
PRELIMINARY APPROACH

TO

TABULAR PROGRAMMING

Earl O. Althoff
Eastman Kodak

October, 1960 Rochester, N. Y.

(

POINTS ABOUT PRELIMINARY APPROACH TO TABULAR PROGRAMMIN:}

1. For each element used, prepare a 15-digit title to use in the English text
and a four-digit abbreviation to use in formulae. The four-digit abbrevia
tion either starts with a letter or is numbered sequentially~OOl, to02,

·0003, •••••

2. Do not strain to over-abbreviate. For example, CTOl, CT02, •.• can be used
to stand for control totals of various types. It is usually best to give
mnemonic abbreviations only for the hundred or less most used elements.

3. Data sets can be listed on a data element sheet if desired. For example,
the data set "Target Date" abbreviated TRGT consists of the data elements:

"Target Month"
"Target Day"
IITarget Year ll

abbreviated TMON
abbreviated TDAY
abbreviated TYR

In the above, four entries are made, one for each data element and one for
the data set.

4. The definition should be clear and unambiguous, but above all must be com
plete. Differentiate clearly between similar data elements.

5. Prepare a data file for each set of data (not going directly to a report).
Do not consider the machine in your preparation. As an example consider a
tape with records of Type A followed by several records of Type B; prepare
two data files, A and B, since having these on the same tape is pure machine
method.

6. For each data set or element listed, record a reference to set number and page
number of the data element sheets. Thus, 03-01 refers to data element set 03,
page 01. Record both the title and the abbreviation. Record the length for
that file. A given element can require four digits on one data file and six
on another.

7. Give each data file a letter designation A, B, C, •• , record whether input or
output. In the case of an updated data file, assign two letters, say A for
input and B for output.

8. Obtain a Data Processing Spacing Chart for all report lines (messages as well
as fancy reports). Label each report A, B, etc. Use a second letter for each
different type of line. Thus, Report A may have lines AA, AB, AC, •••

9. Tables must give all logic except how to start ·and how to stop. All the state
ments which follow must be accomplished completely - no exceptions can be per
mitted.

10. The table is divided into conditions and actions. On the left, one gives the
English statement of the condition or action, and on the right, one records the
precise formula fully and completely. Thus, on the right;

A-STAT = B-STAT clearly shows that the condition is true if and only if the
STAT element of data File A equals the STAT element or-dRta File B.

C-0001~ 0 shows the condition is true only if the data element 0001 of data
File C is greater than the constant O.

- 2 -

11. The formula for a condition can include any connectors desired to complete
"a single condition". Examples are:

10 or 15 F-TAX =
F-TAX = 10 and G-TAX = 15

12. The a ctions can be varied also. In general, One records data movement or
arithmetic actions first, then all data file advance actions, then all table
transfer actions.

13. Typical data movement actions are D -? E (ASG#, PROG, and TT01) meaning
move from data File D to data File E the data elements ASGi/, FROG, and TTOl.
In cas e of one move, D-ASG# ~ E-ASGi/. Others are D-PDHR add to E-YRHR, etc.

14. \,hen data is posted to report lines, increment is used as: D-ASG# -;. AB14 mean
ing post data element ASCII of data File D to position 14 (right-hand increment)
of line B of Report A.

15. Another action may be to do an action or actions from other tables. Thus,
Action 2 of Table 01-A5 can simply be "Do actions 3 and 6 of Table 03-B7 .

16. Another action may follow the actions for a data rule from another table in
its entirety; if so, simply transfer to Rule XX of Table XX-XX.

17. The advance data files actions are abbreviated GIV X for input and TAX X for
output. In some cases posting a data element to a control total is included
as: C-AMT add to TOT1; TAK C. When an advance action is given, the next ac
tion calling on that file from any table will be from the next record.

18. Tables are numbered NN-XN where NN denotes the project area; NN runs from
01, 02, ,., X is a letter denoting a sub-project and runs from A to Z, while
the rightmost N is 1 t o 9 and denotes table within sub-project. The last
action for any data rule is always a transfer to some table. (Do not trans
fer to a rule within a table - leave this to the programmer,)

19. On any given table, possible entries opposite condition are Y, N, and -.
Y = Yes, N = No, and - means "does not apply".

The matrix ~ "Iould indicate an analyst omission sinc e the combinationl!l

One must specify enough data rules to account for every
conditions, ",hether possible or impossible (is it really

~
is not specified.
combinat ion of the
impossible???)

The - is used primarily in two cases:

A.

B.

If condition 1 is A-STAT = 0 and condition 2 is A-STAT = 1, then a IXEJ entry
ffil

would show that, if A-STAT = 0, we don't need to test for A-STAT = 1 and
vice versa.

The - may be used to indicate a plain transfer to another table, when the
only alternative "ould be to over-run the 6 X 10 matrix. Example:

Condition 1
Condition 2
Condition 3
Condition 4

Y
Y
Y
Y

Y YY
Y Y N
Y NY
NY Y

Y YY
Y N N
N YN
N NY

Y N
N -
N -
N -

The data rule on the right simply
transfers to another table where
the NO's for Condition 1 are spelled out.

- 3 -

20. In summary, the preliminary appro~ch is designed to obtain from a job analyst
actions to follow for every combination of conditions. The conditions and
actions are not to be vague ... but must be 100 percent precise to every data
element involved. There is no thought given in the preliminary approach to
automating any of the steps: tables ~ programs. Only a person ;ri th two -
three years active programming and computer systems experience can prepare
tables containing many subtle traps which develop only in automatic E.D.P.
systems; for the next year or 60, it is expected that these people will
return expanded tables (with these subtle points included) to the job analyst
and will, in addition, write programs in KodaKoder.

EOAlthoff:rds
October 11, 1960

~A~A PEOCESSI . G SERVICE
EU)4EIfl'S DEFIm'ION

~Rr {I 01 PAGE {lOl

.I..,-DIGIT TITLE One Letter ABGl'I

Job l'Io .

Name: Far] O. Althoff

Project: D.P,S. Billing

4- DIG IT ABBRE'{ • ABGL
Dl!:P'InTION: A J ettez: ecce Jised to dj fCc:ccctj ate :b:etlleeo .scl!:eral t::au!s g! ;gs:rJ;u::tlla.l £ui~lgDmCD~" •

Be1:el: :tc tbe :bads of: a D.E.S. T:1IDf:- Bc;gc:r::t j 0" Sllf'tt. ;Let fHll dtta1l ~iI

15-DIGIT TITLE Assj"clllell:t No 4- DIG IT ABBREV'. ASG~
DEl"INITIOl'l: A four- clif!iit number £,,1 'ren in seguence to non-EerEetual ass15nments as the;):: occur.

Tbe number has 110 structure of an.:i Gort.

15-DIGIT TITLE Billi9(; Number 4-DIGIT ABBREV'. BIL#

Dl!:P'InTIOl'l: A fi'/e- diei t. number aHsigned by the D.P.S. Account ant to eac~ account or sub-

account "bleb D.P.S. bills. It is structured as desired to ;)::ield a meaningful report order.

15-DIGIT TITLE PROG- SYSTEM NO. (DATA SRri 4-DIGIT ABBREV'. UJ~
DE1'Il'II'.L'ION: A uniform job number "hich ser"Jes a 'rarj ety of purposes. It is organized primarllJ

,. ~nm:tl tltfl'r 1"'11n Ann gr("wrA.m v1t h1n ('nmn ll tp1'" "'un • (See r.hRnter ?? .. - Self Teach) Consists of - I

elements MFC , RUNt. a.nd PRCt.

• ,
15-DIGIT TITLE Pro,jcct Tl tle 4-DIGIT ABBREV'. TITL
DEl"INITION ' A 4~- cbaracter title given to each ~I'o,ject havi!]6 a four- diS it assie;nment m.unber.

I

15-DIGIT TITLE Project Type Code 4-DIGIT ABBREV'. TYPE

DEl"INITION: A two-character code enabl1!l6 us to i~r.ouE a Ero,le~t b:£ new I2ro liirams (1'1) I cha!;fies

(~l. Qr r~J:1§~Qll (Rl· The !!!lits 12Q~1tion is 1 for f< llusiness Ero,lect I 6 for a I2ro(;jro.m re-
search proJect.

l5-DIGIT TITLE Ma,l or Fctn. Code 4-DIGIT ABBREV'. MFC

Dl!:P'INITIOl'l: A two-ditjit code used by D.P.S. to r oughly distinguish between basic major project

tunctions such as Merchandise

d:l SU:& at: :ex:cg.~stem :&:l

~ ·DIGIT TITLE Tariset Date

lo..t'INITIOl'l: The date by "bicb

Blll1~1 PaEer F1n1sbi~ Scheduli!2§1 etc. It is tbe first t"o

4-DIGIT ABBREV ._""T""RG=.T _____ _

an assignment sbould be completed to the point tr~t production

results are obtainatle. Six digits as 011560 .

"0 A ~r APR 0 C E -S SIN G
ELOO:lITS DKP'IlU'tION

~ET '" 01 PAGE '" 92

l:--DIGI't TITLE Programmer

S E R VIC E

llEP'IJJITIOK: An official ten-gig!~ name ~§~lgg~11

Methods Staff

15-DIGIT· TITLE Begh ~ral<iQ!l Ii.

Job No. : __________ _

Name: Earl Althoff

Project: D.P.S. Billing

4-DIGIT ABBRE'(. PROO

liQ fi!~~ll lcd1~jguaJ Q;(tbe Fl:c,,:cammj Xli aXle

4-DIGIT ABBREV . am'/I:
DD'llJITlOll : A six-digit number given to each employee of Kodak Rochester. The flrot three

, digits indicate depEt.rtment and the last three are se9uentiall~ Given b;t various rul!i!§ '
, ,

15-DIGIT Tm.E Prog-S:l§l< ·1&~la: I 4-DIGIT ABBREV. n~h

DXl"lIfITION: Refers to a 29- digi t alpr.anumer i c tith, or description given to each specific

program or computer systems sub-assignment.

l5-DIGIT TITLE =,' Mac M:u:I:tbs 4- DIGIT ABBREV. F..'l'I'M

DEP'lIIl'l'lON: Refers to a time estimate given for each program in an assiGnment. The time is

ven ill !Q),!,t !l.1g1:t~ (gCe g,!:I:~w~l ~J ace). -

15-DIGIT TITLE Due Dnte for V 4-DIGIT ABBREV. J:1JEV

DEFIIIl'l'lON: A date fliven for each Ero~ram to be read;:z: for s~stem volume testi!]8 . Six dig1 ts

as 011260 or 12B161.

15- DIG IT Tl'l'LE DeI!artment 4-DIGIT ABBREV. DEPT

DEl"lRlTIOll : A four-character alI!hanwneric abbreviation of the del2artment a I2rogr ammer g~lQQB§

liQ· ElIamnll:a ril:~ OfS. MSOIl. AUl. DC.

l5-DIGIT TITLE Com~uter Run~ 4-DIGIT ABBREV. RUNI
DEFIRITION: The third and fourth digjt of Prog- S;tst!ml No .. lle1111l:!Ioj;l:a tb~ 12tgB;tfilDlS c,u;u~j 1.;1 tn:tj

a scheduled comEuter run.

" ·DIGIT TITLE Program Letter 4-DIGIT ABBREV. PRGL
DJ:.1'"lNITIOK: The fifth digit of Prog-S;tstem !!2. l.. !:l<j;!i:r~ 1J:Qm I!. :tQ Z a.t:~ s1JCCIl :to ~tC6:l:ama Q! ~
ij:~ieD com;gute:r tHe.

V A TAP ROC E S SIN G S E R V ICE
DATA FILE LAYOUT

FILE DESCRIPTION Assignment Master

TITLE

~. Assignment No.
2. Billipg Number

3. ProJ. Ldr. Name

4. Project Title

5. Pro," Type Code

6, Malar rx;TN Code
'(, ~TRA~rg~e~t~De~tee-_______________ _

O'~B~l~lJ~_~o~))~t-uCo~dlie~' __________ __

9, Completion Code
10, ______________ _

1 , 11. _________________ _

\ ~2, _________________ _

. U· ______________ _

1>, ______________ _

:t6, _____________ _

:17. __ .:...-. ___________ _
18, _______________ _

19, _______________ _

~,---------------
21. _______________ _

22, _______________ _
23, ______________ _

24. ______________ _
25. ________________ _
26, _______________ _

27, ________________ _
28, ________________ __

2·,. , _________________ _

30 , ______________ _

31.

1;3:--------------
134 ,

F5'--------------

REF.

01- 01

01- 01

01-05

01-01

01-01

OJ-OJ

OJ-OJ

OJ_OJ

01- 03

Job No.: ___________ _

Project: D.P.S. Billing '

futa File :A in Bout

Rame: thoff

AllBREY. LEmTH

For Programmer Use 0nJ

REC I IWCR.

ASJ# 4

BI1.# 5

PLOO 10

TITL 45

TYPE 2

MJi'C 2

TBaI 6

Ell£:)

CMPL 1

DA~A PROCESSING SBRVICE
M'l'A PILl! LAYOUT

PILI DESCRIPTION Current Time Records

1. Assignment No.

2. Prog-Syatem lip,

3 • ProgrNDlJler

4, Department

5, Progress Code

6, Est. lle.te for V

7. Bra. Th16 Period

8. cpy MIN Y-TeRt

9, K-l0S This Pd,

10, K-20S This Pd,

11, 1(- 3QS Tb1A PsI.
12. 1_405",1 B p,1.

13, X-50S This Pd,
, I. ASGL can be M and If only
1', ____________________________ _

16, ______________ _
11, ______________ _

18, ______________ _

19, ______________ _
20, _________________________ ___

21, _______________________ _

~.---------------------------23, _______________ _
24, _______________ _

25, ______________ _

26, ______________ _

~,-------------------------28, ______________ _
29 , __________________________________ _

30, ______________ _
31, ______________ ___

33, _____________ _
34, _____________ _

35, _____________ _

REF ,

Ql-Ql

OJ-OJ

Q1-Q!;:

01-02

01-0~

01-03

Ol-03

OHlS
01-04

01-04

01-03
CJ-~

01-04

01-01

Job Bo.:

Project: DES B:I]l~DI

lle.ta F:l.1e: C ill
lI&me: Earl Al

For ~ Ua. OIl)

AB1IRE'{ , Ll!31TII ~* IBCR.

6f£J1. !i
IlaIi 5
PROG 1Q

DEPT 4

frrAT 1

FSr'{ 6

HRl'P !i
VTST !i
KlOP 2

K20P 2

X30f 2
X~QE 2
K:20P 2

ASGL 1

DA ~ APR 0 C E S SIN G S E R V ICE
DA.TA FILE LArot1r

7ILE DESCRIPTION ProGram System Master

TITLE

,t. Assiflnment No.

2. Pr0fl-S~stem No.

3. Programmer

4. Prog.System Description

5· Est . Man Months

6. D..\e fu te for V

7· DepArtment , , , .
8. E1:Qa:X:~:la Cage:

9· Est. Date for V

10 . !IRS to fute

11. Bill-out Code

12. V-TEST To Date

13 · K-l0S To Date

114 • K-20S To Date·

l K- 30S to Date .
:n.6. K-40s To Date

),7· K-~OS To Date

18. ASGL will be M and N onll

iL9·
to.
il.
i2.
23. I

~4.

~.
26.

~.
i!8.

2/ .
~O.

31.

33.
34.
135·

Job No.: _________ _

Project: D.P.S. Billing

Data File:K in Lout
lllAme' Earl Althoff

lIor ProgrUllller Ulle On:

REF. ABBREV • I..mZTH REC t IKCR.

01-01 ASJ# 4
01-01 UJ# 5
01-02 PRoo 10

01-02 DESC 29

01-02 ESTM 4
01-02 nJEII 6

Ql~Q2 Dm 4
Ql.-03 liiTAT J,

01-03 ESTV 6

01-03 HIlTD 5

01-03 BILC 1

01-0:2 VTTD 6

01-04 KlOS 3 ...
01-05 K20S 3

01- 04 K30S 3
01-04 K40s 3

01-04 K50S 3
01- 01 ASGL 1

DATA PROCESSING SERVICE
TABLE LAYOUT

TtTLE Update Assignment Master

-
00 N.D I T ION S

n ,r
lRULE NO. 1 2

1. Is there a ney aSsignmept master? y y

~

k. Is there a change to the assign- - -
_ment ,+ -.

). h lill!: ~bAgg~ [e~Qt~ a aeJetjoc% y N

4. Is the change record a completion - -
notification?

~.
Are ve posting chaDges to a COD>- - -
pleted assignment?

~.
L

ACT I 0 l'f S

1. !!axe eDi;jx:e ma.atex: [eeQ':" :tg ,geae
as base.

;lo
Post chan~e assignment no. to uI!:
lated master. y

-
j. Post corres~ndi!1!l parts of cha!!fie y

to master.

4. Set-up and write delete error y
message.

, ~. lc5:t ccmgle:tlcD Cgg,s: tQ WAa:ts:;c y

6. Set-u2 and write deleti!!fi mess~e

7. Advance controls to next change Y Y

8.
Advance controls to next input mas er

Transfer to Table Ol-A! y
9·

10.
Transfer to Table 01-A3

. . ~a.Dat:=l: lie !all]!: 01-A2 Y

12 Transfer to Table 01-A4

13·

, ,n In bnn
3 4 5 6 7

N N N l'f

y y y It

Y - - -

- y - -

- - y -

y Y

y y

y

X y

y

Y Y Y
,

Y Y Y Y

Y

Y Y.

Y

Job. No. : _________ _

Name: Farl Althoff

Project: DeP.S. »'JJ1ng
Table No: QJ.-AJ.

8 9 10
CON D I T 101
A B B REV I AT .. ! O'

D-AOOI ~ ~ASJI

D-M'JJ{f a ~ AJYJI

D-CMPL = 2

D-CMPL = 1

D-CMPL - A

A ~ B

D-ASGII ~ASGII
BIll, PLDR, TITL, TYPE,
MFC, TRGT, BILe

n~

D-ASG#~-39
Write AA

D-CMPL (Numeric portion)
-?>-B-CMPL

D-ASG# ~AB-18
write AB

GIV D

GIV A

TR Ol-A!

TR Ol-A3

TR Ol-A2

TR 01-AA

I

DATA PROCESSING SERVICE
TABLB LAYOUT

Tr.rLI Second Change Check

-
<o;ONDITIONS

u 0

JRULE NO. 1 2

i- Is there a change t o the u])dated y y

,. master?

~. Is this change a del etion? y -
j. 1a tbja cbaDie a cc~J etjQc DQt~£j a-- y

t1on?

4.
Are we 112st1ns changes to a com12le - -ted assignment?

S·

6.

IACTIONS

1. l2112W ac~1Qn of Rule 3 Table O;!,-A: Y

~ l2§t c2mR~etlon code to master. Y

~. Advance cQntrols to next change. Y

4. Follow actions 3 and 5 of Table
Ol-ll

5. Transfer to Table Ol-A2 Y

6. Transfer to Table 01-A4

[7·

8.

9·

10 •

.
.
12

13.

Job. No. :
~e: ~~l-ll~t~ho~f~f~----------~

Project: D.P.S. Billing
T bl No a e : 01-62

0 11 CONDITIO.
3 4 5 16 7 8 9 10 A B B REV I A T. I 0

y N ~ Af"AJ# = B-A!3GI

- - ~CMPL = 2

- - ~CMPL = 1

y - ~a.IPL = A

TR Rule 3 - Olll

~CMPL (n':l"'er lc part)
-t B-CMPL

Y GIV D

y Duplicate 3 and 5 of
Ol-ll

Y TR 01-A2

Y TR 01-A4

j

I

DATA PROCESSING SERVICE
TABLE LAYOUT

TrTLI Update Prog-System Master

-
CO N.D I T ION S

r '0'
JRlILE NO. 1 2

1. I~ t~e~e a cex EtQi-5~tem Maste~l y y

2.
Is the new master for this assign- y y
menU
Is this a delet e? Y N

3·

Is the next master for this assign
4.

menU - -

5· I~ lell!:l:~ ~ ~b~gg~ igl: leb~ ma.t~I:Z - -

Is the change a delete? - -6.

ACTIONS

Mcxe ectj~c ma6te~ 10 se:cte a Si l-
base.

~ ~o§t cQrr~s~ndiDB £haBB~ !1~~~§
/ co master. y
-
3·

Post start-u~ constants to master. y

4. Set-u~ and write delete error
y

meSSWle.

Set-uE and write deleti9S mess~e. 5· 0

6. Advance control to next chAAAe y y

7· Advance cQntrol to next master

r .
8. ~fUl§!=[le2 lell~§ T~ble 0l-B~ y

9·
TRansfer to Table 01-B3 y

TRansfer to Table Ol-Cl
10.

~ansfer to Table Ol-B2 .

12 TRansfer to Table 01-B4

1.3·

lr 1 11
3 If .5 16

y N N N

N - - -

- - - -

- y y y

- y y N

- y N N

y Y Y

y

y

y y

y y y

Y

y

y

y

7

N

-
-

N

N

N

Y

Job. No. :-:--:-:-:-:--:-::-______ _
Name: Earl Althoff

a e -
Project: D P S Bill1ng

T bl NQ. 01 Bl

CON D I T ION
8 9 10 A B B REV I A T. I 01

E- FLDl.:: K- FLDl

E-ASG# = :s-ABG#

E-DPGM = 1

K- ASG# = :s-ABG#

E-FLDl = K-FLDl

E-DPGM = 1

K -:;>L

Di,1~~#b~~iLC
Blanks to STAia ESTV Zero
to HRTD4VTTDk OS,K20S,
K30S, K OS , 50S

E-ASG#~~~
E- UJ# -'J> 1.I~H ~ AF

E- ASG# -)JIG 19
E-UJf!--""?AG29

GIV E

GIV K

TR Ol-Bl

TR 01-B3

TR Ol-Cl

TR 01-B2

TR 01-B4

D A ~ APR 0 C ~ S SIN G S E R V ICE
TABLE LAYOUT

tITLE Finish deleting on Prog-Syst. Delete.
.... -
~ J NDIT ION S

!RULE NO. 1 2
~

L Are there any more Prog-Syst. y N
.1 chanp;es?

~, Is tbex:e II cnx:x:ect tj ale reccI:d? - Y

I

3,

i
i ll.
! 1

. ~.
!

6.

-A C T ION S
:xL:

l .. ~~~-~ an~ wrlte mess!!Be AC.
Y

e Set co:r:x:es;J;IoDd j lli to deJ etc messai . y

~. i3!::t r!la~ 121: ~Qrr~sJ22nding and y
write delete message.

4. AdltBoc:e CCDtX:OJS to next E:I:Oi::-S;:,t:st y
Change.

Advance Controls to next time reco d. ," Y) .

6. l!Bacs!ex: :to l!alll e QJ-IJ2 y

-
1. TRansfer to Table 01-B1 Y

8.

9·

10 .

r

12

13·

3 4 5 6 7

N

N

..

r-' . -.

Y

Job. No. : __________ _

Name: Earl Althoff

Project: D.P.S. Billing
T b1 No 01 B2 a e : -

CONDIT
8 9 10 ABBR EV

ION
IAT

E-FLD1 = L-FIJ}.1

C-FLDl = L-FLDl

E-UJ#-1'AC30
U,,' + .,.

! ' .;. J

, !..

..

Action 6 of table Ol-A3

.

Action 7 of table 01-A3

GN E

GN K

TR 01-B2

TR Ol-Bl

(

D A TAP ROC E 8 8 I N G 8 E R V ICE
ELEMENT8 DEFINITION

18ET # PAGE II

15-DIGIT TITLE
DEFINITION:

15-DIGIT TITLE \
DEFINITION:

15-DIGIT TITLE

DEFINITION: • _0.

15-DIGIT TITLE
DEFINITION:

15-DIGIT TITLE
DEFINITION:

15-DIGIT TITLE
DEFINITION:

15-DIGIT TITLE
DEFINITION:

'i-DIGIT TITLE
DEFINITION:

Job No. : __________ _

Name: -------------
Proj ect · . ,

4-DIGIT ABBRlN.

4-DIGIT ABBRlN .

4-DIGIT ABBRlN.

4- DIGIT ABBRlN.

4-DIGIT ABBRlN .

4-DIGIT ABBRlN.

4- DIGIT ABBRlN.

4-DIGIT ABBRlN.

D A TAP ROC E S SIN G S E R V ICE
~TA FILE LAYOUT

FILE DESCRIPTION~ _________ _

TITLE --
,1-
2.

3.

4.

5.
6.

7·
8.

9·
10.
11.

12.

13·
. ' .

15·
16.

17·
18.

19 ·
20.
21-
22.
23.
24.

25·
26.
27.
28.

29·
30 .
31.

b3:

1

34
35·

REF.

Job No.: __________ _

Project: __________ _

De.ta File:
Name:

ABBREV. LENGTH

For Programmer . Use Onl

:REC # INCR.

WORK PROBLEMS

Limited Entry Tables

The following rules should be utilized in considering the work
problems for limited entry tables. The six common table elements
are used in displaying the structure of the sample table and the verbal
description of the permissable entries for each element.

Table Header

i I

Condition Stub : (on ",iti on En/Xy
I I I -.

I I I ! ! I

Action Stub , cf on En ry i ,
!

Entry Header
I

TABLE HEADER - The name or number of the Table; used for identi
fication and reference purposes . Example: RE-ORDER DETER
MINATION, DEDUCTIONS, 004, R26.

CONDITION STUB - A relational expression which, through evaluation,
can be determined to be true or false . The following relational
operators are permitted:

>
<

Logical connectives, such as "AND", "OR", "NOT" are not
permitted.

Below is the recommended general form for the relational
expression

[Element - 1] [Relational Operator] [Element - 2J

where Element -1 and Element -2 may take one of the following
forms:

< M 0 (-! '-= (-<' I::CO 12. 05 " "
"'5""(1l1(T ") - 2 -

Data Name

Literal (enclosed in quotes - "--" , except for numbers)

Arithmetic Expression

Examples of relational expressions: Quantity-on-order
Quantity-on-hand, FICA < 144.00, SENTINEL = 99999,
MARITAL STATUS =F "SINGLE".

CONDITION ENTRY - There are only four possibilities permitted in
this portion of the table:

Y (for True)

N (for False)

~not pertinent)

tJ}.J... OTllltes. ot.A/O (for all o thers)

All alternatives must be covered, the 'all others ' entry should
be the last entry (farthest to the right, since columns are as
sumed to be considered from left to right until a set of conditions
is met).

ACTION STUB - The actions to be executed are displayed in this
section. The following operators are available for use in the
sample problem:

SET .. , =
OPEN
CLOSE
"00

READ
WRITE
S,oP

Operands may be either data names, literals,or arithmetic ex
pressions (to be used with the SET = operator). Examples: "
OPEN DETAIL FILE, SET NET = GROSS * . 85, READ MASTER
RECORD.

ACTION ENTRY - Only two possibilities exist for the action entry:

X (for execute)

blank (for do not execute)

Assume that the actions are executed in the order written for
a particular c olumn (if more than a single action exists for a
particular condition or set of conditions).

...... ~ '
"

" , ', •• r .. ,~- '. ' . ' ,' . .

.,

- 3 -

ENTRY HEADER - For the sample problems the entry header is used
for specification of the next table. This portion of the table
can be considered an extention of the action stub and action
entry. At the bottom of the action stub the - GO TO table- name -
appears; an "X" in the proper row will indicate which columns
are affected. If more than one "next table" is appropriate,
more than one "go to" must appear (see example below).

EXAMPLE:

TABLE: FICA CALCULATION

YTD GROSS ~ 4800.00 Y Y N Y A/O

SALARY ~ o. 00 Y N Y Y

SEX = "MALE" Y - Y N

SET FICA = .04 * SALARY X

SET FICA = .02 * SALARY X X

SET FICA = o. 00 X X

SET YTD FICA = YTD FICA

+ FICA X

GO TO TABLE 2 X X X X
-.--

GO TO TABLE 6 X

COLUMN 1 -
IF YTD GROSS ~4800. 00 AND SALARY > 0. 00
AND SEX = "MALE" THEN SET FICA = .04 * SALARY,
GO TO TABLE 2.

COLUMN 2 -
IF YTD GROSS :0:: 4800.00 AND SALARY NOT~ O. 00
THEN SET FICA = 0.00, GO TO TABLE 2.

COLUMN 5-
OTHERWISE SET YTD FICA = YTD FICA + FICA,
GO TO TABLE 6.

Problem 1 - Selected Stockholders Report

Prepare a limited entry decision table given the following information
and rules.

From a file of stockholder records we wish to extract the records
, of stockholders other than individuals an:! the records of indivi

duals who hold more than 100 , 000 shares . With this information
produce a listing of the common shares held by these stock
holders, the name of each stockholder , the type of stockholder
(decoded) and fuetotal number of stockholders and shares owned
for this report.

Given -

Obtain -

For each stockholder we have:

1. Stockholder name
2. Stockholder type (individual - 01, trust - 02,

bank - 03, broker -04)
3. Number of shares owned .

List for each selected stockholder:

1. Stockholder name
2. Stockholder type (decoded)
3 . Number of shares owned .
4 . A summary of the total number of stockholders

and total number of shares for this report.

Problem 1 Solution

Type of Stockholder · 01 Y
Type of Stockholder = 02 Y

Type of Stockholder· 0 3 y

Type of Stockholder = 04 Y

Number of shares>100. 00 Y
More stockholders? N

.~

Write stockholder name X X X X

Write" Individual" X
Write lITrust" X
Write tlBank" X
Write "Broker" X

Write number of shares X X X X

Stockholder count =
stockholde r count + 1 X X X X

Tdal shares = Total
shares + number of
shares X X X X

Write stockholder count X

Write total shares X

-

-l- I- -I--- 1- - - 1- - -- -- - -
- - I-- - - 1- -- - - - -- -1-- r-- ,-_.

(f- - -- -- -- r - -- - _.
- f-- - - - f-

-. - r I--

- t- -- - -- f--
- - - - - - - - -- -- - --

- - - - - 1- - - - - i- i--t- o-

f- f-- -- - -- - - -- I- -- - r--
- i-

-- I-- I-- 1- - - - -- - - -. ----

- -" - -- -- I- f- _. --I-
- - .- .-1--- I- I-- - .. - -I-- -- I- +- - - r --

- 1- - 1- -- - - - -f-- 1- - 1-- - I-- -- - - -
-

- -- .- - -- - - - I-- I-- -- f- - --1---

l- I- I- .- -- - - -
--- -- - - -- - - -- -

- -- I- - - 1- - -I-- - - . - f-o -

- - - 1- -
r-- 1-- f- - - - -

o _ ---- - 1-- I-- - - -

- 1- - _. -

(- f-- I- - -- I-- f- --

r-- - . -. f- i-

-I- - -- -- -- - - --- - - -.
. - f- - - f- - - -

1-- - l- I-- -I-I- -- -- -- -- - - - -

r f- - - - - - -- ! 1-- --
- - i~ -- - - - -1- - - - -- -- -f-- -- --- -

f- i- - I-- - - - - r- - l-i- -
r-- - - - I- - 1-- '- I- - - - -- -- -I--f- - 1- ---

- - - -- - .-i-- - --- -,- -- - l-f- - -

-.-
- - - -I- ~ r- - -- - -

f- - -- - - - 1- -- - +- -- - -- --- - -

I-- - /- I-- f-- -- I- - - - -- - I-- .-

r-- - - _. - -- +- I- - - c-- - -- I--1-- -I- - -

-. -
- 0_ - - -- - -- - I--i- -- - - '0,- ---

[- -- --I-- -- I-.- - - - - - - -
- - -- I- I- - 1- - - - --- - ,- -

-- -- - t- -- - - - --I-- - -
~ . - - l- I-f- - .. - 1- - i- --I-

--I- I-- -1--- - I- I- c- -- -0 - ,- - -
- - - - -1-- - --

- I- - -

- -- -- I-- -
r-- - r- - -- - 1-' - .-

(- 1- - - - r- .. . - 1- - -'r-
- - - .- . - -' r- .. - -

---- - - - - - - - - - - -- r- -
-- . _. - - - - r- .. - - r- - - . -.- - .. - - -- . - - . --

- - - .-I- - .. - - I- - . - - - - .-
- - f- _. - - 1-- --r- - - -- - - -- '--

-

,-- - - - - r- - r-- -- - -r- _.
-

r-- . __ . .-f- - -
--r- '""

.,- - .- 1- - -- I--

.- - - - -f-- - - -

- - r- - r- - - -- - r- - .. . - -
- f- .- .- - . - - --

.' - - - 0 •• _. - - - -

- .-r- -r- - - -- - .f-1- !---
. - 1--- ;-_. - f-

- - -- _. -
- - - r- - . - -- - r- -- - .. r-

- -- _.---r- - - - - - - -- - -
- - - - - - - -- ... - - -- f- -- ---- -

- f- - 1- - .-_. .. -- - - -
- 1- -- - - r- - -- --r-r- - -- - - - e-- r- - ---

- - I- - - r- - . - - .1-.

- .. - - I- -
.-. - - - ... --- - - - - 1---r- C- .-f- f- r-

r-' --

- --r- - - -I-I-
.-- - f- r-- - - I

--I- --
-.

-- - --- -. - I-e-- - - r- --. - - - - -
- - - -

- - - -

-- -

I· - - - -
-. -.

- . ~

\.

Problem 2 - Pasting Operation

Prepare a limited entry decision table given the following information
and rules.

Input - Two files

A. A master file is in sequence by identification number (I. D.)
Each 1. D. number has an associated on hand (0. H.) amount.

B. A'd etail transaction file is in sequence by identification
number (1.D .). Each 1.D. number has as sociated types
of transactions - receipt, issue, recount-and their amounts,
sequenced respectively. There can be multiple receipts
and issues , but only a s ingle recount.

Output - One file

A. The new master should contain 1. D. number and on [land
amount.

Actions :

1. If there is no activity write the new master from the
old master.

2. Provide for computing the new on hand amount.
(receipt. +, issues = -, recount = replace)

3. Provide for start and end of job.

4. Provide for an errOr routine in the case of a trans
action occuring for which there is no master.

5. There are no additions or deletions to the master
file.

S I t ' o to Probl o U 1 n em 2.
IA I3~G : ?o..r T,/J G .

OPi:,(. A T\.uIJ

START? ,
OM 1.0. <Trans1.O
OM1.O, = Trans 1.0.
OM 1. O. ::>Trans 1. O.
Type of trans=receipt
Type of trans=issue
Type of trans = recoul1;

End of trans file .
j:nd of master file

Open all files
Close all files

~e.t
Set
Set

OH=OH+ Trans Arn't
OH=OH-Trans Arn ' t
OH=Trans Arn't
Do Error Routine

Write NM from OM
Read OM
Read Trans

STOP

,

3 I).. ---
Y N N

y
y

y

N N N

X

X

, ,
i

X
X X
X X

I

-.) 6 ..., (('I - , - - - - -
N N N N Y N

Y Y Y
Y

N
y N

y N

y Y
N N N Y Y

X

X

I X
X X X

, ,
X X X I X

X X

I

-

r

-

- - r-- r- - - --
- - r- + - .-f-
- r- I- - - -- --- -

- - 1-- -- - . - I-
-. - -- r- -_. .-

- . -- f-- - -

- - - . -

- - - - - r- - - - - -

- I- - -

- -f- - - I-
---- - -_. -.- . - - . - --

-- .-I- - I- - . . - - . -- - -

r- r-- - r-- - - .- - - 1-- - -r-- - - - -- - .-

-- - - - -- - .. - -
- r- .- - - -- --

-- - - - - -

f- . - _ . --- - -. - -

f- - - - - I- - -

-- - r-- - - I- -- --
- r-- - - I-

f- r- - -

r- - -' - -

. - - - -- - ----

(r- - f- .. - - - - - - I- - . -

-

- J
f- .- -

- . - - .- --- -. -

- - f- . - ~. - -

I

'-1-- ,- .- ,- I - . - -
I -_. I- - - - -- _. .- -

--I- e- -- r- ~ - - '-r--' I-- - -
- r- --

_. - ,-

t-- - - - - r-- .- --

I- l- i-- - - +- r-- --- -- --
I--c- 1-' - - - - -- r--- - - -- - - f- - --- '- .--.-

- I--- -
.,-- +- I- - - - -- - - - - r--

- - _. .-c- - - -- - - - -- -
- ~ r- --I- f- - - - .-- .- - .- - .-I- --

- - - r- - - - - - -- --.. .- t-- - - - --
-- r-c-

-I-- I- - - ._-- ., 1--- 1- -
- f-- - - - - - - I- 1-' - - -.--

-- -- . ~. - . r- - . - - - I- t-- ,- - -
1-- t-- -- f-- f- . _- - _ . - r-- .-1- - - '-1---

f- I-~

1-- e- - - '- -- -- r- - ,- .- - -
- -- - I- - - '-' . - --f- - I- '-, - o-

f-. - -I- .-1- - -- I-- - -- -

- I-f--- -- - 1-- - .- - - .--

I- ,- - f- ,- - -
- - I- I- -

(- - ,-. -' - - - - - ----
- ,-- - r- ' - - --. , - - -

-" - --, - 1--- - I- -- -- - - 1- - _.
I- .-

- - - - - - - ---l- f- ,- - I- -, - - ,--, I- - - -

I-- -- - - 1--1--- - - ,- - I- -.- -
,. - I- - - r- - - - --- -- -' " '. 1- "

l- I- ,- I- --. I- --- - - -
,- . - - .

-- r- -- ,- ,--

- - -

- - . -I- ,- ,- - ' l- I--" - I- -

r-I- - I-
- -- - - I- - 1- ' l- f- -- I-I-1-

-- - I-- - --
, .

- 'l- f-- - - f- ,- - - .,

1-- -- I- I- - ,-' I-I-
- - - 1-- - - - - - - f-

-I- - 1- - 'I- - -- - -

-- - - I- - ,- - .- - - I--
- . - - - - - - - - --I-' - - - - l- I-

- _. --- - --- I-I- --
- ,- - - - .- -, - -

- - . I- I- ' -, I- - - - - l- I-
- - - 1-'

- - .1- .- .- - I- ,-I- .- - - - ' -.

-

- -- - - - - ._,

- -- - - - l-I- -

,- - - -

-

- - 1-"'-, - - I-I- .

--- -- - -- --
-- . . -- .

-- ,- --

- - - -- - - l-I-
- - - .1-

-
- -

117
3.2

TABSOL
A FUNDAMENTAL CONCEPT FOR SYSTEMS-ORIENTED LANGUAGES

T. F. Kavana.gh

Manufacturing Services
Qeneral Electric Company

New York. New York

Summary

Lack of effic:1ent methods for thinking
-through and recording the logic of comp18x in
formation aystems has been a. major obstacle
to the eife-ctive use of computers in manufac
turing businesses . To supply this need, this
paper introduces and describes "dedeion
structure tables. II the essential element in
TABSOL, a tabular sy.teme-oriented language
developed in the General Electric Company.
Decision structure tables can be used to de
scribe complicated, multi -varia.ble, multi
result decision systems. Various approaches
to the automatic computer soiution of structure
tables are prosented. Some benefit. which
have been observed in applying this language
concept are also discusscd. Decision struc
ture tables appear broadly applicable in infor
mation systems design.

In addition, they are of interest be
cause they revise many earlier notions on
problem formula.tion and systems analysis
technique. Decision &tructure tables will be
an available feature in GECOM, General
Electric ' s new General Compiler, which will
be first implemented on the GE 2Z5.

Introduction

Progrel'll'l in computers can be broad
ly divided into two catCigorles. First there is
the work that essentially accepts computers
for what they are. and directs ita energios to
ward further refineDlent of the original hard
ware, and oper a ting technique. Research to
improve recording density on magnetic tape
would certainly fit this description. In the
second category are the efforts to advanc~ by
developing new areas of application. This lat
ter work is directed toward generalizing the
concepti and hardware. so that they apply to
an ever-increasing span of problems and situa
tions . Obviously, both groups are vital; but

it was this second stimulus - - the desire to

expand the area of economic applica.tion - _
which motivated the research reported in thia
paper. While the earliest beginnings can be
tracCid as far back as Jnne , 1955. the primary
research e !!ort started in November, 1957,
under the title of the Integrated Systems Pro
ject. Leadership was assigned to Production
Control Service, a component in General Elec
tric ' s Manufacturing Services. The ba~ic pur
p08e of the Project was to probe the potential
for automating the flow of information and
material in an integrated bueineu 8ystem.

Then, a.. now, cotnputer. were making
significant contributions in many area.a, Unfor
tuna.tely. one of these a.rea.s was not, 1.8 some
would have it , in the operation and control of
manufacturing businesses. Important advances
were made in specific applications such a8 ord~
er processing payroll, and inventory record
keeping ; but these represented only a small per
centage of tho total information processing and
decision-making in even the smallest manufac
turing firm. Still theBe early succeaaes were
very important . They developed confidence in
computer performance and reliability; but even
more, they encouraged systems engineers and
procedures per.onnel to continue computer ap
plications research. Similarly, management .
under growing foreign and domestic competition,
riaing costa. and a. seeming explosion in paper
work requirements. sa.w intuitively _. or perhaps
hopefully ~- that computers offered a pouible
approa.ch to improved productivity, lower cost.
and sharply reduced cycle times. It was in thh
environment that the Integrated Systems Project
began a comprehenlive study of tho decision
Dla.1dng and the information and material pro
ce.sing required to transform customer order.
into finished products _. a major part of the
total business systom for a manufacturing firm. .

The Decilion-Maldng Pr.oblem

Once underway, it was soon apparent

118
3.2

that there was an enormous an'lount of decieion
making required to operate a bueineuo Indeed.
the number and complexity of these decisions 18
perhaps the moat widely underestimated and mis
under stood characteristic of industrial informa
tion systems today. Tens-ai-thousands of ele
mentary decisions are made in the typical manu
fac tul"ing business ea.ch working day, All are
necessary to guide a.nd control the many function
al activities reqUired to design products. pur
cha~e raw material , manufacture parts, assem
ble produ cts. ship a.nd bill orders, and 80 on.
The typi cal fac tory is a veritable beehive of de
cieions and decision-makers; for example:

"What size fuses shall we usc on
thia: order for XY Z Company?" -
a product engineer's decision.

"What is the time standard for
winding this armature coil? "
a manu£acturing engineer's
decision.

"What test voltages shall be
applied ? ". - a quality control
planner's decision.

"What should be the delivery
promiae on this customer's
order ? " _- a. production control
planner'l decision.

"How much will this model coat. 'I __

an accountant's dechion.

This list of eleruentary day-to-c4y
decisions could be expanded to cover all bud
ness activities. 1£ this were done, the Iht
would cover hundreda of sheets of paper bofore
each activity listed all the decis ions for Which.
it wa.s responsible. Moreover. somo of these
decisions are repeated many times each day {or
varioul sets of conditions. In the end result,
one ca.nnot help but be impressed with the multi
plicity of these detailed choices and selection8.
But more importantly, making these decisions
costs money, in many caees more money than
the direct labor required to make the product.
In addition, buainou performanco ia greatly
affected by the speed and acc.uracy with which
thia dechion-making is carried out.

Composing a. detailed Ust of these
elementary businel8 decisions is more than an
academic exercise. For one thing . such an
analysis of an actual opera.ting business will
demonstrate conc1udvely that the.e elementary
decisions are handled. quite rationally (which is
somewhat contrary to popula.r opinion.) One

must be careful not to be mided by quick, .uper
Udal explanations which gloss over fundamental
reasoning. In our present-day manual syslom.
which emphasize liles of quick answers, the
logic behind the decision ia often lelt unrecord
ed. As a result it is easy to lose contact with
their rational nature . and frequently we tend to
feel these decisions are substantially more intui
tive than 18 actually the case. At times, 80me
persistent as well as penetrating analysis (oft en
through extensive interviewing ol the operating
personnel pre sently on the Job) is required to
uncover the true paraln"eters and relationship.
on which operating decidons are really baaed.
This arduous work is more than jUltilied, for it
e8"tablishes a sound conceptual foundation for
autorh.a.tion, and hence the practical application
of the concepts and technique8 developed in thia
paper. Thus, once it is establi8hed tha.t these
operating decisions are rational . it should follow
that they can be structured in a con8istent log!
cal fr.unework. Such a structure 11 presented
in this paper.

Operating vs . Planning Decisions

At this point let us define terminology
a littLe more precisely, and etree. that wo a.re
speaking about the detailed. elementary decision.
required to "operate" a business a.1 opposed to
"planning" one. First, a. decbion in it. dmp~
lest form consists of selecting one unique alter
native from an allowed set of po.alble actions.
Operating decisions are dofined in the context
of this paper a8 8electing the appropriate cour.e
of action in a.ccordance with given problem con
dition. to operate the bU8ineas .ucee.liully.
Operating decieion8 may be a.awned to be made
under "conditions of certainty." The solution
for a specific set of problem conditione will al
ways be the 8a.m. •. Under the.e premile •. the
a.ction or outcome decided on can aLway. be pre
dicted. In a pragmatic aenae, the decision-mak
ing procoss may bo cla.s8ed a. IIcau.a.l"; that h.
B may be sa.id to follow from A. For example.
an engineer's decision to instalL fuu. might
follow from a customer ' s requirement for inde
pendent circuit protection.

The re~evant factors or parameter.
alfecting the decision can al.o b. determined .
The relationship values are known. For ex
a.rnple, in moat homes , the current carrying
ca.pacity o{ the house wiring is the only par .. -
meter value one neede to know to select an
a.ppropriate fuse. In an industrial a.pplicatlon,
however, the value. of at lea.st three additional
parameters are usualJJy req'Jired: voltage, time
a.nd type of fuse mounting. The strategy and the

alternate outcomes are knOW1l; that h. the per-

(

rnheible fu.es are known. To continue the illu.
tration, the fu.e selection may be limited to
thole carried in the stockroom; otherwhe the
bound. of the operating decision system a.re ex
ceeded and thel dechion-maker would appeal to
a highc r authority.

To approach the analysis of operating
ded.ions from another viewpoint, it might be
compared to a linear progranuning problem,
iUld as will become evident, a linea.r progranlM
rning "olution might be considered a.iI somewhat
of a mathemati cal bound for the da.s of d eci
sion - m.aking systems under discussion.

The se operating decisions aro quite
apar t from the planning decisions of a buaine.s.
The "planning", "administrative". or "pollcy"
deci s ions in a. busineee are bas ically th08e
prior commitments which permitted all the a.
• umptions about operating decision systems in
the pre ce ding paragl'aphs (1. e. certainty. caus
ality, known· relationships, etc.) Some examp
les of planning decisions are:

"Shall fuscs. cil'cuit bl'cakers, or
both be used on the product line? " -
a produc t engineer" planning
decision.

"Should this group of parts be
made on the screw machine or
from die ca.ting. ? !! -- a manu
facturing engineer'e planning
de cision.

"Should thie component be inspected
before or after the milling opera
tion? "_- a quality control planning
decision .

"What rule .hall be used to deter
mine the correct order quantity? " -
a production control planner's
deCision.

" What h a.n appropriate cOBt·of
money?"-- an accountant's plan
ning decision.

These are typical planning decisions
made in designing an operating decision system.
To make the distinction clear, consider the de
sign engineer who h motivated by cost consider.
ations to put fuses on the economy part of the
product line , while spedlying circuit breakers
on more deluxe models. Or condder the pro
duction control planner who selects one of the
common square root formulas for determining
all order quantities. Once he puts thl. decision

119
3.2

rule in the operating sy.tem.. order qua.ntitie.
for every part will be determined using thh
Iquare root formula with specHic values for
COlt. lead tim.e. ulage shelf life. etc .• appro ..
priate to the specific item. beina: ordered.
As.undng the operating decision system is auto
matic. and thi. 11 the intention, the production
control planner need not make any order quanti ..
ty determinations himself. Rather he will be
watching the meaeure. of operating Iyltem per
formance (inventory level, nUDlber of Ihortages.
ordering costs. etc.) to see how well his deci
flion rule i8 Working. Incidentally, it'. worth
noting that the production control systems de.
signer will be Ilsing a "cost-ol-money" figure
supplied by accountants and an annual require
menta figure projected by salesmen. Of course,
the objective of this fundamental decision analy
sis h to 8ugge.t a conceptual scheme which will
permit automating all the routine operating de
cision-making required to direct a bueine.s •
thus permitting the engineers. pla.nners. and
other technical advisors, to concentra.te on do
ing a better job in de.ign.

Specifying Decidon Systems

But great dHlicultie B still remain. A.
already pointed out. operating decision .y.tems
are inva.riably large and complex, containing
multi-va.ria.ble. multi-re8ult decision problem.
with sequence of solution difficulties thrown in
on the side. One seriou8 problem which arhe.
quickly is the actua.l devellopment of the dechioll
logic itself. Numeroue technique. have been
proposed ranging from precise . lega.llstic ver
bal statemenh to complex mathematical equa.
tions. Anlong the.e however, it appear. that
matrix-type displaye and £low charta are the
most COnun"oD. The matrix-type dhplaYI
appear under a variety of names: collation
chart8. tabulated dra.wing.~ standard time data
sheets, etc. For example. engineer. have fro
quently ueed collation charta to show direct re
lationshipa between end-product catalog number.
and component identification number.. Typical
ly, however, collation charta are a tabulation
of pa..t decision. Tather than a description of
the logic used to derive them. Matrix-type die
plays often .uffer from redundancy and frequent
ly become large and unwieldy ae operating toola.
Similarly. they make no allowance to aequentia.l
decision-making.

Flow charts handle this aequence prob
lem velry nicely. This graphic method de.cribes
a decision system by the extensive u.e of aym
bole for "mapping" the various opera.tion •. A
variety of flow chart technique 81 are u.ed in
factory methods and office procedures work.

120
3.2

Thoy are pa.rticularly effective in relatively
.tra.ightforward, aequential decision chain. but
run into difficulty when describing multi - vari
ablo. multi - rc,.ult dechion proce, •• a. A. an
illustration, flow chart. have been u.ed oxten
lively to document tho detailed logic of compu
ter program.; but .ome harried computer pro
gramming supervisors .till maintain that the
bOlllt way to transfer program knowledge 18 to
reprogram. the job. The difficulty of interpret
ing 80meone oleo 18 flow charta 1, certainly ono
of the major trials in today ' s computer technol
ogy.

In addition to the s. m.oro popular to ole
numerous other diagramming or charting techni
ques have been useful in limited problom area ••
However . the basic problem remained: thore
was rea.lly no effec tive, uniform method lor
thinking about and .pec1£ying dec18ion sy.tem.
as complex a8 those required to operate a busi ~
ne.. . To help solve thls problem. the Integrat
ed Sys te ms Project developed a new technique
which combines key characteristics of earlier
method. and adds tlome new features of its own .
This new technique ie called the dechion struc
ture t a ble. The balanc e of this paper will de8 ~

cribe what decision structure tables are. how
they work. and the resulta of their uee in
General Electric.

Structure T a ble Fundamentals

Structure tables provide a sta ndard
method for unambiguously describing complex,
>multi - vari.a.ble, multi - result decieion systems.
Thus, each s tructure table becomes a predse
statement of both the logical and quantitative
relationships supporting that particular elemen
tary decision. It 18 written by the functional
specialist in terms of the criteria or parameters
a.fiecting the decidon and the variou. outcomes
which may result.

A structure table consists of a rectan
gular array o f terma , or blocks, which is further
8ubdivided into four quadrants, &8 .hown in
Figure l~ The vertical double line separates the
decision logic on the left from the re suIt function.
or actions which a ppear on the right. The hori
zontal double line separates the structure table
colwnn headings or parameter8 above from the
table values recorde d in the horizontal rows be
low~ Thus. the upper left quadrant become.
decision logic column heading s . and 18 used to
record, on a one per column basis , the name s
of the parameters (P

Oj
) .Hecdng the declsLons.

The lower loit quadrant records test values (Pij)
on a one per row oasis. which the decision para -

meter identi!ied in the colwnn headlng may ha.ve
in a given problem situation . The upper right
hand <luadrant records the names> of result func
tiona or actions to be performed (R OJ) aa a r e ..
Bult of making the decidoD. once ag8.1n on a ono
per column basis. Similarly the lower right
quadrant shows the specific result valu es (rij)
which pertain, directly opposite the approprfa.te
set of decision paraxneter values. Thus, one
horhontal row completel y and independently
describes all the values for one decision situa
tion.

There ie, of cour.o, no limit to the
number of columns (deciaion parameters and
result functions) in any given structure table.
Even the degenerate ca8e where the number of
decision para.m.etera goe8 to zero h permba
fble. AlBO there is no li.m.it on the number of
decillion situations (rows). Thua. tho dimen
aions (columna by rowe) of any 8pecific struc
ture taole are completely flexible, and are a
natural outgrowth of the specific decidon being
descrioed. A aerio8 of theae structure tao},ea
taken in comoi.nation is said to describe a de ..
cision system.

Rather than become further involved in
abstrac t notation. let'a consider somo actual
illustrations to develop an insight into the nature
of structure ta.bles. For example, the over
simplified illustrative structure table in Figure
2. atateB that an elementary decision on transpor~
tation from New York to Boston in the a.fternoon
is (according to the person' who developed the
decision logic) a function of three decision para
meters: Weather. Plane Space, and Hotel Room.
Weather has only two value state., Fair or Foul;
Place Space is either OK or SorrYi and Hote-I-
Room can be Open or Filled. In terms of re
eults, Plane or Train are the only permhsible
means of Transportation. Following the illus ..
trative problem. we see by inspection that the
solution appe ar . in the second row. Therefore .

'Train is the correct value for Tranaportation,
Other Instructions are Cancel Plane, and this
11 the ~ of the decision proolem.

The intent of this simple .tructure
table ts to provide a. general solution to thh
particular decision aituation, and if the problem
of afternoon trips to Boston ever art.es (and ono
a,Bumes that it frequently does). then an opera
ting decision can quickly be made by Bupplying
the current value of Weather, Plane Space. and
Hotel Room, and, of cour se. solving the .truc
ture table. Solving a structure taole consista
of examining the 'pecific va.lu>es a.sdgned the
decision parameters in the problem statement
and comparing or "testing" these values again.t

the seU of dedsion para.m.eter values recorded
in the structure table rows. Te.ting proceed.
colwnn by column from the first dechion para
meter to the 1a8t (left to right) and thence row
by row (top to bottom). If all tests in a row are
satiened. then the so:'ution ia said to be in that
row and the correct result values a.ppoar in the
sam.e horizonta.l row directly opposite to the
right of the double line. When a test is not sat
iefied, the next condition row ia examined.

When a particular structure tabl.' has
been solved, it is often necessary to make more
decisions. To specify what dechion 11 to be
made next, the last re.ult column of the struc
ture ta.ble may be aasigned as a director to pro
vide a link to the next dructure table. Notice
the la8t row in the illustra.tive atructure table
which specifies that '!or any value of Weather,
with no Plane Space, and no Hotol Room, the
decillion-maker h directed to solve the next
structure table. Transportation. New York-Bos
ton, a. m. - - which is another structure table
describing how to select a means of tra.n8porta
tion in the morning.

In a .lmilar falhion, the systems de
ligner would use a whole system of structure
tables to des cribe a more rea.llstic operating
deciaion problem. He completely controls the
contents of each table, as well as ita position in
the 8eque'nce of total problem solution. He may
decide to skip tables, or, if desired, he may re
solve tables to a.chieve the eUect of iteration.
In any event, the entire sy.tem of tables, Just
aa each individual structure table, will be lolv
ed using specific dechion parameter value. ap
pearing in the problem statoment. In other
worde. solving a set of structure tables consish
essentially in re-applying the systems designer"
operating decidon logic.

Having completed thie quick and very
eimplified introduction to structure tables, let
U8 now return to consider each structure table
element in greater detail. Thie will provide a
deeper indght into the power of the structure
table technique. a. well a_ a. better und.erltand.
ing of how they are u.ed to deecribe operating
decision ay_tema. Tho illustrations are drawn
from actual operating deciaion problema.

Structure Table Testl

Comparilons or tesu between prob
lem parameter values (pv) and decision para·
meter test value8 (tv) need not be simple identi
ties. 8uch a_ those uaed in the previous illuetra
tion. Actually the problem parameter values
may be compared to the decision test valuea in

121
3.2

anyone of the following way. in any structure
table block:

EO pv c tv problem value ie equal to
test value.

OR pv ,.. tv problem value 11 Irea.ter
than te.t value.

1.5 pv < tv problem value ie Ie ••
than teet value.

NEO pv " tv problem value h not
equal to to.t value.

OREO pv .) tv problem value i. greater
than or equal to te.t value.

LSEO pv ~ tv problem value h leas than
or equal to teet v&lue.

This broa.d lelection of te.t type I (or
re1a.t1onal operators .s they are known tochni
cally) greatly increases the power of individual
etructure tables and aharply reducel size. It
permih testing limite or ranges of values 'rather
than only d.iscrete numbera. In Figure 3, TABLE
1000 u.e. several difference test types to brack
et continuous and discontinuou. intervale. Allo
note in Figure 3, that the relational operator
ma.y be placed in the te.t block iDunodiately pre
ceding the test value, or in the column head1nl
inunecliately following the dechion parameter
na.me. When thil la.tter nota.tion h u.ed. the
relational operator in the column hoading applle.
to all t •• t value _ appearing immediately below.

Test value. are not limitod to .pe~ific
numbers on alphanumoric cOJ\etanta (indicated
by quotation marks); a teet block may aho refer
to the contents of any name. In thb case of
course, the current contente of that na.med field.
are compared to the problem paramoter value
in accordance with tho ted type. For example,
TABLE 1005 in Figure 3 teste the current value
of INSUL"" TEMP againet MAX- TEMP to malte
certain that ineulation temperature ratings a.ro
.atiefactory.

In addition to the 8e Simple comparhona
it is also poedble to formulate compound struc
ture tablo blocks involving two decieion param.e
tors or te.t valuee using a relational or logica1.
operator.

u.ed:

OR

The following logical operator. may be

fir.t tost value or the
.econd te at value.

122
3.2

AND

NOT

fir at problem value and
second problem value.

fir at teut value and not
second teat value.

Alao the truth or falseness of a com
pound decision parameter or teet value state
mont can be ta lilted with the symbols:

T true

F {alu

Lastly . any arithmetic expression
may be used in place of a parameter name, and
complicated blocks involving several names and
operators arc also permitted. Although in this
latter ca8e, it is worth noting that the language
capability Car surpasses any requirements ex
perienced to date in formulating operating deci
sion systems.

In writing st.ructure tables, the situa
tion often ariecB where, except for one or two
special situations, onc course of action is ade
quate for all input valuea. l'he concept of an
rrall other" row was introduced to avoid enum
erating all possible logical combinations of the
decision pa.rameter values. The " a ll other" con
cept can be verha LLz ed a. follows: Ill(no solution
has been found in the table thus far. the ~olution
is in this last row regardleu of the problem
values." While this greatly reduce. table size,
lt also implie s that the problem was stated cor
rectly a.nd does indeed lie within the boundarie.
of the decision system. The related concept of
"a11" which appears in the Transportation: New
York-Boston, p. m. ca.n be similarly verbalized :
"regardless of the problem value proceed to the
next column . It It was introduced so that a given
table need not contain a.ll pe rrnis sible states of
any given deciSion parameter and also to handle
the case where a test in a given column had no
8ignificance. In all the above situations the ap
propriate structure table blocks are leIt blank
signifying no test.

Structure Table Results

Similarly structure table results are
not limited to assigning alphabetic constants or
numeric values to the result functions or actions
named in column heading., to the right of the
double line. Actually there are four re.ult func
tions:

"ASSIGN" which is implied when a
named field appears as a
result function. Thie indi~

cates that the re.ult value
appearing in (or named by)
the solution row 11 to be
auigned or placed in the
field named in the column
heading.

"CALCULATEII.. which is implied by the u.e

PER.FOR.M -

GO·

of an equal sign a.iter a narn.e
appearing as a result value.
This indicates that the relulu
of the formula evaluation nam~
ed in the structure table block
should be alilliligned to the field
named as the result function
in the column heading.
Actually this is not the only
way to perform calculations
as a ny arithmetic expression
may be used as a result value.

which performs the data pro
cessing or arithmetic opera .
tions referred to in the label
appearing in the re Bult value
block. When this is complet ~
ed . the next result function
is executed.

links the structure ta.ble to
the label appearing in the
result value block. There
is no impUed return in a
GO function.

Most of these result functions are il~
lustrated in Figure 3 and Figure 4. In Figure 4.
for example, TABLE 2.000 a.eigns the alphabetic
constant "FLAT -S TRlPIi to ASSEMBLE. In the
first and third result columns. arithmetic expre.~
sions appear a8 result values. In TABLE 2.005
the implied CALCULATE is used for formula
evaluation. TABLE 2.005 aleo uses the PER ·
FORM function to solve TABLE 2.008 or carry
out some other data processing operations de ~
pending on the particular .olution row. TABLE
2.005 is linked by the GO operation to TABLE
ZO 10. ZO 15. ZOZO • .

TABLE 1005 in Figure 3 shows an
intere.ting Ule" of the GO function. After the
winding haa been specified in TABLE 1000,
assumedly on a lowe s t cost basis. the product
engineer evidently wants to check the insulation
temperature rating with the maximum expected
operating temperature . If the insulation temp
erature rating should turn Qut to be greater
everything is fine and the decision~maker pro ~
ceeds to TABLE 1007. If not, Iirat TYPE - N
and then TYPE - T insulation arc specified to

{

supe rcede TYPE - F. thus getting progressively
higher in.eulation temperature ratings by redir
ecting the structure table to solve 1tsel£.

Frequently. a result function-or action
will not have a value for all rows. This is com
mon when sevtlral result functions are determin
tld by the same structure table. In this situation
the phrase "not exist" has been used in verbaUz ~

ing and the struc ture table block is left blank.

The use of formulas as structure
table results can greatly reduce the size of the
table. As an illustration. suppose that a given
result func tion has twenty-six value. (la, 12,
14 16 60). Ostensibly, the structure table
to sele c t the appropriate result value would have
twenty - six rows. This dechion could be reduced
to one row by ca.lculating the result value aa
some function of the decilion parameter as
shown in F i gure 6. Obviou81y, all result rela
tionships are not so conveniently proportional
but a surpriBing number of result functions can
be described with simple linear ~nd exponential
expre s sions. The curve fitting problem can be
gr eatly siInplified by using structure table rows
to break the curve into convenient intervals that
can be represented by such simple mathematical
expressions.

Preambles and Po.tscripts

Each structure table is preceded by a
heading which identifie. the table by number a.nd
indicates its dimensions in term. of dtlcision
parameter columns, result function or action
columns , and value rows. Tables may be num
bere d from TABLE I to TABLE 9999999 and
allowance ia made for up to 999 dec1eion para
meter or result functions. Provieion is also
made for 999 c ondition rows.

Following the heading is a NOTE which
may contain any combination of alphabetic or
numeric charac ters . The NOTE may be u.ed to
give the structure table an Engli.h name and
provide a verbal description of the decision be~
ing made. Subaequent to this any labele naming
expressions or arithmetic calculations referred
to by "CALCULATE" or PERFORM operator. in
the body of the .tructure table may be defined.
For example . note the definition of TIME"" I and
TIMEI'\,oZ in TABLE Z005 of Figure 4. The struc ~

ture table proper follows BEGIN.

If no solution row is found in the struc
ture table proper, or if the .tructure table has
executed a.ll re.ult. or taken all action. without
reaching a GO function then control 1& pal8ed
to the area directly below the structure table.

123
3.2

Here are recorded any special instructions per
taining to that particular decis ion. Of partic ular
note h the situation where no solution row hal
been found. Such a failure is regarded a. an
"error." In certain types of decision "y.tem.,
this may be exactly what the system. designer
intended. However. error conditions most olten
indicate a failure of the decision logic to c;ope
with a certain combination of input values. The
systems dedgner should Bet up to notify himself
whenever such an error occurs by designing an
error routine which will provide him with a
sour ce language printout identifying the table
that failed and the problem being solved at the
time. With this problem printout and the .ource
language structure tables, the systems designer
ha l all the data he ntleds to trouble shoot the
system in his own terminology. Thu., each
.tructurtl table should be followed by the state
men.: IF NOT SOLVED GO
In thia way any structure ta"'b'le::-Cr;:a"\"lu"r"'e:-.::-Cwt'""l"l- al _
ways be uncovered . Frequently. the dtuation
arise •. as men.tioned earl1t1r, that regardleaa of
the solution row, the next structure table solved
is the same. In this case the statement:
GO . may be written alter or
below the preceding error statement, to serve
as a universal link. to the next Itructure table .

The a.reas im.mediately preceding and
succeeding the structure table proper may aleo
be u.ed for input-output. data movement , and
other data procesaing operation •.

The Dictionary

The preci.e name and definition of
each decision parameter and result function are
recorded in a "dictionary." Thia dictionary be
c ome. an important planning document in the
system. engineer', work for it provide. the
badc vocabulary for communicating throughout
the entirtl decieion .y.tem. The dictionary
Ihould note a parameter's minimum and maxi
mum valuel, a. well a. describe how it behave ••
I! the parameter h non~numeric in nature, the
dictionary should record and define ita permh
lible .tate • • Significantly. the Iy.tem. engin
tier formulates both the structure table and the
dictionary using his own professional terminol
ogy.

The dictionary will allo prove uleiul
in compiling and tlditing structure table. for
computer .olution. It also followa that problem.
presented to the resulting operating deciBion
sy.tem must alao be stated in precisely the
sarne terms a. the structure tables. To those
as yet uninitiated to the perver.ity of computer ••
this may seem a simple matter; unfortunately.

124
3.2

it is not. Interestingly however, ono of the
more promising application areas for structure
table8 a.ppears to be in etating the logic lor com·
piler 8 and edit programs.

Summa.ry

The foregoing description of decision
8tructure table. is not meant to be a. fully defin!·
live language specification . The intontion is to
introduc e the reader to the decision structure
ta ble concept and to disculJs their eharac teris ~
tic 8 in sufficient detail to provide the reader with
enough understanding to eva.luate their inherent
fle x ibility and application potential. Manyaddi
tional leaturos arc available which aid in formu
laling concise, complete dechion structure
table systems and aleo to facilitate input-output
operations. but the reader will find that the
fundamentals already described are adequate
for structuring moat operating decision logic.

Automatic Solution of Structure
Table Systems

Decision 8tructure table s have proven
to be an excellent method for analyzing or forrnu ~
lating the logic of complex industrial information
systems. but after taking such great care to pre ~

ci8cly record each clementary decision in this
highly struc tured format. it 18 only natural to
speculate on the possibility of "olving structure
tables automatically with an electronic computer.
Before plunging into the c omputer world. how
ever, it is worth noting that some sy.teme en~
gineers have had very favC"rable experience us
ing structure tables on a manual bash -- eapeci~

ally as a problem analysia technique. and also
in limited applications in manual clerical Iys ~
terns.

Numerous methode for solving struc ~
ture table I automatically suggest themselves.
First. the tables could be coded by hand. Such
a.n approach would use structure table I as a di~
re c t aubstitute for flow charta. Actually tbis
really isn't as bad a8 it initially sounds. Many
benefits would accrue from making this precise
readable format the .tandard method for .tating
decision logic. It alao offer. the possibility that
a aeri"s of macro-instructions could be develop
ed. thereby permitting untrained personnel to
code tables without detailed knowledge of compu
ters or programming. However. this approach
suffers some diatinct disadvantages in compari
aon with the other alternatives outlined below.

Second. a. generalized interpretive
program could be written to solve any structure

table. This offers the possibility of uling a
translator to work directly from keypunched
structure tables without any manual detail cod
ing. This approach makes economical use of
memory since the basic progra.mming to solve
any table appears only once and the structure
table itself offers a compact statement of deci ~

sion logic. This reduce a the amount of reading
time required to bring the problem logic into the
computer. File maintenance via recompiling
structure table tapea alao appears quick and
simple. However. interpretive progra:na usu
ally run more slowly; and this implies some
penalty in total machine running time.

A third approach would be to create a
structure table program generator in which an
object computer program would be generated
{rom the source structure tables. This approach
would provide faster computer running timea
for maximum efficiency. A generator progrilm
would probably require more complicated coding
than an interpretive translator. In addition. the
generated object program. would not be as con~
ciso as the s tructure tables themselves. How
ever. where computer running time is or para
mount concern. thia approach has considerable
appeal.

Because of the available time and
mone y . all the early efforts of the Integrated
Systems Proje ct toward automatic structure
table solution were easentially interpretive. It
is intereating that a simple. yet adequate. tabu
lar systems-oriented language could be provid
ed in this way for aomewhat loss than a man
year's effort. Similarly work to dato in the
area of formula calculation. indicate s that a
comprehenaive aystem o{ mathematical notation
like that required {or scientific work is probably
not necessary in many operating buaineas deci
lion systems. Initial cHorts on the IBM 702
were followed with experimental TABSOL langu~
ag •• for the IBM 305 . IBM 650 and the IBM 704.
These applications to different computera repre ~

sented more than aimple extrapolations to differ.
ent pieces of hardware. In eac h an eHort waa
made to expand capabilitie s of the language. In
addition. the peculiarities of the e quipment were
explored. since one great concern was to free
the user from a programming sy.tem usable on
one and only one computer. As you mi.,ght sua
pect. this wa.n't alwaya completely possible on
the smaller computers. lacking tape or core
memories . Nevertheless. the most recent
Manufacturing Service effort on the IBM 650
produced a language with named fields. index~

ing. a two ~addre8a arithmetic. completely
generalized structure table forma.ta, and con

sidering the alpbabetic restrictions of the

equipment, remarkably flexible output lormats.

Although "these experimental language a
proved quite adequate , one could not help but
look toward the tremendous power of one of the
more conventional language •. For one thing,
the prospect. for structure table application in
othor problem areas brightened, and it seemed
reasonable that this powe r would be desirable in
future work. Further our own tabular systems
language development had brought us to the point
of direct competition with the major language
eHorts already underway. Here General Elec~
tric's Computer Department entered on the
scene. The Computer Department was develop
ing a new concept in compiler building for use
with General Electric computer s. The first
version of thh new General Compiler, called
GECOM, will be available to GE 225 users in
May, 1961. It is designed primarily around
COBOL, with some of the basic elements of
ALGOL, and is now to contain all 01 TABSOL,
To state the ' results of joining TABSOL with
GECOM aimply, it places the power of a lull
fledged language at the command of every struc
ture table block. Within General Electric, we
obviously have a very high regard Cor the contri
bution of decision structure table s in information
syltems design. Significantly, the .ame com
mittees who developed COBOL are now actively
investigating tabular .ystems-oriented language.
as the language of the future. By drawing on the
CODASYL work and utilhing the extensive re
.earch and development experience already
available within General Electric, the Computer
Department expects that GECOM will provide
users with a system compatible with both the
present-day co:mmon business language, COBOL.
and also the tabular .ystems ~oriented la.nguage,
TABSOL. Incidenta.lly, the decision structure
table II appearing i n Figure. 3 , 4 and 5 are writ
ten in conformance with GECOM specifications.

Application. of Structure Table s

As somewhat implied in the illustra
tions a substantial antount of experience has
been gained in applying structure tables to a
wide variety of operating decision -making prob
lems over the past three years. But perhaps the
most interesting experience , at least from the
researcherls point of view, was the very re
search work which spawned decision structure
tables themselve.. Earlier, it was mentioned
that the Integrated Systems Project undertook a
careful study of the e8sentiallnformation and
material processing required to directly t r ,an.
form customer order. into finished product •.

For example, the product must be engineered

125
3.2

prior to shipment, but the payroll, though rever
ed by all of us can well be done at some Qther
time, out of the :main flow of events . Using thh
rough rule of thum.b. the following activities
were studied (Figure 1): order editing, product
engineering , drafting , manufacturing methods,
and time standards. quality control, cost ac
counting . and production control. Theile activi
ties account for a fairly substantia.l portion of
the business system. Nor:mally , they would in
clude 1000/0 of the direct labor and 100'/. 01 the
direct material as well as about 50'!o of the over
head. All the production inventory investment
lies within the scope of this system and obvious
ly most of the plant and equipment investment.
Fortunately, the inputs and outputs to this sys
tem are simple and well-defined: the customer
order comes in and the finished product goes out.
With this in mind. it was possible to treat all
activitie's within these bounds as one integrated ,
goal-oriented operating decision aystem and
develop decision s tructure table I accordingly.
Working with a .mall product section in one of
the Company ls Operating Components, a signifi
cant portion of the functional decision logic was
successfully structured. Further the resulting
structure tables were directly incorporated into
a computer-automated operating decision sy.tem
which transformed customer orders for a wide
variety of finished products directly Into factory
operator instructions and punched paper tape to
instruct a numerically progranuned machine
tool. Thia prototype .ystem was demonstrated
to General Electric management in November,
1958 . Starting at the beginning, (Figure 8) the
computer system edited the customer order and
using the product engineerls design .tru'cture
tables, developed the product l • component char
acteristics and dimensional detaHs. These in
turn were used in the manufacturing engineer I.
opera.tion structure tables to develop manulac
turing methods and deter:mine t;mo standards.
And so the flow of information cascaded down
through the va.rious business functions comput
ing the quality control procedures, the product
coats and the manufacturing schedules; eventu
ally issuing shop paperwork and machine pro
graIn tapes.

Since the completion of this work
further resear'Ch and development 01 the struc
ture table concept was conducted in a variety of
functional areas lor different kinds of bu.inesses
in General Electric: defense, industrial appara
tus. and consumer -type products. In addition.
structure tables have been used in eptirely dif
lerent applications such as compilers . They
alao appear to hold great promise in complex
computer simulation prograDl.s.

126
3.2

Bene fib of Structure Tables

Aa a result of thea. effort •• we have
come to bellove that the decision 8tructuro table
h & !undunental language concept which i.
broadly applicable to many clalsea of lnforma
tion proce •• ing and decialon-making problema.
Thoy offer many benefit. in learning . analydng.
formulating and recording the decillion logic:

1. Structure table,. force a logical,
step-by-step a..na.lyda of tho decision.
Fir 8t the paraInoter 8 affecting the
decision muet be aped£1ed; then 8uit
able results muat bo formulated. The
nature of the structure table array h
.uch that it forces conaidoration of
a1110g1eal alternatives, even though
all need not appear in the final table.
Sbnilarly. tho preche structure table
format highlight. illogical atatomenta.
This aimplifios marlUal checking of
dechion logic . The deciaion logic
emphasizes causal relationShips and
constantly directs attention to the
reaaons why results are different.
Personal design preferences can be
resolved and intelligent standarCliza
tion can oe fostered.

Thh h no mean capability. Indeed,
it was very instructive to witness the
development o f method. and time
Itandards logic in paraliel with the
development of tho engineering logic
during the initial Integrated Systems
Project .tudy. Through analylll of
the dechion structure tables written
by the v.riou. functional speciallsts,
everyone was able to achieve an in
sight into the product and the business
rarely obtained in 80 ehort a period
of time. The facta of lifo in product
design, factory methods, and standar
dization were brought into the open
very rapidly.

Z. Structure tables are oa.lly under.tood
by humans regardle •• of their func
tional backg round. Thh doe. not
imply tha.t anyone can de sign or creato
new structure tablos to delcribe a
particula.r decision -making activity;
but it does mean that the average
person, with the aid of a dictionary,
can readily under stand someone
elsels .tructure tables. Thus, struc
ture table. form an. excellent basis for

conunwrlcation between functional

3.

4.

5.

6.

.pecialisU and syatems ongineer •.
Structure table. also go a. long way
toward lIolving the difficult system.
docwnentation problem.

Structure table format h 80 aimple
and straightforward tha.t engineer ••
planners , and other functional spe ..
cialists can write .tructure table.
for their own decision- making prob
lema with very little training and
practically no knowledge of compu
ters or programming. Given a few
ground rule •• regarding formata and
dictionaries, the structure table II
written by theae functional people
can be keypunched and used diroctly
in operating decision systems with
out ever being seen by a cOInputer
progranuner. Thh cuts computer
application co sta as well as cycle
time •.

Structure table error a a.re reported
at the source language level, thus
permitting the functional specialist
to debug without a knowledge of com. ..
puter coding.

Structure tables solved autoInatlcally
in an electronic computer offer level.
of accuracy unequalled in manua.l
IY8tems. Note, howevor, that any
Buch mechani.tic systom. lose that
tremendous ability of humans to
compen.ate for errors or discrepa.n
des.

Structure tables are eaey to rna-in
tain. Instead 01 changing all tho
precalculated anIJWer8 in a.ll the
file., it is often only: neces.ary to
change a single value in a single
table. For exaInple, when changing
tho material specified for a compo
nent part under current file refer
ence systems, it would be necessary
to extra.ct. Inodify and renle all
drawing II and parts lists calling for
any variation of the component part.
Usirlg structure tables, it would only
be nece.sary to alter those structure
table. which specified the component
material.

Summary

In closing. we recom.m.end that the

reader demon.trate the effectivene8s of decision

(

.tructure tabl,u to him.ell by ".tructuring" a
fow dropl. dechlon.. For exaxnplo, writo a
.tructuro table which will enable your wife to
decide how to pack your 'U1tCa.8. of any bUlin •••
trip. Perhapa a .impl. bUlin ••• dochion luch
a. than mentioned earlier would provido a more
lnetructivo oxaznplo. Tho firat .tructuro table.
are ulua.lly dH!icult to writ., bocau •• moat of
u. do not, A' a genoral rule, probe deeply into
the logic ,upporting our decbion •• However,
onco thh mental ob.tac! .. i. overcomo, lI.true_
turing" facility dovelop. rapidly . If tho reader
will take tho tim. to ".tructuro ll a. few dochion.
and actually experience the deeper Indght and
clarity which thia teChnique provide., then doci
.10n .tructuro tablae need no apologi8t. they
will apeak (or theme.lve ••

Acknowledgement

In contrast to mo.t technical papers
which e.sentially document only the work of the
author. this dilcu •• ion report. on the effort. of
over ecventy-five Gene r al Electric men and
women. In particular. credit is due Mr. Burton
Grad, who though no longer with General Elec
tric, was a principal originator of the decision
etructure table concept. Mr. Malcolm C. Bogge.
Mr. Daniel F . La.ngenwalter, Mr. Herbert W.
Nidenberg. and Mr. Theodore E. Schult. repre
.enting Service Componenta and personnel from
some fifteen dUferent Operating Components
within General Electric have contributed toward
bringing the.e idea. to their pre.ent .tate of
development and application. Acknowledgement
h alao due Mr. Charle. Ka.t& of General Elec
tric '. Computer Department who wa. inetrwnen
tal in Joining TABSOL a.nd GECOM.

lZ7
3.2

128
3.2

Decision
Structure Table

· .. a rectangular
array of terms,
or blocks •..

· .. vertical
double line ...

· .. horizontal
double line ...

· .. structure
table
values ...

Decision
Logic

Results or
Functions

Co1unm headings

Table Values

POl P
02 P 03 R01 .R

02 R03

Pll P12 P13 r lI r 12 r 13

P21 P22 P23 r21 r22 r23

P 31 P 32 P33 r 31 r 32 r33

P41 P42 P43 r41 r42 r43

Figure 1

R04

r 14

r24
r 34

r44

Problem Statement: Select Transportation. New York - Bostori. p. m.

Weather: Foul

Plane Space: OK

Hotel Room: Open

Decision Structure Table: Transportation. New York - Boston. p. m.

Weather Plane Hotel Trans- Other In- Next
Space Room portation structions Decision

Fair OK Open Plane End

Cancel
Foul OK Open Train Plane End

Sorry Open Train End

Cancel NY-Bost.
OK Filled Plane a.m.

Filled
NY-Bost.

Sorry a.m.

Solution:

If the value of Weather is Foul. and

the value of Plane Space is OK. and

the value of Hotel Room is Open.

Then

the value of Transportation is Train. and

the value of Other Instructions is Cancel Plane. and

the value of Next Decision is End.

Figure Z

129
~.2

TABLE 1000. DIMENSION C4 A5 RIO.
NOTE TABLE FOR DETERMINING DETAIL VARIABLE PART CHARACTERISTICS FOR A

LINE OF SENSING COILS IN ACCORDANCE WITH CUSTOMER END PRODUCT
SPECIFICA TIONS.

BEGIN. INSUL
SERVICE E UNITS EQ VALUE VALUE RESIST INSUL TEMP

"DC" " MAMPII GR 180 LS 4 50 2.6* TURNS 'ITYPE_F" 150

"DCII " MVLT" GREQ 45 LSEQ 150 26 .008 1. 84 " TYPE-F" 150
"Dell " MVLTII GR 150 LSEQ 330 13 .002 0.46 " TYPE-F" 150
II DC" " VOLT" GREQ 0. 9 LSEQ 300 60 .002 39 .0 " T YPE-F" 150
"DC" " VOLT" GR 300 LSEQllOO 120 .002 137. 0 " T YPE-F" 150

"AC" " WATT" II 230 I .002 150.0 I " TYPE-N" I 200

IF NOT SOLVED GO ERROR-vCOIL.
MOVE " COPPER" TO MATERIAL.
GO TABLE 1005.
END TABLE 1000.

TABLE 1005. DIMENSION C2 A3 R3.
NOTE TABLE TO MAKE CERTAIN THA T I NSULATION TEMPERATURE RATI NG EXCEEDS

MAXIMUM OPERATING TEMPERATURE.
BEGlN.

MAX TEMP INSUL

LSEQ INSUL"'"'TEMP
GR INSULvTEMP " TYPE-F"
GR INSULvTEMP " TYPE-N"

IF NOT SOLVED GO ERROR~COIL.
END TABLE 1005.

INSUL

" TYPE-N"
" TYPE-T"

Figure 3

INSUL~TEMP

200
250

GO

TABLE 1007
TABLE 1005
TABLE 1005

w . w
~o

TABLE 2000 . DIMENSION C3 A 3 R4 .
NOTE TABLE TO SPECIFY VARIABLE FACTORY OPERATION CHARACTERISTICS FOR THE

INITIAL SENSING COIL WINDING FROM PART CHARACTERISTICS.
BEGIN.

SUPPOR T", TYPE EQ MA TERIAL EQI TURNS START,..W I ASSEMBLE

" TABED-HOLE"

" FLAT-STRIP"
" FLAT-STRIP"

"COPPER" TURNS
"COPPER" I LS 100
" COPPER" GREQ 100

2 I"FLAT-STRIP"
TURNS/2 "FLAT-STRIP"

" FLAT-STRIP" I "ALUMNM" I " TURNS 1"2 FLT-STRP"
IF NOT SOLVED GO ERROR COIL. GO TABLE 2005.
END TABLE 2000.

TABLE 2005. DIMENSION C2 A3 R3.
NOTE TABLE TO CALCULATE TIME STANDARD FOR PREVIOUS OPERATION .
TIME~I = I 25*DIA*TURNS.
TIME-2 = 1000*DIA/SQRT (TURNS).
BEGIN
TURNS I_Tl1RNS~_ TIME ___ 1 PERFORM ___ _ 00
LS IS
GREQ IS I LS 100
GREQ 10C

TURNS + 0.88
TIME--- I =
TIME-v2 =

IF NOT SOLVED GO ERROR"'COIL.
GO TABLE 2005.

SETUP
SETUP
TABLE 2008

Figure 4

TABLE 2010
TABLE 2015
TABLE 2020

FINISH-vW

TURNS-2
TURNS/2

",. '" '" -

TABLE 1010. DIMENSION C2 Al R3.
NOTE COIL QUANTITY DETERMINATION.
BEGIN.

SERVICE EQ I UNITS NEQ "WATTS" IICOIl-::--QUAN
IIA\.... " o

QUAN
2*QUAN

" DC" OR "AC,j
I'DC"

T
F

IF NOT SOLVED GO ERROR COIL. GO TABLE 1100.
END TABLE 1010.

TABLE 1500. DIMENSION C4 A3 RIO .
NOTE COIL LOAD DATA AND CYCLE TIMES .
BEGIN.

iSERVICE EQ
" Al,;.'

" ACII

unc"
HDC"

UNIT EQ
- r Ul{

" WATT"

"AMPS" OR " MAMP"
"VOLT" OR " MVLT"

"DC" I " AMPS" OR " MAMP"

~CY EQ
1

1

2
2
1

IF NOT SOLVED GO ERROR-vCOIL.
MlN ... DATE = TODAY + MIN-CYCLE.
NORM DATE = TODAY + NORM CYCLE.
GO TABLE 1510.
END TABLE 1500.

INSP E Q
"C
'COML"

' COML"
'COML"

IIIGOVT'l

Figure 5

NORM--GYCLE IMIN-<-CYCLEI COIL~LOAD

15 11 QUAN
15 11 2.2* QUAN

15
15
20

9
9

16

0.9* QUAN
0. 9* QUAN
1. 4* QUAN

'" -. '" ~~

TABLE 1510. DIMENSION C2 A2 R3.
NOTE COIL PROMISE DATE DETERMINATION.
BEGIN.

COIL---LOAD LSE;Q CUST DATE
CUM~CAP (NORM:""DATE)I GREQ NORM---DATE
CUM"'CAP (MIN-DATE) GREQ MIN~DATE
CUM~CAP (CUST~DATE)

IF NOT SOLVED GO OVERLOAD.
END TABLE 1510.

Figure Sa

PROMISE
CUST~DATE

CUST ___ DATE
CUST DATE

GO
NORM~LOAD

RUSH~LOAD

EMER LOAD

",. '" ",,,,

134
3.2

--

P R

0 10
1 12 P P R
2 14
3 16
. · . 0 25 (Z*p) + 10

· .
· . . · .

Z5 60

• • •. The use of formulas as structure table results can
greatly reduce structure table size, as shown by the simple
straight line expression above. Structure tables may also be
used to partition complicated curves into convenient segments
as shown below. • • ..

1/ ~-
p P R --

1--- ---V
I

0 PI Ix + a

PI P2 mx +b

Pz P3 nx + c

~ ~--- ~---- --
I

I
I

0
,

PI Pz P3

Figure 6

(

PRESENT MAIN LINE SYSTEM

~ CUSTOMER ORDER
~--~--------~

A. REFERENCE
~ INFORMATION EDIT

1M ~S
~~ML'S
ru....-' ~ BLUEPRINTS

1

4 II PLANNING II. ~ PLANNING
. (CARDS r' I ~ AND WAGE RATE

~--. ~ QUALITY
~§§RECORDS

~ PRODUCT COST ttl FILES

~ ~INVENTORY
/~~ CARDS

tm ~///////~ %.ORDER
/'h: FILES

VENDOR

MATERIAL

~_ COST
~ DETERMINATION

§~;PRODUCTION
~J\~CONTR"'''/

OPERATOR VOUCHERS
Id:I BLUEPRINTS
1\ ca MACHINES ~

~~

Figure 7

135
3.2

136
3.2

I

INTEGRATED MAIN LINE SYSTEM

;f ==- .J CUSTOMER ORDER
n

ORDER TRANSLATION TRANSLATION LOGIC

3E ~

ORDER EDIT PRODUCT DESIGN
PRODUCT DETAILS STRUCTURE

MANUFACTURING
METHODS AND OPERATION TIME STANDARDS STRUCTURE

QUALITY QUALITY CONTROL
PROCEDURES STRUCTURE

PRODUCT COSTS

I I
COST STRUCTURE

I
MAN, MACHINE AND MANUFACTURING

MATERIAL TIMING CONTROL STRUCTURE

VENDORS
[)

MACHINES:

I~ SUPPLY AUTOMATIC
MATERIALS OPERATOR RUN

~
• PARTS • SHIPMENT

• ASSEMBLIES • AUDIT

Figure 8

GI::

IoU

...
:)

A-

~

0

U

PROGRAM
TAPE

INSTRUCT.

(

PRlLOOHARY RBFBRENCK MANUAL

tABSOL-22~ --- A Tabular Systems Oriented Language

for the

GB22~ Information Processing System

COIIlputer Det>artment
Applicati0D8 Section
Programming Reaearch and Development
Phoenix, Arizona

December, 1960

(

This document is a draft of a Preliminary
Reference Manual and a language opecifica"
tion for integrating decision tables with
the General Compiler . The information eon"
tained herein assumes a basic knowledge of
computers and electronic data processing
.pplications. Therefore, the manual should
be used not. as a text book but rather to
augment already realized skills. Minor
changes in language opecification may occur
during the implementation period of the
compHer. Any changes that are made >1111
be reflected in future and more final versions
of this manual or in supporting material halted
during the interim of implementation.

D. Klick
Programming Research

(

I. INTRODUCTION

Early automatic coding systems, such as assembly programs, employed

.nemonic abbreviations in place of the computer's numerical instruction

cod~ and symbolic addresses in place of actual memory addresses. In

reality the assembly program language was a set of synthetic co,~pute1'

instructions. Although these systems grestly simplified programming, the

progrOllmer was stili plagued with t he lDlll1y details dictated by the comp"t er.

Autllllllltic coding languages of today are on the threshold of reliev1.ng

the progrluner of these detsils. The structure of these ne« languages

are very mllch like English. By us i ng a combinstion of Englioh words and

phrases to f,'rm sentenceo, the progr ammer now needs only to "describe"

a procedure for the compllter to fol l ow. This procedure together with a

description ·,f the data io then given to a special computer program for

processing. This special program, commonly called a compiler, translate

the Englbh l,roblem descripti on &nd generates a program of computer

instructions.

Such a c'""'piler is provided for the GE-225. Its General Compile:

evolved fr')lll tuo noteworthy l anguage efforts - the CODIIIOn Business

Oriented Lflllguege (COroL) and the Al !!orithm1c Language (ALGOL). Ik>th

languages ~IQre developed by voluntsi.")' coll!ill1ttees of computer manufacr Jrers

and uners and reflect the recent trend toward "common" compiler lan',uages.

The lansuage presently availabl e with the Genere l Compiler is ~ased

primarily on COBOL, since COBOL sati sfied the needs of a broad 6 '~ctrum

of data processing applications. To accommodate the demands of ~re technical

- 1 -

applications, Boolean ~lpre8.ions, floating point arithmetic, and

the ebility to express elluations were incorporated into the fOl'lll8t

of COBOL. Therefore, ~te may say that the present version of tbe

General Compiler can accept programs ~ritten in one , two, or in a

combination of two lanl;uoge forms.

Those programmer. familiar ~ith COBOL recognize that it is well

auited for creating 3~d process i ng data filea. ~GOL, on the other

hand, provideo an eK:ellent means for eKpres~ing complex mathematical

relationships. ReCQQt 1nv~3tisations by the Integrated Sy8t~. Project

of General Electric s lianufacturill8 Services uncovered an area of

applications wbich require nei t her extensive data fila processing

nor profound math~J8tics but rather an un~leldy number of sequentisl

decisions.

To cope effectively with these decisions the 'ISP team devised a

tabular language. The purpose of t his language was to depic~ by meane

of table~ tbe rel&tionshi ps of 103ica1 decisions. The new language

was appropriately tp.rmed TABSOL for Tabular Systema Oriented Language.

Since its creation '!:llSOL has beell used by many departments of. General

Elactric to analyze ,,~d Bolve pr oblems in product engineer:tng , manu

fa~turlng _thod", coal: accounting . and I,roduction cont.ol. The sllpl1catl.on

of decision tables is co.1tinual.ly gl'o~'ing. Recent studies shon t hat

they provide a concise me~b.od for BUPPOrtillg the 10g1c of other da':a

processing applications. ['\,r ""mapl e , de cillion t ables raay be used to

specify the transfer of control lIssociO'!ted ~ltb the values of. Olle or

more fielda, to control tbe printing of detail snd sWlll!lllry l.ines 01: a

report, or to interrogate the sort keys 1n II Illulti-file system All

- 2 -

(

t.he Computer Department we have found decision tables a valuable tool

in designing and implementing the General Compiler.

Decision tables represent a third language for the General Compiler.

They may be used by themselves or in conjunction with the features of

the compiler language. The specifications outlined in this manual pertain

mainly to the table entries and imply and require a knowledge of the

General Compiler. Therefore, this manual should be used as a supplement

to the GE-225 General Compiler Manual, CPB-l23 (5.5M10-60).

- 3 -

II. DECISION TABLE FORMAT

The format of a decision table is giYeD in Fig. 1. ta concept 8

table 1a an array of blocks divided into fOllr quadrants by II pdr of

double lines. The vertical double line separates the decisions or

"conditions" on the left from the "actions" on the right. The hori

zontal double line isolates variables from associated operands which

will appear in the blocks and rows below. A condition then is s relet ion

between a variable appearing in a pdll1Sry bloC':!t and an operand appearing

in a corresponding secondary block. For example, we ~ay write AGE in

primary block 1 sod RQ 26 in secondary block 1. In doing this, "e are

ststing a cond1.tion. Verbally, we Clre aAking "if age equala 26". An

action, on the other hand, is s statement of what iE to be done. By

writing AGE in a primary action block end 26 in its Dsaoc1.eted secondary

block, we are stating tlu1t "the value 26 is to be asoi.uned to ege".

It 1a intaresting to note, at t.his point, the Eng!.hh interpr.etation

given to the vertical lines. The lefc-Dloat 11.ne mlly be thought of as

representing the word U'. Those Hnell to the left of the verCical aOllbJ.e

Une may be taken to meen Arm; the ver.ticfll double line itself the word

THEN. Since actions are sequential e'ntitiea, the linea separating them

may be interpreted as semIcolons and the dght-.,ost line, whieh actually

terminates the actions, aA a pedod. With chi3 in mind, e llch secondary

row becomes an Englisb sentence. ror example, eacb rou now reads:

"IF cond1l:ion-l is slltisfied AND cond1tlon-2 is satisfied

AND AND condition-I, is sQtiafied THEN perfo?:l!l

action-I; action-2; . . ., action Ul. II

If any condition within a rou is not satisfied, the nr.;(t row is evaluated

- I. -

(

[...
rt

i

~
rt ...
!

r

...

'" r-.. § ...
II

~

A

-

- ---- -

N

Figure 1

- 5 -

'" fi
~

\~

i!i
N

1>3
a- II

t:JZ>

t:JZ>

· · ·

...

. .

..
N ~
<1' DO

• · ·

a

aad ao OIl UIltil aU the rova are depleted. WbeD tb18 bappaa the table

18 aaid to bave "no aolution". The table 18 CODaidered "aolved" wbeD aU

the conditions of a row are .~ticficd ~nd tbeir associatad actioos performed.

Before considering the conventions used to formulate conditiona

and actions, an example may help develop insight into the nature of

deciaion tables and the ~nner in which they may be used with the

General Compiler. In this example (Fig.2) l~ are searching a maater

employee file (recorded on magnetic tape) to determine the number of

male employees who fall into the following job categories.

Job Level Years Experience Tid.e

6 2 ?rogrllllllDer
7 3 Progrmmner or Analyat
a More than 3 Analyst
9 More than 4 Analyst or Kaoager

10 More than 4 Maneger

For each employee we find having any of these quslificatioDB, we are

to write hie department number, name, title, level, and experience

on the computer'. typewriter. At the end of the run the totals for

eQch of the cate:!odes nr.e to he niso put on the type .. riter.

~be core of this probl.. is the decisions that must be made on the

information stored in the recordu of the master file. These decisions

are conveniently expressed above in narrative form. With only minor

alteration this form becomes the program statement of our problem.

The table and sentencea are punched into aO-column cards exactly a. they

appear in Fig.2. When this is done they may be given directly to the

compiler for processing.

A~ illuatrated in our example, Genersl Compiler sentences may

be used to .upport the logic of the table. Theae sentences accomplish

the following:

- 6 -

GENERU. ELECTRIC
;11 WL ceq""

SENTENCE fORM
I'IIOG_

s _ "1:> ... c. o,,", Tc..""\
Ic uT ."

. I.L.I.I.I . , • 1. 1 • .1. ,1 .. 1 .. 1, .ll~,,~ .,I,.I,J..I.J •• I.'~4l.J..:
SfQUEKCf
MUM.E.

S p oc.abv, I '" IS' 0" •

, . 0 .. ~ III :r~. T "A.:"T .. F \ ~

I 5 ';E I.~c..o .. a.1!"'l> "'''.Te.t. \~. c..<.,1> z> .. ~ \ Ia ... T • lI_t.OM •

• Z .. F" .~. ~. 0 " t"~o"l>.

.5 £.~e. .. , M<~ • ~ 0 - YIl.-Il.~. L- 0 '1f. P - • • •

' <> T.~ ~ ~~~ • " . , C O . 't). T ' .. ~ < T , 0 • .. ",0 • •

'E L • ~ L • !: 'I(t 1f.1 .. , So" Co • 1 G To

, 0 ~ ... • ~to.""f\P\" , T,/pt._o""T'
• . .- 1 ~Q Pt06.R,. ... ""~L 0 .. ~ .. ~l'.t ~ .

• 0 r .. J AtII"L1~T'
,

..
~ < , ... ~ ·\..1",. 00. 1'\""'6.R. •
" 0

I • .. • '" £ .. •

• 6 0 0 E ... ~E.'oR.

, 0 1 • o \,I , • . , .. t!. .. "",,'T .. T TITLe. 1.."'1'-'- .. ~. < T Y' ..

, 5 "OTAl X : T • (Z\ \ .
~ 0 0 To • R&.C01lt.

, " t.'-'~. C\". o ... &. """,T"'E ~ I L ~ •

! ~ 0 I T 'TOT"'\' .1) .. ~ L TOT A \". 1 To • ~) TO 11 .. (• 0 YP ,
~ • • " . E " .

I

-

.L, ~ •

. \ .. .

... • .

f
f
J
r
I
lo
0:

~

N

• " !~ ..

OPEN --- Declarea that the MASTERJFILE is input and since the flla

ia recorded on m&gDetic tape, validates the tape labela.

READ --- Delivers the next record from the MASTBR~ILE and testa

for an· end-of-file sentinel. When this sentinel is

detected, sequential progr£m execution is interupted and

control passes to the portion of the program labeled END"RDN.

IF Eliminates those dsta records which contain information

about female employees. The word FEMALE (alao PROGRAHHBR,

ANALYST, wd MANAGER used in the teble) represents a

specisl kind of condition and will be explained later in

tha III81lUllI.

EXPERIENCE • --- Calculates the employees total experience and

aSSigD8 the value to the field named EXPERIENCE.

The word TABLE informs the compiler thet it must process a- dee1siOl1

table; EXAMPLE is a name or label which "a8 given to the I:able. The

Bize of the tabla is Btated next by giving the number of conditions,

actions, and rOWB contained in the table. Thia information i8 used

only by the compiler and is not executed by the compiled program.

Table execution begins et row 1 (sequence number 40). Uaing our

narrative definition of a table, row I is interpreted aa followa:

"IP the job LEVEL field equab (EQ) 6 AND the

EXPERIENCE Ueld equals (RQ) 2 years AND the

employ.e'a title is PROGRAMHBR THEN assign the

value 1 to the subscript ·1; GO TO the part of

the program baving the label TYPm--oUT."

If one of theae condtions cannot be satisfied, row 2 is evaluated startiag

agaia with the 1eft __ at coodition. Sequeatial execution of the rowa

contiaues UDtil either all coadltioaa 10 a givea row are satisfied or

- 8 -

(

all rows are exhausted. When the latter situat ion occurs, the

sentence ilomediate l.y f.ollowing the table is executed. Proceading

from here the senl:ences in our example accomplish the following:

GO Inte1:rupts sequential program execution and passes

conl.rol to the part of the program label.d GET,.flECORD.

WRITl.--- Wrl.tes the current contents of the DEPAR'DIENT, NAME,

TJ.1'LB, LEVEL, and EXPERIENCE fie lds on the cOIIIputer fa

'.ypewri tel:.

CLOSE--- Rewinds the MAST~ILE and performs the file's cloeing

conventions.

STOP .• -- Terminates processing and writes the words END RUN on

the typewriter.

By (l,neral Compiler standards this example represents relatively

simple tonditions end actions. In formulating these entl:1es, the

progl:i!1.l11le'C' may take fl,11 advantage of the compiler's capabilities.

Th" remaining sections of this m.!lnual are devoted to defining the

conventions and manner in which conditions and actions may be fOlued

and entered in tables.

- 9 -

III. llASIC CONCEPTS

Since declsion tabl .. a ere us ecl in conjunction >lith the General

. Compiler language. we must first look at the foundati.ons of this

language before considering t he counterpar t s t '.1at may appeal." in a

table. The compiler's language, like It'' S l: nat ~t'a l language". is a

body of Ifords and a set of ccnver,!: i ono fOO': com··,1:d.ug thase <forda t<,

express meanings. Its str'Jcture or: " Synt3~; 1f c lo .c l ~ly resembl'l:s the

rules of English grammar, <lnc'. its boo.y of ':-:m.".:!l ·,U.1;1 be appropriately

termed a "vocabularyu. 'ree p1Jrp~e e of thi B S~. :: !:io1.1 1.8 to show hOll

words are formed and how they rM.y be used ;:c .' .. <pr·)SS a desired

meaning.

Cbarac.ill.!.

::he basic units of out· 1.£Hguage are the c',ara,:tcrs used to form

worda and symbols. Thl!! c':l.~r3IOtcr "et 1nc)." <1,,. the letters of the

alpbllbet (A. B. C, Z), the nuu"rals (0, I, 2, ... , 9), and the

spec tal characters shown in Fig. 3. Special c~racter8 are presented

in mora detail as they ar2 encountered oln t he manual.

Word,

The words of • typic.,.l. Gen~ra l. Compiler l)"cogram fall into one of

two categories: t he voeabala t"y of tb<l coop11"" and the vocabulary

used by the pre.grammer. The progrlWD>2r 'S vocai>ulary will consist mostly

of arbitrary nllme3 given to his data ar.d r.ecti,ms of his program. The

compiler's vocabulary, on the othe l." hand, is predetermined and explicitly

defined 1n this manual, Since the cOlLl'il~r, b:r nature of its designers,

is a mistrusting mechanism, the programmer mU3~ define the words he

uses too. This is done, not by writing a manwl1, but instead by merely

- 10 -

SPECIAL CIlARACTBRS

Character MNIl1n8 Card Code

t:. Space or blank Space

• Period - Deciul poiDt 12-3-8

• C- 0-3-8

" Quotation Hark 3-8

"" Hyphen S-8

(Left Parentheaia 0-S-8

) ll1ght Pareutheald 0-6-8

+ Addition 12

Subtraction - Minu. aigo 11

(* Multiplication 11-4-8

I Div1elon 0-1

• Aeelg.-nt 6-8

Vertical Yahle Lins 12-4-8

PI,aure 3

- 11 -

fill ins out L\ elata description form. Once these "data IIGIeS" al".

defined, tlley My bo fHed Githe:: on 80~column punehed cards or on

magnetic tape and used over and ovel" again. lbe data deseription

flle then is a "dictionary" since it contains the definitions of the

word. used by the progl"aDmIel" . Furthermore. tbis dictionary .. y be

revised without redefinin8 all of its entries. This is accomplished

by a special e.rYice N ·uti4e whicb accepts correction.. insertion., and

deletioDs aa long as they are written on ehe compiler's elata description

fOnl.

Our two categories of U'ords may be illustrated by tbe follovina

sentenCE> taken from the progralll e.xlllltplCil gi-von in Fig. 2.

G&'1l"£:ECORD. !y!@ MASTrJl.""ILE RECORD IF m Fn.E QQ lQ !RD.JtUN.

Here, the wo7.1!s READ, RECORD, Il',l!Nll, FIL!> , GO, and TO belong to the

vocabulLlry of. the cOIlIpU(!r; whel!'ells. the 1100:ds GET~CORD, HASTE&J'ILE,

and E!i/lY'oRllN belong to the pr:lgrtllllll1e-r 's vOl!olJulary, The compiler wlll

aes\IlIle that I~TER""'IL2 is a data name dUe! to the word's position in the

sentence. It will then search the data description to verify its

assumpt1.on and to determiee the characteri stico depicted by this word .

Not finding a matcb in thE data descripti on results in an error .. ssag.

typed on the computer's ty pewriter, The "erda GI!:T.JlECORD end EllBJtUN

will be interpreted as sell tence;-r!ames due to their position in the

pr osr.n,·, , OtV!", 8 £ "';'U. t hn col1piler ",,111 a(:tp.mpt to verify ite EndLngs

by checHng (!ach transfer to make certaio tbat tbey lead to propedy

defined 8ent~nce names. 'l'he consequence I>f an undefined sentence _

is liketlise .:m error atesss ge on the compul:er ' a typewriter. The compatabil1t y

chacka >Mntioned Mre are only two of lUo~ which tbe compUer perfortaB to

insure unquestionable '. uults in the prog!Cllms which

~ 12 -

create ••

(

Formation of Names

As previously mcntlon~d. data names are words representing data

(f11es. records. fields. elements. cor,<stants. arrays of values. etc.)

Bcd are arbitre.rily eS3igned by the programmer. They are formed fro.

the following characters.

Letters A. B. C •...• Z

Numerals

Hypben

0.1.2, . •.• 9

To avoid error meos8ges and possible r·a-cOlllpUation. the progr~

~bculd cboo.e dolo names tbat

1. Do not exceed 12 characters.

2. Do contain at leaat one letter.

3. Do not begin OY end with & byphau.

To 1."sure e yroperly deHnf!<! !,rogr",", "U data n_s .lIould be racorded ani

t'hef. :~ cbaractet:1ot1c d~tQ descdbcd on tbe :olllJ)Hcr's dat..'l d"scrtption

for... Th" progri!Ullmer. also shrnlld be c: nreful not to use I:he 1!0000iler's

wcabulary aa data nilllles.

10 addition to data nomes, the prog, awmer is free to nmne sentences.

tables. and other "procedures" in his .• rogrant. With one excoption tbeae U'lme~

are formed like data DAmeS. Sin:e pro :edure names are judged from their

position iill the progra:. they may l:e f,~ rrn<:ld frOlll only too numerals, 0

thro\;gb 9 .

Constanta

The values associated with deta nanee genorally change: dudng the

actual runniDg of a complI.ed progrBlll. J't is for this re~,SOI1 that they

- 13 -

are sometimes called "variables". A constant, as opposed to

a varia!;'1e, is a specific value .lind does not change ,,1.thin the

scope of a program. CODstante may be one of two kinds: a literal,

c.r a nGled constant.

A Hteral is a value itself rathel: than a Dame given to a value.

Literals may be Dumel:ical, alphabetic, or alphanumeric -. i.e.,

composed from the charllcter set of the computer. All non-numeric

literals should be enclosed in quotation marks (") to avoid having

the c0lllp1.ler. confuse th2111 with data tl8I1Ies. The conventions for

fOrming literals are tll~ followit:g:

1. Non-numeric literals are Ij~ted to 30 char acters, excluding

the quotatio~ marks.

2. A numeric l:i..toral not I)ncl(J:.I~d itl quotation wu:ks h

assllIIled to be 0. number. Numbers may conta:'.n not IIlOre than

ooe decimal l'.)int end a miouc sisn. T1na1S!.led nuro:bc;:s are

c:onaidered podt1ve. Ilxcluding decimal po:Lnts and minus

signs, number'l must not exceed 11 decimal di"~. tA.

3. Numbera may be tr~ated as floating point by writing them

as a p",~er of ten - Le., a uIJI.:,er o~' decimal fraction

followed by ~ . pO~ler of ten exponent. For example, the

number 230100 might be written as 2.301£5 which is equivalent

to 2.301 multiplied by 105 The exponent part, indicated

by the letter !, ·III8Y contain a lD1nus sign to show a negative

expoaent •. Tho value range of an exponont . ~ B limited to

;!: 75. Excludi.ng the dec:imal point, the lD1nuB sign, and

- 14 -

(

the letter B, tlle fractional part of a power of ten nuaabu'

.. st not sltceed nine dsciuUll digits . To distinguish datIl

names from floating point ItUlllbeTS , data Il4IlIetJ should not

be fOnllCd froDI only the Dumeralll ODd the letter E.

4. An alphanumeric litersl may not contain en embedd~d qu~tetion

.ark aince the enclooi~8 quotat i on marks ere used to deterain1

the IIhe and content of the U.tE.rlll.

A ~ constant 18 n constont which htlf) been given a nal/le.. Naaed

constante are defined by meanll of tbe datL ceucription and ~oy include

any character belongiag to the character set of the c(.omputer, inc:ludiDg

the quotation mark. Like literals Damed canstantc may be Dum&rl~,

alphabetic, or alphanumeric. They are unlike literals in t~t they

.... y be any length.

Subscripts

Subscripts provide a convenient method to reference in~ividual

val ... s contained in a list .>r in lin array of values. The ';arieb1e, I,

employed in tbe deci.i~ t~ble of Fig. 2 is a sub.~ript used just for thi.

purpose. Since five totah are to be acclllllUlated, one n·ame wes assigned

to aU ftva, _ly, the date name toTAL. Whenllver reference was lUde

to a particular total, the data name TOTAL ' ~a8 followed by the sub,cript

I. Thia i8 illustrated in the expre,sioa

TOTAL (I) • toTAL (I) + 1-

and the sentence vb1cb prints all five totals on the typewriter. From

this exaple, it follows that lubscripts, Uke data, _y be glven -..

ID fact the ._ rule. that govem formiag data _8 apply to naa1",

eub.crlpts.

- lS -

Since .ubscripting is a positional notatf.oll. the renae of a,. tub

script is lWted to the valuea 1. 2, 3 •••• , n (¥ben n i8 the ... f ••

nUllber of values in • Ust). Thf.e do .. not _ that nbacripu are

lilaitad only to integers. If a aubecript ia not cleff.aed cis· intepr by

__ of the data diY1r.1on. the c:o.pUer will aut_ticell,. provide

codina to tnmcate itl valUG to GIl intCiger. l'urthez.ore. aubscripb

not restricted to a sinale varieble n.ue. Arit.bmetic expressions .a,. a1ao

be used .s subacrf.pt. For example.

RATE (P+1)

It «"'.3)*1'**3)

A (J)

are legitivate forma of subscripts.

Up ".ltil IIOW . , only elle-lI_donal 8ubscriptitDg vaa coaaiclara4. Val_

in mult!.-dcmeDsioned array~ may also be refer~nced by 8ubscripta. For .-..pl ••

aD array in which values are order.d

~l AU A13 ~4 ~.5

A2l A22 Az3 A24 A25

~l ~2 ~3 A34 A:l5

A4l A42 A43 A44 A45

A51 A52 A53 AS4 ASS

adght be aubscripted a8 A (J .K). where It is tilt! co111111118r sub,cript aDd

J the row. To refer to value ~S' J Wf.uld have to equal a mad \(. equal 5.

Preceedins exa-plea ,bow that subscript. arG eDcloae4 in parentheais and

"eparated by _e. This not atlaD peradte the compiler to d1stlDgUlab

subscripts fro. other e1emonta in the l_guage.

- 16 _ .

f

Truth-Values

There ia a ~Laas of variables which. through either usage or definition.

may assume only the numerals 1 or O. The value 1 is said to be their ~

atate and the alue 0 thelr falae state. The words END FILB of the READ

sentence In F·g. 2 la IUch • variable. When the OPEN aentence is executed.

DD FILE is Jet to ita false 8tate and remains 110 set until the end-file

condition l ' cncountered. At this tlme. it is set to lts true state.

Variab les having truth-values are termed "True-False" variables. END

FILE 18 a "oDvolience provided Py the co=pilerl the programmer may also

formulate his ! ,tlD true-false variables by merely listing them UDder the

heading TRUe' ?ALSB tn ' the data division. They may be named according to

the ruIns 81.'/ In for data n8lllell.

Aritlmac~r; pressiona

!.r1t~l,tlc expresaions ere rules for comruting numerical values. They

ary. fot'l'".trl from vllriables. nll.mbers. fUllctions. and symbols representing

acldltf.or:. (ubtrncUon. _LtipUcation •• 11vis!on. and exponentiation. For

,,:.' "pIa. ill the expression

l1U01--l:iRS * 2. 50 + 0'.l\.IIIRS * 3. 75

PRBM~HRS anc: OlVHRS are variablell; 2.50 aLd 3.75 numbera; and + and * symbols

for addition .tlld multiplication. If PREH~lll{5 were 40 and OT"HRS were 4, the

expre.,.lon becOtuCO 40 * 2.50 + 4 * 3.75 ariel after performing the aritbaetie.

reducee to the vaiue 115.00. To save this value, a progrBllllller aaight write

GROS5"PAY .. PIlEM"HRS * 2.50 + 01'-'IlRS * 3.75.

The presence of the .. symbol tells the compl.len to assign 115.00 to the

variable GIIOSS-OPAY. When expressions are ~Iritten in this £01111. they are

called "assignment etatements".

- 17 -

The arHbm!!Uc permit ted in all expreasion is atated by the following

8y.boh:

Sy!!bol

+

*
I

**

MeaninK

Addition

Subtr.cUon

tlJltlpUcatlon

Dbhlon

Bxponeatl.Uon

In addition to .rit~tic, tbe followins .. theaetical function ... y be u.ed.

SY!bol l'uncUon

SIX Sine

COS Coline

ATAB Arct8D8ent

SQRT Square Root

BXP !xponenUQl

LOG Co n LoS.dthm

LN Natllral Lo:lar1thm

AI8 Ab.olut. Value

Aritb.etic expre •• ions .. ~ evaluat.d from l.ft to risht .ccordlDS

to the fol1owlDI priority I

1. IxpoDenU.UoD ad P\ulctioDs

2. Ilslt1plioatf.oD ad DiY1aioD

3. Addition ad Subtraction

'.renth •••• .. y be u.ad to •• tablish a prec.dence other thaD the ooa

above. Wh811 the)' are u •• d, the evalu.Uon '" perforMd fl'Oll the iDMnIO.t

to the outermost pair but .till from 1.ft to risbt v~thiQ a Siv.u pair.

- 18 -

(

Relational ~presaions

A relational expression ia a statement of magnitude between two .alues.

For example, FICA GR 144.00 is a comparioion between the variable FICA and

144.00. The aymbol GR etands fQr the relatioll "greater than". Other

relations may be stipulated by

Symbol Relation

I!Q Equal to

GR Greater than

LS Leoo than

NRQ Not equal to

HGR Not great()" than

IlLS Not less than

To have .aenins, relational expressions must be stated ao coodition8.

The expresllion FICA GR 1.44.00 tells us nothi~':l. However, when it is written

all

IF FICA GR 144.00. 00 TO ADJUST~PAY

we know iNmediately what is i~teQded. By definition then, relational

expressions are conditions auJ when evaluated always sive a truth~value.

Relatioaal expresaions may be explicitly it&ted or implied. FICA GR

144.00 is an explicit statement of magnitude. In the program example of

Fig. 2, implied relations were otated by the words FEMALE, PROGRAMER,

ANALYST, and HANAGER. AD impUed expression is formed by giving & aate

to a value, a range of velues, or to a series of velues and ranges. Once

the name and its values are defined 1n the data division, it may be used to

mean its associated va1<,es. Implied relations are termed "condition-n_es"

since a name was given to a condition, i.e., e value, of e variable. The

- 19 ~

variable from wbich tbe value ia taken is called a "conditional variable".

Therefore, writing PROG~iER (£ig.2) in a decision table block is the same

as writing an expresSion ... hicn '~ill compare the TIT.LE field witb tbe value

associated with tbe title, pr,>grlIDIaIer.

Logical Expressions

Logical expressions provide a convenient method for obtaining trutb

values. Tbey are formed by combining true-false variables and relational

expressions witb tbe logi~al operators AND, Oil, end NOT. The expression

(Pig.2)

PROGRAMMER OR ANALYST

is a logical expression which io true ~'hen BIl C!IIIployee's TITLE field

indicates that he is eitber a p;~ogr8lll!Jlel' or an anslyst.

The rules governing the evaluation of lOII:lcal expressions may be

expressed as follows:

F

P

N~t P T

plJlDq F

p OR q F

F

l'

T

F

T

T

F

'F

P

T

T

T

F

T

T

where p and q are 11 combinatf.on of true-false variables,

relational eXi,resslonlJ, or l ogical expressions.

l,ogtcal exprceeions are e"'slu<I \;cd f r om left to right with the logi cal

operator AND having pre<:cdencc over the OR. J';Jrenthesas may be used for

grouping or establisbing a precedence of evalua tion otber than the one

lIIentioncd pr eviouElly. Hhen t.1,e:. are ueed . tho evaluation proceeds from

left to right from the l.nnel:lllUat pair to the outermost pair.

- 20 -

IV TABLE ENTRIES

The previous aection outlined the elements of the General Compiler

language snd briefly showed hG~ they might be used. In the introduction.

it waa mentioned that these aame elemente may be employed within the

blocks of decision tables. The purpose of this section ia to ebow bow

this may be done.

Formation of Condition.

By definition, a condition is a relation between a primary block

entry and aome corresponding secondary block entry . A condition, like a

relational expression, may be oither true 0% false. True conditions are

aaid to be "satisfied" and false conditions "not satiafied". From thia

definition, a condition may be either a rel.it1onal expreuion, a logical

expreasion, or a true-false variable since these are the only element,

that yield a truth-value.

The formats noted belo~1 show how these ('-"press ions may be split between

primary and secondary blocka to form conditions. In these examploa, tbe

word "operand" stand for eit:h(:r a varie.ble (elata naDle or aubscripted data

name), a constant (literal (Or IUlllled constan;;), or an arithmetic expression.

The word "relation" signifieD one of the reletional operatora - EQ, Gil, LIl,

NEQ, NGR, or m.s. Sillce arithmetj.c (Jxpressious may be operands of. relational

tixpr~~.iona and relacional expressions as operands of logical expr.esulons,

it necessarily follows that arithmetic expressions may appear in logical

expressions.

Example

Operand-l Relation J
~-J Wl=o=" ~=' =EQ====,

- 21 -

OPl!rand-l

Oparand-l Relation

Operand-2 OR Operand-3

Operand-l

IKelatlon-l uperal1<12
Oil llelaticn-2

d-~

bdition-name

to Entry

rrue-Fala. Variable

rrue-Falae Variable

piO Bntry

~gical Er.prestlion

~giC81 Expression

[!tRIENCE I

I~TAL (I) NLS

r:T(l) OR PT(2) or PT(3~

IGR P+l. OR LS Q(I)

~=;~==R========~

NOT

END INVENTORY FILE

[P~:M~R M1ALYST

NOT

x Gll 'I OR X LS (Z+l)

- 2:1 -

Formation of Actions

Actions are statements of the things to be done when all the

conditions of a row are satisfied. The scope of an sction may be

one of three kinds: impl ied assignment, procedural, or input-output.

The only action presented so far was assignment . The other two are

extensions of General Compiler sentences and will be mentioned here

only briefly. The compiler J1W.Dual should b.~ consul ted for 11 more

detailed preseutation.

1. Value Assignment. Value assignment is an implied function

between associated,primary and secondary bl""k eutries . lIy placing

a data name in a primary block and some number in a secondary block,

for example, I snd I si Fig. 2, the compiler automatically produces

coding to assign the numer to the data name. In the case of our

example, I is assigned to the subscript I. Other examples of value

(asaignment are given below. In these format~ the word variable

implies either a data nllme (·r a subscripted data name and the word

cODotant cithe\:' a literal or a D8!\!ed constallt.

Format ,Example

CODstant

Variable E
f'0nstant "COP-PER"

~ariable IMATBRIAL

lrariabIe

- 23 -

Format Example

Arithmetic Expression

Variable

True-False Variable

Truth-Value I or 0

Truth-Value I or 0

True-Fals~ Variabla

2. Procedural .ct:!~!;. Procellul"sl actions provide the mean8 for

interrupting the DOl"1114l l!>xecutlon soquence of a table. Any of the

foll_int; cOlllpUer verbs 1D41' be U8,\j for thit: purpose.

GO TO
PElU"CRM
srop

The GO verb stipulates an unconditicr:sl transfer to a spec1f1«1 part of the

table or progrllDl. l<1:s destination may be a sentence name, table lIame, or

the row number of a particular table The iormat of the GO entry 1s as

follows:

Format

I
~GO~ro~----------r

I
l

Table Naruc I

I: :=f=T=a=bl=.===~i·
.. 24 -

Example

§O========I
1~~o~\IT:!-____ .-I.

IGO '1'0======1 ~23

GO 1:0

!~.ow 7=T=AB=LE=B=!T=A==~

(

The other form of a pr~cedural control is the PERFORM verb. The

PERFORM specifies a transfer to some dcstination, the axecution of a

table or a set of sentences at that destination , and a return to the

action block following the PERFORM. The sentences or tables acted

upon are by definition u "closed procedure" - 1. e., they have II single

entrance point and a defined exit point. Conventions for writing closed

procedures are given in the nat section. Legitimate forma of I~he

PERFORM action are

Fonnat ExSlllple

~~:;~~Y __________ 1~
PIlRPORM rRFORM

ERROR TABLE

T.he STOP verb l:I3y :llsu btl It:Jed ao an nction. It may be placed in

either a primary or secondary block. When it is used, no other actton

may appear with it in the sSIIIe action colUQQ. The STOP terminates pro-

cessing temporaril1 or ~e~snently according to what action is taken

at the co~puter'B con901e.

3. Input-~~tput Actions. Input and cutput actions are compiler

verbs that control th~ flow of dats to and from the computer. Tbey read,

write, and validate tipS labels of d~ta fites assigned to peripheral

input-output devices. lfhen dElta files are referred to from an action

block, they must be dp.fined according to the environment end data division

specifications listed in the General Compiler manual. The formats ~f

input-output actions ,ire illustrated by the following:

- :!5 -

Format

PPEN INPUT or OUTPUT

IrUe Name

File Name

~, CLOSB, or OPEN verbs

The Skip and Repeat Operators

Example

or INPUT
TJ!RIIFILE

~ER"'FILE

~UTE

;ACTION

IT! ------'

The 8kip operator makes it possible to show that a condition or

action 1s nat to take part in the evalution ~f a row. This is done by

placing a bypben ~) in the concerned condition or action block. The

compiler then will skip this block and proceed to the next.

The repeat operator is " BhoTthstld mettod to indicate that Ii condition

or action in the block above i9 repeated. This ia shown by entering a ditto

mark (") in the block below the one that 18 to be repeated. This notation

va. u.ed vith the GO TO action in the sample table of Fig. 2 •

.• 26 -

(

Up until. nC'J, c.nly cOl~pc:nento of. t(,blea "eTf: presented. It "46 le"orned

in Section II that General Compiler sent.ences could be used to support the

conditions and actions of tables. and till' preceeding section mentioned

tables as closed procedures. Iuis sect on relates these topics to tables

and tables to compiler programs.

Block Conventions for Writing Expressions

1. Words, abbreviations, and symbols of the compiler's vocabulary

should not be used as names. Ihey may be combined with other characters to

form n8.lW.s.

2. l'be <lords in an expression should be separated by at least one

space. More than One space is permitted. The space aeparator is optional if

the words are hound by

+ ,', / () "
3. Subs"l"ipts should be enclosed in parentheses . They may be written

adjacent to (llithout a spac.! separator.) or apart (with space separators)

from thei" asoociated data names. Inclivi.dual subscripts in a list of subscripts

should be sepllrated by C01ll!l"'S.

4. When two arithmetic expressions appear oide by side as in s series,

they 9hould bt, ~eparated oy caxmas.

5. All columns of a table should be bouni by the vertical table line,

(12-4-8 punch).

6. The okip and repeat: symbols, '" and ", ahould be the only entry ,

other than spt,ces. in a block.

- 7.7 -

Conventions for Placius a T,!bi e in a Pr ograol

1. Tables are wl'ittcn ClU the General COlllpiter Senteuce POrlll.

2. A table is preceeded by the ~orrl T~BLE. Naming tables is

optional. When a tuble is given 8 nuae, tt,e n_ l118y precaed

or follow the word TABLE. The word

TABLE,

name TAl3LU, or

TAIILE namn

should ba followed by s period.

3. The table's size is given next and should be placed on the

same line as the t able's name. T.he size may be written in one

of two ways:

kkk CONDITIONS m= ACTWNS nnn ROWS.

or

(kkk, IISEIIl . nnn).

Both fonna are te:<"IIIinsted b)' a period. The orc.ar of writing

tba nUQIber of coml1t1ona, ac t ionu , and rows is optiond in tbe

first case since .~"b can be identified. Howevtlr, order is

important in the Ileeond forlD sine:8 the compiler interprets the

first number encl.)scd iu psrenchclI.IS a8 the numl·er of conditions,

the second LIB 4ct:~OU3, and the thi::d 8S rows. Co,nditiona, action8 ,

lind rows sre numb",~"d sC'l,llsntf.alJ.y beginning witb 1. !ow ~ .h !!!!

!!!.l!:. secon<lary .!!~ ; t he p r bl!8ry row is ~ countei in tbe row

count.

4. General COUlpiter tlen CCllees s houl.d no t be placed bet"een the

'word TAaLB and the primary r ()w of the t3bles .

5. The double vertiCAl lines that 90I'ur atee conditions trom actions

may be represented I>y one o r two 12-4- 5 punches.

- 28 -

(

6. The size of each block may vsry from column to column and

row to rOil.

1. The only lilllit on the size of a table is row width. Since the

8.

compiler prints ~ listing of compilation, the recom!llended row

width is 120 chas'scters iDcluding card sequence number. Maximum

row w1.dth 18 1200 chE,racters.

Since the table form is an image of an 80-column punched card, a hyphen

(~ is placed in column 1 of the form to show that a row i8 contained

On IIIOro than one card. In this Cllse, no table colUIID may be split

across cards. &:ch card is ~.o contain a sequence nUlllber to inaure

prQper caTd ordlll·. Wb·"n ro",s 8lf.<:eed oue card, the sequenca numbar

of the first card is only printed. Sequence numbers of succeeding

csrda are stripped out. The row i3 then printed as a multiple

of 120 characterE with aD int~gr8l number of table coluaaa

per 120 characters.

Expressions too long or complex to be written in blocks may be

·written after the, table' a D8IIIe and size and be executed frDIII the

t3ble by means of the P~RM verb. In addition to expft8sion8,

auy General COlllp1.le,r sentence may be uaed and execlItcd in this

mBllDer. To indic:ste the start of the table the word BEGIN is to

follow the list of expre~sions Gnn sentences. This format may be

illustrated by the follCY.oing:

TABLE DalU8. kkk CONDITIONS _ ACTIONS nnn ROWS.

General Compiier Sentences and Expressions - Kay be
ex:'clItc.d only frOlll tile c.;;nUnea of the table.

BEGIN

DECISION TABLE

- 29 ~

Closed Procedures

Fig. 4 outUnes the fOrlllllt of a closed procedure. By definition a closed

procedure may be acted on "nly by the PERFORM verb. It contains one entrance

point lind one exit point. In fig. 4 these are indicated by the worda BEGIN

and END TA!LB n_. BEGIN and END also act as sentence names and l118y be

referred to from within th(, proc~du:r<!! body.

Bxpr~s31ons too ladg t~ be plg~ed in the blocks of a table •• y be

written in the procedure bea~ and executed from the procedure body by means

of the PERFORM verb. AC4 such, they IllUst be given names. In addition to

expreesiolls any General COlItpUer oentence 1Il8Y be written in the head and

executed accordingly.

The procedure body contains the table. As shown in Fig. 4 compiler

aentences may preceed and follow the table. Execution ia 8equ~tial

atarting with the sentence or table .after t 'be word BEGIN and pr<>ce.ds until

the exit END TABLE is reacbed. It is at this point that control 1a

reverted to the PERFORM ver.b whf,c;h originally referenced the procedure.

Any IIl':iconditiollQl transfer from "!thin the pl'ocedure to the outside 18

IJftdeUned. However, PERFOR'lf verbs in the body y reference other cloaed

procedures.

Closed procedure" should be written apart from the main progrBIII.

- .lO -

(

procedure
body

DECISION TABLE AS A CLOSED PROCEDURE

TABLE DAIIIe. kkk COHDITIOllS _ ACTIONS nnn ROWS.

IIIIIGIN.

Ceqeral CompUer f:entenc:es and llxlH:essiona - May be
executed from the cenfines of the <lechion table.

(Start of execution - entrance to procedure body)

General Compiler Sentences and Expressions

o.Cblonl Table

'}eneral Compiler Sentences alld Expro!l8s1one

IIHD TABLE n_. (Exit of procedure body)

Fig. 4

- 31 -

,

10

p

o

o

o

(

CODASYL SYSTEMS COMMITTEE

TRANSFORMATION LOGIC

December, 1960
Burton Grad
IBM

(

TRANSFORMATION LOGIC

The following report proposes a structure for detailed analysis
and formulation of the Transformation Logic used in applying Tabular
Form to a precise systems language. It suggests major study topics
and then divides the Table construction area into a series of specific
subjects. Each of these subjects then has possible solutions described,
certain problems stated and indicates the related portions of previous
reports. It is our hope that this framework will provide a basis for
intensive future work and for relating our work with that of the Languag"
Structures Committee.

We feel that there are three major study topics for work in
Tabular techniques:

I Table Construction and Data Description
II Applications

III Language Implementation

At the present we are not particularly concerned with Language
Implementation (Ill), but have been concentrating on Table Construction (I)
so that appropriate Applications Studies (II) may be carried out.

In subdividing the Table Construction part of the first topic we
believe there are three key subjects:

A. Inside - Box Considerations
B. Within - Column Logic
C. General TabJ.e Considerations

We will discuss each of these subjects in turn indicating specific
areas of work, appropriate solutions, etc.

Subject (A) Inside - Box Considerations:

(1) Ope rato rs:

We have identified certain general element operators:

(a) quantitative (+, -, *, /, power, absolute, sine, square
root, etc.). These operators may require 1, 2 or more
quantitative factors as input and result in a quantitative
value.

-2-

(b) true-false (Andalso (1\), Andor (V). Or (V), Not (...)).
These operators may require 1 or 2 true-false factors
as input and result in a true -false value.

IC) string (Concatenate, Insert, Replace, Substring, etc.).
These operators may requir~ 1, 2 or more string factors
as input and result in a string value.

(d) mixed (Transform, Convert, Count, etc.)
These operators typically require either 1 string factor
or else 1 quantitative factor as input and then result
in one quantitative factor or else one string factor ...
the opposite of what was available to start.

(e) multiple (not yet explored)
These operators would use single or multiple input
factors to establish multiple result values.

There are also a number of Relational Element Operators:

(f) special (Exist, Defined, Non-existent, Undefined).
These operators establish whether a particular element
has an established value or whether the value assigned
has defined meaning in terms of the Data Element
Description. The input is typically a single factor
and the result is a true-false value.

(g) quantitative relational (Less than, Greater than, Equal ,
and their negatives). These operators require 2
quantitative factors as input and result in a true-false
value.

(i) string relational (Identical, Not Identical, Lower, Higher).
These operators require 2 string factors as input and
result in a true-false value.

There are Set manipulative operators:

(j) general (arrange, extract, join. etc.).
These operators require I, 2 or more sets as input and
result in a new set .

(k) complex (explode, update, post, etc.).
These operators change values of elements as well as
change set membership. lor more sets and/or elements
are required as input as either a set or an element may
result.

(

-3-

(1) Set relational (Equivalent, Identical, Subset and their
negatives). These operators require 2 sets as inputs
and result in a true-false value. Specifically they will
examine these two sets for identical values, identical
order, eleme~t name similarity, etc. It may be ,
necessary to differentiate the operators for unordered sets
from those for ordered sets . This point requires further study.

There are other operators which may be of pa'rticular
significance:

(m) Change value or set membership (Assign, Copy,
Communicate, Receive, Transmit, etc).
These provide for the specific association of a parti
cular value with an element name. It may be possible
to change the value or else it may be regarded as a
"permanent" value assignment.

(n) Definition (Define)
This operator provides for a substitution of some other
factor for an element or set name whenever it is
referred to.

(0) Sequence control (Goto. Interrupt. Stop. Perform. Come
from, Prior rule. Start. etc).
These are inherently "procedural'" operators which do
not themselves change data element values. set member
ships or establish conditional logic; however. their
importance lies in their ability to break up a highly
complex description into an understandable group of ,
simpler descriptions. They provide a convenient way to
subdivide system logic and a shorthand for indicating
conditional repetition or order of action execution.

The operators in each category will be suitably extended and
arrangements will be made so that new or specialized operators may be
defined in terms of the basic operators predefined by the Language
Specification. It is expected that each operator definition in the language
specification will explicitly denote the representation of the operator
(words. symbols, abbreviations). the type and number of input factors
required and/or permitted. The type of result will be indicated and also
any parameterization allowed. In other words each operator will have a
full definition sheet with suitable examples of its use.

(2) Factors:

We have identified four value classes which factorr value C<lU <100 ' '''H ••

-4-

(a) quantitative -- arithmetically manipulatable values
regardless of number base, radix point or graphics.
(See B. Grad, July 11, Section C, pg: 7).

(b) true-false -- boolean values.
(See B. Grad. July 11, Section C, pg. 7 and 8).

(c) string -- any ordered symbols other than true-fals e
or quantitative. If a quantitative symbol (e. g. 1, 7)
is used in a string it has a different mea ning from that
same symbol used in a quantity. (See B. Grad , July 11,
Section C, pg. 8).

(d) set -- a collection of values each of which may b e of
any of the three types. A set does not of its elf ha ve a
value in the sense that it cannot be dire c tly m a nipula t ed
by quantitative, true-false or string operators. The value s
of the set elements may be associated with element names
but do not have to be. There is a reference order for
a set though this has nothing to do with actual phys ical
sequence.

There are three basic ways of referring to a particula r va lue: by a
Literal, Name or Expression. The meaning a nd use of these terms i s
described in B. Grad, July 11, sect. C, pages 8 and 9 . The definit ions
given may be extended to incorporate Set Literals, Set Names a nd a lso
Set Expressions . Literals must be easily differentiated from Names o r
Expressions. This needs further exploration.

Rules for the formation of Expressions using various operato r s
should be stated under the appropriate value type category. In a ddit ion
each of the value type definitions and ru~es for using Literals and forming
Names should be more clearly spelled out. Furthermore the Set-Element
Description should provide a convenient means for establishing value
type and also specific value to be associated with a particular Name. The
development of this Description Sheet should supply effective definitions
for many of the terms used under Factors.

There are other types of Factors which need to be considered. For
instance we may find it convenient to name or otherwise identify tables,
rows. columns, particular conditions or particular actions. The ability
to name subroutines or functions, equipments, or various associa ted
physical objects (e. g. machine tools, personnel, locations) may have a
strong impact on the communicability of any s'ystems language. The
comments in ALGOL-60 in reference to 'Labels and the COBOL, Com
mercial Translator, FACT and Flowmatic discussions of names m a y
prove of value to us. Certainly we must explore set names, name qua li
fication of elements and even the possibility of using jargon n a mes.

(

-5-

For example i. it possible that we can communicate at the jargon
level with data processing machines -- can a machine' (intuitively)
understand the difference between a "report" and a"graph"?

(3) Conditions:

Certain Boxes will only be a ,ble to accept Conditions as their content.
These will be called Condition Boxes. A Condition is defined as a proper
ly constructed group of operators and factors which can be determined
to be either satisfied or unsatisfied. 1. e., whose condition value can be
determined. The comments in COBOL. April 1960 page V-Z (except for
the last paragraph) are appropriate. Evaluating a Condition does not
change the value of any factor involved in such an evaluation.

A Condition Box consists of three things: Condition Operators.
Factors, and Condition syntax or structure.

There are only certain Condition Operators. We identify parti
cularly the various relational operators. (f, g. h. i, 1).

lOne Factor is worthy of special mention; this is the Condition Name ,
which ' repr~sents a Conditional Expression. This Name is used as though
the Expression were substituted for the Name. The Name representation
itself cannot be described in a Condition Box; it must be done with a Define
Operator either in a Define BoX;, or in the Data Description.

The internal structure of a Condition Box permits a ji(reat d",al of
experbnentation. It may, however, be desirable initially to limit the
variations in the interest of simplicity and clarity. It will certainly be
possible later on to add further sophistications to the Condition Box
Structure. The following comments and examples are intended to pro
vide only a fundamental structure.

An evaluated Condition will be either satisfied or unsatisfied. If
a particular Condition Box statement is met or is "Not Pertinent," 'to a

I
Decision Rule then the Condition Box is said to be satisfied. If the state-
ment is not met or it undefined values are related to defined values th,en
the Condition Box is said to be unsatisfied.

A Condition Box statement must always be totally satisfied or else
it is unsatisfied. A simple Condition is one which consists of a single
Condition Operator and the appropriate number of factors. Simple Con
ditions can only be compounded within a Box by the proper use of connect
ives between legitimate simple Conditions. Implied repetition of any
factor or operator 'is not permitted within a Box. True-false factors do
not receive special treatment within a Condition Box.

-6-

The entire issue of Connectives is quite up in the air. They are
not the same as true-false operators. nor do they exhibit .the same pro
perties. However the English language equivalents for the true-false
operators happen to be essentially the same as the primary Connectives
which we would like to use. One s·olution would be to restrict the true-false
operators to symbolic representation (e. g. II. V. etc.) and reserve the English
words for Connectives; an alternative would be to use special punctuation
symbols like comma. semi-colon. etc. to represent the Connectives and
keep the English words for true-false operators. This will obviously require
further work before any firm proposal can be made.

The various artifices suggested in B. Grad. July 11. Section C.
page 10 should be ignored in terms of Inside-Box Condition construction.
These problems will be discussed under General Table Considerations.
Reference is made in this context to D. Nelson. August 17.

Examples of valid Simple Conditions are:

... ,.. ~ y

t. ;' · 2 :"

PAY. CODE = 6

MARRIED (e. g. MARITAL. STATUS • 3)

X~{At 4)

3)2

(A andor X) " Y

((A/X) t 3) • PAY. CODE

DATE ::: 123160

II -.
NAME not • GEORGE

(MONTH concatenate · DAY) higher than 0228

\1 1/ WHITE is subset of SNOW

FILE. A is equivalent to FILE. C

(

-7-

(4) Actions:

Action Boxes serve to change values. There are apparently two
major types of special Action Operators: Assign and Communicate. Assign
is described in B. Grad, July 11, 'Section C, page 11. It is executable and
provides that a Nam., will retain the assigned value until it is changed by
a new Assign . The sequence of AssIgn Boxes may be pertinent to the use
of the values. Assign also permits Actions of the form:

Assig'n J as J t 1, where a Name is given a value as a function of
a previously assigned value for that same Name. Assign provides for
quantitative, true-false or string value manIpulation as well as the establish
ment of appropriate set values.

The question is raised as to whether there should be a special
Assign operator for modifying factors inside a B ox. There are many pros
and cons to this issue which should be explored in depth before making
even a tentative decision.

The second type of special Action Operator is Communicate. One
solution to this is described by Mal Smit h, July 1960 where he suggests
the use of Receive and Transmit as the particular Operators in this class.

Action Nam.,s would be used to represent functions or tables. It
is probably desirable that we pe!'mit parameterization of Action Name,;.
This could also be interpreted so as to permit a function which generates
multiple values ra.ther than just one value. However, opening this loophole
would automatically indicate resolution of the question as to whether a
single Action Box can be used tl' establish the value of more than one factor
Name .

The construction of Actions seems quite straightforward. The rules
for using Action Operators are such that we consider that a value will be
established for a Name by evaluating an expression, named function or
other factor. Basic questions have to do with whether to allow multiple
value assignment within an Action Box. This also leads to consideration of
what connectives to use to indicate independent versus non-independent
value assignments. For instance, we might specify that a series of Actions
separated by a semi-colon must be executed in the order specified while
those separated by periods may be in any sequence. This entire issue of
independence and dependence will be discussed in ·the Between-Box portion
of this paper. However, under the category of Action Boxes we need to resolve
the question of permitting compound Actions.

-8-

Examples of valid Simple Actions are:

assign PAY. CODE as 336611

assign WEEK. PAY as HOURS * RATE

assign MARRIED as MARITAL. STATUS identicall

all8ign LINE. A as SET. B

receive PAY. DATA from TIME. CARD

transmit CHECK. INFO to PAY. CHECK

(5) Definitions:

Definition Boxes serve to associate a Name with a value generating
factor. The basic Operator is ,DEFINE which is not executable per se. Rathe r
it impute a a substitution. Whenever a Defined Name is used in an Action
it will h.l.ve the Definition substituted for it. This can also be viewed .trom
the standpoint that a Defined Name will be evaluated in terms of the under
lying or "root" values each time it is used. Suwose we have the following
Boxe s:

define K as P t [7J
assign R as K * R

The Define Statement would indicate that K is not to be evaluated except
when it is used; and when it is evaluated it is in terms of the then current
value of P. In a Define statement the same NaIlle cannot appear in both the
"subject" and "predicate". A definition is persistent throughout a system .
description, but the value is not. In contrast, an Assignment results in a
partic\"lar value for a Name which ca n only be modified by another Assign
ment. Definitions can be nested so that P might in turn be defined in terms
of Q, and so on. The point at which a definition appears is of no importance. ,
It is always treated as though it occurred at the very beginning. Defini tions
should occur only in Unconditional Tables since otherwise there would be
the pos sibility of their being overlooked in a particular solution path. The
problem of compo.md define statements does not seem to arise except in
conjunction with multiple synonyms.

(

-9-

(6) Sequence Control:

The final area of Inside - Box discussion is concerned with express
ing sequence co';'trol. 'This may be concerned with column selection. Table
selection. etc. Reference is made to M. K. Hawes letter August 16. 1960
in which she speaks of Goto, Perform. Halt and Stop. In this class should
also be considered Prior Rule. A Sequence Control statement does not
change any values. but it is of critical significance to the effective description
of the logic of a system.

To support Sequence Control it is necessary to be able to naJ;ne
certain control points in the transformation logic description. In Tabular
form this cequires identifying a Table Name (numeric. mnemonic or descrip
tive) or even a particular entry point in a Table; it also may require explicit
designation of individual Boxes (probably through a column- r"w numeric
code) .

The simplest Sequence Control Operator is Goto. which states
unequivocally that logic control should next proceed to the designated named
location. It can be used as a short-hand way "f indicating the repetition of
certain CondItions. This same effect can be produced by the use of a Prior
Rule designation. Implicitly, this subsumes (or repeats) all previous conditions
preceding that particular branch. This is a highly important convenience
because without it we would have to go to very large. highly qualified Tables;
with this sequence control ability we can break a complex logic into a
series of smaller problems. It is of course essential to the systems planner
that he keep c,!-reful track of all logical conditions indicated by the chain of
Goto's or Prior Rules. This in itself can be a complex problem and may also
require the use of Tab>llar form to maintain logical understanding and control.

Two ot~er Sequence Contr,?l Operators are quite simple; these are
Halt and Stop. In the first caSe we provide for a planned interruption for
manual intervention--maybe to add a new factor or make a non-formalized
decision. This would provide for operational control as in a Man-Machine
Simulation of a system. Stop concludes the process and indicates that the
transformation logic has been fully defined.

The fO:lrth Sequence Control Operator is Perform. It is used to
represent the idea of "Goto and 'Return". There is a serious question as to
tpe need for this device in a systems planner's Tra'1sforlDation Logic.
Basically it is a device for cascading levels of Tables. In other words. in
a Box we can indicate by a Periorm statement that a whole set of Conditions
and Actions are to be carried out. This then is a convenience device designed

-10-

to avoid complex elaboration of a particular path within a certain Table or
else a means for "repeating" a standard subroutine in 'many Tables.
These are the two major concepts -- (1) an in - line part of the Transfor
mation Logic which could have, been connected by a Go~o the indicated
sub-,!-rea and then a Goto ::'ack to the main - line and (2) a sub-routine
(parameterized or not) which could only be handled by the main - line Table
having preset a return instruction, before using the Goto. There is, how
ever, an alternative made available by the combined use of the Define
and Assign Operators. The Subroutine can be Named and appropriately
Defined. Then through a n1Ultiple Assign (with or without parameteriza
tion) the subroutine can be executed with provision built - in for a utomatic
continuation of the main-line table . With this alternative there is a
reasonable likelihood that the Perform Operator will not be needed at all.

(7) Summa ry

Inside-Box Criteria require an understanding of the various types
of boxes which the following have been identified: Condition, Action,
Definition and Sequence Control. Each of these' boxes may contain a suit
able, statement consisting of appropriate Operators and Factors as re
quired for that type of box. Operators are a meanS of transforming F a ctors :
Sets and Elements . A Factor may consist of Literal, Name or Expression.
Careful consideration will have to be given to each of tp,ese identified
topics and adequate definitions of each specific item will be needed.

Subject (B) Within-Column Considerations:

Certainly one of the most potent reasons for using a tabular form
for recording transformation logic is the ability to relate one box to
another visually; it permits almost automatic implication of certain
"noise" words that are required in normal sentence construction. Fur
ther, the basic value of the table form comes from the ability to readily
associate conditions with actions and to compare alternative sets of
conditions or alternative courses of action. So while there are some
advances in the Inside-Box concepts mentioned under Section A, we begin
to see the basic advantages of table form as we examine Within-Column
possibilities.

Essentially, the table form permits ready visual aggregation of
conditions or actions and visual relationship between groups of conditions
and groups of actions. In every example seen to date the evaluation of a
group of conditions (in a single row or column) directly indicates whether
or not to carry out a group of actions (in that 'same row or column) .

(

-11-

For convenience, we will talk about a decision rule being expressed in
a column rather than a row, though of course the two fo)."ms are equiva
lent. To organize the further discussion on this topic we will sub-divide
the subject all follows: (1) Among Condition Box~s; (2) Among Action
Boxes; (3) Between Conditions and Actions; (4) Among Conditions, Actions,
Definitions and Sequence Contrtll.

(1) Among Condition Boxes ,

Each Condition Box can be individually evaluated and each will
be satisfied or not satisfied as a result of this evaluation. We can
therefore relate each box to the 'whole and indicate whether the whole
group of conditions is satisfied. I'll the simplest case we speak of inde
pendent, requfred Condition Boxes. Independent means that no condi
tion is a function of another, more simply, evaluating one condition
has no effect on any other condition. Required refers to the fact that
satisfaction of all Conditions is necessary; this can be thought of as
"i! Cl and also C

2
ani also C ", where all three Conditions must be

satisfied to satisfy the whole?

We can make this more complex by permitting other logical
connectives between Conditions like "Andor", or "Or". We could also
develop "best 2 out of 3" or "at least 3 satisfied II rules. In the simplest
case (i£. • . and also . ..) the conditions can be examined in any order
without influencing whether the group of conditions will be satisfied. In
more complex cases this is no longer true and the exact sequence of
testing could a££ect the decision. Although it is logically and technically
possible to handle these more complex cases it is recommended that
initial consideration be given solely to independent, required Conditions
and that only' after this is clarified should we be concerned with more
advanced approaches. There is a sound reason for this recommendation:
The basic power of table form reate on visual relationships; Complex
patterns are not visually easy to follow or conceive and hence may
well destroy the original reaSon for going to tabular form. Because of
the common need to handle "exclusi';'e or" it should be noted that its
incorporation in the Inside-Box concept woul.d provide for the necessary
flexibility; e.g .• (Inside a Condition Box) MARITAL STATUS is MARRIED
or MARITAL STATUS is HEAD. OF. F AMIL Y. It may even be desirable
to offer a short-hand notation for this one special case if it occurs
frequently enough; e.g., MARITAL. STATUS is MARRIED or is HEAD OR
FAMILY.

-12.-

(2.) Am9ng Action Boxes

Implicit in handling a group of actions is the cennective "and
then". There must often be a stated sequence of action performance since
it is likely that a particular action may affect the value of a factor which
is used in a subsequent action. The simplest case is achieved when
written sequence (top to bottom) is maintained. Given any series
of actions it is clear that they can be written in proper sequence from
top to bottom. Questions about explicit sequence indication arise
because of attempts at redundancy elimination or for row association.
These will be discussed under General Table Considerations.

The problems which arise among actions are concerned not with
indication of implicit sequence, but rather with those actions which need
not be done in order, but are automatically sequenced in a column
approach. This same objection is valid for flow charts, narrative
languages and machine-oriented languages. The question can be stated:
how can we use sequential language and still indicate that two Or more
items need not follow each other. No so'ution is suggested here though
certain possibilities are explored briefly. We could have a rule that
between action boxes there was no sequential relation except as indicated
by common use of a certain factor, in which case written sequence would
hold. We would have to explore whether action to action (necessary) sequence
can always be logically determined; 1. e., the need for sequence, no what
the proper sequence is. We should also investigate the usefulness of
explicit sequence indication. Another approach is to provide a precedence
matrix or precedence chart as shown by Barankin's work on Precedence
Matr';ces and Salveson's p ."'per on Assembly Line Balancing. A third
approach might be to use some special line weight or symbol to indicate
that the preceding actions must be performed prior to carrying out the
following action(s),

It is recommended at this time that we only deal with tables with
the following property: all actions in a column are to be performed if
any actions in that column are to be performed.

One other interesting idea is the possibility of compacting actions
by allowing within an action box a complete loop statement like assign
X as X .f. I for I from 1 to 10 by 1. This would allow a summarization to be
explicitly indicated within a single box and would avoid certain types of
Goto and condition testing.

(

-13-

(3) Between Conditions and Actions

In virtually all illustrative tables the connection between condi
tions and actions has been simply, "if .. . then ••. ". If the stated condi
tions are satisfied, then execute then actions specified. This may well
be the standard and most significant need for tables, but at least one
other logical possibility should be explored: "if ... then do not do ... ".
This would provide for editing and error correction since as long as
various conditions are satisfied, no special action need be taken.

One recommendation is that present studies concentrate on tables
where satisfying the various conditions in column will always result
in that column's actions being carried out. We should also try to work
with "cause and effect" relationships or with functional relationships.
Reliance upon incidental or happenstance relations is highly 'suspect
in that it may make table acceptance and maintenance unnecessarily
difficult.

As far as deciding whether to execute a group of actions, the
Among-Conditions control determines if the Condition-column is
satisfied. The knowledge of whether a Condition-column is sati'sfied
determines whether the corresponding action-column is to be executed.

An interesting development of Condi~ion·Action relations can
be observed through the following formula .

let N = Total number of conditions in a particular column

and 5 - number of satisfied condition9 in that column after
evaluation.

then there seems to be 5 possible situations

(1) if 5 = N then ...

(2) if 5 ~ I then ...

(3) if N - 5 ~ I then ...

(4) if N _ r, = r then

(5) if p ~ (N - S)~ r then ... for Pi:: r

-14-

These can be reformulated as follows:

General Case :

if P ~ (N - S) ~ r Lor p ~ r>, 0

(1) p = r • 0

(zj p - 0 ; r = N - 1

O::S N - S~ N - 1

(3) p = 1 r - N

(4) p = r> 1

(5.) p::f.r ; O~p~N

p~N - S~r

What this reformulation means is that for each table (or even for each
column in a table) we could specify a "p" and an "r" and this would
fully describe the logic for carrying out the actions in that column.

(4) Among Conditions, Actions, Definitions and Sequence Control.

The first point we might recognize is the usefulness of an "un
conditional" column. This says that the actions, definitions, etc . in that
column are to be carried out always. This can be done in a one column
Table (the "degenera.te" form) or by its use as the "last" column in
a table (an "all others" column) or in a table with multiple sets of
actions permitted it could be any column (a "must" column).

(

-15-

In general Goto should occur after all other actions have been
specified. hence it may be desirable to require Goto operations in the
last row of a Table. Prior Rule operations should occur as the first row
in a Table. The question of sequence control will be discussed more
fully under Subject (C) General Th ble Considerations . We only want to
note that a column will need to be able to distinguish at least these
basic relationships: must corne directly from; must corne from one of
these; must previously have been considered (and of course the go to
complements).

Burton Grad
December 29. 1960

p

ID

WORK PROBLEMS

Extended Entry Tables

TABLE HEADER

CONDITION STUB CONDITION ENTRY

ACTION STUB ACTION ENTRY

ENTRY HEADER

TABLE HEADER - The name of the table appears her e.

CONDITION STUB - A data name and a relational operator may appear
in this sec tion of the table.

data-name "> data-name <

data-name > data-name <

data-name i"

The absence of a special symbol implies equality (=).

CONDITION ENTRY - A data name, literal (enclosed in quotes, " __ ")
or an arithmetic expression may appear in the conditional entry.
Each of these entries is horizontally associated with the condition
stub. Thus, a complete relational expression evolves, e . g. ,
QUANTITY ON ORDER ~ QUANTITY ON HAND.

The last column may be used to cover all other cases if all
alternatives are not covered by the other conditional ex
pressions. The column is marked "A/Oil.

ACTION STUB - A name or an operator is an acceptable entry in this
section. The following operators are permitted in the action
stub.

OPEN
CLOSE
DO

READ
WRITE

(

- 2 -

As will be seen below, the operands are placed in the action
entry.

When the replace operation (SET;) is desired, only the data
name need be entered in the stub.

ACTION ENTRY - Names, literals and arithmetic expressions may
appear in the action entry. As with the conditional entries,
horizontal association is assumed. A single operator is
permitted: the + symbol before a data name or literal will
be interpreted as the increment operator . The value repre
sented by the entry will be added to the value represented by
the name in the stub.

ENTRY HEADER - The entry header spans the action stub and the
action entry. The last row of the former must contain a GO TO
operator; the last row of each column of the latter must contain
a table name or number indicating the next table to be considered.

EXAMPLE:

TABLE:

LOCAL TIME (ES'U ;:"'2:00 ;:"'1:00 ;:"'3:00 :0,. 1: 00

~12: 59 ~2:00 ==12:59 ~4:00

DESTINA TION TIME ZONE CST CST MST PST

Local Local Local Local
DESTINATION TIME Time Time Time Time

-1: 00 .11:00 - 2:00 +9:00

DESTINATION MERIDIAN Original priginal
-

change change
GO TO End meridian End meridian

l

Problem 3

Prepare appropriate extended entry deci s;on table(s) according
to the following rules :

Given:

A. Field Names

Obtain:

Employee name
Department number
Hourly rate
Hours worked
Deduction code (A, B, C, D)
Sex (MALE, FEMALE)

A. Select all males who satisfy the following conditions.

1. They must work in D epartment 47.
2. Weekly hours not over 40.
3. Must have a deduction . c ode "B" or code "D".

B. Select all females that satisfy the following cpnditions :

1. They must work in department 48, 49 or 50.
2. Weekly hours not over 40.
3. Must have a deduction under code "C" or hourly rate

must be mOre than $2.50.

C. If section A is satisfied - do routine 1.
If section B is satisfied - do routine 2.
If neither A nor B are satisfied - do routine 3.

Problem 3 Solution

,
Sex Male Male Female Female Female Female Female Female All/

others

Depart -
ment 47 47 48 48 49 49 50 50

Weekly
Hours ~ 40 ~ 40 £ 40 = 40 ~40 ~AO ~40 ~40 -
Deductio~

"B " M .. ,
Code D C - C - C -

Hourly > 2.50 Rate - - -- -- > 2.50 - > 2.50

Go to Rou- Routine Routine Routine Routine Routine Routine Rout ine Routine
tine 1 1 2 2 2 , 2 2 2 3

Problem 3 solution

Table 1

Weekly
Hours 640 =40

" " " " Sex Male Female

Go To Table Z. Table 4

(

Table Z.

Depart-
ment 47 47

Deduction
Code • B" • D

Go To Routine Routine
1 1

all/
other

Ii
R'outine

3

a:1i/
others

Routine
3

Table 4

Deduction
Code all/ t "c " others

Hourly
rate ~2. 50

Go To Routine3 Table 5

T

Table 5

Departmen 48 49 50 all/
other

Go To Routine Routine Routine Routine
Z. Z. Z. 3

,
-+-_1--1, I- -+ - -f-- -+- -

-_ .. -I- -

1-

--I--
-f-

-- - 1--1- --~'--

-- -I--

-- 1--
-- --1- I--

--

I- - -

-

-~

I-- -

- -f-

-

I_----t --+_ J +--1---11-- 1 --r----+---l-L ,~ -I-- r-r-(~~
-1-- 1--1---- -

---I-Hi--l -I- --
- - f-- I- I- j_1_f-J •

-'-1H---l- - - - -, j-n-+-H---+--l-L~-L --- - --

I--f-

-- - -- .. - -I-

- - -I-- ---
--

/-1-

-- 1--

--

I-
1--.

f--

I-f

- -1---

-I

-l-

I--
I--

- -

- I--I-t--l---l--L I--
___ 1 --- .,-1-1---.1. - - -1-1-- _1----<'---' - I--

~

--

I-- -
-I- - ---

I---/--!-

-- -

. -l
I

1-

I-

I--
1-

I-- -

- -

I
-I-

t .
---1- _. - -I- . -- - T - --I- ---r--I--i

1
-I--

-- 1-- f-

- .

l

I-

I--

-

,

I-
- I-

l
I--

- I- l-

I--

_I- I- _+--L 1

I- -I-+-
I-- I- rH-I- -I--L I

_ 1_ I-- _ -t--I--L 1
- - . 1- - 1-1----

-I-
--

- I--r-'-l .1-- 1--- I-
H-I-- -I _ I-- - -+--1.-1

t-- -

1- -

- 1-
--1-----

_.1-
-- -I- --

t--f--I -

t-I--L-l -.--1---1-+++--1-1
--1-- - 1- -

I-I-I- .-
I-- -I-- _ -I- +i-t-H-l--W-I

-f- _ _ I-- I-- _I- ,- 1--' I-- - - "---"-- I-·+-.J--.
1- - I-- I-- ~ --+---1- I 1--1- f-

f;r---~-fl-:[J::t1-=-i=I-i=i=jl=j--j:J·~~--t=t=tl-;f---l:t-~=l-=-f~=f-:t=-~tj-~I-~-jl--~I-I-~l-I--~~+---f--~~l["~-
-I-

I-I-+-·L-I
1

I- - 1---1--

_'- _ f- ' _ , - - -+--lL-l--

I- __ , -1- - L _ I-H-Ic-l--I--L ,- I-l-· -

,

,- I,- I--L " - . _ _ _. I-- '-- 1- --I---' ,-- - - ---I-- :--1-
t- --lI-l-~ - I. rl l-H--i-H-+J=n

I-- -
-. -

I- - -- I- - - -
~. - - - ,~ - r- - - - -

r-r- -- I-i- - - --

I- - - -". .- - . - - - -- --r-

- --- - - 1- - - - - 1-- - - - I- - -- 0

- 0 ~ I- -1- - - -- - - - I--
- -- - - - - -- - - -- - - - ,--

-- I'~ - -. - .-I- --I- - 0 -

-

- - - -- - -- ~. 0 . - . . I- ~

--- -I- - i- - - - .-

- _. r- .-f- f- - -

- - -- ._. ., -- .- 1-'

. - ~ I-i- . - 1- .

- - r- I- -- ---1-- - f- --

- - - -- -I- - - r- - - -

- - r- - r- - - -- -

I- -- - - - i- -- - 1-
- - r f- 1-- -
- - - - - f-- I~ - - --r - r- -- -
-- --. - 1- .--r- -- -

(

-- .. ~ -
- - --- -- I- .- - --

- - 1--- - - - ._,. - -- .-1- - ---r-
- .- ~ - - - -- _. - .- - - 1- --

r-f- -.
- I-- - . - --

- _0 - o. - I- 0 --

i- - ,-

-- f- -- _. i-- I- - . - - f-- - -

,- I-

.. -- o •

- -.--- - f- . - - - -

- I· .-- t- o -- - -
-- - - ,.

r-

~ r- 0 o. '

I-
~.

_.

r-1--- -- - - , - -

Problem 4

Develop extended entry decision tables according to the following
information and rules.

A. Clas sification of capital gain; and los ses . -The phrase
"short-term" applies to gains and losses from the sale
or "xchange of capital assets held for 6 months or less;
the phrase " long-term" applies to capital assets held
for more than 6 months.

Treatment of capital gains and losses - Short-term
capital gains and losses will be merged to obtain the
net s hort-term capital gain or loss. Long-term capi
tal gains and losses (taken into account at 1 00 percent)
will be merged to obtain the net long-term capital
gain or. los s.

1. Given: Purchase date
Sales date
Net sales price
Net cost

2. Obtain: Total long-term result
Total short-term re sult
Type of long - term result (gain, loss)
Type of short- term result (gain, loss)
Net result.

Problem4 solution

Table 10 Tablle 12

Next Does not
Item Exists exist

-- --

--
Elapsed Sales
Time Date -

Read Next , .
It em

Purchase
Date Go to Table 10 Table 13

Result Net sales
price -
net cost

Table 13

Go to Table 11
Tdallong-

> term 0 L 0
result

--
Table 11

Type of
long- "Gain" II Loss"

term-resul

Elapsed > 6 months ~ 6 month

time Go to Toole 14 Tahle 14

I
Total --
long-ten, + result
,."q;,lt
Total

Table 14

I
Short- -- + result
term

. short-
~erm result > 0 L 0

_result

Net
result + result + result

fype of total " .. .' "
Go. ,,,,, Lo s >

short- term
!result

Go to Table 12 Table 12 Go to Income Income
Calculator Calculator

- --- r--- "
.. r-

f- .f- .- - - - - -- -- '- -
- - . -- .. - -- - - - - t- - - t-

- - - - ~ f- - -- -_. --
- - - - - - -

-- ---- -

- .. - -- - - - _.

- 1- - - - 1 , -

-- - f- - -- - - -

-- - - - -- -

- - -- --
-- -I- - - 1--_. - 1- - -I-

- - - - - - - --
,.-. - -- - .. .- .-_. - - .- f-- - -

- ,- - . - ,- - - - - - - f-

-
f-- - - . - - . - - - - .

f- c- . - -- - f-- - .. -

f- - f-
f- ,- - . _. - l- f- 1-- - 1-. - _.

,
_. --I- _. .- -- -

I
t- -

-- - -

f- -- -- - f- .

(- - -

1- - -

c- f- - I c-..

f- - - - . - f- .. -

- - - - - - ---- - - f- - - .---

.- - - - . - -- 1-, .- - 1- -

-- - - I- - - - -- - -

f- - - - . - - - f- - -

- t- . - f- - -- . - -I- --I- - --

- 1- - - - _. - I- - - - .1- 1-. - -f- .

- - .-1-- - - ,-- - -. f- -f- - .-
- - l-

e- - - I- .. - I- - - --- - -

c- .. - _. - - - - - I- -- t-I-
- - - ---- - -' I- - - - . .-

- - - f- - - f- -- - - - f--- . _. - I-
. - - I-

- - - - .- - - - - - - . - f- - -- f-

I- - - .. - - - I- - - -f- - f- - -
._- - - 1-- - 1- - -,,- - - - '- -

1- - - - - - - I- - .. - f- - r-- - -

," i-. -- '- l- e- - - - .

1--- - ,.- -- - 1- - - -. -

t- - '-- - - - 1- -
- - - -- - 1-- - - - 1- .--

r-- - - 1--- -I- -
- ,-r-- -" 1-" "- "-r-- - -" -"

--, 1-" -- - ;- " - -

"- -I- - - " - 1-- -r--- - o-

f-- - - - - -- -r-- - -- +- --- - -" - f-- -

r-- 1--- I- --r--1--- - - " r--" "'1- 0

- - - " "

- - - - --"-f- r--r-- -

r--' ---- - r-- ----- -- -- . - "- - - - -
+- . -"- --"- .

-. .. f- - - f-

r-- r-- - --1 " 1- - - - "C-- - -

i- . r--- - r-- f- -- .- - - - ".- - r-- -

"-- "-r-- - "- r-- i- - -
1-

r-- _. r-- - -" -f- o- r-- - - . - r-- - - . - 1- -

r--r- .- - I- -- "- - - f- f-- 1- - r-- " .-
1- - - - - - - " - -1-

'--- -- -- - l- i--
~ - "-r-- - - - - 1- -- - - r-- - 0" - - I- - r-- -

-" -- - - - " - -f-- - - i-
- - - -r-- - r-- - f--" - r-- -

0- - _. -- -- I- - - . "-r-- "-- I-

-" - - -- I- - -" ;- - 1-- - - r-- - - --

'-- - "- 1"- -"
~ - - - - --

o· - - - - -- - .-

- f- -" f-

- -- - . -

- - "- - - - - - - - r-- -
- - -. -

- .- f--

- --- . .. '1- . - 1- - - --- -- -- f--
- r-- i- -

- -
-" - - - - -
-

l. r I-i- - - ---
- 1-

-" "-

(

Problem 5

Prepare an extended entry decision table according to the following
information and rules.

A. If the net short-term capital gain exceeds the ne t long
term capital loss. 100 percent of such excess shall be
included in income. If the net long-term capital gain
exceeds the net short-term capital loss. 50 percent
of the amount of such excess is included in income.

If the sum of all the capital losses exceeds the sum of
all the capital gains (all such gains and losses to be
taken into account at 100 percent). then such capital
losses shall be allowed as a deduction only to the ex
tent of current year capital gains plus $1.000. The
excess of total losses over the allowable losses is
called "capital loss carryover". EJ(cept as noted above

50 percent of all long-term gains and 100 percent of all
short- term gains are to be included as income.
1. Given: Total long-term result

Total short-term result
Type of long- term result (gain. loss)
Type of short-term result (gain. loss)
Net result

2. Obtain: Income
Loss Carryover.

Problem 5 solution

Type of
long - term

"Gainll "Loss lI 11 Gain"
result - --

-- - - --- --
Type of
short-term "LOSSII "Gain" - ; , - 11 Gaintl
result

. c--- ------- .. -- ---._---_ .• I .-----,.. ...

Net result - - ~ 0 - -
Net

result > 0 > 0 > -10 00 L. -1000 -

-tf
0,: 5 'total

.5 Net Net Net long-term
Income result result result -1000 result) +

Total short
-term r~!l1!; :!'

Loss Net result
carryover -- -- -- + 1000

-
End End End End End

Go to routine routine routine routine routine

I- -
-l-

I--

---r-, , ~~'-~llTlI~r-~ ITr~

I 1_

1-- -1-- --+-
-- - 1-1-- -- -I-

- - - -r- - I- -
-

--

-- I-

1-1-1- l
I- --

'-l--t- 1..-1--1-4"", -
--- 1--

--

1--1- - - _ __ _
1-1-- ___ __ _

CC-Wf-+--HiT 1--1-
I- -

1--
I-

--

f--I-

-

1--1-- --

I--

I--

-I-

-- I-

- - - - -

--

-

-

I
- -I-

-f---- -

-

t-

- --

-

-

I- - - ---
- - I- --

1-

-

--

1-1_1 - 1- ---

--I--

I-
-

i- I---t

- I-

+1--

1

-

r--I--t-+ 1 __ 1_
- ----

-

1---1-

--

I-

1- -- -

-I-

I--
--1--

--1-----

I- --I- -

I-I-

1- -I- -

I-t--f- - -

-I-

-f--

L-I--Hr-
-

1-
-I-

-I---t-T- -I J-L-t---r _ _
-- - - f-

-- -

l
I-

1-

-- - f-I-! -

L-lH++, TIL ___ t- ~ __
t -[--

-I
1--- I-- --

--f-

I- --- - -

-I- --L-I_+-,
- -I-- - I- r-

Lj-f---t-i

- - 1-'1--1-- -
tj=~'-t=~~-~-~-I-=rFl~---t-1l11-r3

-- '-'--+ -- --- -- -1-1- -1-

~- ~ ~-,- ~ r- ++
-1--l---+--I

-1- -

I-c-- -1-1-

I-- - ,... -
1--

- +- - ---L ---+----r-- - -J-.:-~-~--I-H--i-+-ti::trT -- -"-4--1r-- 1-I--1---t--- J:-l-+--t--++t-

I

--1- -

--I-

1--1-
I-

r-I--
_ --L-_I-_ - - ------ -I- -1-- - +- -

- - -L--+--l-Hi- -
1- -L!-I-+-t11

- f-I- -
:- - -

- r- f- --- I-- . - _. --r- - --

- - - - - - - - - -- - -- - - 1-- - - -- .. - -

f- -- - i- f- -- -- I- - f- --

I - 1- - -- - - _. - f- -- -- - --- - - -- . -

--- . .--f-- .. - - --- I-
- --- l- f- 1- -

- _. ._- - - --f- - - 1-
- - - f--

1-- .- r--f- - - .- I- - +- - I--

-- - - 1- - - -f- I- - -- --I-

- -- i- I- - f- -- - I- -
- 1--- - I- - - - . - - r-

- - f- - f- - - - - -- - - --
I-- - - 1-- -- - - -- I- . - 1- -

I-- - - -- I-- r- - - - - - - -- r- - -
- - f--- r- -- - - - - - - - - -

_. - - -- - - - - --
f- --- r- - r- r- ,- - - - -- -- - -- -

.. .. i--- - - - --- --I- - I-
- -- -r- - --r- -- -- - - - - - - - -- - -

--- I- - -- --- - -- -

1--- -- -- -- - - -- -- -.~-- - - -

-
.. -- - -- r- - -- - - -- - -

- - - -- - +--
-- - - .-

- --- - - -

-- - I- - - -- -- r-
-- -- - - --

r--- - -_ ..
- --I-f-

- f- - - - - - .- - f-- ._- - -

+- 1- -- i--
i-- .- I- f-- --

1- - - - - - 1- - I- --f-~

1' - - I-- - - f-

- -- r- r- - 1- --

- f-- -- --
f- - - --r-

EXAMPLES OF

(

September, 1960

TABLES

w. L. Myers
Eastman Kodak
Rochester, N. Y.

,

(

Examples of Tables

1. Simple Mutually Exclusive Conditions and Actions:

This type of information does not seem to be aided by the

Table System. However. it does tend to pull together all of the

possible conditions and possible actions in a formal fashion so

that any future variations can be analyzed and explained easily.

The pattern of "Y's" on such a Table usually appear as follows:

Condition

A

B

C

Action

1

2

3

01

Y

Y

2. Several Actions in Various Combinations:

Rules

02 03

Y

Y

Y

Y

The next most frequently used Table is the one showing

several actions to be taken in various combinations based on

mutually exclusive conditions.

This type of Table might appear as follows:

Rules

Condition 01 02 03

A Y

B Y

C Y

Action

1 Y Y

2 Y

3 Y Y

4 Y

5 Y

- 2 -

3. Conditions and Actions Not Mutually Exclusive:

The major value of the Table is for describing series of

conditions and actions which are not mutually exclusive. Statements

describing these situations in English are quite lengthy, and are

difficult to analyze for completeness of the effect of a proposed

change.

The Table for this type may appear as follows:

Rules

Condition 01 02 03 04 05 06 07 08 - - - - -
A Y Y Y N N N Y N

B Y Y N Y N Y N N

C Y N Y Y Y N N N

Action 01 02 03 04 05 06 07 08

1 Y

2 Y Y Y

3 Y Y Y

4 Y Y Y

5 Y Y

6 Y

The use of the Tables can bes't be understood through practice

with a series of problems.

Problem # 1

Merge two tapes (or decks of cards) which are in order by

Stock No. in ascending order. There may be more than one item

for each stock No. on either tape. Call the two input tapes' 1 and

#J 2, and the output tape # 3. It is helpful to first write the Actions

at the bottom of the Table, and then flll in the Conditions. The two

Actions desired are:

1. Output the record from tape 111 and read another from tape til

2. Output the record from tape #2 and read another from tape 12

l

- 3 -

Problem 1 1 (cont.)

Only one test is necessary:

"A ~' Is the Stock No. of tape III lower than the Stock No.

of tape II~

The Table will appear as follows:

Condition

A

Action

01

Y

1 Y

Rule

02

N

2 Y

This appears Simple, but does not provide for the end of the

job procedure so it is actually incomplete.

Problem Ii 2

Merge three tapes. This Table will have three Actions.

1. Output the record from tape 111 and read tape ill again

2. Output the record from tape 112 and read tape 12 again

3. Output the 'record from tape #3 and read tape 113 again

There will be several tests necessary:

"A" Is tape 1/1 lower than tape 1/2

"B" Is tape 111 lower than tape 1/3

"c" Is tape 1/2 lo~er than tape 113

The Table would appear as follows:

Rules
Condition 01 02

A Y N

B Y

C Y

Action
1 Y
2 Y
3

03

N

N

Y

Formula

1 (2

1 (3

2 (3

(

- 4 -

Problem' 2 (cont.)

It is helpful to check to be sure all combinations have been provided

for. Three Conditione can occur with eight variations as follows:

Variations

Condition 1 2 3 4 5 6 7 8

A Y Y Y N N N Y .N

B Y Y N Y N Y N N

C Y N Y Y Y N N N

Included In

A Y Y '" N N '"
B Y Y N N

C Y Y N N

Rule No.
in Table 01 01 02 02 03 03

Numeric Ex.

Tape #1 4 4 5 6 5 6

Tape #2 5 6 4 4 6 5

Tape 113 6 5 6 5 4 4

'" Not included in first Table.

As can be seen, two situations are not covered - Variations

.3 'and 6. Let us examine them.

¥ariation 3 (YNY) would mean:

Tape 1/1 is lower than Tape 12, and Tape '1 Is higher

than Tape 113, and Tape il2 Is lower than Tape il 3.

This condition is impossible.

Variation 6 (NYN) is similar and means:

Tape 111 Is higher than Tape 12. Tape iJ1 is lower tban

Tape il3, and Tape '2 is higher than Tape il3.

The Table can help a programmer see the interplay of the different

tests. For example: If "A" is "y" (ye's) then it is best to test "B"

next since if it is also "y" you have an answer. However. if "A" Is

(

- 5 -

Problem' 2 (cont.)

"N" (no) then make test "c" next since 1f it is "y" you wlll have

an answer. Likewise, if you organize so "A" is used for the

longest tape, "B" for the next longest, etc. the number of tests

can be kept to a minimum.

Problem II 3

A classic problem is that of posting a requisition to an account,

or making a partial delivery and creating a Back Order for the

balance. The Table has two sections. One section is concerned

with matching the Stock Number of the requisition with the Stock

Number on the tape, and the other section with posting the

requisition. The Actions are:

1. Read in next Stock Record

2. Transfer to Posting Routine

3. Non- match. write error message

4. Read in next Requisition

5. Reduce Stock balance by amount of Requisition

6. Reduce Stock balance to zero, create Back Order

for balance

7. Return Requisition marked "No Stock"

The Conditions are as follows:

"A" Stock Record Number is lower than Requisition

Stock Number

"B" Stock Record Number is equal to the Requisition

Stock Number

"c" Quantity in Stock Record is not zero

"D" Quantity in Stock Record is greater than Requisition

Quantity

Problem' 3 (cont.)

Condition

A

B

C

D

Action

1

2

3

4

5

6

7

- 6 -

01 02 -
Y N

N Y

Y

Y

Rule

03 04 06 06

N

N

Y Y N

Y N N

Y

Y Y2 Y2 Y2

Y1

Y1

Y1

Again it is easy to see whether or not all conditions have been

provided for. In the first pair of Conditions a rule for the simultaneous
CCClf r«Nt.(I

~e of "y" for both "A" and 'B" has been omitted since obviously

a number cannot be ~1~ lower than and equal to another. A rule for

Conditions C=N and D=Y is also omitted. Again a quantity cannot be

b~t~ ~ and larger than the Requisition Quantity.

The numerals in the Action Section indicate the desired sequence

of Actions.

WLMyers:ekw

Data Processing Se r v i ce

Table Lay out
Title _____________ -,-________ _

Conditions
Frequen cy
Rule No . 1 2 3 4 5 6 7 8 9 10 11

Actions

F ormula Da ta
Symbol Field Name Record No. lncr . L eng th

Job No.
Project
Program
T ABLE
Date

12 13 14 15 16 F ormula

Remarks

~

