. Mléz\,%‘j an Tewuina . 5~( e

loe TAM 360/6 7 fud
[a'gihf vt el shora 9{,
Pl"fﬂ L0500




The Michigan Terminal Systenm

VOLUME 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

Revised

The University of Michigan Computing Center
Ann Arbor, Michigan

e e e e e 3 ool ofe o ofe e e e e sl e e e e e e 3 e 3 e e sje e ofe ofe s o e ofe e oo ol e 3 ofe e e e ofe e sfeofe e e e

* *
* This obsoletes the May 1973 edition. *
* *

e e e e sk e e 3 3 o e 3 e e e e e e o o 3 o 3 e e ofe ol o e e o 3 e ol e e ol o e e e e e e e e Rk Xk



DISCLAIMER

This volume is intended to represent the current state of the
Michigan Terminal System (MTS), but because the system is constantly
being developed, extended, ard refined, sections of this volume will
become obsolete. The user should refer +to +the Computing Center

Newsletter, Computing Center Memos, and future updates to this volume

for the latest information acout changes to MTS.



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

The software developed by the Computing Center staff for the
operation of the high-speed processor computer can be described as a
multiprogramming supervisor that handles a number of resident, reentrant
programs. Among them 1is a large subsystem, called HTS (Michigan
Terminal System), for command interpretation, execution control, file
management, and accounting maintenance. Most users interact with the
computer's resources through WHTS.

The MTS Manual is a series of volumes that, when completed, will
describe in detail the facilities provided by the Michigan Terminal
System. Administrative policies of the Computing Center and the
physical facilities provided are described in a separate publication
entitled Introduction_to_the_ Computing Center.

The MTS volumes now in print are listed below. The date indicates
the most recent edition o©¢r each volume; however, since volumes are
updated by means of CCMemos, users should check the Memo list, copy the
file *MTSVOLUMES, or watch for announcements in the Newsletter, to
ensure that their MTS volumes are up to date.

Volume 1: The Michigan_Terminal System, April 1976

Volume 2: Public File Descriptions, January 1975

Volume 3: System_ Subroutine_ Descriptions, October 1976

Volume U4: Terminals_and_Tapes, August 1974

Volume 5: System_Services, June 1976

Volume 6: FORTRAN in MTS, March 1976

Volume 8: LISP and SLIP in_ MTS, June 1976

Volume 9: SNOBOL4 in_HMTIS, September 1975

Volume 10: BASIC_ in MTS, September 1974

Volume 11: Plot Description_ System, April 1971; reprinted June 1975
with Update 1

Volume 12: PIL/2 in MTS, December 1974

Volume 14: 360/370 Assemblers_in MTS, June 1976

Other volumes are in preparation. The rumerical order of the volumes
does not necessarily reflect the chronological order of their
appearance; however, in general, the higher the number, the more
specialized the volume. Volume 1, for example, introduces the user to
MTS and describes in general the MTS operating system, while Volume 10
deals exclusively with BASIC.

The attempt to make each volume complete in itself and reasonab}y
independent of others in the series naturally results in a certain
amount of repetition. Public file descriptions, for example, may appear



MTS 3: SYSTEM SUBROUTINE DESCR1PTIONS

October 1976

in more than one volume. However, this arrangement permits the user to
buy only those volumes that serve his or her immediate needs.

Richard A. Salisbury,

General Editor



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

PREFACE _TO_REVISED VOLUME_ 3

The October 1976 edition reflects the changes that have been made to
MTS since May 1973. Some of these changes were described in Update 1
which was issued in August 1974 and are incorporated in this revision.
However, several new subroutines have been added since then and, hence,
it was felt that a complete revision of this volume was in order. The

revision bars have been deleted and the pages have been renumbered to
facilitate the future issuing of updates.

The section "Mathematical Subroutines"™ has been deleted from this
edition. Those subroutines, except for GRAND, RAND, and URAND, have
been replaced by the Numerical Analysis and Applications Software (NAAS)
package and are described in the corresponding documentation for that

package. The descriptions of GRAND, RAND, and URAND remain in this
volume.

The section "Macros"™ has Leen deleted from this edition and moved to
MTS Volume 14.

The section "Carriage Control" has been deleted from this edition and
moved to MTS Volume 1.

The following subroutine descriptions have been added to this volume
since the August 1974 update to the May 1973 edition.

Array Management Subroutines
BINEBCD
BINEBCD2
CHGFSZ
CHGMBC
CHKACC
CMDNOE
CNFGINFO
CNTLNR
CVTOMR
DUMP, PDUMP
EDIT
EMPTYF
FNAMETRT
FTNCHMD
GUINFUPD
IHEATTN
I0H
READBFR
RETLNR
SETKEY
SETLNR



MTS 3: SYSTEM SUBROUTINE DESCRLIPTIONS

October 1976

SIOCP
SPELLCHK
STARTF
WRITEBUF

The following subroutine descriptions have been deleted from this
volume. Some of these subroutines still exist in the system, but the
Computing Center makes no guarantee as to how long they will exist.

DCvC

DCVD

DCVG

FCVTHB

GETIHC, PUTIHC
SETDSN

SETDSR

SETSTA



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

Contents

Ereface + s « 4. % s 4w 55 @ 5 3 SHETL < s =

SHFTR O s W ) Y @ BT
Preface to Revised Volume 3 . . 5 ¥OR & o & % % @ 4@ % @ = o @ 257

Blocked Input/Output Routines 59

Using Subroutine Libraries . . . 11 AGETUCE & = & = & @ wow o w00
QOPEN . = w .= o % & 3 & s = 07
Subroutines libraries OGET 4 &% o & & o & @ @ & & B3
Available in AYS & = v & = @ = = 13 OPHT o o & @ 6 & & @ @@ & & 09
OCLOSE = & » & & & & @ % '« = 87
Subject Categories of QFREEUCB « o » « o« » « o« » « 68
SUbroutines & % o o % & W oe.w = 4 OCHTRE o = & & & = & # @ 3 = B9
Character and Numeric BLORLETR = = = /= = @ = = = & & 41
CONVersion « « « = = « = »« « = 17 CALC o s % & &' 'a @ & = @ w & & 13
Date and Time Conversion . « 17 CANREPLIY v &« w v @ » wooa s av B
File and Device Usage . . . . 18 CASECONY 4 o @« = s« o = @ & « o 19
FORTRAN Usage . « - « = -« - - 19 CRDEE o 2 & o= = o » @ @ = = O1
Input/Output Routines . . . . 19 Character Manipulation
Interrupt Processing . . . . . 20 Routines « « « = « o s = & =« = B3
PIL/T USRAQGE « @ & = @ & % @ @ @ 20 BED 4 & i w e @ @ e e e W 00
Status of User and System . . 20 COME o w o o = 2 @ n o @ o o 806
System Utilities . .« « « « . . 21 DO w5 o m ool & ow e = W Y
Virtual Memory Management . . 21 BQUE 2 @ 4 o & @ & & & &« » = 09
EINDE 5 a % s # % @ @ & & = 35
Calling Conventions . =« « « « « 23 FINDST v & o & o @ & & @ o = F2
TCC  w o o o o e el w s e
Resident System and *LIBRARY LEOME o o » a o & & & & » « 9B
Subroutines « s & = & % % @ & = 33 MONBE < ¢ % & & & & @ & w & 98
ADROFE 2 % e @ @ % 06 & @@ & % 99 SETC 2 & % & % & o & & = @ & 97
Array Management Subroutines . 37 TRNC o = a « & o s « a = « « 98
ARIBIN « o @ = & o @ o ® » = 39 IRNESD o 4 @ @ & & e e @ e 20
ARRAY; ARRAYZ . ¢« » = & = o 40 CHEESZ: 2 a » = @ & & = & = % @@}
EXTEND, XTEND2 &« « « « « «» - 42 CHEHEC 4 & % & @ % & % = 'w o =103
ERASE o & o % @ @ @& '@ @ @ = 53 CHRKACE & « w & » & 4 @ @ @ o o 0
BRASBAL o i o w o » @ s « @2 =« &3 CHEFDUB w « o % s @ = » & » -« i@
ASCEBGE a & w @ o w o @ % e a0 0D EHERTILR w w % = o o % & = %103
ATHERE: » o o & & & @ % & & @ U9 CIOSEFIL o » » = & & = % #» = =111
ATTEBTRP < @ o« & % &« ® & & & w 91 CMDE o e & @i @ e e o e om e e ha
BIBEECE o o & ¢ @ % /& ¥ & = o3 CBDUNOR » o w & & & & = » @ % & 1L1D
BINEBCDZ = o 5 = % % = & & % & 299 CHEGINFD <« = & = & s = & = @ o hd
Bitwise logical Functions . . 57 CNTLNR o « o « » o s 9 ¢ s o =321
AND o o ow ow wow wom oe ow ow ow CONTROL: « = & #» & ¢ o 4 & & & 123
COBPL: o« 5 = =5 8.9 = % & 5 20 COSTE: o % & & 5 8 & & % w & whet
TAND « = % # w @ & ‘% & & = « B CREATE o « & & @ 'm & = @ w e e fld
LCONPL o o & i & o @ = & & u 97 CUINFO & « w o = o % & = @ @« « 3
DOTE w o & e @ ue ow oy oam @ O0F OVEOME v =« o & = w % @ o (9 @ «133
IXOR « o = o @ o & o & & = D0 DESTROY o & = @ & ‘= & & & & 39
OR s % o = % o« @ % 5 @5 & Y DISHNOUNT = <« a o & » & & o« o137



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

bumMp, PDUMP . o w oW ow e e 109 INC . & « « . « - ow o oedII

EBCASC = & s & @ & & % % @& w141 G % & w% i 9 w @ & @ 299
BDIT w sa: s @ @ ¥ & % & @ & @ 1D ITR « & @ @ o % & % % @ @ 9ad9
BERPTY w o = m w o w @ e e 0D ITPRT v o w o = & & & @ @ = =299
ENPEYE v « w o = @ o oy om i an par VR IXC o o = o @ @ = & & & = =239
ERROR & o« a = &« # @& = & & = «199 BOUNT 2 o o & 2 & % % & = @ »303
E7090, D7090, E7090P, D7090P .161 BTS % e =@ @ /% & 5.8 & % 8309
FNAMBTRT < o o » # « & % 4 & =163 MPSCED & i o' & 'a & =& & & =307
FREAD w w o e o e @ e & & & FOD HOTE o v o 3 % 5 @ @& @ & w39
RREBED v « @ w ue car v o om v o o VOIE DSERDT ww & w0 v o ove o o vk = oow w30k
FREESPAC v« o« « o « & ® e . e 109 PERMIT o a2 o o = o s 2 o = = w313
FSIZE Y R Y e PGNTTRP Bl @ e E R sl e, e e T
FSEE,; BSBF o o a v /@ & @ & & @173 POINT & 3 & o @ & & = = = =319
FTPNCHD o % 5 s id & @ & & & @ & L10 Printer Plot Routines . . . .321
GDINF T I T R i PLOT1 W e SN e e W e eaSeD
CGDIRER v o % 5 & @ m o e o m o VY PLOT2 .« =« o « « « « = « « «326
GDINFO2 R T T~ Ay e | - I PLOT3 R A S R "} |
GDINFO3 . 2 &« « o « « =« « = =187 PLOTY i v e o @ & & & & = =328
GEPFD 4 v & & & & @ = w & = w109 PLOTAR i 5 6 = % & = @ = % 93209
GETFST, GETLST o« « = = = « = <191 PRCHAR = # o @ @ @ % & = #3330
GBTINE o o = & 2 5 = = &= o o133 PREND . o o o « o = = =« « 2331
GETSPACE o o @ = = » @ % & & »198 PRRPIOT &« o & 5 % & &/ # & #3332
GEINED o 5 a m ¢ @ % & @ w » w1897 SPPLTY s w w @ 4 & & uw o @ &S
GPSECT, QPSECT, FPSECT . . . .205 SPTPLT2 o o & @ % & @ & @4 @ #3330
GRAND, GRAND1 T PR ST . 1 4 SETLOG « o « « « =« « « =« « 2336
GRGJULDT, GRGJULTM, GRJLSEC .209 OUET v o 5 0 w o= = 8 oo o eSS
GRJLDT, GRJILTM « « o« « « = - =211 OUIT 2 = s o '% % @ 4 % 8 = @ @339
GROSDT = « & 4 & a4 @ % & = w213 BCALL o« s w @ o @ & @ % & o w3kl
GTDINS v c ww 2 % & & % & & welo RBAD & o o @ v o % o e w e e 30
GTDJMSR & @ oo W e kw0 e e w0 ead READBFR O P | B

GUINFO, CUINFO . « « « = = = 219 RENAME . . . a 4w w o e3W9

GUINFUPD -« 2 « o « o o « « s 2233 RENUMEB < o 5 » s » s o = = = w32
GUSER & o = = o = = = = s = =235 RETLNR « « o « « = « =« s« « = 2353
GUSEBID & w /s & @ W &l e & = w237 REWIND o o o @ @ & & e % « @ w397
JOH & @ o o s wow a0 e o a0 w239 REWIND# .- o o « = o = = = o 2359
JLGRDT, JLGRTM . . . . . . . 241 RSTIME . . - =« o = o = = = =381
JMSGTD, JTUGTD .« « - « - - - -2U3 SCANSTOR « « « o« o =+ o o « « «363
JMSGTDR, JTUGTDR - « . « - . .2U45 SCARDS -« o o o« « « = =« = =« = =365
JULGRGDT, JULGRGTM, JLGRSEC .247 SDUNP & = o & = % & & & = @ «307
KEYNRD o« o o o = o & » a &« « =249 SERCOM x w = & wie @ @ & =« o301
KWNSCAN o = o o ¢« o« &« = = « « +253 SETIEER . ~ o = w = & » = = & o383
IBTGO = = o = = 2 « o = » = =213 SETIOERR & 2 o o a « s s = = «377
LINK, LINEF . & a 2« « s o« « 275 SETKEY 2 o« o = o o & o w & « «379
LIOQURIES o o = 5 = ¢ @ & = & =d8] SETLIO « « = =« =« « & = = = = 2383

- 283 SETLNR . <« « . . . 385
«289 SETPFX o « o o « o a = = = = =389
.293 SI0C = = = « & = «+391

LOAD, LOADF . . . .
LOADINFO v« « « « « «
LOCK o o« « o «a o o =

LODMAP . 2 o o o a o = = =« = 2297 STOCE & 5 a & @ # @ /@ & & =399
Logical Operators . . . . - .299 SIOERR s « w w v & & @ & = = =803
ICIC v @ o @ » @ & W & = ey SKIP o v -a w0 ‘e @ e a @ & & @ sd05
IBD o o aim & w v wi o v = oIS SORT v @ o o @ m = = # w = = w3
IJEDEE . o o« = = = = = « = =299 SORT2,; SORT3 o = & & m a = @« «&11
IBVC a 5 o o = = & a = & = =299 SPELLCHEK < <« = = « » = = = & =413



October 1976

SPIE <« « =
SPRINT . .

SPUNCH . .
STARTF . .
STDDMP . .
SYSTEBN = 5 » + + % & =
TICALL . . «
TIME - . « «
TIMNTRP . .
TRACER . . .
TRUNC . « .
TWAIT . . .
UNLK = « &« .
UNLOAD, UNLDF

.
L]
.

URAND . .
WRITE . .
WRITEBUF .
XCTL, XCTLF .

-
-
- -
- -
-

PL/I Library Subroutines
APTACH < « 5 5 = s @ o
BATCH W e 8 @ & & @ @

. L] . L] . . L]

-415
419

421
- 423
- 425
- 427
- 429
- 433
- 437
- 439
- 443
. 445
-4u7
- 449
- 451
- 453
. 457
- 459

.465
-467
- 469

MTS 3:

SYSTEM SUBROUTINE DESCRIPTIONS

CNIL ¢ o « o o « « o« = o » « =471
CPUTIME . o « « « = = « » = =473
ELAPSED o+ = » = w o v # @ » =415
FINFO, TFINFO, RFINFO . . . .477
THEATTN < = = = % = = & & = 9139
IRENOTE, IHEPNT . . . . . . .U481
IHEREAD, IHERITE . « « &« » « =483
NEXTKEY, LASTKEY . « « « « « U485
PLCALL, PLCALLD, PLCALLE,

PLCALLF < o = = a = = o s = =487
PLIADR <« s @& s s o o = = =« « 491
PLIRC o a s a @ & » » s a = «493
REND v w o s & @ & = = e e =835
SIGNOFF. & v o = = = = @ w w <097
USERID -« « o « o« o o« =« « =« = W99

The Elementary Function Likrary 501

I/0 Subroutine Return Codes . .515
I/0 Modifiers & & « & & = #» « x521
External Symbol Index . . . . .533



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

10



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

USING_SUBROUTINE LIBRARIES

The Computing Center maintains a number of subroutine 1libraries in

public files. In addition, the wuser «can construct and use his own
libraries.

The loader will selectively load subroutines from both user and
system libraries as follows:

(1) A1l 1libraries explicitly specified on the $RUN command are
processed.

(2) If, after all files explicitly specified on the $RUN command are
processed, there remain unresolved subroutine calls, the loader
will search implicitly specified libraries if the LIBR ofption is

ON (the default) as follows:

a. The loader will implicitly search any private libraries
specified via the $SET LIBSRCH=FDname command. The default
setting for the L1BRSRCH option is OFF, in which case no user
libraries are implicitly searched.

b. If, after implicitly searching all wuser libraries, there
remain unresolved subroutine calls, the system will implicit-
ly search *LIBRARY and the resident system library if the
*LIBRARY option is ON (the default).

(3) If, after all implicaitly specified libraries have been searched,
there remain unresolved subroutine calls, a terminal user will
be prompted for more input; a batch user will be given an error
return from the loader.

The default settings for LIBR, LIBSRCH, and *LIBRARY are such that, for
example, issuing the command

$RUN -LOAD+*PL1LIB
will cause the loader to go through the following steps:

(1) The object modules in the file -LOAD are loaded and 1linked
together.

(2) Object modules are selectively loaded from *PL1LIB (since it is
a library) to resolve external symbols (i.e., subroutine names)
from -LOAD.

(3) Finally, if there are still unresolved external symbols,

*LIBRARY and the resident system library are searched for the
appropriate object modules.

Using Subroutine Libraries 11



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

Note that +this concatenation can be implicit as well as explicit.
Instead of specifying

$RUN OBJ+*PL1LIB
the user could speeify
$CONTINUE WITH *PL1LIB
as the last line in the file OBJ and tnen specify
$RUN OBJ
to get the same effect.

The dynamic loader's library facility consists of four control
records, namely LCS, LIB, RIP, and DIR records (named because the
records have LCS, LIB, RIP, or DIR, respectively, in columns 2 to 4 of
the record). The LCS record causes symbols which are referenced but not
yet defined to be defined from a resident system table if they exist
there. The LIB record loads selectively the object module which follows
it or to which the LIB record points only if the module name has been

referenced but not yet defined. The RIP record handles forward
references and multiple entry point problems in the one-pass 1library
scala. The DIR record is used to facilitate the loading of modules

stored in a sequential file.

A library consists of the object modules the user desires in his
library together with the library control records necessary to define
the module names, entry points, and references for the selective loading
feature of the loader. Although the user can construct such a library
himself by dinserting appropriate 1library control records in both his
object modules, this task has proven formidable enough with large
libraries that a program has been written to analyze the object modules
for a library and generate the library complete with all library control
records. A description of this program, *GENLIB, is given in MTS Volume
2. Details of the form of library control records can be found in "The
Dynamic Loader" section in MTS Volume 5.

12 Using Subroutine Libraries



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBROUTINES_ LIBRARIES_AVAILABLE_IN MTS

The <following is a list of the public files that contain subroutine
libraries:

*LIBRARY

All subroutines that are contained in *LIBRARY are described in

this volume except for the IOH subroutines which are described
in the section "IOH" in MTS Volume 5.

*PL1LIB

This file contains subroutines needed to support PL/I programs.
A few of these which were added or modified by the Computing
Center are described in this volunme. The remainder are
described in +the 1IBM publications IBM__System/360_Operating
System_ PL/I_ (F) Programmer's_Guide, form number GC28-6594, and
IBM_System/360 Operating System, PL/I Subroutine Library, Compu-
tational Subroutines, form number GC28-6590.

*PL360LIB

This file «contains subroutines to support the external proce-
dures READ, WRITE, PUNCH, and PAGE for PL360 programs.

*SLIP

The SLIP (Symmetric List Processor) subroutine package is an
implementation of Joseph Weizenbaum's IBM 7080 SLIP language.
The description of SLIP is given in the section "SLIP" in MTS
Volume 8.

*WATLIB

This file <contains WATFOR-coded functions and subroutines for
use with WATFIV programs. The description of WATFIV is given in
the section "WATFIV"™ in MTS Volume 6.

*CSMPLIB
*GASP

*¥*GPSSLIB
*SIM2LIB

These files contain library modules for use with the CSMP, GASP,
GPSS, and SIMSCRIPT2 simulation languages.

Subroutine Libraries Available in MTS 13



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

*ALGOLLIB
*KDFLIB

These files contain subroutines for use with the ALGOL language.
*SPITLIB

This file contains the execution-time support routimes for
object programs produced by *SPITBOL.

*PLOTSYS

This file contains the subroutines for use with the Plot
Description System (PDS).

*1G

This file contains the subroutines for use with the Integrated
Graphics (IG) system.

*ALGOLWLIB
*ALGOLWXLIB

These files contain subroutines for use with the ALGOLW and
extended ALGOLW languages.

*APLLIB

This file contains subroutines for use with the General Motors
Associative Programming Language (APL).

*XPLIBRARY
*EXPLIB

These files «contain subroutines for use with the XPL and
extended XPL languages.

*COBLIB
This file contains subroutines for use with the COBOL 1language.

One subroutine library is available under the Computing Center ID
OLD.

OLD:LIBRARY

This file contains subroutines that were once contained in
*LIBRARY. These subroutines are no longer supported by the
Computing Center.

14 Subroutine Libraries Available in MTS



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

Several subroutine libraries are available under the Computing Center

ID NAAS. These are used for numerical analysis applications. They are
the following:

NAAS:NAL

This file contains a package of general numerical analysis
subroutines.

NAAS:EISPACK

This file contains a package of eigensystem subroutines deve-
loped by the Argonne National Laboratory.

NAAS:FUNPACK

This file contains a package of special function subroutines
developed by the Argonne National Laboratory.

NAAS:SSP
This file contains the IBM Scientific Subroutine Package.

NAAS:OLDLIB

This file contains the mathematical subroutines that were once
contained in *LIBRARY.

Several subroutine libraries are available under the Computing Center
ID UNSP. They are the following:

UNSP:LIBRARY

This file contains a collection of FORTRAN-callable subroutines.
UNSP:PL1LIB

This file contains a collection of PL/I-callable subroutines.
UNSP: SPITLIB

This file contains a collection of functions callable from
SNOBOLY4 or SPITBOL programs.

UNSP:LSLIPLIB

This file contains the single-precision version of the SLIP
subroutines.

UNSP:DIGLIB

This file contains the device-independent graphics system.

Subroutine libraries Available in MTS 15



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

For more detailed information on these subroutine libraries, see the
UNSP descriptions in the documentation racks at the Computing Center and
NUBS.

The ID UNSP is part of an effort to gather a number of unsupported
programs and subroutines into one location. This unsupported software
is being made available under UNSP rather than in public files because
the Computing Center does &rnot have the resources (people, time, or
money) to completely insure its quality or to provide continuing
maintenance. Many of these programs and subroutines represent interinm
solutions to particular probiems which will be replaced with supported
software as better solutions are developed.

As the name UNSP suggests, this software is not actively supported by
the Computing Center Staff. This means that there are no guarantees are
its reliability, performance, or continued availability, no counseling
is available beyond that normally provided for user programs, and no
rebates will be given for errors caused by the operation of unsupported
software. (It should be noted, however, that before any software is
made available under UNSP, a member of the Computing Center staff will
have done minimal testing and determined that the programs does what it
claims to do for the common cases.) The file UNSP:CATALOG may be copied
to obtain a list of the programs and subroutines currently available
together with a short description and directions for obtaining addition-
al documentation.

16 Subroutine Libraries Available in MTS



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBJECT CATEGORIES OF SUBRQUTINES

In an effort to aid users in finding subroutines that may be useful
in their work, a number of subject categories have been defined. Each
category consists of a type of activity a user might be doing. Under
each category is listed the name of the appropriate subroutine descrip-
tion, the purpose of the subroutine, and whether the subroutine is
callable from assembly language and/or FORTRAN.

Character and Numeric Conversion

ASCEBC USASCII to EBCDIC translation Assembly
BINEBCD Binary input to EBCDIC translation Assembly
BINEBCD2 Binary input to EBCDIC translation Assembly
CASECONV Lowercase to uppercase conversion Assembly
CVTOHR OMR card image to EBCDIC translation Assembly, FORTRAN
EBCASC EBCDIC to USASCII translation Assembly
E7090,D7090,E7090P,D7090P

7090 to 360 floating-point conversion Assembly, FORTRAN
I0H Numeric input/output conversion Assembly
SI0C Numeric input/output conversion Assembly, FORTRAN
SIOCP Numeric input/output conversion Assembly, FORTRAN

Date and Time Conversion

GRGJULDT Gregorian to Julian date and time Assembly

GRGJULTM Gregorian to Julian time Assembly

GRJLDT Gregorian to Julian date and time FORTRAN

GRJLSEC Gregorian to Julian time Assembly

GRJLTH Gregorian to Julian time FORTRAN

GROSDT Gregorian to 0S date Assembly, FORTRAN
GTDJMS Gregorian to Julian date and time FORTRAN

GTDJMSR Gregorian to Julian time Assembly

JLGRDT Julian to Gregorian date and time FORTRAN

JLGRSEC Julian to Gregorian time Assembly

JLGRTM Julian to Gregorian time FORTRAN

JMSGTD Julian to Gregorian date and time FORTRAN

JMSGTDR Julian to Gregorian date and time Assembly
JULGRGDT Julian to Gregorian date and time Assembly

JULGRGTM Julian to Gregorian time Assembly

OSGRDT 0S to Gregorian date Assembly, FORTRAN
TIME Get time of day, CPU and elapsed time Assembly, FORTRAN

Subject Categories of Subroutines 17



MTS 3:

SYSTEM SUBROUTINE DESCRIPTIONS

File and Device Usage

CFDUB Compare FDUB-pointers
CHGFSZ Change file size
CHGMBC Change number of file buffers
CHKACC Check access to file
CERKFDUB Get a FDUB-pointer for a file
CHKFILE Determine existence of a rile
CLOSEFIL Close a file .
CNTLNR Count number or lines in a file
CREATE Create a file
DESTROY Destroy a file
EDIT Edit a file
EMPTY Empty a file
EMPTYF Empty a file
FNAMETRT Check for legal file name
FREEFD Free a file or device
FSIZE Determine size required for a file
FSRF,BSRF Forward and backspace records in a file
GDINF Get file information
GDINFO Get file or device information
GDINFO2 Get file or device information
GDINFO3 Get file or device information
GETFD Get a file or device
GETFST,GETLST
Get first and last line numbers of a
line file
GFINFO Get file and catalog information
LETGO Periodically unlock and lock a file
LOCK Lock a file
NOTE Remember sequential file pointers
PERMIT Permit a file
POINT Change sequential file pointers
RENAME Rename a file
RENUMB Renumber a file
RETLNR Return line numbers of a file
REWIND Rewind a logical I/O unit
REWIND# Rewind a file or magnetic tape
SETKEY Set program key for a file
SETLNR Set line numbers of a file
TRUNC Truncate a file
UNLK Unlock a file
WRITEBUF Write file buffers

Subject Categories of Subroutines

October 1976

Assembly,
Assembly,
Assembly,
Assembly,
Assembly,
Assembly,
Assembly,
Assembly,
Assembly,
Assembly,
Assembly,
Assembly,
Assembly,
Assembly
Assembly,
Assembly,
Assembly,
FORTRAN
Assembly
Assembly
Assembly
Assembly,

Assembly,
Assembly,
Assembly,
Assembly,
Assembly,
Assembly,
Assembly,
Assembly,
Assembly,
Assembly,
FORTRAN
Assembly
Assenmbly,
Assembly,
Assembly,
Assembly,
Assembly,

FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN

FORTRAN
FORTRAN
FORTRAN

FORTRAN

FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN

FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

FORTRAN Usage

ADROF

Get address of a FORTRAN variable FORTRAN
Array Management Routines
Array processing for FORTRAN FORTRAN
ATNTRP Attention interrupt processing FORTRAN
Bitwise Logical Functions
FORTRAN bitwise logical functions FORTRAN
Character Manipulation Routines
Character processing for FORTRAN FORTRAN
DUMP,PDUMP
Dump storage FORTRAN
FREAD Free format input FORTRAN
FTNCMD Execute FORTRAN I/0 library command FORTRAN
GDINF Get file information FORTRAN
GRJLDT Gregorian to Julian date and time FORTRAN
GRJLTHM Gregorian to Julian time FORTRAN
GTDJMS Gregorian to Julian date and time FORTRAN
JLGRDT Julian to Gregorian date and time FORTRAN
JLGRTM Julian to Gregorian time FORTRAN
JMSGTD Julian to Gregorian date and time FORTRAN
LINKF Dynamic loading FORTRAN
LOADF Dynamic loading FORTRAN
Logical Operators
FORTRAN logical machine operations FORTRAN
RCALL R-type call from FORTRAN FORTRAN
REWIND Rewind a logical I/O unit FORTRAN
SIOERR I1/0 error processing FORTRAN
STARTF Dynamic loading FORTRAN
TICALL Timer interrupt processing FORTRAN
UNLDF Dynamic unloading FORTRAN
Input/Output Routines
Blocked I/0 Routines
Read and write blocked records Assembly, FORTRAN
FREAD Free format input Assembly, FORTRAN
GUSER Read from logical I/0 unit GUSER Assembly, FORTRAN
LIOUNITS Table of valid logical I/0 units Assembly
READ Read a record Assembly, FORTRAN
READBFR Read without knowing length Assembly
REWIND Rewind a logical I/0 unit FORTRAN
REWIND# Rewind a magnetic tape or file Assembly
SCARDS Read from logical I/0 unit SCARDS Assembly, FORTRAN
SERCOHM Write on logical I/0 unit SERCOM Assembly, FORTRAN
SETIOERR I/0 error processing Assembly
SETLIO Set logical I/0O unit Assembly, FORTRAN
SIOERR I/0 error processing FORTRAN
SPRINT Write on logical I/0 unit SPRINT Assembly, FORTRAN
SPUNCH Write on logical I/0 unit SPUNCH Assembly, FORTRAN
WRITE Write a record Assembly, FORTRAN

Subject Categories of Subroutines 19



MTS 332

SYSTEM SUBROUTINE DESCRIPTIONS

Interrupt Processing

ATNTRP
ATTNTRP
GETIME
PGNTTRP
RSTIME
SETIME
SPIE
TICALL
TIMNTRP
TRACER

TWAIT

PL/I Usage

ATTACH
BATCH
CNTL
CPUTIME
ELAPSED
FINFO
IHEATTN
IHENOTE
IHEPNT
IHEREAD
IHERITE
NEXTKEY
PLCALL
PL1ADR
PL1RC
RAND
SIGNOFF
USERID

Attention interrupt processing
Attention interrupt processing
Timer interrupt processing
Program interrupt processing
Timer interrupt processing
Timer interrupt processing
Program interrupt processing
Timer interrupt processing
Timer interrupt processing
Elementary function library error
processing

Timer interrupt processing

Attach PL/I files

Terminal or batch status

Execute a device support operation
Get CPU time

Get elapsed time

Get file or device information
Attention interrupt processing
Remember sequential pointers
Change sequential pointers

Read from PL/I

Write from PL/I

Find key of next PL/I record
S-type call from PL/I

Get address of a PL/I variable
Determine return code from subroutine
Uniform random numbers

Signoff the user

Get user ccid

Status of User and Systen

20

CANREPLY
CNFGINFO
CosT
CUINFO
GUINFO
GUINFUPD
GUSERID
LOADINFO

Subject

Terminal or batch status

Get system configuration information
Get cost of current signon

Change user status information

Get user status information

Update user status information

Get user ccid

Get symbol or address information

Categories of Suhroutines.

October 1976

FORTRAN

Assembly
Assembly
Assembly
Assembly
Assembly
Assembly
FORTRAN

Assembly

Assembly, FORTRAN
Assembly, FORTRAN

PL/I
PL/I
PL/I
PL/I
PL/I
PL/I
PL/I
PL/I
PL/I
PL/I
PL/I
PL/T
PL/I
PL/I
PL/I
PL/I
PL/I
PL/I

Assembly, FORTRAN

Assembly

Assembly, FORTRAN

Assembly
Assembly
Assembly

Assembly, FORTRAN

Assembly



MTS 3:

October 1976

System Utilities

BLOKLETR Produce block letters

CALC Call $CALC routines

CMD Execute an MTS command

CMDNOE Execute an MTS command without echoing
CONTROL Execute a device support operation
DISMOUNT Dismount a tape

ERROR Terminate execution with error
GRAND Normally distributed random number
KEYWRD Keyword processing

KWSCAN Keyword processing

MOUNT Mount a tape

MTS Return to MTS command mode

MTSCHMD Return to MTS and execute a command

Printer Plot Routines

Produce plots

QUIT Signoff user at next MTS command
SETLIO Assign logical 1/0 units

SETPFX Set prefix character

SKIP Space a magnetic tape

SORT Sort and merge records

SORT2 Sort vectors

SORT3 Sort vectors

SPELLCHK Spelling check

SYSTEMN Terminate execution

URAND Uniformly distributed random number

DUMP,PDUMP

FREESPAC
GETSPACE

Virtual Memory Management

Dump storage
Release storage
Acquire storage

GPSECT, FPSECT, QPSECT
Psect storage management
LINK Dynamic loading
LINKF Dynamic loading
LOAD Dynamic loading
LOADF Dynamic loading
LOADINFO Get loader table information
LODMAP Produce loader map
SCANSTOR Scan storage blocks
SDUMP Dump storage and registers
STARTF Dynamic loading
STDDMP Dump storage
UNLDF Dynamic unloading
UNLOAD Dynamic unloading
XCTL Dynamic loading
XCTLF Dynamic loading

Assembly,
Assembly,
Assembly,
Assembly,
Assenmnbly,
Assembly,
Assembly,
Assembly,
Assembly

Assembly

Assembly,
Assembly,
Assembly,

Assembly,
Assembly,
Assenmbly,
Assembly,
Assembly,
Assembly,
Assembly,
Assembly,
Assembly,
Assembly,
Assembly,

FORTRAN
Assembly,
Assembly,

Assembly
Assembly
FORTRAN
Assenbly
FORTRAN
Assembly,
Assembly,
Assembly
Assembly
FORTRAN
Assembly
FORTRAN
Assembly
Assembly
FORTRAN

SYSTEM SUBROUTINE DESCRIPTIONS

FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN

FORTRAN
FORTRAN
FORTRAN

FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN

FORTRAN
FORTRAN

FORTRAN
FORTRAN

Subject Categories of Subroutines 21



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

22 Subject Categories of Subroutines



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

CALLING_CONVENTIONS

INTRODUCTION

A calling convention is a very rigid specification of the sequence of
instructions to be used by a program to transfer control tc another
program (usually referred to as a subroutine). It is very desirable,
although not always practical, to set up only one set of conventions to
be used by all programs no matter what language they are writtem in so
that FORTRAN programs may call assembly language programs and so forth.
In MTS, the 0S type I calling conventions have been adopted as the
standard. A complete specification of these standards can be found in
the IBM publication, 0S/360_ _System _Supervisor_ _Services__and__Macro
Instructions, form number GC28-6646. This description will attempt to
bring out the pertinent details of these calling conventions.

Throughout this discussion we will refer to the terms calling
program, called program, save area, and calling sequence. The calling
program is the program which a1s in control and wants to call another
program (subroutine). The called program is the program (subroutine)
which the calling program wants to call. The save area is an area
belonging to the calling program which the called program uses to save
and later restore general-purpose registers. The save area has a very
rigid format and is discussed in more detail later on. A calling
sequence is the actual sequence of machine instructions which perform
the tasks as specified by tme calling conventions.

The facilities that must be provided by the calling conventions are:

1. Establish addressability and transfer to the entry point.

2. Pass parameters on to the called program.

3. Pass results back to the calling programe.

4. Save and restore general-purpose and floating-point registers.

5. Reestablish addressability and return to the calling program.

6. Pass a return code (error indication) back to the calling program
so it knows how things went.

The remainder of this description will describe the 0S type I «calling

conventions to show how they are used and how the facilities listed
above are provided for.

REGISTER_AND_ STORAGE_VARIANTS OF_ CALLS

The 0S type I calling conventions actually comsist of two very
similar calling conventions, referred to as S-type calling conventions
and R-type calling conventions. The two differ only in the way

Calling Conventions 23



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

parameters and results are passed between the calling and called

programs. The R refers to register and the S to storage.

The R-type calling conventions utilize the general-purpose registers
0 and 1 for passing parameters and results. This allows only two
parameters or results and cannot be generated in higher-level languages
such as FORTRAN. Its advantages are that calling sequences are shorter
and take less time to set up. These are very popular in lower-level
system subroutines such as GETSPACE or GETFD. FORTRAN users needing to
call subroutines that utilize R-type calling conventions can use the
RCALL subroutine described in this volunme.

The S-type calling conventions require a pointer to a vector of
address constants called a parameter list (in register 1). Since the
parameter list can be of any required length, several parameters can be
passed using S-type calling convention. These conventions are used by
system subroutines such as SCARDS or LINK and are generated by all
function or subprogram references in FORTRAN. Results can be passed
back by giving variables 1in the parameter 1list new values or via
register 0.

PARAMETER_LISTS

As stated above, a parameter list is a vector of address constants.
The parameter list must be on a fullword boundary and the entries are
each four bytes long. The address of the first parameter is the first
word of the list, the address of the second parameter the second word of
the 1list, and so on. For example, the parameter list for the FORTRAN
statement

CALL QQSV(X,Y,Z)

might be written in assembly code as:

PAR DC A (X) address of X
DC A(Y) address of Y
DC A(Z) address of Z

Now this parameter list works well enough when the parameter 1list for
the subroutine is of fixed length, but there is not enough information
yet to allow a subroutine to determine the length of the parameter 1list
and hence accept variable-length parameter lists. For this reason there
are two types of parameter lists, fixed-length parameter lists as

_me—=== =====

described above, and an extended form of parameter list called a

Since a standard System/360/370 computer uses 24-byte storage
addresses, the left-most byte of an address constant is usually zero.
In a variable-length parameter list, bit zero of the left-most byte of
the last parameter address constant is set to 1 to show that it is the
last item in the list. The example above then would be written as:

24 Calling Conventions



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

PAR DC A (X) address of X
DC A(Y) address of Y
DC XL1'80" turn on bit zero
DC AL3 (2) address of Z

if it generated a variable-length parameter list, as FORTRAN does. Note
though that programs expecting a fixed-length parameter list will work
with a variable-length parameter list, provided it is at least as long
as the fixed-length 1list the program is expecting, since it extracts
only the address part when it uses the parameters.

Of the sixteen general-purpose registers, five are assigned for use
in the calling conventions. The use of the general registers differs
slightly depending upon whether an R- or S-type call is being made.
Table 1 specifies exactly what each register is used for during a call.

Notice that it is the called program's responsibility to =save and
restore registers 2-12 in the save area provided by the calling program.
There are two reasons for this. First, only the called program knows
how many of the registers from 2-12 it is going to use. Since a
register need be saved and restored only if it is actually going to be
changed, the called program may be able to save some time by saving and
restoring only those registers which it will use. Secondly, the called
program requires addressability over the area in which it will save
registers upon entry, since any attempt to acquire the address of a save
area would destroy some of the registers which are to be saved.
Furthermore, the save area should not be a part of the «called program
since that would prevent it from being reentrant (shareable). This
means the calling program should provide the save area in which
registers are saved and restored. And so we have the called program
saving and restoring registers 2-12 in a save area provided by the
calling program.

The calling conventions are gquite different with floating-point
registers. Since a large percentage of programs do not leave items in
floating-point registers across subroutine calls it seems rather waste-
ful to always save and restore the floating-point registers. So the
convention has been established that the calling program must save and
restore those floating-point registers that contain items which are
wanted. Also, programs that return a single floating-point result quite

frequently do so via floating-point register 0.

Calling Conventions 25



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

Register Number

Contents

0

Parameter to be passed in R-type sequences.

Result to be passed back in R- and S-type
sequences.

Parameter to be passed in R-type sequences.

Address or a parameter list in S-type sequences.

Not used as a part of the calling sequence. Must
be saved and restored by the called program. The
save area is usually used for this.

13

The address of the save area provided by the
calling program to be used by the called program.

14

Address of the location in the calling program to
which control should be returned after execution of
the called program.

15

S s o S I e el e S A e S e

Address of the entry point in the called program at
the time of the call.

A return coae at the time of the return that
indicates to the calling program whether or not an
exceptional comndition occurred during processing of
the called program. The return code should be zero
for a normal return or a mnultiple of four for
various exceptional conditions.

b e o —— e e e e — e  — ——  — e — e —

Table

RETURNING_RESULTS

1: General-Purpose Register Conventions

There are in the calling conventions four ways in which a subroutine
can return a result. These are:

1. Value of result in gereral-purpose register 0.

2. Value of result in general-purpose register 1.

3. Value of a result in tloating-point registers (usually FRO).
4. Value of a parameter from the parameter list changed.

The particular method used depends wupon whether the E- or S-type

convention 1is wused and whether the <called program can be used as
function in arithmetic statements.

26 Calling Conventions

a



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

The first three methods are used by R-type «calling conventions for
all returned results. The contents of each of the registers depends
upon the particular called program and are described in the subroutine
description for each subroutine using the R-type calling conventions.

The first, third, and fourth methods are used by S-type calling
conventions for all returned results. The first and third methods are
used by function subprograms whose «calls can be embedded in FORTRAN
statements. The choice of general register 0 or floating-point register
0 depends upon whether the result returned is integer or floating point

mode, respectively. Examplies of subroutines which return results in
this manner are the FORTRAN IV Library Subprograms, such as EXP, ALQOG,
or SIN. The fourth method can be used by a subprogram. An example

would be a subprogram called by the statement
CALL MATADD (A,B,C,M,N)
which might add the MxN matrices A and B together and store the result

in C.

SAVE_AREA_FORMAT

The save area is an area belonging to the calling program which the
The address of the save area is passed to the <called program by the

calling program via dJeneral-purpose register 13. The save area has a
very rigid format and is described in Table 2.

There are two things to be noted about the save area format, ramely,
who sets what parts of the save area and how these areas might be set
up. The c¢alling program is responsible for setting up the second word
of the save area. This is to contain the address of the save area which
was provided when the calling program was called. Although this is
technically set up by the calling program as a part of the call, most
programs set up the save area they will provide to subroutines they call
once and leave its address in general register 13. This process then
does not need to be repeated for each call. The called program is
responsible for setting up the third through eighteenth words of the
save area. The called program usually saves the general registers which
it will wuse as a part of its initialization procedure and restores the
registers as a part of the return procedure. Notice that the save area
format is amenable to use of the store multiple and load multiple
instructions for saving and restoring blocks of registers. All of this
will be made clearer in the examples at the end of this section.

Some system subroutines (notably GETSPACE, FREESPAC, and a few
others) do not require that a save area be provided for them. For these
subroutines general register 13 need not be set up before a call; its
contents are preserved by tne called subroutine. The subroutines which
need no save area are clearly marked as such in the HMTS subroutine
descriptions. Notice that it is all right to provide a save area to one
of these subroutine; it will samply be ignored.

Calling Conventions 27



MTS

28

3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976
r L . T Ll
| Word | Displacement | Contents |
I } 1 =
I 1 1 0 | Used by FORTRAN, PL/I, and other beasties |
| | | for many devious purposes. Don't touch! |
L 1 1 J
L 8 L] ) 1
| 2 | 4 | Adaress of the save area used by the calling |
| | | program. Forms a ‘backward chain of save |
I I | areas. Stored by calling programe. |
L 1 L i
1] L) L] L}
| 3 8 | Address of the save area provided by the |
| | | called program for programs it calls. Forms |
| | | a torward chain of save areas. |
L L 1 J
1) L] L] "
I 4| 12 | Return address. Contents of register 14 at |
| | | time of call. |
L 1 1 J
L | L) ) L)
| 5 | 16 | Entry point address. Contents of register |
| | | 15 at time of call. |
L 1 L J
L L) L) L)
| 6 | 20 | Register 0 contents. |
L 1 L J
L L L] L]
| 7 24 | Register 1 contents. |
L L L J
r 1 ¥ .
| 8 | 28 | Register 2 contents. I
F + 1 —{
| 9 | 32 | Register 3 contents. |
F + : 1
I 10 | 36 | Register 4 contents. |
L 1 L i
1 ] v L] L
[ B | 40 | Register 5 contents. |
L L 1 1
L] ) L 1
I 12 | 44 | Register 6 contents. |
L L 1 1
1) R L] L}
| 13 | 48 | Register 7 contents. |
1 1 1 d
L] L) ] S L]
| 14 | 52 | Register 8 contents. |
L 4 1 [
¥ Ll Ll L}
| 15 | 56 | Register 9 contents. |
L [ 1 1
L ] L) L) L
| 16 | 60 | Register 10 contents. |
L [ 1 1
r 1 f z
1 17 | 64 | Register 11 contents. |
L L [ i
Ly LB T L}
[ 18 | 68 | Register 12 contents. |
L 'l il Jd

Calling Conventions

Table 2: Save Area Format



MTS 3: SYSTEM SUBROUTINE DESCRIPIIONS

October 1976

CALLING_PROGRAM RESPONSIBILITIES_AND CONSIDERATIONS

The calling program is responsible for the following:

1-

2.
3.
4.

5.
6.
7.
8.

Loading register 13 with the address of the save area and setting
up the second word of the save area.

Loading register 14 with the return address.

Loading register 15 with the entry point address.

Loading registers 0 and 1 with the parameters in an R-type call
or loading register 1 with the address of the parameter 1list din
an S-type call.

Saving floating-point registers, if necessary.

Transferring to the entry point of the subroutine.

Restoring floating-point registers, if necessary.

Testing the return code in register 15, if desired.

After the return from a subroutine, the status of the program will be
as follows:

T.
2.
3.

4.
5.

In general, the contents of the floating-point registers will be
unpredictable unless saved and restored by the calling progranm.
The contents of general registers 2 through 14 will be restored
to their contents at the time the called program was entered.

The program mask will be unchanged.

The contents of general registers 0, 1, and 15 may be changed.
The condition code may be changed.

Note that general registers 0 and 1 and floating-point register 0 may

contain

results in the case of R-type subroutine calls or a function

subprogram. General register 15 will normally contain a return code,
indicating whether or not an exceptional condition occurred during
processing of the called program.

CALLED_PROGRAM_RESPONSIBILITIES AN

CONSIDERATIONS

The called program is responsible for the following:

1.

Saving the contents of general registers 2 through 12 and 14 in
the save area provided by the calling program. These registers
need be saved only if the called program modifies these
registers.

Setting up the third word of the save area with the address of
the save area which will be provided to subroutines it will call.
Restoring the contents of general registers 2 through 14 before
returning to the calling progranm.

Restoring the program mask if changed.

Loading general registers 0 and 1 or floating-point register 0
with the result in the case of R-type subroutine calls or a
function subprogram.

Loading general register 15 with the return code.

Transferring to the return location.

Calling Conventions 29



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

EXAMPLE _CALLING_SEQUENCES

October 1976

This section will describe and give the assembly language statements
for the typical machine instructions necessary to implement the calling

conventions.

A typical entry point might consist of the following statements:

USING SUBRA, 12
SUBRA  STM  14,12,12(13)

LR 12,15

LA 15,SAVE

ST 15,8(0,13)

ST 13,4(0,15)

LR 13,15

LR 14,1

L
L]
L]

SAVE DS 18F

12 will be a base register

save registers

set up 12 as the base register

this 1s save area provided for others
set up forward pointer

set up backward pointer

set up for any calls we issue

get parameter pointer into nonvolatile
register

save area we provide for others

Inside a subroutine that began with the entry sequence given above,
the value of the second parameter in the parameter 1list could be put
into general-purpose register 3 with the following sequence:

tHe o o

3,4(0,17)

0,0(0,3)

L
e
°
°

pick up second adcon from par list

pick up value of parameter

Inside a subroutine that began with the entry sequence given above,
arnother subroutine, SUBRB, could be called using the following sequence.
Remember that register 13 already points to the correct save area:

LA 1, PARLIST

L 15,=V (SUBRB)
BALR 14,15

B %44 (15)

B AOK

B BAD1

B BAD2

30 Calling Conventions

set up parameter list address

set up entry point address

set up return address and branch to
the subroutine

test return code via a transfer table
RC=0

RC=4

RC=8



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

AOK eoce normal return to here
-]
e
a

PARLIST DC A (PAR1) first parameter address
DC A (PAR2) second parameter address
DC A (PAR3) third parameter address

Finally, a subroutine that began with the entry sequence given above
could return to the program that called it with the following sequence:

LE 0,RESULT floating point result to FPR 0

L 13,4(0,13) use back pointer to get save area

LM 14,12,12 (13) restore registers

SR 15,15 indicate a zero return code--no €rrors
BR 14 return to what called us

It should be pointed out +that although the above sequences are
typical of the instructions used to implement the calling conventions,
many variations are possible.

MACROS_FOR_CALLING_SEQUENCES

There are two sets of macro definitions in the MTS macro library
¥SYSHMAC which can be used to help generate calling sequences. These are
the macros SAVE, CALL, and RETURN; and the macros ENTER and EXII. The
more useful of +these macros are ENTER, CALL, and EXIT. Besides these
there is a set of macros which generate the entire calling sequences for
many of the system subroutines and IOH. For details, see the macro
descriptions in MTS Volume 14.

The example given above is repeated below using the ENTER, CALL, and
EXIT macros.

SUBRA ENTER 12, SA=SAVE
1A 11,1

SAVE Ds 18F

Calling Conventions 31



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

L]
L ]
L ]
CALL SUBRB, (PAR1,PAR2,PAR3)
B *+1 (15)
B AOK
B BAD1
B BAD2
L ]
L ]
AOK eos
L]
L ]
L ]
LE 0,RESULT
EXIT 0

The CALL macro generates its own parameter 1list, hence the parameter
list specified by PARLIST in the original example need not appear in the
macro example.

32 Calling Conventions



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

RESIDENT SYSTEs_AND_*LIBRARY SUBROUTINES

This section contains descriptions of the subroutines that are a part
of the resident system or are contained in the public file *LIBRARY.

Each of these subroutines is called with either the standard S-type
calling sequence (such as FORTRAN uses) or the R-type calling sequence.

Both types of <calling sequences are described in the section "“Calling
Conventions" in this volunme.

Resident System and *LIBRARY Subroutines 33



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

34 Resident System and *LIBRARY Subroutines



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBROUTINE DESCRIPTION

Purpose: To return the address of a FORTRAN variable.

Location: *LIBRARY
Alt. Entry: IADROF

Calling Sequences:

FORTRAN: x = ADROF (var)

Parameters:

var is the location of the variable name whose
address is to be returned. If the variable name
is a character string which is intended to be
used as an FDname, it should be terminated with
a trailing blank.

Values Returned:

GRO will contain the address of the variable. 1In a
FORTRAN call, this address will be returned in Xx.

Note: In FORTRAN, ADROF should be declared as an
INTEGER*4 function. ADROF is intended for use
with RCALL to compute addresses as necessary in
calling R-type subroutines (see the RCALL subrou-
tine description in this volume) .

Example: FORTRAN: INTEGER*Y4 RESULT,ADROF

RESULT = ADROF ('FDname ')

This example returns the address of the character string
"FDname" in the variable RESULT.

ADROF 35



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

36 ADROF



October 1976

Purpose:

Location:

Description:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Array Management_ Subroutines

SUBROUTINE DESCRIPTION

The array management subroutine (AMS) package permits
FORTRAN users to create, extend, and erase 1- and 2-
dimensional arrays at execution time.

*LIBRARY

Any program or subroutine which references an array
created by AMS must include an appropriate subset of the
following statements:

LOGICAL*1 $L1(1)

LOGICAL*4 $L4 (1)

INTEGER*2 $I2 (1)

INTEGER*4 $I4 (1)

REAL*4 $R4 (1)

REAL*8 $R8 (1)

COMPLEX*8 $C8 (1)

EQUIVALENCE ($L1(1),$L4(1),$I2(1),$I4(1),3R4(1),
$R8 (1) ,$C8 (1))

COMMON /$/ $14

The above statements establish a set of names called base
names, all of which reference the same address in mnemory.

An ordinary FORTRAN array element is addressed in the
form:

array name (index)
An AMS array element is addressed in the form:
base name (array name + index)

where the base name should match the FORTRAN type of the
array. For example, an INTEGER*4 TFORTRAN array named
ALPHA might be referenced as ALPHA(I). An AMS array of
the same name and type should be referenced as $I4 (ALPHA+
I). If the array type is REAL*8, it should be referenced
as $R8 (ALPHA+I) and so on for the other array types.

Other base names may be used instead, but the above names
are recommended as they serve to remind the wuser of the
type of array being referenced. Starting the base names
with a dollar sign ($) serves to make references to these
arrays conspicuous in the program listing. Base names
need not be detined for any array types not used by the

Array Management Subroutines 37



MTS 3:

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

program, except that an INTEGER*4 base must be named and
passed in COMMON /$/ even if the user creates no INTEGER*U4
arrays.

If the above declarations are properly made, then an AMS
array may be passed to a subroutine merely by passing its
array name, either as an argument or in COMMON.

The user-callable subroutines in AMS are:

Name | Purpose

——————— l--—---—-—-—-—-----—-———-.————..—--n---
ARINIT | to initialize AMS

ARRAY | to create a 1-dimensional array
ARRAYZ | to create a 2-dimensional array
EXTEND | to extend a 1-dimensional array
XTENDZ | to extend a 2-dimensional array
ERASE | to erase a single array

ERASAL | to erase all arrays

All arguments passed to and returned by these routines
must be INTEGER*4 values.

AMS calls in turn the MTS subroutines GETSPACE, FREESPAC,
IMVC and ADROF.

Note to users who are doing dynamic program loading via
LINKF, LOADF, and XCTLF: the storage obtained by AMS will
be associated with the highest level program and will not
be released until execution is terminated. To release
unwanted arrays call ERASE or ERASAL.

38 Array Management Subroutimnes



October 1976

Purpose:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

ARINIT

Before any arrays are created, the user must make one and
only one call to subroutine ARINIT. This routine initia-
lizes AMS, mainly by creating an array called the master
table, which is used by AMS to keep track of the  user's
arrays. The user does not have direct access to the
master table.

Calling Sequence:

Example:

CALL ARINIT(noar,minc,&s1,&s2)

Parameters:

noar an integer in the range 1 to 52428, which
specifies the number of arrays +the user
expects to create during the job. This is an
estimate and not an upper limit.

minc a positive integer specifying the number of
arrays that +the master table should be
extended to accommodate in case it overflows.
It will be automatically extended by this
amount an indefinite number of times, as
needed.

Return Codes:

Normal Initialization successful.

&s1 No space available to create master table.

&s2 Invalid argument passed (i.e., Dnoar not in
range or minc not positive).

CALL ARINIT(100,50,&98,899)

The master table is «created with enough room to
handle 100 arrays. Should more arrays be requested,
the master table will be automatically extended to
accommodate another 50 arrays. If any time during
the run the master table should overflow again, it
will be extended to accommodate yet ancther 50

arrays. Control will pass to statement 98 in the
user's program if memory space is not available to
create the master table. Control will pass to

statement 99 if an invalid argument is passed.

Array Management Subroutines 39



MTS 3:

Purpose:

SYSTEM SUBROUTINE DESCRIPTIONS

To create a

Calling Sequences:

40

CALL ARRAY (n,

' October 1976

To create a 1-dimensional array, ARRAY should be called.

2-dimensional array, ARRAY2 should be called.

t,d1,6&s1,86s2,6s3,6s4)

CALL ARRAY2(n,t,d1,d2,6s1,6s2,8s3,&sl)

Parameters:

T= T
-

[=8
b

Note:

length in bytes of an array element (1, 2, U
or 8).

a positive integer specifying the number of
elements in the 1st dimension of the array.

a positive integer specifying the number of
elements in the 2nd dimension of the array.

The number of bytes in the array will be

t*d1*%d2, and this product must be in the range 1 to

1048576.

Values Returned:

n

Return Codes:

Normal
&s1

name of array to be created. The integer
value returned will be such that when 1n 1is
used in the array reference "base name (n+i)",
the "imth element of the array will be
referenced (base name = $L1, $L4, $12, $I4,
$R4, $R8B or $C8.)

When creating a 1-dimensional array, argument
n may take the form of an undimensioned
FORTRAN variable such as N, a FORTRAN array
element such as N (J), or an AMS array element
such as $I4(N+J). In any case, n must be of
type INTEGER*4.

When creating a 2-dimensional array, argument
n may not take the form of an undimensioned
variable. It must be an element of either a
FORTRAN or an AMS INTEGER*Y4 array dimensioned
at least d2 in length. This 1is the user's
responsibility.

Array created successfully.
Requested array size out of range.

Array Management Subroutines



October 1976

Examples:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

6s2 No space available for requested array. No

new arrays may be created unless some exist-
ing arrays are erased.

&s3 Request for extension of master table is
greater than 1048576 bytes.
&sl t is not equal to 1, 2, 4 or 8.

The following examples illustrate the creation c¢f 1-
dimensional arrays:

(1) CALL ARRAY (N,1,100,&1,82,83,84)
To reference "i"th element: $L1(N+I)

(2) INTEGER*4 N (20)

CALL ARRAY (N (J),8,250)

To reference "i"th element: $R8 (N (J)+I)

(3) CALL ARRAY (N,4,20)

CALL ARRAY ($IU4 (N+J),2,1500)
To reference "i"th element: $I2($I4 (N+J)+I)

Note that by the method of the second and third examples,
a series of independent arrays may be created, all
referenced by the same name, but by different values of J.
This 4is 1like having a 2-dimensional array where each
column may be of a different type and length and may be
created, extended, or erased independently. This 1is
useful if the exact number of arrays required by a program
is unknown until determined by execution-time data or
calculation.

The following examples illustrate the <creaticn of 2-
dimensional arrays:

(4) INTEGER*4 N (20)
CALL ARRAY2(N,4,200,20)
To reference element "i,j": $RU (N (J)+I)
(5) CALL ARRAY (N,4,20)

CALL ARRAY2 ($I4 (N+1),8,3000,20)

To reference element "i,j": $R8 ($I4 (N+J) +I)

Array Management Subroutines 41



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Purpose:

Octocber 1976

EXTEND, XTEND2

To extend a 1-dimensional array, EXTEND should be called.
To extend a 2-dimensional array, XTEND2 should be called.
This routine allocates new space dimensioned according to
the request, moves the contents of the old space to the
new space, calculates new name values for the new space,
and frees the old space.

Calling Sequences:

Examples:

CALL EXTEND (n,inc1,6s1,86s2,8s3)
CALL XTEND2(n,incl1,inc2,&s1,8s2,6s3)

Parameters:
n name of array to be extended.
inci a positive integer or zero specifying the
number of array elements to be added to 1st
dimension of array.
inc2 a positive integer or zero specifying the
number of array elements to be added to 2nd
dimension of array.
Note: incl and inc2 may not both be zero.
Values Returned:
n new name value for new space obtained.
Return Codes:

Normal Array extended successfully.

&s1 Size of extended array is greater than
1048576 bytes.

&s2 No space available for extension of array.

&s3 Invalid argument (i.e., array name not recog-

nized, negative incl or inc2, or incl and
inc2 both zero).

CALL EXTEND (ALPHA,500,89,810,811)
CALL EXTEND (BETA, M)

CALL XTEND2 (ARRAY,M,N)

CALL XTEND2 ($I4 (A+1),M,N)

42 Array Management Subroutines



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS
October 1976
ERASE
Purpose: This routine may be called to erase an array.
Calling Sequence:
CALL ERASE (n,&s1)
Parameters:
n name of array to be erased.
Returns Codes:
Normal Array erased successfully.
&s1 Array name not recognized.
Examples: CALL ERASE (X)
CALL ERASE(ABC,&99)
CALL ERASE ($I4 (XYZ+1) ,8&100)
ERASAL
Purpose: This routine may be called to erase all arrays. New

arrays may subsequently be <created without recalling
ARINIT. (In fact, ARINIT should never be called more than

once in the same run.)
Calling Sequence:

CALL ERASAL

Array Management Subroutines 43



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

44 Array Management Subroutines



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

ASCEBC

TRANSLATE TABLE DESCRIPTION

Purpose: To translate 8-bit USASCII characters into EBCDIC charac-
ters. An inverse table (EBCASC) is also available.

Location: Resident System

Calling Sequences:

Assembly: L r,=V (ASCEBC)
TR d(,b),0(r)

Parameters:

Lg]

is a general register that will contain the
address of the ASCEBC translate table.

d(l,b) is the location of the region to ke trans-
lated. d is the displacement, 1 is the
length of the region in bytes, and b is the
base register for the region. This parameter
may be given also in an assembly 1language
symbolic format.

Description: A USASCII/EBCDIC translation table is shown on the next
two pages. This table is for 7-bit ASCII, i.e., the
eighth (high order) parity bit is always shown as zero in
this table. The translation is actually done using a
256-entry "folded" table in which the first and second
halves are identical so that the effect is to igncre the
USASCII parity bit.

See the EBCASC description for a table to translate from
EBCDIC into USASCII.

Example: Assembly: L 6,=V (ASCEBC)
TR REG (100) ,0 (6)

-

REG DS CL100
The above example will translate the USASCII characters of

the 100-byte region at location REG into EECDIC
characters.

ASCEBC 45



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

USASCII/EBCDIC Translation Table

| L} h
| USASCII (7-bit) EBCDIC (8-bit) | USASCII(7-bit) EBCDIC (B-bit) |
| I |
|Oct Hex Name TTY Hex Name |Oct Hex Name TTY Hex Name|
L L |
r T 4
|000 00 NUL CT-SFT-P 00 NUL |040 20 Space Space 40 Space|
1001 01 SOH CTRL-A 01 SOH |04 21 ! ! 54 LI
|002 02 STX CTRL=-B 02 STX |ou2 22 L " 7F Ll |
1003 03 ETX CTRL-C 03 ETX |043 23 # # 7B #
|004 04 EOT CTRL-D 37 EOT |044 24 $ 5 5B $ |
|005 05 ENQ CTRL-E 2D ENQ 045 25 % % 6C % |
|006 06 ACK CTRL-F 2E ACK |046 Zb6 & & 50 & |
1007 07 BEL CTRL-G 2F BEL |047 27 ! ' 7D LA |
|010 08 BS CTRL-H 16 BS |050 28 ( ( 4D ( |1
|011 09 HT CTRL-I 05 HT 051 29 ) ) 5D ) |
1012 O0A LF LINE FEED 25 LF |052 2A * ¥ 5C * |
1013 OB VT CTRL-K 0B VT |053 2B + + 4E + |
1014 0OC FF CTRL-L oc FF |054 2C . i 6B I
1015 0D CR RETURN 0D CR 055 2D - - 60 -
1016 OE SO CTRL-N 0E S0 1056 ZE . - 4E - |
1017 OF SI CTRL-0 OF SI 1057 2F 7 / 61 /|
1020 10 DLE CTRL-P 10 DLE |060 30 0 0 FO 0 |
|021 11 DC1 CTRL-Q 11 DC1 061 31 1 1 F1 1 |
1022 12 DC2 CTRL-R 12 Dpc2 1062 32 2 2 F2 2 |
|023 13 DC3 CTRL-S 13 DC3 |063 33 3 3 F3 3 |
|024 14 DC4 CTRL-T 3C DC4 |064 34 4 4 Fy 4 |
1025 15 NAK CTRL-U 3D NAK 065 35 5 5 F5 5 |
1026 16 SYN CTRL-V 32 SYN |066 36 6 6 Fé6 6 |
|027 17 ETB CTRL-W 26 ETB |067 37 7 7 F7 ir |
1030 18 CAN CTRL-X 18 CAN 1070 38 8 8 F8 8 |
1031 19 EM CTRL-Y 19 EM 1071 39 9 9 F9 9 |
1032 1A SUB CTRL-2Z 3F SUB 1072 3A : : TA - |
|033 1B ESC CT-SFT-K 27 ESC |073 3B : : 5E : |
1034 1C FS CT-SFT-L 1c IFS |074 3C < < 4c <
1035 1D GS CT-SFT-HM 1D IGS |075 3D = = 7E = |
1036 1E RS CT-SFT-N 1E IRS |076 3E > > 6E > |
|037 1F US CT-SFT-0 1F IUs (077 3F ? ? 6F ?
L A ]
46 ASCEBC



October 1976

HTS 3:

SYSTEM SUBROUTINE DESCRIPTIONS

USASCII/EBCDIC Translation Table

——— — — -

USASCII(7-bit)

EBCDIC (8-bit) |

USASCII(7-bit)

1
EBCDIC(8-bit) |

1137

1177

Oct Hex Name 'Y Hex Name |Oct Hex Name TTY Hex Name|
L L

|100 40 @ o) 7cC @ 1140 60 Grave NONE 9a NONE|
|1017 41 A A Cc1 A 1141 61 a NONE 81 a |
1102 42 B B c2 B |142 62 b NONE 82 b |
1103 43 cC c (o c 1143 63 c NONE 83 c |
|104 44 D D C4 D |144 64 d NONE 84 d |
1105 45 E E C5 E | 145 65 e NONE 85 e |
1106 46 F F Cé F 1146 66 f NONE 86 £ |
|107 47 G G c7 G 1147 67 g NONE 87 g |
1110 48 H H c8 H 1150 68 h NONE 88 h |
1111 49 I I c9 I 1151 69 i NONE 89 i |
1112 4A g J D1 J 1152 6A J NONE 91 3 |
1113 4B K K D2 K 1153 6B k NONE 92 k |
1114 4C L L D3 L 1154 6C 1 NONE 93 |
1115 4D M M D4 M 1155 6D m NONE 94 m |
1116 4E N N D5 N 1156 6E n NONE 95 n |
1117 4F 0 0 D6 0 1157 6F o NONE 96 o |
1120 50 P P D7 P 1160 70 P NONE 97 p |
1121 51 @ Q D8 Q 1161 71 q NONE 98 g |
1122 52 R R D9 R 1162 72 r NONE 99 ol |
[123. 53 '8 S E2 S 1163 73 s NONE A2 s |
1124 54 T T E3 T |164 74 t NONE A3 < OO |
125 55 O U E4 U 1165 75 u NONE A4 u |
1126 56 V v E5 v |166 76 v NONE A5 v |
{127 57 W W E6 W 1167 77 W NONE A6 U |
|130 58 X X E7 X |170 78 X NONE A7 > S |
131 59 % Y E8 Y (171 79 y NONE A8 y |
1132 5 Z Z E9 Z 1172 7A zZ NONE A9 z |
133 5B [ SHIFT-K AD [ N3 “718 { NONE 8B { 1
1134 5C Bkslsh SHIFT-L BA NONE 174 7C | NONE 4F
1135 5D ] SHIFT-M BD ] 1175 7D 1 ALT MODE 9B 3 |
1136 5E Carat SHIFT-N AA HONE|176 7E Tilde NONE 5F - |
5F SHIFT-0 6D 7F DEL RUBOUT 07 DEL |

ASCEBC 47



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

48 ASCEBC



NTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBROUTINE DESCRIPTION

Purpose: To allow a FORTRAN program to be notified of the occur-
rence of an attention interrupt.

Location: *LIBRARY
Calling Sequence:

FORTRAN: CALL ATNTRP (flagqg)

Parameter:

flag is a LOGICAL*4 variable which will be set to
.TRUE. when an attention interrupt occurs.

Return Codes:
None.

Description: A call to the ATNTRP subroutine will set the value of flag
to JFALSE. and will enable the attention interrupt trap.
When an attention interrupt occurs, flag will be =set to
-.TRUE., the trap will be disabled, and execution of the
interrupted program will be resumed at the point of the
interrupt. It is the responsibility of the FORTRAN
program to detect a change in the value of flag and to act
accordingly.

One call to ATNTRP allows only one attention interrupt to
be intercepted. If it is desired to intercept another
attention interrupt, ATNTRP must be called again.

Example: FORTRAN: LOGICAL*Y4 FLAG
CALL ATNTRP (FLAG)

10 IF (FLAG) GO TO 20

GO TO 10
20 CONTINUE

This example calls ATNTRP to enable the intercept c¢f one
attention interrupt. Periodically, the program checks the
value of FLAG to determine if an interrupt has cccurred;

ATNTRP 49



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

if an interrupt has occurred, a branch is made to
statement label 20.

50 ATNTRP



October 1976

Purpose:

Location:

Alt. Entry:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

To allow control to be returned +to the wuser on an
attention interrupt from a terminal device (ATTN key on
2741, BREAK on Teletype, etc.).

Resident System

ATTNT

Calling Sequences:

Description:

Kssembly: LM  0,1,=A (exit,region)
CALL ATTNTRP

Parameters:

GRO shoula contain zero or the location to transfer
control to if an attention interrupt occurs.

GR1 should contain the location of a 72-byte save
region for storing pertinent information.

Return Codes:

None.

A call on the subroutine ATTNTRP sets up an attention
interrupt intercept for one interrupt only. The calling
sequence specifies the save region for storing information
and a location to transfer to upon the next occurrence of
an attention interrupt. When an interrupt occurs and the
exit 1is taken, the intercept is cleared so that another
call to ATINTRP is necessary to intercept the next
attention interrupt. When an attention interrupt occurs,
the exit is taken in the form of a subroutine call (BALR
14,15 with a GR13 save region provided) to the location
previously specified. If the exit subroutine returns to
MTS (BR 14), MTS will handle the interrupt as if ATTNTRP
had not been called originally. This feature allows the
user to take brief control of the interrupt before MTS
takes complete control of the interrupt. When MTS takes
control of the interrupt, execution of the program will be
terminated and a message will be printed providing the
location of the interrupt.

If GRO is =zero on a call to ATTNTRP, the attention

interrupt intercept 1is disabled. GR1 should be zero, or
it should point to a valid save region.

ATTNTRP 51



MTS 3:

Example:

52

ATTNTRP

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

When the attention interrupt exit is taken, the first
eight bytes of the save region contain the attention
interrupt PSW, and the remainder of the save region
contains the contents of general registers 0 through 15
(in that order) at the time of the interrupt. The
floating-point registers remain as they were at the tinme
of the interrupt. GR1 will contain the location of the
save region.

If on a call to ATTNTRP the first byte of the save region
is X'FF', ATTNTRP does not return to the calling Erogram;
rather, the right-hand half of the PSW and the general
registers are immediately restored from the save region
and a branch is made to the location specified in the
second word of the region. This type of call on ATTNTRP,
after +the first attention interrupt exit is taken, allows
the user to set a switch (for example) and to return to
the point at which he was interrupted with the attention
interrupt intercept again enabled.

In this example, the attention interrupt intercept is
enabled for a specified portion of the program. When the
interrupt occurs, a branch will be made to the label EXIT
where a switch will be set marking the interrugt occur-
rence. The interrupt intercept will be reenabled by a
second call to ATTNTRP with the FF flag set and a branch
will be made back to +the point where the interrupt
occurred.

1M 0,1,=A(EXIT,REGION)
CALL ATINTRP The intercept is enabled.

SR 0‘0
SR 1.1
CALL ATTNTRP The intercept is disabled.

USING *,15
EXIT oI SW,X'01'
MVI 0(1) ,X'FF!'
LA 0,EXIT
CALL ATTNTRP The intercept is reenabled.

REGION DS 18F
SW DC X'00!



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

BINEBCD

SUBROUTINE DESCRIPTION

To convert from binary card image format into EBCDIC

format.

Resident System

Calling Sequence:

Example:

Assembly: LA 1,input
LA 2,output
CALL BINEBCD

Parameters:

GR1 contains the location of the 160-byte

containing the binary card image.

region

GR2 contains the location of the 80-byte region to

contain the converted EBCDIC form.

Notes: 1Illegal characters are not detected and are trans-

lated unpredictably.

The binary card image region is destroyed

during

the translation process. See the description of

BINEBCDZ2 for a subroutine that does
this region.

Assembly: LA 1,INPUT
LA 2,0U0TPUT
CALL BINEBCD

INPUT DS CL160

Binary card image

OUTPUT DS CL80 EBCDIC form

not destroy

The binary card image in the region INPUT is converted to

EBCDIC format and placed in the region OUTPUT.

BINEBCD

53



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

54 BINEBCD



MTIS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

BINEBCD2

SUBKOUTINE DESCRIPTION

Purpose: To convert from binary card image
format.
Location: Resident System

Calling Sequence:
Assembly: LA 1,input
LA 2,output
LA 3,wkarea
CALL BINEBCD2
Parameters:

GR1 contains the location of

format into EBCDIC

the 160-byte region

containing the binary card image.
GR2 contains the location of the B80-byte region to
contain the converted EBCDIC form.

GR3 contains the location of
for the subroutimne.

an 80-byte work area

Notes: Illegal characters are not detected and are trans-

lated unpredictably.

The binary card image region

is not destroyed

during the translation process.

Example: Assembly: LA 1,INPUT
LA 2,0U0TPUT
LA 3,WKAREA
CALL BINEBCD2

INPUT Ds CL160
oUTPUT DS CL80
WKAREA DS CL80

Binary card image
EBCDIC form
Work area

The binary card image in the region INPUT is converted to
EBCDIC format and placed in the region OUTPUT.

BINEBCD2 55



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

56 BINEBCD2



October 1976

Purpose:

Location:

Functions:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Bitwise Logical Functions

SUBRKOUTINE DESCRIPTION

These simple functions do the bitwise logical operations
which are difficult to state in FORTRAN arithmetic formu-
las. If their names are prefixed with an "L", they are
INTEGER; otherwise, they are declared REAL. The only
exception to this rule is that SHFTR and SHFTL @must be
declared INTEGER or LOGICAL (to prevent unwanted

conversions) .
*LIBRARY

AND, LAND, OR, 1OR, XOR, LXOR, COMPL, LCOMPL, SHFTR, and
SHFTL.

Calling Sequences:

AND 5
LAND IC

AND (A,B)
LAND (IA,IB)

The result has bits on only if the correspond-
ing bits of the arquments are both on.

OR C
LOR Ic

OR (A, B)
LOR(IA,IB)

The result has bits on only if either or both
arguments have the corresponding bits on.

XOR c
LXOR h o>

XOR (A, B)
LXOR (IA,IB)

The result has bits on only if the correspond-
ing bits of the two arguments are onot the
same.

COMPL B
LCOMPL IB

COMPL (A)
LCOMPL (IA)

The result has all the bits of the argument
reversed.

Bitwise Logical Functions 57



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Examples:

October 1976

SHFTR Ic
SHFTL IC

SHFTR (IA,IB)
SHFTL (IA,IB)

The first argument is shifted right or left by
the number of bits specified by the last 6
bits of the second integer argument (i.e.,
modulo 64). As logical shift functions, they
are not equivalent to a division or to a
multiplication by a power of two.

Unless otherwise stated, the arguments of the functions
may be either REAL or INTEGER provided that they are
fuliwords (four bytes long).

All of the functions except for XOR can be generated as
in-line code by the FORTRAN-H compiler by specifying the
XL option (see the section "*FTN Interface" in MTS Vclume
6 for details). Caution should be exercised in their use.
The functions AND, OR, and COMPL are always gdenerated
in-line by FORTRAN-H, but their arguments should not be
LOGICAL*1 or INTEGER*2 (specification exceptions may cccur
on System/360s, or speed is drastically reduced on System/
370s) . The other functions, if generated in-line by

FORTRAN-H by specifying the XL option, may take LOGICAL*1
or INTEGER*2 argquments.

WORD = XOR (WORD,WORD)
This example zeros all the bits of the fullword WORD.

DATA MASK/ZO00OFF0000/
SCDBYT = AND (WORD, MASK)

This example examines the second byte of the fullword WORD
by deleting the other bytes and storing the result into
the fullword SCDBYT.

LOGICAL*4 SHFTR
IWORD = SHFTEK (IWORD,24)

This example moves the first byte of +the fullword IWORD
into the fourth byte position and leaves the other bytes
Zero.

DIMENSION CHAR (4)
READ (5,4) (CHAR(I),I=1,4)

4 FORMAT (4A1)
DATA MASK/ZFF000000/
WORD = 0.
DO 6 I=1,4
6 WORD = OR (WORD,SHFTR (AND (CHAR (I) ,MASK) , (I-1) *8))

This example packs four characters into one word.

58 Bitwise Logical Functions



October 1976

Purpose:

Location:

Entry Points:

Description:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Blocked Input/Output Routines

SUBROUTINE DESCRIPTION

To read and write blocked records consisting of one or
more fixed-length logical records.

*LIBRARY

The blocked input/output routines have the following entry
points: QGETUCB, QOPEN, QCLOSE, QGET, QPUT, QFREEUCB, and
QCNTRL.

These routines will read and write blocked input/output
records consisting of one or more fixed-length logical
records. All input/output requests are made for logical
records; the routine handles record blocking and deblock-
ing automatically. These routines are intended for use
with magnetic tape records although they are not restrict-
ed to magnetic tapes. More than one input/output file or
device may be handled at one time. The type of processing
done by these routines is similar to that done by the
Queued Sequential Access Method (QSAM) within 0S, and for
this reason they are sometimes referred to as the MTS QSAHM
routines. They should not be confused with the 0S
routines of the same name because the MTS routines provide
only a subset of the features of the 0S routines.

Several error messages can be generated. Each of these
begins with the prefix:

####4 QSAM ERROR: <FDname>

which will be abbreviated as "eeeo',
The error messages which can be generated by each routine
will be listed with that routine in the descripticns which
follow.
Some of the error messages will be followed by another
message giving an error comment produced by a DSR (device
support routine). These will be of the form

#### message

where "message" is the DSR message.

If the subroutine ERROR is called by these routines, a
$RESTART command will cause an RC=4 return.

Blocked I/0 Routines 59



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

QGETUCB

Purpose: To acguire a file or device which will be used by the
blocked input/output routines and generate a table of
control information for that file or device. This table
is referred to as the UCB (Unit Control Block) .

Alt. Entry: QGTUCB

Calling Sequences:
Assembly: CALL QGETUCB, (name,ptr)
FORTRAN: CALL QGTUCB (name,ptr,&rcl)
Parameters:

name is the location of the name of +the file or
device which is to be wused by the blocked
input/output routines ending with a blank or a
zero-level comna. The name may not be longer
than 256 characters. If the name begins with
the character X'00', it is assumed +to be a
four-byte FDUB-pointer or logical I/0 unit num-
ber tor the file or device.

ptr is the location of a word in which the pointer
to the UCB will be placed.

Ic4 1is tne statement Ilabel to transfer to if a
nonzero return code is encountered.

Return Codes:

0 Successful return. The file or device was
acquired and can now be used by the other blocked
input/output routines.

4 The file or device could not be acquired properly
from MTS. The subroutine GETFD or GDINFO returned
a nonzero return code.

Messages: eee COULD NOT BE ACQUIRED FROM MTS.
eee ERROR FREEING GDINFO VECTOR.

Description: A chain of all UCBs acquired thus far is searched to see
if this file or device has been set up before. If so, the
UCB pointer is returned immediately. Otherwise, a UCB is
built and added to the chain, a pointer to it is returned,
GETFD and GDINFO are called for the file or device, and
pertinent information is set up in the UCB. The ccmpari-
son is performed on the full name given, that is, F and
F(1,10) are considered different files or devices.

60 Blocked I/0 Routines



October 1976

Purpose:

Messages:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

QOPEN
To prepare a file or device which has been acquired by
QGETUCB for blocked input/output operations.
Assembly: CALL QOPEN, (ptr,key,num,len)
FORTRAN: CALL QOPEN (ptr,key,num,len,&rcd)

Parameters:

ptr is the location of a word containing a UCB
pointer as returned by QGETUCB.
key 1is the location of a fullword integer which
indicates whether information is to be read or
written:
1 Information is to be written.
2 Information is to be read.
5 Information is to be written using pre-
vious num and len values.
6 Information is to be read wusing previous
num and len values.
num is the location of the fullword integer maximum
number of logical records per physical record.
len is the location of the fullword integer length
of each logical record (in bytes).
rc4 1is the statement 1label to transfer to if a

nonzero return code is encountered.

Return Codes:

0 Successful return. The file or device can now be
read via QGET (if key is 2 or 6) or written via
QPUT (if key is 1 or 5).

4 The file or device is already open, or key is not
i, 2, 5, or 6, messages 1, 2, 4, 5, or 7 have
occurred, or the physical record length fcr output
is larger than the maximum possible output record
length returned by GDINFO.

ERROR:

The subroutine ERROR is called if messages 3 or 6 are
printed.

eee IS ALREADY OPEN. IT CAN'T BE OPENED TWICE.

eee READ/WRITE SPECIFICATION INCORRECT IN CALL TO OPEN.
eoe INCORRECT FORMAT ON LABELED TAPE.

eee ATTEMPT TO CHANGE FORMAT WHILE OPEN.

eee MAXIMUM RECORD LENGTH TOO LARGE.

eee CONTROL COMMAND REJECTED.

OO E WM =

Blocked I/0 Routines 61



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Description:

Octcber 1976

The control command was rejected by the tape device
support routines; this message may be followed by an
error message from the tape device support routines.

7 eee HAS NOT BEEN SUCCESSFULLY ACQUIRED BY QGETUCE.

The parameters are checked for consistency. The informa-
tion from the parameters is placed in the UCE. The
largest possible physical record length is computed, and a
buffer of that length 1is acquired. If the device is a
magnetic tape, blocking will be turned on in the tape DSR
and the format will be set to

FB (num*len,len)

unless this 1is a call to read a labeled tape, in which
case, QOPEN will check that the format is F or FB with the
logical record length equal to len. If 1t is, it will not
be changed; if it 1s not, an error message will be
printed. Otherwise, if this 1is a call to write to a
device other than a tape, the maximum physical record
length for output is checked against the maximum fossible
output record length as returned by GDINFO. The maximum
physical record length is computed as the logical record
length times the maximum number of logical records per
physical record.

62 Blocked I/0 Routines



October 1976

Purpose:

MIS 3: SYSTEM SUBROUTINE DESCRIPTIONS

QGET

To acquire the next logical record from a file or device
which has been opened as an input file or device via
QOPEN.

Calling Sequences:

Messages:

Description:

Assembly: CALL QGET, (area,ptr)
FORTRAN: CALL QGET (area,ptr,&rcl)

Parameters:

area is the location of an area in which the next
logical record will be stored (input area).

ptr is the location of a word containing a UCB-
pointer as returned by QGETUCB.

rcl4 1is the statement label +to transfer to if a
nonzero return code is encountered.

Return Codes:

0 Successful return. The next logical record has
been placed in the input area.

4 End-or-file. The input area is sprayed with the
character having FF as its hexadecimal representa=-
tion. This corresponds to the 12-11-0-7-8-9
punchea card code.

ERROR:

The subroutine ERROR is called if any of the mescsages
below are printed.

eee USED IN GET ALTHOUGH NOT OPENED AS AN INPUT FILE.
eee USED IN GEI ALTHOUGH END-OF-FILE INDICATION GIVEN.
eee INPUT RECORD IS LONGER THAN MAXIMUM SPECIFIED.

eee RETURN CODE GREATER THAN 4 FROM READ IN GET.

This message may be followed by an error message from
the input device support routine.

eee TAPE INPUT LENGTH WRONG.

Physical records are read from the file or device as
required. Each physical record is broken into one or more
logical records of the length specified in the call upon
QOPEN. The last logical record in a physical record may
actually be shorter than the length of a logical record.
In that case i1t is padded out with blanks. If there are

Blocked I/0 Routines 63



MTS 3:

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

no more logical records, the input area is sprayed with
the character having FF as its hexadecimal representation.
All necessary indices are maintained in the UCB.

If the device is a magnetic tape, the data is moved
directly into area by the tape DSR and no deblocking is
done by QGET since QOPEN has turned blocking on in the
tape DSR.

64 Blocked I/0 Routines



October 1976

Purpose:

MTS 3: SYSTEd SUBROUTINE DESCRIPTIONS

QEUT

To write the next logical record to a file or device which
has been opened as an output file or device via QOPEN.

Calling Sequences:

Messages:

Description:

Assembly: CALL QPUT, (area,ptr)
FORTRAN: CALL QPUT (area,ptr,&rcd)

Parameters:

v

rea is the location of the area in which the next
logical record is stored (output area).

ptr is the location of a word containing a UCB-
pointer as returned by QGETUCB.
rcl4 1is the statement label to transfer to if a

nonzero return code is encountered.

Return Codes:

0 Successful return. The next logical record has
been placed to the current physical record.

4 File or device appears to be full (RC=4 from
WRITE) .

ERROR:

A message is printed and the subroutine ERROR is
called if the file or device has not been opened for
output via the subroutine QOPEN or if a return code
greater than 4 was received from WRITE while writing
out a physical record.

eee USED IN QPUT ALTHOUGH NOT OPENED AS AN OUTPUT FILE.
eee APPEARS TO BE FULL. (RC=4 FROM WRITE)
eese ERROR WHILE WRITING.

This message may be followed by an error messagde from
the output device support routine.

Each logical record presented by a call upon QPUT is
placed into a buffer. When the buffer becomes full, it is
written out as one physical record. All buffers will
contain the maximum number of logical records specified in
the call to QOPEN except the last buffer, which will be
truncated if it is only partially full when QCLOSE is
called. All necessary indices are maintained in the UCB.

Blocked I/0 Routines 65



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

If the device is a magnetic tape, the data is written
directly from area and is blocked by the tape DSR.

66 Blocked I/0 Routines



October 1976

Purpose:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

To terminate blocked input/output operations on a file or
device which has been opened via QOPEN. If the file or
device was used for output and a partial buffer of logical
records for it is present, it is written out as a part of
the closing procedure.

Calling Sequences:

Messages:

Description:

Assembly: CALL QCLOSE, (ptr)
FORTRAN : CALL QCLOSE (ptr)

Parameters:

ptr is the location of a word containing a UCB
pointer as returned by QGETUCB for the file or
device to be closed. The word should contain a
zero if all the currently open files or devices
are to be closed.

Return Codes:

0 All returns are successful even though some error
messages may have been printed.

eee APPEARS TO BE FULL. (RC>4 FROM WRITE)
ese FISHY RETURN FROM FREESPAC.
eese ERROR WHILE WRITING.

This message may be followed by an error message from
the output device support routine.

If the file or device was used for output and a partial
buffer of logical records for it is present, it is written
out. All information in the UCB is reset to the normal
state of an unopened file or device. The file or device
is available for use and can be reopened or positioned.

Note: No tape mark is written when an output file is
closed. If the tape 1is repositioned (e.g.,
rewound), a tape mark will be written by the tape
DSR.

Blocked I/0 Routines 67



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Purpose:

Alt. Entry:

October 1976

To free a file or device which has been acquired via a
call to QGETUCB.

QFRUCB

Calling Sequences:

Messages:

Description:

Assembly: CALL QFREEUCB, (ptr)
FORTRAN: CALL QFRUCB (ptr)
Parameter:

ptr is the location of a fullword containing the
UCB-pointer (such as returned by QGETUCR) for
the file or device to be released.

Return Codes:

0 Successful return. The file or device was closed
and the UCB was released.

4 The UCB-pointer was not found. The file was not
closed.

eee ERROR RETUEN FROM "FREEFD".
eee ERROR RETUERN FROM FREESPAC IN QFRUCB.

The chain of all UCBs acquired is searched for the UCB
specified by ptr. If it is found, QCLOSE is called using
that UCB; then, the UCB is deleted from the chain and
released. Any subsequent operations on this file or
device must be preceded by a call to QGETUCB in crder to
reallocate its UCB.

68 Blocked I/0 Routines



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

QCNTRL

Purpose: To position or write tape marks on a magnetic tape which
has been acquired for wuse by the blocked input/output
routines. To rewind a file or device.

Calling Seguences:
Assembly: CALL QCNTRL, (ccon,ptr)
FORTRAN: CALL QCNTRL (ccon,ptr)

Parameters:

ccon is the location of the three-byte control com-
mand used to perform the function required, or a
halfword length followed by a control command of
that length. See the '"lagnetic Tafpe User's
Guide" in MTS Volume 4.

ptr 1is the location of a word which «contains a
UCB-pointer as returned by QGETUCB.

Return Codes:

0 Successful return. Operation was accepted by the
tape device support routines.

4 Any error condition producing one of the error
messages below (except the message ERROR RETURN
FROM CONTROL OPERATION (RC>4)).

ERROR:

The subroutine ERROR is called if the message ERROR
RETURN FROM CONTROL OPERATION (RC>4) is printed.

Messages: eee CANNOT BE POSITIONED BECAUSE IT IS OPEN.
eee CANNOT BE POSITIONED BECAUSE IT IS NOT A TAPE.
ese DOES NOT HAVE A FDUB AND SO CAN'T BE POSITIONED.
eee RC=4 FROM CONTROL OPERATION. TAPE IS FULL.
eee ERROR RETURN FROM CONTROL OPERATION (RC>4).

This message may be followed by an error message from
the tape device support routine.

eee CANNOT BE POSITIONED BECAUSE NEVER ACQUIRED BY
QGETUCB.

eee CANNOT BE KEWOUND.

eoe RC>0 FROM "REWIND#".

Blocked I/0 Routines 69



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Description:

October 1976

If the request is "REW", the information returned by
GDINFO 1is checked to be sure the file or device can be
rewound. If it can, REWIND# is called to rewind the file
or device. For all other requests, the device must be a
tape, and the operation 1s performed by calling the tape
device support routines.

70 Blocked I/0 Routines



October 1976

Purpose:
Alt. Entry:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

BLOKLETR

SUBROUTINE DESCRIPTION

To convert a character string into block letters.

BLKLTR

Resident System

Calling Sequences:

Description:

Assembly: CALL BLOKLETR, (chars,linct,output,flen)
FORTRAN: CALL BLKLTR (chars,linct,output,flen)

Parameters:

chars is the location of the character string to be
converted into block letters.

linct is the location of a fullword integer with a
value between 1 and 12. This specifies which
of the twelve lines of the block letter is to
be produced on this call.

output is the location of the output region in which
the subroutine will build the resultant out-
put line. It mnust be of size equal to 14

flen is the location of a fullword integer speci-

Return Codes:
None.

The characters generated are those of the 029 keypunch
character set (PL/I character set plus ¢, ! and "). Any
other ‘'characters" in the input string are converted into
blanks. The block characters produced are 12 characters
wide by 12 rows high and are spaced apart by 2 blank
columns. The block characters are composed of the charac-
ter in question--that is, in a block "ABC", the block A is
made up of As, the B of Bs, and the C of Cs. This
subroutine produces one of the twelve output rows on each
call (specified by the linct parameter). It prints
nothing--it only performs the conversion. In order to
produce the complete block character string, the subrou-
tine must be called twelve times.

BLOKLETR 71



MTS 3:

Examples:

72

BLOKLETR

Assembly:

FORTRAN :

letters.

SYSTEM SUBROUTIINE DESCRIPTIONS

8,8
8,1(,8)
8,LINCT

BLOKLETR, (CHARS,LINCT,0UTPUT,FLEN)

SPRINT OUTA,OLEN

SR
LP LA
ST
CALL
C
BL
CHARS DC
FLEN DC
LINCIT DS
OLEN DC
OUTA DC

OUTPUT DS

8,=F'12"
LP

C'ABC!
F'3"

F

Y (3%14+1)
cr 1

CL80

DATA CHARS/'ABC'/

LOGICAL*1 OUTPUT (42)

Do 2 J=1,12

CALL BLKLTR (CHARS,J,0UTPUT,3)
2 WRITE (6,100) OUTPUT

100 FORMAT ('

',42A1)

These examples convert the character

The output will appear as

AAAARAARAARA
AAAAAARAARARAA
AR AA
AA AA
AA AA
ARAAAAAAAAAA
AAAAAAAAAARA
AR AA
AR AA
AR AA
AA AA
AA AA

BBBBBBBBBBB
BBBEBEBBBBBBB
BB BB
BB BB
BB BB
BBEBBBEBBBB
BBEBBBBBBB
BB BB
BB BB
BB BB
BBBEBBBBBBBB
BBBBBBBBBBB

October 1976

string ABC into block

ccciccccce
ccccececceccececce
cC cc
cc
cc
cc
ccC
cc
cc
CcC ccC
ECCCECECCCEL
CCcccccccec



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBROUTINE DESCRIPTION

Purpose: To allow program access to the $CALC command routines.
Location: Resident Systen

Calling Sequences:

Assembly: CALL CALC, (sws,inparm,outparm),VL
FORTRAN: CALL CALC(sws,inparm,outparm,&rcl,&rc8)

Parameters:

SWS is the location of a fullword (INTEGER*U4) of
switches assigned as follows:

Bit 31: 0 - release CALC internal stcrage on
return
1 - do not release intermnal storage,
thus allowing reuse of the sane
invocation on subsequent calls
Bit 30: 0 - evaluate one expression and
return
1 - remain in CALC mode until a
RETURN, MTS, STOP command, Or an
end-of-file is encountered
bit 29: 0 - ipparm 1is the location of a
halfword (LNTEGER*2) input
length followed by the character
string to be used as input
1 - inparm is the location of an
input routine
bit 28: 0 - no output other than FRO (float-
ing register zero) is desired
1 - character output is desired
Bit 27: 0 - outparm is the 1location of a

halfword (INTEGER*2) output
length followed by an output
region

1 - outparm is the location of an
output routine
Bit 26: 0 - call TRACER subrcutine on error
if no character output is
produced
1 - do not call TRACER on error

CALC 73



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

inparm (optional) is one of the following:

(z) the location of a halfword (INTEGER%2)
length followed by a character input
line,

(b) the location of an input routine which
will be called via the standard I/0
subroutine call for input to CALC, or

(c) 0 or omitted, which means use SCARDS for
input regardless of bit 29 setting.

outparm (optional) is one of the following:

(a) the location of a halfword (INTEGER*2)
length followed by a character output
region (the length must be the maximum
length of the region and will be replaced
by the actual 1length of the resulting
character string output),

(b) the location of an output routine which
will be called via the standard I/0
subroutine call for output from CALC, or

(c) 0 or omitted, which means use SPRINT for
output regardless of bit 27 setting.

Lcld,rcB are statement labels to transfer to if the
corresponding return code occurs.
VL is a parameter to the CALL macro which

signifies that the «calling sequence has a

variable number of parameters.

Values Returned:

FRO contains the value of the last successfully
evaluated expression on return. This allows
CALC to be used as a double-precision (REAL*
8) function-type FORTRAN subprogram.

Return Codes:

0 Successful return.

4 The last expression evaluated generated an error
message.

8 The output field provided was of insufficient
length for the output.

Description: The CALC subroutine allows the user to invoke the $CALC
command routirLes to evaluate one or more character arith-
metic expressions. The switch settings control the
options available concerning input, output, and mode of
operation.

The first two switches (bits 31 and 30) control the mode
of operation, i.e., whether or not to allow reuse of this
invocation of CALC and whether or not to stay 4im CALC
mode. Note that it 1is necessary to retain the CALC

74 CALC



October 1976

Examples:

MTIS 3: SYSTEM SUBROUTINE DESCRIPTIONS

internal storage if variable values are to be preserved on
subsequent calls to the CALC subroutine.

The next switch (bit 29) controls the mode of input,
whether the expression is obtained from a given string or
is obtained by a subroutine call. If dinparm is 0 or
omitted, then the input is read from SCARDS. If inpparm is
omitted, then outparm also must be omitted, forcing input
to be read from SCARDS and output, 1f any, to be written
on SPRINT. If inparm specifies an input string (bit 29 is
0) and CALC is to remain in CALC mode (bit 30 is 1), then
any additional input is read from SCARDS.

The next two switches (bits 28 and 27) control the mode of
output. If no output is specified, the subroutine is
assumed to be «called as a function with its only output
value returned in FRO. If an error occurs, the o¢nly way
the user can be notified is via a call to TRACER. This
action can be inhibited by the setting of bit 26. 1f
outparm is 0 or omitted, the value of the expression is
written in character form on SPRINT. If outparm dis the
location of an output string, the result is placed in
character form in the specified location and the length is
modified to the length of the resulting string. If
outparm is the location of an output string and CALC
remains in CALC mode (bit 30 is 1), then all output will
be written in the location provided.

For. further information on the $CALC command, see the
$CALC command descriptionm in MTS Volume 1.

FORTRAN: REAL*8 X,CALC

X=CALC (0)
PRINT 100,X
100 FORMAT (1X,'X=',E24.18)

In the above example, one expression will be evaluated.
The expression will be read from SCARDS and there will be
no output other tham that produced by the PRINT statement.

INTEGER*2 IN(5)/7,'SQ',"RT','(2',") '/
INTEGER*2 OUT(11) /20/

CALL CALC(8,IN,0UT,&100,8200)

100  PRINT1
1 FORMAT (1X,' BAD EXPRESSION')

CALC 75



MTS 3:

76

CALC

SYSTEM SUBROUIINE DESCK1IPTIONS

Octoker 1976

200 PRINT 2
2 FORMAT (1X,'INSUFFICIENT OUTPUT LENGTH')

In the above example, one expression will be evaluated and
it will come from the array IN. The result will be
produced 1in character form in the array OUT. The switch
value of 8 specifies that bit 28 of the switch word is 1
and all other bits are 0.

EXTERNAL INRTE,OUTRTE

CALL CALC(30,INRTE,OUTRTE)

In the above example, expressions will be evaluated until
the occurrence of RETURN, HMTS, STOP, or an end-of-file as
input. Input 1s returned from the subroutine INRTE and
character output is written by calling the subroutine
OUTRTE. The switch value of 30 specifies that bits 27,
28, 29, and 30 are 1 and all other bits are 0.



October 1976

Purpose:

Location:

Alt. Entry:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

CANREPLY

SUBROUTINE DESCRIPTION

To determine whether the user is running in conversational

mode or batch mode.
Resident Systen

CREPLY

Calling Sequences:

Example:

Assembly: CALL CANREPLY
FORTRAN: CALL CREPLY (&rcd)
Parameters:

rcl4 is the statement label to
return code 4 occurs.

Return Codes:

0 Yes (conversational)
4 No (batch)
Assembly: CALL CANREPLY
LTR 15,15
BNE BATCH
FORTRAN: CALL CREPLY (&100)

transfer to if the

The above two examples branch to the specified statement
label if the user is running in batch mode.

CANREPLY 77



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

78 CANREPLY



October 1976

Contents:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

CASECONV

TRANSLATE TABLE DESCRIPTION

A translate table to convert lowercase letters (a-z) dinto
their uppercase equivalents (A-2Z), and to leave all other
characters unchanged.

Resident Systen

Calling Sequences:

Example:

Assembly: L r,=V (CASECONV)
TR name,0 (r)
Parameters:
r is a general register that will contain the

nane

Assembly:

The above

the 100~

letters.

address of the CASECONV translate table.
is the location of the region to be translated.

L 6,=V (CASECONV)
TR REG (100) ,0 (6)

REG DS CL100

example will convert the 1lowercase letters of
byte region at location REG into uppercase

CASECONV 79



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

80 CASECONV



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBROUTINE DESCRIPTION

Purpose: To determine whether two FDUB-pointers, logical I,/0 unit

numbers, or logical I/0 unit names refer to the same file
or device.

Location: Resident System
Calling Sequences:
Assémbly: CALL CFDUB, (fdub1,fdub2)

FORTRAN: CALL CFDUB(fdub1,fdub2,&rcu,&rc8)

Parameters:

fdub1l is the location of a fullword FDUB-pointer
(such as returned by GETFD), a fullword-
integer logical I/0 unit number (0 through
18), or a left-justified 8-character logical
I/0 unit name.

fdub2 is the location of a fullword FDUB-pointer
(such as returned by GETFD), a fullword-
integer logical I/0 unit number (0 through
18), or a left-justified 8-character logical
I/0 unit name.

Lcl4,rc8 are the statement labels to transfer to if
the corresponding return codes occur.

Return Codes:

0 f£dubl and fdub2 refer to the same file or device
(with possibly different modifiers or line number
ranges) .

4 fdubl and £fdub2 refer to different files or

CFDUB 81



MITS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Octoker 1976

Example: Assembly: CALL CFDUB, (UNITA,UNITB)
LTR 15;15
BNE ERROR

UNITA DC C'SPRINT
UNITB DC C'SPUNCH !

This example checks whether the logical I/0 units SPRINT
and SPUNCH refer to the same file or device.

82 CFDUB



October 1976

Purpose:

Location:

Entry Points:

Description:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Character Manipulation Routines

SUBKOUTINE DESCRIPTION

To provide character manipulation capability for FORTRAN
programs.

*LIBRARY

The character manipulation routines have +the following

entry points: BTD, coMcC, DTB, EQUC, FINDC, FINDST, IGC,
LCOMC, MOVEC, SETC, TENC, TRNST.

The subroutines described in this section make use of the
character orientation of the System/360/370 and the fact
that each character can be referenced in a LOGICAL*1 array
in a FORTRAN program. Subroutines are available for
searching for characters or character strings, ignoring
characters, translating characters or character strings,
moving characters, and comparing character strings. All
of these subroutines are written in 360-assembler lan-
guage. It is possible to write FORTRAN equivalents of
each, but at the expense of both CPU time and wvirtual
memory Space.

Four of the routines, FINDC, FINDST, IGC, and TRNST,
return a position in a LOGICAL*1 array as an argument. In
order that this position be relative to the start of the
array, these routines have a slightly more cumbersome
calling sequence than the other routines. This approach
was dictated by the fact that routines which return
positions relative to the start of a search (which may not
be the start of an array) result in many programming
eILOorS due to misunderstandings about the positions
returned.

Three of the routines, FINDC, IGC, and TRNC, search for
characters. 1In order for the search to be carried out, an
initialization step, which may take more CPU time than the
search itself, is made. Since the initialization is the
same for any given set of characters or character string,
these routines allow the user to indicate whether the same
characters are to be used again. If the expression
indicating the number of characters is set to zero, the
same characters given on the last nonzero call will be
used. This saves repeating the initialization step.
Users should try to take advantage of +this in their
programs.

Character Manipulation Routines 83



MTS 3:

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

While the subroutines were designed with the use of
LOGICAL*1 variables in mind, knowledgeable users can, in
fact, use them to manipulate characters stored in amny type
of FORTRAN variable.

These routines typically require a fraction of a millisec-
ond of CPU time. This depends a great deal on the number
of characters involved, but timings greater than one-half
millisecond are rare. The virtual memory required
averages about 250 bytes per routine.

The following terms are used in the subroutine descrip-
tions that follow:

array variable

The name of a dimensioned variable or element of
a dimensioned variable.

INTEGER expression
Any valid INTEGER constant (e.g., 10), variable
name (e.g., I), or arithmetic expression (€.g.,
I+3, U4*K+12).

LOGICAL*1 character array

A dimensioned LOGICAL*1 variable containing
character information.

84 Character Manipulation Routines



October 1976

Purpose:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

(=]
13
o

To convert FORTKAN INTEGER numbers into numeric character
strings.

Calling Sequence:

Comments:

Example:

FORTRAN: CALL BTD (integer,to,cnumb,dnumb,fill,&err)

Parameters:

be converted.
to is a LOGICAL#*1 array variable indicating the
position at which the first character is to
be stored.
cnumb is an INTEGER expression giving the number of
characters in the string. c¢cnumb should be <

12 and 2 0. If cnumb=0, then the number of
characters will be the number of significant
digits in integer plus one for the sign if
integer is negative. If cnumb>12, the char-
acters will be right-justified 4in the 12
positions starting with to and a RETURN 1
will be taken.

dnumb is an INTEGER variable which will Le set to
the number of significant digits in integer
(plus one if the sign is negative).

fill is a LOGICAL*1 character variable, or a
Hollerith literal, giving a character to be
used to replace leading zeros in the string.

err (optional) is the number of a FORTRAN state-
ment to transfer to if cnumb>12.

After a call to BTD, dnumb>cnumb implies a loss of

significant digits in the conversion.

If integqger equals zero, then the entire field of cnumb
characters, starting with the character specified by to,
will consist or f£ill characters.

The example below converts the integer I into a 7-

character string with leading zeros replaced by percent
signs (%) .

LOGICAL*1 CHAR(10)
CALL BTD (I,CHAR(1),7,ND,'%")

If I=-84, the 7 characters stored in CHAR(1) to CHAR(7)
will be %%%%-84. ND will be set to 3.

Character Manipulation Routines 85



MTS 3: SYSTEM SUBROUTINE DESCRIPTIOQNS

Purpose:

October 1976

comMc

To determine whether one character string is less than,
equal to, or greater than, another string.

Calling Sequence:

Comments:

Example:

FORTRAN: CALL COMC (numb,string1,string2,differ,&errc1,
terr2,&err3)

Parameters:

anumb is an INTEGER expression giving the number of
characters in each string.

stringl,string2 are the character strings to be
compared for wequality and may be specified
either by an array variable or by a Hollerith

literal. Equality 1is interpreted in the
sense of position within the 360 collating
sequence.

differ is an INTEGER variable which is set to the
position of the first character in stringi
which differs from the corresponding charac-
ter in string2. If stringl and string2 are

errl (optional) is the number of a FORTRAN state-
ment to transfer to if stringl<string2, i.e.,
ir stringl precedes string2 in the collating
sequence.

err2 (optional) is the number of a FORTRAN state-
ment to transfer to if stringl>string2, i.e.,
if stringl follows string2 in the collating
sequence.

err3 (optional) is the number of a FORTRAN state-
ment to transfer to if numb<O0.

The « first character that differs dictates whether stringil

is less than or greater than string2. If +this character

corresponding character in string2, then stringl<string2;

otherwise, stringl>string2. A normal RETURN is made if
stringl is identical to string2. If numb<0, no comparison

The example below compares the 9 characters starting at
A(15) with the character string PAR FIELD and Ltranches to
statement number 12 on inequality.

LOGICAL*1 A (50)
CALL COMC(9,'PAR FIELD',A(15),IDIF,612,612)

86 Character Manipulation Routines



October 1976

Purpose:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

1=}
-3
It

To convert a string of numeric characters into a FORTRAN
INTEGER number.

Calling Sequence:

Comments:

FORTRAN: CALL DTB (from,integer,cnumb,dnumb,fill,&err)

Parameters:
from is a LOGICAL*1 array variable, or a Hcllerith
literal, giving the numeric characters to be
converted.

integer is an INTEGER variable which will be set to
the integer resulting from the conversion.
cnumb is an INTEGER variable which, on entry to
DTB, should contain the maximum number of
characters to be scanned in the conversion.
Oon exit from DTB, cnumb is set to the actual
number of characters scanned.
doumb is an INTEGER variable which will ke set to
the number of significant digits in integer.
The sign is not included in this number.
£fill is a LOGICAL*1 character variable, or a
Hollerith literal, specifying a character to
be ignored if it precedes the numeric digits
in the string.
err (optional) is the number of a FORTRAN state-
ment to transfer to if invalid characters or
multiple signs are encountered, if the con-
verted number 1is too large to hold in a
FORTRAN fullword INTEGER, or if on entry,
cnumb=<0.
A single sign (+ or -) may be imbedded in the leading fill
characters and will determine the sign of integer. If
there is no sign, '+' is assumed.

DTB can be used to reverse any action of the BTD
subroutine.

dnumb is set to zero if the field integer contains all

blanks; dnumb is set to one if +the field contains all
Zeros.

If the error return to statement err is taken because of
invalid characters or adjacent multiple signs, then
integer=dnumb=0 and cnumb is set to the number of charac-

ters scanned before the error was encountered.

Character Manipulation Routines 87



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Example:

October 1976

There will be no error return taken once a digit is
encountered. After the first digit, any nondigit (even
another sign or a fill character) terminates the number.

If the error return to statement err is taken because the
converted number was too large to hold in the fullword
integer, then integer=0, dnumb is set to the number of
digits encountered, and cnumb is set to the total number
of characters in the field (fill characters plus sign
character plus numeric characters).

If the error return to statement err is taken because

===

The example below converts the character string
eenee=139% 0.

stored starting in element 30 of array NUMB, into an
integer number: '

LOGICAL*1 NUMB(75)
NC=14
CALL DTB (NUMB (30) ,I,NC,ND,'."',£10)

On exit, I=-139, NC=9, and ND=3.

88 Character Manipulation Routines



MIS 3: SYSTEM SUBROUTINE

October 1976

=
o
=
[}

Purpose: To compare two characters for equality.

Calling Sequence:

FORTRAN: LOGICAL EQUC
IF (EQUC (char1,char2)) statement

Parameters:

charl,char2 are LOGICAL*1 variables or

ments, or single-character

DESCRIPTIONS

array ele-
Hecllerith

literals, to be compared for equality.
statement 1is a FORTRAN statement to transfer to if

Comment: If charl is identical to char2, then EQUC (charl,char2) has
the value .TRUE.; otherwise, it has the value .FALSE.

Example: The example below transfers to statement number 10 if the

7th element of ARRAY is the letter G.

LOGICAL EQUC
LOGICAL*1 ARRAY (25)
IF (EQUC('G',ARRAY(7))) GO TO 10

Character Manipulation Routines 89



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Purpose:

To search for any one of a set of characters.

Calling Sequence:

Comment:

Example:

October 1976

FORTRAN: CALL FINDC(array,len,char,numb,start,finish,

cfound,&erri,éerr2)
Parameters:

array is the LOGICAL*1 character

array to be

searched.

len is an INTEGER expression giving the pcsition
in array of the last character to be
searched.

char is either an array variable indicating the

characters for which to search or a Hcllerith
literal specifying the characters.

numb is an INTEGER expression giving the number of
characters in char. If numb=0, then the same
characters as given in a preceding call with

numb>0 will be used.

start is an INTEGER expression indicating the fposi-
tion in array at which the search 1is to

start.

finish 4is an INTEGER variable which will contain the
position in array at which a character in
char is found. If none of the characters is

cfound is an INTEGER variable which will be set to
the position in char of the «character which

is found. If none of the

characters is

errcl (optional) is the number of a FORTRAN state-
ment to transfer to if none of the characters

is found in the search.

|
I~
el
i~

numb<0.

(optional) is the number of a FORTRAN state-
start>len, or

If numb=0 on the first call to FINDC, no characters will
be found. Control will be transferred to the statement

numbered err2.

The example below searches the array LARRAY for the first
occurrence of the numeric characters 0,1,2,3;c2«,9.

LOGICAL*1 LARRAY (125)

CALL FINDC (LARRAY,125,'0123456789',10,1,IF,ICF,&10)

90 Character Manipulation Routines



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

If LARRAY contains the character '7' in position 39, i.e.,
in LARRAY (39), with no numeric characters preceding it,
then, upon exit from FINDC, IF will be 39 and ICF will be
8, 4indicating that the @8th character in the string
'0123456789"' was found 'in LARRAY (39). If there are no

numeric characters in LARRAY, then control will transfer
to statement 10 with IF=ICF=0.

If, on subsequernt calls to FINDC, the same characters
0,1,2,3,«2-,9 are to be searched for, then the fourth
parameter numb should be set to zero so that initializa-
tion need not be repeated.

Character Manipulation Routines 91



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Purpose:

October 1976

FINDST

To search an array for a specified character string.

Calling Sequence:

Comment:

Example:

FORTRAN: CALL FINDST (array,len,string,numb,start,finish,
gerrl1,&errcz)

Parameters:
array is the LOGICAL*1 character array to be
searched.
len is an INTEGER expression giving the position

in array of the last character in the search.

string is an array variable, or a Hollerith literal,
indicating the character string for which to
search.

numb is an INTEGER expression giving the number of

start is an INTEGER expression indicating the fposi-
tion in array at which the search 1is to
start.

finish is an INTEGER variable which will ke set to

______ the position of the character in array at

err] (optional) is the number of a FORTRAN state-
ment to transfer to if string is not found.

errc2 (optional) is the number of a FORTRAN state-
ment to transfer to if start<0, start>len, or
numbs<0.

The complete string must be within the limits start and
len of array-

The example below searches the array AR for the string
MODE with the search starting at the 10th character and
continuing to the U40th character.

LOGICAL*1 AR (50)
CALL FINDST (AR,40,'MODE',4,10,IFINIS,&12)

92 Character Manipulation Routines



October 1976

Purpose:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

1GC

To ignore all of a set of characters, i.e., to find the
first character which 1is not one of a specified set of

characters.

Calling Sequence:

Comment:

Example:

FORTRAN: CALL IGC(array,len,char,numb,start,finish,

Parameters:

ferr1,éerr2)

is the LOGICAL*1 character array to be
searched.

is an INTEGER expression giving the fposition
in array of the last character in the search.
is either an array variable containing, or a
Hollerith 1literal specifying, the characters
to be ignored.

is an INTEGER expression giving the number of
characters in char. If numb=0, the charac-
ters given in a preceding call with numb>0
will be used in the search.

is an INTEGER expression giving the position
in array of the character at which the search
is to start.

is an INTEGER variable which will be set to
the character position in array at which the
first character different from those in char
is found. If all characters are ignored,
finish is set to zero.

(optional) is the number of a FORTRAN state-
ment to transfer to if all characters are
ignored.

(optional) is the number of a FORTRAN state-

numb<0.

the first call to IGC, no characters are

ignored; finish is set equal to start.

The example below searches for the first nonblank charac-
ter in the array LARRAY.

LOGICAL*1 LARRAY (212)
CALL IGC (LARRAY,212,' ',1,1,IF,810)

If the first nonblank character is in character position

132 of the

array, IF will be set to 132. If 'all

Character Manipulation Routines 93



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

characters are blank, then IF will be set to zero and
control will transfer to statement number 10.

94 Character Manipulation Routines



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

conc

Purpose: To determine whether one character string is less than,
equal to, or greater than another string.

Calling Sequence:
FORTRAN: i=LCOMC (numb,stringl1,string2)
Parameters:

numb is an INTEGER expression giving the number of
characters in each string.

stringl,string2 are the character strings to be
compared for equality. They may be specified
either by an array variable or by a Hcllerith

literal. Equality 1is interpreted in the
sense of position within the 360 collating
sequence.

Values Returned:

LCOMC 1is a FUNCTION subprogram and will return an
integer i having a value of:

+1 if stringl>string2, i.e., if stringl follows

0 if stringl=string2, i.e., 1if the character
strings are identical.

Comment: If numb<0, no comparison is made and i is set to zero.

Example: The example below compares 2 character strings of 20
characters starting at A(1) and B(19) and branches to
statement 12 on equality.

LOGICAL*1 A (50) ,B (60)
IF(LCOMC (20,A(1),B(19))-.EQ.0) GO TO 12

Character Manipulation Routines 95



MTS 3: SYSTEM SUBROUTINE DESCKIPTIONS

Purpose:

-

Octoker 1976

To move character strings from one place to another.

Calling Sequence:

Comments:

Example:

FORTRAN: CALL MOVEC (numb,from,to,&err)

Parameters:

numb is an INTEGER expression giving the number of
characters to be moved. npumb must be greater
than zero.

from 1s either an array variable containing the
character string to be moved or a Hcllerith
literal specifying the string.

to is an array variable indicating the start of
the place to which the from characters are to
be moved.

err (optional) is the number of a FORTRAN state-

ment to transfer to if numb<0 or numb>32767.

The from and to array variables can indicate portions of

the same array. In fact, they can be overlapping por-

tions. However, in the latter case, the user must ensure
that characters to be moved are not replaced before being
moved. The characters are moved one at a time from the

first to the numbth position.

If numb<0 or numb>32767, no transfer of characters will
OCCur.

The example below moves 7 characters, starting with the
10th character of array AR1, to AR2, starting with the
80th character.

LOGICAL*1 AR1(100) ,AR2 (132)
CALL MOVEC (7,AR1(10),AR2(80))

The example below moves the character string ERROR MES-
SAGES into the array MSG.

LOGICAL*1 MSG (80)
CALL MOVEC (14, 'ERROR MESSAGES',MSG)

The example below moves the 4 characters DATA into a
simple INTEGER variable I.

DATA X/'DATA'/
CALL MOVEC (4,X,I)

96 Character Manipulation Routines



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

Purpose: To set adjacent characters equal to a specified character.

Calling Sequence:
FORTRAN: CALL SETC (numb,array,char,berr)
Parameters:

numb is an INTEGER expression giving the number of
characters to be set.

array is an array variable giving the starting
position of the characters to be set.

char is either a variable containing the character
to which the numb characters are to be set or
a Hollerith literal specifying the character.

err (optional) is the number of a FORTRAN state-
ment to transfer to if numb=<0.

Comment: If numb<0, no characters are changed.

Example: The example below sets all of the characters in the array
A to blanks.

LOGICAL*1 A (50)
CALL SETC (50,A,' ')

Character Manipulation Routines 97



MIS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Purpose:

Octcber 1976

To translate specified characters in an array into other
characters.

Calling Sequence:

Comments:

Example:

FORTRAN: CALL TRNC(numb,array,oldchar,newchar,cnunb,&err)
Parameters:

numb is an INTEGER expression giving the number of
characters for translation.

array 1s an array variable giving the starting
position of the characters for translation.

oldchar is either an array variable containing a list
of the characters to be translated, or a
Hollerith 1literal specifying the characters.

newchar is either an array variable containing a list
of the characters into which oldchar is to be
translated, or a Hollerith literal specifying
the characters. Any occurrence of the first
character in oldchar will be translated into
the first character of newchar, the second
character of oldchar into the second of
newchar, etc.

0, then oldchar and newchar as given in a

The routine does not check for duplication of characters
in oldchar. The final appearance of a duplicated cbharac-

ter will dictate its translation.

It is the user's responsibility to ensure that there are
the same number of characters in oldchar and newchar. If

there are not, unpredictable translations may occur.

If numb<0 or cnumb<0 (or =<0 on the first call), no
translation will occur. All characters not mentioned in
oldchar are left alone.

The example below translates all As to 1s, Bs to 2s, and
Cs to 3s in the array CHAR.

LOGICAL*1 CHAR (65)
CALL TRNC(65,CHAR,'ABC','123"',3)

98 Character Manipulation Routines



October 1976

Purpose:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

To search for a given character string and translate it
into another string.

Calling Sequence:

Comments:

Example:

FORTRAN: CALL TRNST (array,len,oldst,newst,numb,start,
finish,&err1,berr2)

Parameters:

array is the LOGICAL*1 character array to be

searched.

len is an INTEGER expression giving the character
position in array at which searching is to
terminate.

oldst is either an array variable containing the
character string to be translated or a Hol-
lerith literal specifying the character
string.

newst is either an array variable containing the
new character string or a Hollerith literal
specifying the string.

numb is an INTEGER expression giving the number of
characters in the strings.

start is an INTEGER expression giving the fposition
in array at which searching is to start.

finish is an INTEGER variable which will be =set to
the starting position of the translated
string. finish will be set to zero if the
string is not found.

ercl (optional) is the number of a FORTRAN state-
ment to transfer to if oldst is not found in
the search.

err2 (optional) is the number of a FORTRAN state-
ment to transfer to if start<0, start>len, or
numb<0.

oldst and newst must be the same lengths. Only the first

occurrence of oldst is translated. oldst must be com-

pletely within the limits start and len of array for
translation to occur.

The example below translates the string RECIEVE in the
array A to RECEIVE.

LOGICAL*1 A (200)
CALL TRNST (A,200,'RECIEVE','RECEIVE',7,1,IF,&30)

Character Mamipulation Routines 99



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

If the string is found starting in character 29 of A, then
IF will be set to 29. If the string is not found, then
IF=0 and control is transferred to statement number 30.

100 Character Manipulation Routines



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

CHGFSZ

SUBROUTINE DESCRIPTION

Purpose: To change the size or maxsize of a file either absclutely
or incrementally.

Location: Resident Systen
Calling Sequences:
Assembly: CALL CHGFSZ, (unit,size,flagqg)

FORTRAN: CALL CHGFSZ (unit,size,flag,&rcd4,&rc8,&rclz,
&rcl16,6rc20,6rc24,6rc28,6rc32,86rc36)

Parameters:

unit is the location of either
(a) a fullword-integer FDUB-pointer (such as
returned by GETFD),
(b) a fullword-integer 1logical I/O unit number
(0O through 19), or
(c) a left-justified, B8-character logical I/0
unit name (e.g., SCARDS).
size is the location of a fullword containing the
desired size or maxsize (absolute or increment-
al) in pages.
flag is the location of a fullword integer giving
more information about +the size parameter as

follows:
0 - size is the desired size, absolute
1 - size is the desired change in size (positive
or negative)
- size is the desired maxsize, absolute

2
3 - size is the desired change in maxsize (posi-
tive or negative)

rc4...rc36 are statement labels to transfer to if the

corresponding return codes occur.

Return Codes:

0 Successful return--size or maxsize changed.

4 File does not exist.

8 Hardware error or software inconsistency.

12 Access not allowed--write-expand access required
to increase size; truncate or write-expand access
required to decrease size.

CHGFsSzZ 101



MTS

Example:

102

CHGFSZ

16
20

24
28

22
36

3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

Locking the file will result in a deadlock.

An attention interrupt has canceled the automatic
wait . on the file (waiting caused by concurrent use
of the (shared) file).

Bad parameters (i.e., bad FDUB-pointer, mnot a
file, etc.).

Inconsistent size parameter (see Note 1 belcw).

No disk space available for expansion.

The space allocated +to this account has been
exceeded. '

Notes:

(1) The resultant absolute =size must be positive,
greater than, or equal to the truncated size, and
less than or equal to the maxsize. The maxsize
must be less than or equal to 32767 pages.

(2) A request for an absolute size of zero is defined
to mean truncate the file.

(3) A request for an absolute maxsize of zero is
defined to mean set the maxsize equal to the
current size.

Assembly: CALL CHGFSZ, (UNIT,SIZE,FLAG)

UNIT DC Fr5t
SIZE DC F'150°
FLAG DC F'0"

The above example sets the absolute size of the file
associated with logical I/0 unit 5 to 150 pages.

FORTRAN:

INTEGER*4 UNIT
DATA UNIT/4/

CALL CHGFSZ (UNIT,-10,1)

The above example decrements the size of the file asso-
ciated with logical I/0 unit 4 by 10 pages.



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBEKOUTINE DESCRIPTION

Purpose: To change dynamically the number of page-sized buffers
used by the file system to read and write a particular
file.

Location: Resident System

Calling Sequences:
Assembly: CALL CHGMBC, (unit,maxbuf)

FORTRAN: CALL CHGMBC (unit,maxbuf,&é&rcld,érc8,6rc12,ércl6,
&rc20,&rc2l)

Parameters:

unit is the location of either
(a) a fullword-integer FDUB-pointer (such as
returned by GETFD),
(b) a fullword-integer logical I/0 unit num-
ber (0 through 19), or
(c) a left-justified, B8-character logical I/0
unit name (e.g., SCARDS).
maxbuf is the location of a fullword integer speci-
fying the maximum number of buffers to use.

1
3

maxbuf £ 100 for sequential files

IA A
B
s}
>4
l=2
=
Fh
IA
e
o
o
P-h
o
H
[
-
=
o
Hh
-
[
™
0

Lcl...rc24 are statement labels to transfer to if the
corresponding return codes occur.

Return Codes:

0 Maximum number of buffers changed as specified.

4 The file does not exist.

8 Hardware error or software inconsistency.

12 Access not allowed to file.

16 Locking the file will result in a deadlock.

20 An attention interrupt has canceled the automatic
wait or the file (waiting caused by concurrent use
of the (shared) file).

24 Bad parameters (i.e., bad FDUB-pointer, not a
file, maxbuf out of legal range).

Description: In general, the file system will dynamically allocate as
many page-sized buffers for use in reading and writing a

CHGMEC 103



MTS 3:

Examples:

104

CHGMBC

SYSTEMd SUBROUTINE DESCRIPTIONS

October 1976

particular file as there are pages in actual use by the
file (i.e., the truncated size) up to the @maximum number
of buffers specified. The default maximum number of
buffers for both line and sequential files is 5. In
simple terms, the more buffers one allows, the less
physical disk I/0 reguired, but the greater the virtual
memory required.

Notes:

(1) The maximum number of buffers set is not a static
quantity saved with the file and wused each time
the file is accessed. The default value is always
used when the file is first opened, and may then
be changed dynamically by a call to CHGMBC.

(2) In general, large line files will be more effi-
cient than large sequential files due to an
increase in the maximum number of buffers allowed.

Assembly: CALL CHGHMBC, (UNIT,MAXBUF)

UNIT DC F'3!
MAXBUF DC F'10!

FORTRAN: INTEGER*Y4 UNIT, HAXBUF
DATA UNIT/3/, MAXBUF/10/

CALL CHGMBC (UNIT, MAXBUF)

The above examples dynamically assign a maximum of 10
buffers to use during I/0 operations on the file asso-
ciated with logical I/O0 unit 3.



October 1976

Purpose:

Location:

Calling Sequences:

MTS 3: SYSTEM SUBROUTINE DESCRIPIIONS

CHKACC

SUBROUTINE DESCRIPTION

To determine the access that a signon ID, project number,
and program key "triple" has to a particular file.

Resident System

Assembly: CALL CHKACC, (name,triple)

FORTRAN: CALL CHKACC (name,triple,&rc4,&rc8,6rc12)

INTEGER*U4 CHKACC,x
x=CHKACC (name,triple)

Parameters:

name is the location of the name (with trailing
blank) of the file.

triple is the location of a 4-character signon 1D,

followed by a U4-character project number,

followed by an external program key (with

trailing blank), such as returned by GUINFOQ

or GFINFO.

is the fullword-integer value returned (i.e.,

the access) if the file exists (see values

returned below) .

Lcl...rclz are the statement labels to transfer to if
the corresponding return codes occur.

I

Values Returned:

If the return code from CHKACC is zero (or twelve),
then GRO contains the access that the "triple" has to
the file as follows:

Read access allowed.

Write-expand access allowed.
Write-change/empty access allowed.
Truncate/renumber access allowed.
16 Destroy/rename access allowed.

32 Permit access allowed.

o E N

If more than one type of access is allowed, the value
returned in GRO is the sum of the different types of
access, e.g., GR0=63 implies unlimited access.

CHKACC 105



MTs 3

Examples:

106

CHKACC

SYSTEM SUBROUTINE DESCEKIPTIONS

October 1976

Return Codes:

0 The file exists, access returned in GRO.

4 The file does not exist.

8 Hardware error or software inconesistency
encountered.

12 Access not allowed, zero returned in GRO.

Note: FORTRAN users wishing to obtain both +the return
codes and the access types may use the RCALL
subroutine to call CHKACC.

Assembly: CALL CHKACC, (FNAME,TRIPLE)

LTR 15,15
BNZ NOREAD
N GRO,=F"'1"
C GRO,=F'1"!
BE READ
FNAME DC C'6AGA:DATAFILE '
TRIPLE DC C'1KYa! Signon ID
DC C'wWo000! Project number
DC C'*EXEC ' Program kKey
FORTRAN = INTEGER*4 CHKACC,X

DATA MASK/Z00000001/

X=CHKACC ('6AGA:DATAFILE ','1KYZWOOO*EXEC ')
X=LAND (X,MASK)

IF (X.EQ.1) GO TO 10

These examples call CHKACC to determine whether signonm ID
1KYZ under project number W000 running a program With a
program key of *EXEC (the default) has read access to file
6AGA:DATAFILE.



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

CHKFDUB

SUBROUTINE DESCRIPTION

Purpose: To obtain a FDUB-pointer for a specified logical I/0 unit;
to verify that a given FDUB-pointer is legal.

Location: Resident System
Alt. Entry: CHKFDB

Calling Sequences:
Assembly: CALL CHKFDUB, (unit)

FORTRAN: INTEGER*4 CHKFDB, X
X = CHKFDB (unit)

Parameters:

unit is the location of either
(a) a FDUB-pointer (as returned by GETFD),
(b) a fullword-integer logical I/0 unit number
(O through 19), or
(c) a left-justified 8-character 1logical I/O
unit name (e.g., SCARDS).
X is the fullword-integer FDUB-pointer obtained
(see "Value Returned" below).

Value Returned:

GRO contains the FDUB-pointer obtained for the speci-
fied logical I/0 unit if a successful return is made.

Return Codes:

0 Successful return.
4 Illegal unit parameter specified.

Description: If +the unit parameter is the location of a FDUB-pecinter,
the subroutine will check the legality of the
FDUB-pointer.

If the unit parameter is the location of a logical I/O
unit name or number, the subroutine will obtain a FDUB-
pointer for +the file or device attached to that logical
I/0 unit. This is the way to obtain a FDUB-pointer for a
file or device attached to a specific logical I/0 unit.
If the logical I/0 unit is unassigned, no FDUB-pointer
will be returned.

CHKFDUB 107



MTS 3: SYSTEM SUBROUTINE DESCEKIPTIONS

October 1976

This subroutine does not check the legality of the file or
device name attached to the logical I/0 unit specified.

Examples: Assembly: CALL CHKFDUB, (UNIT)
UNIT DC F'6'!
FORTRAN: INTEGER*Y4 CHKFDB,X,UNIT

DATA UNIT/6/

X = CHKFDB (UNIT)

The above examples call CHKFDUB to get a FDUB-pointer for
the file or device attached to logical I/O unit 6.

108 CHKFDUB



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBROUTINE DESCRIPTION

Purpose: To determine whether a file exists, as well as what access
the calling program has to the file. This is the easiest
way to determine whether a scratch file exists without
creating it.

Location: Resident System

Alt. Entry: CHKFIL

Calling Sequence:
Assembly: CALL CHKFILE, (name)
FORTRAN: CALL CHKFIL (name,&rc4,&rc8,&rc12)
or

INTEGER*4 CHKFIL,x
X = CHKFIL (name)

Parameters:

name is the location of the name of the file (with a

trailing blank).

is the fullword-integer value returned if the

file exists (see "Values Returned" below).

rcld,;...,rcl12 are the statement labels to transfer to
if the equivalent return codes occur.

1

Values Returned:

If the return code from CHKFILE is zero (or twelve),

then GRO contains the access that +the calling user
has to the file as follows:

Read access allowed.

Write-expand access allowed.
Write-change/empty access allowed.
Truncate/renumber access allowed.
Destroy/rename access allowed.
Permit access allowed.

NV E N =

1
3

If more than one type of access is allowed., the
value returned in GRO is the sum of the different

types of access, e.gdg., GR0=63 implies unlimited
access.

CHKFILE 109



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Examples:

110 CHKFILE

October 1976

Return Codes:

0 The file exists.

4 The file does not exist.

8 Hardware error or software inconsistency
encountered.

12 Access not allowed.

Note: FORTRAN users wishing to obtain both the return
codes and access types may use the RCALL subrou-
tine to call CHKFILE.

Assembly: CALL CHKFILE, (FNAME)
LTR 15,15
BNE NOREAD
SLL 0,31
SRL 0,31
C GRO,=F'1"
BE READ

FNAME DC C'2ZAGA:DATAFILE '

FORTRAN : INTEGER*4 CHKFIL,X
DATA MASK/Z00000001/
X = CHKFIL('ZAGA:DATAFILE ')
X = LAND (X,MASK)
IF (X-EQ.1) GO TO 10

EXTERNAL CHKFIL

INTEGER*Y4 ADROF,X

DATA MASK/Z00000001/

PAR = ADROF ('2AGA:DATAFILE ')

CALL RCALL (CHKFIL,2,0,ADROF (PAR),1,X,&100)
X = LAND (X, MASK)

IF (X-EQ.1) GO TO 10

These examples call CHKFILE to determine whether the
calling program has read access to the file 2AGA:DATAFILE.
The second FORTEAN example uses the RCALL subroutine to
obtain both the return code and the return value.



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBROUTINE DESCRIPTION

Purpose: To close a file and release its file buffers.
Location: Resident Systen
Alt. Entry: CLOSFL
Calling Sequences:
Assembly: CALL CLOSEFIL, (unit)
FORTRAN: CALL CLOSFL (unit)
Parameter:

unit is the location of either
(a) a FDUB-pointer (as returned by

GETFD) ,

(b) a fullword-integer 1logical I/0 unit number

(0O through 19), or
(c) a left-justified, B8-character
unit name (e.g., SCARDS).

Return Codes:
0 Successful returne.
4 Tllegal unit parameter specified, or
hardware error or software
encountered.

Description: A call on this subroutine causes all changed

logical 1I/O

lines in

inconsistency

the

file buffers to be written to the file, thus making the

file on the disk an up-to-date copy. This

subroutine

closes the file and releases all file buffers being used

by the file.

The subroutine WRITEBUF may be called to write the changed

kuffers.

WRITEBUF is more efficient and therefore is generally
preferred. See the description of WRITEBUF in

volume.

Examples: Assembly: CALL CLOSEFIL, (UNIT)

UNIT DC CL8'SPRINT!'

CLOSEFIL

this

111



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Octoker 1976

FORTRAN: CALL CLOSFL('SPRINT ')

The above examples cause CLOSFIL to update the disk copy
of the file attached to the logical I/0 unit SPRINT.

112 CLOSEFIL



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

cHp

SUBROUTINE DESCRIPTION

To execute an MTS command from a program and return to the
program after the command has been executed.

Resident Systen

Calling Sequences:

Description:

Assembly: CALL CMD, (char,len)

or

CHMD char[ ,len]
FORTRAN: CALL CHMD (char,len)

Parameters:

char is the location of a character string containing
an MTS command.

en is the location of the length of the <character
string expressed as either a fullword (INTEGER*
4) or a halfword (INTEGER*2). If len is a
fullword-aligned address and the first two bytes
specified are zero, it is assumed len specifies
a fullword integer. Otherwise, len is assumed
to be a halfword.

[ Lt

Note: The complete description for using the CMD macro
is given in MTS Volume 14.

This subroutine does a return to MTS specifying a charac-
ter string to be interpreted as an MTS command. After the
command has been executed, a return is made to-the
program.

The command is echoed on *SINK* and/or *MSINK#* if the ECHO
option is ON.

This subroutine cannot be wused properly with character
strings that specify the following commands:

DEBUG LOAD
RUN UNLOAD
START AT location SIGNON
RESTART AT location SIGNOFF
RERUN

cMD 113



MTS 3:

Examples:

114

CMD

SYSTEM SUBROUTINE DESCERIPTIONS

October 1976

If any of these commands are used with CMD, the subroutine
will not return to the calling program. This would be the
same as if the MTSCMD subroutine were used instead.

The START and RESTART commands will work properly unless
an explicit restart address is given.

FORTRAN: CALL CMD ('$SINK FYLEB ',12)

The above example calls CMD to reassign *SINK* to the file
FYLEB.

Assembly: CALL CMD, (CHAR,LEN)

CHAR DC C'$CREATE ALPHA !
LEN DC F'14¢

CMD '"$CREATE ALPHA ‘!
The above two examples call CHUD to create the file ALPHA.

The first uses the CALL macro and the second uses the CMD
macro.



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

To execute an HTS command from a program and return to the
program after the command has been executed.

Resident System

Calling Sequences:

Description:

Assembly: CALL CHDNOE, (char,len)
FORTRAN: CALL CMDNOE (char,len)

Parameters:

char is the location of a character string containing
an MTS command.

len is the location of the length of the character
string expressed as either a fullword (INTEGER*
4) or a halfword (INTEGER*2). If len is a
fullword-aligned address and the first two bytes
specified are zero, it is assumed len specifies
a fullword integer. Otherwise, len is assumed
to be a halfword.

This subroutine does a return to MTS specifying a charac-
ter string to be interpreted as an MTS command. After the
command has been executed, a return is made to the
program.

The command is never echoed on *SINK* or *MSINK*, regard-
less of the setting of the ECHO option.

This subroutine cannot be wused properly with character
strings that specify the following commands:

DEBUG LOAD
RUN UNLOAD
START AT location SIGNON
RESTART AT location SIGNOFF
RERUN

If any of these commands are used with CMDNOE, the
subroutine will not return to the calling program. This
would be the same as if the MTSCMD subroutine were used
instead.

CMDNOE 115



MTS 3:

Examples:

116

CMDNOE

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

The START and RESTART commands will work properly unless
an explicit restart address is given.

FORTRAN: CALL CHDNOE ('$SINK FYLEB ',12)

The above example calls CHDNOE to reassign *SINK* to the
file FYLEB.

Assembly: CALL CMDNOE, (CHAR,LEN)

CHAR DC C'$CREATE ALPHA '
LEN DC F'i4!

The above example calls CMDNOE to create the file ALPHA.



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

CNFGINFQ

SUBEKOQUTINE DESCRIPTION

Purpose: To obtain information about the type of system on which
the program is running.

Location: Resident Systen

Calling Sequences:

Assembly: L r,=V(CNFGINFO)
USING CNFGINFD, T
Parameters:
r is a general register containing the address of

the CNFGINFO table.

Description: The information available in the table is described by the

dsect given on the following pages (from the file
*CNFGINFODSECT) .

Example: Assembly: L 3,=V(CNFGINFO)
USING CNFGINFD,3
TH CIFEATUR,CI370 System 3707

B2 5Ys360

COPY *CNFGINFODSECT
The above example illustrates how a program may determine

whether it is running on a System/370- or System/360-
compatible machine.

CNFGINFO 117



CNFGINFD
%*

£
=

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

DSECT
VECTOR OF INFORMATION CONCERNING CONFIGURATION OF MACHINE
ON WHICH WE ARE RUNNING

CISYSTEM DC X'0370" TYPE OF SYSTEM

CICPUID DS 0XL8 RESULT OF STORE CPUID ON

* LOWEST ADDRESS CPU IN THE SYSTEM
CIVERSCD DC X'00! VERSION CODE

CIID# DC X'010002"' SERIAL NUMBER OF CPU

CIMODEL DC X1'0470" MODEL NUMBER OF SYSTEM

CIMCEL DC H'O! LENGTH OF MCEL

*

* THE FOLLOWING TWO FIELDS WILL BE ZERO UNLESS THE VERSION

%* ABOVE IS X'FF' INDICATING THAT WE ARE RUNNING UNDER

* A HYPERVISOR (AKA VIKTUAL MACHINE).

CIEXTIDL DC H'O! LENGTH OF EXTENDED CPU ID

CIEXTID DC A (0) LOCATION OF EXTENDED CPU ID

%

* THE FOLLOWING 64 BITS ARE EACH ASSOCIATED WITH A PARTICULAR

* FEATURE OR RPQ AS INDICATED.

=

CIFEATUR DC X 'F780200000000000 "

* FIRST BYTE

CIDEC EQU  X'80! DECIMAL INSTRUCTIONS - AP,CP,DP,ED
* EDMK,MP,SP,ZAP, AND SRP IF 370
CIFLPT EQU  X'40°' FLOATING POINT - ADR,AD,AER,AE,AWR,
* AW,AUR,AU,CDR,CD,CER,CE,DDR,DD,DER,
* DE,HDR,HER,LDR, LD, LER,LE,LTDR,LTER,
* LCDR,LCER,LNDR,LNER,LPDR,LPER, DR, MD
* 4ER,ME,STD,STE,SDR,SD, SER, SE

* SWR,SW,SUR,SU

CI370 EQU  X'20" STANDARD 370 FEATURES -

* MVCL,CLCL,MC,STCTL,LCTL,CLM,STCHM,ICH,
% STIDP,STIDC,SCK,STCK,SIOF,CLRIO,

* HDV,FETCH PROTECT,

* AND SRP IF CTDEC ALSO ON

CI370TRN EQU  X'10! 370 TRANSLATION FEATURE -

* LRA,PTLB,RRB,STNSM,STOSH

CI370MP EQU Xx'08! 370 MULTIPROCESSOR FEATURE - SIGP,SPX
* STAP,STPX

CICNDSWP EQU  X'04' 370 CONDITIONAL SWAPPING FEATURE -
* CS AND CDS

CIPSWKEY EQU  X'02' PSW KEY HANDLING FEATURE - IPK,SPKA
CICPUTIM EQU  X'01' CPU TIMER AND CLOCK COMEARATOR -

* SCKC,SPT,STCKC,STPT

B

* SECOND BYTE

*

CIEXTFLP EQU  X'80' EXTENDED PRECISION FLOATING POINT -
* AXR,LRDEK,LRER,MXR, MXDR,MXD,SXR
CINOD67 EQU  X'40" 360/67 STANDARD FEATURES - BAS,BASR,
* STMC,LRA,LMC, FETCH PROTECT
CI32BT67 EQU  X'20! 360/67 WITH 32 BIT ADDRESSING

118 CNFGINFO



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

CI67DCTL
CI6TEXFP
a

CI67MXFP
*
CISWPR

CISLT
*

20

*
CIMXKDD
*

4
CIDIRCTL
o

CIBAS
CIEXTADR

CIXTRA

* ¥ ¥ #* * W

CIVGHM
CIVUMMPS
CIVMTS
CIVSPOOL
CIVXTRA

E A K b K B R

CIVMABS
CIVHMSH
CIVMSYS

CIVMUSER
*

*
%

CIVMSEG

EQU Xr10! 360/67 EXTENDED DIRECT CONTROL - WRD

EQU  X'08! 360/67 EXTENDED PRECISION FLOATING
POINT - EDDR,ADDR,SDDR,MDD,ADD,SDD

EQU  X'04' 360/67 MIXED PRECISION FLOATING
POINT - 1LX,AX,SX,MX,DX

EQU  Xx'02' SWAP REGISTER INSTRUCTION - SWPR

EQU  X'01! SEARCH LIST INSTRUCTION - SLT

THIRD BYTE

EQU  X'80' 360,67 MIXED PRECISION FLOATING
POINT WITH STORE ROUNDED - LX,AX,
SX,STRE,STRD

EQU  X'40' DIRECT CONTROL (NOT 360,67
VERSION) - RDD,WRD

EQU  X'20' 370 BAS AND BASR RPQ

EQU x'10! EXTENDED (I.E., 31 BIT) ADDRESSING

DS 2D UNUSED

SYSTEM SOFTWARE VERSION NUMBERS --

ONE NUMBER FOR THE MINIMUM VERSION FOR THE ENTIRE SYSTEM,

ONE FOR THE SUPERVISOR, ONE FOR THE MTS COMMAND LANGUAGE/

FILE SYSTEM, ONE FOR THE SPOOLING SYSTEM, AND ONE SPARE.

THE FORMAT OF EACH VERSION NUMBER IS THE DISTRIBUTION

NUMBER TIMES 1000.

DC FE3'4.0" GUARANTEED MINIMUM VERSION

DC FE3'4.0" SUPERVISOR VERSION

DC FE3'4.0" MTS CMMD LANG/FILE SYSTEM VERSION
DC FE3'4.0" SPOOLING SYSTEM VERSION

DC 3FE3'0! SPARE

THE FOLLOWING PAIRS OF WORDS GIVE THE ASSIGNMENT OF VIRTUAL
MEMORY USED BY THE SUPERVISOR AND HMTS. EACH ENTRY CONSISTS
OF TWO WORDS GIVING THE FIRST AND LAST LOCATION IN A
PARTICULAR TYPE OF VM. THE VARIOUS TYPES CAN BE ASSUMED TO
BE CONTIGUOUS, NON-OVERLAPPING AREAS, BUT NOT NECESSARILY
CONTIGUOUS WITH ONE ANOTHER.

DC A (0,X'"FFFFF') ABSOLUTE (UNPAGED) SHARED MEMORY
DC A(X'100000',X'39FFFF') PAGED SHARED MEMORY

DC A(X'S00000',X'S5FFFFF') PRIVATE SYSTEM STORAGE

DC A(X'600000',X"'CFFFFF') PRIVATE USER STORAGE

THE FOLLOWING WORD GIVES THE FIRST ADDRESS IN THE SEGHMENT

USED BY THE VIRTUAL MACHINE SUPPORT IN THE SUPERVISOR.
DC A(X'800000")

CNFGINFO 119



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

120 CNFGINFO



October 1976

Purpose: To count
Location: Resident

Calling Sequences:

Assembly:

FORTRAN:

Paramete

uni

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

CNTLNR

SUBROUTINE DESCRIPTION

all or a subset of the lines in a line file.

System

CALL CNTLNR, (unit,first,last,cnt)

CALL CNTLNR (unit,first,last,cnt,&rcld,&rcs,
&rc12,6rc16,6rc20,6rc24,6rc28)

Is:

t is the location of either
(a) a fullword-integer FDUB-pointer (such as
returned by GETFD),
(b) a fullword-integer logical I/0 unit num-
ber (0 through 19 ), or
(c) a left-justified, B-character logical I/0
unit name (e.g., SCARDS).

first 1s the location of a fullword containing the

internal line number of the first line to be
counted.

last is the location of a fullword containing the

Return C
0
I
8

12
16

20

24
28

internal line number of the last line to be
counted.

is the location of a fullword in which the
count of the number of lines in the specified
range will be returned.

corresponding return codes occur.
odes:

The file was counted successfully.

The file does not exist.

Hardware error or software inconsistency
encountered.

Read access not allowed.

Locking the file for read will result in a
deadlock.

An attention interrupt has canceled the automatic
wait on the file (waiting caused by concurrent use
of the (shared) file).

Inconsistent parameters specified (first greater
than last, etc.)-.

The file is not a line file.

CNTLNR 121



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Examples:

122 CNTLNR

Notes:

October 1976

If first and last do not correspond to actual line
numbers in the file, the next and previous line
numbers, respectively, will be used.

In MTS, the internal line number (e.g., 2100) is
equal to the external 1line number (e.g., 2.1)
times one thousand.

Assembly: CALL GETFST, (UNIT,FSTLNR)

FORTRAN:

CALL GETLST, (UNIT,LSTLNR)
CALL CNTLNR, (UNIT,FSTLNR,LSTLNR,CNT)

UNIT DC Fry:

FSTLNR DS F First line number
LSTLNE DS F Last line number
CNT DS F Count

INTEGER*4 UNIT,CNT
DATA UNIT/4/

ChiL CNTLNR (UNIT,-99999999,99999999,CNT)

The above examples illustrate two ways to count all of the
lines of the line file attached to logical I/O unit 4.



October 1976

Purpose:

Location:

Alt. Entry:

MTS 3: SYSTEM SUBROUTINE DESCRIPIIONS

SUBKOUTINE DESCRIPTION

To provide an interface between the user and the CONTROL
entry in the device support routines (DSRs). This subrou-
tine allows the user to execute control operations on
files and devices.

Resident System

CNTRL

Calling Sequences:

Assembly: CALL CONTROL, (info,len,unit,ret)
FORTRAN: CALL CNTRL (info,len,unit,ret,&ércl,érc8,&rc12)

Parameters:

=

nfo is the 1location of the device control informa-
tion to be passed to the device support
routines.

len is the location of the halfword (INTEGER*2)
length of the control information.
unit is the location of either
(@) a fullword integer FDUB-pointer (as returned
by GETFD),
(b) a fullword-integer logical I/0 unit number
(0 through 19), or
(c) a left-justified 8-character logical I/O
unit name (e.g., SCARDS).
ret is the location of an area of 27 fullwords (108
bytes) to receive the return informaticn from
the device support routines. This area will
contain:
Wword 1: return code from the DSR
2: length of the DSR message, OI Zero

3-27: DSR error message (if given)
This parameter is optional and can be omitted
(if called from FORTRAN) or zero (if called from
assembly language).
rcl,...,rcl12 are statement labels to transfer to if
the equivalent return codes occur.

Return Codes:
0 Successful return from DSR.

4 No control entry or illegal unit parameter

CONTROL 123



MTS 3:

Description:

124

CONTROL

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

specification.

8 Nonzero return code from DSR. This return code is
given in ret(1).

12 DSR error. The DSR return code is in ret (1), the
DSR message length is in ret (2), and the message
is in ret (3) -ret (27).

Note: The return code given by the CONTROL subroutine is
not the return code given by the DSR. The return
code from the subroutine is given in GR15 and used
to 1indicate the existence of a DSR return code
which is given in ret.

Only certain file and device types currently allow control
operations. These are:

Iype Control Commands

9TP - Any control command (9-track magnetic tape).
TP - Any control command (7-track magnetic tape).
PTPR - Any control command (Paper tape reader).
7772 - Any Audio Response Unit device command.

PDP8 - ALy of the Data Concentrator device support

commands as normally entered after SOH SOH
(L.e., CTRL-A CTRL-A from Teletypes or !A!A
from IBM terminals). The SOH SOH sequence
should not be given as part of the device
control information.

2741 - Any of the Memorex device support

TTY commands as normally entered after a "%"

MRXA sign. The percent sign should not be given
as part of the device control information.

HPTR - Any control command legal for *PRINT¥*,

HPCH *PUNCH*, and *BATCH*, respectively.

HBAT

MNET - ALy control command (MERIT Computer
Netowrk) .

3270 - Any 3270 device support command.

3066 - Any 3270 device support command.

FILE - See WTS Volume 1.

SEQF - See MTS Volume 1.

BNCH - Any control command for the benchmark
driver.

See the various terminal user's guides in MTS Volume 4 for
further details on the different types of control commands
that may be specified.

There is a macro CNTRL in the system macro 1library for
generating the «calling sequence to this subroutine. See
the macro description for CNTRL in MTS Volume 14.



MTS 3: SYSTEM SUBROUTINE DESCRIFETIONS

October 1976

Example: FORTRAN: INTEGER*4 RET (27)
INTEGER*2 LEN
LEN = 3
CALL CNTRL('REW',LEN,6,RET,&100,&200,&300)
100 no control entry exit
200 nonzero return code from DSR exit

-

300 DSR error exit

Assembly: CALL CONTROL, (INFO,LEN,UNIT,RET)
C 15,=F'12"!
BH BADRC
B *¥+4 (15)
B SUCCESS normal exit
B ERROR1 no control entry exit
B ERROR2 nonzero DSR return code
B ERROR3 DSR error exit

INFO DC C'REW!'
LEN DC H'3"
UNIT DC L

RET DS 2F,CL100

The above examples set up a REW control command to the
file or device attached to logical I/O unit 6.

CONTROL 125



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

126 CONTROL



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBKOUTINE DESCRIPTION

To obtain the accumulated costs incurred by the current
signon.

Resident System

Calling Sequences:

Description:

Examples:

Assembly: CALL COST
FORTRAN: amount=COST (0)

PL/I1: amount=PLCALLF (COST, £0) ;
amount=PLCALLE (COST,£0) ;
amount=PLCALLD (COST,f0) ;

Parameter:

fo is a fullword (FIXED BINARY (31)) location con-
taining the integer zero.

Values Returned:

GRO contains the <cost of the current job in centi-
cents (ten thousandths of a dollar).

FRO contains the doubleword cost of the current job
in dollars.

Return Codes:

0 Successful return.
>0 Fatal error (should never occur).

The result includes all billable amounts for the current
signon to the time of +the subroutine call with the
exception of charges for permanent file storage, tape-

drive time for currently mounted tapes, and unreleased
paper-tape output.

Assembly: CALL COST
STD 0,CURS

CUR$ DS D

The above example returns the current cost in dellars in
FRO and stores the result in location CURS$.

cosT 127



MTS 3: SYSTEM SUBROUTINE DESCKIPTIONS

October 1976

FORTRAN : INTEGER*4 ,CUM, REMAIN, COST
CALL GUINFO (22,REMAIN)
CALL GUINFO (32,CUHM)
REMAIN=REMAIN-COST (0) -CUM

The above example calls the GUINFO subroutine to determine
the maximum charge and cumulative charge used for the
signon ID at the time of signon, calls COST to determine
the cost of the current job, and then calculates a value
for the charge remaining.

PL/I: IF PLCALLF(COST,F0) > COSTLIM
THEN GO TO END;
DECLARE PLCALLF RETURNS (FIXED BINARY (31)),
COST ENTRY,
FO FIXED BINARY (31) INITIAL (0),
COSTLIM FIXED BINARY (31);

The above example calls COST to determine whether the

current job has exceeded a certain charge 1limit; if so,
the program is terminated.

128 COST



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBROUTINE DESCRIPTION

Purpose: To create a file.
Location: Resident System
Alt. Entry: CREATE#
Calling Sequence:
Assembly: CALL CREATE, (name,size,vol,type)

FORTRAN: CALL CREATE (name,size,vol,type,ércl4,&érc8,érc12,
&rc16,&6rc20,&rc24,&rc28)

Parameters:

name is the 1location of the name (with a trailing
blank) of the file to be created.
size is the location of a fullword integer containing
two halfwords of information. The first half-
word specifies the maximum expandable size of
the file in pages (4096 bytes per page) or in
tracks (7294 bytes per track); the type parame-
ter indicates whether pages or tracks is being
specified. If this halfword is zero, a default
of 32,767 pages is used. The second halfword
specifies the requested initial size of the file
in pages or in tracks.
vol 1is the 1location of the name of the disk volume
(2as a six-character name) on which to create the
file, or zero (the recommended value), in which
case any available disk volume will be used.
type is the location of a fullword integer which
indicates the type of file to create as well as
whether the initial size and maximum expandable
size requests are specified in pages or tracks.
0 - line file, sizes in tracks
1 - sequential file, sizes in tracks
2 - sequential-with-line-numbers file, =sizes
in tracks

256 - line file, sizes in pages
257 - sequential file, sizes in pages
258 - sequential-with-line-numbers file, sizes

in pages
rcl...rc28 are statement labels to transfer to if the

equivalent return codes occur.

CREATE 129



MTS 33

Examples:

130

CREATE

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

Return Codes:

0 Successful return.
4 The file already exists.
8 Illegal type parameter specified.
F’,/T2 Size parameter too large.
16 No space available for a file of that size.
20 Illegal parameter in calling seqguence.

24 Hardware error or software inconsistency
encountered.
28 The space allotted +to this account has been
exceeded.
Assembly: CALL CREATE, (FNAME,FSIZE,FVOL,FTYEE)
FNAME DC C'DATAFILE !
FSIZE DS OF
MSIZE DC H'0' Default maximum size
ISIZE DC H'1' 1Initial size
FVOL DC F'O?

FTYPE DC E1256"
FORTRAN: CALL CREATE ('DATAFILE ',1,0,256,86100,86200)
These examples will create a 1line file by the name of

DATAFILE with arn initial size of 1 page and a default
maximum expandable size of 32,767 pages.



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBROUTINE DESCRIPTION

Description: See the GUINFO, CUINFO subroutine description for the
details of CUINFO and GUINFO.

CUINFO 131



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

132 CUINFO



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

CVTOMR

SUBROUTINE DESCRIPTION

Purpose: To convert an OMR card image contained in binary input
format into EBCDIC format.

Location: Resident System
Calling Sequence:
Assembly: CALL CVTOMR, (inreg,inlen,outreg,outlen)

FORTRAN: CALL CVTOMR (inreg,inlen,outreg,outlen,é&rct,
6rc8,&rc12)

Parameters:

inregq is the location of the region containing the
OME card image.

inlen is the location of the halfword (INTEGER*2)
length of +the regiom inreg. len must be at
least 80.

outreq is the location of the region containing the
converted EBCDIC format of the OMR card.

outlen 1is the location of the halfword (INTEGER¥2)
length of the converted OMR card. On the
initial call to CVIOMR, outlen must be zero.

Return Codes:

0 Successful return.
4 Another OMR card image is needed since the pre-
vious card image indicated a continuation. outreg

and outlen must be left unchanged for the next
call to CVTOMR.

8 Not used.

12 Illegal OMR card type. The card image has been

copied unconverted to the output region.

Description: The subroutine CVTOMR converts OMR cards originally read
in column binary input format into EBCDIC format. The OMR
card must be of the type currently used at the Computing
Center or the type previously used from the University of
Waterloo.

The subroutine must be called more than once in succession
if the OMR card indicates a continuation to another card.

CVTOMR 133



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

Example: Assembly: MVC OUTLEN,=H'O!
CALL CVTOMR, (INREG,INLEN,OUTREG,OUTLEN)
c 15,=F'4!

BL EXIT

BE CONT

BH ERROR
INREG DS CL80 OMR card image
OUTREG DS CL256 EBCDIC format

INLEN DC H'80!
OUTLEN DS H

FORTRAN: INTEGER INREG (20) ,0UTREG (64)
INTEGER*2 INLEN/80/,O0UTLEN

OUTLEN = O
CALL CVTOMR (INREG,INLEN,OUTREG,OUTLEN,
£100,&100,&200)

In the above examples, the OMR card image contained in the

region INREG is converted to EBCDIC format and placed in
the region OUTREG.

134 CVTOMR



TS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBROUTINE DESCRIPTION

Purpose: To destroy a file.
Location: Resident System
Alt. Entry: DESTRY
Calling Sequence:
Assembly: CALL DESTROY, (name)

FORTRAN: CALL DESTRY (name,&rcl4,&rc8,&6rci12,6rc16,&rc220,
&rc24,8rc28)

Parameters:

name is the location of the name (with a trailing
blank) of the file to be destroyed.

equivalent return codes occur.

Return Codes:

0 Successful return.
4 The file is *SOURCE*, *SINK*, *MSOURCE*, *MSINK*,
or ¥PUNCH* and therefore cannot be destroyed.
8 Reserved for future use.
12 File does not exist.
16 Locking the file for destroying will result in a

deadlock.

20 Destroy access not allowed.

24 Hardware error or software inconsistency
encountered.

28 Automatic wait for (shared) file was interrupted.

If the return code 1is not zero, the file was not

destroyed.
Examples: FORTRAN: CALL DESTRY ('DATAFILE ',&2,862,89,69,8699,8699,899)
Assembly: CALL DESTROY, (FNAME)

FNAME DC C'DATAFILE !

These examples will destroy the file DATAFILE.

DESTROY 135



MTS 3: SYSTEM SUBROUTINE DESCKIPTIONS

October 1976

136 DESTROY



October 1976

Purpose:

Location:

Alt. Entry:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

To release magnetic and paper tapes, Audio Response Unit
lines, and connections on the MERIT Computer Network.

Resident System

DISMNT

Calling Sequences:

Examples:

Assembly:

FORTRAN:

Parameters

Note: Th

CALL DISHMOUNT, (string,len)

CALL DISMOUNT, (par)

DISMOUNT 'string'

CALL DISHMNT (string,len)

CALL DISHNT (par)

e

is the location of a character string con-
taining one or more pseudo-device names
separated by blanks or commas.

is the location of a halfword (INTEGER*2)
length of string.

is the location of a halfword (INTEGER*2)
length of a character string immediately
followed by that character string. The char-
acter string contains one or more pseudo-
device names separated by blanks or commas.

DISMOUNT subroutine prints error messages on

the logical I/0 unit SERCOM or *MSINK* if SERCON
has not been assigned.

Th

e

complete description for using the DISHMOUNT

macro is given in MTS Volume 14.

Assembly:

LEN
STR

CALL DISMOUNT, (STR,LEN)

DC H9"
DC C'®T7% %T2%!

DISMOUNT 137



MTS 3: SYSTEM

138

DISMOUNT

SUBROUTINE DESCKIPTIONS

October 1976

DISHOQUNT '*T1% *T2%!"

FORTRAN: INTEGER*2 LEN

LEN=9
CALL DISMNT ('*T1% *T2%',LEN)

The above three examples release the pseudo-devices named
*T1% and *T2%. The first assembly example uses the CALL
macro and the second uses the DISHOUNT macro.



October 1976

Purpose:

Location:

fiTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

To print the values of specified memory regions in a
FORTRAN program.

*LIBRARY

Calling Sequences:

Description:

FORTRAN: CALL DUMP(a1,b1,f1,...,an,bn,fn)
CALL PDUMP (a1,b1,f1,...,an,bn,£fn)

Parameters:

|
I

is a variable in the FORTRAN program specifying
one end of the "i"th region to be printed.

bi is a variable in the FORTRAN program specifying
the other end of the "i"th region to be printed.
£i indicates the format in which each data item
between ai and bi is to be printed. fi is a
fullword integer and may be one of the fcllowing
values:
0 =~ hexadecimal
1 = LOGICAL*1
2 = LOGICAL*Y4
3 - INTEGER%*2
4 - INTEGER¥*4
5 = REAL*Y
6 - REAL*B
7 - COMPLEX*8
8 - COMPLEX*16
9 - literal

The DUMP and PDUMP subroutines print the values of the
data items in the memory regions delimited by the ai and
bi parameters. As many triples of parameters, ai, bi, and
fi, may be given as desired. There is no order implied by
the ai and bi parameters--either may mark the beginning or
end of a region to be dumped. All output is printed on
the logical I/0 unit SERCOM.

The relative locations of +the variables in a FORTRAN

program may be obtained from the map produced by the MAP
option to the FORTRAN compiler.

DUMP, PDUMP 139



MI2S 3:

Example:

140

DUMNP,

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

The only difference between DUMP and PDUMP is +that DUMP
terminates execution of the calling program by calling the
system subroutine SYSTEM while PDUMP returns to the
calling program.

FORTRAN CALL DUMP (A (1) ,A(100),5,4(1),A(100),0)
The above example prints the values of the first 100

elements of the array A in both REAL*4 and hexadecimal
format.

PDUMP



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

TRANSLATE TABLE DESCRIPTION

To translate EBCDIC characters into even-parity 8-bit
USASCII characters. An inverse table (ASCEBC) is also
available.

Resident Systen

Calling Sequences:

Description:

Example:

Assembly: L r,=V (EBCASC)
TR d(l,b),0(x)
Parameters:
z is a general register that will contain the

address of the EBCASC translate table.

d(l1,b) is the 1location of the region to ke trans-
lated. d is the displacement, 1 is the
length of the regiom in bytes, and b is the
base register for the region. This parameter
may be given also in an assembly language
symbolic format.

An EBCDIC/USASCII +translation table is shown on the next
two pages. Note that in this table, all EBCDIC characters
which do not appear explicitly translate to USASCII NUL
(octal 000 character). Both the EBCDIC character NL
(new-line) , hexadecimal 15, and the EBCDIC character LF
(line-feed), hexadecimal 25, +translate to USASCII LF,
octal 012. All characters are translated to even-parity
USASCII by EBCASC.

See the ASCEBC subroutine for a table to translate from
USASCII into EBCDIC.

Assembly: L 6,=V (EBCASC)
TR REG (100) ,0(6)

REG DS CL100

The above example will translate the EBCDIC characters of
the 100-byte region at location REG into USASCII
characters.

EBCASC 141



MTS 3:

EBCDIC/USASCII

SYSTEM SUBROUTINE DESCRIPTIONS

Translation Table

October 1976

r T —
|EBCDIC (8-bit) USASCII (7-bit) | EBCDIC (B8-bit) USASCII (7-bit) |
| | |
|Hex Name Oct Hex Name TTY | Hex Name Oct Hex ©Name IEY |
|00 NUL 000 00 NUL CT-SFT-P |3F SUB 032 1A SUB CTRL-Z |
|01 SOH 001 01 soOH CTRL-A |40 Space 040 20 Space Space |
|02 STX 002 02 STX CTRL-B |4B . 056 2E . % |
j03 ETX 003 03 ETX CTRL-C J4C < 074 3¢ £ < |
|05 HT 011 09 HT CTRL-I | 4D ( 050 28 ( ( |
|07 DEL 177 7F DEL RUBOUT |4E + 053 2B + + [
|0B VT 013 0B VT CTRL-K |4F | 174  7C | NONE |
|0C FF 014 0C FF CTRL-L |50 & o4e6 26 & & |
|0D CR 015 0D CR RETURN | 5A ! 041 21 ! 1 |
|IOE SO 016 O0E SO CIRL-N |5B § o4y 24 % $ |
|OF SI 017 OF SI CTRL-0 |5C * 052 22 =* * I
|10 DLE 020 10 DLE CIRL-P |5D ) 051 29 ) ) |
111 DC1 021 11 DbpC1 CTRL-Q |5E ; 073 3B ; 2 |
112 DC2 022 12 DC2 CTRL-R |5F = 176 7E Tilde NONE |
113 DC3 023 13 DC3 CTRL-S |60 - 055 2D - - |
|15 LF 012 0aA LF LINE FEED|61 [/ 057 28 / Fi |
|16 BS 010 08 BS CTRL-H |6B , 054 2Cc , 7 |
|18 CAN 030 18 CAN CTRL-X |6C & 045 25 % # |
119 EM 031 19 ENM CTRL-Y |6D _ 137 5F _ SHIFT-0 |
|1C IFS 034 1C FS -CT-SFT-L |6E > 076 3E > > |
|1D IGS 035 1D GS CT-SFT—-M |6F ? 077 3 ? z? |
|1E IRS 036 1E RS CT-SFT-N |7A : 072 3a : : I
|1F 1IUS 037 1F UsS CT-SFT-0 |7B # o043 23 # # |
|25 LF 012 O0A LF LINE FEED|7C @ 100 40 @ a |
|26 ETB 027 17 ETB CTRL-W |7D ! ou47 27 ! 1 I
|27 ESC 033 1B ESC CT-SFT-K |7E = 075 3D = = |
|2D ENQ 005 05 ENQ CTRL-E |7F ® og2 22 L |
|2E ACK 006 06 ACK CTRL-F |81 a 141 61 a NONE |
|2F BEL 007 07 BEL CTRL-G |82 b 142 62 b NONE |
|32 SYN 026 16 SYN CTRL-V |83 <c 143 63 c NONE |
|37 EOT 004 04 EOT CTRL-D |84 d 144 64 d NONE |
|3C DC4 024 14 DC4 CTRL-T |85 e 145 65 e NONE |
|3D NAK 025 15 NAK CTRL-U | |
L 'l ]
142 EBCASC



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

EBCDIC/USASCII Translation Table

r L} 1
| EBCDIC (8-bit) USASCII(7-bit) | EBCDIC(8-bit) USASCII (7-bit) I
| | |
|Hex Name Oct Hex Name TTY | Hex Name Oct Hex Nanme TTY |
L 1 ]
L] ] . |
|86 £ 146 66 £ NONE |C5 E 105 45 E E |
187 g 147 67 g NONE |C6 F 106 46 F F |
|88 h 150 68 h NONE IC7 6 107 47 6 G |
189 1i 151 69 i NONE |C8 H 110 48 H H I
I18B { 173 7B { NONE |IC9 I 111 49 I I |
191 3 152 6A NONE ID1 g 112 4A J J |
192 k 153 6B k NONE | D2 K 113 4B K K |
193 1 154 6C 1 NONE ID3 1L 114 4Cc L L |
194 m 155 6D NONE ID4 M 115 4D M M |
195 n 156 6E n NONE |[D5 N 116 4E N N |
196 o 157 6F o NONE |D6 O 117 4F o0 0 |
197 p 160 70 p NONE ID7 P 120 50 P P |
198 ¢ 161 71 ¢ NONE ID8 O© 121 51 Q@ 0 |
199 r 162 72 r NONE ID9 R 122 52 R R |
|92 NONE 140 60 Grave NONE |E2 S 123 53 s 5 |
ISB 1} 175 7D } ALT MODE |E3 T 124 54 T i |
|A2 s Tes @43 = NONE IE4 U 125 55 U U |
|A3 t 164 74 t NONE |IE5 V¥ 126 56 ¥ v |
|24 u 165 75 u NCONE |E6 W 127 57 W W [
|A5 v 166 76 v NONE |IE7 X 130 58 X X |
|6 W 167 77 w NONE |E8 X 131 59 ¥ Y |
A7 x 170 78 x NONE |IE9 2 132 5 2 Z |
|A8 ¥y 1717 79 ¥y NONE IFO O 060 30 0 0 I
|A9 2z 172 74 z NONE I F1 1 061 31 1 1 |
|AA NONE 136 5E Carat SHIFT-N |F2 2 062 32 2 2 |
|AD [ 133 5D [ SHIFT-K |F3 3 063 33 3 3 I
|BA NONE 134 S5E Bkslh SHIFT-L |F4 4 oe4 34 4 4 |
|BD ] 135 5F ] SHIFT-M |F5 5 065 35 5 5 |
IC1 A 101 41 A A |F6 6 066 36 6 6 I
|IC2 B 102 42 B B IF7 7 067 37 7 7 |
|C3 C 103 43 cC C |F8 8 070 38 8 8 |
D 104 44 D D 9 071 39 9 9 |

(]

ICY4 | F9
L 1

EBCASC 143



MTS 3: SYSTEM SUBROUTINE DESCEIPTIONS

October 1976

144 EBCASC



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBROUTINE DESCRIPTION

Purpose: To call the editor from a user program.
Location: Resident Systen

Calling Sequence:

Assembly: CALL EDIT, (parl1,par2,...,par16)
FORTRAN: CALL EDIT(parl,par2,...,par16,&6rcl,&rc8,&rc12)

Parameters:

o ¢ is the fullword editor dsect address; it is
zero on the first call.
par_2 is a fullword integer '-1' or the CLS trans-
fer vector. '

par_3 is a fullword integer '-1' or the intermedi-
ate I/0 routines transfer vector (see "Spe-
cial Features" below).

par_4 is the initial file name to edit.

par_>5 is the fullword length of initial file name.

par_6 is the initial EDIT command.

par_7 is the fullword length of the initial EDIT
command.

par_8 is the fullword minimum line number allowed.
Should be -2147483648 (-2%%31) if not re-
stricted. All line numbers are "internal,"
i.e., line 1.5 is 1500.

par_9 is the fullword maximum line number allowed.
Should be 2147483647 (2*%%31-1) if not
restricted.

par_10 is the fullword line number relocation fac-
tor; the editor will subtract this number
from +the real 1line number in the file when
interpreting line number parameters and
printing verification.

par_11 is not used (must be fullword integer '-1' or
zZzero parameter pointer).

par_12 is not used (must be fullword integer '-1' or
zero parameter pointer).

par_13 editor control switches are specified as a

fullword integer sum of the following. The

actions of the following first 4 switches are

performed in the order listed.

EDIT 145



MTS 3: SYSTEM SUBROUTINE DESCRI

146

oE N

32
64

128
256

512
1024

2048

PTIONS

X0
Xxro2

X104
X'08"

X'10!
Xt20!
x40

X'80!
X'100°"

X'200'
Xt400!

X'800"

October 1976

set edit file wusing par_4 and
par_5s

perform initial EDIT command
using par_6 and par_ 7

read commands from SOURCE

unload editor unconditionally on
return

prohibit EDIT command except for
editing edit procedures

prohibit MTS commands from the
editor

prohibit copy from or to exter-
nal files

return on any error

return on null length editor
command

return on first ATTN

do not unload editor on STOP
command or EOF in command streanm
set initial current line number
before any commands are pro-

The following parameters and par_1 are set on return:

par_14 is

on return.
par_15 fullword current line number.

—_———_—=

a 20-byte area to store current file name

par_16 fullword to store the integer sum of the edit
procedure switches on return:

Return codes:

normal re
normal re
error ret
error ret

N FE O

EDIT

EOF switch enabled

SUCCESS switch enabled

return from STOP command or EOF in com-
mand streanm

turn, editor unloaded
turn, editor not unloaded
urn, editor not unloaded
urn, editor bug



October 1976

Example:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

This example is written in FORTRAN.

INTEGER*4 EDWD/O/,FILENHM (5) ,EDSW,LINE/3000/

C
C CALL THE EDITOR TO ALTER "C" TO "B" IN LINE 3.000 OF
C FILE -TESTF ,
C 2059 = 1+2+8+2048 WHICH ARE THE CONTROL SWITCHES FOR:
c 1 SET EDIT FILE
C 2 PERFORM INITIAL EDIT COMMAND
C 8 UNLOAD EDITOR WHEN RETURNING
C 2048 SET INITIAL CURRENT LINE POINTER
CALL EDIT (EDWD,-1,-1,'-TESTF',6,'ALTER * "C"B"',613,
X-99999999,99999999,0,-1,-1,2059, FILENH,LINE,
XEDSW,&2,69,89)
c
C EDSW WILL BE '2' IF ALTER WAS SUCCESSFUL, '0' IF NOT.

2 PRINT 5,FILENM,EDSW
5 FORMAT(1X,5A4,I10)

STOP O
9 STOP 1
END

Special Features:

The remainder of this subroutine description provides
information on special features of the EDIT subroutine
that are of interest to system programmers; knowledge of
these_special_ features is _not required_to call EDIT in_the

manner _described_above.

Normal editing occurs when par_3 points to a fullword
-1, To use the special features described here, par_3
must point to an ordered vector of fullword subroutine
addresses or =zeros. Nonzero entries allows the user to
provide alternate subroutines that replace those normally
used by the weditor. User-supplied routines allow the
assembly language user to preprocess and postprocess file
data. It 1is also possible to support user-implemented
file organizations. This special facility is not intended
for use from FORTRAN programs.

A small amount of knowledge about the structure of the
editor is required to properly use the alternate subrou-
tine interface. The accompanying diagram is a representa-
tion of the way the editor reads and writes files.

Level 7 represents the program calling the editor. MTS
uses the editor command language subsystem (CLS) interface
while other programs generally use the more complete "user
interface". The editor in turn calls upon a set of
routines which perform buffering and checkpoint opera-
tions. These then call a set of file-independent rou-

EDIT 147



MTS 3: SYSTEM SUBROUTINE DESCEKIPTIONS

148

October 1976

B i e it +
LEVEL 1 + MTS FILE ROUTINES - all file types |
o, ————— B e +
LEVEL 2 I
et et L e B L t e e e e e s s e = +
| EDITOR I/0 SUPPORT - set of routines for all file types |
e, e e e — .- ———— e, e e — e —— - ———— +
I
e ————— e ettt +
LEVEL 3 | OPTIONAL USER-SUPPLIED INTERMEDIATE ROUTINES |
e R e EL LR LD L i e e e +
LEVEL 4 |
e e e e e L +
| EDITOR FILE MANAGEMENT buffering, checkpoint-restore-undo |
e e — - ettt +
I
e e e e e D +
LEVEL 5 | EDITOR COMKAND LANGUAGE AND DATA PROCESSING |
B e S -
I
e —— e ———— - - + tm—m—m————- fmmm e —————— +
LEVEL 6 | "EDITOR" CLS INTERFACE<-->"EDIT" SUBROUTINE INTERFACE|
fmmmm———— dmm e —————— + Ammmmmm=—— fmmmmmmm e —— +
| |
fmmm—m————— B I e e +
LEVEL 7 |"$EDIT" MTS COMMAND SYSTEM| | FIN,SPIRES, user programs |
e + dmmm e e e e ————— +

tines. The file-independent routines of level 2 +try to
remove all irregularities in file access and also process
all errors. For example, the READ INDEXED routine is
given a line number and returns the line, length, and line
number. A nonexistent line is represented by zero length.
If an error occurs, a Special error message routine is
called by the file-independent routines. R message and
severity level are included as parameters. The editor
supplies the &address of +the routine to handle these
errors. Attentions are handled in a similar manner.

The editor supplies the location of a switch which either
inhibits or allows attentions to be processed at that
point. If attentions are disabled and one occurs, the
routines are responsible for «calling the attention-
handling routine when attentions are again permitted.

The user may supply his own version of the file-
independent routines which in turn may or may not call the
editor's. This is useful for modifying lines before the
editor sees then. For example, a FORTRAN preprocessing

system may use this to concatenate continued statements
and provide statement indentation for loops and if-then

EDIT



October 1976

dTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

structures on input, while splitting and unediting them on
output.

File Independent Routine Descriptions:

The file-independent routines all use a stcrage area
similar to an MTS FDUB called the "IODSECT". The EDGET
routine (see the description below) 1is called by the
editor to get a file, allocate storage for the IODSECT,
and initialize it. The address of the IODSECT is stored
in the fullword specified by the first parameter to EDGET.
All of the remaining I/0 routines must receive this as
their first parameter in the calling sequence. The EDREL
routine (see the description below) releases the IODSECT
and all other storage acquired for such processing. All
of the remaining I/0 routines return a return code dgreater
than zero only if the first parameter is not a valid
IODSECT. The routines will buffer up to one 1line in VM
and will not reread it if successive calls request that
same line. A write is always executed to insure that the
most recent version has been <received by the MTS file
routines. The routine's "current line" (not to be con-
fused with * in the editor itself) is the last line
accessed. The line number returned by the routines will
always indicate the position in the file even if the line
is not present (zero length). If the line number returned
is 2147483647 (2%*31-1), there is no current line or file
position. Sequential files without line numbers, tape
files, and other file +types will have lines numbered
starting with 1.000 and increments of 1.000. A call from
the editor to any of these routines may be replaced with a
user-supplied routine which behaves the same way from the
viewpoint of the editor. The third parameter to the EDIT
subroutine is a vector of entry points to these replace-
ment routines. The user-supplied routine may in turn call
any of the I/0 routines described below if so desired, as
long as they return the proper information to the editor.

EDGET_-_GET_NEW_FILE_AND IODSECT

par_2 file name (if shorter than 1len (par_3).,
delimit with blank).

par_3 fullword length of name (maximum 1is 20
characters).

par_4 fullword minimum accessible 1line number.
Lines with numbers less than this will appear
not to be in the file.

par_>5 fullword maximum accessible line number.
Lines with numbers greater than this will
appear not to be in the file.

par_6 fullword relocation factor to the 1line num-
ber. The offset 1is subtracted from line
numbers on input and added on output. Thus

EDIT 149



MTS 3:

150

EDIT

SYSTEM SUBROUTINE DESCKIPTIONS

October 1976

an offset of 1000000 will make line 1000.000

look like line zero.

par_7 1-byte pad character if required by I/O
routines.
par_8 error message Troutine. Calling sequence

described elsewhere.

par_9 attention routine entry point (has no calling

parameters). Described below in the
"Attention Processing."

section

par_10 1-byte attention bit described below.

par_11 1-byte attention hold count described below.

par_12 CLS transfer vector.

par_13 virtual memory file chain header (supplied by
editor). The editor I/0 routines use this to
locate edit procedures.

Returns:

par_1 fullword address of IODSECT.
par_14 CLz0 actual file nanme.

par_15 FDUB for file.
par_16 fullword file type code.

0 user-supported file type (no
support)

4 file type is "NONE"

8 editor "edit procedure"

1z MTS line file

16 MTS sequential file

20 tape file
24 "“other" file type

tuliword maximum input-output length.
fullword current maximum input length.
mum will always be 255.

editor

Mini-

EDSET_- SET MIN MAX_OFFSET_LINE_NUMBERS_AND_PAD_CHARACTERS

par_1 IODSECT

par_2 minimum accessible line number.
par_3 maximum accessible line number.

par_4i offset to line number (user sees this added

to real number).

par_>5 returns current maximum input-output length.

par_6 returns current maximum input length.

pac_7 pada character if required by I/0 routines.

EDREL_-_RELEASE _FILE AND IODSECT

par_1 IGDSECT



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

EDCLO -_CLOSE_FILE_AND_INVALIDATE CURRENT BUFFER

Used when editor temporarily returns to caller and
file could be modified invalidating the current line.

par_1 IODSECT

EDENT - ENTER_ROUTINES AFTER_EXIT_ FROM_EDITOR

Used when editor restarts after possible external
operations on the file being edited.

par_1 IODSECT

EDRIX_-_READ INDEXED ROUTINE

par_1 IODSECT

par_2 fullword line number to be used as index for
read. -2147483648 and 2147483647 mean *F and
*L respectively.

Returns:

par_3 fullword length of record read. Zero means

that record was not found but line number was

made the current file position.

fullword line number.

= fullword 1location of the record. The caller
must not modify this region.

EDRSQ - _READ SEQUENTIAL ROUTINE

= IODSECT

.2 fullword number of records to read forwared
or backward from current. Zero means stay at
current record. 1 means read next record and
-1 means read previous record; 2 means read
the second record after the current, and -2
means the second previous record before the
current record, etc.

Returns:

par_3 fullword line length. Zero means no record
(EOF or empty file).

_4 fullvword line number.

- 5 fullword address of record read.

oo
o |
IH A

EDIT 151



MTS 3: SYSTEM SUBROUTINE DESCKIPTIONS

October 1976

EDWIX_ -_WRITE_INDEXED

parc_1 IODSECT

par_2 fullword new length.

par_3 fullword 1line number. *F or *L not allowed
here.

par_4 new line data EDWIX makes it active line
also.

EDSPA_=-_FIND _AVAILABLE__LINE _NUMBER__SPACE_AFTER_CURRENT

par_2 fullword number of lines that can actually be
inserted.

par_3 fullword line number of first line that may
be inserted.

par_4 fullword minimum allowed increment.
par_5 fullword last unused line number in region.
EDRNM - RENUMBER_QPERATION

par_1 IODSECT

par_2 fullword first line number.

par_3 fullword last line number.

par_4 fullvword begin line number.

par_>5 fullword increment to line number.

EDCNT - COUNT_NUMBER_OF_LINES_BETWEEN TWO_LINES

par_1 IODSECT
par_2 fullword first line number.
par_3 fullword last line number.

par_U returns fullword number of lines (inclusive).

EDGLN - _GET_VECTOR_OF_LINE_NUMBERS

par_1 IODSECT

EDPLN_ -_PUT VECTOR_OF_LINE_NUMBERS

par. 1 IODSECT

152 EDIT



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

ERROR_MESSAGE_ROUTINE - supplied_by_editor

par_1 the message.
par_2 fullword message length.
par_3 fullword message severity:

0 Comment, return after printing

1 Warning, return after printing

2 Error, do not return

3 Severe error in editor, do not return

par_4 fullword message number.

Attention Processing:

Attention hold count is a one-byte count. If a routine
enters a sensitive area of code, i.e., one that must not
be interrupted, this count 1is incremented by cne. A
nonzero count tells the attention trap exit routine to set
the attention bit byte to X'00' to indicate that an
attention has occurred and to return to the fpoint of
attention. When the sensitive region of code is left, the
attention hold count must be decremented by one. If the
count goes to zero at that point, the attention bit must
be examined for X'00' with the test and set instruction
(which resets it to X'FF'). If it is zero the attention
routine must be called to process the attention in the
normal manner. This allows all levels of routines inde-
pendent attention control in sensitive areas. The error
routine resets attention hold count and attention bit on
errors with severity greater +than '"warning". The user
must be certain to reset attention hold count when leaving
the sensitive area so as to enable interrupts.

I/0 Routines Transfer Vector:

par_3 to the editor interface may point to a fullword
'-1', which means there is no special transfer vector and
the normal editor routines are used. Otherwise par_3
points to an ordered vector of fullword routine addresses
OL zeros. A zero in any position means that the normal
editor I/0 routine is to be used, otherwise the address is
used instead of the normal routine. The vector order is
defined to be:

0 '12' - fullword integer number of entries in
vector

1 EDGET - get new file and IODSECT

2 EDREL - release file and IODSECT

3 EDCLO - close file and invalidate current buffer

4 EDRIX - read indexed routine

5 EDRSQ - read sequential routine

6 EDWIX - write indexed

EDIT 153



NTS 33

154

EDIT

7 EDSPA
8 EDRNHM
9 EDCNT
10 EDGLN
11 EDPLN
12 EDSET

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

find available line number space after
current record

renumber operation

count number of lines between two lines
get vector of line numbers

put vector of line numbers

set minimum and maximum offset line num-
bers and pad character

The above routines are available in the resident systen
through LCSYMBOL.



October 1976

MTS 3: SYSTEN SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

Purpose: To empty a file without destroying it.

Location: Resident Systenm

Calling Sequence:

Assembly: L 0, fdub

CALL EMPTY

Parameters:

GRO

contains the location of a
returned by GETFD).

Return Codes:

-
o @ E o

2

o

Note:

Successful return.

The file does not exist.

Hardware error or software
encountered.

Empty access not allowed.

FDUB-pointer (as

inconeistency

Locking the file for modification will result in a

deadlock.

Automatic wait for (shared) file was interrupted.

FORTRAN programs should call
subroutine.

Example: Assembly: LA 1,FNAMNE

CALL GETFD
ST 0,FDUB
CALL EMPTY

FNAME DC C'DATAFILE !
FDUB DS F

This example will empty the file DATAFILE.

the EMPTYF

EMETY 155



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

156 EMPTY



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

EMPTYF

SUBROUTINE DESCRIPTION

Purpose: To empty a file without destroying it.

Location: Resident Systenm

Calling Sequences:
Assembly: CALL EMPTYF, (unit)
FORTRAN: CALL EMPTYF(unit,&rcH4,8&rc8,6rcl12,&rcl16,8rc20)
Parameters:

unit is the location of either
(a) a fullword-integer FDUB-pointer (such as
returned by GETFD) ,
(b) a fullword-integer logical I/O wunit number
(0 through 19), or
(c) a 1left-justified, 8-character 1logical I/O
unit name (e.g., SCARDS).
rcl,...,rcz0 are statement labels to transfer to Aif
the corresponding return codes occur.

Return Codes:

0 File was emptied successfully.
4 The file does not exist.

8 Hardware error or software inconsistency
encountered.

12 Empty access not allowed.

16 Locking the file for modification will result in a
deadlock.

20 Automatic wait for (shared) file was interrupted.

Examples: Assembly: CALL EMPTYF, (UNIT)

UNIT DC CLB'SCARDS!
FORTRAN: CALL EMPTYF ('SCARDS ')

These examples will empty the file attached to SCARDS.

EMPIYF 157



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

158 EMPTYF



October 1976

Purpose:
Location:

Alt. Entry:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIIONS

SUBROUTINE DESCRIPTION

To suspend execution with an error indication.
Resident Systen

ERROR#

Calling Sequence:

Description:

Assembly: CALL ERROR
or
ERROR
FORTRAN: CALL ERROR

Note: The complete description for using the ERROR macro
is given in MTS Volume 14.

A call to this subroutine returns control to MTS or debug
command mode. If the return is made to MTS command mode,
the comment "ERROR RETURN" is printed. In batch mode, a
dump is automatically given if J$ERRORDUMP or $SET
ERRORDUMP=0ON was specified in the appropriate mode.

Execution of the suspended program may be restarted from
the point of suspension by the $RESTART command.

ERROR 159



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

160 ERROR



TS 3: SYSTEHM SUBROUTINE DESCRIPTIONS

October 1976

E7090, _D7090, E7090P, D7030P

SUBROUTINE DESCRIPTION

Purpose: To allow users to convert IBM 7090 (or 7094) dinternal
floating-point numbers to one of the two types of internal
floating-point representations available on the
System/370.

Location: *LIBRARY

Calling Sequences:

Assembly: CALL E7090, (input,output)
CALL D7090, (input,output)
CALL E7090P, (input,output)
CALL D7090P, (input,output)

FORTRAN: CALL E7090(input,output)
CALL D7090 (input,output)
CALL E7090P (input,output)
CALL D7090P (input,output)

Parameters:

I

nput is the region containing the 7090 floating-
point number (either +twelve or six bytes
depending upon the entry used).

utput is the region where the 370 floating-point
number will be placed (either four or eight
bytes depending upon the entry used).

10

Return Codes:

0 Conversion was successful.
4 Parameter list was not fullword-aligned.

Description: E7090 and D7090 expect the input to be twelve bytes long.
The low-order three bits of each byte are taken as one
octal digit. The sign of the number is assumed tc be the
first bit of the first octal digit. E7090P and D7090P
assume a six-byte input region. The low-order six bits of
each byte are taken as two octal digits. The first bit of
the first octal digit is taken as the sign. D7090 and
D7090P produce 370 "long" (8-byte) floating-point numbers.
E7090 and E7090P produce 370 “short" (4-byte) floating-
point numbers. Since the mantissa of a single-word
floating-point number in the 370 contains only 24 bits,
and the mantissa in a 7090 floating-point word contains 27

bits, rounding (if any) is done for the E-type
conversions.

E7090, D7090, E7090P, D7090P 161



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Examples:

Octoker 1976

Assembly: CALL E7090, (REGION,OUTREG)

OUTREG DS E
REGION DS XL12

FORTRAN : DIMENSION REGION (3)
REAL*4 OUTREG

CALL E7090 (REGION,OUTREG)

The above two examples «convert the 7090 floating-point
number in the location REGION to a "short" (4-byte) 370
floating-point number.

Assembly: CALL D7090P, (REGION,OUTREG)

REGION DS XL6
OUTREG DS D

FORTRAN: INTEGER*2z REGION (3)
REAL*8 OUTREG

CALL D7090P (REGION,OUTREG)

The above two examples convert the 7090 floating-point
number in the location REGION to a "long" (8-byte) 370
floating-point number.

162 E7090, D7090, E7090P, D7090P



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

FNAMETRT

SUBROUTINE DESCRIPTION

Purpose: A 256-byte translate table to check the legality of a file
name.
Location: Resident System

Calling Sequence:

Assembly: SR 2,2
T r,=V (FNAMETRT)
TRT name,0(r)

Parameters:

T is &a general register containing the address of
the FNAMETRT translate table.
name is the location of the file name to be tested.

Values Returned:

GR2 will contain a value indicating the result of

the test:
1 - legal file name with legal terminator.
2 = legal file name except for the CREATE
subroutine.
3 = illegal file name.

The condition code is set to zero if the result
is a legal file name without a legal terminator.

The following characters terminate a file name:
blank ( + , @ X'FF!

The following characters are illegal in a file
lame.

;5 +0) = v w2 &

If the file belongs to another signon ID, it
must be specified without using the shared file
separator character, e.g., 2AGADATAFILE speci-
fies the file DATAFILE belonging to signon ID
2AGA.

FNAMETRT 163



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Octokber 1976

Example: Assembly: SR 2,2
L 3,=V(FNAMETRT)
TRT FNAME,O0(3)
BZ EXIT No legal terminator
C 2,=F'"1!
BH ERROR Illegal file name
FNAME DS CL16 File nanme

The above example tests for the legality of the file name
contained in FNAME.

164 FNAMETRT



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

Purpose: To provide a free format input facility, especially for
FORTRAN programs.

Location: *LIBRARY
Calling Sequences:
FORTRAN:

Assembly:

CALL FREAD (unit,type,list,type,list,...)

CALL FREAD, (unit,type,list,type,list,...),VL

Parameters:

unit

VL

is the location of one of the following:

(a) a FDUB-pointer,

(b) a fullword-integer 1logical I/O unit number
(O through 19),

(c) the character string 'GUSER', 'SCARDS', '*',
or

(d) a user buffer (generally an array).

This parameter indicates where input is to be

read from.

is the location of a string of characters (a

literal or an array of characters) indicating

how many and what types of variables are to be

read. A type string consists of a sequence of

type codes separated by commas. The valid type

codes are given below.

is a list of variable or array names, separated

by commas, into which the data values are to be

placed. In the case of an array, the entry is a

pair - the first member is the array name and

the second member is the location of the number

of elements to be read into the array.

is a parameter to the CALL macro which signifies

that the calling sequence has a variable number

of parameters.

Values Returned:

GRO and FRO contain the number of fields successfully
processed. This allows FREAD to be called as either
a REAL or INTEGER function.

Description: The FREAD subroutine reads a specified amount of data in
free format in response to each call. The data items to

FREAD 165



MTS 3:

Examples:

166

FREAD

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

be read may appear in free format in the input records,
i.e., in any position in the record, separated by blanks,
commas, or other delimiters selected by the wuser. The
amount of data to be read is indicated by the list of
variables in the list parameter. The type of data item to
be read into each variable location is determined by the
type codes 1in the type parameter. There is a one-to-one
correspondence between type codes and variable names 1in
the list parameter.

FREAD will also recognize special calls which result in
the setting or resetting of various switches which control
subsequent FREAD actions. A special call is recognized by
a unit number of -1 or -2. For further informaticn on the
FREAD subroutine, see the section "“FREAD: Free Format
Input Subroutine" in MTS Volume 6.

FORTRAN: CALL FREAD('SCARDS','I:',Jd)

The above example reads an integer from SCARDS and places
its value into the variable J.

CALL FREAD(5,'2I1:',I1,d)

The above example reads two integers from logical I/0 unit
5 and places the values into the variables I and J.

CALL FREAD(9,'R VECTOR',VEC,13)

The above example reads 13 real numbers from logical I/O
unit 9 into the array VEC.



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

FREEFD

SUBKOUTINE DESCRIPTIGN

Purpose: To free a file or device acquired by the GETFD subroutine.
Location: Resident Systen
Calling Sequences:

Assembly: L 0,fdub
CALL FREEFD

Parameters:

GRO should contain a FDUB-pointer (such as returned
by GETFD or GDINFO).

Return Codes:

0 Successiul return.
4 GRO does not contain a legal FDUB-pointer.

Note: FORTRAN users can call this subroutine by using
the RCALL subroutine.

FREEFD 167



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

168 FREEFD



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

FREESPAC

SUBROUTINE DESCRIPTION

Purpose: To release storage acquired by the GETSPACE subroutine.
Location: Resident Systen
Alt. Entry: FREESP

Calling Sequences:

Assembly: L 0,1len
L 1, 1loc
CALL FREESPAC

or

FREESPAC loc[ ,LNG=len][ ,EXIT=err ]

Parameters:

GRO If zero, the entire region is to be released.
If not zero, GRO is the length of the region to
be released. If it is not a multiple of 8, the
next smallest multiple of 8 is used.

GR1 contains the location of the first byte of the
region to be released. If it is a not a
multiple of 8, the next larger multiple of 8
will be used.

A GR13 save area is not required for a call to this
subroutine.

Return Codes:

0 Successful return.

4 Error return. Either the region was not initially
allocated by GETSPACE and cannot be released (the
region either does not exist or is a part of the
resident system), or the region specified (LOC to
LOC+LEN-1) is not completely within a region
originally allocated by GETSPACE.

Note: FORTRAN users can call this subroutine by using
the RCALL subroutine and giving FREESP as the
entry point.

The complete description for wusing the FREESPAC
macro is given in MTS Volume 14.

FREESPAC 169



MTS 3:

Examples:

170

FREESPAC

Assembly:

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SR 0,0
L 1,L0C
CALL FREESPAC

FREESPAC LOC

The above two examples call FREESPAC to release the entire
region whose starting address is contained in the location

LoC. The

uses the CALL macro and the second uses

the FREESPAC macro.

L 0,LEN
L 1,L0C
CALL FREESPAC

DC F'32¢

FREESPAC LOC,LNG=32

The above two examples call FREESPAC to release the first
32 bytes of the region whose starting address is contained

in the location

LOC.



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPBTIONS

SUBROUTINE DESCRIPTION

To determine the file size required to contain a certain
amount of information without actually writing the file.

Resident System

Calling Sequences:

Description:

Assembly: CALL FSIZE, (type,length,size)
FORTRAN: CALL FSIZE(type,length,size,&rcl)
Parameters:

type is the location of a fullword integer con-
taining the file type:
0 - line file
1 - sequential file
2 - sequential-with-line-numbers file

length is the 1location of a fullword integer con-
taining the length of the current line which
would be written into the file.

size is the 1location of a 16-word integer array
(64 bytes). The first word is zero on the
first call, and contains the current size in
pages on subsequent calls (returned on each
call). The second word is the "last pointer"
as it would be returned by the NOTE subrou-
tine for sequential or sequential-with-line-
numbers files. The remainder of size is used
by FSIZE for internal storage between calls
and should not be altered.

rcl is the statement label to transfer to if the
equivalent return code occurs.

Return Codes:

0 Successful return (information returned normally).
4 Invalid parameter.

The FSIZE subroutine is used to determine the minimum file
size required to contain a specific set of data lines
without actually writing them into a file. The subroutine
nust be called once for each line which would be written
into the file. Before the first call, the first word of
size should be set to zero; on subsequent calls, cnly the
length parameter should be changed. The first word of

FSIZE 171



MTS 3:

Examples:

172

FSIZE

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

size will contain the minimum file size required to
contain the accunmulated number of lines following each
call.

Assembly: LA 2,100
LOOP CALL FSIZE, (TYPE,LEN,SIZE)
BCT 2,L00P

TYPE DC E10!
LEN DC F'50!
SIZE DC 16F'0"

FORTRAN: INTEGER SIZE (16)

SIZE(1) = 0
DO 100 I=1,100
100  CALL FSIZE (0,50,SIZE)

These examples compute the minimum size required for a
line file containing 100 50-byte lines. This value will
be contained in SIZE (1)«



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

Purpose: To forward space or backspace records (lines) in a line
file or sequential file.

Location: Resident System

Calling Sequence:

Assembly: CALL FSRF, (unit,skipct)

CALL BSRF, (unit,skipct)

FORTRAN: CALL FSRF (unit,skipct,&rcl,&rc8,8&rcl12,8rcl6,
&rc20,&rc2u)
CALL BSRF (unit,skipct,&rcl,&rc8,6rc12,6xrcl6,
&rc20,&rc24)
Parameters:
unit is the location of either
(a) a fullword-integer FDUB-pointer (as

returned by GETFD),

(b) a fullword-integer logical I/0 unit num-
ber (0 through 19), or

(c) a left-justified 8-character logical I/0
unit name (e.g., SCARDS).

skipct is the location of a fullword-integer count

of +the number of logical records (lines) to
forward or backspace over.

rcl...rc24 are statement labels to transfer to if the

corresponding return codes occur.

Return Codes:

0
n
8
12
16

20

24

Records skipped successfully.

End-of-file encountered.

Hardware error or software inconsistency
encountered.

Read or write access not allowed.

Locking +the file for read will result in a
deadlock.

An attention interrupt has canceled the automatic
wait on the file (waiting caused by concurrent
usage of the (shared) file).

The file does not exist.

FSRF, BSRF 173



MTS 3:

Examples:

174

FSRF,

SYSTEM SUBROUTINE DESCEIPTIONS

October 1976

Note: For both line and sequential files, a current
(line or read) pointer is maintained with each
FDUB (file or device usage block). Forward spac-
ing or backspacing begins from the current point-
er. See Appendix B of the section "Files and
Devices" in MTS Volume 1 for details ccncerning
how this current poirter is updated as a result of
various I/0 operations.

Assembly: CALL FSRF, (UNIT,SKIPCT)
UNIT DC L
SKIPCT DC P2V

The above example will forward space two logical records
(lines) on the file attached to logical I/0 unit 1.

FORTRAN: INTEGER*4 UNIT,SKIPCT
DATA UNIT/1/

CALL BSRF (UNIT,2)

The above example will backspace two logical records
(lines) on the file attached to logical I/0 unit 1.

BSRF



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

FTNCMD

SUBROUTINE DESCRIPTION

To allow a program to issue commands to the FORTRAN I/0
library.

Resident System

Calling Sequence:

Description:

Examples:

FORTRAN: CALL FTNCMD(string,length)

Parameters:

string is the location of a character string that
consists of the FORTRAN I/0 library command.
lenqgth 1s the location of a fullword or halfword

The FTNCMD subroutine allows a program to issue commands
to the FORTRAN I/0 library monitor in order to manipulate
the I/0 environment. Any command that is legal fer the
FORTRAN I/0 library monitor may be given. In addition, an
MTS command may be specified by prefixing the command with
a dollar sign ($). The subroutine returns to the calling
program unless an erroneous FORTRAN monitor command is
specified, in which case the FORTRAN I,/0 monitor assumes
control.

The FORTRAN I/0 library and monitor are described in the
section "FORTRAN I/0 Library" in MTS Volume 6.

CALL FTNCMD ('ASSIGN 7=#PUNCH*',16)
The above example assigns logical I/0 unit 7 to *PUNCH*.
CALL FTNCMD ('SET UVCHECK=OFF',15)

The above example suppresses the FORTRAN I/O library
checking for undefined variables.

FTNCMD 175



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

176 FTNCMD



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

Purpose: To allow a FORTEAN program to obtain information returned
from the subroutine GDINFO.

Location: *LIBRARY

Calling Sequence:

FORTRAN: CALL GDINF (unit,region,é&rcl)

Parameters:

unit

Return Codes:

is the location of either

(a) a FDUB-pointer (as returned by GETFD), or

(b) an 8-character 1logical I/0 wunit name
left-justified with trailing blanks
(e.g., SCARDS, SPRINT, 0 through 19,
etCe) «

is a U44-byte array (11 fullwords) in which

the information is returned.

is the statement label to transfer to if a

return code of 4 occurs.

0 Successful return.
4 Error. See the GDINFO subroutine description for
the possible error conditions.

Description: This subroutine calls the GDINFO subroutine and places the
returned information in region which is provided by the
FORTRAN calling program. See the description of the
GDINFO subroutine in this volume for a description of this

information.

Example: FORTRAN:

INTEGER*4 SPRINT(2)/'SPRI','NT '/,REG(11)

CALL GDINF (SPRINT,REG,&99)

99 WRITE (6,199)

199 FORMAT (' SPRINT IS NOT ASSIGNED')

GDINF 177



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

This example calls GDINF to obtain information about the
file or device attached to SPRINT.

178 GDINF



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

To obtain information about a file or device.

Resident System

Calling Sequence:

Assembly: (a) L 0,fdub
SR 11
CALL GDINFO

(b) LM 0,1,lname
CALL GDINFO

Parameters:

(a) GRO contains a FDUB-pointer (such as returned by
GETFD) or an integer logical I/0 unit number (0
through 19), or

(b) GRO and GR1 contain a left-justified, 8-
character logical I/0 unit name (e.g., SCARDS).

Return Codes:

0 Successful return. GR1 contains the address of an
information region (see below).

4 Error return. If (a) call, the FDUB-pointer was
illegal or, if a 1logical I/0 unit number was
given, there was mno file or device attached to
that unit. If (b) call, either the name given was
not a legitimate logical I/0 unit name c¢r else
there was no file or device attached to that unit.

8 Hardware error or software inconsistency.

Values Returned:

If the return code from GDINFO is zero, then GR1
contains the location of a fullword-aligned region of
information. (If a concatenation was specified in
the original logical I/0 unit setup or GETFD call,
the information returned in this region applies to
the currently active member of the concatenation.)
The region contains:

GDINFO 179



MES 3

180

GDINFO

WORD 1:
WORD 2:

WORD 3:

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

FDUB-pointer
4-character BCD type (see below)

Maximum input length (halfword) and maximum
output length (halfword)

"Var" means variable. The value returned
depends on the current value of the blocking
parameters (for tapes), the LEN device com-
mand (for terminals), the INLEN and OUTLEN
device commands (for MNET), and the length of
the maximum line (for files).

Input OQutput Type Usage

Var 32767 FILE - line file
Var 32767 SEQF - sequential file

0 0 NONE - nonexistent file, or
access not allowed

Var Var TTY - Teletype
Var Var 2741 - IBM 2741, 1050 Terminals
Var Var PDP8 - Data Concentrator
Var Var MRXA - Memorex 1270 Contrcller
255 255 DISP - IBM 2250 Display Station
160 80 2260 - IBM 2260 Display Station
255 Var 3270 - IBM 3270 Display Station
254 0 HRDR - batch card input

0 133 HPTR - *PRINT* output

0 80 HPCH - *PUNCH* output

0 254 HBAT - *BATCH* output
160 0 2501 - IBM 2501 Card Reader
160 0 RDR - IBf 2540 Card Reader

0 80 PCH - IBM 2540 Card Punch

0 133 PTR - IBM 1403 Printer

0 133 1443 - IBM 1443 Printer
Var Var 9TP - 9-track Magnetic Tape
Var Var 7TP - 7-track Magnetic Tape

0 255 PTPP - Paper Tape Punch
Var 0 PTPR - Paper Tape Reader
Var Var SDA - synchronous Data Adaptor

255 255 7772 - IBM 7772 ARU
0 32767 DUMY - *DUMMY=*

100 100 OPER - OPER

255 255 TEST - variable

Var Var MNET - MERIT Computer Network
128 128 1052 - IBM 1052 Terminal

255 Var 3066 - IBM 3066 console

255 132 BNCH - benchmark driver



October 1976

WORD 4:

WORD 5:

WORD 6:
WORD 7:
WORD B8:
WORD 9:

WORD 10:

WORD 11:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Byte 12

FDUBTYPE field:
*MSOURCE *
*MSINK=*
*PUNCH*
*SOURCE*
*SINK*
*AFD*
device mounted by $MOUNT command
to 255 reserved for future expansion
type index:
unit record
magnetic tape
terminal
file
dumnmy
paper tape
operator's console
test
to 255 reserved for future expansion
Byte 14 - switches:
bit 0 - on if output is OK
bit 1 - on if input is OK
bit 2 - on if indexed operation
makes sense
bit 3 - on if can be rewound
bit 4 - on if increment given in
FDname
bit 5 - on if defaulted on $RUN cnd.
bit 6 - on if part of explicit
concatenation and not
last member
bit 7 - on if at least one modifier
was given on the FDname
Byte 15 - unused

(L I | I

Byte 1

W nwwnun

ONNOONEWNaQOWDIOULFEFWN
I

I/0 modifiers given with FDname
(see the "I/0 Modifiers" section)

Starting line number
Last line number used in I/0 operation
Ending line number
Line number increment

Pointer to FDname for current FDUB

(halfword length followed by FDname), or
Zero

Pointer to 1last error message associated

with FDUB (halfword length followed by mes-
sage), Or zero :

GDINFO 181



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

Notes: The line numbers given in words 6, 7, 8, and 9 are
the 1line numbers associated with +the FDnanme.
These are given in internal format, which is the
external format (specified on the FDname) times
1000.

The storage pointed to by GR1 was allocated by
GETSPACE, and the user may call FREESPAC (with GRO
= (0) to release it when it is no longer needed.
This storage region was allocated only if GDINFO
gave a return code of zero.

The file use count and last reference date are not
updated by a call to GDINFO (or GDINFO2 or
GDINFO3).

Description: The information returned by GDINFO is described by the
dsect given on the following page (from the file
*GDINFODSECT) .

Example: Assembly: LM 0,1,SNAME
CALL GDINFO

SNAME DC CL8'SPRINT

The above example calls GDINFO to get information for the
file or device attached to the logical I/0 unit SPRINT.

182 GDINFO



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

*

* DSECT FOR INFORMATION RETURNED BY GDINFO
%

GDDSECT DSECT
GDFDUB DS
GDTYPE DS
GDINLEN DS
GDOUTLEN DS
GDUTYP DS
GDMSOURC EQU
GDMSINK EQU
GDPUNCH EQU
GDSOURCE EQU

FDUB-POINTER

TYPE

INPUT MAXIMUM LENGTH
OUTPUT MAXIMUM LENGTH
USE TYPE

t
£

GDSINK EQU
GDAFD EQU
GDMOUNTD EQU
GDDTYP DS DEVICE TYPE

GDUNIREC EQU
GDMAGTAP EQU
GDTERM EQU
GDFILE EQU
GDDUMMY  EQU
GDPAPTAP EQU

HdOUFWNaoK oUW EFWNNaRKIDIO P

GDOPER EQU

GDTEST EQU

GDSWS DS SWITCHES

GDOUTOK EQU Xrso!

GDINOK EQU X'40°

GDINDXOK EQU X'20!

GDREWOK EQU X'10°"

GDEXINCR EQU x'ros"

GDDEFLT EQU X'o4 ON IF DEFAULTED
DS X FOR EXPANSION

GDMODS DS XL4 MODIFIERS

GDBLNR DS F BEGINNING LINE NUMBER
GDPLNR DS F PREVIOUS LINE NUMBER
GDELNR DS F ENDING LINE NUMBER

GDILNR DS F INCREMENT FOR LINE NUMBER
GDNAME DS A LOCATION OF EXTERNAL NAME
GDERMSG DS A LOCATION OF LAST ERROR MSG

GDINFO 183



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

184 GDINFO



October 1976

Purpose:
Location:

Alt. Entry:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

GDINFO2

SUBROUTINE DESCRIPTION

To get information about a file or device.

Resident System

GDINF2

Calling Sequence:

Description:

Assenmbly: (a) L 0,fdub

SR 1'1
CALL GDINFO2

(b) LM 0,1,1name
CALL GDINFOZ

This subroutine is exactly the same as the GDINFO subrou-
tine with the tollowing exceptions:

(m

(2)

The file 1is not opened. This means that file
buffers are not allocated and file use and
reference counts are not updated.

The input and output lengths may be -1 to indicate
that they are wunknown (because of the above
exception) .

GDINFO2 185



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

186 GDINFO2



October 1976

Purpose:
Location:

Alt. Entry:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

GDINFO3

SUBROUTINE DESCRIPTION

To get information about a file or device.
Resident Systenm

GDINF3

Calling Sequence:

Description:

Assembly: (a) L 0,fdub
SR 1,1
CALL GDINFO3

(b) LY 0,1,1name
CAIL GDINFO3

This subroutine is exactly the same as the GDINFO subrou-
tine with the following exceptions:

(1) The file is opened, but not locked.

(2) The input and/or output record lengths may be -1
to indicate that they are unknown (because of the
above exception).

GDINFO3 187



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

188 GDINFO3



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

GETED

SUBEOUTINE DESCRIPTION

Purpose: To obtain a file or device.
Location: Resident System

Calling Sequence:

Assembly: LA 1,FDnanme
CALL GETFD

Parameters:

GR1 contains the location of the first character of
the FDname of the file or device wanted. The
complete name must be  terminated by a blank.
The name does not have to be aligned.

Return Codes:

Successful return.

Illegal device name.
Device is busy.

Device is not operational.

N E O

1
Values Returned:

GRO contains the FDUB-pointer if a successful return
is made.

Note: FORTRAN users can call this subroutine by using
the RCALL subroutine.

Description: If the name is a device, the device is acquired. If the
name is a file, the file is not opened until the first
usage. Thus this subroutine cannot determine whether or
not the file exists. The caller can determine whether the
file exists by «calling GDINFO. The name may be a
concatenation of file or device names each follcwed by
modifiers or a line number range as described in "Files
and Devices"™ in MTS Volume 1. If the FDUB-pointer
returned is used in a call to READ or WRITE, the modifiers
or line number ranges will be used, and if a concatenation
was specified, the usual segquencing through the concatena-
tion will take place.

GETFD 189



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

Example: Assembly: LA 1,FNAME
CALL GETFD

FNAME DC C'DATAFILE !

The above example calls GETFD to obtain a FDUB-pointer for
the file DATAFILE.

190 GETFD



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

GETFST, GETLST

SUBROUTINE DESCRIPTION

Purpose: To return the 1line number associated with the first or
last line in a file, respectively.

Location: Resident System

Calling Sequence:

Assembly: CALL GETFST, (unit,linenb)

FORTRAN:

CALL GETLST, (unit,linenb)

CALL GETFST (unit,linenb,érc4,8rc8,6rc12,6zrc16,
&rc20,&rc2l)

CALL GETLST (unit,linenb,&rcl4,&rc8,&rc12,6xc16,
&rc20,8&rc2l)

Parameters:

unit is the location of either

(a) a fullword-integer FDUB-pointer (as
returned by GETFD),

(b) a fullword-integer logical I/0 unit num-
ber (0 through 19), or

(c) a left-justified 8-character logical I/0
unit name (e.g., SCARDS).

linenb 1is the location of a fullword in which the

internal line number (either first or last)

corresponding return codes occCuUr.

Return Codes:

@ E o

12

16

20

24

Line number returned successfully.

The file is empty.

Hardware error or software inconsistency
encountered.

Access not allowed (something other than NONE
required) .

Locking the file for read will result in a
deadlock.

An attention interrupt has canceled the automatic
wait on the file (waiting caused by concurrent
usage of the (shared) file).

The file does not exist.

GETFST, GEILST 191



MTS 3:

Examples:

192

GETFST,

SYSTEM SUBROUTINE DESCKIPTIONS

Octocber 1976

Notes:

GETFST and GETLST may be used only with line files or
sequential-with-line-numbers files.

In MTS, the internal 1line number (e.g., 2100) is
equal to the external line number (e.g., 2.1) times
one thousand.

Assembly: CALL GETFST, (UNIT,FSTLN)

The a
with

FORTR

The a
with

GETLST

UNIT DC CL8'SPRINT?
FSTLN DS F Put first line number here

bove example returns the first line number associated
the file attached to logical I/0 unit SPRINT.

AN: INTEGER*4 UNIT,LSTLN
DATA UNIT/3/

CALL GETLST (UNIT,LSTLN)

bove example returns the last line number associated
the file attached to logical I/0 unit 3.



October 1976

Purpose: To return

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

the time remaining until a specified timer

interrupt will occur without canceling the interrupt.

Location: Resident System

Calling Sequences:

Assembly: CALL GETIME, (id,value,aexit)

Parameters:

id

is the location of +the fullword identifier
which specifies the timer interrupt whose
time remaining until interruption is to be
returned. This is the same identifier which
was given to SETIME when the interrupt was
set up.

is the location of a 4-, 8-, or 16-byte
fullword-aligned region in which GETIME
returns the +time remaining until the inter-
rupt will occur. The interpretation of this
value depends upon the code parameter given
to SETIME when the interrupt was set up. For
codes 0 and 2, the value is an B8-byte binary
integer specifying microseconds of task CPU
time; for codes 1, 3, and 5, the value is an
8-byte binary integer specifying micrcseconds
of real time; for code 4, the value is a
4-byte binary integer specifying timer units
of task CPU time.

is the location of the address of the 76-byte
exit region which was given to SETIME when
the interrupt was set up. The combination of
the identifier and the exit region address
will always specify a unique timer interrupt.

Return Codes:

0 Successful return.

4 No

such timer interrupt was found. This means

either:

)
(2)

no such interrupt was ever set up, or
the interrupt has occurred, and the exit was
taken before the execution of the BALR
instruction which branches to GETIME.

GETIME 193



MTS 3:

Description:

Example:

194

GETIME

SYSTEM SUBROUIINE DESCRIPTIONS

October 1976

A call on the GETIME subroutine returns the time remaining
until a specified timer interrupt will occur without
canceling the interrupt. The timer interrupt is specified
by the combination of the id and aexit parameters and the
time remaining is returned in the value parameter.

For further details, see also the RSTIME, SETIME, and
TIMNTRP subroutine descriptions in this volume.

Assembly: CALL GETIME, (ONE,TIMLEFT,AEXIT)

ONE pe: Fprt
TIMLEFT DS FL8
AEXIT DC A (EXIT)
EXIT DS 19F

This example returns the time remaining for the interrupt
with the identifier "1" and the exit region "EXIT". The
value is returned in "TIMLEFT".



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

GETSPACE

SUBROUTINE DESCRIPTION

Purpose: To acquire storage.

Location: Resident System

Alt. Entry: GETSPA
Calling Sequences:

Assembly:

0,switch
1,length
ALL GETSPACE

o

0,switch
1,length
2,index
ALL GETSPACE

Qe

GETSPACE [length][ ,T=switch ][ ,EXIT=err]

Parameters:

GRO

GR1

contains switches:

Bit 31 = 1- Return not made unless space is
available.
0 Return always made with return code
indicating whet her space is
available.

30 = 1 Storage acquired is associated with
the current level of LINK so that it
is released at the next return from
a LINK, or the next XCTL.

0 Storage acquired is associated with
the highest level program so that it
is not released until execution

terminates.

29 = 1 Attach storage acquired to systenm
level.

28 = 1 Use storage index number given in
GR2.

Other bits in GRO must be zero.

contains the length (in bytes) of storage
desired. If this is not a multiple of 8, the
next largest multiple of 8 will be used. The
upper 1limit for a storage request is 1,048,576
bytes (1 segment).

GETSPACE 195



MTS 3: SYSTEM SUBROUTINE DESCERIPTIONS

October 1976

Normally space will be allocated wherever avail-
able in virtual memory. However, if the first
byte (byte 0) of GR1 is nonzero, it is assumed
to be the number of the segment in which the
storage is to be allocated. If this is an
invalid number [is less than 6, or 1is (greater
than the current maximum (currently 12) ], or if
this space request cannot be allocated in this
segment, a return is made with a return code of
4.

GR2 <contains the storage index number to use if bit
28 of GRO is 1; otherwise, GR2 is ignored.

A GR13 save area is not required for a call to this
subroutine.

Values Returned:

GR1 contains the location of the first byte of the
storage region acquired. The first word of this
region 1is set- to the length (in bytes) of the
region.

Return Codes:

0 Successful return. Storage has been acquired.
4 Space is not available.

Note: FORTRAN users can call this subroutine by using
the RCALL subroutine and giving GETSPA as the
entry point.

The complete description for using the GETSPACE
macro is given in MTS Volume 14.

Description: See the "Virtual Memory Management" section in MTS Volume
5 for further details on storage allocation and storage
index numbers.

Examples: Assembly: L 0,SWITCH
L 1,LENGTH
CALL GETSPACE

SWITCH DC F'0!
LENGTH DC F'256!

GETSPACE 256
The above two examples call GETSPACE to acquire 256 bytes

of storage. The storage will be associated with the
highest level program.

196 GETSPACE



October 1976

Purpose: To obtain

TS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

information about a particular file or (when

called repeatedly) all of +the files in a particular
catalog.

Location: Resident System

Calling Sequences:

Assembly: CALL GFINFO, (what,rtn,flag,cinfo,finfo,sinfo,

FORTRAN:

Parameters:

what

H
1=}

ercode,errmsqg)

CALL GFINFO(what,rtn,flag,cinfo,finfo,sinfo,

ercode,errmsqg,&ércl)

is the location of either

(a) a file name (with a trailing blank), if
flag=1,

(b) a fullword-integer FDUB-pointer (such as
returned by GETFD), a fullword-integer
logical I/0 unit number (0 through 19),
or a left-justified, 8-character logical
I/0 unit name (e.g., SCARDS), if flag=2,
or

(c) a U4-character signon ID of a catalog to
be scanned, or *SY¥S (system file cata-
log), or *TMP (temporary file catalog),
if flag=3.

is the 1location of a 6-fullword integer

region where the file name will be returned.

If flag=1, this parameter on return will be

the same as what. If flag=2, this fparameter

on return will be the file name associated
with the FDUB-pointer or logical I/0 unit.

If flag=3, this parameter on return will be

the file name of the next file in the catalog

being scanned, for which the requested infor-
mation has been returned. This regiocn must
be zero when GFINFO is called initially. In
addition, this region should not be altered
on subsequent calls if a catalog is being
scanned (flag=3) or if storage is being
released (£lag=0). The file name returned is

a maximum of 5 fullwords (20 characters)

left-justified and padded with trailing

GFINFO 197



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

blanks. The last word is used internally by
GFINFO.

flag is the location of a fullword integer which
specifies the type of what parameter given.
It flag=0, any storage allocated Lty GFINFO
will be released. This should be specified,
for example, to release the variable-length
sharing list if such was specified, or to
release allocated storage if a catalog scan
was terminated prematurely. If a catalog
scan 1is terminated normally via the "NO MORE
FILES" error return, all storage will be
released automatically and the caller need
not release it.

cinfo is +the location of a 16-fullword region
(array) where catalog information will be
returned. The first word of the region
indicates +the size of the region (in words).
If this is set to less than the maximum of
16, the <caller is requesting that only the
first "n" words of information are to be
returned. If this word is set to zero, the
caller is requesting that no catalog informa-
tion is to be returned. The second word of
the region indicates how much information (in
words) was actually returned by GFINFO. If
the second word is zero on return, no infor-
mation was returned because the appropriate
access to the file was not allowed. Any
access (other than none) is sufficient to
obtain the catalog information.

finfo is the location of a 16-fullword region
(array) where file information will be
returned. The first two words of the region
are as described for the cinfo parameter.
Note that for sequential files, a maximum of
11 words of information is returned. Any
access (other than none) is sufficient to
obtain the file information.

sinfo is the location of a 6-fullword region
(array) where sharing information will be

returned. The first and second words of the
region are as described for the c¢info and
finfo parameters. Any access (other than

none) is sufficient to obtain the third word
of information, i.e., the access the caller
has to the file. Permit access is required
to obtain the remainder of the information.
Note that if the first word of the region is
5 or less, no variable-length sharing infor-
mation will be returned. In addition, if the
second word of the region is 3 or less on
return, permit access was not allowed. Fi-

198 GFINFO



October 1976

ercode

—_——=_=

I

1=

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

nally, if the variable-length sharing infor-
mation is requested and returned, the asso-
ciated storage must be released either
directly by calling FREESPAC or indirectly by
calling GFINFO again with flag=0 and nothing
else altered.

(optional) is the location of a fullword
integer in which GFINFO will place an error
number if an error return (return code 4) is
made. If ercode is omitted, then the errmsq
parameter must also be omitted. Assenbly
language users wishing to omit these parame-
ters should either follow the variable-length
parameter list convention (high-order bit of
the previous parameter adcon in the parameter
list 1is 1) or else supply an adcon which is
zero (rather than pointing to a zero).
(optional) is the location of a 20-fullword
(80-character) region in which GFINFO will
place the corresponding error message if an
error return (return code 4) is made. Assem-
bly language users should note the convention
for omitting optional parameters described
above.

PARAMETER LIST POINTER IS BAD.

YOUR "FILE" IS NOT A FILE.

THE FILE DOES NOT EXIST.

NO FILES THIS CCID - CATALOG SCAN.

NO MORE FILES - CATALOG SCAN.

ACCESS NOT ALLOWED THIS FILE.

WAITING WILL DEADLOCK =- FILE XXXX.

WAIT INTERRUPTED - FILE XXXX.

HARDWARE ERROR OR SOFTWARE INCONSISTENCY
- FILE XXXX.

HARDWARE ERROR OR SOFTWARE INCONSISTENCY
- SYSTEM CATALOG.

21 FIRST PARAMETER (WHAT) IS BAD.

22 SECOND PARAMETER (RTN) IS BAD.

23 THIRD PARAMETER (FLAG) IS BAD.

24 FOURTH PARAMETER (CINFO) IS BAD.

25 FIFTH PARAMETER (FINFO) IS BAD.

26 SIXTH PARAMETER (SINFO) IS BAD.

OO0 & Wi =

'y
(=]

is the statement label to transfer tc if the
corresponding nonzero return code occurs.

GFINFO 199



MTS 33

Description:

200

GFINFO

Return

= o

Notes:

("

(2)

(3)

(4)

The in
followi

# 3 3

#

CIDSECT
CIAL
CIRL
CIONID
CIVoL
ciuoc
CILRD
CICD

CIFO
B

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

Codes:

Some information has been returned.
Error return. See the ercode and errmsg values

returned for the specific error.

On a catalog scan, if no information is requested,
i.e., cinfo=finfo=sinfo=0, rtn on return will
contain the name of the next file for which some
access (other than none) has been allowed.

The catalog information is the least expensive to
obtairn, the sharing information is moderately
expensive, and the file information is most expen-
sive. Concerning the file information as it
relates to line files only, the copied size as
well as the last five words of information (i.e.,
number of lines, etc.) are guite expensive to
determine. Consequently, if +the first eleven
words (or less) of file information are requested
for a line file, only an approximation to the
copied size will be returned. If any or all of
the last five words are requested, a more accurate
(but still approximate) copied size will be
returned.

The public file *GFINFODSECT contains 3 dsects for
assembly language users which define the format of
the catalog information, file information, and
sharing information. Proper use of these dsects
will enable user programs to adapt easily to any
additional information GFINFO may return in the
future.

The file use count and the last reference date are
not updated by a call to the GFINFO subroutine.

formation returned by GFINFO is described by the
ng dsects (from the file *GFINFODSECT).

CATALCG INFORMATION DSECT - ANY ACCESS IS
SUFFICIENT TO OBTAIN CATALOG INFORMATION

DSECT

DS F ARRAY LENGTH - WORDS

DS F RETURN LENGTH - WORDS

DS F OWNERID - EBCDIC

DS 2F VOLUME NAME - 6 CHAR,TRAILING BLANKS
DS F USECOUNT

DS F LAST REFERENCE DATE - JULIAN DAYS

DS F CREATION DATE - JULIAN DAYS

DS F FILE ORGANIZATION

0=LINE, 1=SEQUENTIAL, 2=SEQWL



October 1976

CIDT
*

CIFLG
s

CIPRIV
*
CILCD

CIPKEY
s«

*

*

s
FIDSECT
FIAL
FIRL
FIFO

%

FIFLG
*
FICNS
FITS
FICPS
FIFLN
%*

FILLN
&
FIMLL
FIMXS
#*
*
&=

FINL
FINH
FILCNT
FIHCNT
FIMHL
P

*

P

%
SIDSECT
SIAL
SIRL
SIACC
*

#* o 4 H # H # #

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

DS F DEVICE TYPE
0=2311, 1=2314, 2=2321, 3=3330
DS F

EQU 1 PRIVILEGED PROGRAHN

DS F LAST CHANGE DATE-JULIAN DAYS
DS 4F PROGRAM KEY - LEFT JUSTIFIED

FILE INFORMATION DSECT - ANY ACCESS IS
SUFFICIENT TO OBTAIN FILE INFORMATION

DSECT
DS F ARRAY LENGTH - WORDS
DS F RETURN LENGTH - WORDS
DS F FILE ORGANIZATION
0=LINE, 1=SEQUENTIAL, 2=SEQWL

DS F FLAG
1=BACKWARDS CAPABILITY, 2=EMPTY FILE
DS F CURRENT SIZE - PAGES
DS F TRUNCATED SIZE - PAGES
DS F COPIED SIZE - PAGES
DS F FIRST LINE NUMBER - INTERNAL
ZERO IF SEQUENTIAL OR EMPTY
DS F LAST LINE NUMBER - INTERNAL
ZERO IF SEQUENTIAL OR EMPTY
DS F MAXIMUM LINE LENGTH
DS F MAXIMUM EXPANDABLE FILE SIZE - PAGES

IF LINE FILE, ALSO THE FOLLOWING

DS F NUMBER OF LINES

DS F NUMBER OF CHUNKS OF AVAILABLE SPACE
DS F TOTAL BYTES - LINES

DS F TOTAL BYTES - AVAILABLE SPACE

DS F MAXIMUM LENGTH OF AVAILABLE SPACE

SHARING INFORMATION DSECT - SOME ACCESS
REQUIRED FOR FIRST PART

DSECT

DS F ARRAY LENGTH - WORDS

DS F RETURN LENGTH - HWORDS .

DS F ACCESS OF THIS USERID/PRJINO/PKEY TO THIS
FILE

1=READ ACCESS ALLOWED
2=WRITE-EXTEND ACCESS ALLOWED
4=WRITE CHANGE/EMPTY ACCESS ALLOWED
8=RENUMBER/TRUNCATE ACCESS ALLOWED
16=DESTROY/RENAME ACCESS ALLOWED
32=PERMIT ACCESS ALLOWED

ADD FOR MULTIPLE ACCESSES

GFINFO 201



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Examples:

202 GFINFO

SIGA
SIOA

w
H
s
=]
=]

O R OH o H O H OO OH RN H

#* o3 I 4

Assembly:

October 1976

PERMIT ACCESS REQUIRED FOR REST

DS F GLOBAL (OTHERS) ACCESS - SEE ABOVE

DS F OWNER ACCESS - SEE ABOVE
128=0WNER HAS DEFAULT ACCESS

DS F POINTER TO VARIABLE-LENGTH SHARING LIST
OR ZERO IF NO SHARING LIST

VARIABLE LENGTH SHARING LIST FORMATTED AS:
1 WORD TOTAL LENGTH (INCLUDING THIS) - WORDS
1 WORD USERID/PRJNO/PKEY ACCESS -SEE ABOVE
1 WORD USERID/PRJNO/PKEY CODE
0=PRJNO, 1=USERID,2=PKEY
3=PRJNO&PKEY, 4=USERID&PKEY

1 WORD USERID/PRJNO LENGTH : 1-4
OR
1 WORD PKEY LENGTH : 1-13

FOLLOWED BY

1 WORD USERID/PRJINO-EBCDIC,LEFT JUSTIFIED
PADDED WITH BLANKS

OR

4 WORDS :

PKEY-EBCDIC,LEFT JUSTIFIED

PADDED WITH BLANKS

THUS YOU GET 4 WORDS (IF USERID/PRJNO)

OR 7 WORDS (IF PKEY)

FOR EACH SHARER (USERID/PRJINO/PKEY)

PERM1TTED ACCESS TO THE FILE.

NOTE THAT FOR CODES 3 AND 4, YOU REALLY GET

4 WOKDS (USERID/PRJNO) FOLLOWED BY

7 WORDS (PKEY).

THE ACCESS AND CODE WORDS WILL BE REPEATED

AND IDENTICAL FOR CODES 3 AND 4.

CATALOG

CSECT

ENTER 12

CALL GUSERID Get signon ID

ST 1,WHAT Store ID in par list

Xc RTN (24) ,RTN Zero return region
AGAIN CALL GFINFO, (WHAT,RTN,FLAG,CINFO,FINFO,

SINFO,ERCODE,ERRNSG)

LTR 15,15 Test return code

BNZ ERROR Error exit

SPRINT RTN,20 Print file name

B AGAIN
ERROR L 2,ERCODE Check error number

C 2,=F'5"! No more files?

BNE REALERR Real error

EXIT O Normal exit

REALERR SERCOM ERRMSG,80 Print error message
CALL ERROR



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

WHAT DS F ID of catalog toc scan
RTN DS 6F Return file name

FLAG DC F'3! Scan catalog flag
CINFO DC 1 Al No catalcg into wanted
FINFO DC F'0! No file intc wanted
SINFO DC EYQ? No sharing into wanted
ERCODE DS F Return error number
ERRMSG DS cL8o0 Return error message

END

The above program calls GFINFO to obtain all of the file

names in the

signon ID's catalog and prints them on

logical I/0 unit SPRINT.

FORTRAN:

10

101
102
103
104

IMPLICIT INTEGER* (A-Z)

DIMENSION RTN (6) ,ERRMSG (20)

DATA RTN/6%0/

COMMON /FI/ FIAL,FIRL,FIFO,FIFLG,FICNS,FITS

COMMON /F1/ FICPS,FIFLN,FILLN,FIMLL,FINE,

COMMON /FI/ FINL,FINH,FILCNT,FIHCNT,FIMHL

FIAL = 16

CALL GFINFO, ('DATAFILE ',RTN,1,0,FIAL,O,
ERCODE,ERRMSG,ERCY)

IF (FIRL.EQ.0) GO TO 10

WRITE(6,101) FICNS

WRITE(6,102) FITS

WRITE (6,103) FICPS

CALL SYSTEM

WRITE (6,104)

CALL ERROR

FORMAT (' CURRENT SIZE 1IN PAGES=',I5)

FORMAT (* SIZE IN PAGES IF TRUNCATED=',I15)

FORMAT (* SIZE IN PAGES IF COPIED="',I15)

FORMAT (' APPROPRIATE ACCESS NOT ALLOWED.')

END

The above program will print the current, truncated, and
copied file size in pages for the file DATAFILE.

GFINFO 203



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

204 GFINFO



October 1976

MTS 3: SYSTEM SUBROUTINE DEECRIPTIONS

GPSECI, QPSECT, FPSECT

SUBKOQUTINE DESCRIPTION

Purpose: To acquire, query, and release psect (dsect) storage
allocations.
Location: Resident System
Calling Sequences:
Assembly: L 0,id
L 1,length
CALL GPSECT
L 0,id
CALL QPSECT
L 0,id
CALL FPSECT

Parameters:

GRO

GR1

A

GR13
GPSECT, QPSECT,

contains an unique fullword identifier for the
psect (i.e., a fixed address within the calling
program could be used as such an identifier).
(GPSECT only) contains the length of the psect
to be allocated.

save area is not required for a call to the
or FPSECT subroutines.

Values Returned:

GR1

GR1

(GPSECT only) contains the address of the
allocated.

psect

(QPSECT
if found,

only) contains the address of the psect
otherwise zero.

Return Codes:

GPSECT:

0 Psect found.

4 Psect not found but allocated.

8 Error return from GETSPACE subroutine.
12 Internal error in GPSECT.

GPSECT, QPSECT, FPSECT 205



UTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

QPSECT:

Psect found.

Psect not found.

Not used.

Internal error in QPSECT.

Moo E O

FPSECT:

Psect released.

Psect not found.

Error return from FREESPAC subroutine.
Internal error in FPSECT.

Mo E o

1

Description: The GPSECT, QPSECT, and FPSECT subroutines are used to
acquire, gquery, and release storage to be used for psects
(dsects) in the calling program. An identifier for the
psect and the length of the psect are specified in id and
length.

The GPSECT subroutine is used to allocate storage fcr the
psect. If a psect with the identifier id already exists,
its address is returned and a new psect is not allocated.

The QPSECT subroutine is used to query the existence of a
psect with +the identifier id. A new psect 1is not
allocated.

The FPSECT subroutine is used to release the stcrage for
the psect with identifier igd.

Example: Assembly: L 0,1D
L 1,LEN
CALL GPSECT

L 0,ID
CALL FPSECT

-

D DC A (ID)
LEN DC F'4096"

The example allocates a psect of 4096 bytes with the
identifier which is an address contained within the
calling program (e.g., the address of ID). The [sect is
then released later in the progran.

206 GPSECT, QPSECT, FPSECT



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

To compute normally distributed random numbers with a
given mean and standard deviation.

*LIBRARY

Calling Sequences:

Description:

Assembly: CALL GRAND1, (init)
CALL GRAND, (sd,amean)

FORTRAN: CALL GRAND1 (init)
X = GRAND (sd,amean)

Parameters:

init 4is the location of the initial integer value
for generating random numbers.

sd is the location of the fullword real (REAL*Y)
standard deviation.

amean is the location of the fullword real (REAL*W4)
mean.

Values Returned:

FRO will contain the normally distributed randonm
number generated by the subroutine. For FORTRAN
calls, this value will be returned in x.

The function subroutine GRAND computes twelve uniformly
distributed random numbers by the power residue method
and, based on the central limit theorem, uses these to
compute a normally distributed random number x .with mean
amean and standard deviation sd. Note that the result is
returned as a function value, not as a parameter.

If, before the first call to GRAND, the user wishes to
specify the initial integer value from which the uniformly
distributed random numbers are generated, he may dc so by
calling GRAND1 with init set equal to an odd integer

between 1 and 231-1 (2147483647). If GRAND1 is not
called, GRAND will supply its own initial value (524287).

GRAND, GRAND1 207



MTS 3: SYSTEM SUBROUTINE DESCEKIPTIONS

Examples: Assembly:

FORTRAN :

In both
value of
100.0.

208 GRAND, GRAND1

999,

CALL GRAND1, (INTEG)
CALL GRAND, (STDEV,MEAN)

STE

INTEG DC
STDEV DC
MEAN DC
RAND DS

I=999

0,RAND

F1999:1
E*10.0"
E'100.0"
E

CALL GRAND1 (I)
X=GRAND (10.0,100.0)

examples

above,

October 1976

GRAND is called with an initial

a standard deviation of 10.0, and a mean of



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

GRGJULDT, GRGJULTM, GRJILSEC

SUBROUTINE DESCRIPTION

To convert the Gregorian date (MM/DD/YY) or time (MM/DD/
YYhh:mm:ss) to the corresponding Julian date or tinme
(based on March 1, 1900).

Resident System

Calling Sequences:

Description:

Assembly: LM 0,1,grgdat
CALL GRGJULDT

LM 0,3,grgtim
CALL GRGJULTH

LM 0,3,grgtim
CALL GRJLSEC

Parameters:

grgdat is the Gregorian date in the character form
"MMxDDxYY", where "x" is any character.

grgtim is the Gregorian date and time in the charac-
ter form "MMxDDxYYhhxmmxss", where "x" is any
character.

Values Returned:

GRO contains the integer number of days through the
given date starting with March 1, 1900 as "1".

GR1 contains the integer number of minutes through
the given time starting with March 1, 1900, at 00:01
as "1" for GRGJULDT and GRGJULTM. For GRGJULDT, the
time is assumed to be 00:00:00. GR1 contains the
number of seconds through the given time starting
with March 1, 1900, at 00:00:01 as "1" for GRJLSEC.

The range of years is assumed to be 1900-1999. If the
number of seconds passed to GRGJULTM is greater than or
equal to 30, the result in GR1 is rounded up to the next
minute. If the time is greater than 03/19/68 03:14:07 for
GRJLSEC, the result requires 32 bits. The results for
dates prior to 03/01/00 are undefined.

See GRJLDT, GRJLTM for S-type (e.g., FORTRAN and PL/I)
interfaces.

GRGJULDT, GRGJULTM, GRJLSEC 209



MTS 3:

Julian date and time 25999 and 37438110,

Examples: Assembly: LM
ST
DATE DS
The
date May 18, 1971
26011.
LM
ST
ST
DATE DS
TIME DS
The
date and time day 6,
210 GRGJULDT, GRGJULTM, GRJLSEC

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

0,1,=C'05/18/71!

CALL GRGJULDT

0,DATE

F

above example calls GRGJULDT to convert the Gregorian
into

its corresponding Julian date

0,3,=C'05-06-7116:30:17"

CALL GRGJULTH

0,DATE
1,TIME

F
F

above example calls GRGJULTM to convert the Gregorian

1971, 16:30:17 into its corresponding

respectively.



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

S-type (e.g., FORTRAN and PL/I) interfaces for GRGJULDT
and GRGJULTHM.

*LIBRARY

Calling Sequences:

Description:

FORTRAN: INTEGER*U4 GRJLDT
juldat=GRJILDT (grgdat)

INTEGER*U4 GRJILTM
jultim=GRJLTM (grgtim)

PL/I: DCL PLCALLF RETURNS (FIXED BINARY (31)):
juldat=PLCALLF (GRJLDT,£1,grgdat) ;

DCL PLCALLF RETURNS (FIXED BINARY (31)) ;
jultim=PLCALLF (GRJLTM,f1,grgtim) ;

Parameters:

grgdat is the 8-byte (REAL*8 or CHARACTER(8)) Gre-
gorian date in the character form "MMxDDxYY",
where "x" is any character.

grgtim is the 16-byte (REAL*8(2) or CHARACTER(16))
Gregorian date and time in the character form

"MMxDDxYYhhxmmxss", where nyn is any
character.
£1 is a fullword (FIXED BINARY(31)) «containing

the integer 1.

Values Returned:

GRO contains the integer number of days through the
given date starting with March 1, 1900, as "1 for
calls on GRJLDT.

GRO contains the integer number of minutes through
the given time starting with March 1, 1900, at 00:01
as "1" for calls on GRJLTH.

The Gregorian date or time in character form is passed to
GRGJULDT or GRGJULTM, respectively, and is converted to
the corresponding Julian date or time. The range of years
is assumed to be 1900-1999. If the number of seconds
passed to GRJLTM is greater than or equal to 30, the time

GRJLDT, GRJLTM 211



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Examples:

212 GRJLDT,

October 1976

is rounded up to the next minute. The results for dates
prior to 03/01/00 are undefined.

FORTRAN: INTEGER*4 GRJILDT
REAL*8 DATE
JULIAN=GRJLDT (DATE)

The above example calls GRJLDT to convert the Gregorian
date in the variable DATE into its corresponding Julian
date.

INTEGER*U4 GRJLTH
REAL*8 TIME (2)
JULIAN=GRJLTHM (TIME)

The above example calls GRJLTM to convert the Gregorian
date and time in the array TIME into its corresponding
Julian date and time.

PL/I: JULIAN=PLCALLF (GRJLDT,F1,DATE) ;
DECLARE JULIAN FIXED BINARY (31),
PLCALLF RETURNS (FIXED BINARY (31)),
GRJLDT ENTRY,
F1 FIXED BINARY (31) INITIAL (1),
DATE CHARACTER (8) INITIAL ('05-18-71");

The above example calls GRJLDT to convert the Gregorian
date May 18, 1971 into its corresponding Julian date
26011.

JULIAN=PLCALLF (GRJLTH, F1,TIME) ;

DECLARE JULIAN FIXED BINARY (31),
PLCALLF RETURNS (FIXED BINARY (31)),
GRJLTM ENTRY,
F1 FIXED BINARY (31) INITIAL(1),
TIME CHARACTER (16) ;

The above example calls GRJLTM to convert the Gregor@an
date and time in the variable TIME into its corresponding
Julian date and time.

GRJLTH



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

Purpose: To convert the Gregorian date (MM/DD/YY) to the corre-
sponding 0S date (¥YYddd).

Location: *LIBRARY

Calling Sequences:

Assembly: CALL GROSDT, (grgdat,osdat)

FORTRAN: CALL GROSDT(grgdat,osdat)

REAL*8 GROSDT
date=GROSDT (grgdat,osdat)

PL/I: CALL PLCALL (GROSDT,f2,grgdat,osdat) ;

DCL PLCALLD RETURNS (FLOAT (16)) ;
date=PLCALLD (GROSDT,f2,grgdat,osdat) ;

Parameters:

grgdat

_—= ==

is the B8-byte (REAL*8 or CHARACTER(8)) Gre-
gorian date in the character form "MMxDDxYY",
where "x" is any character.

is 8 bytes (REAL*8 or CHARACTER(8)) dinto
which the 0S date, in the character form
"YYddd" with three leading blanks, is placed
on return.

is a fullword (FIXED BINARY(31)) containing
the integer 2.

Values Returned:

FRO contains the 0S date in the character form
"YYddd" with three leading blanks.

Description: The range of years is assumed to include 1900. The result
for dates prior to 03/01/00 is undefined.

GROSDT 213



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

Examples: Assembly: CALL GROSDT, (GRDAT,OSDAT)

GRDAT DC cr'05-18-71"
OSDAT DS 0D,CL8

CALL GROSDT, (GRDAT,DUMMY)
STD 0,0SDAT

GRDAT DC c'o5-18-71"
DUMMY DS CL8
OSDAT DS CL8

The above two examples call GROSDT to convert the Gre-
gorian date May 18, 1971 into the corresponding O0S date
71138. The result is stored in location OSDAT.

FORTRAN: REAL*8 GRDAT,OSDAT
CALL GROSDT (GRDAT,OSDAT)

REAL*8 OSDAT,GROSDT,GRDAT,DUMMY
OSDAT=GROSDT (GRDAT, DUHMY)

The above two examples call GROSDT to convert the Gre-
gorian date in the variable GRDAT into the corresponding

0S date 71138. The result 1is stored in the variable
OSDAT.
PL/I1: CALL PLCALL (GROSDT,F2,'05-18-71"',0SDAT) ;

DECLARE GROSDT ENTRY,
OSDAT CHARACTER (8) ;
F2 FIXED BINARY (31) INITIAL(2),

UNSPEC (OSDAT)=UNSPEC (PLCALLD (GROSDT,F2,GRDAT,
DUMMY)) ;

DECLARE OSDAT CHARACTER(8),
GROSDT ENTRY,
PLCALLD RETURNS (FLOAT (16)),
F2 FIXED BINARY (31) INITIAL(2),
GRDAT CHARACTER(8) INITIAL('05-18-71'),
DUMMY CHARACTER (8) ;

The above two examples call GROSDT to convert the Gre-

gorian date w#ay 18, 1971 into the corresponding 0S date
71138. The result is stored in the variable OSDAT.

214 GROSDT



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

GTDJMS

SUBROUTINE DESCRIPTION

Purpose: S-type (e.g., FORTRAN and PL/I) interface for GTDJMSR.

Location: *LIBRARY

Calling Sequences:
FORTRAN: CALL GTDJMS (grgtim,jms)
PL/I: CALL PLCALL (GTDJMS,f2,grgtim,jms) ;
Parameters:

grgtim is the 16-byte (REAL*8(2) or CHARACTER (16))
Gregorian time and date in the character form

"hhxmmxssMMxDDxYY", where nxn is any
character.

£f2 is a fullword (FIXED BINARY (31)) containing
the integer 2.

ims is an B8-byte integer (INTEGER*4 (2) or BIT(

64)) containing the integer number of micro-
seconds through the given time and date
starting with March 1, 1900.

Description: The Gregorian time and date in character form is passed to
GTDJMSR and is converted to the corresponding Julian time.
The range of years is assumed to be 1900-1999. The
results for dates prior to March 1, 1900 are undefined.

Examples: FORTRAN: INTEGER*4 JULIAN (2)
REAL*8 TINE (2)
DATA TIME/'17:59.33!','03-21-73"/

CALL GTDJMS (TIME,JULIAN)

PL/I: DECLARE JULIAN BIT (64),
GTDJMS ENTRY,
F2 FIXED BINARY (31) INITIAL(2),
TIME CHARACTER (16)
INITIAL('17:59.3303-21-73");
CALL PLCALL (GTDJMS,F2,TIME,JULIAN);

The above two examples call GTDJMS to convert the Gre-

gorian time and date 17:59.33 March 21, 1973 into the
corresponding Julian time 000830D174704C60 (hex).

GTDJMS 215



MTS 5: SYSTEM SUBROUTINE DESCEIPTIONS

October 1976

216 GTDJMS



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

GIDJMSR

SUBROUTINE DESCRIPTION

To convert the Gregorian time and date (MM-DD-YY,hh:mm.ss)
into Julian microseconds (number of microseconds since
March 1, 1900) .

*LIBRARY

Calling Sequences:

Description:

Example:

Assembly: LHM 0,3,grgtim
CALL GTDJMSR

Parameter:

grgtim is the Gregorian time and date in the charac-
ter form "hhxmmxssMMxDDxYY", where "x" is any
character.

Value Returned:

GRO and GR1 contain the (B-byte) integer number of
microseconds through the given time starting with
March 1, 1900.

The range of years 1is assumed to be 1900-1999. The
results for dates prior to March 1, 1900 are undefined.

See GTDJMS for S-type (e.g., FORTRAN and PL/I) interfaces.

Assembly: LM 0,3,GRGDT
CALL GTDJMSE
STM 0,1,JH4S

GRGDT DC  C'17:59.3303-21-73"
Jus DS  2F

The above example calls GTDJMSR to convert the Gregorian

time and date 17:59.33 March 21, 1973 into the correspond-
ing Julian time 000830D174704C60 (hex) .

GIDJMSR 217



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

218 GTDJMSR



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

GUINFO, CUINFO

SUBROUTINE DESCRIPTION

Purpose: To allow the user to obtain information about his status

and his task (GUINFO) and to change some of the informa-
tion items (CUINFO).

Location: Resident System
Calling Sequences:
Assembly: CALL GUINFO, (item,loc)
CALL CUINFO, (item,loc)
FORTRAN: CALL GUINFO (item,loc,&rcld,Erc8)

CALL CUINFO (item,loc,&rcld,&rc8,86rc12)

Parameters:

item is the location of either
(a) a fullword integer index number, or
(b) an B-character name of the item left-

justified with trailing blanks.

This specifies what item is to be obtained or
changed.

loc is the location of the region in which to place
the information obtained (for GUINFO) or to
obtain the replacement information from (for
CUINFO) . The size of the region depends upon
the type of the iten.

Return Codes:

0 Successful return.

4 Error return. Item number too large.

8 Error return. Item name not in the list.
12 Error return. Illegal to change item (CUINFO

only) .
16 Error return. Illegal parameter address.

Description: The names given in the table below correspond to items of
information from the system. All of these items «can be
obtained by GUINFO, but only a subset of these items can
be changed by CUINFO. Each item may be referred to by its
name or by its index number. The type of each item is the
internal format in which it is kept in the systen. The
length of each item is the size of the region needed to

GUINFO, CUINFO 219



MIS 3
Examples:
220 GUINFO,

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

store the item (GUINFO) or fetch the new value of the item
(CUINFO). The 1lengths corresponding to the different
types are given below.

The items which may changed by CUINFO are indicated by an
asterisk next to their item index number.

Types and Lengths of Items

Internal Type Length Returned
Bit 4 Bytes (INTEGER*4) value of 0 or 1
Byte 4 Bytes (REAL*Y4) left-justified with
3 trailing blanks.
Halfword 4 Bytes (INTEGER*4)
Fullword 4 Bytes (INTEGER¥*U)
Dblword 8 Bytes (REAL*8)
8 Bytes 8 Bytes
4 Words 16 Bytes
6 Words 24 Bytes
Assembly: CALL GUINFO, (GITEM,GLOC)
CLC GLOC,=F'0'!
BNE BATCH
CALL CUINFO, (CITEM,CLOC)
GITEM DC CL8'BATCHMD!
GLOC DS F
CITENM DC CL8'PREFIXC'
CcLoC DC CLYy'%"
FORTRAN: INTEGER*4 GLOC,CLOC

DATA CLOC/'% v/

CALL GUINFO('BATCHMD ',GLOC)
IF (GLOC.EQ.1) GO TO 10

CALL CUINFO('PREFIXC ',CLOC)

The above two examples call GUINFO to determine whether
the job is running in batch or conversational mode. If
the job is conversational, the prefix character is set to
% by calling CUINFO. This could also be accomplished by
calling the CANREPLY and SETPFX subroutines.

CUINFO



October 1976

11%
12
15%

16
17*

19%*

20
2%

22
23%

24
25
26
27%
28
29
30

31
32

33%
35%

36
37*

LN

w

SIGNONID
PREFIXC
S8NBR
FILECHAR

STORUSED
SCRFCHAR

CURRSTOR
CONTCHAR

BATCHMD
ICFBIT
LOCsSW
ATNBIT

PROJNO
UCBIT
MAXDISK
NXTSEGSW

MAXTERM
PRNTCDSW

MAXMONY
OFFBIT

CURRDISK
PLOTTIME
CUMELTM
DUMPTYPE
CUMCPUTH
CUMREAD
CUMCORE

NRREAD
CUMMONY

LDROPT
SHFSEP

NRDISKF
RF

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Table of Items_Arranged_by_Index

Iype
Byte

Fullword
Byte
Dblword
Byte

Fullword
Byte

Fullword
Byte

Bit
Bit
Bit
Bit
Fullword
Bit
Halfword
Bit
Fullword
Bit
Fullword
Bit

Halfword
Fullword
Fullword
Fullword
Fullword
Fullword
Fullword

Fullword
Fullword

Byte
Byte

Halfword
Fullword

line number separator character (default is
m,") ($SET LNS=c)

Current signon ID

Current prefix character as set by SETPFX
S8-number of job in characters (batch only)
File name character (default is "#") ($SET
FILECHAR=C)

CPU storage integral to STORCPUT!
Scratch file character (default is "-W)
SCRFCHAR=C)

Current number of half-pages of VM storage

MTS command continuation character (default is
"-1) ($SET CONTCHAR=c)

Batch (1) or conversational (0)
1 -> $SET IC=0FF (default is ON)
1 -> local time estimate active
1 -> Attention interrupt occurred but nct taken
(nay be set to cause an attention interrupt)
Project (charge) number in characters

1 -> $SET CASE=UC (default is LC)

Maximum number of disk pages allowed for ID

1 -> Skip to next set of command cards (batch
only) (may be set to skip unread data cards)
Maximum terminal time allowed for ID (seconds)
1 -> Print next input line from source if not
MTS command (batch only)

Maximum charge allowed for ID (cents*100)

1 -> sign off when next MTS command is read
(same as QUIT subroutine)

Number of pages of disk space in current use
Total plot time for current job (seconds)

($SET

mode

Cum. terminal time for ID (seconds) (excluding
active jobs)

$SET ERRORDUMP= {OFF|ON|FULL} (01112) (default
OFF)

Cum. CPU time for ID (milliseconds) (excluding

active jobs)

Cum. number of cards read for ID (excluding
active jobs)

Cum. storage integral over CPU time for ID

(excluding active jobs)2

Number of cards read for current job
Cum. charge used for ID (cents*100)

active jobs)

Loader options switcht©

Shared-file separator character (default is
":") ($SET SHFSEP=cC)

Number of disk files existing for ID

$SET RF=xxxxxx (default is 0)

(excluding

GUINFO, CUINFO 221



MTS 3:

38
39%
40

4%

43%
4y

45%
46

47%*
48

49*
51%

54
55%*
56
57%*
58
59%
60
6 1%

62
63
64
65
66
67

69*
70
T1*
72
73%
T4
75%
76
T7*
78

79

SYSTEM SUBROUTINE

NRSIGS
DEVCHAR
NRBATCH

NUMBER
CUMLINES

LIBROFF
CUMPAGES

AFDECHO
CUMPUNCH

SYMTAB
STORUSEE
ECHOOFF
ATTNOFF

EXPTIME
SIGSHORT
SOBCDTH
PFXOFF
STORCPUT
SEQCOFF
NRCREATE
PGNTTRP

NRDESTRY
NRLINES
SOCPUTP
NRPAGES
SOCPUTIC
NRPUNCH
SOELT
ATTNTRP

STORELT
AFDNBR
SOPTOD
AFDINC
ANSBACK
SETIOERR
CUMDISK
ENDFILSW
GLOBCPUT

NRMOUNT

Halfword
Byte
Halfword

Bit
Fullword

Bit
Fullword

Bit
Fullword

Bit
Fullword
Bit
Bit

Fullword
Fullword
4 Words
Bit
Fullword
Bit
Halfword
Dblword

Halfword
Fullword
Fullword
Fullword
Fullword
Fullword
Dblword

Dblword

Fullword
Fullword
4 Words

Fullword
6 Words

Fullword
Fullword
Fullword
Fullword

Fullword

222 GUINFO, CUINFO

DESCRIPTIONS

October 1976

Cum. number of signons for ID (excluding active

jobs)
Device name character (default is ">") ($SET
DEVCHAR=c)

Cum. number of batch jobs for ID (excluding
active jobs)

1 -> Automatic numbering active ($NUMBER)

Cum. number of lines printed for ID (excluding
active jobs)

1 -> $SET LIBR=0FF (default is ON)

Cum. number of pages printed for ID (excluding
active 7jobs)

1 -> $SET AFDECHO=0ON (default is OFF)

Cum. number of cards punched for ID (excluding
active jobs)

1 -> $SET SYMTAB=ON (default is ON)

Elapsed storage integral to STORELT?

1 -> $SET ECHO=0FF (default is ON)

1 -> Stack attention interrupts (may be set to
inhibit attention interrupts; pending interrupt
may be taken on call to system subroutine)

ID expiration time and date3

$SIG {LONG|SHORT|$} (0]1112) (default is LONG)
Sign-on time and date in characters

1 -> $SET PFX=0FF (default is ON)

Current base for CPU storage integral¢*

1 -> $SET SEQFCHK=0FF (default is ON)

Number of files created during current job
PGNTTRP exit subroutine address (1st word) and
save area location (2nd word)

Number of files destroyed during current job
Number of lines printed for current job
Problem state CPU time at signons

Number of pages printed for current job
Supervisor state CPU time at signon$

Number of cards punched for current job

Time of day at signon®

ATTNTRP exit subroutine address (1st word) and
save area location (2nd word)

Current base for elapsed storage integral#
Next line number for *AFD* ($NUMBER)

Time and date for header page for batch cutput
(characters)

Line number increment for *AFD* ($NUMBER)
Answerback code (characters)

SETIOERR exit subroutine address

Cum. disk file storage integral to DISKTIME
which has been charged for (page hours)

$SET ENDFILE={NEVER|OFF|ON} (0[1]2) (default
OFF)

CPU time remaining in global time limit (from
GLOBTTN) S

Number of tape and other mounts for current job



October 1976

89*

90
91

92
93*

94
95

96

98
100
102
104
106
108
110
112
114
116

118
122

124
126

128
130
134
136
138
144
146

148

GLOBPGS
TDRVT
GLOBPCH
PTLEN
GLOBPTHM
TDR
LOCCPUT

MNETTIME
LOCPGS
CROUTE

LOCPCH
PROUTE

LOCPTHM
PRINT

GLOBTTN
SCOPIES

LOCTTN
TASKNBR
TASKTYPE
BTCHMORE
HASPJOB
MAXCELL
MAXPLOT
LSTRESET
DISKTIME
CELLTIME
CURRCELL

CUMCOREW
CUMPLOT

NRCELLF
CUMCELL

COPIES

LINKLEVL
STORINDX
MXSTRIND
LODRSYMT
SCRFNAME
SCRFDISK

SCRFCELL

Fullword
Fullword
Fullword
Fullword
Fullword
Bit

Fullword

Fullword
Fullword
Fullword

Fullword
Fullword

Fullword
Halfword

Fullword
Fullword

Fullword
Halfword
Halfword
Bit

Bit

Halfword
Fullword
Fullword
Fullword
Fullword
Halfword

Fullword
Fullword

Fullword
Fullword

Fullword
Fullword
Fullword
Fullword
Fullword
Dblword

Halfword

Halfword

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Global page estimate

Tape drive time for current job (seconds)
Global card estimate

Paper tape punched for current job (inches)
Global plot time estimate (seconds)

1 -> $SET TDR=0ON (default is OFF)

CPU time remaining in local time limit (from
LOCTTN) S

Outbound MERIT time for this job (seconds)
Local page estimate

Default batch station for punched output (char-
acters) (3SET CROUTE=rmid)

Local card estimate

Default batch station for printed output (char-
acters) ($SET PROUTE=rmid)

Local plot time estimate (seconds)

Print train specification (PN, TN, or kbinary 0
is first byte if ANY)

Base for global time limits

Number of copies of printed output requested on
$SET COPIES=n command

Base for local time limits

Task (job) number

Task type code?®

1 -> MORE specified on non-HASP batch job

1 -> HASP batch job

Maximum datacell pages allowed for ID

Maximum plot time allowed for ID (seconds)

lLast time cum. totals for this ID were reset?
Last time disk storage integral updated?

last time datacell storage integral updated3
Number of pages of datacell files in current
use

Cum. storage integral over wait time for this
ID (excluding active jobs)?2
Cum. plot time for ID (seconds)
active jobs)

Number of datacell files existing for ID

Cum. datacell file storage integral to CELLTIME
which has been charged for (page hours)

Number of copies of printed output requested on
$SIGNON command (batch)

Current link level (see MTS Vol.
Memory Management description)
Current storage index number (See MTS Vel. 5
Virtual Memory Management description)

Maximum storage index number used (See MTS Vol.
5 Virtual Memory Management description)
Loader symbol table location

Internal scratch file prefix

Number of pages of disk scratch files for cur-
rent job

Number of pages of datacell scratch files for

(excluding

5 Virtual

GUINFO, CUINFO 223



MTS 3:

SYSTEM SUBROUTINE DESCRIPTIONS

150 SODRMRDS Fullword
152 LASTSOT 4 Words
154 CUMMOUNT Fullword
156 CUMTDRVT Fullword
158 CUMPTLEN Fullword
160 BILLCLAS Halfword
162 SCRDSKTM Fullword
164 SCRCELTM Fullword
166 SCRDSUSE Fullword
167* SIGFATTN Bit

168 SCRCLUSE Fullword
169% TERSE Bit

170 CUDRMRDS Halfword
171% $ON Bit

172 CLSID Halfword
173% CREAFD Bit

174 PCLSID Halfword
175% EDITAFD Bit

176 DEBUGCMD Bit

177% USMSG Bit

178 DEBUG Bit

179% AUTOHOLD Bit

180 LSS Bit

181% TRIMBIT Bit

182 MAXSIG Halfword
183% EFLUEHNM Dblword
184 CURSIG Halfword
185% CMDSKP Bit

186 UNCHDISK Fullword
187% PRMAPOFF Bit

188 UNCHCELL Fullword
189*% PDMAPOFF Bit

190 MAXMNET Fullword
191*% UXREF Bit

192 CUMMNET Fullword
193% XREF Bit

194 MXMNETBT Bit

195% NO*LIB Bit

196 MXPLOTBT Bit

197% MAPDOTS Bit

198 RATENBR Fullword
199% NOERRMAP Bit

226 INSIGFIL Bit

224 GUINFO, CUINFO

October 1976

current job

Number of drum reads at signon

Last signon time in characters

Cum. number of tape mounts for ID (excluding
active 7jobs)

Cum. tape drive time for ID
ing active jobs)

Cum. paper tape punched for
(excluding active jobs)
Billing class (0O=University
Last time scratch disk file
updateds

last time scratch datacell file storage integr-
al updated3

Scratch disk file storage integral to SCRDSKTM7?
1 -> $SET SIGFILEATTN=0FF (default is CN)
Scratch datacell file storage integral tc
SCRCELTHN?

1 -> $SET TERSE=0ON (default is OFF)

Current number of drum reads for current job

1 -> $SET $=0N (default is OFF)

Code for CLS currently in control®

1 -> $SET CREAFD=0N (default is ON)

for CLS that called current CLS®

$SET EDITAFD=ON (default is ON)

if $DEBUG command active

$SET USMSG=0ON (default is ON)

$SET DEBUG=ON (default is OFF)

$SET AUTOHOLD=0ON (default is OFF)

1f limited service state active

$SET TRIM=0ON (default is ON)

number of concurrent signons allowed for

(seconds) (exclud-

ID (inches)

1=Industrial)
storage integral

Max.
1D
Elementary Function Library user error mcnitor
address

Number of times this ID currently signed on

1 => $SET CHMDSKIP=0ON (default is OFF)

Disk space to DISKTIME not yet charged for?

1 -> $SET PRMAP=0OFF (default is ON)

Datacell space to CELLTIME not yet charged for?
1 -> $SET PDMAP=0OFF (default is ON)

Maximum outbound MERIT time (seconds)

1 -> $SET UXREF=0N (default is OFF)

Cum. outbound MERIT for this ID excluding
active jobs (seconds)

1 -> $SET XREF=0N (default is OFF)

1 -> Ignore maximum MNET time (item 190)

1 => $SET *LIBRARY=OFF (default is ON)

1 -> Ignore maximum plot time (item 108)

1 -> $SET MAPDOTS=0ON (default is ON)

Number determining rate set in use

1 -> $SET ERRMAP=0FF (default is ON)

1 -> currently processing sigfile



October 1976

227
228

229
230
231%
232

233%
234

236
237*
238
239

240
242

PLOTPAPR
TOFFSET

PLOTPENC
TIMEFDGE
SPELLCOR
CUMPLPAP

NOSDS
CUMPLPEN

PKEY
RCPRINT
RUNONLY
LASTEXEC

SYSOLOAD
PRIO

Fullword
8 Byte

Fullword
8 Byte

Fullword
Fullword

Bit
Fullword

4 Words
Byte
Bit
Fullword

Byte
Byte

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Plotter paper used for current job (.01 inches)
Offset (microseconds times 4096) to be added to
GMT to get local time

Plotter pen changes for current job

Value (microseconds times 4096) to be added to
IBM time (as stored by a STCK instruction) to
get time based on March 1, 1900

$SET SPELLCOR= {OFF|PROMPT|ON} (0]31]11)
is PROMPT)

Cum. plotter paper used for ID (.01 inches)
(excluding active jobs)

1 -> $SET SDSHSG=0FF (default is ON)

Cum. plot pen changes for ID (excluding active
jobs)

Program key under which calling program is
running

$SET RCPRINT= {NEVER|POS|NONNEG| ALWAYS}
(0111213)

1 -> a "run only" program is loaded (from a
file to which the user has no access)

Return code of last program executed.

System overload indicatorsit

Priority of jobtz

(default

GUINFO, CUINFO 225



MTS 3:

15%

5%

6 9%
179%
160
102
114
172
185%
Qo
128

173%*
89%

170
126

30
118
28
76
26
42
192
32
154
by

122

226

SYSTEM SUBROUTINE DESCRIPTIONS

Name Type
AFDECHO Bit
AFDINC Fullword
AFDNBR Fullword
ANSBACK 6 Words
ATNBIT Bit
ATTNOFF Bit
ATTNTRP Dblword
AUTOHOLD Bit
BATCHMD Bit
BILLCLAS Halfword
BTCHMORE Bit
CELLTIME Fullword
CLSID Halfword
CHMDSKP Bit
CONTCHAR Byte
COPIES Fullword
CREAFD Bit
CROUTE Fullword
CUDRMRDS Halfword
CUMCELL Fullword
CUMCORE Fullword
CUMCOREW Fullword
CUMCPUTM Fullword
CUMDISK Fullword
CUMELTM Fullword
CUMLINES Fullword
CUMMNET Fullword
CUMMONY Fullword
CUMMOUNT Fullword
CUMPAGES Fullword
CUMPLOT Fullword

GUINFO, CUINFO

October 1976

1 -> $SET AFDECHO=0ON (default is OFF)

Line number increment for *AFD* ($NUMBER)

Next line number for *AFD* ($NUMBER)

Answer back code (characters)

1 -> Attention interrupt occurred but not taken
(nay be set to cause an attention interrupt)

1 -> Stack attention interrupts (may be set to
inhibit attention interrupts; pending interrupt
may be taken on call to system subroutine)
ATTNTRP exit subroutine address (1st word) and
save area location (2nd word)

1 -> $SET AUTOHOLD=ON (default is OFF)

Batch (1) or conversational (0) mode

Billing class (0=University 1=Industrial)

1 -> MORE specified on non-HASP batch job

last time datacell storage integral updated?
Code for CLS currently in control?

1 -> $SET CMDSKIP=0ON (default is OFF)

MTS command continuation character (default is
-") ($SET CONTCHAR=c)

Number of copies of printed output requested on
$SIGNON command (batch)

1 -> $SET CREAFD=0ON (default is ON)

Default batch station for punched output (char-
acters) ($SET CROUTE=rmid)

Current number of drum reads for current job
Cum. datacell file storage integral to CELLTIME
which has been charged for (page hours)

Cum. storage integral over CPU time for ID
(excluding active jobs)?2

Cum. storage integral over wait time for this
ID (excluding active jobs) 2

Cum. CPU time for ID (milliseconds)
active jobs)

Cum. disk file storage integral to DISKTIME
which has been charged for (page hours)

Cum. terminal time for ID (seconds) (excluding
active jobs)

Cum. number of lines printed for ID (excluding
active jobs)

Cum. outbound MERIT for this ID excluding
active jobs (seconds)

Cum. charge used for ID (cents*100)
active jobs)

Cum. number of tape mounts for ID (excluding
active jobs)

Cum. number of pages printed for ID (excluding
active jobs)

Cum. plot time for ID (seconds)

(excluding

(excluding

(excluding



October 1976

232
234

158
46

29
156
116

24

184

178

176
39%*

112
27*

49*
175%
183%

17%*

54
5%

78

82
80

94
104
11%
226
239
152
33%
43%*
130

1%
86

90

CUMPLPAP
CUMPLPEN

CUMPTLEN
CUMPUNCH

CUMREAD
CUMTDRVT
CURRCELL

CURRDISK
CURRSTOR
CURSIG
DEBUG
DEBUGCHMD
DEVCHAR

DISKTIME
DUMPTYPE

ECHOOFF
EDITAFD
EFLUEM

ENDFILSW

EXPTIME
FILECHAR

GLOBCPUT

GLOBPCH
GLOBPGS
GLOBPTHM
GLOBTTN
HASPJOB
ICFBIT
INSIGFIL
LASTEXEC
LASTSOT
LDROPT
LIBROFF
LINKLEVL

LNS
LOCCPUT

LOCPCH

Fullword
Fullword

Fullword
Fullword

Fullword
Fullword
Halfword

Halfword
Fullword
Halfword
Bit

Bit

Byte

Fullword
Fullword

Bit
Bit
Dblword

Fullword

Fullword
Byte

Fullword

Fullword
Fullword
Fullword
Fullword
Bit
Bit
Bit
Fullword
4 Words
Byte
Bit
Fullword

Byte
Fullword

Fullword

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

active jobs)

Cum. plotter paper used for ID (.01 inches)
(excluding active jobs)

Cum. plot pen changes for ID (excluding active
jobs)

Cum. paper tape punched for ID (inches

Cum. number of cards punched for ID (excluding
active jobs)

Cum. number of cards read for ID (excluding
active jobs)

Cum. tape drive time for ID (seconds)
ing active jobs)

Number of pages of datacell files in current
use

Number of pages of disk space in current use
Current number of half-pages of VM storage
Number of times this ID currently signed on
1 -> $SET DEBUG=ON (default is OFF)

1 -> if $DEBUG command active

Device name character (default is ">")
DEVCHAR=C)

last time disk storage integral updated3

$SET ERRORDUMP={OFF |ON|FULL} (0|1|2) (default
OFF)

1 -> $SET ECHO=0FF (default is ON)

1 -> $SET EDITAFD=0ON (default is ON)
Elementary Function Library user error mcnitor
address

(exclud-

($SET

$SET ENDFILE= {NEVER|OFF|ON} (0|1]2) (default
OFF)

ID expiration time and date?3

File name character (default is "#") ($SET

FILECHAR=C)

CPU time remaining in global time limit (from
GLOBTTN) S

Global card estimate

Global page estimate

Global plot time estimate (seconds)

Base for global time limitS

1 -> HASP batch job

1 -> $SET IC=0FF (default is ON)

1 -> currently processing sigfile

Return code of last program executed.

Last signon time in characters

loader options switchl?©

1 -> $SET LIBR=OFF (default is ON)

Current link level (see MTS Vol. 5 Virtual
Memory Management description)

line rnumber separator character (default is
n,u) ($SET LNS=c)

CPU time remaining in local time limit (from
LOCTTN) S

local card estimate

GUINFO, CUINFO 227



MTS 3:

SYSTEM SUBROUTINE

88 LOCPGS Fullword
92 LOCPTHM Fullword
12 LOCSWH Bit
96 LOCTTN Fullword
138 LODRSYMT Fullword
180 LSS Bit
110 LSTRESET Fullword
197* MAPDOTS Bit
106 MAXCELL Halfword
18 MAXDISK Halfword
190 MAXMNET Fullword
22 MAXMONY Fullword
108 MAXPLOT Fullword
182 MAXSIG Halfword
20 MAXTERM Fullword
87 MNETTIME Fullword
194 MXMNETBT EBit
196 MXPLOTIBT Bit
136 MXSTRIND Fullword
199% NOERRMAP Bit
233*% NOSDS Bit
195*% NO*LIB Bit
40 NRBATCH Halfword
124 NRCELLF Fullword
60 NRCREATE Halfword
62 NRDESTRY Halfword
36 NRDISKF Halfword
63 NRLINES Fullword
79 NRMOUNT Fullword
65 NRPAGES Fullword
67 NRPUNCH Fullword
31 NRREAD Fullword
38 NRSIGS Halfword
41% NUMBER Bit
19% NXTSEGSW Bit
23% OFFBIT Bit
174 PCLSID Halfword
189% PDMAPOFF Bit
57% PFXOFF Bit
61% PGNTTRP Dblword
236 PKEY 4 Bytes
227 PLOTPAPR Fullword
229 PLOTPENC Fullword
25 PLOTTIME Fullword
3% PREFIXC Byte
228 GUINFO, CUINFO

DESCKIPTIONS

October 1976

Local page estimate

Local plot time estimate (seconds)

1 -> lLocal time estimate active

Base for local time limit$s

Loader symbol table location

1 -> if limited service state active

last time cum. totals for this ID were reset3
1 -> $SET MAPDOTS=0N (default is ON)

Maximum datacelil pages allowed for ID

Maximum number of disk pages allowed for ID
Maximum outbound MERIT time (seconds)

Maximum charge allowed for ID (cents*100)
Maximum plot time allowed for ID (seconds)

Max. number of concurrent signons allowed for
ID

Maximum terminal time allowed for ID (seconds)

Outbound MERIT time for this job (seconds)

1 -> 1gnore maximum MNET time (item 190)

1 -> Ignore maximum plot time (item 108)
Maximum storage index number used (See MTIS Vol.
5 Virtual Memory Management description)

1 -> $SET ERRMAP=0FF (default is ON)

1 -> $SET SDSMSG=0OFF (default is ON)

1 -> $SET *LIBRARY=0FF (default is ON)

Cum. number of batch jobs for ID (excluding
active jobs)

Number of datacell files existing for ID
Number of files created during current job
Number of files destroyed during current job

Number of disk files existing for ID

Number of lines printed for current jot

Number of tape and other mounts for current job
Number of pages printed for current jokt

Number of cards punched for current job

Number of cards read for current job

Cum. number of signons for ID (excluding active
jobs)

1 -> Automatic numbering active ($JNUMBER)

1 -> Skip to next set of command cards (batch

only) (may be set to skip unread data cards)

1 -> Sign off when next MTS command is read
(same as QUIT subroutine)

Code for CLS that called current CLS?

1 -> $SET PDMAP=0OFF (default is ON)

1 => $SET PFX=0FF (default is ON)

PGNTTRP exit subroutine address (1st word) and
save area location (2nd word)

Program key under which the calling program is
running

Plotter paper used for current job (.01 inches)
Plotter pen changes for current Jjob

Total plot time for current job (seconds)
Current prefix character as set by SETPFX



October 1976

93 %
242
187%*

21%

16
91%

83
198
237%

37%
238

95
164
168
162

166
148

T*

134
48

PRINT

PRIO
PRMAPOFF
PRNTCDSW

PROJNO
PROUTE

PTLEN
RATENBR
RCPRINT

RF
RUNONLY

SCOPIES

SCRCELTM
SCRCLUSE
SCRDSKTM

SCRDSUSE
SCRFCELL

SCRFCHAR
SCRFDISK

SCRFNAME
SEQCOFF
SETIOERR
SHFSEP

SIGFATTN
SIGNONID
SIGSHORT
SOBCDTHM
SOCPUTC
SOCPUTP
SODRMRDS
SOELT
SOPTOD

SPELLCOR
STORCPUT
STORELT

STORINDX

STORUSEE

Halfword

Byte
Bit
Bit

Fullword
Fullword

Fullword
Fullword
Byte

Fullword
Bit

Fullword
Fullword
Fullword
Fullword

Fullword
Halfword

Byte
Halfword

Dblword
Bit
Fullword
Byte

Bit
Fullword
Fullword
4 Words
Fullword
Fullword
Fullword
Dblword
4 Words

Fullword
Fullword
Fullword
Fullword

Fullword

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Print train specification (PN,
is tirst byte if ANY)

Priority of job12

1 => $SET PRMAP=OFF (default is ON)

1 -> Print next input line from source if not
MTS command (batch only)

Project (charge) number in characters

Default batch station for printed output (char-
acters) ($SET PROUTE=rmid)

Paper tape punched for current job (inches)
Number determining rate set in use

$SET RCPRINT={NEVER |POS|NONNEG|ALWAYS}

(01112]3)

$SET RF=xxxxxx (default is 0)

1 -> A "run only" program is loaded (from a
file to which the user has no access)

Number of copies of printed output requested on
$SET COPIES=n command

Last time scratch datacell file storage integr-
al updateds

Scratch datacell file storage. integral to
SCRCELTHM?

Last time scratch disk file storage integral
updated?

Scratch disk file storage integral to SCRDSKTM7?
Number of pages of datacell scratch files for
current job

Scratch file character (default is "-")
SCRFCHAR=C)

Number of pages of disk scratch files fer cur-
rent job

Internal scratch file prefix

1 -> $SET SEQFCHK=0FF (default is ON)

SETIOERR exit subroutine address

Shared-file separator character (default is
n:n) ($SET SHFSEP=c)

1 -> $SET SIGFILEATTN=0FF (default is ON)
Current signon ID

$SIG {LONG|SHORT|$} (011|2) (default is LONG)
Sign-on time and date in characters

Supervisor state CPU time at signonS

Problem state CPU time at signonSs

Number of drum reads at signon

Time of day at signon®

Time and date for header page for batch output
(characters)

TN, or binary 0

($SET

$SET SPELLCOR= {OFF|PROMPT|ON} (0]3]|1) (default
is PROMPT)
Current base for CPU storage integral®

Current
Current
Virtual
Elapsed

base for elapsed storage integral®
storage index number (See MTS Vcl. 5
Memory Management description)
storage integral to STORELT?

GUINFO, CUINFO 229



MTS 3:

47*
240

98
100
85%
81
169 %
230

228

181%
17%
188
186
177%
191%
193%
171%

SYSTEM SUBROUTINE

STORUSED
SYMTAB
SYSOLOAD
S8NBR
TASKNBR
TASKTYPE
TDR
TDRVT
TERSE
TIMEFDGE

TOFFSET

TRIMBIT
UCBIT
UNCHCELL
UNCHDISK
USMSG
UXREF
XREF

$ON

Fullword
Bit

Byte
Dblword
Halfword
Halfword
Bit
Fullword
Bit

8 Byte

8 Byte

Bit
Bit
Fullword
Fullword
Bit
Bit
Bit
Bit

230 GUINFO, CUINFO

DESCRIPTIONS

October 1976

CPU storage integral to STORCPUT?

1 => $SET SYMTAB=ON (default is ON)

System overload indicatorsii

S8-number of job in characters (batch only)
Task (job) number

Task type code®

1 -> $SET TDR=ON (default is OFF)

Tape drive time for current job (seconds)

1 -> $SET TERSE=0ON (default is OFF)

Value (microseconds times 4096) to be added to
IBM time (as stored by a STCK instruction) to
get time based on March 1, 1900

Offset (microseconds times 4096) to be added to
GMT to get local time

1 -> $SET TRIM=ON (default
1 -> $SET CASE=UC (default
Datacell space to CELLTIME not yet charged for7?
Disk space to DISKTIME not yet charged for?

1 -> $SET USMSG=O0ON (default is ON)

1 -> $SET UXREF=ON (default is OFF)

1 -> $SET XREF=0N (default is OFF)

1 -> $SET $=0N (default is OFF)

is ON)
is LC)



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

1Half-pages* (1/300) seconds
2Page-seconds
3Minutes since Midnight, March 1, 1900
4Units of 1/300 second
STimer units: 13 1/48 microseconds per unit
éMicroseconds since Midnight, March 1, 1900
7Page-minutes
8Job type codes:
0=Terminal
1=Local batch (without batch monitor)
2=Remote batch
3=Normal batch (with batch monitor)
4=%*-File
5=0PER
9CLS codes:
0=MTS (MTS command mode)
1=USER (execution mode)
2=EDIT (edit mode)
3=5DS (debug mode)
4=CALC (calc mode)
5=CLS (test CLS)
6=NET ($NET command)
7=MNT ($MOUNT command)
8=PRMT ($PERMIT command)
9=FSTA ($FILESTATUS command)
10=SSTA (systemstatus mode)
11=ACC (accounting mode)
12=NEW (new CLS)
10Loader options (one byte)

X'80"' 1 -> Suppress pseudo-registers in map
X'40' 1 -> Suppress predefined symbols in map
X'20' 1 -> Print undefined symbols

X'10' 1 -> Print undefined xrefs

X'08' 1 -> Print all xrefs

X'04' 1 -> Print dotted lines

X'02'" 1 -> Print map lines and entry point
X'01' 1 -> Print nonfatal errors

l1i1system overload indicators (one byte)
X'80' 1 -> Processor
X'40' 1 -> Paging
X'20' 1 -> pisk I/ 0
X'10' 1 -> I/0 activity
X'08' 1 -> Drum space
l2priority of job (one byte)
0=Low
1=Normal
2=High (currently not used)
3=Deferred

GUINFO, CUINFO 231



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

Notes:

(1) All cumulative fields are cumulative up to the time of the 1last
call to GUINFUPD or later, but do not include the current job or
any other active instances of this ID. CUMCELL and CUMDISK,
however, are cumulative up to CELLTIME and DISKTIME,
respectively.

(2) The elapsed time virtual memory integral for this job is

STORUSEE+CUKRSTOR* (time (2) *. 3-STORELT)
and the CPU virtual memory integral for this job is
STORUSED+CURRKRSTOR* (time (1) *. 3-STORCPUT)

where time(n) is the result of calling the TIME subroutine with
key=n assuming no call has been made with key=0.

(3) The permanent disk and datacell space integrals for this ID are
60*CUMDISK+CURRDISK* (min-DISKTIME)
and
60*%CUMNCELL+CURRCELL* (min-CELLTIME)

and the scratch disk and datacell space integrals for this
terminal session or batch job are

SCRDSUSE+SCRFDISK* (nin-SCRDSKTHM)
and
SCRCLUSE+SCRFCELL* (min-SCRCELTHM)

where "min" is minutes since March 1, 1900 which is obtainable
from the TIME and GRJLTM subroutines; the results are in
page-minutes.

232 GUINFO, CUINFO



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

GUINFUPD

SUBROUTINE DESCRIPTION

To update
subroutine.

certain items obtainable via the GUINFO

Resident Systen

Calling Sequence:

Description:

Assembly: CALL GUINFUPD
Return Codes:

0 Successiful return.
4 Illegal signon ID.
8 Error return.

The following items obtainable via the GUINFO subroutine
are updated to the time of the call, excluding currently
active jobs for this signon ID (including this job).

14 ACCTNO 36 NRDISKF
18 MAXDISK 38 NRSIGS
20 MAXTERM 40 NRBATCH
22 MAXMONY 42 CUMLINES
24 CURRDISK 44 CUMPAGES
26 CUMELTH 46 CUMPUNCH
28 CUMCPUTH 50 IDRNBR
29 CUMREAD 52 UNITCODE
30 CUMCOKE 54 EXPTIME
32 CUMMONY
106 MAXCELL 160 BILLCLAS
108 MAXPLOT 182 MAXSIG
110 LSTRESET 184 CURSIG
116 CURRCELL 190 MAXMNET
118 CUMCOREW 192 CUMMNET
122 CUMPLOT 194 MXMNETBT
124 NRCELLF 196 HMXPLOTBT

154 CUMMOUNT
156 CUMTDRVT
158 CUMPTLEN

232 CUMPLPAP
243 CUMPLPEN

GUINFUPD 233



MTS 3: SYSTEM SUBROUTINE DESCEIPTIONS

October 1976

234 GUINFUPD



October 1976

Purpose:
Location:

Alt. Entry:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

GUSER

SUBROUTINE DESCRIPTION

To read an input record from the logical I/0 unit GUSER.
Resident Systenm

GUSER#

Calling Sequences:

Description:

Assembly: CALL GUSER, (reg,len,mod,lnum)

FORTRAN: CALL GUSER(reg,len,mod,lnum,ércl,...)

Parameters:

req is the location of the virtual memory region to
which data is to be transmitted.

len is the location of a halfword (INTEGER*2) inte-
ger in which will be placed the number of bytes
read.

mod is the location of a fullword of modifier bits
used to control the action of the subroutine.
If mod is zero, no modifier bits are specified.
See the "I/0 Modifiers" description in this
volume.

lnum is the location of a fullword integer giving the
internal representation of the line number that
is to be read or has been read by +the subrou-
tine. The internal form of the line number is
the external form times 1000, e.g., the internal
form of line 1 is 1000, and the internal form of
line .001 is 1.

rcl,;... is the statement label to transfer to if the
corresponding nonzero return code is
encountered.

Return Codes:

0 Successful return.

4 End-of-file.

>4 See the "I/0 Subroutine Return Codes" description
in this volunme.

All four of the above parameters in the calling seguence
are required. The subroutine reads a record into the
region specified by regq and puts the length of record (in
bytes) into the location specified by len. If the mod

GUSER 235



MTS 3:

Examples:

236

GUSER

SYSTEM SUBROUTINE DESCRIPTIONS

Octcker 1976

parameter (or the FDname modifier) specifies the INDEXED
bit, the lpum parameter must specify the line number to be
read. Otherwise, the subroutine will put the line number
of the record read into the location specified by lnunm.

The default FDname for GUSER is *MSOURCE*.

There is a macro GUSER in the system macro library for
generating the calling sequence to this subroutine. See
the macro description for GUSER in MTS Volume 14.

This example given in assembly language and FORTRAN calls
GUSER specifying an input region of 20 fullwords. No
modifier specification is made on the subroutine call.

Assembly: CALL GUSER, (REG,LEN,MOD,LNUHN)
REG Ds CL80
LEN DS H
MOD DC Prov

LNUM DS F
or
GUSER REG,LEN Subr. call using macro

FORTRAN: INTEGER*2 LEN
INTEGER REG (20) ,LNUNM

CALL GUSER (REG,LEN,0,LNUM,&30)

30 .



MTS 3: SYSTEM SUBROUTINE DESCRIETIONS

October 1976

GUSERID

SUBROUTINE DESCRIPTION

Purpose: To obtain the current lU-character signon ID.
Location: Resident Systen
Alt. Entry: GETID
Calling Sequences:
Assembly: CALL GUSERID

A GR13 save area is not required for a call to this
subroutine.

Values Returned:
GR1 contains the 4 character signon ID.
Note: FORTRAN users can call this subroutine by using
the RCALL subroutine and specifying GETID as the

entry point, or by calling the subroutine GUINFO
for the information item SIGNONID.

GUSERID 237



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

238 GUSERID



October 1976

Purpose:

Location:

Entry Points:

Description:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

108

SUBEOUTINE DESCRIPTION

IOH 1is an input/output conversion package that provides
format-directed input and output for 360/370-assembler
language programs and programs using the Plot Description

System.
*LIBRARY

I0H has the following entry points:

ROPEN, RCLOSE, POPEN, PCLOSE, PCOPEN, PCCLOSE, SERO-
PEN, SERCLOSE, GOPEN, GCLOSE, LOPEN, LCLOSE, SETFR-
VAR, SETIOHER, DROPIOER, GETIOHER, OWNCONVR, ACCEPT,
and IOPMOD.
For the complete description of IOH and its calling
sequences, see the section "IOH" in MTS Volume 5.

IOH 239



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

240 IOH



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

Purpose: S-type (e.g., FORTRAN and PL/I) interfaces for JULGRGDT
and JULGRGTHM.

Location: *LIBRARY

Calling Sequences:

FORTRAN:

PL/I:

CALL JLGRDT (juldat,grgdat)

REAL*8 JLGRDT
date=JLGRDT (juldat,grgdat)

CALL JLGRTHM (jultim,grgtim)

COMPLEX*16 JLGRTHM
time=JLGRTH (jultim,grgtim)

CALL PLCALL (JLGRDT,£2,PL1ADR (juldat) ,grgdat) ;

DCL PLCALLD RETURNS (FLOAT (16)) ;
date=PLCALLD (JLGRDT,f2,PL1ADR (juldat) ,grgdat)

CALL PLCALL (JLGRTM,f2,PL1ADR (jultim),grgtim);

Parameters:

juldat is a fullword (INTEGER*4 or FIXED BINARY (31))
containing the integer number of days start-
ing with March 1, 1900 as "1i".

grgdat is 8 bytes (REAL*8 or CHARACTER(8)) dinto

which the Gregorian date in the character

form "MM/DD/YY" is placed on return.

is a fullword (INTEGER*4 or FIXED BINARY (31))

containing the integer number of @minutes
starting with March 1, 1900, at 00:01 as ™1".
grgtim is 16 bytes (REAL*8(2) or CHARACTER(16)) into

which the Gregorian date and time in

the

character form "MM/DD/YYhh:mm:00" is placed

on return.

is a fullword (FIXED BINARY (31)) containing

the integer 2.

Values Returned:

FRO contains the Gregorian date in the character form
"MM/DD/YY" for call on JLGRDT.

JLGRDT, JLGRTHM

241



MTS 3:

Description:

Examples:

242

JLGRDT,

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

FRO and FR2 contain the Gregorian date and time in
the character form "MM/DD/YYhh:mm:00" for calls on
JLGRTHM.

The Julian date or time is passed to JULGRGDT or JULGRGTH,
respectively, and is converted to the «corresponding Gre-
gorian date or time in character form. The results are
undefined for dates and times which are nonpositive or
greater than 12/31/99.

FORTRAN: REAL*8 DATE
CALL JLGRDT (25915,DATE)

REAL*8 DATE,JLGRDT,DUMMY
DATE=JLGRDT (25915,DUMMY)

The above two examples call JLGRDT to convert the Julian
date 25915 into the corresponding Gregorian date February
11, 1971.

REAL JULIAN*4 TIME*8 (2)
CALL JLGRTM (JULIAN,TIME)

The above example calls JLGRTM to convert the Julian date
and time in the variable JULIAN into the <corresponding
Gregorian date and time.

PL/I: CALL PLCALL (JLGRDT,F2,PL1ADR (JULIAN) ,DATE) ;
DECLARE JLGRDT ENTRY,
F2 FIXED BINARY (31) INITIAL (2),
JULIAN FIXED BINARY (31) INITIAL(25915),
DATE CHARACTER (8) ;

UNSPEC (DATE) =UNSPEC (PLCALLD (JLGRDT,F2,
PL1ADR (JULIAN) ,DUMMY)) ;
DECLARE (DATE, DUMMY) CHARACTER(8),
PLCALLD RETURNS (FLOAT(16)),
JLGRDT ENTRY,
F2 FIXED BINARY (31) INITIAL(2),
JULIAN FIXED BINARY (31) INITIAL (25915);

The above two examples call JLGRDT to convert the Julian
date 25915 into the corresponding Gregorian date February
11, 1971.

CALL PLCALL (JLGRTM,F2,PL1ADR (JULIAN) ,TIME);

DECLARE JLGRTM ENTRY, TIME CHARACTER (16),
F2 FIXED BINARY (31) INITIAL(2),
JULIAN FIXED BINARY (31);

The above example calls JLGRTM to convert the Julian date

and time in the variable JULIAN into the corresponding
Gregorian date and time.

JLGRTHM



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

JMSGTD, JTUGTD

SUBROUTINE DESCRIPTION

S-type (e.g., FORTRAN and PL/I) interface for JMSGTDR and

JTUGTDR.

*LIBRARY

Calling Sequences:

Description:

Examples:

FORTRAN: CALL JMSGTD (jms,grgtim)

CALL JTUGTD (jtu,grgtim)

PL/I: CALL PLCALL (JMSGTD,f2,jms,grgtim) ;

CALL PLCALL (JTUGTD,f2,jtu,grgtim) ;

Parameters:

The Julian

is an 8-byte integer (INTEGER*4 (2) or BIT(
64)) containing the integer number of micro-
seconds starting with March 1, 1900.

is an 8-byte integer (INTEGER*4 (2) or BIT(
64)) containing the integer number of timer
units starting with March 1, 1900. A timer
unit dis 1/256 of 1/300 of a second (13 1/48
microseconds) .

is 16 bytes (REAL*8(2) or CHARACTER(16)) into
which the Gregorian time and date in the
character form "hh:mm.ssMM/DD/YY" is placed
on return.

is a fullword (FIXED BINARY(31)) containing
the integer 2.

time in microseconds or timer units is passed

to JMSGTDR or JTUGTDR, respectively, and is converted to
the corresponding Gregorian date and time in character
form. The results are undefined for dates and times which
are nonpositive or greater than 12/31/99.

FORTRAN:

INTEGER*4 JULIAN (2)
DATA JULIAN/Z000830D1,27477784F/
REAL*8 TIME (2)

CALL JMSGTD (JULIAN,TIME)

JMSGTD, JTUGTD 243



MTS 3:

244

JMSGTD,

SYSTEM SUBROUTINE DESCRIPTIONS

Octoker 1976

PL/I: DECLARE JMSGTD ENTRY,
F2 FIXED BINARY(31) INITIAL (2),
TIME CHARACTER (16),
JULIAN BIT (64) INITIAL
('00000000000010000011000011010001011101000
11101110111100001001111'B) ;
CALL PLCALL (JUSGTD,F2,JULIAN,TIME);

The above two examples call JMSGTD to convert the Julian

time 1into the corresponding Gregorian time and date
17:59.33, Harch 21, 1973.

JTUGTD



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

JMSGTDR, JTUGTDR

SUBKOUTINE DESCRIPTION

Purpose: To convert the Julian time in microseconds or timer units

since March 1, 1900 to the corresponding Gregorian time
and date hh:mm.ssMM/DD/YY.

Location: *LIBRARY
Calling Sequences:

Assembly: LM 0,1, julms
CALL JMSGTDR

LM 0,1, jultu
CALL JTUGTDR

Parameters:

julms is two fullwords containing the 8-byte inte-
ger number of microseconds through the given
date starting with Marca 1, 1900.

jultu is two fullwords containing the B-byte inte-
ger number of timer units starting with March
1, 1900. A timer unit is 1/256 of 1,300 of a
second (13 1/48 microseconds).

Value Returned:

GRO through GR3 contain the Gregorian time and date
in the character form "hh:mm.ssMM/DD/YY".

Description: The results are undefined for dates which are nonpositive
or greater than 12/31/99.

See JMSGTD, JTUGTD for S-type (e.g., FORTRAN and PL/I)
interfaces.

Example: Assenbly: Lu 0,1,JULMS
CALL JMSGTDR
sTM 0,3,GREG

JULMS DC X'000830D17477784F"
GREG DS CL16

The above example calls JMSGTDR to convert the Julian time

in location JULMS to the corresponding Gregorian time and
date 17:59.33, March 21, 1973.

JMSGTDR, JTUGTDR 245



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

246 JMSGTDR, JTUGTDR



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

JULGRGDT, JULGRGTM, JLGRSEC

SUBROUTINE DESCRIPTION

To convert the Julian date or time (based on March 1,
1900) to the corresponding Gregorian date (MM/DD/YY) or
time (MM/DD/YYhh:mm:ss).

Resident System

Calling Sequences:

Description:

Assembly: L 1,juldat
CALL JULGRGDT

L 1,jultin
CALL JULGRGTM

L 1, julsec
CALL JLGRSEC

Parameters:

juldat is a fullword containing the integer number
of days starting with March 1, 1900 as "1".

jultim is a fullword containing the integer number
of minutes starting with March 1, 1900, at
00:01 as "1in.

julsec is a fullword containing the integer number
of seconds starting with March 1, 1900, at
00:00:01 as "1".

Values Returned:

GRO and GR1 contain the Gregorian date in the
character form "MM/DD/YY" for calls on JULGRGDT.

GRO through GR3 contain the Gregorian date and tinme
in the character form "MM/DD/Y¥Yhh:mm:00" for calls on
JULGRGTH.

GRO through GR3 contain the Gregorian date and time
in the character form "MM/DD/YYhh:mm:ss" for calls on
JLGRSEC.

The results are undefined for dates which are nonpositive
or greater than 12/31/99. For JLGRSEC, times greater than

03/19/68 03:14:07 require all 32 bits of the parameter in
GR1.

JULGRGDT, JULGRGTM, JLGRSEC 247



MTS 3:

See JLGRDT, JLGRTHM
interfaces,
Examples: Assembly: L
CALL
STH
JLDAT DC
GRDAT DS

The above example calls JULGRGDT to
25915 into the corresponding Gregorian date February

date
11, 1971.
L
CALL
STHM
JLTIM DC
GRTIM DS

The above example calls JULGRGTM to
37438110 into its corresponding Gregorian

date and time

date and time May 6, 1971,

248 JULGRGDT, JULGRGTM, JLGRSEC

SYSTEM SUBROUTINE DESCEKIPTIONS

October 1976

for S-type (e.g., FORTRAN and PL/I)

1,JLDAT
JULGRGDT
0,1,GRDAT

F'25915!
CcL8
Julian

convert the

1,JLTIN
JULGRGTHM
0,3,GRTIN

F'37438110"
CL16

convert the Julian

16:30:17.



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

KEYWRD

SUBKOUTINE DESCRIPTION

To perform keyword processing on a character string.
Keyword processing entails searching a character string
for certain specified character strings of +the form
"KEYWORD=value" (and its degenerate forms "keyword" and
"value") and performing an associated program action when
a specified keyword expression is found. ©Note: This
subroutine has been superseded in capabilities by the
KWSCAN subroutine that is described in this volume. The
KWSCAN subroutine is recommended for use.

Resident Systen

Calling Sequences:

Description:

Assembly: CALL KEYWRD, (len,lht,ext,text,rht)
Parameters:

The parameters are identical to the first five
parameters of the KWSCAN subroutine.

Return Codes:

0 Keywora successfully processed.
I

Error occurred, or a prompting message was issued
and the response "CANCEL" was given.

See the description of the KWSCAN subroutine in this
volume for the <comnplete details of keyword processing.
The KEYWRD subroutine performs actions similar to those of
KWSCAN, but with the following differences:

(1) no spelling correction will be attempted;

(2) parenthesized or initial-substring, left-hand side
expressions will not be recognized;

(3) only blanks, and commas not nested inside paren-
theses are recognized as delimiters. The charac-
ter string indicated by text mnust end with a
blamnk;

(4) at most one keyword expression is processed by the
subroutine, and text is not updated to point to
the end of the text scanned;

(5) all erroneous keyword expressions Eproduce output
on *MSINK* and a prompt for replacement from
*MSOURCE*;

(6) no case conversion of the input is performed.

KEYWRD 249



MTS 3

Example:

250

KEYWRD

SYSTEM SUBROUTINE DESCEKIPTIONS

October 1976

The following example illustrates how keyword processing
could be set wup for scanning keyword expressions in the
MTS $SIGNON and $DISPLAY commands.

For the $SIGNON command, the keyword options considered
are the global time, ©page, and card estimates, the
password, and the print train option. For the $DISPLAY
command, the options considered are the displaying of
registers and a single core location, and the hexadecimal
conversion option.

The first byte in each entry of the left-hand table
LHTABLE gives a displacement to an entry in the right-hand
table RHTABLE. The second byte of the entry gives the
execute index #1. The +third byte gives the number of
bytes for the left-hand side of the keyword. The last
entry in LHTABLE 1is used for the case of a degenerate
left-hand side (e.g.,$DISPLAY GRY9).

The first byte in each wentry of the right-hand table
RHTABLE gives the entry type. The second byte is the
execute number #2. The third byte is the number of bytes
following which contain further "operations" for fprocess-
ing the entry. The last entry in RHTABLE is for the case
of a degenerate right-hand side of the keyword (e.g.,$
DISPLAY GRS).

To further explain the function of RHTABLE, consider the
entry TIMRHT for global time estimates. This is a type 4
entry which specifies 5 operations to be performed cn the
right-hand side of the keyword. These operations are
specified in units of 5 bytes each (hence a length of 25
is given), the first byte of each operation specifying the
operation type. Here the first operation tests for a
scale factor 'S' and, if found, multiplies the keyword by
1. The second operation tests for a scale factor 'M' and,
if found, multiplies the keyword by 60 to convert minutes
into seconds. The third operation tests to determine if
the global +time estimate is less than 36,000 seconds (10
hours). The last two operations perform a multiplication
and division to convert the time estimate into CPU timer
units.

The entry PGSRHT is also a type 4 entry which performs two
operations on the page or card estimate. The first
operation divides the estimate by 1000 to reduce it to an
internal number of pages or cards and the second checks to
determine if it does not exceed 99999 after the division.

The entry PRTRHT 1is a +type 1 entry which checks the
right-hand side for 'PN' or 'TN' specifying the type of
print train requested.



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

The entry DISRHT is entry which contains both type 6
(initial substring 1literal) and type 5 (hex number)
fields. This entry checks the right-hand side for the
initial substrings 'FR' or 'GR' (e.g., $DISPLAY GRY9). If
neither is found, it then assumes a hex number (e.g.,
$DISPLAY 5002A6).

The execute table EXTABLE contains the actual instructions
or subroutine calls to be made for each keyword expression
successfully matched. For the $SIGNON command, the
instructions in EXTABLE store information from GR1 and GR2
into specified locations (e.g., storing the global time
estimate in CPU timer units into the location GLOBTIME).
For the $DISPLAY command, the instructions are either for
setting one switch or calling a subroutine to set two
switches.

The short program given scans a $SIGNON or $DISPLAY
command calling the KEYWRD subroutine for each keyword
expression found in the command. The 1loop defines a
keyword as beginning with +the first nonblank character
following a blank character. ©Note that for the case of
"HSIGNON XXXX T=30S P=100 C=100 PRINT=TN", the call to
KEYWRD for XXXX will cause an error return from the
subroutine which will be ignored by the calling program.

LA 6,81
LA 7,TEXT-1
OUTLOOP LA 7,1(7)
CLI 0(7),"' °
BNE OUTEND
INLOOP LA 7,1(7)

CLI 0(7),' !
BE INEND
CALL KEYWRD, (LHTLEN,LHTABLE,EXTABLE, (7) ,RHTABLE)
B OUTLOOP :
INEND BCT 6,INLOOP
B *+ 8

OUTEND BCT 6,0UTLOOQP

TEXT DS 80C
DC cr

LHTABLE DC AL1 (TIMRHT -RHTABLE,O,4) ,C'TIME"'
DC AL1(TIMRHT-RHTABLE,O0,1) ,C'T"
DC AL1(PGSRHT-RHTABLE,4,5) ,C'PAGES'
DC AL1 (PGSRHT -RHTABLE,4,2) ,C'PP!
DC AL1(PGSRHT-RHTABLE,4,1) ,C'P"
DC AL1 (PGSRHT-RHTABLE,8,5) ,C'CARDS"
DC AL1 (PGSRHT-RHTABLE,8,1) ,C'C!
DC AL1 (PWRHT-RHTABLE,12,2) ,C'PW!

KEYWRD 251



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

DC  AL1(PRTRHT-RHTABLE,16,5) ,C'PRINT®
DC  AL1(NORHT-RHTABLE,22,3) ,C'FRS'
DC  AL1 (NORHT-RHTABLE, 26,3) ,C'GRS"
DC  AL1(NORHT-RHTABLE,30,3) ,C'HEX'
DC  AL1 (NORHT-RHTABLE, 34,5) ,C'NOHEX"
DC  AL1 (DISRHT-RHTABLE,38,0)

LHTEND  EQU *

LHTLEN DC Y (LHTEND-LHTABLE)

RHTABLE EQU *

TIMRHT DC  AL1(4,0,25),C'S',AL4(1),C'N",ALY (60)
DC C'<',FL4'36000000"',C"*" ALY (768)
DC C'/',AL (10)

DC X'FF!

PGSRHT DC AL1(4,0,70),C'/",AL4 (1000),C'<', ALY (99999)
DC XVPR!

PWRHT DC AL1(3,0,1,6)
DC X'FF!

PRTRHT DC  AL1(1,0,2) ,C'PN'
pC AL1(1,0,2),C'TN!
DC  X'FF!

DISRHT DC  AL1(6,0,2),C'FR"
DC  AL1(6,4,2) ,C'GR'
DC  AL1(5,8,0)

DC X'FF!

NORHT DC AL1(7,0,0)
DC X'FF!

EXTABLE ST 2,GLOBTIME +0
SE 2,GLOBPAGE +4
ST 2,GLOBCARD +8
ST™ 1,2,PASSWORD +12
MvC PRNTTYPE (2) ,0(2) +16
BAL 5,DISFRS +22
BAL 5,DISGRS +26
01 DMPSW1,X'01" +30
oI DMPSH1,X'FF'=X'01" +34
MVI DMPSHZ,8 +38+0
MVI DMPSH2,12 +38+4
BAL 5,%+l4 +38+8

ST 2,ADDR
MVI DMPSH2,16
BR 5

DISFRS oI DMPSH1,X'40"
DISREG MVI DMPSW2,20

BR 5
DISGRS oI DMPSW1,X'20!'
B DISREG

252 KEYWRD



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIETIONS

KWSCAN

SUBKOUTINE DESCRIPTION

To perform keyword processing on a character string.
Keyword processing entails searching a character string
for certain specified character strings of the form
"keyword=value" (or the degenerate forms, "keyword" and
"value") and performing an associated program actiocn when
a specified keyword string is found.

Resident System

Calling Sequences:

Assembly: CALL KWSCAN, (len,lht,ext,text,rht,ltext,swus,
rvec,dlist,slist)

Parameters:

—
=}

le is the location of the halfword length of the

table of valid keyword left-hand sides indi-

cated by lht.

is the location of the table of valid keyword

left-hand sides (see "Description" below for

the form of its entries).

is the 1location of the execute table, a set

of instructions selectively executed depend-

ing on the keyword that was found in the

input string (see "Description" below for a

discussion of its form and use).

text is the location of the character string to be
processed for keywords.

rht is the location of the table of valid keyword
right-hand sides (see "Description" below for
the types and forms of its entries).

ltext is the location of the halfword length of the

string referenced by text.

1=
=
It

0]
L]
et

SHsS is the 1location of a fullword of bit flags
that define the behavior of the keyword
scanner. See "Subroutine Options" belcw for
details.

rvec is the location of a 27-word return vector,

OL Zero. It is optionally used to return
error information from the subroutine. If
Lvec is zero, no error information is
returned. See "Subroutine Options" below for
the form of and control over the information
returned.

dlist is the location of an optional set specifying

KWSCAN 253



MTS 3:

Description:

254

KWSCAN

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

the characters to be considered as keyword

expression delimiters. See "Subroutine
Options" below for the specification of the
set.

slist is the location of an optional set of charac-
ter strings to be considered as separators of
keyword expression left- and right-hand
sides. See "Subroutine Options" below for
tne specification of the set.

Return Codes:

0 Keywords successfully processed.

4 "CANCEL" response given in reply to prompt for
replacement of incorrect input, or other errcr in
keyword processing.

The KWSCAN subroutine scans the given character string for
valid keyword expressions as defined by the subroutine
parameters. When a valid keyword expression is found, the
calling program is given the "value", if any, of the ex-
pression, and the opportunity to perform processing per-
tinent to the keyword function.

Conceptually, every keyword expression has a left-hand
side and a right-hand side, the left-hand side constitut-
ing the keyword portion of +the expression, and the
right-hand side defining the expression's "value'. Phys-
ically, either, but not both, of these may ke absent along
with the associative character "=", yielding three possi-
ble keyword expression forms: "LHSide=RHSide", "IHSide",
and "RHSide".

The left-hand side keyword and right-hand side values to
be recognized in the input string are specified in the
tables indicated by lht and rht. Whereas keyword right-
hand sides can be any of a fixed number of different
types, ranging from arbitrary strings to decimal numbers,
left-hand sides, being keywords, can only be given charac-
ter strings. The text of the left-hand sides, and their
associations with right-hand sides, are specified in the
left-hand table, pointed to by 1lht. The forms of the
right-hand sides are specified in the right-hand table,
indicated by rht.

Keyword expressions are scanned for as follows. The input
string is searched from left to right for a substring
bounded at the right and 1left extents by delimiter
characters (the beginning and the end of a string are also
considered delimiters). The substring text, up to the
embedded "=" (or the wentire substring if no "“=" is
present) , is then compared to left-hand side text entries
in the 1left-hand table. If no left-hand side match is



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

found there, the substring is not considered a valid
keyword expression and an error return is made. If an
entry is found to match, the right-hand table is scanned
beginning at a displacement specified in the left-hand
table entry that matched the keyword expression's left-
hand side. The text to +the right of the "=" in the
substring under consideration, the right-hand side, is
then checked to see if it matches the right-hand side
forms given by successive right-hand table entries. If it
is of one of the given forms, the substring is considered
a valid keyword expression, and a match takes place.
Otherwise, the expression is not valid.

When a keyword expression is matched, the general regis-
ters are set up to contain information pertaining to the
keyword expression (such as the keyword right-hand value).
A single instruction in the table of instructions indi-
cated by ext, specified by the sum of two displacements
contained in the matching left- and right-hand table
entries, is performed by an EX instruction. The calling
program can thus perform an action associated with the
given keyword, such as saving the value of the right-hand
side. If more than one instruction is needed for the
action, the subject of the EX instruction should be a BAL
or BALR instruction to a pertinent internal subroutine. A
return from this subroutine should be eventually made. If
the return is made to the dinstruction specified by the
contents of the 1link register, keyword processing will
proceed normally (according to the options defined in the
fullword indicated by sws). If a return is made to two
bytes past the link register contents, the match to the
keyword expression is rejected, and a scan for an altern-
ate right-hand side match resumes after the right-hand
table entry which matched previously. If the return is to
16 bytes past the contents of the link register, all
keyword processing is aborted immediately and a <return
code of 4 is issued by the KWSCAN subroutine.

If text appears in the input string that does not match
any of the defined keywords, various actions may Lke taken,
depending on the subroutine options. One option 1is to
generate an error message on *MSINK*, followed by a
prompt, if the subroutine is not being used in batch mode,
for corrective input from *MSOURCE*. If this option is
selected, +the prompted input does not replace or modify
the contents of the original string in error, but is
processed separately. Other options include spelling
correction of the invalid text. See the section "Subrou-
tine Options" below.

When the keyword input string contents are exhausted, or

the keyword scan otherwise terminates, the subroutine
returns with the return code set.

KWSCAN 255



MTS 3:

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

Format of Left-Hand Table Entries:

Left-hand table entries, defining the keyword left-hand
sides, are 3+N or 5+N bytes in length, where N is the
number of characters comprising the left-hand side key-
word. The format is:

1 or 2 bytes right-hand table index. This is the dis-
placement 1into the right-hand table where
the associated right-hand side entries for
this left-hand side can be found.
execute-table index. This is the partial
displacement into the execute table where
an instruction associated with a match to
this left-hand side is located.
1 byte - count of number of characters in the left-
hand side.
N characters - the text of the left-hand side keyword.

1 or 2 bytes

The right-hand table index and execute-table index values
are two bytes in length if bit 27 of the sWs parameter is
one. The number of characters comprising the left-hand
side text may be zero, 1implying a null Jleft-hand side
(i.e., the degernerate form "RHSide").

Right-Hand Side Type Codes:

256

KWSCAN

The right-hana side types fall into two distinct classes:
those which define the forms which a keyword right-hand
side may take, and those affecting the scanning of the
right- and left-hand tables for keyword matches (control
codes). They are dealt with separately below.

Control Code Description
hex FF Terminate search of right-hand table.
Forces the scan for a keyword match to
fail.
hex FE Abort right-hand table search. Forces the

keyword scanner to reject the match cf the
keyword's left-hand side, and to continue
scanning for an alternate match to the
left-hand side following the point in the
left-hand table at which the previous left-
hand side match was found.

hex FD Process parenthesized right-hand sides.
Causes the current keyword expression's
right-hand side to be treated as a paren-
thesized list of right-hand sides if such a
list appears (e.g., INFO=(SIZE,TYPE) would
be processed as if INFO=SIZE,INFO=TYPE had
been given).

hex FC Separator filter. Used in conjunction with



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

bits 20-21 of the sws parameter (see "Sub-
routine Options" below) to provide a barri-
er to keyword expressions depending on the
character string connecting the keyword
expression's left- and right-hand sides.
If the connecting string is not in the set
defined by information following the type
code, the expression is considered invalid
at this point.

The remaining types follow.

Type Code

1

Literal Characters. The right-hand side is

matched against a specified character
string.

FDname. The right-hand side is interpreted
as an MTS FDname, or concatenation of
FDnames, and an FDUB is acquired for it.

Characters. The right-hand side is taken
as an arbitrary character string, pcssibly
subject to minimum and maximum length
restrictions.

MTS Line Number. The right-hand side is
interpreted as an optionally signed decimal
number of maximum 6 integral digits and 3
fractional digits followed by an optional
scale factor, and then multiplied by 1000
to remove any fractional digits.

Hexadecimal Number. The right-hand side is
interpreted as a hexadecimal number, maxi-
mum of 8 hex digits.

Initial Substring Literal. The —right-hand
text must begin with a specified string of
characters.

No Right-Hand Side. ©No right-hand side may
be given in the keyword expression (e.g.,
only the degenerate form "“LHSide" is
accepted) .

Ignore Keyword. The entire keyword expres-
sion is ignored. No instructions in the
execute table are performed.

Characters in Given Set. The characters
constituting the keyword expression right-

KWSCAN 257



MTS 3: SYSTEM SUBROUTINE DESCERIPTIONS

10

11

12

13

14

15

16

17

258 KHWSCAN

October 1976

hand side must all be members a given set
of characters.

Characters Except in Given Set. The char-
acters constituting the keyword expres-
sion's right-hand side may not contain any
of the characters in a given set.

Optionally Negated Characters. Same as the
characters (3) type, but a preceding negat-
ing prefix (one of "-", MN.W, WNQOW, or "N")
is allowed. Different execute-table
instructions may be performed, depending on
whether the negating prefix was found.

Optionally Negated Literal. Same as the
literal characters (1) type, with addition-
al features of type 11.

Optionally Negated Initial Substring liter-
al. Same as the initial substring 1literal
(6) type, with additional features of type
1.

Delimited Character String. The right-hand
side value is interpreted as a character
string initiated and terminated by a string
delimiter character in a set defined by
information in the right-hand table entry.
Doubled instances of the string delimiter
are compressed into a single instance of
the delimiter. A maximum and minimum
length of +the resultant string may be
defined. The resultant string length must
be less than 128 characters.

Integer Number. The right-hand side value
may be an integer number consisting of an
optional sign followed by at most 9 decimal
digits, and possibly followed by a scale
tactor character.

Flagged Hexadecimal Number. The right-hand
side value is interpreted as a hexadecimal
number of 8 digits maximum, expressed in
the form X'number'.

Floating-Point Number. The right-hand side
value 1is interpreted as a FORTRAN-style
long real number, optionally followed by a
scale factor.



October 1976

18

PAR F

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

ield. The right-hand side value is

taken as the remainder of the input string.

Formats of Right-Hand Table Entries:

Control Code

hex FF
hex FE
hex FD
hex FC

byte
byte
byte
byte
byte

P N

XtFer,
containing the number of bytes fol-
lowing (N),

N bytes ordinal positions of the separators

in the 1list passed as the glist
parameter, or implied by sws bits 20
and 21 having the wvalue 01 (see
"Subroutine Options" below) with
zero indicating no separator (a
degenerate keyword expressicm). If
the separator is not in the set
described by the given N bytes, the
keyword expression is considered
invalid.

Noncontrol right-hand table entries are of the format:

byte
byte
byte
bytes

[ P g

type c

ode,

execute table index,

number
variab

of bytes following (N),
le information, dependent upon type

code, described below.

Right-Hand Side Type Information:

Literal (1)

FDname (2)

Character (3)

The N characters of the literal
string.
Either N=0, in which case any FDname

i
m
s
m

N

s accepted, or N=1 and the letter N
ust follow, in which case no FDnames
pecifying implicit concatenation are
atched.

is 0, 1, or 2. If N=0, any charac-

ter string is accepted. If N=1, one

b

yte of information is given contain-

ing the maximum permissible length of

t
b
r
m
s

he character string. If N=2, two
ytes of information should follow,
espectively giving the minimum and
aximum permissible lengths of the
tring.

KWSCAN 259



MTS 3:

260

KWSCAN

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

MTS Line Number (4) N must be an integral multiple of 5.

Hex Number (5)

Initial Substraing
Literal (6)

No Right-Hand
Side (7)

Ignore (8)

A series of N/5 operations are per-
formed on the value of the number.
The operations are specified by a
1-character operation code followed by
a U4-byte unaligned integer operand
associated with the operaticn code.
The operations are applied in the
order in which they appear.

The right-hand side value has already
been multiplied by 1000 at the time of
the first operation.

The operations are:

Opcode ">": the right-hand side value
is compared to the operand
value. If the right-hand
side value is less, the
right-hand side match
fails.

Opcode "<": the right-hand side value
is compared to the operand
value. If the right-hand
side value is greater, the
right-hand side match
fails.

Opcode "#": the right-hand side value
multiplied by the cperand
value.

Opcode "/": the right-hand side value
is divided by the operand
value.

Any other opcode: the operation code
character is interpreted as an option-
al scale factor, which, if present at
the end of the right-hand side value,
causes the value to be multiplied by
the operand value.

N should be zero.

N characters constituting the text
that must be an initial substring of
the right-hand side text are given.

N should be zero.

N should be zero.



October 1976

Characters in
Given Set (9)

Characters Except
in Given Set (10)

Optionally Negated
Characters (11)

Optionally Negated
Literal (12)

Optionally Negated
Initial Substring
Literal (13)

Delimited Character
string (14)

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

2 bytes defining the minimum and
maximum permissible lengths of the
right-hand side text are given, fol-
lowed by N-2 characters that consti-
tute the set of which each character
of the right-hand side must be a
member.

2 bytes defining the minimum and
maximum permissible 1lengths c¢f the
right-hand side text are given, fol-
lowed by N-2 characters that are for-
bidden to be present in the right-hand
side text.

N is either 1, 2, or 3. 1In all cases,
a single byte giving the right=-hand
table execute-table index used in the
case a negating prefix is found, is
given. If N=1, the «character string
may be of arbitrary length. If N=2,
one further byte containing the maxi-
mum permissible length of the charac-
ter string must be present. If N=3,
two further bytes containing, respec-
tively, the minimum and maximum per-
missible 1lengths of the right-hand
side string must be present. In all
cases, the lengths do not include the
negating prefix, if present.

N bytes of informaticn follow, con-
sisting of a 1-byte execute-table
index wused in the case a negating
prefix is found, followed by N-1 bytes
of characters comprising the 1literal
text of the right-hand side.

N bytes of information follow, con-
sisting of a 1-byte execute-table
index wused in the <case a negating
prefix is found, followed by N-1 bytes
of characters constituting the text of
the initial substring of the right-
hand side text.

The information contains 2 bytes
defining the maximum and minimum fper-
missible number of characters, exclud-
ing the string delimiter characters,
in the string. Following this is a
set of N-2 characters, any of which
may delimit the character string.

KWSCAN 261



MTS 3:

Integer Number (15)

Flagged Hex
Number (16)

Floating-Point
Number (17)

PAR Field (18)

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

The information is identical to the
information associated with the MTS
Line Number (4) type, but the number
is not multiplied by 1000 prior to
application of the specified
operations.

N should be zero.

The information is similar to that for
the MTS Line Number (4) type, differ-
ing in that the operand values are
unaligned long floating-point numbers,
and therefore the entries are 9 bytes
in length. The right-hand side value
is not multiplied by 1000.

N should be zero.

General Register Values When Execute Instructicn is Performed:

262

KWSCAN

Right-Hand Type

Literal (1)

FDname (2)

Characters (3)

MTS Line Number (4)

Hex number (5)

Initial Substring
Literal (6)

No Right-Hand
Side (7)

Ignore (8)

Characters in
Given Set (9)

Register Contents

GR1: Length-1 of the right-hand side
string.

GR2: Address of the first character
of the string.

GR2: FDUB pointer for the right-hand
side FDname.

As for type 1.

GR2: Value of the number times 1000,
and as altered by any
operations in the matching
right-hand table entry.

GR2: The hex number, right justified.

As for type 1.

No registers are set up.

No instruction is executed.

As for type 1.



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Characters Except As for type 1.
in Given Set (10)

Optionally Negated As for type 1, but any negating prefix
Characters (11) is not indicated.

Optionally Negated As for type 11.
Literal (12)

Optionally Negated As for type 11.
Initial Substring
Literal (13)

Delimited Character As for type 1, except that the string
String (14) delimiting characters are not
indicated.

Integer Number (15) GR2: Value of the number as altered
by the right-hand table

operations.
Flagged Hex GR2: Value of the hex number, right-
Number (16) justified.
Floating-Point FRO: Value of the right-hand side as
Number (17) altered by the right-hand table
operations.
PAR Field (18) As for type 1.

In addition, GE3 always contains a logical index into the
left-hand table +to indicate which entry matched the
keyword expression's left-hand side. The index is in the
form of 4*(ordinal position - 1) of the entry in the
left-hand table. GR15 contains the address of the
executed instruction in the execute table.

The remaining Tregisters are set to their values at the
time of the subroutine call (see "Subroutine Options",
bits 20-22, for possible exceptions to this). Any regis-
ters in the GR1-GR2 range unused by a right-hand side type
are not restored to their values at the time of the
subroutine call.

Subroutine Options:

The bits of the fullword indicated by the sws parameter
define the subroutine behavior options. The bits and
their associated effects are given below.

KWSCAN 263



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Bit # Value

15 1
16-17 11
01
00
18 1

264 KWSCAN

Octcker 1976

Effect

Rather than 1leaving the pertinent right-
hand side values in the general registers
and executing a single instruction in the
execute table, the ext parameter is inter-
preted as the address of a subrcutine which
is passed the register contents as parame-
ters. The subroutine should obey 0S type I
(S) calling conventions. The parameters
passed consist of:

1 word - sum of left- and right-hand table
execute indices,

1 word - GR1 contents,

1 word - either contents of GR2 if not an
address, or address of the first
element of an array containing the
information indicated by GR2 if it
is,

1 word - GR3 value,

1 word - GRY4 value (see bit 22, below),

1 word - GR5 value (see bit 23, belcw).

A return code of 0 from +this subroutine
will cause the keyword match to be
accepted; 4 will cause the match to be
rejected; 8 will cause the scan for key-
words to be aborted.

Spelling correction of left-hand sides is
performed (see the description of the
SPELLCHK subroutine in this volume). Veri-
fication of the correction is requested if
the subroutine is being invoked in ccnver-
sational mode. If in batch mode, the
correction is never performed.

Spelling correction is performed as above,
but no verification is requested, only a
warning message is issued.

No spelling correction is attempted.

The return vector indicated by the rvec
parameter is formatted in the following
manner: .

1 word - error code, listed below,
26 words - variable information, dependent
upon error code:



October 1976

19

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Code Significance and Information Returned

1 WCANCEL" given in response to
prompt for corrective input. No
further information is returned.

2 Invalid keyword expression.
Information returned:

1 word - address of first char.
in invalid expressicn,

1 word - length of bad expression,

1 word - length of error comment
pertaining to bad
expression,

23 words - text of error comment.

3 Keyword processing aborted by
execute code return. No further
information returned.

10 Invalid right-hand side type in
right-hand table. The address of
the invalid entry is returned.

11 Invalid format of right-hand table
entry. The address of the
invalidly formatted entry is
returned.

12 Invalid format of separator list.
The address of the invalidly
formatted entry is returned.

30 Internal error.

31 Internal error.

The return vector indicated by the rvec
parameter 1is formatted in the fcllowing
manner:

1 word - address of invalid keyword
expression,

1 word - length of error comment,

25 words - text of error comment.

This format is only used if an erroneous
keyword expression is encountered. In all
other cases, no information is returned.

Keyword expression left-hand sides may be
parenthesized (e.g., keyword expressions of
the form (EXP1,EXP2,...,EXPN)=value are
processed as being equivalent to EXP1=
value,EXP2=value,..., EXPN=value).

Keyword expression left-hand sides are not
processed specially if parenthesized.

KWSCAN 265



266

O8]

: SYSTEM SUBROUTINE DESCRIPTIONS

KWSCAN

20-21

22

e

01

00

October 1976

The slist parameter indicates a special set

strings which separate keyword expression

left- and right-hand sides, in lieu of the

standard "=" (e.g., "<-" could be defined

as a separator, making exXfpressions

"LHSide<-value" valid). The format of the

slist set is:

1 byte - number of separators to be
defined,

(1 byte - length of separator,

N bytes - text of separator) repeated for
each separator.

If this option is selected, at the time the
executed instruction is performed, GR5 con-
tains an indicator of which separator was
found in the keyword expression, in the
torm of 4% (separator's ordinal position in
the list) with 0 indicating that no separa-
tor was found (i.e., a degenerate keyword
expression) .

The slist parameter need not be specified,
but a relational set of separators are used
as if the slist parameter had specified

H>»=n ng=mn no=n m>n men n=n
> ' < 7 r > I < L

in the presented order. GR5 is also set up
as described above.
Only "=" is a valid separator character.

The dlist parameter indicates a set of
single <characters to be considered as de-
limiting characters in keyword expressions.
Additionally, a context is defined with
each character, specifying a context in
which the character is to be considered a
delimiter. The format of the set is:

1 byte - number of delimiters to be defined
(1 byte - delimiter character,
1 byte - context: 0 for balanced
parenthesis context,
1 for all contexts),
repeated for each delimiter
defined in the set.

If this option is selected, at the time the
executed instruction is performed, GR4 con-
tains the address of the right side delimi-
ter character in the keyword expression.

The only valid delimiters are the blank in



October 1976

23

24

25

26

27

28

29

30

31

1
0

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

all contexts, and the comma when not nested
inside parentheses.

Keyword 1left-hand sides may be given as
initial substrings of the left-hand side
texts defined in the left-hand table.
Keyword Jleft-hand sides must be rresented
exactly as in the left-hand table.

The contents of the text parameter will be
updated to indicate the delimiter at the
end of the last keyword processed.

text is not updated.

Reserved; should be zero.

Convert all keyword input to wuppercase,
including prompt dinput. Translation to
uppercase and subsequent processing is per-
formed upon a copy of the input +text, not
the input text itself.
leave all input as is.

In the left-hand +table, the right-hand
table and execute table indices occupy 2
bytes.

The above entries occupy 1 byte.

Return to the calling program on the first
invalid keyword expression encountered.

Prompt user for «corrections if invalid
expressions are found.
Do not prompt user for correction.

Print error comments on *MSINK*.
Do not print error comments, return them in
the rvec return vector.

Process all keyword expressions until the
input string is exhausted.
Process a single keyword expression only.

The remaining bits should be zero.

KWSCAN 267



MTS 3:

Exampies:

268

KWSCAN

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

A series of examples are presented, in increasing order of

compl

exity.

The first example mimics the processing of

some of the options of the MTS $SET command, namely:

* O O 3%

LHT

RHT
ENDF

LIBS

SHFS

TIME

RF

LHTL

EXT
ENDFE

LIBSE

SHFSE

TIMEE
RFE

ENDFILE=ON, ENDFILE=0FF, ENDFILE=NEVER
LIBSRCH=0OFF, LIBSRCH=FDname

SHFSEP=c
TIMNE=XXXX,

TIME=xxxXx5, TIME=xxxxM

RF=<hex number>, RF=GRxx

CALL

EQU
DC
DC
DC
DC
DC
EQU
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
bC
DC
DC
DC

EQU
MVI
MVI
MVI
XcC
ST
Mvc
5T
ST

KWSCAN, (LHTL,LHT ,EXT,STR,RHT,STRL,SWS,0)

Since SWS does not select the options requiring the
DLIST and SLIST parameters, they need not be given.

-

AL1 (ENDF-RHT, ENDFE-EXT, 7) ,C'ENDFILE"
AL1 (LIBS-RHT,LIBSE-EXT,7) ,C'1LIBSRCH"
AL1 (SHFS-RHT ,SHFSE-EXT,6) ,C'SHFSEP"
AL1 (TIME-RHT ,TIMEE-EXT, 4) ,C' TIME"
AL1 (RF-RHT,RFE-EXT,2),C'RF'

*

AL1(1,0,2) ,C'ON'  ENDFILE=ON
AL1(1,4,3) ,C'OFF' ENDFILE=OFF
AL1(1,8,5) ,C'NEVER' ENDFILE=NEVER
X'FF!

AL1(1,0,3) ,C'OFF' LIBSRCH=OFF

aL1(2,6,1),C'N! LIBSRCH=<FDname>
X'FF!

AL1(3,0,2,1,1) SHFSEP=c

X'FF!

AL1(4,0,15)

C'>'",FL4'0! Make sure it's >0
C'M',FL4'60" TIME=xxxM

C's',FL4"'1? TIME=XXxXS
C'*!',FL4y"'768! Convert to timer units
c'/',FL4'10"

X'FF!

AL1(5,0,0) RF=XXXXXXXX
AL1(6,4,2) ,C'GR! RF=GRxX

XVFPR

Y (RHT-LHT)

*

ENDFF, 1 Set ENDFILE type code
ENDFF, 2

ENDFF,0

FDUB,FDUB Zero FDUB signifies OFF
GR2 ,FDUB Save fdub

SHFSEP (1) ,0 (GR2) Save new SHFSEP char
GR2,TIMEVAL Save TIME value
GR2,RFVAL Save hex value



October 1976

#

SWS

%

e

ENDFF
SHFSEP
STR
STRL
FDUB
TIMEVAL
RFVAL

BAL

CH
BNH
CH
BH

BR

DC

DS
Ds
DS
DS
DS
DS
DS

MTS

GR15,*+4

GR1,=H'1"
2(,GR15)
GR1,=H'3"
Z (,GR15)

Now can process value

3: SYSTEM SUBROUTINE DESCRIPTIONS

Make this a subroutine
for GRXxX case

-> no xx piece
-> more than just xx

(much omitted here)

GR15

XL4'0000c027" Correct spelling, print,
prompt, multiple
keywords, uppercase

X

Cc

CL80

H

A

F

A

KWSCAN 269



MTS 5: SYSTEM SUBROUTINE DESCEKIPTIONS

October 1976

Right-Hand Table Index

1) L] L] L] a
> 1 | 0 | 2 | ON |
(Base for ENDFILE Table) [ } t t 1
I 1 | 41 | 3 | OFF |
I F—+— t i
I 1 | 8/ | 5 | NEVER |
L | 1 i 1 ]
L} L] Ll
| FF | |
t—— | Right-Hand Table
|
|
Execute Table Index #2 (+4) |
i |

MVI ENDFF,1 Execute Inst. for ENDFILE=0ON

[ ——— ————— —— — ———— T — — — ——— —— —— ——— —
—l e —— i —— — — — —— —— —— T — — — —— — — — — —
—— —— — -

L 1
| |
+ i
p—————>| MV1 ENDFF,2 | Execute Inst. for ENDFILE=OQFF
| I 1
| | MVI ENDFF,0 | Execute Inst. for ENDFILE=NEVER
I L ]
| Execute Table
l
|
| Execute Table Index #1 (Base for ENDFILE Table)
|
|
T T 'i' L L] L}
>| I I | 7 | ENDFILE |
| {1 L 1 i J
L ] LR ) L]
| | | 7 | LIBSRCH |
¢ 1 t t i
| I | 6 | SHFSEP |
= Il i L i
LI T L) i g L}
| I | 4 | TIME |
L l L i ]
L 1 L) 1 L]
| | | 2 | RF |
L i 1 A1 ¥ |

Left-Hand Table

The diagram above illustrates the resultant processing for ENDFILE=OFF.

270 KWSCAN



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

The

second example draws from the MTS S$FILESTATUS command.

pProcesses:

NAME=filename, filename

HEADING=ON, HEADING=0OFF, HEAD, NOHEAD
OUTFORM=COL..., OUTFORM=KEY..., OUTFORM=LABEL.. .,
OUTFORM=PACK..., COL..., KEY..., LABEL..., PACK...
SIZE>=x, SIZE<=x, SIZE=x, SIZE<x, SIZE>x,
SIZE>=xP, SIZE<=xP, SIZE=xP, SIZE<xP, SIZE>XP

(This is a small subset of the parameters of the
$FILESTATUS command) -

MVI NAMEF, 0 Initialize flag

TRYAGAIN CALL KWSCAN, (LHTL,LHT,EXT,STR,RHT,STRL,SWS,RVEC)

LHTL

LHT

RHT
HEAD

SIZE

NAME

JUNK
OUTF

LTR GR15,GR15

BZ 0K -> All ok

CLC =F'1' ,RVEC

BE ABORT -> User said to CANCEL it
CLC =F'3',RVEC

BNE VERYBAD -> Unexpected return code
SERCOM 'TRY AGAIN.'

B TRYAGAIN =-> Sic

DC Y (RHT-LHT) Length of left-hand table
EQU *

DC AL1 (JUNK-RHT,0,7) ,C'OUTFORM'

DC AL1 (HEAD-RHT,HEADE-EXT,7) ,C"HEADING'

DC AL1(NAME-RHT, NAMEE-EXT,4) ,C'NAME'

DC AL1(SIZE-RHT,SIZEE-EXT,4) ,C'SIZE"

DC AL1(JUNK-RHT,0,0) Null left-hand side

EQU *

DC X'FC',AL1 (1,6) only let through "=n

DC AL1(1,0,2) ,C'ON! HEADING=ON

DC AL1(1,4,3),C'OFF HEADING=OFF

DC X'FF!

DC X'FC',AL1(5,1,2,4,5,6) Don't let null left-
hand sides or SIZE-~=XXX
through here

DC AL1(4,0,5) SIZE (>=,%<=,2,<,=) XxXxP
DC C'P',FLU4' 1!
DC X'FF!
DC X'FC',AL1(1,6) Only let through "="
DC AL1(3,0,2,1,717) NAME=<1 to 17 characters>
DC X'FF!
EQU *
DC X'FC',AL1(2,0,6) Only let through "=" and
degenerates
DC AL1(6,0UTFE-EXT, 3) ,C'COL' OUTFORM=COL
or COL

DC AL1(6,0UTFE-EXT+4,3) ,C'KEY' OUTFORM=KEY

KWSCAN

it

271



MTS 3

EXT
HEADE

NAMEE

FILEN
SIZEE

OUTFE

HEADF
NAMEF
FILEN
RELAT
SIZEV
FORMF
STR
STRL
SHWS

272

: SYSTEM SUBROUTINE DESCRIPTIONS

DC
DC
DC
DC

DC
DC

EQU
MVI
MVI
BAL
TH
BO
oI
EX
BR
VvC MVC
BAL
STC
ST
BR
MVI
MVI
HVI
MvI

DS
DS
AME DS
ION DS
AL DS
Ds
DC
DC
DC

DS

KWSCAN

or KEY
AL1(6,0UTFE-EXT+8,5) ,C'LABEL' OUTFORM=LABEL
or LABEL
AL1 (6 ,0UTFE-EXT+12,4) ,C'PACK' OUTFORM=PACK
or PACK
X'FC',AL1(1,0) Only let null left-hand

side through
AL1(12,HEADE-EXT,S,HEADE-EXT+4) ,C'HEAD'

HEAD or NOHEAD
AL1(3,NAMEE-EXT,2,1,17) <filename>
X'FF!

B

HEADF ,1 Header

HEADF, 0 No header

GR15,*+4 Make this a subroutine
NAMEF, 1 Already have a name?
16 (,GR15) -> Yup, user blew it
NAMEF,1 Remember name was saved
GR1,FILEMVC Save name

GR15 -> To KWSCAN
FILENAME(O) ,0 (GR2)

GR15, *+4 Make this a subroutine
GR5,RELATION Save relational character
GR2,SIZEVAL Save size value

GR15 -> To KWSCAN

FORMF,0 Select heading format
FORHMF ,1

FORMF, 2

FORMF, 3

X

X

CL17

X

F

X

CL80'OUTFORM=COL,JUNK,SIZE>5P, NOHEAD'

H'80'

X'0000EB27" Correct spelling, RVEC
format, relational
separators, uppercase,
print, prompt, multiple
keywords

27F

Octcber 1976



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

LETGO

SUBKOUTINE DESCRIPTION

To periodically unlock and then relock a file.

*LIBRARY

Calling Sequences:

Description:

Assembly: CALL LETGO, (fdub,howlck,delay)

FORTRAN: CALL LETGO (fdub,howlck,delay)

fdub is the location of a fullword-integer
(INTEGER*4) FDUB-pointer (as returned by the
subroutine GETFD) for the file to be
unlocked.

howlck is the location of a fullword integer indi-
cating how the file is to be relocked each
time after it has been unlocked (see the
description of the second argument for the
subroutine LOCK).

delay is the location of a fullword-integer number
of microseconds (elapsed time) after which
the file will be momentarily unlocked and
then relocked.

Return Codes:

0 Successful return.

4 FDUB-pointer (first argument) is not valid for a
file.

8 Timer interrupt could not be set up (nonzero
return code from the subroutine SETIME).

This subroutine will periodically unlock the specified
file and then immediately attempt to relock it. The MTS
shared-file system first will allow any other jobs, which
are currently waiting, to access the file. This mechanism
provides a convenient methoa whereby a job, which expects
to be reading a shared-file for an extended pericd, can
automatically have the file unlocked periodically, thereby
permitting other jobs to write into the same file. Note
that this procedure is not necessary if all of the jobs
accessing the file are only reading it, since several jobs
may simultaneously read the same file, i.e., several jobs
may simultaneously have the file locked for reading.

LETGO 273



MTS 3:

Example:

274

LETGO

SYSTEM SUBROUTINE DESCKIPTIONS

October 1976

Since this subroutine uses the system timer interrupt
subroutines (SETIME and TIMNTRP) which will not dinterrupt
a pending input/output operation, the file will not be
periodically unlocked during an I/O operation. If a timer
interrupt becomes pending during an I/0 operaticn, the
file will be unlocked and relocked upon completicn of the
operation. Thus, the file will not be periodically
unlocked, for example, during the time a program is
waiting for input from a terminal.

LETGO will stop unlocking and relocking the file as soon
as the FDUB has been released (the subroutine FREEFD

called).

Assembly: LA 1,=C'DATABASE '
CALL GETFD
ST 0,FDUB
CALL LETGO, (FDUB,READ,TIME)

FDUB DS A FDUB-pointer
READ DC F'1! Lock for read
TIME DC F'3000000" 3 seconds

This example will unlock the file DATABASE every 3 seconds
and then relock it for reading. This would allow sone
other job, for example, to lock it for modification
occasionally (every 3 seconds of elapsed time).



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

LINK, LINKF

SUBROUTINE DESCRIPTION

Purpose: To effect the dynamic loading and execution of a fprogram.
Location: Resident System

Calling Sequences:

Assembly: CALL LINK, (input,info,parlist,errexit,output,
lsw,gtsp,frsp,pnt)

FORTRAN: CALL LINKF (input,info,parlist,errexit,output,
lsw,gtsp,frsp,pnt)

Parameters:

input is the location of an input specifier to be
used during loading to read loader records.
An input specifier may be one of the
following:

(1) an FDname terminated by a blank.

(2) a FDUB-pointer (as returned by GETFD).

(3) an 8-character logical I/0 wunit name,
left-justified with trailing blanks. In
this case, bit 8 in info must be 1.

(4) a fullword-integer logical I/0 unit num-
ber (0-19).

(5) the address of an infput subroutine to be
called during loading via a READ subrou-
tine «calling sequence to read loader
records (i.e., the input subroutine is
called with a parameter list identical
to the system subroutine READ). In this
case, bit 9 in info must be 1.

info is the location of an optional information
vector. No information is passed if info is

0 or if info is the location of a fullword

integer O. The format of the information

vector is as follows:

(1) a halfword of LINK control bits defined
as follows:

(2% bit 0: 1, if errexit is specified.

¥ bit 1: 1, if output is specified.
37 bit 2: 1, if lsw is specified.

LINK, LINKF 275



T8 33

276

ywfe (1)

mf=(2)

SYSTEM SUBROUTINE DESCEIPTIONS

October 1976

& bit 3: 1, if gtsp is specified.
®bit U4: 1, if frsp is specified.
4 bit 5: 1, if pnt is specified.
Z ¢bits 6-7: 0
=Bt 8% 1, if input is the location of
a logical I/0 unit name.
bit 9: 1, if input is the location of
an input subroutine address.
bit 10: 1, if output is the location of
a logical I/0 unit name.
bat 11: 1, if output is the location of
an output subroutine
address.

Y bit 12: 1, if the program to be loaded
is to be merged with the
program previously loaded.

4' bit 13: 1, to suppress prompting at a
terminal.

Z bit 14: 1, to force allocation of a new
loader symbol table.

[ bit 15: 0

—_—

parlist

LINK, LINKF

(2) a halfword count of the number of
entries in the following initial ESD
list.

(3) a variable-length initial ESD list, each
entry of which consists of a fullword-
aligned 8-character symbol followed by a
fullword value.

is the location of a parameter 1list to be
passed in GR1 to the program being linked to.

(optional) is the location of an error-exit
subroutine address to be called if an error
occurs while attempting to link to the speci-
fied progran. If bit 0 of info is 0 (the
default), the errexit parameter 1is ignored
and an error return is made to MTS command
mode. The exit routine will be called via a
standard S-type calling sequence with two

parameters defined as follows:

P1: the location of a fullword-integer error
code defined as follows:

0: attempt to load a null program.

4: fatal 1loading error (bad object
program)

8: undefined symbols referenced by the
loaded program.

12: no available storage index numbers.



October 1976

=
=

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

16: maximum number of link levels
exceeded.

P2: the location of a fullword containing
the loader status word.

If the exit routine returns, LINK will return
to MTS without releasing program storage

(L.e., as if the error exit had not been
taken).

(optional) is the location of an output
specifier to be used during loading to pro-
duce loader output (error messages, map,
etc.). If bit 1 of info is 0 (the default),
the output parameter is ignored and all
loader output is written on the MAP=FDname
specified on the initial $RUN command. An

output specifier may be one of the fcllowing:

(1) an FDname terminated by a blank.

(2) a FDUB-pointer (as returned by GETFD).

(3) an B8-character logical I/0 unit name,
left-justified with trailing blanks. In
this case, bit 10 of info must be 1.

(4) a fullword-integer logical I/0 unit num-
ber (0-19).

(5) the address of an output subroutine to
be called during loading via the SPRINT
subroutine calling sequence to write
loader output (i.e., the output subrou-
tine 1s called with a parameter list
identical to the system subroutine
SPRINT) . In this case, bit 11 of info
must be 1.

(optional) is the location of a fullword of
loader control bits. If bit 2 cf info is 0
(the default), the lsw parameter is ignored

and the global HMTS settings are used. The
loader control bits are defined as focllows:

bits 0-23: 0

bit 24: 1, to suppress the pseudo-register
map-

bit 25: 1, to suppress the predefined symbol
map.

bit 26: 1, to print undefined symbols.

bit 27: 1, to print references to undefined
symbols.

bit 28: 1, to print references to all exter-
nal symbols.

bit 29: 1, to print dotted lines arcund the

LINK, LINKF 277



MTS 3:

Description:

278

LINK,

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

loader map.
bit 30: 1, to print a map.
bit 31: 1, to print nonfatal error messages.

qtsp (optional) is the location of a storage
allocation subroutine to be called during
loading via a GETSPACE calling sequence to
allocate loader work space and program
storage. If bit 3 of info is zero (the
default), GETSPACE is used.

frsp (optional) 1is the location of a storage
deallocation subroutine to be called during
loading via a FREESPAC calling sequence to
release loader work space. If bit 4 of info
is 0 (the default), FREESPAC is used.

pot (optional) is the location of a direct access
subroutine to be called during loading via a
POINT calling sequence while processing
libraries in sequential files. If bit 5 of
info is 0 (the default), POINT is used.

Values Returned:
None.

LINK provides a method for dynamically loading and execut-
ing a program. LINK provides this facility as follows:

(1) The 1loader is called to dynamically 1load the
specified program using input, info, output, 1su,
gtsp, frsp, and pnt if specified.

(2) The dynamically loaded program is called with the
address of parlist in GR1.

(3) If the dynamically loaded program returns to LINK,
it is unloaded.

(4) LINK returns to the calling program preserving the
return registers of the dynamically executed
programa.

Note that LINK accepts a variable-length parameter list of
three to eight arguments. For most applications, only the
first three are required.

FORTRAN programs (or programs that use the FORTRAN I/O
library) that dynamically load other FORTRAN programs (or
programs using the FORTRAN I/0 library) should use the
alternate entry point LINKF. LINKF is required to fprovide
the dynamically loaded program with a FORTRAN I/0 environ-
ment consistent with the "merge" bit specified din info.
If the merge bit is 1, the dynamically loaded program will
have the same I/0 environment as the calling program. If

LINKF



October 1976

Example:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

the merge bit is 0, the dynamically loaded program will
have a separate, reinitialized I/0 environment. Both
FORTRAN main programs and subroutines can be dynamically
loaded using LINKF. However, the effect of executing a
STOP statement from a dynamically loaded subroutine will
depend on the setting of the merge bit. If the merge bit
is 1, a return is made to the «calling program; if the
merge bit is 0, a return is made to MTS.

Because the rate structure for use of MTS includes a
charge for allocated virtual memory integrated over CPU
time, the cost of running a large software package in MTS
can often be reduced by dynamically loading and executing
seldom-used subroutines via a call to LINK. Such savings
in the storage integral must be weighed against the
additional CPU time required to open a second file,
reinvoke the loader, and rescan the required libraries.

The user also should see the sections "The Dynamic Loader"
and "virtual Memory Management" in MTS Volume 5. In
particular, these sections describe the use of initial ESD
lists, merging with previously loaded programs, and the
relationship between LINK, LOAD, and A{CTL storage
management.

FORTRAN: INTEGER*2 PAR (4)
INTEGER*4 ADROF
DATA PAR/6,'PF','IL','E '/
CALL LINKF ('*CCQUEUE ',0,ADROF (PAR))
END

The above FORTKAN program is equivalent to issuing the MTS
command "$RUN *CCQUEUE PAR=PFILE".

Assembly: CALL LINK, (INPUT,INFO,PAR,ERRX,OUTPT,LSW)

ERROR STM 14,12,12(13)

INPUT DC  C'MYLIB !
INFO DS OF
DC  XL2'EOOC!'
DC  H'1!
DC CL8'GETDATA',F'0'
PAR DC A (0)
ERRX DC A (ERROR)
OUTPT DC  C'=MAP
LSW DC A (X'02')

The above assembly language program will dynamically load

and execute the routine GETDATA from the private library
MYLIB. The initial ESD 1list is required to force the

LINK, LINKF 279



MTS 3:

280

LINK,

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

symbol GETDATA to be initially undefined so that it will
be extracted irom MYLIB. The INFO and LSW control bits

specify:
(n
(2)
(3)
(4)

LINKF

GETDATAR is to be merged with currently loaded
programs.

No loader prompting will be done in an attempt to
recover from a loading error.

The statement labeled ERROR is to receive control
if a loading error occurs.

A complete loader map without dots is to be placed
into the file -MAP.



October 1976

Contents:
Location:
Alt. Entry:

Description:

Example:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

A complete table of legal MTS logical I/O unit names.
Resident Systenm

LIOUNS

This table can be used to test the validity of an I/0
device unit name. The first fullword gives the number of
entries in the table. Each entry following is an 8-
character left-justified device unit name.

L  15,=V (LIOUNITS)

L 1,0(15) Get number of entries
LA 15,4 (15) Get address of first entry
LOOP CLC 0(8,15) ,NAME Ccmpare name to table
BE FOUND Branch if legal name
LA 15,8(15) Bump pointer to next entry
BCT 1,L00P Reduce count
. Here, if name is illegal
NAME DC cCL8'12! Left-justified name for unit 12

LIOUNITS 281



MTS 3: SYSTEM SUBROUTINE DESCKIPTIONS

October 1976

282 LIOUNITS



HTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBROUTINE DESCRIPTION

Purpose: To effect the dynamic loading of a program.
Location: Resident System

Calling Sequences:

Assembly: CALL LOAD,(input,info,gﬁﬁifgiysuitches,
rtnlist,output,lsw,gtsp,frsp,ent)

FORTRAN: indx = LOADF (input,info,parkié¥;switches,
rtnlist,output,lsw,gtsp,frsp,pnt)

Parameters:

input is the location of an input specifier to be
used during loading to read loader records.
An input specifier may be one of the
following:

(1) an FDname terminated by a blank.

(2) a FDUB-pointer (as returned by GETFD).

(3) an B8-character logical I/0 unit name,
left-justified with trailing blanks. 1In
this case, bit 8 in info must be 1.

(4) a fullword-integer logical I/O0 unit num-
ber (0-19).

(5) the address of an input subroutine to be
called during loading via a READ subrou-
tine calling sequence to read loader
records (i.e., the input subroutine is
called with a parameter list identical
to the system subroutine READ). 1In this
case, bit 9 in info must be 1.

info is the location of an optional information
vector. No information is passed if ipnfo is
0 or if info is the location of a fullword
integer 0. The format of the information
vector is as follows:

(1) a halfword of LOADF control bits defined as

follows:
bit 0: 1, if rtnlist is to be ignored.
bit 1: 1, if output is specified.

bit 23 1, if lsw is specified.

LOAD, LOADF 283



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

bit 3: 1, if gtsp is specified.

bit 4: 1, if frsp is specified.

bit 5: 1, if pnt is specified.

bits 6-7: 0

bit 8: 1, if input is the location of
a logical I/0 unit name.

bit 9: 1, if input is the location of
an input subroutine address.

bit 10: 1, if output is the location of

bit 11: 1, if output is the location of
an output subroutine
address.

bit 12: 1, if +the program to be loaded
is to be merged with the
program previously lcaded.

bit 13: 1, to suppress prompting at a
terminal.

bit 14: 1, to force allocation of a new
loader symbol table.

hat 458 O

(2) a halfword count of the number of
entries in the following initial ESD
list.

(3) a variable-length initial ESD list, each
entry of which consists of a fullword-
aligned 8-character symbol followed by a
fullword value.

switch 1is the location of a fullword of LOAD control
bits defined as follows:

bits 0-7: the storage index numker to be
used if bit 30 is 1; else,
optionally, +the number of the
segment into which the program is
to be loaded.

bit 8: 1, if rtnlist is to be ignored.

bit 9: 1, if output is specified.

bit 10: 1, if lsw is specified.

bit 11: 1, if gtsp is specified.

bit 12: 1, if frsp is specified.

bit 13: 1, if pnt is specified.

bits 14-19: 0

bit 20: 1, if input is the location o0f a
logical I/0 unit nane.

bit 21: 1, if 4input is the location of an
input subroutine address.

bat 22: 1, if output is the location of a
logical I/0 unit nane.

bit 23: 1, if output is the location of an

output subroutine address.

284 LOAD, LOADF



October 1976

I~
1=

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

bit 24: 0
bit 25: 1, if the program to be loaded is to
be merged with those previously
loaded.
bit 26: 1, to return if a 1loading error
OCCUrLS.
0, to call MTS if a loading error
OCCULS.
bit 27: 1; to suppress prompting at a
terminal.
bit 28: 1, to force allocation of a new
loader symbol table.
bit 29: 0
bait 30: 1, load into system storage (bits
0-7 contain the storage index
number to be used).
bit 31: 0, load at the highest link level;
1, load at the current link level.

is either 0 or the address of an area into
which the loader will place an ESD 1list of
all the symbols in the loader symbol table.

(optional) is the location of a output speci-
fier to be wused during loading toc produce
loader output (error messages, map, etc.).
If bit 1 of info is 0 (the default), the
output parameter is ignored and all loader
output is written on the MAP=FDname specified
on the initial $RUN command. An output
specifier may be one of the following:

(1) an FDname terminated by a blank.

(2) a FDUB-pointer (as returned by GETFD).

(3) an B-character logical I/0O unit name,
left-justified with trailing blanks. In
this case, bit 10 of info must be 1.

(4) a fullword-integer logical I/0 unit num-
ber (0-19).

(5) the address of an output subroutine to
be called during loading via the SPRINT
subroutine c¢alling sequence to wWrite
loader output (i.e., the output subrou-
tine 1is «called with a parameter list
identical to the system subroutine
SPRINT) . In this case, bit 11 of info
must be 1.

(optional) is the location of a fullword of
loader control bits. If bit 2 of info is 0
(the default), the lsw parameter 1is ignored
and the global MTS settings are used. The
loader control bits are defined as fcllows:

LOAD, LOADF 285



MTS 3:

286

LOAD,

grsp

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

bits 0-23: 0

bit 24: 1, to suppress the pseudo-register

map.

bit 25: 1, to suppress the predefined symbol

map.
bit 26: 1, to print undefined symbols.

bit 27: 1, to print references to undefined

symbols.

bit 28: 1, to print references to all exter-

nal symbols.

bit 29: 1, to print dotted lines around the

loader map.
bit 30: to print a map.

bit 31:

r
, to print nonfatal error messages.

(optional) is the location of a storage
allocation subroutine to be called during

loading via a GETSPACE calling sequence

to

allocate loader work space and progran
storage. If bit 3 of info is zero (the

default), GETSPACE is used.

(optional) is the location of a storage
deallocation subroutine to be called during

loading via a FREESPAC calling sequence

to

release loader work space. If bit 4 cf info

is 0 (the default), FREESPAC is used.

(optional) is the location of a direct access

subroutine to be called during loading via

a

POINT calling sequence while processing

libraries in sequential files. If bit 5
info is 0 (the default), POINT is used.

Values Returned:

LOAD:

LOADF

If loading was successful,

GR15 contains the loader-defined entry fpoint,
GRO contains the storage index number used.

If a loading error occurred,

GR15 contains zero,
GRO contains the loader status word, and
GR1 «contains the error code:

Attempt to load a null program.

o FE O
LA T 1)

program.
No available storage index numbers.

-
;8]

of

Fatal loading error (bad object progranm).
Undefined symbols referenced by the loaded



October 1976

Description:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

LOADF: If loading was successful, a positive INTEGER*Y
storage index number is returned as the value of
LOADF. This number is used to uniquely identify

the dynamically loaded program on subsequent calls
to STAKTF and UNLDF.

If a loading error occurred, a negative INTEGER¥*4
error code is returned as the value of LOADF, and
is defined as follows:

-1: Attempt to load a null progranm.

-2: Fatal loading error (bad object program).

-3: Undefined symbols referenced by the loaded
progranm.

-4: No available storage index numbers.

LOAD provides a method for dynamicaily loading a fprogran.
LOAD provides this facility as follows:

(1) The loader 1is called to dynamically load the
specified program using input, info, output, 1lsw,
gtsp, frsp, and pnt if specified.

(2) LOAD returns to the calling program with the
return values described above.

Note that LOAD accepts a variable-length parameter list of
4 to 8 arguments. For most applications, only the first U4
are required. Both info and switches contain LOAD control

bits, some of which are duplicates. In these cases, LOAD
produces a single control bit by ORing the two together.

FORTRAN programs (or programs that use the FORTRAN I/0
library) that dynamically load other FORTRAN programs (or
programs using the FORTRAN I/0 library) should use the
alternate entry point LOADF. LOADF is required to provide
the dynamically loaded program with a FORTRAN I/0 environ-
ment consistent with the "merge"™ bit specified in info.
If the "merge" bit is one, the dynamically loaded program
will have the same I/0 environment as the calling program.
If the "merge" bit is zero, the dynamically loaded program
will have a separate, reinitialized I/0 environment. Both
FORTRAN main programs and subroutines can be dynamically
loaded using LOADF. However, the effect of executing a
STOP statement from a dynamically loaded subroutine will
depend on the setting of the "merge" bit. If the "merge"
bit is 1, a return is made to the calling program; if the
"merge" bit is 0, a return is made to MTS. LOADF returns
an INTEGER*Y4 storage index number used to uniquely identi-
fy the dynamically loaded program on subsequent calls to
STARTF and UNLDF.

Because the rate structure for usage of MTS includes a
charge for allocated virtual memory integrated over CPU

LOAD, LCADF 287



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Example:

288 LOAD,

October 1976

time, the cost of running a large software package in MTS
can often be reduced by dynamically loading and executing
seldom-used subroutines via a call to LOAD. Such savings
in the storage integral must be weighed against the
additional CPU time required to open a second file,
reinvoke the loader, and rescan the required libraries.

The user also should see the sections "The Dynamic Loader"
and "virtual Memory Management" in MTS Volume 5. In
particular, tney describe the use of initial ESD lists,
merging with previously loaded programs, and the relation-
ship between LOAD, LOAD, and XCTL storage manhagement.

FORTRAN: LOGICAL*1 PAR (8)
DATA PAR/'H','I',' ', 'T','H' 'E' 'R', 'E'/
INTEGER SWITCH/Z00800041/
INTEGER*2 LPAR(5) /8/
EQUIVALENCE (LPAR (2),PAR)

ID = LOADF ('FORTOBJ ',0,SWITCH,O)
CALL STARTF (ID,LPAR)
CALL UNLDF(0,ID,0)

The above FORTRAN program dynamically loads the program in
the file FORTOBJ at the highest link level with the
"merge" bit set to 1. Subsequently, the loaded program is
executed via a call to STARTF and unloaded via a call to
UNLDF.

Assembly: CALL LOAD, (NAME,INFO,SWIT,O0)

-

INPUT STM 14,12,12(13)

NAME DC C'*LIBRARY '

INFO DS OF
DC XL2'0',H'2"
DC CL8'SPRINT ',A (INPUT)
DC CL8'PLOT1',F'0"

SWIT DC F'O!

The above example will load the modules defining PLOTI
from *LIBRARY and will intercept any calls they make to
SPRINT. An initial ESD list entry with a value of zero is
interpreted as a request to include that symbol in the
loader tables as referenced, but not defined. Note that
the value returned by register 15 is the entry pcint of
the modules loaded which may or may not be PLOT1. To get
the address of PLOT1, the LOADINFO subroutine may be
called, or the "return ESD list" parameter may be speci-
fied on the call to LOAD.

LOADF



October 1976

Purpose:

Location:

Alt. Entry:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

To return information about an external symbcl or a
virtual memory address.

Resident System

LDINFO

Calling Sequences:

Description:

Assembly: CALL LOADINFO, (type,item,bitsout,regout)

Parameters:

type is the Jlocation of a fullword-integer type
code:
1 = item parameter specifies the name of an
external symbol.
2 = item parameter specifies a virtual memory
address.
3 = iten parameter specifies a fullword-
integer index.
itenm is either the 1location of an 8-character
external symbol (left-justified with trailing
blanks), the location of a fullword virtual
memory address, or the location of a fullword
integer index.
bitsout is the location of a fullword into which
LOADINFO will put output code bits.
reqout 1is the location of a region of 20 fullwords
into which ©LOADINFO will put information
about the symbol or virtual memory address.
This region is cleared to zeros by LOADINFO
before information is inserted.

Return Codes:

0 Successful return.

4 sSymbol or control section not found in loader
tables.

8 Loader tables are not available.

12 Illegal parameter.

The global switch SYMTAB must be ON for this subroutine to

work properly. For a type 1 call, the loader tables are
searched for the symbol specified. For a type 2 call, the
loader tables are searched for information about the

LOADINFO 289



MTS 3:

290

LOADINFO

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

control section containing the specified virtual memory
address. The type 3 call can be used to return all the
information in the loader tables as follows: If the index
specified is mnegative, LOADINFO replaces it with the
number of entries in the loader tables. If the index is
nonnegative, LOADINFO will return the (n+1)th entry in the
loader tables arnd increment the index by 1. Thus, by
setting the index initially to 2zero, and then calling
LOADINFO repeatedly until a nonzero return code is
detected, all the information in the loader tables can be
accessed.

LOADINFO returns the information as follows: The bitsout
word indicates which pieces of information have been
filled in the region regout. Each bit corresponds to a
piece of information. If the bit is set, the correspond-
ing information is given. The bit number and the equiva-
lent integer value of the bit are given as the first two
columns in the table below. The third column indicates
the displacement (in bytes) from the beginning of regout
for the particular piece of information.

Bitsout Regout
Bit Value Displ Contents

31 1 0 External symbol name (left-justified
with trailing blanks).

30 2 8 Address assigned to the symbol.

29 4 12 Relocation factor if csect or common
section.

28 8 16 Length if a csect or common section.

27 16 20 Storage index number.

26 32 24 Symbol type:

1=Entry point

2=Control section
3=Common section
4=Predefined

S=Library entry point
6=Library control section
7=Library common section

25 6u 28 Pseudo-register displacement

24 128 32 Pseudo-register length

23 256 36 Pseudo-register storage index number
22 512 40 Name of the closest entry with a

virtual memory address equal to or
less than the given address

21 1024 48 Address assigned to the wentry named
above.
20 2048 52 Loader-assigned internal name for

private control section.
56-79 Reserved for future expansion.



October 1976

Examples:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

The regout area can be represented in assembler language
with the following dsect (which is available in the public
file *LOADINFODSECT).

INFOAREA DSECT

SYMNAME DS CL8 SYMBOL/CSECT NAME
SYMADDR DS 2 ASSIGNED VM ADDRESS
SYMRF DS F RELOCATION FACTOR
SYMLEN DS 4 LENGTH IF CSECT OR COMMON SECTION
SYMSIN DS 14 STORAGE INDEX NUMBER
SYMTYPE DS F TYPE INFORMATION
PRADDR Ds r ASSIGNED PSEUDO-REG DISPLACEMENT
PRLEN DS F LENGTH OF PSEUDO-REGISTER
PRSIN DS F PSEUDO-REG STORAGE INDEX NUMBER
EPNAME DS CL8 CLOSEST ENTRY POINT NAME
EPADDR DS F VM ADDRESS OF ABOVE ENTRY POINT
PCID DS F PRIVATE CONTROL SECTION ID

DS 6F RESERVED FOR FUTURE EXPANSION

If LOADINFO is «called with a blank external symbol, it
will look only for blank-named common sections and will
fail if there are none (even though there may be blank-
named control sections). If LOADINFO is called with an
external symbol which has been defined at several link
levels, it will return the most recent definition.

FORTRAN: INTEGER*4 TYPE,BITS,REG (20)
DATA TYPE/1/
CALL LDINFO (TYPE,'PLOT1 ',BITS,REG,E98,£99)

The above example calls LOADINFO to get information about
the symbol PLOT1.

Assembly: L1OOP CALL LOADINFO, (TYPE,ITEM,BITS,REG)
LTR 15,15
BNZ DONE

B LOOP

TYPE DC pyan
ITEM DC prgt
BITS DS XL4
REG DS 20A

This example calls LOADINFO repeatedly to get infcrmation

about each symbol in the loader tables. The loop is done
when LOADINFO gives a nonzero return code.

LOADINFO 291



MTS 3: SYSTEM SUBROUTINE DESCEKIPTIONS

Octcber 1976

292 LOADINFO



October 1976

Purpose:

Location:

Alt.

Entry:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

To request that a file be locked in the indicated manner,

i.e., to dynamically restrict access to a file
been permitted to be shared by others.

Resident System

SETLCK

Calling Sequence:

Assembly: CALL LOCK, (unit,howflg,wtflg)

which has

FORTRAN: CALL LOCK (unit,howflg,wtflqg,ércl,érc8,6rc12,

&rcl6,&rc20)
Parameters:

unit is the location of either

(a) a fullword-integer FDUB-pointer

returned by GETFD),

(as

(b) a fullword-integer logical I/0 unit num-

ber (0 through 19), or

(c) a left-justified 8-character logical I/0

unit name (e.g., SCARDS).

howflg is the location of a fullword indicating

to lock the file:
>0 lock for read

how

=0 lock for modification (write, empty,

truncate, etc.)

<0 lock for destroy (rename, permit)

wtflg is the 1location of a fullword

indicating

whether or not to wait i1if the requested
locking is not possible at this time:

<0 wait indefinitely
=0 do not wait

>0 the maximum number of milliseconds

to

wait. If this expires and the file has

not been locked, a return code of 20

be given.

will

rclhd...rc20 are statement labels to transfer to if the

corresponding return codes occur.

Return Codes:

0 The file has been locked in the requested manner.

4 The file does not exist.

LOCK 293



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

8 Hardware error or software inconsistency
encountered.
12 Access appropriate to the 1locking request not
allowed.
16 Locking the file as requested will result din a
deadlock.

20 Locking the file as requested can not be accom-
plished at this time, no wait was requested, or
the wait was interrupted.

Notes:

Any number of jobs can have a file locked for reading
at any given time, but only one job can have a file
locked for modification at any given time and then
only if no job has the file locked for reading, or
locked for destroying. Only one job can have a file
locked for destroying at any given time, and then if
no job has the file open or locked for reading, or
locked for modification.

The three 1locking levels are inclusive in the sense
that locking a file for modification also 1lccks the
file for reading and locking a file for destroying
also locks the file for modification and reading.

The file is always locked as requested in the case
where there is only one FDUB with a locking request
on the file within a job. Thus, if a file is already
locked for modification via a particular FDUB and it
is requested, via the same FDUB, that the file be
locked for reading, the file will be essentially
unlocked for modification and 1left Jlocked for

reading.

If more than one FDUB within a Jjob has a locking
request on the file, the file will be locked at the
level of the highest request.

Description: See Appendix D of the section "Files and Devices" in MTS

Volume 1 for details concerning concurrent use of shared
files.

294 LOCK



October 1976

Examples:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Assembly: CALL LOCK, (UNIT,HOW,WAIT)
UNIT DC Fig" Logical I/0 unit 6
HOW DC P Lock for modification
WAIT DC Fe=14 Wait indefinitely
FORTRAN: INTEGER*4 UNIT

DATA UNIT/6/

CALL LOCK (UNIT,1,-1)
The above examples will lock the file attached to logical

I/0 unit 6 for modification and wait indefinitely if
someone else has the file locked (in any manner).

LOCK 295



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

296 LOCK



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

LODMAP

SUBROUTINE DESCRIPTION

To produce a loader map from the current contents of the
loader tables.

Resident System

Calling Sequences:

Description:

Assembly: CALL 1ODMAP, (unit,bits)
FORTRAN: CALL LODMAP (unit,bits)
Parameters:

unit is the location of either
(a) a FDUB-pointer (as returned by GETFD),
(b) a fullword-integer 1logical I/0 unit number
(0 through 19), or
(c) a left-justified B8-character logical 1I/0
unit name (e.g., SPRINT).
This specifies where the loader map is to be
written.
bits is the location of a fullword of switches
defined as follows:

bits 0-23: zero
bit 24: one to suppress pseudo-registers
25: one to suppress predefined symbcls
26: one to print undefined symbols
27: one to print undefined xrefs
28: zero
z9: one to print dotted lines
30: one to print entry point names
31: =zero

Return Codes:

0 Successful return.
4 Illegal unit parameter specified.
8 Loader tables not available.

The current contents of the loader tables will be used to
produce a loader map under the control of the switches
specified. If the global SYMTAB switch is OFF, the loader
tables will not be available, generating a return code of
B.

LODMAP 297



MTS 3: SYSTEM SUBROUTINE DESCEKIPTIONS

October 1976

Examples: Assembly: CALL LODMAP, (UNIT,BITS)
LTR 15,15
BNZ NOMAP

DS OF

BITS DC XL3'0',X'cCe!
UNIT DC CLB8'SERCON'

This example will produce a partial loader map on the
logical I/0 unit SERCOM.

FORTRAN: INTEGER UNIT/2/,BITS/6/

-

CALL LODMAP (UNIT,BITS,&98,899)

This example will produce a loader map with dotted lines
on logical I/0 unit 2.

298 LODMAP



October 1976

Purpose:

Location:

Entry Points:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Logical Operators

SUBROUTINE DESCRIPTION

To make the following System/360/370 machine
directly available to the FORTRAN user: MVC,
XC, TR, TRT, ED, and EDMK.

*LIBRARY

instructions
CLC, NC, 0C;

iMvc, I1ICLC, INC, IOC, IXC, ITR, ITRT, IED, and IEDMK.

Calling Sequences:

FORTRAN:

HHHHHHHHH
L | { I | A 1

Parameters:

len is the integer length in bytes.

= IMVC(len,basel1,displi,base2,displ2)

ICLC (len,base1,displi1,base2,displ2)

INC (len,basel1,displ1,base2,displ2)

I0C (len,basel,displl,base2,displ2)

1XC (len,base1,displi1,base2,displ?2)

1TR (len,basel1,displi,base2,displ2)

1TRT (len,basel1,displil,base2,displ2,dr,£fhb)
1ED (len,basel1,displl,base2,displ2)

1EDMK (len,basel1,displi1,base2,displ2,dr)

No restrict-

ion 1is placed on the size of len. An error

message will be generated if len

< 0; or, for

the entries IED or IEDMK, if len > 256.

el is the base location of the first operand.
Pl1l is the integer displacement in bytes for the

first operand. No restriction is placed on

base2 is the base location of the second operand.

displ2 1is the integer displacement in bytes for the
second operand. No restriction is placed on

ar is an integer return parameter for ITRT and
IEDMK only. For ITRT, 4dr will contain the

displacement in bytes from the

beginning of

the argument list (basel+displl), to the

argument corresponding to the first nonzero
function byte (if any). For IEDMK, dr will
contain the displacement in bytes from the
beginning of the source (base2+displ?2), to
the result character, whenever the latter is

a zoned source digit and the

significance

indicator was off before the examination. 1In

both cases, dr will be set to

zero 1if the

Logical Operators 299



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Description:

Octoker 1976

resulting condition code is zero.

is an optional integer return parameter for
ITRT. When a nonzero function byte is found,
it will be returned in fb as an integer in
the range (0,255); otherwise, £fb will be
ZeIO0.

IFh
[=3

For the description of the machine instructions, =see the
IBM publication, IBM_System/370 Principles_of Operation,
form GA22-7000. These subroutines are coded as integer-
valued functions with the resulting condition code (0, 1,
or 2) as the value.

In the abbreviated descriptions below, the first operand
consists of len bytes beginning at location basel+displi,
and the second operand consists of len bytes beginning at
location basez+displ2. These two operands may overlap in
any manner. For all five of these entry points, [frocess-
ing is carried out left to right one byte at a time. Note
that the result of performing an operation on the first
bytes of the two operands is stored before the. second
bytes are fetched, so that overlap can have a significant
effect on the result.

IMVC - Move the second operand into the first operand
location.

INC - Replace the first operand by the logical product
(AND) of the operands.

I0C - Replace the first operand by the logical sum (OR)
of the operands.

IXC - Replace the first operand by the modulc-two sum
(exclusive OR) of the two operands.

ICLC - Compare the two operands. The operation is termi-

nated as soon as two unequal bytes are found.

The result of an IMVC is always zero. The result of an
INC, IOC, or 1IXC is zero if the result operand is zero,
and one, otherwise. The result of an ICLC is 0, 1, or 2,
depending on whether the first operand is equal to, less
than, or greater than the second operand.

For the ITR and ITRT entries, the first operand ccnsists
of len bytes beginning at location basel+displl, and the
second operand consists of a 256-byte functicn table
beginning at location base2+displ2. These operands may
overlap, but probably not too fruitfully. The ITR entry
translates each byte of the first operand by replacing it
with the corresponding byte for the function table. The
result of an ITR operation is always zero. The ITRT entry
does not <change either operand. Processing the first
operand bytes left to right, the 'corresponding function
byte 1is interrogated. If the function byte is zero, the
processing of the first operand continues. If the func-

300 Logicai Operators



October 1976

Examples:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

tion byte is nonzero, the operation is terminated with the
byte at location basel+displl+dr, and the corresponding
nonzero function byte is available in fb. The result of
the ITRT will be 1 if this byte is not the last byte of
the first operand, and 2 if it is the last byte. If no
nonzero function byte is encountered, the result of an
ITRT will be zero, and dr and fb will be indeterminate.

The complexity of the IED and IEDMK instructions precludes
any short descriptions here.

INTEGER A, B

B = 31

LEN = 4

IR = INC(LEN,A,0,B,0)

The logical AND product of A and B will replace A. In
this case, B = 31, so A will be replaced by (A mod 32).

IR will be set to 0 or 1 depending on whether +the result
in A is zero or nonzero.

INTEGER A (4),B(4),D1,D2
READ 2, (A(I),I=1,4), (B(I),I=1,04)

2 FORMAT (4Ab)
D1 = 8
D2 = 0
iR = ICLC(8,4,D1,B,D2)

This program logically compares the string in A(3), A(4),
to the string im B(1), B(2). IR will be set to 0, 1, or 2
depending on whether the first string is equal toc, less
than or greater than the second string.

Logical Operators 301



MTS 3: SYSTEM SUBROUTINE DESCKIPTIONS

Octcber 1976

302 Logical Operators



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBROUTINE DESCRIPTION

Purpose: To mount magnetic and paper tapes, Audio Response Unit
lines, and connections on the MERIT Computer Network.

Location: Resident System
Calling Sequences:
Assembly: CALL MOUNT, (string,len)
CALL MOUNT, (par)
MOUNT 'string'
FORTRAN: CALL MOUNT (string,len)
CALL MOUNT (par)

Parameters:

string is the location of a character string con-
taining one or more mount requests separated
by semicolons (see the $MOUNT command
description in MTS Volume 1).

len is the location of a halfword (INTEGER*2)
length of string.
pac is the location of a halfword (INTEGER*2)

length of a character string immediately
followed by that character string. The char-
acter string contains one oOr more mount
requests separated by semicolons (see the
$MOUNT command description in MTS Volume 1).

Return Codes:

0 All requests were successfully processed.
4 One or more of the requests could not be
fulfilled.
B The operator or user caused one or more of the
requests to be aborted.
12 System error.

Note: The MOUNT subroutine prints messages on the logi-
cal I/0 unit SERCOM or *MSINK* if SERCOM has not
been assigned. The echoing of mount requests (on
SERCOM or *MSINK*) can be suppressed by the MTS
$SET ECHO=QFF command (or by calling the CUINFO

MOUNT 303



MTS 3:

Examples:

304

MOUNT

SYSTEM SUBROUTINE DESCEIPTIONS

October 1976

subroutine for the ECHOOFF item to perform the
equivalent function).

The complete description for using the MOUNT macro
is given in MTS Volume 14.

Assembly: CALL MOUNT, (STR,LEN)

LEN DC H'28'
STR DC C'POOL 9TP *T*;MNET *NET* D=MS!'

MOUNT 'POOL 9TP *T*;MNET *NET* D=MS'

FORTRAN: INTEGER*2 LEN

LEN=28
CALL MOUNT ('POOL 9TP *TI*;MNET *NET* D=MS',LEN)

The above three examples call MOUNT to mount a 9-track
pool tape with pseudo-device name *T* and a MERIT connec-
tion to Michigan State University with pseudo-device name
*NET*. The first assembly example uses the CALL macro and
the second uses the MOUNT macro.



October 1976

Purpose:

Location:

Alt. Entry:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

MIS

SUBKOUTINE DESCRIPTION

To suspend execution of a program and return to MTS
command mode. Issuing a $RESTART command will cause
execution of the program to resume by causing a «return
from the MTS subroutine call.

Resident System

MTS#

Calling Sequences:

Assembly: CALL MTS
or
MTS
FORTRAN: CALL MTS
PL/I: CALL MTS;
Return Codes:
None

Note: The complete description for using the MTS macro
is given in MTS Volume 14.

MTS 305



#TS 2: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

306 MTS



October 1976

Purpose:

Location:

Alt. Entry:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

ISCHMD
SUBROUTINE DESCRIPTION

To suspend execution of a program, return to MTS command
mode, and feed a character string to the MTS command
interpreter.

Resident Systenm

MTSCHMD #

Calling Sequence:

Description:

Assembly: CALL MTSCHMD, (locn,length)
or
MTSCMD locn[ ,length]
FORTRAN: CALL KTSCHMD (locn,length)

Parameters:

locn is the location of a character string con-
taining a command.

length is the location of the length of the charac-
ter string expressed as either a fullword
(INTEGER*4) or a halfword (INTEGER*2). If
length is a fullword-aligned address and the
first two bytes so specified are zero, it is
assumed length specifies a fullword integer.
Otherwise, length is taken as halfword.

Return codes:

The subroutine does not return except as described
below.

Note: The complete description for using the MTSCHMD
macro is given in MTS Volume 14.

This subroutine does a return to MTS, as does the
subroutine MTS, but in addition gives it a character
string to 1interpret as a command. If a $RESTART command
is issued before the next $RUN, $RERUN, $LOAD, or $DEBUG
command, the subroutine will "return," i.e., the progranm
calling MTSCMD will restart following the subroutine call.

MTSCMD 307



TS Z: SYSTEM SUBROUTINE DESCKIPTIONS

October 1976

Examples: FORTRAN: CALL WMTSCMD (*$SRESTART SPRINT=*DUMMY* ', 24)

Assembly: CALL nTSCHMD, (INREG,INLEN)

INREG DC C'$RESTART SPRINT=*DUMMY* !
INLEN DC F'2y!

MNTSCMD 'SRESTART SPRINT=*DUMMY* '
The above three examples call MNTSCMD to reassign the
logical I/0 wunit SPRINT to *DUMMY*. The first assembly

example uses the CALL macro and the second uses the MTSCMD
macro.

308 MTSCHMD



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBROUTINE DESCRIPTION

Purpose: To "remember" the values of the logical pcinters for a
sequential file. This information is used by the POINT
subroutine to change the values of the logical rpointers.

Location: Resident Systen
Alt. Entry: NOTE #
Calling Sequences:
Assembly: CALL NOTE, (unit,info)

FORTRAN: CALL NOTE (unit,info,&rcl,&rc8,&rcl12,6rc16,86rc20,
&rc2l ,&rc28)

Parameters:

unit is the location of either
(a) a fullword-integer FDUB-pointer (as returned
by GETFD),
(b) a fullword-integer logical I/O unit number
(0O through 19), or
(c) a left-justified B8-character 1logical I/0
unit name (e.g., SCARDS).
info is the location of a region of four fullwords
into which the NOTE subroutine will return the
values of the Read, Write, and Last Pointers, as
well as the the last line number respectively
for the sequential file pointed to by unit.
rcl,...,rc24 are the statement labels to transfer to
if a nonzero return code is encountered.

Return Codes:

Successful return.

Illegal FDUB-pointer specified.

Illegal parameter specified.

Read or write access not allowed.

Locking the file for reading will result in a

deadlock.

20 Hardware error or software inconsistency
encountered.

24 Automatic wait for (shared) file was interrupted.

D FEO

—

Note: The Read and Write Pointers have values which
point to the next line to be read or written.

NOTE 309



MTS 3:

Description:

Examples:

310

NOTE

SYSTEM SUBROUTINE DESCEIPTIONS

October 1976

See Appendix B of the section "Files and Devices" in MTS
Volume 1 for details concerning using sequential files
with the NOTE and POINT subroutines.

Assembly: CALL NOTE, (UNIT,INFO)

UNIT DC F'e!
INFO DS 4F

FORTRAN: INTEGER*4 UNIT,INFO (4)
DATA UNIT/6/

CALL NOTE (UNIT,INFO)

The above examples will call NOTE for the sequential file
attached to logical I/0 unit 6.



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBROUTINE DESCRIPTION

Purpose: To convert the 0S date (¥YYddd) to the corresponding
Gregorian date (MM/DD/YY).

Location: *LIBRARY

Calling Sequences:

Assembly: CALL OSGRDT, (osdat,grgdat)
FORTRAN: CALL OSGRDT (osdat,grgdat)

REAL*8 OSGRDT
date=0SGRDT (osdat,grgdat)

PL/I: CALL PLCALL (OSGRDT,f2,o0sdat, grgdat) ;

DCL PLCALLD RETURNS (FLOAT (16)) ;
date=PLCALLD (OSGRDT,f2,0sdat,grgdat) ;

Parameters:

osdat is the 8-byte (REAL#*8 or CHARACTER(8)) O0S
date in the character form "xxx¥YY¥ddd", where
"x" is any character.

grgdat is 8 Dbytes (REAL*8 or CHARACTER(8)) dinto
which +the Gregorian date in the character
form "MM/DD/YY" is placed on return.

f2 is a fullword (FIXED BINARY(31)) containing
the integer 2.

Values Returned:

FRO contains the Gregorian date in the character form
"MM/DD/YYY.

Description: The range of years is assumed to include 1900. The result
for dates prior to 00060 is undefined.

Examples: Assembly: CALL OSGRDT, (OSDAT,GRDAT)

OSDAT DC (5L 71120!
GRDAT DS CL8

OSGRDT 311



MTS 3: SYSTEM SUBROUTINE DESCEKLIPTIONS

October 1976

CALL OSGRDT, (OSDAT,DUMMY)
STD 0,GRDAT

OSDAT DC C'  71120°
DUMMY DS  CL8
GRDAT DS 0D,CL8

The above examples call OSGRDT to convert the 0S5 date
71120 into the corresponding Gregorian date April 30,
1971.

FORTRAN: REAL*8 OSDAT,GRDAT
CALL OSGEDT (OSDAT,GRDAT)

REAL*8 GRDAT,0SGRDT,OSDAT,DUMMY
GRDAT=0SGRDT (OSDAT, DUMMY)

The above examples call OSGRDT to convert the 0S date in
the variable OSDAT into the corresponding Gregorian date.

PL/I: CALL PLCALL (OSGRDT,F2,'  71120',GRDAT) ;
DECLARE OSGRDT ENTRY,
F2 FIXED BINARY (31) INITIAL(2),
GRDAT CHARACTER (8) ;

UNSPEC (GRDAT)=UNSPEC (PLCALLD (OSGRDT,F2,0SDAT,
DUMMY)) ;

DECLARE GRDAT CHARACTER (8) ,
PLCALLD RETURNS (FLOAT (16)),
OSGRDT ENTRY,
F2 FIXED BINARY (31) INITIAL (2),
OSDAT CHARACTER (8) INITIAL(' 71120 ,
DUMMY CHARACTER (8) ;

The above examples call OSGRDT to convert the 0S5 date

71120 into the corresponding Gregorian date April 30,
1971.

312 OSGRDT



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

PERMIT

SUBROUTINE DESCRIPTION

Purpose: To permit a file so that it can be shared by other users.
Location: Resident Systen
Calling Sequences:

Assembly: CALL PERMIT, (what,how,whotyp,wholen,who,info,
wholen2,who2,ercode,errmsq)

FORTRAN: CALL PERMIT (what,how,whotyp,wholen,who,info,
wholenz,who2,ercode,errmsg,rcd)

Parameters:

what is the location of either
(2) a file name with trailing blank (if
info=0),

(b) a fullword-integer FDUB-pointer (such as
returned by GETFD) (if info=1),

(c) a fullword-integer logical I/0 unit num-
ber (0 through 19) (if info=1), or

(d) a left-justified, 8-character logical I/0
unit name (e.g., SCARDS) (if info=1).

is the location of a fullword integer speci-

fying the access. There are six independent

accesses; add the values below for the combi-

nations wanted.

=
(o]
I=

Access Value
Read 1
Write-expand 2
Write-change,empty i
Truncate, renumber 8
Destroy, rename 16
Permit 32
Default 128

Some popular combinations are:

NONE

WRITE

RN

UNLIM 6

w3 o

PERMIT 313



MTS 3: SYSTEM SUBROUTINE DESCEIPTIONS

Octoker 1976

whotyp is the location of a fullword integer whose
value indicates what sort of who is being
specified, as follows:

is a signon ID

is a project number

who is OTHERS

who is ALL

who is ME

who is OWNER

who is program key

who is signon ID and
program key

who is project number

and program key 8

~J oS- w2 Oo

wholen 1is the location of a fullword integer which
specifies the number of <characters in the
signon ID or project number (1 to 4) speci-
fied by who (for whotype=0,1,7, or 8) or the
number of characters in the program key (1 to
13) specified by who (for whotype=6)

who is the location of the 1- to 4-character
signon ID or project number (for whotype=0,1,
7, or 8) or the 1- +to 13-character progranm
key (for whotype=6)

info is the location of a fullword integer that
specifies the kind of what parameter
supplied.

wholen2 is the location of a fullword integer which
specifies the number of characters in the
program key (1 to 13) specified by who2.
This parameter is required only when whotype=
7 or 8.

who2 is the location of the 1- +to 13-character
program key. This parameter is required only
when whotype=7 or 8.

ercode (optional) 1is the location of a fullword in
which the PERMIT subroutine will place an
error number if an error return (return code
4) is made. If this parameter is cmitted,
then the errmsq parameter must also be
omitted. Assembly code users who wish to
omit these parameters should either follow
the variable parameter list convention (high-
order bit of the previous parameter's adcon
in the parameter 1list should be 1) or else
supply an adcon which is =zero (rather than
pointing to a zero).

314 PERMIT



October 1976

rch

Return Codes:

0 The

TS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Error numbers 1less than 100 indicate some-
thing was wrong with either the mechanics of
the subroutine call or the values of the
parameters:

number message

1 ILLEGAL PARAMETER LIST POINTER

2 ILLEGAL "WHAT" PARAMETER ADDRESS

3 ILLEGAL "HOW" PARAMETER ADDRESS

4 "HOW" PARAMETER VALUE NOT 0 TO 63 OR 128
5 ILLEGAL "WHOTYPE" PARAMETER ADDRESS

6 "WHOTYPE" PARAMETER VALUE NOT O TO 8

7 ILLEGAL "WHOLEN" PARAMETER ADDRESS

8 BAD "WHOLEN" PARAMETER VALUE

9 ILLEGAL "WHO" PARAMETER ADDRESS

10 ILLEGAL "INFO" PARAMETER ADDRESS

11 "INFO"™ PARAMETER VALUE NOT 0 TO 1
12 ILLEGAL "WHOLEN2" PARAMETER ADDRESS
13 BAD "WHOLEN2" PARAMETER VALUE

14 ILLEGAL "“WHO2" PARAMETER ADDRESS

15 ILLEGAL PROGRAM KEY

Error numbers between 100 AND 200 describe
errors common to the $PERMIT command:

101 ILLEGAL FILE NAME

102 FILE NOT FOUND - FILE “XXXxv
103 ACCESS NOT ALLOWED TO FILE "XXXx"
(Permit access required to permit a

file.)

104 DEADLOCK SITUATION, TRY LATER - FILE
llxxxxll

105 INTERRUPTED OUT OF WAIT FOR LOCKED FILE
ll'xxxx L]

Error numbers 201 and above indicate a file
system error of some sort.

(optional) is the location of a 20-fullword
(80-character) region in which +the PERMIT
subroutine will place the corresponding error
message if an error return (return cocde 4) is
made. Assembly language users should see the
previous instructions on omitting optional
parameters for the ercode parameter.

is the statement label to transfer to if the
corresponding return code occurs.

file has been permitted in the requested

manner.

PERMIT 315



MTS 3:

Examples:

316

PERMIT

SYSTEM SUBROUTINE DESCKIPTIONS

October 1976

4 Error. The file has not been permitted. See the

% ¥ 4 —_———=a

Assembly: CALL PERMIT, (WHAT,HOW,WHOTYP, WHOLEN,WHO,
INFO,ERCODE, ERRMSG)
WHAT DC C'PROB1DATA !
HOW g P

WHOTYPE DC F'1!
WHOLEN DC F'3!
WHO DC cC'2AA"
INFO DC F'0!
ERCOLE DS F
ERRMSG DS CL80O

FORTRAN : CALL PERMIT ('PROB1DATA ',1,1,3,'2AA',0)
The above examples permit the file PROB1DATA for read

access by all users whose project number begins with the
three characters 2AA.



October 1976

Purpose:

Location:

Alt. Entry:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

PGNTTRP

SUBROUTINE DESCRIPTION

To allow control to be returned to the user on a program
interrupt.

Resident System

PGNTT

Calling Sequences:

Description:

Assembly: LM 0,1,=A(exit,region)
CALL PGNTTRP

Parameters:

GRO should contain zero or the location to transfer
control to if a program interrupt occurs.

GR1 should contain the location of a 72-byte save
region for storing pertinent information.

Return Codes:

None.
Note: FORTRAN users can call this subroutine by using
the RCALL subroutine specifying PGNTT as the entry
point.

A call on the subroutine PGNTTRP sets up a program
interrupt intercept for one interrupt only. The «calling
sequence specities the save region for storing information
and a location to transfer to upon the next occurrence of
a program interrupt. When an interrupt occurs and the
exit is taken, the intercept is cleared so that another
call to PGNTTRP is necessary to intercept the next program
interrupt. When a program interrupt occurs, the exit is
taken in the fcrm of a subroutine call (BALR 14,15 with a
GR13 save region provided) to the location previously
specified. If the exit subroutine returns to MTS (BR 14),
MTS will handle the interrupt as if PGNTTRP had not been
called originally. This feature allows the user to take
brief control of the interrupt before MTS takes complete
control of the interrupt. When MTS takes control of the
interrupt, execution of the program will be terminated and
a message will be printed providing the locaticn of the
interrupt.

PGNTTRP 317



MIS 3:

Example:

318

PGNTTRP

SYSTEM SUBROUTINE DESCRKIPTIONS

October 1976

If GRO is zero on a call to PGNTTRP, the program interrupt
intercept is disabled. GR1 should be zero or point to a
valid save region.

When the program interrupt exit is taken, the first eight
bytes of the save region contain the program interrupt
PSW, and the remainder of the save reqgion contains the
contents of general registers 0 through 15 (in that order)
at the time of the interrupt. The floating-point regis-
ters remain as they were at the time of the interrupt.
GR1 will contain the location of the save region.

If, on a call to PGNTTRP, the first byte of the save
region 1is X'FF', PGNTTKP does not return to the calling
program; rather the right-hand half of the PSW and the
general registers are immediately restored from the save
region and a branch is made to the location specified in
the second word of the region. This type of call on
PGNTTRP, after the first program interrupt exit is taken,
allows the user to set a switch (for example) and to
return to the point at which he was interrupted with the
interrupt intercept again enabled.

In this example, the program interrupt intercept is
enabled for a specified portion of the program. When the
interrupt occurs, a branch will be made to the label EXIT
where a switch will be set marking the interrupt occur-
rencea The 4interrupt intercept will be reenabled by a
second call to PGNTTRP with the FF flag set, and a Ltranch
will be made back to the point where the interrupt
occurred.

LM 0,1,=A (EXIT,REGION)
CALL PGNTTRP The intercept is enabled.

SR 0,0
SR 1,1
CALL PGNTTRP The intercept is disabled.

USING *,15
EXIT oI SW,X'01"
MVI 0(1),X'FF!
LA 0,EXIT
CALL PGNTTRP The intercept is reenabled.

REGION DS 18F
SW DC X'oo"



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

Purpose: To alter the values of any or all of the logical pointers
for a sequential file.

Location: Resident System

Alt. Entry: POINT#
Calling Sequences:
Assembly:

FORTRAN:

CALL POINT, (unit,info,code)

CALL POINT (unit,info,code,&rcl,&rc8,é6rc1z2,6rc16,
&rc20,&rc2l)

Parameters:

unit

is the location of either

(a) a fullword-integer FDUB-pointer (as returned
by GETFD),

(b) a fullword-integer 1logical I/0 unit number
(O through 19), or

(c) a left-justified 8-character 1logical I/0
unit name (e.d., SCARDS).

is the 1location of a region of four fullwords

from which the POINT subroutine will set any or

all of +the logical pointers according to the

value of code. The region contains the pointers

in the same order as returned by the NOTE

subroutine, that is, the Read, Write, and Last

Pointers as well as the last 1line onumber,

respectively.

is the location of a fullword containing a value

from 1 +to 15 indicating which of the 4 logical

pointers should be set. The conventions are as

follows:

Set Read Pointer
Set Write Pointer
Set Last Pointer
Set last line number

o < — R Y

These values should be added for nmultiple
action, i.e., 7 means to set the Read, Write and
Last Pointers only.

rcl,...,cc2l4 are the statement labels to transfer to

if a nonzero return code is encountered.

POINT 319



MTS 3:

Description:

Examples:

320

POINT

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

Return Codes:

Successful return.

Illegal FDUB-pointer specified.

Illegal parameter specified.

Read or write access not allowed.

Locking the file appropriately will result in a

deadlock.

20 Hardware error or software inconsistency
encountered.

24 RAutomatic wait for (shared) file was interrupted.

- =3
oMo E O

Note: If any of the first three values of the region
info are set to zero and the POINT subroutine is
called, the effect will be to reset the indicated
pointers (Read, Write and/or Last depending on the
value of code) to the beginning of the file.

See Appendix B of the section "Files and Devices" in MTS
Volume 1 for details concerning using sequential files
with the NOTE and POINT subroutines.

Assembly: CALL POINT, (UNIT,INFO,CODE)

UNIT DC F'e!
INFO DS 4F
CODE DC F'r7

FORTRAN: INTEGER*Y4 UNIT,INFO (4)
DATA UNIT/6/

CALL POINT(UNIT,INFO,7)

These examples call POINT (assuming that the NOTE subrou-
tine was called previously) for the sequential file
attached to logical I/0 unit 6. The CODE parameter (7)
specifies that the pointers are to be set for Read, Write,
and Last.



October 1976

Purpose:
Location:

Entry Points:

MTS 3: SYSTEM SUBROUTINE DESCRIETIONS

SUBROUTINE DESCRIPTION

To produce plots in the normal output stream.

*LIBRARY

The printer plot routines have the following entry points:
PLOT1, PLOT2, PLOT3, PLOT4, PLOT14, PRCHAR, PREND, PRPLOT,
STPLT1, STPLT2, OMIT, and SETLOG. The standard approach
to produce a plot 1is to call PLOT1, PLOTZ2, PLOT3, and
PLOTY4 in that order. PLOT2 must be called for each plot
to be produced.

Logical I/0 Units Referenced:

Example:

SPRINT - Output from the printer plet routines (the plot).
Note: When the printer is used as the SPRINT
device, a page skip is normally issued by the
user before calling PLOT4 in order to force a
skip to the top of the next page before starting
the plot.

SERCOM - Error messages.

FORTRAN : DIMENSION IMAGE (1500)
DATA BCD/'* '/,NSsc(5)/1,0,3,0,2/
CALL PLOT1(NSC,11,3,11,5)
CALL PLOT2 (IMAGE,1.0,-1.0,1.0,-1.0)
DO 20 I=1,60
DO 20 J=1,40
X = (I-30.)/30.
Y = (J-20.)/20.
IF (X*%2+Y*%2.GT.0.75%%2) GO TO 20
CALL PLOT3(BCD,X,Y,1,4)
20 CONTINUE
CALL PLOT4 (14, 'VERTICAL LABEL')
STOP
END

The above FORTRAN program will produce the plot given on
the following page.

Printer Plot Routines 321



MTS 3:

HerOHAD@E<

[l = B e I

322

1.000

0.800

0.600

0.400

0.200

0.000

-0.200

-0.400

-0.600

-0.800

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

fmmm—— - fmmm—— fmm——— fom——— s Fmmm - —— L e
I A § I I I o I I I I
I 4§ I I I X I f 1 I I %
I I I I I 4 I i § > 1 I I
R ommm o —— o ———— tm———— = tm———— tmmm -t
I I I I E * I 1 I i I
I I I I e s s e o s o 3 o sk o o skl ok I 1 I I
T I I % s sokok sk s dkosk ok o feokok sk ek skokokokok X : I I
FLE—— FEE—— §ommm =k Rk R KR KR R Rk kR KRR e mmmfpmm e mmfmm +
I I I kR ki kR ek ke kkxk I I I
T I T sk o skook ok ok st ok ke sk sk ok ok ok kol ookl ok kok dok T I I
I I s s sk 3k 3 o e s o s e e s f ok ok st el s sk sk sk ol ok 3k s ke ke ke I 1
4omm = mpm = = e ook e ook e ek el e ke ke ko e ek ok ek ke ke K e e e fm e = +
I I ek ke ke ek ko ko e ko ko kg I l
i I e e s s ok ke ok o s ok sk st o ik ok sk sk s ks ol o sk e ok skl ok kol oK I I
I T kiR sk ool sk sk skt ok kol skokokle ok ek ke kokokdeokk T I
el o = = e e s e e s s ek ol ke sl sl sk ke sk ok o seoleok e ek e Aol e KR R KRR A KK m e pmmmm
I T s ookl ok ok ok ok sk ke ook sk ok ok ok ook ok ok ok kol Sk kR Rk kkokok kR kT I
I T koo ookl ook ok sk kokok okl ook skok ok skok ok ok ok kol kaok kR ok kR Rk ok kR T I
e o T kokok oo stk o ke o ol e ke ke ook ok koo ok ok ko ok ok ok kb kkeokokokk ok T I
TS — = 3 s s oo e sk 36 e ok e o ook e e sl ok okl Sk ok Rk R R R KR KRR KRR R K b m mm =
I T stk stk sk skole sk sk sk e oo s kol oo ol ek ok sk s ok ek o skl R kR Rkl Rk ok T T
I T sk s ookt ke sk ok s ook o sk sk skl ook ok ok ok skof ek ok ok ok ok e kokokok ok kT I
I T e dookokok ook ok ok ok sokok ok ok o ok kol ok sk sk sokokok sk skolok ko skokokokokok ok T i
E I 4 = = oo otk o ook e ko ok e stk sk kol ok Ko ok KKK KK KK R KKK KK m e = =
I T skokok skokok ok sk ook ok ok ok ok ok Kok otk kR olololok Solokslkok dokokokokk . T x
I I s e e e ol e s o ol el e el ek ot ol sk s sl sfe sk e ok sk o ke sk ok ke ok o I I
I T st e s ook sk 3 sk e o ofe e e stk ok ok skl o o ok ook ek ke sk sk ok o skok ok ok I I
o s o B T T Ll Lt LR S E LT T 1 T T e ——
I I e e et e s o s s e ke e o e s ke s s ook s ke sk ook ok ok o ek ok o ok Kok I I
I I T ek ko ok ook s e kol ol ook okl koo kokokok ok ok T I I
I I T sksocksoR kool ok koRok okokolokdokgolok dokok ok k. T T I
fommmm e m g ek e e K AR KA K HKKE KKK KKK cmmpmmm mmfpmmmm it
I I I T ok o s b o e 3k sk sk sk Skl Ak ke sk ok e ok kT I I 8
I K i I I s s e s e o ok Kokl e sk ek ok I I I T
I I I 1 I * : I I I I
fomm———— e fmmmmcfpmmcm—pm—— = fmmm—— $m———- e e
I I 3 " & I I I I I I A
I I I ¢ i 2 I I 4 I I 2
% I I 1 I 1 I I 5 8 I I
o — e e tm————— fmm———— - fommm=—— fmmmm——

-1.00 -0.80 -0.60 -0.40 -0.20 -0.00 ©0.20 0.40 0.60 0.80 1.0

Printer Plot Routines



October 1976

FORTRAN:

MTS 3: SYSTEM SUBROUTINE DESCRIETIONS

REAL ARG/0./,X (61) ,YSIN (61),YCOS(61)
REAL PI60/.0523599/

INTEGER CSIN/'* '/,CCOS/'% 'y
INTEGER NSCALE (5)/1,0,3,0,0/

CALL PLOT1 (NSCALE(1),11,3,11,5)

CALL PLOT2(0,180.,0,1.,-1.)

X(1) = 0.
YSIN (1) = O.
Ycos (1) = 1.
po11I-= 2,61
X(I) = X(I-1) + 3.

ARG = ARG + PI60

YSIN(I) = SIN (ARG)

YCOS (I) = COS (ARG)
CALL PLOT3 (CSIN,X (1) ,YSIN(1),61,4)
CALL PLOT3(CCOS,X (1) ,YCOS(1),61,4)
CALL PLOTY4 (11, 'SIN AND COS')
CALL SYSTEM
END

The above FORTRAN program will produce the plot given
the following page.

Printer Plot Routines

on

323



SYSTEM SUBROUTINE DESCRIPTIONS

MTS 33

October 1976

1.000 FFB%FE 4 == ==d === o mmm etk e m e e e e e ———fm————t

HHH
HH -
HHH
H H H
+*
+*
*
3#*
*
* HH
3
HHH
3
#* o H
+*
3*
+*
+#*
3
H o H
HHH
e
58
R
&Y
52
B2 H H
Be
HHH

T M R G S| IO SIS S s S - (OO .~ S WSO Sy

I%*1

I

% I

I*% %%1
0.600 #+=—=——#-——=-Fomm e e m e e e e e e e e e e e m K e mmm— = m =

i §

I

HHH +HHH +
1 1
| |
| |
| #
] #* 1

HHH+ H# H +
| # |
#* [

#* 0 |
#* | [

#* 1 I

HHH+ HHH +
1 |
| 1
| |
1 !
| [

T_T_T_.”.T_T_T_.“.
1 1
1 I
! 1
I [}

HHH+ HHH +
1 ]
[ |
1 |
| |
[ |

HHH 4 HHH +

'
1 [
1 |
1 B2
1 B8 |

HHH + He. H +
| s |
5 }

B2 | 1
BS ' ]

B2 1 [

HHH ﬁ HH~ %
1 |
1 |
' |
1 i

HHH+HHH +

it I 1

3 ] I
R | |
* [

1 1

HiHH+ H# H +
1 #* 1
| +*
1 |
1 '
| [

HHH+HHH +
(=] o
(=] L)
e o™
(=] (=]

nH

N

I

I

I I T

I 1 I I I% I
~0.400 4+=-—=-4=~=mcmfmmmmmfmmmmmpmmmmm e e e e e e e m e m e}

I

I

HH+ HHYH

I

I

]

i

|
HH+ HH

|

]

|

I

1
HH+ HH

|

I

I B

| B2

| BR
HH B H H
B8 |
15 1

I

]

|
HH + HH

|

|

I

I
HH + HH

1

I

1

I
HH + HH

]

I

]

]
HH+HH
]

L}

I
I
_I_T_.".IT_
]

]

]

1
HH 4+ HH
]

]

I
]

]
HH + HH
o
o
0

L]
(=]
I

A
I
I
I

I
I

%% I

% I
I%%
I

I
~0.800 +=====4====—F-————f—mmm—pmmmm—fm— e — e = e e e m e ¢

I 1 I 1 I
i
I

I

I

%%

e LT e e g ) ¥ )

I

18. 36. 54. 724 90. 108. 126. 144. 162. 180.

Printer Plot Routines

324



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

PLOT1

Purpose: PLOT1 sets up the information required to construct the
plot.

Calling Sequences:

Assembly: CALL PLOT1, (nscale,nhl,nsbh,nvl,nsbv)
FORTRAN: CALL PLOT1(nscale(1),nhl,nsbh,nvl,nsbv,&rcl)

Parameters:

nscale 1is the location of a region of five fullword
integers supplying information about scaling
and the number of places to be printed to the
right of the decimal point. The field width
for printing Y values is 8, and for X values
is min (nsbv,8) .
nscale(1) If nscale(1)=0, the values 0,3,0,3
are used for nscale(2) through

nscale(2) If nscale(2)=Y, the numbers printed
along the Y-axis are 10**Y times
their true value.

nscale(3) The number of decimal places
printed for Y values.

nscale(4) If nscale(U4)=X, the numbers printed
along the X-axis are 10**X times
their true values.

nscale(5) The number of decimal places
printed for X values.

is the location of a fullword integer giving

the number of horizontal lines in the plot.

This number must be 2 or greater.

is the location of a fullword integer giving

the number of spaces between horizontal

lines. This number must be 1 or greater.

is the location of a fullword integer giving

the number of vertical 1lines in the plot.

This number must be 2 or greater.

is the location of a fullword integer giving

the number of spaces between the vertical

lines. This number must be 1 or greater.

cl is the statement label to transfer to if a

return code of 4 is encountered.

1=
=
[

=
n
li=3
[=9

1=
I=
=

[I=]
It
1o
I=<

1=

Return Codes:

0 Normal return.
4 Improper Argument. PLOT1 has not been entered.

Printer Plot Routines 325



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Purpose:

October 1976

PLOT2

PLOT2 prepares the grid and sets up the information
required by PLOT3 to place a point correctly in the graph.

Calling Sequences:

Description:

Assembly: CALL PLOT2Z, (image,xXmax,xmin, ymax, ymin)
FORTRAN: CALL PLOT2(image,xmax,xmnin,ymax,ymin,&rcld,&rcs)

Parameters:

image is either the location of a 2zero or the
location of a region equal to or greater in

length than
(nsbh*nhl-nsbh+nhl) * (nsbv*nvl-nsbv+nv1+8) +8

bytes. This region is used to form the image
of the graph.

xmax is the location of the largest X value of the
points to be plotted.

xmin is the location of the smallest X value of
the points to be plotted.

ymax 1s the location of the largest Y value of the
points to be plotted.

ymin is the location of the smallest Y value of

the points to be plotted.
Note: The preceding four arguments are eith-
er short or long floating-point numbers.

rcs8 is the statement label to transfer to if a
return code of 8 is encountered.

Return Codes:

0 Normal returmn.
8 xmax < xmin or ymax £ ymin. PLOT2 has not been
entered.

If PLOT1 has not been entered by the time PLOT2 is called,
defaults are assumed for nscale, nhl, nsbh, nvl, and nsbyv.
In particular, nscale=0, nhl=6, nsbh=9, and pnsbv=9. The
value of nvl depends on the SPRINT device; for a printer,
nvl=11, and for a Teletype, nvl=6.

If a =zero is specified for image, then PLOT2 will
automatically allocate sufficient space for the image
region. On successive calls to PLOT2, space will released
and reallocated as needed.

326 Printer Plot Routines



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Purpose: PLOT3 places the plotting character in the graph for each

point (X,Y).

Calling Sequences:

Assembly: CALL PLOT3, (bcd,x,y,ndata,int)

FORTRAN: CALL PLOT3 (bcd,x,y,ndata,int,&rcld,&rc8,86rc12,

Parameters:

bcd

1%4

&rcl6)

is the location of the plotting character to
be used.

is the location of a floating-point region of
X values.

is the location of a floating-point region of
Y values.

is the location of the fullword integer
number of points to be plotted.

is +the 1location of +the fullword integer
number of bytes between the addresses of
successive numbers to be used as coordinates.
For a short form vector, this is 4. int
should be a multiple of 4.

rcl2,rcl6 are the statement labels to transfer to if

Return Codes:

a return code of 12 or 16 is encountered.

0 Normal return.

12 Using

a log scale with a negative or zero xmin,

Xmax,ymin, ymin, or ymax value, or, int not a
multiple of 4.

16 PLOTZ2

has never been entered, or has not been

entered since the last call to PLOTA4.

Printer Plot Routines 327



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

PLOTH
Purpose: PLOTY4 prints the completed graph with values along the X-
and Y-axes and a centered vertical label down the left

side.
Calling Sequences:
Assembly: CALL PLOTY4, (nchar,label)

FORTRAN: CALL PLOTU4 (nchar,label,&ércl,trc8,8&rc12,6rc16,
&§rcz0,&6rc2l4,8rc28)

Parameters:

nchar is the location of the fullword integer
number of characters in the vertical label.
If this is zero, no label will be printed.

label is the location of a region containing the
label to be printed.

rc20,rcz4,rc28 are statement labels to transfer to if
a return code of 20, 24, or 28 is
encountered.

Return Codes:

0 Normal return.
20 PLOT2 has not been entered.
24 Using a log scale with a negative or zero xmin,
Xxmax,ymin, or ymax value (see SETLOG and PLOT2).
28 Error in scaling; one or more values can not be
printed in the form specified by nscale (see
PLOT1) .

Description: See OMIT for the possibility of deleting grid values and
the last lirne of the graph.

If return code 28 is given, the plot will be printed with
all grid values which can be printed.

328 Printer Plot Routines



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

PLOT14

Purpose: PLOT14 allows the user to combine successive calls on
PLOT1, PLOT2, PLOT3, and PLOT4 into one call on PLOT14.

Calling Sequences:

Assembly: CALL PLOT14, (nscale,nhl,nsbh,nvl,nsbv,image,

Xmax,xmin,ymax,ymin,bcd,x,y,ndata,
int,nchar,label)

FORTRAN: CALL PLOT14 (nscale (1) ,nhl,nsbh,nvl,nsbv,image,

Xmax,xmin,ymax,ymin,bcd,x,y,ndata,
int,nchar,label, &rcl,&rc8,6rcl12,
&rc16,&rc20,6rc24,8&rc28)

Parameters:

See the descriptions of PLOT1, PLOT2, PLOT3, and
PLOT4 for the parameters and return codes used.

Description: This routine executes the appropriate calls on PLOT1,
PLOT2, PLOT3, and PLOTA4.

Printer Plot Routines 329



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Purpose:

October 1976

PRCHAR allows the user to change the characters used in
printing the grid.

Calling Sequences:

Description:

Example:

Assembly: CALL PRCHAR, (arg)
FORTRAN: CALL PRCHAR (arg)
Parameter:

arg is the location of a fullword integer whose
bytes are used to define the grid character.
The bytes are used as follous:

byte 0: intersection character (initially +)
byte 1: horizontal line character (initially -)
byte 2: vertical line character (initially I)
byte 3: fill character (initially blank)

A X'00' in any byte indicates that no change is
to be made to that character.

Return Code:

None.
Changes made by a call to this subroutine affect all plots
starting with the next call to PLOT2, STPLT1, STPLT2, or
PREND.

FORTRAN: INTEGER CHARS/Z00006200/

CALL PRCHAR (CHARS)

The above example changes the vertical line character to
"|" (vertical bar), and leaves the other three characters
unchanged.

330 Printer Plot Routines



October 1976

Purpose:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

PREND

PREND constructs and prints a plot using the points saved
by PRPLOT. Values are printed along the X- and Y-axes,
and a centered label is printed on the left-hand side.
See the description of PRPLOT.

Calling Sequences:

Assembly: CALL PREND, (nchar,label)
FORTRAN: CALL PREND(nchar,label,&rcld,&rcB)

Parameters:

nchar is the location of a fullword integer giving
the number of characters in +the vertical
label. If this is 1less than or egqual to
zero, no label will be printed.

label is the location of a region containing the
label.

&rcl,érc8 are the statement labels to transfer to if
a return code of 4 or 8 is encountered.

Return Codes:

0 Normal return.

4 PRPLOT has not been successfully called.

8 Log argument < 0 (occurs only when a log scale is
used) .

Printer Plot Routines 331



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Purpose:

October 1976

PRPLOT collects points to be plotted by a subsequent call
to PREND.

Calling Sequences:

Description:

Example:

Assembly: CALL PRPLOT, (bcd,x,y,ndata,int)

FORTRAN: CALL PRPLOT (bcd,x,y,ndata,int,&rcl)

Parameters:
becd is the location of the plotting character to
be used.
X 1s the location of a floating-point region of

X values.

¥ is the location of a floating-point region of
Y values.

ndata is the location of the fullword integer
number of points.

bE) 1y is the location of the fullword integer
number of bytes between the addresses of
successive coordinate values. For a short
form vector (REAL*4), this is 4. int should
be a multiple of 4.

&rcl is the statement label to transfer to if a
return code of 4 is encountered.

Return Codes:

0 Normal return.
4 int is not a multiple of 4.

PRPLOT saves points to be plotted; PREND determines the
minima and maxima and constructs the actual plot. PRPLOT
may be called many times before calling PREND. PRPLOT
allows the user to obtain a printer plot without knowing
in advance how many points will be accumulated or what the

minimum and maximum X and Y values will be. It is least

efficient (in terms of CPU time) to call PRPLOT for one
point at a time. When plotting in log mode, points for
which the logarithm is undefined will be ignored.

FORTRAN: REAL X (10),Y (10)
INTEGER LABEL(2),/'A LA','BEL'/
X (1) = 1.
Y (1) = 2s
DO 1 I=2,10
X(I) = X (I-1)+1.
1 Y (I) 2. %X (I)

nn

332 Printer Plot Routines



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

CALL PRPLOT ('*',X(1),Y(1),3,4,84)
CALL PRPLOT ('<',X (4),Y (4),7,4,64)
CALL PREND (7,LABEL(1))
CALL SYSTEM

4 CALL ERROR

Printer Plot Routines 333



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Purpose:

October 1976

STPLI]

STPLT1 is called by the user who wishes the plot routine
to inspect his data and then make appropriate calls on
PLOT1 and PLOT2. The default grid size (see PLOT2) is
always used, but the scaling and decimal places to be
printed are determined by STPLT1. The user must call on
PLOT3 and PLOT4 to have the graph printed.

Calling Sequences:

Description:

Assembly: CALL STPLT1, (image,x,y,ndata,int)

FORTRAN: CALL STPLT1 (image,x,y,ndata,int,&rcd,&rcs8,
&ércl12,&érc16,6rc20,&6rc24 ,86rc28)

Parameters:

See the descriptions of PLOT1, PLOT2, PLOT3, and
PLOTY4 for the parameters and return codes used.

STPLT1 will cause grid values to be printed in FORTRAN
E-type format when necessary.

334 Printer Plot Routines



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

STPLT2

Purpose: STPLT2 does the work of STPLT1 and in addition calls on
PLOT3 and PLOT4 to print the graph.

Calling Sequences:

Assembly: CALL STPLTZ2, (image,x,y,ndata,int,bcd,nchar,
label)

FORTRAN: CALL STPLTZ2 (image,x,y,ndata,int,bcd,nchar,label,
&ércl ,&rc8,6rcl12,6rc16,6rc20,8&6rc24,
&rc28)

Parameters:

See the descriptions of PLOT1, PLOT2, PLOT3, PLOT4,
and STPLT1 for the parameters and return codes used.

Printer Plot Routines 335



MTS 3: SYSTEM SUBROUTINE DESCEIPTIONS

October 1976

SETLOG

Purpose: SETLOG is called by the user to specify whether he wants a
normal, semi-log, or log-log plot.

Calling Sequences:
Assembly: CALL SETLOG, (arg)
FORTRAN: CALL SETLOG (arg)
Parameters:

arqg is the location of a word with bits 6 and 7
interpreted as follows:

bit 7 0 Y scale is normal.

1 Y scale is logarithmic.
bit 6 0 X scale is normal.

1 X scale is logarithmic.

The plotting mode is initially set to normal.
Return Codes:

0 Normal return.
4 Mode not changed.

Description: If PLOT2 or STPLT1 has been called, but the graph has not
yet been printed by PLOT4, or if PRPLOT has been called,
and has not yet been followed by a call to PREND, the
plotting mode will not be changed. This is because the
grid has already been set up. Base 10 logarithms are used
for the grid.

Example: FORTRAN: LOGICAL*1 XLOG/Z02/,YLOG/Z01/,XYLOG/Z03/

CALL SETLOG (XLOG) Plot with log X, normal Y

CALL SETLOG (YLOG) Plot with log ¥, normal X

CALL SETLOG (XYLOG) Log-log plot

CALL SETLOG (0) Normal plot

336 Printer Plot Routines



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

OMIT

Purpose: OMIT is called by the user to specify whether the last
graph line, the vertical grid values, and the horizontal
grid values will be printed.

Calling Sequences:

Assembly: CALL OMIT, (argq)
FORTRAN: CALL OMIT (argqg)

Parameters:

arg 4is the location of a fullword integer inter-

preted as follows: if arg 4is positive, the
function designated by the appropriate bit is
turned off. To turn it back on, arg is made

negative and OMIT is called again.

bit z8 scaling factor messages (PRPLOT, STPLTI1
iny) -

bit 29 the last graph line.

bit 30 vertical grid values.

bit 31 horizontal grid values.

Return Code:

None.

Description: A graph can be produced by producing the graph in pieces,
deleting the horizontal grid values and the last graph
line (arg=5) for each piece except the last, and =starting
the next graph segment where the last graph line would
have been printed. When +the last segment is to be
printed, OMIT can be called (arg=-5) to restore the
functions. Initially, all four functions are turned on.

If STPLT1 or PRPLOT scales the X or Y values, a message is

normally printed stating what was done. Bit 28 of arg
controls the printing of this message.

Printer Plot Routines 337



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Octoker 1976

338 Printer Plot Routines



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

QUIT

SUBROUTINE DESCRIPTION

To cause the user to be signed off when the next MTS
command is encountered.

Resident System

Calling Sequences:

Description:

Assembly: CALL QUIT
or
QUIT [ WHO={BATCH|ALL} , J{ WHEN= {NOW|LATER} ]

FORTRAN: CALL QUIT

PL/I: CALL QUIT;

Return Codes:

None.

Note: The complete description for using the QUIT macro
is given in MTS Volume 14. Additional parameters
may be given to the QUIT macro to control whether
the subroutine is called in batch mode only and
whether the effect is immediate.

This subroutine does not cause the user to be signed off

immediately. It does set a flag so that the next time the

user returns to MTS command mode (due to termination of
execution, attention interrupt, etc.) the effect will be
the same as if the user entered a $SIGNOFF command.

It is also possible to use

CALL CHMD('$SIGNOFF ',9)

which does cause the user to be signed off immediately.

QUIT 339



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

340 QUIT



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

RCALL

SUBROUTINE DESCRIFPTION

To call R-type subroutines (such as GETFD) from FORTRAN.

*LIBRARY

Calling Sequences:

Description:

FORTRAN: CALL RCALL(a,m,ir (1) jeee,ic(m) ,0,TC (1) yuu.,
rr(n) ,ércl,...)

Parameters:

a is the address of the R-type subroutine which is
to be called. This should be declared EXTERNAL.
is the fullword integer number of general regis-
ters starting with GRO to be set up prior to
calling the R-type subroutine. I may range
between 0 and 11 inclusive.

ir(1) ye==-,ir(m) are the values to be placed in GRO
through GR(m-1) respectively: These parameters
must be fullword-aligned and four bytes in
length.

n is the fullword integer number of general regis-
ters starting with GRO to be stored after
calling the R-type subroutine. n may range
between 0 and 11 inclusive.

rr (1) ===, (n) are the n variables into which the
contents of GRO through GR (n-1) will be stored
after calling the R-type subroutine. These
parameters must be fullword-aligned and four
bytes in length.

rclb,... 1is the statement label to transfer tc upon

=

recelving a nonzero return code from the subrou-
tine called via RCALL.

Return Codes:

The return code is in GR15 as returned by the R-type
subroutine. The contents of the general registers
have been returned after the R-type subroutine call
as specified by the parameters.

The general registers starting with 0 are set up as
specified by the parameter 1list. The second parameter
specifies the number of registers to be set up, and the
parameters following specify the values to be placed into
the registers. The R-type subroutine is called, and when

RCALL 341



NTS 33

Example:

342

RCALL

SYSTEM SUBROUTINE DESCRIPTIONS

Octokber 1976

it returns, the general registers starting with 0 are
stored as specified by the parameter list. The return
code is as returned by the R-type subroutine.

Many R-type subroutines require that addresses ke placed
in registers before calling them. These addresses can be
computed by using the subroutine ADROF. See the ADROF
subroutine description in this volume.

If the subroutine also requires an S-type parameter list,
the address of the parameter list must be placed in GR1.
This may be done by using the ADROF subroutine where the
argument to ADROF 1is & scalar variable for a single-
element parameter list or an array for a multiple-element
parameter list.

FORTRAN: EXTERNAL GETFD
INTEGER*4 ADROF,FDUB
CALL RCALL(GETFD,2,0,ADROF('FDname '),1,FDUB,&9)

This example calls GETFD with GRO containing a zero and
GR1 containing the address of the character string
"FDname". GETFD returns the FDUB-pointer in GRO, and this
is stored in the variable FDUB. A return code of four
from GETFD will cause control to be transferred to
statement 9 of the FORTRAN program.

FORTRAN: EXTERNAL CHKFIL
INTEGER*4 ADROF,X
DATA MASK/Z00000001/
PAR = ADROF ('2AGA:DATAFILE ')
CALL RCALL (CHKFIL,2,0,ADROF (PAR),1,X,8100)
X = LAND (X, MASK)
IF (X.EQ.1) GO TO 10

This example 1illustrates a call to the subroutine CHKFIL
which uses both an S-type calling sequence parameter list
and a R-type return of a value. In this case, the first
parameter to CHKFIL is the location of the name of a file.



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBROUTINE DESCRIPTION

Purpose: To read an input record from a specified logical I/0 unit.
Location: Resident System
Alt. Entry: READ#
Calling Sequences:
Assembly: CALL READ, (reg,len,mod,lnum,unit)
FORTRAN: CALL READ(reg,len,mod,lnum,unit,&ércl,...)
PL/I: See the IHEREAD subroutine description.

Parameters:

req 4is the location of the virtual memory region to
which data is to be transmitted.
len is the location of a halfword (INTEGER*2) inte-
ger irn which is placed the number of bytes read.
mod is the location of a fullword of modifier bits
used to control the action of the subroutine.
1f mod is zero, no modifier bits are specified.
See the "I/0 Modifiers" description in this
volume.
lnum is the location of a fullword integer giving the
internal representation of the line number that
is to be read or has been read by the subrou-
tine. The internal form of the line number is
the external form times 1000, e.g., the internal
form of line 1 is 1000, and the internal form of
line .001 is 1.
unit is the location of either
(a) a fullword-integer FDUB-pointer (such as
returned by GETFD),
(b) a fullword-integer logical I/0 unit number
(0 through 19), or
(c) a left-justified 8-character logical 1I/0
unit name (e.g., SCARDS).
rC4,... is the statement label to transfer to if the
corresponding nonzero return code is
encountered.

READ 343



NTS 3

Description:

Examples:

344

READ

SYSTEM SUBROUTINE DESCRIPTIONS

Octokber 1976

Return Codes:

0 Successiul return.
4 End-of-file.
>4 See the "I/O0 Subroutine Return Codes" description
in this volume.

All five of +the parameters in the calling sequence are
required. The subroutine reads a record from the I/0 unit
specified by unit into the region specified by reqg and
puts the length of the record (in bytes) into the location
specified by len. If +the mod parameter (or the FDnanme
modifier) specifies the INDEXED bit, the lpum parameter
must specify the line number to be read. Otherwise, the
subroutine will put the line number of the «record read
into the location specified by lnum.

There are no default FDnames for READ.

There 1s a macro READ in the system macro likrary for
generating the calling sequence to this subroutine. See
the macro description for READ in MTS Volume 14.

The example below, given in assembly language and FORTRAN,
calls READ specifying an input region of 20 fullwords.
The logical I,/0 unit specified dis 5 and there is no
modifier specitfication made in the subroutine call.

Assembly: CALL READ, (REG,LEN,MOD,LNUHM,UNIT)
REG DS CL80
LEN DS H
MOD DC  F'0!

LNUM DS F
UNIT DC F'5!

or
READ 5,REG,LEN Subr. call using macro

FORTRAN: INTEGuR*2 LEN
INTEGER REG (20) ,LNUN

CALL READ(REG,LEN,0,LNUM,5,830)

30 &

The example below, given in assembly language and FORTRAN,
sets up a call to READ specifying that the input will be
read from the file FYLE.



October 1976

Assembly:

FORTRAN:

REG
LEN
MOD
LNUN
UNIT

30

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

LA 1,=C'FYLE !
CALL GETFD
ST 0,UNIT

CALL READ, (REG,LEN,MOD,LNUM,UNIT)

DS 20F
DS H
DC F'0!
DS F
DS F

EXTERNAL GETFD
INTEGER*4 ADROF,UNIT
CALL RCALL (GETFD,2,0,ADROF ('FYLE ') ,1,UNIT)

CALL READ(REG,LEN,O0,LNUM,UNIT,E30)

READ 345



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

346 READ



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

READBFR

SUBROUTINE DESCRIPTION

To allow programs to read from an arbitrary file or device
without knowing the maximum record length in advance.

*LIBRARY

Calling Seguence:

Description:

Assembly: CALL READBFR (bfr,len,mod,lnum,unit)

Parameters:

bfr is zero (not the location of a zZero) on the
first «call and the location of the input buffer
on subsequent calls (see "Description" Lkelow).
len is the location of a halfword integer in which
is placed the number of bytes read.
mod is the location of a fullword of modifier bits
used to control the action of the subroutine.
If mod is zero, no modifier bits are specified.
See the "I/0 Modifiers" section in this volume.
lnum is the location of a fullword integer giving the
internal representation of the line number that
is to be read or has been read by the subrou-
tine. The internal form of the line number is
the external form times 1000, e.g., the internal
form of line 1 is 1000, and the internal form of
line .001 is 1.
unit is the location of either
(a) a fullword-integer FBUB-pointer (such as
returned by GETFD),
(b) a fullword-integer logical I/0 unit number
(0O through 19), or
(c) a left-justified, 8-character 1logical 1I/0
unit name (e.g., SCARDS).

Return Codes:

0 Successful return.
4 End-of-file return.
>4 See the "I/0 Subroutine Return Codes" section in
this volume.

If the first parameter bfr is zero, the subroutine READBFR
will internally call the subroutine GDINFO to determine
the length of the longest record that can be read fron
unit and will allocate a buffer that is large enough to

READEFR 347



NS ‘B

Example:

348

READBFR

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

accommodate it; the address of this buffer will be stored
into bfr in place of the zero. The READ subroutine will
then be called internally to read a record using the
READBFR parameter list as the parameter list for READ; the
NOTIFY modifier will also be set for the read operation.

If bfr is not zero (usually on the second and subsequent
calls to READBFR), READBFR will call READ directly using
the READBFR parameter 1list and setting the NOTIFY
modifier.

If the file or device attached to unit changes, READBFR
will release the current buffer and allocate a new buffer

of the appropriate size and will store the address of the
new buffer into bfr.

Assembly: LABEL  CALL READBFR (BUFF,LEN,LNUM,UNIT)

LTR 15,15
BNZ EOF
L 2,BUFF Get address of buffer
" Process record
B LABEL
EOQOF L 1,BUFF Release buffer

CALL FREESPAC

BUFF DC Fto?

LEN DS H

LNUM DS F

UNIT DC C'SCARDS !

The above example reads records from SCARDS wuntil a
nonzero return code is encountered. After each call
to READBFEK, BUFF contains the location of the record
read. When a nonzero return code is encountered, the
buffer is not released.



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

RENAME

SUBROUTINE DESCRIPTION

To change the name of a file.

Resident System

Calling Sequence:

Assembly: CALL RENAME, (oldname,newname)

FORTRAN: CALL RENAME (oldname,newname, &rcld,&rc8,6xrc12,
&rc16,86rc20,6rc24,86rc28,6rc32,86rc36)

Parameters:

oldname is the 1location of the o0ld name (with a
trailing blank) of the file to be renamed.
newname is the location of +the new name (with a

corresponding return codes occur.

Return Codes:

0 The file was renamed successfully.

4 Tllegal old name specified.

8 0l1ld name does not exist.

2 Rename access not permitted (old file name).

6 Locking the file for renaming will result in a
deadlock.

20 Illegal new name specified.

24 New name already exists.

28 Disk space allotment exceeded.

32 Hardware error or software inconsistency

encountered.

36 An attention interrupt has canceled the automatic

wait on the file (waiting caused by concurrent

usage of the (shared) file).

Notes:

Temporary as well as permanent old file names may be
renamed.

The old file name may belong to another user.
The new file name may not specify a file belonging to

another signon ID unless the old file name also

RENAME 349



MTS 3:

Examples:

350

RENAME

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

belonged to that same signon ID (and rename access
was permitted).

Assembly: CALL RENAME, (OLDNAME,NEWNAME)

OLDNAME DC CY-TEST 1
NEWNAME DC C'TEST.O !

The above example renames the temporary file -TEST to the
permanent file TEST.O.

FORTRAN: CALL RENAME ('STAT:TEST ' ,MYTEST ')

The above example renames the file TEST under the signon
ID STAT to the file MYTEST under the calling signon ID.
After the renaming has occurred, the file STAT:TEST will
no longer exist under the signon ID STAT and the disk
storage in use by that signon ID will have been updated
accordingly.



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

RENUMB

e ——

SUBROUTINE DESCRIPTION

Purpose: To renumber all or a subset of the lines in a line file.
Location: Resident System
Calling Sequence:

Assembly CALL RENUMB, (unit,first,last,beg,inc)

FORTRAN: CALL RENUMB (unit,first,last,begq,inc,&rcl4,&rcs8,
&rc12,86rc16,6rc20,8rc24,86rc28)

Parameters:

unit is the location of either

(a) a fullword-integer FDUB-pointer (as

returned by GETFD),

(b) a fullword-integer logical I/0 unit num-

ber (0 through 19), or

(c) a left-justified 8-character logical I/0

unit name (e.g., SCARDS).

first is the location of a fullword containing the

internal line number of the first line to be
renumbered.

last is the location of a fullword containing the
internal line number of the last line to be
renumbered.

beg is the location of a fullword containing the

new internal line number to be associated

with the first line to be renumbered.

inc is the location of a fullword containing the
internal increment to be used while renumber-

ing the requested lines in the file.

ICcl...Ic28 are statement labels to transfer tc if the

corresponding return codes occur.
Return Codes:

0 The file was renumbered successfully.
4 The file does not exist.
8

Hardware error or software inconsistency

encountered.
12 Renumber (or read-write) access not allowed.

16 Locking the file for modification will result in a

deadlock.

20 An attention interrupt has canceled the automatic
wait on the file (waiting caused by concurrent

RENUMB 351



MTS 3:

Examples:

352

RENUMB

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

usage of the (shared) file).

24 Inconsistent parameters specified (renumbering
will cause duplicate or nonincreasing line num-
bers, etc.).

28 The file is not a line file.

Notes:

If first and last do not correspond to actual line

numbers in the file, the next and previous line
numbers will be used respectively.

In MTS, the internal 1line number (e.g., 2100) is
equal to the external line number (e.g., 2.1) times
one thousand.

Assembly: CALL GETFST, (UNIT,FSTLN)
CALL GETLST, (UNIT,LSTLN)
CALL RENUMB, (UNIT,FSTLN,LSTLN,BEGLN,INC)

UNIT DC

Frye
FSTLN DS F First line number
LSTLN DS F Last line number
BEGLN DC F'1000" 1 in internal form
INC DC F'1000" 1 in internal form
FORTRAN : INTEGER*4 UNT

DATA UNT/U4/

CALL RENUMB (UNT,-99999999,99999999,1000,1000)

The above examples illustrate two ways to renumber all of
the lines of the line file attached to logical I/0 unit 4.
The lines are renumbered starting at line 1 by increments
of 1.



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBKOUTINE DESCRIPTION

Purpose: To return all or a subset of the line numbers in a line
file.
Location: Resident Systenm

Calling Sequences:

Assembly: CALL RETLNR, (unit,first,last,cnt,buffer)

FORTRAN: CALL RETLNR (unit,first,last,cnt,buffer,ércl,

Parameters:

&rc8,&6rc12,86rc16,6rc20,6rc24,86rc28,
&rc32)

is the location of either

(a) a fullword-integer FDUB-pointer (such as
returned by GETFD),

(b) a fullword-integer logical I/O0 unit num-
ber (0 through 19), or

(c) a left-justified, 8-character logical I/0
unit name (e.g., SCARDS).

is the location of a fullword containing the

internal line number of the first line number

to be returned.

is the location of a fullword containing the

internal line number of the last line number

to be returned.

is the location of a fullword in which the

count of the number of lines in the specified

range will be returned.

is the location of a buffer: The buffer is

supplied by the «caller; bytes 8 and on are

filled in by the subroutine. This buffer

should be of the form:

bytes 0-3 pointer to next buffer or zero.

bytes 4-7 length of this buffer in bytes
(including first 8 bytes).

bytes 8-... returned line numbers (4 bytes
each) .

Return Codes:

0 The line numbers were returned.
4 The file does not exist.

RETLNR 353



MTS 3:

Examples:

354

RETLNR

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

8 Hardware error or software inconsistency
encountered.

12 Read or renumber access not allowed.

16 Locking the file for reading will result in a
deadlock.

20 An attention interrupt has canceled the automatic
wait on the file (waiting caused by concurrent use
of the (shared) file).

24 Inconsistent parameters specified (first greater
than last, etc.).

28 The file is not a line file.

32 Buffers exhausted before line-number range was
exhausted.

Notes:

If first and last do not correspond to actual 1line
numbers in the file, +the next and previous line
numbers, respectively, will be used.

In MTS, the internal line number (e.g., 2100) is
equal to the external line number (e.g., 2.1) times
one thousand.

Assembly: CALL GETFST, (UNIT,FSTLNR)
CALL GETLST, (UNIT,LSTLNR)
CALL RETLNR, (UNIT,FSTLNR,LSTLNR,CNT,BUFFER)

UNIT DC F'4!
FSTLNR DS F First line number
LSTLNR DS F Last line number
CNT DS F Count of lines in file
BUFFER DC F'0! The only buffer

DC F'808' This many bytes

DS 200F Line numbers go here

The above example illustrates how to return all of the
line numbers of the line file attached to logical I/O unit
4 (assuming there are less than 200 lines in the file).

FORTRAN: INTEGER*4 UNIT,FSTLNR,LSTLNR,CNT,$I4(1),LNR
COMMON /$/ $IU
DATA UNIT/4/

CALL GETFST (UNIT,FSTLNR)
CALL GETLST (UNIT,LSTLNR)
CALL CNTLNR (UNIT,PSTLNR,LSTLNR,CNT)

CALL ARINIT (7,1)
CALL ARRAY (LNR,4,CNT+2)



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

$I4 (LNR+1)=0
$I4 (LNR+2)=CNT*4+8
CALL RETLNR (UNIT,FSTLNR,LSTLNR,CNT,$I4 (LNR+1))

The above example 1illustrates how to return all of the
line numbers of a line file attached to logical I/0 unit 4
(using the FORTRAN array management subroutines to dynami-
cally allocate a buffer).

RETLNR 355



MTS 3: SYSTEM SUBROUTINE DESCKRIPTIONS

Octoker 1976

356 RETLNR



October 1976

Purpose:

Location:

MTS 3: SYSTE# SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

To rewind a logical I/O0 unit in FORTRAN.

*LIBRARY

Calling Sequences:

Description:

Example:

FORTRAN: CALL REWIND (argqg)

Parameters:

arg is the location of a fullword integer corre-
sponding to the 1logical I/0 unit number to be
rewound. These are 0 through 19.

If the logical I/0O wunit number specified by arg is
attached to a tape, it is rewound. If it is attached to a
line file, it 1is reset so that the next reference to it
will read or write the line specified by the beginning
line number given when the file was attached. If it is
attached to a sequential file, it is reset so that the
next reference to it will read or write from the beginning
of the file. In all other cases, an error comment is
produced on the logical I/0 unit SERCOM, and the subrou-
tine ERROR is called.

The REWIND subroutine generates a call to the REWIND#
subroutine.

FORTRAN: CALL REWIND (1)

The file or device attached to 1logical I/O0 unit 1 is
rewound.

REWIND 357



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Octoker 1976

358 REWIND



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

REWIND#

SUBROUTINE DESCRIPTION

To reset a magnetic tape or a file to be read from the
beginning.

Resident Systen

Calling Sequences:

Description:

Assembly: (a) L 0,unit
SR T4
CALL REWIND#

or
REWIND unit

(b) LM 0,1,unit
CALL REWIND#

or
REWIND 'unit'
Parameters:

(a) GRO contains an FDUB-pointer (such as GETFD
returns) or a fullword logical I/0 unit number
(0-19), and GR1 contains zero.

(b) GRO and GR1 contain an 8-character logical _I/0
unit__name left-justified with trailing blanks.

The logical I/0 unit names are: SCARDS, SPRINT,
SPUNCH, SERCOM, GUSER, and 0 through 19.

Return Codes:

0 Successful return.

4 Unable to rewind the device specified by GRO and
GR1.

Note: The complete description for wusing the REWIND
macro is given in MTS Volume 14.

If GRO and GR1 specify a tape, it is rewound. If they
specify a line file, it 1is reset so that if the next
reference to this FDUB or logical I/0 unit is sequential,
it will read or write the line specified by the beginning
line number given when the file was attached. If they

REWIND# 359



MTS 3:

Example:

360

REWIND#

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

specify a sequential file, the FDUB is reset so that the
next read or write will be at the beginning of +the file.
For all other cases, a return code of 4 is given.

If the 1logical I/0 unit or FDUB-pointer specified by GRO
and GR1 is rpart of an explicit «concatenation, this
subroutine affects only the currently active member of the
concatenation.

Assembly: LM 0,1,LNAME
CALL REWIND#

LNAME DC CLB'SPRINT !
REWIND 'SPRINT'
The above two examples reset the magnetic tape or file

attached to the logical I/0 unit SPRINTI. The first wuses
the CALL macro and the second uses the REWIND macrc.



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIETIONS

RSTIME

SUBRCUTINE DESCRIPTION

Purpose: To cancel timer interrupts set up by the SETIME sukroutine

and return

the +time remaining until the interrupt would

have occurred.

Location: Resident System

Calling Sequences:

Assembly: CALL RSTIME, (id,value,aexit)

Parameters:

id

Return Codes:

1s the location of the fullword identifier
which specifies the timer interrupt to be
carceled. This is the same identifier which
was given to SETIME when the interrupt was
set up. If +this didentifier is 2zero, all
timer interrupts with the specified exit
region will be cancelead.

is the location of a 4-, 8-, or 16-byte
fullword-aligned region in which RSTIME
returns the time remaining until the dinter-
rupt would have occurred. The interpretation
of this value depends upon the code parameter
given to SETIME when the interrupt was set
up. For codes 0 and 2, the value 1is an
8-byte binary integer specifying micrcseconds
of task CPU time; for codes 1, 3, and 5, the
value is an B8-byte binary integer specifying
microseconds of real time; for code 4, the
value is a U4-byte binary integer specifying
timer units of task CPU time.

is the location of the address of the 76-byte
exit region which was given to SETIME when
the interrupt was set up. The combination of
the identifier and the exit region address
will always specify a unique timer interrupt.
It both aexit and id are zero, all timer

interrupts will be canceled.

0 Successful return.

4 No such timer interrupt was found. This means
either
(1) no such interrupt was ever set up, oOr

RSTIME 361



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

(2) the interrupt has occurred, and the exit was
taken before the execution of the BALR
instruction which branches to RSTIME.

Description: A call on the KSTIME subroutine cancels a timer interrupt
set up by the SETIME subroutine, and returns the time
remaining until the interrupt would have occurred in the
value parameter. The timer interrupt to be canceled is

specified by the combination of the id and aexit parame-

ters. The interrupt will be canceled even if it has
already occurred and is pending.

For further details, see also the GETIME, SETIME, and
TIMNTRP subroutine descriptions.

Example: Assembly: CALL RSTIME, (ONE,TIMLEFT,AEXIT)

ONE pc F'1!
TIMLEFT DS FLS8
AEXIT DC A (EXIT)
EXIT DS 19F

This example cancels the interrupt with the identifier "1V

and the exit region M"EXIT". The time remaining is
returned in "TIMLEFT".

362 RSTIHNE



October 1976

Purpose:

Location:

Alt. Entry:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SCANSTOR

SUBROUTINE DESCRIPTION

To '"scan" storage blocks. For each block of allocated
storage in the range specified, SCANSTOR will <call a

subroutine specified, giving it the location and length of
that block.

Resident Systen

SSTOR

Calling Sequences:

Description:

Assembly: L 0,switch )
L 1,sinbr
L 2,subr

CALL SCANSTOR

Parameters:

GRO if 0, only storage with the specified storage
index number (GR1).
if +1, storage with index numbers less than or
equal to the one given (this and lower
link levels).
if -1, storage with index numbers greater than
or equal to the one given (this and
higher link levels).

GR1 storage index number or zero. 1f zero, the
storage index number of the current link level
will be used.

GR2 location of the subroutine to call for each
block. When this call is made, GRO will have
the length and GR1 will have the location of the
block.

Note: FORTRAN users can call this subroutine by wusing
the RCALL subroutine and specifying SSTOR as the
entry point.

Return Codes:

None

For a further description of storage index numbers, see
the "Virtual Memory Management" section in MTS Volume 5.

SCANSIOR 363



MTS 3:

Examples:

364

SCANSTOR

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

Assembly: LA 0,1
SR 1.1
LA 2,MYDUMP
L 15,=V (SCANSTOR)
BALR 14,15
or

LM 0,2,SPAR
CALL SCANSTOR

SPAR DC A(1,0,MYDUMP)

The above example (coded in two different ways) calls
SCANSTOR specifying that storage is to be scanned which
has storage index numbers equal to or 1less than the
current link level storage index number.



October 1976

Purpose:
Location:

Alt. Entry:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

To read an input record from the logical I/0 unit SCARDS.
Resident System

SCARDS#

Calling Sequences:

Description:

Assembly: CALL SCARDS, (reg,len,mod,lnum)
FORTRAN: CALL SCARDS (reg,len,mod,lnum,ércl,...)

Parameters:

reqg is the location of the virtual memory region to
which data is to be transmitted.

len is the location of a halfword (INTEGER*Z) inte-
ger in which is placed the number of bytes read.

mod 1is the location of a fullword of modifier bits
used to control the action of +the subroutine.
If mod is zero, no modifier bits are specified.
See the "I/0 Modifiers" description in this
volume.

lnum is the location of a fullword integer giving the
internal representation of the line number that
is to be read or has been read by the subrou-
tine. The internal form of the line number is
the external form times 1000, e.g., the internal
form of line 1 is 1000, and the internal form of
line .001 is 1.

rcl,... is the statement label to transfer to if the
corresponding nonzero return code is
encountered.

Return Codes:

0 Successful return.

4 End-of-file.

4 See the "I/0 Subroutine Return Codes'" description
in this volume.

>

All four of the above parameters in the calling sequence
are required. The subroutine reads a <record into the
region specified by reg and puts the length of reccrd (in
bytes) into the location specified by len. If the mod
parameter (or the FDname modifier) specifies the INDEXED

SCARDS 365



MTS 3:

Examples:

366

SCARDS

SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

bit, the lpum parameter must specify the line numker to be
read. Otherwise, the subroutine will put the line number
of the record read into the location specified by lnum.

The default FDname for SCARDS is *SOURCE*.

There 1is a macro SCARDS in the system macro library for
generating the calling sequence to this subroutine. See
the macro description for SCARDS in MTS Volume 14.

The example below, given in assembly language and FORTRAN,
calls SCARDS specifying an input region of 20 fullwords.
There is no modifier specification made on the subroutine
call.

Assembly: CALL SCARDS, (REG,LEN,MOD,LNUM)
REG DS CL80
LEN DS H
MOD DC BLoT

LNUHM DS F
or
SCARDS REG,LEN Subr. call using macro

FORTRAN: INTEGER*2 LEN
INTEGER REG (20) ,LNUN

CALL SCARDS (REG,LEN,0,LNUM,E30)

30 .



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBROUTINE DESCRIPTION

Purpose: To produce a dump of any or all of the following:

(1) general registers,
(2) floating-point registers,
(3) a specified region of virtual storage.

Location: Resident System

Calling Sequences:

Assembly: EXTRN outsub
CALL SDUMP, (switch,outsub,wkarea,first,last)

Parameters:

switch is the location of a fullword ccntaining
switches that govern the content and format

of the dump produced. The switches are
assigned as follows:

bit 31: on if hexadecimal conversion of the
storage reqgion is desired.

30: on if mnemonic conversion of the
storage region is desired.

29: on if EBCDIC conversion c¢f the
storage region is desired.

28: on if double spacing is desired; off
if single spacing is desired.

27: on if long output records (130 char-
acters) are to be formed; off if
short output records (70 characters)
are to be formed.

26: on if general registers are to be
dumped.

25: on if floating-point registers are
to be dumped.

24: on if a storage region 1is to be
dumped.

23: on if no column headers are to be
produced for the dump of the storage
region.

outsub is the 1location of a subroutine (e.g-,
SPRINT) that causes the printing, punching,
etc., of the output line images formed by
SDUMP. This subroutine should be declared as

SDUMP 367



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

EXTRN.

wkarea is the location of a doubleword-aligned area
of 400 bytes that may be used by SDUMP as a
work area.

first is the location of the first byte of a

storage region to be dumped. There are no
boundary requirements for this address.
last is the location of the last byte of a storage

region to be dumped. There are no boundary
requirements for this address; however, an
address in last which is 1less than the
address in first will cause an error return.

Note: The default case for switch (all switches off)
produces a dump as though bits 24, 25, 26, and 31
were OL. Furthermore, 4if bit 30 (mnemomnics) is
on, bit 31 (hexadecimal) is implied. Note that
bits z4, 25, and 26 specify what is to be dumped,
bits 27 and 28 specify the page format, and bits
29, 30, and 31 specify the interpretation(s) to be
placed on the region of storage specified. Bits
29 through 31 have significance only if bit 24 is
on.

Return Codes:

0 Successful return.
4 Illegal parameters specified.

Description: QOutput Formats

368

Registers:

General and floating-point registers, if requested,
are always given in labeled hexadecimal format. The
length of the output record is governed by the
setting of bit 27 of the switch.

Virtual Storage:

Although any combination of switches is acceptable,
the appearance of the dump output for a region of
virtual storage is determined as follows:

(1) If, and only if, the mnemonic switch is gn, the
unit of storage presented in each print item is
a halfword-aligned halfword.

(2) If, and only if, the mnemonic switch is off and
the hexadecimal switch is on (through intent or
default), the unit of storage presented in each
print item is a fullword-aligned fullword.

SDUMP



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

(3) If, and only if, the mnemonic and hexadecimal
switches are off but the EBCDIC switch is on,
the unit of storage presented in each print item
is a doubleword-aligned doubleword.

In all cases, the output includes:

(1) the entire storage unit (halfword, fullword, or
doubleword) in which the first specified loca-
tion (parameter first) is found,

(2) the entire storage unit in which the last
location (parameter last) is found, and

(3) all intervening storage.

Thus, the first and last printed items of a storage
dump may include up to a maximum of seven bytes more
than actually requested in the parameter list.

If mnemornics are requested and SDUMP discovers a
byte that cannot be interpreted as an operation
code, then instead of a legal mnemonic, the charac-
ters M"XXXX" appear directly below the hexadecimal
presentation of the halfword in storage that should
have contained an operation code. When this cccurs,
the mnemonic scanner Jjumps ahead as though the
illegal operation code specified an RR-type instruc-
tion (two bytes) and tries to interpret the byte at
the new location as an operation code, etc. Any
mnemonic print line that contains the "XXXX" for at
least one of its entries is also marked with a
single "X" directly below the 1line address that
prefixes the hexadecimal presentation of that same
region of storage. (The mnemonic conversion routine

‘includes the Universal Instruction Set and those

instructions exclusively used by the IBM 360/67.
The five special mnemonics for the IBM 360,20 are
also included.) To facilitate +the 1location of
particular items in the output, line addresses
imal position. Column headers are provided which
give the value of the least significant hexadecimal
digit of the address of the first byte in each print
item.

A line of dots is printed to indicate that a region
of storage contains identical items. The storage
unit used for comparisons is halfword, fullword, or
doubleword depending upon the type(s) of conversion
specified. In all cases, the storage unit corre-
sponding to the last item printed before the line of
dots, the storage unit for the first item after the

SDUMP 369



MTS 3:

Example:

370

SDUMP

SYSTEM SUBROUTINE DESCRIPTIONS

Octcker 1976

line, and all intervening storage units have ident-

ical contents. The last 1line is always

(even if all of its entries exactly
previously printed line).

Assembly: EXTRN SPRINT

printed
match the

CALL SDUMNP, (SW,SPRINT,WK,FIRST,FIRST+3)

WK DS 50D
SW DC Frot
FIRST DC X'F1F2F3F4"

The above example will cause SDUMP to print the
mal string 'F1F2F3F4'.

hexadeci-



October 1976

Purpose:
Location:

Alt. Entry:

MTS 3: SYSTEM SUBROUTINE DESCRIETIONS

SERCOM

SUBROUTINE DESCRIPTION

To write an output record on the logical I/0 unit SERCOMNM.

Resident System

SERCOM #

Calling Sequences:

Description:

Assembly: CALL SERCOM, (reg,len,mod,lnum)
FORTRAN: CALL SERCOM (reg,len,mod,lnum,ércl,...)

Parameters:

reqg is the location of +the wvirtual memory region
from which data is to be transmitted.

len 1is the location of a halfword (INTEGER*2) inte-
ger giving the number of bytes to be
transmitted.

mod is the 1location of a fullword of modifier bits
used to control the action of the sukroutine.
If mod is zero, no modifier bits are specified.
See the "I/0 Modifiers" description in this
volume.

lnum (optional) is the location of a fullword integer
giving the internal representation of the line
number that is to be written or has been written
by the subroutine. The internal form of the
line number is the external form times 1000,
e€.g., the internal form of line 1 is 1000, and
the internal form of line .001 is 1.

Icld,... is the statement label to transfer to if the
corresponding nonzero return code is
encountered.

Return Codes:

0 Successful return.
4 Output device is full.
4

See the "I/0 Subroutine Return Codes'" description
in this volume.

>

The subroutine writes a record of length len (in bytes)
from the region specified by regq on the logical I/O unit
SERCOM. The parameter lnum is needed only if the mod
parameter or the FDname specifies either INDEXED or PEEL

SERCOM 371



MTS 3:

Examples:

372

SERCOM

SYSTEM SUBROUTINE DESCEIPTIONS

Octoker 1976

(RETURNLINE#). If INDEXED is specified, the 1line number
to be written is specified in lpnum. If PEEL is specified,
the line number of the record written is returned in lpum.

The default FDname for SERCOM is *MSINK*.

There 1is a macro SERCOM in the system macro library for
generating the calling sequence to this subroutine. See
the macro description for SERCOM in MTS Volume 14.

The example below, given in assembly language and FORTRAN,
calls SERCOM specifying an output region of 80 bytes.
There is no modifier specification made in the subroutine
call.

Assembly: CALL SERCOM, (REG,LEN,MOD)
REG DS CL80
MOD DC F'0!
LEN DC H'80'
or
SERCOM REG Subr. call using macro
FORTRAN: INTEGER REG (20) ,LEN*2/80/

CALL SERCOH (REG,LEN,O0)



fiTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976 ’

SUBROUTINE DESCRIPTION

Purpose: To set up a timer interrupt to occur after a specified

time interval (either real time or CPU time for the
current task).

Location: Resident System

Calling Sequences:

Assembly: CALL SETIME, (code,id,value,aexit)

Parameters:

code is the location of a fullword integer which
specifies the meaning of the value parameter.
The valid choices are:

0 value is an 8-byte binary integer which
specifies a time interval in microseconds
of task CPU time, relative to the time of
the"c 3

1 value is an 8-byte binary integer which

specifies a time interval in micrcseconds

of real time, relative to the time of the
call.

value is an 8-byte binary integer which

specifies a time interval in microseconds

of task CPU time, relative to the time at
signon.

3 value is an 8-byte binary integer which

L8]

specifies a time interval in microseconds

of real time, relative to the time at
signon.

4 wvalue is a 4-byte binary integer which
specifies a time interval in timer units
(13 1/48 microseconds per unit) of task
CPU time, relative to the +time of the
call.

5 value is a 16-byte EBCDIC string giving
the time and date at which the interrupt
is to occur, in the form HH:MM.SSMM-DD-YY.

id is the location of a fullword identifier
which will be passed to the exit routine when
the interrupt occurs and the exit is taken.
id should be nonzero.

value is the location of a 4-, 8-, or 16-byte

SETIME 373



MTS 3: SYSTEM SUBROUTINE DESCEIPTIONS

Description:

Example:

374

SETIME

Octoker 1976

fullword-aligned region which specifies the
time at which the interrupt is to occur, as
determined by the code parameter.

aexit is the location of the address of the 76-byte
exit region to be used when the interrupt
occurs and the exit is taken. This is the
same exit region address used in the call on
TIMNTRP which enables the exit for this
interrupt.

Return Codes:

0 Successful return.
4 Invalid code parameter.
8 Too many interrupts set up.

Each call on the SETIME subroutine sets up a new timer
interrupt to occur at the time specified by the c¢ode and
value parameters. When the interrupt occurs, an exit will

be taken wusing the exit region specified by the aexit
parameter, if that exit is enabled. Exits are enabled or
disabled by the TIMNTRP subroutine, and all exits are
disabled until enabled by TIMNTRP subroutine. The combi-
nation of the identifier specified by id and the exit
region is forced to be unique, since the SETIME subroutine
will cancel any previously set up interrupt with the same

identifier and exit region address.

A maximum of 100 interrupts is allowed. This restriction
is for error-checking purposes only.

For further details, see also the GETIME, RSTIME, and
TIMNTRP subroutine descriptions.

Assembly: CALL SETIME, (ZERO,ONE,TENSEC,AEXIT)
CALL SETIME, (ONE,TWO,FIVMIN,AEXIT)

CALL SETINME, (FIVE,THREE,TWO30,AEXIT)

ZERO DC PO°
ONE ne: P
THO pc F'21
THREE pe F'31
FIVE DE Prot

TENSEC DC FL8'10000000"

FIVMIN DC FL8'300000000°

TWO30 DC C'02:30.00',C'04-12-72"
AEXIT DC A (EXIT)

EXIT DS 19F



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

This example sets up three timer interrupts. The first
interrupt is a task CPU time interrupt 10 seconds after
the call; the second is a real-time interrupt 5 minutes

after the call; the third is a real-time interrupt at 2:30
a.m. on April 12, 1972.

SETIME 375



MTS 5: SYSTEM SUBROUTINE DESCER1PTIONS

October 1976

376 SETIME



October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SETIOERR

SUBROUTINE DESCRIPTION

To allow users to regain control when I/0 transmission
errors that would otherwise be fatal (such as tape I/0

errors or exceeding the size of a file) occur during
execution.

Resident System

Calling Sequence:

Description:

Assembly: CALL SETIOERR, (loc)

Parameters:

loc is either:
(a) the location of a subroutine to transfer to
when an I/0 error occurs, or
(b) zero, in which case the error exit is reset.

A call on the subroutine SETIOERR sets up an I/0 transmis-
sion error exit for one error only. When an error occurs
and the exit is taken, the intercept is cleared =so that
another call to SETIOERR is necessary to intercept the
next I/0 transmission error.

When the error routine is called, registers 0 and 1 both
contain what was din GR13 upon entry to the I/0 routine,
i.e., the location of the save area in which the I/0
routine saved registers at the time of the call. This can
be used to obtain the parameter list for the call on the
I/0 subroutine.

If the error routine returns (BR 14), a return is made to
the wuser's program from the I/0 routine with the return
code indicating the type of error that occurred. The
return code depends upon the type of device in use when
the error occurred. See the section "I/0 Subroutine
Return Codes" in this volume. This is the same behavior
as if the AERRRTN I/O modifier had been set for the I/0
call. If the @ERRRTN modifier is used on an I/0 call, the
SETIOERR exit is never taken.

Note: SETIOERR is for assembly language users and SIOERR
is for FORTRAN users. See the SIOERR subroutine
description in this volume. There is a difference

SETIOERR 377



MTS 3: SYSTEM SUBROUTINE DESCRKIPTIONS

October 1976

in the level of indirection between the two
subroutines; therefore, SIOERR should not be used
by assembly language users.

Example: Assembly: CALL SETIOERR, (SUBR)
SCARDS DATAREG,LEN,EXIT= (EOF,IOERR)

SUBR ENTER 12
SPRINT 'TAPE READ ERROR'
EXIT O

The call to SETIOERR enables the error exit. If on a
succeeding I/0 operation, a transmission occurs, SETIOQERR
will call SUBR, thus allowing the user to take his own
error exit.

378 SETIOERR



October 1976

MTS 3: SYSTEM SUBROUTINE DESCRIPBTIONS

SETKEY

SUBROUTINE DESCRIPTION

Purpose: To set the program key associated with a file.

Location: Resident System

Calling Sequences:

Assembly: CALL SETKEY, (what,pkey,info,ercode,errmsgq)

FORTRAN:

CALL SETKEY (what,pkey,info,ercode,errmsqg,&rcl)

Parameters:

what

is the location of either:

(a) a file name with trailing blank (if

info=0),
(b) a fullword-integer FDUB-pointer (such
returned by GETFD) (if info=1),

as

(c) a fullword-integer logical I/0 unit num-

ber (0 through 19) (if info=1), or

(d) a left-justified, 8-character logical I/0

unit name (e.g., SCARDS) (if info=1).
1s the location of the program key to

be

associated with the file. One trailing blank

is required.

is the location of a fullword integer which
specifies the kind of what parameter

supplied.

ercode (optional) is the location of a fullword

which the SETKEY subroutine will place

in
an

error number if an error return (return code
4) is made. If this parameter is cmitted,

then the errmsq parameter must also
omitted.

be

Assembly language users who wish to omit this
parameter should either follow the variable

parameter 1list convention (high-order bit

of

the previous parameter's adcon in the parame-
ter list should be 1) or else supply an adcon

which is zero (rather than pointing to
Z2€eIro) .

a

Error numbers 1less than 100 indicate some-

thing was wrong with either the mechanics

of

the subroutine <call or the values of the

parameters:

SETKEY 379



MTS 3:

Examples:

380

SETKEY

rch

Return Codes:

= o

SYSTEM SUBROUTINE DESCKIPTIONS

Octoker 1976

Number Message

1 ILLEGAL PARAMETER LIST POINTER

2 ILLEGAL "WHAT" PARAMETER ADDRESS
3 ILLEGAL "PKEY" PARAMETER ADDRESS
4 ILLEGAL PROGRAM KEY

5 ILLEGAL "INFO" PARAMETER ADDRESS
6 "INFO" PARAMETER VALUE NOT 0 OR 1

Error numbers between 100 and 105 describe
errors that occur in accessing the file.

101 ILLEGAL FILE NAME
102 FILE NOT FOUND-FILE "XXXx"
103 ACCESS NOT ALLOWED TO FILE "XXXX"

(Permit access is required to cset
the program key.)

104 DEADLOCK SITUATION, TRY LATER =-FILE
"xxxx n

105 INTERRUPTED OUT OR WAIT FOR LOCKED
FILE "XXXx»

Error numbers 201 and above indicate a file
system error.

(optional) is the location of a 20-fullword
(B0-character) region in which the SETKEY
subroutine will place the corresponding error
message if an error return (return code 4) is
made. Assembly langquage users should see
instructions above on omitting optional par-
ameters for the ercode parameter.

is the statement label to transfer tc if the
corresponding return code occurs.

The program key has been set as requested.
Error. The program key has not been set. See the

error.

Assembly:

CALL SETKEY, (WHAT,PKEY,INFO,ERCODE,EREMNSG)

WHAT DC C'PROGRAN !
PKEY DC C'DBMS !
INFO DC 2rg»

ERCODE DS F

ERRMSG DS CL80



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

FORTRAN: CALL SETKEY ('PROGRAM ','DBMS ',0)

The above examples set the program key for file PROGRAM to
DBMS.

SETKEY 381



MTS 3: SYSTEM SUBROUTINE DESCERIPTIONS

October 1976

382 SETKEY



