
NGINEERING

5 ERVICES

CLEARINGHOUSE REPORT

DECISION TABLES

A PRELIMINARY REFERENCE MANUAL

September 1961
Ref. No. 1 J 1

Orren Y. Evans
DP - Western Region

INTERNATIONAL BUSINESS; MACHINES CORPORATION

White Plains, New York

PREFACE

This manual , DECISION TABLES , 1s a sequel to the paper, " An Advanced Analysis
Me thod for Integrated Electronic Data Processing!! , written in the fall of 1959.
The paper was first published by the National Machine Accountants Association
of Long Beach in Marc h , 1960. Later 1n 1960, it was published by IBM in a
c ondensed version as a General Information Manual (Form Number F20-8047).

Since these publications and reviews in the Data Processing Digest and
Datamation, there have been numerous requests for more information on the
method. The frequency of these requests has prompted the writing of this
manual.

The manual 1s not written with the intention of making a processor available for
mechanizing its implementation. It is not intended to obligate IBM to provide
follow -on processors.

The purpose of this manual is to stimulate further interest in the DECISION
TABLES to such a degree as to prompt more persons to experiment with them
and prove or disprove the ir utility.

I

ACKNOWLEDGMENTS

There have been so many people who have cont,rlbuted to ideas expressed in
this document as to preclude naming all of them. The two who ha-.e made major
contributions are Mr. Burton Grad, Manager 6£ IBM Systems Engineering Services,
and Mr . Abner Copeland, Manager of Hunt Foods Planning and Analysis.

I have drawn heavily from IBM COMMERCIAL TRANSLATOR and COBOL, '61, since
the language in,these manuals 'IS and 'will be familiar to many people. I haw
modified their language in (1) adding dimension and (2) when necessary, as a
convenience to the Decision Table format.

In addition, I have used, ideas -from the "Report Program Generator for the IBM
1401" for specifications of the report generation features .

In accordance with the requirements of the offiCial gO\ernment manual describing
COBOL-1961, the following extract from that manual is presented for the inform­
ation and guidance of the user:

"This publication is based 6n the COBOL System developed in 1959 bya committee
composed of government users and computer manufacturers. The organizations
participating in the original development were:

Air Materiel Command ~ United States Air Force
Bureau of Standards, United States Department of Commerce
Burroughs Corporation
David Taylor Model Basin, Bureau of Ships, United States Navy
Electronic Data Processing Division ... Minneapolis-Honeywell

Regulator Company
International Business Machines Corporation
Radio Corporation of America
Syhenia Electric Products Inc.
UNIVAC Division of Sperry Rand Corporation

"In addition to the organizations listed above, the following other organizations
participated in the work of the M'aintenance Group:

Allstate Insurance Company
The BendiX Corporation Computer Division
Control Data Corporation
E. I. du Pont de Nemours and Company
General Electric Company
General Motors Corporation

ACKNOWLEDGEMENTS

(Continued)

Lockheed Aircraft Corporation
The National Cash Register Company
Philco Corporation
Standard Oil Company (New Jersey)
United States Steel Corporation

"This COBOL-61 manual is the result of contributions made by all of the above­
mentioned organizations. No warrantY"expressed or implied, is made byany
contributor or by the committee as to the accuracy and functioning of the
programming system and language. Moreover" no responsibility is assumed by
any contributor, or by the committee" in connection therewith .

"It 1s reasonable to expect that many improvements and additions will be made to
COBOL. E\ery effort will be made to insure that improvements and corrections will
be made in an orderly fashion with due recognition of existing users ' imestments
in programming. However/ this protection can be positively assured only by
individual implementors .

"Procedures have been established for the maintenance of COBOL. Inquiries con­
cerning the procedures and the methods for proposing changes should be directed
to the Executi..e Committee of the Conference on Data Systems Languages.

"The authors and copyright holders of the copyrighted material used herein:
FLOW-MATlC (Trade-mark of Sperry Rand Corporation) Programming for the
UNIVAC I and II Data Automation Systems i! 1958/ 1959/ Sperry Rand Corporation;
IBM Commercial Translator ,Form No . F2B-B013 copyrighted 1959 by IBM. have
specifically authorized the use of this material. in whole or in part. in the COBOL
61 specifications. Such authorization extends to the reproduction and use of
COBOL specifications 1n programming manuals or similar publications.

"Any organization interested in reproducing the COBOL report and initial speci­
fications in whole or in part using ideas taken from this report or utUi2ing this
report as the basis for an instruction manual or any other purpose is free to do so .
However/ all such organizations are requested to reproduce this section as part
of the introduction to the docume"nt. Those using a short passage as in a book
review are requested to mention 'COBOL' in acknowledgement of the source but
need not quote the entire secti~n."

CONTENTS

Chapter 1: GENERAL DESCRIPTION OF THE DECISION
TABLE SYSTEM
Introduction 1. 1
Plan of Manual 1.2

Chapter 2: THE STRUCTURE OF DECISION TABLES
Table Elements
Example
Rule.
Condition '
Action
Limited Entry
Extended Entries
Mixed Entries
Arithmetic Expression
Operands
Names••••........
Condition Names
Literals

Chapter 3: THE STRUCTURE OF THE LANGUAGE
Character Set
Names····· · ·······.··.·
Kinds of Names·
Data Names •........
Condition Names
Table Names
Expression Names
Formation of Names
Compound Names
Placing Names in the Problem Definition
Constants ,
Literals
Rules for Forming Literals ' ,

Numeric Literals ,
Alphabetic and Alphameric Literals

Figurative Constants ... , ,
Figutative'CondiUan'NQmes . .. ' , , .
Figurative ' CIa SS- ,Cond i!ion ',N am e ,s, . "
Verbs , ,

2.1
2.2
2.2
2.3
2.3
2.3
2.3
2.3
2 .3
2.4
2.4
2.4
2.4

3.1
3 .1
3. 1
3.1
3.2
3.2
3.2
3. 3
3.3
3 .4
3.5
3.6
3.6
3.6
3.7
3 . 8
3 . 8
3.9
3 .9

Operat ors•.............. 3.10
Arlt~met!c ••. . •. •..• 3. 10
Relatione.! 3.10

Lxpressior.s 3.11
Arithmetic 3.11
Conditional 3.12

Repcrt Ger..eration Features 3.15

C!lapter 4 : DECISION TABLE FORMAT AND VERBS
Introduction
Conlmands
Format of Decision Table

Table Title•........•...•............•
Systenl Segme!1t
System
Prepared By
Open,---,-__
Closed
Date
Else
Next
Table
Line Nr
Verb
Operand 1
Op •
Operand 2
Rule
Freq •

*
Input/Output Commands

Read
Write

Data Transmission Commands
Move
Set

Arithmetic Commands
Move
Set
General Rules

Table Sequence Control Commands
Goto
Else
Next
Do
Stop

4.1
4.1
4 .1
4.1
4.1
4.1
4.3
4 .3
4. 3
4.3
4.3
4.3
4 . 3
4 . 3
4.3
4.3
4 .3
4.3
4.4
4.4
4.4
4.5
4.6
4.6
4.7
4.8
4.11
4.12
4.14
4 .1 4
4 . 14
4.15
4.15
4.16
4.16
4 .16
4 .18

Miscellaneous Characteristics of Tables & Rules . . . 4.19
Unconditional Table 4.19
No Act ion Ru le 4 .1 9
Table Entity4 . 19
One Ru le Success per Table 4.19
Rule Independence •.. •. ... 4 . 19
Condition Independence 4.19
Table Form Size•••.•.•....•. .4 .19
Else Condition Rule 4 .19

Chapter 5: DATA DESCRI PTION
Purpose•.. •. • •.•.... 5 .1
Files, Records and Fields •.... •• 5 . 1
Data Description Format 5.3

Page 5 . 3
To Page•.... ...•••.. 5.3
CII. and Serial 5 .3
Data Name•. •. • • 5 . 3
Level . . ', '•..•.... .•. 5.5
Type 5.6

Record •.•. •.......•.•. 5.6
Cond ••.• . •. 5 .6
Redef • .•.• . • .. . • 5 . 9
Copy ••. • 5 . 10
Work•.•.•... 5 . 11
Expres • .•.•.•.•...... 5 . 11

Description•. 5.12
Picture 5.12

Numeric• •... . 5 . 13
Alphabetic 5 . 14
Alphame'ric 5.15
Suppression & Insertion Characters 5 .15
Floating Characters 5.18
Non-editing 5.20
Editing 5.21

Constants and Initi.81Values 5.22
Report Generation Features 5 .22

Printer Spacing chart 5.23
Report Definition 5 .26

Identification 5 . 26
Source • 5.26
Control Fields 5.26
Report Lines 5 . 26

Description Entries 5 . 27
Fields within Lines 5.28

1.1

Chapter 1: GENERAL DESCRIPTION OF THE DECISION TABLE SYSTEM

INTRODUCTION A definite need exists for a method of determining and docu­
menting systems requirements.. Systems requirements should be differentiat~d
from procedures to accomplish the systems requirements. We have tended to
use procedures for stating and accomplishing systems requirements and thus
have hampered our understanding of the true systems requirements and our
consideration of alternate system solutions .

Documentation of systems requirements can be made at many le..els. - There afe
three major levels apparent (with multiple levels possible within each) .

1. Machine run (or clerical activity) requirements and solution definition.
This level of definition describes in detail the solution including all
machine (Process media) considerations. ~

2. Machine run (or clerical activity) requirements with minimum emphasis
on the solution. After a systems flow has been determined as to machine
runs and decisions made as to what generally is included in each run
the analyst defines the decision logic of the run relating output to input.
He does this with little, if any, regard to machine considerations of
accomplishing the decision logic.

3. S}'Stems definition at the systems level which is virtually independent
of the systems solution (does not consider individual machine runs or
methods of accomplishing the decision logic). Definition at this level
includes not only decision logic relating input to output, but s}'Stems
constraints and acceptance criteria; i.e. systems operational data
resources for designing, implementing and operating systems, response
times in the system,. methods of evaluating. alternate system solutions
etc.

Summarizing, we are faced with problem definition and problem solution (the
what and the how). This manual offers a method of documenting at anyof these
le\els, but it is a compromise between the what and the how. Procedure step
sequencing is almost non-existent within a decision table. Howe\er ... tatie
sequence control 1"s very specific and thus is,to a degree.! procedure oriented.

Decision Table format,. syntax and language have been kept simple enough to
learn and use easily but is sufficiently sophisticated to permit high level data
manipulation commands . The decision table documentation does not include
provisions for systems resources, constraints and scoreboard (method of eval­
uating different system solutions) .

1.2

PIAN OF MANUAL It 1s assumed that the reader has knowledge of the essential
characteristics of Data Processing Systems. The manual is written as a base
language (point of departure) for using decision tables. The language 1s not all
inclusive and in many instances has been arbitrary in the interest of simplicity.
It provides a language that interested persons can use to experiment with
decision tables in documenting problem definitions. Let us attempt some broad
field experience in using decision tables to describe problems at several levels
and then refine the language.

This language is wry rigorous in order that it may be used at the detail level of
documentation. People experimenting at higher levels of man to man
communication can adjust this rigor to their needs.

2.1

Chapter 2: THE STRUCTURE OF DECISION TABLES

INTRODUCTION This chapter Is concerned with a brief introduction to the
general concepts structure and elements of decision tables. Detail explanation
of procedure description using decision tables is found in Chapter 4 .

DECISION TABLE

TABLE HEADER

STUB HEADER RULE HEADER

ENTRY HEADER

CONDITION CONDITION
STUB ENTRY

ACTION ACTION
STUB ENTRY

FIGURE 2 , 1

TABLE ELEMENTS The main elements of the decision table are noted in Figure 2.1
above. The TABLE HEADER contains identification data such as title, prepared by"
date and system. The RULE HEADER is ~ primarily" for identifying each rule with a
number so that it can be referenced in written and oral communication. The STUB
HEADER identifies columns (verb" operand, operator) for condition and action data.
The ENTRY HEADER identifies columns (operator" operand, action sequence) for
further data of conditions and actions pertinent to a particular rule. The vertical
double line separates the STUB and ENTRY data. The double horizontal line
separates the CONDITIONS and ACTIONS . These elements can be best clarified
by discussing an example (FIGURE 2.2)

2.2

':ABLE: CREDIT CHE K

LINI RULE 1 RULE 2 RULE 3 RULE 4
NR, VERB OPERAND OP OPERANI OPERAND OPERAND OPERAND OPERAND

1 SPECIAL EO 1 0 0 0
C LEAR

2 CREDIT
liMIT GE OK' Y N N

3 PAY
EO GOOD BAD EXPER-

IENCE

4 MOVE APPRO- TO ORDER X X X
VED' STATUS

5 MOVE ' REJECT ' TO ORDER X
STATUS

·OK = In process amount + Accounts Receivable amount + Order amount

FIGURE 2.2

INTERPRETATION OF RULES Rule 1 reads : If special clearance is EO (equal) to
1, then mO\e the word 'approved' to order status. In less precise terminology
rule one means : If special clearance is obtained, appro\e the order.

Rule 2 rEads: If special clearance is EO (equal) to 0 and the credit limit is GE
(greater than or equal to) OK then move the word 'approved ' to order status. Less
precisely, ru le two means : If special clearance is not obtained and the credit
limit 1s OK then approve the order .

Rule 3 reads: If special clearance 1s EO (equal) to 0 and the credit limit is not GE
(not greater than or not equal to) OK and pay experience is EQ (equal to) GOOD,
then move the word 'approved' to order status. Less preCisely, rule three means:
If special clea.-ance is not obtained and the credit limit 1s not OK and the pay
e>q)erience is good, then approve the order.

Rule 4 reads: If special clearance is EQ (equal) to 0 and the credit limit is not
GE (not greater than or not equal to) OK. end pay experience is BAD, then move
the word "reject" to order status. Less precisely . rule four means: If special
clearance is not obtained and credit limit is not OK and pay experience is bad.
then reject the order .

A RULE consists of a unique group of condition(s) and the action(s) to be tal<en
when those condition(s) exist . In FIGURE 2.2 each of the columns headed by
RULE 1. RULE 2. RU LE 3 and RULE 4 depict vertical combinations of conditions
and actions .

2.3

A CONDITION is a state of existence of a specific piece of information. The
state of existence may be its presence or absence a specific \e lue or range of
values; or its re lationship to other data; or combinations of these. Structurally,
in decision tables a condition consists of two factors (1) the data in the STUB
and (2) the data 1n a rule ENTRY. For instance I the condition in line 3 of rule 3
"pay experience equals good" is the complete condition. The condition in
line 3 of rule 4 is " pay experience equals bad." A line stub data senes as a
common factor for multiple conditions on that line.

ACTIONS are commands which perform operations (movement, arithmetic, etc J
on and with data as well as control the sequence of considering tables. The
structure of actions in decision tables is simUar to the structure of conditions
e>q:>lained above.

A UMITED ENTRY CONDITION is shown in line 2. The entire condition (credit
limit is greater than or equal to OK) is stated in the STUB. Data in the ENTRY of
each rule I for line 2. is limited to "Y" I "N" or left blank .

Y means yes the condition must be satisfied .

N means no the condition must not be satisfied .

Left blank means the condition is irrelevant .

A UMITED ENTRY ACTION is shown in line 4. The entire action (move the word
"approved" to order status) is stated in the STUB . Data in the ENTRY of each
rule. for line 4. is limited to "X" or left blank.

X means take this action.

Left blank means do not take this action.

EXTENDED ENTRIES have a portion of the condition or action stated in the ENTRY
and the remainder in the STUB. See line 3.

MIXED ENTRIES A rule or a table may contain both limited and e}d:ended entries
whic hever is more convenient for a particular condition or action .

ARITHMETIC EXPRESSION In line 2 the condition is "credit limit is GE (greater
than or equal to) OK." The word "OK" is the name of an arithmetic e>q:>ression
which is defined just below the table as:

OK = in process amount + accounts receivable amount + order amount .

2 . 4

Since long expressions do not fit well 1n the decision tables, they are named and
the name is placed in the table while the expression 1s defined elsewhere . Each
time an arithmetic expression is called for in a condition or action, its \Blue is
recomputed . The value of an expression does not persist.

OPERANDS in Figure 2.2 contain :

name of an arithmetic expression
limited entties
names of variable data fields
names of conditions
literal s

Limited entries and arithmetic expressions have been explained. Names of
variable data fields are illustrated in FIGURE 2.2 by

special clearance
credit limit
pay experience
order status

Names must contain at least one alphabetic character. The name of a field is
quite different from the value of the field. To illustrate the difference:

FIELD NAME

credit limit
order amount
customer

FIELD VALUE

$10,000
$ 1,500
ABC Manufacturing Company

The name of a condition is illustrated in line 3, rules 3 and 4. This concept
will be explained in more detail in Chapters 3 and 5. Briefly) the field name
"pay experience" can have a code of 1 or a where

1 means favorable
a means unfavorable

In the data description" provision is made to name the possible code wlues of
a field. The names of the codes are called CONDITION NAMES. In FIGURE 2.2
codes are named:

FIELD NAME

pay experience

COPE YAI,lJE

1
o

CONDITION NAME

good
bad

2 .5

Litera l s are illustrated in the entries (1,0,0 I D) of line one and the first stub
operands ("approved" , "reject") of lines 4 and 5. A literal is an unnamed
constant . It is the value rather than a name . Alphameric literals are identified
by quote marks. Alphameric literals may contain any character except quote
marks. Numeric literals contain only numerals and do not require quote marks
for identification .

This chapter has presented the concept and structure of Decision Tables and an
indication of its syntax and vocabulary .

3. I

Chapter 3: THE STRUCTURE OF THE LANGUAGE

The structure of the Deci sion Table language has a basic vocabulaty consisting
of words and symbols and implied words 1n conditional action statements.
(These are the interpretation cf rules as discussed 1n Chapter 2 . } It has a
set of rules by which words an d symbols may be combined to express meaning.
In addition, it has punctuation rules to inject clarity into groups of words
and symbols 0

The language consists primarily of nouns and verbs. The verbs are explicitly
defined and named , and are a part o f the basic vocabulalY. A few nouns are
thus defined and named but, for the most part, the nouns are data names and
are generated and defined and placed into the decision logic by the user.

CHARACTER SET Words and symbols are the basic units of the language but
are, in turn, composed of individual letters , numerals arid" special characters
(basic character set). This set consists of the 26 letters of the alphabet, the
ten numerals from 0 through 9 , and the special characters shown in the table
below.

Name

Blank
Plus sign
Minus sign
Multiplication Sign
Division Sign
Left parenthesis
Right parenthesis
Comma
Period and decimal point
Dollar sign
Equa l sign
Quotation mark

Character .

+

x
I
(
)

$
=

NAMES .. Most of the words will be nouns . A noun , in the strictest sense,
is a NAME, and the user will find it useful to accept that definition and all
its implications . He will prepar-e decision tables for handling data , but will
refer to the tables and data by name.

KINDS OF NAMES .. Most of the names will fall into one of four kinds : data
names, condition names , table names and .expression names. These names
are entered in decision table columns headed OPERAND.

DATA NAMES are names given to the data used in defining a problem or system.
Data names are assigned to KINDS of data; not (except in the case of constants)
to specific values. Thus , a name such as INTEREST. RATE would not refer to
a specific interest rate , but t o a class of data known as interest rates .

3. 2

Data-names may be assigned to single classes of data or to groups of data
items . For example, the name PAYROLL" RECORD would probably refer to
a group of indi vidual items having such names as EMPLOYEE. NAME , EMPLOYEE .
NUMBER, HOURLY. RATE , and so on . It is important to recognize that , in
general , the name refers not to any specific value , but only to the kind of
data ..

Data- names are invented and assigned to data at the discretion of the user ,
following the rules g1 yen below which govern the formation of names . All
data referred to in the problem definition must be named , but this does not
mean that all subdivisions of data must be named . For example, if the user
wishes to refer to a date , he will have to give it a name, but he does not
have to name the component parts , such as the day , the month , or the year,
unless he wishes to refer to them individually .

The general category of data-names may be broken down , for convenience ,
into record-names, i tem-names , expression-names , named constants , and
so on . The meaning of these names will be explained later in this manual.

CONDITION NAMES are names assigned to specific values of a data name .
This naming i s for the convenience of the user 0 The naming is at the
discretion of the user , but is usually done such that the name has a mnemonic
meaning associated with a specific value of the data name. In Chapter 2 an
illustration was described on page 2. 5 . The data name was PAY. EXPERIENCE
which has two possi ble values , lor O. Where I means favorable and 0 means
unfavorable . The following table shows how the condition naming can give a
clue as to its value meaning and thus aid in the communication value of the
decis i on table rules .

Value

o

1

Meaning

Pay. Experience
is unfavorable
Pay . Experience
is favorable

Condition Name

Bad

Good

Rules 3 and 4 of Decision Table , Credit Check , FIGURE 2 . 2 , illustrate its
us e in deci sion logic.

TABLE NAMES are names assigned to individual tables so they can be referred
to by table sequence control verbs and other portions of the problem definition .

EXPRESSION NAMES are names of arithmetic expressions . Since l ong arithmetic
expressions do not fit in the decision table , they are named for convenience
and t he expression is defined in the data description.

3.3

FORMATION OF NAMES. Names are formed by combining any of the
characters from the basic list of alph"betic characters , numera l s and the
period , subject to the following rules :

1. Names must not contain blanks.

2. Names, other than table names, must contain at least one
alphabetic character. Table names may consist entirely
of numerals if the user so desires.

3. They should be kept reasonably short since the operand space
1n the table 1s quite small. Names should be limited to 6 or
l es s characters.

4. They may n,z ltner begin nor e nd with a perlod, However,
"imbedded" periods may be used within the name for the
sake of readability 0

s. They may be "quaUfied" (to make them unique within the
problem definition) by the use of other narre So This is
explained bel ow under the headinq "compound names. "

COMPOUND NAMES. I n many cases a problem definition will contain
duplicate names.. This often happens when an input file is "updated" to
produce an output file, since each file will usually contain the same kinds
of records.

Suppose that an input record is name(\ IN. MAS and an output record 1s called
OT.MAS .. SUPPo.ie, further., that each record contains two dates, one called
ORD .. DAT, the other called SHP .. DAT ..

If the probl em defi nition involves both kinds of records, it would not be
possible to distinguish readily between the two ORD .. DAT name s and the
two SHP .. DAT names. All four names would be defined in t he data description
(see Chapter 5), which gives the system the information it needs to locate
indiVidual items of data. To indicate which of the ORD. DAT (or SHP. DAT)
names is meant, however , each such name can be "qualified , " or "compounded,"
when used in a decision table. That Is, the name o f a larger data item of
which it is a part can be added to the name to identify it.. Thus , IN o MAS
ORDo DAT would be clearly dhtinguishable from OUT. MAS ORD. DAT. Names
qualified in this manner are referred to as COMPOUND NAMES.

When names are to be compounded, t he foHoVY.!. ng rules apply:

1. Each name mus t be separated from the next by at least one
blank space.. (This distinguishes between compound and
Simple names, since Simple names may not contain blanks.)

3.4

2. The names must be written 1n increasing order from the general
to the specific. (If the reader is familiar With the c oncept of
l evel numbers, as discussed 1n Chapter 5 of this manual , he
will note that this means that the names must be listed in
order from the lowest to the highest level number ..)

3. No qualifying names are required that do not contribute to the
uniqueness of the compound name. Thus, in th.e example
given, if there were only one date names in each of the input
and output files, e.g • • an ORDo DAT, but no SHP. DAT--it
would not be necessary to use the nane ORD. DAT 1n fonning
the compound name; the names IN. MAS DAr and OT.MAS DAr
would suffice ..

The organization and structure of data for use in a data processing system
Is further discussed in Chapter 5 , entitled ''Data Descriptio nG II The reader
is referred , in particular, to the discussion of level numbers beginning on
page 5 G 5.

PLACING NAMES IN THE PROBLEM DEFINITION . The reader has seen that
this system us es names as a convenient--in fact, indispensable-- means of
identifying data, decision tables, and conditions. It is no w necessary to
indicate how each name is placed in the problem definition in a way that
permits the system to connect it with the item to which it refers .

A problem definition consists primarily of decision tables and "data
description. " The first of these is JlB de up of rules, which is the actual
decision logic. Th e second consists of data description statements which
show the organization and nature of the data so that it can be located and
used when needed. These two sections are discussed in Chapters 4 and 5 .

All statements must be written in a specified fonn at o Two columnar fonns
have been prepared for this purpose . One is used for decision tables a1 d
the other for data description statements. The first is described 1n Chapter 4 ,
the second in Chapter 5,

For data-names a nd condition-names , as will be seen in Chapter 5 , the
system must know whether the data 15 numeric or whether it contains
alphabetic characters. It must know where decimal points , if any, are
to be placed, where to print dollar Signs, and so on. There are a number
of such details which must be specified. It would have been possible to
set up rul es for describing the data in the decision tables, but this would
ha ve been inefficient, since the description of each item would have had
to be repeated each time its name appeared, Since the description is placed
in a separate section , however, each name need be described only once ,
regardless of the number of times it is used in the problem definition G

3.5

It follows that each data-name and each condition-name used in the
procedure description must be properly accounted for in the data
description. following the rules given in eha pter 5 . Once this has been
done, the programmer is free to refer to the name repeatedly throughout
the decision tables.

CONSTANTS. It has been emphasized that the data-names used in the
system generally refer to kinds of data, not to specific values . The actual
values represented by most data - names are assumed to be variable, and
they will either be entered into the systems as parts of input files or will
be computed at some point when the system 1s in operation,

However , the user wi~l olte n find it useful to be able to place a specific
fixed value into the proqram definition instead of having to read it in as
data. For example " if a firm allows a dlscount on its bills, the discount
will usually be figured as a fixed percentage. The routine for computing
the discount , therefore, does not require any provisions for inserting varying
percentage rates. Thus, it would be convenient to be able to write this rate
directly into the problem definition.

Any value- or any group of symbols--whlch is to be used in the program
without alteration is called a "constant. " The user will find many uses
for numeric constants such as the discount rate mentioned, for alphabetic
constants , such as names and titles to be printed out on final reports, and
for alphameric constants, which may serve any number of purposes,

In some circumstances, it wUl be convenient to write the constant directly
in a decision table o In this case it wUl be called a "literal." In other
cases, it will be more convenient to give the constant a name and store it
within the system so that it can be called for by name when required . In
this case it will be called a "named cons\ant .. "

As an aid to the user, certain standard constants , such as the value 0 and
the blank , have been" pre ... named." These values are defined in the language
vocabulary and they have already been giveR names. Thus, the programmer
ca n write these names 1n the procedure statements wi thout having to define
them in the data description. These special constants, called "figurative
constants , " will be discussed later 1n this section.

Literals and named constants may be used 1n decision tables for the same
purposes for which data-names are used--that is, as "operands." The
essential difference between them is that a literal ex presses an actual
value--a value to be read "lLterally" at the point Wl ere it is written--whereas
a named constant is the "name" of s-uch a value, and it cannot be used, or
interpreted" in a decision table until it has been defined in the data description.

The following example will show the difference between literals and named
constants :

3.6

From FIGURE 2. 2, page 2.2, the condition 1n line 1, rule 1 reads :

SPECIAL. CLEARANCE EQUALS I

The condition indicates that the value for the data name SPECIAL.
CLEARANCE equals 1. In this case the 1 is a literal.

The value 1 could be placed 1n the data description and give it a
name "ONE. II The condition is now stated as:

SPECIAL. CLEARANCE EQUALS ONE

The same result is obtained in either case, and 1t may appear at
first sight that it 15 more efficient to write literals than named
constants . This mayor may not be so. If tre constant is short,
as in this example. it will usually be more convenient to write it
as a literal. If it 1s long, and if it can be given a ·short name, it
may be more effiCient to treat it as a named constant.

UTERALS . Although a literal may be written and used in a decision table
as if it were a data--name, it differs frc)m data-names (inclucUng named
constants) in that its value is the value literally stated--it is not used as
a name for some ether value.

RULES FOR FORMING UTERALS

Literals may be numer1c~alphabet1c, or alphameric. Some of the rules for
forming numeric literals differ Slightly from the rules for alphabetic and
alphameric literals. For convenience of reference, the rules governing
each type are listed separately.

NUMERIC UTERALS

1. All literals are limited to 10 characters in length .

2. Numeric literals may contain only numerals, not more than one
decimal point, and a plus or minus sign to i ndi cate Wl ether the
value of the number is positive or negative. "Floating point" numbers
also contain the letter F, as explained 1n Rule 3 below, and may
contain more than one plus or minus sign. The declmal point 1s
required except where it would be the last character of the literal;
1n that case it must not be used . The deCimal point will be noted
by the system 1n order to align the number properly for use, 'and it
is not counted in determining the length of the literal.

3. Numerlc values may be entered as "floating point" numbers by
wrlting the "fracUon" (l.e., the number or decimal fraction), then

the symbol F, and then the exponent. The fraction and the exponent
may each have a plus or minus sign. The symbol F. is not counted

3.7

in determining the length of the literal. The system will accept floating
pOint numbers using a base of 10 only. (A floating pOint number is a
number expressed as a decimal number or decimal fracUon multiplied
by some power of 10 . For example , the numbej 1500 might be written
as 1.SF3, which is equivalent to 1.5 times 10 . , the same number might
also be written as 15F2,. lSF4, or 1n any other similar way that is
convenient. The number. 002, which is equivalent to 2 times 10- 3 ,
might be written 2F-3.)

4. Numeric literals must not be enclosed in quotation marks.

ALPHABETIC AND ALPHAMERIC LITERALS

1. An alphabetic or alphameric Uteral may contain any of the characters
from the basic character set except the quotation mark. A blank is
treated as a character and may be included in an alphameric literal .

2. Like numeric literals, alphabetic and alphameric literals are limited
to 10 characters in length.

3. All non-numeric literals must be enclosed in quotation marks to distinguish
them from names . This rule applies even should the literal contain
symbols (such as the arithmetic symbols and the blank) which may not
be used in names.

FIGURATIVE CONSTANTS resemble named constants except that their names
are already assigned values, so that the user need not write data description
entries for them.

Figurative constants are names for certain constant quantities which are used
frequently in data processing systems . The list includes names which
represent zeros and blanks. Following is a list of the figurative constants:

ZERO or ZEROS or ZEROES

BLANKS or BLANKS

In general, a figurative constant is used to place the value it names in a
given storage area , although it is not limited to this usage. For exampl e ,
if the user wishes to reduce the value of a data item called COUNTER to
zero, he can do so by writing the instructions MOVE ZEROS TO COUNTER.
This procedure will replace all previous data in COUNTER by zeros. Similarly I
if he wished to erase all data in an area called AMOUNT, he could write
MOVE BLANKS TO AMOUNT . In each case , the specified area will be
completely filled wi th characters of the value named.

3.8

FIGURATIVE CONDITION NAMES are similar to figurati ve constants and
are used to facilitate the expression of conditions. They are used to test
for ''sign conditions," "class conditions" and "conditional expressions."

The FIGURATIVE SIGN CONDITION NAMES ARE: POSITIVE
NEGATIVE
ZERO

The sign condition can be used only in conjunction with numeric data .
ThiS form of condition may be used to express a test to see if an item
satisfies one of the following:

3.9

1. A "negative condition" (is less than zero).
2. A "zero" condition (equals zero).
3. A "positive condition" (is greater than zero).

The general form for writing the sign condition is:

operand operator

NAME EQ

operand

~
., POSITIVE
. ZERO

NEGATIVE

The FIGURATIVE CLASS CONDITION NAMES are:

NUMERIC
ALPHABETIC

The class conditions are the same as defined in Chapter 5.

CLASS

NUMERIC

ALPHABETIC

ALPHAMERIC

DESCRIPTION

ConSists entirely of digits (0-9); may also
contain an operational plus or minus sign;
an actual deCimal potnt 1s a non-numeric
character and is not permitted.

Consists entirely o f letters of the al phabet;
may also contain one or more blanks.

ConSists of any characters from the basic
character set. May be wholly numeric or
alphabetic.

The class conditions are used primarily for validating input data.

The general format for writing the class

operand operator

NAME EQ

NE

operand

{
NUMERIC
ALPHABETIC

jNUMERIC
[ALPHABETIC

VERBS specify actions. Verbs are used in conjunction With names to form
commands. Specific rules governing verbs are in Chapter 4.

3 . 10

OPERATORS . Not all words that cause action are verbs . Consider the
sentence IF A = B THEN MOVE A TO OUTPUT. This sentence contains
only one verb, the wcrd MOVE , yet it implies tvvo separate operations .
The MOVE operation , of course , 1s one of them : the other 1s a test to
determine if the condition A=B has been met. However , the user does
not have to write a verb directing a test for this co ndition . The language
contains several words and symbols (such as the arithmetic symbols)
which are not verbs but which cause operations. They are called "operators . "
It is necessary to· distinguish between verbs and operators , since they are
us ed 1n different ways 0

In general, operators specify "actions" or "relationships" without actually
expressing them 1n verb form . There are two basic kinds of operators :
ARITHMEl1C OPERATORS and RElATIONAL OPERATORS,

ARITHMETIC OPERATORS . The complete list of arithmetic o perators is
given below o They are used in forming arithmetic expressions, as explained
later in this chapter.

Operator Meaning

+ Addition
Subtraction

* Multiplication
/ Division

** Exponentiation

REIATIONAL OPERATORS . The need frequently arises to make tests in
order to determine what m auld be done next. This language proVides a
number of "relational operators" which enable the user to express the
tests. he wants performed . For example , the statement IF SALARY = ZERO
is built around the relationship implied by the equal sign . which is a
relational operator.

A complete list of the seven relational operators follows:

Symbol

EO
NE
LT­
LE
GT
GE
CMP

Meaning

Is equal to
Is not equal to
Is lesser than
Is lesser than or equal to
Is greater than
Is greater than or equal to
Compared

Compared (CMP) is included in the list more as a convenience for the
decision table format than as a true relational operator.

Rule 1 Ru le' 2
ine QJ;Lerand 1 OP Operand 2 OP Operand 2 OP Operand 2

1 DETAIL CMP MASTER EO GT

I 2 DETAIL EO MASTER GT MASTER I ,

3 TRANS. COD EO ADDITION CHANGE J
This convenience is demons trated by examining the conditions represented in
lines 1 and 2 above. Each line represents the same conditions: Detail is equal
to master (Rule 1) and detail 15 greater than, master (Rule 2). In line 1, the
master is written only once, while in line 2 it 1s written twice. This allows
both operands to be placed 1n the stub and the relational operator placed in
the entry. In line 3 , operand 1 (trans. code) and the operator (eq) are factored
into the stub and the different operand 21 g placed 1n tile entry.

Relational operators are combined with data names , literals" etc. to form
conditional expressions. The det ailed rules for using the relational operators
are explained l ater under Conditional Expressions.

EXPRESSIONS . An expression may be defi ne d as a meani ngful combination of
nam e s.l literals, and/or operators which may be reduce <.i to a singl e value.
This definition will become clear afte r the re a der i1as studie d the two types of
expressions - the "arithmetic" expression and tne "c,::mditional" expression.

Since arithmetic expressions do not fit into the decision table conveniently f
they must be defined and named in t he data description and the express ion
name is used in the decis ion table. Each time an arithme ti c expression 1s
called for in a condition or action, its valu e is determined anew. The value of
an expression does not persist.

ARITHMETIC EXPRESSION is a combination of dat a - names and numeric literals
joined by one or more arithmetic operators i n such a way that the entire expression
can be reduced to a singl e numeric val ue. Special cases of arithmetic expressions
are combined with the data movement verbs SET and MOVE which are explained
in Chapter 4 .

The following are examples of arithmetic expressions :

NET. PAY = (HOURS + OVERTIME * 1.5) * WAGE. RATE - FICA

VOL = PI * RADIUS ** 2 * HEIGHT I 3

SALES. C = WEEKLY. SALES * .05

Note that e ac;1 of the above expressions 1s a com bination of data - names and/or
literals joined by arithmetic operators. At obj ect time g each data- name w1l1

3. 12

represent a value and , 1n each of the above examples , one nUITe ric value
will result from the specified computation . Thus , if WEEKLY. SALES has the
value 574.20 , the SALES.C would reduce to the value of 28 . 71 .

ORDER OF COMPUTATION IN ARITHMETIC EXPRESSIONS. The way in which
an arithmetic expression 1s to be evaluated can be specified by parentheses.
Thus , the expression D = A * B + C might be considered ambiguous . Does the
user mean D = (A * B) + C , or does he mean D • A * (B + C)? The user may
use pairs of parentheses in order to describe exactly the way in which he wants
the computation to proceed.

If parentheses are not written to specify the order of computation, the
arithmetic expression is evaluated using the following rules :

1. All exponentiation is performed first .

2. Then , multiplication and divisiQn are performed . ,

3 . Finally, addition and subtraction are performed.

4 . In each of the three above steps, computation starts at the
left of the expression and proceeds to the righ t . Thus ,
A * B / C is computed as (A * B) / C , and A / B * C is
computed as (A / B) * C .

5 . When parentheses are present, computation begins with the
innermost set and proceeds to the outermost . Items grouped
in parentheses will be evaluated in accordance with the
above rules , and the result will then be treated as if the
parentheses were removed .

A CONDITIONAL EXPRESSION is an expression which , taken as a whole, may
be either true or false , depending on conditions existing when the expression
is examined . Generally , a conditional expression contains at least one
variabl e quantity , and the truth or falsity of the expression will depend on
the particular va ue assumed by the variable or variabl es . For example , the
expression A IS GREATER THAN 10 is conditional, since it mayor may not be
true , depending on the value of the quantity A. Obviously , if A had a value
of 12 , the expression would be true; if the value were 7, the expression would
be false ..

A conditional expression may contain data-names, c ondition-names , names of
arithmetic expressions , and expressions which show relationships between
val ues (such as the expression IS GREATER THAN) .

Conditional expressions are always written in the decision table; never in
the data description . This is one of the major advantages of decision tables -
they offer a two dimensional visual aid in exploring the potential combinations
of conditions . Conditional expressions are discussed here in three categories:

in
I

2

3

4

5

6

.7

3. 13

1. Simple conditional expression .

2. "AND" compound conditional expression - simple conditional
expressions joined by "and's . "

3. "OR" compound conditional expressions - conditional expressions
of category 1 and/or 2 joined by "or' s. II

Conditional expressions eXist as that part of a data rule which mus t be satisfied
prior to taking the indicated actions of that same data rule.

The three categories can best be explained with an illustratIon.

Rule 1 Rule 2 Rule 3
Verb Qoerand 1 Op Operand2 Op OperandZ QQ Ooerand 2 00 Ooerand 2

MAR. STATUS EQ MARRIED DIVORCED SINGLE

AGE GT 21 PT 30

AGE LT 39 Y Y

HRLY. RATE GT 3.50 4.00 2.00

HRLY. RATE LT 5.00 Y Y , Y

DO STATISTICS X X X

GO Te CONTINUE X X , X

A SIMPLE CONDITIONAL EXPRESSION (category I) is composed of two operands
connected by a relational operator and Is illustrated by 10 different conditions
In the above example. They are:

Line 1

Line 2

Line 3

Line 4

Line 5

marital status is married
marital status is dl vorced
marital status is single

age is greater than 21
age is greater than 30

age is less than 39

hourly rate 1s greater than 3.50
hourly rate is greater than 4.00
hourly rate 1s greater than 2.00

hourly rate 1s less than 5.00

3. 14

An "AND" COMPOUND CONDlHONAL COND!TiON i s 1I1uot.,a:.d by the inter­
pretation of Rl.:le 1. If marita l stat;.;: is mo:-ried. 3nd age is greate:- than 21 and
age is l ess than 39 and houn.y rate !s greater t~d:1 3.50 and r.ourly ra te is less
t han 5 . 00 • ~. this portion of Rule 1 shows:) si mple conditional expressions
conn ected by four "AND'S . " Similar into:!rpre~at1ons of Rule 2 ar.d 3 can be made.

An "OR" COMPOUND CONDITIONAL EXFRESSION 1s :lever shewn in o ne rule 1n

a decision table. We can see that a1.1 three of t he above rules r..a ve the s ame
actions. Therefore , we have expressed the "OR" conditions for the same actions
as separate rules. All three rules could be stated i n narrative 1n a s ingle
sentence as follows. If (marital stetus is married and age is greater tm n 21
and age 1s less than 39 and :!lourly :'ate is greater than 3 . SO a:1Q hourly rate 1s
less than 5.00) or (marital statu:. is diverced and age is gre"lt:er tr-iln 30 and
age is less than 39 and hourly r.'3te is greater t.ha n 4.00 and hourly rate is les s
than 5 . 00) or · (marital status is s irlg!e and hcuriy rate 1s greater than 2.00 and
hourly rate is les s tha n 5 . 00) tt~e:1 do statis~ics routine and continue to n.ext
step.

We can readily see that !he tabular d!spjai' of the ccnd.ltlon combinations has
mu ch more human communication value .

In fonning the simple conditional expressicn (opei·and 1, op erator, ope rand 2),
operand 1 is always written 1n the left operand column in the table stub . The
relational operator may be written in the stub or the entry. If t he operator is
common to all rules for tni s line it may bi; factored into the :3tub, see lines
1, 3 , 4 and 5 above. If it varies tram one rule to another then it must be v.Titten
in the entIy , see line 2 above . Operand 2 may be written in the right operand
of the table stub if it is common to all rules for this line, see 11nes 3 and 5 above .
Operand 2 must be written in. the table entry if it varies from one rule to another ,
see lines I , 2 and 4 above .

The following table shows t he permissible c ombire. tions of name-ty pes for
condition operands 1 and 2:

, I I
I

I I I ~ Q) ~ a Q) ~ c Q)

a , - ~ > a > a > ~

~
.• ~ - <=l C I '"

.. - ~ -!ii Q) - ~ "0 ~ ~ eCll!d ~ ",S '" '" - -Oper- nd 2 '"
Q) w " Q)

Q)

'" ~ "0 Q)
w '" .' ~ E c E Q) a. E I E c a " c ::I m c: E :> C E

and 1 '" '" a ~ ~

~ Zl ~8 "'0 en'" S'8z QZ OZ - _iZ_rn.G -i n r~ ~ '"'
Data

,
y y y y y y v y Name

Uteral y N N Y N N N N

Expression
i I

Name 'f y Y Y Y Y N Y

Named y : N y N Constants i
N N N N

y= Per­
missible

N= Not
Per­
missible

3. 15

REPORT GENERATION FEATURES are included in this language to accomplish
such functions as :

Print Headings per page and per change in control fields data.

Automatically increment and print page number.

Print date on each page of report.

Group suppress printing of control field data.

Print selected fie l d totals au tomatically per change 1n control
field data and at end of report.

Generally, edit fields in lines of print such as suppress l eading
zeros, insert periods and commas in quantity fields, floating
dollar signs and asterisk check protection.

These functions are accomplished by data descriptions. TNa main flow of
the problem definition prepares a werking storage of unedited data for a detail
line. The command DO REPT n (where n is the fep:>rt number) assumes that the
detail line is edited for print in the manner specified by the data descri ption
including the consideration of all the other repcrt functions defined in the
data description. At the end of the report the command DO END . REPT n is
given to effect the end of report functions such as printing all required l evels
of totals (including report total) .

4.1

Chapter 4 : DECISION TABLE FORMAT AND VERBS

INTRODUCTION This chapter is concerned with the current verbs , commands ,
format and sequence control of decision tables .. Refer t o Chapt er 2 for
description and terminology of general ooncepts , structure and elements of
decision tables~

VERBS The list of verbs is g1 ven below:

READ } WRITE
Input = Output

MOVE } SET
Data Transmission

MOVE } SET
Arithmetic

GO TO
NEXT
ELSE Table Sequence Control
DO
STOP

This language is designed to be lIopen-ended . " That 1s , t he li st of verbs
is never closed. For instance , it 1s known at this time that verbs should
be included for "data table operations" such as " search , " "del e te" and
"1n5ert __ " but time does not permit this inclusion .

COMMANDS call for action(s) to be executed. Each verb in the preceding
list forms the basis for a specific command .. A command normally cons i s ts
of a verb followed by operand I, an operator and operand 2.

FORMAT OF DECISION TABLE The decision portion of a problem definition
is written on the Decision Table Form designed for that purpose . The form
is shown on Page 4 . 20

TABLE TITLE Indicative title of decision tabl e contents .

SYSTEM SEGMENT A logical subdivision of the system being defined . It
may be a functional subdiv1sion such as "material control, " "credit clearing,"
etc . , or further subdivisions. It may be computer runs , £AM processing o r
a clerical activ1ty o

SYSTEM A large functional or goal-oriented actiVity which i s being defined.
Examples of functional activities (usually thought of as vertical s lices of an
organization) are accounting , industrial rel ations , engineering , manufacturinq ,
marketing. Examples of goal-oriented activities (usually thought of as
horizonta l s lices of an organization whi ch cross and absorb parts of many vertical

TABL~ TITL~ SYST~M SEGM~NT SYSITM

-INE OPERAND I OP ~PERAND2 RULE ~1<!:.1. RUI E FREO
NR VERB

P~ • Pc RANo;

*For conditions: OPERATOR FIGURE 4 . 1 For actions: SEQUENCE

PREPARED ~N_ DATE
By LOSED

RULE FREO RULE FREO RULE

• oPE '<AND • n; •

..

~SE NEXT

IFREQ RULE

.ND *

~LE

FREO

~

~
...
N

r

4.3

activities) are des lg!1 , manufacture , marketing , etc. of s pecific products
Of product groups , such as electri cal transformers (size range), glass
products, ca nned foods , matches .

PREPARED BY Initials of analyst.

OPEN ____ A check mark 1s entered if the table is in-line (referred to 1n
other tables by the verb GOTO) .

CLOSED A check mark 1s entered if the table is out of line (referred
to in ot her tabl es by the verb DO) .

DATE Current date .

ELSE (TABLE) An entry may or may not be made. If no set o f conditions
for any rule 1s s a tis fied , a t able number or name is entered: thus clirecUng
the consideration of the next tabl e v.h en no commands o f t he current table
have been executed.

NEXT (TABLE) An entry mayor may not be made . An entry is made when
many or all of the rules GO TO the same next tabl e. This eliminates the need
of writing the GOTO TABLE. NAME 1n each of the rules . However, if a GOTO
entry is made in a rule , i t over-rides an entry the header NEXT.

TABLE (NAME OR NUMBER) A short identification of the table using either
a name or number. The begi nning table' of a problem definition is identified
by BEGIN if a name i s used or by 001 if a number is used . This field appears
in two places on the fonn for c onvenience of referenci ng , depending upon the
manner of binding the definition material.

UNE NR Enter a different line number for each line used withi n a TABLE
iDENTIFICATION .

VERB This column is used only for the action part of the table. Specific
permissible verb entries are shown i n the above list and in the expanded
discussion lat er in this chapter .

OPERAND 1 . An entry is always made i n this column for each conditional
expression and command. Permissible entries for conditio nal expression are
shown in Chapter 3, Permi sSible entries in operand 1 for commands
are defined with each verb dISCUSSion lateJ i n t his chapter .

OP (OPERATOR) For conditional expressions , the permisSible entries are
the seven rel ational operators discussed on Page 3 . 12. For commands, the
permissible entri es are descri bed , with their aSSOCiated verbs, later in
thi s chapter.

OPERAND 2 Heading appears in both the "stub" and " entry" part s o f the
table. If operand 2 dat a is the same for all rules affected by the currm t

4.4

line , then the operand 2 data may be entered in the "stub" and a Illimited
entry" is made in the "ent::y" part of the table. If operand 2 data varies
from rule to rule for the current line, then operand 2 data must be written
in t he "entry " part of the table. For conditional expressions , the permissible
entries in operand 2 are shown i n Chapter 3 , Permissible entri es
in operand 2 for commands are defined with each verb discussion later in thiS
chapter 0

RULE (NUMBER) An idenb.ty number given to each decision rul e within a
table name (or number) for reference.

FREQ (Frequency) An entry is ITIr3. de showing the number of times the action
part of a rule will be executed for a specific time interval. The time interval
should be specified as a constant for each problem definition; 1. e a I weekly,
daily I hourly I monthly I etc. If the frequency varies greatly I "note numbers"
can be entered and under the Il note section" the frequency can be expanded
to reflect peaks and valleys 1n re lation to time periods. Frequency data can
be used to assist in determining the best processing medium and equipment
requirements a

* This i s a dual purpose column. For conditional expressions , it is used
to insert relational o perators (similar to the "operator" col umn in the "s tub").
For actions (commands), it is used to specify only the mandatory sequence
in which the actions must be executed. The method of numbering the actions
is such that a maximum degree of flexibility is permitted in implementing the
action sequence 1n a s tep by step procedure.

Rule I Rule 2 Rule 3
Ine Verb Operand I OP Onerand 2 * Onerand2 * Ooerand21* Onerand2

10 Read FUe I I X 1 X X

II Write FUe 2 I X X X

12 Move RCD I To RCD 2 2 X X

13 Set FLD I EQ FLD 2 X

14 Do TAB 006 2 X 3 X X

15 GOTO TAB 020 3 X 4 X X

Figure 4.2

Sequencing actions per rule will be explained by discussing the above example.

I

I
•
I ,
I ..

RULE 1 The ones entered in lines 10 and 11 indicate that the action on
either line 10 or 11 can be taken first. The 2 in line 14 indicates that the
action on line 14 must be taken after the actions on line 10 and 11 are
executed . Likewise, the 3 in line 15 indicates the action 1n line 15 must
be taken after the action 1n line 14. Summarizing, we can see that there
are two possible sequences of executing actions for rule 1: (1) lines 10,
11, 14, 15 or (2) lines 11, 10, 14, 15.

RULE 2 Following similar logic for Rule 1, we find that there are two

4.5

possible sequences of executing actions for Rule 2: (l) Lines 10, 12, 11,
14, 15 or (2) Lines 10, 12, 14 , 11, 15 .

RULE 3 When no data i s entered for action sequence, it means that the
actions must be execut ed in t he sequence written.

INPUT/OUTPUT COMMANDS In considering any level of data proceSSing
problem definition, it is convenient to think of it in terms of inputs , reference
files, proceSSing decision logic and outputs. These commands are involved
with the reading of records from input and reference files and writing records
on output and reference files. Since the language, at this time, is not
involved with providing for its mechanized implementation, such verbs as
"open" and "close" files are not included.

INPUTS
DECISION

LOGIC

REFERENCE FILES

Figure 4 . 3

r---O
'----0

OUTPUTS

4.6

The READ command is used to fetch a record from an input or reference
file and make it available for processing . When a READ is executed , the
next record in the named file becomes accessible in the input area defined
by the associated Record Description in the Data Description . The record
remains available in the input area until the next READ (for that file) is
executed .

If a file contains more than one type of record , the READ verb delivers the
next record regardless of type. The differing records automatically share
the same input area; thus the user must proVide for determining the type of
the current record and must refer only to information that is present in the
current record.

The format of the READ command is:

Rule 1 Rule 2 Rule 3
!verb Operand I OP Operand 2 Operand 2 Operand 2 ~erand 2

!READ ReD . NAME

jIlEAD ReD. NAME INTO AREA. NAMI

!READ ReD. NAME INTO AREA. NAME 1 AREA. NAME AREA. NAME 3

Figure 4.4

The INTO area-name option converts the READ into a READ and MOVE . The
area-name specified must be the name of either a working area or an output
record area 0 If the format of the INTO area differs from that of the input
record , the data will be moved in accordance with the rules for the MOVE
verb without the CORRESPONDING option.

When the INTO area-name option is used, the current record becomes avail­
able in the input record area, as well as in He INTO area .

The WRITE command is used to release a record for insertion in an output
file . When a WRITE command is executed, the record-name record is
r~leased . Accordingly , all the desired processing steps must be performed
before the WRITE occurs .

The format of the WRITE command is :

r

4.7

Rule I Rule 2 Rule 3
Verb Operand I OP Ooerand 2 Ooerand 2 ODerand 2 Ooerand 2

IWRlTE Reo. NAME

IWRlTE Reo. NAME FROM AREA. NAME

IWRlTE Reo. NAME !FROM • NAME I AREA. NAME 2 AREA. NAME 3

Figure 4.5

The FROM " area-name" option of the WRITE command 1s comparable to the
INTO area-name option of the READ command. It, effectively I converts the
WRITE into a MOVE and WRITE. The "area-name" must be the name of an
input record area, a working area , or a constant area. If the format of the
FROM area differs from that of "record-name," the data will be moved in
accordance with the rules for the MOVE verb without the CORRESPONDING
oprion . When the FROM "area-name" option is used, tffi information 1n the
"area-name" area continues to be available.

Note: The names used for "record-name" and for "area-name" cannot be the
same .

DATA TRANSMISSION COMMANDS The two data transmission verbs are
MOVE and SET. Both verbs are involved with the transmission ci. data from
one area to another. Differences in SET and MOVE are shown by the reversal
of the source and receiving areas.

Source Area

SET Operand 2

MOVE Operand 1

Entries in the "source area" may be:

•
•
•
•

A variable name
A constant name
A condition na rre
An expression name
A figurative constant (blank or zero)
A record name
A literal

Recei ve,Area

Operand 1

Operand 2

ine

10

11

12

13

Entries in t he "recei ving area" may be:

,

A variable name
A r ecor d nam e

4.8

The MOVE command is used to transfer data fr om one data area (operand 1)
t o anothbr area (operand 2) . When a mo ve command 0) is common to several
rules of ·a table and (2) has t he s ame data (operand 1) to be moved into a
different data area (operand 2) for each rule, t hen this can be accomplished
on one line . The format of the MOVE command is:

Rul e 1 Rule 2 Rule 3
Verb Onerand 1 OP Ooerand 2 Qperand 2 Operand 2 Operand 2

MOVE P%IA. NAME 1 TO DATA. NAME 2
~TERAL

MOVE PATA-NAME 1
WithAL

TO p ATA. NAME2 DATA. NAME 3 DATA. NAME~

MOVEC DATA. NAME TO DATA. NAME 2

MOVEC, DATA. NAME TO DATA. NAME2 DATA. NAME 3 DATA.NAME4

FigliIe 4.6

The following rules must be observed ~n writing MOVE commands :

1. Information from num eric fiel ds may be moved to other numeric fields , to
a lphameric fi e lds , and to re port fie l ds.

20 Information from a l phabetic or alphameric fie l ds may be moved only to
other alphabetic or alphameric fields .

When the s imple MOVE (lines 10 and 11 above) is executed, the data represented
by DATAG NAME 1 or the specified li t eral i s moved t o the area designated by
AREAG NAME 2 , 3 or 4. This movement does not destroy the original data - it
makes "copies " of it in the deSignated areas .

4.9

When both the source and t he r eceiving areas are elementary items , editing
appropriate to t he format of t he receiving area occurs automatically 1n the
execution of the "MOVE o The editing that is performed depends on 1Ah ether
the source data (specified by dat a-name-l or literal) 1s numeric or non­
numeric , as follows :

NUMERIC DATA ITEMS

10 The data from the source area 1s aligned with respect to .the decimal
point (assumed or actual) 1n the receiving area. This alignment may
result in the loss of leading digits or of low-order digits (or both if
the source area 1s larger than the receiving area).

2. If required by the format of t he receiving area , zeros are replaced by
s paces (bl c"nks); and dollar Signs, deci mal points , and commas are
i nserted o

3 . If no deci mal pol nt has been speci fied , the data will be right justified
unless the data descri ption of the item specifies JUSTIFIED LEFT.

NON- NUMERIC DATA ITEMS

10 The data from the s ource area i s placed in the receiVing area beginning
at the left,l. i,ui.less t he data description of the recei ving area specifies
JUS'TIFIED RIGHT. Note that when a group item is moved, left justi­
ficati~n i s standard.

2 . If the receiving area 1s not completely filled by t he data being moved,
the remaini ng positi ons are filled with s paces.

3. If the receiving area cannot contain all of t he data being transferred , the
MOVE terminates when the receiving area is filled.

FIGURE 4 . 7 contains several examples i llli.strating the editing feature of the
MOVE verb .

4. 10

OURCE AREA RECEIVING AREA

Data Data Data Data
icture before MOVE after MOVE Picture before MOVE after MOVE

9V99 1234 1234 99V99 9876 1234

/39V99 1234 1234 99V9 987 123

tl 9V99 1236 1236 99V9 987 124

tlV9 12 12 99V999 . 98765 01200

pax A2B A2B XXXXX Y9X8W A2B

V99 123 123 99.99 87.65 01. 23

""" REPORT REPORT AM)l(L REP

99V99 1234 1234 $ZZZ9 . 99 $8765.43 $ 12 . 34

Figure 4.7
Examples of data before and after MOVE 1s executed. Standard justification

is assumed

Note that 1n each case in Figure 4 . 7 the data in the source area remains
unaltered after the MOVE has been executed. Note also, as in the fourth
example , that the information in any excess positions of a non- numeric
receiving area 1s replaced by spaces at the right .

The corresponding MOVEC option (Figure 4.6, lines 12 and 13) of the MOVE
command pennits the user to specify the transfer d a group item containing
one or more elementary items that require editing 1n conjunction with the
MOVE. When a MOVEe command is executed, selected items within the
source area (data-name-l area) are moved, with any required editing , to
selected areas within the receiving area (data-name-2 , data-name-3 , etc .) .
Items are selected by matching the data-names of items within data-name-l
with likedata-names of areas within data- name-2, according to these..rules:

1. At l east one of the items of a selected pair must be an el ementary
item.

2. The two data- names must be identical, including all qualification
up to but not including data-name-l and data-name 2.

r

4.11

Each corresponding item in the s ource area is moved to its corresponding
receiving area. Editing appropriate to the format of the receiving area
takes place automatically. The rules stated for the simple MOVE apply
to each pair of corresponding items 1n the MOVECj thus, the effect of a
MOVEC command' statement 1s equivalent to a serles of simple MOVE
commands •.

To illustrate the use of MOVEC, suppose that the user Wishes to transfer
corresponding items from a work area named INV. POSTING to an output area
designated INV. ReD.

Verb Operand I OP Operand 2

MOVEe !NV. POSTING TO INV. ReD

Figure 4.8

FIGURE 4 ~ 9 shows the movement of data that might result from this statemEllt.
Note that non-corresponding items 1n the source area are not moved and that
non-corres ponding items 1n the recel ving area are not affected.

INV. POSTING
PART. NR QTY. USED ON. HAND SHIPPED RECEIVED ORDER. PT

, I

V -t I-
INV. ReD MT. NR PART. NAME I ON. HAND UNIT. COST QTY. USED ORDER. PT

Figure 4 . 9
Movement of data resulting from execution of MOVEe

The SET c ommand Ls us ed to transfer data from one data area (operand 2) to
another data area ,operand l}.

The SET command has
unique utility in conjunction with decision tables in that, on one line, a
single "receive area" can obtain data from one of several "Iource areas. If
The format of the SET c ommand is:

4.12

Rule 1 Rule 2 Rule 3
lune Verb Operand 1 OP Operand 2 Ooerand 2 Ooerand 2 Oeecand 2

10

11

12

13

SET DATA. NAME 1 EO DATA. NAME 2
UTERAL

SET DATA. NAME 1 EO DATA. NAME 2 DATA.NAME3 DATA.NAME4
UTERAL UTERAL UTERAL

SETC DATA. NAME 1 EO DATA. NAME 2

SETC DATA. NAME 1 EO DATA.NAME2 PATA. NAME3 DATA.NAME4

Figure 4.10

Lines 10 and 11 are the simple SET command and have the same rules of data
transmission as the simple MOVE command . Lines 12 and 13 ace the SETG
(set corresponding) commands and have the same rules of data transmission
as the MOVEe command explained above.

ARITHMETIC COMMANDS There are two direct arithmetic commands MOVE and SET.
For convenience of the decision table format, the MOVE and SET command
functions are expanded to include arithmetic (addition . subtraction , di vision
and multiplication). An indirect method of performi ng arithmetic operations
1s via the name of an arithmetic expression. Figure 4. 11 shows several
examples of how arithmetic operations can be accomplished.

The rul es for numeric data transmission apply to the SET and MOVE arithmetic
commands,. When using the SETC and MOVEC commands the DATA. NAMES must
represent areas of storage which are composed of smaller units of fields. The
effect of the MOVEC DATA. NAME. I to + DATA. NAME. 2 is to cause each numeric
field in DATA. NAME .. I to be added to its corres ponding field (i . eo a field with
the same name) in the DATA .. NAME. 2. Non-corresponding and non- nUmeric
fields in DATAQ NAME. 1 and in DATA. NAME. 2 are not affected.

Intermediate results are carried with an extra digit to both the right and left
of the receiVing area field. Intermediate results are automatically truncated
or rounded to the number of places indicated by the format description of the
recei ving field .

TABLE. TITLE. SYSTEM SEGMENTISYSTEM PREF¥>.RED _DATE ~SE ~EXTIOOLE
BY ri~..ED

Li NE. OPE.RAND I OP PPERAND2 RULE. ED RUL E. FRFQ <Iii F FRm RULE. FRFO IRIII E.IFREQ RULE. 0
NR VERB l t;";Jr 2 3
==#==t====4==nf===4*=f0~IP~F)§f"~2 • • IN * n'l* INn; * ~~~

10 SET ~NlMEI EO - IJIIANlME2

I II SET iomI.NlMEI EO ; IJIIANlME2 ~.NlME3 ~.NlME4

12 SETcioml.NlMEI EO~A'j:im>.=,.:!:NIME=:::.2-++ ___ +-f----++ ___ +-1 ___ -++ ___ +-I-__ -l
13 SET .NlMEI EO ~ D!IA.NlME2 Ptm.NlME3 Ptm.NlME4

• 14 M OVEiomI. NlMEl TO D!IA.NlME2

15 MOVEP!m..NlMEI TO D!IA.NlME2 bw..NlME3 b!IA.NIME.4

16 IMOVE(D!IA.N'lMEI TO { D!IA.NlME2

17 f,uvICiomI .N'lMEI fro 1- D!IA.NlME2 Ir:=..NlME3 Pm>..NlME4

18 SET ~.NAME EO !la' .NlMEI

19 SET D!IA.NAME EO ' !la'.NAMEI

20 SET D!IA.NAME EO ~.NlMEI ~.NAME2 !la'.NlME3

21 [MOVE !la'.NIME TO D!IA.NlMEI

22 !MOVE !la'.NIME TO D!IA.NAMEI

23 !MOVE !la'.NAME TO; D!IA.NAMEI iomI.NlME2 D!IA.N'lME3

*For conditions: OPERATOR FIG URE 4 11 ~
For actions : SEQUENCE' ,-

fTI

1

... -w

The SET command format is :

SET DATA. NAME 1 EO A DATA. NAME 2
EXP. NAME

4 . 14

where "A" is (may be blank when operand 2 1s an expression name) , an
arithmetic operator +, - , / or x. Examples are shown 1n Figure 4. 11 , lines
10 , 11 , 12 , 13 ,.. 18 , 19 and 20 . Operand 1 (Data . Name 1) is the receiving
area and operand 2 (Data . Name 2 or Exp G Name) is the source area o

Receive Area + Source Area ... Receive Area
Recel ve Area - Source Area - Rece! ve Area
Receive Area / Source Area .. Receive Area
Receive Area x Source Area -Receive Area

The MOVE command format 1s

MOVE DATA. NAME 1
EXP. NAME

To A DATA. NAME 2

where "A" is (may be blank when operand 1 is an expression name) an arithmetic
operator + , -, / , or X o Examples are shown 1n Figure 4 . 11 - lines 14 , 15 , 16 ,
17 , 21, 22 and 23 . Operand 1 (Data . Name lor Expo Name) is the source area
and operand 2 (Data . Name 2) is the receiving area .

Recei ve Area + Source'" Receive Area
Receive Area / Source - Recei ve Area
Receive Area - Source .. Receive Area
Recei ve Area x Source Receive Area

GENERAL RULES FOR ARITHMETIc' COMMANDS

L All fields involved must be numeric. Constants cannot be the receiving
area .

2 . The format of the operands may be different . Decimal point alignment is
automati.cally supplied throughout the computation.

3 . The format of any item involved in computations cannot contain editing
symbols 0

4. Valid combina.tions of the "source area" and "receiVing area" are :

4.15

~Vlng w
Area ~ "0

.0 '" ~ '" Source :'l e o e
Area

~ ~ u ~
~Z ~Z

EXPRESSION
NAME Y N
VARIABLE
NAME Y N
CONSTANT
NAME Y N

UTERAL Y N

RECORD
NAME N Y

5 . An arithmetic expression 1s computed and the results are used as the
so urce . The expression 1s recomputed each time 1t is used in a command.
It s value does not persist .

FIGURE 4 0 12 shows examples to cladfy ~thes e rules :

SOURCE AREA Operator RECEIVING AREA
Data Data Data Data

~Icture Before Move After Move Picture Before Move After Move
Or Set Or Set Or Set Or Set

9V99 0110 0110 + 99V99 2 120 2230
9V99 1013 1013 - 99V9 333 232
V99 III III / 99V!f 990 892
V9 55 55 X 99V99 I lll 611 1

Figure 4 . 12

TABLE SEQUENCE CONTROL COMMANDS Procedural sequence control is
accomplished , primarily , via tabl e sequence control verbs , GOTO , DO , ELSE,
NEXT and STOP 0 (It 1s accomplished to a l esser degree within a rul e by the
action , Of command , sequence entries.) .

The GOTQ COMMAND appears in the body of the decisl. on table and directs the
procedure to the next TABLE 0 NAME to be considered.... The next TABLE..,..NAME
may be the same as the TABLE 0 NAME in the _current table. ~. The GOlD
command i s always the last action of every rule o If the GOTO COMMAND does
not appear in a rule , then the next TABLE 0 NAME is taken from the table header
NEXT. A GOTO COMMAND will over- ri de the NEXT COMMAND In the header.

4. 16

The ELSE COMMAND also appears in the header and directs the procedure to
consider the next TABLE. NAME whenever !lQ. set of conditions for any rule is
satisfied.

The DO COMMAND provides a means of interrupting the actions in a rule of
the current table in order to consider another tabl e . Mter the other table 1s
considered (and actions taken) control comes back to the next action of the
rule for the current table.

Special operands of the 00 COMMAND are used to specify the execution of
report generation functions(RGF) . The three operands are REPT. n , BEG. REPT . n
and END. REPT. n where lin" is a report number assigned in the data description .
The report generation features (DO REPT . n) are discussed in Chapters 3 and 5 . The
DO BEq.REPT;o indicates" to the RGF that it is to process the beginning of
the report functions such as: write heading lines . The DO END. REPT. n
indicates to the RGF that it has processed the last detail record for the report
and commands it to accomplish the end of report functions such as printing
report totals. There are no tables written (by the person defining the problem)
with the names REPT.n, BEG. REPT. n and END. REPT.n . It is assumed that the
report data description , report planning sheet and the sampl e of the report in
conjunction with the report commands are sufficient specifications for a
programmer or procedure writer to implement the report .

TABL~ TITL~ SYS T~M S~GMENT S YSrrM PR£R\RED lL DAT~ ~S~ ~~XT ~L~-
l~~ INVENTORY BY OYE eLOSm 8/ 30/ 61 TRAN

L1N~ OPERAND I OP OPERAND2 R.JL~ ~ RUL ~ FREO RULE FREO RULE FREO RULE '!:IFQ RULE R~O
NR V~RB . I 2 3 . 4

O JPFI~~ ~: 0 <NO:: °IOPF ~A III 02 o ~21 ° ~2

I ~_ caE EO ISSUE RECEIPT ORDER ELSE

10 SET INV BAL EQ- I ISSUE QTY

II " " " EQ+ I RCPT.QTY

12 IIMOVE NVBAL TO RNT BAL X 2 X

13 SET SSUE.YTD EQ+ ISSUE QTY I X

14 SET RCPT. YTD EQ+ RCPT QTY I X

15 DO lORD . RTNE I ERROR

l~ E.M'.1t::H 3 be 3 be 2 Ix 2 ~

*For condi tions: OPERATOR FIGURE 4.1 3 J> ,
For actions: SEQUENCE ~ . • -

4. 18

The STOP COMMAND 1s used to specify a temporary or final halt . Its
general format i s!

lIe rb Operand 1 Op Operand 2 Operand 2 Operand 2 Operand 2

TOP LITERAL

TOP LITERAL 1 LITERAL 2 LITERAL 3

The lite ral i s nume ric. The STOP COMMAND can cp pear anywhere 1n the action
sequence of a rule.

KINDS OF DECISION TABLES There are two major kinds of decision tables -
open table and closed table.

Th e OPEN TABLE has these uni que characteristics:

•

•

•

It may be entere d only by a GOTO COMMAND (the only exception
is t he BEGI N tabl e) . .

It may not be entered by a DO COMMAND .

It may contain DO COMMAND(S) .

It w1l11ndicate the next table to be considered by a GOTO, NEXT
or ELSE COMMAND.

The C WSED TABLE has these unique characteri stics :

•

•

•

•

It may be entered only by a DO COMMAND.

It may not be entered by a GOTO. NEXT or ELSE COMMAND.

It may not contain a GOTO, NEXT or ELSE COMMAND.

It may conta in DO COMMANDS for tables other than itself.

After having been con sidered (and actions tak.en) , the sequence
control is transferred back to the next action of the ru l e in that
tabl e from which control was transferred to this closed table.

4.19

MISCELlANEOUS CHARACTERISTICS OF TABLES AND RULES

UNCONDITIONAL TABLE
A table may contain only actions (commands) and no conditions (there would be
only one data rule). This is called an UNCONDITIONAL table and would be of
the closed or o pen kind of table.

NO ACTION RULE A rule may contain only condition(s) and the only action
is the next table.

TABLE ENTIlY A decision table is always considered as an enti ty. A
transfer (via GOTO. DO, ELSE and NEXT) is always to a table as a whole -
not to a rule or condition within a table.

ONE RULE SUCCESS PER TABLE For anyone pass through a table only a
single set of c ondit1bns for one rule can be satisfied and, therefore~ only
a s1ngle set o f actio ns for the same rule can be executed. The rule that 1s
satisfied may be the ELSE condition and the only action may be to go to the
next table via the ELSE NEXT. TABLE.

RULE INDEPENDENCE Each rule is stated as an entity separate from other
rules in the same table . A rule must contain sufficient conditions to insure
the execution of its action(s) when the conditions are satisfied regardless of
the sequence of considering rules in a table. This means that (1) all conditions
pertinent to a rule are indicated and (2) conversely, conditions that would auto­
matically be met in a current rule due to the failure of a set of conditions in a
prior rule of the same table must stUl be indicated . The only exception to this
RULE INDEPENDENCE is when an action is required for the ELSE condition
other than "go to the next table." See discussion of ELSE below.

CONDITION INDEPENDENCE For a rule , the sequence of testing conditions
is not relevant since all indicated conditions must be satisfied before the
actions are executed . This is true from the viewpoint of defining a problem
at a level as independent of procedural steps as possible. When the problem
is implemente d by a programmer or procedure writer, the sequence of testing
conditions may have a significant effect on the efficiency of the process media.

TABLE FORM SIZE 1s designed to the usual 8-1/2 X 11 inches . Our eyes are
trained for this size paper. It is believed that we can comprehend decision rules
more quickly when this size form 1s used. The "one rule success per table"
concept tends to keep the decision rules confined to this size form.

The ELSE condition rule is possible because of the "one rule success per
table" concept. The entries in the table header ELSE may be:

• a TABLE. NAME

left blank

• STOP. n COMMAND

4.20

This field is generally used for error detection but may be a systems logical
sequence control. When an action 1s required for the ELSE other than "go to
the next table," the word ELSE can be entered as a condition in operand 2
in the ENTRY portion of the table and the necessary actions indicated, see
Rule 4 of FIGURE 4.13. page 4,17. In this case the ELSE rule has to be
last rule cons idered for the table,

5,1

Chapter 5: DATA DESCRIPTION

PURPOSE A major purpose of writing a "data description" is to furnish the
processing system with a means of identifying each item of data which has been
named in the decision tables . This description must include all items on which
the system is to operate.

Actually . the system needs mOfe than a means of merely identifying t he data.
If the data 1s numeric, for instance, there must be a means of showing where
the decimal point is located. 1£ the system is to print out monetary values, it
must have inionnation on where to p lace the dollar sign, and whether or not to
print leading zeros. Details of this sort are usually referred to as "editing ."
The actual commands for accomplishing details of this sort need not be s t ated
explicitly. It is assumed that sufficient intelligence exists in the implementation
to accomp116h the implied transformations.

Writing a data description is not difficult. once a few basic pr inc i ples are under­
stood. and these are explained in the following pages . The reader should
realize. moreover, that this method of describing data in a separate section of
the program has an important advantage. The typical problem definition will
deal repeatedly with data of the same kind. Use of a separate data description
permits the user to describe each kind of data once . instead of having to
describe each individual item as it occurs.

rILES, RECORDS AND FIELDS Before proceeding with the details of the data
description it is only necessary to define three terms as they are used in this
system: II file, II "record," and "element.:' The exact implication of these terms
varies from person to person and company to company ..

A FILE is a body of data stored in some external medium which can be made
access ible to the system. In this sense, an external medium is any medium
which provides input to the system from without. Data in such a medium cannot
be used by the system untU it has been brought into it. The usual external
medium of electronic data processing systems is magnetic tape and random
access storage.

The concept of a fUe as "external" to the system carries certain implications
which should be considered. These arise, not from the definition of a file, but
rather from certain practical considerations .

For example, a fUe is usually a relatively large body of data, although there is
no implied relationship between the length of a file and the storage capacity of
a tape . Thus, there may be more than one fUe on a tape. and, on the other hand,
a file may extend over a number of tapes.

\
< • ,

5.2

A file is commonly understood to consist o f a number o f individual records, the
records being generally similar to eac h other in size, content, and format.
(Sometimes a series of differing records may be grouped t ogether in a file; in
such a case, the user must make provisions for distinguishing among them.)
The file itself may be unique, or it may closely resemble other files . Thus,
a file of:actuarial data might be the only one of its kind in a library, while
a file of :insurance policy data might differ from another chiefly because it covers
a different area or a different period o f time . In this sense, a file serves a
function like that of a ledger, or a filing cabinet containing a series of similar
papers . It 1s usually a rather large body of related information. Thus it is
convenient in most cases to treat such large bodies of data as cOJ;l1plete and
separate units which can be identified externally by direct reference to the
physical media in which they are stored .

ELEMENTS AND GROUPS OF ELEMENTS An element of data (elementary item)
is a piece of data which is never further divtded . DATE could be the name of
an elementary item if it were never referred to 2S anything but DATE. However,
if the Decision Tables ever referred t o only a part o f the date, say I the month I

then DATE would have to b~ broken into parts. These parts might be named
DAY, MONTH and YEAR. Then DATE would not be the name of an element,
because 1t 1s su~ivided 1nto DAY, MONTH a nd YEAR.

The term ITEM, ~s used 1n this manual, refers to any element or group of
elements . Thus, it is correct to say that DATE is the name of an item. How­
ever, it is not the nal1le of an elementary item I because the item 1s actually a
group - DAY, MONTH, and YEAR. The terms ITEM ar.d FIELD are used inter­
changeably .

An item can also be a group of groups . Suppose the item YEAR 1n the previous
example were div~ded into two parts, named DECADE and YR, for ~xample.
YEAR would not be the name of an element - it would be the name of an item
consi sting of a g roup of elements . Then DATE would be the name of an item
that wa s a group contain1ng a group .

To review, elements can be combined to form groups which , in turn, can form
groups of groups . Either an element or a g roup may be regarded as an item.
An element is a unit of data which 1s never broken into smaller units. The
discussion of levels (later in this chapter) will help to clarify the concept of
elements a nd groups of elements.

Elements and groups of elements of da ta are combined to make up records. In
a program processing a payroll , the permanent data c oncerning each employee
would probably constitute a single record. Items in this record might be the
employee's ma n number, his name, shift, rate of pay, marital status , number
of dependents, etc . Thus , there would be a series of similar records, one for
each employee . All of these records would :J.sually be of the same format , i.e . ,
would contain the same items; but the items wOll10 have different values for
each employee .

5.3

Probably, they would all be stored together on a single reel of magnetic tape or
in a single deck of cards . Another series of records (again. one for each employee)
might contain the record of each man's time card for the past week. Thus, the
payroll program would have two records available pertaining to each employee,
one containing permanent information, the other conta1ning the record of the em­
ployee's past week of work.

An imp4prtant characteristic of the record. 1s that it 1s the unit of data which 1s
handled by the READ and WRITE verbs. (See Chapter 4.) If, In the above example,
the records containing the permanent information for all employees are stored in
a file called PERMANENT. PAYROLL . INFORMATION, then each time the statement
READ PERMANENT. PAYROLL. INFORMATION RECORD Is encountered, one man's
permanent information would become available for processing. That ls, it would
be "read" into the system. It is not possible to read only a fraction of a record
and not the rest of the record. Similarly, only an entire record can be "written,"
that is I made available for output to an external medium such as magnetic tape.

DATA DESCRIPTION FORMAT , Entries In each field shall be described completely
except for explaining most of the report description. It will be shown at the end
separately.

The heading information at the top of the fonn 1s completed similar to the cor­
responding fields on the decision table explained in Chapter 4.

PAGE Enter number of the data description.

TO PAGE . Enter page number of the next page of the data description. The use
of this field allows insertion of new pages (numbered with a decimal system)
with a minimum effort and st11l allows a user to know all pages are present for
the data description. For the last page enter the word FINAL.

CTL. and SERIAL < It is essentlal that each item of the data description be entered
into the system in proper sequence, since the sequence controls the internal
position of the data . Six characters are used for a serial number. which indicates
the sequence of the lines . This number is nonnally numeric. Its first three di­
gits are written, in the box marked "eTL" (for "control") . It is assumed that the
first three digits will be common to all serial numbers written on the same page.

The remaining digits are written in the box labeled "SERIAL" . In normal practice ,
only the left two digits are used initially, and the right most digit left blank.
This makes it possible to insert correction lines later .

DATA NAME is any name the user may have assigned to the data described 1n
the line . The rules for fonning names are on page 3 . 3. If no name is assigned
the field should be left blank.

UI:...\. l..;llVI ' 1,....1...1\....1... L,I"'" 11""\ L,l L. ~r'I;. I. I lVI'

CTL SYS TEM SYS TEM SEGMENT PREPARED BY

SE~IAL LEI/-
DESCRIPTION NAME EL TYPE

FIGURE 5 . 1
Sample Form of Data Description

DATE ftGEI(;F

.

,
0 • T

'ft

~

,

. ,

,
~ ~' ..

t . '

5.5

Names may be assigned to any item of data, or to any group of data items stored
consecutively within the system. Thus, names may be given not only to groups
of items in the input files, but also to groups fonned within storage as a result
of operations performed by the system. Any name so assigned may be us~d as
an operand 1n a decision table.

Data- names must not overlap. Each field within a record can be given a name ,
and any group of consecutive fields can also be given a name. Thus, a single
field may be operated on individually by reference to its name, or collectively
as part of a group called by the group name . However, the same field may not
be included as a part of each of two overlapping named groups of fields.

For example , if three successive fie lds are named A, B, and C, the group name X
might be assigned to the pair A and B. If this were done, the name Y could not be
assigned to the pair Band C, since field B is already part of a named group of
fields. If the user needs t o be able to refer to fields Band C by single name~
however, he can rename the entire group of three fleld.s, using the REDEF type
code described later in this chapter. This procedure would not delte the origi­
nal names; the new names and the names originally assigned would all be
available for use thereafter.

LEVEL Level numbers are used to describe the way in which a body of data is
organized I Basically, level numbers are assigned to items of data to show their
relationship to other items of data--or, in other words, to show the structure of
a record. Any number from 1 to 99 can be used . All data description entries
must be assigned level numbers.

In general, each item is considered to be a subdivision 0f the last item preceding
it which has a lower number. Figure 5.2 shows how a typical series of files,
records, and fields might be organized, using the familiar method called out­
lining. The fUe structure is shown by the use of indentation, each it em being
considered a part of the last item above it which is indented to a lesser degree.

The technique of indentation. in other words, is a visual way of showing level.
It may be used in the "Data Name" columns. but it will have no effect on the
implementation. However. since it helps to identify the various levels visually,
indentation may be useful 1n clarifying the file structure.

For comparison. two additional columns have been provided at the right in Figure
5.2. These show the data classification of each item . togetl'ler with hypothetical
level numbers such as might be assigned to a fUe structure of this kind. It
should be pointed out that entries for files and groups of files are not actually
used in the data description •

It is obvious from the outline that each item from EMPLOYEE NUMBER through
LOCATION is a part of PAY RECORD. and that each item from FICA through HOS­
PITALIZATION is a part of DEDUCTIONS. YEAR TO DATE . Had the principle of
indentation not been used, the reader might still determine these relationships
by examining the l evel numbers 1n the right hand column, following t he rule
that each item is part of the next item above with a lower number.

5.6

It 1s not necessary that level numbers be assigned in consecutive order, although
it 1s done that way in Figure 5.2. The items at level 02, for example, might
have been assigned l evel 04, or any other convenlgnt number, as long as it was
greater than 01. Similarly, items at level 03 could have been given any other
number as long as it was greater than the number of the next higher classifica­
tion o In fact, it is often useful to skip numbers when they are initially assigned,
to allow for possible regrouplngs or insertions at a later time ..

The reader will also note that each item at the record level and below represents
a kind of data. not a specific item of i nformation. Thus. although there will be
only one f1le called EASTERN REGION SALES FORCE, wlthin that file there will
be many individual units called PAY RECORD, and each of these will contain
information of the same general character a nd format, as specified by the names
of fields within it. The purpose of the datB description 1s to give information
about eaoh of these kinds of data . The data description should be thought of as
a "pattern" which the files will follow.

Level numbers are not actually attached to the data in the sense that an employee
number 15 part of a pay record. They are used to instruct the implementor to per­
form certain technical functions which need not concern the user. Essentially,
they are used before the actual data is read into the system, as a means of pre­
paring the system to receive it. Once the data description has been written,
the user need no longer concern himself with level numbers unless, owing to
changes in the data or the problem definltlon, a new data description should
become neces sary.

TYPE This field is used, when necessary, to show that the data being described
is of a certain speci al type. If left blank, it will be assumed that the remainder
of the particular entry describes a data field or group of fields.. The type codes
which may be used in these columns are the following:

RECORD
COND
REDEF
COPY
WORK
EXPRES

Each of these is discussed in the following pages.

RECORD This type code shows that the data being described is a record and is
therefore accessible by READ and WRITE COMMANDS. This is equivalent to
identifying an item of data as an input/ output record.

COND The type code COND is used to show that the data referred to is one of
the possible conditions which a conditional variable may assume. In the dis­
cussion of conditional expressions in Chapter 3, it was pointed out that a con­
ditional variable is the name of a field which will contain, at different times,
any of a number of different values, depending on cond itions existing in the data.
Each of the values that may be placed in the field is a "condition.-

.'

5.7

ORGANIZATION OF PAYROLL FILES

Standard Outline

'EASTERN REGION

"SALES FORCE
PAY RECORD

EMPLOYEE NUMBER
EMPLOYEE NAME

LAST NAME
FIRST NAME

JOB TITLE
COMMISSION. RATE
GROSS PAY, YEAR TO DATE
DEDUCTIONS, YEAR TO DATE

FICA
FEDERAL INCOME TAX
STATE INCOME TAX
SAVINGS BONDS
HOSPITALIZATION

NET PAY, YEAR TO DATE
LOCATION

'PRODUCTION FORCE
PAY RECORD

EMPLOYEE NUMBER
EMPLOYEE NAME

LAST NAME
FIRST NAME

JOB TITLE
HOURLY RATE
GROSS PAY, YEAR TO DATE
DEDUCTIONS, YEAR TO DATE

FICA
FEDERAL INCOME TAX
STATE INCOME TAX
SAVINGS BONDS
HOSPITALIZATION

NET PAY, YEAR TO DATE
LOCATION

'WESTERN REGION

'SALES FORCE
PAY RECORD

EMPLOYEE NUMBER

-•
LOCATION

Equivalent in
this language

Data Level
Classification Number

group of files

file
record
field
field
field
field
field
fi~ld

field
field
field
field
field
field
field
field
field

file
record
field
field
field
field
field
field
field
field
field
field
field
field
field
field
field

group of files

file
record
field

field

01
02
02
03
03
02
02
02
02
03
03
03
03
03
02
02

OJ
02
02
03
03
02
02
02
02
03
03
03
03
03
02
02

OJ
02

02
*Files and groups of files are not actually entered as such in the data description.
Also, none of the names is in the proper format.

FIGURE 5.2. Typical File Str.-ucture (theoretical)

5,8

In the following example, the name MARITAL. STATUS 1s given as the name of a
conditional variable . This name refers to a specific field reserved in storage
into which values representing conditions will be entered. Typical conditions
for this field would be "single, II "married," and "divorced." While these words
could actually be placed 1n the MARITAL. STATUS field, it 1s more economical of
space, and generally more efficient, to use codes . The inlt1t1alletters M, S,
and D are used as codes in this example. Thus, the field MARITAL. STATUS might
contain anyone of these letters at a given time.

However. so that the user can refer to these codes by their names, he must
specify in the data description which code corresponds to each name. This may
be done 1n the following manner:

Suppose that the field MARITAL . STATUS has been given the level number 06. The
names of the conditions which may be entered into the field must then be assigned
a lower level (i.e . a higher number) and entered in the data description immediate­
ly following the name of the field. This means that they will be treated as if
they were each a subdivision of the field, in accordance with the rules for as­
signing level numbers, although, in practice, only one condition will be con­
sidered at a time . A portion of the data description might then appear as follows :

Serial Data Name - Type Description w
>
W
H

I

MARITAL STATUS 06 A !
.~ n7 'S

,

M, n7 r.ONn 'M'

DIVORCED 07 COND 'D'

I

The entries under "Description" will be explained laterin this chapter, but, in
summary, the "A" indicates that the field will containQneletter of the alphabet or
a blank, while the initials S, M. and D are enclosed in quotation marks to show
that they are the actual values to be used in the program.

In this example, the fact that the names SINGLE, MARRIED, and DIVORCED are the
names of conditions is shown by the use of the type code COND. The relationship
of these conditions to the field MARITAL .. STATUS is shown by the fact that the
condition-:names have a higher level number and follow the name of the conditional
variable immediately.

It should always be remembered that the condition-name 1s the name of the "value"
wh1ch can be placed in a field; it is not the name of the field itself. The condition­
name MARRIED, in this case, would be equivalent to MARITAL. STATUS='M' .

5.9

REDEr The code REDEF is used whenever it is necessary to redefine an area or
an item of data that has previously been defined in some other way. This 1s
usually necessary whenever a portion of the data description "overlaps" another-­
i. e. I when it calls for the use, on a "time- sharing" basis, of data or storage
space which has previously been defined tor some other purpose.

For example. it may be necessary to call existing data by a new set of name s, or
to reorganize it by altering the groupings and/or the subordinate leve l numbers.
Frequently it 1s necessary to wipe out data to make room for other data. In any
such case, a new data description 1s required for the new items or the new names.
However, the name or names of the areas being redefined must first be listed,
using the type code REDEr to show that the accompanying data description may
also be used to refer to the same area. The REDEr entry must have the same
level number as the entry being redefined.

Use of the REDEF code does not erase data in storage, unless an attempt 1s made
t o place two or more different constants in the same area; however, it does super­
impose a new format upon the data already present . If the user wishes to change
an item in storage, he may do so by using a MOVE or SET instruction that specifies
the new data and the position in storage where it is to be placed.

Redefinition does not cancel the previous definition. It merely makes it possible
to refer to the same area by different names and for different uses. Once an area
has been defined; all names associated with the definition may be used at any
time, regardless of subsequent redefinitions.

Data Name Level Type Description

RECPT 01 RECORD
TR.CODE 02
STOCK 02
LOC 02
QTY 02

02

•
ISSUE 01 REDEr RECPT

TR.CODE 02
STOCK 02
LOC 02
QTY 02
DATE 02

In the illustration above the two types of records are read from a t ransaction file
into the same area of storage. The REDEr is used in the ISSUE description to
overlap the storage area reserved for REePT .

5.10

COPY This type code is used to copy a deta description previous ly defined in
the data description 80 that it can be used again elsewhere. This makes it
possible to lise a data description with new data-names and, if desired, new
level numbers.

The COPY type code is used as follows: The new name of the data description
entry 1s written in the "Data Name" column of the new entry. The code COPY
1s placed in the "Type" column . The data description to be copied is specified
by writing its original name in the "Description" column. This description
must already have been fead into the system for the COPY code to be able to
operate on it.

The implementor will then obtain the original dat.a description and copy it in its
entirety . except for the following modifications: (1) The original name will be
replaced by the new name. (2) If a new level :lumber has been specified for the
new name, the level numbers of the orjgi nal data description wil l be adjust ed
so that they retain their original relationship to the named entry . Thus, if the
original sequence of level numbers had been 01 , 03,04, and if .the new name
is assigned level 05, the other items would now be placed at levels 07 and 08,
respectively .

Suppose the user had previously written t he following entries in the data
description:

~

Q)

Serial Data Name > Type
Q)

H

PAY. RCD . MASTER 01
EMPLOYEE.NAME 02
JOB. TITLE 02
HOURLY. RATE 02
GROSS. PAY 02

(TAXES 02
FICA 03
FED. INCOME 03
STATE. INCOME 0 3) NET . PAY 02

Suppose then that he wishes to set up a n identical data description for a detail
record I except that the new description is to have the name PAY. ReD. DETAIL
and it will be placed at level 02. He could write the following entry:

~erial Data Name
~

Type Description Q)

>
Q)

PAY. RCD . DETAIL 02 COPY PAY. RCD.MASTER

I

5.11

The effect of this entry would be as though the programmer had written an entirely
new set of entries in the fo llowing fonn:

-Serial Data Name
m
> Type m
H

PAY. RCD. DETAIL 02
EMPLOYEE. NAME 03
JOB. TITLE 03
HOURLY. RATE 03
GROSS . PAY 03
TAXES 03

FICA 04
FED. INCOME 04
STATE. INCOM E 04

NET. PAY 03

WORK The type code WORK is used to describe areas of storage where i nterme­
diate results and other items are stored temporarily at object time. Initial values
may be assigned to an item in the working storage with the following restrictions:

1. The value must be compatible with the CLASS of the item. For example, if
the CLASS is NUMERIC, only a numeric value may be assigned as an initial
value .

2. The s ize o f the initia l value must not exceed the SIZE of the item. If the size
of the value is less I standard rules for just ification apply.

3. If the initial value of a work area 1s not specified by a VALUE, its . initial
value will be unpredictable at object time.

Any item within a work area may be assigned condition-names.

Data Name Level Type LJescnptlOn

STOCK 01 WORK
PREV. BAL 02 9(6) ZEROS
BEG BAL 02 9(6i ·000000'

EXPRES The type code EXPRES is used to describe an arithmetic expression. The
expression is always one of equality . The expression name is entered as level 01.
The expression is entered as level 02 and can extend over as many lines as neces­
sary to accommodate the data . The expression OK=IN. PROC AMT + ACCT . REC AMT
+ ORD AMT would be entered as follows:

5.12

Data Nam Level Type Description Cont

OK 01 EXPRES
02 IN. PROC AMT + ACCT. REC C
02 AM'r -,- ORD AMT

Of course, t he names used in the expressio n m'-'. s t be defined in the data descrip-
ticn elsewhere.

DESCRIPTION This field is used to show:
1 . Picture-Format characters ~ These are explained be low ..
2 . Initial values of work areas or constants .
3. Data names associated with type codes REDEr and COPY.

General Note: If the description of a data item over flows from the "Description"
col umn, it may be continued on the next line , following the rules given for the
continuation indication column . The break at the end of a line must occur be­
tween words 0 If a constant or initial value is to be carried over onto a new line,
the portion on each line must be treated as a complete constant (i . e., enclosed
in quotation marks); the continuation indication is not used in this case .

In a number of cases, a complete data descr1ption e ntry will require that more
than one of t hese kinds of 1nformaUcID be listed on the same line. For example,
it is generally necessary to show both the fonnot a nd the value of a constant.
In such a case, the various items should be written i n toe order shown above,
separated by one or more blanks.

The picture characters serve two basic functions: (1) They show the number of
character spaces to be occupied by a field. (2) They show the kind of character
that will occupy each space.

If the item of data being described is one which will be brought into the system
at object time, the format characters must reflect the format of the data as it
already exists; changes in input data cannot be effected by the picture. How­
ever, if the item 1s one produced as a result of the operation of the program-­
as in moving t he data or performing arithmetic on it. for example- - the picture
has a direct effect on the manner in which the data wiIl be handled.

With certain exceptions, which are explained below, one format character is
required for each data character for which storage space 1s to be reserved. The
particular format character chosen for each space prepares the system to receive
i n that space data of the type explained below .

The PICTURE clause can be used to specify the editing 0, datao Ed iting may be
described as an alteration of t he format and/or punctuation of an item, usually
for such purposes as improving readability or protecting it against unauthorized
alteration. Editing involves the s uppression of certain characters and/or the
add ition of others . For example, after computation, the digits representing a
man's pay might be 0012531. However, t hey would be much more readable on

r

5.13

a paycheck in an edited fonn, such as $**125.31; moreover, the use of the aster­
isks would hamper an attempt to alter the amount. Editing of data always requires
moving it to an item for which the proper editing symbols have been specified .

In the following discussion, each character which may appear in a PICTURE is
presented . Because the choice of characters in any given PICTURE depends on
the type of data item being described, the characters will be grouped for dis­
cussion according to the type of data item they describe.

A NUMERIC ITEM 1s an item which may contain only the numerals 0 through 9 a nc.
an operational sign. As will be seen below, a numeric item may also have an
assumed decimal point associated with it. The PICTURE of any numeric data
item may contain combinations of only the following characters: 9, V, P, S , T,
Land R. An explanation of each of these characters and their uses is given c:Glow.

Character

9

v

s

p

Meaning a nd Use

A 9 indicates that the character position will always C O:1-

tain a NUMERIC character.

A V indicates the position of an "asl!!lumed decimal point . "
Since a numeric item cannot contain any character other
than numerals and an operational sign, the actual decimal
point (the special character period) cannot appear. There­
fore, an assumed decimal point is used to provide the
implementor with information concerning the alignment of
items in'UOlved in computation. An assomed decimal point,
thus, does not occupy a character position at object time
and 1s not counted in the size of an item. For example,
if a data item is described as having a PICTURE of 99V9
and the digits 123 are moved to it, the ~alue would be
treated in calculation as 12.3, but the size of the item
would be three characters, not four. If it were printed, it
would print as 123 because the decimal point character is
not actually present.

The character S indicates the presence of an "operational
sign." If used, it must always be written as the leftmost
character of the PICTURE. It is not counted in the size
of an item.

The character P indicates an "assumed decimal scaling
position." It is used to specify the location of an assumed
decimal point when the point is not within the number as
it appears in "input data." In effect, the item will be
treated as if a zero were substituted for each P and the
decimal point were placed "outside" the last P--Le., to
the right if the zeros are on the right. to the left if the
zeros are on the left. The character V may be used or

Character

T

Lor R

5. 14

Meaning and U se

omitted as desired. If it is used, it must be placed in t he
position of the assumed decimal point. For example , an
item composed of the digits 12 3 would be t reated by an
arithmetic procedure statement as 12 3000 if the PICTURE
were 999PPPV or as .000 123 If the PICTURE we re VPPP9 99 .
The character P is never considered as part of t he size of
an item; in the above examples, the size would be three
characters.

Truncate. This symbol is optiona l and does not reserve
an actual space i n storage; it informs the imple mentor
that when d a ta is moved into this field with too ma ny
digits, the low ord e r numbers a re truncated rather tha n
the usual rounding . It is p lac ed after the a bove format
characters and before the justi f y character.

Justify . These symbols are optional and d o no t res erve
an actual space in s torage. L means left justi fy . R
means right justify . This entry need be u s ed only when
the user wants the justify different from t he norma l
assumed justify.

An item of data may be moved within the system by means
of a MOVE or SET or as a result of computation or s ome
other operation . If the loc ation to which it is moved is
larger in size than the data itself, it may be neces sary
to specify t he position the data is to occupy in its n ew
location. In the absence of instructions to the contrary,
NUMERIC data will be "right justified" under these c ir­
cumstances, unless an assumed decimal point alignment
occurs. When an item is right justified, it s rightmost
character will be placed in the rightmost position of the
new location, and any unused positions at the left will
be filled with zeros. ALPHABETIC and ALPHANUMERIC
data, on the other hand, will be "left justified" 1n the
absence of instructions to the contrary a nd any unu.s ed
chqracter positions at the right will be filled with bla nks.

An ALPHABETIC item can c ontain only the letters of the alphabet and the blan k .
The PICTURE of an ALPHABETIC item can contain only the character A.

Character

A

Meaning and Use

The character A hen used in a PICTURE , indicate s t ha t
the character position will always c ontain eit her a lette r
or a blank.

5.15

An ALPHANUMERIC (ALPHAMERIC) item is an item which may contain any char­
acter in the character set . However, it is often convenient to think of ALPHA­
NUMERIC items as being divided into two types: "non-report" items and "report"
items. Non-report items are items for which editing is not specified. Report
items are items for which editing has been specified.

The PICTURE of an ALPHANUMERIC "non- report" item may contain only the
characters L, R. 9, A, and X. The character L, R, 9, and A have been discussed
above.

Character

x

Meaning and Use

The character X, when appearing in a PICTURE, indicates
that the character position may contain any character in
the character set. For example, the PICTURE AAAXXXJ{

indicates that the described item has a size of seve n
characters, that the first three characters will always
be alphabetic, and that the last four c haracters may be
any characters.

It may be desirable to edit data which is being prepared for printing. Editing in­
volves the insertion of certain characters and/or the suppression of others.
Editing of data 1s accomplished by moving the data to a "report" item. A repor~
item is an ALPHANUMERIC item governed by the following rules:

1. Any data which is moved to a report item is automatically altered according to
the editing specifications given in the Data Description entry corresponding
to the item. Editing is specified by means of a PICTURE.

2. A report item can receive only data which is numeric in content.

The characters which may appear in the PICTURE of a report item are shown below.

L R T P 9 V , • + - Z * CR DB B 0 $

All the characters in the PICTURE of a report item, with the exception of L, R, T,
P, and V, must be counted in determining the size of the item. The uses of L, R,
T, P, 9, and V have been discussed above. The remainder of the characters
will be explained in three groups, zero suppression, insertion, and replacement
characters.

Zero suppression and replacement characters are used to suppress and/ or replace
characters in accordance with the rules given in this section. Two general rules
apply to these characters, as follows; (1) Except in the cases of 0 and 8, sup­
pression and/ or replacement terminates with the character iwmediately preced-
ing the first digit other than 0, or the decimal point, whichever is encountered
first; e.g., zeros following a significant digit will not be suppressed or replaced.
(2) If all data character positions in a PICTURE reserved for source data (as op­
posed to those additional positions used for insertion characters) contain sup­
pression and/or replacement characters (other than 0), then all characters will

5.16

be replaced by blanks if the value of t he data 1s zero. Note that this rule 1s
equivalent in effect to the BLANK clause.

ZERO SUPPRESSION CHARACTER

Charact er

Z

Meaning and Use

The character Z specifies "zero suppression" of the
ind icat ed characters . Zero suppression is the process
of replacing unwanted left-hand zeros by b lanks . The
followi ng table indicates the effect of zero suppression:

Source Editing Edited
Item PICTURE !teL,

12345 ZZZ99 12345
00123 ZZZSS 123
00100 ZZZ99 100
00000 ZZZ99 00
00 100 ZZZZZ 100
00000 ZZZZZ laO

A Z must never be preceded by a 9. a B, or a a .

An " insertion II chara cter 1s one which 1s inserted into a report item . An insertion
c haracter does not t ake t he p lace of any data; it appears in addition to the infor­
mation moved· to the item . The i nsertion characters are $.,. • + - CR DB. When
any o f t hes e cha ra cters 1s used, the size of the report item must be larger than
t he maximum number of d igits which might be moved to t he item. This principle
1s i llustrated i n t he d i scussion of the dollar sign below.

C haracter

$

Meaning and Use

The single dollar sign, placed i n the leftmost position of
a PICTURE, specifies t hat a dollar sign character 1s to be
p,laced in that position in t he data , as illustrated in the
foHowing t able :

Source Ed iting Edited
Item -: PICTURE Item

123 $ 999 $12 3
012 $999 $012
012 $ZZZ $ 12
00 0 $ZZZ
010 $ZZZ $ 10

Not e that the PICTURE of the item specifies four character
positions :; however, a maximum of three digits of data
can be moved t o the item .

Character

+

5.17

Meaning and Use

If the minus sign is written as either the first character
or the last character of a PICTURE, a "display" minus
sign (as opposed to an operational sign) will be inserted
into the indicated character position when the value o f
the item is negative . If the value of the item is not
negative, a blank wi ll be inserted. Consider the fol1owin~ :

Source Editing Edited
Item* PICTURE Item

12 -9 9 -12
12 - 99 12
12 99- 12-
12 99- 12
06 99 - ~O -

DO 99- 00

If the plus sign is written either as the first character of
a PICTURE or as the last, a "display" sign will be placed
in t he ind icated character position . If the va lue of the
item is negative, a minus sign wil l appear; otherwise , a
plus s ign will be inserted. If an item is unsigned . it is
assumed to be positive . The following table illustrates
the above principl e :

Source Editing Edited
Item * PICTURE Item

12 +99 -12
+

12 +99 +12
12 99+ 12-

+
12 99+ 12+
oli 99+ 00-

+
00 99+ 00+

*A sign over the units position o f a number indicates an
operational sign.

The comma, when used to describe a character position,
will be in serted at the indicated position in the data being
ed ited. For example, the PICTURE 9,999 would cause
746 1 to become 7,461 after editing . The comma itself
will be suppressed if zero suppression has caused the
elimination of all digits to the le ft.

Character

CR
and
DB

5.18

Meaning and Use

This character represents an "actual decimal point." When
used to describe a character position:

1. The data being edited 1!;i aligned by decimal point I

2. An actual deCimal point will appear in the indicated
character position.

Thus, the integer 753 1 would appear as $7,531.00 if the
notation $9,999.99 were used as the editing PICTURE.
Unlike the assumed decimal potnt, the actual decimal
point occupies a character position and is counted in
determining the size of an item. A PICTURE may never
contain more than one decimal point, assumed or actual .

The "credit" and "debit" symbols CR and DB may appear
only at the right end of a PICTURE, These syrouols occupy
two character positions. When the value of the described
item is negative, the specified symbol will be placed. at
the right end of the item. If the value of the item is posi­
tive, these characters will contain blanks. For example,
the PICTURE $99 .99CR wlll cause 6325 to become $63 .2 5CR
and 6325 to become $63.25 after ed1ting. The only char­
acters which can appear to the right of C R and DB are T,
L, and R.

Several of the characters used in PICTURE specify that, at object time, certain
digits will be replaced by other characters much in the same way that the Z
specifies the replacement of leftmost zeros with blanks. The list of "replace­
ment" character consists of: *,0, a, the floating dollar sign, the floating minus
s ign, and the floating plus sign.

Character

*

Meaning and Use

The asterisk is used to 1ndicate "check protection,"
i.e. the suppression of each specified zero on the left
and its replacement by an asterisk. The following table
illustrates the use of the asterisk.

Source Editing Edited
Item PICTURE Item

12345 ***99 12345
0012 3 ***99 **123
00100 ***99 **100
00000 ***99 ***00
00000 *****
00 100 ***** **100

r

Character

o
(zero)

B

The
floating
dollar
sign

5 . 19

Meaning and Use

An asterisk can be preceded only by a dollar sign, a
plus sign, a minus sign, a decimal point, or a comma.

The character 0 {zero} will cause a zero to replace what­
ever character formerly occupied the indicated character
position. For example , if the digits 123456 are to be
moved to an item with a PICTURE of 999000, the item
will appear as 123000.

The character B specifies that a blank will replace what­
ever character formerly occupied the indicated character
position . For example, if the digits 12345 6 are to be
moved to an item with a PICTURE of 889999, the item
will appear as 3456.

Zero suppression with a "floating dollar sign" is speci­
fied by placing a dollar sign in each leading numeric
character position to be suppressed. A dollar sign will
be placed in the rightmost position in which suppression
by a dollar sign is to occur. The following table illu­
strates the prinCipl e :

Source Editing Edited
Item PICTURE Item

123 $$99 $123
Oi l $$99 $12
00 1 SSZZ S I
000 $$$S

The float ing minus sign is similar in expla ·la -~ ion to the floating dollar and pl us
sign.

The
floa ting
plus
sign

Zero suppression by means of a "floating plus sign" is
specified by placing a plus sign in each leading numeric
character position to be suppressed. If the value of the
item is negative, a minus sign will be placE~.d in the right ­
most position in which suppression is to occur; if the
va l ue of the item is not negative, a plus will be inserted
instead. The following examples illustrate the effect of
the floating plus sign:

5 . 20

So urce Editing Edited
Item PICTURE Item

123 ++99 +123
012 ++99 +12
012 ++99 -12
001 ++99 -01
000 ++++

All floating plus signs must be the leftmost characters
1n a PICTURE.

General notes on the PICTURE.

1. When an integer is placed in parentheses immediately following a PICTURE
character. it indicates the number of successive times that character 1s to
be present. For exam ple, the notation P(4) 9(10) is equivalent to PPPP99999
99999 and will be interpreted in the same way. The parentheses must follow
the indicated symbol without an intervening space.

2. The number of characters in a PICTURE must not exceed 30. For example,
$$ZZ.99 1s a PICTURE containing seven characters. 9V9 contains three
characters and 9(1000) contains seven characters. Thus. the number of
characters in a PICTURE may be different than the number of character
positions described by the PICTURE.

The following are examples of appUcations o f PICTURE which do not contain
editing symbols. A sign over the units positio n of a number indicates an opera­
tional sign as opposed to a display sign.

Non-Editing Applications

Then the item w1ll
and the characters be used In pro- and its class

If PICTURE Is: 1n the item are: cedures as: will be:

99999 12345 12345 NUMERIC
999V99 12345 123.45 NUMERIC
S999V99 12345 123.45 NUMERIC
S9(3)V9(2) 12345 123.45 NUMERIC
x:xxxx 12345 12345 ALPHANUMERIC
AAAAA ABCOE ASCOE ALPHABETIC
x:xxxx ABCOE ABCOE ALPHANUMERIC
999X99 123 . 45 123.45 ALPHANUMERIC
999M 123AB 123AB ALPHANUMERIC
999XX 123AB 123AB ALPHANUMERIC
XXXM 123AB 123AB ALPHANUMERIC
x:xxxx 123AB 123AB ALPHANUMERIC
9(3)A(2) 123AB l23AB ALPHANUM ERIC
99PPP 12 12000 NUMERIC
99PPPV 12 12000 NUMERIC
P(3)9(2) 12 .00012 NUMERIC
VP(3)9(2) 12 .00012 NUMERIC

5.21

The examples which follow illustrate the use of PICTURE to edit data . 1.1 each
example a movement of data is implied, as indicated by the column headings.

Editing Applications
Source Area Recei ving Area

PICTURE DATA PICTURE EDITED DATA
99999 12345 $ZZ,ZZ9.99 $ 1 2 , 3 4 5 . o 0
99999V 00123 $ZZ,ZZ9.99 $ 1 2 3 • o 0
9(5) ·"00100 $ZZ,ZZ9.99 $ 1 0 0 • o 0
9(5)V 00000 $ZZ,ZZ9.99 $ o . o 0
9 (5) 00000 $ZZ, ZZZ.99 $ •. 0 0
9 (5) 00000 $ZZ,ZZZ.ZZ
999V99 12345 $ZZ,ZZ9.99 $ 1 23. 4 5
V99999 12345 $ZZ,ZZ9 . 99 0 · 1 2
9 (5) 12345 $**,**9.99 $ 1 2 , 3 4 5 • o 0
9 (5) 00123 $**,**9.99 $ * * * 23 . o 0
9 (5) 00000 $**,***.99 $ * * * * * .00
9 (5) 00000 $**,*** . **
9 (5) 00000 $**,*** . 22
99V999 12345 $**,**9.99 $ * * * * 1 2 . 3 5
V99999 12345 $**, **9.99 $ * * * * * 0 · 1 2
9(5) 12345 $$$, $$9.99 $ 1 2 , 3 4 5 · o a
9 (5) 00123 $$$, $$9.99 $ 1 2 3 · o 0
9 (5) 00000 $$$,$$9.99 $0 · o 0
9 (5) 00000 $$$,$$$.ZZ
9999V9 12345 $$$, $$9 .99 $ 1 , 234 • 5 0
V9(5) 12345 $$$, $$9 .99 $ 0 . 1 2
S99999V 12345 -ZZZZ9 .99 - 1 2 3 4 5 . 0 0
S9(5)V 1234~ -ZZZZ9.99 123 4 5 . 0 0
S9(5) 00123 - ZZZZ9.99 - 11; 3 . 0 0

~

S99999 12345 ZZZZ9.99- 1 2 3 4 5 • 0 0
S9(5) 1234~ ZZZZ9.99- 1 2 3 4 5 . 0 0 -
S9(5) 0012 ------.99 1 23 · o 0
S9(5) 00001 ------.99 - 1 · o 0
S9(5) 1234 +ZZZZZ.99 + 1 2 3 4 5 · o 0
S9(5) 12345 +ZZZZZ.99 - 1 2 3 4 5 · o 0
S9(5) 12345 ZZZZZ.99+ 1 2 3 4 5 • 0 0 +
S9(5) 1234§ ZZZZZ.99+ 1 2 3 4 5 • 0 0 -
S9(5) 0012! ++++++.99 + 1 2 3 · o 0
S9(5) 0000 ++++++.99 + 1 · 0 0
9(5) 00123 ++++++.99 + 1 2 3 · 0 0
9 (5) 00123 ------ . 99 123 • 0 0
9(5) 00000 ++++++ . 22
9(5) 00000 ------ . ZZ
9 (5) 12345 88999.00 3 4 5 . 0 0
9 (5) 12345 00099 . 00 o 0 04 5 • 0 0
S9(5) 12345 $$$$$$.99CR $ 1 2 3 4 5 . 0 OCR
S9(5) 12345 $$$$$$.99CR $ 1 2 3 4 5 . 0 0
9(3)V9(3) 123456 999 .99T 1 2 3 . 4 5
9(6)V 123666 999PPP 1 2 4
9(6)V 123666 9S9PPPT 1 2 3
9 (2) 88 99999L 8 8 o 0 0

5.22

CONSTANTS and INITIAL VALUES in a WORK AREA A constant or initial value may
be placed in the system by writing a data description entry for it which includes
both a statement of its format (using the PICTURE characters) and a statement of
the actual value or group of symbols. The format is specified by a standard
PICTURE entry. The actual value, or the actual symbols, must then be written
on the same line. separated from the PICTURE by at least one blank. This value
(or this group of symbols) must be enclosed 1n quotation marks.

i Data Name ;
. PERCENT i Level Type Description I

V99 'OS' I

In this example, the notation V99 ls. of course, the PICTURE, and it is followed
by a statement of the actual value of the constant.

Data Names Associated with REDEr and COPY When the type codes REDEF and
COPY are used, it is necessary to specify the name of the data item or area to be
redefined or copied. This name must be entered in the "Description" columns.
(See the discussion of those type codes earlier in this chapter.)

REPORT GENERATION FEATURES (RGF) are included in this language to accomplish
such functions as:

• Print Headings per page and per change in control fields data.
• Automatically increment and print page number.

Print date on each page of report.
Group suppress printing of control field data.
Print selected field totals automatically per change in control field data
and at end of report.

• Generally, move and edit fields into lines of print from fields of detail lines
in working storage. Editing consists of functions such as suppress leading
zeros, insert periods and commas in quantity fields, floating dollar signs
and asterisk check protection.

These functions are accomplished, primarily, by data descriptions. The main
flow of the problem definition prepares a working storage of unedited data for
a detail line. The command DO REPT.n (where n is the report number) assumes
that the detail line is edited for print in the manner specified by the data de­
scription including the consideration of all the other report functions defined
in the data description. At the beginning of the report, the command DO BEG .
REPT.n may be given to effect the initializing of the report such as writing a
cover page, page heading, etc. At the end of the report the command DO END.
REPT.n is given to effect the end of report functions such as printing all required
levels of totals (including report total).

The RGF is explained in two parts with instructions for:
1. Completing the Printer Spacing Chart

Layout of lines and fields
Line identification code
Classification of lines

2. Completing the Data Description
Report Identification
Source of report data
Control fields 1n the source data
Header lines
Detail lines
Total lines

5 . 23

A sample report and its corresponding data description are shown (page 53> throug h 5.l>)
to illustrate the RGF instructions.

PRINTER SPACING CHART The purposes of laying out the report on the Printer
Spacing Chart are:

1. to establish the positions at which the vari ous data wi ll be printed as
well as to indicate the spacing between printed lines, and

2. to assign each line a unique identification code representing
a. the type of line,
h . t he level of the line, and
c. the number of the line within its level.

Layout of Lines and Fields The numbers across the top and bottom of the spacing
chart represent thE:! print positions. The numbers down the left side are line num­
bers. The user selects the line number and print positions for a particular field
and makes his notation in the selected positions. In the sample layout (Figure
5.4) note that headings and other constant information are spelled out completely
in the print positions assigned to them. Variable information is represented by
X's and includes, where applicable, credit symbols, punctuation, etc.

Line-Identification Code The column at the left on the spacing chart is used to
assign each line a three- character identification code . This code identifies the
line on the data description sheet where each line is described according to type
an~ content.

Type

The first character of the identification code is H for a heading line, D for a de­
tail line, or T for a total line. All lines must be identified as belonging to one
of these categories .

Level

The second character of the identification code can be a number or a letter . A
heading or total line within a hierarchy is ass igned a number to represent its
level. A heading or total line that is independent (not in a hierarchy) is assigned
a letter . A detail line can be assigned either a number or a letter to represent
its level.

Number

Lines w ithin a level can be numbered according to their appearance in the output.
Lines w ith "numerical-level" designations must also have numerical line-number
designations. Lines with ualphabetic-Ievel designations can have numerical or
alphabetic line-number designations.

5.24

Classification of Lines The classification of a line by type is usually self-ex­
planatory . Note , however, that total lines differ significantly from heading and
detail lines. Heading and detail lines can contain information from the record
in the source area at the time when the lines are produced; tota l lines can not .
A source record can effect the control- field change that causes total lines to be
written, but the source record cannot contribute data to these lines. A detail
line has a direct relationship to the source record in that most or all of the data
in a detail line comes from the input record. A heading line generally contains
constant information, although it can have some information from input records,
including the record present at the time the line is assembled.

The concept of line "level" is based upon the relationship of a line to other lines .
Heading or total lines that are independent of each other should be given alpha­
betic-level designations. Heading or total lines that are related in a hierarchy
should be given numerical- level designations corresponding to their positions
in the hierarchy. A hierarchical relationship can be likened to total operation
on an accounting machine, i. e . , major lines force minor and intermediate lines .
The principle underlying a hierarchical relationship is that lines of higher level
govern lines of lower level. Thus, when the object program is running, a total
line with numerical-level designation such as T3x will force Tlx and T2x to
come before it whenever the output conditions are fulfilled for T3x.

In the "Monthly Expense Distribution Report II (Figure 5.3) there are three related
levels of total. The lowest level is associated with sub-ledger number, the
next level with general ledger number, and the highest level with department num­
ber. When the general ledger number changes, the sub-ledger total line prints
before the general-ledger total line. When the department number changes, the
sub-ledger and general-ledger total lines print before the department total line.
Because this hierarchical relationship exists, these lines have been given the
numerical-level designations TIl, T2l, and T31. (See the spacing chart in
Figure 5 .4 .)

Study of the Monthly Expense Di stribution Report reveals a difference in the
hierarchical relationships for total and heading line s . Total lines appear in
"ascending". order by level; heading lines appear in"descending" order by
level. On that report the heading lines associated with department number print
before the general-ledger number lines which, in tum, precede the sub-ledger
lines. Thus, when department number changes, the H3x lines precede the H2x
and Hlx lines. When general ledger number changes, the H2x lines print before
the Hlx lines.

In addition to the three related levels of heading and total lines in the Monthly
Expense Distribution Report. there are independent heading and totall1nes.
Page headings printed as a result of page overflow, page totals. and final totals
are all examples of lines that are independent of the minor, intermediate, and
major relations governing a hierarchy . The illustrated report has both page head­
ing lines (HBI- HB4) and a final total line (TAA). All of these have alphabetic
level designations because they do not relate to lines of other levels.

r

5.25

Page heading lines may be printed because of control-field changes, because of
page overflow, or because of both conditions . The latter case is true 1n the
Monthly Expense Distribution Report. Just as the IBM 407 Accounting Machine
distinguishes between normal programming and overflow programming, the RGF
considers normal heading lines distinct from overflow heading lines, even when
the lines are alike in format. Thus, some of the heading lines in Figure 5.4
have two names reflecting their status as both overflow and normal page-heading­
lines. The normal heading lines are H3x, H2x, and Bix . The overflow lines
are HBx . On a change 1n department number there 1s a skip to a new page of
the report and the numerical-level heading lines (H3x-Hlx) print. On page over­
flow the alphabetic-level heading lines HBx print.

When there is a single detail-line format in a report, that line can be given an
alphabetic-level designation to reflect its independent status. Such is the case
in the Monthly Expense Distribution Report in which the detail line is named DAA.
Other applications might have any number of detail-line formats which, when they
do not relate to one another, are classified alphabetically by level. It is con­
ceivable that some applications might contain hierarchies of detail lines neces­
sitating numerical-level designations.

Note that the "level" of a line is not necessarily equal to the "number of the
control field" with which the line is associated. For instance, a total or head­
ing line of level three may not relate to control field three in the input data file.

The "line number" permits scheduling lines within a level. The Monthly Expense
Distribution Report has six heading lines composing level three print in line­
number sequence within that level, Le . , H31, H3Z, H33, H34, H35, and H36.
Even though there is only one line in each of the lower levels of heading line
in that report (HZI and Hll) I the lines have numerical line- number designations
because they are hierarchical. The same principle applies to the total lines,
TIl TZI, and T31, in the same report. Application of the line-number concept
to hierarchical total lines corresponds to special programming on the IBM 407
Accounting Machine. For instance, four minor total lines could be named TI l ,
T12, T13, and T14 .

Analysis of the independent lines in the Monthly Expense Distribution Report
reveals that both numerical and alphabetic line- number designations can be
used in classifying lines with alphabetic" level" designations. When page
overflow occurs, four heading lines (HBI-HB4) print, and the line number re­
flects the place of each line in the sequence . If there is only one line in an
alphabetic level, that line can have a letter as its line number (DAA and TAA in
the example report) •

Multiple- line print (MLP) source date might cause three detail lines to print,
and these lines could be named DAI, DA2 I and DA3 to reflect the place of each
line in the sequence. Two final total lines in a report might well be named TCI
and TCZ.

DATA DESCRIPTION form is used for describing the source record in a work area
and the lines and fields constituting the output.

5.26

FIGURE 5.5 shows an example of a report source area data description. FIGURE
5.6 shows an example of a report definition data description. Both figures cor­
respond to figures 5.3 and 5.4 for the Monthly Expense Distribution. FIGURE 5.5
is completed in accordancewith.previous instructions in this chapter.. ,

The report definition must be completed in the specific sequence shown below:
• Report identification
" Source
• Control fields

Report lines

REPORT IDENTIFICATION Entries are:
DATA NAME Condensed report name
LEVEL 01
TIPE REPT. n when n is a unique number of this report .

SOURCE Entries are:
DATA NAME The name of the source work area which will contain data

LEVEL
TIPE

for the report.
02
SOURCE

CONTROL FIELDS If the data sequence in the source area is not a condition
for printing lines, the control fields do not have to be specified . If they are
specified they must be named . in ascending order beginning with the minor con­
tro~. field as Fl (see Figure 5.6). Entries are:

DATA NAME Control field name in source area .
LEVEL 03
TYPE Fn where n is the control field level, starting with 1 as the

minor level

REPORT LINES Entries for hierarchical line specifications must be in the same
order as they will appear on the report. Entries for all of the fields within a
line must follow the entry for that line specification. The field entries must be
in the same sequence as they will appear within a line on the report. Entries
for report lines are:

DATA NAME No entry required.
LEVEL 02
TYPE A three character entry (line identification code) is copied

directly from the spacing chart as explained previously
under Printer Spacing Chart.

The left character specifies the type of line (this is different from the type column
on the data description form). It must be H for a heading line, D for a detail
line, or T for tota l line. An important consideration in assigning "type" to a
line is the difference between a total line and a heading or detail line with regard
to the record in the source area when the line is formed. The performance of the
total-line calculations, and the formation of total lines precede the function of
removing fields from the source record . Thus, a source record tha t causes a
control change cannot contribute data to tota l lines that result from that control
change .

,

5.27

H a nd D lines follow the" removal of fields from the record 1n the source area,
and thus that record can contribute to these lines. Therefore, the nami ng of a
line according to type 1s not arbitrary, particularly with regard to total and
detail lines.

The line identification code must be in descending level- order for heading lines,
and ascending level-order for total lines. This is the normal order of printing
related report lines, as can be noted on t he spacing chart 1n Figure 5 . 4 and on
the printed report in Figure 5.3.

DESCRIPTION There are seven possible kinds of entries. They are listed below
and must be entered In the sequence listed. It is very unlikely that all seven
entries would be present at one time. A comma is written between entries.

1. NEXT LLL where LLL 1s the line identification code of the next line to be printed .
This entry is made only if the next line specified by this entry should be
printed unconditionally after this line. When a next line is specified it must
be of the same type and level of the line being specified .

2. SPACE n BEFORE where the values for n are 01, 02, and 03 and specify s 1ng le,
double or triple line-spacing before pri nting the line be1ng specified.

3. SPACE n AFTER where the values for n are 01, 02, and 03 and specify single.
double or triple line-spacing after printing the line being specified.

4. SKIP n BEFORE where the va l ues for n are 01 through 12 and specify ski pping
to carriage tape channels 1-12, respectively, before printing the line being
specified .

5 . SKIP n AFTER where the values for n are 01 through 12 and specify skipping to
carriage tape channels 1- 12, respectively. after printing the line being spe­
cified .

6 . COND X This entry is used to designate the line output condition(s). If
multiple conditions are designated on one line-entry, they are considered in
an AND relation. The possible conditions (values for X) are:

OF Page overflow
FI-Fn Change i n control fields 1 through n.
BEG. REPT. n Begin report n. Used to initiate report functions such as

writing a cover page and the first page headings.
END.REP . n End report n . Used to accomplish end of report printing such

as report total(s).
NOF NFI - NFn NBEG. REPT.n : These are negations of the above conditions.

and NEND. RE PT. r, '
If a line is referenced by a previous entry as a NEXT line, no cond itions are
entered.

A line wUI appear in the output only if:
1. "Line - output conditions" for the given line are specified and fulfilled, or
2. The line was speCified as the next line of another line for which the output

cond itions are fulfilled, or

5.28

3. The line 1s of the lower level ina hierarchy than another Hne of the same
type for which the output conditions are fulfilled.

A line conditioned by OF cannot be associated with any lines not conditioned by
OF. Thus, a line conditioned by OF cannot specify a "next line" not conditioned
by OF; nor can a line not conditioned by OF specify a next line conditioned by OF.

Lines related in a hierarchy must be of the same type and must have numerical­
level designations that reflect their relative pos itions within the hierarchy . The
processing principle underlying a hierarchical relationship is that lines of a hlgil­
er level govern lines of lower level. Thus, when the output conditions are fulfilled
for T3x lines, the object program will force Tlx and T2x lines to come before the
T3x lines in the output without regard for the line-output c(;mditions of the Tl x and
T2x lines. This is precisely what happens in the MonHlly tx~ense Distribution.
Report.

In addition , multiple lines within one level in a hierarchy must be referenced by
"next line" designations rather than individuall1ne- output conditions whenever
there is a higher level of lines in the hierarchy . Thus, H21 must call for H22
as a next line and H22 must call for H23 as a next line to ensure that all three
will be present in the output when H3x lines precede them.

7. COPY LLL This instruction accomplishes a similar function as the data de­
scription type COPY described previously. The LLL represents a previously
defined line. The COPY LLL causes the field entries under line LLL to be
copied exactly and placed as field entries under the current line being de­
fined.

FIELDS WITillN LINES Entries for line field s are:
DATA NAME Entry required only when the field will contain variable

data and thus must be referenced.
LEVEL Entry will nonnally be 03. Lower level numbers (numerically

larger) may be entered via the rules for the level numbers
described earlier.

TYPE
DESCRIPTION

STOCK NR
III
III
III
III
III
III

No entry.
The usual entries are made for fie lds - PICTURE which may
be followed by a VALUE. An additional entry may follow the
VALUE (or PICTURE If there Is no VALUE) . This entry is
GROUP SUPPRESS which can be used 9nly . .wi~ i"Lc..Q..ntrol fields .
It will cause group printing to be suppressed. Suppose a
report appears as:

LOCATION CLASS INVENTORY
AA CI 100
AA C2 ISO
AA C3 50
BB CI 20
BB C2 30
BB C3 40

••

5.29

If the fields STOCK NR and LOCATION were designated as GROUP SUPPRESS the
report would appear as:

STOCK NR
111

LOCATION
AA

BB

CLASS
Cl
C2
C3
C l
C2
C3

INVENTORY
100
150

50
20
30
40

5 .30

-- -- -- -- - - -- -- -- -- ---- -- -- - - -- - - -- ---- --

MONTHLY eXPENse DISTRIBUTION REPORT

Rep~T DATE 07- 18-&0 PAGE

'" DATE AMOUNT AMOUNT
INVOICE l.)loo"T " " HUnER MO DAY ACCOUNT DEPT

••• DEPT. NO . 0112
•• GEN. LEDGER NO • .. ,
• SU8. LEDGER 1010 . m

l Z09~ ,
" 125.03

125 .0 3 •
• SU8 . LEDGER NO. &23

n09, • 10 S11 . 00
12:088 ,

" bes.tll
1.2S6.9~ •

• SUII. LEDGER NO. 629

12080 ,
" 211.1S

non , 02 1 . 631.17
1.655.32 •

• SU8. LEDGER NO. 636

12109 7 " 1,725.511
1,72S . SI1 •

11,762.8 3

•• GEN • LEOGfR '0. '0' • SU8. LEDGER '0. '"
12150 • 0. 1002.00

FIGURE 5.3
Monthly Expense Distribution Report

I = •
~

i ,
•

i ~ :
!
i ~ ;

I

i ii
t
'" .c
()

'" c -o
~

co

5.31

~!~ SYSTEM
.\CCO\NTING

SfIUAL
NAME

Ll¥-
'L TYPE

01 DETAIL 01 WORK

02 DEPT 02
03 GEN.LEDGEI 02
04 U8.LEDGER 02 .
05 INV.NR 02
06 DATE 02
07 INV.AMT 02

'---

I • I" .~ ,..., .~ -~, ..
SYS TEM SEGt-.£NT IPREPARE D B.Y
MONTHLY EXPENSE DlSTR OYE

DESCRPTION

9(3) ,
9(3)
9(3)
9(5)
x(6)
9(7)

..

nGURE 5.5
Report SOWC8 Acea Data Description .

DATE
8/ i i61 I~%-- 21

21.1
0

I;

-

'"
'" ...

n'C1510N TABLE DATA DESCRIPTION

Ir~ I 5.'t,~1~
SEI'IAL .'

NAME EL

'- 21 . 1
)AGE 22 I c I

ISYS TEM 5E"''''''''T IPREPARE D BY 1l.¥\fE. . .. _ .. _._u ~.n""" t>ISTR OYE 8/ 1/61 ITO

L , IIUN

101 .EXP.DIS 01

02 DETAIL I uz
03 ~UB.I.~i~ 03IFI I I ,
04 fiEN.L 031F2

05 DEPT 03 3 I . I I
06 02 H31 j NEXT H32, SKIP 01 BEFORE, SIP 02 AFTER, conn F3

--

I 07 03 A (33) BLANKS

108 03 A (35) 'MONTHLY EXPENSE DISTRI. - .

[09 --J] 021H32] - NEXT H33, SKIP 03 AFTER
10 03 A (65)

III \ 103\ A (12))RT DATE

12
I 13

Itt
REPT. DATE I 03

103

103
0211

X (08)
A (09) ' PAGE '
9 (03) '001'

i33 NEXT H34, SPACE 01 AFTER

ON REPORT' I I

16 03 A (32) BLANKS --=r
117 1031 A(15) 'OUR DATE' II
118 1031 A (24) BLANV

19 03 A (06) 'AM'

20 03 A (13) BLANKS I I
21 03 A (06) 'AMOUNT '
22 02 H34 NEXT H35 , SPACE 01 APTER
~

123 I 03 1 A (30) BLANKS
24 03 A (07) '1m

25 I 1031 I A (18) BLANKS I ~~ Inn ~ ~~~) 'AMOUNT '
/

128 I 103 1 I A (02) 'BY'
Z~ U~ A (1 7) BLANKS

FIGURE 5. 6 ,- ~ .. ,

'" w
w

~

~TL SYSTEM
100 ACCOUNTING
SE~IAL LEv-

NAME TYPE • L

30 03
31 03
32 02 H35
33 03

34 03
35 03

36 03
37 03
38 03
39 03

40 03

41 02 H3 6

42 03
43 DEPT 03 1
44 02 H2l
45 03

46 PEN,LEDGER 03
47 02 Hll
48 03
49 UB.LEDGER 03
50 02 DAA

51 03
S2 INV.NR 03
53 03
54 DATE 03
55 03

56 NV.AMT 03
57 02 Tll

' ,..."" ,.--..._-.- ...,.~", __ , ... II

SYS TEM SEGMENT PREPARED BY DATE
MONTHLY EXPENSE DISTR OYE 8/ 1/ 61

DESCRIPTION
\ A(1 7) BLANKS

A(02) 'BY'
NEXT H36, SPACE 01 AFTER
A(30) BLANKS

A(06) 'NUMBER'
A(0 6) BLANKS

A(06) 'MO DAY'
A(22) BLANKS
A(07) 'ACCOUNT '
A(13) BLANKS

A(02) 'BY'

SPACE 01 AFTER

A(2 0) , *** DEPT . NO .
,

9(03)
SPACE 01 AFTER, COND F2
A(25) , ** SUB, LEDGER NO,

,

9(03)
SPACE 01 AFTER, COND Fl
A(25) , * SUB, LEDGER NO. •
9(03)

SPACE 01 AFTER

A(31) BLANKS
9(05)
A(06) BLANKS .
X(06)

A(05) BLANKS

ZZ, ZZ9 .99

SPACE 02 AFTER, COND Fl

FIGURE 5.6
Report Definition - Data Description (Part 2 of 3)

IftGE 22

" ,
0 • T

,

I
I
,
!

'" w ...

~TL SYSTEM
100 ACCOUNTING

SERIAL
NA~

LEii-
>L TYPE

58 03

59 TOT.AMT 03

60 03
61 02 T21
62 03

63 AMT.ACT 03

64 02 T31

65 03
66 AMT.DEP 03
67 02 TAA

68 03
69 03

70 FIN.AMT 03

71 - 02 RBI

72 02 HB2

73 02 HB3

74 02 HB4

I '''' ''I ,''''''''''''''- r-o ''"""',..",." I, 1 ' ' ~

SYS TEM SEG~~f'b1 PREPARED BY
MONTHlY EXPE STR OYE

DATE
8/ 1/61

DESCRIPTION
A(52) BLANKS

ZZZ, ZZ9 .99

X(02) •• '

SPACE 02 AFTER, COND F2
A(6 7) BLANKS
Z,ZZZ,ZZ9.99

SPACE 01 AFTER, COND F3
A(84) BLANKS
ZZ,ZZZ,Z9.99
SPACE 03 BEFORE, COND END. REPT

A(69) BLANKS
A(14) 'FINAL AM OUNT '
ZZZ,ZZZ,ZZ9.99

NEXT HB2 SKIP 02 BEFORE SKIP 03 AFTER COND OF NF3
NEXT HB3, SPACE 01 AFTER, COPY H33
NEXT HB4, SPACE 01 AFTER, COPY H34

SPACE 01 AFTER, COPY H35

FIGURE 5.6
n _ __ _", _ , __ _ .. _ ____ . _ ... __ 10-. _ _,

,

.f~ Gnr:.,,~

COPY H32

23
FINAl

e
0

~

,

<n

w
<n

A.I

APPEND~

SAMPLE INVENTORY PROBLEM

A simplified inventory problem has been selected for illustrating t he use of de­
c islon tables. A machine run decision logic 1s documented from t he a nalyst
viewpoint . It ignores practi cally all of the machine con s iderations of how the
decision logic will be accomplished .

We can think of a procedure as a series of instruction steps 1n a spec ific sequence
where each step may be conditioned by the assumption that a prev ious stapes) has
been taken. A completely non-procedural documentation of a problem decision
logic would be characterized by:

Arbitrary selection of points for defining inputs and outputs in terms of re­
cords (subordinate data associat ed with idenUf1c8t1on data).
No ordering of data within record s.
No ordering of records withi n files.
Mayor may not separate inputs into mul tiple fUes for communication
benefits.
Define each element and item of data as output records in t e rms of input
data conditions and transformation logic w ithout recourse to int ennediate
work area, files , e tc.

This would g ive near maximum flexibility for procedurizing the i mplementation
of the problem s tatement. It would permit the simula tion and comparison of
various problem solutions.

The use of decision tables is a compromise between procedural solution state­
ment of a pro blem and a completely non- procedural statement of a problem de­
ciSion logic.

The sample i nvent o ry problem documentation is procedure orient ed 1n the following
ways:

The files are sequenced.
The fields with in records are sequenced (however , other than for t he report,
it would make little difference if the fields were not sequenced within
records.)
Table to table sequence is speCific .
Mandatory sequence of actions wit hin a rule is stated .

The documentation is non- procedura l within a ta ble in the following ways :
Rules within a ta ble can be considered in any sequence (the exception 1s -
the ELSE rule mus t be considered la st in a table).
Conditions within a rule may be tested in any sequence .

The process chart shows there will be:
Input s :

Master Inventory - Magnetic Tape
Transactions - Cards

Outputs:
Mast e r Inventory - Magnetic Tape
Report - Printed Re port

09- - -
Master
Inve,ntory

Update Master
Inventory

T and Prepare

- r,Mast
..(Inven

" L-,

er
tory

p

A.2

Inventory Report

(.. I nventory
Repo~

Transactions

The sequsnce of the files are:

STOCK SYMBOL x

Other as sumptions are:
1 . There are nQ stock symbols with a value of zeros.
2. There i s only one master record for a stock. symbol and location code .
3. There is a master record _-' (stock symbol and location ccxie) for each

t ransaction.
4 . There may be master records with no actiVity (no matching tran saction s.}
5. For any mast er record there may be multipl e t ransactions of each of the

following:.
Rece ipts

. Ord ers

. Issues
6. Al l d ig its 1n numeric fields will contain a value from zero through nine.
7. The "quantity on order" fie ld 1n the master record 15 a lways greater tha n o r

or '~qual t o I'receipt quantit y."
8 . There willalways be one date card and it will be the fi rst card in the trans­

action file .

A.3

INDEX OF INVENTORY PROBLEM DOCUMENTATION

FIGURES
A.1 Printer Spacing Chart for Sample Inventory Report
A.2 Sample Inventory Report

DECISION TABLES
TABLE
NR

001

002

003
004

005

c
L 0
0 P
5 I'
E N
0
--

X
X

X

X

X

DATA DESCRIPTION

Transaction Record 5

Master Inventory Record

FUNCTION
Initialize transaction and master inventory files and
report headings.
Position Input FUes. Provide control logic for consider­
ing other tables.
Print Report Lines . Write master file.
Process Transactions
When master inventory order quantity equals zero
put blanks in order code and order date.
Determine and prepare' management exception in­
struction.

Page
1
2

Source Area for Report Detail Line
Report - Header Lines

3
4
4.1
5

Detail Line
Total Line Lines

Date Work Area
Arithmetic Expressions

6
6

f
; , ,
i

I
~
i
l

; ! ,.
" i' -I

-• • %
u

u z
U • • ~
" ~

~
,

-, 1
., ,

. ,

•
' :

" -

S
~
~
~

~
~

.~
~
~

_ .. . - . . --.. - .
. ----

S
~
'<
~

S
~ -~
~

~
I II

•
" • 0:
"

..
"-a
~

.;

~
S
"
~

;i'
<

~

..
:.
S
~
g

~ ...
~ -e -" ...
" ... -
S
" ...
-
'" S
.;:

\> ... , ,
.~

... ..
" :;;

lm~~.~r~®rmr~·lmllrm~' -
, , , ,

~ ,

;:) : . .
••• ... ' . . . ,

C) : : · . .
" "
" "1'11 r 11'~ nll " .. ""rI'I'I"" lInl.,'lIl1l1·'lI"l'll ll ,.lIMIIJlII •• "".I .. .,r.:*"" '1"

• ; · · " "

•••

S !',JCK Ll)CA PItEV C URKENT
f;YMBOL TlON BALANCE BnLANCE l{CPTS] SSL'ES

121211 A1.O ,,00 5>0 150 200
All 80 J) 0 25
.\ 12 100 uo 0 20

)"0 o8S 150 ~' 45

22220 AIO 13,000 10, 00 0 0 3 ,0(;0
All 4,500 3 ,000 0 1 ,500

" 12 50U 400 0 100

18 , 000 1 j ,400 4 , 000

l 8 ,),,0 III , lJ ~ 'j ISO 4 ."45

INVENTuKY i<EPO 1:1. I' OATt: lL:'tPkoi P,.\GI:. to

ytt TO lIi\Tt INVENf INV~N r ,(£OKUER CKITICAL I.,!IJANT CO MANAGEMENI' BY
KePTS 15Sl S BAlANCE 0BJCl Ii LEV J~L

HUNDREDS OOLLAkS

30 40 u, aao 1 .000 '00
J 4 5,500 LID _00
4 10 <:S,OOD)no :.00

37 54 19,500 l, (;., U i, "WO

,uG)00 10,000 2tJ,U JU 1 .. , Joa
250 400 3 ,000 1.0 ,0',0 7,000

25 40 400 1.,01 0)00

775 1.1~O U,400 :ii ,vuO 2 I, 700

812 1,244 32,1)00 32, J O 2.2 ,900

FIGU RE A. ;:
SAMPLE INVENTORY REPO RT

LEVEL ON Dc
uH.DEk

300 () •
85 0 •

150 0 k

535 0

),OO() 0 K

3,500 0 " 3.)0 0 J

10 ,Lisa

11.,305

.r..J(Ct:PT luN
IN.:ifKUCTI ON

01U)1:. 1i.

Cl< iT 0KOcl(
CK IT tU:: 1! 1'1)

k£pru
ex if JKJJt, iJ

uKJJl:.U

450
)5

()MAlt

;~ APt<.
.. MAk

:: {lMAl<.

>
~

I

TABLE TITLE SYSTEM SEGMENT SYSTEM ~FI\RED ~DATE ~SE~E
BEGIN WEEKLY ~ORT INVENTOR BY Q~ b. .9-4-61 002 ~

11 HE OPERAND lOP DPERAI'llZ ~LE. ll£O R JL E. IILF IF! Ul E . FQFC RULE.
NR r-'ERB I I @!il-::~. L

,. ~ ~ • 02*

.

.

10 READ TRANS I X

II READ INV I X
DAT.WA.

12. MOVE TRANS DR TO DATE 2 X

13 Do,n 3 X

J4 MOVE INV SAL TO ~~h:".fu. 2 x

IS DO BEG.RPT .1 3 X .

~ ·ror conditions: OPERATOR
For actions: SEQUENCE

..
m

TABLE TITLE SYS TEM SEGMEN T SYSTEM PR£~RED CPEN L DATE r-SE ",EXT r':B_LE
POSITION FILES- CONTROL LOGIC WEEKLY REPORT INV BY OYE CLOSED 9-4-61 002 002

LINE OPERAND I OP OPERAND2 RULE °REO IRUL E FREO RULE FREO RULE FREO RULE FO "O RULE REO
NR VERB I 2300 ~ 1000 • 3 .~ • ~ . Ell 5 I

• ~ND2 • • NO;

0 1
TRANS CMP INV 1m EC

02 li~· CMP 'l.'6'c EC 1:>1

03 INV EO END N N N N Y

04 TRANS EO END N N Y N Y

10 DO 003 I X

II READ TRANS 2 X

12 DO 004 I X I X I X

13 MOVE
CI?;~ . "AL •
DOL TO m::~1u I X I X I X

14 DO 005 2 X 2 X 2 X

15 OVE(INV TO PRT .WA 2 X 2 X 2 X

16 DO REPT . 1 3 X 3 X 3 X

17 MOVE ZEROS TO m .. '1~T X I. X x

18 " " TO ~~'f .. "r.~, 4 . X 4 X 4 X

19 N RlTE I NV .0 RO~ INV 4 X 4 X 4 X

20 READ INV 5 X 5 X 5 X
RT .WA

21 MOVE INV SAL TO PREV. BAL 6 X 6 X 6 X

22 DO END.RPT . 1 I X

23 STOP 2 X

.For conditions: OPERATOR CAL.BAL.OOL:::: INV UNIT .COST fr INV SAL 0 > ' 0 '" . For actions: SEQUENCE TABLE 003 - Process Transactions " N fTl
>
~

TABLE 004 - Spaces to Ord .Code & Date if Ord .Oty .is zero
TABLE 005 - Mgt by exception lnstr.

TITLE SYSTEM SEG~T YSTEM PREAl.RED _ DATE
PROCESS TRANSACTIONS WEEKLY REPORT INV. BY QYli OSED X 9- 4- 61

LI ME OPERAND lOP PERAND2 RJLE R F LE F
NR ERB I 800 Z 3 . 7S

•
01 EO ISSU .T. RECP .T ORDR.T

10

11

I Z

13

14

IS

16

17

18

.. 19

SET INV BJi. EQ+

.. .. EQc

Il~su .YTD EQ+

II I 11':~lR 'r.~, EO+

INV .YTD EO+I

lWD.ory EO-

10000~c EQ+
INV
ORD .ory EO+

I g-<n~ EO
I;:DATE

.cODE I EO

*For conditions: OPERATOR
For actions: SEQUENCE

TRANS OTY hi X

I X

I X

I X

I I II I II I X

I X

I X

I X

I TRANS DATi

1 ORDERED J

~

,

. TABLE TITLE SYSTEM SEGMENT SYSTEM PRE~~O OATEFlSE: NEXT ~LE
TEST ORDER QUANTITY WEEKLY REPT INV BY OXE rJ (lCfnX 9-4 -61 004

LI NE IOP£RANO lOP OP£RAND2~~;LE~FI<E~~~"'Q~RiUUliE~.I~FFllli:iQ~I; II~ FFiiRE.CQ~R~U;LE~FR;ECQ~IR~UU;LE~FR~ECQ~R~U;LE~~RE;ij0
IrN~R~~VE::R~B4=~~~==~======~~J~200~0~~~130~O i= • @; • m!2 • ~~~ 02 • DPE.~ •

01 ORD.'qry I EO ZEROS Y N

10 IMOVE SPACES TO ORb~ODE I X
INV

II MOVE I SPACES TO ORD.DATE I X

, ,

,,; ·ror conditions: OPERATOR 0 ~ I?
For actions: SEQUENCE ~ ,If,

m ~

TABLE TITLE SYSTEM SEGMENTISYSTEM PREf¥>.RED ~ __ DATE P.SE XT ~LE
MGT BY EXCEPTION INSTRUCTION WEEKLY REPT INV BY DYE b~i="DX 9 - 4- 61 005 I

LINE OPERAND I OP pPERAN02 RULE fIlEo R'" "-IF' m R'" F fREO RULE FREO RULE fRFQ RULE R:O RULE FREO
NR VERB 1 w.',0 2 60 3 ~ ~ 5 60 7~'

. ,. &J:j!," .. ~* .ctJ..IJ* N" I " N
•• " , ,,- L. ...

01 NV SAl,. GMP CRIT LVL l.i: \;;II E
INV ~

02 NV BAL eMPI REORD llIL h E

03 bd'!¥onc CO Or'DTr'1"'I NONE ORDERED REPTED NONE

RT.WA II ! ' ; ! I I
In Sl:T RIT r.O ! SPACeS SPACES SPACr:s' I SPACES ! ~""';RlT " ! "CRIT" " GRIT"

I RT~WA , i .
11 . ' RD RPT I SPACES "OIlDCD" " Rl:PTO" " OROED" L " CrIHlCD" i "REPrO" "ORDED"
--: - T <i .WJ\ ··· I . [)t!.~~ INV · CAL. : . rr ·v IINV CAL.
~ ! I T!:,.PAT : SPAces _____ ~_RD DA~ _ _QIlP_PA't ORO~ Q:a __ ~lORI' f')ATF: l ORn nATF: mm O'TY'

Ig~±r 13

. 111 Ib'kb n , !--1--;... liN
l~ ORD.

CAl.
ORDJlTV

1RI: !"TrD

·ror conditions: OPERATOR CAL.ORD.QTY ::. INV OBr - INV BAL - INV ORD.OW
for actions: SEQU [NCE

x x
Ix

~ x

o j;! 0"'1> ~ '-' ",-
_0

jCTL SYSTEM
001 TNVENTORY

SERIAL LtV-
NAME K TYPE

01 TRANS 01 RECORD

_~2 TR . CODE 02 . I-
03 DATE .T 3 COND

04 RECPT .T 03 COND

05 ISSU .T 03 COND

06 ORD.T 03 COND

07 STOCK 02
08 LOG 02

09 Icry 02

-10 I nATe 11

II DAY.MON 03

12 MONTH 03
13 02

14 DATE 01 REDEF

15 TR.CODE 02

16 STOCK 02

17 DATE 02

18 DAY.MON 03

,q 03 -
20 YEAR 03

21 02

--I

I..JIVI'II I ~l....I\...I-. '-'~ Ir"\ '-''-....,...,." , •• ,...., ••

SYS TEM SEGMENT PREPARED BY
WEEKLY REPORT OYE

DESCRIPTION

99
'00 '
'30'

'40'
'20'

X (6)
X (3)

9(4\

X (2)

X (3\

A (60) BLANKS

TRANS
99
X(6)

XX

AM
XX

A(6S\ B~KS

Ql\TE l.f~%""
I

9-4-61 2

.

,
0 • T

:>-
.' --

eTL SYSTEM
002 INVENIDRY
SE"IA,L LEV-

NAME i~

01 NV 01
02 STOCK 02

ra3 OC 02

04 BAL 02

05 OBJ 02
06 ~EORD.LVL 02

07 CRIT .LVL 02
08 ItCPT. ITD ~2
09 SSU .ITD 02

10 bRD.QTY ~2
II PRD.CODE 02
12 REPTED 03

13 ORDERED 03
14 NONE 03
15 PRD.DATE 02

16 DA.MON 03
17 MONTH 03
18 UNIT.COST 02

19 INV .0 01

. .

lJECISION TABlE DATA DESCRIPTION
SYS TEM SEGMENT PREPARED BY

WEEKLY REPORT OYE

TYPE DESCRIPTION
RECORD

X (6)
X (3)

9 (6)

9 (6)
9 (6)

9 (6)
9 (6)
9 (6)

9 (5)

A
COND 'R'

COND '0'
COND SPACE
. -

XX
XXX
99V999

COPY INV

-

SPACES = BLANKS

DATE If~ G"E. '" ..
2

9-4-61 3

.

c
0 • T

:.-.
~

'"

9 L SYSTEM
003 INVENTORY

SERIAL CE~

NAME il..

01 [PRT WA 01
02 STOCK 2
03 LOC 02

04 PREV SAL 02

05 IRAT. 02
06 CUR.RCT 02

07 leUR.ISS 02
OB RCPT YTD 02

09 IISSUYTD 02
10 SAL.VALU 2

11 OBi 02
12 REORD.LVL 02

13 CRIT LVL 02
14 ORD.DrY 02
15 ORD.CODE 02

16 MGT .INS 02

17 CRIT 03

IB ORD.RPT 03

19 DrY. OAT 03

DECISION fABLE LlATA DESCRIPTION
SYS TEM SEGMENT fREPARED

WEEKLY REPORT OYE

TYPE DESCRIPTION
WORK

X (6)
X (3)

9 (6)

9 (6)
9 (5) ZEROS

9 (5) ZEROS
9 (6)

9 (6)
9 (8) V9 (3)

9 (6)
9 (6)

9 (6)
9 (5)
A

A (5)
A (5)

X (5)

BY [DATE IPAGE 3
9-4-61 TO PAGF 4

o
I~

> .
~

w

~}L
010
SE~JAL

01

02

03
04

05
QJ;'

07

08
. 09

10

11
12

13
14

15

16
17
18

19

20
21

22
23

24

25
26

27
28

wl-.llVI'" TABlE D ~.n DESCR IPTION
SYSTEM SYS TEM SEGMEr;ll PREPARED BY Ql\TE

INVENTORY WEEKLY REPOR ' OYE 9-4-61
UJIo

NAME ". TYPE DESCRPTION
WKLY.INV 01 REPT .1

PRT.WA 02 SOURCE

LOC 03 F1
STOCI(03 F2

02 HAl NEXT HA2, SPACE 03 'AFT!R, SKIP Ol"BEFOO', COND OF

03 ' ' A 1431
, ,

03 A (31) 'I N V E N r 0 R Y , REP 0 R T'

03 A (21) SPACES ' '

03 A (5) 'DATE'

DATE 03
DAY.MON 04 99

MONTH 04 AM.

YEAR 04 99
03 A (9) , PAGE '

PAGE 03 9 (4)

02 HA2 NEXT HA3 . SPACE or Jl'TER

03 A (43) 'sTOcK, toeA PREV CURRENT

03 A (46) 'YR TO DATE INVENT INVENT REORDER CRITICAL'

03 A (26) , QUANT CO MANAGEMENT BY'

02 HA3 NEXT HA4,SPACE 01 AFTER

03 A (43) 'SYMROL TION BALANCE BALANCE RCPTS ISSUES

03 A (44) 'RCPTS ISSUS BALANCE OBICN LEVEL LEVEL'
03 A (24) • ON DE EXCEPTION'

02 HA4 SPACE 02 AFTER

03 A (45) SPACES

03 A (I8) 'HUNDREDS DOLlARS'

03 A (27) SPACES
03 A (23) 'ORDER INSTRUCTION'

-- -- - -- -- ----

SPACES = BLANKS

IftGn~""
4
4 .1

' "

,
• • ,

'---

> •
~ ...

CTL SYSTEM
010 INVENTORY

SERIAL LEV-
NAME iL TYPE

40 DETAIL 02 DM

41 STOCK 03

42 03

43 LOC 03

44 03

4S . RAT. !03

46 03
47 BAL 03

48 0'3

49 CUR.RCT 03

50 03

51 CUR.ISS 03

52 03

53 RCPT .YTP 03

54 03

55 ISSU .YTD 03

56 03

57 BAL.VALU 03

58 03

59 OBr 03

60 03

61 REOR.LVL 03

62 03

63 CRIT .LVL 03

64 03

65 ORD.crY 03

66 03

~ ORD.GQDE 03

", ... ,.--.-..- ... ,~'" - , .. " " ... ' ~
SYS TEM SEGMENT PREPARED BY

WEEKLY REPORT OYE

DESCRIPTION
SPACE 01 AFTER

X (6) GROUP SUPPRESS

A III SPACE
X (3l

A (2) SPACES

ZZZ.ZZ9

A III SPACE
ZZZ ZZ9
A,(j) SPACE

ZZ ZZ9
A (I) SPACE

ZZ ZZ9
A (2) SPACES
Z ZZ9PP
A (I) SPACE

Z,ZZ9PP
A (I) SPACE

Z ZZZ ZZ9V
A (I) SPACE

ZZZ,ZZ9

A (Il SPACE

ZZZ ZZ9
A (Il SPACE

ZZZ ZZ9
A (2) SPACES

ZZ ZZ9
A (3) SPACES
A (I)

~PAr.J:'~ = RT }\ Mve

ntlTE Ir~GnE.r~ 4.1
9~4-61 5

.

I ~
• T

>-.
~

'"

CTL SYSTEM
0 10 INVENTORY

SE"IAL
NAME

LEV'
ik TYPE

68 03

69 MGT . INS . 03
70 CRIT 04

71 04

72 ORD.RPT 04
73 04

74 LQrY .DAT 04

75 STK.TOTAL 02 TAA

76 03
77 1PRE'i. BAL 03

78 03
79 BAL 03

80 03
81 CUR.RCT 03

82 03
83 CUR ISS 03
84 03

85 RCPT .YTD 03 _.
86 03
87 ISSU .YTD 03

RR 103
89 BAL VALU 03

.!lO 03.
91 OBI 03
q, 03
93 REORD.LVL 03

...... ' , .. ,,, '" _, ..
SYS TEM SEGMENT PREPARED BY DATE

WEEKLY REPORT OYE 9- 4-61

DESCRIP TION
A (I)

A (5)

A (2) SPACES

A (5)

A (2) SPACES

X (5)

SPACE 01 BEFORE, SPACE 02 AFTER, CO ND F2

A (j 2) SPACES

ZZZ,ZZ9

A (I) SPACE

ZZZ ZZ9
A (j) SPACE

ZZ,ZZ9

A lil SPAC E
ZZ ZZ9

A (2) SPACES

Z,ZZ9PP
A (j) SPACE

Z,ZZ9PP

A (j) SPACE

Z ZZZ ZZ9V

A (ll
ZZZ ZZ9

A (ll SPACE

ZZZ,ZZ9 _._------- -

SPACES = BLANKS

If~Gp~r,F ~
c
0 • T

.

...
•
~

0>

C)"L SYSTEM
011 INVENTORY

SERIAL
NAME

uv-
iL TYPE

01 3

02 CRIT.LVL 3

03 3

04 ORD.QTY 3

05 REPT. TOT 2 TBA

06 DAT.WA 1 WORK
07 DATE 2
08 DAY.MON 3

09 MONTH 3

10 YEAR 3

11 Oi..IN..IXL 1 EXPRES
12 Oi..ClV.QrY 1 EXPRES '

-"

~--

, ,

I, •, t" ,~ ..., '" _ ," I ,~,~

SYS TEM SEGMENT
'. WEEKLY REPT

PREPARED BY
OYE

DESCRIPTION
ACll SPACE
=,ZZ9
A(2) SPACES

ZZ, ZZ9

SPACE 02 BEFORE, COND END. REPT.1, COPY TAA

99

AM

99

9(8)V9(3) · INV UNIT. COST • INV 8AL

9(6) INV OBJ - INV 8AL - INV ORD. QTY

SPACES = RT.AN"~

, "

~7 PAGE 6
9 4 61 Im...EMiE. FINAL

-

I~
I~

'--

>
~

"

