PRELIMINARY APPROACH
TO

TABULAR PROGRAMMING

Earl O. Althoff
Eastman Kodak
October, 1960 Rochester, N. Y.

1.

10.

POINTS ABOUT PRELIMINARY APPROACH TO TABULAR PROGRAMMING

For each element used, prepare a 15-digit title to use in the English text
and a four-digit abbreviation to use in formulae. The four-digit abbrevia-
tion either starts with a letter or is numbered sequentially .0001, 0002,

0003, svoes

Do not strain to over-abbreviate. For example, CTOl, CTO2, ... can be used
to stand for control totals of various types. It is usually best to glve
mnemonic abbreviations only for the hundred or less most used elements.

Data sets can be listed on a data element sheet if desired. For example,
the data set "Target Date'" abbreviated TRGT consists of the data elements:

"Target Month" abbreviated TMON
"Target Day" abbreviated TDAY
"Target Year" abbreviated TYR

In the above, four entries are made, one for each data element and one for
the data set.

The definition should be clear and unambiguous,'but above all must be com~
plete. Differentiate clearly between similar data elements.

Prepare a data file for each set of data (not going directly to a report).
Do not consider the machine in your preparation. As an example consider a
tape with records of Type A followed by several records of Type B; prepare
two data files, A and B, since having these on the same tape is pure machine
method.

For each data set or element listed, record a reference to set number and page
number of the data element sheets. Thus, 03-0l refers to data element set 03,
page Ol. Record both the title and the abbreviation. Record the length for
that file. A given element can require four digits on one data file and six
on another.

Give each data file a letter designation A, B, C, .., record whether input or
output. In the case of an updated data file, assign two letters, say A for
input and B for output.

Obtain a Data Processing Spacing Chart for all report lines (messages as well
as fancy reports). Label each report A, B, etc. Use a second letter for each
different type of line. Thus, Report A may have lines AA, AB, AC, ...

Tables must give all loglc except how to start and how to stop. All the state-
ments which follow must be accomplished completely — no exceptions can be per-
mitted.

The table is divided into conditions and actions. On the left, one gives the
English statement of the condition or action, and on the right, one records the
precise formula fully and completely. Thus, on the right,

A-STAT = B-STAT clearly shows that the condition is true if and only if the
STAT element of data File A equals the STAT element of data File B.

C-0001 > O shows the condition is true only 1f the data element OO0l of data
File C is greater than the constant 0.

it B9

12.

13.

14,

15.

16.

18.

19.

-0 -

The formula for a condition can include any connectors desired to complete
"a single condition". Examples are:

F-TAX = 10 or 15
FP-TAX = 10 and G-TAX = 15

The actions can be varied also. In general, one records data movement or
arithmetic actions first, then all data file advance actions, then all table
transfer actions.

Typical data movement actions are D -» E (ASCG#, PROG, and TTOl) meaning
move from data File D to data File E the data elements ASG#, PROG, and TTOL.
In case of one move, D-ASG# -» E-ASG#. Others are D-PDHR add to E-YRHR, etc.

When data is posted to report lines, increment is used as: D-ASG# -> ABLL mean-
ing post data element ASG# of data File D to position 14 (right-hand increment)
of line B of Report A.

Another action mey be to do an action or actions from other tables. Thus,
Action 2 of Table 01-A5 can simply be "Do actions 3 and 6 of Table 03-BT.

Another action may follow the actions for a data rule from another table in
its entirety; if so, simply transfer to Rule XX of Table XX-XX.

The advance data files actions are abbreviated GIV X for input and TAK X for
output. In some cases posting a data element to a control total is included
as: C-AMT add to TOT1l; TAK C. When an advance action is given, the next ac-
tion calling on that file from any table will be from the next record.

Tables are numbered NN-XN where NN denotes the project area; NN runs from
0l, 02, ,., X is & letter denoting a sub-project and runs from A to Z, while
the rightmost N is 1 to 9 and denotes table within sub-project. The last
action for any data rule is always a transfer to some table. (Do not trans-
fer to a rule within a table — leave this to the programmer.)

On any given table, possible entries opposite condition are ¥, N, and -.
Y = Yes, N = No, and - means "does not apply".

The matrix |Y|YIN| would indicate an analyst omission since the combina.tion
YIN|N Y]
is not specified. One must specify enough data rules to account for every

combination of the conditions, whether possible or impossible (is it really
impossible???)

The -~ is used primarily in two cases:

A. If condition 1 is A~STAT = O and condition 2 is A-STAT = 1, then a|Y|-]|entry

-1X

would show that, if A-STAT = O, we don't need to test for A-STAT = 1 and
vice versa.

B. The - may be used to indicate a plain transfer to another table, when the
only alternative would be to over-run the 6 X 10 matrix. Example:

Condition 1 [Y[Y[Y[Y[Y[Y[Y[Y[N The data rule on the right simply
Condition 2 |Y|Y|Y|N|Y|N|N|N|- transfers to another table where
Condition 3 |Y(Y|N|Y|N|Y|N|N|~ the NO's for Condition 1 are spelled out.
Condition & |Y|N[Y|Y|NI[N]Y|N]-

20. In sumary, the preliminary approuach is designed to obtain from a Job analyst
actions to follow for every combination of conditions. The conditions and
actions are not to be vague — but must be 100 percent precise to every data
element involved. There is no thought given in the preliminary approach to
automating any of the steps:tables -2 programs. Only a person with two -
three years active programming and computer systems experience can prepare
tables containing many subtle traps which develop only in automatic E.D.P.
systems; for the next year or so, it 1s expected that these people will
return expanded tables (with these subile points included) to the job analyst
and will, in addition, write programs in KodaKoder.

EOAlthoff:rds
October 11, 1960

DATA PROCESSING SEEKVICE Job No.

ELEMENTS DEFINITION B! Rari 0. Dbt
[SET # O1 PAGE #01] Project: D.P.S. Billing
1,~DIGIT TITLE One Letter ASGN 4-DIGIT ABBREV. ASGL
DEFINITION: A jetter code used to differentiate between several tvpes of perpetual assicnments
. - r e b b ilsn
lS“DIGIT TITIAE Asaipnment No . l""DIGIT A.BERW- ASG#

DEFINITION: A four-digit number given in sequence to non-perpetual assignments as they occur.

The number has no structure of any sort.

15-DIGIT TTTLE _Billing Number L-DIGIT ABBREV. BIL#
DEFINITION: A five-digit number assigned by the D.P.S. Accountant to each account or sub-

account which D.P.S. bills. It is structured as desired to yield a meaningful report order.

15-DIGIT TITLE PROG-SYSTEM NO. (DATA SET) 4-DIGIT ABBREV. UJ#

DEFIKITION: A uniform Job number which serves a variety of purposes. It 1s organized primarily

elements MFC, RUN#, and PRGL.

15-DIGIT TITLE __ Project Title 4-DIGIT ABBREV. _TITL
DEFINITION: A 4S-character title gpiven to each projiect having a four-digit assignment number.

15-DIGIT TITLE Project Type Code 4-DIGIT ABBREV. TYPE
DEFIRITION: A two-character code enabling us to group a project by new programs (N), changes

(), or revision (R). The units position is 1 for a business project, 6 for a program re-

search project.

15-DIGIT TITLE Major Fctn. Code L-DIGIT ABBREV. MFC
DEFINITION: A two-digit code used by D.P.S. to roughly distinguish between basic major project

__functions such as Merchandise Billing, Paper Finishing Scheduling, etc. It is the flrst two

—digits of Prog=System Na.

| T rrr——
©.DIGIT TITLE Tar.ct Date L-DIGIT ABBREV. TRGT

DawfINITION: The date by which an assignment should be completed to the point that production

results are obtainable. Six digits as 011560.

DA?A PROCESSING SERVICE Job No.:

ELEMENTS DEFINITION Name: Earl Althoff
SET # 01 PAGE # 0o | Project: D.P.S. Billing ,
1,-DIGTT TITLE _ Programmer 4-DIGIT ABBREV._ _prog "

DEFINITION: An officia
| _Methods Staff

8
15-DIGIT TITLE Registration # 4~ DIGIT ABBREV. Rm/

DEFIRITION: A six-diglt number given to each employee of Kodak Rochester. The {irst three

§_digits indicate department and the last three are sequentially given by various rules.

15-DIGIT TITLE __ Prog-Syst.Descr, L-DIGIT ABBREV. DESC
DEFINITION: Refers to a 29-digit alphanumeric title or description given to each specific

program or computer systems sub-assignment.

e e R L L U B S et e SELES e R A e B
15-DIGIT TITLE __ porm. Man Months 4-DIGIT ABEREV. _pamy
DEFINITION: Refers to a time estimate gilven for each program in an assignment. The time is

. ven in four digits (one decimal place),

TR i ———
15-DIGIT TITLE Due Date for V 4-DIGIT ABEREV. DUEV
DEFINITION: A date given for each program to be ready for system volume testing. Six digits

as 011560 or 12B161.

15-DIGIT TITLE Department l-DIGIT ABBREV. DEPT

DEFINITION: A four-character alphanumeric avbreviation of the department a programmer belongs
~to. Fxamples are DPJ, MSDD, AZQ, DC.

15-DIGIT TITLE __ Computer Run # 4-DIGIT ABBREV. RUNf
DEFINITION: _The third and fourth digit of Prog-System No.. Delineates the programs consititutih

a scheduled computer run.

m
© .DIGIT TITLE Program Letter L-DIGIT ABBREV. PRGL

DesfIRITION: The fifth digit of Prog-System No. Letters from A to Z are given to programs of A

—glven computer run.

PROCESSING SERVICE

DATA FILE LAYOUT
FILE DESCRIPTION Assignment Master

DATA

Job No.:

Project: D.P.S. Billing-
Data File:A in B out
Bame: Bar] Althoff

L -

IITLE

ABBREV, LENGTH

For Programmer Use Onl
REC # INCR.

)

1._Assizoment No.
2._Billing Number

ASGi# L

BIL#

2

3. Proj. Ldr. Name

PLIR

10

L. Project Title

TITL

45

5. Pro)l. Type Code

6._Malor FCTN Cade
T 0101

8. Bill-aont Code:*

I

3. Completion Code

10.

111,

2.

13-

Ly,

i

25

16.

T

18.

19.

20'

2l.

22.

23.

2k,

25,

26.

2 8

28.

2'; .

30.

31.

33.

3k,

35+

DATA PROCESSING SERVICE Job No.:
DATA FILE LAYOUT Projeck: ”

FILE DESCRIPTION Current Time Records Data Flle: ¢ 4p
FAme: Earl

For Programmer Use Onl

1._Assigoment No. ~01-01 Asc#
2._Prog-Syatem No. ~Q1-01 Lrf
3._Programmer —Ql-0z _ [PROG
k. Department 01-02 DEPT
5. Progress Code 01-03 STAT
6. Est. Date for V 01-03 ESTV
T-_Hrs. This Period 01-03 HRTP _
8._CPU MIN V-Test —01-05 VTSI
9._K-1038 This Pd. 01-0k4 K10P
10._K-208 This Pd. _01-04 K20P
11._x-308 This Pd. Q01-03 K30P
12. x-L0OS This Pd. —01-0h KLOP
13. K-508 This Pd. 01-04 K50P
% ASGL can be M and N only 01-01 ASGL

T—d

LN

5

o o oo B RE o= s

5.
16.
1T.
18.
19.
20.
2l1.
22,
23.
2k,
25.
26.
27.
28.
29.
30.
31.

33.
3h4.
35.

DATA

PROCESSING
DATA FILE LAYOUT

FILE DESCRIPTION Program System Master

SERVICE

Job No.:

Project: D.P.S. Billing "
Data File:K in L out

Name: FEarl Althoff

For Programmer Use On

TITLE REF. ABBREV. LENGTH REC # INCR.
at——— —

1._Assignment No. 01-01 ASG# b
2. Prog-System No. 01-01 UJ# 5
3. Programmer 01-02 PROG 10
4, ProgeSystem Description 01-02 DESC 29
5. Est. Man Months 01-02 ESTM L
6._Due Date for V 01-02 DUEV 6
T+ _Department . 01-02 DEPT __ k4
8._Progress Code 01-03 STAT _ X
9. Est. Date for V 01-03 ESTV 6
10. HRS to Date 01-03 HRTD 5
11. Bill-out Code 01-03 BILC 1
12. V-TEST To Date 01-05 VITD 6
13._K-10S To Date 01-0k K108 3
14. X-208 To Date 01-05 K208 3

. K-308 to Date 01-0k K308 3

16, K-40S To Date 01-0l K408 3

17._X-508 To Date 01-0k K508 3
18. ASGL will be M and N only 01-01 ASGL 1
19.

0.

21.

82,

23.

24,

b5,

6.

7.

8.

-

30.

31.

33.

34,

P>

PROCESSING
TABLE LAYOUT

TITLE Update Assignment Master

DATA

SERVIC

-

Job. No.:
Name: ®arl Althoff

Project: p.P.8. Billing

Table No:_0l-Al

GoNDITIONS ERPAUENCY { 0L 10 CONDITION
Y RULE KO, 1] 2 N 8l9 |10 ABBREVIATIO:
{, —is there a new asslenment master? | y | y N N D-ASGH < A-ASGH
J
—Is there s chenge to the agsign-
b. w | Y N D-ASGH = A-ASGH
\ ment master?
§. —ls the change record a deletlon?—| y | § ” _ D-CMPL = 2
. Is the change record a completion | _ _ Y N D-CMPL = 1
. notification?
g. Are we posting changes to a com- _ . N N D-CMPL = A
: pleted assignment?
ACTIONS I '
e | v —
1 —Mave entire master record Lo serve Y x A —> B
as basge.
s Post change assignment no. to up-
. _dated master. Y D-ASG# ~9-B- ASGH#
4, Post corresponding parts of change Y BIL#, PLDR, TITL, TYPE,
to master. m' TBGT’ BILC D‘ﬂ_—_
A Set~up and write delete error D- ASG# =PAA- 39
‘ ¥ Write AA
. _message. rite
. —Post completion code to master Y Y D-CMPL (Numeric portion)
| a : ~—=>B- CMPL
E. _Set-up and write deleting message D-ASG# —>AB-18
Write AB
v Advance controls to next change Y| ¥ Y GIV D
8 Advance controls to next input master b 4 Y GIV A
9 Transfer to Table 0l-Al Y TR 0l-Al
10 Transfer to Table 01-A3 TR 01-A3
" Wble Ql-A2 b 4 Y TR 01-A2
12._Transfer to Table Ol-Ak ; TR O1-Ak

13

DATA PROCESSING SERVIC

Job. No.:

TABLE LAYOUT Name: Earl Althoff
TITLE 8 Cha ec Project:_D.P.S. Billing
- Table No:__ 01-A2
1 0100
CON T s FRPQUENCY CONDITION
' DITIOR NO. 1] 23 89 [10 ABBREVIATIO
i. _Is there a change to the updated Yy |Yly D-ASG# = B-ASGH
. master?
‘4. Is this change a deletion? Y |-|- D-CMPL = 2
3‘ CB.— Y ﬂm
. tion? “ . i i
Are we posting c es to a comple- Y D- CMPL A
ted assignment?)) -
$.
é.
PRy rnee -
' ACTIONS ;

y, —Fellow action of Rule 3 Table Ol-A} ¥ TR Rule 3 - OlAl
~» JPost completion code to master. Y D-CMPL (numeric part)
~¥ B-CMPL
8, Advance controls to next change. 1Y GIVD
) Follow actions 3 and 5 of Table
* oAl p 4 Duplicate 3 and 5 of
rl = 01-Al
8. Transfer to Table 01-A2 TIY TR 01-A2
6. _Transfer to Table Ol-Ak TR Ol-Ak

DATA PROCESSING SERVICE Job. Mot

TABLE LAYOUT Name: Earl Althoff
TITLE Update Prog-System Master Project: p p.a Billing
2 Table Na: 01-Bl
CONDITIONS [FREQUENCY 1 Q{100 1011 110 CONDITION
D1 " RULE NO. | 1|2 (3% |s16[7[8]9 10 ABBREVIATIO!
—Is there a new Prag-Syatem Master?
1. Y| Y|(Y|N|N|N|N E-FLDL < K-FLDL
5. Is the new master for this assign- ylylwla o] |- E—ASG# - B—A.BO#
ment?
Is this a delete? YINR|l=]=|=]=]=
. E-DPGM =
I Is the next master for this assign-
g~ - |-|-|Y|Y|Y|N K-ASG# = B-ASGH#
5, —lathere a change for the master? | . | - (- |y |Y|N (N E-FLDl = K-FLDL
6 Is the change a delete? - !-|-|Y|N|N|RN E-TPGM = 1
N T L R R R T T T T S LTI U T A L_' TR
ACTIONS :
e TTIILET .
Mave entire measter to gerve as
A e, TIT % K—->L
~ Post corresponding change fields L #
"~ to master. b Y Dhst ,W bEﬁ?%ILC
” t . Blanks to STAT, ESTV Zero
3, Post start-up constants to master Y o H‘R‘I‘D V‘I‘I‘ ld.OS | K208,
K_jOS fcso
Set-up and write delete error
b ¥ E_UJ‘# #ﬁg
message. Write AF
5. _Bet-up and write deleting message. Y E- ASGH -»AG19
: : E-UJ#=>AG29
6. _Advance control to next change dyly v |y GIV E
record.
7 Advance control to next master vyilyly GIV X
record.
~Iransfer %o this Table Ol-BlL
8. ble O Y TR O1-Bl
9 TRansfer to Table 01-B3 Y Y TR 01-B3
10 TRansfer to Table 01-Cl Y Y TR 01-C1
mRansfer to Table Ol-B2 Y TR 0l-B2
12. TRansfer to Table 01-B4 ‘ Y TR 01-Bk4

13¢

DAYA PROCESSIN

hma

G SERVICE

Job. No.:

—

TABLE LAYOUT Name: Earl Althoff
TITLE _ Finish deleting on Prog-Syst. Delete. Project:_D.P.S. Billing
Table Na: 01-B2
FREOUENCY CONDITION
S EPEE 50 XD RULE NO. 8|9 [0 ABBREVIAT .

fl. Are there any more Prog-Syst.

i changes?

E-FLD]1 = L-FLD-1

y _Is there a current time record?
B,

C~-FLDl = L-FLDL

3.

Y

L

;a-

6.

ACTIONS

ST —

] Set-up and write message AC.

__i-h

E-UJ#-2AC30
AC

Action 6 of table 01-A3

n Selocorrespandivg fo delete messog: .

3, Set reat of corresponding and

) write delete message.

Action 7 of table 01-A3

., —Advance contrals to next Prog-Systé y GIV E
o Change.

Advance Controls to next time recoxd.
). GN K
6. _TRansfer to Table Q1-B2 TR 01-B2
7 _TRansfer to Table Ol-Bl TR 01-Bl
8.
9.
10.
1
12

13+

DATA PROCESSING
ELEMENTS DEFINITION

SERVICE

ISET # PAGE #]

Job No.:

Name:

Project:

15-DIGIT TITLE

DEFINITION:

L-DIGIT ABBREV.

15-DIGIT TITLE

DEFINITION:

4-DIGIT ABBREV.

15-DIGIT TITLE

DEFINITION:

L4-DIGIT ABBREV.

15«DIGIT TITLE

DEFINITION:

L4-DIGIT ABBREV.

15-DIGIT TITLE

DEFINITION:

L-DIGIT ABBREV.

15-DIGIT TITLE

DEFINITION:

4-DIGIT ABBREV.

15-DIGIT TITLE

DEFINITION:

L~DIGIT ABBREV.

5-DIGIT TITLE

DEFINITION:

L4-DIGIT ABBREV.

DATA PROCESSING SERVICE Job No.:
DATA FILE LAYOUT DAt

FILE DESCRIPTION Data File:
Name:

For Programmer Use Onl
TITLE REF. ABEREV. LENGTH REC # INCR,

27,

WORK PROBLEMS
Limited Entry Tables

The following rules should be utilized in considering the work
problems for limited entry tables. The six common table elements
are used in displaying the structure of the sample table and the verbal
description of the permissable entries for each element.

Table Header

"' T
Condition Stub || oniifJon Entry|
|
Action Stub - Action [Enfry| |
!

Entry Header ! | |

TABLE HEADER - The name or number of the Table; used for identi-
fication and reference purposes. Example: RE-ORDER DETER-

MINATION, DEDUCTIONS, 004, R26.

CONDITION STUB = A relational expression which, through evaluation,
can be determined to be true or false. The following relational

operators are permitted:

AV
N 1Y

Logical connectives, such as "AND", "OR", "NOT" are not
permitted.

Below is the recommended general form for the relational
expression

[Element - 1] [Relational Operator] [Element - 2]

where Element -1 and Element -2 may take one of the following
forms:

< MOoRE (LECOoRrRVS &
smeT S £ 54

Data Name
Literal (enclosed in quotes - " ", except for numbers)
Arithmetic Expression

‘Examples of relational expressions: Quantity-on-order
Quantity-on-hand, FICA < 144,00, SENTINEL = 99999,
MARITAL STATUS = "SINGLE",

CONDITION ENTRY - There are only four possibilities permitted in
this portion of the table:

Y (for True)
N (for False)
bLo vk ul — {not pertinent)
H W OTHERS o A/O (for all others)

All alternatives must be covered, the 'all others' entry should
be the last entry (farthest to the right, since columns are as-
sumed to be considered from left to right until a set of conditions
is met).

ACTION STUB - The actions to be executed are displayed in this
section, The following operators are available for use in the
sample problem:

SET... = READ
OPEN WRITE
CLOSE ~ STOP

Operands may be either data names, literals,or arithmetic ex-
pressions (to be used with the SET = operator) Examples:

OPEN DETAIL FILE, SET NET = GROSS * .85, READ MASTER
RECORD.

ACTION ENTRY - Only two possibilities exist for the action entry:
X (for execute)
blank (for do not execute)
Assume that the actions are executed in the order written for

a particular column (if more than a single action exists for a
particular condition or set of conditions).

o T

ENTRY HEADER - For the sample problems the entry header is used
for specification of the next table. This portion of the table
can be considered an extention of the action stub and action
entry. At the bottom of the action stub the - GO TO table-name -
appears; an "X" in the proper row will indicate which columns
are affected. If more than one "next table" is appropriate,
more than one "go to™ must appear (see example below).

EXAMPLE:

TABLE: FICA CALCULATION

YTD GROSS <4800, 00 Y| N{Y]| A/

SALARY 0. 00

SEX = "MALE"

RIf< | <] K
|
=

SET FICA = .04 * SALARY

SET FICA = ,02 ¥ SALARY X | X

SET FICA = 0,00 X X

SET YTD FICA = YTD FICA

+ FICA X

GO TO TABLE 2 XIX|X | X

GO TO TABLE 6 X

COLUMN 1 -
IF YTD GROSS =4800.00 AND SALARY > 0,00
AND SEX = "MALE"™ THEN SET FICA = ,04 * SALARY,
GO TO TABLE 2.

COLUMN 2 -
IF YTD GROSS = 4800.00 AND SALARY NOT 0,00
THEN SET FICA = 0,00, GO TO TABLE 2.

COLUMN 5 -
OTHERWISE SET YTD FICA = YTD FICA + FICA,
GO TO TABLE 6.

Problem 1 - Selected Stockholders Report

Prepare a limited entry decision table given the following information
and rules,

N

From a file of stockholder records we wish to extract the records
of stockholders other than individuals ard the records of indivi-
duals who hold more than 100, 000 shares, With this information
produce a listing of the common shares held by these stock-
holders, the name of each stockholder, the type of stockholder
(decoded) and thetotal number of stockholders and shares owned
for this report.

Given - For each stockholder we have:
1, Stockholder name
FA Stockholder type (individual - 01, trust - 02,
bank - 03, broker -04)
35 Number of shares owned.
Obtain - List for each selected stockholder:
1 Stockholder name
2, Stockholder type (decoded)
3, Number of shares owned,
4, A summary of the total number of stockholders

and total number of shares for this report.

Problem 1 Solution

Type of Stockholder = 01
Type of Stockholder = 02
Type of Stockholder = 03
Type of Stockholder = 04

Number of shares>100, 00Q Y

More stockholders?

s ———— = S

Write stockholder name

Write '""Individual"

Write ""Trust"

Write '""Bank"

Write "Broker"

Write number of shares

Stockholder count =
stockholder count +1

Tdal shares = Total
shares + number of
shares

Write stockholder count
Write total shares

X
X

vl
Y
N
x | X
X
X
1 %
x| x
x| %
X
X

Problem 2 - Pasting Operation

Prepare a limited entry decision table given the following information

and rules,

Input - Two files

A,

Output -

A,

A master file is in sequence by identification number (I.D.)
Each I.D. number has an associated on hand (O. H.) amount.

A'detail transaction file is in sequence by identification
number (I.D.). Each I.D, number has associated types

of transactions - receipt, issue, recount-and their amounts,
sequenced respectively. There can be multiple receipts
and issues, but only a single recount.

One file

The new master should contain I.D. number and on hand
amount,

Actions:

Le If there is no activity write the new master from the
old master.

2, Provide for computing the new on hand amount,
(receipt « +, issues = -, recount = replace)

3. Provide for start and end of job.

4, Provide for an error routine in the case of a trans-

action occuring for which there is no master.

5. There are no additions or deletions to the master
file.

Solution to Problem 2
TABLE @ PSTING

OoOPeAT WM
START ?
OM I.D. £ TransI.D
OMI.D, = Trans 1.D.
OMI,D.>Trans 1.D.
Type of trans=receipt
Type of trans=issue
Type of trans= recourt

End of trans file m
End of master file

|

- Z

|

<

<<

g/

<~

<

Z 2 Z

Open all files
Close all files

SetOH=OH+ Trans Am't
Set OH=OH-Trans Am't
(¢TOH=Trans Am't

Do Error Routine

Write NM from OM

Read OM
Read Trans

STOP

Ll

K

— e e

e

117

TABSOL
A FUNDAMENTAL CONCEPT FOR SYSTEMS-ORIENTED LANGUAGES

T. F. Kavanagh

Manufacturing Services
General Electric Company
New York, New York

Summarz

Lack of efflcient methods for thinking
~through and recording the logic of complex in-
formation systems has been a major obstacle
to the effective use of computers in manufac-
turing businesses. To supply this need, this
paper introduces and describes '"decision
structure tables, ' the essential element in
TABSOL, a tabular systems-oriented language
developed in the General Electric Company,
Decision structure tables can be used to de«
scribe complicated, multi-variable, multi-
result decislon systems. Various approaches
to the automatic computer solution of structure
tables are presented. Some benefits which
have been observed in applying this language
concept are also discussed. Declsion struc-
ture tables appear broadly applicable in infor-
mation systems design.

In addition, they are of interest be-
cause they revise many earlier notions on
problem formulation and systems analysis
technique., Decision structure tables will be
an available feature in GECOM, General
Electric's new General Compiler, which will
be first implemented on the GE 225,

Introduction

Progress in computers can be broad-
ly divided into two categories. Firat there is
the work that essentially accepts computers
for what they are, and directs its energies to-
ward further refinement of the original hard-
ware, and operating technigue. Research to
improve recording density on magnetic tape
would certainly fit this description, In the
second category are the efforts to advance by
developing new areas of application, This lat-
ter work is directed toward generalizing the
concepts and hardware, so that they apply to
an ever-increasing span of problems and situa-
tions. Obviously, both groups are vital; but
it was this second stimulus -- the desire to

expand the area of economic application --
which motivated the research reported in this
paper. While the earliest beginnings can be
traced as far back as June, 1955, the primary
research effort started in November, 1957,
under the title of the Integrated Systems Pro-
ject. Leadership was assigned to Production
Control Service, a component in General Elec-
tric's Manufacturing Services. The basic pur-
pose of the Project was to probe the potential
for automating the flow of information and
material in an integrated business system,

Then, as now, computers were making
significant contributions in many areas. Unfor-
tunately, one of these areas was not, as some
would have it, in the operation and control of
manufacturing businesses. Important advances
were made in specific applications such as ord-
er processing payroll, and inventory record-
keeping; but these represented only a smadll per-
centage of the total information processing and
decision-making in even the smallest manufac-
turing firm. S5till these early successes were
very important, They developed confidence in
computer performance and reliability; but even
more, they encouraged systems engineers and
procedures personnel to continue computer ap-
plications research. Similarly, management,
under growing foreign and domestic competition,
rising costs, and a seeming explosion in paper-
work requirements, saw intuitively -- or perhaps
hopefully -- that computers offered a possible
approach to improved productivity, lower costs
and sharply reduced cycle times, It was in this
environment that the Integrated Systems Project
began a comprehensive study of the decision-
malking and the information and material pro-
cessing required to transform customer orders
into finished products -- a major part of the
total business system for a manufacturing firm.

The Decision-Making Problem

Once underway, it was soon apparent

118
3:

that there was an enormous amount of decision~
making required to operate a business. Indeed,
the number and complexity of these decisions is
perhaps the most widely underestimated and mis-
understood characteristic of industrial informa-
tion systems today. Tens-of-thousands of ele~
mentary declisions are made in the typical manu-
facturing business each working day. All are
necessary to guide and control the many function-
al activities required to design products, pur-
chase raw material, manufacture parts, assem-
ble products, ship and bill orders, and so on.
The typical factory is a veritable beehive of de-
cislons and decislon-makers; for example:

""What size fuses shall we use on
this order for XYZ Company?'' -~
a product engineer's decision.

. "What is the time standard for
winding this armature coil?'"-
a manufacturing engineer's
decision.

. ""What test voltages shall be
applied 7" -~ a quality control
planner's decision.

: ""What should be the delivery
promise on this customer's
order?''-- a production control
planner's decision.

. "How much will this model cost,' -~
an accountant's decision.

This list of elenuentary day-to-day
decisions could be expanded to cover all busi-
ness activities. If this were done, the list
would cover hundreds of sheets of paper before
each activity listed all the decisions for which
it was responsible. Moreover, some of these
decisions are repeated many times each day for
various sets of conditions., In the end result,
one cannot help but be impressed with the multi-
plicity of these detailed choices and selections.
But more importantly, making these declsions
costs money, in many cases more money than
the direct labor required to make the product.
In addition, business performance ls greatly
affected by the speed and accuracy with which
this decision-making is carried out.

Composing a detailed list of these
elementary business decisions is more than an
academic exercise, For one thing, such an
analysis of an actual operating business will
demonstrate conclusively that these elementary
decisions are handled quite rationally (which is

somewhat contrary to popular opinion.) One

must be careful not to be misled by quick, super-
ficial explanations which gloss over fundamental
reasoning. In our present-day manual systems
which emphasize files of quick answers, the
logic behind the decision is often left unrecord-
ed. As a result it is easy to lose contact with
their rational nature, and frequently we tend to
feel these decisions are substantially more intui-
tive than is actually the case. At times, some
persistent as well as penetrating analysis (often
through extensive interviewing of the operating
personnel presently on the job) is required to
uncover the true parameters and relationships
on which operating decislons are really based.
This arduous work is more than justified, for it
egtablishes a sound conceptual foundation for
autorhation, and hence the practical application
of the concepts and techniques developed in this
paper. Thus, once it is established that these
operating decisions are rational, it should follow
that they can be structured in a consistent logi-
cal framework, Such a structure is presented
in this paper.

Operating vs. Planning Decisions

At this point let us deflne terminology
a little more precisely, and stress that we are
speaking about the detailed, elementary decisions
required to ''operate' a business as opposed to
""planning' one, First, a decision in its simp-
lest form consists of selecting one unique alter-
native from an allowed set of possible actions.
Operating decisions are defined in the context
of this paper as selecting the appropriate course
of action in accordance with given problem con=-
ditions to operate the business successfully,
Operating decisions may be assumed to be made
under ''conditions of certainty.'" The solution
for a specific set of problem conditions will al-
ways be the same. Under these premises, the
action or outcome decided on can always be pre-
dicted. In a pragmatic sense, the decision-mak-
ing process may be classed as ''causal''; that is,
B may be said to follow from A. For example,
an engineer's decision to install fuses might
follow from a customer's requirement for inde-
pendent circuit protection,

The relevant factors or parameters
affecting the decision can also be determined.
The relationship values are known. For ex-
ample, in most homes, the current carrying
capacity of the house wiring is the only para-
meter value one needs to know to select an
appropriate fuse. In an industrial application,
however, the values of at least three additional
parameters are usually required: voltage, time
and type of fuse mounting. The strategy and the
alternate outcomes are known; that is, the per-

missible fuses are known. To continue the illus-
tration, the fuse selection may be limited to
those carried in the stockroom; otherwise the
bounds of the operating decision system are ex-
ceeded and the decision-maker would appeal to

a higher authority.

To approach the analysis of operating
decisions from another viewpoint, it might be
compared to a linear programming problem,
and as will become evident, a linear program-
ming solution might be considered as somewhat
of a mathematical bound for the class of deci-
sion-making systems under discussion.

These operating decisions are quite
apart from the planning decisions of a business.
The '"planning', “administrative'', or '"policy"
decisions in a business are basically those
prior commitments which permitted all the as-
sumptions about operating decision systems in
the preceding paragraphs (i.e. certainty, caus-
ality, known relationships, etc.) Some examp-
les of planning decisions are:

""Shall fuses, circuit breakers, or
both be used on the product line?'--
a product engineer's planning
decision.

""Should this group of parts be
made on the screw machine or

from die castings?'-- a manu-
facturing engineer's planning
decision,

. '"Should this component be inspected
before or after the milling opera-
tion?'-- a quality control planning
decision,

; ""What rule shall be used to deter-
mine the correct order quantity?''--
a production control planner's
decision,

""What is an appropriate cost-of-
money?''-- an accountant's plan-
ning decision.

These are typical planning decisions
made in designing an operating decision system.
To make the distinction clear, consider the de-
sign engineer who is motivated by cost consider-
atlons to put fuses on the economy part of the
product line, while specifying circuit breakers
on more deluxe models., Or consider the pro-
duction control planner who eselects one of the
common square root formulas for determining
all order quantities. Once he puts this decision

119
3.2

rule in the operating system, order quantities
for every part will be determined using this
square root formula with specific values for
cost, lead time, usage shelf life, etc., appro-
priate to the specific item being ordered.
Assuming the operating decision system is auto-
matic, and this is the intention, the production
control planner need not make any order quanti-
ty determinations himself. Rather he will be
watching the measures of operating system per-
formance (inventory level, number of shortages,
ordering costs, etc.) to see how well his deci~
slon rule ls working. Incidentally, it's worth
noting that the production control systems de-
signer will be using a ''cost-of-money' figure
supplied by accountants and an annual require-
ments figure projected by salesmen, Of course,
the objective of this fundamental decision analy-
sis is to suggest a conceptual scheme which will
permit automating all the routine operating de-
cision-making required to direct a business,
thus permitting the engineers, planners, and
other technical advisors, to concentrate on do-
ing a better job in design,

Specifying Decision Systemas

But great difficulties still remain. As
already pointed out, operating decision systems
are invariably large and complex, containing
multi-variable, multi-result decision problems
with sequence of solution difficulties thrown in
on the side. One serious problem which arises
quickly is the actual development of the decision
logic itself, Numerous techniques have been
proposed ranging from precise, legalistic ver-
bal statements to complex mathematical equa-
tions. Among these however, it appears that
matrix-type displays and flow charts are the
most cornmon., The matrix-type displays
appear under a variety of names: collation
charts, tabulated drawings, standard time data
sheets, etc, For example, engineers have fre-
quently used collation charts to show direct re-
lationships between end-product catalog numbers
and component identification numbers. Typical-
ly, however, collation charts are a tabulation
of past decisions rather than a description of
the logic used to derive them. Matrix-type dis-
plays often suffer from redundancy and frequent-
ly become large and unwieldy as operating tools,
Similarly, they make no allowance to sequential
decision-making.

Flow charts handle this sequence prob-
lem very nicely, This graphic method describes
a declsion system by the extensive use of sym-
bols for "mapping" the various operations. A
variety of flow chart techniques are used in
factory methods and office procedures work.

120
3.2

They are particularly effective in relatively
straightforward, sequential decision chaine but
run into difficulty when describing multi-vari-
able, multi-result decision processes. As an
illustration, flow charts have been used exten-
sively to document the detailed logic of compu-
ter programs; but some harried computer pro-
gramming supervisors still maintain that the
best way to transfer program knowledge is to
reprogram the job, The difficulty of interpret-
ing someone else's flow charts is certainly one
of the major trials in today's computer technol-
ogY.

In addition to these more popular tools
numerous other diagramming or charting techni-
ques have been useful in limited problem areas,
However, the basic problem remained: there
was really no effective, uniform method for
thinking about and specifying decision systems
as complex as those required to operate a busi-
ness. To help solve this problem, the Integrat-
ed Systems Project developed a new technique
which combines key characteristics of earlier
methods and adds some new features of its own.
This new technique is called the decision struc-
ture table. The balance of this paper will des-
cribe what decision structure tables are, how
they work, and the results of their use in
General Electric.

Structure Table Fundamentals

Structure tables provide a standard
method for unambliguously describing complex,
multi-variable, raulti-result decision systems.
Thus, each structure table becomes a precise
statement of both the logical and quantitative
relationships supporting that particular elemen-
tary decision. It is written by the functional
specialist in terms of the criteria or parameters
affecting the decision and the various outcomes
which may result,

A structure table consists of a rectan-
gular array of terms, or blocks, which is further
subdivided into four quadrants, as shown in
Figure 1. The vertical double line separates the
decision logic on the left from the result functions
or actions which appear on the right. The hori-
zontal double line separates the structure table
column headings or parameters above {rom the
table values recorded in the horizontal rows be-
low. Thus, the upper left quadrant becomes
decision logic column headings, and is used to
record, on a one per column basis, the names
of the parameters (PO) effecting the declslons.
The lower left quadrant records test values {pu)
on a one per row basis, which the decision para-

meter {dentified in the column heading may have
in a given problem situation. The upper right
hand quadrant records the names of result func-
tions or actions to be performed (Rg;) as a re-~
sult of making the decision, once again on a one
per column basis. Similarly the lower right
quadrant shows the specific result values (ryy)
which pertain, directly opposite the appropriate
set of decision parameter values. Thua, one
horizontal row completely and independently
describes all the values for one decision situa-
tion.

There is, of course, no limit to the
number of columns (decision parameters and
result functions) in any given structure table,
Even the degenerate case where the number of
declsion parameters goes to zero is permiss-
ible. Also there is no limit on the number of
decision situations (rows). Thus, the dimen-
slions (columns by rows) of any specific struc-
ture table are completely flexible, and are a
natural outgrowth of the specific decision being
described, A series of these structure tables
taken in combination is said to describe a de-
cislon system,

Rather than become further involved in
abstract notation, let's consider some actual
illustrations to develop an insight into the nature
of structure tables. For example, the over-
simplified illustrative structure table in Figure
2 states that an elementary decision on transpor-
tation from New York to Boston in the afternocon
is (according to the person who developed the
decision logic) a function of three decision para-
meters: Weather, Plane Space, and Hotel Room,
Weather has only two value states, Fair or Foul;
Place Space i{s elther OK or Sorry; and Hotel
Room can be Open or Filled, In terms of re-
sults, Plane or Train are the only permissible
means of Transportation. Following the illus-
trative problem, we see by Inspection that the
solution appears in the second row. Therefors,

Train is the correct value for Transportation,

Other Instructions are Cancel Plane, and this
is the End of the decision problem,

The intent of this simple structure
table is to provide a general solution to this
particular decision situation, and if the problem
of afternoon trips to Boston ever arises (and one
assumes that it frequently does), then an opera-
ting decision can quickly be made by supplying
the current value of Weather, Plane Space, and
Hotel Room, and, of course, solving the struc-
ture table. Solving a structure table consists
of examining the specific values assigned the
decision parameters in the problem statement
and comparing or "testing' these values against

the sets of declsion parameter values recorded
in the structure table rowa, Testing proceeds
column by column from the first decision para-
meter to the last (left to right) and thence row
by row (top to bottom). If all tests in a row are
satisfied, then the solution is said to be in that
row and the correct result values appear in the
same horizontal row directly opposite to the
right of the double line, When a test is not sat-
isfied, the next condition row is examined,

When a particular structure table has
been solved, it is often necessary to make more
decisions. To specify what decision is to be
made next, the last result column of the struc-
ture table may be assigned as a director to pro-
vide a link to the next structure table, Notice
the last row in the illustrative structure table
which specifies that for any value of Weather,
with no Plane Space, and no Hotel Room, the
decision-maker is directed to solve the next
structure table, Transportation, New York-Boa-
ton, a.m. =~ which is another structure table
describing how to select a means of transporta-
tion in the morning.

In a similar fashion, the systems de-
signer would use a whole system of atructure
tables to describe a more realistic operating
decision problem. He completely controls the
contents of each table, as well as its position in
the sequence of total problem solution, He may
decide to skip tables, or, if desired, he may re-
solve tables to achieve the effect of iteration,

In any event, the entire system of tables, just
as each individual structure table, will be solv-
ed using specific decision parameter values ap-
pearing in the problem statement. In other
words, solving a set of structure tables consists
essentially in re-applying the systems designer's
operating decision logic.

Having completed this quick and very
simplified introduction to structure tables, let
us now return to consider each structure table
element in greater detail. This will provide a
deeper insight into the power of the structure
table technique, as well as a better understand-
ing of how they are used to describe operating
decision systems. The illustrations are drawn
from actual operating decision problems,

Structure Table Tests

Comparisons or tests between prob-
lem parameter values (pv) and decision para-
meter test values (tv) need not be simple identi-
ties, such as those used in the previous illustra-
tion. Actually the problem parameter values
may be compared to the decision test values in

121
3.2

any one of the following ways in any structure
table block:

EQ pv = tv problem value is equal to
test value,

GR pv > tv problem value is greater
than test value,

1s pv £ tv problem value is less

than test value,

NEQ pv # tv problem value is not

equal to test value,

GREQ pv > tv problem value is greater
than or equal to test value.
LSEQ pv £ tv problem value {s less than

or equal to test value,

This broad selection of test types (or
relational operators as they are known techni-
cally) greatly increases the power of individual
structure tables and sharply reduces size, It
permdts testing limits or ranges of values rather
than only discrete numbers, In Figure 3, TABLE
1000 uses several difference test types to brack-
et continuous and discontinuous intervals. Also
note in Figure 3, that the relational operator
may be placed in the test block immediately pre-
ceding the test value, or in the column heading
immediately following the decision parameter
name, When this latter notation is used, the
relational operator in the column heading applies
to all test values appearing immediately below,

Test values are not limited to specific
numbers on alphanumeric constants (indicated
by quotation marks); a test block may also refer
to the contents of any name. In this case of
course, the current contents of that named fleld
are compared to the problem parameter value
in accordance with the test type, For example,
TABLE 1005 in Figure 3 tests the current value
of INSUL~A TEMP against MAX~ TEMP to make
certain that insulation temperature ratings are
satisfactory.

In addition to these simple comparisons
it is also possible to formulate compound struc-
ture table blocks involving two decision parame-
ters or test values using a relational or logical
operator.

The following logical operators may be
used:

first test value or the
second test value.

OR tviOR tv,

122

a2

AND pv 1 AND PV, first problem value and
second problem value,
NOT tv, NOT tv, firat test value and not
second test value,

Also the truth or falseness of a com-
pound decision parameter or test value state-
ment can be tested with the symbhols:

T true
F false

Lastly, any arithmetic expression
may be used in place of a parameter name, and
complicated blocks involving several names and
operators are also permitted. Although in this
latter case, it is worth noting that the language
capability far surpasses any requirements ex-
perienced to date in formulating operating deci-
slon systems,

In writing structure tables, the situa-
tion often arises where, except for one or two
special situations, one course of action is ade-
quate for all input values, The concept of an
"all other' row was introduced to aveid enum-
erating all possible logical combinations of the
decislon parameter values. The "all other' con-
cept can be verbalized as follows: "if no solution
has been found in the table thus far, the solution
is in this last row regardless of the problem
values.' While this greatly reduces table size,
it also implies that the problem was stated cor-
rectly and does indeed lie within the boundaries
of the decision system. The related concept of
"all" which appears in the Transportation: New
York-Boston, p.m. can be similarly verbalized:
"regardless of the problem value proceed to the
next column,' It was introduced so that a given
table need not contain all permissible states of
any given decision parameter and also to handle
the case where a test in a given column had no
significance., In all the above situations the ap-
propriate structure table blocks are left blank
signifying no test.

Structure Table Results

Similarly structure table results are
not limited to assigning alphabetic constants or
numeric values to the result functions or actions
named in column headings to the right of the
double line. Actually there are four result func-
tions:
"ASSIGN'' - which is implied when a
named field appears as a
result function. This indi-

cates that the result value
appearing in (or named by)
the solution row is to be
assigned or placed in the
field named in the column
heading.

"CALCULATE" = which is implied by the use
of an equal sign after a name
appearing as a result value,
This indicates that the results
of the formula evaluation nam-
ed in the structure table block
should be assigned to the field
named as the result function
in the column heading,
Actually this is not the only
way to perform calculations
as any arithmetic expression
may be used as a result value,
FERFORM - which performs the data pro-
cessing or arithmetic opera-
tions referred to in the label
appearing in the result value
block. When this is complet-
ed, the next result function
is executed.

GO - links the structure table to
the label appearing in the
result value block, There
is no implied return in a
GO function.

Most of these result functions are il«
lustrated in Figure 3 and Figure 4. In Figure 4,
for example, TABLE 2000 assigns the alphabetic
constant "FLAT-STRIP'" to ASSEMBLE. In the
first and third result columns, arithmetic expres-
sions appear as result values, In TABLE 2005
the implied CALCULATE is used for formula
evaluation. TABLE 2005 also uses the PER -
FORM function to soclve TABLE 2008 or carry
out some other data processing operations de-
pending on the particular solution row. TABLE
2005 is linked by the GO operation to TABLE
2010, 2015, 2020..

TABLE 1005 in Figure 3 shows an
interesting use of the GO function., After the
winding has been specified in TABLE 1000,
assumedly on a lowest cost basis, the product
engineer evidently wants to check the insulation
temperature rating with the maximum expected
operating temperature, If the insulation temp-
erature rating should turn out to be greater
everything is fine and the decision-maker pro-
ceeds to TABLE 1007. If not, first TYPE-N
and then TYPE-T insulation are specified to

supercede TYPE-F, thus getting progressively
higher insulation temperature ratings by redir-
ecting the structure table to solve itself,

Frequently, a result function-or action
will not have a value for all rows. This is com-
mon when several result functions are determin-
ed by the same structure table. In this situation
the phrase ''not exist'" has been used in verbaliz-
ing and the structure table block is left blank,

The use of formulas as structure
table results can greatly reduce the size of the
table, As an illustration, suppose that a given
result function has twenty-six values (10, 12,

14 16, ...60). Ostensibly, the structure table
to select the appropriate result value would have
twenty-six rows, This decision could be reduced
to one row by calculating the result value as
some function of the decision parameter as
shown in Figure 6. Obviously, all result rela-
tionships are not so conveniently proportional
but a surprising number of result functions can
be described with simple linear and exponential
expressions., The curve fitting problem can be
greatly simplified by using structure table rows
to break the curve into convenient intervals that
can be represented by such simple mathematical
expressions.

Preambles and Postscripts

Each structure table is preceded by a
heading which identifies the table by number and
indicates its dimensions in terms of decision
parameter columns, result function or action
columns, and value rows, Tables may be num-
bered from TABLE 1 to TABLE 9999999 and
allowance is made for up to 999 decision para-
meter or result functions. Provision is also
made for 999 condition rows.

Following the heading is a NOTE which
may contain any combination of alphabetic or
numeric characters, The NOTE may be used to
give the structure table an English name and
provide a verbal description of the decision be-
ing made. Subsequent to this any labels naming
expressions or arithmetic calculations referred
to by "CALCULATE'" or PERFORM operators in
the body of the structure table may be defined.
For example, note the definition of TIME ~ 1 and
TIME A2 in TABLE 2005 of Figure 4. The struc-
ture table proper follows BEGIN.

If no solution row is found in the struc-
ture table proper, or if the structure table has
executed all results or taken all actions without
reaching a GO function then control is passed
to the area directly below the structure table.

123
3.2

Here are recorded any special instructions per-
taining to that particular decision. Of particular
note is the situation where no solution row has
been found. Such a failure is regarded as an
"error.,' In certain types of decision systems,
this may be exactly what the systems designer
intended., However, error conditions most often
indicate a failure of the decision logic to cope
with a certain combination of input values. The
systems designer should set up to notify himaself
whenever such an error occurs by designing an
error routine which will provide him with a
source language printout identifying the table
that failed and the problem being solved at the
time. With this problem printout and the source
language structure tables, the systems designer
has all the data he needs to trouble shoot the
system in his own terminology. Thus, each
structure table should be followed by the state-
ment: IF NOT SOLVED GO 4

In this way any structure table failures will al-
ways be uncovered. Frequently, the situation
arises, as mentioned earlier, that regardless of
the solution row, the next structure table solved
is the same. In this case the statement:

GO . may be written after or
below the preceding error statement, to serve
as a universal link to the next structure table.

The areas immediately preceding and
succeeding the structure table proper may also
be used for input-output, data movement, and
other data processing operations,

The Dictionary

The precise name and definition of
each decision parameter and result function are
recorded in a ''dictionary.'" This dictionary be-
comes an important planning document in the
systema engineer's work for it provides the
basic vocabulary for communicating throughout
the entire decision system. The dictionary
should note a parameter's minimum and maxi-
mum values, as well as describe how it behaves.
If the parameter is non-numeric in nature, the
dictionary should record and define its permis-
sible states. Significantly, the systems engin-
eer formulates both the structure table and the
dictionary using his own professional terminol-

ORY.

The dictionary will also prove useful
in compiling and editing structure tables for
computer solution. It also follows that problems
presented to the resulting operating decision
system must also be stated in precisely the
same terms as the structure tables, To those
as yet uninitiated to the perversity of computers,
this may seem a simple matter; unfortunately,

124
3.2

it is not. Interestingly however, one of the
more promising application areas for structure
tables appears to be in stating the logic for com-
pilers and edit programs,

Summar

The foregoing description of decision
structure tables is not meant to be a fully defini-
tive language specification. The intention is to
introduce the reader to the decision structure
table concept and to discuss their characteris-
tice in sufficient detail to provide the reader with
enough understanding to evaluate their inherent
flexibility and application potential. Many addi-
tional features are available which aid in formu-
lating concise, complete decision structure
table systems and also to facilitate input-output
operations, but the reader will find that the
fundamentals already described are adequate
for structuring most operating decision logic,

Automatic Solution of Structure

Table Sznteml

Decision structure tables have proven
to be an excellent method for analyzing or formu-
lating the logic of complex industrial information
systems, but after taking such great care to pre-
cisely record each elementary decision in this
highly structured format, it is only natural to
speculate on the possibility of solving structure
tables automatically with an electronic computer,
Before plunging into the computer world, how-
ever, it is worth noting that some systems en-
gineers have had very faverable experience us-
ing structure tables on a manual basis -- especi-
ally as a problem analysis technique, and also
in limited applications in manual clerical sys~
tems,

Numerous methods for solving struc-
ture tables automatically suggest themselves.
First, the tables could be coded by hand., Such
an approach would use structure tables as a di-
rect substitute for flow charts. Actually this
really isn't as bad as it initially sounds. Many
benefits would accrue from making this precise
readable format the standard method for stating
decision logic. It also offers the possibility that
a series of macro-instructions could be develop-
ed, thereby permitting untrained personnel to
code tables without detailed knowledge of compu-
ters or programming. However, this approach
suffers some distinct disadvantages in compari-
son with the other alternatives outlined below.

Second, a generalized interpretive
program could be written to solve any structure

table. This offers the possibility of using a
translator to work directly from keypunched
structure tables without any manual detail cod-
ing. This approach makes economical use of
memory since the basic programming to solve
any table appears only once and the structure
table itself offers a compact statement of deci-
sion logic. This reduces the amount of reading
time required to bring the problem logic into the
computer. File maintenance via recompiling
structure table tapes also appears quick and
simple, However, interpretive programs usu-
ally run more slowly; and this implies some
penalty in total machine running time,

A third approach would be to create a
structure table program generator in which an
object computer program would be generated
from the source structure tables, This approach
would provide faster computer running times
for maximum efficiency. A generator program
would probably require more complicated coding
than an interpretive translator. In addition, the
generated object program would not be as con-
cise as the structure tables themselves., How-
ever, where computer running time is of para-
mount concern, this approach has considerable
appeal.

Because of the available time and
money, all the early efforts of the Integrated
Systems Project toward automatic structure
table solution were essentially interpretive. It
is interesting that a simple, yet adequate, tabu-
lar systems-oriented language could be provid-
ed in this way for somewhat less than a man
year's effort, Similarly work to date in the
area of formula calculations indicates that a
comprehensive system of mathematical notation
like that required for scientific work is probably
not necessary in many operating business deci-
sion systems. Initial efforts on the IBM 702
were followed with experimental TABSOL langu-
ages for the IBM 305, IBM 650 and the IBM 704,
These applications to different computers repre-
sented more than simple extrapolations to differ-
ent pieces of hardware. In each an effort was
made to expand capabilities of the language., In
addition, the peculiarities of the equipment were
explored, since one great concern was to free
the user from a programming system usable on
one and only one computer, As you might sus-
pect, this wasn't always completely possible on
the smaller computers, lacking tape or core
memories, Nevertheless, the most recent
Manufacturing Service effort on the IBM 650
produced a language with named fields, index-
ing, a two-address arithmetic, completely
generalized structure table formats, and con-

sidering the alphabetic restrictions of the

equipment, remarkably flexible output formats.

Although ‘these experimental languages
proved quite adequate, one could not help but
look toward the tremendous power of one of the
more conventional languages. For one thing,
the prospects for structure table application in
other problem areas brightened, and it seemed
reasonable that this power would be desirable in
future work. Further our own tabular systems
language development had brought us to the point
of direct competition with the major language
efforts already underway., Here General Elec-
tric's Computer Department entered on the
scene. The Computer Department was develop-
ing a new concept in compiler building for use
with General Electric computers. The first
version of this new General Compiler, called
GECOM, will be available to GE 225 users in
May, 1961. It is designed primarily around
COBOL, with some of the basic elements of
ALGOL, and is now to contain all of TABSOL.
To state the results of joining TABSOL with
GECOM simply, it places the power of a full-
fledged language at the command of every struc-
ture table block. Within General Electric, we
obviously have a very high regard for the contri-
bution of decision structure tables in information
systems design. Significantly, the same com-
mittees who developed COBOL are now actively
investigating tabular systems-oriented languages
as the language of the future, By drawing on the
CODASYL work and utilizing the extensive re-
search and development experience already
available within General Electric, the Computer
Department expects that GECOM will provide
users with a system compatible with both the
present-day common business language, COBOL,
and also the tabular systems-oriented language,
TABSOL. Incidentally, the decision structure
tables appearing in Figures 3, 4 and 5 are writ-
ten in conformance with GECOM specifications.

Applications of Structure Tables

As somewhat implied in the illustra-
tions a substantial amount of experience has
been gained in applying structure tables to a
wide variety of operating decision-making prob-
lems over the past three years. But perhaps the
most interesting experience, at least from the
researcher's point of view, was the very re-
search work which spawned decision structure
tables themselves. Earlier, it was mentioned
that the Integrated Systems Project undertook a
careful study of the essential information and
material processing required to directly trans-
form customer orders into finished products.
For example, the product must be engineered

125
3.2

prior to shipment, but the payreoll, though rever-
ed by all of us can well be done at some qther
time, out of the main flow of events. Using this
rough rule of thumb, the following activities
were studied (Figure 7): order editing, product
engineering, drafting, manufacturing methods,
and time standards, quality control, cost ac-
counting, and production control. These activi-
ties account for a fairly substantial portion of
the business system. Normally, they would in-
clude 100% of the direct labor and 100% of the
direct material as well as about 50% of the over-
head. All the production inventory investment
lies within the scope of this system and obvious-~
ly most of the plant and equipment investment,
Fortunately, the inputs and outputs to this sys-
tem are simple and well-defined: the customer
order comes in and the finished product goes out.
With this in mind, it was possible to treat all
activities within these bounds as one integrated,
goal-oriented operating decision system and
develop decision structure tables accordingly.
Working with a small product section in one of
the Company's Operating Components, a signifi-
cant portion of the functional decision logic was
successfully structured, Further the resulting
structure tables were directly incorporated into
a computer-automated operating decision system
which transformed customer orders for a wide
variety of finished products directly into factory
operator instructions and punched paper tape to
instruct a numerically programmed machine
tool. This prototype system was demonstrated
to General Electric management in November,
1958, Starting at the beginning, (Figure 8) the
computer systemn edited the customer order and
using the product engineer's design structure
tables, developed the product's component char-
acteristice and dimensional detalls. These in
turn were used in the manufacturing engineer's
operation structure tables to develop manufac-
turing methods and determine time standards.
And so the flow of information cascaded down
through the various business functions comput-
ing the quality control procedures, the product
costs and the manufacturing schedules; eventu-
ally issuing shop paperwork and machine pro-
gram tapes,

Since the completion of this work
further research and development of the struc-
ture table concept was conducted in a variety of
functional areas for different kinds of businesses
in General Electric: defense, industrial appara-
tus, and consumer-type products, In addition,
structure tables have been used in entirely dif-
ferent applications such as compilers. They
aleo appear to hold great promise in complex
computer simulation programa,

126

Benefits of Structure Tables

Ans a result of these efforts, we have
come to believe that the decision structure table
is a fundamental language concept which ia
broadly applicable to many classes of Informa=-
tion processing and decision-malking problemas.
They offer many benefits in learning, analysing,
formulating and recording the decision logic:

1. Structure tables force a logical,
step-by-step analysis of the decision.
First the parameters affecting the
decision must be specified; then suit-
able results must be formulated. The
nature of the structure table array is
such that it forces consideration of
all logical alternatives, even though
all need not appear in the final table,
Similarly, the precise structure table
format highlights illogical statements.
This simplifies manual checking of
decision logic. The declsion logic
emphasizes causal relationships and
constantly directs attention to the
reasons why resulta are different.
Personal design preferences can be
resolved and intelligent standardiza-
tion can be fostered.

This i no mean capability, Indeed,
it was very instructive to witness the
development of methods and time
standards logic in parallel with the
development of the engineering logic
during the initial Integrated Systems
Project study, Through analysis of
the decision atructure tables written
by the various functional specialists,
everyone was able to achieve an in~-
sight into the product and the business
rarely obtained in so short a period
of time. The facts of life in product
design, factory methods, and standar-
dization were brought into the open
very rapidly.

2, Structure tables are easily understood
by humane regardless of their func-
tional background, This does not
imply that anyone can design or create
new structure tables to describe a
particular decision-making activity;
but it does mean that the average
person, with the aid of a dictionary,
can readily understand someone
else's structure tables, Thus, struc-
ture tables form an excellent basis for
communication between functional

specialiste and systems engineers.

Structure tables also go a long way

toward solving the difficult systems
documentation problem.

3. Structure table format is so simple
and straightforward that engineers,
planners, and other functional spe-
clalists can write structure tables
for their own decision-making prob-
lems with very little training and
practically no knowledge of compu-
ters or programming. Given a few
ground rules, regarding formats and
dictionaries, the structure tables
written by these functional people
can be keypunched and used directly
in operating decision systems with-
out ever being seen by a computer
programmer, This cuts computer
application costs as well as cycle
times,

4, Structure table errors are reported
at the source language level, thus
permitting the functional specialist
to debug without a knowledge of com-
puter coding.

5, Structure tables solved automatically
in an electronic computer offer levels
of accuracy unequalled in manual
systems. Note, however, that any
such mechanistic systems lose that
tremendous ability of humans to
compensate for errors or discrepan-
cles,

6. Structure tables are easy to main-
tain. Instead of changing all the
precalculated answers in all the
files, it is often only necessary to
change a single value in a single
table. For example, when changing
the material specified for a compo-~
nent part under current file refer-
ence systems, it would be necessary
to extract, modify and refile all
drawings and parts lists calling for
any variation of the component part.
Using structure tables, it would only
be necessary to alter those structure
tables which specified the component
material,

Summar

In cloeing, we recommend that the
reader demonstrate the effectiveness of decision

structure tables to himself by '""structuring'" a
few simple decisions. For example, write a
structure table which will enable your wife to
decide how to pack your suitcase of any business
trip, Perhaps a simple business decision such
as those mentioned earlier would provide a more
instructive example. The first structure tables
are usually difficult to write, because most of
us do not, as a general rule, probe deeply into
the logic supporting our decisions. However,
once this mental obstacle is overcome, ''struc-
turing'' facility develops rapidly. If the reader
will take the time to "'structure'' a few decisions
and actually experience the deeper insight and
clarity which this technique provides, then deci-
sion structure tables need no apologist, they
will speak for themselves.

Acknowledgement

In contrast to most technical papers
which essentially document only the work of the
author, this discussion reporte on the efforts of
over seventy-five General Electric men and
women., In particular, credit is due Mr. Burton
Grad, who though no longer with General Elec-
tric, was a principal originator of the decision
structure table concept. Mr. Malcolm C. Boggs,
Mr, Daniel F. Langenwalter, Mr. Herbert W.
Nidenberg, and Mr. Theodore E. Schults repre-
senting Service Components and personnel from
soma fifteen different Operating Components
within General Electric have contributed toward
bringing these ideas to their present state of
development and application. Acknowledgement
is also due Mr. Charles Katx of General Elec-
tric's Computer Department who was instrumen-
tal in joining TABSOL and GECOM.

Decision
Structure Table

...a rectangular
array of terms,
or blocks...

...vertical
double line...

...horizontal
double line, ..

« s o« Structure
table
values, ..

Decision

Logic

Results or
Functions

Column headings

Table Values

P P !

o1 | Foz [Foz|| Ror [Roz [Ro3 [Roa
11 | P12 P12 1l Fig VP12 Pisd %14
P21 | P22 |P23 || T21 [T22 |T23 |T24
P3; | P32z (P33 || F31 |F32 [¥33 |34
P4] | P42 | P43 || T41 |[T42 |T43 |T44

Figure 1

Problem Statement: Select Transportation, New York - Boston, p.m.

Weather: Foul
Plane Space: OK
Hotel Room: Open

Decision Structure Table: Transportation, New York - Boston, p.m.

Weather Plane Hotel Trans- Other In- Next
Space Room portation structions| Decision
Fair OK Open Plane End
; Cancel
Foul OK Open Train Plane End
Sorry Open Train End
Cancel NY -Bost.
OK Filled Plane a,.m.
. NY-Bost.
Sorry Filled o

Solution:
If the value of Weather is Foul, and
the value of Plane Space is OK, and
the value of Hotel Room is Open,

Then

the value of Transportation is Train, and

the value of Other Instructions is Cancel Plane, and

the value of Next Decision is End.

Figure 2

TABLE 1000.

DIMENSION C4 A5 R10.

NOTE TABLE FOR DETERMINING DETAIL VARIABLE PART CHARACTERISTICS FOR A
LINE OF SENSING COILS IN ACCORDANCE WITH CUSTOMER END PRODUCT

SPECIFICATIONS.

BEGIN. INSUL
SERVICE EQ| UNITS EQ| VALUE | VAILUE |ITURNS| DIA | RESIST INSUL __TEMP
"DC" "MAMP" | GR 180 LS 450 [|0.3/I |.001 |2.6%*TURNS |"TYPE-F"| 150
"DC" "MVLT" |GREQ 45 | LSEQ 150f 26 |.008 1.84 "TYPE-F"| 150
"pCH "MVLT" |GR 150| LSEQ 330|| 13 |.002 0.46 "TYPE-F"| 150
"DCH "VOLT'" | GREQ 0.9 | LSEQ 300{ 60 |.002 39.0 "TYPE-F"| 150
"D "VOLT" |GR _ 300 LSEQII00f 120 [.002 137.0 "TYPE-F'"| 150
NACH "WATT" 230 |.002 | 150.0 "TYPE-N"| 200

IF NOT SOLVED GO ERROR~COIL.
MOVE "COPPER" TO MATERIAL.
GO TABLE 1005.
END TABLE 1000.

TABLE 1005.

DIMENSION C2 A3 R3.
NOTE TABLE TO MAKE CERTAIN THAT INSULATION TEMPERATURE RATING EXCEEDS
MAXIMUM OPERATING TEMPERATURE.

BEGIN. ,

MAX~TEMP INSUL INSUL INSUL~ TEMP GO
LSEQ INSUL~+TEMP TABLE 1007
GR INSUL~TEMP "TYPE-F" "TYPE-N" 200 TABLE 1005
GR INSUL~ TEMP NTYPE-N" NTYPE-T" 250 TABLE 1005

IF NOT SOLVED GO ERROR~COIL.
END TABLE 1005,

Figure

3

't
0El

TABLE 2000. DIMENSION C3 A3 R4.

NOTE TABLE TO SPECIFY VARIABLE FACTORY OPERATION CHARACTERISTICS FOR THE

INITIAL SENSING COIL WINDING FROM PART CHARACTERISTICS.

BEGIN.

SUPPORTA TYPE EQ | MATERIAL EQ| TURNS START~W ASSEMBLE | FINISHAW
"TABED-HOLE" "COPPER" TURNS

"FLAT-STRIP" "COPPER" LS 100 2 "FLAT-STRIP" | TURNS-2
"FLAT-STRIP" “"COPPER" GREQ 100 ||TURNS/2 ['"FLAT-STRIP" | TURNS/2
"FLAT-STRIP" "ALUMNM" TURNS "2 FLT-STRP"

IF NOT SOLVED GO ERROR~COIL. GO TABLE 2005,
END TABLE 2000.

TABLE 2005. DIMENSION C2 A3 R3.

NOTE TABLE TO CALCULATE TIME STANDARD FOR PREVIOUS OPERATION.
TIME~1 = 125%DIA*TURNS.

TIME~2 = 1000%DIA/SQRT (TURNS).

BEGIN

TURNS TURNS TIME PERFORM GO

LS 15 TURNS + 0.88 SETUP TABLE 2010
GREQ 15| LS 100 TIME~1 = SETUP TABLE 2015
GREQ 100 TIME~2 = TABLE 2008 TABLE 2020

IF NOT SOLVED GO ERROR~COIL,
GO TABLE 2005,

Figure 4

1€1

TABLE 1010, DIMENSION C2 Al R3.
NOTE COIL QUANTITY DETERMINATION,
BEGIN.

SERVICE EQ |UNITS NEQ "WATTS" ||[COIL~QUAN
HACII 0
"DC" OR"AC"Y = 4 QUAN
Do F 2*QUAN

IF NOT SOLVED GO ERROR+~COIL. GO TABLE 1100.
END TABLE 1010.

TABLE 1500. DIMENSION C4 A3 R10.
NOTE COIL LOAD DATA AND CYCLE TIMES.
BEGIN.

IF NOT SOLVED GO ERROR~COIL.
MIN~DATE = TODAY + MIN~CYCLE.
NORM~DATE = TODAY + NORM~CYCLE.
GO TABLE 1510.

END TABLE 1500.

SERVICE EQ UNIT EQ ACY EQ |INSP EQ ||[NORMsCYCLE MIN+CYCLE|COIL~LOAD
TACT TAMPST OR "MAMP" [1 TCTOML" 15 11 QUAN
HAG "WATT" 1 COMLY" 15 11 2.2% QUAN
IIDCII TIAMPSII OR I!MALiPIl 2 \‘ICOMLII 15 9 0. 9* QUAN
HDCH "VOLT'" OR "MVLT"| 2 ['COML" 15 9 0.9% QUAN
"DC" "AMPS" OR "MAMP"| 1 "GOV T" 20 16 1. 4% QUAN

Figure 5

TABLE 1510. DIMENSION C2 A2 R3.

NOTE COIL PROMISE DATE DETERMINATION .

BEGIN.

COIL~LOAD LSEQ CUST DATE PROMISE GO
CUM~CAP (NORM~DATE) GREQ NORM~DATE CUST~DATE NORM~LOAD
CUM~CAP (MIN~DATE) GREQ MIN+DATE CUST+ DATE RUSH~LOAD
CUM~CAP (CUST~DATE) CUST+DATE EMER~LOAD

IF NOT SOLVED GO OVERLOAD.

END TABLE 1510.

Figure 5a

EET

134

» R

0 10

1 12 3 2 R

2 14

3 16

. i 0 25 (2%p) + 10
25 60

«++. The use of formulas as structure table results can
greatly reduce structure table size, as shown by the simple
straight line expression above. Structure tables may also be
used to partition complicated curves into convenient segments
as shown below. ...

// (- P P R
—--‘_“-_‘_.._-}F- Id- p—
- ,/ 0 P1 Ix +a
/)
P P2 mx + b
P, P3 nx + ¢
SRSSC.. Fel Setaa
= /
/
‘I
0 Pl Py P3

Figure 6

PRESENT MAIN LINE SYSTEM

CUSTOMER ORDER

[

REFERENCE
INFORMATION

)

e

i

s,
/DATA Fl LES

Fﬁ Y BI.UEPRINTS

111111111111

/
/ENGlNEERI

PLANNING
CARDS

b

@

PLANNING
AND WAGE RATE

LI

///////7// / |
QUAl.lT Hzﬂzl" UAI.ITY
%RECORDS PI.ANNlNG é
G PSS SIS SIS
PRODUCT COST COST
FILES DETERMINATION

IIIIIIIIIII

——— INVENTORY

(e

PRODUCTIO 2 |

7—=——=]. CARDS /
/ / CONTRO
/ o000 /
E:tﬂl. VENDOR OPERATOR VOUCHERS

= e MATERIAL

Figure 7

"'PARTS 2IN

ION?

ASSEMBLIES” SHIPMENT
L L L L ///////////

135
3.2

INTEGRATED MAIN LINE SYSTEM

CUSTOMER ORDER

ORDER TRANSLATION

TRANSLATION LOGIC

+ . = S
ORDER EDIT PRODUCT DESIGN
PRODUCT DETAILS STRUCTURE
METHODS AND MANUFACTURING
TIME STANDARDS OPERATION
STRUCTURE

QUALITY
PROCEDURES

QUALITY CONTROL
STRUCTURE

PRODUCT COSTS

COST STRUCTURE

MAN, MACHINE AND
MATERIAL TIMING

MANUFACTURING
CONTROL STRUCTURE

C OMP UTER

LT
VENDORS \ | MACHINES: PROGRAM
SUPPLY AUTOMATIC TAPE
MATERIALS OPERATOR RUN INSTRUCT.

¥
® PARTS © SHIPMENT

® ASSEMBLIES ® AUDIT

Figure 8

PRELIMINARY REFERENCE MANUAL

TABSOL-225 =--- A Tabular Systems Oriented Language

for the

GE225 Information Processing System

Computer Department

Applications Section

Programming Resecarch and Development
Phoenix, Arizona

December, 1960

This document is a draft of a Preliminary
Reference Manual and a language specifica-
tion for integrating decision tables with
the General Compiler. The information con=-
tained herein assumes a basic knowledge of
computers and electronlc data procesalng
2pplications. Therefore, the manual should
be used not as a text book but rather to
augment already realizec skills. Minor
changes in language specification may occur
during the implementaticn pericd of the
compiler. Any changes that are made will

be reflected in future and more final versions
of this manual or in supporting material issued
during the interim of Iimplementation.

D. Klick
Progranming Research

I. INTRODUCTION

Early automatic coding systems, such as assembly programs, employed
mnemonic abbreviations in place of the computer's numerical instruction
code and symbolic addresses in place of actual memory addresses. In
reality the assembly program language was a set of synthetic cosputexr
instructions. Although these systems greatly simplified progromming, the
programuer was still plagued with the many details dictated by the computer.

Autvmatic coding languages of today are on the threshold of relieving
the progrimmer of these detalls. The structure of these new languages
are very much like English. By using a combination of English words and
phrases to form sentences, the programmer now needs only to '"describe"

a procédure [or the computer to follow. This procedure together with a
description of the data is them given to a special computer program for
processing. This speclal program, commonly called a compiler, translate
the English problem description and generates a program of computer
instructions.

Such a compiler 1is provided for the GE-225. 1Its General Compiler
evolved from tyvo noteworthy lLanguage efforts - the Common Buesiness
Oriented Lacguage (COBOL) and the Algorithmic Language (ALGOL). Both
languages were developed by voluntary committecs of computer manufacfirers
and users and reflect the recent trend toward "commor" compiler lanuages.

The language precently available with the Generzl Compiler is Dased
primarily on COBOL, since COPOL satisfied the needs of a broad s.cctrum

of data processing applications. To gccommodate the demands of more technical

applications, Boolean eipressions, floating point arithmetic, and

the ability to express eiuations were incorporated into the format
of COBOL. Therefore, cno may say that the present version of the
Genersl Compiler can accept programs written in one, two, or in a

combination of two lanjuage forms.

Those programmer: familiar with COBOL recognize that it is well
suited for creating sad processing datz files. ALGOL, on the other
hand, provides an ex.:ellent means for expressing complex mathematical
relationships. Recdaat investigations by the Integrated Systems Project
of General Electric 8 Manufacturing Sexvices uncovered an area of
applications which require neither extensive data file processing
nor profound mathenatice but rather an unwieldy number of sequential
decisions.

To cope effectively with these decisions the ISP team devised a
tabular language. The purpose of this language was to depict, by means
of tables, the relstionships of legical decisions. The new language
was appropriately termed TABSOL for Tabulav Systems Oriented Language.
Since its creation 14ABSOL has been used by many departments of General
Electric to analyze aad solve problems in preduct engineering, manu-
facturing methods, cos\ accounting, and production control. The applicatlion
of decision tables is coatinually growlng., Recent studies show that
they provide a concise meihod for supporting the logle of other data
processing applications. Lur eﬁample, decivion tables way ve used o
specify the transfer of control associated with the walues of one or
more fields, to control the printing of detail and summary liumes of a

report, or to interrogate the sort keys in a multi-~file system At

the Computer Department we have found decision tables a valuable tool
in designing and implementing the General Compiler.

Decision tables represent a thivd language for the General Compiler.
They may be used by themselves or in conjunction with the features of
the compiler language. The specifications outlined in this manual pertain
mainly to the table entries and imply and require a knowledge of the
General Compiler. Therefore, this manual should be used as a supplement

to the GE-225 General Compiler Manual, CPB-123 (5.5M10-60).

IT. DECISION TABLE FORMAT

The format of a decision table is given in Fig. L. Im concept a
table is an array of blocks divided into four quadrants by a pair of
double lines. The vertical double lire separates the decisions or
“conditions" on the left from the "actions" on the right. The hori-
zontal double line isclates variables from associated operands which
will appear in the blocks and rows below. A condition then is a relztion
between a variable appearing in a primary block and en operand appearing
in a corresponding sacondary block. For example, we may write AGE in
primary block 1 and EQ 26 in secondary block 1. In doing this, we are
stating a condition. Verbally, we are asking "if age equals 26". An
action, on the other hand, 1s a statement of what is to be done. By
writing AGE in a primary action block end 26 in its associated secondary
block, we are stating that "the value 26 18 to be assigned to age".

It is interesting to note, at this point, the Fnglish interpretation
given to the vertical lines. The left-most line may be thought of as
representing the word IF. Those lines to the left of tke vertical double
line may be taken to meen AND; the vertical double line itself the word
THEN. Since actions are sequential entities, the lines separating them
may be interpreted as semlicolons aud the wight-most line, which actually
terminates the actions, as a peviod. With this in mind, each secondary
row becomes an English sentence. For exawmple, each row now reads:

"IF condition-1 is satisfied AND econditlon-2 is satisfied
AND ., . . AND condition-k is satisfied THEN pexrform
action-1; action-2; . . .; action m."

If any condition within a rovw is not satisfiled, the neit row is evaluated

DECISION TABLE FORMAT

Figure 1

I A A A A T -} :
P N N N BN H
D D D D E
i P 3 v k R 1 i d 3
Primary
Row A el AGE
j = HJ“F ——
Secondary
Rows A
. L
W WV

Conditions Actions

and so on until all the rows are depleted. When this happens the table
is said to have "nmo solution”. The table is considered "solved" when all

the conditions of a row are satlcficd and thelr assoclated actions pexformed.

Before considering the conventions used to formulate conditioms
and actions, an example may help develop insight into the nature of
decision tables and the manner in which they may be used with the
General Compiler. In this example (Fig.2) we are searching a master
employea file (recorded on magnetic tape) to determine the number of

male employees who fall into the following job categories.

Job Level Years Experience Title

6 2 Programmer

7 3 Programmer or Analyst
8 More than 3 Anglyst

9 More than 4 Analyst or Manager
10 More than 4 Manager

For each employee we find having any of these quslifications, we are
to write his department number, name, title, level, and experience
on the computer's typewriter. At the end of the run the totals for

ecach of the categories are to be also put on the typewriter.

The core of this problem is the decisions that must be made on the
information stored in the records of the master file. These decisions
are conveniently expressed above in narrative form. With only minor
alteration this form becomes the program statement of our problem.

The table and sentences are punched into BO-column cards exactly as they
appear in Fig.2. When this is done they may be given directly to the
compiler for processing.

As illustrated in our example, General Compiler sentences may

be used to support the logic of the table. These sentences accomplisgh

the following:

- h -
z ean®yy

AW

:

couPuTEn

SENTENCE FORA

J

S ovnpla Decision Tabla

ceNERAL @D ELECTRIC

FROGRAY

112 l[q lIl 7 is lll tajiejunjia IJIOL'LIII

Computer Doportment, Fhsonix, Arissns -13
L -
w]
[r
o o
3 3
v " W
Fl [0
E) » >
o + |3
?
)
= 3 2
[b=
E) Lr ~
o 0 o w
3 of ¢ 2 o
+lwlz F | B o A
o 3 o o«
[0 > o [
wj| - "] Q
| 13
J | .
= . . |l =] Al »n]| =] w w -~
[o s = v
*® k] J
) 0 - W o
z 2 o " > 3
w > >] r
'] v o of) 0
'Y o o« o (=
H o ” z [u
£ -« o ¥ ~
) + 0 z [[
o e o < - =
] a [) £ [)
e W Y] <
wl | » < o| o o [
w|l@a o Wl w] F 1]
ol U " £] £ « =
| o] & €] £]] | & Z|
J 4]] £ - «| «] 2| »w| — f o~
W -l ow ow = o | > *] @ [W
A] o]) o 9| wl J] U] « F1E] J
-] 2 o] = ol ol «] «] = ul -] 4
Wl off | > F o| o] T| 2] « |~ L <
1T - ool <] <] &£ | H um._
| w0 A Y I 2
[3 | buLEImT
s| | «| O] © o v of| o € & .
2| v] ¢| ~ ["] [ol w| | 0O w|
0| « Ml | D] m] F] >] O] vl «| -] 2
-1 £| A| o] » ™ - w W] £]~4 2
[| » dil o] O] | o] o of| W ol]
-l k| W "] . wl wl] | & v =l 1] 3 W =
>| 21 | d] v W o 1= Fl = ¥ B
- » 4] 2 2 » Wl |~ # 0] O] £
7] J <] o & w B 3 H[o o] K W
H| o] £] - L] J .
] o ol o < o] + 4| ©
¢| x| O] u| w o W Flrl al | <] - &
p)] > w 2 - Z| -1 0
Pl a L) = J o 0| 2| 0| 9 9| o
wl o W Hl w] wll 2] =] |] - 6~wklw¢.
J ot al > w ?
0 7] ul Y P
o w « J >| z
) L' I = w
| o v ol W "] w| o] W ofw| o w| ol v 1y
™ |"l Ay -..H.u.ro«.b..r &l =] o
gs
W .
33
ux

OPEN =-- Declares that the MASTER/FILE is input and since the file

is recorded on magnetic tape, validates the tape labels.

READ ~-- Delivers the next record from the MASTER~FILE and tests

for an end-of-file sentinmel. When this sentinel is
detected, sequential progrem execution is interupted and
control passes to the portion of the program labeled END-RUN.

IF --- Eliminates those data records which contain information

about female employees. The word FEMALE (also PROGRAMMER,
ANALYST, and MANAGER used in the teble) represents a
special kind of condition and will be explained later in
the manual.

EXPERIENCE = -~~~ Calculates the employees total experience and

assigns the value to the field named EXPERIENCE.

The word TABLE informs the compiler that it must process a decision
table; EXAMPLE is a name or label which was given to the table. The
size of the table is stated next by giving the number of conditions,
actions, and rows contained in the table, This information is used
only by the compiler and is not executed by the compiled program.

Table execution begins at row 1 (sequence number 40). Using our
narrative definition of a table, row 1 18 interpreted as follows:

"IF the job LEVEL field equals (EQ) 6 AND the
EXPERIENCE field equals (EQ) 2 years AND the
employee's title is PROGRAMMER THEN assign the
value 1 to the subscript I; GO TO the part of
the program having the label TYPE~OUT."
If one of these condtions cannot be satisfied, row 2 is evaluated starting
again with the left-most condition. Sequential execution of the rows

continues until either all conditions in a given row are satisfied or

all rows are exhausted. When the latter situation occurs, the
sentence immediately following the table is executed., Proceeding
from here the sentiences in our example accomplish the following:
GO === Interrupts sequential program execution and passes
control te the part of the program labeled GET~RECORD,
WRITZ--= Writes the current contents of the DEPARTMENT, NAME,
TITLE, LEVEL, and EXPERIENCE fields on the computer's
Lypewriter,
CLOSE~~-~ Rewinds the MASTERFILE and performs the file's closing

conventions.

STOP .-~ Terminates processing and writes the words END RUN on

the typewriter,

By Gi:xneral Compiler atandards this example represents relatively
simple conditions and actions. In formulating these entries, the
prograrmev may take full advantage of the compiler's capabilities.
The remaining sections of this manual are devoted to defining the
conventions and manner in which conditions and actions way be formed

and entered in tables.

III. EASIC CONCEPTS
Since decision tablez are used in conjunction with the General
' Compiler language, we must first look at the foundations of this
language before considering the counterparis that may appear in a
table., The compiler's language, like mosi natuval languages, is a
body of words and a set of corwventfons for comdiaing these words to
express meanings. Its structure of "synta:" clocely resembles the
rules of English grammar, anc its Lody of words wmay be appropriately
termed a "vocabulary'. The purpsse of this seztion 18 to show how
words are formed and how they may be used ¢ 2xpross a desired
meaning.
Characters
“he basic units of our lsuguage are the characters used to form
worda and aymbols. The character set includas the lecters of the
alpknbet (A, B, C, 2), tke nunerals (G, 1, 2, ..., 9), and the
spaclal characters shown in Fig. 3. Specilal ciaracters are presented
in mora detail as they arz encountered in the manual,
Words
The words of a typicel Ceneral Compiler program fall into ome of
two ecategories: the vocabulary of the conpiler and the vocabulary
used by the programmer. The programwer's vocabulary will consist mostly
of arbitrary names given to his data and sectlons of his program., The
compiler's vocabulary, on the othe: hand, is predetermined and explicitly
defined In this manual. Since the compiler, by nature of its designers,
is a mistrusting mechanism, the programmer mus: define the words he

uses too., This is done, not by writing a manual, but instead by merely

= 30 =

SPECIAL CHARACTERS

Character Meaning Card Code
A Space or blank Space
. Period - Decimal point 12-3-8
» Comma 0-3-8
" Quotation Mark 3-8

~ Hyphen 5-8

(Left Parenthesis 0-5-8

) Right Parerthesis 0-6-8

+ Addition 12

- Subtraction - Minus Sign 11

* Multiplication 11-4-8

/ Division 0-1

= Assignment 6-8
Vertical Tahle Line 12-4-8

Figure 3

-l =

filling out a data description form. Once these 'data names" are
defined, they may be filed eithez on 80~colurm punched cards or on
magnetic tape and used over and over again. The data description
file then is a "dictionary" since it contains the definitions of the
words used by the programwer. Furthermore, this dictionary may be
revised without redefining all of its entries. This is accomplished
by a speclial service routiae which accepts corrections, insertioms, and
deletiona as long as they sre written on the compiler's data description
form.

Our two categories of words may be illustrated by the following

sentence taken from the program exzample givemn in Fig. 2.

Here, the words READ, RECORD, IF,END, FILL, GO, and TO belong to the
vocabulaxy of the compilur; whereas, the wouds GET~RECORD, MASTER~FILE,
and END"RUN belong to the programmer's vocabulary. The compiler will
agsume that MASTERFILZ is a data name duc to the word's position in the
sentence. It will them secarch the data description to verify its
assumption and to determine the characteristics depicted by this word.
Not finding a match in the data description results in an error message
typed on the computer's typewriter. The words GET-RECORD and ENDRUN
will be interpreted as sertence names due to their position in the
prograg., Omcz again, the compiler will attempt to verify its flndings
by checking cach transfer to make certain that they lead to properly
defined sentence names. The consequence of an undefined sentence name

is likevise an error messzge on the computer's typewriter. The compatability
checks mentioned here are only two of many which the compiler performs to
insure unquestionable :iesults in the programs which creates.

- 12 -

Formation of Names

As previously mentionad, data names are words representing data
(files, records, ficlds, elements, constants, arrays of values, etc.)
gnd are srbitrerily assigned by the programmer. They are formed from

the following characters.

Letters Ky B O 230y B
Numerals Oy 1; 25 vaa, 9
Hyphen v

To avoid error messages and possible re-compilation, the programmer

should choose daia names thet

1. Do not exceed 12 characters,
2. Do contain at least one letter,

3. Do not begim or end with a hyphern.

To insure a properly defined nrogram. amil data names should be recorded an¢
their characteristic data described on the compiler's data description
form. The programmer also shoutd be careful not to use the compiler's
vocabulary as data names.

In addition to data names, the prograumer is free to name sentences,
tables, and other "procedures" in his j;rogram, With one exception these names
are formed like data nmemes. Since pro:edure names are judged from their
position in the program, they may bte firmed from only the numerals, 0
through 9.

Constants
The values associated with data nsuee generally change during the

actval running of a compiled progrsm. It is for this reason that they

w13 =

are sometimes called "variables'. A constant, as opposed to

& variable is a specific value and does not change within the
scope of a program. Constants may be one of two kinds: a literal,
c¢r a named constant.

A literal is a value itself rather thao a pame given to a value.
Literals may be numerical, alphabetic, or alphanumeriec - i.e.,
composed from the chacacter set of the computer. All non-numeric
literals should be enclosed in quotation marks (") to avoid having
the compiler confuse them with data mames. The conventions for
forming literals are the following:

1. Non-numeric literals are limited to 30 characters, excluding
the quotaticre marks.
2. A numeric literal not enclesed in quotation marks is

assumed to be a number. Numbers may contain not wmore than

one decimal point and a winus sign. Unslgaed nuwbers are
considered poaitive, Excluding decimal points and minus

signs, number: must not exceed 11 decimal digits,

3. Numbers may be tr2ated as floating point by writing them
as a power of ten - i.e., & nuher o: decimal fraction
followed by ¢ power of ten exponent. For example, the
number 230100 might be written es 2.301E5 vhich is equivalent
to 2.301 multiplied by 105. The exponent part, indicated
by the letter E, may contain a minus sign to show & negative
exponent. The value range of an exponent s limited to

+ 75. Excluding the decimal point, the minus sign, and

the letter E, the fractional part of a power of tem number
must not exceed nine decimal digits. To distimguish datn
namea from fleating pofint numbers, data nomes should not
be formed from cnly the numerals and the letter E,

4. An glphanumeric literal may not contain an embeddud quotation
mark since the enclosirg quotation marks are used to determine
the size and content of the litersl.

A named constant is a constant which has been given a nane. Named
constants are defined by means of the datz cescription and moy include
any character belonging to the character set of the ccmputer, including
the quotation mark. Like literals named constants may be numeri:,
alphabetic, or alphanumeric. They are unlike literals in that they
may be any length.

Subscripts

Subscripts provide a convenient method to reference individual
values contained in a list or in an array of values. The ~ariable, I,
employed in the decision teble of Fig. 2 ie a subscript used just for this
purpose. Since five totals are to be accumulated, one name was assigned
to all five, namely, the data name TOTAL. Whenever reference was made
to a particular total, the data name TOTAL v+as followed by the subscript
I. This is illustrated in the expression

TOTAL (I) = TOTAL (I) + 1.
and the sentence which prints all five totals on the typewriter. From
this example, it follows that subscripts, like data, may be given names.
In fact the same rules that govern forming data names apply to naming

subscripts.

«i% =

Since subscripting is a positional notation, the range of any sub-
script is limited to the values 1, 2, 3, . . ., n (vhere n is the maximum
number of values in a list). This does not mean that subscripts are
limited only to integers. If a subscript is not defimed gs integer by
means of the data divirion, the compiler will automatically provide
coding to truncate its value .0 an integer. Furthermore, subscripts are
not restricted to a single variable name. Arithmetic expressions may also
be used as subscript. Por example,

RATE (P+1)
K ((K=3)%p¥x3)
A (J)
are legitivate forms of subscripts.

Up natil now , only cae-~demensional subscripting was comsidered. Values

in wmultf{-demensioned arrsys may slaso ba refercmced by subscripts. For example,

an arzay in which values are oxdered

A Mg A3 A s
Ayp Bgp Ayy Ay Ay
Ayp B3 A5y Ay Ay

A

A 43

41 A

42 A

MA

45

A A A

51 Asp As3 A

54 A

55

might be subscripted as A (J,K), where K is the colummar subscript and

J the row. To refer to value A35' J weuld have to equal 3 snd K equal 5.
Preceeding examples show that subscripts are enclosed in paremnthesis and

veparated by commas. This notation permite the compiler to distinguish

subscripte from other elements im the language.

- 16 =

Truth-Values

There is a cLass of variables which, through either usage or definition,
may assume only che numerals 1 or 0. The value 1 is said to be their true
state and the alue O their false state. The words END FILE of the READ
sentence in Fg. 2 is such a variable. When the OPEN sentence is executed,
END FILE is Jet to its false state and remains so set until the end-file
condition i: encountered. At this time, it is set to its true state,

Varizb.es having truth-values are termed "True-False" variables. END
FILE is a :onvcaience provided by the compiler; the programmer may also
formulate his +wn true-falee variables by merely listing them under the
heading TRUE*’ALSE in the data division. They may be named according to
the rules giv:n for data names.
Arithmqtic I} pressions

Aritha:tic elpressions are rules for cowputing numerical values. They
are forr«l from variables, numbers, functions, and symbols representing
additiov~=, vibtraction, multiplication, division, and exponentiation. For
1s-4ple, in the expression

IIRM~IRS * 2,50 + OTWHRS * 3.75
PREMVHRS an¢. OTVHRS are variables; 2,50 ard 3.75 numbers; and + and * symbols
for addition and multiplication. If PREM“IRS were 40 and OTYHRS were 4, the
expression becomes 40 * 2.50 + 4 * 3.75 and after performing the arithmetic,
reduces to the value 115.00, To save this value, a programmer might write
GROSSYPAY = PREMVHRS * 2.50 + OTVHR3 * 3.735,

The presence of the = symbol tells the compiler to assign 115.00 to the
variable GROSSVPAY. When expressions are written in this form, they are

called "assignment statements’.

17 =

The arithmetic permitted in an expression is stated by the following

symbols:

Symbol Meaning
+ Addition
- Subtraction
* Multiplication
/ Division
ok Exponentiation

In addition to arithmetic, the following mathematical functions may be used.

Symbol Function
SIN Sine
cos Cosine
ATAN Arctangent
SQRT Square Root
EXP Exponential
LOG Common Logarithm
LN Natural Lojarithm
ABS Absolute Value

Arithmetic expressions ace evaluated from left to right according
to the following priority:
1. Exponentiation and Functions
2. Multiplication and Division

3. Addition and Bubtractiom
Parenthesas may be used to establish a precedence other than the one

above. When they are used, the evaluation im performed from the innermost

to the vutermost pair but still from left to right within a given pair.

Relational ExXpressions

A relational expression is a statement of magnitude between two values.
For example, FICA GR 144.00 is a comparision between the variable FICA and
144.00. The symbol GR stands for the relatioa "greater than'. Other

relations may be stipulated by

Symbol Relation

EQ Equal to

GR Greater than

LS Less than

NEQ Not equal to
NGR Not greater than
NLS Not less than

To have meaning, relational expressions must be stated as conditioms.
The expression FICA GR 144.00 tells us nothirg. However, when it is written
as

IF FICA GR 144.00, GO TO ADJUST~PAY

we knov immediately what is intended. By definition then, relational
expressions are conditions and when evaluated always give a truth-value.
Relational expressions may be explicitly stated or implied. FICA GR
144,00 is an explicit statement of magnitude. In the program example of
Fig. 2, implied relations were stated by the words FEMALE, PROGRAMER,

ANALYST, and MANAGER. An implied expression is formed by giving a name

to a value, a range of values, or to a serles of values and ranges. Once
the name and its values are defined in the data division, it may be used to
mean its associated values. TImplied relations are termed "conditica-names

since a name was given to a condition, i.e., a value, of a variable. The

v 19 -

variable from which the value is taken is called a "conditional variable".

Therefore, writing PROGRAMMER (£fig.2) in a decision table block is the same
as vriting an expression which will compare the TITLE field with the value

associated with the title, programmer.

Logical Expressions

Logical expressicns provide a convenient method for obtaining truth-
values. They are formed by combining true-false variables and relational
expressions with the logical operators AND, OR, and NOT. The expression
(Fig.2)

PROGRAMMER OR ANALYST
is a logical expression which is true vhen an employee's TITLE field
indicates that he is either a programmer or an analyst.

The rules governing the ecvaluvation of logical expressions may be

expressed as follows:

pOR g F T T T

where p and q are a combination of true-~false variables,

relational expressions, or logical expressions.
Logical exprceeions are evaluuted from left to vight with the logical
operator AND having precedence over the OR. Parentheses may be used for
grouping or establishing a preccdence of evaluation other than the one
mentioned previocusly. When they are ured, the evaluation proceeds from

left to right from the innermost pair to the outermost pair.

- 20 -

IV TABLE ENTRIES

The previous section outlined the elements of the General Compiler
language and briefly showed hcw they might be used. In the introduction,
it was mentioned that thefe seme elements mey be employed within the
blocks of decision tables. The purpose of this section is to show how
this may be done.

Formation of Conditions

By definition, a condition is a relation between a primary block
entry and some corresponding secondary blocik entry. A condition, like a
relational expression, may be eicher true or false. True conditions are
said to be "satisfied" and false conditions "not satisfied'. From this
definition, a condition may be either a2 relstional expression, a logical
expression, or a true-false veriable since these are the only elements
that yileld a truth-value.

The formats noted below show how these expressions may be split between
primary and secondary blocke to form conditions. In these examples, the
word "operand" stand for either a varisble {data name or subscripted data
name), a constant (literal or named comstan:), or an arithmetic expression.
The word "relation"” signifies one of the relational operators - EQ, GR, LS,
NEQ, NGR, or HLS. Since arithmetic expressions may be operands of relational
expressions and relacionsl expressions as operands of logical expressions,
it necessarily follows that arithmetic expressions may appear in logilcal

expressions.

Format Exemple

Operand-1 Relation EEW?i‘EQ
E.mmi-l’ o

—21-

v U'-'-'u' i

Operand-1
Relation Operapd=2__

Operand-1 Relation

Operand-2 OR Operand-3

Operand-1

ation- Dperandz !
OR Relaticn-2
d-3 ...

No Entry

ondition-name

lvor

i:ondition-nm i

o Entry

rue~-False Variable

por

Il.‘m-False Variable

s

ILog:Lcal Expression

rm'

&.ogical Expression

- 39 u

e ymple

EXPERLIENCE

GR &

TOTAL (I) NLS

PT(1) OR PT(2) or PT(3)

(X+Y) %% 3

iGR P+) OR LS Q(I)

FROGRAMMER

NOT

FEMALE

REQV1

WOT

END INVENTORY FILE

PROGRAMMER OR AMALYST

NOT

-

X GR ¥ OR X LS (2+1)

Formation of Actions

Actions are statements of the things to be done when all the
conditions of a row are satisfied. The scope of an action may be
one of three kinds: implied assignment, prccedural, or imput-output.
The only action presented so far was assignment. The other two are
extensions of CGeneral Compiler sentences and will be mentioned here
only brieflv. The compiler msnual should be consulted for a more
detailed presentation.

1. Value Assignment. Value assignment is an implied fumction

between associated,primary end secondary block entries. By placing
a data name in a primary block and some number in a secondary block,
for example, I and 1 of Fig. 2, the compiler automatically produces
coding to assign the numer to the data mame. In the case of our
example, 1 is assigned to the subscript I. Other examples of value
assignment are given below. In these formats the word variable
implies either a data name c¢r a subscripted data name and the word

conotant either a literal or a named constant.

ormat Example

Far:l.able T
lConstant 1

ons tant | COPPER"
Variable TR
axiable MLPHA (I,J,K)

I i

Writhmetic Expressicn SIN THETA + (X/P)¥*2

- 23 w

Format

Arithmetic Expression

ariable

True-False Variable

Truth-Value 1 or 0

ﬁiuth-?alue lor0

True-False Variable

[PT * Rik2

|AREA2L

SWITCH~7

0

BETAVREQ

2. Procedural actlong. Procedural actions provide the means for

interrupting the normal execution scguence of a table. Any of the

following compiler verbs may be uscl for this purpose.

GO TC
PERFCRM
STOP

The GO verb stipulates an unconditicral transfer to a specified part of the

table or program. Its destination may be a sentence name, table name, or

the row number of a particular table

follows:

Format

GO TO

[Sentence Name

GO TO

Table Naue

——

G0 TO

Row of Table

. 24 -

The format of the GO entry is as

Example
GO 70
TYPI2 OUT
G0 0 ’-
TABLE 23
30 10
'FOW 7 TABLE BETA

The other form of a procedural control is the PERFORM verb. The
PERFORM specifies a transfer to some destination, the axecution of a
table or a set of sentences at that destination, and a return to the
action block following the PERFORM. The sentences or tables acted
upon are by definition a "closed procedure" - i.e., they have a single
entrance point and a defined exit point. Conventions for writing closed
procedures are given in the next section. Legitimate forms of rhe

PERFORM action are

Format Example
PERFORM PERFORM
BSentence Namea | SSv PAY
FERFORH PERFORM
t
[f~ble Name ERIHOR TABLE

The STOP verb may also be used as an nction. It may be placed in
either a primary oxr secondary block, When it is used, no other actiom
may appear with it in the same action column. The STOP terminates pro-
cessing temporarily or verwanently according to what action 1s taken
at the computer's conscle.

3. Input-Cutput Actions. Input and cutput actions are compiler

verbs that control th2 flow of data to and from the computer. They read,

write, and validate tape labels of data fiies assigned to peripheral

input-output devices. When dota files are referred to from sm acticn
block, they must be dafined according to the envivomment and data division
specifications listed in the General Compiler manual. The formats of

input-output actiomns are illustrated by the following:

- 25 -

Format Example

F.EAD RE/D

Fiie Name TERVFILE
DPEN INPUT or OUTPUT OPEN INPUT
ile Name MASTERVFILE
CLOSE CLOSE

File Name

File Name TERYFILE

L
READ, CLOSE, or OPEN verbs

E_IT'E WRITE
Record Name [DETALILINE
Record Name 'TRANSACTION
[WRITE 1TE

The Skip and Repeat Operators

The skip operator makes it possible to show that a condition or
action is not to take part in the evalution of a row. This is done by
placing a hyphen () in the concerned conditiom or action block. The
compiler then will skip this block and proceed to the next.

The repeat operator ic a shorthand metlod to indicate that & condition
or action in the block above is repeated. This is shown by entering a ditto
mark (") in the block below the one that is to be repeated. This notation

was used with the GO TO action in the sample table of Fig. 2.

- 26 -

V THE TABLE 435 A PROGZAM

Up until ncw, cnly compenents of tubles were presented. It waz learned
in Section II that General Compiler sentences could be used to support the
conditions and 2ctions of tables, and the preceeding section mentioned
tables as closed procedures, Tuls sect on relates these topics to tables

and tables to compiler programs,

Block Conventions for Writing Expressions

1. Words, abbreviations, and symbols of the compiler's vocabulary
should not be used as names. They may be combined with other characters to
form naves.

2, The words in an expression should be separated by at least one
space, More than one space is permitted., The space separator is opticnal if
the words are hound by

$oaw fowma ()", |

3. Subsc¢ripts should be enclosed in parentheses. They may be written
adjacent to (without a space separator) or apart (with space separators)
from thely associated data names. Individual suvbseripts in a list of subscripts
should be separated by commas.

4. When two arithmetic expressions zppear side by side as in a series,
they should be sepavated sy cormas,

5. All colums of a table should be bound by the vertical table line,

(12-4-8 punch).
6. The skip and repeat symbols, ~ and ", should be the only entry ,

other than speces, in a block.

- 27 =

Conventions for Placicpg a Table in a Propram

:

2.

Tables are writtem on the Genersl Compiler Sentence Form,

A table is preceeded by thz word TABLE. Naming tables is
optional. When a table is given a name, the name may preceed
or follow the word TABLE. The word

TABLE,
name TABLE, or
TABLE name

should be followed by a period.
The table's size is given next and should be placed on the
same line as the table's name. The size may be written in one
of two ways:

kkk CONDITIONS mmm ACTTONS nnn ROWS.
or

(kkk, miom, non).
Both forms are terminated by a perlod. The orcuer of writing
the number of conditlons, actionsg, and rows is optionel in the
first case since cach can be ildeantified. However, order ls
important in the second form since the compiler interprets the
first number enclosed in parencheses as the numler of conditions,
the second as actions, and the thiizd as rows. Conditions, actions,

and rows are numbiared sequentially beginning with 1. Row 1 1is the

first secondary row; the primary row is not countei in the row
count.,

General Coupller sencences should not be placed betveen the
woxrd TABLE and the primary row of the tables.

The double vertical linmes that separatee conditions from actions

may be represented by one or two 1l2-4-5 punches.

- 28 -

6.

The size of each block may vary from column to column and
row to rTow.
The only limit on the size of a table is row width. Since the
compiler prints & listing of compilation, the recommended row
width is 120 characters including card sequence number. Maximum
row width 1s 1200 cheracters.
Since the table form is an image of an 80-column punched card, a hyphen
(~ 1is placed in cclumn 7 of the form to show that a row is contained
on mora than one card. In this case, no table column may be split
eacross cards. Eech card is to contain a sequence number to insure
proper catrd order. Wh2n rows exceed oue card, the sequence number
of the first card is only printed. Sequence numbers of succeeding
cards are stripped out. The row iz then printed as & multiple
of 120 characters with an int2gral number of table columns
per 120 characters.
Expressions too long or complex to be written in blocks may be
written after the table's name and size and be executed from the
table by means of the PERFORM verb. In addition to expressions,
any General Compiler sentence may be used and executed in this
manner. To indicate the start of the table the word BEGIN is to
follow the list of expressiomns and sentences. This format may be
illustrated by the following:

TABLE name. kkik CONDITIONS oz ACTIONS unn ROWS.

... General Ccmpiler Sentences and Expressions - May be
exzcuted only from the confines of the table.

BEGIN

DECISION TABLE

Closed Procedures

Fig. 4 outlines the format of a closed procedure. By definition a closed
procedure may be acted on cvnly by the PERFORM verb. It contains one entrance
point and one exit point. In fig. 4 these are indicated by the words BEGIN
and END TABLE name. BEGIN and END also act as sentence names and may be
referred to from within the procedure body.

Expressions too loag to be placed in the blocks of a table nay be
vritten in the procedurz head and executed from the procedure body by means
of the PERFORM verb. Az such, they must be given names. In addition to
expressions any Geaeral Compiler sentence may be writtem in the head and
executed accordingly.

The procedure body contains the table. As shown in Fig. 4 compller
sentences may preceed and follow the table. Execution is sequeatial
starting with the sentence or table after the woxrd BEGIN and proceeds until
the exit END TABLE is reached. It 1s at this point that control is
reverted to the PERFORM verb which origineslly referenced the procedure.

Any unconditional transfer from within the procedure to the outside is
undefined. However, PERFORM verbs in the body may reference other closed
procedures.

Closed procedures should be writtem apart from the main program.

DECISION TABLE AS A CLOSED PROCEDURE

GABLB name. kkk CONDITIONS mmum ACTIONS nnn ROWS.

ptogsﬂrc< «++ General Compiler ferntences and Expressions - May be
executed from the confines of the decision table.

BEGIN. (Start of execution - entrance to procedure body)

- .+ General Compiler Sentencaes and Expressions
ced
pmM;n < Decision| Table
++s+ 3eneral Compiler Sentences and Expressions

END TABLE name. (Bxit of procedure body)

Fig. 4

CODASYL SYSTEMS COMMITTEE
TRANSFORMATION LOGIC

Burton Grad
IBM

TRANSFORMATION LOGIC

The following report proposes a structure for detailed analysis
and formulation of the Transformation Logic used in applying Tabular
Form to a precise systems language. It suggests major study topics
and then divides the Table construction area into a series of specific
subjects. Each of these subjects then has possible solutions described,
certain problems stated and indicates the related portions of previous
reports. It is our hope that this framework will provide a basis for
intensive future work and for relating our work with that of the Language
Structures Committee.

We feel that there are three major study topics for work in
Tabular techniques:

I Table Construction and Data Description
II Applications
IIT Language Implementation

At the present we are not particularly concerned with Language
Implementation (III), but have been concentrating on Table Construction (I)
so that appropriate Applications Studies (II) may be carried out.

In subdividing the Table Construction part of the first topic we
believe there are three key subjects:

A, Inside - Box Considerations
B. Within - Column Logic

C. General Table Considerations

We will discuss each of these subjects in turn indicating specific
areas of work, appropriate solutions, etc.

Subject (A) Inside - Box Considerations:

(1) Operators:
We have identified certain general element operators:

(a) quantitative (+, -, *, /, power, absolute, sine, square
root, etc.). These operators may require 1, 2 or more
quantitative factors as input and result in a quantitative
value.

b

(b) true-false (Andalso (A), Andor (V), Or (), Not (=)).
These operators may require 1 or 2 true-false factors
as input and result in a true-false value.

¢) string (Concatenate, Insert, Replace, Substring, etc.).
These operators may require 1, 2 or more string factors
as input and result in a string value.

(d) mixed (Transform, Convert, Count, etc.)
These operators typically require either 1 string factor
or else 1 quantitative factor as input and then result
in one quantitative factor or else one string factor...
the opposite of what was available to start.

(e) multiple (not yet explored)
These operators would use single or multiple input
factors to establish multiple result values.

There are also a number of Relational Element Operators:

(f) special (Exist, Defined, Non-existent, Undefined).
These operators establish whether a particular element
has an established value or whether the value assigned
has defined meaning in terms of the Data Element
Description. The input is typically a single factor
and the result is a true-false value.

(g) quantitative relational (Less than, Greater than, Equal,
and their negatives). These operators require 2
quantitative factors as input and result in a true-false
value,

(i) string relational (Identical, Not Identical, Lower, Higher).
These operators require 2 string factors as input and
result in a true-false value.

There are Set manipulative operators:

(j) general (arrange, extract, join, etc.).
These operators require 1, 2 or more sets as input and
result in a new set,

(k) complex (explode, update, post, etc.).
These operators change values of elements as well as
change set membership. 1 or more sets and/or elements
are required as input as either a set or an element may
result.

(1) Set relational (Equivalent, Identical, Subset and their
negatives). These operators require 2 sets as inputs
and result in a true-false value. Specifically they will
examine these two sets for identical values, identical
order, element name similarity, etc. It may be
necessary to differentiate the operators for unordered sets
from those for ordered sets. This point requires further study.

There are other operators which may be of particular
significance:

(m) Change value or set membership (Assign, Copy,
Communicate, Receive, Transmit, etc).
These provide for the specific association of a parti-
cular value with an element name. It may be possible
to change the value or else it may be regarded as a
"permanent' value assignment.

(n) Definition (Define)
This operator provides for a substitution of some other
factor for an element or set name whenever it is
referred to.

(o) Sequence control (Goto, Interrupt, Stop, Perform, Come
from, Prior rule, Start, etc).
These are inherently '"procedural' operators which do
not themselves change data element values, set member-
ships or establish conditional logic; however, their
importance lies in their ability to break up a highly
complex description into an understandable group of
simpler descriptions. They provide a convenient way to
subdivide system logic and a shorthand for indicating
conditional repetition or order of action execution.

The operators in each category will be suitably extended and
arrangements will be made so that new or specialized operators may be
defined in terms of the basic operators predefined by the Language
Specification. It is expected that each operator definition in the language
specification will explicitly denote the representation of the operator
(words, symbols, abbreviations), the type and number of input factors
required and/or permitted. The type of result will be indicated and also
any parameterization allowed. In other words each operator will have a
full definition sheet with suitable examples of its use.

(2) Factors:

We have identified four value classes which factorr value can assuiiic.

-4

(a) quantitative -- arithmetically manipulatable values
regardless of number base, radix point or graphics.
(See B. Grad, July 11, Section C, pg. 7).

(b) true-false -- boolean values.
(See B, Grad, July ll, Section C, pg. 7 and 8).

(c) string -- any ordered symbols other than true-false
or quantitative. If a quantitative symbol (e.g. 1, 7)
is used in a string it has a different meaning from that
same symbol used in a quantity. (See B. Grad, July 11,
Section C, pg. 8).

(d) set -- a collection of values each of which may be of
any of the three types. A set does not of itself have a
value in the sense that it cannot be directly manipulated
by quantitative, true-false or string operators. The values
of the set elements may be associated with element names
but do not have to be. There is a reference order for
a set though this has nothing to do with actual physical
sequence.

There are three basic ways of referring to a particular value: by a
Literal, Name or Expression. The meaning and use of these terms is
described in B. Grad, July ll, sect. C, pages 8 and 9. The definitions
given may be extended to incorporate Set Literals, Set Names and also
Set Expressions. Literals must be easily differentiated from Names or
Expressions. This needs further exploration.

Rules for the formation of Expressions using various operators
should be stated under the appropriate value type category. In addition
each of the value type definitions and rules for using Literals and forming
Names should be more clearly spelled out. Furthermore the Set-Element
Description should provide a convenient means for establishing value
type and also specific value to be associated with a particular Name. The
development of this Description Sheet should supply effective definitions
for many of the terms used under Factors,

There are other types of Factors which need to be considered. For
instance we may find it convenient to name or otherwise identify tables,
rows, columns, particular conditions or particular actions. The ability
to name subroutines or functions, equipments, or various associated
physical objects (e.g. machine tools, personnel, locations) may have a
strong impact on the communicability of any systems language. The
comments in ALGOL-60 in reference to Labels and the COBOL, Com-
mercial Translator, FACT and Flowmatic discussions of names may
prove of value to us. Certainly we must explore set names, name quali-
fication of elements and even the possibility of using jargon names.

-

For example is it possible that we can communicate at the jargon
level with data processing machines -- can a machine - (intuitively)
understand the difference between a '"'report" and a''graph''?

(3) Conditions:

Certain Boxes will only be able to accept Conditions as their content.
These will be called Condition Boxes. A Condition is defined as a proper-
ly constructed group of operators and factors which can be determined
to be either satisfied or unsatisfied, i.e,, whose condition value can be
determined. The comments in COBOL, April 1960 page V-2 (except for
the last paragraph) are appropriate. Evaluating a Condition does not
change the value of any factor involved in such an evaluation.

A Condition Box consists of three things: Condition Operators,
Factors, and Condition syntax or structure.

There are only certain Condition Operators. We identify parti-
cularly the various relational operators, (f, g, h, i, 1).

'One Factor is worthy of special mention; this is the Condition Name
wh:'.ch“represents a Conditional Expression. This Name is used as though
the Expression were substituted for the Name. The Name representation
itself cannot be described in a Condition Box; it must be done with a Define
Operator either in a Define Box or in the Data Description.

The internal structure of a Condition Box permits a great deal of
experimentation. It may, however, be desirable initially to limit the
variations in the interest of simplicity and clarity. It will certainly be
possible later on to add further sophistications to the Condition Box
Structure. The following comments and examples are intended to pro-
vide only a fundamental structure.

An evaluated Condition will be either satisfied or unsatisfied., If
a pa.rtifcula.r Condition Box statement is met or is '"Not Pertinent.' to a
Decision Rule then the Condition Box is said to be satisfied. If the state-
ment is not met or if undefined values are related to defined values then
the Condition Box is said to be unsatisfied.

A Condition Box statement must always be totally satisfied or else
it is unsatisfied. A simple Condition is one which consists of a single
Condition Operator and the appropriate number of factors. Simple Con-
ditions can only be compounded within a Box by the proper use of connect-
ives between legitimate simple Conditions. Implied repetition of any
factor or operator is not permitted within a Box. True-false factors do
not receive special treatment within a Condition Box.

The entire issue of Connectives is quite up in the air. They are
not the same as true-false operators, nor do they exhibit the same pro-
perties. However the English language equivalents for the true-false
operators happen to be essentially the same as the primary Connectives
which we would like to use. One solution would be to restrict the true-false
operators to symbolic representation (e.g.A,V, etc.) and reserve the English
words for Connectives; an alternative would be to use special punctuation
symbols like comma, semi-colon, etc. to represent the Connectives and
keep the English words for true-false operators. This will obviously require
further work before any firm proposal can be made.

The various artifices suggested in B. Grad, July ll, Section C,
page 10 should be ignored in terms of Inside-Box Condition construction.
These problems will be discussed under General Table Considerations.
Reference is made in this context to D. Nelson, August 17.

Examples of valid Simple Conditions are:

ar - Y

L 442 = 4

PAY. CODE - 6

MARRIED (e.g. MARITAL. STATUS = 3) -

X$(At 4)

322

(A andor X) = Y

((A/X) 4 3) = PAY. CODE

DATE - 123160

NAME not ' GEORGE

(MONTH concatenate DAY) higher than 0228

"WHITE is subset of SNOW

FILE, A is equivalent to FILE, C

(4) Actions:

Action Boxes serve to change values., There are apparently two
major types of special Action Operators: Assign and Communicate. Assign
is described in B. Grad, July 1ll, Section C, page 1l. It is executable and
provides that a Name will retain the assigned value until it is changed by
a new Assign. The sequence of Assign Boxes may be pertinent to the use
of the values. Assign also permits Actions of the form:

Assiga J as J # 1, where a Name is given a value as a function of
a previously assigned value for that same Name. Assign provides for
quantitative, true-false or string value manipulation as well as the establish-
ment of appropriate set values.

The question is raised as to whether there should be a special
Assign operator for modifying factors inside a Box. There are many pros
and cons to this issue which should be explored in depth before making
even a tentative decision.

The second type of special Action Operator is Communicate. One
solution to this is described by Mal Smith, July 1960 where he suggests
the use of Receive and Transmit as the particular Operators in this class.

Action Names would be used to represent functions or tables. It
is probably desirable that we permit parameterization of Action Names.
This could also be interpreted so as to permit a function which generates
multiple values rather than just one value. However, opening this loophole
would automatically indicate resolution of the question as to whether a
single Action Box can be used to establish the value of more than one factor
Name.

The construction of Actions seems quite straightforward. The rules
for using Action Operators are such that we consider that a value will be
established for a Name by evaluating an expression, named function or
other factor. Basic questions have to do with whether to allow multiple
value assignment within an Action Box. This also leads to consideration of
what connectives to use to indicate independent versus non-independent
value assignments. For instance, we might specify that a series of Actions
separated by a semi-colon must be executed in the order specified while
those separated by periods may be in any sequence. This entire issue of
independence and dependence will be discussed in the Between-Box portion
of this paper. However, under the category of Action Boxes we need to resolve
the question of permitting compound Actions.

-8-

Examples of valid Simple Actions are:

assign PAY. CODE as 336611

assign WEEK. PAY as HOURS * RATE

assign MARRIED as MARITAL. STATUS identical 1
assign LINE, A as SET. B

receive PAY, DATA from TIME., CARD

transmit CHECK. INFO to PAY. CHECK

(5) Definitions:

Definition Boxes serve to associate a Name with a value generating
factor. The basic Operator is DEFINE which is not executable per se. Rather
it imputes a substitution. Whenever a Defined Name is used in an Action
it will have the Definition substituted for it. This can also be viewed from
the standpoint that a Defined Name will be evaluated in terms of the under-
lying or "root'" values each time it is used. Suppose we have the following
Boxes:

define K as P 4[7]
assign Ras K * R

The Define Statement would indicate that K is not to be evaluated except
when it is used; and when it is evaluated it is in terms of the then current
value of P, In a Define statement the same Name cannot appear in both the
""'subject'" and 'predicate''. A definition is persistent throughout a system
description, but the value is not. In contrast, an Assignment results in a
particular value for a Name which can only be modified by another Assign-
ment., Definitions can be nested so that P might in turn be defined in terms
of Q, and so on. The point at which a definition appears is of no importance.
It is always treated as though it occurred at the very beginning. Definitions
should occur only in Unconditional Tables since otherwise there would be
the possibility of their being overlooked in a particular solution path. The
problem of compouand define statements does not seem to arise except in
conjunction with multiple synonyms.

(6) Sequence Control:

The fmal area of Inside - Box discussion is concerned with express-
ing sequence control. This may be concerned with column selection, Table
selection, etc. Reference is made to M. K., Hawes letter August 16, 1960
in which she speaks of Goto, Perform, Halt and Stop. In this class should
also be considered Prior Rule. A Sequence Control statement does not
change any values, but it is of critical significance to the effective description
of the logic of a system.

To support Sequence Control it is necessary to be able to name
certain control points in the transformation logic description. In Tabular
form this requires identifying a Table Name (numeric, mnemonic or descrip~
tive) or even a particular entry point in a Table; it also may requ:}re explicit
designation of individual Boxes (probably through a column~-row numeric
code).

The simplest Sequence Control Operator is Goto, which states
unequivocally that logic control should next proceed to the designated named
location. It can be used as a short-hand way of indicating the repetition of
certain Conditions. This same effect can be produced by the use of a Prior
Rule designation. Irﬂplicitly, this subsumes (or repeats) all previous conditions
preceding that particular branch. This is a highly important convenience
because without it we would have to go to very large, highly qualified Tables;
with this sequence control ability we can break a complex logic into a
series of smaller problems. It is of course essential to the systems planner
that he keep careful track of all logical conditions indicated by the chain of
Goto's or Prior Rules. This in itself can be a complex problem and may also
require the use of Tabular form to maintain logical understanding and control.

Two other Sequence Control Operators are quite simple; these are
Halt and Stop. In the first case we prov:.de. for a planned interruption for
manual intervention--maybe to add a new factor or make a non-formalized
decision. This would provide for operational control as in a Man-Machine
Simulation of a system. Stop concludes the process and indicates that the
transformation logic has been fully defined.

The fourth Sequence Control Operator is Perform. It is used to
represent the idea of "Goto and Return'. There is a serious question as to
the need for this device in a systems planner's Traasformation Logic.
Basically it is a device for cascading levels of Tables, In other words, in
a Box we can indicate by a Perform statement that a whole set of Conditions
and Actions are to be carried out. This then is a ¢onvenience device designed

to avoid complex elaboration of a particular path within a certain Table or
else a means for '"'repeating' a standard subroutine in‘'many Tables.
These are the two major concepts -- (1) an in - line part of the Transfor-
mation Logic which could have been connected by a Golo the indicated
sub-area and then a Goto back to the main - line and (2) a sub-routine
(parameterized or not) which could only be handled by the main ~ line Table
having preset a return instruction before using the Goto. There is, how-
ever, an alternative made available by the combined use of the Define

and Assign Operators. The Subroutine can be Named and appropriately
Defined. Then through a multiple Assign (with or without parameteriza-
tion) the subroutine can be executed with provision built-in for automatic
continuation of the main-line table. With this alternative there is a
reasonable likelihood that the Perform Operator will not be needed at all,

(7) Summary

Inside-Box Criteria require an understanding of the various types
of boxes which the following have been identified: Condition, Action,
Definition and Sequence Control. Each of these boxes may contain a suit-
able statement consisting of appropriate Operators and Factors as re-
quired for that type of box. Operators are a means of transforming Factors:
Sets and Elements. A Factor may consist of Literal, Name or Expression.
Careful consideration will have to be given to each of these identified
topics and adequate definitions of each specific item will be needed.

Subject (B) Within-Column Considerations:

Certainly one of the most potent reasons for using a tabular form
for recording transformation logic is the ability to relate one box to
another visually; it permits almost automatic implication of certain
"noise' words that are required in normal sentence construction. Fur-
ther, the basic value of the table form comes from the ability to readily
associate conditions with actions and to compare alternative sets of
conditions or alternative courses of action. So while there are some
advances in the Inside-Box concepts mentioned under Section A, we begin
to see the basic advantages of table form as we examine Within-Column
possibilities,

Essentially, the table form permits ready visual aggregation of
conditions or actions and visual relationship between groups of conditions
and groups of actions. In every example seen to date the evaluation of a
group of conditions (in a single row or column) directly indicates whether
or not to carry out a group of actions (in that same row or column).

-]11=

For convenience, we will talk about a decision rule being expressed in

a column rather than a row, though of course the two forms are equiva~
lent. To organize the further discussion on this topic we will sub-divide
the subject as follows: (1) Among Condition Boxes; (2) Among Action
Boxes; (3) Between Conditions and Actions; (4) Among Conditions, Actions,
Definitions and Sequence Control.

(1) Among Condition Boxes

Each Condition Box can be individually evaluated and each will
be satisfied or not satisfied as a result of this evaluation. We can
therefore relate each box to the whole and indicate whether the whole
group of conditions is satisfied. In the simplest case we speak of inde-
pendent, required Condition Boxes. Independent means that no condi-
tion is a function of another; more simply, evaluating one condition
has no effect on any other condition. Required refers to the fact that
satisfaction of all Conditions is necessary; this can be thought of as
"if C, and also C_ ani also C_", where all three Conditions must be
satis}ied to satis?y the whole.

We can make this more complex by permitting other logical
connectives between Conditions like "Andor", or "Or'". We could also
develop '""best 2 out of 3" or '"at least 3 satisfied' rules. In the simplest
case (if...and also...) the conditions can be examined in any order
without influencing whether the group of conditions will be satisfied. In
more complex cases this is no longer true and the exact sequence of
testing could affect the decision. Although it is logically and technically
possible to handle these more complex cases it is recommended that
initial consideration be given solely to independent, required Conditions
and that only after this is clarified should we be concerned with more
advanced approaches, There is a sound reason for this recommendation:
The basic power of table form rests on visual relationships; Complex
patterns are not visually easy to follow or conceive and hence may
well destroy the original reason for going to tabular form. Because of
the common need to handle "exclusive or' it should be noted that its
incorporation in the Inside~-Box concept would provide for the necessary
flexibility; e.g., (Inside a Condition Box) MARITAL STATUS is MARRIED
or MARITAL STATUS is HEAD.OF. FAMILY. It may even be desirable
to offer a short-hand notation for this one special case if it occurs
frequently enough; e.g., MARITAL, STATUS is MARRIED or is HEAD OR
FAMILY,

w]lZ=-

(2) Among Action Boxes

Implicit in handling a group of actions is the cennective 'and
then'. There must often be a stated sequence of action performance since
it is likely that a particular action may affect the value of a factor which
is used in a subsequent action. The simplest case is achieved when
written sequence (top ta bottom) is maintained. Given any series
of actions it is clear that they can be written in proper sequence from
top to bottom. Questions about explicit sequence indication arise
because of attempts at redundancy elimination or for row association.
These will be discussed under General Table Considerations.

The problems which arise among actions are concerned not with
indication of implicit sequence, but rather with those actions which need
not be done in order, but are automatically sequenced in a column
approach. This same objection is valid for flow charts, narrative
languages and machine-oriented languages. The question can be stated:
how can we use sequential language and still indicate that two or more
items need not follow each other. No soiution is suggested here though
certain possibilities are explored briefly. We could have a rule that
between action boxes there was no sequential relation except as indicated
by common use of a certain factor, in which case written sequence would
hold. We would have to explore whether action to action (necessary) sequence
can always be logically determined; i.e., the need for sequence, no what
the proper sequence is. We should also investigate the usefulness of
explicit sequence indication, Another approach is to provide a precedence
matrix or precedence chart as shown by Barankin's work on Precedence
Matrices and Salveson's paper on Assembly Line Balancing. A third
approach might be to use some special line weight or symbol to indicate
that the preceding actions must be performed prior to carrying out the
following action(s). :

It is recommended at this time that we only deal with tables with
the following property: all actions in a column are to be performed if
any actions in that column are to be performed.

One other interesting idea is the possibility of compacting actions
by allowing within an action box a complete loop statement like assign
X as X /IforIfroml to 10 byl. This would allow a summarization to be
explicitly indicated within a single box and would avoid certain types of
Goto and coandition testing.

A3

(3) Between Conditions and Actions

In virtually all illustrative tables the connection between condi-
tions and actions has been simply, '"if...then...'., If the stated condi-
tions are satisfied, then execiute then actions specified. This may well
be the standard and most significant need for tables, but at least one
other logical possibility should be explored: "if...then do not do...".
This would provide for editing and error correction since as long as
various conditions are satisfied, no special action need be taken.

One recommendation is that present studies concentrate on tables
where satisfying the various conditions in column will always result
in that column's actions being carried out. We should also try to work
with "'cause and effect' relationships or with functional relationships.
Reliance upon incidental or happenstance relations is highly suspect
in that it may make table acceptance and maintenance unnecessarily
difficult.

As far as deciding whether to execute a group of actions, the
Among-Conditions control determines if the Condition-column is

satisfied. The knowledge of whether a Condition-column is satisfied
determines whether the corresponding action-column is to be executed.

An interesting development of Condition-Action relations can
be observed through the following formula.
let N = Total number of conditions in a particular column

and S = number of satisfied conditions in that column after
evaluation,

then there seems to be 5 possible situations
(1) fS - N then...

(2) ifS2 1 then...

(3) f N - S> 1 then...

(4) if N - S5 - r then,..

(5) if p<(N - S) r then...for pytr

=lde

These can be reformulated as follows:
General Case:

if p<IN - S)<r for pg r>2 0

What this reformulation means is that for each table (or even for each
column in a table) we could specify a "p" and an "r'" and this would
fully describe the logic for carrying out the actions in that column.

(4) Among Conditions, Actions, Definitions and Sequence Control.

The first point we might recognize is the usefulness of an ''un-
conditional" column. This says that the actions, definitions, etc. in that
column are to be carried out always. This can be done in a one column
Table (the '"degenerate' form) or by its use as the 'last" column in
a table (an "all others' column) or in a table with multiple sets of
actions permitted it could be any column (a "must' column).

T

In general Goto should occur after all other actions have been
specified, hence it may be desirable to require Goto operations in the
last row of a Table. Prior Rule operations should occur as the first row
in a Table. The question of sequence control will be discussed more
fully under Subject (C) General Table Considerations. We only want to
note that a column will need to be able to distinguish at least these
basic relationships: must come directly from; must come from one of
these; must previously have been considered (and of course the go to

complements).

Burton Grad
December 29, 1960

WORK PROBLEMS

Extended Entry Tables

TABLE HEADER

CONDITION STUB CONDITION ENTRY
—ﬁ
ACTION STURB ACTION ENTRY

ENTRY HEADER

TABLE HEADER - The name of the table appears here.

CONDITION STUB - A data name and a relational operator may appear
in this section of the table.

data-name > data-name <
data-name > data-name <
data-name =

The absence of a special symbol implies equality (=).

CONDITION ENTRY - A data name, literal (enclosed in quotes, " ")
or an arithmetic expression may appear in the conditional entry,
Each of these entries is horizontally associated with the condition
stub, Thus, a complete relational expression evolves, e.d.,
QUANTITY ON ORDER = QUANTITY ON HAND.

The last column may be used to cover all other cases if all
alternatives are not covered by the other conditional ex-
pressions. The column is marked "A/O",

ACTION STUB - A name or an operator is an acceptable entry in this
section. The following operators are permitted in the action

stub.

OPEN READ
CLOSE WRITE
DO

- o

As will be seen below, the operands are placed in the action
entry.

When the replace operation (SET =) is desired, only the data
name need be entered in the stub.

ACTION ENTRY - Names, literals and arithmetic expressions may
appear in the action entry. As with the conditional entries,
horizontal association is assumed. A single operator is
permitted: the + symbol before a data name or literal will
be interpreted as the increment operator. The value repre-
sented by the entry will be added to the value represented by
the name in the stub.

ENTRY HEADER - The entry header spans the action stub and the
action entry. The last row of the former must contain a GO TO
operator; the last row of each column of the latter must contain
a table name or number indicating the next table to be considered.

EXAMPLE:
TABLE: }{
LOCAL TIME (EST) = 2:00 | =1:00 =3:00 i =1:00

12:569 ?2.00 12:59 g ?4.00

DESTINATION TIME ZONE

CST MST i PST

Local Local Local
Time Time Time
+11:00 - 2:00 +9:00

DESTINATION TIME

DESTINATION MERIDIAN |{Original Original }

change
End meridian| End

oy

GO TO meridian

! change

Problem 3

Prepare appropriate extended entry decision table(s) according
to the following rules:

Given:

A, Field Names

Employee name

Department number

Hourly rate

Hours worked

Deduction code (A, B, C, D)
Sex (MALE, FEMALE)

Obtain:
A. Select all males who satisfy the following conditions.

1. They must work in Department 47.
2., Weekly hours not over 40,
3, Must have a deduction ' code '"B" or code '"'D',

B Select all females that satisfy the following conditions:

1., They must work in department 48, 49 or 50.

2. Weekly hours not over 40,

3, Must have a deduction under code '"C'" or hourly rate
must be more than $2, 50,

C; If section A is satisfied - do routine 1.
If section B is satisfied - do routine 2.
If neither A nor B are satisfied - do routine 3.

Problem 3 Solution

Sex Male | Male Female | Female | Female |Female | Female | Female | All/
others

Depart -

ment 47 47 48 48 49 49 50 50

Weekly

Hours Z 40 | <40 £ 40 £ 40 < 40 £40 £40 “£40

Deduction .

Code B D C —_ C — [o

Hourly

Rate >2.50 | —— [>2.50 |e— >2.50(|}

Go to Rou- | Routine| Routine | Routine | Routine | Routine | Routine |Routine | Routine
tine 1 1 2 2 2 2 2 2 3

Problem 3 solution

Table 1
Weekly
Hours £ 40 <40 all/
otherg
Sex .Ma.le‘ ‘Female
¥
—— e—
i
Go To Table 2 |Table 4 [Routine
3
Table 2
Depart- 2
ment 47 47 all/
others
Deduction .
Code B D
Go To Routine [Routine [Routine
1 1 3

Table 4
Deductio
Code |all/
,+ C | others
Hourly
rate £2,50
[
e ———
Go To Routine3| Table 5
Table 5
Department| 48 49 50 all/
otherq
Go To Routine | Routine | Routine |[Routine
2 Z 2 3

-

Problem 4

Develop extended entry decision tables according to the following
information and rules.

A, Classification of capital gaimand losses, -The phrase
""short-term'' applies to gains and losses from the sale
or exchange of capital assets held for 6 months or less;
the phrase '"long-term'' applies to capital assets held
for more than 6 months.

Treatment of capital gains and losses - Short-term
capital gains and losses will be merged to obtain the
net short-term capital gain or loss., Long-term capi-
tal gains and losses (taken into account at 100 percent)
will be merged to obtain the net long-term capital
gain or. loss.

1. Given: Purchase date
Sales date
Net sales price
Net cost

2, Obtain: Total long~-term result
Total short-term result
Type of long-term result (gain, loss)
Type of short-term result (gain, loss)
Net result.

Problem#4 solution

Table 10
Elapsed Sales
Time Date -
Purchase
Date
Result Net sales
price -
net cost
Go to Table 11
Table 11
Elpsed > 6 months| £ 6 monthT
time
Total
long-termy + result
result
Total
;Short- + result
erm
1l __result
Net
result + result + result
Go to Table 12 | Table 12

Talmle 12
Next Does not
Item Exists exist
Read Next
a3 Item
Go to Table 10 Table 13
Table 13
Tdal long-
term 2 0 & B
result
Type of
long- "Gain" "Loss"
term~resulf
Go to Table 14 Tahle 14
Table 14
I
. short-
term result 2 0 2, 0
type of totall| * " ST
short-term Gaiw Lo
result
Go to Income Income
Calculator| Calculator

Problem 5

Prepare an extended entry decision table according to the following
information and rules.

A, If the net short-term capital gain exceeds the net long-
term capital loss, 100 percent of such excess shall be
included in income., If the net long-term capital gain
exceeds the net short-term capital loss, 50 percent
of the amount of such excess is included in income.

If the sum of all the capital losses exceeds the sum of
all the capital gains (all such gains and losses to be
taken into account at 100 percent), then such capital
losses shall be allowed as a deduction only to the ex-
tent of current year capital gains plus $1, 000, The
excess of total losses over the allowable losses is
called '""capital loss carryover''. Except as noted above
50 percent of all long-term gains and 100 percent of all
short-term gains are to be included as income.
%4 Given: Total long-term result
Total short-term result
Type of long-term result (gain, loss)
Type of short-term result (gain, loss)
Net result

2. Obtain: Income
Loss Carryover.

Problem 5 solution

Type of
1 -t
s "Gain' "Loss' —~ —— "Gain'"'
result
Type of
short-term "Loss" "Gain'' = i "Gain" ,f
result :
Net result - - £ 0 - ader
Net
result > 0 >0 2 -1000 | £ -1000 a———
" I 55 Ifrf‘ota.l
+5 Net Net Net long-term
Income result result result -1000 result)-}-
Total short
~termresul
Loss Net result
carryover - + 1000 —
End End End End End
Go to routine routine routine routine routine

(—'l

EXAMPLES OF TABLES

W. L. Myers
' Eastman Kodak
September, 1960 Rochester, N.Y.

Examples of Tables

1. Simple Mutually Exclusive Conditions and Actions:

This type of information does not seem to be aided by the
Table System. However, it does tend to pull together all of the
possible conditions and possible actions in a formal fashion so
that any future variations can be analyzed and explained easily.

The pattern of "Y's" on such a Table usually appear as follows:

Rules
Condition 01 02 03
A Y
B x
C ¥

Action

N e
<
<

3 Y

2. Several Actions in Various Combinations:

The next most frequently used Table is the one showing
several actions to be taken in various combinations based on
mutually exclusive conditions,

This type of Table might appear as follows:

Rules
Condition 01 02 03
A Y
B Y
C b 4

Action

[B - L]
"
w

3. Conditions and Actions Not Mutually Exclusive:

The major value of the Table is for describing series of
conditions and actions which are not mutually exclusive. Statements
describing these situations in English are quite lengthy, and are
difficult to analyze for completeness of the effect of a proposed
change.

The Table for this type may appear as follows:

Rules
Condition 01 02 03 04 05 06 07 08
A Y Y Y N N N Y N
B Y Y N Y N Y N N
C Y N Y Y ¥ N N N
Action 01 02 03 04 05 06 07 08
1 Y
2 Y X b 4
3 ¥ X Y
4 Y Y Y
5 ¥ ¥
6 Y

The use of the Tables can best be understood through practice

with a series of problems.

Problem # 1

Merge two tapes (or decks of cards) which are in order by
Stock No. in ascending order., There may be more than one item
for each Stock No. on either tape. Call the two input tapes # 1 and
2, and the output tape # 3. It is helpful to first write the Actions
at the bottom of the Table, and then fill in the Conditions. The two
Actions desired are:
1. Output the record from tape #1 and read another from tape #1
2. Output the record from tape #2 and read another from tape #2

Problem # 1 {(cont.)

Only one test is necesgsary:
"A'' Is the Stock No. of tape #1 lower than the Stock No.

of tape #2
The Table will appear as follows:
Rule
Condition 01 02
A Y N
Action
1 b 4
2 Y

This appears simple, but does not provide for the end of the
job procedure so it is actually incomplete.

Problem # 2

Merge three tapes. This Table will have three Actions.

1. Output the record from tape #1 and read tape #1 again
2. Output the record from tape #2 and read tape #2 again
3. Output the record from tape #3 and read tape #3 again

There will be several tests necessary:
"A'"Is tape #1 lower than tape #2
"B'"Is tape #1 lower than tape #3
"C'"1s tape #2 lower than tape #3

The Table would appear as follows:

Rules
Condition 01 02~ 03 Formula
A Y N — 142
B Y — N 143
C —_ b4 N 2<3
Action
1 Y
2 Y
3 Y

Problem # 2 (cont.)

It is helpful to check to be sure all combinations have been provided
for, Three Conditions can occur with eight variations as follows:

Variations
Condition 1 2 8 4 5 6 7 8
A Y Y Y N N N Y N
B Y Y N Y N Y N N
C Y N Y Y Y N N N
Included In
A Y Y * N N ¥* — —
B Y Y —_—— N N
C — — ¥y X N N
Rule No.
in Table 01 01 02 02 03 03
Numeric Ex.
Tape i1 4 4 5 6 5 6
Tape #2 5 6 6
Tape #3 6 5 6 5 4 4

* Not included in first Table.

As can be seen, two situations are not covered — Variations
3 and 6. Let us examine them.
Variation 3 (YNY) would mean:
Tape #1 is lower than Tape #2, and Tape #1 is higher
than Tape #3, and Tape #2 is lower than Tape # 3.
This condition is impossible.
Variation 6 (NYN) is similar and means:
Tape #1 is higher than Tape #2, Tape #1 is lower than
Tape #3, and Tape #2 is higher than Tape #3.
The Table can help a programmer see the interplay of the different
tests. For example: If "A" is "Y' (yes) then it is best to test "B"
next since if it is also "Y' you have an answer, However, if "A" is

Problem # 2 (cont.)

"N" (no) then make test "C" next since if it is "Y" you will have

an answer,

Likewise, if you organize so ""A" is used for the

longest tape, "B' for the next longest, etc. the number of tests

can be kept

Problem # 3

to a minimum.

A classic problem is that of posting a requisition to an account,

or making a partial delivery and creating a Back Order for the
balance. The Table has two sections. One section is concerned
with matching the Stock Number of the requisition with the Stock

Number on

the tape, and the other section with posting the

requisition. The Actions are:

1'
2,

1.

Read in next Stock Record

Transfer to Posting Routine

Non-match, write error message

Read in next Requisition

Reduce Stock balance by amount of Requisition
Reduce Stock balance to zero, create Back Order
for balance

Return Requisition marked ""No Stock'

The Conditions are as follows:

"A"

HBI!

Iic"
lIDll

Stock Record Number is lower than Requisition
Stock Number

Stock Record Number is equal to the Requisition
Stock Number

Quantity in Stock Record is not zero

Quantity in Stock Record is greater than Requisition
Quantity

Problem # 3 (cont.)

Rule

Condition 01 02 03 04 05 06

A Y N N

B N Y N

G ¥ Y N

D Y N N
Action

1 : 4

2 4

3 p &

4 Y Y2 Y2 Y2

5 Y1

6 p'ét |

7 Y1

Again it is easy to see whether or not all conditions have been

provided for. In the first pair of Conditions a rule for the simultaneous

£
Seburance of "Y" for both "A" and "B" has been omitted since obviously

a number cannot be m lower than and equal to another., A rule for
Conditions C=N and D=Y is also omitted. Again a quantity cannot be
Q&t‘\ll zero and larger than the Requisition Quantity.

The numerals in the Action Section indicate the desired sequence
of Actions.

WLMyers:ekw

Data Processing Service Job No.

Table Layout ng ect
L TABLE
Date
Conditions Frequenc

Rule No. |1[2|3]4[5[6]7]8|0[0[n[12[13[14[15]16] * °r™ula

Actions

Formula Data
Symbol [Field Name Record No.|Incr. | Length Remarks

