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PREFACE

This is one of six Field Engineering manuals for the
2075 Processing Unit. These six manuals contain the
unit theory of operation, reference diagrams to be
used when troubleshooting, and maintenance pro-
cedures.

A basic knowledge of the IBM System/360 as con-
tained in the IBM System/360 Principles of Opera-
tion, Form A22-6821 is considered a prerequisite
for studying the unit theory of operation. The theory
of operation is contained in a four volume manual
identified as a Field Engineering Manual of Instruc-
tion (FEMI). Volume 1 is a prerequisite for the
detailed information contained in volumes 2, 3, and
4. Volume 1 contains the introduction to the system
and the processing unit and a description of the
functional units (registers, adders, and decoders) of
the processing unit. Volumes 2 and 3 contain de-
tailed instruction analysis, and volume 4 contains
detailed information on special features and power
supplies and control.

The four volumes of theory of operation contain
many references to the diagrams packaged in the
associated Field Engineering Diagrams Manual
(FEDM). All diagrams in the FEDM are identified
by a four digit figure number and unless otherwise
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specified, all four digit figure references in the
FEMI indicate that the figure is contained in the

associated FEDM.
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INTRODUCTION

OPERANDS

e Are 16, 32, or 64 bits long.

e High-order bit is sign bit in nu:ﬁeric operands.
e Negative numbers are in 2's complement form.

Most operands are 32 bits long, with the high-order
bit used as the sign of numeric operands (1 is minus,
0 is plus). Some instructions, however, make use of
halfword operands (16 bits), and some, double word
operands (64 bits). The high-order bit in numeric
operands is considered a sign bit, while for logical
operands the high-order bit is just another data bit.

Halfword operands are expanded to a full word
after their delivery from core storage. The expan-
sion of the halfword is achieved by propagating (ex-
tending to the left) the sign bit, thereby leaving the
value of the operand unaffected. Thereafter, the
expanded halfword is handled as any full word. For
example, after expansion, the add halfword is exe-
cuted the same as add.

Double word operands, used in divide and some
shift operations, are contained in an even-odd pair
of general registers. The instructions using double
operands must specify the even general register to
avoid a specification interrupt.

Numeric Operands

Unlike many machines, negative numbers are held in
2's complement form, with a 1 in the sign (high-
order) bit, The 2's complement of a number is ob-
tained by inverting all bits and adding a 1 to the low-
order bit. For example, the number 67g is repre-
sented by

8421

0110
when positive, and by

8421

1010
when negative. Note that the hexadecimal value of the
second binary group (10;g) is the 16's complement of
the first binary group ( 61). Theref-rc, anv binary
number can be broken into four-bit groups and be
represented by hexadecimal digits; the 16's comple-
ment of those hexadecimal digits will then be equiv-
alent to the 2's complement of the binary number.

Keeping negative numbers in complement form

simplifies processing. When an operation, such as

FIXED POINT

add, yields a negative (complement) result, the re-
sult is stored in the general registers without alter-
ation. In many machines, where negative numbers
are represented in true form, an additional pass
through the adder must be taken to make a comple-
ment (negative) result true. By leaving the result in
complement form, the System/360 Model 75 saves
the cycle required to make a pass through its adder.

Numbers Range

For any given field size, the complement or negative
numbers are equal in quantity to the positive num-
bers. However, a negative zero does not exist, but
a positive zero does; and, the maximum negative
number (one followed by all zeros) is greater in ab-
solute value than the maximum positive number
(zero, followed by all ones). This is illustrated in
the following example, where the field is only 4 bits
in length:

8 4 2 1
/0 1 1 1 +7
0 1 1 + 6
0 1 0 1 +5
T I
Positive
Range T I_
0 0 0 1 + 1
0 0 0 0 +0
1 1 1 1 -1
1 1 1 0 -2
I I
Negative
Range T I
1 0 1 0 -6
i | 0 o] 1 -7
\ 1 0 0 0 -8
OVERFLOW

e Caused by lost significant bits.

e Sets CC to 3 and causes fixed-point overflow in-
terrupt when the fixed-point overflow interrupt
mask is on.

When an operation either produces a result that is
greater than the machine's capacity, or loses bits
that should be saved, a fixed-point overflow occurs.
The result, while invalid, is placed in the general

Fixed Point 1/66 7



registers where results are stored. The condition
code is set to 3, and an interrupt occurs if the fixed-
point overflow mask bit is 1.

In the preceding example, the representable
range for positive numbers is 0 to 15, and for nega-
tive numbers is 1 to 16. Therefore, any operation
that attempts to produce a result of greater than +15,
or less than -16, signifies an overflow.

In load complement, which loads the complement
of one general register into another, an overflow
occurs if the operand is the maximum negative num-
ber. Using the four numeric bit machine, it can be
seen that if -16 (10000) were complemented (sub-
tracted from zero), the result is +16, out of range.
However, the bit arrangement of the result (10000)
is the same as the original operand.

CONDITION CODE

e Set by most fixed-point instructions.

e Can be tested by branch-on-condition instructions.

Most fixed-point instructions set the condition reg-
ister (PSW bits 34 and 35) during the last cycle of
their execution. The four states of the condition
register are used, by various instructions, to indi-
cate the relation of an operand to zero, of one oper-
and to another, or overflow. The condition register
can be used for decision-making by branch-on-con-
dition instructions.

For some instructions, for example, add and
add logical, the setting of the condition register is
the only difference in their execution. Different
interpretations are given to the four states of the
condition register for these two instructions.

INSTRUCTION FORMAT

e Fixed-point/fixed-sequence instructions have RR,
RX, and RS formats.

Fixed-point/fixed-sequence instructions use the fol-
lowing three formats:

RR Format

L] 7 i 13

RX Format

[Op Code] R1 | x2 | B2 | D2 |

o 78 i LERTY [LFT] n

RS Format

[Op Code[ R1 [ 3 | 82 | 2|

L] e 1m1z 1318 1w n

8 1/66 2075 Processing Unit -- Volume 3

In these formats, Rl specifies the address of
the general register that contains the first operand.
The second operand location, if any, is defined
differently for each format.

In the RR format, the R2 field specifies the
address of the general register that contains the
second operand. The same register may be speci-
fied for the first and second operand.

In the RX format, the contents of the general
registers that are specified by the X2 and B2 fields
are added to the content of the D2 field to form an
address that designates storage location of the sec-
ond operand.

In the RS format, the content of the general reg-
ister that is specified by the B2 field is added to the
content of the D2 field to form an address. This
address designates the storage location of the second
operand in load multiple and store multiple. In the
shift operations, the address specifies the amount
of shift. The R3 field specifies the address of a
general register in load multiple and store multiple
and is ignored in the shift operations.

A zero in a X2 or B2 field indicates the absence
of the corresponding address component.

An instruction can specify the same general reg-
ister for both address modification and operand lo-
cation. Address modification is always completed
before operation execution.

The contents of all general registers and storage
locations participating in the addressing or execution
part of an operation remain unchanged, except for the
storing of the final result.

PROGRAM INTERRUPTS

e Program interrupts are caused by programming
errors and will block, terminate, or suppress
the instruction in error.

Program interrupts are caused by various program-
ming errors, some of which are detected during in-
struction preparation time (T1 and T2); others are
detected during instruction execution time. The
errors detected during T1 and T2 are the specifica-
tion errors. These prevent the start of any execu-
tion unit, causing an interrupt to be taken instead.

Of the errors detected during the execution time of
an instruction, some end the instruction prematurely,
others nullify it. Fixed-point overflow does not in-
terfere with execution of the instruction. These er-
rors and their effect are described under '"Theory

of Operation,"



THEORY OF OPERATION

The E unit is started when the preparation of the fixed-
point’ instruction is completed, the E and IE units are
not busy with the previous instruction, and there is
no interrupt condition. This point-in an instruction is
commonly called "I to E transfer' which is a signal
that combines with "no interrupt" to turn on the E
busy or the IE busy trigger (Figure 5276).

At the A pulse coincident with I to E transfer, the
first FXP trigger is turned on and is followed by its
latch. In RR instructions, the first FXP latch is
turned on immediately following the trigger; in RX
instructions the first FXP latch is held up, keeping
the E unit idle, until the J register is loaded with
valid data (Figure 5404), If invalid data is received,
as when an illegal fetch address is used, the first
FXP latch turn-on is blocked and the ELC trigger is
turned on to end the instruction (see "Operand Store-
Fetch Errors"), '

The I unit delivers the required register operands
to the E unit, makes all fetch requests and most store
requests. AtI to E transfer the required register
operands have, for most fixed-point instructions,
been delivered to the M register through RBL, and
the accept pulse from BCU has been received for
fetched operands (See Figure 1).

Register Operands

Register operands R1 and R2 are gated into RBL
during T2 for RR instructions even though one of
these operands may not be required (see Figure
6400). In RX instructions, the R1 operand is sent to
RBL, and so is R1 + 1 if R1 is even. As in the RR
instructions, the R1 or R1 +1 operand may not be
required, and if not, is ignored by the E unit. R1 is
delivered to RBL left; R2 and R1 +1 are delivered to
RBL left; R2 and R1 + 1 are delivered to RBL right.

The gating for GR to RBL transfer occurs during
T2. However, some instructions require their
operand deliveries during one or more execution
cycles. If so, the general register out (GROUT) trig-
ger is turned on at I to E transfer to accomplish the
gating and stays on as long as required.

Put-Away

Put-away refers to storing an instruction result in
K0-31 in the general register specified by ER1
(Figure 5401), For instructions requiring a single
put-away, the transfer is made in ELC. For instruc-
tions requiring a double put-away (for instance,

double word shiff-instructiohs}, the transfers are
made in both the PA and ELC cycles. )

The controlling trigger for the K to GR transfer
is the release cycle trigger (Figure 5402). This
trigger is turned on at the late B pulse preceding the
put-away(s) and is turned off in ELC (with a late B
pulse). Therefore, the release cycle trigger strad-
dles the clock pulse (early B) that sets the general
registers. Instructions not requiring a put-away
and the error conditions that must block it turn on
the block PA trigger (Figure 5402). This trigger, or
its turn-on condition, prevents setting the release
cycle trigger. '

Condition Register Setting

The condition register (PSW bits 34 and 35) is set at
the A clock pulse following the ELC cycle for the
instructions that require it. Some instructions, like
Store, do not set the condition register. The output
of circuits comparing results to zero, or one operand
to another, for example, set latches in the E unit
which correspond to PSW positions 34 and 35 (see
Figure 5403). These E unit latches are then used to
set PSW positions 34 and 35 with the gate "E Set CR,"
which is coincident with the ELC latch,

The condition register settings and their signifi-
cance to applicable instructions are shown with the
instruction flow diagrams in the FE Diagrams Man-
ual, 2075 Processing Unit, Form 223-2876.

Program Interrupts

E time program interrupts possible with the fixed-
point instructions follow.

Operand Store-Fetch Errors

Four types of illegal addressing are connected with
fetching or storing operands:

1. Invalid fetch address

2, Storage address protect (SAP) fetch error

3. Invalid store address

4, Storage address protect (SAP) store error

Invalid Fetch Address: An out-of-range storage
address used to fetch an operand. In this operation,
CPU still receives an advance pulse, but also
receives an error signal to turn on the address
invalid trigger (Figure 5404). The J register
receives, instead of the SBO output, the contents of
the panel keys (with good parity).

The invalid address trigger prevents the E unit
from executing the instruction by forcing ELC and

Fixed Point 1/66 9



|=Unit Sequence : T ; 12 _=

GBL jEl==gBl03] __

GBR R2= RBL32-63 4

EGO il EGO N

E-Unit Seq : First Fxp ! E(N)
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blocking the turn-on of the first FXP latch (the first
FXP trigger is on since | to E trahsfer). Also, the
address invalid trigger causes turn on of: (1) the
block PA trigger to prevent changing the géeneral
registers; (2) the E interrupt trigger to cause a pro-
gram interrupt; and (3) the address interrupt trigger
to identify the addressing interrupt. °
Storage Address Protect (SAP) Fetch Error: Occurs
when the storage protection key (PSW bits 8-11) is -
not zero,-does not match tlie SPF key, and the read-
protect bit in the SPF unit is 1. A SAP -check signal
is sent to the CPU and, with the advance pulse, turns
on a SAP check trigger (Figure 5404). As with an
invalid fetch address, J is loaded from the panel keys
(with good parity) instead of from the SBO,

As with the invalid address trigger, the SAP check
trigger (identified with the J register) prevents the E
unit from executing and instruction using the illegal
address by forcing ELC and blocking the turn on of
the first FXP latch (the first FXP trigger is on since
I to E transfer), Also, the SAP check trigger causes
turn on of: (1) the block PA trigger to prevent chang-
ing the general registers, (2) the E interrupt trigger
to cause a program interrupt; and (3) the SAP inter-
rupt trigger to identify the SAP fetch interrupt.

Invalid Store Address: An out-of-range storage
address used in a store operation. The operand
never reaches its destination, but the accept pulse
is sent to the CPU as though a legitimate address
were used, and the instruction is allowed to com-
plete as it would normally. Because of the invalid
address, however, the BCU sets one of its triggers
called "invalid store buffer" (Figure 5204) whose
output is sent to the CPU's interrupt detection cir-
cuits (Figure 5350). At ELC of the instruction using
the invalid store address, the interrupt detection
circuits recognize the error and start an interrupt
sequence,

Storage Address Protect (SAP) Store Error: Occurs
when an instruction attempts to store a word in an
area of storage whose SPT protection key is not
matched by the protection key in the PSW (when the
PSW key is other than zero), The operand never
reaches its destination, but the accept pulse from
BCU is sent to the CPU as though a legitimate
address were used. Because of the SAP error, how-
ever, the BCU sets a trigger within it called "CPU
SAP" (Figure 5204) whose output is sent to the CPU's
interrupt detection circuits (Figure 5350).

Because of its late arrival in CPU, the signal
generated by the CPU SAP trigger might not cause a

store SAP interrupt immediately following the
instruction using the illegal address. The interrupt
may be taken after the next instruction, or if a large
capacity storage (LCS) is'involved, the interrupt may
not be taken until many instructions later because of
the LCS's relatively slow response (see Interrupt
Examples in "Interrupts," FEMI, 2075 Processig
Unit, Volume 2, Form 223-2873).

Fixed-Point Overflow ,

When the load positive, load negative, or algebraic
add or subtract instructions produce a result greater
than 32 bits, or when the algebraic left shift instruc-
tions lose significant high-order bits, the instruction
is completed normally and the condition code is set
to 3. If the fixed-point overflow mask bit (PSW 36)
is 1, the E interrupt trigger and fixed-point over-
flow trigger are turned on and an interrupt is taken
at the end of the instruction.

Fixed-Point Divide

When the quotient exceeds 32 bits in a divide opera-
tion, including division by zero, the fixed-point inter-
rupt and E interrupt triggers are turned on and an
interrupt is taken at the end of the instruction. Put-
aways are blocked by turning on the block PA trigger
(Figure 5402).

The divide instruction may be cut short depending
on when the error is detected.

The modified addressable register (MODAR) trigger
is associated with the retry-no-retry feature, which
enables a decision to be made as to whether an in-
struction that caused a machine check can be retried;
that is, whether that instruction has changed a reg-
ister. A register in this case refers to either a
general register, floating-point register, PSW, or
storage location. If the instruction did change a
register, before the machine check, it is not retry-
able because it may have changed its own operand.

When a machine check occurs and the instruction
has already changed a register, that instruction, as
indicated by the MODAR trigger being on, is not
retryable. If, when the machine check occurs, the
instruction has not progressed far enough to change
any register, the MODAR trigger is not turned on,
indicating that the instruction causing the machine
check is retryable.

The MODAR trigger is one of the 1216 triggers
logged out in a machine check, and therefore, can
be interrogated by an examining program.

Fixed Point 1/66 11



LOAD (L, LR)
e Operand 2 is placed in the operand 1 location.

The load instructions are executed in two cycles, de-
fined by the first FXP trigger and the ELC trigger.
At the start of execution, the second operand is lo-
cated as:

Instruction Format Operand 2
RR M32-63
RX-even Jo-31
RX-odd J3z-63

Figure Reference: Figure 6300
First FXP

The second operand, from the M register (RR) or J
register (RX), is sent through the adder to the left
half of the K register.

ELC

A put-away is made from the K register to the gen-
eral register specified by ER1, and the MODAR trig-
ger is set.

LOAD AND TEST (LTR)
e Operand 2 is placed in the operand 1 location.

® CCis set to record the relationof the result to0.

The load and test instruction is executed in two cycles,
defined by the first FXP trigger and the ELC trigger.
At the start of execution, the R2 operand is located
in M32-63.

Figure Reference: Figure 6300

First FXP

The R2 operand, in the M register, is gated through
the adder to the left half of the K register.

ELC

A put-away is made from the K register to the gen-
eral register specified by ERL. MODAR is set, and
0, 1, or 2 is gated to the condition register.

The setting of the condition register is determined
by examining the K register 0 bit (sign bit) and the
K0-63 zero latch.
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LOAD POSITIVE (LPR)

e Operand 2, made positive if it is negative, is
placed in the operand 1 location.

e CC is set to record the relation of the result to
0, or to record overflow.

e When the R2 operand is the maximum negative
value (100---00), overflow occurs and the num-
ber remains unaltered.

The load positive instruction is executed in two cy-
cles, defined by the first FXP trigger and the ELC
trigger. At the start of the execution, the R2 oper-
and is located in M32-63.

Figure Reference: Figure 6300.

First FXP

The R2 operand, in the M register, is gated through
the adder to the left half of the K register. If the
R2 operand is negative, the AM complement and hot
1 triggers are turned on to complement the operand
as it passes through the adder.

ELC

A put-away is made from the K register to the gen-
eral register specified by ER1. MODAR is set, and
a 0, 2, or 3 is gated to the condition register.

The setting of the condition register is deter-
mined by examing the KO0 bit (sign bit), the K0-63
zero latch, and the carries from adder positions 0
and 1.

LOAD NEGATIVE (LNR)

e Operand 2, made negative if it is positive, is
placed in the operand 1 location.

e CC is set to record the relation of the result to 0.

e When the number 0 is complemented, the result
is 0.

The load negative instruction is executed in two
cycles, defined by the first FXP trigger and the ELC
trigger. At the start of execution, the R2 operand is
located in M32-63.

Figure Reference: Figure 6300.



First FXP

The R2 operand, in the M register, is gated through
the adder to the left half of the K register. If the R2
operand is positive, the AM complement and hot 1
triggers are turned on to complement the operand
as it passes through the adder. The result of 2's
complementing a 0 operand is 0.

ELC

A put-away is made from the K register to the gen-
eral register specified by ER1. MODAR is set, and
a 0 or 1 is gated to the condition register.

The setting of the condition register is deter-
mined by examining the KO0 bit (sign bit) and the
K0-63 zero latch.

LOAD COMPLEMENT (LCR)

e The complement of operand 2 is placed in the
operand 1 location.

e CC is set to record the relation of the result to
0, or to record overflow.

e If the maximum negative value (100---000) is
complemented, overflow is recorded in the con-
dition code and an interrupt is taken if the fixed-
point overflow mask bit (PSW 36) is one.

The load complement instruction is executed in two

cycles, defined by the first FXP trigger and the ELC

trigger. At the start of the execution, the R2 oper-

and is located in M32-63. '
Figure Reference: Figure 6300.

First FXP

The R2 operand, in the M register, is gated through
the adder to the left half of the K register. The AM
complement and hot 1 triggers are turned on to
complement the operand as it passes through the
adder. Complementing does not alter a zero oper-
and or the maximum negative value (100--00).

ELC
A put-away is made from the K register to the gen-
eral register specified by ER1. MODAR is set, and
a0, 1, 2, or 3 is gated to the condition register.

The setting of the condition register is deter-
mined by examining the K0-63 zero latch, the K0 bit
(sign bit) and the carries from adder positions 0 and 1.

LOAD ADDRESS (LA)

e The 24-bit address formed by X2, B2, and D2 is
placed in the 24 low-order positions of the gen-
eral register specified by R1; bits 0-7 of GR R1
are made 0.

e No operand fetch is made and the CC is not set.

The load address instruction is executed in three
cycles, defined by first FXP, Hwd Log, and ELC
triggers. At T1, the address calculation is made
from the X2, B2, and D2 fields, as for any RX in-
struction. At TN T2, the calculated address is
placed in SAR and H registers, but no fetch request
is made. Block ICM is turned on at the beginning of
T2 to prevent the ICR from being gated into the in-
crementer, which will be used in the second execu-
tion cycle. Block T1 is also generated, to prevent
the next TN T2 pulse from altering the H register.
At I to E transfer and an A pulse, the first FXP
trigger is turned on.

Figure Reference: Figure 6301.

The turn-off of block T1M is gated to allow T1 in the

next cycle. The H register cannot change until after
its contents (X2 + B2 + D2) have been used. No data

flow occurs in this cycle in order to leave the incre-
menter, used as a data path in load address, free for
a high-order advance of the ICR.

Hwd Log

The H register is gated to the incrementer, and the
incrementer with its extender is gated to the K reg-
ister. Therefore, positions 0-7 of the K register
receive zeros, while positions 8-31 receive the 24-
bit address.

ELC

A put-away is made from the K register to the gen-
eral register specified by ER1, and the MODAR trig-
ger is set.

ADD (A, AR)

e Operand 2 is added to operand 1, and the alge-
braic sum is placed in the operand 1 location.

e CC is set to record the relation of the result to
0, or to record overflow.
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Overflow is possible and causes the sign of the result
to be opposite that of the two numbers added; the
magnitude of the result is also invalid. The overflow
is recorded in the condition code and, if the fixed-
point overflow mask bit (PSW 36) is 1, a program in-
terrupt takes place.

The add instructions are executed in two cycles,
defined by the first FXP trigger and the ELC trigger.
At the start of execution, the two operands are loca-
ted as:

Instruction Format Operand 1 Operand 2
RR M0-31 M32-63
RX-even MO0-31 Jo-31
RX -odd Mo0-31 Ja32-63

Figure Reference: Figure 6302.

In computers that keep negative numbers in true
(not complement) form, an examination of the signs
of the two operands must be made to see whether the
result should be their sum or difference. If the re-
sult should be their difference, one of the operands
is complemented before being added to the other. In
the System/360, the sign examination is unnecessary
because negative numbers are kept in complement
(2's) form. Adding a negative and a positive number,
therefore, automatically yields their difference
(actually their algebraic sum -- for example, +3 and
-5 equals -2, the 2 being the difference in absolute
values, but -2 being the algebraic sum of the two
numbers); adding two negative or two positive num-
bers yields their sum.

First FXP

Operand 1 is gated from the M register to the left
side of the adder; operand 2 is gated from the M reg-
ister (RR) or J register (RX) to the right side of the
adder. The result is gated to the left half of the K
register.

ELC

A put-away is made from the K register to the gen-
eral register specified by ER1. MODAR is set, and
a0, 1, 2, or 3 is gated to the condition register.

The setting of the condition register is deter-
mined by examining the K register 0 bit (sign bit),
the K0-63 zero latch, and the carries from adder
positions 0 and 1.

SUBTRACT (S, SR)
e Operand 2 is subtracted from operand 1, and the

algebraic difference is placed in the operand 1
location.
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e CC is set to record the relation of the result to 0,
or to record overflow.

e Overflow occurs when the magnitude of the differ-
ence exceeds 31 bits; if the fixed-point overflow
mask bit (PSW 36) is 1, an interrupt is taken.

Execution of the subtract instructions is similar to
the execution of the add instructions, with one excep-
tion. As the operands are gated through the adder,
the AM complement and hot 1 triggers are uncondi-
tionally turned on to complement operand 2. The
initial location of operands and the setting of the
condition register are also the same as the add in-
structions.

Complementing operand 2 adheres to the basic
rule of algebra of changing the sign of the subtra-
hend (number being subtracted) and adding. The re-
sult is always the algebraic difference of the two
numbers. This is less complicated than the com-
puters that keep negative numbers in true form and
must decide on the basis of operand signs whether to
complement, and later, whether to recomplement to
make a true result.

Figure Reference: Figure 6302.

CONDITION CODE SETTING FOR FIXED-POINT
LOAD-TYPE AND ALGEBRAIC ADD-SUBTRACT
INSTRUCTIONS

e CC is set to record the relation of the result to
0, or to record overflow.

e Sign of result, K zero indication, and high-order
carries from the adder are compared.

The condition code is used by the fixed-point load-
type and algebraic add-subtract instructions to com-
pare the results of their operations to zero. That
is, to record whether the result operands are equal
to, less than, or greater than, zero. Specifically,
these instructions are:

Load and test
Load positive
Load negative
Load complement
Add

Add halfword
Subtract

Subtract halfword

The condition code is also used to indicate the
presence of overflow for all of the above codes ex-
cept load and test and load negative; overflow is not
possible for these two instructions. The condition
code (or condition register -- PSW bits 34 and 35)



settings and their interpretation for the above codes
are:

CC Bits

“34 and 35 : _I.nterpretations
00 Result is zero
01 Result is less than zero
10 . X Result is greater than zero
11 Overflow

Condition Code 0, 1, and 2

Determining the relation of a result to zero is done
by examining the K register 0 bit (sign bit) and the
K register zero latch during ELC. If the K register
zero latch is on, the result is zero and CR bits 34
and 35 are unaffected. If the KO bit is off and the K
zero latch is off, the result is greater than zero
(positive), and CR bit 34 is set. I the KO0 bit is on,
the result is less than zero (negative) and CR bit 35
is set.

The bits generated by these examinations are
first set into the CR 34 and CR 35 latches (KX 621) in
the E unit. At A clock following the ELC cycle, the
bits are transferred to the corresponding PSW bits
34 and 35 with the gate E set CR (KX 625).

Condition Code 3 (Overflow)

Overflow occurs when the result of an operation is
greater than 31 bits (without sign). Overflow is de-
tected by comparing the carries out of positions 0 and
1 from the main adder. If a carry from both posi-
tions is present, or absent, the result is within the
representable range. If a carry occurs from one
position and not the other, overflow exists, anda 3
is set into the condition code. If the PSW 36 bit
(fixed-point overflow mask bit) is one, an interrupt
is started as well.

In load positive and load complement, overflow
occurs when the maximum negative value (100---000)
is complemented.

Except for the maximum negative value, overflow
changes the sign of the result to opposite of what it
should be. For examples of operands that cause
overflow and the high-order carries they produce,
see the section entitled "Overflow on Algebraic Add-
Subtract Instructions."

ADD LOGICAL ( AL, ALR)
e The logical operand 2 is added to the logical

operand 1 and the sum is placed in the operand
1 location.

e CC is set according to zero/non-zero, and carry/
no-carry produced by the result.

The high-order bits of both operands are treated as
data and not sign bits; the operands are therefore
classified as logical. The logical add instructions
differ from their add instruction counterparts in the
setting of the condition code and in the absence of
overflow. :

The initial operand locations and execution of the
add logical instructions (RR and RX) are identical to
the corresponding add instructions. Only the setting
of the condition code differs. The state of the K0-63
zero latch and the C out of AM 0 trigger-latch deter-
mine the setting of the condition code. The logic for
setting CR 34 (2 bit) is shown on Systems KX 641;
the logic for setting CR 35 (1 bit) is shown on Sys-
tems KX 655. :

Figure Reference: Figure 6302.

SUBTRACT LOGICAL (SL, SLR)

e The logical operand 2 is subtracted from the
logical operand 1 and the difference is placed in
the operand 1 location.

e CC is set according to zero/non-zero, and
carry/no-carry produced by the result.

The high-order bits of both operands are treated as
data and not sign bits; the operands are therefore
classified as logical. The logical subtract instruc-
tions differ from their subtract instruction counter-
parts in the setting of the condition code and in the
absence of overflow.

The initial operand locations and execution of the
subtract logical instructions (RR and RX) are identi-
cal to the corresponding subtract instructions, which
complement operand 2 as it passes through the adder.
Only the setting of the condition code differs. The
state of the K0-63 zero latch and the C out of AM 0
trigger-latch determine the setting of the condition
code. The logic for setting CR 34 (2 bit) is shown
on Systems KX 641; the logic for setting CR 35 (1 bit)
is shown on Systems KX 655.

Figure Reference: Figure 6302.

COMPARE (C, CR)

e Operand 1 is compared to operand 2 and the CC
is set to record their relation.

e Execution is identical to the subtract instructions
with the absence of a put-away.
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The compare instructions are executed in two cycles,
defined by the first FXP trigger and the ELC trigger.
At the start of execution, the two operands are loca-
ted as follows:

Instruction Format Operand 1 Operand 2
RR Mo0-31 M32-63
RX-even Mo0-31 J0-31
RX -odd Mo0-31 J32-63

Figure Reference: Figure 6303.
First FXP

Operand 1 is gated from the M register to the left
side of the adder; operand 2 is gated from the M
register (RR) or J register (RX) to the right side of
the adder. The AM complement and hot 1 gates are
turned on to complement operand 2 as it passes
through the adder. The output of the adder is sent
to the K register for a zero check; this is part of the
information required to determine the setting of the
condition code.

ELC

A put-away to a general register is prevented by
turning on the block PA trigger. The MODAR trigger
is set, and a 0, 1, or 2 is gated to the condition
register.

The condition register inputs are determined by
the operand signs, the carry from adder output 0
position, and by the state of the K0-63 zero latch.
The sign indications are obtained from the R1 and R2
sign triggers which are set by the operand sign posi-
tions during first FXP (see Figure 5400), The inter-
pretation given the above indications for setting the
condition register is explained in the following text.

Compare Logic

Comparing the relative values of the two algebraic
operands is accomplished by examining the carry/no-
carry out of the adder position 0 (the sign position),
and the zero indication from the K register, where
the adder output is received. The expressions used
in the comparisons, and their significance, are:

Systems KX 641 (Signs Unlike) (C Out 0) + (Signs Alike)

(C Out 0) (K0-63=0) = Operand 1 High = CC34
Systems KX 661 (Signs Unlike) (C Out 0) + (Signs Alike)

(C Out 0) = Operand 1 Low = CC35

The first half of each expression (Signs Unlike)
(C Out 0) and (Signs Unlike) (C Out 0), deals with the
operand sign position only (see Figure 2). When
signs are unlike, the carry/no-carry from position 0
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distinguishes between the positive and negative oper-
ands. This is possible because after complementing,
both operands are positive or both are negative. A

carry from position 0, therefore, is impossible with
positive signs and indicates that operand 2 (the com-
plemented operand) is negative. A carry from posi-
tion 0 always occurs with negative signs, and indi-

cates that operand 2 was positive before complement.

The second half of each expression (Signs Alike)
(C Out 0) (K0-63=0) and (Signs Alike) (C Out 0), is a
test of the magnitude (see Figure 2), When signs are
alike, the carry/no-carry from position 0 and the K
zero indication provide enough information to tell
when operand 1 is higher, lower, or equal to operand
2.

When operands 1 and 2 are equal, none of the ex-
pressions above is satisfied (see Figure 2). Neither
of the condition code triggers is set, therefore, in-
dicating an equal condition.

(SIGNS ALIKE) (C OUT 0)
{Operand | less thon operand 2)

(SIGNS UNLIKE) (C OUT 0)
(Operand | greoter than operand 2)

58421 58421 s8421 58421
Opl OXXXX 0DXXXX Opl 001004 00100 (4)
Op2 1XXXX 0X XXX Op2 00111 (D 11001 ()
nfe OXXXX nfe 11101
e A e

(SIGNS UNLIKE) {C OUT 0) (8)

(Operand | less thon operand 2)

58421 58421 58421 s8421
Opl | XXXX P XXX Oel 11001V () 11001 {@
Op2 OXXXX TXXXX op2 11100@® 00100 (4)

cary XKXKXX _f_‘g 11081

The following are exomples of equal value
operondi. They satisfy none of the expresiion
for operand 1 high or low, end therefore set
neither of the condition code triggers.

(SIGNS ALIKE) (C OUT 0) [Kn_&" =0)
(Operond | grecter than operand 2)

58421 sB421 SB421 SBAZ1
opl 00111 (D 00111 (M opl 00111 (D 0ol 11
Op2 00100 (4) 111000@ Op2 00111 (D 11001 (0

carry 00011 camy 00000
) - (Al
0} ()

s842) 58421 584121 58421
opl 11100(@ 111004 opl 11001 11001 (@
Op2 11001 (7 00111{(7H Op2 11001 () 00111 {n

&00011 Fany poooo

FIGURE 2, COMPARE EXAMPLES



COMPARE LOGICAL (CL, CLR)

e The logical operand 1 is compared to the logical
operand 2 and the CC is set to record their rela-
tion.

Execution of the compare logical instructions is
identical to the execution of the corresponding com-
pare instructions (C, CR). Only the setting of

the condition register differs. The compare instruc-
tions treat the operands as 31-bit signed integers
while the compare logical instructions treat the
operands as 32-bit unsigned integers. The logic used
to set the condition register for compare logical is
shown in the following expressions:

Systems KX 645 K0-63 Zero Lth
Systems KX 661

C Out AM 0 Tgr Lth = CR 34
C Out AM 0 Tgr Lth = CR 35

Examples:
Op1 Opl= Op1
Greater Op 2 Smaller
01234 01234 01234
Operand 1 00001 _0_9001 00001
Operand 2 BO0OG T00001 DOOLO
1111 11110 11101
Operand 2 { 1 1 i
00001 00000 11111
: /
carry carry n/e

Figure Reference: Figure 6303.

STORE (ST)
e Operand 1 is stored in the operand 2 location.

The store instruction takes two cycles to execute if
storage is immediately available to CPU, and more
than two cycles if it is not. The I unit makes the
store request at I to E transfer. If the requested
storage is not busy, the accept pulse is received in
the following cycle (first FXP) to turn on ELC. If
the accept pulse is delayed, store (idle) cycles are
taken between first FXP and ELC until the accept
pulse arrives from BCU. At the start of execution,
the R1 operand is located in M0-31.

Figure Reference: Figure 6304.

First FXP

The R1 operand in the M register is gated through
the adder to the K register. The first first FXP
cycle is effective (allows the adder output to enter
the K register) because the first FXP latch is turned
on immediately following the T2 cycle.

To prevent a put-away, the block PA trigger is
turned on at the A pulse that follows this cycle, and
stays on through the ELC cycle.

Store

The store trigger is turned on after the first FXP
trigger to define idle cycles while the E unit waits
for the accept pulse from BCU. The store trigger
remains on for as long as the delay exists, and stays
on through the ELC cycle. If there is no delay, the
store trigger is on during ELC only. The MODAR
trigger is turned on by the store cycle(s).

ELC

The ELC trigger is turned on at A clock following the
receipt of the accept pulse (which can arrive as early
as the first FXP). At EB time of ELC, the K regis-
ter is set into the SBI latches.

The word (left or right) selected for storage input
is determined by the mark register. The mark reg-
ister is set for the left four or the right four bytes of
a double word at I to E transfer on the basis of H bit
21 being either a 0 (left four bytes) or a 1 (right four
bytes). .

A general register put-away is prevented by the
block PA trigger, which is turned on at A pulse fol -
lowing the first FXP cycle. T2 is allowed to be on
during this cycle because the accept pulse removed
the block in the previous cycle (E TF block T2M on
accept —— KX 515).

HALFWORD EXPANSION

e The location of the halfword (16 bits) in the J
register is specified by the H register bits 21
and 22.

e Without altering their value, halfword operands
are expanded to a full word before being used.

e Two cycles are taken for this expansion, defined
by the first FXP and the Hwd Log triggers.

Halfword operands (two bytes, or 16 bits) are speci-
fied by the following RX fixed-point instructions:

Load halfword
Add halfword
Subtract halfword
Compare halfword
Store halfword
Multiply halfword

The halfword operands are contained within the
double word read into the J register from storage
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(except for store halfword). The location of the half-
word within the double word is specified by H regis-
ter bits 21 and 22, which contain the storage address.
The halfwords can be located as follows:

When H21 is 0 and H22 is 1, the halfword is
located in the right half of the left word; when H21
is 1 and H22 is 0, the halfword is located in the left
half of the right word, ete. H bit 23 must be off or
a specification interrupt will occur.

In executing the halfword instructions, the oper-
ands are first expanded to a full word by propagating
(extending to the left) the sign bit 16 positions. The
expansion takes two cycles, defined by the first FXP
trigger and Hwd Log trigger, and does not alter the
value of the operand. After these two cycles, the
execution of halfword instructions is identical to their
full word counterparts.

During first FXP, the operand is gated through
the shifter, expanded eight bits, and sent to the K
register. During Hwd Log, the operand is gated
through RBL, expanded the next eight bits, and sent
back to the J register. The gating during the first
FXP depends on H bits 21 and 22, which locate the
operand in the J register. Figure 6305 shows the
data flow during the first FXP and Hwd Log cycles,
and detailed circuits.

LOAD HALFWORD (LH)

e The halfword operand 2 is expanded to a full word
and placed in the operand 1 location.

The load halfword instruction is executed in four
cycles, the first two being used to expand the half-
word operand to a full word. The second two cycles
transfer the operand to the K register and make the
put-away to the general register specified by R1.

At the start of execution, the second operand is lo-
cated as follows:

Address
(H 21 and 22) Location
00 JO-15
01 J16-31
10 J32-47
11 J48-63
Figure Reference: Figure 6305.
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First FXP

The left half of the TC side of the adder receives the
output of J0-31 or J32-63, depending on H bit 21.
Then the operand is shifted left 8 or right 8, depend-
ing on H bit 22, and the sign bit is propagated 8 po-
sitions left. The result, sent to the K register, has
nine sign bits in its high-order followed by 15 integer
bits.

Hwd Log

The partially expanded operand is gated from the K
register to RBL. The RBL is then gated R8 to the

J register with the sign propagated through the high-
order byte. At the completion of this cycle, the
fully expanded second operand is in the left half of
the J register.

Hwd Add

The operand in the J register is gated through the
adder to the K register.

ELC

A put-away is made to the general register specified
by ER1 and the MODAR trigger is set.

ADD HALFWORD (AH)

e The halfword operand 2 is added to operand 1 and
the algebraic sum is placed in the operand 1 lo-
cation.

e CC is set to record the relation of the result to 0,
and to record overflow,

e On an overflow, if the fixed-point overflow mask
bit (PSW 36) is one, an interrupt is taken.

The add halfword instruction is executed in four
cycles. The first two cycles are used to expand
operand 2 to a full word. The second two cycles
add the two operands and make the put-away to the
general register specified by R1. At the start of
execution, the operands are located as follows:

Operand 2 Address

(H 21 and 22) Operand 2 Operand 1
00 J0-15 MO0-31
01 J16-31 MO0-31
10 J3z2-47 MO-31
11 J48-63 Mo0-31

Figure Reference: Figure 6305.



First FXP

This cycle is identical to the first FXP cycle des-
cribed for the halfword load instruction. '

Hwd Log

This cycle is identical to the Hwd Log cycle des-
cribed for the halfword load instruction. :

Hwd Add.

The second operand in the J register is added to the
R1 operand in the M register. The result is sent to
the K register.

ELC

A put-away is made from K register to the general
register specified by ER1. MODAR is set, and a 0,
1, 2, or 3 is set into the condition register.

The condition register setting is determined in
the same manner as for the full word add-subtract
instructions; an examination is made of the K0 bit
(sign bit), the K0-63 zero latch, and the carries
from adder positions 1 and 0.

SUBTRACT HALFWORD (SH)
e The halfword operand 2 is subtracted from oper-

and 1 and the algebraic difference is placed in -
the operand 1 location.

e CC is set to record the relation of the result to 0,

and to record overflow.

e On an overflow, if the fixed-point overflow mask
bit (PSW 36) is one, an interrupt is taken.

The subtract halfword instruction is executed in four
cycles. The first two cycles are used to expand the
second operand to a full word. The second two cy-
cles subtract operand 2 from operand 1 and place the
difference in the general register specified by R1.
At the start of execution, the operands are located
as follows:

Operand 2 Address

(H 21 and 22) Operand 2 Operand 1
00 J0-15 MO0-31
01 J16-31 MO-31
10 Jaz2-47 M0-31
1 8 J48-63 MO0-31

Figure Reference: Figure 6305.

First FXP

This cycle is identical to the first FXP cycle des-
cribed for the halfword load instruction.

Hwd Log

This cycle is id
cribed f

| to the Hwd Log cycle des-
WQxd load instruction.

3

Hwd Add™"§
Operand 2 ‘q{H_é!:\J regisger and operand 1 in the M
register amg gated ﬁh the adder. The AM
complemen;,and‘ hot1* gates are activated to com-
plement opeggfgd 2. fThe Adder output (algebraic
difference) 13-_sent"to register.

ELC =

— T S

.".
A put-away is a.de\fro K register to the gen-
eral register s 9§:1I1e\d . The MODAR trigger

is set, and a 0, Q,;z o ‘ﬂated to the condition
G b

regmter

The setting ofuth egister is determined
in the same manner as foi%\:ord add-subtract
instructions; an e:;g.miﬂanon ade of the KO0 bit

(sign bit), the K0-63 zero and the carries from
adder positions 0 agd;l

COMPARE HALFWORE%H) ‘“E

@ The relation between the halfwords operand 1 and
operand 2 determines the setting of the CC.

e No put-away is made.

The compare halfword instruction is executed in
four cycles. The first two cycles are used to expand
the second operand halfword to a full word. The
second two cycles combine the two operands in the
adder and set the condition code accordingly. At

the start of execution, the operands are located as
follows:

Operand 2 Address

(H 21 and H22) Operand 2 Operand 1
0o J0-15 MO-31
01 J16-31 MO0-31
10 J32-47 MO0-31
11 J48-63 MO0-31

Figure Reference: Figure 6305.
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First FXP

This cycle is identical to the first FXP cycle des-
cribed for the halfword load instruction.

Hwd Log

This cycle is identical to the Hwd Log cycle des-
cribed for the halfword load instruction.

Hwd Add

Operand 2 in the J register and operand 1 in the M
register are gated through the'adder. The AM com-
plement and hot 1 gates are activated to complement
operand 2. The result is sent to the K register for
a zero check.

ELC

A put-away to a general register is prevented by
turning on the block PA trigger. The MODAR trig-
ger is set, and a 0, 1, or 2 is gated to the condition
register.

The condition register inputs are determined in
the same way as for the full word compare instruc-
tions. That is, an examination is made of the oper-
and signs, the carry from the adder output 0 position,
and of the state of the K0-63 zero latch. The sign
indications are obtained from the R1 and R2 sign
triggers (see Figure 5400). The interpretation given
the above indications for setting the condition regis-
ter is explained in the description of the full word
compare instructions, under "Compare Logic."

STORE HALFWORD (STH)

e The halfword operand 1 is stored in the operand
2 location.

e The CC is not set.

If there is no delay in communicating with storage,
the store halfword instruction is executed in two or
three cycles, depending on the halfword storage ad-
dress. If the operand is to occupy the left half of a
full word, an additional cycle is necessary to posi-
tion it in the K register. Because of this extra cycle,
the store request is made during the first FXP (the
first execution cycle) by the E unit, for this case
(H22=0). For the two cycle execution (H22=1), the
store request is made during T2, same as the full
word store instruction. The reason for the delay

in making the store request in the three-cycle case
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is that without the delay, storage would be ready to
receive the K register output before the last execu-
tion cycle.

At the beginning of the execution, the R1 operand
is located in M16-31.

Figure Reference: Figure 6306.

First FXP

The R1 operand in the M register is gated through
the adder to the K register. Depending on the half-
word address (H21 and H22), the operand is gated
straight, left 8, right 8, or right 32 as it passes
through the shifter.

At the completion of this cycle, the operand is
either properly positioned (H22=1), or an additional
eight-bit shift is required (H22=0). In the latter
case, a store request is made by the E unit (E store
request - KX 351). In the former case -- minimum
two cycle execution - - the I unit made the store re-
quest during I to E transfer and the accept pulse can
arrive during this cycle; if it does, the next cycle
will be the ELC-store cycle.

To prevent a put-away, the block PA trigger is
turned on at A pulse of the next cycle and stays on
through the ELC cycle.

Hwd Log

This cycle is taken only for the minimum three-
cycle operation (H22=1) for the final positioning of
the halfword operand. The partially positioned
operand in the K register is gated through the adder
and shifted left 8 or right 8, depending on H bit 21.
The result is gated back to the K register, ready for
the transfer to the SBI latches.

Store

The store trigger is turned on after the first FXP
trigger or Hwd Log trigger to define idle cycles
while the E unit waits for an accept from BCU. The
store trigger stays on for as long as the delay exists,
and through the ELC cycle. If there is no delay, the
store trigger will be on during ELC only.

The MODAR trigger is set during the store cy-
cle(s).

ELC

The ELC trigger is turned on by the A clock follow-
ing the accept pulse (which can arrive as early as
first FXP for the two-cycle execution, or as early
as Hwd Log for the three-cycle execution). At EB



time of ELC, the K register is set into the SBI.
latches.

The halfword that is selected for entry to storage
depends on the mark register, which is setatIto E
transfer on the basis of H bits 21 and 22.

A general register put-away is prevented by the
block PA trigger, which is turned on at A pulse fol -
lowing the first FXP cycle. )

T2 is allowed to be on during this cycle because
the accept pulse had removed the block in the pre-
vious cycle (E TF block T2M on accept -- KX 515).

AND (N, NR)

e Corresponding bits in operand 1 and operand 2
are AND'ed to form a result that is placed in
the operand 1 location.

e CC is set to record whether the result is zero or
not zero.

A bit-for-bit comparison of the two operands is
made to determine the result. When position 3 of
both operands contains a 1 bit, for example, a 1 bit
is placed in result position 3; when only one or
neither of the operands contains a bit in position 3,
the result bit for that position is 0.

The AND instruction is executed in three cycles,
defined by the first FXP trigger, Hwd Log trigger,
and ELC trigger. At the start of execution, the
operands are located as follows:

Instruction Format Operand 1 Operand 2
RR MO0-31 M32-63
RX-even MO0-31 J0-31
R¥-odd M0O-31 J32-63

TFigure Reference: Figure 6307.
First FXP

Operand 1 and operand 2 are gated o opposite sides
of the adder and the logical AND function is per-
formed at the input to the shifter. Because the
shifter is used as the data path, a shift must be se-
lected; the R4 shift is arbitrarily chosen and will be
compensated for in the next cycle.

The result of AND'ing the two operands is gated
to the K register and will occupy positions 4-35.

Hwd Log

This cycle is taken to compensate for the shift (R4)
that was necessary during the first FXP, and to
provide correct parity for the result. Incorrect
parity probably resulted from the AND'ing operation

because the halfsum outputs, which are used to gen-
erate parity, do not match the shifter input as they
do when only one operand is sent through the shifter.

The result in the K register is sent to the adder,
shifted left 4, and gated back to the K register to
occupy positions 0-31. The sel log exc OR gate is
active to allow the result through the shifter input
without alteration. Because bad parity is expected,
the check on the result as it is gated out of the K
register, and the halfsum parity check are both
blocked (KX 608).

ELC

A put-away is made from the K register to the gen-

eral register specified by ER1. The MODAR trigger

is set, and a 0 or 1 is gated to the condition register.
If the K0-63 zero latch is on, CR 35 is set (KX

661); if the latch is off, CR 35 is not set.

OR (O, OR)

e Corresponding bits in operand 1 and operand 2
are OR'ed to form a result that is placed in the
operand 1 location.

e CC is set to record whether the result is zero
or not zero. '

A bit-for-bit comparison of the two operands is
made to determine the result. For example, when
position 3 of either or both operands contains a 1
bit, a 1 bit is placed in result position 3. When
neither operand contains a bit in position 3, the re-
sult bit for that position is 0.

The OR instruction is executed in three cycles,
defined by the first FXP trigger, Hwd Log trigger,
and the ELC trigger. At the start of execution, the
operands are located as follows:

Instruction Format Operand 1 Operand 2
RR M0-31 M32-63
RX-even MO0-31 J0-31
RX-odd MO0-31 J32-63

Figure Reference: Figure 6307.

First FXP - Hwd Log - ELC

These three cycles are the same as those described
for the AND instruction. In addition to selecting the
sel log AND gate in the first FXP, however, the sel
log exc OR gate is also selected to perform the OR
function at the shifter input. The R4 shift sets the
result in K4-35.
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During Hwd Log, the result in the K register is
looped back through the adder to make a left 4 shift
and generate proper parity. The K register output
check and the adder HS parity checks are suppressed
during this eycle. During ELC, the put-away is
made, the MODAR trigger is set, anda 0 or 1 is
gated to the condition register,

EXCLUSIVE OR (X, XR)

e Corresponding bits in operand 1 and operand 2
are exclusive OR'ed to form a result that is
placed in the operand 1 location.

e CC is set to record whether the result is zero
or not zero.

A bit-for-bit comparison of the two operands is made
to determine the result. For example, when position
3 of either, but not both, operand contains a 1 bit,

a 1 bit is placed in result position 3. When neither
or both operands contain a 1 bit in position 3, the
result bit for that position is 0.

The exclusive OR instruction is executed in three
cycles, defined by the first FXP trigger, the Hwd
Log trigger, and the ELC trigger. At the start of
execution, the operands are located as follows:

Instruction Format Operand 1 Operand 2
RR MO0-31 M32-63
RX-even MO-31 Jo-31
RX-odqd MO-31 J32-63

Figure Reference: Figure 6307.
First FXP

Operand 1 and operand 2 are gated to opposite sides
of the adder and the exclusive OR function is per-
formed at the input to the shifter with the sel log
exc OR gate. Because the shifter is used as the data
path, a shift must be selected; the R4 shift is arbit-
rarily chosen and will be compensated for in the
next cycle.

The result of exclusive OR'ing the two operands
is gated to the K register and will occupy positions
4-35.

Unlike the AND and OR instructions, proper
parity is generated when the two operands are ex-
clusive OR'ed. This is because the adder halfsums
are identical, bit for bit, with the shifter input from
the exclusive OR function. The halfsums are used
in shifter operations to generate proper parity.
Since this is a shifter operation, and the halfsums
are the same as the shifter input for the exclusive
OR function, proper parity is generated.
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Hwd Log

This cycle is taken to compensate for the shift (R4)
that was necessary during the first FXP. The re-
sult in the K register is sent to the adder, shifted
left 4, and gated back to the K register to occupy
positions 0-31. The sel log exc OR gate is active
to allow the result through the shifter input without
alteration.

The parity check on the result as it is gated out
of the K register, and the halfsum parity check, are
not blocked as in the AND and OR instructions. The
result from the first FXP should contain proper
parity, as explained above.

ELC

A put-away is made from the K register to the gen-
eral register specified by ER1. The MODAR trigger
is set, and a 0 or 1 is gated to the condition register.

If the K0-63 zero latch is on, CR 35 is set (KX
661); if the latch is off, CR 35 is not set.

SHIFT RIGHT SINGLE (SRA)
e Rl is shifted right.
e CC is set to record the relation of the result to 0.

The 31 low-order bits in general register Rl are
shifted right the number of times specified by the
six low-order bits of the effective address (B2 + D2).
The vacated positions are filled with the sign bit,
and bits shifted out of the register are lost. The
details of this instruction are covered under '"Logi-
cal Shift Left Double. "

SHIFT RIGHT DOUBLE (SRDA)

e Rl and R1 +1 are shifted right as a pair of coup-
led registers.

e CC is set to record the relation of the result to 0.

The 63 low-order bits in the double-length operand
contained in general registers R1 and R1 +1 are
shifted right the number of places specified by the
six low-order bits of the effective address (B2 + D2).
The vacated positions are filled with the sign bit, and
any bits shifted out of the low order are lost.

The R1 field of the instruction specifies an even/
odd pair of general registers and must contain an
even register address. If Rl is odd, the instruction
is not executed, and a specification interrupt is

taken instead.
The details of this instruction are covered under

"Logical Shift Left Double."



SHIFT LEFT SINGLE (SLA)
e Rl is shifted left.

e CC is set to record the relation of the result to
0, and to record overflow.

The 31 low-order bits in general register R1 ar_é
shifted left the number of places specified by the

six low-order bits of the effective address (B2 + D2).

The sign remains unchanged, and any bits shifted
out of position 1 that are unlike the sign bit cause
an overflow.

The details of this instruction are covered under
"Logical Shift Left Double."

SHIFT LEFT DOUBLE (SLDA)

e Rl and R1 +1 are shifted left as a pair of coupled
registers.

e CC is set to record the relation of the result to
0, and to record overflow.

The 63 low-order bits in the double-length operand
contained in general registers R1 and R1 +1 are
shifted left the number of places specified by the six
low-order bits of the effective address (B2 + D2).
The sign remains unchanged, and any bits shifted
out of position 1 of the left half of the double operand
that are unlike the sign cause an overflow.

The R1 field of the instruction specifies an even/
odd pair of general registers and must contain an
even address. If Rl is odd, the instruction is not
executed, and a specification interrupt is taken.

The details of this instruction are covered under

"Logical Shift Left Double."

LOGICAL SHIFT RIGHT SINGLE (SRL)
e The logical operand in Rl is shifted right.
e The CC is not set.

The 32 bits in general register R1 are shifted right
the number of places specified by the six low-order
bits of the effective address (B2 + D2). Bits shifted
out of the low order are lost, and zeros are supplied
to the vacated high-order positions.

The details of this instruction are covered under
"Logical Shift Left Double."

LOGICAL SHIFT RIGHT DOUBLE (SRDL)

e The logical operands in R1 and R1 +1 are coupled
and shifted right.

The 64 bits in the double-length operand specif_ied_ by
general registers R1 and R1 +1 are shifted right the
number of places specified by the six low-order bits
of the effective address (B2 + D2). Bits shifted out
of the low order of the double operand are lost and
zeros are supplied to the vacated high-order posi-
tions.

The R1 field of the instruction specifies an even/
odd pair of general registers and must contain an
even address. If Rl is odd, the instruction is not
executed, and a specification interrupt is taken.

The details of this instruction are covered under
"Logical Shift Left Double."

LOGICAL SHIFT LEFT SINGLE (SLL)
e The logical operand in R1 is shifted left.
e The CC is not set.

The 32 bits in general register Rl are shifted left
the number of places specified by the six low-order
digits of the effective address (B2 + D2). High-
order bits shifted out are lost and zeros are supplied
to the vacated low-order positions. '

The details of this instruction are covered under
"Logical Shift Left Double."

LOGICAL SHIFT LEFT DOUBLE (SLDL)

e The logical operands in R1 and R1 +1 are coupled
and shifted left.

e The CC is not set.

The 64 bits in the double-length operand specified

by general registers R1 and R1 +1 are shifted left -
the number of places specified by the six low-order
digits of the effective address (B2 + D2). High-order
bits shifted out are lost, and zeros are supplied to
the vacated low-order positions.

The R1 field of the instruction specifies an even/
odd pair of general registers and must contain an
even address. If Rl is odd, the instruction is not
executed, and a specification interrupt is taken.

Circuit Description for All Shift Instructions

The following text is pertinent to all eight shift in-
structions: the single and double shifts; the logical
and algebraic. 2

Fixed Point 1/66 23



The number of cycles necessary to execute the
shift instructions is dependent on the number of
shifts to be taken, which can be as few as zero and
as many as 63 shifts. The first execution cycle
shifts the operand(s) from 1 to 8 shifts, leaving the
number of remaining shifts to be taken a multiple
of 8. The remaining shifts, therefore, are taken in
increments of 8 per cycle. When shifting is com-
pleted, a single operand put-away is made for the
single shift instructions, and a double operand put-
away is made for the double shift instructions. The
algebraic shift instructions also set the condition
code.

Execution of the shift instructions is controlled
by the first FXP, PA, and ELC triggers., At the
start of execution, the Rl operand is located as
follows:

Instruction Format R1 Operand
Single Mo0-31
Double M0-63

Figure References: Figure 6308.

The first execution cycle is defined by the first
FXP trigger and is known as the first cycle shift.
In it, a number of shifts is taken so that the number
of remaining shifts is a multiple of 8. The shifts
taken during this first cycle is determined by exam-
ining all 6 bits of the effective address (B2 + D2),
which specify the total shift:

Value: 32 16 08 04

X X X X

L]
|2

If there are one or more bits in the three low-
order positions, a shift equal to their combined
value is taken. If there are no bits in any of the
three low-order positions, and there is at least 1
bit in the three high-order positions, a shift of 8 is
taken. When the entire field is equal to 0, no shifts
are taken.

The first cycle shifting is accomplished with the
M register out-gates (St, R1, R2, and R3), referred
to as bit shift gates, and with the main adder shift
gates; the M register contains the operand(s). The
shifts from these sources are selected so that the
sum of the two will equal the required shift. For
example:

Required Shift M Out-Gate Shifter Gate
RS R1 R4
L5 R3 L8
R8 St R8

The selection of these gates for all first cycle
shifts is shown in a table in Figure 6308.
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After the first cycle, the remaining shifts, if any,
are taken in shifts of 8 per cycle. These cycles are
known as shift iteration cycles and, like the first
shift cycle, are defined by the first FXP trigger.

In the algebraic shift instructions, minus signs
are propagated whenever the R1, R2, or R3 bit shift
gate is used, and whenever the R4 and R8 shifter
gate is used. Thus, in the algebraic right shift in-
structions, the proper sign occupies the vacated
high-order positions of the result. In the algebraic
left shift instructions, the sign is protected by
blocking, in the shifter, the entry of bits into posi-
tion 0. A shift out of position 1 of a bit unlike the
sign bit turns on the shifter overflow trigger which
results in a fixed-point overflow interrupt if the PSW
bit 36 is 1.

Completion of the total required shifts is signaled
by the shift counter (SC), which is loaded at the start
of execution with the three high-order bits (whose
value is a multiple of 8) of the 6-bit shift field (in
the H register). This value is then decremented,
by sending it through the exponent adder, by an
effective value of 8 each time that an 8-shift is taken.
Thus, the shift counter is decremented every shift
iteration cycle, and possibly during the first cycle
shift. Shifting is completed when the shift counter
is equal to zero.

The signal used to end shifting and start the put-
away sequencer, however, is called SC equal + less
two, and is available in the cycle in which the last
shift is being taken. The reason this signal is used
is that the shift counter is decremented by 2, not 8,
because of the positions (SC 4, 5, and 6) occupied
by the three bits placed in it. Therefore, the three
bits (in the shift counter) have a value whose multi-
ple is 2 even though in the H register the same
three bits have an 8 multiple value.

After the last shift cycle, one more cycle
is taken in the single operand shift instructions to
make the put-away and set the condition code for the
algebraic type. Two more cycles are taken in the
double operand shift instructions to put-away the
operands, one in each cycle. The algebraic type
also sets the condition code before termination.

First FXP -- First Cycle Shift

As previously explained, 8 shifts can be taken in this
cycle. The operand(s) in the M register is gated
through the proper out-gate to the adder, and through
the shifter if necessary. The result is gated to both
the K and M registers.

The choice of shift gates to be used is made by
decoders on the basis of their input, which is the 6-
bit shift amount. The shifter gate (R4, L4, R8, or
L8), if any, is chosen by the shift counter decoder,
which has the 6 bits available to it all through the




first cycle. The bit shift gate (St, R1, R2, or R3)
is chosen by a separate decoder whose input, the
two low-order bits of the six, is available during the
T2 cycle to set the proper out-gate trigger at A time
of this cycle. The shift gates chosen by the two de-
coders during the first cycle for all shift amounts
are shown in a table in Figure 6308.

When the R1, R2, or R3 M register out-gate is
chosen by the algebraic shift instructions, and the
sign of the operand(s) is minus, 1 bits are forced
through the M register outputs 0, 1, and 2, depend-
ing on the out gate. If the R1 gate is used, a 1 is
forced out of position 0; if the R2 gate is used, a 1
is forced out of positions 0 and 1; if the R3 gate is
used, a 1 bit is forced out of positions 0, 1, and 2.
This sign propagation is accomplished by the M prop
sign trigger (RM 001) that is turned on at the begin-
ning of this cycle by the R1 sign trigger (Figure
5400) '

When the R4 or R8 shifter gate is chosen by the
algebraic right shift instructions, the sign is propa-
gated in the shifter by the prop sign signal (KU 163).
Propagation of the sign bit is similar to propagation
of the 16 bit, which is illustrated in Figure 6305.

When the L4 or L8 shifter gate is chosen by the
abgebraic left shift instructions, the sign is pre-
served in the shifter with the save sign signal (KU
163). That is, the M register bit 0 is sent through
to AM output latch 0 regardless of the shift; also, a
shift into position 0 from positions 4 or 8 is blocked
(AQ 101). In addition to these, the save sign signal
will turn on the shifter overflow trigger if it is found
that a bit unlike the sign bit was shifted out of posi-
tion 1 (AQ 311). The instruction is not altered or
shortened as a result of turning on the shifter over-
flow trigger.

The shift counter is gated to the exponent adder,
decremented by 2 if a shift of 8 is made in this cycle,
and returned to the shift counter. A shift of 8 is
possible if the three low-order bits of the 6-bit shift
field are zero and there is a bit in at least one of the
three high-order bits. If this were the only shift
required, the signal SC equal + less two would be
active in this cycle, and would AND with the
H21 + H22 + H23 signal to raise the shift complete
level (Figure 6308). If the total shift required is
from 0 to 7, the SC equal + less two signal AND's
with the SC eq zero 1th to raise the shift complete
level.

First FXP -- Shift Iteration

If, after the first cycle shift is completed, additional
shifting is required, a shift iteration cycle(s) is

taken. The R1 operand in the M register is gated to
the main adder, shifted 8, and returned to the K and

M registers. Sign propagation for the algebraic
right shifts, and the save sign function for the alge-
braic left shifts operate in these cycles as described
in "First FXP - First Cycle Shift."

The shift counter is gated to the exponent adder,
decremented by 2, and returned to the shift counter.
Iteration cycles are continued until the signal SC
equal + less two is generated, indicating a value of
0 after completion of the current cycle. The signal
AND's with first cycle memorized latch (Figure 6308)
to raise the shift complete signal that starts the put-
away sequence(s).

Decrementing the shift counter is accomplished
by adding its complement value to 2, and then re-
complementing to obtain a true result, Both com-
plement (1's) operations are accomplished in one
pass through the exponent adder. The shift counter
is gated to the TC side and a 2 (6 bit) is inserted in
the AM side. The following example shows a shift
counter value 10 decremented to 8:

SC Positions
Values

o

[— 2 = B — W= o

Value

SC Content’

Comp (1's) SC at Input
Add Six Bit

Sum

Comp (1's) Sum

(10)
( 5
(2)
(7
(8

o o o=
OO MNO
(=N =T = = =]

The second complement gate complements the
input (sum) to the exponent adder output latches.
The reduced shift counter value is effective in the

- next cycle, as the shift counter is released at A

clock.
PA -- First Put-Away

This cycle follows the last shift cycle for the double-
operand shift instructions. In this cycle, the first
pﬁt-away is made, preparations are completed for
the second put-away, and the MODAR {rigger is set.
In addition, for the algebraic instructions, the con-
dition code input is gated, and the fixed-point over-
flow latch can be set.

The first operand put-away is made from the K

register, which had been receiving the result along
with the M register during the shift cycles, to the
general register specified by ER1. In preparation
for the second put-away, the M register right half
is gated through its left 32 out gate, to the adder and
sent to the K register left half; and the ER1 register
is incremented to contain the R1 +1 value (KX 535).
For the algebraic instructions (SRDA and SLDA),
the results of the tests on whether the double operand
is equal to, less than, or greater than zero, are
gated to the condition register. The KO bit and the
K0-63 zero lth are tested (KX 635 and KX 655). In
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addition, if the shifter overflow trigger (KS 141) was
set during the shift cycles in the SLDA instruction,
the condition code will be set to 3, and, if the PSW
bit 36 is 1, the fixed-point overflow latch is set to
initiate an interrupt sequence.

ELC -- Second Put-Away

This is the second put-away cycle for the double-
operand shift instructions. The R1 +1 operand (sent
to the K register left half in the previous (PA) cycle)
is set into the general register specified by ER1,
which now contains the R1 +1 address.

PA and ELC -- Put-Away for Single Operand Instruc-
tions

The operand in the K register left half is set into the
general register specified by ER1. The MODAR
trigger is set, and, for the algebraic instructions
(SRA and SLA), the setting of the condition register
is determined according to the operand's relation to
zero (KX 635 and KX 655). In addition, if the shifter
overflow trigger (KS 141) was set during the shift
cycles in the SLA instruction, the condition code will
be set to 3, and, if PSW bit 36 is 1, the fixed-point
overflow latch is set to start an interrupt sequence.

MULTIPLY (M, MR)

e Operand 1 is multiplied by operand 2; the double
word product is placed in R1 and R1 + 1.

e CC is unchanged.

A 32-bit multiplier (second operand) and a 32-bit
multiplicand (first operand) form a 64-bit product
that is placed in the general registers R1 and R1 + 1.
The R1 field of these instructions must therefore
specify an even register, or a specification interrupt
will occur. The multiplicand is taken from the R1 +
1 register. The sign of the product is determined by
the rules of algebrafrom the multiplier and multipli-
cand signs; however, a zero result is always positive.

The Introduction for this instruction is included
in "Multiply Halfword," below. Details are located
in Figure 6309,

MULTIPLY HALFWORD (MH)

e The halfword operand 1 is multiplied by the half-
word operand 2; the full word product is placed
in R1.

e CC is unchanged.

A 16-bit multiplier (second operand) and a 16-bit
multiplicand (first operand) form a 32-bit product
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that replaces the multiplicand in R1. The multiplier
is expanded to a full word before multiplication by
propagating its sign bit.

If the multiplicand is greater than 16 bits (if any
of its high-order bits are unlike the sign bit), the
product will be greater than 32 bits. Because only
the low-order 32 bits are stored in R1, the product
could be invalid; however, no overflow indication is
given for the lost bits.

The sign of the product is determined by the
rules of algebra from the multiplier and multipli-
cand signs; however, a zero result is always pos-
itive.

Introduction

The following text is pertinent to all three multiply
instructions (MR, M, and MH). '
Multiplication is performed by multiplying the

multiplicand by each hexadecimal group in the mul-
tiplier. The result of these multiplications, called
partial products, are added together as they are
formed until the last hexadecimal group adds its
partial product to the rest to form the final product.
Two housekeeping cycles precede the multiplications,
known as iterations (repetitions), for the MR and M
instructions. For the MH instructions, four house-
keeping cycles precede the iterations, the first two
taken to expand the halfword multiplier (see ""Half-
word Expansion'), with the second two cycles being
identical to the two housekeeping cycles for the MR
and M instructions. The housekeeping cycles are
followed by eight iterations, one for eachmultiplier
group; the iterations take one or two cycles, depend-
ing on the multiplier group. Following the iterations,
two more cycles are taken for the put-aways.

If either the multiplier or multiplicand is 0, the
condition is detected in the last housekeeping cycle,
and no iteration cycles are taken. Instead, a zero
product is stored in the specified general register(s).

At the start of execution, the operands are lo-
cated as follows:

Operand 2 Operand 1
Instruction (Multiplier) (Multiplicand)

(MR)* RR J32-63 (R2) M32-63 (R1 + 1)
(M) RX-even J0-31 M32-63 (R1 + 1)
(M) RX-odd J32-63 M32-63 (R1 + 1)
(MH) RX-H21 and 22

00 JO-15 Mo-31 (R1)

01 J16-31 MO-31 (R1)

10 J32-47 Mo0-31 (R1)

11 J4B8-63 MO0-31 (R1)
After two-cycle
expansion: Jo-31

*This is a GROUT class instruction. The multiplicand is
delivered during T2, and the multiplier is delivered during first
FXP. Both operands cannot be delivered in one cycle because
they are both sent over GBR.



The block T2M trigger is turned on and remains
set for most of the execution to protect the J reg-
ister, which contains the multiplier, from an oper-
and fetch by the I unit. In single cycle, the block
T2M trigger remains on all during the execution. -

Figure Reference: Figure 6309.

Multiplication is performed by accumulating
multiples of the multiplicand according to the value
of each hexadecimal digit in the multiplier, beginning
with the low-order digit. The application of this
method using decimal numbers is:

Multiplicand: 462
Multiplier: x285 °
2310 First PP and 5X Multiplicand

3696 B8X Multiplicand
39270 Second PP
924 2X Multiplicand

131670 Final Product
PP: Partial Product

This method is a slight variation of the familiar
method of longhand multiplication. The difference
is that intermediate totals are produced (partial
products) instead of only one total.

The multiplicand multiples used in this example
are referred to as the 5X, 8X, and 2X multiples.
However, because these numbers are offset to the
left when added to the partial products, their value
is actually 5, 80, and 200 times the value of the
multiplicand, respectively. Therefore, each mul-
tiplier digit to the left of the decimal point is in-
creased by the power of 10 beginning with 109, then
10+, 102, etc. The same is true of hexadecimal
digits; each multiplier digit to the left of the decimal
point is increased by the power of 16 beginning with
169, then 161, 162, etc. In the CPU, raising the
multiplicand multiples by these powers is achieved
by shifting right the partial products one hexadeci-
mal digit (4 bits) as they are added to the multiples.
The following example illustrates the same problem
(462 x 285) using binary numbers divided into hexa-
decimal groups:

Multiplicand: 0001 1100 1110
n @ a3
Multiplier: 0001 0001 1101
0001 0111 0111 0110 First PP and 13X Multiple
0001 1100 1110 1X Multiple
0000 0011 0100 0101 0110 Second PP
0001 1100 1110
0010 0000 0010 0101 0110 Final Product

1X Multiple

Because the partial products are right shifted as
they are added, the value of the 13X and 1X multiples
are 13, 16, and 256 times the value of the multipli-
cand, in the order in which they are used.

Arriving at a final product, therefore, amounts
to adding together the partial products formed by
the multiplicand and each of the hexadecimal groups
in the multiplier.

If all 16 multiples of the multiplicand are avail-
able, one cycle (called an iteration cycle) would be
taken for each of the eight hexadecimal multiplier digits
to add the proper multiples to arrive at the final
product. Because all multiples are not available, at
least not after the first cycle, some compensations
are made.

The multiples that are available throughout the
execution are the even multiples because these are .
easily obtained. In the first execution cycle, the
multiplicand is set into the high-order half of the K
and M registers. If the multiplicand is now the 16X
multiple of itself, the 16X, 8X, 4X, and 2X multi-
ples are obtained from the M register by using the
the St, R1, R2, and R3 out gates, respectively; and
the 16X and 1X multiples are available from the K
register by using the St and R4 gates. In the second
execution cycle, the 12X multiple is derived by
complement-adding the 4X multiple from the M reg-
ister, to the 16X multiple from the K register, and
placing the result in the L register. After this cycle,
the L register can now supply the 12X multiple by
using its straight gate, and the 6X multiple by using
its R1 gate. Thus, individually, the K, L, and M
registers can supply the 1X, 2X, 4X, 6X, B8X, 12X,
and 16X multiples of the multiplicandas shown in the
following illustration.

(12X or &X Mpl)
| L Reg J

(16X, BX, 4X, or 2X)

| M Reg I
(16X or 1X)

| K Reg |

Ior the first iteration, these registers can in-
dividually or in combination supply any required
multiple. The 5X multiple, for example, is obtained
by combining the 1X multiple from the K register
and the 4X multiple from the M register; the 10X
multiple is obtained by using the 8X multiple, fol-
lowed by the 2X multiple in the next cycle; the 14X
multiple is obtained by using the 8X multiple, fol-
lowed by the 6X multiple in the next cycle. For the
10X and 14X multiples, therefore, 2-cycle iterations
take place. After the first iteration, the 1X multi-
ple is no longer available because the K register is
used to accumulate the partial products. Therefore,
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the next seven iterations are accomplished with only the
even multiples (2X, 4X, 8X, 10X, 12X, 14X, and
16X). Before showing how this is done, it would be
worthwhile to understand why the multiplicand in the
M register can be used as the 16X multiple of itself.
If, as shown in the following example:

Iterations K Register
ist XXXXXXXX00000000
2nd OXXXXXXXX0000000
3rd OO0OXXXXXXXX000000
4th OOOXXXXXXXX00000
5th O0OOOXXXXXXXX0000
6th OOO0O0OOXXXXXXXX000
Tth O0O0OO0OO0O0OXXXXXXXX00
Bth O0OOOOOOXXXXXXXXO

The O's and X's represent four-bit positions, or one
hexadecimal digit. If either, but not both operands
are negative, all digits to the left of X's would be F's.

the multiplicand is sent to the K register, via the
adder, using the M St out-gate, itwould occupy
positions 0-31 of the K register. If this move rep-
resented the first of eight iterations, and if there-
after only the K register is gated to the adder, the
additional seven iterations would shift the multipli-
cand in the K register an additional 28 bits, until it

occupied positions 28-59 (the shifts are accomplished

when the K register is gated R4 to the adder and

returned to itself). The multiplicand is now 16 times

its former value because of its final position in the
K register. Therefore, if the R1, R2, or R3 out
gates were used in the first transfer, the final value
would have been 8, 4, or 2 times the multiplicand
just as if the total multiplier value were 8, 4, or 2.

With only even multiples available, odd multi-
plier hexadecimal groups, except the first, are de-
coded to the next higher value. For example, a 3
decodes as a 4, a 5 decodes as a 6, etc. Therefore,
if a hexadecimal group is odd an overmultiplication
is made. To compensate for this, the preceding
group is undermultiplied.

The decoding of each hexadecimal group, includ-
ing the low-order group, examines the low-order bit
of the next higher group to determine if it is odd. If

it is, a 16 is deducted from the value of the groupbeing

decoded in anticipation of the overmultiplication by
the same amount in the next multiplier group. An
undermultiplication of 16 in one group, therefore,
balances an overmultiplication of 1 in the next higher
multiplier group.
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No compensation is necessary for the low-order
multiplier group, because, as already mentioned,
all multiples of the multiplicand are available for the
first iteration. The following example shows the
value of the hexadecimal groups in a 12-bit multiplier
versus the multiples used to participate in the iter-
ation:

Sign

Made 0

Group Valuery 4 +7 +5 +3

Multiplier: (X 0111, 0101 0011,
) S

Multiples Used: +8 -10 -13

Total Multiplier Value (decimal)

Calculated by
Group Values

Calculated by
Multiples Used

T x 256 = 1792 +8 x 256 = +2048
5x 16= 80 -10x 16 = -160
3x 1= 3 -13x 1= _-13

+1875 +1875

The bit combination for the low-order hexadeci-
mal group in the above example is equal to 3, but
because the next higher group is odd, the multiple
chosen for the first iteration is -13 (3-16 = -13).
The next group is equal to 5 but decodes as a 6; be-
cause the next higher group is odd, the multiple
chosen for the second iteration is -10 (6-16 = -10).
The next hexadecimal group is equal to 7 but decodes
as an B; because this is the last group of a positive
multiplier, the high-order bit is decoded as 0 and
the multiple chosen for the third iteration is 8.

Negative multiples are achieved by raising the
complement and hot 1 gates as the selected multiples
are sent through the TC side of the adder. The
high-order (5th) bit in the group that is being decoded
alone determines the complement gating, as shown
in the table in Figure 6309.

When either or both operands are negative, the
product will be correct and with the proper sign
without altering the multiplier decoding or changing
any of the routing. Two negative or two positive
operands produce a positive product; a positive and
a negative operand produce a negative product. To
understand why no compensation for negative oper-
ands is necessary, consider the following 12-bit
negative multiplier, whose ahsolute decimal value




(-1875) is the same as the multiplier used in the
preceding example (+1875):

Group (true) Value: +7 +5 +3
Group (comp) Value: +8 +10 +13

Multiplier: X 1000, 1019 1101,
| S

Multiples Used: -8 +10 +13

Total Multiplier Value
(calculated in decimal)

-8 x 256 = -2048
+10x 16 = +160
+13x 1= _+13

-1875

Note that the multipliers in the two examples
select the same multiples, but with opposite signs.
This, of course, is what makes the multipliers
equal in absolute value but different in sign. There-
fore, the multiplier decoding as shown in the pre-
ceding table is valid for both positive (true) and neg-
ative (complement) multipliers.

Whether the final product is a positive or a neg-
ative number is taken care of by the high-order
significant hexadecimal group in the multiplier. If
the multiplier is positive, this group selects a pos-
itive multiple (+13, for example). Therefore, if
the multiplicand is positive, the sign of the final
product will be positive because this last added mul-
tiple of the multiplicand has a greater value than the

partial product so far developed. If the multiplicand.

is negative, the final product will also be negative,
again because the final multiple has a greater value
than the partial product it is added to. When the
multiplier is negative, the high-order hexadecimal
group selects a negative multiple (-13, for example).
This complements the selected multiplicand multiple
so that if it was positive, it becomes negative, re-
sulting in a negative final product; if it was negative,
it becomes positive, resulting in a positive final
product.

Additional iterations for high-order zeros in the
multiplier extend the sign bit of the product. Only
the K register, which contains the product, is gated
to the adder. Negative signs are extended into adder
inputs 0, 1, 2, and 3 because the R4 gate is used.
Negative sign bits are also extended in the M and L
registers in iterations in which they are gated to the
adder via any of their right-gates.

The multiplier is decoded from the J register
bits 27-31 or 59-63, depending on which half of the J

register the multiplier is located. The J register is
right-shifted four bits to supply a new 5-bit group

for decoding before the iterations that use the multi-
ples they select. The J register left shifts are
accomplished by transferring the multiplier in J L4
to the RBL (-4 to 59) and returning to the J register
with an R8 shift.

The iteration count is kept by the shift counter,
which is initially set to a value of 8, The shift count-
er is reduced by 1 through the exponent adder, for
each iteration taken until it reaches a value of 0.
The first iteration is taken when the SC equals 8, and
the last iteration is taken when the SC equals 1. The
halfword multiply instruction also sets the shift
counter to 8, even though the first 16 bits of the
expanded halfword multiplier are equal to 0.

When either operand is zero, iteration cycles are
not taken and the general register(s) receives a zero
as a final product. If the multiplicand is 0, it is
stored in the general registers R1 and R1 + 1 for
the M and MR instructions, and in general register
R1 for the MH instruction. If the multiplier is 0,
the multiplicand is reset to zero before the put-
away(s).

A detailed description of the multiply cycles is
contained in Figure 6309 with the register flow
charts.

DIVIDE (D, DR)

e The double word operand 1 (dividend)is divided
by the single word operand 2 (divisor). The
result is a one-word quotient and one-word re-
mainder.

e CC is unchanged.

The dividend (first operand) is divided by the divisor
(second operand) and replaced by the quotient and
remainder.

The dividend is a 64-bit signed integer and occu-
pies the even/odd pair of registers specified by the
R1 field of the instruction. A specification exception
occurs when R1 is odd. A 32-bit signed remainder
and a 32-bit signed quotient replace the dividend in
the even-numbered and odd-numbered registers,
respectively. The divisor is a 32-bit signed integer.

The sign of the quotient is determined by the
rules of algebra. The remainder has the same sign
as the dividend, except that a zero quotient or a zero
remainder is always positive. All operands and
results are treated as signed integers.
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Introduction reduced dividend (some number greater than zero
but less than the divisor) is called the remainder.

To divide one number (dividend) by another (divisor) There are two basic methods of binary division.
the dividend is repeatedly reduced by subtracting the The two methods, restore and non-restore, are illus-
divisor. The number of times this can be done is trated below.

the solution (quotient), and anything left of the

Restore
00110

o111foo1o01101
Comp divisor 1001 1st Iteration
Comp result (discarded) n/lc 1041
True partial dvd 0101
Comp divisor 1001 2nd iteration
Comp result (discarded) n/e 1i10
True partial dvd 1011
Comp divisor 1001 3rd iteration
True result c *0100
True partial dvd ) 1000
Comp divisor 1001 4th iteration
True result c 0001
True partial dvd (remainder) 0011
Comp divisor 1001 5th iteration
Comp result (discarded) n/e 1100
Non-Restore

00110

o111 footo1101
Comp divisor 1001 Ist iteration
Comp result nfc 1011
Comp partial dvd 30 O 5%
True divisor 0111 2nd iteration
Comp result n/c 1110
Comp partial dvd 1101
True divisor 21 1 3 3rd iteration
True result . c® 0100
True Partial dvd 1000
Comp divisor ! 1001 4th iteration
True result c *0001
True partial dvd (remainder) o011
Comp divisor 1001 Sth iteration
Comp result n/c 1100
Comp partial dvd (remainder-divisor) 1100
True divisor 0111 correction cycle
True result (remainder) c %0 o1 1

Problem: 45 + 7=63/7

Dividend 0010 1101=(2x16)+ (13x1)=45
Divisor 0111s= (7x1)= 7
Quotient 0110= (6x1)= 6
Remainder 0011= (3x1)= 3
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In restore division, the result of any reduction of
the dividend by the divisor is retained only if the
result is the true difference (carry). This result,
called the partial dividend, is used in the next reduc-
tion (iteration). However, if the result is the comple-
ment of the difference (no carry), the result is dis-
carded and the old partial dividend is doubled in
relation to the divisor to participate in the next
reduction. A 1 bit is inserted in the quotient when
the result is true (carry), and a zero bit is inserted
when the result is complement (no carry).

In the non-restoring method of division, the result
of an iteration is retained as the new partial dividend
whether it is true or complement. When a partial
dividend is true, the 2's complement divisor is added
to it; when the partial dividend is complement, the
true divisor is added to it, In each iteration, the
partial dividend is shifted left one bit in relation to
the divisor; also, a 1 bit is inserted in the quotient
when the result is true (carry)and a 0 bit is inserted
in the quotient when the result is complement- (no
carry).

From now on, use of the term dividend will mean
both the initial and partial dividends.

Shifting the dividend left one bit doubles its value
and is equivalent to halving the divisor. Similarly,
shifting the dividend left two bits quadruples it and
is equivalent to reducing the divisor to 1/4 of its
value. Note the similarity between the restore and
non-restore methods of division (the first success-
ful reduction of the dividend is made by 1/4 of the
divisor):

(Restore) Dividend -1/4 Divisor, is equivalent to
(Non-Restore) Dividend -Divisor + 1/2 Divisor
+ 1/4 Divisor

The Non-Restoring Method of Division, used by the
2075 CPU, is shortened in a way requiring half as
many iterations. Every iteration, therefore, produces
two quotient bits and shifts the dividend left two bit
positions with respect to the divisor. The speed-up
is done by reducing the dividend by multiples of the
divisor (0X, 1/2X, 3/4X, 1X, 3/2X). The multiples
are selected for each iteration by comparing the
first three bits of a bit-normalized divisor (constant
throughout the iterations) against the three compar-
able bits of the dividend (changing with each itera-
tion).

One of the qualifications for the participating
divisor multiple is that it reduce the dividend enough
to make its two high-order bits insignificent (0's for
a true result, and 1's for a complement result).

This allows the dividend to shift left two bits for the
next iteration.

If the dividend contains a significant bit in the
high-order position (1XX for a true dividend, 0XX
for a complement dividend) before an iteration, the
reduced dividend is less than 1/4 of its value after
the iteration (00X true result, 11X complement
result).

The Divisor Multiples that insure a reduction of the
dividend to less than 1/4 of its previous value in
each iteration are shown below. The divisor
multiples are subtracted from a true dividend and
added to a complement dividend.

True Comp Divisor
Dividend Dividend 111 110 101 100
11 000 1 1 3/2 3/2
110 001 1 1 1 3/2
101 010 3/4 3/4 1 1
100 011 3/4 3/4 1 1
011 100 1/2 1/2 1/2 1/2
010 101 1/2 1/2 1/2 1/2
001 110 0 0 0 0
000 111 0 0 0 0

Multiple Selection Table

These divisor multiples fulfill a second require-
ment for a two-bit divide; that is: when they are
used, at least two quotient bits can be predicted.
When the 0X, 1/2X, 1X, or 3/2X divisor multiples
are used, two quotient bits are predicted; when the
3/4X divisor multiple is used, three quotient bits
can be predicted. This third quotient bit takes the
place of the first quotient bit predicted by the divisor
multiple used in the next iteration.

In the table below, the quotient bits produced in a
given iteration depend on: the divisor multiple used,
on whether the partial dividend is true or comple-
ment, and on whether the iteration result (new divi-
dend) is true or complement.

Partial Iteration Multiple Used
Dividend _Result aeg 1 3/4 1/2 O
T T 11 10 011 01 00
T 2 : 10 o1 010 00 -
Cc T 01 10 101 11 -
c C 00 01 100 10 11

Quotient Prediction Table
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Using the Quotient Prediction and the Multiple Selec-
tion Tables: The example below shows how the IBM
2075 CPU handles the same divide problem shown
earlier. Before doing any of the iterations, the
machine complements the divisor and dividend if
they are negative numbers (2's complement), The
quotient developed, therefore, is a positive number
and is complemented if the divisor and dividend
signs are unlike. In addition, the divisor is hex-
normalized (all high-order hex-zeros removed) and
the same number of hex zeros are removed from the
high-order end of the dividend. (The dividend must
have at least as many high-order zeros as the
divisor, or the instruction is terminated with a
divide check.) In comparing the leading divisor and
dividend bits to select the divisor multiples, the
divide decoder effectively bit-normalizes the divisor
by ignoring its high-order zero's (up to 3) and
ignores the same number of bit positions in the
dividend. The divisor multiples, excepting the 0X
multiple, derive from the M and L registers with
their straight and right 1 out-gates to the TC side of
the adder.

The first and second termination cycles, which
follow the last iteration cycle, calculate a true
remainder if it did not result from the last iteration
cycle. In addition, the first termination cycle decides

2-Bit Divide as Performed by the 2075 CPU (4-Bit Registers are Used)

quotient sign bit

quotient overflow bit \L

0 01
0 101 1
1/2X comp divisor 110010
Comp result n/e 1 ‘l/ 1;0}
Comp partial dvd 10101
1/2X true divisor 001110
True result <™oo0o00
True partial dvd (remainder) 0011
1X comp divisor 1001
Comp result nfe 1 i (|J lI)
Partial dvd (remainder - 1X divisor) 1100
0111

1X true result
True result (remainder)

Divisor Multiples

True Complement (2's)
00000000 0O00D00D0O0O0 0X:
01110000 10010000 1X:
00111000 11001000 1/2X:
10101000 01011000 3/2X:

01010100 10101100 3/4%:
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00
00 2nd iteration
0

00 4 2nd termination
c™00110000

the last quotient bit when the last iteration cycle does
not use the 3/4X divisor multiple,

After the second termination cycle, and before the
quotient and remainder are put away, the machine
(1) complements the quotient if the divisor and divi-
dend signs are unlike, (2) shifts the remainder right
as much as the divisor and dividend were shifted
left, to position the remainder correctly within the
register, and (3) complements the remainder if the
dividend is a negative number.

If the Dividend is Zero: No iterations take place and
a zero quotient and remainder are placed in the R1
and R1 + 1 general registers.

Throughout the Divide Instruction: The machine
checks for the possibility of a quotient larger than
32 bits. Detecting this condition terminates the
instruction by forcing the PA cycle, followed by
ELC, and causes a fixed-point divide interrupt. One
of the checks made is inspecting the first quotient
(overflow) bit; this bit must be 0, as it is outside a
32 bit quotient. The second quotient bit is the sign
bit, and must also be zero unless the quotient is the
maximum negative number (100 -- 00) and the divisor
and dividend signs are unlike. The divide checks are
further explained in the Divide Checks circuit dia-
gram, Figure 6310,

All divisor multiples but the 0X are supplied by the
M and L registers. The M register supplies the 1X

1st iteration 2075 is iteration

0

1 1st reduction cycle in
0

1 preparation

15 iteration cycles in
2075 CPU

0 1X true divisor is added
0 1st termination if last iteration result
(1] is comp

0 0X divisor is added il

1st termination
result is true

Note: The first and second termination cycle; produce a
true remainder if it did not result in the l!ast iteration cycle.
Also, the first termination cycle produces the final quotient bit
if the last iteration cycle did not use the 3/4X multiple.



multiple with its straight out-gate, and the 1/2X
multiple with its right 1 out-gate. The L register
supplies the 3/2X multiple with its straight out-gate,
and the 3/4X multiple with its right 1 out-gate, The
0X multiple is merely a forced parity to the AMTC
side of the adder. Selecting these multiples is the
job of the divide decoder, which, during the itera-
tions, compares the first three bits of a bit-nor-
malized divisor against the comparable three bits of
the partial dividend indicated in the 2-bit divide
example. -

Decoding the Divisor and Dividend Bits to select a
new divisor multiple in each iteration is complicated
by late availability of the new partial dividend
(result) in the cycles. This new partial dividend
must be inspected quickly in order to be compared
with the divisor bits, and to-select one of the M or L
register out-gates (or force parity for the 0X multi-
ple) to the adder by the next A pulse. To overcome
delay, the decoder examines the adder sums 2 - 7 in
each iteration when a possible carry to this group
has not arrived. (The sums 0 and 1 need not be
examined as these are both 0's or 1's and are dis-
carded, All 6 bits of the adder result (2 - 7) must
be presented to the decoder: The sums 2, 3, and 4

may be ignored by the decoder because the hex-
normalized divisor can have up to three leading
ZEeros.)

Using these bits, the decoder compares the three
divisor bits against four possible sets of dividend
bits:

1. No carry into the group (CG 4 - 7) and result

true (carry out 0) -

2. No carry into the group (CG 4 - 7) and result

complement (carry out 0)

3. Carry into the group (CG 4 - 7) and result true

(carry out 0)
4, Carry into the group (CG 4 - 7) and result
comp (carry out 0)

Having considered these possibilities, the divide
decoder is ready to select the next divisor multiple
when CG 4 -7 or CG 4 - 7 and the carry out 0 or
carry out 0 signals become available near the end of
the cycle.

The divide decoder is further explained in "Func-
tional Units," 2075 Processing Unit -- Volume 1, FE
Manual of Instruction, Form 223-2872,

The circuit description for the fixed-point divide
instructions is in Figure 6310. It also contains the
flow chart, register and circuit diagrams of the
fixed-point divide instructions.

Fixed Point 1/66

33



I EXECUTE

INTRODUCTION

The instructions covered in this section are executed
by the I-execution unit alone, or jointly with the

E unit. The instruction BCR with R2 equal 0 uses
an IE unit sequencer but is covered in the Branch
section.

The I-execution unit uses a set of six sequencers:

IEl, IE2, IE3, IMIl, IM2, and IEL. The functions
performed by these sequencers depend on the
instructions using them. Mainly, these sequencers
are employed to use I-unit mechanisms. For
example:

Gate PSW lo the incrementer

Compute memory addresses

Gate out general registers

Increment BR1

. Initiate store and fetch requests.

The names of most signals that control these
and other functions are characterized by the prefix
IE: IE fetch to J, IE gate H to incrementer, IE TF
block ICM, etc.

oo W o

THEORY OF OPERATION

LOAD PSW (LPSW)

The double word operand specified by Bl + DI re-
places the current PSW. The operand address must
have its three low-order bits zero to designate a
double word; otherwise, a specification interrupt
will occur. In addition, since LPSW is a privileged
instruction, the CPU must be in the supervisory
state (current PSW bit 15 is 0) to execute it. If the
CPU is in the problem state (current PSW bit 15 is
1), a privileged operation interrupt will occur instead

On completion of the LPSW instruction, and if the
new PSW bit 14 is 0 (running state), an IC recovery
sequence is initiated to fetch the instructions
specified by the new ICR value (bits 40-63). There-
fore, a valid storage address check for the new
ICR value is made during the IC recovery sequence,
and an even byte address check is made during the
subsequent instruction times.

The CPU enters the problem state when the new
PSW bit 15 is 1, and it similarly enters the wait
state if the new PSW bit 14 is |. Load PSW is the
only instruction available for entering the problem
or wait states.

Condition Code: The code is set according to
bits 34 and 35 of the new PSW.

Program Interrupts: Privileged operation,
addressing, and specification.
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Details

The load PSW instruction is executed by the I unit
and takes four execution cycles to complete. At

T1, the address of the PSW is calculated, a fetch
request is made, and the ID block IC line is
activated to turn on the block ICM latch (System

KA 141) at TN T2, IC fetches are blocked to prevent
an unnecessary fetch because an IC recovery will
probably be made at the end of the instruction
execution; they are also blocked to prevent the use
of the incrementer because the incrementer will

be used to check the new PSW parity. T2 is turned
on and the turn on of the block TIM trigger is gated.
T1 is blocked to prevent the preparation of any new
instruction, again because of the probability of an
IC recovery at the end of the load PSW instruction.
With the receipt of accept from BCU, the I go is
generated by the I unit o turn on the first sequencer,
IEL.

Figure Reference: Figure 6350.
IEl

The MODAR trigger is turned on, and, when J is
loaded and valid, the J register is transferred to
the PSW register and the channel interrupt priority
circuits are reset.

The new PSW could change the system mask
(PSW bits 1-7) that allows channel and external
interrupt conditions to be recognized. Therefore,

a channel that developed an interrupt condition
and was granted channel priority during the
execution of load PSW under control of the old
system mask, must have that priority cancelled to
allow the new system mask to control the channel
interrupt requests.

In case of an invalid address error, or a SAP fetch
error, the J register receives the output of the panel
keys (with correct parity) instead of the new PSW.
The J register is then termed invalid and effective
execution of the load PSW instruction is blocked.

IE2

The J loaded trigger is turned off, and, if J is
valid, the right half of the PSW register (32-63)

is gated to the incrementer for a parity check, and
the incrementer check trigger is enabled.

IE3

If J is valid, the left half of the PSW register
(0-31) is gated tothe incrementer and the incrementer
check trigger is enabled. If the new PSW bit 14 is



0 (running state), the IC recovery trigger is gated
on to start a recovery sequence. The IC recovery
trigger turns off the block TIM trigger to prepare
for the time when IOP is loaded with the first
newly fetched instruction. The IC recovery trigger
also turns off the block ICM trigger to allow the new
ICR value to pass through the incrementer into
SAR for the instruction fetch.

Any interrupt will take priority over the IC
recovery sequence.

IEL

Gate the turn off of the MODAR trigger. If the new
PSW bit 14 is 0, gate the turn on of the wait trigger;
if the new PSW bit 14 is 1, turn on the IC recovery
trigger at the beginning of this cycle.

SET PROGRAM MASK (SPM)

Bits 2-7 of the general register specified by the Rl
field replace the condition code (34 and 35) and the
program mask bits (36-39) of the current PSW.
Condition Code: The code is set according to
bits 2 and 3 of the general register specified by Rl.

Details

The set program mask instruction is executed by

the I unitand takes three execution cyclesto complete.

At T2, TI is blocked to prevent an address

calculation from interfering with the readout of

GR Rl during the execution of this instruction. The

signal I go, generated by T2, turns on the GROUT and

IEl triggers. GROUT is used to gate out the speci-

fied general register(s) during execution cycles.
Figure Reference: Figure 6351

1EL

The GROUT trigger gates out GR Rl (and R2 which
is not used), from which bits 2-7 are gated into the
PSW bits 34-39. The MODAR trigger is also turned
on in this cycle.

1E2

The GROUT and block TIM triggers are gated off in
this cycle.

IEL
The MODAR trigger is gated off.
STORE MULTIPLE (STM)

From 1 to 16 general registers can be stored in
successive memory locations. The first general
register is specified by the Rl field, and the last
general register is specified by the R3 field; R0

follows R15. The beginning storage address is
specified by B2 + D2 and is incremented during
the operation. :

Condition Code: Unchanged.

Program Interruptions: Protection, addressing,
and specification.

Details

Store multiple is executed jointly by the IE and E
units. The IE unit handles the store requests and the
delivery of the words in the general registers to the
E unit, The E unit routes the words, one at a time,
to the K register for delivery to storage.

The IE unit makes the store requests and sets the
marks register. It also increments BR1 (initially
set with the first GR location) to allow the proper
general register to be sent to the E unit. The BRI
register is compared against IR2 (set with R3, the
last GR location) to initiate an end to the IE unit op-
eration.

The IE unit is kept synchronized to the transmis-
sion of words to storage by the accept pulse from
BCU. The receipt of an accept pulse allows the IE
unit to operate for two cycles, after which time an-
other accept pulse is necessary to allow the IE unit
to operate for two more cycles.

The E unit controls the routing of the general
registers from the RBL to the left or right half
of the K register. From the K register, the GRs
are sent to storage in pairs (with the possible
exception of the first and last GRs). The E unit
keeps track of the transferred GRs by incrementing
ERI (the first GR) and comparing it against IR2
(the last GR, in the R3 field), A compare initiates
an end to the E unit operation.

The E accept trigger (turned on by the accept
pulse) is used to permit the E unit to operate for
two uninterrupted cycles, after which it is again
necessary to have the E accept trigger on.

An invalid address or one that specifies a
protected area causes an interrupt at the end of the
store multiple instruction. Execution of the
instruction itself is unaffected, but stores are
prevented when erroneous addresses are used.

As a service aid, the store multiple instruction
can be used to store the content of any one general
register into all locations of storage in a continuous,
non-ending operation.. To do this, the store multiple
instruction must be manually executed (set in the
data keys, then in the AB registers, etc.) with the
enable storage ripple switch on. This switch pre-
vents incrementing BR1 and ER1; therefore, if the
first and last specified general registers (R1 and
R3) are unlike, the store multiple instruction can-
not make an equal comparison in its execution as
long as the enable ripple mode switch is on. In
addition, because continuous execution of the store
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multiple instruction will soon be calling for locations
outside the available storage, the enable ripple mode
switch also prevents the invalid address signal from
being generated by the BCU. To prevent SAP errors
and to be able to store in protected locations, the
storage protect key in the PSW must be 00.

The first storage address is calculated in Tl, and
is set into SAR and H registers at TN T2. IC fetches
are blocked to prevent the ICR value from being gated
into the incrementer, which is used by STM to update
the storage addresses; Tl is blocked to prevent
future address calculations to interfere with GR
readouts; and T2 is blocked to protect the store ad-
dress in SAR when the T1 block is removed.

The GROUT trigger is turned on at I to E trans-
fer (the two execution units are started simultane-
ously). GROUT stays on long enough to gate the
GRs selected by BRI into RBL. Gating out Rl +1
is blocked.

Figure Reference: Figure 6352.

IE Unit

The controlling sequencers for the IE-unit
operation are IEl, IE3, and two sequencers used
especially for store multiple and load multiple,
IMIl and IM2. The IMI and IM2 sequencers
alternate throughout the operation; IMI is associated
with the GRs that are stored in the left half of the
double storage word, and IM2 is associated with
the GRs in the right half of the double storage
word. The IEl sequencer is used at the beginning
of the operation, and the IE3 sequencer is used at
the end.

IE1/IM1

IEl is always the first sequencer turned on, and
IMIl or IM2 are turned on with it, depending on
H bit 21. If H bit 21 is 0 (first GR goes in left
half of double storage word), IMI is turned on;
if H bit 21 is | (first GR goes in right half of
double storage word), IM2 is turned on.

In the IE1/IMI cycle, the marks register
four high-order bits (0-31) are set. In addition,
if GR1 # BR2 (these registers are equal in this
cycle when only one GR is specified), BRI is
incremented. Setting the marks register and
incrementing BRI are IMI functions and have nothing
directly to do with IEl. However, IEl is necessary
to signify the first IE cycle and thus allow the IMI
functions; at all other times, these functions must
wait for an accept pulse from BCU.

"~ The incrementing of BR1 is effective in the next
cycle (A clock). In this cycle, therefore, BRI con-
tains the address of the first GR sent to RBL.
While GROUT controls the gating to RBL, the GR
selection is controlled by BR1.
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IEl/ IM2

This combination of sequencers defines the first
[-execute cycle if H bit 21 is 1, as previously
explained. If H bit 21 is 0, this cycle follows

the IE1/IMI cycle. Thus, IEl is on for one or two
cycles, depending on the status of H bit 21,

In the IEl/IM2 cycle, the MODAR trigger is
set; a store request is made; the marks register
is set for bits 32-63; and if BR1 # IR2, BRIl is
incremented to the next higher GR address. These
are IM2 functions and IEl is not involved. However,
IEl blocks incrementing the SAR and H registers,
which is another IM2 function. Because the first
store request is made in this cycle, the SAR
register must remain undisturbed until the request
is accepted.

The second GR (or first, if this is the first IE
cycle), is gated toRBL, and will be stored in the right
half of the double storage word. The ineremented
BRI value is set in the register at the next A clock.

Ml

The IMI cycle follows the IE1/IM2 cycle or the IM2
cycle. When only the IMI sequencer is on, it must
wait for the accept pulse from BCU to become
effective. Until then, the IMl sequencer defines
idle cycles. The cycle in which accept (a B-B
pulse) is received becomes a valid IMl cycle. Two
GRs have been delivered to RBL and taken from
there by the E unit since the last accept pulse. The
latched output of IM1 gates the turn-on of the store
request trigger to maintain a constant store request.
In a valid IMI cycle, the marks register is set for
0-31 bits, and if BRI # IR2, BRI is incremented to
send the next higher GR to RBL in the next cycle.
Although the GR specified by BRI is sent to RBL
in all IMI cycles (idle or not), the E unit does not
accept RBL output until after the valid IMI cycle.

IM2

The IM2 cycle follows a valid IMI cycle. Because
the last store request has been accepted (indicated
by the IM2 sequencer being on), another store
request is made; the SAR and H registers are
incremented; and the marks register is set for bits
31-63, the positions that will be occupied by the
GR sent to RBL in this cycle. In addition, if

BRI # IR2, BRI is incremented to send the next
higher GR to RBL in the next cycle(s).

IE3/IM2
A compare equal of BRI (Rl field) and IR2 (R3 field)

during IE1/IMI or IMI starts this cycle. A compare
equal during IEL/IMI or IMI indicates the last GR



has been gated into RBL, that it will occupy the

left half of a double storage word, and that a store
request for it has not been made if the compare
occurred in IE1/IMl. The IE3/IM2 cycle, therefore,
makes the store request and increments the SAR
and H registers; the marks register has been set
(for 0-31) in the previous cycle for the last GR.

This cycle is followed by IE3/IMI.

The GROUT and block Tl triggers are turned
off (a function of BRI = IR2) at the beginning of this
cycle because no other GRs are required for this
operation.

IE3/IMI

A compare equal of BRI (Rl field) and IR2 (R3 field)
during IE1/IM2 starts this cycle. The preceding cycle
(IE3/1IM2) also starts this cycle.

In any case, the last GR has been sent to RBL and
is stored in the right half of the double storage word.
Because the IM2 sequencer was on in the preceding
cycle, a store request for the last GR or pair of GRs
has been made and the SAR and H registers have
been incremented. The next E accept pulse sets
the K register, containing the last GR, into the
SBI latches. Therefore, the only function to be
performed by the IE unit is to reset the GROUT
and block T1M triggers (if not done in the previous
cycle); and to reset the blocks to the T2 cycle and to
IC fetches.

The turn-off of block T2M and block ICM triggers
must wait until the accept pulse arrives from BCU in
order to protect the SAR address.

IEL

This cycle follows IE3/IMI after the BCU accept
pulse arrives. The BCU accept pulse is also used
to turn on ELC in the E unit, making IEL and ELC
coincident. The MODAR trigger is gated off.

E Unit

The controlling sequencers for the E-unit portion
of the operation are first FXP, store, and two
sequencers used especially for store multiple and
load multiple, EMI and EM2. The EMI and EM2
sequencers operate alternately to handle the
delivery of the GRs taken from RBL into the left
half and right half of the K register respectively,
and to compare the Rl field against the R3 field,
incrementing Rl when the two fields are unequal.
First FXP is the beginning sequencer, and store
follows an ER1-IR2 compare equal condition.

First FXP

This is the first cycle in the E-unit operation, and
is coincident with the first IE cycle. First FXP is
used to provide the RBL-M gate; thus, with
GROUT (turned on at I to E transfer), first FXP
completes the data path that sends the first GR to
RBL and into the M register.

. In the next cycle, the first GR is placed in the
left or right half of the K register, and a second
GR is placed in the M register.

The block PA trigger is gated on in this cycle
to prevent any put-aways that are normally done
during ELC.

EMIL

The EMI cycle delivers the GR in the M register,
through the adder, into the left half of the K register;
brings the next GR from RBL into M register; and
increments ERI if ERI (Rl field) is not equal to IR2
(R3 field).

The EMI functions take place provided the K re-
gister is either empty (following the first FXP), or
not empty, but will be transferred to SBI (EBR
pulse) in the same cycle., When EMI follows the
first FXP, the first GR is placed in the K register,
and so no delay exists in completing EMl. When
EMI follows EM2, the K register contains two GRs
(or one in the right half if EM2 followed the first
FXP) that must be transferred to SBI before any-
thing else can be placed into K register. In the
latter case, the EM1 functions are held up until
the E accept trigger is turned on (by the BCU accept
pulse). The cycle in which E accept is on con-
stitutes a valid EMI cycle; until then, EMI cycles
are idle. ’

The idle EMI cycles are those in which the EM1
trigger is on but the EMI latch is not, since all
EMI functions are gated by its latched output. The
valid EMI cycles, therefore, are those in which the
E accept trigger turns on the EMI latch.

EM2

If the EM2 cycle follows the first FXP (H2l is 1),
EM2 places the first GR in the right half of the K
register, If EM2 follows EMI, it places the second
of a pair of GRs in the right half of the K register.

The GR in the M register is routed through the
adder with a R32 shift and placed in the right half
of the K register. Another GR (if there is one) is
taken from RBL and placed in the M register. If
ERIl does not equal IR2, the ERI register is incre-
mented.
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With ER] # IR2, the next cycle is EMI. The EM1
cycle repeats, as previously explained, waiting
for the cycle that delivers the K register to the SBI.

Store

Store is an idle cycle, entered when ERI = IR2 (RI
field matches the R3 field), and is repeated until a
BCU accept pulse allows it to end and the next cycle
to be ELC.

An equal compare occurs in the E unit during
the cycle in which the last GR is put in the K register.
The E unit operation ends when the accept pulse
causes the K register content to be taken into storage.

An independent comparison of the Rl and R3 fields
is made by the E unit because the IE unit compare
equal condition occurs one cycle before the last GR
is transferred to the K register in the E unit. The
IE unit increments the Rl field (BRI) in the cycle in
which any given GR is transferred through RBL to the
M register; and the E unit increments the R1 field
(ERI) in the cycle in which the same GR is trans-
ferred to the K register.

ELC

The ELC cycle occurs after the last BCU accept
pulse is received. In this cycle, the last GR or
pair of GRs in the K register is transferred to SBI,
the block put-away trigger (turned on by the first
FXP) is reset (next A pulse), and the MODAR
trigger is reset (next A pulse).

LOAD MULTIPLE (LM)

A group of 1 to 16 storage words can be loaded into
successive general registers. The first general
register is specified by the R1 field, and the last
general register is specified by the R3 field; RO fol-
lows R15. The beginning storage address is specified
by B2 + D2 and in incremented by 1 during the oper-
ation.

Condition Code: Unchanged.

Program Interruptions: Addressing, specifica-
tion.

Details

Execution of load multiple is accomplished by both
the IE and E units; the IE unit handles the fetch re-
quests and the E unit handles the delivery of the
storage words to the general registers.

The IE unit makes fetch requests and increments
the storage addresses in SAR and H registers; how-
ever, the first fetch request and address increment-
ing is done by the I unit. The IE unit keeps track of
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the words fetched from storage by incrementing BR1
(initially set with the first GR location) and compar-
ing it with IR2 (set with R3, the last GR location).
When the two registers compare equal, IE unit oper-
ation ends.

The accept pulse from BCU keeps the IE unit
properly synchronized to the words coming back
from storage. Except when the BR1 and IR2 fields
compare equal, every accept pulse causes the IE
unit to proceed with two useful cycles, in which the
BR1 field is incremented twice and the next storage
address is calculated. If there is any delay in re-
ceiving the accept pulse, the IE unit is kept idle for
the duration of the delay except for maintaining a
fetch request.

The E unit takes the words fetched into the J
register and passes them through the adder into the
left half of the K register. From the K registers,
the words are placed in the general registers speci-
fied by ER1. Initially set with R1, the first GR lo-
cation, ERI1 is incremented +1 by the E unit until it
matches IR2 (the last GR location). When the final
word has been placed in the last specified general
register, the E unit operation ends, completing the
instruction (the IE unit operation ends sooner, as it
has only to wait for the accept signal for the last
requested storage word).

As in all instructions requiring a fetch, the E
unit uses the J loaded signal to allow it to process
word(s) fetched to the J register. When J becomes
loaded, the E unit progresses for two cycles in
which the two words fetched are placed in the proper
general registers, and in which ER1 is incremented
twice. If the next J loaded signal does not occur
immediately, the E unit is kept idle until the J reg-
ister is again loaded.

Detection by the BCU of an invalid (non-existent)
storage address or one that specifies a protected
area (SAP fetch) causes the E unit operation to end
early to prevent loading the general registers with
invalid data. In addition, the prbper error triggers
are turned on to cause and identify an interrupt when
the I unit operation ends.

As a service aid, the load multiple instruction
can be used to load all words in storage into any one
general register in a continuous, non-ending opera-
tion. To do this, the load multiple instruction must
be manually executed (set in the data keys, then in
the AB registers, etc.) with the enable storage rip-
ple switch on. This switch prevents incrementing
ER1 and BR1; therefore, if the first and last speci-
fied general registers (R1 and R3) are unlike, the
load multiple instruction cannot make an equal com-
parison in its execution as long as the enable ripple
mode switch is on. In addition, because continuous
execution of this instruction would soon be calling
for locations outside the available storage, the enable




ripple mode switch also prevents the invalid address
signal from being generated by the BCU. To prevent
SAP fetch errors and to be able to read out of pro-
tected storage locations, the storage protect key in
the PSW must be 00.

During T1 and T2, the first storage address is
calculated (B2 + D2) and the first fetch request made.
When accept is received, E go and I go are gener-
ated, and the first storage address, incremented by
1, is placed in SAR and H registers. T1 is blocked
(block T1M) to prevent the next instruction time
from using a general register in an address calcula-
tion until all general registers have been loaded by
this instruction. IC fetches are also blocked (block
ICM) to keep the ICR value out of the incrementer
and to keep the I unit from making competing fetch
requests.

Figure Reference:
(the logic expressions).

Figure 6353 and Figure 6352

IE Unit

The controlling sequencers used by the IE unit for
load multiple are IE1, IM1, and IM2. The IEl se-
quencer is used for the first one or two execution
cycles, and IM1 and IM2 are used alternately as in
store multiple.

When the BCU responds to the Iunit's fetch request
with an accept signal, I go is generated, which turns
on IE1 along with IM1 or IM2, depending on whether
the first word to be loaded is located in the the left
half or right half of the double storage word.

IE1/IM1

IE1 is always the first sequencer turned on, along
with either IM1 or IM2, depending on H bit 21. If H
bit 21 is 0 (first word located in left half of double
storage word), IM1 is used; if H bit 21 is 1 (first
word located in right half of double storage word),
IM2 is used.

In IE1/IM2, the beginning general register address
in BRI1 is incremented +1 if it is not equal to IR2,
the address of the last general register. If the BR1
and IR2 registers are equal, BRI is not incremented,
the block IC trigger is turned off, and the IE unit
operation ends by turning on IEL.

The functions mentioned are handled by IM1 alone,
and not by IE1. However, IE1 is on to prevent
another IM1 function, that of making a fetch request
(by the latched output of IM1.) If no effort were
made to prevent this, and the BR1-IR2 fields were
equal, an unnecessary fetch can occur (equal fields
in this cycle means that only one word needs to be
loaded and is contained in the storage word already
called for by the I unit.)

Another reason for IE1 is to make IM1 indepen-
dent of the accept pulse for its completion. Normally,

IM1 must wait for accept before it can increment BR1
or proceed to the next cycle.

IE1/IM2 .

This combination of sequencers defines the first exe-
cute cycle if H bit 21 is 1, as explained earlier. If
H bit 21 is 0, this cycle follows the IE1/IM1 cycle.

In IE1/IM2, the I-unit operation can end if the
BR1 and IR2 fields are equal. The block ICM trigger
is turned off and the next cycle is IEL. If the BR1
and IR2 fields are unequal, BR1 is incremented +1
and a fetch request is made by the latched output of
IM2.

Here again, the functions mentioned are handled
by IM2 only and not by IE1. However, IE1 prevents
the incrementing of SAR and H registers, another of
IM2's functions. Incrementing SAR and H here would
by excessive because these registers were already
incremented by the I unit (T2) for a possible second
fetch request.

M1

The IM1 cycle follows the IE1/IM2 cycle or the IM2
cycle. The latched output of IM1 maintains the fetch
request made originally by the latched output of IM2.
The IM1 sequencer stays on until an accept is re-
ceived. Until this signal is sent by the BCU, IM1
does nothing useful other than maintaining the fetch
request. The fetch request (IE fetch to J) must be
maintained by the IE unit as there is no intervening
trigger or latch between it and the BCU to remember
the request.

Once the accept signal arrives, the IEL sequencer
is turned on next if there is a match between the BR1
and IR2 fields. If there is no match, BRI is incre-
mented +1 and the IM2 sequencer is turned on.

M2

IM2 always follows the IM1 cycle if in IM1 there was
no match between BR1 and [R2. The SAR and H reg-
isters are incremented +1 by IM2. BRI is also in-
cremented if it is not yet equal to IR2, and the next
cycle is IM1., If BRI is equal to IR2, the block ICM .
trigger is turned off and IEL is turned on.

Because the SAR and H registers are incremented
unconditionally in IM2, they will be incremented one
time more than necessary if BR1 and IR2 are equal
in this cycle.

IEL

The IEL cycle follows the cycle in which equal fields
are detected in BR1 and IR2 (BR1 Eqg IR2 latch on).
Normally, IEL occurs in the IE unit before ELC in
the E unit. This is because the last accept signal
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occurs before the last J loaded signal. However, in
case an invalid storage address or an address that

is in a protected storage location was used for one of
the fetches, ELC is forced in the E unit and the block
PA trigger is turned on to prevent further put-aways.
Thus, in case one of these errors occurs, the instruc-
tion is ended as soon as IEL occurs in the IE unit,
whose operation is unaffected by the errors.

E Unit

The E-unit operation is controlled by first FXP, EM1,
and EM2. First FXP is the first sequencer, turned
on by E go, and is followed by the EM1-EM2 se-
quencers which are turned on alternately.

First FXP

First FXP delivers the first word loaded into J
through the adder to K0-31, If the first word is in
the left half of the double storage word (H bit 21 is
0), J0-31 is gated to the adder; if the first word is in
the right half of the double storage word (H bit 21 is
1), J32-63 is gated to the adder. E go turns on the
first FXP trigger and J loaded turns on the first FXP
latch.

If the first fetch request was made for an invalid
(non-existent) storage address, the address invalid
trigger is turned on at the same time as the J loaded
trigger. Similarly, if the first fetch request was
made for a protected storage location, the storage
address protect (SAP) trigger is turned on along with
the J loaded trigger. Either of these error triggers
coming on forces the block PA and ELC triggers to
prevent a put-away and end the E-unit operation. In
addition, depending on which of the error triggers is
turned on, the SAP interrupt or address interrupt
trigger is turned on to cause and identify an interrupt
when both the E and IE units become not busy.

EM1

This cycle follows EM2, or first FXP if H bit 21 is
1. In EM1, the word in K0-31 is set into the general
register specified by ER1, and the MODAR trigger
is turned on. If ER1 equals IR2, the IM2 latch is
turned on immediately, T1 is unblocked, and the
block PA and ELC triggers are turned on in the next
cycle. If ER1 does not equal IR2, the EM1 latch
waits for the J loaded trigger (accept trigger in sin-
gle cycle) before setting the word from J0-31 to KO-
31 and incrementing ER1 +1. The next cycle is EM2.

EM2

EM2 gates the word in J0-31 (put there in first FXP
or EM1) through the adder to K0-31. Also, the
word presently in K0-31 is set in the general register
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specified by ER1. The MODAR trigger is turned
on, and if ER1 is not equal to IR2, ER1 is incre-
mented +1 and the next cycle is EM1. If ER1 and
IR2 are equal, the block T1M trigger is turned off,
and the block PA and ELC triggers are turned on.

ELC

Normally, ELC follows an EM1 or EM2 cycle in
which the ER1 and IR2 fields are found equal. The
block PA trigger is on at the beginning of this cycle
to prevent the normal ELC put-away; the last word
enters the last specified general register in the
preceding EM1 or EM2.

If the invalid address trigger or SAP trigger is
turned on in first FXP or EM1, ELC is forced by
the error condition. An interrupt is taken when the
IE unit completes its end of the operation, which is
unaffected by either the SAP or invalid address error.

START 1/0O (SIO)

A write, read, read backward, control or sense
operation is initiated at the addressed I/0 device
and subchannel. Bits 21-31 of B1 + D1 identify the
channel, subchannel, and I/O device. The start
I/0O instruction can be executed only in the supervi-
sory state (PSW 15 is 0).
Condition Code:
0 I/O operation initiated and channel pro-
ceeding with its execution

1 CSW stored

2  Channel or subchannel busy -

3 Not operational

Program Interruptions: Privileged operation.

Details

The' details regarding the CPU's involvement is the
same for all four I/O instructions. See the Details
section of Halt I/0.

TEST 1/0 (TIO)

The state of the addressed channel, subchannel, and
device is indicated by setting the condition code in
the PSW and, under certain conditions, by storing
the CSW. Pending interruption conditions may be
cleared. Test I/O can be executed only in the super-
visory state (PSW 15 is 0).
Bits 21-31 of B1 + D1 identify the channel, sub-
channel, and I/O device.
Condition Code:
0 Available
1 CSW stored
2  Channel or subchannel busy
3  Not operational

Program Interruptions: Privileged operation.




Details

The details regarding the CPU's involvement is the
same for all four I/0O instructions. See the Details
section of Halt I/0.

TEST CHANNEL (TCH)

The condition code is set to indicate the state of the
addressed channel. The channel is unaffected.
Bits 21-31 of Bl + D1 identify the channel. The
condition code is set to indicate the state of the chan-
nel addressed by bits 21-23 of B1 + D1. Test chan-
nel can be executed only in the supervisory state
(PSW 15 is 0).
Condition Code:
0  Channel available
1  Interruption pending
2  Channel operating in burst mode
3  Not operational
Program Interruptions: Privileged operation.

Details

The details regarding the CPU's involvement is the
same for all four I/0O instructions. See the Details
section of Halt 1/0.

HALT 1/O (HIO)

The operation being executed by the addressed sub-
channel or channel is terminated. Bits 21-31 of
Bl + D1 identify the I/O device, and channel or sub-
channel. Halt I/O can be executed only in the super-
visory state (PSW 15 is 0).
Condition Code:
0 Channel and subchannel not working
1 CSW stored
2  Burst operation terminated
3 Not operational
Program Interruptions: Privileged operation.

Details

The start I/O, test I/0, test channel, and halt I/O
instructions are executed by the IE unit. The bits
21-31 of Bl + D1 and a line specifying one of the
four instructions are sent to all channels beginning
at TN T2. Later in the execution time, when it is
assured that these lines are settled, a select line is
sent to one of the channels to enable it to accept
these earlier signals. CPU then waits fora response
from the selected channel; when it is received, CPU
sets the condition code, resets the channel interrupt
priority circuits, and ends the instruction.

If the instruction specified channel 7, no channel
selection is made (the seven channels are addressed

0-6). CPU recognizes the invalid address 7 and
generates its own release. The condition code is
set to 3, and the invalid channel specification trigger
is set to cause an interrupt at the end of the instruc-
tion.

If the channel address is valid but the channel is
in test mode, or is not connected in the system, or
its meter is disabled, CPU again generates its own
release, sets the condition code to 3, and ends the
instruction.

Bits 16-23 are sent from the H register, with a
parity bit, over the unit address bus to all channels.
The single instruction line sent to all channels comes
from the BOP register. To protect the content of
the two registers until a release is received or gen-
erated, T1 is blocked.

Figure Reference: Figure 6354.
SET STORAGE KEY (SSK)

e Function of SPF is to prevent storing into a
location inadvertently.

e SPF holds a key for each 256-word block of
storage.

e Set key instruction allows the programmer to
store a key in the SPF.

This RR-format, a privileged instruction, sets a
storage protection key into SPF storage.

The SPF storage holds a four-bit key and a read-
protect bit (plus a parity-bit) for each block of 256
words (storage words). The 256 storage-word
(2048-byte) blocks are pointed to by address bits
12-0. In other words, address bit 12 changes
once for every 2048 consecutive byte addresses.
There is one SPF storage in each 2365 Processor
Storage unit, This SPF serves both the even and
the odd high-speed storage (HSS) within the 2365.
The number of SP locations within a 2365 and the
address bits used to address SP storage depend
on the system storage configuration:

Number of Address Bits
Model SP Model SP Locations Sent to SP Comments
H75 it 128 6-12 HSS 2-way
Interleaved
175 v 256 5-12 HSS 4-way
Interleaved
J75 v 256 5-12 HSS 4-way
Interleaved

The function of the SPF is to prevent using a
storage location inadvertently. Whenever a storage
operation is called for, the SPF fetches the pre-
stored SP word corresponding to the incoming
address. The fetched key is compared with the key
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furnished by the storage user on all store operations
and on fetches if the read-protect bit is a logical 1.
On CPU initiated storage operations, the key is
supplied from the PSW, bits 8-11; for channel
initiated operations, the key is supplied by the
channel, which originally got the key from from a
channel command word (CCW). If there is a bit-by-
bit match of the two keys, or if the key supplied

by the storage user is all zeros, the operation is
allowed to proceed. If this condition is not met, the
SPF signals an error to the selected HSS and signals
a storage address protect (SAP) error to the BCU.
On store operations, the selected HSS is cancelled
causing the addressed location to be rewritten
without change (regenerated). On fetch operations,
data output from storage is blocked; the SBO contains
all zeros (with good parity).

Data Flow

e Bits 8-31 of general register R2, are routed
through the AA and set into SAR.

e General register Rl is placed on GBL, where
bits 24-31 are picked-off and passed through
the BCU key gate.

e BCU generates a parity bit and sends five bits
plus parity to the SPF.

The set storage key instruction is the means by which
a configuration of key bits for a block of storage is
set into the SPF. On this instruction, SPF storage
is addressed by the contents of general register R2
and the key and read-protect bit set into SPF are
taken from bits 24-28 of general register Rl.

General register R2, bits 8-31, is routed through
the AA and set into SAR 0-23 (Figure 6355). As on
a CPU fetch or store, the BCU sends bits 6-19 of
SAR (H75) or 5-18 (175, J75) to storage. SAR bits
6-12 (H75) or 5-12 (175, J75) are routed to the SPF
to address the SP location to be stored.

General register Rl is routed on GBL to the AA
input OR, where bits 24-31 are picked-off and sent
through the key gate in the BCU. The BCU generates
a parity-bit for the key and sends the five bits (plus
parity) through the key OR to the SPF.

Control

e GR R2 is set into SAR and H during I time.

e GROUT is set to gate out GR Rl during E time.
e IEl makes fetch request.

e Accept turns off IEl and turns on IE2,
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e BCU treats fetch as if it were a store,
e A HSS is selected, but cancelled.

Sequencers used for the set storage key instruction
are shown in Figure 6355. During I time, GR R2

is gated to the AA and the output of the AA is set into
SAR and H. General register out (GROUT) is

turned on to gate GR Rl through the AA input OR

to the BCU key gate.

The execution is accomplished by I execute and
the IEl sequencer sends a fetch request to the BCU.
A set key line is also sent to the BCU. IEl repeats
until the BCU responds with accept. After accept,
the IE2 and IEL sequencers finish the operation.

The set key line alters the operation of the BCU.
The fetch is treated as a store operation insofar as
returning data and handling errors. A return address
register is not set even though return to J is active.
A set key line is sent to storage. This line causes
the selected HSS to cancel its operation and tells
the SPF to store the incoming key. The BCU
generates a parity bit for the incoming key and gates
the five bits plus parity to the SPF. The BCU actually
receives a full byte plus a parity bit from GR RI.
Parity sent to the SP unit is generated by examining
bits 29-31 (the unused bits in the byte), then chang-
ing the byte parity bit if an odd number of 1 bits
are being removed from the byte. This parity
generation scheme prevents correcting bad parity.

If the parity of the byte received from GR Rl is bad,
BCU sends bad parity to the SPF, where a parity
error is generated.

INSERT STORAGE KEY (ISK)

e Instruction fetches an SPF key.

e Fetched key is set into GR Rl, bits 24-28,
This RR format, a privileged instruction, fetches
the addressed SPF key and sets it into GR Rl bits
24-28, The insert storage key instruction is the
means by which a programmer can examine a

previously-stored protection key for a particular
block of storage.

Data Flow

e GR R2, the SPF address, is routed through
the AA and set into SAR.,

e SAR is routed through the address OR to storage.

e SPF delivers the fetched key to the BCU key
buffer register (KBR).



e GR Rl is routed through RBL to M, to AM, and
into K.

The fetched key is routed from the KBR through
the AOE mask and into K24 -31.

e K is put-away in GR RI.

e Bits 24-28 of GR Rl contain the fetched SP word.
Bits 29-31 of GR Rl contain zeros.

General register R2, bits 8-31, is routed through the
AA and set into SAR 0-23 (Figure 6356). As on any
CPU fetch or store, the BCU sends bits 6-19 (1{75)
or 5-18 (I75 and H75) of SAR to storage. SAR bits
6-12 (H75) or 5-12 (I75 and J75) are routed to SPF

to address the key to be fetched.

The SPF delivers the addressed key to the BCU
key buffer register. The key (5 bits plus a parity-
bit) is routed from the key buffer to the AOE mask
where three zeros are added to make a full byte.

Meanwhile, general register Rl is routed through
RBL to M and from M through the main adder to K.
The AOE mask byte, which contains the fetched key,
is set into K24-31. This byte replaces the correspond-
ing byte from GR Rl. Bits 0-3l of K are then set
back into GR Rl to complete the instruction.

At the end of the instruction, bits 24-28 of GR Rl
contain fetched key. Bits 29-3]1 of GR Rl contain
zeros, and the remainder of GR Rl is unchanged.

e Insert key executed by E-and IE-unit sequencers.
e IEl makes the fetch request.

e Accept turns off IE1 and turns on IE2.

e First FXP routes GR Rl to AM.

e Hwd sets AOB to K and KBR to AOE mask.

e ELC does Rl put-away.

Sequencers used for the insert storage key instruc-
tion are shown in Figure 6356. During I time, GR R2
is gated to the AA and the output of AA is set into
SAR and H. General register Rl is gated out to the
RBL and both I- and E- execution units are started.

The IEl sequencer brings up I fetch request and
insert key lines to the BCU. IEl cycles repeat until
BCU responds with accept. On accept, the I- execute
unit goes into the IEL cycle, then takes no further
part in the execution of this instruction.,

The first fixed-point (FXP) sequencer gates RBL
to M and M to AMTC. First FXP cycles repeat until

advance returns from SPF. The SPF advance occurs
about 250 nanoseconds after the BCU generates

select. Once advance arrives, the first FXP sequencer
is turned off and the halfword logical sequencer is
turned on. During the halfword logical cycle, the

main adder output (AOB) is set into K and the BCU

key buffer register is routed to the AOE mask.

Following the halfword logical cycle, the ELC
sequencer turns on to set the AOE latch into K24-31.
and to put 0-31 of K back into GR RI.

The BCU handles the insert storage key instruction
almost identically to the way it handles the set storage
key instruction. The insert storage key line causes
the BCU to treat the fetch as a store operation; no
return address positions are set even though return
to J is up and any errors detected during the operation
are treated as if they occurred during a CPU store.

The insert key line to the selected HSS causes a
cancel and insert to SPF causes fetching of the
addressed key, The SPF advance gates the fetched
key into the key buffer and also signals the E unit
that it can proceed from first FXP cycles to the
halfword logical cycle.

DIAGNOSE

The purpose of the diagnose instruction is to set the
MCW register, the positions of which subsequently
control various CPU and channel functions. These
functions are mainly the forcing of errors so that
the error checking stations in the CPU and the
channels can be tested.

The diagnose instruction fetches a double word
from storage and sets the left half of it into the
MCW register (Figure 6357).

The diagnose instruction is executed by the IE
and D sequencers (Figure 6357). During I time,
the storage address is calculated and set into SAR.
IEl makes the fetch request and maintains the
request until the BCU responds with accept. The
IEl cycles also send a diagnose signal to the BCU
that sets the diagnose position of one of the return
address registers.

After BCU generates accept, no sequencers are
on until the advance pulse from the selected storage
samples the return address register and generates
diagnose select. The diagnose select signal
(delayed approximately 150 nanoseconds) gates
SBO 0-31 into the MCW register, and at the same
time turns on sequencer DI,

If the cycle-count feature of the MCW control is
not enabled, sequencers DI, D2, and D3 serve no
useful purpose; D3 generates a proceed signal that
turns on IE3, allowing the instruction execution to
continue.

If the cycle-count is enabled, the CPU is allowed
to run, following the proceed signal, only the number
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of cycles specified by the count in the MCW count
field. Sequencers DI, D2, and D3 monitor the MCW
counter so that when the count is reduced to zero,
the controlled clock will be stopped and a log-out
taken,
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INTRODUCTION

@ A branch is a departure from sequential instruc-
tion processing.

e The preparation and execution units perform the
same functions for branch instructions as they
do for all other instructions.

@ The branch unit controls the fetching of instruc-
tions from the branch address and on a success-
ful branch starts processing from the branch
address.

The branch instructions have much in common with
all other instructions. They require that storage
addresses be computed, that fetch requests be made,
that registers be delivéred to the E unit, and that
arithmetic be done. These are all done by the
preparation unit or the E unit as they are for other
instructions. The branch instructions differ in one
important way; based on a decision made during
their execution, the branch instructions may or may
not require a departure from normal sequential
instruction processing.

On an unsuccessful branch, as for all non-branch-
ing instructions, the instruction at the next higher
storage address is the next to be processed and has
normally been prefetched to the instruction buffers
by the IC controls. A successful branch, however, -
requires that the next instruction processed be from
a different storage address. The purpose of the
branch unit is to make this alternate instruction
available as early as possible without slowing nor-

mal processing if the branch is unsuccessful.
The branch unit controls the fetch requests for

instructions from the branch address, handles the
returning fetches so that they are not delivered to
the instruction buffers unless the branch is success-
ful, and on successful branches, changes the GSR
and the ICR so that normal sequential instruction
processing starts from the branch address.

UNITS OTHER THAN BRANCH UNIT

e The I unit computes the branch address and
starts the executing units.

e The E unit performs arithmetic tests and moves
data.

e The IE unit performs a no operation on BCR if
R2 = 0.

BRANCH INSTRUCTIONS

Figure 3 lists all branch instructions and shows the
1 and the E unit functions performed for each. I unit
computes the branch address and starts the execut-
ing units. E unit does the arithmetic to determine
success and moves data.

In Figure 3 note that for RR branch instructions
with R2 equal to zero, the branch unit is not started;
these instructions contain no branch address and can-
not result in a branch. BALR and BCTR with R2
zero are used only to accomplish their specified data
movements. On BCR with R2 equal zero, the IE unit
performs a two cycle no operation, no branch and no
data movement result.

Note that on six of the nine branch instructions,
the E unit and the branch unit both take part in the
execution., The E unit does arithmetic and moves
data and the branch unit controls the fetching of
instructions from the branch address and starts the
processing of either the branch instruction or the
next sequential instruction, depending on the success
of the branch.

Only the execute and the branch-on-condition
instructions cause the branch unit to perform the
execution alone. On BC and BCR, the success of
the branch is determined by testing the CC portion
of the PSW for conditions set up on a previous in-
struction. On execute, the branch is always success-
ful, however, only one instruction is executed at the
branch address.

Figure 4 shows the units that operate on the dif-
ferent branch instructions and the sequencers that
control their operation.

Note that branch operation (Br Op), the first
branch unit sequencer, is set at TN T2 one cycle
earlier than the first cycle sequencers for other
execution units.

BRANCH UNIT

e Uses circuits and devices in the same way as
other units of the 2075.

1. Most of the operation is automatic for all
branches.

2. Sequencers are used to control events that
must be ordered in time.

3. Memorized triggers are used to remember
facts that are necessary for the control of
asynchronous events.

4, Trigger-latch pairs are used.

5. The flush path property of the PH is used.

e Uses three sequencers.
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E ting Unit
Instruction Format Branch Address a:;e:u I? ﬂle‘ Branch Condition Data Change
BALR RR R2 R270| X Uncond R270 RH PSW 10 R1
BAL X X2+82+D2 X X Uncond RH PSW ta R1
Subject instruction modified BOP R1 (24-31)
X X X2+82+D2 X Uncond (1 Inut) OR’ed to IOP (B~15) on T1 of subject
BCR RR R2 R270 R2=0 | CR=M (B-1110P)
No M =111
Op)| Mo Op if M= 0000 none
BC RX X2+82+D2 X CR™ M (8-11 10P)
M= 1111
Mo Op if M = 0000 none
BCTR RR R2 RZFO| X R1=1ifR270 (Content of R1) =110 R1
BCT RX X2+82¢D2 RI=1 (Content of R1) =1 to R
BXH RS B2+D2 X X R1+RI>R3 or (R3+1) which ever is odd | (R1+R3) to R1
BXLE RS B2+D2 X | X RI+RISRI or (RI+]) which ever isodd | (R14R3) 1o R1
FIGURE 3. BRANCH INSTRUCTION DIFFERENCES
Tl
T2
No et
.~ v ’
I Unit sct
(normal preparation) BCTR
BXH BAL
X BsoP BALR o
Decode
BC
First First Ex
Fxd gn Fxd Seq BrlC
A Mo E [ mc | | IE1 | Branch Unit
Operation

Fetches, controls returns,
ond starts processing of
t instruction

]

~ v “ "]

E Unit (Arithmetic ond Dote Moves) IE Unit (Mo Op)

FIGURE 4. BRANCH INSTRUCTIONS, MAJOR CONTROL FLOW, UNITS AND SEQUENCERS

46 1/66 2075 Processing Unit--Volume 3



@ Makes the branch and branch + 1 fetches con-
ditionally.

e Buffers the branch fetch in the J register if it
returns before success is determined.

e Examines and remembers results of tests so that
returning fetches may be delivered to the instruc-
tion buffer or cancelled as required.

@ On successful branches (except execute), sets
the branch address to GSR and ICR.

Since RR branch instructions with R2 equal to zero
never branch, the branch unit is not started. For
all other branch instructions, the branch unit is
started and must run its course. The branch unit

is started by turning on branch operation at TN T2.
Branch operation is always followed by tests com-
plete and branch LC (or execute sequence for the
execute instruction). At the same time that branch
operation is turned on, OPF is turned on and the
branch fetch is made. This fetch must be accepted
before the I to E transfer can be made, AtIto E
transfer, branch + 1E is set and the branch + 1 fetch
is made with two exceptions. On branch on condition
instructions Br + 1E is not turned on and the fetch is
not made unless the branch is successful. On Branch
on index instructions Br + 1E is turned on at I to E
transfer but the fetch is delayed one cycle. Figure 5
shows in heavy outline those functions that are auto-
matic to any operation of the branch unit.

The block third outstanding fetch logic is part of
the branch unit and always operates to delay any
fetch to A or B if two previous fetches to either A or
B have been accepted and not returned. This delay
is necessary because the logic that remembers if
such fetches are to be used or ignored upon return
keeps track of only two such fetches.

Two blocks in light outline are closely related to
the heavy outline or automatic portion of the figure.
Branch M and branch +1M are turned on by the
accepts for their respective fetches. Since the
branch fetch must always be accepted before I to E
transfer, branch M comes on whenever the branch
unit operates. The branch +1 fetch, however, is
dropped if it has not been accepted by the time that
a branch is determined unsuccessful; therefore,
branch +1M does not always follow branch +1E.

The remainder of the light outlined portion of
Figure 5 is dependent on the success of the branch
and conditions relating to returning fetches.

Branch success is set at tests complete only if
the conditions for branching are met. With tests
complete on, the condition of branch success deter-
mines if the branch address is set to GSR and ICR
or not.

Sel A and Sel B are developed to set the A and B
registers on successful branches. ICAM or ICBM
are turned on to remember that a branch +1 fetch for
a successful branchhas been accepted and not returned.

The branch cancel triggers, Br CAl, Br CAZ2,
Br CB1, and Br CB2, are set to remember
that branch or branch +1 fetches for unsuccessful
branches have beeh accepted and not yet returned.
Their use enables an unsuccessful branch to be
terminated and the next instruction started before
the unneeded fetches are returned.

The upper right hand portion of Figure 5 shows
the data paths used by returning branch fetches.
Since the branch fetch is made at TN T2 and I to E
transfer may be held up by a busy execution unit,
the branch fetch may return before the success of
the branch is determined. Under these conditions,
the returning fetch is buffered in the J register and not
set to A or B until tests complete and then only if the
branch is successful. The branch +1 fetch request
is made at I to E transfer or later and can never
return before success is determined.

THEORY OF OPERATION

The processing of branch instructions is covered in
two sets of figures. The first, a set of simplified
logic diagrams, shows how the important branch unit
functions are accomplished. The second, a set of
flow charts, shows the cycle by cycle performance
of all branch instructions for both preparation and
execution.

BRANCH UNIT OPERATION

Branch Unit (5525)
Sequencers (5526)
Branch Fetch (5527)
Branch +1 Fetch (6528)
Branch +1 Fetch Address (5529)
Branch Successful (5530)
Set A/B Reg (5531)
TON ICAM (5532)
Branch Address to GSR and ICR (5533)
Cancel Triggers and Block
Third Outstanding Fetch (5534)

PREPARATION AND EXECUTION OF BRANCH
INSTRUCTION

EX, BC, BCR (R2 # 0); Preparation and
Execution(6375)

BCR, (R2 =0); Preparation and Execution (6376)

BAL, BALR; Preparation and Execution (6377)

BCT, BCTR; Preparation and Execution (6378)

BXH, BXLE; Preparation and Execution (6379)
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INTRODUCTION

e Allows a wide range of magnitude.

e Uses long and short operands. I_

e Computer keeps track of the decimal point.

The floating-point arithmetic feature enables com-
putations to be performed using operands with a
wide range of magnitude. The operands used in
floating-point operations are in scientific notation.
Both the number or fraction (mantissa) and its ex-
ponent (characteristic) are processed by the com-
puter. The decimal point of a factor is initially lo-
cated and the computer keeps track of it. Thus,
the operator or programmer is not concerned with
adding zeros to the answer obtained by the computer.
The floating-point arithmetic feature provides
for addition, subtraction, comparing, division,
halving, loading, sign control, multiplying and stor-
ing of short or long operands. Short operands gen-

erally require less storage space than long operands.

On the other hand, long operands provide greater
accuracy in a calculation.

NUMBER SYSTEMS

For a thorough understanding of the floating-point
feature, you should be familiar with the binary and
hexidecimal number systems. Figure 6 shows the
symbols used in these systems and the decimal
equivalents; Figure 7 shows the add-subtract chart
arid the multiplication-division chart. Arithmetic
in these systems and conversion from one to the
other are explained in an IBM Student Text, Number
Systems, Form C20-1618.

Decimal Hexodecimal Binary Decimal Hexadecimal Binary
0 ] 0000 12 & 1100
1 1 0001 13 D 1101
2 2 0010 14 E 1o
3 3 001 15 F nn
4 4 0100 16 10 10000
5 5 0101 17 1 10001
& & o1o 18 12 10010
7 7 ain 19 13 10011
8 8 1000 20 14 10100
9 9 1001 21 15 10101

10 A 1010 22 16 ' 10110
11 B 1o0n 2 17 10111

FIGURE 6. DECIMAL, HEXADECIMAL, AND BINARY NOTATION

Instruction Formats

e RR and RX formats (Figures 8 and 9).

e Registers addressed must be an even address.

FLOATING-POINT"

All floating-point instructions are either register to
register (RR format) or storage to register (RX
format).

The RR format specifies the operation code (bits
0-7), the first operand (bits 8-11) specifies a float-
ing-point register, and the second operand (bits
12-15) specifies the second floating-point register
that is taking part in the operation. The same reg-
ister may be specified for the first and second
operand. _

The RX format specifies the operation code (bits
0-7) and two operands. The first operand (bits 8-11)
specifies a floating-point register, and the second
operand (bits 12-15, 16-19, and 20-31) is made up of:

1. Index (X2): The index is a 24-bit number
contained in a general register. The general regis-
ter is designated by bits 12-15 of the instruection.

2. Base Address (B2): The base address is a
24 -bit number contained in a general register. The
general register is designated by bits 16-19 of the
instruction, '

3. Displacement (D2): The displacement is a
12-bit number contained in bits 20-31 of the instruc-
tion.

The second operand is from the storage location
specified by the effective address. The effective
address is obtained by adding the contents of the in-
dex register (X2) (specified by bits 12-15 of the in-
struction word) to the contents of the base register
(B2) (specified by bits 16-19 of the instruction word)
and the contents of instruction word bits 20-31. The
general registers are 24-bit positive binary integers,
having no sign position. The displacement (D2) is
treated as a 12-bit positive binary integer. The
three binary integers are added together as 24-bit
binary numbers, overflow is ignored.

The X2 and B2 fields may contain zeros. A zero
indicates the absence of the corresponding address
component; therefore, a base or index tag of zero
indicates that a zero quantity is used to form the
effective address. In an instruction specifying no
base or index register, the effective address is
specified by the D2 field (bits 20-31) of the instruc-
tion word.

The storage address of the second operand should
designate word boundaries for short operands and
double word boundaries for long operands; otherwise,
a specification exception is recognized and a pro-
gram interruption is caused. '

The registers addressed by Rl and R2 fields
should be 0, 2, 4, or 6; otherwise, a specification
exception is recognized and a program interruption
is caused.

Floating Point 1/66 49



Addition=Subtraction

I 2 3 4 5 6 7 8 9 A B c D E F
1 02 03 04 05 06 o7 08 09 0A 08 ocC oo 0E OF 10
2 03 04 05 05 07 08 09 0A 08 oC 0D 0E OF 10 1"
3 04 05 06 o7 08 09 DA 08 oc Vo] OE OF 10 11 12
4 05 06 o7 o8 09 0A 0B oC 0D 0E OF 10 n 12 13
5 - 06 07 08 09 0A [¢]:] oc oD OE OF 10 1 12 13 14
6 07 08 09 DA 08 oC oD 0E OF 10 1 12 13 14 15
7 [:] 09 0A o8 oc 0o 0E OF 10 1 12 13 14 15 16
8 09 0A o8 oC oD 0 OF 10 11 12 13 14 15 16 17
9 0A 08 oc 0o 0E OF 10 1 12 13 14 15 16 17 18
A 08 oc 0D 0E OF 10 11 12 13 14 15 16 17 18 19
B ocC oD 0E OF 10 1 12 13 14 15 16 17 18 19 1A
c oD 0E OF 10 n 12 13 14 15 ] 17 18 19 1A 18
D OE OF 10 11 12 13 14 15 16 17 18 19 1A 18 Ic
E OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1c 1D
F 10 11 12 13 14 15 16 17 18 19 1A 18 ic 1D 1E
Multiplication-Division
1 2 3 4 5 6 7 B 9 A B c D E F
2 04 06 08 0A oC OE 10 12 14 16 8 1A Ic 1E
3 06 09 ocC OF 12 15 18 18 1E 21 24 7 2A o]
4 08 oC 10 14 18 1c 20 24 28 2C 30 M 38 3C
5 0A oF 14 19 1E 2 28 Vi) 32 7 ac 41 45 48
6 oc 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A
7 [1]3 15 [« 23 2A 3l 38 3F 46 4D 54 58 62 &9
] 10 18 20 28 30 38 40 48 50 58 60 68 70 78
9 12 18 24 20 36 3F 48 51 5A 63 6C 75 7E 87
A 14 1E 28 32 ac 46 50 5A 64 6E 78 B2 BC 96
B 16 21 2C 37 42 4D 58 63 6E 79 84 8F A A5
C 18 24 30 3C 48 54 60 6C 78 84 90 9C AB B4
D 1A 27 34 41 4E 58 68 75 82 8F 9C A9 B& c3
E 1C 2A 38 46 54 62 70 7E 8C 9A | AB BS cé D2
F 1E 2D 3C 48 5A &9 78 87 96 AS B4 c3 D2 Fl

FIGURE 7. HEXADECIMAL ADDITION-SUBTRACTION AND MULTIPLICATION=DIVISION CHARTS
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[Op Code] g1 [ r2 ]
L]

7 " (i}

FIGURE 8. RR FORMAT

[Op Code| R1 | X2 | B2 | D2
L]

T ni 15 [LET] n

FIGURE 9. RX FORMAT

Data Formats
® Storage unit format.
e Working register format.

The floating-point data occupy a fixed-length double
word format (Figure 10) or a single word format
(Figure 11) in the main storage unit, and the double
word format (Figure 12) or a single word format
(Figure 13) in the floating-point registers. The
floating-point registers are numbered 0, 2, 4, and
6.

The first bit in either the short or long main
storage format is the sign bit (S). The next seven-
bit positions are the characteristic (exponent),
which is expressed in excess 64 with a range from

|5] Characteristic| Fraction |
L] s

FIGURE 10, DOUBLE WORD FORMAT IN MAIN STORAGE

|5] Charccierisril:l Fraction |
) T n

FIGURE 11. SINGLE WORD FORMAT IN MAIN STORAGE

l Fraction |5| Characteristic I

° 5338 37 3]

FIGURE 12. DOUBLE WORD FORMAT IN MAIN STORAGE

T S Choracrarivic]

0 2l 33 38 87 ]

FIGURE 13. SINGLE WORD IN FLP REGISTER

Form 223-2874-1
FES S26-7035

-64 through +63. In the floating-point registers, the
fraction is in bit positions 0-55 (long format) or
0-23 (short format); in both formats, the sign is bit
56 and the characteristic is in bit positions 57-63.
In either format, a hexadecimal 00 represents the
smallest value (-64), a hexadecimal 40 represents
an exponent of 0, and a hexadecimal 7F represents
the largest value (+63). See Figure 14. The re-
maining digits in either the short format (bits 8-31),
or the long format (bits 8-63) of the main storage
format are the number or fraction (mantissa) of the
floating-point data word. Therefore, the fraction
field is considered as either 6 or 14 hexadecimal
digits in length, and the hexadecimal point is lo-
cated to the left of the high-order digit of the
fraction.

Normalization

® A normalized number has the greatest precision.

® A normalized number has a nonzero high-order
digit.

@ Operations are performed with or without norm-
alization.

e A zero characteristic, zero fraction, and plus
sign is a true zero.

A quantity has the greatest precision when a floating-
point number is normalized. A normalized floating-
point number has a nonzero high-order hexadecimal
fraction digit. If one or more high-order fraction
digits (bits 8-11, 12-15, 16-19, etc.) are zero, the
number is said to be unnormalized. The process of
normalization consists of shifting the fraction to the
left until the high-order hexadecimal digit is nonzero
and reducing the characteristic by the number of
hexadecimal digits shifted. A zero fraction cannot
be normalized, and its associated characteristic
remains unchanged when normalization is called for.
Since normalization applies to hexadecimal digits,
the three high-order bits of a normalized number
may be zeros.

Normalization usually takes place when the inter-
mediate arithmetic result is changed to the final
result; this function is called postnormalization.
The operands are normalized prior to the arithmetic
process in multiplication and division; this function
is called prenormalization.

Most operations are performed in one or two
ways; with or without normalization. However,
addition and subtraction are specified either way.

If an operation is performed without normalization,
high-order zeros in the result fractions are not

Floating Point 1/68 51



Form 223-2874-1

§26-7035
Hexa- He <= Hexo-
decimal Decimal Binary decimal Decimal Binory diecimal Decimal Binary
00 -64 0000000 28 =21 oo 56 122 lololio
01 -63 0000001 2C -20 ololoo 57 123 1o1onn
02 ~62 0000010 20 -19 alarol 58 24 1011000
| 0 -1 0000011 % -18 olotito 59 i25 1011001
04 -0 0000100 2 =17 oot 5A 126 1o11a10
05 -59 ooagotol 30 -6 0110000 58 7 (RN
06 -58 0000110 3 -15 0110001 5C 128 1011100
o7 -57 0000111 2 -l4 0110010 5D 9 1011101
08 -56 0001000 kxl -13 0110011 SE +30 lotiio
o7 -55 0001001 34 -12 0110100 SF a1 o
0A ~54 0001010 5 - oi1tolol &0 132 1100000
08 -53 0001011 6 -10 oniono &1 [ x | 1100001
ec -52 0001100 kg -09 onoin 62 134 1100010
oD -51 oooliol Ja -08 0111000 &3 +35 1100011
OE -50 opo1iio 9 -07 aliool &4 136 1100100
OF -49 opolin A -0& olroin 63 37 1100101
10 -48 0010000 Ja -05 ornor 1] 138 1ooro
I -47 0010001 ic =04 0111100 &7 139 1ot
12 -4b goloolo o -02 orrar 48 140 1101000
13 -45 ootoot kld -02 oro 49 4] 1101001
S ey - h hezd
14 -44 ool0100 k] -01 ol A 142 1eio10
15 -43 aoraiol 40 0o 1000000 48 143 rialon
14 -42 oo10110 41 101 1000001 &C 144 1101100
17 -41 0010111 42 102 1000010 &D w45 ool
18 -40 0011000 4] +03 1000011 &E 144 Hoino
9 -39 0011001 44 04 1000100 &F 47 1o
1A -38 oolioio 45 035 1000101 70 148 1110000
L] =37 oolion 46 106 1000110 71 149 1110001
1c =36 0011100 47 o7 1000111 72 +50 1110010
1] -35 o010l 48 108 1001000 73 151 1110011
1E =34 oolntio 49 109 1001001 74 152 1110100
IF -33 ool 4A 110 1001010 75 153 1110101
20 -32 0100000 40 w11 1001011 76 154 1orio
21 =31 0100001 4C 2 1001100 77 155 Hent
22 -30 oiooolo 4D 13 1001101 78 156 1111000
23 -29 0100011 4E v14 1e01110 79 +57 1111001
¥ ~28 0100100 4F 15 1001111 7A +58 1oio
25 -27 0100101 50 L 1010000 78 159 1o
2% -26 0100110 5l 17 1010001 7C 160 1111100
7 -25 oloaltn 52 18 1010010 70 16l 1ot
28 =24 0101000 53 e 1010011 7E 62 LARRRAL]
29 -23 0101001 34 120 1010100 7F ] 1
2A -22 oloio10 55 V21 1a10101

FIGURE 14, FLOATING-POINT EXPONENT VALUES

eliminated. The result may or may not be normal- interruption occurs. Otherwise, zero fractions and
ized, depending on the original operands. zero characteristics participate as normal numbers
In normalized and unnormalized operations, the in all arithmetic operations.
initial operands need not be in normalized form. The sign of a sum, difference, product, or quo-
The intermediate fraction results are shifted right tient with zero fraction is positive. The sign ol a
when an overflow occurs; the intermediate fraction zero fraction resulting from other operations is
result is truncated to the final result length after the established by the rules of algebra from the operand
shifting, if any. signs.,

A number with zero characteristic, zero fraction,
and plus sign is called a true zero. As the result of
an arithmetic operation, a true zero may arise be-
cause of the particular magnitude of the operands.

A result is forced to be true zero when an expon-
ent underflow oceurs and the corresponding mask

bit is off, or when a result fraction is zero and no
program interruption due to significance exception
is taken. When the program interruption is taken,
the true zero is not forced, and the characteristic
and sign of the result remain unchanged. When a
divisor has a zero fraction, division is omitted, a Protection: The storage key of a result location
floating-point divide exception exists, and a program  does not match the protection key in the program

Program Interrupts

@ Exceptional instructions, data, or results
cause program interrupts.

When an interrupt occurs, the current program
status word (PSW) is stored. The interrupt code in
the old program status word identifies the cause of
the interrupt. The following exceptions cause a
program interrupt in floating-point arithmetic:

52 1/68 2075 Processing Unit -- Volume 3



status word of a store instruction. The operation is
suppressed; the condition code, data in the regis-
ters, and data in storage remain unchanged.

Addressing: An address designates a location out-
side the available storage for the installed system.
The operation is terminated, The result data and
the condition code are predictable, and no registers

Specification: A short operand is not located on a
32-bit boundary, a long operand is not located on a
64-bit boundary, a floating-point register address
other than 0, 2, 4, or 6 is specified. The instruc-
tion is suppressed: the condition code, the data in
the register, and the data in storage remain un-
changed, The address restrictions do not apply to
the components from which an address is generated
(the content of the D2 field and the contents of the
registers specified by X2 and B2).

Exponent Overflow: When exponent overflow occurs,
the operation is completed and a program interrupt
takes place. The fraction is normalized, and the
sign and fraction of the result are correct. The
result characteristic is 1281 5 smaller than the cor-
rect characteristic.

Floating-point add and subtract instructions set
the condition code (PSW bits 34 and 35). If the re-
sult is zero, a 00 condition code is set. If the re-
sult is less than zero, a 01 condition code is set,
and if the result is greater than zero, a 10 condi-
tion code is set.

Exponent Underflow: When exponent underflow oc-
curs for a floating-point add, subtract, compare,
multiply, or divide instruction, a program inter-
rupt occurs if the exponent underflow mask bit is
a one. The operation is completed, and the cor-
rect sign and normalized fraction are put away. The
result exponent is 1281 g greater than the correct
exponent. When an exponent underflow occurs and
the exponent mask bit is zero, the operation is
completed by replacing the result with a true zero.
The condition code remains unchanged for halve,
multiply, and divide instructions. For add and sub-
tract instructions, the condition code is set to re-
flect the value of the result. If the result fraction
is zero, a 00 condition code is set. If the result
fraction is less than zero, a 01 condition code is
set, and if the result is greater than zero, a 10
condition code is set.

Significance: The result fraction of an addition or
subtraction is zero. A program interrupt occurs if
| the significance mask bit is a one. The mask bit
also affects the result of the operation. When the
significance mask bit is a one, the operation is

Form 223-2874-1
FES 526-7035

completed without further change to the character-
istic or the result. In either case, the condition
code is set to 0,

Floating-Point Divide: Division by a number with
zero fraction is attempted. The operation is sup-
pressed; the condition code, data in the registers,
and data in storage remain unchanged,

Condition Codes

@ Sign-control, add, subtract, and compare in-
struction results set condition codes.

® Multiplication, division, load, and store in-
structions do not change condition codes.

The result of floating-point sign-control, add, sub-
tract, and compare operations is used to set the
condition code. Multiply, halve, divide, load, and
store instructions leave the code unchanged. The
condition code is used for decision-making by
branch-on-condition instructions.

The condition code relfects two types of results
for floating-point arithmetic. For most operations,
the states 0, 1, or 2 indicate that the content of the
result register is zero, lesgwthan zero, or greater
than zero, respectr fresult is indicated
whenever the res
forced zero. State
instructions. 4

For comparis@ states 0, 1, or 2 indicate
that the first ope 9.qua1 low or high. Figure
15 gives the conﬂt‘iomcode setting for floating-point
arithmetic. (:\ =

-

ra

FLOATING-POINT [NSTRUéll'IONS
hjf\' N S '?

e TFloating- ht mstructlogs have either long or
short ope ds

e Floating- __"int num@onsxsts of a signed ex-
ponent Eractmn. 4

e The exponent is eufpfspsed in excess 64 binary
notatiort_ .

-
® The trennon is; ex;ﬁssed in hexadecimal.

Floating&gomt instru ons have either long or short
operands Short"— emswn floating-point operands
and res (except 1tiply) are 32-bit floating-
point words; posi 24-55 of the floating-point
register are not used or changed. The final result

in short-precision instructions is six fraction digits;
however, intermediate results in addition, subtrac-
tion, and division may be extended to a seventh digit.

Branch Instructions 1/68 53
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FES 526-7035

Condition Codes

Instructions 0 1 2 3
Add (n) RF is 0 f#F <0 RF >0 “Mever Oceurs
Add (u) RF 150 RE <0 RES0 | ceeee sz
Compare Operonds = 1st O is lo Ist @ ishi | cemeefommaa
Laod and Test RF is 0 RF <0 T I
Load Complement RF is 0 RF <0 RF>0 | e
Leod Megotive RF is O RF <0
Load Positive RFis0 | seeemeemeae RE2D | eeemafesmas
Subtract (n) RF is O RF <O RF >0
Subtract {u) RF is 0 RF <O RF >0 RO PR
RF = Result Fraction RE = Result Exponent 151 O = Ist Operand

oFIGURE 15, CONDITION CODE SETTING

This digit, called the guard digit, is to increase the
precision of the final result. When long-precision
floating-point is specified, the operand and result is
a 64-bit floating-point word. The intermediate re-
sult in long precision may be extended to a fifteenth
digit.

Floating-point multiply products always extend
the entire length of the floating-point word (64 bits).
In short precision, no significant digits are lost;
however, in long precision, the low-order digits are
lost due to shifting of the product beyond the capacity
of the floating-point register.

A floating-point number consists of a signed
exponent and a signed fraction. The exponent is ex-
pressed in excess -64 binary notation; the fraction
is expressed as a hexadecimal number having a deci-
mal point to the left of the high-order digit. To
provide the proper magnitude for the floating~-point
number, the fraction is considered to be multiplied
by a power of 16. The characteristic, bits 1-7 of
the floating-point format, indicates the power of the
exponent.

The characteristic is treated as an excess -64
number with a range from -64 (binary value of
0000000) through +63 (binary value of 1111111). The
range covered by the magnitude (M) of a normalized
floating-point number is:

16—64 <M < 1663
which is approximately

5.4 x 10‘78 <M <£17.2x 1075

The floating-point arithmetic instructions and their
mnemonic, format, and operation code are given in -
Figure 16. All operations are specified in short and
long precision and are part of the floating-point
feature. Figure 16 indicates when normalization
occurs, when the condition code is set, and the ex-
ceptions that cause a program interrupt.

54 1/68 2075 Processing Unit -~ Volu;ne 3

Add-Subtract

Addition of two floating-point numbers consists of a

characteristic comparison and a fraction addition.
The characteristics of the two operands are com-
pared, and the fraction with the smaller character-
istic is right-shifted; its characteristic is increased
by one for each hexadecimal digit of shift, until the
two characteristics agree. The fractions are then
added algebraically to form an intermediate sum.

If an overflow carry occurs, the intermediate sum
is right-shifted one digit, and the characteristic is
increased by one. If this increase causes a charac-
teristic overflow, an exponent-overflow exception
is signaled, and a program interruption occurs.

The short intermediate sum consists of seven
hexadecimal digits and a possible carry. The long
intermediate sum consists of 15 hexadecimal digits
and a possible carry. The low-order digit is a guard
digit retained from the fraction that is shifted right.
Only one guard digit participates in the fraction ad-
dition. The guard digit is zero if no shift occurs.

After the addition, the intermediate sum is left-
shifted as necessary to form a normalized fraction;
vacated low-order digit positions are filled with
zeros and the characteristic is reduced by the amount
of shift.

If normalization causes the characteristic to
underflow and the underflow mask bit is zero, the
characteristic and fraction are made zero. If
normalization causes the characteristic to under-
flow and the corresponding mask bit is a one, the
correct sign and fraction are put away. The expon-
ent is 1287 ( greater than the correct exponent. If
no left shift takes place, the intermediate sum is
truncated to the proper fraction length, depending
on the instruction being executed.

When the intermediate sum is zero and the
significance mask bit is a one, a significance ex-
ception exists, and a program interruption takes
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Mame Mnemonic Type Exceptions Code
Add Normalized (Long) NADR RR C,5,U,E,LS 2A
Add MNormalized (Short) MNAER RR c,5, ,LS JA
Add Mormalized (Lang) MNAD RX C,A,5,UE,LS A
Add Normalized (Shart) MNAE RX C,A.5;U,E.LS TA
Add Unnormalized (Long) AWR RR c,5,E,LS i3
Add Unnormalized (Short) AUR RR C,5,E,.LS 3JE
Add Unnormelized (Long) AW RX C,A5,E, LS .13
Add Unnormalized (Short) AU RX C,A,S,E, LS 7€
Subtract Norm (Long) MNSDR RR C,5,U,E,LS 28
Subtract Norm (Short) INSER RR C,5,U,E,LS 38
Subtract Norm (Lang) MNSD RX C,A,5,UE,LS 68
Subtract Norm (Short) MSE RX C,A,5,U,E,LS 78
Subtract Unnarm (Long) swa RR .5 S 2F
Subtract Unnorm (Shert) sus RR G5 S IF
Subtract Unnorm (Long) SW RX C,A, LS &F
Subtract Unnorm (Short) su RX C,A,S,E,LS 7F
Compare (Long) CDR RR C.5 29
Compare (Short) CER RR C,5 39
Compare (Long) cD RX C,A &9
Compare (Short) CE RX C,A 79
Divide (Long) NDDR RR 5,U,E,FK 20
Divide (Short) MNDER RR §,U,E,FK 3D
Divide (Long) NDD RX A,S.U,E,FK &
Divide (Short) MNDE RX A,S,U,E,FK 70
Halve {Long) HDR RR s,U 24
Halve (Short) HER RR s,u 34
Load (Long) LDR RR 55 28
Load (Short) LER RR 5 38
Load (Long) Lo RX ALS &8
Load (Short) LE RX A,S 78
Load Positive (Long) LPDR RR C,s 20
Load Paositive (Shart) LPER RR c,5 30
Load Nagative (Long) LNDR RR c.s 21
Load Negative (Short) LMNER RR CiS 3
Load and Test {Long) LTOR RR c.5 22
Load and Test (Shert) LTER fR c.,s 2
Lead Complement {Long) LCDR RR c,§ 23
Lood Complement {Short) LCER RR C,5 3
Multiply (Long) NMDR RR 5,U,E 2C
Multiply (Short) NMER RR S,UE ac
Multiply (Long) NMD RX A,5,UE &6C
Multiply (Short) NME RX A,5,UE 7C
Store (Long) STD RX P,A,S &0
Store (Short) STE RX P,A,S 70
MNotas:

A Addressing exception Ls Slgnificonce exception

C Condition codo s sat N MNormalized operation

E Exponent —overflow exception P Pratection exception

F Floating-point feature H Specification exception

FK Floating-point divide exceptlon u Exponent-undarflow exception

oFIGURE 16. FLOATING-POINT ARITHMETIC CODES

place. No normalization occurs; the intermediate
sum characteristic remains unchanged. When the
intermediate sum is zero and the significance mask
bit is zero, the program interruption for the signifi-
cance exception does not occur; rather, the charac-
teristic is made zero, yielding a true zero result.
Exponent underflow does not occur for a zero frac-
tion.

The sign of the result for floating-point add-sub-
tract instructions is derived by the rules of algebra.
The sign of a sum with zero result fraction is always
positive.

Compare

Comparison of two floating-point numbers consists
of a characteristic comparison and a fraction sub-

traction. The characteristics of the two operands
are compared, and the fraction with the smaller
characteristic is right-shifted; its characteristic is
increased by one for each hexadecimal digit of shift,
until the two characteristics agree. The fractions
are subtracted algebraically; the sign, fraction, and
exponent of each number are taken into consideration.
An exponent inequality is not decisive for magni-
tude determination since the fraction may have a
different number of leading zeros. An equality is
established by following the rules for normalized
floating-point subtraction. When the intermediate
sum, including a possible guard digit, is zero, the
operands are equal. Neither operand is changed as
a result of the operation, and exponent overflow,
exponent underflow, or lost significance cannot occur.
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Divide

The quotient fraction is normalized by prenormaliz-
ing the operands. Postnormalizing the intermediate
quotient is never necessary, but a right-shift may be
called for. The intermediate quotient characteristic
is adjusted for the shifts. All dividend fraction digits
participate in forming the quotient, even if the norm-
alized dividend fraction is larger than the normalized
divisor fraction. The quotient fraction is truncated
to the desired number of digits. A program inter-
ruption for exponent overflow occurs when the final-
quotient characteristic exceeds 127, and the opera-
tion is terminated. The correct sign and fraction
are put away, and the characteristic is 1287 less
than the correct characteristic.

A program interruption for exponent underflow
occurs if the final-quotient characteristic is less
than zero and the corresponding mask bit is a one.
The sign and fraction are correct, and the charac-
teristic is 1287 o greater than the correct character-
istic. If the corresponding mask bit is a zero, the
result is made true zero and the interruption does
not occur. Underflow is not signaled for the inter-
mediate quotient or for the operand characteristics
during prenormalization.

When division with a divisor with zero fraction
is attempted, the operation is suppressed. The
dividend remains unchanged, and a program inter-
ruption for floating-point divide occurs. When the
dividend fraction is zero, the quotient fraction is
zero. The quotient sign and characteristic are made
zero, yielding a true zero result without taking the
program interrupt for exponent underflow and ex-
ponent overflow. The program interrupt for signifi-
cance is never talken for divide instructions.

Division is a non-restoring algorithm which in-
corporates a trial division by multiples and produces
two quotient bits for each iteration cycle. A non-
restoring approach is used because by following a
trial subtraction which overdraws, with a trial ad-
dition, restoration cycles are eliminated.

The divisor is normalized by gating it through the
main adder and shifter, and gating the result to the
K register and the L register. The X3/2 divisor is
generated by adding the contents of the K register to
the contents of the L register shifted right 1 position.
The result (X3/2 divisor) is placed in the L register.

The required divisor multiples are located in the
M register and the L register. The X1 and X3/2
divisors are obtained by a direct readout from the
registers, and the X1/2 and X3/4 divisors are ob-
tained by shifting the registers right 1 position.
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The quotient is assembled in the J register, and
every second iteration, the J register is shifted left
four bits by gating it to the register bus latch and
back to the J register; thus, space is provided for
the next four quotient bits.

The first step in each iteration cycle is the se-
lection of the divisor. If the dividend is true, the
decoding matrix shown in Figure 17 is used to select
the multiple to be subtracted from the dividend; if
the dividend is in complement, the matrix shown in
Figure 18 is used. The quotient bits entered into the
d register are shown in Figure 19. Most combina-
tions produce two quotient bits; however, if the X3/4
divisor is used, three bits are generated. In this
case, the third bit is retained and entered in place
of the high-order quotient bit developed during the
next iteration cycle.

The divide iteration cycles are continued until
the shift counter content is reduced to one or three.
At this time, the iteration cycles are terminated.

If the last divisor used is the X3/4, the quotient is
complete; however, if the X3/4 divisor is not the
last divisor used, one more quotient bit is developed.
The last quotient bit is generated by reducing the
dividend by the X1 divisor.

Halve

The halve instructions divide the second operand by
two by shifting the fraction right one bit. The result
is placed in the first operand location. Normaliza-
tion and test for zero fraction occurs.

Load

The load instructions transfer the second operand

to the first operand location. The second operand
is not changed, and neither exponent overflow, ex-
ponent underflow, nor lost significance can occur.

The load type instructions transfer the second oper-
and to the first operand location. The sign is made
plus for the load positive (LPDR, LPER) instruc-
tions, or minus for the load negative (LNDR, LNER)
instructions, or is changed to the opposite value for
the load complement (LCDR, LCER) instructions, or
the condition code is set for the load and test (LTDR,
LTER) instructions.



Divisor Divisor
True Compl
Dividend | 0.111 | 0.110 | 0.101 | 0.100 Dividend | 0.111 | 0.110 | 0.101 | 0.100

0.1 1 1 3/2 3/2 0.000 | 1 3/2 3/2
0.110 1 1 1 3/2 0.001 1 1 1 32
0.101 3/4 3/4 1 1 0.010 3/4 3/4 1 |
0.100 3/4 3/4 1 i 0.0 3/4 3/4- 1 1
0.011 1/2 1/2 1/2 1/2 0.100 1/2 1/2 1/2 1/2
0.010 1/2 1/2 1/2 1/2 0.101 1/2 1/2 1/2 1/2
0.001 ~ 0 0 0 0 0.110 0 0 0 0
0.000 0 (i] 0 0 0.1 0 0 /] 0

FIGURE 17. DIVISOR MULTIPLE SELECTION-~
TRUE DIVIDEND

True Compl
Partial Dividend

Result of Iteration | True | Compl | True | Compl

3/2 n 10 ()] 00

Multiple 1 10 0 10 01
3 | on | oo [ 10 | 100

Used 1/2 01 00 11 10

0 00 - - 1

FIGURE 19. QUOTIENT SELECTION DECODING

Multiply

Multiply consists of adding a multiple(s) specified by
the decoding of the multiplier to the partial product.
Multiplication is started at the low order end of the
multiplier. The multiplier and partial product are
shifted right four for each iteration.

In floating -point multiply, the digit normalized
multiplicand is defined as the X16 multiple and is
located in the M register. The X2, X4, and X8 mul-
tiples are obtained by shifting the M register right -
three, right two, or right one, respectively. The
X6 multiple is obtained by shifting the X12 multiple
(stored’in the L register) right one; the X10 multiple
is obtained by interrupting the normal iteration se-
quence to allow the X2 multiple and then the X8 mul-
tiple to be added to the partial product. The X14
multiple is obtained by a similar process using the
X6 and then the X8 multiple. Therefore, the X2,
X4, X6, X8, X10, X12, X14 and X16 multiples are
obtained from two registers, and the only additional
multiple to be concerned with is the X1 multiple.
The only time the X1 multiple is needed is during
the first iteration cycle if the low-order bit of the
multiplier is a 1 bit.

The multiplier is decoded in groups of five bits.
As an example, the multiplier (105);q is (69);4. If
this is implemented into a hexadecimal machine no-
tation, the following configuration is realized:

(105)19 = (69)1 = 0110 1001
The first group of five bits is:
XXXX 0110 1001
e

first group

FIGURE 18. DIVISOR MULTIPLE SELECTION--
COMPLEMENT DIVIDEND

The low-order bit of the first group is always
decoded as a zero; however, if the actual bit is a one,
the X1 multiple is provided by gating the K register
right four to the normal input of the main adder. In
the example, the first group is decoded as:

0 1000
therefore, the X8 multiple is gated into the true/
complement input of the main adder. A partial pro-
duct consisting of the X8 multiple and the X1 multiple
(gated right three) is obtained at the output of the
main adder and is gated to the K register.

A different operation takes place if the high-
order bit of the group is decoded as a one. If (113)y
is equal to (71)14, then the bit configuration is:

(113)44 = (71); g = 0111 0001
and the first group:

1 0001
is decoded as:

1 0000

In the example, the high-order bit is a one and
the low-order bit is decoded as a zero. The K regis-
ter is gated right four into the normal input of the
main adder and the X16 multiple is transferred in
complement (-X16) to the true/complement input of
the main adder. A partial product consisting of the
-X16 and the X1 multiple is obtained at the output of
the main adder. The output of the main adder is
gated into'the K register. The subtraction of the X16
multiple in the hexadecimal four-bit group is the
same as subtracting the X1 multiple in the hexadeci-
mal five-bit group. The first group of five bits is
decoded and the multiples used are shown in the left-
hand columns of Figure 5048, and the decoding of
successive groups of five bits and the multiples used
are shown in the right-hand columns .of Figure 5048.
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Two examples will help clarify how the floating-
point multiply operation is performed. The first
example is without a bit in the high-order position
of the first group of five bits, and the second ex-
ample contains a bit in the high-order position of
the first group of five bits.

Example 1:
(625), X (103)y = (65, 625),,
(@71)4 x (69)6 = (10, 039) 4

0010 0111 0001 x 0110 1001 = 0001 0000 0000 0101 1001

X8 multiple

X1 multiple

partial product

X6 multiple (R4 shift plus R1 shift
of X12 mult)

0001 0011 1000 1000
0000 0010 0111 0001
0001 0101 1111 1001
1110 1010 0110

0001 0000 0000 0101 1001 product
Example 2:

(623) 1o x (113)19 = (70, 625);
271),6 X (T1) g = (L18E1) |6

0010 0111 0001 x O111 0001 = 0001 0OO1 0011 1110 0001

0000 0010 0111 0001 0000
1111 1101 1000 1110 1111 -X16 multiple (complemented)
0090 0000 0010 OL11 0001 X1 multiple

1 Hotl
1111 1101 1011 0110 0001 partial product
0001 0011 1000 1 X8 multiple (R4 shift for
next iteration)
product

+X16 multiple

(carry) 0001 0001 0011 1110 0001

After any iteration cycle, the partial product is
either correct or the X1 multiple less than the cor-
rect partial product with respect to the multiplier
group for the next iteration. Therefore, in example
1, the first multiplier group is 0 1001 and the partial
product is correct, but in example 2, the first mul-
tiplier group is 1 0001 and the partial product is the
X1 multiple less than the partial product. Correc-
tion before overmultiplication is possible for all
hexadecimal groups of the multiplier except the low-
order group.

Figure 20 is a sample floating-point multiply
problem, and is concerned only with the fraction.

It is assumed that the exponent adder and its opera-
tion is fully understood; therefore, it is not men-
tioned further. The problem assumes a normalized
multiplicand and consists of a five-digit register for
simplicity.
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In the problem, the multiplicand is (625);( or
(271)1 ¢ and the multiplier is (404);¢ or (194)16. The
product is (252, 500)1( or (3DA54);¢-

During the first floating-point cycle, the multi~-
plicand is brought from the M register to the main
adder. From the main adder, it is returned to the
K register and the M register. The exponent (two
low-order digits) is set to zero because the exponent
is not transferred through the main adder. The mul-
tiplier is located in the J register by the time the
first floating-point latch is set. For all practical
purposes, the exponent is not shown. The exponent
is set to zero during the first left-four shift to the
register bus latch and the right-eight shift to the J
register. Therefore, at the end of the cycle identi-
fied by the first floating-point latch (Figure 20), the
J, K, and M registers contain the data shown.

During_the time shown in the iteration preparation
cycle (Figure 17), the X12 multiple is generated and
placed in the L register. The contents of the K reg-
ister and the complement of the M register shifted
right two are added to obtain the X12 multiple which
is placed in the L register. The J, K, and M regis-
ter contents are not changed during this cycle.

The first multiplier group is decoded (-X12), and
the X12 multiple is gated to the true/complement
input of the main adder, complemented, added to
zeros and returned to the K register. By the end of
this cycle, the J register is shifted right four, the
partial product is contained in the K register, and
the L and M registers are unchanged.

During the second iteration trigger cycle, the
-X6 multiple (L register right one to the true/com-
plement input of the main adder) is added to the con-
tents of the K register which is shifted right four.
The result is returned to the K register. By the end
of the second iteration cycle, the K register contains
the new partial product, the L. and M registers are
unchanged and the next multiplier group is shifted into
the low-order positions of the J register to decode
the next multiple.

The third iteration trigger cycle gates the M
register right three to the true/complement input of
the main adder in true form and the K register is
gated right four to the normal input of the main
adder, The result is returned to the K register.

The next cycles put away the result fraction and
the exponent in the register specified by the R1 field
of the multiply instruction.

Store

The store instructions place one of the floating-point
registers in core storage. The first operand (R1)

is stored at the location specified by the second oper-
and (X2 + B2 4+ D2). The first operand is not changed.
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FIGURE 20. SIMPLE FLOATING-POINT MULTIPLY PROBLEM (FRACTION]

THEORY OF OPERATION

@ Instructions are executed during intervals of
time called cycles.

® The first machine cycle is the instruction cycle.

® The gating of operands continue after the I to E
transfer.

e The sign triggers are set during T2 and the first
FLP cycles.

e Itime is followed by two or more execution
cycles.

The IBM System/360 Model 75 instructions are
performed during fixed intervals of time called
cycles, and are identified by control triggers being
turned on for one or more cycles. As an example,
either an effective address is calculated during a
fixed interval (cycle) of time identified by the T1
trigger during instruction time of each floating-
point instruction, or data is transferred from reg-
ister to register during a given cycle. The number
of cycles necessary to execute a single instruction
is dependent upon the instruction and other condi-
tions within the machine. Examples of such condi-
tions are: outstanding core storage requests, inter-

rupts, and conditions blocking the turn-on of a con-
trol trigger.

Instructions consist of two or more parts, the
operation code (op-code), and the operands specified
by R1 and R2 or Rl and X2 + B2 + D2 fields. The
operation code tells the machine what function it is
to perform: add, subtract, compare, multiply, di-
vide, store, etc. The operands are either addresses
of floating-point registers (identified by the R1 and
R2 fields of the RR instruction format and the R1
field of an RX instruction) or storage addresses
(identified by the X2 + B2 + D2 fields of an RX in-
struction format).

The central processing unit operates in a pre-
scribed sequence: the sequence is determined by
the instruction being performed, and is performed
during a fixed or data dependent (variable) interval
of timed pulses.

The first machine cycle required to execute an
instruction is called an instruction (I) cycle. Itis
assumed that the reader is familiar with the sequence
of events taking place during the instruction cycle;
therefore, the instruction cycle sequencing is only
briefly reviewed here. Previous to the beginning of
the instruction cycle:

1. The instruction is transferred from core
storage to the AB register by an instruction request
to core storage.
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2. The instruction is transferred from the AB
register to the instruction operation register (IOP
reg) and the B operation register (BOP reg).

During instruction cycle time:

1. The operation is decoded in the IOP decoder
and the BOP decoder.

2. The effective address (E) is calculated (R2 +
D2 + X2).

3. The effective address is requested from core
storage if the instruction is of the RX format or from
the addressed floating-point register if the instrue-
tion is of the RR format.

4. A double word is requested from core stor-
age to fill the A or B register if the present instruc-
tion emptied the register.

5. The gate select mechanism causes the length
of the instruction (decoded from the first byte of
IOP) to be added to the instruction counter in the
incrementer.

6. This value is stored in the gate select regis-
ter; at the I to E transfer this value is returned to the
program status word (PSW) instruction counter, thus,
updating the instruction counter.

7. The contents of the IOP register are trans-
ferred to the EOP register. This transfer is accom-
plished by one of the conditions shown in Figure
5550, depending on the last instruction type.

Floating-point instructions require operand to
be gated after the I to E transfer. This gating is
accomplished by the FLOUT control trigger (Figure
5057). FLOUT is set with the TN T2 trigger for
any floating-point instruction regardless of the for-
mat. The RR format instructions allow two oper-
ands to be sequentially transferred from the floating-
point registers to the working registers via the RBL.
With TN T2 and ID RR FP, a control trigger, FR 2,
is turned on (Figure 5057). This trigger causes the
floating-point register, addressed by the R2 field,
to be transferred during this and the following
T2 cycles, if they occur. The I to E transfer re-
moves the condition for turning on the FR 2 trigger;
therefore, it turns itself off. When the FR 2 trig-
ger is off, the first operand, addressed by the BR 1
field is selected for gating to the RBL by FLOUT.

The RX instructions allow one operand to be
transferred from the floating-point register to the
working registers via the RBL; the second operand
(X2 + B2 + D2), which is calculated during the T1
cycle is requested from core storage and placed into
the J register. FLOUT remains on until the E unit
turns it off when gating is no longer required, nor-
mally during the first floating-point cycle. The ex-
ception is during prenormalization of the divisor;
the divisor must be prenormalized before the sec-
ond operand, the dividend, is accepted.

During the T2 cycle and the first floating-point
cycle, the sign triggers (Figure 5551) are set. The
R1 sign trigger contains the sign of the R1 operand

60 1/68 2075 Processing Unit -- Volume 3

and is loaded from bit 56 of the floating-point regis-
ter addressed by the Rl field of either an RR or RX
instruction. The R2 sign trigger contains the sign
of the R2 operand and is loaded from bit 56 of the
floating-point register addressed by the R2 field of
a RR instruction, from J0 of an RX instruction with
an even address, or from J32 of an RX instruction
with an odd address. If during the T2 cycle, a RR
instruction is decoded, the R2 sign trigger is set;
if a RX instruction is decoded, the R1 sign trigger
is set. Likewise, if during the first floating-point
cycle, a RR instruction is decoded, the R1 sign
trigger is set, or if a RX instruction is decoded,
the R2 sign trigger is set.

Figure 21 indicates the approximate timing of the
I to E transfer, operand gating, and turn on of the
first floating-point trigger and latch. Several pos-
sible conditions exist during T2 and to the I to E
transfer.

First, in the RR format, the R2 operand is gated
both to the J register and the M register. In Figure
5079, the gating to the J register is accomplished
by the AND circuit at 6F, logic KU053, for the RR
format instructions. The gating to the M register
(Figure 5067) is accomplished by AND circuit at
6J, logic KU016, for a short floating-point RX
format instruction. The register bus latch transfer
to the J register is a right eight ring shift while the
transfer from the register bus latch to the M regis-
ter is a straight transfer. The right eight ring shift
places the exponent located in bits 56-63 of the reg-

I ister bus latch in bits 0-7 of the J register. Also,

note that the R1 operand is transferred from the
register bus latch to the M register (Figure 5079)
by AND circuit 6C, logic KU003 or AND circuit 6E,
logic KU016, during the first floating-point cycle of
compare, add, or subtract instructions; therefore,
the M register contains the proper operand by the
end of the first floating-point cycle.

Second, if the instruction is of the RX format,
the R1 operand on the register bus latch is trans-
ferred to the M register by AND circuit 6J, logic
KU003 or AND circuit 6G, logic KU016; the operand
from core storage is loaded into the J register by
the J advance pulse.

On compare, add, subtract and halve instruc-
tions, the transfer into M register bits 56-63 is
blocked. This allows M register bits 56-59 to re-
main available to contain a possible guard digit.

The operand 1 exponent is in the FP reg specified
by BR1 of the instruction.

I time is followed by two or more cycles occur-
ring during execution (E) time; the number of execu-
tion eycles required depends on the instruction being
executed. Execution time begins as soon as the pre-
vious execution time is complete and the present in-
struction allows an I to E transfer to occur. The I
to E transfer turns on the first floating-point trigger
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oFIGURE 21. FLP OPERAND TRANSFER TO WORKING REGISTERS

if the conditions shown in Figure 5552 are met.

When the execution time is started, the execution
cycle is allowed to idle until data are received from
core storage if the instruction is of an RX format.
Part of the first execution cycle (first floating-point
cycle) is performed until the effective operand data
are received from core storage, indicated by the J
loaded trigger (Figure 5552) being turned on. How-
ever, if data are requested from a floating-point
register, such as during the RR instruction format,
the execution time is allowed to proceed immediately
after the I to E transfer by allowing the first floating-
point latch (Figure 5552) to be set. When the R1
operand is located in the M register (RR or RX for-
mats) and the data specified by the effective address
(E) are located in the J register (RX format), the
first floating-point latch is turned on and the first
execution cycle (first floating-point cycle) is allowed
to complete its operations. These operations are
discussed in detail for each of the floating-point in-
structions in the following section of this manual. It
is from this point (the first floating-point latch being
turned on) that the following discussions for the
floating-point instructions will begin.

ADD-SUBTRACT

The add normalized instruction formats are:

ADR 2ZA RR (Long Operand)

2A \ m—[ R2 |
15

o 78 1z

AER 3A RR (Short Operand)
R

[] 78

(]

AD (Long Operand)
x2 | 82 |

15 18

6A RX
R1

"z

[] 78 17 20 an

AE A RX
7A ] R
o 78

The add normalized instructions are handled as
follows:

1. The characteristics of the two operands are
compared.

2. The second operand is added to the first
operand.

3. The result is normalized before it is placed
in fhe first operand location,

4. Characteristic underflow when the corre-
sponding mask bit is a zero causes a true zero
condition.

(Short Operand)
x2 [ 8
1514

D1

i# 20 an
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5. Characteristic underflow when corresponding
mask bit is a one causes correct sign and normal-
ized fraction to be put away. The result character-
istic is 1281 greater than the correct characteristic.

6. AER and AE instructions do not alter bits
24-55 of the floating-point register.

7. The sign of the result is derived by the rules
of algebra.

The add unnormalized instructions formats are:

AWR 2E RR (Leng Operand)
el w)

L] ra niz L]

AUR JE RR (Short Operand)
3 I R | R2 l
(] 7 mnn 15
AW 6E RX (Long Operand)
I 6 J“‘l”l‘“] D2
(/] Te niaz 15 18 w0 an
AU 7E RX (Short Operand)
7€ ] R ] X2 | Bl l D —]
(] 7e 15 % w20 n

The add unnormalized instructions are handled as
follows:

1. The characteristics of the two operands are
compared.

2. The second operand is added to the first operand.

3. The result is placed in the first operand location.

4. ADR and AD instructions do not alter bits 24~
55 fo the floating-point register.

5. The sign of the result is derived by the rules of
algebra.

The subtract normalized instruction formats are:

SDR 28 RR (Long Operand)
E IR

0 70 oz [

SER 38 RR (Short Operand)
[ s [ n] |

[ 78 n 15

sD 48 RX (Long Operand)

[ & [wm [ x| m| 02 |

[ Ta 12 15 1a 17 20 N

SE 78 RX  (Short Operand)

R EREIEN )
o Te 15 18 19 20 )
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The subtract normalized instructions are handled
as follows:

1, The characteristics of the two operands are
compared.

2, The sign of the second operand is inverted
before addition.

3. The second operand is subtracted from the
first operand.

4, The result is normalized before it is placed
in the first operand location.

5. SER and SE instructions do not alter bits
24-55 of the floating-point register.

6. The sign of the result is derived by the rules
of algebra.

The subtract unnormalized instruction formats
are:

SWR 2F RR {Long Operand)

IERER

o 78 Iz 15

SUR aF RR (Short Operand)
[ & [wn]x]
o 78 [N s
SwW 6F RX {Long Opeiand)

oF |n1|x2'n:[ D2 —l

o 7e n 15 18 1% 10 n

sU 7F RX (Shoit Operand)

7F l Rl ] X2 Bl r D1

o 78 (LY ¥ 0 n

The subtract unnormalized instructions are
handled as follows:

1. The characteristics of the two operands are
compared.

2, The sign of the second operand is inverted
before addition.

3. The second operand is subtracted from the
first operand.

4, SUR and SU instructions do not alter bits
24-55 of the floating-point register.

5. The sign of the result is derived by the rules
of algebra.

Initial Operand Location

At the beginning of the execution cycle, the operands
are located in the following registers by the methods
described at the beginning of this chapter and by the
gating shown on Figure 5079:



Instruction Format R1 Operand R2 Operand
RR single FLPO-23, 56-63 Jo-31
RR double FLPO-63 JO-63

RX single (even address)
RX single (odd address)
RX double

MO0-23, FLP56-63 J0-31
MO0-23, FLP56-63 ]32-63
MO-55, FLP56-63 ]0-63

Instruction Sequencing

® Instruction sequencing is controlled by five trig-
gers.

® Characteristic comparison is defined by the first
floating-point cycle.

® Preshift is defined by the preshift trigger.

® Traction addition is identified by the preshift-add
trigger being on and the preshift trigger being off.

® Termination sequence is identified by the put-away
and E last cycle triggers.

® Lost significance is detected during the first
normalization cycle.

@ Exponent overflow is caused when the exponent
range is exceeded.

® Sign handling is performed during the adjustment
cycle.

Figure 6400 is the data flow of the add and subtract
instructions, and Figure 6401 is the logic flow of the
add and subtract instructions.

First Floating-Point Cycle

The characteristic comparison is defined by the first
floating-point latch (Figure 5552); it is a one cycle
operation consisting of:

1. Obtaining the exponent difference.

2. Transferring the R2 or effective address
operand from the J register to the K register with
a left eight shift.

3. Transferring the R1 operand fraction from
the floating-point register to the M register via the R
RBL if the instruction is of the RR format.

The R2 or effective address exponent located in
the J register bits 0-7 (RR formats, RX single even
address, or RX double) or bits 32-39 (RX single odd
address) is gated to the normal input of the exponent
adder by the logic shown in Figure 5061. The R1
operand exponent located in the FLP register bits
56-63 is gated by the logic shown in Figure 5057
to the true/complement input of the exponent adder.
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The result is transferred from the AEOB to the ex-
ponent register and shift counter by the logic shown
in Figures 5056 and 5086 respectively.

The R2 (or E) operand is gated from the J regis-
ter to the true/complement input of the main adder.
If the instruction is an RX and odd address format,
the J register must be shifted left 32 positions in
order to gate J32-63 into positions 0-31 of the main
adder. This gating is accomplished by the logic
shown in Figure 5061. If the instruction is an RR
format, RX single even address format, or RX
double format, the J register is gated straight
to the main adder input without any shifting. All
instructions shift the output of the main adder left
eight bits (one byte) to eliminate the exponent
(Figure 5087) and then set the AMOB output into
the K register.

If the instruction is of the RR format, the R1
operand is gated from the floating-point register,
specified by the R1 field of the instruction word, to
the register bus latch. From the register bus latch,
the R1 operand is gated to the M register as des-
cribed earlier. The fraction is located in bits 0-23
for single precision RR formats, or in bits 0-55 for
double precision RR formats. If the instruction is
of the RX format, the Rl operand is already placed
in the M register bits 0-23 for single precision RX
format instructions or bits 0-55 for double precision
RX formats; the exponent is in bits 56-63 of the
floating-point register specified by BR1 of the
instruction for all formats.

Preshift and Preshift-Add Cycles
® A variable cycle operation.

® Preshift identifies shifting of one operand until
exponents are equal.

@ Preshift-add identifies the add cycle.

The preshift and fraction addition cycles are a vari-
able cycle operation identified by the preshift latch
and the preshift-add latch (Figure 5553). If the
difference between the two exponents resulted in the
exponent adder halfsums for positions 1-7 all being
equal to ones, the exponents are equal and preshift-
ing of an operand is not required; therefore, the
preshift trigger is not set because the line labeled
-AE HS Eq 1 Lth line (Figure 5553) is active, thus,
preventing the preshift trigger from being set.

A carry from the exponent adder high-order posi-
tion (if the exponent adder HS is not equal to ones)
indicates that the exponent of the K register (R2 or E
operand) is larger than the exponent of the M register
(R1 operand). No carry from the exponent adder
high-order position indicates that the exponent of the
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M register is larger than the exponent of the K regis-
ter. An exponent difference greater than 64 sets the
exponent overflow trigger because the capacity of the
shift counter and exponent register is exceeded. The
exponent overflow trigger signifies an exponent dif-
ference greater than 64, but it does not signify an
interrupt condition,

Preshifting depends on an exponent difference and
not on the magnitude of the difference. An exponent
difference sets the preshift trigger (Figure 5553),
which defines the preshift operation within the pre-
shift-add sequence. A carry from the high-order
position of the exponent adder gates the contents of
the M register (R1 operand) to the main adder. The
R1 operand is shifted right one or two hexadecimal
digits (right four or right eight shift) depending on
the shift counter value. The result is returned from
the AMOB to the M register. No carry from the
high-order position of the exponent adder gates the
contents of the K register (R2 or E operand) to the
main adder. The R2 or E operand is shifted right
one or two hexadecimal digits depending on the shift
counter value that is decoded in the shift counter
decoder (Figure 5087). The result is returned to the
K register from the AMOB latches. Whether a right
four or right eight shift is taken during the first
preshift cycle depends on the value of the shift
counter bit 7. If the bit is a one, a right four shift
is taken first, thus reducing the shift counter con-
tents by one to an even amount. The following shifts,
if any, are a right eight shift.

When either the K or M register is gated to the
main adder and its contents are shifted, the shift
counter is decremented by an amount equal to the
number of hexadecimal digits (1 or 2) that the frac-
tion is shifted. The exponent adder output is returned
to the shift counter after each decrementing opera-
tion. When the shift counter is gated to the shift de-
coder during preshifting, the shift decoder determines
the amount of the decrement and shift. The preshift-
ing cycle is repeated until the shift decoder detects
a shift count value equal to or less than two. When
the shift counter value is equal to or less than two,
the preshift cycles are terminated at the end of the
current cycle because the exponents are equal.

The fraction addition cycle takes place if the
characteristic comparison indicates the exponents
are equal, or preshifting is completed indicating
equal exponents,

The R1 operand in the M register is gated into
the true complement input of the main adder and the
R2 or E operand in the K register is gated into the
normal input of the main adder. The result is re-
turned to the K and M registers. The form of addi-
tion performed (true or complement) depends on the
instruction and the operand signs. Figure 22 shows
the form of addition performed.

64
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Instruction R1 Sign R2 Sign Operation Performed
Add + + True
Add + - Complement
Add . + Complement
Add + - True
Subtract + + Complement
Subtract + - True
Subtract . + True
Subtract Complement

FIGURE 22. ADD/SUBTRACT TRUE/COMPLEMENT ADDITION

The exponent of the fraction sum is the larger

of the operand exponents. The R1 exponent is con-

| tained in the floating-point register; however, the
R2 exponent has been lost. If the R2 exponent is
the larger, it is equal to the R1 exponent plus the
exponent difference obtained during the exponent
comparison cycle.

During the fraction addition cycle, the exponent

| from the floating-point register specified by BR1
is gated to the exponent adder. If the R2 exponent
is the larger, the exponent register that contains the
exponent difference is gated to the normal input of
the exponent adder. The exponent adder result is
equal to the larger exponent and is returned to the
shift counter and exponent registers. If the shift

I counter register is equal to or greater than 15, or
if the exponent overflow trigger is on, it is detected
by the SFT/DCR (Figure 5087) during the first pre-
shift cycle, and the preshift trigger and exponent
overflow trigger is turned off after one cycle.
Exponent differences greater than 64 cannot be re-
tained in the shift counter or exponent register
because of the register length; therefore, a trigger
must be set to indicate such conditions. The ex-
ponent overflow trigger is used to indicate this
condition.

The register containing the fraction where the
exponent is the larger is not preshifted. It is gated
to the main adder, added algebraically to zero, and
returned to the K and M registers. The fraction
addition cycle completes the preshift-add sequence.
The intermediate sum is contained in the K and M
registers, and the exponent and sign of the inter-
mediate sum is contained in the shift counter and
the exponent registers.

PA and ELC Cycles

The PA trigger and ELC trigger define the termina-
tion sequence, Figures 5554 and 5555 respectively.
It is a variable cycle operation and includes fraction
recomplementation, normalization, exception hand-
ling, and result put-away.



A high-order carry from the main adder during
a true add cycle indicates a fraction overflow. The
intermediate sum, contained in the M register, is
gated to the main adder, shifted right four hits, a
one is forced into position 3, and the result is re-
turned to the K register and the M register. The
exponent register is gated to the exponent adder, in-
cremented by one, and returned to the exponent reg-
ister. The ELC trigger is set, and the resulting
fraction and exponent is set into the floating-point
register specified by R1 of the instruction format,
and the instruction is terminated.

If a fraction overflow carry is not detected and
the instruction is an add or subtract normalized in-
struction, an unnormalized sum is assumed and a
normalization cycle is taken. The M register is
gated to the main adder, complemented if the inter-
mediate sum is in complemented form, and shifted
by an amount depending on the number of high-order
zeros. The result is returned to the K and M regis-
ters. The exponent register is gated to the exponent
adder, decremented by an amount equal to the num-
ber of hexadecimal digits that the fraction is being
shifted and returned to the exponent register. The
decrement and shift amounts are determined by the
SFT/DCR decoder (Figure 5087); normalization con-
tinues until the fraction is normalized or an excep-
tion condition is detected.

Add and subtract unnormalized instructions have
a normalization cycle. The shift and decrement
amounts are zero and the intermediate sum and ex-
ponent are not altered., The intermediate sum is
examined for lost significance if the sum is not
normalized. At the end of this cycle, either the
significance adjustment or the put-away cycle fol-
lows.

Lost significance is detected during the first
normalization cycle by the K register zero detector
after recomplementing theintermediate sum, if it is

I required, Except for unnormalized add and subtract
instructions, the entire K register is examined for
lost significance. In short precision unnormalized
add and subtract instructions, only the sixhigh-order
hexadecimal digits are examined, and in long pre-
cision unnormalized instructions, onlythel4high-
order hexadecimal digits are examined because of
the possibility of the significance digit (the guard
digit) that is not part of the result fraction contain-
ing data.

If lost significance is detected, normalization is
terminated and a significance adjustment cycle is
taken. If the significance mask bit is a one, the ex-
ponent of the intermediate sum is the exponent of the
result. The shift counter containing this exponent
is gated to the exponent adder and returned to the
exponent register. If the significance mask bit is
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a zero, the shift counter register is not gated to the
exponent adder. The zero output of the exponent
adder is returned to the exponent register.

The ELC trigger (Figure 5555) is set at this
time or if the intermediate sum is normalized. The
result exponent and fraction is set into the floating-
point register specified by R1 of the instruction
word. The instruction is terminated after one cycle
of normalization if:

1. The intermediate sum is normalized, or

2. in the case of an unnormalized instruction
with an unnormalized intermediate sum if lost sig-
nificance is not detected.

Exponent Overflow and Underflow: Exponent over-

flow is caused when the intermediate exponent is

incremented beyond +64. The sequence is not al-

tered by this occurrence, but the exponent overflow

trigger is set.

Exponent underflow may occur during any nor-

malization cycle. The exponent underflow trigger
l is set, and, ifthe corresponding maskbitis a zero,
normalization continues for one more cycle followed
by an exponent underflow adjustment cycle. The
ELC trigger is set, and the result exponent and
fraction is set to zero and placed into the floating-
point register specified by R1 of the instruction
word, and the instruction is terminated. When the
exponent underflow trigger is set and the corre-
sponding mask bit is a one, normalization continues
until the fraction is normalized. The ELC trigger
is set, the result fraction and exponent are placed
in the floating-point register specified by R1 of the
instruction, and the instruction is terminated. The
result exponent is 1287 g greater than the correct
exponent.

Sign Handling: Sign handling is performed during
the adjustment cycle; the sign of the intermediate
sum is determined by the sign of the R2 operand and
the instruction performed. For add, the sign of the
intermediate sum is set equal to the sign of the R2
operand. For subtract, the infermediate sum sign
is set inverse to the sign of the R2 operand. If the
intermediate sum is in true form, its sign is cor-
rect; if the intermediate sum is complement, the
sign isinverted during the recomplement cycle. If
lost significance or exponent underflow with the
corresponding mask bit set to zero occurs, the sign
of the result fraction is set to zero.

COMPARE

The compare instructions are:
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CDR 29 RR {Long Operand)
29 | R1 J R2 I
o 78 ni £
CER 39 bRR (Short Operand)
39 | ® J X2
o 78 mnana 15
cD 469 RX (Long Operanid)
69 | R | x2 | o2 D2
1] TE nn 13 18 19 20 1
CE 79 RX (Short Operand)
79 | HERD I DI

o 78 15 18 19 20 n

The compare instructions are handled as follows:

1. The characteristic of the two operands is
compared. ,

2. The sign of the second operand is inverted
before addition.

3. The second operand is subtracted from the
first operand.

4, The condition code indicates the result.

5. Short precision instructions do not check bits
24-55 of the FLP register.

6. Neither operand is changed as a result of the
compare.

7. The comparison takes into consideration the
sign, fraction, and exponent of each operand.

Initial Operand Location

At the beginning of the execution cycle, the operands
are located in the following registers by the methods
described at the beginning of this chapter and by the
gating shown on Figure 5079:

Instruction Format R1 Operand R2 Operand
RR single FLP0-23, 56-63 Jo-31

RR double FLPO-63 Jo-63

RX single (even address) MO0-23, FLP56-63  JO-31

RX single (odd address) MO0-23, FLP56-63  J32-63

RX double MO0-55, FLP56-63  ]J0-63

Instruction Sequencing

e Instruction sequencing is controlled by five
triggers.

® Characteristic comparison is defined by the
first FLP trigger.

® Preshifting is defined by the preshift trigger.
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@ Fraction addition is defined by the preshift-add
trigger.

@ Termination sequence is identified by the PA
and ELC triggers.

Figure 6402 is the data flow for the compare in-
structions, and Figure 6403 is the logic flow for
the compare instructions.

First Floating-Point Cycle

The characteristic comparison is defined by the first
floating-point latch (Figure 5552); it is a one cycle
operation consisting of:

1. Obtaining the exponent difference.

2. Transferring the R2 or effective address
operand from the J-register to the K register with
a left eight shift.

3. Transferring the Rl operand from the floating-
point register to the M register via the register bus
latch if the instruction is of the RR format.

The R2 or effective address exponent located in
J register bits 0-7, (RR formats, RX single even
address, or RX double) or bits 32-39 (RX single
odd address) is gated to the normal input of the ex-
ponent adder by the logic shown in Figure 5061. The
R1 operand exponent, located in the floating-point
register bits 56-63 is gated by the logic shown in
Figure 5057, is gated to the true/complement input
of the exponent adder. The result is transferred
from the AEOB to the exponent register and shift
computer by the logic shown in Figures 5056 and
5086 respectively. }

The R2 or E operand is gated from the J regis-
ter to the true/complement input of the main adder.
If the instruction is an RX odd address format, the
J register must be shifted left 32 positions in order
to gate J32-63 into positions 0-31 of the main ad-
der. This gating is accomplished by the logic shown
in Figure 5061. If the instruction is an RR format,
RX single even address format, or RX double for-
mat instruction, the J register is gated straight to
the main adder input without any shifting. All in-
structions shift the output of the main adder left
eight bits (one byte) to eliminate the exponent,
(Figure 5087) and then set the AMOB output into the
K register.

If the instruction is of the RR format, the R1 op-
erand is gated from the floating-point register,
specified by the Rl field of the instruction word, to
the register bus latch. From the register bus latch,
the R1 operand is gated into the M register as des-
cribed previously. The fraction is located in bits
0-23 for single precision RR formats, or in bits
0-55 for double precision RR formats. If this in-
struction is of the RX format, the Rl operand is



already placed in M register bits 0-23 for single
precision RX format instructions or bits 0-55 for
double precision RX formats; the exponent is in
bits 56-63 of the floating-point register specified
by R1 of the instruction for all formats.

Preshift and Preshift-Add Cycles
@ Variable cycle operations.

® Preshift identifies shifting of one operand until
exponents are equal.

® Preshift-add identifies the add cycle.

The preshift and fraction addition cycles are
variable cycle operations that are identified by the
preshift latch and the preshift-add latch (Figure
5553). If the difference between the two exponents
resulted in the exponent adder halfsums for positions
1-7 all being equal to ones, the exponents are equal
and preshifting of an operand is not required; there-
fore, the preshift trigger is not set because the

line labeled - AE HS Eq 1 Lth line (Figure 5553) is
active, thus, preventing the preshift trigger from
being set.

A carry from the exponent adder high-order
position indicates that the exponent of the K register
(R2 or E operand) is larger than the exponent of the
M register (R1 operand). No carry from the exponent
adder high-order position indicates that the exponent
of the M register is larger than the exponent of the
K register. An exponent difference greater than 64
sets the exponent overflow trigger because the
capacity of the shift counter and exponent register
is exceeded. The exponent overflow trigger signi-
fies an exponent difference greater than 64, but it
does not signify an interrupt condition.

Preshifting depends on an exponent difference and
not on the magnitude of the difference. An exponent
difference sets the preshift latch (Figure 5553), which
defines the preshift operation within the preshift-add
sequence. A carry from the high-order position of

the exponent adder gates the contents of the Mregister |is equal to or

(R1 operand) to the main adder. The R1 operand is
shifted right one or two hexadecimal digits (right
four or right eight shift) depending on the shift
counter value. The result is returned from the
AMOB to the M register. No carry from the high-
order position of the exponent adder gates the
contents of the K register (R2 or E operand) to the
main adder. The R2 or E operand is shifted right
one or two hexadecimal digits depending on the
shift counter value that is decoded in the shift
counter decoder (Figure 5087). The result is
returned to the K register from the AMOB latches.
Whether a right four or right eight shift is taken
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during the first preshift cycle depends on the value
of the shift counter bit 7. If the bit is a one, a
right four shift is taken first, thus reducing the
shift counter contents by one to an even amount.
The following shifts, if any, are a right eight shift.
When either the K or M register is gated to the
main adder and its contents are shified, the shift
counter is decremented by an amount equal to the
number of hexadecimal digits (1 or 2) that the
fraction is shifted. The exponent adder output is
returned to the shift counter after each decrementing
operation. When the shift counter is gated to the shift
decoder during preshifting, the shift decoder deter-
mines the amount of the decrement and shift, The
preshifting cycle is repeated until the shift decoder
detects a shift count value equal to or less than two.
When the shift counter value is equal to or less than
two, the preshift cycles are terminated at the end of
the current cycle because the exponents are equal.
The fraction addition cycle Wlace if either
the characteristic co dicdfes the expon-
ents are equal, or pres tl gi pleted indi-
cating equal exponents N J
The R1 operand inffhe:M reégi S is gated into
the true complementgnput-of the main adder and the
R2 or E operand in the K. re@_ster is gated into the
normal input of the main q.dcler "the result is re-
turned to the K and &1 reg1$1i“ers ~d'he form of addi-
tion performed (true=or. comﬁl"e nt) depends on
the instruction operand mgns Fﬁure 23 indicates
the form of addition erformed
The exponent orgé fradtion:

m is the larger
of the operand expgbnents. The exponent is con-

I tained in the floating- pomt register; however, the
R2 exponent has een ]pst

During the frg@tion addition’ cycle, the exponent

| from the ﬂoa,tmgft:)mt reg“'lp?r is gated to the ex-
ponent adder. If the R2 exf:o nt is the larger, the
exponent register, ‘contﬂanm@the exponent differ-
ence, is gated £o'the’ nqrhl input of the exponent
adder. The exponent add sult is equal to the

larger exponeyt and 13; retu ed to the shift counter

and exponent R gusj;ers‘“‘ e shift counter register
sreater 5, or if the exponent

overflow trigger«i& on ik is detected by the shift

decoder (Figure 50%’ g the first preshift
cycle, and the pres ger and exponent over-

flow trigger are turned off after onecycle. Exponent
difference greater than 64 cannot be retained in the

R1 Sign R2 Sign Operation Performed
+ + Complement
+ - True
+ True
Complement

FIGURE 23. TRUE/COMPLEMENT ADDITION
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shift counter or exponent register because of the 3. The remainder is not retained.
register length; therefore, a trigger must be set 4. DER and DE instructions do not alter bits
to indicate such conditions. The exponent overflow 24-55 of the floating-point register.
trigger is used to indicate this condition. 5. Division consists of a characteristic sub-

The register containing the larger exponent is traction and fraction division.

not preshifted. It is gated to the main adder, 6. The difference between the exponents plus
added algebraically to zero, and returned to the K 64 is used as the quotient exponent.
and M registers. The fraction addition cycle com- 7. The sign of the quotient is determined by
pletes the preshift-add sequence. The intermedi- the rules of algebra.

ate sum is contained in the K and M registers, and
the exponent and sign of the intermediate sum is
contained in the shift counter and the exponent reg-
isters.

Initial Operand Location

At the beginning of the execution cycle, the operands
are located in the following registers by the methods
described at the beginning of this chapter and by the

PA and ELO Oycles gating shown on Figure 5079:

The termination sequence consists of result test- Instruction Format R1 Operand R2 Operand
ing and is identified by the PA and ELC triggers

RR single FLP register Jo-31
being on. The result is tested, the condition code RR double FLP register J0-63
is set and the instruction is terminated. The con- RX single (even) FLP register J0-31
dition code indicates the test result for the com- RX single (odd) FLP register J32-63

lpare instructions. If the operands including the RX double FLP register J0-63
guard digit are equal, a condition code of 0 is set
into the condition code register of the program Instruction Sequencing

status word; if the first operand is low, a condi-
tion code of 1 is set into the condition code register, e Instruction sequencing is controlled by 13 con-
and if the first operand is high, a condition code of trol triggers.
2 is set into the condition code register.
@ The first floating-point latch identifies the pre-
fetch cycle.

DIVIDE
® The norm trigger identifies the divisor normali-
The divide instructions are: zation cycles.
DDR 2DRR  (Long Operand) ® The D2 trigger identifies the X3/2 divisor gen-
SRR eration cycle.
0 78 mniz 15
@ The D3 trigger identifies the dividend normali-
zation cycles.
DER 3D RR {Short Ope:and)
30 ]_-RI X2 ] e The DL4 trigger identifies the cycle during
0 78 nwm 15 > which the dividend is made less than the divisor.
e Tteration preparation trigger identifies the first
DD &DRX (Long Operand) divide iteration cycle.
o | n| x| m D2 | _
[] 78 nn EED an @ The iteration trigger identifies the following
divide iteration cycles.
DE 7DRX  (Shert Operand) @ The first term trigger identifies the last quo-
| » [w [ x| s | D1 | tient bit generation cycle.
L] 78 13 16 1920 n
e The quotient transfer/complement trigger iden-
The divide instructions arehandled as follows: tifies the quotient transfer cycle.
1. The first operand is divided by the second
operand. @ The put-away and E last cycle triggers identify
2. The quotient replaces the first operand. the quotient and exponent put-away cycle.
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@ The zero result trigger identifies a zero J
register.

" @ The test trigger identifies a zero K register.

Figure 6404 is the data flow of the divide instructions,

and Figure 6405 is the logic flow of the divide in-
structions.

First Floating-Point Cycle

The first floating-point latch identifies the first
execution cycle for the divide instructions. During
this cycle, the divisor that is located in the J
register is gated through the main adder with a
left eight shift to the K, L, and M registers.
Figure 5087 shows the logic for the left eight shift
controls. The divisor exponent (JO-7 RR single,
RX even, RR double, RX double, or J32-39 RX
odd) is gated from the J register through the
exponent adder to the exponent register and the
shift counter. v

Owing to the nature of the operand fetch from
the floating-point registers, the R1 sign trigger
is set from the floating-point register bit 56 for
the RR or RX instructions, and the R2 sign trigger
is set from bit 0 of the J register for RR single,
RR double, RX single even, and RX double, or
from bit 32 of the J register for an RX single odd
address instruction. Figure 5551 shows this logic
gating to the R1 and R2 sign latches.

Norm Cycle

The norm trigger identifies the cycle(s) during
which the divisor is normalized if necessary; the
norm trigger (Figure 5556) is set following the
first FLP cycle. The M register is gatedto the
main adder and the result is returned to the K
register, L register, and the M register if M0-11
are zero. The gating of the M register to the main
adder is shown in Figure 5067. The shift amount
(left four or left eight) is decoded in the shift de-
coder (Figure 5087) and the shift amount (1 or 2)
is subtracted from the contents of the shift counter
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by gating the shift counter (Figure 5086) to the
true/complement input of the exponent adder. The
exponent adder output is returned to the exponent
register and the shift counter. The K register is
zero detected to determine if the divisor is zero.

If the devisor is zero, the block put away trigger,
E interrupt trigger, and test trigger are set

after the first normalization cycle. When M0-11
are not zero, the output from the main adder is
returned to the K register and the L register; the
dividend is gated from the floating-point register
through the RBL to the J register and the M
register by the logic shown in Figure 5079. The
entire contents of the register bus latch is gated to
the J register. If the divide instruction is a long
operand instruction, the entire contents of the reg-
ister bus latch is also gated tothe M register; how-
ever, if the divide instruction is a short operand
instruction, only bits 0-23 and 56-63 of the register
bus latch are gated to the M register.

D2 Cycle

Whenbits 0-11 or the M register are other than zero,
the D2 trigger is set to identify the multiple gener-
ation cycle (Figure 5557). During this cycle, the
X3/2 multiple is generated by gating the K register
to the normal input of the main adder and the L
register right one to the true/complement input of
the main adder. The result is placed in the L
register. The normalized divisor exponent isgated
from the exponent register to the normal input
of the exponent adder, and the dividend exponent
is gated from bits 56-63 of the M register to the
true/complement input of the exponent adder. The
difference-is placed in the exponent register. At
this time, the J register is zero detected and if the
contents of the J register are zero, the zero
result trigger is set during the next cycle and the K
register and the exponent registers are set to zero.
During this cycle, positions 0-7 of the K
register are gated via the left byte gate to the digit
buffer and digit counter register. The output of
the digit buffer and digit counter are used to decode
the number of high-order zeros contained in the
divisor after it is digit normalized but not bit
normalized.

D3 Cycle

If the dividend (J register) is not zero, the D3
trigger is set (Figure 5558) and the dividend is
normalized during this and following D3 cycles.

The divisor (K register) is gated to the register

bus latch and the dividend (M register) is gated to

the true/complement input of the main adder. The
output of the main adder is returned to the M register

until M0-3 are not zeros. Each time the M register
is gated to the main adder, the exponent register is
gated to the exponent adder, decremented by one

for each digit that the dividend is normalized and

the result is returned to the exponent register.
When M0-3 are other than zero, the M register is
again gated to the main adder; however, this time
the AMOB is returned to the K register and the
contents of the register bus latch (divisor) are gated
to the M register.

During the last D3 cycle, the divisor multiple is
decoded, the shift counter is set to 12 for single word
iteration count or to 28 for double word iteration
count, and the AEOB is returned to the exponent
register. At the end of the last D3 cycle, the K
register contains the dividend, the M register
contains the divisor, the L register contains the
X3/2 divisor, the exponent register contains the
exponent difference, and the shift counter contains
the iteration count.

If the dividend is decoded as being larger than
the divisor during the D3 cycle(s), the DL4 trigger
is set during the next cycle: however, if the
dividend is not decoded as being larger than the
divisor by the divide decoder during the D3 cycle(s),
the iteration preparation trigger is set during the
next cycle.

DL4 Cycle

If the dividend is decoded as being equal to or
larger than the divisor during the D3 cycle, the
D14 trigger (Figure 5559) is set and the dividend
is made smaller than the divisor. During the
DL4 cycle, the dividend (K register) is gated to the
normal input of the main adder, shifted right four,
and the AMOB isreturned to the K register. The
exponent register (quotient exponent) is gated to the
true/complement input of the exponent adder and a one
is added to the quotient exponent. The result
(exponent +1) is returned to the exponent register.
When the DL4 cycle is taken, it signifies that
the dividend is larger than the divisor and the
first divisor multiple must be decoded again. The
new divisor multiple is determined by decoding the
six high-order bits of the divisor that are contain-
ed in the digit buffer and digit counter, and the
contents of bits 0 and 1 of the K register prior to
the right shift. After the shift cycle, bits 0 and 1
are located in bits 4 and 5 of the K register as a
result of the right four shift. At the end of the
DL4 cycle the iteration preparation trigger is set
and the first divide iteration occurs.

Iteration Preparation Cycle

The first divide iteration cycle is identified by the
iteration preparation trigger (Figure 5560) being
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turned on either after the D3 trigger if the

divisor is larger than the dividend or after the

DL4 trigger if the dividend was larger than the
divisor. The K register is gated to the normal

input of the main adder and the divisor multiple

is gated to the true/complement input. The two
inputs to the main adder are either added or
subtracted, and the result is returned to the K
register. At the same time, the quotient bits are
inserted into J59 and J60 by the quotient insert

logic (Figure 5061), while zerosare being read into
the J-register from the RBL. At the same time the
divisor multiple is gated to the true/complement
input of the main adder, the shift counter is gated

to the exponent adder true/complement input and

one is subtracted from the value of the shift counter.
The result (SC-1) is returned to the shift counter,
the next divisor multiple is decoded from the contents
of the digit buffer and digit counter and the output of
bits 2-7 of the main adder. If a shift overflow or a
quotient overflow occurs, a divide check will not
result as is the case in fixed-point divide. However,
if a quotient overflow occurs during the first iteration,
two less iterations are taken and the first term trig-
ger is set when the shift counter equals three rather
than when it equals one.

Iteration Cycle

The following divide iteration cycles (2-10, 2-12,
2-26, or 2-28) are identified by the iteration trigger,
(Figure 5561) being set. The K register is gated
left two to the normal input of the main adder and
either the M register or the L register is gated
straight or right one to the true/complement input

of the main adder. If the result of the previous iter-
ation cycle is in complement form, the divisor mul-
tiple is gated to the true input of the true/complement
input of the main adder. If the previous iteration
cycle is in true form, the divisor multiple is gated
to the complement input of the true/complement
input of the main adder. The result is returned to
the K register, and bits 2-7 of the adder sum are
used to determine the next divisor multiple when the
carry is received from the remaining halfsum bits.
The quotient bits for the second iteration (SC shift
counter is odd) are gated into J61 and J62 (Figure
5061).

The contents of the J register (quotient) are
gated left four to the RBL each iteration cycle, but
they are gated back into the J register only when the
shift counter is even. Therefore, during iteration
number one (identified by the iteration preparation
trigger), the contents are not gated even though the
shift counter is even, but the zero content of the
register bus latch is gated into the J register and
bits 59 and 60 are set with the first two quotient bits.
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On the second iteration cycle (identified by the
iteration trigger being on) the shift counter is odd;
therefore, the quotient bits are inserted into J61 and
J62. The J register is read out left four to the RBL,
but the RBL is not gated back to the J register;
therefore, the J register contents are not lost or
changed (except J61 and J62) because the J register
is not released (reset); when the shift counter is odd.
The shift counter is decremented by one during
each iteration cycle by gating it to the exponent adder
and subtracting one from it. The result is returned
to the shift counter. After the second iteration
cycle, the shift counter is even and the K register
and divisor multiple are added or subtracted in the
normal manner. The J register is gated left four
to the register bus latch and the register bus latch
is returned tothe J register while the quotientbits for
the third iteration cycle are gated into J59 and J60.
The shift counter is decremented by one and this
process continues until the shift counter equals
either one or three. When the shift counter equals
either one or three, the iteration cycles are termi-
nated. Whether the iteration sequence is terminated
when the shift counter equals one or three depends on a
quotient overflow being detected during the first iteration
cycle. If a quotient overflow is detected, the iteration
sequence is terminated when the shift counter equals
three.

First Term Cycle

The first term cycle is identified by the first term
trigger (Figure 5562) and is used to generate the
last quotient bit. The K register is gated left two
to the normal input of the main adder and the se-
lected multiple is gated to the true/complement
input of the main adder. The result is returned to
the K register and the quotient insert logic (Figure
5061) inserts the last quotient bit into bit 63 of the
J register.

Quotient Transfer/Complement Cycle

The quotient transfer cycle is identified by the
quotient transfer/complement trigger (Figure 5563)
being set. The quotient fraction (J register) is gated
through the main adder with a left eight shift to the
K register. The exponent register containing the
quotient exponent is gated to the exponent adder; if
the quotient overflow trigger is on, one is added to
the quotient exponent. The exponent adder bit zero
(fraction sign bit) is set plus or minus according to
the rules of algebra. The result is returned fo the
exponent register.

Zero Result Cycle

If during the time the D2 trigger is set, the dividend
(J register) is detected as all zeros, the zero result



trigger (Figure 5564) is set during the next cycle
instead of the D3 trigger. The K register and the
exponent register are set to zero by gating the
AMOB and the AEOB to them, respectively. The E
last eycle is the next cycle following the zero re-
sult cycle.

Test Cycle

The test cycle is identified by the test trigger (Fig-
ure 5565) being turned on if the exponent under-

| flow trigger is on and the underflow mask bit is a
zero. The test trigger is turned on after the put-
away cycle or if the K register (divisor) is detected
as all zeros during the time the norm trigger is on.
The K register and the exponent registers are set
to zero by gating the AMOB and the AEOB to them,
respectively. The E last cycle is the next cycle
following the test cycle.

PA and ELC Cycles

The put-away cycle is identified by the PA trigger
(Figure 5554) and the E last cycle trigger (Figure
5555) being set. If an exponent underflow did not

I occur or if the underflow mask bit is a one, the
ELC trigger is set with the put-away trigger during
this ecycle. During this cycle, the quotient fraction
located in the K register and the quotient exponent
located in the exponent register are transferred to
the floating-point register specified by the ER1
register. If the exponent underflow trigger is on

1 and the underflow mask bit is a zero, the test trig-
ger is set during the next cycle, but the E last cycle
trigger is not set.

HALVE

The halve instructions are:

HDR 24 RR {Long Operand)

l 24 I Rl | R2 |

[} 78 "z 15

HER a4 RR (Shart Dpamml}
] R1 I X2 J

o 78 LU H] 15

The halve instructions are handled as follows:
1. The second operand is divided by shifting
the fraction right one bit.
| 2. The normalized quotient is placed in the first
operand location.
3. The HER instruction does not alter bits 24-55
of the floating-point register.
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4, Normalization and test for zero fraction occur,
Lost significance interrupt does not occur. Lost
significances cause a true zero result.

Initial Operand Location

At the beginning of the exeuction cycle, the operands
are located in the following registers by the methods
described at the beginning of this chapter and by the
gating shown on Figure 5079:

Instruction Format R1 Operand R2 Operand
RR single None MO0-23, Jo-7
RR double None, MO0-55, JO-7

Instruction Sequencing

@ Instruction sequencing is controlled by three
triggers.

@ Halve cycle is identified by first floating-point
trigger.

@ Termination cycle is identified by the E last
cycle trigger.

Figure 6406 is the data flow of the halve instruc-
tions, and Figure 6407 is the logic flow of the halve
instructions.

First Floating-Point Cycle

The halve cycle is a one-cycle operation identified
by the first floating-point trigger (Figure 5552) being
set. The operation consists of gating the M regis-
ter (Figure 5067) right one to the main adder true/
complement input, setting the output of the main
adder into the K register and M register, gating

the R2 exponent from the J register (bits 0-7) to

the normal input of the exponent adder, and gating
the exponent adder output into the exponent regis-
ter.

PA and ELC Cycles

The PA and ELC triggers define the termination se-
quence (Figures 5554 and 5555), a variable cycle op-
eration that includes normalization, exception hand-
ling and result put-away.

An unnormalized sum is assumed and a normali-
zation cycle is taken, The M register is gated to the
main adder and shifted by an amount depending on
the number of high-order zeros. The result is re-
turned to the K register and M register. The expon-
ent register is gated to the exponent adder, decre-
mented by an amount equal to the number of hex
digits that the fraction is being shifted and returned
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to the exponent register. If the sum is already nor-
malized, the shift and decrement amounts are zero,
and the intermediate sum and exponent are not
altered. The decrement and shift amounts are de-
termined by the SFT/DCR decoder (Figure 5087);
normalization continues until the fraction is normal-
ized or an exception condition is detected.

Lost significance is detected during the first
normalization cycle by the K register zero detector,
The entire K register is examined for lost signifi-
cance. If lost significance is detected, normaliza-
tion is terminated and a significance adjustment
cycle is taken. The shift counter register is not gated
to the exponent adder, and the zero output of the ex-
ponent adder is returned fo the exponent register.
Lost significance does not cause a program inter-
rupt regardless of the setting of the significance
mask bit.

The ELC trigger (Figure 5555) is set at this time
or if the intermediate sum is normalized. The result
fraction and exponent are set into the floating-point
register specified by R1 of the instruction word.

Exponent Underflow

Exponent underflow may occur during any normali-
zation cycle. The exponent underflow trigger is set
and if the exponent underflow mask bit is a zero,
normalization continues for one more cycle and an
exponent underflow adjustment cycle is taken. The
ELC trigger is set, the result fraction and exponent
are set to zero and placed in the floating-point reg-
ister specified by R1 of the instruction word, and
the instruction is terminated, When the exponent
underflow trigger is set and the underflow mask bit
is a one, normalization continues until the fraction
is normalized. The ELC trigger is set, the result
fraction and exponent are placed in the floating-point
register specified by R1 of the instruction word, and
the instruction is terminated.

Sign Handling

Sign handling is performed during the adjustment
cycle; the sign of the intermediate sum is deter-
mined by the sign of the R2 operand. If lost signi-
ficance or an exponent underflow occur, with the
underflow mask bit set to a zero, the sign of the
result fraction is set to zero.

LOAD

The load instructions are:
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LDR 28 RR (Long Operond)
R
° 78 w1
LER 38 RR (Short Operond)
SRR
] 78 niz s
LD 68 RX (Long Operand)
8 | m [ x| s | 02 |
] 78 IKE} 15 16 1# 20 20
LE 78 RX (Short Operand)

78 ,[ HEIER DI j

1518 w0 n

The load instructions are handled as follows:

1. The second operand is placed in the first
operand location.

2. The second operand is not changed.

3. The LE and LER instructions do not alter
bits 24-55 of the floating-point register.

4, Exponent overflow, underflow, or lost sig-
nificance cannot occur.

Initial Operand Location

At the beginning of the execution cycle, the operands
are located in the following registers by the methods
described at the beginning of this chapter and by the
gating shown on Figure 5079:

Instruction Format R1 Operand R2 Operand
RR single None JO-31

RR double None JOo-63

RX single (even address) None Jo-31

RX single (odd address) None J32-63

RX double None Jo-63

Instruction Sequencing

e Instruction sequencing is controlled by two
triggers. )

® The transfer of the second operand is identified
by the first floating-point trigger.

e Termination of the load instruction is identified
by the E last cycle trigger.

Figure 6408 is the data flow of the load instruction,
and Figure 6409 is the logic flow of the load instruc-
tion.
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First Floating-Point Cycle

The second operand transfer is a one-cycle opera-
tion identified by the first floating-point trigger
(Figure 5552) being set. During this cycle, the sec-
ond operand (RX or X2 + B2 + D2) fraction is trans-
ferred from the J register (J0-31 RR single, RX
single even address, J32-63 RX single odd address,
or J0-63 RR double and RX double) to the true/
complement input of the main adder (Figure 5061).
The output of the main adder is shifted left 8 posi-
tions (Figure 5087) and the result is placed in the

K register.

During the transfer of the J register to the main
adder, the exponent (J0O-7 RR single, RR double,
RX single even address, and RX double, or J32-39
RX single odd address) is transferred to the normal
input of the exponent adder (Figure 5061). The
output of the exponent adder is placed in the ex-
ponent register (Figure 5056).

ELC Cycle

The one cycle put-away sequence is identified by the
E last cycle trigger (Figure 5555) being set at the

end of the second operand transfer cycle. The
fraction is transferred from the K register to the
floating-point register identified by R1 of the floating-
point load instruction. The exponent is transferred
from the exponent register to bits 56-63 of the
floating-point register. When the fraction and ex-
ponent are located in the floating-point register, the
instruction is terminated.

LOAD TYPE

The load positive type instructions are:

LPDR 20 RR____(Long Operond)

I 20 l R1 | R2

-] 7e ma 11}

LPER 30 RR (Short Operand)
30 IEREZ

[] 78 L L]

The load positive type instructions are handled
as follows:

1. The second operand is placed in the first
operand location.

2. The sign of the second operand is made plus.

3. The characteristic and fraction are not
changed.

4, The LPER instruction does not alter bits
24-55 of the floating-point register.
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The load negative type instructions are:

LNDR21 RR  (Long Operand)
] T niz 1
LNER 31 RR  (Short Operand)

] e niz T

The load negative type instructions are handled
as follows:

1. The second operand is placed in the first
operand location.

2. The sign of the second operand is made minus.

3. The characteristic and fraction are not
changed.

4, The LNER instruction does not alter bits 24-
55 of the floating-point register.

The load and test type instructions are:

LTDR 22 RR  (Long Operand)
] ] nn (1]
LTER 32RR  (Short Operand)
% [wln]

[LRE]

The load and test type instructions are handled
as follows:

1. The second operand is placed in the first op-
erand location. .

2. Its sign and magnitude determine the condition
code.

3. The second operand is not changed.

4, The LTER instruction does not alter bits 24~
55 of the floating-point register.

5. The LTER instruction does not test bits 24~
55 of the floating-point register.

6. When the first and second operand are the
same register, the operation is equivalent to a test
without data movement.

The load complement type instructions are:

LCDR 23 RR__ (Long Operand)

L] L] " 13

LCER 33 RR  (Short Operand)

The load complement type instruction are handled
as follows: ’

1. The second operand is placed in the first
operand location.

2. The sign is changed to the opposite value.

3. The characteristic and fraction are not
altered.

4. The LCER instruction does not alter bits 24-
55 of the floating-point register.

Initial Operand Location

At the beginning of the execution cycle, the operands
are located in the following registers by the methods
described at the beginning of this chapter and by the
gating shown on Figure 5079:

Instruction Format R1 Operand R2 Operand
RR single None J0-31
RR double None J0-63

Instruction Sequencing

e Instruction sequencing is controlled by two
triggers.

e The second operand transfer is identified by the
first floating-point trigger.

e The termination cycle is identified by the E last
cycle trigger.

Figure 6410 is the data flow of the load type instruc-
tions, and Figure 6411 is the logic flow of the load
type instructions.

First Floating-Point Cycle

The second operand transfer is a one-cycle operation
identified by the first FLP trigger (Figure 5552) be-
ing set. The one-cycle operation consists of gating
the second operand from the J register (J0-31 RR
single, RX single even address, or J32-63 RX
single odd address, or J0-63 RR double, RX double)
to the true/complement input of the main adder
(Figure 5061). The output of the main adder is
shifted left 8 positions (Figure 5087) and the result
is placed in the K register.

During the transfer of the J register to the main
adder, the exponent (JO-7 RR single, RR double,
RX single even address, or RX double, or J32-39
RX single odd address) is gated to the normal input
of the exponent adder (Figure 5061). If the instruc-
tion is an LPDR, LPER, LNDR, LNER, LCDR, or
LCER instruction, the sign is set to the desired
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value during this cycle. The output of the exponent
adder is placed in the exponent register, The load
and test instructions (LTDR and LTER) do not alter
the sign of the second operand on its transfer.

ELC Cycle

The load type instruction termination is a one-cycle
put-away cycle identified by the E last cycle trigger
(Figure 5555) being turned on at the completion of
the transfer cycle that is identified by the first float-
ing-point trigger. The result fraction is gated from
the K register to the floating-point register specified
by R1 of the load type instruction, and the exponent
is gated from the exponent register to bits 56-63 of
the floating-point register. If the instruction is the
load and test type (LTDR or LTER), the sign and
magnitude of the second operand determine the con-
dition code setting of bits 34 and 35 of the program
status word. After the exponent and fraction are set
into the floating-point register and the condition code
is determined (LTDR and LTER instructions), the
load type instruction is terminated.

MULTIPLY

The multiply instructions are:

MDR_2C RR ong Operand)

2C

EX] i 1"

MER 3C RR _ (Short Operand)
-
MD 6C RX  (Long Operand)
| 6 [ rR1| X2 | 82 | D2
[] BN na 3% 1w n
ME__7C RX  (Short Cperen

7C | RI| X2 | 31 D1
L] T LERTY LLE n

The multiply instructions are handled as follows:

1. The multiplicand (M register) is normalized
by gating it to the true/complement input of the main
adder and shifting the output 0, 1, or 2 hexadecimal
digits.

2. Bits 56-63 of the M register are gated to the
true/complement input of the exponent adder; the
result (minus shift amount) is placed in the exponent
register.

3. The multiplier is transferred from the RBL
to the J register with a right eight ring shift.

4. The K register and the M register are gated
to the main adder to generate the X12 multiple.

5. The J register exponent and exponent register
are added to obtain the product exponent.
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6. Bits 59-63 of the J register are decoded to
determine the multiple(s) used for each iteration
cycle.

7. The multiplier and partial product are shifted
four bits for each iteration.

8. The shift counter determines the number of
iterations taken.

9. The normalized product and exponent replaces
the first operand.

10. The ME and MER instructions do not alter
bits 24-55 of the first operand.

11. A final product exponent overflow causes a
program interrupt.

12. An overflow exception does not occur for an
intermediate product exponent when the final expo-
nent is brought within range by normalization.

13. An all zero product fraction sets the product
sign and characteristic to zero; a program interrupt
does not occur.

14, The program interrupt for lost significance
is not taken for multiply instructions.

Initial Operand Location

At the beginning of the execution cycle, the operands
are located in the following registers by the methods
described at the beginning of this chapter and by the
gating shown on Figure 5079:

Instruction Format R1 Operand R2 Operand

RR single (MER) FLP register M0-23, 56-63 *

RR double (MDR) FLP register MO0-63 *
RX single (ME) even address M0-23, 56-63 * J0-63
RX single (ME) odd address  M32-63 * JO0-63
RX double (MD) MO0-63 * JO-63

* denotes multiplicand

Instruction Sequencing

o Instruction sequencing is controlled by eight
triggers.

e Prenormalization is identified by the first float-
ing-point trigger and the norm trigger.

e The X12 multiple generation is identified by the
iteration preparation trigger.

® The multiple decode cycles are identified by the
iteration preparation trigger and the iteration
trigger.

© A second cycle during an iteration cycle is
identified by the add trigger.

e A zero result is identified by the test trigger.



e The product and exponent of the multiply oper-
ation is gated to the floating-point register,
which is identified by the put away trigger.

e The termination cycle is identified by E last
cycle trigger.

TFigure 6412 is the data flow of the multiply instruc-
tions, and Figure 6413 is the logic flow of the mul-
tiply instructions.

First Floating-Point Cycle

The first multiplicand pre-normalization cycle is
identified by the first FLP trigger (Figure 5552)
being set. The multiplicand (M register) (Figure
5067), is transferred through the main adder left
shifted 0, 4, or 8 depending on the number of high-
order zeros detected by the shift decoder (Figure
5087) and the result is placed in the K and M regis-
ters. At the same time that the M register is trans-
ferred to the main adder, bits 56-63 of the M regis-
ter are gated to the exponent adder and 0, 1, or 2 is
subtracted from the exponent depending on the amount
of shift (0, left four, or left eight) that is decoded to
eliminate high-order (leading) zero digits in the mul-
tiplicand. The result from the exponent adder is
placed in the exponent register. During this cycle,
the multiplier is transferred from the register bus
latch to the J register (RR formats) with a right eight
ring shift to locate the exponent in J0-7 by the logic
shown for the right eight ring shift on Figure 5061.

Norm Cycle

The following multiplicand pre-normalization cycle(s)
is identified by the norm trigger (Figure 5556) being
set. The multiplicand (M register) is transferred

to the main adder and the exponent register is trans-
ferred to the exponent adder; an appropriate shift

and exponent decrement cycle is taken. The norm
cycle(s) continues until bits 0-3 of the M register are
hexnormalized.

The K register is used to zero detect the multi-
plicand. If the K register is not zero, pre-normal-
ization cycle(s) is taken until the multiplicand is nor-
malized; however, if the multiplicand fraction is zero,
the test cycle trigger is turned on for the following
cycle (third cycle). The test cycle zeros the expo-
nent register and turns on the E last cycle trigger,
which allows a true zero to be gated to the floating-
point register.

Iteration Preparation Cycle
After the multiplicand is pre-normalized, the iter-

ation preparation cycle that is identified by the iter-
ation preparation trigger (Figure 5560) is set.

During this cycle, the X12 multiple is generated,

the exponents -64 are added together, the low-order
multiplier group is decoded, the multiplier (J regis-
ter) is gated to the register bus latch and back to the
J register to accomplish a right four shift, the mul-
tiplier fraction (J register) is zero detected for a
multiplier of zero, and the shift counter is set for
use as an iteration counter.

The X12 multiple is generated by gating the
contents of the K register (X16 multiple) to the
normal input of the main adder and the contents of
the M register (X4 multiple) right two to the com~
plement input of the true/complement input of the
main adder. The X4 multiple is subtracted from the
X16 multiple, and the main adder output is gated to
the L register; therefore, at the end of this cycle
the L register ‘contains the X12 multiple. The X6
multiple is obtained from the X12 multiple by gating
the L register right one when needed.

The exponent sum -64 is obtained by transferring
the exponent register to the true/complement input
of the exponent adder and the multiplier exponent
(J register 0-7 MER, MDR, and ME even address or
J32-39 ME odd address) to the normal input of the
exponent adder. Since the operand exponents are
excess 64 numbers, the AEOB position 1 is comple-
mented to produce the exponent sum less 64. The
exponent sum is gated into the exponent register.

The low-order multiplier group is gated to the
multiplier decoder (Figure 5048), which selects a
multiple gating trigger. The multiplier group is
located in J register bits 27-31 for the ME (even
address) and MER instructions, and in bits 59-63
for the ME (odd address), MD, and MDR instructions.
The low-order multiplier group is decoded as though
the low-order bit of the group is a zero. If the low-
order bit is a one, K register bits 0-59 are gated
right four (X1 multiple) to the main adder during the
next cycle with the decoded multiple.

To shift the multiplier right four with respect to
the multiplier decoding circuits, the J register (Fig-
ure 5061) is gated left four to the register bus latch.
The register bus latch is gated right eight to the J
register to bring the next multiplier group into place.
During this transfer to the register bus latch, the
J register exponent is set to zero for proper multi-
plier decoding during the last iteration cycle.

The shift counter is set to a value of 6 if the
instruction is a single precision or to 14 if the in-
struction is a double precision instruction. For
each multiply iteration cycle, the shift counter is
decremented by one.

During the first iteration preparation cycle, J
register positions 8-31 [MER. ME (even address)
instructions ] or positions 8-63 [ MD, MDR, or ME
(odd address) instructions| are zero detected. If
the multiplier is zero, a zero product results and
the test cycle trigger is set. The K register and
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the exponent registers are set to zero, the E last
cycle trigger is turned on, and the zero result is
gated into the first operand location. If the multi-
plier is not zero, the iteration preparation trigger
is set again with the iteration trigger to identify the
cycle in which the first multiply iteration occurs.

Iteration Cycle

The multiply iterations are identified by the iteration
preparation trigger (Figure 5560) and the iteration
trigger (Figure 5561) being on. The iteration trigger
being on indicates a cycle in which a decoded multi-
ple is added to or subtracted from the partial prod-
uct. The iteration cycle is identical to the fixed-
point multiply iteration; the decoded multiple gates
either the M register or the L register to the true/
complement input of the main adder and the K reg-
ister bits 0-59 (partial product) are gated right four

to the normal input of the main adder when the iter-
ation trigger is on. Whether the input to the true/
complement input of the main adder is complemented
or not depends on the high-order bit of the multiplier
group; if it is a zero, a true add cycle is taken or if
the high-order bit is a one a complement add cycle
is taken and the main adder hot 1 trigger is set.

At the beginning of the first iteration, the K reg-
ister contains the X16 multiple, thus the K register
(positions 0-63) is gated right four to the main adder
during the first iteration cycle if the low-order bit of
the group is decoded as a 1. The new partial product,
located in the main adder out latches, is gated into the
K register. If the multiple is a two cycle iteration,
the iteration preparation trigger is turned off, the
next multiple is not decoded until the X2 or X6 mul-
tiple is added or subtracted from the partial product,
and the add trigger is turned on to identify the cycle
in which the X8 multiple is added to or subiracted
from the partial product.

Add Cycle

The second add cycle or any two-cycle iteration is
identified by the add trigger (Figure 5566) being
turned on. During the add cycle, the M register
positions 0-63 are gated right one (X8 multiple) to
the true/complement input of the main adder and the
K register positions 0-63 are gated straight, (partial
product plus or minus the X2 or X6 multiple) to the
other input of the main adder. The new partial
product is gated from the main adder out latches to
the K register. If the multiplicand is a complement
number, 1 bits must be inserted at the high-order
positions of the main adder true/complement input,
which are vacated because of the multiple generation.
If the multiplier is a complement number, the last
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multiplier group must be decoded as though the high-
order bit of the group is a 1 bit.

During each iteration cycle, the shift counter is
gated to the true/complement input of the exponent
adder and one is subtracted from it. The result is
returned to the shift counter. When the last iteration
cycle is taken, the put away trigger is set to identify
the put-away cycle.

PA Cycle

During an iteration preparation cycle in which the
remaining multiplier digits are decoded as zeros,
the iteration trigger and either the iteration prep-
aration trigger or the add trigger is on. At the end
of the cycle the partial product is gated to the K
register and the M register. The product may have
one leading zero digit because the multiplicand is
digit normalized but not bit normalized.

The shift counter may not be equal to zero when
the remaining multiplier groups are zero. If the
shift counter is not zero, it contains the number of
leading zero digits in the multiplier fraction because
it was originally set to a value equal to the total
number of multiplier digits.

The PA cycle is used to store the product and
exponent in the specified floating-point register.
This cycle is identified by the put away trigger
(Figure 5554) being set. Bits 0-55 of the K register
are transferred to bits 0-55 of the floating-point
register specified by R1 or the instruction and the
exponent register bits 0-7 are transferred to bits
56-63 of the floating-point register.

The product is not valid if the shift counter is
not zero or if the product fraction is not normalized.
If the fraction is not normalized, the M register
(Figure 5067) is gated left four to the true/comple-
ment input of the main adder. The result is returned
to the K register and the M register. Also, if the
result is not normalized or the shift counter is not
equal to zero, the shift counter is gated to the true/
complement input of the exponent adder, the expo-
nent register is gated to the normal input of the
exponent adder, and the contents of the shift counter
is subtracted from the contents of the exponent reg-
ister. The AEOB position 1 is complemented be-
cause exponents and shift counter values are excess
64 numbers in floating-point multiply instructions.
The result is placed in the exponent register. If the
product is not normalized, the exponent adder hot 1
trigger is not set, thereby reducing the product
exponent by the shift counter value plus one. At
the next A pulse the shift counter is set to zero.

The put away trigger is set along with the E last
cycle trigger for the next cycle.
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ELC Cycle

The E last cycle trigger (Figure 5555) is set if the
result is not normalized or the shift counter is not
equal to zero during the first attempt at gating the
fraction and exponent to the floating-point register
addressed by Rl of the instruction. The E last

cycle trigger is not turned on with the put-away trig-

ger if exponent underflow occurs and the underflow
mask bit is a zero. The test cycle trigger is set
to indicate that the K register exponent register is
being set and the zero product is put away. If ex-
ponent underflow occurs and the underflow mask
bit is a one, the test cycle trigger is not set. The
correct sign and fraction are put away. The result
characteristic is 1281 greater than the correct
characteristic.

STORE

The store instructions are:

5TD 60 RX (Long Operand)

60 [ I 02
[} Ta " 15 s 19 20 k1]
STE 70 RX (Short Operand)

R E: ] 81 I D1

(] 78 15 18 ¥ 20 n

The store instructions are handled as follows:

1. The first operand is stored at the second
operand location.

2. The first operand is not changed.

3. The STE instruction does not use bits 24-55
of the first operand.

4. The BCU is aware of the storage request by
the beginning of E time,

Initial Operand Location

At the beginning of the execution cycle, the operand
is located in the following registers by the methods

described at the beginning of this chapter and by the
gating shown on Figure 5079:

Instruction Format R1 Operand
RX single (even address) Jo-31

RX single (odd address) J0-31

RX double J0-63

Instruction Sequencing

@ Instruction sequencing is controlled by three
triggers.

® The store preparation cycle is identified by the
first FLP trigger.

@ The store and wait cycle(s) are identified by the
store trigger.

® The termination cycle is identified by the E last
cycle trigger.

Figure 6414 is the data flow of the store instruc-

tions and Figure 6415 is the logic flow of the store
instructions.

First Floating-Point Cycle

The store preparation cycle is identified by the first
floating-point trigger (Figure 5552) being on. The
operand (floating-point register addressed by R1 of
the instruction) is located in the J register. During
this cycle, the operand is gated from the J register
by the logic on Figure 5061. If the store address is
odd, the operand must be placed in the low-order
half of the K register. In order to accomplish this,
the output of the main adder is gated right 32 posi-
tions (Figure 5087) and set into the K register.

If the store address is even, the operand is
placed in the high-order half (bits 0-31) of the K
register. This is accomplished by gating the first
operand from the J register to the main adder, and
taking the output of the main adder and gating it into
the K register.

Store Cycle

The instruction termination cycle is a variable-
cycle operation identified by the store trigger (Fig-
ure 5567) being turned on. When the execution unit
is started, a storage request cycle is also requested
at the I to E transfer, and this variable cycle oper-
ation depends on the accept signal from the bus
control unit. If, at the end of the store-preparation
cycle, the accept signal is not received from the
bus control unit, a wait cycle is taken. Wait cycles
are taken until the accept signal is received from
the bus control unit. During the wait cycle(s),
gating is not performed and the operand is not
modified.

ELC Cycle

The E last cycle trigger (Figure 5555) is turned on
when the accept signal is received from the bus
control unit. The accept signal gates the K register
to the storage bus in, and the E last cycle trigger
terminates the store instruction.
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VARIABLE FIELD LENGTH

INTRODUCTION

CONCEPTS OF VFL

@ VFL instructions process one data byte at a
time.

® VFL operands may vary in length and need not
conform to word boundaries.

® VFL operands and results are contained in
storage.

The variable field length (VFL) feature of the Sys-
tem /360 Model 75 enables the execution of instruc-
tions in which the operands in storage may vary in
length and be located in any byte addressable stor-
age position. The operands need not conform to
word boundaries; they may be contained within one
or several storage words.

The E unit of the CPU contains circuits and units
that provide byte gates, data paths, and controls
that enable the execution of VFL instructions.
Through the VFL circuits, the operands of each
VFL instruction are processed one data byte at a
time, serially.

VFL instructions are those that conform to the
SS instruction format, and certain other fixed se-
quence VFL instructions in the RX and SI format.

S8 instruction processing is storage to storage,
with both operands and the result contained in stor-
age. 5SS instructions are classified as either deci-
mal or logical. Decimal instructions are those that
perform decimal arithmetic, such as add, subtract,
multiply and divide. SS logical instructions are
those that perform logical functions with alphabetic
or numeric data, such as edit, translate, and move.
The move instruction, for example, moves an alpha-
meric data field from one storage location to another
without changing the data.

The fixed sequence VFL instructions are essen-
tially FXP instructions that process one data byte
through the VFL circuits.

Because the operands and result of SS instruc-
tions are contained in storage, the execution se-
quencing of SS instructions differs from those of all
other instructions. The I unit does not prefetch op-
erands for the SS instructions, nor does it continue
instruction preparation during the SS execution.
When an S8 instruction is encountered in the instruc-
tion stream, the I unit prefetches all elements of
the instruction words from storage then transfers
execution functions to the E unit. Thereafter, the
operands are fetched from storage to the K and L
registers. Selected data bytes are gated, one at a
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time, from K and L registers to the VFL circuits
(Figure 2040). The result bytes are returned to the
K register. When all bytes of the operands are
processed, the result in the K register is placed

in storage and the instruction is terminated. The
termination of the S8 instruction releases the I

unit to continue instruction preparation.

Instruction Format

@ SS instructions occupy three haliwords in stor-
age.

@ Defines decimal or logical instruction.

@ Defines length of both operands and their
storage addresses.

The S8 instruction format occupies three storage
halfwords, 48 data-bits plus parity, and conforms
to the format shown in Figure 24. Each SS instruc-
tion contains an operation code and sufficient data
to define each operand in storage.

Operation Code

Bit positions 0-7 of the instruction contain the
operation code in eight-bit binary form. The eight-
bit operation code is commonly recorded as two
hexadecimal digits. Figure 25 shows the operation
code bit structure and hexadecimal representation
for each of the SS instructions.

Storage Addressing

When an SS instruction is started and at various
times during the execution, the storage location of
each operand is referenced. The Bl, D1, and L1
fields of the instruction define the storage location
and length of operand 1. B2, D2, and L2, likewise,
define operand 2.

The four-bit Bl or B2 instruction field specifies,
in binary coding, one of 15 general registers in
which the base address is contained.

The 12-bit D1 or D2 instruction field contains, in
binary coding, the number of bytes the operand is
displaced from the base address. When a storage
referencetoanoperand is made, thestorage address
must first be computed. When a storage reference
to operand 1 is made, the storage address is com-
puted by adding the contents of the general register
specified by the Bl instruction field to the displace-
ment factor in the D1 field, Bl + D1. The storage
address of operand 2 is similarly computed using
the B2 and D2 instruction fields. If the Bl or B2



Decimal

[OpCode] LIT L2 T 81 [ DI | 82 | D2 |
] L L] [EXT) 1w na 3534 @
Logical

[OpCode] L TB1 ] m [ B2 ] D2 |
] £ niy 1514 1w nn LT v

FIGURE 24, 55 INSTRUCTION FORMAT

instruction field contains zero, then that address
factor is considered to be zero and the D1 or D2
instruction field becomes the actual storage address;
in this case, the contents of general register 0 is
ignored.

The four-bit L1 or L2 operand length field de-
fines, in binary digits, the number of data bytes
operand 1 and operand 2 contains. For the majority
of VFL decimal instructions, the maximum length
of each operand is 16 bytes, or 32 decimal digits.
However, for S8 logical instructions, the L1 and L2
fields are combined as one to provide a maximum
operand length of 256 bytes, or 32 storage words.

Either decimal operand may start at any byte
location in storage, and extend into as many as three
storage words. The sum of the base address and
displacement factor, Bl + D1, or B2 + D2, defines
the low-order storage address of the operand. When
the length factor is added to the sum of the base
address and displacement, Bl + D1 + L1 or B2 + D2
+ L2, the high-order storage byte address of the
operand is defined. Because each storage word
contains 8 bytes, and each operand may be as many
as 16 bytes long, the operand may be contained in
one, two, or three storage words. The starting byte
address, Bl + D1 or B2 + D2, and operand length,
L1 or L2, determine the number of storage words
that contain the operand. Figure 26 shows some of
the starting byte to operand length relationships.

An operand that is 8 bytes long can be contained in
one storage word if the sum of Bl + D1 or B2 + D2
address byte zero of the storage word (Section A of
Figure 26), An operand that is two bytes long can
be contained in two storage words if the sum of Bl +
D1 or B2 + D2 addresses byte 7 of the storage word
(Section B of Figure 26). The majority of the dec-
imal instructions limit the operands to a maximum
length of 16 bytes, the equivalent of two storage
words. However, an operand longer than 9 bytes
can occupy three storage words, depending on the
starting byte address of the operand (Section C,
Figure 26).

VFL instructions are executed by stepping
through the operand fields and processing one byte
at a time. Decimal instructions, except divide,
start execution with the storage byte that contains
the low-order, least significant decimal digit
(highest storage address), and steps toward the
high-order end of each operand until all bytes are
processed. Logical instructions start execution
with the storage byte that contains the high-order,
most significant, digit and steps toward the low-
order end of the operands as each byte is processed.

Because the decimal and logical SS instructions
step through operands in opposite directions, a
different sequence of reference to storage words is
used. For example, if either operand of a decimal
instruction extends across a storage word boundary,
then the first storage word used is the one located
at the higher storage address. The opposite is
true for the SS logical instructions.

Data Format

Decimal data contained in storage is in the binary-
coded decimal (BCD) format. A binary-coded
decimal digit is represented by four storage data
bits. Four data bits can represent any binary sum
within the range of 0 to 15. A decimal digit can be
any number within the range of 0-9. Therefore, the
four-bit configuration that represents a binary sum
within the range of 0-9 also represents decimal digits
0-9. The four-bit configurations with binary sums
greater than 9 are used to represent the sign of a
BCD digit, or the zone coding of alphabetic or spec-
ial characters, Figure 27 and 28.

Decimal data is contained in storage in either of
two formats, zoned data in the unpacked format, or
decimal numbers in the packed format.

Unpacked Format: In the unpacked format, each
decimal number is zoned. One zoned decimal digit
occupies each byte of the decimal field in storage.
In each byte, bits 0-3 contain the zone code and bits
4-7 contain the decimal number (Figure 29).
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J S5 Op Code Ly L2 B) o] B2 D2
0 78 1112 1516 19 20 3132 353 47
Op Code Neme Op Code Nome
Hex | Binary Hex| Binary
DO [1101 0000 FO |1111 0000
D1 0001 | MVN | Move Numeric Fl 0001 | MVO | Move w Cffset
D2 0010| MVC | Move F2 0010| PACK | Pack
D3 0011 | MVZ | Move Zone F3 0011 | UNPK | Unpoack
g; glgﬂ CNC AND F4 0100
101 |CLC | Compare Logical F5 | — 0101
D6 | 5§ 0110/OC | OR F6 | § 0110
D7 | .= 0111|XC Exclusive OR F7 | ‘o 01
o8 | & 1000 F8 | & 1000[ZAP | Zero and Add
D9 1001 F9 1001 |CP Compare
DA 1010 FA 1010 | AP Add
DB 10N FB 1011 |SP Subtroct
DC 1100 [ TR Translate FC 1100 | MP Multiply
DD 1101 [TRT Translate/Test FD 1101 jDP Divide
DE 1110 |ED Edit FE 1110
DF 11101 1111 |EDMK | Edit and Merk FE |11 1mn
FIGURE 25. 55 INSTRUCTIONS
Storage Storoge Storoge Starage
Word 3248 Ward 3256 Word 3264 Word 3272
T T L T T T T T T T T T T T L T T T — T T T T
; 5 ] Z 0 I 2 3 4 5 6 7 0 | 2 3 4 5 ] iy 0 I 2 3
| | 1 s\ L L L A L L L 1 1 1 1 1 L 1 1 i 1 1
81+ Dy By+ Dy + Ly
or By + D2 or
=3256 B4 Déd. Ly
@ Lyorly = 7(8 bytes) =3263
Storage Storage Storage Storage
Ward 3248 Word 3256 Ward 3264 Word 3272
¥ L] T L] L L] T T Ll T T T T L Ll T T L T ¥ L L T
356?0123456?012345670523
By 4+ D) By + D)+ Ly
or or
B2 4+ D2 B2+ Da+Ll2 -
Lyorla = 1 (2 bytes) ~3263 =3264
Storage Storoge Storoge Storoge
Word 3248 Word 3256 Word 3264 Ward 3272
T T T T L T T T Li T T T T T T T T T T T T T
i 5 (-] 7 0 1 2 3 “ 5 -] 7 0 1 2 3 4 5 b 710 1 2 4
i 1 1 i L '} 1 ' '} 1 I i - A i A i " 1 i i
By + Dy B+ D1+ L
or or
= 82 + D2 B2 + D2+ L2
@ Ly or L2 = 9 (10 bytes) 2 s

FIGLIRE 26. OPERAMND LENGTH == WORD 8OUNDARY RELATIONSHIP
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Storage

72 Bit Storoge Word
Byte Address o1

— o~
HH

AR

I

Data Byte
BIt Position ——{p [0 J1 ]2 |3 4151617
. __— | DetaBits Data Bits
Parity Bit High-Order|| Low-Order
Decimal Decimal
Digit Digit
Bit Pattern of Byte Containing (HOD) (LOD)
Zoned Decimal Diglts 0O J1frfr]r]jojo 0
1 [y frjrjrjjojojofn
2 [1frifafr]jofofrfo
3 [ frjrjrjjojojijl
4 |1fr1jr]r]jojrjojo
5 [vjrjrjrqjojijogt
6 |1j1fjrjrjjofrjrfo
/ANDnoannm
8 1{1j1]rjjrjojojo
9 [1frjrvjryjijojojn
=
4-bit BCD Signs
:inaqr
ASC Il s 10 + [ X|X|X[X|][1]o]1]0O
11 by = IX[X[X[X]]1]0f1]1
=SS =
12 Preferred 4+ XX |X[{X]l1|1]0]0O
EBCDIC
13 Preferred - AIX XX jvjof
14 + [ XIXIXIX| 1 ]o
15 + [ XIXIX[X Pl

FIGURE 27. DECIMAL BYTE
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Packed Format: In the packed format, each storage
byte of the decimal field can contain two decimal
digits.

All instructions that perform decimal arithmetic
require that the data be in the packed format and the
sign of the operand in the byte that contains the low-
order decimal digit (the byte at the high-order
storage address). See Figure 29,

Data may be changed from one format to another
by use of the pack or unpack instruction.

VI'L Instructions

e SS instructions process multiple bytes

e [I'ixed sequence instructions process single data
bytes.

VFL instructions processed on System/360 Model 75
consist of all SS format instructions (Figure 25) and
certain fixed sequence instructions that process a
single data byte through VFL data paths.

Figures 9450 through 9457 are reference charts
that show rules, conditions and examples of all SS
instructions except the translate and edit instructions.

The fixed sequence VFL instructions are:

RX Format
STC Store character
1cC Insert character
SI Format
WRD Write direct
RDD Read direct
™ Test under mask
MVI Move
TS Tesl and set
NI AND
CLI Compare logical
0l OR
Xl Exclusive OR

The programming rules and objectives of the
fixed sequence VFL instructions and the translate
and edit instructions are contained in the publication
IBM System/360 Principles of Operation, Form
A22-6810 or see the Theory of Operation section of
this manual.

VFL Data Flow

e Operands are fetched from storage to the K and
L registers.

e Byles from K and L are gated through VFL cir-
cuits to the K register.

e Contentsof the K register are returned to storage.
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Variable field length (VI'L) data handling is designed
as a subsystem within the main execution unit. The
K and L registers are used as temporary storage for
64-bit words, plus eight parity bits. Operands are
brought from main storage through the J register to
the K or L registers, Figure 30, The K register is
used for operand 1 (Op 1) and the L register for
operand 2 (Op 2). The result of an operation is
placed in the K register and at the proper times, the
bytes of the K register that were changed are put
back in the main storage.

The following text briefly describes the functions
and controls of the various VFL functional units
shown in Figure 2040. A complete description of
the VFL functional units is contained in 2075 Proc-
essing Unit, Vol. 1 FEMI, Form 223-2872,

Right Byte Gate (RBG)

All 72 bits from the K and L registers are brought
into the right byte gate (RBG). Two gating triggers,
gate K with S or gate L with S, determine whether
the K or L register is gated by the S pointer. The
value in the S pointer determines which byte, 0-7,
of the K or L register is gated through the RBG.
The forcing of parity to the right side is OR'ed at
the output of the RBG.

Right Digit Gate: The digit gate is between the RBG
and true/complement/plus six (T/C +6) gate. This
gate determines whether the two four-bit groups,
0-3 and 4-7, are straight gated or cross gated to
the T/C +6 gate. The gate digit straight line is

the inversion of the gate digits across line and,
therefore, the output of the RBG is passed through
the digit gate at all times. The gate digit across is
used for pack, unpack, move offset, edit, edit and
mark, and convert binary. The machine preferred
zone and plus sign can be forced at the digit gate.

Left Byte Gate (LBG)

The 72 bits from the K register and 8 bits plus
parity from DB/DC are brought into the left byte
gate (LBG). Two gating triggers determine whether
the K register is gated with the T pointer or DB/DC
is gated through the LBG. The value in the T pointer
determines which byte of the K register is gated
through the LBG.

Decimal Adder
The VFL decimal adder is an eight-bit binary adder

with modifications to the parity predict and output
sums for decimal operations. Because VFL additions



Extended Binary-Coded-Decimal Interchange Code (EBCDIC)
BYTE

Bit Positions ———————»01

L| ( 00 o, 01 | 10 N———-
23

4567| oo o1 10 " 00 0 [V 00 o 1 00 o 10 "
0000 | mNuLL b,_?,* s | - > ]| < | ¢ 0
0001 / a i A J 1
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FIGURE 28, BCD CODING
Zoned Decimal Number
0 34 70 3 LA 70 34 70 34 7
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Packed Decimal Number
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FIGURE 29. DATA FORMAT - UNPACKED--PACKED
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K end L Regy Looded
from Storage via J Reg
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Result 1o Y
Storage

VFL-Decimal

Circuits
(Figure 2040)
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FIGURE 30. GENERAL DATA FLOW--MODEL 75 VFL

move through a field serially, adding 8 bits at a
time, a carry out of the VFL adder is set into the
carry trigger, which is gated back as a carry-in on
successive byte additions. The VFL adder has full
carry look-ahead on the digit level. The binary sums
from the adder go into the decimal correction logic.
This correction logic is latched and can be gated
decimal and binary. Using excess-6 addition, the
binary sum of two digits is the correct decimal sum,
if there is a carry out of that digit position. If there
is no digit carry, the binary sum is six higher than
the correct decimal sum. The decimal correction
latches are gated as:

1. Gate binary sum if not decimal add or digit
carry. )

2. Gate binary sum minus 6 if decimal add and
not digit carry.

Note that the decimal correction is gated for both
decimal add and subtract but the gate decimal true
at the input to the adder is activated only for true
decimal add.

TC + 6 Gate: The excess-6 method is used for dec-
imal addition. This allows the VFL decimal adder
to be a binary adder with adjustment on the input and
output for decimal additions. Data are gated into the
right side of the decimal adder in one of three ways:

1. Binary True BT

2. Decimal True (TC + Six) DT

3. Complement Compl

Only one complement gate is required since the
9's complement of a decimal number, plus 6, equals
the 1's complement of the binary number. Therefore,
the complement gate (1's complement) is good for
both binary and decimal additions.
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Decimal Digit 9's Compl +6
0000 1001 It
0001 1000 1110
0010 0111 1101
0011 0110 1100

ETC

The input gates to the decimal adder are split
for the high-order digit (bits 0-3, HOD) and the low-
order digit (bits 4-7, LOD). Bit 7 has a separate
complement control so that the machine preferred
plus sign can be changed to the machine preferred

" minus sign.

Right Side Parity Adjust: The byte parity must be
adjusted whenever a partial byte is gated through the
adder or bits are altered as they are gated to the
adder. When gating digits decimal true, decimal
digits 4 and 5 are the only ones that change parity.

Two gating combinations of decimal true that
require parity adjustment are:

1. (HOD DT). (LOD BT)

2. (HOD DT). (LOD DT)

All other parity adjustments are made because
either HOD or LOD is not gated to the adder. Fig-
ure 31 shows the possible gate combinations on the
adjusted parity.

Left Side Adder Input: The LBG is connected straight
to the left side input of the decimal adder. This
gate is split between bits 3 and 4 for high- and low-
order digits. The parity adjust gate has the follow-
ing combinations:

1. P straight

2. PH -- adjusted for HOD removed

3. PL -~ adjusted for LOD removed




ST (HOD DT) - (LOD D)
Sign §T
Sign ST

(HOD Compl) - (LOD BT} - (Invert Sign) | PL
(HOD Compl) - (LOD BT) * (lnvert Sign) | PL

5T (HOD Compl) * (LOD Compl) Pin
ST + CR (HOD BT) - (LOD 8T) Pin
Zaone ST (HOD 8T) - (LOD &7 PH
Zone 5T (HOD BT) Pin (Forced Parity)
5T (HOD BT) PL
ST (LoD BT PH
5T Input on left side, no input an right side | Pin (Farced Parity)

CR (HOD BT) PH

Forced Bins | Digit Gotes True ~Complement-Plus Six Adjusted Pority
Sign ST (HOD DT) - (LOD BT) - (lnvert Sign) (HOD=4/5) % PL
Sign ST (HOD DT) * (LOD BT) - (Invert Sign) (HOD=4/5) %* L

(HOD=4/5) % (LOD=4/5) ¥ Pin

5T = Straight
CR = Cross

PH = Parity adjusted lor removal of HOD
PL = Parity odjusted for removal of LOD ~

FIGURE 31. T/C + 6 GATE COMBINATIONS

, Parity is forced to the left side of the adder to
the parity adjust gate.

AND-OR-Exclusive OR-Mask

The AOE is used for logical connectives and the
latch data path for storage protect key and direct
data input sense lines. With one exception, the
parity gated out with the AOE result byte comes
from the parity generator on the output of AOE.

The one exception is storage protect keys.parity,
which is gated back to the K register with the output
of the AOE when executing an insert storage key
instruction. Similar to an adder, the AOE has two
inputs. One side has inputs from the LBG and Y-Z .
counters. The other side has inputs from RBG and
direct data input sense lines. (The storage protect
keys are combined with the direct data lines prior
to their entry to AOE,) The output of AOE goes to
the K register and to DB/DC. This connection to
DB/DC is twisted so that high- and low-order digits
are interchanged.

Digit Buffer (DB)

The digit buffer is a four-position register with
positions numbered 0-3. Position 0 is the high-
order position. The digit buffer holds the zone por-
tion of the fill character for the edits instruction and
high-order digit of quotient bytes for decimal divide.
The digit buffer is used in conjunction with the digit
counter to hold, for comparison to the dividend, the
high-order 8-bits of the normalized divisor when
executing fixed- and floating-point divides.

Input to the digit buffer are lined as follows:

Digit Buffer 0o 1 2 3.
LBG 0 1 2 3
AOE 4 5 6 7

Digit Counter 8 4 2 1

Output of the digit buffer are considered along
with the digit counter described in the following text.

Digit Counter (DC)

The digit counter is a four-position counter used as
a counter in decimal multiply and divide, and as a
temporary storage register in edit, edit and mark,
pack, unpack and move with offset instructions.
Inputs to the digit counter are:

Digit Counter B 4 2 1
VFL 4 5 6 7
LBG 4 5 6 ki
AOE 0 1 -2 3
Multiplier Bus 0 1 2 3
Force 9 to DC 1 X b4 1

The DC is a trigger register connected to a
latched incrementer that feeds back into the register.
The incrementer can be either increased by one or
decreased by one.

The parity bit associated DB/DC is set from
input parity when one is available. (Multiplier bus
does not have a parity bit.) The DB/DC parity bit
can also be sent from a parity adjuster when counting
DC up or down. The input is used only with decimal
divide when the correct parity is available at the
beginning of a count.

The outputs of DB and DC are taken together as

- a byte to either LBG or the byte distribution (TD in)

to the K register.

S and T Pointers

The S and T Pointers are three-position counters
that are used as byte address pointers in the SS and
SI format instructions. The one input fo each pointer
is the H register bits 21-23. For SS instructions,
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the starting byte address for operand 1 (Op 1) and
operand two (Op 2) is placed in T and S respectively.
Each pointer is stepped up or down one as each byte
is processed depending on the direction of movement
through the operand field.

Each pointer has a three-position trigger regis-
ter with a latch output, implemented with an incre-
menter-decrementer. The incrementer-decre-
menter modifies the output of the latch to give the
next higher or lower register value, depending on
whether the pointers are being stepped up or down.

Three decoders decode the output of the pointers
and provide eight address lines to control the byte
gating. These decoders are:

1. S out decoder -- connects to the S register
and points to a byte of the L or K register for the
RBG.

2. T out decode -- connects to the T register
and points to a byte of the K register for the LBG.

3. T in decode -- connects to the T latch and
controls the release of the K register byte when gat-
ing the result byte to the K register.

The pointers are also decoded for 0 or 7 to de-
termine when main storage word boundary is reached.

Y and Z Counters

The Y and Z counters are each four bits in length.
They are used as two four-bit counters for SS dec-
imal instructions, and as one eight-bit counter for

S8 logical instructions. In SI and direct data instruc-
tions, Y and Z are used as an eight-bit register to
hold operation code bits 8-15. Operated individually,
Y or Z can be counted up or down by ones. Operated
as an eight-bit counter, they can be counted up or
down by one or by eight. Counting by eight is used
for the move instruction in transmit mode.

Each counter is a four-bit register feeding
through an incrementer-decrementer to a four-bit
latch. The latch is connected back to the register
input.

When used as counters, in the execution SS
instructions, Y and Z determine when the operation
is complete. Figure 32 shows the starting and end-
ing conditions for all 88 instructions.

The Y and Z counters have outputs to control
decoders, AOE and direct data gate. The connection
to AOE is for the immediate instructions (SI).

The direct data gate places the contents of Y
and Z (operation code bits 8-15) on eight lines for
three machine cycles in executing a read direct or
write direct instruction.

The Y and Z counters are set from IOP (8-15) at
B time of the last cycle of every instruction. This
allows the I unit to overlap T1 and T2 with the SI and
byte type RS and RX instructions. This set of Y and
Z is similar to the set of EOP.
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Start Count | Count | Count T
Instructions Y|Z Y Z |YondZ End Op
AP, CP, 5P, ZAP L1|L2| Dn | Dn Yand Z =0
MP LI|L2| Dn Dn Y=0
(o] L2|L2| Up | Dn ¥ =11
MVO, PK, UNPK LI{L2| Dn | Dn ¥=0
deneoe. x| ¢ on |vZ=o0
Tk, ED, EDMK 0 Up
TRT 1] Up YZ =L or Nonzero
Choracter

FIGURE 32. END OPERATION CONDITIONS~=VFL

Direct Data Register

The direct data register is an eight-bit register (no
parity) that is set with a byte from main storage on
a write direct instruction. The contents of the DD
register remain fixed until another write direct is
executed.

Multiplier Bus

The multiplier bus is a four-position gate used to
transfer the low-order 4-bits (J60-63), without
parity, from the J register into the DC during the
execution of the decimal multiply instruction.

VFL EXECUTION AND CONTROL

e Execution of SS instructions is divided into five
sequences:
1. Set-up sequence.
2. Ieration sequence.
3. Store-fetch sequence.
4, Prefetch sequence.
5. Address put-away (TRT and EDMK only).

® Set-up sequence fetches first word of both oper-
ands from storage and sets VFL control.

o Prefetch sequence fetches next operand 2 word if
needed.

e Iteration sequence gates data through VFL units
one byte at the time,

e Store felch sequence. Stores completed results
and fetches next operand 1 word.



FIGURE 33. SS EXECUTION SEQUENCE — AP/SP

o —
T2
1
2 |Fetch First Word Operand 1
3
5
=| 4 |Fetch First Word Operand 2
v
5
é
Prefetch Started for
Error 7 Second Word Operand 2
8
9
A Error
Y
Check
Signs | 153
Process Sign Bytes
o by 151
T=0 - Error S=0-T#0
| P 111 # o
T=0 PF1 |Relood L
r PF 2 |Request
A 4
Process All "
152 |other Bytes PF 3 |Wait (Acc)
L T=0 -|Emor I
0 PF4 |Wait (Adv)
—P
S=0-T#0
Y-zZ=1110 ¥
SF1
SF 2
SF3
SF 4
Start Recomplement 5F 5 End Op
SF &
[ [ s=0
Operand 1 not
Completely Y
Processed m
and S £0
J'—-\‘-.’
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VIL Execution

The execution of all SS instructions starts with a
set-up sequence. For repetitive byte operations,
iteralion sequences are used. Operand 1 fetching
and storing is done by store-fetch sequences. Oper-
and 2 fetching is done by prefetch sequences. For
those instructions in which the result or address is
put-away in a GR, the put-away is done by sequencer
A, B, C, and D.

Figures 33 and 34 show an example of a decimal
add sequence and how the sequences described in
this section are used.

Set-Up Sequence

The set-up sequence prepares counters and registers
to start the iteration sequences. This consists of:

1. Address calculation (low-order of 3 bits set
into T and S) and set initial fetch request, for each
operand.

2. Address comparison for overlapping fields.

3. Initial setting of Y and Z operand length
counters.
4. Transfer operand words when they arrive

from main storage, from J register to Kand L
registers.

5. Set initial values into ER and SC for logical
instructions.

6. Set VFL gating triggers.

7. Start iteration sequence.

The address comparison for overlapping fields is
made because byte operations must be executed in

If the difference hetween the starting address of
the two operands is 0-7, there is a possibility that
bytes of both operands will be taken [rom the same
storage word during execution. When operand 1 and
operand 2 are in the same storage word, the RBG is
switched fo gate from the K register instead of the
L register, and thus, both the LBG and RBG take
bytes from the K register (see ""Overlap Control"),

If the difference between the sturting address of
the two operands is 8-15, then the operand 2 word
which would be fetched by a prefetch is presently in
the K register, Therefore, the contents of the K
register are transferred to M register during each
store-fetch sequence, then M is transferred to L in
the next prefetch.
such a way that results appear to have been generated
by operating one byte at a time from main storage.
When the operands do not overlap into the same
storage word, there is no difference between oper-
ating a byte at a time or eight byles at a time from
main storage.

In decimal operations, the comparison is made
to determine if operand 1 resides in lower order
storage than operand 2. In logical operations, the
comparison is made to determine if operand 1 resides
in a higher order storage location than operand 2.

Iteration Sequence

The VFL iteration sequence executes the arithmetic
or logical functions specified by the instruction, In
general, one data byte of each operand is processed
each iteration cycle, controlled by one of three

Clock Cycles . :
R R R
Set-Up 1213|4506 |718]|9
4 1 v
1 | | R
Prefetch | | 113 4 112)3 4 1
L L T v
[ I
Iterations [ 3j1]2 2112 |2 2|12|12]2]2 2
R
Store-Fetch 1] 2 3|14|5]6 112]31415
i Y "
Storage | I \ !
Bank 1 |, Fetch | Fetch | \ \ Store
Bank 2 | Fetch \ Fetch [\ Fetch \ Store
T Pointer 4|14|14|4|4(|4]4]4|3|3|2|1|0|0|0]|0O |0 olo(7]|6]|5|4]3|3|2|2
S Painter 111 1/0|0|7(&6|5(5|5|5(|5|5|5|5|4|3|2|1]|0|o|(7]|7
YCounter [0 [ - -[-[-|-[-[10[10]9 (8 [B|71615/5[5(5]|5(5]5]5|4[3[2][1]|0]0N5)15
2 Cou E - |-]-1-]-]-1-18.8/7]|6]6|5[4[3]3]3]3]3 ]33 ]a]2]1]e [1s1s]1s)is]i5
B1+DM+LI = ===xx100 L1 = 1010
B2+D2+L2 = =---xx001 L2 = 1000

The letter "R" indicates when the BCU request is set.

FIGURE 34. 55 INSTRUCTION EXECUTION EXAMPLE--DECIMAL ADD
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iteration sequencers, IS 1, IS 2, or IS 3. The precise
function of each sequencer depends on the instruction
in process. For example, during the execution of
the decimal add (AP) instruction (Figure 34), IS 3
cycle checks the sign digit of the two operands and
sets controls for the correct algebraic addition; IS 1
provides the proper gates to the decimal adder to
add the low-order decimal digit (HOD of the byte) of
each operand; thereafter, IS 2 cycles repeat to add
one byte of each operand each cycle until all bytes
are added.

If a word boundary of either operand is encoun-
tered during iteration cycles, the iteration sequence
is suspended until a prefetch sequence or store-fetch
sequence provides the next word; iterations then
resume,

Each cycle that an Op 2 byte is processed, the Z
counter and S pointer are stepped. When S steps
down to zero for a decimal instruction or up to seven
for logical instructions, an Op 2 word boundary is
encountered and a prefetch sequence started to fetch
the next operand 2 word. When Z steps down beyond
zero to 15 (1111) all Op 2 bytes are processed and
byte gating for Op 2 is terminated.

Each iteration cycle that an Op 1 byte is proc-
essed Y counter and T pointer are stepped. When T
steps down to zero for decimal instructions or up to
seven for logical instructions, an Op 1 word boundary
is present, iteration cycles are suspended and a
store-fetch sequence occurs. The store-fetch se-
quence stores the completed result word and fetches
the next Op 1 word to be processed. Iteration cycles
resume at the conclusion of the store-fetch.

Prefetch Sequence

When Op 2 is in more than one storage word a pre-
fetch sequence is used to fetch the second and sub-
sequent Op 2 words before they are actually needed.
The fetch for the first word of Op 2 is made during
the early cycles of the set-up sequence. If Op 2 is
in more than one storage word, the first prefetch is
started during set-up (SU 7 cycle in Figures 33 and
34). Thereafter, a prefetch sequence is initiated
each time an Op 2 word boundary is encountered
during iteration cycles.

Four sequencers are used to execute a prefetch,
PF 1 through PF 4. The prefetch cycles occur in
sequence and, except PF 1 cycles, overlap other
execution cycles. PF 2 is the cycle in which the
fetch request for the next Op 2 word is initiated;
PF 3 is the wait cycle for the accept from BCU. It
may span one or several CPU cycles depending on
storage priorities. The prefetch sequence then
waits in PF 4 cycles until the Op 2 word arrives from
storage into the J register; the Op 2 word is then
transferred from the J to the M register and the
prefetch sequence terminates.

When an Op 2 word boundary is encountered
during iteration cyclés. the prefetch sequence starts
with PF 1 cycle. PF 1 cycle transfers the previously
prefetched Op 2 word from the M register to the L
register. PF 2 cycles follow PF 1 if another Op 2
word must be fetched from storage; otherwise, PF 1
cycle transfers the last Op 2 word fromthe M register
to the L register and terminates the prefetch
sequence. Iteration cycles are suspended during PF 1
cycles; iterations are resumed after PF 1 and are
concurrent with PF 2 through PF 4.

Store-Fetch Sequence

The store-fetch sequence is used to fetch the next
Op 1 word to be processed from storage and to store
the completed result from the K register. The store-
fetch sequence is also used as the terminating se-
quence for all SS instructions except the TRT in-
struction,

The store-fetch sequence consisis of six sequence
cycles, SF 1 through SF 6 (Figures 33 and 34). In
general, SF 1 and SF 2 control the fetch for the next
Op 1 word and SF 3 through SF 5 control the request
to store the result word contained in the K register.
SF 6 is the cycle that waits for the new Op 1 word to
arrive from storage if a fetch is started in SF 1.

Each time an Op 1 word boundary is encountered
during execution a store-fetch sequence is initiated.
The T pointer is used to control the gating of Op 1
data bytes; it is stepped up or down one as each data
byte is processed. The crossing of an Op 1 word
boundary is, therefore, indicated by the T pointer.
When execution moves right to left through an oper-
and field, the T pointer equals 0 at a word boundary.
When execution'moves left to right through an oper-
and field, the T pointer equals 7 at a word boundary.
When the execution moves to an Op 1 word boundary,
iteration cycles are suspended; a fetch is made to
get the next Op 1 word from storage; the completed
result word is stored, and iteration cycles are re-
sumed when the new Op 1 word arrives from storage.
In this case, the store-fetch sequence starts at SF 1
and sequences through SF 6.

When all data bytes of both operands are proc-
essed, or an interupt is signaled, a store-fetch se-
quence is initiated to terminate the instruction. The
data bytes are counted as they are processed during
iteration cycles. When the number of bytes specified
by the length field of the instruction have been proc-
essed, the instruction is terminated. The Y and Z
counters are used to count the data bytes and signal
the end of the instruction. For some VFL instruc-
tions, the Y and Z counters are set to the operand
length in the IOP register, then stepped down during
iteration cycles until Y and Z equals zero, Other
instructions reset Y and Z to zero to start, then step
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them up during iteration cycles until Y and Z equals
the length contained in the IOP register, Figure 32
shows how the Y and Z counters are used and the end
operation conditions of each VFL instruction,

Address Put-Away

Two instructions, translate and test and edit and
mark, put information in general registers as part
of their results.

Translate and test inserts the argument address
(Op 1 address) into the low-order 24 bits of GR 1
and the translated byte (nonzero byte from the trans-
lation table, Op 2) in the low-order eight bits of
GR 2. These results are inserted in GR 1 and 2
only if a nonzero byte is found.

Edit and mark inserts the byte address of the
first significant result digit in the low-order 24 bits
of GR 1.

Sequencers A, B, C, D, IS 1 and IS 3 are used
for the TRT address put-away and sequencers A,
B, C, D, and IS 1 are used for the EDMK address
put-away.

Interrupts

VFL operation can have the following interrupts:
1. Invalid address

Data

Specification

Decimal overflow

Decimal divide check

=L S U

Invalid Address: The invalid address interrupt can
occur on any fetch and all SS instructions have at
least one fetch. The address invalid frigger is reset
at the beginning of each S8 execution and then, once
set, remains on even though valid words may return
to the J register after the trigger is set. For all

SS instructions, except multiply and divide, the
address invalid is sampled at SU 9, and SF 6. For
S€ multiply and divide, when the address invalid
trigger is on, the sequence is switched to SF 3 and
terminates the instruction. The E interrupt trigger
blocks the set of VFL request triggers during the
SF sequence and causes the VFL end sequence trig-
ger to be set.

Data Interrupt: Data are checked on each iteration
cycle and the interrupt triggers are set when a sign
or digit is detected in the wrong place. During the
next store-fetch sequence, if the E interrupt trigger
is on, the VI'L end sequence is set and the setting of
both VIFL request triggers is blocked.

Specification Interrupt: The specification interrupt
can occur on decimal multiply or divide. L1 and L2
are checked during SU 2 cycle. If L2 is equal to or
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greater than L1, or L2 is greater than 7, the store-
fetch is set and the ending sequence follows.

Decimal Overflow: Decimal overflow can occur on
AP, SP and ZAP. The occurrence of the overflow
interrupts does not alter the execution of the instruc-
tions.

Decimal Divide Check: Divide check is sampled
during sequence A of divide test sequence. A divide
check switches the sequence to SF 3, which starts
the end sequence and terminates the instruction.

VFL Control

VFL T1-8 Trigger: VFL T1-8 are a group of multi-
purpose control triggers. All of these triggers are
set at A time and VFL T2, VFL T3, and VFL T5,
have latched outputs. The function of each trigger
is controlled by the instruction being executed.

(See Figure 9466)

VFL Store and Fetch Request Triggers: These are
two intermediate request triggers used for E unit
storage request. They have two outputs: one to the
BCU, and one to the I Unit. In the I Unit, the store
request trigger initiates an address compare and the
fetch request to return the word to the J register.
The BCU request triggers are set at the beginning
of the cycle following that in which the E unit request
triggers are set. The VFL request triggers are

set at LB time and are reset with the A time and
accept. The set for these triggers is latched to
generate the gating line gate AA to SAR and H.

Store-Fetch and VFL Sequence Triggers: VFL se-
quence triggers 1-12 are dual-function friggers,
control led by the VFL SF trigger. When the set-up
sequence of an SS instruction starts, the SF trigger
is off, and the VFL sequence triggers (1-9 or 1-12)
control and gate set-up sequence functions. When
the set-up sequence terminates, the SF trigger is
set and thereafter, the VFL sequence triggers (2-7)
control and gate functions for the store-fetch sequence.

Y-Z Counters: The Y and Z counters are the oper-
and length counters for the SS instructions. The
length counters start with the specified operand
lengths and counts down to zero for all instructions
except DP, ED, EDMK, TR and TRT.

Counting the Y and Z counters down maintains
the count of the remaining operand bytes to be proc-
essed, The value in the length counter can be used
to determine if another operand word should be
fetched once a prefetch has started. The first cycle
of the prefetch sequence transfers the previously



fetched word from the M register to the L register.
If another word is needed (length counter shows
more than eight bytes remain) the prefetch sequence
continues to get the next word from storage.

For ED, EDMK, TR, and TRT there is no actual
prefetch. The prefetch sequence is used to fetch
operand 2 words but does not overlap iterations.

For EDMK and TRT, the address of a byte in oper-
and 1 is put in GR 1. The most convenient method
in generating this address is to start with Y-Z at
zero and count them up as operand 1 bytes are proc-
essed, then add Y-Z to Bl + D1 when the byte ad-
dress is required. The end of the operation is in-
dicated by Y-Z equal IOP 8-15.

In decimal divide, the number of quotient bytes
to be generated is L1-L2. Therefore, L2 is set into
Y and counted up until Y equals IOP (8-11).

When counting down, the counters are stepped
with the set conditions for the iteration sequencers.
Because the specified operand lengths are the num-
ber of bytes minus one, the counter value of all ones
indicates the end of operation instead of a zero value
(Y or Z counter is stepped down beyond 0 to 15).
Furthermore, the counter latch is decoded instead
of the register because the decoder is used to set
and to reset triggers at A time. This means that
the counter value of 1110 for decimal or 1111-1110
for logical operations indicates all bytes have been
processed.

End Sequence Trigger: The VFL end sequence
trigger is set by all SS instructions. With one ex-
ception, the VFL end sequence trigger is set two
cycles before the end of the operation (Figure 35).
The one exception is the translate and test instruc-
tion, which ends in an address put-away sequence.
The set of the VFL end sequence trigger is also the
VFL through signal to the I unit. The ELC is set
for the last cycle on every SS instruction. This is
done to take advantage of the built-in end operation
control functions of the ELC trigger. Figure 35
shows the two end operation sequences.

VFL Zero Detect: The VFL data flow has two zero
detects, one on the output of the digit gates (RBG
ZD) and the other on the result bus back to K regis-
ter (result ZD).

Normal 55 End Sequence

CPU Clock Cycles :

|
SF3 ll
SF 4

SF5

VFL Thru
VFL End Seq
ELC

Wait here for occept if
store request was mode

TRT Address Put-Away End

Seq D

151

153

VFL Thru
VFL End Seq
ELC

FIGURE 35. EMND OPERATION, VFL

The RBG ZD is connected to two latches; the
low-order digit is latched for edit and both digits
are ANDed and latched as a byte not zero latch.
This is used in TRT and overflow detection.

The result ZD sets a trigger with a latch output.
The zero detect logic has a control line to force
zero in the low-order digit (sign position) for arith-
metic operations. The trigger is actually set if a
nonzero byte is detected and is in the off state at the
end of any operation with a zero result. The result
ZD is used by decimal arithmetic and logical com-
pare operations.
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Overlap Control
e Compare operand locations in storage.

e Set 0-7 or 8-15 overlap controls if operands
overlap.

e Controls register to register data transfer during
prefetch,

e Sets byte gate controls for iterations.

The two operands of an SS instruction may be located
at any addressable storage location. Both may be
contained within the same 72-bit storage word or
separated by any number of storage addresses within
the capacity of the system. The operands are per-
mitted to overlap the same storage addresses uncon-
ditionally for some instructions and conditionally for
others. For example, the move-with-offset instruc-
tion permits the operands to overlap in any manner,
while those instructions that perform decimal arith-
metic, such as add or subtract, permit the operands
to overlap the same storage addresses only if the
low-order bytes of each operand coincide.

When the starting bytes of the two operands are
separated by a few byte addresses in storage, the
gating of data bytes from each operand during
iteration cycles may move into and out of common
storage words as word boundaries are encountered.
For example, consider a decimal instruction with
Op 2 starting in an adjacent higher storage word than
Op 1. During initial iteration cycles, Op 2 bytes are
gated from the L register and operand 1 from the K
register. If Op 2 crosses a word boundary before
Op 1, both operands move into the same storage
word in the K register; then both Op 1 and Op 2 bytes
are gated from K register. Thereafter, if an Op 1
word boundary is encountered, iteration cycles are
suspended while the data in the K register is trans-
ferred to the L register and the new Op 1 word is
fetched from storage to the K register. When iter-
ation cycles resume, Op 1 data bytes are gated from
the K register while the remaining Op 2 bytes are
gated from the L register.
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Two overlap conditions are considered; if the start-
ing bytes of both operands are separated by less than
eightbytes in storage, 0-7 overlap exists, if the separa-
tionis more than 8 bytes butless than 16 bytes 8-15 over-
lapexists. A 0-7 overlap or 8-15 overlap control trigger
is used for each of the overlap conditions.

One of the functions of the VFL set-up sequence
is to determine the overlap status of the two operands
and establish the most efficient byte gating control.
During the early cycles of the set-up sequence, fetch
requests are made to get the first word of each oper-
and -- the storage word that contains the starting
byte. The storage address of Op 1 is computed and
the fetch made, then the storage address of Op 2 is
computed and the fetch for the Op 2 word is made.
Later, in the set-up sequence, the two storage ad-
dresses are compared to determine the number of
bytes that separate them.

Through the main adder, the Op 1 storage address
is subtracted from the Op 2 storage address and the
result set into K register positions 0-31. K register
positions 0-28 are zero detected and if equal to zero
the starting bytes of the two operands are separated
by less than eight bytes (one word) in storage. In
this case, both operands may start in the same
storage word or adjacent words. When K0-28 equals
zero, the 0-7 overlap trigger is set; when K0-28 is
not equal to zero and K0-27 equals zero, the 8-15
overlap trigger is set.

The K0-27 or K0-28 zero detection and the set
of the appropriate overlap control trigger occurs
during SU 8 cycle of the set-up sequence for all VFL
instructions except for translates, edits, and mul-

_tiply or divide. The set of the overlap control trig-

gers are mutually exclusive; the set of 0-7 overlap
resets 8-15 overlap and visa-versa.

Because the translate and edit instructions may
not step through both operands serially or process
data bytes of both operands at the same rate, the
set and reset of the overlap control triggers occurs
at various times throughout instruction execution.
See instruction involved.

Overlap control is not used during the execution
of decimal multiply or divide instructions. IFor the
decimal divide instruction, all storage words of



both operands are fetched from storage and aligned
in working registers before iterations start. There-
fore, no prefetches occur during iterations and the
store-fetch sequences only store. For decimal
multiply, all storage words of Op 2 are fetched and

aligned in the L register, and the first word of Op 1 °

is fetched and aligned in the J register during the
set-up sequence. Therefore, no prefetches occur
and the store-fetch sequence fetches the next multi-
plicand word and stores the completed product word.

0-7 Overlap: The set status of the 0-7 overlap
trigger indicates that the starting addresses of the
two operands are within eight bytes of each other.
However, it does not indicate whether the operands
start in the same or adjacent storage words.
Earlier during the set-up sequence, the starting
byte addresses of Op 1 and Op 2 are set into the T
and S pointers respectively. T and S are compared
to determine if the operands start in the same or
adjacent storage words when a 0-7 overlap condition
exists (Figure 36).

8-15 Overlap: The set status of the 8-15 overlap
trigger signals that the two operands are separated
by more than eight bytes but less than 15. There-
fore, the two operands may start in adjacent storage
words or be separated by one word as shown in
Figure 37.

ER and SC Used as Word Counters

The exponent register (ER) and the shift count reg-
ister (SC) are used to control storage addressing

for those VFL logical instructions where the operand
1 and operand 2 data bytes are processed at the same
rate. The prefetching of operand 2 data and the
store-fetching of operand 1 data occur alternately.
The ER maintains a word count of the result words
processed; it is advanced one each time a result
word is stored. The ER contains the correct incre-
ment to be added to the operand 1 starting address
of Bl + D1 for the store address. The SC maintains
the correct address increment to develop the next
fetch address of either Op 1 or Op 2. The two

tables of Figure 38 show the contents of the ER and
SC for each prefetch and store-fetch operation.

In section A of Figure 38, an Op 2 word boundary
is crossed before the first store-fetch of Op 1 is
required. During the set-up sequence, prior to the
execution of the instruction, VFL T5 control trigger
is turned on if Op 2 will cross a word boundary be-
fore Op 1, in which case, the SC is set totwo. In
addition, during the set-up sequence, the first Op 2
word (B2 + D2 + 0) is placed in the L register and a
fetch (first prefetch) is begun to place the second
Op 2 word (B2 + D2 + 1) inthe M register. Thefirst
prefetch that occurs after set-up addresses Op 2 data at
B2 + D2 + 2. When a prefetch sequence starts, the
SC is gated to the AA (line 2, Figure 39) to compute
the fetch address, then the ER + 1 is placed in the
SC (lines 11, 13, 14, and 15, Figure 39). The SC
now contains the correct increment to fetch the next
Op 1 word. At the beginning of the store-fetch
sequence (Figure 40), the SC contains the correct
increment to develop the fetch address and ER con-
tains the store address increment.

After the fetch request has been initiated, the
store address increment is transferred from ER to
SC (lines 11, 13 and 15, SF 1 cycle in Figure 40).
The store increment is used during SF 2 and SF 3
cycles (line 1 in Figure 40). During SF 3, ER is
incremented by one to create the new store address
increment. During SF 5 and SF 6, the SC is incre-
mented two more than the ER and, therefore, con-
tains the correct increment for the next fetch of
Op 2 data.

Section B of Figure 38 shows the Op 1 field reach-
ing a word boundary before the Op 2 field. The SC
is set to one during the set-up sequence (VFL T5
off), the correct increment for the first Op 1 fetch
address. In SF 5 cycle of Figure 40, the SC is in-
cremented to one more than the amount in the ER.
This is the correct increment to address the third
Op 2 word. During the next prefetch, Figure 39, ER
plus one is placed in the SC during PF 2 to provide
the address increment for the fetch of the next Op 1
word (used during the next SF). However, the incre-
ment amount in the SC remains the same as for the
preceding fetch of Op 2.
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Sequencer PF 1 PF 2 PF3 PF 4 PF 4 PF 4 PF 4

A Clock = = |- =

1 VFL Address Advance

2 Gate 5C to AA

3 VFL Fetch Request

4 Gaote AAto SAR & H

5 Mo AMTC __

6 Jto AMTC == —————— - _ -
ED + EDMK
7 Releose L (0-63) For _—M_
8 AOB to M (0-63)andRel ——
9 J Looded Tgr =s...— T
VN, MV VZ,N ,XC if 0-7 Ovl
10 Set "Gt K with 5" Tgr Fn: Lk oo i C'CLC'OIC : B
I
11 Set "ER to AETC" Tgl’ For MVN,MVC,MVZ,NC,CLC,OC,XC
-l T
12 Set "SCto AETC" Tor _ | s For ED + EDMK
13 Force One to AE (7) For MVN,MVZ ,NC,CLC,OC XC,ED, EDMK
T
14 Force Pority to AE — For MVC
15 AEOB to SC and Rel _’_
FIGURE 39. ER AND SC CONTROL DURING PREFETCH - LOGICAL INSTRUCTIONS (NOT TR OR TRT)
Sequencer 152 SF 1 SF 2 SF3 SF 4 SF5 SFé
A Clock
1 ‘OuAE — ER+1 (Fetch) ER (Store)
2 VFL Fetch Req Tar / J
] r—
3 VFL Store Req Tgr 4 No Regq for CLC
4 Gate AA to SARand H / \ j" / \
!
5 1 1o AMTC P,
6 Kto AM ,’ 0-7 + 8-15 Ovlp
ot / | SRR
7 AQOB to L (0-63) -] ,/ '\‘ 1 ',’ “\_ / 0-7 Ovlp \
| Develop Store ! ( Increment SC | m
B AOB to M (0-63) = Address — / A for Next Fetch .| 8-15 Ovlp—\- J Looded Lth ——
M e e i AR e, POy TR .
9 AOB to K (0-63) \ ; .l — ezt
- - // = --....__\
10 SC to AETC ) .8 = rozps "
11 ER to AETC o ;’ N ¥ . — f - 3
X \ ;
12 Force 1 te AE (7) [ A\ / \ .‘! 3 } N Il ,-' j
: v | ; Vo Vo i
13 Force Pority to AE \ | AV P /
T T |
v / JR . \
14 AEOB to ER X H v \\ gy A .
N et et
15 AEOB to SC ke Ty — 4 N B2l _ B3 X/
oy 7 ~ T5 * Not Ovlp
—~——T S el an iy
* T5 is set during set-up if $> T, which indicates operand 2 is ing word boundories cheod of operand 1.

FIGURE 40. ER AND SC CONTROL DURING STORE-FETCH - LOGICAL INSTRUCTIONS (NOT TR OR TRT)
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THEORY OF OPERATION

VIFL INSTRUCTION EXECUTION

e SSinstructions start with set-up sequence --
fetch operands from storage.

e Iteration sequence follows set-up -- data bytes
gated through VIL units.

e Prefetch sequence overlaps iterations -- fetches
Op 2 storage words.

e Store-fetch sequence stores result word and
terminates SS instructions.

This section provides a detailed description of the
execulion of VFL instructions; these include all
instructions in the SS instruction format and certain
other fixed sequence VFL instructions in the RX and
SI format. In addition, convert and direct control
instructions are included.

Where the functions of several instructions are
similar, they are treated as a group. For example,
decimal add, subtract, compare, and zero and add
are similar in function and execution, and therefore,
share common flow charts where applicable.

Because of the complexity of the decimal divide
and decimal multiply instructions, they are explained
separately.

Set-Up Sequence -- Decimal Instructions

e Fetch storage word that contains first byte to be
processed for each operand.

e Compare storage address of each operand to
determine if storage words overlap.

e Set starting byte address into S and T pointers.
e Start first prefetch if required.

e Sel fetched words into K and L registers.

e Set VFL control and gating triggers.

The set-up sequence for decimal instructions per-
tains to the AP, SP, CP, ZAP, MVO, PK, and
UNPK instructions. Priorto cycle by cycle functions,
certain operand and storage address relationships
are examined.

If Op 2 is contained in more than one storage
word, a storage fetch request for the second word is
made during set-up. This request is called the
first prefetch. The length (L2) of the operand alone
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does not indicate how many storage words Op 2 may
span. As an example, Op 2 could have only two bytes
(L2=1) but start at byte address zero and be contained
in two storage words. However, L2 could be seven
with a starting byte address of seven and Op 2 con-
tained in one storage word. Therefore, L2 is
compared with S (starting byte address) to determine
if the first prefetch should be initiated. If L2 is
greater than S, Op 2 is in more than one storage
word and the first prefetch is initiated during set-up.
During iterations, a second prefetch is started when
the first Op 2 word boundary is crossed (S=0). At
this time, the length counter (Z) indicates the number
of bytes that remain to be processed. If Z (L2) is
greater than 7, the prefetch is continued, otherwise
it is terminated after PF 1 cycle.

With the exception of pack and unpack, all deci-
mal instructions that require detection or processing
of overlapping fields move through both operands at
the same rate. This means that the relative position
of the two operands at the start of execution remains
unchanged throughout the execution.

On unpack, the starting addresses are checked
for an absolute difference of 0 to 7. If the difference
is 0 to 7, the two low-order word address bits are
updated in the exponent register and shift counter
each time a word boundary is crossed. When these
two partial addresses become equal, the crossing
of the word boundary moves both operands into the
same storage word and one register (K) is used for
both operands. :

When the difference of the starting addresses is
0-7, that is, when B2+D2+L2 minus Bl+DI+Ll is less
than 8, a comparison of the byte address indicates

whether the two operands start in the same storage

word. The starting byte addresses are in the S and
T pointers, Op 2 in Sand Op 1 in T. If S is less
than T, the two operands start in adjacent storage
words, the first Op 1 word is the second Op 2 word
required. See Figure 41.

When operating in single cycle mode, the first
set-up fetch request is made during SU 1 cycle
(see Figure 6450). This allows the word that was
returned to the J register to be transferred to the
M register during SU 2 cycle. The rest of the set-
up sequence is unchanged with exception of the start
of prefetch. The start of prefetch is delayed to SU 9
cycle so that the word fetched does not return to the
J register and destroy the first word of OP 2 which
returned to the J register during SU 5 cycle.

Set-Up Functions

The following text describes the functions of SU
cycles for decimal instructions, except for decimal
multiply and decimal divide. The set-up sequence
for multiply and divide are presented separately.



SU 1: Y is gated to AA with (SU L1 or SU T2) to
calculate BI+DI+Ll. The extended gate is due to
the path length from VFL controls to the AA.

SU'2: The VFL fetch request trigger is set with the
B clock. The output of this trigger goes to the

I unit to indicate J as the return address and to the
BCU to set their fetch request. The set of both
VFL request triggers (fetch request and store
request) is latched to generate the gate of the AA

to SAR and H.

SU 3: Z is gated to the AA with (SU L3 or SU T4) to
calculate B2+D2+L2. The VFL address advance line
is up during cycle three so that B2 and D2 will be
in IOP and gated to the AA during cycle four. The
low-order three bits of H are gated to the T latch
and T is released with SU L3. This puts the
starting byte address of operand 1 in the T pointer.
H(0-23) is gated to the incrementer. The latched
output of the incrementer and incrementer exten-
sion is gated to K (0-31). Because nothing is gated
into the incrementer extension, its output is zero
with correct parity. The AOB (32-63) is gated

to K (32-63) at the same time to put zeros with
correct parity in the low-order half of K.

The sequence is held up here until an accept is
received from the BCU. If an immediate accept is
received, SU 3 takes only one cycle. This prevents
a second request being made in SU 5 without an accept
from the first request.

SU 4: The AA is gated to SAR and H. Operand 1
address is gated from K to L. .
H (19, 20) are gated to AE (1, 2) and AEOB to ER
for pack and unpack (Figure 6477). If the overlap
triggers are not set, these bits are not used.

SU 5: The VFL fetch request trigger is set. The
second operand byte address is gated from H (21-23)
to the S latch and S is released. The entire second
operand address is gated from H to incrementer to
K, as in cycle three.

SU 6: The VFL address advance line is up during
SU 6 in preparation for the addition of B2+D2+

(L or 0) in SU 7. A one is forced to AA (28) if Z
1, 2, 4) is greater than S (1, 2, 4) and Z (8) is on.
The sequence waits in SU 6 for an accept from the
BCU. .

This fetch request is actually initiating the first
prefetch. The following table shows the number of
storage words involved for the various length and
starting byte address relationships.

Number of Words Z (B) Z(1,2,4)> 5(1,2,4)
1 0 No
2 0 Yes
2 1 No
3 1 Yes

The starting address comparison is started in
SU 6 by subtracting L from K and putting the result
in K. This is the desired result for all instructions
except unpack. In unpack, if this result is negative
(no AM C Out 1), L is complemented through the main
adder and put in K at the end of SU 7. This checks
the magnitude of the difference since operand | can
start to the right of operand 2 and move to the left
during the execution (see Figure 42).

H (19, 20) are gated to AE (1, 2) and AEOB to SC
in anticipation of overlapping fields.

The GT L with S trigger is set here for all
instructions. The gate L with S trigger is reset as
gate K with S trigger is set.

SU7: HZ (1, 2, 49>S(1, 2, 4 or Z (8) =1, the
VFL fetch request trigger is set and prefetch trigger
3 is set with SU L7. PF 3 is the accept wait cycle
of the prefetch sequence and is followed by PF 4,
which transfers J to M. L is gated to AM T/C and
the complement trigger is set. TFor unpack, if there
was a carry out of AM(l) at the end of SU 6, AOB

is gated to K with SU L.7. The AMcarry out 1 trigger
is blocked from changing with SU L7.

SU 8: The address comparison is completed in this
cycle by setting 0-7 overlap or 8-15 overlap trigger
if the conditions are met. The K zero detect
generates two lines, K 0-27 equal zero and K 0-28
equal zero. Set 0-7 overlap trigger if K 0-28 equal
zero. Set 8-15 overlap trigger if K 0-27 equal zero
and not K 0-28 equal zero.

The GT TD out trigger is set during SU L8 for
the instructions that use data from operand 1.

For pack and unpack, the ER and SC are gated to
AE during SU 8 and SU 9. The AE complement
trigger is also set for two cycles. This is done to
check the ER/SC for equal. The gates are up for
two cycles because the AE HS equal zero line has
a long path to set the gate K with S trigger at SU L9.

Operand 1 is gated from J to K when J loaded
is on and not single cycle mode. For single cycle,
operand 1 was put in M during SU 2 and is gated from
M to K during this cycle.

SU 9: Operand 2 is gated from J to L when J loaded

trigger is on. SU L9 is enabled with the J loaded
trigger on.
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Starage Words

A

111 | 000

001

o1

no

BI+D1+L)

B2+D2+L2

(B2+D2+L2) - (Bit DItLI) =6 < B

=5

$=13
§ € T == Operonds Stort in Different Word

(B2+D2+L2) - (B14DI+L1) =6 < B

T

=0

5=6

Storage Words
; 1101100 [ 110] 111 | 000|001 |010|01) | 100|101 110|111 {000 Oﬂ?
BI+DI+L1 B2+D2#L2

$ 2 T = Operonds Start in Some Word

FIGURE 41. OVERLAP, BYTE ADDRESS RELATIONSHIP

Slnrngt
before
Unpock

Storage
after
Unpock

BI+D1+L1 = XXX 11 000
B2+D2+L2 = XXX10 110

Li=10
L2=4

OMTM 1
: Operand 2 ‘I
o1 XXX 1° | 10 XXX ' Illxxx
98|76 | 54|32 15
100] 101 {100} 111 {000 j0O1 | O10{ 011 | 100|101 | 110 111000 {00
High=Order
Zeros Filled In

Z0

Z0

2z | Z7

27

6

i5

Z4

23

22

This is an exomple of overlapping fields thowing how the Op 2
word is modified during execution but prior 1o its use. Byte 2
(10 010) of Op 2 i1 changed from 98 to Z7 a4 a result of unpacking
byte 3 (10 011).

FIGURE 42. UNPACK - OVERLAPPING FIELDS

98
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The overlap triggers and AE HS are sampled for
a set to GT K with S trigger at SU L9.

For single cycle mode, the prefetch storage
request is delayed from SU 7 to SU 9. Delayed with
the fetch request is the set of PF T3.

SU L9 sets the first iteration sequencer.

Set-Up Sequence -- Logical Instructions

e Fetch storage word that contains first byte to be
processed for each operand,

e Compare storage addresses of each operand to
determine if operands overlap in same storage
words.

e Set starting byte address of each operand into
S and T pointers.

e Start first prefetch if required.

e Set fetched words into K and L registers.

e Set VFL control and gating triggers.

e Set up the ER and SC to be used as a word count.

All of the VFLlogical instructions process from low-
order storage to high-order storage. IOP bits 8-15
specify an eight-bit length which applies to both
operands.

Because many similarities exist between the
set-up sequences for decimal instructions and for
logical instructions, only the differences are
explained below. Details are presented in set-up
functions,

A word count is maintained in the ER, which is
reset to zero during the set-up sequence. The ER
is advanced by one each time a result word is
stored. The increment gated tc the AA for address
generation comes from the SC. The amount in the
SC is the increment needed for the next fetch, that
is, if Op 2 is crossing word boundaries ahead of
Op 1, the SC = ER + 2 for prefetch; if Op 1 is
crossing word boundaries ahead of Op 2, the SC =
ER + 1 for prefetch (see Figure 38). At the com-
pletion of prefetch, the SC = ER + 1 for the next Op 1
fetch.

A status trigger (VFL T5) is set during set-up if
S is greater than T. T5 On indicates that Op 2 will
cross word boundaries ahead of Op 1.

The first prefetch is initiated if Z (1, 2, 4) is
greater than the complement of S (1, 2, 4) or Y
(1, 2, 4, 8) not equal to zero or Z (8) is on. The
Z -8 comparison is made with complement S because
the operands are processed from left to right (low-
order to high-order storage).



The results of an edit or edit-and-mark instruction
with overlapping fields are specified to be unpredict-
able. Therefore, these two instructions are always
handled as though their operands do not overlap.
Address comparisons are not made during edit and
edit-and-mark set-up sequence.

Set-Up Functions
The following text explains the functions of set-up
cycles, SU 1 through SU 9 for the VFL logical

instructions.

SU 1: No increment is gated to AA since the desired
starting address is Bl + DI1.

SU 2: The VFL fetch request trigger is set with the
B clock. The output of this trigger goes to the
I unit to indicate J as the return address and to the
BCU to set their fetch request. The set of both VFL
request triggers (fetch request and store request) is
latched to generate the gate of the AA to SAR and H.
The AEOB is gated to the ER as a means of
resetting ER to zero with correct parity.

SU 3: No increment is gated to AA since the desired
second operand starting address is B2 + D2. The
VFL address advance line is up during cycle three
so that B2 and D2 will be in IOP during cycle four.
The low-order three bits of H are gated to the T
latch and T is released with SU L3. This puts the
starting byte address of operand one in the T pointer.
H (0-23) is gated to the incrementer. The latched
output of the incrementer and incrementer extender
is gated to K0-3l. Because nothing is gated into the

incrementer extender, its output is zero with correct

parity. The AOB (32-63) is gated to the K register
(32-63) at the same time to put zeros-with correct
parity into the low-order half of K.

The sequence is held up here until an accept is
received from BCU. If an immediate accept is
received from the BCU, SU 3 takes only one cycle.
This prevents a second request from being made in
SU 5 without an accept from the first request.

SU 4: The AA is gated to SAR and H registers. Opl
address is gated from K to L register.

One is forced to AE (7) and AEOB is gated to the
SC. This sets the SC to 1 to provide the first address
increment required for later fetches.

For edit and edit-and-mark instructions Y and Z
counters are reset to zero; during this cycle, Y and
Z are stepped up in these instructions.

SU 5: The VFL fetch request trigger is set and the
second operand byte address is gated from H (21-23)
to the S latch and S is released. The entire second

operand address is gated from H register to the
incrementer to K register.

SU 6: The VFL address advance line is up during
SU 6 in preparation for the addition of B2 + D2+ 1
in SU 7; a one is forced to AA (28).

The sequence waits in SU 6 cycle for an accept
from BCU.

The starting address comparison is started in
SU 6 by subtracting L from K and gating the result
back to K and L. This provides the magnitude of
the difference of the starting addresses of the two
operands.

The gate L with S trigger is set during this cycle
inpreparation to gate Op 2 bytes from the L register.
If the operands overlap storage words and the gate K
with S trigger is set later, then gate L with S trigger
is reset.

SU 7: The add during SU 6 generated the result

(B2 + D2) minus (Bl + DI); the desired difference to
be checked for logical instructions is (Bl + DI) minus
(B2 + D2) or the complement of (B2 + D2) minus

(B1 + D1). Therefore, during SU 7 cycle for logical
instructions, the contents of the L register are gated
to AMTC and complemented through the main adder.
AOB is then gated to the K register.

The first prefetch is started during SU 7 if Op 2
is in more than one storage word and not in single
cycle mode. If Z (1, 2, 4) is greater than the
complement of S (1, 2, 4)or if Z (8) isonorif Y
(1, 2, 4, 8) is not equal to zero, the VFL fetch
request and PF 3 triggers are set. If in single cycle
mode, the first prefetch is started during SU 9 cycle.

SU 8: The address comparison is completed in this
cycle and the overlap triggers are set. If K0-28
equals zero, the 8-15 overlap trigger is set.

The gate T decode out trigger is set during
SU L8 for those instructions that use data from Op 1.

If VFL T5 trigger is on, indicating the first word
boundary to be crossed is in Op 2, 1 is added to the
SC. This puts 2 in the SC, the increment needed for
the next prefetch (see Figure 38).

The Op 1 word is gated from J to K when the J
loaded trigger is on and not single cycle mode. For
single cycle mode, Op |l was put in M register during
SU 2 cycle and is gated from M to K register during
this cycle.

SU 9: SU 9 is the last cycle of the set-up sequence
for the VFL logical instructions. The first word of
Op 2 is gated from J to L register when the J loaded
trigger is on. SU L7 is enabled with the J loaded
trigger on. .

Except for ED, EDMK, TR, and TRT instructions,
if the 0-7 overlap trigger is on and S is less than or
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equal to T, the gate K with S trigger is set.

For ED and EDMK instructions, the first byte
of Op 1 is put in DB/DC, where it is held throughout
execution. This byte is the fill character. The
length ‘counters and pointers are not stepped because
this character is examined as all other pattern char-
acters are.

The gate L with S trigger is set with SU L9 for
ED and EDMK. This set is delayed because there
is no gate for the RBG to AOE and the AOE is used
during SU 9 for ED and EDMK.

The VFL T2 trigger is set with SU L9 for MVC
if T=0and S='0 and YZ is greater than 7 and not
overlap. When the VFL T2 trigger is on, it causes
64-bit words to move instead of 8-bit bytes. This
type of move is called transmit mode. Transmit
mode is entered on any MVC when both operands
start on word boundaries and there is at least one
64 -bit word to be moved. The byte mode is initiated
to move any partial words on the end of Op 2.

For VFL logical instructions, SU L9 sets
iteration sequencer 2 (IS 2) except for MVC in trans-
mit mode and PF started during SU 7.

Set-Up Sequence -- TR and TRT

The translate instructions differ from other SS
instructions in that the byte addresses move
irregularly through a translation table in storage.
Operand 1 is still processed sequentially starting
with the low-order storage byte (Bl + D1). Tor this
reason, source bytes are fetched one at a time from
storage. Each operand 2 address that is formed is
compared to the word address of the operand 1 word
currently in the K register. If the table byte is in
K, the gate K with S trigger is set and K is used for
the source byte.

When the operand 1 address is formed, it is
transferred to K. From K, bits (24-28) are gated
to AOE and the AOE is gated back to K (24-31), thus
setting K (29-31) to zero. K is transferred to M and
subtracted from each operand 2 address. If any
difference is within 0-7, the 0-7 overlap trigger is
set and this causes the gate K with S trigger to be
set. When operand 1 word boundaries are crossed,
the Y-Z latch is added to Bl + D1 to generate the
fetch address. Using this method of generation gives
an address with the low-order three bits zero.

Set-Up Functions (See Figure 6482)

SU1: The VFL fetch request trigger is set with

SU TI1 for single cycle operation. This early set

is not required for translate but is used for simplic-
ity since all other SS instructions advance the
request for single cycle.
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SU 2: Set VFL fetch request trigger and gate AA to
SAR and H.

SU 3: Gate H (21-23) to the T pointer and H (0-23)
to K.

SU 4: The low-order three bits of the address in K
are set to zero by gating K (24-28) to AOE and AOE
(0-7) back to K (24-31).

The Y and Z counters are reset to zero. For the
translate instructions, Y and Z start at zero and are
counted up until equal to IOP (8-15).

SU 5: The adjusted address in K is transferred to
M. From there, it will be compared to each operand
2 address for possible overlap.

SU 6 and SU 7: SU 6 and SU 7 perform no function
for the TR and TRT instructions.

SU 8: The first word to be translated is transferred
from J to K. The gate TD out trigger is set with
SU L8. This allows the byte from K, specified by
T to pass through the LBG.

SU 9: The first iteration sequencer, PF Tl, is set
by SU L9.

Interrupts -- Set-Up Sequence

The only interrupt that canbe initiated during set-up
is address invalid. The address invalid trigger
is normally set to the value of the address invalid
line with each J advance. For SS instructions, the
trigger can be set but not reset with J advance.
With this arrangement, invalid address indications
are accumulated and then the trigger is sampled at
the end of set-up. The address invalid trigger is
reset with SU 1,

The address invalid trigger in sampled at SU 9.
If it is on, the sequence is switched to SEQ-T4 (SF 3)
and the store-fetch trigger is set. These two, to-
gether, make SF 3 which is the start of the end
sequence.

Iteration Sequences -- Decimal Instructions

e Iteration IS 1, IS 2, and IS 3 cycles perform VFL
byte gating.

@ IS cycles are used to execute SS decimal and
logical instructions.

This section describes the iterations for all SS dec-
imal instructions except multiply and divide. Multiply
and divide are described separately. All iterations



start with the following initial conditions:
1. Word Bl + D1 +L1in K

Word B2 + D2 + L2 in L

IOP (8-11)in Y

IOP (12-15) in Z

Starting byte address for Op 1 in T

Starting byte address for Op 2 in §

Either gate L with S or gate K with S trigger

on, depending on the state of the 0-7 overlap trigger
8. Gate TD out trigger on for MVO, CP, AP, SP
The first iteration sequencer is set with SU 9

latch. The iteration cycles continue until a word

oG W

boundary is encountered or the execution is complete.

Add -- Subtract

The only difference between AP and SP is the setting
of the true/complement trigger, VFL T3. Figure 43
shows the general data path for AP and SP.

The first cycle (IS 3) is for examining the signs
and setting the sign trigger. Since the pointers are
not stepped during IS 1, the sign decoding does not
need to be latched to set VFL T3 at IS 1 A-clock.

When doing a true add, the right side parity ad-
just correct is for the excess six gating into AV.
The line called "GT HOD Decimal True to Parity
Adjust" gates '""HOD Equal 4/5" to the ""exclusive OR"
with "Invert Sign''. The two phrases of the "exclu-
sive OR" gate PL and not PL as the adjusted parity.
This adjusts for three possible changes to the sign
byte:

1. The incoming sign is degated and the machine
preferred plus sign is forced at the RBG digit gates.

2. If the high-order digit is gated decimal true,.
a decimal digit 4 or 5 changes the parity.

3. If the LBG (Op 1) sign is negative, the low-
order bit of the forced sign is inverted to make the
result sign minus.

The operation is not complete until every byte in
both operands has been examined. When operand 1
is exhausted, VFL T2 is set, gate TD out trigger is
reset and parity is forced to the left side AV input.
When operand 2 is exhausted, VFL T1 is set, gate
K/L with S triggers are reset and parity is forced
to the RBG. When both operands are exhausted, SF
1 is set instead of IS 2. During this store-fetch
sequence, the last result word is stored and one of
the following happens:

1. The operation is terminated if the result is
correct as stored (Figure 6455).

2. The sign of the result is set plus for a nega-
tive zero result and the operation is terminated (Fig-
ure 6457).

3. The first word of operand 1 is fetched to
start recomplementation if the result is in comple-
ment form.

Figure 6456 shows the recomplementing sequence.
The 8 and T pointers contain the same byte address.
The S pointer controls gating of K bytes to the true/
complement input of AV. The T pointer controls
putting the bytes back in K.

For a true add, the VFL adder carry trigger is
not released after Op 1 is exhausted. A carry from
the high-order byte of Op 1 is held in the carry trig-
ger until both operands are exhausted, at which time
VFL T6 is set. (VFL T6 is set with AV carry and
true add and T1 and T2 and SF 1 latch), For both
true and complement adds, the RBG is zero detected
after the Op 1 is exhausted,

If a nonzero digit is detected, Op 2 has a greater
length than Op 1. Therefore, VFL T6 trigger is set
to signal an overflow condition. One exception exists,
however, in which Op 2 may exceed the length of Op 1
without causing an overflow error. After the end of
Op 1 (T2 On), the first Op 2 byte processed may con-
tain digits 01 without causing an overflow error if the
operation is complement add and a borrow occurs.
VFL T8 trigger is set at the beginning of the first
iteration cycle following the set of T2. The conditions
T2 On and T8 Off define the first cycle after the end
of Op 1 and block RBG bit 7 from entering RBG zero
decode, thereby forcing RBG to equal zero if all other
bits are zero. If a nonzero digit is detected, VFL T6
is set, The decimal overflow interrupt is set with
(AP + SP + ZAP) and (VFL T6) and (PSW bit 37) and
(VFL end sequence trigger on).

The condition register is set during the last store-
fetch sequence with SF 4 latch.

Compare (CP)

Figure 44 shows the general data path for decimal
compare. If the two operands have like signs, oper-
and 2 is subtracted from operand 1 to determine
which is the larger. If the two operands have unlike
signs, operand 2 is added to operand 1 and the sum
is zero detected. If the sum is nonzero, the positive
operand is the larger. If the sum is zero, the two
operands are both zero and, therefore, equal.

The execution is not complete until all bytes in
both operands have been examined.

The VFL T3 trigger is used as a true/comple-
ment trigger for CP, AP, and SP. Therefore, VFL
T3 controls the true/complement and parity adjust
gates. VFL T3 is off for true add and on for com-
plement add. When doing a true add, the right side
parity must be adjusted for the excess-six gating
into AV. When doing a complement add, the right
side parity is adjusted for the sign removal only.

The condition register is set during the last
store-fetch sequence with SF4 latch.
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Move With Offset (MVO)

Move with offset is a combination move and shift left
1 digit as the name implies. Figure 45 shows how
this shifting is accomplished. The DB-DC is used
as a buffer to hold the HOD of each byte until the
next cycle when it is gated into AV as the LOD. The
L1 length determines the end of the operation. If
Op 2 is exhausted before Op 1, the gate K/L with 8
triggers are reset and parity is forced to the RBG.
All other gates are unchanged. This fills out the
remainder of the destination with high-order zeros.
See Figure 6453.

Pack (PK)

Figure 46 shows the general data path and the se-
quencers used for pack. The DB-DC is used as an
intermediate result buffer. DB/DC must be used
because K is used as temporary storage and the re-
sult byte cannot be put in storage until it is complete.

One Op 1 byte is put in K at the end of IS 1 and
every IS 3. This means that the store-fetch sequence
is entered from IS 1 or IS 3 and always returns to
IS 2. An Op 2 byte is used for each cycle, IS 1, IS
2, and IS 3. The prefetch sequence can be entered
from any of the three sequencers. Therefore, the
"VFL T2 trigger is set with (S = 0) and (IS 2 latch) to
remember which IS sequencer should be turned on
after the prefetch. See Figure 6479.

The Op 1 length determines the end of the opera-
tion. If Op 2 is exhausted before Op 1, the gate K/L
with S triggers are reset and parity is forced to the
RBG. This fills the remaining Op 1 bytes with high-
order zeros.

Unpack (UNPK)

Figure 47 shows the general data path and the se-
quencers used for unpack. The first cycle is the
same for pack and unpack. For unpack, one Op 2
byte generates two Op 1 bytes. The Op 2 bytes must
be fetched from K or L only once because the first
Op 1 byte generated for a given Op 2 byte may be
stored on top of the generating Op 2 byte (Figure 42).
As an example, assume the two operands were lo-
cated in the same storage word. Op 2 byte 3 could be
generating unpacked Op 1 bytes 3 and 4. For this rea-
son, the Op 2 bytes are put in DB/DC during IS 2 and
DB/DC is used during IS 3. Here, as in pack, DB/DC
is only needed for overlapping fields. Since it gives
the correct result for nonoverlapping fields also,
only one method of execution is used. (See Figure
6480)

The prefetch sequence is entered from IS 1 or IS
3. The store-fetch sequence can be entered from
IS 2 or IS 3. Therefore, the VFL T2 trigger is set
with (T = 0) and (IS 2 latch) to remember which se-
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quence should be set after the store-fetch is com-
pleted.

PSW (12) determines which zone code is used for
the unpacked result. PSW (12) equal to zero gives
the BCD zone of 1111. PSW (12) equal to one gives
the ASCII zone of 0101. The BCD zone is forced at
the digit gates and PSW (12) controls the gating of AV
bits 0 and 2 back to K. Removing bits 0 and 2 from
the BCD zone gives the ASC zone but does not change
the parity.

Zero and Add (ZAP)

Figure 48 shows the general data path and the se-
quencers used for zero and add. The first Op 2 word
is set into L with SU 9 latch and, therefore, IS 3 is
used to examine the Op 2 sign. The polarity of the
sign must be known so that the machine preferred
sign can be forced. (See Figure 6454)

When Op 2 is exhausted Op 1 is filled out with
high-order zeros. When Op 1 is exhausted first,the
remaining bytes of Op 2 are zero detected for over-
flow. VFL T6 trigger is set if an overflow condition
occurs. VFL T1 and T2 triggers are set when Z and
Y are counted down to 1110. These are used to gen-
erate gates for exhausted Op 2 and Op 1 conditions.

The condition register is set during the last
store-fetch sequence with SF 4 latch.

Iteration Sequence -- Logical Instructions

This section describes all logical SS instructions
except the edits and translates. One iteration se-
quencer, IS2, is used for all these instructions with
the exception of move transmit mode. Move trans-
mit mode used the store-fetch and prefetch sequences
only. The iterations start with the following initial
conditions:

1. Word B1 + D1 in K
Word B2 + D2 in L
IOP (8-15) in Y and Z
Starting byte address for Op 1 in T
Starting byte address for Op 2 in S

6. Either gate L with S or gate K with S triggers
on depending on the state of the 0-7 overlap trigger

7. Gate TD out trigger is on for all instructions
except MVC

The first iteration sequencer is set with SU 9
latch. The iterations continue until a word boundary
is encountered or the execution is complete. The
condition register (CR) is set for CLC, NC, OC,
XC, TRT and EDMK during the last store-fetch se-
quence with SF 4 latch.

[0 - ]

AND, OR and Exclusive OR (NC, OC and XC)

The SS logical connectives use the AOE. The output
of the AOE is normally the OR of the two inputs. If
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either the AND or the Exclusive OR function is de-
sired, a gating line must be activated. Figures 49
and 6464 show the data path and timing for NC, OC,
and XC.

Parity is generated for the output of the AOE.
The incoming parities are checked by gating the two
bytes into the AV and checking the half sums.

Compare Logical (CLC)

The SS logical compare moves from left to right
through the operands, making a byte by byte com-
parison. The operation continues until an unequal
comparison is found (AV sum nonzero) or the oper-
ands are exhausted. Figures 50 and 6460 show the
data path and timing for CLC.

Move (MVC)

Move (MVC) moves data from one location to another.

Normally, execution is one byte at a time. However,
if the two operands are not overlapped, start on word
boundaries and are more than one word in length,
the move is done one 64-bit word at a time. This is
called move transmit mode. If the operands do not
end on word boundaries, the transmit mode reverts
back to the normal byte mode.

The first Op 1 word is fetched during set-up be-
cause it may be needed for execution of overlapping
fields. After set-up, the Op 1 word is stored but
not fetched. When the two operands start within
eight bytes of each other, but in different storage
words, the Op 2 bytes in the second word that do not
actually overlap Op 1 must be fetched. This is done
by fetching the first Op 1 word. Once Op 2 moves
into the overlap area, no more storage words are
required because the next Op 2 word is being gener-
ated in K.

Bytes are moved from L to K, or K to K depend-
ing on overlap conditions. Both HOD and LOD are
gated binary on the AV right side and parity is forced
to AV left. The AV output is put in K.

If both operands start on 64-bit word boundaries,
at least two words apart in storage and there are
more than eight bytes to be moved, the move trans-
mit mode is entered. Move transmit mode moves
64-bit words. In the transmit mode, the first Op 2
word fetched is transferred to K and stored just as
soon as an accept is received from the second Op 2
fetch. When each store is completed, another pre-
fetch is started (Figure 9467). The first cycle gates
M, the prefetched word, to AM T/C. The AOB is

gated to L, and K. This is the next word to be stored.

If another Op 2 word is to be fetched, the prefetch
sequence continues after PF 1. If the word in K is
the last full word to be moved, the store-fetch se-
quence follows PF 1. If a partial word remains, the
move reverts back to the byte mode and the IS 2
sequence follows PF 1. The VFL T2 trigger is

turned on with SU 9 latch if the conditions are met
for transmit mode.

The Y-Z length counters are decremented by 8
with each SF 3 latch when in the transmit mode (T2
on). If an even number of words are to be moved,
the low-order three bits of the length would be ones
(2 = X111). Therefore, the Y-Z counters are equal
to 1111-1111 when one word remains to be stored.
This value in Y-Z causes SF 3 to follow PF 1 and the
last full word is stored. If there are two odd bytes
to be moved, in addition to the full words, the three
low-order bits of the length (Z) would be 001. With
this value in Y-Z, IS2 follows PF 1. The partial
word is moved one byte at a time (Figure 51) in order
to set the mark register correctly. The sequence is
switched from IS 2 to SF 3 when the YZ latch equals
1111-1110. This is the end of operation condition
for the byte move.

Move Numerics and Move Zones (MVN and MVZ)

These two moves take a part of each Op 2 byte,
either zone or numeric, and put it in a byte, leaving
the remainder of the Op 1 byte unchanged. Figure

52 shows the data path and timing for the MVN and
MVZ. For MVN, the LOD is gated to AV right and
the HOD is gated to AV left. For MVZ, the HOD is
gated to AV right and the LOD is gated to AV left.
Both operands are fetched. The source is gated from
L or K, depending on the overlap conditions.

Edit and Edit-and-Mark (ED and EDMK).

The initial conditions for the edits after set-up are:
Word Bl + D1 in K
Word B2 + D2 in L
Y and Z reset to zero
Starting byte address forOp 1 in T
Starting byte address for Op 2 in 8§
Gate L with S trigger on
Gate TD out trigger on
SC set to one
9. The first byte of Op 1 in DB/DC. This is the
fill character.

00 =30 G s WO DN -

The two sequencers used for edit iterations are
IS 2 and IS 3. The IS 2 sequencer conditions the gates
to unpack and validity check the HOD and sign detect
the LOD of an Op 2 byte. The IS 3 sequencer condi-
tions the gate to unpack the LOD of an Op 2 byte.
One pattern byte is examined every cycle. Once a
sequencer is turned on, it stays on until the condi-
tions are met to unpack a digit. (These conditions
being met are referred to as examine digit.)

Sequencer IS 2 (Figure 6471) is set with SU 9
latch. When the HOD is unpacked, IS 2 goes off and
IS 3 is turned on. When the LOD is unpacked, IS 3
goes off and IS 2 is turned on. The S pointer is
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stepped when going from IS 3 to IS 2. The iteration
sequencers are on for an unpredictable number of
cycles. The pattern bytes and S trigger (VFL T5)
determine when a digit is unpacked. If during IS 2
cycle, the conditions are met to unpack a digit and
the LOD is a sign (1010 - 1111), the S pointer is
stepped and IS 2 repeats. Stepping S and not turning
IS 3 on skips over the sign so it is not unpacked into
the result. When a sign is detected, il it is positive
(1010, 1110, or 1111), the S trigger is reset.

On each cycle that a source digit is not examined,
either the fill character is gated from the DB/DC to
K or K is left unchanged.

The zone that is forced, either 1111 for BCD
mode or 0101 for ASCII mode, in unpacking digits
depends on the PSW bit 12. The PSW bit 12 off (0)
indicates BCD mode and the bit on (1) indicates
ASCII mode. The BCD zone is forced at the digit
gates, on the AV right side input. If the PSW bit 12
is on, bits 0 and 2 of the AV output latch are degated
and do not go to K. This changes the BCD zone to
an ASCII zone but does not change the parity since
an even number of bits are removed.

The VFL status triggers are used for edits, as
follows:

VFL T1: Remembers that the S pointer should be
stepped when returning to the iterations from a
store-fetch or mark sequence.

Set either IS 3 latch and examine digit latch or
IS 2 latch and examine digit and edit sign latch.

Reset (set blocks reset) IS 2 latch.

VFL T2: Remembers which sequencer should be
turned on when returning to the iterations from a
store-fetch or mark sequence. On indicates IS 3,
off indicates IS 2.

Set either IS 2 latch and examine digit and not
edit sign latch or IS 3 latch and not examine digit.

Reset (set blocks reset) either IS 2 latch or IS 3
latch.

VFL T1 and VFL T2 combinations and sequences

are: _
IS2—s SF + MARK— IS 2 StepS T1 T2
IS2—+SF—= IS 2 - - T 19
[S'3— SF + MARK—= IS 2 StepS T1 T2
1S3— SF— IS 3 = = T 72

VFL T3: Remembers the zero field condition for a
source RBG number. It is used to set the condition
code.

VFL T3 is set by the SU 9 latch or the edit field
Separation latch.

It is reset by the examine digit latch and not
zero digit latch.
VFL T4: Remembers that a prefetch is required
after a store-fetch. S pointer equal seven is not
sufficient information to start a prefetch. Examine
digit and edit sign latch indicate whether the last
digit has been used. At the end of store-fetch this
information is gone.
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VFL T4 is set by the IS 3 latch and S =7 and
examine digit or edit sign latch.
It is reset by the PF 1 latch.

VFL T5: Used as the S trigger.
It is set by the digit select latch and not edit
zero digit latch or significant start latch.

VFL T7: Holds address invalid indication for
source field until a digit is used from the invalid
word. VFL T7 and examine digit set the interrupt
triggers.

VFL T7 is set by the address invalid latch and
PF 4 latch.

It is reset by the ELC latch.

The following latches are used for edits to hold
the control condition over a time:

Edit Digit Sel. LTH
Turned on by "LBG Equal Digit Select"

Edit Sign Start LTH
Turned on by "LBG Equal Sig. Start"
Edit Field Sep. LTH
Turned on by "LBG Equal Field Sep."
Examine Digit LTH
Turned on by LBG equal to a Digit Select or Significance
Start character.
Other Character LTH
Title refers to the off output. Turned on by LBG equal to
Digit Select or Significance Start or Field Separator
character.
Edit Zero Digit LTH
Turned on by Examine Digit and RBG LOD Equal Zero and
(IS 2 or IS 3 trigger).
Edit Sign or RBG Not Zero LTH

LBG = 00100000

LBG = 00100001

LBG = 00100010 .

Turned on by (RBG LOD Sign and Examine Digit and IS 2
trigger and ED + EDMK) or (AP + SP + ZAP + TRT
and RBG Not Zero).

Edit Positive Sign LTH
Turned on by ED + EDMK and IS 2 trigger and RBG Sign Plus.

The HOD of each source byte is validy checked
when it is examined. If it is invalid, the data check
interrupt triggers are set if T7 is on. T7 on in-
dicates that the word came from an invalid address
and the invalid address interrupt is given priority.

Figure 6472 shows the mark sequence. The byte
address is calculated by adding B1 + D1 + (Y-2).
The current pattern word is transferred to J while
the address is inserted in GR1, then brought back to
K during Seq D. The address is put in K (8-31) and
then the high-order eight bits of GR1, which is
brought out to the M register, are gated into K (0-7).
K (0-31) is then put away in GR1, IS 1 returns the
execution to:

1. IS 2 if not T2 and not set (SF 1 or SF 3)

2, IS 3 if T2 and not set (SF 1 or SF 3)

3. SF1if YZ #IOP (8-15) and T =7

4, SF 3if Y Z =I0P (8-15)

Translate and Translate-and-Test (TR and TRT)

The initial conditions for TR and TRT are:
1. Word B1 + D1 in K



2. Address Bl + D1 in M (low-order three bits
zeroed)

3. Y and Z reset to zero

4. Starting byte address for Op1in T

5. Gate TD out trigger on

The TR and TRT are very much the same.
differences are:

1. TR does not examine the translated bytes be-
fore storing them. TRT translates Op 1 bytes for
examination and does not store any bytes.

2. TR is complete when all Op 1 bytes have been
translated. TRT is complete when a nonzero byte is
found or all bytes have been translated.

For translate, the address of the word in K (Op 1)
is compared with each table address. If the difference
is 0-7, the word being fetched is in K. In this case,
the table byte is taken from K instead of the word
returning from storage. Each time another Op 1
word is fetched, the low-order three bits of the ad-
dress are set to zero and the address is put in M.
Each table address is transferred from H to K and M
is subtracted from K. The difference is put in K and
K is detected for a value of 0-7. If K # 0-7, gate L
with S trigger is set. If K = 0-7, gate K with S trig-
ger is set. While the address comparison is being
made, the current Op 1 word is held in J.

Overlapping the table word return with the ad-
dress calculation for the next fetch requires two Op 1
byte addresses. One is the byte address where the
translated byte is to be stored (temporarily in K).

The other byte address is that of the next byte to be
translated. A hold is used on the T pointer latch to
prevent it from changing after the T pointer register
has been advanced. This holds the store byte address
in the T latch to control in-gating of K. The T regis-
ter is advanced to control the gating out of K. This
gates the next Op 1 byte through the LBG to the AA for
the address calculation. Figure 5038 shows a diagram
of the T pointer and an example timing chart of T
being counted.

Figure 6483 shows the arrangement of the se-
quencers to TR and TRT. Note that the end of the
sequence, PF 1 and PF 2, is also the beginning of
the sequence that follows.

VFL T8 trigger is used to prevent Y-Z from being
stepped until after the first byte is translated. Y Z
counter is stepped up until it equals IOP (8-15).
Therefore, Y Z is stepped for each byte processed
after the first byte. This corresponds to the defini-
tion of the operand length (i.e. the number of bytes
to the right of the first byte).

After set-up and store-fetch sequences, VFL T1
trigger is off. It is set at PF 4 latch. VFL T1 trig-
ger gates operations on data returned from storage.
In the first sequence after set-up or store fetch,
there are no words returning from storage (RBG).

Their

For TRT, if a nonzero function byte is found,
the mark sequence is started. The mark sequence
starts with sequencer A. Figure 6484 shows the
mark sequence for TRT. For TRT, the mark se-
quence ends the operation. The current byte count
in Y Z is added to Bl + D1 to arrive at the byte ad-
dress of the Op 1 byte which translated to a nonzero
byte. This address is put in the low-order 24 bits
of GR 1. This is accomplished by first putting the
address in K and then gating the high-order eight
bits of GR 1 to K. KO0-31 are then put in GR 1.
Then the contents of GR 2 are put in K and the non-
zero table byte is inserted in K24-31. KO0-31 is then
put in GR 2.

Because a general register is being set during
the last cycle, the VFL thru signal is delayed to IS 1
latch, just one cycle before the end. The VFL thru
signal is then set to VFL end sequence trigger.

Prefetch Sequence

e Fetches Op 2 words from storage.
e Overlapped with iteration sequence.

The function of the prefetch sequence is to fetch Op 2
words from storage. While one Op 2 word is being
processed, the next word is being fetched from stor-
age and put in the M register. When an Op 2 word
boundary is encountered, the prefetch sequence is
initiated. The first cycle (PF 1) transfers M to L.
After the first cycle, the iterations are started again.
If another Op 2 word is required from storage, the
remainder of the prefetch sequence (PF 2, 3, 4) is
allowed to follow the first cycle.

For decimal instructions, the prefetch is initiated
whenever the S pointer equals zero. For logical in-
structions, the prefetch is initiated whenever the S
pointer equals seven. If the T pointer indicates an
Op 1 word boundary has been reached at the same
time as the Op 2 word boundary, the store-fetch se-
quence has priority over the prefetch. .

The VFL address advance line is brought up with
PF 1. The gate select register is set at B of PF 1
and the following A clock sets the right two-thirds of
the SS instruction into IOP (16-31); this places the
B2 and D2 address fields into IOP for use by the AA.
The addressing adder sum at the end of PF 2 will be
B2 + D2 + X where X is the VFL address increment.

First Prefetch: The first prefetch is started during
set-up. Set-up sequencers control the address gen-
eration and set the VFL fetch request trigger. The
second Op 2 word returns after set-up is completed
and the iterations started. Therefore, PF 3 is set
with SU 7 latch and reset with accept from the BCU,
PF 4 is set with PF 3 latch and accept.
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Since the first byte in an operand could be located
anywhere within a storage word, there may be only
one Op 2 byte to be processed before a second word
is required. This means that the first prefetch,
started during SU 7, would not be completed when
the second prefetch is started. In this case, the PF1
trigger is turned on but the latch is not enabled until
the J loaded trigger is turned on. When PF 1 is
turned on at the same time as PF 4, the M to AM
T/C gating trigger is not set. With PF 4 on, J is
being gated to AM T/C at this time and therefore J
instead of M is gated to L with PF 1 latch.

Figure 53, shows three examples of the first
source word boundary being encountered within one,
two and three bytes of the start of execution. These
examples assume that an immediate accept is re-
ceived for the first prefetch request. Figure 54
shows an example where operand 2 has one byte in
the first word and the accept to the first prefetch
request is delayed two cycles.

Interaction with Store-Fetch

If both operands come to a word boundary at the same
time (Figure 55, part A), the store-fetch sequence
takes priority over the prefetch and is executed first.
This is done for two reasons:

1. If the prefetch was allowed to go first, it
would delay the store-fetch until an accept was re-
ceived and possibly delay it even more waiting for
the storage cycle to complete. With the prefetch
following the store-fetch, most of it is overlapped
with the iterations.

2. If the end-of-operation conditions exist, the
prefetch sequence is not needed, and the store-fetch
sequence ends the executions.

If an Op 1 word boundary is encountered or the
end-of —-operation conditions occur while a prefetch
is in process, the start of the store-fetch is delayed
until an accept is received for the prefetch request
(PF 3 latch and accept).

Figure 55, part B shows the operands crossing
word boundaries at the same time and Op 2 crossing
a word boundary one cycle ahead of Op 1. In the
latter of the two examples, two store-fetch sequences
are shown for the twopossible cases of storage inter-
ference. The first example shows the prefetch and
store-fetch fetching from the same storage bank.
The second example shows the prefetch fetching from
the same storage bank that the store-fetch is storing
in.

Note that with multiple storage units, the two
requests made during a store-fetch sequence are
always made to different storage units and therefore
do not interfere with each other.
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Decimal Instructions

The prefetch sequence is initiated if S = 0 and SF 1
or SF 3 is not being set.

The first Op 2 word, B2 + D2 + L2, is fetched
during set-up. If a second word is required, the
first prefetch is initiated during set-up and this
fetches B2 + D2 + 0 or B2 + D2 + 8 bytes depending
on whether the operand is in two or three storage
words. When the first word boundary is crossed,
if the Z counter is greater than 7, PF 2 is allowed
to follow PF 1 and B2 + D2 + 0 is fetched. The field
length limitation of 16 bytes limits the operand to a
maximum of three storage words. If the operand is
in two words, the prefetch initiated at the first word
boundary consists of only one cycle, PF 1 to trans-

fer M to L.
The S pointer is stepped even after the Z counter

latch is equal to 1110 and the operand no longer
enters into the result. It would be possible for a one
cycle prefetch sequence to occur even though it is
not needed. This is allowed because it should not
happen very often; it only wastes one cycle out of
many, and it is easier to prevent PF 2 from being
turned on than it is to prevent PF 1 from being
turned on.

Overlapping Fields: For AP, SP, ZAP and MVO,
if the 0-7 overlap trigger is on, each prefetch moves
Op 2 into the same storage word that Op 1 is in.
For this reason, the gate K with S trigger is set at
PF 1 latch and PF 2 is not enabled. If the 8-15
overlap trigger is on, M is transferred to L as
usual. The word to be feiched is in K register and
will be transferred to M on each store-fetch se-
quence, therefore no prefetch is initiated.

Pack and unpack must be handled differently for
overlapping fields. In both instructions, the oper-
ands are used at different rates so that the initial
address relationships do not hold throughout the
execution. The overlap triggers are set according
to the address comparisons:

Pack
0< (B2 + D2 + L2) - (Bl + D1 + L1) < B sets 0-7 trigger
8= (B2 + D2 + L2) - (Bl + D1 + L1) < 16 sets B-15 trigger

Unpack
-8< (B2 + D2 + L2) - (Bl + D1 + L1) < B sets 0-7 lrigger
8=(B2+D2+L2) -(Bl+ D1+ L1l)< 16 sets 8-15 trigger

When either of these two triggers are on, the
two low-order word address bits (H 19 and 20) are
put in the ER and SC for Op 1 and Op 2, respectively.
Each time a word boundary is crossed, the corres-
ponding register is decreased by one and then the
two register ER and SC, are compared for equal.
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If they are equal, the word boundary crossed moved
the two operands into the same storage word. The
address bits are in positions 1 and 2 of the ER and
SC, and are decreased by adding 11 (the 2's comple~
ment of 01) to them. The SC is then subtracted from
the ER in the AE. If all of the half sums of the ex-
ponent adder are equal to one, the two inputs are
equal. Therefore, if AE HS = 1's, set gate K with S
trigger, and if AE HS # 1's, set gate L with S trigger.
The prefetch cannot be overlapped with the itera-
tions when either of the overlap triggers is on. This
is because the word being fetched might be in K reg-
ister. The prefetch would fetch the word before the
modified word (the result) had been stored. This
would give an incorrect result. Therefore, Op 2
fetches are made after the Op 2 word boundary is
encountered. The AOB is gated to L. as well as M

with PF 4 latch when one of the overlap triggers is on.

Logical Instructions

The two translate instructions do not use the normal
prefetch sequence because Op 2 bytes are fetched
one at a time from a table and do not follow in se-
quence.

The edit instructions do not overlap prefetch with
iterations. The stepping of Y Z does not have a
direct relationship to Op 2 bytes used and therefore,
it is impossible to determine if another Op 2 word
is needed until a word boundary is encountered. At
an Op 2 word boundary, if Y Z # IOP (8-15), a pre-
fetch is started. If Y Z = IOP (8-15), the store-fetch
sequence is started and, because it has priority,
suppresses the prefetch sequence. It is still possible
that an Op 2 word could be fetched that is not used;
therefore, the address invalid latch and PF 4 latch
set VFL T7. The first digit that is examined with
VFL T7 on sets the invalid address interrupt.

Because edits use the two operands at different
rates, two separate word counts must be maintained.
The shift counter (SC) is used to hold a word count
for operand 2. Each prefetch sequence adds one to
the SC after it is used for the current fetch (the set-
up sequence sets the SC to one initially). The SC
bits 2-7 are gated to the AA positions 23-28 to gen-
erate the address B2 + D2 + (SC x 8 bytes). The
prefetch not being overlapped with the iterations
means that:

1. The fetched word is put in the L register.

2. The iterations start after PF 4 instead of
PF 1.

The other logical instructions overlap the pre-
fetch with the iterations if there is no overlap, and
do not fetch if either overlap trigger is on. For the
nonoverlap condition, ER + 1 is put in the SC during
PF 2 in preparation for the next store-fetch se-
quence. The word count of processed words is kept
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in the ER. The ER is incremented each time a result
word is stored. Therefore, each store-fetch stores
at Bl + D1 + ER, and fetches from Bl + D1 + (ER + 1).
The store-fetch sequence leaves either ER + 1 or ER
+ 2 in the SC, depending on whether Op 1 is crossing
word boundaries ahead of or behind Op 2. When enter-

- ing either a prefetch or store-fetch, the SC contains

the address increment to be used for the fetch.
When iterations move through both operands at the
same rate, the two operands cross word boundaries
alternately.

For MVC, the store-fetch sequence starts at ST
3 and does not fetch. Therefore, the ER is trans-
ferred to the SC without incrementing it.

If the 0-7 overlap trigger is on, crossing an Op 2
word boundary moves Op 2 into the same storage
word that Op 1 is in. Therefore, the gate K with S
trigger is set to gate bytes of both operands from the
K register.

Store-Fetch Sequence -- Decimal

e Feiches next Op 1 word from storage.

e Stores completed result word at Op 1 location in
storage.

e Terminates instruction on last store.

The primary function of the store-fetch sequence is
to store a completed result word and fetch the next
Op 1 word to be processed. Six sequencers, SF 1
through SF 6, control the functions of each store-
fetch sequence.

In general, whenever an Op 1 word boundary is
encountered during iteration sequence, iterations
are suspended and the store-fetch sequence is en-
tered to store the completed result word and fetch
the next Op 1 word to be processed. In this case,
SF 1 cycle is the first of the store-fetch sequence;
SF 1 and SF 2 cycles initiate the fetch request and
then proceed through SF 3, SF 4, and SF 5, during
which the store request is initiated. The store-fetch
sequence then waits in SF 6 cycle for the next Op 1
word to arrive from storage into the J register.
When the next Op 1 word arrives in J, the store-
fetch sequence ends and iterations resume.

The store-fetch sequence may store only, fetch
only, make two stores, or make no store or fetch.
A store only sequence starts with SF 3. A fetch-
store sequence and a fetch only sequence start with
SF 1.

In all of these sequences, if the end execution
conditions exist, VFL end sequence trigger is set
with SF 3 latch and SF 5 is the last cycle. The SF 5
sequencer is the last cycle for all instructions with
one exception, TRT. For TRT, if a nonzero func-
tion byte is found, the execution is completed with a



put-away sequence of A-B-C-D-IS1-IS3.
Figure 56 shows the various conditions that cause
a store-fetch sequence and the sequencers used.

Store-Fetch for AP, SP (Figure 6455, 6456 and 6457)

There are two conditions that cause a store-fetch to
be initiated:

1. T =0, a word boundary is being crossed.

2. Y latch = 1110 and Z latch = 1110, both oper-
ands have been processed.

Both of these conditions start the store-fetch se-
quence at SF 1. The sequence has three different
functions:

1. Crossing a word boundary or last store.

2. Change sign.

3. Start recomplement pass.

Crossing a Word Boundary or Last Store

This sequence is used for add/subtract first pass
and the recomplement pass. When crossing a word
boundary, a result word is stored and the next Op 1
word is fetched. When Y and Z equal 1110, the re-
sult has the correct sign and is in true form, the
last result word is stored. The following is a des-
cription of the function of each cycle in this sequence:

SF 1: Gate eight to AA if two Op 1 words remain to
be processed (Y > 7). Set the VFL fetch request
trigger if another Op 1 word is required (Y # 1110).
This fetches (Bl + D1 + 8 bytes) if two words remain
and (Bl + D1 + 0) if one word remains. If both oper-
ands have been processed (Y and Z = 1110) and the
last word of Op 1 has not been stored (T5 on), the
VFL store request trigger is set. This stores word
(B1 + D1 + 0). The overlap triggers are reset with
SF 2 latch, when Y-Z =1110-1110, in preparation
for recomplementing.

SF 2: Gate 16 to AA if two Op 1 words remain to be
processed (Y > 7). Two words remaining mean the
word just completed was the first one processed.
Gate eight to AA if one Op 1 word remains to be
processed (Y< 7). The sequence waits in SF 2 for
an accept to come back from the BCU if a request
was set during SF 1.

SF 3: T1 is set when Z = 1110 and T2 is set when

Y =1110. If L2 = L1, the last store is made during
SF 1 of the store-fetch sequence when Y and Z =
1110. When T1and T2 areboth onthe store request is
blocked at SF 3. If L2 > L1, the last store could be
made during SF 3. This occurs when Y counts down
to 1110 and an Op 1 word boundary is crossed before
Z counts down to 1110. In this case, T5 blocks any
further store request. If L2 = L1, and Z counts

down to 1110 before an Op 1 word boundary is
crossed, the last store request is made at SF 1.

The VFL end sequence trigger is set with SF 3
latch if T1 and T2 are on and the result is in true
form or if the E interrupt trigger is on.

SF 4: The sequence waits in SF 4 for an accept
from BCU if a request trigger was set during SF 3.
if Y =1110, SF 4 latch sets T5 to remember the last
store has been made.

If the 0-7 overlap trigger is on, the gate L with
S trigger is set. When the 0-7 overlap trigger is on
it indicates that Op 2 and Op 1 were operating out of
the same storage word. Op 1 crossing a word bound-
ary moves that operand out of the storage word that
Op 2 is currently in. During SF 5, the word in K is
put in L, where it continues to be used as a source
word. The condition register is set with SF 4 if the
VFL end sequence trigger is on.

SF 5: The state of the two overlap triggers indicates
the difference between the starting addresses. If the
0-7 Overlap trigger is on, the two operands move in
and out of common storage words. Each time an Op
2 word boundary is crossed, Op 2 is moving into the
same storage word that Op 1 is currently operating
out of. Each time an Op 1 word boundary is crossed,
it is moving out of the word Op 2 is currently oper-
ating out of. If the 8-15 overlap trigger is on, the
next word required by Op 2 is being generated as a
result in K. Instead of prefetching, K is transferred
to M as it is being stored.

If ELC was set with SF 4 latch, this is the last
cycle.

SF 6: J is gated to K during SF 6. For one case,

- when the last result word is being stored and proc-

essing of Op 2 is not complete, no word has been
fetched to J. However, J should be valid and it is
gated to K.

If the address invalid trigger is on, SF 6 latch
sets SF 3 instead of IS 2 and the operation is ended.

Change Sign

For the instructions AP and SP, if the result is zero
it must have a positive sign. If the result is zero,
it is in true form and does not require complement-
ing. Therefore, there is never a need to change the
result sign and prepare to recomplement during the
same sequence.

If the result ZD trigger is off when Y and Z=1110
it indicates a zero result. The byte address of the
sign byte (B1 + D1 + L1) is calculated. A byte with
positive sign and zero digit is generated in the AV
and placed in K at the address calculated, setting the
mark corresponding to that byte. This byte is stored
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Omuw

SF SF

Op Code Group Conditions 112]3 415|6

MVO (T=0)4(Y=1110) s| [x|x|x

PACK, UNPK [(T=0) + (Y=1110)] * (0-7+8-15 Overlap) s| Ix[x|x

[(T=0) +(Y=1110)] * (Not 0-748-15 Overlap) Flxls| [x]x|x

ZAP (T=0) - (Y # 1110) S XiX|X
(Y=1110) - (Correct Result Sign) S| XX XX
(Y=1110) - (Result is Neg Zero) S| XS XX

CcP (1=0) - (¥ # 1110) F|l X| X X| XX
{r=1110) Set CR with SF-4 LTH X XX XX

AP,SP (T=0) - (Y-Z #1110-1110) F|X|5S XXX
(Y=Z =1110-1110) * (Result True) - (Result Sign Correct) SIX|X XX
(Y=Z =1110=1110) * (Result is Neg Zera) S| X|X|S|X|X

(Y=Z = 1110=1110) - (Result Compl) S| X| F XXX

MVC (T=7) + (Y-Z = 1111-1110) s| [x]x|x

MVN,MVZ NC, (T=7) * (Y=Z £ 1111-1110) F|X|5 XXX
DC, XC {(Y-Z=1111=-1110) 5 XX

CLC (T=7) - (Y-Z £1111-1110) FIX|X XX

(Y=Z =1111-1110)  Set CR with SF-4 LTH

TR (T=7) - (Y-Z # IOP 8-15) FIX|s| [x|x|x
(Y-Z = |OP 8-15) S XX

TRT (T=7) - (Y-Z # |IOP B-15) - (Function Byte = 0) FlX| X XXX
(Y-Z = 10OP 8-15) * (Function Byte = 0) X XX

ED,EDMK (T=7) * (Y-Z # IOP B-15) FIX|5 XXX
(Y-Z = |OP 8-15) S XX

112

X Indicates sequencer is used.
F Indicates sequencer is used and VFL Fetch Req is set.
S Indicates sequencer is used and VFL Store Req is set.

The Y's and Z's used refer to the latched outputs.

FIGURE 56, STORE-FETCH CHART
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and the operation ends with SF 5.
The following is a description, by cycle, of the
change or invert sign sequence (see Figure 6457):

SF 1: With Y and Z=1110, there is no incremeént
gated to AA. If a store is required, it is the (B1 +
D1 + 0) word, If T5 is off, the VFL store request
trigger is set.

In preparation for generating the starting byte
address (Bl + D1 + L1), IOP (8-11) is gated to Y.

SF 2: The sequence waits here for an accept from
the BCU if a request trigger was set during SF 1.

The gate of Y to AA (28-31) is started in SF 2
and continues through ST 3.

SF 3: The second request is normally set during
Ei—;cycle; however, the BCU mark register must be
set at the same time or before the BCU store request
is set. To set the mark register, the address must
be calculated, put in H, transferred to the T latch
and then the mark register set. For this reason, the
request is delayed one cycle. To maintain the nor-
mal ending sequence, the VFL Seq A is inserted be-
tween SF 3 and SF 4.

SEQ-A: The sign byte address is gated from H 21-
23 to the T latch, which controls the K byte release
and the setting of the mark register. The positive
zero byte is generated and put in K. The VFL store
request trigger is set but the normal function of gat-
ing AA to SAR and H is blocked. The address was
set in SAR and H during the previous cycle.

The Seq A latch sets VFL end sequence trigger
and generates a VFL through to the I-unit.

SF 4: Wait in SF 4 for the accept. The condition
register is set with SF 4.

SF 5: Because the VFL end sequence trigger is set
during SF 4 cycle, VFL end sequence latch gates the
set of ELC trigger at the beginning of SF 5 cycle.
Therefore, ELC and SF 5 terminate the instruction.

Start Recomplement Pass

Decimal data must always be in true form at the
start and end of an operation. Therefore, if the result
of an AP or SP is in complement form after the first
pass, another pass must be made through operand 1 to
recomplement it. Preparation for the recomplement
pass is made during what would otherwise be the last
store sequence.

A description by cycle of this sequence follows
(see Figure 6456): .

SF 1, SF 2: Same as change sign. The overlap trig-
gers are reset with SF 1 latch so that none of the
overlap functions are executed during the recomple-
menting pass.

SF 3: The VFL fetch request trigger is set to fetch
(Bl + D1 + L1) . This could be the word that was
stored during SF 1 of this sequence, but to keep the
controls as simple and straightforward as possible,
the fetch request is always made.

SF 4: Wait in SF 4 for an accept for the fetch re-
quest made in SF 3. The starting byte address is
gated from H to T latch to T register. To get
T latch into T register unchanged, the count S and
T down line must be degated with SF 4 latch,

T4 is set to remember that the following se-
quences are for recomplementing.

SF 5: The gate K with S trigger is set to gate K
bytes through the RBG to the T/C + 6 gate,

T2 is reset since Y contains L1,and is no longer
equal to 1110.

The IS 3 trigger is set with SF 5 latch to start
the add/subtract sequence in the normal way.

SF 6: The SF 6 latch is enabled with the J loaded
trigger. This means that the sequence waits here
for the word requested at SF 4 to return. IS 3 latch
is also enabled with J loaded trigger for AP or SP
and T4. '

Store-Fetch for ZAP, CP, MVO

This group of instructions has store-fetch functions
similar to those of AP and SP but without all the
variations.

Zero and Add--ZAP

The zero and add store-fetch sequence only stores.
Therefore, if Y-Z # 1110-1110 and T = 0, SF 3 is
set and the sequence runs SF 3 through SF 6 (see
Figure 6455). If Y-Z = 1110-1110, SF 1 is set and
the sequence runs SF 1 through SF 5 (see Figure
6457). This last sequence stores a positive sign if
the result was a negative zero. The details of these
two sequences are described in AP-SP crossing word
boundary or last store, and change sign.

Compare--CP
The decimal compare instruction does not store a

result and therefore, the store-fetch is a fetch only
sequence. The sequence starts at SF 1 and runs to
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SF 5 or SF 6, depending on whether the operation is
complete or not.

The following is a description, by cycle, of the
CP store-fetch (see Figure 6455):

SF 1: Gate eight to AA if Y >7. Set the VFL fetch

request trigger if Y # 1110, The reset of the over-
lap triggers is for AP and SP in preparation for re-
complementing

SF 2: Wait here for accept to fetch request if it was
made.

SF 3: The VFL end sequence trigger is set if Y-Z =
1110-1110.

SF 4: Set T5 if Y = 1110. This blocks store-fetch
from starting again until Y-Z = 1110-1110.

SF 5: Gate K to L for 0-7 overlap and K to M for
8-15 overlap (see AP, SP "Crossing a Word Bound-
ary or Last Store" for more details).

SF 6: Gate J to K when J is loaded.
Move -with-Offset--MVO

Because move-with-offset (Figure 6455) is a move
type instruction, it does not fetch Op 1. For storing
only, the store-fetch routine is started at SF 3 and
runs to SF 5 or SF 6. The SF 6 sequencer is used to
separate SF 5, the last cycle sequencer, and the it-
erations, The SF 6 is normally used to gate J to K
but no fetch is made for MVO.

T5 need not be set since VFL end sequence is set
when Y = 1110,

Store-Fetch for PACK, UNPK

The PACK and UNPK instructions do not move
through both operands at the same rate. This means
that the starting address relationships do not remain
static throughout the execution. Therefore, over-
lapping fields must be handled differently from other
instructions.

Nonoverlapping Fields: If it is determined during
set-up that the starting addresses are not close

enough together to have overlapping fields, PACK
and UNPK are treated like MVO. The store-felch
sequence is entered at SI 3 and the complete result
word is stored. The VFL end sequence trigger is
set when Y = 1110,

114 1/66 2075 Processing Unit -- Volume 3

Overlapping Fields: The overlap triggers are set
during set-up as follows:

0-7 if 0<(B2 + D2 + L2) - (B1 + D1 + L1) < 8 for Pack
or -8< (B2 + D2 + L2) - (Bl + D1 + L1) < 8 for Unpk
8-15if 8<(B2+ D2+ L2) - (Bl + D1 + L1) < 16 for Pack and Unpk

With these initial conditions and the field length
limitations, it is possible to monitor the two low-
order word-address-bits (H19 and H20) to determine
when the operands are in the same storage word.
These two bits are put in the ER and SC, positions
1 and 2, during set-up. Each time a word boundary
is crossed, the corresponding address (ER for Op 1
and SC for Op 2) is decreased by one and then the
two registers are compared. If the two registers
are equal, the operands will be working on the same
storage word.

Other details are similar to the AP, SP store-
fetch sequence (see Figure 6455).

Store-Fetch Sequence--Logical

The main difference between the logical and decimal
SS instructions store-fetch sequences is the address
generation. A word count is maintained in the ER of
the words processed. This word count can be used
to generate the increments added to the base address
for storing and fetching. This word count is ad-
vanced each time a result word is stored. The fetch
preceding the store uses ER + 1 for the address in-
crement. If the Op 2 field is crossing word bounda-
ries ahead of Op 1, the prefetch address increment
is ER+ 2. If Op 1 is crossing word boundaries
ahead of Op 2, the prefetch address increment is
ER + 1. Since both operands move through storage
at the same rate, a comparison of their starting byte
addresses indicates which operand is leading through-
out the entire execution. T5 is set during set-up of
S > T, indicating operand 2 will cross word bounda-
ries ahead of operand 1. At the end of either a store-
fetch, or a prefetch, the SC contains the increment
for the next fetch. Instructions MVN, MVC, MVZ,
NC, CLC, OC and XC are included in this group.

MVC does not fetch Op 1. Therefore, the store-
fetch sequence is started at SF 3 and the prefetch
leaves the contents of the ER in the SC for the next
address increment.

Following is a description of the unique operation
of this store-fetch (Figure 6465):

SF 1: Transfer the ER to SC in preparation for
storing result.



SF 3: Add one to ER for storage word count advance.
SF 5: Add one to ER and put sum in SC. This is
prefetch address increment if Op 1 is leading Op 2.

SF 6: If T5 and neither overlap trigger is on, add
one to the SC (ER + 2) and put sum in SC. This is
prefetch address increment if Op 2 is leading Op 1.
If either one of the overlap triggers is on, the pre-
fetch is not overlapped with the iterations. When an
Op 2 word boundary is crossed, the iterations are
suspended while the next Op 2 word is fetched. For
this case, the address increment is ER + 1.

Store-Fetch for ED, EDMK, TR, and TRT

For EDMK and TRT, it is necessary to calculate and
put-away in GR 1 the full 24-bit operand 1 address.
The easiest way of calculating this address is to
count Y-Z up (starting with Y-Z = 0) instead of down
and add Y-Z to B1 + D1, when the current byte ad-
dress is needed. Y-Z register and Y-Z latch can
then be used for addressing increments when storing
and fetching operand 1 words at word boundaries.

ED and EDMK

For ED and EDMK (Figure 6473), the two operands
move through their storage fields at different rates.
The stepping of Y-Z corresponds to the processing

of operand 1 bytes. The Y-Z counter has no direct

relationship to operand 2. Therefore, a word count
is maintained in the SC for operand 2.

TR and TRT

For TR and TRT (Figure 6485), the Op 2 storage
references move at random through a translation
table that can vary in size. The actual size of the
table is not specified in the operation code. There-
fore, it is impossible to make an initial address com-
parison to determine if there is possible overlapping
of the fields. For this reason, the word address
(three low-order bits equal zero) of the word in K is
placed in M. Each table address calculated is com-
pared to M and the difference is checked. If the
difference between the table address and address of
the current word in K is 0-7, the table byte required
is in K. The gate K with S trigger is set and the
word returned from storage is not used.

The address calculated during store-fetch for the
fetch is the address to be put in M. This address
must be transferred to M before the store address is
put in H. Therefore, the word in K is transferred to
M and the address in H is transferred to K. Then K
and M are swapped to put the address in M and the
result word being stored back in K.

DECIMAL DIVISION

Method of Division

To show the method of decimal division in the Sys-
tem/360 Model 75, consider first the normal long-
hand method as shown below:

176 R=12
23 ) 4060
-23
176
161
150
138
12

To generate the quotient, the divisor is subtracted
from the high-order end of the dividend as many times
as possible. The number of times it can be sub-
tracted is the value of the first quotient digit. The
divisor is then shifted right one digit. The second
quotient digit is developed by subtracting from this
position. This process continues until the divisor
has been shifted to the low-order end of the dividend
and the last quotient digit is generated. This process
is shown more clearly below:

176 R=12

23 ) 4060

1 -23
1760

1 -23
1530

2 -23
1300

3 -23
1070

4 -23
840

5 -23
610

6 -23
380

7 -23
150
1 -23
127
2 -23
104
3 ' -23
81
4 -23

Quotient 17 6 12 Remainder

For each quotient digit generated above, the
divisor is subtracted until the remainder is less than
the divisor. Because it is difficult for the computer
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to determine when the dividend is less than the divi-
sor, the divisor is subtracted until the dividend goes
negative. When the dividend goes negative, the divi-
sor has been subtracted one time too many; there-
fore, the divisor must be added back to restore the
dividend to a true value. The divisor is then

shifted right one digit and the next quotient digit
generated in the same manner. This process con-
tinues until the dividend is reduced to a value less
than the divisor; this then, is the remainder.

Restoring Division (Figure 57)

Subtraction of decimal numbers in System/360
Model 75 is accomplished by the 9's complement
method. In decimal division, the divisor is comple-
mented and added to the dividend the required num-
ber of times to cause the dividend to go negative.

A counter counts the number of times the divisor is
subtracted from the dividend without causing the
dividend to go negative. When the dividend goes
negative the counter contains the value of the quo-
tient digit for that decimal position. The dividend
-is then restored to true value by adding the divisor
back. The digit value in the quotient counter is
stored and the counter reset to zero.

The divisor is then shifted right one digit and
subtraction repeated until the dividend again goes
negative, and a new quotient digit generated. The
dividend is again restored to a true value, the quo-
tient digit stored and the process repeated until the
value of the dividend becomes less than that of the
divisor. Division is then complete.

Restoring division restores the dividend to a
true value each time it goes negative.

Non-Restoring Division (Figure 58)

In non-restoring division, instead of adding the
divisor back to restore the dividend when it goes
negative, the divisor is shifted right one digit. The
next quotient digit is then generated by adding the
divisor to the dividend the number of times required
to cause the dividend to go positive.

Non-restoring division generates quotient digits
two ways:

1. When the dividend is positive, the quotient
digit counter is set to zero and stepped up one each
time the divisor is subtracted until the dividend goes
negative.

2. When the dividend is negative, the quotient
digit counter is set to 9 and counted down one each
time the divisor is added until the dividend goes

positive.
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Combined Restore and Non-Restore (Figure 59)

The speed of the decimal divide process can be
optimized by combining features of the restore and
the non-restore methods. A review of the restore
and non-restore method indicates that a quotient
digit less than 5 can be generated faster by sub-
tracting whereas, a quotient digit greater than 5 can
be generated faster by adding.

In the System/360 Model 75, both the restoring
and the non-restoring methods are used. The high-
order digits of the divisor and dividend are decoded
to predict approximately what the next quotient will
be. This quotient prediction allows the selection of
the method that will be the fastest for each particular
quotient digit.

In general, the decimal division process is as
follows: A divide check is made. The divisor is
left-aligned with the left-most-but-one dividend digit.
A trial subtraction (divide test) is made and if the
result does not go negative the quotient and remainder
will not fit into the Op 1 field. In this case, the
divide check trigger is set and the division process
is terminated.

If the result of the trial subtraction (divide test)
is negative the operation continues. The divisor is
then shifted right one digit and subtracted from or
added to the dividend. Whether a quotient digit is
generated by addition or subtraction is determined
by the positive or negative state of the dividend and
the predicted quotient. The quotient digit is gener-
ated in the digit counter (DC). When the first digit
is completed, it is temporarily stored in the digit

. buffer (DB). The divisor is then shifted right 4 and

the next quotient digit is generated. Now that a full
byte of quotient has been generated it is put away in
the upper end of the dividend-quotient field. This
process continues until the divisor is right-aligned
with the low-order byte of the dividend. The last
quotient digit is then generated and put away. The
division is then terminated.

Unit Functions

Execution of the decimal divide instruction utilizes
the following registers and counters as temporary
data storage and to provide controls during the
various sequences involved.

Registers
The J, K, L, and M registers are used as temporary

storage for the divisor and dividend words during
the execution of the decimal divide instructions.
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3 977
081
4 _‘;’% FIGURE 58. DECIMAL DIVISION—NON-RESTORING
5 977
035
& 977
o1z
977
989
023 Restore

Quotient 1 7 &

o

12 Remainder

FIGURE 57. DECIMAL DIVISION--RESTORING

J Register: The J register receives each word of the
divisor and dividend when they are brough from stor-
age during the set-up sequence. During divide iter-
ations, the J register serves no function other than
to retain the low-order dividend word when the
dividend is in three storage words.

K and M Registers: The K register holds the portion
of the quotient-remainder field that is presently being
worked on. The M register holds the portion of the
dividend that is on the other side of the word boundary
if a word boundary is crossed by the present align-
ment of the divisor.

Because the quotient-remainder field can have a
maximum length of 16 bytes, it can cross two word
boundaries. The length of the divisor determines
how much of this field is used in determining any
one quotient digit. Because the maximum divisor
length is 8 bytes, only one word boundary can be
crossed by the portion of the dividend field being
worked on.

At the beginning of the divide iteration, the
high-order two words of the dividend field are in K
and M. The first word that will be worked on is in K.

L Register: The L register holds the entire right-
aligned divisor. Right-alignment is done during
set-up. As each quotient digit is completed, the
divisor is shifted right or left one decimal digit
during sequence D cycles to provide the correct
dividend-divisor alignment to generate the next quo-
tient digit.

Counter Functions

Y Counter: Y is initially set to L2. Every time a
byte of the dividend has been exhausted (a quotient
byte generated) Y is stepped up by 1. When Y = L1
the last quotient digit is complete and the operation
can be terminated.

In addition, Y counter provides the address
increments when a new T pointer value is needed
after each quotient byte is complete.

Z Counter: Z is set with L2 at the beginning of each
pass (Seq A) through the divisor. It is stepped down
by 1 every time a byte of the divisor in L is used.
When Z latch = 1110, the addition has been com-
pleted with the exception of the extra byte during
odd cycles.
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S Pointer: S is reset (Seq A) at the beginning of each
pass through the divisor. It is used to select the
divisor bytes as they are subtracted from the divi-
dend. S is stepped down by 1 as each divisor byte

is processed.

T Pointer: T is set with B1 + D1 + Y at the begin-
ning of each pass (Seq A) through the divisor. T is
counted down by 1 as each byte of the dividend is
processed.

Y is stepped up by 1 as each quotient byte is
generated. Therefore, Bl + D1 + Y provides the T
starting point that shifts right while proceeding
through the division.

T also selects the K byte in which to set the
quotient. At the end of a pass through the divisor
when a guotient byte has been completed, it is only
necessary to step T down once more (Seq A) to set
the quotient byte into K.

Digit Counter: DC is used to generate the quotient
digit. It is set to zero and counted up when the
divisor is being subtracted from the dividend. It

is set to 9 and counted down when the divisor is being
added. It is stepped after every pass through the
divisor until the dividend changes sign. When this
happens, the quotient digit is complete.

Digit Buffer: DB is used to hold one quotient digit
while another is being generated in DC. Thus, a
full byte of quotient can be stored after every other
digit is generated.

Shift Counter: The shift counter (SC) is used to gate
odd-even cycles. During set-up, the SC is set to
zero. Thereafter, when each quotient digit is com-
plete, the SC is stepped up 1. When the SC contains
an odd number, the pass through the divisor is an
odd pass; when the SC is even, the pass through the
divisor is even.

Odd-even passes are used to maintain correct
divisor and dividend alignment. After each quotient
digit is complete, the divisor is shifted right 4 bits
(one decimal digit) in relation to the dividend. To
effectively shift the divisor right 4, the first time
it is only necessary to shift the contents of L regis-
ter right 4. For the next right 4 shift, the starting
point of the dividend is shifted right one byte (8 bits)
and the divisor (L register) left 4 bits.

To keep track of this shifting, the SC is incre-
mented after every quotient digit is generated. The
odd cycles are defined as those during which the
divisor is in its left-most position in L. During even
cycles, the divisor is right aligned in L.

An odd cycle quotient digit is put away in DB.
When an even cycle quotient digit has been generated
in DC, DB and DC are put away in K.
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Control Triggers

T1 -- First Word Store Trigger: T1 trigger is set
during the SF 3 cycle of the first SF sequence. T1
is used in combination with the T4 to generate stor-
age addresses for subsequent SF sequences (Figure
60). When set, T1 stays on until ELC.

T2 -- Restore Trigger: The T2 trigger is set to
restore the dividend after each quotient digit is com-
plete if the non-restore trigger is off. T2 is set
during the sequence A cycle in which the quotient
digit is complete, except the sequence A cycle of
divide test or the end of a restore pass. When T2
is on a restore pass is forced; the divisor is added
or subtracted from the dividend, depending on the
status of T/C control T3 trigger. If the preceding
pass through the divisor was a subtract pass and the
quotient digit is complete, the dividend is negative
when Seq A is entered. T2 trigger is set, if the
non-restore trigger is off, and a restore pass adds
the divisor back to the dividend to restore it to a
positive value. The same occurs if the previous
pass through the divisor was an add pass. When
Seq A is entered and the quotient digit is complete,
T2 trigger is set, if the non-restore trigger is off,
and a restore pass subtracts the divisor from the
dividend to cause it to go negative. T2 trigger is
reset during the Seq A cycle that follows the restore
pass.

T3 —- True/Complement Trigger: During decimal
divide iterations, the T3 trigger controls whether
the divisor is added to or subtracted from the divi-
dend. If T3 is on it causes the divisor byte to be
complemented at the TC +6 input gate to the decimal
adder.

T3 is set during PF4 cycle of the decimal divide
set-up sequence, and remains on during the divide
test pass. Thereafter, T3 is set and reset during
Seq A cycle when quotient digit is complete.

T4 — Swap Trigger: The T4 trigger controls the
swapping of K and M registers after each pass when
a dividend word boundary is crossed.

T4 trigger is set during IS 1 or IS 2 cycles of the
divide test pass if a dividend word boundary is
crossed. T4 is also set during Seq A of a restore
pass that precedes the crossing of a dividend word
boundary.

T4 is reset during SF5 if the portion of the
dividend being processed moves into one word.

T5 -- Block-Swap Trigger: When generating the
last quotient digit of a word, the swap trigger, T4,
is still on. However, no word boundaries are
actually crossed during these passes through the




Divide Request Address Fetch Req Cycle Conditions Word Retums From Storoge
Cycle To Register
By + D} +1 SU2 sU7 K ond M
B2 + D2 + L2 SU 4 su? L
82 4+ D2 su7 S < Z (Sets T4) suUn L
By 4D suU ¢ T4 - (T1 +72) PF 2 M
B) + D1 sU 11 T4 - (T1 +7T2) PF 2 M
By +D7 +1 PF 2 T1 and T2 PF 3 K
Dividend Field - Word Addresses
1 Word [ By +D1+ 1
2 Wards | By + Dy | 814D+ |
3 Words [ By + D1 | By+Dy+1 | By+Dy+1Ly |
Divisor Field - Word Addresses
1 Word Ba 4+ D2 + L2
2 Words | Bp 4 D2 | B2+D2+12 |
T 0 T4 0--By+Dy+0
T 0 T4 1--8B; 4D +1
Line Tz Y=-=8) +D1 4+ Y
b Storoge Words
1 | 1 | 2 | 3 |
T
2 . Quot Rmdr
T10T4 T4
3 . Quot . Rmdr |
ToT4 T4
4 . Quot . Rmdr
TioT4 T4
5 : Quot , Rmdr
TT 014 T10 T4 T4
6 & Quot, A Remdr A
TioT4 TIoT4 T4
7 . Quot . Rmdr |
TioT4 TIOT4 T
8 " Quot , Rmdr .

FIGURE 60. ADDRESSING--DP STORE-FETCH
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Dividend = Quotient Field
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23 4 Store Quotient Word
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FIGURE 1. DIVIDE INTIRATIONS EXAMPLE
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Sequencers = Fallowing Set=Up

—a2
L IS-1 . 1S-2  1S-2  Seq-A  Sea-B . Seq-C , Seq-D
r L] L] Ll L] LA Ls 1
S L 152 152 153 SeqrA
L 151 15-2 15-2  15-3  Seq-A
r L} Ll L] L] ml
L IS=l L 152 152 15-3 | Sea-A
r L) L] L] L} 1
' 15=1 ' IS-Z_}_ 15-2 iseq-A ; Seq-D :
L IS=) . I5-2 . IS=2  Seq-A
r T Ll Ll o
} I15-1 : 15-2 ' 15-2 ' Seq-A .
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L) T L) T T T | D |
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i f i i : : i
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r T T T L) ) |
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r T L} T L) L) L) Ll S |
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r T L) L L] T 1
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L) T L) T T T | D
IS-1 152 SF-12 1S-2 Seq-A
: : L) T T 1
L Is=l , Is-2 | SF-12 152 Sea-A
r T L] L T 1
_0S=1 . is-2 | SF-12  15-2  Seq-A  Sea-B , Seq-C  Sea-D
r L] T T L T Ll L L
IS=1 | 15-2  15-2  SF=12 _15-3  Seq-A
! —— I s 3 i 1
L) Ll T T L) L) 1
05l 052 12 SF-12_ 153, Seq-A
5L 052 152 SE12 153 SeqA | SeD
151 152 15-2  Seq-A  Seq-B  Seq-C . Seq-D
k t t + t 1 t -
| SF-3 , SF4 S5 SP8
ISl 152 152 153 Sewh
LSl 152 152 153 Seq-A
r T T L L] 1
L IS=1 152 I5=2 153 SeqrA |
r T Ll L) L 1
51 152 152 SeqA  Sead | SeaD
E Last Cycle
st sia ses K
L) T T 1
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FIGURE 62. DECIMAL DIVIDE (DF) SIMPLIFIED EXECUTION SEQUENCE--2075
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divisor. T5 is set to block the swap of K and M
registers between even passes.

T5 is set during the IS 3 cycles in which T IN =
7. When T IN = 7 during IS 3, the last quotient byte
of a dividend word is being developed. IS 3 cycles
occur on odd passes through the divisor to accom-
modate a high-order carry-out from the decimal
adder; therefore, T5 is not allowed to block K and
M register swaps that occur during odd passes.
During subsequent even passes through the divisor,
the low-order digit of the quotient byte is generated.
Each even pass through the divisor steps to the end
of the dividend word (byte 0), but not across the
word boundary. Therefore, in this case, the K and
M swaps that normally occur during Seq A of even
passes are undesirable and and blocked by T5.

Lines 19-22 of Figure 61 show the conditions in
which the T5 trigger is used. Lines 19-21 represent
odd passes through the divisor. At the start of each
pass, the low-order dividend word is in the K regis-
ter and the high-order word is in the M register.

When the end of the divisor is reached, during
odd IS 2 cycles, SF 12 cycle is entered and K and M
registers are swapped. IS 3 cycle then occurs and
gates the carry-out, if any, from the decimal adder
into byte 7 of the high-order dividend word, now in
K register. Sequence A cycle then swaps K and M
back; this places the high-order dividend word in
M and the low-order word in K, ready for the next
pass. Odd passes repeat (lines 20 and 21) until the
dividend changes sign; the quotient digit is then
complete. During the last odd Seq A cycle (line 21),
K and M are swapped, and because the quotient digit
is complete, Seq D cycle follows. During Seq D the
quotient digit in the DC, generated during the odd
passes, is set into the DB to become the high-order
digit of the quotient byte.

T5 trigger is set during the first odd IS 3 cycle in
which T IN = 7 (line 19) and remains on until the
completed quotient word is stored. T5 blocks K and
M swaps only during even passes through the divisor.

During even passes in which the last quotient digit
of a quotient word is generated, the dividend word
boundary is approached but not crossed. Therefore,
the swap of K and M registers is undesirable and is
blocked by T5 trigger, even though the T4 trigger is
still on. This condition is shown on line 22 of Figure
61.

T6 -- Dividend Sign Trigger: The T6 trigger is used
to generate the correct quotient and remainder signs.

The T6 trigger is set during SU 8 cycle of set-up
sequence if the dividend sign is minus. When set,
T6 trigger remains on throughout the execution of

the decimal divide instruction, and is reset with ELC.

During Seq B cycle, after the last quotient digit
is generated, the quotient sign is inserted in the
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low-order quotient byte. During this cycle, the
status of the T6 trigger is compared with the status
of the minus sign trigger (divisior sign) and the
correct quotient sign inserted.

The status of the dividend sign trigger also de-
termines the sign cf the remainder. During the IS 1
cycle that processes the low-order bytes of the div-
idend, the remainder sign is generated and inserted.
If the dividend sign is minus, the trigger is on and
causes a minus signtobe generated forthe remainder.

T7 -- Divide Test Trigger: The T7 trigger provides
gating control during the divide test pass through
the divisor,

T7 is set during PF 3 cycle of the set-up se-
quence; then during the IS 1 and IS 2 cycles when
the divisor is subtracted from the dividend, T7 being
on blocks setting the AV sum into K.

After all bytes of the divisor have been subtracted
from the dividend, the dividend should change sign
and indicate quotient digit complete (T3 on and no
carry-out of AV). Seq A follows the divide test pass
through the divisor. When T7 is on during Seq A
and quotient digit is complete, the divide iterations
continue. If, however, the dividend did not change
sign, and quotient digit is not complete, T7 being on
during Seq A causes a divide interrupt.

T7 trigger is reset during the following Seq C
cycle.

T8 -- Terminate Trigger: As each quotient byte is
completed and set into the K register, the mark
register for that byte is set. After the last quotient
digit is generated and the division completed, the
remainder must also be stored; therefore, the mark
register positions that correspond to remainder
bytes must also be set. To set the marks for the
remainder, a restore pass is forced, even if it is
not needed. If a restore pass is forced when not
needed, the results are not set into the K register.
When the remainder is in two words (T4 on)
two restore passes are necessary. The first restore
pass sets the marks for the high-order remainder
word. The SF sequence then stores the high-order
remainder word. The second restore pass then sets
the marks for the low-order remainder word and the
word is stored.

T8 trigger is set during the store of the high-
order word if the T4 trigger is on. During the re-
store of the low-order word, T8 being on when the
word houndary is reached, causes the word to be
stored and the operation terminated.

Non-Restore Trigger: The non-restore trigger
controls the restoring of the dividend during the
decimal divide iteration sequence. Prediction of




the approximate value of a quotient digit enables a
choice of the faster method, either restore or non-
restore, to develop it.

Assume that the first quotient digit is generated
by subtracting the divisor from the dividend until
the remainder is negative, If the next quotient digit
is in the range of 0 to 4, the dividend should be re-
stored to positive, the divisor shifted right, and the
next quotient digit generated by subtracting the div-
isor from the dividend. If, however, the next
quotient digit is in the range of 5 to 9, the divisor
should be shifted and the quotient digit developed by
adding the divisor to the complement dividend until
the dividend becomes positive.

When the dividend goes positive, the next quo-
tient digit is predicted and the same decisions made.
If the predicted quotient is in the range of 0 to 4,
the dividend remains in true form, the divisor is
shifted and the quotient digit generated by subtract-
ing the divisor from the dividend. If the predicted
quotient digit is 5 to 9, the dividend should be
complemented, the divisor shifted and the quotient
digit generated by adding the divisor to the dividend.

System/360 Model 75 predicts the next quotient
digit by comparing the high-order divisor digit with
the dividend digit that aligns with it. The divisor
is added to or subtracted from the dividend one byte
at a time and moves from right to left through the
divisor.

For each divisor byte processed, the high-order
nonzero digit is compared to the corresponding digit
of the dividend. If the high-order divisor digit is
zero, the low-order digit is compared to the corres-
ponding dividend digit. If bothdigits of the divisor byte
are zero, nocomparison is made. The non-restore
trigger is set or reseteachcycle, depending on the
value of the digits compared. When both digits of the
divisor bytes are zero, the status of the non-restore
trigger remains unchanged.

When the quotient digit is complete, the dividend
has changed signs. The status of the non-restore
trigger then determines whether the dividend should
be restored. If the non-restore trigger is on, the
dividend should not be restored; if it is off, the
dividend should be restored.

Figure 63 shows conditions for the set and reset
of the non-restore trigger.

Execution -- Decimal Divide

Execution of the decimal divide instruction involves
three sequences; set-up, iteration, and store-fetch.

The set-up sequence fetches both operands, the
dividend (Op 1) and the divisor (Op 2), from storage
and aligns them in working registers. During the
set-up sequence, the divisor and dividend signs are
checked and controls are set to provide correct
signs for the quotient and remainder.

Divide iteration follow the set-up sequence.
During the divide iteration sequence, the quotient
and remainder digits are generated.

The store-fetch sequence follows the iteration
sequence to store the completed quotient-remainder
in the Op 1 location of storage. The decimal divide
instruction is always terminated by a SF sequence;
however, store-fetch sequences are also interleaved
with iterations if the quotient-remainder is in more
than one storage word. When a quotient-remainder
word is completed, a store-fetch sequence stores
the word.

Set-Up Sequence

The VFL set-up sequence for decimal divide fetches
the dividend and divisor words from storage to the K,
M, and L registers. The dividend is fetched to the

d, K, and M registers. If the dividend is in more
than one storage word, the low-order dividend words
are in the J and M registers and the high-order word
is set into K, ready to start divide test. The divisor
is fetched to the L register. If the divisor is in more
than one storage word, both words are fetched and

the divisor is right aligned in the L register. Be-
cause the divisor is allowed to contain a maximum
of eight bytes, the L register contains the complete
divisor at the end of set-up.

In addition to fetching both operands from storage,
the set-up sequence makes a specification check,
checks the signs of dividend and divisor, and sets
controls used during the iteration sequence.

The set 12 sequence uses VFL sequencers SU 1.
through SU 2 and PF 1 through PF 4 (Figure 6466).

Prior to the I/E transfer and during ELC of the
previous instruction, L1 and L2 are set into Y and
Z counters from IOP; L1 is set into Y and L2 into
Z.

SU 1 Cycle: SU 1 cycle follows the I/E transfer.
During SU 1 cycle, Y (L1) is gated to the AA prep-
aratory to computing the storage address B1 + D1 +
L1 of the low-order dividend (Op 1) word. Although
the storage address is normally computed during
the following SU 2 cycle, Y is gated to the AA during
SU 1 cycle to overcome line delay.

If CPU is in single cycle mode during SU 1 cycle,
the storage address Bl + D1 + L1 is computed and
the VFL fetch request trigger is set to fetch the
first dividend word from storage.

SU 2 Cycle: SU 2 cycle computes the storage ad-
dress Bl + D1 + L1 of the low-order dividend word
and initiates the fetch request to get the word from
storage.
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Dividend and divisor lengths are checked during
SU 2. If the divisor length is greater than the allow-
able eight bytes, L2 > 7, or if the divisor is equal
to or greater than the dividend length, L2 = L1,

a specification interrupt occurs; the divide instruc-
tion is terminated by suppressing the remainder of
the set-up sequence and going to the store-fetch
sequence.

If CPU is in single-cycle mode during SU 2 cycle,
the low-order dividend word has arrived from stor-
age and is in the J register. The dividend word is
transferred from the J register through the main
adder to the K and M registers. Because the fetch
request for the low-order dividend word is made
during SU 1 cycle, single-cycle mode suppresses
the fetch normally made during SU 2.

SU 3 Cycle: SU 3 is the accept wait cycle for the
fetch request mode during SU 2. The ON status of
the VFL fetch request trigger sets the BCU fetch
request trigger at the beginning of SU 3 cycle. If
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the selected storage is not busy, an accept signal

is returned to the E unit and enables the set-up
sequence to continue. If the selected storage is
busy, then the accept signal is delayed until storage
priority is established; in which case, the set-up
sequence remains in SU 3 eycle until accept arrives.

The storage address (B1 + D1 + L1) computed
during SU 2 cycle is set into SAR and H registers at
the beginning of SU 3 cycle. During SU 3, the byte
address of the low-order digit of the dividend, con-
tained in H register positions 21-23, is set into the
T pointer. The T pointer is used later, during set-
up, when the dividend sign is checked.

VFL address advance signal is sent to the I unit
during SU 3 eycle preparatory to computing the
storage address of the low-order divisor word.

VFL address advance signals the I unit to gate B2 and
D2 to IOP during the next cycle,

The Z counter provides the L2 factor to compute
storage address B2 + D2 + L2 during SU 4 cycle.

To overcome line delay and assure L2 is available



during SU 4, the gating of Z to the AA is started
during SU 3 cycle.

SU 4 Cycle: SU 4 cycle (decimal divide) computes
the storage address of the low-order divisor word
(B2 + D2 + L2) and starts the VFL fetch request to
get the divisor from storage. Because VFL address
advance is gated to the I unit during SU 3 cycle, the
I unit gates the B2 and D2 to IOP and thus, the AA
during SU 4. Z is gated to the AA to provide L2.

In the AA, B2 + D2 + L2 storage address is com-
puted; the address is then gated to SAR and H
registers.

At the same time the storage address is com-
puted and the fetch request is made for the divisor
word, the dividend length and the number of storage
words that contain the dividend are checked. VFL
triggers T1 and T2 are used during divide set-up
to indicate the number of storage words that contain
the dividend.

The dividend may be contained in 1, 2, or 3
storage words depending on its length and low-order
byte address. For example, a dividend 4 bytes long
(Y = 3) is contained as one storage word if the low-
order byte address is 3 or greater (T = Y); where-
as, the dividend is contained in two storage words
if the low-order byte address is less than 3 (T < Y).
A dividend greater than 9 bytes long (Y > 8) is con-
tained in two or three storage words depending on
the low-order byte address. Y counter and T
pointer are compared to determine the dividend
length and storage word relationship. Y positions
1, 2, and 4 are compared to T positions 1, 2, and 4.
If T is less than Y, VFL T1 trigger is set to indicate
that the dividend crosses a word boundary. Y
greater than 8 indicates the dividend is 9 bytes or
greater in length and therefore is contained in at
least two storage words. VFL trigger T2 is set
when Y is greater than 8. When VFL T1 or T2 trig-
ger is on, the dividend is contained in two storage
words. When VFL T1 and T2 are on, the dividend
is contained in three storage words. VFL T1 and T2
control the fetch requests made later during set-up,
for remaining dividend words.

SU 5 Cycle: SU 5 cycle (divide) is the accept wait
cycle for divisor fetch request made during SU 4
cycle.

The B2 + D2 + L2 divisor storage address com-
puted during SU 4 cycle is set into SAR and H reg-
isters at the beginning of SU 5. The low-order byte
address of the divisor, H 21-23, is set into the S
pointer. The S pointer is used later in SU 10, to
control divisor alignment.

If storage priorities delay an accept to the fetch
request made during SU 4, the set-up sequence
remains in SU 5 until the accept arrives.

If CPU is in single-cycle mode, the divisor
arrives from storage and is set into the J register
before SU 5 starts., Therefore, during single-cycle
mode, the divisor is transferred from the J register
through the main adder to the L register.

SU 6 Cycle: SU 6 cycle sets VFL gating controls
and sends VFL address advance to the I unit prep-
aratory to computing the storage address and start-
ing a fetch to get the second divisor word, if nec-
essary. The gate L with S and the T decode out
triggers are set to enable divisor and dividend sign
control later.

Y and Z counters are reset. Y counter is reset
because it counts from 0 up during SU 10. Z counter
is reset because Y and Z share a common reset; Z
is restored in SU 7.

SU 7 Cycle: When the low-order dividend word
arrives from storage, it is set into the J register
and the J loaded latch is set. During SU 7 cycle,
the dividend word is transferred from the J register
through the main adder to the K and M registers.
SU 7 latch is enabled with J loaded; therefore, if the
dividend word has not arrived, the set-up sequence
remains in SU 7 until J is loaded.

In addition, during SU 7, L2 (IOP 12-15) is setinto
Z counter. S is compared with Z to determine if the
divisor is in more than one storage word. If S< Z,
the divisor is in two storage words, and the VFL
fetch request trigger is sel to get the second high-
order divisor word from storage. When the divisor
is in two words, VFL T4 trigger is set to remember
that the divisor is in two words. Because the VFL
address advance signal is sent to I unit during SU 6
cycle, storage address B2 + D2 + 0 is computed during
SU 7 eycle and set into SAR and H registers.

VFL T3 trigger is set during SU 7 cycle to
enable sign control of divisor during the first SU 10
cycle.

SU 8 Cycle: SU 8 cycle checks the low-order digit
of the dividend for a sign. The low-order dividend
word is contained in the K register. The K byte
selected by the T pointer is gated through the LBG.
The low-order digit from the LBG is the dividend
sign and high-order digit of the byte is the low-
order dividend digit. LBG is gated to the AOE for
parity checking, and the low-order digit is sign de-
coded. If the LBG sign is minus, VFL T6 trigger is
set. T6 controls the quotient and remainder signs
generated during the divide iterations.

Z (L2) is gated to the AA by SU 8 latch prepara-
tory to computing storage address Bl + D1 + L2 dur-
ing SU 9 cycle. Because of line delay this gate is
brought up early.
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SU 9 Cycle: When the low-order divisor word
arrives from storage, it is set into the J register
and the J loaded latch is set. If the J loaded latch
is not set when SU 9 cycle starts, the set-up se-
quence waits in SU 9 until J is loaded. The low-
order divisor word is then transferred from the J
register through the main adder to the L register.
If CPU is in single-cycle mode, the low-order div-
isor word is transferred to the L register during
SU 5 cycle; therefore, the transfer during SU 9 is
blocked.

Z (L2) is gated to the AA and storage address
Bl + D1 + L2 is computed. AA output is gated to
SAR and H registers. However, the Bl + D1 address
in SAR is protected by blocking the set of SAR.

Bl + D1 + L2 storage address is used later during
divide test and iteration passes to align divisor and
dividend.

If the divisor is in one storage word (T4 off) and
the dividend is in more than one word (T1 or T2 on)
a fetch request is made during SU 9 to get the high-
order dividend word (Bl + D1). If the divisor is in
two storage words, this indicates that the fetch for
the second divisor word is made during SU 7 and
that the word has not arrived from storage by SU 9
time; therefore, the fetch for the high-order dividend
word is delayed until SU 11 cycle (see Figure 6467).

The T pointer is reset to zero during SU 9 and
gated to step down one. This sets the T pointer to
7 during the first SU 10 cycle.

SU 10 Cycle: The divisor sign is checked and the
divisor right aligned during SU 10 cycles. SU 10
cycles repeat, aligning one divisor byte each cycle
until all divisor bytes are processed.

The low-order divisor word is set into the L
register at the beginning of the first SU 10 cycle.
The L register byte selected by the S pointer is then
gated through the RBG, through the decimal adder
(AV) and into the K register byte selected by the T
pointer. The S pointer is set to the low-order byte
address of the divisor during SU 5. The T pointer
is stepped down from 0 to 7 at the beginning of the
first SU 10 cycle. Therefore, the low-order divisor
byte is transferred from its location in the L reg-
ister, indicated by the S pointer, into byte 7 of the
K register. S and T pointers are stepped down each
SU 10 cycle and the next higher order divisor byte
transferred from the L register to the K register.
SU 10 repeats until all divisor bytes are in the K
register.

The divisor length code (L2) is set into the Z
counter during SU 7. During each SU 10 cycle Z is
stepped down. When Z steps to 1110, all divisor
bytes have been aligned in the K register and the
set-up sequence continues to SU 12,
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During the first SU 10 cycle VFL T3 trigger is
on. If T3 is on, the low-order digit from the RBG
is checked for a sign. If the sign is minus, the
minus sign trigger is set. The minus sign trigger
is used during divide iterations to generate the
correct quotient sign.

If the divisor is in two storage words, the S
pointer steps to zero before the Z counter reaches
1110. In this case, the second divisor word must
be set into the L register before SU 10 cycles can
continue. When S =0, SU 10 cycles are suspended
and 8U 11 entered. The fetch for the second divisor
word is started during SU 7 cycle. The second
divisor word returns from storage to the J register
and sets the J loaded latch. If J is not loaded when
entering, SU 11 cycles repeat until J is loaded.

The divisor word is then transferred through the
main adder to the L register. SU 10 is set again and
the alignment continued until Z steps down to 1110.

At the same time Z counter steps down, Y
counter steps up. This occurs because the Y counter
controls dividend-divisor alignment during iterations
and must contain the divisor length code (L2) when
the iterations start, and because no direct path
exists in CPU to gate L2 to Y. Therefore, Y is
reset to zero during SU 6 and stepped up during
SU 10, When Z =0, Y = L2.

SU 11 Cycle: SU 11 cycle occurs only if the divisor
is in two storage words. SU 11 transfers the second
divisor word from J register to L register and re-
starts SU 10 cycles to complete divisor alignment.

When both divisor and dividend are each in more
than one storage word, the fetch for the second
dividend word (B1 + D1), normally made in SU 9,
is delayed until SU 11.

During SU 11 the storage address Bl + D1 is
computed and the VFL fetch request set. The out-
put of the AA is gated to SAR and H; however, to
retain the B1 + D1 + L2 address in H, the setting of
H register is blocked.

SU 12 Cycle: SU 12 cycle follows SU 10 after all
bytes of the divisor are right aligned in the K reg-
ister. SU 12 cycle transfers the divisor from K to
L register through the main adder. The main adder
is gated to shift the divisor right 4 bit positions.
The right 4 shift causes the divisor sign digit to be
removed and the divisor right aligned when set into
L register.

L2 is gated from IOP 12-15 into Z counter. H
register positions 21-23 are set into the T pointer.
This is the byte address of B1 + D1 + L2, and en-
ables the T pointer to gate the correct dividend bytes
from K register during divide test.



PI' 1 Cycle: PI' 1 cycle transfers the low-order
dividend word from M to K register. One is gated
to AA 28 preparatory to computing B1 + D1 + 1 ad-
dress used during PI" 2 to fetch the next dividend
word, if necessary.

PF 2 Cycle: PF 2 cycle resets the SC to zero. The
SC is used during divide iterations to define the odd-
even passes through the divisor. :

If T1 and T2 triggers are off, no other functions
are performed during PTF 2,

If either T1 or T2 trigger is on, the dividend is
in more than one storage word. The fetch for the
high-order dividend word is started during SU 9 or
SU 11. When this dividend word arrives from stor-
age to the J register, the J loaded latch is set. If
J is not loaded, PF 2 repeats until J'is loaded.

The high-order dividend word is then transferred
from J register through the main adder to M reg-
ister.

If both T1 and T2 triggers are on, the dividend
is in three storage words. A 1 is forced to AA 28
and storage address Bl + D1 + 1 is computed and
gated to SAR and H. To retain B1+D1+L2.inH, the
setting of H is blocked, VFL fetch request is set
and the fetch started to get the last dividend word.

PF 3 Cycle: The functions of PF 3 cycle are con-
trolled by VFL T1 and T2 triggers. If either or
both T1 and T2 are off, PF 3 cycle performs only
the function of resetting the S pointer and setting
VFL T7 trigger. The S pointer is reset to zero and
later stepped down to 7 so that the low-order divisor
byte is gated from the L register during divide test.
VFL T7 is set to define the first pass through the
divisor as the divide test pass. The set-up sequence
then advances to PT 4 cycle.

If T1 and T2 triggers are both on at the begin-
ning of PF 3 cycle, the dividend is in three words.
The fetch for the third dividend word is requested
during the preceding PF 2 cycle. PF 3 waits until
the J loaded latch is set, a signal that this dividend
word has arrived in the J register. At the beginning
of PF 3, the two other dividend words are contained
in the K and M register; the low-order word (B1 +
D1 + L1) is in K register, and the high-order word
(B1 + D1 + 0) is in M register. Because divide iter-
ations process the high-order dividend words first,
and because the K and M registers contain those
words currently in process during iterations, align-

ment of the dividendin K and Mis started during PF 3.

When J is loaded, it contains dividend word B1 +
D1 + 1. K and J registers are swapped by gating K
through the main adder to J and J through RBL to K.
Thus, the low-order dividend word (B1 + D1 + L1) is
in J and the two high-order words (B1 + D1 and B1 +
D1 + 1) are in M and K registers at the beginning of
PTI" 4 cycle.

PF 4 Cycle: PF 4isthelastcycle of thedivide set-up
sequence. Final positioning of the dividend words
occurs during PF 4 cycle. If the dividend is in one
word, this word is in the K register when PF 4
cycle starts and therefore requires no relocation.
If the dividend is in two or three storage words
(either T1 or T2 on, or both T1 and T2 on), the first
two words to be processed are in the M and K reg-
isters; the high-order word in M and the low-order
word in K.

The divide test pass that follows set-up sub-
tracts the divisor from an equivalent number of
high-order dividend bytes. The byte address (B1 +
D1 + L2) contained in the T pointer selects the divi-
dend byte that aligns with the low-order divisor
byte. A test is made during PF 4 cycle to deter-
mine which of the two registers, K or M, contains
the dividend byte used to start the divide test. The
divisor length (in Y counter) is compared with the
byte address of the selected dividend byte (in T
pointer). If Y < T, the selected dividend byte is in
the high-order word contained in the M register.
Because M is not a byte addressable register, the
contents of M register is transferred to K register.
At the same time, to retain the low-order dividend
word, the contents of K register is transferred to
M; M register is gated through the main adder to K,
and K is gated through RBL to M. In this manner K
and M are swapped.

When Y is greater than T, the selected dividend
byte is in the lower order dividend word in K reg-
ister. In this case, the dividend words are correctly
positioned in K and M registers and no K and M
swap occurs.

PT 4 is the last cycle of the decimal divide set-
up sequence and set IS 1 sequencer to start the divide
test pass.

Iteration Sequence -- Decimal Divide

Decimal divide iterations subtract the divisor from
the dividend the number of times necessary to reduce
the dividend to zero or to a value less than that of
the divisor. The number of times the divisor is
subtracted from the dividend is the quotient. When
the dividend becomes less than the divisor, the
divide instruction is terminated.

Starting at the high-order end of the dividend, the
divisor is subtracted the number of times required to
cause that portion of the dividend to go negative. The
number of times the divisor is subtracted without
causing the dividend to go negative represents the
first quotient digit. The divisor is then shifted
right one digit and the process repeated to generate
the next quotient digit. As each quotient digit is
generated, the divisor is shifted and the dividend
reduced. This is repeated until the dividend becomes
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zero or less than the divisor; the divide process is
then terminated.

In System/360 Model 75 the divisor is subtracted
from the dividend one byte at a time. The divisor
is first aligned with the high-order end of the
dividend, then, starting with the low-order divisor
byte, each divisor byte is sublracted, one at a time,
from the corresponding dividend byte until the high-
order end of the divisor is reached. If the dividend
remains positive, the divisor is again subtracted
from the dividend, and again starting with the low-
order byte of the divisor and stepping through the
divisor and dividend until the high-order divisor
byte is subtracted.

A quotient counter counts the number of times
the divisor is subtracted from the dividend withoul
causing the dividend to change sign. When the
dividend changes sign, the quotient digit is complete
and the value in the quotient counter is stored in the
high-order digit position of the dividend field. The
divisor is then shifted right one digit and the same
process repeated to develop the next quotient digit.
When the divisor has been shifted right until the
low-order divisor byte aligns with the low-order

dividend byte, the lastquotientdigit is being generated.
When the low-order divisor and dividend bytes align
and the dividend changes sign, the last quotient digit
is complete, The quotient digit and the remainder
are stored and replace the dividend. The decimal
divide instruction is then terminated.

During decimal divide set-up sequence, the
dividend and divisor are brought from storage into
the J, K, M, and L registers. The dividend is in
the K and M registers and the divisor is right-aligned
in the L register. During the divide iterations, the
divisor bytes are gated from the L register through
the RBG to the TC + 6 input of the decimal adder (AV).
The dividend bytes are gated from the K register
through the LBG to the left side input of the decimal
adder (AV). The divisor byte is subtracted from the
dividend byte by complement adding (decimal 9's
complement) in the AV. The output byte of the AV
is then gated back to the K register. In this manner,
each divisor byte is subtracted from the corresponding
dividend byte during each pass through the divisor.

The digit counter (DC) is the quotient counter in
which each quotient digit is generated. The DC is
stepped each time a pass is made through the divisor.

Iteration sequencers IS 1, IS 2, and IS 3 are used
during the execution of the decimal divide instruction
to perform the decimal arithmetic, and VFL sequencers
A, B, C, D, and SF 12 are used to set controls and
align the divisor and dividend between passes through
the divisor (Figure 6467).

IS 1 Cycle: IS1 is the first sequencer in every pass
through the divisor when subtracting (adding) from
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the dividend. IS 1 controls the gates to AD for sign
control and hot 1 for subtraction.

IS 2 Cycle: IS 2 is the sequencer after IS | during
which L bytes are subtracled (added) from K byles.
It loops on itself until coming to a word boundary or
the end of the divisor field.

IS 3 Cycle: IS 3 is used lo process an extra byte
during an odd cycle pass through the divisor. The
extra byte is necessary because the next high-order
digit of the dividend may not be zero. The extra
cycle is not necessary during even cycles because
the high-orderdivisor digit is the low-order digit
of a byte.

SI"12: SF12is used to swap K and M when a boundary
is crossed during a pass through the divisor.

Seq A: Seq A is the first sequence following a sub-

traction (addition) of the divisor. It resets S, gates
L.2 to Z and gates H (Bl + DI + Y) to T. If the
portion of the dividend presently spanned by the
divisor is in two words, K and M are normally
swapped at this time. DC is stepped during Seq A
if the quotient digil is not complete.

If the quotient digit is not complete, another
subtraction (addition) must be made, IS 1 is set. If
the quotient digit is complete, the next even cycle
sequence is Seq B; next odd cycle sequence is Seq D.

Seq B, Seq C: When the even cycle digit is complete
the new Y value must be added to Bl + D1. Seq B and
Seq C gate Y to AA and release H.

Seq D: SeqD shifts L right 4 following odd cycles and
left 4 following even cycles. The shift counter is
incremented during Seq D. Seq D also gates Hto T
to get the new T starting point if Y was stepped and
added to Bl + DI.

Figure 61 shows an example of divide iterations.

Store-Fetch Sequence -- Decimal Divide

The store-fetch sequence for the decimal divide
instruction stores the completed quotient-remainder
words as each is completed. Because all operand
fetches are made during the divide set-up sequence,
the store-fetch sequence only stores.

After the high-order quotient-remainder word
is complete, and after each succeeding lower-order
word is complete, the store-fetch sequence is
entered and the completed word is stored at the Op 1
location in storage, with but one exception, the
store -fetch sequence starts with SF 3 and sequences
through SF 5 or SF 6 (Figure 6468). If the last
quotient-remainder word is complete, or the E-



interrupt triggeris set, SF5 terminates the instruc-
tion. If the decimal divide instruction is not complete,
the SF sequence proceeds through SF 6 and back to
Is1 to continue,

SF 2 starts the instruction terminating sequence
when a decimal divide specification violation is
detected during SU 2 cycle of the set-up sequence.
This occurs because the VFL sequence triggers and
latches are used for both sel-up sequences and for
SF sequences. The VFL SF trigger defines which
sequence is executed. When the VFL SF trigger is
off, the VFL sequence triggers and latches perform
set-up functions., When the VFL SF trigger is on,
the VFL sequence triggers and latches perform
store-fetch functions. Therefore, if a specification
interrupt occurs during SU 2 cycle, the setting of
VFL SF trigger is gated. The SF trigger is set at
the beginning of the next cycle, SU 3. Because the
SF trigger is set, VFL gating is changed from set-up
to SF and SU 3 cycle is changed to SF 2. The SF
sequence then progresses to SF 5 and terminates.

Storage Addressing

When the SF sequence is entered to store a com-
pleted quotient-remainder word, the storage
address for that word is computed. (See Figure 61)
VFL triggers Tl and T4 are used to determine which
of the three possible storage addresses is computed.

VFL T4 trigger is the K and M swap trigger
that is set when a dividend word boundary is crossed
during iterations. If VFL T4 is on during SF
sequences, it indicates that at least one quotient-
remainder word remains to be processed and the
storage address of the high-order word is computed.

VFL Tl trigger is used to remember that a SF
sequence has occurred. It is set during the first
SF sequence and, with T4, controls address
generation for subsequent SFs.

VFL Tl and T4 triggers control gates to the AA
during the SF 3 (cycle 1) when the storage address is
computed. If T4 is off, Y counter is gated to AA to
compute storage address Bl + Dl + Y. When T4 is
on, the status of Tl determines the storage address
computed. WhenT1 and T4 are on, al is forced to
input position 28 of the AA to compute storage
address Bl + D1 + 1. Figure 60 shows the relation-
ship of T1 and T4, and the quotient-remainder word
to be stored.

Line 2 in Figure 60 indicates that the quotient
remainder is in one storage word. T4 trigger is
off; therefore, the quotient-remainder is stored at
storage address Bl + DI + Y. In this case, the first
SF sequence alsoterminates the instruction.

Lines 3, 4, and 5 indicate a quotient-remainder
in two storage words. Two passes through the SF

sequence are required, one lo store each quotient-
remainder word. The first S sequence stores the
high-order quotient-remainder word al storage
address Bl + D1, then iteration sequencing is started
again to process the low-order quotient-remainder
word. When the low-order word is complete, the
second SF sequence is started and the low-order
word stored at address Bl + DI + Y. T4 trigger is
on during the first ST sequence because a word
boundary is crossed during the iterations when Lhe
first quotient-remainder word is processed. During
the iterations that follow the store of the high-order
word, if the divisor is less than 8 bytes long ( Z < 7),
the portion of the dividend in process is contained
within one word. No word boundaries are crossed;
therefore, T4 is reset. TI trigger is on when the
second ST starts; however, T4 being off overrides
the status of Tl and gates Y to the AA. The second
quotient-remainder word is stored at address Bl +
DI + Y and the instruction is terminated.

Lines 6, 7, and 8 of Figure 60 indicate conditions
wherein the dividend and, therefore, the quotient-
remainder is contained in three storage words,
Because a word boundary is crossed when the high-
order quotient-remainder word is developed, T4
trigger is on when the first SF sequence starts. T4
trigger on and TI1 off causes storage address Bl + D1
to be computed during ST 3 cycle. The first SF
sequence sets Tl trigger, which remains on until
the instruction isterminated. The second ST sequence
stores word Bl + D1 + 1. When Tl and T4 triggers
are on, al is forced to input position 28 of the AA
and storage address Bl + D1 + 1 is computed. T4
trigger is off when the last SF sequence starts;
therefore, the storage address (Bl + DI + Y) of the
low-order quotient-remainder word is computed.

Stére-Fetch Cycles

When the last quotient digit of the quotient-remainder
word is complete, a SF sequence is started to store
the completed word in the Op 1 location in storage.
See Figure 6468.

SF 3Cycle: SF 3 is the first cycle of the SI" sequence.
During ST 3 cycle, the storage address is computed
and the VFL store request trigger is set.

Tl trigger is set to remember that the first SF
sequence has occurred. The status of Tl and T4
triggers controls address generation during sub-
sequent SF sequences,

A set to VFL T8 trigger is gated during this cycle
if the last quotient digit has been developed (Y = Ll)
and a word boundary separates the quotient and
remainder. The set status of T8 then forces a
dummy restore pass to set the marks for the
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remainder bytes in the next lower-order quotient-
remainder word.

If the E interrupt trigger is on when entering
SF 3, the setting of the VFL store request trigger
is blocked and the VFL end sequence trigger is set
to terminate the instruction.

SF 4 Cycle: SF 4 is the accept wait cycle of the ST
sequence. The VFL store request trigger, set
during SF 3, causes the BCU store request trigger
to be set at the beginning of SF 4, If either the
selected storage is not busy or a higher priority
does not exist, an accept signal is received at the
E unit and the ST sequence proceeds to SF 5.
Otherwise, the SF sequence waits in SF 4 until the
accept arrives.

If the E interrupt trigger is on, a store request
is not made. In this case, SF 4 cycle does not wait
for accept.

VFL end sequence trigger on during SF 4 gates
the setting of ELC trigger.

SF 5 Cycle: SF 5 terminates the instruction if ELC
trigger is set at the beginning of SF 5. Otherwise,
SF 5 starts preparations to return to iteration
sequence and continue processing.

Y counter is gated to AA to compute storage
address B + D + Y; this address is used later
to set the T pointer during iterations.

Gates are established to transfer the low-order
dividend word from M to K. The word in K at the
beginning of SF 5 is the quotient-remainder word
being stored during this SF sequence; therefore, the
next lower-order dividend word is the next to be
processed.

If the divisor contains less than 8 bytes, no word
boundaries will be crossed during subsequent iteration
cycles prior to the next SF sequence; therefore, VFL
T4 trigger is reset during SF 5.

The block-swap (T5) trigger is reset during SF 5
to enable normal K and M swaps during following
iteration cycles.

SF 6 Cycle: SF 6 is the last cycle of the SF sequence
before return to iterations. Relocation of remaining
dividend words before iterations start again are gated
during SF 6 cycle. The objective is to place, in the K
register, the word that contains the nextdividend byte
to be processed. A maximum of two words can remain
to be processed.

When the dividend is in two storage words, one
word remains to be processed. This word is gated
from the M register into the K register during the
preceding SF 5 cycle and set into K at the beginning
of SF 6 cycle. Therefore, the last dividend word is
correctly located and additional word transfers
during SF 6 are unnecessary. J is gated to M but
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has no significance when the dividend is in two words.
When the dividend is in three storage words, and
this is the first SI" sequence, two dividend words
remain to be processed. The word that contains the
next storage byte to be processed is determined by
the divisor length. When the divisor is less than
8 bytes (L2 < 7), the higher-order dividend word
contains the next byte to be processed. In this case,
the higher-order word is gated from M to K and the
low-order word in Jis gated to M. The two remaining
dividend words are then properly positioned when
iterations start again. If thedivisorlengthis 8 bytes
(L2 = 7), the low-order dividend word contains the
next byte to be processed. Inthiscase, the low-order
dividend word is gated from J register to K register
and the high-order word remains in M register.
When the dividend is in three storage words,
gates during the second SF sequence are the same
as if the dividend were in two storage words.
Iterations start again at the end of SF 6 cycle.

DECIMAL MULTIPLY

e Multiplication done similar to longhand method.

e Multiplier and multiplicand fetched from storage
and aligned in L, M, and K registers during set-

up sequence.

e Iteration sequence develops product by over-and-
over addition of multiplier.

e Store-fetch sequence stores product words as
they are completed. :

Method of Multiplication

Decimal multiply is done in the System/360 Model
75 basically the same as the normal longhand
method. An example of this longhand process is:

4976 multiplier
_ x23  multiplicand
14928 partial product
9952 partial product
114448 product

Note that the use of the multiplier and multipli-
cand is opposite to the way they are normally thought
of. This provides consistency in terminology with
that of other models of the System/360.

The entire multiplier is multiplied by each digit
of the multiplicand and the results added to each
partial product right aligned with the corresponding
multiplicand digit.

The computer does each multiplication by adding
the multiplier to itself a number of times equal to
the multiplicand digit.



When the multiplicand digit is 6 or greater, the
operation can be speeded up by multiplying the mul-
tiplier by 10 and subtracting the multiplier a number
of times equal to 10 minus the multiplicand digit.
The method is shown below.

Let A be the multiplier and B be the multiplicand
digit. As a numerical example, consider A = 246
and B = T:

AxB = Ax10-Ax(10-B)
= 246x10-2x(10-7)

longhand check

= 2460-246x(3) 246
= 2460-738 x7
= 1722 1722

Multiplying the multiplier by 10 is accomplished
by adding 1 to the next high-order multiplicand digit.
The increase in speed by using this method is
shown by the fact that it was necessary to subtract
the multiplier three times, whereas, it would have

taken seven additions.

In general, the multiply process in System/360
Model 75 is as follows:

The low-order multiplicand digit is set into a
counter and is decoded. If it is 0 (10 following a
subtraction), the multiplier is shifted left 1 digit and
the next multiplicand digit is set into the counter,

If it is not 0 (10), it is decoded for D< 5 or D > 5.
This determines whether the multiplier will be added
to or subtracted from the partial product.

The multiplier is then added (subtracted) to the
partial product field a byte at a time. At the end of
each addition of the multiplier, the counter is decre-
mented (incremented) by 1 and decoded. The addi-
tion of the multiplier continues until the counter goes
to 0 (10). Then the next multiplicand digit is set into
the counter and the multiplier is shifted left 1 digit,
etc. This continues until all multiplicand digits are
exhausted.

Unit Functions
Registers

J Register: The J register contains the multiplicand
field. J register bits 60-63 are set into the DC where
the additions are counted. As each multiplicand digit
is set into the DC, the content of J register is
shifted right four bits to position the next multipli-
cand digit to be set into the DC after the present one
is completed.

During the set-up sequence, the low-order multi-
plicand word is fetched from storage and right-
aligned in the J register. The sign digit of the multi-
plicand is used to set a sign control trigger and then
shifted out of the J register. During Seq D cycle,
between set-up and the first iteration sequence, the
first (low-order) multiplicand digit is set into the DC,
then that digit is shifted out of the J register.

K and M Registers: The K register contains the

portion of the partial product presently being accum-
ulated. The M register contains the portion of the
partial product on the other side of the word bound-
ary, if a word boundary is crossed by the partial
product.

The multiplicand-product field in storage may be
as long as 16 bytes, therefore, up to two word bound-
aries may be crossed by this field. The portion of
the product field worked on at any one time is limited
by the length of the multiplier (a maximum of eight
bytes). Therefore, two registers are sufficient to
hold the portion of the partial product being worked
on.

When a partial product word boundary is crossed
while making an addition, the contents of the K and M
registers are swapped. When the portion of the prod-
uct in one storage word is completed, that word is
stored.

L Register: The L register holds the entire multi-
plier field during execution of the decimal multiply
instruction. The multiplier is right-aligned in the L
register during set-up; thereafter, the multiplier is
shifted right or left one digit as necessary during
execution cycles.

VFL Counter and Pointer Functions -- Decimal
Multiply

Y Counter; The Y counter is initially set with the
length of the multiplicand-product field (L1) from
IOP 8-11, When a byte of the multiplicand has been
processed, the Y counter is stepped down by 1.

Y > L2 indicates the multiplicand field contains sig-
nificant data bytes still to be processed. When

Y = L2, the product is complete; the remaining high-
order bytes of the multiplicand are then checked for
nonzero digits. When the Y counter steps to 0, all
bytes of the multiplicand-product field have been
processed and the multiply instruction is ready for
termination.
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Z Counter: The Z counter counts the multiplier bytes
as they are processed. The Z counter is set with the
length of the multiplier field (L2) at the beginning of
each pass through the multiplier, then stepped down
one as each multiplier byte is processed. When

Z = 0, all bytes of the multiplier have been added to
the partial product.

S Pointer: The S pointer is used to select the multi-
plier byte that is added to the partial product from
the L register. The S pointer is reset to 0, then
stepped down 1 to 7 at the beginning of each pass
through the multiplier; then, as each multiplier byte
is processed, the S pointer steps down 1 before
selecting the next multiplier byte.

T Pointer: The T pointer selects the partial-product
byte of the K register to be added to the multiplier
byte to form a new partial-product byte. The T
pointer also selects the K register byte in which the
new partial-product byte is placed.

The initial setting of the T pointer is determined
by the storage address computed and used to fetch the
first multiplicand word (B1 + D1 + L1); this is the
low-order partial-product byte address of the K
register. The T pointer then steps down one during
each cycle in which multiplier and partial-product
bytes are added. Several passes through the multi-
plier may be required to process each multiplicand
byte; therefore, after each pass, the T pointer is
restored to the previous starting point unless a new
multiplicand byte is to be processed. When a new
multiplicand byte is selected for processing, a new
starting point is established for the T pointer. In
this manner, the correct byte alignment of multiplier
to partial product is maintained throughout the execu-
tion of the instruction.

The starting byte address used for the T pointer is
retained in H register positions 21-23. When the T
pointer is restored to the starting point, H register
positions 21-23 are gated to it. The Y counter is
initially set with L1 and stepped down by 1 as each
multiplicand byte is processed: each new starting
point for the T pointer is determined by B1 + D1 + Y.

When the T pointer is set to 0 from B1 + D1 + Y,
the last byte of a multiplicand word is being proc-
essed; when this multiplicand byte is completed, a
new multiplicand word must be fetched and the com-
pleted product word stored.

Digit Counter: The DC is used to control the number
of times the multiplier is added to or subtracted from
the partial product during processing each multipli-
cand digit. The decoded outputs of the DC determine
the add or subtract status and the completion of each
multiplicand digit.
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The multiplicand digit to be processed is set into
the DC. Outputs of the DC are then decoded to deter-
mine if the digit is a value greater than 5, If D < 5,
the multiplier is added to the partial-product and the
DC is decremented by 1 at the end of each pass; if
D> 5, the multiplier is subtracted from the partial-
product and the DC is incremented by 1 at the end of
each pass. When the DC steps to 0 or 10, the proc-
essing of the multiplicand digit is complete.

0Odd and Even Cycle Definition: The basic address-
able unit of data in the IBM System/360 Model 75 is
the byte; in decimal multiply the basic unit of data is
the digit. Because the multiplicand is processed one
digit at a time, the effective shift of the multiplier
relative to the partial product must be one digit at a
time.

To shift the multiplier one digit to the left, the
starting point of the T pointer is shifted left (reduced)
by one byte and the multiplier in the L register is
shifted right one digit. To process the next multipli-
cand digit, the multiplier in the L register is shifted
left one digit without changing the starting point of the
T pointer.

The shift counter is used to gate the odd or even
cycle functions during execution of the decimal
multiply instruction. The shift counter is set to
0 during the set-up sequence, and then incremented
by 1 after each multiplicand digit is processed.

Odd cycles are cycles in which the multiplier is
shifted left 4; the value in the shift counter is odd.
Even cycles are those in which the multiplier is
shifted right 4; the value in the shift counter is

even.

Control Trigger Functions

T2 Dummy Cycle Trigger: Multiplicand digits have
numeric values of 0 through 9. When a 9 digit is
processed following a subtract pass, the DC is
incremented by 1 to 10. If the 10 digit is processed
during an even cycle it is necessary only to shift
the multiplier left one digit and proceed to the next
multiplicand digit; if the 10 digit is processed dur-
ing and odd cycle, IS 3 cycle must be entered to
gate 99 into the K register byte to the left of the
highest-order partial-product byte developed so far.
To enter IS 3 cycle and at the same time step the T
pointer to the correct byte location, a dummy pass
is made through the multiplier without adding; VFL
T2 trigger is set to block the addition during this
dummy pass.

T3 True/Complement Trigger: The T3 trigger is
used during execution of the decimal multiply
instruction to control the true/complement inputs
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FIGURE 64. EXTRA IS 3 CYCLE - DECIMAL MULTIPLY
Example of a multiply odd eddition cycle following o subtraction. Example of o multiply odd subtraction cycle following o subtraction.
Odd 95 L - multiplier 55 L - multiplier
o1 81 J = multiplicand 08 91 J = multiplicand
Odd 00 00 K
0dd o | s |
00 00 K 00 55 K
00 95 L
00 95 K Shift L 05
Shift L 09 00 55 K
Even { 09 95 L - complement
00 95 K 99 95 55 K
99 9 L = complement
Even 99 9N 95 K Shift L 50
21 L - complement
99 82 95 K 99 95 55 K
Odd <* 99 50 L - complement
Shift L 90 95 45 55 K
99 82 95 K Shifr L 05
0 | % L :
Odd 00 72 95 K 99 45 55 K
o | s L fm{ 2 |05 L
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___ Extra Byte

* |f the multiplicand was two bytes (3 digits), the last digit (8) would have been forced fo be processed by addition. This leaves the
preduct in true form.

FIGURE 65. EXTRA BYTE PROCESSING - DECIMAL MULTIPLY
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to the decimal adder. If the multiplicand digit is
5 or less, the multiplier is added to the partial-
product; T3 trigger is reset and the decimal adder
performs true additions. If the multiplicand digit
is 6 or greater, the multiplier is subtracted from
the partial-product; T3 trigger is set and the
decimal adder performs complement additions
(subtracts).

T4 Swap Trigger: The T4 trigger is set to record
that the contents of the K and M registers have been
swapped. If a partial-product word boundary is
encountered during a pass through the multiplier,
the contents of the K and M registers are swapped
(SF 12) and VFL T4 trigger is set to recall it.
When the pass through the multiplier is complete,
the set status of T4 trigger causes the contents of
the K and M registers to be swapped back to the
original state before the next pass through the
multiplier begins. T4 trigger is then reset.

TS5 Extra Cycle Trigger: The VFL TS5 trigger is
set to cause an extra IS 3 cycle at the end of the
first pass of every even multiply pass in which the
partial product is nonzero. This extra IS 3 cycle
(Figures 64 and 65) sets 00 or 99 into the next
higher-order partial-product byte.

After a multiplicand digit is processed by sub-
tracting the multiplier from the partial-product,
the partial product is in complement form; the
high-order zeros should be 9's unless the partial
product is zero. IS 3 cycles that occur at the end
of every odd pass through the multiplier gate high-
order carries into the next byte and complement
the high-order zeros to 9's on subtract passes.
Because the multiplier is shifted right during even
passes, the last IS 2 cycle of each even pass propa-
gates any high-order carries into the next digit
position of the high-order partial-product byte, or
complements this digit to 9 on subtract passes.
This single high-order complement 9 is insufficient,
however, to accommodate any high-order carries
that may occur during subsequent odd passes.
Therefore, VFL T5 trigger provides an extra IS 3
cycle to terminate the first pass of every even
multiplicand digit if the partial-product is nonzero.

T6 Multiplicand Sign Trigger: The VFL T6 trigger
is set during set-up if the multiplicand sign is
minus. During the first IS 1 cycle, the status of T6
and of the minus sign trigger (multiplier sign)
determines the sign of the product.
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, T7 First Digit Trigger: The VFL T7 trigger is

used to provide product sign control gates during
the first IS 1 cycle. T7 trigger is set during the
set-up sequence, then reset after the first multipli-
cand digit is processed,

T8 Termination Trigger: The VFL T8 trigger is
used as the termination trigger for decimal multiply;
it provides gates to zero check the high-order
multiplicand digits.

To insure that the multiplicand field in storage is
large enough to receive the product, the multiplicand
must contain a number of high-order zeros equal
to the number of multiplier digits. Therefore, after
all significant multiplicand digits are processed
(Y = L2) the remaining high-order multiplicand
digits must be zero checked.

When Y =L2, the T8 trigger is set. T8 trigger
On causes sequence D cycles to repeat until Y Lth
=1110. During each sequence D cycle, a multipli-
cand digit is set into the DC and zero checked. If
a nonzero digit is detected, a data interrupt occurs.

Set-Up Sequence (Figures 67 and 6474)

e Fetch first multiplicand word from storage and
align in J register.

e Fetch all multiplier bytes from storage and
align in the L register.

e Check length of both operands for specification
error.

e Clear K and M registers to all zeros.
e Set VFL control triggers.
e Start Iteration Sequence,

The set-up sequence for Decimal Multiply fetches
the multiplier and the low-order multiplicand word
from storage. The multiplier may start at any byte
location within a word and may cross a word
boundary. During the set-up sequence, the entire
multiplier is fetched from storage and right-
aligned in the L register. All multiplier digits

are validity checked as they are aligned.

The multiplicand digits from the low-order digit
position of the J register are used during the multiply
iterations. Therefore, the storage word containing
the low-order multiplicand digit is fetched and right-
aligned in the J register during the set-up sequence,
Subsequent multiplicand words are correctly aligned
when they arrive from storage into the J register.



The K and M registers are cleared to all zeros
during the set-up sequence because the product is
accumulated in these two registers during the itera-
tion sequences.

During the set-up sequence the lengths of both
operands are checked; if incorrect, the instruction
is terminated with a specification interrupt.

The VFL sequencers used to execute the multiply
set-up sequence are: SU 1 through SU 12, and PF 1
through PF 4.

SU 1 Cycle: Operand lengths L1 and L2 are set into
the Y and Z counters from IOP register positions

8 - 15; this function is gated by ELC of the previous
instruction.

The L1 factor is in the Y counter and is used to
compute the multiplicand (Op 1) storage address.
Then, the L1 factor is gated to the AA by SU L1.
The computed storage address is not used until the
following cycle. However, to overcome line delay,
Y is gated to the AA early.

If in single cycle mode, the VFL fetch request is
set to get the first multiplicand word from storage.

SU 2 Cycle: During SU 2 cycle the fetch request
for the first multiplicand (Op 1) word is made.
Setting the VFL fetch request trigger causes the
Bl + D1+ L1 computed storage address to be set
into the SAR and H registers.

The AEOB is gated to the SC and the SC is re-
leased; this sets the SC to zero. The SC is stepped
and used later to control the odd and even passes
during the iteration sequence.

In addition, SU 2 cycle checks operand length
specifications. If a specification error exists, the
instruction is terminated with a specification inter-
rupt.

Z counter (L2) is compared to 7 and to Y counter
(L1). If L2> 7 or L2 = L1, a specification error
exists; setting the fetch request is blocked and the SF
trigger is set. When the SF trigger sets, the function
of the VFL sequence triggers is changed from set-
up gating to store-fetch gating. Thus, the next
machine cycle that would have been SU 3 becomes
SF 2. SF 2 then starts the store-fetch sequence to
terminate the instruction and signal the specification
interrupt.

If no error condition exists, SU 3 cycle follows
SU 2.

In single cycle mode, the fetch request for the
first multiplicand word is made during SU 1 cycle.
SU 2 cycle is then used to transfer the first multipli-
cand word from the J register to the K and M regis-
ters through the AM.

SU 3 Cycle: During SU 3 cycle the starting byte
address of the multiplicand is set into the T pointer
from H register positions 21-23.

Also, during SU 3 cycle, gates are established to
the I unit before computing the storage address of
the first multiplier (Op 2) word. VFL address
advance is gated to transfer the third halfword of
the instruction (B2 and D2) from the A/B registers
into the IOP register for the following cycle. To
overcome line delay and insure that L2 arrives at
the input to the AA early enough in the next cycle,
the Z counter is gated to the AA during SU 3.

SU 3 is the accept-wait cycle for the fetch request
made during SU 2 cycle. If the selected storage is
not busy, the BCU provides an immediate accept
signal and SU 3 is only one cycle. If the selected
storage unit is busy, the BCU delays the accept
signal until storage becomes available; during this
time, SU 3 cycles repeat until the accept signal .
arrives.

SU 4 Cycle: During SU 4 cycle, the VFL fetch request
trigger is set to fetch the first multiplier word (Op 2)
from storage. Setting the fetch request trigger
gates the computed storage address of the first
multiplier word, B2 + D2 + L2, from the AA to the
SAR and H registers; SAR and H registers are set
at the beginning of the next cycle.

Checks are made during SU 4 cycle to determine
the number of bytes the first multiplicand word
must be shifted to right align in the J register. Be-
cause multiplicand alignment occurs near the end
of the set-up sequence, VFL control triggers T1
and T2 are used to record the number of bytes the
multiplicand must be shifted. The starting byte
address of the multiplicand, in the T pointer, is
examined during SU 4 cycle. If T is less than 4,
VFL T1 trigger is set to gate a right 32 shift
(4 bytes) during SU 12 cycle. If the T pointer
equals 3 or 7, VFL T2 trigger is set to indicate
that the multiplicand is correctly aligned when
the first PF 1 cycle starts.

SU 5 Cycle: This is the accept-wait cycle for the
fetch request made during the previous SU 4 cycle.
If storage priorities prevent an immediate accept,
then SU 5 cycles repeat until an accept signal
arrives from the BCU.

After the accept signal arrives, the multiplier
starting byte address is gated from the H register
positions 21 - 23 to the S pointer and the S pointer
is released. Y counter (L1) is gated to the AA
before re-computing the starting byte address of
the multiplicand.

If, in single cycle mode, the first multiplier
word has arrived from storage and is in the J
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register; this word is gated from the J register
through the main adder (AM) to the L register and
set into the L register at the beginning of the next
CPU clock cycle.

SU 6 Cycle: During SU 6 cycle the gating of Y
counter to the AA is continued and the starting byte
address of the multiplicand, B1 + D1 + L1, is com-
puted in the AA. The output of the AA is gated to
and set into SAR and H registers. This provides
the correct byte address for the T pointer when
the multiplicand is right-aligned during PF 1 cycles,
and when iteration cycles start.
VFL address advance signal is gated to the I
unit during SU 6 cycle before computing the storage
address of the second multiplier word if it is needed.
Control triggers Gate L with S and T Decode Out
are gated to set during SU 6 cycle. These two
triggers are set at the beginning of the next cycle;
they provide data gates to check the signs of the
multiplier and multiplicand.

SU 7 Cycle: SU 7 is the cycle that transfers the first
multiplicand word from the J register to K and M
registers, and starts the fetch request for the second
multiplier word, if the multiplier is in more than one
storage word.

The functions of the SU 7 cycle, however, depend
upon the set status of the J loaded trigger. If the
first multiplicand word has not arrived from storage
and the J loaded trigger is not set by SU 7 time, SU
7 cycles repeat until the J loaded trigger is set.

The amount of delay involved, if any, depends upon
the type of storage unit selected when the fetch
request is made. If a high-speed storage is selected,
no delay occurs because the multiplicand word
arrives from storage and the J loaded trigger is set
at the beginning of SU 6 cycle. If an LCS is selected,
the set-up sequence remains in SU 7 for several
cycles waiting for the J loaded trigger to set.

SU 7 gates the multiplicand word from the J
register through the main adder (AM). When SU L7
is enabled by J loaded, the main adder out bus
(AMOB) is gated to K and M registers and they are
set at the beginning of the next cycle. If the machine
is in single-cycle mode, the multiplicand word is
transferred to K and M registers in SU 2 cycle
instead of SU 7.

If the multiplier is contained in two storage words,
the fetch request for the second word is made during
SU 7 cycle. To determine that the multiplier is in
two storage words, the starting byte address in the
S pointer is compared to the multiplier length in the
Z counter, If S is less than Z, the multiplier is in
two storage words; the VFL fetch request trigger is
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set to fetch the second word of the multiplier, and
control trigger T4 is set to record that the multi-
plier is in two words.

The gate to set the VFL fetch request trigger also
gates the output of the AA to the SAR and H registers.
Because VFL address advance was gated to the I
unit during SU 6 cycle, storage address B2 + D2 is
computed and gated to SAR and H during this cycle.
The set of the H register is blocked, however, to
retain the starting byte address of the multiplicand,
Bl +D1 + L1,

SU 7 cycle also gates the set of VFL control
trigger T3 to provide multiplier sign control during
SU 10 cycle.

SU 8 Cycle: The multiplicand sign is checked during
SU 8 cycle, Because the T decode out trigger is set
at the beginning of SU 7 cycle, the T pointer selects
the low-order multiplicand byte in the K register and
gates it through the LBG. The gating of LBG to the
AOE is active during SU 8 cycle to enable sign decod-
ing of the low-order LBG digit, the multiplicand sign
digit.

If the multiplicand sign is minus, VFL control
trigger T6 is set. The status of T6 is used later to
compare with the multiplier sign and determine the
correct product sign.

SU 9 Cycle: The SU 9 cycle transfers the first
multiplier word from the J register to the L register,
resets the T pointer to zero, and gates the Z counter
to step down 1. ¢

The functions of SU 9 cycle are enabled by the set
status of the J loaded trigger, as in SU 7 cycle. When
the J loaded trigger is on during SU 9 cycle, the first
word of the multiplier is gated from the J register
through the main adder to the L register. If in single
cycle mode, this occurs in SU 5 cycle.

If an invalid address or SAP error has occurred
during previous fetches, the set-up sequence is
terminated at this point. When SU L9 is enabled,
the set status of either the invalid address or SAP
error trigger gates the set of the SF trigger, the E
interrupt trigger, and VFL sequence trigger 4; this
combination causes a terminating store-fetch
sequence to start at SF 3 cycle.

SU 10 Cycle: SU 10 cycles right-align the multiplier
in the K register. One multiplier byte is transferred
from the L register through the decimal adder to
the K register each SU 10 cycle. SU 10 cycles
repeat until all multiplier bytes are aligned in the K
register.

The S and T pointers are used to select and right-
align the multiplier bytes while the Z counter counts



the number of bytes processed, and signals the end
of alignment. When SU 10 cycles start, the S
pointer contains the byte address of the low-order
multiplier byte in the L register; the T pointer
contains a value of 7; it is reset to zero during SU 9,
then stepped down 1 to 7 at the beginning of the first
SU 10 cycle. The Z counter is set to the multiplier
length, L2, at the beginning of the set-up sequence
and steps down one as each multiplier byte is
aligned. The T pointer and the Z counter are each
stepped down 1 at the beginning of every SU 10
cycle. Except for the first SU 10 cycle, the S
pointer is stepped down at the same time,

During each SU 10 cycle, the multiplier byte
selected by the S pointer is gated from the L register
through the RBG into the AV. The AV output is then
gated into the K register byte selected by the T
pointer. Detection circuits at the output of the RBG
provide sign decoding and validity checking of each
multiplier digit as each multiplier byte is aligned.
Byte parity is checked in the AV. If an invalid
decimal digit or incorrect byte parity is detected,
the data check latch is set. This causes the E
interrupt trigger to set and the instruction to
terminate after PF 4 cycle.

The first SU 10 cycle gates the low-order multi-
plier byte into byte position 7 of the K register; this
is the byte that contains the multiplier sign. VFL
control trigger T3 is on during the first SU 10 cycle
to enable sign decoding and detection of the low-order
multiplier digit. If the multiplier sign is minus, the
VFL minus sign trigger is set; T3 trigger is then
reset at the end of the cycle,

The end of multiplier alignment is signalled when
the Z counter steps down to 1110, Because the
maximum allowable multiplier length is 8 bytes, all
data bytes of the multiplier are right-aligned in the K
register when the Z counter equals 1110, and the set-
up sequence proceeds to SU 12 cycle.

If the multiplier is contained in two storage words,
the 8 pointer steps down to zero before the Z counter
equals 1110. During the cycle that S steps to zero,
the last multiplier byte in the L register is trans-
ferred to the K register. The storage word that
contains the remaining multiplier bytes must then
be set into the L register to complete the alignment.
When the S pointer equals zero before the Z counter
steps to 1110, SU 10 cycles are suspended during
an SU 11 cycle, to transfer the next multiplier word
into the L register. SU 10 cycles then resume and
complete the multiplier alignment,

When the multiplier is in two storage words,

VFL T4 trigger is set during SU 7 cycle as the fetch
request is made for the second multiplier word. T4
trigger on during the SU 10 cycle in which the 8

pointer steps to zero gates the set of the gate J to
AMTC trigger. The gate J to AMTC trigger is set
to transfer the next multiplier word from the J
register to the L register.

SU 11 Cycle: The SU 11 cycle transfers the next
multiplier word from the J register through the
main adder to the L register. The on status of the
gate J to AMTC trigger gates the contents of the J
register to the TC input of the main adder. Out-
gating the AMOB and release of the L register is
conditioned by the on status of the J loaded trigger.
Therefore, if an L.CS is addressed, SU 11 waits
several machine cycles until the J loaded trigger
is set; otherwise, SU 11 is one cycle.

SU 12 Cycle: The SU 12 cycle transfers the multi-

plier from the K register through the RBL to the J

register. At the same time, the low-order multi-
plicand word is transferred from the M register
through the main adder and shifter to the K register.
If VFL T1 trigger is on, the low-order multiplicand
byte is in the 0 - 31 end of the M register. There-
fore, the multiplicand word must be shifted right at
least 32 bits (4 bytes) to right-align in the K register.
The on status of VFL T1 trigger during SU 12 causes
a right 32 shift to occur as the multiplicand is trans-
ferred from the M to the K register.

SU 12 cycle establishes gates to restore the T
pointer to the starting byte address of the multipli-
cand; H register positions 21 - 23 are gated to the
T latch and the T register released. In addition,
gates are established to count the T pointer up and
control byte alignment during PF 1 cycles.

PF 1 Cycle: PF 1 cycles are used to right-align the
multiplicand in the K register if byte alignment is
required.

If VFL T2 trigger is on, the multiplicand is al-
ready right-aligned in the K register when the first
PF 1 cycle starts; PF 1 is then the only one cycle in
which no function is performed. VFL T2 trigger is
set during the SU 4 cycle if the low-order multipli-
cand digit is in byte 3 or 7 (T pointer equals 3 or 7)
of the storage word. When the low-order multipli-
cand digit is in byte 7 of the storage word, the multi-
plicand is right-aligned. When the low-order digit
is in byte 3 of the storage word, the right 32 shift
during SU 12 right-aligns the multiplicand by trans-
ferring the data in byte 3 of the M register into byte
7 of the K register. Therefore, no further alignment
is needed during PF 1.

When PF 1 is entered with VFL T2 trigger off,
the multiplicand must be shifted right one or more
bytes to right-align in the K register. Each PF 1
cycle shifts the multiplicand right 1 byte (8 bits) in
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the K register. The shift is accomplished by gating
the contents of the K register through the main adder
and shifter with a right 8 shift gated, then back to the
K register.

The T pointer controls the number of bytes the
multiplicand is shifted and, therefore, the number of
PF 1 cycles that occur. The T pointer is set to the
starting byte address of the multiplicand, then
stepped up one at the beginning of each PF 1 cycle,
When the T pointer steps to 3 or to 7, the last PF 1
cycle is in progress and the set of PF 2 is gated.

PF 2 Cycle: The PF 2 cycle starts the final house-
keeping functions of the set-up sequence by trans-
ferring the two right aligned operands, the low-order
word of the multiplicand and the entire multiplier to
their respective working registers. The multiplicand
is transferred from the K register through the RBL
to the J register. At the same time, the multiplier

is transferred from the J register through the main
adder to the L register.

PF 3 Cycle: During PF 3 cycle the sign digit is re-
moved from the multiplicand and the multiplicand is
shifted right one digit (4 bits) in the J register. This
places the low-order multiplicand digit in positions
60 - 63 of the J register. The multiplicand is shifted
by gating the contents of the J register to the RBL,
and then back to the J register. Because this data
path contains no right 4 shift gate, an effective right
4 shift is caused by shifting the output of the J regis-
ter left 4 as it enters the RBL, then shifting the out-
put of the RBL right 8 as it is gated back to the J
register.

In addition, the PF 3 cycle prepares VFL controls
to enter iteration cycles by resetting the S pointer
and VFL T1 and T2 triggers. The VFL T7 trigger is
set to provide product sign control gates during the
first pass through the multiplier.

PF 4 Cycle: The PF 4 cycle is the last cycle of the
decimal multiply set-up sequence. During the PF 4
cycle, the gate multiplier bus to DC line is active to
transfer the low-order multiplicand digit into the DC.
K and M registers are cleared to all zeros by gating
AMOB to them. Because no inputs to the AM are
active, the AMOB contains all zeros with correct
parity. .

During PF 4, the set of the SF and sequence D
triggers are gated. When the SF trigger sets, the
functions of the VFL sequence triggers change from
set-up to store-fetch functions. VFL sequence D
trigger is set to enter multiply iterations.

If the E interrupt trigger is on during PF 4 cycle,
SF 3 is entered instead of sequence D. The E inter-
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rupt trigger on at this time indicates that the multi-
plicand sign is invalid or that the multiplier contains
an invalid sign or digit. SF 3 starts a SF sequence
to terminate the instruction and signal the interrupt
condition.

Iteration Sequence

e Iteration Sequences performs the arithmetic of
decimal multiply.

e VFL Sequencers IS 1, 2, 3, Seq A, B, C, D, and
SF 12 are used.

The decimal-multiply iteration sequence multiplies
the multiplier (Op 2) by the multiplicand (Op 1) to
accumulate the product. The product is accumulated
by adding or subtracting the multiplier over and
over. The number of times the multiplier is added
to or subtracted from the partial product depends on -
the value of each multiplicand digit.

When the iteration sequence starts, the multiplier
is right-aligned in the L register, the low-order
multiplicand word is right-aligned in the J register,
the partial product field in the K and M registers is
cleared to all zeros, and the low-order multiplicand
digit is in the DC.

The iteration sequence then adds the multiplier to
the partial product the number of times indicated by
the digit in the DC. Each time the multiplier is
added, iteration cycles start with the low-order-
multiplier byte and step through the multiplier and
partial product fields adding one byte of each until
the high-order multiplier byte is added; this consti-
tutes one pass through the multiplier.

When a pass through the multiplier is complete,
the DC is stepped up or down 1 and another pass is
started. This process repeats until the DC steps
down to 0 or up to 10. The next higher order multi-
plicand digit is then set into the DC, the multiplier
is shifted left one digit, and the number of passes
required to step the DC to 0 or 10 again are made
through the multiplier. This process repeats until
all multiplicand digits are processed.

After each pass through the multiplier the S
pointer is restored to the value it contained at the
beginning of the pass. Between passes the S pointer
is reset to zero then stepped down one to 7; this
causes each pass to start with the low-order multi-
plier byte. During each add cycle the T pointer gates
the partial product byte added to the multiplier byte
and selects the K register byte into which the new
partial product byte is inserted. Therefore, after
each pass through the multiplier, the T pointer is



restored to the value it contained at the beginning

of the pass, except when the next pass starts with a
new multiplicand byte. In this case, the Y counter

is stepped down one and a new starting byte ad-

dress for the T pointer is computed by gating Y

to the AA and computing storage address Bl +D1 + Y.
This address is then set into the H register.

The low-order multiplier digit must always align
with the multiplicand digit in process throughout the
execution sequence. Multiplicand digits are used
one at a time from the J register, starting with the
low-order digit and progressing through the multipli-
cand to the high order digit. Therefore, as each
multiplicand digit is used, the multiplier must be
shifted left one digit to align with the next multipli-
cand digit.

The multiplier is right-aligned in the L register
during the set-up sequence; this alignment places
the multiplier sign digit in the low-order digit posi-
tion of the L register. Thus, in byte 7 of the L
register, the low-order multiplier digit occupies the
high-order digit of the byte and the multiplier sign
occupies the low-order digit of the byte. With this
alignment the low-order multiplier digit aligns with
the low-order multiplicand-product digit; this is the
high-order digit of the low-order multiplicand-
product byte. The low-order multiplicand digit is
processed and the first partial-product accumulated
with this initial alignment.

Before the next multiplicand digit can be processed,
the multiplier must be shifted left one digit. To do
this, the multiplier is shifted right one digit (4 bits)
in the L register (sign digit is shifted out), and the
starting address of the T pointer is shifted left
(reduced) one byte (8 bits). This places the low-
order multiplier digit in alignment with the low-
order digit of a partial-product byte (the correct
alignment to process the low-order digit of a multi-
plicand byte). The multiplicand digit is then proc-
essed by making the required number of passes
through the multiplier to step the DC to zero or 10.
The high-order digit of the multiplicand byte is then
set into the DC and processed. To align the low-
order multiplier digit with the high-order digit of
a multiplicand byte, the multiplier is shifted left
one digit in the L register without changing the
starting address of the T pointer,

As successive multiplicand digits are processed,
the multiplier in the L register is alternately
shifted right and left one digit. Data gates and
sequence controls used to process the low-order digit
of a multiplicand byte differ from those used to
process the high-order digit of the byte. Therefore,
odd cycles and even cycles are used to control the
multiplier shifts and data gates to process each digit

of a multiplicand byte, Odd cycles are cycles in
which the multiplier is shifted left one digit in the L
register and the high-order digit of a multiplicand
byte is processed. Even cycles are cycles that
occur when the multiplier is in the rightmost posi-
tions of the L register and the low-order digit of a
multiplicand byte is being processed.

Odd and even cycle gating is controlled by the SC.
The SC is reset to zero during the set-up sequence,
then stepped up one as each multiplicand digit is
readied for processing. Thus, odd or even cycle
functions are gated by the odd or even numeric value
contained in the SC.

VFL sequencers IS 1, IS 2, and IS 3 are used to
perform the decimal arithmetic of the multiply
instruction, while VFL sequencers A, B, C, D, and
SF 12 are used to perform housekeeping functions
such as counter updating, multiplier and multiplicand
shifting, and so on. See Figures 66, 67, and 6475.

IS 1: IS 1 is the first sequencer in every pass
through the multiplier when adding to the partial
product. IS 1 controls the gates to AD for sign con-
trol and hot 1 for substraction.

IS 2: IS 2 is the sequencer after IS 1 during which K
and L bytes are added., It loops on itself until a
word boundary is crossed or the multiplier field is
exhausted.

IS 3: IS 3 is the sequencer used at the end of a pass
to propagate a carry of the partial product into the
next byte. The first pass during even cycles and
every odd pass through the multiplier is terminated
by an IS 3 cycle. Although the IS 3 cycle is not
needed to propagate a carry at the end of an even
pass, it is needed to complement the next higher-
order partial product byte when subtracting (Figures
64 and 65).

IS 3 is not needed during even cycles because the
multiplier is shifted right 1 digit. This leaves a
high-order digit to collect the carries.,

SF 12: SF 12 is used to swap K and M when a word
boundary is crossed during a pass through the
multiplier.

Seq A: Seq A is the first sequence following an
addition of the multiplier. It resets S, gates L2 to
Z and gates H (B1 + D1 + Y) to T. If a word
boundary was crossed during the addition, K and M
will be swapped back at this time. DC is stepped

down (up when subtracting) during Seq A and is de-
coded to determine if the digit multiply is complete.
If it is, the next multiplicand digit is set to DC. If
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not, another addition (subtraction) must be made so
IS 1 is set. If the digit multiply is complete, the
next even cycle sequence is Seq D. The next odd
cycle sequence is Seq B.

Seq B, Seq C: When the odd cycle digit multiply is
complete, the new Y value must be added to B1 + D1.
Seq B and Seq C gate Y to AA and release H.

Seq D: Seq D shifts L right 4 following odd cycles,
and left 4 following even cycles. The shift counter
is incremented during Seq D. Seq D gates Hto T to
get the new T starting point if Y was stepped and
added to B1 + D1. J is shifted right 4 to position the
next multiplicand digit.

Store-Fetch Sequence -- Decimal Multiply

The store-fetch sequence for decimal multiply (Fig-
ure 6476) has two functions. First a fetch is re-
quested for the next multiplicand word; then the com-
pleted portion of the product is stored from K reg-
ister.

During a store-fetch, the Y counter tells how
much of the multiplicand remains to be processed.
Y is, therefore, used to compute the address of the
words to be stored and fetched. If Y> 7, Bl + D1 +
1 is fetched and B1 + D1 + 2 is stored. f Y=< 17,

Bl + D1 is fetched and B1 + D1 + 1 is stored.

FIXED SEQUENCE VFL INSTRUCTIONS
e Use VFL data paths.

e Controlled by FXP sequencers.

Fixed sequence VFL instructions are those RX and
SI instructions that, in general, handle one byte of
data controlled by the FXP sequencers.

The following text and flow charts explain how
these instructions are executed in System/360
Model 75.

Insert Character (IC)

The insert character instruction (Figure 6468) re-
moves a data byte from the storage location specified
by X2 + B2 + D2 and places it into the low-order byte
of the general register specified by Rl. The data
byte may contain any bit configuration and may be
located at any byte addressable location in storage.
The data contained in the general register specified
by Rl remains unchanged, except the inserted data
byte.

Execution of the insert character instruction
fetches the storage word to the L register and trans-
fers the contents of the general register to the K
register, positions 0-3l. The selected byte of the
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L register is then gated through the decimal adder
into byte 3, positions 24-31, of the K register. The
contents of K register, positions 0-31, are then
returned to the general register to complete the
instruction.

E unit functions of the IC instruction start with
the I/E transfer. Three E unit sequencers are used;
first FXP, halfword logical (Hwd Log) and halfword
add (Hwd Add). ELC is the put-away cycle and
terminates the instruction.

Prior to the I/E transfer, the I unit computes
the X2 + B2 + D2 storage address, sets it into SAR
and H, and starts the fetch to get the storage word
that contains the Op 2 data byte. In addition, the
contents of the general register specified by Rl
are gated through the RBL to M register positions
0-31.

The I/E transfer occurs as soon as the accept
to the fetch request is received and starts execution
in first FXP sequence. The contents of the general
register gated through RBL is set into M register,
positions 0-31, at the beginning of first FXP. First
FXP cycles repeat until the Op 2 word arrives from
storage and the J loaded latch is set. The bhyte
address contained in H register, positions 21-23,
indicate the Op 2 byte to be used. This byte address
is set into the S pointer during first FXP sequence
to control byte gating later. Because first FXP spans
more than one cycle, and because the I unit may set
a different address into the H register after the first
E unit cycle, VFL T5 trigger is set for the first E
cycle and T5 latch gates H 21-23 to the Sand T
pointers. VFL T5 insures that the byte address in
H is not lost. '

During first FXP, after J is loaded, data gates
are established to transfer the operand 2 word from
J register to L register through the main adder.

Hwd Log cycle follows first FXP. The operand 2
word is set into the L register at the beginning of
Hwd Log cycle. During Hwd Log data gates are
established to transfer the contents of M register
(general register data) to K register through the
main adder.

Hwd Add follows Hwd Log. Data from the M
register is set into K at the beginning of Hwd Add.
During Hwd Add the Op 2 data byte inthe L register
is selected and gated to the K register to be inserted
with the other general register data. All bytes of
the L register are inputs to the RBG. The contents
of the S pointer control the RBG and gates the correct
byte in the L register to the decimal adder. The
decimal adder is gated binarytrue and provides a
data pathforthe Op 2 byte. Decimal adder latches
are gated to K. Byte gatinginto Kregisteris nor-
mally controlled by the T pointer and T IN decode
circuits, however, insert character instruction al-



ways inserts byte 3. Therefore, the contents of the
T pointer is ignored and T IN decode is forced to 3
to insert the Op 2 bytes into K24-31.

ELC follows Hwd Add to restore the data to the
general register (Rl) and terminate the instruction.
The Op 2 byte is set into K register at the beginning
of ELC. Then, the contents of K0-31 are transferred
to the general register specified by Rl, and the
instruction terminated.

Store Character (STC)

The store character (STC) instruction (Figure 6487)
transfers the low-order, least significant, byte in
the general register specified by Rl, to storage at
the X2 + B2 + D2 address.

The K register is the only E unit register that
gates data to the SBI enroute to storage. Therefore,
the Op 1 byte is transferred from the general register
to the K register, then to storage. Because the E
unit contains no direct data path from a general
register to K, intermediate data paths are used to
transfer the Op 1 byte into K as shown in Figure 6487.

The E time functions of the store character instruc-
tion start with the first FXP cycle that follows the I/E
transfer. Prior to the I/E transfer, however, the
contents of the general register (R1) is gated through
the RBL to M register, positions 0-31. In addition,
the computed storage address, X2 + B2 + D2, is
gated to the H register. The storage address and
Op 1 data is set into the H and M registers at the
beginning of the first FXP cycle.

During the first FXP cycle, the contents of the M
register are gated through the main adder to the K
register. Thus, the low-order byte, positions 24-31,
of the general register is transferred to byte 3,
positions 24-31, in the K register. At the same time,
the three low-order storage address bits (the byte
address) are transferred from H register, positions
21-23, to the S and T latches. S and T latches are
then gated to the S and T registers.

The byte in the K register must be stored; there-
fore, VFL store request is set during first FXP and
the contents of the T latch are gated to set the mark
register.

Hwd Log cycle follows first FXP. At the begin-
ning of the Hwd Log cycle, the data on AMOB is set
into the K register; the S, T, and mark registers
are set.

The Op 1 byte is in byte 3 location of K register.
This may not be the byte location specified by the
X2 + B2 + D2 address. Therefore, the Hwd Log
cycle is used to correctly position the Op 1 byte in
K. K register byte 3 is gated through the LBG and
the decimal adder and back to the K register byte
indicated by the T pointer.

Store sequence follows the Hwd Log cycle. If
storage is busy and the store request initiated during
the first FXP cycle must wait, the store sequence
waits for the accept. Thereafter, ELC terminates
the instruction.

AND, OR, and Exclusive OR

The three fixed sequence VFL logical connective
instructions, AND-NI, OR-0I, and Exclusive OR-
XI, are presented as a group because all use the
same E unit controls and data paths except gating
control to the AOE. See Figure 6488.

AND (NI)

When two operands are combined by the AND-NI
instruction, they are matched bit for bit in the AOE.
If corresponding bits are 1, the result bit is 1. If
either bit is 0, the result bit is 0. For example,

if the logical AND of the I2 byte and the B1 + D1
storage byte is performed, assume:

12 byte 0101 1011
Storage byte (before) 0111 0110
Storage byte (after) 1101 0010
OR (OI)

When two operands are combined by the OR instruc-
tion, they are matched bit by bit in the AOE. If
either of the corresponding bits is 1, the result bit
is 1. If both bits are 0, the result bit is 0. For
example, if the logical OR of the 12 byte and the

Bl + D1 storage byte is performed, assume:

12 byte 0101 1011
Storage byte (before) 0111 0110
Storage byte (after) 111 1111

Exclusive OR (XI)

When two operands are combined by the Exclusive
OR instruction, they are matched bit for bit through
the AOE. If the corresponding bits match, either
both 0 or both 1 bits, the result bit is 0; if they
differ, the result bit is 1. For example, if the
exclusive OR of the I2 instruction byte and the B1 +
D1 storage byte is performed, assume:

12 byte 0101 1011
Storage byte (before) 0111 0110
Storage byte (after) 0010 1101

The execution of the AND, OR, or Exclusive OR
instruction starts with the I/E transfer. Prior to
the I/E transfer, the I unit computed the B1 + D1
storage address and started the fetch to get the Op 1
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word from storage. Immediate data in the I2 in-
struction field, IOP 8-15 is gated into the YZ
counters. After the accept is received from the
fetch request, the I/E transfer occurs.

First FXP is the E unit sequencer used to start
the execution of the logical connective instructions.
During first FXP the byte address is transferred
from H register positions 21-23, to S and T latches
and the Op 1 word is gated from the J register
through the main adder to the L register as soon as
it is received from storage. First FXP may span
several cycles waiting for J loaded latch to be set.
To insure that the byte address is set into the S and
T pointers during the first E cycle, VFL T5 trigger
is also set with I/E transfer. VFL T5 latch then
gates H 21-23 to S and T latches.

Because the result byte from the AOE replaces
the Op 1 byte in storage and must be stored, the
VFL store request trigger is set during first FXP
cycle after J loaded latch is set. The contents of
the T latch is also gated to set the mark register
when the store request is accepted.

Hwd Log cycle follows first FXP during which
the two operands are gated through the AOE and the
logical connective function is performed.

Op 1 byte is gated from the L register through
the RBG to one AOE input. Op 2 byte is gated from
the YZ counters to the other AOE input.

All 64 data bits of the L register are inputs to
the RBG. The eight data bits of the byte selected by
the S pointer become the output of the right digit gate
and input to the right side of the AOE. The YZ
counters contain the Op 2 byte; Y counter contains the
high-order, most significant, 4 bits (HOD), and are
inputs to positions 0-3 of left side of AOE. Z counter
contains the low-order, least significant, 4 bits
(LOD), and are inputs to positions 4-7 of left side of
AOE.

The function of the AOE depends on the control
gating. Two control gates, gate AND or gate ex-
clusive OR, determine which of the three functions
the AOE performs, AND, exclusive OR, or OR.

If neither the gate AND nor the gate exclusive OR is
active, the AOE performs the OR function. The
AOE function gates are controlled by the instruction
being executed.

The AOE latches are set to the result byte of the
AQE. During latch time of the Hwd Log cycle the
result byte is gated to the K register and to zero
decode. The AOE result enters the K register byte
selected by the contents of the T latch and T in
decode circuits.

Store sequence follows Hwd Log cycle to store
the result byte in K. The store request is initiated
during first FXP sequence, and store becomes the
wait sequence for the accept. When accept arrives,
the store sequence ends and ELC starts.
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ELC interrogates the on or off condition of the
zero decode trigger and sets the condition register
as shown in Figure 6488. ELC terminates the in-
struction:

Compare Logical (CLI)

The compare logical (CLI) instruction (Figure 6489)
compares the immediate data byte, 12 field of the
instruction, with the storage byte at the B1 + D1

storage address. The condition register is set to
indicate the result of the comparison.

Prior to the I/E transfer, the I unit has computed
the B1 + D1 storage address and initiated the fetch
to get the Op 1 storage word. In addition, the im-
mediate data, I2 field in IOP 8-15, is transferred to
the YZ counters. The I/E transfer occurs as soon
as an accept to the fetch request is received.

The I/E transfer releases the I unit to proceed
to the next instruction while the execution of the CLI
instruction is controlled by the E unit.

First FXP sequencer starts the execution of the
CLI instruction. During the first FXP sequence, the
byte address (H 21-23) is transferred to the S
pointer, the data in YZ counters are transferred to
the Kregister, and the Op 1 word is transferred to
the L register.

Several machine cycles may occur before the
word being fetched from storage is set into the J
register. Therefore, first FXP cycles repeat until
the J loaded latch is set. s

J loaded latch enables the set of the first FXP
latch and the continuation of the execution sequence.

.The byte address is normally gated from H register

positions 21-23 to the S and T pointers by the first
FXP latch. However, because first FXP sequence
may span several cycles, and the I unit has pro-
ceeded to the next instruction, the address in the H
register may be lost after the first E cycle. To
insure that the byte address is set into the S and T
pointer during the first E cycle, VFL T5 trigger is
set for this first cycle and T5 latch gates the byte
address from H register positions 21-23 to Sand T
pointer.

As soon as the Op 1 word arrives from storage
into the J register it is transferred through the
main adder to the L register. At the same time,
the I2 data in the YZ counters are gated through the
AOE to be set into byte 3 of the K register.

Hwd Log sequence follows first FXP during
which the two operands are compared. The compar-
ison is accomplished by subtracting Op 1 from Op 2
in the decimal adder.

Both operands are set into the K and L registers
at the beginning of the Hwd Log cycle. The byte
address is set from the S latch into the S register



at the same time. Both operands are then gated to
the decimal adder, Op 1 through the RBG and

Op 2 through the LBG. All bytes of the L register
are gated into the RBG and the byte selected by the
S pointer is the one gated to the decimal adder.

The Op 2 byte is gated from the K register to
the decimal adder through the LBG. All bytes of
the K register areinputs to the LBG. Normally the
numeric value in the T pointer and T out decoding
determine the K byte that is gated from the LBG to
the decimal adder. However, because the immed-
iate data was set into byte 3 of K during first FXP
sequence, T decode out is forced to 3 during the
Hwd Log cycle to gate K byte 3 through the LBG to
the decimal adder.

Op 2 enters the left side of the decimal adder in
true form. Op 1 enters the right side of the decimal
adder through the TC +6 gate with complement gating.
Op 1 is complemented to 2's complement and added
to Op 2. The sum of the complement addition appears
at the output of the decimal adder and represents the
amount the operands differ.

The latched output of the decimal adder is gated
to the bus to K register to be zero checked, however,
K is not released and, therefore, the sum does not
enter K.

ELC follows the Hwd Log cycle during which the
condition register is set to indicate the result of the
comparison as shown in Figure 6489. ELC termi-
nates the instruction.

Move (MVI)

The MVI instruction (Figure 6490) moves the im-
mediate operand (byte from the instruction stream)
to the storage location specified by B1 + DI1.

Prior to the first E cycle, the immediate operand
is transferred from IOP 8-15 to the YZ counter and
the store address is set into the SAR and H registers.

First FXP sequencer is set with the I/E transfer.
During the first FXP cycle, the byte address is
transferred from H register positions 21-23 to the
T pointer to select the proper byte in the K register
and set the correct mark bit. Because the MVI
instruction is a store operation, the VFL store re-
quest trigger is set during the first FXP cycle.

Hwd Log sequence follows the first FXP cycle.
The mark bit indicated by the T pointer is set at the
beginning of the Hwd Log cycle. During the Hwd Log
cycle, the immediate operand is gated from the YZ
counter through the AOE to the K register byte se-
lected by the T pointer. The YZ data is gated to the
AOE during the early part of the Hwd cycle and
appears at the AOE latch output almost immediately.
From the AOE latch, the immediate operand is gated
into the K register byte selected by the T pointer.

Near the end of the Hwd Log cycle, the AOE latches
are locked to retain the data set into them, and re-
main locked until the data are set into the K register
at the beginning of the next cycle.

The store sequence follows the Hwd Log cycle.
If storage is busy, store cycles repeat until accept
arrives. If storage is not busy when the VFL stor-
age request is made, then the accept will arrive
during the Hwd Log cycle and the first store cycle
is also the ELC. ELC terminates the instruction.

Set System Mask (SSM)

The SSM instruction (Figure 6491) removes a data
byte from storage and places it in positions 0-7 of
the PSW.

The 88M instruction conforms to the SI instruc-
tion format, however, the I2 field is ignored. The
data byte used for the system mask is located in
storage at the Bl + D1 storage address.

The E unit and the I unit are both involved in the
execution of the SSM instruction. E unit sequencers
select and gate the desired byte from the storage
word to the I unit. IE sequencers then control the
gating and setting of the mask byte into the PSW
register.

E unit functions of the SSM instruction start with
the I/E transfer. Prior to the I/E transfer, the I
unit computes the Bl + D1 storage address, sets the
address into SAR and H, and starts the fetch request
to get the storage word that contains the mask byte.
I/E transfer occurs after the fetch request has been
accepted, and starts first FXP sequence.

The E unit remains in first FXP sequence, re-
peating cycles, until the B1 + D1 storage word is
set into the J register and the J loaded latch is set.
Because first FXP may repeat several cycles, VFL
T5 trigger is set for the first E cycle to insure that
the byte address is transferred from H register to
the S and T pointers.

During first FXP, after J is loaded, the contents
of the J register is gated through the main adder to
the K register. AMOB is gated to K with first FXP
latch and K is set when the following cycle starts.
Decimal go signal is sent to the I unit to start the I
execute sequence IE 1.

The last E unit cycle, ELC, and the IE 1 cycle
follow first FXP and occur at the same time. ELC
controls the E unit function of gating the mask byte
from the K register through the LBG to the I unit
where the IE 1 cycle gates it into the PSW. During
ELC, all bytes of the K register are inputs to the
LBG. The TD out trigger and the contents of the T
register (the byte address) control the selection of
the byte gated out of the LBG. The mask byte is
routed to the I unit where the IE 1 cycle gates it info

Variable Field Length 1/66 145



the PSW register positions 0-7. IE 2 cycle follows
IE 1. The mask byte is set into the PSW register

at the beginning of the IE 2 cycle to complete the
execution of the SSM instruction. IE 1 cycle follows
IE 2. See I unit section for details of IE sequencing.

Test Under Mask (TM)

The TM instruction (Figure 6492) uses the immediate
data byte, 12, as an eight-bit mask to select and test
the state of the corresponding bits of the Op 1 (B1 +
D1) data byte in storage. The 1 or 0 state of the
selected bits is used to set the condition register.

A mask bit in the 1 state indicates the corre-
sponding bit of the storage byte is selected. When
the mask bit is 0, the corresponding storage bit is
ignored; when all selected storage bits are 0, or
when all mask bits are 0, both condition register
bits, 34 and 35, are set to 0. When the selected
bits of the storage byte are all 1's condition regis-
ter bits 34 and 35 are set to 1's. When selected bits
are mixed, 1's and 0's, the condition register is
set to 01.

At the programmer's option, the mask byte may
contain any configuration of bits ranging from all 0's
to all 1's, depending on the program objectives.

The following examples show some possible objec-
tives, mask and storage byte relationship and the
condition code setting.

Example 1.

Objective: Test bits 2, 3 and 7 of a storage byte
for 1's. The mask byte contains 1's in positions 2,
3 and 7, and 0's in all other positions.

Bit positions 01 2 3 4 5 6 7
Mask byte o0 1 1 0 0 0 1
Storage byte 1 1 1 1 0 1 o0 1

In this example, the storage byte contains a
mixture of 1's and 0's; however, the selected posi-
tions 2, 3 and 7, contain all 1's. When selected
bits are all 1's, the condition register is set to 11.
“The bit positions of the storage byte that correspond
to 0 mask bits are ignored and have no effect on the
condition code.

Example 2.
Objective: Test bits 2, 3, 4 and 6 of a storage
byte for 1's.

Bit poeitions 0 1 2 3 5 6 7
Mask byte 000 1 1 1 0 1 0
Storage byte 1 1 1 1 1 0 1
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In this example, the same storage byte as Ex-
ample 1 is used. The mask byte is changed to test
bits 2, 3, 4 and 6. Bits 2 and 3 of the storage byte
are 1's, while bits 4 and 6 are 0's. The selected
bits are a mixture of 1's and 0's; therefore, the
condition register is set to 01.

If the mask bits are all 0's or the selected bits
are all 0's, the condition register is set to 00.

Execution of the TM instruction AND's the bits
of the mask byte with the corresponding bits of the
storage byte in the AOE. Two output lines of the
AOE, mask all 1's and mask all 0's, control the
setting of the condition code. Figure 68 is a sim-
plified positive logic diagram that shows the AND
functions of the mask and storage bytes, and the
two AOE output lines. When the mask and storage
byte are AND'ed, either both, or neither, the mask
all 1's or mask all 0's line is active, depending on
the bit configuration of the two bytes:

Active AOE Output
Iﬂiask all ones | Mask all zeros

Selected bits all zero X
Mask bits all zero X X

Selected bits all ones X

Selected bits mixed 1

Execution of the test under mask instruction
fetches the operand 1 word (Bl + D1) from storage,
AND's the selected byte with the I2 instruction field
(mask byte) and sets the condition register. E unit
execution starts with the I/E transfer. Prior to the
I/E transfer, however, the I unit computes the Bl +
D1 storage address and starts the fetch request to
get the Op 1 word from storage. In addition, ‘the 12
instruction field (mask byte) is set into the Y and Z
counter. The I/E transfer occurs after the accept
to the fetch request is received from the BCU.

First FXP sequence follows the I/E transfer and
repeats cycles until the Op 1 word arrives from
storage and is set into the J register. To insure
that the byte address is transferred from the H reg-
ister to the S and T pointers during the first E cycle,
VFL T5 trigger is set and T5 latch gates H 21-23 to
Sand T.

During the first FXP cycle after J is loaded, the
storage word in J register is gated through the main
adder and to the L register. Data is set into the L
register at the beginning of the next cycle.

Hwd Log sequence follows first FXP. During
Hwd Log cycle the mask bits are used to test the
bits of the Op 1 byte. All bytes of the Op 1 word in
the L register are inputs to the RBG. Gate L with
S trigger and the byte address in the S pointer se-



lect and gate the Op 1 byte through the RBG to the
AOE where it is tested. At the same time, the
mask byte in the YZ counters is gated to the other
AOE input. The AND function to the AOE is gated
to enable the mask bits to select and test bits of the
Op 1 byte. The two AOE output lines, mask all 1's
and mask all 0's indicate the 1 or 0 state of the bits
selected by the mask byte. VFL T7 and T8 triggers
are used to remember the status of the AOE output
and to set the condition code during the next cycle.
VFL T7 and T8 are used because the YZ counters
are normally set to a new value during ELC. The
chart in Figure 6492 indicates the set conditions for
VFL T7 and T8 triggers and the condition code that

results.
ELC sets condition register positions 34 and 35

and terminates the instruction.

Test and Set (TS)

This SI format instruction (Figure 6493) tests a single
byte in main storage for a high-order bit and then sets
the entire byte tested to all I's. The byte tested, then
set to 1's, is specified in the first operand address.
The result of the test for a high-order 1 bit is recorded
in the condition code. If the high-order bit in the
selected byte is a 0, the condition code is set to 00.

If the high-order bit is a 1, the condition code is set

to 0O1.

The storage unit does a unique operation for the
test and set instruction. The addressed storage word
is fetched and set unaltered into the SBO latch register
exactly as during a fetch operation. Unlike a normal
fetch, however, the storage uses a mark-bit supplied
by the CPU to designate a single byte to be changed
in storage. The storage unit sets the designated byte
to all 1's then regenerates the 72-bit word. Thus,
the storage unit does a combination store and fetch.

To cause a test and set, the BCU does a normal
CPU fetch but sends a test and set signal to the
selected storage unit. No special gating is required
for the mark-bit. The CPU sets a bit into the mark
register; the mark register is gated to storage on any
CPU operation. A unique mark register reset, how-
ever, is required for the test and set instruction. The
mark register is reset after any CPU store operation
and after the test and set instruction.

The test and set instruction is executed by setting
a bit into the mark register by decoding bits 21-23 of
the address set into the H register. SAR is set in
parallel with H from the addressing adder and fetch
request and test and set signals are sent to the BCU,
and the return of J line brought up.

When J is loaded, its contents are gated through
AMTC to the L register. The first fixed-point trigger
is turned on and stays on until J is loaded. The S and

T registers are set from H 21-23 during the first FXP
cycle by VFL T5 trigger.

The high-order bit test is performed in the byte
of L register selected by the S pointer. ELC controls
the setting of the condition code and terminates the
instruction.

The storage address protection unit is active on a
test and set instruction. A SAP check causes the
original word to be regenerated in storage and,
instead of the fetched word, the storage unit delivers
all zeros with good parity-bits to the SBO latch
register. This protects the CPU from taking a
machine check caused by a SAP error.

CONVERT INSTRUCTIONS
e Convert decimal data to binary.

e Convert binary data to decimal.

Input data to the System/360 may be in either of two
formats, binary or binary-coded-decimal. Of all
Systems/360 instructions, certain ones, such as fixed-
point and floating-point, require that data be in binary
format; other instruections, such as VFL decimal,
require data in BCD format.

Because data may enter the system in either
format, correct execution of an instruction may re-
quire that the data to be processed be converted to
the correct format.

Two instructions, convert to binary and convert to
decimal, provide the facility to convert data from one
format to another.

The following text and flow charts explains how
the System/360 Model 75 executes the convert to binary
and convert to decimal instructions.

Convert to Decimal (CVD)

The CVD instruction converts the 32-bit binary word
in the general register specified by Rl instruction
field into BCD digits, and places them in storage at
the X2 + B2 + D2 address. A storage word can contain
15 decimal digits plus a sign digit. The maximum
decimal value that can be represented by 15 digits is
far greater than the maximum value represented by
31binary bits plus a sign bit, therefore an overflow
cannot occur during conversions.

BCD digits are represented by 4 binary bits. The
difference between BCD data and pure binary data is
that a 4-bit BCD digit is allowed to contain only 10
different values, 0-9, whereas 4 bits used for pure
binary data may contain 16 different values, 0-15.
The values within the range of 0-9, 0000-1001, are
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FIGURE 68, AOE MASK FUNCTION
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the same in either binary or BCD coding. However,
values greater than 9 are expressed differently in
binary and BCDcoding. For example, the numeric
value of 12 is 1100 in binary and 0001 0010 in BCD.

Numeric values expressed in binary form represent

the sum of the binary digits, or bits. The value of
12, for example, is the sum of the binary 8 and 4 bits.

Concept

When converting numbers from binary to BCD, the
number is converted from the base 2 system to the
base 10 system. Any number of any number system
can be expressed as:

N=Anqg"+ An-1""Lyanpqn-2 _________

N = The number of any number system

An, An-1+An-2, etc., = non negative digits of the number
q = The base number of the system

n = The power (position) of the digit within the number

For example, the decimal number 985 can be expressed as:

985 = 9x102 + 8x101 + 5x100
or in binary as:

985 = 1x29+1x28+1x27+1x2640x25+1x24+1x23+0x22 +0x21 +1x20
factored to:

985 = (((((((({ 1x2+1)2+1)2+1)2+0)2+1)2+1)2+0)2+0)2+1)

The conversion of binary numbers to decimal
numbers can be accomplished by the execution of the
above equation, Figure 69.

The same equation is used when System/360
Model 75 executes the CVD instruction. Convert
cycles convert the binary number to 4-bit BCD digits.
One binary digit, or bit, is converted during each
convert cycle, starting with the highest-order binary
digit. Thereafter, the next lower-order binary digit
is converted, and the cycles repeated until all binary
digits are added to 2 times the partial result, which
in the beginning is zero, and a new partial result
developed. The 2x multiple of the partial result is
produced by shifting left 1. Figure 70 shows a sim-
plified version of how binary number 985 is converted
to 985 in BCD. Ten cycles are shown, during which
the partial result is expanded by multiplication and
addition of each binary digit. When the last binary
digit is added, the result is complete, in BCD digits.

A BCD digit occupies 4 bit positions of storage
and may represent any decimal number from 0-9.
The same 4 bit positions may also represent any
binary number from 0-15. Numbers 0-9 are the
same, whether in binary or BCD form; however,
binary numbers greater than 9 (1001) become invalid
BCD digits. For example, one more than 9 (1001)
in BCD becomes 0001 0000, whereas in binary, one
more than 9 (1001) becomes 1010, an invalid decimal
digit. During the convert sequence, if a partial re-
sult digit is greater than 4, an invalid BCD digit is

created when the shift left 1 occurs to produce a 2x
multiple of the partial result. If, for example, the
partial result is a 5 (0101) before the shift, then it
becomes 1010 (binary 10) after the shift. Decimal
correction circuits provide +6 correction to all BCD
digit positions that contain a sum of 5 or greater
before the X2 shift. The +6 correction forces a
carry into the next higher-order BCD position.
Figure 70 shows the +6 correction being used. At
the end of cycle 3, the units order 4-bit position of
the partial result contains a 7 (0111). When the 7
(0111) is shifted left 1, the binary sum becomes 14
(1110), and when the next binary digit is added, the
binary sum becomes 15 (1111), however, +6 is also
added. The +6 forces a carry into the adjacent 4-bit
BCD position and provides the correct BCD digits
for the sum of 15 (0001 0101). Decimal correction
is provided for each of the decimal digits converted
during the CVD instructions.

Execution

Execution of the CVD instruction starts during I unit
sequencing when the contents of the general register
specified by the R1 instruction field are gated through
the RBL to M register. Also, 1 is gated to the input
of SC position 2 to set 32 into the SC.

E unit execution of the CVD instruction, Figure
6494, starts with the first FXP sequencer. During
first FXP cycle Op 1 is routed through the main
adder to the K, L and M registers. If Op 1 is a neg-
ative number, it is in complement form when trans-
ferred to M from the RBL, and the Rl sign trigger
is set. If the R1 sign trigger is on during first FXP,
the AM complement and hot 1 triggers are on and
Op 1 is complemented and changed to true form.

Op 1 may be any value from 0 to +2, 147, 483,

647, or -2,147,483, 648, the maximum value that

can be represented by 31 binary bits; the magnitude

of Op 1 is checked during first FXP by zero detection
of the 4 high-order bit positions of M. If M 0-3
equals zero, normalize cycles follow first FXP. If

M 0-3 does not equal zero, convert cycles are started.

Normalize Cycles: When M 0-3 equals zero, nor-
malize cycles follow first FXP. At the beginning of
the first normalize cycle, Op 1 is set into the K, L
and M registers. K register positions 0-63 are zero
detected, and if zero, indicating Op 1 has zero value,
conversion is not necessary. IS 1 cycle is entered
and the sign digit placed in the low-order position
of K register.

When K0-63 is not equal to zero, normalize
cycles repeat until Op 1 is digit normalized. During
each normalize cycle, M 0-3 and M 0-11 are zero
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detected. M 0-63 is gated through the main adder,
the shifter, and to AMOB, then to K, L and M reg-
isters. M 0-3 and M 0-11 zero detection controls
the gates to the shifter. M 0-3=0 causes a L4 shift
and M 0-11=0 causes a L8 shift. M 0-11 zero detec-
tion is a look-ahead feature; when M 0-11=0, the
normalize cycle repeats. When M 0-11 is not equal
to zero, the last normalize cycle is in progress and
and last 4 or 8 zeros are being deleted from Op 1.

Initially the shift counter is set to the value of
32 to count the Op 1 bytes processed. During each
normalize cycle, the SC is stepped down either 4 or
8 depending on the number of zeros shifted out of the
Op 1 field.

During each normalize cycle, AMOB is gated to
K, L and M registers. The last normalize cycle
gates Op 1, left digit aligned, into the registers and
sets the convert trigger.

Convert Cycles: Convert cycles start as soon as the
convert trigger is set. During each convert cycle,
an Op 1 binary bit is converted to BCD form, and the
SC stepped down 1. When the SC = 0, all bits of

Op 1 have been converted and the BCD number is in
the K register.

At the beginning of the first convert cycle, the L
register contains Op 1, left digit aligned in positions
0-32. The partial result is developed in L register
positions 32-63. During each convert cycle, L 0-63
is gated L1 (x2) to AMTC, L 32-63 is gated through
decimal correction to AM inputs 32-63; if SC is less
than 24, then L28-31 is also gated through decimal
correction to AM 28-31. The binary bit is gated
from L0 to AM 63, where it is added to 2x the partial
result and develops a new partial result. The new
partial result is gated from AMOB to K and L reg-
isters 0-63. The shift counter steps down 1 at the
beginning of each convert cycle, and when SC=0, the
last binary digit is being added to 2x the partial
product; SC=0 terminates the convert sequence and
starts the IS 1 cycle to place the sign digit in K reg-
ister.

Decimal correction circuits examine the binary
sum of the bits in each 4-bit digit position of L 32 to
63 if SC > 24 or L 28-63 if SC< 24. Each 4-bit
digit position of L register that contains a bit sum of
5 or greater causes +6 to be gated from decimal
correction to AM inputs for that position. AM inputs
from decimal correction are 0 for all 4-bit digit
positions with a bit sum less than 5.

Each convert cycle shifts the contents of the K
and L register 1-bit position to the left. Thus, a
new Op 1 bit is gated from L0 to AMTC 63 and added
to the X2 partial result each convert cycle.

Convert cycles repeat until the SC steps down to
0. SC=0 is detected during the last convert cycle
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and causes the convert trigger to be reset and the

IS 1 trigger to be set. The last convert cycle gates
the completed result into K, L and M registers, with
a left shift 4 to make room for the decimal sign.

IS 1 Cycle: IS 1 cycle places the correct sign digit
into the low-order digit position of K regigter. Be-
cause K register is byte addressable and not digit
addressable, VFL circuits are used to insert the
sign digit. The low-order byte (byte 7) of K is gated
through the LBG, and the HOD gated to the left 0-3
input of the decimal adder. A plus sign is forced to
the right LOD input (4~7) of TC +6 side of the decimal
adder. If the R1 sign trigger is on, the sign digit is
inverted and a minus sign gated through the decimal
adder. The sign digit forced to the right LOD input
and the HOD from the LBG are gated through the
decimal adder and back to byte 7 of the K register.

The T pointer is used during IS 1 cycle to select
the K byte. Initially, the T pointer is set to 0, then,
just prior to IS 1, T is gated to step down 1. At the
beginning of IS 1, T is then stepped from 0 to 7.

J Register gates byte 7 through the LBG and the latch
T controls the release of byte 7 into K from the AV
latches.

The setting of the VFL store request and the
store request and the store triggers is gated during
IS 1 cycle, to store the completed result at the Op 2
address.

Store Cycle: The store cycle follows IS 1 and is the
accept wait cycle for the store request made during
IS 1. When accept arrives, ELC occurs and the
operation ends.

Convert to Binary (CVB)

The CVB instruction converts the BCD data in the
Op 2 storage word to binary data and places it in the
general register specified by R1.

The 64 bit Op 2 (X2 + B2 + D2) storage word
must conform to the packed decimal format, and may
contain as many as 15 decimal digits plus the sign
digit. The 15 decimal digits are converted to a 31-
bit binary word plus the sign bit and stored in a gen-
eral register. Decimal data is always true; how -
ever, the sign digit may be plus or minus. Decimal
data is converted to plus binary data; then, if the
decimal sign is minus, the binary data is changed to
the 2's complement before it is set into the general

register,
The maximum signed decimal number that can be

contained in a 64-bit storage word is 1015-1, however,
the maximum number that can be converted and still
be contained in a 32 bit register is +2, 147,483, 647

or -2,147,483,648. When the decimal number is
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outside this range, the low-order 32 binary bits are
placed in the general register and a fixed-point di-
vide interrupt occurs.

The convert to binary instruction converts one
decimal digit at a time, starting with the high-order
digit and converts, a digit at a time, to the low-
order digit. Figure 71 shows an example of convert
to binary. The partial result, which at the begin-
ning is zero, is multiplied by 10 and the first digit
added to it. The 10X multiple of the partial result
is the sum of X2 and X8 multiple. X2 and X8 multi-
ples are created by shifting the partial result left 1
position (L1) for the X2, and left 3 positions (L3) for
the X8. The partial result, after the first decimal
digit is added, is multiplied by 10 and the next digit
added. This procedure is continued until the BCD
number is exhausted, at which time the result bits
represent, in binary sum, all the decimal digits.

Decimal digits are converted to binary in the
main adder. The decimal digit is gated to the AM
from the high-order digit position (0-3) of the K
register and added to the partial result gated to the
AM from the L register (Figure 72). To effectively
multiply the partial result by 10, positions 0 to 63
of L register are gated with a L1 (X2) shift to AMTC
positions 0-62, and L register positions 28-63 are
gated L3 (X8) to AM positions 25-60. AM positions
61, 62 and 63 and AMTC 63 are used to enter the
decimal digit from the K register. Because BCD
digits are represented by 4-bit positions and only
the 3 low-order positions of the AM are available,
modified gating is used to enter the 4-bit BCD digit.
Main adder positions AM 61, AM 62, and AMTC 63
are used to enter the BCD digit if its value is 7 (0111)
or less. Figure 72 shows the relationship of the
BCD bits from the K register to AM inputs. K regis-
ter position 03 (BCD 1 bit) is gated to AMTC 63;

K register positions 01 and 02 (BCD bits 4 and 2) en-
ter AM 61 and 62. K register position 0 (BCD 8 bit)
causes a carry in to position 63. If the BCD digit
from K register is 8 (1000), 1's are forced to AM 61,
62 and 63 and a forced carry into AM 63 causes a
carry into the binary 8 position (60) of the AM. When
the BCD digit is 9 (1001), 8 (1000) is entered as
above and the 1 (0001), from K03, enters AMTC 63.

During each convert cycle, the BCD digit in the
high-order position (0-3) of K register is added to
10X the partial result from the L register, Figure
72, The new partial result is returned to the L
register. At the same time, the next BCD digit is
gated from the K register through the RBG, and
decimal adder into the high order of K, ready for the
next convert cycle. The K byte gated through the
RBG is controlled by the setting of the S pointer.
Initially, the S pointer is set to 0 and stepped up 1 on
alternate convert cycles.



During the convert cycle that the first BCD digit
is converted, the S pointer is 0. K hyte 0 is, there-
fore, gated through the RBG. The digits are crossed
causing the LOD of K byte 0 to gate through the HOD
position of the decimal adder and into the high-order
position (0-3) of the K register.

The next cycle converts the LOD of K byte 0, and
because the S pointer is stepped up 1 at the beginning
of this cycle, byte 1 from K register is gated through
the RBG. The digits are straight gated through the
digit gate to the decimal adder; the HOD of K byte 1
is gated through the decimal adder into K register
positions 0-3, ready for the next cycle.

The CVB instruction proceeds in the above man-
ner until all digits in the K register have been con-
verted.

The S pointer counts and controls the gating of
each Op 2 byte from the K register as the high- and
low-order digits of the byte are converted. In addi-
. tion, the shift counter is used to count the digits con-
verted. Initially, the shift counter is set to 16 and
counted down 1 each convert cycle. When the S
pointer equals 7 and the shift counter equals 1, the
last Op 2 digit is being converted. The CVB instruc-
tion then transfers the 32-bit word to the general
register specified by R1 and the instruction is ter-
minated.

Execution controls and data flow for the CVB in-
struction are shown in Figure 6495. The inset at the
bottom of Figure 6495 shows the relationship of the
counter values an. digits converted during each con-
vert cycle.

CVB Execution

E unit execution of the CVB instruction starts with
the first FXP sequence, set with the I/E transfer.
Prior to the I/E transfer, the I unit computes the

Op 2 (X2 + B2 + D2) address and starts the fetch to
get the Op 2 word from storage. In addition, the
shift counter is set to 16 by forcing 1 into SC position
3. BCU accept causes the I/E transfer to occur and
set the first FXP sequencer.

The E unit waits in the first FXP sequence until
the Op 2 word arrives from storage and is set into the
J register. When the J loaded latch is set, the Op 2
word is gated through the main adder to the K regis-
ter. The S pointer is reset to zero, and the convert
and IS 1 triggers are set to control the CVB instruc-
tion. The convert trigger remains on throughout all
the convert cycles; the convert trigger controls the
gating of the partial result from the L register and
the digit from the high-order position (0-3) of K reg-
ister to the main adder, and the partial result to L
register. IS 1 trigger is on during the first cycle
the convert trigger is on to set IS 2. IS 2 and IS 3

sequencers are used thereafter to control VFL cir-
cuits and gates to position each succeeding Op 2 digit
into the high-order of K register.

Convert/IS 2 cycle and convert/IS 3 cycles alter-
nate and repeat until all decimal digits in the K reg-
ister are converted. The HOD of each K byte is con-
verted during IS 2 cycles and the LOD of each K byte
is converted during IS 3 cycles.

Convert/IS 2: When the first IS 2 cycle starts, data
gates to the main adder from the L register and
from positions 0-3 of the K register are established
and remain active during each succeeding cycle un-
til all Op 2 digits are converted. Data gates irom
the L register provide the X10 partial result to
which the BCD digit from K 0-3 is added. During
IS 2 cycles, the HOD of the K byte is converted; at
the same time, the same K byte is gated through the
RBG, the digits are crossed, and the LOD gated
through the HOD positions of the decimal adder.
The decimal adder output Es.,then gated into K regis-
ter positions 0-74% ggthehﬁ'OD in position 0-3
and the HOD in 4-7; ﬂ'gs pla,ceg the LOD of the byte
in position to bef¢enverted‘during the next cycle.
) & )
Convert/IS 3: 1S 3 c?c follows IS 2. During
IS 3 cycles, th@]ﬁ) jof the K bytes is converted and
the HOD of the néxt K bytessi
[ =
tions 0-3 of th -'rekistéf"
The S pomgg_gzas stepph up 1 at the beginning of
each IS 3 cycle. e pext byte is then gated
through the RBG, straig ated to the decimal adder
and placed i <73 &ﬁ,%ces the HOD of the new
K byte into p '1t10}5 to be gbnverted during the next
cycle. (‘,, '}

The congert sequengg returns to IS 2 cycle un-
less the S pdmts :%to 7 at the beginning of
IS3. 8= duz‘n}g }:S‘hdlcates that only one digit
remains to be convertgdgthe last K byte, byte 7, is
gated through the adder and the byte is set
in K 0-7. The Ogo -3 is the next digit to be

converted; Fawev -7 is the sign digit of Op 2,
and is no ona‘ by uring IS 3, when the sign

digit is to al adder, the E unit sign

\7

trigger jset if the gplmal sign is minus.

transferred to posi-

Last Convert C “ias When S = 7, two convert cycles
follow IS 3. The first converts the last decimal
digit to binary; the second transfers and aligns the
completed result into the K register ready to be set
into the general register during the PA cycle.

The SC is stepped down 1 at the beginning of each
convert cycle. The S pointer steps to 7 at the same
time the SC steps to 2. Therefore, the SC steps to
1 at the beginning of the cycle following IS 3; this is
the cycle during which the last decimal digit is con-
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verted. The completed result is on the AMOB dur-
ing the latter part of this cycle. SC = 1 causes
AMOB to be gated into M register, the data gates
from K and L registers to AM inputs to be terminated
at the end of this cycle.

The last cycle that the convert trigger is on sets
the completed result into the M register and steps
the SC to 0. During this cycle, the 32-bit completed
result is in M register positions 32-63. To prepare
the converted result for put-away, it must be trans-
ferred to K register positions 0-31. The transfer is
made through the main adder with M 32-63 gated L
32 to AMTC 0-31. AMOB 0-63 is then gated to K 0-
63. If the sign trigger is on during this cycle,
AMTC is gated complement and the completed result
enters K register in 2's complement.

PA and ELC: PA 1 cycle follows the convert cycle
during which the SC stepped to 0. During the PA 1
cycle, the completed result of the CVB sequence is
transferred from K 0-31 to the general register
specified by R1. PA and ELC are concurrent; ELC
terminates the instructions.

Interrupts

Interrupts that can occur when executing the CVB in-
struction are:

Address: Occurs if the X2 + B2 + D2 computed stor-
age is invalid. This interrupt occurs prior to the
I/E transfer and causes the first E cycle to be ELC
to terminate the instruction.

Specification: This interrupt occurs when the com-
puted storage address does not comform to double
word boundaries in storage. This interrupt occurs
prior to the I/E transfer. ELC is forced during the
first E cycle and the instruction is terminated.

Data: A data interrupt occurs during the execution
of the CVB instruction whenever an invalid decimal
or sign digit is encountered. During IS 2 and IS 3
cycles, each byte gated through the RBG and decimal
adder is checked for parity and each digit is checked
tobe sure itisa validdecimal digit. During the last
IS 3 cycle, when S = 7, the LOD from the RBG must
be a sign digit.

A data interrupt causes the instruction to be ter-
minated by forcing ELC.

FXP Divide Exception: This interrupt occurs when-
ever the result exceeds 31 bits. During convert cy-
cles, when the decimal digit is added to 10X the par-
tial result, if a carry-out of position 32 of the AM
occurs, a fixed-point divide exception interrupt is
signaled.

DIRECT CONTROL (WRD AND RDD) (FIGURE 6496)

The store-fetch sequencers are used for these two
instructions. The store-fetch trigger is set with the
E go condition, which also sets VFL Seq T2. The
sequence is SF 1-5 for both instructions.

The timing for the pulsed signals is generated by
OR'ing together three sequencers and their latches.
The three sequencers used are A, B and C. To pre-
serve the correct timing when in single-cycle mode,
the B and C sequencers are set with the A running
clock. This means once the A sequencer is set, the
other two follow with the normal timing relationship.

The Y Z counters are set during the last cycle of
every instruction, regardless of format, and during
every cycle between ELC and the first cycle of the
next instruction. Therefore, at the beginning of
either RDD, or WRD, Y Z contains IOP (8-15). Y Z
are gated to the direct signal out bus with the timing
signal described above. This timing signal also gen-
erates Read Out and Write Out.

Write Direct (WRD)

Write direct (Figure 6497) fetches a word from stor-
age, puts it in K and gates the addressed byte to the
direct control register. The direct control register
is set with a running A clock and its release is gated
with VFL Seq LA. This maintains the correct re-
lationship between the register setting and rise of the
signal out.

Read Direct (RDD)

Read direct (Figure 6498) gates direct in data lines
to the input of the AOE. The AOE generates parity,
and the AOE output is put in the addressed byte of K.
The parity check on K is blocked until the byte read
in has been through AOE a second time to generate
parity. This prevents a data change at the input to
the AOE, just before the latch is locked, from caus-
ing a machine check (K register parity error). If the
data changed just before the latch locked, the parity
generator might not have time to adjust before the
fall of the A clock that sets K. As the byte goes
from K, to the AOE, to K, the VFL store request
trigger is set.

The hold in line being down when SF 1 latch or
SF 2 trigger are 1, allows VFL T2 to be set. The
VFL T2 latch sets SF 3 and resets SF 2. VFL T2 is
used as a buffer to prevent timing malfunctions on
the hold in line from causing sequencing faults. VFL
T2 latch blocks the release of K so that the byte set
in K when VFL T2 was set is the byte stored.
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Compare, true/complement addition 67
Condition codes 52

Condition code setting 53

Data formats 51

Divide 68

Divide, introduction 56

D14 cycle 69

Double word format in FLP register 51
Double word format in main storage 51
D2 cycle 69

D3 cycle 69

ELC cycle 64, 67, 71, 72, 74, 77
Exponent overflow 65
Exponent underflow 65

First floating-point cycle 63, 66, 68, 71, 72, 73, 75, 77
First term cycle 70

Floating-point arithmetic codes 55

Floating-point divide, program interrupt 52
Floating-point exponent values 53

Floating-point instructions 52

Halve 71

Halve, introduction 56

Hexadecimal addition-subtraction and
multiplication-division charts 50

Initial operand location 62, 65, 68, 71, 72, 73, 74, 77
Instruction formats 49

Instruction sequencing 62, 66, 68, 71, 72, 73, 74, 77
Introduction, floating-point 49

Iteration preparation cycle 69, 75

Iteration cycle 70, 76

Load 72

Load, introduction 56

Load type instructions 72

Load type instructions, introduction 56

Multiply 74
Multiply, introduction 57

Normalization 51
Norm cycle 68, 75
Numbering systems 49

PA cycle 64, 67, 71, 76

Preshift and preshift-add cycle 63, 66
Program interrupts 52

Protection program interrupt 52
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Quotient transfer/complement cycle 70

Sign handling 65

Significance program interrupt 52
Single word format in FLP register 51
Single word format in main storage 51
Specification program interrupt 52
Store cycle 77

Store, introduction 58

Store 77

Subtract 61

Subtract, introduction 54

Test cycle 71
Theory of operation 59

Zero result cycle 70

VARIABLE FIELD LENGTH (VFL)

Add decimal (AP) 96

set-up sequence 96

prefetch sequence 107

iteration sequence 101

store-fetch sequence 111

change sign, store-fetch sequence 111

start recomplement pass, store-fetch sequence 113
Adder, decimal 82

TC + 6 gate 84

right side parity adjust 84

left side input 84
AND (NI) instruction 143
AND-OR-exclusive OR mask (ACE) 85
AND, OR, exclusive OR, iteration sequence 102, 143
Address put-away 90

Buffer, digit (DB) 85

Bus, multiplier 86

Byte gate, left (LBG) 82
Byte gate, right (RBG) 82

Change sign, add or subtract store fetch 111
Compare, decimal (CP) 96

set-up sequence 96

prefetch sequence 107

iteration sequence 101

store-fetch sequence 113
Compare logical (CLI) instruction 144
Compare logical (CLC), iteration sequence 105
Concepts of VFL 78
Condition code 141
Control 90
Control, execution and 86
Control triggers 90

functions, decimal divide 118

functions, decimal multiply 132
Control, VFL overlap 92
Convert to binary (CVB) instruction 152
Convert to decimal (CVD) instruction 147
Counter, digit (DC) 85
Counter function, decimal divide 117
Counter functions, decimal multiply 131
Counters, Y and Z 86, 90
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Data format 79
Data flow 82
Decimal adder 82
TC + 6 gate 84
right side parity adjust 84
left side input 84
Decimal instructions, set-up sequence 96
Decimal multiply (MP) 130
set-up sequence 134
iteration sequence 138
store-fetch sequence 142
unit functions 131
control triggers, functions of 132
counters, functions of 131
registers, functions of 131
Digit buffer (DB) 85
Digit counter (DC) 85
Digit gate, right 82
Direct control instructions 155
Direct data register 86
Division, decimal, method of 115
non-restoring 116
restoring 116
Divide, decimal (DP), execution 123
set-up sequence 123
iteration sequence 127
store-fetch sequence 128
storage addressing 129
unit functions 116
control triggers, functions of 118
counters, functions of 117
registers, functions of 116

Edit and edit and mark (ED), (EDMK) 81

set-up sequence 98

prefetch sequence 110

iteration sequence 105

store-fetch sequence 115
End sequence trigger 91
ER and SC as word counters 93
Exclusive OR; OR, AND, iteration sequence 102, 143
Exclusive OR (XI) instruction 143
Execution and control, VFL 86
Execution, decimal divide 123
Execution, VFL 88

Fetch request triggers, store and 90
Fixed sequence VFL instructions 78, 82, 142

Gate, TC + 6 (see decimal adder)
High order digit (HOD) 84

Insert character (IC) instruction 142
Instruction format 78
Instruction execution 96
Instructions
AND (NI) 143
compare logical (CLI) 144
convert to vinary (CVB) 152
convert to decimal (CVD) 147
exclusive OR (XI) 143
insert character (IC) 142



move (MVI) 145

OR (OI) 143

read direct (RDD) 150

set system mask (SSM) 145

store character (STC) 143

test and set (TS) 147

test under mask (TM) 146

write direct (WRD) 155
Instructions, SS 78, 81
Instructions, VFL 82
Instructions, VFL fixed sequence 78, 82, 142
Interrupts, CVB 150
Interrupts 90

invalid address 90

data interrupt 90

specification interrupt 90

decimal overflow 90

decimal divide check 90
Interrupts, VFL set-up sequence 100
Introduction, VFL 78
Iteration sequence 88
Iteration sequence -- decimal instructions 100

add-subtract 101

compare (CP) 101

divide (DP) 127

move with offset (MVO) 102

multiply (MP) 138

pack (PK) 102

unpack (UNPK) 102

zero and add (ZAP)

Iteration sequence -- VFL logical instructions 102
AND, OR, exclusive OR, (NC), (OC), (XC) 102
compare logical (CLC) 105
edit and edit and mark (ED), (EDMK) 105
move (MVC) 105
move numeric (MVN) 105
move zone (MVZ) 105

Left byte gate (LBG) 82

Low order digit (LOD) 84, 89, 105

Mask, AND-OR-exclusive OR (ACE) 85
Method of multiplication, decimal 130
Move (MVC) 81
set-up sequence 98
prefetch sequence 110
iteration sequence 105
store-fetch sequence 114
Move (MVI) instruction 145
Move numeric (MVN) 81
set-up sequence 98
prefetch sequence 110
iteration sequence 105
store-fetch sequence 114
Move with offset (MVO) 81
set-up sequence 96
prefetch sequence 107
iteration sequence 102
store-fetch sequence 114
Move zone (MVZ) 81
set-up sequence 98
prefetch sequence 110
iteration sequence 105
store-fetch sequence 114

Multiplier bus 86
Multiply, decimal (MP), method of 130
set-up sequence 134
iteration sequence 138
store-fetch sequence 142
unit functions 131
control triggers, functions of 132
counters, functions of 131
registers, functions of 131

Non-restoring, decimal divide 116

Operation, theory of, VFL 96

OR (OI) instruction 143

OR, exclusive OR, and AND 81
set-up sequence 98
prefetch sequence 96
iteration sequence 102
store-fetch sequence 114

Overlap control 92

Overlap, 0-7 93

Overlap, 8-15 93

Pack (PK) 81
set-up sequence 110
prefetch sequence 107
iteration sequence 102
store-fetch sequence 114
Parity adjust, right side (see decimal adder)
Prefetch sequence 89, 107
interaction with store-fetch 108
decimal instructions 108
overlapping fields, decimal instructions 108
logical instructions 110
Pointers, Sand T 85

Read Direct (RDD) instruction 155
Recomplement pass, start, add or subtract store-fetch 113
Register, direct data 86
Register functions
decimal divide 116
decimal multiply 131
Restoring division, decimal 116
Right byte gate (RBG) 82
Right digit gate 82

S and T pointers 85
SC, used as word counters, ER and, VFL 93
Set system mask (SSM) instruction 145
Set-up sequence, VFL 88

decimal instructions 96

decimal divide (DP) 123

decimal multiply (MP) 134

logical instructions 98

logical translate and translate and test 100
SS instructions 78, 81
Storage addressing 78
Storage addressing, decimal divide 129
Store and fetch request triggers, VFL 90
Store character (STC) instruction 143
Store-fetch and VFL sequence triggers 90
Store-fetch sequence 89

add or subtract (AP), (SP) 111

compare (CP) 113

divide (DP) 128
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move with offset (MVO) 114
multiply (MP) 142
pack (PK) 114
unpack (UNPK) 114
VFL decimal 110
VFL logical 114
zero and add (ZAP) 113
Subtract, decimal (SP) 96
set-up sequence 96
prefetch sequence 107
iteration sequence 100
store-fetch sequence 111
change sign, store-fetch sequence 111
start recomplement pass, store-fetch sequence 113

Test and set (TS) instruction 147
Test under mask (TM) instruction 146
Theory of operation, VFL 96
Translate or translate and test (TR), (TRT) 81
set-up sequence 100
prefetch sequence 110
iteration sequence 106
store-fetch sequence 115
Transmit mode 105
Trigger, 0-7 overlap 93
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Trigger, 8-15 overlap 93

Trigger, end sequence

91

Triggers, T1-T8, VFL control

Trigger function, control, decimal divide
Triggers, VFL store and fetch request 90

Unpack (UNPK) 81
set-up sequence 96

prefetch sequence 107

iteration sequence
store-fetch sequence
Unpacked format 79

Word counters, ER and SC used as, VFL 93
Write direct (WRD) instruction

Y-Z counters 96, 90, 1

Zero and add (ZAP)
iteration sequence
store-fetch sequence

Zero detect
VFL 91
RBG 91
result 91

102
114

17

102
113

90
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