
PROACH

CLEARINGHOUSE REPORT

TABULAR TECHNIQUES

REFERENCE MANUAL

Compiled by :
February 8, 1961 B . Grad
Ref. No . lB3 T . B. Glans

TABULAR TECHNIQUES SEMThlAR

AGENDA

Date: Wednesday, February 8, 1961
Time: 9:30 a. m. to 4:15 p. m.
Place: Roger Smith Hotel, East Post Road, White Plains, N. Y.

9:30 a. m.

10:00

10:15

11:00

12:00 p. m.

1:00

1:45

2:45

3:00

3:15

4:15

History and Current Status

Coffee Break

Limited Entry Tables
Sutherland & Company
Hunt Foods and Industrie s
Eastman Kodak

Work Problems and Discussion

Lunch

Extended Entry Tables
GE TABSOL
CODASYL

Work Problems and Discussion

Coffee Break

Review of Other Work
Northrop - North American - 9 PAC

Discussion of Plans and Future Programs

Termination

B. Grad

T. B. Glans
W. M. Selden
W. M. Selden

T. H. Cleary

B. Grad
B. Grad

T. H. Cleary

B. Grad

TABULAR TECHNIQUES SEMINAR

February 8, 1961

Lee Baker
Corporate Staff
Yorktown Heights, New York

Jane Bendall
World Trade Corporation
New York, New York

Kenneth R. Blake

ROSTER

Advanced Systems Development Division
White Plains, New York

Andrew Kinslow
Advanced Systems Development Division
White Plains, New York

William Korwan
Service Bureau Corporation
New York, New York

t---'tiill· .e, ko~·d-..o..
ARdrew H. K-'I!USe
Data Processing Division
Syracuse, New York

o
~ I Ri chard .L. Cline Anthony A. Lea ·

tJ°

Data Processing Division
New York, New York

Perry O. Crawford, Jr.
Advanced Systems Development Division
White Plains, New York

Roy Goldfinger
Corporate Staff
White Plains, New York

Julien Green
General Products Division
White Plains, New York

David Holstein
Corporate S.taff
Yorktown Heights, New York

William L. Kelly
Data Processing Division
Poughkeepsie, New York

Data Processing Division
Atlanta, Georgia

Lucille Lee
Data Processing Division
New York, New York

David Macklin
General Products Division
New York, New York

Sheila Mulroy
Data Processing Division
Rochester, New York

Harry Nagler
Data Systems Division
New York, New York

James A. Painter
Data Systems Division
Poughkeepsie, New York

Merwin D. Rayner
Data Processing Division
Beverly Hills, California

Stanley G. Reed
Data Systems Division
Poughkeepsie, New York

Samuel Reynolds
General Products Division
New York, New York

A. Owen Ridgway
Federal Systems Division
Bethesda, Maryland

~n James G. Robertson, Jr.

- 2 -

Advanced Systems Development Division
White PlainS, New York

David Sayre
Corporate Staff
New York, New York

~~ Walter M. Shenko
Data Systems Division
New York, New York

Roger Smith
Data Systems Division
New York, New York

Richard TenDyke
Advanced Systems Development Division
White PlainS, New York

f.I\ • r 'j OS rr • .,.1-.
'~ .•. :\-'\' P" eu.(S i) ~

S'j '" , ~ . 1-\ '1 '

~o Donald G. Thoroman
Data Processing Division
White Plains, New York

~o Frank A. Williams
Corporate Staff
White Plains, New York

Harold Sobcov
Data Systems Division
White PlainS, New York

SPEAKERS

Thomas H. Cleary
Data Processing Division
Poughkeepsie, New York

Thomas B. Glans
Corporate Staff
Yorktown Heights, New York

Burton Grad
Corporate Staff
Yorktown Heights, New York

William M. Selden
Corporate Staff
Rochester, New York

Ii!. &10.. <;;:.""'. H..
'Do..l,.. '? ,)U ... ~ . ~ "0 " -
Wh o ~ ~ I c..,,,,,:. "N i

PURPOSE

The term "tabular form lT as used here, is concerned with
two-dimensional tabular layout, where position of information
has significance in two directions for sequence control and display
purposes. We are particularly concerned with the use of tabular
form in programming for computers, and in describing decision
and systems logic . Tabular form clearly associates conditions
and actions through position. It may use virtually any existing
language, from the most machine oriented to the most general.
The difference is not in the use of naming or particular notational
schemes, but rather the actual physical layout in which the program
or system description is recorded.

The material presented in this Clearinghouse Report con
tains presentations of the work done by others, plus explanatory
work problems to help characterize the approach. The material
is organized to correspond with the agenda of the seminar. There
has been no at tempt made to edit, clarify or validate the particular
information contained within each of the presentations.

The primary reason for holding a seminar on tabular tech
niques is to acquaint selected professional IBM personnel with the
development of tabular display methods used for programming and
systems description. In presenting the divergent techniques al
ready in use we are not recommending any in particular, but only
trying to convey understanding to those in IBM who need to evaluate
this material. Then, they will be in a position to perform the
necessary analysis and experimentation. IBM as a leader in the
field must have people who are knowledgeable in this area so as
to obtain an unbiased evaluation of the potential and opportunity
of this approach.

March I, 1960

A PROPOSED PROGRAM

FOR RESEARCH

ON TWO-DIMENSIONAL

PROGRAMMING CONCEPTS

Burton Grad
Programming Systems
International Business Machines Corp.

TABLE OF CONTENTS

Section A- Two-Dimensional Programming

Section B- Two-Address Logic

Section C- Controlled Two-Directional Branching

Section D- Relative Addressing and Contained Constants

Section E- Suggested Minimum Language

Section F- Recommendations

References

(1) 0.0. McCracken, et 01; Programming Business Computers;
J. Wiley, 1959

(2) 8 . Grad and R. G. Canning; Information Process Analysis;
Journal of Industrial Engineering; November-December, 1959

(3) Kemeny, S~e", Thompson; Introduction to Finite Mathematics;
J. Wiley, 1958

(4)

(5)

(6)

(7)

Harold Wolpa; An Algorithm for Analyzing logical Statements
to Produce a Truth Function Table; ACM Communications,
MorCh 1958

Orren Y. Evans; Advanced Anal is Method for Int rated
Electronic Oato Processing Draft); not pu is ed, 1959

R. W. Murphy; A Definition of Black Diagrams; IBM Reper!
IR-00065, 1956

J. Jeenel; A Standadized Representation for Business Problems;
Watsan Research LabOratory Report I 1958

\

Section A - two-Dimensional PrOgramming

It 1a the purpose of this paper to discuss the concept of tvo
dimensional programming. This implies some non-serial programming
structure to permit taking advantage of the ability of people to
aee relationships in two-dimensional form. While it is true that
a sequence of statements can describe uniquely any operational
procedure, this 1s really not the most important criterion. The
two critical elements are:

(1) Does the representation technique
in preparation and communication?
form. for humans to prepare '1

provide for ease
Is it a "natural"

(2) Does the representation t echnique provide advantages
in terms of preparing appropriate Processors? In
other words, will the Processors be simple or faster
or will the Processor running time be lessened or
\1111 the resultant object program be faster in
operation or require less memory space.

A-l

Examination of tools used to date by systems designers, procedures
analysts and computer programmers gives a revealing insight into the deBired
structure of a representational scheme "hich is properly "human-engineered'!.
There are four popular forms currently in use for systems description:

(l) Schematic Flow Charts: These illustrate, in essentially
a two-dimensional form, the significant systems elements,
using lines and connectors to show interrelationships
among these elements. The concept of precedence 1s
established either through converting the lines to arrows
or by conventions such as flow from left t o r1ght and
top to bottom. This form has been extensively used by
computer programmers and factory layout personnel. Often
special symbols are adopted to r epresent a particular
class of operation and typically extensive abbreviation
is required to fit the procedural description "ithin the
available symbol forms. A sample schematic flow chart
is shown on page B-5. A good explanation of this type
of charting is given in chapter 3 of reference (l).

(2) Serial Flow Charts: This technique permits only one
direction of flow, often from top to bottom. Again,
various symbols are used to characterize the different
types of operations and special coding is introduced
to handle this reference to branch procedures. There
are a number of minor variations on this basic theme,
but all share the common concept of restrained
arrangement of symbols. Serial flow charts are used
for process descriptions and paperwork procedures
diagrams. One such system is described in detail
in reference (2) .

A-2

(3) Logical Equations: Used primarily by design engineers for
complex electronic equipment, the application of Boolean
Algebra has grown considerably since 1940. Tending to
be highly symbolic and abstract, this format permits
various sophisticated tec}miques to be applied leading
to systems minimization. Unfortunately, this approach
(together with the extensive use of algebraic formulas)
opparently leaves most non-technical personnel somewhat
dubious and does not provide a suitable means for
communication and reference. Conversely, the essential
s1mpllcl ty and analytic structure of l ogical equations
do much to r ecommend it.

(4) Tabular Arrangements: In Bome areas, a tabular form has
been adopted in order to clearly show the relationships
between sets of conditions and sets of actions or results.

Since this paper 1s centered around the concepts ot two-dimensional
programming as embodied in tabular arrangements I we 'Will explore a
number ot examples of this type of approach.

The toundation tor much ot the current 'Work can be traced to the
logical truth table a8 described in reterence (3). Though used as an
analysis tool (rather than directly tor programming), this tormat has
offered systems designers a technique tor avoiding ambiguity and
insuring comprehensiveness. Used in conjunction with logical
equations, it provides a clear, easy-to-understaDd frame'Work for
describing and commtmicating analysis material. In general, a truth
table consists of a series of columns in which the independent
variables are used as column titles and the various combinations
ot Truth (T) and Falseness (F) ot these variables are itemized in
these "condition" columns (see Figure 1).

a b

t t

t f

f t

f f

Figure 1

(avb) " (aAb) 4c

avb a/lb I a;;b

t t f

t f t

t f t

f f t

C

f

t

t

f

These columns are separated from a series of intermediate columns
by a double line. These intennediate columns are titled by the
particular portion of the initial equation yhose truth or falseness
is being analyzed. This is always done from the simplest to the most
complex relation. Finally, the result is again separated by a double
line and marked true or false as appropriate.

There 1s a sense. of totality and straight forwardness in this
format which is appealing to many systems analysts. For example,
Harold Wolpe of IBM (reference 4) used a form a truth table to
explain the operation of a relatively elaborate algorithm which
he devised for automatically handling logical equations.

A direct outgrowth of this concept 1s uescribed in reference (5)
by Orren Evans of Hunt Foods and Industries. As part of his excellent
pBper describing a comprehensive set of techniques for systems
analysis (systems flow charts, data layout, field definition, etc .)
he uscs a "Data Rule" concept. This 1s covered by an example shown
1n figure (2), below:

Rule Prior Freq. C1 C2 C
3 Al A2 A3 No. Rule

No.

001 100 Y Y Y Y

002 30 y N Y Y Y

003 5 y N N Y

004 2 N Y

CI I C2 and C
3

each represent some conditional statement such
as: Due Balance ... Amount ' of--this-'order "Credit-Maximum. In
each column a Y (for yes), and N (for no) or a blank(ror "does
not matter"} is shown. To the right of a double line a series of
Action columns are used. Al , A2, and A3 each indicate some
particular action like:

Mark Order "OK to Ship"

A Y is used to . indicate that this action is to be executed while a
b lank indicates that it is not to be carried out . Each row is
called a Data Rule and has certain identifying material to the left
of the condition columns. These are : rule number, which is the
raw number; prior rule number t o indicate precedence relationshipsj
and frequency, which denotes the number of times per week (or month
or year) this particular data rule will be satisfied. The structure
is such that one and only one rule can be satisfied for a given set
of input values and the sequence of analyzing the Data Rules is not
important in determining the proper Data Rule. This work has been
presented t o the Intermediate Range Task Force ' of CODASYL
(Committee on Data Systems Language) and is presently being studied
by thi s group.

A-3

While this fonn has much to recommend it from an analysis standpoint,
the~e are a number of questions vhlch can be raised concerning its usefulness
aa a programning device:

(1) Since each condition statement must result in either a "Yea ll

or a "No" answer, extra columns are needed to handle "Or" values
and muJ.t1ple ranges. For example, C1 might represent: M:ir1taJ.
status 1s II single" ; C2: Marlta.l- status 1s "divorced"; C~:
Marital- status 1s "married!!.. Suppose the logic is 8,S fOllows:
If Marital. _ status 1s either "single" or "divorced", then put 1
in column 17; if Marital - status 1s "married", then put 2 in column
17.. Figure (3) represents the Do.ta Rule table needed for this
problem.

C
1

C C A \ 2 3 1

Y Y

Y Y

Y Y

It 1s apparent that this could became a serious problem as extensive
mI.11.tlple ranges entered the picture. It is al.sa evident that
slightly ve.ry1.ng alternative actions can cause the same dlfflcuJ..ty.
This also may result in a more than linear increase in the number o~
rows required, since provision has to be made ~or all logical com ..
binations of the cond1 tions. On this basis, I believe that there
is a major weakness in the handling of condition and action state
ments.

(2) The tables tend to be quite empty and extremely space consuming.
In his write-up , Mr. Evans suggests one physical solution to this
problem through muJ.tiple column identification. However, I don 1 t
believe this comes to grips with the underlying problem..

A-4

(3) The existence of a third state (blank for !!not significant!!) prevents
the direct use of a binary r epresentation for the individual Data
Ru1es. This binary coding would obviously offer very attractive memory
reductions together with the possibility of direct binary word manipu
lation to detect the appropriate solution row. Further work in this
direction might prove valuable .

(4) The table-to-table flow is not explicitly defined, therby leaving
at least one critical aspect of a total data system open to question.

(5) Apparently, Commercial Translator Statements couJ.d be used as the
language of the condition and action statements though this then
requires the power of a Commercial Translator Processor to provide
an object program.

(6) The connective between Condition Statements 1s
only "AND" and the only sequence for executing
action statements is that implied by the order
of their listing.

In spite of these drawbacks, this technique does seem to otfer
many o'f the "human-engineering" advantages 'Which \Ie seek in e. tvo
dimensional programming system:

(1) There 18 implicit indication of the
path to be folloved on successful 2[
unsuccessfUl completion of a test. On
success you continue across the current
row. On failure you drop to the :first
test in the next row.

(2) There 1s a built-in error detecting function.
If no solution 16 found, then failure on
the last row could kick the program. into
a special error reporting r outine.

(3) The truth table features aid in preventing
and detecting logical errors or omissions.

(4) The formal structure i8 an aid to program
communication.

(5) Through proper sequencing of the columns
and Data Rules, a reasonably efficient
operating procedure could be evolved.

There is other work in this direction which may be of use to us.
For example, Bob Murphy of' IBM proposed in 1956 a similar tabular
technique for stating logical decisions without the restraint of
explicitly defining all procedural sequenceD (as has to be done in
a flow chart). His proposed technique had the same general properties

A-5

as the Evans' work described above except that he used 0 for N and 1 for Y.
He also experimented with a construction which permitted multiple success
rows . The concepts which underly this work are described in reference (6).
In a different direction, he explored briefly the use of a single column
to represent multiple states or ranges of a particular variable. This
is shown in figure 4. It appears that this might solve one of tlie
serious problems in the Evans' approach .

Figure 4

Marital Status Al A2

Single X

Divorced X --
Married X

In 1958, Joe J ccnel, alGO 01' rml, proposed a Gystcm delineation technique
which included a modified tl~th table for logical decision rule description . He
also presented Q tabul..ar o.pproach to the control of program segments and loop
hierarchies . This concept i~ expl ained in reference (7).

A-6

In 1957, Perry Crawford of IBM l ed an extensive study involving a full
description of the various procedures involved in n particular customer application.
In oertain parts of the system, the rules were GO complex that a tabular definition
of the logic ~as used. One of the charts is shown in :figure 5 (next page) .

This 1s a far more compact representation of the problem than could have been
obtained through the Evans' technique. However, it still bas numerous weaknesses
in terms of ease in preparation, ease in understanding, and efficiency in processing
and operating.

Another area of tabular development has been in the f'1 f!lcl of product standard
ization. Ther e ia a well-known fonn used co.ll.ed 0. Collation Chart. This is nothing
more than a listing of values for various critical specifications 1n the top rows
of the sheet (see figure 6 below) and the names of the parts dov.n the left-band
column. In the various intersections, t he appropriate drawing number is entered.
A dot is used as a horizontal ditto mark. Oftentimes the quantity, if variable,
will be shown within the intersection. otherwise, it appears adjacent to the
part name .

Fi gure 6

0 a C 11 ti on Chart f or Electric Clock

Vo11:1lg;: 110 110 220 220 220 220

No.of llrs. 12 12 12 21, 24 24

Radium Dial Ho Yes No Yes No Yes

Glaas 37D1,0 · · · · ·
Case 17B50 · · · · ·
Face 37D(,Q 3~1 ~60 37D61 3[B62 -.l7D63

Hands 17D10 37D71 37D70 "l7D71 37D10 37D71

Gear:; 37D80 · · · 37D81 ·
Motor "l1B90 · 37D91 · · ·

CONDITIONS:

,

Stock age Delivery Availability

S DI or DN QA

QN

DD Not applicable

Not applicable

Not applicable

NS DI orDN QA

QN

DD QA

QN

SHIPPING SCHEDULE DETERMINATION

Further Conditions Action

Ship at once

Back order

OH-QR~QO Defer order without
reserving

OH-QRP<QO Defer order without
and DD~ DRO reserving

OH-QRP<QO Defer order without
and DD<DRO reserving

QA ~ 1/4 QO Ship at once

QA<I/4 QO Defer order and
reserve

Suspend order and
order replenishment

>
QA = QO Defer order and

reserve
DD~ Today + SLT Defer order and reserve
and QA<QO
DD<Today + SLT Defer order and reserve
and QA<QO
DD'1: Today + SLT Defer order
DD <Today + SLT Defer order

Shipping Schedule Date

Today

DRO

DD

DD

DRO

Today

Today + SLT

Today + SLT

DD

DD

Today + SLT

DD
Today + SLT

----- --

@

> ,
->

A-8

A similar approach has been used to simplify and standardize shop
routines and time standards.

All. of these tabular techniques offer a natural mode for a two
dimensional progr8Jllning language. It seems apparent, though, that the
use of the intersection blocks for more than Just a true-false indicator
would extend the span of the table and might provide significant memory
reductions. Since there is a variety of particular problems within the
framework of a computer program, it roo.y be desirable to analyze tabular
formats for each of the key modes of operation: Input, Output, Formula
Evaluation, Decision-making, Search, File Maintenance, and Supervisory
(Execut1 ve) .

Given this background of material, the balance of the paper will
be concerned with particular aspects of the problem of creating a suitable
two-dimensional programming language:

(1)

(2)

(3)

(4)

(5)

Section B discusses various address modes. It 1s
evident that i1' a "fixed" format is to be used (like
a table) then a standardized address (or operand)
system will probably be required. The conclusion
of this section is that a two-address logic seems
to be a reasonable solution to a two-dimensional
programming system.

Section C is brief analysis of the concept of
controlled two-directional branching and its impact
on the instructions needed in a two-address system.

Section D 1s concerned with relative addressing and
"contained" constants. These techniques make a
programming l.e.ngu.ae;e easily separable 80 as to
pe~t a segmental approach to debugging.

Section E describes a suggested minimum l.e.ngu.ae;e
embodying the principles described in the previous
sections and then briefly indicates a few of the
more important extensions and sophistications
possible.

Finally, Section F recommends a study program aimed at
developing a useful two_dimensional programming l.e.ngu.ae;e.

D-l

Section B ~ TWO ADDRESS LOGIC

In considering a tvo-d1menstional programming scheme, the number
of operand addresses can be of significance . l~st computers have been
constructed with a one-address l ogic. Examples include all of the
IBM 700 Serie s, Univac I and II and Burroughs 205. The IBM 650 1s a
special case where a second address is included in the instruction
\lord ;jurl1; ,ror ins truction sequence control: VI':t"ioue of the newer
computers have used a nrultlple operand. ,.-:.cUlrc ::s 10e :ic _. The IBM 305,
1401, and 1620 as well a s the NCR 304 , Honeywell 800 and Univac 1103
all use two or mor e oper and addresses - somet imes the number of
addresses 1s variable.

It 1s the purpose of this Section t o explore one , two and three ·
address logic for various classes of instructions and to try to show
certain of the advantages nnd disadvantages of euch mode of operation.

Any instruction sys t em mud. p. :~:l'l i(" itly state in each instruction
the operation t o be executed and mus t also state , e ither explicitly
or implicitly, the memory location of the field (s) to be operated
upon. In a one-address machine the basic instruction format is:

x ••• x x •.• x
Instruction Code Field Address

In operation, the computer's control element recognizes the
instruction code and executes it using the information stored at the
field address indicated. The computer then proceeds to the subsequent
instruction location (which may not be in numerical order). There are
many variations on this theme with index registers, partial vord
definitions, additional control data, etc., but essentially all single
address machines have this basic pattern.

For three-address machines, the basic construction is:

x ••• x
Instruction

Code

x ••• x
Field Address

A

x x
Field Address

B

x ••• x
Field Address

C

The general mode of operation is for the computer to carry out the
operation indicated by the instruction code on the information stored
at locations A and B and then either store the results at location C or
switch control to location C. The same corrments relative to variations
is also applicable here with the added complexities of indexing multiple
fields, defining partial word lengths for multiple fields, etc.

A two~addre8s machine would have its instruction word composed
8S tollows:

x ••• x
Instruction Code

x ••• X

Field Address
A

x ••• X

Field Address
B

B-2

Operation would vary considerably depending upon the nature of the
inatroetlon code. To illustrate, various classes of two-address instructions
are noted below; one suggested operation and mode for representat1ve members
of each ClaS8 1s then described:

1. Move instructions -
any instruction which moves information from one
location to another. Examples include:

READ t-bve information !'rom designated input source
(A) to destination location (B).

WRITE Move intonnatlon fi'om source location (A) to
deSignated output Wlit (B).

ASSIGN Move information from source location CA) to
destination location (B).

These instructions could, of course, speclf'y the movement
of partial words or multiple words at once.

2. Relational Instructions -
any instruction which c~s two fields of information.

Compare Greater Test to see if the contents of Field A
are greater than the contents of Field B.
Many other relational comparisons are possible, smaller,
equal, not equal, greater or equal, and smaller or equal.
Their operation mode would be identical to the Compare Greater
instruction . Another possibility would be to have a
generalized Compare instruction which would set a series of
binary indicators like greater, smaller, etc.

3. Branch 1ruItructione -
any instruction which changes the normal sequence of
instruction execution.

Based on the contents of location A either switcb
to location B or continue the normal operational

sequence. Location A might designate some type of memory
which has been preset by a previous test such as equals,
not equals, overflow, etc.

~. Arithmetic instructions _
any instruction which performs an arithmetic function like
add, subtract, multiply, divide, exponentiation, sine,
cosine, etc.

Binary operations:

ADD Add the contents of location A to the contents
of location B. Store the result in location B.
The same approach would be followed for subtract,
multiply, divide or exponentiation.

Unary operations:

SINE Determine the sine of the contents of location A.
Store the result in location B.

Certain normally binary operations can be restated 8S unary
operations if it 1s usefUl because of frequency of
application. (B)
For example: (A) can be restated as!

Square Root (A) if (B) = 1/2

Other examples of unary operations are those which are
performed for decimal (or binary) potnt location or for
format modification (either input or output).

Shift Right (I) Shirt the information in location A to
the riSht by a predesignated number of positions (I).
Store the contents in location B.

The same reasoning could be applied to shift left, shift
right and round, shift left and test for overflow, etc.

B-3

In arithmetic operations (and actually in any of the others)
we can certainly consider the accumulator (s) as being
merely special field locations so that there is no necessity
for storing information in regular memory after an operation.
For instance, MUUT A, B ~here B was an accumulator address
would simply mean to reiltiply the contents of the selected
accumulator (B) by the contents of location A and store
the result back in the selected accumulator (B).

5. Logical instructions -
any instruction which performs a normally defined Boolean
function such as logical AND, logical mCWSIVE OR, logical EX:CIlJSIVE OR,
logical NOR, logical Nor, etc . The mode of operation 'Would be
similar to that of the arithmetic operations ~d could recognize
both binary and unary logical instructions. Logical Not 'Would be
an exnmple of a unary logical instruction. These could be used for
control, masking, extracting, etc .

Another possib1.1ity for logical operations might include
the presetting of either a logically true or logically
false indicator which could be tested in a subsequent
Branch instruction. One implication of this type of
operntion is that the computer ohould be capable of
operation in a binary number mode (0,1), though this
1s not necessary for the other operations. It suggests
some Yay of defining structure at the bit level rather
than at the character level. Definition could be implicit
in the instruction code itself; for example, regular
arithmetic might always r efer to a 4 bits per character
construction; but 10glcal operations might always use
a one bit per character construction; but on move and
compare operations character construction would not be
significant except as required for partial word operands.

B-4

This list is not an attempt to be definitive nor are the suggested modes
of operation necessarily opttmal for a given class of problems. Nevertheless,
I believe that they show the comprehensiveness and potential scope of a
two- address logic 8S well as indicating the simplicity and ease with which
many frequent business data processing operations could be handled . It is
also obvious that any programming system constructed with this logic could
provide for any of the modifications possible in a one-address or three
address language, including: indexing, partial ~ord selection, debugging
stops, etc.

To examine further some of the potential advantages and disadvantages
of this approach we might r eview the following example which has been
coded in each address mode. I have aBsumed a simple mnemonic instruction
code set for each configuration. Except for initializing, ending, and
handling transactions with identification numbers greater than the
largest valid inventory number, the problem is flow charted as follows:

A

Read next
transaction

Start

Read next
Inventory
Record

Invent. No: End
of' File

'----------'J

Write Inven
tory Record

'I'

~ Stop

"Trite Error ~--'i.*.---->~-l Invent. No: 1-< _______ --'
'-_..;M.::e:.:s:.:s.::ag".:.e ___ -' 'l'rans. No.

r----... ----I

Trans. Code:
Receipt Code K------j

Invent . Qty;t
Trans. Qty .~
Invent. Qty.

I
0:>

--

Trans. Cod~:
Withdrawal

Code

=

II

Invent. Qty ~

Truns. Qty: .-?
Invent. Q,ty.

B-

B 6

Within the f'ramevork of the flO'W chart and except for the start and stop
routines I have delineated one possible program for solving this problem on
a one~address machine:

Address Inst. Code

01 Read

02 Relocate

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

Bring

C~

Branch Equal

Bring

Branch Greater

Branch Smaller

Bring

Compare

Branch Not Equal

Bring

Subtract

Store

Read

Relocate

Branch Uncond.

Relocate

\/rite

Field Address Comments

InpUt 1 Move next inventory record
to input buffer

Invent. york area M:>ve info. in input buffer
to invent. york area

Invent. No.

End of File No.

Stop Routine

Invent. No.

Trans. No.

28

19

Tran~ Code

I/ithdrawal Code

22

Invent. Qty.

Trans. Qty.

Invent. Qty.

Input 2

Trans Work Area

06

Invent . Work Area

Output 1

Move invent. no. into
accumulator

Test accum. VB. end of file no.

It set proper comparison
indicators equal, comparison
indicator Is "on", Stop Routine
address

Test accum. VB. trans. no., etc.

To Transaction Error Routine

To write inventory ~ecord rout1ne

To Receipt Test Routine

Subtract trans. qty. from aCCum.
result In accum.

Store contents of accum. at Invent.
Qty., Location

(Cont.) B-7

Addre .. Inst. Code Field Address CaIIIleD.ts

21 Brench Uncond. 01

22 C~ Receipt Cooe

23 Brench Not Equal 26 To transaction Error Routine

24 Bring Invent. Qty.

25 Add Trens. Qty.

26 Store Invent. Qty.

Z7 Branch Uncond. 06

26 Relocate Trens. Work Area

29 Write Output 2

30 Brench Uncond. 06

On the basis ot 2 deci.al digits tor the instruction code and 4 dec1mal
digits tor the address, this program vould require 30 It 6 • 180 memory
location unit •.

In a aim1lar w:y, I have prepared a po •• ible program. tor a three-address
machine.

AddreB8 !nat. Code Field AddreS8 A Field Add. B Field Add . C

01 Read Input 1

02 C~ Equal Invent. No.

03 Caapare amaller Invent. No.

04 Cc:apare greater Invent. Ho.

05 C_e not equal Trans. Code

06 Subtract Invent. Qty.

07 Read Input 2

08 Branch Uncond.

09 Write

10 Branch Uncond.

Invent . Work
Area

Invent. Work Area

&ld ot 1I'11e No. Stop Routine

Trans. Ro. 09

Trans. No. 14

WlthdrawalCode 11

Trans. Qty. Invent. Qty.

Trans. Work Area

03

Output 1

01

(CClOlt.)

_SS Inst. Code Field Add. A. Field Add . B Field Add. C

11

12

13

14

15

Ccapore lIot equal

Add

Branch Uncond.

Write

Brench Uneond.

Trans. code

Invent. Qty.

Trans . 'Work
Area

Receipt code 14

Trans. Qty. Invent .

03

Output 2

03

On the basis of two dectma1 dig1ts for the instruction code and
four decimal digits ~or each of the addresses this program would
take 15 x 14 = 210 memory l.ocatlon units.

For comparison, the same problem 1s programmed for a two-address
machine :

Address Instruction Code Field Address A · Field Address B

01 Read Input 1 Invent. work area

02 Compare Invent. 110. End of rUe no .

03 Branch Equal Stop Routine

04 Compare Invent. 110. Trane. 110 .

05 Branch Smaller 12

06 Branch Greater 18

07 Compare Trans. Code Withdra-wal. code

08 Branch lIot Equal 14

09 Subtract Trane. Qty. Invent . Qty.

10 Read Input 2 Trane . work area

II Branch Uneond . 04

12 Write Invent. work area Output 1

13 Branch Uncond. 01

14 Compare Trans. Code Receipt code

15 Branch Not equal 18

16 Add Trane. Qty. Invent . Qty.

17 Branch Uncond. 04

Qty.

B-B

(cont.)

Address Instruction Code FIeld Address A Field Address B

18

19

Write Trans. 'Work area Output 2

Branch Uneond. 04

On the basis of two dec1mal. digits for the instruction code and
tour far each address, this pro~ would require 19 'x 10 a 190
memory location un1 ts.

Let's examine these programs at least superficially to draw some
tentative conclusions.

1. There Is no str1ld.ng difference in memory space
required for either of the three programming modes.

2. The three-address mode does well because of the
. arithmetic capability and the combined compare and
branch instruction.

3. The one-address system Is a little more dlf'tlcul.t
and time consuming to write and requires more words
of instructions (though not necessarily more memory
space, dependent on the internal yord structure).

4. Two-address 10g1c does very well on move type
instructions (read, vrite) and on "add-memoryll
operations.

5. There were 13 different instruction codes used
far the one-address program. The tbree-~ess
system used nine different instruction codes
while the two-address system used only six.
This is not necessarily s1gnificant, ' but it may
be indicative of a somevhat simpler instruction
code structure.

6. Allnost half (9) of the 19 instructions in the tvo
address system were branch instructions. Suppose
it were possible to change the concept of the
compare instruction so that a specific indicator
was examined to see if it was on ur off, and
suppose that the "success" branch was al"Ways
the next regular instruction while the "failure"
branch was a fixed interval. a\lay; then it ",ould be
feasible to eliminate virtually every branch except
where three or more alternate exits eXisted or where
the branch was unconditional. In the program under

B 9

discussion, this would have eliminated four branch
instructions. This may be feasible to accomplish
through the two-dimensional programming approach.
This aspect of success-failure physical location
will be discussed in the next section.

On the basis of these comparisons, I believe it Is evident that intensive
study of two-sddress programming systems may offer important ways to reduce
computer logic cost while providing more efficient programm1ng instructions.

B-10

Section C- Controlled Two-Directional Branching

In normal programming methods with a one-address or multiple
address machine, the succeeding instruction in serial sequence
1s always implied as the alternate address on a branch instruction.
The explicit branch is stated directly in the instruction. This
is all that can be expected of anyone-dimensional programming
scheme.

In contrast, a two-dimensional programming system implies
a two-dimensional branch. If' the test succeeds, then, the proper
subsequent instruction follows next in the same row (or column).
If' the test fails, then the subsequent instruction 1s the first
teat in the next row (or column). Since the total number of
columns per row 1s known, it 1s a straight-forward matter to
compute the next instruction location for a test failure.

With this concept, we can think of' a two-address instruction
of "compare greater", which implicitly defines the success
instruction address and the failure 1nstruction address. This
would require def1ning a complete set of th~ Compare instructions,
which were of significance (greater, smaller, equal, not equal,
greater or equal, smaller or equal).

Avoided would be the definition of any Branch instructions.
US1n8 this approach, the tvo-address program. for the e1lllple
inventory problem used as an illustration could be reduced by
eliminating 03, 05, 08, 15. However, it would require Compare
Equal, Compare Smal.ler, Caapare Greater and Compare Not Equal
instructioDs. With this change, the program would be reduced
to 15 instructions; with 10 characters each, 150 memory
location units would be needed.

Col

D-1

Section D ~ Relative Addressing and "Contained" Constants

All digital computers which have been announced up to now have had an
instruction structure, which has called for stating one or more specific
operand addresses. Some provision has been made for modification of
these through the use of index registers, but the operating program
presupposes absolute addresses.

In preparing new programming languages (symbolic assembly programs,
comp1lers, etc.), one of the major efforts has been to enable the programmer
to avoid this fixed address assigrunent . Two basic approaches have been
taken to solving this problem. The first and less sophisticated, 1s to
use a relative address like V014, wbich means the 14th word after that
location designated as VOOO . This enables the program to be segmented,
yet during the compiling stage, there is just the quite simple job of
calculating the actual address of v014 as the location of VOOO + 14.
This 1s a very common practice. It does require, however, that the
programmer in eff'ect sub-structure the memory assignment and remember
to usc the correct relative address ~henever he refers to that
information.

A second approach haa attempted to improve this area further.
This is the concept adopted for FORTRAN and the Commercial Translator
Language. Here, a nmemonic code name is assigned to the information
field. For Example, EMPNO might refer to the Employer Pay Number field.
FORTRAN restricts this to a six (6) character code. Commerical Translator
allows the use of up to thirty characters plus adjectival modification to
indicate .file and record hierarchy. Because of the mnemonic aid,it is
expected that the programmer ~ill have far less trouble writing the
correct pseudo-address, ~hich the field name, of course, has become.
During the compiling, each of' these names vill be assigned an actual
address and each time the name occurs, this same actual address ~ill
be assigned. This is significantly easier for the programmer, parti
cularly in explaining or collDJltlnicating the program to someone else.
It vould also be a great aid in debugging except that the program debugs
at the machine language level, ~hich implies fixed addressing; this in
turn means that the programmer bas to convert from the absolute address to
the f'ield name that he has been using.

In preparing machine language programs, it has also been historically
necessary to store any constants required and then call them out through
using the appropriate absolute address. With r elative addressing,the
problem is only helped slightly since a memory location must still be
used to store the needed constant. With FORTRAN, etc., the programmer may
use a constant directly in his instructions; e.g. Y • 16 X. The compiler
assigns this constant a location and, i n the object program, refers to
this location. While this is a big improvement for the programmer, it
still uses up memory space for all the various constants needed. One
interesting variation is to use the addresses themselves as constants;
this yields the most commonly used integers. It is proposed in this
paper that a new programming language be constructed so as to permit
direct use of mnemonic addressing and so as to contain constants within
the instruction word, thereby requiring no additional memory space for
their stor age.

D-2
(cont.)

It Is further proposed that during compiling the computer may assign a
relative address to each mnemonic address and that the internal computer logic
.baul4 be structured BO as to operate directly on this relative address.

'FurtheI'1DOre, that the contained constants, ",here possible, be retained within
the instruction and not independently stored. This would require that the
tnstruction code recognize that one of the operands was a constant and not a mnemonic
address.

Ir we consider these suggestions in context 'With the two-address logIc
recommendation, we can consider that the instruction 8tructu~e ror the programmer
Iligbt appear as tollows:

1- Move Instructions

Move (F1eld Nome A) to (F1e1d Neme B)

or

Move Constant to (F1eld Name B)

2. Relational Instructions

Compare (F1e1d Neme A) with (F1eld Neme B)

or

Com,pare Constant w1th (F1eld Neme B)

3· Branch Instructions
Rot affected

4. Arithmetic Instructions

Add (F1eld Neme A) to (F1eld Neme B)

[and store in (F1eld Neme iil
or

Ad~ Constant to (F1eld Neme B)

[and store in (F1eld Neme ®
Unary arithmetic would also have both configurations.

5. Logical Instructions
Stmilar to the arithmetic operations.

(cont.)

During comp1l1ng, the only changes would be to convert the operation name
to an operation code and translate the field names into relative addresses.
Por example:

might become

might became

Move

Move

(Field Name A)

VOOI

tc

to

(Field Neme B)

~

(Field Name B)

VOO9

The major reasOD for converting to a relative address 18 that current-day'
machines lose significant time in pertormlD8 a dictionary look-up operation.
It 1s quite conceivable, of course , that new machine components may change

D-3

this picture considerably in which case It might be advantageous to store the mnemonic
address rather than a relative location.

A major concern, which has been alluded to earlier Is the d1tflcul.ty of
debugging in a machine oriented language. It Is therefore believed worth
considering the preparation of interpretive programs, which al.low the computer
to debug in the systems oriented language itself. Once the program has run
satisfactorily, then the regular compiler could be used to prepare a set at
instructions su1 table to the particular computer. To ejenera1ize this point
it would, tor example, seem worthwhUe to construct an interpretive FORTRAN
processor which would permit direct debugging in the FORTRAN languege, even
though eventually an ob.1ectprogram will be compiled. Such programs should
be relatively inexpensive to prepare and will increase sign1ticantly the
desire ot many. experienced programmers to use these advanced programm1ng
languages. This c~cept is tied somewhat to the idea ot relative addressiD8
and. contained constants, since with these two tools the interpretive program
can be quite simple and the analysis at results quite straight-forward.

Section E ~ A Suggested Minimum Two-Dimensional Language

FOl" the purpose of establishing a common frame of reference" a llminimum"
language 1s described, which would enable a computer to rapidly execute the
bulk of the operations, which seem to be required in two-dimensional
programming. There is obviously nothlpg magical about this particular set
of instructions. H~ever, industrial computing experience indicates that
these would permit a one to one translation of many relations and actions
into computer instructions. The original set has intentionally omitted
indexing, partial or multiple "Word operations, end logical (Boolean)
manipulations. These 1 terns are discussed later in this sectlon.;rn the
symbolic statements included after each instruction def1nition, () means
"contents of location designated" and -... means ureplaces'~

Move Instructions

READ A, B

Move the next record from input source A to a series of internal
locations beginning with location B. Source A may be a card reader,
punched tape reader or any selected magnetic tape transport. This instruction
could operate with fiXed record length (N words or characters or bits),
variable record length (separated by a recognizable record mark), or with

E-l

defined record length as a modifier to the READ instruction (such as Read 60 to imply
Read 60 consecutive words).

(A) ~ (B)

wrrE A, B

Move the next record from a series of internal locations beginning with
location A to output destination B. Destination B may be a card punch, tape
punch, printer or any selected magnetic tape transport. The sem.e statements
about record length that were made in the READ instruction would apply to the
WRITE instruction.

(A) -,) (B)

ASSIGN A, B

Move the contents of the Field A designated location to the Field B designated
location; this instruction moves information from one memory location to another
memory location.

(A) -,) (B)

ASSIGN CONSTANT A, B

Move the contents of Field A to the Field B designated location; this
instruction transfers a constant to a memory location.

A -,) (B)

(cont.)

C(H'ARE lllUAL A, B

Compare the contents of the Field B designated location witb the contents of
the fIeld A designated location. If these are identically equal, then branch to
the preassigned success location (5); it these are not identically equal, then
branch to the preassigned failure location (F).

if (B) - (A) then next instruction at S -
if (B) = (A) then next instruction at F

COMPARE SMALLER A, B

if (B) < (A) then go to S

it (B) ~ (A) then go to F

COMPARE GREATER A, B

it (B) > (A) then go to S

if (B) , (A) then go to F

COMPARE NOT EQUAL A, B

if (B) # (A) then go to S

it (B) = (A) then go to F

If the macbdne's internal characteristics lend themselves to a slightly more
elaborate mode of operation, then the instruction set may also include:

COl.fPARE CONSTANT lllUAL A, B

COMPARE SMALLER OR lllUAL

COMPARE GREATER OR lllUAL

Compare the contents of the Field B designated location with the contents of
Field A. If these are identically equal , then branch t o the preassigned success
location (S); if these are not identically equal then branch to the preassigned
failure location (F) .

if (B) : A then go to S

if (B) t A then go to F

COMPARE COIlSTJINT S~IALLER A, B

if (B) < A then go to. S

if (B) >... A then go to F

COMPARE CONSTANT GREATER A, B

it (Bl>A then go to S

if (Bl ~A then go to F

COMPARE CONSTANT Nor EQUAL A, B

if (Bl t A then go to S

if (Bl = A then go to F

If the internal machine characteristics lend themselves to this mode of
operation, the instruction set may also include:

COMPARE CONSTANT SMALLER or EQUAL

COMPARE CONSTANT GREATER or EXlUAL

GO TO A

transfer program control to location designated in Field A.
This is an unconditional branch instruction. The reason it
Is needed rests with the limitations of a two-dimensional
programming system (in contrast to an n-dimensional system).

Arithmetic Instructions

ADD .A,B

Add the contents of the Field B designated location to the
contents of the Field A designated location. Store the result
in the Field B designated location. Either Field A or Field B
may be a special high_speed accumulator.

(Bl + (Al -> (Bl

SUBTRACT A, B

(Bl - (Al -+ (Bl

MUTIrIPLY A, B

(Bl x (Al + (Bl

DIVIDE A, B

(Bl .;- (Al ~ (Bl

E-3

We have omitted in this instruction set exponentiation or unary arithmetic
operations. In the problems which we have handled to date, their frequency of
use has been such that this need could be best served through use of stored
subroutines.

ADD CONSTANT A, B

Add the contents of the Field B designated location to
the contents ot Field A. Store the result in the
Field B designated location.

(Bl + A~ (Bl

SUJm!ACT CONSTANT A, B

(Bl - A~ (Bl

IIlIlrIPLY CONSTANT A, B

(Bl x A4 (Bl

DIVIDE CONSTANT A, B

(Bl of A4 (Bl

SHIFl' LEFT A, B

Shift the contents or the Field B des18nated location
to the lett by A poaltlC1lB.Conceptually this operates
on a predefined word length. The result 1s stored in
the Field B designated locat1on. It there 1s an aver
now consider this as a t'aUure; it no overflow, thie
1s a success.

SHll"r RIGm A, B

Sh1tt the contents ot the Field B designated location
to the right by A positions. The result 1s stored 1n
the Field B designated location.

If desIred, a SH:I:F'r RIGm' 8Ild BOORD instruction may be
1ncluded.

Logical (Boolean) Instructions bave been CIIl1tted.

Miscellaneous Instructions

NO OPERATION

STOP

£-4

E-5

S1mole Extensions of the J.11n1mum Ianguage

Among additional. features 'Which may be desirable in a two-dimensional program
ming system are: address indexing; partial word movement; multiple 'Word movement;
error control (debugging stops and input variance detection);' extended arithmetic
capab1lity including square root, integral. exponentiat1on (square and. cube) and
certain trigonometric :fUnctions (sin, tan). A simple approach to some of these
features 1s described in this section.

One problem in address indeXing has been the attempt to consider multiple
subscripts. Writing a compiler to automatically recognize and handle multiple
subscripts is a relatively complex chore. A simple concept which hand1es any
number of subscripts 1s through a calculated index which 1s the function of the
subscript values.

INDEX ASSIGN I,A,B

Modify the Field A des1gnated location by the contents
of the F1eld I designated location. Move the contents
of this modified ~eld A designated location to the
Field B designated location.

(A (I)) (B)

ASSIGN INDEX I,A,B

Modify the Field B designated location by the contents
of the Field I designated location. MOve the contents
of the Field A designated location to the modified Field B
designated location.

(A) (B (I))

The contents of the Field I designated location can, of course, be previously
defined by any acceptable operation. Let's assume we have a three dimensional
matrix stored in consecutive locations first by column, then by raw, then by table.
There are three parameters to be defined: R (max Rows), C (max Columns), T (max
Tables). We w111 define r as the row subscript, c as the column sUbscript, and
t as the table sUbscript.

I f (r,c,t)

I Initial Location r CR tRC

Test for completion would be I versus Initial Location - R (l-C(l-t».
This principle can, of course, be extended to any n-dimensional sUbscripting plan.
It could, of course, also be applied in concept to any arithmetic or comparison
operations.

Partial 'Word movement could be handled through a s1ml1ar approach:

PARTIAL ASSIGN I,F,A,B

Move the Ith (Initial) through the Fth (Final) position

of the contents of the Field A designated location into the Field B
designated location starting at the left-most pos1tion.

ASSIGN PARTIAL I, F, A, B

Move the contents of the Field A designated location
starting trom the left-most position into the Ith
through the Fth position of the Field B designated
location.

Multiple word movement could be handled as follows:

KlLTIPLE ASSIGN M, A, B

Move M words starting at the Field A designated
location into a series M words beginning at the
:field B designated l ocation.

E-6

Error Control for debugging stops and input variance detection could
be handled as follows:

ERROR GO TO A, B

Transfer control to the Field A designated location.
Set up to return control to the Field B designated
location upon completion of processing the next table.

Unary Arithmetic could follow the following form:

.SQRT A, B

Find the square root of the contents of the
Field A designated l ocation; store the result
in the Fie1d B designated 1ocat1on.

Section F-l

Recommendations

It seems evident that present approaches to systems-oriented
languages do not appear to be capable of making a basic break
through in the one really critical.,programming problem: Systems
description. Until a technique is developed ~hich supersedes
flov charting and yet 1s readUy computer-understandable ~e shall
not have achieved an effective application language.

Because the logic of two-dimensional programming seems
irrefutable from a users standpoint it certa1nl.y seems ~orthwhUe
to aggressively pursue a research and development program aimed
at exploring and advising techniques in this general area.
The program below "Would, I believe, have a reasonably good
chance at tull success:

(1) Propose a specific two-dimensional language
based on the Bunt Foods', Aeronutronics and
IBM work (particularly the direction suggested
by Perry Crawford). '..t..'he l.anguage may diff'er
for various types of usage (Input, Output,
File Maintenance, Decision-making, Arithmetic, etc.)

(2) Prepare a simple interpretive program to solve
two-dimensional programs . Also prepare a converter
for translating from a Commercial Translator
level of vord choice to a machine-oriented level •

. (3) Program a variety of problems using the l.anguage.
Try to teach the l.anguage to non-programming
personnel; have them. write programs for aress
of Jmawledge using the language.

(4) Run a few trial problems with the programs
vritten in the two-dimensional l.anguage.
Explore techniques for debugging and program
modification.

(5) Revise the language; this may include permitting,
but not requiring, certain desirable special
features like SORT, UPDATE, Me:RGE.

(6) Prepare a "bootstrapped" compiler for two or
more different computers. This will give a
deeper insight into the l.anguage structure.
Prepare a new Interpreter and Converter.

(7) Conduct further experimentation bringing in
appropriate Field Sales personnel.

(8) Prepare monual.s on the 18IlgU8ge covering
the following areas:

(1) primer
(2) reference
(3) application experience
(4) Interpretive, Converter, CanpUer Programs .

(9) PUblish the results and present to CODASYL or
other appropriate professional groups.

This 1s obviously an amb1tious program and. would probably involve
3-5 tull time people together with appropriate help fram many others
on a part-time basis. Because the need 1s so great, I teel that
the time schedule should be intentionally brief with completion
targete1 at 12-18 months from initiation .

I , ould estimate that the total cost of' such a project including
caaputei time, programming, technical writing, outside consultants,
office support, and salaries tar tull-time personnel (but not tor
part-t~) would approxillBte $300,000.

:te project worked out as I would hope then the reward
shoul.d e a major advance in the programing (in contrast to
the c) art. We would have a basic new 'tool for systems
design 8nd a firm basis for J.anguage standardization.

F-2

INFORMATION PROCESSING SYSTEM

ANALYSIS

SUTHERLAND and CO .

INFORMATION PROCESSING SYSTEM ANALYSIS INSTRUCTIONS

1. Purpose . To provide a standard method of recording the management
rules (arithmetic and decision processes) and other information necessary to
adapt an Information System to a mechani cal or other medium of processing.

2. General. The method described in the following instructions eliminates
the need for lengthy narrative with its inherent disadvantages of misinterpre
tation by the reader and difficulty of organization by the writer. This method
also eliminates the need for the system analyst to prepare detai1ed flow charts
to convey to a processi.ng specialist the processing required to obtain the de
sired results of the Information Processing System. The method of documen
tation is general enough to allow the Information System to be adapted to any
m~dium of processing . but detailed enough to permit the application of the
Information System to electronic machine processing by a machine special
ist who has no prior knowledge of the Ip.formation System .

A . Docu.mentat~on Preparation. The documentation will be prepared by
the system analyst and forwarded to the processing specialist. The processing
specialist may b e a punched card equipment specialist, an electronic equip
ment processing specialist or a manual and standard office equipment proces
sing specialist In many instances, the manual and standard office equipment
processing spec~alist will be the system analyst .

B . Content of Documentation. The documentation prepared by the
system analyst will inClude the following:

(1) G e neral System Chart including the inputs to the system and the
sources of the inputs , the outputs of the system and the disposition of the out
puts and the data to be retained by the system .

(2) A general narrative description of the information System which
will include the purpose and s c ope of the Information System and any other
pertinent information that may be helpful to the Processing Specialist .

(3) Description Sheets
a . Input Description
b. Process Description and Process Description Continuation
c . Output Description

(4) Any reference notes that are required to clarify the input. Out
put or Process Description sheets .

(5) A saTIlple copy of each tlhard copy" input and "hard copy" output
of the Inforrnation System. Element codes will be entered on the input and
output samples to identify the elements and their position.

Note: Appendix 11 is a sample of the documentation for an Information Processing System.

Page 2

3. Input Description Sheet .

A . General. An Input Description Sheet is used to describe the content
of Action Sets and Retained Data Sets which are input to the information system.

B. Headings .

(1) In the upper left-hand corner, place the two-character "System
Identification" for the system being described.

(2) Below the "System Identification", place the "Set Identificationll

for the Input Set being described . If the· input is an Action Set, use the iden
tification of the Action Set . If the input is a Retained Data Set, use the unique
Retained Data. Set identification assigned to the set.

The first two characters of the Retained Data Set identification
are the System Code, the next two characters will be "RD", The next char
acter (s) ~s used to identify uniquely each Retained Data Set. For example:

.Q1RD I

Billing ~ ~Assigned to the Customer File

~RDL
Billing .--J Assigned to the Price List

(3) Indicate in the space provided for "Frequency of Processingll

the most frequent period in which this set is to be input to the system.

(4) Process . Indicate in the space provided the name of the process
being documented . In most instances the process will directly correspond to
what is described by the System Identification . Occas ionally the System Iden
tification is not definitive of the process being documented and the actual
process name should be indicated. For example:

System Code 20 is assigned to Salary Payroll which includes:
Pay Check Preparation, Personnel Reports, Labor Distri
bution, Tax Reports and Annuity Reports , In this example,
the System Code would be 20, but the process would be Pay
Check Preparation, Labor Distribution, etc . depending on
the process being documented.

(5) Place the "Set Name" in the space provided.

(6) Indicate in the space for "Volume" the "Average ll and "Peakll

number of sets that will be available 'as input in the time period shown for
"Frequency of Processing" ,

Page 3

(7) In the space provided indicate the ForTn Type for the se~.
Examples of IIForm Type" are: I'Manual l1

, IIPunched Card l1 • "Magnetic Tape",
and ItPaper Tape".

(8) For "Source System 1. D. It indicate the two-character System Code
of the System which processes the set immediately prior to this system. If the
Input Set is a Retained Data Set which is added to in more than one system. in
dicate the system from which the Retained Data Set will be received.

(9) In the upper right-hand corner indicate the page number. the name
of the person preparing the Input Description Sheet. and the date of preparation.

/J/J6 ItOA" 'P ~J-: ,P '::, .~;;·r·
C . Management Rule Numbers. For Action Sets~indicate in the spaces

provided across the top of the sheet the three-digit numbers of the Management
Rules (other than Validation Rules) which must be executed if this set is pres
ent . If there is not sufficient space on one Input Description Sheet for all the
rules . use additional sheets.

D . Element Name .

(I) In this column enter the "Element Names" assigned to the ele
ments that are contained in the Input Set. For an input. regardless of whether
or not space is provided for an element. no entry should be made for the ele
ment, if it is alwa ys blank.

(2) Additional information on each element is placed to the right of the
element name .

E. Element Code . In this column p lace the seven-character elem.ent code
number corresponding to each element name.

F,' Element Code - Suffix.

(1) An element in a set may be used differently or prepared differ
ently depending on what other elements identify it. An exam.ple is the Element
"Quantity on Hand Total" . This element may appear twice on a set. In one
place, it may be the total I'Quantities on Hand l1 for each "Stock Number" at
each "Location" . In the other place. it may be the .total of all"Quantities on
Hand" for each "Stock Number" at all "Locations" . In the first instance.
location would be an Identifying Element; in the second, it would not. To in
dicate this difference for the element in this set. two suffixes "A" and "BIl
would be assigned. For each different grouping of Identifying Elements for an
element, assign a different suffix, beginning with "A" . (See paragraph 3. N,
(3) following) ,

G . Element Description - Alpha. If the element described by the element
name contains any non-numeric characters, enter an "A" in this column.
Otherwise, leave the column blank.

Page 4

H. Element Description - Numeric. If the element described by the ele
ment name contains any numeric characters. enter an "N" in this column.

, Oth erwise. l eave the column blank.

I. E l ement Description - Characters - Total. Place in this column a
maximum of two digits to describe the maximum number of characters that the
element tnay contain. Do not include in the total number of characters. punc
tuation marks in numeric fields which are used for arithmetic processes.

J. Element Description - Characters - Decimal. This entry is made onl y
for all numeric elements which may be used in arithmetic computation. Enter
in this col umn the number of digits that appear to the right of the implied
decimal point.

K . Element Classification (Class .) . Depending on whether the element
described by the element name is a Recognition, Identification, Action, Action
Modifier. Information, or Superfluous Element, enter an "X" in the appropri
at.e column . See the definitions for the different Element Classifications in
Appendix 1. Generally, the different classifications are mutually exclusive.
However, any element may be described by more than one classification other
than "Information" and "Superfluous". For retained Data Sets only Recogni
tion and Identifying Elements need be indicated.

L. Number of Times an Entry May Appear on This Set. Place in this
column a maximum of three characters to indicate the "Average ll and a maxi
mum of three characters to indicate the "Peak" number of times an entry may
appear for this element on this set. If the number exceeds 999, use "C" for
h undreds and 11M" for thousands .

M. Valid<ltion Rule (s). In this column list the three-digit Rule Numbers
for the Management Rules which must be executed to validate the element de
scribed by the element name . Use as many lines as are nec'essary for each
element name.

N. Identifying Element Codes.

(I) For Identifying Elements that are used to identify an element on
the Input Set, the Identifying Element Codes are lis~ed vertically in the spaces
provided . If more space is required. use additional Input Descripti on Sheets.

(2) Place an "X" in the "Identifying Element Code " column and Ele
ment row intersection if the Identifying Element is used to i dentify the element
indicated on that row . Each ent r y for the element described by the element
narne is identified by one combination of entries for the elements described by
the Identifying Element Codes .

Page 5

(3) The first two lines of Figure I illustrates the example described
in paragraph 3. F, preceding. Quantity on Hand with Suffix "A" is for each
Stock Number at each location. Consequently an "X" appears under both
9300100 and 7976050, the Element Codes for Stock Number and Location
respe c tively. Quantity on Hand with Suffix "B" is for each stock nurn.ber at all
locations. An "X" only appears under 9300100, the Elern.e nt Code for Stock
Number . In this cas e, Stock Number alone i s the Identifying Element for
Quantity on Hand . The third line of Figure 1 indicates that the entry (s) for
loca tion is identified by an entry for Stock Number.

S}-H'.:n h1Ptl t iOc "lJon ____ .. _. _ ___ . __ P! occs:. .. ___ .• ___ _

5., Id(;:,dh · .. l i r>.:). __ • _ ________ ._ 5Cl ~,1fne _ _

fro .1 11,',J 01 r WC(,,'>lmg ._. _____ • ___ V.)~.JmE;.; k,u! •. -.. tJf.

=~;A~~:~~:;~;i:.r 'P 1jL:~~~~"~'-r -=I----C-==. ··

US..M.I'n,..AM f.
ELEMIN T
C(>Dl. ' J

x",'S -,;
:''E. E ::;
~<2. f-

Page 6

Fo'm

So:uce System r. D.

-_. - =. !=9'-,,-~·-t=of
)(!(

)(

FIGURE I . USE OF ELEMENT SUF FIXES
AND IDENTIFYING ELEMENT CODES

Page 7

O . Reference Note (Ref. Note) . If there is a need for a reference note,
place a check mark (V) in the column. Cross-reference the note with the
System Identification) Process, Set Identification. and if required the ElelTlent
Code and Suffix .

P. Retnarks . This column lTlay be used for any additional inforlTlation be
lieved necessary by the analyst preparing the Input Description Sheet.

4 . Process Description Sheet.

A . General.

(1) A Process Description Sheet is used to describe ManagelTlent Rules
used in processing information within a system.

(2.) Rules for Validation are shown on separate sheets from all other
proce ssing rules . It is assumed by the analyst that all Validation processing is
to be accomplished before other processing is begun.

B . Headings .

(1) In the upper left-hand corner place the two digit IlSys tem Identifi
cation" for the Analysis System.

(2.) In the space provided for "Process ll
, indicate the name assigned

to the process being described. (Refer to paragraph 3, B. (4) preceding) .

(3) 1£ the processes described by the Management Rules on the sheet
are Validation Processes. place an IIXII in the "Validation" Box .

(4) In the right-hand part of the heading, enter in the spaces provided:
the page number . the nalTle of the person preparing the she et. and the date of
prepa ration.

C . Line Number . On each line in this column, place a four· character line
nUlTlber . It is suggested that the right-most digit always be blank in case there
is a later need for insertion of additional lines . Line numbers will be uniQuelv;. "

Li..J,:.~.h.,c..:C·MC!f/"' ''' .I'.::,;.'/ t:..t:< .
assigned to all lines within the description of a particular preeeas lot a syste.I'R-•
..:f.hus. tf the last lill~ge 1 fo];...a proces.s is .. li·ne··numbe-r-{}·2'2;-the-fiTst-li-ne
num.b.&po..on- Pa-g e-2- wHl- b e - O 23. "

Examples of line numbers are
011
012
0131
0132
014

Page 8

D. Condition/Action Indicator (C/A).

(1) If a condition is expressed on this line, place a "G" in this column;
if the line is used to express an action, place an ttA" in this column. If what
has been placed in thi s column for an immediately previous line is true for a
line tha t. follows, no entry need be made for the line that follows.

E. Management Rule - Current. In this column on the first line for each
M"l.nagement Rule place a three-digit number for the Management Rule . The
numbers of all Management Rules will be uniquely assigned for all rules within
a Process for a System .

F _ Management Rule - Prior . In this column list the three-digit numbers
of all of the Management Rules which must be considered before the rule speci
fied in the " Manag e ment Rule - Current" column is considered. Generally. a
rille is prior to <s.nother rule only if it specifies the creation of elements of data
nec ess3.ry .for the processing of the current rule . Management Rules for Valida
tion of elements will not be shown as prior rules for non-validation Management
Rules .

G . Source - Element Name, Prior Result or Actual Value.

(I) If one source for a condition or action is an element, place the
name assigned to the element in this column. If the source is an actual value
(Literal or Descriptive constants - See Appendix I) place the actual value in
this column . If the source is the result of an action in any rule , place the
designation of the result in this column. (Results of an action ar e designated
as t1Result XII , w}-.ere II Xt, is any character A to Z or 0 - 9. The first result
of a rule is designated as " Result A", the second as "Result B" , etc . Unique
designations of prior ·results are only necessary within each rille . Two dif
ferent rules m ay each have an intermediate result designated as Result A .

(2) Deletion of an Element . The deletion of an element from a set i s
indicate d by placing the Descriptive Literal It /BLANK/" in this column, enter
ing a check mark in the "Set Equal To" column, and entering the Element
Name and Set Identification for the element to be deleted in the appropriate
spaces in the "Source/Disposition" column .

(3) Deletion of a Set . The deletion of a set is indicated by placing
the Descriptive Literal "/BLANK/" in this column. entering a check mark in
the "Set Equal To" column, and entering the Set Identification for the set to be
delete d in the "Source/Disposition - Set Identification" column . In this case
t h e "Source/Disposition - Element Name" is left blank.

H . Source - Elem ent Suffix . If the entry made in the IISource - Element
Name Prior Result Actual Value" column was an Element Name, and if a
suffix was as signed to the element on the Input Description Sheet , the suffix

Page 9

which was assigned is entered in this column. Otherwise, the column is left
blank.

1. Source - Set Identification.

(1) If the entry made in the "Source - Element Namel Prior Result or
Actual Value" column was an Element Name, enter in this column the seven
character set designation for the set of which the element is a part. If an ele
ment for a rule may appear in one Input Set or another, depending on which set
i s present, more than one Set Identification may be listed in this column as a
source for the element described by the Element Name. If the entry in the
"Element Name'! column is the designation of a Result of an action in this rule
or another rule, enter the three-digit number for the source rule within paren
theses . This column is left blank if the entry made in the "Source" column is
an entry for an actual value . Examples of entries that may be made in this
column are:

2.4165A = Set
(1 52.) = Management Rule

152. = Set

(2.) The addition or insertion of a set into an Output Set or Retained
Data Set may be indicated by placing the Set Identification of the set to be
added or inserted in the "Source Set Identification" column, the Set Identifi
cation of the Output Set or Retained Data Set in the "Source/Disposition Set '
Identification" column and a check mark in the "Set Equal To" column. The
element columns of both the Source and Source Disposition will be left blank..
This procedure will only be used if all the Elements of the Output Set or
Retained Data Set are contained in the Input Set .

J. Condition (Condo) . If a condition is expressed on a line, it is
"Greater Than", "Less Than", or "Equal To" . Place a check mark (V) in
the appropriate column (5) to indicate the relationship between the first and
the second Source Elements or Actual Values. The relationship between the
three conditions is a logical "or" condition. More than one column may be
checked for a line . In reading, "or" is inserted between each condition
checked.

For example, if "AMT SALAR yll is the first Source Element, (0) is
specified as the second Source Element (Actual Value), and the "Less Than"
and "Equal To" conditions are checked, this is read. "If AMT SALARY is
Less Than or Equal To O • • . "

K . Operation.

(I) To express an Arithmetic Operation for an action relating two
elements. results or actual values. place one of the following operation

Page 10

symbols in the column:

+ for addition
for subtraction

x for multiplication
/ for division

"- for sum

(2) Explanation of Operation Symbols.

a.. An entry of "t" in this column indicates that the first source
entry is to be added to the second source entry.

b. An entry of "-" in this column indicates that the second source
entry is to be subtracted from the first source entry.

c . An entry of "x" in this column indicates that the second source
entry is to be multiplied by the first.

d . An entry of II/It in this column indicates that the first source
entry is to be divided by the second.

,
e . An entry of "£.." (Greek letter "Sigma") in this column indi

cates that all entries for the first specified element are to be summed.

L. Set Equal To. If the element or result specified in the "Source/Dis
position" column is to be "Set Equal To" another element, actual value or prior
result. or is to be "Set Equal To" the result of an arithmetic action, p la ce a
c h eck mark in t.his column . The last line of any action within a rule will have a
c h eck mark in the "Set Equal To" column.

M . Source/DisPQsition - Element - Name Result. Prior Result or
Actual Value.

(I) If the e ntry to be made in this column is for a source for a condi
tiQn or an action, the way to make the entry is described in paragraph 4, G, (I).

(2) If this column is used to indicate disposition for a result Qf an
action, enter the appropriate element name Qr prior result deSignation. (See
"Result X". paragraph 4. G. preceding) .

N. Source/Disposition - Element - Suffix . If the entry made in the
"Source /Dispositipn - Element Name" column is an Element Name. and if, on
the Input or Output Description Sheet the element has been assigned a suffix.
enter the appropriate suffix in this column. Otherwise, leave the column
blank.

Page 11

O . Source/Dis osition - Set Identification. If the entry made for the
"Source Dispositionll colurrm is an entry for a Source, see paragraph 1. If the
entry is a Disposition entry for an e lement , enter in the "Set Identification"
column the Set Identification for the set or sets in which the Element is to be
placed . If the entry is a Disposition entry for an intermediate Result. leave
the "Set ldentificationll column blank.

P . Operation.

(1) To relate arithmeticall y an e ntry in the "Source/Disposition"
column on one line with an entry in the "Source" column on the next line,
indicate the arithmetic operation in this 1I0peration" column using one of the
followi ng sytnbols:

t for addition
for subtraction

/ for d ivision
x for multiplication

(2.) Explanation of Operation Symbols.

a . An entry of lit" in this column indicates that the IISource"
entry on the ne xt line i s to be added to the "Source /Disposition" entry on the
line where the "+,, appears .

b . An entry of " - " in this column indicates that the "Source"
entry on the next line is to be subtracted from the "Source/Disposition" entry
on the line where the" _ II appears .

c . An entr y of "/,, in this column indicates that the "Source/Dis
position" entry on the same line is to be divided by the "Source" entry on
the next line .

d . An e ntry of" x" in this column indicates that the "Source/Dis
position" e ntry on the same line is to b e multiplied by the "Source" entry on
the next line.

Q . Note R eference (Note Ref. (r")). If a note c;>r remarks are necessary
and/or advi sable to explain further a condition or an action, place a check mark
in this column. O n t h e sheet where it app'ears, cross refe rence the note to the

f///I/'Il t;.' fJ'J;r-'r I~)(u:: . . A.
System Identifica ti on, Process/land ilrst Cme Number of the Condltlon or ctlOn
to which the note appli es .

R . Management Rul e Suffix and Frequency .

(1) Eighteen Mana gement Rule Suffixes, "A" through "R", are pre
p rinted across the top of the P rocess Description Sheet. If mor e than eighteen

Page 12

suffixes are necessary for a rule, Process Description Continuation Sheets
should be used.

(2) In describing a Management Rule. aU the conditions which must be
con s idered at anyone time will be listed on a Process Description Sheet. Fol
lowing the conditions, all the actions which may be executed for the conditions
of the rule will be listed on the same Process Description Sheets (insofar as
possible). Management Rule Suffixes are used to relate a combination of posi
tive and/or negative results for one or more conditions to the execution of one
or more actions within a rule.

(3) Unless a Management Rule describes an unconditional action
(action taken regardless of the results of any conditions), an action is taken
only when the results of certain conditions are positive ("Y") and/or negative
("N"). In describing a Management Rule, all the pertinent possible combina
tions of conditi on results must be related to the actions for the rule .

(4) A s imple example i s shown in Figure l. In this sample Manage
ment Rule there are only three conditions shown on lines 001 to 003. One set
of results for the conditions are listed under Suffix Ai 1. e .. if the result of the
conditions on lines 001 and 002 are positive the action specified on line 004
should be taken. Under Suffix C, if the results of the conditions on lines 001
and 003 are positive and the result of that on line 002 is negative, the action
specified on line 004 should be taken.

PROCESS DESC RIPTION Page ___ Of

Sym,m Idemlflc.tlon Ptepared by

f'focep o Valld.t ion D,lte

SOURCE CON 0. _ SOURCFJDIS PQSITION MANAGEMENT RUL E SUFFIX AND FRIQUENCY

" Cood: Y • C oodltlon Is Satisfied
MANAGEMENT • x ,~ N • C oodltlon Is Not Satisfied

RULE NO. ELEMENT Set Ident. or • , ELEMENT set Ident. or < Blank = Condition Not AppUClible LINE
Rule No. for .. o . 0 Rule No. for '~

NO. , I-,!, I- .~ AClloo: X .. Ae; lion to Be Take n
Prior lte$ult • -;;; .. " Name. Result. Pr ior .; Prior Rewll .. Blank " AClion NOI 10 Be Taken

~ currenl l Prior
N.me. Ptior Resu lt .; • ::I 1t ., • ~

~ Result or AClual V3lue ~
o Z A B U or Actual Value v- a v. v. D E F G H I I KLMNQPQR

001 h 001 Q(.)AftI 0" }fAND (,74'11 v " QIIAIY oNDeRe-D IPOtJ1 YHYiH
oOZ CR~OIT HATING ~O~ (AJ Y Y N N N
00,3 Q"A~ OI?O~RcD (po81 CUSTdlYlE"1'? mAX -1-0 A. YN

80 J D

0' 0"" I
oo~ • Q"AIV ORDE"RE"O t.oB1 Iv QU/f/ll SHIPpeD 40 <{2.5"7 x
ooS QVlilV ON HAND '7.f.YI Iv X
OOt. (0) .; xX

o~, ~V. n~ n«

RU.J. UFFIX ANI CY

-

Page 14

(5) As is evident from the example, pertinent results for conditions
are indicated for a suffix using "Y" for "Yes" and "N" for "No" . Under each
suffix an indication of an action to be taken is s hown with an "X" on the line,
("Set Equal" line if tnore than one) on which the action is described. If neither
"Y" nor "Nil is placed on the line for a Condition under a given Suffix, it indi
cates that for the combination of results shown under the suffix, the result of
this condition is immaterial; the result can be positive, negative, or undeter
mined .

(6) For a Management Rule . on the line (s) following the last line
des cribing the conditions . the analyst will indicate the probable Frequency of
Oc c urrence as a percentage for the results of the condit ions listed under each
suffix. The total Frequencies of Occurrence for all suffixes within a Rule
should be 100 percent . For any frequencies less than 10/0. use " 111. In Figure
2 the Frequency of Occurrence is indicated between lines 003 and 004. In this
e""m~le the probability of the conditions of rule OOIA prevailing is 80%, writ-

" " "all ten . For rule OOID, the probability of occurrence is 4%. written 4 .

5 . Process Description Continuation Sheet.

A. General. A Process Description Continuation Sheet is used only if,
for a Management Rule, there were insufficient suffixes on the Process Desc rip
tion Sheet to depict all the combinations of results for the conditions described
on it.

B. HeadinR"s. The instructions for cotnpleting the heading information are
the same as shown for the Process Description Sheet, paragraph 4, B, pre
ceding .

C. Line Nutnber. In the line nutnber column post the line numbers from
the Process De sc ription Sheet that this she,et is a continuation of. Use exactly
the same spacing and relative positioning of the line nutnbers as appears on the
Process De scription Sheet. This will enable the user to lay a cotnpleted Con
tinuation Sheet next to the sheet it is a continuation of to have effectively a
single sheet of paper .

D. Management Rule Suffix and Frequency.

(1) In the blank heading blocks, place one ·or two-character suffix
designations that will be unique for the Management Rule to which they apply.
If a two-character suffix designation is used. place the tnore Significant
character over the less significant character.

(2) All other infortnation is placed on the sheet as described under
Process D escription Sheets, paragraph 4, R , preceding.

Page 15

6. Output Description Sheet:

A. G eneraL An Output Description Sheet is used to describe the content
of output from an Information System.

B. Headings.

(1) Enter the "System Identification" for the system being described
in the space provided.

(2) Enter the "Set Identification" for the Output Set in the space pro-
vided.

(3) Indicate in the space provided the name of the process being
documented. (Refer to paragraph 3, B, (4) preceding) .

(4) In the s pace provided for "Number Copies" indicate the number of
copies that are required for this Output Set.

(5) Place the "Set Name tl in the space prov ided .

(6) Indicate in the space provided for "Volume" the "Average" and
IIPeakti number of sets that will be prepared.

(7) Form Type. Indicate the Form Type for the set. For example,
Standard Print. Punched Card, Multilith Mat, etc .

(8) Special F orm 1. D.
indicate the identification of the

If the set is to be prepared on a special form,
special form in the space provided.

(9) In the upper right-hand corner enter the Page number, the name
of the person preparing the sheet, and the date of preparation.

C. Element Name.

(1) In this column enter the Element Name for each of the elements
which ma y appear in this set.

(2) Additional information on each element is placed to the right of
the Element Name ..

D . El ement Code.

(1) In this column enter the seven-character Element Code Number
corresponding to each Element Name.

Page 16

E . Element Code - Suffix .

(1) 1f an Element Code Suffix is required (See paragraph 3, F, Input
Description Sheet), enter a one~character alphabetic designation for the suffix
in this column.

F . Element Description - Alpha.

(1) If the Eleme nt described by the Element Name contains any non
num.eric characters. enter an "A" in this column. Otherwise, leave the
column blank.

G. Element D escription - Numeric.

(1) If the Element described by the Element Name contains any
num eric. c ha racters, enter an "Nil in this column . Otherwise, leave the column
blank.

H . Ch;:t.r a cters - Total.

(1) Enter in this column a maximum of two digits to describe the
maximum number of characters that the Element may contain.

1. Ch;:I:r a.cters - Decima l .

(1) An entry is made in this column only for all numeri c Elements
which are a r esult of or may be used in arithmetic computations. Enter in this
colum.n the number of digits that should appear to the right of the implied
decimal poin.t.

J . Ele m en.t Classification.

(1) Depending on whether t he Element described by the Element Name
is a "Recognition" , tlldentificationlt

, or "Other" classification of Element,
enter a n "X" in the appropriate column .

K . Number of Times an Entry May Appear on This Set.

(1) Enter in this column a maximum number of three characters to
describe the IIAveragel! and a maximum of three characters to describe the
"Peak l1 number of times an entry may appear in the Set for the element de
scribed by the Element Name . If the number for either exceeds 999, use "C'l
for "hundreds" and "M" for l'thousands" .

Page 17

L. Source - Set Type.

(1) If the Source for the element described by the Element Name is
other than "Direct Recording" from an Action Set or Retained Data Set, place
an "X" in the column hea ded I1Process (X)".

(z) If the element described by the Element Name is to be placed on
the Output Set as a result of a Direct Recording from a Retained Data Set after
all posting to the Retaine d Data Set has been accomplished, enter an "An in the
column headed "Ret'd (A, B, or X)".

(3) If the element described by the Element Name is to be placed on
the Output Set as a result of a Direct Recording from a Retained Data Set
before any posting to the R etained Data Set has been accomplished. enter a "B"
in the column with the heading "Ret' d (A, B. or X)" .

(4) If the ~lement described by the Element Name may be placed on
the Output Set as a result of a Direct Recording from a Retained Data Set,
either befor e or aft er posting to the Retained Data Set has been accomplished,
enter an "X" in the col umn headed "Ret'd (A. B. or X)".

(5) If the element described by the Element Name is placed on the
Output Set as a result of a Direct Recording from an Action Set, enter an "XI1

in the column hea ded "Action (X)" .

M . Source - Source Set Identification for Direc t Recording.

(I) If the element described by the Element Name is to be placed on
the Output Set as a result of Direct Recording from a Retained Data Set or an
Action Set , enter in this column a maximum of seven characters for the Set
Identification of each source set. If there are more than three sources, use
additional lines .

N . Identifying Eleme nt Codes .

(1) For Identifying Elements that are used to identify Elements on the
Output Set, the Identifying Element Codes are listed vertically in the spaces
provided. If more space is required, use additional Output Description sheets.

(Z) Place a n "X" in the Identifying Element Code column and Element
row intersection if the Identifying Element is used to identify the Element indi
cated on that row.

O . Reference Note.

(1) If there is a need for a "Reference Note". place a check mark in
this column. Cros s -reference the note using the System Ide ntification,
Process, Set Identification a nd if necessary. the Element Code and Suffix.

•

APPENDIX I - DEFINITIONS

1. A ction Element

An element within an Action Set, the entry for which is the value to be
inserted or replaced, or the value of the adjustment to be made via a Recording
Action or A ctions or aritrunetic computation.

2. Action Modifier Element

.An element within an Action Set which alters the Recording Action or
Actions in some manne r.

3. A ction Set

An Input Set for a system whose presence may require the execution of
spedfic Management Rules . Jnput other than Retained Data Set.

4. Constant Value

A value . which does not appear as an element in either a Retained Data or
A c tion Set. used as a source for an element or elements in an Output Set.

A. Descriptive Constant

An entry which designates between two slashes (/) the commonly under
stood name o(a constant value.

Example s ar e :

/ Blank / - Designates one or more blanks.

/ Current Year / - Designates 1962, if that is the current year.

/ ANNN /

B . L iteral Constant

- Designates a field in which the first char
acter is non - numeric and the rest are
numeric .

The deSignation of a constant value between parentheses where the
constant value is identical to what appears between the parentheses.

An example is :

(06) which designates a constant value of "06".

Appendix 1, Page 2

5. Direct Recording

The unconditional transferring of an element from an Action Set or Re
tained Data Set to an Output Set. No prior processing other than validation is
required for the element in the Action Set or Retained Data Set . The recording
is dependent on the presence of the Action Set or Retained Data Set and the re
quirement to produce the Output Set.

6. Frequency of Occurrence

A number which indicates. as a percentage , the probability a particular
result, or combination of results of a condition or conditions, will prevail.

7. Identification Element

An element within an Action Set which permits the segregation of a particu
lar set from others containing the same Recognition Element values; it is used
to associate the set with other sets containing different Recognition Element
values and to indicate how elements within the set are recorded and identified.

8 . Information Element

An e l e ment within an Action Set. which does not influence the Recording
Action no r is it recorded in this system. It may be subject to validation for
the purpose of an overall system check and is required for processing in sub
sequent systems.

9. Manageme nt Rule

The action or actions and generally an associated condition or conditions
which indicate the decisions and processes required to operate an Information
Processing System.

10. Output Set

A set created by an Information Processing System for the use of another
Information Processing System or by the same Information Processing System.
but using a different medium to accomplish its processes.

11. Process

The production of elernents of data through the execution of Management
Rules. Includes all data processing except Direct Recording.

Appendix I, Page 3

12. Recognition Element

An element within an Action Set which identifies the function of the set.
The Set Identification is a Recognition Element unless oth erwise stated.

13. Retained Data Set

A set which is used to maintai.n elements which are required to accomplish
the preparation of the Output Sets and may not be available on the Action Sets.
The Retained Data Set will include the elements required to validate the Action
Sets.

14. Set

A meaningful grouping of more than one element of data.

15. Superfluous Element

An element within an Action Set which is not required for processing in
this or subsequent systems .

1. Purpose:

2. Scope:

3. Other Outputs:

Appendix U, 1

SYSTEM CODE 04 BILLING

To develop an invoice from a copy of the order which
indicates that shipment has been made to a customer
from a warehouse or factory .

The system will include all debit billing to all custom
ers .

a . Selected data will be furnished to the Sales
Statistics system for Sales Accounting and Sales
History.

b. Selected data relative to inventory will be
furnished to the Dlstribution system for
inventory adjustments.

c. A record of input received that did not meet the
criteria established (invalid) will be furnished
to the Billing Department.

r --....,
I
I
I

O<ROI
Customer

FOe

L

O<ROI
Customer

File .--,./

j

I
I

/
/

"'00
Item
FOe

,
I

I
/

I

04RD\l
Item
File

15128
Invoice

I 04

6512A
"'do<

Bllllng Dilly

Update Customer, Item and
Sales Tax Files
Crute Invoice
Exaact Data for Sales Statistics
and Inventory
VaUcbte Input
Create Error Report When
Necessary

0401

'al ..
Data

040'
Inventory

Data

1201
File Maint.

Changes

0403
"'de<
En",

04RD3
Sales Tn

FOe

... 4
File Ma.tnt.

En ...

"I
I
I

04RD3 ~
."
~

6--.
" I:l

;p ..
m

'"

Form 1201

Cultomer Code

t I
8981100 6813250

Name Sold T o

Disc. " ,--_...,1- 6920130

Change
Code

D
8760100 .J

6813200 ~ J
Address Sold To

I 6813210

If Customer Code, Name Sold To or Addreu Sold To changes, create
1. ~Delete~ for Old Customer Code
2. ~ Add M for New Customer Code, Disc, %. Name Sold To and Address Sold To

Change Codes: 1:: Delete 2:: Add 3 = Change Disc. "

~
'" ~ ,
0-
i ..
J::

;9 ..
~

w

o
o
~

o
o
~
o
o
o
~

• • • •

• • • •

o __ ~~_><
~
ro

Appendix II, P age 4

Syslem IdMtificalion _~ Prouu _ RILL. bV.:so
INPUT DE§;QRIPTION Page 1 , , ...s;L

Set Identification 1£t2A ! I Name aBD€R Form Type ~L
Prepved by, HCO

Frequency of Processing adll.:::t:: VoLume: Aveuge £Ri2 Peak I./:JOO SDUfce SYSlem I . D. 01 Dale (, LIS J fR. 2 •
MANAGEMENT RULE NOS. 100(. I 007 DO' I DD" I DID I 0 II I D I Z I I I I I I I I I I

ElEMENT
ELEMENT NO. T IM ES AN ENTRY 1DENTiFYING ELEMENT CODES (X)

DESCRIPTION
CLASS. MAY APP EAR ON THiS

(Xl SF!"
VAUOATION

0 •
ELEMENT NAME

ELEMENT ChM.
~ • 0 s: REMARKS

CODE ::i
, RULE (S) .. , • 2 ~ , • • • •• • E . 8 8 ~ Average Peak '" • z

S E • - - -:: -= 0 " ~ r o 0 •
~ , - , ~.!!;2 u u'c; " ..

" < z ..(..., - '" .. • •
ACCT CENTIrR (",o/7/DO A 13 X I I X

MO CV$r ",1(0 ~/(;8(;;!0 N 020 1 1 "
0'" C/.IsT ",,0 i,9~/,G"1l0 02 1 1 X

Y!? CU$T 0,,0 199801.20 N 02. 0 I 1 X

a ROEll NO 18${'8/~o 09 X 1 1

IYfO .5I1IP,&D 00 N oz 1 1 Oot X

OA IPP~D ;00 " 02 1 001 X
YIi' SlOPpED .. ~'" It 02 I ,

0'" X
INVOICE NO 1'1(,/Jolot'J If Ii no X I 1 I "

C!() T NA'tIfC .sOLD ('81.3200 7'" 1 1 J!.

~U~T ADDR $0,0 1'_AIS.eIO AN 70 X 1 , X

t:!t1ST NAM~ Sill!' ''''f.?;20 A '70 l(1 I)(

,"o.rr ADOH SHU' ~813230 N 7' 1 1 X

C IS?" oRoER Nf) I"'B13 100 IP X I I X

.< ... "~':;MAN N<I AU 00 1 1 003 X

CUST ee, /VI) I "'Sf .. ;'" 0'- 1 1 OM X :>-
TeRMS PAYhI_Nr ,4'f#IDO 123 1 / X " •
5H(P~ T&RMS filii co 123 X / 1 X ~

'" t,.."t,J,ICO :14 / , X ;:. ,

sHiP FHdM TCWN 911012~ /3 / 1)(· i
~, E's "TAX CoC1C I 9",,~ .,1<.0 ~s x / / """" X • .,
PRIC" BAS"- 8",,,,410. 0"" 1 / X

~ 9' ,.0 If 21 • for x X

LI"''' NAME" "'1-1-, (DO 2.S' • 5' " " [

Synem Identification ~O,,-,4-"'-____ _ Prote" 811 1 II'(G - - --- Ir::!:PUT DESCRIPTION Page L ~ or 2a "iii!
Set Idenllflcalloo uo 2 ,A !I Name o80EB Form Type MANUAL

Prepued by: H<-oJ

Frequency of Processing ad L.L 1:: Volume: Ayerage £02 Peak lQ~ Q Source System I. D. Ql Dale 1.. 1 15 / &.0

MANAGEMENT RULE NOS. I 00" I "'" 008100. I % I 011 I O ' iZ I I I I I I I I I I
aEM ENT " et.1ENT NO. TIMES AN ENTRY IDENTIFYLNG ELEMENT CODES (X)

D~RIPTION
CLASS. MAY APPEAR ON THIS

(X) SIT
VAU DATION 0 ~

ELEMENT Char. 0 • S ELEMENT NAME CODE ~ • RU LE (5) , , REMARKS

~ , " q, • • "I ~ Ayen.ge Peak Q • " , E " " • - c ~ • • ' - • z
E ~ E <:i U ;:; -= -;;: 0

~ " <~ " ~ .. u'"''<;::1 ~
~

.~ < < - II) • •
.s·r ocl(,.". 9 !,OO/DO A . ' X • ,~ 004 X

t!JTY ORD E/?ED 87(,8 5"'00 Ih 05 0 ~ d- oo ~ X >\
07 Y S#/PP i!:D 87~SS"SO N ,," 0 , r o o S- X)<

LJ/SG "'" <Os A "72<)/10 0 " X I / X

>
'" •
".

-" ;:,
·
• ~

I

System Iden lific"ion (";4 Ptocea PfiL L IN G
INPUT DE§CRIPTION Page .$ '" 0' "':.2

Sel IdenUJlc l Uon 04B.DI iet Name CvsroM £ 8' F IL t!:' FormType~
Prepare d by: He I.J

Frequency of Processing nA u. r: Volume: Average 2a
J
COO Peak ;la, £100 Source System I. D. Q~ D"e '" J /"/ ... ,,

MANAGEMENT RULE NOS. I I I I I I I I I I I I I I I I
ELEMENT

EL EMENT NO. TIMES AN ENTRY IDENTIF'fING ELEMENT CODES (X)

DESCRIPTION
CLASS. MAY APPEAR ON THIS ,

(X) SET
~ i

ELEMENT Cbu. VAUDATION 0 S ELEMENT NAME
,;

8 ~ REMARKS
CODE 0 RULE (5) 'Ii

" .. ' 0

,
") •

.. '5 .. S IS ~ Ayerlge Peak
, • " ' I ~ I\) , z

E , • - - I\)
" " " 0

';: -:: 0 ;; ~

" <i ~ .. ~~]~ " ." • •
SALe.5h{AN NO 8981100 If 05 0 X 1 1 v

cusr ACCT NO ~81:!1e~ 0 4 0 X 1 I X

c{)sr /JIAM~ .sOLI> 1.81.3200 A 70 I I X X

c:osr ADOH ~i.LJ i-41.3210 1/ 70 1 1 X X

OISC R:.soP BeN • '1,201.30 021 1 1 X X

>
" •
0. -' ;:,
·

• "

I

Syltem Identification ~ Procesa BJLLIN~ ..(. 23 INPUT DESCRIPTION Page ~ of -

Set ldel1l1fJcatlon " 4BO· 2 Name 1TE!')1 F/L~ Form Type MAIS-r.
--- Prepared by: ;Ie L

Frequency of Proc:esaing DAIL"" Volume: Ayer.ge .1000 Peak 4. SO" Source System I. D. 04 Date 6-1/S/(,D

MANAGEMENT 'ULE NOS. I I I I I I I I I I I I I I I I
I:LEMENT ELEMENT NO. TiMes AN ENTRY IDENTIFYING ELEMENT CODes (X)

DESCRIPTION CLASS. MAY APPEAR ON THIS
~ m 0

ELEMENT Char' VAUDATION \) ~
ELEMENT NAME CODE . -g 8 RULE (S) , ~ REMARKS

u ';; ::£ '" to ..
.... '5 -;; el":.;88 ~ Ayerage Peak ~ ~

.;:::.c. E lS -l!~ c:-- ~ __ ",,,,~u,,ljljo ...:
~<z :~«.5Ji 0.. .:

SToel(#VNlIJE.f '1.300/00 AN t'Y7 X / /

SIZe 9/,,""/00 ~1I2.1 I I Ix
LINe N"fM£ 7'141100 A II 2.a I J X

PRIc.iS' 11/'01 BASe 8(,1.. 4 1,30 (It.. 2 / I X

TAx F£n F'X VN .,4t.4.loo N o&' Z I I X

>
•
i"

"' on

- - ~

:'ySiem l oeDllIlC.tUon 0.- "raceY I5UlUJl.Gio INPUT DESCRIPTION hge 5 0' 2'1

Set IdentHlc.ttlon a4AD" et Name "SALES mx El(E Form Type ..It:1d.J:iitr;
I'fepued by: NS;.o

Frequency of Processing OdlLy Volume: Aver.tge '2 0 Puk 2QO SOurce S~tem 1. D. 04 Date ./" -/"

MANAGEMENT RULE NOS. I I I I I I I I I I I I I
EL EMENT NO. TIMES AN ENTRY IDENTIFYING ELEMENT CODes (Xl ELEMENT CLASS. MAY APPEAR ON THIS

DESCRIPTION
(X) SIT

VAUDATION Q
S ELEMENT Chu_

~ • RULE (S) ~ REMARKS ELEMENT NAME CODE • " .. , , " • . , .. E - g g ~ Avenge Puk

~
Z • • ~ u <: S E

" -=-=,£ ~
<:f ~:2 u u '" " • " < < - '" '" •

<"",£.IrS rAX C.dDE' I 9~41t.O ... 1,,1 I J

"'ALE.5 r,A· ~, ' Of.4h41S''' " J I"

>
~
"

,

'"
-
•

Syuem Identification ~ PrOCCA _ n I n..J"':: ---. - - - -- -- INf:UT DESCRIPTION Page Go 50 " 23 ~~

:iel loenllllcallon IZ'" , I Name CUST FIt£: CHANGE l'ormType~' PrepMcd by: N~-'

frequency of Procw ing ",,~€.t!.l.l::: Vo lumc: Avcrage t.tJ. Peak .:IJ2 Source Synem I. D. "", Dale &,/,1{L.~o

MANAGEMENT RU LE NOS. 10131 I I I I I I I I I I I I I I
ELEMENT

EL EMENT NO. TIMES AN ENT RY IDENTIFYING ELEMENT CODES (Xl

DESCRIl'TION
CLASS. MAY APPEAR ON THIS

(X) SIT ~ ~ ELEMENT Cbu. VA UOATION ~ s: ELEMENT NAME CODE B RULE (S) ... • REMARKS
~ • • .. "

...
~ • • . , .. E .• 8 ~ Avcuge Peak q, z

E E • U <) 5 -= -= Co>
.. , <i " ~.:!~ '-' '-' ';; " 'll

~

« - '" ~ • •
.s:ALES/t'fA/V NO a,s /10" 05' 0 I I

CtlsT AC.~T HC /PB132S"O I" M. I I X

.()/.$C A:. .so, 8<'111 /,p'12cI30 0' , I X X

CUsr N,AMe' $0L.0 1.813200 -.. " I I X X
COST ADDIf SoLD '-8{.32/0 A 70 "

, I X X

1'0$7"/"''' 1#0 87(..()IDc 0 X 1 I)(X

>
'0 • ..
~

• • .,
-

1

OUTPUT DESCRIPTION Page_7 __ of 2J

Syne m Identification <>-< Proce.5 61((INC. Set Name INV~I c. Form Type MAT IyIAsr~'f

Prepared by, NCO
Se t Identification 1512. B Number CopieJ 8 Volume: Avetage 5""0 Peak 1t>00 Special Form I. D. 1!rlO

Date c,/tS/('t>

Ele ment NO. TIM ES AN ENTRY SOURC E IDENTIFYING ELEMENT CODES
ELEMENT Class. MAY APPEAR ON TillS Set T

DESCRIPT ION (X) SET
~ • 0 • S; Char.

I~
Source Set Identification for

, 0
ELEMENT NAME ELEMENT .-

'"
,

~" Qirect Recording •
CODE • ..

Average Peak ~ • 0 , . , .. E ..; <i . 8 0 z
::: • E 0 .- 0 • " .- " :;;:::i .. • • 5 ~ 0 -- 'Il

~ • •• ~ C < •• .. • 0" " < "
ACe T Ce'NTEJ7 1.017 lOt) /.3)\ / X lSI.:! A)\

hiO c"~T ORO ISICPBt..Zo oz 0 I , X lS'f.2.A X
/M C.OST oRO seo o? I / X ISlZA)(

YR cvST 0"0 9'98o('eO oz 0 X / / X 15'IZ;fI X

_<:)80~" NO 83t..BlrJO 0' X , / 15'12.,11

MO .sHiPpeD A.(,R(.,.5t) N 02. 0)\ , , 15'12'" X

DA ,sIOPPE D /;R$(..S50 OZ 0 X , , X 1512..4 Ix
YR SHIPPI!:D Q98oGoS-O ""

, I / X I 5"/2 A X

INVOiCe NO "7/_AO 100 A o. , I 7< /5IZA Ix
C!.()ST N,AM~ .5cLO {,BlilZOO A 70 X , ,,,11/01 X

<:'O.5T AoaR .so'o .813210 7" , I o4RoI X

COST N/fIYt~ SHIP 1.8,3220 .0 X I I X ISI2'" X

C(.)ST AbOH SHIP G.81.s23C " 70 I I /SIZA)(

ORDE'R NO (.,81.3 10" /2 I X IS-IZA X
.'>/fLc.s M AI'(NO 8981100 1N10, , I X IS'IZA ~

(', ,.,7" c<:; T N(J -0 0" I I • /JlrIZ-,,/)(>
PAym LG 23 , , 15'12)('g

SHIP'" T~"MS 911n 00 23 X , I X 16"12.4)f P. ".
C ".,,,,1'1 /61f NAI)1~ I ~~(,(,/oo 2" I / jy J51ZA)(~

SHIP F"RoM r6~1'1/ I 9n" IZ,O J.' , Ix 1$'I2.A)(""
SA'eS TAX c." I Q.J~ 41(..a IALvI .~ I ,

S"12// I ~ "
P/fICe BASI£' I B4&.4Iot) OA / I I" /$'"12.4 X -

,"" · 00 ~, ~ ,r Iy o+RDa X x
L WE NAffl_tr. ___ 1-7.",IIOC A 2' .3 Is' O./.IfDi!. X X

OUTPUT DESCRIPTIONtL. Page ~.::s

~yS[em Identificat ion OJ. rtocess 6" I tNt;. Sel Name INVaJC' f orm Type MAr; atA$TE.f
Prepared by, tiC 0

Sel Identification /51;! B Number Copies 8 Volume: Average rno Peak ~ Special Form I. D. I£ID
D.l.lc &.//s/ ~D

•
Element NO. T IMES AN ENTRY SOURCE IDENTIFYING ELEMENT CODES

ELEMENT Class. MAY APPEAR ON THIS Sel T
DESCRIPT ION 00 SET I ~ tI

ElEMENT NAME ELEMENT ellar. 1<::' e; .- Source Sel IdentlfkatiOIl for ~ g s;-
CODE <.> -;; I ':: : ~ Qlrccl Recording Q;)" ~

" .. i -;; E ... Average Peak 51! 8 .s 0 z
<=:"<:: I:o-';c":i- '" (I
';_;t-"~,,,: °Oiu ;: ~ ...:
<IJ<Z o"'~c ';:",< "'" 0-. .:!

sroCK N"MS'R I Y300100 A~ ~ ,<, 1612 A I"
aTY I ~~,.~Oo A~ • , <, siP" I x)(
,or I Q7/ __ ~~,~ • IS- X /,;-12 A v

rA~ ~E/> ~ AL ~ /f X 0-<1/02 v X

DO C~ A'. . L< " "

n ~_ MA t.., __ M I A') 1S-12A x

,orY AL ,;,,,,,-, .. ,,,"~ I I

~~ I/o -I."A A' I<' I < I"
_~ ~A t.11~/8"" I, X

A h1T FeLl 5" T,fx I, . ,M " I I "
A WT «1ST IN" AA K 1<
SA,,,"" TAX PC o. . I X I "
AAffT' sAU;-. -rAY '" ,", I I X I"

>
• ..
.,

r-------r---~TlK+H---+_--H4+_~--_4--_+++++~~~~ -

OUTPUT DESCRIPTION Page----y- Z 3

System ldendficatloo. 0 i . (GeeU B'I'tetG. SetN.lme SAL,S PArA Form Type MAG.· TAPE
Prepued by: II c. p

SCI ldentific,uion 0 Jat Number Copies I Volume; Average J!t!OQ Peak ..,621.o..c.... Special Form I. D. , , '
Dalc 0/,

Ele ment NO. TIMES AN ENTRY SOURCi IDENTIFYIN aEMENT CODES (~
ELEMENT Clast. MAY APPEAR ON THIS Stl T

DESCRIPTION 00 SET I ~ (,)
ELEMENT NAME ELEMENT Char. I (I 15.... Source Selldenlificalion for 'I:) s:

CODE .!:! _ -;0 I ::: I : ~ Qlreel Recording ~ !!
" .. :J .. ~ • w Average Peak 51 ~ 8' 0 ~
E E ~ o 5~ 1!:-2'= If) •
J!"<:i ~~ :2 C .t~~ 0-. :

.~TO' _~ / L u,~ A

",,,,pro ~.. /5/"' -4 I ~
DA '&"D A.i· , ~,~ -' X

YR .sHIPP"D I .. ,. ,,_~ ~

"" CSMAN NO R ,~,. A ,

AccT N. LA 1.-/2 A

':'7" sHIPPeD A o. I X

A~Y PRICE' E~Y I,. ,/.1M / I.

>
• .. •.
I"

•
-

OUTPUT DESCRIPTION
Page ---l..tl- ' ---2...3.....

SYlilemldentlflcatlon 04 .. oceu 8'(..' 'biG Sel Name 1",V'FNnt~y "ArA Form Type Md~ TApE
Prep~ed by: He a

Set Identification o4oZ. Number Copies I Volume: Average 2oQO Peak ~ Special Form I. D. " .
Date :-1

Element NO. TIMES AN ENTRY SOURCE IDENTIFY ING ELEMENT CODES
ELEMENT CI .. u. MAY APPEAR ON THIS Set T

DESCRIPTION ex) SET
x 0

ELEMENT NAME elEMENT Char. 1 0::;: !5 .-. Source Set Identification (Ot Q S.
CODE ~ -;; I -: : ~ Qlre.ct Recording "' ~

.... ~ -;; ~ • w Average Peak 51:: 8 0 :z:
;;::~ouc" <.>.,,;- Q

~<~ I- ~~:2 6 .t:~ ~ ~
5ToGK I.. A~ 4

.<",p ~A, T.~ I qlld I 20 .. .4

/ ,,;.4 Iv

>
I~

0-

•
-

OUTPUT DESCRIPTION Page~ 23

System Identification 0+0 rroceSi DILL IN_ Set Name C>/i'O E"/f ~/(f'(OIf .:s Form Type ,:,rANOA/fD hf/NT"

Prepared by: IICO
Set Identification O~O301 Number Caples e Volume; Average !L Peak /0 S~cial Form I. D. <-!/S!r.o Date

Elemem NO. TIMES AN ENTRY SOURCE IDENTIFYING ELEM ENT CODES {X;
ELEMENT Clas.s: MAY APPEAR ON THIS Set T ,

DESCRIPTION (Xl SET 0 x
Cbar.

Ii
,

Source Set Idenlif!cation for ~ :;;
ELEMENT NAME ELEMENT .~ III CODE ,

EI~
->5. q!rec[Recording • . , .. Average Peak < , :.l

,
• <i 0;

z
S < E , •• g " -- , .. • < - - .,] " 8 ~ ~ 15 < . " <z • <

OROeR No 83~81"o A 01 / / /5/2 A

SA'-cS ."., GOae 9~"-t.1160 05' " / / X X

~
•
0-.-
Ie:

I..,

!;
-,.

OUTPUT DESCRIPTION P.ge~ of ~

System Iden{lrtcatloo 0 4 f'l...ceiiS S Il tINt'S Set Name "gDER Clf8 QIU Form Type :,rAND""IfD Alfl /(r

0 -1 "31:>2 2 £
Pre pared by: " CD

Set Idendflcadoo Number Copies VoLume: Average Pe3.k~ Speci;aL Form i. D.
Date ~I J S /{; O

ELement NO. TiMES AN ENTRY SOURCE IDENTIFYIN ELEMENT CODes
ELEM ENT Class. MAY APPEAR ON THIS So<T ,

DESCRlPTlON (X) SET I~
0

Char.
0 S I, source Ser Idenrlflcarioo for
,

ELEMENT NAME ELEMENT . - ~
CODE " .. <" Qirec r Recording •

>< .. '5 .. E Average Peak 5 I '. ; ~ • . " z
:: < E • " " " . '" o < ~ " -• - , .. ~ ~ EC " " III ~

<z ~ < • ~
o~be" No 831.8/00 O' / I X /S/2A

SAJ..csmA;Y NP 1~9A /00 oS" I I X X

COS T ""CCT NO ~e/.JzS'O 0"- I / X X

>
•
p. _.

~

I",

"
- -- ;;:-

OUTPUT DESCRIPTION
P .. ge~of ~

System Identification 04 I'l.,..;eu FlILLINr:4 Set Name OIloE'l(&eaK,s Ft'l'm Type STANDARD PIIKV1'
Prepared by, NCO

Set ldemific;ation "~"30~ Number Copies e Volume: Iher lge a o Peak~ Special Form 1. D.
(,I/s/~o Dale

Elemenl NO. TIMES AN ENTRY SOURCE IDENTIFYING ELEMENT CODES
ELEMENT CI;aSs. MAY APPEAR ON THIS Sel T

DESCRIPTION (Xl SET l~ 0

ELEMENT NAME
Char.

i: Source Sel ldenlifiulion for • :;;
ELEMENT

I ;I~
,

CODE ~ , Q[reel Rttordtng II> •
Pe;ak • g ., • e . - AVef;age ,

~
Z

e • ~ . - . "< ~ " -• - , ~ ~ : ~a ii u] <z • < ..
O/iOeR N~ ,0 I X /5""/2 A

""oC,,- No 1..,;rDeI,.oo M I / K

>
•
19,
t::

I",

-

OUTPUT DESCRIPTION
Page ---1±.... of =-

5ystem Identification 0 4 Pru.:eiS SILL W4 Set Name QBP~1f Elflt oRS Form Type $7?INpAl/D PRJ
Prepared by: tif:.CJ

Se t Identlflcadon MQ.:3(UI Numbe r Copies ;> Volume: Average .- Peak~ Spec ial Form !. D.
(,/ 1£.t.~12 Date

Element NO. T IMES AN ENTRY SOURCE IDENTIFYING ELEMENT COD~ (JII
ELEM ENT C laD. MAY APPEAR ON THIS Set T

DESCIUf'T ION (X) SIT x 0
Chr.

Ii
,

Source Set Identification fOf 0 Q ~
ELEMENT NAME ELEMENT . - , 0

CODE ~
., .<c Direct Recording ~

, •
Average P," < • 0

,
•• • • e ..; 0; • 0 z
S ~ e ,

~ o < ~ £ u - ">
- > ~ •• • 0; ;;; ill ~

~ < z ~ . ~ C • < .. • •
ORDE:Jf "0 I B3IP8/DO 1M / I /s/2A

STOC-t NO 19~OCIO 0 0 7 / / Ix /s/2A Ix
d)TY .sJ/JPP.O "" ~ I~I I / X X

>
•
~

I"

• " -

OUTPUT DESCRIPTION P.l8e~ of 23

System Identlflcation 04 ,~ SIL'=ING Set Name OIiDa E/M,";15 Form Type ,5TA/IIOA,fO MINT

o=fC!2 -f"r
Prepared by: HCO

Set Identification Number Copies 2 Volume: Avenge Peak~ Speclill Form I. D. '-i./SL 1.0 Dale

Element NO. TiMES AN ENTRY SOURCE IDENTIFYING ELEMENT CODES
ELEMENT Clus. MAY APPEAR ON THIS Set T

DESCRIPTION (X) SET I~ 0 0 :;;
ELEMENT NAME

Ch&l.

I~
source Se t IdentifiCllion rOf 0 • ELEMENT .~ , ,

<'" QlreCI RecOfding •
CODE , ..

Average Peak " • • " . , .. E . - . , " • z
E E • .. 0 -. ., ", £ ~ - &l .; - , .. ~ & . - OJ U 0-

~

<z ~O • < • •
o,lllfoeJl? /VO la3U/c'D 0'1 I I X /Y/2 A

57bC.1(NO .,,300 U,O :~~)f I I X /SI2A

~TY oItDE/fED 876A GOD - I I X " X

>
• ..
t::

~ t--

OUTPUT DESCRIPTION Page~ of =--
Syuem Identification 0.£ "'~~ aU LING Set Name ORDER ~8{(Q1(..s Form T ype sr .. NaAIID ffllNr ! Pre pMed by: t:!.."-12.
Set I<lea lillcatlon o4'D '! Q t. Numbu Copies e Volume: Avu;lge 2 Pule -5'- Specl;lJ Form I. D.

Date r,,//$"/ ,"0 - .-
Element NO. TIM ES AN ENTRY SOURCE Ip ENT lfYlNG ELEM ENT CODES IX}

ELEMENT Class. MAY APPEAR ON THIS So<T
DESCRIPTION (Xl SET I~ 0

0 • ~
ELEMENT NAME ELEMENT

Char.

Ii source Set Identificat ion for ~
0

:Ig ,
CODE ~ .. QItecl Recordlng 0 •

Avellge Peak ~ •
" E

" " . B • z
E E • ~ . c< £ " - • • - , .. ~ ~ ~6 ;; ;;; Ib I> 'i <z • <

ORP~.R NO 831.."'00 o. / / 1>(1 /.>'2 A

5ToC.K "'. 193(10/00 O. / IS/~A

Q7Y S#IP.P£O ~ , X I v

<!lrY oRDEReQ 187"-" '-.0 " - J / X X

>
•
0-

I"

• "
'"

OUTPUT DESCRIPTION
Page~of ~

Syslem IdenlUicallon 0,(,~ .iii" I WG Sel Name aRDEll £88 .. 85 Form Type .5T;fN&M1fP ffllNT

Prepared by: ti~LJ
Sel Identiflcal ion 0..(0307 Number Copies 2 Volume: Average ..- Peak~ Sreclal Form I. D •

('/ /5/ <.0 Date

Element NO. TIM ES AN ENTRY SOURCE IDENTIFYING ElEMENT CODES
ElEMENT Clau. MAY APPEAR ON THIS S<"

DESCRIPTION (Xl SET I~ 0

ElEMENT NAME
Char.

I:
source Set Identification for 0 S;

ELEMENT .- ,
CODE , ,

I ~ "-
Qlrec t Recording ~ •

Average Peak
g

" . , , E . " , . , it z
s ~ E g -. " . . ~ £ .-• - , " ~ ~ . - OJ u ~ <z ~O " < '"

/\0 00 lno , X .r1J! A

MO SHIPPED .." I~ ... J X

.DLI. <, ,.p~, A. / X

YR 0
,

>
•
0--.
It,
I ...
•
N

OUTPUT DES CRIPTION
Plge --1.!!..... of 23

Syu e m Idenl llh::alion 0+ Proce:lS flILLIN. Sel Name C(lST CHIfN~ e..,goif' Form Type srA#DARrl PIIlJ,," --
Prepared by: "cD

Sel Ide nllflci lion M"& Number Copies e Volume: Average I P.'" 10 Specl.d Form I. D.
/"'/1.5/('0 Dale ,

Element NO. T IM ES AN ENTRY SOURC E IDENTiFYING ELEM ENT CODES
ELEM ENT CI' $$. MAY APPEAR ON THIS Set T • DESCIUPT ION (Xi SET I ~ e Char.

0 S
ELEM ENT NA ME EL EMENT

~
.- Source Se l Identificat ion lor 0 ~

I ~ .. Qirl!e t Reeardlng " • CODE ~ ,
Ayer.ge P." ~ g

• . " • • 'Il z
g ..; t . g ..

~
~ ,

~: . ~ l "2~ ~

• - > .. :20 .. -.9 ~

<z ~ < ~

_SALeS/l'UN /'i' .§?8//00 c~ I I 120/

(!.()$T AcCT NO ""'."'eSO c,fC 1 I)(/2c/ X

D)~< .lit SuP HclY &.~eCI30 "" / I)(X X

C.usr NAMe SoLO t".B13 zoo 70 I I)()(X
CLisr AD!>", SOLO (.813 210 70 I , x II X
P~$rINa. 'NO 87~o/oO 01 I J X II X

£"ITHOIf trCAsoN 7000100 O. I I X " X

>
• e
t

I.
I;:
;

PROCESS DESCRIPTION ge ...l.L- Of ...AL

Syllem Idendflution oJ. Prepared by !lC/Z.

~~W Bl.l.' "~Gio iia Validation Date ,11$/<>0 r r-
SOURCE COND

;;1
SOURCE/ DISPOSITION MAN AGEMEN7 RUL E SUFFIX AND F UENCY

MANAGEMENT
Cond: Y • C ondldon Is Sat ldled

0 x , i': N = C onditlon Is Not Sl. thfied
RULE NO. ELEMENT • ELEMENT Set Idem. Of 0

, Set Idem. or Condition Not Applicable LINE .. o • .~
Blank •

Rule No. for 0 Rule No. for NO. -to I- . ~ Action: X = Ac don to Bc Taken
Prior Result " . Prior Result • -;;; 8. " Name. Retult. Pr ior -" Blank .. Action Not to Be Taken < Name. Prior Re.sult " • " - " " -U Current ~I~ or AclU.d Value ~ o ~ Result or Actual Value ~ 0

" 0 " o Z A B D E F G H I J KLMNOPQR

• 1 ,,"I M, O:D IS'IP AI V ... (OJ) 1 Y"
v' (//!J Y H

~ .. !n, D ,r,' '" V { (oil Y •
~ ... (~j) y

v,," ~'''PN,O IS"IZ "" I /CQlflltUyr Y~I Y
s I I I I

1S'12 '" MC .5HIPPEO 0./..0307 • XXX

~H,p~D 1..-12 "" QA SN/PP£D 0-1-0301 XXX ,
rJ2/1 YJ? SHIPPt:D 040307 • •

Mo l MO S'I'IPPC"D /$"/e /1 X X

a-t / DA .sIlII"P~D /4'12 A >XX X

/, ,.." / V YJr S#IPP£"D 1$/" /1 •

il.

•
•

PROCESS DESCRIPTION P.1ge 20 Of ~

System Ed enliHCOliion OJ. Prepared by ;lcD

"'oc= 8J..t,.l OJ. Go G(] V.IUd.Idon D.lle (./1$/ (,0
1 <-

SOURCE CON o. ~! SOURCE/DISPOSITION MANAGEMENT RU LE SUFFIX AND FlUQUENCY

MANAGEMENT
Cond: Y • C ondillonls Saillfied

c x , € .N a C ondillon 11 NOI Sansfied
RULE NO. ELEMENT Sel Idem. or • , ELEMENT

LINE ~ sec Edent. or

NO. Rule No. for o ' 0 Rule No. (Of '~ Blank " CondltiOtl Not Applicable

Prior Resul t
, I- ~ I- .~ ctlon: X·a ction 10 Be T aken , -;; ~ ~ Name, Result, Prior PrlOl' Result alank " < Name, Prior Resul t '" '" , . Acdoo Not to ae Taken

U Curren I Prior or Actual Value 0 " " ,'i - Result or AClu .. l Value 0 • .. 0 o ~ .. o Z A a D E F G HI) KLMNOPQR

1012 i002 < AI...E:S TAX C.oDEr' 14'/2 A SAt..~$ TAX coOt:r o-f'170.3 1 II

• ,
.~ ,,;Ai...~S r x coo. 15"1 e A I SAi...E:S "TA'" CoDe O~D.3~/

I~/~ (x Jl. Z-.J...l) SAtes TAA CooE' IS/2A X

~'<" OO~ C'Ai... CSN.1 AN NO nne A / I SAt..CSIYl~N N. MROJ 2. Y 1/

u_ c.u.sT A<!CT' N. 15"12 A " cvsr Accr NO o-l-ifO/ Y II
}z 3

'" .:sAi...GSIrlAty /'It) I~/e A .sAI....E',sMAN IV. 04.:J,3Ce. Xx

~'A c ,<~ A"?' ~A 15/ '" .of V SAi...€,,sM"N No ~o.3 02, xX

nJ. .<~cK /'10 I$'Ni! A / .sT~C./(/Vo ~"Oe. 2. Y ~
•

020 NO IS"leA .srocK /'10 ~~().303

OPI I~< ",.,..y 'UIPPcD 1~/e, J/,{/y/YNN / 2 HYY

,,, " n.,.Y '-U' A '//Y/Y/Y/VIY/ v.y '" •
nt>. ,~v /~/2A { CiTY SHIPPED /~/e A

f 2 Z I

"'24 o.,-y s;H/PP.£J
. .

~I2A QTY Sj{IPPC.o c4-0~o~ •
~ '~'zA QTY oHOC'RE'D oJ/l.~os'

~ 1"':-/2. A QTY Sll/PPE'D 04.030(." X
,~,. A ""TY OKP~If~O ~4-0.3o(P

PROCESS DESCRIPTION ?age ~ Of 23

Synem Identlficauon aJ. Prepared by tlCO

~~~ 8t~ I. /.01. a o ValidatIon Date '//5/~O r r-

SOURCE CONO '- SOURCE/DISPOSITION MANAGEMENT RUL E SUFFIX AND UENCY 

" Cond: Y • C OIld ldOllll Sallifled 
MANAGEMENT " x ,e: N • C ondilion II NOI Salufled 

RULE NO. ELEMENT • , ELEMENT 
LINE Set Idenl. or ~ Sel ldenl. or Blank • Condition Not AppUcab le .. o • .~ 

NO. Rule No. for 

~ 
I-.t. ~ Rule No. for '& Action: X • Ac 11011 10 Be Taken 

Prior Result 
";0 X. " Name, Resull, PrIO( Prior Result " . Blank • Action NOI to Be Taken < Name, Prior Resuh ~ • . - ~ 0-U Curren! ~I~ or Actual Value ~ o ~ Result or Actual Va lue ~ 0 

" 0 • o Z A B o E F G H I J KLMNOPQ R 

,,"'A ,I. I L)ISC PC suP AQf'o/ ~'" RO/ Plflce UN BASE o~RO.e. 

I",,.. (,.INI7'" pA/CE /5/2. tJ 

" 'n .. 7 loeB D/SC PC ,"sA /rte. .A /8LANI(/ ~ 

•• • • 
,."" ", " '" "'~A /5'/2 A AMT PRe TAX /5"12 B 

A/Y1T Q7'f' ALLoW Is-/e B • 
" ~~ v' ,IlE'5(/1.. T A 

A I- I v R~SVI..T' A ~ 

~ •• .1- uT Plf/e ~ /S'/2 S I QTY SHIPPtro 1S"/2 A 

AhfT PRICe £')(T / S128 

? A mT PIfJC~ eXT o..,co / 

." AMT MICE: E'XT .,; AMI PR& -rAX 1.5"/28 

~ .. nn. .-:l'TY sHIPPC'D /5/e A ,AX reD ex CIt; o~Roe 

"'n A""r rifP EX 7?9x 15128 

• 
,-,.LI ,.., AMT pJfC TAx /5"/2 8 + AMT FE',o EX "'1'1)( /5'/2 B 

".<t", ",,9 R~.sVJ.r .A -



PROCESS DESCRIPTION ".ge 22. Of 2!J 

System Identificlt lon !24 Prepared by HCD 

Process BIL-LING o Validation Date 6>/''-/{'0 
~ 

SOURCE CON D. _ SOURCE/DISPOSiTION MANAGEMENT RULE SUFFIX AND FR UENCY 
H Cond: Y '" Condition h Satisfied 

MANAGEMENT x c ,.: N = Condillon h NO\: Salufied 
RULE NO. ELEMENT Set IdeDI. or • , ELEMENT 

LINE ~ set Ident. or Btank '= Condi tion Not AppUcable 
NO. Rule No. for 

~ . ' • Rule No. for '~ 

" I--.!. I-- ': Action: X " Action 10 Be Taken 
Prior Result • ;; .i • Name. Rel.ult. Prior Prior Rel.ult Blank " Action Not to Be Taken < Name. Prior Result "' "' -. 

U Curren I Pr ior • ' - . -
or AClu:d Value " o ~ Result or Actual Value " • - 0 - o Z A B DEFGH IJ KLMNOPQR 

0-/.3 " OOB SAi..£'.5 r.-fX C~OE /5"/2 A I (X J.J.J.~) yrl 

56 

I ""''' 
.5.AL~S TI'fX PC o..-/.RD3 AIYIT PRe 'TAl(' /0'/2 B 

0-/.5 I AMT :5/fL€S ,;IX /.5/ 2- B 

I" -/.l. V I'fESLJI. r '" x 
0-/.7 /;£eRo/ I RcSV.L.t ,4 X 

0-/.8 SALES rAY p~ ~""R03 " SALES 7,4X PC 1$"12 B 

O~1 0/2 all RcSVLT A (0/0) - RE'S()J.. ( A I (007) • 
10S'0 0/0 PeSVt.T ,4 -;:0/-;) AM T CtJST INY /.5/2 B 

007 



P ROCESS DESC RIP TION .>age 23 Of~ 

System Idemtricalion ___ 00..;. ... _____ _ Prepared by 

Process AJLL. INa o Validat ion Date 

NCO 

~J 1$'/ "'" 

LINE 
NO. 

....:e. -. 
~~ 

r 

1",57 
~A 

bu. 
zMQ.. 

2f.d. 
.. r_~ 

""- ~ 

RULE NO. 

iI Curreml Prior 

I ,., /~ 

ELEMENT 

Name. _ .. __ ___ _ 

or Actual Value 

NO 
Aec"T Nt) 

Pn..rTIN GINO 

LSI-ANN' 1 

DISC. Pt: .,., 
plJe PC 

e 
~ 

JI .5040, 

0) 

I;L 'Q} 

Set Idem. 0( 

Rule No. fO( 
Prlot Rewlt 

1201 

Ilz<>, 
1201 

/ 2. 01 

~, ... I 

1 201 

Li!.slL 
12.0/ 

~ ~ ~Ii ~1---;N;;.=m:,:.CR;:~:"CIC, .• ~~I~;:--"T-:i ~ ~~o: Result 0( .... CIUil] Va lue 

ELEMENT Sel Idem. or 
Rule No. for 
Prior Result 

I #_<" A<1 AN IVO 

AceT NO 

(I) 
( eJ. 

-.LU. 

pISC. P c. SOP 80/'1 

D15e. pc. SliP SON 

VAMe" .,f'OI..D 

,[ C uST' A DD~ .s,(J/...D 

~#P,,# 

#M 

,..JDt'\1 

I 0-<''''0/ 
o~DI 

(")40-1. 

0.-1-0,4 

I ,, -<'d.J: 

Cond: 

Action: 

It 

T RU LE SUFRX .... ND I 

Y .. Condition Is Satidied 
N '" Condition Is Noc Sat Idled 
Blank '" Condit ion Not .... pplicable 
X = ACtion to Be Taken 
Blank " Action Not to Be Taken 

Ix 

Ixlxi 



Note 
Number 

J. 

2. 

3. 

Appendix Il, Page 28 

STANDARD REFERENCE NOTES FOR VALIDATIONS 

Explanation 

If the element is not valid, continue with 
the execution of the Management Rules for 
validations and processes indicated by the 
set that contains the invalid element. 

If the element is not valid, continue with 
the execution of the Management Rules for 
validations indicated by the set that con
tains the invalid element. Do not execute 
the Management Rules for processes in
dicated by the set that contains the invalid 
element. 

If the element is not valid, do not continue 
with the execution of the Management Rules 
for validations. Do not execute the Manage
ment Rules for processes. 






