THE EDVAC

A preliminary report on logic and design

UNIVERSITY OF PENNSYLVANIA
Moore School of Electrical Engineering
PHILADELPHIA, PENNSYLVANIA
February 16, 1948
D.eharp

THE EDVAC

A Preliminary Report on Logic and Design

Prepared at the request of the Office of the Chief of Ordnance, Department of the Army, for the National Bureau of Standards, describing work under Contract VI-36-034-ORD-7593.

This Report was Prepared by:
G. V. Patterson
R. L. Snyder
L. P. Tabor

Irven Travis
Research Division,
Moore School of Electrical Engineering University of Pennsylvania.

Approved:

Report Serial No. 48-2

TABLE OF CONTENPS

1. Introduction12. Organization of the EDVAC 4
3. Discussion of Design Problems 19
4. Input-Output System 27
5. Performance Details 30
5.0 Numerical Interpretation of Words 30
5.01 (V, 1-) Visual Display 33
$5 . \mathrm{C}$ ($\mathrm{H}, \mathrm{C}_{+}$) Halt 34
$5.03\left(\mathrm{~A}, \overline{2}_{+}\right)$Add 35
5.04 ($\mathrm{S}, 3 \dagger$) Subtract 40
5.05 ($\mathrm{C}, 1_{\dagger}$) Compare 41
5.06 (M, 4+) Multiply with Round -Off 43
5.07 ($\mathrm{m}, 4-$) Exact Multiplication 46 46
5.08 ($\mathrm{D}, 5 \mathrm{~F}$) Divide with Round-0ff 48 48
5.09 (d, 5-) Bxact Division 53
5.10 (W, 2-) Wire 58
5.11 (B, 3-) Extract 67
5.2 Speed of Operation 78
5.3 Controls 79
5.31 Mode of Operation 81
5.32 Excess Magnitude Options 83 83
5.33 Memory Bank Switch 83 83
5.34 Read Out84
6. Example of Operation 85
7. Aids to Maintenance 92
8. Indicated Improvements 96
8.1 Design Policy 97
8.2 Recormended Improvements in Design 97
8.3 Functional Improvements which Merit Consideration 99
8.4 Special Purpose Features 100
8.5 Coded Decimal versus Binary Computer 100
i i.

Efrath

Report No. 48-2 (Sheet 1 of 2)
Negative line numbers signify counting up fron botton of page.

Page	Line	Now Reads	Should Read
i	6 and 7	$\begin{array}{r} \text { Perform } \\ 5.0 \end{array}$	$\begin{aligned} & \text { Perform ... } \\ & 5.0 \ldots \end{aligned}$
7	13	magnetiz d	magnetized
7	-11	The wires	However; the wires
7	-10	have $\mathrm{n}=1 / 4$	have $\mathrm{n}=0, \mathrm{n}=44$
7	-10	, however,	,
8	-4	$2^{-i} c_{i}$	$2^{-1} c_{i}$
11	-12	language - (language (
26	-2	Reader Recorder	Reader-Recorder
34	-3	control	dispatcher
49	3	may an	nay have an
50	-2	$2^{-43}-1 \leq m \leq 0$	$2^{43}-1 \geq \mathrm{n} \geq 0$
50	-2	$2^{43}-1 \leq n \leq 0$	$2^{43}-1 \geq \mathrm{n} \geq 0$
51	12	i $=$	$i=\infty$
52	14	व",	q].
52	16	conventions,	conventions.
53	7	$\bar{w}\left(\mathrm{q}^{*}\right)$	$\overline{\mathrm{w}}\left(\overline{\mathrm{q}^{\text {² }}}\right)$
53	10	d, 5 -	d, $\overline{5}$ -
53	-2	operator -	operator $\overline{11}$
54	8	$\left(N_{2}-N_{1}\right) 2^{-43}$	$\mathrm{N}_{2}-\mathrm{N}_{1} 2^{-43}$
54	12	<b	$<\|\bar{b}\|$
55	10 and 11	convention,	convention. (delete remainder of sentence)

ERRATA

Report No. $48-2$ (Sheet 2 of 2)
Negative line numbers signify counting up from botton of page.

Page	Line	Nom Reads	Should Read
55	-7	$\bar{b}($ unless $\bar{q}=0)$,	b,
55	-7	\bar{b} (unless $\bar{q}=0$),	$\overline{\mathrm{b}}$,
58	-3	Wire ($\mathrm{W}, 2-$)	($W, \overline{2}-$) ilire
59	-1	ust	must
61	13	$3^{\text {A }}$	$3^{\bar{A}}$
62	-13	2^{k}	8^{k}
63	-12	1^{Ω}	$1^{\bar{\Omega}}$
65	12	R5a	R5A
66	10	classification	clarification
67	3	$N(1 \bar{A})+1$	$N\left(\overline{1} \bar{L}^{\prime}\right)-1$
67	-9	$3-$	3-
75	-3	shifter	shifted
76	1	$3^{\bar{A}}$	$w\left(\frac{\pi}{3}\right)$
76	1	$24(=20$, binary	$2 / 4$ ($=20$, decinal
76	7	tablet	table
76	-2	will any	will also any
77	-13	$\underline{1} \overline{X X O}$ fails	$\underline{1} \overline{\times K 0}$ (except $\underline{1000}$) fails

1. Introduction

In the design of the BNIAC, which was censtructed by the Moore School of Electrical Zngineering for the Pallistic Research Laboratory of Aberdeen Proving Ground, it was necessary, because of the great need at that time for such a calculator, to freeze engineering at a very early date. As construction proceeded, however, it became increasingly obvious that by a recunsideration of the logic, it was possitlo and desirarle to design a computer much smaller in alze than the INIAC, With even greater flexibility and better mathematical performance then the ENIAC. This conclusion was reached as a result of consideration of the computing speed possible with electronic design, the operating characteristics of the circuit elements required in electronic computers, and the nature of the mathematical preblems which can be attacked economically only by large scale high speed computers. The Ballistic Research Laboratory became interested in this possibility, and in late 1944 , it was agreed that, as work on the ENIAC permitted, the design and construction of such a machine should be undertaken, under the sponsorship of the office of Chief of Ordnance, U.S. Army, by the Moere School of Electrical Bngineering.

A progress report on this machine, the BDVAC, or Blectronic Discrat Veriable Computer, was published in Soptember, 1945 , covering a number of possible physical designs, all meeting the general logical requirements established for the EDVAC.

In a conference in early 1946 , attended by Dean Hareld Pender and Dr. Irven Travis of the Moere School, Col. Paul Gillon of OCO, and Dr. John von Neumann of the Institute for Advanced Study, it was decided that experience with a pilot model of the EDVAC type was urgently needed, in order to obtain information about coding problems and
operating characteristics, which could then be applied to the design of ε very comprehensive calculating machine. It therefore seemed expedient that the Moore School should fmediately proceed with the design and construction of a small preliminary model of EDVAC for the Bellistic Research Laberatory, while the Inst1tute for Advanced Study should undertake a study prcgram leading to the estavlishment of design requirements for a large-scale comprehensive computer.

In working out the preliminary designs for this omall EDVAC, Moore School personnel worked in close cooperation with representatives of the Ballistic Research Laboratory who were then operating the ENIAC. Both Moore School and BRL personnel very naturally desired this small EDVAC to be as comprehensive as possible, and still meet the requirement for amall aize and simplicity. In order to obtain a mutually agreeable interpretation of the term "Small Preliminary Model of EDVAC", a conference was held at Aberdeen on 9 otoker 1946, attended by Dean Pender and Dr. Travis of the Moore Schocl Colonel G. F. Powell and Mr. Semuel Feltman of ©CA, COL. L. E. Simon of RRL, Dr. von Neumann of IAS, Mr. Harry Diamond of the National Bureau of Standards, and other representatives of these activities.

The Meore School presented three possible designs, briefly described as follows:

EDVAC I. A very simple binary computer, with automatic addition, subtraction and multiplication, programmed division, and no internal checking. Memory capecity 1000 words.

IIDVAC II. A simple binary ceded decimal computer, with fixed decimal point, all four basic arithmetic processes automatic, and autumatic checking in the computer. Memory capacity 1000 words.

IDVAC III. A more comprehensive machine, with autumatic floating decimal point, and all the automatic features listed under EDVAC II. Memory, 4000 words.

In this conference, it was decided thet a binary machine based on the EDVAC I deaign, but with automatic division and automatic checkirg, was desirable. This machine wes designated as the EDVAC 1.5. It was also decided that the National Bureau of Standards would des I_{gn} and supply the equipment for preparing and printing from the magnetic wire used in the Reader-Recorder of the EDVAC.

As the design of the EDVAC 1.5 progressed, further discussions with GRL representatives indicated the desirability of introducing certain additional orders, such as the "Extract" order, described in e. later section of this report, into the coding scheme. Since these changes, together with another change necessary to give increased stability to the memory, would considerably increase the complexity of the EDVAC, another conference was held in Aberdeen on 27 May 1947, in which two alternative proposals, EDVACS 1.5 A , and 1.5 B , with and without the added coding flexibility, respectively, were considered. No final decision was reached at this conference, and Dr. R. F. Clippinger of BRL was appointed to consider the various possibilities, and submit a report. As a result of this report, the IEDVAC 1.5 B deaign was approvec, with one minor modification. The major part of this report is devoted to a condensed description of the approved design.

In the discussion that follows, it has been necessary, in order to keep the size of this report within reasonable bounds, and to avoid excessive attention to minor details, to introduce certain simplificatione, and to omit occesional exceptions to certain general statements. Emphasis is placed on the overall logic, the basic engineering design, and on the principleape operation of the EDVAC.

LOW-SPEED MEMORY (INPUT-OUTPUT)

3 Detachable Reels of Magnetic Wire Total Copacity : 150,000 Words

READER-RECORDER
35 msec .per word

DISPATCHER
(Automatic Control Unit)

HIGH-SPEED MEMORY
Capacity: 1024 Words 44 Binary Characters Each Average Access Time : $200 \mu \mathrm{sec}$

COMPUTER
$+,-, x, \div$

NOTES : I. Except for High-Speed Memory, All Times and Copacities are in Round Numbers
2. Components Omitted for Simplicity : (a) Timer, (b) Power Supply, (c) Neon Light Register (d) Oscilloscope, (e)Mode of Operation Switch,(f) Exceed Capacity Option Switches (g)Address A Generator, (h) Address B Generator
2. Organization of the EDVAC

A simplified block diagram of the EDVAC is shown in figure 2 (drawing $104-10 L A-4$.) All the 1nterconnecting lines represent single channels carrying words or characters only; none of the contrcl connections are shown. Major physical and functional components of the BDVAC are indicated. by the full width blocks in the figure.
(a) Reader-Recorder. This unit contains the three wire drives, associated serve-mechanisms, amplifiers for the magnetic reading, recording and erasing heads, and equipment required to transfer information from the heads to the precessing delay and vice versa.
(b) Control. This unit contains all eperating buttons, Indicating lamps (but not flip-flop neons), contral switches, and an oscilloscope for aid in meintenance. The enntrol sends special erders, which are set up on switches, to the dispatcher in order to start the machine, and nay send words, set up on another set of switches, to the high-speed memory.

The arove two units, shown at the top of the block diagram, are the only ones which contain devices which are manipulated by the operator.
(c) Dispatcher. This unit decodes orders received from the control and the memcry, and special data received from the precessing delay or computer, and emits control signals to the other units which are noeded by them in order to properly perform their functions. It contains an elect-

4 .
rical delay memory which retains the order while it is being performed. The dispatcher cabinetsalso house the shifting and precessing dolay which assembles the characters recelved at low spued from the reader-recorder and transmits them at high speed to the high-speed memory, and also dissects words ruceived from the high-speed memory and transm1ts them, one character at a time, to the reader-recorder. This delay is also used in the "extract" ordor. The recirculating system is housed in the dispatcher. This gating apparatus permits a word being transferrad out of the memory to be simultaneously copied back into the same position, and has other special functions in the wire and extract orders.
(d) High-Speed Memory. This consists of two iduntical units, each containing 64 acoustic delay lines and associated. regeneration circuits. Each line or "tank" has a capacity of 8 words.

Each memory cabinet also hauses three shert tanks of one word capacity, which are connucted to the ccuputer. In addition to the memory units, the cabinets also house apparatus to ducode the addresses received from the dispatcher and select the mumory position whose contents are to be transferred out of the memory or to be replaced. by incoming data.
(o) Computer. This unit performs the rational oporations, $+,=, x, \pi$, on pairs of signed numbers received from the high-speed momory, and returns the result to the momory at the appropriate $t i m u$. When the ccmpare order is progranmed, it transfurs the result of a subtraction to the dispatchur, which uses the aign of this one of result to select, two altornative coursos of action. The computing equipnent is in duplicate and the answurs are compared, digit for digit. Any disagrooment will stop the machine and Give an "abnormal halt" indication. If the result of performing +, -, t, gives an answur whose absolute value is uqual to or greater than unity, the computer emits signals to the dispatcher and control which may be used to modify the subsequent operation of the machine in various ways.
(f) Timer. This unit is not shown in the block diagram. It umits clock pulsos at intervals of 1μ sec, and tining pulsus at intervals of $48 \mu \mathrm{sec}$ (1 minor cycle). There is also a major cycle pulse occurring every 384 मaec (1 majur cycle $=8$ minor cyclus) originating in the dispatcher.

In addition to the EDVAC proper, an input-output systom is boing constructed by the National Bureau of Standards. This equipmont, whosu design is a rulatively indupendent problum, is to conaist of modified teletype equipment for inscribing koyboardod information to the magnetic wiros, and for outscribing information from the magnetic wires to automatically typuwritton characters on rolls of ordinary papor. The apparatus which converts kuyboard data to wire recordings is known as thu inscribur, that which converts wira racordinge to typuwritton charactors, as tho outseribor.

Before discusaing the block diagram, it is important to consider the various languages that are employod in the EDVAC. Basically, there is a spokun and a writton language. 'Ihy formor consists physically of timed electrical pulses. The essential function of the EDVAC timer is to interpret these signals. The spoken language is dynamic; if the power is cut off, all of its characters will disappear. The writton language consjsts physically of magnetized regions on the wirus. If power is cut off, the characters of this language are purmenent, owing to the magnetic rotentivity of the medium.

Both languages are binary, that is, only two kinds of characters are employed. In the spoken language the two kinds of charactors are characterizod by the prosence of a pulse or the absence of a pulse. In other words, the absence of a signal is not a mere space butween charactors, but convcys information. Thu timing pulses are comparud with the pulses in the word and when both are present, we have ons kind of charactur, and when
only the timing pulse occurs, we have the other kind. The timing pulses ard cyclic and thus surv to identify the buginning and end of a word as wall as all intermediate positions. This language is thus sven to be synchronous, and not interpretable except with the aid of a clock.

In the written languages, the two kinds of characters are distinguished by regions of opposite longitudinal magnetic polarity on the wires. The ruader-recorder can properly identify those regions regardless of the direction in which the wire moves, providud only that tho direction in which the inscriber prepared the wire is known. This dircetion must of course be known at all timus when the wire is used. Unmagnotized atrutches occurring butwoun magnetized areas, al though nothing but blanks or spaces, have the important function of making the characturs discrete and countable. If all the words had the same number of characters, n, the beginning and end of a word, as wull as any intermediate character, could be identified by counting the characters from the buginning of the first word on the wiru, and duturmining the residue modulo n. This is easily mechanized by a counter which "counts of f " the characters in groups of n. However, the wirus, as prepared by the inscriber, have $n=44$ or $n=5^{b}$, however, hence the end of a word is signalled by a special kind of charactor or "marker" on the wire, which is an abnormally long magnetized region identifying the end of a word. The written language thus hes three distinct kinds of characters, es well as blanks, and is static and hence asynchronous.

More conventional languages are used in the input-output system, employing, inter alisa, the 10 decimal digits. Tho inputoutput system is capable of transliterating these characters into the binary language, but true translation, i.e. the binary-denary

8.

(binary-decimal) interconversion is a mathematical problem which, in the absence of a special purpose computer, w111 be programmed on the RDVAC. For problems requiring large amounts of computation per unit of input or output (for which the EDVAC is intended), this procedure is perfectly feasible. More details on the languages employed in the input-output system will bu found in Section 4. In what follows wo restrict ourselves to the languages used in tho BDVAC proper.

Having disposed of the characters of our languages tho nature of the words requires some explanation. In tho spoken language, a word consists of 44 characters. Introducing \bar{w} as a word variaklu, $\bar{w}=\left(c_{2}, c_{2}, \ldots, c_{44}\right)$, whore the c's are either pulses or non-pulsus. In the computer, a word is interpreted as a 43-digit binary number with sign. The two kinds of characters are interprated as zeros and ones. The kind of character which is represented by a pulse is interpreted as a 1 , and the absence of a pulse as a 0 . The function $\bar{x}(\bar{w})$ is Introduced:

$$
\bar{x}=\left[\begin{array}{ll}
1=43 & 2^{-1} c_{i} \\
1=1 & c_{4}
\end{array}\right](-1)^{c_{44}} \text {, where } c_{1}, c_{44}=0,1
$$

A c_{44} thus represents the algebraic sign of the number, and
a pulse (1) represents -; no pulse (0), +.
Since $|\overline{\mathrm{x}}|=\sum_{1=1}^{1=43} 2^{-1} c_{i}, \operatorname{tax}|\bar{x}|=\sum_{1=1}^{1=43} 2^{-1}=1-2^{-43}$, and $\min |\bar{x}|=0$.

It should be noted that $|\bar{x}|<1$, and wo have fixed the "binary" point at the left. Thus $-1+2^{-43} \leq \bar{x} \leq+1-2^{-43}$, and \bar{x} can be varied only by incremonts of 2^{-43} or multiples thereof. Any rual number, x, in the closed interval $-1+2^{-44} \leq x \leq+1-2^{-44}$ can be represented, using only one word, with a maximurl error of $2^{-4 \dot{4}}-6 \times 10^{-14}$; the absoluto accuracy (and also the relative accuracy with respect to max $|\bar{x}|$) of one-word represuntations of numbers is about 10^{-13}. Since there are 2^{44} different kinds of words, but only $2^{44}-1$ different values of \bar{x}, there is one number which has a nonunique representation, namely; zero. Thu computer is so designed as to recognize -0 and to as the same number, which is not an entirely trivial problem.

The interpretation of a word in the dispatcher is quite different. The ilspatcher, in effect, breaks the word up into 5 segrients: $c_{1}{ }^{-c_{10}}$ incluaive, $c_{11}{ }^{-c_{20}}, c_{21}, c_{30}, c_{31}-c_{40}$, and $c_{41}-c_{44}$. The first 4 segments of 10 characters each are called addresses $1,2,3,4$, respectively. In order to have a convenient symbolism to employ when discusaing these segmenta, particularly in section 5 , five functiens of \bar{w} are introduced:

$$
\begin{aligned}
& 1^{\bar{A}}=\left(1^{A} 1,1^{A} 2, \ldots, 1^{A} 10\right)=\left(c_{1}, c_{2}, \ldots, c_{10}\right), \\
& 2^{\bar{A}}=\left(2^{A} 1,2^{A} 2, \ldots, 2^{A} 10\right)=\left(c_{11}, c_{12}, \ldots, c_{20}\right), \\
& 3^{\bar{A}}=\left(3^{A} 1,3^{A} 2, \ldots, 3^{A} 10\right)=\left(c_{21}, c_{22}, \ldots, c_{30}\right), \\
& 4^{\bar{A}}=\left(4^{A} 1,4^{A} 2, \ldots, 4^{A} 10\right)=\left(c_{31}, c_{32}, \ldots, c_{40}\right), \\
& j_{1}^{A}=c_{10}(j-1)+1 ; j=1,2,3,4 ; 1-1,2, \ldots, 10 \\
& \dot{T}=\left(T_{1}, T_{2}, T_{3}, T_{4}\right)=\left(c_{41}, c_{42}, c_{43}, c_{44}\right), \\
& \text { Since } 2^{10}=1024, \text { the functions } ; \dot{A}(\bar{w}), \text { that 1s, the }
\end{aligned}
$$

four blocks of 10 binary characters, have exactly 1024 functional values, which agrees exactly with the number of positions in the high-speed memory. To a first approximation, the dispatoher uses each address to suluct a memory positian involved in a transfer of data; since there are 4 addresses per order, the order code is referred to as a 4 -address codu. The final bleck of 4 characters, the function $\bar{T}(\bar{w})$, designates the order-type; namely, the operation to be purformed on the numbers involved in the transfors. (i.e., addition, subtraction, etc.) Complete details will be found in section 5. Although sixteen different kinds of order-types are possible $\left(2^{4}=16\right)$,
10.
only 11 diffurent codings aru crdinarily used (A, S, M, D, C, m, d, E, W, H, F). If one of the 5 unused codus unturs thu dispetcher, the machine will cease computing and indicate the causu. This providus a valuable safety featury. If, through somu urror in programing, a number is sent to tho contris, rathur than tho orider, the probability is $5 / 16$ that it will be meaningless. The propability of any sizuable numbor of such errenocus ordorn paseing undevectod thrsugh the dispatcher thus bucomes venishingly orail, jerthoularly whon It is neted that the characturs $\mathrm{c}_{41}{ }^{-\mathrm{c}_{4}}$, which form part of the nrder-type code, correspund to the luast significant digits of the numbers and honce will tond to fluctuato randomly.

T hure is ne interinal characteristic of a word which distinguishos. ovdurs from numburs. The distinction is dynamic. Any word entering the dispatchur is an order; any word unturing the computer is a number. The samu word may heve both classifications at different times. This possibility is onv of the major innovatiena In the EDVAC, which distinguishes it frcm variler largu-scalu computere; thore is no segrogation of program and numurical data.

It should be noted that the charactors $c_{1}-\mathrm{c}_{44}$ inclusive, in a single wurd are invariably accompanied in thu mumory by four constant characters, $\mathrm{C}_{4} \mathrm{~S}^{-\mathrm{C}_{4} 8}$. Those characturs are all "non-pulses" and are required to give a time inturval between words sufficiuntly long to pormit the electronic circuits to opurate proporly. Thuse charactors are knewn as switching blanks. Although a word usually only contains 44 usuful charactors, a minor cycle is $48 \mu s u c$ in lungth. It should also be borne in mind that the cheractors appuar in ruvurse time s quunce within the machine, that is, c_{44} appears first, then c_{43} one $\mu s o c$ lator, and finally c_{1}. In a sorial adder, which is usud in the EDVAC, tho carries must propagate from right to loft, as in
poncil and paper addition; the luast aignificant digit must bo examined first.

Thu writton (wire) langungo will now bo discussed. Thure are rually two languagus, the words of which can bo inturminglud in an arbitrary mannur. One language has 44 binary characturs pur word, k_{1}, \ldots, k_{44}. These cerruapend exactly to the 44 binary characture of tho spoken languago. The othur languago has 54 characters pur word, $K_{1}, \ldots, K_{10}, K_{11}, \ldots, K_{54}$. The last 44 charactors again corruspond exactly to the 44 binary characturs of the spokun languagu. The f1rst 10 characters, $\mathrm{K}_{1}-\mathrm{K}_{10}$, corruspond to an address. This addruss is callud a fifth addruss, and designates the dusirud location of the word $\mathrm{K}_{11}-\mathrm{K}_{54}$ in the high-speud mumory. When "read fifth address" is programmed, the fifth addruss is eunt to the dispatcher, which then uses it to control the locetion of the word. The EDVAC roader-rocordor can hu programmed to road aithur language, mut to rocurd only the k-language. The inscriber and outscribur equipment is similarly designed. Either languago can be kuyboarded on thu inseribur, but the outscribur can transliturate oniy the k-language (sue suction 4).

It will be recallud that in the spoken languag the characters occur in ruverso time sequonce. On the wiees, howovor, the cheracters originally appear in ncrmal suquence. The keybcarding procueds from loft to right in the normal way, and whon the wiru is traveling in the forward direation (definud s.s thu diruction it movod whun it wes recorded in the inscribor equipment) k_{1} passes undur the runding huads bufore k_{i}, otc. This causus no effeiculty, since when the wiru is ruad into the machinu, all of the characters aro assumbled in the procussing dulay bufore they aru sent to thu high-spuod mumory. It is muruly necessary to assemble them in the ruverso ordur when the wirs is running forward in the ISDVAC, and to
assemblu thom in the obversu order whon the wiru is running backward. Words of tho k-language can thus ke read with tho wiru running in of ther direction. The order of the words may be reversud, but the order of the characturs within the words is not. Individual words are thus palindromic for all practical purposes. Recording on the wiru can bu accomplishod in uither firuction in a similar mannur. Since the precessing delay can only assemble 44 characters, it is not possible to handlu words of the K-language in this palindromic fash10n. The first ton characturs from thu wire aru assumhlud and Bent to the dispatchur, and then the last forty-feur are aseumbled and sont to the momory in accordance with action takun by the dispatchur on thu first tun. The two portions of the word can bu propurly ruversed, but not the word as a wholu. Attumpts to ruad these words backwards would rusult in intorpreting $\mathrm{K}_{45}-\mathrm{K}_{54}$ as the address and $\mathrm{K}_{1}-\mathrm{K}_{44}$ as the word. No serial palindromic manipulation of the two soparate parts will be successful in accomplishing the desired results.

We now turn to the principles involved in the routing of data Within the machine. The basic tranefor operation is known as an "exucute." The function of an executu is to make one of the 1024 h 1 gh -speud memory positions available to thu rust of thu machinu. The 10 binary characturs of an address aru required for this purpose. The switching problem is partly spatial and partly temporal. The characters $\mathrm{JA}_{1}-\mathrm{j}_{7}$ inclusive are used to suluct one of 128 long tanks, $\left(2^{7}=128\right)$ and charactors $A_{8}-A_{10}$ aru used to suluct onv of 8 positions (minor cycles) in thu lung tank $\left(2^{3}-8\right)$. A thrue-stagu binary counter in the dispatchor counts minor oycles modulo 8 . The timing pulses are used to iduntify the diffurunt charactors within a word, and the output of this countor is usud to iduntify thu
different words in a tank. The timur is analagous to the minute hand of a clock, and tho minor cycle counter analagous to the hour hand. The dispatcher comparus thu status of this counter with $\int^{A} 8-j^{-} A_{10}$ each miner cyclu, and when they agrue, the dispatcher recognizes that the word desired is on the vergo of emerging from the output end of some long tank, and emits an exucute signal. ${ }_{j} \mathrm{~A}_{1}-{ }_{j} \mathrm{~A}_{7}$ are continually available at the high speed mumory, ready to select the proper tank on receipt of the execute aignal. As soon as the exocute is roceived the proper long tank is opened long enough to emit the 44 characters of the word stored theroin on the connection marked $Y X$ in the diagram (see figure i), and to receive whatever information appears at YJ during the same time interval. As soon as the tranafer is completed, the internal recirculating system of the tank restores the regeneration loop and the memory is completely isolated from YJ and YX until another execute occurs. It will be soen that as far as the memery is concerned, an uxecute merely causes the contents of the memory position identified by the address concerned to be emitted at $Y X$, and to be replaced by whatover data are concurruntly present at YJ. Whenover a word is withdrawn from the momory for use in the computer, dispatcher, or if the ultimate destination is the magnetic oire, the word emitted is simultaneously made available again to the memory at YJ, from YW, via the external recirculating system and $2 X$. The information is thus merely copied and not erased. On the other hand, if the result of a computation is being transferred from the computer to the memory, or a word is being read from the wire or the input generator in the control, the external recirculating system fails to make the connection between ZX and YW and the old contents of the position affected disappear. This design philosophy is followed whenever
reasonatly possible; no data are erased until it beccues essential to do so. The word "erased" may be slightly misluading in this context. Within the high-speed memory, a total absence of pulses, \bar{W}_{0}, is significant since $\bar{x}\left(\bar{w}_{0}\right)=0$. A cleared momory position will be interpreted by the computer as a zero. The dispatcher interprots it as an "unused order".

As socn as an execute occurs, the dispatcher immediately switches to the noxt address to be considered. Since there are only 10 characters to examine, this can vasily be accomplished serially during one minor cycle. By the tims the memory contents affected by the first execute have been completely transferred, the checking of the next address is completed, and if agreement is found, the sucond executo follows the first after one minor cycle has olapsed. Agrecomont must certainly occur before 8 minor cycles have elapsed, so unless the dispatcher inhibits the execute for reasons not pertinent to this discussion (such as waiting for the computer to complete a multiplication), the second execute must follow the first by at most 8 minor cycles. Assuming randem distribution of the addresses, the average walting time will be $41 / 2$ minor cycles or 226 $\mu s e c$. The maximum is $384 \mu \sec$ (8 minor cycles), the minimum is $48 \mu s e c$ (1 minor cycle). Although the access time of thu mumory is stated to be 200 ysec in round numbors, it is possible in certain protiems to approach the optimum waiting time of 1 minor cycle by careful programming. It should not bo assumed that the waiting timu is necessarily above and beyond the time required for computing. For instance, in addition, the first exucute tyanafurs onu of the summands to a computer short memory tank, the second execute transfers the second summand to the computer adder, and simultanobualy transfors the previously recoived contents of the computer short
memory to the computer addur. The two numbers thus enter the adder In parallel. The adder has a delay of only about. 6 peec which can easily be made up during a awitching blank. By the time the socond summand has completely luft the momory the sum is ruady to emerge from thu adder memocy where it is to be stored until the third execute occurs. If the desired locetion of the aum is properly arrangod, the three executus may ocour in throe successive minor cycles. Thus from the time the first charactor of the first sumand Leaves the memory to the time the last character of the sum enters the memory, as little as 3 minor cycles may elapse. Since 3 transfers have occurred, addition requires no time whatover in addition to the waiting time.

Continuing with the addition example, the ifrat exacute causes the first eddund to be sont to the computer. Characters $c_{41}-c_{44}$, that $1 s, \bar{T}(\bar{w})$, are also decoded at this $t i m u$, and the results momorized on flip-flops wntil the entire order is completed. The oxecute also advances a ring counter which controls the seluction of the 4 addresses in the order. The second execute transfers the second addend to the computer and starts the addition. The rucirculating system ruturns both of these numbers to tho memory simultaneously with their withdrawal. The third executu transfers the sum to tho momory. The recirculating systom closes for this execute. Finally, the fourth execute transfers a new order to the dispatcher. S, M, D orders (subtraction, multiplication, division, both of the latter with round off) are similarly handled. The program chain can thus be stored in the high-speed memory in any arbitrary menner; the control is not required to scen memory positions in sequance. This permita great flexihility in programming,
sub-routines can be Gasily integrated or additional orders interpolated when the problum is in the planning stage without requiring extensive alterations of previous ceding results. Programming for minimum time is also more feasible with a four-address code. It should be pointed out that the entire order is not decoded at one time. There is only one address-decoding circuit in the dispatcher, which scans the addresses sarially.

The computer performs directly (i.e., using one order) the rational algebraic operations, together with all necessary trans fers. The result is always returned to the memory. In the case of multiplication and division two options are provided, one producing a round-off and the other a more accurate result suitable for problems requiring more significant digits than can be stored in a single memory position. These order-types are designated as m, d. The computer also performs a subtraction when the dispatcher reaches a "compare" order, and the result is sent to the dispatcher instead of the memory. In this order, the contents of the memory position designeted by address 1 are compared with the contents of address 2. Depending on the relative magnitude of these two numbers, the dispatcher selects its next order from address 3 or address 4. The compare order is the EDVAC analogue of what are variously known as branch, discriminate, or conditional transfer orders in other teminology, and permits previously computed results to affect the course of the computation.

In addition to these 7 orders, which the computer performs, there is the wire order which transfers any sulected number of words from 1 to 1024 from the corresponding number of positions ruady to pass under the reading heads in either diruction to a selected sequence in the high-spued memory, or vice versa.
17.

These words must be written in the k -language (44 charactera per word) previously mentioned. It also permits words to be transferrod from positions ready to pass under the roading heads in the forward direction to positions identified by the characters $K_{1}-K_{10}$ on the wire, until a designated memory position has been filled. These words must be written in the K-language (54 characters per word). Finally, it permits a transfer of a word set up on awitches on the control panel (auxiliary input generator) into the highspeed memory. In all cases, if the information is coming from the memory, no erasure occurs, but if the information is going into the memory, the previous contents are displaced by the nuw data.

The extract order permits digita to be sh1fted, 1.e., a linear transformation on the subscripte of the c_{1}, it alse permits selected portions of a werd to be replaced by corresponding portions of this shifted word. This order enables a word to be dissected, and onables replacements of word segments to bu purformed.

The visual order is designed for a future installation; it performs no computation, but emits the contents of 2 selected memory positions simultaneously on 2 outputs. This is designed to be used in conjunction with a long-persistence viewing scope and digital to continuous conversion apparatus which is planned for future installation.

Finaliy, the halt order causes the machine to cease computation, give an audible and visual signal, rotain all rosults, and pernit colculation to be resumed when desired. This is used for programming break points or indicating the conclusion of the problem. Full details on all these operations will be found in section 5.

Normal operation of the EDVAC will proceed as follows: the operator will take one or more "printed" wires and possibly some blank wires and load one or more of the throe wire drives on the reader-rucorder. The blank wires require preparation ainco evon though no characters are present the markers are nueded. A special order to read the "printed" wire will then be set up on the control switches; another switch (mode of opuration) is set to direct the control to read this special order. The initiate button is then depressed, causing the special order to be sent to the dispatcher where it is acted upon and the information on the wire is read into the high-speed mumory. The machine then halts after a few seconds. The switch (mode of operation) is then set to a continuous mode. The initiate button is depruased again. The machine starts and continues to opurate until a programited halt is roached. An audible ond $\lambda^{\text {visual signal are given and the machine }}$ coeses computing. The opurator then romoves the wirus which contain the recorded data, presumably one of the wires which was originally blank. Bach output wire, originally propered on the inscriber equipment, is loaded into the outscriber equipment which automatically prepares a typewritten transcript of the information on the wire.

3. Discussion of Design Problems

As pointed out in the first section of this report, the EDVAC is required to be much smaller than the ENIAC, with greater flexibility and better mathematical performance. It was tacitly assumed that the speed would be at least equal to that of the ENIAC. Reliability is an obvious requirerient, and operating experience with large scale computers of various types in service today has further indicated the need for emphasis on design for maximum reliability, coupled with inclusion of an adequate checking system. These, then, are the basic design requirements for the EDVAC.

In order to obtain high overall speed in the solution of complex mathematical problems, high functional speed must be supplemented by an adequately large high-speed memory. The most influential factors in determining the overall design of a large scale computer are probably the nature and size of the high-speed memory.

In late 1946, a mercury acoustic delay memory unit had been built by the Moore School, and had operated stably and reliably for long periods. At this time, while a number of other types of memory gave promise of eventually becoming useful, it did not appear that any other type could be reduced to an engineering design in the immediate future. The mercury memory was therefore selected for the EDVAC.

In the discussion of possible problems for digital computers, requirements for a high-speed memory of as many as 10,000 words have been encountered. However, many of the problems currently under consideration for high-speed computers can conveniently be handled with a memory of 1,000 words or less without excessive loss of time because of too frequent replacements of the contents of the high-speed memory from the input mechanism or the intermediate memory. Since the EDVAC is a binary machine, selection of a number
of memory positions which is a power of 2 will simplify coding and switching problems. It turns out that a mercury acoustic memory of 1024 words requires very nearly the same amount of equipment as the rest of the machine. A reduction in memory size to 512 words, the next lower powor of 2 , would result in a saving of only 25% in size and cost of the machine, and would certainly slow down the solution of many problems. On the other hand, increase to 2048 words would increase the size and $\cos t 50 \%$, and it appears the additional memory capacity would be required by a relatively small number of problems. A highspeed memory capacity of 1024 words has therefore been selected as the best compromise between the mathematical requirement, and the requirement that The EDVAC shall be much smaller than the ENIAC.

With the memory capacity determined, it is possible to fix the word length, by also taking into account the method of coding numerical information, the method of coding orders, the necessary switching time per minor cycle, ant the number of digits required for the desired degree of precision. As indicated in the preceding sections of this report, the EDVAC is a binary computer, and a four address code, with a type of operation order appended, has been selected because of its flexibility. It has been found that four digit spaces switching time is required each minor cycle. Experience with other large scale computers has indicated that the number of decimal digits per number entering or leaving the machine should be on the order of 10 , and it is preferable to have a few more digit places available within the machine, to Dase the scaling problem and decrease round-off errors.

Since 1024 is 2^{10}, 40 binary digits are required to specify the four addresses in the memory. Four binary digits are used in the type of operation order. Adding these digits to the switching time, we arrive at a total word length of 48 digit spaces. For reasons discussed in a later paragraph, it has been found desirable to operate at a rate of 1 binary digit per microsecond,
so that the word length is 48 microseconds. It will be noted that the 44 usable binary digit spaces per word permit the use of 10 digit decimal numbers (binery coded) with sign, in the input and output, and that within the machine, signed 43 binary digit numbers are used, corresponding approximately to signed 13 decimal digit numbers.

The amount of equipment required for a given number of words in the memory depends upon several factors. Since each mercury colunan must be previded with transducing, amplifying, and selecting equipment, it is economical to store as many words as possible in each tank. The attenuation per unit length of tank is small in comparison with the coupling losses. On the other hand, information stored within the tanks can only be available when it reaches the end of the tank, so that the time wasted in waiting for a word to appear at the output of the tank may appreciably decrease the spoed of computation. Assuming serial operation, since the mercury memory logically operates in this manner, the average "waiting time", or time required to remove a word from a tank is $\frac{n+1}{2} w$ microseconds, where n is the number of words in a tank, and w is the length of the word in microseconds. From this point of view, it is desirable to have the tanks as short as possible. In addition to this factor, there is a change in transit time, as the temperature coefficient of increase of acoustic velocity is greater than the linear coefficient of thermal expansion of the material of the tank walls. With eight 48 microsecond words storate space in each tank, the permissible temperature tolerance is $\pm 2 \frac{1}{2}{ }^{\circ} \mathrm{C}$, if the pulses leaving the tank are broadened by a factor of three before being used to gate clock pulses. The average waiting tine with this iengch of tank is only 216 microseconds. With a 16 word tank, the waiting tize would be 408 microseconds, and the temperature tolerance would be only $\pm 1-1,1,0$. Since it would be extremely difficult to maintain a large assembly of tanks within this tolerance, it appears that 8 words is the maximum tank length for
thoroughly reliable operation, and the EDVAC momory therefore consists of 128 8-word tanks, located in two temperature-controlled cabinets.

The broadening of the pulses mentionod above is achieved by making the long tank longths one and onc-helf microseconds less than a major cycle, and inserting a multi-tapped delay line. This delay lino also makes it possible to emit a word to the recirculating system one microscond carly, so that after the delays inherent in its excursion, the word may re-entor the tank in oxact synchronism.

Liquid delay lines are used, since this is a straightforward way to avoid interference from transverse waves. Quartz transducers are used because of their stability and low cost, and because X -cut quartz crystals are well suited to the production of compressional waves in the liquid. of a large number of liquids considered, mercury was found to give the best acoustic match with the quartz crystals, and consequently is used in the EDVAC. Mercury has three disadvantages; it is dense and expensive, and it is contaminated by most metals, producing a powdery deposit on the quartz surfaces, which greatly increases the coupling loss. In the EDVAC, contamination is completely oliminated by the use of glass tubes with tungsten electrodes. Woight and cost are reduced by uso of tubes of the smallest diametor consistont with good performance. Measuroments have shown that dispersion and wall attenuation effects, which are serious at very small diameters, are reduced only slightly by increasing the tube diameter above $3 / 8$ inch, which is the size srlected for the EDVAC. This small diameter also decreases crystal capacitance, which decreases the driving power required. Tank temporature will be stabilized by onclosing the tanks in heavy extruded U-sections of Dow metal clamped to thick vertical plates of the same material. These plates are mounted back to back, with heating elements between.
them. The temperature control system is designed to mnintain the temporature well within the $\pm 2 \frac{2}{2}{ }^{\circ} \mathrm{C}$ tolerance noted above. Thirty-two long tanks are mounted on each plate. The entirc assembly is enclosed in a heat insulatine case, and a pair of coaxial leads is brought out from each tank to its associated recirculating chassis, which is mounted outside the insulating casc where it is cooled by circulation of the ventilating air. Two of these assemblies, mounted in separate cabinets, are used in the EDVIC.

Some consideration was given to the possibility of using a temperature compensating device with each tank, instead of the system for controlling the temperature of the assembly. While attractive in many ways, this would require considerable developruent, and would have the disadvantage of requiring 128 individual controls, the failure of any of which would incapacitate the system, as compared with the two controls required for the two-bank stabilized system in the EDVAC.

As indicated above, functional operation must be fast enough to give operational speeds comparable with the BNLAC, in spite of the fact that the serial operation of the EDVAC is inherently slower than the parallel operation of the ENLAC. In upper limit to the operation speed is set by the pulse repetition frequency. The frequency selected, one megacycle per second, is determined primarily by the characteristics of the commercially available vacuum tubes used in the machine. Experience with the BNIAC has demonstrated that for long life and reliable operation, tubes should not be operated at averige currents or dissipations above half the values for which they are normally rated. Under these circumstances, it is feasible to produce pulses of at least 15 volts amplitude with a rise time of .05 microsecond. The pulse can then be made to have a base width of .3 microsecond, and a crest width of .2 microsecond. A repetition frequency of one megacycle per seoond then
provides an interval between pulses slightly greater than twice their duration, which is adequate for good discrimination, even when the pulses have been broadened by passage through a number of circuits. Fifteen volts is chesen as the normal pulse amplitude because this is about three times as great as the grid excursion necessary to cover the active characteristics of the tubes at the plate voltages at which they are operated. This overdrive eliminates spurious pulses due to noise or cross-talk. Reduction of factors of safety would permit higher operating speeds.

In all circuit design, emphasis has been placed on reliability, simplicity, economy of vacuum tubes, and to the limited extent to which it is practicable, standardization of circuits. Two circuits, extensively used without variation in the EDVAC, have been built into plug-in units, for ease and speed in maintenance. These are the flip-flop and mercury memory circulating units. Crystal gating circuits are extensively used, to decrease the number of tubes required. All available information indicates that the life of the germanium crystals, at the voltages and currents to which they are subjected in the EDVAC, will be many times that of the tubes they will replace.

In a field as new as electronic digital computer design, it is impossible to set up hard and fast rules of circuit design. Where guiding principles are established, they are subject to modification as more information becomes available, and occasional exceptions are inevitable in order to meet Lerticular requirements. Subject to these qualifications, the following guiding principles in circuit design are believed to be conducive to reliable operation and long component life:
(A) All heater voltages shall be held at 6.2 ± 0.1 volts.
(B) The difference between cathode and filament potential shall in no case exceed 70 volts.
(C) All voltages for D. C. coupled inverter and buffer stages shall come from the same bleeder.
(D) Mica and paper condensers shall be used at no more than 50% of their rated values. Electrolytic condensers shall not be used at more than 50% of their rated values, and shall not be mounted near any heat dissipating elements.
(E) The current through 1N34 crystals shall not exceed 6 milliamperes.
(F) No operational pulses shall appear on the contacts of switches or relays. Whore nocessary to switch pulses, switches or relays may be used to control the bias of gate or inverter tubes.
(G) ill pulse lines more than 2 feet long shall be terminated by their characteristic impedance.

The checking system and its use are discussed in Section 7 of this report. A number of methods of checking the algebraic operations were considered, and taking into account the maintenance problem, it was concluded that the most satisfactory method was to build two identical algebraic units, carry out all algebraic problems in both in synchronism, and compare results at five points. As described in Section 7, other checks have been provided in the Reader-Recorder and Dispatcher for detecting forbidden orders, numbers in blanks, and other coding and functional errors.

The problem of driving pulse lines has received a great deal of attention. The method used in the ENIAC, the driving of lines by means of cathode followers in parallel, is in general unsuitable for use in the GDVAC because of the large number (on the order of 40) of tubes required to drive certain heavily loaded lines. Two new methods have been devised: blocking oscillators for low duty cycle lines, and power pulse transformer coupled tube banks for high duty cycle lines. These systems require only about onesixth as many tubes as the earlier circuits.

The use of magnetic wire as the input and output medium for the EDVAC is largely the result of a decision to make extensive use of commercially available equipment in the Input and Output Systems, which are described in the next section of this report. For convenience in coding and to eliminate excessive wire transport three wire drives are used. Although in most casos all three can be used interchangeably, it is often convenient to consider one as primarily for input data, one for use as an intermediate memory, and one for output data. Together, they furnish an auxiliary momory of more than 150,000 words, the equivalent of more than $6,600,000$ binary digits.

The RDVAC is housed in steel cabinets 86 inches high. In all except the Memory Units, chassis are mounted vortically, with doors front and back for ready access to both sides of each chassis. This arrangement simplifies maintenance and is convenient for installation of the ventilating system. 011 air inlets will be located on the sides or backs of cabinets, which makes it possible to build a partition flush with the front panels, and completely isolate the ventilating system. This will eliminate noise and drafts in the operators' space.

Relatively few manual controls are required, since they are used only for starting and stopping the machine, examining the progress of a calculation, modifying a routine, or checking functional operation. Most of those will be mounted on the Control Unit panel, with a few on the Reader-Recorder panel for use in connection with the handling of the wire spools.

UNIVERSITY OF PENNSYLVANIA MOORE SCHOOL OF ELECTRICAL ENGINEERING

4. Input-Output System

The input-output system is the result of collaboration between the National Bureau of Standards, the Institute for advanced Study, and the ioore School. It is desizned by the Bureau of Standards and, insofar as possible, standard comercial equipment has been used in its construction, particularly Teletype equipment and standard wire recording components. Figure 2 is a block diagram of this system.

It is divided into two parts, the inscriber and the outscriber. The inscriber is used to translate the information prepared by the programmer into a code on the inagnetjewire which serves as an input for the EDVAC. The outscriber prints the information which the output of the EDVAC has placed on a magnetic wire, on paper for human consumption.

Two Teletype keyboarding machines are used in the inscriber. The first is called the preliminary perforator and is used to prepare a preliminary "chadless" paper tape by typing the programmer's instructions. Chadless tape is used in order that the character may be printed over the perforations, to assist in checking. This preliminary tape is then fed (either directly, or after being reeled and rewound) into a solenoidoperated tape reader, the output of which is fed through the Verifier to the perforator-printer. This machine will be used, preferably by a different operator, to retype the same code. The output of this machine is fed back to the Verifier. If the character typed agrees with the character on the tape, it is punched in a second tape, not chadless, called the verified tape, and the tape reader advances the preliminary tape to the next character. If the two characters disagree, an indicator lanp lights on the Verifier panel, and the perforator-printer locks until the source of disagreement is eliminated. Provision is made for alteration, deletion,
or addition of a character, as required to place the correct character on the verified tape. No characters are printed on the verified tape, but a page proof is provided for checking against the original code script.

The verified tape is then fed by a tape transport device through a transmitter-distributor, the output of which is fed to the deleter. The deleter removes spaces, and converts the 5-character teletype code into the binary notation required for the input wire.

The output of the deleter is fed into the wire recorder, which records units as positive pulses, and zeros as negative pulses on the wire. It also records marker pulses .6 inch long, to mark the ends of words. These marker pulses furnish the EDViC reader-recorder with positioning information and the dispatcher with word counting information. A space of at least. . inch is left between the end of a marker pulse and the first digit pulse. If the 5 -address code is being used, 54 digits will be recorded, and the space between the end of the word and the marker pulse will be about .17 inch. If the 4 -address code is used, only 44 digits are recorded, and a wide space (about . 37 inch) is left at the end of the word. The pulses themselves are about . 01 inch long, with spaces of the same length. When recording is complete, a high-speed rewind prepares the wire for the EDVAC. "Blank" wires for the EDVAC auxiliary memory and output require the markers, which are placed on then by running them through the wire recorder with no input signals. The output wire from the EDVAC has only 44 pulses per word. The pulses are slightly wider than the input pulses, and the end spaces are smaller than on the input wire. These pulses are read by a wire reader, similar to the wire recorder, anplified and assembled
29.
in groups of four in electronic circuits. These circuits control a parallel-type punch which perforates the final tape. Since only sixteen different signals are provided, the output tape cannot provide the complete teletype (5-hole) code.

The final tape is passed through a transmitter-distributer which operates a page printer. In view of the limited code used, this printer can only print 16 different characters. Ten of these characters are the conventional decimal digits and 2 are the symbols + , - . Ordinarily an output wire to be printed, since it will contain decimal data only, needs only these 12 characters. The other four characters are arbitrary, and only needed to print out wires which have not been converted to coded-decimal data, or to detect errors in supposedly coded-decimal data.

5. Performance Details

5.0 Numerical Interpretation of Words

The method of performing the operations, or order-types, A, S, M, D, C, has already been outlined. The eleven different order-types will now be considered in more detail. It will be recalled that each order consists of 4 addresses, of ten characters each, and an order-type of 4 cheracters. In order to be scrupulously accurate in describing the results of performing an order, without indulging in clumsy locutions, a carefully considered symbolism is essential. We have already introduced the functions $\quad{ }_{1} \bar{A}(\bar{w}), 2^{\bar{A}}(\bar{w}), 3^{\bar{A}(\bar{w}), L^{\bar{A}}(\bar{w}) \text { to describe the four addresses }}$ in an order, and $\bar{T}(\bar{w})$ to describe the order type.

In the sequel, a numerical interpretation of these segments is important, because certain operations on addresses performed in the di.spatcher are most easily explained if the addresses are numerically interpreted. Taking a broader view, this numerical interpretation is important for two additional reasons. In the first place, both the inscriber keyboard and the manual control switches are such as to make it convenient (and in some cases, necessary) to introduce the address $\left(j^{A}\right)$ and the order-type (\bar{T}) in numerical form.

Secondly, since the BDVAC stores orders and numbers in a common reservoir, it is possible to manipulate orders by passing them thru the computer. This is the most striking difference between the BDVAC and earlier large-scale computers, since it opens up an exceedingly wide range of programing possibilities. But if orders are to be treated as numbers, the relation between the numerical and the order interpretation of a word must be made explicit.

The function $n\left({ }_{j} \bar{A}\right)$ is introduced:

$$
n(\bar{A})=\sum_{i=1}^{i=10} 2^{(10-i)} j^{A_{i}} ; \text { where } j A_{i}=0,1 ; j=1,2,3, i c
$$

This gives a numerical identification for every address and preserves the interpretation of the characters of our languages as zeros and ones, Since $0 \leq \mathrm{n} \leq 1023$, the memory positions in the EDVAC will be considered as being identified by these values of n. The characters in an address are considered to be the successive digits of the binary expension of n. As stated in section 2 , the characters $j_{1}-j A_{7}$ identify the long tank, thus

$$
l(j \bar{A})=\sum_{i=1}^{i=1} 2^{(7-i)} j A_{i} \text {, where } j A_{i}=0, i ; j=1,2,3,4 .
$$

The first seven characters in an address (\vec{k}) are thus the most significant digits of n. We now have the numerical identification for the long tanks. Since $0 \leq \imath \leq 127$, the long tanks in the EDVAC will be considered as being identified by these values of

Finally the characters $j A_{8}-{ }_{j} A_{10}$ identify the minor cycle (modulo 8), thus

$$
m(j \bar{A})=\sum_{i=8}^{i=10} 2^{(10-i)} j A_{i}, \text { where } j A_{i}=0,1 ; j=1,2,3,4 .
$$

The last three characters of an address $(\overline{\bar{A}})$ are the least significant digits of n. The numerical identification for minor cycles will follow from the fact that $0 \leq m \leq 7$. The minor cycle counter in the EDVAC is designed to count forward so that the minor cycles occur in the natural sequence $0,1,2, \ldots, 7$. In planning problems, particularly for minimum waiting time, and in order to utilize the inscriber keyboard most efficiently, expansions to the base 8 will be normally used to represent memory positions. Octonary (octal) digits are denoted by
$\overline{0}, \overline{1}, \overline{2}, \overline{3}, \ldots, \overline{7}$. In this system, $\overline{0000} \leq n \leq \overline{1777} ; \quad \overline{000} \leq 2 \leq \overline{177} ;$ and $\overline{0} \leq m \leq \overline{7}$. Since one octonary (octal) digit is the equivalent of three binary digits, and since there are only 10 characters in an address $(j \vec{A})$, it will be convenient to replace the \bar{I} by $\underline{1}$, to represent a binary digit. These characters all appear on the inscriber keyboard. In the octonary (octal) system, the least significant digit of n identifies the minor cycle, and the other digits identify the long tank.

Then performing certain types of orders, the dispatcher modifies the addresses $(j \bar{A})$ by changing their characters in such a way that $n(j \bar{A})$ increases by unity. Numerical operations on orders in the computer can also be interpreted as changing $n(j \overline{\mathrm{~A}})$. This raises the problem of determining the memory position corresponding to an arbitrary integer, that is, of establishing the inverse function $n^{-1}(\rho(\mathrm{n}(j \overrightarrow{\mathrm{~A}})))$, where ϕ is some numerical operation on n. If n is 1023 and ϕ is $n+1$, then $\phi(n)$. becomes 1024 , which corresponds to no address $(j \bar{A})$ since it requires Il binary digits instead of 10 . In order to take care of this, we define $N(j \widetilde{A})$ as the residue class of integers congruent to $n(J, \bar{A})$ modulo 1024. The function $N(j \bar{A})$ now has a single-valued inverse, and the values of n will be used as the standard representation of the equivalence classes which constitute the range of the function N. For example if $\mathrm{N}=1023, \mathrm{~N}+1=0$.

Finally we introduce the function P to designate the memory position identified by an address. This represents an actual position in the high-speed memory, and not a mere number.

$$
P(j \bar{A})=P(n(j \bar{A}))=P(N(j, \vec{A}))
$$

thus if $n(j \bar{A})=1336, P$ is the 6th position (minor cycle) in the 91st long tark. it any fixed time $\vec{w}(P)$ is the word stored in position P.
$\bar{W}(j \bar{A})$ is the word identified by the address $j \bar{A}$, a numerical interpretation of $\bar{T}(\bar{w})=\left(c_{41}, c_{42}, c_{43}, c_{44}\right)$ is also convenient.

$$
n(\bar{T})=\left(\sum_{i=41}^{i=43} 2^{(44-i)} c_{i}\right)(-1)^{c_{44}} \text {, where } c_{i}, c_{44}=0,1
$$

The interpretation of the characters as zeros and ones is pseserved. Since $-7 \leq n \leq+7$, the order types may be identified as signed octonary (octal) digits. Since the sign occurs at the right, it will be appropriate to wite these digits with the sign in the same position, e.g. $\overline{7}-, \overline{3}+$. The ambiguity of +0 and -0 is resolved by making both of these unused orders.

The eleven fundanental order types will now be specified, roughly in order of increasing complexity. The alphabetic symbol for the order type, which appears on the control switches, and the numerical symbol, which is used when keyboarding an order in the ins criber, appear in parentheses.

5.01 (V, I-) Visual Display (provision for future use)

The first execute copies $\bar{W}\left({ }_{1} \bar{A}\right)$, the word specified by the first address into a short tank, the second execute presents a copy of $\bar{w}\left({ }_{2} \overline{\mathrm{~A}}\right)$, the word specified by the second address and simultaneously with it, the memorized $\bar{W}\left({ }_{1} \bar{A}\right)$ from the short tank, on two output terminals. $3^{\bar{A}}$ is not executed, that is, used to select a memory position, but is decoled to give another signal which is intended to select one of three output scopes:

$$
\begin{aligned}
& \text { If } n(3 \tilde{A}) \equiv 1 \bmod 4, \quad \text { flip flop } 1 \text { is set; } \\
& \text { If } n\left(3^{\bar{h}}\right) \equiv 2 \bmod 4, \quad \text { flip-flop } 2 \text { is set; }
\end{aligned}
$$

If $n(3 \bar{A})=3 \bmod 4$, flip flop 3 is set;
if $n\left(3^{\bar{A}}\right) \equiv 0 \bmod 4$, no flip-flop is set.
In other words, the least significant octonary (octal) digit in $n\left(3^{\bar{A}}\right), D$, is intended to select the scope:
$D=\overline{1}$ or $\overline{5}$ selects scope 1 ,
$D=\overline{2}$ or $\overline{6}$ selects scope 2 ,
$D=\overline{3}$ or $\overline{7}$ selects scope 3 ,
$D=\overline{4}$ or $\overline{0}$ selects no scope.
The other digits in $n\left(3^{\bar{A}}\right)$ are thus not significant. In order to complete the installation required for performing this type of order, it will be necessary to provide 3 long persistence scopes to be turned on and off by the flip-flops, and a pair of digital to continuous conversion devices (pulse-modulation demodulators) to transform the pulses of the words into voltages for the scope deflection plates. When installed, this equipment will permit visual curve-tracing as the problem procoeds. The last execute copies the contents of the memory position identified by $4^{\bar{A}}$, i.e. $w\left({ }_{4} \overline{\mathrm{~A}}\right)$, into the dispatcher to ourble the prograsi sequence to continue. It should be noted this order does not alter the contents of the high-speed memory in any way. $5.02(\mathrm{H}, \overline{6}+)$ Halt

When this type of order reaches the control, the EDVAC ceases all computation and gives an audible and a visual signal. The power remains on and the machine is ready to continue. If the initiate button is depressed, the contents of the memory position identified by $4^{\overline{4}}$ (the new order) is copied into the dispotcher and the $E D V_{A} C$ resumes operation. $1^{\bar{A},} 2^{\bar{A}}, 3^{\bar{A}}$ are dummies in the halt order and have no meaning or effect on the operation of the EDVAC. Again, it should be
noted that this order does not alter the contents of the high speed memory in any way.
5.03 (A, $\overline{2}+$) Add

This is a typical order which uses all four addresses for transfer operations and which produces a numerical result which is sent to the memory. In order to explain the nature of the computer output, we must discuss this problem: Given a number, x, what word is to represent it? The inverse question of determining what number is represented by a word has already been settled by the conventions established in section 2. First of all it is essential that x be a proper digital number \bar{x}, i.e., lie in the range $-1+2^{-43} \leq x \leq+1-2^{-43}$, and be of the form $x=N 2^{-43}$, where N is some integer (not necessarily positive.) Assuming this has been properly taken care of, what sign (+ or.-) are we to choose when $x=0$?

The partitioning of a word into 5 segments by the dispatcher has been explained in section 2 ; in order to clarify the discussion of computer operation it is convenient to recognize smybolically what actually occurs in the computer circuits. The computer separates the sign from the digits of a number and handles them separately. A word is thus divided by the computer into two segments, the first containing 43 characters, and the last, a single character. (It should be continually borne in mind that first and last do not refer to the flow of characters in the spoken language, which emerge temporally in reverse order). Two new segnent-functions of a word are introduced, analagously to $1^{\bar{A}}, 2^{\bar{A}}, 3^{\bar{A}}, 4^{\bar{A}}$, and \bar{T} :

$$
\begin{aligned}
& D(\bar{w})=\left(c_{1}, c_{2}, \ldots, c_{43}\right), \\
& S(\bar{w})=c_{44^{*}}
\end{aligned}
$$

In order to be consistent with the numerical interpretation of words described in section 2, the following numerical interpretation of these word-segments is required:

$$
\begin{gathered}
|\bar{x}| \quad(D(\bar{w}))=|\bar{x}|(\bar{w})=\sum_{i=1}^{i=43} 2^{-i} c_{i} ; \text { where } c_{i}=0,1 ; \\
\sigma(S(\bar{w}))=\sigma(\bar{w})=(-1)^{c_{44}} \text { where } c_{44}=0,1 .
\end{gathered}
$$

The interpretation of the characters as zeros and ones is preserved, and since $\quad|\overline{\mathrm{x}}|(\overline{\mathrm{w}})=|\overline{\mathrm{x}}(\overline{\mathrm{w}})|, D(\overline{\mathrm{w}})$ represents the absolute value of the number, that is, the unsigned digits. $\sigma(\bar{w})$ is a multiplying factor which determines the sign, or sense, of the numerical interpretation of the word:

$$
\bar{x}(\bar{w})=|\bar{x}|(\bar{w}) \cdot \sigma(\bar{w})=\left(\sum_{i=1}^{i=L_{4} 3} 2^{-i} c_{i}\right)(-1)^{c_{L / L}} .
$$

This is identical with the numericel word-interpretation of section 2.
Now we are prepared to settle the problem of encoding proper digital numbers into words. The disits give no difficulty, since $|\bar{x}|$ (\bar{w}) has an inverse, that is, it is unique, and certainly exists if x is properly digital. There are exactly 2^{43} different values of $|\bar{x}|$, and exactly 2^{43} different kinds of word-segments D. ive encode the digits of \bar{x} by setting $D=|\bar{x}|^{-1}|\bar{x}|$. The problem of determining S, given \bar{x}, is slightly more subtle. In a computer which operates with the usual notation instead of using complements, the double representation of -0 and +0 , must be carefully accounted for in the logical design. The obvious choice for the function $S^{\prime}(x)$ is closely rulated to the function $\operatorname{sgn}(x)$:

$$
\operatorname{sgn}(x)= \begin{cases}+1, & x>0 \\ 0, & x=0 \\ -1, & x<0\end{cases}
$$

Unfortunately $\operatorname{sgn}(x)$ has three values in its range, which runs counter to our binary language principles. On the other hand, $\operatorname{sgn} x=0$ if and only if $x=0$, hence the difficulty only arises in this isolated case. In order to circumvent this deficiency in our language we more or less arbitrarily throw zero in with the positive numbers; instead of the trichotomy, positive, zero, negative, we have the dichotomy, non-negative, negative, i new function, $3 g n_{+}(x)$ is defined:

$$
\operatorname{sgn}_{+}(x)=\left\{\begin{array}{l}
+1, x \geq 0 \\
-1, x \leq 0
\end{array}\right.
$$

which gives

$$
\left(1-\operatorname{sgn}_{+}(x)\right) / 2=\left\{\begin{array}{l}
0, x \geq 0 \\
1, x<0
\end{array}\right.
$$

in order to preserve the interpretation of the characters as zeros and ones, ie now have a function which enables us to encode the sign of zero uniquely:

$$
S^{\prime}(\bar{x})=\left\{\begin{array}{l}
p u / s e, \text { if } \frac{\left(1-s g n_{+}(\bar{x})\right)}{2}=1: \\
n o p u / s c, \text { if } \frac{\left(1-s g n_{+}(\bar{x})\right)}{2}=0 .
\end{array}\right.
$$

If \bar{x} is non-negative we assign c_{44} in such a way that \bar{w} has a plus sign, if \bar{x} is negative, a minus sign. The computer will decode either -0 or +0 as 0 , but it will encode 0 only as +0 . This is of special importance in the compare order as will be seen later. The method of encoding \bar{x}, a number in proper digital form is thus

$$
\bar{w}=\bar{w}(\bar{x})=|\bar{x}|^{-1}|\bar{x}| \overparen{S^{\prime}}(\bar{x}),
$$

where the arch signifies concatenation or justaposition, $|\bar{x}|^{-1}(\bar{x})$ is the segment $D(w)$ containing characters $c_{1}-c_{43}$, the "digits" of w, and $S^{\prime}(x)$ is the character C_{44}, the "sign" of w. Such a representation of a computer output will be properly decoded if the word is returned to the computer, since

$$
\begin{aligned}
\bar{x}^{\prime}(\bar{w})=\bar{x}(\bar{w}(\bar{x})) & =|\bar{x}|(\bar{w}(\bar{x})) \cdot \sigma(\bar{w}(\bar{x})) \\
& =|\bar{x}|(\sigma(\bar{w}(\bar{x})) \cdot \sigma(\bar{w}(\bar{x})) \\
& =|\bar{x}|\left(|\bar{x}|^{-1}|x|\right) \cdot \sigma(\bar{w}(\bar{x})) \\
& =|\bar{x}| \cdot \sigma(\bar{w}(\bar{x})) \\
& =\mid \bar{x}) \cdot \sigma(\zeta(\bar{w}(\bar{x}))) \\
& =|\bar{x}| \cdot \sigma\left(S^{\prime}(\bar{x})\right) \\
& =|\bar{x}| \cdot(-1)^{\left.\left.\left(-\operatorname{sgn}+l^{x}\right)\right) / 2\right)}=\bar{x} .
\end{aligned}
$$

The rules for encoding proper digital numbers having been established, we now direct our attention to the effect of performing rational operations, in this case, addition, on such numbers. When we program an add order we signify our intention of adding the contents of the memory position identified by $i^{\bar{A}}$ to the contents of the memory position identified by $2^{\bar{A}}$:

$$
\bar{x}\left(\bar{w}\left({ }_{1} \overline{\bar{H}}\right)\right)+\bar{x}\left(\bar{w}\left({ }_{2} \bar{A}\right)\right)=\sum .
$$

\sum is not, in general, a proper digital number. Since $\max |\bar{x}|=1-2^{-43}$, $\max |\Sigma|=2-2^{-42}$, and $-2+2^{-42} \leq \sum \leq 2-2^{-42}$. Since \bar{x} varies only by increments of $2^{-43}, \sum$ must do likewise. \sum thus satisfies the digital requirement that it be of the form N_{2}^{-43}, but it may lie outside of the range stipulated for \bar{x}, and hence fail to be a proper digital number for that reason. There are $1+\left(2-2^{-42}-\left(-2+2^{-42}\right)\right) / 2^{-43}=$ $2\left(2^{44}\right)-3$ different possible values of \sum. Since there are only 2^{44} different kinds of words possible in the memory, and there are almost
twice as many values of \sum, it is clearly impossible to store \sum in the memory without modifying it in some cases. If we expand \sum in the binary system:

$$
\sum=\left(\sum_{i=0}^{i=-43} 2^{-i} \delta_{i}\right)(-i)^{\delta_{44}}, \text { where } \delta_{i}, \delta_{44}=0,1 \text {, and at }
$$ least one of the δ_{i} is zero.

If it were not for the δ_{0}, \sum could be expressed as a word in the same wa.y that \bar{x} cen. The computer, emulating Procrustes, trims off the δ_{0}. If $\left|\sum\right| \geq 1$, we subtract 1 from it, which is equivalent to discarding δ_{0}. If such is the case, the computer gives a signal to the dispatcher, known as "add-subtract capacity exceeded". The complete significance of this will be described later; this signal makes it possible to modify the subsequent operation of the EDVAC. In any case, the computer output is not modified by this circumstance and it remains to describe it analytically. In order to do this conveniently the function "greatest integer in x ", $[x]$, is employed. For our purposes it is sufficient to consider only positive values of x :

$$
[x]=\left\{\begin{array}{l}
0,0 \leq x<1 \\
1,1 \leq x<2 \\
\vdots \\
n, n \leq x<n+1
\end{array}\right.
$$

$|\Sigma|-[|\Sigma|]$
will give the fractional part of $\left|\sum\right|$ only, and this operation is the analytical equivalent of the syntactical operation of suppressing the supernumerary digit at the left, δ_{0}; in other words this is a mathematical expression for the physical operation corresponding to rubbing out δ_{0} with an eraser.

The proper digital number encoded by the computer is $\bar{\Sigma}=(|\Sigma|-[|\Sigma|]) \cdot s g n_{+} \sum$. This number is not encoded strictly in
accordance with the principles previously stated; if $\Sigma=-1$, $\bar{\Sigma}=0$, but $\bar{w}(\bar{\Sigma})$ will be a "minus zero", that is, $S^{\prime}(x)$ is determined from \sum, rather than from $\bar{\Sigma}$. If we have an exceed capacity signal, examination of the sign (c_{44}) of the contents of the memory position identified by $\overline{3^{A}}$, will indicate whether the result is incorrect by +1 or -1 .

The complete discussion of the conversion of \sum into a proper digital number has resulted in almost losing sight of the broader outlines of the add order, which will now be summarized. The first execute sends $\bar{w}\left({ }_{1} \bar{A}\right)$ to a computer short memory tank and returns $\bar{w}\left({ }_{1} \bar{A}\right)$ to the memory, via the recirculating system. The second execute sends $\bar{W}\left(2^{\bar{A}}\right)$ direct to the adding circuits, returns $\bar{w}\left({ }_{2} \bar{A}\right)$ to the memory, and sends the memorized $\bar{w}\left({ }_{1} \overline{\bar{B}}\right)$ to the adding circuits. At the end of one minor cycle Σ, the algebraic sum of $\bar{x}(\bar{w}(\overline{1} \bar{A}))$ and $\bar{x}(\overline{\bar{w}}(2 \bar{A})$, has been conputed, and when the third execute occurs $\bar{w}\left(3^{\bar{A}}\right)$ is replaced by $\bar{w}\left(\bar{\sum}\right)$, thus storing the sum in the memory position identified by the third address in the order, and displacing the original contents of that position. In case $\left|\sum\right| \geq 1$, an "add-subtract capacity exceeded" signal is sent to the dispatcher, to be discussed later, but in any case, a proper digital number is stored in the memory by dropping the 1 to the left of the binary point, and storing only the "fractional" part of \sum. The sign of this number agrees with the sign of \sum, even when $\bar{\sum}$ is zero. The fourth execute normally sends $\overline{\mathrm{w}}\left(\frac{\bar{A}}{4}\right)$ to the dispatcher, constituting the next order in the program chain.

$5.04(\mathrm{~s}, ~ \hat{3}+)$ Subtract

This operation is sinilar to add. If we program a subtract order
we signify our intention of subtracting the contents of the memory position identified by $2^{\bar{A}}$ from the contents of the memory position identified by ${ }_{2} \bar{A}$:

$$
\bar{x}\left(\bar{w}\left(\overline{1}_{1}\right)-\bar{x}\left(\bar{w}\left({ }_{2} \bar{A}\right)\right)=\Delta\right.
$$

gives rise to an extra digit at the left, exactly as \sum does, The proper digital number encoded by the computer is $\bar{\Delta}=(|\Delta|-[i \Delta i]) \cdot \sin +\Delta_{\text {, }}$ and if $\Delta=-1, \bar{\Delta}=0$, and $\bar{w}(\bar{\Delta})$ will be a "minus zero". If $|\triangle| \geq 1$, the computer emits an "add-subtract capacity exceeded" signal, as in the previous order.

The first execute transfers $\bar{W}(\bar{A})$ to a computer short memory tank and returns $\bar{W}\left({ }_{1} \bar{A}\right)$ to the memory, via the recirculating system. The second execute transfers $\overline{\mathrm{w}}(\overline{2} \overline{\mathrm{~A}})$ direct to the adding circuits, returns $\overline{\mathrm{W}}\left({ }_{2} \overline{\mathrm{~A}}\right)$ to the memory, and transfers the memorized $\overline{\mathrm{w}}(\overline{1} \overline{\mathrm{~h}})$ to the adding circuits. At the end of one minor cycle, Δ, the algebraic difference, has been computed, and when the third execute occurs, $\bar{W}\left({ }_{3} \bar{A}\right)$ is replaced by $\bar{w}(\bar{\Delta})$, thus storing the difference in the memory position identified by the third address in the order, and displacing the original contents of that position. In case $|\triangle| \geq 1$, an "add-subtract capacity exceeded" signal is sent to the dispatcher, but in any case, a proper digital number is stored in the memory by dropping the 1 to the left of the binary point, and storing only the fractional part of Δ. The sign of this number agrees with the sign of Δ even when $\bar{\Delta}$ is zero. The fourth execute normality sends $\bar{W}\left(\frac{\bar{A}}{}\right)$ to the dispatcher, constituting the next order in the program chain. 5.05 (c, I+) Compare

The first two executes accomplish the same results as in the subtract order. The result, $\bar{w}(\bar{\Delta})^{2 s}$ immediately sort to the di spat cher
as soon as it has been computed. The di spatcher takes $\mathrm{S}(\overline{\mathrm{w}}(\bar{\Delta})$), (the sign of $\bar{\triangle}$) and uses it to select $3^{\bar{n}}$ (the third address), or $4^{\bar{A}}$ (the fourth address) for the next execute. If S is a pulse, $\Delta<0$, and the third address is chosen, if S is a non-pulse $\Delta \geq 0$, and the fourth address is chosen. $\bar{v}(\overline{\mathrm{~A}})$, where $j=3$, 4 is sent to the djenstantron the last execute, constituting the :ext, order in the progran chain. In other words, if the nuwber in the memory position identified by \bar{A} is greater or equal to the number in the memory position identified by $2^{\bar{A}}$, then the order in the memory position identified by $4_{4}^{\bar{A}}$, will become the next order, while if $\bar{x}\left(\bar{w}\left({ }_{1} \bar{A}\right)<\bar{x}\left(\bar{w}\left({ }_{2} \bar{A}\right)\right)\right.$, then $w\left({ }_{3} \bar{A}\right)$ becomes the next order. The roason for giving $\triangle=-1$ a minus sign, even though $\bar{\Delta}=0$, is apparent. We do not wish the dispatcher to think that the numbers are equal, if their difference is exactly -1 . Similarly, $\Delta=0$ has a plus sign, since if it had a minus sign, the dispatcher would infer that $\bar{x}\left(\bar{w}\left(1_{1}^{\bar{A}}\right)\right)<\bar{x}\left(\bar{w}\left(2^{\bar{h}}\right)\right)$.

The compare order enables the $E D V_{A} C$ to make a choice as to the next operation to be performed, which can depend on the results of previous computation, since either or both of $\bar{w}\left(1^{A}\right)$ and $\bar{W}\left(2^{\bar{A}}\right)$ may be the results of previous computations, and $\bar{W}\left(3^{\bar{A}}\right)$ and $\bar{W}\left(\frac{\bar{A}}{4}\right)$ may be entirely different orders. The compare order does not change the memory contents in any way, $\bar{w}(\vec{A})$ or $\bar{w}\left(4^{\bar{A}}\right)$ is returned to the memory via the recirculating system. The last execute cannot follow the second execute until at least 2 minor cycles have elapsed, since the address $3^{\bar{A}}$ or $4^{\bar{A}}$ cannot be checked against the minor cycle counter until after $\bar{w}(\bar{\Delta})$ arrives in the dispatcher.

$5.06(\mathrm{M}, \overline{\mathrm{L}}+\mathrm{)}$.fultiply with round-off

The first execute transfers $\bar{w}\left(\overline{l^{A}}\right)$ to a computer short memory tarik, and returns it to the memory via the recirculating system. The second execute transfers $\bar{w}\left(2^{\bar{A}}\right)$ to the same computer short momory tank, sends thie memorized $\bar{W}(\bar{A})$ to a second computer short memory tank, and begins the serial process of multiplication, which requires 43 minor cy: 83 since there are 43 digits in the multiplier, $\bar{w}(\overline{\mathrm{~h}})$. The computer forms the product $\bar{x}\left(\bar{w}\left(1^{n}\right) \cdot \bar{x}\left(\bar{w}\left(2^{\bar{A}}\right)\right)=\Pi\right.$. Π is not, in general, a proper digital number. Since $\max \quad|\bar{x}|=1-2^{-4,3}$, $\max |\pi|=1-2^{-42}+2^{-86} ; \pi$ falls in the same range as \bar{x}, hence there is no problem of extra digits at the left, i.0., no exceed capacity problem, On the other hand Π does not satisfy the digital requirement that it be of the form $\mathbb{N} \cdot 2^{-43}$ and hence fails to bo a proper digital number because of supernumerary digits at the right. If we expand $|\Pi|$ in the binary systom, 86 digits will be required, in general:

$$
|T|=\sum_{i=1}^{i=86} 2^{-i} \delta_{i}, \text { where } \varepsilon_{i}=0,1
$$

Indeed $\max |\pi|$ is a number which actually requires tive full 86 digits: if $1 \leq i \leq 42, \delta_{i}=1$, if $43 \leq i \leq 85, j_{1}=0$, and $\delta_{86}=1$. Hence there is a significant digit at each end of the cepansion. That 86 digits are always sufficient follows from tho fact that the snallest non-zero increment of Π is $\left(2^{-43}\right)^{2}=2^{-86}$. In order to reduce Π to proper digital form, a wholesale triming of digits is necessary. In view of the standard representation of numbers, digits $44-86$ must be discarded. One way of doing this is described analytically by the operation

$$
\overline{|\pi|}=\left[|\pi| 2^{43}\right] \cdot 2^{-4 \cdot 3} .
$$

This corresponds to translating the "point" to a position between the 43d and 44th digits, dropping all fractional digits (by selecting the greatest integer), and then restoring the point to its original position. Since $\overline{\pi \mid}=\mathrm{N} \cdot \mathrm{R}^{-43}$, it satisfies one of the proper digital requirements, also, since $\overline{|\pi|} \leq|\pi|$ and $\max |\pi|=1-2^{-42}+2^{-86}$, then $1+2^{-43}<\pi<\quad 1-2^{-43}$, and π certainly falls in the proper range. As a matter of fact,

$$
\begin{aligned}
\max \bar{\pi} \mid & =\left[\max |\Pi| \cdot 2^{43}\right] \cdot 2^{-43} \\
& =\left[\left(1-2^{-42}+2^{-86}\right) 2^{43}\right] \cdot 2^{-43} \\
& =\left[2^{43}-2+2^{-43}\right] \cdot 2^{-43} \\
& =\left(2^{43}-2\right) 2^{-43}=1-2^{-42}
\end{aligned}
$$

and $-1+2^{-42} \leq \bar{\pi} \leq 1-2^{-42}$. $\bar{\pi}$ is certainly a proper digital number suitable for encoding.

On the other hand, $\bar{\pi}$ has a serious deficiency. Since $\overline{\pi \mid} \leq|\pi|$, this operation is biased towards zero; $\overline{|\pi|}$ is always too small. If $|\pi|$ is assumed to be a random real number lying in the range $0 \leqslant|\Pi|<1$, then the error is uniformly distributed in the interval $-2^{-43}<e \leq 0$, with expected value $E(e)=2^{-44}$; least upper bound of absolute value, 1.u.b. $|0|=2^{-43}$; variance, $\sigma^{2}(e)=(1 / 12) 2^{-86}$. In order to make $\mathbb{E}(\theta)=0$, to remove the bias, and to decrease 1.u.b. $|e|$, it is better to add 2^{-44} before dropping digits, thus centering the error. The EDVaC computer is designed to perform the round off operation

$$
|\pi|^{*}=\left[\left(|\pi|+2^{-44}\right) 2^{4 \cdot 3}\right] \cdot 2^{-43}=\left[|\pi| 2^{43}+\frac{1}{2}\right] \cdot 2^{-43}
$$

This corresponds to translating the "point" to a position between the 43 d and 44 th digits, adding $1 / 2$ (and forming all carries), dropping all fractional digits (by selecting the greatest integer), and then restoring the point to its original position. The error is now uniformly distributed in the interval $-2^{-44}<e \leq+2^{-44}$, with expected value $E(e)=0$, max $|0|=2^{-44}$, and variance $\omega^{2}(e)=(1 / 20) 2^{-86}$.

Other methods of rounding-off are possible which eliminate the bias but increase the variance. In the EDVAC computer, no extra time is required to add in the $2^{-4 / 4}$ required for round-off. The last time the partial product passes thru the adding circuits, a fictitious carry from a non-existent digit in the 2^{-45} positional value is introduced into the circuit in such a way that three numbers are added simultaneously. The operation is still performed in 43 minor cycles.

$$
|\pi|^{* *} \text { is clearly of the form } N \cdot 2^{-43} \text { since }\left[|\pi| 2^{43}+1 / 2\right] \text { is }
$$ an integer, by definition. The most difficult restriction required If a number is to bo proper digital has been met. But although

$$
|\Pi|<1-2^{-4,3} \text {, the round-off to } \overline{|\Pi|^{*}} \text { may possibly create an }
$$ extra digit at the left. Fortunately, this is not the case. Since $\max |\Pi|=1-2^{-42}+2^{-86}, \max \overline{|\Pi|^{*}}=\left[\left(1-2^{-42}+2^{-86}+2^{-44}\right) 2^{\cdot 43}\right] \cdot 2^{-42}$ $=1-2^{-42}$. Even after round-off, $\left.\max \overline{|\pi|^{\frac{\pi}{2}}}<\max \right\rvert\, \bar{x} ;$ we never can have a complete string of ones as the result of a multiplication. It remains to describe completely $\bar{w}\left(\overline{\Pi^{*}}\right)$, the word encoded by the computer. The proper digital number to bs encoded is

$$
\overline{\Pi^{*}}=\overline{\left.\pi\right|^{*}} \cdot \operatorname{sgn}+\overline{\pi^{*}} .
$$

The resulting word is

$$
w\left(\overline{\Pi^{*}}\right)=\frac{|\bar{x}|^{-1}}{\left.|\bar{x}|\right|^{*}}
$$

is the segment $D(\bar{w})$ containing
characters $c_{1}-c_{43}$, the digits of $|\Pi| *$, which is $|\Pi|$ rounded off to 43 binary digits, and $S^{\prime}\left(\overline{\Pi^{*}}\right.$) is the character c_{4}^{*}, the sign of Π^{*}, which is not necessarily the sign of Π. If $\overline{\Gamma^{*}}$ is zero, it is encoded as a +0 in accordance with the usual conventions, even though Π may be in the interval $-2^{-44}<\Pi<0$.

The third execute, which may occur no earlier than 43 minor cycles after the second execute, replaces $\bar{w}(\bar{A})$ by $\bar{w}\left(\overline{\prod^{*}}\right)$, thus storing the rounded-off product in the memory position identified by the third address in the order, and displacing the original contents of that position. Finally, the fourth execute sends $\bar{W}\left(\frac{\bar{A}}{}\right.$. . to the dispatcher, constituting the next ordor in the program chain.

$5.07(m, \overrightarrow{4}-)$ Exact multiplication

In this operation, the computer forms the product $|\Pi|$ as before. In this case, however, no round-off occurs and $|\Pi|$ is split into 2 proper digital numbers. The first is $\overline{|T|}$ as previously described in connection with multiplication with round-off. $\overline{|T|}$ is properly digital and contains the 43 digits of $|\Pi|$ having the greater positional value. The "point" is in the proper position in $|\Pi|$. The other number contains the digits of $\left|\prod\right|$ having the lesser positional value:

$$
|\pi|=(|\pi|-|\pi|) .
$$

This is not a proper digital number unless $|\pi|=0$; it has the proper number of digits, but the point is in the wrong place. It is necessary instead to use

$$
\overline{\left|\pi 2^{43}\right|}=(|\pi|-\mid \overline{|\pi|}) 2^{43}
$$

This must be a proper digital number, a fact which can be demonstrated analytically.

$$
(|\pi|-\overline{|\pi|}) 2^{43}=|\pi| 2^{43}-\left[|\pi| 2^{43}\right] \text {, and since }
$$

$0 \leq x-[x]<1, \quad\left|\pi 2^{43}\right|$ is in the correct range, provided that it does not exceed $1-2^{-43}$. We already know that $|\Pi|$ varies only by increments of 2^{-86} and hence $|\pi| 2^{43}$ varies only by increments of 2^{-43}. $\quad\left[|T| 2^{43}\right]$ varies only by increments of unity since it is an integer. Consequently $\overline{\mid \pi 2^{43 \mid}}$ varies only by increments of 2^{-43}, and hence lies in the range $0 \leq\left|\pi 2^{43}\right| \leq 1-2^{-43^{\circ}}$. It is thus a proper digital number.

It only remains to explain the encoding of $\bar{\Pi}$ and $\overline{\pi 2^{43}}$ and to decide where they are to bo stored in the memory.

$$
\bar{w}(\bar{\pi})=|\bar{x}|-1 \overline{|\pi|} \overparen{\operatorname{si}(\bar{\pi}) . . ~}
$$

This number thus may be encoded as a +0 , even though Π may be negative, ie., if $2^{-43}<\Pi<0$.

$$
\bar{w}\left(\frac{\pi 2^{43}}{43}\right)=|\bar{x}|-1 \frac{1}{\left|\pi 2^{43}\right|} \sin ^{-1}\left(\overline{\pi 2^{43}}\right) .
$$

Again this number may be encoded as a +0 , even though π may be negative, ie., if Π "comes out even", and digits 44 through 86 are all zero.

The first two oxecutes, and the timing of the third, are the same as for multiplication with round-off. On the third execute, $w(\bar{\pi})$ is transferred to the memory position identified by the third address in the order, displacing the original contents, i.e., $\bar{w}(\bar{\Pi})$ replaces $\bar{W}\left(\overline{3^{A}}\right)$. The third memory position designated in the order now contains the 43 digits of Π having the greatest positional value. As soon as this execute occurs, the dispatcher, in effect adds unity to 3^{π}, more precisely it performs the operation $N(\bar{A})+1$, producing a new address
$N^{-1}\left(N\left({ }_{3} \bar{A}\right)+1\right)$. This new address has the property $m\left(N^{-1}(N(\bar{A})+1)\right)-m\left(3^{\bar{A}}\right)=$ $1 \bmod 8$, since we have effectively added 1 to the minor cycle number. This address can be inmediatoly executed the next minor cycle, evon though $\left.Z\left(N^{-1}(i)(\bar{A})+1\right)\right)$ is not necessarily equal to $Z(\overline{3})$, that is, the long tanks may be different. On this execute, which follows the previous execute after a lapse of exactly one minor cycle, $\bar{w}\left(N^{-1}\left(N\left(3^{\bar{A}}\right)+1\right)\right)$ is replaced by $\bar{w}\left(\bar{\pi} 2^{43}\right)$. The "next" memory position after the one where $\bar{w}(\bar{\Pi})$ is placed, will receive the 43 digits of Π having the lessar positional value. Roughly speaking, the most significant digits of the product go into the third address, and the least significant digits go in the next address. These two executes take place in succession and no time is wasted. If the more significant digits go into memory position 1023, the least significant go into position 0 . The "next" position is defined cyclically.

Four executes have now taken place, with one of the addresses manufactured by the dispatcher. The fifth execute sends $\overline{\mathrm{w}}(\overline{\mathrm{A}})$ to the dispatcher, constituting the next order in the program chain. Finally, it should be noted that $\Pi=\bar{x}\left(\bar{w}\left(3^{\bar{A}}\right)\right)+2^{-43} \bar{x}\left(\bar{w}\left(N^{-1}\left(\mathbb{N}\left(3^{\bar{A}}+1\right)\right)\right.\right.$, so exact multiplication onables all the digits of π to be recovered. $5.08(D, \overline{5}+)$ Divide with round-off

This operation involves both problems previously encountered, namely, oxtra digits at the right, and extra digits at the left. Nominally, we wish to perform the operation:

$$
\bar{x}\left(\bar{w}\left(l^{\bar{n}}\right) \div \bar{x}\left(\bar{w}\left(2^{\bar{i}}\right)\right)=q .\right.
$$

It is well known that q is not a proper digital number. For instance $.10 \div .01=10.0$ (binary) and q lies outside the range of \bar{x}, capacity
has been exceeded, and digits created at the left. Also $.001 \div .101=.0011 \ldots$, (binary) and this segnent of four digits repeats indefinitely. Since the quotient may ${ }_{n}^{\text {have }}$ infinite number of digits, it is not possible to split it into two halves as was done with the product. Finally, if the divisor, $\bar{x}(\bar{w}(\bar{A}))$, is equal to zero, q does not even exist.

The division algorithm which the computer is designed to perform, lumps the cases $q \geq 1$, and q does not exist, into the same category. In either of these cases, the computer emits a signal "division capacity exceeded" to the dispatcher. Since the signal is ignorable, ${ }^{a}$ logical design decision must be made concerning the word sent to the memory when capacity is exceeded. Partly for logical reasons and partly for engineering simplicity it has been decided to omit a string of pulous, as $D(\bar{w}(q))$, when capacity has been exceeded. Let us refer to this case as Q. This makes $|\bar{x}|(w(Q))=1-2^{-43}=\max |\bar{x}|$. Then we exceeded capacity in addition and subtraction, the fractional part of the result was reteined. This is not feasible in division, even with roundoff, for three reasons; in the first place, the computor division process does not readily give the fractional part of Q in case capacity is exceeded, secondly, the quotient may not even exist, and thirdly, this information is of dubious value. In addition-subtraction the fractional pait gives $44 / 45=98 \%$ of the information, so to speak, but in division it would give much less. The fractional part is rejected for these reasons. The selection of $\max |\overline{\mathrm{x}}|$ is reasonable, since it is the largest proper digital number we have available and hence suitable for indicating an exceed capacity. Furthermore, it will be shown that $\overline{|q|}<\max \quad|\bar{x}|$
if capacity is not exceeded, so if division without round-off is programmed, the fact that capacity has been exceeded can be detected by suitable programming, if for any reason it is desired to do so. Finally, a string of pulses is easy to manufacture in the circuits.

When capacity is exceeded, we therefore send a string of ones to the memory, for the digits. The sign remains to be considered, We always follow the rule of signs, and the complete details will be given in the description of "exact division". Speaking loosely, if $| \pm a / \pm b| \geq 1$, or if $b=0$, then the result is $\pm\left(1-2^{-43}\right)$. The plus sign is selected if a and b have the same signs, tho minus sign is selected if a and b have opposite signs.

The maximum value of $|q|$, if it exists, is $\left(1-2^{-43}\right) / 2^{-43}=2^{43}-1$. Hence $|q|$, expanded in the binary system is:

$$
|q|=\sum_{i=-42}^{i=\infty} 2^{-i} \delta_{i} \text {, where } \delta_{i}=0,1
$$

The possible 43 digits to the left of the "point" have already been ruled out, their occurrence indicates capacity has been exceeded. Attention will now be directed to the useful results where $|q|<1$. Henceforth, q will be used only when $|q|<1$.

$$
|q|=\sum_{i=1}^{i=\infty} 2^{-i} \delta_{i}, \text { where } \delta_{i}=0,1
$$

q is of course still not properly digital, although we have now eliminated the extra digits at the left. The fact that max $|q|<\max \quad|\bar{x}|$ will now be established. Consider two positive proper digital numbers m 2^{-43} and $n 2^{-43}$, whore $2^{+43}-1 \geq m \geq 0 ; 2^{43}-1 \geq n \geq a$. If $m / n=|q|$, then $m<n$, otherwise $m / n \geq 1$. For a given $n, \max (m / n)=(n-1) / n$. Since
this increases monotonically with $n, \max (m / n)=\left(2^{43}-2\right) /\left(2^{43}-1\right)=$ $\left(1-2^{-42}\right) \sum_{i=0}^{i=\infty} 2^{-43 i}=1-\sum_{i=1}^{i=\infty} 2^{-43 i}$. Digitally, max $|q|$
is a repeating decimal with a 43 -digit repetend, consisting of 42 ones followed by a zero; in other words, the dividend "repeats".
$\operatorname{Max}|q|=1-\sum_{i=1}^{i=\infty} 2^{-43 i}<1-2^{-43}=\max |\bar{x}|$. The values max $\overline{|q|}$ and max $\overline{|q|^{\#}}$ are of moro interest. The first corresponds to merely dropping all digits after the 43 d in tho quotient, the second to adding 2^{-44}, (forming all carries) and then dropping all digits after the 43d. The functions \bar{I} and $\overline{\left.I\right|^{*}}$ are defined exactly as they were in discussing multiplication. Now then, we merely need note that

$$
\begin{aligned}
0<\sum_{i=1 .}^{i=0} 2^{-43 i}<1 / 2 \text { and } \max \overline{|q|} & =\left[\begin{array}{lll}
\max & \left.|q| 2^{43}\right] \cdot 2^{-43} \\
& =\left[2^{43}-\sum_{i=1}^{i=\infty} 2^{-43 i} i^{+43}\right] \cdot 2^{-43} \\
& =\left[2^{43}-\sum_{i=0}^{i=\infty} 2^{-43 i}\right] \cdot 2^{-43} \\
& =\left[2^{43}-1-\sum_{i=1}^{i=\infty} 2^{-43 i}\right] \cdot 2^{-43}=
\end{array}\right.
\end{aligned}
$$

$\left(2^{43}-2\right) \cdot 2^{-43}=1-2^{-42} ;$
$\max \overline{|q|^{*}}=\left[\max |q| 2^{43+1 / 2}\right] \cdot 2^{-43}$

$$
\begin{aligned}
& =\left[2^{43}-1+1 / 2-\sum_{i=1}^{i=10} 2^{-43 i}\right] \cdot 2^{-43} \\
& =\left(2^{43}-1\right) \cdot 2^{-43}=1-2^{-43}=\max \quad|\bar{x}| .
\end{aligned}
$$

Both $\overline{|q|} \overline{|q|^{*}}$ and properly digital. Since $\overline{q^{\#}}$ has the more desirable round-off properties, it is selected for encoding as the most satisfactory single-word representation of q. This requires computing 44 quotient digits, or 44 minor cycles of computing time, since division is done serially. This increases the time required for division to about $2 / \%$ more than that required for nultipliention. It is believed that this increase is justified in order to give a round-off which has the same properties as the multiplication round-off. It remains only to describe $\bar{w}\left(q^{*}\right)$, the word encoded by the computer. The proper digital number is $\overline{q^{*}}=\overline{|q|^{*}}$. ign $\overline{q^{*}}$.
The resulting word is $\bar{w}\left(\overline{q^{*}}\right)=|\bar{x}|-1 \quad|q|^{*} S^{\prime}\left(\overline{q^{* /}}\right)$. $|\bar{x}|^{-1}|\bar{q}|^{*}$ is the segment $D(\bar{w})$ containing the characters $c_{1}-c_{43}$, the digits of $\overline{|q|^{*}}$, which is $|q|$ rounded off to 43 binary digits, and $S^{\prime}\left(\overline{q^{*}}\right)$ is the character c_{44}, the sign of q^{π}. If $q^{\text {* }}$ is zero, it is encoded as $a+0$, in accordance with the usual conventions.

To recapitulate, the first execute transfers $\overline{\mathrm{w}}\left({ }_{1} \overline{\mathbb{A}}\right)$ to a computer short memory tank, and returns it to tho memory via tho recirculating system. This number is the dividend. The second execute transfers $\bar{W}\left({ }_{2} \overline{\mathrm{~A}}\right)$, the divisor, to the same computer short memory tank, and sends $\bar{W}(\bar{A})$ to the subtracting circuits to bo used as the first remainder, 1 and begins the serial process of division. The division algorithm is based on the non-restoring principle and requires 1 mince cycle per digit, or 44 minor cycles in order to give the extra digit for round-off purposes. The computer forms enough digits of the quotient
53.
$\bar{x}\left(\bar{W}(\bar{A}) \div \bar{x}\left(\bar{w}\left(2^{\bar{A}}\right)\right)\right.$ to permit the determination of $\bar{q}^{\frac{\pi}{A}}$ or to establish the fact that capacity has been exceeded. In the latter case the "division capacity exccodod" signal is sent to the dispatcher and $\bar{W}(Q)$, corresponding to $1-2^{-43}$ or $-1+2^{-43}$, is sent to the memory in normal operation. The third execute, which may occur no earlier than 44 minor cycles after the second executo, replaces $\bar{w}(\overline{3} \bar{A})$ by $\bar{w}(Q)$ or $\bar{w}\left(\overline{q^{*}}\right)$. It should be noted that thor exists a $\bar{w}(\bar{q})=\bar{w}(Q)$. Finally, the fourth execute sends $\bar{w}\left(\frac{A}{A}\right)$ to the dispatcher, to continue the program chain.
5.09 (d, $\overline{5}-$) Exact division

It has already been pointed out that it is impossible to store all the digits of q, even using two memory positions. Since the numbers involved are rational, q is at worst a repeating binary fraction, in the digital sense. If advantage were taken of the fact that the numbers are also bounded, it should be possible to determine a bound to the length of the repetend. Given sufficient space in the memory, an exact division algorithm could be devised which would terminate in a bounded interval of time, provided of course that the numbers be properly digital.

A more practical arrangement is possible. Suppose we are attempting to dotormine $|\bar{a}| \div|\bar{b}|$, where \bar{a} and \bar{b} are properly digital and $|\bar{a}|<|\bar{b}|$; there is no question of exceeding capacity. Now

$$
|a|=\left|\frac{a}{\bar{b}}\right|=\overline{\left|q_{0}\right|}+2^{-43} \epsilon_{0} \text {, where } 0 \leq \epsilon_{0}<1 \text {, }
$$

in view of the properties of the operator Π. Furthermore

$$
|\bar{a}|=|\bar{b}|\left|\overline{q_{0}}\right|+2^{-43}\left(\epsilon_{0}|\bar{b}|\right) .
$$

54.

We set $\left|r_{0}\right|=\sum_{0}|\bar{b}|$, and show that $\left|r_{0}\right|$ is a proper digital number. Since $|\bar{b}|\left|\bar{q}_{0}\right|$ is the product of two properly digital numbers, it is of the form $\sum_{i=1}^{1=86} 2^{-i} \delta_{i}$
or $\mathrm{N}_{1} \cdot 2^{-86}$, whore N is a nonnegative integer. How $|-|$ is properly digital, hence $|\bar{a}|=N_{2} \cdot 2^{-43}$ where N_{2} is a non-nogativo intogor. Consequently

$$
\begin{aligned}
2^{-43}\left|r_{0}\right| & =N_{2} 2^{-43}-N_{1} 2^{-86}, \\
\left|r_{0}\right| & =N_{2}-N_{1} 2^{-43} .
\end{aligned}
$$

Therefore, $\left|r_{0}\right|$ can vary only by increments of 2^{-43}. Since $|\bar{b}|<1, \epsilon_{0}<1,\left|r_{0}\right|<1$, hence $0 \leq\left|r_{0}\right| \leq 1-2^{-43}$, and $|\bar{r}|$ is properly digital. As a matter of fact, wo will very shortly need the sharper inequality, $0 \leq\left|\bar{r}_{0}\right|<|\overline{\mathrm{b}}|$. Since $\left|\bar{r}_{0}\right|=\epsilon_{0}|\bar{b}|$, and $0 \leq \epsilon_{0}<1$, then $\left|\bar{r}_{0}\right|<|\bar{b}|$. Furthermore, since $\left|\bar{r}_{0}\right|$ is properly digital, $\max \left|\bar{r}_{0}\right|=|\bar{b}|-2^{-43}$ $(|\bar{b}| \neq 0$ since capacity has not been exceeded). Now

$$
\left|\frac{\bar{a}}{\bar{E}}\right|=\left\lvert\, \overline{q_{0} \mid}+2^{-43} \frac{\left|\bar{F}_{0}\right|}{|\bar{b}|}\right.
$$

and if we perform another division by $|\bar{b}|$, which will not exceed capacity, since we have just shown $\left|\bar{r}_{0}\right|<|\overline{\mathrm{b}}|$,

$$
\begin{aligned}
|q| & =\left|q_{0}\right|+2^{-43}\left(\frac{\left|q_{1}\right|}{\left|q_{0}\right|}+2^{-43} \epsilon_{1}\right) \\
& =\left\lvert\, 2^{-43} \frac{\left|q_{1}\right|}{}+2^{-86} \epsilon_{1}\right.
\end{aligned}
$$

and ϵ_{1} has all tho properties that ϵ_{0} had, hence by iterating this process we can get $|q| a s$ accurately as we like. If tho quantity $|\overline{\mathrm{F}}|$ is stored, along with $\overline{|q|}$, we can get as many digits of $|q|$ as desired. This scheme is the one familiar to operators of desk calculators. The remainder $|\bar{r}|$ is transferred from the right hand side of the accumulator register to the left hand side of the accumulator
register; the counter register is copied and cleared, and another division performed using the original divisor, and the whole process repeat od as many times as necessary to got the desired accuracy.

The exact division process in the EDVAC is designed to permit this iteration to be performed when desired. $\overline{|q|}$ and $|\bar{r}|$ are stored in the memory together with the proper signs, and these remain to be considered. Unless $\overline{|q|}=0$, we obviously assign the sign of q to $\overline{|q|}$. q must have a sign if $\overline{|q| \neq 0}$, since $\overline{|q|} \leq|q|$. If $\overline{q \mid}=0$, we assign $a+\operatorname{sign}$ to $\overline{|q|}$, in accordance with our convention

We prefer, if possible, to choose the sign of \bar{r} in such a way as to make $\bar{a}=\bar{b} \bar{q}+2^{-43} \overline{r_{y}}$, regardless of the signs involved, provided this is possible. We have available tho relation $|\bar{a}|=|\vec{b}||\bar{c}|+2^{-43}|\bar{r}|$. If $|\vec{r}|=0$, there is no error in $|\vec{q}|$, since $|\bar{b}| \neq 0$, and hence $\epsilon=0$. In this case $\bar{a}=\bar{b} \bar{q}$ and we assign tho + sign to $|\bar{r}|$. We now assume $\bar{a} \neq 0$, since otherwise $\overline{|q|}=0,|\bar{r}|=0$, and we have the special case just mentioned. Now assume $\bar{a}>0$. Wo must have $|\overline{\mathrm{b}}|>0$, otherwise cap acity would be exceeded. Now \bar{q} must be given the same sign as $\bar{b} \quad$, since otherwise $\bar{a} / \bar{b}=q$ would not have the same sign as \bar{q}. Consequently $\bar{b} \bar{q} \geq 0$, and $\bar{a}=\bar{b} \bar{q}+2^{-43}(|\bar{r}|)$. Now assume $\bar{a}<0$, wo must again have $|\bar{b}|>0$. Now \bar{q} must have the opposite sign to \bar{b}. Consequently $\vec{b} \vec{q} \leq 0$ and $a=b q-2^{-43}(|\bar{r}|)=\bar{b} \bar{q}+2^{-43}(-|\bar{r}|)$. Wi. thus see that, assuming $|\bar{r}| \neq 0$, if wo assign thu sign of a to $|\bar{r}|$, the relation $\bar{a}=\bar{b} \bar{q}+2^{-43} \bar{r}$ is always satisfied.

As proviously stated, we assign the + sign to $|\bar{r}|$ if $|\bar{r}|=0$. Now the encoding of q and r will be described. Wo are still assuming that capacity has not been exceeded.

$$
\begin{aligned}
& \bar{w}(\bar{q})=|\bar{x}|^{-1}|\bar{q}| \quad S^{\prime}(\bar{q}) ; \\
& \bar{w}(\bar{r})=|\bar{x}|^{-1}|\bar{r}| S^{\prime}(\bar{x}(\bar{w}(1, \bar{A}))) \text {, if }|\bar{r}| \neq 0 ; \\
& \bar{w}(\bar{r})=|\bar{x}|^{-1}|\bar{r}| \quad S^{\prime}(|r|) \text {, if }|\bar{r}|=0 .
\end{aligned}
$$

The problem of exceeding capacity must now be treated, $D(\overline{i r}(Q))$ is the same as in division with round-off, that is $|\bar{x}| \quad D(\bar{w}(Q))=1-2^{-43}$. This quantity is used in place of both \bar{q} and \bar{r}; the substitute for \bar{r} will be referred to as R. $|\bar{x}| \quad D(\bar{w}(R))=1-2^{-43}$. It romains to settle the question of signs. The same rule is followed for Q as in the case of division with round-off. In the case of R, we select the sign of \bar{a}, even though it may be a minus zero.

We define $S^{\prime \prime}\left(w_{1}, w_{2}\right)=S^{\prime \prime}\left(S\left(w_{1}\right), S\left(w_{2}\right)\right)$ as follows:

This is nothing moro nor less than tho rule of signs. It is easily mechanized by counting the minus signs in a one-stage binary counter. If the number is odd, wo emit a pulse, if even, no pulse.

In both typos of division,

$$
\bar{w}(Q)=|\bar{x}|^{-1}(\text { max }|\bar{x}|) S^{\prime \prime}\left(\bar{w}(\bar{A}), \bar{w}\left({ }_{2} \bar{A}\right)\right) \text {. }
$$

The sign affixed to max $|\bar{x}|$ is in accordance with the rule of signs. $\bar{W}(R)$ is selected as follows.

$$
\bar{w}(R)=|\bar{x}|^{-1}(\max |\bar{x}|) \quad S(\bar{w}(\bar{A})) ;
$$

we choose the sign of the dividend, even if it be a minus zero. Both of these sign conventions are chosen simply because they are the results which the sign circuits happen to give. It is bolieved that the sign choice can afford to be arbitrary, since capacity has been excooded, and the digits are useless as representing any correct numerical values. We have already noted in the discussion of division with round-off, that there exists $\bar{w}\left(\overline{q^{W}}\right)=\bar{w}(Q)$. However, since max $|\bar{q}|=1-2^{-1 / 2}$, and $|x|^{-1}(\bar{w}(Q))=1-2^{-43}, \bar{w}(Q)$ uniquely detorminos Q when exact division if performed. $\bar{W}(R)$ has the same property. We have already shown that $\max |\bar{r}|=|\bar{b}|-2^{-43}$, and $\max |\bar{b}|=\max |\bar{x}|=1-2^{-43}$, hence $\max |\bar{r}|=1-2^{-42}$ which is less than $|\bar{x}|^{-1}(\bar{w}(R))=1-2^{-4 ?^{3}}$. Exceed capacity can be determined from cither the quotiont or the remainder result, in exact division.

The results of the analysis will now be collected. In the first place, the first two executes are exactly tho same as in division with round-off. Now assume that Q (exceed capacity) docs not occur. Since we are computing $|\bar{q}|$ rather than $|\bar{q}|^{\frac{\pi}{n}}$, only 43 minor cycles are required to obtain $\overline{|q|}$; one cycle per digit. The third exocute, which replaces $\bar{w}(\overline{3})$ by $\bar{w}(\bar{q})$, occurs one minor cycle earlier than in division with round-off. During the minor cycle following this execute, tho EDVAC, a serial computer, is doing three things at once. First, it is transferring $\bar{w}(\bar{q})$ to $P\left({ }_{3} \bar{A}\right)$. Second, it is preparing a now berth for $\bar{w}(\bar{r})$. Just as in exact multiplication, the di spatcher
in offect adds unity to $3^{\bar{A}}$, nore exactly it forms the now address $N^{-1}\left(\mathbb{N}\left(3^{\bar{A}}\right)+1\right)$, which is chocked for long tank seloction and immediately executed. The third process is the preparation of $\overline{\mathrm{V}}(\overline{\mathrm{r}})$. The computer uses non-restoring division, and the remaindor menory Eay contain $||\bar{b}|-|\bar{r}||=|\bar{b}|-|\bar{r}| \quad$, instoad of $|\bar{r}|$. If this is the case then the subtracter forms

$$
||\bar{b}|-|\bar{n}||-|\bar{b}||=||\bar{b}|-|\bar{r}|-|\bar{b}||=|\bar{r}| ;(\text { since }|\bar{b}|>|\bar{r}|) \text {. }
$$

This restores the remainder, requiring 1 minor cyclo, but this is done concurrontly with the above two operations.

The fourth exocuto, which follows tho third aftor a lapse of exactly one minor cyclo, thus replaces $\left.\bar{w}\left(N^{-1}\left(N_{3} \bar{A}\right)+1\right)\right)$ by $\bar{w}(\bar{r})$. Tho romainder is stored in the momory position "nest aftor" tho quotiont. If the quotient goos into position 1023, the romainder goes into position 0 , the "noxt" position is used in the oyclic sonso.

Finally, the fifth execute sonds $\overline{\mathrm{w}}\left(4^{\bar{a}}\right)$ to the dispatcher, determining the next order. The abovo is varied if capacity is excoeded, hs soon as the computer detects the exceed capacity, which may occur before the usual 43 minor cycles have elapsed (44 for division with round-off), the computer emits the "excoed capacity signal". This may be used to modify tho subsequent events, by setting cortain controls, but if this is not done tho third and fourth executes occur as soon as possiblo after the signal is rocuivod, and the computer roplacos $\overline{\mathrm{w}}\left(3^{\bar{A}}\right)$ by $\bar{w}(Q)$ and $\bar{w}\left(N^{-1}\left(N_{3} \bar{A}\right)+1\right)$) by $\bar{w}(R)$.

$5.10(W, \bar{z}-1) W_{2}-8$

The EDVAC is so organized that the three spools of magnotio wiro servo as an auxiliary low-speed memory and not meroly an input and

59.

output device. A true input device, which ENIAC has, can only sorve to sond proparod information to the machine in unlimitod amounts while the machine is rumning, and a true output only rocoives information from the rachine in similarly unlimited amount s. The machine can only read in material which the operator has in some manner prepared sufficiontly far in advance to keep the resorvois from becoming oxhaustcd; information which has bcon emittod at tho output may be, and usually is, complotely forgotton by the machino and in this case cannot be rocallod unloss the output data is manually transferred to the input resorvoir.

In the EDVAC, all of the data which the machine records on the wires can bo made automatically available to the machino by suitable programming. Since the wires are of finite, but large, capacity, data cannot bo insortod into or reccived from tho maching in indefinito amounts unless tho machine is stopped and the wiros exchanged for difforent ones. In viow of the 50,000 word capacity, per wire spool, it is belioved that this is a small price to pay for the roally great advantage of providing a true momory of lareo capacity.

Since tho wire transport is a mochanical devico, tho timo required to reach an arbitrary position on a wire will be enormously greater than the access time of the high-spoed menory. Tho programor will thus wish to rofor to the wire memory as infroquently as possible, and in particular to avoid reforring to remote positions, Tho wire order is consequontly arranged to transfor data in blocks of arbitrary sizo, from ono word up to a full load for thi high-spoed momory, and to always read the positions on the wire immediatoly adjacont to the magnetic reading heads. If the wire is not in the propor position, it must be
transported to the dosirod location, without raading or recording. In this case the block of arbitrary size refers to the distanco, measured in word positions, that the wire moves. Sinco wo must be able to transport the wire in either direction, it is also conveniont to bo able to read and record on the wirc in either direction, which is possible in most cases.

The above conclusions indicate that a complete wiro ordor muat contain a comprohonsivo pattorn of information. In addition to indicating tho positions in tho high-speed momory which aro affocted (normally indicated by addrosses) it must also choose one of three wires, one of tho two dircetions forward and backward, and the number of positions to be movod.

So far, littlc has boon said about tho high-speod memory positions involved. Wo wish to resorve the fourth address $\left(\frac{\pi}{4}\right)$ to specify the locetion of the next order in the program chain. This loavos three addresses, so at most thrce high-speed memory positions can be indicated. If wo used those addrosses diroctly to spocify the momory positions to bo filled, or whose contents are to be recorded on the wire, we would bo restricted to considering at most 3 positions. We have alroady noted that we wish to transfor information in blocks of arbitrary size from 1 to 1024 words, If we are willing to fill the momory positions in a standard pattorn, say in sequonce, then we noed only specify tho starting point in the sequonce, and tho size of the block to be transforred. Since the numerical equivalent of an address ranges from 0 to 1023, an address is almost oxactly the proper modium for expressing the size of tho block, and anothor address can be used to specify tho starting point in the sequence of nomory positions
involved, Alternatively, we can consider the tho addresses as specifying tho initial and terminal points of the sequence of memory positions involved. If the wire is to be transported without reading or recording, this will still specify tho amount of translation, but wo disconnect the transfor channels. Tho amount of wire to be moved, and the high-speed memory positions involved are now specified. It still romains to select the wire, otc. Bofore this is discussed, a general method of subdividing an ordor-type will be analyzed.

In section 2, the partition of a word into 5 segments by the dispatcher was explained:

$$
\bar{w}={ }_{1} \bar{A}_{2} \bar{A}{ }_{3} \overline{A_{A}}{ }_{4} \bar{A} \bar{T} .
$$

Tho discussion of the visual order required considering the least significant octonary (octal) digit in $3^{\bar{h}}$. This, in offoct, constitutes a still finer dissection of the word. In the wire order and extract ordor, this subdivision of a word is carried out in a more comprehensive way. The following functions of addrossos are introduced:

$$
\left.\begin{array}{l}
\overline{\bar{Z}}(j \bar{A})=\left(c_{10(j-1)+8}, c_{10(i-1)+9}, c_{10(j-1)+10}\right), \\
\bar{\Omega}(; \bar{A})=\left(c_{10(j-1)+5}, c_{10(j-1)+6}, c_{10(j-1)+7}\right), \\
\bar{\Omega}\left(\bar{A}(\bar{A})=\left(c_{10(j-1)+2}, c_{10(j-1)+3}, c_{10(j-1)+4}\right),\right. \\
R(j \bar{A})=c_{10(j-1)+1} .
\end{array}\right\} j=1,2,34
$$

Therefore,

$$
j \bar{A}=B{ }_{2} \bar{\Omega}, \bar{\Omega} \overparen{\Omega}^{\Omega} ; j=1,2,3,4 .
$$

This corresponds to broking up the address into throe octonary (octal) digits and ono binary digit. Blocks of one and three characters are given a numerical significance, ono which prosorvos the interpretation
of the characters as zeros (no pulse) and ones (pulse):

$$
\begin{aligned}
& v_{1}^{\prime}\left(c_{i}\right)=c_{i} \text { whore } c_{i}=0,1 \text {; for any i such that } 1 \leqslant i \leqslant 44 \\
& v_{j}\left(c_{i}, c_{i+1}, c_{i+2}\right)=\sum_{j=0}^{j=2} 2^{j} c_{i+2-j} \text {, where } c_{i+2-j}=0,1, \text { for any i such }
\end{aligned}
$$

that $1 \leq i \leq 42$.
The values of ν_{1} will be denoted by $\underline{1}, \underline{0}$, (binary digits). The values of V_{3} will bo donoted by $\overline{7}, \overline{6}, \overline{5}, \overline{4}, \overline{3}, \overline{2}, \overline{1}, \overline{0}$ (octonary (octal) digits). Consequently

$$
\begin{aligned}
& \nu_{1}(B)=\frac{1}{0} \text { or } \underline{0}, \quad \overline{\sigma_{0}}, \ldots \overline{0} ; \quad 0 \leq k \leq 2 . \\
& \nu_{3}(k \bar{J})=\overline{7}_{\text {or }},
\end{aligned}
$$

Tho numerical intorpratation of an address, is of course, expressible in terms of tho numorical expressions of its binary and octonary $\left.\begin{array}{r}\text { (octal) digits: } \\ n(j, j)\end{array} 8^{3}\left(\tau_{1}\left(B_{1}^{\prime} j \bar{A}\right)\right)\right)+\sum_{k=0}^{k=2} 8^{k} z_{3}\left({ }_{k} \bar{\Omega}(; \bar{A})\right) j j=1,2,3,4$, The first torn is oithor 0 or 512 , the second torn has any value from 0 to 511. As previously mentioned, the least significant octonary (octal) digit in an address identifies a minor cycle, and tho other digits identify a long tank.

In the orders proviously described, with tho exception of "visual," an address (\bar{j}) is cither uso ci to suloct a momo:y position, or else it is ignored completely. In the visual order, the least significant octonary (octal) digit of the third address, $0_{0} \overline{\sqrt{2}}\left({ }_{3} \bar{A}\right)$, was used to soloct a scope (or no scope at all). In the wire ordor, all of the digits of the second address except ono, and in the extract order $a l l$ of tho digits of the sccond address are used to further specify tho order.

This scheme permits greater flexibility in coding; if we are willing to reduce the numbur of independent memory-position variables, we permit the order-type to specify a iergor number of alternatives. Each address which we give up gives up to 1024 variants on tho ordor-type. In this way, the sixteen possible order-types can be extended where desirable.

Tho wire order uses this scheme because we have elroady seen that the uso of three addresses in the ordinary way is not feasible, and because additional specification of sud divisions of the ordor-type is irperative. Wo only have one address available for this treatment, but that is moro then sufficient. The octonary (octal) digit at the extreme right selects the wire (or auxiliary input):

$$
\nu_{3}(\bar{\Omega}(\vec{A}))= \begin{cases}1 \bmod 4, & \text { sulects wire 1; } \\ 2 \bmod 4, & \text { selects wire 2; } \\ 3 \bmod 4, & \text { solects wire 3; } \\ 0 \bmod 4, & \text { selects auxiliary input. }\end{cases}
$$

The next octonary (octal) digit, $\bar{\Omega}\left(\overline{2^{n}}\right)$ is not used at all; the dispatcher is completely indifferent to those three pulses. The first octonary (octal) digit, has the following significance, provided $\nu_{3}(\bar{\Omega}) \neq 0 \bmod 4$, i.0., if wo have selected a wire.

$$
\left.J_{3} l_{2} \bar{\Omega}(\bar{A})\right)=\left\{\begin{array}{l}
0 \bmod 4, \text { translate (TR), } \\
1 \bmod 4, \text { memory to wire (iii) }, \\
2 \bmod 4, \text { wire to memory (Via), } \\
3 \text { mod 4, read firth address (RSA) })
\end{array}\right\} \begin{aligned}
& \text { To be oxplasinod } \\
& \text { subsequently. }
\end{aligned}
$$

If $i_{3}(0 \bar{\Omega}) \equiv 0 \bmod 4$, the dispart cher is not interested in ${ }_{2} \bar{\Omega}$ at ell. Finally, tho binary di fit determines whether the winos are to run forward or backward.

$$
\nu_{1}\left(B\left(_{2} \bar{A}\right)\right)=\left\{\begin{array}{l}
0, \text { ruin miro forward; } \\
1, \text { ruin miro bachourd. }
\end{array}\right.
$$

A word of explanation concerning the auxiliary input is required. Tho auxiliary input consists of a sect of 44 doublo-throw switches on the control panel. The switches thus effectively constitute a word of 44 characters. Whenever the auxiliary input is selected by the ward order, the word sot up on those switches will bo road into all the high-speed memory positions designated by the rest of tho order. It is not possible to set those switches during the reading because this is accomplished at tho speed of one minor cycle per word. Ordinarily these switches will be used to sand only single words to tho high-speed memory, primarily for costing and maintenance. If it were not for this apparatus it would be impossible to deposit oven a single word in the high-speed momory without going through the inscriber routine of preparing tapos and wires, loading wires into the reader-rocordor, and so forth. Since the auxiliary input can be regarded as a wire of unlimited length, contraining idontical words in every position, forward and backward have no particular significance; if you like, they produce identical results. Furthermore, the auxiliary input only sends data to the memory; it cannot receive anything from it whatever. Certain methods of overcoming this restriction are currently under investigation.
"Translate" (TR), refors to the process of moving the wire without ruading or recording, "memory to wire" (INI) designates tho process of transferring the words of the k-language (44 characters) to the wire. The memory data is returned to the memory position from which it came, and any data appearing on tho wire is erased just before tho recording hoad roaches the wire, in accordance with the convention. MWiro to
memory" (IM) designates the inverse transfer of words of the k-language from the wire to the memory; date on the wire is not orased but the old memory contents affected are destroyed. In WH , attempts to reed words of the K-language (54 characters) will holt tho machine and give an indication of an error in the reader-recorder. In fact, any word containing more or loss than 44 characters will do likewise.
"Read fifth address" (RF) rofors to the process of reading words of tho K-language from the wire to the momory, without erasing tho wire, but displacing previous momory contents. The invorso operation is impossible, as already described in section 2, whore the reasons why this cannot be done in the reverse direction arc also explained. An order which is coded to $R 5 A$ backwards will halt the machine and indicate this particular cause. The reader-recordor error will also be omitted if R5A is attempted even in tho forward direction on words not of the K-language. Any word containing more or loss than 54 characters will do likewise.
"Forward" means to move the wire in tho same direction for as many positions as needed to satisfy the rest of the ordor, and "backwards" tho opposite direction. A few examples will be given of the significance of difforont kinds of $2^{\bar{A}}$; the preferred coding is Eivon first in each case:

Translate wire 3 backwards.
$\frac{1303}{1767}$
176) Read fifth addrosses from wire 3 bachwards
(will halt machine),
$0 \overline{202}$) transfor data from wire 2 to memory formards,
$\underline{0} \overline{101}$) transfer data from momory to wire 1 forwerds,
$\frac{0 \overline{000}}{1370}$ \{ transfor data from awriliary input to momory.

The mothod of solocting the memory positions involved noods clarification. In all save R5A, the first menory position usod is $P\left({ }_{1} \bar{A}\right)$, the position dosignated by the first addross. The dispatcher thon compares $1^{\bar{A}}$ with $3^{\bar{A}}$. If they aro tho samo, that concludes the wire ordor. If they aro not the same, the dispatchor froms a now $1^{\bar{A}}$, which is $N^{-1}(N(1 \bar{A})+1)$. This is tho same oporation omployod in exact multiplication to got the next addross; loosoly spoaking, 1 is added to the original address. The next momory position affected will bo $P\left(N^{-1}\left(N\left({ }_{1} \bar{A}+1\right)\right.\right.$. Tho dispatcher after "exocuting" this addross, thon comparos $N^{-1}\left(N_{2} \bar{A}\right)+1$) with $3^{\bar{A}}$. If thoy are the samo that concludos the wire ordor. If not, then, etc., etc., until finally for somo $0 \leq p \leq 1023, N^{-1}\left(N\left(\overline{L^{A}}\right)+p\right)=3^{\bar{A}}$. Such a p always oxist s, sinco wo cortainly have exhausted every possible address when $p=1023$. $p+1$ momory positions have boon affectod since the word is transforred bofore tho comparison. Clearly $1 \leq p+1 \leq 1024$ and henco $1^{\bar{a}}$ and $3^{\bar{A}}$ pormit us sequentially to fill a block of the memory of any dosirod sizo. Tho wire also has moved $p+1$ positions; in translato (\mathbb{R}), no momory positions are affected whatever.

The simplest way to express all this is to say that $1_{1} \bar{A}$ indicates the first high spood momory position involved, and $3^{\bar{A}}$ tho last one,
togothor with all betwoon, "following around tho clock" through 1023 if nocossary. If $1^{\bar{A}}=3^{\bar{A}}$ originally, 1 word is transforred; if $N\left({ }_{1} \bar{A}\right)-1=N\left(3^{\bar{A}}\right) ; 1024$ words are transforred. If the audiliary input is usod, all words will be identical.

Read fifth address operatos somewhat difforently. As soon as $K_{1}-K_{10}$ (subsequently donoted by $5^{\bar{A}}$) has been assomblod in tho w:0cessing dolay, it is sont to the dispatchor whoro it displaces $1^{\bar{h}}$ ${ }_{1} \bar{A}$ has no significance in R5A. As soon as $K_{11}-K_{54}$ has boon assombled, the dispatchor causos it to bo scnt to the mumory position $P\left(5^{\bar{h}}\right)$. $5^{\bar{A}}$ is now compared with $3^{\bar{A}}$. If they are the samo this onds tho ordor. If not, a now word is road, a nuw $5^{\bar{A}}$ sent to the dispatcher, etc., otc. It nust bo noted, that contrary to $\mathrm{H} M, \mathrm{~W}$, and $T R$, thore is no existonco theorom showing that this oporation will ovor ceaso, oxcopt by running out of wirc. Consequontly the programer nust use caro to soo that $3^{\bar{A}}$ a.ctually corresponds to some $5^{\bar{A}}$ in the block of K-language words being road, namoly, the last onc dosired. $\overline{4^{\prime}}$, as usual, indicatos the location of the noxt order to bs oxecuted.

5.11 (E, 3 -) Extract

In tho wire order, $2^{\bar{A}}$ was used to subdivide the ordor type, primarily because it was highly desirablo to do so, but partly bocauso no othor practical uso for $2^{\bar{A}}$ could bo found. In the oxtract ordor, an oxtromoly vorsatile operation is obtained at the cost of giving up an addross. Normally, in the computing operations, both indepondont variablos aro returned unchanged to the momory. In the extract ordor, the rosult is returnod to the same place from whence came ono of the words used to determino the rasult. This word does not in genorel survive unaltorod.

If it must be proservod, a duplicate of it must bo transforrod olsowhere bufore the oporation takes place. Sinco in most cases in which this order is usod, the preservation of the word is not dosired, it is folt that this is a small price to pay for the great floxibility of the order .

Spoaking broadly, "extract" pormits shifting tho charactors in a word any arbitrary amount to the right or loft, and also enablos aulocted sogments of words (roplaceos) to bo roplacod by tho corrosponding portions of othors (rcplacers). In general, therefore, tho roplaces will finally consist in part of its original characters, and in part of characters selected from tho roplacor. Tho complete oporation onables both shifting and raplacemont operations to be performed in succossion using only one order. The shifted word is used as the replncer, but sinco zoro shift is pormittod, replacoment without shifting is possiblo; since the ontiro word may be choson as a sogmont to be replaced, in this case tho result contains only charactors of the replacor, and nono of tho roplacoe. Tho rosult in this casc may bo said to consist of a shift only, since all tho characters of tho rosult are derived from the shiftod word.

Tho subdivisions of the order-type must specify tho amount of the shift, diroction of shift, and tho sogments to be roplaced. Thero are 8 possiblo choicos of segments, which have beon solocted in accordance with intorpretations of words by the computer and the dispatcher as a rosult of the following considerations.

Considering the numorical interprctation of wards, ono of the most important attributos of shifting is the fact that it corresponds to multiplying or dividing by powors of 2. Although it is possibla to halvo by multiplying by $1 / 2$ and to double by dividing by $1 / 2$, or to
double by iteration of addition, these are time consuming and compiex methods of doing ε simple operation.

If a floating "binary" point is to be progranmod, or scelo ad justmonts nuod to be made, it will be desirable to perform tho shift more rapidly. The most useful segmonts of a nunbor will bo tho sign only, tho digits only, and the ontire number (to pormit puro shifts wilihout roplacoment). This gives three cases. If the ordor intorpretation of a word is considered, the most important segmonts are the addrossos ($\bar{j})$. It will bo convoniont to roplace addrosses in ordors by corresponding or difforont addrosses in other orders. This givos four moro casos, or a total of sevon.

Up to this point, tho word "shift" has boon frooly used without any explanation of precisely what is involvod. Tho numorical interpretation of words gives the cue horc. Since mords havo a fixod longth, a left shift roquiros creation of now charactors at the right, a loss of old charactors at tho loft, and conversoly for a right shift. h cyclic shift could, of course, be adopted which insortod tho chnracters pushod out at onc end into the gep oponed at the othor. This is completely preposterous as a numorical intorpretation, which requires that all tho new digits bo zoros. It follows that the characters movod out will have to be given up óntirely. If tho shifts are intorproted as multiplication and division by powers of $1 / 2$, thon in the formor case wo have a roundoff of the type symbolized by $\overline{\mid}$, that is, the cxcess digits are discarded without adding in the appropristo $1 / 2$, and in the caso of division, wo retain only the fractional part of the quotiont without any exceod capacity signel. If thesc possibilitios are significant,
they must be considered in the programming, or the slowor multiplicetion and division ordors usod.

Numerical considerations require that the sign charactor $\left(\mathrm{c}_{44}\right)$ bo troated differently from the digits. The minus sign is roprosented by a pulse, and so is a digit 1 ; if the sign charactor is shifted to tho loft, it will appcar as a digit; if tho shift is to tho right, it will disappoar entiroly. On the other hand, if we refusc to shift the sign at all, we give up the possibility of moving an arbitiary digit into the sign position, which mey be usoful for special purposes, sirco it permits sensing of individual digits via the compare ordor. The only solution to this dilomme is to provide two vorsions of the shift, ono to bo associated particulerly with a puro shift for nunorical intorprotations of words. In this casc the sign is not shiftod, and any othor character is prohibited from occupying its position. In all othor replacements, with one exception, we throw the sign awey ontiroly, and allow its position to be occupied by any othor charactor. This is no hardship es far as the order interprctation of a word is concorned, since tho mrin purpose of shifting in this case will bo to move addressos into the dosirod replecement position, and ${ }_{4}{ }_{44}$ is part of the order-type dosignation rathor than part of an address. Furthormorc, an oporation which is of considerablo importance in tho numerical interprotation of words is that of obteining the absoluto value of a number. This can be accomplished either by throwing away tho sign ontiroly, by raplacing the digits of a number known to bo positive by the digits of the number whose absolute value is desirod, or by roplacing the sign of tho number whose absoluto value is dosired by the sign of a numbor known to be positivo. The first caso is tho simplest since only ono number needs to be con-
sidored.
It will be noted that with only these two eltornatives thore is no possibility of moving tho sign whatovor. Wo oithor don't move it or throw it away entiroly. The roplacomont codo also suffors from a lack of gonerality, e.go, suppose we wish to wotain all the characters of a word save an arbitramy one, and roplaco tiant by in arbitrary charactor in anothor word. This is a basic oparction whith is not oasy to visualizo porforming with tho roplaconono sogmonts elready solected, corresponding to addressos, comploto sets of digits, etc.

In ordor to simplify this oporation, we prorido a nov kind of sogmont suitablo for roplacomont. The provious onos hevo all boon constent sets of characters in the roplecoe, tho word wiich is changed by having difforont charactors inserted in it. Tho ner roplaconont sogmont will consist of a single character. Its location is dotorminod by the position of tho sign of tho shiftod word, and in this caso the sign is actuelly shifted. Two birds arc killod with ono atone. In fact, any charactor of ony word can replece any charactor o\& any othor word using two extract orders. If the roplacer choractor is alroady the sign, the problom is trivial, and only onc ordor is rcquired. If not, the replacor word has the desired charactor shifted into tho eign position and this is thon usod to replace the sign of any arbitrary word. This roduces tho situation to the trivial case. This now ruplecemont segmont givos a totel of oight possiblo casos which convoniently corresponds to on octonary (octaI) digit. $0 \bar{\Omega}\left(2_{2}\right)$ is choson as tho part of tho ordor which specifies this information.

The results of the analysis will now be prosonted moro formally:

$$
\left.v_{3}\left(0_{0} \widehat{\Omega} t_{2} \bar{A}\right)\right)=1 \text {, replace } 2_{2} \overline{\mathrm{~h}}\left(\overline{\mathrm{w}}\left(3^{\bar{A}}\right) \text { by } 1_{2} \bar{A} \text { of shifted } \bar{w}\left(1_{1} \bar{A}\right) ;\right.
$$ verbally, replace characters $1-10$ inclusive of the word in the memory position specified by the third address of the extract order by the characters 1-10 inclusive of the result of shifting the word in the memory position specified by tho first address in the extract order.

$$
\nu_{3}\left(\bar{\Omega}\left({ }_{2} \bar{A}\right)\right)= \begin{cases}\overline{2}, \text { replace }_{2} \bar{A}\left(\bar{w}\left({ }_{3} \bar{A}\right)\right) \text { by } & 2^{\bar{h}} \text { of shifted } \bar{w}\left(\overline{l^{A}}\right) ; \\ \overline{3}, \text { replace } \\ 3 & \bar{A}\left(\bar{w}\left({ }_{3} \bar{A}\right)\right) \text { by } \\ 3^{\bar{A}} \text { of shifted } \bar{w}(\overline{\mathrm{~h}}) ; \\ \overline{4}, \text { replace } & 4 \bar{A}\left(\bar{w}\left({ }_{3} \bar{A}\right)\right) \text { by } \\ 3^{\bar{A}} \text { of shifted } \bar{w}(\overline{\mathrm{~L}}) .\end{cases}
$$

The above can be collected as one case:
$V_{3}\left(\bar{\Omega}\left({ }_{2} \bar{A}\right)\right)=j$, replace $j \bar{A}(w(\bar{A}))$ by $\bar{j} \bar{A}$ of shifted $\bar{w}(\bar{h})$; $\mathrm{j}=1,2,3,4$.

The first four cases are intended to be used primarily for orders. $\nu_{3}(0-\bar{L}(\bar{A}))=\overline{5}$, roplace $S\left(\bar{w}\left(\overline{3^{h}}\right)\right.$ by S of shifted $\bar{w}\left(\overline{L^{h}}\right)$; verbally, replace c_{44} (sign character) of, otc., etc. $\nu_{3}(\bar{\Omega}(\bar{A}))=\overline{6}$, replace $D\left(\bar{w}\left(3^{n}\right) \quad\right.$ by D of shifted $\bar{w}(\bar{n})$; verbally, replace $c_{1}-c_{43}$ (digits) of otc, etc. $\nu_{3}(0, \bar{\Omega}(\bar{A}))=\overline{7}$, replace $w\left(3^{i}\right)$ by shifted $w\left({ }_{1} \mathrm{~A}\right)$ $\nu_{3}(0 \bar{\Omega}(2 \bar{A}))=\bar{O}$, replace whatever character (if any) in $\bar{w}\left(\overline{3^{h}}\right)$ corresponds to $\mathrm{S}\left(\overline{\mathrm{w}}\left(\overline{\mathcal{1}^{4}}\right)\right)$ after the shift hes occurred, by $S\left(\overline{w_{1}}(\overline{\mathrm{~A}})\right)$.
$\overline{6}, \overline{7}$ are intended to be used primarily with numbers; $\overline{5}$ with a zero shift gives a convenient method of obtaining absolute value, and $\overline{0}$ and tho other versions of $\overline{5}$ permit gonerelizod operations whore signs and digits require interchanging.

The naturo of the shift deponds on the roplaconont codo. In ceses $\overline{1}-\overline{6}$, inclusivo, tho sign of $\overline{W_{1}}\left(\overline{1^{i}}\right)$, tho roplecor, is discarded entirely, and a digit (character) may be shifted into its position; in case $\overline{7}$, the sign is retained and the digits (othor characters) prohibitod from occupying its position; in case $\overline{0}$, only tho sign of $\bar{w}(\overline{1} \bar{i})$ is rotained, but it may be shifted into any position whatoros.

Tho subdivision of the order-type by using $\widetilde{2}^{\text {th }}$ to seloct tho anount and diroction of shift has not boen specified. Tho first binary digit of $2^{\text {A }}$ is naturally soloctod for the direction, sinco only two altornativos are possible.

$$
\nu_{1}(B(2 \bar{A}))\left\{\begin{array}{l}
=0, \text { solocts a left shift (divido by }(1 / 2)^{n} ; \\
=\underline{1},
\end{array}\right.
$$

It must be borne in mind in numorical intorpretations that wo are shifting the digits and not the binery point. In a fixed binary point computer, the point is always considered, from tho machino's oyo point of viow, to bo immodiately in front of c_{1}, tho nost significant digit. Scale factors aro pert of the programming.

The amount of shift can bo specified by ${ }_{2} \bar{\Omega}\left(\sum_{2}\right)$ and, $\bar{\Omega}\left(\bar{i}_{1}\right)$, the first and second octonary (octal) digits, respectivoly, of tho second address. This gives 64 possibilities ($0-63$) which aro moro than adequate; e. shift of 44 or more accomplishos tho samo thing, dostruction of all charactors (or at loast all digits, in roplacomont codo $\overline{7}$). It is most convoniont in dosigning the circuits to pormit shifts only up to and including 47. If a greater shift is called for in tho coding tho circuit will porform a shift which is 16 less than coded. Wo note thet zoro shift gives tho same result, whethor loft or right; $+0=-0$.

The numerical interpretation of the tho octal (octonary) digits concerned is:

$$
N_{E}=\sum_{i=1}^{i=2} \nu_{3}\left(\bar{i}\left({ }_{2} \bar{A}\right)\right) 8^{i-1}, O \leq N_{E} \leq 63 .
$$

Tho amount of shift, int, is

$$
A_{m t}= \begin{cases}N_{E} & , 0 \leq N_{E} \leq 47 ; \\ N_{E}-16,48 \leq N_{E} \leq 63 .\end{cases}
$$

Ordinarily, the order will be restricted to $\mathrm{N}_{\mathrm{E}} \leq 47$, since larger values produce results which are already included in tho case $N_{E} \leq 47$. The existing formal symbolism gives complicated results when applied to the result of a shift, so the following description is informal.

For replacement codes $\overline{1}-\overline{6}$, a right shift produces a word which appears as

$$
0000 . . .0 x_{. . .} \mathrm{xxx}
$$

whore the number of zeros on the loft is equal to tho amount of the shift, imf. If int $=0$, then the word appears as

$$
x \times x \times x \text {... } x 0
$$

since tho sign is deleted. Tho X 's indicate character of the replecer $\bar{w}\left(l_{1} \bar{A}\right)$. For a loft shift, the word appears as

$$
x x x x \quad \ldots x 0 \ldots 000
$$

Whore the number of zeros on the right is one more than the amount of tho shift, since the sign is deleted. If int $=0$, wo got the same result as in the loft shift,

$$
\text { xxx ... } x 0 .
$$

For replacement code $\overline{7}$, a right shift produces a word which appears as

$$
000 \text {... oxxxxs, }
$$

where S is the sign of $w\left(l^{A}\right)$. For a loft shift, the word appears as XXX.... YO ... 000 .

In both cases the number of zeros corresponds to the amount of the shift. For replay cement code $\overline{0}$, a right shift produces a complete blank, unless int $=0$, in which case the word appears as, 000... OS.

A left shift produces

$$
000 . . .050 . . .0
$$

where the number of zeros on the right is equal to the amount of the shift. When the replacement occurs, the character in the replaced corrosponding to S, is replaced by S. If the shift is to tho right, and int> 0 , no character will be replaced whatever, and the replaces survives intact.

Some examples will be explained to clarify tho discussion, using informal symbols.

Suppose we have the above order, where E represents tho ordor-type extract. On the first execute, the $\bar{w}\left(\overrightarrow{l^{n}}\right)$ is sent to the recirculating system where its sign is deleted, it then passes into tho shifting and procossing dolly, over the channel marked XP in figure 1. The digits $1 \overline{24}$ select the amount and direction of shift in tho shifting delay. The shifted word then is stored in a computer short tank, travelling over the channel marked SW. One minor cycle later, and subsequently thereafter, it is available in the recirculating system viz $\mathbb{Z E}$. When $3^{\bar{h}}$ is executed, tho digit $\overline{4}$ selects characters $31-40$ of the shifted word, and $1-30 ; 41-44$ of $\bar{w}\left(3^{\bar{i}}\right)$ and the result inmodiatoly replaces $\overline{\mathrm{w}}\left(3^{\bar{i}}\right)$. Since $31-40$ of $\overline{\mathrm{w}}\left(\overline{3^{\bar{h}}}\right)$ corresponds to $\overline{4^{a}}\left(\bar{w}\left(\overline{3^{i}}\right)\right.$), wo have replaced
76.
the fourth address of ansi). Since the shift is $24(=20$, decimal berry notation), to the right (1), the second address of $\overline{\mathrm{w}}\left(\overline{1^{4}}\right)$ was shifted into tho fourth address position. The nut result of the order is to lave $\bar{w}(\overline{1})$ unchanged, but $4^{\bar{A}}$ of $\bar{w}\left(3^{\bar{i})}\right.$ now equals $2^{\bar{i}}$ of $\bar{w}\left(1^{\bar{A}}\right)$; the fourth address of the replace has been replaced by the second address of the replacer. Shifts of zero, $10,20,30,(\overline{00}, \overline{12}, \overline{24}, \overline{36})$ will generally bo used with the first four replacement codes. The following tablet shows how to replace on address in the replace by any desired address in the replacer:

Some examples of the other replacement codes follow.

$$
I^{\overline{4}} \frac{1}{225} \quad 3^{\bar{A}} \quad \overline{E_{0}}
$$

This replaces tho sign of $\bar{w}\left(\overline{3^{i}}\right), \quad S\left(\bar{w}\left(\overline{3^{4}}\right)\right)$, by the 26 th $(44-\overline{22}=\overline{4} 4-18=26)$ character of $\bar{w}\left(\mathcal{I}^{i}\right)$.

$$
\overline{1^{i}} \overline{1} \overline{005} \overline{3^{i+}} \overline{4^{i}} \mathrm{E}
$$

will delete the sign of $\bar{W}(\bar{i}), S\left(\bar{w}\left(3^{i}\right)\right)$, as will also any second address of the typo $0 \overline{\times \times 5}$.
 tho multiplication is performed with the \mid round-off. Tho result has the "sign" of $\bar{w}\left(3^{\bar{i}}\right)$, i.e., $\mathrm{S}\left(\overline{\mathrm{w}}\left(\overline{3}^{\bar{i}}\right)\right.$), in other words tho operation replaces $\overline{\text { w }}(\overline{3 i})$ by

$$
D\left(\left.|x|\right|^{-1} \overline{\left.\left.\left|2^{-20}\right| \bar{x} \mid\left(v_{1}+1\right)\right) \mid\right) s\left(\bar{u}\left(\overline{3}^{i}\right)\right) \text {. }}\right.
$$

will multiply $1^{\bar{i}}$ by 2^{-20}, preserving the original sign. Tho formal representation is similar to the above, except that $S\left(\bar{r}\left(3^{-}\right)\right)$should bu exchnngod for $S(\bar{w}(\bar{i}))$. Note then in this case a minus zero may result.

$$
\overline{1^{4}} \underline{0} \overline{010} \int_{3^{\pi}}^{4_{4}^{\pi}}
$$

replaces the 43 d digit $(43=44-\overline{01})$ of $\bar{w}\left(\begin{array}{l}\overline{4}) \text { by the sign of } \bar{w}(\overline{1} \bar{i}) \\ 3\end{array}\right.$ (informal notation). any second address of the typo $1 \overline{\sum x 0}$ (except $\frac{1000}{000}$ change $\bar{W}\left(3^{--}\right)$at all, and nothing is accomplished except to direct tho dispatcher to $P\left(\overline{4^{2}}\right)$ for its next order.
inter the roplecoe hes received its new characters (if any) and immediately returns to tho memory, tho lest oxecuto sends $\overline{4}$ to the dispetchor to continuo the program chain.

This concludes the discussion of the elevon order-types:

The unuscd order-types aro $\overline{0}+, \overline{0}-, \overline{6}-, \overline{7}+, \overline{7}-$. If the dispatcher rocoives any of theso, the machino will holt and givo tho indication "unused orders". ia complete blank hes significance to tho conputer (zoro) but not to tho dispetchor. The EDV.C.C will not run cutoratically on empty tenks; it will not even stert with an empty dispatchor. It thus beconos nocossary, aftor initiol cloar, to insort en ordor which is not a conplete blenk into the dispatcher to start up the problom.

5.2 Speed of Operation.

The tino required to perform an oporation, where the EDVAC is running continuously is defined es follows: It is the tino olapsing from the instant the order undor consideretion just sterts to leave the manory to the instant the next order just starts to leave the memory. This time, for all tho ordor-types, excopt H and I, oan be procisoly dofinod as a function of $1^{\overline{4},} 2^{\bar{i}}, 3^{\bar{i}}, 4^{\overline{4}}, \bar{T}$, end exhibitod by a sot of tabuleted velues. In what follows, howevor, the \bar{j}^{-}will be essumod:
(1) to be optinally distributed, giving minimum tiro;
(2) randomly distributed, giving avorago tino;
(3) distributod in the worst possiblo way, giving maximum timo. Since H involvos a cessation of continuous oporation the dofinition does not apply; suffice it to say thet the dispatchor will sond the halt signal to the alaria circuit within $500 \mu \mathrm{sec}$ after rocoiving the ordor. The wire ordor involves asynchronous operation and doos not give unique values of speed. The prosent design of the wire drivos will pornit a word to be read from or recorded on tho wire in about 35 millisoconds. In the following table, the numbor of minor cyclos is given in parenthesos, and the first nuzber is the timo in microseconds.

Tho ENLiL adds in $200 \mu \mathrm{soc}$, and multiplies in $2800 \mu \mathrm{soc}$; division is much slower. The EDViC, with more flexibility and much loss equipmont, has about the same operating speed es the ENL.C.

5.3 Controls

Figure 3 (drawing 104-7ID-1) shows the main control panel. Lt the extreme top we have a bank of 10 noons; tho initial address register. This is provided to onablo the machine to bo shut down in the middle of a problem without losing any rosults. The initial address register stores the location of the next ordor. Inmodiatcly bonoath the initial address register is the neon light rogistor, which is a bank of 44 noons capable of holding a complete word and intondod to bo used to road the contents of the machine visually when desired. Below the two registers is the oscilloscope, which can be connected to any menory position in tho EDViC, including computer short tanks, di spat char nonory and shifting and processing delay. Immediately bonoath tho scope and on both sides are its controls (indicator selectors).

Tho noxt two rows contrin tho rost important oporating controls and buttons. The mode of operation switch doteminos whothor the mechine is to oporato continuously or stop aftor porforming singlo oporations or parts of oporations, and tho menory bank switch pormits, in an shurgency, wio operation of the machinc whon only half of the momory is functioning. The "start" button turns on the power and produces an initiol clear, the "stop" button turns off all powor and tho "D.C. off" button turns off everything but the tubc hoators, thus decreasing tho probability of tube failures. Those oro 211 power controls and heve only on cbvious indirect connection with the computing operations. The "cluar" button restores the EDVGC to the initial state, all manory positions ompty, including tho dispatchor, and all flip-flops resct oxcept those where this is not essentinl. The "hollt" button causos the $E D V_{n} C$ to finish any ordor in process, rotain tho ordor in the dispatchor manory, and wait for furthor instructions. The "initinto" button pormits the dispatchor to proceed with the computation by obt ining its now ordor, cither from information containod in $4^{\bar{A}}$ of the ordor it contrins (or possibly $3^{\text {a }}$ in comparo) or in casc the machino is boing startod fron scratch, fron the special ordor switches. Thoso two altornetivos are tho normal and special modos of oporation indicetod on tho node of oporation switch. The "road out" button is used for shutting dow the EDV.iC without losing any data, i row of pilot lights, just ebove the operating buttons, indicatos the stetus of tho machino, whothor it is running or halted, powor on and off, and other information of a similer nature.

The next two rows comprise the auziliary input, previously doseribod in the suction on the wire order, and the excess mgnitude option switchos.

Thore is one switch for addition and subtraction, and one for division, The setting of these switches determines what happens if capacity is exceeded. i pilot lamp, immediately above each switch, indicates that capacity has been exceeded.

The switches which control the manual order genorators are located beneath all tho other controls. The set marked "hddress h " is used to program braak points without inserting a halt ordor into the progran, and its use is controlled by the mode of operation switch. The set marked "Address B^{n} is associated with tho excess magnitude option switches. Finally, the special order switches, located in the botton rows, are used primarily for inserting the first order into the dispatchor when the EDVAC is in the cloared state. 5.31 Mode of Operation.

This switch has two indoxes on the dial, "normal" and "special", and five indications on the panel:
(1) To completion,
(2) To address i,
(3) One order,
(4) One execute,
(5) One cycze.

It is physically impossible to set the special index to the first two indications, which refor to continuous operation. Only the bounded nodes of operation are possible on "special". All five indications are accessible to the normal index.
"To completion" indicates that it is desired to run until a programed halt enters the dispetchor, at which tine a gong rings and a pilot light
comes on. "To address in" indicates that it is dosired to run until an order is callod for which is stored in the menory position idontifiod by address i. The address is set in on the address A switches. This arrangement pormits broak points to be inserted into a program without using any halt ordors, and using the halt order as a unique indication of the completion of the problem. The broak points can be established even after the problen is on the machine. When address h is roachod, the EDV.iC halts and givos an indication on a neon lamp. If it is desired to continue, it is only necessary to dopress the initiate button.

The above are the unbounded or continuous modes of operation. The bounded or step-by-step modes always require tho EDVAC to halt as soon as the current ordor is completed, or even beiore. "One order" roquires the EDVAC to halt as soon as the curront order is conpleted; "Ono execute" requires it to halt as soon as one execute has occurred (or a reading of the spocial order switches into the dispatcher or one wirc position has been moved). "One cycle" is the same as one execute, excopt in multiplication and division. In these cases, as soon as the arithmetical operations start, the machino halts as soon es one partial product or one quotient digit is computed. Excopt for "onc order" these modos arc intendod for testing, and aro somowhat analogous to "one add time", on the ENLiC.

The normal mode of oporation permits the dispetcher to obtain its next order in the usunl way, as described in section 5.1. The special mode of operation interferes with this, by insisting that the dispatchor obtein its next order from the spocial order switches. Those switches permit any arbitrary order to be set up. Since nothing useful would be accomplished by performing an identical order ad infinitum, continuous
or unbounded modos are not permitted on special. The orders are identical to tho regular programed ordors, except that it is not possible to set up any unused order-types on tho switches. 5.32 Excess magnitudo options.

In connection with the orders A, S, and D, d, the possibility of an exceed capecity signal was mentioned. Ordinarily this indicates an error in progranming. If this is tho case, both switches are set to "helt". If the signal reaches the dispatchor the EDViC halts, and a pilot light ovor the switch comes on. If for special reasons, it is desired to ignore tho signal entirely, the switches are set to "normal". If it is desired to automatically tako account of the occurrence of the signal, two more options are provided "special" and "address $\mathrm{B"}^{\text {. . If tho switch is set at "special" tho dispatcher }}$ will read the order set on the switches instead of its regular next order, and the machine continues without stopping. If tho switch is set at "address B ", the dispatcher will read the order stored in the memory position designated by address B, and continue without stopping. One option can be choson for i, S, and the othor for D, d.

5.33 Memory bank switch.

Three positions are provided. Normal (IR), "L-I", and "R-0". The high-speed momory is divided into two halves, one located at the left end of the EDViAC, and one at the right. Eech of the duplicate computers has its short momory tanks mounted in ono of the torperaturo stabilized cases which contains half of the memory. ill of tho monory positions selected when $V_{1}(B(\bar{h}))=1$ are in the loft cese, (hence L-1), and all of the memory positions selected whon $\nu_{1}(B(\bar{A}))=\underline{0}$ are in
the right case, honce R-0. In othor words, tho first, binary, digit of the addross chooses between tho right and loft momory banks. In the evont of failure of tomperature stabilization in one caac, the switch cen be set to indicate tho half still working. The dispatchor will then ignoro the first digit of evory address and refor all exocutes to the memory which is unimpaired. Spocial programing will usually be roquired, but only one rather then two distinct progroms. Ono of the duplicate computers will be out of service, so all checking of duplicate results is discontinued.

5.34 Road out.

The read out button is used to shut down the machine without losing the place in tho problem. Whon the button is depressed, the curront order is comploted, and thon a set of latching rolays is unlatched. The address of the noxt ordor to be perfornod is sont from tho dispatcher to tho latching roleys which thon latch and rotain the information until another read out occurs. The occurronce of a programed halt or an excoed capacity is sinileriy stored, is soon as this is accomplished, onough infornation is availablo to restart the problom if the momory can be refilled with an exact duplicato of its current condition. In order to do this, the control sonds a wire order to the dispatcher, which whon executed reads tho ontire contents of the high-speed momory to wire 3, noving in the forward diruction. This order is then carried out, and the sontonts of the nenory is pormanently rocorded. All power is shut off afjor this is aaconplishod. Tho latching relay indications are read on lamps which will go out, but whon the power is turned on, will read the stetus of the latchod rolays correctly.
6. Example of operation

Figure 4 (drawing 104-3LD-4) is a block diagram of one-half of the double computer, less the unduplicated part which contains the checking circuits. Most of the equipment used in multiplication and division hes been romovod in order to avoid confusion. The oporation of (algebraic) addition which is basic to the computor will bo doumribod briefly, with reference to the diagram. Symbols in parenthosis, such as (DI) rofor to the "map coordinates" et the top and luft of the drawing,

Tho input to the computor is the hexagon symbol $\mathbb{N N}(\mathrm{Cl})$, lexagons indicaje romote connections to othor components or porhaps to otion places on the sene drawing. The symbol iSC indicates that the connection is onergized when eithor of those orders is boing performod, and si.nilarly for SC. -C denotes a connection which is enorgizod whon C is not boing performed. (In the propositional calculus we would use $\mathrm{AvSVC}, \mathrm{SvC}, \sim \mathrm{C}$; "and" is not symbolizod by juxtaposition. The operations aro mutually exclusive).

The computer performs algebraic addition by noting the signs of the numbers involvod, and whether they are to be addod or subtracted, and then performs the appropriate arithnetic (signloss) oporation in the adder-subtractor. If arithmetic subtraction occurs, a complonent may result. This information is needed to determine the sign of the rosult, and is fod to an output sign circuit. The digits aro thien deconplemented bofore the sign is attached.

Tho rules are tabulated as follows:

It will be noted that if the nuribor of minus signs is oven, the arithmotic operation is add, if odd, subtract. Tho ono stage binary counter located at (DO) performs the count. When execute 2 occurs, if S or C is tho order, a pulse is fed to the counter via XI, attn, 4.5, X_{4}. X4 is shut off except on ..SC since the counter is used in a different way in multiplication and division. Tho counter counts the sign in the first column of the table. Then the first word, $\bar{w}(\bar{i})$, appears at $L N$, its sign is detoctod by a tiring pulse P_{1}, at $X 2$, and sent to the counter via $.44 \mathrm{~b}, 4.5, \mathrm{~K} 4$. When the second word, $\bar{w}\left(2^{i}\right)$, appears at $L N$, its sign is detected by the sene circuit. Tho counter is initially cleared to zero by RF, boforo each operation, so if tho number of signs is odd, it onorgizos the output LSG, (L subtract gate) and even.Lig (L add gate). This constitutes the input sign circuit, or arithmetic operation selector.

The digits of the first word, $\bar{w}\left(\overline{I^{4}}\right)$ are selected by DP (digit
pulses) at $\mathrm{X} 3(\mathrm{CL})$ and sent to tho computer short tank vis d 7 (a tining delay), Blb, Cl, (geto $\mathrm{X6}$ is closed at this timo) dro, etc., to the short memory systom (B2). This has just been cloared by flip-flop G2 and nomorizes the digits of the first word by noens of the regenoration loop X2O, d8. Whon the second word, $\bar{w}\left(\overline{Z^{i}}\right)$ appoars at LN , another execute has occurred, and the regenoration loop closes at $X 20$, thus clearing the tank. The gate $X 14(., 2)$ opons howover and the digits of the first word aro sent to the addor-subtractor via $\mathrm{X12}$ (i3) and d6 (F1). Renote connections 1, 2, 3 are onorgized whilo the first, second and thiri addresses, rospectively, are boing checked. Irnediatoly aftor the execute occurs, the noxt in the sequence becomes onorgized. The exocuto countor hes already edvencod to 2 , whon the first word appoars at IM, and hns nlready advenced to 3 , whon tho sccond word appears at LN. The second word just arriving has its digits selectod by $D P$ at $X 3$ (C1) and replnees the first word in the nomory tank. By this tino however, $\mathrm{g}^{\text {nte }} \mathrm{X} 6(\mathrm{CO})$ is opon and the digits of the second word reach the edder-subtractor via d5(E1). Both sots of digits now appear in sunchronism a.t the adder-subtractor input. Tho adder-subtractor is a rclativoly simplo circuit contoining 16 tubes, which performs $\mathrm{H}+\mathrm{S}$ scrially if its add gates aru onorgized or oithor H-S (if $\mathbb{H} \geq s$) or $2^{n}-\mathbb{H}+S$ (if $\mathbb{H}<s$) when the subtract gatcs are energized; if and S are non-negative numbors. The latter two cosos onn be distinguished by the fact that a pulse (1) turns up abnornally late, corresponding to tho string of 9 's produced at tho loft by a desk cnlculator.

The enalysis of the sign of the answer will be subdivided into
the two cases, arithmetic end and arithmetic subtract; in the circuit these are distinguished by whether LAG or LSG is energized. Case 1 - irithmotic add (L,G).

Tho following is a table which shows how the sign of the result is determined:

Order	Sign of augend or minuend (first word)	Sign of addend or subtrahend (second word)	Sign of Result
$\dot{A}(+)$	+	+	+
$h^{(}(+)$	-	-	-
$S C(-)$	-	+	-
SC $(-)$	+	-	+

In this case the sign of the result is determined in advance and no further information is needed. The sign of tho first word, and only tho first, passes through X23(D3) into another binary counter, the output sign counter (D_{4}). Only the sign of the first number gets through because of the 2 on gate X_{23}, and the other input to X_{24} from Lila and X34 (E3) is closed because LSG is not onergizod. Triangles with lines perpendicular to the base, continuing tho input leads, represent or gates, otherwise an and gate. This counter is initially cleared to zero prior to each operation by RF. If this counter is on 1, then the answer is negative, and if on 0 the answer is positive. This is accomplished by "counting" the minus sign of tho first number (plus is no pulse; minus, a pulse).

Case 2 - arithmetic subtract (ISG)

The table shows how the sign of the result is dote: mined:

In this cense the sign of tho result is not dotomined in advance. However, if we count the sign of the first word only as wee done in case 1 , then we got the correct result if $\mathbb{H} \geq \mathrm{s}$, and tho incorrect result if $\mathrm{H}<\mathrm{S}$. If $\mathrm{H}<\mathrm{S}$, a "borrow" propagates to the loft in tho addor-subtractor, which is detected at $X 34$, since LSG is now enorgizod: M and S ore non-negative numbers, A pulse then appears at the output sign counter which reverses it. The sign of the result can now bo road at this counter in the same way as in case 1 .

The sign having been determined, the digits renin to be considered.

Case 1 - Arithmetic add (LuG)

In this cense, the digits do not require any complementing but wo may have a carry to the left, indicating $M+S \geq 1$; \mathbb{H} and S are non-negative numbers. This carry is detected at $\bar{Z} 35$, whore it sots flip-flop G10 (F3). Flip-flop G1O emits the exceed capnoity signal (LisLE) to the dispatcher, and pormits a pulse P_{44} to be emitted at X36. This occurs nearly a minor cycle later than tho occurrence of tho original carry, but the digits pass through the short monory system (F4) meanwhile, so P_{44} and the extra carry arrive at tho half-
adder $G 9(F 6)$ simultaneously. The half-adder is a circuit wich omits a pulse if an odd numbor of pulsos are prosentod on 1ts two inputs, othorwise not. It consoquontly edds singlo peirs of digits but cannot propagato a carry. The P_{44} and the oxtree carry thus cancel out at the half-addor and the suporfluous digit is oliminated. Tho digits bogin to appear at $\mathrm{Li}(\mathrm{Gg})$ via F8, $\mathrm{d} 2 \mathrm{O}, \mathrm{X}_{57}, \mathrm{D} 12 \mathrm{a}, \mathrm{C12}$, one minor cycle aftor the second number starts to entor at LN , Tho connoction to $\operatorname{LiT}(F 9)$ is to a chocking circuit which is comparing tho digits fornod in the other half of tho double computor. The digits also roturn to tho addor via $\mathrm{d} 22, \mathrm{X} 39, \mathrm{C76}$, and $\mathrm{XI1}$, as long as X 39 (G4) perrits thom to pess through. Nothing is prosent at the othor addor input, so the digits pess through unaltorod. This loop servos as a momory until tho dispatchor is ready for the digits. As soon as that occurs X X 39 closos because 3 is deenorgized and the momory regonoration loop cloars, a is always onorgizod on iSC . The procoss of cancolling the earry and producing excoed capacity signal is not performed on comparo, sinco -C is deonergized on comparo and X35(F3) closos.

Case 2 - Arithmotic subtract

In this ceso, no oxcced capacity can possibly occur, sinco $\max \quad|i H-S| \leq \max (\mathbb{N}, S)<1$. On the othor hand, the rosult of the adder-subtractor must be decomplomented if $\mathbb{K}<S$; M and S aro non-nogative numbors. This ovont is detected at X_{34}, whoro it sots flip-flop MIl(E3). This permits clock pulses to pass through X_{33} (E5) as soon as LlO is set. This occurs imediatoly aftor tho first 1 digit (pulsc) reaches dl8. Clock pulses now reach og simultanoously nath the digits of the complomont. The least significant unit (the first, roading
from right to loft) and all zoros to tho right of (oarlior than) it, are unchangod, but all digits to tho loft of (letor then) it, aro changod fron \underline{O} to $\underline{1}$ and vico vorsa. This givos a $2^{\prime \prime} s$ complomont at tho output of 99 . Tho digits now havo tho propor valuo and aro froo to losve or recirculate as in case 1. Flip-flop $\mathrm{MLO}\left(\mathrm{F}_{4}\right)$ sorvos as a zoro detector. If no $\underline{1}^{\mathrm{f}} \mathrm{a}$ aro presont, thon N1O fails to bo sot, and the sign (minus) cannot got through X59 (F9). This rocuires all zoros to havo a plus aign. Tho sign comos from tho countor via $\mathrm{X} 29\left(\mathrm{D}_{4}\right)$ which is road by a pulso at "sign time" evory minor cyclo. The sign is comperod with the othor half of the doublo computcr via $L S C, L B(F 9)$ is a switching volt age which cancels the output whon the EDVIC has one monory tank out of sorvice.

Figure 5 (drawing $104-10 L B-1$) is a collection of standard symbols used in EDV.C block diagrams, A ring counter has as many stable states as it has stages, being so constructed that one and only one stage can be "set", the others are always "reset". A counting pulse causes the next higher stage to become set. "Fiigher" is interproted cyclically. In a binary counter, each stage can set or reset independently of the otiers; it has 2^{n} stable states, where n is the number of stages. Crystal combinations are circuits containing 11134 gemaniun diodes, whose outputs become positive (negative) if one or more (all) of the inputs are positive (negative).
7. Aide to Maintenance

Small and compact as the BDVAC 1s, compared to the BMIAC, its approximately 3000 vacuum tube circuits present a fairly complex maintenance problem. It is therefore deairable to include in the desigr as many aids to maintenance as are consistont with the requirement for compactness and simplicity. On the other hand, an unduly elaborate checking system introduces its own maintenance problem, and if carried too far, becomes difficult for the operator and maintenance man to interpret.

In the EDVAC, therefore, the following aids to maintenance have been included:
A. Provision for examination of words in various parts of the machine by means of indicators on the Control panel.
B. Provision, by means of the "Mode of Operation" awitch on the Control panel, for short period operation for various convenIent intervals, in addition to the normal modes of operation. For example, computation of one quotient digit or one partial product summation, or the transfer of a single word.
C. An abnormal halt indicator on the Control.
D. Indicator lamps on the Dispatcher panel, which are actuated by:
(a) Frror detecting circuits in the Diapatcher.
(b) An error detecting circuit in the Reader-Recorder.
(c) Exceed capacity circuits in the Computer.
(d) Error detecting circuits in the Computer.
E. Neon lamps on all filip-flops.

By means of switches on the Control panel, it is possible for the operator to observe the word in any position in any of the long tanks, In any of the short tanks, or in the dispatcher memory. As this informa-
tion is rocurrent, it may be displayed on either the oscilloscope or the neon lamp register. The in and out memory buses aleo my be examinod, but only by muans of the neon lamp register, since this information is transient. Oacilloscope swoeps are provided for examination of the entire contents of a long tank, or of a aingle word. The aveop may be expanded for detalled examination of a part of a vord.

The "Mode of Operation" switch on the Timar panol permits oporation for 1 order, 1 execute or 1 cycle. Operation may be in accordance vith the programmed routine, or in accordance with a apecial onder. In thia manner, any desired operation may be observed in steps short enough to permit localizing of a source of malfunction.

An example may help to indicate how the various alds to maintenance are used.

Let us suppose that the KDVAC is oporating with the Mode of Operation switch set at "Normal to addrese A". Suppose now that an audible signal is given out, and the operator observes that the light over the "Bolt" button is on. This will indicate that one or more of the following events have occurred:
A. A halt has been programmed by means of an order on the input wire.
B. Address " A " has been reached in the computation.
C. A coding error has been detected.
D. A malfunction has been detected.

The operator should first look at the "Abnormal halt" indicator on the Control panel. If this light is off, the oporator should out the indicator selector awitch to "Control." If the last four digita read 1100 , event A has occurred. If the fourth address agrees vith address " A ", event B has occurred. In either case, the operatar will
proceed in accordance wh the problem inatructions.
However, if the "Abnormal halt" neon indicator is on, either event C and/or event D has occurred, and the oporator should lock at a group of six halt-type neons on the control panel. If the "Wiru code error' neon or the "Unusable Order" neon is on, a coding error has been detected. These errors can be studied by means of the oscilloacope, and corrected by means of the manual controls. The "W1ro code urror" neon indicates that the order "Read 5th address backvard", which cannot be exucuted, has been programmed. The "Unuaable ordur" neon aleniffes that a type of operation, other than the eleven $(A, S, C, B$, utc.) for which the machine is designod, hes been programmud.

If the "Reader-Rucorder halt" neon is ch , it indicates efthor that pulses have been urroneously recorded in the spaces on the vire, or that the wrong number of digits per word has been rucorded.

If the "Pulses in Blanks" neon is on, it indicates that a malfunction has occurred, introducing unwanted pulses in the blanke in words in the "In" or "Out" memory buses.

If either the "Exceed Capacity Halt" or "Computer Error" nuon is on, it is necessary to rofor to flip-flop lamps on the Computer panul.

In the Computer, algebraic operations are carried on in parallel in two identical units. Cperation of these units is compared by means of half adders and flip-flops at five points:
A. The adder loops.
B. The quotiont loops (including the quotient round-off circuita). The sum, difference, result and quotient sign circuits.
C. The remainder aign circuits.
D. The shuttlo tanks.

The half adders are arranged to sut the flip-flops if any difference is found between words at correspending points in the two algobrale
units. This arrangotient will algo futuct unwantod pulees in the blanks in either unit.

If the arithmetic capacity is exoeeded, reforence must be made to "Add-Subtract Capacity Exceeded" and "Divide Capacity Excoeded" flipflep neens in the Algebraic Units. These indicate ooding errora, which may be corrected by the operator.

The flip-flop neons enable these procedures to be extended to the determination of the particular circuits in which urrors aro ariaing, so thet detailed checking may be limited to a amall number of components.

To facilitate maintenance, the memory amplifier and gate unito aro In the form of readily replaceable plug-in units, as notud in an earlier section of this report. The flip-flops also are small plug-in units.

Cabinets have been dusigned to give convenient access to tubes and othor circuit componunts, and a marking systom vill facilitate repid location of partioular circuit componenta.
8. Indiceted Improvements.

8.1 Design Policy.

As work under contract W36-034-CRD-7593 progresaed, it became nucessary from time to time to freeze logical planning and design characteristics in order that the project ahould result in the completion of an EDVAC rather than morely the establishment of the apecifications and techniques always representative of the current state of the art. Certain design charactoristics which will be contained in the completed equipment will be representative of the state of the art two yoars age, cartain characturistics will be rupresentative of the atate one year ago and certain others representative of the curront state. As so often happens in development projecta of this nature, the frouzing of design has occurred later than had boen antiolpated, partiy because early design decisions worv unaound and partly bocause it is never possible to prevent rosearch-mindod. personnel from continuing to incorporate desirable Improvamonts resulting in a bettur instrument but accompaniud by a later completion date. It is estimatod that a delay of approximatuly ono your has beon incurred on these accounts. On tho other hand, the instrument will be a full-scale duvice of performanco and capecity far beyond that onviaionud in the preliminary ruport or in the contruct and its supplemonts. The equipzont will in many ways be representative of the curront state of digital computor
art. There are a numbor of foatuns, howver, ruflecting oarly design deciaions which, if rodoaigned, would adnlt of conaldurable improvement; there are alec curtain features not included in the equipmont, having to do with logic and scope, which would add substantially to its ubufulnuss. The Moore School recomunds that serious thought be given to such modifications in connection with the planning for additional EDVAC typo equipments. Spocifically, thesu featurus aro sot forth in the following paragraphs:

8.2 Ruconmendud Inprovomonts in Design.

The input-output equipmont is designed to use magnotic wire. The rouder-recorder unit of the IBVAC proper containe a wire handling equipmont designod to use magnetic olutches in tho sorvonechanisms. The uquipmont external to the EDVAC (the inscribur and outseriber) being developed by the Bureau of Standards consists prinarily of medified tolutypo uquipmont. This equipment prupares two paper tapes, the first of which is used to chuck the sucond in a veriffer. Thu second tape in turn propares the magnetic wire for insertion into the reader-rucorder unit of the EDVAC. At the time decisions were made to build uquipriwnt along the linue indicated above, the desirud uarily ditu of complution was the dominant factor. It was bolloved that modification of teletype equipment and the use of wire rather than magnetic tape would represent the most satiafnctory solution consistent with minimum duvelopment time. In rutraspect,
this decision seums to have boon unvise. It is recormended that any now EDVAC equipmont use a multiple channel tapo as tho inputoutput medium rather than wire. It is recommended that auitable inscriber and outscribor equipment be custom designed for the purpese without prejudice on account of efforte to use available equipments. Blimination of intermediate tapes can, with proper design, effoct a great simplification at no sacrifice in provisions for chocking accuracy. It is rocommended that the wiro handling equipnent in the reader-recorder unit uee aurvo syotems not containing clutches 30 as to eliminate the objuctionably high maintenance attendant to the use of clutches.

It is bolieved that by the use of RF linka and RF flip-flops, equivalent performance could be obtained with substantially simplified equipment. It is expected that thero would bo a saving in tubes, a decrease in the number of D.C. lovele required and a decrease in the power requironunts.

It is recormunded that higher repetition ratas than one nogncycle be considerod. It is rocognized that in ordur to obtain acceptable rise times at highor frequencies it is necessary to increase the power delivered to the electronic components with attendant operation at $b 1$ ghar porcurtagus of nomal ratings and resultant increases in casualty rate. Since depondability is of
paranount importence, substantial increases in repotition rate are considered undestrable but an increase to two megacyoles is certainly feasible. Three megacycles are conoldered margimal, but with careful design may prove to be practicable.
8.3 Functional Improvements which Morit Considoration.

The following features are considered of sufficient
utility that their incorporation in contemplated nev EDVACS should bu considered.
(a) Proviaion of coded decimal to binary and binary to coded decinal converters as part of the input-output systen to speed operation by removing the necesalty for performing these relatively slow operations within the BDVAC proper and to eliminate special coding. It seoms that this could bu done nost expoiftiously by means of relays incorporated in the Inscriber and Outscriber.
(b) Provision of both relative and absolute numburing systens in both tape and high speed nomory.
(c) Provision of additional reading and recording mechanians which would permit unlimited input or output of data without stopping the equipnent.
(d) Provision of additional "Onder Types" to give greater flexibility and to facilitate coaing.
(e) Provision of on accurnletor to perrit rapid Signa or Pi operations.
(f) Addition of mgnetic drum intermediate speed zenory in order that external memory need not be as slow as megnetic tape would demand.

8.4 Special Purpose Features

There are two functions not necessary to a general purpose EDVAC and therefore not included in 8.3 which are rogarded as highly desirablo for special purpose machines. It is recommended that consideration be given to
(a) Provision of facilities for sorting of an a.lphabetical nature and for printing out of alphabetical characters.
(b) Provision of a randon number generator for use in atatistical problems.

8.5 Coded Decinal Versus Binary Computer.

No report on EDVAC would be cormplete without reopening the highly controversial point as to whether the reduction in equipment effected by the use of a binery computer repreaents real economy. There is no doubt that trouble shooting within the binary part of the EDVAC and programing of problums for solution on the EDVAC will demand a knowledge of the binary system. Further, the extent to which this may cause loss of tine in consultation with potential users not familiar with binary arithmetic is not known. No experience exiats for evalunting difficulties which may arise on this account since no binary machine has been built. It is belleved the binary EDVAC will be a reasonably satisfactory instrument but maintonance and progranning experience is probably the only neans for obtaining a categoric answor to the question.

NOTES		
For right algebranc w all remote connection de. with " Z " and replace "LEFT" it occurs in the Remoce Comnection Table		
REMOTE CONNECTION TABLE		
Nats	FROM DEAWING	riow
$\begin{gather*} 2 \tag{6}\\ 3 \\ 4 \\ E x \\ -Y A \end{gather*}$	104-2LD-1	Check $2^{\text {nd }}$ address check 3rd address check 4th address Execute
z_{V}	104-2LC-2	
ASC C- D d Dd MOma Mm -Mm SC $-3 c$	104-2LD-5	Add or subtract or comp Not compare Divide with round off Exact Divide Divide Multiply or divide Multiply Not muttiply Subtractor Compare Nerther Subtract hor cimp
$C P 1$ $C P A$ $C P S$ $C P 6$ $\angle M$ $\angle S$ $\angle S W$ $D P$ $P 1 A$ $P_{1 B}$ $P_{2 A}$ $R F$	104-3LC-1	Left minuend Left subtrahend Left shifted word in Digic pulses Reset finp Flops
Lt	$104-3 \angle C-3$	Left sum or differencd
$\begin{gathered} a \\ b \\ c N \\ \hline \end{gathered}$	104-4LD-1	Non-precess precess computing interlock
$\angle B$	Memory Bank JW (So Drwg Anaikave	
autputs	To DEAWING	desceiption
$\angle A$ $\angle A T$ $\angle Q$ $\angle Q T$ $\angle R S$ $\angle S C$ $\angle S T$ $\angle Z E$	104-3LC-1	Left asder readout Left adder tank Left quotient readout Left quocienc tank Left remain der sign Left sign circuit Left shuctile tank. Left shufted word out
$\begin{aligned} & \angle A G \\ & \angle M A \\ & \angle S A \\ & \angle S G \end{aligned}$	104-3LC-3	Left aack gace Left minuend ariommetr Left serbonatend aniom Left subiuct guse Lefe sustuc gua
$\begin{array}{\|l\|} \hline \triangle C E \\ \angle A S C E \end{array}$	Memory bank switch-see $\angle B$ above	Left anision capacicy exce Left adi-suberact capach exceeded
$\begin{aligned} & \angle A 1 \\ & \angle B 1 \\ & \angle C 1 \end{aligned}$	Left memory unic no orng averilable	to left shore tank. 4 8
ineurs	FROM DRAWING	DESCRIETION
$\begin{aligned} & \angle A O \\ & \angle B O \\ & \angle C O \end{aligned}$	Left memory unic nodrig availasle	from left shart tank

NOTES
For right algebraic unit, replace " L " by " R " on all remote connection designations beginning with " 2 " and replace "LEFT" by "RIGHT" everywhere it occurs in the Remote Connection Table

- REAM DRAWING	DESCRIPTION	
NITS	REMOTE CONNECTION TABLE	
2	$104-2 L D-1$	Check Ind address
3		Check 3rd address
4		Check th address
EX		Execute

Subtractor Compare
Neither Subtract nor
Vera

