be inserted
into the indicated character position when the value oi
the item is negative. If the value of the item is not
negative, a blank will be inserted. Consider the followin.:
Source Editing Edited
Item* PICTURE Item
12 -99 -12
lg -99 12
12 99- 12-
12 99- 12
00 99- 00-
00 g9~ 00
+ If the plus sign is written either as the first character of
a PICTURE or as the last, a "display" sign will be placed
in the indicated character position. If the value of the
item is negative, a minus sign will appear; otherwise, a
plus sign will be inserted. If an item is unsigned, it is
assumed to be positive. The following table illustrates
the above principle:
Source Editing Edited
Item¥* PICTURE Item
12 +99 -12
.[.
12 +99 +12
12 99+ 12-
+
12 99+ 12+
00 99+ 00-
+
00 99+ 00+
*A sign over the units position of a number indicates an
operational sign.
§ The comma, when used to describe a character position,

will be inserted at the indicated position in the data being
edited. For example, the PICTURE 9,999 would cause
7461 to become 7,461 after editing. The comma itself
will be suppressed if zero suppression has caused the
elimination of all digits to the left.

Character

5.18

Meaning and Use

CR
and
DB

This character represents an "actual decimal point." When
used to describe a character position:

1. The data being edited is aligned by decimal point,

2. An actual decimal point will appear in the indicatecd
character position.

Thus, the integer 7531 would appear as $7,531.00 if the
notation $9,999.99 were used as the editing PICTURE,
Unlike the assumed decimal point, the actual decimal
point occupies a character position and is counted in
determining the size of an item. A PICTURE may never
contain more than one decimal point, assumed or actual.

The "credit" and "debit" symbols CR and DB may appear
only at the right end of a PICTURE. These symuols occupy
two character positions, When the value of the described
item is negative, the specified symbol will be placec at
the right end of the item. If the value of the item is posi-
tive, these characters will contain blanks. For example,
the PICTURE $99.99CR will cause 6325 to become $63.25CR
and 6325 to become $63,25 after editing. The only char-
acters which can appear to the right of CR and DB are T,

L, and Re.

Several of the characters used in PICTURE specify that, at object time, certain
digits will be replaced by other characters much in the same way that the 2
specifies the replacement of leftmost zeros with blanks. The list of "replace-
ment" character consists of: *, 0, B, the floating dollar sign, the floating minus
sign, and the floating plus sign.

Character

Meaning and Use

*

The asterisk is used to indicate "check protection, "
i.e., the suppression of each specified zero on the left
and its replacement by an asterisk. The following table
illustrates the use of the asterisk.

Source Editing Edited
Item PICTURE Item
12345 *%%0Q 12345
00123 *%**09 **123
00100 *%*%9Q **%100
00000 *%%09 *%%00
00000 o Kk kok ke

00100 Tkdekk **100

5.19

Character Meaning and Use

An asterisk can be preceded only by a dollar sign, a
plus sign, a minus sign, a decimal point, or a comma,

0 The character 0 (zero) will cause a zero to replace what-
(zero) ever character formerly occupied the indicated character
position. For example, if the digits 123456 are to be
moved to an item with a PICTURE of 999000, the item
will appear as 123000.

B The character B specifies that a blank will replace what-
ever character formerly occupied the indicated character
position. For example, if the digits 123456 are to be
moved to an item with a PICTURE of BB9999, the item
will appear as 3456.

The Zero suppression with a "floating dollar sign" is speci-
floating fied by placing a dollar sign in each leading numeric
dollar character position to be suppressed. A dollar sign will
sign be placed in the rightmost position in which suppression

by a dollar sign is to occur. The following table illu-
strates the principle:

Source Editing Edited
Item PICTURE Item
123 $899 $123
012 $$99 $12
001 3822 $1
000 $$88$

The floating minus sign is similar in expla :ation to the floating dollar and plus
sign. :

The Zero suppression by means of a "floating plus sign"' is

floating specified by placing a plus sign in each leading numeric
plus character position to be suppressed. If the value of the
sign item is negative, a minus sign will be placed in the right-

most position in which suppression is to occur; if the
value of the item is not negative, a plus will be inserted
instead. The following examples illustrate the effect of
the floating plus sign:

Source Editing Edited
Item PICTURE Item
123 ++99 +123
012 ++99 +12
012 ++99 -12
001 ++99 -01
000 ++++

All floating plus signs must be the leftmost characters
in a PICTURE.

General notes on the PICTURE.

1. When an integer is placed in parentheses immediately following a PICTURE
character, it indicates the number of successive times that character is to
be present, For example, the notation P(4) 9(10) is equivalent to PPPP99999
89999 and will be interpreted in the same way. The parentheses must follow
the indicated symbol without an intervening space.

2., The number of characters in a PICTURE must not exceed 30. For example,
$82Z.99 is a PICTURE containing seven characters, 9V9 contains three
characters and 9(1000) contains seven characters. Thus, the number of
characters in a PICTURE may be different than the number of character
positions described by the PICTURE.

The following are examples of applications of PICTURE which do not contain
editing symbols. A sign over the units position of a number indicates an opera-
tional sign as opposed to a display sign.

Non-Editing Applications
Then the item will

and the characters be used in pro- and its class
If PICTURE is: in the item are: cedures as: will be:
99999 12345 12345 NUMERIC
999VvI9 12345 123.45 NUMERIC
S999V99 12345 123.45 NUMERIC
89(3)va(2) 12345 123.45 NUMERIC
00X 12345 12345 ALPHANUMERIC
AAAAA ABCDE ABCDE ALPHABETIC
00X ABCDE ABCDE ALPHANUMERIC
999X99 123.45 123.45 ALPHANUMERIC
999AA 123AB 123AB ALPHANUMERIC
999XX 123AB 123AB ALPHANUMERIC
XO0{AA 123AB 123AB ALPHANUMERIC
X0KX 123AB 123AB ALPHANUMERIC
9(3)A(2) 123AB 123AB ALPHANUMERIC
99PPP 12 12000 NUMERIC
99PPPV 12 12000 NUMERIC
P(3)9(2) 12 .00012 NUMERIC

VP(3)9(2) 12 .00012 NUMERIC

§.21

The examples which follow illustrate the use of PICTURE to edit data. I.a each
example a movement of data is implied, as indicated by the column headings.

Editing Applications

Source Area Receiving Area
PICTURE DATA PICTURE EDITED DATA
99999 12345 $2Z,7229 .99 $[1]2{, [3]4l5|.|0]0
99999V 00123 $22, 229 .99 $ 1 2| 3| .| 0{0
9(5) 00100 $22, 229 .99 $ 110/ 0| .[0f0
9(5)V 00000 $22, 279 .99 $ ol..|0]o
9(5) 00000 $22,227.99 $.|ofo
9(5) 00000 $22, 227,27 ‘
999V99 12345 $22, 229 .99 $ 1 2| 3| .| 4[5
V99999 12345 $22, 229 .99 0 .[1]2
9(5) 12345 $x*, *%9 99 $|112{,(3/4| 5| .| 0|0
9(5) 00123 $*% *%9 g9 S| *[*[*[1] 2 3 .| 0|0
9(5) 00000 3**,***_99 S| *|*|*[*[*] % | 0|0
9(5) 00000 Shk kkk ok
9(5) 00000 Sk kkk 77
99Vv999 12345 $*% *%9 99 $|*|*|*|*l 1] 2| .|3]|5
V99999 12345 $*% *%g 99 $|*|*|*|*|*|o| .| 1|2
9(5) 12345 8, $89.99 $|1]21,|3]4|5].|0]0
9(5) 00123 $88, $$9.99 $|1/2|3].]o|o
9(5) 00000 $$$, $$9.99 $(o]. 0o
9(5) 00000 $$8$, $88.22
9999V9 12345 $88,$%$9.99 $l1|,]12(3(4].]5]0
V9(5) 12345 $88, $99.99 ${0]. 12
S99999V 12345 -22279 .99 -11(2)3|4|5(.|0]0
S9(5)V 1234% -22229 .99 1(2|3(4]|5(.|0]0
S9(5) 00123 -27279 .99 - 12 3.|olo
§99999 12345 22279 .99~ 1(2(3]4(5].]0]0
89(5) 12343 22279 .99~ 1|2|3|4|5]|.|o|o|-
S9(5) 00123 = emee—- .99 1/2(3].|0|0
S9(5) 00001 = eee——- .99 -{1].]0]0
89(5) 1234 +22227.99 +|1]2|3[4|5].|0]0
S9(5) 12345 +22227 .99 -{1(2|3| 4|5(.|0]0
S9(5) 1234 22227 .99+ 1/2|3|4|5|.|0|0|+
S9(5) 12345 22227.99+ 1(2(3(4[5|.[00]-
89(5) 0012f ++++4++,99 +(1{2]3].[0]0
S9(5) 0000 ++++++,99 +{1].|0|0
9(5) 00123 ++++++.99 +{1/213|.|0(0
9(5) 111110 < T ———— .99 1/2{3[.|0]0
9(5) 00000 +H++4++, 27
9(5) 00000 = —mmme- .

9(5) 12345 BB999.00 314/5].]0|0

9(5) 12345 00099.00 0lo]o|4|5]|.|0|0

S9(5) 12345 $8$8$$.99CR $11(2|3[4|5|.|0]0[C|R
S9(5) 12345 $$$$$$.99CR $(1(2/3[4]|5].|0]0
9(3)v9(3) 123456 999.99T 1(2]3].|4|5

9(6)V 123666 999PPP 1/2]4

9(6)V 123666 9S9PPPT 1/2]3

9(2) 88 99999L g8l8lolojo

5.22

CONSTANTS and INITIAL VALUES in a WORK AREA A constant or initial value may
be placed in the system by writing a data description entry for it which includes
both a statement of its format (using the PICTURE characters) and a statement of
the actual value or group of symbols. The format is specified by a standard
PICTURE entry. The actual value, or the actual symbols, must then be written
on the same line, separated from the PICTURE by at least one blank. This value
(or this group of symbols) must be enclosed in quotation marks.

. Data Name | Level T Typeﬂ_ Description |
PERCENT 1 f l V399 '05'

In this example, the notation V99 is, of course, the PICTURE, and it is followed
by a statement of the actual value of the constant.

Data Names Associated with REDEF and COPY When the type codes REDEF and
COPY are used, it is necessary to specify the name of the data item or area to be
redefined or copied. This name must be entered in the "Description" columns.
(See the discussion of those type codes earlier in this chapter.)

REPORT GENERATION FEATURES (RGF) are included in this language to accomplish
such functions as:

. Print Headings per page and per change in control fields data.

. Automatically increment and print page number.

. Print date on each page of report.

. Group suppress printing of control field data.

. Print selected field totals automatically per change in control field data
and at end of report.

. Generally, move and edit fields into lines of print from fields of detail lines
in working storage. Editing consists of functions such as suppress leading
zeros, insert periods and commas in quantity fields, floating dollar signs
and asterisk check protection,

These functions are accomplished, primarily, by data descriptions. The main
flow of the problem definition prepares a working storage of unedited data for

a detail line. The command DO REPT.n (where n is the report number) assumes
that the detail line is edited for print in the manner specified by the data de-
scription including the consideration of all the other report functions defined

in the data description. At the beginning of the report, the command DO BEG.
REPT.n may be given to effect the initializing of the report such as writing a
cover page, page heading, etc. At the end of the report the command DO END.
REPT.n is given to effect the end of report functions such as printing all required
levels of totals (including report total).

The RGF is explained in two parts with instructions for:
1. Completing the Printer Spacing Chart
. Layout of lines and fields
. Line identification code
. Classification of lines

5.23

2. Completing the Data Description
. Report Identification
. Source of report data
. Control fields in the source data
. Header lines
. Detail lines
. Total lines
A sample report and its corresponding data description are shown (page 5.3 through 5.35)
to illustrate the RGF instructions.

PRINTER SPACING CHART The purposes of laying out the report on the Printer
Spacing Chart are:
1. to establish the positions at which the various data will be printed as
well as to indicate the spacing between printed lines, and
2. to assign each line a unique identification code representing
a. the type of line,
b. the level of the line, and
c. the number of the line within its level.

Layout of Lines and Fields The numbers across the top and bottom of the spacing
chart represent the print positions. The numbers down the left side are line num-
bers. The user selects the line number and print positions for a particular field
and makes his notation in the selected positions. In the sample layout (Figure
5.4) note that headings and other constant information are spelled out completely
in the print positions assigned to them. Variable information is represented by
X's and includes, where applicable, credit symbols, punctuation, etc.

Line-Identification Code The column at the left on the spacing chart is used to
assign each line a three-character identification code. This code identifies the
line on the data description sheet where each line is described according to type
and content,

Type

The first character of the identification code is H for a heading line, D for a de~-
tail line, or T for a total line. All lines must be identified as belonging to one
of these categories.

Level

The second character of the identification code can be a number or a letter. A
heading or total line within a hierarchy is assigned a number to represent its
level. A heading or total line that is independent (not in a hierarchy) is assigned
a letter. A detail line can be assigned either a number or a letter to represent

its level.

Number

Lines within a level can be numbered according to their appearance in the output,
Lines with "numerical-level" designations must also have numerical line-number

designations. Lines with “alphabetic-level designations can have numerical or
alphabetic line-number designations.

5.24

Classification of Lines The classification of a line by type is usually self-ex-
planatory. Note, however, that total lines differ significantly from heading and
detail lines. Heading and detail lines can contain information from the record
in the source area at the time when the lines are produced; total lines can not.
A source record can effect the control-field change that causes total lines to be
written, but the source record cannot contribute data to these lines. A detail
line has a direct relationship to the source record in that most or all of the data
in a detail line comes from the input record. A heading line generally contains
constant information, although it can have some information from input records,
including the record present at the time the line is assembled.

The concept of line "level" is based upon the relationship of a line to other lines.
Heading or total lines that are independent of each other should be given alpha-
betic-level designations. Heading or total lines that are related in a hierarchy
should be given numerical-level designations corresponding to their positions

in the hierarchy. A hierarchical relationship can be likened to total operation

on an accounting machine, i.e., major lines force minor and intermediate lines.
The principle underlying a hierarchical relationship is that lines of higher level
govern lines of lower level. Thus, when the object program is running, a total
line with numerical-level designation such as T3x will force Tlx and T2x to

come before it whenever the output conditions are fulfilled for T3x.

In the "Monthly Expense Distribution Report" (Figure 5.3) there are three related
levels of total. The lowest level is associated with sub-ledger number, the

next level with general ledger number, and the highest level with department num-
ber. When the general ledger number changes, the sub-ledger total line prints
before the general-ledger total line. When the department number changes, the
sub-ledger and general-ledger total lines print before the department total line,
Because this hierarchicalrelationship exists, these lines have been given the
numerical-level designations T11, T21, and T31, (See the spacing chart in
Figure 5.4.)

Study of the Monthly Expense Distribution Report reveals a difference in the
hierarchical relationships for total and heading lines. Total lines appear in
"ascending" order by level; heading lines appear in"descending" order by
level. On that report the heading lines associated with department number print
before the general-ledger number lines which, in turn, precede the sub-ledger
lines. Thus, when department number changes, the H3x lines precede the H2x
and Hlx lines. When general ledger number changes, the H2x lines print before
the Hlx lines.

In addition to the three related levels of heading and total lines in the Monthly
Expense Distribution Report, there are independent heading and total lines.

Page headings printed as a result of page overflow, page totals, and final totals
are all examples of lines that are independent of the minor, intermediate, and
major relations governing a hierarchy., The illustrated report has both page head-
ing lines (HB1-HB4) and a final total line (TAA). All of these have alphabetic
level designations because they do not relate to lines of other levels.

5.25

Page heading lines may be printed because of control-field changes, because of
page overflow, or because of both conditions. The latter case is true in the
Monthly Expense Distribution Report. Just as the IBM 407 Accounting Machine
distinguishes between normal programming and overflow programming, the RGF
considers normal heading lines distinct from overflow heading lines, even when
the lines are alike in format. Thus, some of the heading lines in Figure 5.4
have two names reflecting their status as both overflow and normal page-heading-
lines. The normal heading lines are H3x, H2x, and Hlx. The overflow lines
are HBx, On a change in department number there is a skip to a new page of

the report and the numerical-level heading lines (H3x-H1x) print. On page over-
flow the alphabetic-level heading lines HBx print.

When there is a single detail-line format in a report, that line can be given an
alphabetic-level designation to reflect its independent status. Such is the case
in the Monthly Expense Distribution Report in which the detail line is named DAA.
Other applications might have any number of detail-line formats which, when they
do not relate to one another, are classified alphabetically by level. It is con-
ceivable that some applications might contain hierarchies of detail lines neces-
sitating numerical-level designations.

Note that the "level" of a line is not necessarily equal to the "number of the
control field" with which the line is associated. For instance, a total or head-
ing line of level three may not relate to control field three in the input data file.

The "line number" permits scheduling lines within a level. The Monthly Expense
Distribution Report has six heading lines composing level three print in line-
number sequence within that level, i.e., H31, H32, H33, H34, H35, and H36.
Even though there is only one line in each of the lower levels of heading line

in that report (H21 and H1l1l), the lines have numerical line-number designations
because they are hierarchical. The same principle applies to the total lines,

T11l T21, and T31, in the same report. Application of the line-number concept

to hierarchical total lines corresponds to special programming on the IBM 407
Accounting Machine, For instance, four minor total lines could be named T11,
T12, T13, and T14.

Analysis of the independent lines in the Monthly Expense Distribution Report
reveals that both numerical and alphabetic line-number designations can be
used in classifying lines with alphabetic "level" designations. When page
overflow occurs, four heading lines (HB1-HB4) print, and the line number re-
flects the place of each line in the sequence. If there is only one line in an
alphabetic level, that line can have a letter as its line number (DAA and TAA in
the example report) .

Multiple-line print (MLP) source date might cause three detail lines to print,
and these lines could be named DAl, DA2, and DA3 to reflect the place of each
line in the sequence. Two final total lines in a report might well be named TC1
and TC2.

DATA DESCRIPTION form is used for describing the source record in a work area
and the lines and fields constituting the output.

5.26

FIGURE 5.5 shows an example of a report source area data description. FIGURE
5.6 shows an example of a report definition data description. Both figures cor-
respond to figures 5,3 and 5.4 for the Monthly Expense Distribution. FIGURES5.5
is completed in accordance with previous instructions in this chapter. ®

The report definition must be completed in the specific sequence shown below:
. Report identification
« Source '
. Control fields
. Report lines

REPORT IDENTIFICATION Entries are:

DATA NAME Condensed report name
LEVEL 01
TYPE REPT.n when n is a unique number of this report.

SOURCE Entries are:

DATA NAME The name of the source work area which will contain data
for the report.

LEVEL 02

TYPE SOURCE

CONTROL FIELDS If the data sequence in the source area is not a condition
for printing lines, the control fields do not have to be specified, If they are
specified they must be named.in ascending order beginning with the minor con-
tro! field as Fl (see Figure 5.6). Entries are:

DATA NAME Control field name in source area.
LEVEL 03
TYPE Fn where n is the control field level, starting with 1 as the

minor level

REPORT LINES Entries for hierarchical line specifications must be in the same
order as they will appear on the report. Entries for all of the fields within a
line must follow the entry for that line specification. The field entries must be
in the same sequence as they will appear within a line on the report. Entries
for report lines are:

DATA NAME No entry required.
LEVEL 02
TYPE A three character entry (line identification code) is copied

directly from the spacing chart as explained previously
under Printer Spacing Chart.

The left character specifies the type of line (this is different from the type column.
on the data description form). It must be H for a heading line, D for a detail

line, or T for total line. An important consideration in assigning "type" to a

line is the difference between a total line and a heading or detail line with regard
to the record in the source area when the line is formed. The performance of the
total-line calculations, and the formation of total lines precede the function of
removing fields from the source record. Thus, a source record that causes a
control change cannot contribute data to total lines that result from that control
change.

5.27

fland D lines follow the removal of fields from the record in the source area,
and thus that record can contribute to these lines, Therefore, the naming of a
line according to type is not arbitrary, particularly with regard to total and
detail lines.

The line identification code must be in descending level-order for heading lines,
and ascending level-order for total lines. This is the normal order of printing
related report lines, as can be noted on the spacing chart in Figure 5.4 and on
the printed report in Figure 5.3.

DESCRIPTION There are seven possible kinds of entries. They are listed below
and must be entered in the sequence listed. It is very unlikely that all seven
entries would be present at one time. A comma is written between entries.

1. NEXT LLL where LLL is the line identification code of the next line to be printed.
This entry is made only if the next line specified by this entry should be
printed unconditionally after this line. When a next line is specified it must
be of the same type and level of the line being specified.

2. SPACE n BEFORE where the values for n are 01, 02, and 03 and specify single,
double or triple line-spacing before printing the line being specified.

3. SPACE n AFTER where the values for n are 01, 02,and 03 and specify single,
double or triple line-spacing after printing the line being specified.

4, SKIP n BEFORE where the values for n are 01 through 12 and specify skipping
to carriage tape channels 1-12, respectively, before printing the line being
specified.

5. SKIP n AFTER where the values for n are 01 through 12 and specify skipping to
carriage tape channels 1-12, respectively, after printing the line being spe-
cified.

6. COND X This entry is used to designate the line output condition(s). If
multiple conditions are designated on one line-entry, they are considered in
an AND relation. The possible conditions (values for X) are:

OF Page overflow

Fl-Fn Change in control fields 1 through n.

BEG.REPT.n Begin report n. Used to initiate report functions such as
writing a cover page and the first page headings.

END.REP.n End report n. Used to accomplish end of report printing such
as report total(s).

NOF NF1-NFn NBEG.REPT.n" These are negations of the above conditions.

and NEND.REPT. '

If a line is referenced by a previous entry as a NEXT line, no conditions are

entered.

A line will appear in the output only if:
1. "Line-output conditions" for the given line are specified and fulfilled, or
2. The line was specified as the next line of another line for which the output
conditions are fulfilled, or

5.28

3. The line is of the lower level ina hierarchy than another line of the same
type for which the output conditions are fulfilled.

A line conditioned by OF cannot be associated with any lines not conditioned by
OF. Thus, a line conditioned by OF cannot specify a "next line" not conditioned
by OF; nor can a line not conditioned by OF specify a next line conditioned by OF.

Lines related in a hierarchy must be of the same type and must have numerical-
level designations that reflect their relative positions within the hierarchy. The
processing principle underlying a hierarchical relationship is that lines of a higi:-
er level govern lines of lower level., Thus, when the output conditions are fulfilled
for T3x lines, the object program will force Tlx and T2x lines to come before the
T3x lines in the output without regard for the line-output conditions of the Tlx and
T2x lines. This is precisely what happens in the Montiily Expense Distribution
Report.

In addition, multiple lines within one level in a hierarchy must be referenced by
"next line" designations rather than individual line-output conditions whenever
there is a higher level of lines in the hierarchy. Thus, H21 must call for H22
as a next line and H22 must call for H23 as a next line to ensure that all three
will be present in the output when H3x lines precede them,

7. COPY LLL This instruction accomplishes a similar function as the data de-
scription type COPY described previously. The LLL represents a previously
defined line. The COPY LLL causes the field entries under line LLL to be
copied exactly and placed as field entries under the current line being de-

fined.

FIELDS WITHIN LINES Entries for line fields are:

DATA NAME Entry required only when the field will contain variable
data and thus must be referenced.
LEVEL Entry will normally be 03. Lower level numbers (numerically

larger) may be entered via the rules for the level numbers
described earlier.

TYPE No entry.

DESCRIPTION The usual entries are made for fields - PICTURE which may
be followed by a VALUE. An additional entry may follow the
VALUE (or PICTURE if there is no VALUE). This entry is
GROUP SUPPRESS which can be used only with control fields.
It will cause group printing to be suppressed. Suppose a
report appears as:

STOCK NR LOCATION CLASS INVENTORY
111 AA Cl1 100
i1 AA C2 150
111 AA C3 50
111 BB Cl1 20
111 BB C2 30

111 BB C3 40

5.29

If the fields STOCK NR and LOCATION were designated as GROUP SUPPRESS the
report would appear as:

STOCK NR LOCATION CLASS INVENTORY
111 AA Cl1 100
Cc2 150
C3 50
BB C1 20
C2 30

C3 40

5.30

MONTHLY EXPENSE DISTRIBUTION REPORT
REPORT DATE 07-18-60 PAGE 1|
OUR DATE AMOUNT AMOUNT
INVOICE AMOUNT BY BY
NUMBER MO DAY ACCOUNT DEPT
sae DEPT. NO. Ou2
#s GEN. LEDGER NO. %01
SUB. LEDGER NO. 615
12095 5 08 125,03
125.03 »
® SUB. LEDGER NO. 623
12091 &6 10 571.00
12088 5 16 685,94
11256.9u »
® SUB. LEDGER NO. 629
12080 5 03 2u,15
12073 5 02 1,631,17
14655,32 »
® SUB. LEDGER NO. 638
12109 7 03 1,725.54
1,725.54 «
L,762.83
s® GEN. LEDGER NO. 906
s SUS. LEDGER NO. 643
12150 6 08 402.00
P —— . | f— A FE— ——— S S— —— T S— d— —
FIGURE 5.3

Monthly Expense Distribution Report

§5.31

Hoday uornquisig osuadxy A[yiuoW 103 eyn bHuroedsg
P°S WNDOII

ZioBSIACYEZLD TZ 08 (8 VEZ 1Ol n a0 DG G VEZ1oke. il L X AN 0RO AN TSR R |~
..l...tl..ll.l.llllll.lll..llulllll. SEER ! y ! | R4 L o e - l.....d
PTG Gapramy wr PEBAGEIES wR LiaSsasete S selges b osoyr sy LIOW ..q.. | - HH [1 5
WLMBL W | WMBL oW 9/1 Bupods [oojen bt .50 B . AN EREE A S BRI T i l.xn
8 UME WHME WME WHE JHE W | L0171 Bupods piwouon Ll I [B % BRI : 360 BRNERN RE1 B! + [0} : xs
SHIGIQ WBO4 035N AINOWWOD | SMIOM WuOd | sunawaunsvaw LRUSEEE FBE I A RETSH RS ; _ 1 ERSUE S I B S0 NS EE AT EDEBOGA I
. “ r _ 1 ! 288 T 88 £ .
wedo 1w g ADs i peyued ag TR SN DGR ; 1 + "l = 3
_ PIACUS 1euuoyd WOt B u MO Sun sed Puvoyd suo Ao yung — ‘ . ‘o) Sk 18
FIDViBEYD QIS VRO i g v . = W
— 4 et ﬂ - — . ———— o ——— - e o . _ __n' "?4"!-1.-..
T] R T + 301 S b v T & T ISR Gl 1
-.-... e B DRI SERRIN S DSt 0 | T TP B S - = RS i L5 S SIS, S W P £ 1E¢ i Y
» ‘ et
o 4 ! M 1} o] e A b [P
B 5 SO —— yows A il S - —te ey ' - + o—t— 4 —— o =1
: L *— g
IR, A S« P i | 1 T BT] L giriln
AL 5 LS P Y dipy i ESRTEASE BEUR AR B2 i B R | L] e &
il | 1 et idd | 44 [A L &
#.1 i ey ...‘:H.a..lu.........l_vu.“!!l..r!u.l . R 5 it L . - - e ‘»Ju_l‘w.L i M_._. “
| - e e e fd - W SR - ——— 1 ey
P PO 5 ST B B Yoy B 4 = apg ey e and ._nn 4 . is
| ' | it ol =
R H %‘Q di 3 (P JRERE EC: I 7 B0 G- T Iy
+ ' 1 T | = T n —aAene tlllnﬂﬂ
bt S0) S 4 e SHT e w4
I ERPIGRSSETE S £ S S0 B8 S8 ST B 5. P ML TN Ry FREWRL TR DS MSes. Smpnl] S S | J SO o DA b [IPEIES L. S dagrisd N Y
P00 SRISPIRIGEE FECATRNINN VIR0 CRMME ST b Lk o BREET IORER! il LI RS £ 20S 34 : ;7 { -G S
lﬁ G = & e el (S
i D B T N,) |
SHEET ool
Fot
1

.‘ RIS TPERICY, STt IS IPUPERIER LAY L .r.l.l.l.l.um”

L v _.t.l. WO S ISR [TR e R 10O T " | MU E R RS =S
S 7 S WIS TR O I 0 77 SEBERAS BRAR
............. B ETRIVAPR ' SPUPRSPTRRCEICE S-SRI ESSHEIA SRS _r [PR
e i S,) B ¢ | e V154 S

. - - i Hionigr i) o6 " b 2 [T 4. SO L TR A SSSS ﬂ”“.lll_urfoll.. i -
:._:.-_h,._n...n.ﬁ_..._ :::2%:.3:; S¥CZI0jE8 LSS PELIOBBLOSYELIOSOLOGPCLIORULICYCLIOEOLOSPEL] ..h-22_ﬂ_.:r..n:u.Lﬂfn...,-_"n:_..:::n; BN TR L
ezl 8 o i i o | v b z i | o inl19 |

A 00 TN T EREUE | 54 B e 1| INNENANAIRNARRANCHIFURRAADLS NS SHDH D ITPI-T] I

ol B E TR addd ARl P RPN FEAENRANNENEEN RO EFOACHETEBENENRER T FRNSH T HERanfe! 3.t

IR 50563 ROS S84 2T DN [& & IR B HE B B B R A RO ELLAFE RO CERNSE ERO IR ER R 6 5 | B ENNCOSENEERN IS NS BRSNS EN DRI RS EEDE N R

Ao il | 1 LITITTII T IT 1 NN SNESUNIENEE NN DN & INANEESANNVEE T

you sed seun 9 SRV OR0M/SONIGYIN Q1IN

WOIATa P
vEn o cumne LIVHD ONIDVdS £0v1 Wl Wal

POreELK wesy 3 SINIHIYH

i o oW 3

DECISION TABLE DATA DESCRIPTION

Fb&' SYSTEM SYSTEM SEGMENT]PREPAREB BY [DATE [PAGE 21
ACCOUNTING MONTHLY EXPENSE DISTR OYE 8/1/61 {TO PAGE 21.1
SEMAL NAME i'ai‘“ TYPE DESCRPTION 2
01 DETAIL 01| WORK ot '
02) DEPT 02 9(3)
03 [GEN.LEDGER 02 9(3)
04 PBUBLEDGER| 02| - 9(3)
05 |INV.NR 02 9(5)
06 | DATE 02 x(6) 4
07 | INV.AMT |02 9(7)
FIGURE 5.5

Report Source Area Data Description.

ZE°S

D_Egﬂ)N TABLE DATA DESCRIPTION
T | e AT S biorn PREPARED BY [B[E [oRoE o
[4
S NAME TYPE DESCRPTION _ ;
01 ON.EXP.DIST 01 [REPT. 1 J'T
02 |DETAIL 02 [SOURCE
03 |SURLEDGER] 03 [F1
04 [EN 03 [F2
05 |DEPT 03[F3
06 02 [H31 NEXT H32, SKIP 01 BEFORE, SIP 02 AFTER, COND F3
07 03 A (33) BLANKS
08 03 A (35) 'MONTHLY EXPENSE DISTRIBUTION REPORT'
09 02 |H32 NEXT H33, SKIP 03 AFTER
10 03 A (65) BLANKS
11 03 A (12) 'REPORT DATE '
12 | REPT.DATE| 03 X (08)
13 03 A(09) ' PAGE'
14 | PAGE.REPT.] 03 9 (03) '001"
15 02 |H33 NEXT H34, SPACE 01 AFTER
16 03 A (32) BLANKS
17 03 A (15) 'OUR DATE'
18 03 A (24) BLANK
19 03 A (06) 'AMOUNT"
| 20 03 A (13) BLANKS
21 03 A (06) 'AMOUNT'
22 02 |H34 NEXT H35, SPACE 01 AFTER
23 03 A (30) BLANKS
24 03 A (07) 'INVOICE'
25 03 A (18) BLANKS
26 03 A (06) 'AMOUNT'
27 03 A (12) BLANKS
28 03 A (02) 'BY"
Z3 03 A (17) BLANKS

FIGURE 5.6

-~ P W™ 1 san

o

- Al

€e"S

DECISION TABLE DATA DESCRIPTION

CTL | SYSTEM SYSTEM SEGMENT JPREPARED BY |DATE |PAGE 22

100 | ACCOUNTING MONTHLY EXPENSE DISTR OYE 8/1/61 [TO PAGE 92
4

SERALUNAME e Tyee DESCRIPTION :

30 03 'A(17) BLANKS

31 03 A(02) 'BY'

32 02| H35 NEXT H36, SPACE 01 AFTER

33 03 A(30) BLANKS

34 03 A(06) 'NUMBER'

35 03 A(06) BLANKS

36 03 A(06) 'MO DAY’

37 03 A(22) BLANKS

38 03 A(07) 'ACCOUNT'

39 03 A(13) BLANKS

40 03 A(02) 'BY'

41 02| H36 SPACE 01 AFTER

42 03 A(20) * *** DEPT, NO. '

43 | DEPT 03 9(03)

44 02| H21 SPACE 01 AFTER, COND F2

45 : 03 A(25) ** SUB, LEDGER NO. '

46 (3EN.LEDGER| 03 9(03)

47 02| H11 SPACE 01 AFTER, COND F1

48 03 A(25) * SUB, LEDGER NO. '

49 BURLEDGER| 03 9(03)

50 02| DAA "SPACE 01 AFTER

51 03 A(31) BLANKS

52 |INV.NR 03 9(05)

53 03 A(06) BLANKS

54 DATE 03 X(06)

55 03 A(05) BLANKS

56 [INV.AMT |03] 2Z, 229 .99

57 02| T11 SPACE 02 AFTER, COND F1

FIGURE 5.6

Report Definition - Data Description (Part 2 of 3)

ve's

DECISION TABLE DATA DESCR IIF_’TION
Cl-l(;lﬁ SAYCSCTOEUFIQIT!ING ?\JYOSNTI‘ERAY S&aﬁm STR PREOPéRE ks %1;561 Tpé Gp%GE ifm
SERJAL LEV- <
NAME [ec |TYPE DESCRIPTION _ N
58 03 A(52) BLANKS
59 |TOT.AMT |03 22Z, 229 .99
60 03 X(02) ' *'
61 02| T21 SPACE 02 AFTER, COND F2
62 03 A(67) BLANKS
63 [AMT.ACT |03 Z,22Z, 229 .99
64 02| T31 SPACE 01 AFTER, COND F3
65 03 A(84) BLANKS
66 |AMT.DEP |03 22, 222, 29 .99
67 02| TAA SPACE 03 BEFORE, COND END, REPT
68 03 A(69) BLANKS
69 03 A(14) 'FINAL AMOUNT
70 |FIN.AMT |03 222,222, 229 .99
71 4 02| HBI NEXT HB2, SKIP 02 BEFORE, SKIP 03 AFTER, COND OF, NF3, COPY H32
72 02| HB2 NEXT HB3, SPACE 01 AFTER, COPY H33
73 02| HB3 NEXT HB4, SPACE 01 AFTER, COPY H34
74 02| HB4 SPACE 01 AFTER, COPY H35

FIGURE 5.6

Mo oed TNall bl cw ™Made Ve ettt e MPcea A A

SE°S

APPENDIX

SAMPLE INVENTORY PROBLEM

A simplified inventory problem has been selected for illustrating the use of de-
cision tables. A machine run decision logic is documented from the analyst

viewpoint, It ignores practically all of the machine considerations of how the
decision logic will be accomplished.

We can think of a procedure as a series of instruction steps in a specific sequence
where each step may be conditioned by the assumption that a previous step(s) has
been taken. A completely non-procedural documentation of a problem decision
logic would be characterized by:

. Arbitrary selection of points for defining inputs and outputs in terms of re-
cords (subordinate data associated with identification data).

. No ordering of data within records.,

. No ordering of records within files.

. May or may not separate inputs into multiple filea for communication
benefits.

. Define each element and item of data as output records in terms of input
data conditions and transformation logic without recourse to intermediate
work area, files, etc.

This would give near maximum flexibility for procedurizing the implementation

of the problem statement. It would permit the simulation and comparison of
various problem solutions,

The use of decision tables is a compromise between procedural solution state-

ment of a problem and a completely non-procedural statement of a problem de-
cision logic.

The sample inventory problem documentation is procedure oriented in the following
ways:

. The files are sequenced.

. The fields within records are sequenced (however, other than for the report,

it would make little difference if the fields were not sequenced within
records.)

. Table to table sequence is specific.
. Mandatory sequence of actions within a rule is stated.

The documentation is non-procedural within a table in the following ways:
. Rules within a table can be considered in any sequence (the exception is -
the ELSE rule must be considered last in a table).
. Conditions within a rule may be tested in any sequence.

The process chart shows there will be:
Inputs: Outputs:
Master Inventory - Magnetic Tape Master Inventory - Magnetic Tape
Transactions - Cards Report ~ Printed Report

A.2

N — S Tpe—
Master Master
Inventory Inventory
Update Master
Inventory
Pand Prepare ¥
Inventory Report nventory
r eport
Ll

Transactions

The sequance of the files are:

FIELDS SEQUENCE MASTER | TRANSACTIONS | REPORT
STOCK SYMBOL MAJOR X X X
LOCATION INTERMEDIATE|| X X X
TRANSACTION MINOR X

CODE

Other assumptions are:

1
2.
3.

4.
S.

. There are nq ktock symbols with a value of zeros.

There is only one master record for a stock symbol and location code.
There is a master record .. (stock symbol and location code) for each
transaction.

There may be master records with no activity (no matching transactions,)
For any master record there may be multiple transactions of each of the
following:

. Recelipts

. Orders

. Issues

. All digits in numeric fields will contain a value from zero through nine.
. The "quantity on order" field in the master record is always greater than or

or ‘'equal to "receipt quantity."

. There willalways be one date card and it will be the first card in the trans-

action file.

INDEX OF INVENTORY PROBLEM DOCUMENTATION

FIGURES

A.l Printer Spacing Chart for Sample Inventory Report
A.2 Sample Inventory Report

DECISION TABLES

TABLE f_; o
NR 2 IE
E N
D
001 X
002 X
003 X
004 X
005 X

DATA DESCRIPTION

Transaction Records
Master Inventory Record

Source Area for Report Detail Line

Report - Header Lines
Detail Line
Total Line Lines
Date Work Area
Arithmetic Expressions

FUNCTION

Initialize transaction and master inventory files and
report headings.

Position Input Files. Provide control logic for consider-
ing other tables.

Print Report Lines. Write master file.

Process Transactions

When master inventory order quantity equals zero

put blanks in order code and order date.

Determine and prepar€ management exception in-
struction.

Page

Oy O O b b W IN
—

A.4

L It s W Ll T
MR AT) G

M) Ay
e LR R TR T)

yau 97| Bunods jomung
yau g1 /1 Bunads jawotioy

SINIWINNSYIW

BDYIUN kG RO
SN /| Ui
SHIGIM WHO4

‘g s3d yund auo Ly

wodo 1330ds ybis voy

0w 3Q PINCYL [SUUDY) SWDT W Saysund Om|
F0OVISNYD Q334S vna

1
B
t

=i

=

XX

XXX

LA T]
Y RLE Wl

I4Od3Y JMOLNIANI ITdWVS HOJ IHVHO ONIOVAS HILNNMd
'Y WAOLd

XXX XXX X

TIA3T [13A37
7¥2111¥) ¥aayo3y

LY¥d

LoSYETiojs8/8SyEZ10/68I5rEC10[68LISYEZIORBLISHELY m_. BLISHEZ L

T e ——

AXXEXXX XXX Xexxx Xy’

LSS P EZ10/69L8SPEZI068LISICZIOBELISYEZIOERLISHELL

w_.‘whrw_m»_n_q‘.r__ﬂ-wv.nr _“I_-

EXXY YXX XWX X XXX XXX X
XX ¥xxeq xxx‘x

SyY7Tod saiManini
@m g0 3FowiI¥g SnSSI n”_\uq
T INIWNT 3.1¥d 01 VA
d3¥ ANYOLNIANI

BLOSYEZIOBBLISYED I

XXX Xxx x|

EXX ¥XX¢

SS1 SUdD
1N3Y

8L9SYELZI F:_:.: La_:::": sLasvezy |

._ﬂ.u 9GYEZI0GBLISPEZIOBBLISYCZIO/GBLISKEZIO6RLISHELL

Xxxxxx

JINETHE BONETHE N

ni

XXy xxx WaKOxxy

X XXX

i

K

11 709MAS o

A3¥d W01 XI0IS s

TG

Mgl n

>
“

A e cmeS

P2 345 R T 88 10N RN MRS T IR 20 1 22 2D 242526 27 20 29 30 31 32 33 A D5 36 37 38 39 4D 41 42 4D aa 4

L]

L T T

14VHD ONIDVdS torl wal

T

ST L RN BN TR L L O T

-1

¢ ..,wl_ﬂ_q__:_ _:m-: 6 T@Em_. {- &2 m . Bt R = 0 10019
RS NEQAREREEE PR RRROREAE LED R FL TS DR ke G5 R ERpaaattns REEE - ——

IREEESCRARRE RGN AN IEERREELD Il il o S M el e s S e LTI T 1:-..._1. it i S
TIITITIITIT R TATITITT T aoTIT B & T i B B i ‘.uﬂqu!li.l.lf.l.llv.-ﬂ.._..ﬂf

L x|

T TR T

O A e

aIuCK
5YMBOL

121211

122220

LOCA
TION

AlO
Al .I_
Al2

AlU
All
Al2

PREV

600
80

100
780
13,000
4,500
500

18,000

18,750

CURRENT
RCPTS ISSUES

BALANCE BALANCE

550

95

40

na5s
10,000
4,000
400

13,400

La 085

L50

150

200
25

20
245
3,000
1,500
100

4,000

4,845

INVENTORY

YR TO DATE INVENT
KCPTS 1ISSUS BALANCE OBJCIV

HUNDREDS DOLLARS
30 40 v, 000
3 4 5,500
4 10 8,000
37 54 19,500
200 750 10,000
250 400 3,000
25 40 400
775 1,1%0 13,400
812 1,244 32,900

FIGURE A.Z

SAMPLE INVENTORY REPORT

KEPOK

INVENT

1,80
20,000
10,000

1,000

31,000

32 ,¢30

"
1

DATE 1CAPKol

AEOKDER CKITICAL QIJANT Co

LEVEL

100

00
400
1,200
L4 ,200
7,000
700

21,700

22,900

LEVEL

300
85
150
535
7,000
3,500
350

10,650

11,385

UN DE
OIDEK

U K
] K
] K
0
/] K
0 v
0 9

MANAGEMENT BY

FPAGE

cACEPTION
INSTRUCT1ON

CRIT
CRIT

CRIT

VRUE K
[0 T
REFTD

KEPTU
OKDE O
ORDI D

10

450
75
OMAK

S°Y

TABLE TITLE

SYSTEM SEGMENT[SYSTEM
WEEKLY REPORT | INVENTORY

PREPARED

BY__OYE

JOPERAND 1[OP |OPERAND2 RULE FREQ TRULE

F

1
2*

m.

9-4-61

OPEN _X:JDATE ELSE NEXT

002

TABLE
01

FREQ [RULE

TRANS 1] %
INV § 1] X
DAT . WA.
TRANS DATH TO | DATE 2] X
TRANS 3| X
W
mw ear | 10 |BREVY 2| X
BEG RPT . 1 3l x .

*For conditions: OPERATOR

For actions:

SEQUENCE

TABLE TITLE [SYSTEM SEGMENT[SYSTEM [PREPARED [|OPEN X [DATE [ELSE NEXT JRBLE
|POSITION FILES-CONTROL LOGIC WEEKLY REPORT INV BY _OYE CLOSED__ | 9-4-61 002 | 002
[LINE JoPERAND 1]0P IOPERAND2|[RULE RULE [FREQ [RULE [FREQ IRULE [FREQ IRULE FREQ [RULE [FREQ |
NR |[VERB 1 | 2300 211000 3 [200 4 500 5 1
L Lo *IOPERAND 2| * |OPE *IOP| ND2[* |OPERANDZ!* IOPE RANDZ| * [OPERAND2
01 E TRANS CMPliYocKk kR EQ EQ
T INV "

| 02 LOC CMPILOC E GR

03 INV EQ |END A N N N N

04 ['l TRANS EQ |END N N Y N

10 DO 003 1 X

11 NREAD TRANS 2 X

12 DO 004 1] X 11 X 11X

CAL.BAL, PRT .WWA

13 OVE | DOL TO |BAL WALU ﬂl X 11X 11X

14 DO 005 2] X 21X 21X

15 OVEC] INV TO |PRT .WA 2l X 21X 21X

16 DO REPT.1 3| X 31X 3|X

17 OVE |ZEROS TO 2‘{?’;{}’&'& 4| x 4lx 4lx

18 " " TO E%T;iv[m 4] X 4|X 41X

19 RITE|INV .0 FROM INV 4] X 41X 41X

20 READ |INV - 5| X 51X 51X

PRT .WA

[2] OVE |INV BAL | TO |PREV. 6] X 6 (X 61X

22 DO ENDRPT.1 1] X

23 STOP 2] X

*For conditions: OPERATOR CAL.BAL.DOL = INV UNIT.COST * INV BAL

For actions:

SEQUENCE

TABLE 003 - Process Transactions
TABLE 004 - Spaces to Ord.Code & Date if Ord.Qty.is zero

TABLE 005 - Mgt by exception Instr,

v

LY

[

200
318

TABLE TITLE | SYSTEM SEGMENT[SYSTEM |PREPARED [OPEN ___IDATE FLSE INEXT [TABLE
PROCESS TRANSACTIONS WEEKLY REPORT INV., BY__OYE X |9-4-61 003
LINE |OPERAND 1|0P |OPERAND2[[RULE FREQ |RULE IFRE m%m_ FREQ [RULE [FREQ |
NR |[[VERB 1| 800 2 | 125 3 | 75 i

- OPERAND2! * JOPE] ND2[* [OPERAND2[* JOPE *
01 TN O | EQ ISSU.T. RECP.T ORDR.T
10 SET INV BAL EQ+|TRANS QTY 1 X
11 " | Eg- X
12 isgu.vw EQ+ X
¥ BrWE |sor x
14 RCPT.YTD | Q* 1
15 ORb.qry | EQ- 1] x
16 Eggu"{ﬁc EQ+ 1| X
17 ORD.QrY | EQ+ v X
18 ORD.DATE | EQ TRANS DATE
v EQ ORDERED

*For conditions: OPERATOR

For actions:

SEQUENCE

- TABLE TITLE | SYSTEM SEGMENT[SYSTEM PREPARED GJEN ___IDATE ELSE NEXT [ABLE
TEST ORDER QUANTITY WEEKLY REPT INV BY _OYE CL@_X_ 9-4-61 . 004
LINE IOPEPANm OP PPPERAND2 ,@LE FREQ |RULE IFREQ [RULE [FREQ RULE |FRE FRE | [RULE |FREQ
NR VERB] g_qgg__mg 3000 : B
*JIOPERAND2! * *IOPERAND2!* [OPERANDZ! * IOPE *
ORIS.ETY EQ | ZEROS Y N

10 OVE | SPACES TO ORB«QXODE 11X
OVE | SPACES TO ORD DATE |1 |X

———

*For conditions: OPERATOR
For actions: SEQUENCE

700
31avl

6°V.

TABLE TITLE | SYSTEM SEGMENT[SYSTEM |PREPARED OPEN ___[DATE ELSE [NEXT [TABLE
MGT BY EXCEPTION INSTRUCTION| WEEKLY REPT INV BY_OYE _ [()ocepX [9-4-61 005
LINE [OPERAND (0P [OPERAND2[[RULE FREQ JRULE [FREQ JRULE [FREQ [RULE [FREQ [RULE [FREQ |RULE [FREQ |RULE FREQ |
NR |[VERB 1 {4700 | 2 60 3 1 40 b 10 5 | 60 6 30 7 10
Tft OPERAND 2] *JOPERAND2| *[0 D2* [OPERAND2!* JOPERANDZ] *|OPERAND2] *JOPERAND2
01 NV BAL _ |CMP{ cRift LvL G R __GR LE B E
02 vV AL |omp| RORD s r Lz Lt
03 1] ORDCODE | EQ ORDERED REPTED NONE ORDERED | | REPTED NONE
A |
I
||
BEIE
- “l’r_._.fgpg{?r::ﬁ [Q | | SPACES SPACES SPACES SPACES | ‘» SRIT" | |" CRIT" " CRIT"
! 11, ' i T §- 1
11 JorRD RPT i | | SPACES “ORDED" “REPTD* | | “ORDED" | . "ORDED" | | "REPTD" “ORDED"
|1 PrILWA i | INV INV CAL. oIV ' | INV CAL.
i . Ty Dat SPACLS ORD DATE) | ORD DATE |ORD,Q1Y : |ORw. DATE! | ORD, DATE
'3 N TV DAT, WA X X
RD.DA'E s 2]
i ORb Qi ORD. QTY X : X
15 | * |oRb.copd ¥ [RePTED X X
|
*For conditions: OPERATOR CAL.ORD.QTY = INV OBJ - INV BAL - INV ORD. QTY =3
For actions: SEQUENCE g =

ot*v

DECISION TABLE DATA DESCRIPTION

CTL [SYSTEM SYSTEM SEGMENT PREPARED BY |DATE |PAGE 1w
001 INVENTORY WEEKLY REPORT OYE 9-4-61 |TO PAGE 2
SERIAL LEV- <
NAME e |TYPE DESCRIPTION N

01 |TRANS 01 | RECORD R
| 02 _|TR.CODE |02} 99 .
03 | DATE.T 03 |COND | '00'

04 | RECPT.T |03 |COND | '30

05 [1ssu.T |03 |[COND | ‘40

06 | ORD.T 03 |cOND | '20'

07 |STOCK 02 X (6)

08 |LOC 02 X (3)

09 |aY 02 9 (4)

10 02

11 | DAY.MON {03 X (2)

12 | MONTH |03 X (3) -

13 02 A (60) BLANKS -

14 |DATE 01 {REDEF TRANS

15 | TR,CODE [02 99

16 | STOCK 02 X(6)

17 | DATE 02

18 | DAY.MONP3 XX

19 | MONTH |03 AAA
20 | YEAR 03 XX

21 02 A (65) BLANKS

11°VY

DECISION TABLE DATA DESCRIPTION

CTL | SYSTEM SYSTEM SEGMENT PREPARED BY |DATE |PAGE

002 INVENEORY WEEKLY REPORT OYE 9-4-61 |TO PAGE

SERIAL LEV- ‘ 5
NAME L |TYPE DESCRIPTION ~

01 [NV 01 |RECORD

| 02 _|STOCK 02 X (6)

03 [LOC 102 X (3)

04 [BAL 02 9 (6)

05 JOB] 02 9 (6)

06 [REORD.LVL |02 9 (6)

07 |CRIT.LVL |02 9 (6)

08 [RCPT.YTD [02 9 (6)

09 [SSU.YTD |02 9 (6)

10 ORDQTY |02 9 (5)

11 JORD.CODE (02 A

12 | REPTED |03 |COND 'R'

13 | ORDERED | 03| COND | 'O'

14 | NONE 03 | COND | SPACE

15 |ORD.DATE |02] - N

16 | DA.MON |03 XX

17 MONTH |03 XX

18 |UNIT.COST| 02 99v999

19 |INV.O 01| CoOpPY INV

SPACES =BLANKS

AR 4

DECISION TABLE DATA DESCRIPTION
CTL | SYSTEM YSTEM SEGMENT PREPARED BY |DATE |PAGE 3
sgg':: - INVENTOLEE WEEKLY REPORT OYE 9-4-61 |TO PAGE 4
[

NAME el [TYPE DESCRIPTION 5
01 |PRT WA 01 |[WORK _H
02 |[STOCK D2 X (6)
03 [LOC 02 X (3)
04 |PREV,BAL |02 9 (6)
05 02 9 (6)
06 |CUR.RCT |02 9 (5) ZEROS
07 ICUR,ISS |02 9 (5) ZEROS
08 |[RCPT.YTD (02 9 (6)
09 |ISSU.YTD |02 9 (6)
10 |BAL.VALU p2 9 (8) V9 (3)
11 |oB] 02 9 (6)
12 |REORD,LVL |02 9 (6)
13 |CRIT,LVL |02 9 (6)
14 _|ORD,Qry |02 9 (5)
15 |ORD.CODE |02 A
16 |MGT.INS |02
17 | CRIT 03 A (5)
18 | ORD.RPT |03 A (5)
19 | Qry DAT |03 X _(5)

ET°V

DECI

SION TABLE DATA DESCRIPTION

CTL [SYSTEM SYSTEM SEGMENT FREPARED BY [DATE |PAGE 4
010 INVENTORY WEEKLY REPORT 9-4-61 [TO PAGF 4.1
[§
" NAME YPE DESCRIPTION] H
01 |WKLY.INV |01 |REPT .1 |
02 |PRT.WA |02 |SOURCE
03 _JLOC 03 [F1
04 [STOCK 03 |F2
05 02 |HA1 NEXT HA2, SPACE 03 AFTER, SKIP 0t BEFORE, COND OF
| 06 03 | A (43) SPACES
07 03 A(l) INVENTORY REPORT
08 03 A (21) SPACES
09 03 A (5) 'DATE '
10 |DATE 03
11 DAY .MON |04 99
12 MONTH 04 AAA
13 | YEAR 04 99
14 03 A(9) ' PAGE'
15 |PAGE 03 9 (4)
16 02 |HA2 NEXT HA3, SPACE 01 ATER |
17 03 A (43) 'STOCK LOCA PREVn CURRENT
18 03 A (46) 'YR TO DATE INVENT INVENT REORDER CRITICAL'
19 03 A (26) ' QUANT CO MANAGEMENT BY'
20 02 |HA3 NEXT HA4,SPACE 01 AFTER
21 03 A (43) 'SYMROL TION BALANCE BALANCE RCPTS ISSUES
| 22 03 A (44) 'RCPTS ISSUS BALANCE OBJCTV _LEVEL LEVEL'
23 03 A(24)' ON DE EXCEPTION'
| 24 02 |HA4 SPACE 02 AFTER
| 25 03 A (45) SPACES
26 03 A (18) '"HUNDREDS DOLLARS'
|27 03 A (27) SPACES
28 03 A (23) 'ORDER INSTRUCTION"

SPACES = BLANKS

PI°Y

DECISION TABLE DATA DESCRIPTION
CTL | SYSTEM SYSTEM SEGMENT PREPARED BY |DATE |PAGE 4.1
sg i & - INVEN’IL‘E;F_{Y WEEKLY REPORT OYE 9-4-61 {TO PAGE 5 i
NAME eL |TYPE DESCRIPTION ~
40 |DETAIL 02 |DAA SPACE 01 AFTER i
41 |sTOCK 03 X (6) GROUP SUPPRESS
42 03 A (1) SPACE
43 _[LOC 03 X (3)
44 03 A (2) SPACES
45 |PREV.BAL 103 227,279
46 03 A (1) SPACE
47 |BAL 03 227, 229
48 03 A-(1) SPACE
49 |CUR.RCT |03 27,229
50 03 A (1) SPACE
51 |CUR.ISS |03 27,279
52 03 A (2) SPACES
53 |RCPT.YTP |03 Z ,2Z9PP
54 03 A (1) SPACE
55 [ISSU.YTD |03 Z ,ZZ9PP
56 03 A (1) SPACE
57 |BAL.VALU |03 2,227,279V
58 03 A (1) SPACE
59 |OBJ] 03 227,279
60 03 A (1) SPACE
61 |REOR.LVL |03 722 ,27.9
|62 03 A (1) SPACE
63 |CRIT.LVL |03 222,229
64 03 A (2) SPACES
65 |ORD.@Y |03} 27,229
66 03 A (3) SPACES
67 |ORD.CODE| 03 A (1)

SPAMFS = AT ANWQ

ST'Y

DECISION TABLE DATA DESCRIPTION

CTL | SYSTEM SYSTEM SEGMENT PREPARED BY |DATE |[PAGE 5
010 INVENTORY WEEKLY REPORT OYE 9-4-61 |TO PAGE 6
SERIAL LEV- b3
NAME teL |TYPE DE_i(BIPTlON 71
68 03 A (1) SPACE
69 |MGT.INS |03
70 | CRIT 04 A (5)
71 04 A (2) SPACES
72 | ORD.RPT |04 A (5)
73 04 A (2) SPACES
74 | QTY.DAT (04 X (5)
75 |STK.TOTAL | 02|TAA SPACE 01 BEFORE, SPACE 02 AFTER, COND F2
76 1 03 A (12) SPACES
77 {PREV.BAL 03 727,229
78 03 A (1) SPACE
79 [BAL 03 7227 ,22.9
80 03 A (1) SPACE
81 |CUR.RCT (03 77,279
82 03 A (1) SPACE
83 |CUR,ISS 03 27,229
84 03 A (2) SPACES o
85 |RCPT.YTD |03 Z,ZZ9PP
86 03] A (1) SPACE
87 |ISSU.YTD |03 Z ,2Z9PP .
88 03 A (1) SPACE
89 IBAL.VALU |03 Z ,22Z ,2Z9V
90 03 A (1) SPACE
91 |OBJ 03 727,279
03 A (1) SPACE
93 |REORD.LVL|03 227,279

SPACES = BLANKS

91'¥

DECISION TABLE DATA DESCRIPTION

CTL | SYSTEM SYS

011 INVENTORY) LEEE‘.AKLYS' %BGP'%‘ENT PREp&gE i %A);;ﬁl %‘Gp% ﬁm
SERIAL LEV-

NAME L [TYPE DESCRIPTION) l..

01 D3 A(1) SPACE

02 |CRIT.LVL p3 222, ZZ9

03 p3 A(2) SPACES

04 |ORD.QTY p3 22,229

05 |REPT,TOT p2 |TBA SPACE 02 BEFORE, COND END. REPT.1, COPY TAA

06 |[DAT.WA Pl | WORK

07 _|DATE D2

08 |DAY.MON p3 99

09 |MONTH p3 AAA

10 |YEAR D3 99

11 |CAL.BAL.DCOLP1 |EXPRES [9(8)V9(3) .INV UNIT.COST * INV BAL

12 |CGAL.GD.QTY p1 |EXPRES ' |9(6) INV OBJ - INV BAL - INV ORD. QTY

LT'Y

SPACES = RT.ANKS

