CRAO

NIFIED
YSTEMS

PROACH

CLEARINGHOUSE REPORT

TABULAR TECHNIQUES

REFERENCE MANUAL

Compiled by:
February 8, 1961 B. Grad
Ref., No. 1B3 T. B. Glans

TABULAR TECHNIQUES SEMINAR

AGENDA

Date: Wednesday, February 8, 1961
Time: 9:30 a.m. to 4:15 p.m.
Place: Roger Smith Hotel, East Post Road, White Plains, N. Y.

9:30 a.m. History and Current Status B. Grad
10:00 Coffee Break
10:15 Limited Entry Tables
Sutherland & Company T. B. Glans
Hunt Foods and Industries W. M. Selden
Eastman Kodak W. M. Selden
11:00 Work Problems and Discussion T. H. Cleary
12:00 p. m. Lunch
1:00 Extended Entry Tables
GE TABSOL B. Grad
CODASYL B. Grad
1:45 Work Problems and Discussion T. H. Cleary
2:45 Coffee Break
3:00 Review of Other Work
Northrop - North American - 9 PAC B. Grad
3:15 Discussion of Plans and Future Programs

4:15 Termination

‘\10

TABULAR TECHNIQUES SEMINAR
February 8, 1961

ROSTER

Lee Baker
Corporate Staff
Yorktown Heights, New York

Jane Bendall
World Trade Corporation
New York, New York

Kenneth R, Blake

Advanced Systems Development Division
White Plains, New York

+ Richard L. Cline

Data Processing Division
New York, New York

Perry O. Crawford, Jr.
Advanced Systems Development Division
White Plains, New York

Roy Goldfinger
Corporate Staff
White Plains, New York

Julien Green
General Products Division
White Plains, New York

David Holstein
Corporate Staff
Yorktown Heights, New York

William L. Kelly
Data Processing Division
Poughkeepsie, New York

Andrew Kinslow
Advanced Systems Development Division
White Plains, New York

William Korwan
Service Bureau Corporation
New York, New York

Miilie Kohluman
Andrew-H.-Kruse

Data Processing Division
Syracuse, New York

Anthony A. Lea
Data Processing Division
Atlanta, Georgia

Lucille Lee
Data Processing Division
New York, New York

David Macklin
General Products Division
New York, New York

Sheila Mulroy
Data Processing Division
Rochester, New York

Harry Nagler
Data Systems Division

New York, New York

James A. Painter
Data Systems Division
Poughkeepsie, New York

Merwin D. Rayner
Data Processing Division
Beverly Hills, California

Stanley G. Reed
Data Systems Division
Poughkeepsie, New York

Samuel Reynolds
General Products Division
New York, New York

A. Owen Ridgway
Federal Systems Division
Bethesda, Maryland

James G. Robertson, Jr.
Advanced Systems Development Division
White Plains, New York

David Sayre
Corporate Staff
New York, New York

\\D Walter M. Shenko

Data Systems Division
New York, New York

Roger Smith
Data Systems Division
New York, New York

Richard TenDyke
Advanced Systems Development Division
White Plains, New York

Maf‘\J ‘Sm ‘1’\\.
Dataw Process. 5 THArS o o

S\j ~hocan 50 n ‘1 =

#? Donald G. Thoroman

Data Processing Division
White Plains, New York

0 Frank A. Williams

Corporate Staff
White Plains, New York

Harold Sobcov
Data Systems Division
White Plains, New York

SPEAKERS

Thomas H. Cleary
Data Processing Division
Poughkeepsie, New York

Thomas B. Glans
Corporate Staff
Yorktown Heights, New York

Burton Grad
Corporate Staff
Yorktown Heights, New York

William M. Selden
Corporate Staff
Rochester, New York

R Al Swa H
bn..‘o. ?fac.t‘-$|
whn. e PI‘&\.\A) " N b

Diw s Saam

PURPOSE

The term ™tabular form™ as used here, is concerned with
two-dimensional tabular layout, where position of information
has significance in two directions for sequence control and display
purposes, We are particularly concerned with the use of tabular
form in programming for computers, and in describing decision
and systems logic. Tabular form clearly associates conditions
and actions through position. It may use virtually any existing
lanqguage, from the most machine oriented to the most general.
The difference is not in the use of naming or particular notational
schemes, but rather the actual physical layout in which the program
or system description is recorded.

The material presented in this Clearinghouse Report con-
tains presentations of the work done by others, plus explanatory
work problems to help characterize the approach. The material
is organized to correspond with the agenda of the seminar. There
has been no attempt made to edit, clarify or validate the particular
information contained within each of the presentations.

The primary reason for holding a seminar on tabular tech-
niques is to acquaint selected professional IBM personnel with the
development of tabular display methods used for programming and
systems description. In presenting the divergent techniques al-
ready in use we are not recommending any in particular, but only
trying to convey understanding to those in IBM who need to evaluate
this material. Then, they will be in a position to perform the
necessary analysis and experimentation. IBM as a leader in the
field must have people who are knowledgeable in this area so as
to obtain an unbiased evaluation of the potential and opportunity
of this approach.

A PROPOSED PROGRAM
FOR RESEARCH
ON TWO-DIMENSIONAL

PROGRAMMING CONCEPTS

Burton Grad
Programming Systems
International Business Machines Corp.

March 1, 1960

TABLE OF CONTENTS

Section A~ Two-Dimensional Programming
Section B- Two-Address Logic
Section C- Controlled Two-Directional Branching
Section D~ Relative Addressing and Contained Constants
Section E- Suggested Minimum Language
Section F- Recommendations

References

(1

@)

(©)

(4)

(5)

©

D.D. McCracken, et al; Programming Business Computers;
J. Wiley, 1959

B. Grad and R.G. Canning; Information Process Analysis;
Journal of Industrial Engineering; November-December, 1959

Kemeny, Snell, Thompson; Introduction to Finite Mathematics;
J. Wiley, 1958

Harold Wolpe; An Algorithm for Analyzing Logical Statements
to Produce a Truth Function Table; ACM Communications,
March 1958

Orren Y. Evans; Advanced Analysis Method for Integrated
Electronic Data Processing (Draft); not published, 1959

R. W. Murphy; A Definition of Block Diagrams; IBM Report
IR-00065, 1956

J. Jeenel; A Standardized Representation for Business Problems;
Watson Research Laboratory Report, 1958

Section A - Two-Dimensional Programming

It is the purpose of this paper to discuss the concept of two-
dimensional programming. This implies some non-serial programming
structure to permit taking advantage of the ability of people to
see relationships in two-dimensional form. While it is true that
a sequence of statements can describe uniquely eny operational
procedure, this is really not the most important criterion. The
two critical elements are:

(1)

(@)

Does the representation technique provide for ease
in preparation and communication? Is it a "natural"
form for humans to prepare?

Does the representation technique provide advanteges
in terms of preparing appropriate Processors? In
other words, will the Processors be simple or faster
or will the Processor running time be lessened or
will the resultant object program be faster in
operation or require less memory space.

Examination of tools used to date by systems designers, procedures
analysts and computer programmers gives a revealing insight into the desired
structure of a representational scheme which is properly "human-engineered".
There are four popular forms currently in use for systems description:

(1)

(2)

Schematic Flow Charts: These illustrate, in essentially
a two-dimensional form, the significant systems elements,
using lines and comnectors to show interrelationships
among these elements. The concept of precedence is
established either through converting the lines to arrows
or by conventions such as flow from left to right and
top to bottom. This form has been extensively used by
computer programmers and factory layout personnel. Often
special symbols are adopted to represent a particular
class of operation and typically extensive abbreviation
is required to fit the procedural description within the
available symbol forms. A sample schematic flow chart
is shown on page B-5. A good explanation of this type
of charting is given in chapter 3 of reference (1).

Serial Flow Charts: This technique permits only one
direction of flow,often from top to bottom. Again,
various symbols are used to characterize the different
types of operations end special coding is introduced
to handle this reference to branch procedures. There
are a number of minor variations on this basic theme,
but all share the common concept of restrained
arrangement of symbols. Serial flow charts are used
for process descriptions and paperwork procedures
diagrams. One such system is described in detail

in reference (2).

A-2

(3) Logical Equations: Used primarily by design engineers for
complex electronic equipment, the application of Boolean
Algebra has grown considerably since 1940. Tending to
be highly symbolic and abstract, this format permits
various sophisticated techniques to be applied leading
to systems minimization. Unfortunately, this approach
(together with the extensive use of algebraic formulas)
apparently leaves most non-technical personnel somewhat
dubious and does not provide a suitable means for
communication and reference. Conversely, the essential
simplicity and analytic structure of logical equations
do much to recommend it.

(4) Tebular Arrangements: In some areas, & tebular form has
been adopted in order to clearly show the relationships
between sets of conditions and sets of actions or results.

Since this paper is centered around the concepts of two-dimensional
programming as embodied in tebular arrangements, we will explore a
number of examples of this type of approach.

The foundation for much of the current work can be traced to the
logical truth table as described in reference (3). Though used as an
analysis tool (rather than directly for programming), this format has
offered systems designers a technique for avoiding ambiguity and
insuring comprehensiveness. Used in conjunction with logical
equations, it provides a clear, easy-to-understand framework for
describing and communicating analysis material. In general, a truth
table consists of a series of columns in which the independent
variables are used as column titles and the various combinations
of Truth (T) and Falseness (F) of these variables are itemized in
these “"condition" columns (see Figure 1).

F e 1l

(avb) A (aab) =>c

a|bllav | ab | amb|| ¢
ti t t t 4 f
.] i 5 t f t t
£f |t t f t t
ol [o f : t f

These columns are separated from a series of intermediate columms
by a double line. These intermediate columns are titled by the
particular portion of the initial equation whose truth or falseness
is being analyzed. This is always done from the simplest to the most
complex relation. Finally, the result i1s again separated by a double
line and marked true or false as appropriate.

A-3

There is a sense. of totality and straight forwardness in this
format which is appealing to many systems analysts. For example,
Harold Wolpe of IBM (reference 4) used a form a truth table to
explain the operation of a relatively elaborate algorithm which
he devised for asutomatically bandling logical equations.

A direct outgrowth of this concept is described in reference (5)
by Orren Evans of Hunt Foods and Industries. As part of his excellent
paper describing a comprehensive set of techniques for systems
analysis (systems flow charts, data layout, field definition, etc.)

he uses a "Data Rule" concept. This is covered by an example shown
in figure (2), below?

Figure 2
ﬁg]-.e Eigr Freq. Cl ‘ C-2 C;3 Al Ay A3
No.

001 100 >] M o b I 4

002 30 Yl Y|IX p 4
003 5 Y| E|RLIX

00k 2 N Y

i "

Cy, C, and 03 each represent some conditional statement such
as: Due~Balance ¢ Amount.~’of ~this ~order £Credit~Maximum. In
each column a Y (for yes), and N (for no) or a blank(for "does
not matter") is shown. To the right of a double line a series of
Action columns are used. Al, AE’ and A3 each indicate some
particular action like:

Mark Order "OK to ship"

A Y is used to.indicate that this action is to be executed while a
blank indicates that it is not to be carried out. Each row is
called a Data Rule and has certain identifying material to the left
of the condition columns. These are: rule number, which is the

row number; prior rule number to indicate precedence relationships;
and frequency, which denotes the number of times per week (or month
or year) this particular data rule will be satisfied. The structure
is such that one and only one rule can be satisfied for a given set
of input values and the sequence of analyzing the Data Rules is not
important in determining the proper Data Rule. This work has been
presented to the Intermediate Range Task Force of CODASYL
(Committee on Data Systems Language) and is presently being studied
by this group.

While this form has much to recommend it from an anaelysis stendpoint,
there are a number of questions which can be raised concerning its usefulness

as a programming device:

(1)

(2)

(3)

(&)

(5)

Since each condition statement must result in either a "Yes"

or a "No" answer, extra columns are needed to handle "Or" values
and multiple ranges. For example, C, might represent: Marital -
status is "single"; Co: Marital~ status is "divorced"; C,:
Maritel- gtatus is "merried". Suppose the logic is as follows:

If Maritel - status is either "single" or "divorced", then put 1

in colum 17; if Marital - status is "married", then put 2 in columm
17. Figure (3) represents the Data Rule table needed for this
problem.

¢, c, AN Aa
Y lx
Y Y
Y Y

It is apparent that this could become a serious problem as extensive
multiple ranges entered the picture. It is also evident that
slightly varying alternative actions can cause the same difficulty.
This also may result in a more than linear increase in the number of
rows required, since provision has to be made for all logical com-
binations of the conditions. On this basis, I believe that there

is a major weskness in the handling of condition and action state=-
ments.

The tables tend to be quite empty and extremely space consuming.
In his write-up, Mr. Evans suggests one physical solution to this
problem through multiple columm identification. However, I don't
believe this comes to grips with the underlying problem.

The existence of a third state (blank for "not significent") prevents
the direct use of a binary representation for the individual Data

A-L

Rules. This binary coding would obviously offer very attractive memory

reductions together with the possibility of direct binary word manipu~

lation to detect the appropriate solution row. Further work in this
direction might prove valuable.

The table-to-table flow is not explicitly defined, therby leaving
at least one critical aspect of a total data system open to question.

Apparently, Commercial Translator Statements could be used as the
language of the condition and action statements though this then
requires the power of a Commercial Translator Processor to provide
an object program.

A-5

(6) The connective between Condition Statements is
only "AND" and the only sequence for executing
action statements is that implied by the order
of their listing.

In spite of these drawbacks, this technique does seem to offer
many of the "human-engineering" advantages which we seek in & two-
dimensional programming system:

(1)

(2)

(3)

()

(5)

There is implicit indication of the
path to be followed on successful or
unsuccessful completion of a test. On
success you continue across the current
row. On failure you drop to the first
test in the next row.

There is a built-in error detecting function.
If no solution is found, then failure on

the last row could kick the program into

a speclal error reporting routine.

The truth table features aid in preventing
and detecting logical errors or omissions.

The formal structure is an aid to program
communication.

Through proper sequencing of the columns
and Data Rules, a reasonably efficient
operating procedure could be evolved.

There is other work in this direction which may be of use to us.
For example, Bob Murphy of IBM proposed in 1956 a similar tabular
technique for stating logical decisions without the restraint of
explicitly defining all procedural sequences (as has to be done in

a flow chart).

His proposed technique had the same general properties

as the Evans' work described above except that he used O for N and 1 for Y.
He also experimented with a construction which permitted multiple success
rows. The concepts which underly this work are described in reference (6).
In a different direction, he explored briefly the use of a single column
to represent multiple states or ranges of a particular variable. This

is shown in figure 4. It appears that this might solve one of the

serious problems in the Evans' epproach.

Figure L
Marital Status | a | A, "l
Single X
Divorced X
Married X

A-6

In 1958, Joe Jeenel, also of IBM, proposed a system delineation technique
which included a modified truth table for logicel decision rule description. He
also prescnted a tabular approach to the control of program segments and loop
hierarchies. This concept is explained in reference (7).

In 1957, Uerry Crawford of IBM led an extensive study involving a full
description of the various procedures involved in a particular customer application.
In certain parts of the system, the rules were so complex that a tabular definition
of the logic was used. One of the charts is shown in Tigure 5 (next page).

This is a far more compact representation of the problem than could have been
obtained through the Evans' technique. However, it still has numerous weaknesses
in terms of ease in preparation, ease in understanding, and efficiency in processing
and operating.

Another area of tebular development has been in the ficld of product standard-
ization. There is a well-known form used called a Collation Chart. This is nothing
more than a listing of values for various critical specifications in the top rows
of the sheet (see figure 6 below) and the nemes of the parts down the left-hand
colum. In the various intersections, the appropriate drawing number is entered.

A dot is used as a horizontael ditto mark. Oftentimes the quantity, if varieble,
will be shown within the intersection. Otherwise, it appears adjacent to the
pert neme.

Figure 6

Collation Chart for Electric Clock

Voltage 110 110 220 220 220 220
No.of Hrs. 12 12 12 2l 2l ol
Radium Dial o Yes No Yes No Yes
Glass 37840 . 3 . .

Case 37850 . 8 R .

Face 37860 | 37BGL 37B60 37B61 37862 37863
Hands 37BT0| 37BT1 37870 | J37BT1 37B70 37BT1,
Gears 37B80 . . . 37881 ;
Motor 3TBYO = 37891 . : .

SHIPPING SCHEDULE DETERMINATION

CONDITIONS:
4
Stockage| Delivery | Availability | Further Conditions Action Shipping Schedule Date
S DI or DN QA Ship at once Today
QN Back order DRO
DD Not applicable] OH- QRPZ QO Defer order without DD
reserving
Not applicable] OH-QRP<QO Defer order wit hout DD
and DD % DRO reserving
Not applicable] OH-QRP<QO Defer order without DRO
and DD €DRO reserving
NS DI or DN QA QA Z1/4 QO Ship at once Today
QA<1/4 QO Defer order and
reserve Today + SLT
QN Suspend order and Today + SLT
order replenishment
>
DD QA QA = QO Defer order and DD
> reserve
DD "= Today + SLT Defer order and reserve DD
and QA<LQO
DD<Today + SLT Defer order and reserve Today + SLT
and QA<LQO
QN DD % Today + SLT Defer order DD
DD <Today + SLT Defer order Today + SLT

L-v

A-8

A similar approach has been used to simplify and standardize shop
routines and time standards.

All of these tabular techniques offer a natural mode for a two-
dimensional programming language. It seems apparent, though, that the
use of the intersection blocks for more than Jjust a true-false indicator
would extend the span of the table and might provide significant memory
reductions. Since there is a variety of particular problems within the
framework of a computer program, it may be desiraeble to analyze tabular
formats for each of the key modes of operation: Input, Output, Formula
Evaluation, Decision-making, Search, File Maintenance, and Supervisory
(Executives.

Given this background of material, the balance of the paper will
be concerned with particular aspects of the problem of creating a suitable

two-dimensional programming language:

(1) Section B discusses various address modes. It is
evident that if a "fixed" format is to be used (like
a table) then a standardized address (or operand)
system will probably be required. The conclusion
of this section is that a two-address logic seems
to be a reasonable solution to a two-dimensional
programming system.

(2) Section C is brief analysis of the concept of
controlled two-directional branching and its impact
on the instructions needed in a two-address system.

(3) Section D is concerned with relative addressing and
"contained" constants. These techniques make a

programming language easily separable so as to
permit a segmental approach to debugging.

(4) Section E describes a suggested minimum language
embodying the principles described in the previous
sections and then briefly indicates a few of the
more important extensions and sophistications
possible.

(5) Finally, Section F recommends & study program aimed at
developing & useful two-dimensional programming languege.

B-1

Section B - TWO ADDRESS LOGIC

In considering & two-dimenstional programming scheme, the number
of operand addresses can be of significance. Most computers have been
constructed with a one-address logic. Examples include all of the
IBM 700 Series, Univac I and II and Burroughs 205. The IBM 650 is a
special case where a second address is included in the instruction
word just for instruction sequence controX. Viirious of the newer
computers have used a multiple operand addrecs logice. The IBM 305,
1401, and 1620 as well as the NCR 304, Honeywell 800 and Univac 1103
all use two or more operand addresses - sometimes Lhe number of
addresses is variable.

It is the purpose of this Section to explore one, two and three.-
address logic for various classes of instructions and to try to show
certain of the advantages and disadvantages of each mode of operation.

Any instruction system must e:plicitly state in each instruction
the operation to be executed and must also state, either explicitly
or implicitly, the memory location of the field (s) to be operated
upon. In a one-address machine the basic instruction format is:

s PR, KeoasX
Instruction Code Field Address

In operation, the computer's control element recognizes the
instruction code and executes it using the information stored at the
field address indicated. The computer then proceeds to the subsequent
instruction location (which may not be in numerical order). There are
many variations on this theme with index registers, partial word
definitions, additional control data, etc., but essentially all single
address machines have this basic pattern.

For three-address machines, the basic construction is:

= SR, 4 > P 4 KoesX XessX
Instruction Field Address Field Address Field Address
Code A B Cc

The general mode of operation is for the computer to carry out the
operation indicated by the instruction code on the information stored
at locations A and B and then either store the results at location C or
switch control to location C. The same comments relative to variations
is also applicable here with the added complexities of indexing multiple
fields, defining partial word lengths for multiple fields, etc.

B-2

A two-address machine would have ite instruction word composed
as follows:

KXo sX XsoeX XisiX
Instruction Code Field Address Field Address
A B

Operation would vary considerably depending upon the nature of the
instruction code. To illustrate, various classes of two-address instructions
are noted below; one suggested operation and mode for representative members

of each class 1s then described:

1. Move instructions -
any instruction which moves information from one

location to another. Examples include:

READ Move information from designated input source
(A) to destination location (B).

WRITE Move information from source location (A) to
designated output unit (B).

ASSIGN Move informetion from source location (A) to
destination location (B).

These instructions could, of course, specify the movement
of partial words or multiple words at once.

2. Relational Instructions -
any instruction which compares two fields of information.

Compare Greater Test to see if the contents of Field A

are greater than the contents of Field B.

Many other relational comparisons are possible, smaller,
equal, not equal, greater or equal, and smaller or equal.
Their operation mode would be identical to the Compare Greater
instruction. Another possibility would be to have a
generalized Compare instruction which would set a series of
binary indicators like greater, smaller, etc.

3. Branch instructions -
any instruction which changes the normal sequence of
instruction execution.

Branch Based on the contents of location A either switch
control to location B or continue the normal operational

sequence. Location A might designate some type of memory
which has been preset by a previous test such as equals,

not equals, overflow, etc.

L. Arithmetic instructions -
any instruction which performs an arithmetic function like
add, subtract, multiply, divide, exponentiation, sine,
cosine, etc.

Binary operations:

ADD Add the contents of location A to the contents
of location B. Store the result in location B.
The same approach would be followed for subtract,
multiply, divide or exponentistion.

Unary operations:

SINE Determine the sine of the contents of location A.
Store the result in location B.

Certain normally binary operations can be restated as unary
operations if it is useful because of frequency of
application. (B)
For example: (A) can be restated as:

Square Root (A) if (B) = 1/2

Other examples of unary operations are those which are
performed for decimal (or binary) point location or for
format modification (either input or output).

Shift Right (I) Shift the information in location A to
the riEE% by a predesignated number of positions (I).
Store the contents in location B.

The same reasoning could be applied to shift left, shift
right and round, shift left and test for overflow, etc.

In arithmetic operations (and actually in any of the others)
we can certainly consider the accumulator (s) as being
merely special field locations so that there is no necessity
for storing information in regular memory after an operation.
For instance, MULT A, B where B was an accumlator address
would simply mean to multiply the contents of the selected
accumulator (B) by the contents of location A and store

the result back in the selected accumulator (B).

5. Logicel instructions -
any instruction which performs a normally defined Boolean
function such as logical AND, logical INCLUSIVE OR, logical EXCIUSIVE OR,
logical NOR, logical NOT, etc. The mode of operation would be
similar to that of the arithmetic operations ard could recognize
both binary and unary logical instructions. Logical Not would be
an example of a unary logical instruction. These could be used for
control, masking, extracting, etc.

B-k

Another possibility for logical operations might include
the presetting of either a logically true or logically
false indicator which could be tested in a subsequent
Branch instruction. One implication of this type of
operation is that the computer should be capable of
operation in a binary number mode (0,1), though this

is not necessary for the other operations. It suggests
some way of defining structure at the bit level rather
than at the character level. Definition could be implicit
in the instruction code itself; for example, regular
arithmetic might always refer to a 4 bits per character
construction; but logical operations might always use

a one bit per character construction; but on move and
compare operations character construction would not be
significant except as required for partial word operands.

This list is not an attempt to be definitive nor are the suggested modes
of operation necessarily optimal for a given class of problems. Nevertheless,
I believe that they show the comprehensiveness and potential scope of a
two-address logic as well as indicating the simplicity and ease with which
many frequent business data processing operations could be handled. It is
also obvious that any programming system constructed with this logic could
provide for any of the modifications possible in & one-address or three-
address language, including: indexing, partial word selection, debugging
stops, etc.

To examine further some of the potential advantages and disadvantages
of this approach we might review the following example which has been
coded in each address mode. I have assumed a simple mmemonic instruction
code set for each configuration. Except for initializing, ending, and
handling transactions with identification numbers greater than the
largest valid inventory number, the problem is flow charted as follows:

Read next
transaction

Start

Read next
Inventory
Record

Invent. No: End

of File

Write Inven-
tory Record

7N

+

i1

Write Error o) 2> | Invent. No:
Message g Trans. No.
W
Trans. Code: # Trans. Code:
Recelpt Code S | Withdrawal
- g Code

n\4

Invent. Qty:H
Trans. Qty.~
Invent. Qty.

6

-
—

Invent. Qty.-
Trans. Qty.—3
Invent. Qty.

5

B 6

Within the framework of the flow chart and except for the start and stop
routines I have delineated one possible program for solving this problem on
a8 one-address machine:

Address Inst. Code
o1 Read
02 Relocate
03 Bring
ok Compare
05 Branch Equal
06 Bring
o7 Compare
08 Branch Greater
09 Branch Smaller
10 Bring
11 Compare
12 Branch Not Equal
13 Bring
1k Subtract
15 Store
16 Read
17 Relocate
18 Branch Uncond.
19 Relocate
20 Write

Field Address

Input 1

Invent. work area

Invent. No.

End of File No.

Stop Routine

Invent. No.
Trans. No.

28

19

Trans. Code
Withdrawal Code
22

Invent. Qty.

Trans. Qty.

Invent. Qty.

Input 2
Trans Work Area
06

Invent. Work Area

Output 1

Comments

Move next inventory record
to input buffer

Move info. in input buffer
to invent. work area

Move invent. no. into
accumulator

Test accum. vs. end of file no.

If set proper comparison
indicators equal, comparison
indicator is "on", Stop Routine
address

Test accum. vs. trans. no., etec.
To Transaction Error Routine

To write inventory tecord routine

To Receipt Test Routine

Subtract trans. qty. from accum.
result in accum.

Store contents of accum. at Invent.
Qty. Location

(Cont.)

Address Inst. Code
21 Branch Uncond.
22 Compare
23 Branch Not Equal
2k Bring
25 Add
26 Store
27 Branch Uncond.
28 Relocate
29 Write
30 Branch Uncond.

Field Address

01

Receipt Code

28

Invent. Qty.
Trans. Qty.
Invent. Qty.

06

Trans. Work Area
Output 2

06

B-T

Comments

To transaction Error Routine

On the basis of 2 decimal digits for the instruction code and 4 decimal
digits for the address, this program would require 30 x 6 = 180 memory
location units.

In a similar way, I have prepared a possible program for a three-address

machine.

Address Inst. Code

o1 Read

02 Compare Equal
03 Compare smaller
o4 Compare greater
05 Compare not equal
06 Subtract

o7 Read

08 Branch Uncond.
09 Write

10 Branch Uncond.

Field Address A

Field Add. B

Input 1

Invent. No.
Invent. No.
Invent. No.
Trans. Code
Invent. Qty.

Input 2

Invent. Work
Area

End of File No.
Trans. No.
Trans. No.
WithdrawalCode

Trans. Qty.

Field Add. C

Invent. Work Area
Stop Routine

09
1k

11

Invent. Qty.
Trans. Work Area
03

Output 1

o1

(Cont.)
Address

12

13
1k

15

Inst. Code
Compare Not equal
Add

Branch Uncond.

Write

Branch Uncond.

B-8

Field Add. A. Field Add. B Field Add. C
Trans. code Receipt code 1k
Invent. Qty. Trans. Qty. Invent. Qty.
03
Trans. Work Output 2
Area
03

On the basis of two decimal digits for the instruction code and
four decimal digits for each of the addresses this program would
take 15 x 14 = 210 memory location units.

For comparison, the same problem is programmed for a two-address

machine:
Address Instruction Code
01 Read
02 Compare
03 Branch
ok Compare
05 Branch
06 Branch
o7 Compare
08 Branch
09 Subtract
10 Read
11 Branch
12 Write
13 Branch
14 Compare
15 Branch
16 Add
17 Branch

Field Address A

Field Address B

Input 1
Invent. No.
Equal
Invent. No.
Smaller
Greater
Trans. Code
Not Equal
Trans. Qty.
Input 2
Uncond.
Invent. work area
Uncond.
Trans. Code
Not equal
Trans. Qty.

Uncond.

Invent. work area
End of file no.
Stop Routine
Trans. No.

12

18

Withdrawal code
14

Invent. Qty.
Trans. work area
o4

Output 1

o1

Receipt code

18

Invent. Qty.
ok

(cont.)

Address Instruction Code Field Address A Field Address B
18 Write Trans. work area Output 2

19 Branch Uncond. ok

On the basis of two decimal digits for the instruction code and
four for each address, this program would require 19 x 10 = 190
memory location units.

Let's examine these programs at least superficially to draw some
tentative conclusions.

1.

2.

hl

There is no striking difference in memory space
required for either of the three programming modes.

The three-address mode does well because of the

‘arithmetic capebility end the combined compare and

branch instruction.

The one-address system is a little more difficult
and time consuming to write and requires more words
of instructions (though not necessarily more memory
space, dependent on the internal word structure).

Two-address logic does very well on move type
instructions (read, write) and on "add-memory"
operations.

There were 13 different instruction codes used
for the one-address program. The three-address
system used nine different instruction codes
while the two-address system used only six.
This is not necessarily significant, but it may
be indicative of a somewhat simpler instruction
code structure.

Almost half (9) of the 19 instructions in the two-
address system were branch instructions. Suppose
it were possible to change the concept of the
compare instruction so that a specific indicator
was examined to see if it was on ur off, and
suppose that the "success" branch was always

the next regulaer instruction while the "failure"
branch was a fixed intervael away; then it would be
feasible to eliminate virtually every branch except
where three or more alternate exits existed or where
the branch was unconditional. In the program under

B9

B-10

discussion, this would have eliminated four branch
instructions. This may be feasible to accomplish
through the two-dimensional programming approach.
This aspect of success-failure physical location
will be discussed in the next section.

On the basis of these comparisons, I believe it is evident that intensive
study of two-sddress programming systems may offer important ways to reduce
computer logic cost while providing more efficient programming instructions.

Section C- Controlled Two-Directional Branching

In normal programming methods with a one-address or multiple-
address machine, the succeeding instruction in serial sequence
is always implied as the alternate address on a branch instruction.
The explicit branch is stated directly in the instruction. This
is all that can be expected of any one-dimensional programming
scheme.

In contrast, a two-dimensional programming system implies
a two-dimensional branch. If the test succeeds, then the proper
subsequent instruction follows next in the same row (or columm).
If the test fails, then the subsequent instruction is the first
test in the next row (or colunn). Since the total number of
colums per row is known, it is a straight-forward matter to
compute the next instruction location for a test failure.

With this concept, we can think of a two-address instruction
of "compare greater", which implicitly defines the success
instruction address and the failure instruction address. This
would require defining a complete set of the Compare instructioms,
vhich were of significence (greater, smaller, equel, not equal,
greater or equal, smaller or equel).

Avoided would be the definition of any Branch instructions.
Using this approach, the two-address program for the simple
inventory problem used as an illustration could be reduced by
eliminating 03, 05, 08, 15. However, it would require Compare
Equal, Compare Smaller, Compare Greater and Compare Not Equal
instructions. With this change, the program would be reduced
to 15 instructions; with 10 characters each, 150 memory
location units would be needed.

D-1

Section D - Relative Addressing end "Contained" Constants

A1l digital computers which have been announced up to now have had an
instruction structure, which has called for stating one or more specific
operand addresses. Some provision has been made for modification of
these through the use of index registers, but the operating program
presupposes absolute addresses.

In preparing new programming languages (symbolic assembly programs,
compilers, etc.), one of the major efforts has been to enable the programmer
to avoid this fixed address assignment. Two basic approaches have been
taken to solving this problem. The first and less sophisticated, is to
use a relative address like VOlk, which means the 1h4th word after that
location designated as V000. This enables the program to be segmented,
yet during the compiling stage, there is just the quite simple job of
calculating the actual address of VOl4 as the location of V00O 4 1k.
This is a very common practice. It does recuire, however, that the
programmer in effect sub-structure the memory assigmment and remember
to use the correct relative address whenever he refers to that
information.

A second approach has attempted to improve this area further.
This is the concept adopted for FORTRAN and the Commercial Translator
Language. Here, a mnemonic code name is assigned to the information
field. For Example, EMPNO might refer to the Employer Pay Number field.
FORTRAN restricts this to a six (6) character code. Commerical Translator
allows the use of up to thirty characters plus adjectival modification to
indicate file and record hierarchy. Because of the mmemonic aid,it is
expected that the programmer will have far less trouble writing the
correct pseudo-address, which the field name, of course, has become.
During the compiling, each of these names will be assigned an actual
address and each time the name occurs, this same actual address will
be assigned. This is significantly easier for the programmer, parti-
cularly in expleining or communicating the program to someone else.
It would also be a great aid in debugging except that the program debugs
at the machine languege level, which implies fixed addressing; this in
turn means that the programmer has to convert from the absolute address to
the field name that he has been using.

In preparing machine language programs, it has also been historically
necessary to store any constants required and then call them out through
using the appropriate absolute address. With relative addressing,the
problem is only helped slightly since a memory location must still be
used to store the needed constant. With FORTRAN, etc., the programmer may
use a constant directly in his instructions; e.g. Y = 16 X. The compiler
assigns this constant a location and, in the object program, refers to
this location. While this is a big improvement for the programmer, it
still uses up memory space for all the various constants needed. One
interesting variation is to use the addresses themselves as constants;
this yields the most commonly used integers. It is proposed in this
paper that a nev programming language be constructed so as to permit
direct use of mmemonic addressing and so as to contain constants within
the instruction word, thereby requiring no additional memory space for
their storage.

D-2
(cont.)

It is further proposed that during compiling the computer may assign a
relative address to each mmemonic address and that the internal computer logic
should be structured so as to operate directly on this relative address.
Furthermore, that the contained constants, where possible, be retained within
the instruction and not independently stored. This would require that the
instruction code recognize that one of the operands was a constant and not a mmemonic
address.

If we consider these suggestions in context with the two-address logic
recommendation, we can consider that the instruction structure for the programmer
might appear as follows:

Xa Move Instructions

Move (Field Name A) to (Field Name B)
or
Move Constant to (Field Name B)

2. Relational Instructions

Compare (Field Name A) with (Field Name B)
or
Compere Constant with (Field Name B)

3. Branch Instructions
Not affected

L, Arithmetic Instructions

Add (Field Name A) to (Field Name B)

Eand store in (Field Neme]_SEI

or

Add Constant to (Field Name B)

E.nd store in (Field Name B__)-l

Unary arithmetic would also have both configurations.

5e Logical Instructions
Similar to the arithmetic operationms.

(cont.) D-3

During compiling, the only changes would be to convert the operation name
to an operation code and translate the field names into relative addresses.

For example:
Move (Field Name A) to (Field Name B)

might become 27 VOOl vVoo9
Move 4728 to (Field Name B)
might become 28 4728 V009

The major reason for converting to a relative address is that current-day’
machines lose significant time in performing a dictionary look-up operation.
It is quite conceivable, of course, that new machine components may change
this picture considerably in which case it might be advantageous to store the mmemonic
address rather than a relative location.

A major concern, which has been alluded to earlier is the difficulty of
debugging in a machine oriented language. It is therefore believed worth
considering the preparation of interpretive programs, which allow the computer
to debug in the systems oriented language itself. Once the program has run
satisfactorily, then the reguler compiler could be used to prepare a set of
instructions suitable to the particular computer. To generalize this point
it would, for example, seem worthwhile to construct an interpretive FORTRAN
processor which would permit direct debugging in the FORTRAN language, even
though eventually an obJjectprogram will be compiled. Such programs should
be relatively inexpensive to prepare and will increase significantly the
desire of many experienced programmers to use these advanced programming
languages. This concept is tied somewhat to the idea of relative addressing
and contained constants, since with these two tools the interpretive program
can be quite simple and the analysis of results quite straight-forward.

E-1

Section E - A Suggested Minimum Two-Dimensional Language

For the purpose of esteblishing a common frame of reference, a "minimum"
language is described, which would enable a computer to rapidly execute the
bulk of the operations, which seem to be required in two-dimensional
programming. There is obviously nothing magical about this particular set
of instructions. However, industrial computing experience indicates thet
these would permit a one to one translation of many relations and actions
into computer instructions. The original set has intentionally omitted
indexing, partial or multiple word operations, and logical (Boolean)
manipulations. These items are discussed later in this sectliondn the
symbolic statements included after each instruction definition, () means
"contents of location designated" and —» means "replaces'

Move Instructions

READ A, B

Move the next record from input source A to a series of internal
locations beginning with location B. Source A may be a card reader,
punched tape reader or any selected magnetic tape transport. This instruction
could operate with fixed record length (N words or characters or bits),
variable record length (separated by a recognizable record mark), or with
defined record length as a modifier to the READ instruction (such as Read 60 to imply
Read 60 consecutive words).

(a) = (B)
WRITE A, B
Move the next record from a series of internal locations beginning with
location A to output destination B. Destination B may be a card punch, tape
punch, printer or any selected magnetic tape transport. The same statements
gbout record length that were made in the READ instruction would apply to the
WRITE instruction. '
(a)=> (8)
ASSIGN A, B
Move the contents of the Field A designated location to the Field B designated
location; this instruction moves information from one memory location to another
memory location.
(A) => (B)
ASSIGN CONSTANT A, B

Move the contents of Field A to the Field B designated location; this
instruction transfers a constant to a memory location.

A = (B)

E-2

(cont.)

COMPARE BQUAL A, B

Compare the contents of the Field B designated location with the contents of
the fleld A designated location. If these are identically equal, then branch to
the preassigned success location (S); if these are not identically equal, then
branch to the preassigned failure location (F).

(A) then next instruction at S

if (B)

if (B) = (A) then next instruction at F

COMPARE SMALLER A, B
if (B) < (A) then go to S
if (B) » (A) then go to F
COMPARE GREATER A, B
if (B) > (A) then go to S
if (B) ¢ (A) then go to F
COMPARE NOT EQUAL A, B
if (B) # (A) then go to S
if (B) = (A) then go to F

If the machine's internal characteristics lend themselves to a slightly more
elaborate mode of operation, then the instruction set may also include:

COMPARE SMALLER OR EQUAL
COMPARE GREATER OR EQUAL

COMPARE CONSTANT EQUAL A, B

Compare the contents of the Field B designated location with the contents of
Field A. If these are identically equal, then branch to the preassigned success
location (S); if these are not identically equal then branch to the preassigned
failure location (F).

if (B) = A then go to 8

if (B) ¥ A then go to F
COMPARE CONSTANT SMALLFR A, B

if (B) < A then go to S

if (B) » A then go to F

E-3
COMPARE CONSTANT GREATER A, B
if (B)> A then go to S
if (B)£A then go to F
COMPARE CONSTANT NOT EQUAL A, B
if (Bj Z A then go to S
if (B) = A then go to F

If the internal machine characteristics lend themselves to this mode of
operation, the instruction set may also include:

COMPARE CONSTANT SMALLER or EQUAL
COMPARE CONSTANT GREATER or EQUAL

GO TO A
transfer program control to location designated in Field A.
This is an unconditional branch instruction. The reason it
is needed rests with the limitations of a two-dimensional
programming system (in contrast to an n - dimensional system).

Arithmetic Instructions

ADD A,B
Add the contents of the Field B designated location to the
contents of the Field A designated location. Store the result

in the Field B designated location. ZEither Field A or Field B
may be a special high-speed accumulator.

(B) + (a) » (B)
SUBTRACT A, B
(8) - (&) > (B)
MULTIPLY A, B
(B) x (a) > (B)
DIVIDE A, B
(B8) = (a)~> (B)
We have omitted in this instruction set exponentiation or unary arithmetic
operations. In the problems which we have handled to date, their frequency of

use has been such that this need could be best served through use of stored
subroutines.

ADD CONSTANT A, B

Add the contents of the Field B designated location to
the contents of Field A. Store the result in the

Field B designated location.
(B8) +4- (B)
SUBTRACT CONSTANT A, B |
(B) - A- (B)
MULTIPLY CONSTANT A, B
(B) x A= (B)
DIVIDE CONSTANT A, B
(B8) + A-> (B)
SHIFT LEFT A, B
Shift the contents of the Field B designated location
to the left by A positions.Conceptually this operates
on a predefined word length. The result is stored in

the Field B designated location. If there is an over-
flow consider this as a failure; if no overflow, this

is a puccess.

 SHIFT RIGHT A, B

Shift the contents of the Field B designated location
to the right by A positions. The result is stored in
the Field B designated location.

If desired, a SHIFT RIGHT and ROUND instruction may be
included.

Logical (Boolean) Instructions have been omitted.

Miscellaneous Instructions

NO OPERATION
STOP

E->

Simole Extensions of the Minimum Language

Among additional features which may be desirable in a two-dimensional program-
ming system are: address indexing; partial word movement; multiple word movement;
error control (debugging stops and input variance detection); extended arithmetic
capability including square root, integral exponentiation (square and cube) and
certain trigonometric functions (sin, tan). A simple approach to some of these
features is described in this section.

One problem in address indexing has been the attempt to consider multiple
subscripts. Writing a compiler to automatically recognize and handle multiple
subscripts is a relatively complex chore. A simple concept which handles any
number of subscripts is through a calculated index which is the function of the
subscript values.

INDEX ASSIGN I,A,B

Modify the Field A designated location by the contents
of the Field I designated location. Move the contents
of this modified Field A designated location to the
Field B designated location.

(A (1)) (B)
ASSIGN INDEX I,A,B

Modify the Field B designated location by the contents

of the Fleld I designated location. Move the contents

of the Field A designated location to the modified Field B
designated location.

(a) (3 (1))

The contents of the Field I designated location can, of course, be previously
defined by any acceptable operation. ILet's assume we have a three dimensional
metrix stored in consecutive locations first by column, then by row, then by table.
There are three parameters to be defined: R (max Rows), C (mex Colums), T (max

Tables). We will define r as the row subscript, ¢ as the columm subscript, and
t as the table subscript.

I ? (r,c,t)
I Initial Iocation r cR +RC
Test for completion would be I versus Initial Location - R (1-C(1-t)).
This principle can, of course, be extended to any n-dimensional subscripting plan.
It could, of course, also be applied in concept to any arithmetic or comparison
operations.
Partial word movement could be handled through a similar approach:
PARTIAL ASSIGN I,F,A,B

Move the Ith (Initial) through the Fth (Final) position

E-6

of the contents of the Field A designated location into the Field B
designated location starting at the left-most position.

ASSIGN PARTIAL I, F, A, B

Move the contents of the Field A designated location
starting from the left-most position into the Ith
through the Fth position of the Field B designated
location.

Multiple word movement could be handled as follows:

MULTIPLE ASSIGN M, A, B

Move M words starting at the Field A designated
location into a series M words beginning at the
field B designated location.

Error Control for debugging stops and input variance detection could
be handled as follows:

ERROR GO TO A, B

Transfer control to the Field A designated location.
Set up to return control to the Field B designated
location upon completion of processing the next table.

Unary Arithmetic could follow the following form:
SQRT A, B
Find the square root of the contents of the

Field A designated location; store the result
in the Field B designated location.

Section F-1

Recommendations

It seems evident that present approaches to systems-oriented
languages do not appear to be capable of making a basic break-
through in the one really critical programming problem: Systems
description. Until a technique 1is developed which supersedes
flow charting and yet is readily computer-understandable we shall
not have achieved an effective application langueage.

Because the logic of two-dimensional programming seems
irrefutable from a users standpoint it certainly seems worthwhile
to aggressively pursue a research and development program aimed
at exploring and advising techniques in this generel area.

The program below would, I believe, have a reasonably good
chance at full success:

(1) ©Propose a specific two-dimensional language
based on the Hunt Foods', Aeronutronics and
IBM work (particularly the direction suggested
by Perry Crawford). “he language may differ
for various types of usage (Input, Output,
File Maintenance, Decision-making, Arithmetic, etc.)

(2) Prepare a simple interpretive program to solve
two-dimensional programs. Also prepare a converter
for translating from a Commercial Translator
level of word choice to a machine-oriented level.

(3) Program a veriety of problems using the language.
" Try to teach the language to non-programming
persomnel; have them write programs for areas
of knowledge using the language.

(4) Run a few trial problems with the programs
written in the two-dimensional language.
Explore techniques for debugging and program
modification.

(5) Revise the language; this may include permitting,
but not requiring, certain desirable special
features like SORT, UPDATE, MERGE.

(6) Prepare a "bootstrapped" compiler for two or
more different computers. This will give a
deeper insight into the language structure.
Prepare & new Interpreter and Converter.

(7) Conduct further experimentation bringing in
appropriate Field Sales personnel.

F-2

(8) Prepare manuals on the language covering
the following areas:

(1) primer

2) reference

3% application experience

L) Interpretive, Converter, Compiler Programs.

(9) Publish the results and present to CODASYL or
other appropriate professional groups.

This is obviously an ambitious program and would probably involve
3-5 full time people together with appropriate help from many others
on a part-time basis. Because the need is so great, I feel that
the time schedule should be intentionally brief with completion
targ at 12-18 months from initiation.

I would estimate that the total cost of such a project including
computer time, programming, technical writing, outside consultants,
office support, and salaries for full-time personnel (but not for
part-time) would epproximate $300,000.

If |the project worked out as I would hope then the reward
should Be a major advance in the programming (in contrast to
the coding) art. We would have a basic new tool for systems
design and a firm basis for language standardization.

INFORMATION PROCESSING SYSTEM

ANALYSIS

SUTHERLAND and CO.

INFORMATION PROCESSING SYSTEM ANALYSIS INSTRUCTIONS

1. Purpose. To provide a standard method of recording the management
rules (arithmetic and decision processes) and other information necessary to
adapt an Information System to a mechanical or other medium of processing.

2. General. The method described in the following instructions eliminates
the need for lengthy narrative with its inherent disadvantages of misinterpre-
tation by the reader and difficulty of organization by the writer. This method
also eliminates the need for the system analyst to prepare detailed flow charts
to convey to a processing specialist the processing required to obtain the de-
sired results of the Information Processing System. The method of documen-
tation is general enough to allow the Information System to be adapted to any
medium of processing, but detailed enough to permit the application of the
Information System to electronic machine processing by a machine special-
ist who has no prior knowledge of the Information System.

A. Documentation Preparation. The documentation will be prepared by
the system analyst and forwarded to the processing specialist. The processing
specialist may be a punched card equipment specialist, an electronic equip-
ment processing specialist or a manual and standard office equipment proces-
sing specialist. In many instances, the manual and standard office equipment
processing specialist will be the system analyst.

B. Content of Documentation. The documentation prepared by the
system analyst will include the following:

(1) General System Chart including the inputs to the system and the
sources of the inputs, the outputs of the system and the disposition of the out-
puts and the data to be retained by the system.

(2) A general narrative description of the Information System which
will include the purpose and scope of the Information System and any other
pertinent information that may be helpful to the Processing Specialist.

(3) Description Sheets
a. Input Description
b. Process Description and Process Description Continuation
c. Output Description

(4) Any reference notes that are required to clarify the Input, Out-
put or Process Description sheets.

(5) A sample copy of each "hard copy" input and ""hard copy" output
of the Information System. Element codes will be entered on the input and
output samples to identify the elements and their position.

Note: Appendix II is a sample of the documentation for an Information Processing System.

Page 2

3. Input Description Sheet.

A. General. An Input Description Sheet is used to describe the content
of Action Sets and Retained Data Sets which are input to the information system.

B. Headings.

(1) In the upper left-hand corner, place the two-character '"'System
Identification' for the system being described.

(2) Below the '"System Identification', place the ''Set Identification"
for the Input Set being described. If the input is an Action Set, use the iden-
tification of the Action Set. If the input is a Retained Data Set, use the unique
Retained Data Set identification assigned to the set.

The first two characters of the Retained Data Set identification
are the System Code, the next two characters will be "RD'". The next char-
acter (s) is used to identify uniquely each Retained Data Set. For example:

:O?RDI
Billing LAssigned to the Customer File

OFRD%
Billing Assigned to the Price List

(3) Indicate in the space provided for '"Frequency of Processing"
the most frequent period in which this set is to be input to the system.

(4) Process. Indicate in the space provided the name of the process
being documented. In most instances the process will directly correspond to
what is described by the System Identification. Occasionally the System Iden-
tification is not definitive of the process being documented and the actual
process name should be indicated. For example:

System Code 20 is assigned to Salary Payroll which includes:
Pay Check Preparation, Personnel Reports, Labor Distri-
bution, Tax Reports and Annuity Reports. In this example,
the System Code would be 20, but the process would be Pay
Check Preparation, Labor Distribution, etc. depending on
the process being documented.

(5) Place the '""Set Name'' in the space provided.
(6) Indicate in the space for '"Volume'' the "Average' and '"Peak"

number of sets that will be available'as input in the time period shown for
"Frequency of Processing''.

Page 3

(7) In the space provided indicate the Form Type for the set.
Examples of "Form Type' are: '"Manual', "Punched Card", '""Magnetic Tape",
and '""Paper Tape'.

(8) For "Source System I.D.' indicate the two-character System Code
of the System which processes the set immediately prior to this system. If the
Input Set is a Retained Data Set which is added to in more than one system, in-
dicate the system from which the Retained Data Set will be received.

(9) In the upper right-hand corner indicate the page number, the name
of the person preparing the Input Description Sheet, and the date of preparation.

Lerprms 227 Sars
C. Management Rule Numbers. For Ac}%{;r?Sets;;ndJcajte in the spaces
provided across the top of the sheet the three-digit numbers of the Management
Rules (other than Validation Rules) which must be executed if this set is pres-
ent. If there is not sufficient space on one Input Description Sheet for all the

rules, use additional sheets.

D. Element Name.

(1) In this column enter the '"Element Names' assigned to the ele-
ments that are contained in the Input Set. For an input, regardless of whether
or not space is provided for an element, no entry should be made for the ele-
ment, if it is always blank.

(2) Additional information on each element is placed to the right of the
element name.

E. Element Code. In this column place the seven-character element code
number corresponding to each element name.

F. Element Code - Suffix.

(1) An element in a set may be used differently or prepared differ-
ently depending on what other elements identify it. An example is the Element
"Quantity on Hand Total'. This element may appear twice on a set. In one
place, it may be the total '""Quantities on Hand' for each "Stock Number' at
each '""Location'. In the other place, it may be the total of all "Quantities on
Hand" for each "Stock Number' at all "Locations'. In the first instance,
location would be an Identifying Element; in the second, it would not. To in-
dicate this difference for the element in this set, two suffixes "A'" and "B"
would be assigned. For each different grouping of Identifying Elements for an
element, assign a different suffix, beginning with "A", (See paragraph 3, N,
(3) following).

G. Element Description - Alpha. If the element described by the element
name contains any non-numeric characters, enter an ""A'" in this column.
Otherwise, leave the column blank.

Page 4

H. Element Description - Numeric. If the element described by the ele-
ment name contains any numeric characters, enter an ""N" in this column.
Otherwise, leave the column blank.

I. Element Description - Characters - Total. Place in this column a
maximum of two digits to describe the maximum number of characters that the
element may contain. Do not include in the total number of characters, punc-
tuation marks in numeric fields which are used for arithmetic processes.

J. Element Description - Characters - Decimal. This entry is made only
for all numeric elements which may be used in arithmetic computation. Enter
in this column the number of digits that appear to the right of the implied
decimal point.

K. Element Classification (Class.). Depending on whether the element
described by the element name is a Recognition, Identification, Action, Action
Modifier, Information, or Superfluous Element, enter an "X" in the appropri-
ate column. See the definitions for the different Element Classifications in
Appendix I. Generally, the different classifications are mutually exclusive.
However, any element may be described by more than one classification other
than "Information' and "Superfluous'. For retained Data Sets only Recogni-
tion and Identifying Elements need be indicated.

L. Number of Times an Entry May Appear on This Set. Place in this
column a maximum of three characters to indicate the ""Average' and a maxi-
mum of three characters to indicate the '""Peak' number of times an entry may
appear for this element on this set. If the number exceeds 999, use "C" for
hundreds and '"M" for thousands.

M. Validation Rule (s). In this column list the three-digit Rule Numbers
for the Management Rules which must be executed to validate the element de-
scribed by the element name. Use as many lines as are necessary for each
element name.

N. Identifying Element Codes.

(1) For Identifying Elements that are used to identify an element on
the Input Set, the Identifying Element Codes are listed vertically in the spaces
provided. If more space is required, use additional Input Description Sheets.

(2) Place an "X" in the "ldentifying Element Code' column and Ele-
ment row intersection if the Identifying Element is used to identify the element
indicated on that row. Each entry for the element described by the element
name is identified by one combination of entries for the elements described by
the Identifying Element Codes.

Page 5

(3) The first two lines of Figure I illustrates the example described
in paragraph 3, F, preceding. Quantity on Hand with Suffix "A'" is for each
Stock Number at each location. Consequently an ""X'" appears under both
9300100 and 7976050, the Element Codes for Stock Number and Location
respectively. Quantity on Hand with Suffix ""B" is for each stock number at all
locations. An "X'" only appears under 9300100, the Element Code for Stock
Number. In this case, Stock Number alone is the Identifying Element for
Quantity on Hand. The third line of Figure 1 indicates that the entry (s) for
location is identified by an entry for Stock Number.

Page 6

X

System ldectification PrOCESS vonn

Set Mdeanification e Set Name Form

Froquency of Processing Toltme: Source System 1. D.
3 -iA' -!t_-::”;l;“ T RULE \OS. _| lﬂn

IDENTIFYING ELEMENT CO/

FLEMENT i
DESCPIFTION
<

- ’ ELEMENT Char
ELEMENT NAME CODE o
[~
o IR R =
HAalE| 5
a=|z| F
i i A e meel SIS ol RS -

£}

er .4w Hawp 707 |87é8/50 W
\J7¢8/80 B | _/

7976950
€ i S
i~ \J""‘--..I\/ \

Laocarion 7976050 | i
S7oek N0 |930d700 | 7
ra e i o '-'\».:a-_r:w.-.-_::/"'t_— T '-m/é.—l/\b:—ﬂ.__ s~

FIGURE 1. USE OF ELEMENT SUFFIXES
AND IDENTIFYING ELEMENT CODES

Page 7

O. Reference Note (Ref. Note). If there is a need for a reference note,
place a check mark (#) in the column. Cross-reference the note with the
System Identification)Process, Set Identification, and if required the Element
Code and Suffix.

P. Remarks. This column may be used for any additional information be-
lieved necessary by the analyst preparing the Input Description Sheet.

4. Process Description Sheet.

A. General.

(1) A Process Description Sheet is used to describe Management Rules
used in processing information within a system.

(2) Rules for Validation are shown on separate sheets from all other
processing rules. It is assumed by the analyst that all Validation processing is
to be accomplished before other processing is begun.

B. Headings.

(1) In the upper left-hand corner place the two digit ""System Identifi-
cation' for the Analysis System.

(2) In the space provided for "Process', indicate the name assigned
to the process being described. (Refer to paragraph 3, B, (4) preceding).

(3) If the processes described by the Management Rules on the sheet
are Validation Processes, place an "X'" in the '"Validation' Box.

(4) In the right-hand part of the heading, enter in the spaces provided:
the page number, the name of the person preparing the sheet, and the date of
preparation.

C. Line Number. On each line in this column, place a four-character line
number. It is suggested that the right-most digit always be blank in case there
is a later need for insertion of additional lines. Line numb‘e;_‘l;s__ :N}jl}wbe’(l}]:}}) uelXL‘_/Q;_-
assigned to all lines within the description of a particular préecess— ' 5
Thus;if tire-tast-line-on-Page 1 for.a _process-is-line-number-022;the-first-line
number-on-Page-2-will-be~023=

Examples of line numbers are :
011
012
0131
0132
014

Page 8

D. Condition/Action Indicator (C/A).

(1) If a condition is expressed on this line, place a '"C'" in this column;
if the line is used to express an action, place an "A' in this column. If what
has been placed in this column for an immediately previous line is true for a
line that follows, no entry need be made for the line that follows.

E. Management Rule - Current. In this column on the first line for each
Management Rule place a three-digit number for the Management Rule. The
numbers of all Management Rules will be uniquely assigned for all rules within
a Process for a System.

F. Management Rule - Prior. In this column list the three-digit numbers
of all of the Management Rules which must be considered before the rule speci-
fied in the "Management Rule - Current' column is considered. Generally, a
rule is prior to another rule only if it specifies the creation of elements of data
necessary for the processing of the current rule. Management Rules for Valida-
tion of elements will not be shown as prior rules for non-validation Management
Rules.

G. Source - Element Name, Prior Result or Actual Value.

(1) If one source for a condition or action is an element, place the
name assigned to the element in this column. If the source is an actual value
(Literal or Descriptive constants - See Appendix I) place the actual value in
this column. If the source is the result of an action in any rule, place the
designation of the result in this column. (Results of an action are designated
as "Result X', where "X'" is any character A to Z or 0 - 9. The first result
of a rule is designated as '"Result A", the second as ""Result B", etc. Unique
designations of prior results are only necessary within each rule. Two dif-
ferent rules may each have an intermediate result designated as Result A,

(2) Deletion of an Element. The deletion of an element from a set is
indicated by placing the Descriptive Literal '"/BLANK/" in this column, enter-
ing a check mark in the '"Set Equal To" column, and entering the Element
Name and Set Identification for the element to be deleted in the appropriate
spaces in the "Source/Disposition' column.

(3) Deletion of a Set. The deletion of a set is indicated by placing
the Descriptive Literal "/BLANK/" in this column, entering a check mark in
the "Set Equal To" column, and entering the Set Identification for the set to be
deleted in the '"Source/Disposition - Set Identification' column. In this case
the "Source/Disposition - Element Name'' is left blank.

H. Source - Element Suffix. If the entry made in the "Source - Element
Name Prior Result Actual Value' column was an Element Name, and if a
suffix was assigned to the element on the Input Description Sheet, the suffix

Page 9

which was assigned is entered in this column. Otherwise, the column is left
blank.

I. Source - Set Identification.

(1) If the entry made in the "Source - Element Name, Prior Result or
Actual Value'" column was an Element Name, enter in this column the seven-
character set designation for the set of which the element is a part. If an ele-
ment for a rule may appear in one Input Set or another, depending on which set
is present, more than one Set Identification may be listed in this column as a
source for the element described by the Element Name. If the entry in the
""Element Name' column is the designation of a Result of an action in this rule
or another rule, enter the three-digit number for the source rule within paren-
theses. This column is left blank if the entry made in the "Source' column is

an entry for an actual value. Examples of entries that may be made in this
column are:

24165A = Set
(152) = Management Rule
152 = Set

(2) The addition or insertion of a set into an Output Set or Retained
Data Set may be indicated by placing the Set Identification of the set to be
added or inserted in the ""Source Set Identification'" column, the Set Identifi-
cation of the Output Set or Retained Data Set in the "Source/Disposition Set
Identification' column and a check mark in the '""'Set Equal To'" column. The
element columns of both the Source and Source Disposition will be left blank.
This procedure will only be used if all the Elements of the Output Set or
Retained Data Set are contained in the Input Set.

J. Condition (Cond.). If a condition is expressed on a line, it is
"Greater Than', "Less Than', or ""Equal To". Place a check mark (¥) in
the appropriate column (s) to indicate the relationship between the first and
the second Source Elements or Actual Values. The relationship between the
three conditions is a logical "or'" condition. More than one column may be
checked for a line. In reading, "or'" is inserted between each condition
checked.

For example, if "AMT SALARY" is the first Source Element, (O) is
specified as the second Source Element (Actual Value), and the "Less Than"
and "Equal To'" conditions are checked, this is read, "If AMT SALARY is
Less Than or Equal To O..."

K. Operation.

(1) To express an Arithmetic Operation for an action relating two
elements, results or actual values, place one of the following operation

Page 10

symbols in the column:

+ for addition

- for subtraction

x for multiplication
/ for division

= for sum

(2) Explanation of Operation Symbols.

a. An entry of "+" in this column indicates that the first source
entry is to be added to the second source entry.

b. An entry of "-" in this column indicates that the second source
entry is to be subtracted from the first source entry.

c. An entry of "x'" in this column indicates that the second source
entry is to be multiplied by the first.

d. An entry of "/" in this column indicates that the first source
entry is to be divided by the second.
*
e, An entry of "¢'" (Greek letter ""Sigma'') in this column indi-
cates that all entries for the first specified element are to be summed.

L. Set Equal To. If the element or result specified in the "Source/Dis-
position' column is to be ''Set Equal To' another element, actual value or prior
result, or is to be '"Set Equal To'" the result of an arithmetic action, place a
check mark in this column. The last line of any action within a rule will have a
check mark in the '""Set Equal To'" column.

M. Source/Disposition - Element - Name Result, Prior Result or
Actual Value.

(1) If the entry to be made in this column is for a source for a condi-
tion or an action, the way to make the entry is described in paragraph 4, G, (1).

(2) If this column is used to indicate disposition for a result of an
action, enter the appropriate element name or prior result designation. (See
"Result X', paragraph 4, G, preceding).

N. Source/Disposition - Element - Suffix. If the entry made in the
"Source/Disposition - Element Name' column is an Element Name, and if, on
the Input or Output Description Sheet the element has been assigned a suffix,
enter the appropriate suffix in this column. Otherwise, leave the column
blank.

Page 11

O. Source/Disposition - Set Identification. If the entry made for the
"Source/Disposition" column is an entry for a Source, see paragraph I. If the
entry is a Disposition entry for an element, enter in the '"Set Identification"
column the Set Identification for the set or sets in which the Element is to be
placed. If the entry is a Disposition entry for an intermediate Result, leave
the ""Set Identification" column blank.

P. Operation.

(1) To relate arithmetically an entry in the "Source/Disposition"
column on one line with an entry in the "Source' column on the next line,

indicate the arithmetic operation in this "Operation' column using one of the
following symbols:

+ for addition

- for subtraction
for division

x for multiplication

(2) Explanation of Operation Symbols.

a. An entry of ''+'" in this column indicates that the "Source"

entry on the next line is to be added to the '""Source/Disposition' entry on the
line where the '""+' appears.

b. An entry of ""-'" in this column indicates that the "Source'
entry on the next line is to be subtracted from the "Source/Disposition' entry
on the line where the "'-'" appears.

c. An entry of ''/" in this column indicates that the "Source/Dis-
position'' entry on the same line is to be divided by the '""Source' entry on
the next line. !

d. An entry of "x'" in this column indicates that the "Source/Dis-
position' entry on the same line is to be multiplied by the '""Source' entry on
the next line.

Q. Note Reference (Note Ref. (/)). If a note or remarks are necessary
and/or advisable to explain further a condition or an action, place a check mark
in this column. On the sheet where it appears, cross reference the note to the
System Identification, Proceds)and first Lihe Number of the Condition or Action

to which the note applies,

R. Management Rule Suffix and Frequency.

(1) Eighteen Management Rule Suffixes, '"A'' through '""R", are pre-
printed across the top of the Process Description Sheet. If more than eighteen

Page 12

suffixes are necessary for a rule, Process Description Continuation Sheets
should be used.

(2) In describing a Management Rule, all the conditions which must be
considered at any one time will be listed on a Process Description Sheet. Fol-
lowing the conditions, all the actions which may be executed for the conditions
of the rule will be listed on the same Process Description Sheets (insofar as
possible). Management Rule Suffixes are used to relate a combination of posi-
tive and/or negative results for one or more conditions to the execution of one
or more actions within a rule.

(3) Unless a Management Rule describes an unconditional action
(action taken regardless of the results of any conditions), an action is taken
only when the results of certain conditions are positive ("Y") and/or negative
("N"). In describing a Management Rule, all the pertinent possible combina-
tions of condition results must be related to the actions for the rule.

(4) A simple example is shown in Figure 2. In this sample Manage-
ment Rule there are only three conditions shown on lines 001 to 003. One set
of results for the conditions are listed under Suffix Aj i.e..if the result of the
conditions on lines 001 and 002 are positive the action specified on line 004
should be taken. Under Suffix C, if the results of the conditions on lines 001
and 003 are positive and the result of that on line 002 is negative, the action
specified on line 004 should be taken.

PROCESS DESCRIPTION

Page of
System Identification Prepared by
Process l:' Validation Date
SOURCE COND.|_ SOURCE/DISPOSITION MANAGEMENT RULE SUFFIX AND FREQUENCY
W Cond: Y = ConditionlIs Satisfied
M";T]tg %m'r BLEMENT g | 4 BLEMENT Hls N = Condition Is Nor Satisfied
LINE N Set Ident, or ﬁ B <) Set Ident. or i Blank = Condition Not Applicable
NO. Rule No. for 5 ! & & Rule No. for #| 2| Action: X = Action to Be Taken
>) Naine. Prioc Resalt =] PrionRemls 3 p 35| Name, Result, Prior Prior Result ;21 2 Blank = Action Not to Be Taken
-G Current) Prior or Actual Value Z (o] B i [I Result or Actual Value 2 Clzlalslciple FlG|u |1 [1 [k]L[Mm]N]|o|P |Q|R
ool |e| oof QUAN ON HAND 749/ v | QUAN ORDERED OS89 NlY|y[N
ooz CRELIT RAT/INVG LOA 4 (,q) ylyIn|n
oo3 QUAN ORDERED L0889 L CUSTOMER MAX A0A4 Y|N
8la|J|ojo
o|§|c|4]|1
co4£ |A QUAN ORDERED 089 V| QuAN SHIPPED Log=257 % |x
© o5 AUAN oN HAND C7*9/ Vi X
ool (o) 4 X[x
FIGURE 2. EXAMPLE OF USE|OF NT
RULE kUFFIX AND FREQUENCY
o

Page 14

(5) As is evident from the example, pertinent results for conditions
are indicated for a suffix using "Y" for ""Yes' and '"N" for "No'". Under each
suffix an indication of an action to be taken is shown with an "X" on the line,
("Set Equal" line if more than one) on which the action is described. If neither
"Y'" nor "N" is placed on the line for a Condition under a given Suffix, it indi-
cates that for the combination of results shown under the suffix, the result of
this condition is immaterial; the result can be positive, negative, or undeter-
mined.

(6) For a Management Rule, on the line (s) following the last line
describing the conditions, the analyst will indicate the probable Frequency of
Occurrence as a percentage for the results of the conditions listed under each
suffix. The total Frequencies of Occurrence for all suffixes within a Rule
should be 100 percent. For any frequencies less than 1%, use "1'". In Figure
2 the Frequency of Occurrence is indicated between lines 003 and 004. In this
exam }e the probability of the conditions of rule 001A prevailing is 80??, ”writ-
ten . For rule 001D, the probability of occurrence is 4%, written 2 a

5. Process Description Continuation Sheet.

A. General. A Process Description Continuation Sheet is used only if,
for a Management Rule, there were insufficient suffixes on the Process Descrip-
tion Sheet to depict all the combinations of results for the conditions described
on it.

B. Headings. The instructions for completing the heading information are
the same as shown for the Process Description Sheet, paragraph 4, B, pre-
ceding.

C. Line Number. In the line number column post the line numbers from
the Process Description Sheet that this sheet is a continuation of. Use exactly
the same spacing and relative positioning of the line numbers as appears on the
Process Description Sheet. This will enable the user to lay a completed Con-
tinuation Sheet next to the sheet it is a continuation of to have effectively a
single sheet of paper.

D. Management Rule Suffix and Frequency.

(1) In the blank heading blocks, place one.or two-character suffix
designations that will be unique for the Management Rule to which they apply.
If a two-character suffix designation is used, place the more significant
character over the less significant character.

(2) All other information is placed on the sheet as described under
Process Description Sheets, paragraph 4, R, preceding.

Page 15

6. Output Description Sheet.

A. General. An Output Description Sheet is used to describe the content
of output from an Information System.

B. Headings.

(1) Enter the "System Identification' for the system being described
in the space provided.

(2) Enter the "Set Identification'' for the Output Set in the space pro-
vided.

(3) Indicate in the space provided the name of the process being
documented. (Refer to paragraph 3, B, (4) preceding).

(4) In the space provided for '"Number Copies'" indicate the number of
copies that are required for this Output Set.

(5) Place the '"Set Name' in the space provided.

(6) Indicate in the space provided for "Volume!' the "Average' and
"Peak' number of sets that will be prepared.

(7) Form Type. Indicate the Form Type for the set. For example,
Standard Print, Punched Card, Multilith Mat, etc.

(8) Special Form I.D. If the set is to be prepared on a special form,
indicate the identification of the special form in the space provided.

(9) In the upper right-hand corner enter the Page number, the name
of the person preparing the sheet, and the date of preparation.

C. Element Name.

(1) In this column enter the Element Name for each of the elements
which may appear in this set.

(2) Additional information on each element is placed to the right of
the Element Name. ,

D. Element Code.

(1) In this column enter the seven-character Element Code Number
corresponding to each Element Name.

Page 16

E. Element Code - Suffix.

(1) If an Element Code Suffix is required (See paragraph 3, F, Input
Description Sheet), enter a one-character alphabetic designation for the suffix
in this column.

F. Element Description - Alpha.

(1) If the Element described by the Element Name contains any non-
numeric characters, enter an "A'" in this column. Otherwise, leave the
column blank.

G. Element Description - Numeric.

(1) If the Element described by the Element Name contains any

numeric characters, enter an''N" in this column. Otherwise, leave the column
blank.

H. Characters - Total.

(1) Enter in this column a maximum of two digits to describe the
maximum number of characters that the Element may contain.

I Characters - Decimal.

(1) An entry is made in this column only for all numeric Elements
which are a result of or may be used in arithmetic computations. Enter in this
column the number of digits that should appear to the right of the implied
decimal point.

J. Element Classification.

(1) Depending on whether the Element described by the Element Name
is a "Recognition'', "'Identification'", or "Other' classification of Element,
enter an "X" in the appropriate column.

K. Number of Times an Entry May Appear on This Set.

(1) Enter in this column a maximum number of three characters to
describe the ""Average' and a maximum of three characters to describe the
""Peak' number of times an entry may appear in the Set for the element de-
scribed by the Element Name. If the number for either exceeds 999, use "C"
for ""hundreds'" and "M'" for '"thousands'.

Page 17

L. Source - Set Type.

(1) If the Source for the element described by the Element Name is
other than "Direct Recording' from an Action Set or Retained Data Set, place
an "X" in the column headed "Process (X)'".

(2) If the element described by the Element Name is to be placed on
the Output Set as a result of a Direct Recording from a Retained Data Set after
all posting to the Retained Data Set has been accomplished, enter an "A' in the
column headed "Ret'd (A, B, or X)".

(3) If the element described by the Element Name is to be placed on
the Output Set as a result of a Direct Recording from a Retained Data Set
before any posting to the Retained Data Set has been accomplished, enter a "B
in the column with the heading "Ret'd (A, B, or X)".

(4) If the element described by the Element Name may be placed on
the Output Set as a result of a Direct Recording from a Retained Data Set,
either before or after posting to the Retained Data Set has been accomplished,
enter an "X'" in the column headed '""Ret'd (A, B, or X)".

(5) If the element described by the Element Name is placed on the
Output Set as a result of a Direct Recording from an Action Set, enter an "X"

in the column headed "Action (X)".

M. Source - Source Set Identification for Direct Recording.

(1) If the element described by the Element Name is to be placed on
the Output Set as a result of Direct Recording from a Retained Data Set or an
Action Set, enter in this column a maximum of seven characters for the Set
Identification of each source set. lf there are more than three sources, use
additional lines.

N. Identifying Element Codes.

(1) For Identifying Elements that are used to identify Elements on the
Output Set, the Identifying Element Codes are listed vertically in the spaces
provided. If more space is required, use additional Output Description sheets.

(2) Place an "X" in the Identifying Element Code column and Element
row intersection if the Identifying Element is used to identify the Element indi-
cated on that row.

O. Reference Note.

(1) If there is a2 need for a '"Reference Note', place a check mark in
this column. Cross-reference the note using the System Identification,
Process, Set Identification and if necessary, the Element Code and Suffix.

APPENDIX I - DEFINITIONS

1. Action Element

An element within an Action Set, the entry for which is the value to be
inserted or replaced, or the value of the adjustment to be made via a Recording
Action or Actions or arithmetic computation.

2. Action Modifier Element

An element within an Action Set which alters the Recording Action or
Actions in some manner.

3. Action Set

An Input Set for a system whose presence may require the execution of
specific Management Rules. Input other than Retained Data Set.

4, Constant Value

A value, which does not appear as an element in either a Retained Data or
Action Set, used as a source for an element or elements in an Output Set.

A. Descriptive Constant

An entry which designates between two slashes (/) the commonly under~
stood name of a constant value.

Examples are :
/ Blank / - Designates one or more blanks.
/ Current Year / - Designates 1962, if that is the current year.
/ ANNN / - Designates a field in which the first char-
acter is non-numeric and the rest are

numeric.

B. lLiteral Constant

The designation of a constant value between parentheses where the
constant value is identical to what appears between the parentheses.

An example is :

(06) which designates a constant value of "06".

Appendix I, Page 2

5. Direct Recording

The unconditional transferring of an element from an Action Set or Re-
tained Data Set to an Output Set. No prior processing other than validation is
required for the element in the Action Set or Retained Data Set. The recording
is dependent on the presence of the Action Set or Retained Data Set and the re-
quirement to produce the Output Set.

6. Frequency of Occurrence

A number which indicates, as a percentage, the probability a particular
result, or combination of results of a condition or conditions, will prevail.

7. Identification Element

An element within an Action Set which permits the segregation of a particu-
lar set from others containing the same Recognition Element values; it is used
to associate the set with other sets containing different Recognition Element
values and to indicate how elements within the set are recorded and identified.

8. Information Element

An element within an Action Set, which does not influence the Recording
Action nor is it recorded in this system. It may be subject to validation for
the purpose of an overall system check and is required for processing in sub-
sequent systems.

9. Management Rule

The action or actions and generally an associated condition or conditions
which indicate the decisions and processes required to operate an Information
Processing System.

10. Output Set

A set created by an Information Processing System for the use of another
Information Processing System or by the same Information Processing System,
but using a different medium to accomplish its processes.

11. Process

The production of elements of data through the execution of Management
Rules. Includes all data processing except Direct Recording.

Appendix I, Page 3

12. Recognition Element

An element within an Action Set which identifies the function of the set.
The Set Identification is a Recognition Element unless otherwise stated.

13. Retained Data Set

A set which is used to maintain elements which are required to accomplish
the preparation of the Output Sets and may not be available on the Action Sets.
The Retained Data Set will include the elements required to validate the Action
Sets.

14. Set

A meaningful grouping of more than one element of data.

15. Superfluous Element

An element within an Action Set which is not required for processing in
this or subsequent systems.

1. Purpose:

2. Scope:

3. Other Outputs:

Appendix II, 1

SYSTEM CODE 04 BILLING

To develop an invoice from a copy of the order which
indicates that shipment has been made to a customer
from a warehouse or factory.

The system will include all debit billing to all custom-
ers.

a. Selected data will be furnished to the Sales
Statistics system for Sales Accounting and Sales
History.

b. Selected data relative to inventory will be
furnished to the Distribution system for
inventory adjustments.

c. A record of input received that did not meet the
criteria established (invalid) will be furnished
to the Billing Department.

04RD1
Customer

Billing
0690

04RD2
Item
File
v
i of
]

|_6;\
Order
Y

04

Billing Daily

. Update Customer, Item and

Sales Tax Files

. Create Invoice

Extract Data for Sales Statistics
and Inventory

. Validate Input
. Create Emror Report When

Necessary

Y

Y

o eaamcsoues A st S Oy]

¢

04RD1
Customer
File

E

Zz o8eg ‘11 xrpuaddy

Form 1201
Change
Customer Code Disc, % Code
|-a—— 6920130
8981100 6813250 8760100 /‘
Name Sold To
6813200

Address Sold To

6813210

1. "Delete" for Old Customer Code
2. "Add" for New Customer Code, Disc. %, Name Sold To and Address Sold To

Change Codes: 1 = Delete 2 = Add 3 = Change Disc. %

¢ 98eg ‘11 xrpuaddy

Appendix II, Page 4

xxxxx 1aqunp 28eq

0T2E183

N U

XX XX

XX XX

N W W

o - wx - yx 00ET8Y

b1

way Aeg twwwow
21Ny

qq XXX qg XXXXXAXXX qq X qQq XXXX XXXXX
e —d —— e N
0ET0Z69 00TO00L 0SZE189 0011868

00T09L8

SYOwyd HONVHO ¥YIWOLsSNO ¥ovo

System Identification _ o Process _ BILL IN G INPUT DESCRIPTION Page / " 53_
Set Identification _ /572 A4 :t Name _ORDER Form Type MANUAL Prepared by: He D
Frequency of Processing _2ALLY Volume: Average 500 Peak _Jomo Source System 1.D, @[Date "//-5:/{20
MANAGEMENT RULENGS. | 004 | 007 [0z |o0g| arolon o] | | | | | [| [[T T 7]
ELEMENT ELEMENT NO. TIMES AN ENTRY IDENTIFYING ELEMENT CODES (X)
SEECRIPTON CI(.XA)SS. ?E?_Y APPEAR ON THIS - "
ELEMENT NAME E‘(‘:ES*DZNT Ch”; E 3 “riﬁg-g? . s 2 § REMARES
é%‘é g % ?E g § éc;_; Average Peak g § g
2l<|Z HEEREEER % ™ 3
ACCT CENTER |bor7s00 | |A| |13 X / / X
Mo QusT ©ORD Ele8G20 N o2 o X / / A
DA cvsT oRP |L83e620 oz |0 X / / X
YR CVsSsT oRD | 9980420 Nloz |o X / / X
ORLDER _No 3L 8/00 AlN| o9 X / /
Mo SH/IFPPED Ello 84650 N| o2|0 X / /| oo/ X
| DA SHIPPED LB 3l 5EO N o2|o X / / | ool X
YR SHIPPED 99 BOLSO H| ez |o X / ! | ool X
INVvoICE NO 780 /00 | |AlN| O9 X / / X
COST NAME SolLD |&68/3200 | |A 7o X / / A
cuvsST _ADDR SotP|ega/3210 | |AIN 70 X / / X
COST MNAME SHiP | &8/, o A 70 X / / X
ADD. P |e813230 | |AlN| 70 X / / X
CUST ©RDER N /3loo AN| 12 X / / X
SALE SMAN __No &98// 0o Moslo XN / /| o003 X
CUST ACCT No | 48/3250 Nl o4 o |X / /| ces X =
TERMS BAYyMEnT | 9496 100 | lalnl 23 X 7 / % 2
SHIPG TERMS /1100 Al |23 X / / X B
CARRIER NAme | bAbéloc | |4| | 24 X / / A -
SHIP _FROM TewnN | 9//0 /20 Al | /3 X / / A ,,..
SALES TAX CoDE | 94L& 4/bo | |AlN| 057 X / /| ooz X ®
| PRICE BASE EbbLloo| |AlNl 0B / / X i
| s/z& 9/ EL)00 AM 2/ X £ 5 X A -
wuve pName | gegsoo | |AM 25 x 2 5 x| [

System Identification _ ey Process G244V G INPUT DESCRIPTION Page _2 - S 1
Set Identification _/5 /2 A stName ORDER Form Type M ANOAC Prepared by: oD
Frequency of Processing 2ALLY. Volume: Average 500 _ Peak /foo© Source System 1.D, _ @4 | Date 15fbo
MANAGEMENT RULE NOS. l 00k l oo7 Ioo_gl 009 I o/o] o/l | WZ' | I | | I I] | ' I] I
< ELEMENT NO. TIMES AN ENTRY IDENTIFYING ELEMENT CODES (X)
ELEMENT CLASS. MAY APPEAR ON THIS
DESCRIPTION © SET & 4
- VALIDATION| ¢ °
ELEMENT NAME i Chas: :NE RE® | &[N § REMATRS
il w":ﬁ 3 | o | 5l s é Average Peak) g %
gl5lgl 2 15|2]5=|2 2 8 2 = %
2= 2 NEEREEE % ™~ 3
STOCK WO gZ00 /00 AlN| o7 X 3 /5 | oL X
QRTY ORDERED 8768 500 N o5 o X of /5 | ocos5 X bt
QRTY SHIPPED 8768550 w oslol | IX P /5| 005 X X
| p/se. Pc @sA b920 /10 w o2 |/ X / /)

9 P\Beqd N llmladdv

Sys(em Identification _QL _ Process Mﬁ______ m—PUT DESCRIPTION Pagﬂ _..._._"3 nf —i
Set Identification _ QLR L/ jet Name CUSTOMER Flr& Form Type A6 T2 Prepared by: __/A/C £
Frequency of Processing LAY Volume: Average 20000 Peak _Qa,_a_aa_____ Source System 1. D, o4 Date _é’/ /.5_1@0
manacementrotewos. | | | [| T TS [T A I N
- ELEMENT NO. TIMES AN ENTRY IDENTIFYING ELEMENT CODES (X)
ELEM CLASS. MAY APPEAR ON THIS
DESCRIPTION) SET 9
: VALIDATION| ©
ELEMENT NAME e Char, 3 [z RLE® | O k} §. REMARKS
5:«:% Kl E?;Sﬁ,é Average Peak %Q E
ESEl = [8|2[8]5]|5< & o~| 0 o
A<= S EEEEER %| &
SALESMAN NO B9 /100 Nos o] [x / / V]
VST ACCT /N &8/3250 N o4 o] X / / X
CUST NAME Soll | o&/3200)| |A| | 70 / / X X
CUST ADDR Sotp |68/32/0 | |AV] 72 / / X X
DISC REsoP BoN | bv20/30 Mozl / / X X
Z
L]
1
.
=
Lan
]
[

System Identification _O 4 Process BILLIN & INPUT DESCRIPTION Page 4 5. 23
Set Identification _Q4RD ~2 Name JTEM FILE Form Type MAC T Prepared by: __ AC £
Frequency of Processing DAILY Volume: Average 2000 Peak £500 Source System L. D, o4 Date &/ 75/ 60
mavacemevreotenos. | | ([f f [| | | [| [| | | [|]
ELEMENT ELEMENT NO. TIMES AN ENTRY IDENTIFYING ELEMENT CODES (X)
CLASS. MAY APPEAR ON THIS
DESCRIPTION|
*x) SET o
. VALIDATION | g
ELEMENT NAME E]é%i“‘r L ‘é 3 RULEG) | N § REMARKS
u "'E Kl gl . gl g :E Average Peak < E
SlElE| B 13I815]2]2 o B m o
3l<|2 HEEEEEE °~ |
STOCK NUMBER 93c0/00 | ANl o7 X / /
SIZE greAr00 | |#lw| 2/ / / X
LINE NAME 794/ 00 ANV 25 / / L
PRICE oN BASE Eble 4/30 N o6 |2 F / X
TAX FED &X UN §A b4 /oo N o5 |2 / / X

B p8dg | krpyeddy

4

System Identification

Set Identification __ 2420 3
Frequency of Processing _ 24 LbLY. Volume: Average /2o Peak

—8Bul NG
Process INPUT DESCRIPTION
etName _s@QLi€e£s 729X Filt E

200

Page 5 of _23

Form Type MAG T
Source System I.D, _ O

Prepared by: Mo e D

Date @Zi#ﬁﬂ

|

|

-

T -

b g (]

MANAGEMENT RULE NOS.] l
FLEMENT ELEMENT NO. TIMES AN ENTRY IDENTIFYING ELEMENT CODES (X)
CLASS. MAY APPEAR ON THIS
DESCRIPTION) s
- vaupaTion| 9
=
ELEMENT NAME E&%’?T B E E RULE) | N ‘E’ REMARKS

f= '§ 5 | o gl 8 é Average Peak 3 g

EHIRrHEEEEF N 5

<2 R ER ™~ &
SALES TAX CoDE | 94l /eo| (AN 05 Xl
SALES TAX RS oA/ 50 0z l2 X

4 Pedq ‘o)d.rprrfdcv

System Identification oL

Set Identification /20/f

Frequency of Processing LEEAKLY

Process _ &4 L /N &

st Name CUST FHE CHANGE

INPUT DESCRIPTION

Volume: Average /& Peak

so

Page Lo of 23

Form Type MANIAL
Source System 1.D, _ @4

Prepared by:

Date

Ao

&

/5 O

loss]

| | 1 |

I I

|

|

MANAGEMENT RULE NOS.
ELEMENT ELEMENT NO. TIMES AN ENTRY IDENTIFYING ELEMENT CODES (X)
DBSCRIPTION CLASS MAY APPEAR ON THIS
) SET 0 3
VALIDATION
ELEMENT NAME Eé%‘?"r Cha 'EI E RULE (S) g w § REMARKS
‘§ BEHEREE &| Average Peak [Q 5
SElEl B [5)&lE|2]2 o 8 * a
SIs4El - |8]2]3]8lo 2 % -
&< 2 HEEEEER © N o
SALESMAN NO F98//c0 A os ol | X / /
CUsT ACC.7T Ne L8/3250 N o4 o / / X
DIsc _Pe SUP BoN &L920 /30 M ozl/ X / / X X
CUST NAME sotl | L873290 | |4l | 70 X / / X X
cosT ADDPR solp | L8rz22r0 | AN 70 X / / X X
CSTING IND L7600 /00 M e/|o 1X / / X X

41 4%=f 1 Fpyaddy

OUTPUT DESCRIPTION

Page 7 of 232
System Identification __ o4& Process _ 2/ £ /NG Set Name __/ANV o/ CE Form Type MAT _MASTER
Set Identification /5/2 8 Number Copies 8 Volume: Average 500 Peak /eeo© Special Form 1. D, /s/0 ipndibon AcD
S e Date 6//.5'/ [
Element| NO. TIMES AN ENTRY SOURCE IDENTIFYING ELEMENT CODES (X)
Di‘éf:MRf;"TTION %1(.-;5& g&é‘[APPEAR ON THIS [Set T;: pe &
ELEMENT NAME ELEMENT Char < : = Squrce Set Ide_ntification for é 3 %
CODE o _ = . o = = Direct Recording ° g
é- ég g g 'éb . E Average Peak g ;: ‘§ .i% 1% f
EEEREEEE £ 82 D [on 3
ACCT CcENTER bos7 /00 4 /32 A / / X| 752 A4 X
Mo cusT oROD 8/e8t2o | oz |o X / / X| 15724 X
DA CUST o'RD L83 LS20 | o2 lo X / / X| 185724 X
YR <CUST oRpD 9980 ei0 V| o2 |o X 7 / X|/i5724 X
ORDER _NO 83&8s00 | law| 09 X / / x|l s572A4
me sSHIPPED 8/le8 50 Nl o2 |0 A / z X| /5724 X
DA SHIPPED 6836550 Al oz |o X / / X| 15724 X
YR SHIPPED 99 8O LS5O o2 lo X / / X| ¢ts5/24 X
JNVOICE NO Te80 /oo AWl o9 X / / x| 25724 X
COST NAME Soto | L&/Z2c0 4] | 7o X / / X aARDY X
CUST ADDR Sotp | €8/32/0 w| 70 X / / X| |04RO/ X
COST NAME SHIP | (813220 70 x / / X| /5724 X
CUST ADDR SHIP |L8/3232 | |Aw]| 70 X / / X| 5724 X
CUST ORDER NO | 68/3 /00 W\ /2 £ / Xl /5724 X
SALESM AN _No 8g8//00 W o5 |o / 2 X| /5724 X
'OST _AccT No RB12250 o4 |0 A / / X| /5724 X I:8>
TERMS pPAYmaEnNT | 9£% oo | AW 23 x / / X| /5724 X 8
SHIPE TEARMS 9//7700 23 X / / X| srsr2# X B
C ARRIER NAME | & £Lle /00 A 24 X / / X| /5724 A =]
SHIP _From gownl | 9,10 (290 Al 113 X / / X| 75724 X E’
SALES 7AX CoO& |PLe4/C0 | |AW| 05 X / / X| /5724 Pt o
PRIcE BASE &bl £/00 AW| o8 X / / Xl /5724 *® -
SizE g/ #EL/c O ANl 2/ X e 1 5| X |o£RD2 P X
LINE NAME 734/ /00 AN 25 a 3 /5] [X| | c£RD2 X P

OUTPUT DESCRIPTION

Page_ &8 = _22

System Identification __ A4 crocess @M L NG SetName /ANvorc& 020202 Form Type MAT. _MASTER
2 A ber Copi Vol A Peak Special Form L. D Prapared bys AL
N 8 Volume: Average eal ecial Form L.D. /&/0
Set Identification ___/5/ umber Copies e _4Do laeg Sp Date &/ /5/ o
Element| NO. TIMES AN ENTRY SOURCE TDENTIFYING ELEMENT CODES (X)
ELEMENT |~ | MAY APPEAR ON THIS [Ser Type
DESCRIPTION | ey SET = o
h 5 : A) o
ELEMENT NAME ELEMENT |_Char, | 2 - 8 '[s)c_rurce Set lieintlficatlon for - Q §
CODE u - s 155 irect Recording L) g
ol Bl E OIE|ed 4 Average Peak 83 g 3 a z
£|5|E| 2 |B5]3] 5 2 R I n) ‘S
322| ¢ |8]2]3]E HEE %[|o 2
7o vmpBeR | 9309/00 v | o7 X 3 /5" X| /672 A X
aryY ©oRDERED F768 500 W| o5 |o pal 3 /5 X| /572 A4 X X
| Q7Y SHIPPED 8768 550 | a5 0 X 2 /5" X /572 A X X
| Zax rFEpD £x wn (946 £/00 os X 2 /5| (X| | okRO2 X X
Ui PRICE 864110 YA X 2 45 X A M E
| piSC PC @SA |2 ollo o2 X / Vi X\ /5724 X
AMT QTY Aitow |LMer2o o5 X V4 / X
| AT PRIE EXT \loll llod o7 X 2 /5 |X X X
| am T PRE T7AX |G/ r8O o8 X / / X
AMT FED EXTAX |Lfllo /20 o7 2 % Y /X X
AMT _CUOST /NY Lt lle 220 Wl o8 X yi / 1X X
SALES TAX FPC 9o 4150 o3 X / /_|X X
| AMT SALES TAX |G lle2/0 o X / /X pad
S
(1]
-2
(=N
EI
=
4

System Identification __ & o

ocess _ S L ING

OUTPUT DESCRIPTION

SetName _SALES DATA Form Type MAG. TAPE

Page_ 9 -

Prepared by: He g
Set Identification _o Lol Number Copies _ 4 Volume: Average Zagg Peak gzame Special Form L. D. b
ate
Element] NO. TIMES AN ENTRY SOURCE IDENTIFYING ELEMENT CODES (X)
ELEMENT | 1.5 | MAY APPEAR ON THIS [Ser Type v
DESCRIPTION | oy SET
§' S $
ELEMENT NAME ELEMENT Char, ol 3ol Source Set Identification for N
CODE) -] o Direct Recording o g
x| o8| = Eled o & Average Peak R S 2
E[SIEl S |¢ o 5|}_-’ gl 2= © o
3| <|Z ol|z|= & &| &) < o~ 3
| _ST7TockK NUOMBER |93c00/00 A a7 / Vi Xl /502 A
Mo SHIPPED | B/l dibSD az o / / X| /572 4 X
| DA SHIPPED |46 836550 az o / V) X| J512 A X
YR _SHIPPED 98 QbSO ozl / / Xl 2572 A X
SALESMAN NO | Bg8sr00 aAs 19 £ z Xl 2542 A Il
COST AccT No | ¢t g /3250 ad lol / / x| 4572 A
HIPPED | 874 8550 Wl o g0 / / x| 75124 X
| AmT PRICE EXT |lotileloO az lz / 2 _1x X

2

P

'q ‘IT

g1

OUTPUT DESCRIPTION

Set Name MV ENTORY pard Fom Type MAG TAPE

Page_ta -+ _23

System Identification _ad = ..ocess _ZULING
Prepared by: e 0D
Set Identification odo2 Number Copies Vi Volume: Average 2aaa Peak gzmg e Special Form L D. &
ate
Element NO. TIMES AN ENTRY SOURCE IDENTIFYING ELEMENT CODES (X)
ELEMENT | c1a | MAY APPEAR ON THIS [Set Type
DESCRIPTION o) SET 3
Q
ELEMENT NAME ELEMENT |_Char, | @ z - source Set Identification for Q S
CODE &] > &% Direct Recording ‘8 g
x| a|8l 3 E 3" b Average Peak 2l g S =
ElE & 33|52 el 5 -
al<|z HEIEE £| &l < [Y &
sSTocl NUMBER | 9360/00 Al 07 z X\ fsy2 A
| SH/P £Rom TowN |9(L0LZ20 A i i X| 45724 Pat
| QFy SHILPED | BT7L8SSD a5 o F x| 25224 x

Hl 9Bed ‘11 rpupddy

OQUTPUT DESCRIPTION Page V4 23
System Identificarion o040 rrocess BILL ING Set Name OF L ER EAHORS Form Type wﬁr
ofo3o/ 2 i i - g —— Prepared by: HC O
icati Number Copi Volume: Average é ea ecial Form 1. D,
Set Identification umber Copies 5 & = P Dite &/ !5/60
Element| NO. TIMES AN ENTRY SOURCE IDENTIFYING ELEMENT CODES (&)
ELEMENT | ~1ac. | MAY APPEAR ON THIS [Set Type
DESCRIPTION | vy SET = 8
ELEMENT NAME ELEMENT Char < 3 - Source Set Identification for ~ S
CODE o = ~ g Direct Recording 9 “5’
<|alB| 3 |E|ed o o Average Peak g1 < g ~3 =
fiad = o |'G|l2lsl ¥ ol o=) .
155 2 |8g|8l= HEE w ‘—
Z|<|=z al&|3 & &| 2| < &
ORDER No E368 /00 AW| o7 X / A | /5/2 A4
SALES TAX ColE |94LA4/l0O AN | o5 X / X X

51 #8494 [IT kipyreddy

TPUT D 1
ou ESCRIPTION - /2 o 23
System Identification __©OAL Pwces @M LIV G SetName ORDER ERRORS Form Type STANDARD PuinT
Prepared by: rco
Set Identification _@£&3e2 Number Copies 2 Volume: Average 5 Peak _ /o Special Form L. D,
Date L)Is)/eo
Element| NO. TIMES AN ENTRY SOURCE IDENTIFYING ELEMENT CODES (X}
ELEMENT | cjas | MAY APPEAR ON THIS [Set Type
DESCRIPTION |y SET = 0
Char 5 a ik 9- S
ELEMENT NAME ELEMENT @ a2 source Set Identification for
CODE o = e W= & Direct Recording ® -
ol =I5l F 18| | .| Average Peak 8l s 3 2
£|1ElEl 2 [3]35 2 g |2 ™ |
2|=|2 SEERS &l 2| < ¥ g
ORDLEAR No E368/00 | AW| 0T X / X | /5724
SALESMANY wNo | 898 /loo | o5 lo X / X X
CUST ACCT No |6&/3250 | o x / X X

b1 p8dg 1T kphaddy|

OUTPUT DESCRIPTION Rage /3 o4 23
System Identification __ e Picess BALLIMNG 0202 SetName ORDER ERRoXKS Form Type STANDARD PRNT >
Prepared by: HC
Set Identification _agfazoz Number Coples _____ = Volume: Average _2 o Peak L0 Special Form 1. D, 4 y
Date G/15/ o
Element| NO. TIMES AN ENTRY SOURCE IDENTIFYING ELEMENT CODES (X)
ELEMENT | c1a5 | MAY APPEAR ON THIS [Set Type
DESCRIPTION | oy psse o °
ELEMENT NAME ELEMENT Char ﬁ.’: St source Set Identification for \“\ S
CODE o _ |= b B & Direct Recording & -
35}:‘8 3 (Bl s Average Peak § 318 -
E|EEl S |8]g|8 & i &
a|<|z SEEE £ &< 1] 2
ORLER __NO o o9 X X|/fsv2 A
SToCK Ho 9300 /00 | 4N 67 % X X

FTpgoddy

™

TI

11 958

OUTPUT DESCRIPTION
Page [of 23
System Identification ____ Q4 Process Sl LIV = SetName QROER ERRORS Form Type ZIANDARD PRINT]
Prepared by: Vel =2
Set Identification _o&LO 30 4 Number Copies 2 Volume: Average 5 Peak _Jn Special Form 1. D, 2
Date /.
S Element|] NO. TIMES AN ENTRY SOURCE IDENTIFYING ELEMENT CODES (&)
lass, MAY APPEAR O HIS Set T
DESCRIPTION %{;‘5 s nE = ;e
Char 5 ; 0 Q S
ELEMENT NAME ELEMENT 2wl = Source Set Identification for Q o
CODE o _ |s '3 & Direct Recording Y 3 2
AR EEEREEER Average Peak 21 4sg 9 4 =
ElflE 2 [3]5]5 2 EE IR g
A <|Z SEEE £ & < W [2
ORLPER No 8365/00 | 09 / X| /572 A4
S7ToCK No 9300/0 0 w| o7 X / X| /5724 X
QTY SHIPPED | 768550 05 10 X X X X

puaddy

<

81 38eg 11 >

QUTPUT DESCRIPTION Page_/5 __of 23

System Identification QA = . cess BILEING 2 setName ORDER ERRuR S Form Type STANDARD PRINT
Prepared by: HCD

ificari ofe3e S5 Number Copi = Volume: Average & Peak _JQ Special Form L. D,
Set Identification umber Copies g Date 6'/ / .‘f/ &o

IDENTIFYING ELEMENT CODES (X)

Element| NO. TIMES AN ENTRY SOURCE
ELEMENT | o | MAY APPEAR ON THIS [Set Type
DESCRIPTION
X) SET ° 0
ELEMENT NAME ELEMENT Char o 3. source Set Identification for e 9 S
CODE Y = e I Direct Recording ° H
<l alBl = |E & Average Peak 8l s 3 o =
E|8E| 2 5|35 2 HEE 2l R 5
<12 © |8l2]2]8 HEE: o (& &
ORODER NoO 368 00 AW | oF i / x| /572 A
STockK WNO 7300 s00 a7 X / X| /572 A
QTY ORDERED B768 sv0 W o5 o / / X X x

b1 988d |IT XTP¢@

OUTPUT DESCRIPTION Page_[/& of 232

System Identification o Process 2N LING === SetName ORDER ERKOES Form Type STANDARD PRINT
Prepared by: Vad oW~
Set identification __ o€ 20 le Number Copies ___ & Volume: Average 2 Peak 4 Special Form I. D, i it &
Element| NO. TIMES AN ENTRY SOURCE DENTIFYING ELEMENT CODES (X)
ELEMENT | cjac | MAY APPEAR ON THIS [Set Ty
DESCRIPTION | o) SET = g "
ELEMENT NAME ELEMENT | Chae, J < : o Source Set Identification for Ny 2 S
CODE) = = Direct Recording 9 0 g
5 w‘ﬁ E E g* 4 Average Peak a s \, © =
E|8lEl 2 [3]5|5 2 HEE 0| |2 5
a|<|2 afz|=l S &| | < b o E
ORDER __WNo B3e8 /00 w | 09 / / X | /572 A
SToCK Ne g300 /00 W N | o7 Vd / x| /5/2 A
QTY SHIFPPED a5 X /). X X
RTY oOoRPERED s60 Nlog / vl F 4 X X
-
o
2
Eu
3
]
)
=

OQUTPUT DESCRIPTION Page_ (7 of 23

System Identification __ O cess _ @il ING SetName ARDER EARR.ARS Form Type STANOARD FRINT
Prepared by: A<D

Set Identification _ oL 0 30 7 Number Copies = Volume: Average & Peak _ /o Special Form 1. D.
5 £ < Date _4}//.5’/(-0
Element| NO, TIMES AN ENTRY SOURCE IDENTIFYING ELEMENT CODES (X)
ELEMENT | c1occ | MAY APPEAR ON THIS [Set Type
DESCRIPTION | o SET = 6
ELEMENT NAME ELEMENT Char ot o} Source Set Identification for e N
CODE Q o e & Direct Recording Y .;3
FEE = Eled o 5 Average Peak 41 g 9 z
E|8El 2 [3]|3]8 5 8| 3| &) w
a|<|Z al2|=l 8 & =l < D o
| ORDER NO [~} | 09 Vi Vi X|/s572 A
MO SHIPPED /8650 o2 |o / Y. ¢ X
| DA SHIPPED |&aRlR3&es550 E:_ez_.g X ya / _|X X
YR SHIPPED 29 O bs5O | o2 o X Vs / X

12 99=4 nr.tpilﬂhv

OUTPUT DESCRIP TION bege_ 18 o 23
System Identification oL Process _ BIULING Set Name CUST CHANGE E«RoR Form Type SLANDARD PRINT o
Prepared by:
Number Copies _____ & Volume: A Peak _/ Special Form I, D,
Set Identification ALOAL umber Copies olume: Average __/J ___ Peak /O _ Speclal Form e &) 15/ o
Element] NO. TIMES AN ENTRY SOURCE IDENTIFYING ELEMENT CODES (X)
ELEMENT | 16 | MAY APPEAR ON THIS [Set Type
DESCRIPTION | ryy SET = ﬁ
0
ELEMENT NAME ELEMENT |_Char, o 5 .~ source Set Identification for Q N N
CODE Q] o £33 Direct Recording < m E
5| - < =]
x| = 8| 3 |[E 31 R Average Peak 3 g Q % z
EEERNEEEE HEE e 5
3|2 22| 8 HEE ® |9 &
SALESAHAN No &F¢& /oo Moes|n | X / / Al 120/
CUST AccT NO | e&/3250 o4 |o o / A /20/ X
Djse P splh gon | £9290/30 j o2 |/ Pal /. /1 X X X
CUST WNAME setD | G8/3200| |A | 70 X 7 vallb X X
CUST APPR sotD | L8113 2/0| |AM 70 X / AR X X
PosTIiNG __IND BFéo /o0 M or |o X / /X X X
ERBOR _REASON 7000 j00 A | 09 / /X X X|

addy

b7 988 1T ¥t

PROCESS DESCRIPTION o l2 . of &8

System Identification __ g Prepared by e p
Process ___ Bl L IN Ca e vatidation Date #Q:/ &o
SOURCE COND.|__ SOURCE/DISPOSITION MANAGEMENT RULE SUFFIX AND FREQUENCY
L Cond: Y = ConditionIs Satisfied
MARAGEMENT g o & s N = Condition Is Not Satisfied
LINE RULE NO. ELEMENT Set Ident. or e B ELEMENT Set Ident. or [Blank = Condition Not Applicable
NO. Rule No. for - =9 £ e R"_l*-‘- No, for + E Action: X = Action to Be Taken
< Name, Prior Result w SR SRE E : ECT Name, Result, Prior L EHB Blank = Action Not to Be Taken
S Current| Prior or Aatial Valte =] sl3Els| 2 Result or Actual Value &2 élz AP EFIGHT T IKILIMIN[o P [olR
anl kloo/ Mo SHIPPED 15712 a4 V| |V (or) 1[Y[N
a2 V|v [/2) Y| [N
3 DA _SHIPPED J5/24 |V |V (e/) Y[| [N
oo d 4 v (2/) Y N
L aos” YR .SHIPPED 1572 4 VY [CuRRENT YR/ Y A
GEAVIRANAY
aad |4 Mo SHPPED /5/2 A V| moe SHIPPED odo307 _X’XXKK
o7 |4 DA SHIPPED Jsig 4 vl pA SHIPPED o£03207 ALX] X X[R
208 YR SHIPPED /542 A v YR SHIPPED oA£0307 x| %] A| 1 %
_cog |4 [cumrEnT MO [U _mo SHIPPED /572 A X| x| %[X
[
o/o 4 /cuRRENT LA [/ v oA SHIPPED 1572 A4 x| X| x| «f %
[
az 4 Lo UBRENT Y&) v| YR SHIPPED /572 A X[« XX %
¢
B
=3
et
[
]

PROCESS DESCRIPTION page 20 of 23

System Identification od Prepared by HEeD
Process @l fN G & vatidation Date C-,//-’_'/ o
SOURCE COND Ey SOURCE/DISPOSITION MANAGEMENT RULE SUFFIX AND FREQUENCY
W Cond: Y = ConditionIs Satisfied
Lo g Xl o Xls N = Condition Is Not Satisfied
LINE RULE NO. ELEMENT Set Idear. or | & TS ELEMENT Set Ident. or [= "Blank = Condition Not Applicable
NO. Rule No. for 5 i Py S Ru_le No. for :_E Action: X-+= Action to Be Taken
< . Name, Prior Result o] il HPEEIE Name, Result, Prior ol oo Raun 52 Blank = Action Not to Be Taken
‘GCurrem Prior or Acmual Value o sl Slc| 2 Result or Actual Value 2 SlZA b EFIcIal T TxlimInlo FTolR
otz _klooz SALES TAX CoDE 1572 A v S4LES TAX CODE oARD 3 1[Y|N
ils
oL3 SALES TAX CoDE 1572 A /| sates 1ox cope oLo3o/ X
o /A (x 8 24048) V| s4ces 74x cooE 1572 A X
aLE o003 sALESMAN NO /518 A J SALESMAN NO oL RD) 21YIN
o/ COST ASCT WO 15712 A v cusT AceT o ©4RD) Y| |N
12|32
oL SALESMAN IO /572 A V0| sqLeESMAN o osgo302 X|x
oll A CUST AcCCT Nd /5/2 A4 V| SALESMAN NO ofo30e XX
0l oL S7ToCK _NO 1512 A v STocAH /O ofgRo2 2|Y|N
s
o220 |4 STock No /572 A J| s70ck O OA0303 X
|l oF/ leloos QYY SHIPPED /512 A /| ?/ﬂNNNNj 2| Y|N|Y|Y >
"o
| 022 o ATY ORPERED (512 A V] (NN N/ Y[Y[N| Y -
o022 e azZY ORPERED 1724 |/ |V Q7Y SH/PPEP 1572 A Y o
VEEU :
Worrar) IPPED J5r 2 A vl ary SHIPPEL oLo30+4
oz | QTY ORDERED /512 vl @y oRDERED ofa3os X
ozl | QTY SHIPPED (sre A A Q7Y SHIPPED 040 306 X
o227 14 QTY QRDERED L1512 A A @7y ORPERED oA4030l ><]1

PROCESS DESCRIPTION bage &1 of 23

System Identification oL Prepared by HC D
Process _ @1 L IN o O validation Date 6{/ /5 /& 0
SOURCE conD.]__ SOURCE/DISPOSITION MANAGEMENT RULE SUFFIX AND FREQUENCY
MANAGEMENT ol | =i [s| “™* N - Condition I Nor Sacisfied
LINE RN, SLEMENT Set Ident. or | =) | |7/ SREWENE Set Ident. or ™ ~ Blank = Condition Not Applicable
NO. ﬁ:;::ﬁ:;u;? 8 E E &8 gi‘l’:r zz;ulf:’f &2 Action: X = Action to Be Taken
Sloma] o | Wre ™ T3 I i |5 el o oo e e
o or Actual Value ? G| 3| 8|0 @ Z olzlalslc[ple [F e [u i [y Tk[L]mIn]o]r [Q[R
028 lloale DISC_PC SUP Bon | |ofRDI X| |PRICE oN BASE oARD2
029 VenviT PRICE /572 8
030 207 loo8|pisc Pc @sA /512 A V [BLANK/ I':
-2}
OA1 WA pise P Qq3SA /572 A %X AMT PRE TAX /5/2 8B
| n32 V| AmT QTY Atlow /5r2 8B %
V| REsveT A A
oz d r/zﬁ‘-go,/ V| pESULT A X
oz Wloos lnole | wNIT PRICE /5728 ¥ QTY SHIPPED /512 A
O3l V| amT PRICE EXT /572 8
937 V| AmT PRICE EXT oLo/
azAa AmMT PRICE EXT V| AmT PRE TAX /5728
| 239 |Alooy QTY SHIPPED L5/ A X TAX FEO EXUN ogRO 2
ado V| AmT FEP =x THX /5728 i
| OL) laloso | AmT PRE TAX /572 5 + AMT FEL EX TAX /572 8B ﬁ
QL2 PoY-1'] V| gesurT A :;
Iy

PROCESS DESCRIPTION age B2 of 23

System Identification oA Prepared by Hec o
Process BIlLL ING [J validation Date ("'L}’/ o
SOURCE COND.| SOURCE/DISPOSITION MANAGEMENT RULE SUFFIX AND FREQUENCY
MANAGEMENT o | B ol | Cond: Y = Conditionls Satisfied
ae | [T mmer | e (]S meer | e (§] hommian
NO. Rule No. for | A Y Rule No. for | 15| Action: X = Action to Be Taken
<[current Prior Nawie, Prior lesals < Prios Resols g El gl Name, Result, Prior Prior Result 52 Blank = Action Not to Be Taken
O or Actual Value @ ¢|JHjo]a| RembordcuislVake |5 olz[alslc|o e J¢ [c[a [t s Tk[LIm]n]o]r Tolr
o043 leloy loos |saces rax cooe | | 1572 A v (x 44489) Y|N
5[5
oLL SALES TAX PC OoALRD 3 X| | Amr PRE TAX /572 8B
OLE V| amT sAces 7ax /572 8 X
OA£L V| REsveT A X
OA7 /zERo / V| pesvar A X
oA£S8 SALES 7AX PC O4£RD 3 V|sAacEs 74X PC /1572 8 X
o£9 o/t | peESULT A (or0) RESVLT A (eo7)
oso o/0 | RESUT A (or/) AMT CUST /NY /572 8
eo7

PROCESS DESCRIPTION age £3 _ of 23

System Identification oL Prepared by HsC D
Process 8Bl eLING O validation Date _"#Q;AL
SOURCE COND.| SOURCE/DISPOSITION MANAGEMENT RULE SUFFIX AND FREQUENCY
oy aa— : g{~| Comd: Y = Conditionls Satisfied
g o N = Condition Is Not Satisfied
LINE RULE NO. BT Set Ident. or | =] f [T FLENENT Set Ident. or |~ % Biak & Condition ;to:..«ppueuble
N, Rule No. for || F3), |2 Rule No. for | ,I5| Action: X = Action to Be Taken
. Name. Prior Result - Bl e g| %[Name. Result, Prior Prior Result | ol Blank = Action Not to Be Taken
BCuﬂenl Prioe or Actual Value 2 (o) = i (o) I Result or Actual Value |32 gggchEFGHIJ k[LM[nTo[p Tolr
loss kloia SALES MAN _NO 1201 v SALESMAN _NO o2 RDI Y|Y[YIN[[N |N
052 CUST AQecT wNeo /20 / QuUST AceT no O£LRDI YIY|Y] [N[N[[N
o053 POSTIN G IO [20] v (7) Yl Y]Y
os4 4 () Y Y|Y
o5 4 (3) Y Y|Y
s (510 [1]5] %1
D5l [BLANK [v CARD| b3
/ -
©os57 /20/ v OARD| *{x
HE5A pjse. Pc sopBanN 2o/ v| Dise Pc SupP BeN oLRD/ X
059 pise Pc svpsen | | /20/ V| o1se._pe svP gon | | oo XXX X)X
| plo CUST NAME SokD /20l V| cusT nAME sorD oAOA X %A
YA CUST ADDR SetP /20! V|cusT ADDR SO0LD | | aAoA X XX
| sL2 (MATeHED) V| EFRoR REASON o LoL X
| Ol 3) V| ERFOR REASIN o £0A4 XX | [X]x
&
o
o
N

Appendix II, Page 28

STANDARD REFERENCE NOTES FOR VALIDATIONS

Note
Number Explanaticn

1. If the element is not valid, continue with
the execution of the Management Rules for
validations and processes indicated by the
set that contains the invalid element.

2s If the element is not valid, continue with
the execution of the Management Rules for
validations indicated by the set that con-
tains the invalid element. Do not execute
the Management Rules for processes in-
dicated by the set that contains the invalid
element.

3. If the element is not valid, do not continue
with the execution of the Management Rules
for validations. Do not execute the Manage-
ment Rules for processes.

F
'h i
v

