
Progress Is O(Jr Mos! Imporl-anf 'Prot/(Jel

GEN ERAL _ ELECTRIC

GENERAL
COMPILER

MANUAL
GEN ERAL . ELECTRIC

ACKNOWLEDGEMENT

"This publication is based 'in part' on the COBOL
System developed in 1959 by a voluntary committee
composed of government users and computer manu­
facturers. The organizations participating in the
original development were:

Air Material Command, U. S. Air Force
Bureau of Standards, Department of Commerce
Datamatic Division, MinneapoUs-HoneyweU Cor-

poration
David Taylor Model Basin, Bureau of Ships, U. S.

Navy
ElectroData Division, Burrouglts Corporation
International Bus iness Machines Corporation
Radio Corporation of America
Remington-Rand DivisIon of Sperry-Rand, Inc.
Sylvania Electric Products, Inc.

"The committe,e was joined at a later date bytheGen­
eral Electric Computer Department. The initial spec­
ifications for the COBOL language are the result of
contributions made by all of the above-mentioned or ­
ganizations and no warranty expressed or implied, as
to the accuracy and functioning of the programming
system and language is made by any contributor or by

iii

the committee andno responsibility is assumed by any
contributor or by the committee in connection there­
with.

"The authors and copyright holders of the copyrighted
material used herein: FLOW-MATIC (Trade - mark of
Sperry Rand Corporation) Programming for the UNI­
VAC ® I and n, Data Automation Systems © 1958,
1959, Sperry Rand Corporation; IBM Commercial
Translator, Form No. F 28-8013, copyrighted 1959
by IBM, have specifically authorized the use of this
material, in whole or in part, in the COBOL specifi ­
cations. Such authorization extends to the reproduc­
tion and use of COBOL specifications in programming
manuals or similar pubUcations.

"Any organization interested in reproducing the CO­
BOL report and initial specifications in whole or in
part, using ideas taken from this report or utili.zing
this report as the basis for an instruction manual or
any other purpose is free to do so. However, all such
or ganizations are requested to reproduce this section
as part of the introduction to the document. Those
using a short passage, as in a book review, are re­
quested to mention 'COBOL' in aclmowledgment of the
source but need not quote the entire section ...

TABLE OF CONTENTS
Page

I. INTRODUCTION .. 1

II. SENTENCES: BASIC ELEMENTS 3

A. Sentence Names • . 3

B. Operation•. 3

C. Operand • .. .• • . ..•..................•...... . :: 3

D. Data Names 5

E. Subscripts• ••.. 5

F. Conditional Fields . .. • 5

G. literals • ... ••.• • 6

H. Figurative Canstants . . . • • • . • 6

I. Qualifiers• 6

J. Arithmetic Expressions . • • . 7

K. Relational Expressions • . • . . . 7

L. Logical Expressions 8

III. SECTIONS . 9

IV. PROCEDURE DiViSiON.. 11

ADD • 11

ALTER ••. . . .•.. '. . . 13

ASSIGNMENT•• •..•.. 13

CLOSE. • . . • • . • . . . • . . 14

DIVIDE 15

ENT'ER • . . . • • . 15

EXCHANGE 15

GO •. .. ••....• 15

IF•. •........•...• . ..• 16

MOVE•• • • . 18

MULTIPLY • . . . • • . . . • . . . • • 19

NOTE• ••...•.... 20

OPEN• 20

PERFORM •.. .•........ 21

R.EAD 22

STOP. • . . . • . 23

SUBTRACT . • • • 24

VARY•..........................•........... . •...... 24

WRITE.. ...•.•. 25

v

TABLE OF CONTENTS

V. DATA DIVISION 000000000000. 0 0 •••• 000. 0 0 0 ••••• • •• 000 00. 0 0 0 0 0 ••• 0 0" 0"

A. GENERAL 00000.0.000000000000 0 000000 0 .000000000000. 0 o. 0 0 0 0 0 0 0 0 0 0" 0 0

B. FILE DESCRIPTION . 0 0 0 0 ••• 0 ••• 0 0 0 0 • 0 0 ••• 0 0 ••• 0 0 0 0 •• 0 •• 0 0 0 0 0 • 0 0 0 0 0 • 0 0 • 0 0

COMPLETE ENTRY . 0 0 0 0 • ••• 0 •• 0 • • 0 0 •• 0 •• 0 • 0 •

BLOCK SIZE. 0 0 • • 0000 0000000 00000000000 .00 000000 0 •• 0 " • 0 0 0 • 0 0 0 0 0 0 0 0 • 0

CONTROL - KEY .. 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 • 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

COpy 0000000 0 •• 00. 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 000000000000 0 00. 0 0 00 •• 00000000 0 0

LABEL RECORDS 0 0 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 0 0 •• 0 •• 0 0 ••• 0 0 0 • 0 • 0 0 0 •• 0 0 0 0 0 0 0 0 0 0 0

RECORDING MODE 0 0 0 0 •• 0 0 0 0 0 • • 0 0 0 • 0 ••• 0 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 0 0 •• 0 0 0 0 0 • 0 • 0 0

SEQUENCED 0 0 0 • 0 •••• 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 • 0 ••• 0 0 •• 0 0 o •••••• 0

C .• RECORD DESCRIPTION 0 • 0 0 0 0 0 0 0 •• 0 0 0 •• •• 0 0 0 0 0 0 0 0 0 •• 0 •••••• • 0 0 0 0 0 ••

1. Elements of a Record

2. Elements of a Record Description 0 0 0 •••• 0 0 • ••• • •• 0 0 0 0 0 0 0 0 0 0 •• 0 0 • 0 • 0 0 0 0

3. Specific Entries 0 0 0 •••• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •• 0 0 •• 0 • 0 0 0 0 •• 0 • • 0 • 0

a. Input Records 0 •••• 0 • 0 0 0 0 0 • 0 0 ••••• 0 0 0 0 0 0 0 0 0 • 0 •••••• 0 • 0 0 0 0 0 0 • 0 0 •

b. Output Records 0 0 0 0 0 0 0 0 0 •• •• 0 0 0 0 0 0 • • 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • •• 0 •• 0 •••• 0 •

D. WORKING STORAGE 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 • • 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 •••• 0 •• 0 0 0

E. CONSTANTS 0 0 0 0 0 • 0 0 • 0 0 0 •••• 0 0 0 0 0 •• 0 0 00 0 • • 0 0 o • •• • 0 0 0 •• 0 0 0 0 0 0 0 0 ••• 0 0 0 0

VI. ENVIRONMENT DIVISION . . 0 0 • •• • 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 •••••• 0 •• 0 • •• • • 0 • 0 • 0

OBJECT-COMPUTER . 0 ••• •• ••• 0 0 0 0 •• • 0 0 0 0 0 0 0 0 0 0 0 0

FILE- CONTROL 0 • 0 0 0 0 • 0 0 0 0 0 0 0 • 0 0 0 • 0 0 0 ••• 0 0 0 0 0 0 0 0 • 0 0 •••••• 0 0 ••• 0 0 0 •••• 0

I-O- CONTROL 0000 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 oJ 0000 ••• • 0 • 0 0 0 0 0 0 0 •• 0 • 0 0 0 0 0 0

VII. IDENTIFICATION DIVISION

VIII. SENTENCE FORM

vi

Page

27

27

29

29

30

31

31

32

32

33

33

33

33

34

34

36

37

38

39

39

40

41

45

47

Figure 1

Figure 2

Figure 3

LIST OF ILLUSTRATIONS

Sentence Form 0 0 0 0 0 0 ••••••• 0 0 0 • 0 0 0 •• 0 • •• 0 0 •• 0 •••• 0 0 0 0 0 •••• 0 0 • 0

Data Division Form O. 0 0 0 0 0 •• 0 0 •• 0 0 • 0 0 0 • 0 0 0 0 0 0 0 0 0 0 • 0 0 0 ••• 0 0 •• 0 • •

Sample Sentence Form 0 • 0 0 • 0 0 •••• ••••••••••• • •• 0 •••••••• • 0 0 • • •••

vii

Page

4

28

48

CE22S GENERAL COMPILER MANUAl

INTRODUCTION

The most recent answer to the problem of program­
ming ease and costs is the concept of automatic coding
and pseudo-languages. To date, many automatic cod­
ing systems have been developed. Several of these
have met general acceptance among certain groups of
users; others have only galnedrecognition at particular
installations. The more successful of these systems
have pseudo-languages which resemble English sen­
tences or use abbrevlated English words for stating
Ihe solution of the application 10 be processed by the
computer. A special computer program, commonly
called a compiler, is provided to convert the language
into computer instructions.

Such a compiler has been provided for the GE 225.
Ideas from both ALGOL* and COBOL* are incorpor­
ated. Our General Compiler is an end-product of the
investigations of both of these committees. It is not
a language in the sense that ALGOL and COBOL are
languages. Instead, it is more a concept in the design
and implementation of a compiler. The language
presently available to our General Compiler is based
on OOBOL, s ince it satisfies the needs of a broad
spectrum of business data processing applications.
To accommodate the demands of scientific users, the
ability for stating complex equations, Boolean expres­
sions, and floating point arithmetic was alsoincorpor­
ated into the language format of OOBOL. There are
also many other things that have been taken from AL­
GOL and other sources that are available optionally.
Therefore, the present version of the 225 General
Compiler is capable of accepting programs written in
one or two, or in a combination of the two language
forms .

The GE 225 General Compiler preliminary specifica­
tions outlined in this manual are mainly definitions of

* COBOL - Common ~usiness Qriented ~anguage
ALGOL - Algorithmic ~guage

CE22S
1/2

allowable operations and imply and require computer
knowledge if they are to be used "effectively. There­
fore, the manual presented here should not be used as
aTEXTBOOK, but rather as REFERENCE MATERIAL
to be used to augmentaLready realized skills. Because
COBOL is a dynamic language, changes are to be ex­
pected. The General Compiler language that is de­
scribed here is an approach to building compilers that
facilitates making such changes. With this facility we
will be able, at all times, to keep our General Com­
piler language current. Any changes which we make
will be reflected in future manuals or in supporting
material.

A program written in a language other than machine
language is termed a "source" program. There are
four divisions of a source program written in the
General Compiler language:

1. Procedure Division - consisting of an ordered
set of sentences specifying the steps the computer
i s to follow in solving a problem.

2. Data Division - defining the arrangements and
characteristics of the data to be processed.

3. Environment Division - containing information
about the configurations of devices needed by the
source program.

4. Identification Division - providing the label and
other information about the source program.

Each division is a separate level of program prepa­
ration that can be altered without affecting the others.
This allows ease of programming and facilitates pro­
gram conversion to those General Electric computers
having the General Compiler automatic coding system.

GENERAL COMPILER MANUAL

CE22S

II SENTENCES: BASIC ELEMENTS

The procedure portion of a source program is an ordered set of sentences specify­
ing the steps the computer is to follow in solving a problem. (See Figure 1.)
Basically, a sentence is made up of a name, an operation (usually expressed by a
verb), and one or more operands.

CALCrFICA.

name
(label)

~~~:r:Y GROSS-PA7o.03 GIVING WETLY-FICA. 

operand operand 

Here CALC-FICA is the ~ (or label), Multiply is the operation, and Gross - Pay, 
0.03, and Weekly-FICA are the operands. These basic elements may be diagnosed 
more fully as follows. 

A. Sentence Names 

The name (CALC-FICA in our example), may describe the purpose of the sentence 
or it may be a number indicating a particular sequence, and needs to be given only 
when a sentence is referred to by another sentence. Names should not exceed 12 
characters and the words of the source language vocabulary should not be used as 
sentence names. 

B. Operation 

A word (usually a verb) indicating the function of a sentence is the operation. In our 
example Multiply tells the compiler to create the machine instructions necessary 
to multiply the gross pay amount by 0.03 and store the product in the weekly 
F. L C. A. field. 

C. Operand 

An operand is the quantity which i s being operated on according to the function of 
the sentence. An operand may be a data name, a literal, or a sentence name. 
Therefore, in our example: 

GROSS-PAY 0.03 WEEKLY-FICA . -
data name 

~ I 

litJral 

- ~ , 
data name 

- t' --.......... ~-
operandS 

GENERAL COMPILER MANUAL 

3 



CE225 

f.) 

a: .... 
f.) ... .... ... 
.... 
C 
II: ... 
Z ... 
C) 

I' 
r 
1 

4 

E 
~ 

o ... 
" u 
c: 
~ 
c: 
CD 
." 

GENERAL COMPILER MANUAl CE225 

o. Data Names 

Names representing data (files, records, fields, elements, variables, constants, 
arrays of numbers, etc. ) are arbitrarily assigned by the p rogrammer. They are 

formed from: 

Alphabetics 
Integers 
Tilde 

A, B, C, 
0, 1, 2, 

• ... • , Z 
•• • • • J 9 

Data names s hould not exceed 12 characters and should contain at least one alplla­
betic. Words of the source language vocabulary should not be used nor should a 
data name begin or end with a tilde . 

E. Subscripts 

Subscript s are used to identify elements in a list or in an array of values. For 
example, a list of values Xl, X2, X3, ..... XlO may be given the name X. If the 
values are stored consecutively, each value can be referenced by a subscript 
ranging from 1 through 10. In this case the list would be described as : 

X(I) 

where: 

x = name given to the 10 values of the list 

I = subscript name denoting the relative poSition of each value of the 

list. 

If I = 1, the value Xl is referenced: if I = 7, X7 i s referenced. 

An array may be multi-dimensional: that is, it may have more than one subscript. 
Also, subscripts may be writ ten as arithmetic expressions containing other sub­

scripted arrays. For exampl e: 

ABC (R + L) 
K(A-B " C, L(l, Jl , X ) 
RATE (T + L, D - 4) 

If an expression is used as a subscript, the integral part of the r esult is ouly used 
to obtain the position of the element in an array. 

F. Conditional Fields 

In some applications it may be desirable to assign a name to each value of a field. 

For example: 

Field Value 

1 
2 
3 
4 

Meaning 

white 
pink 
blue 
turquoise 

Conditional Name 

WHITE 
PINK 
BLUE 
TURQUOISE 

The conditional (representing a condition or value) name stands for a particular 
value and may be used as an operand to mean the value. Conditional names are 
principle operands of logical expressions: 

IF PINK, GO TO 123. 

GENERAL COMPILER MANUAL 

5 



GE225 

F. Conditional Fields 

tells the computer to test the color code field for a~. If a! is present, control 
passes to sentence 123. If a ~ is not present, control passes to the sentence follow­
ing the IF sentence. 

G. literals 

A literal is a quantity itseH rather than a name given to a quantity and may be either 
numeric or alphanumeric. Numeric literals may be WIitten as an 

Integer 
Decimal Integer 
Power of ten 

230 
230.1 
2.301E2 

The letter "E" in the power of ten notation delimits the power of the exponent. 
Num.eric literals may be enclosed in quotation marks (see MOVE verb). 

Alphanumeric literals must be enclosed by quotation marks (") e.g., "A" . Further, 
an alphanumeric literal may contain any character in the set of the computer, 
e. g., "3A I1 ~ 

H. Figurative Constants 

Certain literals are called figurative constants. These have been assigned fixed 
names as follows: 

ZERO (S) 
ZEROES 
SPACE(S) 

ONE(S) 
TWO(S) 
THREE(S) 

FOUR(S) 
FIVE(S) 
SIX(ES) 

SEVEN(S) 
EIGHT(S) 
NINE(S) 

For a figurative constant, the compiler produces a string of identical characters 
whose length is dependent upon context. For example, if a QTy-oN-HAND field 
was described as five digits long, the statement "IF QTy-oN-HAND EQUALS 
ZERO" would compare the contents of the QTY-oN-HAND field against 00000. 

I. Qualifiers 

Every name in a source program should be unique either because no other name 
llas the identical spelling or because the name exists within a llierarchy of names 
sucll that the name can be made unique by mentioning one or more names higher in 
the hierarchy. When used in this way the higher names are called "Qualifiers", 
and the process is called "qualification". With each use of a name, enough quali­
fication should be mentioned to make the use unambiguous, but it i s not necessary 
to mention all possible level.s of qualification unless they are needed for uniqueness. 
A file name is the highest level qualifier available for a data name. Three basic 
rules should be used for qualification: 

1. A qualifier should exist outside (above) the name it is qualifying. 

2. A name may not appear at two levels in a hierarchy so that it would 
appear to qualify itseH. 

3. If a data name or condition name appears more than once in the data 
division of a program, it must be qualified in all references occur­
ring in the procedure division. 

Take, for example, two records named MASTER and NEW-MASTER each contain­
ing CURRENT-DAT and a TRANSACT-DAT field. If each of these fields contains 

GENERAL COMPILER MANUAL 

6 
GE225 

I. Qualifiers 

three elements, MONTH, DAY, and YEAR, we can refer to the current month in 
the NEW-MASTER record as: 

MONTH OF CURRENT- DAT OF NEW-MASTER 

and we may refer to the day of the transaction in the master record as: 

DAY OF TRANSACT-DAT OF MASTER 

J. A.rithmetic Expressions 

An arithmetic expression is a sequence of variables, numbers, and mathematical 
functions connected by symbols which represent the arithmetic operations add, 
subtract, multiply, divide , and exponentiation. We may WIite an expression as: 

FED-TAX = (GROSS-PAY - (NUM-DEP * 13.00») *0.18 

The value of FED-TAX is obtained when data is substituted for the variables. 

Arithmetic expressiOns are evaluated from left to right and indicated operations are 
performed in the following order: 

Operation 

Functions and 
Exponentiation 

Multiplication and 
Divi sion 

Addition and 
Subtraction 

Symbol 

* 
I 

+ 

Parentlleses are used to establish a precedence of evaluation. When they are used 
the evaluation is from tile innermost to the outermost set of parentheses. 

K. Relationol Expres,sions 

Any expressed or implied combination of two field names, element names, literals 
or aritlimetic expressions connected by any of the followiug relations is called a 
relational expression. 

Relation 

Exceeds 
Greater than 
Not greater than 
Less than 
Not less than 
Equal to 
Equals 
Not equal to 
Unequal to 

Abbreviation 

GR 
GR 
NGR 
LS 
NLS 
EQ 
EQ 
NEQ 
NEQ 

Relational expressions are evaluated from left to right. 

7 

GENERAL COMPILER MANUAL 



CE22S 

K. Relatio.nol Expressions 

EXAMPLES! 

I. IF PART-NUMBER OF MSTR-INVNTRY EQUALS PART-NUMBER 
OF TRANSAOIONS (two field names). 

2. IF WEEKLY-FICA OF MASTR-PAYROL + ANNUAL-FICA OF 

MASTR-PAYROL EXCEEDS 144.00 (arrthmetic expression and litera l). 

L Logical Expressions 

A logical expression is any combination of conditional names and r elational ex­
pressions connected by the logical AND and OR (inclusive). Logical expressions 
are evaluated from left to right with the logical AND having precedence over the 
logical OR. Parentheses are used to establish pr ecedence. 

EXAMPLES! 

I. IF PART-NUMBER OF MSTR-INVNTRY EQUALS PART-NUMBER OF 
TRANSACTIONS AND TRANSACT-COD IS GREATER THAN l. 

2. IF GRADUATE OR EXPERIENCED. 

" 

GENERAL COM PILER MANUAL 

8 
CE22S 

III SECTIONS 

Sections provide a way to group (tmder a single name) an ordered set of sentences 
having a common function and needing to be executed from more than one place in a 
program. The programmer may partition a program into sections as he chooses. 
However, he mus t designate sections as follows: 

section-name SECTION. 

[INPUT variables fie ld"1lamen, fie ld-nameI2 .. ...... ] 

[ OUTP UT variables field-nameOl ' field"TIame02 • .. . . • ] 

!lliQ.lli. 
(One or more sentences) 

END section-name SECTION. 

The "Section name" identifies a section and pr ovides a reference to it. BEGIN-END 
separates the body of a section from its heading. The "head" portion defines those 
fields of thebody which must be assigned values before the section can be executed. 
END is the common exit point for those sentences appearing in the body. As such 
it may be given a sentence name. This way of using a section allows us to program 
a generalized routine using "dummy" parameters which take on actual values when 
the section is executed at object program running. The following format of the 
PERFORM sentence i s used to do thLs: 

PERFORM section"'llame [ USING field-namell, field"1lameI2 .... .. . ] 

[GIVING fie ld"TIameOl' field"TIame02 . ..... . ] 

When the PERFORM is executed, field-namen of the using clause is assigned to 
field"TIamell of the INPUT list in the section head. Field-nameI2 of the PERFORM 
is assigned to field-namell of the section head, etc . Then the body of the section 
is performed. H a GIVING cl.ause is specified with the PERFORM and an OUTPUT 
lis t appears with the section, the output variables of the section head are assigned 
to those listed with the GIVING clause. The assignment i s one-to-one with field­
nameOl of the section head going to field"TIaIDeOl of the GIVING clause, and so on. 
When thLs is completed, the sentellce following the PERFORM is executed. 

There is another way in which sections can be used. Some applications may warrant 
copying a given set of sentences and while doing so require that certain names be 
replaced by other names used elsewhere in the program. PERFORM is used in thLs 
case also. The sectioR is written as before. But, since value assignment is not 
required, no listing is necessary within the section head. The section now takes 
the for m : 

section-name SECTiON. 

BEGIN. 

(One or more sentences) 

END section name SECTION. 

To modify the names within the body, the P ERFORM is stated: 

9 

GENERAL COMPILER MANUAL 



CE22S 

PERFORM section"'1lame REPLACING namel with name2, name3 with 
name4·· ·· . 

The section body is copied or inserted in place of the PERFORM. This occurs 
during compilation. While it is being copied, old names are replaced with new 
names. Name!, name3 , etc. may be any name within the section's body. Caution 
should be exercised since the replacement takes place with every mention of these 
~. 

Sometimes we may wish to divide a run or program into sections and compile and 
test each section separately. Then, when the sections are individually checked out, 
piece them together to form a continuous run . The rules given here permit just 
this. When initiating compilation, the compiler can be directed to compile a section 
and assign all coding addresses relative to zero instead of the usual absolute ad­
dress . Now the object coding for the section is in "relocatable" form and can only 
be put in absolute form when loaded prior to object running. A special load routine 
is used to do this. When a section is tested as an entity; i. e. , without a PERFORM 
executing it, the END section name acts as a STOP sentence. 

Once the relocatable sections are tested, we may piece them into any compatible 
program by using a PERFORM sentence. The section format is used again to indi­
cate that part of a run or program exists in relocatable form. This time it hasn't 
any body since the sentences of the body were previously compiled. lis format now 
looks like 

section"'1lame SECTION. 

[~ variables field"'1lame~!, field~e~2, ... . .. . J 
[ OUTP UT variables field"'1lame-1, field"'1lame~2, ..... J 

BEGIN. 

£QE! RELOCATABLE. 

~ section"'1lame SECTION. 

Only the P E RFORM - - USING - - GIVING may execute a relocatable section s ince 
the P ERFORM -- REPLACING serves as a moc!ify- copy and can take place only 
during the actual compilation of the section. J 

A NOTE statement may also appear within a section's head (not shown in formats). 
When used, it s erves only to document the function of the section and in no way in­
fluence s the compilation or object program which the compiler creates. 

GENERAL COMPILER MANUAL 

TO 
CE22S 

IV PROCEDURE DIVISION 

This section describes the format and specifications for each type of procedure 
sentence. Certain conventions are applied in using procedure sentences to formu­
late a problem. Minimum general conventions are: 

A. Words in source vocabulary should not be used as data names. 

B. Words in a sentence should be separated by at leas t one space. The space 
separator is optional if the words are bound by +, -, *, I, it, 0, n, =, and,. 

C. Each sentence should end with a period (. ). The decimal point is illegal when 
used as follows: X =A+B - (Q*C + Y * 12.) *4, since it would be inte rpreted as 
ending the sentence. 

D. Subscripts should be enclosed in parentheses and may be written apart or as 
part of the array name. 

E . If two arithmetic expressions are written side by side they should be separated 
by a comma. F or example, when we write X (A+B, Cf2) or A*3 .14, SIN 
ALPHA. In all oth.er cases, the comma may be used as a separator in con­
junction with, or instead of, the space. 

To facilitate the presentation and explanation of the sentences and their formats, 
the following editorial conventions are used: 

A. Key Words -- where shown in the sentence formats, underlined upper case 
words are required to complete the meaning of the s entences. These words 
must be correctly spelled. 

B. Noise Words -- upper case words without underlining are shown in sentence 
formats to improve the readability of the language. These words mayor need 
not be used as deSired. If they are used they must be correctly spelled. 

C. Operands - - lower case words indicate types of operands supplied by the user . 

D. Choices -- entries enclosed in braces show available programmer choices. 
One entry should be selected from those within a set of braces. 

E . Options - - entries enclos ed in square brackets indicate options which the pro­
grammer may include or omit. In some cases options have been separated into 
individual numbered formats. 

ADD 

FUNCTION: - - TO ADD TWO QUANTITIES AND STORE T HE SUM IN 
EITHER THE LAST NAMED FIELD OR ELEMENT, OR THE SP ECIFIED 
FIELD OR ELEMENT. 

FORMAT: 

ADD {!::~~~:~me-l }, { :::~~~:~me-2 } 
element-name-l e lement-nome-2 

I GIVING ~field-nome-3 !J [ ROUNDED] [IF SIZE ERROR GO TO ~ lelement-nome-3 

sentence-nome-I] • 

GEN ERAL COMPILER MANUAL 

11 



ADD 

CE22S 

CONVENTIONS: 

A. If the "GIVING" option is not present, then the last-named field or ele­
ment receives the result. The result field or element should not be a literal. 

B. Eleven (11) decimal digits is the maximum size of a fixed point operand. 

C. Only a numeric literal may be used. If a sign (+ or - ) is included, it 
should appear as the most significant character of the literal. If a decimal 
point appe'ars in the literal, it is not included in the stored representation, 
but is used only to align the literal with associated operands. 

D. The result will be stored according to the description of the result as 
specified in the Record Description. The operands and the result may have 
different formats . Decimal position alignment for operands is automatically 
supplied according to the type of operation. The decimal position of the 
result will be aligned before it is stored in the result field. 

E. If the ROUNDED option i s specified, the result is rounded before placing 
it in the result field or element. 

F. When the ROUNDED option is not used, the number of deCimal places 
in the calculated result will be truncated (if necessary) according to the size 
of the result field or element. 

G. ASIZE ERROR condition arises whenever the number of integral places 
in the computed result exceeds that which may be stored in the result field. 
This causes truncation of the most Significant digits of the result field be­
fore they are stored. This action occurs whether or not the SIZE ERROR 
option is used. ~ 

H.. The SIZE ERROR option may only be used in conjunction with the arith­
metics. This option causes compilation of additional object coding. 

I. Arithmetic is performed either in the fixed point or in the floating point 
mode. However, if one of the quantities is defined as floating point, the 
entire operation is performed in the floating point mode. In this case those 
quantities defined as fixed point are converted to floating point. The mode 
of the result is always thal of the result quantity regardless of the mode of 
arithmetic. 

EXAMPLES: 

A. ADD I, DAY OF DATE OF INPUT GIVING CURRENT-DAY. 

B. ADD WEEKLY-FICA OF MASTR-PAYROl, ANNUAL-FICA 
OF MASTR-PAYROl. 

C. ADD ON-HAND-QTY OF MSTR-INVNTRY, ON-ORDR-QTY 
OF ORDER-FILE GIVING TOn -INVNTRY OF MSTR-INVNTRY, 
IF SIZE ERROR GO TO ERROR-RTN-l. 

GENERAL COMPILER MANUAL 

12 

ALTER 

FUNCTION: - - TO MODIFY A PREDETERMINED SEQUENCE OF OPERA­
TIONS. 

FORMAT: 

ALTER .entence-name-I TO PROCEED TO senlellce-name-2, 

[sentence-name-3 TO PROCEED TO sentence-name-4 .. . ] . 

CONVENTIONS: 

A. "sentence-name-l", "sentence-name-3", .... are names of GO 
sentences as defined under Option 1 of the GO verb. 

EXAMPLES: 

A. ALTER SWITCH-l TO PROCEED TO ERROR-RTN-2 

B. ALTER 5WITCH-4 TO PROCEED TO COMPUTE-FICA, SWITCH-9 
TO PROCEED TO DEDUCT-RTNS. 

ASSIGNMENT 

CE22S 

FUNCTION: - - TO EVALUATE AN ARITHMETIC EXPRESSION AND AS­
SIGN THE RESULT OF THE EVALUATION TO A SPECIFIED FIELD. 

FORMAT: 

Field-name-I [ ROUNDED] 

CONVENTIONS: 

) field-name-2 l 
) arithmetic expression ( 
t literal-I J 

A. An arithmetic expression is a sequence of variables (fields), numbers, 
and functions connected by symbols representing the operations, add, sub­
tract, multiply, divide, and exponentiation. 

B. Arithmetic Operators 

Operation 

Add 
Subtract 
Multiply 
Divide 
Exponentiation 

C. Mathematic Functions 

Function 

Sine 
Cosine 
Arctangent 
Square Root 
Exponential 
Common Logarithm 
Natural Logarithm 
Absolute Value 

Symbol 

+ 
- (also used for negation) 

* 
I 
** 

Symbol 

SIN 
COS 
ATAN 
SQRT 
EXP 
LOG 
LN 
ABS 

13 

GENERAL COMPILER MANUAL 



CE22S 

ASSIGNMENT 

CLOSE 

D. Expressions are evaluated from left to right according to the following 
operation priority: 

Exponentialion and Functions 
Multiplication and Division 
Addition and Subtraction 

Parentheses may be used to establish a precedence. If they are used, the 
evaluation is performed from the innermost to the outermost pair. 

E. The mode of evaluating an expression is determined from the data de­
scripti~n of the variables. If one of the variables is defined as floating point, 
the entIre expression is evaluated in the floating point mode. Those vari­
ables defined as fixed point are converted to floating point. The results of 
both fixed and floating point evaluations are stored according to the mode of 
the result variable. 

F. In fixed point evaluations decimal points are aligned according to the 
data description of the result variable. 

G. If ROUNDED is speCified, the result of the evaluation is rounded before 
it is placed in the result variable. 

H. No more than 50 operations and/or fmction symbols may appear in a 
single expression. 

FUNCTION: - - TO TERMINATE THE PROCESSING OF BOTH INPUT AND 
OUTPUT REELS AND FILES, WITH OPTIONAL REWIND ANDl oR LOCK. 

FORMAT: 

CLOSE file-name-l 

CONVENTIONS: 

A. A "CLOSE f.ile"'ll3.me" should be executed once and only once for a given 
file unless the file has been reopened. It will initiate the final closing con­
ventions f.or the specified file and release its data area. 

B. If the NO LOCK option is used on a tape file, the tape will be rewound. 

C. If the NO REWIND option is used on a tape file, the tape will remaIn 
positioned for reading or writing another file. 

D. If neither NO LOCK nor NO REWIND is specified, the tape will be re­
wound and locked to prevent the tape from being read or written upon. 

EXAMPLES: 

A. CLOSE MASTR-PAYROl, BOND-FILE WITH NO LOCK, 
SUMMARY WITH NO REWIND. 

14 

GENERAL COMPILER MANUAL 

CE22S 

DIVIDE 

ENTER 

FUNCTION: - - TO DIVIDE ONE NUMBER INTO ANOTHER AND STORE 
THE RESULT IN THE LAST NAMED FIELD OR ELEMENT OR THE SPECI­
FIED FIELD OR ELEMENT. 

FORMAT: 

DIVIDE {~\:~;~~~me-l } INTO {::~~a~~~me-2 } 
elemenl-name-l elemenl-name-2 

[
GIVING {field-name-3 }] [ROUNDED] 

element-name-3 

[If SIZE ERROR GO TO sentence-nome-l] . 

CONVENTIONS: 

A. All conventions specified under the ADD verb apply to the DIVIDE verb. 

EXAMPLES: 

A. DIVIDE NO-Of-TESTS INTO TOTAL-SCORE GIVING 
AVERAGE ROUNDED. 

FUNCTION: - - TO INDICATE THE INCLUSION OF A SUBROUTINE WRIT­
TEN IN THE GENERAL ASSEMBLY PROGRAM LANGUAGE. 

NOTE 

The ENTER verb is not yet fully defined. 
complete, they will be provided. 

As soon as specifications are 

EXCHANGE 

GO 

FUNCTION: - - TO TRANSPOSE THE CONTENTS OF TWO FIELDS. 

FORMAT: 

EXCHANGE field-name-l, field-name-2. 

CONVENTIONS: 

A. The data descriptions of field"'ll3.me-l and field""llame-2 must be iden­
tical. 

B. Field""llame-l and/or field-name-2 may be subscripted. 

FUNCTION: - - TO DEPART FROM THE NORMAL SEQUENCE OF PRO­
CEDURES. 

GENERAL COMPILER MANUAL 

15 



GO 

IF 

CE22S 

FORMAT: 

Option I: 

GO TO [sentenoe-nome). 

Option 2: 

GO TO sentence-nome~l, sentence-name-2 [, sentence-nome-3 ... J 

DEPENDING ON 1 
field-name / 
element-name \ . 

CONVENTIONS: 

A. In Option 1, iI a GO sentence is to be ALTERED, it should be named. The 
name of the GO sentence is referred to by the ALTER verb in order to modi­
fy the sequence of the program. If " sentence"'llame" is omitted, the com­
piler will insert an error stop in the object program. Therefore, the GO 
sentence should be referenced by an ALTER sentence before the first exe­
cution of the GO sentence. 

B. In Option 2, the field--name or element--name should have a positive 
integral value. The branch will be to the 1st, 2nd •.. , nth "sentence--name" 
as the value of th.e field or element is 1, 2, ... , n. If the value is zero, or 
exceeds n (i. e., the number of sentences named) the next sentence in nor­
mal sequence wiU be executed. 

EXAMPLES: 

A. SWITCH 1. GO. 

B. GO TO COMPUTE-FICA. 

C. GO TO SHIPMENT, RECEIPT, CHANGE, ADDITION, DELETE 
DEPENDING ON TRANSACT-COD. 

FUNCTION: - - TO TRANSFER CONTRaLTO THE SPECIFIED SENTENCE 
IF THE STATED CONDITION IS SATISFIED (TRUE) OR TO THE NEXT 
SENTENCE IF THE STATED CONDITION IS NOT SATISFIED (FALSE). 

GENERAL COMPILER MANUAL 

16 

IF 

CE22S 

FORMAT: 

Option I: (conditional nomes): 

IF conditional-name, GO TO sentence-nome-l. 

Option 2 (relationol expressions): 

l ~~~:;t~:::'~-I I 
IF literol-I 

orithmetic-expression-1 

IS [NOT) GREATER THAN 

IS [NOT] LESS THAN 
field-name-2 
e lement-nome-2 
literol-2 
o rithmet ic-

IS [NOT] EQUAL TO 

IS UNEQ UAl TO expression-2 
EQUALS 

EXCEEDS 

GO TO sentence-nome- I 

[NOT] GREATER THAN 

[NOT] LESS THAN 

[NOT] EQUAL TO 

, IF UNEQUAL TO 

EQUALS 

EXCEEDS 

GO TO sentence-nome-2 

[, IF .. . ] 

Option 3 (logical expressions): 

lfie'd-nome-3 l 
element-nome-3 
literol-3 
o rith metic - expression-3 

IF 1 conditionol-nome-I I lAND 1 ! conditional-name-2 1 
- relotionol-expression-1\ OR \ relotionol-expression-2\ 

[~~Df 1~~~~;:~:~::::;:::n:'3]' . . . [~D! 1 ~~l:~;:~:~:;;:~7:nO-2o!J 
, GO TO sentence-name-1. 

Option 4 (tests): 

IF 
{

field-name-I } 
element-nome-1 
orithmetic-expression-I 

CONVENTIONS: 

IS [NOT] 
PosrnVE } 
NEGATIVE , GO TO 
ZERO sentence~ 

nome-I. 

A. The abbreviations for relations Listed on page 7 may be used instead 
of the English words shown in the above formats . 

B. A quantity is POSITIVE only if it i s greater than zero. A quantity is 
NEGATIVE only if it i s less than zero. The value zero is neither POSITIVE 
nor NEGATIVE. 

C. The mode of an expression is determined from the data it operates upon. 
If one of the quantities is floating point, fixed point quantities are converted 
to floating point and the evaluation is performed in the floating point mode. 

GENERAL COMP ILER MANUAL 

17 



IF 

MOVE 

CE22S 

D. For additional details, see " Conditional Fields" (page 5), "Arithmetic 
Expressions" (page 9), "Relational Expressions" (page 7), and "Logical 
Expressions" (page 8). 

EXAMPLES: 

A. Option 1 

1. IF MALE, GO TO 789. 

B. Option 2 

1. IF PART-NUMBER OF MSTR-INVNTRY IS LESS THAN PART­
NUMBER OF TRANSACTIONS GO TO WRITE-MASTER, IF EQUAL 
GO TO UPDAT-MASTER, IF GREATER GO TO NEW- RECORD. 

2. IF WEEKLY-FICA OF MASTR-PAYROL i ANNUAL-FICA OF 
MASTR-PAYROL EXCEEDS 144.00 GO TO COMP-WK-fICA. 

3. IF TRANSACT-COD EOUAlS 1 GO TO SHIPMENT, EOUALS 2 
GO TO RECEIPT, EQUALS 3 GO TO CHANGE, EOUALS 4 GO TO 
ADDITION, EOUALS 5 GO TO DELETE. 

C. Option 3 

1. IF SHIPMENT AND OTY-ON-HAND OF MSTR-INVNTRY IS 
LESS THAN OTY-SOLD OF TRANSACTIONS, GO TO BACK-ORDER. 

2. IF A + B - C EO Z*Y AND P GR Q GO TO XYZ. 

D. Option 4 

1. IF ADJUSTED-PAY OF MASTR-PAYROlIS NEGATIVE, GO 
TO ADJUSTMENT. 

IF OTY-ON-HAND OF MSTR-INVNTRY IS ZERO GO TO 
REORDER. 

FUNCTION: - - TO TRANSFER A LITERAL OR THE CONTENTS OF AN 
ELEMENT, FIELD, GROUP, OR RECORD TO ONE OR MORE OTHER ELE­
MENTS, FIELDS, GROUPS, OR RECORDS. 

FORMAT: 

l
litera, - -I lelem, ent-name-2! [element-name-

3l J element name 1 field-name-2 field-name-3 
MOVE f' Id- -I TO ... . __ Ie name group-name-2 group-name-3 

group-nome- I record-name-2 record-name-3 
record-name -I 

CONVENTIONS: 

A. Anumericliterai not enclosed in quotation marks, or a numeric element 
or field being moved will be aligned in accordance with the deCimal point of 
the destination element or field with truncation or zero filIon either end as 
required. 

GENERAL COMPILER MANUAL 

18 
CE22S 

MOVE 

B. A non-numeric element or field being moved will be left-justified with 
space fill on the right if the destination element or field is larger than the 
source data. The compiler will give a warning if the destination element or 
field is smaller than the source data. 1f the warning is ignored, the non­
numeric literal, element, or field being moved will be left-justified and 
truncated on the right as necessary to fit the destination. 

C. If a numeric or non - numeric literal is enclosed in quotation m;u:ks (") 
and consists of a single character, or if the literal is a figurative constant, 
the entire element, field, group, or record is filled with the character 
specified. 

D. If a numeric or non- numeric literal is enclosed in quotation marks (") 
and consists of more than one character, the specified characters are placed 
repeatedly in the element, field, group, or record starting at the left (most 
Significant digit) until the entire element, field, group, or record is full . 
Then the literal will be truncated if necessary. 

E. The compiler will only provide for the movement of one record or group 
of fields to other records or groups of fields of the same size and format. 
Any otber movement can be accomplished by moving elements and/or fields 
and/or the implied movement under the WRITE verb. Note that it is un­
necessary to specify data movements to output. 

EXAMPLES: 

A. MOVE PART-NUM8ER OF MSTR-INVNTRY TO PREV-PARr-NO. 

B. MOVE ADDRESS OF CHANGE-FilE TO ADDRESS Of MASTR-PAYROI. 

C. MOVE MASTR-RECORD OF MSTR-INVNTRY TO HOlD-RECORD. 

D. MOVE "0" TO SUBTOTL - AREA. 

E. MOVE SPACES TO HEADER-AREA. 

F. MOVE "z" TO PART- NUMBER OF MSTR-INVNTRY. 

G. MOVE 9 TO ERROR-CODE. 

H. MOVE " ZY" TO PART-NUMBER OF MSTR- INVNTRY. 

I. MOVE 001 TO COUNTER. 

MULTIPLY 

FUNCTION: - - TO MULTIPLY TWO QUANTITIES TOGETHER AND 
STORE THE RESULT IN THE LAST NAMED FIELD OR ELEMENT OR THE 
SPECIFIED FIELD OR ELEMENT. 

FORMAT: 

MULTIPLY {~~~a~~me_1 } 
element-name-I 

[GIVING field-nome-3 ] 
element-name-3 

{

literal-2 } 
BY field-'name-2 

element-name-2 

[ ROUNDED] 

[, IF SIZE ERROR GO TO sentence-name-l]. 

19 

GENERAL COMPILER MANUAL 



CE22S 

MULTIPLY 

NOTE 

OPEN 

CONVENTIONS: 

A. All conventions specified under the ADD verb apply to the MULTIPLY 
verb. 

EXAMPLES: 

A. MULTIPLY HOURS-WORKED OF TIME-CARD BY RATE OF 
MASTR-PAYROL GIVING GROSS-PAY OF MASTR-PAYROL, IF SIZE 
ERROR GO TO ERROR-RTN-2. 

B. MULTlPLY GROSS-PAY OF MASTR-PAYROL BY 0.03 GIVING 
WEEKLY-FICA OF MASTR-PAYROL 

FUNCTION: - - TO ALLOW THE PROGRAMMER TO WRITE EXPLANA­
TORY MATERIAL IN HIS PROGRAM WillCH WILL BE PRODUCED ON THE 
LISTING BUT NOT COMPILED. 

FORMAT: 

NOTE ... 

CONVENTIONS: 

A. Any sentence may follow the word NOTE if the rules for sentence struc­
ture are followed. 

B. The NOTE sentence should not be named. 

EXAMPLES: 

A. NOTE THIS SENTENCE IS NOT NAMEDJECAUSE NO REFERENCE 
IS MADE TO IT. 

B. NOTE THIS SENTENCE IS USED FOR CLARITY. 

C. NOTE IN NO WAY DOES THIS SENTENCE STATE COMPILER OR 
OBJECT PROGRAM ACTION. 

FUNCTION: - - TO INITIATE THE PROCESSING OF BOTH INPUT AND 
OUTPUT FILES. PERFORMS CHECKING OR WRITING OF LABELS, AND 
OTHER INPUT-OUTPUT FUNCTIONS. 

FORMAT: 

OPEN [INPUT file-name-l [ , file-name-2 ... ] ] [OUTPUT file-name-3 

[ file-name-4 ... J] 
CONVENTIONS: 

A. OPEN should be applied to all files and should be executed before the 
first READ or WRITE of a file. 

GENERAL COMPILER MANUAL 

20 

OPEN 

B. A second OPEN of a file cannot be executed before the execution of a 
CLOSE of the file . 

C. OPEN does not obtain or release the first data record. A READ or 
WRITE should be executed to obtain or release the first data record. 

D. When checking or writing the first label, the user's beginning label 
procedure will be executed if specified by the USE clause. (See Environ­
ment Division.) 

E. If an input file has been deSignated as OPTIONAL in the ENVffiONMENT 
DIVISION, the object program will cause an interrogation for the presence 
or absence of this file . If the reply to the interrogation is negative (i. e. , 
the file i s not present) the file will not be OPENED. A print-out indicating 
the absence of the file will occur, and an end-of-file signal will be sent to 
the input-output control system of the object program. Thus, when the first 
READ for this file is met, the end-of-file path for this sentence will be taken. 

PERFORM 

CE22S 

FUNCTION: - - THE PERFORM EXECUTES A SECTION. UPON COM­
PLETING THE FUNCTION OF THE SECTION, CONTROL REVERTS TO 
THE SENTENCE FOLLOWING THE PERFORM. 

FORMAT: 

PERFORM section-name 

CONVENTIONS: 

USING field-namell , field- nameI2'" . [GIVING 

field-nameO], field-name02""] 

REPLACING namel WITH name2' name3 WITH 

nome", . . . 

A. When the USING-GIVING option is used, field-namen, field"'l1ameI2 
... and field-nameOl' field-name02, ... are considered to be assign­
ment variables. 

To have meaning, the section head must have a corresponding set of defined 
input and output variables. The assignment takes place in accordance with 
the MOVE specifications. 

B. PERFORM... REPLACING invokes a copy of the section body in place 
of the PERFORM sentence. This copy takes place during compilation. As 
this is being done, the names appearing in the section (name l' namea, . . .) 
are replaced with new names (name

2
, name

4
, . .. ). 

GENERAL COMPILER MANUAL 

21 



READ 

CE22S 

Option 1 

FUNCTION, - -TO ALLOW A LIMITED AMOUNT OF INPUT FROM 
AVAILABLE DEVICES. 

FORMAT: 

READ field-name-] [, field-name-2 ... field-name-20] FROM 

hardware-nome. 

Option 2 

FUNCTION,-TO MAKE AVAILABLE FOR PROCESSING THE NEXT 
LOGICAL RECORD FROM AN INPUT FILE AND TO TRANSFER CONTROL 
TO THE SPECIFIED SENTENCE WHEN THE END OF THE FILE IS 

REACHED. 

FORMAT: 

READ file-nome RECORD [, IF END OF FILE GO TO sentence - nome-l]. 

Option 3 

FUNCTION,-TO ADVANCE AN INPUT FILE, OR TO COpy RECORDS 
FROM AN INPUT FILE ONTO AN OUTPUT FILE UNTIL THE SPECIFIED 
CONDITION IS SATISFIED. THEN THE CURRENT LOGICAL INPUT RECORD 
IS MADE AVAILABLE FOR PROCESSING. TO TRANSFER CONTROL TO THE 
SPECIFIED SENTENCE WHEN THE END OF THE INPUT fiLE IS REACHED 
WITHOUT SATISFACTION OF THE SPECIFIED CONDITION. 

FORMAT: 

READ file-name-l[COPYING ON file-name-2] UNTIL element-name-l 
{

fi eld-name-l } 

literal-l 

{ 

EQUALS } {field-nome-2 } 
IS EQUAL TO element-name-2 
IS GREATER THAN OR EQUAL TO literal-2 

..I 
[ , IF END OF FILE GO TO sentence-nome-l]. 

CONVENTIONS: 

A. An OPEN sentence should be executed before the first READ is given 
for a particular file. A file should not be reopened unless it has previously 
been closed. 

B. The filling of the input area, tape movement, flow of cards, etc., is 
controlled entirely by implied routines generated by the compiler. 

C. Any number of READ sentences may be stated for the same file. At 
least one END clause should be specified for each input file. If more than 
one END clause is given for a particular file, it is not required that each 
END clause GO to the same sentence. If the END clauses for a particular 
file GO to different sentences and the END clause is not stated in every 
READ sentence for that file, the compiler will give a warning. If all END 
clauses for a particular file GO to the same sentence, the END clause need 
be stated only once, preferably in the first READ sentence executed for that 
file . 

D. If an OPTIONAL file is not present in a given running of the object pro­
gram, the END clause will be executed on the first READ. End of file pro­
cedures will not be performed. 

GENERAL COMPILER MANUAL 

22 

CE22S 

READ 

STOP 

E. When afile consists of more than one type of data record, these records 
automatically share the same memory area. Each type may be ofa different 
size, but every record of the s ame type should be of the same size. When 
a READ sentence is executed, the next logical record is made available 
without regard to its type. Only the data in the current record is access ible. 
The programmer should employ an IF sentence to determine the type of 
data record after it has been READ. (See CONTROL-KEY in DATA DIVI­
SION. ) 

F. In Option 1, processing stops when the sentence is executed and con­
tinues after the last value is entered. 

G. In Option 3, the abbreviation EQ may be used for equality and the ab­
breviation GREQ may be used for GREATER THAN OR EQUAL TO. 

EXAMPLES: 

A. Option 1 

1. READ CURRENT-DATE FROM CONSOlE KEYBOARD. 

2. READ PARAMETER-I, PARAMETER-2 FROM CONSOLE KEYBOARD. 

B. Oplion 2 

1. READ TIME-CARD RECORD. 

2. READ MASTR-PAYROL, IF END GO TO FINAL-STOP. 

C. Option 3 

1. READ TRANSACTIONS UNTIL TRANSACT-COD EQUALS 3. 

2. READ MSTR-INVNTRY COPYING ON UPD-MSTR-INV 
UNTIL STOCK-NUMBER OF MSTR-INVNTRY IS GREATER 
THAN OR EQUAL TO STOCK-NUMBER OF TRANSACTIONS, 
IF END GO TO CLOSEOUT. 

FUNCTION: - - TO HALT THE COMPUTER EITHER PERMANENTLY OR 
TEMPORARILY. 

FORMAT: 

STOP [ RUN] [ lileralJ. 

CONVENTIONS: 

A. H the word RUN is used, the literal will be typed out ( if one is s pecified) 
and the standard end-of-run procedure will be executed. 

B. If the word RUN is not used, the literal will be typed out (if one is speci­
fied) and the computer will be stopped in a loop. Operating instructions will 
be provided to resume processing at the next sentence. 

EXAMPLES: 

A. STOP 9999. 

B. STOP RUN "POl". 

GENERAL COMPILER MANUAL 

23 



CE22S 

SUBTRACT 

VARY 

FUNCTION: - - TO SUBTRACT ONE QUANTITY FROM ANOTHER AND 
STORE THE RESULT IN THE LAST NAMED FJELD OR ELEMENT ORTHE 
SPECIFJED FJELD OR ELEMENT. 

FORMAT: 

SUBTRACT {!;:~~a~name- l } 
element-nome-I {

literol-2 } 
FROM fieJd-nome-2 

element-nome-2 

[GIVING {:~~:;;:::!-3}J [ROUNDED] 

[IF SIZE ERROR GO TO sentence-name-l]. 

CONVENTIONS: 

A. All notes specified under the ADD verb apply to the SUBTRACT verb. 

EXAMPLES: 

A. SUBTRACT UNION -DUES OF MASTR-PAYROL FROM ADJUSTED­
PAY OF MASTR-PAYROL. 

B. SUBTRACT RECEIPTS OF TRANSACTIONS FROM ON-ORDR-QTY 
OF ORDER-FILE GIVING ADJ-ORDR-QTY, IF SIZE ERROR 
GO TO ZERO- RTN. 

FUNCTION: - - TO INITIATE AND CONTROL THE REPEATED EXECUTION 
OF THE SENTENCES IT PRECEDES. 

FORMAT: 

{

field-nome- 2 ~ 
Sentence-name- I. VARY field-name-I , FROM expression-I .:! 

{

field-name- 3} 
expression-2 UNTIL expression-3 . 
lilerol-2 

: "A set of one or more sentences" 
EXIT sentence-name-I. 

CONVENTIONS: 

literol-l 

A. The sentence is undefined if expression-l and/or expression-2 are 
other than arithmetic expressions. If expression-3 is arithmetic, the sen­
tence is also undefin ed. 

B. When the VARY is first executed, the FROM parameter, obtained from 
evaluating expression-I, is assigned to field"'l1ame~I, the control variable. 
Expression-3 is then evaluated. If the evaluation results in a true truth­
value, the sentence following the EXIT is executed. 

GENERAl COMPILER MANUAL 

24 

VARY 

WRITE 

1 

GE22S 

If a false value i s obtained, the sentences following the VARY are perform­
ed. Upon reaching an EXIT that bas the same sentence-name as the VARY, 
the BY-parameter, obtained from evaluating expression-2, is added to field 
-name-l. Expression-3 is evaluated again. From here on the sentences 
following the VARY are executed for succ,essive false values of expression-
3. The ''loop'' is said to be satisfied when expression-3 results in a true 
evaluation and control reverts to the sentences after the EXIT. 

C. EXIT may have a sentence~ame of its own. Caution should be eXer­
cised in transferring control to it, s ince it causes the By-parameter to be 
added to field-name-l. 

D. A transfer of control from outside the VARY range into the range is un­
defined. 

E. Any number of VARY-EXIT sentences may be imbedded within the sen­
tences of a VARY-EXIT range. 

EXAMPLES: 

A. MOVE-TABLE-A. VARY I FROM I BY I UNTIL I GR 10. 
K = II - I. 
MOVE TABLE-A (I) TO TABLE-B (K). 
EXIT MOVE-TABLE-A. 

B. LOOP-I. VARY P FROM ASS (X.I ) BY I UNTIL P GR 20. 
D (P) = 0 

LOOP-2. VARY Q FROM 1 BY 1 UNTIl Q GR 10. 
D (P) = D (P) + A (Q) * X (Q, Pl. 
EXIT LOOP-2. 
IF ABS 0 (P) GR L, GO TO SET-L. 

EXIT-L,. EXIT LOOP-l 
SWITCH-ALPHA. GO TO CALC-STRESS, PRT-l, ERR- 5 
DEPENDING ON ALPHA. 
SET-l. L = D (P) 

GO TO EXIT-L,. 

Option 1 

FUNCTION: - - TO DISPLAY A LIMITED AMOUNT OF INFORMATION 
ON AVAILABLE DEVICES. 

FORMAT: 

WRITE {field-name-l } 
element-name-l 
literal- l 

ON hardware-name. 

Option 2: 

tflield-name-2 } {field-name-IO }] 
,)element-name-2 . .. element-name-I O 

tli teral - 2 Iileral-lO 

FUNCTION: - - TO RELEASE A LOGICAL RECORD TO AN OUTPUT FILE. 

FORMAT: 

WRITE record-nome RECORD. 

GENERAL COMP ILER MANUAL 

2S 



WRITE 

CE22S 

CONVENTIONS: 

A. In option 1, literals may be used to identify the contents of the data­
fields or elements displayed or to give meaning to the display. 

B. In option 2: 

1. An OPEN sentence should be executed before the first WRITE is given 
for a particular file. 

2. After the WRITE i s executed, the data in the record is no longer 
accessible to the programmer. 

3. If a record is to be printed, it will be edited as specUied on the Data 
Division form. 

4. The data description of the output records must contain a list of all 
data intended for output. When the WRITE is executed, only the data 
listed in the record description are moved to the output file. The 
move is automatic and implied with each execution of the WRITE. 

5. The actual writing on tapes and the punching of cards, etc., is con­
trolled by implied routines which are generated by the compiler. 

EXAMPLES: 

A. Option 1: 

l. WRITE "UNMATCHED" CLOCK-NUMBER OF TIME-CARD ON 
TYPEWRITER. 

NOTE TH IS SENTENCE WILL CAUSE THE UTERAL UNMATCHED 

TO BE TYPED OUT FOLLOWED BY THE CONTENTS OF THE 
CLOCK-NUMBER FIELD. 

B. Option 2: 

l. WRITE MSTR-INVNTRY RECORD. 

2. WRITE HEADER OF MSTR-INVNTR~ 
3. WRITE SUBTOTL -LINE OF SUMARY-REPRT. 

GENERAL COMPILER MANUAL 

26 
CE22S 

V DATA DIVISION 

A. GENERAL 

1. Overall Approach 

Data to be proce ssed falls into three categories: 

a . That which is contained in files and enters or leaves the internal memory 
of a computer from specified areas. 

b. That which is developed internally and placed in intermediate or working 
storage. 

c . Constants which are defined by the user. Figurative constants and liter­
als used in procedure statements are not listed in the DATA DIVISION. 
Tables may fall into any of the above categories. In defining file infor­
mation, the approach taken is to distinguish between the physical aspects 
of the file (i. e . , File Description) and the conceptual characteristics of 
the data contained in the file . By physical aspects we mean the mode in 
which the file is recorded, the grouping of logical records within the 
physical limitations of the file - media, the means by which the file can be 
identified, etc. By conceptual characteristics we mean the explicit defi ­
nition of each logical entity within the file itseU. 

The contents of a file are divided into logical records for purposes of 
processing. A logical record is any consecutive set of related informa­
tion. For example, in an Inventory Transaction File, a logical record 
could be a single transaction, or all consecutive transactions pertaining 
tothe same stock item. Several logical records may occupy a block (i. e., 
physical record). A logical record may not extend across physical rec­
ords. These may be different types of logical records in the same file, 
e. g., a master record and a detail record. Each type may be of a dif­
ferentsize, but every recordo! the same type should be of the same size. 

The concept of a logical record is not restricted to file data but is carried 
over into the definition of working storages and constants. Thus, working 
storages and constants may be grouped into logical entities and defined 
by a Record Description. 

File Descriptions and Record Descriptions may be stored on a library 
tape. The Data Division format described in these specUications is that 
in which descriptions would be stored in the library. The library formal 
will be the first Data Division format which the compiler will accept since 
it requires less compilation time than a free format. At a later date, a 
service routine will be provided to convert fr ee format data divisions to 
the fixed library format. In the meantime, the user should write his Data 
Divisions in the fixed library format on the Data Division Form (Fig. 2). 

GENERAL COMPILER MANUAL 

27 



Co> 

a: 
~ 
Co> ... .... ... 
.... 
'" a: ... 
Z ... 
.." 

CE225 

.. 
0 

,. 
:l 
'" ~ 

" ~ ;; 
~ 
r7 ra-
P--
~ 
P-
P-

:> t% 
~ 
~ 
~ 
~ 
~ 
~ 
~ 

:; ~ 
~ ~ 

-i-
~ 
~ 
~ 
~ 
:; 
" ~ Il i I I I I . I I_ ~ i ...l..Liii ~ ~ z -~ .1. I I I I I I I I I 11 1 i L III r- zo 

5 -~ 
L ~ ~f .. IL .J. .J. .J. -L-L ,. 
~ e "JLi i I I I I I I I II i -L -L 
~ 
~ 

~ -0 ~ -'- --' I I I I I I I I I I I i--'- .-'-
~ 
~ 

~ _ :=t ... ~ 
~ 

; 
:: ~z~cr.~-.l. I I I I 11 . 1 L ..!..!..! iiii 
N 
~ 

~ ~ 
Il..!..!..! I I I..! i..! ..!i 

ri; • I I I I I I I I I I I I I I I I 
..!..! iii - I " 

~ ~~ ..! ..!..! I I I I I I I I 
;:: 
~ 

~ 
~ 
~ 
r-

~ ~ " .. -. ~ 

~ 0 

r.o-
~ 
ri-
::: 
~ 
t% 
~ 
r.- !E 
~ .. 
r.- z 

;! r.;- .. 
F-

0 

r.;-
~ 
l"§-
e 
r; ~>-- Q.. '" n. ..! I I I I I I I I I I I I 

U I I i I I I I I I I -
~~ 

~~ i'~ -= ~ t;;- ~,. 

O~ 

g ~ ~ z 

~r.:-

28 

E 
(; ... 
c 
o .;;; 

'> o 
o 
"0 o 

GENERAL COMPILER MANUAL 

• . 

CE225 

2. Organization 

The DATA DIVISION is subdivided according to types of elata. It consists of 
a FILE Section, a WORKING-STORAGE Section, and a CONSTANT Section. 

a . FILE Section 

Both of the DATA DIVISION elements (descriptions of files and descrip­
tions of records) appear in the FILE Section. The section contains File 
Descriptions and Record Descript ions for both label and data records. 
These two kinds of records are defined in lhe same manner. However, 
since lhe input-output system of the object program must perform special 
operations onlabel records, fixed names have been assigned tolhose label 
fields on which specified operations must be performed. 

b. WORKING- STORAGE and CONSTANTS 

These sections consist solely of Record Descriptions and unrelated field 
or element (subfield) descriptions. 

3. Structure 

All entries are written on the Data Division Form (Fig. 2). This form is an 
image of an BO-column punch-card on which a six- digit sequence number is 
assigned in Cols. 1 through 6. An optional sequence check on lhese numbers 
will be provided. The compiler willgive a warning when it detects a number 
out of sequence. 

The DATA DIVISION begins wilh the header: 

DATA DIVISION 

Each of the three sections begins with its appropriate title, followed by the 
word SECTION and a period. For example: 

FILE, WORKING-STORAGE, OR CONSTANT. 

When a section is not required, its name need not appear . These headers 
start in Col. B of the Data Division form . 

B. FILE DESCRIPTION 

A File Description entry consists of a type indicator, a f.ile name, and a series 
of independent clauses which define the physical characteristics of the file. 
The mnemonic type indicator FD is used to identify the start of an entry. In­
dividual clause formats are arranged in alphabetic order; clauses in the "Com­
plete Entry" are shown in the recommended order. 

Fl U DESCRIPTIO N 

Complete Entry 

FUNCTION: - - TO FURNISH INFORMATIONCONCERNffiGTHE PHYSICAL 
STRUCTURE OF A GIVEN FILE. 

GENERAL COMPILER MAN UAt 

29 



CE22S 

FILE DESCRIPTION 

FORMAT 

Option 1, 

FD file-ncme-l COpy file-ncme-2. 

Option 2, 

FD file-name-I, [RECORDING MODE IS BINARY1 

[, BLOCK CONTAINS integer-l W ORDS] 

[ LABEl RECORDS { ARE U NONSTANDARD ] 
' -- IS f I OMITTED 

[CONTROL-KEY IS lield-ncme-l [OF record-nome-l, lield-nome-2 

OF record-nome-2 . .. 1J 

[SEQUENCED ON field-nome-3 [, field-nome-4l] . 

CONVENTIONS: 

A. In Option 1 the entire File Section (File Description and Record Des­
cription) for file-name-2 is copied from the library and file-name-2 is 
changed to file-name-l. 

B. The type indicator FD identifies the beginning of the file description 
entry. It is written under TYPE in Cols. 8 and 9 on the DATA DIVISION 
Form. The file-name is written under DATA NAME in Cols. 11 through 22. 

C. The clauses are written across the form alter the file-name. H more 
than one line is required, the sentence may be continued on the next line, 
slarting in Col. 11 or in any column following 11. It is recommended that 
sentence continuations be indented to start in Col. 15. Splitting a word over 
two lines is indicated by a tilde (-) in Col. 7 of the next line. H the pro­
grammer prefers not to split a word, he may start the word on the next line 
as any number of blank columns may be left at the end of a line. 

~ 

EXAMPLES: 

BLOCK SIZE 

A. fD MASTR-PAYROL, BLOCK CONTAINS 300 WORDS, 
LABEL RECORDS ARE NONSTANDARD, SEQUENCED 
ON BADGE-NUMBER. 

B. FD MSTR- INVNTRY, RECORDING MODE IS BINARY, 
BLOCK CONTAINS 1000 WORDS, LABEL RECORDS 
ARE OMITTED, SEQUENCED ON STOCK-NUMBER. 

FUNCTION: - - TO SPECIFY THE SrZE OF THE PHYSICAL RECORD (I. E., 
BLOCK). 

FORMAT: 

[, BLOCK CONTAINS integer-l WORDSl 

GENERAL COMPILER MANUAL 

30 
CE22S 

BLOCK SIZE 

CONVENTIONS: 

A. This clause is required except when a physical record contains one and 
only one complete logical record. 

CONTROL- KEY 

COpy 

FUNCTION: - - TOIDENTrFY A FrELD WHICH CONTArNS A VALUE COR­
RESPONDING TO A TYPE OF DATA RECORD. 

FORMAT: 

0, CONTROL-KEY is field-nome-l [OF record-nome-l, 

lield-nome-2 OF record-nome-2 .. - lJ 

CONVENTIONS: 

A. This clause is required only when there is more than one type of data 
record in a file. It is necessary because the READ verb simply makes the 
next record in a file available . An IF sentence should be used to test the 
control field so that the programmer may determine the type of record read. 
rn addition, the object program may take certain implied actions depending 
on the type of re-cord. It can only do so if it can identify the type of record 
read. 

B. It is recommended that the specified field appear in the same poSition 
relative to the beginning of each data record in the file and that it have the 
same name and description except that it would have a different value for 
each type of record. The user may, at his own risk, use different field 
names and locations for each type of record. 

EXAMPLES: 

A. CONTROL KEY IS TRANSACT-COD OF TRANSACTION, 
IDENTIFICATION OF MASTER. 

B. CONTROL -KEY IS RECORD-TYPE. 

FUNCTION: - - TO OBTArN A FrLE SECTION FROM THE LIBRARY. 

FORMAT: COPY file-nome-2. 

CONVENTIONS: 

A. COPY is used when the library contains the entire File Section. 

B. During compilation, the COPY clause is replaced by the F ile Descrip­
tion and Record Description(s) filed in the library under file-name-2. Thus, 
the file-name which precedes the COPY clause will replace the file-name 
appearing within the library. 

GENERAL COMPILER MANUAL 

31 



GE22S 

COpy 

EXAMPLE: 

A. FD UPDAT~PAYROL COPY MASTR-PAYROl. 

LABEL 
RECORDS 

FUNCTION: - - TO INDICATE OMMISSION OF LABELS OR USE OF NON­
STANDARD LABELS. 

FORMAT: 

[ 
f AISRq , LABEl RECORDS 1 J {

NONSTANDARD} ] 
OMITIED 

CONVENTIONS: 

A. Absence of this clause implies that the file contains standard label rec­
ords. 

B. The following four types of label records may appear on the tapes as­
sociated with a file. Since the type of label is significant, the fixed record 
names shown in capital letters have been assigned: 

1. BGN~AP-LABL appears at the beginning of each tape, precedes aU 
other information, and contains information about the tape. 

2. BGN-FIL-LABL appears only once preceding the first data record 
in the file but following the beginning tape label if one is present. 
This label contains information about the file. 

3. END-TAP-LABL immediately follows the last valid data or label 
record on the tape. The end of the-lape label must appear before the 
physical end of the tape i s encountered. When both end of file and 
end of tape labels are being employed on the same tape, the end of 
tape label will follow the end of file label. On a MULTIPLE-FILE­
TAPE, when all four types of labels are being employed, the end of 
tape label follows the last end of file label. All other end of file 
labels are followed by the next beginning file Label. 

4. END-FIL-LABL appears only once immediately following the last 
data record on the last reel of a file, and may contain information 
about the fil e . 

C. Label records are described in the same manner as data records (see 
RECORD DESCRIPTION) . However, if the label records are standard, only 
variable information (such as the value of a label field) need be supplied. 

RECORDING 
MODE 

FUNCTION: - - TO SPECIFY THE ORGANIZATION OR TYPE OF DATA AS 
IT EXISTS ON THE EXTERNAL MEDIA. 

" 

GENERAL COMPILER MANUAL 

32 
GE22S 

RECORDING 
MODE 

FORMAT: 

[ RECORDING MODE IS BINARYJ 

CONVENTIONS: 

A. Absence of this clause implies that the file is recorded in decimal. 

SEQUENCED 

FUNCTION: - - TOINDICATE THE KEYS ON WHICH THE DATA RECORDS 
ARE SEQUENCED. 

FORMAT: 

[ SEQUENCED ON field-nome-3 [,field-nome-4 ... J] 

CONVENTIONS: 

A. ''!ield'''I\aIIle-3'' represents the major key , ''field-name'''4 '' represents 
the next lower key, etc. 

B. This clause does not imply an automatic sequence check at object time. 

C. RECORD DESCRIPTION 

1. Elements of a Record 

A set of related units of data is called a record. A field is the basic unit of 
data mostfrequently processed as a specific entity. Some fields maybe sub­
divided into smaller units called elements (sub-fields) . Consecutive fields 
within a record may be grouped under one name. For example, a record in 
a customer file might include the foUowing: 

CUSTMR-RECRD 
CUSTMR-NAME 
FIRST-NAME 
LAST-NAME 
CUSTMR-ADRES 

STREET 
NUMBER 
CITY 
ZONE 
STATE 

2. Elements of a Record Description 

record name 
group name 
field name 
field name 
group name 
field name 
element name 
field name 
field name 
field name 

A record description consists of a set of entries. Entries for each unit of 
data are made in fixed columns on the Data Divi sion form. One line on the 
form (one punch card) i s required for each unit of data unless more than one 
qualifier is required. Then one line is required for each qualifier. Units of 
data are described consecutively as they appear in the record. Each posi­
tion in the record must be accounted for. A fixed data name, FILL, is used 
to describe unused positions. 

GENERAl COMPILER MANUAL 

33 



CE22S 

For a unit of data the following information may be entered in the columns 
indicated: 

Type (columns 8 and 9). 
Data name (columns 11-22). 
Qualifiers (columns 24-35). 
Format (column 37). This entry is intended primarily for scientific 

data. Specific entries in this column have not yet been defined. 
Repetitions (columns 39 -41). 
Binary (column 43). 
Justification (column 45). 
Editing (column 47). 
Element position (columns 49-53). 
Data image (columns 55-80). At times, actual values may be written 

in these columns. When they are, the actual values are always en­
closed by quotation marks ("). 

An entire Record Description may be copied from the library by making the 
following entries on the Data Division form: 

The letter R in column 9. 
The record name in columns 11 - 22. 
The word COPY in columns 24-27. 
The name of the library record description in columns 29 - 40. 
The word OF in columns 42-43. 
The name of the file under which the library record description appears 

in columns 45-56. 

When this procedure is followed, the record description will be copied from 
the library and the library record name will be replaced by the name in 
columns 11-22. 

3. Specific Entries By Type of Data Unit 

a. Input Records 

(1) For an input record the letter R js entered in column 9 under type 
and the record name in columns 11 - 22. DescriptIons of all units of 
data within the record provide a complete picture of the record. 

(2) For a group of fields, the letter G is entered in column 9 under type 
and the group name in columns 11 - 22 . The descriptions of all units 
of data within the group provide a complete picture of the group. 
NOTE: if a group of fields i s named, then another group name is 
required to define the end of the group. This holds true unless the 
first named group is at the end of a record. 

(3) For a field in an input record, the following entries may be made: 

(a) The letter F in column 9 under type. 

(bJ The field name in columns 11-22. 

(c) Entries in the format column are possible but not yet defined. 

(d) The total number of fields is entered in columns 39- 41 under 
Repet if the field is repeated consecutively. If the number of 
fields is variable, the letter V is entered in column 39 and the 
maximum number in columns 40 and 41. A unique character or 

GENERAL COMPILER MANUAL 

34 

, 

GE22S 

set of characters, not exceeding field size, must terminate a 
variable list of fields. The terminating character or set of 
characters should be enclosed in quotation marks (") and entered 
after the data image (see paragraph (f) below). 

(e) Any character entered in column 43 under Binary indicates that 
the data in the field is so represented. If no character appears 
in column 43, the implication is that the data is represented in 
deCimal. 

(f) The detailed structure of the field is shown in columns 55-80 
under Data Image by entering any combination of the following 
characters: 

Character 

A 

x 

9 

B 

o 

v 

s 

I 

R 

T 

Definition 

POSition contains an alphabetic 
character . 

Position contains an alphanumeric 
character. 

POSition contains a numeric 
character. 

Position is always blank. 

Position always contains a zero. 

Represents an assumed decimal 
point. 

Position contains a plus sign if the 
field or exponent (power of ten) 
notation is positive, or a minus sign 
if negative. 

Position contains a number with a 
positive or negative overpunch. 

Position contains a number with a 
negative overpunch if negative, or 
no overpnnch if positive. 

POSition contains a minus sign if 
the quantity is negative, or, if 
po siti ve the most significant dig; t 
of the quantity. 

POSition contains a minus sign if 
the quantity is negative, or a blank 
(space) if positive. 

Any number enclosed in parentheses specifies that the class of 
data represented by the character preceding the left parenthesis 
exists in the data that number of times, e.g. A(7)X(5) and 
AAAAAAAXXXXXboth indicate the presence of seven alphabetic 
characters followed by five alphanumeric characters. 

GENERAL COMPILER MANUAL 

35 



CE22S 

(4) For an element, the letter E is entered in column 9 under ~ and 
the element name in columns 11-22. The position of the element in 
the field is given in colwnns 49- 53. The most significant position is 
entered in columns 49 and 50 and the least significant position in 
columns 52 and 53. No othe r entries are required for an element. 
Descriptions of elements are listed immediately after the descrip­
tions of the fields in which they are contained. 

(5) For condition names, the letter C i s entered in column 9 under type 
and the condition name in columns 11 - 22. The actual value repre­
senting the condition is written between quotation marks (n) in col­
umns 55-80 under Data Image. No other entries are required. Con­
dition descriptions are listed immediately after the description of 
the field for which they are conditions. 

(6) For field literals (named fields with fixed values, e. g . , a CONTROL 
-KEY field), the letters FL are entered in columns 8 and 9 and the 
field name in columns 11-22. The actual value of the field is written 
between quotalion marks (") in columns 55-80 under Data Image. No 
other entries are required. 

(7) For unused positions in a record, the only description required is the 
Data Image and the word FILL in columns 11-14. 

b. Output Records 

(1) Entries for an output record are the same as those for an input rec­
ord except thai a qualifier (identifying the source of the record) may 
be given in columns 24-35. In other words, if an entire output rec­
ordis obtained unchanged from an input file, the name ofthe input file 
is given as the qualifier . It is not necessary to specify movement of 
such a record to an output area since this is done automatically whell 
a WRITE is given. In such a case it is not necessary to describe the 
contents of a record. 

(2) Entries for an output group of fields are the same as those for an 
input group of fields except that y ne or two qualifiers (identifying 
the source record anQ/or file) may be given. If two qualifiers are 
necessary to identify the source uniquely, the first qualifier is writ­
ten in columns 24-35 and the second qualifier is written in the same 
columns Oil the next line with a tilde (~) in column 7. If the fields 
within the group are not to be modified in any way for output, it is 
not necessary to describe these fields . 

(3) Entries for an output field are the same as those for an input field 
with the following exceptions: 

(a) One, two, or three qualifiers may be given in columns 24- 35 of 
successive lines. The second and third qualifiers would each 
carry a tilde (-) in column 7. Here, qualification would iden­
tify the s ource group, record, anQ/or file . Enough qualification 
should be given for unique identification. If the field is to be 
moved to output unchanged, no description other than type, name 
and qualification need be given. 

(b) If the field is to be modified in any way, the following additional 
entries may be given: 

1. The letter L in column 45 indicates left justification of the 
field, R -- right justification. 

GENERAL COMPILER MANUAL 

36 
CE22S 

2. The letter Z in column 47 indicates that leading zeroes and 
commas are to be suppressed; a dollar sign ($) means that 
this symbol is to be floated to the first Significant character 
of the field, suppressing leading zeroes and commas; an 
asterisk (*) specifies fill (check protection) to the first sig­
nificant digit of the field, suppressing leading commas. 

3. In addition to those characters shown for an input field, the 
followillg may be used in the Data Image of an output held. 

Character 

E 

$ 

Definition 

POSition always contains the letter E signi­
fying that a signed exponent will follow. This 
description is used only when the field i s in 
floating point and its print form is a power of 
ten notation. 

POSition may contain a $ sign. 

Position may contaill an actual deCimal point. 

Position may contain a comma. 

Any printable character (other than those with assigned mean­
ings) appearing in the Data Image of a field to be printed will 
be printed in the position in which it appears in the Image. 

(4) Elemellts, conditions, field literals, and FILL are not described in 
output records. However, a description of FILL can be made by 
describing a literal (see next paragraph 5). 

(5) For literals (actual values without Dames, e. g . , headings and tiUes), 
the letter L is entered in column 9 under type, and the actual value , 
enclosed in quotation marks (n) i s entered in columns 55- 80 under 
Data Image. 

D. WORKING STORAGE 

The Workillg Storage Section starts with the header, WORKING-STORAGE SEC­
TION written on the Data Divisioll form starting in column 8. Workillg Storage 
is described in the same manner as input data except that unrelated fields and 
groups of fields need not be grouped into records. The order of elltries is as 
follows: 

GENERAL COM PILER MANUAL 

37 



WORKING~STORAGE SECTION 

F field"'IlaIne 
E element~ame 

F field~e 

G 
F 
E 

G 

R 
G 
F 
E 

R 

group~ame 

field~ame 

element~e 

grou~ame 

record~e 

group~ame 

field~ame 

element~e 

record~ame 

1. Fields and elements 

2. Groups of fields, fields, 
and elements. 

3. Records, groups of fields, 
fields, and elements. 

Conditions and field literals may be included in Working storage. 

E. CONSTANTS 

The CONSTANT Section starts with a header, CONSTANT SECTION written on 
the Data Division Form starting in column 8. Constants are described in the 
same manner as input data except that actual values are always given instead 
of data images . Unrelated constants and groups of constants need not be group­
ed into records. Conditions may not be described. Order of entries is the 
same as that shown for the Working storage Section. 

"" 

GENERAL COMPILER MANUAL CE22S--------------
38 

CE22S 

VI ENVIRONMENT DIVISION 

The basic approach to the ENVIRONMENT DIVISION is to centralize those a.<>pects 
of the total data processing problem which are dependent upon the physical charac­
teristics of a specific computer. It provides a link between the logical concepts of 
data and records and the physical a.<>pects of the files on which they are stored. 

The ENVIRONMENT DIVISION ha.<> been divided into three sentences, each consist­
ing of several clause s: 

A. The OBJECT-COMPUTER sentence defines the computer on which the program 
produced oy the General CompHer is to be run. 

B. The I~o-CONTROLsentence defines non-standard procedures, rerun, andmul­
tiple file tapes. 

C. The FILE-CONTROL sentence names and associates the files with the external 
media. 

OBJECT-COMPUTER 

FUNCTION: - - TODESCRIBETHECOMPUTERUPONWmCHTHE OBJECT 
PROGRAM IS TO BE RUN. 

FORMAT: 

OBJECT-COMPUTER, 225 

[ . MEMORY SIZE integer-l MODULE(S)] 

[ [integer-2] hardware-name-l [, [inleger-3] hardware-name~2]] 
[ASSIGN OBJECT-PROGRAM TO input-unit-l [inleger-4] 

[ON PLUG inleger-5J] . 

CONVENTIONS: 

A. The OBJECT-COMPUTER sentence is not required. It is intended for 
documentation purposes. If the memory size is given, the object program 
will run within the specified number of modules. If no memory s ize is stated, 
one module will be assumed. The compiler does not use any other informa­
tion in this sentence, other than to copy the entire sentence onto the edited 
listing. 

B. A warning will be given during compilation if the memory size speci­
fied by the user is less than the minimum size required for the program to 
run. 

GENERAL COM PILER MANUAL 

39 



OBJECT- COMPUTER 

GE22S 

C. The compiler will assign the object program to magnetic tape unit zero 
on plug zero llnless specified otherwise at compilation time. Operating in­
structions will be provided so that other input units may be specified for the 
reading of the program instrllctions. 

D. The following standard hardware names and/or abbreviations should be 
used. 

Name 

CARD PUNCH(ES) 
CARD READER(S) 
HIGH SPEED PRINTER(S) 
MAGNETIC TAPE(S) 
MASS RANOOM ACCESS FILE(S) 
PAPER TAPE PUNCH(ES) 
PAPER TAPE READER(S) 
P LUG(S) 

Abbreviation 

CP 
CR 
HSP 
MT 
MRAF 
PTP 
P TR 
PL 

E. Magnetic tape numbers and plug numbers may be written ZERO through 
SEVEN or 0 thru 7. Wh.en a plug number is not specified, zero will be as ­
sumed. 

EXAMPLES: 

A. OBJECT- COMPUTER. 225, MEMORY SIZE 2 MODULES, 
2 PLUGS, 8 MAGNETlC TAPES, 1 HIGH SPEED PRINTER, 
ASSIGN OBJECT- PROGRAM TO MAGNETIC TAPE ONE ON 

PLUG ZERO. 
B. OBJECT-COMPUTER. 225, 2 PL 8 MT 1 HSP OBJECT­

PROGRAM MT 1. 

FILE- CONTROL 

FUNCTION: - - TO NAME EACH FILE AND ALLOW PARTICULAR HARD­
WARE ASSIGNMENTS. 

FORMAT: 

FIL.E- CONTROL. SELECT [OPTIO NAL] file-name- l 

[RENAMING fi le-name-2] , ASSIGN TO hardware-name-l 

integer-l [O N PLUG integer-2] [, hardware-name-2 ... . ] 

[ FOR MULTIPLE REEL] [, SELECT . .. ). 

CONVENTIONS: 

A. The key word SELECT will identify the beginning of the information for 
each "file---name---l". 

B. The name of each selected file (e. g . • " file-name-l") must be unique 
within a program. 

GENERAL COMPILER MANUAL 

40 

CE22S 

FILE-CONTROL 

C. The key word OPTIONAL is required for input files which will not nec ­
essarily be present each time the object program is to be run. 

D. The RENAMING option must he included if more than one file uses the 
same FILE SECTION (both File and Record Descriptions) and that FILE 
SECTION is included with the source program. That is. "file-na,JPe-I" 
uses the FILE DESCRIPTION written for file-name-2. e. g . • when a file is 
to be processed both as an input and output in the same program. RENAM­
lNG ''file-name-I'' or "file-name-2" implies the sharing of a single FILE 
SECTION and does not allow these files to be referenced interchangeably 
in the program. 

E. All files used in the program must be assigned to an input or output unit 
("hardware-name"). (See Conventions Dand E under OBJECT-COMPUTER) 

F . The MULTIPLE REEL option should be included when a magnetic tape 
file may exceed one reel. 

G. The s ame unit should be assigned to all files existing on the same reel 
(see MU LTIPLE FILE option in I-0-CONTROL sentence). 

EXAMPLES: 

A. FILE-CONTROL. SELECT MASTR-PAYROL, ASSIGN TO 
TAPE I, TAPE 2, TAPE 3, MULTIPLE REEL, SELECT 
TIME-CARDS, ASSIGN TO TAPE 4, SELECT N EW-MST­
PYRL, RENAMING MASTR-PAYROL, ASSIGN TO TAPE 1 
ON PLUG I, TAPE 2 ON PLUG I, TAPE 3 ON PLUG I, 
MUlilPLE REEL, SELECT PAYROL -RGSTR, ASSIGN TO 
TAPE 4 ON PLUG 1, TAPE 5 ON PLUG I, MULTIPLE REEL, 
SELECT UNION-DUES, ASSIGN TO TAPE 6 ON PlUG I, 
SELECT BOND-REGISTR, ASSIGN TO TAPE 7 ON PlUG 1. 

B. FILE-CONTROL SELECT MASTR-PAYROL ASSIGN MT 

I - O - CONTROL 

1 MT 2 MULTIPLE SELECT TIME-CARDS ASSIGN MT 3 
SELECT NEW-MST-PYRL RENAMING MASTR-PAYROL 
ASSIGN MT 4 MT 5 MUlTIPLE SELECT PAYROt-RGSTR 
ASSIGN MT 6 MT 7 M ULTIPLE SELECT UNION-DUES 
ASSIGN MT 1 PL 1 SELECT BOND- REGISTR ASSIGN MT 2 
PL 1. 

FUNCTION: - - TO SPECIFY NONSTANDARD PROCEDURES, THE POINTS 
AT WHICH RERUN IS TO BE ESTABLISHED, AND THE LOCATION OF 
FILES ON A MULTIPLE FILE REEL. 

GENERAL COMPILER MANUAL 

4' 



CE22S 

I - O - CONTROL 

FORMAT: 

I-O - CONTROL [ RERUN [ ON hardware-name] EVERY 

lEND OF REEl ( . 
Integer - fRECORDS \OF f,le-name-l] 

[MULTIPLE filE TAPE CONTAINS fll e-nome-

2 [ POSITION integer - 2] [. file-nome- 3 

[POSITION integer- 3] ... ]. 

[, USE sectian- name-l AFTER 

STANDARD ERROR PROCEDURE ON~:~~~~ome-4~] 
(OUTPUT ) 

} BEFORE 1 
[

USE section-name- 2 ) AFTER ( STANDARD 
llNSTEAD OF ) 

[
BEGINNING ] [ REEl ] 
ENDING FILE 

LABEL PROCEDURE ON ) INPUT l . 
( file-nome- 5 ) ] 

1 OuTPUT } 

CONVENTIONS: 

A. This sentence is required only when one of the above clauses is desired. 

B. If RERUN is specified, it is necessary to indicate when a r erun point is 
to be es tablished and where the memory dump is to be written. 

j 
1. Memory dumps are written in the follOwing ways: 

a. The memory dump is wr itten at the end of each r ee l of an output 
file . 

b . The memory dump is written on a separate rerun tape ("hardware 
....... namell

) . 

2. Rerun points may be es tablis hed by the following conditions: 

a. When th.e end of REEL option is used for a particular output file 
and we wish to write the memor y dump on the same file. In this 
case "hardware-name·' is not required. For example, RERUN 
EVERY END OF REEL OF UPD-INVNTRY. 

b. When the end of REEL option is used for an input or output file 
and we wish to write the memory dump on a separate rerun tape. 
Here, "hardware-name" s hould be specified. 

c . When a number of records ("integer-l ") of an input or output file 
have been processed. In this cas e, "hardware-name" should be 
specified. 

GENERAL COM PILER MANUAL 

42 
CE22S 

I-O- CONTROL 

C. The MULTIPLE FILE option is required when more than one file shares 
the same physical reeloftape. Regardless of the number of files on a single 
reel, only those files which are used in the object pr ogram should be speci­
fied. If all file-names have been listed in consecutive order, the POSITION 
need not be given. If any file in the sequence is not listed, the position rela­
tive to the beginning of the reel should be given . 

D. In the USE clause, sectioJY-name- 2 wi]! be executed as specified: 

1. BE FORE, AFTER, or INSTEAD of the standard input label check. 

2. BEFORE a standard output label i s created. 

3. AFTER a standard output label is created but before it is written. 

4. INSTEAD of creating and writing a standard output label. 

5. If BEGINNING or E DING are not included, section- name-2 will be 
executed for both beginning and ending labels. 

6. If REEL or FILE are not included, s ection-name- 2 will be executed 
for both REEL and FILE labels. 

EXAMPLES: 

A. I-O - CONTROL. RERUN ON TAPE 7 O N PLUG 1 EVERY 
END OF REEL OF MASTR-POLICY, MULTIPLE FILE 
TAPE CONTAINS RATE - TABLE POSITION 6, STATE­
CODES POSITION 9, USE BYPASS AFTER ERROR ON 
INPUT, USE PATTERN- CHEK AFTER LABEl PRO-
CEDURE ON TRANSACTIONS. 

B. I-O- CONTROL. RERUN ON TAPE 0 EVERY 1000 
RECORDS OF MASTR- POllCY, USE LABEL - RTN 
INSTEAD OF STANDARD ENDING REEL LABEL PRO­
CEDURE ON TRANSACTIONS. 

43 / 44 

GENERAL COM PILER MANUAl 



CE22S 

VII IDENTIFICATION DIVISION 

The Identification Division allows the programmer to label and describe the source 
program. Although this division is not required, if used the compiler will copy the 
information given onto the edited listing. If a PROGRAM~ID is supplied, the com­
piler will use it according to standard programming conventions. The following 
illustration shows the type of information which would usually be included in the 
Identification Division. 

IDENTIFICATION DIVISION. 
PROGRAM~ID. P 13. 
AUTHOR. J OHN DOE. 
INSTALLATION. GENERAL ELECTRIC. 
DATE~WRITTEN. AUGUST 29, 1960. 
DATE~COMPlLED. AUGUST 30, 1960. 
LAST---GHANGE. AUGUST 31, 1960. 
SECURITY. UNCLASSIFIED. 
REMARKS. GROSS TO NET RUN. 

45 / 46 

GENERAL COMPILER MANUAL 



VIII SENTENCE FORM 

Fig. 3 shows the Sentence Form on whic.h the Identi ­
fication, Environment and Procedure Divisions are 
written. Thisform is an image ofan 80-column punch 
card. Entries are made as follows: 

A. A sequence number may be assigned in Cols. 1-6 
for each line (card). An optional sequence check 
on these numbers will be provided. The compiler 
will give a warning when it finds a number out of 
sequence. 

B. All division, section and sentence names are writ ­
ten starting in Col. 8. These names are followed 
by a period and at least one space. 

C. Each sentence must start on a new line . However, 
the first sentence following a name may start on 
the same line as the name. 

CE22S 
47 

D. Although unnamed sentences may start in Col. 8, 
it is recommended that they be indented four 
spaces and start in Col. 12. 

E . If a sentence exceeds one line, it may be contin ­
ued on the next line starting in Col. 8. However, 
it is recommended that conlinuations be indented 
eight spaces and start in Col. 16. 

F . If a word is split at the end of a line, a tilde (~) 
is placed in Col. 7 of the second line before con­
tinuing with the word. If you do not want to split 
words across lines, the first line may be space 
filled through Col. 80 and the word started on the 
second line . 

GENERAL COM PILER MANUAL 



I 

~ 

"'" ~ 
~ 
c.n 

GENERAL. ELECTRIC 

PROGRAM 

PROGRAMMER 

GENERAL COMPILER 
SENTENCE FORM 

DATI 

COM.um I PAGI Of 

'12131411 161111 91' 0 1"1' 21' , 1"1 '11161"1 i'I 19I" 1"12212312'12 *****0 1.,1.**.1 .11.6Inlnl 391.0 I " I "I U 1"1451461'1 [0'1491 10 I 1 1J5ilillS4lU I s61 571 sals9160 16iJ6lhlJ6ilii&616716116917017'lnl1311' ll117 617 7171179~0 

... 
011 

Cl 
m 
Z 
m 

~ 
0-

n 
o 
Ot .., 
0-
m 

'" 
~ 
~ 

SIQUINCI 
1iUMiiR 

o 0 o I o 0 I l ol €INITI II Fl llcIAI 'I' III OINIIDlll v I I1 81110 IN" 
o 0 o 2 o 0 I' l nIOlal nIAIMI- l l l o l , II I' I . 13 
o 0 o 3 o 0 OIAI'I' IEI- l c loIMl pl I ILIRIDI. I IAI ulalul 81'1' 3101, 1 1.1 91Glo 
o 0 o • o 0 LIAISI'l'Hc IIlI AINIOIEI , I IAl ulolul 61'1' 1 1311 11 01610 
o 0 o ~ o 0 n1 EIMIAlnI KI81, 10InI0 I s l l l 1'1' 101 IN l olTI In luIN, . 
o 0 o I o 0 EINl v Ill n 10 iNIMIEINIr i 10111 vi ii 8111 01N, . 
o 0 o 2 o 0 Ol nl J IElc iTI-IC loIMl vlu lTl el,,1 12121s l , I IMIEIMlo lnlYI 121 IMlololulLIEl s 
o 0 o 3 o 0 31 11' IL Iu lOI &1, I 111 0 I IMIAlo INIEI'I' l l lc l ITIAIPI l>18 
o 0 o 5 o 0 FIII L IBI- ICloIN ITlnloILI , I IslEIL l l le lTI IMIA l sIT IRI - lpIAlvlnloIL 
o u o 6 o 0 11 - l o l- IClo INITI IlIO ILI. lnIElnlu IN, , 
o 0 o I o 0 pln lo lc l &lo lu ln l EI l o l llv lll SlllolN 
000200 01 pi EINI III Nlp iu lTI IMI AI sl'l'lnH plA lv ln l o lLI , I ITIIIM l f; I- lc IAI nlol 9 

o 0 0 3 0 0 0 u " " U 'I' PAY R 0 L - n 0 8 'I' n, UN' 0 N"H ojujl 
000400... 8, DONO .... UEOtSTI{ . I 

o 0 1 0 0 0 M A I (II - C If A I N H C; A 0 'I' I ME .... C A fl f) S I I FEN DI.I~'-F 
001001 FIL~ 00 'ro ENP - HTN ·- l. I 

002000 MAT e ll .... DADO Ii: S, n. £ ADM AS Tn .... l' A Y R 0 "" C OfI~Iv..ldN 
00200 1 .... Q ON NEW - M ST - PVIlL UNT I L DAPGE ... 

002002 .... NU MDER O F MAS Tn -" l1AVaOI,. I S OnEA 

0020ca - TEn THAN On EQUAI.o TO DADOE " NUM 

002001 - ot=:n OF T IM F. ... CARDS,IF END OF 

002006 FILE 00 £ND - RTN .... I 

Figure 3 Sample Sentence Farm 

t- [-
_, _ ,11' [Fi t f J 

~ 1:::\ 3: ~':'\ 
~\ ~ ~ ~ ~ 
i\:l .~ ~ r--~ 
;;' ' ~:t. 

. ft r 
~ I I . \ 

r- . T 

5 ~[-'b .. I'~ F "$ 1 ~ l-

i' ~C"":" rr:::S ~ \- ;-t" '- ' l' t 
::0 :l ~ ~' ~ if\. l. L . I 11 ~'::' -'l' ~! • i ,1 " ~ 
HI i- 5 ~ ~ P I~ r.:t <'lc () 

'l' t §' ~ 1< d~ .:- 1 
... t 3 ' 1\-.~ ~ ~ t. . (' I~ ~ ~, _ 1.. ~ ' l.,); r1 \ ~ 
;' . r- '. - In ~ J 
~ ___ ' ~ l 
("\ $I !' " .) - t 

t . - .:.' L r :j - -
~ f: ~ 

f 
\, 

s 
). 

.~ ~ - ~ 

~i 
.::f 

"h 

f~ t1 . 

~ 

r 
)l 

)} 

t 

).~ , " > &. ~ 
t r" 4, t ~ ~ ~ 

\ 

,1 ~~ . J 

~~ 

~ h.~ 

t '- i 
1-' . ~ 

-; 

t-t 

I 

J 
'­
IV 

-t f .£ r
f 

~ J t 
f' 

r 
;:l 

~\ 
l 

( \ 
~ 

'-r 


