
GENERAL . ELECTRIC

-

[Preliminary)

This document is a draft of a Preliminary Reference Manual and
a language specification for integrating decision tables with the
General Compiler. The information contained herein assumes a
basic knowledge of computers and electronic data processing
applications. Therefore, the manual should be used not as a
text book but rather to augment already realized skills. Minor
changes in language specifications may occur during the imple­
mentation period of the compiler. Any changes that are made
will be reflected in future and more final versions of this manual
or in supporting material issued during the interim of implemen­
tation.

- i -

'.." ..

I INTRODUCTION

Early automating coding systems, such as as­
sembly programs, employed mnemonic abbreviations
in place of the computer ' s numerical instruction code
and symbolic addresses in place of actual memory
addresses. In reality, tbe assembly program lan ­
guage was a set of synthetic computer instructions.
Although these systems greatly simplified program­
ming, the programmer was still plagued with tbe
many details dictated by a computer.

Automatic coding languages of today are on the
threshold of relieving the programmer of these de­
tails. The structure of these new languages is very
much like English. By using a combination of Eng­
lish words and phrases to form sentences, the pro­
grammer now needs only to "describe" a procedure
for the computer to follow. This procedure, together
with a description of the data is then given to a spe­
cial computer program for processing. The special
program, commonly called a compiler, translates
the English problem description and generates a pro­
gram of computer instructions.

Such a compiler is provided for the GE 225. Its
General Compiler evolved from two noteworthy lan ­
guage efforts - the Common Business Oriented Lan­
guage (COBOL) andthe AlgorithmiC ~guage -
(ALGOL). Both languages were developed by volun­
tary committees of computer manufacturers and
users aod reflect the recent trend toward "common"
compiler languages.

The language first available with the General
Compiler is based primarily on COBOL, since
COBOL satisfies the needs of a broad spectrum of
data processing applications. To accommodate the
demands of more technicat applications, Boolean ex­
preSSions, floating point arithmetic, and the ability
to express equations were incorporated into the
format of COBOL. Therefore, one may say that the
present version of the General Compiler can accept
programs written in one, two, or in a combination
of two languages.

- 1-

Those programmers familiar with COBOL rec­
oguize that it is well suited (or creating and reporting
information contained in data files. In contrast,
ALGOL provides an excellent means for expressing
the mathematics and logic associated with scientific
applications. Recent investigations by the Integrated
Systems Project (ISP) of Generat Electric's Manu­
facturing Services uncovered an area of applications
which require neither extensive data file processing
nor profound mathematiCS, but rather an unwieldly
number of sequential decisions.

To cope effectively with these decisions the !SP
team devised a tabular language. The purpose of
this language was to depict, by means of tables, the
decisions encountered in the information flow of a
business system. The new language was appropri ­
ately named TABSOL for Tabular Systems Oriented
Language. Since its creation, TABSOL has been
used by many departments of General Electric to
aualyze and solve problems in product engineering,
manufacturing methods, cost accounting, and pro­
duction control. The application of decision tables
is continually growing. Recent studies show that they
provide a concise method for supporting the logic of
other data processing applications . For example,
decision tables may be used to specify a transfer
vector associated with the values of one or more
fields, to control the printing of detail and summary
lines of a report, or to interrogate the sort keys in
a multi -file run. At the Computer Department we
have found decision tables a valuable tool io design­
ing and implementing the General Compiler.

Decision tables represent a third language for
the General Compiler. They may be used by them­
selves or in conjunction with other features of the
compiler language. The specifications outlined io
this manual pertain maioly to the table entries and
imply and require a knowledge of the General Com­
piler. Therefore, this manual should be used as a
suppleme[]t to the GE 225 General Compiler Manual,
CPB-123 (5.5MlO - 60).

II DECISION TABLE FORMAT

The format of a decision table is given in Fig. 1.
In concept, a table is an array of blocks divided into
four quadrants by a pair of double lines. The verti ­
cal double line separates the decisions or " conditions"
on the left from the " actions" on the right. The hori ­
zontal double line isolates variables from associated
operands which will appear in the blocks and rows
below. A condition then is a relation between a vari ­
able appearing in a primary block and an operand ap­
pearing in a corresponding secondary block. For
example, we may write AGE in primary block 1 and
EQ 26 in secondary block 1. In doing this, we are
stating a condition. Verbally, we are asking "if age
equals 26" . An action, on the other hand, is a state­
ment of what is to be done. By writing AGE in a
primary action block and 26 in its associated second­
ary block, we are stating that "the value 26 is to be
assigned to age" .

It is interesting to note, at this point, the Eng­
lish interpretation given to the vertical lines. The
left - most line may be thought of as representing the
word IF. Those lines to the left of the vertical double
line may be taken to mean AND: the vertical double
line itself the word THEN. Since actions are sequen­
tial entities, the lines separating them may be inter ­
preted as semicolons and the right- most line, which
actually terminates the actions, as a period. With
this in mind, each secondary row becomes an English
sentence. For example, each row now reads:

"IF condition - 1 is satisfied AND condition-2
is satisfied AND . . . AND condition- k is
satisfied THEN perform action- l; action - 2;
.. . ; action ru. H

If any condition within a row is not satisfied, the
next row is evaluated and so on until all the rows are
depleted. When this happens the table is said to have
" no solution". The table is considered "solved"
when all the conditions of a row are satisfied and
their associated actions performed.

Before considering the conventions used to for ­
mulate conditions and actions, an example may help
develop insight into the nature of decision tables and
the manner in which they may be used with the Gen­
eral Compiler. In the example of Fig. 2 we are
searching a master employee file (recorded on mag­
netic tape) to determine the number of male employ ­
ees who fall into the following job categories.

Job Level Years Experience Title

6 2 Programmer
7 3 Programmer

or Analyst
a More than 3 Analyst
9 More than 4 Analyst or

Sr. Analyst
10 More than 4 Sr. Analyst

- 2-

For each employee we find having these qualifica ­
tions , we are to write his department number, name,
title, level , and experience on the computer ' s type ­
writer. At the end of the run the total for each cate­
gory is also typed on the typewriter.

The core of this problem is the decision that
must be made on the information stored in the records
of the master file . These decisions are conveniently
expressed above in narrative form. With only minor
alteration this fo rm becomes the program statement
of our problem. The table and sentences are punched
into aO- column cards exactly as they appear in Fig. 2.
When this is done they may be given directly to the
compiler for processing.

As illustrated in our example, General Compiler
sentences may be used to support the logic of the
table. These sentences accomplish the following:

OPEN - Declares that the MASTER-FILE is
input and validates its tape labels.

READ - Delivers the next record from the
MASTER- FILE and tests for an end­
of- file sentinel. When ,his sentinel
is detected , sequential program exe­
cution is interrupted and control
passes to the portion of the program
labeled END-RUN.

IF Eliminates those data records which
contain information about female
employees. The word FEMALE (also
PROGRAMMER, ANALYST, and SR­
ANALYST used in the table) repre ­
sents a special kind of condition and
will be explained later in the manual.

§XPERIENCE = Calculates the employees' total ex ­
perience and assigns the value to the
Held named EXPERIENCE.

The word TABLE informs the compiler that it
must process a decision table; EXAMPLE is a name
or label which was given to the table. The size of
the table i s stated next by giving the number of con ­
ditions' actions, and rows contained in the table.
This information is used only by the compiler and is
not executed by the compiled program.

Table execution begins at row 1 (sequence num­
ber 40). Using our narrative definition of a table,
row 1 is interpreted as follows:

"IF the job LEVEL field equals (EQ) 6 AND
the EXPERIENCE field equals (EQ) 2 years
AND the employee's title is PROGRAMMER
THEN assign the value 1 to the subscript I;
GO TO the part of the program having the
label TYPE-OUT."

"':ZQ

"':ZQ

"':ZQ

[:)

'" 0 <'I ...:

,

,-
h

0'
[:)

[:)
<0
N

0 ...: I-

~~'------------------~v'--------------------/

Figure 1

-3 -

>
'" " o -~ :a
" o
()

~
I
!

~
I

~
~
~
~ ---: "2 -0
-: "
-: cJ.

< -;
D -: --: I- ~ 't,; ..

~
0

-: ~

-;
I-'

~

'-' "" '-l
~ 'll
~

-J '-l
~ ~ - .
W "- <>. . ~

'" ~ UJ '" ..J 0
!i: L1.
~
0 LU U

U
..J Z ...

LU

'" w f-
z z
UJ LU
C> V>

~ .,[,
• '-' > c. '.!l
0 -; I "2 / ~

~ '.11 :.>

f-! IU

H
IL o!

H 1...
h
h
t-;

0 ..
t-; d

'r "
n

r. " '.l

r '"" 7'

I--' c! 0 '"
r. .J -'
t-;

.. " "-
r. J oJ , '" r.

,~ - b '!l

~ '
..1 "- c!)

1 I ~
~ c c! >- '" -;
-; l 'J "

=€
c!. t- ~ , ,
'.'!.l ,

~ . - <': ~ 0 ..., -;
~ '" .- --.> e -'! <l <:!: --! - £ 0 '. " -;

~ '" '" ~ ---: - ,- '.ll ,_.j

C> .J "'" '" ~

~ ~
"- -,_I "2 <; ~ c ;? . • '" ti

-;
'--I C ~ --; .J-i do 'b o! r. '" " -:. "- '" f-';

OJ ''-I - "-
.,,; f-';

" '>- '!l
., .(

f-';
'" r- '.;.J Q ~ 14 '-'-'

S
1-. ...: ~

r--= ~ l-

'" Iv: f-' <>-I <!> ~
r-; 1.n G 'or. e. .~

r-;; .. - - '" " '" r. u'" .. '--;; Zw

'" w ..

" --:;; :>",
0 - a"
II' :::z

Cc.mputer DepartmlMl AtoHlI4.rIZDna; c. .. 13 (10-60) -

I

" "" L

-
oL

'"
"-
7

I

2
<J

\-
' !l

(" ~ ~ ..
I- ,.

'" ~ -
.< ,

"" '" \ 1 '" ~

><
I - r 0(' '" 'A '

-..I
r \- \. ".l

« " <- '" ., ,. ' '-' . -' .J ...I

'" '" , " " I.~

.- ct " .J
C < 1-

'" .-
! 0 I .

" '" d cl -<!. I ' 0> ,,, .- ..
.... " " '" :5 .. I- I .J .. .

" " L L' « -,
'" eo! ., 7' " l-

"
.,.;

" -' <! .. +
- ,

. " <! <!: ~ '"
1- c· '" ~ ~ '" .:E: -- '" Q.. «c '" 1- r~

" . -'I ~ . . ~ C '" .l

~ " -> C- _ .
<J " " '" I-

'" ~ '" '" .~ --,. '-' 0 c ., - "' \ -
o! , r -,

c:! " ""' ' u . 'w ,.
'.<J ~ -,!, <-' ; 1- ~

'" "- r-
-' '" '. '" -e.- n, ... ~ H
~ --
" C C . ---'
"- 'u I - I '"
'" I '"' \-

...I '" <r L r

'lJ III .; ~ '- "" - ,j, l \-
-' '>

'" '-'< n

d: --I ~

1 I - ~

<J '" Cl 'n c.) '...., 0 -", " ".,., ,... t ::t- ~
...., \., " -.; t :<:- '"

I

Figure 2

- 4-

.
'" t ...,
t--
-

<1.
:3
\ll

"-
>-,-

" 0

~

In

.J

tt:
1-

" \-

'>-
.-...,

-'
<!C

l-
C
;-

'" '<l

'-
-'

'" >-
0
f-

~

'" <-I
J ~

....
'-!. <!:

~ >-. "" oG
~ u :--
J I - .
,~ ~ ~

--' '" " '" ;£ -' ~

c1 '" ~ ' .l " ,- e \- e
'll { ~ ..
~ 1- '-'-'

~ ~

" '" l- . I '-,
" - <

G
-' '" l-

~ " '"
C

2
' :.I

<J '" <:; . ..,
.", b- e-- "-

,

"r

If one of these conditions cannot be satisfied, row 2
is evaluated starting agaill with the left-most condi ­
tion. Sequential execution of the rows continues until
either all conditions in a given row are satisfied or
all rows are exhausted. When the latter situation
occurs, the sentence immediately following the table
is executed. Proceeding from here the sentences in
our example accomplish the following:

GO - Interrupts sequential program execution
and passes control to the part of the pro­
gram labeled GET~RECORD .

WRITE - Writes the current contents of the DEPART­
MENT, NAME, TITLE, LEVEL, and EX­
PERIENCE fields on the computer ' s type ­
writer.

- 5-

CLOSE - Rewinds the MASTER~FILE and performs
the file's closing conventions_

STOP - Terminates processing and writes the words
END RUN on the typewriter.

By General Compiler standards this example
represents relatively simple conditions and actions.
In formulating these entries, the programmer may
take full advantage of the compiler's capabilities. The
remaining sections of this manual are devoted to de­
fining the conventions and manner in wbich conditions
and actions may be formed and entered in tables _

ill BASIC CONCEPTS

Since decision tables are used in conjunction with
the General Compiler language, we must first look at
the foundations of this language before considering the
counterparts that may appear in a table. The com­
piler's language, like most natural languages , is a
body of words and a set of conventions for combining
these words to express meanings. Its structure or
"syntax" closely resembles that of English grammer,
and its body of words may be appropriately termed a
"vocabulary". The purpose of this section is to show
how words are formed and how they may be used to
express a desired meaning.

Characters

The basic units of our language are the charac­
ters used to form words and symbols. The character
set includes the letters of the alphabet (A, B, C,
... , Z), the numerals (0, 1, 2, . . . , 9), and the
special characters shown in Fig. 3. Special char­
acters are presented in more detail as they are en­
countered in the manual.

Words

The words of a typical General Compiler pro­
gram (all into one of two categories: the vocabulary
used by the compiler and the vocabulary used by the
programmer. The programmer's vocabulary will
consist mostly of arbitrary names given to his data.
The compiler's vocabulary, on the other hand, is
predetermined and explicitly defined in this manual.
Since the compiler, by nature of its design, is a
mistrusting mechanism, the programmer must de ­
fine the words he uses too. This is done, not by
writing a manual, but instead by merely filling out a
data description form. Once these "data names" are
defined, they may be filed either on 80 - column
punched cards or on magnetic tape and used over and
over again. The data description file then is a
"dictionary" since it contains the definitions o(the
words used by the programmer.

Our two categories of words may be illustrated
by the following sentence taken from the program
example given in Fig. 2.

GET- RECORD. READ MASTER-FILE
RECORD IF END FILE GO TO END-RUN. - - ----

Here, the wor ds READ, RECORD, IF, END, FILE,
GO, and TO belong to the vocabulary of the compiler;
whereas, the words GET-RECORD, MASTER-FILE ,
and END-RUN belong to the programmer ' s vocabu­
lary. The compiler will assume that MASTER-FILE
is a data name due to its position in the sentence. It
will then search the data description to verify this
assumption and to determine the characteristics de­
picted by this word. Not finding a match in the data
description results in an error message typed on the
computer's typewriter. Due to their position in the

-6 -

program, the words GET- RECORD and END-RUN
will be interpreted as sentence names. Once again,
the compiler will attempt to verify its findings by
checking each transfer to make certain that they lead
to properly defined sentence names. The consequence
of an undefined sentence name is likewise an error
message on the computer ' s typewriter. The compati ­
bility checks mentioned here are only two of many
which the compiler performs to insure unquestionable
results in the programs which it creates.

Formation of Names

As previously mentioned, data names are words
representing data (files, records, fields , elements,
constants, arrays of values, etc.) and are arbitrarily
assigned by the programmer. They are formed from
the following characters.

Letters
Numerals
Hyphen

A, BJ C, .'.J Z
0, 1 , 2 , .. _, 9

The programmer should choose data names that

1. Do not exceed 12 characters, .,
2. Do contain at least one letter,
3. Do not begin or end with a hyphen.

All data names should be recorded and their charac­
teristics described on the compiler's data descrip­
tion form. The programmer also should be careful
not to use the compiler's vocabulary as data names.

In addition to data names, the programmer is
free to name sentences, tables, and other "proce­
dures" in his program. These names are formed
like data names. Since procedure names are judged
from thei.r position in the program , they may be
f~med {rom the numerals 0 through 9 in addition to
combinations of letters , numerals , and the hyphen.

Constants

The values associated with data names generally
change during the actual running of a compiled pro­
gram. It is for this reason that they are sometimes
called "variables". A constant, as opposed to a
variable, is a specific value and does not change
within the scope of a program. Constants may be
one of two kinds: a literal, or a named constant.

A literal is a value itself rather than a name
given to a value . Literals may be numeriC, alpha­
betic, or alphanumeric -- i. e., composed from the
character set of the computer. All non - numeric
literals should be enclosed in quotation marks (n) to
avoid having the compiler confuse them with data
names. The conventions for forming literals are
the following:

•
J

,
t

SPECIAL CHARACTERS

Character Meaning Card Code

~ Space or blank Space

Period - DeCimal point 12- 3-8

Comma 0 -3-8

Quotation Mark 3- 8

Hyphen 5- 8

(Left Parenthesis 0-5-8

) Right Parenthesis 0- 6- 8

+ Addition 12

Subtraction - Minus Sign 11

.,
Multiplication 11 - 4- 8

/ Division 0 - 1

Assignment 6- 8

Vertical Table Line 12- 4- 8

Figure 3

-7-

1. Non-numeric literals are limited to 30 char­
acters, excluding the quotation marks.

2. A numeric literal not enclosed in quotation
marks is assumed to be a number. Numbers
may contain not more than one decimal point and
a minus sign. Unsigned numbers are considered
positive. Excluding decimal points and minus
signs, numbers must not exceed 11 decimal
digits.

3. Numbers may be treated as floating point by
writing them as a power of ten - - i. e., a num­
ber or decimal fraction followed by a power of
ten exponent. For example, the number 230100
might be written as 2.301E5 which is equivalent
to 2.301 multiplied by 105. The exponent part,
indicated by the letter E, may contain a minus
Sign to show a negative exponent. The value of
the exponent part is limited to ±75. Excluding
the decimal point, the minus sign, and the letter
E , the fractional part of a power of ten number
must not exceed nine decimal digits. To distin ­
guish data names from floating point numbers,
data names should not be formed from only the
numerals and the letter E.

4. An alphanumeric literal may not contain an
embedded quotation mark since the enclosing
quotation marks are used to delimit the size and
content of the literal.

Subscripts

Subscripts provide a convenient method to ref­
erence individual values contained in a list or in an
array of values. The variable, I, employed in the
decision table of Fig. 2 is a subscript used just for
this purpose. Since five totals are to be accumulated,
one name was assigned to all five, namely, the data
name TOTAL. Whenever reference was made to a
particular total, the data name TOTAL was followed
by the subscript 1. This is illustrated in the ex­
pression

TOTAL (I) = TOTAL (1) + 1

and the sentence which prints all five totals on the
typewriter. From this example, it follows that sub­
scripts, like data, may be given names . In fact, the
same rules that govern forming data names apply to
naming subscripts.

Since subscripting is a positional notation, the
range of any subscript i s limited to the values 1, 2,
3, ... , n (where n is the maximum number of
values in a list). This does not mean thal subscripts
are limited only to integers. If a subscript is not
defined as an integer by means of the data diVision,
the compiler will automatically provide coding to
truncate its value to an integer. Furthermore, sub­
scripts are not restricted to a single variable name.

-8-

Arithmetic expressions may also be used as sub­
scripts. For example:

RATE (P+l)

K ((X-3) .. P **3)

A (J - 3 + Q ,. P)

are legitimate forms of subscripts.

Up until now, only one-dimensional subscripting
was considered. Values in multi-dimensioned arrays
may also be referenced by subscripts. For example,
an array in which values are ordered

All A12 Al3 A14 A15

A21 ~2 A23 A24 A25

A31 A32 A33 A34 A35

A41 A42 A43 A44 A45

A51 A52 A53 A54 A55

might be subscripted as A (J, K), '.",here K is the
columnar subscript and J the row. To refer to value
A35, J would have to equal 3 and K equal 5.

Preceding examples show that subscripts are
enclosed in parenthesis and separated by commas.
This notation permits the compiler to distinguish sub­
scripts from other elements in the language.

Truth-Values

There is a class of variables which, through
either usage or definition, may assume only the
nqmerals 1 or O. The value 1 is said to be the ir true
state and the value 0 their false state. The wor~
END FILE of the READ sentence in Fig. 2 is such a
variable. When the OPEN sentence is executed, END
FILE is set to its false state and remains so set until
the end- file condition is encountered. At this time
it is set to its true state.

Variables having truth values are termed "True­
False" variables. END FILE is convenience pro­
vided by the compiler; the programmer may also
formulate his own true-false variables by merely
listing them under the heading TRUE - FALSE in the
data division. They may be named according to the
rules given for data names.

Arithmetic Expressions

Arithmetic expressions are rules for computing
numerical values. They are formed from variables,
numbers, functions, and symbols representing addi­
tion, subtraction, multiplication, diVision, and ex­
ponentiation. For example, in the expression

REG-HRS * 2.50 + OT-HRS * 3.75

REG-HRS and OT-HRS are variables; 2.50 and 3.75
numbers; and + and * symbols for addition and multi­
plication. If REG-HRS were 40 and OT-HRS were 4,
the expression becomes 40 * 2.1)0 + 4 * 3.75 and after
performing the arithmetic, reduces to the value
115.00. To save this value, a programmer might
write

GROSS-PAY = REG-HRS * 2.50 + OT-HRS * 3.75

The presence of the = symbol tells the compiler to
assign 115.00 to the variable GROSS-PAY. When
expressions are written in this form, they are called
"assignment statements".

The arithmetic permitted in an expression is
stated by the following symbols:

Symbol

+

*
/
**

Meaning

Addition
Subtraction
Multiplication
Division
Expone ntiation

In addition to arithmetic, the following mathematical
functions may be used:

Symbol

SIN
COS
ATAN
SQRT
EXP
LOG
LN
ABS

Function

Sine
Cosine
Arctangent
Square Root
Exponential
Common Logarith
Natural Logarithm
Absolute Value

Arithmetic expressions are evaluated from left
to right according to the following priority:

1. Exponentiation and Functions
2. Multiplication and Division
3. Addition and Subtraction

Parentheses may be used to establish a precedence
other than the one above. When they are used, the
evaluation is performed from the innermost to the
outermost pair but still from left to right within a
given pair.

Relational Expressions

A relational expression is a statement of mag­
nitude between two values. For example, FICA GR
144.00 is a comparison between the variable FICA
and the numbers 144.00. The symbol GR stands for
the relation "greater than". Other relations may be
stipulated by

-9-

Symbol

EQ
GR
LS
NEQ
NGR
NLS

Relation

Equal to
Greater than
Less than
Not equal to
Not greater than
Not less than

To have meaning, relational expressions are
stated as conditions. The expression FICA GR
144.00 tells us nothing. However; when it is written
as

IF FICA GR 144.00, GO TO ADJUST-PAY.

we know immediately what is intended. By definition
then, relational expressions are conditions and when
evaluated always give a truth -value.

Relational expressions may be explicitly stated
or implied. FICA GR 144.00 is an explicit statement
of magnitude. In the program example of Fig. 2,
implied relations were stated by the words FEMALE,
PROGRAMMER, ANALYST, and SR-ANALYST. An
implied expression is formed by giving a name to a
value, a range of values, or to a series of values and
ranges. Once the name and its values are defined in
the data division, it may be used to mean its associ­
ated values. Implied relations are termed "condition­
namesrT since a name is giv,en to a condition, L e. J

a value, of a variable. The variable from which the
value is taken is called a " conditional variable".
Therefore, writing PROGRAMMER (Fig. 2) in a
decision table block is the same as writing an ex­
pression which will compare the TITLE field with
the value associated with the title, programmer.

Logical Expressions

Logical expressions provide a convenient method
for obtaining truth-values. They are formed by com­
bining true-false variables and relational expressions
with the logical operators AND, OR, and NOT. The
expression (Fig. 2)

PROGRAMMER OR ANALYST

is a logical expression which is true when an em­
ployee's TITLE field indicates that he is either a
programmer or an analyst.

If P and q are a combination of true-false vari­
ables, relational expressions, or logical expreSSions,
their truth -value is obtained according to the follow­
ing:

p F F T T

q F T F T

NOT P T T F F
pANDq F F F T
pORq F T T T

lA>gical expressions are evaluated from left to right
with the logical operator AND having precedence over
the OR. Parentheses may be used (or grouping or
establishing a precedence of evaluation other than the

-10-

one mentioned previously. When they are used, the
evaluation proceeds (rom left to right from the inner­
most pair to the outermost pair.

., .

,

IV TABLE ENTRIES

The previous section outlined the elements of
the General Compiler language and briefly showed how
they might be used. 1n the introduction, it was men­
tioned that these same elements may be employed
within the blocks of decision tables. The purpose of
this section is to show how this may be done.

Formation of Conditions

By definition, a condition is a relation between
a primary block entry and some corresponding sec ­
ondary block entry . A condition, like a relational
expression, may be either true or false. From this
definition , a condition may be either a relational ex­
pression, a logical expression, or a true-false vari­
able since these are the only elements that yield a
truth-value.

The formats noted below show how these ex­
pressions may be split between primary and second­
ary blocks to form conditions. In these examples,
the word "operand" stands for either a variable (data
name or subscripted data name), a constant (literal
or named constant), or an arithmetic expression.
The word "relation" signifies one of the relational
operators - EQ, GR, LS, NEQ, NGR, or NLS. Since
arithmetic expressions may be operands of relation­
al expressions and relational expressions operands
of logical expressions, it necessarily follows that
arithmetic expressions may appear in logical ex­
pressions.

Format

Operand- l Relation

Operand- 2

Operand-l

Relation Operand-2

Operand-l Relation

Operand- 2 OR Operand-3

Operand- l

Relation- l Operand2 OR
Relation- 2
Operand- 3 . . .

No Entry

Condition - name

Example

EXPERIENCE

GR4

TOTAL (I) NLS

PT(I) OR PT(2) OR
PT(3)

(X+Y) ** 3

GR P+1 OR LS Q(])

- 11-

Format

NOT

Condition- name

No Entry

True- False Variable

NOT

True-False Variable

No Entry

Logical Expression

NOT

Logical Expression

Formation of Actions

Example

NOT

END INVENTORY
FlLE

PROGRAMMER OR
ANALYST

NOT

X GR YOR X LS
(Z+l)

Actions are statements of the things to be done
when all the conditions of a row are satisfied. The
scope of an action may be one of three kinds: implied
assignment, procedural, or input- output. The only
action presented so far was assignment. The other
two are extensions of General Compiler sentences
and will be mentioned here only briefly. The com­
piler manual should be consulted for a more detailed
presentation.

1. Value Assignment. Value assignment is an
implied function between associated primary and
secondary block entries. By placing a data name in
a primary block and some number in a secondary
block, for example, I and 1 of Fig. 2, the compiler
automatically produces coding to assign the number
to the data name. In the case o(our example, 1 is
as signed to the subscript I. Other examples of
value assignment are given below. In these formats
the word variable implies either a data name or a
subscripted data name and the word constant either
a literal or a named constant.

Format Example

Variable I

Constant I

Format Example

Constant " COPPER"

Variable MATERIAL

I

Variable ALPHA (I, J, K)

Arithmetic Expression SIN THETA + (X/ P)
**2

Arithmetic Expression PI * R**2

Variable AREA 1

True - False Variable

Truth-Value 1 or 0

Truth-Value 1 or 0

True - False Variable

2. Procedural Actions: Procedural actions
provide the means for interrupting the normal exe­
cution sequence of a table. Any of the following com­
piler verbs may be used for this purpose.

GO TO
P ERFORM
STOP

The GO verb stipulates an unconditional transfer to a
specified part of the table or program. Its destina ­
tion may be a sentence name, table name, or the row
number of a particular table. The format of the GO
entry is as follows:

Format Example

GO TO 100TO
I Sentence Name : TYPE-OUT

GO TO I 00 TO
I Table name ' TAB'" "

GO TO GO T O

Row of Table ROW 7 TABLE BETA

- 12-

The other form of a procedural control is the
PERFORM verb. The PERFORM specifies a transfer
to some destination, the execution of a table or a set
of sentences at that destination, and a return to the
action block following the PERFORM. The sentences
or tables acted upon are by definition a "closed pro­
cedure" - i. e., they have a single entrance point and
a defined exit point. Conventions for writing closed
procedures are given in the next section. Legitimate
forms of the PERFORM are

Format Example

PERFORM PERFORM

Sentence Name GROSS-PAY

PERFORM PERFORM

Table Name ERROR TABLE

The STOP verb may also be used as an action.
It may be placed in either a primary or ~"ondary
block. When it is used, no other action may appear
with it in the same action collllIlIl . The STOP termi­
nates processing temporarily or permanently accord­
ing to what action is taken at the computer's console.

3. Input- Output Actions: Input and output actions
are compiler verbs that control the flow of data to
and from the computer . They read , write, and vali ­
date tape labels of data files assigned to peripheral
input-output devices. When data files are referred
to from an action block, they must be defined ac ­
cording to the environment and data division specifi ­
cations listed in the General Compiler manual . The
formats of input -output actions are illustrated by the
following:

Format Example

READ

File Name I
OPEN INPUT or OUTPUT OPEN INPUT

File Name MASTER;-- FILE

CLOSE CLOSE

File Name MASTER- FILE

Format

File Name

READ, CLOSE, or
OPENvrb

WRITE

Record Name

Record Name

WRITE

Example

MASTER- FILE

READ

IW=E
DETAIL-LINE

TRANSACTION

WRITE

- 13-

The Skip and Repeat Operators

The skip operator makes it possible to show that
a condition or action is not to take part in the evalu­
ation of a row. This is done by placing a hyphen 0')
in the concer ned condition or action block. The oom­
piler then will skip this block and proceed to the next .

The repeat operator is a shorthand method to
indicate that a condition or action in the block above
is repeated. This is shown by entering a ditto mark
(") in the block below the one that is to be repeated.
This notation was used with the GO TO action in the
sample table of Fig. 2.

V THE TABLE AS A PROGRAM

Up until now, only components of tables were
pre sented. It was learned in Sec tion II that General
Compiler sentences could be used to support the con­
ditions and actions of tables , and the preceding sec ­
tion mentioned tables as closed procedures. This
section relates these topics to tables and tables to
compiler programs.

Block Conveotions for Writing Expressions

1. Words , abbreviations, and symbols of the
compiler's vocabulary should not be used as names.
They may be combined with other characters to form
names.

2. The words in an expression should be sepa­
rated by at least one space. More than one spac.e is
permitted. The space separator i s optiooal if the
words are bound by

+ - * / ** () n ; ,I
3. Subscripts should be enclosed in parentheses.

They may be written adjacent to (without a space
separator) or apart (with space separators) fro}Il
their associated data names. Individual' subscripts
in a list of subscr ipts should be separated by commas.

4. When two arithmetic expressions appear side
by side as in a series, they should be separated by
commas.

5. All columns of a table should be bound by the
vertical table lioe, I (12-4-8 punch) .

6. The skip and repeat symbols , and n, should
be the only eotry, other than spaces in a block.

Conventions for Placing a Table in a Program

1. Tables are written on the General Compiler
Sentence Form.

2. A table is preceded by the word TABLE.
Naming tables is optional . When a table is giveo a
name, the name may precede or follow the word
TABLE. The word

TABLE,
name, TABLE,or
TABL.E name

are followed by a period.

3. The table's size is given next and is placed
on the same line as the table's name. The size may
be written in one of two ways:

kkk CONDITIONS mmm ACTIONS nnn ROWS.

Or

(kkk, mmm, non).

-14-

Both forms are terminated by a period. The order of
writing the number of conditions, actions, and rows
is optional' i n the first case since each can be identi­
fied. However , order is important in the second
form since the compiler interprets the first number
enclosed in parentheses as the number of conditions,
the second as actions , and the third as rows. Con­
ditions, actions, and rows are number ed sequentially
beginning with 1. Row 1 is the first secondary row;
the primary row is not counted in the row count .

4. The double vertical line that separates
conditions from actions may be represented by one or
two 12-4-5 punches .

5. The s i ze of each block may vary from colUJU[)
to col umn and row to row.

6. The only limit on the size of a table is row
width. Since the compiler prints a listing of compila­
tion, the recommended row width is 120 characters
including card sequence number . . Maximum row width
is 1200 characters. Since the table form is an image
of an 80- column punched card, a hyphen (~) is placed
in column 7 of the form to show that a row extends to
more than one card. In this case, no table column
may be split across cards. Each card is' fo contain
a sequence number to insure proper card order.
When rows exceed one card, the sequence number of
the first card only is printed on the listing. Sequence
numbers of succeediog cards are stri pped out. The
row is then prioted as a multiple of 120 characters
with an integral number of table columns per 120
characters.

7. Expressions too long or complex to be written
in blocks may be written after the table's name and
size and be executed from the table by means of the
PERFORM verb. In addition to expressions, any
~neral Compiler sentence may be used and executed
in this manner. To indicate the s tart of the table the
word BEGIN is to follow the list of expressions and
sentences. When used, General Compiler sentences
may not appear between BEGIN and the primary row
of the table. This format may be illustrated by the
following :

TABLE name. kkk CONDmONS nnn ACTIONS
nnn ROWS.

... General Compiler Sentences and Expressions
- May be executed only from the confines of
the table.

TABLE

Closed Procedures

Fig. 4 outlines the format of a closed procedure.
By definition a closed procedure may be acted on only
by the PERFORM verb. It contains one e~trance

point and one exit point. In Fig. 4 these are indicated
by the words BEGIN and END TABLE name. BEGIN
and END also act as sentence names and may be re­
ferred to from within the procedure body.

Expressions too long to be placed in the blocks
of a table may be written in th.e procedure head and
executed from the procedure body by means of the
PERFORM verb. As such, they must be given names.
In addition to expressions any General Compiler
sentence may be written in the head and executed ac­
cordingly.

-15-

The procedure body contains the table. As shown
io Fig. 4 compiler sentences may precede and follow
the table. Execution is sequent ial starting with the
sentence or table after the word BEGIN and proceeds
until the exit END TABLE is reached. It is at this
point that control is reverted to the PERFORM verb
which originally referenced the procedure. Any un­
conditional transfer from within the procedure to the
outside i s undefined. However, PERFORM verbs in
the body may reference other closed procedures.

Closed pr·Qcedures are writteb apart from the
main progr:am.

procedure
head

procedure
body

DEC1SION TABLE AS A CLOSED PROCEDURE

TABLE name. kkk CONDITIONS mmm ACTIONS nnn ROWS.

BEGIN.

General Compiler Sentences and Expressions - May be
executed from the confines of the decision table.

(s.tart of execution - entrance to procedure body)

General Compiler Sentences and E'xpressions

Decision Table

General Compiler Sentences and Expressions

END TABLE name. (Exit of procedure body)

Figure 4

-16-

Progress Is Ollr Most Imforfanf Prot/lid

GENERAL . ELECTRIC

