
j
INEERING

ERVICES

CLEARINGHOUSE REPORT

PRELIMINA RY REFERENCE MA N UAL DR A FT

TABSOL - 225

A Tabular Systems Oriented Language

for the

GE 225 Information Processing Sys t em

February 1 , 1961
Ref. No . 1B2

D. Klick
Computer D epartment
General Electr i c Company

INTERNATIONAL BUSINESS MACHINES CORPORATION

White Plains. New York

This material Is distributed to keep IBM personnel Informed of

new developments. Selection Is based on Interest; this department

makes no claim for the desirability of this approach nor necessarily

recommends its use.

If additional copies are desired, please contact the Clearlnq

house. No part of this material should be reproduced or distributed

outside IBM without approval of the Clearlnqhouse.

PULIIIIIIAaY RBPBllBllCB IWI1IAL

!iIIO~22~ --- A Tabular Syatem8 Oriented LaaguaS.

for the

GIl2S lDfol'lMtioa. Proee.81n& Syet_

COIBputar Department
Application. Section
Progr..-iD& R ••• arch and Development
Pboeolx. Arizona

Dece.ber I 1960

This document 18 a draft of • Preliminary
Reference Manual and a language specifica
tion for integrating decision tables ,,,ith
the General Compiler. The information COD·

taiQed herein assumes a basic knowledge of
computers and electronic data processing
applicatioDs. Therefore, the manual should
be used not a8 a text book but rather to
au~eot already realized skills . Hinor
ehanges in language specif ication may occur
during the unplementati~D period of the
compile? Any changes that are made \-1111
be reflected In future and more final versions
of this manual 01." in supporting a!8terial !Bslled
during the interim of implement2tlon.

D. Klick
Programming Researeh

I. INTRODUCTION

Early automatic coding systems, such as assembly programs, employed

.aemonic abbreviations In place of the computer's n~erlcal instruction

cod~ and symbolic addres3es in place of actual memory addresses. In

reaUty the assembly program language was a aet of synthetic: co>!1puter

instructions . Although these systems greatly oimplifled pr.ogramming, the

progr8ll!l..ier "-88 still plagued with the D!Bily details dictated loy the computer.

Automatic coding languages of today are on the threshold of rel1evtng

the prog!;(lIiIlIer of these detaUs. The structure of these net., languages

are very lIIl\cb like English. By us i ng 8 combination of Englloh ~~rd8 and

phrases to f.l rDl sentences. the progratmncr now needs only to "describe"

a procedure for the computer to follow. This procedure together with a

description 'If the data h then given to a special computer program for

processing. This special progr~. commonly called a compil er . translate

the EngU.h l,roblem. description end generates a prograaa. of computer

instructions.

Such a CII!!l:pUer is provided for the GE-225. Its General COIIplle:

evolved fr'lID t\10 note\1orthy l anguage efforts - the COllInOD Businees

Oriented LUIl8\Ulge (COCOL) and the Algorith:zU.c Language (ALGOL). Both

languages were developed by voluntaLJf co~ttees of computer manufacf~rer8

and us ers and reflect the recent trend toward ItCO;mJlQU" complIer IBD',uages.

The laneuage pretently avai lable with the Generel Compiler is ~aaed

primarily on COBOL. since COBOL satisfied the Deeds of a broad s~~ctrum

of data processing applications. To accommodate the demands o f ~re technical

- 1 -

appUcations, Boolean e;:Ipres81ons, floating point arithmetic, and

the ability to expres8 el~ation8 were incorporated into the format

of COBOL. Therefore, cue may say that the present version of the

GeDeral Compiler can accept programs written in oDe, two, or In a

cOlibination of two lant;uage forms.

Those proarammer. familiar ~ith COBOL recognize that it Is well

suited for creatl~g 3~d ~rocessing data files. AtGOL, on the other

baad, provideo an e>: :dlent me.3US for expressing complex aathematical

relationships. RecOQt luv~3tigatious by the Integrated Sy8t~8 Project

of General Eleetric s Uanufact;,ariug Services uncovered an area of

applications which require neither extensive data file processing

nor profound math~Jatie8 but rather an un~1eldy number of sequential

decisioDs.

To cope effectively with tbese decisions the ·ISP team devised a

tabular language. The purpose of thi~ language was to depic~ by means

of table~ the rel3tioush1pa of lcgical decisions. The new languagG

waa appropriately ~~~d TASSOL for Tabular Systems Oriented Laoguage.

Since its creatioQ 'l'!BSOL Me been used by illany de~artmeots of. General

Electric to 8Jl31yze (\.ld solve problems In product engineering, 1DBllU

fa.cturlag methods, coS\: accounting. and l}'):oduction contt'ol. The 4l3pUcatLon

of c1eci8ioo tables 1s cc.ltinually Sl·o~'ing. P..cceut studies shOll that

they provide a concise metbod for eupportiug the logic of other dal;a

processing applications. f\1r e:<ample. decillion tables m.ay oe used to

specify the transfer of control ltssoci&ted eltb the v~lue8 of. one or

more fields. to control the printing, of deta il and Summ.!lry Unes o f: a

report, or to interrogate the sort keys 1n 8 multi-file sysum At

- 2 -

the Computer Department we have found decision tables a valuable tool

in desiguing and implementing the General Compiler.

Decision tables represent a third language for the General Compiler.

They may be used by themselves or in conjunetion with the features of

the compiler languoge. The specifications outlined in this ~nual pertain

mainly to the table entries and imply and require a knowledge of the

General Compiler. Therefore, this manual should be used as a suppleacnt

to the GE-22S Genersl Compiler Manual, CPR-l23 (s.S.nO-60).

- 3 -

II. DECISION TABLE FORMAT

The format of a decision table Is gi.ea in Fig. 1. Ia concept 8

table is an array of blocks divided into four quadrants by a pair of

double lines. The vertical double line separates the decisions or

"conditions" on the left from the " actions" on the right. t 'be hori

zontal double line isolates ~ariable8 from associated operands ~hich

will appear in the bloeks and rows below. A condition then is 8 r elct!on

between a variable appearing in a primary bloc:k and all operand appearing

in a corresponding secondary block. For example, we ~~y write AGE in

pr1.raary block 1 end RQ 26 In secondary block. 1. In doi ng tbis, we Bre

stating a condition. Verbally, we a re BAking lIi f age equals 26". An

aetion, on the otber band. is a stat ement of what i~ to be done. By

writing AGE in a primary action block end 26 in its D.s fJoc1.eted secondary

block. we are stating that "the value 26 is to be a ssigned to age".

It is interesting to note. at this point. the EngHsh Int erpr.etation

given to the vertical lines. The left-moot line 1r.tly be thought of as

representing the word IF. Those linen to the left of t he vertical double

line may be taken to meen Al.~; the veT.tieo1 double line itself the ·~ol.'d

THEN. Since actions are sequential entitieo, the line~ sep3rating t hem

may be interpreted 88 semicolons aud the right- most line. which actually

terminates the actions. 8S a period. With t his in mind, each secondary

row becomes an English sentence. For example, each rotl now reads:

"IP condition-l is satisfied AND coad1tion-2 is satisfied

.AND ••• AND condition-l~ is satisfi'2'd THEN perfoT.m

action-I; action-2 ; • • • I a.ction m."

If any condition within 8 rem is not satisfied. t he nf' ... ~t l"OW is evaluated

- 4 -

[.. ..
f

r

D .. .

..
i-• § ... •
~

A.

Figure 1

- 5 -

to

'"

to

'"

.. .. ~
~ i
~

,r--,

~
" E

• · ·

..
t
'"

• · ·

•

ad 00 _ t11 .11 the rowe ... deplated. \/beD tbh haP the tabla

1, .. ld to baYe liDO 801utloa''. The table 1.a COIl.alderecl "aol.ed" vbeD aU

the coadltl00a of • row are .. ti:f!cd ~nd their assoe1ata4 a~tlOD£ pcrfo~d.

Before considering the conventiooa used to formulate coudltloal

and actiona, an example may belp develop insight Into tbe nature of

decisioD tabl •• and the manner 10 which they may be ueed with the

GeIle'C'al Compiler. III this example (Pig.2) we. are s •• rebiDS a lUnar

.. ploy.o fl1e (recorded on magnetic tape) to determdne the number of

male employe.s who fall into the following job categories .

Job Level Years Experience Tid ..

6 2 Proar4il:l:D.8r
7 3 Proarammer or Aualyst
8 Mo .. thaD 3 Analyst
9 lIo.a thaD 4 AD_lyst or HaDeser

10 Mora thaD 4 Manager

Por .ach .. ployea we finG having au,. of the •• qu5UficaUo118. we are

to write bi, departllClt auaber. UIH, title. level, and experience

oa tbe oc.puter' a typevr1ter. At the end of the run the toUls for

CAch of the ccte:ot'iea ~r. to be f\lso put on the typot'lrlter.

Tile core of tb1a probl. 1a the dacil10al that Blat be made oa the

1nfor.attoa atored in the recorda of the .aster file. The.e decisions

an coa·f1nd tI1 exprass.d above in narrative form. With O'I1ly IdDOr

alteration thi. tOl'll baCOlHa the program .tatement of our prabl •.

Tb8 table aad leDtencII ara punched into 80-colu.a card. exactly a. they

.ppear tn rtl.2. When thi. ls doDe they may b. given directly to the

caapil.r tor proc •• ,ina.

M tUu.trated ill our exa.pla, General Compiler leatencaa .. y

b. uled to lupport the loSlc of tbe table. Thes. seotaacal accoaplilb

the followiDg:

-.

GENERAL. ELECTRIC Gll4!llf.L COIIIIlI!R
SENTIENCE 'OR I

"'IOGIIAtil ..5,._ U_~ Ic.."'\

• •• 1. 1.1., .1. j,,j,,J, ... 14 • • , It • •
Sl!QU I MCII
MUM.1l1t

• • • .. 'D ... "- '''''SIO'' . , . .. • • • T
"''' ;. T • . , , .

I 5 . ~ 0 <.0 · .. e. .. l' ""' ... Te. "'~. 1t.c..,11 .. •
• .. • • ... • • T • • t.c: OLD. .. I!"".", .,~ • , 0 - y -. ... 0 ., -

. ! 0 '" • ... • • • , c. 0 .. 'D' • •• ~ • " . • 5 ••
,. .. , c f.jqll"", .. \ .. III C. ..

, 0 4 , . , PIa" .. " ... ", ..

, . 1 ,.
Pt 0"" II"""' OL " .. " \. , • T

• , , • , "'MIIII.1;''''

« , .. • • I.. '1 £,. O. " ... " 5 .. , . I • • • " .. ~ ..
•• 0 • • -. , .. ·
, 0

" - 0 " ,. • ,. • .. ,.",,'1' • T ... T • ,. I.. So 'LY

1 5 "'oT"L X , T • ex' , .
, 0 • T • 11. .. <. ·
'5 • -'0 · C. L 0 ... "" .. £ TIE ... ~ , 1..1: •

I ~ 0 , T TOT"\' • " • TOT" L • To ,
I, 4

. • •• • 0 .
I

....
UTI:"

• o • .. • .. _t..," .

o .

• • J f
I 1 G '"

• T'I ... oor
• [• ,

~

:
.;~

~

• f • ,

;

, 'A' C T." • . f

<\ • " ~ (. 0 .. •• • .
•

OPEN -_. Declare£: that the MAStERJPD.E 1s input and since the file

i, recorded on magnetic tape, validates the tape labels.

READ --- Deliver. the next record from the HASTER~E and tests

for an end-ot-file sentinel. When this sentinel is

detected, sequential progrcm execution is interupted and

cont~l passes to the portion of the program labeled END~RDN.

IF RUminates those data records which contain information

about female employees. The word FEMALE (aloo PROGRAMMER,

ANALYST . and MANAGER used in the t able) represents a

special kind of condition and will be explained later in

the manual.

EXPERIENCE - --- Calculates the emplo)'u8 tOUI experience and

•• signs the value to the field named EXPERIENCE.

The word TABLB informs the compiler t het it must process • dec1sioo

table; EXAMPLE 13 a name or label which was given to the cable. The

size of the table is atated next by giviuS the number of conditions,

actions, and rows contained in the table . This information ie used

only by the compiler and is not executed by the compiled program.

Table executlou begins at row I (sequence number 40). UatAg our

narrative definition of a table, row 1 is interpreted aa followa:

"IP the job LEVl!L field equa10 (BQ) 6 AND the

EXPERIENCE field equal. (BQ) 2 years AND the

."loyee'. title 1s PROGRAMHElt THEB assign the

Talue I to the aubscript ~j GO TO the part of

the program hanDS the label TYP~UT. tI

If oue of thea. coadclona eaanot b. satisfied. row 2 i8 evaluated atartiaa

again with the left-moat CODdlt1oa.. Sequential execution of the rowe

coatinuu WIItil either all coa.ditioa.a 1D a 81:"n row are a.tl.fied or

- 8 -

all rows aloe exhausted. When the latter situation occurs. the

sentence il!Dediately following the table is executed. Proceeding

from here the senl:ences in our examp le accomplish the following:

GO Intel:rupts sequential program execution and passes

cont.rol to the part of the program labeled GET~CORD.

WRITl--- wr1tea the current contents of the DEPARtHlNT. NAME.

TltLB, iEvBL. and EXPBRIENCI fields on the computer'.

'.ypewri ter.

CLOSE--- Rewinds the MASTER"-¥ILE and performs the fUe'. eloslug

conventions.

STOP .,-- Terminates processing and writes the words END RON on

the typewriter.

By r;.!neral CompUer standards this example represents relatively

simple tonditions and actions. In formulating these entries, the

}n'ograr.me't'may take full advantage of the compiler'g capabilities.

Th~ remainl\lg sections of this manua l are devoted to defining the

conventions and manner 1n which conditions and actions ~y be formed

and entered in tables.

- 9 -

III . EASlC CONCEPTS

Since decision tabl..:!3 llre user! 1n conjunction "'11th the General

. Compiler language, we must first look at the foundati.ons of this

language before considering t he COTlllterparts t:.~at may appear in a

table. The compiler's language) like ltl)st nat'.!\"al la.nguage3, is a

body of 'fOrds and a set of CQl':.vel1tiona fo::: cO:if)i~dilg these words to

express meanings. Its atr'.lctl.lLC or. Ii syD. t"n " clozl~ly resemb12s the

rules of English gr8Dm8r. anc. its boo.y of ':':'ordl ..u.1y be appropriately

termed a "vocabulary". The pl.lrJ,l:.ae of th i s s e : ti lil'1 1, a to show how

worda are formed and how they rMy be u ::ed ;;c ~::{pr",ss e deitired

meaning.

Chane!!!!.

~~he basic units of our le.uguaae are tIle c·;:al".s.eters used to form

wordn and symbols. The c~arsctcr ~e t !nch::cl~s the letters of tbe

alpbubet (A, B, C, Z), tr..e nUl''lcrals «("i , 1. 2, 9), and the

spacial characters shown in Pig. 3. Speci al c~racters are presented

in m<):t.:! detel1 as they a!:'a er.countf~red in the manual.

Word.!

The words of a typi~l GlSneral Compiler lH'ogrem fall into one of

two categories: the voeab u lttry of the eor:;p:!.l(~:: and the vocabulary

used by the prCJgranzner. The prograr.u2r's vocai)ulary will consist mostly

of arbitrary nam.ea given to his da ta ar.d s e c.t i,)ns of his program. The

compiler's vocabulary, on the othe;; hand, i5 ~redetermin£d and explieitly

defined in this manual. Since the cOILpiler, b:r nature of its designers,

1s a mistrusting mechanism. the programmer m~~~ define the worda he

uses too. This is done, not by writing a manual, but inat.-d by merely

- 10 -

SPECIAL CIIAIACTIRS

Character - Card Code

b. Space or blank Space

Period. - Dee_1 po t 12-3-8

• C- 0-3-8

.. QuotaU ... IIark 3-8

""' Bypb ... S-8

(Left Parlllltheai. o-S-8

) J.1ght Parentbealll 0-6-8

+ Addition 12

SubtraetloD - Minu. Sip 11

* Mu.ltlplicatioa. 11-4-8

I Din.ion 0-1

- Aaelpaent 6-8

Vertical 'ranle Lias 12-4-8

Ptlure 3

- 11 -

filling out " data descrlptloo fotm. Once these "data na1Dea" are

defined, tbey 1IIly be filed clthe:::: 011 80 .. colurm punched cards or on

_gnetic tape aad used over and over again. The data de.crlptioa.

file then i •• "dlctiooary" since it contains the deflD.itt0'l18 of the

word8 used by the progrmDer. Furtbenaore. this d.!ctiouary .. y be

revised without TedeflnlD8 all of its .ntl~e8 . Thi8 i. acco.pliabed

by a special aerrice ro"l1ti.(1e which a ccepts correetiO'l1 •• 1l18ertioa8, and

deletion9 ao loog 4S tbey 9re written on tho oaapiler'. data description

fol:lll.

Our two C4tegories ot verds may be illustrated by the followtna

.eoteoce taken from the progr_ e.x£IDP-1 Q: given In Fig . 2.

GB1l"f:ECOBD. IlEAD MAST1lJi--FILB RECOBD IF Elm PILE GO TO BRD.JtIJli. - ------
He.e, the words BEAD, ltECOBD, I F' • END, PILH, GO, and to belOll8 to the

vocabulary of. the compiler; whereas , t he 1101:d8 GET.....aBCORD. MAST'EB..J'D.E ,

and ENlY'illJN belong to the pr:Jgr3Jlme"!:"s vOI!sbulary . The ~Uer vlll

assume that fUSTER""'ILE is 4 data nan:e dun to t he word t 8 position ill. the

sentence. It will then search the data description to verify ita

assumptf.on and to deterl!11:ce the character:"~stlcB depicted by this word.

Not fln<ling a match in th! data description results 10 an error .essage

typed on the cOIIIputer'3 typewriter . The ""er da GET..JtECORD ad !NDJUIN

vill be interpreted as aertencecn8meS due to their position in the

by checl:ing (~ach transfer to tBSke certain that they lead to properly

defined aentp.nce names . The consequence C)f an undefined sentence naate

i8 llkeui se an error _ssa ge on the coollnll:er'a typewriter . The compatabUit1

checks IIMmtioned here are only two of tUny whicb the compUar perfonas to

in8ure unquestionable ~~sults in the programs which creat •••

- 12 -

Formation of Names

As previously mentlon~, data aame~ are words representing data

(files, records, fields, elements. COV3taot8. arrays of values, etc.)

a:r:.d are 6rbltn.ril)· e.s3igned by the pl'Otl· r. They are formed fl'a.

the followlna characters.

Lettera

Numerals

Hypben

A. B, C, • ..• z

0.1.2 •... • 9

To avoid error messages and possible ro-compilatioD, the progr...eT

~bould choo.e data ~s tb:et

t. Do not ezeeed 12 characters,

2. Do contain at least ooe letter,

3. Do I'IOt begin o'! end with a bypbo.u.

To 1.ueure e properly defined ~ro8rltm: AU data naMe8 abould be recorded auc'

the1.:! charactt!ciDtic d.?tl1 deacdbad on thB :OOl,Ucr's "ta d'!8cription

form. Tb.~ progrll:iD!ae~ also shmd.d he c:\reful not to use the c0G?1ler ' •

vocabulary 8S data nomes.

In. addition to d8ta IlmlleS, the progt Ql:lt:ll:el' is free to name sentences,

tables. aild other "procedures" in his ; rogram. With one exCHptiOD these OoIUD.e~

are for.ed like data DaZeS. Sin~e pro:edare names are judged fro. their

position ill. the progrmr. , they may te f ,: med from. only too numerals, 0

th"ro1..gb 9 .

Constant.

The value. associated with data Qane~ gcnorally CbaDg~ dUl~ng the

actual runn1ng of • compUed progrBill. It 1s for this rel'.soD. that they

- 13 -

are sometimes called "variables l
'. A constant. as opposed to

e varia~1~18 a specific value ond does not change ~itbin the

scope of a program. CODstanta may be one of two kinds! a literal,

c.r a n&med constant.

A literal 1e a value itself rather than a name given to a value.

Literale may be numerical, alphabetic. or alpbanumeric -. 1.e.,

composed from the charncter set of the computer. All non-numeric

literals should be enclosed in quotattcn marks (") to avoid having

the compiler confuse th~ with data names. The conventions for

fo~g literals are th~ followi&g:

I. NoD-numc~lc literals arG IUmited to 30 char acters, excluding

the quotatioc marks.

2. A n~1"1.c H.tnral not cnclo::;(:Id ill quotation tlW.ZOk6 1.s

&SSUlDed to be: a number. Numbers may conta:'.o not GlOl'e than

ooe decimal I,,)int aud a wiuue aiga. trnaig:.led nww.bco::s ore

coaaldered p031tive. Excluding decimal points and minus

signs, uUJaber3 must not exceed 11 decimal dh}.t .q.

3. Numbers may be tr~ated. as floating point b7 writing them

&8 a power of ten - i. e .• a llur .. ::"er 0 .:: decimal fraction

followed by ~. power of ten exponent. For example, the

number 230100 might be written 4£ 2.30125 which is equivalent

to 2.301 multiplied by 105 the exponent part, fndicated

by the letter I, ._, contain 8 minua sign to show a negatlye

expooent.. The value range of aD exponent ·;.8 limited to

± 75. Exclucling the decimal point, the minus sign, end

- 14 -

the letter B. the fraetional part of a power of ten n~r

.uat DOt exeeed nine dee1ual digits. To distinguish datn

namea from float:ing peint 1\Ul!IIbers 2 data nmmetJ should Dot

1M fonacd frOtn ,.nly the nuneralB and the letter E.

4. AD alphanumeric literal may DOt cODtain en emheddod qu~tatioD

-ark since the enclo8i~g quotation marks are used to determiul

the aize &lid content of the l1tE:rt:l.

A ..-d COIUtaat i. a constant which bll6 been given ill name. N.a.ed

eonataat. are defined by means ot tbe datL Geucriptlou and ~ny include

uy character beloug1n& to the character set of the cuaputer, lnduding

the quotation mark. LUte liter.ala named constanto may be numad·;,

alphabetic, or alphanumeric. Tbey are unlike literals in thost they

.... y be any lenlth.

Subacript.

Subacripta provide a ~DVenlent aethad to reference individual

..,.alue. COIltabed in a Uat Qr in an array of values. The ";ariable, It

eaployed in the decl.l~ teble of Fig. 2 1. a Bub.~ript used Just for th1a

purpose. Since five totals are to be accuarulated, one name V83 aae1pted

to all five, namely, the data name toTAL. Whenever ref.erence was .ada

to a particular total, the data Dame TO!iL 488 followed by the aub.cr1p~

I. '11da ia illuatrated 111 the axpre.s1ora

TO'lAL (I) • TOTAL (I) + 1.

ADd the aentea.ce vh.1cb prints all five totals on the typewriter . Pro.

tM. ~l.. it follow. that aubacrlpta, Uk.e data ... y be gl.ven ~.

Ia fact the __ EUlea that govem fond.D.g data names apply to n-fna

aub.cript ••

- 15 -

Since 8ublcript1Dg is • poaitloaal aotat£oa, the ranae of .ay 8Ub

acript i8 UJdted to the valun I, 2, 3, • • • t D (where D i .. tile wyf._

Duaber of valu •• in • list). This doe. DOt .eaD that 8Ubacripta are

Hated oa17 to iatapre. If. subecript 'a DOt deftaed oa i.atel*l' b7

.... of the data dly1tJloa, the. COIIpUer .ill aut .. tlca1l7 pl'OY:1de

codiq to t-rvacate it ••• lu8 to ea iDtClger. hlrtbe~re, aubacripta are

DOt reatrictad to a aingle var iable D8ae. Arithmetic expr ... lona --7 alao

be ueed .. aubaedpt. POI' exaaple ,

RAn (P+l)

It «(.t-3)*P**3)

A (J)

are legltiuAte for.. of subscripte.

Up .utU DOW . , only cae ... d ional .ubacripttna 11&1 coaa1clezwl. ,.1

iD ... U/.-cksaeasloa.ed. arrey" ~ alao be ufere:oeed by Bub.cript.. POI' 1 ••

a artay tn which v.luos are ordered

~l 1.12 1.13 ~4 ~S

1.21 1.22 Az3 1.24 A2S

~l ~2 ~3 1.34 ~S

1.41 1.42 1.43 1.44 1.45

ASl 1.52 AS3 1.54 ASS

might be aubacripted •• A (.1,K). wbero I. 1s thl! colUlZlaar aubacript ad

.1 tbe row. To refer to value ~5' .1 wt.uld. have to equal a mad , . equal. 5.

Preceed1aa ..-pl .. abow that eubecripte are _cioa" la par_daeal. aDd

I:aparated by ~.. Thi. not ation penllte the c0llp11er to dletlnguhb.

sub.cript. f~ otber elemoata Ia tbe lansuaae.

- 16 - '

Truth-Values

There i8 a eLas. of variables which, through elther us.ge or definition,

may assume only the numerale 1 or O. The value 1 i8 said to be their true . -
atate and the due 0 their falae state. The worda END FILB of the lUW>

.eotenee in F·S . 2 is IUcb a variable. When the OPEN aeuteace is executed,

IRD FILE is Jet to ita f.lae state and remains ao set until the end-file

eQDdltion iJ encountered. At this time, it 1s set to lta true state.

Variea Les b.aving truth-values are termed "True-False" variables. END

PILE 1. 8 ·:OQvolieuee proVided ~y the compiler; the programmer may also

fot'lllUlate his Itfll true-false variables by merely listing them under the

heading TRUE4 lALSR in · the data divisioQ. They may be named according to

the ruh!s 81"1 !11 for data naJDes.

Arttbmr~ll.5.J! press1on8

~rlt~':tle expreallons ere rules for camrut!ng nUMerical values. They

arli'! forrr.erl from. vanables, nvmbers, fWlCt1oas. and 8ymbola repl"es8Utlng

addltior.. 61btrnction, lIlUiJtiplicatioD, ll1v1s1oD, and exponentiation. For

I :::" -,pie. iQ the ~reasiOD

11tl111-mB * 2.50 .. 0'l\.!IIIIS * 3.75

PUMIIHRS ant: O'l'--'HRS are var18bles; 2.50 ad 3.75 number8i and + and" 8,..ho1s

for addition ,.uld multiplication. !f PREH"'l\RS were 40 and OT""HRS were 4, the

ezpres810n beCCXl!CB 40 '* 2.50 + 4 '* 3.75 atl after pcrfonatug the arttimletie.

reduce. to the value 11S.00. '1'0 88ve this value, a prograaaer tight write

GROSS"PAY • PBEIf"BRS * 2.50 .. 0'l'-'1IR3 * 3.75.

The presence of the. symbol tells the compiler to 88S180 115.00 to the

variable GROsSVPAY. When expressions are yJritten in tbis fora, they are

called uaseigDBel\t etat8ll:elltall
•

- 17 -

The Arithmetic pe~tted in au expreaalon 18 atated by the f~llow1ng

oyoobol.:

Sy!!bol

+

*
I

**

Mead

Addition.

SubtraetioQ

Multiplleatloa

Dividon

Bxponentiation

10 addition to .rlt~tlc, tbe followina .. tn..atlcal function ... y be uaed .

Sy!!bol Funetion

SII(S1 ...

COS COline

ArM Arct.u.gent

SQRT Square Root

EXP l!zpooentwl

LOG Coamon L084ritbm

lJI Natural Lo:laritbaa

ASS Ablolute Value

Aritbaetic exprea.iona ace evaluated from left to right aceording

to the following priority:

1. Ezponeatiatlon ~d Functions

2. I.JltlpUeat:f.on and Di'Y1aion

3. AdditiOD and Subtraetion

Parcnth.I.1 may be uaed to establish a precedence other thaD tbe ODe

above. When they are usec!, the evaluation if! perfolMd in. the iDDerllOet

to the out~rmoot pair but atill from left to right v1thiQ a glv.o pair.

- 18 -

Relational ~pre8sion8

A relatloaal expression i_ a atatement of asgnitude. between two .alues.

For example, PICA GR 144.00 is • comparislon between the variable rICA and

144.00. The aYJllbol GR. atands f.;;)r the relatlw "greater than". Other

relations may be stipulated by

Syd!ol Relation

EQ Equal to

CR Greater than

LS Less than

NEQ Not equal to

NGR Not greate£' tt.an

lIILS Not less t:l:um

To have .eenina. relational expressions must be stated as condition8.

The expression FICA CR '.44.00 tells ua nothir!!J. However, when it i8 written

a.

IP PICA GR 144.00. GO TO ADJUST-PAY

we kn~ lRmedlately whet is l~tended. By definition tben, relatloaal

expressions are coaditions au4 WheD evaluated always give a truth-value.

Relational expressioDs may be explicitly stated or implied. FICA GR

144.00 1& an explicit statement of magnitude. Iu the progr .. example of

Fig. 2, implied relations wer~ stated by the words FEMALE, PROGRAMER,

ANALYST, and MANAGER. An m.pl1ed expression is formed by giving a oaae

to a value, a range of values, or to a aeries of values sud ranges. Once

the name end its values are defined Ln the data divi81on~ it may be used to

mean. its associated values. Implied -relations are termed "condition-namea"

since 8 name wae given to 8 condition, i .e., 8 value. of 8 ~ariable. The

- 19 -

variable from which the value 16 taken is called a "conditional variable" .

Therefore, writing PROGRJU~ (£ig.2) in a dc~ision table block 1s the same

as writing an expresSion wb.lcn , ... ill compare the TITLE field with the value

aSBociated with the title t pr,)grammer.

Logical Expressions

Logical expre~8ionB provide a convenient method for obtaining truth

values. They are formed by combining true-false variables and relational

expressions with the logic.al operators AND, OU I and NOT. The expression

(P18· 2)

PROGRAMIIl!R OR ANALYST

is a logical expression which io true ...,·}t..en &! employee' 8 TITLE field

indicates that he is either a p;:-ogr3lZl!ller or an analyst.

The rules governing the evaluation of 10Slc8l expressioDs may be

expressed as follows:

F

F

F

I

T

F

T

T

---- -----.-------- ~~

N~1" P T

p/.llDq F

P OR q F

T

F

T

F

F

T

P

T

T

where p and q are a combination of true-false variables,

relational expressiona. or logical expressioDs.

Logical exprc£sions ere evalu~tcd f~om left to right with the IGg1csl

operator AND having precedence over the OR. Parentheses may be used for

grouping or establisbing a precedence ('1£ evaluation other than the one

mentioned previouElly. Hhen t.1.te!' are ured J thl! evaluation proceeds from

left to right from. the i.nnerilOst: pair to the outermost pair.

- 20 -

IV TABLE ENTRIES

The p~ev1ou8 section outlined the elem2nt8 of the General ComplIer

language sDd briefly showed how they ~ght be used. In tbe introduction.

it was mentioned that these SAme element. may be employed within tbe

blocks of decialon tables. The purpose of thie aection 1. to show how

tbis may be done.

Formation of Conditions

By definition, a condition Is a relation between a prt.ary block

entry and some corresponding secondary block entry. A condition. like a

relational expxesaion. may be oither true aT false. True conditions are

•• id to be "satisfied" and false conditions "not satiefled" . FrOID. thi.

definition. a conditioo may be either a rel .• tional expres.ion, a logical

expression. or a true-falee v~r14ble since theae are the ooly element.

that yield a truth-value.

The formata Doted bel0\1 show how these expressions may be split between

primary and secondary blocks to fona conditious . In these examplo8. the

word "operand" stand for eithttr a varh:ble (oata name or subscripted. data

name) J a constant (literal <'r D8lIed constan..:), or an aritb.etie expression.

The word "relation" signifieD one of the relational operators - EQ. GR., Le,

NEQ, NGR, or 1II.s. Sillce arithmet i c E=xpressious DIIy be operands o f. relational

~pr~~slon. and relacional expressions 88 o~erandB of logical expr.essions,

it neces8arily follows that arithmetie ~pre88ioo8 may appear 10 togieal

expressions.

Example

Operand-l Relation

-2
I=v=c

o=EQ===3
- 21 -

O~r&Dd-l ~
&elation ope~~

Operand-l RelatiOll

Operand-2 OR Operand-3

Operand-l

2

~Bntry I

"0 Bntry

~rue-P.l.e Variable

rue-Palae Variable

Dtry

gical Er.pre Bt:ion

r:: 1~8~i~ca~1~Ex~p~r~e~.~8~iOD~ ___ 1

- 22 -

IJ!XPER1F.NCE

GR 4 I
TAL (I) NLS

(1) OR PT(2) or PT(3)

rx+Y)
GR F+l I OR LS Q(I)

I
I

lREq.:---

!if 1NVE!l'IDRY PILE

!'lOT

X GR '1 OR X LS (Z+l)

Formation of Actions

Actions are statements ot the things t g be done when all the

conditions of a row are satisfied. The sco~e of an action may be

one of three kinds: impUed tlssigzm1ent, pr ocedura l , or input- output.

The only action presented 80 far was 4Ssign:uent. The other two are

extensions of General Compiler sentences and will be mentioned bere

only briefly. The compiler N8nusl should be consulted for 8 more

detailed pre.entation.

1. Value Assignment. Value QS8ignment is an tmplied function

between B88ocillted,prima:ry ond secondary blo,:k en t ries . By pladng

_ data Dame in a primary block and aome number in a secondary block.

for example, t and I £! Fig. 2, the compiler automatically produces

coding to 88sign the numer to the data name. In the esse of our

example, 1 is assigned to the subscript t. Other example. of value

•• 8ignment are given below. In these fOTmat s the word variable

implies either a data name (·r 8 subscripted data name and the word

conotant clthe. a l i teral or a ~d conataut.

Format Example

ariable

Constant [I
~on8tant I FI_riable

ari_ble MoPHA (I,J,K)

ithmfltic IN mETA + (X/P)*"2

- 23 -

Format

~ritbmet1c Expreaslon

~U1.ble

True-Pala. Variable

~rutb-Value I or 0

truth-Value I or 0

True-False Variable

I!x!!!!ple

1

2. Proceclu1:'ol .ct~;. Procellul"B.l actions provide the means for

luterruptiD8 the normal. execution 30quen-:e of a table. Any of the

folloviui; coaapUer verbs My be U8~\J for thit: purpose.

GO TO
PERFCRH
STOP

The GO verb stipulates an 1.Wcondlt1cr:.al trailS fer to a speclfif":d. part of the

table or prograa. IC. destination fJJOI be a sentence name, table DBIe, or

the row number of a particular table The format of the r.o entry 18 .a

follows:

Format

N

irE Table

Ex_pIe

§=o =====1
I~OUT

GOT<!

IrAllLE 23

GO 1'"

j

The other fom of a pr·;,cedural control is the PERFORM verb. The

PERFORM specifies a transfer to some destination, the execution of a

table or a set of sentences at that destination, and a return to the

action block following the PERFORM. The sentences or tables acted

upon are by definition u "closed procedure" - l.e. f they have a single

entrance point and a defined exit point. Conventions for writing cloled

procedures are giveD in the next section. Legitimate forma of the

PERFORM action are

Format Example

Name

~=:RM=T=ABL:::::E====lr
The StoP verb wy -3.180 bo uoed &0 an nction. It may be placed in

either a prtaary or secondary block. When it is used. no other sctioa

may appear with it in the same action collUm. The STOP terminates pro-

cessing teaporarily OT DeXttanently according to what action is taken

at the c02puter's console.

3. Input-~~tput Actions . Input and cutput actions are compiler

verbs that control th! flow of data to and from the computer. They read.

write . and validate t1pe labels of d~ta fites assigned to perlph~ral

input-output devices. Uben de,ta files are referred to fro. 8'0 aetten

block. they must be d~fined according to the environment and data division

specifications listed in the General Compiler manual . The formats ~f

input-output actions .lre illulltrated by the following:

- '-5 -

Format Example

PEN INPUT or OUTPUT

11. Name

11eName reiTER"FTI.E
~. CLOSE, or OPBH verbs

bITE
.cord lIame 1

§:d Nue ~ ~ACTIOII
17&. _____ -'

The Skip and Repeat Operators

Th. 8kip opar4tor makes it po.sible to show that a condition or

aetion 1s not to take part i~ the evalution ~f a row. This i. done by

placiDg a hyphen ~) 10 the concerned condition or action block. The

compiler then will skip this block and proceed to the next.

The repeat operator is .a Bhorthar.d metl_od to indicate that • condition

or action in the block above i8 repeated. Thi. i8 shOVD by entering a ditto

mark (If) in the block below the one that is to be repeated. Tb.18 notation

v •• used with the GO 70 action in tbe sample table of Fig. 2.

- 26 -

V TIll: TABLE AS A PROG~ltH'

Up until ne"l > r..nly eonpcnen t 9 of. t £!bLel1 ~;rer(l prese!l.ted. It. 11as leu:!"ned

1n Section II that General Compiler sentences could be used to support the

conditions and actions of tables , and th(~ preeeeding section mentioned

tables as closed prccedures . Ihis sect on reletes these topics to tables

and tables to compiler programs,

Block Conventions for Writing Expressions

1. Words, abbreviations, and symbols of the compiler's vocabulBry

should not be used as names . Ihey may be combined with other cbaracters to

form ne4.es.

2 . l'he lIord:; in an expression should be s eparated by at least one

space . More tban one space is permitted . The space separator is optional if

the words are ~ound by

+ * / () "

3. Subs (a'ipts should be enclosed in parentheses . They may be written

adjacent to (,,!thout a 8pacl~ separator.) or apart (with space separators)

from their associated data names. Indivi dual s ubscripts in a list of subscripts

should be separated by co~ws .

4 . When two ar1thmeti~ expre8si ons 2ppesr side by side &8 in a series,

tb.ey 'lhould be 'Jepa't'~'\ted I)Y co::nr.aa.

S. All colutmlS of a table should be bOU\ll by the vertical table line,

(12-4-8 puncb).

6. The skip end r epeat symbols ~ '" and ", should be the only entry ,

other than spl:cea, in a block.

- 27 -

Conventions for Placicg a Tabi e in a P;rogr.aDl

1. Ttlbles are written uu the General Compiler Sentence Form.

2. A table is l"receeded by tho!. lOord TABLE. Naming tables 1s

optional. When a table 1s given a 1l8JH, ti le name .. y preca.d

or follow the word TABLE. The word

TABLE,

name. TABLK. or

TA&.E nam.p.

should ba followed by a period.

3. The table's Qize i. given next and should be pla~ed on the

same line as the cable's name . Th~ size may be VTltten in ODe

of two way.:

kick CONDITIONS mml ACTIOnS nnn ROWS.

or

(".kk. DlI1I . Don).

Both forms are tendnated by a perlod. The ortler of writing

the number of conditions. Qc~ionu t and rows is optiooel in the

first case sinct: ola(;h can b~ identified.. Howevtlr. order is

important in the !Jecond form aince the compiler interprets tba

first number eocl.)scd ill parenCh(!(lf!S as the numl·er of conditions,

the second a 8 act:~on3 . an:! t ue tl,i;:d as rows. C.,ndltiona. actiona.

ond roOws arc numbm:,(!d sequentiall.y beginning with 1. !ow 1 .1a ~

first secondary ~; t hl! p r iwlry ruw is !!!!S countei in the row

count.

4. Gt:neral CompUer t>en cauc.es s hou l d no t be plac.ed becueen the

word TAaI.E and tho praary r ow or t:he tables.

5. Th. double vertical lines that 8Hpurat~e conditions t l'Ollt actiocs

may be represented by one or two 1?- 4- 5 punches.

- 28 -

6. The size of esch block may vary from column to columo and

row to rOll.

1. The only limit on the 8ize of a t~ble is row width. Since the

compiler prints r. listing of compilatioD. the recommended row

width is 120 chat'aetera including card sequence number. MaxiawD

row wi,dth 18 1200 cht.racters.

Since the table form i8 an image cf an SO-column punched card, a hyphen

(~ i8 placed in cclUDDl 7 of the fom to show that • row i. cont.lnecl

on more than one card, Iu this ease, no table colwm .. y be split

acrosa carda. EE-.eh ca-rd is to contain a sequence number to insure

proper C4-rd ordel', \1h"!:n rowa exr.eed oue card, the sequen.:a number

of the first card is only printed. Sequence nWlbers of succeeding

carda are stripped out. The row is thea printed a •• multiple

of 120 character£. ~ith an int~&r41 number of table eolu.aa

per 120 characters.

8 . Bltpressions too long or coaplex to be writtea. ill blocks .. y be

.written after tht, table's DIble anel size and be executed frOll. the

t~ble by ae.ans of: the PZRFOltH fto:b. In addition to exp1'e8atons.

auy General Coclp1.ler sentence may be used. aDd executed in this

aawmer. To lnd:lc:ate the start of the table the word BEGIN i. to

follow the list (.If expres6ioua &nd sentence8. This forat .. y be

illustrated by the fo1100; ... 10g:

TAlJLE name. k:kk CONDITIONS UZIIl ACTIONS DDD. ROWS.

General Compiler SenteDc~ and Expressions - May be
U3cutV:t only from the. c,finea of the table.

BEGIN

TABLB

- 29 -

Closed Procedure.

Fig. 4 outl1Des the f~~t of a closed procedure. By definition. closed

procedure may be acted on unly by tue PERFORM .erb. It coataius one entrance

poiut and ODe exit point. In fig. 4 theee are incUcated by the word. BIGIN

aDd END TAlLI~. BEGIR and END aleo act a. sentence a. ... a and may be

referred to froa within. thl! proeedu::e body .

Ixpnsdon. too lU4g to be pl.eod in the block. of a table flay be

written in the procedure head an4 executed from the procedure body by mean8

of the PERFORM verb. A!5 8uch, they 1Il1Bt be given names. In addition to

expn.doua any Ge.a.eral COLpUer sentence may bfI written in the head and

executed accordingly.

The procedure body containa the table. Aa shoWQ in Fig. 4 compUer

•• tmcel .. ,. preceed and follow the table. beeutl00 il •• quGtial

ltarting with tbe .entence or table after tbe word BEGIN aDd p~c •• d3 until

the ed.t Elm TAILI 18 reached. It 1e at this point that C01Itrol ie

r.Yerted to the PIRIOaH ver.b which orlg1aelly r e fercaced. the procedure.

Aaf ucc0a4itional transfer fro. ~thin tbe procedure to the outside 1.

and.fiDed. Bov ... r, PERFORM verb. 10 tbe body .. y reference otber clo.ed

p~CedUN ••

Clo .. eS procMuns .boule be vrittea .part froca the .. ia progro.

- .llI -

procedure
body

DECISION TABLE AS A CLOSED PROCEDURE

TABLE e. kkk CONDITIOI1S ACTIONS nun ROWS.

I1I1IlIN.

.. .

General CoIIpiler Secte:oces and Ibqaoess1one - Kay be
executed from the. confines of the (!eeiBlon table.

(Start of execution - entrance to procedure body)

General Compiler Sentences and ExpressioDs

neeiaionlT&ble

'}eDeral Compiler Sentences and Exprl!tuioD8

IIID TABLE name. (bit of procedure body)

Fig. 4

- 31 -

IDENTIFICATION

LOOTAB COMPIIZR - UQ0400
29 Jul:r. 1959

Jane E. King
LST~ Dept •• Genaral Electric ecm_
Schenectady, New York

LOOTAB is a 704 program which compile. a program expressed in LOOTAB
typo logic table. for the IBM 704. Tb. output is a tapa containing the SAP
program vhlch caD be assembled directl,. or which can produce carda by means ot
the off-11 ... punch. The resulting program" oparate. in conjunotion with a ... t
of standard LOOTAB subroutine.. (Sea D"-59LS23).

RESTRICTIONS

up)
1. Input ma:r he on-lin.

on tape 2 .

2. Output i. on tapa 7.

(Sen •• Sw1.toh 2 down) or off-lt... (Sen .. Switoh 2

3. Tba program is d •• igned to operate within the TOP s:rst if deairod .

4- Azq number ot tables may be complied at ODe time.

5. If an:r ona table being compiled rasul to in a progroa longer than 1000
words on an 8192 word 704, a drum 18 required. The I1m1t on a 32,768 word maohine
is about 6000 \lOrds before druma are required but such a table 1s not conceivable.

6. Only 35 columna can appear in ODe table. If'more than 35 are needed,
the table must be split and the 35th column ehould direot the program to the
next table.

7. 1;4dle operating within a table the imex registers are not prfI8erved.

8. When executing external subroutines which the table calls tor in
QuadraDt D. index regi.ter 2 must be pre.erYed within the eubroutt.... In all
other eases, the iDdex registers are tree . All subroutines are entered by' the
oompiled program with indax register 4.

9 . When addition or subtraction is iDdicated in Quadrant C. the oompiled
program a •• ume. that fixed point arithmetic i. to be used. If noating point i.
desired. the ADD instruction. l!l11st be changed IIIlnuall:r to F,AD.

10. The LOOTAB subroutines vh1cb are needed tor execution are not i.ocluded
on the output tapa with the progroa.

ll. All symbols (e,. n'Z, PQR, etc. UDder "Allowable Table Eutrles") used
a8 elemeuts in tablee must consist only ot alphabetic aDd numeric charaoters and.
at least one charaoter must be alphabetic. In other vords, the special
oharacters + - (• *) . / • = ma:r DDt be used in symbol ••

-2-

12. The shortest ard fastest operating program will result "hen 1) no
symbolio subeoripta are used, 2) the el nt. in Quadrant B are litaral .ullO.
(not symbol_ or subroutine.), and 3) tho elemente in Quadrant D are symbolo or
subroutines (not literals). Also, imrea.ts1ng the number ot columna in a table
baa vCl'7 little ~efteet compared to increasing the number ot 1"Ove.

INPUT FORMAT

Four dlati.nct types ot oards are required by the compiler.

Readi!l8 card

The first card for eaoh table must be a heading card which conta1.na ideDtitlca
t ·ion 8S fol10W'sI

ColI - 5 , tho word TABLE
Col 7 - II , a symbol whioh is tho name or the table .

The rirst instruotion ot tho oompiled program will use it as tho
location symbol. rr tho symbol 10 Ie •• than the choraotero long,
the positioning within these columns Is not restricted.

Col 13 - 16 , symbol designation. For eaoh table compiled,
LOOTAB generates three symbol_. It aut_tieally assi~)))0, »)))1,
and »)))2 for the first table, and))))3,))))4, and)))5 for the
seaord. , etc . This feature wIll be overruled it a number appears in
tbeee columna of the heeding card . For example, if the card contains
24, then the first table will be assigned)))24,)))25, and))26,
the next table, it it has no numher ot its own, will he a.signed »)27,
)))28, and)))29. The r1rat digit ot the numher to he used must he in
column 1.3, and DO non-numeric characters may be used. (See last para
gmJil of Output Formo.t for uaege.)

El(?ment esrd

The data for the elements within the table Is supplied on the element
cards with only one piece of data per card. The cards for all the element. in
one ro'W must be together. In addition, the card for Quadrant A or Quadrant C
must he tho t'1ret card supplied for a row. Tho ordering of the Quadrant B or
Quadrant D oards within a row is not fixed. The groups of oards for roy • ..,.
be in any order except that all decision roV8 must be given betore the first
result row am the group tor an OR row must immediately tollow the group tor
the rov it is OR ld 'With. The tormat ot an element card is 0.8 tollows:

001 1 : a letter (A, B, C, or D) to deeignate the
qua.d.zant in whioh this element appears.

001 3 - 4 : the number of the rov in which this element appeare.
rr only one digit 18 needed, it may he expressed as (.ero, II) or (blenk, II)
or (N, blank).

Col. 6 - 7 : the number of the column in 'Which this element
appears . This number mu8't be les8 than or equal to 35. It onl,. one digit
i8 needed, it may he erpreseed a. (.ero, II) or (blank, II) or (N, blenk).

001 ~o and following I the element i t .. lf • Tho 8lement must start
in 001 10 and continua without 9taoes. For Quadrant A elements, the element
and the condition of the test both appaar on tho card and they must he
aeparated by at least one blank but any number of blenk. may into",,"",

There are several additional rule8 for expressing the
OR condition. If the sam. element is to he tested
age.1i>3t more than one value in tho column with

.the seme co!d1tlon, ..only one Quadre.nt A card should be
suPPlied. l'or example. if = my be equal to 24 or
equal to 36 In column ODe , then the rolloving element

oords should be used:

ACl401 = =
B Cl4 01 24
B Cl4 01 36

If the same element Is to be tested against more than one
value in the same column with a .different oondltlon, or it
a different value Is to be tested, then col 10 - 12 must
contain "OR,1It aId followed by the element am/or the cOD:l1tion
of the t est 'Without blanks. The following shows the cards
required for 1) XYZ equal to 24 2!: XYZ less than or equal to
36; aDd . 2) .XIZ equal to 24 2l: m equal to 36.

ACl401 XYZ = ACl4at XYZ =
B Cl4 01 . 24 B Cl4 at 24
1. iI.i 01 OR, (= A 05 at OR,fQR =
B0501 J6 B05at 36

If' DO element Is given in Quadrant C (i .e., no value Is to be modU'led
as a result of the aotion in Quadrant D), the element card must be
supplied but col""'" 10 muet be blank . rr the element in Quadrant D is
a dash (minus sign), it is not necessary to include an element card am
the compiler ignores it if it Is given.

Since a blank terminates an element aId also terminates the comition
of the test, the columns following the b~nk are not used ~ the
compiler.

End Card

The last element card for each table must be followed by an end card
vh1ch bad ' END" in columns 1 - :3. This card term1natee the compilation tor
the tahle aDd init!ates output of the raoul ting program.

BleIIk C.rd

A blank card must follo\l the eId card for the last program to be compiled.
Thie is the only indication available to the oompiler that all of the input
bas been processed.

OUTPUT FOllMAT

The con.p1led prognm consist. or four distinct sections. The rirst section
i. the program (consisting of calling sequences to the LOOTAB SUhroutinoB) vbioh
exeoutes the desired table. The other three Bectlons contain data on 'Whioh the
subroutines operate.

The first (program) .. ction ro110ws a derinite pattern vbich i. dictated
by the rom of the input . The first three inotructioDS initialize the su~
routines to begin &. table and. they are ~

XXXXX CLA T)) BS
STO T))MK
STO I))MII"

(XXXXX is the name o:Lthe table .given .on the heading cord)

-4-
Following the initialization 18 a group of instruction. for each t.st row . IJ:
&n1 .lement in Quadrant B for that rov i. not a literal, then the first in.truc
tions .v1ll be used to plaeo .tho current value ropreosntod by the _bel giVOD
into the list of value. to be tested against. Then, if the A .l nt vas XIZ,
then the following instruetions would appear:

CLA XIZ
TSX T»,4
~ (location of last valuo)+l,N, (no. of value.)
ORA (location of last bit pattern)+l,l

It an OR condition was indieated for this ro"" then MZE would appear in plaoe
of PZE. The Ninth. tag of tho PZE instruction is a code to t.ll vbat tbe
condition of the test should be J tor exapnple, a code of :3 means equal. (See
allolol8.b1e test eomitlons for list of all codes)

Following the calling sequence for the last test roW' Is the instruction:
TSX F»MK.4

This routine takes the resultant bit pattern tor all testa ani removee all one
bits except the first one. Next comes a ealling aequenee for eaoh aetion row ot
the table and it ha. the following form:

TSX Rl'»,2
PZE . (location ot last action)+l,O/(no. of actton.)
PZK (location ot last bit patternJ+l,O,-N

It the action called for Is a rep1aoement ot XYZ' by the value toUId in the D
Quadrant , th.n the calUng ..,qlle""e vould be folloved by:

sro XIZ .
The N in the decrement of the tbi T"d word of the calling sequence is the number of
words to ekip it no action is inferred in the D Quadrant. For example, in the
case of the replacement of XYZ shown above, the "STO XYZ" would have to be akipped
and the decrement "ould. cont.ain "-1" ~

The last instruction compiled in section one is:
TRA ERROR

This causes a transfer to an error routine if no exit \l8.S fouo::1 within the table.
No error routine is given in LOBTAB - it must be supplied by the pro~r if
such a routine is desired.

The second section of the compiled program. is a list of' the test values implied in
Quadrant B with one entry for eaoh different element in a ro". The second halt ot
this section contaIns instructions with "hioh to obtain the valuos of Quadrant D
elements , ore entry tor each different element in a 1'0".
The third section contains the bit patterns which correspond to the \lOrds in the
secord section.

The fourth seetion Is an auxiliary portion to augment the secord section when one
word per en~ry Is not surficient. The vord for a Quadrant D entry In the eecond
section must obtain the value to be used and this ia sufficient in the case ot a
symbel vithout a symboli. subscript. In thi. os .. , the entt'f my be ot tho fom
CLA XIZ or TSX IQR,4. But if the value is a literal (eg. 24), then tho 24 vould
have to appear in the fourth seotion and the word in the second aection would be
CLA (location or 24 in fourth eeetion).

Each section hae: an 4S80ciated symbol a~ar1ng with the first \lOrd in the Mction.
The)' are. first = table name, second = »))0, third = »))1, and fourth a »))2 .
These lila)' be modified by the rule. tor gen.rated _bel. given on tho beading eord .

-5-

ALLClIAB1E TABLE ENTRn:;S

The follOldng ohart ahowe the klms of entries which are a' lowed , what they
mean to the complier, and. in which quadrants they may appear:

Ent,.,. Quadrantl

1. (literal.) B,D

2 . XYZ A,B,C,D

3. XYZ(3) A,B,C,D

4. UZ(N) A,B,C,!>

5. yn (*,2) A,B,C,D

6. *lQR A,B,D

7. -(type 2-6) A,B,D

s. /(type 2-6)/ A,B,D

9. -/(type 2-6)/ A,B,D

10 . *1f?",..!R D

11.)=(9,D

12. B

D

Meaning

An actual value . It no decimal point or exponent
appears, it Is assumed to be a fixed point number
vi th the bimr)' point at the extreme right. If a
deeilaal point or an eXPlnent appears, it Is used
as a flOating point number. An exponent 1e
iD:Ueated by a sign and the number ot dee1Jaal places
to be shifted (og. l4x1OS would be expres .. d as
14+6). Pl."" and minus signs may be used in a
literal but the plus sign is optional.

The quantity in the cs11 vith the location ~bol
XYZ.

The third element in an array WbOB8 first cell baa
the location symbol XYZ. The CGIIlpUed instruction
would have the address XYZ+2. Note that XYZ am
XYZ(l) are syno",moue .

The Nth element in an array XYZ. The current
contents ot the address p>rtion ot cell N Is added to
the location XYZ-l to compute the address ot the
value to be used.

The same as 4 above except that the address is 2
higher. The sign of the nt.tmeric portion of the
subscript may be minus.

The result remaining in the accumulator upon exit
from the subroutine entered by TSX FQR,4.

The value expressed by atlJ' of the forms 2-6 \11th
tho sign changed.

The absolute value of' a value expressed by" &tlJ'
of the forms 2-6.

The value expressed by any of the forms 2-6 vith a
minus sign appended.

lQR i. the location symbol of the cell to whioh
the program transfers uncondi tionslly.

A BCD literal. Tho 6 characters folloving tho)
viII be Ul!Ied as a BCD constant of' one word.

No test Is made. This implies that any value will
l!Ifltlsf'y the condition. CAUTI ON : !xtreme care must be
exercised in using the - i n an 00 J'O\f :

No aotion Is to be taken.

14. +(typo 2-5) C

15. -(typo 2-5) C

16. (blank) C

ALLOWABlE TEST CONDITIONS

-6-

Increase the value expressed by any ot the
f01'1ll8 2-5 by tbe value 1:adieatod in Quadraut D.

Decrease the value expressed by' any ot the
forms 2-5 by tbe value i .. Uoated in Quadrant D.

No value is to he modiriod by the value found in
QuadraDt D. Thi. implies that D contains either a
**FQR or -ABC where the subroutine ABC stores it"
own results.

The rolloving chart shoW's the possible test cOalitloDS in Ouadrant A, bow
t o express them, aM their codss in the output calling sequence.

COND ITICII ON INPl1r CARDS C(J)E

Equal = J
Greater than) 2
Greater than or equal to)= =) 1
Less than (5
Less than or equal to (= =(4
Not equal ())(6

Each Quadrant A element card must contain a test aomit1oD and it may aleo
indicate an OR condition. See Element Card description tor the card format.

USAGE - COMPILER

It LOOTAB Is being used to compile v.l.thin the TOP system, a comment card must be
inserted behind the program call card requesting the operator to set a tape to
No. ? am to remove it upon completion of the run. This tape vill contain the
out put from the compiler.

The data ir read on line must be placed directly beb1:ad the last card of
the binary program deck.

USAGE - PROCRAM

The resulting program in SAP card format on the output tape 1s not a complete
program. It consists only of that portion at the program which was expressed in
logic tables. In addition, the compiled program must have the LOOTAB execution
subroutines added to it . These subroutines contain a total of 141 words. The,.
are not included on the output tape because several LOGTAB compilations could be
made for the various parts of one complete program and this would produce duplicate
copies of the subroutines.

There are three possible ways to use the Oll.tput tape to get an assembled program.

1 - Use the off-line punch to produce decimal cards which caD
be added to the dec1JDal deck of the remainder of the
program .betare it 18 assembled.

2 - Use an off-line punch simulator on the 704 (et- UA TCHt) to produce
cards and use 8S in the case erove.

J - Combine tho information on the output tape wi tb the remainder
of the program which 18 also on tapa and assemble from. the

-7-

resultant tape. The LOOTAB compiler does not rewind tape 7 when
output is initiated and. this allOW's one to have the rem3imer ot
th. program on tepe 7. Thi. tape eould then be positioned at
the eDd of the remaimer of the program and the !,OGTAB-compUed
program could be added to it. The compiler \(l"ites an end-of-tlle
on tape 7 after all tables have been complIed. Tape 7 Is not
rellOtm:l by" the compiler.

ERROR EXITS

The compiler checks tor several types of errors, but regardless of the Buccess
of compilation, it calls TOP. If it 1s not operatlI€ in the TOP system it stops
at location 4246 (oetal).

If any errors have been detected, the contents of' lrdex registers 1 800 2 "Ul
indicate the type ot error. The following chart shovs what the possible error
exit. are (all in octel).

IR NO.1

16403

(16275
(16267

15446

15374

15350

13710

13524

13524

13524

13524

13524

13524

IR NO.2

17023

6

151at.

14711

l4447

14103

REASON

eoo-of-f'11s in reading cards if AC 1s posit!Y8,
or tailed tvice in reading oft line input record
if Ao 1s negatlve.

mn-numerio codes in rOW' or column number.

table too large to be compiled - drum has been
exhausted.

illegal quadrant on input. card .

lllegal teet con1itlon on a quadnurt A element card.

machine error in computing drum.. address .

error exit tram table which interprets element
on element card.

all of input card has been read without find1ng
a necessary blank or test comition.

ill.gal date for quadrant A. Th. last date eard
read was for quadrant A but this stop occurs
because of the data on the previous quadrant A
element card.

ill.gal date for quadrant C. The last date card
read was tor quadrant C, but this stop occurs
because ot the data on the previous quadrant C
element card.

Ulegal data tor quadrant B on last element c~~·
illegal date fC1t' quadro.nt D on last .1 nt "'lrd

tread.

These index register values are tor an 8192-word. machine.
Add 60000 (oetal) for a 32,768-word 7at..

-8-

TIMII«l

A rough estimate of the time required for a compilation can be loum by'
computing the time required to read the input card. on-line and multiplying
this time by two.

Restriction No. 11 concerning operating time tor
the compiled program.

