YSTEMS
NGINEERING
S ERvVICES

CLEARINGHOUSE REPORT

PRELIMINARY REFERENCE MANUAL DRAFT

TABSOL - 225

A Tabular Systems Oriented Language
for the
GE 225 Information Processing System

B, EKlick
February 1, 1961 Computer Department
Ref. No. 1B2 General Electric Company

INTERNATIONAL BUSINESS MACHINES CORPORATION
White Plains, New York

This material is distributed to keep IBM personnel informed of
new developments. Selection is based on interest; this department
makes no claim for the desirability of this approach nor necessarily
recommends its use.

If additional copies are desired, please contact the Clearing~
house. No part of this material should be reproduced or distributed
outside IBM without approval of the Clearinghouse.

PRELIMINARY REFERENCE MANUAL

TABSOL~225 ~-- A Tabular Systems Oriented Language

for the

GE225 Information Processing System

Computer Department

Applications Section

Programming Research and Development
Phoenix, Arizona

December, 1960

This document is a draft of a Preliminary
Reference Manual and a language specifica-
tion for integrating decision tables with
the General Compiler. The information con=-
tained herein assumes a basic knowledge of
computers and electronic data processing
applicaticns. Therefore, the manval should
be used not as a text book but rather to
augment already realized skills. HMinor
changes in language specification may occur
during the implementaticn period of the
compiler. Any changes that are made will

be reflected in future end more fimal versions
of this manual or in supporting material issued
during the iaterim of implementation.

D. Klick
Programming Research

I. INTRODUCTION

Early automatic coding systems, such as assembly programs, employed
mnemonic abbreviations in place of the computer's numerical instruction
code and symbolic addresses in place of actual memory addresses. In
reality the assembly program language was a set of synthetic cosputer
instructions. Although these systems gresatly simplified progrommirng, the
programuer was still plagued with the maay detalls dictated by the computer.

Autvmatic coding languages of today are on the threshold of relieving
the progrizmer of these details. The structures of these new languages
are very much like English. By using a combination of English words and
phrases to form sentences, the programmer now needs only to "describe”

a procédure for the computer to follow. This procedure together with a
description »f the data is them given to a special computer program for
processing. This special program, commonly called a compiler, tramslatec
the English problem description and gemerates a program of computer
instructions.

Such a compiler is provided for the GE-225. 1Its General Compile:
evolved from tyvo noteworthy language efforts - the Common Bueiness
Oriented Language (COBOL) and the Algorithmic Language (ALGOL). Both
languages were developed by voluntary committecs of computer manufacfirers
and users and reflect the recent trend toward "common'" compiler lan uages.

The language precently available with the Cenerzl Compiler is dased
primarily on COBOL, since COPROL satisfied the needs of a broad s-cctrum

of data processing applications. To accommodate the demands of more technical

applications, Boolean eitpressioms, floating point arithmetic, and
the ability to express eiuations were incorporated into the format
of COBOL. Therefore, cne may say that the present version of the
General Compiler can accept programs written in ome, two, or in a
combination of two lanjuage forms.

Those programmers familiar with COBOL zecognize that it is well
suited for creating Jad processing data files. ALGOL, on the other
hand, provides an ex:ellent meaus for expressing complex mathematical
relationships. Recaat investigations by the Integrated Systems Project
of General Electric s Manufacturing Services uncovered an area of
applications which require neither extensive data file processing
nor profound mathenatics but rather an unwieldy number of sequential
decisions.

To cope effectively with these decisions the ISP team devised a
tabular language. The purpose of this language was to depict by means
of tables, the relsationships of lcgical decisions. The new language
was appropriately termed TABSOL for Tabulayr Systems Oriented Language.
Since its creation V4ABSOL has been used by many departments of General
Electric to analyze aad solve problems in product eagineering, manu-
facturing methods, cosv accounting, and producticn contzol. The application
of decision tables is coatinually growing. Recent studies show that
they provlide a concise meithod for supporting the logle of other daia
processing applications. Iur example, deciuvion tables wmay be used to
specify the transfer of control associated with the values of one or
mora fields, to control the printing of detail and summary lines of a

report, or to imtervogate the sort lkeys in a multi~file system At

the Computer Department we have found decision tables a valuable tool
in designing and implementing the General Ccmpiler.

Decision tables represent a third language for the General Compiler.
They may be used by themselves or in conjunction with the features of
the compiler language. The specifications outlined in this manual pertain
mainly to the table entries and imply and require a knowledge of the
General Compiler. Therefore, this manual should be used as a supplement

to the GE-225 Genersl Compiler Manual, CPB-123 (5.5M10-60).

II. DECISION TABLE FORMAT

The format of a decision table is given in Fig., 1. Im concept a
table is an array of blocks divided into four quadrents by a pair of
double lines. The vertical double line separates the decisions or
"conditions” on the left from the "actions"” on the right. The hori-
zontal double line isclates variables from associated operands which
will appear in the blocks and rows below. A condition then is a relztion
between a variable appearing in a primasry black and an operand appearing
in a corresponding secondary block. For example, we may write AGE in
primary block 1 and EQ 26 in secondary block 1. In doing this, we are
stating a condition. Verbally, we are asking "if sge equals 26". An
action, on the other hand, is a statement of what is to be done. By
writing AGE in a primary action block and 26 in its assoclated secondary
block, we are stating that "the value 26 is to be assigned to ape".

It is interesting to note, at this point, the English interpretation
given to the vertical lines. The left-most line may be thought of as
representing the word IF. Those lines to the left of thke vertical double
line may be taken to meen AWD; the vertical double line itself the word
THEN. Since actions are sequential entities, the lines separating them
may be interpreted as semicolons and the vight-most line, which actuslly
terminates the actions, as a period. With this in mind, each secondary
row becomes an English senteace. For example, zach row now reads:

"IF condition-l is satisfied AND condition-2 1s satisfied
AND ., . . AND condition-k is satisfied THEN perform
action-1; action-2; . . .; actiocn m."

If any condition within a row is not satisfied, the neit yow is evaluated

Primary

Secondary

N

DECISION TABLE FORMAT

I A A A A T 5 - i
r N B N KN H
D D D D B
1 3 k N 1 2 3
ACE EQ AGE
% —— El.ﬂﬂﬂﬂ
26 26
% I
N '
Conditions Actions

Figure 1

-5-

and so on until all the rows are depleted. When this happens the table
is said to have "no solution”. The table is considered "solved" when all

the conditions of a row are saticflicd and thelr assoclated actions performed.

Before considering the conventions used to formulate conditions
and actions, an exsmple may help develop insight into the nature of
decision tables and the manner in which they may be used with the
General Compiler. In this example (Fig.2) we are searching a master
employea file (recorded on magnetic tape) to determine the number of

male employees who fall into the following job categories.

Job_Level Years rience Title

6 2 Programmer

7 3 Programmer or Analyst
8 More than 3 Analyst

9 More than 4 Analyst or Manager
10 More than 4 Manager

For each employee we find having any of these quslifications, we are
to write his department number, mame, title, level, and experience
on the computer's typewriter. At the end of the run the totals for

each of the cotegories are to be also put on the typewriter.

The core of this problem is the decisions that must be made on the
information stored in the records of the master file. These decisions
are conveniently exprassed above in narrative form. With only minor
alteration this form becomes the program statement of our problem.

The table and sentences are punched into 80-colummn cards exactly as they
appear in Fig.2. When this is done they may be given directly to the
compiler for processing.

As illustrated in our example, General Compiler sentences may

be used to support the logic of the table. These sentences accomplish
the following:

SENTENCE FORM

ceNERAL @D ELECTRIC

- 4

-SM"‘- VDecison Tabla

TER

a4

1 allllllliltllll || pajrmfeajrale '—L:l:l—ll

¢ san¥yy
wt, Foonin, Ariseme _CA-13 (18-00)
]
w| o
k r
o o
3
- "] lh
z [O
2 > >
o = [
: z
[i
2z 3)
[b
2 ~A |]
) 0} v i_
3 ofl ¢ (..*
i wi= =] A
o L P i€
) mgf n. F
wjl + "] Q
) |# > [
3 o
= % . 1=IA.J¢I W o~
[[5 - >
® 3 J [
2] t 0 (= W |
z 2 of " > <
o 7 » [[
o v = - Q
M o <] [™
H o ”» z L] W
£ o« < - ~
a + [2] z = C
o - o < -]
© " r [£ = J
L. ¥ v <
wl +| ™ < o| o o v
wl al o ul w o I3 ©
ol 4 L] £l £ P +
¥ 0 o €] £l] | & z| .
o J] v £ " | «| 7| »| o - |~
W - w w 2 | 2|l] =] @ - wl -
i ol o) o gl @ J] U] « F1E: J] A
] 2] 9] o 5 o] ol «| a| z ol =y =
Wl o | > F ol oo Z| 2| & ~ L <
-_ur - olol«<l«| £ F| H)
d =l W 1 [3~
Wl -] D' Da._u_lm_.
o/ | «|] O] 0 [o of| | «| o] N
B| N £ F| ~ v F ol w|]| 0] wl ~s
a| « MERDREE 7 A vl <« -] Z| |
=1 £] Al of n [- ul I oul £]~4 2
[| o dil o] O] o o] of o w o)
-l | w 7] . ull Wl wl 9] o] ..1..;...15
> 72| | o] v W s F[- F[="+
-] & 4] 2 o » Wl |~ #| 0] o] g
Bl |« a w O[3 H] of o] F w |
I\vh... L] J -
| ¥ o of o 3 2 o] + 4] © ul
¥l 2| O] u| @ o] Fl -l 2l | <] -] o
Il wl v [W 2l Z| -l ©
Pla bl = J o o| ol 0] of 9] o ¢
M|l o] o M| w wl MBRGERELEE GHWMMKNS
v ! ol > w
0 [[o o P
[w «) > z
o A }- [ul
Wl o] W ol W) w| o] W[ol w| o w|olw| of w of v
w = 4]] RN sl | =] & = e
Ve
Tw
e
CE
ux

OPEN --~ Declares that the MASTER/FILE is input and since the file

is recorded on magnetic tape, validates the tape labels.

READ --~ Delivers the next record from the MASTER-FILE and tests

for an end-of-file sentinel. When this sentinel is
detected, sequential program execution is interupted and
control passes to the portion of the program labeled END-RUN.

IF =~~~ Eliminates those data vecords which contain information

about female employees. The word FEMALE (also PROGRAMMER,
ANALYST, and MANAGER used in the teble) represents a
special kind of condition and will be explained later in
the manual.

EXPERIENCE = --- Calculates the employees total experience and

agsigns the value to the field named EXPERIENCE.

The word TABLE informs the compiler thet it must process a decision
table; EXAMPLE is a name or label which was given to the table. The
size of the table is stated next by giving the number of conditionms,
actions, and rows contained in the table., This information is used
only by the compiler and is not executed by the compiled program.

Table execution begins at row 1 (sequence number 40). Using our
narrative definition of a table, row 1 is interpreted as follows:

"IF the job LEVEL field equals (EQ) 6 AND the

EXPERIENCE field equals (EQ) 2 years AND the

employee's title is PROGRAMMER THEN assign the

value 1 to the subscript I; GO TO the part of

the program having the label TYPE~OUT."
If one of these condtions cannot be satisfied, row 2 is evaluated starting
again with the left-most condition. Sequential execution of the rows
continues until either all conditions in a given row are satisfied or

all rows are exhausted. When the latter situatiom occurs, the
sentence immediately following the table is executed. Proceeding
from here the sentiences in our example accomplish the following:

G0 === Interrupts sequential program execution and passes

control to the part of the program labeled GET~RECORD,

WRITZ--=- Writes the current contents of the DEPARTMENT, NAME,

TITLB, LEVEL, and EXPERIENCE fields on the computer's
“ypewriter.

CLOSE--~ Rewinds the MASTERFILE and performs the file's closing

conventions.

STOP --- Terminates processing and writes the words END RUN on

the typevwriter,

By (i2neral Compiler atandards this example represents relatively
simple conditions and actions. In formulating these entries, the
prograrmev may take full advantage of the compiler's capabilities.
The remaining sections of this manual are devoted to defining the
conventions and manner in which conditions and actions may be formed

and entered in tables.

III. EPASIC CONCEFTS
Since decision tables are used in conjunction with the General
" Compiler language, we must first look at the foundations of this
language before considering the counterparis that may appear in a
table. The compiler's language, like most matuval laaguages, is a
body of words and a set of ccrwventions for combiaing these words to
express meanings. Its structure o "synta:" closely resembles the
rules of English grammar, anc. its Lody of words way be appropriately
termed a "wvocabulary'. The purpose of this seztion i3 to show how
words are formed and how they may be used ic =2ipross a deaired
meaning.
Characters
“he basic units of our lsuguage are the crarascters used to form
worda and symbols. The character set incliudes the leiters of the
alpbabet (A, B, C, Z), the nuwerals (G, 1, 2, ..., 9), and the
spaclial characters shown in Fig. 3. Special characters are presented
in more detail as they are encountered in the manual,
Words
The words of a typicel Ceneral Compiler program fall into one of
two categories: the vocabulavy of the compiler and the vocabulary
used by the programmer. Tle programwar's vocabulary will consist mostly
of arbitrary names gilven to his data and sectlons of his program. The
compiler's vocabulary, on the other hand, is predetermined and explicitly
defined In this manusl. Since the compller, by nature of its designmers,
is a mistrusting mechanism, the programmer mus: define the words he

uses too. This is done; not by writing a manual, but instead by merely

- 10 =

SPECIAL CHARACTERS

Character Meaning Card Code
A Space or blank Space
. Period - Decimal point 12-3-8
B Comma 0-3-8
" Quotation Mark 3-8
~ Hyphen 5-8
(Left Parenthesis 0-5-8
) Right Parerthesis 0-6-8
+ Addition 12
- Subtraction - Minus Sign 11
* Multiplication 11-4-8
/ Division 0-1
- Assignment 6-8

Vertical Tahle Line 12-4-8
Figure 3

« 11 -

filling out a data description form. Once these "data names" are
defined, they may be filed either on 80-colurm punched cards or on
magnetic tape and used over and over again. The data description
file then is a "dictionary" since it contains the definitions of the
words used by the programzer. Furthermore, this dictionary may be
revised without redefining all of its entries. This is accomplished
by a special service routiae which accepts corrections, insertions, and
deletions as long as they are written on the compiler's data description
form.

Our two categories of words may be illustrated by the following
sentence taken from the program exzmple given in Fig. 2.

CETFECORD. READ MASTTE~FILE RECORD IF END FILE GO TO END~RUN.
Here, the words READ, RECORD, IF,END, FILE, GO, and TO belong to the
wvocabulary of the compiler; whereas, the words GET~RECORD, MASTER~FILE,
and END"RUN belong to the programmer's vocabulary. The compiler will
assume that MASTER~FILZ is e data nawe duc to the word's position in the
sentence, It will then search the data description to verify its
assumption and to determine the characteristics depicted by this word.
Not finding a match in the data description results in an error message
typed on the computer's typewriter. The words GET-RECORD and END-RUN
will be interpreted as sertence names due to their position in the
prograsi.. Onne again, the compiler will attempt to verify its findings
by checking cach transfer to make certain that they lead to properly
defined sentence namas. The consequence of an undefined sentence name
fs likevise an error messzge on the computer's typewriter. The compatability
checks mentioned here are only two of many which the compiler performs to
insure unquesticnable zesults in the programs which creates.

Formation of Names
As previously mentionad, data names are words representing data
(files, records, ficlds, elements, constante, arrays of values, etc.)

and are srbitrarily essigned by the programmer. They are formed from
the following characters.

Letters A W Cy iy i
Numerals 8, 15 2y snes 9
Hyphen -

To avoid error messages and possible re-compilation, the programmer
should choose daia names thaet

. U Do not exceed 12 characters,

2. Do contain at least one letter,

3. Do not begin or end with a hyphen.

To insure a vroverly defined nrogram. a)l data names should be recorded an¢
their characteristic data described on the compiler's data description
form. The programmer also shoutd be careful not to use the compiler's
vocabulary as data names.

In addition to data names, the prograummer is free to name sentences,
tables, and other "procedures" in his jrogram. With one exception these names
are formed like data nemes. Since pro:edure names are judged from their

position in the program, they may te f:rmed from only the numerals, 0

through 9.
Constants
The values associated with data nauce generally change during the

actual running of a compiled progrsm. It is for this reason that they

= X3 »

are sometimes called "variasbles'. A constant, as opposed to

a variable, is a specific value and does not change within the
scope of a program. Constants may be one of two kinds: a literal,
¢r a named constant.

A literal is a value itself rather thar a pame given to a value.
Literals may be numerical, alphabetic, or alphanumerie - i.e.,
composed from the charcacter set of the computer. All non-numeric
literals should be enclosed in quotation marks (") to avoid having
the compiler confuse them with data memes. The conventions for

.forning literals are the followirng:

1. Non-numeric literals are limited to 30 characters, excluding

the quotatlon marks.

2. A ammeric literal not enclesed in quotation marks is
assumed to be a number. Numbers may contain not more than
one decimal point and a wminus sigun. Unslgaed ouwbers are
considered poaitive, Excluding decimal points and minus

signs, number: must not exceed 11l decimal dieits,

3. Numbers may be triated as floating point by writing them
as a power of ten ~ i.e., & nmher os decimal fraction

followed by ¢ power of tem expoment. For cxample, the

number 230100 might be written as 2.301E5 vhich is equivalent

to 2.301 multiplied by 10°. The exponent part, indicated

by the letter E, may contain a minus sign to show a negative

exponent. The value range of an exponent is limited to

+ 75. Excluding the decimal point, the minus sign, and

& 3R =

the letter E, the fracticnal part of a power of tem number
must not exceed nine decimal digits. To distinguish data
names from floating peint numbers, data names should nmot
be formed from cnly the numerals and the letter E.

4. An alphanumeric literal may pot contsin an embeddud quotation
mark since the enclosirg quotation marks are used to determinz
the size and content of the literzl.

A named comstant is a constant which has been given & nane. Named
constants are defined by means of the datez cdescription and may include
any character belonging to the character set of the ccmputer, including
the quotation mark. Like literals named constants may be numeri:,
alphabetic, or alphanumeric. They are unlike literals in that they
may be any length.

Subscripts

Subscripts provide a convenient method to reference individual
values contained in a list or in an array of values. The ~yariable, I,
employed in the decision teble of Fig. 2 1z a subscript used just for this
purpose. Since five totals are to be accumulated, one name was assigned
to all five, namely, the data name TOTAL. Wherever reference was made
to a particular total, the data name TOTAL sas followed by the subscript
I. This is illustrated in the expression

TOTAL (I) = TOTAL (I) + 1.
and the sentence which prints all five totals on the typewriter. From
this example, it follows that subscripts, like data, may be given names.
In fact the same rules that govern forming data names apply to naming
subscripts.

Since subscripting is a positional motation, the range of any sub-
script is limited to the values 1, 2, 3, . . ., n (vhere n is the meximum
number of values in a list). This does not mean that subscripts are
limited only to integers. If a subscript is not defined ds integer by
means of the data division, the compiler will automatically provide
coding to truncate its value t.0o an integer. Furthermore, subscripts are
not restricted to a single variable name. Arithmetic expressions may also
be used as subscript. For example,

RATE /P+1)
K ((X-3)*pi*3)
A (J)
are legitivate forms of subscripts.

Up natil now , only cae-demensional subscripting was comsidered. Values

in mult/-demensioned arrsys may &lao be referenced by subscripts. For example,

an arzay in which values are orxdered

Ay Ay A A A

Ay By Ay Ay Ay

Ay Ay Ay Ay A5

A

A 45

43 A

4 A

51 A

42

A

5y A

59 A

53 Ase Ass

might be subscripted as A (J,K), where K is the colummar subscript and

J the row. To refer to value A,,, J wculd have to equal 3 and K equal 5.
Preceeding examples show that subscripts are enclosed in parenthesis and

reparated by commas. Thie notation permits the compiler to distinguish

subscripts from other elements inm the language.

- 16 -

Truth-Values

There is a ciass of variables which, through either usage or definition,
may assume only the numerals 1 or 0. The value 1 is said to be their true
state and the alue 0 their false state. The words END FILE of the READ
sentence in I g. 2 is such a variable. When the OPEN sentence is executed,
END FILE is Jet to its false state and remsins so set until the end-file
condition i: encountered. At this time, it is set to its true state.

Variabies having truth-values are termed "True-False" variables. END
FILE is a -onvcaience provided by the compiler; the programmer may also
formulate his rwn true-false variables by merely listing them under the
heading TRUE*'FALSE in'the data division. Tkey may be named according to
the rules giv:a for data names.
Arithmatic I} pressions

Ariths:tic eitpressions are rules for cowputing numerical values. They
are forrsd from variables, nvmbers, functiocns, and symbols representing
additiov=, oaibtraction, multiplication, division, and exponentiation. For
(s-+ple, in the expression

IMEM~HRS # 2.50 + OTVHRS * 3.75
PREMVHRS anc. OTVHRS are variables; 2.50 ard 3.75 numbers; and + and * gymbols
for addition and multiplication. If PREM-IIRS were 40 and OTYHRS were 4, the
expression becomes 40 * 2.50 + 4 * 3.75 and after performing the arithmetic,
reduces to the value 115.00. To save this value, a programmer might write
GROSSYPAY = PREMHRS * 2.50 + OTVIR3 * 3.735.

The presence of the = symbol tells the compiler to assign 115.00 to the
variable GROSSVPAY. When expressions are written in this form, they are

called "assignment statements”.

- 17 =

The arithmetic permitted in an expression is stated by the following

symbols:
Symbol Meaning
+ Addition
- Subtraction
* Multiplication
/ Division
ke Exponentiation

In addition to arithmetic, the following mathematical functions may be used.

Symbol Function
SIN Sine
Cos Cosine
ATAN Arctangent
SQRT Square Root
EXP Exponential
LOG Common Logarithm
LN Natural Lojzarithm
ABS Absolute Value

Arithmetic expressions ace evaluated from left to right according
to the following priority:
1. Exponentiation and Functions
2. Multiplication and Division

3. Addition and Subtraction

Parentheses may be used to establish a precedence other tham the one
above. When they are used, the evaluation is performed from the innermost

to the vutermost pair but still from left to right withian a given pair.

s I8 =

Relational EXpressions

A relational expression is a statement of magnitude between two values,
For example, FICA GR 144,00 is a comparision between the variable FICA and
144.00. The symbol GR stands for the reclatioa "greater than". Other

relations may be stipulated by

Symbol Relation

EQ Equal to

GR Greater than

LS Less than

NEQ Not equal to
NGR Not greater than
NLS Not less than

To have mesning, relational expressions must be stated as conditioms.
The expression FICA GR 144,00 tells us nothirg. However, when it is written

IF FICA GR 144.00, GO TO ADJUST-PAY

we knov immediately whet is intended. By definition then, relational
expressions are conditions and when evaluated always give a truth-value.
Relational expressions may be explicitly stated or implied. FICA GR
144,00 is an explicit statement of magnitude. In the program example of
Fig. 2, implied relations were stated by the wozrds FEMALE, PROGRAMER,

ANALYST, and MANAGER. An implied expression is formed by giving a name

to a value, a range of values, or to a series of values and ranges. Once
the name and its values are defined in the data division, it may be used to
mean its associated values. 1Implied relations are termed "condition-names"

since a name was given to a condition, i.e., a value, of a variable. The

- 1P =

variable from which the value is taken is called a "conditiomnal variable".

Therefore, writing PROGRAMMER (fig.2) in g decision table block is the same
as writing an expression which will compare the TITLE field with the value

associated with the title, programmer.

Logical Expressions

Logical expressicns providec a comvenient method for obtaining truth-
values. They are formed by combining true-false variables and relational
expressions with the logical operators AND, OR, and NOT. The expression
(Fig.2)

PROGRAMMER OR ANALYST
is a logical expression which is true vhen apn cemployee’s TITLE field
indicates that ke is either a programmer or an analyst.

The rules governing the evaluation of leogical expressions may be

expressed as follows:

pOR g F T T T

where p and q are a combination of true-false variables,

relational expressions, or logical expressions.
Logical exprecesions are evaluuted from left to vight with the logical
operator AND having precedence over the OR. Parentheses may be used for
grouping or establishing a precedence of evaluation other than the one
mentioned previcusly. Vhen they are uced, the evaluation proceeds from

left to vight from the innermost pair to the outermost pair.

- 20 -

IV TABLE ENTRIES

The previous section ocutlined the elements of the General Compiler
language and briefly showed hcw they might be used. In the introduction,
it was mentioned that these same elements mey be employed within the
blocks of decision tables. The purpose of this section is to show how
this may be done.

Formation of Conditions

By definition, a condition is a relation between & primary block
entry and some corresponding secondary blocik entry. A condition, like a
relational expression, may ke either true or false. True conditions are
sald to be "satisffed" and false conditions "not satisfied". From this
definition, a condition may be either a relstional expression, a logical
expression, or a true-false variable since these are the only elements
that yield a truth-value.

The formats noted below show how these expressions may be split between
primary and secondary blocke to form conditions. In these examples, the
word "operand" stand for either a varisble {data name or subscripted data
name), a constant (literal or named comstan:), or an arithmetic expression.
The word "relacion" signifies one of the relational operators - EQ, GR, LS,
NEQ, NGR, or HL.S. Since arithmetic expressions may be operands of relational
expressions and relacional expressions as operands of logical expressions,

it necessarily follows that arithmetic expressions may appear in logical

expressions.
Format Example
Operand-1 Relation E?VRL EQ

loserand=2 o

- 2] -

Operand-1

lat xand=2_ |

Operand-1 Relation

|Operand-2 OR Operand-3

[operand-1

a 1on-1'0parand2
OR Relaticn-2
rand-3 ...

ition-name

o Entry

rue-False Variable

for

{
Fm-!'alu Variable

Fo_!ntqr

[Logical Expression

|

i.ogical Expression

—22-

{EXPERIENCE

IGR &

TOTAL (I) NLS

PT(1) OR PT(2) or PT(3)

(X+Y) =% 3

lsa P+l OR LS Q(I)

PROGRAMMER

NOT

FEMALE

REQVL

HWOT

END INVENTORY FILE

PROGRAMMFER OR ANALYST

[NOT

X GR ¥ OR X LS (2+1)

Formation of Actions

Actions are statements of the things to be done when all the
conditione of a row are satisfied. The score of an action may be
one of three kinds: implied assignment, prccedural, or imput-output.
The only action presented so far was assignment. The other two are
extensions of General Compiler sentences and will be mentioned here
only briefly. The compiler msnual should be consulted for a more
detailed presentation.

1. Value Assignment. Value assignment is an implied fumnction

between associated primary end secondary block entries. By placing
a data name in a primary block and some number in a secondary block,
for example, I and 1 of Fig. 2, the compiler automatically produces
coding to assign the numer to the data mame. In the case of our
example, 1 is assigned to the subscript I. Other examples of value
assignment are given below. In these formats the word variable
implies either a data name c«r a subscripted data name and the word

conctant either a literal or a named constant.

ormat Example
[Variable T
Constant L
Constant ["COPPER"

ariable

fariable ALPHA (I,J,K)

) L
Mrithmetic Bxpresaicn SIN THETA + (X/P)¥*2

“- 23 =

Format Example

Arithmetic Expression [PT % Rirk2
ariable 71
True-False Variable [SWITCH~?
Truth-Value 1 or 0 1
Truth-Value 1 or 0 0
True-False Variable BEZQVREQ

2. Procedural actione. Procedural actions provide the means for
interrupting the normal execution scguence of a table. Any of the
following compller verbs may be usai for this purpose.

GO TO
PERFCRM
STOP
The GO verb stipulates an unconditicral transfer to a specified part of the

table or program. Its destination may be a sentence name, table mname, or

the row number of a particular table The format of the GO entry is as

follows:

Format Example

1

GO TO i [co =0
|[Sentence Name ! TYPEYOUT
GO TO i 50 70 ;
Table Name i TABLE 23 i
GO0 TO ' G0 10
Row of Table IF.OW 7 TABLE BETA

. 26 -

The other form of a procedural control is the PERFORM verb. The
PERFORM specifies a transfer to some destination, the axecution of a
table or a set of sentences at that destination, and a return to the
action block following the PERFORM. The sentences or tables acted
upon are by definition a “closed procedure'" - i.e., they have a single
entrance point and a defined exit point. Conventions for writing closed
procedures are given in the next section. Legitimate forms of the
PERFORM action are

Format Example

[;nmm ERFORM

&snsgnns_nnma_________ SSv PAY

[?mom« [PERFORM

L
[f=ble Name ERROR TABLE

The STOP verb may alao be used as an nction. It may be placed in
either a primary or secondary block. When it is used, no other action
may appear with it in the same action column. The STOP terminates pro-
cessing temporarily or verwanently according to what action is taken
at the computer's console.

3. Input-Cutput Actions. Input and cutput actions are compiler

verbs that control thz flow of data to and from the computer. They read

write, and validate tape labels of data fijes assigned to peripheral

input-output devices. When deta files are referred to from sn acticn
block, they must be dafined according to the environment and data division
specifications listed in the General Compiler manual. The formats of

input-output actions are illustrated by the following:

- 25 =

Format Example

Iﬁﬁn REZD

Fife Name MASTERVFILE
DPEN INPUT or OUTPUT DPEN INPUT
ile Name MASTERVFILE

CLOSE CLOSE

File Name MASTERVFILE |

File Name MASTER"FILE

{ i

READ, CLOSE, or OPEN verbs READ

Eﬁi WRITE

Record Name DETAILVLINE

cord Name TRANSACTION
[WRITE ITE

The Skip and Repeat Operators

The skip operator makes it possible to show that a conditiom or
action is not to take part in the evalution of a row. This is done by
placing a hyphen ¢*) in the concerned conditiom or action block. The
compiler then will skip this block and proceed to the next.

The repeat operator ies a shorthand metlod to indicate that & comdition
or action in the block above is repeated. This is shown by entering a ditto
mark (") in the block below the one that is to be repeated. This notation

was used with the GO TC action in the sample table of Fig. 2.

- 26 -

V THE TABLE A5 A PROGRAM

Up until ncw, cnly compenents of tables were presented. It was lexrned
in Section II that General Compiler sentences could be used to support the
conditions and actions of tables, and the preceeding section mentioned
tables as closed procedures, This sect on relates these topics to tables

and tables to compiler programs.

Block Conventions for Writing Expressions

1. Words, abbreviations, and symbols of the compiler's vocabulary
should not be used as names. They may be combined with other characters to
form naxzes.

2, The words in an expression shouid be separated by at least one
space. More than one space is permitted, The space separator is opticnal if
the words are bound by

+-.1’:1’%’.“.’fr\,()“:’l

3. Subscripts should be enclosed in parentheses. They may be written
adjacent to (without a space separator) or apart (with space separators)
from theiv associated data names. Individual svbsCripts in a list of subsecripts
should be separated by commas,

4. Vhen two arithmetiec expressions zppear side by side as in a series,
they should be separated >y cormas.

5. All colums of a table should be bound by the vertical table line,

(12-4-8 punch).
6. The skip and repeat symbols, ~ and ", should be the only entry ,

other than speces, in a block.

-27-

Conventions for Placicg a Table in a Program

1.

2.

Tables are written on the Generasl Compiler Sentence Form.

A table is preceeded by th2 word TABLE. Naming tables is
optional. When a table is given a name, the name may preceed
or follow the word TABLE. The word

TABLE,
name TABLE, or
TABLE name

should be followed by a period.
The table's size is given next and should be placed on the
game line as the table's name. The size may be writtem in one
of two ways:

kkk CONDITIONS mam ACTTONS onn ROWS.
or

(kkk, mmm, aon).
Both forms are terminated by a perlod. The oruer of writing
the number of conditions, actiong, and rows is option¢l im the
first case since cach can be identified. However, order 1s
important in the second form since the compiler interprets the
first number enclused in parencheses as the numler of conditions,
the second as actionz, and the thixd ss rows. Conditions, actioms,
and rows are numbered sequentially beginning with 1. Row 1 is the

first secondsry row; the primary row is not countei in the row

count.

General Coupiler sencences should not be placed between the
word TABLE and the primary row cif ihe tables.

The double vertical lines that separates conditions from actions

may be represented by one or two l2-4-5 punches.

- 28 -

The size of each block may vary from column to column and
Tow to Tow.
The only limit on the size of a tzble is row width. Since the
compiler prints &z listing of compilation, the recommended row
width is 120 characters including card sequence number. Maximum
row width 1s 1200 cheracters.
Since the table form is an image of an 80-column punched card, a hyphen
(~) is placed in cclumn 7 of the form to show that a row is contained
on mora than cne card. 1In this case, no table column may be split
across cards. Escchk card is to contain a sequence number to insure
proper card order. Wh2n rows exceed oue card, the sequence number
of the first card is only printed. Sequence numbers of succeeding
cards are stripped out. The row is then printed as a multiple
of 120 characters with aan int2gral number of table columns
per 120 characters.
Expressions too long or complex to be written in blocks may be
written after the table's name snd size and be executed from the
table by means of the PERFORM vexb. In addition to expressions,
any General Compiler sentence may be used and executed in this
manner. To indicate the start of the table the word BEGIN is to
follow the list of expressions and sentences. This format may be
illustrated by the following:

TABLE pame. kkk CONDITIONS asmm ACTIONS nnn ROWS.

... General Compiler Sentences and Expressions - May be
exzcuted ounly from the confines of the table.

BEGIN

DECISION TABLE

Closed Procedures

Fig. 4 outlines the format of a closed procedure. By definition a closed
procedure may be acted on cvmly by the PERFORM verb. It contaivs one entrance
point and one exit point. In fig. 4 these are indicated by the words BEGIN
and END TABLE name. BEGIN and END also act as sentence names and may be
referred to from within the procedure body.

Expressions too lovag to be placed in the blocks of a table may be
written in the procedure head and executed from the procedure body by means
of the PERFORM verb. As such, they must be given names. In addition to
expressions any General Compiler sentence may be writtem in the head and
executed accordingly.

The procedure body contains the table. As shown in Fig. 4 compiler
sentences may preceed and follow the table. Execution is sequeatial
starting with the sentence or table after the word BEGIN and proceeds until
the exit END TABLE is reached. It is at this point that comtrol is
reverted to the PERFORM verb which originelly referenced the procedure.

Any unconditional transfer from within the procedure to the outside is
undefined. However, PERFORM verbs in the body may reference other closed
procedures.

Closed procedures should be written apart from the main program.

DECISION TABLE AS A CLOSED PROCEDURE

r
TABLE name. kkk CONDITIONS mmum ACTIONS nnn ROWS.

pmﬁsgau< ++: General Compiler fentences and Expressions - May be
: executed from the confines of the cecision table.

BEGIN. (Start of execution - entrance to procedure body)

Fa ... General Compiler Sertences and Expressions

cedu
mey“ < Decision| Table

+++ General Compiler Sentences and Expressions

END TABLE name. (Exit of procedure body)

Fig. 4

s3] =

IDENTIFICATION

LOGTAB COMPILER -~ U00400
29 July, 1959

Jane E, King
IST-G Dept., General Electric Company
Schenectady, New York

PURPOSE

e et

LOGTAB is a 704 program which compiles a program expressed in LOGTAB
type logic tables for the IBM 704. The output is a tape containing the SAP
program which can be assembled directly or which can produce cards by means of

the off-lime punch. The resulting program operates in conjunction with a set
of standard LOGTAB subroutines. (See DF-591523).

RESTRICTIONS

1. Input may be on-line (Sense Switch 2 down) or off-line (Sense Switch 2
up) on tape 2.

2, Output is on tape 7.

3. The program is designed to operate within the TOP gystem, if desired.
L+ Any number of tables may be compiled at one time,

5. If any one table being compiled results in a program longer than 1000
words on an 8192 word 704, a drum is required. The limit on a 32,768 word machine
is about 6000 words before drums are required but such a table is not conceivable.

6. Only 35 columns can appear in one table. If more than 35 are needed,
the table must be split and the 35th column should direct the program to the
next table,

7. Yhile operating within a table the index registers are not preserved.

8. When executing external subroutines which the table calls for in
Quadrant D, index register 2 must be preserved within the subroutine. In all
other cases, the index registers are free. All subroutines are entered by the
compiled program with index reglster 4.

9., When addition or subtraction is indicated in Quadrant C, the compiled
program assumes that fixed point arithmetic is to be used. If floating point is
desired, the ADD instructions must be changed manually to FAD.

10, The LOGTAB subroutines which are needed for execution are not included
on the output tape with the program,

11, All symbols (eg. XYZ, FQR, etc. under "Allowable Table Entries") used
as elements in tables must consist only of alphabetic and mmeric characters and
at least one chuaoter must be alphabetic. In other words, the special
characters + - (, , / * = may not be used in symbols.

-2—

12, The shortest ard fastest operating program will result when 1) no
symbolic subseripts are used, 2) the elements in Quadrant B are literal values
(not symbols or subroutines), and 3) the elements in Quadrant D are symbols or
subroutines (not literals). Also, increasing the number of columns in a table
has very little effect compared to increasing the mumber of rows.

INPUT FORMAT

Four distinct types of cards are required by the compiler.
Heading card

The first card for each table must be a heading card which contains identifica-
tion as followss

Col 1 =5 3 the word TABLE

Col 7 = 11 : a gymbol which is the name of the table.

The first instruction of the compiled progrem will use it as the
location symbol, If the symbol is less than five characters long,
the positioning within these columns is not restricted.

Col 13 = 16 : symbol designation. For each table compiled,
LOGTAB generates three symbols. It automatically assi)?))0,)))),
and))))2 for the first table, and))))3;,))))4, and))))5 for the
second,; etc, This feature will be overruled if a number appears in
these columns of the heading card., For example, if the card contains
24, then the first table will be assigned)))24,)))25, and)))26;
the next table, if it has no number of its own, will be assigned)))27,
)))28, and)))29. The first digit of the mmber to be used must be in
column 13, and no non-mumeric characters may be used. (See last para-
graph of Output Format for usage.)

Element, card

The data for the elements within the table is supplied on the element
cards with only one piece of data per card., The cards for all the elements in
one row must be together., In addition, the card for Quadrant A or Quadrant C
must be the first card supplied for a row. The ordering of the Quadrant B or
Quadrant D cards within a row is not fixed. The groups of cards for rows may
be in any order except that all decision rows must be given before the first
result row and the group for an OR row must immediately follow the group for
the row it is OR'd with., The format of an element card is as follows:

col 1l : a letter (A, B, C, or D) to designate the
quadrant in which this element appears.

col 3 = 4 : the mumber of the row in which this element appears.
If only one digit is needed, it may be expressed as (zero, N) or (blank, N)
or (N, blank).

Col, 6 = 7 : the number of the column in which this element
appears, This number must be less than or equal to 35. If only one digit
48 needed, it may be expressed as (zero, N) or (blank, N) or (N, blank).

col 10 and following : the element itself., The element must start
in col 10 and continue without spaces. For Quadrent A elements, the element
and the condition of the test both appear on the card and they must be
separated by at least one blank but any number of blanks may intervene.

There are several additional rules for expressing the

OR condition, If the same element is to be tested

againat more than one value in the same column with

-3—

the same condition, only one Quadrant A card should be

supplied. For example, if XYZ may be equal to 24 or

equal to 36 in column one, then the following element
cards should be used:

AQ, 0L XYz =
BO4OL 24
BQO1L 36

If the same element is to be tested against more than one
value in the same column with a different condition, or if
a different value is to be tested, then col 10 - 12 must
contain "OR,” and followed by the element and/or the condition
of the test without blanks. The following shows the cards
required for 1) XYZ equal to 24 or XYZ less than or equal to
363 and.2) XYZ equal to 24 or FQR equal to 36.

N2 =

AQ, 01 AQOL XYZ =
B Q4 01 .24 B OOl 24
A3 OL ORy (= AO5 01 OR,/QR =
B 05 0L 36 B O5 0L 36

If no element is given in Quadrant C (i.e., no value is to be modified
ag a result of the action in Quadrant D), the element card must be
supplied but column 10 must be blank. If the element in Quadrant D is
a dagh (minus sign), it is not necessary to include an element card and
the compiler ignores it if it is given.

Since a blank terminates an element and also terminates the condition
of the test, the columns following the blank are not used by the
compilexr,

End Card

The last element card for each table must be followed by an end card
which had 'END" in columns 1 - 3., This card terminates the compilation for
the table and initiates output of the resulting program,

Blank Card

A blank card must follow the end card for the last program to be compiled,
This is the only indication available to the compiler that all of the input
has been processed.

OUTFUT F

The compiled program consists of four distinct sections. The first section
is the progrem (consisting of calling sequences to the LOGTAB subroutines) which
executes the desired table. The other three sections contain data on which the
subroutines operate.

The first (program) section follows a definite pattern which is dictated
by the form of the input. The first three instructions initialize the sub-
routines to begin a table and they are:

XXXXX CIA T))BS
STO T))MK
STO I))MK

(XXXXX is the name of the table given on the heading card)

il

Following the initialization is a group of instructions for each test row. 1R g
any element in Quadrant B for that row is not a literal, then the first instruc-
tions will be used to place the current value represented by the symbol given
into the 1list of wvalues to be tested against. Then, if the A element was XYZ,
then the following instructions would appear:

CLA XYZ

%% T)) 4
(location of last valus)+1,N,(no. of values)

ORA (location of last bit pattern)+l,1
If an OR condition was indicated for this row, then MZE would appear in place
of PZE. The N in the tag of the PZE instruction is a code to tell what the
condition of the test should be; for exapmple, a code of 3 means equal. (See
allowable test conditions for list of all codes)

Following the calling sequence for the last test row is the instruction:

TSX F))MK,4
This routine takes the resultant bit pattern for all tests and removes all one-
bits except the first one., Next comes a calling sequence for each action row of
the table and it has the followlng form:

TSX RT)),2

PZE - (location of last action)+1,0,(no. of actions)

PZE (location of last bit pattem5+1,o,-n
If the action called for is a replacement of XYZ by the value found in the D
Quadrant;, then the calling sequence would be followed by:

STO XYZ)
The N in the decrement of the third word of the calling sequence is the number of
words to skip if no action is inferred in the D Quadrant. For example, in the
cape of the replacement of XYZ shown above, the "STO XYZ" would have to be skipped
and the decrement would econtain "-1",

The last instruction compiled in section one is:

TRA ERROR
This causes a transfer to an error routine if no exit was found within the table.
No error routine is given in LOBTAB -- it must be supplied by the programmer if
such a routine is desired.

The second section of the compiled program is a list of the test values implied in
Quadrant B with one entry for each different element in a row, The second half of
this section contains instructions with which to obtain the values of Quadrant D
elements, one entry for each different element in a row.

The third section contains the bit patterns which correspond to the words in the
second section,

The fourth section is an auxiliary portion to augment the second section when one
word per entry is not sufficient. The word for a Quadrant D entry in the second
section must obtain the vajue to be used and this is sufficient in the case of a
symbol without a symbolic subseript. In this case, the entry may be of the form
CLA XYZ or TSX FQR,4. But if the value is a literal (eg. 24), then the 24 would
have to appear in the fourth section and the word in the second section would be
CIA (location of 24 in fourth section).

Each section has an asgociated symbol appearing with the first word in the section.
They are: first = table name, second =pﬁ))0, third =))))1, and fourth =))))2.
These may be modified by the rules for generated symbols given on the heading card.

ALLOJ/ABLE TABIE ENTRIES

The following chart shows the kinds of entries which are ajlowed, what they
mean to the compiler, and in which quadrants they may appear:

1.

2e

3.

4o

5.

6.

Te

9.

[
e

1l.

12‘

13,

Entry Quadrantg
(literals) B,D
XYZ A,B,C,D
XYZ(3) A,B,C,D
XYZ(N) A,B,0,D
YYZ (N4+2) A,B,C,D
*FQR A,B,D

-(type 2-6) A,BR,D
/(type 2-6}/ A,B,D

-/(type 2-6)/ A,B,D

*!_I{":R D

) XX (B,D
- B
- D

An actual value.

Meaning

If no decimal point or exponent

appears, it is agssumed to be 2 fixed point number

with the binary point at the extreme right.

If a

decimal point or an exponent appears, it is used

ag a flogting point

number,

An exponent is

indicated by a sign apd the number of decimal places

to be shifted (eg. 14x105

1+6) .

would be expressed as
Flus and minus signs may be used in a

literal but the plus sign is optiomal.

The quantity in the cell with the location symbol

XYZ.

The third element in an array whose first cell has
the location symbol XYZ. The compiled instruction

would have the address XYZ+2,

XYZ(1) are synonomous.

The Nth element in an array XYZ,
contents of the address portion of cell N is added to
the location XYZ-1 to compute the address of the

value to be used.

Note that XYZ and

The current

The same as 4 above except that the address is 2

higher.

subgeript may be minus,

The sign of the numerie portion of the

The result remaining in the accumulator upon exit
from the subroutine entered by TSX FPQRy4.

The value expressed by any of the forms 2-6 with

the sign changed.

The absolute value of a value expressed by any

of the forms 2-6,

The value expressed by any of the forms 2-6 with a

minus sign appended.

FQR is the location symbol of the cell to which
the program transfers unconditionally.

A BCD literal.

The 6 characters following the)

will be used as a BCD constant of one word.

No test is madse.

CAUTION:

This implies that any value will
satisfy the condition.

Ixtreme care must be

exercised in using the = in an CR row.

No action is to be taken,

b

14, +(type 2=5) c Increase the value expressed by any of the
forms 2-5 by the value indicated in Quadrant D,

15, =(type 2-5) c Decrease the value expressed by any of the
forms 2-5 by the value indicated in Quadrant D.

16, (blank) (¥ No value is to be modified by the value found in
Quadrant D, This implies that D contains either a
*¥PQR or *ABC where the subroutine ABC stores its
own results.

ALLOWABLE TEST CONDITIONS

The following chart shows the possible test conditioms in Quadrant A, how
to express them, and their codes in the output calling sequence.

CONDITION ON INFUT CARDS CODE
Equal = 3
Greater than) 2
Greater than or equal to = =) 1
Less than (5
Less than or equal to = = A
Not equal 0O X 6

Each Quadrant A element card must contain a test comiition and it may also
indicate an OR condition. See Element Card description for the card format.

USAGE - COMPILER

If LOGTABE is being used to compile within the TOP system, a comment card must be
inserted behind the program call ecard requesting the operator to set a tape to

No. 7 and to remove it upon completion of the run. This tape will contain the
output from the compiler.

The data if read on line must be placed directly behind the last card of
the binary program deck.

USAGE - PROGRAM

The resulting program in SAP card format on the output tape is not a complete

program. It consists only of that portion of the program which was expressed in
logic tables, In addition, the compiled program must have the LOGTAB execution
subroutines added to it. These subroutines contain a total of 141 words. They
are not included on the output tape because several LOGTAB compilations could be

made for the various parts of one complete program and this would produce duplicate
copies of the subroutines.

There are three possible ways to use the untput tape to get an assembled program,

1l = Use the off-line punch to produce decimal cards which can
be added to the decimal deck of the remainder of the
program before it is assembled.

2 = Use an off-line punch simulator on the 704 (eg. UA TCH1) to produce
cards and use asg in the case ahove.

3 = Combine the information on the output tape with the remainder
of the program which is also on tape and assemble from the

o,

resultant tape. The LOGTAB compiler does not rewind tape 7 when
output is initiated and this allows one to have the remainder of
the program on tape 7. This tape could then be positioned at

the end of the remainder of the program and the I.OGTAB-compiled
program could be added to it. The compiler writes an end-of-file
on tape 7 after all tables have been compiled. Tape 7 is not
rewound by the compiler.

ERROR EXITS

The compiler checks for several types of errors, but regardless of the success
of compilation, it calls TOP. If it is not operating in the TOP gystem it stops
at location 4246 (octal).

If any errors have been detected, the contents of index registers 1 and 2 will

indicate the type of error. The following chart shows what the possible error
exits are (all in octal).

IR NO, 1 IR NO, 2 REASON
16403 - end-of-file in reading cards if AC is positive,

or failed twice in reading off line input record
if Ac is negative.

(16275 - non-numeric codes in row or column number.

(16267 -

15446 - table too large to be compiled - drum has been
exhausted.

15374 - illegal quadrant on input card.

15350 - illegal test condition on a quadrant A element card.

13710 - machine error in computing drum address.

13524 17023 error exit from table which interprets element

on element card.

13524 6 all of input card has been read without finding
a necessary blank or test condition.

13524 15104 illegal data for quadrant A, The last data card
read was for quadrant A but this stop occurs
because of the data on the previous quadrant A
element card,

1352, 1Nl illegal data for quadrant C. The last data card
read was for quadrant C, but this stop occurs
because of the data on the previous gquadrant C
element card.

13524 14447 illegal data for quadrant B on last element oii-'ﬁ“
13524 14103 jllegal data for quadrant D on last element o?;ﬂmd

NOTE These index register values are for an 8192-word machine,
Add 60000 (octal) for a 32,768-word 704.

-8

TIMING

A rough estimate of the time required for a compilation can be found by

computing the time required to read the input cards on-line and multiplying
this time by two.

NOTE: Restriction No. 11 concerning operating time for
the compiled program.

