ZDATA PROCESSING

Progress Is Ovr Most Important Product ' i il B 5 i e CUM PI LER

GENERAL ¥ ELECTRIC | Z I W S
J -~ - | 58 e — . ;
. o ‘\” L 3
7 I‘. ——— , ‘
,t' " " J - 2 2 s = S
* ". J £ ; 5 :
. = % [
| . — (] A
d | , o |
['.' P
I‘

GENERAL &3 ELECTRIC

COMPUTER DEPARTMENT, PHOENIX, ARIZONA

ACKNOWLEDGEMENT

"This publication is based 'in part' on the COBOL
System developed in 1959 by a voluntary committee
composed of government users and computer manu-
facturers. The organizations participating in the
original development were:

Air Material Command, U. 8. Air Force

Bureau of Standards, Department of Commerce

Datamatic Division, Minneapolis-Honeywell Cor-
poration

David Taylor Model Basin, Bureau of Ships, U. S.
Navy

ElectroData Division, Burroughs Corporation

International Business Machines Corporation

Radio Corporation of America

Remington-Rand Division of Sperry-Rand, Inc.

Sylvania Electric Products, Inc.

"The committee was joined at a later date by the Gen-
eral Electric Computer Department. The initial spec-
ifications for the COBOL language are the result of
contributions made by all of the above-mentioned or-
ganizations and no warranty expressed or implied, as
to the accuracy and functioning of the programming
system and language is made by any contributor or by

the committee andno responsibility is assumed by any
contributor or by the committee in connection there-
with.

"The authors and copyright holders of the copyrighted
material used herein: FLOW-MATIC (Trade-mark of
Sperry Rand Corporation) Programming for the UNI-
VAC ® I and II, Data Automation Systems (¢) 1958,
1959, Sperry Rand Corporation; IBM Commercial
Translator, Form No. F 28-8013, copyrighted 1959
by IBM, have specifically authorized the use of this
material, in whole or in part, in the COBOL specifi-
cations. Such authorization extends to the reproduc-
tion and use of COBOL specifications in programming
manuals or similar publications.

"Any organization interested in reproducing the CO-
BOL report and initial specifications in whole or in
part, using ideas taken from this report or utilizing
this report as the basis for an instruction manual or
any other purpose is free to do so. However, all such
organizations are requested to reproduce this section
as part of the introduction to the document. Those
using a short passage, as in a book review, are re-
quested to mention "COBOL' in acknowledgment of the
source but need not quote the entire section.”

DATA PROCESSOR

TABLE OF CONTENTS

L INTROERIETEEIN..... ... oo oo 55050075 w55 S0 5505 08 5104 B A3l
1. SENTENCES: BASIC HHEMIENTSc.cassivinrinssssing mesesssas

A, Sentence NOMeSt et e e e e e e e e e e

B RREETION 5., s BB i SO R s (S R BT 0 B o 8 S 5 S ST B

C
D
E.
F.
G

S o T [O S OO ST

s Data NOMIES e e e e e e e e e e e e

SUBSEIPIE & - oo isimas s B a5 o T e S 0 0 5 R Y S 3 o 3 R
ORI OO IBEENCT . o, i i oo i 0 o . 5 im0 G A 0 AR

e LIFBFOEE .o o i w0 i e e ot 6 S o o e e, o T R M

HL P ntiwe CoBSIONIS . . o0 5 55 5 shoi s 5 mms, vhas 5he is Sl s Bas 515 5 a5 o S 5 o 4

QUalifiers e e e e e e

J. Arithmetic EXpressionsttt e e

K. Rolcianicl EXPUESARONET . -5 cm s mimmve i s s S s & S a s 15me s S0 s &

Lo oghcttl EXPressioms’ . o oo ouivems 5155605 5isb o & iy s 51 wse o @es S o6 318 0 354w K54 18 s

B SECTRONS oo uns g s s s s wiom s n i w7 o, 5 W 58 e

..

..

..

..

W Ny N DWW W W

11
11
13
13
14
15
15
15
15
16
18
19
20
20
21
22
23
24
24
25

TABLE OF CONTENTS LIST OF ILLUSTRATIONS

Page
V. DATA DIVISION Puzge Figore: 1 Sonfomen FOVIN . oo oo oo aims ow s ke & &5 558 508 e i Sis & & o &2 o s S 4
o Figere 2 'Dothen DIVESIO TR . ovcoonmm 6605006505 w0h 6 0 S0 53 56 5 T 88 S0 i s v 28
BLTBENERAL =m0 4105 110 00 S0 S5 S0 TR o2 5 e e o Figove 3 Somple Somtamea FOrm :coovsss vnassvesiossssis ams seanssassses 48
B FILEDESCRIPTION .o ivoiow i 555 50 6 5w s, o6 B0 Va0 0 5 i i 3768w om iosmmizmes escwsion o 29
COMPLETE EINERY . vt 055 55 8 b 0hioiS 295 M v e 95029 S o o S 29
B I R o0 i 5 i) B R R e o S g e i e s o e 6 1 £ £ v s 30
CONITROE MRN8 imm m im0 g e S RS . A B 31
EEIE ot s 5 ot o ATy) 0 i, 0 M 4 M, R, e A 3 S 0 R 31
RAREL MEDEMRERS . - oo mm omho o o088 o o257 0 kT ol 0 i 411 A A Sl 51 5 32
RECORDING BEOBE: oo oo om0 w6405 5078 8 i . 550 e o S A0 A3 6 A 32
SERMIEMICEDN . - oo ioioninn sk @ e i) 5 10 b 00 WAl B 761 L 0 15 B 33
C. RECORD DESCRIPTION i e it et et e e e e e e e e e 33
1. Elements of a Record 33
2. ElementsofaRecordDescriptionccvhiriiieimennennaaaas 33
3. SPOCHIC EIITIOS . . v v v w diou iy s mom S0 60 d0m! el oy 61 G 64008, 6 S B et 34
O TOPUE ROCOUIE: i oo sie s mi s o smish aie @ amEite s (50 5 /o AN 0 B S0 0 i 8 34
By OUEPUE RECOUHS: ..« - viivv o v o o wvaas s 0 &/ 3 S 055 0 S 5 J08, S0, Siw s & 36
B WORKING STOMRIIGE .. . oo oo om s o s s 5o i w155 o 6 SR 680 B @ i i i i 37
E CONSTANTS . oo om b s b sy s s 16 s s S a2 s 57 ey b as oo @@ svars, s 38
VL. ENVIRONMENT DIVISION e 39
IBIECT TODINUPIITER. i oo o amsmiiiimn st o 0 5 5 oo £ 7m0 i s L0 6l ot 39
FILEFCOINITRIDL. oo iosmisnon sofmomm s isd o) SR Sombi o 5o shhe 56 s e N, 58 5 i a0 40
I EONTRO 5o vemmrem s w0 57 8 =@ R R R 41
VIL. IDENTIFICATION DIVISION e 45
NI SENTERICE FORN ..o oo v e cimsio o i sm i s e s e s oo o e rcons s sms a7

. i
vi n

GE 225

Information Processing System

GE 225

GENERAL COMPILER MANUAL

| INTRODUCTION

The most recent answer to the problem of program-
ming ease and costs is the concept of automatic coding
and pseudo-languages. To date, many automatic cod-
ing systems have been developed. Several of these
have met general acceptance among certain groups of
users; others have only gained recognition at particular
installations. The more successful of these systems
have pseudo-languages which resemble English sen-
tences or use abbreviated English words for stating
the solution of the application fo be processed by the
computer. A special computer program, commonly
called a compiler, is provided to convert the language
into computer instructions.

Such a compiler has been provided for the GE 225.
Ideas from both ALGOL* and COBOL* are incorpor-
ated. Our General Compiler is an end-product of the
investigations of both of these committees. It is not
a language in the sense that AL.GOL and COBOL are
languages. Instead, it is more a concept in the design
and implementation of a compiler. The language
presently available to our General Compiler is based
on COBOL, since it satisfies the needs of a broad
spectrum of business data processing applications.
To accommodate the demands of scientific users, the
ability for stating complex equations, Boolean expres-
sions, and floating pointarithmetic was alsoincorpor-
ated into the language format of COBOL. There are
also many other things that have been taken from AL-
GOL and other sources that are available optionally.
Therefore, the present version of the 225 General
Compiler is capable of accepting programs written in
one or two, or in a combination of the two language
forms.

The GE 225 General Compiler preliminary specifica-
tions outlined in this manual are mainly definitions of

* COBOL - Common Business Oriented Language
ALGOL - Algorithmic Language

allowable operations and imply and require computer
knowledge if they are to be used effectively. There-
fore, the manual presented here should not be used as
a TEXTBOOK, but rather as REFERENCE MATERIAL
tobe used to augment already realized skills. Because
COBOL is a dynamic language, changes are to be ex-
pected. The General Compiler language that is de-
scribed here is an approach tobuilding compilers that
facilitates making such changes. With this facility we
will be able, at all times, to keep our General Com-
piler language current. Any changes which we make
will be reflected in future manuals or in supporting
material.

A program written in a language other than machine
language is termed a "'source’ program. There are
four divisions of a source program written in the
General Compiler language:

1. Procedure Division - consisting of an ordered
set of sentences specifying the steps the computer
is to follow in solving a problem.

2. Data Division - defining the arrangements and
characteristics of the data to be processed.

3. Environment Division - containing information
about the configurations of devices needed by the
source program.

4. Identification Division - providing the label and
other information about the source program.

Each division is a separate level of program prepa-
ration that can be altered without affecting the others.
This allows ease of programming and facilitates pro-
gram conversion to those General Electric computers
having the General Compiler automatic coding system.

GENERAL COMPILER MANUAL

GE 225

1/2

Il SENTENCES: BASIC ELEMENTS

The procedure portion of a source program is an ordered set of sentences specify-
ing the steps the computer is to follow in solving a problem. (See Figure 1.)
Basically, a sentence is made up of a name, an operation (usually expressed by a
verb), and one or more operands.

CALC-FICA. MULTIPLY GROSS~PAY BY 0.03 GIVING WEEKLY~FICA.

L T

(label) operand operand

Here CALC~FICA is the name (or label), Multiply is the operation, and Gross~Pay,
0.03, and Weekly~FICA are the operands. These basic elements may be diagnosed
more fully as follows.

A. Sentence Names

The name (CALC~FICA in our example), may describe the purpose of the sentence
or it may be a number indicating a particular sequence, and needs to be given only
when a sentence is referred to by another sentence. Names should not exceed 12
characters and the words of the source language vocabulary should not be used as
sentence names.

B. Operation

A word (usually a verb) indicating the function of a sentence is the operation. In our
example Multiply tells the compiler to create the machine instructions necessary
to multiply the gross pay amount by 0.03 and store the product in the weekly
F.LC.A. field.

C. Operand

An operand is the quantity which is being operated on according to the function of
the sentence. An operand may be a data name, a literal, or a sentence name.
Therefore, in our example:

GROSS~PAY 0.0.3 WEEKLY~FICA
data name SR - litqral T - data name
~~“opera\.m;i.‘;“’

GENERAL COMPILER MANUAL

GE 225

GE 225

GENERAL COMPILER
SENTENCE FORM

GENERAL @D ELECTRIC

DATE

of

Sentence Form

Figure 1

1 [2]ala]s[s]7]s]o[v0[v1[v2[r3]va]vs]re] v v8]19]20]21[22]23]2[2s|2efas 28] 29[s0] 1] 2[3]sa] as[e[7] 8]9{ao]] a2[as[aa] s|s| a7 as] as[so] s1|sz[s3]sa] 5s]se] 7] sa]so[6o[61 62| 6s]e4 es[se 67| s8] e9|70]1[r2[zs[ralrs]7e[77 78] re]s0

SEQUENCE

GENERAL COMPILER MANUAL

GE 225

D. Data Names

Names representing data (files, records, fields, elements, variables, constants,
arrays of numbers, etc.) are arbitrarily assigned by the programmer. They are
formed from:

Alphabetics A BC,..... 5 b
Integers 0, 1,2, cesesy 9
Tilde o~

Data names should not exceed 12 characters and should contain at least one alpha-
betic. Words of the source language vocabulary should not be used nor should a

data name begin or end with a tilde.

E. Subscripts

Subscripts are used to identify elements in a list or in an array of values. For

example, a list of values X1, X2, L I X10 may be given the name X. If the
values are stored consecutively, each value can be referenced by a subscript

ranging from 1 through 10. In this case the list would be described as:
X(1)

where:
X = name given to the 10 values of the list

I = subscript name denoting the relative position of each value of the
list.

If I =1, the value X] is referenced: if I =17, X7 is referenced.

An array may be multi-dimensional: that is, it may have more than one subscript.
Also, subscripts may be written as arithmetic expressions containing other sub-

scripted arrays. For example:

ABC (R + L)
K(A-B*C, L(L J), x)
RATE (T + L, D - 4)

If an expression is used as a subscript, the integral part of the result is only used
to obtain the position of the element in an array.

F. Conditional Fields

In some applications it may be desirable to assign a name to each value of 2 field.
For example:
Conditional Name

Field Value Meaning
1 white WHITE
2 pink PINK
3 blue BLUE
4 turquoise TURQUOISE

The conditional (representing a condition or value) name stands for a particular
value and may be used as an operand to mean the value. Conditional names are

principle operands of logical expressions:

IF PINK, GO TO 123.

GENERAL COMPILER MANUAL

F. Conditional Fields

tells the computer to test the color code field for a 2. If a 2 is present, control
passes to sentence 123. If a 2is not present, control passes to the sentence follow-
ing the IF sentence.

G. Literals

A literalis a quantity itself rather than a name givento a quantity and may be either
numeric or alphanumeric. Numeric literals may be written as an

Integer 230
Decimal Integer 230.1
Power of ten 2.301E2

The letter "E" in the power of ten notation delimits the power of the exponent.
Numeric literals may be enclosed in quotation marks (see MOVE verb).

Alphanumeric literals must be enclosed by quotation marks (") e.g., "A". Further,
an alphanumeric literal may contain any character in the set of the computer,
e.g., "3A".

H. Figurative Constants

Certain literals are called figurative constants. These have been assigned fixed
names as follows:

ZERO (S) ONE(S) FOUR(S) SEVEN(S)
ZEROES TWO(S) FIVE(S) EIGHT(S)
SPACE(S) THREE(S) SIX(ES) NINE(S)

For a figurative constant, the compiler produces a string of identical characters
whose length is dependent upon context. For example, if a QTY~ON~HAND field
was described as five digits long, the statement "IF QTY~ON~HAND EQUALS
ZERO" would compare the contents of the QTY~ON~HAND field against 00000.

I. Qualifiers _
o

Every name in a source program should be unique either because no other name
has the identical spelling or because the name exists within a hierarchy of names
such that the name can be made unique by mentioning one or more names higher in
the hierarchy. When used in this way the higher names are called "Qualifiers",
and the process is called "qualification". With each use of a name, enough quali-
fication should be mentioned to make the use unambiguous, but it is not necessary
to mention all possible levels of qualification unless they are needed for uniqueness.
A file name is the highest level qualifier available for a data name. Three basic
rules should be used for qualification:

1. A qualifier should exist outside (above) the name it is qualifying.

2. A name may not appear at two levels in a hierarchy so that it would
appear to qualify itself.

3. I a data name or condition name appears more than once in the data
division of a program, it must be qualified in all references occur-
ring in the procedure division.

Take, for example, two records named MASTER and NEW~MASTER each contain-
ing CURRENT~DAT and a TRANSACT~DAT field. If each of these fields contains

I. Qualifiers

three elements, MONTH, DAY, and YEAR, we can refer to the current month in
the NEW~MASTER record as:

MONTH OF CURRENT~DAT OF NEW~MASTER
and we may refer to the day of the transaction in the master record as:

DAY OF TRANSACT~DAT OF MASTER

J. Arithmetic Expressions

An arithmetic expression is a sequence of variables, numbers, and maﬂ?ema.tica.l

functions connected by symbols which represent the arithmetic operations add,

subtract, multiply, divide, and exponentiation. We may write an expression as:
FED~TAX =(GROSS~PAY - (NUM~DEP * 13.00)) *0.18

The value of FED~TAX is obtained when data is substituted for the variables.

Arithmetic expressions are evaluated from left to right and indicated operations are
performed in the following order:

Operation Symbol

Functions and
Exponentiation

Multiplication and
Division

e

+

Addition and
Subtraction -

Parentheses are used to establish a precedence of evaluation. When they are used
the evaluation is from the innermost to the outermost set of parentheses.

K. Relational Expressions

Any expressed or implied combination of two field names, element names, literals
or arithmetic expressions connected by any of the following relations is called a

relational expression.

Relation Abbreviation
Exceeds GR
Greater than GR
Not greater than NGR
Less than LS
Not less than NLS
Equal to EQ
Equals EQ
Not equal to NEQ
Unequal to NEQ

Relational expressions are evaluated from left to right.

GENERAL COMPILER MANUAL

GENERAL COMPILER MANUAL
GE 225

GE 225

GE 225

K. Relational Expressions

EXAMPLES:

1. IF PART~NUMBER OF MSTR~INVNTRY EQUALS PART~NUMBER
OF TRANSACTIONS (two field names).

2. IF WEEKLY~FICA OF MASTR~PAYROL + ANNUAL~FICA OF
MASTR~PAYROL EXCEEDS 144.00 (arithmetic expression and literal).

L. Logical Expressions

A logical expression is any combination of conditional names and relational ex-
pressions connected by the logical AND and OR (inclusive). Logical expressions
are evaluated from left to right with the logical AND having precedence over the
logical OR. Parentheses are used to establish precedence.

EXAMPLES:

1. IF PART~NUMBER OF MSTR~INVNTRY EQUALS PART~NUMBER OF
TRANSACTIONS AND TRANSACT~COD IS GREATER THAN 1.

2. IF GRADUATE OR EXPERIENCED.

PROCESSOR

GEMNERAL COMPILER MANUAL

GE 225

Il SECTIONS

Sections provide a way to group (under a single name) an ordered set of sentences
having a common function and needing to be executed from more than one place ina
program. The programmer may partition a program into sections as he chooses.
However, he must designate sections as follows:

section~name SECTION.

[INPUT variables field~namep;, field~nameyy 1.
[QUTRUT variables field~nameg;, field~namegy 1.
BEGIN.

(One or more sentences)

END section~name SECTION.

The ""Section name" identifies a section and provides a reference to it. BEGIN-END
separates the body of a section from its heading. The "head" portion defines those
fields of the body which must be assignedvalues before the section can be executed.
END is the common exit point for those sentences appearing in the body. As such
it may be given a sentence name. This way of using a section allows us to program
a generalized routine using "dummy' parameters which take on actual values when
the section is executed at object program running. The following format of the
PERFORM sentence is used to do this:

PERFORM section~name [USING field~namey, field~namep]
[GIVING field~namegyy, field~namegg]

When the PERFORM is executed, field~mamej; of the using clause is assigned to
field~namey; of the INPUT list in the section head. Field~nameyy of the PERFORM
is assigned to field~namey; of the section head, etc. Then the body of the section
is performed. I a GIVING clause is specified with the PERFORM and an OUTPUT
list appears with the section, the output variables of the section head are assigned
to those listed with the GIVING clause. The assignment is one-to-one with field~
nameq of the section head going to field~namegq; of the GIVING clause, and so on.
When this is completed, the sentence following the PERFORM is executed.

There is another way in which sections canbe used. Some applications may warrant
copying a given set of sentences and while doing so require that certain names be
replaced by other names used elsewhere in the program. PERFORM is used in this
case also. The section is written as before. But, since value assignment is not
required, no listing is necessary within the section head. The section now takes
the form:

section~name SECTION.

BEGIN.

(One or more sentences)
END section name SECTION.

To modify the names within the body, the PERFORM is stated:

GENERAL COMPILER MANUAL

GE 225

PERFORM section~name REPLACING name; with nameg, nameg with
nameg.....

The section body is copied or inserted in place of the PERFORM. This occurs
during compilation. While it is being copied, old names are replaced with new
names. Name,, nameg, etc. may be any name within the section's body. Caution
should be exercised since the replacement takes place with every mention of these
names.

Sometimes we may wish to divide a run or program into sections and compile and
test each section separately. Then, when the sections are individually checked out
pigce them together to form a continuous run. The rules given here permit jus;
this. Wl_xen initiating compilation, the compiler can be directed to compile a section
and assign all coding addresses relative to zero instead of the usual absolute ad-
dress. Now the object coding for the section is in "relocatable" form and can only
!Je put in absolute form when loaded prior to object running. A special load routine
is used to do this. When a section is tested as an entity; i.e., without a PERFORM
executing it, the END section name acts as a STOP sentence.

Once the reloc_:atable sections are tested, we may piece them into any compatible
program by using a PERFORM sentence. The section format is used again to indi-
cate that part of a run or program exists in relocatable form. This time it hasn't

?nykbolcg since the sentences of the body were previously compiled. Its format now
ooks like

section~name SECTION.
[INPUT variables field~name~1, field~name~2,]
[QUTPUT variables field~name~1, field~name~2,
BEGIN.
COPY RELOCATABLE.
END section~name SECTION.

Only the PERFORM -- USING -- GIVING may execute a relocatable section since
the_PERFORM -- REPLACING serves as a modify-copy and can take place only
during the actual compilation of the section. 7

A NOTE stat_ement may also appear within a section's head (not shown in formats).
When used, it serves only to document the function of the section and in no way in-
fluences the compilation or object program which the compiler creates.

DATA PROCESSOR

GENERAL COMPILER MANUAL

10

GE 225

IV PROCEDURE DIVISION

This section describes the format and specifications for each type of procedure
sentence. Certain conventions are applied in using procedure sentences to formu-
late a problem. Minimum general conventions are: '

A. Words in source vocabulary should not be used as data names.

B. Words in a sentence should be separated by at least one space. The space
separator is optional if the words are bound by +, -, *, /, #, (), ", =, and ,.

C. Each sentence should end with a period (.). The decimal point is illegal when
used as follows: X=A+B - (Q*C + Y * 12.) *4, since it would be interpreted as
ending the sentence.

D. Subscripts should be enclosed in parentheses and may be written apart or as
part of the array name.

E. K two arithmetic expressions are written side by side they should be separated
by a comma. For example, when we write X (A+B, C#2) or A*3.14, SIN
ALPHA. In all other cases, the comma may be used as a separator in con-
junction with, or instead of, the space.

To facilitate the presentation and explanation of the sentences and their formais,
the following editorial conventions are used:

A. Key Words -- where shown in the sentence formats, underlined upper case
words are required to complete the meaning of the sentences. These words
must be correctly spelled.

B. Noise Words -- upper case words without underlining are shown in sentence
formats to improve the readability of the language. These words may or need
not be used as desired. I they are used they must be correctly spelled.

C. Operands -- lower case words indicate types of operands supplied by the user.

D. Choices -- entries enclosed in braces show available programmer choices.
One entry should be selected from those within a set of braces.

E. Options -- entries enclosed in sguare brackets indicate options which the pro-
grammer may include or omit. In some cases options have been separated into
individual numbered formats.

ADD

FUNCTION: - - TO ADD TWO QUANTITIES AND STORE THE SUM IN
EITHER THE LAST NAMED FIELD OR ELEMENT, OR THE SPECIFIED

FIELD OR ELEMENT.
FORMAT:
literal~1 literal~2
ADD field~name~1 s field~name~2

element~name~1 element~name~2

[G_lV|NG }Elilr:;nr;i"r‘lz;z'-as] [ROUNDED :| I:IF SIZE ERROR GO TO

sentence~name~1 .

GENERAL COMPILER MANUAL

11

ADD

CONVENTIONS:

A, If the "GIVING" option is not present, then the last-named field or ele-
ment receives the result. The result field or element should not be aliteral.

B. Eleven(11)decimaldigits is the maximum size of a fixed point operand.

C. Only a numeric literal may be used. I a sign (+ or -) is included, it
should appear as the most significant character of the literal. If a decimal
point appears in the literal, it is not included in the stored representation,
but is used only to align the literal with associated operands.

D. The result will be stored according to the description of the result as
specified in the Record Description. The operands and the result may have
different formats. Decimal position alignment for operands isautomatically
supplied according to the type of operation. The decimal position of the
result will be aligned before it is stored in the result field.

E. If the ROUNDEDoption is specified, the resultis rounded before placing
it in the result field or element.

F. When the ROUNDED option is not used, the number of decimal places
in the calculated result will be truncated (if necessary)according to the size
of the result field or element.

G. ASIZE ERROR condition arises whenever the number of integral places
in the computed result exceeds that which may be stored in the result field.
This causes truncation of the most significant digits of the result field be-
fore they are stored. This action occurs whether or not the SIZE ERROR
option is used. 7

H. TheSIZE ERROR option may only be used in conjunction with the arith-
metics. This option causes compilation of additional object coding.

I. Arithmetic is performedeither in the fixed point or in the floating point
mode. However, if one of the quantities is defined as floating point, the
entire operation is performed in the floating point mode. In this case those
quantities defined as fixed point are converted to floating point. The mode
of the result is always that of the result quantity regardless of the mode of
arithmetic.

EXAMPLES:

A. ADD 1, DAY OF DATE OF INPUT GIVING CURRENT~DAY.

B. ADD WEEKLY~FICA OF MASTR~PAYROL, ANNUAL~FICA
OF MASTR~PAYROL.

C. ADD ON~HAND~QTY OF MSTR~INVNTRY, ON~ORDR~QTY
OF ORDER~FILE GIVING TOTL~INVNTRY OF MSTR~INVNTRY,
IF SIZE ERROR GO TO ERROR~RTN~1.

ALTER

FUNCTION: - - TO MODIFY A PREDETERMINED SEQUENCE OF OPERA-
TIONS.

FORMAT:
ALTER sentence~name~1 TO PROCEED TO sentence~name~2,
—fs:ntence“nome~3 TO PROCEED TO sentence~name~4 . . .] .
CONVENTIONS:

A. '"sentence~name~1", "sentence~name~3", are names of GO
sentences as defined under Option 1 of the GO verb.

EXAMPLES:
A. ALTER SWITCH~1 TO PROCEED TO ERROR~RTN~2

B. ALTER SWITCH~4 TO PROCEED TO COMPUTE~FICA, SWITCH~?
TO PROCEED TO DEDUCT~RTNS.

ASSIGNMENT

FUNCTION: - - TO EVALUATE AN ARITHMETIC EXPRESSION AND AS-
SIGN THE RESULT OF THE EVALUATION TO A SPECIFIED FIELD.

FORMAT:
field~name~2 l
Field~name~1 [ROUNDED] = arithmetic expression
l literal~1 s

CONVENTIONS:
A. An arithmetic expression is a sequence of variables (fields), numbers,
and functions connected by symbols representing the operations, add, sub-
tract, multiply, divide, and exponentiation.

B. Arithmetic Operators

Operation Symbol

Add +

Subtract - (also used for negation)
Multiply *

Divide /

Exponentiation **

C. Mathematic Functions

Function Symbol
Sine SIN
Cosine Cos
Arctangent ATAN
Square Root SQRT
Exponential EXP
Common Logarithm LOG
Natural Logarithm LN
Absolute Value ABS

GENERAL COMPILER MANUAL

GE 225 GENERAL COMPILER MANUAL GE 225

12 13

GE 225

ASSIGNMENT

CLOSE

D. Ezxpressions are evaluated from left to right according to the following
operation priority:

Exponentiation and Functions
Multiplication and Division
Addition and Subtraction

Parentheses may be used to establish a precedence. I they are used, the
evaluation is performed from the innermost to the outermost pair.

E. The mode of evaluating an expression is determined from the data de-
scription of the variables. If one of the variables is defined as floating point,
the entire expression is evaluated in the floating point mode. Those vari-
ables defined as fixed point are converted to floating point. The results of
both fixed and floating point evaluations are stored according to the mode of
the result variable.

F. In fixed point evaluations decimal points are aligned according to the
data description of the result variable.

G. I ROUNDED is specified, the result of the evaluation is rounded before
it is placed in the result variable.

H. No more than 50 operations and/or function symbols may appear in a
single expression.

FUNCTION: - - TO TERMINATE THE PROCESSING OF BOTH INPUT AND
OUTPUT REELS AND FILES, WITH OPTIONAL REWIND AND/OR LOCK.

FORMAT: NO LOCK

CLOSE file~name~1 , file~name~2...| .

|
NS (lNO REWIRID‘

CONVENTIONS:
A. A"CLOSE file~name" should be executed once and only once for a given
file unless the file has been reopened. It will initiate the final closing con-
ventions for the specified file and release its data area.
B. If the NO LOCK option is used on a tape file, the tape will be rewound.

C. Ii the NO REWIND option is used on a tape file, the tape will remain
positioned for reading or writing another file.

D. K neither NO LOCK nor NO REWIND is specified, the tape will be re-
wound and locked to prevent the tape from being read or written upon.

EXAMPLES:

A. CLOSE MASTR~PAYROL, BOND~FILE WITH NO LOCK,
SUMMARY WITH NO REWIND.

GENERAL COMPILER MANUAL

14

DIVIDE

FUNCTION: - - TO DIVIDE ONE NUMBER INTO ANOTHER AND STORE
THE RESULT IN THE LAST NAMED FIELD OR ELEMENT OR THE SPECI-
FIED FIELD OR ELEMENT.

FORMAT:
literal~1 i j literal~2
DIVIDE field~name~1 > INTO field~name~2
} element~name~1 ! l element~name~2
GIVING 5 fieh=nama:t [ROUNDED]
{ element~name~3
[[F SIZE ERROR GO TO sentence~name™ 1:| o
CONVENTIONS:

A. All conventions specified under the ADD verb apply to the DIVIDE verb.

EXAMPLES:
A. DIVIDE NO~OF~TESTS INTO TOTAL~SCORE GIVING
AVERAGE ROUNDED.

ENTER

FUNCTION: - - TO INDICATE THE INCLUSION OF A SUBROUTINE WRIT-
TEN IN THE GENERAL ASSEMBLY PROGRAM LANGUAGE.

NOTE

The ENTER verb is not yet fully defined. As soon as specifications are
complete, they will be provided.

EXCHANGE
FUNCTION: - - TO TRANSPOSE THE CONTENTS OF TWO FIELDS.

FORMAT:
EXCHANGE field~name~1, field~name~2.
CONVENTIONS:

A. The data descriptions of field~name~1 and field~name~2 must be iden-
tical.

B. Field~name~1 and/or field~name~2 may be subscripted.

FUNCTION: - - TO DEPART FROM THE NORMAL SEQUENCE OF PRO-
CEDURES.

GENERAL COMPILER MANUAL

GE 225

GE 225

GO
FORMAT:
Option 1:
GO TO [sentence~name].
Option 2:
GO TO sentence~name~1, sentence~name~2 [, sentence~name~3...]
DEPENDING ON | field~name
—_ | element~name
CONVENTIONS:
A. In Option 1,if a GO sentence is to be ALTERED, it should be named. The
name of the GO sentence is referred to by the ALTERverb in order to modi-
iy the sequence of the program. If "sentence~name" is omitted, the com-
piler will insert an error stop in the object program. Therefore, the GO
sentence should be referenced by an ALTER sentence before the first exe-
cution of the GO sentence.
B. In Option 2, the field~name or element~name should have a positive
integral value. The branch will be to the 1st, 2nd. .., nth "sentence~name"
as the value of the field or element is 1, 2, ..., n. I the value is zero, or
exceeds n (i.e., the number of sentences named) the next sentence in nor-
mal sequence will be executed.
>
EXAMPLES:
A. SWITCH 1. GO.
B. GO TO COMPUTE~FICA.
C. GO TO SHIPMENT, RECEIPT, CHANGE, ADDITION, DELETE
DEPENDING ON TRANSACT~COD.
IF

FUNCTION: - - TO TRANSFER CONTROL TO THE SPECIFIED SENTENCE
IF THE STATED CONDITION IS SATISFIED (TRUE) OR TO THE NEXT
SENTENCE IF THE STATED CONDITION IS NOT SATISFIED (FALSE).

GENERAL COMPILER MANUAL

16

IF

FORMAT:
Option 1: (conditional names):
IF conditional~name, GO TO sentence~name~1.

Option 2 (relational expressions):

fiie'd“t“"“-"‘ , IS [NOT] GREATER THAN o 5o
element~name~ _ L ——
IF literal~1 IS [NOT] LESS THAN element"nume“2’
arithmetic~expression~1) ||g [NOT] EQUAL TO literal~2
IS UNEQUAL TO Crithaalc= ,
—— expression™2
EQUALS
EXCEEDS
GO TO sentence~nome~1
[NOT] LESS THAN r:iemlini;'nume":f
e iteral ™~
) [NOT] EQUAL TO arithmetic~expression~3
. IFJUNEQUAL TO
EQUALS
EXCEEDS
| GO TO sentence~name~2 -
| P R |

Option 3 (logical expressions):

IE { conditional~name~1 ‘AND ‘ conditional~name~2 E
— |relational~expression~1 | relational ~expression~2

AND| (conditional~name~3 , ND ‘cond:honal"‘nume"io g
OR }relchonal*expresslon reluhcmal expression~20

g G_.O TO sentence~name~1.

Option 4 (tests):

field~name~1 POSITIVE
IF element~name~1 IS [NOT] <NEGATIVE), GO TO
arithmetic~expression~1 ZERO sentence™
name~1.
CONVENTIONS:

A, The abbreviations for relations listed on page 7 may be used instead
of the English words shown in the above formats.

B. A quantity is POSITIVE only if it is greater than zero. A quantity is
NEGATIVE only if it is less than zero. The value zero is neither POSITIVE
nor NEGATIVE.

C. The mode of an expression isdetermined fromthe data itoperates upon.

If one of the quantities is floating point, fixed point quantities are converted
to floating point and the evaluation is performed in the floating point mode.

GENERAL COMPILER MANUAL

GE 225

17

D. For additional details, see "Conditional Fields"” (page 5), ""Arithmetic
Expressions" (page 9), "Relational Expressions" (page 7), and "Logical
Expressions’' (page 8).

EXAMPLES:
A. Option 1
1. IF MALE, GO TO 789.
B. Option 2

1. IF PART~NUMBER OF MSTR~INVNTRY IS LESS THAN PART~
NUMBER OF TRANSACTIONS GO TO WRITE~MASTER, IF EQUAL
GO TO UPDAT~MASTER, IF GREATER GO TO NEW~RECORD.

2. IF WEEKLY~FICA OF MASTR~PAYROL ¥ ANNUAL~FICA OF
MASTR~PAYROL EXCEEDS 144.00 GO TO COMP~WK~FICA.

3. IF TRANSACT~COD EQUALS 1 GO TO SHIPMENT, EQUALS 2
GO TO RECEIPT, EQUALS 3 GO TO CHANGE, EQUALS 4 GO TO
ADDITION, EQUALS 5 GO TO DELETE.

C. Option 3

1. IF SHIPMENT AND QTY~ON~HAND OF MSTR~INVNTRY IS
LESS THAN QTY~SOLD OF TRANSACTIONS, GO TO BACK~ORDER.
2. IFA *+ B~ CEQ Z*Y AND P GR Q GO TO XYZ

D. Option 4
1. IF ADJUSTED~PAY OF MASTR~PAYROL IS NEGATIVE, GO
TO ADJUSTMENT.

IF QTY~ON~HAND OF MSTR~INVNTRY IS ZERO GO TO
REORDER.

MOVE

FUNCTION: - - TO TRANSFER A LITERAL OR THE CONTENTS OF AN
ELEMENT, FIELD, GROUP, OR RECORD TO ONE OR MORE OTHER ELE-
MENTS, FIELDS, GROUPS, OR RECORDS.

FORMAT:

E}erul ; — element~name~2{ || element~name~3
ement~name~ - S Eus

3 field~name~2 field~name~3
MOVE field~name~1 w group~name~2 group~name~3

group~name~ 1 record~name~2 record~name~3
record~name~1

CONVENTIONS:

A. Anumericliteral not enclosedin quotation marks, or a numeric element
or field being moved will be aligned in accordance with the decimal point of
the destination element or field with truncation or zero fill on either end as
required.

GENERAL COMPILER MANUAL

GE 225

MOVE

B. A non-numeric element or field being moved will be left-justified with
space fill on the right if the destination element or field is larger than the
source data. The compiler will give a warning if the destination element or
field is smaller than the source data. I the warning is ignored, the non-
numeric literal, element, or field being moved will be left-justified and
truncated on the right as necessary to fit the destination.

C. ¥ a numeric or non-numeric literal is enclosed in quotation marks (")
and consists of a single character, or if the literal is a figurative constant,
the entire element, field, group, or record is filled with the character
specified.

D. ¥ a numeric or non-numeric literal is enclosed in quotation marks (")
and consists of more than one character, the specifiedcharacters are placed
repeatedly in the element, field, group, or record starting at the left (most
significant digit) until the entire element, field, group, or record is full.
Then the literal will be truncated if necessary.

E. The compiler will only provide for the movement of one record or group
of fields to other records or groups of fields of the same size and format.
Any other movement can be accomplished by moving elements and/or fields
and/or the implied movement under the WRITE verb. Note that it is un-
necessary to specify data movements to output.

EXAMPLES:

A. MOVE PART~NUMBER OF MSTR~INVNTRY TO PREV~PART~NO.
MOVE ADDRESS OF CHANGE~FILE TO ADDRESS OF MASTR~PAYROL.
. MOVE MASTR~RECORD OF MSTR~INVNTRY TO HOLD~RECORD.
. MOVE "“0" TO SUBTOTL~AREA.

MOVE SPACES TO HEADER~AREA.

MOVE “Z" TO PART~NUMBER OF MSTR~INVNTRY.
. MOVE 9 TO ERROR~CODE.
. MOVE “ZY” TO PART~NUMBER OF MSTR~INVNTRY.

MOVE 001 TO COUNTER.

T HmmBon®

MULTIPLY

FUNCTION: - - TO MULTIPLY TWO QUANTITIES TOGETHER AND
STORE THE RESULT IN THE LAST NAMED FIELD OR ELEMENT OR THE
SPECIFIED FIELD OR ELEMENT.

FORMAT:

literal~1 literal~2
MULTIPLY (field~name~1 BY {field~name~2
element~name~1 element~name~2

GIVING field~name~3 ROUNDED
element~name~3 _—

[IF SIZE ERROR GO TO sentence~name~1].

GENERAL COMPILER MANUAL

GE 225

19

MULTIPLY
CONVENTIONS:

A. All conventions specified under the ADD verb apply to the MULTIPLY
verb.

EXAMPLES:

A. MULTIPLY HOURS~WORKED OF TIME~CARD BY RATE OF
MASTR~PAYROL GIVING GROSS~PAY OF MASTR~PAYROL, IF SIZE
ERROR GO TO ERROR~RTN~2.

B. MULTIPLY GROSS~PAY OF MASTR~PAYROL BY 0.03 GIVING
WEEKLY~FICA OF MASTR~PAYROL.

NOTE

FUNCTION: - - TO ALLOW THE PROGRAMMER TO WRITE EXPLANA-
TORY MATERIAL IN HIS PROGRAM WHICH WILL BE PRODUCED ON THE
LISTING BUT NOT COMPILED.

FORMAT:
NOTE...

CONVENTIONS:

A. Any sentence may follow the word NOTE if the rules for sentence struc-
ture are followed.

B. The NOTE sentence should not be named.
EXAMPLES:

A. NOTE THIS SENTENCE IS NOT NAMED BECAUSE NO REFERENCE
IS MADE TO IT.
B. NOTE THIS SENTENCE IS USED FOR CLARITY.

C. NOTE IN NO WAY DOES THIS SENTENCE STATE COMPILER OR
OBJECT PROGRAM ACTION.

OPEN

FUNCTION: - - TO INITIATE THE PROCESSING OF BOTH INPUT AND
OUTPUT FILES. PERFORMS CHECKING OR WRITING OF LABELS, AND
OTHER INPUT-OUTPUT FUNCTIONS.

FORMAT:
OPEN [lNPUT file~name~1 [, file~name~2.. _]] [OUTPUT file~name~3
[file~name~4.. .]:|

CONVENTIONS:

A. OPEN should be applied to all files and should be executed before the
first READ or WRITE of a file.

GENERAL COMPILER MANUAL

GE 225

20

OPEN

B. A second OPEN of a file cannot be executed before the execution of a
CLOSE of the file.

C. OPEN does not obtain or release the first data record. A READ or
WRITE should be executed to obtain or release the first data record.

D. When checking or writing the first label, the user's beginning label
procedure will be executed if specified by the USE clause. (See Environ-
ment Division.)

E. I an input file has been designated as OPTIONAL in the ENVIRONMENT
DIVISION, the object program will cause an interrogation for the presence
or absence of this file. If the reply to the interrogation is negative (i.e.,
the file is not present) the file will not be OPENED. A print-out indicating
the absence of the file will occur, and an end-of-file signal will be sent to
the input-cutput control system of the object program. Thus, when the first
READfor thisfile is met, the end-of-file pathfor this sentence will be taken.

PERFORM

FUNCTION: - - THE PERFORM EXECUTES A SECTION. UPON COM-
PLETING THE FUNCTION OF THE SECTION, CONTROL REVERTS TO
THE SENTENCE FOLLOWING THE PERFORM.

FORMAT:

(USING ﬁeld“"“'“enr field~name'2, -+ [GIiviNG

field~nume0], field~nameqy, - . . :l

PERFORM section~name | 1 !
REPLACING name; WITH nomeg, nomeg WITH

HQIIIGA, .o

CONVENTIONS:

A. When the USING-GIVING option is used, field~namepy, field~namepy
. « . and field~namegq;, field~namegy, . . . are considered to be assign-
ment variables.

To have meaning, the section head must have a corresponding set of defined
input and output variables. The assignment takes place in accordance with
the MOVE specifications.

B. PERFORM. . . REPLACING invokes a copy of the sectionbody in place
of the PERFORM sentence. This copy takes place during compilation. As
this is being done, the names appearing in the section (namel, nameg, . . .)
are replaced with new names (namez, namey, . . .y

GENERAL COMPILER MANUAL

GE 225

2

READ
Option 1

FUNCTION: - -TO ALLOW A LIMITED AMOUNT OF INPUT FROM
AVAILABLE DEVICES.

FORMAT:
READ field~name~1 [, field~name~2.. .field~name~20] FROM

hardware~name.
Option 2
FUNCTION:—TO MAKE AVAILABLE FOR PROCESSING THE NEXT
LOGICAL RECORD FROM AN INPUT FILE AND TO TRANSFER CONTROL
TO THE SPECIFIED SENTENCE WHEN THE END OF THE FILE IS
REACHED.

FORMAT:

READ file~name RECORD [, IF END OF FILE GO TO sentence ~name~1].
Option 3

FUNCTION:—TO ADVANCE AN INPUT FILE, OR TO COPY RECORDS
FROM AN INPUT FILE ONTO AN QUTPUT FILE UNTIL THE SPECIFIED
CONDITION IS SATISFIED. THEN THE CURRENT LOGICAL INPUT RECORD
IS MADE AVAILABLE FOR PROCESSING. TO TRANSFER CONTROL TO THE

SPECIFIED SENTENCE WHEN THE END OF THE INPUT FILE IS REACHED
WITHOUT SATISFACTION OF THE SPECIFIED CONDITION.

FORMAT:

field~name~1
READ file~name~I[COPYING ON file~name~2] UNTIL <element~name~1

literal~1

EQUALS field~name~2
IS EQUAL TO element~name~2
IS GREATER THAN OR EQUAL TO literal~2

>
[, IF END OF FILE GO TO sentence~name~1].

CONVENTIONS:

A. An OPEN sentence should be executed before the first READ is given
for a particular file. A file should not be reopened unless it has previously
been closed.

B. The filling of the input area, tape movement, flow of cards, etc., is
controlled entirely by implied routines generated by the compiler.

C. Any number of READ sentences may be stated for the same file. At
least one END clause should be specified for each input file. If more than
one END clause is given for a particular file, it is not required that each
END clause GO to the same sentence. If the END clauses for a particular
file GO to different sentences and the END clause is not stated in every
READ sentence for that file, the compiler will give a warning. I all END
clauses for a particular file GO to the same sentence, the END clause need
be stated only once, preferably in the first READ sentence executed for that
file.

D. I an OPTIONALf{ile is not present in a given running of the object pro-
gram, the END clause will be executed on the first READ. End of file pro-
cedures will not be performed.

READ

E. When afile consists of morethan one type of data record, these records
automatically share the same memory area. Eachtype may be of a different
size, but every record of the same type should be of the same size. When
a READ sentence is executed, the next logical record is made available
without regard to itstype. Only the data in the current record is accessible.
The programmer should employ an IF sentence to determine the type of
data record after it has been READ. (See CONTROL~KEY in DATA DIVI-
SION.)

F. In Option 1, processing stops when the sentence is executed and con-
tinues after the last value is entered.

G. In Option 3, the abbreviation EQ may be used for equality and the ab-
breviation GREQ may be used for GREATER THAN OR EQUAL TO.

EXAMPLES:
Al Option 1
1. READ CURRENT~DATE FROM CONSOLE KEYBOARD.
2. READ PARAMETER~1, PARAMETER~2 FROM CONSOLE KEYBOARD.
B. Option 2
1. READ TIME~CARD RECORD.
2. READ MASTR~PAYROL, IF END GO TO FINAL~STOP.

C Opfin's

1. READ TRANSACTIONS UNTIL TRANSACT~COD EQUALS 3.

2. READ MSTR~INVNTRY COPYING ON UPD~MSTR~INV
UNTIL STOCK~NUMBER OF MSTR~INVNTRY IS GREATER
THAN OR EQUAL TO STOCK~NUMBER OF TRANSACTIONS,
IF END GO TO CLOSEOUT.

STOP

FUNCTION: - - TO HALT THE COMPUTER EITHER PERMANENTLY OR
TEMPORARILY.

FORMAT:
STOP [RUN] [literal].

CONVENTIONS:

A. If the word RUN is used, the literal will be typed out (if one is specified)
and the standard end-of-run procedure will be executed.

B. I the word RUNis not used, the literal will be typed out (if one is speci-
fied) and the computer will be stopped in a loop. Operating instructions will
be provided to resume processing at the next sentence.

EXAMPLES:

A. STOP 9999.
B. STOP RUN “PO1".

GENERAL COMPILER MANUAL

GE 225

GENERAL COMPILER MANUAL

GE 225

23

SUBTRACT

FUNCTION: - - TO SUBTRACT ONE QUANTITY FROM ANOTHER AND
STORE THE RESULT IN THE LAST NAMED FIELD OR ELEMENT ORTHE
SPECIFIED FIELD OR ELEMENT.

FORMAT:
literal literal~2
SUBTRACT ¢ field~name~1 FROM <field~nome~2
element~name~1 elemeni~name~2

element~ name“3j

[IF SIZE ERROR GO TO sentence~name~1].

CONVENTIONS:

A. All notes specified under the ADD verb apply to the SUBTRACT verb.

EXAMPLES:

A. SUBTRACT UNION~DUES OF MASTR~PAYROL FROM ADJUSTED~
PAY OF MASTR~PAYROL.

B. SUBTRACT RECEIPTS OF TRANSACTIONS FROM ON~ORDR~QTY
OF ORDER~FILE GIVING ADJ~ORDR~QTY, IF SIZE ERROR
GO TO ZERO~RTN.

VARY
FUNCTION: - - TOINITIATE AND CONTROL THE REPEATED EXECUTION
OF THE SENTENCES IT PRECEDES.
&
FORMAT:
field~name—~2
Sentence~name~1. VARY field~name~1, FROM expression~1 BY
literal~1
field~name~3
expression~2 ; UNTIL expression~3.
literal~2
: “A set of one or more sentences”
EXIT sentence~name~1.
CONVENTIONS:

A. The sentence is undefined if expression~1 and/or expression~2 are
other than arithmetic expressions. K expression~3 is arithmetic, the sen-
tence is also undefined.

B. When the VARY is first executed, the FROM parameter, obtained from
evaluating expression~1, is assigned to field~name~1, the control variable.
Expression~3 is then evaluated. If the evaluation results in a true truth-
value, the sentence following the EXIT is executed.

GENERAL COMPILER MANUAL

GE 225

24

VARY

If a false value is obtained, the sentences following the VARY are perform-
ed. Upon reaching an EXIT that has the same sentence~name as the VARY,
the BY-parameter, obtained from evaluating expression~2, is added to field
~name~1, Expression~3 is evaluated again. From here on the sentences
following the VARY are executed for successive false values of expression~
3. The "loop"” is said to be satisfied when expression~3 results in a true
evaluation and control reverts to the sentences after the EXIT.

C. EXIT may have a sentence~name of its own. Caution should be exer-
cised in transferring control to it, since it causes the BY-parameter to be
added to field~name~1.

D. A transfer of control from outside the VARY range into the range is un-
defined.

E. Any number of VARY-EXIT sentences may be imbedded within the sen-
tences of a VARY-EXIT range.

EXAMPLES:

A. MOVE~TABLE~A. VARY | FROM 1 BY 1 UNTIL | GR 10.
K=11—)
MOVE TABLE~A (I) TO TABLE~B (K).
EXIT MOVE~TABLE~A.

B. LOOP~1. VARY P FROM ABS (X-1) BY 1 UNTIL P GR 20.

D(P)=0O

LOOP~2. VARY Q FROM 1 BY 1 UNTIL Q GR 10.
D(P)=D(P)+ A(Q) * X(Q, P).
EXIT LOOP~2.
IF ABS D (P) GR L, GO TO SET~L.

EXIT~L,. EXIT LOOP~1

SWITCH~ALPHA. GO TO CALC~STRESS, PRT~1, ERR~5

DEPENDING ON ALPHA.

SET~L. L = D (P)

GO TO EXIT~L,.
WRITE

OEﬁon 1

FUNCTION: - - TO DISPLAY A LIMITED AMOUNT OF INFORMATION

ON AVAILABLE DEVICES.

FORMAT:

WRITE (field~name~1 field~name~2 field~name~10
element~name~1 r{element~noame~2/- - -{ element~name~10
literal~1 l[h‘eral) literal~10

ON hardware~name.
Option 2:
FUNCTION: - - TO RELEASE A LOGICAL RECORD TO AN OUTPUT FILE.
FORMAT:

WRITE record~name RECORD.

GENERAL COMPILER MANUAL

GE 225

25

WRITE

CONVENTIONS:
A. In option 1, literals may be used to identify the contents of the data- V DATA DIVISION
fields or elements displayed or to give meaning to the display. ‘
B. In option 2:
1. An OPEN sentence should be executed before the first WRITE is given ‘ A. GENERAL
for a particular file. 3

1. Overall Approach

2. After the WRITE is executed, the data in the record is no longer

accessible to the programmer. ’ Data to be processed falls into three categories:
3. HD; a.rgcmf-d is to be printed, it will be edited as specified on the Data a. That which is contained in files and enters or leaves the internal memory
VIS0 0TI, of a computer from specified areas.
4. The data description of the output records must contain a list of all
data intended for output. When the WRITE is executed, only the data b. That which is developed internally and placed in intermediate or working
listed in the record description are moved to the output file. The storage.

move is automatic and implied with each execution of the WRITE.
c. Constants which are defined by the user. Figurative constants and liter-

5. The actual writing on tapes and the punching of cards, ete., is con- als used in procedure statements are not listed in the DATA DIVISION.
trolled by implied routines which are generated by the compiler. , Tables may fall into any of the above categories. In defining file infor-

mation, the approach taken is to distinguish between the physical aspects

E_XAM_._PI'Es‘ of the file (i.e., File Description) and the conceptual characteristics of

the data contained in the file. By physical aspects we mean the mode in

A. Opti 1:
=Pn which the file is recorded, the grouping of logical records within the
1. WRITE “"UNMATCHED” CLOCK~NUMBER OF TIME~CARD ON physical limitations of the file-media, the means by which the file can be
TYPEWRITER. identified, etc. By conceptual characteristics we mean the explicit defi-

NOTE THIS SENTENCE WILL CAUSE THE LITERAL UNMATCHED nition of each logical entity within the file itself.

TO BE TYPED OUT FOLLOWED BY THE CONTENTS OF THE

CLOCK~NUMBER FIELD. The contents of a file are divided into logical records for purposes of

B. Option 2: processing. A logical record is any consecutive set of related informa-
et s tsag tion. For example, in an Inventory Transaction File, a logical record
1. WRITE MSTR~INVNTRY RECORD. could be a single transaction, or all consecutive transactions pertaining

2. WRITE HEADER OF MSTR*INVNTRY.) tothe same stock item. Several logical records may occupy a block (i. e. ,
physical record). A logical record may not extend across physical rec-

3. WRITE SUBTOTL~LINE OF SUMARY ~REPRT. ords. These may be different types of logical records in the same file,
f e.g., a master record and a detail record. Each type may be of a dif-

ferent size, butevery recordof the same type should be of the same size.

The concept ofa logical record is not restricted to file data but is carried
over into the definition of working storages and constants. Thus, working
storages and constants may be grouped into logical entities and defined
by a Record Description.

DATA PROCESSOR

File Descriptions and Record Descriptions may be stored on a library
tape. The Data Division format described in these specifications is that
in which descriptions would be stored in the library. The library format
will be the first Data Division format which the compiler willaccept since
it requires less compilation time than a free format. At a later date, a
service routine will be provided to convert free format data divisions to
the fixed library format. In the meantime, the user should write his Data
Divisions in the fixed library format on the Data Division Form (Fig. 2).

GENERAL COMPILER MANUAL

GE 225 GENERAL COMPILER MANUAL GE 225

26 27

= 2. Organization
i The DATA DIVISION is subdivided according to types of data. It consists of
% ! a FILE Section, a WORKING-STORAGE Section, and a CONSTANT Section.
3
% a. FILE Section
s [=] Both of the DATA DIVISION elements (descriptions of files and descrip-
f’: tions of records) appear in the FILE Section. The section contains File
=1 Descriptions and Record Descriptions for both label and data records.
[2] These two kinds of records are defined in the same manner. However,
kil | since the input-output system of the object program must perform special
% | operations onlabel records, fixednames have been assigned tothose label
=[5 g fields on which specified operations must be performed.
a o |l s
2 —
= =
E H b. WORKING-STORAGE and CONSTANTS
% B These sections consist solely of Record Descriptions and unrelated field
= —— or element (subfield) descriptions.
2 . T N O N I 1 S I 0 T
Y 3 553 . A
E =] EE “ﬁ | | i | I ! I I I I I I I ’ | }_ i_ [l | | 3. Structure
: o) S O N S N T O A O 1 O 0 S A A = All entries are written on the Data Division Form (Fig. 2). This form is an
< E ': image of an 80-column punch-card on which a six-digit sequence number is
g ST T 1) S N S (S S (S O S O T e g assigned in Cols. 1through 6. An optional sequence check on these numbers
=< g e—=<e] | T T 1T T T T T T T T T T T T T T 1T 11 & will be provided. The compiler willgive a warning when it detects a number
g z = o out of sequence.
v % =1 = B
25 - 3 The DATA DIVISION begins with the header:
€0 -
w 2]
o 5 5
B ;% Each of the three sections begins with its appropriate title, followed by the
@ word SECTION and a period. For example:
B § FILE, WORKING-STORAGE, OR CONSTANT.
51 3
= When a section is not required, its name need not appear. These headers
El | start in Col. 8 of the Data Division form.
3 .
B { B. FILE DESCRIPTION
2]
= | A File Description entry consists of a type indicator, a file name, and a series
=] = of independent clauses which define the physical characteristics of the file.
= = The mnemonic type indicator FD is used to identify the start of an entry. In-
o i = dividual clause formats are arranged in alphabetic order;clauses in the "Com-
= H plete Entry' are shown in the recommended order.
S =
w =
s 3 ey I A R -DECERON
@ = | O Y N NN I N TN Y W7 Y OO O
~ Complete Entry
=5 - i)
<< e |
= e = <] Eg I FUNCTION: - - TO FURNISH INFORMATION CONCERNING THE PHYSICAL
= EEI= 33 | . STRUCTURE OF A GIVEN FILE.
gI8=d =° |
w2 s
o IEE i
L NUAL
GENERAL COMPILER MANUAL CE 225 RS R LU REL AT

28 29

FILE DESCRIPTION

FORMAT

OEﬁon 1:

FD file~name~1 COPY file~name~2.

Option 2:

FD file~name~1, [RECORDING MODE IS BINARY]
[, BLOCK CONTAINS integer~1 WORDS]

[, LABEL RECORDS% ARE | | NONSTANDARD |

IS || OMITTED {
IZCONTROL"'KEY IS field~name~1 [OF record~name~1, field~name~2
OF record~name~2 . ..]

ESEQENCED ON field~name~3 [, fie|d~name~4]:| .

CONVENTIONS:

A, In Option 1 the entire File Section (File Description and Record Des-
cription) for file~mame~2 is copied from the library and file~name~2 is
changed to file~name~1.

B. The type indicator FD identifies the beginning of the file description
entry. It is written under TYPE in Cols. 8 and 9 on the DATA DIVISION
Form. The file~name is written under DATA NAME in Cols. 11 through 22.

C. The clauses are written across the form after the file~name. I more
than one line is required, the sentence may be continued on the next line,
starting in Col. 11 or in any column following 11. It is recommended that
sentence continuations be indented to start in Col. 15. Splitting a word over
two lines is indicated by a tilde (~) in Col. 7 of the next line. If the pro-
grammer prefers not to split a word, he may start the word on the next line
as any number of blank columns may be leit at the end of a line.
7

EXAMPLES:

A. FD MASTR~PAYROL, BLOCK CONTAINS 300 WORDS,
LABEL RECORDS ARE NONSTANDARD, SEQUENCED
ON BADGE~NUMBER.

B. FD MSTR~INVNTRY, RECORDING MODE IS BINARY,
BLOCK CONTAINS 1000 WORDS, LABEL RECORDS
ARE OMITTED, SEQUENCED ON STOCK~NUMBER.

BLOCK SIZE
FUNCTION: - - TOSPECIFY THE SIZE OF THE PHYSICAL RECORD (I.E.,
BLOCK).

FORMAT:
[, BLOCK CONTAINS integer~1 WORDS]

GENERAL COMPILER MANUAL

—— e i e

—————— e ———

GE 225

BLOCK SIZE
CONVENTIONS:

A. This clause is required except when a physical record contains one and
only one complete logical record.

CONTROL~KEY

FUNCTION: - - TOIDENTIFY A FIELD WHICH CONTAINS A VALUE COR-
RESPONDING TO A TYPE OF DATA RECORD.

FORMAT:

E, CONTROL~KEY is field~name~1 [OF record~name—1,
field~name~2 OF record~name~2 . . .]

CONVENTIONS:

A. This clause is required only when there is more than one type of data
record in a file. It is necessary because the READ verb simply makes the
next record in a file available. An IF sentence should be used to test the
control fieldso that the programmer may determine the type of record read.
In addition, the object program may take certain implied actions depending
on the type of record. It can only do so if it can identify the type of record
read.

B. It is recommended that the specified field appear in the same position
relative to the beginning of each data record in the file and that it have the
same name and description except that it would have a different value for
each type of record. The user may, at his own risk, use different field
names and locations for each type of record.

EXAMPLES:

A. CONTROL~KEY IS TRANSACT~COD OF TRANSACTION,
IDENTIFICATION OF MASTER.

B. CONTROL~KEY IS RECORD~TYPE.

COPY

FUNCTION: - - TO OBTAIN A FILE SECTION FROM THE LIBRARY.

FORMAT: COPY file~name~2.

CONVENTIONS:
A. COPY is used when the library contains the entire File Section.

B. During compilation, the COPY clause is replaced by the File Descrip-
tion and Record Description(s) filed in the library under file~name~2. Thus,
the file~name which precedes the COPY clause will replace the file~name
appearing within the library,

GENERAL COMPILER MANUAL

31

GE 225

COPY
EXAMPLE:
A. FD UPDAT—~PAYROL COPY MASTR~PAYROL.
LABEL
RECORDS
FUNCTION: - - TO INDICATE OMMISSION OF LABELS OR USE OF NON-
STANDARD LABELS.
FORMAT:
ARE (NONSTANDARD
, LABEL RECORDS e
E— IS | OMITTED
CONVENTIONS:
A. Absence of this clause implies that the file contains standard label rec-
ords.
B. The following four typeés of label records may appear on the tapes as-
sociated with a file. Since the type of label is significant, the fixed record
names shown in capital letters have been assigned:

1. BGN~TAP~LABL appears at the beginning of each tape, precedes all
other information, and contains information about the tape.

2. BGN~FIL~LABL appears only once preceding the first data record
in the file but following the beginning tape label if one is present.
This label contains information about the file.

3. END~TAP~LABL immediately follows the last valid data or label
record on the tape. The end of the*lape label must appear before the
physical end of the tape is encountered. When both end of file and
end of tape labels are being employed on the same tape, the end of
tape label will follow the end of file label. On a MULTIPLE~FILE~
TAPE, when all four types of labels are being employed, the end of
tape label follows the last end of file label, All other end of file
labels are followed by the next beginning file label.

4, END~FIL~LABL appears only once immediately following the last
data record on the last reel of a file, and may contain information
about the file.

C. Label records are described in the same manner as data records (see
RECORD DESCRIPTION). However, if the label records are standard, only
variable information (such as the value of a label field) need be supplied.
RECORDING
MODE

FUNCTION: - - TO SPECIFY THE ORGANIZATION OR TYPE OF DATA AS
IT EXISTS ON THE EXTERNAL MEDIA.

GENERAL COMPILER MANUAL

32

GE 225

RECORDING

MODE
FORMAT:
[RECORDING MODE IS BINARY]
CONVENTIONS:
A. Absence of this clause implies that the file is recorded in decimal;
SEQUENCED
FUNCTION: - - TOINDICATE THE KEYS ON WHICH THE DATA RECORDS
ARE SEQUENCED.
FORMAT:
| - SEQUENCED ON field~name~3].field~name~4 . . .] |
CONVENTIONS:

A. 'field~name~3" represents the major key, "field~name~4'" represents
the next lower key, etc.

B. This clause does not imply an automatic sequence check at object time.
C. RECORD DESCRIPTION

1. Elements of a Record

A set of related units of data is called a record. A field is the basic unit of
data most frequently processed as a specific entity. Some fields maybe sub-
divided into smaller units called elements (sub-fields). Consecutive fields
within a record may be grouped under one name. For example, a record in
a customer file might include the following:

CUSTMR~RECRD record name

CUSTMR~NAME group name
FIRST~NAME field name
LAST~NAME field name
CUSTMR~ADRES group name
STREET field name
NUMBER element name
CITY field name
ZONE field name
STATE field name

2. Elements of a Record Description

A record description consists of a set of entries. Entries for each unit of
data are made in fixed columns on the Data Division form. One line on the
form (one punch card)is required for each unit of data unless more than one
qualifier is required. Then one line is required for each qualifier. Units of
data are described consecutively as they appear in the record. Each posi-
tion in the record must be accounted for. A fixed data name, FILL, is used
to describe unused positions.

GENERAL COMPILER MANUAL

GE 225

For a unit of data the following information may be entered in the columns
indicated:

Type (columns 8 and 9).

Data name (columns 11-22).

Qualifiers (columns 24-35).

Format (column 37). This entry is intended primarily for scientific
data. Specific entries in this column have not yet been defined.

Repetitions (columns 39-41).

Binary (column 43).

Justification (column 45).

Editing (column 47).

Element position (columns 49-53).

Data image (columns 55-80). At times, actual values may be written
in these columns. When they are, the actual values are always en-
closed by quotation marks (").

An entire Record Description may be copied from the library by making the
following entries on the Data Division form:

The letter R in column 9.

The record name in columns 11-22,

The word COPY in columns 24-27.

The name of the library record description in columns 29-40.

The word OF in columns 42-43.

The name of thefile under which the library record description appears
in columns 45-56.

When this procedure is followed, the record description will be copied from
the library and the library record name will be replaced by the name in
columns 11-22,

. Specific Entries By Type of Data Unit

a. Input Records

(1) For an input record the letter R js entered in column 9 under type
and the record name in columns 11-22. Descriptions of all units of
data within the record provide a complete picture of the record.

(2) For a group of fields, the letter G is entered in column 9 under type
and the group name in columns 11-22, The descriptions of all units
of data within the group provide a complete picture of the group.
NOTE: if a group of fields is named, then another group name is
required to define the end of the group. This holds true unless the
first named group is at the end of a record.

(3) For a field in an input record, the following entries may be made:
(a) The letter F in column 9 under type.
(b) The field name in columns 11-22.
(c) Entries in the format column are possible but not yet defined.
(d) The total number of fields is entered in columns 39-41 under
Repet if the field is repeated consecutively. If the number of

fields is variable, the letter V is entered in column 39 and the
maximum number in columns 40 and 41. A unique character or

GENERAL COMPILER MANUAL

GE 225

(e)

()

set of characters, not exceeding field size, must terminate a
variable list of fields. The terminating character or set of
characters should be enclosedin quotation marks (") and entered
after the data image (see paragraph (f) below).

Any character entered in column 43 under Binary indicates that
the data in the field is so represented. If no character appears
in column 43, the implication is that the data is represented in
decimal.

The detailed structure of the field is shown in columns 55-80

under Data Image by entering any combination of the following
characters:

Character Definition

A Position contains an alphabetic
character.

X Position contains an alphanumeric
character.

9 Position contains a numeric
character.

B Position is always blank.

(0} Position always contains a zero.

v Represents an assumed decimal
point.

S Position contains a plus sign if the

field or exponent (power of ten)
notation is positive, or a minus sign
if negative.

I Position contains a number with a
positive or negative overpunch.

R Position contains a number with a
negative overpunch if negative, or
no overpunch if positive.

- Position contains a minus sign if
the quantity is negative, or, if
positive the most significant digit
of the quantity.

T Position contains a minus sign if
the quantity is negative, or a blank
(space) if positive.

Any number enclosed in parentheses specifies that the class of
data represented by the character preceding the left parenthesis
exists in the data that number of times, e.g. A{7)X(5) and
AAAAAAAXXXXX both indicate the presence of seven alphabetic
characters followed by five alphanumeric characters.

GENERAL COMPILER MANUAL

GE 225

(4) For an element, the letter E is entered in column 9 under type and
the element name in columns 11-22, The position of the element in
the field is given in columns 49-53. The most significant position is
entered in columns 49 and 50 and the least significant position in
columns 52 and 53. No other entries are required for an element.
Descriptions of elements are listed immediately after the descrip-
tions of the fields in which they are contained.

(5) For condition names, the letter C is entered in column 9 under type
and the condition name in columns 11-22. The actual value repre-
senting the condition is written between quotation marks (") in col-
umns 55-80 under Data Image. No other entries are required. Con-
dition descriptions are listed immediately after the description of
the field for which they are conditions.

(6) For field literals (named fields with fixed values, e.g., a CONTROL
~KEY field), the letiers FL are entered in columns 8 and 9 and the
field name in columns 11-22. The actual value of the field is written
between quotation marks (') in columns 55-80 under Data Image. No
other entries are required.

(7) For unusedpositions in a record, the only description requiredis the
Data Image and the word FILL in columns 11-14.

b. Output Records

(1) Entries for an output record are the same as those for an input rec-
ord except that a qualifier (identifying the source of the record) may
be given in columns 24-35. In other words, if an entire output rec-
ordis obtained unchangedfrom an input file, the name of the input file
is given as the qualifier. It is not necessary to specify movement of
such a record to an outputarea since this is done automatically when
a WRITE is given. In such a case it is not necessary to describe the
contents of a record.

(2) Entries for an output group of fields are the same as those for an
input group of fields except that pne or two qualifiers (identifying
the source record and/or file) may be given. If two qualifiers are
necessary to identify the source uniquely, the first qualifier is writ-
ten in columns 24-35 and the second qualifier is written in the same
columns on the next line with a tilde (~) in column 7. If the fields
within the group are not to be modified in any way for output, it is
not necessary to describe these fields.

(3) Entries for an output field are the same as those for an input field
with the following exceptions:

(a) Onme, two, or three gqualifiers may be given in columns 24-35 of
successive lines. The second and third qualifiers would each
carry a tilde (~) in column 7. Here, qualification would iden-
tify the source group, record, and/or file. Enough qualification
should be given for unique identification. If the field is to be
moved to output unchanged, no description other than type, name
and qualification need be given.

(b) If the field is to be modified in any way, the following additional
entries may be given:

1. The letter L in column 45 indicates left justification of the
field, R -- right justification.

GENERAL COMPILER MANUAL

o

G B e e gl

GE 225

| o

. The letter Z in column 47 indicates that leading zeroes and
commas are to be suppressed; a dollar sign ($) means that
this symbol is to be floated to the first significant character
of the field, suppressing leading zeroes and commas; an
asterisk (*) specifies fill (check protection) to the first sig-
nificant digit of the field, suppressing leading commas.

o

In addition to those characters shown for an input field, the
following may be used in the Data Image of an output field.

Character Definition

E Position always contains the letter E signi-
fying that a signed exponent will follow. This
description is used only when the field is in
floating pointandits print form is a power of

ten notation.
3 Position may contain a $ sign.
- Position may contain an actual decimal point.
¥ Position may contain a comma.

Any printable character (other than those with assigned mean-
ings) appearing in the Data Image of a field to be printed will
be printed in the position in which it appears in the Image.

(4) Elements, conditions, field literals, and FILL are not described in
output records. However, a description of FILL can be made by
describing a literal (see next paragraph 5).

(5) For literals (actual values without names, e.g., headings and titles),
the letter L is entered in column 9 under type, and the actual value,
enclosed in quotation marks (") is entered in columns 55-80 under
Data Image.

WORKING STORAGE

The Working Storage Section starts withthe header, WORKING~STORAGE SEC-
TION written on the Data Division form starting in column 8. Working Storage
is described in the same manner as input data except that unrelated fields and
groups of fields need not be grouped into records. The order of entries is as
follows:

GENERAL COMPILER MANUAL

37

GE 225

WORKING~STORAGE SECTION
=
F field~name
E element~name
" b 1. Fields and elements

field~name

group~name

field~name

element~name 2. Groups of fields, fields,
. and elements.

HEOQ |

group~name

record~name

group~name

field~name

element~name r 3. Records, groups of fields,
; fields, and elements.

HEOD | Q

R record~name

3

Conditions and field literals may be included in Working Storage.
CONSTANTS

The CONSTANT Section starts with a header, CONSTANT SECTION written on
the Data Division Form starting in column 8. Constants are described in the
same manner as input data except that actual values are always given instead
of data images. Unrelated constants andgroups of constants need not be group-
ed into records. Conditions may not be described. Order of entries is the
same as that shown for the Working Storage Section.

>

DATA PROCESSOR

GENERAL COMPILER MANUAL

GE 225

VI ENVIRONMENT DIVISION

The basic approach to the ENVIRONMENT DIVISION is to centralize those aspects
of the total data processing problem which are dependent upon the physical charac-
teristics of a specific computer. It provides a link between the logical concepts of
data and records and the physical aspects of the files on which they are stored.

The ENVIRONMENT DIVISION has been divided into three sentences, each consist-
ing of several clauses:

A. The OBJECT~COMPUTER sentence defines the computer on which the program
produced py the General Compiler is to be run.

B. The I~O~CONTROL sentence defines non-standardprocedures, rerun, and mul-

tiple file tapes.
C. The FILE~CONTROLsentence names and associates the files with the external
media.
OBJECT~COMPUTER

FUNCTION: - - TO DESCRIBE THE COMPUTER UPON WHICH THE OBJECT
PROGRAM IS TO BE RUN.

FORMAT:

OBJECT~COMPUTER, 225
[, MEMORY SIZE integer~1 MODULE(S)]

[, [integer~2] haordware~name~1 I:, [integer~3] hardware~name~2]:I

EASSIGN OBJECT~PROGRAM TO input~unit~1 [integer~4]
[ON PLUG integer~5]] :

CONVENTIONS:

A. The OBJECT~COMPUTER sentence is not required. It is intended for
documentation purposes. I the memory size is given, the object program
will run within the specified number of modules. I no memory size is stated,
one module will be assumed. The compiler does not use any other informa-
tion in this sentence, other than to copy the entire sentence onto the edited
listing.

B. A warning will be given during compilation if the memory size speci-

fied by the user is less than the minimum size required for the program to
run.

GENERAL COMPILER MANUAL

39

OBJECT~COMPUTER

GE 225

C. The compiler will assign the object program to magnetic tape unit zero
on plug zero unless specified otherwise at compilation time. Operating in-
structions will be provided so that other input units may be specified for the
reading of the program instructions.

D. The following standard hardware names and/or abbreviations should be
used.

Name Abbreviation
CARD PUNCH(ES) CP

CARD READER(S) CR

HIGH SPEED PRINTER(S) HSP
MAGNETIC TAPE(S) MT

MASS RANDOM ACCESS FILE(S MRAF
PAPER TAPE PUNCH(ES PTP
PAPER TAPE READER(S) PTR
PLUG(S) PL

E. Magnetic tape numbers and plug numbers may be written ZERO through
SEVEN or 0 thru 7. When a plug number is not specified, zero will be as-
sumed.

EXAMPLES:

A. OBJECT~COMPUTER. 225, MEMORY SIZE 2 MODULES,
2 PLUGS, 8 MAGNETIC TAPES, 1 HIGH SPEED PRINTER,
ASSIGN OBJECT~PROGRAM TO MAGNETIC TAPE ONE ON
PLUG ZERO.

B. OBJECT~COMPUTER. 225, 2 PL 8 MT 1 HSP OBJECT~
PROGRAM MT 1.

FILE-CONTROL

FUNCTION: - - TO NAME EACH FILE AND ALLOW PARTICULAR HARD-
WARE ASSIGNMENTS.

FORMAT:
FILE~CONTROL. SELECT [OPTIONAL] file~name~1
[RENAMING file~name~2], ASSIGN TO hardware~name~1
integer~1 [ON PLUG integer~2] [, hardware~name~2]
[FOR MULTIPLE REEL] [, SELECT .. .].

CONVENTIONS:

A. The key word SELECT will identify the beginning of the information for
each "file~name~1".

B. The name of each selected file (e.g., "file~name~1") must be unique
within a program.

GENERAL COMPILER MANUAL

el il i —

GE 225

FILE-CONTROL

C. The key word OPTIONAL is required for input files which will not nec-
essarily be present each time the object program is to be run.

D. The RENAMING option must be included if more than one file uses the
same FILE SECTION (both File and Record Descriptions) and that FILE
SECTION is included with the source program. That is, "file~name~1"
uses the FILE DESCRIPTION written for file~name~2, e.g., when a file is
to be processed both as an input and output in the same program. RENAM-
ING "file~name~1" or "file~name~2" implies the sharing of a single FILE
SECTION and does not allow these files to be referencedinterchangeably
in the program.

E. All files used in the program must be assigned to an input or output unit
("hardware~name"). (See Conventions DandE under OBJECT~COMPUTER.)

F. The MULTIPLE REEL option should be included when a magnetic tape
file may exceed one reel.

G. The same unit should be assigned to all files existing on the same reel
(see MULTIPLE FILE option in I~O~CONTROL sentence).

EXAMPLES:

A. FILE-CONTROL. SELECT MASTR~PAYROL, ASSIGN TO
TAPE 1, TAPE 2, TAPE 3, MULTIPLE REEL, SELECT
TIME~CARDS, ASSIGN TO TAPE 4, SELECT NEW~MST~
PYRL, RENAMING MASTR~PAYROL, ASSIGN TO TAPE 1
ON PLUG 1, TAPE 2 ON PLUG 1, TAPE 3 ON PLUG 1,
MULTIPLE REEL, SELECT PAYROL~RGSTR, ASSIGN TO
TAPE 4 ON PLUG 1, TAPE 5 ON PLUG 1, MULTIPLE REEL,
SELECT UNION~DUES, ASSIGN TO TAPE 6 ON PLUG 1,
SELECT BOND~REGISTR, ASSIGN TO TAPE 7 ON PLUG 1.

B. FILE~-CONTROL. SELECT MASTR~PAYROL ASSIGN MT
1 MT 2 MULTIPLE SELECT TIME~CARDS ASSIGN MT 3
SELECT NEW~MST~PYRL RENAMING MASTR~PAYROL
ASSIGN MT 4 MT 5 MULTIPLE SELECT PAYROL~RGSTR
ASSIGN MT 6 MT 7 MULTIPLE SELECT UNION~DUES
ASSIGN MT 1 PL 1 SELECT BOND~REGISTR ASSIGN MT 2
PL'1.

I~O~CONTROL

FUNCTION: - - TO SPECIFY NONSTANDARD PROCEDURES, THE POINTS
AT WHICH RERUN IS TO BE ESTABLISHED, AND THE LOCATION OF
FILES ON A MULTIPLE FILE REEL.

GENERAL COMPILER MANUAL

41

I-O~CONTROL

FORMAT:

I~O~CONTROL [RERUN [ON hardware~name] EVERY

o

—

. USE section~name~2

| BEGINNING {
ENDING || || FILE

END OF REEL |
;Integer RECORDS\OF file~name~1]

[MULTIPLE FILE TAPE CONTAINS file~name~
2 [POSITION integer~2] [, file~name~3
[POSITION integer~3] . ..].
[, USE section~name~1 AFTER
)"file‘name*dfl
STANDARD ERROR PROCEDURE ON<INPUT
|GutPur ‘

e |

lm“‘s'ﬁAD OF; STANDARD

5 file~name~5 l
LABEL PROCEDURE ON { INPUT
l OUTPUT

CONVENTIONS:

A. Thissentence is required only when one of the above clauses is desired.

B. If RERUN is specified, it is necessary to indicate when a rerun point is
to be established and where the memory dump is to be written.

j

>
Memory dumps are written in the following ways:

a. The memory dump is written at the end of each reel of an output
file.

b. The memory dump is written on a separate rerun tape ("hardware
~name"').

Rerun points may be established by the following conditions:

a. When the end of REEL option is used for a particular output file
and we wish to write the memory dump on the same file. In this
case "hardware~name" is not required. For example, RERUN
EVERY END OF REEL OF UPD~INVNTRY.

b. When the end of REEL option is used for an input or output file

and we wish to write the memory dump on a separate rerun tape.
Here, "hardware~name" should be specified.

c¢. When a number of records ("integer~1") of an input or output file

have been processed. In this case, "hardware~name” should be
specified.

GENERAL COMPILER MANUAL

GE 225

42

I-O~CONTROL
C. The MULTIPLE FILE option is required when more than one file shares
the same physical reel of tape. Regardless of the number of files on a single
reel, only those files which are used in the object program should be speci-
fied. If all file~names have been listed in consecutive order, the POSITION
need not be given. If anyfile in the sequence is not listed, the position rela-
tive to the beginning of the reel should be given.
D. Inthe USE clause, section~name~2 will be executed as specified:
1. BEFORE, AFTER, or INSTEAD of the standard input label check.
2. BEFORE a standard output label is created.

3. AFTER a standard output label is created but before it is written.

4. INSTEAD of creating and writing a standard output label.

5. If BEGINNING or ENDING are not included, section~name~2 will be
executed for both beginning and ending labels.

6. If REELor FILE are not included, section~name~2 will be executed
for both REEL and FILE labels.

EXAMPLES:

A. 1~O~CONTROL. RERUN ON TAPE 7 ON PLUG 1 EVERY
END OF REEL OF MASTR~POLICY, MULTIPLE FILE
TAPE CONTAINS RATE~TABLE POSITION 6, STATE~
CODES POSITION 9, USE BYPASS AFTER ERROR ON
INPUT, USE PATTERN~CHEK AFTER LABEL PRO-
CEDURE ON TRANSACTIONS.

B. I=O~CONTROL. RERUN ON TAPE 0 EVERY 1000
RECORDS OF MASTR~POLICY, USE LABEL~RTN
INSTEAD OF STANDARD ENDING REEL LABEL PRO-
CEDURE ON TRANSACTIONS.

DATA PROCESSOR

GENERAL COMPILER MANUAL

GE 225

43 /44

GE 225

VIl IDENTIFICATION DIVISION

The Identification Division allows the programmer to label and describe the source
program. Although this division is not required, if used the compiler will copy the
information given onto the edited listing. K a PROGRAM~ID is supplied, the com-
piler will use it according to standard programming conventions. The following
illustration shows the type of information which would usually be included in the
Identification Division.

IDENTIFICATION DIVISION.
PROGRAM~ID. P 13.

AUTHOR. JOHN DOE.

INSTALLATION. GENERAL ELECTRIC.
DATE~WRITTEN. AUGUST 29, 1960.
DATE~COMPILED. AUGUST 30, 1960.
LAST~CHANGE. AUGUST 31, 1960.
SECURITY. UNCLASSIFIED.

REMARKS. GROSS TO NET RUN.

GENERAL COMPILER MANUAL

45 /46

VIl SENTENCE FORM

Fig. 3 shows the Sentence Form on which the Identi-

fication,

Environment and Procedure Divisions are

written. Thisform is an image of an 80-column punch

card.

Al

GE 225

Entries are made as follows:

A sequence number may be assigned in Cols. 1-6
for each line (card). An optional sequence check
on these numbers will be provided. The compiler
will give a warning when it finds a number out of
sequence.

All division, section and sentence names are writ-
ten starting in Col. 8. These names are followed
by a period and at least one space.

Eacl; sentence must starton a newline. However,
the first sentence following a name may start on
the same line as the name.

Although unnamed sentences may start in Col. 8,
it is recommended that they be indented four
spaces and start in Col. 12.

If a sentence exceeds one line, it may be contin-
ued on the next line starting in Col. 8. However,
it is recommended that continuations be indented
eight spaces and start in Col. 16.

If a word is split at the end of a line, a tilde (~)
is placed in Col. T of the second line before con-
tinuing with the word. K you do not want to split
words across lines, the first line may be space
filled through Col. 80 and the word started on the
second line.

DATA PROCESSOR

GENERAL COMPILER MANUAL

47

| - Gecon || o
&&?éﬁ

I N..—.&N\u\r\»\w\i pv»(p\QV /2 P,Alﬁ‘.(. \NN«J\M ”

e \&&?\w E&f\&pNﬁ R PR,

—

OF

DATE
PAGE

| COMPUTER

1[2]a]a]s]6|7]s]o10]ti12]va]ra]s|va[vz[18]19]20]21]22]2s[2]25|26]27|28[20] 30| 31[32]a3]54] s5[36] 37|38 |30 0] 41 2] az]aa[4s|a6] 47 | a8 as|s0] 1] sz[s3[sa 55| 56| s7] s8] s0{e0] 61]62] 63]ea] 65 66|67 68 63| 70|71 22]73]7a]r3| 16|77 |78 | 9{so]

“|N|UM

GIR|E|A

O|F

ClO|P[Y]|I|N
BIA|D|G[E]|~

E(NID| |O|F
8

Mm|o|p|ulL|Els],

T{A|P[E[S |,

M[A|S|T|R|~|P|A|Y|R|O| L],

SENTENCE FORM

ufn[1|o|N|~[D|u]e
1

B|A|D|G|E

E[N[D

GENERAL COMPILER

a].

1l9]6)|0].
2
T|I|[M|E|~|C|A|R|D|S],
UIN|T|T|L

1{9]6]0].

3
'
R{UIN| .

T|0
F

i |1

Figure 3 Sample Sentence Form

0],

MI{E|M|O|R|Y
M|A|GIN|E|T|T|C

1

E|QIU|A|L

T |M|E]~|C|A|R|D|S8

3

T|IME[~[C[A|R[D|S]|, [I|F
M|A|[S|T[R|~|P|A]Y|R|O|L

T|O| |E|N|D|~|R|T|N|~
RIE[A|D| [M|A|S|T|R|~|P|A|Y|R|OfL

N|E|T

DILIVIT[S[T]|O|N].
2

O|B|J[E|C[T|~|C|O[M|P|U|T|E|R
3

5
116

S|E|LIE|C|T
O|R

E|N|D|~|R[T|N|~

2|2
PIA|Y|R|O|L[~|R|G|B|T|R|,

DIT|VII|S8[T]|O|N],
AlUjGIU|S|T

AlU|G|U|S|T
T|O

O|F

NIE|W|[~M|B|T|~|PIY|R|L

O|N
N|UIM|B|E|R
TIE|R
BIEIR

Glo

1

P
RIE|A|D
G|O
T(H|A|N

O|F

Mm|A|8|T|R|~|P|A|Y|R|O[L],
Blo|N|Dp|~|r|E|G[1]s]|T[r] ¥

CAR[E|IR{UIN(]|
DIT|V]I|B|T|O|N].

PIL|UIG[S]|,

OU|T|P|U|T
’
FlI|L|E

M|A|T|CjH|~|B|A|D|G|E|S].
FIT|LIE

8

MIA|TINp~|CIH[ALT|N|.

JGIR|O]| 8|8

LIN|PJU|T

;.mlﬁ\&._...._n — \u\ti_ Qﬁ(u_\A\\l

IF| Mo cormpodd ol Hiivd KTl
| 5|, AP ese, A0, 08

Exdh — f.hm\,.tpk«\» a1 vieadleK

{ :

ﬁN\(.ﬁAﬁ\b{» T et =& ﬁ\bfﬂ.hﬂ.&\ﬁ.ﬁ\

IID[EIN|T{I|F|I|C|A|T|1|O[N
PIR|O|G|R|A[M|~]L|D]|.
DIA|T|E|~|C|OM|P|I|L|E|D].
L|A|8|T]~|C|H|AIN|G|E].

R|E[M|A|R|K]|S
F|I|L|E]~|C|O|N|T|R|O|L].

1|~|O[~]C|O[N|T|R|O|L
PIR|O(C|E[D|U|R|E

E|N|V|I|R[O|N|M|E|N|T
O|P|E[N

SEQUENCE

T-Qﬁ‘\ﬁ =T yeo| rituvgg Nsb)\r\h*ﬁ.«lﬁ;“ﬂq
Ofch —|ne Revasen ppralon,
GENERAL COMPILER MANUAL | VERFORN |- 1o | Expdy n TrFies s&ﬂ,‘: -

GE 225 - o (UMY g S

48 L we WTIE \ﬁhrn

fon LAC WE epleen |- _r.___k& mnj?.\\ b \\ahw&...
L heola REPLACWE oplee .

b oo der HlLwe , T

GENERAL @ ELECTRIC

Ui
0jojoj1fojo
ofojofz]jo]o
ofojof3|ojo
Ojojoj4fojo
0jojo|s5]0]0
ojofoj1jo]o
olofojz]|ofo
ojojojajolo
ofojo|{5|0]0
ofojoj6lo]0
olojojtjofo
ofojoj2{ojo
ojojo|3jofo
0]0]0]4[0[0 |~
olojrjojojo
ojofrjofort
ofojzjojojo
ofolzjof0f1}~
ofof2jojo|2|~
ojojz|ojo)s|~
ojoj2|0|Of4]~
0joj2|0[(0]b

