
(' 

( 

( 

MTS 3 : SYSTEH SUBROUTINE DESCRIPTIONS 

October 1976 

SUBRO UTI NE DESCRIPTION 

Purpose: To assign a file or device to a logica l I/O unit . 

Location: Resident System 

Calling Seq uences: 

Assembl y: CALL SETLIO, (unit ,FDn ame ) 

FORTRAN: CALL SETLIO ( unit , FDname,&~C 4) 

Parameters: 

~g~l is the l ocation of the left-justified, 8-
character logical I/O unit name (e . g., 
SCARDS ). 

EQg~m~ is the location of the file or device name to 
be assi gned . Th i s name must be terminated 
wi t h a tr a i l ing bl a nk. 

££~ is the statement l abel to transfer to if the 
return code of 4 occurs. 

Ret urn Codes : 

o Successful return. 
4 Error return. An illegal logical I/O unit name 

was specified . 

Description: Th is s ubroutin e is used to ass ign a file or device to a 
logical 110 uni t. If t here was a previous assignment , the 
new file or device replaces the pre vio us file or device. 
That usage of the previous file or device is released. I f 
the EQg~ID~ parameter i s blank, the previous fi l e o r device 
is released and the logical I/O uni t i s left with o ut an 
assignment . 

This s ubro utine does not check for the l egality of the 
fi l e or de vice name specified. 

SETLI O 383 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Examples : 

384 SETLIO 

Assembly: 

FORTRAN: 

CALL SETLIO, (UNIT, FDNAME) 
LTR 15,15 
BNE ERROR 

UNIT DC 
FDNAME. DC 

CL8 ' SCARDS ' 
C'DATAFILE ' 

October 1976 

CALL SETLIO (' SCARDS ',' DATAFILE ',& 1 00) 

The above two examples call SETLIO to assign the file 
DATAFILE to the logical I/O unit SCARDS . 

Assembly: 

LOOP 1 

EXIT 1 

LA 
LR 
CLI 
BE 
CLI 
BE 
LA 
B 
LR 
SR 
BCTR 
MVC 
EX 
LA 
CALL 
LTR 
BNE 

INPUl' DC 
UNIT DS 
MVCLIO MVC 

10,INPUT 
9 ,10 
0(10) , C ' ~ ' 

EXIT 1 
0(10),C' , 
ERROR 
10,1(0, 10) 
LOOP1 
8, 10 
8 , 9 
8 ,0 

Get addr of input line 
Sav,e addr of inp ut line 
Scan off unit name 

Error if no equa l sign 

Comp ute len of uni t name 

UNIT (8) , = CL8 ' , 
8,MVCLIO Save unit name 
10,1 (0,10) Skip past equal sign 
SETLIO, (UNIT, (10)) 
15 ,1 5 
ERROR 

C'SCARDS=DATAFILE ' 
CL8 
UNIT (0) ,0 (9) 

The above eXample calls SETLIO after scanning an input 
string containing a logical I/O unit assignment . GR 10 
which points to the name of the file DATAFILE is inserted 
into the parameter list for SETLIO in place of ~QDgmg. 



( 

( 

ITS 3 : SYSTEct SUBROUTINE DESCRIPTI ONS 

October 1976 

SUBROUTINE DESCRIPTION 

Purpose: TO set all or Q s ubset of the line numbers in a l!n§ file . 

Location: Resident System 

Calli ng Sequences: 

Assembly: CALL SETL NR, (unit . first ,last , cnt ,buffer ) 

FORTRAN : CALL SETLNR (u nit.first . last.cnt .buffer .& rc4 . 
&rc8.&rc16.&rc20.&rc24 . &rc28.&rc32) 

Parameters: 

~n!~ is the location of either : 
(a ) a fullword-integer FDUB-pointer (s ucb as 

returned by GETFD) , 
(b) a fullword-integer logical 1/0 unit num

ber (0 through 1 9) , or 
(c) a left-justified, 8-character logical 110 

unit name (e.g. , SCARDS ). 
~!£§~ is the location of a fullword containing the 

!fi~~£n~l line number of the first line number 
to be set . 

1~§~ is the location of a full word containing the 
!fi~~£fi~l line number of the last line number 
to be set . 

£n~ is the location of a fullword containing a 
count of the number of line numbers in the 
specified range to be set (u sed fer error 
chec king) • 

h~~~~£ is the location of a buffer. The buffer is 
s upplied and set up by the caller. The 
buffer should be of the form : 

bytes 0-3 
bytes 4-7 

bytes 8- .•• 

pointer to next buffer or zero, 
length of this buffer in bytes 
(inclUding these 8 bytes ) , 
internal line numbers to set (4 
bytes each). 

Return Codes : 

o 
4 
8 

The line numbers were set s uccessfully . 
The file does not exist . 
Hardware error 
encoun tered. 

or software inconEistency 

SETINR 385 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Examples : 

386 SE TLNR 

october 19 76 

12 Renumber or read/write access not allowed. 
16 Locking the file for modification will result in a 

deadlock. 
20 An attention interrupt has canceled the automatic 

wait on the file (waiting caused by concurrent use 
of the (shared) file). 

24 Inconsistent parameters specified (req uested set
ting will cause duplicate or decreasing line 
numbers, etc.). 

28 The file is not a line file . 
32 Buffers exhausted before line-number range was 

exhausted. 

Notes: 

If ~i£~~ and 1~~~ do not 
numbers iL the file , the 
numbers, respectively, will 

correspond 
next and 
be used. 

to actual line 
pre vi o us line 

In MTS, the internal line number (e.g. , 2 100) is 
equal to the external line number (e. g., 2.1) times 
one thousand . 

Assembly: 

UNIT 

CALL GETFST , (UN IT,FSTLNR) 
CALL GETLST, (UNI T, LSTLNR) 
CALL RETLNR, (UNIT,FSTLNR,LSTLNR,CNT,EUFFER) 
CALL RENUMBER, (UNIT,FSTLNR, LsTLNR, EEG ,INC) 

CALL GETFST, (UNIT,l'sTLNR) 
CALL GETLsT, (UNIT,LsTLNR) 
CALL SETLNR, (UNIT,FSTLNR,LsTLNR,CNT,BUFFER) 

DC F 1 4' 
FSTLNR Ds F First line number 
LSTLNR DS F Last line number 
CNT OS F Count of lines in file 
BEG DC 1"1000' Renumber starting at 1 
INC DC F '1 000' In increments if 1 
BUFFER DC F'O' The only buffer 

DC 1"808' This many bytes 
OS 200F Line numbers go here 

The above example illustrates how to save a 
numbers in a f~le, renumber the file, and 
restore the original line numbers of the file 
logical I/O un~t 4 (assuming the file contains 
200 lines). 

set of line 
then later 
attached to 
fewer than 



( October 1976 

( 

( 

FORTRAN: 

MTS 3 : SYSTE M SUBROUTINE DESCRIPTIONS 

INTEGER*4 UNIT,fSTLNR,LSTLNR,CNT,LNR , $I4(1) 
COMMON /$/ $14 
DATA UNIT/4/ 

CALL GETFST (UNIT , FSTLNR ) 
CALL GETLST (UNIT ,L STLNR ) 
CALL CNTLN R(UNI T,F STLNR, LSTLNR , CNT ) 
CAll A RINIT (~,1) 

CALL ARRAY (LNR ,4, CNT+2) 
$I4(LNR+1) =O 
$14 (LNR +2) =C NT*4+8 
CALL RETLNR (UN IT , FSTLNR,LSTLNR , CNT,$I4( LNR+ 1» 

CALL RENUMB (U NIT,FSTLNR,LSTLNR,1000,1000) 

CALL GETFST(UNIT,FSTLNR) 
CALL GETLST (UNIT ,L STLNR ) 
CALL SETL NR(UNIT,F STLNR , LSTLNR,CNT,$I4(LN R+l» 

The a b ove example illustrates how to re member and reset 
al l of the line n umbers of a line file attached to l ogical 
I/O unit 4 (using the FORTRAN array management subrouti nes 
to dynamically allocate a buffer ). 

SETLNR 387 



llN1J.aS 88£ 

9L6L HqOpO 

SNOIldIHJSaa aNIlnOlignS WalSXS :£ SlW 



( 

( 

October 1976 

Purpose : 

Location: 

MTS 3: SYSTEM SUB ROUTINE DESCRIPTIONS 

glgg 

SUBROU TI NE DE SCRIPTION 

To set the prefix character for the program currently 
e xec uting. This c haracter is issued during program execu
tion as the first character of every input or output line 
on a ter minal. 

Resident System 

Calling Seguences: 

Re str ict ion: 

Examples: 

Assembly: CALL SETPFX, (ch ar ,len) 

FORTRAN: INTEGER*4 SETPFX,i,len 
i = SETPFX (char,l en ) 

Parameters: 

£he£ is the location of the pre fix chara c ter. 
19n i s the location of a fullword integer count of 

the number of characters. 

Valu es Returned: 

GRO contains the previous prefix character, right
justified with leading hexadecimal zeros. for FOR
TRAN users , the value returned by the integer func
tion call to SETPFX will be the previous prefix 
character, right-justified. 

Currently only one prefix 
only the first character at 
used. 

character may be used . Thus 
the location specified is 

Assembly: CA LL SET~FX, (PCHAR,PLEN) 
ST O,OCHAR 

PCHAR DC C'?' 
PLEN DC F'1' 
OCHAR DS CL4 

The above example calls SETPFX to set the prefix character 
to It?". 

SETPFX 389 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

390 SETPFX 

FORTRAN : INTEGER * 4 SETPFX , OLD 
OLD = SETPFX (' 1 ',1) 

October 19 76 

The abo ve exam~le cal ls SETPFX to set t he prefix c haracter 
to II / II . 



( 

( 

( 

October 1976 

Purpose : 

Location : 

Alt . Entry: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

~~Q£ 

SUBROUTINE DESCRI~TION 

To perform floating-point , integer , logical , and hexadeci
mal input/outpu t con versions . The types of con version and 
editing a vailable correspond to those associated with the 
ANS FORTRAN con version codes D, E, F, G, I , and L and the 
IBM FORTRAN con version code Z. In addition , SIOC incorpo
rates a nu mber of optional fea t ures s u c h as blan k s u ppres
sion and free-format input and output. SIOC performs one 
I/O con version per call and does not perform a ny actual 
I/O operations. 

Resident System 

SIOC# 

Calling Sequences : 

Assembly: CALL SIOC , (buffer , cvarea) 

FORTRAN : CALL SIOC (buffer , c varea , &rc4,&rcS ) 

Parameters: 

Q~ff~£ is the location of the first c~aracter of the 
i np ut/output buffer . Inp ut con versions ne ver 
ch~nge the contents of the buffer . 

g!~£~~ is the location of a double word-aligned block 
of information containing parameters indicat 
ing the type of conversion and editing , 
containing the internal da tu m, and providing 
a scratch area for intermediate calcul ations . 

~£g~L~£g§ are s t atement labels to transfer to if the 
corresponding return codes occur. 

Return Codes : 

o Suc cessful return . 
4 The parameters of the external output fie l d are 

inappropriate and the field has been filled with 
asterisks (*). The external input field contai ns 
an illegal character. 

S One of t he input/ou tpu t parameters specifies an 
illegal v a lue, or the value of the e xternal input 
fie l d exceeds the allowable range for the i nternal 
representation . 

SIOC 39 1 



MTS 3 : SYSTEM SUBROUTINE DESC&IPTIONS 

Octol:er 1976 

Description: The notation Lor the £yg£gg parameters used l:elow is 
consistent with the FORTRAN format descriptors sPEw . d, 
sPF w.d, sPG w.d, Iw, Lw, and Zw. For FORTRAN users, the 
double word alignment of £yg£gg may be most easily accom
plished by placing the parameters at the beginning of a 
COMMON block . 

392 SIOC 

RFP: This full word integer specifies the position rela
tive to ggffg£ of the external field in the input/ 
output buffer . The first character of BYffgf corre
sponds to an RFP of zero. For both input and output 
conversions , the RFP is updated to correspond to the 
first character after the external field processed . 
Restriction : RFP 2 O_ 

W: This fullword integer specifies the number of char
acters i~ the external field. Restriction: 255 2 W 
2 1. 

D: Nominally, at least, this fullword integer specifies 
the number of digits to the right of the decimal 
point. The interpretation of and r estrictions on 
this parameter are dependent on the con version code . 

S: Fullwora-integer scale factor. The interFretatio~ 
of and r estrictions on this parameter are dependent 
on the cOLversion code . 

RF: Fullword-integer replication factor . 
CW : This full word consists of the function byte, the 

conversioL code byte, the datum-length byte, and the 
input picture byte. The values for the se bytes 
listed below are in hexadecimal. 

Function Byte : 1; INPUT , O;OUTPUT. 
Con versioL Code Byte : E;OE, F; 1C, G; 1E, 1;10, L;06, 

Z;02 . 
Datum-Length Byte: Number of bytes i n the internal 

datum.. Restriction: 8 2 datum-length (E,F ,G,I, 
L) , or 8 ~ datum-length 2 1 (Z) . 

Input Picture Byte : The bits of this byte are set 
during input conversions to record the actual 
contents of the e xternal field, e.g., sign char
acter, decimal e xpon ent . 

V: The interna l representation of the dat um will or 
shoul d be left-justified in this doubleword . 

WK: This area must supply at least 10 words of scratch 
space for output con versions , a nd max(10,W/4+3) 
words for input conversions. 

Input conversioLs will change only the RFP , RF , the input 
picture byte, and V; o utp ut conversions will change only 
the RFP and th e external field in gyffg£. 

Beca use the maLipulation of the various parameteLs con 
tained in £yg£gg is somewhat inconvenient in FORTRAN, the 



( October 1976 

( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

SIOCP subroutine has been made a vailable for this .ur.ose. 
The description of the SIOCP subroutine is restricted to 
information indicating how to set the SIOC para meters . 

Relati ve Field Position - RFP 

The RFP ~ara meter can be emp l oyed to r eliev e the 
calling program of maintaining a buffer pointer. For 
example , when con verting successi ve values from an 
input line, the RFP can be initialized to zero for 
the first callan SIOC and subsequently ignored. 
This same procedure can be used to form ul ate an 
outp ut line , and the fina l value of RFP will hE t he 
length of the line ge nerated . 

Replication Factor Processing 

In the external field , a replication factor consists 
of a stru.g of decimal digits terminated by an 
asterisk (*) and preceding the v alu e in the field, 
e . g ., 5* 1. 5 . An input replication factor will be 
con verted and stored in RF only if (1) bit 1 of the 
con version code byte is 1 (hex 40 ), (2 ) the portion 
of the field preceding and following the asterisk is 
not null, and (3) the va lu e of the digit string 
preceding the asterisk is in the ra nge [1, 
2147 4836 47). An output replication factor will be 
generated in the external field only if (1) bit 1 of 
the conversi o n code byte is 1 (h e x 40), (2) free
format output is i n effect , and (3) the va lu e in RF 
is positi ve . 

Blanks in Numeric Input Fields 

Consi steLt with the ANS FORTRAN standard , all blanks 
in the external input field are treated as zeros . If 
bi t 3 of the f unction byte is 1 (hex 10 ), all blanks 
in the external fie l d are ignored. 

Floating-Point Mapping 

All E, F , and G i npu t conversions correct ly ro un d the 
va lue in the e xternal f i eld to the apprcpriate 
internal format ; and all E , F, and G o utput con ver 
sions place in the external field the decimal ~xpan 
sian of the internal dat um rounded to the numb er of 
digits ( ~ 1 8 ) nece ssary to fu l fill the f i e l d require
ments . If bit 4 of t he function byte is 1 (hex 08), 
both the input a nd output mappings are by truncation 
instead of ro unding. 

SIOC 393 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

394 SIOC 

October 1976 

Direct Conversion 

The direct conversion feature is only applicable to 
output conversions, and is obtained by setting bit 5 
of the function byte to 1 and bit 6 to 0 (he x 04). 
~Q!!gf and the parameters RFP, W, S, and RF are 
ignored, and the external field is generated in the 
scratch area WK. The format of the externa l field 
depends on the conversion code, the datum - length, and 
D, Le., E (D+6).D, 112, L1, or Z(2*datum- l ength) .• If 
D is not in the range [1,18), a default value of 9 or 
18 is em~loyed depending on whether the internal 
datum is a short- or long-operand, respectively. D 
is not actually changed. 

Free-Format 

The free-format feature is enabled when bit 6 of the 
function byte is 1 (hex 02). For input conversions, 
this forces the delimiter scan and appropriate updat
ing of the RFP after an illegal c harac t er has been 
encountered; the RFP is normally updated by W in this 
situation. On the other hand , free-format output 
converS10ns pro vide for a datum-dependent, l eft 
justified externa l field with an optional replication 
factor and delimiter (,). The parameters Wand S are 
always ignored. Floating-point conversions generate 
D significant digits and append an expone nt only when 
necessary. If D is not in the range [1,18), a 
default value of 9 or 18 is employed depending on 
whether the internal datum is a short- Cr long
operand, respectively . D is not actually changed. 

Conversion Code Byte 

In addition to the settings given earlier , three 
other bits in this byte may be used to obtain 
additional services. If bit 1 is 1 (h ex 40) , 
replication fac~or processing is enabled. If bit 2 
is 1 (hex 20), a sign will always be generated in E, 
P, G, and I e xternal outpu~ fields; a sign is 
normally generated only when the datum is negative. 
If bit 7 is 1 (hex 01), delimiter processing is 
enabled . For free - format output conversions, delimi
ter processing places a comma (,) at the end of the 
external field. For input conversions, the first 
occurrence of a delimiter character results in: (1) 
setting the RFP to correspond to the first character 
after the delimiter , ( 2) effectively modifying W to 
correspond to the number of characters preceding the 
delimiter, and (3) effectively setting D tc zero. 
The Wand D parameters are not act ually changed. If 
the first character of the external field is a 



( October 1976 

( 

( 

MTS 3: SYSTEn SUBROUTINE DESCRIP1IONS 

delimiter , the value of the 
delimiter characters are : comma 
prime ('), and slash U ). 

Datu m-Length Byte 

field is zero . 
(,), semicolon 

The 
( ;) , 

In conjunction wit h t he 
value of this parameter 
representation as follows : 

conversion code byte, the 
determines the internal 

E, F,G 
B, F, G 

I 
I 
L 
L 

REAL*8 
REAL*4 

INTEGER*4 
INTEGER*2 
LOGICAL*4 
LOGICAL*1 

Z 

= 8 
NOT 8 

=4 
NOT 4 

= 4 
NOT 4 

58 datum-length bytes 

Input Picture Byte 

The bits of this byte are set during inp u t co nver
sions to describe the actual contents of the external 
field . These bits indicate the presence (1) or 
absence ( 0) of the ele ments listed below: 

o Floating-point e xponent character D (E,F , G). 
1 Replication factor (all). 
2 Sign character (E,F,G,I,Z). 
3 Digits to left of decimal poin t (E, F, G, I)_ 
4 Decimal point (E , F , G). 
5 Digits to right of decimal point (E,F,G). 

T or F (L). 
6 Floating-point exponent (E, F,G) . 

T or F (L ). 
Hexadecimal digits (Z). 

7 Delimiter (all ). 

Error Processing 

If an illegal character is found in the externa l 
input field, a return code of 4 is gi ven . The 
r elati ve ~osition of the illega l character with 
respect to the first character of the externa l field 
is placed in the first word of V, and t he translation 
of the illegal character i s placed in the seccnd word 
of V. 

SIOC 395 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

Example: 

396 SIOC 

October 1976 

!~~~g~! £h~£~£!~£ !£~g§!~!iQn 

Decimal digit (0 -9 ) 0 
Sign character 1 
Delimiter (,;' 1 ) 2 
Decimal point 3 
Asterisk ( * ) 3 
Hex digit (A-F) 4 
None of the abo ve 5 

Syntax v101ations are treated as illegal characters; 
For example, a decimal point is legal in an F-field, 
but the second occurrence of a decimal point would be 
illegal. 

When performing output con versions , a return code of 
4 is given if the field width is ins ufficient , if S 
is not i~ the range [-D,D +1] in a G-field specifica
tion being treated as an E-field specification , if S 
is not in the range [-D,D+1] in an E- field specifica
tion , or i~ D is not in the range l O,W-1] . The first 
and second conditions are generally data dependent 
but can, like the rema1ning conditions, be of a 
technical Lat ure_ 

Illegal parameter values , which cause a return code 
of 8 wi th QQ changes in any SIOC parameters, arise 
wh en one or more of the explicit res trictions gi ven 
in the parameter descriptions above are violated . If 
a return code of 8 is given for exceeding the range 
appropriate for the internal representation, the RFP 
will be correctly updated and RF and V will be 
indeterminate_ 

Replication Factor Range 
Integer Range 
Floating-Point Ra ng e 

[1, 2 1474 83647 ] 
[ -21474 836 48,2 147483 647] 
[ .539 ••• E-78,. 7 23 ~ •• E+ 76 ] 

The example program below prints the ele ments of a COMPLEX 
vector on unit 5. The output lines produced by this 
program will be of the form 

" ±d . ddddddddE±ee +1* ±d .ddddddddE±ee " 

where, depending on t he type of device attached to 5 , the 
in itia l blank may be removed for use as carriage ccntrol_ 



October 1 9 7 6 

( 

( 

MT S 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

COMPLEX Z (10) 
INTEGER BUF (1 0 ) , BL/ ' ' I,BII ' +1* ' 1 
INTEGER CVA (1 8)/O ,1 6 , 8 ,1, O, Z002E0400 ,1 2* 01 
INTEGER* 2 LEN/401 
EQUIVALENCE (DATUM,CVA (7)) 
REAL*8 DCVA ( 9 ) 
EQUIVALENCE (DCVA(1), CVA (1)) 

BUF (1) = Bl 
BUF (6) =BI 
DO 10 1= 1,1 0 
CVA (1) = 4 
DATUM=REAl (Z (I )) 
CALL SIOC (BUF , CVA ) 
C VA(1) =2 4 
DATUtI=AltlAG ( Z (I)) 
CALL SIOC ( BUF , CVA) 

1 0 CALL WRITE ( BUF,L EN ,O ,LINE , 5 ) 

SIOC 397 



JOIS 86£ 

SNOI~dIHJS~a ~NlxnOH8ns w~XSXS :r SXW 



( 

( 

( 

October 1976 

Purpose: 

Location: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

To provide an easy method for setting the conversion 
parameters prior to calling the input/output conversion 
subroutine SIOC. Most of the SIOC parameters are fullword 
integers, but the control word is divided into four bytes 
which cannot be conveniently manipulated by FORTRAN pro
grams. This subro utine pro vides for the translation of a 
single FORTRAN format descriptor and associated SIOC 
modifie rs into a form acceptable to SIOC. In the descrip
tion below, explicit reference is made to variou s SIOC 
parameters a nd features so that familiarity with SIOC 
would be most helpful. 

Resident System 

Calling Sequence : 

Assembly: CALL SIOCP , (format,cvarea) 

FORTRAN: CALL SIOCP (format,cvarea,&rc 4) 

Parameters: 

iQ£m~! is the location of t he first character of the 
e x tended format descriptor to be translated. 
This character string must be terminated by a 
blank. 

£!~£g~ is the location of a double word-aligned block 
of storage that will be subsequently used in 
calling SIOC. 

~££~ is a statement label to transfer to if an 
error is detected. 

Return Codes: 

o Successf ul translation. 
4 An element of the character string in fQ£m~! could 

not be deciphered, and the contents of £~~£g~ 
reflect on ly the portion of !Q£ms! preceding the 
erroneous element. One of the input/output param
eters (RFP, W, or the datum-length byte) contains 
an illegal value , i.e., if £!s£gs is passed to 
SIOC, a return code of 8 will result. 

Description: The scanning of the character string in fQ£m~! is termi 
nated when a blank is encountered or when an element of 
the s tring canLot be deciphered. Thus, blanks s hould not 

SIOCP 399 



MTS 3: SYSTEM SUBROUTINE OESC~IPTIONS 

400 SIOCP 

October 1976 

be embedded in the character 
character string in ~Q£~a! 
following forms : 

([ Tn , J[sP JOw . d) 
( [Tn , J[sPJEw . d) 
([Tn, J[sP]Fw . d ) 
([Tn, J[sP]Gw . d) 
([ Tn , ]Iw) 
([ Tn , JLw) 
([ Tn , JZw ) 

strings described below . 
should be of one of 

The 
the 

where the elements enclosed in square brackets ([ ]) are 
optional; I' nl l , "W ll , and Il d 'l are unsigned decimal integers; 
and I t Sl1 is an optionally signed decimal integer. The 
translation process sets the conversion code byte and 
places II n" in RFP, "w I! in W, "d" in D, and IIS " in S. The 
parameters in £Ya£~a are initialized to zero prior to the 
translation on1y if the first character of ~Qfma! is a 
left parenthesis, and only those elements of the parameter 
area explicitly referenced in the extended format descrip -
tor are modified . ' 

The SIOC modifier names and corresponding functions are : 

l!a!!!!l Eyn£!!Qn JfQnY~f§!Qn __ fQg!l_~Y!!ll 

RF Enable replication factor processing. 
S Enable sign generation in numeric outp ut fields . 
o Enable delimiter processing . 

!!~.!!!~ 

BLK 
TRUNC 
DC 
FF 
INPUT 

l!a~!l 

DL=b 

Eyn£!!Qn JEyn£!!Qn_~Y!~l 

Ignore blanks in input fields. 
Floating-point mapping by truncation . 
Direct conversion. 
Free-format. 
Input con version . 

EYn£!~Qn J~a!Y~=~!lng!h_~Y!!ll 

Set datum-length byte, 0 S b S 8. 

These modifier Lames (preceded by an W) sho uld be appended 
to the FORTRA N format descriptor. The occurrence of a 
conversion code (D,E,F , G, I,L , Z) a utomatica lly sets the RF, 
S, and 0 bits of the conversion code byte to zero, i.e. , 
off . The defaults for the function byte and datum-length 
byte modifiers depend on the contents of £Ya£~a whe n SIOCP 
is called (first character of ~Qfma! not a left parenthe
sis) or are zero, i . e . , rounded output in fixed format 
(first character of ~Q£!!!a! a left parenthesis) . The 
negati ves of these modifiers are nQ! supported_ 



( October 1976 

Example: 

( 

( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

The translation of the extended format descri.tors i s 
extremely permissive, and variation s on the synta x 
delineated above should be used with caution. For 
example, using the notation = for equivalence, 

Ew = Ew. = Ew.O, G.d =GO.d, and F= FO.O . 

After the exteuued format descr iptor has 
SIOCP checks to insure that RFP, W, and 
byte contain valid data, i.e., data which 
SIOC to give a return code of 8. 

been processed, 
the datum-length 
will no t cause 

The exa mple program below converts two REAL*8 values from 
each input line read thro ugh SCARDS, and prints their Sum 
on SPRINT in the form 

"(number) ± (unsigned-number) = (number)." 

This e xample illustrates a numb er of features cf both 
SIOCP and SIOC . 

REAL*8 X,Y,SUM,CVA (36) ,BUFFER (32) ,BL/ ' '/ 
INTEGER*2 LEN 
INTEGER W (2 ) 
EQUIVALENCE (CVA (1) ,W (1» 

10 CALL SCARDS (EUFFER,LEN,0,LINE,&100) 
CALL SIOCP (' (El) wINPUTiVBLKiVDiVDL=8 ',CVA,& 200) 
w (2) =LEN 
CALL SIOC(BUFFER,CVA,&~00,&200) 
X=CVA(4) 
W (2) =LEN-W (1) 
IF (W (2) .LE. 0) GO TO 200 
CALL SIOC (BUFFE R,CVA,&200,&200) 
Y=CVA(4) 
S UM=X+Y 
BUFFER(l)=BL 
CALL SIOCP (' (Tl,E)iVFFiVDL= 8 ',CVA,& 200 ) 
CVA(4) = X 
CALL SIOC(BUFFER,CVA) 
CALL SIOCP('iVS ',CVA,& 200) 
CVA(4) =Y 
CALL SIOC(BUFFER,CVA) 
CALL IMVC(3,BUFFER,W( 1) ,' = ',0) 
W(1) = W(1 ) +3 
CALL SIOCP('E ',CVA,&200) 
CVA(4)=SUM 
CALL SIOC(BUFFER,CVA) 
LE N= W (1) 
CALL SPRINT ( BUFFER,LEN,O,LINE) 
GO TO 10 

100 CALL SYSTEM 
200 CALL ERROR 

SIOCP 401 



d:)OIS ZOn 

ON::! 
Ol 0.1 O~ 

9L6l :raqo:PO 

SNOI.LdI~?s::!a aNI.LnOaHnS W::!.LSXS :E S.LW 



( 

( 

( 

october 1976 

Purpose: 

Location: 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

TO allow FORTRAN users to regain control when I/O trans
mi ssion errors that would otherwise be fatal (s uch as tape 
I/O errors or exceeding the size of a file) occur during 
execution .. 

*LIBRARY 

Calling Sequence: 

Description: 

FORTRAN: EXTERNAL s ubr 
CALL SIOERR (s ubr) 

Parameters: 

§YQ~ is the subroutine to transfe r to when an I/O 
error occurs, or zero, in which case, the error 
exit is disabled. 

A call on the s ubroutine SIOERR set s 
sian error ex it for one error only. 
and the exit is taken, the intercept 
another call to SIOERR is necessary 
I/O transmission error . 

up an I/O transmis
When an error occ urs 

is cleared so that 
to intercept the next 

If the s ubrou tine subr returns, a return is made to the 
user 's program f.ioiii- the I/O routine with the return code 
indicating the type of error that occurred. The return 
code depends upon the type of device in use when the error 
occurred. See the section "I/O Subroutine Return Codes " 
in this volum e . 

Note: SETIOERR is for assembly language (s ee the 
description of the subroutine SETIOERR) and SIOERR 
1S for FORTRAN users. There is a difference in 
the level of indirection between the two subrou
tines; therefore, SIO ERR should not be used by 
assembly language users. 

Many I/O error conditions are detected by the 
FORTRAN I/O Library before they actually occur, 
thus allowing the FORTRAN monitor to take correc
tive action.. In these cases, an e rrcr exit 
enabled by a call to SIOERR will not be taken 
since the FORTRAN monitor will take control b efore 
the erroneo us operation is attempted. For further 
details, see the "FORTRAN I/O Library" section in 
MT S Volume 6. 

SIOERR 403 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Example: 

404 SIOERR 

FORTRAN: EXTERNAL SWITCH 
COMMON ISW 

ISW;O 
CALL SIOERR (SWIT CH ) 
WRITE (8,105) FILEOUT 
H (I SW.EQ. 1) GO TO 10 
CALL SIOERR (0) 

SUBROUTINE SWITCH 
COMMON ISW 
ISW; 1 
RETURN 
END 

October 1976 

In this example, SIOERR is called to enable an exit if an 
I/O error occurs during the processing of the WRITE 
statement . If an error does occur , the subroutine SWITCH 
will be called which se ts the variable ISW to 1 and 
returns. The calling program tests the value of ISW and 
branches to statement 10 if appropriate. SIOERR is called 
again to disable the exit. 



( 

( 

( 

October 1976 

Purpose: 

Location: 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

SUBfiO UTINE DESCRIPTION 

To space a magnetic tape or fi l e either ferward or 
backward a specified number of records or files. 

*LIBRARY 

Calling Seguences: 

Assembly: CALL SKIP, (nfiles,nrcds,unit) 

FORTRAN : CALL SKIP (nfiles ,nrcds,unit,&rc4,&rc8 ,&rc1 2 ) 

Parameters: 

uKi!g§ is the location of the number of files to 
skip (must be zero for files). 

U£fQ§ is the location of the number of records to 
skip. 

~Uil is the location of e ither 
(a) a full word-integer PDUB-pointer (as 

returned by GETFD), 
( b) a fullword-integer logical I/O unit num

ber (0 through 19), or 
(c) a l eft-justifi ed 8-character logical I/O 

unit name (e .g., SCARDS). 
££~L~~~L££16 are statement numbers to transfer to if 

a nonzero return code is encountered. 

Return Codes : 

o Successful return. 
4 An end-of-file (filemar k) was reached during a 

forward space or backspace record operation. The 
unit is left positioned immediately after (on 
forward space) or before (on tackspace) the 
filemark. 

8 The load point (b eginning of tape) was detected on 
a backspace operation (tape is left at load point) 
or the logical end of a labeled tape wa s detected 
on a forward space operation (tape is left at the 
end ). This return code cannot occur for files . 

1 2 The ~U!l parameter is illegally specified, the 
unit is not a magnetic tape or file, an I/O error 
condition was detected, or U'!!g§ is not 2ero and 
the EU!l is a file. 

SKIP 405 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Octcber 1976 

Description: The tape or tile specified by Yll!! will be spaced Q!~l~§ 
first and then ll£Qg§. If a parameter is negative , the 
unit will be spaced backward the appropriate number of 
files; if posit~ve, the spacing will be in the forward 
direction. For files , the ~f!!g§ parameter must be zero. 

Exam"les: 

406 SKIP 

In spacing files, after the operation is complete, the 
tape will be positioned on the opposite side of the 
filemark from which it began. That is, on forward space 
file requests (UI!!g§ > 0), the tape will be forward 
spaced past the requested number of filemarks and be left 
positioned immediately after the last one. On backspace 
file requests ( llt!!~§ < 0) , the tape will te backspaced 
past the requested number of filemarks and te left 
positioned immeaiately before the last filemark or at the 
load point . A separate forward space file request will be 
necessary to position the tape at the beginning of the 
next file. 

If any spacing operation results in a nonzero return code 
from the MTS I/O routines , the SKIP subroutine will return 
before completing all requested file and record skips. 
This can occur if a tape is backspaced to lcadpoint 
(return code 8) , forward spaced to the logical end of a 
labeled tape (return code 8) , or if a backspace record or 
forward space record request passes over a filemark 
(return code 4). In addition , a return code of 12 is 
given for an illegal Yll!! , a YU!! which is not assigned to 
a magnetic tape or file, or an I/O error condition. 

Assembly: CALL SKIP, (NF, NR, UNIT) 

NF DC F I -1 I 

NR DC F '1' 
UNIT DC F ' 3' 

FO RTRAN : CALL SKIP (-1 ,1, 3,&100,&150,&200 ) 
100 

The above two examples will cause the tape assigned to 
logical I/O un~t 3 to be positioned to the beginning of 
the current tile by backspacing past one filemark, then 
forward spacing o ver the filemark (by forward spacing one 
record ) • If the c urr ent file was the f irst file on the 
tape , the tape would backspace to loadpoint and a return 
code of 8 would be issued by the tape routines , causing 
SKIP to return with the tape positioned at the beginning 
of the tape . In FORTRAN , this would cause statement 150 
in the calling program to be executed . If the current 
file was not the first file on the tape, SKIP would 
perform a forward space record after the backspace file . 
Note that this forw~rd space record will resu l t in a 



( October 1 97 6 

( 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

return code of 4 from S KIP because the forward space 
record will space over a filemark . This would cause 
statement 100 in t he FORTRAN program to be executed . 

Asse mbly : CALL SKIP, (NF , NR,AFDUB ) 

NF DC F IS ' 
NR DC F' O' 
AFDUb DS F A FDUB-pointer . 

FORT RAN : CALL SKIP (S , O, AFD UB) 

The above two examples will space t he tape specified by 
AFDUB forward 5 files , or until the logical e nd of a 
labeled tape is reached (ret urn code 8) . 

Assemb l y : CALL SKIP, (NF , NR , UNIT) 

NF DC p t O' 
NR DC F ' 10 ' 
UNIT DC C' SCARDS 

FORTRAN : CALL SKIP (0, 10 ,' SCARDS ' , &4) 

4 

The above two examples will space the tape or file 
attached to the logical I/O unit SCARDS for ward 1 0 r ecords 
or until an end-of-file occurs, whiche ver comes first . To 
find out which occurred , test the ret urn code for 4 . In 
FORTRAN if the operation terminated due to an end - of-file, 
statement 4 in the program will be exec uted . If not , 
processing will continue with the next statement. 

SKIP 40 7 



dIllS 80~ 

9LH :raqo'PO 

SNOI~dIq~Saa aNI~nOH8nS Wa~ShS :E S~W 



r 

( 

f 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

'§Q!l! 

SUBROUTINE DESCRIPTION 

Purpose: To sort or merge records . 

Location: *LIBRARY 

Al t. Entry: SORT1 

Calling Sequences: 

Assembly: CALL SORT . (cstmt[ . (unitlvdslnum) •.•• ]) 

FORTRAN: CALL SORT (cstmt[. (unitlvdslnum) •••• ][ .&err]) 

PL/I: CALL PLCALL (SORT ,n,cstmt[ , (unitl vdsl num) , •.• ]) 

parameters: 

£§!!!!! 
lIll!! 

II 

Return Codes: 

is the location of the control statement. 
(optional) is t he location of a FDUB-pointer 
(as returned by GETFD), or the locaticn of a 
f ull word-integer logical I/O unit number 
(0-1 9 ) • 
(optional) is the location of the virtual 
da ta set to be processed . 
(optional) is the location of a positive , 
nonzero , fullword integer that speci fies a 
numeric value in the control statement. 
(optional) is the statement label to transfer 
to if an error (nonzero return code ) is 
detected by the subroutine . 
is the n umber of arguments (FIXED BINARY (31)) 
to be passed to the subro utine. 

o 
4 

Successful return . 
An error has occurred and the subroutine 
iss ued diagnostics vi a the logical I/O 
SERCOM. 

has 
uni t 

Description: See the section " The SORT Utility Program " in MTS Volume 
5 . 

SORT 409 



~TS 3 : SYSTEM SUBROUT INE DESCRIPTIONS 

Octccer 1976 

~~mms£Y_Qf_lh~_~Qnl£Ql_~lsl~m~nl 

Prototype: 

[~OPY J[ [ ~OR T I !!ERGE )[ =[[ type ), l aspect ), [ location ), [length ), ) ••• 
[type)[ ,[aspect)[ ,[location)[ ,[len.gth ))))))) 

[[QS=delimiter[string)delimiter_) .•• QS=delimiter[string )delimi t er ) 
[INPUT [ =[[name ),[s tr ucture ),[record length),[block length), ) ••• 

[name)[,[structure)[,[record length)[ ,[block length)))))) 
[QUTPUT[ =[[name ),[ str ucture) ,[ record length),[block l e ngth), ) ••• 

[name )[,[ structure )[,[record l engt h)[,[block length)))))) 
[[ optional parameter,) ••• optional parameter) 

Collating fields: 

TYPE I CODE SIGN PRESENT I FIELD LENGTH (BYT ES ) 
--------------+- -+--------------

I 
align men t I ~L 
binary I BI 
bit I BT 
call I CA 
character I ~H 
defined seq uence I QSJH 
fixed-point I p 
floating-point I FL 
l ength I !oE 
packed decimal I ~D 
sequence I SE 
signed decimal I ~D 
zoned decimal I ~D 

Record struct ures : CODE I 
t 

U I 
F I 
v I 
VS I 

I 
no I 
no I 
no I 

I 
no I 
no I 
yes I 
yes I 

I 
yes · I 

I 
yes I 
yes I 

RECORD STRUCTURE 

undefined l e ngth 
fixed length 
variable length 

1 - 4095 
1 - 256 
1 - 255 
1 - 4095 
1 - 256 
1 - 256 
1 - 260 
2 - 16 

1 - 16 

2 - 16 
1 - 15 

variable length; spanned 
fixed length; blocked 
va riable length; blocked 

(ma sk) 

FB I 
VB I 
VBS I 
FBS I 

variable length; blocked; spanned 
fixed length; blocked; s t an dard 

Optional parameters: 

~l:!K (exit check fac ili ty ) 
DEC (de l ete comments) 
END (termina te the control statement ) 
110 (list data se t characteristics) 
(IECI!!IR) =x (number of records) 
RES= x (restart) 
JIG (sign off on error ) 
1PS[ =[ x J) (tape -merge sort faci lity) 

410 SORT 



( 

( 

MT S 3 : SYSTEM SUBRO UTINE DESCRIPTIONS 

October 1976 

SUBliOUTINE DESCRIPTION 

Purpose: To sort arrays. 

Loca tion: *LIBRARY 

Calling Sequences: 

Assembly: CALL SORT2 , (cstmt,locl,loc2 , len[ , num)_ .• ) 
CALL SORT3 , (cstmt,loc l,loc2,lenl , loc3,len2 

l, nu m) ••. ) 

FORTRAN: CALL SORT2 (cstmt ,l ocl , loc2 , len[ , num ) ••• [ , Serr) 
CALL SORT3 (cstmt , loc l,loc2 , lenl,loc3 ,len2 

PL/I : 

[ ,n um ) .•• [ ,Serr J) 

CALL PLCALL (SORT2 , n , cstmt , ADDR (loc l), 
ADDR (10c2) ,AD DR (len ) [, num) .•• ); 

CALL PLCALL (SORT3,n , cstmt , ADDR (loc l), ' 
ADDR (10c2 ) , ADDR (le nl) , ADDR (10c3), 
ADDR (len2 ) [,num) ••• ) ; 

parameters: 

£§1!!!1 
lQ£l 

lQ£~ 

l!t!! 

!H!ID 

!! 

is the location of the control statement . 
is the location of the first e l ement of the 
data set or array to be sor ted. 
is the location of the last element of the 
data set or array to be sorted. 
is the location of the full word integer 
length of each e l ement in the data set to be 
sorted. The value of l!t!! may range between 1 
and 256 bytes . 
(optional) i s the location of a pOEitive, 
nonzero , f u11word integer that specifies a 
numeric value in the control statement . 
i s the locat i on of the first eleme nt in the 
tag data set or array . 
is the location of the 
length of each element of 
The value of 1en2 may range 
bytes . ----

fu 11word integer 
the tag data set . 
between 1 and 256 

(optional ) is the statement label to transfer 
to if an error (nonzero ret urn code ) is 
detected by the subroutine. 
is the number of arg uments (FIXED BINARY (3 1» 
to be passed to the s ubroutine. 

SORT2 , SORT3 411 



~TS 3 : SYSTEM SUBROUTINE DESChIPTIONS 

OctobEr 1976 

Re"urn Codes: 

Successful return. o 
4 An error has occ urred 

issued diagnostics via 
SERCO M. 

a nd the s ubroutin e has 
the l ogica l I/O un it 

Description: See the section " The SORT Utility Program " in MTS Volume 
5 . 

~~mms£Y_Q!_£hg_~Qn££Q!_~£s!gmgn! 

Prototype : 

[ [ ~ ORT l[ =[[ ty pe l . [ as pect l, [ loca tion ] , [ 1 ength ], ] • .• • 
[ type )[,[ aspect)[ , [location )[,[ l e ngth )llll) 

[[~S=delimiter[string)delimiter .) •.• !lS=delimiter[ string )d elimite r) 
[[ optional parameter , ) . • . op"iona 1 parameter] 

Collat i ng fields: 

TYPE I CODE I SIGN PRESENT I FIELD LE NGT H (EYTES ) 
----------------+------+--------+-------------------

alignment 
binary 
bit 
call 
character 
defined seq uence 
fixed-point 
floating -point 
pack~d decimal 
s ig ned decimal 
zoned dec imal 

O~tional parameters : 

I I I 
I ~l I no I 
I III I no I 
I BT I no I 
I CA I I 
I ~H I no I 
I llSlbL I no I 
I ~I I yes I 
I FL I yes I 
I fD I yes I 
I ~D I yes I 
I ~D I yes I 

!lIe (delete comwents ) 
IND (terminate "he control s t atement) 

41 2 SOR T2, SORT3 

1 - 40 95 
1 - 256 
1 - 255 (m ask) 
1 - 40 95 
1 - 256 
1 - 256 
1 - 26 0 
2 - 16 
1 - 16 
2 - 16 
1 - 15 



( 

( 

October 1976 

Purpose: 

Location: 

Al t. En try: 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

To determine if a word i s a possible misspelling of a 
another word. 

Resident System 

SPELCK 

Calling Sequences: 

Assembly: CALL SPELLCHK , (goodwd,testwd,goodl ,testl ) 

FORTRAN: i =SPELCK(goodwd,testwd,goodl,testl) 

Parameters: 

gQQg~g is the location of the word that is kncwn to 
be correctly spelled . 

!g§!~g is the location of the word that is to be 
compared against gQQg~g. 

gQQg! is the location of a fullword integer 
(IN TEGER*4 ) giving the l e ngth of ggQg~g. The 
length must be between 1 and 32 (inclu sive ). 

!g§!! is the location of a fullword intege. 
(INTEGER*4) giving the length of !g§!~g. The 
length must be between 1 and 32 (inclusi ve ) 
aLd must not differ from gggg! by mor e than 
1 • 

Values Returned: 

GRO contains the value 1 if !g§!~g is a Fossible 
misspelling of ggQg~g or the value -1 if !g§!~g and 
gQgg~g are identiGal; otherwise, GRO contains the 
value O. For FORTRAN calls, this value is returned 
as a f unc tion value in ! (! may be treated either as 
an INTEGER or LOGICAL value, of any length). 

Return Codes: 

o Successi ul return (GRO is set as above ). 
4 Error r e turn (error in gggg! or !g§!! parameters; 

GRO is set to 0). 

Description: This subro utin e uses a slight variation of t he sFelling 
correction algorithm presen ted by H. L. Morgan in " Spell 
ing Correction in Systems Programs," ~g~illlni£~!!9D §_9~_!bg 
!~!:!, Vol 13, No.2 (February 1970) .• 

SPELLCHK 413 



MTS 3 : SYSTEM SUBROUTINE DESCEIPTIONS 

414 SPEL LCHK 

October 19 76 

The a l gorit hm will detect spelli n g e rrors consisting of : 

(1) two letters transposed , 
( 2) one l e tter omitted, 
( 3) one letter inserted , or 
(4) one letter erroneous. 

If gQQ~~~ and !~~!~~ are i dentical , the subroutine will 
retu rn the val ue of 0 in GRO indicating that !~~!~~ is llQ! 
a mi sspelling of gQQ~~~. 



( 

( 

October 1976 

Purpose: 

Location: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

To specify the address of an interruption exit routine and 
to specify the program interrupt types that are to cause 
the exit routine to be given control l • 

*LIBRARY 

Calling Sequences: 

Assembly: LA 1 ,pica 
CALL SPIE 

Note: 

Parameters: 

This subroutine is normally 
using the SPIE macro. See the 
description in MTS Volume 14. 

called by 
SPIE macro 

2!£~ is the location of a 6-byte region containing 
the program interrupt control area. The first 
byte contains the PSW program mask bits that are 
to be enabled. These are given as: 

Bits 0-3: 
Bit 4: 

5: 
6 : 
7: 

Zero 
Fixed-point overflow 
Decimal overflow 
Exponent underflow 
Significance 

The next three bytes contain the address of the 
exit routine to be given control after a .rogram 
interrupt of the type specified in the interrup
tion mask. The last two bytes contain the 
interruption mask for the program interrupt 
types to cause control to be given to the exit 
routine. Each bit corresponds to a program 
exception type. These are: 

'Q§Ld~Q __ §Y§~~~ __ §YE~£Y!§Q£ __ §~£Y!£~§ __ ~Bg __ tl~£!Q ___ !B§~£Y£~!QB§, form 
GC28-6646. 

SPIE 4 15 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

Bit 0 : Zero 
1: Operation 
2: Privileged operation 
3: Execute 
4: Protection 
5: Addressing 
6: Specification 
7: Data 
8: Fixed-point overflow 
9: Fixed-point divide 

10: Decimal overflow 
11: Deci mal di vide 
12: Exponent overflow 
13: Exponent underflow 
14: Significance 
15: Floating-point divide 

If the user wishes to specify a type of program 
interrupt for which the in~erruption has been 
disabled , he must enable the interruption by 
setting the corresponding bit in the first byte 
of program mask bits . 

Note: A calIon SPIE with GR1 containing zero 
cancels the effect of the previous call. 

Value Returned: 

GR1 contains the address of 
there is no previous PICA from 
SPIE, a zero is returned . 

the previous PICA. 
a pre vious call 

If 
on 

Description: When a program begins execution, all program interrupts 
that can be disabled are disabled, and a standard program 
interrupt exit routine is provided. This program inter
rupt exit routine is given control when any program 
interruptions occur . By calling ~he SPIE (Set Program 
Interruption Exit) subroutine, the user can specify his 
own program interrupt exit routines to be given control 
when a particular type (s ) of program interrupti en occurs. 

416 SPIE 

After the SPIE subroutine nas been called by the user's 
program, his exit routine receives control for all inter
ruptions that have been specified by the interruption 
mask. For other interruptions, the normal program inter 
ruption exit routine is given control. Each succeeding 
call to the SPIE subroutine overrides the specifications 
given in the previous call. 

The SPIE subroutine records the location of the program 
interrupt centrol area (PICA ). The PICA contains the new 
program maSK for the interruption types that can be 
disabled , the address of the exit routine, and an inter-



( october 1976 

( 

( 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

ruption mask for the interrupt types to cause control to 
be given to the exit routine. A program that issues a 
call to SPIE must e ventually restore the PICA to the one 
that wa s effective when control was received. If there 
was no previous call to SPIE, restoring the PICA is 
eq uivalent to cancelling the current SPIE call and return
ing to normal ~nterrupt processing . When the SPIE s ubro u
tine is called, the s ubroutine returns the ad dress of the 
previous PICA ir, GR 1. If there was no previous PICA, then 
a zero is returned in GR1. 

With the first call to the SPIE subroutine , a 32-byte 
program interruption element ( PIE) is created in the 
s ubr outine. This program in terruption element is used 
each time a call is made to SPIE. The PIE contains the 
following information : 

Word 
Words 
Words 

1 : 
2-3 : 
4-8: 

Current PICA address . 
Old Program Status Word. 
GRs 14, 15, 0, 1, and 2. 

The PICA address in the PIE is the address of the PICA 
used in the last call to SPIE . When control is passed to 
the exi. routine indicated in the PICA , the old PSW 
contains the interruption code in bits 16-31; these bits 
can be tested to determine the cause of the Frogram 
interruption. The contents of GRs 14, 15, 0, 1, and 2 at 
the time of interruption are stored by SPIE in the PIE as 
indicated. When control is passed to the exit routine, 
the register co~tents are as follo ws : 

GR 0: Internal control informa ticn . 
GR 1 : Address of the PIE. 
GRs 2- 13: Sa me as when the program interrupt 

occurred. The exit routine must not use 
GR13 as a sa ve area pointer. 

GR 14 : Return address (to the SPIE subroutine). 
GR 15 : Address of the exit ro utine . 

The exit routine must return control to SPIE by using the 
address in GR14 . SPIE restores GRs 14, 15, 0, 1, and 2 
from the PIE after control is returned but does not 
restore the contents of GRS 3- 13. If a program interrupt 
occurs when the exit routine is in control, normal 
interruption processing occurs . 

SPIE 417 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIO NS 

Example: 

41 8 SPIE 

October 1976 

This e x ample specifies an exit routine call ed FIX UP t hat 
is to be given co ntrol i f a fixed - po in t o verflow occurs; 
The address returned in GR1 is stored in HOLD. This is 
zero for the first calIon SPIE . At the e nd of the 
program , the call second calIon SPIE disables the user 
program interrupt processing . 

LA 1,PICA 
CALL SPIE 
ST 1,HOLD 

L 1, HOLD 
CALL SPIE 

HOLD OS 
PICA DC 

DC 
DC 

F 
B'0000 1000' 
AL 3 (FI X UP) 
x '0 080 ' 

Prog r am mas k bit s 
Exit routine add r ess 
Interr uptio n mask 

The same e xample using the SPIE macro . 

SPIE FIXUP , (8) 
ST 1, HOLD 

L 5 ,HOLD 
SP IE MF= (E, (5» 

HOLD OS F 



( 

( 

( 

MTS 3: SYSTEM SUBROUTINE DESCRIP1IONS 

October 1976 

§f!!P!! 

SUBhOUTINE DESCRIPTION 

Purpose: To write an out~ut record on the logical 110 unit SPRINT. 

Location: Resident SysteDi 

Alt. Entry: SPRINT# 

Calling Sequences: 

Assembly: CALL SPRINT , (reg , len, mod, lnum) 

FORTRAN : CALL SPRINT (reg,len , mod , lnum,&rc4, ••• ) 

Parameters : 

gg 

:!&!l 

!!!Q<! 

i s the location of the virtual memory region 
from which data is to be transmitted. 
is the location of a halfword (INTEGER*2) inte
ger gi ving the number of ~y!g§ to be 
transmitted . 
is the location of a fullword of modifier bits 
used to control the action of the subroutine. 
If !!!Q<! is zero , no modifier bits are specified . 
See the " 110 Modifiers" description in this 
volume. 

!!l~!!! (optional) is the location of a fullword integer 
giving the internal representation of the line 
number that is to be written or has been written 
by the s ubroutine. The internal form of the 
line number is the e xternal form times 1000 , 
e.g ., the internal form of line 1 is 1000, and 
the internal form of line .001 is 1. 

££~L~~~ is the statement label to transfer to if the 
corresponding nonzero return code is 
e ncountered. 

Return Codes: 

o Successful return . 
4 Output device is full_ 

)4 See the "110 Subroutine Return Codes" description 
in this volume . 

Description: The subroutine writes a record of length !~!l (in bytes) 
from the region specified by £~g on the logical 110 uni t 
SPRINT . The parameter !!l~!!! is needed only if the !!!Q<! 
parameter or the FDname specifies either INDEXED or PEEL 

SPRINT 419 



MTS 3 : SYSTEM SUBROUTINE DESC~IPTIONS 

Examples: 

420 SPRINT 

October 1976 

(RETURNLINE#). If INDEXED is speci fied , the line number 
to be written is specified in !nym. If PEEL is specified , 
the line number of the record written is returned in !ny!. 

The default FDnam e for SPRINT is *SINK*. 

There is a macro SPRINT in the system macro litrary for 
generating the calling seq uence to this subroutine. See 
the macro description for SPRINT in fiTS Volume 14. 

The example below, given in assembly language and FORTRAN, 
calls SPRINT specifying an output region of SO byte s . No 
modifier specification is made in the subroutine call. 

Assembly : 

FORT RAN : 

REG 
MOD 
LEN 

CALL SPRINT , (REG,LEN, MOD) 

DS 
DC 
DC 

or 

CLSO 
P'O' 
H'SO' 

SPRINT REG Subr. call using macro 

INTEGER REG (20) ,LEN*2/S0/ 

CALL SPRINT (REG,LEN,O) 



r 

( 

I 

dTS 3: S~STEM SUBROUTINE DESCRIPTIONS 

October 1976 

~fl!!i£!! 

SUBROUTINE DESCRIPTION 

Purpose: To write an output record on the logical I/O unit SPUNCH . 

Location: Resident System 

Alt . Entry : SP UNCH # 

Calling Sequences : 

Assembly : CALL SPUNCH, (r e g,len , mod , lnum) 

FORTRAN: CALL SPUNCH (reg , len,mod , lnum,&rc4 , •• ,) 

Parameters : 

rgg is the location of the virtual memory region 
from which data is to be transmitted. 

~gg is the location of a halfword (INTEGER*2 ) 
ger gi ving the number of ~y~g§ 
transmi tted. 

inte
to be 

mQg is the location of a fullword of modifier bits 
used to control the action of the subroutine . 
If mgg is zero, nO modifier bits are specified . 
See the " I/O Modifiers" description in this 
volume . 

~n~m (optional) is the location of a fullword integer 
giving the internal representation of the line 
number that is to be written or has been written 
by the subroutine . The internal form of the 
line number is the external form times 1000 , 
e.g ., the internal form of line 1 is 1000, and 
the internal form of line . 00 1 is 1 . 

££!Li~& is the statement label to transfer to if the 
corresponding nonzero return code is 
encountered. 

Ret u rn Codes: 

o Successful return. 
4 Output device is full . 

>4 See the " I/O Subroutine Return Codes" description 
in this volume . 

Description : The subroutine writes a record of length 199 (in bytes) 
from the region specified by £gg on the logical I/O unit 
SPUNCH. The parameter ~g£m is needed only if the mQg 
paramete r or the FDname specifies either INDEXED or PEEL 

SPUNCH 42 1 



ctTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

Examples : 

422 SPU NCH 

(RETURNLINE#) • If INDEXED is 
number to be written is specified 
speci fied , the line number of 
returned in !UQill . 

October 19 76 

specified , then the line 
in lUQm. If PEEL is 

the record written is 

The defaul t FDname fo r SPUNCH is *PUN CH* (for batch mode 
only ) if a global 'card limit was specif i ed on t he $SI GNON 
command . There 1 S no defa ult for con versational mode or 
for batch mode if no global card li mi t was specif i ed . 

There is a macro SPUNCH in th e system macro li t rar y for 
generating the calling seq uence to th i s s ubroutine. See 
the macro description for SPUNCH in MTS Volume 14. 

The example below , gi ven in assembly langu age and FORTRAN , 
calls SPUNCH specifyi ng a n o utp u t region of 80 bytes . No 
modifier specification is made i n the subroutine call . 

Assembly: 

FORTRAN: 

REG 
MOD 
LEN 

CAL~ SPUNCH , (REG , LEN , MOD ) 

OS 
DC 
DC 

or 

CL80 
F l O' 
H' 80 ' 

SP UNC H REG Subr. ca l l usi ng macro 

IN TEGER REG (20 ) , LEN*2/80/ 

CALL SPUNCH (REG , LEN , O) 



( 

( 

( 

October 1976 

Purpose: 

Location: 

~TS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

2~~g~r 

SUBROUTINE DESCRIPTION 

To execute a program dyna mically loaded by the subroutine 
LOADF. 

Resident Sy stem 

Calling Sequence: 

FORTRAN: CALL STARTF (id,par 1,par2 , • . • ) 

parameters: 

!~ is the location of the full word integer storage 
index number of the program that was dynamically 
loaded by LOADF (the value returned by LOADF), 
or is the location of an 8-character entry point 
name, left-justified with trailing blanks. 

Q~£lLQ~£~L&&& (optional ) are the parameters to be 
passed to the program being executed . There may 
be any number of parameters passed, including 
none~ 

Values Returned: 

None. 

Description: STARTF is us ed t o execute a program l oaded by the 
subroutine LOADF. STARTF sho uld be used when e ver the 
calling program and the program being called are FORTRAN 
programs or programs which use the FORTRAN I/O library. 
This is necessary in order to provide the proper I/O 
en viron men t for both the called program and the ~alling 

program on r e turn. In providing this, the I/O library 
e nvironm ent is es t ablished in accordance with the Il merge ll 
bit . If the merge bit is 1, then both the calling and 
called programs us e the same I /O library environment; if 
the merge bit is 0, then the calling and called programs 
each us e a separate copy of the I/O librar y en vironm ent , 
th us performing relatively inde pendent I/O operaticns. 

If !~ i s a storage index number, the dynamically loaded 
program at that storage index number is invoked at the 
entry point determined by the loader . If!9 i s a symbol, 
and if the MTS global SYMTAB option is ON , the dynamically 
loaded program i s invoked at the location associated with 
that symbol in the loader symbol table. 

STARTF 423 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Example: 

42 4 STARTF 

October 1976 

INTEGER*4 PAR1/'ARG1'/,PAR 2/ 'ARG 2 ' / 
INTEGLR*4 INFO/ZeOOoooOO/,SWITCH/Z00000040/ 
ID; LOADF('FORTOBJ ',IN FO , SWITC H,O) 
CALL STARTF (ID, PAR 1, PAR2) 
CALL UNLDF (' FORTOBJ ',0,0) 

This e xample loads the program in the file FOR10BJ and 
exec utes it. The merge bit is set to 1 so that both 
programs use tne same I/O environm ent ~ 



( 

( 

( 

October 1976 

Purpose : 

Location: 

MTS 3: SYSTE~ SUBROUTINE DESCRIPTIONS 

§!Q1HiR 

SUBROUTINE DESCRIPTION 

To d um p a region of the user's 
standard format. For dumping 
mnemonics, and other options, 
description in this volume. 

Resident System 

virtual memory in the MTS 
registers , dumping with 

see the SDUMP subroutine 

Calling Sequences: 

Assembly: CALL STDDMP, (sw itch,outs ub,wkarea , first ,las~ 

Parameters: 

§~!!£h is the location of a full word of information. 
The first halfword of §~!!£h is taken as the 
storage index number that will be printed o ut 
in the heading line. The remainder of §~!!£h 
i s taken as a group of switches as fe llows: 

bit 20: (Integer value = 2048 ) NOLIS 
If set, the call will be ignored if 
LOADINFO declares that the region of 
storage is part of a library 
subroutine . 

28: (Integer value = 8) DOUBLE SPACE 
If this bit is set, the lines of the 
dump will be double spaced . Other
wise the normal single spacing will 
occur . 

Q~t§~Q is the location of a subroutine that will be 
called by STDDMP to " print " a line. This 
subroutine is ass um ed to hav e the same cal
ling seq uence as the SPRINT s ubroutine. 

~~~£~~ is t he l ocation of a 100-word (fu llword 
aligned ) region which STDDMP wi l l use as a 
wo rk area . 

t!£§! is the location of the first byte of a core 
regio n to be dumped. There are no boundary 
requirements for this address . 

~~§! is the location of the last byte of a core 
region to be dumped . There are no boundary 
requirements for this address ; however, an 
address in ~~§! which is l ess t han the 
address in t!£§1 will cause an er ror return. 

STDDMP 4 25 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Description: 

Example: 

426 STDDMP 

Return Codes: 

o Successful return. 
4 Illegal parameters. 

October 1976 

This subroutine 
subroutine SDUMP , 
ters as specified 

uses the same calling sequence as the 
but only looks at the bits and parame
above in the calling sequence. 

For each call, this subroutine "prints " (calls the output 
subroutine specified in Q~1§~Q) the following : 

(1) Blank line. 
(2) Heading giving information about the region of 

storage. The subroutine LOADINFO is called to 
obtain the information. 

(3) Blank line. 
(4) Dump of the region, with 20 (hex) bytes printed 

per line. TO the left of the hexadecimal dump is 
the actual hex location and the relative (to the 
first byte of the region) hex location of the 
first byte of the line; to the right of the dump 
is the s ame information printed as characters. 
Nonprinting characters (bi t combinations that do 
not match the standard 60 character set of print
ing graphics) are replaced by periods, and an 
asterisk (*) is placed at each end of the c harac
ter string to delimit it. The lines "printed " are 
133 characters long. 

Assembl y: EXTRN SPRINT 
CALL STDDMP ,( SW,SPRINT ,WK, FIRST,FIRST+3) 

WK OS 
SW DC 
FIRS:r DC 

500 
F'O' 
X' FU:i.F3F4' 

The above example will Cause STDDMP to print the hexadeci
mal string 'F1F2F3F4'. 



( 

( 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1 976 

SUBRO UTINE DESCRIPTION 

Pur pose : To t erminate exec ution s uccessfully . 

Location: Resident System 

Alt. Entry: SYSTEM# 

Calling Sequence : 

Assembly: CALL SYSTEM 

or 

SYSTEM 

FORTRAN: CALL SYS TEM 

Note: The com~lete descri~tion for using the SYSTEM 
macro is give n in MTS Volume 14. 

Description: This s ubroutine ret urns control to MTS to terminate 
execution. The comment " EXECUTION TERMINATED " is printed . 
Execution terminated in this manne r cannot te resumed by a 
$RESTART command. Calling this ~ubrouti ne is eguivalent 
to the program doing a Dormal ret urn (BR 14) from the call 
that started exec ution. 

All storage acquired for the execu t i ng prog ram a nd al l 
usages of f iles and devices by the program are released. 

SYSTEM 4 27 



WUSXS 8Zh 

9L6~ :raqo+"o 

SNOI~dIH~saa aNI~nOHgnS wa~sxs :, S~W 



( 

( 

( 

October 1976 

Purpose : 

Location: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

nf~H 

SUBROUTINE DESCRIPTION 

The FORTRAN interface to the 
subroutines . 

*LIBRARY 

I1TS timer interrupt 

Calling Sequence: 

FORTRAN: aexit=TICAL L (code , subr, value) 

CALL TICALL(code,subr,value,&rc4,&rcB) 

Parameters: 

is the location of a full word integer which 
specifies the meaning of the !2lgg parameter. 
The valid choices are 

o Y~lgg is an 8-byte integer which specifies 
a time interval in microseconds of task 
CPU time, relative to the time of the 
call. 

1 Y~lgg is an B-byte binary integer which 
specifies a time interval in micrcseconds 
of real time, relative to the time of the 
call. 

2 Y~lgg is an 8-byte binary integer which 
specifies a time interval in microseconds 
of task CPU time, relative to the time at 
signon . ' 

3 Y~lgg is an 8-byte binary integer which 
specifies a time interval in microseconds 
of real time, relative to the time at 

5 

signon. 
glgg is 
speci fies 
(13 1/48 

CPU time, 
call. 

a 4-byte binary 
a time interval in 

microseconds per 
relative to the 

integer which 
timer units 

unit) of task 
time of the 

value is a 16-byte EBCDIC string giving 
the-time and date at which the interrupt 
is to occur, in the form HH:MM,.SSI1M-DD-YY. 

is the location of the subroutine to be 
called wh en the interrupt occurs. It should 
be a s ub routine with no arg um ents , and s hould 
be declared EXTERNAL in the program which 

TICALL 429 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

H!l!g 

~gl£H 

October 1976 

calls TICALL. 
is the location of a 4-, 8-, or 16-byte 
full word-aligned region which specifies the 
time at which the interrupt is to occur, as 
determined by the £Qgg paramet e r. 
will be assigned the location of the exit 
regio~ used in calling SETIME and TIMNTRP. 
It is provided so that the user may subse
quently call the subroutines RSTIME or GETIME 
using 

CALL RSTIME (subr,value,aexit), or 
CALL GETIME(subr,value,aexit). 

It the interrupt ha s not been set up, because 
ot an undefined £Qgg parameter or too many 
interrupts set up, ~gl£~t will be assigned the 
value zero. 

££~L££§ is the statement label to transfer to if the 
corresponding nonzero return code is 
encountered. 

Return Codes: 

o Successful return 
4 Undef ine d £Qg~ parameter 
8 Too many interrupts set up. 

Descr iption: A timer int e rrupt is set up, to occur at the time 
specified by the £Qgg and Y~!l!g parameter. When the 
inte rrupt occurs , the s ubroutine ~l!Q£ will be called with 
no arguments . If ~l!Q£ returns, the program will be 
restarted at the pOint of the interrupt. 

Example: 

430 TICALL 

TrCALL may be called several times , up to a maximum of 100 
times. When ' an interrupt occurs, further interrupts set 
up by TICALL will be disabled until the subroutine §l!Q£ 
returns, at which time other interrupts will be reenabled 
if the return code is zero, and will remain disabled if 
the return code is nonzero. 

EXTERNAL TI MOUT 
INTEGER ONESEC (2 ) 10,10000001,REAL 111 

CALL TICALL (R EAL,TIMOUT,ONESEC) 

END 

SUBROUTINE TIMEOUT (*) 

(Process interrupt and reenable interrupts) 



( October 1976 

( 

( 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

RETURN 

(Disable interrupts) 

RETURN 1 

END 

This example calls TICALL to set up a 
occur after 1 second of real time from 
call to TICALL. When the interrupt is 
tine TIMEOUT w~ll be called. 

timer interrupt to 
the time of the 
taken , the subro u-

TICALL 431 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

432 TICALL 



( 

r 

October 1976 

Purpose: 

Location: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

To allo w the user easy access to the elapsed time, CPU 
time used , time of day , and the date in convenient unit s . 

Resident System 

Calling Sequences: 

Assembly : CALL TIME, (key , pr , res) 

FORTRAN: CALL TIME (key , pr,res) 

Parameters: 

~~y is the location of a fullword integer describing 
what quantities are desired from the s ubroutine. 
The available choices are ; 

° the CPU, elapsed , s uper visor , and Froblem 
state times are initialized (see belo w). 

1 the CPU time in milliseconds is returned in 
rg§· 

2 the e l apsed time in milliseconds is r et urned 
in £g§ .. 

3 the CPU time in milliseconds is placed in the 
first word of £~§ and the elapsed time in 
milliseconds is placed in the second word of 
£g§-

4 the time of day is ret urned as characters in 
the form " HH:MM:SS " where "HH:M" is placed in 
~he f irst wo rd of ,~§ and " M:SS " is placed in 
the second word of ,~§ . 

5 the date is returned as characters in the 
form "MMM DD , 1 911 " where " MMM " is placed in 
the first word of £~§ t ItDD , I I is placed in 
the seco nd word of ,~§ , and "1 91 1" is placed 
in the third word of res. If " DD" is less 
than 10 , the leading zero-is rep l aced by a 
blank. 

6 the time of day is placed in the first a nd 
second words of ,~§ (see ~~y=4 ) and tbe date 
is placed in the third, fo urth, and fifth 
words of £~§ (see ~~y=5). 

7 the super visor state CPU time in seconds 
multiplied by 300x256 is placed in £~§ . 

8 the problem state CPU time in seconds multi
plied by 300x256 is placed in ,~§ . 

TIME 433 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

43 4 TIME 

October 1976 

9 the s upervisor s tat e CPU time (see ~~y=7) is 
placed in the first word of r es and the 
problem state CPU time (see ~~y=8) -is placed 
in the second word of res. 

10 the date is returned--as characters in the 
form "MM-DD-YY", wh ere I' MM-D" i s placed in 
the f irst word of ,~§ and "D'YY" i s plac e d in 
the second word. 

11 the time of day is pla c ed in the first and 
seco nd words of I~§ (see ~~y= 4 a bove) and the 
date is placed in the third and fourth words 

" of I~§ (s ee ~~y= 10 above). 
12 i t he date i s pl aced in the first a nd sec o nd 

words of I~! (see ~~y= 10 a b o ve) and the tim e 
of day i s placed i n th e third and fourth 
words of I~! (see ~~y=4 above) . 

13 the current number of second s start ing with 
March 1. 1900. 00:00:01 as "1" is placed in 
I~! as a 32-bit un s ign ed integer . 

14 the current num be r of minutes st arting with 
March 1. 1 900 . 00:00:0 1 as "1" i s placed in 
r es . 

15 the CPU ti me in microseconds i s plac e d in the 
first and se c o nd words of I~I as a 64-bit 
irJt eger. 

16 the elapsed t ime in microseconds i s placed in 
the f irs t and sec ond words of I~§ as a 64-bit 
i nteger . 

17 the CPU time in microseconds (see ~~y= 1 5 ) is 
placed in the f ir s t and second words of I~I 
aud the elapsed time in microseconds (see 
~~y= 1 6 ) is placed in the third a nd fourth 
words of ,~!. 

18 the supervisor state CPU time in microseconds 
mu lt iplied by 4096 is placed in the first and 
second words of II! as a 64-bit integer_ 

19 the problem state CPU time in microseconds 
multiplied by 40 96 is placed in the first and 
second words of I~! as a 64-bit integer. 

20 the super visor s tate CPU time (see ~ly= 1 8 ) is 
placed in the first and secon d words of II! 
and t he pr o blem s t ate CPU time (see ~ly= 19) 
is placed in the t hird an d fourth words of 
r es .. 

2 1 the date is r e turned a s characters in the 
form "WWW MMM DD/YY "where "WWW ". the da y 
of the we e k. is plac ed in the first word of 
II! . "MMM" is placed in the second word of 
III . and " DD/YY "is placed in the third 
and f ourth word s of ,~!. 

22 the date (see ~ly=2 1) is placed in the 
f o ur words of II! and the tim e of day 
~~y= 4) i s placed in the fifth and sixth 

first 
(see 

words 



( Octob er 1976 

( 

( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

ot £lH'. 
23 the current number of microseconds starting 

with March 1, 1900, 00 : 00:00 . 000001 as "1" is 
placed in the first and second words of res 
as a 64-bit integer, the date in the form 
"MM-DD-YY" (see ~~y=10) is placed in the 
third and fourth words of £~~ , the date in 
the form "W WW MMM DD/YY "(see ~~y=21) loS 

placed in the fifth through eighth words of 
£~~, and the time of day in the form 
" HH : MM:SS" (see ~~y=4) is placed in the ninth 
aLd tenth words of £~~ . 

The CPU time and elapsed time are in millisec 
onds (~~y= 1, 2, and 3) or microseconds (Js~y= 1 5, 
16 , and 17) relati ve to a global arbitrary , past 
origin . The supervisor and problem state CPU 
times are in timer units relative to a global 
arbitrary, past origin . For Js~y= 7, 8 , and 9 , 
one timer unit is 1/(256*300 ) seconds or about 
13.0 microseconds. For ~~y = 18, 19 , and 20 , one 
timer unit is 1/4,096,000,000 seconds or about 
0.244 nanoseconds. Calling TIME with a Js~y= O 
resets these time origins locally to the time 
status at the call o n TIME. The se time origins 
are local to the program currently executing; 
they do not carryover to another separate 
program execution. TIME must be reinitialized 
when used with another program execution . 

If 1000 is added to the value of a key and the 
result is the current date or time of day 
(Js~y=4-6, 10-14, and 21- 23), the result is in 

Greenwich me an time (G MT) . If the result is not 
based on the c u rrent date and time , adding 1000 
to the value of the key will prod uce the same 
results as the original key value. 

E£ is the location of a fullword integer indicating 
whether the returned quantities are to be placed 
in £~§ or printed or both . The choices are: 

0 the values are :cet urned as described abo ve. 
<0 the values are returned and are also printed 

on logical I/O unit SPRINT. 
>0 the values are only printed on logical I/O 

Uf1it SPRINT and are not returned. Thus the 
£~§ argument is not needed. 

If E£ is 0 , the values are returned. 

£~§ is the location of a fullword integer variable 
or vector in which the results are placed . 

TIME 435 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Examples: 

436 TIME 

October 1976 

Values Ret urned: 

FRO contains the do ubleword , real value in seconds 
(k~y=1 - 3 , 7-9, 13, 15-20) or minutes (k~!= 14) if 
the returned value is numeric. 

FR 2 contains the doubleword , real , second value in 
seconds if a second returned value is numeric 
(ls~!=3, 9, 17, 20) . 

Return Codes: 

o Successful return. 
4 Error, us ually due to an improper value for ls~!. 

Index to lsg! Value s : 

CPU time 
Problem state time 
Superv1sor state time 

Dat e 
MM-DD-YY 
MMM DD, 19YY 
WWW MMM DD/YY 

Elapsed time 
Initialization 
March 1, 1900 base 
Time of day 

1,3,15,17 
8,9,19,20 
7,9,18,20 

10,11,12,23 
5 , 6 
21,22,23 
2 , 3, 16 ,17 
o 
13,14,23 
4,6,11,12,22,23 

Assembly: CALL TIME , (KEY, PR , RES ) 

KEY 
PR 
RES 

DC 
DC 
DS 

F ' 6 ' 
FtO I 

5F 

The time of day and date are stored in location RES. 

FORTRAN: CALL TIME (5,1) 

The date is print e d on logical I/O unit SPRINT . 

CALL TIllE (0) 

CALL TIME (2 , - 1, TIM ) 

The elapsed time since the calIon TIHE(O) i s printed on 
SPRINT and stored in location TIM. 



( 

( 

October 1976 

Purpose: 

Location: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

SUBEOUTINE DESCRIPTION 

To enable , disable, or ret urn from timer interrupts set by 
the SETIME subroutine . 

Resident System 

Calling Sequences: 

Assembly: LM O,1, =A(exit,region) 
CALL TIMNTRP 

Parameters: 

GRO should contain zero or the location 
routirle to transfer contro l to 
interrupt occurs . 

GR 1 should contain the location of a 

of the exit 
when a timer 

76-byte exit 
regiof! for storing pertinent information. 

Return Codes : 

None 

Description: A call on the TIMNTRP subroutine sets up an exit for one 
timer interrupt only. The calling sequence specifies the 
location of an exit routine to transfer control to when 
the next timer interrupt occ urs and an exit region for 
storing information . The timer interrupts themselves are 
set up by calls to the SETIME subroutine . 

TIMNTRP may be called several times with different exit 
regions and different exit routines specified . Each call 
on SETIME must also specify the exit region to be used 
when the interrupt occurs. This "subsetting " capability 
allows separate parts of large programs to use the timer 
interrupt facility independently. 

If GRO is zero, timer interrupt exits for the sFecified 
exit region are disabled. If , when a timer interrupt 
occurs , its exit is disabled, the interrupt will remain 
pending until the next calIon TIMNTRP which enables the 
exit , and the exit will be taken immediately following the 
call. 

When a timer interrupt exit is taken, the exit ' is 
disabled, so that further timer interrupts which specify 
this exit region will remain pending while the current one 

TIMNTRP 437 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

Example: 

438 TI MNTRP 

October 1976 

is bei ng processed. The exit is taken in the form of a 
subroutine call (BALR 14,15 wit h a GR13 sa ve area pro
vided ) • At th e time of th is call, GRl will point to the 
exi t region, whose contents will be 

Word 1: the identifier passed to SETIME when the 
interrupt was set up. 

Words 2-3: the PSW at the time of the interrupt. 
Words 4-1 9: GRO-GR15 (in that order) at the time of 

the interrupt. 

I f the exit routine returns to MT S (BR 14), the user 's 
program will be restarted at t he point of the interr upt . 
The exit will be reenab 1ed if the return code in GR15 is 
zero ; otherwise, the exit will remain disabled un til 
another ca ll on TIMNTRP. The registers must be restored 
in the standard fashion when the e xit routine r et urns . 

For f urther details, see also the GETIME, RSIIME, and 
SETIME subroutin e descriptions. 

Assembly: LM O,l,=A (EXIT, REG ) 
CAL L TIMNTRP 

SR 0,0 
LA 1,REG 
CAL L TI MNTRP 

critical section 

LM 0,1, =A (EXI T, REG ) 
CAL L TIMNTRP 

USING EXIT ,1 5 
EXIT ST M 14,1 2 ,1 2 (13) 

REG 

LM 
SR 
BR 
OS 

process interrupt 

14,1 2 ,1 2 (13) 
15 ,15 
14 
19F 

In this example , a ti mer interrupt e xit i s enabled, some 
computing is done , it is disa bled as the program enters a 
critical section , and it i s then reenab1ed. Ihe e xi t 
routine sa VeS the registers, processes the interrupt, 
restores the r~gisters, and returns, reenab1ing the exit . 



( 

( 

October 197 6 

Purpose: 

Location: 

Alt. Entry: 

ctTS 3: SYSTEM SUBROUTINE DE SCRIPTIONS 

!!i~!;£;E 

SUBRO UTIN E DESCRIPTION 

To provide con versational error processing for error 
conditions detected by the elementary function subroutines 
such as SQRT and EXP , and to provide program a nd attention 
interrupt processing . 

Resident System 

TRACER# 

Calling Sequences : (t o invoke error processing) 

Assembly: CALL TRACER , (msg) 

FORTRAN: CALL TRACER (msg ) 

Parameters: 

m§g is the location of a message given eit her as a 
half word length follo wed by the text of the 
message, or as a delimited string, i.e., if the 
first byte of the parameter is a graphic charac 
ter, the message is taken to consist of all 
characters following this character, up to, but 
not including , the next OCcurrence of this same 
character, e. g., 'IA MESSAGE/'. 

Calling Sequences: (to enable interrupt processing) 

Assembly: CALL TR ACER, (-1 ,msk,ima) 

FORTRAN: CALL TRACER(-1,msk,ima) 

Parameters: 

m§~ (optiona l) is the location of a fullword integer 
interrupt mask specifyi ng the type of processing 
which is desired for attention interrupts and 
each of the fifteen program interrupts . With 
the usual left to right numbering, bits 0 and 1 
control attention interrupt processing, and bits 
2*n and 2*n+1 control the processing of program 
interr upt n, n=1, ••• ,15 . These two bit masks 
function as follows: 

00 0 Standard system processing 
01 1 Unused, same as 00 

TRACER 43 9 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

10 ~ 
11 3 

Comment and resume processing 
Standard TRACER processing 

October 19 76 

If thi s arg um ent is omitted, the valu e of 
X' FFFI3FF3 ' is used . 

!!~ (o ptional ) is t he location of a character s tring 
to pro vide a n alternative set of messages to be 
displayed when an interrupt occ urs . The first 
characte r of the stri ng i s used as a delimiter 
to separate the set of s ixtee n messages. The 
d elimiter c haracter is arbitrar y. The first 
delimited string corresponds t o the attention 
interr upt message, while the nth delimited 
string corresponds to program interrupt n-1. 
The final delimited string must be terminated by 
the delimiter character , e-9- , 

/ATTN/ 1/2/3/4/S/6/7/8/9/10/ 11 / 12/ 13/ 14/1 S/ 

Return Codes: 

None. 

Description: The TRACER program is built aro und a traceback faci lity, 
and is capable of s upplyin g informat ion on the cur rent 
program status and of resuming e xecut i on a t any e ntry or 
ret urn point in the e xisting linkage chain. The trace 
facility ass umes the standard OS (I) S-t'Jpe ca lling 
conve nti on and t h at each program has sa ve d appropriately 
all of the general registers. Commands for displaying and 
altering floating-point , integer, character , and hexadeci
mal data are a vai l able. 

440 TRACER 

When call ed , TRACER attempts to ascertain pertinent infor
mation concerning i ts calling program , e.g ., name and 
arguments . Proceeding backwards via the save area chain , 
it then attempts to disco ver the same information about 
the program which called TRACER's caller, etc. Under most 
circumstances , the traceback wil l terminate wh en TRACER 
locates the information associated with the invocation of 
the main program by the system . 

For exampl e , s uppose MA IN calls a s ubro utine named SUB , 
which ca ll s a ~unction named FCN, which happens to call 
SQRT wi th an argument o 'f - 1. TRACER wi ll generally be 
ab l e to discover: 

(1 ) 

( 2 ) 

( 3) 

The names of the programs 
i.e., TRACER SQRT FCN SUB 
the current values of 
between each program , 
the stat us of the general 
call occurred, and 

in the linkage chain, 
MAl N =SYSTE M 
the arguments passed 

registers when each 



( October 1976 

( 

( 

~TS 3 : SYSTEM SUBRO UTIN E DESCRIPTIONS 

(4) the current 
registers. 

stat us of the floating - point 

The logical I/O unit GUSER is used as the so urce for 
TRACER commands. Two prompting characters are us ed : "." 
is used to request the next command when t he previous 
command was successf ully eX'ecuted, and II ?" is used to 
request the next command wh en the previous comman d could 
not be executed. 

The logical I/O unit SERCOM is used for all outp ut from 
TRACER. For batch users , the commands read from GUSER are 
echoed on SERCOM. Carriage control is always off and all 
output line s contai n at most 71 characters. 

The fol l o wi ng paragraphs give a brief s ummary of the 
TRACER command language facility. 

The TRACE command may be used to obtain information 
concerning the current linkage chain.. The names of 
these programs may be obtained by " TRACEIDN "; the save 
area, parameter list , and entry point addresses by 
"TRACEIDA"; and , the caller and arguments by 
" TRACEIDP" . Since mode information for arguments is 
not available, the first eight bytes at each argument 
address are displayed in hex. 

The CALL and RETURN commands may be used to resume 
execution . For e xample, " CALL SUB " would cause 
execution to resume in the program SUB as if it had 
just been called by MAIN; while, " RETURN SUB" would 
cause execution to resume in MAIN immediately after 
the point SUB was called. 

The DISPLAY and ALTER commands may be used like the 
corresponding system commands , e.g ., II DIS 500260 11 , 
"DIS FR4". Since there is a set of general registers 
for each ~rogram in the linkage chain , the usual 
general register designators sho uld be q ualified , 
e . g. , " DIS MAIN GRS" refers to general register 5 at 
the t ime MAIN called SUB . The "DIS GRS" command 
displays the general registers for each program in 
the linkage chain. A relocation factor facility is 
available, but is generally set automatically, and is 
applied only to addresses below 100 000. For e xample, 
"DISIDI MAIN+EC (S)" sets the relocation factor to 
MAIN , and displays the S-th element of the integer 
vector assigned to relative location EC in MAIN. 
Arguments to the s ub ro utin es in the linkage chain are 
referenced by their relati ve position in the parame
ter list, e . g. , " DISIDE SU8 (1)" interprets the first 
arg ument to S UB as a REAL*4 variable; " DISIDD3 SUB (3)" 
displays the first three elements of the REAL*8 

TRACER 441 



MTS 3: SYSTEM SUBROUTINE DESC~IPTIONS 

442 TRACER 

vector passed 
area is not 
but rather by 

October 1976 

as the third argument . Note that an 
displayed by using the ellipsis " .•• ", 

giving the number of elements desired. 

The CONTINUE and TRAP commands are associated ~ith 
the interrupt processing facility . For example , 
" TRAP FPUN = O" wo uld cause subsequent floating-point 
und erflows to be ignored. Note that if TRACER had 
never been called to request control of interrupts, 
this would automatically occur wh en the TRAP command 
is given . The CO NTINUE command causes e xec uticn to 
resume with the instruction following the one that 
produced the interrupt. 

Although TRACER was designed primarily as a conversational 
program , it contains many facilities of use in batch mode. 

For a complete description of TRACER, see Computing Center 
Memo 2 18 . 



( 

( 

October 197 6 

Purpose : 

Location: 

MTS 3 : SYSTEM SUBRO UTIN E DE SCRI PTION S 

!!ll!!if 

SUBROUTINE DESCRIPTION 

To deallocate unu sed space at the end of a file previously 
allocated to t he file . 

Resident System 

Calling Seque nce : 

Examples: 

Assemb ly: CALL TRUNC , (uni t ) 

FORTRAN: CALL IRUNC (unit,Src4,Src8.Src12 , Src 16,Src20 ) 

Parameters : 

~~!! i s the l ocation of either 
(a) a fullword-integer FOUB-pointer (as 

ret urned by GETFD), 
(b ) a full word-integer logical I /O unit num

ber (0 throug h 19), or 
(c ) a l eft - j ustified 8-characte r logical I/O 

unit name (e . g. , SCAR OS). 
££~~~~£££Q are statemen t labels to transfer to if the 

corresponding return codes occ ur~ 

Return Codes; 

No t e : 

o The file has been truncated successful l y. 
4 The file does not ex i st. 
S Hardwar e error or soft war e incons i stenc y 

encountered. 
12 Trunca t e (or wri te-ext end) acc ess not allowed . 
1 6 Locking the file for modificat i on will result in a 

deadlock. 
20 An a tten ti on interrupt has canceled the automatic 

wait OL the file (waiting c a used by concurrent 
usage of the (shared) file). 

This s ub ro utine does ~Q! optimize or compress line 
files. It s im ply checKs to see if any space at the 
e nd of the file has not bee n use d and, if so , 
deallocar.es it . 

Assembly: CALL TRUN C, (UNI T) 

UN IT DC F ' S ' 

TRUNC 443 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIO NS 

444 TRUNC 

FORTR AN: INTEGER* 4 UNI T 
DATA UNIT/5/ 

CALL TRUNC (UNIT) 

October 1976 

The a bo ve examples will truncate the file attached to 
logical I/O unit 5 . 



( 

( 

( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

SUBROUTINE DESCRIPTION 

Purpose: To wait, for a specified real time interval , and return . 

Location : *LIBRARY 

Calling Sequences : 

Assembly: CALL TWAIT, (code,value) 

FORTRAN: CALL TWAIT (code, value) 

Parameters: 

Return Codes: 

is the location of a fullword integer which 
specifies the meaning of the y~~y~ parameter . 
The valid choices are 

o y~~yg is an 8-byte binary integer which 
specifies a time inter val in microseconds , 
relative to the time of the call . 

1 y~~yg is an 8-byte binary integer which 
specifies a time inte rval in microseconds , 
relative to midnight, March 1 , 1900. 

2 y~~yg is a 16-byte EBCDIC string giving 
the time and date at which the wait should 
end, in the form HH : MM.SSMMcDD-YY . 

is the 8- or 16-byte, fullword-aligned region 
which specifies the time at which the wait 
should end , as determined by the £Qg~ 
parameter. 

o Successful return 
4 In valid £Qg~ parameter 

Description: The TWAIT subroutine puts the task into wait state until 
the time interval specified by the £Qg~ and y~~y~ parame
ters has elapsed , and then returns. 

Example: FORTRAN : INTEGER TENSEC (2) /0 ,1 0000000/ 
INTEGER TW030(4 ) /'02:3 ','O. 00 ','05-1',' O-72 ' / . 

CALL TWAIT (O, TENSEC) 
CALL TWAIT(2,TW030) 

TWAIT 445 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

446 TWAIT 

October 1976 

This example calls TWAIT twice, the first time sFecifying 
that a pause of 10 seconds relative to the time of the 
calIon TWAIT ~s to occur, the second time specifying that 
a pause is to occur which will last until 2:30 am on May 
10, 19 72. 



( 

( 

( 

Octob er 1976 

Purpose: 

Location: 

Alt. Entry: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

l!!ig 

SUBROUTINE DESCRIPTION 

To request that a file be unlocked , i.e., to dynamically 
allow access to a file (allow it to be shared by ethers) 
which has previously been restricted by locking (either 
explicitly or implicitly). 

Resident System 

UNLCK 

Calling Sequence: 

Parameters: 

Assembly: CALL UNLK, (unit) 

FORTRAN: CALL UNLK(unit,&rc4) 

is the location of eit her 
(a) a fu l lword -in teger FDUB-pointer (as 

returned by GETFD), 
(b) a fullword-integer logical I/O unit num

ber (0 thro ugh 19), or 
(c) a left-justified a-c harac t er logical I/O 

unit name (e .g., SCARDS ) used to lock the 
file (either expli citly in a call to LOCK 
or implicitly in a call to WRIT E, for 
example) . 

is the statement label to transfer to if the 
corresponding return code OCcurS~ 

Return Codes: 

Note: 

o The file 
4 Illegal 

error or 

has been unlocked s uccessfully. 
Yn!! parameter specified , or 
software inconsistency. 

hardware 

If more than 
request on the 
is left locke d 
reguest. 

one FDUB ~!!h!n a job ha s a locking 
file, after the call to UNLK, the file 
at the level of the highest remaining 

Description : See Appendix D of the secti on "Files and Devices" in MTS 
Volume 1 for details concerning concurrent use of shared 
fi les. 

UNLK 447 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

Examples : 

448 UNLK 

Assembly: 

FORTRAN: 

CALL UNLK, (UNIT) 

UNIT DC F'6' 

INTEGER* 4 UNIT 
DATA UNIT/6/ 

CA LL UNLK (UNI T) 

October 1976 

The above examples will unlock the file attached to 
logical I/O unit 6 ass uming the file has previously been 
locked (e . g ., by a call to the LOCK subroutine ). 



( 

( 

( 

October 1976 

Purpose: 

Location: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

gM1Q!QL_gM1QK 

SUBROUTINE DESCRIPTION 

To UNLOAD what was loaded on some previous call to the 
LOAD subroutine. 

Resident System 

Calling Sequences: 

Assembly: CALL UNLOAD, (name,sinbr,sws) 

FORTRAN: CALL UNLDF (name , sinbr,sws,&rc4) 

Parameters: 

is either the location of the " name" (speci
fied by §~§) or zero. 
is either the location of the full word 
(INTEGER*4) storage index number or zero. 
This parameter is referenced only if n£illg is 
zero . 
is the location of a full word switch: 

a n£illg is the FDname from which the material 
was LOADed. 

1 n£illg is an 8 - character, left-justified, 
external symbol. 

2 n£illg is a fullwvrd virtual memory lccation 
(the SYMTAB option must be ON). 

££~ is the statement label to transfer to if a 
nonzero return code is encountered . 

Return Codes: 

a Successful return. 
4 The subroutine could not find the name in the LOAD 

table , or sws is nonzero and SYMTAB is OFF, or the 
external symbol or virtual memory address could 
not be found in the loader tables . 

Description: Each time the LOAD subroutine is called, a new ~torage 
index number is assigned for use with storage acquired in 
order to load the material in the file specified for that 
LOAD call . In order to unload the material, either the 
storage index number or the name of the file LOADed from 
may be given . In addition , if the global switch SYMTAB is 
ON , the name of an external symbol or a virtual memory 

UNLOAD, UNIDF 449 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Exa mp.les: 

October ' 976 

location in the material loaded may be specified. In any 
case, ~!! of the material loaded on that calIon LOAD is 
unloaded. See the " Virtual Memory Management" secticn in 
MTS Volume 5 for a further description of using storage 
index numbers with the LOAD and UNLOAD s ubr outines . 

FORTRAN : CALL UNLDF('PROGALE ',0,', &99) 

Th i s example calls UNLDF to find the storage 
associated with the external symbol PROGALE. 
with that storage index number is unlo aded . 

CALL UNLDF(BUFLOC,O,2,&9) 

index number 
All storage 

This example calls UNLDF 
associated with the virtual 
BUFLOC . All storage with 
unloaded. 

to find the storage index 
memory address in location 
that storage index number is 

Assembl y: CALL UNLOAD , (O, SIN , O) 

SIN DS F 

This exa mple cal l s UNLOAD to unload all storage wi th t he 
storage index number in location SIN. 

450 UNLOAD , UNLDF 



( 

( 

October 1976 

purpose: 

Location: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

l!H'!!Q 

SUBROUTINE DESCRIPTION 

To compute uniformly distributed real random numbers 
between a and 1.0. 

*LIBRARY 

Calling Seq uences: 

Assembly: CALL URAND, (ini t ) 

FORTRAN: x = URAND(init) 

Parameters: 

!ll!! is the location of a n (op tional ) initial integer 
val ue. 

Values Retuned : 

FRO will contain 
number generated 
users, this value 

the 
by 

will 

uniformly distributed 
the subroutine . For 
be returned in !. 

random 
FORTRAN 

Description: If !ll!! contains a nonze ro odd integer betw een 1 and 231 - 1 
(2147483647), then a new integer random number will be 
generated using the formula 

!llH= (6 5539*!llH) (mod 2 31 - 1). 

The corresponding real random number 
a function value for FORTRAN or 
language users. 

! will be returned as 
in FRO for ass e mbly 

If init contains zero, the 
be supplied by the routine 
of day. The new integer 
will be stored in !ll!!. 
permissibl e . 

next inte ger random number will 
and will depend upon the time 
random number that is generated 

Thus, X = URAND (0) is llQ! 

If the same sequence of random numbers is required on 
successiv e run s , the user must supply the same initial 
va lue ot !llH. 

URAND 451 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

Examples: 

452 URAND 

Assembly: CALL UR AND , (INT EG ) 
STE O,RAND 

IN TEG DC 
RAND DS 

F ' 999 ' 
E 

FORTRAN: 1=999 
X=URAND (I ) 

October 197 6 

In both examples a b ove , URAND is called with t he i nitial 
valu e of 999. 



( 

( 

( 

October 1976 

Purpose : 

Location : 

Alt. Entry: 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

!!!l.ng 

SUBROUTINE DESCRIPTION 

To write an output record on a specified logical I/O unit. 

Resident System 

WRITE# 

Calling Sequences : 

Assembly : CALL WRITE, (reg,len,mod,lnum,unit ) 

FORTRAN: CALL WRITE (reg,len , mod , lnum,unit,&rc 4 , • •• ) 

PL/I: See the IHERITE subroutine description. 

Parameters : 

£~g is the location of the virtual memory region 
from which data is to be transmitted. 

~~n is the location of a halfword (INTEGER* 2) inte
ger giving the number of gy!~§ to be 
transmitted . 

!Qg is the location of a full word of modifier bits 
used to control the action of the subroutine. 
If mod is zero , no modifier bits are specified. 
See the "I/O Modifiers " description in this 
volume . 

~n~! is the location of a f ullword i n teger gi ving the 
internal representation of the line number that 
is to be written or has been written by the 
subroutine . The internal form of the line 
numb e r is the external form times 1000, e . g., 
the internal form of line 1 is 1000, and t~e 
internal form of line .001 is 1 . 

~n!! is the location of either 
(a ) a fullword-integer FDUB-pointer (s uch as 

returned by GETFD ) , 
(b) a full word-integer logical I/O unit number 

(0 through 1 9) , or 
(c) a left - justified B-character logical I/O 

unit name (e. g., SCARDS) . 
££~L~~~ is the statement label to transfer to if the 

corresponding nonzero return code is 
encountered . 

WRITE 45 3 



ctTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

Return Codes : 

o Successful return . 
4 Output device is full. 

>4 See the " I/O Subroutine Return Codes " description 
in this volume. 

Description : The subroutine writes a record on the logical I/O unit 
specified by glli~ of length !~ll (in bytes) from the region 
specified by £~g . The parameter !llg~ is used on l y if the 
mQg parameter or the FDname specifies either INDEXED or 
PEEL (RETURNLINE. ) . If INDEXED is specified , the line 
number to be written is specified in !ngm. If PEEL is 
specified, the line number of the record written is 
returned in lu~m. 

Examples: 

454 WRITE 

There are no detault FDnames for WRITE. 

There is a macro WRITE in the system macro library for 
generating the calling sequence to this subroutine. See 
the macro description for WRITE in MTS Volume 14. 

The example below, given in assembly language and FORTRAN , 
calls WRITE specifying an output region of SO bytes . The 
logical I/O unit specified is 6 and no modifier specifica
tion is made in the subroutine call . 

Assembly : 

REG 
MOD 
LNUM 
LEN 
UNIT 

FORTRAN: 

CALL WRITE , (REG,LEN,rJOD , LNUM , UNIT ) 

DS CLSO 
DC F ' O t 
DS F 
DC H' SO ' 
DC F ' 6 ' 

or 

WRITE 6,REG Subr . 

INTEGER*2 LEN/SO/ 
INTEGER REG (20 ) ,LNUM 

call using macro. 

CALL WRITE (REG,LEN , O, LNUM , 6) 

The example below , given in assembly language and FORTRAN , 
sets up a call to WRITE specifying that the outp u t will be 
written into the file FYLE. 



( October 1976 

( 

( 

Assembly: 

FORTRAN: 

REG 
LEN 
MOD 
LNUM 
UNIT 

30 

MT S 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

LA 
CALL 
ST 

1, =C 'FYLE 1 

GETFD 
O, UNIT 

CALL WRITE, (REG,LEN,MOD,LNUM,UNI T) 

DS 
DS 
DC 
DS 
DS 

20 
H 
FlO I 

F 
F 

EXTERNAL GETFD 
INTEGER*4 ADROF,UNIT 
CALL RCALL (GETFD,2,0~ADROF('FYLE ') ,1,UNIT) 

CALL WRITE(REG,LEN,0,LNUM,UNIT,&30) 

WRITE 455 



9L6~ J:aqo:po 

SNOIldIaJSaa aNIlnOaanS ~alSXS :€ SlW 



( 

( 

( 

October 1976 . 

Purpose: 

Location: 

AlL Entry: 

NTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

To write out all changed file buffers. 

Resident System 

WRITBF 

Calling Sequences: 

Assembly: CALL WRITEBUF, (unit) 

FORTRAN: CALL WRITBF(unit,&rc4) 

Parameters: 

Yn~! is the location of either 
(a) a fullword'integer FDUB-pointer (such as 

returned by GETFD), 
(b) a fullword'integer logical 110 unit number 

(0 through 19), or 
(c) a left-justified, 8-character logical 110 

unit name (e.g., SCARDS). 
££~ is the statement label to transfer to if the 

corresponding return code occurs . 

Return Codes: 

o Successful return. 
4 Illegal Yn~~ parameter specified, or hardware 

error or software inconsistency encountered . 

Description: A call on this subroutine causes all changed lines in the 
file buffers to be written to the file , thus making the 
file on the disk an up-to-date copy . 

Examples: 

This s ub routine does nQ~ release the file buffers and does 
not close the file; i.e., it is not necessary to open the 
file again (read the catalog, etc.) on subsequent 110 
operations. 

Assembly: CALL WRITEBUF, (UNIT) 

UNIT DC CL8'SPRINT' 

WRITEEUF 457 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

458 WRITEBUF 

October 1976 

FORTRAN: CALL WRITBF(ISPRINT I) 

The above examples cause WRITEBUF to update the disk copy 
of the file attached to the logical 1/0 unit SPRINT. 



( 

( 

( 

MTS 3 : SYSTEn SUBROUTINE DESCRIPTIONS 

October 1976 

SUBROUTINE DESCRIPTION 

Purpose : To effect the dynamic loadi ng and execution of a program . 

Location: Resident System 

Calli ng Seq uences : 

Assembly : CALL XCTL , (input , i n fo , parlist , errexit,outFut, 
Isw , gtsp,frsp,pnt ) 

FORTRAN: CALL XCTLF (1nput,info,parlist,errexit , output , 
Isw , gtsp,frsp , pnt) 

Parameters : 

is the location of an 
used during loading 
An input specifier 
follo wing: 

input specifier to be 
to read loader records. 
may be one of the 

(1) a n FDname terminated by a bla nk. 
( 2) a FDUB- pointer (as returned by GETFD ) . 
( 3 ) an 8-character logical IIO un it name, 

left-justified with trailing blanks. In 
this case, bit 8 in bBtQ must be 1. 

( 4 ) a fullword-integer logical IIO unit num
ber (0-19 ) . 

(5) the address of an inFut s ubrout i ne to be 
called d uring loading via a READ s u brou
tine calling seq uence to read loader 
records (i. e . , the input subroutine is 
called with a Farameter list identical 
to the system subro u tine READ ). In this 
case , bit 9 in bBlQ must be 1. 

is the location of an optional information 
vector. No information is passed if in1Q is 
o or if bBtQ is the locacion of a fullword 
iDteger O. The format of the information 
vector is as follows : 

(1) a halfword of XCTL control bits defined as 
fol l ows : 

b i t 0 : 

bit 1: 

1, if ~££~~il parameter 
specified. 

1, if Q~lR~l is specified. 

is 

XCTL, XCTlF 459 



MTS 3 : SYSTEM SUBRO UTIN E DESCRIPTIONS 

460 XCTL , XCTLF 

October 1976 

bit 2 : 1 , if l§~ is specified. 
bit 3 : 1 , if gt§E i s s pec ified. 
bit 4 : 1 , if f£§E is specified. 
bit 5 : 1 , if Eut is s pecified. 
bit 6: 0 
bit 7: 1 , to request XCTL t o res tore 

t he registers of the pre-
vious link l e vel before 
transfer ring control to the 
s pecifi e d program. 

0, it the caller has r es tored 
them . 

bit 8 : 1, if ~gEH1 is the loca tion of 
a l ogical I/O unit name. 

bit 9 : 1 , if ~nEH1 i s the l ocation of 
an inpu t subroutine address. 

bit 10: 1, if QH1Eg1 i s the location of 
a logical I / O unit name. 

bit 11 : 1 , if QHtEHt is the location of 
a n output subroutine 
a ddress. 

bit 12 : 1, if the program to te loaded 
i s to be merg ed with the 
program pr e viously loaded. 

bit 13: 1 , to s upp ress prompting at a 
terminal . 

bit 14 : 1 , to force allocation of a ne w 
loader s ymbol tab l e . 

bit 15 : 0 

( 2) a hal f word co un t of the numb e r of 
entri es in the follo wing initial ESD 
list. 

(3 ) a variable -l e ngth i nitial ESD list , eac h 
e ntr y of which consists of a full word
a li gned 8-character symbol follo we d by a 
f ullw ord val ue . 

E~£l~§t i s the location of 
passe d in GR1 to th e 
ferred to. 

a parameter list to be 
program being trans-

~££~~~1 (optional ) is the location cf an error-exit 
s ubr o utin e address to be called if an error 
occ urs whi le attempting to transfe r to the 
specified program . If bit ° of ~nfQ is 0 
(the defaul t ), the §££~~~t parameter is 
ignored and an e rror r et urn i s mad e t o Mrs 
command mode . rhe e xit ro utine wil l be 
called via a standard S- type calling sequence 
wi t h two para mete r s defined as follows: 



( October 1976 

( 

( 

HTS 3: SYSTE~ SUBROUTINE DESCRIPTIONS 

p1: the location of a fullword integer error 
code defin e d as follows: 

0: attempt to load a null program. 
4: fata l loading error ( bad object 

prog ram) • 
8: undefined symbols referenced by the 

loaded program. 

PL : the location of a full word containing 
the loader sta tus word. 

If the exit ro utin e returns, XCTL will return 
to MTS without releasing program storage 
(i. e ., as if the error exit had not been 
taken). 

Q~12~1 (o ptional ) is the location of an output 
specifier to be used during l oading to pro
duce loader output (error messages, map, 
etc. ). If bit 1 of !~~Q is 0 (th e default), 
the Q~i2~i parameter is ignored and all 
loader output is written on the MAP=FOname 
specified on the initial $RUN command. An 
output specifier may be one of the following: 

(1) an FDname terminated by a blank. 
( L ) a FOUB-pointer (as returned by G·ETFO). 
(3 ) an a-character logical 110 unit name, 

left-justified with trailing blanks. In 
this case, bit 10 of iEfQ must be 1. 

(4) a fullword-integer logical 110 unit num
ber (0-19). 

(5) the address of an output subro utin e to 
be called during loading via the SPRINT 
s ubroutine calling seq uence tc write 
loader output (i . e ., the output s ubrou
tine is called with a parameter list 
identical to the system subroutine 
SPRINT). In this case, bit 11 of infQ 
must be 1. 

1~~ (optional) is the location of a fullword of 
loader control bits. If bit 2 of infQ i s 0 
(the default), the !~~ parameter is ignored 
and the global MTS settings are used_ The 
loader control bits are defined as fellows: 

bits 0-23: 0 
bit 24: 1, to s uppress the pseudo-register 

map. 
bl.t 25 : 1, to suppress the predefined symbol 

map. 

XCTL , XCTLF 461 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

g~§E 

f£§E 

E!L!' 

b~t 26: 
bit 27: 

bit 28: 

bit 29: 

bit 30 : 
bit 3 1: 

October 1976 

1, to print undefined symbo l s. 
1, to print references to undefined 

symbols . 
1, to print references to all exter 

nal sy mbols. 
1, to print dotted lines arcund the 

loader map. 
1, to print a map. 
1, to print nonfatal error messages. 

(o ptional) is the location of a storage 
allocation subroutine to be called during 
loading via a GETSPACE calling sequence to 
allocate loader work space and program 
storage . If bit 3 of ~B1g is zero (the 
default), GETSPACE is used. 

(optiona l) i s the location of a storage 
deal location subroutine to be called during 
loading vi a a FREES PAC calling sequence to 
release loader work space . If bit 4 of ~BIQ 
is 0 (the default), FREESPAC is used. 

(optional) is the location of a direct access 
s ubroutine to 
POIN T calling 
libraries in 
~llIQ is 0 (th e 

be called during loading via a 
sequence while processing 

seq ue ntial files. If bit 5 of 
default), POINT is used. 

Values Ret urn ed : 

None. 

Description: XCTL provides a method for dynamically loading and execut
ing programs in an o verlay fashion. XCTL provides this 
facility as follows: 

(1) XCTL makes a copy of al l its parameter values and 
releases al l storage associated with the current 
link level. 

(2) The loader is called to dynamically load the 
specified program using ~llEY!, ~!11Q, 9Y!EY!, l§~, 
g!§E, f£§E, and Ell! if specified . 

(3) The dynamically loaded program i s call ed with the 
address of Ea£l~§! in GR1. 

(4) If the dynamical ly loaded program returns to XCTL, 
it is unl oaded. 

(5) XCTL returns to the program which initiated the 
current link level, preserving the return regis
ters of the dynamically executed program. 

Note that XCTL accepts a variable-length parameter list of 
t hree to eight arguments. For most applications , only the 

462 XCTL, XCTLF 



October 1976 

( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

first three are required. These parameters passed to XCTL 
may be part of the current link level to be released , 
since XCTL makes copies of them . However, the parameter 
list and parame~ers passed to the program XCTLed to, as 
well as the optional subroutines specified by inEY!, 
£Y!EY!, g££g!i! , g!§E , t£§E , and En! may nQ! be part of 
the current link level since it is released before the 
program transferred to , is loaded and exec uted . 

Note that by default it is the user ' s responsibility to 
restore the registers of the previous link level before 
calling XCTL. since this is possible i n general only at 
the assembly language level , calls to XCTL from highe r
level languages (e. g., FORTRAN, PL/I , etc .) must have bit 
7 in intQ set to 1. 

FORTRAN programs (or programs that use the FORTRAN I/O 
library ) that dynamical ly load other FORTRAN programs (or 
programs using the FORTRAN I/O library ) should use the 
alternate entry point XCTLF . XCTLF is required to Frovide 
the dynamically loaded program with a FORTRAN I/O environ
ment consistent with the Ilmerge'l bit specified in !£!Q_ 
If the merge bit is 1, the dynamically loaded program will 
have the same I/O e nvironment as the calling program . If 
the merge bit is 0 , the dynamically l oaded program will 
have a separate , reinitialized I/O environment . Both 
FORTRAN main programs and subroutines can be dynamically 
loaded using XCTLF. However, the effect of exec uting a 
STOP statement from a dynamically loaded subroutin e will 
depend on the set~ing of the merge bit . If the merge bit 
is 1, a returL is made to the program which link ed to the 
calling program; if the merge bit is 0, a return is made 
to MTS. 

Because the rate struct ur e for use of MTS includes a 
charge for allocated vir t ual memory integrated o ver CPU 
time, the COSt of running a large software package in MTS 
can often be reduced by dynamical ly loading and executing 
sequential phases in an overlay fashion via calls to XCTL. 
Such sa vings in the storage integral must be weighed 
against the additional CPU time required to open a second 
file, reinvoke t he loader , and rescan the required 
libraries. 

The user also should see the sections " The Dynamic loader " 
and " Virtual Memory Management" in MTS Volume 5. In 
particular , they describe the use of initial ESD lists, 
merging with previously loaded programs , and the relation
ship between LINK , LOAD, and XCTL storage management . 

XCTL, XCTLF ij6 3 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Example : Assembly: 

October 1976 

LA 0,1 Highest -le vel stg 
LA 1,PA RLEN Length reguired 
L GR 15 , =V (GETSPAC E) Allocate s pace 
BALR GR 14,GR15 for par list 
ST 
LA 
ST 
MVC 
LA 
L 
L 
LM 
L 
BR 

I1YSAVE DS 
XCPAR De 
INPUT DC 
INFO DC 
PARAD DC 
PAR DC 
PARSl'R DC 
PARLEN EQU 

1,XCPAR+8 
2,4 (1) 
2,PARAD 
a (PARLEN , 1) ,PARAD 
1,X CPAR 
15, = V (XCTL ) 
1 3 ,MY SAVE+ 4 
2 ,1 2 , 28 (13) 
14,1 2 (1 3) 
15 

18A 
A (INP UT ,INFO,O) 
C'*FTN t 

F'O' 
A (0) 

Save address 
Set the par list 

Move in params 
Get par list ~tr 

GET XCTL address 
Set sav e area ptr 
Set caller's regs 

Invoke xeTL 

Y (L ' PARSTR ) 
C ' S=-SOU ,L=-LOAD,P= -PRINT' 
*-PARAD 

The above example dynamically loads *FTN and compiles the 
so urce program in the file -SOU into the file -LOAD with 
the listing written to -PRINT. When *FTN returns to XeTL, 
a return is made to the caller of the above assembly 
program. Note that if bit 7 of !n~Q is zero (the 
default) , it is the responsibility of the program calling 
XCTL to restore the registers of the previous link before 
invoking XCTL. 

464 XCTL, XCTLF 



( 

( 

( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

This section contains descriptions of the subroutines that are a part 
of the PL/I library *PL 1LIB . 

Each of these subroutines may be called directly-. Many other 
subroutines that require an S-type calling sequence may be called by 
using the PLCALL subroutine which is described in this section. 

PL/I Library Subro utines 465 



SNOIldla)Saa aNI100HSOS ~alSXS :£ SlW 



( 

( 

r 
I 

October 1976 

Purpose: 

Location: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

To associate a PL/I file variable name with an appropriate 
MTS file or device name. 

*PL nIB 

Calling Sequences: 

PL/I: CALL ATTACH (string) ; 

Parameters: 

i s a character string of either fixed or 
variable length which must follow these 
restrictions: 

(1) the string must not be a null string, 
(2) the length of the string must not be 

more than 255 characters, and 
(3 ) the string must conform to that of 

PAR= ~H!l!g· 

Description: The subroutine passes §t£!l!g to an int ernal routin e which 
processes the PAR =§!£!l!g format (see Computing Center Memo 
260) • 

Example: PL/I: CALL ATTACH (' A= X B=YiilF (80) ') ; 

This example associates PL/I files A and B with X (an MTS 
file ) and with Y (another MTS file with fixed format of 
length 80). 

ATlACH 467 



HJUl\f 8 9~ 

SNOIldlaJSaa aNIlOOaaOS walSXS :E SlW 



( 

( 

( 

October 1976 

Purpose : 

Location: 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

To determine whether the user is in batch or co nv ersation
al mode . 

*PL lLIB 

Calling Sequences: 

PL/I: DECLARE BATCH ENTRY 
RETURNS (BIT (1» ; 

Description: The s ubroutine returns '1' B if the u ser is in batch mode; 
otherwise , it returns 'O IB . 

Example : PL/I : IF BATCH THEN STOP ; 
ELSE GOTO RETRY; 

In this e xample , if the program is runnin g in batch mode , 
it stops ; otherwise, it transfers to the label RETRY . 

BATCH 46 9 



HnV8 OL~ 

9L6~ nqo:po 

SNOIldIS)Saa aNIIOOH80S W~ISXS :£ SIW 



( 

( 

( 

October 1976 

Purpose : 

Location : 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

To pro vide an interface between the PL/I user and the 
CONTROL entry i~ the de vice support routines (DSRs ). This 
subroutine allows the PL/I user to exec ute control opera
tions on files and devices . See the CONTROL subroutine 
description in this volume . 

*PL 1 LIB 

Calling Sequence : 

Note : 

Examples: 

PL/I: CALL CNTL (fdname , info) 

Parameters: 

!gn~mg is a CHARACTER variable or co~stant gi ving 
the name of a file or device . 

~~!Q is a CHARACTER variable or constant giving 
the control information to be passed to the 
de vice s upport routines . 

Return Codes : 

o Successful return from CONTROL . 
)0 Unsuccessf ul return from CONTROL. The PL 1RC sub

routin~ may be used to interrogate the return 
code . 

The user should exercise care when using the CNTL subrou 
tine if the PL/I file to which !gn~mg refers i s open . 

PL/I : CALL CNTL (' *T* ' ,' REW ' ); 
IF PL 1 RC~=0 THEN GOTO NOREW; 

This example calls CONTROL to rewind the tape *1*, and 
then checks to see if the rewind operation was s uccessf ul . 

CALL CNTL (' *SINK* ',' DON " T') ; 

This example calls CONTROL with the Data Concentrator or 
Memorex de vice support command DON ' T. 

CNTL 471 



SNor~dI~~saa aNI~nO~ans Wl~SXS :E s~w 



( 

( 

October 1976 

Purpose: 

Location : 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

To obtain the CPU time (in seconds) from the begi nning of 
the current program . 

*PL1 LIB 

Calling Sequences: 

PL/I : DECLARE CPUTIME ENTRY 
RETURNS (FL OAT BINARY) 

Description : The subroutine ret urns the floating-point value of the CPU 
time (i n seconds) from the beginning of the program. 

Example : PL/I: START_TIME : PROC; 
DCL ( TIME1 , TIME2) STATIC FLOAT BIN , 

CPUTIME ENTRY RETURNS (FLOAT BIN ); 
TII1E2 = CPUTIME; 
RETURN; 

TIME: ENTRY FLOAT BIN; 
TII1E1 = TIME2 ; 
TII1E2 = CPUTI I1 E ; 
RETURN (TIME2 - TIME1 ) ; 

END ; 

This example determines the amount of CP U time taken in 
executing a loop . It first calls START_TIME to initialize 
the variable TII1E2 ; then , on every call , the proced~re 
TIME returns the CPU time i n seconds s in ce the pre vio us 
call. 

CPU TIME 473 



9L6L "aqo+=>o 

SNOItdI~JSla lNItOOHHOS WltSXS :£ StW 



( 

( 

October 1976 

Purpose: 

Location : 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTI NE DESCRIPT I ON 

To obtain the elapsed t~me (in seconds ) from the beginning 
of the program . 

*PL 1 LIB 

Calling Seq ue nces: 

PL/I: DECLARE ELAPSED ENTRY 
RETURNS (FLOAT BINARY ) ; 

Description: The subroutine ret urns the floating-point val ue (in sec 
onds ) from the beginning of the program. 

Example : PUT EDIT (' ELAPSED TIME - ', ELAPSED , ' SECS ') 
(A, F (1 5 , 3),A) ; 

This example prints out the elapsed time in seconds. since 
the beginn ing of t he program. 

ELAPSED 4 75 



aaSdV'I::! 9Lfl 

9L6l :raqo."o 

SNOIldIHJSlcr lNIlnOHanS WllSXS 'E SlW 



( 

( 

( 

October 1976 

Purpose: 

Location : 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

To obtain information on a file or device attached to a 
PL/I file. 

*PL 1 LIB 

Calling Sequence : 

PL/I: DECLARE FINFO ENTRY (FILE) RETURNS (POINTER ) 
DECLARE RFINFO ENTRY (POINTER) ; 

infob;FINFO (p1 1 file ) ; 
CALL RFINFO (i nfob ) ; 

DECLARE TFINFO ENTRY (FILE,CHARACTER (* )) 
RETURNS (POINTER) ; 

DECLARE RFINFO ENTRY (POINTER ) ; 
infob;TFINFO (pl 1file,title); 
CALL RFINFO (infob) ; 

Description: Given the PL/I file as an arg ument, the FINFO s u broutine 
returns the pointer value as the address pointing to the 
GDINFO buffer !ll!QQ. If the buffer is not a vailable, it 
returns the null pointer. This buffer is exac t ly as 
described in the GDINFO subroutine description in this 
volume . 

Example: 

The TF I NFO subroutine does exactly the same as the FINFO 
subroutine except that it associates the PL/I file name 
with the second argument declared as a character string . 
If a PL/I user wants to open a PL/I file with the TITLE 
option and wants to i nguire for the information on the 
file, then he should use the TFINFO subroutine with the 
second argument equa l to t he expression in the TITLE 
option. 

The RFINFO subroutine should be called to release the 
information buffer !ll!QQ when it is no longer needed. 

PL/I : DECLARE FINFO ENTRY (FILE) RETURNS (POINTER) , 
1 INFO BASED (INFOB), 

2 PDUB POINTER , 
2 TYPE CHARACTER ( q) , 
2 INP_MAX FIXED (1 5) BINARY, 
2 OUT_MAX FIXED (1 5) BINARY , 
2 FDUBTYPE BIT ( S), 
2 TYPEINDX BIT (8) , 
2 SWITCHES BIT (8 ) , 

FINFO, TFINFO , RFINFO q7 7 



MTS 3 : SYSTEM SUBROUT IN E DESCRIPTIONS 

2 RESERVED BIT (8) , 
2 IOMODIFIER BIT(32), 
2 START_llI FIXED (31) BINAR Y, 
2 LAST_L# FIXED (31) BINARY , 
2 END_L# FIXED (3 1) BINARY , 
2 L#_INCR FIXED(31) BIN ARY , 
2 FDNA ME_ PTR POINTER , 
2 ERROR_PTR POINTER , 

FDNAI1E BASED (FDNAME_EQU_PTR ) , 
2 LTH FIXED (1 5) BINARY , 

Oc t ober 1976 

2 NAME CHARACTER (I REFER (L TH »; 
DECLARE RFINFO ENTRY (POINTER ) ; 

INFOB=FINFO (SPRINT) ; 
FDNAM E_EQU_PTR=I NFO.FDNAI1 E PTR 

CALL RFINFO (INF OB ) ; 

The FINFO subroutine is called to obta in information about 
SPRINT ; then , the RFINFO s ubr o utin e i s called to r e l ease 
the in formation buffer after it is no longer needed. 

478 FINFO, TFIN FO, RFINFO 



( 

( 

( 

October 1976 

purpose: 

Location : 

MT S 3 : SYSTEM SUoROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

To allow a P~/I program to be notified of t he occurrence 
of an attention interrupt . 

*PL l1IB 

Calling Seq ue nce : 

Description: 

PL/I: CALL IHEATTN; 

The IHEATTN subro utine is automat i cally called befcre the 
main procedure obtains control. This is to allow all 
attention interr upts to be controlled by the subroutine. 
The user may override this call to IHEATTN by calling the 
subroutine ATTNTRP , thus effectively resetting the atten
tion interrupt conditions as if IHEATTN was not called . 
These conditior.s can be restored by calling IHEAT TN. 

O~ce IHEATTN has been called and an attention interrupt 
occurs, IHEATTN scans thro ugh all active procedures (the 
mos t recent first ) and tests for any statement beginning 
with " ON CONDITION (ATTN) ". If nO such statement has been 
executed, the condition "O N CONDITION (ATTN) SYS!EM ;" is 
assumed .. 

The subro utine will take one of the following actions: 

(1) If t he keyword " SYSTE M;" is specified , a message 
such as 

r , 
I STMT dddd I 

ATTN AT I or I IN 
IOFFSET xxxxi 
L J 

r , 
PROC I 

I or I 
I ON - UNIT I 
L J 

name 

is printed to identify the location of the inter
rupt. After the message is printed, the subrou
tine MTS is called and a return is made to MTS 
command mode (or debug mode). The user may use 
the contents of general register 1 which points to 
the standard 7 2-byt e sa ve area from ATTNTRP to 
obtain the PSW and registers at the time of the 
interrupt . The first eight bytes contain the PSW, 
and the remainder of the region contains the 
contents of the registers. A $RESTART comma nd may 
be given to r estart the program. 

IHEA!TN 479 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Examples : 

480 IHEAITN 

October 1976 

(2) If the keyword " SNAP " is specified after " ON 
CONDITION (ATTN )", then the above message is 
printed followed by a list of all act i ve proce
dures at the time of t h e interr upt . 

(3) If the keyword " SYSTEM; " is not specified, then 
the ON-unit is entered as a procedure with the 
attention conditions restored . If the ON-unit 
returns, IHEATTN automatically returns to the 
interr u~ted statement . Caution should be exer
cised to pre vent i n finite loops in the ON- unit. 
It 1S recommended that the user insert " ON 
CONDITION ( ATTN) SYSTEM; " after " ON CONDITION (ATTN) 
BEGIN :" . 

If the PL/I program that contains no statement begi nning 
wi t h " ON CONDITION (ATTN )" is exec uted , an attenti on inter
rupt will produce a message s uc h as 

ATTN AT STMT 002 1 IN PROC PROGRAM 

Attention interrupts may be controlled in a PLII program 
by the follo wing sequence: . 

DECLARE ATTNSW BIT ( l) INIT (' O' B) ; 
ON CONDITION (ATTN ) SNAP BEGIN ; 

ON CONDITION (ATTN) SYSTEM; 
IF ATTNSW = ' l ' B THEN CALL MTS; 
ATTNSW = '1' B; 
RETURN ; 
END ; 

When an attention interrupt occurs for the first time, the 
attention interrupt message is printed followed by a l ist 
of the acti ve ~rocedures . Then t he BEGIN b l ock , which 
resets the ON-condition for attention interr upts a n d sets 
ATTNSW to '1', is executed ; a return is then made t o the 
statement i n which the attention interrupt occ urred and 
program execution is resumed. A subseguent attention 
interrupt will cause the program to print another inter
rupt message and then return to MTS com mand mo de. The 
switch ATTNSW may be used by the program to test .hether 
the first attention interrupt has occurred . 



( 

( 

( 

October 1976 

Purpose : 

Location: 

MTS 3: SXSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

TO provide an interface between the PL/I user and the NOTE 
and POINT subroutines . 

*PL1LIB 

calling Sequence: 

Note: 

Example : 

PL/I: CALL IHENOTE (file , ptrs); 
CALL IHEPNT (file, ptrs , bits) ; 

Parameters: 

t!!g is a FILE variable which must first be opened 
either implicitly or explicitly. 

E1~§ is an array of four fullword elements. 
Q!1§ is a BIT (4) variable or constant. The bit 

switches are : 

' 0001 ' B - set read pointer 
' 0010 ' B - set write pointer 
' 0100 ' B - set last pointer 
'1 000'B - set last line number 

More than one switch may be set to gi ve the 
desired combination of pOinters, e . g. , 'l11 1 'B 
sets all pointers . 

Ret u rn Codes: 

The subroutine PL1RC may be used to determine the 
ret urn codes from NOTE and POINT . 

These two subroutines are intended for interaction with 
the two PL/I subroutines IHEREAD and IHERITE. 

PL/I : DECLARE IHEPNT ENTRX (FILE , (4 ) FIXED BINARY (31 ), 
BIT (4 ) ), QQSV FILE, 
PTRS (4 ) FI XED BINARY (31) ; 

P'IRS=O; 
CALL IHEPNT (QQSV , PTRS , ' 0001 ' B) 

This example rewinds the file QQSV for input only. 

IHENOTE, I HEPNT 481 



~TS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

Octo ber 1976 

482 IHENOTE , IHEPNT 



( 

( 

October 1976 

Purpose: 

Location: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTI NE DESCRIPTION 

To read (IHEREAD) or wri te (IHERITE) a record from a PL/I 
file. 

*PL 1LIB 

Calling Sequences : 

PL/I: CALL IhEREAD(buff,[lth , Jmod,lnr,file); 
CALL IHERITE (buff ,Llt h , Jmod,lnr,file ); 

Parameters : 

Q~ff is the CHARACTER variable or constant to be read 
or written. 

!Ih (optional) is the FIXED BINARY (15) variable or 
constant giving the length of the record to be 
read or written . If omitted , the length of Q~ff 
is used as the record length. 

~Qg is the BIT (32 ) vari able or constant defining 32 
modifier bits used to control the action of the 
I/O subroutine ( see the "I/O Modifiers" section 
in this volume). 

!g~ is the FIXED DECIMAL (9 , 3) variable or constant 
giving the line number to be read or written . 

t!!g is the FILE variabl e to be used in the I/O 
operation . 

Description: The PL/I user should note the following restrictions . 

(1) The file , if it is to be used by IHEREAD or 
IHERITE , must be a record file with undefined 
format or unblocked fixed format. 

( 2) It will be the user ' s responsibility if he mixes 
these subroutines with READ, WRITE, or REWRITE 
statements. 

(3) An outl' ut file cannot be used for IHEREAD, nor an 
input tile for IHERITE. An updat e file can be 
used for both IHEREAD and IHERITE. 

(4) If the indexed bit of a modifier is on, a line 
number must be provided. Otherwise , a data inter
ruption may occur, or some unpredictable results 
will occur . In addition , in case of IHE RE AD, the 
character string will become a null string wh en 
there is no line associated with the line number. 

IHEREAD , IHERITE 483 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

Example: MAIN: PROCEDURt OPTIONS (MAIN) ; 
DCL (IHEREAD,IHERITE) ENTRY 

( ,BIT(32) ,DEC FIXED(9,3) ,FILE), 
BUFFER CHAR (1 21)VARYING , 
MOD BIT (3 2) INIT ((3 2) '0' B) , 
LINENR DEC FIXED (9,3), NUTS FILE; 

ON ENDFILE (NUTS) GO TO FINISH; 

OVER: CALL IHEREAD (BUFFE R,MOD,LINENR, NUTS) ; 
PUT SKIP LIST (LINENR,BUFFER); 

October 1976 

GO TO OVER; I"THIS ACTS LIKE A " ILIST" COMMAND"I 

FINISH: 
CLOSE FILE (NUTS); OPEN FILE (NUTS) UPDATE; 
S UB STR (MOD,31) = '1'B; 1* TURN INDEXED BIT ON *1 
CALL IHERITE (" ,MOD, 1.0,NUTS); 1* DELETE LINE 1 *1 
CALL IHERITE (' THIS IS LINE #2.5' ,MOD, 2 .5,NUIS); 

1* INSERT THE LINE #2.5 *1 

RETURN; 

END MAIN; 

484 IHEREAD, IHERITE 



( 

( 

( 

October 197 6 

Purpose : 

Location: 

MTS 3: SYSTEM SUoROUTINE DESCRIPTIONS 

M§~!~~XL_~!~!~~X 

SUBROUTINE DESCRIPTION 

To determine the key of the next record (N EXTKEY ) or the 
end-of-file record (LASTKEY) . 

*PL1LIB 

Calling Sequences: 

PL/I: DECLARE (NEXTKEY,LASTKEY) ENTRY 
(FILE ) RETURNS (CHARACT ER (4)); 

Description: NEXTKEY: FILE is opened as : 

Example: 

output - returns the key of the next record to 
be written. 

input or update - returns the key of the next 
record to be read. 

LASTKEY: returns the key of the end-ot-file record. 

FILE: 

PL/I: 

a PL/I file 
following: 

variable conforming to the 

(1) a keyed file of the consec uti ve organiza
tion' i.e., referring to an actual MTS 
sequential file . 

(2) must be already opened by either an OPEN 
statement or by an appropriate I/O 
stateme nt . 

POINT=NEXTKEY (KEYED_FILE ) ; 
LOCATE BASED FILE (KEYED_FILE ) KEYFROM (P OINT ); 
BASED=' ABC' ; 

This example writes the character string ABC on the next 
record. BASED is a string variable declared with a PL/I 
BASED attribute . 

NEXTKEY, LASTKEY 485 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

486 NEXTKEY, LASTKEY 



( 

( 

( 

October 1976 

Purpose: 

Location: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Rb~~bbL_Rb~~bbQL_Rb~~bb~L_R1f~bbE 

SUBROUTINE DESCRIPTION 

TO enable 
assembler) 

*PL1LIB 

PLII users to call non-PL/I (e .g., FOR1RAN and 
procedures requiring a standard s-type linkage. 

Calling Sequences: 

• 

PL/I: CALL PLCALL (fn,n,pl ); 

DECLARE PLCALLD RETURNS (FLOAT (1 6)) ; 
PLCALLD(fnd,n,pl) ; 

DECLARE PLCALLE RETURNS(FLOAT(6)); 
PLCALLE(fne,n,pl) ; 

DECLARE PLCALLF RETURNS(FIXED BINARY (31)); 
PLCAILF(fnf,n,pl) 

Parameters : 

~n is a subroutine which has been declared to have 
the ENTR Y attribute and which does not return a 
value. 

~ng is a function which has been declared to have 
the ENTRY attribute and which returns a double
precision floating-point value (REAL *8 in FOR 
TRAN; long floating register 0 in assembly 
code) • 

~ng is a function which hds been declared to have 
the ENTRY attribute and which returns a single
precision floating-point value (REAL*4 in FOR
TRAN; short floating register 0 in assembly 
code ) • 

fnf is a func tion which has been declared ,to have 
the ENTRY attribute and which returns an ~nteger 
value (INTEG ER*4 in FORTRAN; general register 0 
in assembly code). 

n is a number with attributes FIXED BINARy(31) 
which is equal to the number of arguments being 
passed to ~n, ~ng , ~ng , Or ~n~. n may be o . 

n! is a ~arameter list of the n arguments to be 
passed to fn, ~ng, ~ng, or £n£ in the order 
required by the subprogram. The arguments are 
separated by commas. If the argument is a 
string variable, array variable, or structure 
variable, the name of the argument or a pointer 

PLCALL, PLCALLD, PLCALLE, PLCAIIF 487 



MTS 3: SYSTEM SUBRO UTINE DESCRIPTIONS 

October 1976 

to the argument may be used; for e xa mple , ARG or 
ADDR(ARG). No~e that if the argument is an 
array variable, ~he reference passed will be to 
the location of the element having all 2eros for 
s ubscript s (e .g., A(O,O)), even if that element 
does hot exist . Therefore, it may be preferable 
to use a pointer to an element of the array 
instead of the array itself (e .g., ADDR (A (1,1)) 
instead of A). If the arg ument is a scalar 
variabl e , a poin ter to the argument must be 
used ; for example, ADDR(A RG). If the argument 
is a scalar constant , a pointer to the argument, 
which can be produced by the s ubroutin e PL1ADR 
must be used . The high- order bit of the last 
word in the param eter l ist passed to £D; £n~ , 
igg , or ini is set to 1. If n =O, there is no 
parameter list and no comma after n. 

Return Codes: 

The return. 
fnd , fne , 
PL1RC.---

code placed in general register 15 by in, 
or ini may be tested us i ng the s ubroutine 

Description: PL/I program interrupt ON conditions are disabled on entry 
to the s ubprogram and reenabled o n return to the calling 
program . The values of PLCALLD, PLCALLE, and PLCALLF are 
the values returned by ig~, igg , and igi , respectively. 

Examples: 1* ARSIN AND DARCOS ARE FORTRAN LIBRARY FUNCTIONS *1 
DECLARE PLCALLE RETUR NS (FLO AT(6»); 
DECLARE PLCALLD RETURNS (FLOAT (1 6»; 
DECLARE (AR SIN , DARCOS ) ENTRY ; 
DECLARE (A RCSIN , ANGLE) Fi-OAT (6) ; 
DECLARE (AR CCOS , DANGLE ) FLOAT (1 6); 
DECLARE F1 FIXED BINARY (31) INIT(1) STATIC ; 
ARCSIN =PLCALLE (ARSI N, F1, ADDR (AN GLE) ; 
ARCCOS=PLCALLD(DARCOS, F1 , ADDR(DANGLE» 

1* PAR IS A STRUCTURE VARIABLE *1 
DECLARE DISMNT ENTRY ; 
DECLARE 1 PAR ALIGNED STATIC , 

2 LE~ INIT(3), 2 TAPE CHAR(3) INIT('*T*'); 
CALL PLC AL L (DI SM NT, F1, PAR ); 

4BB PLCALL , PLCALLD , PLCALL~, PLCALLF 



October 1976 

( 

( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

1* USING PLCALL TO PRODUCE AN R-TYPE LINKAGE *1 
1* SUBSTR IS A StRING . F1, F2 , AND JULIAN ARE SCALAR *1 
DECLARE RCALL ENTRY ; 
DECLARE F6 FIX1D BINARY (31) INIT(6) STATIC; 
DECLARE PL 1ADR RETURNS (POINTER); 
DECLARE GJDT ENTRY; 1* A NON-EXISTENT ALTERNATE 

NAME FOR GRGJULDT FOR PURPOSE OF THIS EXAMPLE *1 
DECLARE F2 FIXED BINARY (3 1) INIT (2) STATIC ; 
DECLARE DATE CHARACTER (8) ; 
DECLARE F1 FIXED BINARY (31) INIT (1) STATIC ; 
DECLARE JULIAN FIXED BI NARY (31) ; 
CALL PLCALL (RCALL , F6,PL 1A DR (GJDT ) , ADDR (F2), 

S U BSTR (DATE , 1 ,4) , SUBST R (DATE , 5) , ADDR (F1) , 
ADDR (J ULIAN) ) ; 

PLCALL, PLCALLD , PLCALLE, PLCALLF 489 



MTS 3 : SYSTEM SUBROUTI NE DESCRIPTI ONS 

Octo be r 197 6 

4 90 PLCALL, PLCALLD, PLCALLE, PlCALLF 



( 

( 

( 

October 1976 

Purpose: 

Location: 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

Tc obtain a pointer to PL/I scalar 
variables. 

*PL HIB 

constant s and 

Calling Sequences : 

nil: DECLARE PL1ADR RETURNS (POINT ER ) ; 

PL 1 ADR (arg) ; 

Parameters: 

a£g is any scalar constant or variable (n ot strings, 
arrays , or structures). 

Description: The value of PL 1ADR is the address of the arg~ment. The 
primary purpose of this subroutine is to pass pointers for 
scalar constants to the subro utines PLCALL, PLCALLD, 
PLCALLE, and PLCALLF since a constant cannot be used as an 
argument to the PL/I function ADDR. 

n1ADR 491 



llO'lL'Id ~6f7 

9L6l :xaqo+:>o 

SNOI~dIllJSaO aNI~nOl!enS Wa~SAS :E S~W 



( 

( 

( 

October 1976 

purpose: 

Location: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

SUB~OUTINE DESCRIPTION 

To interrogate 
ca 11 on PLCALL, 
IHESARC. 

*PL1LIB 

the return code passed back by the last 
PLCALLD , PLCALLE, or PLCALLF or set by 

Calling Seq uences: 

PL/I: DECLARE PL1RC RETURNS (FIXED BINARY(31)); 

PL1RC; 

Description: The value of Pl 1RC is the contents of general register 15 
when the procedure called using PlCALL, PLCALLu, PICALLE, 
or PLCALLF returns, or is the value set by IHESARC, 
whichever is most recent. For FORTRAN subroutines , the 
va l ue returned in general register 15 ; .s 4 times the value 
of the integer ~fter RETURN. 

Example: IF PL1RC=4 THEN GO TO ERROR; 

A branch is made to ERROR if the return code from the last 
call on PLCALL, PLCALLD , PLCALLE, or PLCALLF is 4. 

P11RC 4 93 



SNOI~dI~JS~cr ~NI~OOHaOS W~tSAS :£ S~W 



( 

( 

( 

October 1976 

Purpose : 

Location : 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

To comp ute uuiformly distributed random n umbers between 
0. 0 and 1.0 . 

*PL 1LIB 

Calling Seq uences : 

PL/I: DECLARE RAND ENTRY 
(FIXED BINARY (31 ) ) 

RETU RNS (FLOAT BINARY ) ; 

Description : The argument I as in RAND (I ) must be a variable 
initialized within the range 0 to 2**3 1- 1 ( 21474E36 47) . 
The value returned by RAND (I ) is between 0 . 0 and 1.0 . In 
addition , the variable is changed so that a different 
random number is generated on a subsequent call . If the 
argument I contains zero , a random number wi ll be 
generated depending u pon the time of day. 

Example: 

Th e algorithm is taken from " Coding the Lehmer Ps e udo
Random Number Generator, II ~Q!!lmY!!:i£s.:t!Q!!2 __ Q£ __ !lH~ __ .a~!1 , 
Volume 12 , Number 2 (February 1969) . 

PL/I : RANDOh : PROC FLOAT BIN; 
DCL I FIXED BIN ( 31) STATIC 

INIT ( 524287), 
RAND ENTRY (FIXED BIN (3 1)) 

RETURNS (FLOAT BIN) 
RET URN (RAND (I ) ); 
EN 0; 

This example generates a random number using the number 
524287 as tbe initial bas e . 

RAND 495 



ONV1f 96h 

9L6L :raqoPO 

SNOIXdI1fJS2G 2NIXn01fanS W2XSXS :E SXW 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

( October 1976 

SUBROUTINE DESCRIPTION 

Purpose: To sign the user off . 

Location: *PL lLIB 

Calling Sequences: 

PL/I: DECLARE SIGNOFF ENTRY; 

Description: The subroutine closes all open files , if any I and then 
signs the user off. 

Example: PL/I: IF BATCH THEN CALL SIGNOFF; 

This example signs off the user if he is running in batch 
mode. 

( 

( 

SIGNOFF 4 97 



ddON~IS B6n 

9L6 ~ :I"~OPO 



( 

( 

October 1976 

Purpose : 

Location : 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

To obtain the current fo u r - character user Comp uting Center 
signon 10. 

*PL1LIB 

Calling Sequences : 

PL/I: DECLARE USERID ENTRY 
RETURNS (CHARACTER (4»; 

Description : The subroutine ret urns the user signon 10. 

Example: PL/I : PUT LIST (U5ERID); 

This example prints out the user ' s signon 10. 

USERID 499 



aI!!:;[sn OO!; 

9L 6~ :raqo."o 

sNOI~draJs:;[a aNI~nOagnS wa~sxs :E StW 



( 

( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

The elementary function library (EFL) contains the mathematical and 
implicitly called subroutines usually associated with the FORTRAN IV 
language . In the FORTRAN language the mathematical routines are called 
because of an explicit reference to the name of the function in an 
arithmetic expression. Mathematical routines for the computation of the 
square root, exponential , logarithmic , trigonometric, hyperbolic, gamma , 
and error functions are pro vided. The implicitly called routines are 
invoked to perform complex multiplication and division , and to perform 
the various exponentiation operations occasioned by the FORTRAN ** 
operator. Finally, this library also includes the ANSI FORTRAN intrins
ic minimum and maximum value functions , and the DREAL and DIMAG 
functions , which are inexplicably not a part of the IBM FORTRAN library. 

The programs contained in this elementary function library are system 
resident , and are defined in the low - core symbol dictionary named <EFL> . 
Special loader control cards at the end of the *LIBRARY file cause the 
symbol <EFL> to be defined; and , if there are still undefi ned symbols , 
then this symbol dictionary will be searched . 

Absol ute Value 
Square Root 
Common and Natural Logarithm 
Exponential 
Trigonometric Functions 

Inverse Trigonometric Functions 

Hyperbolic Functions 
Gamma and Log-gamma F unctions 
Error Function 
Exponentiation 

Complex Operations 

Minimum/Maximum Value 

CABS , CDABS 
SQRT, DSQRT, CSQRT , CDSQRT 
ALOG, ALOG10, DLOG , DLOG10 , CLOG, CDLOG 
EXP , DEXP , CEXP , CDEXP 
COS , SIN , TAN, COTAN , DCOS , DSIN, DTAN, 
DCOTAN , CCOS , CSIN , CDCOS , CDSIN 
ARCOS, ARSIN, ATAN , ATAN2 , DARCOS, 
DARSIN , DATAN, DATAN2 
COSH , SINH , TANH , DCOS H, DSINH, DTANH 
GAMMA, ALGAMA , DGAM MA, DLGAMA 
ERFC , ERF , DERFC , DERF 
FIXPI# , FRXPI#, FDXPI# , FCXPI#,FCDXI#, 
FRXPR# , FDXPD# 
CMPY# , CDVD#, CDMPY#, CDDVD#, 
DREAL' , DIMAG ' 
MINO, AdINO , MIN 1, AMIN1, DlIIN1 
I1AX O, AMAXO , MAX 1, AMAX 1, DMAX1 

'Since tbe DREAL and DIMAG functions are not built into the current 
FORTRAN compilers , they must be explicitly declared as REAL*8 
functions . 

The E l em ~ntary Function Library 50 1 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

~g~h~~g~!£g! E~g£~!Qg§ 

!!fig!!! !l:!;H!§ 

SQRT DSQRT 
EXP DEXP 
ALOG DLOG 
ALOG10 DLOG10 
COS DCOS 
SIN DSIN 
TAN DTAN 
COTAN DCOTAN 
ARCOS DARCOS 
ARSIN DARSIN 
ATAN' DATAN' 
ATAN22 DATAN22 
COSH DCOSH 
SINH DSINH 
TANH' DTANH' 
ERFC' DERFC' 
ERF' DERF' 
ALGAI1A DLGAMA 
GAMMA DGAl'lI1A 

EQ!l!!lAli !~E!!£!~!Y ~g!!~g E~g£~!Qg§ 

£Q~RHll!~ 

CABS' 
CSQRT 
CEXP 
CLOG 

ecos 
CSIN 

October 1976 

£Q~RHll!l§ 

CDABS' 
CDSQRT 
CDEXP 
CDLOG 

CDCOS 
CDSIN 

Complex operations: name (multiplicand-dividend,multiplier-divisor) 

£Q~RHll!§ 

CMPH 
CDVD# 

£Qt!RHll!l§ 

CDCMPY# 
CDDVD# 

Exponentiation: name (base,exponent) 

li9:'!!!~ 

FIXPI# 
FRXPI# 
FDXPI# 
FCXPI# 
FCDXI# 
FRXPR# 
FDXPD# 

~g§~ 

INTEGER*4 
REAL*4 
REAL *8 
COMPLE.X*8 
COMPLEX*16 
REAL*4 
REAL*8 

502 The El ementary Function Library 

:!;~EQ!!~!l1 

INTEGER*4 
INTEGER*4 
INTEGER*4 
INTEGER*4 
INTEGER*4 
REAL*4 
REAL*8 



( 

( 

( 

Octob er 1976 

MINO/MAXO 
MIN1!MAX1 
AMINO/AMAXO 
AMIN1!AMAX1 
DMIN1!DMAX1 

INTEGER*4 
REAL*4 
INTEGER* 4 
REAL*4 
REAL*8 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

IN TEGER *4 
INTEGER*4 
REAL*4 
REAL*4 
REAL*8 

lThese routines do not recognize any error conditions and ne ver transfer 
to the error monitor. 

'These routines require two arguments. 

The programs contained in the EFL conform to the OS (I ) S-type calling 
con vention with variable length parameter list as described in section 
"Calling Con ventions " in this volume, i.e. , they expect the FORTRAN 
linkage conventio n. This cOh vention requires that the high-order bit of 
the last parameter address constant be nonzero . The EFL error monitor 
uses this last argument flag to determine how error situations should be 
processed; consequently , failure to properly set this flag may result in 
unexpected results if an error condition is detected. Further, unless 
specifically mentioned, all e l emen t s of the EFL require an 18-fullword 
(7 2-byte ) sav e area . 

Since a ll members of the EFL are function-type subroutines , they 
cannot be meaningfully employed in the FORTRAN CALL statement , as the 
FORTRAN program will ~gnore the function value returned by these 
programs. These function subprograms are called whenever the appropri
ate entr y name appears in a FORTRAN arithmetic expression. The 
following FORTRAN arithmetic assig nment statement refers to the mathe
matical functions COS and SQRT , and the implicitly called exponentiation 
routine FRXPI#: 

SINX = SQRT (1. -COS (X) **2 ) 

Assembly language users may employ the CALL macro, but should specify 
the optional VL parameter iu order to set the last arg ument flag byte, 
e . g. , 

CALL DCOSH, (X) ,VL 

The e l ementary functions return their values as follows: 

GRO 
FRO 
FRO,FR2 

- INTEGER function 
- REAL function 

COMPLEX function 

The Elementary Function Library 503 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

A ret urn code of 0 will 
return code given in 
dynamically modified by 
indeterminate. See the 

be given for all successf uL comp utations . The 
error situations is generally 4, but may be 
the user , and hence must be described as 

section cn error processing for furt her details. 

Except as noted , the mathematical functions require a single argument 
of the same mode as the function . The routines in the EFL are s ubject 
to specification exceptions when fetching their argument (s ) should the 
bo undary alignment be i ncorrect. The modes INTEGER*4 , REA L*4 and 
COMPLEX*8 req uire fullword alignment , while REAL*8 and COMPLEX* 16 
require double word alignment . The term INTEGER*4 corresponds to a 
System/360 f ullword integer in the usual twos-complement notation. The 
term REAL*4 (REAL*8) corresponds to a System/360 short ( long ) 0perand 
floating-point number . The term COMPLEX*8 (COMPLEX*16 ) refers to two 
short (long ) operand floating-poi nt n umbers occupying consec uti ve 
storage locations , the number in the higher storage location being the 
imaginary part of the complex number. The address constant passed to 
the EFL ro utine should correspond to the lower storage address , i . e . , 
the REAL part of the complex number . 

~££Q£_f£Q£g§§!ng 

Error conditions detected by EFL routines are processed in the module 
ERRMON# . Depending on the optional arguments passed to the elementary 
function , the error monitor wil l either resu me exec ution or for mulate an 
appropriate error comment and call the traceback program TRACER . 

The vast majority of the EFL programs check the argu ment to ensure 
that a valid function value can be computed . For e xample , the in verse 
sine and cosine functions are only defined on the inter val [ - 1,1], so 
that some proced ure must be a vailable for handling arguments ou tside 
this interval . Tbere are c urrently t hree ways in which error conditions 
detected by an EFL program can be processed : 

(1 ) by using one or more of the optional arguments described be l ow , 
(2 ) by establishing a user error monitor to be called in these 

sit uations , or 
(3 ) by allo wi ng t he EfL error monitor to in vo ke t he traceback 

program TRACER. 

Whene ver an elementary function detects an error sit uation , it 
generates a default function value and passes control to the EFL error 
mo nitor . Although this error mon i tor is in fact a separate progra m, it 
is logicall y a part of each elementary functio n , and is transparent wit h 
respect to the normal linkage conventions. Thus , if the EFL error 
monitor in vokes either the user error monitor or TRACER , it wil l appear 
to them as if they had been called directly from tbe elementary 
function. 

The EFL error monitor i nitial l y attempts 
arguments. If no sucb arg um ents were given , 
not res ult in the resumption of execution , 

50 4 The Elementary Function Library 

to process the opt i onal 
or if their processing does 
then the error monitor will 



( 

( 

( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

formulate 
the sole 
invoked. 

an appropriate message. 
argument when either 

This message is subsequently used as 
the user error monitor or TRACER is 

With all QEt!Qrr~~ ~IgYm~rrt§ attached , the calling seq uence becomes 

• .•• name (argumen t (s) ,count,m ax-count , f- value ) ••. 

Since the elementary function names are built into the FORTR AN compiler, 
it will diagnose as errors any occurrence of these names in which the 
number and modes of the arguments do not correspond to its table of 
definitions. The optional arguments discussed here may be appended to 
the usual argument list, without objection from the FORTRAN compiler, if 
the elementary function name is declared in an EXTERNAL statement and 
its proper mode is explicitly declared. The optional arguments are 
defined as follows: 

count - a f ullword integer which is simply incremented by 1. If 
count is the only optional argument supplied , then execution 
is resumed with the default function value and return code 
4. 

max-count - a fullword integer upper bound for the first cptional 
argument, count. If the updated valu e of count is greater 
than max-count, then the processing of the optional argu
ments is suspended . If max-count is the last optional 
argument supplied and the updated value of count is less 
than or equal to max-count, execution is resumed with the 
default function value and return code 4. Otherwise, the 
final optional argument i s processed. 

f-value - the mode of this argument must correspond to the mode of the 
function. Execution is resumed with a function value of 
f-value and return code 4. Note that this optional argument 
is processed only if the updated value of count is less than 
or equal to max-count. 

In the above descriptions, the phrase "res um e execution " means .that it 
will appear that the e l ementary function has returned with the indicated 
function value and return code. 

If one of the optional arguments cannot be appropriately accessed, if 
count> max-count, or if no optional arg ument s are supplied , then the 
error monitor will formulate an error message. This error message will 
be s ubsequently passed to either the user error monitor or TRACER. For 
the mathematical f unctions, this error message will take the form 

name (x.x) IS UNDEFINED AND HAS BEEN ASSIGNED THE VALUE y.y. 
THE DOMAIN OF DEFINITION OF THIS FUNCTION IS dod-message. 

where f'X.XII and Ily_ylt are decimal representations of the argument and 
function value , respectively. The "dod-message " is dependent on the 

The Elementary Function Library 505 



ctTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

elementary function involved, but generally expresses the set of 
argument values for which the function is defined in the form 

(x: a < x < k ) 

For exampl e , the GAdMA f unction "dod -message" is "IS 
(X: .1381786E-75 < X < 57 . 57 441) ". 

Messages generated for ex~onentiation e rrors take the form: 

EXPONENTIATION ERROR : b.b ** e.e IS UNDEFINED AND HAS BEEN 
ASSIGNED THE VALUE y.y. ~ODE OF THE BASE IS mb, MODE OF THE 
EXPONENT IS me. 

whe~e Il b .b lt , I'e.e ll , and Ily_ylt are decimal representations of the base, 
exponent and result , respectively. The modes I' md l l and Il me tl will be one 
of the following: INTEGER*4, REAL*4 , REAL*8, COMPLEX*8 or COMPLEX*16. 
Generally, exponentiation routines only recognize an error wh en the base 
is 0.0 and the exponent is nonposit1 ve : ho we ver, the current routines 
also complain when a real result cannot be properly represented, e.g. , 
10.** 80. In either case , the error monitor dynamically allocates 
vi rtual memory space sufficient to generate and assemble this message. 
The message is generated in the form of a halfword integer length 
immediately followed by the text of the message. 

An elementary function library y§~~ ~~~Q~ ~Qn!1Q~ is established by 
using the CUINFO subroutine . The name and index of the corresponding 
CUINFO item is ' EFLUEM ' and 183, respectively, while the data is the 
address of the user error monitor. Thus , to establish a subro utine 
named $UEM$ as the user error monitor, one could include the following 
FORTRAN statements in his program. 

EXTERNAL $UEM$ 
CALL CUINFO (1 83,$UEM$ ) 

A user error monitor may be eliminated by calling CUINFO with a second 
argument of zero. The single argument to the user error monitor, which 
ma y be e i ther a FUNCTION or SUBROUTINE subprogram , should be declared as 
an INTEGER*2 vector, e.g ., 

SUBROUTINE $UEM$(MSG) 
IN TEGE R * 2 M SG (2 ) 
CALL SERCOM (M SG (2) ,M SG (1) ,0) 
RET URN 
END 

This rather simple example prints the message on logical I/O unit 
SERCOM, and then resumes execution with the default function value. 
Since t he messages are generally longer than a terminal output line, 
some of the message will be lost. The TRACER program a u to matically 
breaks this message into a number of output lines, so that no 
information is lost. It sho uld be noted that unless the user error 

506 The Elementary Function Library 



( 

( 

( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

monitor returns to the EEL error monitor , the virtual memory space 
allocated by this latter program will not be release d. 

Finally, if the optional argument processing did not result in the 
resumption of execution , and no user error monitor is established, then 
the EFL error monitor will invoke the traceback program TRACER . This 
program was designed to ~rovide con versational control of pr~gram 
execution under t hese circumstances . The name stems from its pr~mary 
function, which is to make available information pertinent to programs 
in the current linkage chain , i . e ., the sequence of programs which have 
been called , but which have not yet returned to their calling programs . 
For example , if a main program named MAIN calls a subroutine named SUB , 
which attempts to compute DLOG (- s . DO) , then the linkage chain is DLOG , 
SUB , MAIN , and SYSTEM . Using the various TRACER commands, the arguments 
to each program in the linkage chain can be inspecte d or altered , 
execution can be resumed at any entry or retur .n point of a program i n 
the linkage chain , or one can simply return control to the system . The 
TRACER commands are read from the logical I/O unit GUSER using a " :" or 
"?" prefix depending on whether the previous command was successfully 
or unsuccessfully executed , respectively . All TRACER output is printed 
on SERCOM . For a complete description of the traceback program , see 
Computing Center Memo 218 . 

~g!!!EJ,~ l : 

C PROGRAM TO COMPUTE THE SQUARE ROOTS OF THE 
C ABSOLUTE VALUES OF THE NUMBERS READ FROM THE 
C INPUT STREAM AND KEEP A COUNT OF THE TOTAL 
C NUMBER OF NEGATIVE NUMBERS READ . 

EXTERNAL SQRT 
INTEGER I/O/ 

10 READ 100 , X 
Y ; SQRT (X,I ) 
PRINT 200 , X, Y, I 
GO TO 10 

100 FORMAT (E20 . 8) 
200 FORMAT (2E17,. 9,Is ) 

END 

If the fo urth statement in example 1 is replaced by 

Y ; SQRT (X, I ,1 0) 

then traceback processing will occur when the 11-th negati ve argument is 
passed to SQRT. 

C PROGRAM TO TEST THE IDENTITY 
C COS (X) **2 + SIN (X) **2 ; 1 
C FOR VALUES OF X READ FROM THE INPUT STREAM. THE 

The Elementary Function Library 507 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

t;lHI!!lI1:t!l !!: 

The use 
elementary 
code of 4. 

October 1976 

C DSIN AND DCOS ROUTINES ARE UNDEFINED FOR X > PI*2**50, 
C BUT THE DEFAULT VALUES CHOSEN GUARANTEE THE IDENTITY_ 

EXTERNAL DCOS,DSIN 
REAL*8 DCOS,DSIN,X,ONE 

10 IER = 0 
READ 100,X 
ONE = DCOS(X,IER,IER,O.DO)**2+DSIN(X,IER,IER,1 . DO)**2 
PRINT 100,IER,ONE 
GO TO 10 

100 FORMAT (E20 . 8) 
200 FORMAT (I 3 , E17 . 9) 

END 

of the following parameter list would guarantee that the 
function would always denote error situations by a return 

ERRCNT 
DC 
DC 

A(argument) ,xL1'FF',AL3(ERRCNT) 
FlO' 

In addition, the word ERRCNT would be automatically updated to maintain 
a count of the total number of errors. Taking the other extreme , the 
parameter list 

DC A(argument,O) 

would guarantee the invocation of the 
monitor ' s attempt to increment the 
addressing exception. 

tl£ih!l!!l£i~££:t_I~Q£i~QQ§ 

traceback program, since the error 
count parameter would cause an 

The following descriptions of the mathematical functions are limited 
to error conditions which may arise in these programs. These routines 
are consistent with the FORTRAN IV library function~ currently distri
buted with the System/360 Operating System , and have been documented by 
IBM in their publication !§tl __ ~Y§i!l!!lLJ§Q_QI1!l£gi~llg_§Y§i!l~_IQglghM_!Y 
bi££g£y_=_tl£ih!l!!lgii££:t_£Q~_§!l£Y~£!l_§g£££Qg~!!l§' form GC28-6818. 

Square Root 

Because SQRT and DSQRT are specifically defined as being real
valued functions, they are not defined for negative real arguments , 
as the square root of a negative number is pure imaginary, i_e., if 
x(O then x** 1/2 = io jxj ** 1/2 . The default function value computed 
when the argument is negati ve is "he square root of the absolute 
value of the argument . 

508 The Elementary Function Library 



( 

( 

( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

Common and Natural Logarithm 

The real-valued logarithm functions ALOG, ALOG10, DLOG and DLOG10 
are not defined for negative arguments, since the logarithm of a 
negative number is complex, i.e., if x<O then In(x) ; In (l x l) 
iopi . The defaul t function value is the appropriate logarithm of 
the absolute va lue of the argument . 

All of the logarithmic function routines are undefined for a zero 
argument, as this is a pole of the logarithm f unction . AFpropri
ately, the default function valu e is negative machine infinity , 
i ,. e., roughly - ,.72370050 10 76,. 

Exponential 

The real-valued functions EXP and DEXP can be properly defined only 
in the ' interval [-180.2182 ,17 4. 67308], because of the range re
strictions imposed by the floating - point representation. The 
largest positive number representable in System/360 floatin~-point 
form is 16630(1-16-14), and the natural logarithm of this number is 
approximately 174.67308 . Similarly , -180.2182 is the logarithm of 
the smallest positi ve number , 16- 65 • The actual domains are as 
follows: 

EXP (hex) 
DEXP (h ex) 

EX P (dec) 
DEXP (dec) 

-B4.37DF 
-B4.37DEFFFFFFFF 

-180. 2 18 2 46 
-1 80.218246459960934 

If the argument exceeds the right-hand limit, 
value is machine infinity . If the arg ument 
left-hand limit, the default function value is 
situation is regarded as an error if and 
exceptions are enabled by the program mask. 

AE.AC4F 
AE.AC4EFFFFFFFF 

174.673080 
174.67308044433593 4 

the defa ult function 
is less than the 
zero; however, this 
only if underflow 

It should be noted that the domain of the exponential prcgrams is 
slightly smaller than the r ange of the corresponding natural 
logarithm programs . Hence, the expressio ns EXP(ALOG (X» and DEXP ( 
DLOG (X» are not computable for values of X extremely close to the 
ends of the machine range. 

The complex-valued functions CEXP and CDEXP have an analogous 
domain restriction on the real part of the complex argument, and an 
additional restriction on the imaginary part due to the sine and 
cosine function evaluations required . Whether the complex argument 
satisfies the domain restrictions or not, the value of the 
CEXP (x+ioy) will be 

EXP (x) o[ COS (y) +ioSIN (y ) ] 

and that of CDEXP (x+ioy ) will be 

The Elementary Function Library 509 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

DEXP (x) o[ DCOS (y ) +ioDSIN (y) ] 

Trigonometric Functions 

The domain restrictions of the real-valued trigonometric . functions 
COS, SIN , TAN, COTAN , DCOS, DSIN, DTAN and DCOTAN are imposed to 
mai ntain accuracy. These furictions are computed by r educing the 
arg ument to the inter val [-Pi/4, Pi/4 ] by using the per iodicity of 
these f unctions . For very large arg uments this reduction yields so 
fe w significant digits in the red uced argument that meaningf ul 
comp utation of the fu nction val ue is impossible . The singl e
precision functions require 

I x l < 2 IS oPi = C90FD.9 = 823549 .5 63 

while the limit for the double-precision functions is 

Ixl < 25 00 Pi = C90FD9FFFFFFF.F = 353711 8706008063 . 94. 

The default function va lue is uniformly zero . 

In addition , the tangent and cotangent funct10ns will object if the 
argument is too close to one of their singularities to maintain 
acc uracy , or if the function value would exceed the machine range . 
In these situations , the default f un ction value is machine infinity 
with the sign of the arg um ent . 

Th e complex sine and cosine functions CCOS, CDCOS , CSIN and CDSI N 
can be defined as 

sin (x+ioy) = sin (x) ocosh (y)+ i ocos (x ) osinh (y), 

cos (x+ioy) = cos (x) ocosh (y) +i osin ( x) osinh (y). 

These formulas illustrate why a trigonometric - type domain restrict 
ion is applied to x, and an exponential-type domain restricticn to 
y. The defa ult function value is derived from the defa ult values 
supplied by the appropriate sine , cosine and exponential routines, 
where cosh ( y) and Isinh(y) I become machine infinity di vided by 2 
when I y l is too large . 

Inverse Trigonometric Functions 

The domain of the inverse si ne and cosine functions AR COS , ARSIN , 
DARCOS and DARSIN is the range of the sine and cosine functions, 
i.e. , [-1,1]. Outside this interval , th e default function value is 
zer o. 

The inverse tangent routines ATAN2 and DATAN2 are undefined only 
for the argument pair (0.,0.), for which the default function value 
is zero_ In effect , gi ven the argument pair (y , x), these routines 
compute the principal value of the argument of the complex number 
x+iey_ 

510 The Elementary F unction Library 



( 

( 

( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

Hyperbolic Functions 

The value of the hyperbolic sine and cosine of x exceed the range 
of the machine when I x l approaches the logarithm of machine 
infinity . Specifically , the domain of the COSH and SINH routines 
is described by 

I XI ~ AF.5DCO = 17 5 . 3662 11, 

and that of DCOSH and OSINH by 

Ix l ~ AF.5DCOFFFFFFFF = 175.366226 196289059. 

the defa ult function value is machine infinity with the appropriate 
sig n . 

Gamma and Log-gamma Functions 

Like the e xponential function , these tunctions exceed machine range 
o utside their domains of de finition and ha ve a default f unction 
value of machine infinity . The specific hexadecimal inter vals of 
def i nition are 

GA MM A 
OGA MMA 
ALGAMA 
OLGAMA 

[.1 0000 1.1 6- 62 , 39 . 9300 ] 
[.1 0000 1 . 16- 62 , 39 . 930CFFFFFFFF] 
[ 0, .1 84030 . 16 62 ] 

[O,.184D2FFFFFFFFF.16 62 ] 

while in decimal these intervals become 

GAMMA 
OGAMMA 
ALGAMA 
DLGAMA 

[ . 138 178829. 10- 15 ,5 7.57 44 17 1 ] 
[ .138 178828658954 04.10- 1 5 ,57.57 441 7 1142578089 ] 
[ 0 ,.4293 7 058 1. 10 1 4 ] 

[ 0 ,.4293 7058 100824 1143. 1074 ] . 

Complex Arit hmetic Operations 

CMPY# 
CD VO# 
CDMPY# 
COD VD# 

Algorithm : 

(CO MPLEX*8 - multiplicand , COMPLEX*8-multiplier ) 
(COMPLEX*8-dividend , CO MPLEX*8 - di visor ) 
(COMPLEX* 16-multiplicand , COMPLEX* 1 6-m ultiplier ) 
(COMPLEX*16-dividend , COMPLEX* 16-divisor ) 

The multiplication algorithm takes t he form 

(x+iy ) 0 ( u+iv ) = (xo u-yo v) +i (vo x+uoy ). 

The division algorithm i s likewise direct , and takes t he form 

The Elementary F unction Library 5 11 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

J!!g~Y!YL~~Jg!Y=Y~!L 
U·U+V·V 

Error Conditions: 

Both underflo w and overflow exceptions may occur during the 
formation of the fina l result. If underflo ws are masked off 
and uou and vov underflow, a zero · di vi de exceptio n may also 
occ ur . 

Exponentiation 

FIXPI# 
rRXPI# 
rDXPI# 
rcx PH 
rCDXI# 

(IN TEGER* 4'base ,IN TEGER* 4- exponent ) 
(REAL*4 ' base ,IN TEGER*4-exponent ) 
(REAl*8 'base ,INTEGER*4- e xponent) 
(COMPLEX*8-base , INTEGER*4-exponent) 
(COMPLEX· 16·base , INTEGER 0 4-exponent ) 

Algorithm: 

Though each of these routines differ in some way, they a ll 
obtain the result by the successive squaring algorithm. This 
a l gorithm exploits the binary representation of the integer 
exponent to compute R=B**I in the fo llo win g steps: 

(1) Initialize R= 1., S=B and k= O. 
(2) If the k-th bit of I I I is 1, replace the c ur rent value 

of R by a os . 
(3) If one or more of the un examined bits of III is 1, 

replace S by 5 0S , increment k by 1, and return t o step 
(2); o ther wise , R= B**III. 

The FIXPH routine recognizes a number of special cases, none 
of which actually reguire any computation . 

Base : .. 0 1 ·1 -1 .. 0 
Exponent : 0 any e ven odd <0 
Res ult: 1 1 

During the course of the 
range-checked, con seg uently , 
in mac hine range, i.e. I less 

1 -1 0 

algorithm, the result is not 
the result is va lid only if it is 
than 2 31 = 2 ,147,483 ,648. 

The FRXPI# and FDXPI# routines form B** I I I, and then divide 
this result into 1.0 if I is negative. Both routines 
recognize a nonzero base and zero exponent as a specia l case 

- having value 1. These routines range-check the res ult as i t 
is be ing formed , and will invoke e rror processing if B.oIII or 
B**I are not machin e representable . In FRXPI# , B*.,I, is 
formed in double precision . 

512 Tbe Elementary Function library 



( 

( 

( 

MTS 3 : SYSTEM SUBROUTINE DESCRIP!IONS 

October 1976 

In the FCXPI# and FCDXI# routines , a negative exponent causes 
the base to be inverted before tbe s uccessive squaring 
algorithm is applied . Both routines recognize a nonzero base 
and zero e x ponent as a special case baving value 1. These 
routines do not range-check tbe res ult a nd are s Jbj ect to 
u nderflow and overflow exceptions . Note that if underflow 
exce ptions are maske d off , the complex base is e xtr emel y 
small, and the expone nt negative , a zero-di vide exce pticn may 
occur wh e n the base i s initially in verted . These routines use 
the end of the sa ve area for scratch storage . 

Error Conditions: 

All of tbese ro utines recognize a zero 
expone nt as an error . In addi tion, the 
routines will invoke error processing if 
fina l result is o utside machine range . 
default f unction val ue is zero. 

FRXPR# 
FDXPD# 

Algorit hm: 

( RE AL*4-base ,REAL* 4-e xpon ent) 
(REAL*8-base,REAL*8-exponent) 

base and nonpositive 
FRXPI# and FD XPI# 

either B** III or the 
In all cases, t he 

The res ult is obtained b y using the appro priate logarithm and 
e xpone ntial routines, i.e. , 

e ** (e xponentoln(base». 

These routines recognize as a special case tbe co mbinat i on of 
a zero base a nd pos~tive exponent . Note that if e xp onent-ln( 
base) < 0, the final result is not in machine r ange , and 
underflows are masked off , these routines may ret u rn a res ult 
of zero . 

Error Conditions : 

The combination of a zero base and nonpositive expo nent causes 
error processing to be invoked with a default value of O. 
Denote t he base by B and the exponent by E. If B(O , but 
I BI**E is in machine range, the default function value is 
I BI**E. If Eoln (I BI) is within machine rang e , but the result 
i s not, the default f unction va lue will be zero if Eo1n (IBI) ( 0 
and machin e infinity if Eoln(I BI»O. If Eo1n (I BI) is not in 
mac hin e range , the default function val ue is zero .• 

DREAL and DIMAG Functions 

DREAL 
DIMAG 

Algorithm: 

(COM PLEX* 16-variable ) 
(CO MPLE X* 16 -variable) 

The Element ary Fun ct i on Library 513 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

Although these routines are described in the FORTRAN language 
manual, the currently a vailable FORTRAN compilers do not 
recognize these names as anything special. Consequently, it 
is normally necessary to explicitly declare them as REAL*8 
functions, as otherwise they will be assigned the default 
mode. 

These routines are extremely trivial, consisting of the 
minimum of three instructions. Only general register 
floating'point register 0 are altered by these routines, 
sav e area is not required. 

Error Conditions : 

bare 
1 and 
and a 

These routines are subject to specification exceptions , as 
they assume the argument is doubleword-aligned. 

ANSI Minimum/Maximum Value Functions 

MINO/MAXO 
AMINO/AMAXO 
MI N 1/MAX1 
AMIN1/AMAX1 
DMI N 1jDM AX 1 

Algori thm: 

(IN TEGER* 4 - variable , ••• ) 
(INTEGER* 4-v ariable , ••• ) 
(REAL*4-variable, •.• ) 
(REAL*4- variable , ••. ) 
(REAL*8 -variable , ••• ) 

These routines are identical in struct ure, accepting a vari
able number of arbitrary arguments of the appropriate mode and 
recognizing no error situations. The result modes of these 
entry points are determined by the first character of the 
function names as follows : M=INTEGER*4, A=REAL*4 and D=REAL* 
8 . The number of arguments processed is determined by the 
last argument flag, and consequently, addressing or protection 
exceptions may occur if this flag is not properly set . 

514 The Elementary Function Library 



( 

( 

( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

The return codes that may result from a call on an input or output 
subroutine depend on the type of the fi l e or the device used in the 
operation. In general, a return code of 0 means successful ccmFletion 
of the input or output operation , and a return code of 4 means 
end-of-file for an input operation and end-of-file-or-device for an 
output operation . If the file or device being u sed was specified as 
part of an explicit concatenation (and is not the last member of that 
concatenation ), a return code of 4 causes progression to the next 
element of the concatenation , and that return code is not passed back to 
the caller (un l ess the NOEC modifier was specified) . Thus, for example , 
if 

SCARDS=A+B 

then when the call is made to the SCARDS subroutine after the last line 
in A has been read, the file routines signal an end-of-file , but this is 
intercepted, and the first line in B is read instead. 

Return codes greater than 4 are normally not passed back to the 
caller but instead, an error comment is printed and control is returned 
to MTS command or debug mode . There are two ways to suppress this 
action and gain control in this situation. First , the subroutines 
SETIOERR and SIOERR (see descriptions in this vol u me) are provided to 
permit a global intercept of all input/output errors . Second, specify 
ing the ERRRTN modifier on an I/O subroutine call will cause all return 
codes to be passed back. 

A description of the return codes that may occur with a patticula r 
fi l e or device is given with the appropriate sections of MTS Volume 4. 
In addition , a summary is gi ven below . Nonzero return codes marked with 
an asterisk are normally not ~assed to the calling program; the others 
are always p~ssed to the calling program. 

Files: 
Input o 

4 

8* 
12* 
16* 
20* 
24* 

28* 

Successful return 
End-of-file (sequential read) 
Line not in file (indexed read) 
Error 
Access not allowed 
Cannot wait due to deadlock 
Illegal operation on sequentia l file 
Backwards operation not allowed on sequential 
file 
Wait interr upted 

I/O Subroutine Ret urn Codes 5 15 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

Output 

Magnetic Tape: 
Input 

Output 

0 
4 

4* 
8* 
12* 
16* 
20* 

24* 
28* 
32* 
36* 
40* 

o 
4 

8 

12* 

16* 

20* 
24* 

28* 
32* 

36* 

o 
4 

8 

October 1976 

Successful return 
End-of-file (line number not in line-number 
range) 
Size of file e xceeded 
Line numbers not in sequence (SEQWL) 
Access not allowed 
Cannot wait du e to deadlock 
Sequential file written with inde xed modifier, 
or written with starting line number other than 
1 
Disk allotment exceeded 
Hardware or system error 
Line truncated (WSP on sequential file ) 
Line padded (wSP on sequential file) 
Wait interrupted 

Successful return 
Tape-mark (end-of-file) sensed on read, BSR, or 
FSR operation 
Load point reached on BSR or BSF control 
command 
Logical end of labeled tape reached on read, 
FSR, or FSF operation 
Nonrecoverable hardware I/O error, data con
verter check, invalid control command, or inva
l~d control command parameter 
Should not occur 
Fatal error (m ay be due to hardware malfunc
tion, label error in which the position of the 
tape is uncertain, or pulling the tape eff the 
end of the reel during a read, FSR, or FSF 
operation); following a fatal error, the tape 
must be rewound before any other I/O operation 
is allowed 
Volume or data set in error 
Sequence error caused by issuing a control 
command wh en the tape is not positioned proper
ly; or a read, FSR, or FSF operation following 
a write operation 
Deblocking error caused by improper blocking 
parameters, e.g., attempting to deblock a for
mat FB file us ing a format VB specification 

Successful return 
End-of-tape marke r sensed during write or WTM 
operation 
Load point reached on BSR or BSF control 
command 

516 I/O Subroutine Return Codes 



( 

( 

( 

October 1976 

Paper Tape : 
Input 

Card input under 
Input 

output 

Printed output : 
Input 

Output 

MTS 3 : SYSTEM SUBROUTIN E DESCRIPTIONS 

12* Attempt to write more than 5 additiona l records 
after end - of-tape marker se nsed 

16* Nonrecoverable hardware I/O error , data con 
verter check, invalid control command , or inva
lid control command parameter 

20* Attempt to write on file-protected t ape or 
unexpired file 

2 4* Fatal error (may be due to hardware malfunc
tion, label error in which the position of the 
tape is uncertain , or pulling the tape off the 
end of the reel during a r ead , FSR, or FSF 
operation) : following a fatal error, the tape 
must be rewound before an y other I/O operation 
is allowed 

28 * Volum e or data set in error 
32* Seq uence e rror caused by issuing a control 

command wh en the tape is not positioned Froper
ly: or a read, FSR , or FSF operation following 
a write operation 

36* Blocking e rror caused by improper blocking 
parameters or parameters which are inconsistent 
with the labels of the file being written 

o 
4 
8* 
1 2* 
16* 
20* 

HA SP : 
o 
4 
8* 

8* 

8* 

o 
8* 

Successful return 
End-of-file 
End -of-tape 
Invalid control command 
Hardware malfunction 
Parity error 

Successful return 
End-of-file 
Attempt to read in column binary mode 

Attempt to write on card reader 

Attempt to read from printer 

Successful return 
Local page limit exceeded 

I/O Subroutine Return Codes 5 17 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

punched output: 
Input 

Output 

MERIT Network: 
Input: 

Output 

8* 

a 
8* 

a 
4 

8* 

12* 
16* 
20* 
24* 
28* 

a 
4* 
8* 

12* 
16* 
20* 
24* 

October 1976 

(user U~Y~£ regains control after a global 
limit is exceeded) 

Attempt to read from punch 

Successful return 
Local card limit exceeded 
(user ll~Y~£ regains control after a global 
limit is exceeded) 

Successful return 
End-of-file read from network. This dces not 
necessarily mean that there is no more data to 
be read from the network , only that the remote 
host has sent an end-oi-file . 
Read not allowed; must write. This means that 
the remote host is requesting input from the 
network and, to avoid a deadlock, the local 
program must not read from the network. The 
prompting characters sent by the remote host 
when it did the read are returned to the user. 
Should not occur 
Connection is closed: no I/O may be done 
Should not occur 
Attention interrupt received from network 
Same as return code 8 except that the remote 
host has requested that the input area be 
blanked for tlnll characters, where Ilnll is 
returned as a 2-digit decimal number followed 
by the prompting characters. A value of "00" 
means that no specific number of characters has 
been specified. 

Successful return 
Should not occur 
Write not allowed; must read. This means that 
the remote host has issued a write on the 
network and, to avoid a deadlock , the local 
program must not write on the network. 
Should not occur 
Connection is closed: no I/O may be done 
Should not occur 
AtteLtion interrupt received from network 

518 I/O Subroutine Return Codes 



( 

( 

October 1976 

Control 

Most other devices: 

o 
4* 
8* 

1 2* 
16* 
20* 
24* 

Input 0 

Output 

4 
8* 

o 
4 
8* 

MTS 3: SYSTEM SUBROUTIN E DESCRI PTIONS 

Successful r e turn 
Should not occur 
Control command not allowed-- the remcte hos t 
has ~ot done a read 
Should not occur 
Connectio n i s closed: no 110 may be done 
Invalid s yn tax or context for control comm a nd 
At tention interr upt r eceived from netw o rk 

Successful return 
End - of - f ile 
Error 

Successful return 
End-of-file-or-devi ce (i f applicable ) 
Error 

1/0 Subroutine Retur n Codes 519 



sapo~ u~n~aa aUT~no~qns olr OZS 

9L6L :raqo~"o 

SNoI~dla~s~a ~NI~nOagns w~~sxs '£ S~H 



( 

( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

This section lists all the 110 modifiers that may be used with 
FDnames or with calls to 110 subroutines. 

The device types discussed below in the exceptions to the default 
modifier bit specifications are the device types as returned by the 
GDINFO subroutine. The device types discussed here are: 

PTR 
MRXA 

3270 
POPS 

SDA 
HPTR 
tlNET 

Printers 
Terminals via Memorex 1270 Terminal Controller 
(includ es TTY and 2741 ) 
IBM 3270 Display Station or co urier C- 270 Display Station 
Terminals via the Data Concentrator 
Synchronous Data Adapter 
Printed output via the batch monitor 
MERIT Computer Network 

The values indicated below with each bit specification are the valu es 
that the modifier word for a subro utine call would have if only that 
modifier option wa s specified. 

Bit 31 
30 

SEQUENTIAL, S 
INDEXED, I 

Value: 1 (dec ) 
2 

00000001 (hex) 
00000002 

Default: SEQUENTIAL 
Exceptions: N OLe 

The SEQUENTIAL modifier specifies that 
operation is to be done sequentially. 
er specifies that an indexed operation 

the input or output 
The INDEXED modifi
is to be performed. 

In general, the INDEXED modifier ~s applied only to 
files, while the SEQUENTIAL modifier is applied to 
files, sequential files , and all types of devices. 
that the SEQUENTIAL modifier and the sequential file 
not directly related. 

line 
line 
Note 
are 

110 operations involving !!ll~ fi!~§ may be performed with 
either SEQUENTIAL or INDEXED specified. 110 operations 
involving §~gg~ll11~! t1!~§ must be done SEQUENTIAlly . If 
the user specities INDEXED on an 110 operation to a 
sequential file, an error message is generated unless the 
global switch SEQFCHK is OFF, in which case the operation 
is performed as if SEQUENTIAL was specified . Attempting a 
sequential operation with a starting line number other 

110 Modifiers 521 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Bit 29 
28 

October 1976 

than 1, e . g. , :SC,OPY FYLE (2), also gives an error comment 
if SEQFCHK is ON. 

I/O operations involving aevices , such as card readers , 
printers, card punches, magnetic tape units, paFer tape 
units, and terminals, are inherently sequential and are 
normally done SEQUENTIALly. If the SEQUENTIAL modifier is 
specified, the line number associated with the line is the 
value of the current line number plus (minu s , if the 
back wards I/O modifier is given) the increment specified 
on the FDname . If the INDEXED modifier is specified , the 
line number associated with the line is the line number 
specified in the calling sequence. For devices, the 
INDEXED modif1er is used primarily in conjunction with the 
PREFIX modifier . Note that the device treats the I/O 
operation as it SEQUENTIAL were specified. 

For further details about indexed and sequential input/ 
output operations, see the section II Files and Devices " in 
MTS Volume 1. 

EBCD 
BINARY, BIN 

Default : EBCD 
Exceptions: None 

Value: 4 (dec ) 
8 

0000000 4 (hex) 
00000008 

The EBCD/BINARY modifier pair is device-dependent as to 
the action specified. For card readers and punches , the 
EBCD modifier specifies EBCDIC translation of the card 
image; this means that each card column represents one of 
the 256 8-bit IBCDIC character codes . The BINARY modifier 
specifies that the card images are in column binary 
format; this means that each card column represents two 
8-bit bytes or information. The top six and bottom six 
punch positions of each column correspond to the first and 
second bytes, respecti vely, with the high-order two bits 
of each byte taken as zero . Printers and files ignore the 
presence of this modifier pair. 

Other device support routines that recognize this modi~ier 
pair are: 

(1) The Data Concentrator routines 
(2) The Memorex 12 70 Terminal Control l er routines 
(3) The Paper Tape routines 
(4) The 3270 Display Station routines 

For information on the use 
specifications involving the 
respective sections of MTS 
support routines recognizing 

of this modifier pair in 
devices listed abo ve, see the 
Volume 4. The list of device 
this modifier is s ubj ect to 

522 I/O Modifiers 



( 

( 

( 

Octob er 1976 

Bit 27 
26 

Bit 25 
24 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

change withou "t notice. Users who 
programs device-independent should 
modifier. 

wish 
not 

LOWERCASE, LC 
CASECONV, UC 

Value: 16 (dec ) 
32 

Default: LOWERCASE 
Exceptions: None 

to keep their 
specif y this 

00000010 (hex ) 
00000020 

The LOWERCASE/CASECONV modifier pair is not device
dependent. If the LOW ERCASE modifier is specified , the 
characters are transmitted unchanged. If the CASECONV 
modifier is specified , lowercase letters are changed to 
uppercase letters. This translation is performed in £h~ 
g§~~~§ Yi~£Y~l ~~~Q~Y ~~giQn· On input operations, the 
characters are read into the user's buffer area and then 
translated. On output operations , the charact ers are 
translated in the user's buffer area and then written out. 
Only' the alphabetic characters (a- z ) are affected by this 
modifier. Unlike IBM programming systems , MTS considers 
the characters ¢, II, and ! as special characters rather 
than "alphabetic extenders ," and thus, the UC modifier 
does !!Ql convert ¢, .. and into a: , #, and $, 
respectively. 

NOCARCNTRL, NOCC Value: 
CC, STACKERSELECT , SS 

Defa ul t: NOCARCNTRL 

64 (dec ) 
128 

00000040 (hex) 
00000080 

Exceptions: CC fo r PTR, MRXA, 3270, PDP8 , SDA, HP1R , TTY , 
2741 , DISP, 1052, 1443, 2260, 3066, and BNCH 
Controlled by device commands for MN El 

The NOCC/CC modifier pair is device-dependent. lhis 
modi fier pair controls whether logical carriage control 
(or stacker-selection) on output records is enabled. For 
printers and terminals, the first character of each record 
is taken as logical carriage control if it is a valid 
carriage-control character and if the CC modifier is 
specified. If the first character is not valid as a 
carriage-control character, the record is written as if 
NOCC were specified . For further information on logical 
carriage control, see Appendix H to the section "Files and 
Devices" in MTS Volume 1. For card punches, the first 
character of each card image is taken as the stacKer
select character if it is a valid logical stacKer-sel ect 
character (a, 1, or 2) and if the SS modifier is 
specified. If the first character is not valid as a 
stacKer-select character, the card image is punched as if 
NOCC were specified. The SS modifier is intended only for 

I/O Modif i ers 523 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Bit 23 
22 

October 1976 

those users who are communicating dir ectly with a phy sical 
pu nc h (n ormally system programmers) and is not in tended 
for normal batch use . Note tha t the SS and CC modifiers 
reference the same modifi e r bit and thus may bE used 
interchangeably. 

The magne tic tape and paper tape routines also recognize 
this modifier pair. For a descript i on of this capability, 
see MTS Volum e 4. Files ignore thi s modifier pair. 

PREFIX , PFX 

Defa ult : ~PREFIX 

Exceptions : None 

Value: 256 (dec ) 
5 12 

00000100 (he x) 
00000 200 

Th e PREFIX modifi er pair contro l s the pref ixing of the 
c urrent input or outp ut lin e wi t h the curre nt line number. 
On ter minal input, the current input line numb e r is 
printed before eac h inp ut line i s reg ues t ed . Th e line 
numb e r used is determined as s pecifi e d in the description 
of the SEQUENTIAL and INDEXED modifiers. An e xampl e for 
terminal input is 

$C OPY *SOURCE* ( 6 ,, 2 ) ~PFX A( 6,, 2) 
6_ first i np ut line 
8_ second input line 

e nd- of- fil e indicator 

Note that this would hav e the Same effect with respect to 
line numberin g as 

$GET A 
$NUM 6,2 

6 first inp ut line 
8- second input line 

xX_$UNN 

Th e c urrent (prefix ) line number is not necessarily 
equiva l e nt to the file line numb e r. In the e xample a bove , 
t he prefix line and the file line nu mbers were ex plic itly 
made to corres~ond by a l so specifying a line n u mber range 
on the o utpu t FDname (the file A). On input fro m card 
readers and files , the PREFIX modifie r has no effect. On 
t e rminal outp ut, the current line number is printed before 
each o utput line i s written . The lin e number used i s 
determ in ed as specif i e d in the sec t ion "Files and De vices " 
in MTS Volume 1. An e xample for terminal outp ut is 

524 I/O Modifiers 



( 

( 

( 

October 1976 

Bit 21 
20 

MTS 3: SYSTEM SUB ROUTINE DESCRIPTIONS 

$COPY A(1,10) *SINK*(100,,2)~PFX 
100 firs t output line 
10 2 second o utput line 

Note again that the current line number is not equi valent 
to the file line number. On output to the printer cr to a 
file, the PREFIX modifier has no effect . 

If the INDEXED and PREFIX modifiers are given together for 
terminal output, the line numbers referenced by the 
INDEXED modifier are the same as those produced by the 
PREFIX modifier. As an example , consider the following 
FORTRAN program segment : 

INTEGER*2 LEN 
DATA MOD/Z00000202/ Enables INDEXED, PREFIX 

1 CALL READ (REG,LEN,0,LNR, 2 ,&2) 
CALL WRITE(REG,LEN,MOD,LNR,3) 
GO TO 1 

2 STOP 

This program performs a 
INDEXED and PREFIX. The 
the above into -LOAD) 

read SEQ UENTIAL and a write 
command (ass uming compilation of 

$RUN -LOAD 2=A 3=*SINK* 

is equiva l ent to 

$COPY A *SINK*wIwPFX 

which is also similar to 

$LIST A 

with a slightly different formatting of the line numbers. 

PEEL, GETLINE#, 
RETURNLINE# 

Default: ~PEEL 

Exceptions: None 

Value: 10 24 (dec) 
20 48 

00000400 (hex) 
00000800 

The PEEL modi~ier pair has two functions , depending upon 
wh et her it is specified on input or on output. On input, 
if the PEEL (GETLINE#) modifier is specified , a line 
number is removed from the front of the current input 
line. The line number is con v erted to internal form 
(external value times 1000) and ret urned in the line 

I/O Modifiers 525 



ctTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

number parameter during 
subroutine description of 
of the line is moved into 
an example, consider 

the read operation (see the 
SCARDS and READ ). The remainder 
the input region specified . As 
the following FORTRAN program 

segment: 

INTEGER*2 LEN 
DATA MOD/2048/ 

1 CALL SCARDS (REG,LEN , MOD,LNR,&2 ) Read with PEEL 
CALL SPRINT (REG ,LEN ,O,LNR) 
GO TO 1 

2 STOP 

The program 
and writes 
tion of the 
follows: 

reads an input line, removes the line 
out the line without its line number. 

object module of the sample program 

$RUN -OBJ SCARDS=*SOURCE* SPRINT=ABC 
10AAA 
12 BBB 

is equiv alent to 

$COPY *SOURCE*wGETLINE# ABC 
10AAA 
1 2BBB 

Listing the file ABC produces 

$LIST ABC 
1 AAA 
2 BBB 

Dumber, 
Execu
is as 

If the PEEL modifier is specified on input in conj unction 
with the INDEXED modifier on output, the line number of 
the input line can be used to control the destination of 
the line during output . For exa mple: 

INTEGER*2 LEN 
DATA ~OD1/2048/, MOD2/2/ 

1 CALL SCARDS (REG,LEN,MOD1,LNR,&2 ) 
CALL SPRINT (RE G,LEN,MOD2 ,LNR) 
GO TO 1 

2 STOP 

Read with PEEL 
Write INDEXED 

This program reads an input line, removes the line number, 
and writes out the line with the extracted line number as 
the line number specification for an indexed writE opera
tion. The following sequence (a ssuming compilation of the 
abo ve into -LOAD) 

526 I/O Modifiers 



( 

( 

( 

October 197 6 

Bit 19 
18 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

$RUN -LOAD SCARDS=*SOURCE* SPRINT=ABC 
10AAA 
1 2BBB 

is equi valent to 

$COPY *SOURCE*@GETLINE# ABC@I 
10AAA 
12BBB 

which is also equi valent to 

$GET ABC 
10AAA 
12BBB 

Listing the file ABC produces 

$LIST ABC 
10 AAA 
12 BBB 

On output, if the PEEL (RETURNLINE#) modifier i s speci
fied, the line number of the c urrent output line is 
returned in the line number parameter of the s ubrout i ne 
call during the write operation (see the subroutine 
descriptions of SPRINT , SPUNCH , SERCOM , and WRITE). The 
line itself is writt en out and is unaffected by the 
presence or absence of this modifier. The modifier is 
used on output to aid the programmer in recording the line 
number of the current line written out. 

MACHCARCNTRL, MCC 

Default: ~MCC 

Exceptions: None 

Value: 4096 (dec) 
8 192 

00001000 (hex) 
00002000 

The machine carriage-control modifier pair is device
dependent. The MCC modifier is used for printing output 
(v ia printers or terminals) from programs producing output 
in which the first byt e of each line is to be us ed as a 
machine carriage-control command for output to an IBM 1403 
(or 1443) printer. If the MCC modifier is specified and 
the first byte of the output l ine is a valid 1403 machi ne 
carriage-control command code, the line is spaced accord
ingly and printing starts with the next byte as column 1. 
If the first byte is not a valid 140 3 machine carriage
control command code, the entire line is printed using 
single-spacing. Spacing operations performed by machine 
carriage control occur ~t!gr the line is printed (a s 
opposed to logical carriage control in which the spacing 

I/O Modifiers 527 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

Bit 17 
16 

Bit 15 
14 

October 1976 

is performed Q~!Q£~ each line is printed). Mo s t programs 
do not produce outp ut using machine carriage control. The 
few programs that do (e .g., *ASMG and *TEXT360) internally 
specify MCC for their output assuming that it is bcund for 
a printer. Hence MCC need not be specified. If the user 
directs the output to a file, MCC must be specified wh en 
the file is printed. For e xample , 

$ RUN *AS MG SCARDS;A SPRINT; B SPUNCH;C 
$COPY B TO *SINK*IDMCC 

The MCC modifier pair is ignored for files a nd devices 
othe r than printers, terminals con nected th r ough the 
Memorex 1270 Terminal Controller , or 32 70 Display ter
minals . For f urther inform ation on machine carriage 
control , see Appendix H to "Fi les and Devic es " in MTS 
Vo lume 1. 

TRIM 

Defa ult: , TRIM 

Val ue : 1638 4 (dec ) 
32 76 8 

Excepti ons : TRIM for 3270 , HPTR , and 3066 

00004000 (hex ) 
00008000 

Controlled by TRIM option of $SET command for 
l~Le files and seq uentia l fi l es 

The TRIM modifier pair is used to control the trimming of 
trailing blanKs from input or output lines. If the TRIM 
modifier is specified, all trailing blanks ~!g~~~ QU~ are 
trimmed from the line. If , TRIM is specifi ed , th e line is 
not changed . For an inp u t operation , tr imming does nQ~ 
physically delete the trailing blanks from t he line , but 
only changes the line length count . 

SPECIAL , SP 

Default: , SP 
Excepti ons : None 

Value: 65536 (dec ) 
131072 

00010000 (hex) 
000 20000 

The SPECIAL modifier pair is reserved for device-dependent 
uses. Its meaning depends upon the particular device type 
with which it is used . The device s upport routines 
recognizing this modifier pair are: 

(1) The file ro utines 
(2) The Data Concentrator routines 
(3) The paper tape rout i nes 
(4) The Memorex 1270 Terminal Controller routines 
(5) The 3270 Display Stati on ro utines 

528 I/O Modifiers 



( 

( 

October 1976 

Bit 13 
12 

Bit 11 
10 

Bit 3 

MT S 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

The file routines use the SPECIAL modifier to mean 
a read operation to a seq uential file , and to mean 
on a write operatio n to a seq uential file. 
sect i on " Files and Devices " in MTS Vol um e 1 . 

s ki p on 
replace 
See the 

Fo r information on the use of this modifier pair in 
specificati ons involving the devices listed above , see the 
corresponding sections of MTS Volume 4. Th e list of 
device s up port ro utines recognizing this modifier is 
s ubject to change without notice . Users who wish to keep 
their program s device -independen t sho uld not specify this 
modifier. 

IC 
Value: 262 144 (dec) 

52 4 288 
00040000 (hex) 
00080000 

Default: The setting of the I C global switch (initial
l y ON) 

Exceptions: No ne 

The IC modifier pair controls implicit concatenation. If 
t he IC modifier is s pecified, implicit concatenation 
occurs via t he " $CONTI NUE WITH" line . If ~IC i s speci
fied , im plicit concatenation does not occur. For example , 
$LIST PROGRAMw~IC li s t s the fil e PROGRAM and prints 
" $CONTINUE WITH" lines instead of in terpreting them as 
im pl i cit concatenation . Th e use of the IC modifier in I /O 
subrou tine calls or as appli ed to FDnames o verrides the 
setting of the implicit concatenation gaobal switch (SET 
IC =ON or SET IC=OFF) for the I/O operations for which it 
is s peci fi ed. 

FWD , FORWARDS 
BKWD, BACKWARDS 

Default: FWD 
Exceptions: Nor,e 

Val ue : 104 857 6 (dec) 
20 97 152 

00100000 (hex) 
00200000 

The forwards -backwards modifier pair contro l the direction 
of t he next seq uential read operation. On a read back
wards operation, t he information is placed in the desig
nated region in a manner identical to a read forwards 
operation, i. e ., t he front of the logical record i s placed 
at the beginning of t he region. For furth er details on 
using this mOdifier, see the section "Files and De vices " 
in MTS Volume 1. 

NOEC Val ue: 268435456 (dec) 10000000 (he x) 

I/O Modifiers 529 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Bit 2 

Bit 1 

October 1976 

Default: ,NOE C 
Exceptions: None 

If the NOEC modifier is specified (bit 3 in the mcdifier 
word is 1) when an I/O subroutine call i s made, explicit 
concatenation will be inhibited, i.e., if an end-of-file 
(r eturn code 4) bccurs, a return will be made to the 
calling program instead of proceeding with the next mem ber 
of the concatenation (i f any ). 

NOATTN Valu e : 536870912 (dec) 20000000 (hex ) 

Default: ,NOATTN 
Exceptions : None 

If the NOATTN modifier is specified (bit 2 in the modifier 
word is 1) when an I/O subroutine call is made, all 
pending attention interrupts, and all attention interrupts 
occurring during the call, are left pending . Normally, if 
an attention interrupt occurs but cannot be taken, either 
because the interrupt occurred in a sensit ive portion of 
the system or because of ex~licit s uppression, the A~N BIT 
bit (accessible through the GUINFO s ubroutin e ) is set , 
indicating that the interrupt has occurred; the taking of 
the interr upt is delayed un til the next I/O call. The use 
of the NOATTN modifier allows the further delaying of this 
interrupt by pre venting it from being taken on a given I/O 
call . If the ATTNOFF bit (accessibl e though the GUINFO 
s ubroutine ) is set, all attention interrupts occurring 
during execution of the program are left pending. The 
user may s uppress a pending interr upt by explicitly 
resetting the ATNBIT bit through a call to the CUINFO 
subroutine . The NO ATTN modifier may be used in ccnjunc
tion with t he ATTNOFF bit to suppress attention interrupts 
during the exec ution of selected portions of a program. 
This modifier may be used only with an I/O su broutine 
call; it may not be used with an FDname . 

ERRRTN Val ue : 1073741 824 (de c ) 40000000 (hex ) 

Default: ,ERRRTN 
Exceptions: None 

If t he ERRRTN modifier i s specified (b it 1 in the modifier 
word is 1) when an I/O call is made, and if an I/O error 
occurs when no SETIOERR/SIOERR interception has been 
established , the error return code i s passed back to the 
calling program instead of printing an error comment. The 
error commen t may be retrie ved by calling the s ubroutine 
GDINFO. Thi s modifier may be used only with an I/O 
subroutine call; it may not be used with an FDname. See 

530 I/O Modifiers 



( October 1976 

Bit 0 

( 

( 

MTS 3: SYSTEct SUBROUTINE DESCRIPTIONS 

the descriptioLs of SETIOERR and SIOERR this volume for 
furt her details. 

NOTIFY Value: - 2147483648 (dec ) 80000000 (hex) 

Default: ~NOTIFY 
Exceptions: None 

If the NOTIFY modifier is specified (bit 0 in the modifier 
word is 1) when a n IIO subroutine call is made, on return 
GRO is set to a value indicating what has happened: 

o = no unusual occurrence 
1 = new FDUB opened and no IIO done 
2 and above, reserved for future expansion 

A new FDUB is opened if implicit concatenation occ urred, 
if a change to the next member of an explicit concatena
tion is effected, if a replacement FDname is requested, or 
whenever a FDUB or logical IIO unit i s used for the first 
time. This modifier may be used only with an IIO 
subroutine call; it may not be used with an FDname . 

IIO Modifiers 531 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 19 76 

532 I/O Modifiers 



( 

( 

( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

This section contains lists of all the external symbols defined 
within the system that may be referenced by user programs. 

The first list is a master list of all the external symbols presented 
in alphabetical order. The first column contains the symbol name and 
the second column gives the library in which the symbol is defined. For 
the sake of brevity . the symbols listed as IHE • •. •• • IHI ••••• • and 
ILB.. .. . . represent a large group of symbols that start with these 
respective three-letter prefixes and are contained in the libraries 
PL1SYM . *ALGOLLIB . and *COBLIB . The complete list of these symbols is 
gi ven with the lists of symbols for each individual library . 

The remainder of the lists are separate lists for the symbols in each 
individual library . 

External Symbol Index 533 



ctTS 3: SYSTEct SUBROUTINE DESCRIPTIONS 

October 1976 

~i2h££gti££!_1~§t_Qf_~!i_2YmQQ!§ ADVLWR UNSP:LSLIPLIB 
ADVLWR *SLIP 

<El: L) Resident System ADVSEL UNSP:LSLIPLIB 
<FIX) Resident System ADVSEL *SLIP 
$CYLALOC Resident System ADVSER UNSP:LSLIPLIB 
$EX EC 1 Resident System ADVSER "SLIP 
$JQENT Resident System ADVSL UN SP : LSLI PLI B 
$PLCOMP *PL360LIB ADVSL *SLIP 
$POOLCHG Resident System ADVSNL UNSP: LSLIPLIB 
$ROUTAB Resident System ADVSNL *SLIP 
$SPACE *LIBRARY ADVSNR UNSP:LSLIPLIB 
**APLGOA *APLLIB ADVSNR *SLIP 
*APLCONA *APLLIB ADVSR UNSP:LSLIPLIB 
#CCPLOT *PLOTSYS ADVSR "SLIP 
#FPCON *LIBRARY ADVSWL UNSP: LSLIPLIB 
#IG *IG ADVSWL *SLIP 
#IGDSM *IG ADVSWR UNSP:LSLIPLIB 
#IGETDD *IG ADVSWR *SLIP 
#IGETHSP *IG AFGEN *CSMPLIB 
#IGINITT *IG AGSENS *IG 
#IGPD *IG AHI NAAS:SSP 
#PLTMOD *PLOTSYS ALGAMA Elementary Fen. Lib. 
#POSET *PLOTSY S ALGOLX *ALGOLWLIB 
#PRASTR *PLOTSYS ALI NAAS:SSP 
#PSYSYMB *PLOTSYS ALOG Elementary Fen. Lib. 
#PVIRT *PLOTSYS ALOG# Elementary Fen. Lib. 
#PWRIT *IG ALOG 10 Elementary Fen. Lib. 
#PWRIT *PLOTSYS ALPHA *CSMPLIB 
#PXBND *PLOTSYS AMAXO Elementary Fen. Lib . 
#RMTCOPY Resident System AMAx 1 Elementary Fen . Lib. 
iilTESTITP *LIBRARY AMINO Elementary Fen . Lib . 
ABSNT NAAS:SSP AIIIN 1 Elementary Fen . Lib. 
ACCEPT *LIBRARY AND *LIBRARY 
ACFI NAAS:SSP AND *CSMPLIB 
ACTIVCNT Resident Sy stem APCH NAAS:SSP 
ACTVLEF# *IG APFS NAAS:SSP 
ADAMS *CSMPLIB APL Resident System 
ADCON# OLD: L IBR ARY APLADDR *APLLIB 
ADROF *LIBRARY APLALOC *APLLIB 
ADVLEL UNSP: LSLIPLIB APLCON * APLLI B 
ADVLEL *SLIP APLCONA *APLLIB 
ADVLER UNSP : LSLIPLIB APLCONAA *APLLIB 
ADVLER *SLIP APLCRT1 *APLLIB 
ADVLL UNSP: LSLIPLIB APLCRT 1A * APLLI B 
ADVLL *SLIP APLCRT2 *APLLIB 
ADVLNL UNSP: LSLIPLIB APLCRT2A *APLLIB 
ADVLNL *SLIP APLDEL1 *APLLIB 
ADVLNR UNSP: LSLIPLIB APLDEL1A *APLLIB 
ADVLNR *SLIP APLDEL2 *APLLIB 
ADVLR UNSP: LSLIPLIB APLDEL2A *APLLIB 
ADVLR *SLIP APLDEL3 *APLLIB 
ADVLWL UNSP : LSLIPLIB APLDEL3A *APLLIB 
ADVLWL *SLIP APLDESC *APLLIB 

534 External Symbol Index 



MTS 3 : SYSTEM SUBROUTINE DESCRIP!IONS 

( October 1976 

APLDREC *APLLIB ARRAY *LIBRARY 
APLEMES *APLLIB ARRAY NAAS:S SP 
APLEMESA *APLLIB ARRAY2 *LIBRARY 
AP LERR *APLLIB ARSIN Elementary Fen. Lib . 
APLESET *APLLIB ASCEBC Resident System 
APLESETA *APLLIB ASWtDEFS Resident System 
APLEV *APLLIB ASTATSUB Resident System 
APLEVAR *APLLIB ATAN Elementary Fen. Lib. 
APLEVARA *APLLIB ATAN 2 Elementary Fen . Lib. 
APLFND1 *APLLIB ATAN2# Elementary Fen. Lib. 
APLFND1A *APLLIB ATE IG NAAS: SSP 
APLFND2 *APLLIB A TNTRP * LI BRARY 
APLFND2A *APLLIB ATRAP UNSP : LIBRARY 
APLFND3 *APLLIB ATRSTR UNSP:LIB RARY 
APLFND3A *APLLIB ATSE NAAS: SSP 
APLF OR M *APLLIB A!" SG NAAS : SSP 
APLFREE *APLLIB ATSM NAAS: SSP 
APLGARB *APLLIB AI'TACH PL 1SYM 
APLGARBA *APLLIB ATTNT Resident System 
APLGO *APLLIB ATTNTRP Resident System 
APLINDX *APLLIB AUTO NAAS:S SP 
APLINDXA *APLLIB AVCAL NAA S: SSP 
AP LL NAAS: SSP AVDAT NAAS: SSP 
APLNOBL *APLLIB AWXCMPA2 Res ide nt System 

( APLNOBLA *APLLIB AWXCMPB2 Resident System 
APL N SR T *APLLIB AWXLIBR2 *ALGOLWXLIB 
APLNSRTA *APLLIB AWXSLOO1 *ALGOLWLIB 
APLNUMB *APLLIB HXSLOO1 *ALGOLWXLIB 
APLNUI1BA *APLLIB AWXSLOO2 *ALGOLWLIB 
APLOC *APLLIB AWXSLOO2 *ALGOLWXLIB 
APLOWNI *APLLIB AWXSLOO 3 *ALGOLWLIB 
APLOWNIA *APLLIB AWXSLOO3 *ALGOL WXLIB 
APLOW RS *APLLIB AWX SLOOq *ALGOLWLIB 
APLOW RS A *APLLIB AWXSLOOq *ALGOLWXLIB 
APLRELO *APLLIB AWXSLOO5 *ALGOLWLIB 
APLRELOA *APLLIB AWXSLOO5 *ALGOLWXLIB 
APLR EL 1 *APLLIB AWXSLOO6 *ALGOLWLIB 
APLREL 1A *APLLIB AWX SLOO 6 *ALGOLWXLIB 
APLRIN *APLLIB AWXSLOO7 *ALGOLWLIB 
APL RM V 1 *APLLIB AWXSLOO7 * ALGOL WXLIB 
APLRMV1A *APLLIB AWXSLOO8 *ALGOLWLIB 
APLRI1V2 *APLLIB AWXSLOO 8 *ALGOLWXLIB 
APLRMV2A *APLLIB AWXSLOO9 *ALGOLWLIB 
APLROUT *APLLIB AWXSLOO9 *ALGOLWXLIB 
APLSNAM *APLLIB AWXSL010 *ALGOLWLIB 
APLSNAMA *APLLIB AWX SL010 *ALGOLWXLIB 
APLTYPE *APLLIB AWXSL011 *ALGOLWLIB 
APLUDAT *APLLIB AWXSL011 *ALGOLWXLIB 
APMI1 NAAS:SSP AWXSL01 2 *ALGOLWLIB 
ARAT NAAS:SSP AWXSL012 *ALGOLWXLIB 
ARCOS Elementary Fen. Lib,. AWXSL013 *ALGOLWLIB 
ARINIT *LIBRARY AWXSL013 *ALGOLWXLIB 

( 
ARI1TS UNSP:LIBRARY AWXSL01q *ALGOLWLIB 

External Symbol Index 535 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

AWXSL014 *ALGOLW XLIB CALC# Resident System 
AWXSL015 *ALGOLWLIB CANOR NAAS:SSP 
AWXSLO 15 *ALGOLWXLIB CANREPLY Resident System 
BAIR NAAS:OLD1IB CASECONV Resident System 
BAIR OLD:LIBRARY CAXMB NAAS:NAL 
BAKVEC NAAS: EISPACK CBABK2 NAAS:EISPACK 
BALANC NAAS : EISPACK CBAL NAAS:EISPACK 
BUBAK NAAS:EISPACK CBS NAAS:NAL 
BANDR NAAS:EISPACK CCOS Elementary Fen,. Lib. 
BANDV NAAS:EISPACK CCPY NAAS:SSP 
BASICO Resident System CCUT NAAS:SSP 
BATCH PL1SYM CDABS Elementary Fen. Lib. 
BCDIST *CSMPLIB CDAXMB NAAS:NAL 
BDTR NAAS:SSP CDBS NAAS:NAL 
BESEKO NAAS:FUNPACK CDCOS Elementary Fen. Lib. 
BESEK 1 NAAS:FUNPACK CDDVD# Elementary Fen. Lib. 
BESJ NAAS:SSP CDEXP Elementary Fen. Lib. 
BESK NAAS:SSP CDILU NAAS:NAL 
BESKO NAAS: FU NPACK CDIR NAAS:NAL 
BESK1 NAAS:FUNPACK CDLOG Elementary Fen. Lib. 
BESY NAAS:SSP CDLUD NAAS:NAL 
BINEBCD Resident System CDMPY # Elementary Fen. Lib. 
BINEBCD2 Resident System CDRDUC Resident System 
BISECT NAAS: EISPACK CDSIN Elementary Fen. Lib. 
BISER NAAS:SSP CDSQRT Elementary Fen. Lib. 
BLKLTR Resident System CDSTUC Resident System 
BLOKLETR Resident System CDTR NAAS:SSP 
BLSTDEV Residen t System CDVD# Elementary Fen. Lib. 
BMLOCK Resident Sy stem CEL 1 NAAS:SSP 
BOOLE *CSMPLIB CEL2 NAAS:SSP 
BOT UNSP : LSLIPLIB CENTRL *CSMPLIB 
BOT *SLIP CEXP Elementary Fen. Lib. 
BOUND NAAS:SSP CF'DUB Resident System 
BQB NAAS: EISPACK CFGINF Resident System 
BSINK Resident System CG NAAS: EISPACK 
BSRF Resident System CH NAAS:EISPACK 
BTC *KDFLIB CHARIN *KDFLIB 
BTD *LIBRARY CHABOU *KDFLIB 
BUFALLOC Resident System CHGFLG Resident System 
BUILD *CSMPLIB CHGFSZ Resident System 
BUILDR *CSMPLlB CHGMBC Resident System 
B256 FORTRAN I/O Library CHISQ NAAS: SSP 
CABS Elementary Fen. Lib. CHKACC Resident System 
CADD NAAS:SSP CHKFDB Resident System 
CADLFT *SLlP CHKFDUB Resident Syste m 
CADLFT UNSP: LS1IPLIB CHKFlL Resident System 
CADNBT *SLIP CHKFILE Resident System 
CADNBT UNSP: LSLIPLIB CHRl *SLIP 
CADNTP *SLIP CHR2 *SLIP 
CADNTP UNSP:LSLlPLIB CHR3 *SLIP 
CADRGT *SLIP CHR4 *SLIP 
CADRGT UNSP: LSLIPLIB CHR5 *SLIP 
CALC Resident System CHR6 *SLIP 

536 External Symbol Index 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

( .october 1976 

CHR7 *SLIP CPUTIME PL1SYM 
CHRS *SLIP CREATE Resident System 
cnu NAAS:NAL CREATE# Resident System 
CINT NAAS:SSP CREPLY Resident System 
CIN VIT NAAS: EISPACK CRESVM U NSP: LSLIPLIB 
CIR NAAS:NAL CROSS NAAS:SSP 
CKSTOR *CSMPLIB CS NAAS:SSP 
CLEANUP# *IG CSIN Elementary Fen. Lib. 
CLOG Elementary Fen. Lib. C SMPEX *CSMPLIB 
CLOSE *KDFLIB CSMPST *CSMPLIB 
CLOSEFIL Resident System CSMPTR *CSMPLIB 
CLOSFL Resident System CSP NAAS:SSP 
CLSNET Resident System CSPS NAAS:SSP 
CLUD NAAS:NAL CSQRT Elementary Fen. Lib. 
OlD Resident System CSRT NAAS:SSP 
CMDNOE Resident System CSTORE *CSMPLIB 
CMPH Elementary Fen. Lib. CSUM NAAS:SSP 
CNFGINFO Resident System CTAB NAAS:SSP 
CNP NAAS: SSP CTIE NAAS:SSP 
CNPS NAAS:SSP CTQQ UNSP:DIGLIB 
CNTL PL1SYM CTQQIN UNSP:DIGLIB 
CNTLNR Resident System CUINFO Resident System 
CNTRL Resident System CURSEGM *COBLIB 
COLCT *GASP CVTOMR Resident System 

( COMBAK NAAS: EISPACK C1 *SLIP 
COMC *LIBRARY C2 *SLIP 
COMHES NAAS:EISPACK C3 *SLIP 
COMLR NAAS: EISPACK C4 *SLIP 
COMLR2 NAAS:EISPACK C5 *SLIP 
COMPACTI *EXPLIB C6 *SLIP 
COMPAR *CSMPLIB C7 *SLIP 
COI1PL *11 BRARY C8 *SLIP 
COI1PL *CSI1PLIB DACFI NAAS:SSP 
COMQR NAAS: EISPACK DAHl NAAS: SSP 
COI1QR 2 NAAS:EISPACK DAINT OLD:LIBRARY 
CON EN D UNSP: DIGLIB DAINT NAAS:OLDLIB 
CONLBL UNSP:DIGLIB DALI NAAS:SSP 
CONSET UNSP:DIGLIB DAPCH NAAS:SSP 
CONT *SLIP DAPFS NAAS:SSP 
CON TIN *CSMPLIB DAPLL NAAS:SSP 
CONTROL Resident System DAPMI1 NAAS:SSP 
CONTUR UNSP:DIGLIB DARAT NAAS:SSP 
CONVT NAAS:SSP DARCOS Elementary Fen. Lib. 
COPY *PL360LIB DARSIN Elementary Fen. Lib. 
COPYTE *KDFLIB DATAN *GASP 
CORRE NAAS:SSP DATAN Elementary Fen. lib. 
CORTB NAAS:EISPACK DATAN2 Elementary Fen .• Lib. 
CORTH NAAS: EISPACK DATAN2# Elementary Fen. Lib. 
COS Elementary Fen. Lib. DATASK *KDFLIB 
COS# Elementary Fen. Lib. DATAST *CSMPLIB 
COSH Elementary Fen. Lib. DATSE NAAS:SSP 
COST Resident System DATSG NAAS:SSP 

( 
COTAN Elementary Fen. Lib. DATSI1 NAAS:SSP 

External Sy mbol Index 537 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

DATUM *SLIP DERROR *SLIP 
DATUM UNSP:LSLIPLIB DESTROY Resident System 
DAXMB NAAS:NAL DESTRY Resident System 
DBAR NAAS:SSP DET3 NAAS:SSP 
DBS OLD : LIBRARY DETS NAAS:SSP 
DBS NAAS:OLDLIB DEVLST Resident System 
DBS NAAS:NAL DEXP Elementary FCD . Lib . 
DBST NAAS : OLDLIB DEXP# Elementary Fcn. Lib. 
DBST OLD : LIBRARY DEXPEI NAAS:FUNPACK 
DCAR NAAS:SSP DFFT NAAS:NAL 
DCEL1 NAAS:SSP DFFTA NAAS:NAL 
DCEL2 NAAS:SSP DFFT2 NAAS:NAL 
DCLA NAAS : SSP DFFT2A NAAS:NAL 
DCNP NAAS:SSP D}' MCG NAAS : SSP 
DCNPS NAAS:SSP DFMFP NAAS:SSP 
DCOS Elementary Fcn. Lib. DFRAT NAAS:SSP 
DCOS# Elementary Fcn. Lib. DFS NAAS:NAL 
DCOSH Elementary Fcn. Lib. DGAMMA Elementary Fcn . Lib . 
DCOTAN Elementary Fcn. Lib. DGELB NAAS:SSP 
DCPY NAAS:SSP DGELG NAAS : SSP 
DCSP NAAS:SSP DGELS NAAS : SSP 
DCSPS NAAS:SSP DGSENS *IG 
DCVC OLD: LIBRARY DGT3 NAAS:SSP 
DCVD OLD : LIBRARY DHARM NAAS:SSP 
DCVG OLD:LIBRARY DHEP NAAS:SSP 
DDAW NAAS: FUNPACK DHEPS NAAS:SSP 
DDBAR NAAS:SSP DHPCG NAAS:SSP 
DDCAR NAAS:SSP DHPCL NAAS:SSP 
DDEF# PL1SYM DILU NAAS:NAL 
DDET3 NAAS:SSP DIMAG Elementary Fcn . Lib. 
DDETS NAAS: SSP DIOCS# OLD:LIBRARY 
DDGT3 NAAS:SSP DIOCS# FORTRAN 1/0 library 
DEADSP *CS MPLI B DIR NAAS : NAL 
DEBUG *CSMPLIB DISCR NAAS: SSP 
DEBUG# OLD:LIBRARY DISMNT Resident System 
DEB UG # FORTRAN 1/0 Library DISMOUNT Resident System 
DECOMP NAAS:LIT DISTOK UNSP:DIGLIB 
DEI NAAS:FUNPACK DJELF NAAS: SSP 
DELAY *CSMPLIB DLAP NAAS:SSP 
DELETE UNSP:LSLIPLIB DLAPS NAAS : SSP 
DELETE *SLIP DLBVP NAAS : SSP 
DELIEM NAAS: FUNPACK DLEP NAAS:SSP 
DELIE1 NAAS:FUNPACK DLEPS NAAS:SSP 
DELIKM NAAS: FUNPACK DLGAM NAAS:SSP 
DELIK 1 NAAS: FUN PACK DLGAMA Elementary Fen. Lib. 
DELIPE NAAS: FUNPACK DLLSQ NAAS : SSP 
DELIPK NAAS:FUNPACK DLOG Elementary Fen . Lib . 
DELI1 NAAS:SSP DLOG# Elementary Fen . Lib. 
DELI2 NAAS : SSP DLOG10 Elementary Fcn . Lib. 
DERF Elementary Fen . Lib. DLS *SLIP 
DERFC Elementary Fcn . Lib . DLUD NAAS:NAL 
DERIV *CSMPLIB DMATX NAAS:SSP 
DERROR UNSP: LSLIPLIB DMAX1 Elementary Fcn. Lib. 

538 External Symbol Index 



( 

( 

( 

October 1976 

DMCHB 
DMFGR 
DMFSD 
DI1F SS 
Dl1IN1 
DMLSS 
DI1P 
DMP 
DMPCHR 
DMPCLR 
DMPERR 
DMPERR 
DMPER 1 
DMPER1 
DMPFRE 
DMPFRE 
DMPINI 
DMPLAV 
DI1PLAV 
DMPLIS 
DMPLNK 
DMPLNK 
DI1PLST 
DMPLST 
DI1PMRK 
DMPMRK 
DMPRC 
DMPRDR 
DI1PRDR 
DMPRES 
DMPRES 
DMPSVI1 
DI1PUBL 
DMPUBL 
DMTDS 
DPECN 
DPECS 
DPEONE 
DPQFB 
DPRBI1 
DPRQD 
DQATR 
DQA12 
DQA16 
DQA2 4 
DQA32 
DQA4 
DQA8 
DQG1 2 
DQG 16 
DQG24 
DQG32 
DQG4 

NAAS:SSP 
NAAS: SSP 
NAAS: SSP 
NAAS:SSP 
Elementary Fcn. Lib. 
NAAS:SSP 
*SLIP 
UNSP: LSLIPLIB 
UNSP:LS LIPLIB 
*SLIP 
UNSP: LSLIPLIB 
*SLIP 
UNSP: LSLIPLIB 
*SLIP 
UNSP:LSLIPLIB 
*SLIP 
UNSP:LSLIPLIB 
*SLIP 
UNSP: LSLIPLIB 
UNSP:LSLIPLIB 
*SLIP 
UNSP: LSLIPLIB 
*SLIP 
UNSP:LSLIPLIB 
*SLIP 
UNSP:LSLIPLIB 
NAAS:SSP 
*SLIP 
UNSP: LSLIPLIB 
*SLIP 
UNSP:LSLIPLIB 
UNSP: LSLIPLIB 
*SLIP 
UNSP:LSLIPLIB 
NAAS:SSP 
NAAS: SSP 
NAAS: SSP 
NAAS: FUNPACK 
NAAS: SSP 
NAAS:SSP 
NAAS:SSP 
NAAS: SSP 
NAAS:SSP 
NAAS:SSP 
NAAS:SSP 
NAAS:SSP 
NAAS:SSP 
NAAS:SSP 
NAAS:SSP 
NAAS:SSP 
NAAS:SSP 
NAAS:SSP 
NAAS: SSP 

MTS 3 : SYSTEM SUBROUTINE DE SCRIPTIONS 

DQG8 
DQHFE 
DQHFG 
DQHSE 
DQHSG 
DQHi6 
DQH24 
DQH32 
DQH48 
DQH64 
DQH8 
DQL12 
DQL 16 
DQL24 
DQL32 
DQL4 
DQL8 
DQSF 
DQTFE 
DQTFG 
DRAND 
DREAL 
DRHARM 
DRKGS 
DROPIOER 
DRS 
DRSET 
DRSINT 
DRTMI 
DRTNI 
DRTWI 
DSE13 
DSE15 
DSE35 
DSFINI 
DSG13 
DSIN 
DSIN# 
DSINH 
DSINIT 
DSINV 
DSQRT 
DSQRT# 
DSRDISPV 
DSR3270 
DTAN 
DTANH 
DTB 
DTCNP 
DTCSP 
DTEAS 
DTEUL 
DTHEP 

NAAS : SSP 
NAAS:SSP 
NAAS:SSP 
NAAS:SSP 
NAAS: SSP 
NAA S:S SP 
NAA S:SSP 
NAA S:SSP 
NAAS:S SP 
NAAS:SSP 
NAAS:SSP 
NAAS: SSP 
NAAS:SSP 
NAAS:SSP 
NAAS:SSP 
NAAS:SSP 
NAAS:SSP 
NAAS:SSP 
NAAS:SSP 
NAAS: SSP 
*GASP 
Elementary Fcn. Lib. 
NAAS:SSP 
NAAS:SSP 
*LIBRARY 
*SLIP 
*GASP 
*GASP 
NAAS:S SP 
NAAS:SSP 
NAAS:SSP 
NAAS:SSP 
NAA S:SSP 
NAAS:SSP 
UNSP:DIGLIB 
NAA S:SSP 
Elementary Fcn. Lib. 
Elementary Fcn. Lib: 
Elementary Fcn_ Lib . 
UNSP:DIGLIB 
NAAS:SSP 
Elementary Fcn. Lib. 
Elementary Fcn . Lib. 
Resident System 
Resident System 
Elementary Fcn. Lib. 
Elementary FCD . Lib. 
*LIBRARY 
NAAS: SSP 
NAAS:SSP 
NAAS:SSP 
NAAS:SSP 
NAAS:SSP 

External Symbol Index 539 



MTS 3: SYSTEM SUBROUTINE DESC~IPTIONS 

october 1976 

DTLAP NAAS:SSP EXSMO NAAS:SSP 
DTLEP NAAS:SSP EXTEND *LIBRARY 
DUMP *LIBRARY E7090 *LIBRARY 
DUMP OLD:LIBRARY E7090P *LIBRARY 
DVCHK FORTRAN I/O Library F *CSMPLIB 
DVDQ NAAS:LIT FACTR NAAS:SSP 
DVDQG NAAS: LIT FCDXH Elementary FCD. Lib. 
DVDQ1 NAAS:LIT FCN~ON NAAS: FUNPACK 
DYS SU B# Resident System FCNSW *CSMPLIB 
D7090 *LIBRARY FCVAO OLD:LIBRARY 
D7090P *LIBRARY FCVCO OLD:LIBRARY 
EBCASC Resident System FCVEO OLD:LIBRARY 
EBCMA SC Resident system FCVIO OLD:LIERARY 
EBX *SLIP FCVLO OLD :LIBRARY 
ECHO Resident system FCVTHB FORTRAN I/O library 
EDIT Resident System FCVTHB OLD :LIBRARY 
EDITOR Resident System FCVZO OLD:LI BRARY 
EIGEN NAAS:SSP FCXPI# Elementary FCD. Lib, 
ELAPSED PL 1 SYM FDXPD# Elementary Fen. Lib. 
ELI1 NAAS: SSP FDXPI# Elementary Fcn. Lib. 
ELI2 NAAS:SSP FHDRDISP Resident System 
ELMBAK NAAS:EISPACK FIGI NAAS:EISPACK 
ELf,HES NAAS: EISPACK FIGI2 NAAS:EISPACK 
ELTRAN NAAS:EISPACK FILEM *GASP 
EMPTY Resident System FILEMF *GASP 
EMPTYF Resident System FILEML *GASP 
EOR *CSMPLIB FILEPTR *APLLIB 
EQUAL *SLIP FIND *KDFLIB 
EQUC *LIBRARY FINDADR# *IG 
EQUIV *CSMPLIB FINDC *LIBRARY 
ERA SAL *LIBRARY FINDN *GASP 
ERASE *LIBRARY FINDQ *GASP 
ERF Elementary Fcn. Lib. FINDST *LIBRARY 
ERFC Elementary Fcn. lib. FINFO PL1SYM 
ERLNG *GASP FINSRT *GASP 
EROUT *GASP FIOCS# OLD:LIBRARY 
ERRBUFFR *PL360LIB FIOEND FORTRAN I/O Library 
ERRCOM# *IG FIXPH Elementary FCD. Lib. 
ERRER *GASP FMCG NAAS:SSP 
ERRMON# Elementary Fcn. Lib. FMFP NAAS:SSP 
ERROR Resident System FNAMETRT Resident System 
ERROR *PL l1IB FORIF NAA S:SSP 
ERROR *GASP FORIT NAAS:SSP 
ERROR# Resident System FORMAT *KDFLIB 
ERR PRINT *PL360LIB FPSECT Resident System 
ERRRR *GASP FRAT NAAS:SSP 
ERRTRA NAAS:FUNPACK FRDNL# FORTRAN I/O Library 
ETW *KDFLIB FRDNL# OLD:LIBRARY 
EXIT *LIBRARY FREAD *LIBRARY 
EXITER *GASP FREED Resident System 
EXP Elementary Fcn. Lib . FREEFD Resident System 
EXP# Elementary Fcn. Lib. FREESP Resident System 
EXPI NAAS:SSP FREESPAC Resident Sys tem 

540 External Symbol Index 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

( October 1976 

FRXPI# Elementary Fen. Lib. Gl1 TRA NAAS: SSP 
FRXPR# Elementary Fen. Lib. GOPEN *LIBRARY 
FSIZE Resident System GPRJNO Res ident System 
FSRF Resident System GPSECT Resident System 
FSTATCMD Resident System GRAB3270 Resident System 
FTN Resident System GRAND NAAS:OLDLIB 
FTNCMD FOR TRAN 1/0 Library GRAND *LlBRARY 
FWRNL# OLD:LIBRARY GRAND1 NAAS:OLDLIB 
FWRNL# FORTRAN 1/0 Library GRAN D1 *LIBRARY 
F4TRBK UNSP:LSLIPLIB GRGJULDT Resident System 
F4TRBK *SLIP GRGJULTM Resident System 
GAMMA Elementary Fen. Lib. GRJLDT *LIBRARY 
GAP *KDFLIB GRJLSEC Resident System 
GASP *G ASP GRJLTII *LIBRARY 
GASPRS *GASP GROSDT *LIBRARY 
GAUSS NAAS: SSP GTDJMS *LIBRARY 
GAUSS *CSMPLIB GTDJMSR *LIBRARY 
GCLOSE *LIBRARY GTFMVL *GPSSLIB 
GDATA NAAS:SSP GTFPVL *GPSSLIB 
GDINF *LIBR ARY GTFSVL *GPSSLIB 
GDINFO Resident System GTHMVL *GPSSLIB 
GDINF02 Resident System GTHPVL *GPSSLIB 
GDINF03 Resident System GTHSVL *GPSSLIB 
GDINF2 Resident System GTPRD NAAS:SSP 

( GDINF3 Resident System GUINFO Resident System 
GELB NAAS:SSP GUINFUPD Resident System 
GELG N,AAS: SSP GUSER Resident System 
GELS NAAS:SSP GUSER# Resident System 
GEN1ST *CSMPLIB GUSERID Resident System 
GEN2ST *CSMPLIB HARM NAAS: SSP 
GETBLK *SLIP HEP NAAS:SSP 
GETD Resident System HEPS NAAS:SSP 
GETENT *GASP HISTO *GASP 
GETFD Resident System HLF1 *SLIP 
GETFD1 Resident System HLF 2 *SLIP 
GETFD6 Resident System HPCG NAAS:SSP 
GETFST Resident System HPCL NAA S: SSP 
GETID Resident System HQR NAAS:EISPACK 
GETIHC OLD:LIBRARY HQR2 NAAS:EISPACK 
GETIHC FORTRAN IIO Library HSBG NAAS:SSP 
GETIME Resident System H STR SS *CSMPLIB 
GETIOHER *LIBRARY HT RIBK NAAS:EISPACK 
GETLST Resident System HTRIB3 NAAS:EI SP ACK 
GET SPA Resident System HTRIDI NAAS: EISPACK 
GETSPACE Resident System HTRID3 NAAS:EISPACK 
GFINFO Resident System H1 *SLIP 
GJMSPSCT *LIBRARY H2 *SLIP 
GLINT NAAS:OLDLIB IADROF *LIBRARY 
GLINT OLD:LIBRARY IBCOM # OLD:LIBRARY 
GMADD NAAS: SSP IBCOII# FORTRAN IIO Library 
GMMMA NAAS:SSP IbCOM## FORTRAN IIO library 
GI1P RD NAAS:SSP IBERH# *LIBRARY 

( 
GMSUB NAAS:SSP ICLC *LIBRARY 

External Symbol Index 541 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

ID UNSP: LSLIPLIB IHCLOGIC *LIBRARY 
ID *SLIP IHCNAMEL OLD:LIERARY 
IOATUM UNSP:LSLIPLIB IHEABN *PL1LIB 
IDA TUM *SLIP IHEABNO *PL1LIB 
lOW UNSP: LSLIPLIB IHELTT *PL l1IB 
IEO *LIBRARY IHEMAIN *PL1LIB 
IEOMK *LIBRARY IHENTRY *APLLIB 
IERRCOOO *COBLIB IHESAP *PL1LIB 
IF Resident System IHESAPA *PL l1IB 
IGATTB *IG II!ESAPB *PL l1IB 
IGBGNO *IG IHESAPC *PL l1IB 
IGBGNS *IG IHESAPO *PLl1IB 
IGC *LI BRAR Y IHESAPE *PLl1IB 
IGCTNS *IG IHESAPF *PL 111B 
IGCTRL *IG IHESIZ *PL l1IB 
IGCVTC *IG IHESIZE *PL 1LIB 
IGOA *IG IHESPRT *PL1LIB 
IGOELO *IG IHESRCM *APLLIB 
IGOELS *IG IHET AB *PL 1LIB 
IGOR *IG IHETABS *P11LIB 
IGORON *IG IIiE ••••. P11SYM 
IGENOO *IG IHI. •••• *ALGOLLIB 
IGENOS *IG I1B • .••• *COBLIB 
IGFMT *IG IMP1 *CSMPLIB 
IGFMTH *IG IMPLST *CSMPLIB 
IGH SPO *IG HiPU1S *CSMPLIB 
IGHUE *IG IMTQLV NAAS : ElSPACK 
IGINlT *IG IMTQ11 NAAS : EISPACK 
IGINT *IG IMTQ12 NAAS : ElSPACK 
IG1IKE *IG IMVC *LIBRARY 
IG10AO *IG INBASI *KOF1IB 
IG!1A *IG INC *1IBR ARY 
IGM R *IG INHALT *SLIP 
IGPOSW *IG INITAS UNSP:1S1IPLIB 
IGPFPF *IG INITAS *S1IP 
IGPICK *IG INITCNT Resident System 
IGPIKC *IG INIT10CK Resident System 
IGPIKN *IG INIT1Z *CSMP1IB 
IGPIKS *IG INITRO UNSP:LS1IPLIB 
IGPUTO *IG INITRO *S1IP 
IGS ENS *IG IN1ST1 UNSP: LSLIPLIB 
IGSYM *IG IN1STL *S1IP 
IGTEXT *IG IN1STR UNSP : LS1IP1IB 
IGTRAN *IG INLSTR *S1IP 
IGTXT *IG INSW *CSMPLIB 
IGTXTH *IG INTERC * KOFLIB 
IGUSER *IG INTERFAC *A1GOLLIB 
IGVEC *IG INTGER UNSP:LS1IPLIB 
IGVWPT *IG INTGER *S11P 
IGXYIN *IG INTGST *CSMPLIB 
IHCFOUMP OLO : 1IBRARY INTRAN *CSMPLIB 
IHCFEXIT *LIBRARY INTRP *CSMPLIB 
IHCIBERH *LIBRAR Y INTSUBS PL1SYM 

542 External Symbol Index 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

INTSVM UNSP:LSLIPLIB LANORM *SLIP 
INUE NAAS:SSP LAP NAAS:SSP 
INV OLD:LIBRARY LAPRIM UNSP: LSLIPLIB 
INV NAAS: OLDLIB LAPS NAAS:SSP 
INV# OLD :L IBRARY LASl'JOB Resident System 
INV# NAAS:OLDLIB LASTKEY PL1SYM 
INVIT NAAS:EISPACK LBVP NAAS:SSP 
INV1 NAAS:OLDLIB LCC$F *SIM2LIB 
INV1 OLD:LIBRARY LCLOSE *LIBRARY 
IOC *LIBRARY LCNTR UNSP:LSLIPLIB 
IOHETC *LIBRARY LCNTR *SLIP 
IOHIN *LIBRARY LCOMC *LIBRARY 
IOHOUT *LIBRARY LCOMPL *LIBRARY 
IOH370 *LIBRARY LDATVL UNSP:LSLIPLIB 
IOPACK *EXPLIB LDATVL *SLIP 
IOPKG *LIBRARY LDES$F *SIM2LIB 
lOP MOD *LIBRARY LDFIO# FORTRAN 1/0 Library 
lOR *CSMPLIB LDINFO Resident System 
IORELEAS *LIBRARY LEP NAAS:SSP 
IPLTYP *PLOTSY S LEPS NAAS:SSP 
IRALST UNSP: LSLIPLIB LERR$F *SIM2LIB 
IRALST *SLIP LETGO *LIBRARY 
IRARDR UNSP:LSLIPLIB LIBENTRY *ALGOLLIB 
IRARDR *SLIP LIMIT *CSMPLIB 

( ITR *LIBRARY LIN$F *SIM2LIB 
ITRCPT *PLOTSYS LINC NAAS:OLDLIB 
ITRT *LIBRARY LINC OLD:LIBRARY 
ITS VAL UNSP:LSLIPLIB LINCR NAAS: OLDLIB 
ITS VAL *SLIP LINCR OLD:LIBRARY 
IVISIT UNSP:LSLIPLIB LINK Resident System 
IXC *LIBRARY LINKF FORTRAN 110 Library 
10 NAAS:SSP LINKWD UNSP:LSLIPLIE 
JELF NAAS:SSP LINPG OLD:LIBRARY 
JESS OLD: LIBRARY LINPG NAAS:OLDLIB 
JESS NAAS: OLDLIB LINPG# OLD:LIBRARY 
JLGRDT *LIBRARY LIOUNITS Resident System 
JLGRSEC Resident System LIOUNS Resident System 
JLGRTM *LIBRARY LIST UNSP: LSLIPLIB 
JMSGPSCT *LIBRARY LIST *SLIP 
JMSGTD *LIBRARY LISTAV UNSP: LSLIPLIB 
JMSGTDR *LIBRARY LISTAV *SLIP 
JOBLST Resident System LISTMT UNSP:LSLIPLIB 
JTBLLIM Resident System LISTMT *SLIP 
JTUGTD *LI BRAR Y LLSQ NAAS:SSP 
JTUGTDR *LIBRARY LNKL UNSP:LSLIPLIE 
JULGRGDT Resident System LNKL *SLIP 
JULGRGTM Resident System LNKLW UNSP:LSLIPLIB 
KEYWRD Resident System LNKR *SLIP 
KOLMO NAAS: SSP LNKR UNSP:LSLIPLIB 
KOLM2 NAAS:SSP LNKRW UNSP:LSLIPLIB 
KRANK NAAS: SSP LOAD NAAS:SSP 
KWSCAN Resident System LOAD Resident System 

( 
LAND *LIBRARY LOADF FORTRAN 1/0 Library 

External Symbol Index 543 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

LO ADIN FO Resident System MADRGT *SLIP 
LOC NAAS : SSP MAINEX *CSMPLIB 
LOCAT *GASP MAKEDL UNSP:LSLIPLIB 
LOCK Resident System MAKEDL *SLIP 
LOCT UNSP:LSLIPLIB MAPRNT NAAS:LIT 
LOCT *SLIP MASCEBC Resident System 
LODMAP Resident Sys tem MATA NAAS:SSP 
LOFRDR UNSP : LSLIPLIB MAXLEN UNSP:PL 1LIB 
LOFRDR *SLIP MAXO Eleme ntary Fen. Lib. 
LOPE N *LI BRAR Y MAX1 Elementary Fen. Lib . 
LOR *LIBRARY MCHB NAAS:SSP 
LOUT$F *SII12LIB MCPY NAAS : SSP 
LPNTR UNSP: LSLIPLIB MEANQ NAAS : SSP 
LPNTR *SLIP MESSAGE Resident System 
LPURGE UNSP : LSLIPLIB MFGR NAAS : SSP 
LPURGE *SLIP MFSD NAAS : SSP 
LRD NAAS:OLDLIB MFSS NAAS: SSP 
LRD OLD:LIBRARY MFUN NAAS:SSP 
LRDELIM$ *SIM2LI B MILNE *CSMPLIB 
LRDRCP UNSP: LSLIPLIB MINFIT NAAS:EISPACK 
LRDRCP *SLIP MINV NAAS:SSP 
LRDROV UN SP:LSLIPLIB MINO Elementary Fen. Lib. 
LRDROV *SLIP MIN1 Elementary FeD. Lib. 
LS *SLIP MISR NAAS:SSP 
LSDELIM$ *SIM2LIB MLEFT *CSMPLIB 
LSSCPY UNSP : LSLIPLIB MlSS NAAS:SSP 
LSSC PY *SLIP MMACST *CSMPLIB 
LSTDMP *SLIP MNETRTN Resident System 
LSTEQL UNSP:LSLIPLIB MODFTBLE Resident System 
LSTEQL *SLIP MOMEN NAAS : SSP 
LSTMRK UNSP:LSLIPLIB MONERR NAAS:FUNPACK 
LSI MRK *SLIP MONTR *GASP 
LSTPRO UNSP : LSLIPLIB MOUNT Resident System 
LSTPBO *SLIP MOUNTCMD Resident System 
LTHERE UNSP: LSLIPLIB MOVE *CSMPLIB 
LTSLE OLD:LIBRARY MOVEC *LIBRARY 
LTSLE NAAS: OLDLIB MPAIR NAAS: SSP 
LVLRVT *SLIP MPRC NAAS:SSP 
LVLRVT UNSP:LSLIPLIB MPRD NAAS:SSP 
LVLRV 1 *SLIP MRIGHT *CS MPLIB 
LVLRV 1 UN SP: LSLIPLIB MRK UNSP : LSLIPLIB 
LXOR *LIBRARY I1 RK *SLIP 
MADATR UNSP : LSLIPLIB MRKGET *SLIP 
MAD ATR *SLIP 11RKLSS UNSP:LSLIPLIB 
I1ADD NAAS:SSP MRKLSS *SLIP 
MADLFT UNSP: LSLIPLIB MRKLST UNSP:LSLIPLIB 
MADLFT *SLIP MRKLST * SLIP 
MADNBT UN SP: LSLIPLIB MRKW UNSP: LSLIPLIB 
MADNBT *SLIP MRXA Resident System 
MADNTP UN SP:LSLIPLIB MSG Resident System 
MADNTP *SLIP 11 STR NAAS : SSP 
11 ADOV *SLIP MSUB NAAS:SSP 
MADRGT UNSP:LSLIPLIB MTDLST UNSP : LSLIPLIB 

544 External Symbol Index 



( 

( 

( 

October 1976 

MTDLST 
MTDS 
MTLIST 
MTLIST 
MTRA 
MTS 
MTS# 
MT SCMD 
MTSCMD# 
MULTR 
NAME 
NAMEDL 
NAI1EDL 
NAMTST 
NAMTST 
NAND 
NATSEE 
NATSEI 
NATSEK 
NATSKO 
NATSK1 
NDTR 
NDTRI 
NEW BOT 
NEW BOT 
NEWLIN 
NEW TOP 
NEW TOP 
NEW'VAL 
NEWVAL 
NEXTKEY 
NLBACK 
NLFGEN 
NLSYS 
NOATVL 
NOATVL 
NOCENT 
NOR 
NOT 
NOTE 
NOTE# 
NPOS N 
NROOT 
NTOBCD 
NUCELL 
NUCELL 
NULSTL 
NULSTL 
NULSTR 
NULSTR 
NUMDEV 
NUMER 
NXTLFT 

*SLIP 
NAAS: SSP 
UNSP: LSLIPLIB 
*SLIP 
NAAS:SSP 
Resident System 
Resident System 
Residen t Sy stem 
Resident System 
NAAS:SSP 
*CSMPLIB 
UN SP : LSLIPLIB 
*SLIP 
UN SP : LSLIPLIB 
*SLIP 
*CSMPLIB 
NAAS : FUNPACK 
NAAS: FUNPACK 
NAAS:PUNPACK 
NAAS: FUNPACK 
NAAS:FUNPACK 
NAAS:SSP 
NAA S: SSP 
UNSP: LSLIPLIB 
*SLIP 
*KDFLIB 
UNSP:LSLIPLIB 
*SLIP 
UNSP: LSLIPLIB 
*SLIP 
PL1SYM 
NAAS:LIT 
*CSMPLIB 
NAAS: LIT 
UNSP:LSLIPLIB 
*SLIP 
*CSMPLlil 
*CSMPLIB 
*CSI1PLIB 
Resident System 
Resident System 
*GASP 
NAAS:SSP 
*CSMPLIB 
UNSP:LSLIPLIB 
*SLIP 
UNSP:LSLIPLIB 
*SLIP 
UNSP: LSLIPLIB 
*SLIP 
Resident System 
*CSMPLIB 
UNSP: LSLIPLIB 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

NXTLFT 
NXTRGT 
NXTRGT 
o 11 IT 
ONEiilATII1 
OPEN 
OR 
ORDER 
ORTBAK 
ORTHES 
ORTRAN 
OSGRDT 
OSINT 
OTPUT 
OUTBAS 
OUTPUT 
OUTSW 
OVERFL 
OW NCONVR 
PADD 
PADDM 
PAR 
PARMT 
PAR~TN 

PARI1T2 
PARl'1T2 
PARROW 
PARR02 
PAXFMT 
PAXFM2 
PAXIS 
PAXSCL 
PAXTIC 
PAXTTL 
PAXVAL 
PBOUND 
PCCLOSE 
PCEPT 
PCIRCL 
PCLA 
PCLD 
PCLOSE 
PCOPEN 
PCTRLN 
PCTRL2 
PDER 
PDFSYM 
PDIV 
PDP8RTN 
PDSHLN 
PDSHL2 
PDSYMB 
PDT AB 

*SLIP 
UNSP:LSLIPLIB 
*SLIP 
*LIBRARY 
*LIBRARY 
*KDFLIB 
*LIBRARY 
NAAS:SSP 
NAAS:EISPACK 
NAAS:EISPACK 
NAAS:EISPACK 
*LIBRARY 
*SPITLIB 
*GASP 
*KDFLIB 
*KDFLIB 
*CSMPLIB 
FORTRAN 1/0 Library 
*LIBRARY 
NAAS:SSP 
NAAS:SSP 
UNSP:LIBRARY 
UNSP : LSLIPLIB 
*SLIP 
UNSP: LSLIPLIB 
*SLIP 
*PLOTSYS 
* PLOTSYS 
*PLOTSYS 
*PLOTSYS 
*PLOTSYS 
*PLOTSYS 
*PLOTSYS 
*PLOTSYS 
*PLOTSYS 
*PLOTSYS 
*LIBRARY 
*PLOTSYS 
*PLOTSYS 
NAAS:SSP 
NAAS:SSP 
*LIBRARY 
*LIBRARY 
*PLOTSYS 
*PLOTSYS 
NAAS:SSP 
*PLOTSYS 
NAAS:SSP 
Resident System 
*PLOTSYS 
*PLOTSYS 
*PLOTSYS 
*PLOTSYS 

External Symbol Index 545 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

PDTABR *PLOTSYS PLONO *PLOTSYS 
POTABS *PLOTSYS PLFSPL *PLOTSYS 
PDTABU *PLOTSYS PLFSPL *IG 
PDU~P OLD: LIBRA RY PLGAXS *PLOTSYS 
PDUMP *LIBRARY PLGGRD *PLOTSYS 
PECN NAAS : SSP PLGPOL *PLOTSYS 
PECS NAAS:SSP PLGSCL *PLOTSYS 
PEEL Resident System PLINE *PLOTSYS 
PELIPS *PLOTSYS PLIN2 *PLOTSYS 
PENABS *IG PLNSYM *PLOTSYS 
PEN ABS *PLOTSYS PLOG10 * PLOTSYS 
PENCHG *PLOTSYS PLOOK *PLOTSYS 
PENON *PLOTSYS PLOTCC *PLOTSYS 
PENDNS *PLOTSY 5 PLOTDS *LIBRARY 
PENMOV *IG PLOTNO *IG 
PEN MOV *PLOTSYS PLOTNO * PLOTSYS 
PENOPT *PLOTSYS PLOTR *CSMPLIB 
PENREL *PLOTSYS PLOT 1 *LIBRARY 
PENSPD *PLOTSYS PLOT14 *LIBRARY 
PENSPD *IG PLOT2 *LIBRARY 
PENTUG *PLOTSYS PLOT3 *LI BRARY 
PEN UP *PLOTSYS PLOT4 *LIBRARY 
PEN UPS *PLOTSYS PIRSPL *IG 
PERCMD Resident System PLRSPL *PLOTSYS 
PERM NAAS:SSP PLSTYP *PLOTSYS 
PERMIT Resident System PLTBET *IG 
PFONAM *PLOTSYS PLTBET *PLOTSYS 
PFDUB *IG PLTBGN *IG 
PFDUB *PLOTSYS PLTBGN *PLOTSYS 
PFLNAM *IG PITEND *PLOTSYS 
PFLNAM *PLOTSY S PLTEND *IG 
PFNMBR *PLOTSYS PLTLOG *PLOTSYS 
PGCD NAAS:SSP PLTNBR *IG 
PGNHDR *PLOTSY S PLTNBR *PLOTSYS 
PGNHDR *IG PLTOFS *PLOTSYS 
PGNTEXIT *PL360LIB PLTOUT *IG 
PGNTT Resident System PLTOUT *PLOTSYS 
PGNTTRP *APLLIB PLTPAP *IG 
PGNTTRP Resident System PLTPAP *PLOTSYS 
PGRID *PLOTSYS PLTPEN *PLOTSYS 
PHI NAAS:SSP PLTPEN *IG 
PILD NAAS:SSP PLTPOL *PLOTSYS 
PILL Resident System PLTREC *PLOTSYS 
PINFO *PLOTSYS PLTSIZ *IG 
PINT *IG PLTSIZ *PLOTSYS 
PINT *PLOTSYS PLTSTD *IG 
PINT NAAS:SSP PLTSTD *PLOTSYS 
PLCALL PL1SYM PLTSTP *IG 
PLCALLD PL1SYM PLTSTP * PLOTS YS 
PLCALLE PL1SYM PLTTRtI *PLOTSYS 
PLCALLP PL 1 SY M PLTTRM *IG 
PLDFSM *PLOTSYS PLTTYIl *PLOTSYS 
PLDNO *IG PLTXMX *PLOTSYS 

546 External Symbol Index 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

r October 1976 

PLTXMX *IG PSCNIF *PLOTSYS 
PL1ADR PL1SYM PSHRDR UNSP:LSLIPLIE 
PL1RC PL1SYM PSIZE *PLOTSYS 
PL1SYM Resident System PSMGEN *PLOTSYS 
PMPY NAAS : SSP PSTi\RT *IG 
PNORM NAAS:SSP P STAR T *PLOTSYS 
PNUMBR *PLOTSYS PSUB NAAS:SSP 
POFRES *PLOTSYS PSYMB *PLOTSYS 
POFRST *PLOTSY S PSYMFG *IG 
POFSAV *PLOTSYS PSYMFG *PLOTSYS 
POINT Resident Syste m PSYMLN *PLOTSYS 
POINT NAAS:SSP PSYI1PT *PLOTSYS 
POINT# Resident System PSYMSV *PLOTSYS 
POLGRD *PLOTSYS PSYSYM *PLOTSYS 
POLRT NAAS:SSP PTDST2 *PLOTSYS 
PONRST *PLOTSYS PTFMVL *GPSSLIB 
POP BOT UNSP:LSLIPLIB PTFPVL *GPSSLIB 
POPBOT *SLIP PTFSVL *GPSSLIB 
POPEN *LIBRARY PlHAXS *PLOTSYS 
POPRDR UNSP:LSLIPLIB PTHl'lVL *GPSSLIB 
POP SID *PLOTSY S PTHPVL *GPSSLIB 
POP TOP UNSP: LSLIPLIB PTHSVL *GPSSLIB 
POPTOP *SLIP PTRUC Resident System 
PPRCN NAAS: SSP PTSYMB *PLOTSYS 

( PPSYM *PLOTSYS PUBDMP *SLIP 
PQFB NAAS:SSP PULSE "CSMPLIB 
PQSD NAAS:SSP PUNCH *PL360LIB 
PRAXIS NAAS: LIT PUNUC Resident System 
PRBM NAAS: SSP PUTENT *GASP 
PRCHAR *LIBRARY PUTIHC OLD:LIBRARY 
PRE AD UNSP: PL 1LIB PUTIHC FORTRAN 1/0 Library 
PREAD 1 UNSP: PL 11IB PUTRDL UNSP:LSLIPLIB 
PREND *LIBRAR Y PVAL NAAS:SSP 
PRESRV UNSP: LSLIPLIB PVSUB NAAS: SSP 
PRESRV *SLIP PWRIT *IG 
PRFIT NAAS: LIT PWRIT *PLOTSYS 
PRHIST *GASP PWRITE UNSP:PL1LIB 
PRLIN ' NAAS:LIT PWRITE1 UNSP: PL 11IB 
PRLSTS *SLIP PWTMAX *IG 
PRLSTS UNSP:LSLIPLIB PWTMAX *PLOTSYS 
PRMIN NAAS:LIT PXABS *IG 
PRNTQ *GASP PXABS *PLOTSYS 
PROBT NAAS:SSP PXFACT *PLOTSYS 
PRODQ *GASP PXMARG *PLOTSYS 
PRPLOT *LIBRARY PXMARG *IG 
PRPRIN NAAS: LIT PXMIN *PLOTSYS 
PRQD NAAS:SSP PXORG *PLOTSYS 
PRQUAD NAAS:LIT PXREL *PLOTSYS 
PRSORT NAAS:LIT PYABS *IG 
PRSTER *PLOTSYS PYABS *PLOTSYS 
PSBSP *PLOTSY S PYFACT *PLOTSYS 
PSCALE *PLOTSYS PHIIN *PLOTSYS 

( 
PSCAL1 *PLOTSYS PYORG *PLOTSYS 

External Symbol Index 547 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

PYREL *PLOTSY S QPSECT Resident System 
QATR NAAS:SSP QPUT *LIBRARY 
QA10 NAAS: SSP QQSV *SLIP 
QA2 NAAS:SSP QSAM * LI BRARY 
QA3 NAAS:SSP QSAMP *LIBRARY 
QA4 NAAS:SSP QSf NAAS:SSP 
QA5 NAAS: SSP QTEST NAAS:SSP 
QA6 NAAS:SSP QTFE NAAS:SSP 
QA7 NAAS : SSP QTFG NAAS: SSP 
QA8 NAAS:SSP QTIIERE UNSP: LSLIPLIB 
QA9 NAAS:SSP QTR l *SLIP 
QCIOSE *LIBRARY QTR2 *SLIP 
QCN TRL *LI BRAR Y QTR3 *SLIP 
QDIV OLD:LIBRARY QTR4 *SLIP 
QDIV NAAS:OLDLIB QUIT Resident System 
QFREEUCB *LIBRARY QUIT$ PL1SYM 
QFRUCB *LIBRARY QZIIES NAAS:EISPACK 
QGET *LIBRARY QZIT NAAS : EISPACK 
QGETUCB *LIBRARY QZVAL NAAS:EISPACK 
QGTUCB *LIBRARY QZVEC NAAS:EISPACK 
QG 10 NAAS : SSP Ql *SLIP 
QG2 NAAS:SSP Q2 *SLIP 
QG3 NAAS: SSP Q3 *SLIP 
QG4 NAAS: SSP Q4 *SLIP 
QG5 NAAS:SSP RA$EV$S *SIM2LIB 
QG6 NAAS: SSP RADD NAAS: SSP 
QG7 NAAS: SSP RAMP *CSMPLIB 
QG8 NAAS:SSP RAND PL 1SYM 
QG9 NAAS:SSP RANDU NAAS:SSP 
QHFE NAAS:SSP RANDU M NAAS:LIT 
QHFG NAAS:SSP RANG ' *CSMPLIB 
QHSE NAAS:SSP RANG2 *CSMPLIB 
QIISG NAAS:SSP RANK NAAS:SSP 
QH 10 NAAS: SSP RARCCOS$ *SIM2LIB 
QH2 NAAS:SSP RARCSIN$ *SIM2LIB 
QII3 NAAS:SSP RARCTAN$ *SIM2LIB 
QH4 NAAS: SSP RATENBR Resident Syste~ 

QH5 NAAS:SSP RATQR NAAS:EISPACK 
QII6 NAAS : SSP RATRAP UNSP : LIBRARY 
QH7 NAAS : SSP RBETA$F *SIM2LIB 
QH8 NAAS:SSP RBINOMIA *SIM2LIB 
QH9 NAAS: SSP RBLOCK$R *SIM2LIB 
Q110 NAAS: SSP RCALL *LIBRARY 
QL2 NAAS : SSP RCELL *SLIP 
QL3 NAAS:SSP RCELL UNSP : LSLIPLIB 
QL4 NAAS: SSP RCLOSE *LIBRARY 
QL5 NAAS:SSP RCLS$R *SIM2LIB 
QL6 NAAS:SSP RCOS$F * SIM2LIB 
QL7 NAAS:SSP RCPY NAAS:SSP 
QL8 NAAS:SSP RCRE$F *SIM2LIB 
QL9 NAAS:SSP RCUIB$R *SIM2LIB 
QNTZR *CSMPLIB RCUT NAAS:SSP 
QOPEN *LIBRARY RDATE$F *SIM2LIB 

548 External Symbol Index 



ctTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

( October 1976 

RDAY$F *SIII21IB RINT NAAS:SSP 
RDENT *GASP RISTEP$F *SIM21I8 
RDIII$F *SII12L18 RITOA$F *SIII2L1B 
RDLSTA UNSP:LSLIPLI8 RIXP$F *51112118 
RDLSTA *SLIP RKGS NAAS:SSP 
READ Resident System RKS *CSI1PLI8 
READ *PL360LI8 RK1 NAAS:SSP 
READ *KDFLI8 RK2 NAAS:SSP 
READ# Resident System RLIN $F *SII12LI8 
REA DAR *KDFL18 RLOG$EH *SIII2L1B 
READBFR *LI8RARY RLOG$NOR *SII12L18 
READB1 *KDFL18 RLOG$10$ *SI112118 
READ80 *KDFL18 RLOGN *GASP 
READE Resident System RLS1$R *SII12L1B 
REALL *SLIP RLS2$R *SII12L18 
REALS UNSP: LSLIPLI8 RLT 1$ R *SII121I8 
REALS *SL1P RLT2$R *S11I2LI8 
REBAK NAAS:E1SPACK RI1ACST *CSI1PL18 
REBAK8 NAAS:E1SPACK RI1IN UTE$ *SIII2L18 
RECP NAAS:SSP RI10DE$F *SII121I8 
RECT *CSI1PLI8 RtiONTH$F *S1!l211B 
RECURS UN SP : LSLIPL18 RI10VE *GASP 
REDUC NAAS:E1SPACK RI10VEF *GASP 
REDUC2 NAAS:EISPACK RI10VEL *GASP 

( REED *SLIP RIITS UNSP:LIBRARY 
REED UNSP:LSLIPLI8 RNDAY$F *S1M2L18 
REFIELD$ *S1I12118 RNDGEN *CSI1PL18 
RENAIIE Resident System RNORI1 *GASP 
REN UI1B Resident System RNORMAL$ *S1I12118 
RERLANG$ *S1112L1B ROBEY $R *S11121IB 
RERR$R *S1M21IB ROPEN *LI8RARY 
RERUN Resident System ROR1GIN$ *SIM2L1B 
RERUN *CSI1PLIB ROUT$F *SII12LIB 
RESTOR UNSP: LSLIPLIB RP01SSON *SIM2LIB 
RESTOR *SL1P R RANDI $F *S11121IB 
RETLNR Resident System RRANDOI1$ *S1112LIB 
REWIND *LIBRARY RRDUR *SIII21IB 
REWIND *KDFLIB RRDB$R *SII12LIB 
REW1ND# Resident Sy stem RRDC$R *SII12LIB 
REXP$P *S1112LIB R RDD$R *SII121I8 
REXPONEN *SII12L1B RRDE$R *SII12LIB 
RFATAL *SII12LIB RIlDI$R *SII121IB 
RF1NFO PL 1 SY M RRDL$R *SIII21IB 
RFRAC$F *SII12LIB RRDR$R *SII121IB 
RFREE$R *SII12LI8 RRDS$R *S1112LI8 
RG NAAS:E1SPACK IlRDT$R *SII12118 
RGAI1I1A$F *SI!l2LIB RREL$R * SII121IB 
RGAI1I1AJ$ *S1112LIB RIlES$R * SIM21I8 
RGG NAAS: EISPACK RRFA$R *SII12LIB 
RGUIB$R *SII12LI8 RRFD$R *S1I121IB 
RHARM NAAS:SSP RRFUR *SIII2LIB 
RHO UR$F *SIII2LIB RRIRV$R *SII12L1B 

( 
R1N$F *S1M2LIB RIlLR$R *SIM2LIB 

External Symbol Index 549 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

RRMD$F 
RRRRV$R 
RRSTEP$F 
RRWD$R 
RRX P$F 
RS 
RS 
RSB 
RSEED$F 
RSFIE1D$ 
RSG 
RSGAB 
RSGBA 
RSIGN$F 
RSIN$F 
RSKIP$R 
RSIMC 
RSP 
RSQRT$F 
RSRT 
RST 
RST 
RSTIME 
RST1ST 
RSUM 
RSVNI1TBl 
RT 
RTAB 
RTAN$F 
RTIE 
RTIM1$R 
RT1M2$R 
RT1M3$R 
RTI11 
RTNI 
RTRACE$R 
RTRAP 
RTRUNC$F 
RTW1 
RU1$F 
RUN CON 
RUN1FORM 
RUSE$R 
RWEEKDAY 
RWEIBUll 
RWTA$R 
RWTB$R 
RWTC$R 
RWTD$R 
R WTE$R 
RWTI$R 
RWTP$R 
RWTR$R 

*S1 M2LIB 
*S1M21IB 
*S1M211B 
*S1 M21IB 
*SIM2LIB 
*SlIP 
NAAS: EISPACK 
NAAS:EISPACK 
*SIM21IB 
*SII12LIB 
NAAS: EISPAeK 
NAAS:ElSPACK 
NAAS: EISPAeK 
*S111211B 
*S1112L1B 
*S1M2LIB 
NAAS: SSP 
NAAS:ElSPACK 
*S1112LIB 
NAAS : SSP 
*CSI1Pl1B 
NAAS:ElSPAeK 
Resident System 
UNSP:1SLIP11B 
NAAS:SSP 
Resident System 
NAAS: EISPAeK 
NAAS:SSP 
*SIM2LIB 
NAAS:SSP 
*SIM 211B 
*SIM2LIB 
*SI11211B 
NAAS:SSP 
NAAS: SSP 
*SIM211B 
UNSP:l1BRARY 
*SIM2LI6 
NAAS:SSP 
*51112116 
*GASP 
*SII121IB 
*SI11211B 
*51 M211 B 
*SIM21IB 
*S111211B 
*51 M2L1B 
*S111211B 
*SIM21IB 
*S111211B 
*S111211B 
*S11121IB 
*SIM2LIB 

550 External Symbol Index 

RWTS$R 
RWTT$R 
RX$EV$S 
RYEAR$F 
RZ$EV$S 
SAOO 
SAINT 
SAINT 
SAV1ST 
SAVSEQ 
SAXMB 
SBS 
SCAN 
SCANSTOR 
SCAR DS 
SCARDS# 
SelA 
SCMA 
SCI1D 
SeREATE 
SCREP1Y 
SOBS 
SOBS 
S01V 
SOS 
SDUMP 
SEGNOOO 
SEGN001 
SEGN001 
SEQll 
SEQll 
SEQ1R 
SEQ1R 
SEQRDR 
SEQRDR 
SEQSl 
SEQSl 
SEQSR 
SEQSR 
SEQUST 
SERe lOSE 
SEReOI1 
SERCOM# 
SERCOI1PR 
S EROP EN 
SET 
SETB1K 
SETB1K 
SETe 
S ETD1R 
SETOIR 
SETDSN 
SETOSN 

October 1976 

*SIM2LIB 
*SII121IB 
*SIJ12LIB 
*SId2LIB 
*SII121IB 
NAAS:SSP 
010:lIBRARY 
NAAS:01D1IB 
UNSP:1S1IP1IB 
UNSP:1S1IP1IB 
NAAS : NAl 
NAAS:NAl 
*CSMPLIB 
Resident System 
Resident System 
Resident System 
NAAS:SSP 
NAAS:SSP 
UNSP:SPIT11B 
UNSP:SPIT11B 
UNSP:SPITLIB 
01D:l1BRARY 
NAAS:01D1IB 
NAAS:SSP 
Resident System 
Resident System 
*A1G01WX11B 
*ALGOLW11B 
*A1G01WXLIB 
*SlIP 
UNSP: lSLIP11B 
*Sl1P 
UNSP: lSl1Pl1 B 
*Sl1P 
UNSP: lSl1PLIB 
UNSP: lSLIP11B 
*Sl1P 
UNSP:1Sl1Pl1B 
*Sl1P 
*eSI1P1IB 
*l1BRARY 
Resident System 
Re s ident System 
*P136011B 
*11BRARY 
*GASP 
FORTRAN I/O library 
*SLIP 
*LIBRARY 
UNSP:1S1IP1IB 
*S11P 
FORTRAN I/O Library 
OLO:l1BRARY 



MTS 3: SYSTEM SUBROU1INE DESCRIPTIONS 

( October 1976 

SETD SR FORTRAN 1/0 Library SIMP *CSIIPLIB 
SETDSR OLD:LIBRARY SII1Q NAAS:SSP 
SETEI1P *GASP SIN Elementary Fen. Lib. 
SETFRVAR *LIBRARY SIN# Elementary Fcn. Lib. 
SETGRE OLD:LIBRARY SIN.COS *PLOTSYS 
SETIGFDP *IG SINE *CSIIPLIB 
SETIME Resident System SINH Elementary Fcn. lib. 
SETIND UNSP: lSLIPlIB SINV NAAS:OLDlIB 
SETIND *SLIP SINV OLD:LIBRARY 
SETIOERR Resident System SINV NAAS:SSP 
SETIOHER *LIBIiAR Y SINV1 OlD:LIBRARY 
SETKEY Resident System SINV1 NAAS:OlDLIB 
SETlCK Resident System SINV2 OlD:LIBRARY 
SETLEN UNSP: PL l1IB SINV2 NAAS:OLDLIB 
SETLIO Resident System SlOC Resident System 
SETlNR Resident System SIOC# Resident System 
SETLOG *lIBRARY SIOCP Resident System 
SETtlKW UNSP: LSLIPLIB SIOERR *LIBRARY 
SETIIRK *SLIP SIR NAAS:NAl 
SETIIRK UNSP: LSLIPLIB SKIP *KDFLIB 
SETPFX Resident System SKIP *LIBRARY 
SETRAC *SLIP SLE# NAAS:OLDLIB 
SETSTA FORTRAN 1/0 library SLE# OLD:LIBRARY 
SETSTA OLD:LIBRARY SlE1 NAAS:OLDLIB 

( SETUP NAAS:LIT SLE1 OLD:LIBRARY 
SETWK *GASP SLE2 NAAS:OLDLIB 
SE13 NAAS:SSP SLE2 OLD: LI BRARY 
SE15 NAAS:SSP SLE3 NAAS:OLDLIB 
SE35 NAAS:SSP SLE3 OLD:LIBRARY 
SFFT NAAS:NAL SLE4 NAAS:OLDLIB 
SFFTA NAAS:NAL SLE4 OLD:LIBRARY 
SFFT2 NAAS:NAL SLIPPRIM *SLIP 
SFFT2A NAAS: NAL SLITE FORTRAN 1/0 litrary 
SFS NAAS:NAL SLITET FORTRAN 1/0 Library 
SGDINFO UNSP: SPI TLI B SLPDMP *SLIP 
SGDINF02 UNSP:SPITLIB SLPDMP UNSP:LSLIPLIB 
SGETFD UNSP: SPITLIB SLRD NAAS:OLDLIB 
SGLINT OLD:LIBRARY SLRD OlD:LIBRARY 
SGLINT NAAS:OLDLIB SLUD NAAS:NAL 
SGUINFO UNSP: SPITLIB SMIRN NAAS:SSP 
SGUINF02 UNSP: SPITLIB SMO NAAS:SSP 
SGUINF03 UNSP:SPITLIB SIIPY NAAS:SSP 
SGUINF04 UNSP: SPITLIB SIITSCMD UNSP:SPITLIB 
SG13 NAAS:SSP SNAP *PL l1IB 
SHFTL *LIBRARY SNOOP UNSP:LIBRARY 
SHFTR *LIBRARY SNOOP UNSP:SPITLIB 
SHIFT *CSIIPLIB SNS UNSP: SPITLIB 
SHIN *SLIP SNS2 UNSP:SPITLIB 
SICI NAAS:SSP SOLVE NAAS: LIT 
SIGNOFF PL1SYII SORT *LIBRARY 
SIGNT NAAS:SSP SORTEA *LIBRARY 
SILU NAAS:NAL SORTE1 *COBLIB 

( 
SIll OUT *CSIIPLIB SORTE4 *COBLIB 

External Symbol Index 551 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1 976 

SORTE9 *COBLIB STPLT2 *LIBRARY 
SORT 1 *LIBRARY STPRG NAAS:SSP 
SORT2 *LIBRARY STRDAT *SLIP 
SORT3 *LIBRARY STRDAT UNS P: LSLIPLIB 
SPACE *KDFLIB STRDIR *SLIP 
SPELCK Resident System Sl'RIND UNSP: LSLIPLIB 
SPELER UNSP:LIBRARY STRIND *SLIP 
SPELLCHK Residen t System STRUST *CS~PLIB 
SPIE *LIBRARY SUBl1X NAA S:SSP 
SPIE *PL 1 LIB SUBS BT UN SP:LSLIPLIE 
SPIRLCS Resident System SUBSBT *SLIP 
SPITATTN UNSP:SPITLIB SUBST UNSP: LSLIPLIB 
SPITBOL Resident System SUBST NAAS:SSP 
SPLINE NAAS:LIT SUBST *SLIP 
SPLIT *CSMPLIB SUBSTP UNSP:LSLIPLIB 
SPLITR *CSMPLIB SUBSTP *SLIP 
SPLIT 1 *CSMPLIB SUMQ *GASP 
SPRINT Resident System SUMRY *GASP 
SPRINT# Resident System SVD NAAS:EISPACK 
SPUNCH Resident System SVXOS 10 *ALGOLLIB 
SPUNCH# Resident System SVXOS 11 *ALGOLLIB 
SQIN *SLIP SVXOS 14 * ALG OLLIB 
SQOUT *SLIP SVXOS19 *ALGOLLIB 
SQRT Elementary Fen. Lib . SVXOS2 0 *ALGOLLIB 
SQRT# Elementary Fen. Lib . SVXOS23 *ALGOLLIB 
SRANK NAAS:SSP SVXOS35 *ALGOLLIB 
SRATE NAAS:SSP SVXOS 4 *ALGOLLIB 
SREAD UNSP: SPITLIB SVXOS5 *ALGOLLIB 
S Rl1 A NAAS:SSP SVXOS6 *ALGOLLIB 
SSETPFX UNSP: SPITLIB SVXOS64 *ALGOLLIB 
SSFMT Resident System SVXOS7 *ALGOLLIB 
SSLE NAAS:OLDLIB SVXOS8 *ALGOLLIB 
SSLE OLD :LIBRARY SVXOS9 *ALGOLLIB 
SSNOOP UNSP: SPITLIB SVXOS999 *ALGOLLIB 
SSNS UNSP:SPITLIB SWRITE UNSP: SFITLIB 
SSNS2 UNSP: SPI TLI B SYSDEFS Resident System 
SSRTN Resident System SYSERR *PL 11IB 
SSTACLS Resident System SYSHELP *GPSSLIB 
SS10R Resident System SY SINIT *PL360LIB 
SSTORE *CSMPLIB SYSTEM *PL1LIB 
SSUB NAAS:SSP SYSTEM Resident System 
STARTF FORTRAN I/O Library SYSTEM# Resident System 
STAT$ Residen t System SYSTERM *PL360LIB 
STATBU PF Resident System SYSVMDF *APLLIB 
STATUS *CSMPLIB SYSV MFR *APLLIB 
STDD MP Residen t System TAB *KDFLIB 
STDTV Resident System TAB1 NAAS:SSP 
STEP *CSMPLIB TAB2 NAAS: SSP 
STIMER *LIBRARY TALLY NAAS:SSP 
STLNKW UN SP : LSLIPLIB TAN Elementary Fen. Lib. 
STORE *CS MP 11 B TANH Elementary Fen. Lib. 
STORST *CSMPLIB TAPERTN Resident System 
STPLT1 *LIBRARY TAPEUC Resident System 

552 External Symbol Index 



I1TS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

( October 1976 

TCNP NAAS:SSP TSKFI1T Resident System 
TCSP NAAS:SSP TSTURM NAAS:EISPACK 
TEAS NAAS:SSP TSYM *SLIP 
TEL2 Resident System TSYM# *SLIP 
TERM *SLIP TTEST NAAS:SSP 
TERM UNSP: LSLIPLIB TTIMER *LIBRARY 
TEST *KDFLIB TWAIT *LIBRARY 
TETRA NAAS:SSP TWOAV NAAS:SSP 
TEUL NAAS:SSP UC3330 Resident System 
TFINFO PL 1 SY M UNLOAD Resident System 
THEP NAAS:SSP UMLOAOFG Resident System 
TIC ALL *LIBRARY UMLOADFS Resident System 
TIE NAAS : SSP UMLOADNF Resident System 
TIME Resident Sy stem UMLOADRP Resident System 
TIME_OF *EXPLIB UND *CS MPLIB 
TIMNTRP Resident S y ste DI UNFRM *GASP 
TIMTRP Resident System UNLCK Resident System 
TINVIT NAAS: EISPACK UNLDF FORTRAN I/O Library 
TLAP NAAS:SSP UNLK Resident: System 
TLEP NAAS:SSP UNLOAD Resident System 
TMST *GASP URAND *LIBR ARY 
TOP UNSP:LSLIPLIB UEAND NAAS:OLDLIB 
TOP *SLIP USERID PL1SYI1 
TPRD NAAS:SSP UTEST NAAS:SSP 

( TPRDUC Resident System UTSLE OLD:LIBRARY 
TPWRUC Resident System UTSLE NAAS:OLDLIB 
TQLRAT NAAS: EISPACK VARI1X NAAS : SSP 
TQL 1 NA-AS:EISPACK VCPRNT NAAS:LIT 
TQL4 NAAS:EISPACK VIRMIN *APLLIB 
TRACE NAAS: SSP VIRI10UT *APLLIB 
TRACER Resident System VISIT UNSP: LSLIPLIB 
TRACER# Resident System VISIT *SLIP 
TRANSA *CSI1PLIB VISTIN UNSP:LSLIPLIB 
TRANTB Resident System WRITBF Resident System 
TRAP UNSP: LIBRARY WRITE *PL360LIB 
TRAPZ *CSMPLIB WRITE Resident System 
TRBAK1 NAAS:EISPACK WRITE *KDFLIB 
TRBAK3 NAAS:EISPACK WRITE# Resident System 
TRED1 NAAS: EISPACK WRITEA *KDFLIB 
TRED2 NAAS:EISPACK WRITEB *KDFLIB 
TRED3 NAAS:EISPACK WRITEBUF Resident System 
TRIDIB NAAS:EISPACK WRITET *KDFLIB 
TRNC *LIBRARY WTEST NAAS:SSP 
TRNST *LIBRARY XABS *PLOTSYS 
TRRSTR UNSP:LIBRARY XCLR *SIM2LIB 
TRUNC Resident System XCPY NAAS:SSP 
TSEP OLD:LIBRARY XCTL Resident System 
TSEP NAAS:OLDLIB XCTLF FORTRAN I/O library 
TSEPC OLD: LIBRARY XFIX *SII12LIB 
TSEPC NAAS:OLOLIB XFLT *SII12LIB 
TSEP1 NAAS: OLDLIB XFRE *SIII2LIB 
TSEP1 OLD:LIBRARY XIDE * SI 112LIB 
TSFO Resident System XINR *SIM2LIB 

( 

External Symbol Index 553 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

Octcber 1976 

XLAR *SII12LIB ZHOLD *CSI1PLIB 
XMAS *SIM2LIB ZLK2 OLD:LIBRARY 
XI1ASK *SLIP ZLK2 NAAS:OLDLIB 
XOR *LIBRARY ZLOOK OLD:LIBRARY 
XPLSI1 *EXPLIB ZLOOK NAAS:OLDLIB 
XPLSMiilSP *EXPLIB ZLOOKC NAAS:OLDLIB 
XREC *SII12LIB ZLOOKC OLD:LIBRARY 
XREL *PLOTSY 5 ZOR *CSI1PLIB 
XRET *SII12LIB ZPC NAAS:OLDLIB 
XSE 1 *SII12LIB ZPC OLD : LIBRARY 
XSE2 *SII12LIB ZPOLY NAAS : OLDLIB 
XSLA *SII12LIB ZPOLY OLD:LIBRARY 
XSRH *SII12LIB ZPOLY2 NAAS: OLDLIB 
XSTP *SII12LIB ZPOLY 2 OLD:LIBRARY 
XTEND2 *LIBRARY ZPR NAAS:OLDLIB 
XWTC *SII12LIB ZPR OLD : LIBRARY 
XZRO *SII12LIB ZQUAD NAAS:OLDLIB 
X40 *SII12LI B ZQUAD OLD : LIBRARY 
YABS *PLOTSYS Z256 FORTRAN 1/0 Library 
YREL *PLOTSYS 

554 External Symbol Index 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

( October 1976 

g~§~£~n~_2y§~~~_j~~2r~§Q~L 

<EFL> CHKFDUB FREESP JULGRGTII QUIT SSTOR 
<FIX> CHKFIL FREESPAC KEYWRD RATENBR SlAT$ 
$CYLALOC CHKFILE FSIZE KWSCAN READ SlATBUFF 
$EXEC1 CLOSEFIL FS&F LASTJOB READ# STDDMP 
$JQENT CLOSFL FSTATCMD LDINFO READE SlDTV 
$POOLCHG CLSNET FTN LINK RENAME SYSDEFS 
$ROUTAB CMD GDINFO LIOUNITS RENUMB SYSTEM 
#RMTCOPY CMDNOE GDINF02 LIOUNS RERUN SYSTEM# 
ACTIVCNT CNFGINFO GDINF03 LOAD RETLNR TAPERTN 
APL CNTLNR GDINF2 LOADINFO RE WIND. TAPEUC 
ASCEBC CNTRL GDINF 3 LOCK RSTIME TE12 
ASMTDEFS CONTROL GETD LODMAP RS VNIITBL TIllE 
ASTATSUB COST GETFD MASCEBC SCANSTOR TIMNTRP 
ATTNT CREATE GETFD1 MESSAGE SCARDS UMTRP 
ATTNTRP CREATE# GETFD6 MNETRTN SCARDS# TPRDUC 
AWXCMPA2 CREPLY GETFST l'10DFTBLE SDS 'IPWRUC 
AWXCMPB 2 CUINFO GETID MOUNT SD UIIP TRACER 
BASICO C VTOM R GETIME MOUNTCMD SERCOM TRACER# 
BINEBCD DESTROY GETLST MRXA SERCOM# TRANTB 
BINEBCD2 DES TRY GETSPA l'1SG SETHIE TRUNC 
BLKLTR DEVLST GETSPACE MTS SETIOERR TSFO 
BLOKLETR DISMNT GFINFO MTS# SETKEY TSKFMT 

( BLSTDEV DISMOUNT GPRJNO MTSCMD SETLCK UC3 33 0 
BMLOCK DSRDISPV GPSECT IITSCMD# SETLIO UMLOAD 
BSINK DSR3270 GRAB3270 NOTE SETLNR UMLOADFG 
BSRF DYSSUB# GRGJULDT NOTE# SETPFX UML OADFS 
BUFALLOC EBCASC GRGJULTM NUIIDEV SIOC UMLOADNF 
CALC EBCMASC GRJLSEC PDP8RTN SIOC# UML OADRP 
CALC# ECHO G UIN FO PEEL SIOCP UNLCK 
CANREPLY EDIT G UI NFUPD PERCMD SPELCK UNLK 
CASECONV EDITOR GUSER PERMIT SPELLCHK UNLOAD 
CDRDUC EMPTY GUSER# PGNTT SPIRLCS WRITBF 
CDSTUC EI1PTYF GUSERID PGNTTRP SPITBOL WRITE 
CFDUB ERROR IF PILL SPRINT WRITE# 
CFGINF ERROR' INITCNT PL1SYM SPRINT# WRITEBUF 
CHGFLG FHDRDI SP INITLOCK POINT SPUNCH XCTL 
CHGFSZ FNAMETRT JLGRSEC POINT# SP UNCH# 
CHGIIBC FPSECT JOSLST PTRUC SSFIIT 
CHKACC FREED JTBLLIM PUNUC SSRTN 
CHKFDB FREEFD JU LGRGDT QPSECT SSTACLS 

~Qglghli_XLQ_~~Q£~£y_j~KX~~L 

B256 FIOEND IBCOM# OVERFL SETSTA XCTLF 
DEBUG. FRDNL. IBeOM## PUTIHC SLITE Z256 
DIoes# FTNeMD LDFIO# SETBLK SLITET 
DVCHK F WR NL # LINKF SET OS N STARrF 
FeVTHB GETIHC LOADF SETDSR UNLDF 

( 

External Symbol Index 555 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

§!~~~n!~fl_rYn£!iQn_biQf~£1_JS§r1~L 

ALGAMA CDABS COTAN DEXP# DTAN MAXO 
ALOG CDCOS CSIN DG AMM A DTANH MAX1 
ALOG# CDDVD# CSQRT DIMAG ERF IIINO 
ALOG10 CDEXP DARCOS DLGAMA ERFC MIN1 
AMAXO CDLOG DARSIN DLOG ERRMON# SIN 
AMAX 1 CDMPY# DATAN DLOG# EXP SIN# 
AMINO CDSIN DATAN2 DLOG 10 EXP# SINH 
AllIN 1 CDSQRT DATAN2# DMAX 1 FCDXI# SQRT 
ARCOS CDVD# DCOS DMIN1 FCXPU SQRTII 
ARSIN CEXP D(;OS# DREAL FDXPD# TAN 
ATAN CLOG DCOSH DSIN FDXPH TANH 
ATAN2 CMPY# DCOTAN DSIN# FIX PI # 
ATAN2# COS DERF DSINH FRXPI# 
CABS COS# DERFC DSQRT FRXPRII 
CCOS COSH DEXP DSQRT# GAMtlA 

!Hll!!M!X 

$SP ACE E7090P IHCLOGIC LCOtlPL PRPLOT SHFTR 
#FPCON FINDC HIVC LETGO QCLOSE SIOERR 
iilTESTITP FINDST INC LOPEN QC NTRL SKIP 
ACCEPT FREAD IOC LOR QFREEUCB SORT 
ADR OF GCLOSE IOHETC LXOR QFR UCB SORTEA 
AND GDINF IOHIN tlOVEC QGET SORT 1 
AUNIT GETIOHER IOHOUT OMIT QGETUCB SORT2 
ARRAY GJMSPSCT IOH370 ONEiilATI M QGTUCB SORT3 
ARRAY 2 GOP EN IOPKG OR QOPEN SPIE 
ATNTRP GRAND IOPMOD OSGRDT QPUT STIMER 
BTD GRAND1 lORE LEAS OWNCONVR QSAtI STPLT1 
COMC GRJLDT ITli PCCLOSE QSAMP STPLT2 
CO tlPL GRJLTtI IXRT PCLOSE RCALL lICHL 
DROPIOER GROSDT IXe. PCOPEN RCLOSE TRNC 
DTB GTDJMS JLGRDT P DU tiP READBFR nNST 
DU tiP GTDJMSR JLGRTtI PLOTDS REWIND TTItlER 
D7090 IADROF JIISGPSCT PLOT 1 ROPEN ~WAIT 

D7090P IBERH. JMSGTD PLOT14 SERCLOSE URAND 
EQUC ICLC JI1SGTDR PLOT2 SEROPEN XOR 
ERASAL lED JTUGTD PLOT3 SETC XTEND2 
ERASE IEDMK JTUGTDR PLOT4 SETFRVAR 
EXIT IGC LAND POPEN SETIOHER 
EX TEN D IHCFEXIT LCLOSE PRCHAR SETLOG 
E7090 IHCIBERH LCOMC PREND SHFTL 

556 External Symbol Inde x 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

( October 1976 

!g~QHH 

IHIERMSG IHIFSAIN IHIIDEIR IHILLO IHIOTARR SVXOS10 
IHIER M01 IHIFSARA IHlIORCI IHILLOGM IHI PTTAB SVXOS11 
IHIERM02 IHIFSARB IHIIORCL IHILORAR IHISAT SVXOS14 
IHIERM03 IHIGPRCL IhIIORCN IHILOREA IHISATAN S VXOS 19 
IHIERM04 IHIGPRGT IHIIORCP IHILOREL IHISEX SVXOS20 
IHIERM05 IHIGPRIT IHIIORED IHILSCC IHISEXPT SVXOS23 
IHIERM06 IHIGPROP IhIIOREN IHILSCS IHISLO SVXOS35 
IHIERM07 IHIGPROT IhIIORER IHILSCSN IHI SLOGM SVXOS4 
IHIERROR IHIGPRPT IHIIOREV IHILSQ IHISORAR SVXOS5 
IHIFDD IHIGPRTN IliIIORGP IHILSQRT IHISOREA SVXOS6 
IHIFOOXP IHIIARRT IhIIORNX IHIOARRY IHISOREL SVXOS64 
IHIFOI IHIIARRY IHIIOROP IHIOBARR IHI SSCC SVXOS7 
IHIFOIXP IHIIARTN IHIIOROQ IHIOBOAR IHISSCS SVXOS8 
IHIFII IHIIBARR IHIIORTN IHIOBOOL IHISSCSN SVXOS9 
IHIFIIXP IHIIBOAR IHIISYMB IHIOINAR IHISSQ SVXOS999 
IHIFRI IHIIBOOL IHILAT IHIOINTE IHI SSQRT 
IHIFRIXP IHIIOEAI IHILATAN IHIOINTG IHISYSCT 
IHIFRR IHIIOECM IHILEX IHIOSTRG INTERFAC 
IHIFRRXP IHIIOEII IHILEXPT IHIOSYMB LIBENTRY 

!g~Q!..!!H!l 

( ALGOLX AWXSLOO3 AWXSLOO6 AWXSLOO9 AWXSL0 12 AWX SL015 
AWXSLOO 1 AWXSLOO4 AWXSLOO7 AWXSL010 AWXSL013 SEGIIOO1 
AWXSLOO 2 AWXSLOO5 A~XSLOO8 AWXSL0 11 AWXSL014 

!g~Q1.!!KH!l 

AWXLIBR 2 AWXSLOO3 AWXSLOO6 AWXSLOO9 AWXSL0 12 AWXSL015 
AWXSLOO1 AWXSLOO4 AWXSLOO7 AWXSL0 10 AWXSL0 13 SEGN OOO 
AWXSLOO2 AWXSLOO5 AWXSLOO8 AWXSL011 AWXSL0 14 SEGNOO 1 

!HHH 

**APLGOA APLDEL2 AP1E VARA APLINOXA APLRELOA FILEPTR 
*APLCONA APLOEL2A APLFN D1 APLNOBL APLREL1 IHENTRY 
APLAODR APLOEL3 APLFN01A APLNOBLA APLREL 1A IHESRCM 
APLALOC APLOEL3A APLFN02 APLNSRT APLRIN FGNTTRP 
APLCON APLOESC APLFN02A APLNSRTA APLRM V1 SYSVMOF 
APLCONA APLOREC APLFND3 APLNUNB APLRMV1A SYSVMFR 
APLCONAA APLEMES APLFN03A APLNUMBA APLRMV2 VIRMIN 
APLCRT1 APLEMESA hPLFORM APLOC A PLRM V2A VIRMOUT 
APLCRT1A APLERR APLFREE APLOWNI APLROUT 
APLCRT 2 APLESET APLGARB APLOWNIA APLSNAM 
APLCRT2A APLESETA APLGARBA APLOWRS APL SNA MA 
APLOEL1 APLEV APLGO APLOWRSA APLTYPE 
APLOEL1A APLEVAR APLI NDX APLRELO APLUOAT 

( 

External Symbol Index 557 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

!~Qf11!ll 

CURSEGM ILBOBII1 IlBOERR 1 ILBOIFBO ILBOSCHO IIBOVCOO 
IERRCOOO ILBOBII2 ILBOERR2 ILBOIFB 1 ILBOSGMO IlBOVMOO 
ILBOACPO ILBOCKPO ILBOERR3 ILBOIFB2 ILBOSPAO ILBOVM0 1 
ILBOANEO ILBOCLSO ILBOERR4 ILBOIFDO ILBOSRTO IIDOVTRO 
ILBOANFO ILBODCIO ILBOERR5 I1BOIFD 1 ILBOSTIO ILBOWTBO 
ILBOATBO ILBODCI 1 ILBOERR6 ILBOITBO ILBOSTPO ILBOXDIO 
ILBOBIDO ILBODSPO ILBOETBO ILBOIVLO ILBOSTP 1 I I BOXMUO 
ILBOBID1 ILBODTEO IlBOFPWO ILBOMVLO ILBOTEFO ILBOXPRO 
ILBOBID2 I LBODTE1 ILBOGPWO ILBOPTVO ILBOTEF 1 SORTE 1 
ILBOBIEO ILBOEFLO ILBOIDBO I1BOPTV 1 ILBOTEF2 SORTE4 
ILBOBIE 1 ILBOEFL 1 ILBOIDB 1 ILBOPTV2 ILBOTEF3 SORTE9 
ILBOBIE2 I LBOEFL2 ILBOIDRO ILBOSAMR ILBOTRNO 
1LBOB110 1LBOERRO ILB01DTO ILBOSAMO I LBOUTBO 

!~2t!H!ll 

ADAMS CSMPTR IMPL MRIGHT RANG2 SPLI T 1 
AFGEN CSTORE I!1PLST NAME RECT SSTORE 
ALPHA DATAST HIPULS NAND RERUN STAT US 
AND DEADSP INITLZ NLFGEN RKS SlEP 
BCDIST DEBUG 1NSW NOCENT RMACST S70RE 
BPOLE DELAY INTGST NOR RNDGEN SiORST 
BUILD DERIV INTRAN NOT RST saUST 
BUILDR EOR INTRP NTOBCD SCAN TRANSA 
CENTRL EQUIV IPR NUMER SEQUST iRAPZ 
CKSTOR F LIl'lIT OUTSW SHIFT UND 
COMPAR FCNSW NAINEX PLOTR SIMOUT ZHOLD 
COMPL GAUSS I1ILN E PULSE SIMP ZOR 
CONTIN GEN1ST ~.LEFT QNTZR SINE 
CSMPEX GEN2ST MI1ACST RAMP SPLIT 
CSMPST HSTRSS MOVE RANG1 SPLITR 

!gEH.!l 

COMPACTI IOPACK TIME_OF - XPLSrI XPLSl'!iilSP 

!@'~2E 

COLCT ERROR FINSRT OTPUT RMOVEF SUMRY 
DATAN ERRRR GASP PRHIST RMOVEL US!' 
DRAND EXITER GASPRS PRNTQ RNORM UNFIiM 
DRSET FILEl'! GETENT PRODQ RUNCON 
DRSINT FILEMF HISTO PUTENT SET 
ERLNG FILEML LOCAT RDENT SETEMP 
EROUT FINDN MONTR RLOGN SETWK 
ERRER FINDQ NPOSN RMOVE SUI'1Q 

558 External Symbol Index 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

!~~l!l!g!! 

GTFMVL GTHMVL PTFMVL PTHMVL SYSHELP 
GTFPVL GTHPVL PTFPVL PTHPVL 
GTFSVL GTHSVL PTFSVL PTHSVL 

!!~ 

#IG IGBGNO IGIiSPO IGPUTO PFDUB PLTPEN 
#IGDSM IGBGNS IGIiUE IGSENS P FL NAM PLTSIZ 
#IGETDD IGCTNS IGINIT IGSYM PGNHDR PlTSTC 
#IGETHSP IGCTRL IGINT IGTEXT PINT PLTSTP 
#IGINITT IGCVTC IGLIKE IGTRAN PLDNO PITTRM 
#IGPD IGDA IGLOAD IGTXT PLFSPL PLUMX 
#PWRIT IGDELO IGMA IGTXTH PLOTNO PSTART 
ACT VLEF# IGDELS IGrJR IGUSER PLRSPL PSYI'lFG 
AGSENS IGDR IGPDSW IGVEC PLTBET PWRIT 
CLEANUP# IGDRON IGPFPF IGVWPT PLTBGN PWTMAX 
DGSENS IGENDO IGPICK IGXYIN PLTEND FUBS 
ERRCOM# IGENDS IGPIKC PENABS PLTNBR PXMARG 
FINDADR# IGFMT IGFIKN PENMOV PLTOUT PYABS 
IGATTB IGFMTH IGPIKS PENSPD PLTPAP SETIGFDP 

!!S..!lnJJl 

( BTC DATASK INBASI OUTPUT REWIND WRITE 
CH ARIN ETW INTERC READ SKIP WRITEA 
CHAROU FIND NEWLIN READAR SPACE WRITES 
CLOSE FORMAT OPEN READBI TAB WRITET 
COPYTE GAP OUTbAS READBO TEST 

!HQ!l!Xl! 

#CCPLOT PCTRLN PFDNA M PLRSPL POFSAV PWRIT 
#PLTMOD PCT RL 2 PiOUB PLSTYP POLGRD PWTMAX 
#POSET PDFSYt1 Pi"lNAM PLTBET PONRST PXABS 
#PRASTR PDSHLN PFNMBR PLTBGN POP SID PXFACT 
#PSYSYMB PDSHL2 PGNHDR PLTEND PPSYM PXMARG 
#PURT PDSYMB PGUD PLTLOG PRSTER PXMIN 
#PWRIT PDTAB PINFO PLTNBR PSBSP PXORG 
#PXBND PDTABR PINT PLTOFS PSCALE PXREL 
IPLTYP PDTABS PIDFSM PLTOUT PSCAL 1 PYABS 
ITRCPT PDT ABU P.i.DNO PLTPAP PSCNIF PYFACT 
PARROW PELIPS PlFSPL PLTPEN PSIZE PYMIN 
PARR02 PEN ABS PLGAX S PLTPOL PSMGEN HORG 
PAXFMT PENCHG PLGGRD PLTREC PST ART PYREL 
PAXFM2 PENON PLGPOL PLTSIZ PSYMB SIN COS 
PAXIS PENDNS PlGSCL PlTSTD PSYMFG XABS 
PAXSCL PENMOV FLINE PLTSTP PSYMLN XREL 
PAXTIC PENOPT PLIN2 PLTTRM PSYMPT YABS 
PAXTTL PENREL PLNSYM PLTTYP PSYMSV YREL 
PAXVAL PENSPD PLOG10 PLTXMX PSYSYM 
PBOUND PENTUG PLOOK PNUMBR PTDST2 

External Sy mbol Index 559 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

PCEPT PENUP Pl0TCC POFRE S PTHAXS 
PCIRCL PEN UPS Pl0TNO POFRST PTSYMB 

.!H1Hll 

ERROR IHEMAIN IHESAPC IHESIZ IHETABS SYSTEM 
IHEABN IHESAP IHESAPD IHESIZE SNAP 
IHEABND IHESAPA IHESAPE IHESPRT SPIE 
IHELTT IHESAPB IHESAPF IHETAB SYSERR 

ahs£~g_RbL!_b!Q£s£Y_1R11§r~L 

ATTACH IHEDCNA IH.EIOBA IHEtlXSN IHESMXO IHEVKFA 
BATCH IHEDCN B IbEIOBB IHEL'lXSX IHESNLC IHEVKGA 
CNTL IHEDDIA IhEIOBC IHEMZUD IHESNLK IHEVPAA 
CPUTIME IHEDDI B IHEIOBD IH EL'lZUL'l IHESNLS IHEVPBA 
DDEF# I HEDDJ A I HEIO BE IHEMZVD IHESNLZ IHEVPCA 
ELAPSED IHEDDOA IH.EIOBT lHEL'lZVM IHESN SC IHEVPDA 
FINFO IHEDDOB Il1EIOCA IHEMZWO IHESNSK IHEVPEA 
IHEABUO IHEDDOC IHEIOCB IHEMZZO IHESNSS IHEVPFA 
IHEABVO IHEDDOD IHEIOCC IHENL 1A IHESNSZ IHEVPGA 
IHEABWO IHEDDOE IHEIOCT IHENL1L IHESNWC IHEVPHA 
IHEABZO IHEDDPA IIilIODG IHENL1N IHESNWK IHEVQAA 
IHEADDO IHEDDPB lhEIODP IHENL2A IHESNWS IHEVQBA 
IHEADVO IHEDDPC IHEIODT IHENL2L IHESNWZ IHEVQCA 
IHEAPDA IHEDDPD IHEIOFA IHENL2N IIlESNZC IHEVSAA 
IHEAPDB IHEDIAA IHEIOFB !HENOTE IHESNZK IHEVSBA 
IHEATL1 IHEDIAB IbEIOGA IHEOCLA IHESNZS IIlEVSCA 
IH EATL2 IHEDIIlA IHEIONA IHEOCLB IHESNZZ IHEVSDA 
IHEATL3 IHEDIBB Il1EIOPA IHEOCLC IHESQLO IHEVSDB 
IHEAT14 IHEDIDA IIlEIOPB IHEOCLD IHESQSO IIlEVSEA 
IHEATS1 IHEDIEA Ib.EIOPC IHEOSDA IHESQWO IHEVSEB 
IHEATS 2 IHEDILA I1iEIOXA IHEOSEA IHESQZO IHEVSFA 
IHEATS3 IHEDILB IHEIOXB I HEOSIA IHESRCA IHEXIBO 
IHEATS4 IHEDIMA IbEIOXC IHEOSSA IHESRCB IHEXIDO 
Il1EATTN IHEDMAA IHEITAA IHEOSTA IIlESRCC IHEXILO 
IHEATWH IHEDNBA IhEITAX IHEPDFO IHESRCD IHEXISO 
IHEATWN IHEDNCA 1I1EITAZ IHEPDLO IHESRCE IHEXIUO 
IHEATZH IHEDOAA IIlEJXIA IHEPDSO IHESRCF IHEXIVO 
IHEATZN IHEDOAB IHEJXIl IHEPDWO IHESRDA IHEXIWO 
IH EbS AO IHEDOBA IhEJXlY IHEPDXO IHESSFO IHEXIZO 
IHEBSCO IHEDOBB IHEJXSI IHEPDZ a IHESSGC IHEXXLO 
IHEBSDO IHEDOBC IIlEJXSY IHEPNT IHESSGR IHEXXSO 
IHEBSFO IHEDODA lllEKCAA IHEPRD IHESSHC IHEXXWO 
IHEBSIO IHEDODB lHEKCBA IHEPRTA IIlESSHR IHEXXZO 
IHEBSKA IHEDOEA IHEKCDA IHEPRTB IHESSXO IHEYGFS 
IHEBSKK IHEDOMA IhEKCDB IHEPSFO IHESTGA IHEYGFV 
IHEBSKR IHEDSPA IIlELDIA IHEPSLO IHESTGE IHEYGLS 
III EBS MF IHEDUMC IHELDIB IHEPSSO IIlESTPA IHEYGLV 
IHEBSMV IHEDUMJ IHELDIC IHEPSWO IHESTRA IHEYGSS 
IHEBSMZ IHEDU M P HiELDID IHEPSXO IHESTRB IHEYGSV 
IHEB SNO IHEDUdT IHELDOA IHEPSZO IHESTRC IHEYGWS 
IHEBSOO IHEDVUO ll:iELDOB IIlEBEAD IHETHLO IHEYGWV 

560 External Symbol Index 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

( October 1976 

IHEBSS2 IHEDVVO IHELDOC IHERITE IHETHSO IHEYGXS 
IHEBSS3 IHEDZ WO IHELNLD IHESADA IHETNLD IHEYGXV 
IHEBSTA IHEDZZO IHELNLE IHESADB IHETNLR IHEYGZS 
IHEBSVA IHEEPLC lllELNL2 IHESADD IHETNSD IHEYGZV 
IHECPAA IHEEFLF IHELNSD IHESADE IHETNSR IHEZZZZZ 
IHECFBA IHEEFSC II1ELNSE IHESADF IHETNWH INTSUBS 
IHECFCA IHEEPSF IHELNS2 IHESAFA IHETNWN LASTKEY 
IHECNTA IHEERRA IHELNWO IHESAFB IHETNZH NFXTKEY 
IH ECN TB IHEERRB IHELNZO IHESAFC IHETNZN PLCALL 
IHECSCO IHEERRC IHELSPA IHESAFD IHEUPAA PICALLD 
IHECSIO IHEERRD IHELSPB IHESAFF IHEUPAB PlCAllE 
IHECSKK IHEERRE IHElSPC IHESAPQ IHEUPBA PLCALlF 
IHECSKR IHEEXLO IHELSPD IHESARA IHEUPBB Pl1ADR 
IHECSMB IHEEXSO IHELSPE IHESARC IHEVCAA Pl1RC 
IHECSMF IHEEXWO IHELTV IHESHLC IHEVCSA QUIT$ 
IHECSMH IHEEXZO lIiEl'lPUO IHESHLS IHEVCSB RAND 
IHECSML IHEHTLO II1EMPVO IHESHSC IHEVFAA RFINFO 
IHECSMV IHEHTSO IHEI1XBN IHESHSS IHEVFBA SIGNOFF 
IHECSS2 IHEIOAA IHEMXBX IHESMFO IHEVFCA TFINPO 
IHECSS3 IHEIOAB IHEIlXDN IHESMGC IHEVFDA USERID 
IHECSTA IHEIOAC IHEMXDX IHESMGR IHEVFEA 
IHECSVA IHEIOAD IHEMXLN IHESI1HC IHEVKBA 
IHEDBNA IHEIOAT Il1EM XLX IHESMHR IHEVKCA 

( !HJ~QH~ 

$PLCOMP ERRBUFFR PGNTEXIT READ SYSINIT WRITE 
COPY ERRPRINT PUNCH SERCOMPR SYSTERM 

!g!!£H~ 

LCC$F REFIELD$ RLS2$R RRDR$R RTAN$P RUEV$S 
lDES$P RERLANG$ RLTUR RRDS$R RTIMUR RYEAR$F 
LERR$F RERRU RLT2$R RRDT$R RTIM2$R RZ$EV$S 
LIN$F REXP$F RI1INUTE$ RREL$R RTIM3$R XClR 
LOUT$F REXPONEN EtlODE$F RRES$R RTRACE$R XFIX 
LRDELIM$ RFATAL RI'lONTH$F RRF A$R RTRUNC$F XnT 
LSDELIM$ RFRAC$F RNDAY$F RRFD$R RUL$F XFRE 
RUEV$S RFREE$R RNORMAL$ RRFI$R R UNIFORM XIDE 
RARCCOS$ RGAMMA$F ROBEY$R RRIRV$R RUSUR XINR 
RARCSIN$ RGAMMAJ$ RORIGIN$ RRLR$R RWEEKDAY XlAR 
RARCTAN$ RGUIB$R ROuT$F RRI1D$F RWEIBULL XMAS 
RBETA$F RHOUR$F RPOISSON RRRRV$R RWTA$R XREC 
RBI NO MIA RIN$F RRANDI$F RRSTEP$F RWTB$R XRET 
RBLOCK$R RISTEP$F RFtANDOM$ RRWD$R RWTC$R XSE1 
RCLS$R RITOA$F RFtDA$R RRXP$F RWTD$R XSE2 
RCOS$P RIXP$F RRDB$R RSEED$P RWTE$R XSLA 
RCRUP RLIN$F RRDC$R RSPIELD$ RWTI$R XSRH 
RCUIB$R RLOG$E$F RRDD$R RSIGN$F RWTP$R XSTP 
RDATE$F RLOG$NOR RRDE$R RSIN$F RWTR$R XWTC 
RDAY$P RlOG$ 10$ RRDUR RSKIP$R RWTS$R XZRO 
RDIM$P RLS1$R RRDL$R RSQRT$F RWTT$R X40 

( 

External Symbol Index 561 



MTS 3: SYSTEM SUBROUTINE DESCfilPTIONS 

October 1976 

!§bH 

ADVLEL CONT GETBLK LRDROV NULSTL SEQRDR 
ADVLER C1 HLF1 LS NULSTR SEQSL 
ADVLL C2 HLF2 LSSCPY NXTLFT SEQSR 
AD VLN L C3 H1 LSTDl'1P NXTRGT SETBLK 
ADVLNR C4 H2 LSTEQL PARMTN SETDIR 
ADVLR C5 ID LSTllRK PARMT2 SETIND 
ADVLWL C6 IDA TUM LSTPRO POP BOT SETMRK 
ADVLWR C7 INHALT LVLRVT POP TOP SETRAC 
ADVSEL CS INITAS LVLRV1 PRESRV SHIN 
ADVSER DATUM nITRD MADATR PRLSTS SLIP PRIM 
ADVSL DELETE INLSTL MADLFT PUBDMP SlPDMP 
ADVSNL DERROR HLSTR MADNBT QQSV SQIN 
ADVSNR DLS IN TGER MADNTP QTR1 SQOUT 
ADVSR DMP IRALST MADOV QTR2 snDAT 
ADVSWL DMPCLR IRARDR MADRGT QTR3 STRDIR 
ADVSWR D MPER R ITSVAL MAKEDL QTR4 S'IRIND 
BOT DMPER 1 LANORM I1RK Q1 SUBSST 
CADLFT DI1PFRE LCNTR l'1RKGET Q2 SUSST 
CADNST DMPLAV LDATVL MRKLSS Q3 SUSSrP 
CADNTP DI1PLNK LIST MRKLST Q4 nRM 
CADRGT DMPLS T LISTAV MTDLST RCELL 'rOP 
CHR1 DI1PMRK LISTMT MTLIS1: RDLSTA !"SYM 
CHR2 DMPRDR LNKL NAMEDL REALL 7SYM# 
CHR3 DMPRE S LNKR N A WI'S T REALS VISI!" 
CHR4 DMPUBL LOCT NEWBOT REED XMASK 
CHR5 DRS LOFRDR NEW TOP RESTOR 
CHR6 EBX LPNTR NEWVAL RS 
CHR7 EQUAL LPURGE NOATVL SEQLL 
CHRS F4TRBK LRDRCP NUCELL SEQLR 

!~H1.:H!1 

OSINT 

EM2.;.n~11!£;li 

SAKV EC COM SAK FlGI2 ORTBAK RG !"QLRAT 
BALANC COI1HES HQR ORTHES RGG TQL1 
BA LBA K COMLR HQR2 ORTRAN RS !"QL2 
BANDR COMLR2 HTRIBK QZHES RSB TRBAK1 
BANDV COI1QR H!"RI B3 QZIT RSG !"RBAK3 
BISECT COMQR2 HTRIDI QZVAL RSGAB TRED1 
BQR CORTB HTRID3 QZVEC RSGBA !"RED2 
CBABK2 CORTH IMTQLV RATQR RSP TRED3 
CBAL ELllBAK 1M TQL 1 REBAK RST TRIDIB 
CG ELMHES ItITQL2 REBAKB RT TSTURM 
CH ELTRAN INVIT REDUC SVD 
CI NVI T FIG I MINFIT REDUC2 TINVIT 

562 External Symbol Index 



~TS 3: SYSTEM SUBRO UTI NE DESCRIPTIONS 

( October 1976 

NH~.;.£:!!l!g1!f.!S 

BESEKO DDAW DELIKM DEXPEI MONERR NATSKO 
BESEK1 DEI DELIK 1 DPEONE NATSEE NATSK1 
BESK O DELIEI1 DELIPE ERRTRA NATSEI 
BESK1 DELIE1 DELIPK FCNbON NAT SEK 

l!H~.;.bH 

DECOMP MAPRNT PRnT PRQUAD SOLVE 
DVDQ NLBACK PRLIN PRSORT SPLINE 
DVDQG NLSYS PRtlIN RANDUI1 VCPRNT 
DVDQ1 PRAXIS PRPRIN SETUP 

l!H~.;.l!g 

CAXI1B CDIR DAXMB DFFT2A S AX liB SFFT2A 
CBS CDLUD DBS DFS SBS SFS 
CDAXI1B CILU DFFT DILU SFFT SILU 
CDBS CIR DfFTA DIR SFFTA SIR 
CDILU CLUD DFFT2 DLUD SFFT2 SlUD 

l!g~.;.QbQHll 

( BAlR INV# QD IV SLE1 TSEP1 ZFOLY2 
DAINT INV1 SAINT SLE 2 URAND ZPR 
DBS JESS SDBS SLE3 UTSLE ZQUAD 
DBST LINC SGLINT SLE4 ZLK2 
GLINT LINCR SINV SLRD ZLOOK 
GRAND LINPG SINV1 SSLE ZLOOKC 
GR AND 1 LRD SINV2 TSEP ZPC 
INV LTSLE SlEt TSEPC ZPOlY 

!B.A~.;.~~g 

ABSNT DCNP DQG8 HEP POLRT RECP 
ACFI DCNPS DQH FE HEPS PPRCN RHARM 
AHI DCPY DQHFG HPCG PQFB RINT 
ALI DCSP DQHSE HPCL PQSD RKGS 
APCH DCSPS DQHSG HSBG PRBI1 RK 1 
APFS DDBAR DQH 16 INUE PROBT RK2 
APlL DDCAR DQH2 4 10 PRQD RSIMC 
API1I1 DDET3 DQH32 JELF PSUB RSRT 
ARAT DDETs DQH 48 KOll10 PVAL RSUM 
ARRAY DDGT3 DQH64 KOLM2 PVSUB RlAB 
ATEIG DELI1 DIIH8 KRANK QATR RTIE 
ATSE DELI2 DQL 12 LAP QA 10 RTMI 
ATSG DET3 DQL 16 LAPS QA2 RINI 
ATSM DETs DQL24 LBVP QA3 RlWI 
AUTO DFI1CG DQL32 LEP QA4 SADD 
AVCAL DFMFP DQL4 UPS QAs SCLA 
AVDAT DFRAT DQL8 LLSQ QA6 SCMA 

( 
BDTR DGELB DQSF LOAD QA7 SDIV 

External Sy wbol Index 563 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

BESJ DGELG DQTFE LOC QA8 SE13 
BESK DGELS DQTFG MADD QA9 SE15 
BESY DGT3 DR HARM MATA QG 10 SE35 
BISER DHARM DRKGS MCHB QG2 SG 13 
BOUND DHEP D~TNI MCPY QG3 SICI 
CADD DHEPS DRTNI IIEANQ QG4 SIGNT 
CANOR DHPCG DRTWI MFGR QGS SIMQ 
CCPY DHPCL DSE13 /lFSD QG6 SINV 
CCUT DISCR DSE15 MFSS QG7 SMIRN 
CDTR DJELF DSE35 IIF UN QG8 SilO 
CEL 1 DLAP DSG13 IIINV QG9 S IIPY 
CEL2 DIAPS DSINV IIISR QHFE SRA~K 

CH I SQ DIBVP DTCNP 11155 QHFG SR~l:E 

CINT DI EP DTCSP 1I0llEN QHSE SRIIA 
CNP DLEPS DTEAS IHAIR QHSG SSUB 
CNPS DLGAII DTEUI MPRC QH 10 SlPRG 
CONVT DLLSQ DT'HEP II PRD \.1H2 SUBIIX 
CORRE DMATX DTIAP IIS1'R QH3 SUBST 
CHOSS DIICHB DTLEP MSUB QH4 TAB1 
CS DIIFGR EIGEN MTDS QH5 TAB2 
CSP DIIFSD ELI 1 IITHA QH6 lAIU 
CSPS DMFSS EIl2 MULTR QH 7 TCNP 
CSRT DIILSS EXPI NDTR QH8 TCSP 
CSUII DIIPRC EXSIlO NDTRI QH9 TEAS 
CTAB DMTDS FACTR NROOT QL 10 TETR A 
CTIE DPECN FMCG ORDER Q12 TEUL 
DACFI DPECS Ff,FP PADD Q13 THEP 
DAHl DPQFB ,ORIF PADDM Q14 TIE 
DALI DPRBM FORIT PCLA Q15 HAP 
DAPCH DPRQD , RA T PCID Q16 TL EP 
DAPFS DQATR GAUSS PDER QL7 TPRD 
DAPLL DQA 12 GDATA PDIV QL8 TRACE 
DAPIIII DQA16 GELB PECN Q19 TlEST 
DARAT DQA24 GEIG PECS QSF TWOAV 
DATSE DQA32 GELS PERil QTEST UTEST 
DATSG DQA4 GMADD PGCD QTFE VA RMX 
DATSII DQA8 GM MMA PHI QTFG WTEST 
DBAR DQG12 GrlPRD PILD RADD XCPY 
DCAR DQG16 GIISUB PINT RANDU 
DCEl 1 DQG24 GtiTRA PMPY RANK 
DCEL2 DQG32 GTPRD PNORII RCP Y 
DCLA DQG4 HARII POINT RCUT 

56 4 External Symbol Index 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

( October 1976 

Q~!1,-H1H!HX 

ADCON # FCVCO IIiCFDUMP PDU liP SINV2 ZLK2 
BAIR FCVEO IHCNAMEL PUTIHC SLE# ZLOOK 
DAINT FCVIO INV QDIV SLE 1 ZIOOKC 
DBS FCVLO INV# SAINT SLE2 ZPC 
DBST FCVTHB IN V1 SDBS SLE3 ZPOLY 
DCVC FCVZO JESS SETDSN SLE4 ZPOLY2 
DCVD flOCS# LINC SETDSR SLRD ZPR 
DCVG FRDNL# LINCR SETGRE SSLE ZQUAD 
DEBUG# FWRNL# LINPG SETSTA TSEP 
DIOCS# GETIHC LINPG# SGLINT TSEPC 
DUMP GLINT LRD SINV TSEP1 
FCVAO IBCOM# L1SLE SINV1 UTSLE 

Q!i!lf'-!l!~1!.!l 

CONEND CON SET CTQQ DISTOK DSINIT 
CONLBL CONTUR CTQQIN DSFINI 

Q!f!lf'-~!.!l.!lM!! 

ARMTS ATRSTR RATRAP RTRAP SPELER lRRSTR 
ATRAP PAR RI1TS SNOOP TRAP 

( 
Q!f!lf'-~!lHfb!.!l 

ADVLEL DERROR INTGER LSTEQL N UCELL SEQLL 
AD·VLER DMP INTSVM LSTtlRK NULSTL SEQLR 
ADVLL DMPCHR IEALST LSTPRO NULSTR SEQRDR 
ADVLNL DMPERR IRARDR LTHERE NXTLFT SEQSL 
ADVLNR DMPER1 ITSVAL LVLRVT NXTRGT SEQSR 
ADVLR DMPFRE I VISIT LVLRV 1 PARMT SETDIR 
ADVLWL DMPINI LAPRIM MADATR PARMT2 SETIND 
ADVLWR DMPLAV LCNTR 11ADLFT POP BOT SETMKW 
ADVSEL DMPLIS LDATVL MADNBT POPRDR SETMRK 
ADVSER o MP LN K LINKWD MADNTP POPTOP SLPDMP 
ADVSL DMPLST LIST MADRGT PRESRV SHNKW 
ADVSNL DIIPIIRK LISTAV MAKEDL PRLSTS SlRDAT 
ADVSNR DMPRDR LISTMT MRK PSHRDR STRIND 
ADVSR DMPRE S L~KL MRKLSS PUTRDL SUBSBT 
ADVSWL DMPSVM LNKLW MR KLST QTHERE SUBST 
ADVSWR DIIPUBL LNKR f'!RKW RCELL SUBSTP 
BOT F4TRBK LNKRW MTDLST RDLSTA TERM 
CADLFT 10 LOCT MTLlST REALS TOP 
CADNBT IDATUII LOFRDR NAMEDL RECURS VISIT 
CADNTP IDW LPNTR NAMTST REED VISTIN 
CADRGT INITAS LPURGE NEWBOT RESTOR 
CRESVM INITRD LRDRCP NEW TOP RSTLST 
DATUM INLSTL LRDROV NEWVAL SAVLST 
DELETE INLSTR LSSCPY NOATVL SA VSEQ 

( 

External Symbol Index 565 



!!!!§R.;.fbH!12 

MAXLEN PREAD PREAD1 PWRITE PWRITE1 SElLEN 

!!!!§R .. §R! !1!l2 

SCMD SGDINF02 SGUINF03 SNS SSETPFX SWRITE 
SCREATE SGETFD SGUINF04 SNS2 SSNOOP 
SCREPLY SGUINFO Si1TSCMD SPITATTN SSN3 
SGDINFO SGUINF02 SNOOP SREAD SSNS2 

566 External Symbol Index 



( 

( 

( 

Reader's Comment Form 
------------------- ---------------

System Subroutine Descriptions 
Volume 3 

October 1976 

Errors noted in publication: 

Suggestions for im~rovement: 

------------------

Date 

Name 

Address------ - ----

Your comments will be much appreciated. Please fold the completed form 
as shown on the reverse side, seal or staple , and drop in Campus Mail or 
in the Suggestion Box at the Computing Center or NUBS. 

567 



568 

fold here 

Publications 
Computing Center 
ULiversity of Michigan 
ALn Arbor, Michigan 48109 
USA 

-----------
fold here 



( 

( 

( 

Update Request Form 

System Subroutine Descriptions 
Volume 3 

october 1976 

Updates to this manual will be i ss ued periodically as errors are 
noted or as changes are made to MTS . If you desire to ha ve these 
updates mailed to you, please fold the completed form as s hown on the 
re verse side, seal or staple, and drop in Campus Mail or in the 
Suggestion Box at the Computing Center or NUBS . Campus Mail addresses 
must be given for local users. Updates (iss ued as Limited-Distribution 
CCMemos) are also a vailable in the memo files at both the Computing 
Center and NUBS. Update s issued prior to the receipt of this form by 
the Computing Center will not be automatically pro vide d ; these must be 
obtained from the memo files . 

Name 

Address 

569 



570 

fold here 

U~date Subscription Service 
publications 
Computing Center 
U~i v ersity of Michigan 
Ann Arbor , Mi chigan 48 109 
USA 

fold here 




