October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

To assign a file or device to a logical I/0 unit.

Resident Systenm

Calling Sequences:

Description:

Assembly: CALL SETLIO, (unit,FDname)

FORTRAN: CALL SETLIO (unit,FDname,&rcl)

Parameters:
unit is the 1location of the left-justified, 8-
character logical I/0 unit name (€-g.,
SCARDS) .

FDname is the location of the file or device name to
be assigned. This name must be terminated
with a trailing blank.

rchy is the statement label to transfer tc if the
return code of U4 occurs.

Return Codes:

0 Successful return.

4 Error return. An illegal logical I/O unit name
was specified.

This subroutine is used to assign a file or device to a
logical I/0 unit. If there was a previous assignment, the
new file or device replaces the previous file or device.
That usage of the previous file or device is released. If

is released and the logical I/0 unit is left without an
assignment.

This subroutine does not check for the legality of the
file or device name specified.

SETLIO 383



MTS 3:

Examples: Assembly: CALL
LTR

BNE
DC
DC

UNIT
FDNAME

FORTRAN: CALL

The above two examples call

SYSTEM SUBROUTINE DESCKIPTIONS

October 1976

SETLIO, (UNIT,FDNAME)

15,15

ERROR

CLB'SCARDS !

C'DATAFILE '

SETLIO ('SCARDS ', 'DATAFILE ',&100)
SETLIO to assign the file

DATAFILE to the logical I/0 unit SCARDS.

LA
LR
CLI
BE
CLI
BE
LA

B

LR
SR
BCTR
mvc
EX
LA
CALL
LTR
BNE

Assembly:

LOOP1

EXIT1

DC

DS
Mvc

INPUT

UNIT

MVCLIO
The

above example

which

384 SETLIO

calls
string containing a logical
points to the name of the file DATAFILE is inserted

10, INPUT Get addr of input line
9,10 Save addr of input line
0(10) ,C'=" Scan off unit name
EXIT1

0(10) ,c' ' Error if no equal sign
ERROR

10,1(0,10)

LOOP1 ‘

8,10 Compute len of unit name
8,9

8,0

UNIT (8),=CLB' !

8,MVCLIO Save unit name

10,1(0,10) Skip past equal sign
SETLIO, (UNIT, (10))

15,15

ERROR

C'SCAKDS=DATAFILE '
CL8
UNIT (0),0(9)

SETLIO after scanning an input
I/0 unit assignment. GR10



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SETLNR

SUBROUTINE DESCRIPTION

Purpose: To set all or a subset of the line numbers in a line file.
Location: Resident Systenm

Calling Sequences:
Assembly: CALL SETLNR, (unit,first,last,cnt,buffer)

FORTRAN: CALL SETLNR (unit,first,last,cnt,buffer,ércl,
&rc8,&érc16,6rc20,86rc24,6rc28,86rc32)

Parameters:

unit is the location of either:
(a) a fullword-integer FDUB-pointer (such as
returned by GETFD) .,
(b) a fullword-integer logical I/0 unit num-
ber (0 through 19), or
(c) a left-justified, 8-character logical I/0
unit name (e.g., SCARDS).
first is the location of a fullword containing the
internal line number of the first line number
to be set.
last is the location of a fullword containing the
internal line number of the last line number
to be set.
cnt is the 1location of a fullword containing a
count of the number of line numbers in the
specified range to be set (used fcr error
checking).
buffer is the location of a buffer. The buffer is
supplied and set up by the caller. The
buffer should be of the form:

bytes 0-3 pointer to next buffer or zero,

bytes 4-7 length of this buffer in bytes
(including these 8 bytes),

bytes 8-... internal line numbers tc set (4
bytes each).

Return Codes:

0 The line numbers were set successfully.

4 The file does not exist.

8 Hardware error or software inconeistency
encountered.

SETINR 385



MTS 3:

Examples:

386

SETLNR

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

12 Renumber or read/write access not allowed.

16 Locking the file for modification will result in a
deadlock.

20 An attention interrupt has canceled the automatic
wait on the file (waiting caused by concurrent use
of the (shared) file).

24 Inconsistent parameters specified (requested set-
ting will cause duplicate or decreasing line
numbers, etc.).

28 The file is not a line file.

32 Buffers exhausted before line-number range was
exhausted.

Notes:

If first and last do not correspond to actual line

numbers in the file, the next and previous line
numbers, respectively, will be used.

In MTS, the internal line number (e.g., 2100) is
equal to the external line number (e.g., 2.1) times
one thousand.

Assembly: CALL GETFST, (UNIT,FSTLNR)

CALL GETLST, (UNIT,LSTLNR)
CALL RETLNR, (UNIT,FSTLNR,LSTLNR,CNT,EUFFER)
CALL RENUMBER, (UNIT,FSTLNR,LSTLNR,EEG,INC)
CALL GETFST, (UNIT,PSTLNR)
CALL GETLST, (UNIT,LSTLNR)
CALL SETLNR, (UNIT,FPSTLNR,LSTLNR,CNT,BUFFER)

UNIT DC By

FSTLNE DS F First line number
LSTLNR DS F Last line number
CNT DS F Count of lines in file
BEG DC F'1000! Renumber starting at 1
INC DC F'1000" In increments if 1
BUFFER DC F'o! The only buffer

DC F'808" This many bytes

DS 200F Line numbers go here

above example illustrates how to save a set of line

numbers in a file, renumber the file, and then later
restore the original line numbers of the file attached to
logical I/0 unit 4 (assuming the file contains fewer than
200 lines).



October 1976

FORTRAN:

The above

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

INTEGER*4 UNIT,FSTLNR,LSTLNR,CNT,LNR,$IU (1)
COMMON /$/ $I4

DATA UNIT/L/

CALL GETFST (UNIT,FSTLNR)

CALL GETLST (UNIT,LSTLNR)

CALL CNTLNR (UNIT,FSTLNR,LSTLNR,CNT)

CALL ARINIT(1,1)

CALL ARRAY (LNR,4,CNT+2)

$I4 (LNR+1)=0

$I4 (LNR+2)=CNT*4+8

CALL RETLNR (UNIT,FSTLNR,LSTLNR,CNT,$I4 (LNR+1))
CALL RENUMB (UNIT,FSTLNR,LSTLNR,1000,1000)

CALL GETFST (UNIT,FSTLNR)

CALL GETLST(UNIT,LSTLNR)

CALL SETLNR (UNIT,FSTLNR,LSTLNR,CNT,$I4 (LNR+1))

- - -

example illustrates how to remember and reset

all of the line numbers of a line file attached to logical

I/0 unit 4

(using the FORTRAN array management subroutines

to dynamically allocate a buffer).

SETLNR 387



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

388 SETLNR



MTS 3: SYSTEMN SUBROUTINE DESCRIPTIONS

October 1976

SETPFX

SUBROUTINE DESCRIPTION

Purpose: To set the prefix character for the program currently
executing. This character is issued during program execu-
tion as the first character of every input or output line
on a terminal.

Location: Resident Systen

Calling Sequences:

Assembly: CALL SETPFX, (char,len)

FORTRAN: INTEGER*4 SETPFX,i,len
i = SETPFX(char,lemn)

Parameters:

ar is the location of the prefix character.
n is the location of a fullword integer count of
the number of characters.

h
e

c
1
Values Returned:

GRO contains the previous prefix character, right-
justified with leading hexadecimal zeros. For FOR-
TRAN users, the value returned by the integer func-
tion call to SETPFX will be the previous prefix
character, right-justified.

Restriction: Currently only one prefix character may be used. Thus

only the first character at the location specified is
used.

Examples: Assembly: CALL SETPFX, (PCHAR,PLEN)
ST 0,0CHAR

PCHAR DC crae
PLEN DC b R
OCHAR DS CL4

The above example calls SETPFX to set the prefix character
to n ?Il &

SETPFX 389



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

FORTRAN : INTEGER*4 SETPFX, OLD
OLD = SETPFX('/',1)

The above example calls SETPFX to set the prefix character
to "/,

390 SETPFX



October 1976

Purpose:

Location:

Alt. Entry:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBKOUTINE DESCRIFTION

To perform floating-point, integer, logical, and hexadeci-
mal input/output conversions. The types of conversion and
editing available correspond to those associated with the
ANS FORTRAN conversion codes D, E, F, G, I, and L and the
IBM FORTRAN conversion code Z. In addition, SIOC incorpo-
rates a number of optional features such as blank suppres-
sion and free-format input and output. SIOC performs one
I/0 conversion per call and does not perform any actual
I/0 operations.

Resident System

SIOC#

Calling Sequences:

Assembly: CALL SIOC, (buffer,cvarea)
FORTRAN: CALL SIoC(buffer,cvarea,&rcl,&rcs8)

Parameters:

buffer is the location of the first cuaracter of the
input/output buffer. Input conversionhs never
change the contents of the buffer.

cvarea is the location of a doubleword-aligned block
of information containing parameters indicat-
ing the +type of conversion and editing,
containing the internal datum, and providing
a scratch area for intermediate calculations.

6rcl,érc8 are statement labels to transfer to if the

corresponding return codes occur.
Return Codes:

0 Successful return.

4 The parameters of the external output field are
inappropriate and the field has been filled with
asterisks (*). The external input field contains
an illegal character.

8 One of the input/output parameters specifies an
illegal value, or the value of the external input
field exceeds the allowable range for the internal
representation.

sIoc 391



MTS 3:

Description:

392

S10C

SYSTEM SUBROUTINE LESCRIPTIONS

Octoker 1976

The notation tor the cvarea parameters used Lkelow is
consistent with the FORTRAN format descriptors sPEw.d,
sPFw.d, sPGw.d, Iw, Lw, and Zw. For FORTRAN users, the
doubleword alignment of cvarea may be most easily accom-

plished by placing the parameters at the beginning of a
COMMON block.

RFP: This fullword integer specifies the position rela-
tive to buffer of the external field in the input/

output buffer. The first character of buffer corre-
sponds to an RFP of zero. For both input and output
conversions, the RFP is updated to correspond to the
first character after the external field processed.
Restriction: RFP 2 0.

W: This fullword integer specifies the number of char-
acters in the external field. Restriction: 255 2 W
2 1.

D: Nominally, at least, this fullword integer specifies
the number of digits to the 1right of the decimal
point. The interpretation of and restrictions on
this parameter are dependent on the conversion code.

S: Fullword-integer scale factor. The interpretatioa
of and restrictions on this parameter are dependent
on the conversion code.

RF: Fullword-integer replication factor.

CW: This fuliword consists of the function byte, the
conversion code byte, the datum-length byte, and the
input picture byte. The values for these bytes
listed below are in hexadecimal.

Function Byte: 1=INPUT, 0=0UTPUT.

Conversion Code Byte: E=0E, F=1C, G=1E, I=10, 1=06,
z2=02.

Datum-Length Byte: Number of bytes in the internal
datum. Restriction: 8 2 datum-length (E,F,G,I,
L), or 8 2 datum-length 2z 1 (2).

Input Picture Byte: The bits of this byte are set
during input conversions to record the actual
contents of the external field, e.g., sign char-
acter, decimal exponent.

V: The internal representation of the datum will or
should be left-justified in this doubleword.
WK: This area must supply at least 10 words of scratch
space for output conversions, and max(10,W/4+3)
words for input conversions.

Input conversions will change only the RFP, RF, the input
picture byte, and V; output conversions will change only

Because the manipulation of the various parameters con-
tained in cvarea is somewhat inconvenient in FORTRAN, the



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SIOCP subroutine has been made available for this fpurpose.
The description of the SIOCP subroutine is restricted to
information indicating how to set the SIOC parameters.

Relative Field Position - RFP

The RFP parameter can be employed to relieve the
calling program of maintaining a buffer pointer. For
example, when converting successive values from an
input line, the RFP can be initialized to zero for
the first call on SIOC and subsequently ignored.
This same procedure can be used +to formulate an
output line, and the final value of RFP will be the
length of the line generated.

Replication Factor Processing

In the external field, a replication factor consists
of a strairng of decimal digits terminated by an
asterisk (*¥) and preceding the value in the field,
e.g., 5%71.5. An input replication factor will be
converted and stored in RF only if (1) bit 1 of the
conversion code byte is 1 (hex 40), (2) the portion
of the field preceding and following the asterisk is
not null, and (3) the value of the digit string
preceding the asterisk is in the range [1,
2147483647 ]. An output replication factor will be
generated in the external field only if (1) kit 1 of
the conversion code byte is 1 (hex 40), (2) free-
format output is in effect, and (3) the value in RF
is positive.

Blanks in Numeric Input Fields

Consistent with the ANS FORTRAN standard, all blanks
in the external input field are treated as zeros. If
bit 3 of the function byte is 1 (hex 10), all blanks
in the external field are ignored.

Floating-Point Mapping

All E, F, and G input conversions correctly round the
value in the external field to the apprcpriate
internal format; and all E, F, and G output conver-
sions place in the external field the decimal expan-
sion of the internal datum rounded to the number of
digits (£18) necessary to fulfill the field require-
ments. If bit 4 of the function byte is 1 (hex 08),
both the input and output mappings are by truncation
instead of rounding.

sI0oC 393



MTS 3¢

394

sIocC

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

Direct Conversion

The direct conversion feature is only applicable to
output conversions, and is obtained by setting bit 5
of the function byte to 1 and bit 6 to 0 (hex 04).
Buffer and the parameters RFP, W, S, and RF are
ignored, and the external field is generated in the
scratch area WK. The format of the external field
depends on the conversion code, the datum-length, and
D, i.e., E(D+6).D, I12, L1, or Z(2*%datum-length). If
D is not in the range [1,18], a default value of 9 or
18 is employed depending on whether the internal
datum is a short- or long-operand, respectively. D
is not actually changed.

Free-Format

The free-format feature is enabled when bit 6 of the
function byte is 1 (hex 02). For input conversions,
this forces the delimiter scan and appropriate updat-
ing of the RFP after an illegal character has been
encountered; the RFP is normally updated by W in this
situation. On the other hand, free-format output
conversions provide for a datum-dependent, left-
justified external field with an optional replication
factor and delimiter (,). The parameters W and S are
always ignored. Floating-point conversions generate
D significant digits and append an exponent only when
necessary. If D is not in the range [1,18], a
default value of 9 or 18 is employed depending on
whether the internal datum is a short=- c¢r long-
operand, respectively. D is not actually changed.

Conversion Code Byte

In addition to the settings given earlier, three
other bits in this byte may be wused to obtain
additional services. If bit 1 is 1 (hex 40),
replication factor processing is enabled. If bit 2
is 1 (hex 20), a sign will always be generated in E,
F, 6, and I external output fields; a =sign is
normally generated only when the datum is negative.
If bit 7 is 1 (hex 01), delimiter processing is
enabled. For free-format output conversions, delimi-
ter processing places a comma (,) at the end <c¢f the
external field. For input conversions, the first
occurrence of a delimiter character results in: (1)
setting the RFP to correspond to the first character
after the delimiter, (2) effectively modifying W to
correspond to the number of characters preceding the
delimiter, and (3) effectively setting D tc zero.
The W and D parameters are not actually changed. If
the first character of +the external field is a



MTS 3: SYSTEM SUBROUTINE DESCRIPIIONS

October 1976

delimiter, the value of the field is zero. The
delimiter characters are: comma (,), semicolen (;).,
prime ('), and slash (/)-

Datum-Length Byte

In conjunction with the conversion code byte, the
value of this parameter determines the internal
representation as follows:

Conv. Code  Datum-Length  Internal Representation
E,F,G = REAL*8
E,F,G NOT 8 REAL*Y
e = INTEGER*Y
I NOT 4 INTEGER*2
L = LOGICAL*Y
L NOT 4 LOGICAL*1
Z <8 datum-length bytes

Input Picture Byte

The bits of this byte are set during input conver-
sions to describe the actual contents of the external
field. These bits indicate the presence (1) or
absence (0) of the elements listed below:

I
=2
Iet

Element and Applicable Conversicn Codes

Floating=-point exponent character D (E,F,G).
Replication factor (all).

Sign character (E,F,G,I,Z).

Digits to left of decimal point (E,F,G,I).
Decimal point (E,F,G).

Digits to right of decimal point (E,F,G).
Tor P (L)

Floating-point exponent (E,F,G).

Tor F (L)«

Hexadecimal digits (2).

7] Delimiter (all).

o s Wwh=0

Error Processing

If an illegal character is found in the external
input field, a return code of 4 is given. The
relative position of the illegal character with
respect to the first character of the extermnal field
is placed in the first word of V, and the translation
of the illegal character is placed in the seccnd word
of V.

SI0C 395



MTS 3:

Example:

396

SI0C

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

Decimal digit (0-9) 0
Sign character 1
Delimiter (,;'/) 2
Decimal point 3
Asterisk (%) 3
Hex digit (A-F) 4
None of the above 5

Syntax violations are treated as illegal characters.
For example, a decimal point is legal in an F-field,
but the second occurrence of a decimal point would be
illegal.

When performing output conversions, a return code of
4 is given irf the field width is insufficient, 4if S
is not in the range [ -D,D+1] in a G-field specifica-
tion being treated as an E-field specification, if S
is not in the range [-D,D+1] in an E-field specifica-
tion, or it D is not in the range [0,W-1)]). The first
and second conditions are generally data dependent
but can, like the remaining conditions, be of a
technical nature.

Illegal parameter values, which cause a return code
of 8 with po changes in any SIOC parameters, arise
when one or more of the explicit restrictions given
in the parameter descriptions above are violated. If
a return code of 8 is given for exceeding the range
appropriate for the internal representation, the RFP
will be correctly wupdated and RF and V will be
indeterminate.

Replication Factor Range [1,27147483647 ]
Integer Range [-2147483648,2147483647 ]
Floating-Point Range [¢539ceeE=78,.723..-E+76]

The example program below prints the elements of a COMPLEX
vector on unit 5. The output 1lines produced by this
program will be of the form

b td.ddddddddEtee +I* td.ddddddddEiee"

where, depending on the type of device attached to 5, the
initial blank may be removed for use as carriage ccntrol.



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

COMPLEX 2 (10)

INTEGER BUF (10) ,BL/' '/,BI/' +I%'/

INTEGER CVA(18) /0,16,8,1,0,%Z002E0400,12%0/
INTEGER*Z LEN/40/

EQUIVALENCE (DATUM,CVA (7))

REAL*8 DCVA (9)

EQUIVALENCE (DCVA (1),CVA(1))

BUF (1) =BL

BUF (6)=BI

po 10 I=1,10

CVA (1) =4
DATUM=REAL (Z (I))
CALL SIOC (BUF,CVA)
CVA(1) =24
DATUM=AIMAG (Z (I))
CALL SIOC(BUF,CVA)

10 CALL WRITE (BUF,LEN,O0,LINE,S5)

5I0C 397



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

398 sI1o0C



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBROUTINE DESCRIPTION

Purpose: To provide an easy method for setting the conversion
parameters prior to calling the input/output conversion
subroutine SIOC. Most of the SIOC parameters are fullword
integers, but the control word is divided into four bytes
which cannot bLe conveniently manipulated by FORTRAN pro-
grams. This subroutine provides for the translation of a
single FORTRAN format descriptor and associated SIOC
modifiers into a form acceptable to SIOC. In the descrip-
tion below, explicit reference is made to various SIOC
parameters and features so that familiarity with SIOC
would be most helpful.

Location: Resident Systen

Calling Sequence:
Assembly: CALL SIOCP, (format,cvarea)
FORTRAN: CALL SIOCP(format,cvarea,ércl)

Parameters:

format is the location of the first character of the
extended format descriptor to be translated.
This character string must be terminated by a
blank.

cvarea is the location of a doubleword-aligned block
ot storage that will be subsequently used in
calling SIOC.

grch is a statement label to transfer to if an
error is detected.

Return Codes:

0 Successful translation.

reflect only the portion of format preceding the
erroneous element. One of the input/output param-
eters (RFP, W, or the datum-length byte) contains
an illegal value, i.e., if cvarea is passed to

SI0OC, a return code of 8 will result.

Description: The scanning of the character string in format is termi-

nated when a blank is encountered or when an element of
the string cannot be deciphered. Thus, blanks shculd not

SIOCP 399



MTS 3:

400

SIOCP

SYSTEM SUBROUTINE DESCEKIPTIONS

October 1976

be embedded in the character strings described below. The
character string in format should be of one of the
following forms:

([Tn, ]J[sP ]Dw.d)
([Tn, ]J[ sP JEw.d)
({LTn, ]J[sP JFw.d)
([Tn, )[sP JGw.d)
([Tn, JIw)
([ Tn, JLw)
([Tn, ]Z2w)

where the elements enclosed in square brackets ([ ]) are
optional; "n", "w", and "d" are unsigned decimal integers;
and "s" is an optionally signed decimal integer. The
translation process sets the conversion code byte and
places "n" in RFP, "w" in W, "d" in D, and "s" in S. The
parameters in cvarea are initialized to zero prior to the

translation only if the first character of format is a
left parenthesis, and only those elements of the parameter
area explicitly referenced in the extended format descrip-

tor are modified.

The SIOC modifier names and corresponding functions are:

Name  Function (Conversion _Code Byte)

RF Enable replication factor processing.

5 Enable sign generation in numeric output fields.
D Enable delimiter processing.

Name Function (Function_Byte)

BLK Ignore blanks in input fields.

TRUNC Floating-point mapping by truncation.
DC Direct conversion.

Er Free-format.

INPUT Input conversion.

Name Function (Datum-Length_ Byte)
DL=b Set datum-length byte, 0 £ b < 8.

These modifier names (preceded by an @) should be appended
to the FORTRAN format descriptor. The occurrence of a
conversion code (D,E,F,G,I,L,2) automatically sets the RF,
S, and D bits of the conversion code byte to zero, i.e.,
off. The defaults for the function byte and datum-length

is called (first character of format not a left parenthe-

sis) or are zero, i.e., rounded output in fixed format
(first character of format a left parenthesis). The

negatives of these modifiers are not supported.



October 1976

Example:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

The +translation of the extended format descriptors is
extremely permissive, and variations on the syntax
delineated above should be wused with caution. For
example, using the notation = for equivalence,

Ew=Ew.=Ew.0, 6G.d=G0.d, and F=F0.0.

After the externaed format descriptor has been processed,
SIOCP checks to insure that RFP, W, and the datum-length
byte contain valid data, i.e., data which will not cause
SIOC to give a return code of 8.

The example program below converts two REAL*8 values from
each input line read through SCARDS, and prints their sum
on SPRINT in the form

"(number) + (unsigned-number) = (number).™

This example illustrates a number of features cf both
SIOCP and SIOC.

REAL*8 X,Y¥,SUM,CVA (36) ,BUFFER (32),BL/"' '/

INTEGER*2 LEN
INTEGER W (2)
EQUIVALENCE (CVA (1), (1))

10 CALL SCARDS (EUFFER,LEN,0,LINE,&100)
CALL SIOCP (' (E1)@INPUT@BLK@DaDL=8 ',CVA,£200)
W (2) =LEN
CALL SIOC (BUFFER,CVA,&200,8200)
X=CVA (4)
W (2) =LEN=-W (1)
IF (W(2).1E.0) GO TO 200
CALL SIOC (BUFFER,CVA,&200,8200)
Y=CVA (4)
SUM=X+Y
BUFFER (1) =BL
CALL SIOCP (' (T1,E)@FF@DL=8 ',CVA,&200)
CVA (4) =X
CALL SIOC (BUFFER,CVA)
CALL SIOCP('@S ',CVA,&200)
CVA (4)=Y
CALL SIOC(BUFFER,CVA)
CALL IMVC (3,BUFFER,W(1),' = ',0)
W(1)=W(1)+3
CALL SIOCP('E ',CVA,£200)
CVA (4)=5UN
CALL SIOC (BUFFER,CVA)
LEN=W (1)
CALL SPRINT (BUFFER,LEN,0,LINE)
GO TO 10

100 CALL SYSTEM

200 CALL ERROR

SIOCP 401



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

GO TO 10
END

402 SIOCP



October 1976

Purpose:

Location:

MT5 3: SYSTEM SUBROUTINE DESCRIPTIONS

SIOERR

SUBROUTINE DESCRIPTION

To allow FORTRAN users to regain control when I/0O trans-
mission errors that would otherwise be fatal (such as tape
I/0 errors or exceeding the size of a file) occur during
execution.

*LIBRARY

Calling Sequence:

Description:

FORTRAN: EXTERNAL subr
CALL SIOERR (subr)

Parameters:

subr is the subroutine to transfer to when an I/0
error occurs, Or zero, in which case, the error
exit is disabled.

A call on the subroutine SIOERR sets up an I/0 transmis-
sion error exit for one error only. When an error occurs
and the exit is taken, the intercept is <cleared =0 that
another call to SIOERR is necessary to intercept the next
I/0 transmission error.

If the subroutine subr returns, a return is made +to the
user's program from the I/0 routine with the return code
indicating the type of error that occurred. The return
code depends upon the type of device in use when the error
occurred. See the section "I/O Subroutine Return Codes"
in this volume.

Note: SETIOERR is for assembly language (see the
description of the subroutine SETIOERR) and SIOERR
is for TFORTRAN users. There is a difference in
the level of indirection between the two subrou-
tines; therefore, SIOERR should not be used by
assembly language users.

Many I/0 error conditions are detected by the
FORTRAN I/0 Library before they actually cccur,
thus allowing the FORTRAN monitor to take correc-
tive action. In these cases, an errcr exit
enabled by a call to SIOERR will not be taken
since the FORTRAN monitor will take control before
the erroneous operation is attempted. For further
details, see the "FORTRAN I,/0 Library" section in
MTS Volume 6.

SIOERR 403



MTS 3:

Example:

4ou

SIOERR

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

FORTRAN: EXTERNAL SWITCH
COMMON ISW

ISW=0

CALL SIOERR (SWITCH)
WRITE (8,105) FILEOUT
IF (ISW.EQ.1) GO TO 10
CALL SIOERR (0)

SUBROUTINE SWITCH
COMMON ISH

ISW=1

RETUEN

END

In this example, SIOERR is called to enable an exit if an
I/0 error occurs during the processing of the WRITE
statement. If an error does occur, the subroutine SWITCH
will be <called which sets the variable ISW to 1 and
returns. The calling program tests the value of ISW and
branches to statement 10 if appropriate. SIOERR is called
again to disable the exit.



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBKOUTINE DESCRIPTION

Purpose: To space a magnetic tape or file weither fcrward or
backward a specified number of records or files.

Location: *LIBRARY

Calling Sequences:

Assembly: CALL SKIP, (nfiles,nrcds,unit)

FORTRAN:

CALL SKIP(nfiles,nrcds,unit,ércl,&rc8,6rc12)

Parameters:

iles is the location of the number of files to

==

skip (must be zero for files).

nrcds is the location of the number of records to

skip.

unit is the location of either

Return C

0
4

12

(a) a fullword-integer FDUB-pointer (as
returned by GETFD),

(b) a fullword-integer logical I/0 unit num-
ber (0 through 19), or

(c) a left-justified 8-character logical I/0
unit name (e.g., SCARDS).

==2,LC12 are statement numbers to transfer to if
a nonzero return code is encountered.

odes:

Successful return.

An end-of-file (filemark) was reached during a
forward space or backspace record operaticn. The
unit is left positioned immediately after (on
forward space) or before (on Lackspace) the
filemark.

The load point (beginning of tape) was detected on
a backspace operation (tape is left at load point)
or the logical end of a labeled tape was detected
on a forward space operation (tape is left at the
end). This return code cannot occur for files.
The unit parameter is illegally specified, the
unit is not a magnetic tape or file, an I/0 error
condition was detected, or nfiles is not zero and
the unit is a file.

SKIP 405



MTS 3:

Description:

Examples:

boeé

SKIP

SYSTEM SUBROUTINE DESCRIPTIONS

Octchber 1976

The tape or file specified by unit will be spaced nfiles

first and then nrcds. If a parameter is negative, the
unit will be spaced backward the appropriate number of
files; if positive, the spacing will be in the forward
direction. For files, the nfiles parameter must be zero.
In spacing files, after the operation is complete, the
tape will be positioned on the opposite side of the
filemark from which it began. That is, on forward space
file requests (nfiles > 0), the tape will be forward
spaced past the requested number of filemarks and be left
positioned immediately after the last one. On backspace
file requests (nfiles < 0), the tape will Le backspaced
past the requested number of filemarks and ke left
positioned immeaiately before the last filemark or at the
load point. A separate forward space file request will be
necessary to position the tape at the beginning of the
next file.

If any spacing operation results in a nonzero return code
from the MTS I/0 routines, the SKIP subroutine will return
before completing all requested file and record skips.
This can occur if a tape is backspaced to 1lcadpoint
(return code 8), forward spaced to the logical end of a
labeled tape (return code 8), or if a backspace record or
forward space record request passes over a filemark
(return code 4). In addition, a return code of 12 1is
given for an illegal unit, a unit which is not assigned to
a magnetic tape or file, or an I/0 error condition.

Assembly: CALL SKIP, (NF,NR,UNIT)
NF pC F'-1!
NR pc  F'1!
UNIT DC  F'3!

FORTRAN : CALL SKIP(-1,1,3,8100,6150,8200)
100 .

The above two examples will cause the tape assigned to
logical I/0 unat 3 to be positioned to the beginning of
the current file by backspacing past one filemark, then
forward spacing over the filemark (by forward spacing one
record) - If the current file was the first file on the
tape, the tape would backspace to loadpoint and a return
code of B8 would be issued by the tape routines, causing
SKIP to return with the tape positioned at the beginning
of the tape. In FORTRAN, this would cause statement 150
in the calling program to be executed. If the current
file was not the first file on the tape, SKIP would
perform a forward space record after the backspace file.
Note that this forward space record will result in a



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

return code of 4 from SKIP because the forward space
record will space over a filemark. This would cause
statement 100 in the FORTRAN program to be executed.

Assembly: CALL SKIP, (NF,NR,AFDUB)

NF DC P &1

NR Dc F'Q!
AFDUB DS T A FDUB-pointer.
FORTRAN : CALL SKIP(5,0,AFDUB)

The above two examples will space the tape specified by
AFDUB forward 5 files, or until the logical end of a
labeled tape is reached (return code 8).

Assenbly: CALL SKIP, (NF,NR,UNIT)
NF DC Fr0!
NR DC F'10!
UNIT DC C'SCARDS '
FORTRAN : CALL SKIP(0,10,'SCARDS ',&4)
4 .

The above two examples will space the tape or file
attached to the logical I/0 unit SCARDS forward 10 records
or until an end-of-file occurs, whichever comes first. To
find out which occurred, test the return code for 4. In
FORTRAN if the operation terminated due to an end-of-file,
statement 4 in the program will be executed. If not,
processing will continue with the next statement.

SKIP 407



MTS 3: SYSTEM SUBROUTINE DESCKIPTIONS

October 1976

408 SKIP



October 1976

Purpose:
Location:

Alt. Entry:

MTS 3: SYSTEH SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

To sort or merge records.

*LIBRARY

SORT1

Calling Sequences:

Description:

Assembly: CALL SORT, (cstmt[, {unit|vds|num},...])

FORTRAN:

PL/I:

CALL SORT (cstmt[, {unit|vds|num},...][ ,6err])

CALL PLCALL (SORT,n,cstmt[ , {unit|vds|num} ,«..]) :

Parameters:

1=

nt is the location of the control statement.

it (optional) is the location of a FDUB-pointer

(as returned by GETFD), or the locaticn of a
fullword-integer logical I/0 wunit onumber
(0-19).

(optional) is the 1location of the wvirtual
data set to be processed.

(optional) is the location of a positive,
nonzero, fullword integer that specifies a
numeric value in the control statement.
(optional) is the statement label to transfer
to if an error (nonzero return code) is
detected by the subroutine.

is the number of arquments (FIXED BINARY (31))
to be passed to the subroutine.

Return Codes:

0
m

Successful return.

An error has occurred and the subroutine has
issued diagnostics via the logical 1I/0 unit
SERCOM.

See the section "The SORT Utility Program" in MTS Volume

5.

SORT 409



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Octcker 1976

Prototype:

COPY |[[ SORT|MERGE J[=[[type ]J,Laspect ],[location],[length], Jau"

[type][ .[aspect][,[location](,(length]]]]]]]
S=delimiter[string ]Jdeliniteres J...DS=delimiter[ string]delimiter ]
PUT[=[[name ],[ structure],[ record length],[ block length], J...

[ name ][ ,[ structure ][ ,[ record length][ ,[block length]]]]]]
QUTPUT[ =[ [ name ],[ structure ],[ record length],[block length], J...

[ name][ ,[ structure J[ ,[( record length][ ,[ block length]]]]1]1]
[[optional parameter, ]J...optional parameter]

D
N

Collating fields:

TYPE | CODE | SIGN PRESENT | FIELD LENGTH (EYTES)
+— t +
| | |
alignment | AL | no | 1 - 4095
binary | BI | no I 1 - 256
bit | BT | no | 1 - 255 (mask)
call | CA | - I 1 - 4095
character | CH | no | 1 - 256
defined sequence | DS(i) | no | 1 - 256
fixed-point | FI | yes | 1 - 260
floating=-point | FL | yes | 2 - 16
length | LE | - | N
packed decimal | BD | yes: | 1 - 16
sequence | SE | - | -
signed decimal | SD I yes | 2 - 16
zoned decimal | ZD | yes I 1 - 15
Record structures: CODE RECORD STRUCTURE
U undefined length

|
t
I
| fixed length
| variable length
Vs | variable length; spanned
|
|
I
I

FB fixed length; blocked
VB variable length; blocked
VBS variable length; blocked; spanned
FBS fixed length; blocked; standard
Optional parameters:
CHK (exit check facility)
DEC (delete comments)
END (terminate the control statement)
LIO (list data set characteristics)
{REC|MNR}=x (number of records)
RES=x (restart)
516G (sign off on error)
TPS[(=[x]] (tape-merge sort facility)

410 SORT



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SORT2, SORI3

SUBKOUTINE DESCRIPTION

Purpose: To sort arrays.
Location: *LIBRARY
Calling Sequences:

Assembly: CALL SORT2, (cstmt,locl,loc2,len[ ,num]j...)
CALL SORT3, (cstmt,loc1,loc2,lenl,loc3,len?2
L.,num]es.)

FORTRAN: CALL SORTZ2(cstmt,locl1,loc2,len[ ,num]...[,6err])
CALL SORT3 (cstmt,loc1,loc2,len1,loc3,len2
[,num]e..[ ,Eerr ])

PL/1: CALL PLCALL (SORT2,n,cstmt,ADDR (loc1),
ADDR (loc2) ,ADDR (len)[ ,num J...);
CALL PLCALL (SORT3,n,cstmt,ADDR (loc1),
ADDR (loc2) ,ADDR (len1) ,ADDR (loc3),
ADDR (len2) [ ,num]...) ;

Parameters:

cstmt is the location of the control statement.

loci 1s the location of the first element of the
data set or array to be sorted.

loc2 is the location of the last element of the
data set or array to be sorted.

len is the 1location of the fullword integer

length of each element in the data set to be
sorted. The value of len may randge between 1
and 256 bytes.

num (optional) is the Jlocation of a positive,
nonzero, fullword integer that specifies a
numeric value in the control statement.

loc3 is the location of the first element in the
tag data set or array.
len2 is the location of the fullword integer

length of each element of the tag data set.
The value of len2 may range between 1 and 256
bytes.
err (optional) is the statement label to transfer
to if an error (nonzero vreturn code) is
detected by the subroutine.
is the number of arguments (FIXED BINARY (31))
to be passed to the subroutine.

1=

SORT2, SORT3 411



MTS 3: SYSTEM SUBROUTINE DESCHIPTIONS

Description:

Return Codes:

0
M

See the

5.

Successful return.

An error has occurred
issued diagnostics via
SERCOM.

section "The SORT Utility Program" in MTS Volume

3L 3L 3 TN S ARt N L S S SN VRl

Prototype:

[[SORT J[=[[type],[ aspect ],[location],[length], ]-..
[type ][ ,[ aspect ][ ,[location][ ,[length]]]]]]

and
the

the

logical

October 1976

subroutine has
I/0 unit

[[DS=delimiter[ string Jdelimiterm ])...DS=delimiter[string]delimiter]
[[optional parameter, J...optional parameter ]

Collating fields:

TYPE | CODE | SIGN PRESENT | FIELD LENGTH (EYTES)
-+ t i -
| | |
alignment | AL | no | 1 - 4095
binary | BI | no | 1 256
bit | BT | no I 1 255 (mask)
call | CA | - | 1 4095
character | CH | no | 1 256
defined sequence | DS(1) | no | 1 256
fixed-point | BX | yes I 1 - 260
floating-point | FL | yes | 2 16
packed decimal | BD | yes | 1 16
signed decimal | SD | yes | 2 16
zoned decimal | 2D | yes | 1 15

Optional parameters:

412 SORT2,

DEC
END

SORT3

(delete comments)
(terminate the control statement)



October 1976

Purpose:

Location:

Alt. Entry:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SPELLCHK

To determine if a word is a possible misspelling of a
another word.

Resident System

SPELCK

Calling Sequences:

Description:

Assembly: CALL SPELLCHK, (goodwd,testwd,goodl,testl)
FORTRAN: i=SPELCK (goodwd,testwd,goodl,testl)

Parameters:

goodwd 1is the location of the word that is kncwn to
be correctly spelled.
testwd is the location of the word that is to be

goodl is the location of a fullword integer
(INTEGER*U4) giving the length of goodwd. The
length must be between 1 and 32 (inclusive).

testl is the location of a fullword integer
(INTEGER*U4) giving the length of testwd. The
length must be between 1 and 32 (inclusive)
and must not differ from goodl by more than
Te

Values Returned:

GRO contains the value 1 if testwd 1is a rossible
misspelling of goodwd or the value -1 if testwd and
goodwd are identical; otherwise, GRO contains the
value 0. For FORTRAN calls, this value is returned
as a function value in i (i may be treated either as

an INTEGER or LOGICAL value, of any length).
Return Codes:

0 Successful return (GR0O is set as above).
4 Error return (error in goodl or testl parameters;
GRO is set to 0).

This subroutine uses a slight variation of the spelling
correction algorithm presented by H. L. Morgan in "Spell-
ing Correction in Systems Programs," Communications_of_the
ACM, Vol 13, No. 2 (February 1970).

SPELLCHK 413



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

The algorithm will detect spelling errors consisting of:

(1) two letters transposed,
(2) one letter omitted,

(3) one letter inserted, or
(4) one letter erroneous.

If goodwd and testwd are identical, the subroutine will

return the value of 0 in GRO indicating that testwd is not

414 SPELLCHK



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

Purpose: To specify the address of an interruption exit routine and

to specify the program interrupt types that are to cause
the exit routine to be given controll.

Location: *LIBRARY

Calling Sequences:

Assembly: LA 1,pica
CALL SPIE
Note: This subroutine is normally called by
using the SPIE macro. See the SPIE macro
description in MTS Volume 14.
Parameters:
pica is the location of a 6-byte region containing

the program interrupt control area. The first
byte contains the PSW program mask bits that are
to be enabled. These are given as:

Bits 0-
Bit

3: Zero

4: Fixed-point overflow
5: Decimal overflow

6: Exponent underflow
7: Significance

The next three bytes contain the address of the
exit routine to be given control after a grogram
interrupt of the type specified in the interrup-
tion mask. The last two bytes contain the
interruption mask for the program dinterrupt
types to cause control to be given to the exit
routine. Each bit corresponds to a progranm
exception type. These are:

Supervisor_ _Services_ _and__Macro Instructions, form

—_— s ===

SPIE 415



MTSs 3:

Description:

416

SPIE

SYSTEM SUBROUTINE DESCKIPTIONS

October 1976

Bit 0: Zero
1: Operation
2: Privileged operation
3: Execute
4: Protection
5: Addressing
6: Specification
7: Data
B: Fixed-point overflow
9: Fixed-point divide
10: Decimal overflow
11: Decimal divide

12: Exponent overflow

13: Exponent underflow
14: Significance

15: Floating-point divide

If the user wishes to specify a type of program
interrupt for which the interruption has been
disabled, he must enable the interrugption by
setting the corresponding bit in the first byte
of program mask bits.

Note: A «call on SPIE with GR1 containing zero
cancels the effect of the previous call.

Value Returned:

GR1 contains the address of the previous PICA. If
there is no previous PICA from a previous call on
SPIE, a zero is returned.

When & program begins execution, all program interrupts
that can be disabled are disabled, and a standard program
interrupt exit routine is provided. This program inter-
rupt exit routine 1is given control when any progranm
interruptions occur. By calling the SPIE (Set Progranm
Interruption Exit) subroutine, the user can specify his
own program interrupt exit routines to be given control
when a particular type(s) of program interrupticn occurs.

After the SPIE subroutine has been called by the user's
program, his exit routine receives control for all inter-
ruptions that have been specified by the interruption
mask. For other interruptions, the normal program inter-
ruption exit routine is given control. Each succeeding
call to the SPIE subroutine overrides the specifications
given in the previous call.

The SPIE subroutine records the location of the program
interrupt ccntrol area (PICA). The PICA contains the new
program mask for +the interruption types that can be
disabled, the address of the exit routine, and an inter-



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

ruption mask for the interrupt types to cause control to
be given to the exit routine. A program that dissues a
call to SPIE must eventually restore the PICA to the one
that was effective when control was received. If there
was no previous call to SPIE, restoring the FICA is
equivalent to cancelling the current SPIE call and return-
ing to normal interrupt processing. When the SPIE subrou-
tine is called, the subroutine returns the address of the
previous PICA in GR1. If there was no previous PICA, then
a zero is returned in GR1.

With +the first <call to the SPIE subroutine, a 32-byte
program interruption element (PIE) is <created in the
subroutine. This program interruption element is used
each time a call is made to SPIE. The PIE contains the
following information:

Word 1: Current PICA address.
Words 2-3: 01d Program Status Word.
Words 4-8: GRs 14, 15, 0, 1, and 2.

The PICA address in the PIE is the address of the PICA
used in the last call to SPIE. When control is passed to
the exit routine indicated in +the PICA, +the old PSW
contains the interruption code in bits 16-31; these bits
can be tested to determine the cause of the program
interruption. The contents of GRs 14, 15, 0, 1, and 2 at
the time of interruption are stored by SPIE in the PIE as
indicated. When control is passed to the exit routine,
the register coLtents are as follows:

GR 0: Internal control information.

GR 1: Address of the PIE.

GRs 2-13: Sane as when the program interrupt
occurred. The exit routine must not use
GR13 as a save area pointer.

GR 14: Return address (to the SPIE subroutine).

GK 15: Address of the exit routine.

The exit routine must return control to SPIE by using the
address in GR14. SPIE restores GRs 14, 15, 0, 1, and 2
from the PIE after control is returned but does not
restore the contents of GRs 3-13. If a program interrupt
occurs when the exit routine is in control, normal
interruption processing ocCcurs.

SPIE 417



MTS 3:

Example:

418

SPIE

SYSTEM SUBROUTINE DESCKIPTIONS

Octokber 1976

This example specifies an exit routine called FIXUP that
is to be given control if a fixed-point overflow cccurs.
The address returned in GR1 is stored in HOLD. This is
zero for the first call on SPIE. At the end of the
program, the call second call on SPIE disables the user
program interrupt processing.

LA 1,PICA
CALL SPIE
ST  1,HOLD

L 1,HOLD
CALL SPIE

HOLD DS F

PICA DC B'00001000"' Program mask bits
Dc AL3(FIXUP) Exit routine address
DC  X'0080! - Interruption mask

The same example using the SPIE macro.

SPIE FIXUP, (8)
ST 1,HOLD

L 5,HOLD
SPIE MF=(E, (5))
HOLD DS F



October 1976

Purpose:
Location:

Alt. Entry:

MTS 3: SYSTEM SUBROUTINE DESCRIPIIONS

—_———_—=—

SUBROUTINE DESCRIPTION

To write an output record on the logical I/0 unit SPRINT.
Resident'System

SPRINT#

Calling Sequences:

Description:

Assembly: CALL SPRINT, (reg,len,mod,lnum)
FORTRAN: CALL SPRINT (reg,len,mod,lnum,&ércl,...)

Parameters:

req 1is the location of +the virtual memory region
from which data is to be transmitted.

len 1is the location of a halfword (INTEGER*2) inte-
ger giving the number of bytes to be
transmitted.

mod is the Jlocation of a fullword of modifier bits
used to control the action of the subroutine.
If mod is zero, no modifier bits are specified.
See the "I/0 Modifiers" description in this
volune.

lnum (optional) is the location of a fullword integer
giving the internal representation of the line
number that is to be written or has been written
by the subroutine. The internal form of the
line number is the external form times 1000,
e.g., the internal form of line 1 is 1000, and
the internal form of line .001 is 1.

LCl,.-- is the statement label to transfer to if the
corresponding nonzero return code is
encountered.

Return Codes:

0 Successful return.

4 oOutput device is full.

>4 See the "I/O0 Subroutine Return Codes" description
in this volune.

The subroutine writes a record of length len (in bytes)
from the region specified by reg on the logical I/O unit
SPRINT. The parameter lnum is needed only if +the pod
parameter or the FDname specifies either INDEXED or PEEL

SPRINT 419



MTS 3:

Examples:

420

SPRINT

SYSTEM SUBROUTINE DESCEKIPTIONS

October 1976

(RETURNLINE#). L1f INDEXED is specified, the 1line number
to be written is specified in lnum. If PEEL is specified,
the line number of the record written is returned in lnum.

The default FDname for SPRINT is *SINK*.

There 1is a macro SPRINT in the system macro likrary for
generating the calling sequence to this subroutine. See
the macro description for SPRINT in MTS Volume 14.

The example below, given in assembly language and FORTRAN,
calls SPRINT specifying an output region of 80 bytes. No
modifier specification is made in the subroutine call.

Assembly: CALL SPRINT, (REG,LEN,MOD)
REG DS CLBO
MOD DC F'0!
LEN DC H'80"
or
SPRINT REG Subr. call using macro
FORTRAN : INTEGER REG (20) ,LEN*2/80/

CALL SPRINT (REG,LEN,O0)



October 1976

Purpose:
Location:

Alt. Entry:

nTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SPUNCH

SUBROUTINE DESCRIPTION

To write an output record on the logical I/0 unit SPUNCH.
Resident System

SPUNCH #

Calling Sequences:

Description:

Assembly: CALL SPUNCH, (reg,len,mod,lnum)
FORTRAN: CALL SPUNCH (reg,len,mod,lnum,&ércl,...)

Parameters:

=

eq 1is the location of the virtual memory region
from which data is to be transmitted.
en 1is the location of a halfword (INTEGER*Z) inte-
ger giving the nunber of bytes to be
transmitted.
od is the location of a fullword of modifier bits
used to control the action of the subroutine.
If mod is zero, no modifier bits are specified.
See the "I/0 Modifiers" description in this
volume.
lnum (optional) is the location of a fullword integer
giving the internal representation of the line
number that is to be written or has been written
by the subroutine. The internal form of the
line number is the external form times 1000,
e.g., the internal form of line 1 is 1000, and
the internal form of line .001 is 1.
ICU4, ... 1S the statement label to transfer to if the
corresponding nonzero return code is
encountered.

=

Return Codes:

0 Successful return.
4 Output device is full.

>4 See the "I/0 Subroutine Return Codes" description
in this volume.

The subroutine writes a record of length len (in bytes)
from the region specified by reg on the logical I/0 unit
SPUNCH. The parameter Llpum is needed only if the mod
parameter or the FDname specifies either INDEXED c¢r PEEL

SPUNCH 421



MTS 2:

Examples:

422

SPUNCH

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

(RETURNLINE#) . If INDEXED is specified, then the line
number to be written is specified in lnum. If PEEL is
specified, the 1line number of the record written is
returned in lnum.

The default FDname for SPUNCH is *PUNCH* (for batch mode
only) if a global card limit was specified on the $SIGNON
command. There 1s no default for conversational mocde or
for batch mode if no global card limit was specified.

There 1is a macro SPUNCH in the system macro likrary for
generating the calling sequence to this subroutine. See
the macro description for SPUNCH in MTS Volume 14.

The example below, given in assembly language and FORTRAN,
calls SPUNCH specifying an output region of 80 bytes. No
modifier specitication is made in the subroutine call.

Assembly: CALL SPUNCH, (REG,LEN, MOD)
REG DS CL80
MOD bC F'0!
LEN DC H'80!
or
SPUNCH REG Subr. call using macro
FORTRAN : INTEGER REG (20) ,LEN*2/80/

CALL SPUNCH(REG,LEN,O0)



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

STARTF

SUBROUTINE DESCRIPTION

To execute a program dynamically loaded by the subroutine
LOADF.

Resident System

Calling Sequence:

Description:

FORTRAN: CALL STARTF (id,pari,par2,...)

Parameters:

id is the location of the fullword integer storage
index number of the program that was dynamically
loaded by LOADF (the value returned by LOADF),
or is the location of an 8-character entry point
name, left-justified with trailing blanks.

parl,par2;...- (optional) are the parameters to be
passed to the program being executed. There may
be any number of parameters passed, dincluding
none.

Values Returned:
None.

STARTF is wused to execute a program loaded by the
subroutine LOADF. STARTF should be used whenever the
calling program and the program being called are FORTRAN
programs or programs which use the FORTRAN I/0 1library.
This 1s necessary in order to provide the proper I/0
environment for both the called program and the <alling
program onh return. In providing this, the I/0 library
environment is established in accordance with the '"merge"
bit. If the merge bit is 1, then both the calling and
called programs use the same I/0 library environment; if
the merge bit is 0, then the calling and called progranms
each use a separate copy of the I/0 library environment,
thus performing relatively independent I/0 operaticns.

If id is a storage index number, the dynamically loaded
program at that storage index number is invoked at the
entry point determined by the loader. If id is a symbol,
and if the MTS global SYMTAB option is ON, the dynamically
loaded program is invoked at the location assoc;ated with
that symbol in the loader symbol table.

STARTF 423



MTS 3: SYSTEM SUBROUTINE DESCKIPTIONS

October 1976

Example: INTEGER*4 PAR1/'ARG1'/,PAR2/'ARG2'/
INTEGLR*4 INFO/Z80000000/,SWITCH/Z00000040/
ID = LOADF (' FORTOBJ ',INFO,SWITCH,O)
CALL STARTF (ID,PAR1,PAR2)
CALL UNLDF ('FORTOBJ ',0,0)

This example loads the program in the file FORTOBJ and

executes it. The merge bit is set to 1 so that both
programs use tne same I/0 environment.

424 STARTF



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SIDDMP

T

SUBROUTINE DESCRIPTION

To dump a region of the user's virtual memory in the MTS
standard format. For dumping registers, dumping with

mnemonics, and other options, see the SDUMP subroutine
description in this volume.

Resident System

Calling Sequences:

Assembly: CALL STDDMP, (switch,outsub,wkarea,first,last)

Parameters:

sWitch is the location of a fullword of information.
The first halfword of switch is taken as the
storage index number that will be printed out
in the heading line. The remainder of sgwitch
is taken as a group of switches as fcllows:

bit 203 (Integer value = 2048) NOLIB
If set, the call will be ignored if
LOADINFO declares that the region of
storage is part of a library
subroutine.
28:s (Integer value = 8) DOUBLE SPACE

If this bit is set, the lines of the
dump will be double spaced. Other-
wise the normal single spacing will
QCccur.

outsub is the location of a subroutine that will be
called by STDDMP to "print" a line. This
subroutine is assumed to have the same cal-
ling sequence as the SPRINT subroutine.

wkarea is the location of a 100-word (fullword
aligned) region which STDDMP will use as a
Work area.

first is the location of the first byte of a core
region to be dumped. There are no boundary
requirements for this address.

last is the location of the last byte of a core
region to be dumped. There are no boundary
requirements for this address; however, an
address in last which is 1less than the
address in first will cause an error return.

STDDMP 425



HTS 31

Description:

Example:

426

STDDMP

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

Return Codes:

0 Successful return.
4 TIllegal parameters.

This subroutine uses the same <calling sequence as the
subroutine SDUMP, but only looks at the bits and parame-
ters as specirtied above in the calling sequence.

For each call, this subroutine "prints" (calls the output

(1) Blank line.

(2) Heading giving information about the region of
storage. The subroutine LOADINFO is called to
obtain the information.

(3) Blank line.

(4) Dump of the region, with 20 (hex) bytes printed
per line. To the left of the hexadecimal dump is
the actual hex location and the relative (to the
first byte of the region) hex location of the
first byte of the line; to the right of +the dump
is the same information printed as characters.
Nonprinting characters (bit combinations that do
not match the standard 60 character set of print-
ing graphics) are replaced by periods, and an
asterisk (*) is placed at each end of the charac-
ter string to delimit it. The lines '"printed" are
133 characters long.

Assembly: EXTRN SPRINT
CALL STDDMP, (SW,SPRINT,WK,FIRST,FIRST+3)

WK Ds 50D
SW DC Fto*
FIRS1I DC X'FIFZF3FYy!

The above example will cause STDDMP to print the hexadeci-
mal string 'F1F2F3F4'.



October 1976

Purpose:
Location:

Alt. Entry:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SYSTEN

===

SUBROUTINE DESCRIPTION

To terminate execution successfully.
Resident System

SYSTEM#

Calling Sequence:

Description:

Assembly: CALL SYSTEM
or
SYSTEMNM
FORTRAN: CALL SYSTEN

Note: The complete description for wusing the SYSTEH
macro is given in MTS5 Volume 14.

This subroutine returns control to MTS to terminate
execution. The comment "EXECUTION TERMINATED"™ is printed.
Execution terminated in this manner cannot ke resumed by a
$RESTART command. Calling this 'subroutine is equivalent
to the program doing a normal return (BR 14) from the call
that started execution.

All storage acquired for the executing program and all
usages of files and devices by the program are released.

SYSTEM 427



MTS >: SYSTEM SUBROUTINE DESCRLIPTIONS

October 1976

428 SYSTEM



October 1976

Purpose: The FORTRAN
subroutines.
Location: #*LIBRARY

Calling Sequence:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

TICALL

SUBROUTINE DESCRIPTION

interface to the MTS timer interrupt

FORTRAN: aexit=TICALL (code,subr,value)

CALL TICALL (code,subr,value,ércl,&rc8)

Parameters:

code

is +the 1location of a fullword integer which
specifies the meaning of the value parameter.
The valid choices are

0 wvalue is an B8-byte integer which specifies
a time interval in microseconds of task
CPU time, relative to the time of the
call.

1 value is an 8-byte binary integer which
specifies a time interval in micrcseconds
of real time, relative to the time of the
call.

2 value is an 8-byte binary integer which
specifies a time interval in microseconds
of task CPU time, relative to the time at
signon.

3 value is an 8-byte binary integer which
specifies a time interval in microseconds
of real time, relative to the time at
signon.

4 value is a U-byte binary integer which
specifies a time interval in timer units
(13 1/48 microseconds per unit) of task
CPU time, relative to the time of the
call.

5 vyalue is a 16-byte EBCDIC string giving

the time and date at which the interrupt
is to occur, in the form HH:MM.SSMM-DD-YY.

is the 1location of the subroutine +to be
called when the interrupt occurs. It should
be a subroutine with no arguments, and should
be declared EXTERNAL in the program which

TICALL 429



MTS 3:

Description:

Example:

430

TICALL

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

calls TICALL.

value is the location of a 4-, 8-, or 16-byte
fullword-aligned region which specifies the
time at which the interrupt is to occur, as
determined by the code parameter.

aexit will be assigned the location of the exit
region used in calling SETIME and TIMNTRP.
It is provided so that the user may subse-
quently call the subroutines RSTIME or GETIME
using

CALL RSTIME (subr,value,aexit), or
CALL GETIME (subr,value,aexit).

If the interrupt has not been set up, because
of an undefined code parameter or too many
interrupts set up, aexit will be assigned the
value zero.

rcld,rc8 is the statement label to transfer to if the
corresponding nonzero return code is
encountered.

Return Codes:
0 Successful return
4 Undefined code parameter
8 Too many interrupts set up.

A timer interrupt 1is set up, to occur at the time

specified by the <code and value parameter. When the
interrupt occurs, the subroutine subr will be called with
no arguments. If subr returns, the program will be

restarted at the point of the interrupt.

TICALL may be called several times, up to a maximum of 100
times. When' an interrupt occurs, further interrupts set
up by TICALL will be disabled until +the subroutine subr
returns, at which time other interrupts will be reenabled
if the return code is zero, and will remain disabled if
the return code is nonzero.

EXTERNAL TIMOUT
INTEGER ONESEC(2) /0,1000000/,REAL /1/

CALL TICALL (REAL,TIMOUT,ONESEC)

END
SUBROUTINE TIMEOUT (%)

(Process interrupt and reenable interrupts)



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

RETURN
(Disable interrupts)

RETURN 1
END
This example calls TICALL to set up a timer interrupt to

occur after 1 second of real time from the time of the

call to TICALL. When the interrupt is taken, the subrou-
tine TIMEOUT will be called.

TICALL 431



MTS 3: SYSTEM SUBROUTINE DESCEKIPTIONS

Octoker 1976

432 TICALL



October 1976

HTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

Purpose: To allow the user easy access to the elapsed time, CPU
time wused, time of day, and the date in convenient units.

Location: Resident Systenm

Calling Sequences:

Assembly: CALL TIME, (key,pr,res)

FORTRAN :

CALL TIME (key,pr,res)

Parameters:

key

is the location of a fullword integer describing
what quantities are desired from the subroutine.
The available choices are:

0
1

the CPU, elapsed, supervisor, and fproblenm
state times are initialized (see below).

the CPU time in milliseconds is returned in
Les.

the elapsed time in milliseconds is returned
in res.

the CPU time in milliseconds is placed in the
first word of res and the elapsed time in
milliseconds is placed in the second word of
res.

the time of day is returned as characters in
the form "HH:MM:SS" where "HH:M" is placed in

the first word of res and "M:SS" is placed in

the second word of res.

the date is returned as characters in the
form "MMM DD, 19YY" where "MMM " is placed in
the first word of res, "DD, " is placed in
the second word of res, and "19YY" is placed
in the third word of res. If "DD" is less
than 10, the leading zero is replaced by a
blank.

the time of day is placed in the first and
second words of res (see key=4) and the date
is placed in the third, fourth, and fifth
words of res (see key=5).

the supervisor state CPU time in seconds
multiplied by 300x256 is placed in res.

the problem state CPU time in seconds multi-
plied by 300x256 is placed in res.

TIME 433



MTS 3:

43y

TIME

10

11

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

the supervisor state CPU time (see key=7) is
placed in the first word of ©res and the
problem state CPU time (see key=8) is placed
in the second word of res.

the date 1s returned as characters in the
form "MM-DD-YY", where "MM-D" is placed in
the first word of res and "D-YY" is placed in
the second word.

the time of day is placed in the first and
second words of res (see key=U4 above) and the
date is placed in the third and fourth words

. 0f res (see key=10 above).

12"

13

4

15

16

17

18

19

20

21

22

‘the date 1is placed in the first and second

words of res (see key=10 above) and the time
of day is placed in the third and fourth
words of res (see key=4 above).

the current number of seconds starting with
March 1, 1900, 00:00:01 as "1" is placed in
res as a 32-bit unsigned integer.

the current number of minutes starting with
March 1, 1900, 00:00:01 as "1" is placed in
LeS.

the CPU time in microseconds is placed in the
first and second words of res as a 64-bit
integer.

the elapsed time in microseconds is placed in
the first and second words of res as a 64-bit
integer.

the CPU time in microseconds (see key=15) is
placed in the first and second words of res
and the elapsed time in microseconds (see
key=16) is placed in the third and <fourth
words of res.

the supervisor state CPU time in microseconds
multiplied by 4096 is placed in the first and
second words of res as a 64-bit integer.

the problem state CPU time in microseconds
multiplied by #4096 is placed in the first and
second words of res as a 64-bit integer.

the supervisor state CPU time (see key=18) is
placed in the first and second words of res
and the problem state CPU time (see key=19)
is placed in the third and fourth words of

res.

E%E date 1is returned as characters in the
form "WWW MMM DD/YY " where "WWW ", the day
of the week, is placed in the first word of
res, "MMM " is placed in the second word of
res, and "DD/YY " js placed in the third

and fourth words of res.

the date (see key=21) is placed in the first
four words of res and the time of day (see
key=U4) is placed in the fifth and sixth words



October 1976

1))

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

oI Les.

23 the current number of microseconds starting
with March 1, 1900, 00:00:00.000001 as "1" is
placed in the first and second words of res
as a 6U4-bit integer, the date in the form
"MM-DD-YY" (see key=10) is placed in the
third and fourth words of res, the date in
the form "WWW MMM DD/YY " (see key=21) is
placed in the fifth through eighth words of
res, and the time of day in the form
"HH: MM:SS" (see key=4) is placed in the ninth
and tenth words of res.

The CPU time and elapsed time are in millisec-
onds (key=1, 2, and 3) or microseconds (key=15,
16, and 17) relative to a global arbitrary, past
OCLigilL. The supervisor and problem state CPU
times are in timer units relative to a global
arbitrary, past origin. For key=7, 8, and 9,
one timer unit is 1/(256*300) seconds or about
13.0 microseconds. For key=18, 19, and 20, one
timer unit is 1/4,096,000,000 seconds or about
0.244 nanoseconds. Calling TIME with a key=0
resets these time origins locally to the time
status at the call on TIME. These time origins
are local to the program currently executing;
they do not carry over to another separate
program execution. TIME must be reinitialized
when used with another program execution.

If 1000 is added to the value of a key and the
result is the current date or time of day
(key=4-6, 10-14, and 21-23), the result is in
Greenwich mean time (GMT). If the result is not
based on the current date and time, adding 1000
to the value of the key will produce the sanme
results as the original key value.

is the location of a fullword integer indicating

whether the returned quantities are to be placed

in res or printed or both. The choices are:

0 the values are returned as described above.

<0 the values are returned and are also printed
on logical I/0 unit SPRINT.

>0 the values are only printed on logical I/0
unit SPRINT and are not returned. Thus the
rLes arqument is not needed.

If pr is 0, the values are returned.
is the location of a fullword integer variable

or vector in which the results are placed.

TIME 435



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Examples:

436 TIME

October 1976

Values Returned:

FRO

FR2

contains the doubleword, real value in seconds

(key=1-3, 7-9, 13, 15-20) or minutes (key=14) if
the returned value is numeric.

contains the doubleword, real, second value in
seconds if a second returned value 1is numeric
(key=3, 9, 17, 20).

Return Codes:

0 Successtul return.
4 Error, usually due to an improper value for key.

Index to key Values:

CPU tinme 1,3,15,17
Problem state time 8,9,19,20
Supervisor state time 7,9,18,20

Date
MM-DD-YY 10,11,12;23
MMM DD, 19YY 5,6
WWW MMM DD/YY 21,22 ,23

Elapsed time 2:;3+:16,17

Initialization 0

March 1, 1900 base 13, 14,;23

Time of day 4,6,11,12,22,23

Assembly: CALL TIME, (KEY,PR,RES)

The time
FORTRAN :

The date

KEY DC F'e!
PR DC F'o?
RES Ds SF

of day and date are stored in location RES.

CALL TIME(5,1)

is printed on logical I/0 unit SPRINT.

CALL TIME (0)

CALL TIME(2,-1,TIHN)

The elapsed time since the call on TIME(O) is printed on
SPRINT and stored in location TIM.



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

IIMNTRP

SUBROUTINE DESCRIPTION

To enable, disable, or return from timer interrupts set by
the SETIME subroutine.

Resident System

Calling Sequences:

Description:

Assembly: LM 0,1,=A(exit,region)
CALL TIMNTRP

Parameters:

GRO should contain zero or the location of the exit
routine to transfer control to when a timer
interrupt occurs.

GR1 should contain the location of a 76-byte exit
region for storing pertinent information.

Return Codes:
None

A call on the TIMNTRP subroutine sets up an exit for one
timer interrupt only. The calling sequence specifies the
location of an exit routine to transfer control to when
the next timer interrupt occurs and an exit region for
storing information. The timer interrupts themselves are
set up by calls to the SETIME subroutine.

TIMNTRP may be called several times with different exit
regions and different exit routines specified. ©Each call
on SETIME must also specify the exit region to be used
when the interrupt occurs. This "subsetting" capability
allows separate parts of large programs to use the timer
interrupt facility independently.

If GRO is =zero, timer interrupt exits for the specified
exit region are disabled. If, when a timer dinterrupt
occurs, 1its exit is disabled, the interrupt will remain
pending until the next call on TIMNTRP which enables the
exit, and the exit will be taken immediately following the
call.

When a timer interrupt exit is taken, the exit is

disabled, so that further timer interrupts which specify
this exit region will remain pending while the current one

TIMNTREP 437



MTS 3:

Example:

438

TIMNTRP

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

is being processed. The exit is taken in the form of a
subroutine call (BALR 14,15 with a GR13 save area pro-
vided) . At the time of this call, GR1 will point to the
exit region, whose contents will be

Word 1: the identifier passed to SETIME when the
interrupt was set up.

Words 2-3: the PSW at the time of the interrupt.

Words 4-19: GRO-GR15 (in that order) at the time of
the interrupt.

If the exit routine returns to MTS (BR 14), the user's
program will be restarted at the point of the interrupt.
The exit will be reenabled if the return code in GR15 is
zero; otherwise, the exit will remain disabled until
another call on TIMNTRP. The registers must be restored
in the standard fashion when the exit routine returns.

For further daetails, see also the GETIME, RSIIME, and
SETIME subroutine descriptions.

Assembly: M 0,1,=A (EXIT,REG)
CALL TIMNTRP

SR 0,0
LA 1,REG
CALL TIMNTRP

critical section

LM 0,1,=A(EXIT,REG)
CALL TIMNTRP

USING EXIT,15
EXIT STM 14,12,12(13)
. Pprocess interrupt
LM 14,12,12(13)
SR 15,15
BR 14
REG DS 19F

In this example, a timer interrupt exit is enabled, sone
computing is done, it is disabled as the program enters a
critical section, and it is then reenabled. The exit
routine saves the Tregisters, processes the interrupt,
restores the registers, and returns, reenabling the exit.



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBKOUTINE DESCRIPTION

Purpose: To provide conversational error processing for error
conditions detected by the elementary function subroutines

such as SQRT and EXP, and to provide program and attention
interrupt processing.

Location: Resident Systenm

Alt. Entry: TRACER#

Calling Sequences: (to invoke error processing)
Assembly: CALL TRACER, (msq)
FORTRAN: CALL TRACER (nsq)
Parameters:

msqg is the location of a message given either as a
halfword length followed by the text of the
message, or as a delimited string, i.e., if the
first byte of the parameter is a graphic charac-
ter, the message 1is taken to consist of all
characters following this character, up to, but
not including, the next occurrence of this same
character, e.g., '/A MESSAGE/'.

Calling Sequences: (to enable interrupt processing)
Assembly: CALL TRACER, (-1,msk,ima)
FORTRAN: CALL TRACER(-1,msk,ima)
Parameters:

msk (optional) is the location of a fullword integer
interrupt mask specifying the type of processing
which is desired for attention interrupts and
each of the fifteen program interrupts. With
the usual left to right numbering, bits 0 and 1
control attention interrupt processing, and bits
2%n and 2%n+1 control the processing of progranm
interrupt n, n=1,...,15. These two bit masks
function as follows:

00 0 sStandard system processing
01 1 Unused, same as 00

TRACER 439



MTS 32

Description:

440

TRACER

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

10 z Comment and resume processing
11 3 Standard TRACER processing

If this argument is omitted, +the value of
X'FFFF3FF3' is used.

(optional) is the location of a character string
to provide an alternative set of messages to be
displayed when an interrupt occurs. The first
character of the string is used as a delimiter
to separate the set of sixteen messages. The
delimiter character is arbitrary. The first
delimited string corresponds to the attention
interrupt message, while the nth delimited
string corresponds to program interrupt n-1.
The final delimited string must be terminated by
the delimiter character, e.g.,

1P
=
I

/ATTN/1/2/3/4/5/6/7/8/9/10/11/12/13/14/15/
Return Codes:
None.

The TRACER program is built around a traceback facility,
and is capable of supplying information on the current
program status and of resuming execution at any entry or
return point in the existing linkage chain. The trace
facility assumes the standard 0S (I) S-type calling
convention and that each program has saved appropriately
all of the general registers. Commands for displaying and
altering floating=-point, integer, character, and hexadeci-
mal data are available.

When called, TRACER attempts to ascertain pertinent infor-
mation concerning its calling program, e.9., Dname and
arguments. Proceeding backwards via the save area chain,
it then attempts to discover the same information about
the program which called TRACER's caller, etc. Under most
circumstances, the traceback will terminate when TRACER
locates the information associated with the invocation of
the main program by the systenm.

For example, suppose MAIN calls a subroutine named SUB,
which calls a tunction named FCN, which happens to «call
SQRT with an argument of -1. TRACER will generally be
able to discover:

(1) The names of the programs in the 1linkage chain,
i.e., TRACER SQRT FCN SUB MAIN =SYSTEM

(2) the current values of the arguments passed
betweern each program,

(3) the status of the general registers when each
call occurred, and



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

(4) the current status of the floating-point
registers.

The logical I/0 unit GUSER is wused as the source for
TRACER commands. Two prompting characters are used: ":"
is used to request the next command when the previous
command was successfully executed, and "?" is used to
request the next command when the previous command could
not be executed.

The logical I/0 unit SERCOM is used for all output from
TRACER. For batch users, the commands read from GUSER are
echoed on SERCOM. Carriage control is always off and all
output lines contain at most 71 characters.

The following paragraphs give a brief summary of the
TRACER command language facility.

The TRACE command may be used to obtain information
concerning the current linkage chain. The names of
these programs may be obtained by "TRACE@N"; the save
area, parameter list, and entry point addresses by
"TRACE@A"; and, the caller and arguments by
"WTRACE®@P". Since mode information for arguments is
not available, the first eight bytes at each argument
address are displayed in hex.

The CALL and RETURN commands may be used to resune
execution. For example, "CALL SUB" would cause
execution to resume in the program SUB as if it had
just been called by MAIN; while, "RETURN SUB" would
cause execution to resume in MAIN immediately after
the point SUB was called.

The DISPLAY and ALTER commands may be used like the
corresponding system commands, e.g., "DIS 500260",
"DIS FR4". Since there is a set of general registers
for each program in the linkage <chain, the usual
general 1Iregister designators should be qualified,
e.g., "DIS MAIN GRS" refers to gemneral register 5 at
the +time MAIN called SUB. The "DIS GRS" command
displays the general registers for each program din
the linkage chain. A relocation factor facility is
available, but is generally set automatically, and is
applied only to addresses below 100000. For example,
"DIS®I MAIN+EC(5)" sets the relocation factor to
MAIN, and displays the 5-th element of the integer
vector assigned to relative location EC in MAIN.
Arguments to the subroutines in the linkage chain are
referenced by their relative position in the parame-
ter list, e.g., "DIS@E SUB(1)" interprets the first
argument to SUB as a REAL*U4 variable; "DISaD3 SUB(3)"
displays the first three elements of the REAL*8

TRACER 441



MTS 3:

442

TRACER

SYSTEM SUBROUTINE DESCKIPTIONS

October 1976

vector passed as the third arqument. Note +that an
area 1is not displayed by using the ellipsis "...",
but rather by giving the number of elements desired.

The CONTINUE and TRAP commands are associated with
the interrupt processing facility. For example,
"TRAP FPUN=0" would cause subsequent floating-point
underflows to be ignored. Note that if TRACER had
never been called to request control of interrupts,
this would automatically occur when the TRAP command
is given. The CONTINUE command causes executicn to
resume with the instruction following the one that
produced the interrupt.

Although TRACER was designed primarily as a conversational
program, it contains many facilities of use in batch mode.

For a complete description of TRACER, see Computing Center
Memo 218.



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

IRUNC

SUBROUTINE DESCRIPTION

Purpose: To deallocate unused space at the end of a file previously
allocated to the file.

Location: Resident Systen
Calling Sequence:
Assembly: CALL TRUNC, (unit)
FORTRAN: CALL TRUNC (unit,&rcl4,6&rc8,6rc12,86rcl16,8&rc20)

Parameters:

unit is the location of either
(a) a fullword-integer FDUB-pointer (as
returned by GETFD),
(b) a fullword-integer logical I/0 unit num-
ber (0 through 19), or
(c) a left-justified 8-character logical I/0
unit name (e.g., SCARDS).
rcl...rc20 are statement labels to transfer to if the

corresponding return codes occur.
Return Codes;:

0 The file has been truncated successfully.
4 The file does not exist.
8 Hardware error or software inconesistency
encountered.
12 Truncate (or write-extend) access not allowed.
16 Locking the file for modification will result in a
deadlock.
20 An attention interrupt has canceled the automatic
wait on the file (waiting caused by concurrent
usage of the (shared) file).

Note:
This subroutine does not optimize or compress line
files. It simply checks to see if any space at the
end of the file has not been used and, if so,
deallocates it.

Examples: Assembly: CALL TRUNC, (UNIT)

UNIT DC rr5t

TRUNC 443



MTS 3:

e

TRUNC

SYSTEM SUBROUTINE DESCRIPIIONS

FORTRAN: INTEGER*U4 UNIT
DATA UNIT/5/

CALL TRUNC (UNIT)

The above examples will truncate +the file
logical I/0 unit 5.

October 1976

attached

to



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

To wait, for a specified real time interval, and return.

*LIBRARY

Calling Sequences:

Description:

Example:

Assembly: CALL TWAIT, (code,value)

FORTRAN: CALL TWAIT (code,value)

Parameters:

code is the location of a fullword integer which

The valid choices are

0 value is an 8-byte binary integer which
specifies a time interval in microseconds,
relative to the time of the call.

1 wvalue is an B8-byte binary integer which
specifies a time interval in microseconds,
relative to midnight, March 1, 1900.

2 value is a 16-byte EBCDIC string giving
the time and date at which the wait should
end, in the form HH:MM.SSMM-DD-YY.

value is the 8- or 16-byte, fullword-aligned region
which specifies the time at which the wait
should end, as determined by the code
parameter.

Return Codes:

0 Successful return
4 Invalid code parameter

The TWAIT subroutine puts the task into wait state until
the time interval specified by the code and value parame-

ters has elapsed, and then returns.

FORTRAN : INTEGER TENSEC(2) ,0,10000000/
INTEGER TWO30(4)/'02:3','0.00','05-1','0-72'/

CALL TWAIT(0,TENSEC)
CALL TWAIT (2,TW030)

TWAIT 445



MTS 3:

4ue6

TWAIT

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

This example calls TWAIT twice, the first time specifying
that a pause of 10 seconds relative to the time of the
call on TWAIT is to occur, the second time specifying that
a pause 1is to occur which will last until 2:30 am on May
10, 1972.



October 1976

Purpose:

Location:

Alt. Entry:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

To request that a file be unlocked, i.e., to dynamically
allow access to a file (allow it to be shared by cthers)
which has previously been restricted by locking (either
explicitly or implicitly).

Resident System

UNLCK

Calling Sequence:

Parameters:

Description:

Assembly: CALL UNLK, (unit)

FORTRAN: CALL UNLK (unit,&rcd)

unit is the location of either
(a) a fullword-integer FDUB-pointer (as
returned by GETFD),
(b) a fullword-integer logical I/0 unit num-
ber (0 through 19), or
(c) a left-justified B8-character logical I/0
unit name (e.g., SCARDS) used to lock the
file (either explicitly in a call to LOCK
or implicitly in a call to WRITE, for
example) .
ccl is the statement label to transfer to if the
corresponding return code occurs.

Return Codes:

0 The file has been unlocked successfully.
4 Illegal wunit parameter specified, or hardware
error or software inconsistency.

Note:

If more than one FDUB within a job has a locking
request on the file, after the call to UNLK, the file
is left locked at the level of the highest remaining

request.
See Appendix D of the section "Files and Devices" in MUTS

Volume 1 for details concerning concurrent use of shared
files.

UNLK 447



MTS 3:

SYSTEM SUBROUTINE DESCRIPTIONS

Examples:

448

UNLK

October 1976

Assembly: CALL UNLK, (UNIT)

UNIT DC Flo!

FORTRAN: INTEGER*U4 UNIT
DATA UNIT/6/

CALL UNLK (UNIT)

The above examples will wunlock the file attached to
logical I/0 unit 6 assuming the file has previously been
locked (e.g., by a call to the LOCK subroutine).



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

To UNLOAD what was loaded on some previous call to the
LOAD subroutine.

Resident System

Calling Sequences:

Description:

Assembly: CALL UNLOAD, (name,sinbr,sws)
FORTRAN: CALL UNLDF (name,sinbr,sws,&ércl)

Parameters:

name is either the location of the "name" (speci-
fied by sws) or zero.

sinbr is either the 1location of the fullword
(INTEGER*4) storage index number or =zero.
This parameter is referenced only if name is
Zero.

SWs is the location of a fullword switch:

0 name is the FDname from which the material
was LOADed.

1 name is an B-character, left-justified,
external symbol.

2 name is a fullword virtual memory lccation

(the SYMTAB option must be ON).

rch is the statement label to transfer to if a
nonzero return code is encountered.

Return Codes:

0 Successful return.

4 The subroutine could not find the name in the LOAD
table, or sWs is nonzero and SYMTAB is OFF, or the
external symbol or virtual memory address could
not be found in the loader tables.

Each time the LOAD subroutine is called, a new storage
index number is assigned for use with storage acquired in
order to load the material in the file specified for that
LOAD call. In order to unload the material, either the
storage index number or the name of the file LOADed from
may be given. In addition, if the global switch SYMTAB is
ON, the name of an external symbol or a virtual memory

UNLOAD, UNIDF 449



MTS 3:

Exampies:

450

UNLOAD,

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

location in the material loaded may be specified. In any
case, all of the material loaded on that call on LOAD is
unloaded. See the "Virtual Memory Management" secticn in
MTS Volume 5 for a further description of wusing =storage
index numbers with the LOAD and UNLOAD subroutines.

FORTRAN: CALL UNLDF ('PROGALE ',0,1,899)

This example calls UNLDF to find the storage index number
associated with the external symbol PROGALE. All storage
with that storage index number is unloaded.

CALL UNLDF (BUFLOC,0,2,89)

This example calls UNLDF to find the storage index
associated with the virtual memory address in location
BUFLOC. All storage with that storage index number is
unloaded.

Assembly: CALL UNLOAD, (0,SIN,O0)

SIN DS F

This example calls UNLOAD to unload all storage with the
storage index number in location SIN.

UNLDF



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

To compute uniformly distributed real random numbers
between 0 and 1.0.

*LIBRARY

Calling Sequences:

Description:

Assembly: CALL URAND, (init)
FORTRAN: X = URAND (init)
Parameters:

init is the location of an (optional) initial integer
value.

Values Returned:

FRO will contain the uniformly distributed random
number generated by the subroutine. For FORTRAN
users, this value will be returned in Xx.

If init contains a nonzero odd integer between 1 and 231-1
(2147483647), then a new integer random number will be
generated using the formula

init=(65539%init) (mod 231-1).

The corresponding real random number X will be returned as
a function value for FORTRAN or in FRO for assembly
language users.

If init contains zero, the next integer random number will
be supplied by the routine and will depend upon the time
of day. The new integer random number that is generated
will be stored in init. Thus, X = URAND(0) is not
permissible.

If the same sequence of random numbers is required on

successive runs, the user must supply the same initial
value of init.

URAND 451



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

Examples: Assembly: CALL URAND, (INTEG)
STE O0,RAND

INTEG DC Froggv
RAND DS E

FORTRAN: I=999
X=URAND (I)

In both examples above, URAND is called with the initial
value of 999.

452 URAND



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

WRITE

SUBROUTINE DESCRIPTION

Purpose: To write an output record on a specified logical I/0 unit.

Location:  Resident Systenm

Alt. Entry: WRITE#

Calling Sequences:

Assembly: CALL WRITE, (reg,len,mod,lnum,unit )
FORTRAN: CALL WRITE(reg,len,mod,lnum,unit,&rcl,...)
PL/I: See the IHERITE subroutine description.
Parameters:
req is the location of the virtual memory region
from which data is to be transmitted.
len is the location of a halfword (INTEGER*2) inte-
ger giving the number of bytes to be
transmitted.
mod is the location of a fullword of modifier bits
used to control the action of the subroutine.
If mod is zero, no modifier bits are specified.
See the "I/0 Modifiers" description in this
volune.
lnum is the location of a fullword integer giving the
internal representation of the line number that
is to be written or has been written by the
subroutine. The 4internal form of the line
number is the external form times 1000, e.g.,
the internal form of line 1 is 1000, and tae
internal form of line .001 is 1.
unit is the location of either
(a) a fullword-integer FDUB-pointer (such as
returned by GETFD) ,
(by a fullword-integer logical I/0O unit number
(0 through 19), or
(c) a left-justified 8-character logical 1I/0
unit name (e.g., SCARDS).
rcl,... is the statement label to transfer to if the

corresponding nonzero return code is
encountered.

WRITE 453



MTS 33

Description:

Examples:

usy

WRITE

SYSTEM SUBROUTINE DESCRLPTIONS

October 1976

Return Codes:

0 Successful return.

4 Output device is full.

>4 See the "I/O Subroutine Return Codes" description
in this volunme.

The subroutine writes a record on the logical I/0 unit
specified by unit of length len (in bytes) from the region
specified by reqg. The parameter lnum is used only if the
mod parameter or the FDname specifies either INDEXED or
PEEL (RETURNLIKE#). If INDEXED is specified, the line
number to be written is specified in lnun. If PEEL is
specified, the line number of the record written is
returned in lnum.

There are no detault FDnames for WRITE.

There is a macro WRITE in the system macrc 1library for
generating the «calling sequence to this subroutine. See
the macro description for WRITE in MTS Volume 14.

The example below, given in assembly language and FORTRAN,
calls WRITE specifying an output region of 80 bytes. The
logical I/0 unit specified is 6 and no modifier specifica-
tion is made in the subroutine call.

Assembly: CALL WRITE, (REG,LEN,MOD,LNUM,UNIT)

REG DS CL80
MOD DC Fio!t

LNUM DS F

LEN DC H'80"'
UNIT DC F'e'

or

WRITE 6,REG Subr. call using macro.

FORTRAN: INTEGER*2 LEN/80/
INTEGER REG (20) ,LNUM

CALL WRITE (REG,LEN,Q0,LNUM,6)

The example below, given in assembly language and FORTRAN,
sets up a call to WRITE specifying that the output will be
written into the file FYLE.



October 1976

Assembly:

FORTRAN :

REG
LEN
MOD
LNUM
UNIT

30

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

LA 1,=C'FYLE
CALL GETFD
ST 0,0NIT

CALL WRITE, (REG,LEN,MOD,LNUM,UNIT)

DS 20
DS H
DC F10°*
Ds F
DS F

EXTERNAL GETFD
INTEGER*U ADROF,UNIT
CALL RCALL (GETFD,2,0,ADROF (' FYLE

1) ,1,UNIT)

CALL WRITE (REG,LEN,0,LNUM,UNIT,&30)

WRITE

55



dLI¥YM 9Gh

9L6lL I9q03D0

SNOILATYOSHA INTINO¥YENS WHLSAS € SIHW



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

—_——_——a==

SUBROUTINE DESCRIPTION

Purpose: To ﬁrite out all changed file buffers.
Location: Resident System
Alt. Entry: WRITBF
Calling Sequences:
Assembly: CALL WRITEBUF, (unit)
FORTRAN: CALL WRITBF (unit,&rc#)

Parameters:

unit is the location of either
(a) a fullword-integer FDUB-pointer (such as
returned by GETFD),
(b) a fullword-integer logical I/0 wunit number
(0 through 19), or
(c) a left-justified, 8-character logical I/0
unit name (e.g., SCARDS).
Ic4 1is the statement label to transfer to if the
corresponding return code occurs.

Return Codes:

0 Successful return.

4 Illegal unit parameter specified, or hardware
error or software inconsistency encountered.

Description: A call on this subroutine causes all changed lines in the

file buffers to be written to the file, thus making the
file on the disk an up-to-date copy.

This subroutine does not release the file buffers and does
not close the file; i.e., it is not necessary to cpen the
file again (read the catalog, etc.) on subsequent I/0
operations.

Examples: Assembly: CALL WRITEBUF, (UNIT)

UNIT DCI CLB'SPRINT!

WRITEEBUF 457



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

FORTRAN: CALL WRITBF ('SPRINT ')

The above examples cause WRITEBUF to update the disk copy
of the file attached to the logical I/0 unit SPRINT.

458 WRITEBUF



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBROUTINE DESCRIPTION

Purpose: To effect the dynamic loading and execution of a program.
Location: Resident System

Calling Sequences:

Assembly: CALL XCTL, (input,info,parlist,errexit,outgut,
lsw,gtsp,frsp,pnt)

FORTRAN: CALL XCTLF (i1nput,info,parlist,errexit,output,
lsw,gtsp, frsp, pnt)

Parameters:

input is the location of an input specifier to be
used during loading to read loader records.
An input specifier may be one of the
following:

(1) an FDname terminated by a blank.

(2) a FDUB-pointer (as returned by GETFD).

(3) an B8-character 1logical I/0 unit name,
left-justified with trailing blanks. In
this case, bit 8 in info must be 1.

(4) a fullword-integer logical I/0 unit num-
ber (0-19).

(5) the address of an ingput subroutine to be
called during loading via a READ subrou-
tine calling sequence to read loader
records (i.e., the input subroutine is
called with a parameter list identical
to the system subroutine READ). In this
case, bit 9 in info must be 1.

info is the location of an optional information
vector. No information is passed if info is
0 or if 4info is the location of a fullword
integer 0. The format of the information
vector is as follows:

(1) a halfword of XCTL control bits defined as
follows:

bit 0: 1, if errexit parameter is

specified.
bit 1: 1, if output is specified.

ACTL, XCILF 459



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

bit 23 1, if lsw is specified.

bit 33 1, if gtsp is specified.

bit U4: 1, if frsp is specified.

bit 5i 1, if pnt is specified.

bit 6: 0

bit 7: 1, to request XCTL tc restore
the registers of the pre-
vious link level Dbefore
transferring control to the
specified program.

0, if the caller has restored

then.

bit 8; 1, if input is the location of
a logical I/0 unit nanme.

bit 9: 1, if ipput is the location of

an input subroutine address.

bit 10: 1, if output is the location of
a logical I/0 unit name.

bit 11: 1, if output is the location of
an output subroutine
address.

bit 12: 1, if the program to ke loaded
is to be merged with the
program previously loaded.

bit 13: 1, to suppress prompting at a
terminal.

bit 14: 1, to force allocation of a new
loader symbol table.

bit 15: 0

(2) a halfword count of +the number of
entries in the following dinitial ESD
list.

(3) a variable-length initial ESD list, each
entry of which consists of a fullword-
aligned 8-character symbol followed by a
fullword value.

parlist is the 1location of a parameter list to be
passed in GR1 to the program being trans-
ferred to.

errexit (optional) is the location c¢f an error-exit
subroutine address to be called if an error
occurs while attempting to transfer to the
specified program. If bit 0 of info is 0
(the default), the errexit parameter is
ignored and an error return is made to MIS
command mode. The exit routine will be
called via a standard S-type calling sequence

with two parameters defined as follows:

460 XCTL, XCTLF



October 1976

|

I=

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

P1: the location of a fullword integer error
code defined as follows:

0: attempt to load a null program.

4: fatal loading error (bad object
program) .

8: wundefined symbols referenced by the
loaded progranm.

Pz: the 1location of a fullword containing
the loader status word.

If the exit routine returns, XCTL will return
to MTS without releasing program storage
(i.e., as if the werror exit had not been
taken).

(optional) 1is the location of amn output
specifier to be used during loading to pro-
duce loader output (error messages, map,
etc.) . If bit 1 of info is 0 (the default),
the output parameter 1is ignored and all
loader output is written on the MAP=FDname
specified on the initial $RUN command. An
output specifier may be one of the following:

(1) an FDname terminated by a blank.

(2) a FDUB-pointer (as returned by GETFD).

(3) an 8-character logical I/0 unit name,
left-justified with trailing blanks. 1In
this case, bit 10 of info must be 1.

(4) a fullword-integer logical I,/0 unit num-
ber (0-19).

(5) the address of an output subroutine to
be called during loading via the SPRINT
subroutine calling sequence tc write
loader output (i.e., the output subrou-
tine is called with a parameter 1list
identical to the system subroutine
SPRINT). In this case, bit 11 of info
must be 1.

(optional) is +the location of a fullwerd of
loader control bits. If bit 2 of info is 0
(the default), the lsw parameter is ignored
and the global MTS settings are used. The
loader control bits are defined as fcllows:

bits 0-23: 0

bit 24: 1, to suppress the pseudo-register
map.

bat 25: 1, to suppress the predefined symbol
map.

XCTL, XCTLF 461



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

bat 26: 1, to print undefined symbols.

bit 27: 1, to print references to wundefined
symbols.

bit 28: 1, to print references to all exter-
nal symbols.

bit 29: 1, to print dotted lines arcund the
loader map-

bit 30: 1, to print a map.

bit 31: 1, to print nonfatal error messages.

gtsp (optional) is the location of a storage

allocation subroutine +to be called during
loading via a GETSPACE calling sequence to
allocate loader work space and program
storage. If bit 3 of info is =zero (the
default), GETSPACE is used.

frsp (optional) 1is the 1location of a storage

deallocation subroutine to be called during
loading via a FREESPAC calling sequence to
release loader work space. If bit 4 of info
is 0 (the default), FREESPAC is used.

(optional) is the location of a direct access
subroutine to be called during loading via a
POINT caliing sequence while processing
libraries in sequential files. If bit 5 of
info is 0 (the default), POINT is used.

Values Returned:

None.

Description: XCTL provides a method for dynamically loading and execut-
ing programs in an overlay fashion. XICTL provides this
facility as follows:

(1)

(2)

(3)
(4)
(5)

XCTL makes a copy of all its parameter values and
releases all storage associated with the current
link level.

The loader is called to dynamically 1load the
specified program using input, info, output, lsw,
gtsp, frsp, and pnt if specified.

The dynamically loaded program is called with the
If the dynamically loaded program returns to XCTL,
it is unloaded.

XCTL returns to the program which initiated the
current link level, preserving the return regis-
ters of the dynamically executed progran.

Note that XCTL accepts a variable-length parameter list of
three to eight arguments. For most applications, only the

462 XCTL, XCTLF



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

first three are required. These parameters passed to XCTL
may be part of the current 1link 1level to be released,
since XCTL makes copies of them. However, the parameter
list and parameters passed to the program XCTled to, as
well as the optional subroutines specified by input,
output, errexit, gtsp, frsp, and pnt may not be part of
the current 1ink level since it is released before the
program transferred to, is loaded and executed.

Note that by default it is the user's responsibility to
restore the registers of the previous link level before
calling XCTL. Since this is possible in general only at
the assembly language level, calls to XCTL from higher-
level languages (e.g., FORTRAN, PL/I, etc.) must have bit
7 in info set to 1.

FORTRAN programs (cr programs that wuse the FORTRAN I/0
library) that dynamically load other FORTRAN programs (or
programs using the FORTRAN I/0 library) should use the
alternate entry point XCTLF. XCTLF is required tc provide
the dynamically loaded program with a FORTRAN I/0 environ-
ment consistent with the "merge" bit specified in info.
If the merge bit is 1, the dynamically loaded program will
have the same I,/0 environment as the calling program. If
the merge bit is 0, the dynamically loaded program will
have a separate, reinitialized I/0 environment. Both
FORTRAN main programs and subroutines can be dynamically
loaded using XCTLF. However, the effect of executing a
STOP statement from a dynamically locaded subroutine will
depend on the setting of the merge bit. If the merge bit
is 1, a return is made to the program which linked to the
calling program; if the merge bit is 0, a return is mnade
to MTS.

Because the rate structure for use of MTS includes a
charge for allocated virtual memory integrated over CPU
time, the cost of running a large software package in MTS
can often be reauced by dynamically loading and executing
sequential phases in an overlay fashion via calls to XCTL.
Such savings in the storage integral must be weighed
against the additional CPU time required to open a second
file, reinvoke the loader, and rescan the required
libraries.

The user also should see the sections "The Dynamic Loader"
and "Virtual Memory Management"™ in MTS Volume 5. In
particular, they describe the use of initial ESD lists,
merging with previously loaded programs, and the relation-
ship between LINK, LOAD, and XCTL storage management.

XCTL, XCTLF 463



MTS 3:

Example:

4oy

XCTL,

Assembly:

MYSAVE
XCPAR
INPUT
INFO
PARAD
PAR
PARSTR
PARLEN

The above example dynamically loads *FTN and compiles
in the file -SOU into the file =I0AD with
When *FTN returns to XCTL,

source progranm

the listing written to =PRINT.

SYSTEM SUBROUTINE DESCRIPTIONS

LA
LA
L
BALR
ST
LA
ST
MvC
LA
L

L
LM
L
BR

DS
DC
I
DC
DC
DC
DC
EQU

0,1
1,PARLEN

GR15,=V (GETSPACE)
GR14,GR15
1,XCPAR+8

2,4(1)

2,PARAD

0 (PARLEN, 1) , PARAD
1,XCPAR

15,=V (XCTL)
13,MYSAVE+}
2,12,28(13)
14,12(13)

15

184

A (INPUT,INFO,0)
C'*FTN !

F'0'

A (0)

Y (L' PARSTR)

October 1976

Highest-level stg
Length required
Allocate space
for par list
Save address

Set the par list

Move in paranms

Get par list ptr
GET XCTL address
Set save area ptr
Set caller's regs

Invoke XCTL

C'5=-50U0,L=-LOAD,P=-PRINT'

#*=-PARAD

the

a return is made to the caller of the above assembly
program. Note that if bit 7 of info is zero (the
default), it is the responsibility of the program calling

XCTL
invoking XCTL.

XICTLF

to restore the registers of the previous link before



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

This section contains descriptions of the subroutines that are a part
of the PL/I library *PL1LIB.

Each of +these subroutines may be called directly. Many other

subroutines that require an S-type calling sequence may be called by
using the PLCALL subroutine which is described in this section.

PL/I Library Subroutines 465



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

466 PL/I Library Subroutines



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBROUTINE DESCRIPTION

Purpose: To associate a PL/I file variable name with an appropriate
MTS file or device nane.

Location: *PL1LIB
Calling Sequences:

PL/I: CALL ATTACH (string) i

Parameters:

string is a character string of either fixed or

variable length which must follow these
restrictions:

(1) the string must not be a null string,

(2) the length of the string must not be
more than 255 characters, and

(3) the string must conform to that of

Description: The subroutine passes gtring to an internal routine which

processes the PAR=string format (see Computing Center Memo
260) .

Example: PL/I: CALL ATTACH ('A=X B=YaF (80)') ;

This example associates PL/I files A and B with X (an MTS

file) and with Y (another MTS file with fixed format of
length 80).

ATTACH 467



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

468 ATTACH



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

To determine whether the user is in batch or conversation-
al mode.

*PL1LIB

Calling Sequences:

Description:

Example:

PL/I: DECLARE BATCH ENTRY
RETURNS (BIT (1)) ;

The subroutine returns '1'B if the user is in batch mode;
otherwise, it returns '0'B.

PL/I: IF BATCH THEN STOP;
ELSE GOTO RETRY;

In this example, if the program is running in batch mode,
it stops; otherwise, it transfers to the label RETRY.

BATCH 469



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

470 BATCH



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

CNTL

SUBKOUTINE DESCRIFTION

To provide an interface between the PL/I user and the
CONTROL entry in the device support routines (DSRs). This
subroutine allows the PL/I user to execute control opera-
tions on files and devices. See the CONTROL subroutine
description in this volume.

*PL1LIB

Calling Sequence:

Note:

Examples:

PL/1: CALL CNTL (fdname,info)
Parameters:

fdname 1is a CHARACTER variable or constant giving
the name of a file or device.

info is a CHARACTER variable or constant giving
the control information to be passed to the
device support routines.

Return Codes:

0 Successful return from CONTROL.
>0 Unsuccessful return from CONTROL. The PL1RC sub-

routine may be used to interrogate the return
code.

The user should exercise care when using the CNTL subrou-
tine if the PL/I file to which fdname refers is open.

PL/I: CALL CNTL ("*T*','REW') ;
IF PL1RC-=0 THEN GOTO NOREW;

This example calls CONTROL to rewind the tape *T*, and
then checks to see if the rewind operation was successful.

CALL CNTIL ('"*SINK*','DON''T!) ;

This example calls CONTROL with the Data Concentrator or
Memorex device support command DON'T.

CNTL 471



MTS 3: SYSTEM SUBROUTINE DESCRKIPTIONS

Octoker 1976

472 CNTL



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

To obtain the CPU time (in seconds) from the beginning of
the current progran.

*PL1LIB

Calling Sequences:

Description:

Example:

PL/I: DECLAKE CPUTIME ENTRY
RETURNS (FLOAT BINARY) ;

The subroutine returns the floating-point value of the CPU
time (in seconds) from the beginning of the progran.

PL/I: START_TIME: PROC;
DCL (TIME1, TIME2) STATIC FLOAT BIN,
CPUTIME ENTRY RETURNS (FLOAT BIN) ;

TIMNE2 = CPUTIME;
RETURN;

TIME: ENTRY FLOAT BIN;
TIME1 = TIME2;
TIME2 = CPUTIME;
RETURN (TIMEZ2 - TIME1);

END;

This example determines the amount of CPU time taken in
executing a loop. It first calls START_TIME to initialize
the variable TIME2; then, on every call, the procedure
TIME returns the CPU time in seconds since the previous
call.

CPUTIME 473



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

474 CPUTIME



October 1976

Purpose:

Location:

MTS 3: SYSTEH SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

To obtain the elapsed time (in seconds) from the beginning
of the program.

*PL1LIB

Calling Segquences:

Description:

Example:

PL/I: DECLARE ELAPSED ENTRY
RETURNS (FLOAT BINARY) ;

The subroutine returns the floating-point value (in sec-
onds) from the beginning of the program.

PUT EDIT ('ELAPSED TIME - ',ELAPSED, 'SECS')
(A,F(15,3) ,R);

This example prints out the elapsed time in seconds. since
the beginning of the progran.

ELAPSED 475



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

476 ELAPSED



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

FINFO, TFINFO, RFINFOQ

SUBROUTINE DESCRIPTION

To obtain information on a file or device attached to a
PL/I file.

*PL1LIB

Calling Sequence:

Description:

- Example:

PL/I: DECLARE FINFO ENTRY (FILE) RETURNS (POINTER) ;
DECLARE RFINFO ENTRY (POINTER) ;
infob=FINFO (pli1file) ;
CALL RFINFO (infob) ;

DECLARE TFINFO ENTRY (FILE,CHARACTER (*))
RETURNS (POINTER) ;

DECLARE RFINFO ENTRY (POINTER) ;
infob=TFINFO (pli1file,title);
CALL RFINFO (infob) ;

Given the PL/I file as an argument, the FINFO subroutine
returns the pointer value as the address pointing to the
GDINFO buffer infob. If the buffer is not available, it
returns the null pointer. This buffer is exactly as
described in the GDINFO subroutine description in this
volume.

The TFINFO subroutine does exactly the same as +the FINFO
subroutine except that it associates the PL/I file name
with the second argument declared as a character string.
If a PL/I wuser wants to open a PL/I file with the TITLE
option and wants to inquire for the information on the
file, then he should use the TFINFO subroutine with the
second argument equal to the expression in the TITLE
option. ;

The RFINFO subroutine should be called to release the

information buffer infob when it is no longer needed.

PL/I: DECLARE FINFO ENTRY (FILE) RETURNS (POINTER),
1 INFO BASED(INFOB),

FDUB POINTER,

TYPE CHARACTER (4) ,

INP_MAX FIXED(15) BINARY,

OUT_MAX FIXED (15) BINARY,

FDUBTYPE BIT (8),

TYPEINDX BIT (8),

SWITCHES BIT(8),

LSRN SH.SH L LN SN N

FINFO, TFINFO, RFINFO 477



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

RESERVED BIT (8),
IOMODIFIER BIT (32),
START _L# FIXED (31) BINARY,
LAST_L# FIXED(31) BINARY,
END_L# FIXED (31) BINARY,
L#_INCR FIXED (31) BINARY,
FDNAME_PTR POINTER,
ERROR_PTR POINTER,
1 FDNAME BASED (FDNAME_EQU_PTR) ,
2 LTH FIXED (15) BINARY,
2 NAME CHARACTER (I REFER (LTH)) ;
DECLARE RFINFO ENTRY (POINTER) ;

Moo NN

INFOB=FINFO (SPRINT) ;
FDNAME_EQU_PTR=INFO.FDNAME_PTR

CALL RFINFO (INFOB) ;
The FINFO subroutine is called to obtain informaticn about

SPRINT; then, the RFINFO subroutine is called to release
the information buffer after it is no longer needed.

478 FINFO, TFINFO, RFINFO



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

IHEATTN

SUBROUTINE DESCRIPTION

To allow a PL/I program to be notified of the occurrence
of an attention interrupt.

*PL1LIB

Calling Sequence:

Description:

PL/I: CALL IHEATTN;

The IHEATTN subroutine is automatically called befcre the
main procedure obtains control. This is to allow all
attention interrupts to be controlled by the subroutine.
The user may override this call to IHEATTN by calling the
subroutine ATTNTEKP, thus effectively resetting the atten-
tion interrupt conditions as if IHEATTN was not called.
These conditions can be restored by calling IHEATTN.

Once IHEATTN has been called and an attention interrupt
occurs, IHEATTN scans through all active procedures (the
most recent first) and tests for any statement beginning
with "ON CONDITION(ATTN)". If no such statement has been
executed, the condition "ON CONDITION (ATTN) SYSTEM;" is
assumed.

The subroutine will take one of the following actions:

(1) If the keyword "SYSTEM;" is specified, a message

such as
r i | r h |
| STMT dddd | | PROC |
ATTN AT | or | IN | or | name
|OFFSET xxxx| |ON=-UNIT|
L Jd L oA

is printed to identify the location of the inter-
rupt. After the message is printed, the subrou-
tine MTS is called and a return is made to MTS
command mode (or debug mode). The user may use
the contents of general register 1 which points to
the standard 72-byte save area from ATINTRP to
obtain the PSW and registers at the time of the
interrupt. The first eight bytes contain the PSW,
and the remainder of the region contains the
contents of the registers. A $RESTART command may
be given to restart the program.

IHEATTN 479



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Examples:

480 IHEATTN

Octcber 1976

(2) If the keyword "SNAP" is specified after "ON
CONDITION (ATTN)", then the above message is
printed followed by a list of all active proce-
dures at the time of the interrupt.

(3) If the keyword "SYSTEM;" is not specified, then
the ON-unit 1is entered as a procedure with the
attention conditions restored. If +the ON-unit
returns, IHEATTN automatically returns to the
interrupted statement. Caution should be exer-
cised to prevent infinite loops in the ON-unit.

It 1s recommended that the user insert "ON
CONDITION (ATTN) SYSTEM;" after "ON CONDITION (ATTN)
BEGIN; ™.

If the PL/I program that contains no statement beginning
with "ON CONDITION (ATTN)" is executed, an attention inter-
rupt will produce a message such as

ATTN AT STMT 0021 IN PROC PROGRAM

Attention interrupts may be controlled in a PL/I progranm
by the following sequence:

DECLARE ATTNSW BIT(1) INIT('0'B);
ON CONDITION (ATTN) SNAP BEGIN;
ON CONDITION (ATTN) SYSTEM;

IF ATTNSW = '1'B THEN CALL MTS;
ATTNSW = '1'B;

RETURN;

END;

When an attention interrupt occurs for the first time, the
attention interrupt message is printed followed by a list
of the active procedures. Then the BEGIN block, which
resets the ON-condition for attention interrupts and sets
ATTNSW to '1', i1s executed; a return is then made to the
statement in which the attention interrupt occurred and
program execution is resumed. A subsequent attention
interrupt will cause the program to print another inter-
rupt message and then return to MTS command mode. The
switch ATTNSW may be used by the program to test #hether
the first attention interrupt has occurred.



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

To provide an interface between the PL/I user and the NOTE
and POINT subroutines.

*PL1LIB

Calling Sequence:

Note:

Example:

PL/I: CALL IHENOTE (file,ptrs);
CALL IHEPNT (file, ptrs,bits);

Parameters:

file is a FILE variable which must first be opened
either implicitly or explicitly.

rs is an array of four fullword elements.

ts is a BIT(4) variable or constant. The bit
SWwitches are:

'0001'B - set read pointer
'0010'B - set write pointer
'0100'B - set last pointer
'1000'B - set last line number

More than one switch may be set to give the
desired combination of pointers, e.g., '"1111'B
sets all pointers.

Return Codes:

The subroutine PL1RC may be used to determine the
return codes from NOTE and POINT.

These two subroutines are intended for interaction with
the two PL/I subroutines IHEREAD and IHERITE.

PL/I: DECLAKE IHEPNT ENTRY (FILE, (4) FIXED BINARY (31),
BIT (4)), QQSV FILE,
PTRS (4) FIXED BINARY (31);
PIRS=0;
CALL IHEPNT (QQSV,PTRS,'0001'B) ;

This example rewinds the file QQSV for input only.

IHENOTE, IHEPNT 481



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

482 IHENOTE, IHEPNT



October 1976

Purpose: To read
file.
Location: *PL1LIB

Calling Sequences:

PL/I:

Paramete

buf

=

th

1=
(o]
[=%

=
[=]
H

I+
-
=
I

Description: The PL/I

(1)

(2)

(3)

(%)

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

(IHEREAD) or write (IHERITE) a record from a PL/I

CALL IHEREAD (buff,[lth, Jmod,1lnr,file);
CALL IHERITE (buff,[lth, Jmod,1lnr,file) ;

Is:

f is the CHARACTER variable or constant to be read
or written.

(optional) is the FIXED BINARY (15) variable or
constant giving the length of the record to be
read or written. If omitted, the length of buff
is used as the record length.

is the BIT (32) variable or constant defining 32
modifier bits used to control the action of the
I/0 subroutine (see the "I/0 Modifiers" section
in this volume).

is the FIXED DECIMAL(9,3) variable or constant
giving the line number to be read or written.

is the FILE variable to be used in the I/0
operation.

user should note the following restrictions.

The file, if it is to be used by IHEREAD or
IHERITE, must be a record file with undefined
format or unblocked fixed format.

It will be the user's responsibility if he mixes
these subroutines with READ, WRITE, or REWRITE
statements.

An output file cannot be used for IHEREAD, nor an
input tftile for IHERITE. An update file can be
used for both IHEREAD and IHERITE.

If the indexed bit of a modifier is on, a line
number must be provided. Otherwise, a data inter-
ruptior may occur, or some unpredictable results
will occur. In addition, in case of IHEREAD, the
character string will become a null string when
there is no line associated with the line number.

IHEREAD, IHERITE 483



MTS

Z: SYSTEM SUBROUTINE DESCRIPTIIONS

Example:

48y

IHEREAD,

October

MAIN: PROCEDURE OPTIONS (MAIN) ;
DCL (IHEREAD,IHERITE) ENTRY
(,BIT(32),DEC FIXED(9,3),FILE),
BUFFER CHAR (121) VARYING,
MOD BIT (32) INIT((32) '0'B),
LINENR DEC FIXED (9,3), NUTS FILE;
ON ENDFILE (NUTS) GO TO FINISH;

OVER: CALL IHEREAD (BUFFER,MOD,LINENR, NUTS) ;
PUT SKIP LIST (LINENR,BUFFER);

1976

GO TO OVER; /*THIS ACTS LIKE A "$LIST" COMMAND%*/

FINISH:
CLOSE FILE(NUTS) ; OPEN FILE (NUTS) UPDATE;
SUBSTR (MOD,31) = '1'B; /% TURN INDEXED BIT ON */

CALL IHERITE('',MO0D,1.0,NUTS); /* DELETE LINE 1 */

CALL IHERITE (' THIS IS LINE #2.5',M0D,2.5,NUIS);
/% INSERT THE LINE #2.5 */

RETURN;

END MAIN;

IHERITE



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUbROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

To determine the key of the next record (NEXTKEY) or the
end-of-file record (LASTKEY).

*PL1LIB

Calling Sequences:

Description:

Example:

PL/I:

NEXTKEY :

LASTKEY:

FILE:

PL/I1:

DECLARE (NEXTKEY,LASTKEY) ENTRY
(FILE) RETURNS (CHARACTER (4)) ;

FILE is opened as:

output - returns the key of the next record to
be written.

input or update - returns the key of the next
record to be read.

returns the key of the end-of-file record.

a PL/I file variable conforming to the
following:

(1) a keyed file of the consecutive organiza-
tion, i.e., referring to an actual HTS
sequential file.

(2) must be already opened by either an OPEN
statement or by an appropriate I/0
statement.

POINT=NEXTKEY (KEYED_FILE) ;
LOCATE BASED FILE (KEYED_FILE) KEYFROM(POINT);
BASED='ABC';

This example writes the character string ABC on the next

record.

BASED is a string variable declared with a PL/I

BASED attribute.

NEXTKEY, LASTKEY U485



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

486 NEXTKEY, LASTKEY



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

Purpose: To enable PL/I users to call non-PL/I (e.g., FORTRAN and
assembler) procedures requiring a standard S-type linkage.

Location: *PL1LIB
Calling Sequences:

PL/I:

CALL PLCALL(fn,n,pl):

DECLARE PLCALLD RETURNS (FLOAT (16));
PLCALLD (fnd,n,pl) ;

DECLARE PLCALLE RETURNS (FLOAT (6)) ;
PLCALLE (fne,n,pl) ;

DECLARE PLCALLF RETURNS (FIXED BINARY (31));
PLCALLF (fnf,n,pl) ;

Parameters:

Ih

a

I+
1=}
(=4

Ih
=
o

I+h
1=
Ith

1=

is a subroutine which has been declared to have
the ENTRY attribute and which does not return a
value.

is a function which has been declared to have
the ENTRY attribute and which returns a double-
precision floating-point value (REAL*8 in FOR-
TRAN; long floating register 0 in assembly
code) .

is a function which has been declared to have
the ENTRY attribute and which returns a single-
precision floating-point value (REAL*4 in FOR-
TRAN; short floating register 0 in assembly
code) .

is a function which has been declared  to have
the ENTRY attribute and which returns an integer
value (INTEGER*4 in FORTRAN; general register 0
in assembly code).

is a number with attributes FIXED BINARY (31)
which 1is equal to the number of arguments being
passed to fn, fnd, fne, or fnf. n may be 0.

is a parameter list of the 1n arguments to be
passed to £n, fnd, fne, or fnf in the order
required by the subprogram. The arguments are
separated by conmas. If the argument is a
string variable, array variable, or structure
variable, the name of the argument or a pointer

PLCALL, PLCALLD, PLCALLE, PLCALLF 487



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Description:

Examples:

October 1976

to the argqument may be used; for example, ARG or
ADDR (ARG). Note that if the argument is an
array variable, the reference passed will be to
the location of the element having all zeros for
subscripts (e.g., A(0,0)), even if that element
does not exist. Therefore, it may be preferable
to use a pointer to an element of the array
instead of the array itself (e.g., ADDR(A(1,1))
instead of A). If the argument is a scalar
variable, a pointer to the argument must be
used; for example, ADDR (ARG). If the argument
is a scalar constant, a pointer to the argument,
which can be produced by the subroutine PL1ADR
nust be used. The high-order bit of the last
word in the parameter list passed to fp, £nd,
fne, or fnf is set to 1. If n=0, there is no

parameter list and no comma after n.
Return Codes:

The return code placed in general register 15 by £n,

fnd, fne, or fnf may be tested using the subroutine
PL1RC.

PL/I program interrupt ON conditions are disabled on entry
to the subprogram and reenabled on return to the calling
program. The values of PLCALLD, PLCALLE, and PLCALLF are
the values returned by fnd, fne, and fnf, respectively.

/% ARSIN AND DARCOS ARE FORTRAN LIBRARY FUNCTIONS */
DECLARE PLCALLE RETURNS (FLOAT (6)) ;

DECLARE PLCALLD RETURNS (FLOAT(16)) ;

DECLARE (ARSIN, DARCOS) ENTRY;

DECLARE (ARCSIN, ANGLE) FLOAT (6) ;

DECLARE (ARCCOS, DANGLE) FLOAT (16);

DECLARE F1 FIXED BINARY (31) INIT(1) STATIC;
ARCSIN=PLCALLE (ARSIN, F1, ADDR (ANGLE)) ;
ARCCOS=PLCALLD (DARCOS, F1, ADDR (DANGLE)) ;

/% PAR IS A STRUCTURE VARIABLE */
DECLARE DISHMNT ENTRY;
DECLARE 1 PAR ALIGNED STATIC,
2 LEN INIT(3), 2 TAPE CHAR(3) INIT('*T*');
CALL PLCALL (DISMNT, F1, PAR);

488 PLCALL, PLCALLD, PLCALLE, PLCALLF



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

/% USING PLCALL TO PRODUCE AN R-TYPE LINKAGE */

/% SUBSTR IS A SIRING. F1, F2, AND JULIAN ARE SCALAR */
DECLARE RCALL ENTRY;

DECLARE F6 FIXED BINARY (31) INIT(6) STATIC;

DECLARE PL1ADR RETURNS (POINTER) ;

DECLARE GJDT ENTRY; /* A NON-EXISTENT ALTERNATE

NAME FOR GRGJULDT FOR PURPOSE OF THIS EXAMPLE */

DECLARE F2 FIXED BINARY (31) INIT(2) STATIC;

DECLARE DATE CHARACTER (8) ;

DECLARE F1 FIXED BINARY (31) INIT (1) STATIC;

DECLARE JULIAN FIXED BINARY (31) ;

CALL PLCALL (RCALL,F6,PL1ADR (GJDT) ,ADDR (F2),
SUBSTR (DATE, 1,4) ,SUBSTR (DATE,5) ,ADDR (F1) ,
ADDR (JULIAN)) ;

PLCALL, PLCALLD, PLCALLE, PLCALLF 489



MTS 2: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

490 PLCALL, PLCALLD, PLCALLE, PLCALLF



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

———— =

SUBROUTINE DESCRIPTION

Tc obtain a pointer to PL/I scalar constants and
variables.

*PL1LIB

Calling Sequences:

Description:

PL/I1: DECLARE PL1ADR RETURNS (POINTER) ;
PL1ADR (argqg) ;

Parameters:

arg 4is any scalar constant or variable (not strings,
arrays, or structures).

The value of PL1ADR is the address of the argument. The
primary purpose of this subroutine is to pass pointers for
scalar constants to the subroutines PLCALL, PLCALLD,
PLCALLE, and PLCALLF since a constant cannot be used as an
argument to the PL/I function ADDR.

PL1ADR 491



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Octoker 1976

492 PL1ADR



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBEOUTINE DESCRIPTION

To interrogate the return code passed back by the last
call on PLCALL, PLCALLD, PLCALLE, or PLCALLF or set by
IHESARC.

*PL1LIB

Calling Sequences:

Description:

Example:

PL/I: DECLARE PL1RC RETURNS (FIXED BINARY (31));
PL1RC;

The value of PL1RC is the contents of general register 15
when the procedure called using PLCALL, PLCALLv, PICALLE,
or PLCALLF returns, or 1is the value set by IHESARC,
whichever is most recent. For FORTRAN subroutines, the
value returned in general register 15 is 4 times the value
of the integer after RETURN.

IF PLI1RC=4 THEN GO TO ERROR;

A branch is made to ERROR if the return code from the last
call on PLCALL, PLCALLD, PLCALLE, or PLCALLF is 4.

PL1RC 493



MTS 3: SYSTEM SUBROUTINE DESCKIPTIONS

October 1976

494 PLIRC



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBKOUTINE DESCRIPTION

Purpose: To compute uniformly distributed random numbers between
0.0 and 1.0.

Location: *PL1LIB
Calling Sequences:

PL/I: DECLARE RAND ENTRY
(FIXED BINARY (31))
RETURNS (FLOAT BINARY) ;

Description: The argument I as in RAND (I) must be a variable
initialized within the range 0 to 2*%*31-1 (21474E3647).
The value returned by RAND (I) is between 0.0 and 1.0. 1In
addition, the variable is «changed so that a different
random number is generated on a subsequent call. If the
argument I contains zero, a random number will be
generated depending upon the time of day.

The algorithm is taken from "Coding the lLehmer Pseudo-
Random Number Generator," Communications_ _of_ _the__ACH,

Volume 12, Number 2 (February 1969).

Example: PL/I1: RANDOM: PROC FLOAT BIN;
DCL I FIXED BIN (31) STATIC
INIT (524287),
RAND ENTRY (FIXED BIN (31))
RETURNS (FLOAT BIN) ;
RETURN (RAND (I));
END;

This example generates a random number using the number
524287 as the initial base.

RAND 495



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

496 RAND



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SIGNOFE

SUBROUTINE DESCRIPTION

Purpose: To sign the user off.
Location: ¥*PL1LIB
Calling Sequences:
PL/I: DECLARE SIGNOFF ENTRY;

Description: The subroutine closes all open files, if any, and then
signs the user off.

Example: PL/I: IF BATCH THEN CALL SIGNOFF;

This example signs off the user if he is running in batch
mode.

SIGNOFF 497



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Octoker 1976

498 SIGNOFF



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBROUTINE DESCRIPTION

Purpose: To obtain the current four-character user Computing Center
signon ID.

Location: *PL1LIB
Calling Sequences:

PL/I: DECLARE USERID ENTRY
RETURNS (CHARACTER (4));

Description: The subroutine returns the user signon ID.
Example: PL/I: PUT LIST (USERID) ;

This example prints out the user's signon ID.

USERID 499



MTS 3: SYSTEM SUBROUTINE DESCRLPTIONS

October 1976

500 USERID



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

The elementary function library (EFL) contains the mathematical and
implicitly called subroutines wusually associated with the FORTRAN IV
language. In the FORTRAN language the mathematical routines are called
because of an explicit reference to the name of the function in an
arithmetic expression. Mathematical routines for the computation of the
square root, exponential, logarithmic, trigonometric, hyperbolic, gamma,
and error functions are provided. The implicitly called routines are
invoked to perform complex multiplication and division, and tc perform
the various exponentiation operations occasioned by +the FORTRAN %%
operator. Finally, this library also includes the ANSI FORTRAN intrins-
ic minimum and maximum value functions, and the DREAL and DIMAG
functions, which are inexplicably not a part of the IBM FORTRAN library.

The programs contained in this elementary function library are systen
resident, and are defined in the low-core symbol dictionary named <EFL>.
Special loader control cards at the end of the *LIBRARY file cause the
symbol <EFL> to be defined; and, if there are still undefined symbols,
then this symbol dictionary will be searched.

List of Entry Point

Absolute Value CABS, CDABS

Square Root SQRT, DSQRT, CSQRT, CDSQRT

Common and Natural Logarithm ALOG, ALOG10, DLOG, DLOG10, CLOG, CDLOG
Exponential EXP, DEXP, CEXP, CDEXP

Trigonometric Functions c0S, SIN, TAN, COTAN, DCOS, DSIN, DTAN,

DCOTAN, CCOS, CSIN, CDCOS, CDSIN
Inverse Trigonometric Functions ARCOS, ARSIN, ATAN, ATAN2, DARCOS,
DARSIN, DATAN, DATANZ2

Hyperbolic Functions COSH, SINH, TANH, DCOSH, DSINH, DTANH

Gamma and Log-gamma Functions GAMMA, ALGAMA, DGAMMA, DLGAMA

Error Function ERFC, ERF, DERFC, DERF

Exponentiation FIXPI#, FRXPI#, FDXPI#, FCXPI#,FCDXI#,
FRXPR#, FDXPD#

Complex Operations CMPY#, CDVD#, CDMPY#, CDDVD#,
DREALl, DIMAG1!

Minimum/Maximum Value MINO, AMINO, MIN1, AHMIN1, DMINI

MAXO, AMAXO, MAX1, AMAX1, DMAX1

1since the DREAL and DIMAG functions are not built into the current
FORTRAN compilers, they must be explicitly declared as REAL*8
functions.

The Elementary Function Library 501



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

Mathematical Functions

REALXU REALXS COMPLEXXS COMPLEX*16
CABS!? CDABS!?

SQRT DSQRT CSQRT CDSQRT

EXP DEXP CEXP CDEXP

ALOG DLOG CLOG CDLOG

ALOG10 DLOG10

cos DCOS ccos CDCOS

SIN DSIN CSIN CDSIN

TAN DTAN

COTAN DCOTAN

ARCOS DARCOS

ARSIN DARSIN

ATAN? DATAN1

ATAN22 DATAN22

COSH DCOSH

SINH DSINH

TANH1 DTANH?

ERFC! DERFC!

ERF1 DERF1!

ALGAMA DLGAMA

GAMMA DGAMMA

Complex operations: name(multiplicand-dividend,multiplier-divisor)

COMPLEX*8 COMPLEX*16
CMPY# CDCMPY#
CDVD# CDDVD#

Exponentiation: name (base,exponent)

Name Base Exponent
FIXPI# INTEGER* U INTEGER*Y
FRXPI# REAL*{Y INTEGER*U
FDXPI# REAL*8 INTEGER*4
FCXPI# COMPLEX*8 INTEGER*Y
FCDXI1# COMPLEX* 16 INTEGER*U
FRXPR# REAL*4 REAL*Y

FDXPD# REAL*8 REAL*8

502 The Elementary Function Library



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

Name Arguments Mode Result Mode
MINO/MAXO INTEGER *4 INTEGER*4
MIN1/MAX1 REAL*Y4 INTEGERx*4
AMINO/AMAXO INTEGER* U4 REAL*® U
AMINT/AMAXT REAL*4 REAL*Y
DMIN1/DMAX1 REAL*8 REAL*8

1These routines do not recognize any error conditions and never transfer
to the error monitor.

2These routines require two arguments.

Calling Converntions

The programs contained in the EFL conform to the 0S(I) S-type calling
convention with variable length parameter list as described in section
"Calling Conventions" in this volume, i.e., they expect the FORTRAN
linkage convention. This counvention requires that the high-order bit of
the last parameter address constant be nonzero. The EFL error monitor
uses this last argument flag to determine how error situations should be
processed; consequently, failure to properly set this flag may result in
unexpected results if an error condition is detected. Further, unless
specifically mentioned, all elements of the EFL require an 18-fullword
(72-byte) save area.

Since all members of the EFL are function-type subroutines, they
cannot be meaningfully employed in the FORTRAN CALL statement, as the
FORTRAN program will 4ignore the function value returned by these
programs. These function subprograms are called whenever the appropri-
ate entry name appears in a FORTRAN arithmetic expression. The
following FORTRAN arithmetic assignment statement refers to the mathe-
matical functions COS and SQRT, and the implicitly called exponentiation
routine FRXPI#:

SINX = SQRT (1.-COS (X) ¥%2)
Assembly language users may employ the CALL macro, but should specify
the optional VL parameter in order to set the last arqument flag byte,
€.g.,

CALL DCOSH, (X) ,VL

The elementary functions return their values as follows:

GRO - INTEGER function
FRO - REAL function
FRO,FR2 - COMPLEX function

The Elementary Function Library 503



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

A return code of 0 will be given for all successful computations. The
return code given in error situations is generally 4, but may be
dynamically modified by the user, and hence must be described as
indeterminate. See the section cn error processing for further details.

Except as noted, the mathematical functions require a single argument
of the same mode as the function. The routines in the EFL are subject
to specification exceptions when fetching their argument(s) should the
boundary alignment be incorrect. The modes INTEGER#*4, REAL*4 and
COMPLEX*B require fullword alignment, while REAL*8 and COMPLEX*16
require doubleword alignment. The term INTEGER*4 corresponds to a
System/360 fullword integer in the usual twos-complement notation. The
term REAL*4 (REAL*8) corresponds to a System/360 short (long) vperand
floating-point number. The term COMPLEX*8 (COMPLEX*16) refers to two
short (long) operand floating-point numbers occupying consecutive
storage locations, the number in the higher storage location being the
imaginary part of the complex number. The address constant passed to
the EFL routine should correspond to the lower storage address, i.e.,
the REAL part of the complex number.

b=t B4 % >33 13

Error conditions detected by EFL routines are processed in the module
ERRMON#. Depending on the optional arguments passed to the elementary
function, the error monitor will either resume execution or formulate an
appropriate error comment and call the traceback program TRACER.

The vast majority of the EFL programs check the argument to ensure
that a valid function value can be computed. For example, the inverse
sine and cosine functions are only defined on the interval [-1,1], so
that some procedure must be available for handling arquments outside
this interval. There are currently three ways in which error conditions
detected by an EFL program can be processed:

(1) by using one or more of the optional arguments described below,

(2) by establishing a user error monitor to be called in these
situations, or

(3) by allowing the EFL error monitor to invoke the traceback
program TRACER.

Whenever an elementary function detects an error situation, it
generates a default function value and passes control to the EFL error
monitor. Although this error monitor is in fact a separate program, it
is logically a part of each elementary function, and is transparent with
respect to the normal linkage conventions. Thus, if the EFL error
monitor invokes either the user error monitor or TRACER, it will appear
to them as if they had been called directly £from the elementary
function.

The EFL error monitor initially attempts to process the optional

arguments. If no such arguments were given, or if their processing does
not result in the resumption of execution, then the error monitor will

504 The Elementary Function Library



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

formulate an appropriate message. This message is subsequently used as

the sole argument when either the user error monitor or TRACER is
invoked.

With all optional arquments attached, the calling sequence becomes

.--.name(argument (s) ,count,max-count,f-value) ...

Since the elementary function names are built into the FORTRAN compiler,
it will diagnose as errors any occurrence of these names in which the
number and modes of the arguments do not correspond to its table of
definitions. The optional arguments discussed here may be appended to
the usual argument list, without objection from the FORTRAN compiler, if
the elementary function name is declared in an EXTERNAL statement and

its proper mode is explicitly declared. The optional arguments are
defined as follows:

count - a fullword integer which is simply incremented by 1. If
count is the only optional argument supplied, then execution

is resumed with the default function value and return code
4,

max-count - a fullword integer upper bound for the first cptional
argument, count. If the updated value of count is greater
than max-count, then the processing of the optional argu-
ments is suspended. If max-count is the last optional
argument supplied and the wupdated value of count is less
than or equal to max-count, execution is resumed with the
default function value and return code 4. Otherwise, the
final optional argument is processed.

f-value - the mode of this argument must correspond to the mode of the
function. Execution is resumed with a function value of
f-value and return code 4. Note that this optional argument
is processed only if the updated value of count is less than
or equal to max-count.

In the above descriptions, the phrase "resume execution" means .that it
will appear that the elementary function has returned with the indicated
function value and return code.

If one of the optional arguments cannot be appropriately accessed, if
count > max-count, or if no optional arguments are supplied, then the
error monitor will formulate an error message. This error message will
be subsequently passed to either the user error monitor or TRACER. For
the mathematical functions, this error message will take the form

name (x.x) IS UNDEFINED AND HAS BEEN ASSIGNED THE VALUE y.y.
THE DOMAIN OF DEFINITION OF THIS FUNCTION IS dod-message.

where "x.x" and "y.y" are decimal representations of the argument and
function value, respectively. The "dod-message'" is dependent on the

The Elementary Function Library 505



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

elementary function involved, but generally expresses the set of
argument values for which the function is defined in the form

(x: a < x < k)

For example, the GAMMA function "dod-message" is "IS
(X: .1381786E-75 < X < 57.57441)".

Messages generated for exponentiation errors take the form:

EXPONENTIATION ERROR: b.b ** e.e IS5 UNDEFINED AND HAS BEEN
ASSIGNED THE VALUE y.y. WODE OF THE BASE IS mb, MODE OF THE
EXPONENT IS nme.

where "b.b", "e.e", and "y.y" are decimal representations of the base,
exponent and result, respectively. The modes "md" and "me" will be one
of the following: INTEGER*4, REAL*4, REAL*8, COMPLEX*8 or COMPLEX*16.
Generally, exponentiation routines only recognize an error when the base
is 0.0 and the exponent is nonpositive; however, the current routines
also complain when a real result cannot be properly represented, e.g.,
10.%%80. In either case, the error monitor dynamically allocates
virtual memory space sufficient to generate and assemble this message.
The message is denerated in the form of a halfword integer length
immediately followed by the text of the message.

An elementary function library user error monitor is established by
using the CUINFO subroutine. The name and index of the corresponding
CUINFO item is 'EFLUEM ' and 183, respectively, while the data is the
address of the user error monitor. Thus, to establish a subroutine
named $UEM$ as the user error monitor, one could include the following

FORTRAN statements in his progran.

EXTERNAL $UEMS
CALL CUINFO (183,$UENS)

A user error monitor may be eliminated by calling CUINFO with a second
argument of zero. The single argument to the user error monitor, which
may be either a FUNCTION or SUBROUTINE subprogram, should be declared as
an INTEGER*2 vector, e.g.,

SUBROUTINE S$UEMS$ (MSG)
INTEGER*2 MSG (2)

CALL SERCOM (MSG (2) ,MS5G (1) ,0)
RETURN

END

This rather simple example prints the message on logical I/0 unit
SERCOM, and then resumes execution with the default function value.
Since the nmessages are generally longer than a terminal output line,
some of the message will be lost. The TRACER program automatically
breaks this message into a number of output lines, so that no
information is lost. It should be noted that wunless the user error

506 The Elementary Function Library



MTS 3: SYSTE# SUBROUTINE DESCRIPTIONS

October 1976

monitor returns to the EFL error monitor, the virtual memory space
allocated by this latter program will not be released.

Finally, if the optional argument processing did not result in the
resumption of execution, and no user error monitor is established, then
the EFL error monitor will invoke the traceback program TRACER. This
program was designed to provide conversational control of program
execution under these circumstances. The name stems from its primary
function, which is to make available information pertinent to programs
in the current linkage chain, i.e., the sequence of programs which have
been called, but which have not yet returned to their calling programs.
For example, if a main program named MAIN calls a subroutine named SUB,
which attempts to compute DLOG (-5.D0), then the linkage chain is DLOG,
SUB, MAIN, and SYSTEM. Using the various TRACER commands, the arguments
to each program in the linkage chain can be inspected or altered,
execution can be resumed at any entry or return point of a program in
the linkage chain, or one can simply return control to the systen. The
TRACER commands are read from the logical I/0 unit GUSER using a ":" or
Al prefix depending on whether the previous command was successfully
or unsuccessfully executed, respectively. All TRACER output is printed
on SERCOM. For a complete description of the traceback program, see
Computing Center Memo 218.

Example 1:
C PROGRAM TO COMPUTE THE SQUARE ROOTS OF THE
C ABSOLUTE VALUES OF THE NUMBERS READ FROM THE
C INPUT STREAM AND KEEP A COUNT OF THE TOTAL
C NUMBER OF NEGATIVE NUMBERS READ.
EXTERNAL SQRT
INTEGER I,/0/
10 READ 100,X
Y = SQRT (X,I)
PRINT 200,X,Y,I
GO TO 10
100  FORMAT (E20.8)
200 FORMAT (2E17.9,15)
END

If the fourth statement in example 1 is replaced by
Y = SQRT(X,I,10)

then traceback processing will occur when the 11-th negative argument is
passed to SQRT.

Example 3:
C PROGRAM TO TEST THE IDENTITY

C COS(X)*%2 + SIN(X)**2 = 1
C FOR VALUES OF X READ FROM THE INPUT STREAM. THE

The Elementary Function Library 507



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

C DSIN AND DCOS ROUTINES ARE UNDEFINED FOR X > PI*2%%50,
C BUT THE DEFAULT VALUES CHOSEN GUARANTEE THE IDENTITY.
EXTERNAL DCOS,DSIN
REAL*8 DCOS,DSIN,X,ONE
10 IER = 0
READ 100,X
ONE = DCOS(X,IER,IER,0.D0)**2+DSIN(X,IER,IER,1.D0) *%2
PRINT 100,IER,ONE
GO TO 10
100 FORMAT (E20.8)
200  FORMAT (I3,E17.9)
END

Example 4:

The use of the following parameter list would guarantee +that the
elementary function would always denote error situations by a return
code of 4.

DC A(argument) ,XL1'FF',AL3 (ERRCNT)
ERRCNT bC F'0!

In addition, the word ERRCNT would be automatically updated to maintain
a count of the total number of errors. Taking the other extreme, the
parameter list

DC A(argument, Q)

would guarantee the invocation of the traceback program, since the error
monitor's attempt to increment the count parameter would cause an
addressing exception.

e e e P

The following descriptions of the mathematical functions are limited
to error conditions which may arise in these programs. These routines
are consistent with the FORTRAN IV library functions currently distri-
buted with the System/360 Operating System, and have been documented by
IBM in their publication IBM__System/360 Operating_System_ FORTRAN_IV

e —_———— Lo o=

Square Root

Because SQRT and DSQRT are specifically defined as being real-
valued functions, they are not defined for negative real arguments,
as the square root of a negative number is pure imaginary, i.e., if
x<0 then x**1/2 = ie|x|*¥*1/2. The default function value computed
when the argument is negative is the square root of the absolute
value of the argument.

508 The Elementary Function Library



MTS 3:; SYSTEM SUBROUTINE DESCRIETIONS

October 1976

Common and Natural Logarithm

The real-valued 1logarithm functions ALOG, ALOG10, DLOG and DLOG10
are not defined for negative arguments, since the logarithm of a
negative number is complex, i.e., if x<0 then 1ln(x) = 1n(|x|)~-
iepPi. The default function value is the appropriate logarithm of
the absolute value of the argument.

All of the logarithmic function routines are undefined for a zero
argument, as this is a pole of the logarithm function. Appropri-
ately, the default function value is negative machine infinity,
i.e., roughly =-.7237005e1076.

Exponential

The real-valued functions EXP and DEXP can be properly defined only
in the interval [-180.2182,174.67308], because of the range re-
strictions imposed by the floating-point representaticn. The
largest positive number representable in System/360 floating-point
form is 1663e (1-16-1%), and the natural logarithm of this number is
approximately 174.67308. Similarly, -180.2182 is the logarithm of
the smallest positive number, 16-65., The actual domains are as

follows:
EXP (hex) -B4.37DF AE.ACYHF
DEXP (hex) -BU4.37DEFFFFFFFF AE.ACUEFFFFFFFF
EXP (dec) -180.218246 174.673080
DEXP (dec) -180.218246459960934 174.673080444335934

If the arqument exceeds the right-hand limit, the default function
value is machine infinity. If the argument is less than the
left-hand 1limit, the default function value is zero; however, this
situation is regarded as an error if and only if underflow
exceptions are enabled by the program mask.

It should be noted that the domain of the exponential prcgrams is
slightly smaller than the range of the corresponding natural
logarithm programs. Hence, the expressions EXP (ALOG (X)) and DEXP (
DLOG (X)) are not computable for values of X extremely close to the
ends of the machine range.

The complex-valued functions CEXP and CDEXP have an analogous
domain restriction on the real part of the complex argument, and an
additional restriction on the imaginary part due to the sine and
cosine function evaluations required. Whether the complex argument
satisfies the domain restrictions or not, the value of the
CEXP (x+iey) will be

EXP (x) o[ COS (y) +1eSIN (y) ]

and that of CDEXP (x+iey) will be

The Elementary Function Library 509



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

DEXP (x) o[ DCOS (y) +ieDSIN (y) ]

Trigonometric Functions

The domain restrictions of the real-valued trigonometric . functions
cos, SIN, TAN, COTAN, DCOS, DSIN, DTAN and DCOTAN are imposed to
maintain accuracy. These functions are computed by reducing the
argument to the interval [-Pi/4,Pi/4] by using the periodicity of
these functions. For very large arguments this reduction yields so
few significant digits in the reduced argument that meaningful
computation of +the function value is impossible. The single-
precision functions require

Ix| < 218ePi = C90FD.9 = 823549.563
while the limit for the double-precision functions is
|x| < 250epPi = CY90FDI9FFFFFFF.F = 3537118706008063. 94.
The default function value is uniformly zero.

In addition, the tangent and cotangent functions will object if the
argument is too close to one of their singularities to maintain
accuracy, or if the function value would exceed the machine range.
In these situations, the default function value is machine infinity
with the sign of the argument.

The complex sine and cosine functions CCOS, CDCOS, CSIN and CDSIN
can be defined as

sin(x+iey) = sin (x) ecosh(y)+iecos (x) esinh (y),
cos (x+iey) = cos(x)ecosh(y)+iesin(x) esinh(y) .-

These formulas illustrate why a trigonometric-type domain restrict-
ion is applied to x, and an exponential-type domain restricticn to
Y. The default functiorn value is derived from the default values
supplied by the appropriate sine, cosine and exponential routines,
where cosh(y) and |sinh(y) | become machine infinity divided by 2
when |y| is too large.

Inverse Trigonometric Functions

510

The domain of the inverse sine and cosine functions ARCOS, ARSIN,
DARCOS and DARSIN is the range of the sine and cosine functions,
i.e., [-1,1]). Outside this interval, the default function value is
Zero.

The inverse tangent routines ATAN2 and DATAN2 are undefined only
for the argument pair (0.,0.), for which the default function value
is zero. In effect, given the argument pair (y,x), these routines
compute the principal value of the arqument of the complex number
X+iey.

The Elementary Function Library



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

Hyperbolic Functions

The value of the hyperbolic sine and cosine of x exceed the range
of the machine when |x| approaches the logarithm of machine

infinity. Specifically, the domain of the COSH and SINH routines
is described by

Ixl 2 AF.5DCO = 175.366211,
and that of DCOSH and DSINH by

|x| 2 AF.5DCOFFFFFFFF = 175.366226196289059.

the default function value is machine infinity with the appropriate
sign.

Gamma and Log-gamma Functions

Like the exponential function, these functions exceed machine range
outside their domains of definition and have a default function
value of machine infinity. The specific hexadecimal intervals of
definition are

GAMMA [-100001e16-62,39.930D ]

DG AMMA (-100001e16-62,39.930CFFFFFFFF ]
ALGAMA [0,.184D30e1662 ]

DLGAMA [0,.184D2FFFFFFFFFe1662 ]

while in decimal these intervals become

GAMMA [-138178829010-75,57.5744171]

DGAMMA [.13817882865895404010~75,57.5744171142578089 ]
ALGAMA [0,.429370581e1074 ]

DLGAMA (0,.429370581008247114301074 ].

43 > T P AR

Complex Arithmetic Operations

CMPY# (COMPLEX*8-multiplicand,COMPLEX*8-multiplier)
CDVD# (COMPLEX*8-dividend ,COMPLEX*8-divisor)

CDMPY# (COMPLEX*16-multiplicand, COMPLEX*16-multiplier)
CDDVD# (COMPLEX*16-dividend,COMPLEX*16~-divisor)
Algorithm:

The multiplication algorithm takes the form
(x+iy) e (u+iv) = (xeu-yev)+i (vex+uey).

The division algorithm is likewise direct, and takes the form

The Elementary Function Library 511



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

(Xesu+yev)+i (Uuey-vex)
ueu+vey

Error Conditions:

Both wunderflow and overflow exceptions may occur during the
formation of the final result. If underflows are masked off
and ueu and vev underflow, a zero-divide exception may also
occur.
Exponentiation

FIXPI# (INTEGER*U4~-base, INTEGER*4-exponent)

FRXPI# (REAL*4-base ,INTEGER*4-exponent)

FDXPI# (REAL*B-base,INTEGER*4-exponent)

FCXPI# (COMPLEX*8-base,INTEGER*Y§-exponent)

FCDXI# (COMPLEX*16 -base , INTEGER*U4-exponent)

Algorithm:
Though each of these routines differ in some way, they all
obtain the result by the successive squaring algorithm. This
algorithm exploits the binary representation of the integer

exponent to compute R=B**I in the following steps:

Initialize R=1.,
If the k-th bit of
of R by ReS.
If one or

(M
(2)

(3)

11l

more

of the unexamined bits of |I|

S=B and k=0.

is 1, replace the current value

is 1,

replace S by SeS, increment k by 1, and return to step
(2) ; otherwise, R=B**|I].

The FIXPI# routine recognizes a number of special cases, none
of which actually require any computation.
Base: #0 1 -1 -1 #0
Exponent: 0 any even odd <0
Result: 1 1 1 =1 0
During the course of the algorithm, the result is not

range-checked, consequently,

the result is valid only if it is

in machine range, i.e., less than 231 = 2,147,483,648.
The FRXPI# and FDXPI# routines form B**|I|, and then divide
this result into 1.0 if I 1is negative. Both routines

recognize a nonzero base and zero exponent as a
These routines range-check the result as it

~ having value 1.

special case

is being formed, and will invoke error processing if B**|I| or

B**I are not machine
formed in double precision.

512 The Elementary Function Library

representable.

In FRXPI#, B**|I| is



MTS 3: SYSTEM SUBROUTINE DESCRIPTIIONS

October 1976

In the FCXPI# and FCDXI# routines, a negative exponent causes
the base to be inverted before the successive squaring
algorithm is applied. Both routines recognize a nonzero base

and zero exponent as a special case having value 1. These
routines do not range-check the result and are suabject to
underflow and overflow exceptions. Note that 4if underflow

exceptions are masked off, the complex base is extremely
small, and the exponent negative, a zero-divide excepticn may
occur when the base is initially inverted. These routines use
the end of the save area for scratch storage.

Error Conditions:

All of these routines recognize a zero base and nonpositive
exponent as an error. In addition, the FRXPI# and FDXPI#
routines will invoke error processing if either B**|I| or the
final result is outside machine range. In all cases, the
default function value is zero.

FRXPR# (REAL*4-base,REAL*U-exponent)
FDXPD# (REAL*B-base,REAL*B-exponent)
Algorithm:

The result is obtained by using the appropriate logarithm and
exponential routines, i.e.,

e *¥* (exponenteln (base)).

These routines recognize as a special case the combination of
a zero base and positive exponent. Note that if exponenteln
base) < 0, the final result is not in machine range, and
underflows are masked off, these routines may return a result
of zero.

Error Conditions:

The combination of a zero base and nonpositive exponent causes
error processing to be invoked with a default value of 0.
Denote the base by B and the exponent by E. If B<O , but
|B|**E is in machine range, the default function value is
| B| ¥*%E. If Eeln(|B|) is within machine range, but the result
is not, the default function value will be zero if Eeln (|B|)<0
and machine infinity if Eeln (|B|)>0. If Eeln(|B|) is not in
machine range, the default function value is zero.

DREAL and DIMAG Functions

DREAL (COMPLEX*16~-variable)
DIMAG (COMPLEX*16-variable)
Algorithm:

The Elementary Function Library 513



MTS 3:

SYSTEM SUBROUTINE DESCRLPTIONS

October 1976

Although these routines are described in the FORTRAN language
manual, the currently available FORTRAN compilers do not
recognize these names as anything special. Consequently, it
is normally necessary to explicitly declare them as REAL*8
functions, as otherwise they will be assigned the default
mode.

These routines are extremely trivial, consisting of the bare
minimum of +three instructions. Only general register 1 and
floating-point register 0 are altered by these routines, and a
save area is not required.

Error Conditions:

These routines are subject to specification exceptions, as
they assume the argument is doubleword-aligned.

ANSI Minimum/Maximum Value Functions

MINO/MAXO (INTEGER*4~-variable,...)
AMINO/AMAXO (INTEGER*4-variable,...)
MIN1/MAX1 (REAL*4-variable,...)
AMIN1/AMAX1 (REAL*4-variable,...)
DMIN1/DMAX1 (REAL*8-variable,...)
Algorithm:

These routines are identical in structure, accepting a vari-
able number of arbitrary arguments of the appropriate mode and
recognizing no error situations. The result modes of these
entry points are determined by the first character of the
function names as follows: M=INTEGER*4, A=REAL*4 and D=REAL*
8. The number of arguments processed is determined by the
last argument flag, and consequently, addressing or protection
exceptions may occur if this flag is not properly set.

514 The Elementary Function Library



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

I/0_SUBROUTINE_RETURN_CODES

The return codes that may result from a call on an dinput or output
subroutine depend on the type of the file or the device used in the
operation. In general, a return code of 0 means successful ccmpletion
of the input or output operation, and a return code of U4 means
end-of-file for an input operation and end-of-file-or-device for an
output operation. If the file or device being used was specified as
part of an explicit concatenation (and is not the last member of that
concatenation), a return code of 4 causes progression to the next
element of the concatenation, and that return code is not passed back to

the caller (unless the NOEC modifier was specified). Thus, for example,
if

SCARDS=A+B

then when the call is made to the SCARDS subroutine after the last line
in A has been read, the file routines signal an end-of-file, but this is
intercepted, and the first line in B is read instead.

Return codes greater than 4 are normally not passed back to the
caller but instead, an error comment is printed and control is returned
to MTS command or debug mode. There are two ways to suppress this
action and gain control in this situation. First, the subroutines
SETIOERR and SIOERR (see descriptions in this volume) are provided to
permit a global intercept of all input/output errors. Second, specify-
ing the ERRRTN modifier on an I/0 subroutine call will cause all return
codes to be passed back.

A description of the return codes that may occur with a particular
file or device is given with the appropriate sections of MTS Volume 4.
In addition, a summary is given below. Nonzero return codes marked with
an asterisk are normally not passed to the calling program; the others
are always passed to the calling program.

Files:
Input 0 Successful return

End-of-file (sequential read)
line not in file (indexed read)

8* Error

12% Access not allowed

16% Cannot wait due to deadlock

20% Illegal operation on sequential file

24% Backwards operation not allowed on sequential
file

28% Wait interrupted

I/0 Subroutine Return Codes 515



MTS 3:

Output 0

4 *
8
12%
16%*
20%

24 %
28%
32%
36%
4o*

Magnetic Tape:

516

Input 0

12%

16%

20%
24%

28%

32%

36%

Output 0

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

Successful return

End-of-file (line number not in line-number
range)

Size of file exceeded

Line numbers not in sequence (SEQWL)

Access not allowed

Cannot wait due to deadlock

Sequential file written with indexed modifier,
or written with starting line number other than
1

Disk allotment exceeded

Hardware or system error

Line truncated (@SP on sequential file)

line padded (@SP on sequential file)

Wait interrupted

Successful return

Tape-mark (end-of-file) sensed on read, BSR, or
FSR operation

Load point reached on BSR or BSF control
command

Logical end of labeled tape reached on read,
FSR, or FSF operation

Nonrecoverable hardware I/0 error, data con-
verter check, invalid control command, or inva-
lid control command parameter

Should not occur

Fatal error (may be due to hardware malfunc-
tion, label error in which the position of the
tape is uncertain, or pulling the tape cff the
end of the reel during a read, FSR, or FSF
operation); following a fatal error, the tape
must be rewound before any other I/0 operation
is allowed

Volume or data set in error

Sequence error caused by issuing a control
command when the tape is not positioned Eproper-
ly; or a read, FSR, or FSF operation following
a write operation

Deblocking error caused by improper blocking
parameters, e.g., attempting to deblock a for-
mat FB file using a format VB specification

Successful return

End-of-tape marker sensed during write or WTM
operation

Load point reached on BSR or BSF control
command

I/0 Subroutine Return Codes



October 1976

Paper Tape:
Input

12%

16%

20%

2%

28%
32%

36%

8%

12%
16%
20%

Card input under HASP:

Input

Output

Printed output:
Input

Output

0
4y
8%

8%

g%

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Attempt to write more than 5 additional records
after end-of-tape marker sensed

Nonrecoverable hardware 1/0 error, data con-
verter check, invalid control command, or inva-
lid control command parameter

Attempt to write on file-protected tape or
unexpired file

Fatal error (may be due to hardware malfunc-
tion, label error in which the position of the
tape is uncertain, or pulling the tape off the
end of the reel during a read, FSR, or FSF
operation); following a fatal error, the tape
must be rewound before any other I/0 operation
is allowed

Volume or data set in error

Sequence error caused by issuing a control
command when the tape is not positioned fproper-
ly; or a read, FSR, or FSF operation following
a write operation

Blocking error caused by dimproper blocking
parameters or parameters which are inconsistent
with the labels of the file being written

Successful return
End=-of-file

End-of-tape

Invalid control command
Hardware malfunction
Parity error

Successful return
End-of-file
Attempt to read in column binary mode

Attempt to write on card reader

Attempt to read from printer

Successful return
Local page limit exceeded

I/0 Subroutine Return Codes 517



MIS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Punched output:

Input g%
Output 0
B*

MERIT Network:
Input:

& o

B*

12%
16%*
20%
24%
28%

Output 0
Uy *
g%

12%
16%
20%
24%

October 1976

(user never regains control after a global
limit is exceeded)

Attempt to read from punch

Successful return

Local card limit exceeded

(user never regains control after a global
limit is exceeded)

Successful return

End-of-file read from network. This dces not
necessarily mean that there is no more data to
be read from the network, only that the <remote
host has sent an end-of-file.

Read not allowed; must write. This means that
the remote host is requesting input from the
network and, to avoid a deadlock, the local
program must not read from the network. The
prompting characters sent by the remote host
when it did the read are returned to the user.
Should not occur

Connection is closed: no I/0 may be done
Should not occur

Attention interrupt received from network

Same as return code 8 except that the remote
host has requested that the input area be
blanked for "n" characters, where '"n" is
returned as a 2-digit decimal number followed
by the prompting characters. A value of "0O"
means that no specific number of characters has
been specified.

Successful return

Should not occur

Write not allowed; must read. This means that
the remote host has issued a write on the
network and, to avoid a deadlock, the 1local
program must not write on the network.

Should not occur

Connection is closed: no I/0 may be done
Should not occur

Atterntion interrupt received from network

518 1I,/0 Subroutine Return Codes



October 1976

Control 0
1y %
8%

12%
16%
20%
24%

Most other devices:
Input 0
4
8%
Output 0

I
8%

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Successful return

Should not occur

Control command not allowed--the remcte host
has rnot done a read

Should not occur

Connection is closed: no I1/0 may be done
Invalid syntax or context for control command
Attention interrupt received from network

Successful return
End-of-file
Error

Successful return

End-of-file-or-device (if applicable)
Error

I/0 Subroutine Return Codes 519



MTS 3: SYSTEM SUBROUTINE DESCRKIPTIONS

October 1976

520 I,/0 Subroutine Return Codes



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

1/0_MODIFIERS

This section lists all the I/0 modifiers that may be used with
FDnames or with calls to I/0 subroutines.

The device

types discussed below in the exceptions to the default

modifier bit specifications are the device types as returned by the
GDINFO subroutine. The device types discussed here are:

PTR
MRX A

3270
PDP8

SDA
HPTR
MNET

The values

that the modifier word for a subroutine call would have if only that
modifier option was specified.

Bit

31
30

Printers

Terminals via Memorex 1270 Terminal Controller

(includes TTY and 2741)

IBM 3270 Display Station or Courier C-270 Display Station
Terminals via the Data Concentrator

Synchronous Data Adapter

Printed output via the batch monitor

MERIT Computer Network

indicated below with each bit specification are the values

SEQUENTIAL, S Value: 1 (dec) 00000001 (hex)
INDEXED, I 2 00000002
Default: SEQUENTIAL

Exceptions: None

The SEQUENTIAL modifier specifies that the input or output
operation is to be done sequentially. The INDEXED modifi-
er specifies that an indexed operation is to be performed.

In general, the INDEXED modifier is applied only to line
files, while the SEQUENTIAL modifier is applied to 1line
files, sequential files, and all types of devices. Note
that the SEQUENTIAL modifier and the sequential file are
not directly related.

I/0 operations involving line files may be performed with
either SEQUENTI1IAL or INDEXED specified. I/0 operations
involving sequential files must be done SEQUENTIALly. If
the user specities INDEXED on an I,/0 operation to a
sequential file, an error message is denerated unless the
global switch SEQFCHK is OFF, in which case the operation
is performed as if SEQUENTIAL was specified. Attempting a

sequential operation with a starting line number other

I/0 Modifiers 521



MTS 3:

522

Bit 29
28

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

than 1, e.g., $COPY FYLE(2), also gives an error comment
if SEQFCHK is ON.

I/0 operations involving devices, such as card readers,
printers, card punches, magnetic tape units, paper tape
units, and terminals, are inherently sequential and are
normally done SEQUENTIALly. If the SEQUENTIAL modifier is
specified, the line number associated with the line is the
value of the current 1line number plus (minus, if the
backwards I/0 modifier is given) the increment specified
on the FDname. If the INDEXED modifier is specified, the
line number associated with the line is the line number
specified in the «calling sequence. For devices, the
INDEXED modifier is used primarily in conjunction with the
PREFIX modifier. Note that the device treats the I/0
operation as it SEQUENTIAL were specified.

For further details about indexed and sequential dinput/
output operations, see the section "Files and Devices" in
MTS Volume 1.

EBCD Value: 4 (dec) 00000004 (hex)
BINARY, BIN 8 00000008
Default: EBCD

Exceptions: None

The EBCD/BINARY modifier pair is device-dependent as to
the action specified. For card readers and punches, the
EBCD modifier specifies EBCDIC +translation of the card
image; this means that each card column represents one of
the 256 8-bit EBCDIC character codes. The BINARY modifier
specifies that the <card images are in column binary
format; this means that each card column represents two
8-bit bytes ot information. The top six and bottom six
punch positions of each column correspond to the first and
second bytes, respectively, with the high-order two bits
of each byte taken as zero. Printers and files ignore the
presence of this modifier pair.

Other device support routines that recognize this modiiier
pair are:

(1) The Data Concentrator routines

(2) The Memorex 1270 Terminal Controller routines
(3) The Paper Tape routines

(4) The 3270 Display Station routines

For information on the use of +this modifier pair in
specifications involving the devices listed above, see the
respective sections of MTS Volume 4. The list of device
support routines recognizing this modifier is subject to

I/0 Modifiers



October 1976

Bit 27
26

Bit 25
24

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

change without  notice. Users who wish to keep their

programs device-independent should not specify this
modifier.

LOWERCASE, LC Value: 16 (dec) 00000010 (hex)
CASECONV, UOC 32 00000020
Default: LOWERCASE

Exceptions: None

The LOWERCASE/CASECONV modifier pair is not device-
dependent. If the LOWERCASE modifier is specified, the
characters are transmitted unchanged. If the CASECONV
modifier is specified, lowercase letters are changed to
uppercase letters. This translation is performed in the
user's virtual memory region. On input operations, the
characters are read into the user's buffer area and then
translated. On output operations, the characters are
translated in the user's buffer area and then written out.
Only" the alphabetic characters (a-z) are affected by this
modifier. Unlike IBM programming systems, MTS considers
the characters ¢, ", and ! as special characters rather
than "alphabetic extenders," and thus, the UC modifier

does not convert ¢, ", and ! into @&, #, and §,
respectively.

NOCARCNTRL, NOCC Value: 64 (dec) 00000040 (hex)
CC, STACKERSELECT, SS 128 00000080
Default: NOCARCNTRL

Exceptions: CC for PTR, MRXA, 3270, PDP8, SDA, HPIR, TTY,
2741, pisp, 1052, 1443, 2260, 3066, and BNCH
Controlled by device commands for MNET

The NOCC/CC modifier pair is device-dependent. This
modifier pair «controls whether logical carriage control
(or stacker-selection) on output records is enabled. For
printers and terminals, the first character of each record
is taken as logical carriage control if it is a valid
carriage-control character and if the CC modifier is
specified. If the first character is not valid as a
carriage-control character, the record is written as if
NOCC were specified. For further information on logical
carriage control, see Appendix H to the section "Files and
Devices" in MTS Volume 1. For card punches, the first
character of each card image is taken as the stacker-
select character if it is a valid logical stacker-select
character (0, 1, or 2) and if the 5SS modifier is
specified. If the first character is not valid as a
stacker-select character, the card image is punched as if
NOCC were specified. The SS modifier is intended only for

I/0 Modifiers 523



MTS 3:

524

Bit 23
22

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

those users who are communicating directly with a physical
punch (normally system programmers) and is not intended
for normal batch use. Note that the SS and CC modifiers
reference the same modifier bit and thus may be used
interchangeably.

The magnetic tape and paper tape routines also recognize
this modifier pair. For a description of this capability,
see MNTS Volume 4. Files ignore this modifier pair.

Value: 256 (dec) 00000100 (hex)
PREFIX, PFX 512 00000200

Default: ~PREFIX
Exceptions: None

The PREFIX modifier pair controls the prefixing of the
current input or output line with the current line number.
Oon terminal input, the «current dinput 1line number is
printed before each input line is requested. The line
number used is determined as specified in the description
of the SEQUENTIAL and INDEXED modifiers. An example for
terminal input is

$COPY *SOURCE* (6,,2)dPFX A(6,,2)
6_ first input line
8_ second input line

end-of-file indicator

Note that this would have the same effect with respect to
line numbering as

$GET A

$NUM 6,2
6_ first input line
8_ second input line

xx_$UNN

The current (prefix) line number is not necessarily
equivalent to the file line number. In the example above,
the prefix line and the file line numbers were explicitly
made to correspond by also specifying a line number range
on the output FDname (the file A). On input from card
readers and files, the PREFIX modifier has no effect. On
terminal output, the current line number is printed before
each output line is written. The line number used is
determined as specified in the section "Files and Devices"
in MTS Volume 1. An example for terminal output is

I/0 Modifiers



October 1976

Bit 21
20

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

$COPY A(1,10) *SINK*(100,,2)@PFX
100_ first output line
102_ second output line

Note again that the current line number is not equivalent
to the file line number. On output to the printer cr to a
file, the PREFIX modifier has no effect.

If the INDEXED and PREFIX modifiers are given together for
terminal owutput, the 1line numbers referenced by the
INDEXED modifier are the same as those produced by the
PREFIX modifier. As an example, consider the following
FORTRAN program segment:

INTEGER*2 LEN
DATA MOD/Z00000202/ Enables INDEXED, PREFIX
1 CALL READ(REG,LEN,0,LNR,2,&2)
CALL WRITE (REG,LEN,MOD,LNR, 3)
GO To 1
2 STOP
This program performs a read SEQUENTIAL and a write
INDEXED and PREFIX. The command (assuming compilation of
the above into =-LOAD)
$RUN -LOAD 2=A 3=%SINK*
is equivalent to
FCOPY A *SINK*aIaPFX
which is also similar to
SLIST A

with a slightly different formatting of the line numbers.

Value: 1024 (dec) 00000400 (hex)
PEEL, GETLINE#, 2048 00000800
RETURNLINE#
Default: -PEEL

Exceptions: None

The PEEL moditier pair has two functions, depending upon
whether it is specified on input or on output. On input,
if +the PEEL (GETLINE#) modifier is specified, a line
number is removed from the front of the current input
line. The line number is converted to internal form
(external value times 1000) and returned in the line

I/0 Modifiers 525



TS 3:

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

number parameter during the <read operation (see the
subroutine description of SCARDS and READ). The remainder
of the line is moved into the input region specified. As
an example, consider the following FORTRAN progranm
segment:

INTEGER*2 LEN
DATA MOD/2048/
1 CALL SCARDS (REG,LEN,MOD,LNR,&2) Read with PEEL
CALL SPRINT (REG,LEN,0,LNR)
GO TO 1
2 STOP

The program reads an input line, removes the line nunmber,

and writes out the line without its line number. Execu-
tion of the object module of the sample program is as
follows:

$RUN -0BJ SCARDS=*SOURCE* SPRINT=ABC
10ARA
12BBB

is equivalent to

$COPY *SOURCE#*a@GETLINE# ABC
TO0AAA
12BBB

Listing the file ABC produces

$LIST ABC
1 AAA
2 BBB

If the PEEL modifier is specified on input in conjunction
with the INDEXED modifier on output, the line number of
the input line can be used to control the destination of
the line during output. For example:

INTEGER*2 LEN
DATA NOD1/2048/, MOD2/2/
1 CALL SCARDS (REG,LEN,MOD1,LNR,&2) Read with PEEL

CALL SPRINT (REG,LEN,MOD2,LNR) Write INDEXED
GO TO 1
2 STOP

This program reads an input line, removes the line number,
and writes out the line with the extracted line number as
the line number specification for an indexed write opera-
tion. The following sequence (assuming compilation of the
above into -LOAD)

526 I/0 Modifiers



October 1976

Bit 19
18

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

$RUN -LOAD SCARDS=#SOURCE* SPRINT=ABC
T0AAA
12BBB

is equivalent to
$COPY *SOURCE*QGETLINE# ABCaI
T0AAA
12BBB
which is also equivalent to
$GET ABC
TOARAA
12BBB

Listing the file ABC produces

$LIST ABC
10 AAR
12 BBB

On output, if the PEEL (RETURNLINE#) modifier is speci-
fied, the 1line number of the current output line is
returned in the line number parameter of the subroutine
call during the write operation (see the subroutine
descriptions of SPRINT, SPUNCH, SERCOM, and WRITE). The
line itself is written out and is unaffected by the
presence or absence of this modifier. The modifier is
used on output to aid the programmer in recording the line
number of the current line written out.

Value: 4096 (dec) 00001000 (hex)
MACHCARCNTRL, MCC 8192 00002000

Default: = MCC
Exceptions: None

The machine carriage-control modifier pair is device-
dependent. The MCC modifier is used for printing output
(via printers or terminals) from programs producing output
in which the first byte of each line is to be used as a
machine carriage-control command for output to an IBM 1403
(or 1443) printer. If the MCC modifier is specified and
the first byte of the output line is a valid 1403 machine
carriage-control command code, the line is spaced accord-
ingly and printing starts with the next byte as column 1.
If the first byte is not a valid 1403 machine carriage-
control command code, the entire line is printed using
single-spacing. Spacing operations performed by machine
carriage control occur after the line is printed (as
opposed to logical carriage control in which the spacing

I/0 Modifiers 527



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Bit 17
16

Bit 15
14

October 1976

is performed before each line is printed). Most programs
do not produce output using machine carriage control. The
few programs that do (e.g., *ASMG and *TEXT360) internally
specify MCC for their output assuming that it is bcund for
a printer. Hence MCC need not be specified. If the user
directs the output to a file, MCC must be specified when

the file is printed. For example,

$RUN *ASMG SCARDS=A SPRINT=B SPUNCH=C
$COPY B TO *SINK*aMCC

The HCC modifier pair is ignored for files and devices
other than printers, terminals connected through the
Memorex 1270 Terminal Controller, or 3270 Display ter-
minals. For further information on machine carriage
control, see Appendix H to "Files and Devices" in MTS
Volunme 1.

Value: 16384 (dec) 00004000 (hex)
TRIM 32768 00008000

Default: ~TRIM

Exceptions: TRIM for 3270, HPTR, and 3066
Controlled by TRIM option of $SET command for
line files and sequential files

The TRIM modifier pair is used to control the trimming of
trailing blanks from input or output lines. If the TRIM
modifier is specified, all trailing blanks except one are
trimmed from the line. If -TRIM is specified, the line is
not changed. For an input operation, trimming does not
physically delete the trailing blanks from the line, but
only changes the line length count.

Value: 65536 (dec) 00010000 (hex)
SPECIAL, SP 131072 00020000

Default: =SP
Exceptions: None

The SPECIAL modifier pair is reserved for device-dependent
uses. Its meaning depends upon the particular device type
with which it 1is  used. The device support routines
recognizing this modifier pair are:

(1) The file routines

(2) The Data Concentrator routines

(3) The paper tape routines

() The Memorex 1270 Terminal Controller routines
(5) The 3270 Display Station routines

528 I/0 Modifiers



October 1976

Bit

Bit

Bit

13
12

1
10

3

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

The file routines use the SPECIAL modifier to mean skip on
a read operation to a sequential file, and to mean replace
on a write operation to a sequential file. See the
section "Files and Devices" in MTS Volume 1.

For information on the wuse of this modifier ©pair in
specifications involving the devices listed above, see the
corresponding sections of MTS Volume 4. The list of
device support routines recognizing this modifier is
subject to change without notice. Users who wish to keep
their programs device-independent should not specify this
modifier.

Value: 262144 (dec) 00040000 (hex)
Ic 524288 00080000

Default: The setting of the IC global switch (initial-
ly ON)
Exceptions: None

The IC modifier pair controls implicit concatenation. If
the IC modifier is specified, implicit concatenation
occurs via the "$CONTINUE WITH" line. If -IC is speci-
fied, implicit concatenation does not occur. For exanmple,
$LIST PROGRAM@-IC 1lists +the file PROGRAM and prints
"SCONTINUE WITH" lines instead of interpreting them as
implicit concatenation. The use of the IC modifier in I/0
subroutine calls or as applied to FDnames overrides the
setting of the implicit concatenation global switch (SET
IC=0N or SET IC=0FF) for the I/0 operations for which it
is specified.

FWD, FORWARDS Value: 1048576 (dec) 00100000 (hex)
BKWD, BACKWARDS 2097152 00200000
Default: FWD

Exceptions: None

The forwards-backwards modifier pair control the direction
of the next sequential read operation. On a read back-
wards operation, the information is placed in the desig-
nated region in a manner identical to a read forwards
operation, i.e., the front of the logical record is placed
at the beginning of the region. For further details on
using this modifier, see the section "Files and Devices"
in MTS Volume 1.

NOEC Value: 268435456 (dec) 10000000 (hex)

I/0 Modifiers 529



MTS 3:

530

Bit

Bit

SYSTEM SUBROUTINE DESCREIPTIONS

October 1976

Default: ~NOEC
Exceptions: None

If the NOEC modifier is specified (bit 3 in the nmcdifier
word is 1) when an I/0 subroutine call is made, explicit
concatenation will be inhibited, i.e., if an end-of-file
(return code 4) occurs, a return will be made to the
calling program instead of proceeding with the next member
of the concatenation (if any).

NOATTN Value: 536870912 (dec) 20000000 (hex)

Default: ~“NOATTN
Exceptions: None

If the NOATTN modifier is specified (bit 2 in the modifier
word is 1) when an I/0 subroutine call is made, all
pending attention interrupts, and all attention interrupts
occurring during the call, are left pending. Normally, if
an attention interrupt occurs but cannot be taken, either
because the interrupt occurred in a sensitive portion of
the system or because of explicit suppression, the ATINBIT
bit (accessible through the GUINFO subroutine) is set,
indicating that the interrupt has occurred; the taking of
the interrupt is delayed until the next I/0 call. The use
of the NOATTN modifier allows the further delaying of this
interrupt by preventing it from being taken on a given I/0
call. If the ATTNOFF bit (accessible +though the GUINFO
subroutine) is set, all attention interrupts occurring
during execution of the program are left pending. The
user may suppress a pending dinterrupt by explicitly
resetting the ATNBIT bit through a call to the CUINFO
subroutine. The NOATTN modifier may be used in ccnjunc-
tion with the ATTNOFF bit to suppress attention interrupts
during the execution of selected portions of a Eprogranm.
This modifier may be wused only with an I/0 subroutine
call; it may not be used with an FDname.

ERRRTN Value: 1073741824 (dec) 40000000 (hex)

Default: ~ERRRTN
Exceptions: None

If the ERRRTN modifier is specified (bit 1 in the modifier
word is 1) when an I/0 call is made, and if an I/O error
occurs when no SETIOERR/SIOERR interception has been
established, the error return code is passed back to the
calling program instead of printing an error comment. The
error comment may be retrieved by calling the subroutine
GDINFO. This modifier may be wused only with an I/0
subroutine call; it may not be used with an FDname. See

I/0 Modifiers



October 1976

Bit 0

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

the descriptions of SETIOERR and SIOERR this volume for
further details.

NOTIFY Value: -2147483648 (dec) 80000000 (hex)

Default: -NOTIFY
Exceptions: None

If the NOTIFY modifier is specified (bit 0 in the modifier
word is 1) when an I/0 subroutine call is made, on return
GRO is set to a value indicating what has happened:

0 = no unusual occurrence
1 = new FDUB opened and no I/0 done
2 and above, reserved for future expansion

A new FDUB is opened if implicit concatenation occurred,
if a change to the next member of an explicit concatena-
tion is effected, if a replacement FDname is requested, or
whenever a FDUB or logical I/0 unit is used for the first
time. This modifier may be used only with an I/0
subroutine call; it may not be used with an FDname.

I/0 Modifiers 531



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

532 I/0 Modifiers



MTS 3: SYSTEM SUBROUTINE DESCRIEFTIONS

October 1976

EXTERNAL_SYMBOL_INDEX

This section contains lists of all the external symbols defined
within the system that may be referenced by user progranms.

The first list is a master list of all the external symbols presented
in alphabetical order. The first column contains the symbol name and
the second column gives the library in which the symbol is defined. For
the sake of brevity, the symbols listed as IHE....., IHI....., and
ILlBecsese represent a large group of symbols that start with these
respective three-letter prefixes and are contained in the libraries
PL1SYM, *ALGOLLIB, and *COBLIB. The complete list of these symbols is
given with the lists of symbols for each individual library.

The remainder of the lists are separate lists for the symbols in each
individual library.

External Symbol Index 533



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

Alphabetical list _of All _Symbols ADVLWR UNSP:LSLIPLIB
ADVLWR *SLIP

<ErFL> Resident System ADVSEL UNSP:LSLIPLIB
<FIX> Resident Systenm ADVSEL *SLIP
$CYLALOC Resident Systenm ADVSER UNSP:LSLIPLIB
$EXEC1 Resident System ADVSER *SLIP
$IQENT Resident System ADVSL UNSP:LSLIPLIB
$PLCOMP *PL360LIB ADVSL ¥*SLIP
$POOLCHG Resident Systenm ADVSNL UNSP:LSLIPLIB
$ROUTAB Resident Systenm ADVSNL *SLIP
$SPACE *LIBRARY ADVSNR UNSP:LSLIPLIEB
**APLGOA *APLLIB ADVSNR ¥SLIP
*APLCONA *APLLIB ADVSR UNSP:LSLIPLIB
#CCPLOT *PLOTSYS ADVSR *SLIP
#FPCON *LIBRARY ADVSHL UNSP:LSLIPLIB
#IG *IG ADVSWL *SLIP
#IGDSHM *IG ADVSHR UNSP:LSLIPLIB
#IGETDD *1G ADVSHWR *SLIP
#IGETHSP *IG AFGEN *CSMPLIB
#IGINITT *1G AGSENS *IG
#IGPD *IG AHI NAAS:SSP
#PLTMOD *PLOTSYS ALGAMA Elementary Fcn. Lib.
#POSET *PLOTSYS ALGOLX *ALGOLWLIB
#PRASTR *PLOTSYS ALI NAAS:SSP
#PSYSYMB *PLOTSYS ALOG Elementary Fcn. Libuw
#PVIRT *PLOTSYS ALOGH# Elementary Fcn. Lib.
#PWRIT *1G ALOG10 Elementary Fcn. Lib.
#PWRIT *PLOTSYS ALPHA *CSMPLIB
#PXBND *PLOTSYS AMAXO Elementary Fcn. Lib.
#RMTCOPY Resident System AMAX1 Elementary Fcn. Lib.
@TESTITP *LIBRARY AMINO Elementary Fcn. Lib.
ABSNT NAAS:SSP ANINT Elementary Fcn. Lib.
ACCEPT *LIBRARY AND #*LIBRARY
ACFI NAAS: SSP AND *CSMPLIB
ACTIVCNT Resident Systenm APCH NAAS:SSP
ACTVLEF# *IG APFS NAAS:S5SP
ADAMS *CSMPLIB APL Resident Systenm
ADCON# OLD:LIBRARY APLADDR *APLLIB
ADRQF *LIBRARY APLALOC *APLLIB
ADVLEL UNSP: LSLIPLIB APLCON *APLLIB
ADVLEL *SLIP APLCONA *APLLIB
ADVLER UNSP:LSLIPLIB APLCONAA *APLLIB
ADVLER *SLIP APLCRT1 *APLLIB
ADVLL UNSP:LSLIPLIB APLCRT1A *APLLIB
ADVLL *SLIP APLCRT2 *APLLIB
ADVLNL UNSP:LSLIPLIB APLCRT2A *APLLIB
ADVLNL *SLIP APLDEL1 *APLLIB
ADVLNR UNSP: LSLIPLIB APLDEL1A *APLLIB
ADVLNR *SLIP APLDELZ2 *APLLIB
ADVLR UNSP:LSLIPLIB APLDELZ2A *APLLIB
ADVLR *SLIP APLDEL3 *APLLIB
ADVLWL UNSP:LSLIPLIB APLDEL 3A *APLLIB
ADVLWL *SLIP APLDESC *APLLIB

534 External Symbol Index



October 1976

APLDREC
APLEMES
APLEMESA
APLERR
APLESET
APLESETA
APLEV
APLEVAR
APLEVARA
APLFND1
APLFND1A
APLFND2
APLFND2A
APLFND3
APLFND3A
APLFORM
APLFREE
APLGARB
APLGARBA
APLGO
APLINDX
APLINDXA
APLL
APLNOBL
APLNOBLA
APLNSRT
APLNSRTA
APLNUMB
APLNUMBA
APLOC
APLOWNI
APLOWNIA
APLOWRS
APLOWRSA
APLRELO
APLRELOA
APLREL1
APLREL1A
APLRIN
APLRNMV1
APLRMV 1A
APLRMV2
APLRMV2A
APLROUT
APLSNAM
APLSNAMA
APLTYPE
APLUDAT
APMM
ARAT
ARCOS
ARINIT
ARMTS

*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
NAAS: SSP
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
*APLLIB
NAAS:55P
NAAS:SSP

Elementary Fcn. Lib.

*LIBRARY
UNSP:LIBRARY

MTS 3:

ARRAY
ARRAY
ARRAY2
ARSIN
ASCEBC
ASMTDEFS
ASTATSUB
ATAN
ATAN2
ATANZ#
ATEIG
ATNTRP
ATRAP
ATKSTR
ATSE
ATSG
ATSHM
ATTACH
ATTNT
ATTNTRP
AUTO
AVCAL
AVDAT
AWXCMPA2
AWXCMPB2
AWXLIBR2
AWXSL001
AWXSLO0O01
AWXSL002
AWXSLO002
AWXSLO003
AWXSLO003
AWXSLOOY
AWXSLOOY
AWXSLOO0S
AWXSLOO0S5
AWXSLO06
AWXSLOO6
AWXSLO0O7
AWXSLOO7
AWXSL0O08
AWXSL008
AWXSLOO09
AWXSLOO9
AWXSLO010
AWXSLO010
AWXSL0O11
AWXSLO11
AWXSLO012
AWXSLO12
AWXSL013
AWXSL013
AWXSLO14

*LIBRARY

NAAS: SSP

* LIBRARY
Elementary Fcn.
Resident System
Resident System
Resident Systenm
Elementary Fcn.
Elementary Fcn.
Elementary Fcn.
NAAS:SSP
*LIBRARY

UNSP: LIBRARY
UNSP:LIBRARY
NAAS:S5SP
NAAS:SSP
NAAS:SSP

PL1SYHM

Resident Systen
Resident Systenm
NAAS:SSP
NAAS:SSP
NAAS:SSP
Resident System
Resident Systenm
*ALGOLWXLIB
*ALGOLWLIB
*ALGOLWXLIB
*ALGOLWLIB
*ALGOLWXLIB
*ALGOLWLIB
*ALGOLWXLIB
*ALGOLWLIB
*ALGOLWXLIB
*ALGOLWLIB
*ALGOLWXLIB
*ALGOLWLIB
*ALGOLWXLIB
*ALGOLWLIB
*ALGOLWXLIB
*ALGOLWLIB
*ALGOLWXLIB
*ALGOLWLIB
*ALGOLWXLIB
#ALGOLWLIB
*ALGOLWXLIB
*ALGOLWLIB
*ALGOLWXLIB
*ALGOLWLIB
*ALGOLWXLIB
%ALGOLWLIB
*ALGOLWXLIB
*ALGOLWLIB

SYSTEM SUBROUTINE DESCRIPTIONS

Lib.

Lib.
Lib.
Lib.

External Symbol Index 535



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

AWXSLO14
AWXSL015
AWXSLO15
BAIR
BAIR
BAKVEC
BALANC
BALBAK
BANDR
BANDV
BASICO
BATCH
BCDIST
BDTR
BESEKO
BESEK1
BESJ
BESK
BESKO
BESK1
BESY
BINEBCD
BINEBCD2
BISECT
BISER
BLKLTR
BLOKLETR
BLSTDEV
BMLOCK
BOOLE
BOT

BOT
BOUND
BOR
BSINK
BSRF

BTC

BTD
BUFALLOC
BUILD
BUILDR
B256
CABS
CADD
CADLFT
CADLFT
CADNBT
CADNBT
CADNTP
CADNTP
CADRGT
CADRGT
CALC

*ALGOLWXLIB
*ALGOLWLIB
*ALGOLWXLIB
NAAS:OLDLIB
OLD:LIBRARY
NAAS:EISPACK
NAAS:EISPACK
NAAS:EISPACK
NAAS: EISPACK
NAAS: EISPACK
Resident System
PL1SYH

*CSMPLIB
NAAS:SSP
NAAS:FUNPACK
NAAS: FUNPACK
NAAS:SSP
NAAS:SSP
NAAS:FUNPACK
NAAS: FUNPACK
NAAS: SSP
Resident Systen
Resident Systen
NAAS:EISPACK
NAAS:SSP
Resident System
Resident System
Resident Systen
Resident Systen
*CSMPLIB

UNSP: LSLIPLIB
*SLIP

NAAS:SSP

NAAS: EISPACK
Resident Systen
Resident Systen
*KDFLIB
*LIBRARY
Resident Systen
*CSMPLIB
*CSMPLIB

FORTRAN I,/0 Library

Elementary Fcn.
NAAS: SSP

*SLIP

UNSP: LSLIPLIB
*SLIP
UNSP:LSLIPLIB
*SLIP
UNSP:LSLIPLIB
*SLIP
UNSP:LSLIPLIB
Resident Systen

536 External Symbol Index

CALCH#
CANOR
CANREPLY
CASECONV
CAXMB
CBABK2
CBAL
CBS
CCos
CCPY
ccur
CDABS
CDAXMB
CDBS
CDCos
CDDVD #
CDEXP
CDILU
CDIR
CDLOG
CDLUD
CDMPY #
CDRDUC
CDSIN
CDSQRT
CDsTUC
CDTR
CDVD#
CEL1
CEL2
CENTRL
CEXP
CFDUB
CEGINF
CG

CH
CHARIN
CHAROU
CHGFLG
CHGFSZ
CHGMBC
CHISQ
CHKACC
CHKFDB
CHKFDUB
CHKFIL
CHKFILE
CHR1
CHR2
CHE3
CHRU
CHRS5
CHR6

October 1976

Resident Systen
NAAS:SSP
Resident Systen
Resident Systenm
NAAS:NAL
NAAS:EISPACK
NAAS:EISPACK
NAAS:NAL
Elementary Fcn.
NAAS:SSP
NAAS:SSP
Elementary Fcn.
NAAS:NAL
NAAS:NAL
Elementary Fcn.
Elementary Fcn.
Elementary Fcn.
NAAS:NAL
NAAS:NAL
Elementary Fcn.
NAAS:NAL
Elementary Fcn.
Resident Systen
Elementary Fcn.
Elementary Fcn.
Resident Systen
NAAS:SSP
Elementary Fcnh.
NAAS:SSP
NAAS:SSP
*CSMPLIB
Elementary Fcn.
Resident Systen
Resident Systen
NAAS:EISPACK
NAAS:EISPACK
*KDFLIB

*KDFLIB
Resident Systen
Resident Systenm
Resident Systen
NAAS:SS5P
Resident Systen
Resident Systen
Resident Systenm
Resident Systen
Resident Systen
*SLIP

*SLIP

*SLIP

*SLIP

*SLIP

*SLIP

Lib.

Lib.

Lib.
Lib.
Lib.
Lib.
Lib.
Lib.
Lib.

Lib.

Lib.



October 1976

CHR7
CHR8
CILU
CINT
CINVIT
CIR
CKSTOR
CLEANUP#
CLOG
CLOSE
CLOSEFIL
CLOSFL
CLSNET
CLUD
CMD
CMDNOE
CMPY#
CNFGINFO
CNP
CNPS
CNTL
CNTLNR
CNTRL
COLCT
COMBAK
comc
COMHES
COMLR
COMLR2
COMPACTI
COMPAR
COMPL
COMPL
COMQR
COMQR2
CONEND
CONLBL
CONSET
CONT
CONTIN
CONTROL
CONTUR
CONVT
COPY
COPYTE
CORRE
CORTB
CORTH
cos
cos#
COSH
COST
COTAN

*SLIP

*SLIP
NAAS:NAL
NAAS:SSP
NAAS:EISPACK
NAAS:NAL
*CSMPLIB

*1G

Elementary Fcn. Lib.

*KDFLIB
Resident Systen
Resident Systenm
Resident Systen
NAAS:NAL
Resident Systen
Resident Systen
Elementary Fcn.
Resident Systen
NAAS:SSP
NAAS:SSP

PL1SYM

Resident System
Resident Systen
*GASP
NAAS:EISPACK
*LIBRARY
NAAS:EISPACK
NAAS:EISPACK
NAAS: EISPACK
*EXPLIB
*CSMPLIB

*LI BRARY
*CSMPLIB
NAAS:EISPACK
NAAS:EISPACK
UNSP:DIGLIB
UNSP:DIGLIB
UNSP:DIGLIB
*SLIP

*CSMPLIB
Resident Systen
UNSP:DIGLIB
NAAS:SSP
*PL360LIB
*KDFLIB
NAAS:SSP
NAAS:EISPACK
NAAS: EISPACK
Elementary Fcn.
Elementary Fcn.
Elementary Fcn.
Resident System
Elementary Fcn.

Lib.

Lib.
Lib.
Lib.

Lib.

MTS 3:

CPUTIME
CREATE
CREATE#
CREPLY
CRESVHM
CROSS
CS
CSIN
CSMPEX
CSMPST
CSMPTR
CSP
CSPS
CSQRT
CSRT
CSTORE
csuM
CTAB
CTIE
CTQQ
CTQQIN
CUINFO
CURSEGHM
CVTOMR
C1

Cc2

C3

cy

C5

Cé

c7

c8
DACFI
DAHI
DAINT
DAINT
DALI
DAPCH
DAPFS
DAFPLL
DAPMNM
DARAT
DARCOS
DARSIN
DATAN
DATAN
DATANZ
DATANZ#
DATASK
DATAST
DATSE
DATSG
DATSHM

PL1SYN

Resident System
Resident Systen
Resident Systen
UNSP:LSLIPLIB
NAAS:SSP
NAAS:SSP
Elementary Fcn.
*CSMPLIB
*CSMPLIB
*CSMPLIB
NAAS:SSP
NAAS:SSP
Elementary Fcn.
NAAS:SSP
*CSMPLIB
NAAS:SSP
NAAS:SSP

NAAS: SSP
UNSP:DIGLIB
UNSP:DIGLIB
Resident Systen
*COBLIB
Resident Systenm
*SLIP

*SLIP

*SLIP

*SLIP

*SLIP

*SLIP

*SLIP

*SLIP

NAAS:SSP
NAAS:SSP
OLD:LIBRARY
NAAS:OLDLIB
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
Elementary Fcn.
Elementary Fcn.
*GASP
Elementary Fcn.
Elementary Fcn.
Elementary Fcn.
*KDFLIB
#*CSMPLIB
NAAS:SSP
NAAS:SSP
NAAS:SSP

SYSTEM SUBROUTINE DESCRIPTIONS

Lib.

Lib.

Lib.
Lib.

lib.
Lib.
Lib.

External Symbol Index 537



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

DATUM *SLIP DERROR *SLIP

DATUM UNSP:LSLIPLIB DESTROY Resident Systen
DAXMB NAAS: NAL DESTRY Resident Systenm
DBAR NAAS: SSP DET3 NAAS:SSP

DBS OLD:LIBRARY DET5 NAAS:S5SP

DBS NAAS:OLDLIB DEVLST Resident Systen

DBS NAAS:NAL DEXP Elementary Fcn. Lib.
DBST NAAS:OLDLIB DEXP# Elementary Fcn. Lib.
DBST OLD:LIBRARY DEXPEI NAAS:FUNPACK

DCAR NAAS: SSP DFFT NAAS:NAL

DCEL1 NAAS:SSP DFFTA NAAS:NAL

DCEL2 NAAS:SSP DFFT2 NAAS:NAL

DCLA NAAS:SSP DFFT2A NAAS:NAL

DCNP NAAS:SSP DFMCG NAAS:SSP

DCNPS NAAS:SSP DFMFP NAAS:SSP

DCOS Elementary Fcn. Lib. DFRAT NAAS:SSP

DCOS# Elementary Fcn. Lib. DFS NAAS:NAL

DCOSH Elementary Fcn. Lib. DGAMMA Elementary Fcn. Lib.
DCOTAN Elementary Fcn. Lib. DGELB NAAS:SSP

DCPY NAAS:SSP DGELG NAAS:SSP

DCSP NAAS:SSP DGELS NAAS:SSP

DCSPS NAAS:SSP DGSENS *1G

DCvC OLD: LIBRARY DGT3 NAAS:SSP

DCVD OLD:LIBRARY DHARM NAAS:SSP

DCVG OLD:LIBRARY DHEP NAAS:SSP

DDAW NAAS: FUNPACK DHEPS NAAS:SSP

DDBAR NAAS:SSP DHPCG NAAS:SSP

DDCAR NAAS:SSP DHPCL NAAS:SSP

DDEF# PL1SYH DILU NAAS:NAL

DDET3 NAAS:SSP DIMAG Elementary Fcn. Lib.
DDETS NAAS:SSP DIOCS# OLD:LIBRARY

DDGT3 NAAS:SSP DIOCS# FORTRAN I,/0 library
DEADSP *CSMPLIB DIR NAAS:NAL

DEBUG *CSMPLIB DISCR NAAS:SSP

DEBUGH# OLD : LIBRARY DISMNT Resident Systen
DEBUG # FORTRAN I/0 Library DISMOUNT Resident Systen
DECOMP NAAS:LIT DISTOK UNSP:DIGLIB

DEI NAAS: FUNPACK DJELF NAAS:SSP

DELAY *CSMPLIB DLAP NAAS:SSP

DELETE UNSP: LSLIPLIB DLAPS NAAS:SSP

DELETE *SLIP DLBVP NAAS:SSP

DELIEHM NAAS: FUNPACK DLEP NAAS:SSP

DELIE1 NAAS: FUNPACK DLEPS NAAS:SSP

DELIKHM NAAS: FUNPACK DLGAM NAAS:SSP

DELIK1 NAAS: FUNPACK DLGAMA Elementary Fcn. Lib.
DELIPE NAAS: FUNPACK DLLSQ NAAS:SSP

DELIPK NAAS: FUNPACK DLOG Elementary Fcn. Lib.
DELI1 NAAS:SSP DLOG# Elementary Fcn. Lib.
DELI2 NAAS:SSP DLOG10 Elementary Fcn. Lib.
DERF Elementary Fcn. Lib. DLS *SLIP

DERFC Elementary Fcn. Lib. DLUD NAAS:NAL

DERIV *CSMPLIB DMATX NAAS:SSP

DERROR UNSP:LSLIPLIB DMAX1 Elementary Fcn. Lib.

538 External Symbol Index



October 1976

DMCHB
DMFGR
DMFSD
DNFSS
DMIN1
DMLSS
DMP
DMP
DMPCHR
DMPCLR
DMPERR
DMPERR
DMPER1
DMPER1
DMPFRE
DMPFRE
DMPINI
DMPLAV
DMPLAV
DMPLIS
DMPLNK
DMPLNK
DMPLST
DMPLST
DMPMRK
DMPMRK
DMPRC
DMPRDR
DMPRDR
DMPRES
DMPRES
DMPSVH
DMPUBL
DMPUBL
DMTDS
DPECN
DPECS
DPEONE
DPQFB
DPRBM
DPRQD
DQATR
DQA1Z
DQA16
DQA 24
DQA32
DQAY
DQAS
DQG12
DQG16
DQG24
DQG32
DQGY4

NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP

Elementary Fcn. Lib.

NAAS:SSP
*SLIP
UNSP:LSLIPLIB
UNSP: LSLIPLIB
*SLIP
UNSP:LSLIPLIB
*SLIP
UNSP:LSLIPLIB
*SLIP
UNSP:LSLIPLIB
*SLIP
UNSP:LSLIPLIB
*SLIP

UNSP: LSLIPLIB
UNSP: LSLIPLIB
*SLIP

UNSP: LSLIPLIB
*SLIP
UNSP:LSLIPLIB
*SLIP
UNSP:LSLIPLIB
NAAS:SSP
*¥SLIP
UNSP:LSLIPLIB
*SLIP
UNSP:LSLIPLIB
UNSP:LSLIPLIB
¥*SLIP
UNSP:LSLIPLIB
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS: FUNPACK
NAAS:SSP
NAAS:SSP
NAAS: SSP
NAAS:SSP
NAAS: 55P
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS: SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

DQG8
DQHFE
DQHFG
DQHSE
DUHSG
DQH16
DQH24
DQH32
DQH4 8
DQH6U
DQHB8
DQL12
DQL16
DQL24
DQL32
DQLY
DQL8
DQSF
DQTFE
DQTFG
DRAND
DREAL
DRHARM
DRKGS
DROPIOER
DRS
DRSET
DRSINT
DRTMI
DRTNI
DRTWI
DSE13
DSE15
DSE35
DSFINI
DSG13
DSIN
DSIN#
DSINH
DSINIT
DSINV
DSQRT
DSQRT#
DSRDISPV
DSR3270
DTAN
DTANH
DTB
DTCNP
DTCSP
DTEAS
DTEUL
DTHEP

NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP

*GASP
Elementary Fcn.
NAAS:SSP
NAAS:SSP
*LIBRARY

SLIP

*GASP

*GASP

NAAS:SSP
NAAS:SSP
NAAS:SS5P
NAAS:SSP
NAAS:5S5P
NAAS:SSP
UNSP:DIGLIB
NAAS:SSP
Elementary Fcn.
Elementary Fcn.
Elementary Fcn.
UNSP:DIGLIB
NAAS:SSP
Elementary Fcn.
Elementary Fcn.
Resident Systen
Resident Systen
Elementary Fcn.
Elementary Fcn.
*LIBRARY
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:S55P

Lib.

Lib.
Lib.
Lib.

Lib.
Lib.

Lib.
Lib.

External Symbol Index 539



MTS 3: SYSTEM SUBROUTINE DESCKIPTIONS

October 1976

DTLAP NAAS:SSP EXSMO NAAS:SSP

DTLEP NAAS:SSP EXTEND *LIBRARY

pumMpP *LIBRARY E7090 *LIBRARY

DUMP OLD:LIBRARY E7090P *LIBRARY

DVCHK FORTRAN I/0 Library F *CSMPLIB

DVDQ NAAS:LIT FACTR NAAS: 5SP

DVDQG NAAS:LIT FCDXI# Elementary Fcn. Lib.
DVDQ1 NAAS:LIT FCNMON NAAS: FUNPACK
DYSSUB# Resident Systenm FCNSW *CSMPLIB

D7090 *LIBRARY FCVAO OLD:LIBRARY

D7090P *LIBRARY FCVCO OLD:LIBRARY

EBCASC Resident Systenm FCVEO OLD:LIBRARY

EBCMASC Resident Systen FCVIO OLD:LIEBERARY

EBX *SLIP FCVLO OLD:LIBRARY

ECHO Resident System FCVTHB FORTRAN I/O0 library
EDIT Resident Systen FCVTHB OLD:LIBRARY

EDITOR Resident Systenm FCVZO OLD:LIBRARY

EIGEN NAAS: SSP FCXPI# Elementary Fecn. Lib.
ELAPSED PL15SYHM FDXPD# Elementary Fcn. Lib.
ELI NAAS:SSP FDXPI# Elementary Fcn. Lib.
ELIZ NAAS:SSP FHDRDISP Resident Systen
ELMBAK NAAS: EISPACK FIGI NAAS:EISPACK

ELMHES NAAS:EISPACK FIGI2 NAAS:EISPACK

ELTRAN NAAS:EISPACK FILEM *GASP

EMPTY Resident Systenm FILEMF *GASP

EMPTYF Resident Systen FILEML *GASP

EOR *CSMPLIB FILEPTR *APLLIB

EQUAL *SLIP FIND *KDFLIB

EQUC *LIBRARY FINDADR# *1G

EQUIV *CSMPLIB FINDC *LIBRARY

ERASAL *LIBRARY FINDN *GASP

ERASE *LIBRARY FINDQ *GASP

ERF Elementary Fcn. Lib. FINDST *LIBRARY

ERFC Elementary Fcn. Lib. FINFO PL1SYM

ERLNG *GASP FINSRT *GASP

EROUT *GASP FIOCS# OLD:LIBRARY
ERRBUFFR *PL360LIB FIOEND FORTRAN I/0 Library
ERRCOM# *1G FIXPI# Elementary Fcn. Lib.
ERRER *GASP FMCG NAAS:SSP

ERRMON# Elementary Fcn. Lib. FMFP NAAS:SSP

ERROR Resident Systen FNAMETRT Resident Systen
ERROR *PL1LIB FORIF NAAS:SSP

ERROR *¥GASP FORIT NAAS:SSP

ERROR# Resident Systen FORMAT *KDFLIB

ERRPRINT *PL360LIB FPSECT Resident Systen
ERRRR *GASP FRAT NAAS:SSP

ERRTRA NAAS:FUNPACK FRDNL# FORTRAN I/0 Library
ETW *KDFLIB FRDNL# OLD:LIBRARY

EXIT *LIBRARY FREAD *LIBRARY

EXITER *GASP FREED Resident Systen

EXP Elementary Fcn. L1ib. FREEFD Resident Systen
EXP# Elementary Fcn. Lib. FREESP Resident Systen
EXPI NAAS:SSP FREESPAC Resident Systenm

540 External Symbol Index



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

FRXPI# Elementary Fcn. Lib. GMTRA NAAS:SSP

FRXPR# Elementary Fcn. Lib. GOPEN *LIBRARY

FSIZE Resident Systen GPRJNO Resident Systen
FSRF Resident Systen GPSECT Resident System
FSTATCMD Resident Systenm GRAB3270 Resident Systemn
FTN Resident Systen GRAND NAAS:OLDLIB
FTNCMD FORTRAN I,/0 Library GRAND *LIBRARY

FWRNL# OLD:LIBRARY GRAND1 NAAS:OLDLIB
FWRNL# FORTRAN I/O Library GRANDA1 *LIBRARY

FUTRBK UNSP:LSLIPLIB GRGJULDT Resident System
FUTRBK *SLIP GRGJULTH Resident Systen
GAMMA Elementary Fcn. Lib. GRJLDT *LIBRARY

GAP *KDFLIB GRJLSEC Resident Systenm
GASP *GASP GRJLTH *LIBRARY

GASPRS *GASP GROSDT *LIBRARY

GAUSS NAAS:SSP GTDJHS *LIBRARY

GAUSS *CSMPLIB GTDJIMSR *LIBRARY

GCLOSE *LIBRARY GTFMVL *GPSSLIB

GDATA NAAS:SSP GTFPVL *¥*GPSSLIB

GDINF *LIBRARY GTFSVL *GPSSLIB

GDINFO Resident Systenm GTHMVL *GPSSLIB
GDINFO2 Resident Systenm GTHPVL *GPSSLIB
GDINFO3 Resident Systen GTHSVL *GPSSLIB

GDINF2 Resident Systen GTPRD NAAS:SSP

GDINF3 Resident Systen GUINFO Resident Systen
GELB NAAS:SSP GUINFUPD Resident Systenm
GELG NAAS:SSP GUSER Resident Systen
GELS NAAS:SSP GUSER# Resident System
GEN1ST *CSMPLIB GUSERID Resident Systenm
GEN2ST *CSMPLIB HARM NAAS:SSP

GETBLK *SLIP HEP NAAS:SSP

GETD Resident Systen HEPS NAAS:SSP

GETENT *GASP HISTO *GASP

GETFD Resident Systenm HLF1 *SLIP

GETFD1 Resident Systen HLF2 *SLIP

GETFD6 Resident Systen HPCG NAAS:SSP

GETFST Resident Systen HPCL NAAS:SSP

GETID Resident System HQR NAAS:EISPACK
GETIHC OLD:LIBRARY HQR2 NAAS:EISPACK
GETIHC FORTRAN I/0 Library HSBG NAAS:SSP

GETIME Resident Systenm HSTRSS *CSMPLIB
GETIOHER *LIBRARY HTRIBK NAAS:EISPACK
GETLST Resident Systen HTRIB3 NAAS:EISPACK
GETSPA Resident Systenm HTRIDI NAAS:EISPACK
GETSPACE Resident Systen HTRID3 NAAS:EISPACK
GFINFO Resident Systenm H1 ¥SLIP

GJMSPSCT *LIBRARY HZ2 *SLIP

GLINT NAAS:OLDLIB IADROF *LIBRARY

GLINT OLD:LIBRARY IBCOM# OLD:LIBRARY
GMADD NAAS:SSP IBCOM# FORTRAN I,/0 Library
GMMMA NAAS:SSP IbCOM## FORTRAN I/0 library
GMPRD NAAS:SSP IBERH# *LIBRARY

GMSUB NAAS:SSP ICLC *LIBRARY

External Symbol Index

541



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

1D UNSP:LSLIPLIB IHCLOGIC *LIBRARY

ID *SLIP IHCNAMEL OLD:LIERARY
IDATUN UNSP:LSLIPLIB IHEABN *PL1LIB
IDATUM *SLIP IHEABND *PL1LIB

IDW UNSP: LSLIPLIB IHELTT *PL1LIB

IED *LIBRARY IHEMAIN *PLI1LIB

IEDMK *LIBRARY IHENTRY *APLLIB
IERRCO00 *COBLIB IHESAP *PL1LIB

IF Resident System IHESAPA *PL1LIB
IGATTB *IG IHESAPB *PL1LIB
IGBGNO *1G IHESAPC *PL1LIB
IGBGNS *1G IHESAPD *PL1LIB

IGC *LIBRARY IHESAPE *PL1LIB
IGCTNS *1G IHESAPF *PL1LIB
IGCTRL *1G IHESIZ *PL1LIB
IGCVTC *IG IHESIZE *PL1LIB

IGDA *1G IHESPRT *PL1LIB
IGDELO *IG IHESRCHM *APLLIB
IGDELS *1G IHETAB *PL1LIB

IGDR *IG IHETABS *PL1LIB
IGDRON *IG IHBeceas PL1SYM

IGENDO *1G IHIceane *ALGOLLIB
IGENDS *IG ILBe v ue #*COBLIB

IGEMT *1G IMPL *CSMPLIB
IGFMTH *16G IMPLST *CSMPLIB
IGHSPO *IG INPULS *CSMPLIB
IGHUE *IG IMTQLV NAAS:EISPACK
IGINIT *IG IMNTQL1 NAAS:EISPACK
IGINT *1G IMTQLZ2 NAAS:EISPACK
IGLIKE *1G ImMvce *LIBRARY
IGLOAD *1G INBASI *KDFLIB

IGHA *1G INC *LIBRARY

IGHMR *1G INHALT *SLIP

IGPDSW *IG INITAS UNSP:LSLIPLIB
IGPFPF *1G INITAS *SLIP

IGPICK *IG INITCNT Resident Systenm
IGPIKC *1G INITLOCK Resident Systen
IGPIKN *I1G INITLZ *CSMPLIB
IGPIKS *1G INITRD UNSP:LSLIPLIB
IGPUTO *IG INITRD *SLIP

IGSENS *1G INLSTL UNSP:LSLIPLIB
IGSYM *IG INLSTL *SLIP

IGTEXT *1G INLSTR UNSP:LSLIPLIB
IGTRAN *1G INLSTR *SLIP

IGTXT *IG INSW *CSMPLIB
IGTXTH *1G INTERC *KDFLIB
IGUSER *1G INTERFAC *ALGOLLIB
IGVEC *IG INTGER UNSP:LSLIPLIB
IGVHPT *1G INTGER *SLIP

IGXYIN *IG INTGST *CSMPLIB
IHCFDUMP OLD:LIBRARY INTRAN *CSMPLIB
IHCFEXIT *LIBRARY INTRP *CSMPLIB
IHCIBERH *LIBRARY INTSUBS PL1SYM

542 External Symbol Index



October 1976

INTSVHM
INUE
INV

INV
INV#
INV#
INVIT
INV1
INV1
I0C
IOHETC
IOHIN
IOoHOUT
IOH370
I0OPACK
IOPKG
IOPMOD
IOR
L1ORELEAS
IPLTYP
IRALST
IRALST
IRARDR
IRARDR
ITR
ITRCPT
ITRT
ITSVAL
ITSVAL
IVISIT
IXC

I0

JELF
JESS
JESS
JLGRDT
JLGRSEC
JLGRTHM
JHUSGPSCT
JMSGTD
JMSGTDR
JOBLST
JTBLLIMN
JTUGTD
JTUGTDR
JULGRGDT
JULGRGTHM
KEYWRD
KOL MO
KOLM2
KRANK
KWSCAN
LAND

UNSP:LSLIPLIB

NAAS:SSP

OLD:LIBRARY
NAAS:OLDLIB
OLD:LIBRARY
NAAS: OLDLIB
NAAS: EISPACK
NAAS:OLDLIB
OLD:LIBRARY

*LIBRARY
*LIBRARY
*LIBRARY
*LIBRARY
*LIBRARY
*EXPLIB

*LIBRARY
*LIBRARY
*CSMPLIB
*LIBRARY
*PLOTSYS

UNSP: LSLIPLIB

*SLIP

UNSP:LSLIPLIB

*SLIP

*LIBRARY
#*PLOTSYS
*LIBRARY

UNSP:LSLIPLIB

*SLIP

UNSP:LSLIPLIB

*LIBRARY
NAAS:SSP
NAAS:S5SP

OLD:LIBRARY
NAAS:OLDLIB

*LIBRARY
Resident
*LIBRARY
*LIBRARY
*LIBRARY
*LIBRARY
Resident
Resident
*LIBRARY
*LIBRARY
Resident
Resident
Resident
NAAS:SSP
NAAS:SSP
NAAS:SSP
Resident
*LIBRARY

Systenm

System

Systen

System
System
System

System

MTS 3:

LANORM
LAP
LAPRIN
LAPS
LASTJOB
LASTKEY
LBVP
LCC$F
LCLOSE
LCNTR
LCNTR
LCOoNMC
LCOMPL
LDATVL
LDATVL
LDES$F
LDFIO#
LDINFO
LEP
LEPS
LERRSF
LETGO
LIBENTRY
LIfIT
LINSF
LINC
LINC
LINCR
LINCR
LINK
LINKF
LINKWD
LINPG
LINPG
LINPG#
LIOUNITS
LIOUNS
LIST
LIST
LISTAV
LISTAV
LISTHT
LISTMT
LLSQ
LNKL
LNKL
LNKLW
LNKR
LNKR
LNKRW
LOAD
LOAD
LOADF

SYSTEM SUBROUTINE DESCRIPTIONS

*SLIP

NAAS:SSP
UNSP:LSLIPLIB
NAAS:SSP
Resident Systen
PL1SYM

NAAS:SSP
*¥SIM2LIB
*LIBRARY
UNSP:LSLIPLIB
*SLIP

*LIBRARY
*LIBRARY
UNSP:LSLIPLIB
*SLIP

*SIM2LIB
FORTRAN I/0 Library
Resident Systen
NAAS:SSP
NAAS:SSP
#SIM2LIB
*LIBRARY
*ALGOLLIB
*CSMPLIB
*SIM2LIB
NAAS:OLDLIB
OLD:LIBRARY
NAAS:OLDLIB
OLD:LIBRARY
Resident Systen
FORTRAN I/0 Library
UNSP:LSLIPLIE
OLD:LIBRARY
NAAS:OLDLIB
OLD:LIBRARY
Resident System
Resident Systen
UNSP:LSLIPLIB
*SLIP
UNSP:LSLIPLIB
*SLIP
UNSP:LSLIPLIB
*SLIP

NAAS:SSP
UNSP:LSLIPLIE
*SLIP
UNSP:LSLIPLIB
*SLIP
UNSP:LSLIPLIB
UNSP:LSLIPLIB
NAAS:5SP
Resident Systenm
FORTRAN I/0 Library

External Symbol Index 543



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

LOADINFO Resident Systenm MADRGT *SLIP

Loc NAAS:SSP MAINEX *CSMPLIB

LOCAT *GASP MAKEDL UNSP:LSLIPLIB

LOCK Resident System MAKEDL *SLIP

LOCT UNSP:LSLIPLIB MAPRNT NAAS:LIT

LOCT *SLIP MASCEBC Resident System

LODMAP Resident System MATA NAAS:SSP

LOFRDR UNSP:LSLIPLIB MAXLEN UNSP:PL1LIB

LOFRDR *SLIP MAXO Elementary Fcn. Lib.

LOPEN *LIBRARY MAX1 Elementary Fcn. Lib.

LOR *LIBRARY MCHB NAAS:SSP

LOUTSF *SIM2LIB MCPY NAAS:SSP

LPNTR UNSP:LSLIPLIB MEANQ NAAS:SSP

LPNTR *SLIP MESSAGE Resident Systen

LPURGE UNSP: LSLIPLIB MFGR NAAS:SSP

LPURGE *SLIP MF SD NAAS:SSP

LRD NAAS:OLDLIB MFSS NAAS:SSP

LRD OLD:LIBRARY MFUN NAAS:S5SP

LRDELIMS *SIM2LIB MILNE *CSMPLIB

LRDRCP UNSP: LSLIPLIB MINFIT NAAS: EISPACK

LRDRCP *SLIP MINV NAAS:SSP

LRDROV UNSP: LSLIPLIB MINO Elementary Fcn. Lib.

LRDROV *SLIP MIN1 Elementary Fcn. Lib.

LS *SLIP MISR NAAS:SSP

LSDELIMS *SIM2LIB MLEFT *CSMPLIB

LSSCPY UNSP:LSLIPLIB M1SS NAAS:SSP

LSSCPY *SLIP MMACST *CSMPLIB

LSTDMP *SLIP MNETRTN Resident Systen

LSTEQL UNSP:LSLIPLIB MODFTBLE Resident Systen

LSTEQL *SLIP MOMEN NAAS:SSP

LSTMRK UNSP:LSLIPLIB MONERR NAAS: FUNPACK

LSTMRK *SLIP MONTR *GASP

LSTPRO UNSP: LSLIPLIB MOUNT Resident Systen

LSTPERO *SLIP MOUNTCMD Resident Systenm

LTHERE UNSP:LSLIPLIB MOVE *CSMPLIB

LTSLE OLD:LIBRARY MOVEC *LIBRARY

LTSLE NAAS:OLDLIB MPAIR NAAS:SSP

LVLRVT *SLIP MPRC NAAS:SSP

LVLRVT UNSP:LSLIPLIB MPRD NAAS:SSP

LVLRV1 *SLIP MRIGHT *CSMPLIB

LVLRV1 UNSP:LSLIPLIB MRK UNSP:LSLIPLIBE

LXOR *LIBRARY MRK *SLIP

MADATR UNSP:LSLIPLIB MRKGET *SLIP

MADATR *SLIP MRKLSS UNSP:LSLIPLIB

MADD NAAS:SSP MRKLSS *SLIP

MADLFT UNSP:LSLIPLIB MRKLST UNSP:LSLIPLIB

MADLFT *SLIP MRKLST *SLIP

MADNBT UNSP:LSLIPLIB MRKW UNSP:LSLIPLIB

MADNBT *SLIP MRXA Resident Systen

MADNTP UNSP:LSLIPLIB MSG Resident Systen

MADNTP *SLIP MSTR NAAS:SSP

MADOV *SLIP MSUB NAAS:SSP

MADRGT UNSP:LSLIPLIB MTDLST UNSP:LSLIPLIB
544 External Symbol Index



October 1976

MTDLST
MIDS
MTLIST
MTLIST
MTRA
MTS
MTSH#
MTSCHMD
MTSCMD #
MULTR
NAME
NAMEDL
NAMEDL
NAMTST
NAMTST
NAND
NATSEE
NATSEI
NATSEK
NATSKO
NATSK1
NDTR
NDTRI
NEWBOT
NEWBOT
NEWLIN
NEWTOP
NEWTOP
NEWVAL
NEWVAL
NEXTKEY
NLBACK
NLFGEN
NLSYS
NOATVL
NOATVL
NOCENT
NOR
NOT
NOTE
NOTE#
NPOSN
NROOT
NTOBCD
NUCELL
NUCELL
NULSTL
NULSTL
NULSTR
NULSTR
NUMDEV
NUMER
NXTLFT

*SLIP

NAAS:SSP
UNSP:LSLIPLIB
*SLIP

NAAS:SSP
Resident Systenm
Resident Systen
Resident System
Resident Systenm
NAAS:SSP
*CSMPLIB
UNSP:LSLIPLIB
*SLIP
UNSP:LSLIPLIB
*SLIP

*CSMPLIB
NAAS:FUNPACK
NAAS: FUNPACK
NAAS: FUNPACK
NAAS: FUNPACK
NAAS: FUNPACK
NAAS:SSP
NAAS:SSP
UNSP:LSLIPLIB
*SLIP

*KDFLIB

UNSP: LSLIPLIB
*SLIP

UNSP: LSLIPLIB
*SLIP

PL1SYH

NAAS:LIT
*CSMPLIB
NAAS:LIT
UNSP:LSLIPLIB
*SLIP

*CSMPLIB
*CSMPLIB
*CSMPLIB
Resident Systen
Resident Systenm
*GASP

NAAS:SSP
*CSMPLIB
UNSP:LSLIPLIB
*SLIP
UNSP:LSLIPLIB
*SLIP

UNSP: LSLIPLIB
*SLIP

Resident System
*CSMPLIB

UNSP: LSLIPLIB

uTs 3:

NXTLFT
NXTRGT
NXTRGT
OMIT
ONEQATIM
OPEN
OR
ORDER
ORTBAK
ORTHES
ORTRAN
OSGRDT
OSINT
OTPUT
OUTBAS
oUIPUT
OUTSW
OVERFL
OWNCONVR
PADD
PADDH
PAR
PARMT
PARMTN
PARMT2
PARMT2
PARROW
PARRO2
PAXFHT
PAXFM2
PAXIS
PAXSCL
PAXTIC
PAXTTL
PAXVAL
PBOUND
PCCLOSE
PCEPT
PCIRCL
PCLA
PCLD
PCLOSE
PCOPEN
PCTRLN
PCTRL2
PDER
PDFSYHM
PDIV
PDPBRTN
PDSHLN
PDSHL2Z2
PDSYMB
PDTAB

External Symbol Index

*SLIP
UNSP:LSLIPLIB
*SLIP
*LIBRARY
*LIBRARY
*KDFLIB
*LIBRARY
NAAS:SSP
NAAS:EISPACK
NAAS:EISPACK
NAAS:EISPACK
*LIBRARY
*SPITLIB
*GASP
*KDFLIB
*KDFLIB
*CSMPLIB

FORTRAN I/0 Library

*LIBRARY
NAAS:SSP
NAAS:S5SP
UNSP:LIBRARY
UNSP: LSLIPLIB
*SLIP
UNSP:LSLIPLIB
*SLIP
*PLOTSYS
*PLOTSYS
*PLOTSYS
*PLOTSYS
*PLOTSYS
*PLOTSYS
*PLOTSYS
*PLOTSYS
*PLOTSYS
*PLOTSYS

* LIBRARY
*PLOTSYS
*PLOTSYS
NAAS:SSP
NAAS:SSP
*LIBRARY
*LIBRARY
*PLOTSYS
*PLOTSYS
NAAS:SSP
*PLOTSYS
NAAS:SSP
Resident System
*PLOTSYS
*PLOTSYS
*PLOTSYS
*PLOTSYS

SYSTEM SUBROUTINE DESCRIPTIONS

545



MTS 3:

546

PDTABR
PDTABS
PDT ABU
PDUNP
PDUMP
PECN
PECS
PEEL
PELIPS
PENABS
PENABS
PENCHG
PENDN
PENDNS
PENMOV
PENMOV
PENOPT
PENREL
PENSPD
PENSPD
PENTUG
PENUP
PENUPS
PERCMD
PERM
PERMIT
PFDNAM
PFDUB
PFDUB
PFLNAM
PFLNAN
PFNMBR
PGCD
PGNHDR
PGNHDR
PGNTEXIT
PGNTT
PGNTTRP
PGNTTRP
PGERID
PHI
PILD
PILL
PINFO
PINT
PINT
PINT
PLCALL
PLCALLD
PLCALLE
PLCALLF
PLDFSH
PLDNO

*PLOTSYS
*PLOTSYS
*PLOTSYS
OLD:LIBRA
*LIBRARY
NAAS:SSP
NAAS:SSP
Resident
*PLOTSYS
*IG
*PLOTSYS
*PLOTSYS
*PLOTSYS
¥*PLOTSYS
*1G
*PLOTSYS
*PLOTSYS
¥*PLOTSYS
*PLOTSYS
*IG
*PLOTSYS
*PLOTSYS
*PLOTSYS
Resident
NAAS:SSP
Resident
¥PLOTSYS
*1IG
*PLOTSYS
*IG
*PLOTSYS
*PLOTSYS
NAAS:SSP
*PLOTSYS
*IG
*PL360LIB
Resident
*APLLIB
Resident
*¥*PLOTSYS
NAAS:SSP
NAAS:SSP
Resident
*PLOTSYS
*IG
*¥PLOTSYS
NAAS:SSP
PL1SYM
PL1SYM
PL1SYHM
PL1SYH
*PLOTSYS
*IG

SYSTEM SUBROUTINE DESCRIPTIONS

RY

System

Systen

Systenm

System

Systenm

Systenm

External Symbol Index

PLDNO

PLFSPL
PLFSPL
PLGAXS
PLGGRD
PLGPOL
PLGSCL
PLINE

PLIN2

PLNSYM
PLOG10
PLOOK

PLOTCC
PLOTDS
PLOTNO
PLOTNO
PLOTR

PLOT1

PLOT14
PLOT2

PLOT3

PLOTY

PLRSPL
PLESPL
PLSTYP
PLTBET
PLTBET
PLTBGN
PLTBGN
PLTEND
PLTEND
PLTLOG
PLTNBR
PLTNBR
PLTOFS
PLTOUT
PLTOUT
PLTPAP
PLTPAP
PLTPEN
PLTPEN
PLTPOL
PLTREC
PLTSIZ
PLTSIZ
PLTSTD
PLTSTD
PLTISTP
PLTSTP
PLITRH
PLTTRM
PLTTYP
PLTXMX

*PLOTSYS
*PLOTSYS
*1G

*PLOTSYS
*PLOTSYS
*PLOTSYS
*PLOTSYS
*PLOTSYS
*PLOTSYS
*PLOTSYS
*PLOTSYS
*PLOTSYS
*PLOTSYS
*LIBRARY
*1G

*PLOTSYS
*CSMPLIB
*LIBRARY
*LIBRARY
*LIBRARY
*LIBRARY
*LIBRARY
*1G

*PLOTSYS
*PLOTSYS
*IG

*PLOTSYS
*IG

*PLOTSYS
*PLOTSYS
*1G

¥*PLOTSYS
*1G

*PLOTSYS
*PLOTSYS
*1G

#*PLOTSYS
*IG

*PLOTISYS
*PLOTSYS
*1G

*PLOTSYS
*PLOTSYS
*1G

#*PLOTSYS
*1G

*PLOTSYS
*1G

*PLOTSYS
*PLOTSYS
*1G

*PLOTSYS
*PLOTSYS

October 1976



October 1976

PLTXMX
PL1ADR
PL1RC
PL1SYM
PMPY
PNORM
PNUMBR
POFRES
POFRST
POFSAV
POINT
POINT
POINT#
POLGRD
POLRT
PONRST
POPBOT
POPBOT
POPEN
POPRDR
POPSID
POPTOP
POPTOP
PPRCN
PPSYM
PQFB
PQSD
PRAXIS
PRBM
PRCHAR
PREAD
PREAD1
PREND
PRESRV
PRESRV
PRFIT
PRHIST
PRLIN’
PRLSTS
PRLSTS
PRMIN
PRNTQ
PROBT
PRODQ
PRPLOT
PRPRIN
PRQD
PRQUAD
PRSORT
PRSTER
PSBSP
PSCALE
PSCAL1

*IG
PL1SYM
PL1SYM
Resident
NAAS:SSP
NAAS:SSP
*PLOTSYS
*PLOTSYS
*¥PLOTSYS
*PLOTSYS
Resident
NAAS:SSP
Resident
*PLOTSYS
NAAS:SSP
*¥PLOTSYS

System

Systenm

Systen

UNSP:LSLIPLIB

*SLIP
*LIBRARY

UNSP: LSLIPLIB

*PLOTSYS

UNSP: LSLIPLIB

*¥SLIP

NAAS: SSP
¥PLOTSYS
NAAS:SSP
NAAS: SSP
NAAS:LIT
NAAS:SSP
*LIBRARY

UNSP: PL1LIB
UNSP:PL1LIB

*LIBRARY

UNSP:LSLIPLIB

*SLIP
NAAS:LIT
*GASP
NAAS:LIT
*5LIP

UNSP:LSLIPLIB

NAAS:LIT
*GASP

NAAS:SSP
*GASP

*LIBRARY
NAAS:LIT
NAAS:SSP
NAAS:LIT
NAAS:LIT
*PLOTSYS
*¥*PLOTSYS
*PLOTSYS
*PLOTSYS

MTS 3:

PSCNIF
PSHRDR
PSIZE
PSMGEN
PSTART
PSTART
PSUB
PSYMB
PSYMFG
PSYMFG
PSYMLN
PSYMPT
PSYMSV
PSYSYM
PTDST2
PTFMVL
PTFPVL
PTFSVL
PTHAXS
PTHAVL
PTHPVL
PTHSVL
PTRUC
PTSY MB
PUBDMP
PULSE
PUNCH
PUNUC
PUTENT
PUTIHC
PUTIHC
PUTRDL
PVAL
PVSUB
PWRIT
PWRIT
PWRITE
PWRITE 1
PHTMAX
PHTMAX
PXABS
PXABS
PXFACT
PXMARG
PXMARG
PXMIN
PXORG
PXREL
PYABS
PYABS
PYFACT
PYMIN
PYORG

*PLOTSYS
UNSP:LSLI
*PLOTSYS
*PLOTISYS
*IG
*PLOTSYS
NAAS:SSP
*PLOTSYS
*1G
*PLOTSYS
*PLOTSYS
*PLOTSYS
*PLOTSYS
*PLOTSYS
*PLOTSYS
*GPSSLIB
*GPSSLIB
*GPSSLIB
*PLOTSYS
*¥GPSSLIB
*GPSSLIB
*GPSSLIB
Resident
*PLOTSYS
*SLIP
A*CSMPLIB
*PL360LIB
Resident
*GASP
OLD:LIBRA

FORTRAN I/0 Likrary

UNSP:LSLI
NAAS:SSP
NAAS:SSP
*1G
*PLOTSYS
UNSP:PL1L
UNSP:PL1L
*1G
*PLOTSYS
*1G
*PLOTSYS
*PLOTSYS
*PLOTSYS
*1G
*PLOTSYS
*PLOTSYS
*PLOTSYS
*1G
*PLOTSYS
*PLOTSYS
*PLOTSYS
*PLOTSYS

PLIE

Systen

Systenm
RY

PLIB

IB
IB

External Symbol Index

SYSTEM SUBROUTINE DESCRIPTIONS

547



MTS 3¢

548

PYREL
QATR
QA10
QA2
QA3
QAL
QA5
QA6
QA7
QA8
QA9
QCLOSE
QCNTRL
QDIV
QDIV
QFREEUCB
QFRUCB
QGET
QGETUCB
QGTUCB
0G10
0G2
QG3
QG4
QG5
QG6
0G7
QG8
0G9
QHFE
QHFG
QHSE
QHSG
QH10
QH2
QH3
QHY
QH5
QH6
QH7
QH8
QHY
Q110
QL2
QL3
QLU
QL5
QL6
QL7
QL8
QL9
QNTZR
QOPEN

SYSTEM SUBROUTINE DESCRIPTIONS

*PLOTSYS
NAAS:SSP
NAAS: SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
*LIBRARY
*LIBRARY

OLD:LIBRARY
NAAS:OLDLIB

*LIBRARY
*LIBRARY
*LIBRARY
*LIBRARY
*LIBRARY
NAAS:SSP
NAAS:SSP
NAAS:SS5P
NAAS:SSP
NAAS:5S5P
NAAS:SSP
NAAS:S5SP
NAAS: SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS: SSP
NAAS:55P
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS: SSP
NAAS:5SP
NAAS:5SP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS: SS5P
NAAS:SSP
NAAS: SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:5SP
NAAS:SSP
*CSMPLIB
*LIBRARY

External Symbol Index

QPSECT
QPUT
QOsvV
QSAM
QSAMP
QSF
QTEST
QTFE
QTFG
QTHERE
QTR1
QTR2
QTR3
QTRY
QUIT
QUITS
QZHES
QZIT
QZVAL

RASEVSS
RADD
RAMP
RAND
RANDU
RANDUNM
RANG1
RANG2
RANK
RARCCOSS
RARCSINS
RARCTAN$
RATENBR
RATQR
RATRAP
RBETASF
RBINOMIA
RELOCKS$R
RCALL
RCELL
RCELL
RCLOSE
RCLS$R
RCOS$F
RCPY
RCRESF
RCUIBSR
RCUT
RDATESF

October 1976

Resident Systen

*LIBRARY
*SLIP

*LIERARY
*LIBRARY
NAAS:SSP
NAAS:SSP
NAAS:SSP
NAAS:SSP

UNSP:LSLIPLIB

*SLIP
*SLIP
*SLIP
*SLIP

Resident Systen

PL1SYHM

NAAS:EISPACK
NAAS:EISPACK
NAAS:EISPACK
NAAS:EISPACK

*SLIP
*SLIP
*SLIP
*SLIP
*SIM2LIB
NAAS:SSP
*CSMPLIB
PL1SYM
NAAS:SSP
NAAS:LIT
*CSMPLIB
#CSMPLIB
NAAS:SSP
*SIM2LIB
*SIM2LIB
*SIM2LIB

Resident Systenm
NAAS:EISPACK
UNSP:LIBRARY

*SIM2LIB
*SIM2LIB
*SIM2LIB
*LIBRARY
*SLIP

UNSP:LSLIPLIB

#*LIBRARY
*SIM2LIB
*SIM2LIB
NAAS:SSP
*SIM2LIB
*SIM2LIB
NAAS:SSP
*SIM2LIB



October 1976

RDAY$F
RDENT
RDIMSF
RDLSTA
RDLSTA
READ
READ
READ
READ#
READAR
READBFR
READBI
READEO
READE
REALL
REALS
REALS
REBAK
REBAKB
RECP
RECT
RECURS
REDUC
REDUC2
REED
REED
REFIELDS$
RENAME
RENUMB
RERLANGS
RERR$R
RERUN
RERUN
RESTOR
RESTOR
RETLNR
REWIND
REWIND
REWIND#
REXPS$F
REXPONEN
RFATAL
RFINFO
RFRACSF
RFREES$R
RG
RGAMMA SF
RGAMMAJS$
RGG
RGUIBSR
RHARM
RHOURSF
RINSF

*SIM2LIB

*GASP

*SIM2LIB

UNSP: LSLIPLIB
*SLIP

Resident System
*PL360LIB
*KDFLIB
Resident Systenm
*KDFLIB
*LIBRARY
*KDFLIB

*KDFLIB
Resident Systen
*SLIP
UNSP:LSLIPLIB
*SLIP
NAAS:EISPACK
NAAS: EISPACK
NAAS: SSP
*CSMPLIB
UNSP:LSLIPLIB
NAAS:EISPACK
NAAS:EISPACK
*SLIP
UNSP:LSLIPLIB
*SIM2LIB
Resident Systen
Resident System
*SIM2LIB
*SIMZ2LIB
Resident Systenm
*CSMPLIB
UNSP:LSLIPLIB
*SLIP

Resident Systen
*LIBRARY
*KDFLIB
Resident Systen
*SIM2LIB
*SIM2LIB
*SIM2LIB

PL1SYM

*SIM2LIB
*SIM2LIB
NAAS:EISPACK
*SIM2LIB
*SIM2LIB
NAAS:EISPACK
*SIM2LIB
NAAS:SSP
*SIM2LIB
*SIM2LIB

RINT
RISTEPSF
RITOASF
RIXPSF
RKGS

RKS

RK1

RK2
RLINS$F
RLOGSESF
RLOG$NOR
RLOGS10%
RLOGN
RLS13$R
RLS2$R
RLT1$R
RLT2$R
RMACST
RMINUTES$
RMODESF
RUONTHSF
RMOVE
RMOVEF
RMOVEL
RMTS
RNDAY $F
RNDGEN
RNORM
RNORMALS$
ROBEY $R
ROPEN
RORIGINS
ROUTSF
RPOISSON
RRANDI $F
RRANDOMS
RRDASR
RRDB3R
REDCSR
RRDD$R
RRDESR
RRDISR
RRDLSR
RRDR$R
RRDS$R
RRDTSR
RREL3R
RRES$R
RRFASR
RRFDSR
RRFISR
RRIRVSR
RRLR$R

External Symbol Index

NAAS:SSP
*SIM2LIB
*SIM2LIB
*SIM2LIB
NAAS:SSP
*CSMPLIB
NAAS:SSP
NAAS:SSP
*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB
*GASP

*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB
*CSMPLIB
*SIM2LIB
*SIM2LIB
*SIM2LIB
*GASP

¥GASP

*GASP

UNSP:LIBRARY

*SIM2LIB
*CSMPLIB
*GASP

*SIM2LIB
*SIM2LIB
#*LIBRARY
*SIM2LIB
*SIN2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIN2LIB
®*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB

4TS 3: SYSTEM SUBROUTINE DESCRIPTIONS

549



MTS 3:

550

RRMDS$F
RRRRVS$R
RRSTEP$F
RERWD$R
RRXPS$F
RS

RS

RSB
RSEED$F
RSFIELDS$
RSG
RSGAB
RSGBA
RSIGNS$F
RSINSF
RSKIPS$R
RSLMC
RSP
RSQRTS$F
RSRT

RST

RST
RSTIME
RSTLST
RSUM
RSVNMTBL
RT

RTAB
RTANSF
RTIE
RTIM1$R
RTIM2$R
RTIMN3$R
RTMI
RTNI
RTRACES$R
RTRAP
RTRUNCS$F
RTWI
RUL$F
RUNCON
RUNIFORM
RUSES$R
RWEEKDAY
RWEIBULL
RHTA$R
RWTB$R
RWTCS$R
RWTD$R
RWTES$R
RHWTI$R
RWTP$R
RWTR$R

SYSTEM SUBROUTINE DESCRIPTIONS

*SIMZLIB
*SIM2LIB
*SIMZ2LIB
*SIM2LIB
*SIM2LIB
*SLIP
NAAS:EISPACK
NAAS:EISPACK
*SIM2LIB
*¥SIM2LIB
NAAS:EISPACK
NAAS:EISPACK
NAAS:EISPACK
*SIM2LIB
*SIMZ2LIB
*SIM2LIB
NAAS:SSP
NAAS:EISPACK
*SIM2LIB
NAAS:SSP
*CSMPLIB
NAAS: EISPACK
Resident System
UNSP: LSLIPLIB
NAAS: S5P
Resident Systen
NAAS: EISPACK
NAAS:SSP
*SIM2LIB
NAAS:S5S5P
*SIMZ2LIB
*SIM2LIB
*SIM2LIB
NAAS: SSP
NAAS:SSP
*SIM2LIB
UNSP: LIBRARY
*SIM2LIB
NAAS:SSP
*SIM2LIB
*GASP
*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIMZ2LIB
*SIM2LIB
*SIM2LIB

External Symbol Index

RWTS$R
RWITSR
RXS$EV$S
RYEARS$F
RZ$EVSS
SADD
SAINT
SAINT
SAVLST
SAVSEQ
SAXMB
SBS
SCAN
SCANSTOR
SCARDS
SCARDS#
SCLA
SCHMA
SCMD
SCREATE
SCREPLY
SDBS
SDBS
SDIV
SDS
SDUMP
SEGN00O
SEGN0O01
SEGN001
SEQLL
SEQLL
SEQLR
SEQLR
SEQRDR

SEQRDR

SEQSL
SEQSL
SEQSR
SEQSR
SEQUST
SERCLOSE
SERCOM
SERCOM#
SERCOMPR
SEROPEN
SET
SETBLK
SETBLK
SETC
SETDIR
SETDIR
SETD SN
SETDSN

October 1976

*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB
NAAS:SSP
OLD:LIERARY
NAAS:OLDLIB
UNSP:LSLIPLIB
UNSE:LSLIPLIE
NAAS: NAL
NAAS:NAL
*CSMPLIB
Resident Systen
Resident Systen
Resident Systen
NAAS:SSP
NAAS:SSP
UNSP:SPITLIB
UNSP: SPITLIB
UNSP:SPITLIB
OLD:LIBRARY
NAAS:OLDLIB
NAAS:SSP
Resident Systen
Resident Systen
*ALGOLWXLIB
#*ALGOLWLIB
#*ALGOLWXLIB
*SLIP
UNSP:LSLIPLIB
*SLIP
UNSP:LSLIPLIB
*SLIP
UNSP:LSLIPLIB
UNSP:LSLIPLIB
*SLIP
UNSP:LSLIPLIB
*SLIP

#*CSMPLIB
*LIBRARY
Resident Systen
Resident Systen
*PL360LIB
*LIBRARY

*GASP

FORTRAN I/0 Library
*SLIP

#*LIBRARY
UNSP:LSLIPLIB
*SLIP

FORTRAN I/0 Library
OLD:LIBRARY



October 1976

SETDSR
SETDSR
SETEMP
SETFRVAR
SETGRE
SETIGFDP
SETIME
SETIND
SETIND
SETIOERR
SETIOHER
SETKEY
SETLCK
SETLEN
SETLIO
SETLNR
SETLOG
SETMKW
SETMRK
SETMRK
SETPFX
SETRAC
SETSTA
SETSTA
SETUP
SETWK
SE13
SE15
SE35
SFFT
SFFTA
SFFT2
SFFT2A
SFS
SGDINFO
SGDINFO2
SGETFD
SGLINT
SGLINT
SGUINFO
SGUINFO2
SGUINFO3
SGUINFOU
5G13
SHFTL
SHFTR
SHIFT
SHIN
SICI
SIGNOFF
SIGNT
SILU
SIMOUT

FORTRAN I,/0 library
OLD:LIBRARY
*GASP

*LIBRARY
OLD:LIBRARY

*1G

Resident Systen
UNSP: LSLIPLIB
*SLIP
Resident
*LIBRARY
Resident Systen
Resident Systen
UNSP:PL1LIB
Resident System
Resident System
*LIBRARY

UNSP: LSLIPLIB
¥SLIP
UNSP:LSLIPLIB
Resident Systen
*SLIP

FORTRAN I/0 Library
OLD: LIBRARY
NAAS:LIT

*¥GASP

NAAS:SSP
NAAS:S5SP
NAAS:SSP
NAAS:NAL
NAAS:NAL

NAAS: NAL
NAAS:NAL
NAAS:NAL
UNSP:SPITLIB
UNSP:SPITLIB
UNSP: SPITLIB
OLD:1LIBRARY
NAAS:OLDLIB
UNSP:SPITLIB
UNSP:SPITLIB
UNSP:SPITLIB
UNSP:SPITLIB
NAAS:SSP
*LIBRARY
*¥*LIBRARY
*CSMPLIB

#SLIP

NAAS:SSP

PL1SYM

NAAS:SSP

NAAS: NAL
*CSMPLIB

System

MTS 3:

SINP
SINQ
SIN
SIN#
SINCOS
SINE
SINH
SINV
SINV
SINV
SINV1
SINV1
SINV2
SINV2
s1ocC
SIOoC#
SI0CP
SIOERR
SIR
SKIP
SKIP
SLE#
SLE#
SLE1
SLE1
SLE2
S1LE2
SLE3
SLE3
SLEY
SLEY4
SLIPPRIMN
SLITE
SLITET
SLPDMP
SLPDMP
SLRD
SLRD
SLUD
SMIRN
SMO
SMPY
SMTSCMD
SNAP
SNOOP
SNOOP
SNS
SNS2
SOLVE
SORT
SORTEA
SORTE1
SORTEHY

*CSMPLIB
NAAS:SSP

SYSTEM SUBROUIINE DESCRIPTIONS

Elementary Fcn. Lib.
Elementary Fcn. Lib.

*PLOTSYS
*CSMPLIB

Elementary Fcn. Lib.

NAAS:OLDLIB
OLD:LIBRARY
NAAS:SSP
OLD:LIBRARY
NAAS:OLDLIB
OLD:LIBRARY
NAAS:OLDLIB
Resident Systen
Resident System
Resident Systen
*LIBRARY
NAAS:NAL
*KDFLIB
*LIBRARY
NAAS:OLDLIB
OLD:LIBRARY
NAAS:OLDLIB
OLD:LIBRARY
NAAS:OLDLIB
OLD:LIBRARY
NAAS:OLDLIB
OLD:LIERARY
NAAS:OLDLIB
OLD:LIBRARY
*SLIP

FORTRAN I/0 Likrary
FORTRAN I/0 Library
*SLIP
UNSP:LSLIPLIB
NAAS:OLDLIB
OLD:LIBRARY
NAAS:NAL
NAAS:SSP
NAAS:SSP
NAAS:SSP
UNSP:SPITLIB
*PL1LIB
UNSP:LIBRARY
UNSP: SPITLIB
UNSP:SPITLIB
UNSP:SPITLIB
NAAS:LIT
*LIBRARY
*LIBRARY
*COBLIB

*COBLIB

External Symbol Index

551



MTS 3:

552

SORTE?9
SORT1
SORT2
SORT3
SPACE
SPELCK
SPELER
SPELLCHK
SP1E
SPIE
SPIRLCS
SPITATTN
SPITBOL
SPLINE
SPLIT
SPLITR
SPLIT1
SPRINT
SPRINT#
SPUNCH
SPUNCH#
SQIN
sQour
SQRT
SQRT#
SRANK
SRATE
SREAD
SEMA
SSETPFX
SSFMT
SSLE
SSLE
SSNOOP
SSNS
SSNS2
SSRTN
SSTACLS
SSIOR
SSTORE
SSUB
STARTF
STATS
STATBUFF
STATUS
STDDMP
STDTV
STEP
STIMER
STLNKW
STORE
STORST
STPLT1

*COBLIB
*LIBRARY
*LIBRARY
¥*LIBRARY
*KDFLIB
Resident Systen
UNSP: LIBRARY
Resident Systen
*LIBRARY
*PL1LIB
Resident System
UNSP:SPITLIB
Resident System
NAAS:LIT
*CSMPLIB
*CS5MPLIB
*CSMPLIB
Resident System
Resident System
Resident System
Resident Systen
*SLIP

*SLIP
Elementary Fcn.
Elementary Fcn.
NAAS:SSP
NAAS:SSP
UNSP:SPITLIB
NAAS:SSP

UNSP: SPITLIB
Resident Systen
NAAS:OLDLIB
OLD:LIBRARY
UNSP: SPITLIB
UNSP:SPITLIB
UNSP: SPITLIB
Resident System
Resident Systenm
Resident Systen
*CSMPLIB
NAAS:SSP

SYSTEM SUBROUTINE DESCRIPTIONS

Lib-
Lib.

FORTRAN I/0 Library

Resident System
Resident Systen
*CSMPLIB
Resident System
Resident Systen
*CSMPLIB
*LIBRARY

UNSP: LSLIPLIB
*CSMPLIB
*CSMPLIB
*LIBRARY

External Symbol Index

STPLT2
STPRG
STRDAT
STRDAT
STRDIR
STRIND
STRIND
STRUST
SUBHX
SUBSBT
SUBSBT
SUBST
SUBST
SUBST
SUBSTP
SUBSTP
SUMQ
SUMRY
SVD
SVX0s510
s5VXos11
SVX0S14
SVX0s519
SVX0520
SVX0523
SVX0S35
SVX0sy
SVX0S5
SVX0S6
S5VX0s564
SVX0S7
SVX0s8
5VX059
SVX0S999
SWRITE
SYSDEFS
SYSERR
SYSHELP
SYSINIT
SYSTEM
SYSTEM
SYSTEM#
SYSTERM
SYSVMDF
SYSVMFR
TAB
TAB1
TAB2
TALLY
TAN
TANH
TAPERTN
TAPEUC

October 1976

*LIBRARY
NAAS:SSP

*SLIP

UNSP: LSLIPLIB
*SLIP

UNSP: LSLIPLIE
*SLIP

*CSMPLIB
NAAS:SSP
UNSP:LSLIPLIE
*SLIP
UNSP:LSLIPLIB
NAAS:SSP

*SLIP
UNSP:LSLIPLIB
*SLIP

*GASP

*GASP
NAAS:EISPACK
*ALGOLLIB
*ALGOLLIB
®*ALGOLLIB
#ALGOLLIB
*ALGOLLIB
*ALGOLLIB
*ALGOLLIB
#*ALGOLLIB
*ALGOLLIB
#*ALGOLLIB
*ALGOLLIB
*ALGOLLIB
*ALGOLLIB
*ALGOLLIB
*ALGOLLIB
UNSP:SFITLIB
Resident Systenm
*PL1LIB
*GPSSLIB
*PL360LIB
*PL1LIB
Resident Systen
Resident Systen
*PL360LIB
*APLLIB
*APLLIB
*KDFLIB
NAAS:SSP
NAAS:SSP
NAAS:SSP
Elementary Fcn.
Elementary Fcn.
Resident Systen
Resident Systenm

Lib.
Lib.



October 1976

TCNP
TCSP
TEAS
TEL2
TERM
TERM
TEST
TETRA
TEUL
TFINFO
THEP
TICALL
TIE
TIME
TIME_OF_
TIMNTRP
TIMTRP
TINVIT
TLAP
TLEP
TMST
TOP
TOP
TPRD
TPRDUC
TPWRUC
TQLRAT
TQL 1
TQL2
TRACE
TRACER
TRACER #
TRANSA
TRANTB
TRAP
TRAPZ
TRBAK1
TRBAK 3
TRED
TRED2
TRED3
TRIDIB
TRNC
TRNST
TRRSTR
TRUNC
TSEP
TSEP
TSEPC
TSEPC
TSEP1
TSEP1
TSFO

NAAS:SSP
NAAS:SSP
NAAS:SSP
Resident Systenm
*SLIP

UNSP: LSLIPLIB
*KDFLIB
NAAS:SSP
NAAS:SSP

PL1SYM

NAAS:SSP
*LIBRARY
NAAS:SSP
Resident Systenm
*EXPLIB
Resident System
Resident System
NAAS:EISPACK
NAAS:SSP
NAAS:SSP

*GASP
UNSP:LSLIPLIB
*SLIP

NAAS:SSP
Resident Systen
Resident System
NAAS:EISPACK
NAAS:EISPACK
NAAS: EISPACK
NAAS: SSP
Resident Systenm
Resident System
*CSMPLIB
Resident Systen
UNSP: LIBRARY
*CSMPLIB
NAAS:EISPACK
NAAS:EISPACK
NAAS:EISPACK
NAAS: EISPACK
NAAS:EISPACK
NAAS:EISPACK
*¥*LIBRARY
*LIBRARY
UNSP:LIBRARY
Resident System
OLD:LIBRARY
NAAS:OLDLIB
OLD:LIBRARY
NAAS:OLDLIB
NAAS:OLDLIB
OLD:LIBRARY
Resident Systenm

MTS

(8]
an

TSKFMT
TSTURM
TSYM
TSYM#
TTEST
TTIMER
TWAIT
TWOAV
UCc3330
UMLOAD
UNLOADFG
UMLOADFS
UMLOADNF
UMLOADRP
UND
UNFRM
UNLCK
UNLDF
UNLK
UNLOAD
URAND
UKAND
USERID
UTEST
UTSLE
UTSLE
VARMX
VCPRNT
VIRMIN
VIRMOUT
VISIT
VISIT
VISTIN
WRITBF
WRITE
WRITE
WRITE
WRITE#
WRITEA
WRITEB
WRITEBUF
WRITET
WTEST
XABS
XCLR
XCPY
XCTL
XCTILF
XFIX
XFLT
XFRE
XIDE
XINR

External Symbol 1ndex

Resident System
NAAS:EISPACK
*SLIP

*¥SLIP

NAAS:SSP
*LIBRARY
*LIBRARY
NAAS:SSP
Resident System
Resident Systen
Resident Systen
Resident Systen
Resident Systen
Resident Systen
*CSMPLIB

*GASP

Resident Systen

FORTRAN I/0 Library

Resident Systen
Resident System
#LIBRARY
NAAS:OLDLIB
PL1SYHM

NAAS:SSP
OLD:LIBRARY
NAAS:OLDLIB
NAAS:SSP
NAAS:LIT
*APLLIB

*APLLIB
UNSP:LSLIPLIB
*SLIP
UNSP:LSLIPLIB
Resident Systen
*PL360LIB
Resident Systen
*KDFLIB
Resident Systenm
*KDFLIB

*KDFLIB
Resident System
*KDFLIB
NAAS:SSP
*PLOTSYS
*SIM2LIB
NAAS:SSP
Resident Systenm

FORTRAN I/0 library

*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB

SYSTEM SUBROUTINE DESCRIPTIONS

253



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

XLAR
XMAS
XMASK
XOR
XPLSHM
XPLSMaSP
XREC
XREL
XRET
XSE1
XSE2
XSLA
XSRH
XSTP
XTEND2
XWTIC
XZRO
X40
YABS
YREL

554 External Symbol Index

*SIM2LIB
*SIM2LIB
*SLIP
*LIBRARY
*EXPLIB
*EXPLIB
*SIM2LIB
*PLOTSYS
*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB
*SIM2LIB
*LIBRARY
*SIM2LIB
*SIM2LIB
*SIM2LIB
*PLOTSYS
*PLOTSYS

ZHOLD
ZLK2
ZLK2
ZLO0OK
ZLOOK
ZLO0OKC
ZLO0KC
ZOR
ZPC
ZpPC
ZPOLY
ZPOLY
ZPOLY2
ZPOLY 2
ZPR
ZPR
ZQUAD
ZQUAD
2256

Octcber 1976

*CSMPLIB

OLD:LIBRARY
NAAS:OLDLIB
OLD:LIBRARY
NAAS:OLDLIB
NAAS:OLDLIB
OLD:LIBRARY
*CSMPLIB

NAAS:OLDLIB
OLD:LIBRARY
NAAS:OLDLIB
OLD:LIBRARY
NAAS:OLDLIB
OLD:LIBRARY
NAAS:OLDLIB
OLD:LIBRARY
NAAS:OLDLIB
OLD:LIBRARY

FORTRAN I/0 Library



October 1976

<EFL> CHKFDU
<FIX> CHKFIL
$CYLALOC CHKFILE
$EXECT CLOSEFIL
SJQENT CLOSFL
$POOLCHG CLSNET
$ROUTAB CHMD
#RMTCOPY CMDNOE
ACTIVCNT CNFGINFO
APL CNTILNR
ASCEBC CNTRL
ASMTDEFS CONTROL
ASTATSUB COST
ATTNT CREATE
ATTNTRP CREATE#
AWXCMPA2 CREPLY
AWXCMPB2 CUINFO
BASICO CVTOMR
BINEBCD DESTROY
BINEBCD2 DESTRY
BLKLTR DEVLST
BLOKLETR DISMNT
BLSTDEV DISMOUNT
BMLOCK DSRDISPV
BSINK DSR3270
BSRF DYSSUB#
BUFALLOC EBCASC
CALC EBCHMASC
CALCH# ECHO
CANREPLY EDIT
CASECONV EDITOR
CDRDUC EMPTY
CDSTUC EMPTYF
CFDUB ERROR
CFGINF ERROR#
CHGFLG FHDRDISP
CHGFSZ FNAMETRT
CHGMBC FPSECT
CHKACC FREED
CHKFDB FREEFD

B256
DEBUGH#
DIOCS#
DVCHK
FCVTHB

FIOEND
FRDNL #
FTNCMD
FWRNL #
GETIHC

FREESP
FREESPAC
FSIZE
FSEKF
FSTATCHMD
FTN
GDINFO
GDINFO2
GDINFO3
GDINF2
GDINF3
GETD
GETFD
GETFD1
GETFDG6
GETFST
GETID
GETIME
GETLST
GETSPA
GETSPACE
GFINFO
GPRJNO
GPSECT
GRAB3270
GRGJULDT
GRGJULTH
GRJLSEC
GUINFO
GUINFUPD
GUSER
GUSER#
GUSERID
IF
INITCNT
INITLOCK
JLGRSEC
JOBLST
JTBLLIM
JULGRGDT

IBCOM#
IBCOM##
LDFIO#
LINKF
LOADF

MTS 3:

JULGRGTHM
KEYWRD
KWSCAN
LASTJOB
LDINFO
LINK
LIOUNITS
LIOUNS
LOAD
LOADINFO
LOCK
LODMAP
MASCEBC
MESSAGE
MNETRTN
MODFTBLE
MOUNT
MOUNTCHMD
MRXA

MSG

NTS

MTS#
MTSCHMD
MTSCHD#
NOTE
NOTE#
NUMDEV
PDPBRTN
PEEL
PERCHMD
PERMIT
PGNTT
PGNTTRP
PILL
PL1SYM
POINT
POINT#
PTRUC
PUNUC
QPSECT

OVERFL
PUTIHC
SETBLK
SETDSN
SETIDSR

QUIT
RATENBR
READ
READ#
READE
RENAME
RENUMB
RERUN
RETLNR
REWIND#
RSTIME
RSVNMTBL
SCANSTOR
SCARDS
SCARDS#
SDS
SDUMP
SERCOMNM
SERCOM#
SETIME
SETIOERR
SETKEY
SETLCK
SETLIO
SETLNR
SETPFX
SIOC
SIOC#
SIOCP
SPELCK
SPELLCHK
SPIRLCS
SPITBOL
SPRINT
SPRINT#
SPUNCH
SPUNCH#
SSFNT
SSRTN
SSTACLS

SEISTA
SLITE
SLITET
STARTF
UNLDF

External Symbol

SYSTE# SUBROUTINE DESCRIPTIONS

SSTOR
STATSH
STATBUFF
STDDMP
SIDTV
SYSDEFS
SYSTEM
SYSTEM#
TAPERTN
TAPEUC
TELZ2
TIME
TIMNTRP
TINTRP
TERDUC
TIPWRUC
TRACER
TRACER#
TRANTBEB
TRUNC
TSFO
TSKFMT
Uc3330
UMLOAD
UMLOADFG
UMLOADFS
UMLOADNF
UMLOADRP
UNLCK
UNLK
UNLOAD
WRITBF
WRITE
WRITE#
WRITEBUF
XCTL

XCTLF
2256

Index 555



NLS 33

ALGAMA
ALOG
ALOG#
ALOG10
AMAXO
ANMAX1
AMINO
AMINA1
ARCOS
ARSIN
ATAN
ATAN2
ATANZ#
CABS
CCos

*LIBKARY

$SPACE
#FPCON
OTESTITP
ACCEPT
ADROF
AND
ARINIT
ARRAY
ARRAY 2
ATNTRP
BTD
comc
COMPL
DROPIQER
DTB
DUMP
D7090
D7090P
EQUC
ERASAL
ERASE
EXIT
EXTEND
E7090

External Symbol Index

CDABS
CcDhCos
CDDVD#
CDEXP
CDLOG
CDMPY #
CDSIN
CDSQRT
CDVD#
CEXP
CLOG
CMPY#
cos
Cos#
COSH

E7090P
FINDC
FINDST
FREAD
GCLOSE
GDINF
GETIOHER
GJMSPSCT
GOPEN
GRAND
GRAND1
GRJLDT
GRJLTH
GROSDT
GTDJMS
GTDJMSR
IADROF
IBERH#
ICLC

IED
IEDMK
IGC
IHCFEXIT
IHCIBERH

SYSTEM SUBROUTINE DESCRIPTIONS

COTAN
CSIN
CSQRT
DARCOS
DARSIN
DATAN
DATAN2
DATAN2#
DCOS
DCOS#
DCOSH
DCOTAN
DERF
DERFC
DEXP

IHCLOGIC
imMvc
INC

IocC
IOHETC
IOHIN
IoHOUT
I0H370
I0PKG
IOPMOD
IORELEAS
ITk

ITRT
1XC
JLGRDT
JLGRTH
JMSGPSCT
JMSGTD
JHISGTDR
JIUGTD
JTUGTDR
LAND
LCLOSE
LcomcC

DEXP#
DGAMMA
DIMAG
DLGAMA
DLOG
DLOG#
DLOG10
DMAX1
DMIN1
DREAL
DSIN
DSIN#
DSINH
DSQRT
DSQRT#

LCOMPL
LETGO
LOPEN
LOR
LXOR
MOVEC
OMIT
ONE@ATIM
OR
OSGRDT
OWNCONVR
PCCLOSE
PCLOSE
PCOPEN
PDUMP
PLOTDS
PLOT1
PLOT14
PLOT2
PLOT3
PLOTY
POPEN
PRCHAR
PREND

DTAN
DTANH
ERF
ERFC
ERRMON#
EXP
EXP#
FCDXI#
FCXPI#
FDXPD#
FDXPI#
FIXPI#
FRXPI#
FRXPR#
GAMMA

PRPLOT
QCLOSE
QCNTRL
QFREEUCB
QFRUCB
QGET
QGETUCB
QGTUCB
QOPEN
QPUT
QSAM
QSAMP
RCALL
RCLOSE
READBFR
REWIND
ROPEN
SERCLOSE
SEROPEN
SETC
SETFRVAR
SETIOHER
SETLOG
SHFTL

October 1976

MAXO
MAXA
MINO
MINT
SIN
SIN#
SINH
SQRT
SQRT#
TAN
TANH

SHFTR
SIOERR
SKIP
SORT
SORTEA
SORT1
SORT2
SORT3
SPIE
STIMER
STPLT1
STPLTZ2
TICALL
TRNC
TRNST
TTIMER
IWAIT
URAND
XOR
XTEND2



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

*ALGOLLIB
IHIERMSG IHIFSAIN IHIIDEIR 1HILLO IHIOTARR SVX0S10
IHIERMO1 IHIFSARA IHIIORCI IHILLOGM IHIPTTAB SVX0s511
IHIERMO2 IHIFSARB IHITORCL IHILORAR IHISAT SVX0S14
IHIERMO3 IHIGPRCL IHIIORCN IHILOREA IHISATAN SVX0S19
IHIERMOY IHIGPRGT IHIIORCP IHILOREL IHISEX S5VX0520
IHIERMOS IHIGPRIT IHIIORED IHILSCC IHISEXPT SVX0Ss23
IHIERMOG6 IHIGPROP IHIIOREN IHILSCS LHISLO SVX0Ss35
IHIERMO7 IHIGPROT IHIIORER IHILSCSN IHISLOGH SVI0sy
IHIERROR IHIGPRPT IHIIOREV IHILSQ IHISORAR SVX055
IHIFDD IHIGPRTN IHIIORGP IHILSQRT IHISOREA SVX0se
IHIFDDXP IHIIARRT IhIIORNX IHIOARRY IHISOREL SVX0sSéey
IHIFDI IHIIARRY IHIIOROP IHIOBARR IHISSCC SVXos7
IHIFDIXP IHIIARTN IHIIOROQ IHIOBOAR IHISSCS SVXoss8
IHIFII IHIIBARR IHIIORTN IHIOBOOL IHISSCSN SVX0S9
IHIFIIXP IHIIBOAR IHIISYMB IHIOINAR IHISSQ S5VX05999
IHIFRI IHIIBOOL IHILAT IHIOINTE IHISSQRT
IHIFRIXP IHIIDEAI IHILATAN IHIOINTG IHISYSCT
IHIFRR IHIIDECHM IRILEX IHIOSTRG INTERFAC
IHIFRRXP IHIIDEII IHILEXPT IHIOSYMB LIBENTRY
*ALGOLWLIB
ALGOLX AWXSLO003 AWXSL0O06 AWXSLOO09 AWXSLO012 AWXSLO15
AWXSLO01 AWXSLOOY AWXSL007 AWXSLO10 AWXSLO013 SEGNO0O1
AWXSL0O02 AWXSLOO05 AWXSLOO08 AWXSLO11 AWXSLO14
*ALGOLWXLIB
AWXLIBR2 AWXSLO03 AWXSLO0O06 AWXSL009 AWXSLO012 AWXSLO15
AWXSLO001 AWXSLOOU AWXSL007 AWXSLO10 AWXSL0O13 SEGNOOO
AWXSLOO2 AWXSLOOS5 AWXSL0O08 AWXSL011 AWXSLO14 SEGNOO1
*APLLIB
*%* APLGOA APLDEL2 APLEVARA APLINDXA APLRELOA FILEPTR
*APLCONA APLDEL2A APLFND1 APLNOBL APLREL1 IHENTRY
APLADDR APLDEL3 APLFND1A APLNOBLA APLREL1A IHESRCHM
APLALOC APLDEL3A APLFND2 APLNSRT APLRIN EGNTTRP
APLCON APLDESC APLFND2A APLNSRTA APLRMV1 SYSVMDF
APLCONA APLDREC APLFND3 APLNUMB APLRMVI1A SYSVMFR
APLCONAA APLEMES AFLFND3A APLNUMBA APLRMV2 VIRMIN
APLCRT1 APLEMESA LAPLFORM APLOC APLRMVZ2A VIRMOUT
APLCRT1A APLERR APLFREE APLOWNI APLROUT
APLCRT2 APLESET APLGARB APLOWNIA APLSNAM
APLCRT2A APLESETA APLGARBA APLOWRS APLSNAMA
APLDEL1 APLEV APLGO APLOWRSA APLTYPE
APLDEL1A APLEVAR APLINDX APLRELO APLUDAT

External Symbol Index 557



MTS 3: SYSTEM SUBROUTINE DESCKLPTIONS

October 1976

*COBLIB
CURSEGH ILBOBIIN1 ILBOERR1 ILBOIFBO ILBOSCHO I1BOVCOO
IERRCOO00 ILBOBIIZ2 ILBOERR2 ILBOIFB1 ILBOSGMO I1BOVMOO
ILBOACEO ILBOCKPO ILBOERR3 ILBOIFB2 ILBOSPAQ ILBOVMO1
ILBOANEO ILBOCLSO ILBOERRY4 ILBOIFDO ILBOSRTO ILBOVTRO
ILBOANFO ILBODCIO ILBOERRS ILBOIFD1 ILBOSTIO ILBOWTBO
ILBOATBO ILBODCI ILBOERRG6 ILBOITBO ILBOSTPO ILBOXDIO
ILBOBIDO ILBODSPO ILBOETBO ILBOIVLO ILBOSTP1 ILBOXMUO
ILBOBID1 ILBODTEO ILEOFPHO ILBOMVLO ILBOTEFO ILBOXPRO
ILBOBID2 ILBODTE1 ILBOGPWO ILBOPTVO ILBOTEF1 SORTE1
ILBOBIEO ILBOEFLO ILEOIDBO ILEOPTV1 ILBOTEF2 SORTE4
ILBOBIE1 ILBOEFL1 ILBOIDB1 ILBOPTV2 ILBOTEF3 SORTE9
ILBOBIEZ2 ILBOEFL2 ILBOIDRO ILBOSAMR ILBOTRNO
ILBOBIIO ILBOERRO ILBOIDTO ILBOSAMO ILBOUTBO

*¥CSMPLIB
ADAMS CSMPTR IMPL MRIGHT RANG?Z2 SPLIT1
AFGEN CSTORE INPLST NAME RECT SSTORE
ALPHA DATAST IMPULS NAND RERUN STATUS
AND DEADSP INITLZ NLFGEN RKS STEP
BCDIST DEBUG INSH NOCENT RMACST STORE
BOOLE DELAY INTGST NOR RNDGEN STORST
BUILD DERIV INTRAN NOT RST STRUST
BUILDR EOR INTRP NTOBCD SCAN TRANSA
CENTRL EQUIV IOR NUMER SEQUST TRAPZ
CKSTOR F LIMIT OUTSW SHIFT UND
COMPAR FCNSW MAINEX PLOTR SIMOUT ZHOLD
COMPL GAUSS MILNE PULSE SIMP ZOR
CONTIN GEN1ST MLEFT QNTZR SINE
CSMPEX GEN2ST MMACST RAMP SPLIT
CSMPST HSTRSS MOVE RANG1 SPLITR

*EXPLIB
COMPACTI I0OPACK TIME_OF_ XPLSH XPLSMASP

*GASE
COLCT ERROR FINSRT OTPUT RMOVEF SUMRY
DATAN ERRRR GASP PRHIST RMOVEL TMST
DRAND EXITER GASPRS PRNTQ RNORM UNFEM
DRSET FILEM GETENT PRODQ RUNCON
DRSINT FILEMF HISTO PUTENT SET
ERLNG FILEML LOCAT RDENT SETEMP
EROUT FINDN MONTR RLOGN SETWK
ERRER FINDQ NPOSN RMOVE suMQ

558 External Symbol Index



October 1976

¥GPSSLIB

GTFHMVL
GTFPVL
GIFSVL

*1G
#1IG
#IGDSHM
#IGETDD
#IGETHSP
#IGINITT
#1GPD
#PWRIT
ACTVLEF#
AGSENS
CLEANUP#
DGSENS
ERRCOM#
FINDADRE#
IGATTB

*KDELIB

BTC
CHARIN
CHAROU
CLOSE
COPYTE

#CCPLOT
#PLTMOD
#POSET
#PRASTR
#PSYSYMB
#PVIRT
#PWRIT
#PXEND
IPLTYP
ITRCPT
PARROW
PARRO2
PAXFMT
PAXFM2
PAXIS
PAXSCL
PAXTIC
PAXTTL
PAXVAL
PBOUND

GTHMVL
GTHPVL
GTHSVL

IGBGNO
IGBGNS
IGCTNS
IGCTRL
IGCVTC
IGDA
IGDELO
IGDELS
IGDR
IGDRON
IGENDO
IGENDS
IGFMT
IGFMTH

DATASK
ETW
FIND
FORMAT
GAP

PCTRLN
PCTRL2
PDFSYH
PDSHLN
PDSHLZ2
PDSYMB
PDTAB

PDTABR
PDTABS
PDTABU
PELIPS
PENABS
PENCHG
PENDN

PENDNS
PENNMOV
PENOPT
PENREL
PENSPD
PENTUG

PTFMVL
PTFPVL
PIFSVL

IGHSPO
IGHUE
IGINIT
IGINT
IGLIKE
IGLOAD
IGMA
IGHR
IGPDSH
IGPFPF
1GPICK
IGPIKC
IGEIKN
IGPIKS

INBASI
INTERC
NEWLIN
OPEN

OUTBAS

PFDNAMN
PFDUB
PFLNAM
PFNMBR
PGNHDR
PGKID
PINFO
PINT
PLDFSHM
PLDNO
PLFSPL
PLGAXS
PLGGRD
PLGPOL
PLGSCL
PLINE
PLIN2
PLNSYM
PLOG10
PLOOK

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

PTHMVL
PTHPVL
PTHSVL

IGPUTO
IGSENS
IGSYNM

IGTEXT
IGTRAN
IGTXT

IGTXTH
IGUSER
IGVEC

IGVWPT
IGXYIN
PENABS
PENMOV
PENSPD

OUTPOT
READ

READAR
READBI
READBO

PLRSPL
PLSTYP
PLTBET
PLTBGN
PLTEND
PLTLOG
PLTNBR
PLTOFS
PLTOUT
PLTPAP
PLTPEN
PLTPOL
PLTREC
PLTSIZ
PLTSTD
PLTSTP
PLTTRH
PLITYP
PLTXMX
PNUMBR

SYSHELP

PFDUB
PFLNAM
PGNHDR
PINT
PLDNO
PLFSPL
PLOTNO
PLRSPL
PLTBET
PLTBGN
PLTEND
PLTNBR
PLTOUT
PLTPAP

REWIND
SKIP
SPACE
TAB
TEST

POFSAV
POLGRD
PONRST
POPSID
PPSYM

PRSTER
PSBSP

PSCALE
PSCAL1
PSCNIF
PSIZE

PSMGEN
PSTART
PSYMB

PSYNFG
PSYMLN
PSYMPT
PSYMSV
PSYSYHM
PIDST2

PLTPEN
PLTSIZ
FITSTC
PLISTP
PITTRM
PLTXMX
PSTART
PSYMFG
PWRIT

PWTMAX
FXABS

PXMARG
PYABS

SETIGF

WRITE

WRITEA
WRITEE
WRITET

PHRIT
PWTMAX
PXABS
PXFACT
PXMARG
PXMIN
PXORG
PXREL
PYABS
PYFACT
PYMIN
EYORG
PYREL
SINCOS
XABS
XREL
YABS
YREL

External Symbol Index

DP

559



MTS 3: SYSTEM

=

560

PCEPT
PCIRCL

ERROR
IHEABN
IHEABND
IHELTT

SUBROUTINE DESCRIPTIONS

PENUP
PENUPS

IHEMALN
IHESAP

IHESAPA
IHESAPB

PLOTCC
PLOTNO

IHESAPC

IHESAPD
IHESAPE

IHESAPF

ATTACH
BATCH
CNTL
CPUTIME
DDEF#
ELAPSED
FINFO
IHEABUO
IHEABVO
IHEABWO
IHEABZO
IHEADDO
IHEADVO
IHEAPDA
IHEAPDE
IHEATLA1
IHEATL2
IHEATL3
IHEATLY
IHEATST
IHEATS2
IHEATS3
IHEATSUY
IHEATTN
IHEATWH
IHEATWN
IHEATZH
IHEATZN
IHEBSAO
IHEBSCO
IHEBSDO
IHEBSFO
IHEBSIO
IHEBSKA
IHEBSKK
IHEBSKR
IHEBSMF
IHEBSHMV
IHEBSMZ
IHEBSNO
IHEBSOO

External Symbol Index

IHEDCNA
IHEDCNB
IHEDDIA
IHEDDIB
IHEDDJA
IHEDDOA
IHEDDOB
IHEDDOC
IHEDDOD
IHEDDOE
IHEDDPA
IHEDDPEB
IHEDDPC
IHEDDPD
IHEDIAA
IHEDIAB
IHEDIBA
IHEDIBB
IHEDIDA
IHEDIEA
IHEDILA
IHEDILB
IHEDIMA
IHEDMAA
IHEDNBA
IHEDNCA
IHEDOAA
IHEDOAB
IHEDOBA
IHEDOBB
IHEDOBC
IHEDODA
IHEDODB
IHEDOEA
IHEDOMA
IHEDSPA
IHEDUMC
IHEDUMJ
IHEDUMP
IHEDUMT
IHEDVUO

IHEIOBA
IHEIOBB
IHEIOBC
IHEIOBD
IHEIOBE
IHEIOBT
IHEIOCA
IHEIOCB
IHEIOCC
IHEIOCT
IHEIODG
IREIODP
IHEIODT
IHEIOFA
IHEIOFB
LHEIOGA
IHEIONA
IHEIOPA
IHEIOPB
ILETOPC
ILEIOXA
IHEIOXB
IHEIOXC
I1HELITAA
IHEITAX
IHEITAZ
IHEJXIA
IHEJXII
IHEJXIY
IHEJXSI
IHEJXSY
IHEKCAA
I1HEKCBA
IHEKCDA
ILEKCDB
IHELDIA
IHELDIB
IHELDIC
ILELDID
IHELDOA
IHELDOB

POFRES
POFRST

IHESTIZ
IHESIZE
IHESPRT
IHETAB

IHEMXSN
IHEMXSX
IHEMZUD
IHEMZUM
IHEMZVD
1IHEMZVHM
IHEMZWO
IHEMZZO
IHENLTA
IHENL1L
IHENLTN
IHENLZ2A
IHENL2L
IHENL2N
IHENOTE
IHEOCLA
IHEOCLB
IHEOCLC
IHEOCLD
IHEOSDA
IHEOSEA
IHEOSIA
IHEOSSA
IHEOSTA
IHEPDFO
IHEPDLO
IHEPDSO
IHEPDWO
IHEPDXO
IHEPDZO
IHEPNT

IHEPRD

IHEPRTA
IHEPRTB
IHEPSFO
IHEPSLO
IHEPSSO
IHEPSWO
IHEPSXO
IHEPSZO0
1HEKEAD

PTHAXS
PTSYMB

IHETABS
SNAP
SPIE
SYSERR

IHESMXO0
1HESNLC
IHESNLK
IHESNLS
IHESNLZ
IHESNSC
IHESNSK
IHESNSS
IHESNSZ
IHESNWC
IHESNWK
IHESNWS
IHESNWZ
IHESNZC
IHESNZK
IHESNZS
IHESNZZ
IHESQLO
IHESQSO0
IHESQWO
IHESQZO
IHESRCA
IHESRCB
IHESRCC
IHESRCD
IHESRCE
IHESRCF
IHESRDA
IHESSFO
IHESSGC
IHESSGR
IHESSHC
IHESSHR
IHESSX0
IHESTGA
IHESTGB
IHESTPA
IHESTRA
IHESTRB
IHESTRC
IHETHLO

October 1976

SYSTEM

IHEVKFA
IHEVKGA
IHEVPAA
IHEVPBA
IHEVPCA
IHEVPDA
IHEVPEA
IHEVPFA
IHEVPGA
IHEVPHA
IHEVQAA
IHEVQBA
IHEVQCA
IHEVSAA
IHEVSBA
IHEVSCA
IHEVSCA
IHEVSDB
IHEVSEA
IHEVSEB
IHEVSFA
IHEXIBO
IHEXIDO
IHEXILO
IHEXISO
IHEXIUO
IHEXIVO
IHEXIWO
IHEXIZO0
IHEXXLO
IHEXXS0
IHEXXWO
THEXXZ0
IHEYGFS
IHEYGFV
IHEYGLS
IHEYGLV
IHEYGSS
IHEYGSV
IHEYGHWS
IHEYGWV



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

IHEBSS2 IHEDVVO IHELDOC IHEKITE IHETHSO IHEYGXS
IHEBSS3 IHEDZWO IHELNLD IHESADA IHETNLD IHEYGXV
IHEBSTA IHEDZZO IHELNLE IHESADB IHETNLR IHEYGZS
IHEBSVA IHEEFLC 1HELNL2 IHESADD IHETNSD IHEYGZV
IHECFAA IHEEFLF IHELNSD IHESADE IHETNSR IHEZZZ227%
IHECFBA IHEEFSC IHELNSE IHESADF IHETNWH INTSUBS
IHECFCA IHEEFSF IHELNS2 IHESAFA IHETNWN LASTKEY
IHECNTA IHEERRA IHELNWO IHESAFB IHETNZH NEXTKEY
IHECNTB IHEERRB IHELNZO IHESAFC IHETNZN PLCALL
IHECSCO IHEERRC IRELSPA IHESAFD IHEUPAA PLCALLD
IHECSIO IHEERRD IHELSPB IHESAFF IHEUPAB PLCALLE
IHECSKK IHEERRE IHELSPC IHESAFQ IHEUPBA PLCALLF
IHECSKR IHEEXLO IHELSPD IHESARA IHEUPBE PL1ADR
IHECSMB IHEEXSO I1HELSPE IHESARC IHEVCAA PL1RC
IHECSMF IHEEXWO IHELTV IHESHLC IHEVCSA QUITSH
IHECSMH IHEEXZ0 IHENPUO IHESHLS IHEVCSB RAND
IHECSML IHEHTLO IHEMPVO IHESHSC IHEVFAA RFINFO
IHECSMV IHEHTSO IHEMXBN IHESHSS IHEVFBA SIGNOFF
IHECSS2 IHEIOAA IHEMXBX IHESHFO IHEVFCA TFINFO
IHECSS3 IHEIOAB IHEMXDN IHESMGC IHEVFDA USERID
IHECSTA IHEIOAC IHEMXDX IHESMGR IHEVFEA
IHECSVA IHEIOAD IHEMXLN IHESMHC IHEVKBA
THEDBNA IHEIOAT IHEMXLX IHESMHR IHEVKCA

*PL360LIB
$PLCOMP ERRBUFFR PGNTEXIT READ SYSINIT WRITE
COPY ERRPRINT PUNCH SERCOMPR SYSTERM

*SIM2LIB
LCCS$F REFIELD$ RLS2$R RRDR$R RTANSF RX$EV$S
LDESS$F RERLANGS$ RLT1$R RRDSS$R RTIM1$R RYEARSF
LERRS$F RERRS$R RLT2$R RRDTSR RTIM2$R RZ3EVSS
LINSF REXP$F RMINUTES$ RREL$R RTIM3$R XCLR
LOUTSF REXPONEN EMODESF RRESS$R RTRACES$R XFIX
LRDELIMS RFATAL RMONTHSF RRFAS$R RTRUNCSF XFLT
LSDELIMS$ RFRACSF RNDAYSF RRFD$R RULSF XFRE
RASEV $S RFREE$R ENORMALS RRFISR RUNIFORM XIDE
RARCCOSS$ RGAMMASF ROBEYS$R RRIRVS$R RUSES$R XINR
RARCSINS RGAMMAJS$ RORIGINS RRLR$R RWEEKDAY XLAR
RARCTANS RGUIB$R ROUTS$F RRMDS$F RWEIBULL XMAS
RBETASF RHOURS$F RPOISSON RRREVS$R RWTA$R XREC
RBINOMIA RINSF RRANDISF RRSTEPS$F RWTBSR XRET
RBLOCKS$R RISTEP$F REANDOMS RRWD$R RWTICS$R XSE1
RCLS$R RITOASF REDASR RRXPS$F RWTD$R XSE2
RCOSS$F RIXPSF EEDBS$R RSEEDSF RWTES$R XSLA
RCRESF RLINS$F ERDCS$R RSFIELDS$ RWTI$R XSRH
RCUIBS$R RLOGSESF RRDD$R RSIGNSF RWTP$R XSTP
RDATESF RLOGSNOR RRDES$R RSINSF RWTRSR XWTC
RDAYSF RLOG$108 RRDI$R RSKIP$R RWTS$R XZRO
RDIMSF RLS13R REDL$R RSQRTSF RWTT$R x40

External Symbol Index 561



MTS 3:

*¥SLIP

——— Lo

562

ADVLEL
ADVLER
ADVLL
ADVLNL
ADVLNR
ADVLR
ADVLWL
ADVLWR
ADVSEL
ADVSER
ADVSL
ADVSNL
ADVSNR
ADVSR
ADVSWL
ADVSHWR
BOT
CADLFT
CADNBT
CADNTP
CADRGT
CHR1
CHR2
CHR3
CHRU
CHRS
CHR®6
CHR7
CHR8

BAKVEC
BALANC
BALBAK
BANDR
BANDV
BISECT
BQR
CBABK2
CEAL
CG

CH
CINVIT

External Symbol Index

CONT
C1

c2

c3

cy

C5

Cé

c7

c8
DATUM
DELETE
DERROR
DLS
DMP
DMPCLR
DMPERR
DMPER 1
DMPFRE
DMPLAV
DMPLNK
DMPLST
DMPMREK
DMPRDR
DMPRES
DMPUBL
DRS
EBX
EQUAL
FUTRBK

COMBAK
COMHES
COMLR
COMLR2
COMOQR
COMQR2
CORTB
CORTH
ELMBAK
ELMHES
ELTRAN
FIGI

SYSTEM SUBROUTINE DESCRLIPTIONS

GETBLK
HLF1
HLF2
H1

H2

1D
IDATUM
INHALT
INITAS
INITRD
INLSTL
INLSTR
INTGER
IRALST
IRARDR
ITSVAL
LANORM
LCNTR
LDATVL
LIST
LISTAV
LISTMT
LNKL
LNKR
LOCT
LOFRDR
LPNTR
LPURGE
LRDRCP

F1GI2
HQR
HQR2
HTRIBK
HTRIB3
HTRIDI
HTRID3
IMTQLV
INTQL1
INTQL2
INVIT
MINFIT

LRDROV
LS
LSSCPY
LSTDUP
LSTEQL
LSTHMRK
LSTPRO
LVLRVT
LVLRV1
MADATR
MADLFT
MADNBT
MADNTP
MADOV
MADRGT
MAKEDL
MRK
MRKGET
MRKLSS
MRKLST
MTDLST
MTLIST
NAMEDL
NAMIST
NEWBOT
NEWTOP
NEWVAL
NOATVL
NUCELL

ORTBAK
ORTHES
ORTRAN
QZHES
QZIT
QZVAL
QZVEC
RATOQR
REBAK
REBAKB
REDUC
REDUC2Z

NULSTL
NULSTR
NXTLFT
NXTRGT
PARMTIN
PARMT2
POPBOT
POPTOP
PRESRV
PRLSTS
PUBDMP
QQSV
QTR1
QTR2
QTR3
QTR4U

RCELL
RDLSTA
REALL
REALS
REED
RESTOR
RS
SEQLL
SEQLR

RG
RGG
RS
RSB
RSG
RSGAB
RSGBA
RSP
RST
RT
SVD
TINVIT

October 1976

SEQRDR
SEQSL
SEQSR
SETBLK
SETDIR
SETIND
SETMRK
SETRAC
SHIN
SLIPPRIM
SLPDMP
SQIN
SQOUT
STRDAT
STRDIR
STRIND
SUBSBT
SUBST
SUBSTP
TERM
TOP
TSYM
TSYM#
VISIT
XMASK

TQLRAT
TQL1
TQL2
TRBAK1
TRBAK3
TRED1
TRED2
TRED3
TRIDIB
TSTURM



October 1976

———e s

BESEKO
BESEK1
BESKO
BESK1

—_—_——tEsas

DECOMP
DVDQ
DVDQG
DVDQ1

NAAS: NAL

CAXMB
CBS
CDAXMB
CDBS
CDILU

NAAS:OLDLIB

BAIR
DAINT
DBS
DBST
GLINT
GRAND
GRAND1
INV

ABSNT
ACFI
AHI
ALI
APCH
APFS
APLL
APMM
ARAT
ARRAY
ATEIG
ATSE
ATSG
ATSH
AUTO
AVCAL
AVDAT
BDTR

DDAW
DEI
DELIEN
DELIE1

MAPRNT
NLBACK
NLSYS

PRAXIS

CDIR
CDLUD
CILU
CIR
CLUD

INV#
INVT
JESS
LINC
LINCR
LINPG
LRD
LTSLE

DCNP

DCNPS
DCPY

DCSP

DCSPS
DDEAR
DDCAR
DDET3
DDET5
DDGT3
DELI1
DELI2
DET3

DET5

DFMCG
DFNFP
DFRAT
DGELB

DELIKM
DELIK1
DELIPE
DELIPK

PRELT
PELIN
PRMIN
PRPRIN

DAXMB
DES
DFFT
DEFTA
DFFT2

QDI1V
SAINT
SDBS
SGLINT
SINV
SINV1
SINV2
SLE#

DQG8

DQHFE
DQHFG
DQHSE
DQHSG
DUH16
DOH24
DQH32
DQHUSB
DQH6 4
DB

DQL12
DQL16
DQL24
DQL32
DQLY

DQL8

DQSF

HTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

DEXPEI
DPEONE
ERRTRA
FCNmON

PRQUAD
PRSORT
RANDUM
SETUP

DFFT2A
DFS
DILU
DIR
DLUD

SLE1
SLE2
SLE3
SLE4
SLRD
SSLE
TSEP
TSEPC

HEP
HEPS
HPCG
HPCL
HSBG
INUE
I0
JELF
KOLMO
KOLM2
KRANK
LAP
LAPS
LBVP
LEP
LEPS
LLSQ
LOAD

MONERR
NATSEE
NATSEI
NATSEK

SOLVE
SPLINE
VCPRNT

SAXMB
SBS
SFFT
SFFTIA
SFFT2

TSEP1
URAND
UTSLE
ZLK2
ZLOOK
ZLOO0OKC
ZPC
ZPOLY

POLRT
PPRCN
PQFB
PQSD
PRBHM
PROBT
PRQD
PSUB
PVAL
PVSUB
QATR
QA10
QA2
QA3
QAY
QA5
QA6
QA7

NATSKO
NATSK1

SFFT2A
SFS
SILU
SIR
SLUD

ZFOLY2
ZPR
ZQUAD

RECP
RHARM
RINT
RKGS
RK1
RK2
RSLMC
RSRT
RSUM
RTIAB
RTIE
RTMI
RINI
RIWI
SADD
SCLA
SCHMA
SDIV

External Symbol Index 563



MTS 3:

564

BESJ
BESK
BESY
BISER
BOUND
CADD
CANOR
CCPY
ccur
CDTR
CEL1
CELZ
CHISQ
CINT
CNP
CNPS
CONVT
CORRE
CROSS
CS
CsP
CSPS
CSRT
CcsuM
CTAB
CTIE
DACFI
DAHI
DALI
DAPCH
DAPFS
DAPLL
DAPMHM
DARAT
DATSE
DATSG
DATSHM
DBAR
DCAR
DCEL1
DCEL?2
DCLA

External Symbol Index

DGELG
DGELS
DGT3

DHARM
DHEP

DHEPS
DHPCG
DHPCL
DISCR
DJELF
DLAP

DLAPS
DLBVP
DLEP

DLEPS
DLGAN
DLLSQ
DMATX
DMCHB
DMFGR
DMFSD
D MF SS
DMLSS
DMPRC
DMTDS
DPECN
DPECS
DPQFB
DPRBM
DPRQD
DQATR
DQA12
DQA16
DQA24
DQA32
DQAU

DQASB

DQG12
DQG16
DQG 24
DQG32
DQGY

SYSTEM SUBROUTINE DESCRIPTIONS

DQTFE
DOTFG
DRHARM
DRKGS
DETMI
DRTNI
DRTWI
DSE13
DSE15
DSE35
DSG13
DSINV
DICNP
DTCSP
DTEAS
DTEUL
DTHEP
DTLAP
DTILEP
EIGEN
ELI1
ELI1Z
EXPI
EXSHMO
FACTR
FNMCG
FMFP
FORIF
FGRIT
FRAT
GAUSS
GDATA
GELB
GELG
GELS
GMADD
GMMMA
GHMERD
GMSUB
GHTRA
GTPRD
HARM

LocC
MADD
MATA
MCHB
MCPY
MEANQ
MFGR
MFSD
MFSS
MFUN
MINV
MISR
MLSS
MOMEN
MPAIR
MPRC
MPRD
MSIR
MSUB
MTDS
MTKA
MULTR
NDTR
NDTRI
NRGOT
ORDER
PADD
PADDH
PCLA
PCLD
PDER
PDIV
PECN
PECS
PERM
PGCD
PHI
PILD
PINT
PMPY
PNORM
POINT

QAB
QA9
0G10
062
QG3
QGU
QG5
QG6
0G7
0GB
0G9
QHFE
QHFG
QHSE
QHSG
QH10
QH2
QH3
QHU
QH5
QH6
QH7
QHB8
QH9
QL10
QL2
QL3
QLU
QL5
QL6
QL7
QL8
QL9
QSF
QTEST
QTFE
QTFG
RADD
RANDU
RANK
RCPY
RCUT

October 1976

SE13
SE15
SE35
SG13
SICI
SIGNT
SINQ
SINV
SMIRN
SMo
SMPY
SRANK
SRATE
SRMA
SSUB
SIPRG
SUBMX
SUBST
TAB1
TAB2
TALLY
TCNP
ICsP
TEAS
TETRA
TEUL
THEP
TIIE
TLAP
ILEP
TPRD
TRACE
TIEST
TWOAV
UTEST
VARMX
WIEST
XCPY



October 1976

DCVG
DEBUG#
DIOCS#
DUMP
FCVAO

ADVLEL
ADVLER
ADVLL
ADVLNL
ADVLNR
ADVLR
ADVLWL
ADVLWR
ADVSEL
ADVSER
ADVSL
ADVSNL
ADVSNR
ADVSR
ADVSWL
ADVSWHR
BOT
CADLFT
CADNBT
CADNTP
CADRGT
CRESVM
DATUM
DELETE

FCvco
FCVEO
FCVIO
FCVLO
FCVTHB
FCVZO
FIOCS#
FRDNL #
FWRNL #
GETIHC
GLINT
IBCOM#

CONSET
CONTUR

ATRSTR
PAR

DERROR
DMpP
DMPCHR
DMPERR
DMPER1
DMPFRE
DMPINI
DMPLAV
DMPLIS
DMPLNK
DMPLST
DMPMRK
DMPRDR
DMPRES
DMPSVHM
DMPUBL
FUTRBK
ID
IDATUM
IDW
INITAS
INITRD
INLSTL
INLSTR

IHCFDUMP
IHCNAMEL
INV

INV#
INV1
JESS
LINC
LINCR
LINPG
LINPGH#
LRD
LISLE

CTQQ
CTQQIN

KATRAP
RMTS

INTGER
INTSVH
IKALST
IRARDR
ITSVAL
IVISIT
LAPRIN
LCNTR
LDATVL
LINKWD
LIST
LISTAV
LISTHT
LNKL
LNKLW
LNKR
LNKRW
LOCT
LOFRDR
LPNTR
LPURGE
LRDRCP
LEDROV
LSSCPY

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

PDUMP
PUTIHC
QDIV
SAINT
SDES
SETDSN
SETDSR
SETGRE
SETSTA
SGLINT
SINV
SINV1

DISTOK
DSFINI

RTRAP
SNOOP

LSTEQL
LSTHRK
LSTPRO
LTHERE
LVLRVT
LVLRV1
MADATR
MADLFT
MADNBT
MADNTP
MADRGT
MAKEDL
MRK
MRKLSS
MRKLST
MRKW
MTDLST
MTLIST
NAMEDL
NAMTST
NEWBOT
NEWTOP
NEWVAL
NOATVL

SINV2
SLE#
SLE1
SLE2
SLE3
SLEY4
SLRD
SSLE
TSEP
TSEPC
TSEP1
UISLE

DSINIT

SPELER
TRAP

NUCELL
NULSTL
NULSTR
NXTLFT
NXTRGT
PARNMT
PARNMTZ2
POPBOT
POPRDR
POPTOP
PRESRV
PRLSTS
PSHRDR
PUTRDL
QTHERE
RCELL
RDLSTA
REALS
RECURS
REED
RESTOR
RSTLST
SAVLST
SAVSEQ

ZLK2
ZLO0K
ZLOOKC
ZpcC
ZPOLY
ZPOLY2
ZFR
ZQUAD

TRRSTR

SEQLL
SEQLR
SEQRDR
SEQSL
SEQSR
SETDIR
SETIND
SETMKW
SETMRK
SLPDMP
STLINKW
STIRDAT
STRIND
SUBSBT
SUBST
SUBSTP
TERM
TOP
VISIT
VISTIN

External Symbol Index 565



UNSP:PL1LIB

UNSP:SPITLIB

566

MAXLEN

SCHMD

SCREATE
SCREPLY
SGDINFO

External Symbol Index

PREAD

SGDINFO2
SGETFD
SGUINFO
SGUINFO2

PREAD1

SGUINFO3
SGUINFOU
SHTSCMD
SNOOP

PWRITE

SNS

SNS2
SPITATIN
SREAD

PWRITE1

SSETPFX
SSNOOP
SSN3
SSNS2

SETLEN

SWRITE



Reader's Comment Form

System Subroutine Descriptions
Volume 3
October 1976

Errors noted in publication:

Suggestions for improvement:

Date

Name

Address

Your comments will be much appreciated. Please fold the completed form
as shown on the reverse side, seal or staple, and drop in Campus Mail or
in the Suggestion Box at the Computing Center or NUBS.

567



fold here

Publications

Computing Center
University of Michigan
Ann Arbor, Michigan 48109
USA

568

fold here



Update Request Form

System Subroutine Descriptions
Volume 3
October 1976

Updates to this manual will be issued periodically as errors are
noted or as changes are made to MTS. If you desire to have these
updates mailed to you, please fold the completed form as shown on the
reverse side, seal or staple, and drop in Campus Mail or in the
Suggestion Box at the Computing Center or NUBS. Campus Mail addresses
must be given for local users. Updates (issued as Limited-Distribution
CCMemos) are also available in the memo files at both the Computing
Center and NUBS. Updates issued prior to the receipt of this form by
the Computing Center will not be automatically provided; these must be
obtained from the memo files.

Name

Address

569



fold here

Update Subscription Service
Publications

Computing Center

University of Michigan

Ann Arbor, Michigan 48109
USA

570

fold here





