
..... , ~ , s h · .1 ' 9 0- , Z , •
• • • _- ··-333333- · · • • • • ••••••• · ·'Ull3·· ·_···· •••••• • • 333l33- · . • • • ••• • ••••• • l1331l ··· ·· ••••••• • • •• !3l) 33 · · · · • •••••••• • • ·ll Ull ._. - __ _

. eorr ' U 'tb rto. u.~ lUIS
lSI' 'OLl r llu' u

lain allal
/IIIU B. UUII!
III1U lllla Mauu
MIIlIMana IUUlIIIa
uuuau UUIIIIl!lla
uaU.IIIU uauuau
Ulln IMaD RUIIII lIun
lain 11111 8a nUl UUI
laua n.n a~ul aUII
IIII'U aalnn.RU BUll.
IIlua •• uallllu lUll
au.. IIUIMa U~1I 11
IIBIB IIIBIII
IIIIUI IU nUR
Idua andl
IIIIl n ... n
.dnll n n.
111111 ... u

.. " u"

l~lIC lvjG.b\ 'ftNCUlVt.l)1,hft\
k ll)'\)(Po/_! ~~
lutJ:£" \'IV/v <J- s!llV"D..~-t..
Pi'CI!£.<SV{"S)

ff1'H'll'TTtH'TUffTTf UTTT
J tt'HH""1fffHrUT!1'Tf
'nnftrnnununnttn ,,=

urn
t u n
H'rn
nut
urn
urn
nUT
!un
'nn Tnn
nn>
ur1t
"1" .=.

SSSU5SSS
S5SSS5S5$$S$$

"sssssssssssssss
SUSSS sssssss

555SS S55SS
u sn
!SUSS
ssssssssnus

SSSSSS$SSSSSS
SSS5SS SSSSS

snssss
ssass
sssss

55SSS SSSSS
sssass! SSSUSS

S$SSSSSSS5SSSSSSS
sssssssssssss

!SSSU SSS

00"000000000 " llllllllll
000000000000 " llJll13lJlJl

" 00 " " " 00 00 " " " 00 " " 00 00 n 333l
00 00 " llll
00 00 n " 00 00 " " " " " tlltU1.I.ULl 113111111111

tl~tUtLtHt 1l3331lJ33

VOLUME 3

M SUBROUTINE
DESCRIPTIONS

OCTOBER 1976

(

(

M T 5

The Michigan Terminal System

VOLUME 3 : SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

Revised

The un i vers~ty of Mi chigan comp u ting Center
Anu Arbor , Michigan

********************************.******************.**
• •
• This obsole~es the Hay 1973 edition . *
• •
**

1

DISCLAIMER

This volume is intended to represeGt the current state of the
Michigan Terminal System (I'IT S), but because the system is constantly
being developed, extended , ar.d refined , sections of this volume will
become obsolete. The user should refer to the ~QmEY~ing ~~n!g~
H~~§b~i~g~, Computing Center Memos , and future updates to this volume
for the latest information about changes to I'IT5.

2

f

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

The software developed by the Com~uting Center staff for the
operation of the high - speed frocessor computer can be described as a
multiprogramming supervisor that handles a nu~ber of resident, reentrant
programs. Among them is a large subsystem , called MTS (Mich i gan
Terminal System), for commar.d interpretat.l.on , execution control , file
management , and accountiug maintenance . MoS~ users interact with the
computer ' s resources througb HTS .

The l'ITS I'lanual is a series of volumes that , when completed , wi ll
describe in detail the facilities provided by the Michigan Terminal
System . Administrative policies of the Computing Center and the
physical facilities provided are described in a separate publication
entitled ~ni£Q~Y£~~2n_1Q_ih~_~QmEY1~rrq_~~n1~£.

The MTS volumes now in prir.t are lis~ed below . The date indicates
the most recent edition C~ each volume; however , since volumes are
updated by means of CCHemos , users should check the Memo list, copy the
file *MTSVOLUMES, or watch for announcements in the li~~~lgllgI , to
ensure that their MTS volumes are up to date .

Volume 1 :
Volume 2:
Volume 3:
Volume 4 :
Volume 5 :
Volume 6:
Volume 8 :
Volume 9 :
Volume 10:

Ih~_~~£h~g~n_r~£~in~1_~yg1gm , April 1976
~yeli£_r~lg_~~§££~eti2ng, January 1975
~Y~1g~_~YQ£QY1~ng_Qgg££~etiQng , October 1976
Igf~~n~!g_~n~_Iaegg , August 1974
~Y§lgm_~gfY~£~2 ' June 1976
rQ~IB!li_~n_~I~, March 1976
~~~g_~n~_§~~~_in_~I§, June 1976 
~liQ~Q~~_!n_~I~ , September 1975 
~!§~~_!n_~I§ , September 1974 

Volume 1 1 : g!Q1_Q~§££~et~Qn_~l§tgm , April 1971; reprinted June 1975 
with Update 1 

Vol ume 12 : 
Volullle 1 4: 

f!bL~_~n_ttI§, December 1974 
J§QLJ2Q_!§§gmQ~§t§_in_~r§ , June 1976 

Other volumes are in preparation . The Lumerical order of the volumes 
does not necessarily r~flect the chronological order of their 
appearance ; however , in gec&eral, the higher the number, the more 
specialized the volume . Volume 1, for example , introduces the use r to 
MTS and describes in general the MTS operati ng system , while Volume 10 
deals exclusively with BASIC. 

The attelllpt to make each volume complete in itself and 
independent of others in the series naturally results in 
amount of repetit i oD . Public file descripti oDS , for example , 

reasonably 
a certain 
may appear 

3 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

in 
buy 

4 

more 
only 

October 1976 

than one volume . However , this arrangement permits the user to 
those volumes that serve his or her immedia te needs. 

Richard A. salisbury, 

General Editor 



( 

MTS 3: SYSTEH SUBROUTINE DESCRIPTIONS 

October 1976 

The October 1976 edition reflects the changes that have been made to 
MTS since Hay 1 973 . Some of these changes were described in Update 1 
which was issued in August 1 974 and are incorporated in th i s re vision. 
However , several new subrout i nes have been added s ince then and, hence, 
it was felt that a complete revision of this volum e was in order. The 
revision bars have been deleted and the page s have been r en umbered to 
facilitate t he future issuing of updates. 

The section " Mathematical Subroutines " has been deleted from this 
edition . Those subroutines , except for GRAND, RAND , and URAND , have 
been replaced by the Numerical Analys is and Applications software (HAA S) 
package and are described in the corresponding documentation for that 
package. The description s of GRAND , RAND , and URAND remain in this 
volume . 

The section "Macros " has t.E:en deleted trom this edi t i on and moved to 
MTS Volume 14. 

The section "Carriage Control" ha s been deleted from this edition and 
moved to MTS Volume 1 . 

The following subroutin e descriptions have been added to this volume 
since the August 1974 update to the May 1973 edition . 

Array Management Subrou t ines 
BINEBCD 
BINEBCD2 
CHGFSZ 
CHGMBC 
CHKACC 
CHDNOE 
CNFGINFO 
CNTLNR 
CVTOHR 
DUMP , PDUHP 
EDIT 
EHPTYF 
FNAHETRT 
FTNCHD 
GUINFUPD 
IHEATTN 
IOH 
RE ADBFR 
RETLNR 
SETKEY 
SETLNR 

5 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

SIOCP 
SPELLCHK 
STARTF 
WRlTEBU F 

October 1976 

The following subroutine aescriptions have been deleted from this 
volume. Some of these subroutines still exist in the system , but the 
Computing Center makes no guarantee as to how long they will exist . 

6 

DCVC 
DCVD 
DCVG 
FCVTHB 
GETlHC, PUTlHC 
SETDSN 
SETDSR 
SETSTA 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

( October 1 97 6 

Preface · · · · · · · · · 3 SHFTl 57 
SHFTR 57 

Preface to Revised Volume 3 5 XOR 57 
Blocked In~ut/output Ro utines 59 

Using Subroutine Libraries 11 QGETUCB 60 
QOPEN 6 1 

Subrou t ines Libraries QGET · · 63 
Available i n "TS · · · · . . 13 QPUT · · 65 

QCLOSE · 67 
Subject categories of QFREEUCB 68 
Subroutines · · · · · 17 QCNTR1 6 9 

Character and N urner ic BLOK1ETR 71 
Conversion · · · · · · 17 CALC . · 73 
Date and Time Con version 17 CANREPLY 77 
File and Device Usage 18 CASECONV 79 
FORTRAN Usage · · · · 19 CFOUB 8 1 
Input/o utput Routines 19 Character Manipulation 
Interrupt Processing · 20 Routines 83 
PL/I Usage · · · · · · 20 BTD 85 

( Stat us of User and System 20 COMC 86 
Systelll Util i ties · · · · · 21 DTB 87 
Virtual Memory Management 21 EQUC 89 

FINOC 90 
Callin g Conventions · ,. · · 23 FI NDST 92 

rGC 93 
Resident S ystem and *LIBRARY LeO MC 95 
Subroutines · · · · · - 33 MOVEC 96 

ADROF · · · · · · · · · · 35 SETC · 97 
Array Hanagemen t Subroutines 37 TR NC · 98 

ARI NI T · · · · 39 TR NST 99 
ARRAY , ARRAY2 40 CHG FS Z .1 0 1 
EXTEND , XTEND2 42 CHG HBC · • 103 
ERASE 43 CHKACC · • 105 
ERASAL 43 CHKFOUB . 107 

ASCEBC · 45 CHKFI LE .10 9 
ATNTRP · 49 CLOSEFIL • 111 
ATTNTRP 5 1 COD · 11 3 
BINEBCD 53 CMDNOE · · 11 5 
BIN EBCD2 55 CNFGINFO .117 
Bi twise Logical Fun ctions 57 CNTLNR · · 121 

AND 57 CONTROL .1 23 
COMPL 57 COST . · 1 27 
LAND · 57 CREATE · 129 
LCOtlPL 57 CU IN FO · 1 3 1 
LOR 57 CVTO MR .13 3 
LXOR 57 DESTROY .135 
OR . 57 DISMOUNT .137 

7 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

DUMP , PDUMP • 1 39 INC .299 
EBCA SC • 14 1 IOC .299 
EDIT . • 145 ITR .299 
EMPTY .155 ITRT .299 
EMPTYF .157 IXC . 299 
ERROR • 1 59 MOUNT .303 
E7090, 07090 , E7090P , 07090P . 1 6 1 "TS . 305 
FNAHETRT • ' 63 HTSCHD .307 
FREAD • 165 NOTE · • .309 
FREEFD · · 167 OSGRDT • 3 11 
FREESPAC • 169 PERMIT .313 
FSIZE • 17 1 PGNTTRP _ 317 
FSRF, BSRF .173 POINT • 3 1 9 
FTNCMD _ 175 Printer plot Routines . 32 1 
GOINF . 177 PLOT1 . 325 
GDINFO . 179 PLOT2 .326 
GDINF02 • • 185 PLOT3 . 327 
GDINF03 • 1 87 PLOT4 .328 
GETFD • • 189 PLOT 14 . 329 
GETFST , GETLST • 191 PRCHAR . 330 
GETIME · • 1 93 PREND • 33 1 
GETSPACE · · · _ 195 PRPLOT _ 332 
GFINFO · · · · _ 197 STPLT1 _ 334 
GPSECT , QPSECT, FPSECT .205 STPLT2 .335 
GRAND , GRAND 1 . . . . .207 SETLOG .336 
GRGJULDT , GRGJU1TI1 , GRJLSEC . 209 OMIT . 337 
GRJLDT, GRJLTl'l · 21 1 QUIT · · .339 
GROSDT · _ 213 RCALL • 34 1 
GTDJI1S · · · · . 215 READ · · : 343 
GTDJMSR : 217 READBFR . 347 
GUINFO, CU I NFO • 2 19 RENAI1E . 349 
GUINFUPD .233 RENU HB • 35 1 
GUSER . 235 RE.TLNR . 353 
GUSERID .237 REWIND . 357 
IOH .239 REWIND# .359 
JLGRDT , JLGRTM _ 24 1 RSTH1E · _ 36 1 

JI1SGTD, JTUGTD .243 SCANSTOR .363 
JMSGTDR, JTUGTDR .245 SCARDS .365 
JULGRGD'l , JULGRGTI1, JLGRSEC .247 SDUHP _ 367 

KEYWRD • .249 S ERCOI1 : 37 1 
KWSCAN · · · .253 SETIME .373 
LETGO .273 SETIOERR _ 377 

LINK , LINKF .275 SETKEY .379 
LIOUNITS · · ~ 281 SETLIO . 383 
LOAD, LOADF _ 283 SETLNR .385 
LOADINFO _ 289 SETPFX _ 389 

LOCK . · · · .293 SIOC · _ 3 9 1 

10DM AP · · · .297 SIOCP _ 399 

Logical Operators .299 SIOERR . 403 
IC1C · .299 SKIP · . 405 
lED .299 SORT · _ 409 
IEDHK .299 SORT2 , SORT3 • 41 1 
HIVC · .299 SPELLCHK . . _ 413 

8 



MTS 3: SYSTEM SUBROUTINE DESCRIPiIONS 

( October 1976 

SPIE · .415 CNiL . . . . . · · · · • 471 
SPRINT .4 1 9 CPliTIME · · · · .473 
SPUNCH • 42 1 ELAPSED · · · · .475 
STARTF .423 FINFO, TFINFO, RFINFO . 477 
STDDMP .425 IH EATTN .479 
SYSTEM .427 IhENOTE , IHEPNT . 48 1 
TICALL .429 IHEREAD , IHERITE .483 
TIME · . 433 NEXTKEY , LASTKEY _ 485 
TIMNTRP . 437 PLCALL , PLCALLD , PLCALLE , 
TRACER .439 PLCALLf .487 
TRUNC . 443 PlUDR • 491 
TWAIT .445 PL lRC _ 493 
UNLK · .447 RAND . .495 
UNLOAD , UNLDF .449 SIGN OFF .497 
URAND .451 USERID . .499 
iI RIT E • 453 
WRITEBUF . . .457 The Elementary Function Lil::rary 50 1 
XCTl, XCTLF .459 

I/O Subro utine Return Codes _ 515 
PLII Library Subroutines . 465 

ATTACH .467 I/O Modifiers . · · · • 52 1 
BATCH . . . . . . .469 

External SYlllbol Index .533 

( 

( 
9 



~TS 3 : SYSTEM SUBROUTIN E DESCRIPTIONS 

Octo ber 1976 

10 



r 

( 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

The Computing 
public files. 
libraries. 

Center mainta~ns a 
In additior" the 

number of 
user can 

subroutine libraries in 
construct and use hi s own 

The l oader will selectively load subroutines from both u~er and 
system libraries as follows: 

(1 ) All libraries ~!eJ..!.£! t. 1Y speci fied on the $RUN command are 
processed. 

(2) 

(3 ) 

If, after all files expl i citly specified on the $RUN command are 
processed , there remain unresolved subrout i ne ca lls , the loader 
will search imeJ..!£!tlY specified libraries if the LIBR oFtion i s 
ON (the default) as follows : 

a. The loader will implicitly search any private libraries 
specified via the $SET LIBSRCH=FDname command. The default 
setting for the LlBRSRCH option is OFF, in which case no user 
libraries are impl~citly searched. 

b . If, after implicitly searching all user libr aries , there 
remain unresolved subroutine calls , the system will implicit ­
ly search -LIBRARY and the resident system library if the 
*LIBRARY option is ON (the default). 

I f, after all implic~tly specified libraries have been searched, 
there remain unresolved subroutine calls, a terminal user will 
be prompted for more inp ut; a batch user will be given an error 
return from the loader. 

The default settings for LIBR, LIBSRCH, and *LIBRARY are such that, for 
example, issuing the command 

$RUN - LOAD. -PL 1LIB 

will cause the loader to go through the follow i ng steps: 

(1 ) The object modules in the file -LOAD are loaded and linked 
together . 

(2) Object modules are selectively loaded from *PL1LIB (since i t i s 
a library) to resolve external symbols (1. e., subroutine names) 
from - LOAD . 

( 3 ) Finally , if there are still unresolved external 
-LIBRARY and the res~dent system library are searched 
appropriate object mod ules. 

symbols , 
for the 

Using Subroutine Libraries 11 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

Note 
Instead 

that this concatenation 
of specifying 

can be implicit as well as explicit. 

$RUN OBJ+*PL1LIB 

the user could specify 

$CONTINUE WITH *PL1LI B 

as the last line in the f ile OBJ and tnen specify 

$RUN OBJ 

to get the same effect. 

The dynamic loader ' s library facility consists of four control 
records, namely LCS, LIB, RIP, and DIR records (named because the 
record s bave LCS, LIB, RIP, or DIR, respectively, in columns 2 to 4 of 
the record). The LCS record causes symbols which are referenced but not 
yet defined to be defined from a resident system table if they exist 
there. The LIB record loads selectively the object module which follows 
it or to which the LIB record points only if the module name bas been 
referenced but not yet defined. The RIP record handles forward 
references and multiple entry point problems in the one - pass library 
scan. The DIR record is used to facilitate the loading of modules 
stored in a sequential file. 

A library consists of the object modules the user desires in his 
library together with the library control records necessary to define 
the module names , entry points , and references for the selective loading 
feat ure of the loader . Although the user can constr uct such a library 
himself by inserting appropriate library control records in both his 
object modules, this task has proven formidable enough wi th large 
libraries that a program has been written to analyze the object modules 
for a library and generate the l i brary complete with all library control 
records. A description of this program, *GENLIB, is given in MTS Volume 
2. Details of the form of library control records can be found in " The 
Dynamic Loader" section in MTS Volume 5. 

12 Using Subro utine Libraries 



( 

( 

( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

The following is a list of the public files that contain subroutine 
libraries: 

*LIBRARY 

All subroutines that are contained in *LIBRARY are described in 
this volume except for the 10H subroutines which are described 
in the section "IOH " in MTS Volume 5. 

*PL1LIB 

This file contains subroutines needed to support PLII programs. 
A few of these which were added or modified by the Computing 
Center are described in this volume. The remainder are 
described in the 1BH publications !~tl __ ~y§t~~Ll2Q_QE~~~~~~g 
~y§t~m_RbLI_lrL_R£Qg~~~~~£~§_~~i~~ , form number GC28-6594, and 
!~n_~Y§!~mLJQQ_Qe~£~ting_2Y§1~~L_~1L!_2HR£Q~~~n~_~iQ£~~YL_~Qm£H= 
~~1!QB~1_2QQ~QH~in~§, form number GC28-6590. 

*PL360LIB 

This file 
dures READ, 

*SLIP 

contains subroutines to support the external proce ­
WRITE, PUNCH, and PAGE for PL360 programs. 

The SLIP (symmetric List Processor) subroutine package is an 
implementation of Joseph Weizenbaum1s IBM 7090 SLIP language. 
The description of SLIP i s given in the section " SLIP" in MTS 
Volume 8 . 

*WATLIB 

This file contains WATFOR-coded functions and subroutines for 
use with WATFIV programs. The description of WATFIV is given in 
the section "WATFIV" in MTS Volume 6. 

*CSI'IPLIB 
*GASP 
*GPSSLIB 
*SIM2LIB 

These files contain library modules for use with the CSMP, GASP, 
GPSS , and SIMSCRIPT2 simulation lang uages. 

Subroutine Libraries Available in MTS 13 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

*ALGO LLIB 
*KDPLIB 

October 1976 

These f i les contai n s ubrout i nes for use with the ALGOL lang uage. 

*SP I TLIB 

This f i le contains the 
object programs produced 

*PLOTSYS 

execution-time 
by *SPITBOL. 

support rout i nes for 

This file contai ns the su brout i nes for use wi th the Plot 
Description System ( PDS ) . 

*IG 

This file contains the subrout i nes for use wi th the I ntegrated 
Graph i cs (IG) system. 

*ALGOLWLI B 
*ALGOLWXLIB 

These files contain subroutines for use wi th the ALGOLW and 
extended ALGOLW languages. 

*APLLIB 

Thi s file con t ains s ubrout i nes for use with the General Hotors 
Assoc i ative programmiL.g Language (APL). 

*XPLIBRARY 
*EX PLIB 

These files 
extended XPL 

contain subroutines 
lang uages. 

for use with tne XPL and 

*COBLIB 

Thi s file contai ns subroutines for use with the COBOL l anguage. 

One s ubroutine library 1S ava i lable under the Computing Center 1 0 
010. 

OLD: LI BRARY 

Th i s f i le 
*LI BRARY. 
Compu t ing 

con tains 
These 

Center . 

s ubrout i nes 
subroutines 

that were once containe d 
are no longer supported by 

14 Subroutine Li b r ar i es Availabl e i n MTS 

i n 
t he 



( 

( 

( 

MTS 3: SYS TEM SUBROUTINE DESCRIPTIONS 

October 1976 

Se veral s ubroutin e libraries are available under the Computing Center 
ID NAAS. These are used for numerical analysis applications. ~rbey are 
the following: 

NAAS:NAL 

This file contains a package of general numerical analysis 
s ubroutines. 

NAAS:EISPACK 

This file contains a package of eigensystem subroutines deve­
loped by the Argonne National Laboratory. 

NAAS:FUNPACK 

This file 
developed 

contains a 
by the Argonne 

packag e of special function 
National LaboratorY:. 

subroutines 

HAAS: SSP 

This file contains the IBM Scientific S ubroutine package. 

NAAS:OLDLIB 

This file contains the mathematical subroutines that were once 
contained in *LIBRARY~ 

Several subroutine libraries are available under the Computing Center 
10 qNS P. They are the following: 

ONSP:LIBRARY 

This file contains a collection of FORTRAN -callable subroutines. 

UN SP: PL l1IB 

This file contains a col lection of PL/I-callable subroutines. 

UNSP:SPITLIB 

This file 
SNOBOL4 or 

UNSP: LSLIPLIB 

contain s a collection 
SPITBOL programs. 

of functions callable from 

This file contains the single-precision version of the SLIP 
sub routine s . 

UNSP:DIGLIB 

This file contains the device-independent graphics system. 

Subroutine Librari es Available in MTS 15 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

For more detailed 
UNSP descriptions in 
NUBS .• 

information on these subroutine libraries, see 
the documentation racks at the computing Center 

the 
and 

The 10 UNSP is part of an effort to gather a number of unsupported 
programs and subroutines ~nto one location. This unsupported software 
is being made available under UNSP rather than in public files because 
the Computing Center does ~ot have the resources (people , time, or 
money) to completely insure its quality or to provide continuing 
maintenance. Many of these programs and subroutines represent interim 
solutions to parti c ular prob~ems which will be replaced with supported 
software as better so lutions are developed. 

AS the name UNSP suggests , this software is not actively sUPForted by 
the Computing Center Staff . This means that there are 00 guarantees are 
its reliability, performance , or continued availability, no counseling 
is available beyond that normally provided for user programs, and no 
rebates will be given for errors caused by the operat i on of unsupported 
software . (It should be no ted , however, that before any software is 
made available under UNSP , a member of the Computing Center staff will 
have done minimal testing and determined that the programs does what it 
claims to do for the common cases.) The file UNSP:CATALOG may be copied 
to obtain a list of the programs and subro utines currently available 
together with a short description and directions for obtaining addition­
al documentation. 

16 Subroutine Libraries Avallable in MTS 



( 

MTS 3: SYS1' EI1 SUBROUTINE DESCRIPTIONS 

October 1976 

In an effort to aid users in finding subroutines that may be useful 
i n their work , a number of subject ca~egories have been defined . Each 
category consists of a type of activity a user lIIight be doing. Under 
each category is listed the Lame of the appropriate subroutine descrip­
tion, the purpose of the subroutine, a n d whether the s ubroutin e i s 
callable from assembly language and/or FORTRAN . 

Character and Numeric Conversion 

ASCEBC USASCII to EBCDIC translation 
BINE BCD Binary input t o EBCD I C t r anslation 
BINEBCD2 Binary input to EBCDIC translation 
CASECONV Lowercase to uppercase con version 
CVTOdR OMR card image to EECDIC translation 
EBeASC EBCDIC to USASCII translation 
E7090,D7090 , E7090P ,D7090P 

1 0H 
SlOe 
SIOCP 

70 90 to 360 floating-poin~ conversion 
Numeric input/output conversion 
Numeric input/output con version 
Numeric input/output con versi on 

Date and Time Conversion 

GRGJULDT Gregorian to Julia n date and time 
GRGJULTM Gregorian to Julia n time 
GRJLDT Gregorian to Julian date and time 
GRJLS Ee Gregorian to Julian t i me 
GRJLTH Gregorian to Julian time 
GROSDT Gregori an to as date 
GTDJMS Gregorian to Julian date and time 
GTDJ I1 SR Gregorian to Julian time 
JLGRDT Julian to Grego;ia n date and time 
JLGRSEe Julian to Gregorian time 
JLGRTM Julian to Gregorian time 
JM SGTD Julian to Gregorian date and time 
JI1SGTDR Julian to Gregorian date and time 
J ULGRGDT Julia n to Gregorian date and time 
JULGRGTM Julian to Gregorian time 
OSGRDT as to Gregorian da te 
TIME Get time of day, CPU and elapsed time 

Assembly 
Assembly 
Assembly 
Assembly 
Assembly , FORTRAN 
Assembl y 

Assembly , FORTRAN 
Assembly 
Assembly , FORTRAN 
Assembly , FORTRAN 

Assembly 
Assembly 
FORTRAN 
Assembly 
FORTRAN 
Assembly, FORTRAN 
FORTRAN 
Assembly 
FORTRA N 
Assembly 
FORTRAN 
FORTR AN 
Assembly 
Assembly 
Assembly 
Assembly, FORTR AN 
Assembly, FO RTRAN 

Sub ject Categori es of Subrouti nes 1 7 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

File and Device Usage 

CFDUB 
CHGFSZ 
CHGMBC 
CHKACC 
ChKFDUB 
CH KFI LE 
CLOSEPIL 
CNTLNR 
CREATE 
DESTROY 
EDIT 
EMPTY 
EMPT Y F 
FNAMETRT 
FREEFD 
FSIZE 
FSRF , BSRF 
GDINF 
GOINFO 
GDINP02 
GOINF03 
GETFD 

Compare FOUB - pointers 
change file size 
cbange number of f ile buffers 
Check access to file 
Get a FDUB-pointer for a file 
Determine existence of a file 
Close a file 
Count number of lines in a file 
Cr eate a file 
Destroy a file 
Edi t a file 
Empty a file 
Empty a file 
Check for legal file name 
Free a file or device 
Determine size required for a file 
Forward and backspace records in a file 
Get file information 
Get file or device information 
Get file or dev~ce information 
Get file or device information 
Get a file or device 

GETFST , GETLST 
Get first and last line numbers of a 
line file 

GFINFO Get fi l e and catalog information 
LETGO Periodically unlock and lock a file 
LOCK Lock a f ile 
NOTE 
PER HIT 
POINT 
RENAME 
RENUMB 
RETLNR 
REWIND 
REWINDI 
SETKEY 
SETLNR 
TRUNC 
UNLK 
WRITEBUF 

Remember sequential file pointers 
Permit a file 
Change seq uential file pointers 
Ren arne a f i le 
Renumber a f i le 
Return line numbers of a file 
Rewind a logical 110 unit 
Rewind a file or magnetic tape 
Set program key for a file 
Set line numbers of a file 
Truncate a file 
Unlock a file 
Write file buffers 

18 Subject Categories of Subroutines 

October 1976 

Assem bly, 
Assembly, 
Assembly , 
Assembly, 
Assembly , 
Assembly , 
Assembly , 
Assemb ly, 
Assem bly , 
Assem bly, 
Assembly, 
Assembly, 
Assembly , 
Assembly 
Assembly, 
Assem bly, 
Assembly, 
FORTRAN 
Assembly 
Asse mbly 
Assembly 
Assembly , 

FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 
FOR TRA N 
FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 

FORTRAN 
FORTRAN 
FORTRAN 

FORTRAN 

Assembly, FORTRAN 
Assembly , FORTRAN 
Assembly , FORTRAN 
Assembly, FORTRAN 
Assembly, FORTRAN 
Assembly, FOR TRAN 
Assembly , FORTRAN 
Assem bly , FORTRAN 
Assembly, FORTRAN 
Assembly , FORTRAN 
FORTRAN 
Assembly 
Assembly , FORTRAN 
Assembly , FORTRAN 
Assem bly, FORTRAN 
Assembly, FORTRAN 
Assembly, FORTRAN 



( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

FORTRAN Usage 

ADROF Get address of a FORTRAN variable 
Array Management Routines 

ATNTRP 
Array processing for FORTRAN 
Attention interrupt processing 

Bitwise Logical Functions 
FORTRAN bitwise logical functions 

Character Manipulation Routines 

DU!'IF, PDll MP 

FREAD 
FTNCHD 
GDINF 
GRJLDT 
GRJLTH 
GTDJMS 
JLGRDT 
JLGRTM 
JMSGTD 
LINKF 

Character processing for FORTRAN 

Dump storage 
Free format input 
Execute FORTRAN I/O library command 
Get file information 
Gregorian to Julian date and time 
Gregorian to Julian time 
Gregorian to Julian date and time 
Julian to Gregorian date and time 
Julian to Gregorian time 
Julian to Gregorian date and time 
Dynamic loading 

LOADF Dynamic loading 
Logical Operators 

ReALL 
REWIND 
SIOERR 
STARTF 
TICALL 
UNLDF 

FORTRAN logical machine operations 
R-type call from FORTRAN 
Rewind a logical I/O unit 
I/O error processing 
Dynamic loading 
Timer interrupt processing 
Dynamic unloading 

Input/Output Routines 

Blocked 

FREAD 
GUSER 
LIOUNITS 
READ 
READBFR 
REWIND 
RE WIND# 
SCARDS 
SERCOl'l 
SETIOERR 
SETLIO 
SIOERR 
SPRINT 
SPUNCH 
WRITE 

I /O Routines 
Read and write blocked records 
Free format input 
Read from logical I/O unit GUSER 
Table of valid logical I/O units 
Read a record 
Read without knowing length 
Rewind a logical I/O unit 
Rewind a magnetic tape or file 
Read from logical I/O unit SCARDS 
Write on logical I/O unit SERCOl'l 
I/O error processj.ng 
Set logical I/O unit 
I/O error processing 
Write on logical I/O unit SPRINT 
Write on logical I/O unit SPUNCH 
Wri te a record 

FORTRAN 

FORTRAN 
FORTRAN 

FORTRAN 

FORTRAN 

FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 

FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 

Assembly, 
Assembly, 
Assembl y, 
Assembl y 
Assembly, 
Assembly 
FORTRAN 
Assembly 
Assembly, 
Assembly , 
Assembly 
Assembl y, 
FORTRAN 
Assembly , 
Assembly , 
Assembly, 

FORTRAN 
FORTRAN 
FORTRAN 

FORTRAN 

FORTRAN 
FORTRAN 

FORTRAN 

FORTRAN 
FORTRAN 
FORTRAN 

Subject Categories of Subroutines 19 



~TS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Interrupt Processing 

ATNTRP 
ATTNTRP 
GETIME 
PGNTTRP 
RSTHIE 
SETI~E 

SPIE 
TICALL 
TItlNTRP 
TRACER 

TWAIT 

PL/I Usage 

ATTACH 
BATCH 
CNTL 
CPUTDIE 
ELAPSED 
FINFO 
IH EATTN 
IHENOTE 
IHEPNT 
IHEREAD 
IHERITE 
NEXTKEY 
PLCALL 
PL 1 AOR 
PL1RC 
RAND 
SIGNOFF 
USERID 

Attention interrupt processing 
Attention interrupt processing 
Timer interrupt processing 
Program interru~t processing 
Timer interrupt processing 
Timer in terrupt processing 
program interrupt processing 
Timer in terrupt processing 
Timer interrupt processing 
Elementary function library error 
processing 
Tim er i nterrupt processing 

Attach PLII files 
Terminal or batch status 
Execute a device support operation 
Get CPU time 
Get elapsed time 
Get file or device information 
Attention interrupt processing 
Remember sequential pOinters 
change sequential pointers 
Read from PL/I 
Wri te from PL/I 
Find key of next PLII record 
S-type call from PL/I 
Get address of a PL/I variable 
Determine returL code from subroutine 
Uniform random numbers 
Signoff the user 
Get use r ccid 

Status of User and System 

CANREPLY 
CNFGINFO 
COST 
CUINFO 
GUINFO 
GUINFUPD 
GUSERIO 
LOADINFO 

Terminal or batch stat us 
Get system configuration information 
Get cost of curren t signon 
Change user status information 
Get user status information 
Update user status information 
Get user ccid 
Get symbol or aadress information 

20 Subject Categories of Subroutines 

October 1976 

FORTRAN 
Assembly 
Assembly 
Assembly 
Assembly 
Assembly 
Assembly 
FORTRAN 
Assembly 

Assembly, FORTRAN 
Assembly, FORTRAN 

PL/I 
PL/I 
PL/I 
PL/I 
PL/I 
PL/I 
PL/I 
PL/I 
PL/I 
PL/I 
PL/I 
PL/I 
PL/I 
PL/I 
PL/I 
PL/I 
PL/I 
PL/I 

Assembly, FORTRAN 
Assembly 
Assembly, FORTRAN 
Assembly 
Assembly 
Assembly 
Assembly, FORTRAN 
Assembly 



( 

I 

( 

/'ITS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

System Utilities 

BLOKLETR 
CALC 
eMD 
CMDNGE 
CONTROL 
DISMOUNT 
ERROR 
GRAND 
KEYWRD 
KWSCAN 
MOUNT 
"TS 
MTSCf'!D 
Printer 

QUIT 
SETLIO 
SETPFX 
SKIP 
SORT 
SORT2 
SORT3 
SPELLCHK 
SYSTEM 
URAND 

Produce block letters 
Call $CALC routines 
Execute an MTS command 
Execute an MT S command without echoing 
Execute a device support operation 
Dismount a tape 
Ter~inate execution with error 
Normally distributed random number 
Keyword processing 
Keyword processing 
Mount a tape 
Return to MTS command mode 
Return to /'ITS and execute a command 

Plot Routines 
Produce plots 
Signaff user at next MTS command 
Assign logical 1/0 units 
Set prefix character 
Space a magnetic tape 
Sort and merge records 
Sort vectors 
Sort vectors 
Spelling check 
Ter mina te execu't.ion 
Uniformly distributed r andom number 

Virtual Memory Management 

DUtlP , PDUMP 
Dump storage 

PREESPAC Release storage 
GETSPACE Acquire storage 
GPSECT, FPSECT, QPSECT 

LINK 
LINKF 
LOAD 
LOADP 
LOADINFO 
LODI'IAP 
SCANSTOR 
SDUMP 
ST ARTP 
STDDMP 
UNLDF 
UNLOAD 
XCTL 
XCTLF 

Psect storage management 
Dynamic loading 
Dynamic loading 
Dynamic loading 
Dynamic loading 
Get loader table information 
Produce loader map 
Scan storage blocks 
Dump storage and registers 
Dynamic loading 
Dump storage 
Dynamic unloading 
Dynamic unloading 
Dynamic loading 
Dynamic loading 

Assembly, 
Assembly, 
Assembly, 
Assembly , 
Assembly, 
Assembly, 
Assembly, 
Assembly, 
Assembly 
Assembly 
Assembly , 
Assembly, 
Assembly, 

Assembly , 
Assembly, 
Assembly , 
Assembly, 
Assembly, 
Assembly , 
Assembly, 
Assembly, 
Assembly, 
Assellbly, 
Assembly, 

FORTRAN 

FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 

FORTRAN 
FORTRAN 
FORTRAN 

FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 
FORTR AN 
FORTRAN 
FORTRAN 
FORTRAN 
FORTRAN 

Assembly , FORTRAN 
Assembly, FORTRAN 

Assellbly 
Assembly 
FORTRAN 
Assembly 
FORTRAN 
Assembly, FORTRAN 
Assembly, FORTRAN 
Assembly 
Assembly 
FORTRAN 
Assembly 
FORTRAN 
Assembly 
Assembly 
FORTRAN 

Subject Categories of Subroutines 21 



I'ITS 3: SY STEI'I SUBROUTI HE DESCRI PTIONS 

October 1976 

22 Sub j ect Categories of Su broutines 



( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

A calling convention is a very rigid specification of the sequence of 
instructions to be used by a program to transfer control tc another 
program (usually referred to as a subroutine) ~ It is very desirable , 
although not always practical , to set up only one set of con ventions to 
be used by all programs no matter what language they are written in so 
that FORTRAN programs may call assembly language programs and so forth~ 
In MTS, the as type I calling conventions have been adopted as tbe 
standard. A complete specification of these standards can be found in 
the IBM publication, Q~1§Q __ §I§1~~ __ ~Q~£Y!§Q~_~g£y!£g§ __ ~~g __ ~~££Q 
!U~i£Y£1!QU§, form number GC28 - 6646. This description will attempt to 
bring out the pertinent deta~ls of these calling conventions . 

Throughout this discussioL we will refer to the terms £~ll!~g 

££Qg£~! , £~1!~~ E£Qgf~!, §~yg ~£g~, and £a!!!~g §ggyen£g. The £A!l~£g 
E£Qg£am is the program which ~s in control and wants to call another 
program (subroutine) • The £al1~~ EfQg~s~ is the program (subroutine) 
which the calling program wants to call . The 22yg ~~gs is an area 
belonging to the calling program which the called program uses to save 
and later restore general- purpose registers. Tbe save area has a very 
rigid format and is discussed in more detail later on. A £Alli~g 
§ggygU£g is the actual sequeLce of machine instructions which perform 
the tasks as specified by toe calling conventions. 

The facilities that must be provided by the calling conventions are: 

1. Establish addressability and transfer to the entry point . 
2. Pass parameters on to the called program . 
3 . Pass results back to the calling program . 
4. Save and restore general-purpose and float~ng - point registers . 
5 . Reestablish addressao~lity and re t urn to the cal l ing program. 
6. Pass a return code (error indication) back to the calling program 

so it knows how things went . 

The remainder of this description 
conventions to show how they 
above are provided for . 

will describe the as 
are used and how the 

type I call ing 
facilities listed 

The as type I calling conventions 
similar calling conventions , referred 
and R-type calling conventions. The 

actually consist of two very 
to as S-type calling cODventions 

two differ only in the way 

calling Conventions 23 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

parameters 
programs. 

and 
The R 

results are passed between the £~lliDB 
refers to £ggi§1~I and the § to §1Q£~gg . 

October 1976 

The R-type calling conventions utilize the general-purpose registers 
o and 1 for passing parameters and results. This allows only two 
parameters or results and cannot be generated in higher-level language s 
such as FORTRAN. Its advantages are that calling sequences are sborter 
and take less time to set up. These are very popular in lower-level 
system subroutines such as GETSPACE or GETFD. FORTRAN users needing to 
call subroutines that utiliz~ R- type calling conventions can use the 
RCALL subroutine described in this volume. 

The S-type calling convent ion s require a pointer to a vector of 
address constants called a paralleter list (in register 1). Since the 
parameter list can ,be of any required leLgth, se veral parameters can be 
passed using S-type calling convention. These conventions are used by 
system subroutines such as SC ARDS or LINK and are generated by all 
function or subprogram references in FORTRAN.. Results can be passed 
back by giving variables in the parameter list new values or via 
register O. 

As stated above , a parameter list is a vector of address constants. 
The parameter list must be on a full word boundary and the entries are 
each four bytes long _ The address of the first parameter is the first 
word of the list , the address of the second parameter the second word of 
the list , and so on. For example , the parameter list for the FORTRAN 
statement 

CALL QQSV (X,Y , Z) 

might be written in assembly code as: 

PAR DC A (X) address of X 
DC A (I) address of I 
DC A (Z) address of Z 

Now this parameter list works well enough when the parameter list for 
the subroutine is of fixed length , but there is not enough information 
yet to allow a subroutine to determine the length of the parameter l ist 
and hence accept variable-length parameter lists . For this reason there 
are t wo types of parameter lists, t~~g~:.~ng~h 2~~~~~1~! .121§ as 
described above, and an extended form of parameter list called a 
Y~£i~al~=1~ng1h Es!~!~1gt 1~§1 which is described next. 

Since a standard System/360/370 computer uses 24-byte storage 
addresses , the left-most byte of an address constant is usual ly zero. 
In a variable-length parameter list, bit zero of the left - most byte of 
the l~§1 parameter address constant is set to 1 to show that it is the 
last item in the list. The example above then would be written as: 

24 Calling Conventions 



( 

( 

October 1 976 

PAR DC 
DC 
DC 
DC 

A (X) 
A (Y) 
XL1 1 80 ' 
AL3 (Z) 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

address of X 
address of Y 
turn on bit zero 
address of Z 

if it generated a variable-length parameter list , as FORTRAN dOES . Note 
though that programs expecting a fixed-length parameter list will work 
with a variable-length parameter list, provided it is at least as long 
as the fixed - length list the program is expecting , since it extracts 
only the address part when it uses the parameters . 

Of the sixteen general- purpose registers, five are assigned for use 
in the calling conventi ons . The use of the general registers differs 
slightly depending upon whether an R- or S-type call is being made . 
Table 1 specifies exactly what each register is used for during a call. 

Notice that it is the called program's responsibility to save and 
restore registers 2-1 2 in the save area provided by the calling Frogram .• 
There are two reasons for this. First , only the called prog r am knows 
how many of the registers from 2-12 it is going to use . Since a 
reg i ster need be saved and restored only if it is actually going to be 
changed , the called program may be able to save some time by saving and 
restoring only those registers which it will use . secondly , the called 
program requires addressability over the area in which it will save 
reg i sters upon entry, since any attempt to acquire the address of a save 
area would destroy some of the registers which are to be saved. 
Furthermore , the save area should not be a part of the called program 
since that would prevent it from bei ng reentrant (shareable) ... This 
means the calling program should provide the save area in which 
registers are saved and restored. And so we have the called program 
saving and restoring registers 2-1 2 in a save area provided by the 
calling program . 

The calling conventions are quite different with floating - point 
registers . Since a large percentage of programs do not leave items in 
floating - point registers across subroutine calls it seems rather waste­
fu l to always save and restore the floating-point regis t ers. So the 
convention has been established that the £s!ling program must save and 
restore those floating - point registers that contain items which are 
wanted. Also , programs that ret urn a single floating - point result q uite 
frequently do so via floating-point register 0 .. 

Calling Conventions 25 



dTS 3: SYSTEM SUBROUTINE DE SCRIPTI ONS 

October 1976 

~-- ~---- ------------~ 

I Register Number I ConteLts I 
f----- +------ - ----- ----I 
I 0 I Parameter to be passed in R-type sequences ~ I 
I I I 
I I Res ult to be passed back in R- and S - type I 
I I sequences ~ I 
.-----------+-- ------------------------------1 
I 1 I Parameter to be passed in R-type sequences . I 
I I I 
I I Address or a parameter list in S-ty pe seq u e ncEs . I 
.---- -+- -- ------ ----1 
I 2- 12 I Not used as a part of the calling sequence . Must I 
I I be saved and restored by the called program. The I 
I I sa ve area is usually used for this. I 
.-----------+---- -------I 
I 13 I The address of the save area pro vided by the I 
I I calling program to be used by the cal l ed prog r am. I 
f- -+-- ------------1 
I 14 I Address of the location in the calling prog r am to I 
I I which control should be returned afte r execution of I 
I I the called program . I 
1---- +- - ----------1 
I 15 I Address of the entry point in the called program at I 
I I the time of the call. I 
I I I 
I I A return code at the time of the ret urn t hat I 
I I indicates to the calling program whether or not. an I 
I I exceptional condition occurred during processing of I 
I I the called pro gr am. The return code should be zero I 
I I for a normal return or a multiple of fou r fo r I 
I I various exceptional conditions . I 
L----_______ ~ __ _ 

Table 1: General - Purpose Reg i ster Conventions 

There are in the 
ca n ret urn a result . 

call ing conventions four 
These are : 

ways in which a subro ut i ne 

1. Value of result in general - purpose register O. 
2. Value of result in ger.eral- purpose register 1 . 
3 . Va lue of a re s ul t i n .rloating-point registers (us ually FRO ). 
4. Value of a parameter from the parameter list changed. 

The part i c ular method used depends upon whether the R- or S-ty pe 
convention is used and whether the called program can be used as a 
funct ion in arithmetic statements . 

26 Callin g Conventions 



( 

( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

The first three me~hods are used by R- type calling convent i ons for 
all returned results . The contents of each of the registers depends 
upon the particular called program and are described in the s ubro utine 
description for each subroutine using the R-type calling conventions . 

The first, third , and fourth methods are used by S - type calling 
conventions for all returned results . The first and third methods are 
used by function subprograms wh ose calls can be embedded in FORTRAN 
statements. The choice o f general register 0 or floating-point register 
o depends upon whether the result returned is integer or float in g point 
mode , respectively. Examples of subroutines which return results in 
this manner are the FORTRAN IV Library subprograms , such as EXP , ALOG, 
or SIN. The fourth method can be used by a subprogram . An example 
would be a subprogram called by the statement 

CALL HATADD(A,B,C ,M,N) 

which might add the MxN matr~ces A and B together and store the res ult 
in C. 

The save area is an area belonging to the ~s!l!ng program wbich the 
~s!!g~ program uses to save and later restore general- purpose registers. 
The address of the save area is passed to the called program by the 
calling program via general- purpose register 13 . The save area has a 
very rig i d format and is described in Table 2. 

There are two things to be noted about the save area format , tamely, 
who sets what parts of the sa ve area and how these areas might be set 
up. The £a!.!!.nq program is responsible for setting up the second word 
of the save area. This is to contain the address of the save area which 
was provided when the £a.!..!.!.ng program was called . Although this i s 
technically set up by the calling program as a part of the call, most 
programs set up the save area they will provide to subroutines they call 
once and leave its address in general register 13 . This process then 
does not need to be repeated for each call . The ~s!!~~ program is 
responsible for setting up the third through eighteenth words of the 
save area . The called program usually saves the general registers which 
it will use as a part of its initialization procedure and restores the 
registers as a part of the return procedure. Notice that the save area 
format is amenable to use of the store multiple and load multiple 
instructions for saving and restoring blocks of registers. All of this 
will be made clearer in the examples at the end of this section. 

Some system subroutines (notably GETSPACE, FREESPAC, and a few 
others) do not require that a save area be provided for them . For these 
s ubroutines general register 13 need not be set up before a call: its 
contents are preserved by tne called subroutiDe ~ The s ubrouti nes which 
need no save area are clearly marked as such in the MTS subroutine 
descriptions.. Notice that it is all right to provide a save area to one 
of these subroutine; it will s~mply be ignored ~ 

calling Conventions 27 



MTS 3 : SYSTEM SUBR OUTINE DESCRIPTIONS 

Oc t ober 197 6 

~---r-- --------, 
I word I Di splacement I COf.tents I 
1---- - 1 1 --------- ---------1 
I 1, 0 I Used by FORTRAN , PL/ I, an d other beasti es I 
I I I fo r many devi ous purposes . Don ' t touch! I 
I-----t- - -+------ ------ ----1 
I 2 I 4 I Adaress of the save a rea used by the calling I 
J I I program. ForllS a back ward chain of sa ve I 
I I I areas . Stored by calling program . I 
1 -I 1 ---- I 
I 3 I 8 I Add r ess of t he save area provided by the I 
I I I called prog r am for programs it calls . Fo r ms I 
I' I a rorward c hai n of save areas. I 
f-----t--------+------ - --- ----- ----1 
I 4 I 12 I Return address. Contents of register 14 at I 
I I I t i me of call. I 
I-----t 1 ------I 
I 5 , 16 I Entry point address . contents of r eg i s t e r I 
I I I 15 at time of cal l. I 
I-----t- ---+----- --- ---I 
J 6 I 20 , Re gister 0 contents . I 
~----+- --+--- - - ---I 
I 7 I 24 I Reg i ster 1 contents. I 
1---- 1 1 ---------- ----1 
I 8 , 28 I Register 2 contents . I 
I-----t- ---+------ -------I 
, 9 I 32 I Reg i ster 3 contents . I 
~---t-------+ --- ------ -------------1 
I 10 I 36 I Regis t er 4 contents. I 
1 -t --t ------I 
I 11 I 40 I Reg i s t er 5 contents . I 
I -t- 1 ------------1 
I 12 I 44 I Register 6 contents.. I 
/------+------ --t -- --------1 
, 13 I 4 8 I Registe r 7 c ontents . I 
1 + ---+- -- --------1 
I 14 I 52 I Register 8 contents . I 
I-----t- ---t---- ---I 
I 15 J 56 I Reg i ster 9 contents . I 
I-----t ---+ ---I 
J 16 I 60 I Register 10 contents . I 
1 -t-- --+ ---- ---I 
I 17 I 64 I Re giste r 11 c on tent s . I 
I-- 1 --t ----------1 
I 1 8 I 68 I Register 12 c ontents . I 
'- --',------------_._---

Tabl e 2: Sa ve Area Format 

28 cal l ing Conven ti o ns 



r 

( 

( 

MTS 3: SYSTEM SUBROUTINE DESCRIPiIONS 

October 1976 

The calling program is r esponsible for the following : 

1~ Loading register 13 with the address of the save area and setting 
up the second word of the save area ~ 

2~ Loading register 14 with the return address . 
3. Loading register 15 with the entry point address . 
4~ Loading registers 0 and 1 with the parameters in an R-type call 

or loading register 1 with the address of the parameter list in 
an S - type call. 

s . Saving floating-point registers, if necessary~ 
6. Transferring to the entry point of the subroutine . 
7.. Restoring floating-point registers , if necessar y. 
8. Testing the return coae in register 15, if desired. 

After the return from a subrou~ine , t he status of the program will be 
as follows: 

,. In general, the contents of the floating - point registers will be 
unpredictable unless saved and restored by t he calling program. 

2. The contents of general registers 2 through 14 will be restored 
to their contents at the time the called program was entered . 

3 . The program mask will be unchanged. 
4. The contents of general registers 0, 1 , and 15 may be changed .• 
5. The condition code may be changed . 

Note that general registers 0 and 1 and floating - point register 0 may 
contain results in the case of R- type subroutine calls or a function 
subprogram. General register 15 will normally contain a return code, 
indicating whether or not an exceptional condition occurred during 
processing of the called program. 

The ca lled program is responsible for the following: 

1. Saving the contents of general registers 2 through 12 and 14 in 
the save area provided by the calling program. These r egisters 
need be saved only if the called program modifies these 
registers. 

2. Setting up the third word of the save area with the address of 
the save area which will be provided to subroutines it will call.: 

3~ Restoring the contents of general registers 2 through 14 b€for~ 
returning to the call~ng program~ 

4. Restoring the program mask if changed. 
5. Loading general registers 0 and 1 or floating - point register 0 

with the result in the case of R-type subroutine calls or a 
fUDction subprogram. 

6 . Loading general register 15 with the ret urn code. 
7. Transferring to the return location. 

calling Conventions 29 



HTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

This section will describe and give the assembly language s tatemen t s 
for the typical mach i ne instructions necessary to i mplement the calling 
con ventions . 

A typ i cal entry point might consist of the following statements : 

USING 
SUBRA ST" 

LR 
LA 
ST 
ST 
LR 
LR 

• 
• 
• 

SAVE DS 

SUBRA ,1 2 
14,1 2 ,1 2 (1 3) 
12 , 15 
15 , SA VE 
15,8(0, 13) 
13 ,4( 0 ,1 5) 
13 , 15 
1 1 , 1 

18F 

12 will be a base register 
save registers 
set up 12 as the base register 
this ~s sa v e area provided for others 
set up forward pointer 
set up backward pointer 
set up for an y calls we issue 
get parame ter pointer into nonvolatile 
register 

save area we provide for other s 

ILsi de a s ubroutine that began with the entry 
the value of the second para~eter in the pa ra mete r 
into general- purpose register :l with the following 

seguence given above, 
list could be put 

seguence : 

• 
• 
• 
L 

L 

• 
• 
• 

3,4 (0 ,11) pick up second adcon from pa r list 

0 ,0 (0 , 3) pick up value of parameter 

Inside a subrout i ne that began with the entry seguence given above, 
a~other subroutine , SUBRB , could be called using the fo llowing seguence. 
Remember that register 13 already poin~s to the correct save area: 

• 
• 
• 
LA 1, PARLIST 
L 1 5,=V (SU BRB) 
BALR 14, 15 

B * +4 (15) 
B AOK 
B BAD 1 
B BAD2 

30 Callin g Convent i ons 

set up parameter list address 
set up entry point address 
set up re tu rn address and branch to 
the s ubrout i ne 
test return code via a transfer tabl e 
RC=O 
RC= 4 
RC:8 



( 

( 

( 

October 1976 

• 
• 
• 

AOK ••• 
• 
• 
• 

PARLIST DC 
DC 
DC 
• 

A (PAR 1 ) 
A (PA R2) 
A (PAR3) 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

normal return to here 

first parameter address 
second parameter address 
t hird parameter address 

Fina lly, 
could return 

a s ubroutine that began wi th the entry 
to the program that called it with the 

sequence given above 
folIo wi n9 sequence: 

LE 
L 
LH 
SR 
BR 
• 
• 
• 

0, RESULT 
13,4(0 , 13) 
14,12,12 (1 3) 
15, 15 
14 

It should be pointed ou t 
typical of the instructions used 
many variations are possible .• 

f loating point result to FPR 0 
use back pOinter to get sa ve area 
restore reg~sters 
indicate a zero return code -- no errors 
return t o what called us 

that although the above sequences are 
to implement the calling con ventions, 

There are two sets of macro definitions in the MTS macro library 
*SYSHAC which can be used to help generate calling sequences . These are 
the macros SAVE, CALL , and RE.TURN ; a nd tbe macros ENTER and EXI'!. The 
more useful of these macros are ENTER, CALL, and EXIT~ Besides these 
there is a set of macros which generate the entire calling sequences for 
many of the system subroutines and IOH. For details, see the macro 
descriptions i n MTS Volume 14. 

The example given above is repeated below using the ENTER , CALL, and 
EXIT macros. 

SUBRA 

SAVE 

ENTER 
LA 
• 
• 
• 
DS 
• 
• 
• 

12,SA=SAVE 
11 ,1 

18P 

L 3,4 (0 ,1 1) 
L 0,0(0,3) 

Calling Conventions 31 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

• 
• 
• 
CALL SUSRS , (PAR1 , PAR2 , PAR3) 
B *+4 (1 5) 
B AOK 
B BAD 1 
B BAD2 
• 
• 

AOK ••• 
• 
• 
• 
LE O, RESULT 
EXIT O. 

The CALL macro generates its o wn parameter list , 
li st specifi ed by PARLIST in the original example 
macro example. 

32 calling Conventions 

October 1976 

hence the paramete r 
need not appea r in the 



( 

( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

This section contains descriptions of the subroutines that are a part 
of the resident system or are contained in the publ~c file *LIBRARY. 

Each of these subroutines is called with either the standard S-type 
calling sequence (such as FORTRAN uses) or the R- type calling sequence. 
Both types of calling sequences are described in the section " Calling 
Conventions" in th i s volume. 

Resident System and *LIBRARY Subroutine s 33 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

34 Resident Syste~ and *LIBRARY Subrout i nes 



( 

/ 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

!.Q!!Q£: 

SUBROUTINE DESCRIPTION 

PUI:pose: To return the address of a FORTRAN variable. 

Location: ·LIBRARY 

Alt. Entry: IAD Ror 

Calling Sequences: 

Example: 

FORTRAN: x = ADBOF (var) 

Parameters: 

X2~ is the location of the variable name whose 
address i s to be returned. If the variable name 
is a character string which is intended to be 
used as an FDname, it should be terminated with 
a trailing blank . 

Values Ret urnee: 

Note: 

GRO will contain the address of the variable. In a 
FORTRAN call, this address will be returned in ! .. 

In FORTRAN, ADROF should be declared as an 
INTEGER*ij function. AOROF is intended for use 
with ReALL to compute addresses as necessary in 
calling R-type s ubroutines (see the RCALL subrou ­
tine descri.ption in this volum e ). 

FORTRAN : INTEGER* 4 RESULT,ADROF 

RESULT = ADROF('FDname I) 

Th i s example returns the address of the character string 
" FDname" in the variable RESULT. 

ADROI 35 



MT S 3 : SYSTEM SUBROUTIN E DES CRIPTIONS 

October 1976 

36 ADROF 



( 

( 

October 1976 

Purpose: 

Location: 

MTS 3 : SYSTE~ SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

The array management subroutine (AMS) pack.age 
FORTRAN users to create , extend , and erase 1-
dimensional arrays at execution time. 

*LIBRARY 

permits 
and 2-

Description : Any program or subroutine which references an array 
created by AMS must include an appropriate subset of the 
following statements: 

LOGICAL* l $1 1 (1) 
LOGICAL*4 $14 (1 ) 
INTEGER*2 $12 (1) 
INTEGER*4 $14 (1) 
REAL*4 $R4 (1 ) 
REA1*8 $R8 ( 1) 
COI'lPLEX*8 $C8 (1) 
EQUIVALENCE ($L1 (1 ) ,$L4 (1 ) , $12 ( 1) , $14 ( 1) ,$R4 (1 ) , 

$R8 ( 1) , $C8( 1)) 
COMMON /$/ $14 

The above statements establi sh a set of names called ba§~ 
ns~~§, all of which reference the same address in memory. 

An ordinary FORTRAN array element is addressed in the 
form : 

array name (index) 

An A~S array element is addressed in the form : 

base name (array name + index) 

where the base name should match the FORTRAN type of the 
array. For example , an INTEGER*4 FORTRAN array named 
ALPHA might be referenced as ALPHA (I). An A~S array of 
the same name and type should be referenced as $14 (ALPHA + 
I). If tbe array type is REAL*8 , it should be referenced 
as $R8 ( ALPHA+I) and so on for the other array types . 

Other base names lIlay be used instead, but the a bove names 
are recommended as they serve to remind the user of the 
type of array being referenced. Starting the base names 
with a dollar sign ($) serves to make references to these 
arrays conspicuous in the program listing. Base names 
need not be de~ined for any array types Dot used by the 

Array ~anagelllent Subroutines 37 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

program , 
passed in 
arrays . 

October 1976 

except that an INTEGER*4 base must be named and 
COMdON /$/ even if the user creates no INTEGER*4 

If the above declarations are properly ~ade, then an AMS 
array may be ~assed to a s ubrout in e merely by passin g its 
array name , either as an argument or in COMdON. 

The user - callaDle subroutines in AMS are : 

Name I purpose 
----- --1 -- ------------------------- -- ---
AR INI 'l I to initialize AdS 
ARRAY I to create a 1-dimensional array 
ARRAY~ I to create a 2 - dimensional array 
EXTEND I to extend a 1-dimensional array 
XTEND~ I to e x tend a 2 - dim ens i onal ar r ay 
ERASE I to e rase a s ingle array 
ERASAL I to e r ase all arrays 

All arguments passed to and re turned by these routines 
must be INTEGER*4 values . 

AMS calls in turn the MTS subro utines GETSPACE , FREES PA C, 
HlVC and ADROF. 

Note to users who a re doing dynamic program loading via 
LINKF , LOADF , and XCTLF : the storage obtained by AMS will 
be associated wit h the highest level program and wil l not 
be released until execution is terminated . To release 
un wanted arrays cal l ERASE or ER ASAL . 

38 Array Management Subroutines 



r 

October 1976 

Purpose : 

MTS 3 : SYSTEM SUBROUTINE DESCRIPiIONS 

Before any arrays are created , the user must make one and 
only one call to subro utine ARIN I T. This routine initia­
lizes AMS, ma~nly by creating an array called the master 
table, which is used by AMS to keep track of the user ' s 
arrays. The user does not have direct access to the 
master table. 

Calling Sequence: 

Example: 

CALL ARINIT{nOar,minc,&s1,&s2) 

Parameters: 

Return Codes: 

Normal 
&5 1 
&52 

an integer in the range 1 to 52428, which 
specifies the number of arrays the user 
expects to create during the job. This is an 
estimate and not an upper limit. 
a positive integer specifying the Dumber of 
arrays that the master table should be 
extended to accommodate in case it overflows . 
It will be automatically extended by this 
amount an indefinite number of times, as 
needed . 

Initialization successful. 
No space available to create master table . 
Invalid argument passed (i.e., BQ~~ not in 
range or !!!iB£ not positive). 

CALL ARINIT(100 , 50,&98,&99) 

The master table is created with enougb room to 
handle 100 arrays . Should more arrays be requested, 
the master table will be automatically extended to 
accommodate another 50 arrays. I f any time during 
the run the master table should overflow again, it 
will be extended to accommodate yet ancther 50 
arrays. Control will pass to statement 98 in the 
user ' s program if memory space is not available to 
create the master table. Control will pass to 
statement 99 if an invali d argument is passed. 

Array Management Subroutines 39 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

Purpose: 

October 1976 

To create a 1-dimensional array, ARRAY should be 
To create a 2 - dimensional array, ARRAY2 should be 

called. 
called. 

Calling sequences: 

CALL ARRAY (n,t , d1 ,Ss1 ,Ss2,Ss3,SsQ) 
CALL ARRAY2(n,t,d 1, d2 , Ss 1, Ss2,Ss3,SsQ ) 

Parameters: 

.!= length in bytes of an array element <1, 2 , 4 
or 8) • 

~ 1 a positive integer specifying the number of 
elements in the 1st dimension of the array. 

~l a positive integer specifying the number of 
elements in the 2nd dimension of the array. 

Note: The number of bytes in the array will be 
.!=*~1*~£ , and this product must be in the range 1 to 
1 048576 . 

Values Returned : 

Return Codes: 

name of array to be created. The integer 
value returned will be such that when Q is 
used in the array reference IIbase name(Q+i)" , 
the lIi ll th element of the array will be 
referenced (base name = $L 1 , $L4, $12, $14, 
$R4, $R8 or $C8 . ) 

When creating a 1- dimensional array , argument 
rr may take the form of an undimensioned 
FORTRAN variable such as N, a FORTRAN array 
element such as N (J) , or an AMS arra y element 
s uch as $14 (N+J). In any case , !! must be of 
type INTEGER*4 .. 

When creating a 2-diroensional array , argument 
~ may not take the form of an undimensioned 
variable. It must be an element of either a 
FORTRAN or an AMS INTEGER*4 array dimensioned 
at least gl in length . Tbis is tbe user ' s 
responsibility_ 

Normal Array created successfully .. 
&s 1 Requested array size o ut of range. 

40 Arra y Management s ubroutines 



( October 1976 

Examples: 

( 

( 

MTS 3 : SYSTE~ SUBROUTINE DESCRIPTIONS 

&s2 No space available for requested array. No 
new arrays ~ay be created unless some exist­
ing arrays are era sed ~ 

&s3 Request for extension of master table is 
greater than 1 048576 bytes. 

&s4 1 is not equal to 1, 2 , 4 or 8 . 

The following examples illustrate the creation of 1-
dimensional arrays: 

,ll CALL M.RAY (N", 100 , &1,& 2 ,&3,&4) 

To reference "ill th element: $11 (N+!) 

( 2) INTEGER*4 N (20 ) 

CALL ARRAY (N (J) ,8 , 250) 

To reference "i" th element: $RS (N (J) +1) 

( 3 ) CALL ARRAY (N,4 , 20 ) 

CALL ARRAY ( $14 ( N+Jl , 2 , 1500) 

To r eference "i" th element: $12 ($14 (N+J) +1 ) 

Note that by the method of the second and third examples , 
a series of i ndependent arrays may be c reat ed , all 
referenced by the same name, but by different values of J. 
This is like having a 2 - dimensiona l array where each 
column may be of a d i fferent type and length aDd may be 
created, extended, or erased independently. This is 
useful if the exact number of arrays require d by a program 
is unknown until determined by execution - time data or 
calculation . 

The following examples illustrate the creaticn of 2-
dimensional arrays: 

(4) 1NTEGER*4 N (20) 

CALL AHRAY2 (N,4,200,20) 

To reference element "i,j": $R4 (N (J) +1) 

(5) CALL ARRAY (N,4,20) 

CA LL ARRAY2 ($14 (N.1) , 8,3000,20) 

To reference element II i, j " ; $R8 ($14 (N+J) +1) 

Array Management Subroutines 41 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Purpose: 

October 1976 

To extend a 1 - dimensional array, EXTEND should be called. 
To extend a 2 - dimensional array , XTEND2 should be called . 
This routine allocates new space dimensioned according to 
the request , moves the contents of the old space to the 
new space , calculates Dew name values for the Dew space, 
and frees the old space . 

Calling sequences : 

Examples : 

CALL EXTEND (n,i nc 1, Ss 1, Ss2 , Ss3) 
CALL XTEND2 (n , inc1,inc2,&s1 , &s2 ,& s3) 

Parameters: 

name of array to be extended. 
a positive integer or zero specifying 
number of array elements to be added to 
dimension of array . 
a positive integer or zero specifying 
number of array elements to be added t o 
d~mension of array_ 

Note : bn£l and in££ may not both be zero . 

Values Ret urned: 

n new name value for new space obtained . 

Return Codes : 

Normal Array extended successfully . 

the 
1st 

the 
2nd 

&s1 Size of extended array is greater than 
1048576 bytes . 

Ss2 No space available for extension of array. 
Ss3 Invalid argument (i. e ., array name not recog­

nized , negative i~£1 or i~£~, or i n£1 and 
i~£~ both zero) . 

CALL EXTEND (ALPHA,500,&9,&10,& 11 ) 
CALL EXTEND(BETA ,M) 
CALL XTEND2 (ARRAY,M,N) 
CALL XTEND2 ($11' (A+1) ,M , N) 

42 Array Management Subroutines 



r 

( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

Purpose : This routine may be called to erase an array. 

Call i ng Sequence : 

Examples: 

Purpose: 

CALL ERASE(n,&s1) 

Parameters: 

name of array to be erased. 

Returns Codes: 

Normal 
6s1 

CALL ERASE (X) 

Array erased successfully. 
Array name not recognized. 

CALL ERASE (A BC,&99) 
CALL ERASE ($I4 (XY Z+ 1) ,&100) 

This routine may be called to eras€! all arrays,. New 
arrays may subsequently be created without recalling 
ARINIT. (In fact , ARINIT should never be called wore than 
once in the same run.) 

Calling Sequence : 

CALL ERASAL 

Array Management Subroutines 43 



HTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

44 Array Management Subroutines 



( 

( 

( 

October 1976 

Purpose: 

Location: 

MTS 3: SlSTEM SUBROUTINE DESCRIPTIONS 

TRANSLATE TABLE DESCRIPTION 

To translate a - bit USASCII characters into EBCDIC charac ­
ters. An inverse table (EBCASC) is also available. 

Resident System 

Calling Sequences: 

Assembly: L 
TR 

Parameters: 

r , = V (ASCEBC) 
d (l,b) , O(r) 

~ is a general register that will contain the 
address of the ASCEBC translate table. 

~J!~hL is the loca~ion of the region to te trans­
lated. ~ is the displacement , ! is the 
length of the region in bytes , and Q is the 
base register for the region. This parameter 
may be given also in an assembly lang uage 
symbolic format . 

Description: A USASCII/EBCDIC translation table is shown on the next 
two pages . Thl.S table is for 7- bit ASCII , Le_. , the 
eighth (high order) parity bit is always shown as zero in 
this table. The translation is actually done using a 
256 - entry I1 folded l1 table i n which the first and second 
halves are identical so that the effect is to igncre the 
USASCII parity bi t .. 

Example: 

See the EBCASC descr i ption for a table to translate from 
EBCDIC into USASCII. 

Assembly : 

REG 

1 
TR 

DS 

6 , =V (ASCEBC) 
REG (100) ,0 ( 6) 

CL100 

The abo ve exam~le will 
the 100 - b yte region 
characters . 

translate the 
at loca tion 

USASCII 
REG 

characters of 
into EECDIC 

ASCEBC 45 



MTS 3: SYSTEM SUaROUTINE DESCRIPTIONS 

Octobe r 1976 

USASCII/EbCDIC Translation Table 

r-------------- -------- ---. 
I USASCII (7 - bit) EBCDIC ( 8 - bit) I USASCI! (7-bit) EBCDIC (B- bit) I 
I I I 
IOct Hex Name TTY Hex Nallle I Oct Hex Nam e TTY Hex Name l 
t---------------- +------------------j 
1000 00 NUL CT- SFT -P 00 NUL 040 20 Space Space 40 Space l 
10 01 01 SOH CTRl - A 0 1 SOH 04 1 2 1 ! SA ! I 
100 2 02 STX CTRl- B 02 STX 042 22 " " 7 F " I 
1003 03 ETX CTRL-C 03 ETX 043 23 • • 7B • I 
1004 04 EOT CTRl - D 37 EaT 044 24 $ $ 5B $ I 
1005 OS ENQ CTRI.-E 2D ENQ 045 25 • • 6C • I 
1006 06 ACK CTRL-F 2E ACK 046 26 & & 50 & I 
1007 07 BEL CTRL - G 2F BEL 047 27 7D I 
101 0 08 BS CTRL -H 16 85 050 28 ( ( 4 D ( I 
101 1 09 HT CTRL-I 05 HT 05 1 29 ) ) 50 ) 
1012 OA LF LINE FEED 25 LF 052 2A • • 5C • 
10 1 3 DB VT CTRL- K DB VT 053 2B • + 4E + 
10 1 ij DC FF CTRI. - L DC FF 1054 2C , , 6B , 
101 5 00 CR RETURN 00 CR 1055 20 60 
10 1 6 DE SO CTRL - N DE SO 1056 2E 4E 
1017 OF 51 CTRL - 0 OF 51 1057 2F I I 6 1 I 
1020 10 OLE CTRL -P 10 OLE 1060 30 0 0 FO 0 
1021 11 DC 1 CTRL-Q " DC 1 10 61 3 1 1 1 F1 1 
10 22 12 DC2 CTRL-R 12 DC2 1062 32 2 2 F2 2 
1023 13 DC3 CTRl-S 13 Dc3 1063 33 3 3 F3 3 
1024 14 DC4 CTRl-T 3c DC4 1064 34 4 4 F4 4 
1025 15 NAK CTRl - U 3D NAK 10 65 35 5 5 F5 5 
1026 16 SYN CTRl -V 32 SYN 106 6 36 6 6 F6 6 
1027 17 ETB CTRL- W 26 ETB 1067 37 7 7 F7 7 
1030 18 CAN CTRl-X 18 CAN 1070 38 8 8 F8 8 
103 1 19 EM CTRl -Y 1 9 EM 1071 39 9 9 .9 9 
1032 1A SUB CTRL - Z 3F SUB 1072 3A 7A 
1033 1 B ESC CT- SFT -K 27 ESC 1073 3B 5E 
103 4 1C FS CT- SFT - L 1C IFS 1074 3C < < 4C < 
1035 1D GS CT- SFT-M 10 IGS 1075 3D = = 7E = 
1036 1E RS CT- SFT - N 1E IRS 1076 3E > > 6E > 
10 37 1F US CT - SFT - O 1F IUS 1077 3F ? ? 6F ? 
'- --- - ---------------------" 

ij6 ASCEBC 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

( October 1976 

USASCII/EBCDIC Translation Table 

~- 0 0 
I USASCII (7 - bit) EBCDIC (8 - bit) 1 USASCII (7-bi t) EBCDIC(8- bit) I 
I I I 
IOct Hex Name TTY Hex Name IOct Hex Name TTY Hex Namel 
I---- ---+ ---I 
100 40 • • 7C • 11 40 60 Grave NONE 9 • NONE 
101 41 A A C1 A 114 1 6 1 a NONE 8 1 a 
102 42 B B c2 B 11 42 62 b NONE 82 b 
103 43 C C C3 C 11 43 63 c NONE 83 c 
1 04 44 0 D C4 D 11 44 64 d NONE 8 4 d 
105 45 E E C5 E 1145 65 e NONE 85 e 
106 46 F F C6 F 11 46 66 f NONE 86 f 
107 47 G G C7 G 11 47 67 9 NONE 87 9 
110 48 H H C8 H 1150 68 h NONE 88 h 
1 1 1 49 I I C9 I 151 69 i NONE 89 i 
112 4A J J D1 J 152 6A j NONE 91 j 
1 1 3 4B K K D2 K 153 6B k NONE 92 k 
1 14 4C L L D3 L 154 6C 1 NONE 93 1 
115 4D " " D4 " 155 6D • NONE 94 • 1 1 6 4E N N D5 N 156 6E n NONE 95 n 
11 7 4F 0 0 D6 0 157 6. 0 NONE 96 0 
120 50 p p D7 P 160 70 P NONE 97 P 

112 1 51 Q Q D8 Q 161 71 q NONE 98 9 
11 22 52 R R D9 R 162 72 r NONE 99 r 
11 23 53 S S 82 S 163 73 s NONE A2 s 
11 24 54 T T E3 T 164 74 t NONE A3 t 
11 25 55 U U E4 U 165 75 u NONE A4 u 
1126 56 V V E5 V 166 76 v NONE AS v 
11 27 57 W W E6 w 167 77 w NONE .6 w 
11 30 58 X X E7 X 170 78 x NONE A7 x 
11 3 1 59 Y Y E8 Y 17 1 79 Y NONE A8 Y 
11 32 SA z Z E9 Z 172 7A z NONE A9 z 
1133 58 [ SH I FT-K AD [ 173 78 ( NONE 8B ( 
1134 5C Bkslsh SHIFT - L BA NONE 174 7C I NONE 4 F I 
1135 5D l SHIP T- tI BD l 1175 7D ) ALT MODE 9B ) 
1136 58 Carat SHIFT - N AA nONE 1176 7E Tilde NONE SF 
11 37 SF SHIFT-O 6D 1177 7. DEL RUBOUT 0 7 DEL 

~ 

ASCEBC 47 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

48 ASCEBC 



( 

r 

, 

October 197 6 

Purpose: 

Location: 

dTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

!It!IE~ 

SUBROUTINE DESCRIPTION 

To allow a FORTRAN program to be notified of the occur ­
rence of an attention interrupt . 

*LIBRARY 

Calling Seguence: 

FORTRAN: CALL ATNTRP(flag) 

Parameter: 

Il~g is a LOGICAL*4 variable which will be set to 
.TRUE . when an attention interrupt occurs. 

Return Codes : 

None. 

Description: A call to the ATNTRP subroutine will set the value of il~g 
to .FALSE . and will enable the attention interrupt trap. 
When an attention interrupt occurs , Il~g will be set to 
. TRUE., the trap wi·ll be disabled , and executi on of the 
interrupted program will be resumed at the point of the 
interrupt . It is the responsibility of the FORTRAN 
program to detect a change in the value of ilA9 and t o act 
accordingly. 

Example: 

One call to ATNTRP allows only one attention interrupt to 
be intercepted . If i t is desired to intercept another 
attention interrupt , ATNTRP must be called again. 

FORTRAN: LOGICAL* 4 FLAG 
CALL ATNTRP(FLAG) 

10 IF (FLAG) GO TO 2 0 

GO TO 10 
20 CONTINUE 

This example calls ATNTRP to enable the intercept cf one 
attention i nterrupt. Periodically, the program checks the 
value of FLAG to determine if an i nterrupt has occurred; 

ATNTRP 49 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

50 ATNTRP 

October 1976 

if an interrupt has occurred , a branch i s made to 
statement label 20 . 



( 

( 

( 

October 1976 

Purpose: 

Location: 

Alt . Entry: 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

To alloW' con tro 1 to be returned to 
attention interrupt from a terminal device 
274 1, BREAK on Teletype , etc. ) . 

Resident System 

ATTNT 

the user 
(ATTN 

on 
key 

00 
on 

Calling Sequences: 

ikse~bly : LM O, 1,=A(exit , region) 
CALL ATTNTRP 

Parameters : 

GRO shoula contain zero or the location to transfer 
control to if an attention interrupt occurs. 

GR 1 should contain the location of a 72 - byte save 
region for storing pertinent information. 

Return Codes : 

None. 

Description: A calIon the subroutine ATTNTRP sets up an attention 
interrupt intercept for one interrupt only . The calling 
sequence specities the save region for storing information 
and a location to transfer to upon the next occurrence of 
an attention interrupt. When an interrupt occurs and the 
exit is taken, the intercept is cleared so that another 
call to ATTNTRP is necessary to intercept the next 
attention i nterrupt . When an attention interrupt occurs , 
the exit is taken in the form of a subroutine call (BALR 
14, 15 with a GR13 save region provided) to the -location 
previously specified. If the exit subroutine returns to 
I'lTS (BR 14), I'lTS will handle the interrupt as i f ATTNTRP 
had not been called or i gi nally. This feature allows the 
user to take brief control of the interrupt before HTS 
takes complete control of the interrupt. When MTS takes 
control of the iIlterrupt, execution of the program will be 
terminated and a message will be printed prov i ding the 
location of the interrupt. 

If GRO is 
interrupt 
it should 

zero on 
intercept 

point to a 

a call to ATTNTRP, the attention 
is disabled . GR 1 should be zero, or 

valid save region. 

ATTNTRP 5 1 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Example: 

52 ATTNTRP 

October 1976 

When the attention interrupt exit is taken, the first 
eight bytes of the save region contain the attention 
interrupt PSW, and the remainder of the sa ve region 
contains the contents of general registers 0 through 15 
(in that order) at the time of the interrupt. The 
floating-point registers remain as they were at the time 
of the interrupt,. GR1 will contain the l ocat ion of the 
save region_ 

If on a call to ATTNTRP the first byte of the sa ve region 
is X'FF ' , ATTNTRP does not return to the calling program; 
rather , the right·h a nd half of the PSW and the general 
regi sters are imm edi ately restored from the save region 
and a branch is made to the location speci fied in the 
second word of the region. This type of callan ATTNTRP, 
after the first attention interrupt exit is taken, allows 
the user to set a switch (for example) and to return to 
the paint a~ which he was interrupted with the attention 
interrupt intercept again enabled . 

In this example, the attention interrupt intercept is 
enabled for a specified porti on of the program. When the 
interrupt occurs, a branch will be made to the label EXIT 
where a switch will be set marking the interrupt occur­
rence. The i n t errupt intercept will be reenabled by a 
second call to ATTNTRP with the FF flag set and a branch 
will be made back to the point where the interrupt 
occurred. 

LM 0, 1, =A (EXIT, REGION) 
CALL AT1NTRP The intercept is enabled. 

SR 0,0 
SR 1 , 1 
CALL ATTNTRP The intercept is disabled. 

USING * , 15 
EXIT OI SW,X'01' 

MVI 0(1) , X'FF' 
LA O,EXIT 
CALL Al'TNTRP The intercept is reenabled . 

REGION as 18F 
5. OC X'OO' 



( 

( 

r , 

October 1976 

Purpose: 

Location : 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

To con vert from bi na ry card image format into EBCDIC 
format. 

Resident System 

Calling Sequence : 

Example: 

Assembly: LA 1, input 
LA 2, output 
CALL BINEBCD 

Parameters : 

GR 1 contains the location of the 160-byte region 
conta~nin9 the binary card image . 

Ga2 contains the location of the eO-byte region to 
contain the converted EBCDIC form. 

Notes : Illegal characters are not detected and are trans­
lated unpredictably_ 

The biLary card image region is 
the translation process . See 
BINEBCD2 for a subroutine that 
this region. 

Assembly: LA 1 ,INPUT 
LA 2 , QUTPUT 
CALL BINEBCD 

INPU'I OS CL 160 
OUTPUT OS CLBO 

destroyed during 
the descr i Ftion of 
does not destroy 

Binary card image 
EBCDIC form 

The binary card image in the region INPUT is converted to 
EBCDIC format and placed in the reg i on OUTPUT. 

BINEBCD 53 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

54 BIN EBCD 



( 

October 1976 

Purpose : 

Location: 

MTS 3: SYSTEd SUBROUTINE DESCRI PTIONS 

'§!!i~~!;.Ql 

SUB~OUTINE DESCRIPTION 

To convert from binary card image format into EBCDIC 
formaL 

Resident System 

calling Seq uence: 

Exampl e : 

Assembly : LA 1, input 
LA 2,output 
LA 3, wkarea 
CALL BINEBCD2 

Parameters: 

GR 1 contains the location of the 160 - byte region 
containing the binary card image . 

GR2 contains the location of the aD-byte region to 
conta~n the converted EBCDI C form . 

GR3 contains the location of an aD - byte work area 
for the subroutine . 

Notes : Illegal characters are not detected and are trans ­
lated unpredi ctably . 

The binary card image region is nQl destroyed 
dur i ng the translation process . 

Assembly: LA 1, INPUT 
LA 2 , OUTPUT 
LA 3,WKAREA 
CALL BINEBCD2 

I NPUT DS (L 160 Binary card image 
OUTPUT DS CLaD EBCDIC form 
WKAREA DS CL80 Work area 

The binary card image in the region I NPUT is con ve r ted to 
EBCDIC for _at aLd placed in the region OUTPUT. 

BI NEBCD2 55 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTION S 

October 1976 

56 BINEBCD2 



( 

( 

October 1976 

Purpose : 

Location : 

PUDctions: 

MTS 3 : S:iSTEH SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTI ON 

These simple functions do the bitwise logical operations 
which are difficult to sta t e in FORTRAN arithmet ic formu­
las. If their names are prefixed wi th an " L", they are 
INTEGER; othe rwi se , they are declared REAL. The only 
exception to this rule i s t ha t SHFTR and SHFTL must be 
declared INTEGER or LOGI CAL (to prevent unwanted 
con versi ons) . 

*LIBRARY 

AND , L AN D , OR , LOR , XOR , LXOR , COMPL , LCOt'lPL , SH F'IR, and 
SH FT L . 

calli ng seq uences : 

AND 
LAND 

OR 
LOR 

XOR 
LXOR 

CO I1P L 
L CO HPL 

C = AND (A , B) 
IC = LAND (lA,I 8) 

Tho result has bits on only if the correspond-
ing bits of the arguments a r e both on . 

C = OR (A , B) 
IC = LOR (I A, 18) 

The r es ult bas bits on only if either or both 
arguments have the corresponding bits OD . 

C = XOR (A,B) 
IC = LXOR (lA, 18) 

The result has bits on only if the correspond ­
ing bits of the t wo arguments are Dot the 
same . 

B = COI1PL ( A) 
IB = LCOI1PL {IAl 

The r esult has all the bits of t he a r gument 
reversed. 

Bitwise Logical Functions 57 



HTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

Examples : 

october 1976 

SHFTR 
SHFTL 

IC = SHFTR (IA , IB) 
Ie = SHFTL (IA,IB) 

The first argument is shifted right o r left by 
the number of bits specified by the last 6 
bits of the secon d integer arg u ment (Le., 
modulo 64). As logical shift functions, they 
are not equivalent to a d i vision o r to a 
multiplication by a power of two . 

Unless otherwi se s t ated , the arguments of the function s 
may be either REAL or INTEGER provided that they are 
full words (four by t es l ong) . 

All of the f unctions except for XOR can be generated as 
iu=!~u~ code by the FORTRA N-H compiler b y specifyin g the 
XL o ption (see the section " *FTN Interface" in MTS Vclume 
6 for de t ails). Caution should be exercised i n their use. 
The fUnctions AND , OR , and COHPL a r e ~!~~y§ generated 
iu=!!U~ by FORTRA N-H, bu t their arg uments should not be 
LOGICAL* 1 or IN1'EGER*2 (specification excepti ons may ccc ur 
on System/360s , or speed is drast i call y reduced on System/ 
3 7 0s) • The othe r functions, if generated i~=lin~ by 
FORTRAN-H by s peci fying the XL option , may take LOG I CAL* ' 
or INTEGER*2 arguments . 

WORD = XOR (W ORD , WORD ) 

This example zeros all the bits of the full wo rd WORD_ 

DA TA HASK/ZOOFFOOOO/ 
SCOBYT = AND {WORD , MASK ) 

This e xampl e 
by deleting 
the fullword 

examines the second byte of the full word 
t he ot her bytes and storin g the result 

SCDBYT . 

LOG I CAL*4 Sl:ifTR 
IWORD = SHFTi ( IWORD , 24) 

This example moves the 
into the f our t h byte 
zero. 

first byte o f the 
position and leav es 

DIMENSION CHAR (4) 
READ (5,4) (CH AR (I) , 1= 1,4) 

4 FOR MAT (4A 1) 
DATA MASK/Z FFOOOOOO/ 
WORD = O. 
DO 6 1 =1,4 

full word 
the other 

WORD 
into 

IWORD 
bytes 

6 WORD = OR (WOR D, SHF TR (AND (CHAR (1) , MASK ), (1-1) *8» 

This example packs fo ur characters into one word. 

58 Bit wi se Logica l Functions 



r 

( 

( 

October 1976 

Purpose: 

Location: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

To read and write blocked records consi sting of ODe or 
~ore fixed - length logical records. 

*LIBRARY 

Entry Points: The blocked input/output routines have the following entry 
points: QGETUCB , QOPEN , QCLOSE, QGET , QPUT , QPREEUCB, and 
QCNTRL . 

Description : These routines will read and write blocked input/output 
records consisting of one or more fixed-length logical 
records. All input/output requests are made for logical 
records ; the routine handles record blocking and deblock ­
ing automatically. These routines are intended for use 
with magnetic t ape records although they are not r estri ct ­
ed to magnetic tapes. More than one input/output file or 
device may be handled at one ti~e. The type of processing 
done by these routines is similar to that done by the 
Que ued sequential Access Method (QSAM) within as , and for 
tbis reason they are sometimes r eferred to as the MTS QSAM 
routines. They should not be confused with the OS 
routines of the same na~e because the MTS routines Frovide 
only a subset of the features of the as routines. 

Se veral error messages can be generated. 
begins with the prefix : 

Each of these 

,ii. QSAM ERROR: <FDname) 

wbich will be abbreviated as II ..... . 

The error messages which can be generated by each routine 
will be listed with that routine in the descriptions which 
follow. 

Some of 
message 
support 

the error messages will 
giving an error comment 

routine) • These will be 

be followed 
produced by 
of the form 

Ii II message 

where " message II is the DSR message . 

by 
a DSR 

another 
(device 

If the subroutine ERROR is called by these routines , a 
$RESTART command will cause an RC=4 return . 

Blocked I /O Routines 59 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTI ONS 

Purpose : 

Alt. Entry : 

October 1976 

To acquire a f ile or device which will be used by the 
blocked input/outp ut routines and generate a table of 
control information for that file or device. Th i s table 
is referred to as the UCB (Unit Contro l Block). 

QGTUCB 

Calling Sequences : 

Messages : 

Assembly : CALL QGETUCB , (name , ptr) 

FORTRA"N: CALL QGTUCB (name , ptr , &rc4) 

Parameters : 

~sm~ is the location of the name of the fi le or 
device which i s to be used by t he blocked 
input/output routines ending with a blank or a 
zero - le vel comma. The name may not be longer 
than 256 characters. If the name begin s with 
the character X' OO ', it i s assumed to he a 
four - byte FOUB - pointer or logical I/O un i t num­
ber t or the file or device . 

eiE i s the location of a word in which the poi nter 
to the uca will be placed. 

r£! is tne stat ement label to transfer t o if a 
nODzero retur n code i s encountered . 

Ret urn Codes : 

o Successful retu r n. The f i le or de vice was 
acq uired and can now be used by the other blocked 
input/outp ut routines . 

4 The f i le o r device cou l d not be acquired proper l y 
from MTS. The su brouti ne GETPO or GOIN PO r eturn ed 
a nonzero r et urn code . 

•• • CO ULD NOT bE ACQUIRED FROM MTS . 
••• ERROR FREEING GOINFO VECTOR . 

Descript i on : A chain of all UCBs acquired thus far i s searched to see 
if th i s f i le or de vice has been set up befo r e. If so , the 
UCB pointer i s returned immediately . other wise, a UCB i s 
built and added to the chain, a pointer to it is ret u rned , 
GETFD and GDI NFO are called for the f i le or device , and 
pert i nent i nformation is set u p in the UCB . The c cmpari­
son is performed on the fu l l name gi ven , that is , F and 
F (1,1 0) are considered different files or dev i ces . 

60 Blocked I /O Rout i nes 



( October 1976 

purpose: 

r 

Messages: 

( 

!'ITS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

To prepare 
QGETUCB for 

a f ile or de vice whi ch has been 
blocked input/output operations . 

acg uired by 

Assembly: CALL QOPEN , (ptr , key ,nu m, len) 

FORTRAN: CA11 QOPEN (ptr,key,num,len,t:.rc4) 

Parameters: 

et~ is the location of a word containing a UCB 
pOinter as returned by QGETUCB. 

~g! is the location of a full word integer which 
indicates whether information is to be read o r 
written: 

1 I nforma t ion is to be written. 
2 Information is to be read. 
S Information is to be written using pre­

vious rrY~ and 19n values. 
6 Information i s to be read using previous 

num and len va l ues. 
llY! is ~he-location-of the fullword i nteger maximum 

number of logical records per physical record . 
19~ is the location of the fullword integer length 

of each logical record (in bytes). 
~g! is the statement label to transfer to if a 

nonzero r eturn code is encountered . 

Return Codes : 

o Successfu l return. The file or device ca n now be 
read via QGET (if ,&gy is 2 or 6) or written via 
QPUT (if ,&gy is 1 or 5) . 

4 The file or device is already open , or ~gy is not 
1, 2, 5 , or 6, messages 1, 2, 4, 5 , or 7 have 
occurred , or the physical record length fer output 
is larger than the maxim um possible output record 
length ret urned by GDINFO. 

ERROR : 

1 ••• 
2 ••• 
3 ••• 
• ••• S ••• 
6 ••• 

The subr outi ne ERROR is called if messages 3 or 6 are 
printed. 

IS ALREADY OPEN. IT CAN ' T BE OPENED TWICE. 
READ/WRITE SPECIFI CATION INCORRECT IN CALL TO OPEN . 
INCORRECT FOR MA T ON LABELED TAPE • 
ATTEMPT TO CH AN GE FORMAT WHILE OPEN • 
MAXIMUM RECORD LENGTH TOO LARGE. 
CONTROL COMMAND REJECTED . 

Blocked I/O Routines 6 1 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

The control command was rejected by the tape dEvice 
support ro utines ; this message may be followed by an 
error message from the tape device support r out ines. 

7 ••• HAS NOT BEEN SUCCESSFULLY ACQU I RED BY QGETUCE . 

Description : The parameters are checked for consistency.. The informa­
tion from the parameters is placed in the ueE . The 
largest possible physical record length i s computed , and a 
buffer of that length is acquired. If the device is a 
magnetic tape , blocking will be t urned on in the tape DSR 
and the format will be set to 

unless th i s is a call to read a labeled tape , in whi ch 
case , QOPE N w~ll check that the format is F or FB with the 
logical record length equal to !~Q. If ~t i s, it will not 
be changed ; if it is not, an err or message will be 
printed . Otherw i se , if thi s is a call to write to a 
device other than a tape , the maximum phYSica l record 
length for output is checked against the maximum Fossible 
outp ut record length as returned by GDIN FO . The maximum 
physical record length is computed as the logical record 
length times the maximum numbe r of logical records per 
physical record . 

62 Blocked I/O Ro utines 



( 

( 

( 

October 1976 

Purpose: To acquire the next 
which has been opened 
QOPEN . 

MTS 3: SYSTEM SUaROUTINE DESCRIPTIONS 

logical 
as an 

record 
input 

from 
file 

a file or device 
or device via 

Calling Sequences: 

Messages: 

Assembly: CALL QGET , (area,ptr) 

FORTRAN: CALL QGET (area,ptr,&rcto 

Parameters: 

is ~he location of an area in which the next 
logical record will be stored (input area). 
is the location of a word containing a UCB ­
pointer as returned by QGETUCB . 
is the statement label to transfer to if a 
nonz~ro return code is encountered . 

Return Codes : 

o Successful return_ The next logical record has 
been placed in the input area. 

4 End-or - file. The input area is sprayed with the 
character having FF as its hexadecimal representa ­
tion. This corresponds to the 12-11-0-7-8-9 
punchea card code_ 

ERROR: 

The subroutine ERROR is called if any of the mes~ages 
below are printed • 

••• USED IN GET ALTHOUGH NOT OPENED AS AN INPUT FILE. 
••• USED IN GEl ALTHOUGH END - OF - FILE INDICATION GIVEN . 
••• INPUT RECOhO IS LONGER THAN MAXIMUM SPECIfIED . 
••• RETURN CODE GREATER THAN 4 FROM READ IN GET_ 

This message may be followed by an error message from 
the input device s upport routine • 

••• TAPE INPUT LENGTH WRONG . 

Description: Physical records are read from the file or device as 
required. Eacb physical record is broken into ODe or more 
logical records of the lengtb specified in the call UpOD 
QOPEN. The last logical record in a physical record may 
actually be shorter than the length of a logical record. 
In that case ~t is padded out with blanks. If there are 

Blocked I/O Rout i nes 63 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

no more logical records, the input area is sprayed with 
the character having FF as its hexadecimal representation .• 
All necessary indices are maintained in the UCB . 

If the device i s a magnet i c tape , the data is moved 
directly into ~I§~ by the tape DSR and no deblocking is 
done by QGET since QOPEN has turned blocking on in the 
tape DSR . 

64 Slacked I/O Routines 



( 

( 

f 

October 1976 

Purpose: 

MTS 3 : SYSTErt SUBROUTINE DESCRI PTIONS 

TO write the next l ogical record to a file or device which 
ha s been opened as an output f ile or device via QOPEN . 

Calling Sequenc es: 

l"Jessages: 

Assembly: CALL QPUT , (area ,ptr) 

FORTRAN: CALL QPUT (area , ptr,&rc4) 

Parameters : 

~Ig§:. i s the location of the area in which the next 
logical record is stored (output area) . 

l!t.I is the location of a word containing a UCB-
pointer as ret urned hy QGETUCB . 

£f<!! is t he statement label to t r ansfe r to if a 
nonzero r eturn code i s encountered. 

Ret urn Codes : 

o Successful ret ur n . The next logi cal rec ord has 
been placed to the current physi cal record . 

4 File or device appears to be fu ll (RC=4 from 
WRI TE) • 

ERROR : 

A message is printed and the subroutine ERROR is 
ca lled if the file or device has not been opened for 
ou t put vi a the subro utine QOPEN o r if a re t urn code 
greater than 4 was received from WRITE while wri t in g 
o ut a physical r eco rd • 

••• USED IN QPUT ALTHOUGH NOT OPENED AS AN OUTPUT FILE. 
••• APPEARS TO BE FULL . (RC=4 PROM WRITE) 
••• ERROR WHIL E WR I TING . 

This message may be f olloved by an error message from 
the output device s upport routine . 

Description : Each logical record presented by a call upon QPUT i s 
placed into a buffer . When the buffer becomes full, it i s 
written out as one physical record . All buffers will 
contain the maximum number of logical r ecords specified in 
t he cal l to "QOPEN except t he last buffer, which will be 
tr u ncated if i t is only partially full when QClOSE is 
called~ All necessar y indices are maintained in the UCB. 

Bloc ked I/O Routines 65 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

If the device is a magnetic tape , the data 
directly from ~£~~ and i s blocked by the tape 

66 Blocked I/O Routines 

October 1976 

is 
DSR. 

wr i tten 



( 

( 

October 1976 

Purpose: 

MTS 3 : SYSTEM SUBROUTINE DESCR I PTIONS 

To terminate blocked i nput/output operations on a file or 
device which has been opened via QOPEN 4 If the file or 
device was used for output and a partial buffer of logical 
records for it is present , it is written o ut as a part of 
the closing procedure. 

calling sequences : 

Messages: 

Assembl y: CALL QCLOSE , (ptr) 

FORTRAN: CALL QCtOSE (ptr) 

Parameters : 

E1£ is the location of a word containin g a UCB 
pOinter as returned by QGETUCB for the f ile or 
device to be closed. The word should conta in a 
zero if all the currently open f i les or devices 
are to be closed . 

Ret u rn Codes : 

o All returns are successful even though some error 
messages may have been printed • 

••• APPEARS TO BE FULL (RC}4 FROM WR I TE) 
••• FISHY RETURN FROM FREESPAC • 
••• ERROR WHILE WRITING. 

Th i s message may be followed by an er r or message from 
the output device support routine. 

Description: I f the file or device was used for o utput and a partial 
buffer of logical records for it is present, it i s written 
out. All information in the UCB is reset t o the Dormal 
state of an unopened file or device. The f i le or d e vice 
is available for use and can be reopened or positioned . 

Note: No tape 
closed . 
rewouna) , 
DSR. 

mark i s written 
I f the tape is 

a tape mark will 

when an out put file is 
reposi tioned (e.g . , 

be wri tten by the tape 

Blocked I/O Routines 67 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Purpose : 

Alt. Entry: 

October 1976 

To free a file or device which has been acquired via a 
call to QGETUCB . 

QFRUCB 

Calling Sequences: 

Messages: 

Assembly: CALL QFREEUCB , (ptr) 

FORTRAN: CALL QFRUCB (pt r) 

Parameter: 

is the location of a fullword containing 
UCB-pointer (such as returned by QGETUCB) 
the file or device to be released. 

Return Codes: 

the 
f or 

o Successful return . The file or device was closed 
and the UCS was released . 

4 The UCB - poi nter was not found . The file was not 
closed .• 

••• ERROR RETURN FROM " FREEFD " . 
••• ERROR RETURN FROM FREES PAC IN QFRUCB. 

Description: The chain of all UCBs acquired i s searched for the UCB 
specified by 2t£. If it is found, QCLOSE is c all ed us ing 
that UCS; then , t he UCB is deleted from the chain and 
released . Any su bseq uent operations on this file or 
devi ce must be preceded by a call to QGETUCB i n order t o 
reallocate its UCB.. 

68 Block e d I/O Routines 



( 

( 

October 1976 

Purpose: To position or write 
has been acquired 
routines . To rewind 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

tape marks on a magnetic 
for use by the blocked 
a file or device . 

tape which 
input/output 

calling Sequences: 

Messages : 

Assembly: CALL QCNTRL , (ccon, ptr) 

FORTRAN: CALL QC NTRL (ccon, ptr) 

Parameters : 

££Qn is the location of the three-byte control com­
mand used to perform the function required , or a 
half word length followed by a contro l command of 
that length. See the "Magnetic TaF€ User ' s 
Guide " in Mrs Volume 4. 

2!~ is ~he location of a word which contains a 
UCB-pointer as r eturned by QGETUCB. 

Return Codes : 

o Successful 
tape device 

return. 
support 

operat ion 
routines. 

was accepte d by the 

4 Any error condition producing one of the error 
messages below (except the message ERROR RE'IURN 
FROM CONTROL OPERATI ON (RC)4». 

ERROR: 

The subroutine ERROR is called if the message ERROR 
RETURN FROM CONTROL OPERATION (R C) 4) is printed • 

••• CANNOT BE POS I TIONED BECAUSE IT I S OPEN . 
••• CANNOT BE ~OSITIONED BECAUSE IT IS NOT A TAPE • 
••• DOES NOT HAVE A FDU B AND SO CAN 'T BE POSITIONED • 
••• RC=4 PROM CONTROL OPERATION. TAPE I S FULL • 
••• ERROR RETURN FRO!'! CONTROL OPERATION (R C)4 ). 

This message may be followed by an error message from 
the tape device support routine • 

••• CANNOT BE POS ITIONED BECAUSE NEVER ACQUIRED BY 
QGETUCB • 

••• CANNOT BE REWOUND • 
••• RC>O FROM " REWIND# " . 

Blocked I /O Routines 69 



~TS 3 : SYSTEM SUBROUT INE DESCRIPTIONS 

October 1976 

Descr i pt i on : If the request is II REW " , the information ret urned by 
GDINFO is checked to be sure the file or device can be 
rewound. If it can, REWIND; is called to rewind the f i le 
or device . For all other requests , the dev i ce must be a 
ta pe , and the operation is performed hy calling the tape 
device support routines . 

70 Blocked I/O Rout i nes 



r October 1976 

Pur pose : 

AlL Entry: 

Location: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

~~Q!U&±R 

SUBROUTINE DESCRIPTION 

To convert a cnaracter string into block letters. 

BLKLTR 

Resident System 

Calling seguences: 

Assembly: CALL BLOKLETR~ ( chars~linct, output , flen) 

FORTRAN : CALL BLKLTR (chars,linct,output~flen) 

Parameters: 

£h~f§ is the location of the character string to be 
converted into block letters. 

lin£l is the location of a fullword integer with a 
value between 1 and 12. This specifies which 
of the twelve lines of the block letter is to 
be produced on this call . 

QY1EYl is the location of the output region in which 
the subroutine will build the resultant out ­
put line. It must be of size equal to 1ij 
times the length of £h~f§. 

flgn is the location of a full word integer speci­
fying the length of £h~f§. 

Return Codes: 

None. 

Description: The characters generated are those of the 029 keypunch 
character set (PL/I character set plus It, ! and "). Any 
other "characters " in the input string are converted into 
blanks. The block characters produced are 12 characters 
wi de by 12 rows high and are spaced apart by 2 blank 
columns. The block characters are composed of the charac­
ter i n questi on -- that is, in a block "AB C", the block A is 
made up of As, the B of Bs, and the C of Cs . This 
subrout i ne produces Qgg of the twelve output rows on each 
call (specified by the li!!£~ parameter). It pri nts 
nothing--it only performs the conversion. In order to 
produce the complete block character string , the subrou ­
tine must be called twelve times. 

BLOKLETR ] 1 



HTS 3 : SYSTEH SUBRO UTIN E DESCRIPTIONS 

Examples: 

72 BLOKLETR 

Assembly : 

FORTRAN: 

October 1976 

SR 8,8 
LP LA 8 ,1{, 8) 

ST 8 , LINCT 
CALL BLOK1ETR , (CHAR S, LINCT , OUTPUT, FLEN) 
SPRINT OUTA , OLEN 
c 8,=F'12 ' 
BL LP 

CHARS DC 
FLEN DC 
LINe]: DS 
OLEN DC 
OUTA DC 
OUTPUT DS 

C'ABC ' 
F ' 3 ' 
F 
Y (3* 14+1) 
C ' , 
CL80 

DATA CHARS/ ' ABC ' / 
LOGICAL*1 OUTPUT(42) 
DO 2 J= 1,1 2 
CALL BLKLTR(CHARS,J,OUTPUT,3) 

2 WR I TE (6,100) OUTPUT 
100 FORHAT( ' ', 42Al) 

These examples convert the character string ABC into block 
letters . The o ut put will appear as 

AAAAAAAAAA BBBBBBBBBBB cccccccccc 
AAAAAAAAAAAA BBBBBBBBBBBB CCCCCCCCCCCC 
AA AA BB BB CC CC 
AA AA BB BB CC 
AA AA BB BB CC 
AAAAAAAAAAAA BBBBBBBBBB CC 
AAAAAAAAAAAA BBBBBBBBBB CC 
AA AA BB BB CC 
AA AA BB BB CC 
AA AA BB BB CC CC 
AA AA BBBBBBBBBBBB CCCCCCCCCCCC 
AA AA BBBBBBBBBBB CCCCCCCCCC 



( 

( 

October 1976 

Purpose: 

Location: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

fA1~ 

SUBROUTINE DESCRIPTION 

To allow program access to the $CALC command routines . 

Resident System 

Calli ng Sequences: 

Assembl y: CALL CALC , (sws , inparm , outparm) , VL 

FORTRAN ! CALL CALC(Sws,inparm , outparm,Grc4 , GrcB) 

Parameters : 

§~§ is the location of a fullword (INTEGER*4) of 
switches assigned as follows: 

Bit 31: 0 

, 
bit 30 : 0 

release CALC internal storage on 
return 
do not release internal storage, 
thus allowing reuse of the same 
iLvocation on subsequent calls 
evaluate one expression and 
return 

1 - remain in CALC mode until a 
RETURN , MTS , STOP command , or an 
end -of-file is encountered 

bit 29: 0 - !g~~£~ is the location of a 
halfword (INTEGER*2 ) i np ut 
length followed by the character 
string to be used as input 

1 - i~£~~~ is the l ocat i on of an 
input routine 

bit 28: 0 no output other than PRO (float­
ing register zero) is desired 

1 - character output is des ired 
Bit 27: 0 - QYi£~£~ is the location of a 

halfword (INTEGER*2) output 
length followed by an output 
region 

1 - QYi£~£~ i s the location of an 
outp ut routine 

Bit 26: 0 - call TRACER subrcutine o n error 
if no character output is 
produced 

1 - do not call TRACER on e rror 

CALC 73 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

inE~I~ (optional) is one of the following : 
(a) the location of a halfword (INTEGER*2) 

length followed by a cbaracter input 
line, 

(b) the location of an input routine which 
will be cal l ed via the standard I/O 
s ubroutine call for input to CALC , or 

(cl 0 or omitted, which means use SCARDS for 
input regardless of bit 29 settin g. 

Q~lE~I~ (optional) is one of the followi ng : 
(a) the location of a half word (INTEGER*2) 

length followed by a character o utput 
region (the length must be the ma ximum 
length of the region and will be replaced 
by the act ual length of the resulting 
character string output) , 

( b) the location of an output routine which 
will be called via the standard I/O 
subro uti ne call for output from CALC, or 

(C) 0 or omitted , which means use SPRINT for 
output regardless of bi t 27 setting . 

I£~LI£~ are statement labels to transfer to if the 
corresponding return code occurs . 

VL is a parameter to the CALL macro which 
s i gnifies that the calling sequence has a 
variable number of parameters. 

Values Returned: 

FRO contains the value of ~he last successf ully 
evaluated e xpression on return. This allows 
CALC to be used as a double-precision (REAL* 
8 ) function - type FORTRAN subprogram .. 

Return Codes : 

o Successtul return. 
4 The last expression evaluated generated an error 

message . 
S The output field provided was of insufficient 

length for the output. 

Description : The CALC subroutine allows the user to invoke the $CALC 
command routiLes to evaluate one or more character arith ­
metic express10ns. The switch settings control the 
options available concerning input , output , and mode of 
operation. 

74 CAL C 

The first two swi tches (hi ts 3 1 and 30 ) control the 
of ope ration, Le .• , whether or not to allo w reuse of 
invocation of CALC and whether or not to stay in 
mode. Note that it is necessary to retai n the 

mode 
this 
CALC 
CALC 



( October 1 976 

Examples : 

( 

~TS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

internal storage if variable values are to be preserve'd on 
subseguent calls to the CALC subroutine .• 

The next s witch (bit 29 ) controls the mode of input , 
wh ether the e xpress i o n i s obtained fr om a given s t ring or 
i s obtained by a subrouti ne call. If !Ue~[m i s 0 or 
omitted , then the input i s read from SCARDS . If iDE9~m i s 
omitted , then Q~ie~[m a l so must be omitted , forc ing input 
to be read from SCARDS and output , if any , to be written 
on SPRINT . I f ines[m specifies an input string (bi t 29 is 
0) and CALC i s to remain in CALC mode (bit 30 is 1), then 
any additional input is read from SCARDS. 

The next two switches (bits 28 and 27) control the mode of 
output . If no output is specifi ed , the subr outine is 
assumed to be called as a funct i on with its only output 
value retu rned in FRO . If an error occurs , the on ly. way 
the user can be not ifi ed is via a call to TRACER. Tb i s 
action can be inhibited by the sett in g of b it 26. If 
Q~le~t~ i s 0 or om i tted , the value of the e xpr ession i s 
written in character form o n SPRINT . If Q~lEs£m i s the 
l ocation of an o utput string , the result is placed in 
character form in the specified locat i on and the length is 
modified to the length of the resulting string . If 
Q~le~r~ is the location of an output stri ng and CALC 
remains in CALC mode (bi t 30 is 1), then all output will 
be written i n the location pro vided . 

For. further 
$CALC command 

FORTRAN: 

information 
description 

on the $CALC command, 
in HTS Volume 1 . 

REAL*8 X, CALC 

X=CALC (OJ 
PRINT 100,X 

100 FORI1 AT{1X ,I X= ', E24 .1 8) 

see the 

In the above example , one expression will be evaluated. 
The expression will be read from SCARDS and there will be 
no outp ut otner than that produced by the PRINT statement. 

INTEGER*2 IN(S)/7 ,' SQ ' ,IRTI,' (2',')' 1 
INTEGER*2 OUT (11 )/201 

CALL CALC (8 , IN,OUT , &100 , &200) 

100 PRI NT 1 
1 FORI1AT(1X, ' BAD EXPRESSION ') 

CALC 75 



!'ITS 3 : SYSTEM SUBROUi'IN E DESCklPTI ONS 

76 CALC 

Octo ber 1976 

200 PRINT 2 
2 FORHAT (lX,' INSUFFICIENT OUTPUT LENGTH') 

In the above example , one expression will be eva luate d and 
it will come from the arra y IN. The result will be 
produced in character form in the arra y OUT . The switch 
va l ue of 8 specifies that bit 28 of the switch word i s 1 
and al l other bi ts are O. 

EXTERNAL IN RTE ,QUTRTE 

CALL CALC (30 ,INRTE, QUTRTE) 

I n the a bo ve example , express i ons will be e valuatEd until 
the occ urrence of RETURN , I'ITS, STOP , or an en d - of - f i le as 
input . I nput ~ s retur ned from the s ubroutine IN RTE a nd 
character output i s writte n by calling the subroutine 
DU TR TE . The switch value of 30 speci fi es t hat bit s 27 , 
28 , 29 , and 30 are 1 and all o ther bit s are O. 



( 

October 1976 

Purpose: 

Locat i on: 

Alt. Entry: 

I'ITS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

To determine whether the user is r unning in conversational 
mode or batc h mode. 

Resident System 

CREPLY 

Calling seg uences: 

Example : 

Assembl y: CALL CANREPLY 

FORTRAN: CALL CREPLY (&rc4 ) 

ParalBeter s : 

~~~ is the statement label to transfer to if t he 
return code 4 occurs .

Return Codes :

o Yes
4 No

Assembl y:

FORTRAN:

(con versa tional)
(batch)

CALL
LTR
BNE

CANREPLY
15 , 1 5
BATCH

CALL CREPLY (&1 00)

The above two e xa mples branch to the specifi ed s t atement
label i f the use r i s running in batch mode.

CAN REPLY 77

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

78 CANREPLY

(

(

October 19 76

Contents:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

TRANSLATE TABLE DESCRIPTION

A translate table to convert lowercase letters (a- z)
their uppercase equivalents (A-Z), and to leave all
characters unchanged.

Resident System

into
other

Calling Seq uences:

Example :

Assembly: L
TR

Parameters:

r,~V (CASECONV)
name , O (r)

~ is a general register
address of the CASECONV

n~mg is the location of the

that will contain the
translate table.
region to be translated.

Assembly: L
TR

6 , ~V (CASECONV)
REG (100),0 (6)

REG DS CL 100

The above example will
the 100-byte region
letters.

convert the lowercase letters of
at location REG into uppercase

CASfCONV 79

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

80 CASECONV

(

October 1976

Purpose:

Locat i on:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

To determine whether two PDUB-pointers, logical I/O
numbers, or logical I/O unit names refer to the same
or device.

Resident Systell,

uni t
file

Calling Sequences:

Assembly: CALL CFDUB, (fdub l ,fdub2)

FORTRAN: CALL CFDUB(fdub 1, fdub2,&rC4,SrcB)

Parameters:

is the location of a full word FDUB- pointer
(such as returned by GETFD), a fullword ­
integer logical I/O unit number (0 through
19), or a left - justified a - characte r logical
I/O unit name .

is the location of a fullword PDUB-pointer
(such as returned by GETFD), a fullword ­
iLteger logical I/O unit number (0 through
1 9), or a left - justified a - character logical
I/O unit name.

£~~L£~~ are the statement labels to transfer to if
the corresponding return codes occur.

Return Codes:

o fgYQl and fg~Ql refer to the same file or device
(with possibly different modifiers or line number
ranges) .

4 fgYQl and f~YQl refer to different files or
devices.

a igYQl and/or fgYQl is illegal.

CFDUB a1

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS

Example :

82 CFOUB

Assembly: CALL
LTR
BNE

UNITA DC
UNITB DC

eFOUB, (UN I TA , UNITB)
15 , 15
ERROR

C ' SPRINT
C ' SPUNCH

Octoi:::er 1976

This example checks whether the logical I/O units SPRINT
and SPUNCH refer to the same file or device .

r

(

(

October 1976

Purpose:

Mrs 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUB~ourINE DESCRIPTION

To provide character manipulation capability for FORTRAN
programs.

Location: *LIBRARY

Entry Points: The character manipulation routines have the following
entry points: BTD, COMC, DTB, EQUC, FINDC, FINDST, IGC,
LCOMC, HOVEC, SETC, TENC , TRNST.

Description : The subroutines described in this section make use of the
character orientation of the system/360/370 and the fact
that each character can be referenced in a LOGICA1*1 array
in a FORTRAN program. Subroutines are available for
searching for characters or character strings, ignoring
characters , translating characters or character strings,
moving characters , and comparing character strings. All
of these subroutines are written in 360 - assembler lan ­
guage. It is possible to write FORTRAN eguivalents of
each, but at the expense of both CPU time and virtual
memory space.

Four of the routines, FINDC, FINDST, IGC, and TRNST,
return a positlon in a LOGICAL* 1 array as an argument. In
order that this position be relative to the start of the
array , these routines have a slightly more cumbersome
calling sequence than the other routines . This approach
was dictated by the fact that routines which return
positions relative to the start of a search (which may not
be the start of an array) result in many programming
errors due to misunderstandings about the positions
returned .

Three of the routines, FINDC, IGC, and TRNC, search for
characters_ In order for the search to be carried out, an
initialization step , which may take more CPU time than the
search itselt, is made_ Since the initialization is the
same for any givep set of characters or character string,
these routines allow the user to indicate whether the same
characters are to be used again. I f the expression
indicating the number of characters is set to zero, the
same characters given on the last nonzero call will be
used. This saves repeating the initial ization step.
Users should try to take advantage of this in their
programs.

Character Manipulation Routines 83

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

While the subroutines were designed with the use of
LOGICAL* 1 variables in mind, knowledgeable users can, in
fact, use them to manipulate characters stored in any type
of FORTRAN variable .

These routines typically require a fract i on of a millisec­
ond of CPU time. This depends a great deal on the n umber
of characters involved, but timings greater than one- half
millisecond are rare. The virtual memory required
averages about 250 bytes per routine.

The following terms are used in the subroutine descrip ­
tions that follow:

array var iable

The I,ame of a dimensioned variable or element of
a dimensioned variable.

INTEGER expression

Any valid INTEGER constant (e.g . , 10) , variable
name (e.g., I), or arithmetic expression (e.g.,
1+3, 4*K+ 12).

LOGICAL*1 character array

A dimensioned LOGICAL*1
character i nformation.

84 Character Manipulation Routines

variable containing

(

(

(

October 1976

Purpose:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

To convert FORTRAN INTEGER numbers into numeric character
strings.

Calling sequence:

Comments:

Example:

FORTRAN: CALL BTD (integer , to , cnumb , dnumb , fill , &err)

Parameters:

~ll1~g~I is an INTEGER expression giving the number to
be converted .

12 is a LOGICAL. 1 array variable indicating the
position at which the first character is to
be stored.

£aY~Q is an INTEGER expression giving the number of
characters i n the string. £llym£ should be ~
12 and 2: o. If £n!:!~Q=O, then the Dumber of
characters will be the Dumber of significant
digits in in1~g~I plus one for the sign if
ia1~g~I is negati ve . If £BB~Q> 1 2 , the char ­
acters will be r i ght-justified in the 12
positions starting with 12 and a RET UR N 1
will be taken.

~nY~Q is an INTEGER variable which will te set to
the n umber of signifi cant digits in 1n1~g~£
(plus one if the sign is negative) .

fib! is a LOGICAL.1 character variable , or a
Hollerith literal, giving a character to be
used to replace leading zeros in the string.

~I.£ (opt i onal) is the number of a FORTRAN state­
ment to transfer to i f £lly!Q)12 .

After a caI"l to
significant digits

BTO,
in the conversion .

implies a

If in1~g~I equ~ls zero, then the entire field of
characters, start i ng with the character specifi ed
will consist or £111 characters.

loss of

£nB'!!!Q
by 12 ,

The example below
character string
signs ('I).

converts the
with leading

integer I into a 7 -
zeros replaced by percent

LOGICAL. 1 CHAB (1 0)
CALL BTO (I,CHAR (1) , 7,ND, ' ''')

If 1=- 84 , the 7 characters stored in CHAR(1)
will be ""~U-84 .. NO will be set to 3 .

to CHAR (7)

Character Manipulation Routines 85

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Purpose:

October 1976

To determine whether one character string is less than,
equal to , or greater than, another str~ng_

calling Sequence:

Comments:

Example:

FORTRAN: CALL COMC(numb,string1,string2 , differ , &err1,
&err2,&err3)

Parameters:

~YmQ is an INTEGER expression giving the number of
characters in each string .

§t~ingl~§iringZ are the character strings to be
compared for equality and may be specified
either by an array variable or by a Hollerith
literaL Equality is interpreted in the
ser.se of position within the 360 collating
sequence .

!!i.t:.t:gf is an INTEGER variable which is set to the
position of the first character in §£f!ng1
which differs from the corresponding charac­
ter in §iringl. If §~r!Qg! and §~£iB9l are
identical, !!!f.t:~r is set to zero.

§.r~l (optional) is the number of a FORTRAN state ­
ment to transfer to i f §t~!Bg!<§t!:!ngl , i.e. ,
if e~r!ngl precedes §i£!ngl in the collating
sequence.

~££l (oE-tional) is the number of a FORTRAN state­
ment to transfer to if §1~!ng1>§1£!D92, i.e.,
if §i£!ngl follows §1!:!ng2 in the col lating
sequence.
(optional) is the number of a FORTRAN state­
ment to transfer to if nY~QSO.

The . first character that differs dictates whether §1!:ingl
is less than or greater than §i£!ngZ. If this character
in §1£!ngl appears in the collating sequence before the
corresponding character in §i£ingl, then §i£!nsl <§1!:ln9Z;
otherwise , §t£!ns l >§i£!nsl. A normal RETURN is made if
§!£insl is identical to §i£!nsl. If nY~Q~O , no cOIIIFarison
is made.

The example below compares the 9 characters starting at
A(15) with the character string PAR FIELD and cranches to
statement number 12 on inequality .

LOGICAL.1 A (50)
CALL COMC (9, 'PAR FIELD ' ,A (15) ,IDIF,& 12,e 12)

86 Character ~anipulation Routines

(

(

October 1976

Pur pose :

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS

To convert a s~ring of numeric characters into a FORTR AN
INTEGER number .

Ca l ling sequence :

Comments:

FORTRAN : CALL DTB (from , integer , cnumb , dnumb,fill , 6err)

Parameters:

f~Qm is a LOG I CAL. 1 array variable , or a Hcllerith
l iteral , giving the numer i c character s to be
con verted .

!ni~gg~ is an INTEGER variable which will be set to
the integer r esul t in g from the con ver s i o n.

£BYIDQ i s an INTEGER variabl e which , on entry to
DTB, should contain the maximum number of
characters to be scanned i n t he conversion.
On exit from DTB , ~nY~~ is set to the actual
number of characters sca n ned .

~aYIDQ i s an INT EGER variable which will be set to
the number of sign ificant digits in inigg~£.
The sign is no t included i n th i s number.

fi~! is a LOGICAL. 1 character variable , or a
Holleri th literal , specifying a character to
be ignored if it prece des the nu me ric digits
in the stri ng .

~~~ (optional ) is the number of a FORTRAN state ­
ment to transfer to if invalid characters or 
multiple signs are encountered , if the con­
v e rted number is too l arge to hold in a 
FORTRAN fullword I NTEGER, or if on entry , 
~n.!!~.Q~O. 

A single s ign (+ or - ) may be imbedded in the leading fill 
characters and will de~ermine the sign of in1~9g! . If 
there i s no sign, ' +' is ass umed . 

DTB can be used to reverse an y action of the BTD 
subrou tine. 

~n'!!~Q i s set to zero if 
blanks; gnYIDQ is set to one 
zeros. 

the 
if 

field 
tbe 

in1g~~! contains 
field contains 

all 
all 

If the error r e turn to statement ~£! i s taken because of 
invalid characters o r adjacent multiple signs , then 
in1~g~£=~n.!!mQ=O and £n.!!IDQ is set to t he n u mber of charac­
ters scanned b~fore the e rr o r wa s encountered. 

Char acter Manipu l ation Ro u tines 87 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Example: 

October 1976 

There will be no error return taken once a di git is 
encountered . After the first digit , any nondigit (even 
another sign or a fill character) terminates the number. 

If the error r~turn to statement g~~ is taken beca use the 
converted Dumber was too large to hold in the full word 
!rrtg~~ , then !gt~g~~= O , ~n~mQ is set to the number of 
digits encountered, and ~nYmQ is set to the tota l number 
of characters in the field (fill characters plus sign 
character plus I,umeric characters) '. 

If the error return to s t atement g~r is taken because 
~nYmQ~O, then !n!~gg!= gnYmE=O and ~nYmQ remains unchanged. 

The example below converts the character s tring 

.. . . •. -139 . •••. 

stored starting in element 30 of array NUMB, into an 
integer number: 

LOGICAL* 1 NUMB(75) 
NC= 14 
CALL DTB (NUHB (30) ,I,NC , ND ,' . ', S 10) 

On exit , 1=- 139 , NC=9, and ND=3. 

88 character Manipulation Ro utines 



( 

( 

( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

Purpose : To compare two characters for equality . 

Calling Seguence: 

Comment : 

Example : 

FORTRAN ! LOGICAL EQUC 
IF (EQUC (char 1, char2» statelllent 

Parallleters : 

£.h~!:lL£.Q.~!:£ are 
men t s, 
literals , 

§!~~~~~~i is a 
£h5!£l and 

LOGICAL.1 variables or array ele-
or single - character Hcllerith 
to be compared for equality . 
FORTRAN statement to transfer to if 
£h5!I£ are eq ual. 

If £hgIl is ide ntical to £h~Il , then EQUC(char1 , char2) has 
the value . TRUE.; otherwise , it bas the value . FALSE . 

The example below transfers to statement number 10 if the 
7th element of ARRAY is the letter G. 

LOGICAL EQUC 
LOGICAL.1 ARRAY (25) 
IF (EQUC (' G' ,A RRAY (7») GO TO 10 

Character Manipulation Routines 89 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

Purpose : To search for anyone of a set of characters . 

Calling Seg uence: 

Comment : 

Example: 

FORTRAN : CALL FINDC(array,len,char,numb,start,finish , 
cfound,Serr1,Serr2) 

Parameters : 

~££~y is the LOGICAL* 1 character array to be 
searched . 

l~n is an INTEGER expression giving the pcsition 
ill sI:£!!Y of the last character to be 
searched . 

£h!!£ is either an array variable indicati ng the 
characters for wh·ich to search or a Hcllerith 
literal specifyin9 the characters . 

n~@~ is an INTEGER expression giving the number o f 
characters in £h!!~. If llY~Q=O , then the same 
characters as given in a preceding call with 
rrYm~>O will be used. 

§isIi is an INTEGER expression indicating the Fosi­
tion in !!II!!Y at which the search is to 
start . 

!~ni§h is an INTEGER vari able which will contain the 
position in !!I[sY at which a character in 
££sI is found . If none of the characters is 
found, fini2h is set to zero . 

£fQYn~ is an INTEGER variable which will be set to 
the posit~on in £h!![ of the character which 
is found. If none of the charac ters is 
found, £fQY~~ is set to zero. 

g[[l (optional) is the number of a FORTRAN state­
ment to transfer to if none of the cbaracters 
is found in the search . 

gIIf. (optional) is the number of a FORTR AN state­
ment to transfer to if §!g£!~O, 2!g[!>1~n, or 
llym!1:<O . 

If R~~Q=O on the first call to FINDC , no 
be found. Control will be transferred 
numbered ~[[f. . 

characters will 
to the statement 

The example below searches the array LARRAY for the first 
occ urrence of the numeric characters 0 ,1, 2,3, •• • ,9 .• 

LOGICAL* 1 LARRAY( 125) 
CALL FINDC (LARRAY,125,'012 34567 89 ',1 0 ,1,IF ,ICP , £' 10) 

90 Character Hanipulation Routines 



( October 1 976 

( 

( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

If LARHAY contains the character 17 ' in position 39, i . e., 
in LARRAY (39) , with no numeric characters preceding it, 
then, upon exit from FINDe, IF will be 39 and reF will be 
8, indicating that the 8th character in the string 
' 0 1 23~567a9 1 was found 'i n LARRAY (39 ). If there are no 
numeric characters in LARHA! , then control wi ll transfer 
to statement 10 with IF=ICF= O. 

If , on subsegueLt calls to FINDC , the same characters 
O " ,2,3 ,_ ~ _, 9 are to be searched for, then the fourth 
parameter n~~Q should be set to zero so that i nitialiZa ­
tion need not be repeated . 

Charact e r Man i pulation Routines 91 



dTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

pu r: po se : To search an array for a specified character string . 

Calling Sequence : 

Comment: 

Example: 

FORTRAN: CALL FINDST(array,len,string,numb,start,finish, 
f,err 1, l;err2) 

Parameters : 

~~~~y is the LOGICAL. 1 character array to be 
searched.

1~n is an INTEGER expression giving the position
ie. ~J;;:£g,y of the last character in the search.

§iIing is an array variable, or a Hollerith literal,
ind1cating the character string for which to
search.

nY!Q is an INTEGER expression giving the n umber of
characters in §iJ;;:ing.

§£~I1 is an INTEGER expression indicating t be Fosi­
tion in ££££y at which the search is to
start.

Kini2h is an INTEGER variable which will £e set to
the position of the character in ~II2~ at
which §lJ;;:ing starts. If §1Iing is not found,
f!ni§h is set to zero.

~IJ;;:l (optional) is the number of a FORTRAN state­
ment to transfer to if §1Iing i s not found.

~IJ;;:£ (optional) is the number of a FORTRAN state­
ment to transfer to if §!2I1~O , §1~I1>1~n , or
!!!!'!!!.Q~O.

complete
of 2II2Y·

must be within the limits §12I1 and

The example below searches the array AR for the string
MODE with the search starting at the 10th char acter and
continuing to the 40th character .

LOGICAL* 1 AR(SO)
CALL FINDST (AR,40, IM ODE I ,4, 10,IFINIS,(12)

92 Character Manipulation Routines

(

r

(

October 1976

Purpose: To ignore all of
first character
characters_

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

a set of characters, i_e . , to find the
which is not one of a specified set of

calling Sequence:

Comment:

Example:

FORTRAN: CALL IGC (array,len,char,numb , start,finish,
E.err1,&err2)

Parameters:

is the LOGICAL.' character arra y to
searched_

be

19n is an INTEGER expression giving the position
in arr~y of the last character in the search_

£hs£ is either an array variable containing, or a
Holl erith literal specifying, the characters
to be ignored.

n~~~ is an INTEGER expression giving tbe number of
characters in char . If nu~b=O , the charac ­
ters given in--i precedIng call with nY~~>O
will be used in the search.

2~S£! is an INTEGER expression giving the position
in s£rsy of the character at which tbe searcb
is to start.

tin!§~ is an INTEGER variable which will be set to
~he character position in ~I£~Y at which the
first character different from those in char
is found. If all characters are ign ored~
tini§h is set to zero .

~£r1 (optional) is the number of a FORTRAN state­
ment to transfer to if all characters are
ignored.

~l:r.f (opt ional) is the number of a FORTRAN state­
ment to transfer to if §!g£!~O, §!g£!>!g~, or
!ll:!!.~<O •

If nYmQ=O on the first call to
ignored; fini2h is set equal to

IGC,
§!g£!.

no characters are

The example below searches for tbe first non blank cbarac­
ter in the array LARRAY.

LOGICAL.1 LARRAY(212)
CALL IGC (LARRAY , 2 12, ' ' ,1, 1,IF,&10)

If the first
132 of the

nonblank
array,

character
IF will

is
be

in
set

character
to 132 .

position
If all

character Manipulation Routines 93

~TS 3: SYSTEM SUBROUTINE DESCRIPTI ONS

characters are blank , then IF will
control will transfer to statement

94 Character Han i pu l ati on Ro ut ines

October 1976

be set to
number 10 ..

zero and

(

(

(

October 1976

Purpose:

MTS 3 : SYSTEM SUBROU 'rINE DESCRIPTIONS

To determine whether one cbaracter st ring is less than,
equal to, or greater than ar,other string_

Calling Sequence :

Comment:

Example:

FORTRAN : i=LCOMC (nu mb , string 1,striDg2)

Parameters :

rrYm~ is an INTEGER expression giving the Dumber of
characters in each string.

§£I~ng1L§1£ing1 are the character strings to be
compared for equal i ty. They may be specified
either by an array variable or by a Hcllerith
literal. Equality is interpreted in the
sense of posit i on within the 36 0 collati ng
sequence .

Values Returned:

LCOMC is
integer 1.

a FUNCTION subprogram
baving a value of:

and will return an

+1 if §iringl >§iIing2, i. e ., if ~iIi~g1 follows
§1£!~9~ in the collating seq uence.

o if §!~!ngl=§!~!ng~ , i . e ., if t he character
stri ngs are identical4

- 1 if §!~!rrgl<2i£!ng~, i. e ., if §l£!~gl Frecedes
~lt!~9~ in the collating seq uence 4

If nY~~SO , no comparison is made and ! i s set to zero.

The example below compares 2
characters start ing at A (1)
statement 12 on equality .

characte r
and B (1 9)

strings of 20
and branches to

LOGICAL*1 A (50) , B (60)
IP(LC0L1C(20 ,A{1),B(1 9».EQ.0) GO TO 12

Character Manipulation Routines 95

HTS 3 : SYSTEH SUBROUTINE DESCRIPTIONS

October 1976

purpose: To move character s trings f 4 0m one place to anothe r .

calling Sequence:

COlllments :

Exam~le :

FORTRAN: CALL HOVEC (numb, from 1to , &err)

Parameters:

n!!l!lQ is an INTEGER expressi on giv in g the nu mber of
characters to be mo ved . n~~Q lIIust be greater
than zer o .
~ s eithe r an array variable contain in g the
character string to be moved or a Hcllerith
li teral speci fying the string .
is an array variable indicati ng the s tart of
the place to which the !~g~ characters are to
be moved.
(opt ional) is the number of a FORTRAN state ­
ment to transfer to if ~~~QSO or ny!Q)32767.

The t~Q~ and to array variables can indicate portions of
the same a r ray.. In fact , they can be overlapping por­
tions. However, in the latter case , the user mus t ens ure
that characters to be moved are not replaced before being
mo ved . The c haracters are moved one at a t i me fr om t he
first to the nY!Qth position.

If nYIDQSO or nYeQ>32767, no transfer of characters will
occur.

The
10th
80th

e xa mple below moves 7
character of array AR 1 1
character .•

characters , starting with
to AR2, starting with

LOGICAL.1 AR1 (10 0) , AR2 (1 32)
CALL HOVEC(7 , AR1(10) , AR2(80»)

the
the

The example below
SAGES in to t he array

moves the character stri ng ERROR HES ­
HSG.

LOG ICAL . 1 MSG (80)
CALL MOVEC(14 , ' ERROR MESSAGES' ,MSG)

The e xa mple below moves the 4 characters DAT A i nto a
simple INTEGER variable I .

DATA X/IDATA ' /
CALL MOVEC(4,X , I)

96 Cha racter Manipulation Ro utines

(

(

MTS 3 : SYSTEM SUBROUTINE DESCRIP'l'IONS

October 1 976

Purpose : To set adjacent characters equal to a specifi ed character.

Calling Sequence :

Comment :

Example :

FORTRAN : CA~L SETC (nu mb , array , char , &err)

Parameters :

is an INTEGER expr ession givin g the number of
characters to be set.
is an array variable givi ng the ~tarting
pos~t ion of the characters to be set .
i s either a v ar i able containing the cha racter
to which the ng~Q characters are to be se t or
a Hol l erith literal specifyi ng the character .
(optiona l) i s the number of a FORTRAN state ­
m~nt to transfer to if ngm~~O .

If nYmB~O , no characters are changed.

The example below sets all of the characters in the array
A to blanks.

LOGICAL. ' A (50)
CALL SETe (5 0 , A,' I)

Cha~acte~ danipulation Rout i nes 97

~TS 3 : SYSTEM SUBROUTINE DESCRIPTIONS

Purpose:

Octcber 1976

To translate specified characters in an array into other
characters .

Calling Sequence :

Comments :

Example :

FORTRAN: CALL TRNC(nuwb,array,oldchar , newchar,cnumb,6err)

Parameters :

is an INTEGER expressi on giving the number of
cbaracters for translation .

~~~~y is an array variable giving the starting 
pos~tion of the characters for translation . 

Ql£SB~£ is either an array variable containing a list 
of the characters to be translated , or a 
Hollerith literal specifying the characters. 

rr~~sh~£ is e ither an array variable containing a list 
of t he characters into which Qlg£h~~ is to be 
translated, or a Hollerith literal sFecifying 
the characters. Any occurrence of the first 
character in Q1Q£~~£ will be trans lat ed into 
the first character of n~~£hA~, the second 
character of Ql££Q~r into the second of 
!l~!!SQAr , etc . 

Sng~2 is an INTEGER ex pression giving the number of 
characters in Q1QSQAI and ng~£hA£ . If £Bym&= 
0, then Ql££BA£ and ng!!£hAI as given in a 
preceding call with £!lY!!&>O will be used. 

~II (optional) ~s the number of a FORTRAN state ­
ment t o transfer to if !l~mESO or SnY~&<O. 

The routine does not check for duplication of characters 
in Ql££h~I. The final appearance of a dupl i cated charac­
ter will dictate i ts translation . 

It is the user ' s respons~bility to ensure that there are 
the same number of characters in Ql£SBAI and n~!!£hA~. If 
there are not , unpredictable t ranslat i ons may occ ur. 

If !lymE-SO or 
translation 
Ql.QShA£ are 

£!lY!!E<O (or 
w ill ace ur. 

left a lone . 

~o 

All 
on the first call), 

characters not mentioned 
no 
in 

The example below translates a l l As to l s , Bs to 2s, and 
Cs to 35 in the array CHA R. 

LOGICAL. l CH AR (65 ) 
CAL L TRNC(65 , CHAR ,' ABC ','1 23 ', 3) 

98 Character Manipulation Routines 



( 

( 

( 

October 1976 

Purpose : 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

To search for a given character string and translate it 
into another string . 

Calling sequence: 

Comments : 

Example : 

FORTRAN: CALL TRNST (array , len , oldst , newst , numb , start , 
finish , &err 1. &err 2) 

Parameters: 

is the LOGICAL* 1 character array to 
searched . 

be 

~~n is an INTEGER expression giving the character 
position in ~££~y at which searching is to 
terminate. 

Q~g§1 is either an array variable containing the 
character string to be translated or a Hol ­
lerith literal specifying the c haracter 
string. 

ng~§~ is either an array variable contai ning the 
new character string or a Hollerith l i teral 
specifying the str i ng. 

Byma i s an INTEGER expression giving the number of 
characters in the strings . 

§l~It is an INTEGER expression giving the Fosition 
in ~I!~Y at which searching is to start. 

t ! n!2h is an INTEGER variable whicb will be set to 
the starting position of the translated 
string . t!U!§b will be set to zero i f the 
string i s not found . 

gIrl (optional ) is the number of a FORTRAN state­
men t to transfer to if 2l£§! is not found in 
the search . 

g!T~ (optional) is the number of a FORTRAN state ­
ment to transfer to if 2t~Il~O, §1~£1 >!gn , or 
!lBm12~O . 

Q!g2i and new§l must be the same lengths . Only the first 
occurrence of Q!~21 is translated. Q14§1 mus t be com ­
pletely within the limits §1~I1 and l~!l of ~II~Y for 
transl ati on to occur. 

The example belo w translates the string REC I EVE" i n the 
array A to RECEIVE . 

LOGICAL. ' A(200) 
CALL TRNST IA,200 ,' RECIEVE ' , ' RECEIVE ' , 7 ,', IF , &30) 

Character Manipulation Ro utines 99 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

If the string is fo und starting in character 
IF will be set to 29. If the string is not 
IF=O and control is transferred to statement 

100 Character Manipulation Routines 

October 1976 

29 of A, then 
found, then 

number 30. 



( 

( 

( 

October 1976 

purpose: 

Location: 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

~!!Qr2~ 

SUBROUTINE DESCRIPTION 

To change the S1ze or maxsize of a file either absolutely 
or incrementally . 

Resident System 

Calling Sequences : 

Assembly: CALL CHGPSZ, {unit, size, flag) 

FORTRAN: CALL CHGFSZ (unit , size , flag , &rc4,&rca , &rc12, 
&rc 1 6 ,& rc20 , &rc24 , ~rc2a,&rc32,&rc36) 

Parameters : 

Yn!~ is the location of either 
(a) a fullword - integer FDUB - pointer (such as 

returned by GETFD) , 
(b) a full word-integer 

(0 through 19), or 
logical 1/0 unit number 

(c ) a left-justified , a - character logical I/O 
unit name (e . 9 . , SCARDS )_ 

§i~g is the location of a fullword conta ining the 
desired size or maxsize (absolute or increment­
al) in pages. 

ti~~ i s the location of 
more information about 
follows : 

0 §!.~!:! is the desired 
1 §!.~~ is the desired 

or negati vel 
2 §!~g is the desired 
3 size is the desired 

tIve or negative) 

a ful!word 
the §!.,?;!:! 

integer giving 
parameter as 

size , absol ute 
change in size (positive 

maxsize , absolute 
change in maxsize ( FOsi-

££~~~~££J§ are statement labels to transfer to if the 
corresponding return codes occur. 

Return Codes : 

o Successful return- - size or maxsize changed. 
4 File does not exist . 
a Hardware error or software inconsistency. 
12 Access Dot allowed - -write - expand access required 

to increase size; truncate or write-expand access 
required to decrease size . 

CHGFSZ 10 1 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Example: 

102 CHGFSZ 

, 

October 1976 

16 Locking the file will result in a deadlock. 
20 An attention interrupt has canceled the automatic 

wait on the file (waiting caused by concurrent USe 
of the (shared) file). 

24 Bad parameters (i. e., bad FDUB-pointer, not a 
file, etc.). 

28 Incons1stent ~~~g parameter (see Note 1 belcw). 
32 No disk space available for expansion. 
36 The space allocated to this account has been 

exceeded. 

Notes: 

(1) The resultant absolute size must be positive, 
greater than, or eg ual to the truncated size, and 
less than or equal to the maxsize. The maxsize 
must be less than or equal to 32767 pages. 

( 2) A request for an absolute size of zero is defined 
to mean truncate the file. 

(3) A request for an absolute maxsize of zero is 
defined to mean set the maxsize equal to the 
current size. 

Assembly: CA LL CHGFSZ, (UNIT,SIZE,FLAG) 

UNI T DC 
SIZE DC 
FLAG DC 

F ' 5 ' 
F'150' 
F '0' 

The above example sets 
associated with logical 

the 
I/O 

absolute 
uni t 5 to 

FORTRAN: INTEGER*4 UNIT 
DATA UNIT/4/ 

size of 
150 pages. 

CALL CHGFSZ(UNIT,- 10,1) 

the file 

The above 
cia ted with 

example 
logical 

decrements the size o f 
I/O unit 4 by 10 pages. 

the file asso-



October 1976 

Purpose : 

Location: 

To change 
used by 
file. 

MIS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

£!Hin~~ 

SUB~OUTINE DESCRIPTION 

dynamically the number of page - sized buffers 
the file system to read and write a particular 

Resident System 

Calling sequences: 

Description : 

Assembly: CALL CHGMBC, (unit,maxbuf) 

FORTRAN: CALL CHGMBC {unit,maxbuf,&rc4,&rc8,&rc12,Src16, 
&rc20,&rc24) 

Parameters: 

gQb~ is the location of either 
(a) a fullword-integer FDUB - pointer (such as 

returned by GETFD) , 
(b) a fullword-integer logical 110 unit num­

ber (0 through 19), or 
(c) a left - justified , a - character logical 1/0 

unit name (e_.g. , SCARDS). 
m~~hgt is the location of a fullvord integer speci­

fying the maximum number of buffers to use. 

1 s m~xbgt ~ 100 for sequential files 
3 S ~s~hg! ~ 100 for line files 

I.£!!.:.~.:.r£l!! are statement labels to transfer to if the 
corresponding return codes occur. 

Return Codes: 

a Maximum number of buffers changed as specified. 
4 The file does not exist. 
8 Hardware error or software inconsistency. 
12 Access not allowed to file. 
16 Locking the file will result in a deadlock. 
20 An attention interrupt has canceled the automatic 

wait o~ the file (waiting caused by concurrent use 
of the (shared) file). 

24 Bad pa r ameters (i. e., bad FDUB-pointer, not a 
fil~, maxhg£ out of legal range) • 

In general , the file system will dynamically 
many page-sized buffers for use in reading and 

allocate as 
writing a 

CHGI'IBC 10 3 



MTS 3: SYSTEd SUBROUTINE DESCRIPTIONS 

Examples: 

104 CHGMBC 

October 1976 

particular file as there are pages in actual use by the 
file (i.e., the truncated size) up to the maximum Dumber 
of buffers specified. The default maximum Dumber of 
buffers for both line and sequential files is 5. In 
simple terms, the more buffers one allows, the less 
physical disk 1/0 required, but the greater the virtual 
memory required. 

Notes: 

(1) The maximum number of buffers set is !tQl a static 
quantity saved with the file and used each time 
the file is accessed. The default value is always 
used when the file is first opened, and may then 
be changed dynamically by a call to CHGMBC. 

(2) In general, large line files will be more effi­
cient than large sequential files due to an 
increase in the maximum number of buffers allowed. 

Assembl y: 

FORTRAN: 

CALL CHGMBC, (UNIT, MAXBUF) 

UNIT DC F 1 3' 
MAXaVE DC F'10' 

INTEGER*4 UNIT, MAXBUF 
DATA UNIT/3/, MAXBUF/10/ 

CALL CHGMBC (UNIT, MAXBU F) 

The above examples dynamically assign a maximum of 10 
buffers to use during I/O operations on the file asso­
ciated with logical I/O unit 3. 



( 

October 1976 

Pur pose : 

Location: 

MTS 3: SYSTEM SUBROUTINE DESCRIPiIONS 

~li !s A££ 

SUBEOUTI NE DESCRIPTI ON 

To determine the access that a sign on ID, project number , 
and program key II triple li has to a particular file. 

Resident System 

Calling Sequences : 

Assembly: CALL CHKACC , (name, triple) 

FORTRAN : CALL CHKACC (name,triple,&rc4,&rc8 , &rc 12) 

INTEGER*4 CHKACC , x 
x=CHKACC (name , triple) 

Parameters : 

~~~g is the location of the name (with t r ailing 
blank) of the file.

t£!El~ is the location of a 4-character signon 10,
fo l lowed by a 4- cbaracter project number,
followed by an external program key (wi th
trailing blank) , such as returned by GU INFO
or GFINFO .

~ is the fullword-integer value ret urned (i. e.,
the access) if the file exists (see values
returned below).

££~~~~££lf are the statement labels to transfer to if
the corresponding return codes occur ..

Values Returned:

If the return code from CHKACC is zero (or twelve) ,
then GRO contains the access that the "triple" has to
t he file as follows :

1 Read access allowed .
2 Write-expand access allowed.
4 Write - change/empty access allowed .
8 Truncate/renumber access allowed .
16 Destroy/rename access allowed .
32 Permit access allowed .

I f more than one type of access is allowed, the value
returned in GRO is the sum of the different ty~es of
access, e .. 9., GRO=63 implies unlimited access.

CHKACC 10 5

MTS 3: SYSTEM SUBROUTINE DESC~IPTIONS

Examples :

106 CHKACC

October 1976

Return Codes :

o
4
8

The file
The file
Hardware

exists, access returned in
does not exist.

error or soft ware
encountered .

GRO.

inconsistency

12 Access flot allowed, zero returned in GRO .

Note! FORTRAN users wishing to obtain
codes and the access types
subroutine to call CHKACC.

both the return
may use the RCALL

Assembly: CALL CHKACC, (FNAME , TRIPLE)
LTR 15,15

FORTRAN:

BNZ NOREAD
N GRO , =F 'l'
C GRO , =F '1'
BE READ

FNAl'IE DC
TRIPLE DC

DC
DC

C'6AGA:DATAFILE '
C' 1KYZ '
C ' WOOO '
C ' * EXEC

INTEGER*4 CHKACC , X

Sign on 10
Project number
Program key

DATA MASK/Z0000000 1/
X=CHKACC (' 6AGA:DATAFILE ' , '1 KYZWOOO*EXEC ')
X=LAND (X, MASK)
IF (X-EQ.1) GO TO 10

These examples call CHKACC to determibe whether s i gnon 10
1 KYZ under project number wOOD running a program with a
program key of *EXEC (the default) has read access to f i le
6AGA : DA T AFILE.

(

(

(

October 1976

Purpose:

Location:

AlL Entry:

I1T5 3 : SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

To obtain a FDUB- pointer for a specified logical I/O unit ;
to verify that a given FDllH - pointer is legal.

Resident System

CBKEDS

Calling Sequences :

Description :

Assembly: CALL CHKFDUB , (unit)

FORTRAN: INTEGER*4 CHKFDB,X
x = CHKFDB(unit)

Parameters :

yg!! is the location of either
(a) a FDUB -pointer (as returned by GETED),
(b) a fullword-integer logical 1/0 unit number

(0 through. 19), or
(e) a left -j ustified a - character logical I/O

uni t name (e. g_ , SCARDS)_
! is the fullword-integer FDUB-pointer obtained

(see " Value Ret urned " below)_

Value Returned :

GRO contains the fDUB - pointer obtained for the speci­
fied logical I/O unit if a successful ret urn is made .

Return Codes:

o Successful return .
4 Illegal gUit parameter specifi ed.

If the Ynii parameter
the subroutine will
FDUB-pointer.

is the
check

location of a FDUB - Fointer ,
the legality of the

If the QUit parameter i s the location of a logi cal I /O
unit name or number , tbe subroutine will obtain a FDUB­
pointer for the file or device attached to that logi cal
I/O unit. Tbis is the way to obtain a FDUB-pointer for a
file or device attached to a specific logical I/O unit.
If the logical I/O unit is unassigned , no FDUB -pointer
will be ret urned.

CHKFDUB 107

MTS 3: SYSTEM SUBROUTINE DESCRI PTIONS

Examples:

108 CHKFDUB

October 1976

This subroutin e does not check the legality of the file or
device name attached to the logical I/O unit specified.

Assembly:

FORTRAN:

CALL CHKFDUB , (UNIT)

UNIT DC F I 6 1

INTEGER*4 CHKFDB,X,UNIT
DATA UNIT/6/

X .:: CHKFDB (UNIT)

The
the

above e xamples call CHKFOUB to get a FOUB-pointer
file or device attached to logical I/O unit 6.

for

r-- October 1976

Purpose:

Location:

Alt. Entry:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

To determine whether a file exists, as well as what access
the calling program has to the file. This is the easiest
way to determine whether a scra tch file exists without
creating it.

Resident System

CHKFIL

Calling Sequence:

(

Assembly: CALL CHKFILE , (name)

FORTRAN: CALL CHKFIL(name,&rc4,&rcB , &rc12)

or

INTEGER*4 CHKrIL,!
~ = CHKFIL(name)

Parameters:

n~~g is the location of the name of the file (with a
trailing blank).

~ is the fullword-integer value returned if the
file exists (see "Values Returned " below).

££~.L';.':':'L££l.f are the statement labels to transfer to
if the equivalent return codes occur.

Values Returned:

If the return code from CHKFILE is zero (or twelve) ,
then GRO contains the access that the calling user
has to the file as follows:

1 Read access allowed.
2 Write-expand access allowed.
4 Write-change/empty access allowed .
B Truncate/renumber access allowed.

1 6 Destroy/rename access allowed.
32 Permit access allowed.

If more than one type of access is allowed., the
value returned in GRO is the sum of the different
types of access, e . g., GRO=63 implies unlimited
access.

CHKFILE 109

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Examples:

11 0 CHKfILE

October 1976

Return Codes:

Note:

o The file exists.
4 The file does not exist.
S Hardware error or software

encoun tered.
12 Access not allowed.

FORTRAN users wishing to obtain
codes and access types may use t he
tine to call CHKF ILE .

inca n .eistency

both the return
RCALL subrou -

Assembl y: CALL CHKFILE, (FNAM E)
LTR 15,15

FORTRAN:

BNE NOREAD
SLL 0 , 31
SRL 0,31
C GRO, =F'l'
BE READ

FNAME DC C'2AGA:DATAFILE

INTEGER*4 CHKFIL,X
DATA MASK/Z00000001/
X = CHKFIL ('LAGA:DATAFILE ')
X = LAND(X,MASK)
IF(X.EQ. l) GO TO 10

EXTERNAL CHKFIL
INTEGER*4 ADROF,X
DATA MASK/Z0000000 1/
PAR = ADROF('2AGA:DATAFILE ')
CALL RCALL (C HKFIL,2,O,ADROF (PAR) , 1 ,X,&100)
X = LAND (X, MASK)
IF(X.EQ. l) GO TO 10

These examples call CHKFILE
calling program has read access
The second FORl'RAN example uses
obtain both the return code and

to determine whether the
to the file 2AGA:DATAFILE.
the RCALL subro utine to
the return value.

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

r October 1976

(

(

Purpose:

Location :

AIL Entry:

!;;l.Q~!:!:Jb

SUBROUTINE DESCRIPTION

To close a file and release its file buffers.

Resident System

CLOSFL

Calling seq uences :

Assembly: CALL CLOSEFIL , (unit)

FORTRAN: CALL CLOSFL (unit)

Parameter:

~U!~ is the 10catioD of either
(al a FDUS-pointer (as returned by GETFD),
(b) a fullword - integer logical I/O unit number

(0 thro ugh 19), or
(e) a left - justified , S- character logical I/O

unit name (e . g. , SCARDS) .

Return Codes:

o Successful return.
4 Illegal Y~!1 parameter specified, o r

hardware error or software incon~istency
encountered.

Description: A calIon this subroutine causes all changed lines in the
file buffers to be written to the file, thus making the
file on the disk an up-to - date copy. This subroutine
closes the file and releases all file buffers being used
by the fi l e.

Examples :

The subroutine WRITEBUF may be called to write the changed
lines .!!i1hQY!. closing the file and releasing the buffers .•
WRITEBUF is more efficient and therefore is generally
preferred. See the description of WRITEBUF in this
volume.

Assembly: CALL CLOSEFI1, (UNIT)

UNIT DC C1S ' SPRINT '

CLOSEFIL 111

dTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

]12 CLOS:::::EIL

October 1976

FORTRAN: CALL CLOSPL(' SPRINT '}

The above examples cause CLOSPIL to update the disk copy
of the file attached to the logical I/O unit SPRI Ni .

(

October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

To execute an HTS command fro~ a progra~ and return to the
program after the command has been executed.

Resident System

Calling Sequences :

Assembly: CALL CI1 D, (char , len)

or

CMD char[,len]

FORTRAN: CALL CHD (char ,l en)

Parameters:

Note:

£h~£ is the location of a character string containing
an MTS command.

l~n is the location of the length of the character
string expressed as either a fullword (INTEGER*
4) or a halfword (IN TEGER*2). If l~.!l is a
fullword-aligned address and the first two bytes
specified are zero , it is assumed !~.!l specifies
a fullword integer. Otherwise , l~n i s assumed
to be a half word.

The complete description for using the CHD macro
is given in MTS Vol ume 14.

Description: This subroutine does a return to MTS specifying a charac ­
ter string to be interpreted as an HTS command. After the
command has been executed , a return is made to·the
program .

The command is echoed on .SINK* and/or *HSINK* if the ECHO
option is ON .

This subro utine cannot be used properly with character
strings that specify the following commands:

DEBUG
RUN
START AT location
RESTART AT location
RERUN

LOAD
UNLOAD
SIGNON
SIGNOPF

CHD 11 3

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Examples:

114 C/'IO

October 1976

If any of these commands are used with CMD, the subroutine
will not return to the calling program. This wo uld be the
same as if the MTSCMD subroutine were used instead.

The START and RESTART commands will work properly unless
an explicit restart address is given.

FORTRAN: CALL CHD(' $SINK FYLEB ',12)

The above example calls eHD to reassign *SINK* to the file
FYLEB.

Assembly: CALL CHD, (CHAR , LEN)

CHAR DC
LEN DC

C'$CREATE ALPHA I

F'14 '

CHO '$CREATE ALPHA '

The above two examples call CMO to create the file ALPHA.
The first uses ~he CALL macro and the second uses the CHO
macro.

(

(

(

October 1976

Purpose:

Location:

ftTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS

QUH!Qg

SUBEOUTINE DESCRIPTION

To execute an ~TS command from a program and return to the
program after the command has heen executed,.

Resident system

Calling Sequences:

Description :

Assembly ! CALL CMDNOE, (char ,len)

FORTRAN : CALL CMDNOE(char , len)

Parameters:

£h~£ is tbe location of a character string containing
an MTS command .

b~E is the location of the length of the character
string expressed as either a fullwor d (INT EGER*
4) or a halfword (IN TEGER*2). If l§E is a
full word-aligned address and the first two bytes
specified are zero , it is assumed l~n specifies
a full word integer. Otherwise, l~n is assumed
to be a half word.

This subroutine does a return to MTS specifying a cbarac ­
ter string to be interpreted as an MTS command . After the
command bas been executed, a return is made to the
program.

Tbe
less

command is never echoed on
of the setting of the ECHO

SINK or
option .

MSINK, regard-

This subroutine cannot be
strings that specify the

DEBUG
RUN
START AT location
RESTART AT location
RERUN

used properly with
follo wing commands:

LOAD
UNLOAD
SIGNON
SIGN OFF

character

If any of these commands are used with CMONOE, the
subroutine will not return to the calling program . This
would be the same as if the MTSCMD subroutine were used
instead.

CMDNOE '15

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Examples!

11 6 CMONOE

October 1976

The START and RESTART commands will work properl y un l ess
an explicit restart address is given.

FORTRAN: CALL C~DNOE (' $SINK FYLES ', 12)

The above example calls CMDNOE to reassign *SINK* to the
file FYLES.

Assembly: CALL CMONOE, (CHAR,LEN)

CHAR DC
LEN DC

C ' $CREATE ALPHA '
F ' 1 4'

The above example calls CMONGE to create the f i le ALPHA.

r

October 1976

Purpose:

Location:

MT S 3 : SYSTEM SUBRO UTINE DESCRIPTIONS

£!~§lJi~Q

SUBROUTINE DESCRIPTION

To obtain informatioD about the type of system on which
the program is runniDg.

Resident System

Calling sequences:

Description:

Example:

Assembly : 1 r , =V (CNFGINFO)
USING CNFGINFD,r

Parameters:

is
the

a general register
CNFGINFO table.

containing t he address of

The information available in the
dsect given o~ the followiDg
*c NFGI NFODSECT) .

table is described
pages (from the

by the
file

Assembly: L 3 , =V (CNFGINFO)
USING CNFGINFD ,3
TM CIFEATUR ,CI370 System 3707
BZ SYS360

COPY *CNFGINFODSECT

The above exam ple illustrates how a program may determine
whether it is running on a System/370 - or System/360 -
compatible machine.

CNFGINFO 117

dTS 3 : SYSTEM SUBROUTINE DESCRIPTI ONS

October 1976

CNFGINPD DSECT
•
•
•

VECTOR OF INFORMATION CONCERNING CONFIGURATION OF MACHINE
ON WHICH WE ARE RUNNING

CISYSTEM DC
CICPUID OS

X ' 0370 '
OXLS

TYPE OF SYSTEM
RESULT OF STORE CPUID ON

•
CIVERSCD DC
CIID# DC
CIHODEL DC
CIMCEL DC

x ' 00 '
x ' 010002 '
X' Otl70 '
fi f O'

LOWEST ADDRESS CPU IN THE SYSIEM
VERSION CODE
SERIA L NUMBER OF CPU
HODEL NUHBER OF SYSTEM
LENGTH OF l1CEL

• •
• •
CIEXTIDL
CIEXTID
•
•
•
•
CIFEATUR

•
CIDEC
•
CIFLPT
•
•
• • •
CI370
•
• • •
CI 370TRN
•
CI370MP
•
CICNDS WP
•
CIPSl\' KEY
CICPUTI H
• •
• •
CIEXTFLP
•
CHlOD67
•
CI32BT67

THE FOL LOWING TWO FIELDS WILL BE ZERO UNLESS THE VERSION
ABOVE IS X' FF ' INDI CATING THAT WE ARE RUNNING UNDE R
A HYPERVISOR (AKA VIRTUAL MACHINE) .
DC H'O ' LENGTH OF EXTENDED CPU ID
DC A (0) LOCATION OF EXTENDED CPU I D

THE FO LLOW ING 6 t1 BITS ARE EACH ASSOCIATED WITH A PARTICULAR
FEATURE OR RPQ AS I NDICATED.

DC
FI RST
EQO

EQO

EQ"

EQO

EQO

EQO

EQO
EQO

X ' F780200000000000 '
BYTE
X ' SO ' DEC I HAL IN STRUCTIO NS - AP , CP , DP , ED

EDMK , MP , SP , ZAP, AND SRP IF 37 0
X ' tlQ ' FLOATING POINT - ADR , AD , AER ,A E,AWR ,

AW , AUR , AU , CDR , CD , CER , CE ,DD R, DD , DER,
DE ,H DR , HER , LDR , LD , LER , LE , LTDR , LTER ,
LCDR , LCER , LNDR , LNER , LPDR ,L PER , l'IDR , HD
rtER , HE , STD , STE , SDR , SD , SER , SE
SWR , SW , SUR , SU

X' 2Q ' STANDARD 370 FEATURES -
l'IV CL ,C LCL , HC , STCTL , LCTL , CLH , SlCM , ICH,
STIDP, STIDC , SCK , ST CK, SI OF , CLRI O,
HDV,F ETC H PROTECT ,

X' 1 0 '

X ' OS '

X ' 0 tj ,

x ' 02 '
X ' 0 "

AND SNP IF CTD EC ALSO ON
37Q TR AN SLATI ON FEATURE -
LRA , PTLB , RRB , STN SM,STOSM
370 MULTIPROCESSOR F EATURE - SIG P , SPX
STAP , STPX
370 CO NDI TIONAL SWAPPING FEATURE -
CS AND CDS
PSW KEY HANDLING FEATURE - IPK, SPKA
CPU TIMER AND CLOC K COHfARATO R -
SCKC , SPT,STCKC, STPT

S ECOND BY TE

EQ" X ' 80 '

EQO X I tI 0 '

EQO x 1 20 '

EXT ENDED PRECISION FLOATING PO I NT -
AXR , LRDR I LRER , MXR , MXDR , MXD,SXR
360/6 7 ST AN DARD FEATURES - BAS , BASB ,
ST HC , LRA , LHC , FE TC H PROTECT
360/67 WITH 32 BIT ADDRESSING

11 8 CNFGINFO

(

(

r

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

CI67DCTL
CI67EXFP
•
CI67.11XFP

•
CISWPR
CISLT
• • •
CIMXBOD
• •
CIOIRCTL
•
CIBAS
CIEXTADR

CI XTRA

• • •
• •
•

EQU X' 10 '
EQU X' 08 '

EQU X' 04 '

EQU X' 02 '
EQU X' 0 1'

THIRD BYTE

EQU x ' 80 '

EQU X ' 40'

EQU X ' 20 '
EQU X ' 10 '

OS 2D

360/67 EXTENDED DIRECT CONTROL - WRD
360/67 EXTENDED PRECISION FLOATING
POINT - fiDDR , ADDR,SDDR,MDD , ADD,SDD
360/67 MIXED PRECISION FLOATING
POINT - LX , AX,SX,MX,DX
SWAP REGISTER INSTRUCTION - SWPR
SEARCH ' LIST INSTRUCTION - SLT

360/67 MIXED PRECISION FLOATING
POINT WITH STORE ROUNDED - LX,AX ,
SX,STRE,STRD
DIRECT CONTROL (NOT 360/67
VERSION) - RDD , WRD
370 BAS AND BASB RPQ
EXTENDED (I. E. , 31 BIT) ADDRESSING

UN USED

SYSTEM SOFTWARE VERSION NUMBERS --
ONE NUMBER FOR THE MINIMUM VERSION FOR THE ENTIRE SYSTEM,
ONE FOR THE SUPERVISOR , ONE FOR THE MTS COMMAND LANGUAGE/
FILE SYSTEM , ONE FOR THE SPOOLING SYSTEM, AND ONE SPARE.
THE FORMAT OF EACH VEBSION NUMBER IS THE DISTRIBUTION
NUMBER TIMES 1000 .

CI VGM DC
CIVUMMPS DC
CIVtiTS DC
CIVSPOOL DC
CIVXTRA DC

FE3'4.0 '
FE3'4.0'
FE3'4.0 '
FE3 ' 4 . 0 '
3FE3 ' 0 1

GUARANTEED MINIMUM VERSION
SUPERVISOR VERSI ON
MTS CHHO LANG/FILE SYSTEM VERSION
SPOOLING SYSTEM VERSION
SPARE

•
• • • •
• •
CI V HA BS

THE FOLLOWING PA I RS OF WORDS GIVE THE ASSIGNMENT OF VIRTUAL
MEHORY USED BY THE SUPERVISOR AND ~TS . EACH ENTRY CONSISTS
OF TWO WORDS GIVING THE FIRST AND LAST LOCATION IN A
PARTICULAR TYPE OF VH. THE VARIOUS TYPES CAN BE ASSUMED TO
BE CONTIGUOUS , NON - OVERLAPPING AREAS , BUT NOT NECESSARILY
CONTI GUOUS WITH ONE ANOTHER.

oc A (O,X I FFFFF I) ABSOLUTE (UNPAGED) SHARED MEHORY
CIVMSH DC
CIVI'ISYS DC
CIVMUSER DC

A (X'1 00000 ' ,X ' 39FFFF') PAGED SHARED MEMORY
A (X' 500000 ' ,X'SFFFFF ') PRIVATE SYSTEM STORAGE
A (X'600000 ', X' CF FFFF ') PRIVATE USER STORAGE

• * THE FOLLOWING WORD GIVES THE FIRST ADDRESS I N THE SEGMENT
• USED B~ THE VIRTUAL MACH I NE SUPPOBT IN THE SUPERVISOR.
CIVMSEG DC A (X' 800000 ')

CNFGINFO 119

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

120 CNFGINFO

(

(

(

October 1976

purpose :

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Q!I!dH~

SUBROUTINE DESCRIPTION

To count all or a subset of tbe lines in a l1ng file .

Resident System

Calling Sequences :

Assembly : CALL CNTLNR , (unit , first , last , cnt)

FORTRAN! CALL CNTLNR (unit,t"irst , last , cnt , &rc4 , &rc8 ,
&rc 12 , &rc 16 , &rc20 , &rc24 , &rc28)

Parameters :

is the location of either
(a) a fulillord - integer FDU8 - pointer (such as

returned by GETFD) I

(bl a fullword-integer logical I/O unit num ­
ber (0 through 19) , or

(C) a left-justifi ed . 8-character logi cal I/O
unit name (e . g ., SCARDS).

~s the location of a fullword containing the
i~1~&ag! line number of the first l ine to be
coun ted.

1~§! is the location of a fu l lword containing the
1n!~[ns! line number of ~he last line to be
coun ted .

£~! is the locati on of a full word in which the
count of the number of lines in the sFecified
range will be returned.

[£~~~~£££§ are statement labels to transfer to i f the
corresponding return codes occur.

Return Codes :

o The file was counted successfully .
4 The file does not exist .
S Hardware error or soft ware

encountered .
12 Read access not allowed.

incon~istency

16 Locking ~he file for read will result i n a
deadlock .

20 An attention interrupt has canceled the automatic
wait on the file (wait i ng caused by concurrent use
of the (shared) file).

24 Inconsistent parameters specified (!i~§~ greater
than ls§~ , etc~) .

28 The file is not a line file .

CNTlHR 121

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS

Examples:

122 CNTLNR

Notes :

October 1976

If ti£§l and !~§1 do not correspond to actual
numbers in the file , the Dext and previous
numbers, respectively , will be used.

line
l ine

In HTS , the internal
equal to the external
t i mes one thousand .

line number (e.g., 2 100) is
line Dumbe r (e ,. g . , 2.1)

Assembly: CALL GETFST, (UNIT , FSTLNR)
CALL GETLST, (UNIT , LSTLNR)

FORTRAN :

CALL CNTLNR, (UNIT , FSTLNR,LSTLNR , CNT)

UNIT DC
FSTLNR OS
LSTLr-R OS
CNT DS

F ' 4 I

F
F
F

First line number
Last line number
Co unt

INTEGER*4 UNIT,CNT
DATA UNIT/4/

CAiL CNTLNR (UNIT, -9999 9999, 99999999 , CNT)

The above exam~les illustrate two wa ys to count al l of the
lines of the line file attached to logical I/O un i t 4 .

(

(

(

october 1976

pur[Jose :

Location:

AIL Entry:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

~Qli!RQk

SUBhOUTINE DESCRIPTION

To provide an interface between the user and the CONTROL
entry in the device support routines (OSHsl. This subrou ­
tine allows the user to execute control operations on
files and devices.

Resident System

eNTRL

Calling Sequences :

Assembly : CALL CONTROL, (info,len , unit , ret)

FORTRAN : CALL CNTRL(info , len , unit , ret , trc4,&rc8 , &rc12)

Parameter s :

infg is the
tiCD to

location of
be passed

the device
to the

control
device

inforlla­
SUFPort

routine s .
!gn is the location of the half word (INTEGER*2)

length of the control information .
YSi1 i s the location of either

(al a fullword intege r FDUB - pointer (as returned
b y GETFO) ,

(b) a fullword-integer logical I/O unit number
(0 through 19) , or

(c) a left - justified a - character logical I/O
uni t name (e. g ., SC AR OS) •

r~1 is the· location of an area of 27 full words
bytes) to receive the return information
the device support routines . This area
contain:
Word 1: return code from the DSR

(1 08
from
will

2 : length of the DSR message , or zero
3-27 : OSR e rror message (if given)

This ~arameter is optional and can be omitted
(if called froID FORTRAN) or zero (if called from
assembly language) .

I£.!!L~::' ::'LI£l~ are statement labels t.o transfer to if
the e~uivalent return codes occur .

Return Codes :

o Successful return from OSR.
~ No control entry or illegal ~nil parameter

CONTROL 123

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS

Description:

12 4 CONTROL

Note :

October 1976

specif ~ca t ion .
a Nonzero return code from DSR. Thi s return c ode is

given i n ~~!(1).
12 DSR error . The DSR return code is in !:~! (11 , the

DSR message length is in ~~! (2) , and th e messa ge
i s in ~~! (3) -~~i(27) .

The return code g iv en by the CONTROL subroutine is
nQ! the return code giv e n by the DSB. The return
code from the subro utin e is given i n GR 1S and used
to indicate t he e xi s t eoce of a DS R return code
whic h i s given in ~~! .

Onl y cer t ain
operatio ns .

f~le and device
These ar e :

types currently allow control

9TP
7TP
PTPR
7772
POPS

2741
TTY
HRXA

HPTR
HPCH
HBAT
HNET

32 70
3 066
PILE
SEQF
BNCH

Any control comma nd (9-track magnetic tape).
Any control comma nd (7 - track magnet~c t a pe).
Any control command (Pa per ta pe r eadEr).
Any Audi o Response Unit device comm and.
Ar.y o f the Dat.a Concentrator device support
commands as normally e nte r ed after SOH SO H
(i . e., CTRL-A CTRL -A from TelEtypes o r ! A! A
fLom I BM terminals) . The SOH SOH sequence
shou ld nQi be given as par t of the d e vice
c ontrol information.
Any of the Hem orex device s upport
commands a s normally entered after a " " "
sign . The percent s ign should not be given
a s part of the device con~Lol informa t ion .
Any control command legal for .PRIN1*,
*PUNC H. , and *BATCH* , respec tively.

Any control command (HERIT Computer
Neto wrk) .
Ar.y 3270 devi ce support command.
Any 3270 device support command .

- See MTS Volume 1.
See MTS volu me ,.
Any control command for the benchmark
driver.

See the various terminal user's guides in MTS Volume 4 for
further details on the different types of control commands
th at may be specified .

There i s a macro CNTRL in the system macro library for
generating the c alling seq uence to this s ubroutine . See
the macro description for eNTRL in MTS Volume 14.

(October 1 976

Example:

(

FORTRAN :

Assembly:

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS

INTEGER*4 RET (27)
INTEGER*2 LEN
LEN = 3
CALL CNTRL { ' REW ' ,LEN,6 , RET , &100 , &200,&300)

l Oa no control entry exit

200 nonzero return code from DSR exit

300 DSR error exit

CALL CONTROL, (INFO,L EN , UNIT , RET)
C 15 , =F' 12 '
BH BADRe
B *+4 (1 5)
B SUCCESS normal exit
B ERRORl no control entry exit
B
B

INF O DC
LEN DC
UNIT DC
RET OS

ERRDRl
ERROR3

C' REW '
H ' 3 '
P ' 6 '
2F , Cl100

nonzero OSR return code
DSR error exit

The above examples set up a REW control command to the
file or device attached to logical I/O unit 6.

CONTROL 125

£1TS 3 : SYSTEI'I SUBROUTINE DESCRIPTIONS

Octobe r 197 6

1 26 CONTROL

(

(

(

October 1976

Purpose :

Location:

HTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

To obtain the accumulated costs incurred by the current
signon .

Resident System

Calli ng Seq uences:

Assembly: CALL COST

FORTRAN: amount=COST (0)

PL/I: amount=P l CALLF (COST , fO)

Pa r ameter :

amount=P LCALLE (COST , fO)
amount=PLCALLD (COST , fO)

is a fullword (FIX ED BINARY (31» locat i on con­
taining the integer zero.

Values Returned:

GRO contains the cost of the c urrent job i n centi­
cents (ten tho usan dths of a dollar).

FRO contai ns t he doubleword cost of the curr ent job
i n dollars.

Ret u rn Codes :

a Suc cessful return .
>0 Fatal error (should never occ u r).

Description: The result i~cludes all billable amounts fo r the current
s i gn oD to the ti me of the s ubro utine call with t he
exception of charges for £g~~angn! f ile storage, tape­
dr iv e time for currently mounted tapes , and unreleased
paper-tape outp ut.

Examples: Asselllbly : CALL
STD

COST
O,CUR$

The
FRO

CUR$ DS D

above example returns the current cost
and stor es t he result in location CUR$,.

in dollars in

COST 1 27

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS

128 COST

October 1976

FORTRAN : 1NTEGER*4 , CUM , RE MAIN , COST
CALL GUINFO (22 , REMAIN)
CALL GU1 NFO (32 , CUM)
REMA1N=REMA1N - COST (O) - CUM

The above example calls the GU 1 NFO subro ut i ne to
the maximum charge and cumulat i ve charge used
signon 1D at the time of signon , calls COST to
the cost of the current job , and then calculates
for the charge remaining _

PL/I: IF PLCALLF (COST,FD) > COSTL1M
THEN GO TO END ;

determine
for t he

determi ne
a value

DECLARE PLCALLF RETURNS (FIXED BI NARY (3 1» ,
COST ENTRY ,
FO FIXED BINARY (3 1) INITIAL (0) ,
COSTLHI F I XED BI NAR Y (3 1) ;

The above example calls
current job has exceeded a
the program i s terminated.

COST to determine whether
certain cbarge limi t ; i f

the
so ,

(

r

October 1976

Purpose:

Location :

Alt. Entry :

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS

£Bf;! .'!:§

SUBROUTINE DESCRIPTION

To create a file .

Resident System

CREATE'

Calling Sequence:

Assembly: CALL CREATE , (name , size , vol, t ype)

FORTRAN : CALL CREATE (name , size , vol,type,£rc4,&rc8 , trc 12,
trc 16, &rc20 , trc24 , trc28)

Parameters:

rr~!~ is the location of the name (wi th a trailing
blank) of t he file to be created.

§!!g is the l ocation of a full word integer containing
two half words of i nformation . The first balf ­
word specifies the maximum expanda bl e s i ze of
the file in pages (40 96 bytes per page) or in
tracks (7294 bytes per track) ; the !.YE!l: parame­
ter ~ndicates whether pages or tracks is being
specified. If this half word is zero , a defaul t
of 3~ , 767 pages i s used. The second halfword
specifies the reguested initial s i ze of the f i le
in pages or in tracks .

YQl is the location of the name of the disk volume
(as a six- character name) on which to create the
file, or zero (the recommended value) , in which
case any available disk volume will be used .

1~E~ i s the location of a full word integer which
indicates the type of fi l e to create as well as
whether the initial size and maximum expandable
s i ze reguests are specified in pages or tracks.

o - line file , sizes in tracks
1 - sequential file , sizes i n t r acks
2 - seguential-with-line- numbers fi l e , s i zes

in tracks
256 - l in e file, sizes in pages
257 - sequential file , sizes in pages
258 - sequen tial-with - line - numbe r s file , sizes

in pages
rc4 ... r c28 are s t atement labels to transfer to if tbe
-----equIval ent return codes occur .

CREATE 1 29

MTS 3: SYSTEH SUBROUTINE DESCRIPTIONS

Examples :

130 CREATE

October 1976

Return Codes:

o Successful return.
4
8

1'2
~16

20
24

28

The file already exists.
Illegal lYE~ parameter specified .
~t~g parameter too large .
No space available for a file bf that size.
Illegal parameter in calling sequence.
Hardware error or software inconsistency
encountered .
The space allotted to this account has been
exceeded.

Assembly: CALL CREATE , (FNAM E, FSIZE , FVOL,PTYFE)

FNAI1E DC C I OAT AFILE ,
FSIZE OS OF
l1SIZI. DC H' O' Default maximum siz e
lSIZE DC H' " Initial size
FVOL DC F ' O'
FTYPE DC P'256'

FORTRAN: CALL CREATE (' DATAFILE ',1 ,0,256,& 10 0,&200)

These examples will create a
DATAFILE with aL initial size of
maximum expandable size of 32 , 767

line fi l e by
1 page and
pages.

the
a

name of
default

(

(

~TS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBROUTINE DESCRIPTION

Description: See the GUINPO, CUINPO subroutine description for the
details of CUINFO and GUINFO .

CUINFO 131

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1 976

132 CUINFO

(

(

October 1976

Purpose:

Location:

MTS 3: SYSTE M SUBROUTINE DESCRIPTIONS

£!~Qtl~

SUBROUTINE DESCRIPTION

To convert an DHR card image contained in binary input
format into EBCDIC format.

Resident System

Calling Seq uence:

Assembly : CALL CVTOMR, (inreg,inle n , outreg , outlen)

FORTRAN: CALL CVTOHR(inreg,inlen,outreg,outlen,trc4,
&rcS,&rc 12)

Parameters :

1nI~g is the location of the region containing the
OHR card image .

1n!~n is the location of the halfword (INiEGER*2)
lengtb of the region 1nI~g. l~n must be at
least 80.

QY1I~9 is the location of the region containing the
converted EBCDIC format of the OHR card.

Q~1!~rr is the l ocation of the halfword (INiEGER*2)
length of the converted OMR card. On the
iuitial call to CYTOMR, QY11~n must be zero.

Return Codes:

o Successful return.
4 Another OHR card image is needed since the pre­

vious card image indicated a continuation. QY!I~9
and Qg1!~n must be left unchanged for the next
call to CYTCHR .

S Not used.
12 Illegal OHR card type. The card image ha s been

copied unconverted to the output region.

Description : The subroutine CVTOHR converts OHR cards originally read
in column binary input format int o EBCDIC format~ The OHR
card must be of the type currently used at the Computing
Center or the type previously used from the University of
Waterloo.

The subroutine must be called more than once in succession
if the OHR card indicates a continuation to another card.

CYTDHR 133

nTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS

Example:

134 CVTOMR

Assembly:

FORTRAN:

.vc
CALL
C
BL
BE
BH

INREG DS
OUTREG DS
INLEN DC
OUTLEN DS

October 1976

OUTLEN , =H'O '
CVTonR , (I NREG, INLEN , OUTREG ,OUTLEN)
15 , =F'4'
EXIT
CONT
ERROR

CLSO
CL 2 56
HISO '
H

OHR card imag e
EBCDIC format

INTEGER INREG (20) , OUTREG (64)
INTEGER*2 INLEN/SO/,OUTLEN

OUTLEN = 0
CALL CVTOdR (INREG , INLEN ,OU TREG , OUTLEN ,

&100,&100 , &200)

In the above examples, the OMR card image contained in the
region INREG is converted t o EeCDIC format and placed in
the region OUTREG .

(

(

(

rtTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBROUTINE DESCRIPTION

purpose: To destroy a file.

Location: Resident System

Alt. Entry: DESrRY

Calling Sequence:

Examples:

Assembly: CALL DESTROY, (name)

FORTRAN: CALL DESTRY(name,&rc4,&rc8,&rc12,&rc16,&rc20,
&rc24,&rc28)

Parameters:

!!9.!Il~ is t.ae location of the name (with a trailing
blanK) of the file to be destroyed.

t£~~~~tE2~ are statement labels to transfer to if the
eguivalent return codes occur.

Return Codes:

o Successiul r eturn .
4 The file i s .SOURCE* , *SINK*, *MSDURCE* , *MSINK* ,

or *PUNCH. and therefore cannot be destroyed .
8 Reserved for futUre use.

12 File does not exist.
1 6 Lock~ng the file for destroying will result in a

deadlock.
20 Destroy access not allowed .
24 Hardware error or soft ware inconsistency

encoun teredo
28 Automatic wait for (shared) file was interrupted.

If the ret urn code is not zero , the f il e was not
destroyed.

FORTRAN: CALL DES TRY ('DATAFILE ', &2 , &2 , &9,&9,&99,&99,&99)

Assembly: CALL DESTROY, (FNAf'IE)

FNAME DC C IO ATAFILE

These examples will destroy the file OATAFILE .

DESTROY 135

MTS 3 : SYSTEM SUBROUTINE DES("RIPTIONS

Oc tober 1976

136 DESTROY

October 1976

Purpose :

Location:

Alt. Entry:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Q!2!1Q!!!!!

SUBROUTINE DESCRIPTION

To release mag~etic and paper tapes , Audio Response Unit
lines, and connections on the MERIT computer Network.

Resident System

01 SMNT

Calling Sequences :

Assembly : CALL DISMOUNT , (string,len)

CALL DISMOUNT , (par)

DISMOUNT tstringt

FORTRAN: CALL DISHNT(string , len)

(CALL DISMNT (par)

Examples:

(

Parameters:

Note:

~!£!~g ~s the location of a character string con­
taining one or more pseudo-device names
separated by blanks or commas.

!~!! is the location of a halfword (INTEGER*2)
length of §t£ing.

E!!!: is the location of a halbord (INT EGER*2)
length of a character string immediately
followed by that character strin9 . The char­
acter string contains one or more pseudo ­
device names separated by blanks or commas .

The
the
has

DISMOUNT subroutine prints error
logical I/O unit SERCOM or *MSINK*
not been assigned.

The complete
macro is given

description for using
in MTS Volume 14.

messages on
if SERCOM

the DIStiOUNT

Assembly : CALL DISMOUNT , (STR,LEN)

LEN
STR

DC
DC

DISMOUNT 137

Mrs 3: SYSTEM SUBROUTINE DESCRIPTIONS

138 DISrtOUNT

October 1976

DISMOUNT ' *T 1* *T2* '

FORTRAN : lNTEGER*2 LEN

LEN=9
CALL DISMNT('*T1* *T2*',LEN)

The above three examples release the pseudo - devices named
T1 and *T2* . The first assembly example uses the CALL
macro and the second uses the DISMOUNT macro.

(

(

r

October 197 6

Purpose:

Location :

rtTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

To print the values of specified memory regions in a
FORTRAN program.

*LIBRARY

Calling Seq uences :

FORTRAN: CALL DUMP (a1 , b l , f 1,. _ .• , an , bn ,fn)

CALL PDUMP(a1 , b 1,f1, ••• , an , bn,fn)

Parameters :

is a variable in the FORTRAN program specifying
one end of the "i"th region to be printed.
is a variable in the FORTRAN program specifying
the other end of the "i"th region to be printed .
indicates the format in which each data item
between si and a! is to be printed . !i is a
full word integer and may be one of the following
values:

0 - hexadecimal
1 - LOGICAL*1
2 - LOGICAL*4
3 - INTEGER*2
4 - INTEGER*4
5 REAL*4
6 REAL*a
7 - COMPLEX*a
B COMPLEX *1 6
9 - literal

Description: The DUMP and PDUHP subroutines print the values of the
data items in the memory regions delimited by tbe ei and
a! parameters . As many triples of parameters , p.! , Bi, and
ti, may be gi ven as desired . There is no order imFli ed by
the Ai and !!i parameters --either may mark the beginning or
end of a region to be dumped . All output i s printed on
the logical I/O unit SERCOH.

The relative locations of the variables in a FORTRAN
program may be obtained from the map produced by the MAP
option to the FORTRAN compiler .

DUMP , PDUHP 139

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS

Example:

The only difference between
terminates execution of the
system subroutine SYSTEM
calling program .

October 1976

DU MP and PDUMP is that DU MP
call ing program by callin g the
wh i le PDU~P returns to the

FORTRAN CALL DU MP (A(1),A(1 00) , 5,A (1) ,A (100). O)

The above exampl e
ele~ents of the
format.

prints
array

the
A in

va lues of
both REAL*4

the
and

fi r st 10 0
hexadecimal

140 DUMP, PDUMP

(

(

October 1976

Purpose:

Location:

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS

£;~~!~£

TRANSLATE TABLE DESCRIPTION

To translate EBCDIC
USASCII characters.
available.

Resident System

characters i nto e ven-parity a - bit
An inverse table (ASCEBC) i s also

calli ng Sequences:

Assembly : L
TR

Parameters :

r , = V (EBCASC)
d(l,b) , O(r)

~ is a general register that wil l contain the
address of the EBCASC translate table.

4J!L~t is the location of the region to CE trans­
lated . 4 is the displacement, 1 i s the
length of the reg i on in bytes, and ~ i s the
base register for the region. This parameter
may be given also i n an assembly lan guage
symbolic format .

Description : An EBCDI C/USASCII translation _table ~s shown on the next
t wo pages. Note that in this table , all EBCDIC characters
which do not appear explicitly translate to USASCII NUL
(octal 000 character). Both the EBCDIC character NL
(new-line), hexadec i mal 1 5 , and the EBCDIC character LF
(line - feed) , hexadeci ma l 25, translate to USASCII LF ,
octal 012 . All characters are translated to g!gn-parity
USASCII by EBCASC.

Example :

See the ASCEBC s ubroutine for a table to translate from
USASCII into EeCDlC.

Assembly :

REG

L
TR

os

6 , =V (EBCA SC)
REG (100) , 0 (6)

CL 100

The above example will translate the EBCDIC
the 100 - byte region at location REG
characters.

characters of
into USASCII

EBCASC 141

!'ITS 3: SYSTEI'! SUBROUTINE DESCfiIPTIONS

October 1976

EBCDIC/USASCII Translation Table

~------------------------.-- -,
1 EBCDIC (8-bit) USASCII (7-bi t) 1 EBCDIC (8 - bi t) USASCII (7 - bit) I
I I I
IHex Name Oct Hex Name TTY 1 Hex Name Oct Hex Name TTY I
f----------------------+__ -----------1
100 NUL 000 00 NUL CT - SFT - P 13F SUB 032 1A SUB CTRL - Z
101 SOH 00 1 0 1 SOH CTRL -A 140 space 040 20 Space Space
102 STX 002 02 STX CTRL - S 14 B 056 2E
103 ETX 003 03 ETX CTRL-C 14 C < 074 3C < <
105 HT 011 09 HT CTR1 - I 140 I 050 2B ((
107 DEL 177 7F DEL RUSOUT 14E + 053 2B + +
l OB VT 013 OB VT CTRL-K 14 F I 174 7C I NONE
10 C FF 0 14 OC FF CTRL-L 150 & 046 26 & •
100 CR 0 15 00 CR RETURN 15A 04 1 2 1
10E SO 016 OE SO CTRL-N 15B $ 044 24 $ $
10F 51 017 OF 51 CTRL-O 15C • 052 2A • •
110 DLE 020 1 0 DLE C'l'RL - P 150 05 1 29)
I 11 DC1 02 1 11 DC1 CTRL - Q 15E 073 3B
11 2 Dc2 022 12 OC2 CTRL - R I SF , 176 7E Tilde NONE
11 3 DC3 023 1 3 DC3 CTRL - S 160 055 2D
115 LF 012 OA LF LINE FEED I 61 / 057 2F / /
11 6 BS 0 10 08 BS CTRL-H 16B , 054 2C , ,
11 8 CAN 030 1 8 CAN CTRL - X 16 C % 045 25 % ~
11 9 EM 031 1 9 "I CTRL -Y 160 137 SF SHIFT-O
I1 C IFS 034 l C FS ,CT - SFT-L 16 E > 076 3E > >
11 0 IGS 035 l D GS CT- SFT -I'! 16F ? 077 3F ? ?
11 E IRS 036 1E RS CT - SFT - N 17A 072 3A
I1F IUS 037 1F US CT - SFT - O 17 B • 043 23 • •
125 LF 012 ilA LF LINE FEED I7C • 100 40 • •
126 ETB 027 17 ETB CTRL-W j7 D 047 27
127 ESC 033 l B ESC CT - SFT-K 17 E = 075 3D = =
120 ENQ 005 05 ENQ CTRL-E j7F " 042 22 " "
12E ACK 006 06 ACK CTRL - F 181 a 141 61 a NONE
12F BEL 007 07 BEL CTRL-G 182 b 14 2 62 b NONE
132 SYN 026 16 S1N CTRL-V 183 c 143 63 c NONE
137 EOT 004 04 EOT CTRL-D 18 4 d 144 64 d NONE
13C DC4 024 14 DC4 CTRL-T 185 e 145 65 e NONE
13D NAK 025 15 NAK CTRL - U I
'------ ---------- ---------------------"

142 ESCASC

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS

r-- October 1976

EBCDIC/USASCII Translation Table

,-- , -- ,
I EBCDIC (8-bit) USASCII (7 - bit) J EBCDIC{8-bit) USASCII (7-bit) I
I I I
IHex Name Oct Hex Name TTY J Hex Name Oct Hex Name TTY I
t-- ---------+- ------j
186 f 146 66 f NONE IC5 E 105 45 E E I
187 9 14 7 67 9 NONE I C6 F 106 46 F F I
188 h 150 68 h NONE I C7 G 107 47 G G I
189 i 151 69 i NONE IC8 H 110 48 H H I
188 (173 78 (NONE I C9 I 111 49 I I I
191 j 152 6A j ~ONE ID1 J 11 2 4A J J I
192 k 153 6B k NONE ID2 K 11 3 4B K K I
193 1 154 6C 1 NONE I D3 L 114 4C L L I
194 m 155 6D m NONE I D4 M 115 4D M M I
195 n 156 6E n ~ONE I D5 N 11 6 4E N N I
196 0 157 6F 0 NONE ID6 a 117 4F a 0 I
197 P 160 70 P NONE ID7 P 120 50 p p I
198 9 1 61 71 q NONE ID8 Q 12 1 51 Q Q I
199 r 162 72 r ~ONE 109 R 122 52 R R I

(19A NONE 14 0 60 Grave NONE I E2 S 123 53 S S I
19B J 175 7D J ALT MODE IE3 T 124 54 T T I
I A2 5 163 73 5 ~ONE I E4 U 125 55 u U I
IA3 t 164 74 t NONE I E5 V 126 56 V V I
I A4 u 165 75 u NONE I E6 • 127 57 • W I
IA5 v 166 76 v NONE IE7 X 130 58 X X I
IA6 w 167 77 w NONE I E8 Y 13 1 59 Y Y I
IA7 x 170 78 x NONE IE9 Z 132 5A Z Z I
I A8 Y 171 79 Y NONE IFO 0 060 30 0 0 I
IA 9 z 172 7A z NONE I F1 1 061 31 1 1 I
IAA NONE 136 5E Carat SHIFT - N IF2 2 062 32 2 2 I
lAD (133 50 [SHIFT - K I F3 3 063 33 3 3 I
IBA NONE 1 34 5E Bkslh SHIFT-L IF 4 4 064 34 4 4 I
IBD 1 135 5F 1 SHIFT-M I F5 5 065 35 5 5 I
IC 1 A 101 41 A A IF6 6 066 36 6 6 I
IC2 B 102 42 B B I F? 7 067 37 7 7 I
IC3 C 10 3 43 C C I F8 8 070 38 8 8 I
IC4 D 104 44 D D IF9 9 071 39 9 9 I
~

--------~

(

EBCASC 14 3

MTS 3 : SYSTEM SUBROUTINE DESCbIPTIONS

October 1976

144 EBCASC

(

(

I1TS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBROUTINE DESCRIPTION

Purpose: To call the editor from a user program.

Location: Resident System

Calling Sequence:

Assembly: CALL EDIT, (par' , par2 , ,par16)

FORTRAN: CALL EDIT (par 1, par2, ••• , par16,&rcQ,6rc8 , &rc 12)

Parameters:

E~&_~
E~f:_2.
.2~!:_fr
E!!!:_ 2

.l2s!:_!!

2~£_11

2!!!:_1i:

.2!!!:_ ld

is the fullvord editor dsect address; it is
zero on the first call~
is a fuliverd integer '-1 ' or the CiS trans­
fer vector .
is a fuliverd integer '- 1 ' or the intermedi­
ate I/O routines transfer vector (see " Spe­
cial Features " below) .
is the ini tial file name to edit .
is the fuliverd length of initia l file name.
is the initial EDIT command .
is the fuliverd length of the initial EDIT
command.
is the fullword minimum line number allowed •
should be -2 147483648 (- 2**31) i f not re ­
stricted. All line nu mbers are " internal, "
Le .. , line 1.5 i s 1500.
is the full word ~aximum line number allowed.
Should be 21 47483647 (2**31-1) if not
restricted.
is the fullword line number relocation fac­
tor; the editor will subtract this number
from the real line nu~ber in the file when
interpreti ng l i ne number parameters and
printing verification.
is not used (must be fullword integer 1- 1 ' or
zero parameter pointer).
i s not used (must be f ull word integer 1-1 t or
zero parameter poi nter) .
ed i tor control switches are specified as a
full word integer sum of the following . The
actions of the following first 4 swi tches are
performed in the order listed .

MTS 3: SYSTEM SUBROUTI NE DESCRIPTIONS

146 EDIT

1 X' 01'

2 X ' 02'

4 X'04'
8 x'OS'

16 X'10'

32 x ' 20 '

64 X'40'

1 2 S X' SO '
256 X'1 00 '

5 1 2 x'200'
10 24 X'400 '

October 1976

set edit file using e~£_~ and
E~£_2
perform initial EDIT command
using E~£_§ and Es£_l
read commands from SOURCE
unload editor unconditionally on
return
prohibit EDIT command except for
editing edit procedures
prohibit MTS commands from the
editor
prohibit copy from or to exter ­
nal files
return on any error
return on null length editor
command
return on fir st ATTN
do not unload editor on STOP
command or EOP in command stream

204 8 X' 800' set initial current line number
before any commands are pro ­
cessed on this call (E~I_1~)

The follo wing parameters and E2£_1 are set on return:

Return codes:

is a 20-byte area to store current f i le name
on return.
full word current line number.
full word to store the int eger sum of the edit
procedure switches on return:

1 - EOF switch enabled
2 - SUCCESS switch enabled
4 - return from STOP command or EOF in com­

mand stream

o normal return, editor unloaded
4 normal return, editor not unloaded
S error return , editor not unloaded

12 error return, editor bug

(

(

October 1976

Example:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

This example is writt en in FORTRAN.

INTEGER*4 EDWD/O/ , FILENM (5) , EDSii , LINE/3000I
c
C CALL
C FILE
C 2059
C

THE EDITOR TO ALTER " C" TO "B" IN LINE 3 . 000 OF
-TESTF
= 1+2+8+2048 WHICH ARE THE CONTROL SWITCHES FOR :

1 SET EDIT FILE
C
C
C

C

2 PERfORM INITIAL EDIT CO~tlAND

8 UNLOAD EDITOR WHEN RETURNING
2048 SET INITIAL CURRENT LINE POINTER

CALL EDIT (E DWD ,- 1 , - 1,' -TE STF',6,'ALTER * " C" B"' ,13 ,
X- 99999999 , 99999999 , 0 ,-1,-1, 2059,FILENM,LINE ,
XEDSW , &2 ,& 9 , &9)

C EDSW WILL BE ' 2 ' IF ALTER WAS SUCCE SSFUL , '0' IF NOT.
2 PRINT 5,FIL ENM , EDSW

c
5 FORMAT (l X,5A4,Il0)

STOP 0
9 STOP 1

END

special Feat ures:

The remainder of this subr o utine description provides
information on special featuLes of the EDI T s ubrouti ne
that are of interest to system programmers ; ~~Q~lggg~Q!
ih~§g_~Eg£!s._tgs~y~g§~§_~Q1-~ggy!£g~_!Q_£al!_ED!l_!n_1h~
~~~~er_gg§£riQg~_~~Q~g . 

Normal editing occurs when ea£_d points to a fullword 
'-1 '. To use the special features described here, Eg~_J 
must pOint to an ordered vector of fullword subroutine 
addr esses or zeros. Nonzero entries allows the UEe r to 
provide alternate s ubroutines that replace those normally 
used by the editor . User- supplied routines allow the 
assembly lar.guage user to preprocess and postprocess file 
data . It is also possible to support user-i mp l emented 
file organizations. This special faci lity is not intended 
for use from FORTRAN programs. 

A small amount of knowledge a bout the structure of the 
editor is required to properly use the alternate subrou­
tine interface. The accompany in g diagram is a representa ­
tion of the way the edi tor reads and writes files. 

Level 7 represents tbe program calling the edi tor . ~TS 

uses the editor command language s ubsystem (eLS ) interface 
while other programs generally use the more complete " user 
interface" . The ed i tor in turn calls upon a set of 
routines which perform buffering and checkpoint opera ­
tions . These then call a set of file -independent rou-

ED IT 147 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

+------------------------------------+ 
LEVEL 1 + MTS FILE ROUTINES - all file types I 

+-----------------+------------ ------+ 
LEV EL 2 

+-------- ----------------------+--------------------------------+ 
I EDITOR I/O SUPPORT set of routines for all file types 
+-------- -- --------------------+--------------------------------+ 

+- --- --- ------------ -- -+-- ---------------- -----+ 
LEVEL 3 I OPTIONAL USER - SUPPLI ED INTERMEDIATE ROUT IN ES I 

+----------------------+-------------------- ---+ 
LEV EL 4 

+------------- ----------- ------+ -------------------------------+ 
I EDITOR FILE MANAGEMENT buffering, checkpoint-restore - undo I 
+- -- - - ---- --~------ ---- - -------+-- -----------------------------+ 

+---- -----------------+-----------------------+ 
LEVEL 5 J EDITOR COM~AND LANGUAGE AND DATA PROCESSING I 

+------------------- -----------------+--- -----+ 
+----- -----------------+ +----------+----------- -----+ 

LEV EL 6 I " EDITOR " CLS INTERFACE<--)"EDIT II SUBROUTINE INTERFACE I 
+--------+-------------+ +---- ------+---------- ----- -+ 

+----------+----------- -- --+ +----------+--------- -------+ 
LEVEL 7 III$ EDI T" MTS COMMAND SYSTEM I I FTN,SPIRES, user programs I 

148 EDIT 

+--------------------------+ +---------------------------+ 
tines. The f ile -independen t routines of level 2 try to 
remove all irregularities in file access and also process 
all errors . For example , the READ INDEXED routine is 
gi ven a line number and returns the line , length , and li ne 
number . A nonexistent line is represented by zero length. 
If an error occurs, a special error message r ou t i ne is 
ca lled by the file -i nde pendent routines. A message and 
severit y level are included as parameters. The editor 
supplies the address of the routine to handle these 
errors . Attentions a r e handled i n a simi lar manner. 

The editor supplies the location of a swi tch whic h e ither 
inhibits or allows attentions to be processed at that 
point . If attentions are d i sabled and ODe occur s , the 
routines are responsible for calling the attention ­
handling routi rle when atte ntions are again permitted. 

The user may supply his own version of the file ­
independent routines which in t urn mayor may not call the 
editor ' s . This i s useful for modifyiDg lines before the 
editor sees them. For exampl e , a FORTRAN preproceSSing 
system may use this to concatenate conti nued s tatements 
and provide statement indentation for loops and if- t hen 



( October 197 6 

( 

( 

dTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

structures on iLput, while splitting and unediting them on 
output. 

File Independent Routin e Descriptions : 

The file-independent routines all use a stcrage area 
similar to an /':ITS POUB called the "lODSECT ". The EDGET 
routine (see the description below) is called by the 
editor to get a file, allocate storage for the lO DSEeT , 
and initialize it. The address of the lODSECT is stored 
in the full word specifi ed by the first parameter to EDGET. 
All of the remaining I/O routines must recei ve this as 
their first parameter in the calling sequence. The BOREL 
routine (see the description below) releases the IODSECT 
and all other storage acquired for such processing. All 
of the remaining I/O routines return a return code greater 
than zero only if the f irst parameter is not a valid 
IODSECT . The routines will buffer up t o one line in VM 
and will not reread it if successi ve calls request that 
same line. A write is always executed to insure that the 
most recent version has been receiv ed by the HTS file 
routines . The routine ' s I'current line n (not to be con­
fused with * in the editor itself) is the last line 
accessed . The line number returned by the routines will 
always indicate the position in the file even if the line 
is not present (zero length). If the line number returned 
is 2 147483647 ( 2**3 1 - 1), there is no current line or file 
position. sequential files without line numbers , tape 
files, and other file types will have lines numbered 
starting with '.000 and increments of 1.000. A call from 
the editor to any of these routines may be replaced with a 
user-supplied routine which behaves the same way from the 
viewpoint of the editor. The third parameter to the EDIT 
subroutine is a vector of entry points to these replace­
ment r outines. The user-supplied routine may in turn call 
any of the I/O routines described below if so desired, as 
long .as they return the proper information to the editor. 

ED~~±-~_§~~_li~~_I!l~_!MQ_!QDS~~~ 

EsI_~ 

E!lI_l 

E9I_! 

f ile name (if shorter than len 
delillit with blank) . 
full word length of name ( maximum is 
characters) . 

20 

fullword minimum accessible line number. 
Lines with numbers less than this will appear 
not to be in the file . 
full word maximum accessible 
Lines with numbers greater 
appear not to be in the file. 

line 
than 

number. 
this will 

full word relocation factor to the line Dum ­
line 
Th us 

ber. The offset is s ub tracted from 
numbers on input and added on output . 

EDIT 14 9 



Mrs 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

150 EDIT 

Returns : 

2s£_11 
1!l!£_1 !:! 

October 1976 

an offset of 1000000 will make line 1000.000 
look like l i ne zero . 
1-byte pad character if required by I/O 
routines . 
error message routine . 
descr i bed elsewhere . 

calli ng sequence 

attention routine entry point (has no 
parameters). Described below in the 
" Attention processing. n 
l- byte attention bit described below. 
1- byte attention hold count described 
CLS transfer vector . 

calling 
section 

below. 

v~rtual memory file chain header (supplied by 
editor) . The editor I /O routines use this to 
locate edit proced ures. 

full word address of IODSECT. 
CL20 actual file name. 
1 DUB for file . 
fullword file type code . 

o user-supported file type 
support) 

4 file type is " NONE n 
8 editor "edit procedure n 

1 2 MTS line file 
16 nTS sequential file 
20 tape file 
24 lI other " file type 

( no 

tullword maximum input- output length . 
full word current maximum input length. 
mum will always be 255. 

IODSECT 
minimum accessible line number . 
maximum accessible line number . 

editor 

Mini -

offset to line number (user sees th i s added 
to real number) . 
returns current maximum input - outp ut length. 
returns current maximum input length . 
paa cbaracter if required by I/O routines. 

I ODSECT 



( October 1976 

( 

( 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

Used 
file 

whe.u 
could 

editor temporarily returns 
be modified invalidating the 

to calle!: and 
current line. 

IonSECT 

Used when editor 
operations on the 

restarts after possible 
file being edited . 

external 

Returns : 

.e~~_! 
IHH:_ 2 

Ret urns : 

IHl~_~ 
£i!!:_2 

IonSECT 

IonSECT 
full vord line number to be used as i nde x for 
read . -214 748364 8 and 2 147483647 mean *F and 
*L respectively . 

fullvord length of record r ead. Zero means 
that r ecord was not fo un d but line number was 
made the current fi l e position . 
fullvord line number • 
f ullvord l ocation of the record. The caller 
must not modify thi s region . 

IODS BeT 
fuli ve rd number of reco r ds to read forwared 
or backward from cu rren t. Ze~o means s tay at 
c u~rent ~ecord . 1 means ~ead next ~ecord and 
-1 means read previous record; 2 means read 
~he second record after the c urrent , and - 2 
means the second previous ~ecord before the 
current record, etc . 

fullvord line length . Zero means n o r ecord 
(EOF o r empty file) . 
fullvord l ine number . 
fullvord add r ess of record read . 

ED I T 1 5 1 



MTS 3 : SYSTEM SUBROUTINE OESC~IPTIONS 

152 EDIT 

I!i!J;:_l 
I!i!!:_~ 
Ea!:_J 

Returns: 

£a;:_! 
E~I_2 

EilI_l 
EgI_f 
EgI_d 
£gI_~ 

£s!:I_2 

October 1976 

I ODSECT 
full word Dew length . 
fullvord line number. *F or *L not allowed 
here . 
new line data EOWIX makes it active line 
also. 

IODSECT 

fullvord number of lines that can actually be 
ir.serted . 
fullvord line number of first line that may 
be inserted. 
fullvord minimum allowed increment. 
full word last unused line number in region. 

I ODSECT 
fullvord first line number_ 
fullvord last line n umber. 
fullvord begin line number. 
fullvord incremen t t o line number. 

IODSECT 
fullvord fir st line number. 
fullvord last line number. 
returns fullvord number of lines (inclusive ). 

~gQ1R-=_§~I_Y~£IQR_QI_b!~~_~yn~~s~ 

EilI_l I ODSECT 
ES!:;:_1=2 same as £s!:I_1=2 of RETLNR subroutine. 

~gRb~_=_gQ!_Y~£IQR_Qf_b!~~_~Qn~~R~ 

EaI_l IODSECT 
2ilI_1=2 same as Eilr_~=2 of SETLNR subroutine. 



( october 1916 

( 

( 

tiTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

.e~!;_1 

.EA~-1 
E~f:_2 

the message • 
full word message length. 
full word message se verity : 

o Comment , return after printing 
1 Warning, r et urn after pr i nting 
2 Error , do Dot return 
3 Severe error i n editor , do not return 

full word message number . 

Attention processing : 

Attention hold count is a one - byte count . If a routine 
enters a sensitive area of code , i.e., one that must not 
be interrupted, this count is in cremented by cne. A 
nonzero count ~ells the attention trap exit routine to set 
the attention bit byte to X' OQ ' to indicate that an 
attention has occurred and to return to the Foint of 
attention. When the sensiti ve region of code is l eft , the 
attention hold count must be decremented by one. If the 
count goes to z ero at that point, the attention bit mus t 
be examined for X' OO ' wi th the test and set instruction 
(which resets it to X' FF ' ) . If it is zero the attention 
routine must be called to process tbe attention in the 
normal manner . Thi s allows all l evels of routines inde ­
pendent attention control in sensitive areas_ The error 
routine r esets attention hold cou nt and attention bit on 
er rors with severity greater than " warning !! _ The user 
must be certain to reset atten tion hold count when leaving 
the sensitive area so as to enable int err upts . 

I/O Routines Transfer Vector: 

2~~J to the editor interface may point to a full word 
'-1', which mea ns there is no special transfer vector and 
the normal editor routines are used . Otherwise E~I_J 
points to a n ordered vector of fullvord routine addresses 
or zeros . A zero in any position means that the normal 
editor I/O routine is t o be used, otherwise the address is 
used instead of the normal routine . The vector order is 
defined to be: 

o '1 2 ' - fullilord integer numbe r of entries in 
vector 

1 EDGET - get new file and rOOSEeT 
2 BOREL - release file and IODSECT 
3 EDCLO - close file and invalidate current buffer 
4 EDRIX - read indexed routine 
5 EORSO - read sequential routine 
6 EDWIX - write indexed 

EDIT 153 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

154 EDIT 

October 1976 

7 ED SPA - find available line number space after 
current record 

8 EDRNM - renumber operation 
9 EDCNT - count number of lines between two l i nes 
1 0 EDGLN - get vector of line numbers 
1 1 EDPLN - put .vector of line numbers 
12 EDSET - set minimum and maximum offset line num ­

bers and pad character 

The above routiLes are a vailable in the resident system 
through LCSYHBOL. 



( 

( 

( 

MTS 3: SYSTEM SUBRO UTIN E DESCRIPTIONS 

October 1976 

SUBROUTINE DESCRIPTION 

purpose: To empty a file without destroy i ng it . 

Location: Resident System 

Calling Sequence: 

Example: 

Assembly : L 0, fdub 
CALL EMPTY 

Parameters: 

GRO contains the location of a FDUB - pointer (as 
returned by GETFO) . 

Return Codes: 

o Successful return. 
4 The file does not exist. 
S Hardware error or software incon sistency 

encountered . 
12 E.pty access not allowed . 
1 6 Locking the file for mod i fication will result in a 

deadlock. 
20 Au't.oma tic walt for (sha red) f He was interrupted . 

Note: FORTRAN programs 
s ub ro utine. 

should 

Assembly : LA 
CALL 
ST 
CALL 

1,FNAME 
GETFD 
O, FDUB 
EMPTY 

FNAIH. DC 
FOUS OS 

C ' OAT AFILE 
P 

call 

This example will empty the file DATAFILE. 

the EHPTYF 

Eli..E.T.Y 1 5 5 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

156 EMPTY 



( 

r 

( 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

SUB&OUTINE DESCRIPTION 

Purpose: To empty a file without destroying it. 

Locat.ion: Resident System 

Calling Sequences: 

Examples: 

Assembly: CALL EMPTYF , (unit) 

FORTRAN: CALL EHPTYF(unit , Src4,£rc8,&rc12 ,&rc16,&rc20) 

Parameters : 

~ni~ i s the location of either 
(a) a fullward - integer FDUB-pointer (such as 

ret urned by GETFD) , 
(b) a fullvord-integer logical I/O unit number 

(0 through 19 ), or 
(e) a left-justified , a-character logical I/O 

unit name (e. g. , SCARDS). 
£9.~L!...=-:...t..!:£~Q are statement labels to transfe r to if 

the corresponding return codes occur. 

RetuI:n Codes: 

o File was emptied successfully . 
4 The file does not exist .. 
a Hardware error or software inconsistency 

encoun t ered . 
12 Empty access not allowed . 
16 Locking the file for modification will result in a 

deadlock. 
20 Automat.ic wait for (shared) file was interrupted. 

Assembly : CALL EMPTYF, (UNIT) 

UNIT DC CL8 I SCARDS ' 

FORTRAN: CALL EHPTYF (' SCARDS I) 

These examples wil l empty the file attac hed to SCARDS. 

EHP'IYF 157 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

158 EMPTYF 



( 

rtTS 3: SYSTEtl SUBROUTINE DESCRIPTIONS 

October 1976 

SUBROUTINE DESCRIPTION 

Purpose: To suspend execution with an error indication . 

Location: Resident System 

Alt_ Entry: ERROR# 

Calling Sequence: 

Assembly: CALL ERROR 

or 

ERROR 

FORTRAN: CALL ERROR 

Note: The complete description for using the ERROR macro 
is given in MTS Volume 14. 

Description: A call to this subroutine returns control to MTS or debug 
command mode_ If the return is made to MTS command mode, 
the comment "ERROR RETURNIt is printed. In batch mode , a 
dump is automatically given if $ERRORDUMP or $SET 
ERRORDUMP=ON was specified in the appropriate mode. 

Execution of the suspended program may be restarted from 
the point of suspension by the $RESTART command. 

ERROR 159 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

octobEr 1976 

160 ERROR 



( October 1976 

Purpose: 

Location: 

ftTS 3 : SYSTEft SUBROUTINE DESCRIPTIONS 

~ZQ2~~_QZ~2QL-~IQ2Qf~_QIQ2QE 

SUBROUTINE DESCRIPTION 

To allow users 
floating -point 
floating-point 
System/370 . 

*LIBRARY 

to con vert IBft 7090 
numbers to one of the 

representations 

(or 7094) 
two types of 
available 

internal 
internal 
on the 

Calling Sequences: 

Assembly: CALL E7090, (input, output) 
CALL D7090, (input,output) 
CALL E7090P, (input,output) 
CALL D7090P , (i nput , output) 

FORTRAN: CALL E7090(input , output) 
CALL 07090 (inpu t, output) 
CALL E7090P (input , output) 
CALL D7090P(input,output) 

Parameters: 

i~E~! is the region containing the 7090 floating­
point number (either twelve or six bytes 
depending upon the entry used). 

Q~!E~1 is the region where the 370 floating - point 
number vill be placed (either four or eight 
bytes depending upon the entry used) . 

Return Codes : 

o Conversion was successful. 
4 Parameter list was not full word-aligned . 

Description: E7090 and 07090 expect the input to be twelve bytes long. 
The low-order three bits of each byte are taken as one 
octal digit . The sign of the number is assumed to be the 
first bit of the first octal digit. E7090P and 07090P 
assume a six- byte input region. The low-order six bits of 
each byte are taken as two octal digits . The first bit of 
the first octal digit is taken as the sign . 07090 and 
07090P produce 370 "long" (B-byte) floating-point numbers. 
E7090 and E7090p produce 370 " short " (4-byte) floating­
point numbers . Since the mantissa of a single -word 
floating-point number in the 370 contains only 24 bits , 
and the mantissa in a 7090 floati ng-poin t word contains 27 
bits, rounding (if any) is done for the E- type 
conversions. 

E7090 , 07090 , E7090P, D7090P 161 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

Examples: Assembly : 

FORTRAN: 

CALL E7090, (REGION , OUTREG) 

OUTREG DS 
R1GION DS 

E 
XL 1 2 

DIMENSION REGION (3) 
REAL*4 OUT REG 

CALL E7090 (REGION , OUTREG) 

Octoc€r 1976 

The above two examples con vert 
number in the l ocat ion REGION to a 
floating - point number . 

the 7090 float ing-point 
" short ll (" - byte ) 370 

Assembly : 

FORTRAN : 

CALL D7090P , (REGION,OUTREG) 

REGION DS XL6 
OUTR:E::G DS D 

INTEGER* 2 REGION (3) 
REAL*8 OUT REG 

CA LL D7090P (REG ION , OUTREG ) 

The above two examples convert the 7090 
number i n the location REGION to a " long " 
floating - paint number . 

162 £7090 , D7090 , E7090P , D7090P 

floating - point 
(a - byte) 370 



( 

( 

October 1976 

Purpose: 

Location: 

MTS 3: SYSTEM SUBROUTINE DESCRI PTIONS 

SUBROUTINE DESCRIPTION 

A 256 - byte traLslate table to check the legality of a file 
name. 

Resident System 

Call~ng Sequence : 

Assembly: SR 
L 
TRT 

Parameters: 

2 , 2 
r, =V (FNAHETRT) 
name , O (r) 

~ is a general register containing the address of 
the FNAMETRT translate table. 

rr~~g is the location of the file name to be tEsted. 

Values Returned: 

GR2 will contain a value indicating the result of 
the test: 

1 legal file name with legal terminator. 
2 - legal file name except for the CREATE 

subroutine . 
3 - illegal file Dame. 

The cond i tion code is set to zero if the result 
is a legal file name without a legal termi nator,. 

The following characters terminate a file name: 

blank + @ X'FF' 

The following characters are illegal in a file 
name._ 

= «? & 

If the file belongs to another signon 10 , it 
must be speci f i ed without using the s hared file 
separator character , e.g . , 2AGAOATAFII E speci ­
fies the file OATAFILE belonging to s ignoD 10 
2AGA . 

FNAMETRT 163 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Example: 

164 FNAHETRT 

Assembly: 

FNAHE 

SR 
L 
TRT 
BZ 
C 
BH 

DS 

2.2 
3,=V (PNAHETRT) 
FNAI'IE,O ( 3 ) 

October 1976 

EXIT No legal terminator 
2,=P ' 1 1 

ERROR 

CL 16 

Illegal file name 

Pile name 

The above example tests for the legality of the file name 
contained in FNAME~ 



( 

( 

( 

October 1 976 

Purpose: 

Location: 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

f!!§~Q 

SUBROUTINE DESCRIPTION 

To provide a free format input facility, especially for 
FORTRAN programs_ 

*LIBRARY 

Calling sequences: 

Description: 

FORTRAN: CALL FREAD(UDit,type,list,type,list, •• . ) 

Assembly : CALL FREAD, (unit,type,list,type,list, ••• ) ,VL 

Parameters: 

Yn!~ i s the location of one of. the following: 
(a) a FDUB-pointer, 
(b) a fullword - integer logical I/O unit number 

(0 through 19), 
(el the character string 'GUSER', ' SCARDS' , '*', 

or 
Cd) a user buffer (generally an array). 
This parameter indicates where input is to be 
read from. 

~y£~ is the location of a string of characters (a 
literal or an array of characters) indicating 
how many and what types of variables are to be 
read. A type string consists of a sequence of 
type codes separated by commas . The valid type 
codes are given below. 

~~§! is a list of variable or array names , separ ated 
by commas, into which the data values are to be 
placed . In the case of an array , the entry is a 
pair - the first member is the array name and 
the second member is the location of the number 
of elements to be read into the array. 

VL is a parameter to the CALL macro which signifies 
that the calling sequence has a vari able number 
of parameters. 

Values Returned: 

GRO and FRO contain the number of fields successfully 
processed. This allows FREAD to be called as either 
a REA·L or INTEGER function. 

The FREAD s ub routine reads a specified amount of 
free format in response to each call. The data 

data in 
items to 

FREAD 165 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Examples: 

166 FREAD 

October 1976 

be read may appear i n free format in the input records , 
i.e . , i n any position in the record , separated by blanks , 
commas, or other delimiters selected by the user_ The 
amount of data to be read is indicat e d by t he list of 
var i ables in the 1!§! parameter. The type of data i tem to 
be read i nto each variable location is determi ned by the 
type codes in the !YE~ parameter. There is a one - to- one 
correspondence between type codes and variable name~ i n 
the li§! parameter. 

FREAD will also recognize special calls which res ult in 
the setting or resetting of various swi tches wh i ch control 
subsequent FREAD actions_ A special call is recognized by 
a unit number of -, or - 2_ For further informati on on t he 
F"READ subroutine , see t he section " FREAD : Free Format 
Input S ubroutiLe" i n MTS Volume 6 _ 

FORTRAN: CALL FREAD (' SCARDS ',' I: ', J ) 

The above example reads an integer from SCARDS and plac es 
its value into the variable J . 

CALL FREAD (5 ,' 2I: ',I, J ) 

The above example reads two integers from logical I /O uni t 
5 and places the values into the variables I and J. 

CA LL FREAD (9, ' R VECTOR ', VEC ,1 3 ) 

The above example reads 13 real numbers from l og i cal I/O 
unit 9 into the array VEC_ 



( 

( 

MTS 3 : SYSTEM SUBROUTINE DESCRI PTI ONS 

October 1976 

SUBhOUTI NE DESCRIPTION 

Purpose : To free a f i le or device acqui red by the GETFD s u broutine . 

Locat i on : Res i dent sy stem 

Calling sequences : 

Assembly : L Q, fd u b 
CALL FREEFD 

Parameters: 

GRO should contain a PDUB - pointer (such as r eturned 
by GETFD or GD I NFO) _ 

Ret u rn Codes : 

Note: 

o Successiul return . 
4 GRO does not contain a legal PDUB - pointer . 

FORTRAN users can call this subro utine b y using 
the ReA LL subroutine . 

FRE :E FD 16 7 



HTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

168 FREEFD 



( 

( 

( 

MTS 3 : 5YSTErt SUBROUTINE DESCRIPTIONS 

October 1976 

SUBROUTINE DESCRIPTION 

Purpose: To release storage acquired by the GETSPACE subroutine. 

Locat i on : Resident system 

Alt. Entry: FREESP 

calling Sequences: 

Assembly : L 0 , len 
L 
CALL 

or 

" loc 
FREESPAC 

FREESPAC loc( , LNG=len] ( ,EXIT=err] 

Parameters: 

GRO If zero , the entire region is to be released. 
If not zero, GRO is the length of the region to 
be released. If it is not a multiple of 8 , the 
next smallest multiple of 8 is used. 

GRl containS the location of the first byte of the 
region to be released. If it is a not a 
mUltiple of 8, the next larger mult i ple of 8 
will be used_ 

A GR 13 save area is not required for a call to this 
subroutine. 

Return Codes : 

Note: 

o Successful return. 
4 Error return. Either the region was not initially 

allocated by GETSPACE and cannot be released (the 
region either does not exist or is a part of the 
resident system), or the region specified (LaC to 
LOC+LEN -1 ) is not completely within a region 
originally allocated by GETSPACE. 

FORTRAN users can call 
the RCALL subroutine 
entry point. 

th i s 
and 

s ubroutine by 
giv i ng FREESP 

using 
as the 

The complete description for using the FREE5PAC 
macro is given in MTS Volume 14. 

FREESPAC 16 9 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Examples: 

170 FREESPAC 

Assembly: SR 
L 
CALL 

0,0 
1, LOC 
FREESPAC 

FREESPAC LOC 

October 1976 

The above two examples call FREESPAC to release the entire 
region whose starting address is contained in the location 
LOC. The first uses the CALL macro and the second uses 
the FREESPAC macro. 

LEN 

L 0, LEN 
L 1, LOC 
CALL FREESPAC 

DC F'32' 

FREESPAC LOC,LNG=32 

The above two examples call FREESPAC to release the first 
32 bytes of the region whose starting address is contained 
in the location LOC_ 



( 

r 

October 1 976 

Purpose: 

Location: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

f~J&!! 

SUBROUTINE DESCRIPTION 

To determine the file size required to contain a certain 
amount of information without actually writing the file. 

Resident System 

Calling Sequences: 

Assembly: CALL FSIZE, (type,length , size) 

FORTRAN: CALL FSIZE(type ,length , siie , &rc4) 

Parameters: 

~YE~ is the location of a fullword integer con ­
taining the file type: 
o - line file 
1 - sequential file 
2 - sequential-with-line-numbers f i le 

l~rrgth is the location of a fullword integer con ­
taining the length of the current line which 
would be written into the file. 

§i~~ is the location of a 16-word integer array 
(64 bytes). The first word is zero on the 
first call , and contains the current size in 
pages on subsequent calls (returned on each 
call) . The second word is the "last pointer " 
as it would be returned by the NOTE subrou ­
tine for sequential or sequential-with - line ­
numbers files. The remainder of §i~~ is used 
by FSIZE for internal storage between calls 
and should not be altered. 

~£~ is the statement label to transfer to if the 
equivalent return code occurs. 

RetUrn Codes: 

o Successful ret ur n (information returned normally). 
4 Invalid parameter. 

Description: The FSIZE subroutine is used to determine the minimum file 
size required to contain a specific set of data lines 
without actually writing them into a file.. The subroutine 
must be called once for each line which would be written 
into the file. Before the first call, the first word of 
§i~~ should be set to zero; on subsequent calls, cnly the 
l~ngth parameter should be changed. The first word of 

FSIZE 171 



MTS 3: SYSTEM SUBROUTINE DESCfilPTIONS 

Examples: 

17 2 FSIZE 

October 1976 

§!;~ will contain the minimum 
contain the accumula ted number 
calL 

file size required to 
of lines follow i ng each 

Assembly: LA 2,100 
LOOP CALL FSIZE, (TYPE,LE.N, SIZE) 

FORTRAN: 

BCT 2,LOOP 

TYPE DC 
LEN DC 
SIZE DC 

F I O I 

F I 50 1 

16F I 0 I 

INTEGER SIZE (1 6) 

SIZE(l) = 0 
DO 100 1= 1,1 00 

100 CALL FSIZE (O,50,SIZE) 

These examples compute the 
line file cor.taining 100 
be contained in SIZE( l )~ 

minimum. 
50- byte 

size 
lines~ 

required for a 
This value will 



( 

( 

( 

October 1976 

Purpose : 

Location: 

~TS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCR I PTION 

To forward spacE: or backspace records (l ines) 
file or sequential file. 

Resident system 

i n a line 

Calling Sequence : 

Assembly : CALL FSRF , (u ni t , skipct) 

CALL BSRF , (unit , skipct) 

FORTRAN : CALL FSRF {unit , skipct , &rc4 , &rcS,&rc 1 2 , &rc 16 , 
&rc20 , &rc24 ) 

CALL BSRF (unit , skipct , &rc4 , &rcS , Src1 2 , &rc 16, 
&rc20 , &rc24) 

Parameters : 

Ynii is the location of e i ther 
(a) a fullword-integer PDDB - poi nter (as 

returned by GETFD), 
(b) a fullword - integer logical I/O un i t nu m­

ber (0 through 1 9), or 
(cl a left-justif i ed S- character logical I/O 

unit name (e . g., SCARDS). 
§~±££1 is the location of a full word - integer count 

of the number of logical records (l i nes) to 
forward or backspace over. 

rc4 ••• rc2 4 are statement labels to transfer to if the 
- -------corresponding ret u rn codes occur. 

Return Codes : 

o Records sk i pped successfully. 
4 End - of - file encountered . 
8 Hardware error or software 

encountered . 
1 2 Read or wr i te 
16 Locking the 

deadlock. 

access not 
file for 

allowed. 
read will 

i nco nsistency 

r esult in a 

2 0 An attent i on i nterrupt has canceled t he a utomati c 
wait on the f i le (wa i ting caused by concurrent 
usage of the (shared) fi l e) . 

24 The file does not exi st. 

FSRF , ESRF 173 



~TS 3 : SYSTEM SUBROUTINE DESCfiIPTIONS 

Examples : 

Note: 

October 1976 

Por both line and sequenti al files , a current 
(line or read) po i nter is maintained with each 
POUB (tile or device usage block) . Porwa rd spac ­
ing or backspacing begi ns from the c ur rent point ­
e r. See Appendix B of the section IIFiles and 
Oevices ll in HTS Volume 1 for details ccncerning 
how th i s current painter i s updated as a result of 
vario us I/O operations . 

Assembly : CALL PSRP , (UNIT,SKIPCT) 

UNI T DC p i" 
SKIPCT DC F ' 2 ' 

The above example will forward space two logical records 
(lines) on the tile attached to logical I/O un i t , . 

PORTRA N: 

The above 
(lines) on 

INTEGER*4 UNIT,SKIPCT 
DATA UNIT/1/ 

CALL BSRP (UN I T, 2} 

example 
the tile 

will backspace two logi cal records 
attac hed to logical I /O uni t 1. 

174 PSRP , BSRP 



( 

( 

October 1976 

Purpose: 

Location: 

HTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

To allow a pr09ram to iss ue commands to the FORTRAN I/O 
library. 

Resident System 

callin9 Sequence: 

FORTRAN: CALL FTNCHD(string,length) 

Parameters! 

~1~!~9 is the location of a character string that 
consists of the FORTRAN I/O library command. 

19n9!~ 1S the location of a full word or halfword 
(HI TEGER*4 or IN TEGER*2) giving the length of 
§.:t.!:!!!g ... 

Description: Tbe FTNCHD subroutine allows a program to issue commands 
to the FORTRAN I/O library monitor in order to manipulate 
tbe I/O environment. Any command tbat i s l ega l for the 
FORTRAN I/O library monitor may be given. In addition I an 
MTS command may be specified by prefixing the command with 
a dollar sign ($). The s ubroutine returns to the calling 
program unless an erroneous FORTRAN monitor COmmand is 
specified, in which case the FORTRAN 1/0 monitor asSUmes 
control. 

Examples: 

The FORTRAN 1/0 library and monitor are described i n the 
section II FORTRAN I/O Library ll in HTS Volume 6. 

CALL FTNCMD('ASSIGN 7=*PUNCH*' , 16) 

The above example assigns logical I/O unit 7 to *PUNCH*. 

CALL FTNCHD('SET UVCHECK=OFF ' ,15) 

The above example suppresses tbe FORTRAN I/O library 
checking for undefined variables. 

FTNCHD 175 



HTS 3 : SYS'IEH SUBROUTINE DESCRIPTIONS 

Octobe r 1976 

176 FTNCHD 



( 

( 

( 

October 1976 

Purpose: 

Location: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

To allow a FORTRAN program to obtain information returned 
from the subroutine GDIN FO. 

*LIBRARY 

Callin g Sequence : 

Descr iption : 

Exampl e : 

FORTRAN : CALL GDINF (uDit, regi on ,&rc4) 

Parameters : 

yuil is the location of either 
( a l a FOUB-pointer (as retur ned by GETFD) I or 
(b) an a -character logical I/O unit name 

left-justified with trailing blanks 
(e . g ., SCARDS, SPRINT, 0 thro ugh 1 9 , 
etc.). 

£~giQ!! is a 4"-byte array (11 fullwords) in which 
the information is returned . 

££~ is the statement label to transfer to if a 
return code of " occurs . 

Return Codes: 

o Suc cessful return. 
"Error. See the GDINFO subroutine descr iption for 

the poss~ble error conditions. 

This subroutine calls the 
returned information in 
FORTRAN cal ling progr am . 
GD INFO su broutiLe in this 
informa tion . 

GDINFO subrout i ne and places t he 
reg!Qn which is pro vided by the 

See the description of the 
volum e for a description of this 

FORTRAN: INTEGER*4 SPRINT (2)/ ' SPRI ',' NT ' / , REG (1') 

CALL GDINF (SPRINT,REG , &99) 

99 WRITE (6,1 99) 
199 FORMAT(' SPRINT IS NOT ASSIGNED') 

GDINF 177 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS , 

178 GDINF 

This 
file 

example 
or device 

calls GDINF 
attached t.o 

to obtain 
SPR INT. 

October 1 976 

information abo ut the 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

SUBROUTINE DESCRI PTION 

Purpose : To obtain information about a file or device . 

Location: Resident system 

Calling sequence: 

Assembly: Ca) L O, fdub 
SR , . , 
CALL GDINFO 

(hi L" 0,1, Ina me 
CALL GDINFO 

Parameters: 

(a) GRO contains a FDUB - pointer (such as returned by 
GETFD) or an integer logical I/O unit number (0 
through 19), or 

(hi GRO and 
character 

Return Codes: 

GR 1 contain a left - justified, 8-
logical I/O unit name (e_g., SCARDS )_ 

o Successful return . GR1 contains the address of an 
information region (see below). 

4 Error return_ If (a) call , the FDUH - pointer was 
illegal or , if a logical I/O unit number was 
given , there was no file or device attached t o 
that unit. I f (b) call , either the name given was 
not a legi ti mate logical I/O unit name cr else 
there was no file or device attached to that unit. 

8 Hardware error or software inconSistency. 

Values Returnee: 

If the return code from GDINFO is zero, then GR 1 
contains the location of a fullword-aligned region of 
information. (If a concatenation was spec i fied in 
the or i gi nal logical I/O unit setup or GETFD call, 
the information returned in this region apFlies to 
the currently active member of the concatenation. ) 
The region contains : 

GD I NFO 179 



MTS 3: SYSTEM SUBROUTINE OESChIPTIONS 

180 GDIN FO 

Octobe~ 1976 

WORD 1: FDUB-pointe~ 

WORD 2: 4-cha~acter BCD type (see below) 

WORD 3: ~aximum input length ( halfwo~d) 

output length (halfwo~d) 
and max i mum 

" Va~ " means va~iable. The value re turned 
depends on toe cur~ent value of the blocking 
parameters (for tapes), the LEN device com ­
mand (for terminals) , the INLEN and OUTLEN 
device commands ( fo~ MNET) , and the length of 
the maximum line (for files ) . 

Vu 
Va. 

o 

Vu 
Va. 
Vu 
Vu 
255 
160 
255 
25. 

o 
o 
o 

160 
160 

o 
o 
o 

Vu 
Vu 

o 
Vu 
Vu 
255 

o 
100 
255 
Vu 
128 
255 
255 

32767 
32767 

o 

Va. 
Vu 
VH 
VH 
255 

80 
VH 

o 
133 

80 
25. 

o 
o 

80 
1 33 
13 3 
VH 
Vu 
255 

o 
VH 
255 

32767 
1 00 
255 
Vu 
12 8 
Va. 
132 

FILE 
SEQF 
NONE 

TTY 
274 1 
POPS 
MRXA 
DISP 
2260 
3270 
HRDR 
HPTR 
HPC H 
HBAT 
250 1 
RDR 
PC" 
PTR 
1443 
9TP 
7TP 
PTPP 
PTPR 
SD. 
7772 
DUJ1Y 
OPER 
TEST 
MNET 
1052 
3066 

line file 
sequential file 

- nonexistent file , or 
access not allowed 
Teletype 
IBM 274 1, 1050 Terminals 

- Data Concentrator 
Memorex 1270 Contreller 

- IBI'I 2250 Display Station 
- IBJ1 2260 Di splay Station 
- IBM 3270 Display Station 

batch card input 
- *PRINT* output 

*PUNCH* output 
- *BATCH* o utput 
- IBM 2501 Card Reader 
- IBrt 2540 Card Reader 
- IBM 2540 Card Punch 
- IBM 1403 Printer 
- IBM 14 43 Printer 
- 9-track J1agnetic Tape 

7 - track Magnetic Tape 
- Paper Tape Punch 
- Paper Tape Reader 
- Synchronous Data Adaptor 
- I BM 7772 ARU 
- *OUMJ1Y* 
- OPER 
- variable 
- MERIT computer Network 
- IBM 1052 Terminal 

IBM 3066 console 
BNCH - benchmark driver 



( October 1976 

( 

( 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

WORD 4: Byte 12 FDUBTYPE field : 
1 = *HSOURCE* 
2 = *I!ISINK* 
3 = *PUNCH* 
• = *SOURCE* 
5 = *SINK* 
6 = *AFD* 
7 = device mounted by $HOUNT command 
8 to 255 reserved for future expansion 

Byte 13 type index: 
0 = unit record 
1 = magnetic tape 
2 = terminal 
3 = file 

• = dummy 
5 = paper tape 
6 = operator I s console 
7 = test 
8 to 255 reserved for future expansion 

Byte ,. switches : 
bit 0 on if output is OK 
bit 1 - on if input is OK 
bit 2 - on if indexed operation 

makes sense 
bit 3 on if can be rewound 
bit • on if increment given in 

FDname 
bit 5 on if defaulted on $RUN clOd. 
bit 6 - on if part of explicit 

conca tena ti on and not 
last member 

bit 7 - on if at least one modifier 
was given on the FDname 

Byte 15 - unused 

WORD 5 : I/O modifiers given with FDname 
(see the "I/O l'lodifiers " section) 

WORD 6: Starting line number 

WORD 7: Last line number used in I/O ,operation 

WORD 8: Ending line number 

WORD 9: L~ne number increment 

WORD 10: Poin ter to 
(halfword 
zero 

FDname 
lengt h 

for current rDua 
folIo wed by FDname) , or 

WORD 11 : Pointer to last error message associated 
with FOUB (halfword length followed by mes­
sage) , or zero 

GDINFO 181 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Description: 

Example: 

182 GDINFO 

October 1976 

Notes: The liLe numbers given in words 6, 7, 8, and 9 are 
the line numbers associated with the FDname~ 
These are given in internal format, which is the 
external format (specified on the FDname) t i mes 
1000. 

The storage pointed to by GR1 was allocated by 
GETSPACE , and the user may call FREESPAC (with GRO 
= 0) to release i t when it is no longer needed~ 
This storage region was allocated only if GDINFO 
gave a return code of zero. 

The file use 
updated by 
GDINF03). 

count and last reference 
a call to GDINFO (or 

datE are 
GDINF02 

not 
0< 

The information 
dsect given on 
*GDINFODSECT) . 

returned by GDINFO 
the following page 

is describEd 
(from the 

by the 
file 

Assembly: LM O, 1, SNAME 
CALL GDINFO 

The 
file 

SNAME DC Ci8 ' SPRINT 

above example calls GDINFO to get information for the 
or device attached to the logical I/O unit SPRINT. 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

( October 1976 

• 
• OSECT FOR INFOR MATION RETURNED BY GO INF O 
• 
GDOSECT OSECT 
GDFDUB DS A FOUS-POINTER 
GDTYPE DS CL4 TYPE 
GDINLEN DS H INPUT MAXIMUM LENGTH 
GDOUTLEN DS H OUTPUT MAXIMUM LENGTH 
GDUTYP DS X USE TYPE 
GDMSOURC EQU 1 
GDMSINK EQU 2 
GDPUNCH EQU 3 
GDSOURCE EQU 4 
GDSINK EQU 5 
GOAFD EQU 6 
GOMOUNTO EQU 7 
GDDTYP DS X DEVICE TYPE 
GOUNIREC EQU 0 
GDMAGTAP EQU 1 
GDTERM EQU 2 
GDFILE EQU 3 
GOOUrlMY EQU 4 
GOPAPTAP EQU 5 

( GOOPER EQU 6 
GOTEST EQU 7 
GDSWS DS X SWITCHES 
GDOUTOK EQU X'SO ' 
GOI NOK EQU X'ltO ' 
GDINDXOK EQU X , 20 ' 
GDREWOK EQU X' 10' 
GDEXINCR EQU x ' OB' 
GDOEFLT EQU X'DIt' ON IF OEF AULTEO 

DS X FOR EXPANSION 
GDtlODS DS XL4 MODIFIERS 
GOBLNR DS F BEGINNING LINE NUMBER 
GDPLNR DS F PREVIOUS LINE NUMBER 
GDELN R DS F EN01NG LINE NUMBER 
GOILNR DS F INCREMENT FOR LINE NUMBER 
GON AME DS A LOCATION OF EXTERNAL NAME 
GOERMSG DS A LOCATION OF LAST ERROR MSG 

GOINFO 1 S3 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

1 84 GDINFO 



( 

October 1976 

Purpo se : 

Location : 

Alt .• Entry : 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

~~!J!J~Q..£ 

SUBROUTINE DESCRIPTION 

To get information abo ut a file or device . 

Resident System 

GDINF2 

Calling sequence: 

Assembly: (a) L O, fdub 
SR , . , 
CALL GDINF02 

(bl L. O,l, lname 
CALL GD INF02 

Description: This subrouti ne is exactly the same as the GDINFO subro u­
tine wit h the tollo wing exceptions: 

( , I 

( 21 

The file is not opened ~ This 
buffers are not allocated and 
refereLce counts are no t updated ~ 

means that file 
file use and 

The input and output lengths may be -1 
that they are unknown (because of 
exception) _ 

to indicate 
the above 

GDINF02 185 



MTS 3: SYSTE M SUBROUTINE DESCRIPTIONS 

October 1976 

186 GDINF02 



October 1976 

Purpose: 

Location: 

Alt . Entry: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

~Q!!!fQJ 

SUBROUTINE DESCRIPTION 

To get informati on about a file or dev i ce . 

Resident System 

GDINF3 

calling Sequence: 

Assembly: (a) L O, fdub 
SR 1 , , 
CALL GDINF03 

( b) L" O,1,lname 
CAlL GDINF03 

Description: This subroutine is exactly the same as the GDINFO subrou­
t ine with the following exceptions : 

(1) The f i le is opened , but not locked . 
(2) The input and/or output record lengths may be - 1 

to indicate that they are unknown (beca use of the 
above excepti on). 

GDINF03 187 



dTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

188 GDINF03 



( 

( 

October 1976 

pur pose: 

Location: 

I'ITS 3 : SYSTEI'I SUBROUTI NE DESCRIP TI ONS 

Q~±f:Q 

SUBROUTINE DESCRIPTION 

To o bta i n a file or device. 

Res ident System 

Calling Sequence : 

Assembly: LA 1 , FDname 
CALL GETF D 

Paramete rs: 

GR l contains the l ocation of the first character of 
the f" Dname of the file or device wanted,. The 
complete name must be . ~erminated by a blank . 
The name does not have to be aligned_ 

Return Codes: 

o Successful return . 
4 Illegal device name . 
8 Device is busy . 

12 Devi ce is not operational . 

Values Returned: 

Note: 

GR O conta~ns the FDUB-pointer if a s uccessful return 
is made. 

FORTRAN use r s can cal l this subroutine by using 
the RCALL subroutine. 

Description: If the name i s a device , the device is acq uired_ If t he 
name is a file, the f il e is not opened until the first 
usage. Thus tbis s ubr outine cannot de termine whetber or 
not the fi le exists. The caller can determi ne whether the 
file exists by call ing GDINFO . The name may be a 
concatenation of file or device names each follcwed by 
modi f i ers or a line number range as described in " Files 
and Devices" i n I'IT 5 Volume 1. If the FD UE - pointer 
returned is used in a call to READ or WRITE, the modif i ers 
o r line number ranges will be used , and if a concatenation 
was specified , the usual sequencing through t he concatena ­
tion will take place. 

GETFD 189 



~TS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Example: 

190 GETFD 

~.sselDbly : LA 1,FNAI1E 
CALL GETFD 

FNAI1E DC C'DATAFILE 

October 1976 

The above example calls GETFD to obtain a FDUB - pointer for 
the file DATAFILE. 



( 

October 1976 

Pur po se: 

Location: 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

§~:t!::~IL_§~I1~! 

SUaROUTINE DESCR I PTION 

To return the line numbe r associated with the first or 
last line in a file, respectively. 

Resident System 

Calling sequence: 

Assembly : CALL GETFST, (unit ,linenb) 

CALL GETLST , (unit ,linenb) 

FORTRAN: CALL GETFST(unit,linenb,&rc4 , &rc8 , &rc 12,&rc 16 , 
&rc20,&rc24) 

CALL GETLST(unit,linenb,&rc4 , &rc8,&rc 12 ,&rc 16, 
&rc20,Src24) 

Parameters : 

Y.!t!!: is the location of either 
(a ) a full word - integer FDUB - point€.I (as 

ret urned by GETFD), 
(b ) a fullword-integer logical I/O unit num ­

ber (0 through 19), or 
(e) a left-justified 8-character logical I/O 

uni t name (e.g .• SCARDS). 
!~ngnQ is the location of a fullword in which the 

in~~~ng! line number (either first or last) 
will be returned . 

~~~~~~££f~ are statement labels to transfer to if the 
corresponding return codes occur.

Return Codes:

o Line number returned successfully .
4 The file is empty.
8 Hardware error or software inconsistency

encoun teredo
12 Access DOt allowed (something other than NONE

req uired) •
16 Locking the file for read will res ult in a

deadlock.
20 An attention interrupt has canceled the automatic

wait on the file (waiti ng caused by concurrent
usage of the (shared) file).

24 The file does not exist.

GETFST, GETLST 191

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS

Examples:

OctobEr 1976

Notes:

GETFST and GETLST may be used only with line files or
sequential- with - line - numbers files.

In MTS, the internal line number
equal to the external line number
one thousand.

Assembly: CALL GETFST, (UNIT,FSTLN)

CL8'SPRINT'

(e.g. ,
(e . g. ,

2 100) is
2. 1) times

UNIT DC
FSTLN OS F Put first line number here

The above example returns the first line number associated
with the file attached to logical I/O unit SPR IN T.

FORTRAN : INTEGER*4 UNIT,LSTLN
DATA UNIT/3/

CALL GETLST (UNIT,LSTLN)

The above example returns the last line number associated
with the file attached to logical I/O unit 3.

192 GETFST , GETLST

(

(

October 1976

Purpose:

Location:

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS

§!!.'I.!!1§

SUBROUTINE DESCRIPTION

To return the time remaining until a specified timer
interrupt will occur with out canceling the interrupt .

Resident System

Calling Seguences:

Assembly : CALL GETII1E, (id,value,aexit)

Parameters :

Return Codes:

is the location of the fu!lword identifier
which specifies the timer interrupt whose
time remaining until interruption i s to be
returned . This i s the same identifier which
was given to SETII1E when the interrupt was
set up.
l.5 the location of a 4-, 8-, or 16 - byte
full word-aligned region in wh i ch GETIHE
returns the time remaining until the inter ­
rupt will occur . The interpretati on of this
value depends upon the £Q~~ ~arameter giv e n
to SETInE when the interrupt was set up. For
codes 0 and 2, the value is a n a - byte binary
i nteger speci fying microseconds of task CPU
time; for codes 1, 3 , and 5 , the value is an
a - byte binary integer specifying micrcseconds
of real time; for code 4, the value is a
4-byte binary integer specifying timer units
of tas k CPU time.
is the location of tbe address of the 76-byte ,
exit r egion whic h was given to SE1IME when
the interrupt was set up. The combination of
the identifier and the exit region address
will always specify a unique time r interrupt.

o Successful return.
4 No such timer interrupt wa s found. This means

ei ther:

(1) no such interrupt was ever set up, or
(2) the interrupt has occurred, and t he exit was

taken before the execution of the BALR
instruction which branches to GETIHE .

GETH1E 193

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

Description: A call on the GETIME subroutine returns the time remaining
until a specified timer interrupt will occur without
canceling the i nterrupt . The timer interrupt is specified
by the combination of the ig and ~g!i! parameters and tbe
time re.aining is returned in the y~!~g parameter_

Example :

194 GET1 11E

For further details , see also the RSTI ME , SETIME , and
TIHNTRP subroutine descriptions in this volume.

Assembly: CALL GETIME , (ONE,TltlLEFT,AEXIT)

Th i s
with

ONE DC
TIMLEFT DS
AEXIT DC
EXIT DS

F '1 '
FL8
A (EXIT)
1 9F

example returns the time remaining for
the identifier "1" and the exit region

value is returr.ed in " TIM LEFT".

the interrupt
"EXIT". The

(

(

r

October 1976

Purpose:

Location :

Alt . Entry:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

2~I~f!~~

SUBROUT IN E DESCRIPTION

To acquire storage .

Resident System

GETSPA

Calling Sequences:

Assembly: L
L
CALL

L
L
L
CALL

O, swit ch
1, length
GETSPACE

0 , swi tch
1 , length
2,index
GETSPACE

GETSPACE [leDgth](,T=switcb][,EXIT=err)

Parameters:

GRO con t a ins switches :

Bit 3 1 = 1 . Retur n no t made unless space is
available .

0 Ret urn alwa ys made wi th ret urn code
indicating whether space i s
available.

30 = 1 St ora ge acqui red i s associated with
the curren t level of LINK so that it
is released at the next return frO ID
a LINK, or the next xeTL.

0 Stor age acquired i s associated with
the highest level program so t ha t it
i s not released until exec ution
ter minates .

:<9 = 1 Attach stor age acquired to system
leveL

28 = 1 Use s torage index number given in
GR2~

Other bits in GRO must be zero~

GR 1 contains the l ength (in bytes) o f storage
des~red~ If this is not a multiple of 8 , the
next largest multiple of 8 will be used . The
upper limit fo r a s t orage request i s 1,04 8,576
bytes (1 segment).

GETSPACE 195

MTS 3 : SYSTE~ SUBROUTINE DESCRIPTIONS

October 1976

Normally space will be allocated wherever avail­
able in virtual memory. However, if the first
byte (byte 0) of GR 1 is nonzero , it is assumed
to be the number of the segment in whi ch the
storage is to be allocated. If th i s is an
invalid number [is less than 6 , or i s greater
than the current maximum (currently 12)] , or if
this space request cannot be allocated in this
segment, a return is made with a return code of

".
GR2 contains the storage index Dumber to USe if bit

28 of GRO is 1; otherwise, GR2 is ignored.

A GR13 save area is not required for a call to this
subroutine .

Values Returned:

GR 1 conta~ns the location of the first byte o f the
storage region acquired. The first word· of this
region is set · to the l ength (in bytes) of the
region.

Return Codes:

Note:

o Successful return. Storage has been acg ui red .
4 Space i s not a vai lable.

FORTRAN users can call
the RCALL subroutine
entry pOint .

this
and

The com~lete description for
macro is given in MTS Volume

subroutine by
giving GETSPA

using
as the

using

'".
the GETSPACE

Description: See the "Virtual Memory Management " section in I1TS Volume
5 for further details on storage allocation and storage
index numbers.

Exa mples :

196 GETSPACE

Assembly : L
L
CALL

SWITCH DC
LENGTH DC

a, SWITCH
1, LENGTH
GETS PACE

FlO I

P 1 256 '

GETSPACE 256

The above two examples call GETSPACE to acqu i re
of storage. The storage will be associated
highest level program .

256 b ytes
with the

(

October 1976

Purpose:

Location :

ftT5 3: SYSTE~ SUBROUTINE DESCRIPTIONS

SUBROUTI NE DESCRIPTION

To obtain information
called repeatedly) all
catalog.

Resident System

about a
of the

particular
files in

file or (when
a part i cular

Calling Sequences:

Assembly! CALL GF I NFO, (wnat , rtn,fIag , cinfo,finfo , s i nfo ,
ercode , errmsg)

FORTRAN: CALL GFINFO (what , rtn , flag , cinfo , f i nfo,sinfo ,
ercode , errmsg,trc4)

Parameters:

is the location of either
(a) a file name (wi th a tra i l i ng blank), if

!:ls9=1,
(b) a fullward - integer FDUB - painter (s uch as

returned by GETI'D), a fu l lward-integer
logical I/O unit number (0 through 19) ,
or a left - justi fied, a - character logi cal
I/O unit name (e.g., SCARD5) , if 119..9=2,
or

(C) a 4 - character signon 10 of a catalog to
be scanned, or *5Y5 (system f i le cata­
log), or *TMP (temporary file catalog),
if f!'s9=3 .

~in is the location of a 6 - fullword integer
region where the file name will be ret urned .
If f!.s9= 1, th i s parameter on ret urn wil l be
the same as ~hsi . If f!.sg=2, this Farameter
on return will be the file name associated
with t he FDUB - pointer or logical I/O uni t .
If f!.sg=3 , this parameter on return wi l l be
the file name of the next file in the catalog
being scanned, for whi ch the requested infor­
mation has been returned . This region mY§1
be zero when GFINFO is ca l led initially. In
addition , this region should not be altered
OL subsequent calls if a catalog is being
scanned (f!.sg=3) or if storage is be i ng
released (t!.sg=O). The file name ret urned is
a maximum of 5 full wo r ds (20 characters)
left - justi fied and padded with t r aili ng

GF I NFO 197

MTS 3: SYSTEM SUBROU TINE DESCRIPTIONS

198 GFINFO

October 1976

blanks. The last word is used internally b y
GFINFO.
is the location of a full word in teger whi ch
specifi es the type of ~h~~ parameter given.
IL f!~g=O, any storage allocated ty GFINFO
will be released. Thi s should be specified ,
for example, to release the var i ab l e - length
sharing l i st if such was specifi ed, or to
release allocated storage if a catal og scan
was terminated pr ematurely. If a catalog
scan is terminated normally via the II NO MORE
FILES " error ret urn , all storage lOi ll be
released automatically and the caller need
not release it .
is the location of a 16- fullwor d reg i on
(array) where catalog infor mation will be
returned. The first word of the region
indicates the size of the regi on (i n words).
If this is set to less than the ma ximum of
16, the call er is requesting that only t he
first " n" words of information are to be
returned. If this word is set to zero , the
caller i s requesting that ~Q catalog infor ma ­
t~on is to be returned. The second word of
the region indicates how much i nformation (in
words) was actually returned by GFI NFO. I f
the second word is zero on retur n , no infor ­
mation was returned because the appropriate
access to the f ile was not allowed. Any
access (other than none) is suff i c i ent to
obtain the catalog information.
is the locat i on of a 16 - full word regi on
(array) where f ile i nformation wi l l be
returned. The fi r st two words of the region
are as described for the £irr! 2 parameter .
Note that for sequenti al files , a max i mum of
11 words of informati on is ·returned. Any
access (other than none) i s s uff i c i e n t to
obtain the file informat i on.
is the location of a 6 - fullword regi on
(array) where sharing i nformation wil l be
retur ned. The first and second words o f the
region are as described for the £!~!Q a nd
f i !!.tQ parameters. Any access (ot he r tha n
none) is sufficient to obta i n the th i rd word
of i nformation, i.e. , the access the ca l ler
has to the file. Permi t access i s requi red
to obtain the rema i nder of the in format i on.
Note that i f the f i rst word of t he reg i on i s
5 or less, no variable - length shar i ng i nf or ­
mat i on will be returned . In addi tion , i f t he
second wo r d of the region i s 3 or l ess on
return, permi t access was not a l lowed. Fi-

(October 1976

(

(

HTS 3: SYSTE~ SUBROUTINE DESCRIPTIONS

nally, if the variable-length sharing infor­
mation is requested and returned, the asso ­
ciated storage must be released either
directly by calling FREES PAC or indirectly by
calling GFINFO again with tlgg=O and nothing
else alte red.

~~£Qgg (optional) is the l ocation of a fullvord
integer in which GPINFO will place an error
nUlIlber if an error return (return code 4) is
made. If g££Qgg is omitted, then the gr&!§9
parameter must also be omitted . ASSEmbly
language users wishing to omit these Farame­
ters sho uld either fol low the variable - length
parameter list convention (high-order bit of
the previous parameter adeon in the parameter
list is 1) or else supply an adcon which is
zero (rather than pointing to a zero).

~£r~§g (optional) is the location of a 20-fullword
(BO-character) region in which GFINFO will
place the corresponding error message if an
error return (return code 4) is made. Assem­
bly language users should note the convention
for omitting optional parameters described
above.

1 PARAMETER LIST POINTER IS BAD .
2 YOUR II FILE II IS NOT A FILE.
3 THE FILE DOES NOT EXIST.
4 NO FILES THIS CCID - CATALOG SCAN .
S NO MORE FILES - CATALOG SCAN .
6 ACCESS NOT ALLOWED THIS FILE.
7 WAITING WILL DEADLOCK - FILE XXXX .•
8 WAIT I NTERRUPTED - FILE XXXX .
9 HARDWARE ERROR OR SOFTWARE INCONSISTENCY

- FILE XXXX.
10 HARDWARE ERROR OR SOFTWARE INCONSISiENCY

- SYSTEM CATALOG .
21 PIRST PARAMETER (WHAT) IS BAD.
22 SECOND PARAMETER (R TN) IS BAD.
23 THIRD PARAM·ETER (FLAG) IS BAD.
24 FOURTH PARAMETER (CINFO) IS BAD.
25 FIFTH PARAtlETER (FINFO) IS BAD .
26 SIXTH PARAMETER (SINFO) IS BAD.

r£~ is the statement label to transfer tc i f the
corresponding nonzero return code occurs .

GFINFO 199

MTS 3: S YSTEM SUBROUTINE DESCRIPTIONS

October 1976

Return Codes:

o Some information has been returned .
4 Error return.. See the ~I.£Qg§: and ~I.f:l!!§.9 values

returued for the specific error.

Notes:

(1) On a catalog scan , if no information is reguested ,
i.e. , ci~t2=t!~t2=§!~t2=O, I.1n on return will
contain the name of the next file for which some
access (other than none) has been allowed.

(2) The catalog information is the least expensive to
obtair., the sharing information is moderately
expensi ve, and the file information is most expen­
sive. Concerning the file information as it
relates to line files only , the copied size as
well as the last five words of information (i . e . ,
number of lines , etc.) are guite expensive to
determine . Consequen tly, if the first eleven
words (or less) of file information are requested
for a line file , only an approximation to the
copied size will be returned. If any or all of
the last five words are requested, a more accurate
(but still approximate) copied size will be
returued.

(3) The public file *GFINFODSECT contains 3 dsects for
assembly language users which define the format of
the catalog information , file information , and
sharing information . proper use of these dsects
will enable user programs to adapt easily to any
additional information GFINFO may ret urn in the
future.

(4) The file use count and the last reference date are
n2~ updated by a call to the GFINFO subrout i ne.

Description: The information returned by GFINFO is described by the
iollowing dsects (from the file *GFINFODSECT).

200 GFINFO

• • •
•
CIDSECT
CIAL
CIRL
CIONIO
CIVOL
CIUC
CILRO
CICD
CIFO
•

CATALOG INF OR MATION OSECT - ANY ACCESS IS
SUFfICIENT TO OBTAIN CATALOG INFORMATION

DSECT
OS F ARRAY LENGTH - WORDS
OS F RETURN LENGTH - WORDS
OS F OWNERID - EBCDIC
OS 2F VOLUME NAME - 6 CHAR , TRAILING BLANKS
OS > USECOUNT
OS F LAST REFERENCE DATE - JULIAN DAYS
OS F CREATION DATE - JULIAN DAYS
OS F FILE ORGANIZATION

O=LINE, 1=SEQUENTIAL , 2= SEQ WL

October 1976

(

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

CIDT DS F DEVICE TYPE
* 0=23 11, 1=2314, 2=232 1, 3=3330
CIFLG
•
CIPRIV
•
CILCD
CIPKEY
• •
•
•
FIOSECT
FIAL
FIRL
FIFO
•
FIFLG
•
FICNS
fITS
FICPS
flfLN
•
FILLN

* FIMLL
FIMXS
•
•
*
FINL
FINH
FILCNT
FIHCNT
FIMHL

* •
*
* SIDSECT
SIAL
SIRL
SIACC

* • •
*
* •
*
*
*

OS F

EQU 1 PRIVILEGED PROGRA~

OS F LAST CHANGE DATE - JULIAN DAYS
DS 4F PROGRAM KEY - LEFT JUSTI FIED

FI LE I NFOR~ATION DSECT - ANY ACCESS IS
SUFF I CIENT TO OBTAIN FILE INfOR~ATION

DSECT
OS F
OS F
OS F

OS F

OS F
OS F
OS F
OS F

OS F

OS F
OS F

ARRAY LENGTH - WORDS
RETURN LENGTH - WORDS
FILE ORGANIZATION
O=LINE, 1=SEQUENTIAL , 2=SEQWL
FLAG
1=BACKWARDS CAPABILITY , 2=EMPTY fILE
CURRENT SIZE - PAGES
TRUNCATED SIZE - PAGES
COPI ED SIZE - PAGES
FIRST LINE NUMBER - INTERNAL
ZERO IF SEQUENTIAL OR EMPTY
LAST LINE NUMBER - INTERNAL
ZERO IF SEQUENTIAL OR EMPTY
MAXIMUM LINE LENGTH
~AXIMUM EXPAND ABLE FILE SIZE - PAGES

IF LINE FILE , ALSO THE FOLLOWING

OS F
OS F
OS F
OS F
OS F

NUMBER OF LINES
NUMBER OF CHUNKS OF AVAILABLE SPACE
TOTAL BYTES - LINES
TOTAL BYTES - AVAILABLE SPACE
MAXIMUM LENGTH OF AVAILABLE SPACE

SHARING IN FORMATION DSECT - SOME ACCESS
REQUIRED FOR FIRST PART

DSEcr
DS F ARRAY LENGTH - WORDS
OS F' RETURN LENGTH - WORDS
DS F ACCESS OF THIS USERID/PRJNO/PKEY TO THIS

FILE

1=READ ACCESS ALLOWED
2=WRITE - EXTEND ACCESS ALLOWED
4=WRITE CHANGE/EMPTY ACCESS ALLOWED
B=RENUMBER/TRUNCATE ACCESS ALLOWED
16=OESTROY/RENAME ACCESS ALLOWED
32=PERMIT ACCESS ALLOWED
ADD FOR MULTIPLE ACCESSES

GFINFO 20 1

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

Examples:

202 GFINFO

•
* •
SIGA
SIOA

SIPTR

*

October 1976

PERMIT ACCESS REQUIRED FOR REST

OS F GLOBAL (OTHERS) ACCESS - SEE ABOVE
OS I OWNER ACCESS - SEE ABOVE

128=OWNER HAS DEFAULT ACCESS
OS F POINTER TO VARIABLE-LENGTH SHARING LIST

OR ZERO IF NO SHARING LIST

VARIABLE LENGTH SHARING LIST FORMATTED AS:
•
* •
•
• •
• • •
* •
* •
•
*

__ -= ____ ~l~WOnD TOTAL LENGTH (INCLUDING THIS) - WORDS
1 WO RD USERID/PRJNO/PKEY ACCESS -SEE ABOVE

* •
* • • •
•
* •
•
Assembly:

1 WORD USERID/PRJNO/PKEY CODE
O=~RJNO,1=USERID,2=PKEY

3=PRJNO&PREY,4=uSERID&PKEY
1 WORD USERID/PRJNO LENGTH : 1-4
OR
1 WORD PKEY LENGTH 1 - 13
FOLLOWED BY
1 WORD USERID/PRJNO-EBCDIC,LEFT JUSTIFIED

PADDED WITH BLANKS
OR
4 WORD S

PREY-EBCDIC, LEFT JUSTIFIED
PADDED WITH BLANKS

THUS YOU GET 4 WORDS (IF USERID/PRJNO)
OR 7 WORDS (IF PREY)
FOR EACH SHARER (USERID/PRJNO/PKEY)
PERMITTED ACCESS TO THE FILE.
NOTE THAT FOR CODES 3 AND 4, YOU REALLY GET
4 WORDS (USERID/PRJNO) FOLLOWED BY
7 WORDS (PKEY).
THE ACCESS AND CODE WORDS WILL BE REPEATED
AND IDENTICAL FOR CODES 3 AND 4 .

CATALOG
CSECT
ENTER 12
CALL GUSERID Get signon 10
ST 1,WHAT Store 1 0 in par list
XC RTN (24) ,RTN Zero return reg i on

AGAIN CALL GFINFO, (WHAT , RTN,FLAG,CINFO , FINFO,
SINFO,ERCODE , ERRMSG)

LTR 15, 15 Test return code
BNZ ERROR Error exit
SPRINT RTN,20 Print file name
B AGAIN

ERROR L 2,ERCODE Check error number
C 2,=F ' 5' No more files?
SNE REALERR Real error
EXIT 0 Normal exit

REALERR SERCOM ERRMSG,80 Print error message
CALL" ERROR

(October 1976

(

(

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS

IiHAT DS F ID of catalog to scan
"TN DS 6F Return file name
FLAG DC F I 3 ' Scan catalog flag
CINFO DC F'O I No ca talcg into wanted
FINFO DC F'D ' No file into wanted
SINFO DC p l Ot No sharing into wanted
ERCODE DS F Ret ur n err or number
ERRMSG DS CL80 Return eITor message

END

The above program calls GFINFO to obtain all of tbe file
names in the signoD ID ' s catalog and prints them on
logical I/O unit SPRINT.

PORTRAN: HIPLICIT INTEGER- (A- Zl
DIl'IENSION RTN (6) ,ERRMSG (20)
DATA RTN/6*O/
COMMON JFII FIAL , FIRL,F I FO,FIFLG,FICNS , FITS
COMMON IFI/ FICPS,FIFLN,FILLN,FIMLl , FINE ,
COr'll10N IFII FINL,FINH,FILCNT,FIHCN'I,FIl'IHL
FIAL = 16
CALL GFINFO, ('DATAFILE ', RTN,l , Q,FIAl , O,

ERCODE , ERRMSG , &RC4)
IF (FI RL.EQ.O) GO TO 10
WRITE (6, 101) FICNS
WRITE (6,102) FITS
WRITE (6,1 03) FICPS
CALL SYSTEM

10 WRITE(6, 10 4)
CALL ERROR

101 IORHAT(' CURRENT SIZE IN PAGES= ',I S)
102 FORMAT (' SIZE IN PAGES IF TRUNCATED= ' ,IS)
103 FORMAT(' SIZE IN PAGES IF COPIED= ' ,IS)
104 FORMAT e' APPROPRIATE ACCESS NOT ALLOWED.')

END

The above program will print the current, truncated , and
copied file size in pages for the file DATAFILE.

GFINFO 203

MTS 3 : SYSTEM SUBROUTINE DESCRIPTI ONS

October 19 76

204 GFI NFO

(

(

(

October 1976

Purpose :

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

~~~~~±L_Q~~~~±L_f~~~~± 

SUBROUTIN E DESCRIPTION 

To acquire , query, and release psect (dsect) storage 
allocations . 

Resident System 

Calling Sequences : 

Assembly : L 
L 
CALL 

O,id 
1 , length 
GPSECT 

L 0 , id 
CALL QPSECT 

L 0, id 
CALL FPSECT 

Parameters: 

GRO contains an unique fullword identifier for the 
psect (i .• e. , a fixed address within the calling 
program could be used as such an identifier). 

GR l (GPSECT only) contains the length of the psect 
to be allocated. 

A GR 13 save area is not required for a call to the 
GPSECT , QPSECT , or FPSECT subroutines . 

Values Returned : 

GR 1 (GPSECT onl y ) contains the address of the psect 
allocated . 

GR 1 (QPSECT only) contains the address of the psect 
if found, otherwise zero. 

Return Codes: 

GPSECT: 

o Psect found. 
4 Psect 
8 Error 

not found but allocated. 
return from GETSPACE subroutine . 

12 Internal error in GPSECT. 

GPSECT, QPSECT, FPSECT 205 



dTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

QPSECT: 

o Psect found. 
4 Psect not fo und . 
8 Not used. 

1 2 I~ter nal error in QPSECT. 

FPSECT : 

October 1976 

o Psect 
4 Psect 
8 Error 

released. 
not found . 
return from FREES PAC s ubroutine. 

12 In ternal error in FPsECT. 

Descr i pt i on : The GPsECT , QPSECT, and FPSECT s ubroutines are used to 
acquire , quer y, and release storage to be used for psects 
(dsects) in the calling program . An ident ifier for the 
psect and the len9~ h of the psect are specified i n ! 9 and 
19!tgth · 

Example : 

The GPsECT subroutine is used to allo cat e storage f er the 
psect. If a psect with t h e iden tif i e r 19. alread y exists, 
it s address is returned and a new psect i s not a llocated. 

The QPsECT 
psect with 
alloca ted . 

s ubro utine i s used t o 
the identi f i er ~g. 

quer y the 
A new 

ex i stence 
psect i s 

of a 
not 

The 
the 

FPsECT subro utine is used 
psect with ~dentifier 19.. 

to release the stc ra ge for 

Assembly: L 0 , 10 
L 1 , LEN 
CALL GPSECT 

L 0 , 10 
CALL FPSECT 

ID DC A (10) 
LEN DC F I 4096 1 

The example allocates a psect of 4096 bytes with 
identifi e r which i s an a ddress contained within 
ca l ling program (e .g. , the address of ID). The Fs ect 
then released later in t h e program. 

t he 
the 

i s 

206 GPS ECT, QPS ECT , FPs ECT 



October 1976 

Purpose: 

Location: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

To comp ute normally distributed random numbers with a 
given mean and standard deviation. 

*LIBRARY 

Calling Sequences: 

Assembly: CALL GRAND1, (ini t) 
CALL GRAND, (sd,amean) 

FORTRAN: CALL GRAND1 (init) 
x = GRAND (sd , amean) 

Parameters: 

ini! is the location of the initial integer value 
for generating random numbers. 

~~ is the location of the fullword real (REAL*4) 
standard deviation. 

~mg~n is the location of the full word real (REAL*4) 
mean .• 

Values Returned : 

FRO will contain the normally distributed random 
number generated by the subroutine. For FORTRAN 
calls , this value will be returned in !. 

Description: The function subroutine GRAND computes twelve uniformly 
distributed random numbers by the power residue method 
and, based on the central limit theorem, uses these to 
compute a normally distributed random number! .with mean 
am~~& and standard deviation §g. Note that the result is 
returned as a function value, not as a parameter. 

If, before the first call to GRAND, the user wishes to 
specify the initial integer value from which the uniformly 
distributed random numbers are generated, he may de so by 
calling GRAND1 with ini~ set equal to an QQg integer 
between 1 and 2 31 -1 (2147483647). If GRAND 1 is not 
called, GRAND will supply its own initial val ue (524 287 ). 

GRAND, GRAND,1 207 



MTS 3: SYSTE~ SUBROUTINE DESCRIPTIONS 

Examples : Assembly: 

FORTRAN: 

In both 
value of 
100. O. 

208 GRAND, GRAND1 

October 1976 

CALL GRAND1 , (I NTEG ) 
CALL GRAND , ( STDEV , l'lEAN) 
STE O, RAND 

INTEG DC F ' 999 ' 
STDEV DC E'10.0 ' 
MEAN DC E '1 00 . 0 · 
RAND DS E 

1=999 
CALL GRAND1 (I) 
X=GRAND (1 0 . 0 ,1 00. 0) 

examples above , GRAND is called with an initial 
999, a standard deviati on of 10 . 0 , and a mean of 



( 

( 

( 

October 1976 

Purpose : 

Location: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

To convert the Gregorian date (H H/DO/YY) 
YYhh:mm:ss) to the corresponding Julian 
(based on March 1, 1900). 

Resident System 

or t ime (H li/OO/ 
date or time 

Calling Sequences: 

Assembly: LM 
CALL 

LM 
CALL 

LM 
CALL 

Parameters: 

a ,1 ,grgdat 
GRGJULOT 

0,3,grgtim 
GRGJULTM 

a , 3 , grgtim 
GRJLSEC 

g£g~~i is the Gregorian date in the cha r acter form 
" HMxODxYY ", where "x" is any cbaracter. 

g£g~i! is the Gregor i an date and time in t he charac ­
ter form "H MxODxYYhhxmmxss", where " x " is any 
character . 

Values Returned: 

GRO contains the integer number of days through the 
gi ven date start ing with March 1, 1900 as "1" . 

GRl contains the integer number of minute~ through 
the given tilile s t arting with March 1, 1900, at 00:01 
as "1" for GRGJULOT and GRGJULTH. For GRG J UIDT , the 
time is assumed to be 00:00:00. GR l contains the 
number o~ seconds thro ugb the given time starting 
with Harch 1, 1900 , at 00 :00: 0 1 as "1" for GRJ I SEC. 

Description: The range of years is assumed to be 1900-1 999. If the 
number of seconds passed to GRGJULTM is greater than or 
equal to 30, the result in GR1 i s rounded up to the next 
minute . If the time is greater than 03/19/68 03 :14: 07 for 
GRJLSEC , the result reg uires 32 bits. The resu l ts for 
dates prior to 03/01/00 are undefined . 

See GRJLDT , GRJLTH for S- type (e . 9. , FORTRAN and PL/I) 
interfaces. 

GRGJULDT, GRGJ ULTH , GRJLSEC 209 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Examples: Assembl y: LM 
CALL 
ST 

0 ,1, =C '05/ 18/7 1' 
GRGJULDT 
O,DATE 

DATE DS F 

The above example calls 
date May 18 , 1971 into 
26011. 

GRGJU1DT to convert 
its corresponding 

LM 0 , 3, =C '05 - 06 - 711 6:30: 17 ' 
CALL GRGJULTM 
ST O,DATE 
ST 1 , TIME 

DATE DS F 
TIME DS F 

October 1976 

the Gregorian 
Julian date 

The above e xample calls GRGJULTM to convert the Gregorian 
date and time tlay 6 , 197 1, 16: 30 :17 into its correspondin g 
Julian date and time 25999 and 374381 10, respectively ~ 

210 GRGJULDT, GRGJULTM , GRJLSEC 



( 

( 

October 1976 

purpose : 

Location: 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

2!!!I~12!L_2!!!I1I!1 

SUBROUTINE DESCRIPTION 

S- type (e. g,. , FORTRAN and Pl/I) 
and GRGJU1TM. 

*L I BRARY 

interfaces for GRGJULDT 

Calling Seg uences: 

FORTRAN : INTEGE R* ij GRJLDT 
juldat=GRJLDT (grgdat) 

PL/I : 

IN TEGER* 4 GRJLTM 
jultim=GRJLT M(grgtim) 

DCL PLCALLF RETURNS(FIXED BINARY (3 1»; 
j ulda t= P LCALLF (GRJLDT , f 1, gr gdat ) ; 

DCL PLCALLF RETURNS (FIXED BINARY (31 ») 
jultim=P LCALLF (GRJLTM , f 1, grgt i m) 

Parameters: 

g:J:;:ggE:.!: is the 8 - byte (REAL* 8 or CH ARA CTER (8» ) Gre ­
gori an date in the character form "HMxD DxYY ", 
where " x" is any character. 

g!;,9.!:!!! is the 16-byte (REAL*8 (2) or CHARACTER (1 6) 
Gregorian date and time in the character form 
" ~MxDDxYYhhxmmxss ", where " x" i s any 
character. 

f1 i s a fullword (FIX ED BIN ARY (31») contai n i ng 
the integer 1. 

Values Returned: 

GRO contains the i nteger n umber of days through the 
given date starting with March 1, 1 900 , as "1" for 
calls on GRJLDT. 

GRO contains the integer number of min utes through 
the given time starting with March 1, 1900, at 00 :01 
as "1 II for calls on GRJLTM. 

Descr i ption: The Gregorian date or time in character form i s passed to 
GRGJULDT or GRGJU LT M, respectively, and is converted to 
the corresponding Julian da te or time. The range of years 
is assumed to be 1900 -1 999. If t he number of seconds 
passed to GRJ LTM is greater than or egual to 30 , the time 

GRJLDT, GRJLTM 211 



MTS 3 : SYSTEM SUBROUT INE DESCRIPTIONS 

Examples : 

October 1976 

is rounded up to the next minute. The results f or dates 
prior to 03/0 1/00 are undefined. 

FORTRAN: 

Th e above 
da te in 
date . 

INTEGER*4 GRJLDT 
REA L*S DATE 
JULIAN=GRJLDT (OATE) 

exallll-'le cal ls 
the var iable 

GRJLDT to 
DATE in to 

convert the Gregori a n 
i ts corresponding Julian 

INTEGER*4 GRJLT M 
REAL*S TIME (2) 
JULIAN=GRJLTM (TIM E) 

The above example calls GRJ LTH to convert the Gregorian 
date and t i me in the array TIHE into its correspondi ng 
Julian date and time . 

PL/I: 

The above 
date Hay 
260 11. 

JULIAN=PLCALLF(GRJLDT,F1,OATE) 
DECLARE J ULIAN FIXED BINARY ( 31 ) , 

PLCA LLF RETURNS (FI XED BINARY ( 31», 
GRJLDT ENTRY , 
F1 FI XED BINAR Y (3 1) INITIAL (1), 
DATE CHARACTER (8) INITIAL( ' OS -1 8 - 7 1') ; 

example calls GRJLDT to con vert the Gregori an 
18 , 1 97 1 into its corresponding Julian date 

JULIAN=PLCALLF (GRJLTtt , F1, TIttE) ; 
DECLARE JULIAN FIXED BINA RY ( 31), 

PLCALLF RETURNS (F IXED BINARY (31», 
GRJLTI1 ENTRY t 

F1 FIXED BINARY (3 1) I NI TIAL (1), 
TI ME CHARACTER (1 6) ; 

The above exampl e calls GRJ LTH to convert the Gregorian 
date and t i me i n the var i able TIME into its correspondi ng 
Julian date and time. 

21 2 GRJLDT , GRJLTI1 



( 

( 

( 

October 1976 

purpose: 

Location : 

MTS 3: SYSTEM SUBROUTINE DESCRIE'TIONS 

~B.Q~gI 

SUBROUTINE DESCRIPTION 

To convert the Gregorian date (MM/DD/YY) 
sponding OS date (YYddd). 

*LIBRARY 

to the corre-

Calling Sequences: 

Assembly: CALL GROSDT, (grgdat,osdat) 

FORTRAN : CALL GROSDT(grgdat,osdat) 

REAL*S GROSDT 
date=GROSDT(grgdat , osdat) 

PL/I: CALL PLCALL(GROSDT , f2,grgdat , osdat) 

DCL PLCALLD RETURNS (FLOAT (16» ; 
date=PLCALLD (GROSDT , f2 , grgdat,osdat) 

Parameters: 

gtgg~.t. is the a - byte (REAL*a or CHARACTER ( 8» Gre­
gorian date in the character form " i'll'IxDDxYY ", 
where "X" is any character. 

Q'§'~~.t. is a bytes (REAL*a or CHARACTER (8» into 
which the OS date, in the character form 
"YYddd " with three leading blanks , is placed 
on return. 

tl is a fullword (FIXED BINARY (3 1» containing 
the integer 2. 

Values Returned : 

FRO contains the as date in the character form 
" YYddd" with three leading blanks. 

Description: The range of years is assumed to include 1900. The result 
for dates prior to 03/0 1/00 is undefined . 

GROSDT 2 13 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Examples: 

214 GRO SOT 

October 1976 

Assembly: CALL GROSOT, (GROAT, OS OAT) 

GROAT DC C '05 -1 8-71 ' 
OSOAT DS 00, CL8 

CALL GROSOT, (GROAT, DUMMY) 
STD O, OSOAT 

GROAT DC C'05- 1 8- 71' 
DUMMY DS CL6 
OSOAT DS CL6 

The above 
gorian date 
711 38 . The 

two examples call GROSOT ~o convert 
May 18 , 1971 into the corresponding 
result is stored in location OSOAT. 

the Gre­
OS date 

FORTRAN: REAL*8 GRDAT , OSDAT 
CALL GROSOT (G ROAT,OSDAT) 

REAL*8 OSDAT ,GROSDT ,GRDAT,DUMMY 
OSDAT=GROSOT (GRDAT,OUM nY ) 

The above two e xamples call GROSOT to convert the Gre ­
gorian date in the variable GROAT into the corresponding 
as date 71138. The res ult is stored in the variable 
as OAT. 

PL/I : CALL PLCALL (GROSDT,F2, ' 05 - 18 - 71 ' ,OSOAT); 
DECLARE GROSOT ENTRY, 

OSOAT CHARACTER (8 ) ; 
F2 FIXED BINARY (31) INITIAL ( 2) , 

UNSPEC (O SOAT ) =UNSP EC(PLCALLD (GROSDT,F2,GRDAT, 
DUMM Y» : 

DECLARE OSDAT CHARACTER (8) , 
GROSOT ENTRY , 
PLCALLD RETURNS (FLOAT (16», 
F2 FIXED BINARY (31) INITIAL (2), 
GROAT CHARACTER (8) INITIAL{'05-1e - 7 1'), 
DUMMY CH ARACTER(8); 

The above two examples call GROSOT to convert the Gre ­
gorian date flay 18 , 1971 into the corresponding as date 
71138. The result is stored in the vari able aSOAT. 



( 

r 

( 

MTS 3: SYSTE M SUBROUTINE DESCRIPTI ONS 

October 1976 

SUBROUTI NE DESCRIPTION 

Purpose : S - type (e . g .• , FORTRAN and PL/I ) i nterface for GTDJI'ISR. 

Location: *LI BRAR Y 

Calling seguences : 

FORTRAN : CALL GTDJ tiS (grg tim , jms) 

PL/I : CALL P1CALL(GTDJI'IS , f2 , grgtim , jms) 

Pa r ameters : 

g~g!!~ is the 16-byte (REAL*8 (2) or CHARACTER (16 ) l 
Gregorian time and date in the character form 
" hhxmmxssHHxDDXYY ", where " x " is any 
character. 

if. is a fullword (fIXED BINARY (3 1» containing 
the integer 2. 

jm2 is an a - byte integer (I NTEGER*4 {2 l or BIT ( 
64» containing the integer number of micro­
seconds through the gi ven time and date 
starting with March 1, 1900 . 

Descript i on : The Gregor i an time and date in character form i s passed to 
GTDJMSR and is converted to the corresponding Julian time . 
The range of years i s assumed to be 1900 -1 999. The 
results for dates prior to March 1, 1900 are undefined. 

Examp l es : FORTRAN: 

PL/I: 

INTEGER*4 JULIAN (2) 
REAL*8 TIl"lE (2) 
DATA TIHE/ ' 17:59.33 ',' 03 - 2 1-73 ' / 

CALL GTDJl'IS (TIHE , JULIAN) 

DECLARE JULIAN BIT (64 ) , 
GTD JH S ENTRY, 
F2 F IX ED BI NARY (3 1) INI TIAL (2) , 
TIHE CHARACTER (16) 

INITI AL( ' 17 : 59 . 3303 - 21 - 73') ; 
CALL PLCALL (GTD J HS , F2 , TII'IE , JU1IAN ); 

The a bove t vo exampl es call GTDJI'IS to convert the 
gorian t i me and date 17 : 59.33 March 21, 1973 into 
corresponding J ulian time 000830017 4704C60 (hex). 

Gre­
the 

GTDJ tl S 2 15 



I1TS .3: SYSTEI1 SUBROUTI NE DESCH PTIONS 

October 1976 

2 16 GTD J MS 



( 

( 

October 1976 

Purpose: 

Location : 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

To convert the Gregorian time and date ( ~H-DD-YY , hh:mm . ss) 
into Julian microseconds (Dumber of microseconds since 
March 1, 1 900). 

*LIBRARY 

Calling sequences: 

Description: 

Example: 

Assembly: LM O, 3 , gI"gtim 
CALL GTDJHSR 

Parameter: 

g£9!!! is the Gregorian time and date in the cbarac ­
ter form " hhxmmxssHHXDDXYY ", where "Xl' is any 
character. 

Value Returned: 

GRO and GRl contain the (a-byte) 
microseconds through the given 
March 1, 1900 . 

integer n u mber of 
time starting with 

The range of years is 
results for dates prior 

assu med 
to l'Iarch 

to be 
" '900 

1900 -1 999~ The 
are undefined. 

See GTDJHS for S-type (e.g_ , FORTRAN and PL/I) interfaces. 

Assembly: L" 
CALL 
ST. 

GRGDT DC 
JI'IS DS 

0 , 3,GRGDT 
GTDJI'ISR 
O,1,J I'IS 

C '17: 59.3303 - 21- 73' 
2F 

The above example calls GTDJMSR to convert the Gregorian 
time and date 17: 59 .. 33 March 21 , 1973 into the correspond ­
ing Julian time 000830n 1747 04C60 (hex). 

GTDJMSR 217 



~TS 3: SYSTE~ SUBROUTINE DESCRI PTI ONS 

October 1976 

21 8 GTDJI'!SR 



( 

r 

October 1976 

purpose: 

Location: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

~!!f.lffQL_ CU !!iIQ 

SUBROUTINE DESCRIPTION 

To alloy the user to obtain information about 
and his task (GUINPO) and to change some of 
tion items (CUINFO) . 

Resident System 

his status 
the informa-

Calling Sequences: 

Assembly: CALL GUINFO , (i tem,loc) 

CALL CUINFO , (item , loc) 

PORTRAN: CALL GUINPO (item , loc,&rc4,&rc8) 

CALL CUINFO (item , loc , &rc4 , &rc8,&rc12) 

Parameters: 

it~~ i s the location of either 
(a) a fullvord integer index number , or 
(b) an 8 - character name of the item left­

justified vith trailing blanks. 
Thi s specifies vhat item is to be obt ained or 
changed. 

!Q£ is the location of the region in vhich to pl ace 
the information obtained (for GUINPO) or to 
obtain the replacement information from (for 
CUINFO) • The size of the reg i on depends upon 
the type of the item. 

Return Codes : 

o Successful return. 
4 Error return. Item number too large . 
8 Error return . Item name not in the list . 

12 Error return. Illegal to change item 
only). 

16 Error return . I llegal parameter address . 

(C UINFO 

Descr i ption: The names given in the table belov correspond to i tems of 
informati on from the system . All of these items can be 
obtained by GUINFO, but only a subset of these items can 
be changed by CUINFO . Each item may be referred to by its 
name or by its index number. Tbe type of each it em is the 
internal format in wbich it is kept in the system . The 
length of each item is the size of the region needed to 

GUINFO, CUINFO 219 



MTS 3: SYSTE~ SUBROUTINE DESCRIPTIONS 

Examples : 

October 1976 

store the 
(C UIHFO) • 
types are 

item (GU INFO) 
The lengths 

given below. 

or fetch the new value of the item 
corresponding to the different 

The it ems which may changed by CUINFO are indicated by an 
asterisk next to their item index number . 

Types and Leng t hs of Items 

Bit 
Byte 

Halfword 
Pull word 
Dbl word 
S Bytes 
4 Words 
6 Words 

Assembl y : 

I.j Bytes (INTEGER*4) value of 0 or 1 
4 Bytes (R EAL*4) left - justified with 

3 trailing blanks . 
4 Bytes (INTEGER*4) 
4 Bytes (IN TEGER*4) 
8 Bytes (R EAL*8) 
8 Bytes 

16 Bytes 
24 Bytes 

CALL 
CLC 
BNE 
CALL 

GUINFO , (GI TEtI , GLOC) 
GLOC , =F ' O' 
BATC!:! 
CU IHFO, (CI TEM , CLOC) 

GITEI1 DC 
GLOC OS 
CITEl'J DC 
C10C DC 

CLS ' BATCH!1D' 
F 
CLS ' PREFIXC' 
C14 ' ~ ' 

FORTRAN : INTEGER*4 GLOC,C10C 
DATA CLOC/ ' % ' / 
CA LL GUINFO (' BATCHMD ', GLOC ) 
IF (GLOC . EQ. 1) GO TO 10 
CALL CUINFO ('PREFIXC ' , CLOC) 

The abo ve two examples call GUINFO to determine whether 
the job is r unning in batch or con versational ~ode . If 
the job is con ver sational , the prefix character is set to 
% by calling CU I NFO . This could also be accomplis bed by 
calling the CANREPLY and SETPFX s ubro utine s . 

220 . GUIHPO , CUINPO 



r 

r 

, 
I 

October 1976 

1* 

2 
3* 

• 5* 

6 
7* 

8 
9* 

10 
11* 
1 2 
15* 

16 
17* 
18 
19* 

20 
21* 

22 
23* 

2. 
25 
26 

21* 

28 

29 

30 

31 
32 

33* 
35* 

36 
37* 

LNS 

SIGNONID 
PR EyrXe 
sa NSR 
FILECHAR 

STORUSED 
SCRFCHAR 

CURRSTOR 
CONTCHAR 

BATCHMD 
leFSIT 
LOCSW 
ATNBI T 

PROJNO 
UCBIT 
I1AXDI SK 
NXTSEGSW 

MAXTERI'! 
PRNTCDSW 

MAXMONY 
OFFSIT 

CURRDI SK 
PLOTTII1E 
Cll riELTM 

Byte 

Fullword 
Byte 
Dblword 
Byte 

Fullword 
Byte 

Fullword 
Byte 

Bit 
Bit 
Bit 
Bit 

Fullword 
Bit 
Halfword 
Bit. 

Fullvord 
Bit 

Fullword 
Bit 

Halbord 
F ullword 
Fullword 

DU HPTYPE Fullvord 

CUMCPUTH Fullword 

CUI1READ Fullword 

CUNCORE Fullword 

NRREAD Fullword 
CUMMONY Fullwor d 

LDROPT B y te 
SHPSEP Byte 

NRDISKF Halfward 
RF Fullword 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Line number separator character (default i s 
",") ($ 5ET LNS=c) 
CUrrent signoo ID 
Current prefix character as set by SETPPX 
S8-Lumber of job in characters (batch only) 
File name character (default is " ' ") ($ SET 
FILECHAR=c) 
CPU storage integral to STORCPUT l 
Scratch file character (default is "_II ) ($ SET 
SCRfCHAR=c) 
Current number of half - pages of VH storage 
MTS command continuation character (default is 
11.11) ($SET CONTCHAR=C) 
Batch (1 ) or conversational (0) mode 
1 - ) $SET IC=OFF (default is ON ) 
1 - ) local time estimate act i ve 
1 -) Attention interrupt . occu rr ed but net taken 
(may be set to cause an attention interrupt) 
Project (charge) number in characters 
1 -) $SET CASE=UC (default is LC) 
Maximum number of disk pages allowed for 10 
1 - ) Skip to next set of command cards (batch 
only) (may be set to Skip unread data cards) 
Maximum terminal time allowed for 10 (seconds) 
1 -) Print next input line from source if not 
MT S command (batch only) 
Maximum charge allowed for 10 (cents. ' OO) 
, -) Sign off when next MTS command is read 
(same as QUIT subroutine) 
Number of pages of disk space in current use 
Total plot time for current job (seconds ) 
Cum. terminal time for 10 (seconds) (e xcluding 
active jobs) 
$SET ERROROUI'lP= {OFF 1 ON IFULL) (0 1112) (default 
orp ) 
Cum . CPU time for 10 (milliseconds) (excluding 
act1ve jobS) 
Cum . number of cards read for 10 ( excludin g 
active jobs) 
Cum. storage integral over CPU time for 10 
(exclud ing active jobs) 2 

Number of cards read for current job 
Cum . charge used for 10 (cents*100) (excludinog 
active jobs) 
loader options switch 10 

Shared - file separator character (de fault is 
":") ($SET SHFSEP=c) 
Number of disk files existing for 10 
$SET RF=XxXXXX (default is 0 ) 

GU1NPO, CU1NPO 221 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

38 

39* 

40 

41* 
42 

43* 
44 

45* 
46 

47* 
48 
49* 
51* 

54 
55* 
56 
57* 
58 
59* 
60 
61* 

62 
63 
64 
65 
66 
67 
68 
69* 

70 
71* 
72 

73-
74 
75* 
76 

77* 

NRSIGS Halfword 

DEVCHAR Byte 

NRBATCH Halfword 

NUMBER Bit 
CUHLINES Fullword 

LI BROFF Bit 
CU8PAGES Fullword 

AFOECHO Bit 
CUHPUNCH Fullword 

SYMTAB 
STORUSEE 
ECHOOFF 
ATTNOFF 

EXPTIME 
SIGSHORT 
SOBCOTM 
PFXOFF 
STORCPUT 
SEQCOFF 
NRCREATE 
PGNTTRP 

NRDESTRY 
NRLINES 
SOCPUTP 
NRPAGES 
SOCPUTC 
NRPUNCE 
SOELT 
ATTNTRP 

STORELT 
AFONBR 
SOPTOO 

AFDINC 
ANSBACK 
SETIOERR 
CUHOI SK 

Bit 
Fullword 
Bit 
Bit 

Fullword 
Fuliliord 
4 Words 
Bit 
Fullword 
Bit 
Halfword 
Oblword 

Halfword 
Fuliliord 
Fullword 
Fullword 
Fullword 
Fullword 
Dblword 
Oblword 

Fullword 
Fullword 
4 Words 

Fullword 
6 Words 
Fullword 
Fullword 

ENOFILSW Fullword 

October 1976 

Cum. number of signons for 10 (excluding active 
jobs) 
Oev~ce name character (default is n ) n ) ($SET 
DEVCHAR=C) 
Cum. number of batch jobs for 10 (excluding 
acti ve jobs) 
1 - ) Automatic numbering active ($NUtiBER) 
Cum. number of lines printed for 10 (excluding 
acti ve jobs) 
1 - ) $SET LIBR=OFF (default is ON) 
Cum . n umber of pages printed for 10 (excluding 
acti ve jobs) 
1 - ) $SET APOECHO=ON (default is OFP) 
Cum. Dumber of cards punched for 10 (excluding 
act.ive jobs) 
1 -) $SET SYMTAB=ON (default is ON) 
Elapsed storage integral to STORELTl 
1 - ) $SET ECHO=OFF (default is ON) 
1 -) Stack attention interrupts (may be ~et to 
inhibit attention interrup ts ; pending interrupt 
may be taken on call to system subroutine) 
10 expiration time and date 3 

$SIG {LONGISHORTIS} (01112) (default is LONG) 
Sign-on time and date in characters 
1 -) $SET PFX=OFF (default is ON ) 
Current base for CPU storage integral4 

1 -) $5ET SEQFCHK=OFF (default is ON) 
Number of files created during current job 
PGNTTRP exit s ubrouti ne address (1st word ) and 
save area location (2nd word) 
Number of files destroyed during current job 
Number of lines printed for current job 
Problem state CPU time at sigoon 5 
Number of pages printed for current job 
supervisor state CPU time at signon 5 
Number of cards punched for current job 
Time of day at signo0 6 
ATTNTRP exit subrou t ine address (1 st word) and 
sa ve area location (2nd word) 
Current base for elapsed storage integra14 

Next line number for *AFD* (SNUMBER) 
Time and date for header page for batch cutput 
(characters) 
Line number increment for *AFO* ($NUMBER) 
Answerback code (characters ) 
SETIOERR exit subroutine address 
Cum. disk file storage integral to OISKTIHE 
which has been charged for (page hours) 
$SET ENOFILE=(NEVERIOFF I ON} (0 111 2) (default 
OFF) 

78 GLOBCPUT Fullword CPU time remaining in global time limit (from 
GLOBTTN)5 

79 NRMOUNT Fullword Number of tape and ot her mounts for current job 

222 GUINFO, CUINPO 



( 

( 

( 

october 1976 

80 
81 
82 
83 
84 
85' 
86 

81 
88 
89' 

90 
91' 

92 
93' 

94 
95 

96 
98 

100 
102 
104 
10 6 
108 
110 
11 2 
114 
116 

11 8 

122 

124 
126 

128 

130 

134 

1 36 

138 
144 
146 

14 8 

GLOBPGS 
TORVT 
GLOBPCH 
PTLEN 
GLOBPTM 
TDR 
LaCcPUT 

I'INETTIME 
LOCPGS 
CROUTE 

LOCPCH 
PROOTE 

LOCPTM 
PRINT 

GLOBTTN 
SCOPlES 

LOCTTN 
TASKNBR 
TASKTYPE 
BTeHMORE 
HASPJOB 
I1AXCELL 
MAXPLOT 
LSTRESET 
DISKTIHE 
CELLT11'1E 
CURRCELL 

FullNord 
Fullw ord 
Fullword 
Ful1word 
Fullword 
Bit 
Fullword 

Fullvord 
Fullword 
Fullword 

rullword 
Fullword 

Fullword 
Halbord 

Fullword 
Fullword 

Pul!word 
Halbord 
Halbord 
Bit 
Bit 
Halfword 
Fullword 
Fullword 
rullword 
Fullword 
Halfword 

CUHCOREW Fullword 

CUMPLOT Fullword 

NRCELLF Pullword 
CUHCELL Fullword 

COPIES Ful1word 

LINKLEVL Fullword 

STORINDX Fullword 

MXSTRIND Fullword 

LODRSYHT Fullword 
SCRFNAHE Dblword 
SCRFDISK Halfword 

seH-PCELL Halfword 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Global page estimate 
Tape drive time for current job (seconds) 
Global card estimate 
Paper tape punched for c urrent job (in ches) 
Globa l plot time e~timate (seconds) 
, - ) $SET TDR=ON (defaul t is OFF) 
CPU time remaining in local time limit (from 
LOCTTN)5 
Outbound KERIT time for this job (seconds) 
Local page estimate 
Default batch station for punched output (char ­
acters) ($SET CROUTE=rmid) 
Local card estimate 
Default batch stati on for printed outp ut (char­
acters) ($SET PROUTE=rmid) 
Local plot time estimate (seconds) 
Print train specification (PN, TN, or binary 0 
is first byte if ANY) 
Base for global time limitS 
Number of copies of printed output reguested on 
$SET COPIES=n command 
Base for local time limitS 
Task (job) number 
Task type codeS 
1 - ) MORE specified on non-HASP batch job 
, - ) HASP batch job 
Maximum datacell pages allowed for 10 
Maximum plot time allowed for 10 (seco nds) 
Last t ime cum. totals for this 10 were reset 3 

Last time disk storage integral updated 3 

Last time datacell storage integral updated 3 

Number of pages of datacell files in current 
use 
Cum. storage integral over wait time for this 
10 (exclud ing active jobS)2 
Cum. plot time for 10 (second s) (exc luding 
acti ve jobs) 
Number of datacell files ex i sting for 10 
Cum . datacell file storage integral to CELLTIME 
whicb has been cbarged for (p age hours) 
Number of copies of printed output requested on 
$SIGNON command (batch) 
Current link level (see MTS Vol. 5 Virtual 
Memory Management description) 
Current storage index number (See MTS Vol. 5 
Virtual Me.ory Management description) 
Maximum storage index numbe r used (See MTS Vol. 

5 Virtual Memory Management description) 
Loader symbol table location 
Internal scratch file prefix 
Number of pages of disk scratch files for cur ­
rent job 
Number of pages of datacell scratch files for 

GUINFO, CUINFO 223 



MTS 3: SYSTE M SUBROUTINE DESCRIPTIONS 

15 0 
152 
154 

156 

158 

160 
162 

164 

166 
167* 
168 

16 9* 
17 0 
171* 
172 
173* 
17" 
175* 
176 
177* 
178 
179* 
180 
181* 
182 

183* 

184 
185* 
186 
187* 
188 
189* 
190 
191 * 
192 

193* 
194 
195* 
196 
197* 
1 98 
199* 
226 

SODRMRDS 
LASTSOT 
CUI1MOUNT 

Fullword 
4 Words 
Fullword 

CUI1TDRVT Fullword 

CUHPTLEN Fullword 

BILLCLAS Halfword 
SCRDSKTH Fullword 

SCRCELTM Pullword 

SCRDSUSE 
SIGFATTN 
SCRCLUSE 

TERSE 
CUDRHRDS 
$ON 
CLSID 
CREAPD 
PCLSID 
EDITAf'D 
DEBUGCMD 
USHSG 
OEBUG 
AUTO HaLO 
LSS 
TRI/'lBIT 
I1AXSIG 

EPLUEM 

CURSIG 
CMOSKP 
UNCHDISK 
PR MAPOFF 
UNCHCELL 
POHAPOFF 
MAXMNET 
UXREF 
CUI1MNET 

XREF 
HXMNETBT 
NO*LIB 
MXPLOTBT 
HAPDOTS 
RATENBR 
NOERRMAP 
INSIGFIL 

Fullword 
Bit 
Fullword 

Bit 
Halfw ord 
Bit 
Halfword 
Bit 
Halfword 
Bit 
Bit 
Bit 
Bit 
Bit 
Bit 
Bit 
Halfword 

Obl word 

Halfword 
Bit 
Fullword 
Bit 
Fullword 
Bit 
Fullword 
Bit 
Fullword 

Bit 
Bit 
Bit 
Bit 
Bit 
Fullword 
Bit 
Bit 

224 GU INFO, CUINPO 

current job 
Number of drum reads at signon 
Last signoD time in characters 

October 1976 

Cum. number of tape mounts for 10 (excludin g 
act~ve jobs) 
Cum . tape drive time for 10 (seconds) (exclud ­
ing active jobs) 
Cum . paper tape punched for 10 (inches) 
(excluding active jobs) 
Billing class (O=Universit y l =Industrial) 
Last time scratch disk file s t orage integral 
upda ted 3 

Last time scratch datacell f ile storage i ntegr­
al updated 3 

Scratch disk file storage integral to SCRDSKTH 7 
1 - ) $SET SIGFILEATTN=OPF (defa ult is ON) 
Scratch datacell file stor age integral tc 
SCRCELTIF 
1 -) $SET TERSE=ON (default is OFF) 
Current number of drum reads fo r current job 
1 - ) $SET $=ON (default i s OPF) 
Code for CLS currently in control9 
1 - ) $SET CREAFO=ON (defa ult is ON ) 
Code for CLS that called current CLS9 
1 -) $SET EDITAFD=ON (default is ON ) 
1 - ) if $OE BUG command active 
1 - ) $SET USHSG=ON (default is ON ) 
1 - ) $SET DEBUG=ON (default is OPF) 
1 - ) $SET AUTOHOLD=ON (defa ul t i s OPF) 
1 - ) if limited service state active 
1 - ) $SET TRIM=ON (default i s ON) 
Max . number of concurrent signons allowed for 
1 0 
Elementary Function Library use r error mcnitor 
address 
Number of times this 10 currently s i g ned on 
1 - ) $SET CMDSKIP=ON (default is OPP) 
Disk space to DISKTIHE not yet cbarged f or 7 
1 -) $SET PRMAP=OFP (de fault is ON ) 
Datacell space to CELLTIME not yet cbarged for 7 
1 - ) $SET PDMAP=OFF (default is ON) 
8aximum outbound MERIT time (seconds) 
1 - ) $SET UXREF=ON (default is OFF) 
Cum. outbound MERIT for this 10 excl uding 
act i ve jobs (seconds) 
1 - > $SET XREP=ON (default is OFF) 
1 -) Ignore max i mum HNET time (item 190) 
1 - > $ SET *LIBRARY=OFF (default is ON) 
1 -) IgDore maximum plot time (item 108) 
1 - ) $SET HAPDOTS=ON (default is ON) 
Number determining rate set in use 
1 .- ) $SET ERRl'IAP=OFF (defa ul t is ON) 
1 -) currently processing sigfile 



( 

( 

October 1976 

227 
228 

229 
230 

23 1 * 
232 

233* 
234 

236 

237* 

238 

239 
240 
242 

PLOTPAPR 
TOFFSET 

PLOTPENC 
TI MEFDGE 

Fullword 
8 Byte 

Fullword 
8 Byte 

SPELLCOR Fu llword 

CUMPLPAP Fu llword 

NOSOS Bit 
CUMPLPEN Fullword 

PKEY 4 words 

RCPRINT Byte 

RUNO NLY Bit 

LASTEXEC Fullword 
SYSOLOAO Byte 
PRIO Byte 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Plotter paper used for current job (. 0 1 i nches ) 
Offset (microseconds times 4096) to be added to 
GMT to get local time 
Plotter pen changes for current job 
Value (microseconds times 4096) to be added to 
I BM time (a s stored by a STCK instruction) to 
get ti me based on March 1 I 1 900 
$SET SPELLCOR= (OFF I PROMPT I ON) (013 11 ) (default 
is PROMPT) 
Cum. plotte r paper used for ID (.01 incbes) 
(excluding active jobs) 
, -) $SET SDSMSG=OFF (default is ON ) 
Cum . plot pen changes for ID (excluding active 
jobs) 
Program key under wbicb calli ng program i s 
running 
$SET RCPRI NT={NEVER IP OS I NONNEG I ALWAYS} 
(0 111 2 13) 
, -) a "ru n only " program i "s loaded (from a 
file to whicb the user has no access) 
Return code of last prog;am executed. 
system overload indicators l1 

Priority of job 1 2 

GUINFO , CUINFO 225 



nTS 3: SYSTEM SUBROUTINE DESCRIPTI ONS 

45* 
73* 
71* 
74 
15* 

51* 

69* 

179* 
10 

160 
102 
11 4 
172 
185* 

9* 

128 

173* 
89* 

170 
126 

30 

11 8 

28 

76 

26 

42 

192 

32 

154 

44 

122 

AFDECHO 
ArDINC 
AFONBR 
ANSBACK 
ATNBIT 

ATTNOFF 

ATTNTRP 

AUTOHOLO 
8A'ICHI10 
BILLCLAS 
BTCHHORE 
CELLTII1E 
CLSIO 
CMDSKP 
CONTCHAR 

COPIES 

CREAFD 
CROUTE 

CUDRMRDS 
CUI1CELL 

CUMCORE 

IYE~ 

ait 
F ullword 
Pullword 
6 Words 
Bit 

Bit 

Ohlword 

Bit 
Bit 
Halfword 
Bit 
Fullword 
Halbord 
Bit 
Byte 

Fullword 

Bit 
Fullword 

Halfword 
Fullword 

Fullword 

CUI1COREW Ful lword 

CUMCPUTI1 Fullword 

CUHDISK Fullword 

CUHELTI1 Fullword 

CUHLINES Fullword 

CUHHNET Fullword 

CUMHONY F ullw ord 

CUHHOUNT Fullword 

CUMPAGES Fullword 

CUMPLOT Fullword 

226 GU INFO, CUINro 

October 1976 

1 - ) $SET AFOECHO=ON (default is OFF) 
Line number increment for *AFO* ($N UHBER) 
Next line number for *AFO* ($NUMB ER ) 
Answerback code (characters) 
1 -) Attention interrupt occurred but not taken 
(may be set to cause an attention interrupt) 
1 -) Stack attention interrupts (may be Eet to 
inhibit attention interrupts; pending interrupt 
may be taken on call to sys t em subroutine ) 
ATTNTRP exit subroutine address (1st word) and 
save area location ( 2nd word) 
1 - ) $SET AUTOHOLD=ON (default is OPP) 
Batch (1) or conversational (a) mode 
Bill i ng class (O=University l =Industria l) 
1 -) nORE specified on non-HASP batch job 
Las t time datacell storage integral updated 3 

Code for CLS currently in control 9 

1 - ) $SET CHOSKIP=ON (default is OFF) 
MTS command continuation character (defa ul t is 
II_II) ( liSET CONTCHAR=c) 
Number of copies of pr inted output reqUEsted on 
$SIGNON command (batch) 
1 - ) $SET CREAFO=ON (default is ON) 
Default batch statioD for punched outp ut (char ­
acters) (S SET CROUTE=rmid) 
Current number of drum reads for current job 
Cum. datacell file storage integral to CEILTIHE 
which bas been charged for (page hours) 
Cum. s~orage integral over CPU time for 1 0 
(excluding active jobs) Z 
Cum. storage integral over wait time for this 
10 (excluding active jobs) Z 
Cum. CPU time for 10 (milliseconds) (excluding 
act~ve jobs) 
Cum . disk file storage integral to DISKTIME 
which has been charged for (page hours) 
Cum. terminal time for 10 (seconds) (eltcluding 
active jobs) 
Cum. number of lines pr i nted for 10 (exclUding 
active jobs) 
Cum. outbound nERIT for this ID exclud ing 
active jobs (seconds) 
Cum . charge used for 10 (cents*100) (excluding 
active jobs ) 
Cum. number of tape mounts for ID (excl udi ng 
active jobs) 
Cum . number of pages printed for ID (eltcluding 
acti ve jobs) 
Cum. plot time for 10 (seconds) (excluding 



( 

( 

( 

October 1 976 

232 

234 

158 
46 

29 

156 

11 6 

24 
8 

1 84 
17 8 
176 
39* 

11 2 
27* 

49* 
175* 
1 83* 

77* 

54 
5* 

78 

82 
80 
84 
94 

104 
11 * 

226 
239 
152 

33* 
43* 

130 

1* 

86 

90 

CUMPLPAP Fullword 

CUMPLPEN Fullword 

CUMPTLEN Fullword 
CUMPUNCH Fullword 

CUMREAD Fullword 

CUMTDRVT Fullword 

CURRCELL Halfword 

CUBRDISK 
eURRsTOR 
CURSIG 
DEBUG 
DE8UGCI'ID 
DEVCHAR 

DI SKTltlE 
DUI'IPT1PE 

EeHoorF 
EOITArD 
EFLUEM 

Halfword 
Fullword 
Halfword 
Bit 
Bit 
Byte 

Fullword 
Fullword 

Bit 
Bit 
Dblword 

ENDFILSW Pullword 

EXPTII'IE rullword 
FILECHAR Byte 

GLOBCPUT Fullword 

GLOSpeH 
GLOBPGS 
GLOBPTl'l 
GLOBTTN 
HA SPJOB 
leFSIT 
INSIGFIL 
LASTEXEC 
1 A5T50T 
LDROPT 
LIBROrF 
LINKLEVl 

LNS 

LOCCPUT 

LoepeH 

Fullword 
Fullword 
Fullword 
Fullword 
Bit 
Bit 
Bit 
Fullword 
4 Words 
Byte 
Bit 
Fullword 

Byte 

Fullword 

Fullword 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

active jobs) 
Cum. plotter paper used for 10 (.01 inches) 
(excluding active jobs) 

Cum. plot pen changes for 10 (excl uding active 
jobs) 
Cum. paper tape punched for 10 (inches 
Cum. number of cards punched for 10 (excluding 
active jobs) 
Cum. number of cards read for 10 (excluding 
active jobs) 
Cum. tape drive time for 10 (seconds) (exclud­
ing active jobs) 
Number of pages of datacell files in current 
use 
Number of pages of disk space in current use 
Current n u mber of half-pages of VM storage 
Number of times this 10 currently signed on 
1 -) $SET DEBUG=ON (default is OrF) 
1 - ) if $OEBUG command active 
Oev~ce name character (default is ">") ($SET 
OEVCHAR=c) 
Last time disk storage integral updated 3 

$SET ERROROUMP=(OPP I ON IF ULL) (0 111 2) (default 
OPF) 
1 - ) $SET ECHO=OFF (default is ON) 
1 -) $SET EOITAFO=ON (default is ON) 
Elementary Function Library user error mcnitor 
address 
$SET ENDFILE={NEVER I OFF ION) ( 0111 2) (default 
OFF ) 
10 expiration time and date 3 

File name character (default is "#") ($SET 
FILECHAR=c) 
CPU time remaining in global time limit (from 
GLOBTTN)5 
Global card estimate 
Global page estimate 
Global plot time estimate (seconds) 
Base for global time limitS 
1 - ) HASP batch job 
1 - ) $SET IC=OFF (default is ON) 
1 -> currently processing sigfile 
Return code of last program executed. 
Last signoD time in characters 
Loader options switchlO 
1 -) $SET LIBR =OFF (default is ON) 
Current link level (see MTS Vol. 5 Virtual 
Memory Management description) 
Line r.umber separator character (default is 
",11) ($SET LNS=C) 
CPU time remaining in local time limit (from 
LOCTTN) 5 
Local card estimate 

GUINFO, CUINfO 227 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

88 
92 
1 2 
96 

138 
180 
11 0 
197* 
106 

1 8 
190 

22 
108 
182 

20 
87 

194 
1 96 
136 

199* 
233* 
195* 

40 

124 
60 
62 
36 
63 
79 
65 
67 
3 1 
38 

41' 
19 * 

23* 

17 4 
189* 
57' 
61* 

236 

227 
229 

25 
3* 

LOCPGS 
LOCPTM 
LOCS W 
LOCTTN 
LODRSYMT 
LSS 
LSTRESET 
MAPDOTS 
MAX CELL 
MAXDISK 
MAXMNET 
MAXMONY 
MAX PLOT 
MAXSIG 

MAXTERM 
l'lNE'ITIME 
MXMNETBT 
MXPL01BT 
l'lXSTRIND 

NOERRMAP 
NOSDS 
NO*LIB 
NRBATCH 

NRCELLF 
NRCREATE 
NROESTRY 
NRDISKF 
NRLINES 
NRMOUNT 
NRPAGES 
NRPUNCH 
NRRE AD 
NRSIG5 

NUMBER 

Fullword 
Fullword 
Bit 
Fullword 
Fullword 
Bit 
F ullword 
Bit 
Halfword 
Halfword 
Fullword 
Fullword 
Fullword 
Half word 

Fullw ord 
Fullword 
Bit 
Bit 
Fullword 

Bit 
Bit 
Bit 
Half word 

Fullword 
Halfword 
Halfword 
Halfword 
fullword 
Fullword 
Fullword 
Fu llword 
Fullword 
Halfword 

Bit 
NXTSEGSW Bit 

OFFBIT Bit 

PCLSI D Halfword 
POMAPOFF Bit 
PFXOFF Bit 
PGNTTRP Obl word 

PKEY 4 Bytes 

PLOTPAPR Fullword 
PLOTPENC Fullword 
PLOTTIME Fullword 
PREFIXC Byte 

228 GU INFO, CUINFa 

Local page estimate 
Local plot time estimate (seconds) 
1 - > Local time estimate active 
Base for local t i me limi tS 
Loader symbol table location 

October 197 6 

1 -) if limited service state acti ve 
Last time cum . totals for this 10 were reset 3 

1 -) $5£T MAPOOTS=ON (default is ON ) 
Maximum dataceil pages allowed for 1 0 
Maximum number of disk pages allowed for 10 
Max i mum outbound MERIT time (seconds) 
Maximum charge allowed for 10 (cents* 100) 
Maximum plot time allowed for 1 0 (seconds) 
Max. r. umber of concurrent signons allowed for 
ID 
Maximum terminal time allowed for 10 (seconds) 
Outbound MERIT time for this job (seconds) 
1 - ) Ignore maximum MNET time (item 1 90) 
1 -) Ignore max i mum plot time (i tem 108 ) 
Maximum storage inde x number used (See MTS VoL 

5 Virtual Melliory Management descri pt i on) 
1 - ) $SET ERRl'lAP=OFF (default is ON ) 
1 - ) jiSET SOSI1SG=OFF (default is ON ) 
1 -) $SET *LIBRARY=OFF (default is ON) 
Cum . number of batch jobs for 10 (exclu din g 
acti ve jobs ) 
Numter of datacell files ex i sting for 10 
Number of f i les created during current job 
Number of files destroyed during current job 
Number of disk files existi ng for 10 
Number of lines printed for current jot 
Number of tape and other mo unts for current job 
Number of pages printed for current jot 
Number of cards punched for current job 
Number of cards read for current job 
Cum . number of signons for 10 (excl uding active 
jobs) 
1 - ) Automatic nu mbering active ($NUM BER) 
1 -) Skip to next set of command ca r ds (batch 
only) (may be set to skip unread data cards) 
1 - ) Sign off when next MTS command i s read 
(same as QUIT subroutine) 
Code for CLS that called current CLS9 
1 -) $SET POMAP =OFF (default is ON) 
1 -) $SET PFX~OFF (default i s ON ) 
PGNTTRP exit subroutine address (1 st word) and 
sa ve area location (2nd word) 
Program key under wh i ch the calling program is 
running 
Plotter paper used for current job (.0 1 i nches) 
plotter pen changes for current job 
Totc.! plot time for c urr ent job (seconds) 
Current prefix character as set by SETPFX 



( 

( 

( 

October 1916 

93* 

242 
187* 

21* 

16 
91* 

83 
198 
237* 

37* 
238 

95 

164 

168 

162 

166 
148 

7* 

146 

144 
59' 
75* 
35* 

167* 
2 

55* 
56 
66 
64 

150 
68 
72 

231 * 
58 
70 

134 

48 

PRINT Halfword 

PRIO Byte 
PRI1APOFF Bit 
PRNTCDSW Bit 

PROJNO 
PROUTE 

PTLEN 
RATENBR 
RePRINT 

RF 
RONONLY 

SCOPIES 

Fullword 
Fullword 

Fullword 
Fullword 
Byte 

Fullw ord 
Bit 

Fullw ord 

SCRCELTM Fullword 

SCRCLUSE Fullword 

SCRDSKTM Fullword 

SCRDSUSE Fullword 
SCRFCELL Halfword 

SCRFCHAR Byte 

SCRFDISK Halfword 

SCBFNAME 
SEQCOFF 
SETIOERR 
SHYSEP 

SIGFATTN 
SIGNONID 
SIGSHORT 
SO BCD TI1 
SOCPOTe 
saCPUTP 
SODRI1RDS 
SOELT 
SOPTOD 

DhIwor-d 
Bit 
Fullword 
Byte 

Bit 
Fullword 
Fullword 
4 Words 
Fullword 
Fullvord 
Fullword 
Dblword 
4 Words 

5PELLCOR Fullword 

STORCPUT 
STCBELT 
STORINDX 

Fullword 
Fullword 
F ullvord 

STORUSEE Fullword 

I1TS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Prir.t train specification (PN 1 TN, or binary 0 
is tirst byte if ANY) 
priority of job 12 

1 -) $SET PRMAP=OFF (default is ON) 
1 -> Print next input line from source if not 
MTS command (batch only) 
project (charge) number in characters 
Default batch station for printed output (char ­
acters) ($SET PROU·rE=rmid) 
Paper tape punched for current job (inches) 
Number determining rate set in use 
$SE:l: R CPRIN T= {NE VER I POS I NON NEG I ALWA Y S} 
( 0 111 2131 
$SET RF=xxxxxx (default is 0) 
1 -) A "run only I' program is loaded (from a 
file to which the user has no access) 
Number of copies of printed output reguested on 
$SET COP1ES=n command 
Last time scratch datacell file storage integr­
al upda ted:3 
Scratch datacell file stqrage . integral to 
SCRCELTI17 
Last time scratch disk file storage integral 
updated:3 
Scratch disk file storage integral to SCRDSKTM7 
Number of pages of datacell scratch files for 
current job 
Scratch file character (default is II_II ) ($SET 
SCRFCHAR=C) 
Number of pages of disk scratch files fer cur ­
rent job 
Internal scratch file prefix 
1 -) SSET SEQFCHK=OFF (default is ON) 
SETIOERR exit subroutine address 
Shared-file separator character (default is 
":") ($SET SHFSEP=c) 
1 -) $SET SIGFILEATTN=OFF (default is ON) 
Current s i gnon 10 
$SIG {LONG I SHORTI$} (O I11 2) (default is LONG) 
SigL - on time and date in characters 
Supervisor state CPU time at signon 5 
Problem state CPU time at signon 5 
Number of drum reads at signon 
Time of day at signon 6 
Time and date for header page for batch output 
(characters) 
$SE'I· SPELLCOR= (OrF J PROMPT ION) (0 13 11 ) (default 
is PROMPT) 
Current base for CPU storage integral· 
Current base for elapsed storage integral· 
Current storage index number (See MTS Vel. 5 
Virtual Memory Management description) 
Ela~sed storage integral to STORELTI 

GU1NFO, CUINFO 229 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

6 
47* 

240 
4 

98 
100 

85* 
8 1 

169* 
230 

228 

1 8 1* 
17* 

188 
186 
177* 
191* 
' 93* 
17 1* 

STORUSED 
SYMTAB 
SYSOLOAD 
S8NBR 
TASKNBR 
TASKTYPE 
TOR 
TDRVT 
TERSE 
TIMEFDGE 

TOFFSET 

TRltlBIT 
UCBIT 
UNCHCELL 
UNCHDISK 
USMSG 
UXREF 
XREF 
$ON 

Pullword 
Bit 
Byte 
Dbl word 
Halfword 
Halbord 
Bit 
Pullword 
Bit 
8 Byte 

8 Byte 

Bit 
Bit 
F ullword 
Fullword 
Bit 
Bit 
Bit 
Bit 

230 GUINFO, CUI NPO 

CPU storage integral to STORCPUT l 
1 - ) $SET SHITAB=-ON (default i s ON ) 
System overload indicators ll 

October 1976 

58 - number of job in characters (batch only ) 
Task ( job) number 
Task type codeS 
1 - ) $SET TDR=ON (default is OPF) 
Tape drive ti~e for current job (seconds) 
1 - ) $SET TERSE=ON (default is OFF) 
Value (microseconds times 4096) to be added to 
IBM time (as s t o r ed by a STCK instructi on) to 
get time based on March 1 I 1900 
Offset (microseconds times 4096) t o be a dded to 
GMT to get local time 
1 - :> $5ET TRIM=ON (default is ON) 
1 - ) $5ET CASE=UC (default is LCI 
Datacell space to CEL1T1l'1E not yet cbarged for 7 
Disk space to D15KT1ME not yet charged for7 
1 - ) $5ET USl'I5G=ON (default is ON ) 
1 - ) $SET UXREF=ON (default is OFF) 
1 -) $5ET XREF=ON (default is OFF ) 
1 - ) $SET $=ON (default is OFF ) 



( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

lHalf - pages* (1 /300 ) seconds 
2Page - seconds 
3Minutes s i nce Midnight, March 1, 1900 
4Units of 1/300 second 
5Timer units : 13 1/48 microseconds per unit 
6Hicroseconds since Midnight , March 1, 1900 
7page-minutes 
BJ ob type codes: 

O=Termi nal 
l =Local batch (without batch monitor) 
2:Remote batch 
3=Normal batch (with hatch monitor ) 
4=*-File 
5=OPER 

geLS codes: 
0=I1T5 HITS command mode) 
l =USER (exec ution mode) 
2=E01 T (edit mode) 
3=SDS (debug mode) 
4=CALC (calc mode) 
5=CL5 (test CL5) 
6=NET ($NET command ) 
7=MNT ($HOUNT command) 
8=PRI'IT ($PERHIT command) 
9=FSTA ($PILESTATUS command) 

10=SSTA (systemstatus mode) 
1' =ACC (accounting mode) 
12=NEW (new C15) 

loLoader options (one byte) 
X'80' 1 - > Suppress pseudo -registers in map 
X'40' 1 -> suppress predefi ned symbols in map 
X' 20 ' 1 - ) Print undefined symbols 
X'1 0 ' 1 - > Print undefined nefs 
X ' 08' 1 -> Print all xrefs 
X'04' 1 - > Print dotted lines 
x ' 02 ' 1 - > Print map lines and entry point 
x '01' 1 - ) Print nonfatal errors 

I1 system overload i ndicators (one byte) 
x ' 80 ' 1 - > Processor 
X'40 ' 1 - ) Paging 
x'20' 1 - ) Disk I/O 
X I 10 ' 1 - ) I/O activity 
X'08' 1 - ) Drum space 

l Zpriority of job (one byte) 
O=Low 
l =No rmal 
2=Hi gh (c urrently not used ) 
3=Deferred 

GUINFO, CUINFO 23 1 



ffTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

Notes: 

(1) All cumulative fields are cumulative up to the time of the l ast 
call to GUINFUPD or later, but do not include the current job or 
any other active 1nstances of this 10. CUMCELL and CUMDISK, 
however, are cumulative up to CELLTIME and DISKTIME, 
respectively. 

(2) The elapsed time virtual memory integral for this jab is 

STORUSEE+CURRSTOR* (time (2)*.3 - STORELT) 

and the CPU virtual memory integral for this job is 

where 
key=n 

STORUSED+CURRSTOR* (time(1) *.3-STORCPUT) 

time ( n) is the result of 
assuming no call bas been 

calling the TIME 
made wi th key=O. 

subroutine with 

(3) The permanent disk and datacell space integrals for this ID are 

60*CUftDISK +CURRDISK* (min-DISKTIME) 

and 

60 *CUI1CELL +C UBBCELL * (min - CE LLTI ME) 

and the scratch d~sk and datacell space i ntegrals for this 
terminal session or batch job are 

SCRDSUSE+ SCR .FDISK* (min -SCR DSKTM ) 

and 

SCRCLUSE+SCRFCELL*(min - SCRCELTM) 

where " min " 
from the TItlE 
page - minutes. 

232 GUINFO, CUINFO 

is mir,utes since March 1, 1900 which is obtainable 
and GRJLTM subroutines; the results are in 



( 

October 1976 

Purpose: 

Location: 

To update 
subroutine. 

MTS 3: SYS TEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

certain items obtainable via the GUINFO 

Resident system 

Calling Sequence: 

Assembly: CALL GUINFUPD 

Return Codes: 

o Successful return. 
4 Illegal signon 10. 
B Error return. 

Description: The following i tems obtainable via the GUINFO subroutine 
are updated ~o the time of the call, excluding currently 
active jobs for this signoD 10 (including this job). 

14 ACCTNO 36 NROISKF 
1 8 tlAXOISK 38 NRSIGS 
20 MAXTERM 40 NRBATCH 
22 MAXtlONY 42 CUMLINES 
24 CURROISK 44 CUM PAGES 
26 CUI1ELTI1 46 CUI'!PUNCH 
28 CUMCPUTM 50 IORNBR 
29 CUtlREAO 52 UN ITCOOE 
30 CUMCORE 54 EXPTH1E 
32 CU!'l110NY 

1 06 tlAXCELL 160 BILLCLAS 
108 MAXPL OT 182 MAXSIG 
11 0 LSTRESET 184 CURSIG 
116 CURRCELL 190 HAXl'lNET 
11 8 CUl'lCOREW 192 CUMtlNET 
122 CUMP LOT 194 MXMNETBT 
124 NRCELLP 196 l'lXPLOTBT 
154 CUl'l MOU NT 
156 CUMTDRVT 
158 CUl'lPT1EN 

232 CU!'lPLPAP 
243 CUMPLPEN 

GUINFUPD 233 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

234 GUINFUPD 



( 

( 

October 1976 

Purpose: 

Location: 

Al t. Entry: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

~!!~£;S 

SUBROUTIN E DESCRIPTION 

To read an in put record from the logical I/O unit GUSER . 

Resident System 

GUSER' 

Calling sequences: 

Description: 

Assembly: CALL GUSER , (r eg , len , mod,ln u lI) 

FORTRAN: CALL GUSER (reg ,len,mod , lnum , &rc4 •.• • ) 

Pa ra meters: 

£~g is the location of the virtual memory region to 
which data is to be transmitted • 

• ~a is the location of a halfword (IN TEGER*2 ) inte­
ger in which will be placed the Dumber of Q1~~§ 
read . 

!g9. i s the 
used t o 
If !!.Q!! 
See the 
volume. 

location of a fullword of modif i er bits 
control the action of the s ubroutine. 
is zero, no modif i er bits are specified . 

"I/O Modifiers " description in this 

lny,m is the locat i on of a ful l word integer giving the 
internal representation of the line number that 
is to be read or has been read by the subrou ­
tine . The in ternal form of the line number is 
the external form times 1000, e . g., the i nternal 
form of line 1 i s 1000 , and the internal form of 
line . 001 is 1-

££!L~~~ is the statement label to transfer to if the 
corresponding nonzero return code i s 
encountered. 

Ret u rn Codes: 

o Successful ret ur n . 
4 End - of - file . 

)4 See the "I/O Subroutine Return Codes " description 
in this vol ume. 

All fou r of the above parameters in 
are required. The subroutin e reads 
region specified by £~g and puts the 
bytes) into the location specified by 

the callin g seg ue nce 
a record into the 
length of record (in 
J~Q. If the ]!Qg 

GUSER 235 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Examples: 

236 GUSER 

Octci:er 1976 

parameter (or the PDname modifier) specifies the I NDEXED 
bit , the !nY~ parameter must specify the line number to be 
read . Otherwise, the subroutine will put the line number 
of the record read into the location specified by lnY~ . 

The default FDLame for GUSER is *MSOURCE* . 

There is a macro GUSER in the system macro library for 
generating the calling sequence to this subroutine. See 
the macro description for GUSER in HTS Volume 14. 

This example given in assembly language and FORTRAN call s 
GUSER specifyi ng an input region of 20 fullwords. No 
modifi~r specification is made on the subroutine call. 

Assembly: CALL GUSER , (REG , LEN , HOD , LNUM) 

REG OS CL80 
LEN OS H 
MOD DC F ' O' 
LNUH OS F 

or 

GUSER REG, LEN subr. call using macro 

FORTRAN : INTEGER*2 LEN 
INTEGER REG ( 20) , LHUH 

CALL GUSER(REG , LEN , 0,LNUM , &30) 

3D 



( 

( 

( 

MTS 3: SYSTEM SUBROUTINE DESCRIFTIONS 

October 1976 

SUBROUTINE DESCRIPTION 

Purpose: To obtain the current 4-character signoD 10. 

Locat.ion: Resident Sy stem 

Alt .• Entry: GETID 

Calli ng Sequences: 

Assembly: CALL GUSERID 

A GR 13 save area is not required for a cal l to thi s 
subroutine. 

Values Returned: 

Note: 

GR l contains the 4 character signoD 10. 

FORTRAN users can call this subroutine by 
the ReALL subroutine and specifying GET I D 
entry ~oint, or by calling the subroutine 
for the information item SIGNONID. 

using 
as the 
GllINFO 

GUSER I D 237 



MTS 3: SYSTEM SUBROUTINE DESCEIPTIONS 

October 1976 

238 GUSEEID 



( 

( 

( 

October 1976 

Purpose: 

Location : 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIO NS 

'!Q!! 

SUBROUTINE DESCRIPTION 

IOH is an input/output conversion package that provides 
format-directed input a nd output for 360/370-ass embler 
language programs and programs using the Plot Description 
System. 

*LIBRARY 

Entry Points: IOH has the following entry points : 

Description: 

ROPEN , RC10SE, POPEN , PCLOSE , PCOPEN, PCCLOSE, SERO ­
PEN , SERCLO SE , GOPEN, GCLOSE , LOPEN, LCLOSE, SETFR­
VAR , SETIOHER, DROPI0ER , GETIOHER , OW NCONVR, ACCEPT, 
and IOPMOD. 

For the complete 
seguences , see the 

description of 
section " IOH " in 

10H and 
I'ITS Volume 

its 
5_ 

calling 

10H 239 



MTS 3: SYSTEM SUBROUTINE DESCRI PTIONS 

October 1976 

240 IOH 



( 

r-

October 1976 

Purpose: 

Location: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

S- type (e. g .• , FORTRAN and PL/I) 
and JULGRGTM. 

*LIBRARY 

interfaces for JULGRGDT 

Calling Sequences: 

FORTRAN : CALL JLGRDT (j uldat,grgdat) 

REAL*8 JLGRDT 
date=JLGRDT(juldat,grgdat) 

PL/I: 

CALL JLGRTH(jultim,grgtim) 

COHPLEX* 16 JLGRTH 
time=JLGRTH(jultim , grgtim) 

CALL PLCALL(JLGRDT,f2,PL 1ADR ( ju l dat) ,grgdat); 

DCL PLCALLD RETURNS (FLOAT (1 6 » ; 
date=PLCALLD (JLGRDT,f2,PL1ADR ( jul dat) ,grgdat) ; 

CALL PLCALL(JLGRTM,f2,PL 1ADR (jultim) ,grgtim); 

Parameters: 

i!!l9:.~~ is a full word (INTEGER*4 or FIXED BINARY (31» 
containing the integer number of days start ­
ing with March 1 , 1900 as "1". 

9.~9.g~l is 8 bytes (REAL*8 or CHARACTER (8» into 
which the Gregorian date in the character 
form "I1H/DD/YY" is pl aced on return. 

i!!l:ti!!!. is a full word (INTEGER*4 or FIXED BINARY (31» 
cOLtaining the integer ·number of minutes 
starting with l1arch 1, 1900, at 00:0 1 as "1 1'. 

g:~91;h!!!, is 16 bytes (REAL*8 (2) or CHARACTER (1 6) 1 into 
which the Gregorian date and time in the 
character form "HH/DD/YYhh:mm:OO" is placed 
on return. 

f£ is a fullword (F IXED BINARY (3 1» containing 
the integer 2. 

Values Returned: 

FRO contains the Gregorian date in the character form 
ftMH/DD/YY II for calIon JLGRDT. 

JLGRDT, JLGRTH 241 



~TS 3: SYSTEM SUBROUTINE DESCRIPTI ONS 

October 1976 

FRO and FR2 contain the Gregorian date and 
the characte r form "Ml'I/DD/YY hh: mm: 00" for 
JLGRTM. 

time in 
calls OD 

Description: The Ju lian date or time is passed to JULGRGDT o r J ULGRGTM, 
respectively, and i s converted to the corresponding Gre­
gorian date or time i n character form. The results are 
undefined for dates and times which are non positive or 
greater than 12/3 1/99. 

Examples: FORTRAN: 

The above 
date 259 15 
11, 1971. 

REAL*8 DATE 
CALL JLGRDT(25915,DATE) 

REAL*8 DATE,JLGRDT,DUMHY 
DATE=JLGRDT ( 259 15 ,DUHMY) 

two examples call JLGRDT to convert the Julian 
into the corresponding Gregorian date February 

REAL JULIAN*4 TIM E*8 (2) 
CALL JLGRTM (JULIAN,TIME) 

The above example calls 
and time in the variable 
Gregorian date and time. 

JLGRTM to convert the Julian date 
JULIAN into the corresponding 

PL/I: CALL PLCALL (JLGRDT,F2,PL 1ADR (JU LIAN ) ,DATE); 
DECLARE JLGRDT ENTRY, 

F2 FIXED BINARY ( 31) INITIAL (2), 
JUL I AN FIXED BINARY ( 31 ) INITIAL (2 5915) 
DATE CHARACTER (8) : 

UNSPEC(DATE)=UNSPEC (PL CALLD( JL GRDT,F2, 
PL 1ADR (JULIAN) , DUMMY» : 

DECLARE (D ATE, DUMMY) CHARACTER (8) , 
PLCALLD RETURNS (FLOAT(16», 
JLGRDT ENTRY, 
F2 FIXED BINARY (3 1) INITIAL (2), 
JULIAN FIXED BI NARY (3 1 ) INITIAL(25915) 

The above two examples call JLGRDT to convert the Julian 
date 25915 into the corresponding Gregorian date February 
11, 1971. 

CALL PLCALL (JLG RTM,F2,PL 1 ADR (J ULIAN ) ,TIME ) : 
DEC1ARE JLGRTH ENTRY, TIM E CHARACTER (16) , 

F2 FIXED BINARY (31) INITIAL (2), 
JULIAN FIXED BINARY ( 31) : 

The above exa~ple calls 
and time in the variable 
Gregorian date and time. 

JLGRTM to convert the Julian date 
JULIAN into the corresponding 

242 JLGRDT, JLGRTH 



( 

r 

October 1976 

Purpose: 

Location: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

!!!i~§lQL_!!:!:!!§lQ 

SUBROUTINE DESCRIPTION 

S-type (e_g_, FORTRAN and PL/I) interface for JMSGTDR and 
JTUGTDR. 

*LIBRARY 

Calling sequences: 

FORTRAN: CALL JMSGTD(jms,grgt i m) 

CALL JTUGTD(jtu,grgtim) 

PL/I: CALL P1CAL1(JMSGTD , f2 ,jms , grgtim) 

CALL PLCALL(JTUGTD,f2,jtu,grgtim) 

Parameters: 

j!!!§ is an 8- byte integer (I NTEGER*4 (2) or BIT ( 
64» containing the integer number of micro­
seconds starting with March 1, 1900. 

j t.!! is an 8-b yte integer (INTEGER*4 (2) or BIT ( 
64» containing the integer number of timer 
uni ts starting with March 1 , 1900.. A timer 
unit is 1/256 of 1/300 of a second (13 1/48 
microseconds) • 

9:£9:i:!.!!! is 16 bytes (REAL*8 (2) or CHARACTER (16» into 
which the Gregorian time and date in the 
character form " hh:mm.ssMI1/DD/YY u is placed 
00 return. 

fa is a full word (FIXED BINARY(3 1» containing 
the integer 2_ 

Description: The Julian time in microseconds or timer units is passed 
to JMSGTDR or JTUGTDR , respectively, and is converted to 
the corresponding Gregorian date and time in character 
form . The results are undefined for dates and times which 
are non positive or greater than 12/31/99. 

Examples: FORTRAN: INTEGER*4 JULIAN(2) 
DATA JULIAN/Z000830D 1, Z7477784F/ 
REAL*8 TIME (2) 

CALL JMSGTD (JULIAN, TIME) 

JMSGTD, JTUGTD 243 



MTS 3: SYSTEM SUBROUTINE DESCRIPTI ONS 

PL/I : 

OctobEr 1976 

DECLARE JMSGTD ENTRY, 
F2 FIXED BINARY ( 31) INITIAL (2), 
TIME CHARACTER (1 6), 
JULIAN BIT(64) INITIAL 
(1000000000000 1000001'0000 11 0 1000 10 111 0 1000 

111 0'110 1111 0000100 1111 I B) : 
CALL PLCALL(JMSGTD,F2,JULIAN,TIME): 

The above two examples call JMSGTD to convert the Julian 
time into the corresponding Gregorian time and date 
17:59.33, March 2 1 , 1973. 

244 JMSGTD, JTUGTD 



( 

( 

October 1976 

Purpose : 

Location: 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

~~~QI~RL-~IQQIQH 

SUBROUTINE DESCRIPTION

To convert the Julian time in microseconds or timer units
since March 1 , 1900 to the corresponding Gregorian time
and date hh : mm.ssMM/DD/YY .

*LIBRARY

Calling Sequences:

Assembly : LM O, l , julms
CALL JtiSGTDR

LI1 O,l,jultu
CALL JTUGTDR

Parameters:

is two full words containing the 8 - byte inte­
ger number of microseconds through the given
date starting with March 1 , 1900 .
is two fullwords containing the 8- byte inte ­
ger number of timer units starting wi th March
1, 1900. A timer unit is 1/256 of 1/300 of a
second (13 1/48 microseconds) .

value Returned :

GRO through GR3 contain the Gregorian time and date
in the character form " hh: mm.ssMM/DD/YY ".

Descript i on : The results are undefined for dates which are nonpositive
or greater than 12/31/99 .

Examp l e:

See JHSGTD, JTUGTD for S - type (e . g .• , FORTRAN and PL/I)
interfaces .

Assembly : L"
CALL

O, 1 ,JULl'lS
JI'ISGTDR

STH O, 3 , GREG

J ULHS DC
GREG OS

x ' 000830D1747 7 784F '
CL 16

The above example calls JMSGTDR to convert the J ul ian
in location JUL~S to the corresponding Gregorian t i me
date 17 : 59.33 , March 21, 1973 .

JMSGTDR , JTUGTDR

t i me
and

245

•

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

246 JMSGTDR, JTUGTDR

(

(

October 1976

Purpose:

Location:

MTS 3: SYSTEH SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

To convert the Julian date or time (based on March 1,
19 00) to the corresponding Gregorian date (11M/DO/ H) or
time (~M/OO/YYhh;mm:ss).

Resident System

Calling Sequences:

Assembly: L 1,juldat
CALL JULGRGDT

L 1, jultim
CALL JULGRGTM

L 1, julsec
CALL JLGRSEC

Parameters :

i~!~~1 is a full word containing t he integer number
of days starting with March 1, 1900 as 1'1".

j~!!!~ is a full word containing the integer n umber
of mi nutes starting with March 1, 1900, at
00:0 1 as "111.

j~l§~£ is a full word containing the integer number
of seconds starting with March 1, 1900, at
00:00:0 1 as "1'1.

Values Returned:

GRO and GR1 contain the Gregorian
character form "MM/DO/YY" for calls on

date in
JULGRGDT.

the

GRO through GR3 contain the Gregorian date and time
in the character form "tlH/DD/YYhh:mm:OO" for calls on
JULGRGTH.

GRO through GR3 contain the Gregorian date and time
in the character form "HM /DD/YYhh:mm:ss " for cal l s on
JLGRSEC.

Description: The res ults are undefined for dates which are nonFositive
or greater than 12/31/99. For JLG RSEC , times greater than
03/19/68 03:14:07 req uire all 32 bits of the parameter in
GR1.

JULGRGDT, JULGRGTH, JLGRSEC 2 47

MTS 3: SYSTEM SUBROUTINE DESC~IPTIONS

Examples:

October 1976

See J1GRDT, JLGRTM for S- type (e.g., FORTRAN and PL/I)
interfaces ..

Assembly: L
CALL

1, JLOAT
JULGRGOT

STM O, 1 ,GRDAT

JLDAT DC
GROAt" OS

F ' 25915 '
CL8

The above example calls JULGRGDT to convert the Julian
date 25915 into the corresponding Gregorian date February
11, 1971.

L
CALL
STO

JLTHl DC
GRTIri OS

l, JLTIM
JULGRGTM
O,3,GRTIM

F'374381 10'
CL16

The above example calls JULGRGTM to convert the Julian
date and time 37438110 into its corresponding Gregorian
date and time May 6, 1 971, 16:30: 17.

248 JULGRGDT, JULGRGTM, JLGRSEC

(October 1976

Purpose:

Location:

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

'!s~.!.!!RQ.

SUBROUTINE DESCRIPTION

To perform keyword processing on a character string.
Keyword processing entails searching a character string
for certain specified character strings of the form
"KEYWORD-=value " (and its degenerate forms II keyword " and
" value") and performing an associated program action when
a specified keyword expression is found. Note : This
subroutine bas been superseded in capabilities by the
KWSCAN subroutine that is described in this volume. The
KWSCAN subroutine is recommended for use.

Resident System

Calling Sequences:

Assembly : CALL KEYWRD , (len , lht,ext , text , rht)

Parameters:

The parameters are identical to the first five
parameters of the KWSCAN subroutine.

Return Codes:

o Keywora successfully processed.
4 Error occurred, or a prompting message was issued

and the response "CANCEL " was given.

Description: See the description of the KWSCAN subroutine in this
volume for the complete details of keyword processing .
The KErWRD subroutine performs actions similar to those of
KWSCAN, but with the following differences:

(1) no spelling correction will he attempted;
(2) parenthesized or initial - substring, left-hand side

expressions will not be recognized;
(3) only blanks, and commas not nested inside paren­

theses are recognized as delimiters . The charac­
ter string indicated by text must end with a
blank;

(4) at most one keyword expression is processed by the
subroutine , and 1~~1 is not updated to point to
the end of the text scanned;

(5) all erroneous keyword expressions Froduce output
on *MSINK* and a prompt for replacement from
I1SQURCE;

(6) no case conversion of the input is performed.

KEYWRO 249

MTS 3: SYSTEM SUBROUTINE DESChIPTIONS

Example:

250 KEYWRD

October 1976

The following example illustrates how keyword processing
could be set up for scanning keyword eXFressions in the
MTS $SIGNON ana $DISPLAY commands.

For the $SIGNON command, the keyword options considered
are the global time , page, and card esti mates, the
password, and the print train option. For the $DISPLAY
command, the options considered are the displaying of
registers and a single core location, and the hexadecimal
conversion option.

The first byte in each entry of the left -hand table
LHTABLE gives a displacement to an entry in the right -hand
table RHTABLE. The second byte of the entry gives the
execute index #, . The third byte gives the number of
bytes for the left-hand side of the keyword. The last
entry in LHTAb1E is used for the case of a degenerate
left -h and side (e . g. ,$ DISPLAY GR9).

The first byte in each entry of the right -hand table
RHTABLE gives the entry type. The second byte is the
execute number #2. The third byte is the number of bytes
following which contain further "operations" for Frocess­
ing the entry. The last entry in RHTABLE is for the case
of a degenera.te right-hand side of the keyword (e. g.,$
DISPLAY GRS).

To further explain the function of RHTABLE, consider the
entry TIMRHT for global time estimates. This is a ~ype 4
entry which specifies 5 operations to be performed cn the
right-hand side of the keyword. These operations are
specified in units of 5 bytes each (hence a length of 25
is given), the first byte of each operation specifying the
operation type . Here the first operation tests for a
scale factor '5' and, if found, multiplies the keyword by
1. The second operation tests for a scale factor 'M' and,
if found , multiplies the keyword by 60 to convert minutes
into seconds. The third operation tests to determine if
the global time estimat e is less than 36,000 seconds (10
hours) .. The last two operations perform a mu l tiplication
and division to convert the time estimate into CPU timer
uni ts.

The entry PGSRHT is also a type 4 entry which performs two
operations on the page or card estimate. The first
operation divides the estimate by 1000 to reduce it to an
internal number of pages or cards and the second checks to
determine if it does not exceed 99999 after the division.

The entry PR TRHT is
right-hand side for lPN'
print train requested.

a type
or 'TN'

1 entry which
specifying the

checks
type

the
of

(October 1976

(

(

HTS 3: SYSTEd SUBROUTINE DESCRI PTIONS

The entry DISRHT is entry which contains both type 6
(i ni t i al substring literal) and type 5 (h ex number)
fields . Thi s entry checks the right - hand side for the
initial substrings I PR I or 'GB I (e . 9 . , $DISPLAY G89). If
neither is found , it then assumes a bex number (e . g.,
$DISPLAY 5002A6).

The execute table EXT ABLE contains the actual instructions
or subroutine calls to be made for each keyword expression
successfully mat.ebed . For the $SIGNON command , the
instructions in EXTABLE store informatioD from GR ' and GRZ
into spec i fied locations (e . g ., storing the global t i me
estimate i n CPU timer units into the location GLOBTIME).
For the $DISPLAY command, the instructions are either for
setting one switch or calling a subroutine to set t wo
switches .

The short program given scans a $SIGNON or $DISPLAY
command calling the KEYWRD subroutine for each keyword
expression found in the com~and . The loop defines a
keyword as beg~Lning with the first nonblank character
following a blank character . Note that for the case of
U$SIGNON XXXX T=30S P=100 C= 100 PRINT=TN", the call to
KEYWRD for XXXX will cause an error ret urn frOID the
subroutine which will be ignored. by the calling program.

LA 6,81
LA 7,TEXT-l

OUTLOOP LA 7, 1 (7)
CLIO(7),'
SHE OUTEND

INLOOP LA 7,1(7)
CLIO (7) ,'
BE IN END
CAL L KEY WRD, (LH TLEN , LHTA BLE , EXTABLE , (7) , RHTABLE)
B OUT LOOP

INEND BCT 6,INLOOP
B •• S

OUTEND BCT 6 , OUTLOOP

TEXT DS
DC

LHTABLE DC
DC
DC
DC
DC
DC
DC
DC

80C
C'

ALl (TIMRHT-RHTABLE,0,4) , C'TIME'
ALl (TIMRHT -RH TABLE ,Q,l) , C IT'
ALl (PGSRHT - RHT ABL E,4 , 5) , C'PAGES '
AL l (PGSRHT-RHTABLE,4,2) ,C'PP'
ALl (PGSRHT-RHTABLE,4,1) ,C'P'
AL1 (PGSRHT-RHTABLE,B,5) ,C'CARDS'
AL1 (PGSRHT-RHTABLE,8,1) ,C'C'
ALl (PWRHT- RHTABLE ,1 2,2) ,C'PW'

KEYWRD 251

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS

October 1 9 7 6

DC AL l (PRTRHT - RHTABLE ,16 , 5) , e ' PRINT '
DC AL 1 (NOR HT - RHTABLE , 2 2 , 3) , C ' FRS '
DC AL l (NORHT - RHTABLE , 26 , 3) ,e ' GRS '
DC AL l (NORHT - RHTABLE , 30 , 3) , e ' HEX '
DC AL l (NOR HT - RHTABLE , 34, 5) , C ' NOHEX '
DC AL 1 (DlSRHT-RHTABLE , 38 , 0)

LHTEND EQU •
LHTLEN DC Y (LHTEND - LHTABLE)

RHTABLE EQU •
Tl MRHT DC ALl (4, 0,25) , C ' S ' , AL4 (1) , e ' ~jI , AL4 (60)

DC C ' < ' , FL4' 36000000 ' , e ' * ', AL4 (768)
DC C ' / ' , AL (1 0)
DC X ' FF '

PGSRHT DC ALl (4,0 ,1 0) , e ' / ' , AL4 (1 000) ,C'(', AL 4 (99999)
DC X' PF '

PWRHT DC AL l (3,0, 1, 6)
DC X' FF '

PRTRHT DC AL l (1, 0,2) , C ' PN '
DC AL l (1 , 0 , 2) ,e ' TN '
DC X ' FF '

DlSRHT DC AL l (6 , 0 , 2) , C ' FR '
DC AL l (6, 4, 2) ,C ' GR'
DC AL l (5 , 8 , 0)
DC X' FF '

NORHT DC AL 1 (7, 0 ,0)
DC X' F F'

EXTABLE ST 2,GLOBTlME +0

/I ST 2 , GLOBPAGE +"
ST 2 ,GLOBCARD +8
STM 1, 2 , PASSWORD + 12
MVC PRNTTYPE (2) , 0 (2) +1 6
8 AL 5 , DI SFRS +22
BAL 5,DISGRS +26
0 1 DMPSW 1, X ' Ol' +30
01 DMPS W1 , X' FF '-X ' 0 1' +3"
MVI DMPSW2,8 +38 + 0
MYI DMPSW 2,1 2 +38 +4

8 'L 5 , * +4 +38 + 8

ST 2,ADDR
MVI DMPSW2 ,1 6
BR 5

DlSFRS 01 DMPSW 1, X' 40 '
DIS REG MVI oMPSW2 , 20

BR 5
DlSGRS 01 otJPSW 1, X '20 '

B oISREG

252 KEY WRD

(

(

(

October 1976

Purpose:

Locat ion :

MTS 3 : SYSTEM SUBROUTINE DESCRIFTIONS

.!5~§£~!i

SUnnOUTINE DESCRIPTION

To perform keyword processing on a character string .
Keyword processing entails searching a character string
for certain specified character strings of the form
"keyword= value " (or the degenerate forms , "keywo rd " and
" value ll) and performing an associated program action when
a specifi ed keyword string is found.

Resident System

Calling Sequences:

Assembly: CALL KWSCAN , (len,lht , ext , text,rht , ltext , s ws,
rvec,dlist , slist)

Parameters :

i s the location of the half word l ength of t he
table of valid keyword left-hand s id es indi­
cated by .lb.!.
is the location of the table of valid keyword
left-hand sides (see "Description" below for
the form of its entries) .
is the location of the e%ecute ta ble , a set
of instructions selectively execut ed depend­
ing on the keyword that was fo und in the
input string (see " Description " below for a
discussion of its form and use).
is the location of the c haracter strin g to be
processed fo r keywords.
is the location of the table of vali d keyword
I"ight-hand sides (see "Descripti on " below for
the types and fOI"ms of its entries).
is the location of the halfword length of the
string refeI"enced by !g~t~
is the locat i on of a fullword of bit flags
that define the behavior of the keyword
scanner. See "Subroutine Options " belcw fOI"
detai l s .
is the location of a 27 -w OI"d retU I"n vectoI" ,
or zero. It i s optionally used to r eturn
eI"rOI" in format ion from the s ubro ut ine. If
~yg£ is ze r o, no erI"OI" information is
I"eturned. See II Su broutine Opt i ons " below fOI"
the for~ of and control over the infor mation
returned.
is the location of an optiona l set speci fying

KIiSCAN 253

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS

Return Codes:

October 1976

the characters to be considered as keyword
expression delimiters . See II Subroutine
OI-tionsll below for the specification of the
set.
is the location of an optional set of charac ­
ter strings to be considered as separators of
keyword expression left - and ri9ht - hand
s~des. See " Subro utine options " be l ow for
toe specification of the set.

o Keywords s uccessfully processed .
4 "CANCEL " response given in reply to prompt for

replace~ent of incorrect input , or other errcr in
keyword processing~

Description : The KWSCAN subroutine scans the given character string for
valid keyword expressions as defined by the subroutine
parameters . When a valid keyword expression is fo und, the
calling progrc.m is given the II value", if any , of the ex­
pression, and the opportunity to perform processing per ~
tinent to the keyword function .

•

254 KWSCAN

Conceptually , every keyword expression has a left - band
side and a right-hand side, the left- hand side constitut­
ing the keyword portion of the expression, and t he
right - hand side defining tbe expression ' s " value !! . Phys ­
ically , either , but not both, of ~hese may ce absent along
wi th the associa tive character 11=" , yielding three possi­
ble keyword expression forms: IILHSide=RHSide ll , 1I1HSidell ,
and " RHSide" .

The left - hand side keyword and right - hand side values to
be recognized in the i nput string are specified i n the
tables indicated by !hi and rhS . Whereas keyword r i ght­
hand sides can be any of a fixed number of different
types, ranging from arbitrary strings to decimal numbers ,
left - hand sides , being keywords, can only be given charac­
ter strings. The text of the left- band sides , and their
associations with right - band sides , are specified in the
left-hand table , pointed to by !hS. The forms of the
right- hand siaes are specifi ed in the right-hand table ,
indicated by ~hl.

Keyword expressions are scanned for as follows . 1he input
string is searched from left to right for a substring
bounded at the right and left extents by celimiter
characters (the beginning and the end of a string a r e a l so
considered delimiters). The s ubstring text , up to t he
embedded 11 = 11 (or the entire s ubstring if no " =" is
present) , is then compared to left- hand side text entries
i n the left - hand table . If no left-hanc side match is

(October 1976

(

(

MTS 3 : SYSTE M SUBROUTINE DESCRIPTIONS

found there, the s ubstring i s not considered a valid
keyword expression and an error return is made. If an
entry is found to match , tbe right- hand table i s scanned
beginning at a displacement specified in the left-hand
table entry that matched the keyword expressi on ' s left­
hand side. The text to the right of the 11 = 11 in the
substring unde r consideration , the right - hand side , is
then checked to see if i t matches tbe right-hand side
forms gi ven by successive right-hand table entries. If it
is of one of the given forms, the substring is considered
a valid keyword expression , and a match takes place.
Otherwise , the expression is Dot valid .

When a keyword expressi on is matched , the general regis­
ters are set up to contain information pertaining to the
key word e xpression (s uc h as t he keyword right-hand val ue).
A single instruction in the table of instructions indi­
cated by ~~~ , specified by the sum of two di splacements
contained i n the matching left- and right-hand table
entries, i s performed by an EX in struction . The calling
program can thus perform an action associated with the
given keyword , such as saving the value of the right - hand
side. If more than one instruction is needed for t he
action, the s ubject of the EX instruction should be a BAL
or BALH instruction to a perti nent internal su broutine. A
return from th1s subroutine should be eventually made . If
the return is made to the instructi on specified by the
contents of the li nk register, keyword processing will
proceed normally (according to the options defined i n the
full word indicated by §'~2) _ If a ret.urn is mad e to two
bytes past the link register contents , the match to the
keyword expression is rejected, and a scan for an altern­
ate right-hand side match resumes after the right-hand
table entry which matched previousl y. If the return is to
16 bytes past the cont.ents of the link register , all
keyword processing is aborted immediately and a return
code of 4 is issued by the KWSCAN subroutine .

If text appears in the input str ing that does not match
any of the defined keywords, various act i ons may be taken ,
depending on the subroutine options . One option is to
generate an error message on *MSINK*, followed by a
prompt, i f the subroutine is not being used in batch mode ,
for corrective input from *MSOURCE* . If this option is
selected , the prompted i~put does not replace or modify
the contents of the original string in error , but is
processed separately. Other options include spelling
correction of tbe invalid text. See the section "Subrou­
tine Options" below .

When the keyword input string contents are ex hau sted , or
the keyword scan otherwise terminates, the subroutine
returns with tbe return code set.

KWSCAN 255

MTS 3: SYSTEM SUBROUTINE OESCfiIPTIONS

October 1976

Format of Left - Hand Table Entries :

Left - hand table entries , defining the keyword left - hand
sides , are 3+N or 5+N bytes in length , where N is the
number of c haracters comprising the left - hand s i de key­
word. The format is:

1 or 2 bytes - right- hand table i ndex. This i s the dis ­
placement into the right - hand table where
the associated right - hand side entri es for
this left - hand side can be found.

1 or 2 bytes - execute-ta ble index . This is the partial
displacement into the execute tabl e wbere
an instruction associated with a match t o
this left-hand s i de is located.

1 byte count of number of characters in t he l eft ­
ba nd side.

N characters the text of the left-hand side keyword .

The rigbt - hand table index and execute - table i nde x values
are two bytes in length if bit 27 of the §~§ parameter i s
one . The number of characters comprising the left-hand
side text may b~ zero, implying a null left - hand side
(i .. e ., the deger.erate form I RHSide ") .

Right-Hand Side Type Codes :

256 KWSCAN

The right-hana side types fall into t wO distinct classes :
those which define the forms which a keyword right - hand
side may tak~ , and those affecting the scanning of the
right- and left - hand tables for keyword matches (control
codes). They are dealt with separatel y below .•

hex FF

hex FE

hex FO

hex FC

Termina te
Forces the
fai l.

search of
scan for a

right-ha nd table.
keyword match to

Abo r t right - hand table search . Forces the
keyword scanner to reject the match cf the
key word ' s left - band Si de , and to continue
scanning for an alternate match to t he
left - band side follo wing the point in the
left - hand table at which the previous left ­
hand side match was found .
Process parenthesized right - hand sides.
Causes the current keyword expressi on ' s
right-hand side to be treated as a Faren ­
thesized list of r i ght - hand sides if such a
list appears (e . g., INFO= (SIZE , TYPE) would
be processed as i f INFO;SIZE ,INFO=I YPE had
been gi ven) •
Separator filter . Used in conjunction with

October 1976

(

l'ITS 3 : SYSTEM SUBROUTIN E DESCRI PTI ONS

bits 20 - 2 1 of the §.~§. parameter (see " Sub ­
rout i ne Options " below) to provide a barri ­
er to keyword expressions depending on the
character string connecting the keyword
expression ' s left- and right-hand sides.
If the connecting string is not in the set
defined by information following tbe type
code, the expression is considered i nval id
a t this point .

The remaining types follow .

1

2

3

4

5

6

7

8

9

Li teral
ma tched
string.

Characters .
against a

The right-hand side is
specified character

PDname. The
as an MTS
FDnames, and

right-hand side is i nterpreted
FDname , or concatenation of
an PDUS is acquired for it .

Characters . Tbe right-hand side i s taken
as an arbitrary character string , Fcssibly
subject to minimum and maximum length
restrictions.

hTS Line Number . The right-hand side i s
interpreted as an optionally signed decimal
number of maximum 6 integral digi t s and 3
tractional digits followed by an optional
scale factor, and then multiplied by 1000
to remove any fract i onal digits.

Hexadecimal Number. The right-hand side i s
interpreted as a hexadeci mal number , max i­
mum of 6 hex digit s .

Initial substring Literal. The right-hand
~e xt must begin with a specified s trin g of
characters .

No Right -Hand Side. No
be given in the keyword
only the degenerate
accepted) .

right-hand side may
expression (e .. g.,
form "LHSide " is

Ignore Key word . The entire keyword expres­
sion is ignored . No ins~ructions in the
execute table are performed .

Characters in Given Set . The c haracters
constituting the keyword expression right-

KWSCAN 257

8TS 3: SYSTEM SUBROUTINE DESCRIPTIONS

10

11

12

13

,.

15

16

17

258 KWSCAN

October 1976

hand side must all be members a given set
of c ha racters.

Characters Except in Given Set. The char­
acters constituting the keyword expres ­
sion's right-hand s ide may n ot contain any
of the characters in a given set.

Optiona lly Negated Cha racte rs . Sam e as the
characters (3) type , but a preceding negat-
1ng prefix (one of "_II , II~ I I, liND", or "Nil)
is allowed. Different execute - table
instructions may be performed , depending on
wh ether the negating prefix wa s found.

Opt ionally Negated Literal. Same as the
li tera l characters (1) type , with addition­
al features of type 11 .

Optionally Negated Initial substring Liter ­
al. Same as the initial substring literal
(6) type, with additional features of type ,,.
Delimited Character s tring. The right - hand
side value is inte rpreted as a character
string initiated and terminated by a string
delimiter character in a set defined by
information in the right - hand table entry.
Doubled instances of the string de l imite r
are compressed into a single instance of
the delimiter . A maximum and minimum
length o f the resultant string may be
defined. The resultant string length must
be l ess than 128 characters.

In teger Number. The right-hand side value
may be an integer number consisting of an
optional sign fo llow ed by at most 9 decimal
di gits , a nd po ssibly followed by a scale
factor character.

Flagged Hexadecim a l Number. The right - hand
s ide value is interpreted as a hexadecimal
number of 8 digits maximum , expressed in
the form Xl numbert.

Floating-Point Number. The right - hand side
value is interpreted as a FORTRAN - style
long real n u mber, opti onally followed by a
scale factor.

(

(

(

October 1976

18

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

PAR Field.
tak.en as the

The right-hand side value is
remainder of the input string.

Formats of Right-Hand Table lntries :

£Q!l!!:Ql £QQ.~

hex FF
hex FE
hex FD
hex FC

1 , , ,
1

N

byte XIFFI
byte XIF E I
byte XI FD I
byte XIFCI,
byte containing the number of bytes fol­

lowing (N),
bytes ordinal positions of the seFarators

in the list passed as the §l!§~
parameter, or implied by sws bits 20
and 2 1 having the value:--Ol (see
"Subroutine Options" below) with
zero indicating no separator (a
degenerate keyword expressicn) . If
the separator is not in the set
described by the given N bytes, the
keyword expression is considered
inv alid.

Noncontrol right-hand table entries are of the format:

1 byte
1 byte
, byte
N bytes -

type code ,
execute table index,
number of bytes following (N),
variable information, dependent
code, described below .

upon type

Right-Hand Side Type Information:

Literal (1)

FDname (2)

Character (3)

The N characters of
string.

the literal

Either N=O, in which case any FDname
is accepted , or N=1 and the letter N
must follow, in which case no FDnames
specifying implicit concatenation are
lIatched .

N is 0, 1, or 2. If N=O, an y charac­
ter str i ng is accepted . If N=1, ODe
byte of informatioD is gi ven contain­
i ng the maximum permissible length of
the character string . If N=2, two
bytes of information should follow,
respectively giving the minimum and
maximum permiSSible lengths of the
string .

KWSCAN 259

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

260 KWSCAN

October 1976

MTS Line Nu mber (4) N must be an integral multip l e of 5.

Hex Number (5)

Initial Substri ng
Literal (6)

No Right-Hand
Side (7)

Igno r e (8)

A series of N/5 operati ons are per­
formed on the value of the Dumber.
The operat i ons are specifi ed by a
1-character operation code fo llowed by
a 4-byte unaligned integer o perand
associated with the operation code .
The operations are applied in the
or der in which they appear.

The right - hand s i de value has
been mul t iplied b y 1 000 at the
the first operati on.

The operat i ons are:

already
time of

Opcode 11) 11: the right -ha nd s ide val ue
is compared to the operand
val ue . If the right - hand
s i de value is less, tbe
right-hand side match
fa i ls.

opc ode " (" : the r ight- ha nd side val ue
is compared to t he operand
value. I f the right-hand
side value is greater , the
right-hand side match
fails.

opcod e 11 * 11: the right -hand si d e value
multiplied by the operand
value.

Opcode II /"! the right- hand side val ue
is divided by the operand
value.

Any other opcode : the operat i on code
character is interpreted as an option ­
al scale factor , which, if present at
the end of the right - hand side value,
causes the value to be multiplied by
the ope r and value .

N should be zero .

N characters constit ut i ng the text
that must be an init i al s ubs tring of
the right -hand s i de text are given .

N should be zero.

N should be zero.

(October 1976

(

(

Characters in
Given Set (9)

Characters Except
in Given set (1 0)

Optionally Negated
Characters (11)

Optionally Negated
Literal (1 2)

Optiona l ly Negated
Initial S ubstring
Literal (13)

Delimited Character
string (14)

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

2 bytes defining the minimum and
maximum permissible lengths of the
right-haLd side text are given, fol ­
lowed by N- 2 characters that const i­
tute the set of which each character
of the right - hand side must be a
member .

2 bytes defining the minimum and
maximum permissible lengths cf the
right-hand side text are given, fol ­
lowed by N- 2 characters that are for­
bidden to be present in the right-hand
side text .

N is either 1, 2, or 3. In all cases ,
a Single byte giving the right - hand
table execu te-table index used in the
case a negating prefix is found, is
given. If N=1, the character string
may be of arbitrary length . If N=2 ,
one further byte containing the maxi ­
mum permissible length of the charac­
ter string must be present. If N=3 ,
two further bytes containing , respec­
tively, the minimum and maximum per ­
missible lengths of the right-hand
side string must be present. In all
cases , the lengths do not includ e the
negating prefix , if present.

N bytes of information follow, con­
sisting of a 1- byte execute- table
index used in the case a negating
prefix i s found , followed by N- 1 bytes
of characters comprising the literal
text of the right -hand side.

N bytes of information follow , con ­
Sisting of a 1-byte execute - table
index used in the case a negating
prefix is found, followed by N-1 bytes
of characters constituting the text of
the initial substring of the right­
hand side text .

The information contains 2 bytes
defining the maximum and minimum Fer­
missible number of characters, exclud ­
ing the string delimiter characters ,
in the string. Following this is a
set of N-2 characters , any of which
may delimit the character string .

KWSCAN 26 1

MTS 3: SYSTE ~ SUBROUTINE DESCRIPTIONS

October 1976

Integer Number (15) The information is identical to the
information associated with the MTS
Line Number (4) type, but the number
is not multiplied by 1000 prior to
application of the s~ecified
opera tions .•

Flagged Hex
Number (1 6)

Floating-Point
Number (1 7)

PAR Field (1 8)

N should be zero.

The information is similar to that for
the HTS LiDe Number (4) type, differ­
ing in that the operand values are
unaligned long floating - point numbers,
and therefore the entries are 9 bytes
in length . The right - hand side value
is not multiplied by 1000.

N should be zero.

General Register Values When Execute InstructicD i s Performed:

262 KWSCAN

!!ighl.:!!S!!!g lye~

Literal (1)

rDname (2)

Characters (3)

GR 1: Length- l of the right - hand side
string .

GR2: Addre ss of the first character
of the string.

GR2 : rOUB pointer for the r i ght - hand
s ide rOname.

As for type ,.

HTS Line Number (4) GR2: Value of the number times 1000,
and as altered by any
operations in the matching
r i9ht-hand table entry.

Hex number (5) GR2: The hex number , right justified.

Initial Substring
Literal (6)

No Right - Hand
Side (7)

Ignore (8)

Characters in
GiVen Set (9)

As for type 1.

No registers are set up .

No instruction is executed.

As for type ,.

(

October 1976

MTS 3: SYSTEH SUBROUTINE DESCRIPTIONS

characters Except As for type 1.
in Given Set (10)

Optionally Negated
Characters (11)

As for type 1, but any negating prefix
is not indicated.

Optionally Negated As for type 11 .
Literal (12)

Optionally Negated As for type 11.
Initial Substring
Literal (1 3)

Delimited Character
String (' 4)

As for type 1 , except
delimiting characters
indicated.

tha t the string
are not

Integer Nu mber (1 5) GR2: Value of the number as altered
by the right-hand table

Flagged Hex
Number (1 6)

Floating - Point
Number (17)

PAR Field (1 8)

opera tion s.

GR2: Value of the hex number, right ­
justified.

FRO : Value of the right - hand side as
altered by the right - hand table
operations.

As for type 1.

In addition, GR3 always contains a logical index into the
left-hand table to indicate which entry matched the
keyword expression ' s left - hand side . The index i s in the
form of 4* (ordi na l position 1l of the entry in the
left-hand table . GR 1S contains the address of the
executed instruction in the execute table.

The remaining registers are set to their values at the
time of the subroutine call (see "Subroutine OFtions",
bits 20 - 22, for possible exceptions to this). An y regis ­
ters in the GR 1-GR2 range unused by a right-han d side type
are not restored to their values at the time of the
subroutine call.

Subroutine options:

The bits of the fullvord indicated by the §~§
define the subroutine behavior options. The
their associated effects are given below.

parameter
bits and

KWSCAN 263

MTS 3: SYSTEM SUBROUTINE DESCliIPTIONS

1 5

16-17

18

264 KWSCAN

Octcter 1976

1 Rather than leaving the pertinent right­
hand side values in the general registers
and executing a single instruction i n the
execute table , the ~!1 parameter is inter ­
preted as the address of a subrcutine which
is passed the register contents as parame­
ters. The subroutine should obey OS type I
(S) calling conventions. The parameters
~assed consist of :

11

1 word sum of left - and right-hand table
execute indices , , word GR ' contents,

1 word - either contents of GR2 if not an
address , or address of the first
element of an array containing the
inforllation indicated by GR2 if it
is ,

1 word GR3 value, , word GR" value (see bit 22 , below) ,
1 word GR5 value (see bit 23 , belcw).

A return code of 0 from this subroutine
wil l cause the keyword ma t ch to be
accepted; 4 will cause the match to be
rejected; 8 will cause the scan for key ­
words to be aborted .

Spe lling correction of left - hand sides i s
performed (see the description of the
SPELLCHK subroutine in this volume) . Veri­
fication of the correction is reguested if
the subroutine i s being invoked i n ccnver­
sational mode. If in batch mode, the
correct i on is never performed.

0 1 Spelling correction is performed as abo ve,
but no verif i cation is requested , only a
warni ng message is i ssued .

00 No spelling correction is attempted .

1 The return
l'arameter is
manner:

vector indicated by the ~y~£
formatted in the following

1 word -
26 words

error code, listed below ,
variable information, dependent
upon error code :

(October 1976

o

1 9 1

o

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS

1 " CANCEL" given in response to
prompt for corrective input . No
fUrther information is returned.

2 Invalid keyword expression .
Information returned:

1 word - address of first char.
in invalid expressicn,

1 word length of bad expression ,
1 word length of error comment

pertaining to bad
expression,

23 words - text of error commEnt .

3 Keyword processing aborted by
e xecut e code return. No further
information returned.

10 Invalid right-hand side type in
right-hand table. The address of
the invalid entry is returned.

11 Invalid format of right-band table
entry. The address of the
invalidly formatted entry is
returned.

12 Invalid format of separator list.
The address of the invalidly
formatted entry is returned.

30 Internal error.
3 1 Internal error.

The return vec to r ind icated
parameter i s formatted in
manner:

by
the

the !:y~£
fcllowing

1 word address of invalid keyword
expression,

1 word - length of error comment ,
25 words - text of error comment.

This format is only used if an erroneous
keyword expression is encountered. In all
other cases , no information is returned.

Keyword expression left - hand sides may be
parenthesized (e. g., keyword expressions of
the form (EXP1,EXP2, ••• ,EXPN) =value are
processed as being equivalent to Exp 1=
value,EXP2=value, ... , EXPN=value).
Keyword expression left-hand sides are not
processed specially if parenthesized.

KWSCAN 265

rtTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

20 - 21

22

266 KWSCAN

11

October 1976

The §1!§~ parameter indicates a special set
strings which separate keyword eXFression
left - and right-hand sides, in li e u of the
standard 11 =11 (e.g .• , " (_II could be defined
as a se par a tor, making ex F res sions
II LHSide(-value" valid). The format of the
§1!§! set is:

1 byte

(1 byte
N bytes

number of separators to be
defined,

- length of separator,
text of separator) repeated
each separator.

If this option is selected, at the time the
executed instruction is performed , GR5 con ­
ta i ns an indicator of which sepa r ator was
found in the keyword expression, in the
torm of 4* (separator's ordi nal position i n
the list) wi th 0 indicating that no separa ­
tor was found (i. e., a degenerate keyword
expression) •

01 The §1!§~ parameter need not be specified ,
but a relational set of separators are used
as if the §1!§1 parameter had speci f i ed

in the presented order. GR5 is also set up
as described above.

00 Only 11 = " is a valid separator character ..

1 The ~li§! parameter indicates a set of
single cbaracters to be considered as de ­
limiti ng cha r acters in keyword expressions.
Additionally, a context is def in ed wi th
each character, specifying a context in
which the character is to be consi dered a
ael i miter. The format of the set i s:

1 byte - number of delimiters to be defi ned
(1 byte - delimiter character ,
1 byte - context: 0 for balanced

parentheSiS context,
1 for all contexts),

repeated for eacb delimiter
defined in the set .

If thi s opt i on i s selected, at the time the
executed instruct i on is performed, GR4 con­
tains the address of the right s i de delimi­
ter character in the keyword expressi on.

o The only val i d del i miters are tbe blank in

October 1976

r

(

23

2 4

25

26

27

28

29

3 0

3 1

1

o

1

o

1

o

1

o

1

1

o

1
o

1

o

HTS 3: SYSTEM SUBROUTINE DESCRI PTI ONS

al l contexts , and the comma when not nested
i nsi de parenthe ses .

Keyword left - hand sides may be gi ven as
~n itia l substrings of the left -hand side
texts defined in the left - hand table .
Keyword left - hand sides must be Fr esented
exact l y as i I. the left - hand table .

The contents of the !~!! parameter wi ll be
updated to i ndicate the delimi ter at the
end of the last keyword processed.
!~ ~! i s not u pdated .

Reserved; should be zero .

Convert all keyword input to uppercase ,
including prompt input _ Translation to
upperc a se and subsequent pr ocessing is per ­
formed upon a copy of the input text, Dot
the i np ut text itself .
Leave all input as is.

In the left - hand table , the
ta ble and execu te table indices
bytes.
The above en t r i es occ upy 1 byte.

ri ght - hand
occupy 2

Retu r n to the ca l ling program on t he f i rst
invalid keyword expression encountered .

prompt user for corrections if invalid
expr essions are fo und.
Do not prompt user for correct i on.

Pr i nt e r ror comments o n *dSI NK* .
Do not pri nt er r or comments, return t hem in
the ~y~£ ret urn vector.

Process all keywor d expressi ons unti l the
input string is exhausted .
Process a s i ngle keyword expressi on only .

The remaining b i ts should be zero.

KWSCAN 267

MTS 3: SYSTEM SUBROUTINE DESCRI PTIONS

Examples:

268 KWSCAN

October 1976

A series of examples are presented, in increasing order of
complexity. The first example mimics the processing of
some of the options of the MTS $SET command, namely:

ENDFILE=ON, ENDPILE=OFF, ENDFILE=NEVER
LIBSRCH=OFF, LI BSRCH=FOname
SHFSEP=c
TIME=xxxx, TIME=xxxxS, TIME=xxxxM
RF=<hex number>, RF=GRxx

CALL KWSCAN , (LHTL,LHT,EXT,STR,RHT,STRL,SWS,O)
•
* Since SWS does not selec t the options requiring the
* 01IST and SiIST parameters , they need not be given .
•
LHT

RHT
ENOl"

LIBS

SHFS

TIME

RF

LHTL

EXT
ENOFE

LIBSE

SHFSE
TIMEE
RFE

EQU
DC
DC
DC
DC
DC
EQU
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

EQU
MVI
MVI
MVI
XC
ST
MVC
ST
ST

•
ALl (ENOF - RHT,ENDFE - EXT,7) ,C' ENDFILE'
AL 1 (LIBS - RHT,LIBSE-EXT, 7) ,C'LIBSRCH'
ALl (SHFS - RHT,SHFSE - EXT,6) ,C'SHFSEP'
AL l (TIME - RHT,TIMEE - EXT,4) , C' TIME '
ALl (R F- RHT , RFE-EXT,2) ,C'RP'
•
AL l (1, 0,2) ,CION' ENDPILE=ON
AL l (1, 4,3) ,CIOFFI ENOPILE=OFP
ALl (1, 8,5) , C'NEVER' ENDFILE=NEVER
X' FF'
AL l (1,0,3) , CIOFF I
ALl (2,6,1) ,C'N'
X'F F '
AL l (3,0,2,1 ,1)
X' FP'
AL l (4, 0 ,1 5)
C' > ',P L4 ' 0 '
C'M ', FL4 '6 0 '
C' S ',FL4'"
C'*', FL4 ' 768 '
C' / ', FL4 '1 0 '
X, FF'
AL 1 (5,0,0)
AL l (6,4,2) , C' GR '
X' FF'
Y (RHT - LHT)

•
ENOFF, 1
EN OFF, 2
ENDPF , O
PDUB,FOUB
GR2,FOUB
SHFSEP (1) ,0 (G R2)
GR2,TIMEVAL
GR2,RFVAL

LIBSRCH=OFF
LIBSRCH=<FOname>

SHFSEP=c

Hake sure
TIME=xxxH
TIME=xxxS

it's >0

Convert to timer units

RF=xx](xxXXX
RF=GRxx

Set ENDFILE type code

Zero FDUS signifies OFF
Save fdub
Save new SHFSEP char
Save TIME value
Save hex value

(October 1 976

(

BAL

•
CH
BNH
CH
BH

•

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

GR 15,*+4

GR 1 ,=H ' 1 '
2 (, GR 15)
GR 1, =H ' 3 '
~ (, GR15)

Hake this a subroutine
for GRxx case

-) no xx piece

-) more than just xx

* Now can process value (~uch om i tted here)
•

BR Ga 1S

SWS DC XL4 ' OOOOC027 ' Correct spell i ng, print ,
• prompt , multip l e
• keywor ds , uppercase
ENDFF OS X
SHFSEP OS C
STR OS Cl80
STRL OS H
rOUB OS A
TIHEVAL OS F
RFV AL OS A

KWSC AN 269

MTS ~ : SYSTEM SUBROUTINE DESCRIPTIONS

,- ----- -
J

J

l;!!I!!:I~~=Qn:
J
J

October 1976

I Right-Hand Table Index r-r-- T-- -,

J ,----- ----.;..J 1 I 0 J 2 I ON I
J (BaSe for ENDFILE Table) r--+---+----+------~
J I 1 I 4 1 J 3 I OFF J

J J--+-+-+--+- -~
J J 1 I 8 1 I 5 I NEVER I
I J--t- I ' ~-- .J

I I FP I I
I L---' I
I I
I I
I Execute Ta ble Index '2 (+4) I
I ~-- - - -- ----~

I I
I I
I J ~------.
I I I ttVI ENDFF ,1 I Execute Inst. for ENDFI LE=ON
J I I-- j
I I---~ I MVl ENDFP,2 I Execute Inst. for ENDFILE=OFF
I J I--- ----j
I I I I1VI ENDFF,O I Execute Inst . for ENDFILE=NEVER
I I ~--------,
I I ~!g£glg ~~Blg
I I
I J
I I Execute Table Index .1 (BaSe for ENDFILE Table)
I I
I I
J r-+--'-+-~ ---,
'-~ l I I I I 7 I ENDFILE I

J--+--+---t------j
I I I 7 I LIBSRCH I
J--+---+---+-- ---I
I I I 6 I SHFSEP J

J---+---+--t------j
J I I 4 I TI ME I
I---+---+---t------j
J I I 2 J RP I
~--'-' ------'--- ----~

The diagram above illustrates the resultant processing for ENDFI LE=OFF.

27 0 KWSCAN

(

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

The second example draws from tbe MTS $FILESTATUS command. It
processes:

NAME=filename , filename
HEADING=ON , HEADING=OFF, HEAD, NOHEAD
OUTFORM=COL ••• , OUTFORM=KEY .o., OUTFOR~=LABEL.~.,
OUTFORM=PACK • •• , COL •• • , KEY •• . , LABEL •• • , PACK •.•
SI ZE>=x , SIZE<=x , SIZE=x, SIZE<x, SIZE>x,
SIZE>=xP, SIZE<=xP , SIZE=xP, SI ZE<xP , SI ZE>xP

(This is a small subset of the parameters of the
$FILESTATUS command)~

MVI NAMEF , O Ini t ialize flag
TRYAGAI N CALL

LT"
BZ
CLC
BE
CLC
BNE

KWSCA N, (LHT1. , LHT , EXT, STR , RHT, STRL, SWS , RVEC)
GRls,GRls
OK -> All o k
=F '1' , RVEC
ABORT
=p ' 3 ' , RVEC
VERYBAD

- > User said to CANCEL it

- > Unexpected return code

LHTL

LNT

"NT
HEAD

SIZE
•
•

NAME

JUNK
OUTF
•
•

SERCOI'l ' TRY AGAIN.'
B TRY AGA IN - > Sic

DC

EQU
DC
DC
DC
DC
DC
EQU
DC
DC
DC
DC
DC

DC
DC
DC
DC
DC
DC
EQU
DC

DC

DC

Y (RHT-L HT) Length of left-hand table

•
ALl (JUNK - RHT , O, 7) ,C ' OUTFORM '
AL 1 (H EAD- RHT , HEADE- EXT , 7) ,C ' HEADING '
AL1 (NA~E - RHT,NAHEE-EXT , 4) ,C ' NAME'
AL l (SIZE-RHT , SIZEE - EXT , 4) ,e ' SIZE '
AL1 (JUNK - RHT , O, O) Null left -hand s ide
•
X' FC ' ,AL1 (1, 6)
AL l (1 , 0 ,2) , C' ON'

Onl y let thro ugh
HEADING =O N

"= "
AL1 (1,4,3) , C'OFF HEADING=OF'F
X' FF '
X' FC',AL 1(s ,1, 2 , 4 , s , 6) Don ' t let null left­

hand s i des or SIZE~=xxx

AL1 (4, 0 , 5)
C ' P ', FL4' 1'
X' FF'
X'FC ', AL 1 (.1, 6)
AL1 (3 ,0, 2 ,1,17)
X'F r'
•

through here
SIZE (>=,<= , > , <, =)xxxP

Only let through "="
NAME=< 1 to 17 characters>

X' FC' , AL 1 (2 , 0,6) Only l et through U= II and
degenerates

AL 1 (6,OUTFE-EXT , 3) , C' eOL' OUTFORH=COL
or COL

AL1 (6 , OUTFE- EXT+ 4, 3) , C' KEY' OUTFORM=KEY

KWSCAN 27 1

MTS 3: SYSTEM SUBROUTINE DESCliIPTION S

•
•
•
•
•

DC

DC

DC

DC

DC
DC

EXT EQU
HEADE MVI

MVI
NAMEE BAL

TM
BO
01
EX
BR

FILEtlVC MVC
SIZEE BAL

STC
ST
BR

OUTrE MVI
MV I
"VI
MVI

HEADF OS
NAMEF OS
FILENAME OS
RELATION OS
SIZEVAL OS
FORMF OS
STR DC
STRL DC
SWS DC

• • • •
RVEC DS

272 KWSCAN

or KEY
AL 1 (6 , QUTFE-EXT+8,5) , C' LABEL ' QUTFORI1=LABEL

or LABEL
AL l (6 , OUTFE - EXT+1 2 , 4) , C 'PACK' OUTFORI'I=PACK

or PACK
X ' Fe ' , ALl (1, 0) Only let Dull left - hand

side through
AL l (12 , HEADE- EXT,5,HEADE - EXT+4) ,C'HEAD'

HEAD or NOHEAD
ALl (3,NA MEE- EX't,2, 1,17) <filename>
X ' FF '

•
HEAOF,l Header
HEADF,O No header
GR 1 S, - +4 Hake this a subroutine
NAMEF,1 Already have a name?
1 6 (,GR1S) - > Yup , user blew it
NAMEF, l Remember name was saved
GR1 ,FILEMVC Save name
GR1S -) To KWSCAN
FILENAME (O), O (GR2)
GR 1S,-+4 Hak e this a subroutine
GRS,RELATION Save relationa l character
GR2,SIZEVAL Save size val ue
GR 1 5 -) To KWSCAN
FORI'IF,O Select heading format
FORMF ,l
FORMF,2
FORMF ,3

X
X
CL 17
X
F
X
C180'OUTFORH=COL ,JU NK , SIZE)SP , NOHEAD '
H ' 80 '
X ' OOOOE827' Correct spel ling , RVEC

format, relat i onal
separators , uppercase ,
print, prompt , multiple
key words

27F

Octcber 1976

(October 1976

Purpose:

Location:

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS

b~~GO

SUBBOUTINE DESCRIPTION

To periodical l y unlock and then relock a file.

*LIBRARY

Calling Sequences :

Assembly: CALL LETGO , (fdub , howlck,delay)

FORTRAN: CALL LETGO (fdub , howlck , delay)

t~YR is the location of a fullword - integer
(INTEGER*4) FDUB-pointer (as returned by the
s ubroutine GETFD) for the f ilE to be
unlocked .

h~~l£~ is the location of a full word integer indi­
cating how the f i le is to be re l ocked each
t~me after it has been unlocked (see the
descr i ption of the second argument for the
subrouti ne LOCK).

~~i~Y is the l ocat ion of a full word - integer number
of microseconds (elapsed time) after whi ch
the f i le will be momentarily unlocked and
then relocked .

Return Codes:

0 Successful ret ur n.
4 PDUB- pointer (first argument) i s not valid fo r a

file.
8 Timer interrupt could 00< be set up (nonzero

return code from the subroutine SETUIE) •

Descript ion : Th i s subroutine will periodi cally unlock the s Fec ifi ed
file and then immediately attempt to relock it. Ihe MTS
shared - file system first will allow any other jobs, wh i ch
are currently waiting, to access the file. This mechanism
provides a conven i ent methoQ whereby a job, which e xpects
to be reading a shared - file for an extended period , can
automatically have the file unlocked periodically , thereby
pe r mitting other jobs to ~£it~ into the same file. Note
that this procedure is not necessary i f all of t he jobs
accessing the file are only read in g it, s ince several j obs
may simultaneo usly read the same file, i. e. , se veral jobs
may sim ul taneously have t he file locked for reading.

LETGO 273

I1TS 3: S:iSTEM SUBROUTINE DESCRIPTIONS

Example :

27 4 LET GO

October 1976

Since this subroutine uses the system timer interrupt
subroutines (SETI~E and TII1NTRP) Wh1Cb will not interrupt
a pending input/o utpu t operati on , the file will not be
periodically unlocked ~~r~ng an I/O operation. If a timer
interrupt becomes pending during an I/O ope r ation , the
file will be ULlocked and relocked upon completicn of the
operat io n. Thus , the file will nQ~ be periodically
unlocked, for example, during the time a progr am is
waiting for i nput from a te r minal .

LETGO will stop unlocking
as the FDua has been
called) •

and relocking the file as soon
released (the subro utine FREEFD

Assemhl y: LA 1, =C ' DATABASE
CALL GETFD
ST O,FDUB
CALL LETGO , (FDU B,R EAD , TIME)

FDUB OS A FDUB-pointer
READ DC F' " Lock for read
TIME DC F' 3000000 ' 3 seconds

This example will unlock the file DATABASE every 3 seconds
and then relock it for reading. This would a llow some
other job , for example , to lock it for lDodificati on
occasionally (every 3 seconds of elapsed time).

(

(

(

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

SUBROUTINE DESCRIPTION

Purpose : To effect the dyna~ic loading and execution of a Frogram.

Location: Resident System

Calling sequences:

Assembly: CALL LINK, (input,info,parlist, errexit,output,
lsw,gtsp,frsp,pnt)

FORTRAN: CALL 11 N KF (inpu t, info , parris t , errexi t, out pu t ,

Parameters:

lsw,gtsp,frsp,pnt)

is the locati on of an input specifier to be
used during loading to read loader records.
An input specifier may be one of the
following:

(1) an FDname terminated by a blank .•
(2) a FDUH-pointer (as returned by GETFD).
(3) an a - character logical I/O unit name,

left-justified with trailing blanks. In
this case, bit 8 in iBIQ must be 1.

(4) a fullvord-integer logical I/O unit nu~­
her (0 -1 9) .

(5) the address of an inFut subro utine to be
called during loading via a READ subrou­
tine calling sequence to read loader
records (i.e., the input subroutine i s
called with a parameter list identical
to the system subroutine READ). In this
case, bit 9 in in!2 must be ,.

is the location of an optional informati on
vector. No information is passed if in~2 is
o or if iBf2 is the location of a full word
integer O. The format of the information
vector is as follows:

(1) a balfword of LINK control bits defined
as follows:

bit 0:
bit 1:
hit 2:

1, if

" if
" if

~££g~i! is specified .
QYSEY! is specified.
1§~ is specified.

LINK, LINKF 275

MTS 3: SYSTEM SUBROUTINE DESC~IPTIONS

276 LINK , LINKP

I I. bit
~bit

"I bit
J 9 bits

bl.t.

bit

bit

bH

a- bit

f bit

Z- bit

(bit -

3:
4:
5:

6-7:
8 :

9:

10:

11:

12 :

13:

14 :

15:

1 •
1 •
1.

0
1.

1 •

1.

1.

1.

1.

1.

0

October 197 6

if 9!2£ is specified.
if !~2E is specified.
if En! is specified.

if in2Y! is the location of
a logica I I/O unit name ..
if inEY! is the location of
an in put subroutine address.
if 2Y!EY! is the location of
a logical I/O unit Dame .
if QY!EY! is the location of
an output subroutine
address .
if the program to be loaded
is to be merged wit h the
program previously loaded.
to suppress prompting at a
terminal.
to force allocation of a new
loader symbol table .

(2) a halfword count of the
the following

n umber
initial

of
ESD

(3)

entries in
list.
a variable-length initial ESO list, each
entry of which consists of a fullword ­
aligned a - character symbol followed by a
fullword value.

~~~li§! is the location of a 
passed in GR1 to the 

parameter list to 
program being linked 

be 
to. 

g£~g!i! (optional) is the location of a n error - exit 
subrouti ne address to be called if an error 
occurs while attemptin g to link to the speci ­
fl.ed program . If bit 0 of inIQ is 0 (the 
default), the ~££gfil parameter is i gnored 
and an error return is made to MTS command 
mode . The exit routine will be called via a 
standard S-type calling sequence wi th t wo 
parameters defined as follows : 

P1 : the location of a fullword - integer error 
code defined as follows : 

0: attellipt to l oad a null program. 
4: fatal l oading error (bad object 

program) • 
8: undefined symbols referenced by the 

loaded program . 
12 : no available storage index numbers. 



r October 1 976 

( 

( 

16 : 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

maximum number 
exceeded . 

of link le ve ls 

P2 : the location of a full word containing 
the loader status word. 

If the exit routin e returns, LINK will return 
to HTS without releasing program storage 
(i. e ., as if the error exit had not been 
taken ). 

Q~1E~1 (optional) is the locati on of an o utput 
specifi er to be used during loading to pro ­
duce loader outp ut (error messages , map , 
etc . ) . If bit 1 of i!!IQ is 0 (the default), 
the QutEY1 parameter is ignored and al l 
loader output is written on the HAP=FDname 
specified on the initi a l $RUN command. An 
outpu t specifier may be one of the fcllowing: 

(1) an FDname terllinated by a blank. 
( 2) a FDUB-pointer (as returned by GETFD). 
(3) an a - characte r logical I/O unit name , 

left-justified wi th trailing blanks. In 
this case , bit 10 of iniQ must be 1. 

(4) a f ull word -integer l ogical I/O unit num ­
ber (0 -1 9) . 

(5) the address of an output subroutine to 
be called during loading vi a the SPRINT 
s ubr out ine calling sequence to write 
loader output (Le . , the output s u brou­
t ine is called with a parameter l i st 
identical to the system subroutine 
SPRINT) . In thi s case, bit 11 of inIQ 
must be 1. 

!.§.!! (optional) is the l ocati on of a fullword of 
loader control bits . I f bit 2 cf inIQ i s 0 
(the default) , the 1§.!! pa r ameter i s ignored 
and t he global MTS settings are used . The 
loade r co ntr ol bits are defined as follows: 

bits 0- 23: 0 
bit 24 : 1 • to suppress the pseudo - registe r 

map. 
bit 25 : 1. to suppress the predefin ed symbol 

ma p. 
bit 26 : 1 • to print undefined symbols . 
bi t 27: 1 . to print refe r ences to undefined 

sym bols . 
bi t 28 : 1. to print references to all exter -

na l symbols . 
ht 29 : 1 • to print dotted lines arcund the 

LINK , LINKP 277 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

bit 30 : 
bi t 31: 

October 1976 

loader map. 
1, to print a map. 
1, to print nonfatal error messages . 

(optional) is the location of a storage 
allocation subrout ine to be called during 
loading via a GETSPACE calling sequence to 
allocate loader work space and program 
storage. If bit 3 of i.!!.!2 is zero (the 
default), GETsP ACE is used. 

(optional) is the location of a storage 
deallocation subroutine to be called during 
loading via a FREES PAC calling sequence to 
release loader work space. If bit 4 of i~fQ 
is 0 (the default), FREES PAC is used .• 

(o~tional) is the location of a direct access 
subroutine to be called during loading via a 
POINT calling sequence while processing 
libraries in sequential files. If bit 5 of 
iQ.f.Q. is 0 (the default), POINT is used. 

Values Returned: 

None . 

Description : LINK provides a method for dynamically loading and execut­
ing a program. LINK provides this facility as follows: 

(1) The loader i s called to dynamically load the 
specified program using inEY1, intQ, QY!EY!, l§~ , 
g!§e, f&§e, and ell1 if specified. 

(2) The dynamically loaded program is called with the 
address of e~rli§! in GR1. 

(3) If the dynamically loaded program returns to LINK, 
it is unloaded. 

(4) LINK returns to the calling program preserving the 
return registers of the dynamically executed 
program. 

Note that LINK accepts a variable-length parameter list of 
three to eight arguments. For most applications, only the 
first three are required. 

FORTRAN programs (or programs that use the FORTRAN I/O 
library) that dynamically load other FORTRAN programs (or 
programs using the FORTRAN I/O library) should use the 
alternate entry point LINKF. LINKF is required to Frovide 
the dynamically loaded program with a FORTRAN I/O environ ­
ment consistent with the " merge" bit specified iIl inf2' 
If the merge bit is 1, the dynamically loaded program will 
have the same I/O environment as the calling program. If 

278 LINK, LINKF 



( October 1976 

( Exalllple: 

r 
( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

the merge bit is 0, the dynamically loaded program will 
have a separate, reinitialized I/O environment. Both 
FORTRAN main programs and subroutines can be dynallically 
loaded using LINKF. However , the effect of executing a 
STOP statement from a dynamically loaded s ubroutine will 
depend on the setting of the merge bit. If the merge bit 
is 1, a return is made to the calling program; if the 
merge bit is 0 , a return is made to MTS . 

Because the rate structure for use of MTS includes a 
charge for allocated virtual memory integra ted over CPU 
t i me , the cost of running a large software packagE in HTS 
can often be reduced by dynamically l oading and executing 
seldom-used s ubr outines via a call to LINK. Such sa vings 
in the storage integral must be weighed against the 
additional CPU time required to open a second file , 
reinvoke the loader, and rescan the required libraries . 

The user also should see the sections li The Dynami c Loader" 
and "Virtual /'1elllory Management " i n MTS volume 5 . In 
particular, these sections describe the use of initial ESD 
lists, merging with pre viously loaded programs , and the 
relationsh ip bet ween ~INK, LOAD, and XCTL storage 
management. 

FORTRAN: INTEGER*2 PAR(4) 
INTEGER* 4 ADROP 
DATA PAR/6 ,' PP ' , 'IL', ' E ' I 
CALL LINKF(' *CCQUEUE ', Q, ADROF( PAR» 
END 

The above FORTRAN program is equivalent to issuing the MTS 
command " $RUN *CCQUEUE PAR=PFILE " . 

Assembly: CALL LI NK, (IN PUT,I NFO , PAR , ERRX , OUTPT , LSW ) 

ERROR 5TH 1 4 ,1 2 ,1 2 (1 3) 

INPUT DC C 'MY LIB , 
INFO DS OF 

DC XL2 ' EOOC ' 
DC HI l' 
DC CL8'GETDATA ', P'O ' 

PAR DC A (0) 
ERR X DC A (ERROR ) 
OUTPT DC C ' -HAP , 
LSW DC A (X' 02 ' ) 

The above assembly language program will dynamically load 
and execute the ro uti ne GETDATA fr om the private library 
MYLIB. The ir,itial ESD list is required to force the 

LINK , LINKF 279 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

symbol GETDATA 
be extracted 
specify : 

to be initially undefined so that i t 
tram MYLIB . The INFO and LSW control 

wi ll 
bits 

280 LINK , LINKF 

( 1) GETDATA is to be merged with currently loaded 
programs. 

(2) No loader prompt. i ng wi.ll be done in an attempt to 
recover froID a loading error. 

(3) The statement labeled ERROR is to receive control 
if a loading error occurs . 

(4) A complete loader map without dots is to be placed 
into the file -M AP . 



( 

( 

( 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

SUBROUTI NE DESCRIPTION 

Contents : A complete table of legal MTS logical I/O unit names . 

Location : Resident System 

Alt . Entry : LIOUNS 

Description: This table caL be used to test the validity of an I/O 
device unit name . The first full word g~ves the number of 
entries in the table . Each entry follo wing is an 8 -
character left - justified device unit name . 

Example : 

LOOP 

L 
L 
LA 
CLC 
BE 
LA 
BCT 

15,=V (LIOUNITS) 
1, 0( 15) 
' 5 , 4 ,' 5) 
0 (8 ,1 5) , NAME 
FOUND 
15 , 8 (1 5) 
1, LOOP 

NAME DC eL8 ' 1L' 

Get number of entries 
Get address of first entry 
Compare name to table 
Branch if legal name 
Bump pointe~ to next entry 
Reduce count 
Here , if name is illegal 

Left-justified name fo~ unit 12 

LIOUNITS 28 1 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 19 76 

282 LI OUNITS 



( 

( 

( 

dTS 3: SYSTEd SUBROUTINE DESCRIPTIONS 

October 1976 

SUBROUTINE DESCRIPTION 

Purpose: To effect the aynamic loading of a program . 

Location: Resident system 

Calling Seq uence s : 

Assembly: CALL LOAD, (input,info,~~~~switches, 
rtnlist , output , ls w, gtsp , frsp ,pnt) 

FORTRAN: indx = LOADF(input,info,p~s1;switches, 
rtnlist,output,lsw,gtsp,frsp,Fnt) 

Parallleters: 

is the location of an 
used du r ing loading 
An input specifier 
following: 

input specifie r to be 
to read loader records. 
may be one of the 

(1) an FDname terminated by a blank. 
(2) a FDUB- pointer (as re tur ned by GETFD). 
(3) an a-character logical 1/0 unit name, 

left-justified wi th trailing blanks. In 
this case , bit a in i~1Q must be 1. 

(4) a fullvord - integer logical I /O unit num­
ber (0-1 9). 

(5) the address of an input subroutine to be 
call ed during loading via a READ s ubro u­
tine calling sequence to read loader 
records (i. e ., the input subroutine is 
called vith a parameter list identical 
to the system subroutine READ ). In this 
case, bit 9 in infQ must be 1. 

is t he location of an optional informati on 
vector. No information is passed if i~fQ is 
o or if info is the location of a fullvord 
integer 0 .• -'ihe format of the in format i on 
vector is as follows: 

(1) a halfword of LOADF control bits defined as 
follo ws: 

bit 0: 
bit 1: 
bit 2: 

1, if £lB!i§~ i s to be ignored. 
1, if Q~lE~l i s specifi ed . 
1, if !2~ is specified . 

LOAD, LOADF 283 



~TS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

284 LOAD, LOADF 

( 2) 

bit 3 , 
bit 4 , 
bit S , 
bi ts 6- 7 , 
bit 8 , 

bit 9, 

bit 10: 

bit 11 , 

bit 12: 

bit 13: 

bit 14 : 

bit 15 : 

1 , 
1 , 
1 , 

0 
1 , 

1 , 

1 , 

1 , 

1, 

1, 

1 , 

0 

October 1976 

if 91§E is specified. 
if ~!§E is specified . 
if E~1 is specified. 

if !nBYl is the location of 
a logical I/O unit name_. 
if inBY1 is tbe location of 
an input subroutine address. 
if Qyt2Y!: is the location of 
a logical I/O unit name .• 
if QY1EY1 is the location of 
an output s ubroutine 
address . 
if the program to be loaded 
is to be merged with the 
program previously leaded . 
to suppress prompting at a 
terllinal. 
to force allocation of a new 
loader symbol table . 

a half word count of the number of 
entries in the following initia l ESC 
list . 

(3) a variable-length initial ESD list , each 
entry of which consists of a f ull word ­
aligned a-character symbol followed by a 
full word value . 

§.~i!:~h is the location of a full w.ord of LOAD control 
bits defined as follows: 

bits 0 - 7, the storage index numter to be 
used if bit 30 i s 1 ; else , 
optionally, the number of tbe 
seglllen t into which the program is 
to be loaded. 

bit 8 , 1 , if !1~1!.§!: is to be ignored. 
bit 9, 1, if QYIBY! is specified . 
bit 10: 1 , if 1§!! is specified. 
bit 1 1: 1 , if gl§B is specified. 
bit 1 2: 1 , if !~§E is specified. 
bit 13: 1 , if E~i is specified. 
bits 14-1 9: 0 
bit 20, 1 , if i!!EY!: is the location of a 

logical I/O unit name . 
bit 21: 1 , if inEY! is the location of an 

input subroutine address. 
b,t 22: 1 , i f QY!:E.!d!: is the location of a 

logical 1/0 unit name. 
bit 23, 1 , if QY!EY! is the location of an 

output subroutine address . 



( October 1976 

( 

( 

MTS 3 : SYSTEM SUBROUTINE DESCRI PTIONS 

bit 24 : 0 
bit 25 , 1, if the program to be loaded is to 

be merged with those previo usly 
loaded . 

bit 26 ! 1 , to ret urn if a loading error 
occurs . 

0 , to call MTS if a loadi ng error 
occurs . 

bit 21: 1, to suppress proDlpting at a 
terminal. 

bit 28 , 1 , to force alloca tioD of a ne. 
loader s ymbol table . 

bit 29 , 0 
bH 30: 1 , load into system storagE (bits 

0- 7 contain the storage index 
number to be used ) • 

bi t 3 1 , 0, load at the highest link level ; 
1 , load at the current link level. 

{inl!§i is either 0 or the address of an area into 
which the loader will place an ESD list of 
all the symbols in the loader symbol table . 

Q~iE~1 (o~tional) is the location of a outpu t speci­
fier to be used during loading to prod uce 
loader o utput (error messages , map, etc .) . 
If bit 1 of ~!l!Q is 0 (tbe default), the 
QY1QY! parameter is ignored and al l l oader 
output is written on the HAP=FOname speCified 
on the initial $RUN command. An o utp ut 
speci fi er may be one of the following: 

(1) an FOname terminated by a blank. 
( 2) a FOUB - pointer (as returned by GETFD) . 
(3) an 8 - character logical I /O uni t name , 

l eft - justified with tra i ling blanks . In 
thi s case , bit 10 of 1nf2 must be 1. 

( 4) a fullword-integer logical I/O u nit nu m­
ber (0 -1 9) . 

( 5 ) tbe add r ess of an output subro utine to 
be called during loa·d i ng via the SPRINT 
subrout~ne calling sequence to wri te 
l oader o utput (i . e. , the output subro u­
tine is called with a parameter list 
i den tical to the system subr outine 
SPRINT) • In this case , bit 11 of '!'~!Q 
must be 1. 

( o~tional ) is the loc at i on of a full word of 
loader control bi t s . If bit 2 of 1D!2 is 0 
( the default), the l§.~ param.eter i s ignored 
and the global HTS settings are used. Tbe 
loader control bits are defined as fellows: 

LOAD, LOADF 285 



l'ITS 3: SYSTEM SUBROUTINE DESCRI PTIONS 

October 1976 

bits 0-23: 0 
bit 24: , . to suppress the pseudo - re9ister 

map. 
b,t 25: , . to suppress the predefined symbol 

map. 
bit 26: , . to print undefined symbols . 
bit 27: , . to print references to undefined 

symbols. 
bit 28: , . to print references to all exter -

nal symb"ols. 
bit 29: , . to print dotted lines around the 

loader map. 
bit 30: , . to print a map. 
bit 31: , . to print nonfatal error messages . 

(optional) is the location of a sto ra ge 
allocation subroutine to be called during 
loadin9 via a GETSPACE call i ng sequence to 
allocate loader work space and progra m 
storage. If bit 3 of info is zero (the 
default), GETSPACE is used. 

(optional) is the locati on of a storage 
deallocation subroutine to be called during 
loading via a FREESPAC calling sequence to 
release loader work space. If bit 4 cf int2 
is 0 ( t h e default) , PREESPAC is used. 

En!: (optional) is the location of a direct access 
subroutine to be called during loading via a 
POINT calling sequence while processing 
libraries in sequential files . If bit 5 of 
!,!!!.Q. is 0 (the default) , POINT is used .• 

Values Returned: 

LOAD: 

286 LOAD , LOAD? 

If loading was successful, 

GR 1S 
GRO 

contains the loader-def ined entr y 
contains the storage index number 

If a loading error occ urr ed , 

contains zero, 

Faint, 
used . 

GR1S 
GRO 
GR' 

contains the loader status 
contai ns the er ror code: 

word, and 

0: Attempt to load a null program. 
4: Fatal loading error ( bad Object pr ogram) . 
8: Un defined symbol s refere nced by the loaded 

program . 
12: No available storage index numbers. 



( 

( 

( 

October 1976 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

LOADF: If loading was successful , a positive INTEGER*ij 
storage index number is returned as the value of 
LOADF. This number is used to uniquely i dentify 
the dynamically loaded program on subseguent calls 
to STARTF and UNLDF. 

If a loading error occurred, a negative INTEGER*4 
error code is returned as the value of LOADP, and 
is defined as follows: 

-1 : Attempt to load a null program . 
-2: f"atal loading error (bad object program). 
- 3: Undefined symbols referenced by the l oaded 

program. 
-4: No available storage index numbers. 

Description : LOAD provides a method for dynamically loading a Frogram. 
LOAD provides this facility as follows: 

(1) The loader is called to d ynamical l y load the 
specified program using AnEY!, inig, QY1~Y!, 1§~, 
g!§~, t£§2 , and En! if specified . 

(2) LOAD returns to the calling program with the 
return values described above . 

Note that LOAD accepts a variable-length parameter list of 
ij to 8 arguments. For most applications , only the first 4 
are required. Both int2 and §~l!£h~§ contain LOAD control 
bits, some of which are duplicates. In these cases, LOAD 
produces a s i ngle control bit by ORing the two together. 

FORTRAN programs (or programs tbat use the FOR'IRAN I/O 
library) that dynami cally load other FORTRAN prog ram s (or 
programs using the FORTRAN I/O library) sho uld USE the 
alternate entry point LOADF. LOADF is required to Frovide 
the dynamically loaded program with a fORTRAN I/O environ ­
ment consistent with the " merge" bit specified i n i!!ig. 
If the " merge " bit i s one , the dynam i cally loaded program 
will have the same I/O environment as the calling Frogram . 
If the " merge" bit is zero , the dynamically loaded program 
will have a separate, reinitialized I /O environment . Both 
FORTRAN main programs and s ubroutines can be dynamically 
loaded using LOADP. However, the effect of exec uting a 
STOP s tatement trom a dynamically loaded s~brout i ne will 
depend on the sett i ng of the " merge" bit. If the " merge !! 
bit is 1, a return is made to the calling program ; if the 
II merge ll bit is 0 , a return is made to MTS. LOADP returns 
an INTEGER*4 storage index number used to uniquely i denti­
fy the dynamically loaded program on subsequent calls to 
STA RTF and UNLDF. 

Because the rate structure for usa ge of MTS 
charge for allocated virtual memory integrated 

includes a 
over CPU 

LOAD , LCADF 287 



HTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Exa mple: 

October 1976 

time, the cost of running a large software package in MTS 
can often be reduced by dynamically loading and executing 
seldom - used subroutines via a call to LOAD . Such savings 
in the storage integral must be weighed aga i nst the 
additional CPU time requ i red to open a second file , 
reinvoke the loader , and rescan the required libraries. 

The user also should see the sections " The Dynamic Loader " 
and " Virtual Memory Management " in MTS Volume 5. In 
particular , t~ey describe the use of initial ESD lists , 
merging with previously loaded programs , and the relation ­
shi p between LOAD , LOAD , and XCTL storage management . 

FORTRAN: LOGICAL* 1 PAR (8) 
DATA PAR/ ' H',' I ' , ' ', ' T ' , ' H' ,' E', ' R' ,'E ' / 
INTEGER SWITCH/ZOOS0004 11 
INTEGER*2 LPAR(5)/SI 
EQUIVALENCE (LPAR (2) ,PAR) 

10 = LOADF (' FORTOBJ ' ,O , SWITCH , O) 
CALL STARTF ( ID,LPAR) 
CALL UNLDF(O,ID,O) 

The above FORTRAN program dynamically loads the program in 
the file FORTObJ at the highest link level with the 
" merge " bit set to 1. subsequently , the loaded program is 
executed via a call to STARTF and unloaded via a call to 
UNLDF. 

Assembly: CALL LOAD , (NAME,INFO,SWIT,O) 

INPUj STH 14,l2, 1 ~ ( 13) 

NAl'lE DC 
HiFO DS 

DC 
DC 
DC 

SWIT DC 

C' *LIBRARY , 
OF 
XL2 ' O', H' 2 ' 
CL8 ' SPRINT I ,A (INPUT) 
CLS ' PLOT1 ' ,F'O ' 
F ' O' 

The above example will load the modules def i ni ng PLOTl 
from *LIBRARY and will intercept any calls they make to 
SPRINT. An initial ESO list entry with a value of zero is 
interpreted as a request to include that symbol in the 
loader tables as referenced , but not defined . Note that 
the value returLed by register 15 is the entry pcint of 
the modules loaaed which mayor may Dot be PLOT1. To get 
the address of PLOT 1 , the LOADINFO subroutine may be 
called , or the II return ESD list" parameter may be speci­
fied on the call to LOAD. 

28S LOAD, LOA OF 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

r October 1976 

( 

purpose: 

Location: 

Al t. Entry: 

!!Q.~Q!.!!EQ 

SUBROUTINE DESCRIPTION 

To return information about an external symbel or a 
virtual memory address_ 

Resident System 

LDINFO 

Calling Sequences: 

Assembly: CALL LOADINFO, (type,item,bitsout,regout) 

Parameters: 

ty£~ is the location of ~ full word - integer type 
code: 
1 = iig~ parameter specifies the name of an 

external symbol. 
2 = i1g~ parameter specifies a virtual memory 

address_ 
3 = i!g~ parameter specifies a full word ­

integer index_ 
b!g~ is either the location of an 8-cbaracter 

external symbol (left - justified with trailing 
blanks) , the location of a fullword virtual 
memory address, or the location of a full word 
if, teger index_ 

hi!§QQi is the location of a fullword into which 
LOADINFO will put output code bits. 

~~gQQ! is the location of a region of 20 full words 
into which LOADINFO will put information 
about the symbol or virtual memory address. 
This region is cleared to zeros by lOADINFO 
before information is inserted. 

Return Codes: 

0 Successful return. 
4 Symbol or control section not found in loader 

tables. 
8 Loader ta bles are not available. 
1 2 Illegal parameter. 

Description: The global switch SYMTAB must be ON for this subroutine to 
work properly_ For a type 1 call, the loader tables are 
searched for the symbol specified. For a type 2 call, the 
loader tables are searched for information about the 

LOADINFO 289 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

290 LOADINFO 

October 1976 

control section containing the specified virtual memory 
address . The type 3 call can be used to return all the 
information i n the loader tables as follows: If the index 
specified is negative, LOADINFO replaces it with the 
numbe r of entries in the loader tables. If the index is 
nonnegative, LOADINFO will return the (n+1) th entry in the 
loader tables aLd increment the in dex by 1. 'lhus, by 
setting the i r.dex initially to zero , and then calling 
LOADINFO repeatedly until a nonzero return code i s 
detected, all the information in the loader tables can be 
accessed. 

LOADINFO returns the information as follows: The Qi!§QY! 
word indicates which pieces of information have been 
filled in the region £~gQY1. Each bit corresponds to a 
piece of information. If the bit is set , the correspond­
ing information is given . The bit number and the equiva ­
lent integer value of the bit are given as the fi rst two 
columns in the table below. The th i rd column indicates 
the displacement (i n bytes) from the beginning of !.~gQYl 
for th e particular piece of information. 

BggQJ!l llil§QY! 
~i:t Y!!lY~ Qi§el £Qnl~Ul§ 

31 1 0 

30 2 8 
29 4 12 

28 8 16 
27 16 20 
26 32 24 

25 64 28 
24 1 28 32 
23 256 36 
22 512 40 

21 10 24 48 

20 2048 52 

56-7 9 

External symbol name (left - justified 
with trail ing blanks). 
Address assigned to the symbol . 
Relocation factor if csect or common 
section . 
Length if a csect or common section . 
Storage index number. 
symbol type: 
1=Entry point 
2=Cont rol section 
3=Common section 
4=Predefined 
5=Library entry point 
6=Library control section 
7=Library common section 
Pseudo-register displacement 
pseudo-register length 
pseudo-register storage index number 
Name of the closest ent ry with a 
virtual memory address equal to o r 
less than the given address 
Address assigned to the ent ry named 
above. 
Loader- assigned internal name for 
private control sect ion . 
Reserved fo r future expansion. 



( October 1916 

( 
Examples ! 

( 

~TS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

The t~gQY~ a~ea can be represented in assembler language 
with the following dsect (~hiCh is available in the public 
file *10ADINFODSECT) . 

INFOAREA OSEeT 
SYMNAHE os CL8 SYMBOL/eSEeT NAME 
SYI1ADDR OS F ASSIGNED VI1 ADDRESS 
SYMBr OS F RELOCATION PACTOR 
SYtILEN OS F LENGTH IF eSECT OR COMMON SECTION 
SYI1SIN OS F STORAGE INDEX NUMBER 
SYHTYPE OS F TYPE INFORMATION 
PRADDR OS F ASSI GNED PSEUDO - REG DISPLACEMENT 
PRLEN OS F LENGTH or PSEUDO - REGISTER 
PRSIN OS F PSEUDO-REG STORAGE INDEX NUMBER 
EPNAME OS CL8 CLOSEST ENTRY POINT NAME 
EPADDR OS F VI'! ADDRESS OF ABOVE ENTRY POINT 
peIO OS F PRIVATE CONTROL SECTION 10 

OS 6F RESERVED POR FUTURE EXPANS I ON 

If LOAD I NFO is called with a blank external symbol, it 
will look only for blank - named common sections and will 
fail if there are none (even though there may be blank­
named control sections) . If LOADINPO is called with an 
external symbol which has been defined at several link 
levels , it will return the most recent definition. 

PORTRAN : INTEGER*4 TYPE , BITS , REG ( 20) 
DATA TYPE/'/ 
CALL LDINFO(TYPE , IPLOT1 I ,BITS,REG,~98 , ~99) 

The above example calls LOADINFO to get information about 
the symbol PLOT' . 

Assembly : LOOP CALL LOADINFO, (TYPE, ITEM, BITS,REG) 
LTB 15,15 
BNZ DONE 

BLOOP 

TYPh DC F I 3 1 

ITEM DC F ' O' 
BITS DS XL4 
REG DS 20A 

This example calls 10ADINFO repeatedly to get i nfcrmation 
about each symbol in the loader tables. The loop is done 
when LOADINFO gives a nonzero return code. 

LOAD I NfO 29 1 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

292 LOADINFO 



( 

( 

October 1976 

Purpose: 

Location: 

Alt. Entry: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

!!Q~.!i 

SUBROUTINE DESCRIPTION 

To request that a file be locked in the indicated manner, 
i.e. , to dynamically restrict access to a file which has 
been permitted to be shared by others. 

Resident System 

SETLCK 

Calling Seguence: 

Assembly: CALL LOCK, (unit,bowflg , wtflg) 

FORTRAN: CALL LOCK(unit,howflg,wtflg,&rc4,&rcB,&rc12, 
C-rc 16,C-rc20) 

Parameters: 

g~!t is the location of either 
(a) a fullword-integer fDUS - pointer (as 

returned by GETFD) , 
(b) a fullword-integer logical I/O unit num­

ber (0 through 19) , or 
(c) a left-justified a - character logical I/O 

unit name (e. g., SCARDS) . 
hQ~f1g is the location of a full word indicating how 

to lock the file: 
>0 lock for read 
=0 lock for modification (write , empty , 

truncate, etc.) 
<0 lock for destroy (rename , permit) 
is the location of a full word indicating 
whether or not to wait if the reguested 
locking is not possible at this time: 
<0 wait indefinitely 
=0 do not wait 
>0 the maximum number of 

wait. If this expires 
not been locked, a return 
be given. 

milliseconds 
and the file 
code of 20 

to 
has 

will 

~£~~~~~£~~ are statement labels to transfer to if the 
corresponding return codes occur. 

Return Codes: 

o The file has been locked in the reguested manner. 
4 The file does not exist. 

LOCK 293 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

8 HardwarE: error or software inconsistency 
encountered~ 

1 2 Access appropriate to the locking request not 
allowed~ 

1 6 Locking the file as requested will result in a 
deadlock ~ 

20 Locking the file as requested can not be accom­
plished at this time , no wait was requested, or 
the wait was interrupted. 

Notes: 

Any number of jobs can have a file locked for readi ng 
at any given time, but only one job can have a file 
locked for modification at any given ti~e and then 
only if La job has the file locked for reading, or 
locked for destroying~ Only one job can have a file 
locked for destroying at any given time , and then if 
no job has the file open or locked for reading, or 
locked for modification~ 

The 
that 
file 
also 

three locking 
locking a file 

for r eading 
locks the file 

levels are inclus ive in the sense 
for modification also leeks the 
and locking a file for destroying 
tor modification and reading ~ 

The file i§ ~1~~1§ locked as requested in the case 
where there i s only one FDUB with a locking req uest 
on the file ~ilh!.!! a job. Thus , if a file is already 
locked for modification vi a a particular PDUB and it 
is requested, via the same FDUB , that the file be 
locked for reading , the file will be essentially 
unl ocked for mod i fication and left locked for 
reading~ 

If more than 
request on 
level of the 

one FDUB ~!lh!.Y a 
the file, the file 
highest request. 

job 
will 

has a locking 
be l ocked at the 

Description: See Appendix D of the section " Piles and Devices" in MTS 
volume 1 for details concerning concurrent use of shared 
files . 

294 LOCK 



October 1976 

Examples : 

( 

( 

~TS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

Assembly: CALL LOCK , (UNI T,HOW ,WAI T) 

PORTRAN: 

UNIT DC 
HOW DC 
WAIT DC 

P I 6 1 

p l1 I 
F I -1 I 

INTEGER*4 UN I T 
DATA UNIT/6/ 

Logical I/O unit 6 
Lock for modif i cati on 
Wait indefinitely 

CALL LOCK(UNIT,1,-1) 

The above e xamples will lock the 
I/O unit 6 tor modification 
someone else has the file locked 

file attached to logical 
and wait indefinitely if 
(i.n any manner) _ 

LOCK 295 



HTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

296 LOCK 



( 

( 

October 1976 

Purpose: 

Location: 

MTS 3: SYS~EM SUBROUTI NE DESCRIPTIONS 

SUBROUTI NE DESCRIPTION 

To produce a loader map from the current contents of the 
l oader tab l es. 

Resident System 

Calli ng Seg uences ! 

Assembly : CALL lODMAP , (unit , bits) 

FORTRAN: CALL lODMAP (uni t , bi ts ) 

Parameters! 

yg~l is the location of either 
(a) a FDUB - pointer (as returned by GETFD ) , 
( b) a full word-integer log i cal 1/0 unit num ber 

(O through 19) , or 
(c l a left - justi f i ed a - character logical 1/0 

unit name (e.g. , SPRINT). 
This specifies where the loader map is to be 
written . 

~i12 is the location of a fullword of swi tches 
defined as follows : 

bits 0 - 23 , zero 
bit 24: one to s u ppress pseudo-registers 

25: one to s u ppress predefined symbcls 
26, one to pr int undefi ned symbols 
27 : one to print undefined xrefs 
28, zer o 
~9 : one to print dotted lines 
30: one to print entry point names 
3 1 : zero 

Ret urn Codes : 

o Successful ret urn. 
4 I l legal Yrr!l parameter specified. 
a Loader tables not available. 

Descr i ption: The c urrent contents of the loader tables will be used to 
produce a loader map u nder the control of the switches 
specified . If the global SYMTAB switch is OFF , the loader 
ta bles wi ll not be available , generating a return code of 
8_ 

LODMAP 297 



MTS 3 : SYSTEM SUBROUT INE DESC~IPTIONS 

Examples : 

298 LODMAP 

Assembly: CALL LODttAP , (UNIT, BITS) 
LTR 15 , 15 
BNZ NOMAP 

OS OF 
BITS DC 
UNIT DC 

XL 3 ' O' ,X ' C6 ' 
CL8 ' SERCOM ' 

october 1976 

This example will produce a partial loader map on the 
logical I/O unit SERCOM . 

FORTRAN: 

This example 
on l ogical I/O 

INTEGER UNIT/2/ , BITS/6/ 

CALL LOD~AP (UNIT,BITS , &98 , &99) 

will produce 
uni t 2. 

a loader map with dot t ed lines 



( 

( 

October 1976 

Purpose: 

Location : 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

To make the following system/360/370 machine instructions 
directly available to the FORTRAN user: Mve, eLC , Ne, DC , 
XC , TR , TRT, ED, and EOI1K. 

*LIBRARY 

Entry Points: IMVC, IeLe, INC, IOC, IXC, ITR, ITRT, lED , and IED~K. 

Calliog Sequences: 

FORTRAN: I 
I 
I 
I 
I 
I 
I 
I 
I 

Fa rameters: 

!~!l 

= 
= 
= 
= 
= 
= 
= 
= 
= 

IMVC (len,basel,displ l ,base2,disp12) 
ICLC(len,basel,displl , base2 , disp12) 
lNC (len,base l ,displ l ,base2 , disp12) 
IOC(len,hasel,displl , base2 , disp12) 
lXC(len,base l ,displ l ,base2,disp12) 
ITR (len , base l, displl,base2,disp12) 
lTRT(len,base l ,displl,base2,disp12,dr,fb) 
lED (len,basel,displl,base2 , disp12) 
IEDMK (len , base 1,displ1.base2,displ2,dr) 

is the integer length in bytes. No restrict ­
ion is placed on the size of b~n. An error 
message will be generated if 19n < 0; or, for 
the entries lED or IEDHK, if 19rr > 256. 
is the base location of the first operand. 
is the integer displacement in bytes for the 
first operand. No restri ction is placed on 
the size of ~~2E!1 . 
is the base location of the second oFerand. 
is the integer displacement in bytes for the 
second operand. No restriction is placed on 
the size of Q~§EbJ. 
is an integer return parameter for ITRT and 
IEDHK only. For ITRT, fir will contain the 
displacement in bytes from the beginning of 
the argument list ( a~§~1+~i§El1), to the 
argument corresponding to the first nonzero 
function byte (if any). For IEDl1K, .Qr will 
contain the displacement in bytes from the 
beginning of the source (~£§gJ+gi§El~), to 
the result character, wbenever the latter is 
a zoned source digit and the significance 
indicator was off before the examination . In 
botb cases , ~r will be set to zero if the 

Logical operators 299 



MTS 3: SYSTEM SUBROUTINE DESC~IPTIONS 

October 1976 

resulting condition code is zero. 
fQ is an optional integer return parameter for 

ITRT. When a nonzero function byte is found, 
it will be returned in ±Q as an integer in 
the range (0,255): otherwise, ±Q will be 
zero. 

Description: For the descript~on of the machine instructions, Eee the 
IBM publication, !~tt_~Y2ig~11Q_E£~~£iE1g§_Q±_QEgE~~!Qn, 
form GA22-7000. These subroutines are coded as integer­
valued functions with the resulting condition code (0, 1, 
or 2) as the value. 

In the abbreviated descriptions below, the first operand 
consists of l~g bytes beginning at location E~§gl+2!§E!1, 
and the second operand consists of 19n bytes beginning at 
location Q~§g£+~!§El£. These two operands may overlap in 
any manner. For all five of these entry paints, Froc€ss­
ing is carried out left to right one byte at a time. Note 
that the result of performing an operation on the first 
bytes of the two operands is stored before the second 
bytes are fetched, so that overlap can have a significant 
effect on the result. 

IMVC Move the second operand into the first operand 
location. 

INC - Replace the first operand by the logical product 
(AND) of the operands. 

I OC Replace the first operand by the logical sum (OR) 
of the operands. 

IXC Replace the first operand by the modulo-two sum 
(exclusive OR ) of the two operands. 

ICLC Compare the two operands. The operation is termi­
nated as soon as two unegual bytes are found. 

The result of ar. IMVC is always zero. The result of an 
INC, IOC, or IXC is zero if the result operand is zero, 
and one, otherwise. The result of an ICLC is 0, 1, or 2, 
depending on whether the first operand is equal to, less 
than, or greater than the second operand. 

For the ITR and ITRT entries, the first operand ccnsists 
ot 19n bytes beginning at location Qg§gl+Q~§El1, and the 
second operand consists of a 256-byte functicn table 
beginning at location &~§g£+gi§E1£. These operands may 
overlap, but probably not too fruitfully. The I'IR entry 
translates each byte of the first operand by replacing it 
with the corres~onding byte for the function table. The 
result of an ITR operation is always zero. The ITRT entry 
does not char,ge e ither operand. Processing the first 
operand bytes left to right, the -corresponding function 
byte is interrogated. If the function byte is zero, the 
processing of the first operand continues. If the func-

300 Logical operators 



( October 1 976 

Examples: 

( 

( 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

tioD byte is nOLzero , the operation is term i nated wi th the 
byte at location Q~§~l+ d~§E~l+ g~ , and the corresponding 
nonzero function byte i s available in fQ. The result of 
the ITRT will be 1 i f this byte is Dot the last byte of 
the first operar.d , and 2 if i t is the last byte . If no 
nonzero f UDct10n byte i s enco untered , the r esult of an 
ITRT will be zero , and Q£ a nd f£ will be indeterminate. 

The complexity of the lED and IEDHK instructions Frecludes 
any short descr~ptions here. 

INTEGER A, 8 
B = 3 1 
LEN = 4 
IR = INC(LEN,A,O , B, O) 

The logical AND ~roduct of A and B 
this case , B = 3 1, so A will be 
IR wil l be set to 0 or 1 depending 
in A is zero or nonzero_ 

INTEGER A (4 ), B (4) , 0 1, 02 

will replace A. In 
replaced by (A mod 32) . 
on whether the res ult 

2 
REAO 2 , (A (1) , 1=1,4), ( B (I ), 1= 1, 4) 
FORMAT ( 4A4) 
0 1 = a 
02 = 0 
IR = IeLe (a,A , Dl , B,D2) 

This program log i cally compares the string in A ( 3) , A (4) , 
to the str i ng iL B (1 ) , B (2) . IR will be set to 0 , 1, or 2 
depending on whether the first string is equal te , less 
than or greater than the second string . 

Logical opera t ors 30 1 



MTS 3: SYSTEM SUBROUTINE DESC~IPTIONS 

October 1976 

302 Logical Operators 



( 

( 

October 1976 

purpose: 

Location : 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

1iQ.!H!1: 

SUBROUTINE DESCRIPTI ON 

To mount 
lines, and 

magnetic and 
conLections on 

Resident System 

pape r t apes , Audio 
the MERIT Computer 

Response 
Network.. 

Unit 

Calling Sequences : 

Assembly : CALL tlOUNT, (string ,len) 

CALL tlOUNT , (par) 

MOUNT ' string ' 

FORTRAN: CALL tlOUNT (string ,len ) 

CALL tlOU NT (par) 

Pa r ame t e rs: 

§tf1g9 is the location of a cha r acter s tring con ­
taining one or more mount r eques ts separated 
b y semi colons (see the $~IOUNT command 
description in tiT S Volume 1). 

~~g is the location of a halfword (IN TEGER*2) 
length of §~£~gg . 

Big i s the location of a halfword (INTFG ER*2) 
leng th of a character string im media tely 
followed by that character string. The c har ­
acter string contains one or more mount 
requests separated by semicolons (see the 
iHOUNT command description in HTS volume 1). 

Return Codes: 

Note: 

o All requests were s uccessfully processed. 
4 One or mo r e of the reques t s could not be 

fulfilled_ 
8 The operator or user caused one o r more of t he 

requests to be aborted. 
12 s ystem e r r or. 

The HOUNT subroutine prints messages OD the logi­
cal I/O unit SERCOH or *HSI NK* if SERCO H has Dot 
been assigne d . The echoing o f mount r eq uests (on 
SERCOH or *HSINK*) c an be s uppressed by the HTS 
$SET ECHO=O FF command (or by calling the CUINFO 

HOUNT 303 



~TS 3 : SYSTEM SUBROUTINE DESCfiIPTI ONS 

Examples: 

304 MOUNT 

October 1976 

subroutine for the ECHOOFF item to perform the 
equivalent function). 

The complete description for using the MOUNT macro 
is given in MTS Volume 14. 

Assembl y : CALL MOUNT , (STR , LEN) 

FORTRAN: 

LEN 
STR 

DC 
DC 

H'28' 
C ' POOL 9TP *T*;MNET *NET* 0=M5 ' 

MOUNT 'POOL 9TP *T*;I'lNET *NET* 0=M5 ' 

INTEGER*2 LEN 

LEN=28 
CA LL MOUNT('POOL 9TP *T*;MNET *NET* D=MS ' ,LEN) 

The abo ve th r ee examples call MOUNT to mount a 9- track 
pool tape wi th ~seudo-device name *T* and a MERIT connec ­
tion to Michigan State University with pseudo - device name 
*NET*. The first assembly example uses the CAL L mac r o and 
the second uses the HOUNT macro. 



( 

( 

( 

October 1976 

Purpose : 

Location: 

Alt. Entry: 

MTS 3: SYSTEM SUBROUTI NE DESCRIPTIONS 

SUB~OUTINE DESCRIPTION 

To suspend execution of a program 
command mode. Issuing a $RESTART 
execution of the program to resume by 
from the MTS subroutine call. 

Resident System 

MTS# 

and ret urn to MTS 
command will cause 

causing a return 

calling Sequences : 

Assembly: CALL MTS 

or 

"TS 

FORTRAN: CALL MTS 

PL/I: CALL MTS; 

Return Codes: 

None 

Note: The complete description for using the MTS macro 
is given i n MTS Volume 14. 

MTS 305 



MTS 3 : SYSTEM SUBROUTINE DESC£IPTI ONS 

October 19 76 

306 MTS 



( 

( 

October 1 976 

Purpose : 

Location : 

Alt. Entry : 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

To suspend execution 
mode, and feed a 
in terpreter . 

Resident system 

MTSCHDf 

of a program , return to MTS command 
character string ~o the MTS command 

Calling seguence : 

Assembly: CALL HTSCf1D, (locn ,length) 

or 

MTSCMD locn[ , length ] 

FORTRAN: CALL 1'.TSCI1D (locn , length) 

Parameters : 

l2£n i s the l ocation of a character strin g con­
ta~ning a command . 

!~ng1~ is the location of the length of the charac ­
ter stri ng expressed as either a full word 
(INTEGER*4) or a ha1bord (IN TEGER*2) . If 
!~nglh is a fu11word - a1igned address and the 
first two bytes so specified are zero , it is 
assumed !~Bg!h specifies a full word integer . 
Otherwise , !~~gl~ is taken as ha1fword. 

Return codes : 

Note: 

The subroutine does not r eturn exceFt as de~cribed 
below . 

The com~lete description fo r using the HTSCMD 
macro is gi ven in MTS Volume 14. 

Descr i ~tion : This subroutine does a return to MTS , as does the 
subroutine MT S , but in addition gives it a character 
string to interpret as a command. If a $RESTART command 
i s issued before the next $RUN , $RERUN, $LOAD, or $DFBUG 
command , the subrouti ne will " return ," i. e. , the Frogram 
calling HTSCI1D will restart following the subroutine call. 

I'1TSCI1D 307 



MTS ~: SYSTEM S~BROUTINE DESChlPTIONS 

Examples: 

308 MTSCHD 

October 1976 

FORTRAN: CALL KTSCMD (' $RESTART SPR INT=*OU MMY * ' ,24) 

Assembly : CALL r'lTSCI'IO , (INR EG ,IN LEN ) 

INREG DC 
INLEN DC 

C' $RESTART SPRINT=*OUMMY* , 
P ' 24 ' 

MTSCMO ' $RESTART SPRI Ni=*OUMMY* , 

The abo ve three e xa mples call HTSCMO to reassign tbe 
logical I/O unit SP RIN T to *OUI1I1Y * . The first assemb l y 
example uses the CA LL macro and the seco nd uses t he MT SCM O 
llIacro. 



( 

( 

October 1976 

Purpose: 

Locat ion : 

AlL Entry : 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

To uremember" the values 
sequential file. This 
subroutine to change the 

Resident System 

NOTE# 

of the logical pcinters for a 
information is used by the POINT 

values of the logical Fointers. 

Calling sequences: 

Assembly: CALL NOTE, (unit,info) 

FORTRAN: CALL NOTE (unit , info,&rc4,&rcB,&rc12,&rc16,&rc20, 
&rc24, &rc2B) 

Parameters : 

£n!i is the location of either 
(a) a fullword - integer PDUB -pointer (as .t:eturned 

by GETFD ), 
(b) a tullword -in teger logical I/O unit number 

(0 through 1 9), or 
(c l a left - justified B- character logical I/O 

uni t name (e. g. , SCARDS). 
!UIQ is the location of a region of four full words 

into which the NOTE subrouti ne will return the 
values of the Read , Write, and Last Pointers, as 
well as the the last line number respectively 
for the sequential file pointed to by ~n!!. 

~£~L~~~L~£24 are the statement labels to transfer to 
if a nonzero return code is encountered . 

Return Codes: 

Note: 

o Successful return. 
4 Illegal FDUB-pointer specified. 
B Illegal parameter speci fied. 

12 Read or write access not allowed . 
16 Locking the f ile for reading will result in a 

deadlock. 
20 Hardware error or software inconsistency 

encountered. 
24 Automatic wait for (shared) file was interrupted. 

The Read and Write Po i nters have values which 
poi nt to the n~~i line to be read or written. 

NOTE 309 



MTS 3 : SYSTEM SUBROUTINE DESC~IPTIONS 

October 1976 

Description: See Appendix B of the section IIpi les and Devices ll in MT S 
Volume 1 for details concerning using sequential f iles 
with the NOTE and POINT subroutines. 

Examples : 

310 NOTE 

Assembly: CALL NOTE, (UNIT,INFO) 

UNIT DC F '6' 
INFO OS 4P 

FORTRAN: INTEGER*4 UNIT,INFO(4) 
DATA UNIT/6/ 

CALL NOTE (UNIT, INFO) 

The above examples will call NOTE for the sequentia l file 
attached to logical I/O unit 6. 



r 

( 

October 1976 

Purpose: 

Locat.ion: 

HTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

To convert the OS date (YYdddl 
Gregorian date (L'lM/DO/YY). 

*LIBRARY 

to the corresponding 

calling Sequences: 

Assembly: CALL OSGRDT , (osdat , grgdatl 

FORTRAN: CALL OSGRDT(osdat,grgdat) 

REAL*8 OSGROT 
date=OSGRDT(Osdat,grgdat) 

PL/I: CALL PLCALL (OSGRDT,f2,osdat, grgdat) 

DCL PLCALLD RETURNS(FLOAT (1 6»; 
date=PLCALLO (OSGRDT,f2,osdat,grgdat) 

Parameters: 

is the 8-byte (REAL*8 
date in the character 
Ux" is any character. 

or CHARACTER (8» OS 
form uxxx YYddd u , where 

g£gg2.!: is 8 bytes (REAL*8 or CHARACTER ( S» into 
which the Gregorian date in the character 
form "MH/DD/YY " is placed on return. 

!2 is a fullword (FIXED BINARY(3 1» containing 
the integer 2. 

Values Returned: 

FRO contains the Gregorian date in the character form 
uMH/DO/YY u. 

Description: The range of years is assumeG to include 1900. The result 
for dates prior to 00060 is undefined. 

Examples: Assembly: CALL OSGRDT, (OSOAT,GROAT) 

OSOAT DC 
GROAT OS 

C ' 71 120 ' 
CL8 

OSGRDT 31 1 



MTS 3: SYSTEM SUBROUTINE DESCRIPTI ONS 

3 12 OS GROT 

CALL OSGRDT , (OSDAT , DUI1MY ) 
ST D O, GROAT 

OSDAT DC 
DUI1 M Y OS 
GROAT DS 

c ' 7 11 20 ' 
C18 
00,C18 

October 19 76 

The above examples call OSGRDT to convert 
7 11 20 into the corr esponding Gregorian date 
1 97 1 • 

the OS da te 
April 30, 

FORTRAN : REAL*8 OSOAT , GRD AT 
CALL OSGtlDT (OSDAT , GROAT) 

~EA L*8 GRDAT,OSGRDT,OSDAT , DUMI1Y 
GRDAT=OSGRD1 (OSDAT , DUMI1Y) 

The above examples call OSGRDT to convert the OS date i n 
the variable OSDAT into the corresponding Grego r ian date. 

Pl/I : 

The abo ve 
7 11 20 into 
1971 . 

CALL Pi.CALL (OSGRDT , F2 ,' 7 11 20' , GROAT ) ; 
DECLARE OSGRDT ENTRY , 

F2 1-' IX ED bINARY (3 1) IN I TIAL (2 ), 
GRDAT CHARACTER (8) ; 

U NSP~C ( GROAT)=UNSPEC ( PLCALLD (OSGRDT , F2,OSDAT, 

DU MI1Y» ; 
DECLARE GROAT CHARACTER (8) , 

PLCALLD RETURNS (F LOAT( 16» , 
OSGRDT ENTRY , 
F2 FI XED BINARY (3 1) IN ITIAL ( 2), 
OSDAT CHARACTER (8) I NITIAL (' 7 11 20 ') 
DUMMY CHARACTER (8) ; 

ex amples call OSGRDT to convert 
the corresponding Gregorian date 

the OS 
Apri l 

date 
30, 



r 

r 

( 

October 1976 

Purpose: 

Location: 

MTS 3: SYSTEM SUBROUtINE DESCRIPTIONS 

££!!H1!± 

SUBROUTINE DESCRIPTION 

To permit a file so that it can be shared by other users. 

Resident System 

Calling Sequences: 

Assembly: CALL PERMIT , (what,how,whotyp,who!en,who,info, 
wholen2,who2,ercode , errmsg) 

FORTRAN: CALL PERMIT(what,how,whotyp,wholen,who , info, 
wholen2,who2,ercode,errmsg,rc4) 

Parameters: 

is the location of either 
(a) a file name with trailing blank (if 

!n!Q=O) , 
(b) a fullword-integer FDUB - pointer (such as 

returned by GETFD) (if in.!Q:1), 
(el a fullword-integer logical I/O unit Dum­

ber (0 through 19) (if !!!!Q= 1) , or 
(d) a left-justified , 8-character logical I/O 

unit name (e. g., SCARDS) (if !.nfQ= 1) . 
is the location of a fullword integer speci­
fying the access. There are six indeFendent 
accesses; add the values below for the combi ­
nations wanted. 

Read 
Write-expand 
Write-change,empty 
Truncate, renumber 
Destroy, rename 
Permi t 

Default 

1 
2 
4 
8 

1 6 
32 

128 

Some popular combinations are: 

NONE 
WRITE 
RW 
UNLIM 

o 
6 
7 

63 

PERMIT 3 1 3 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

3 14 PER !1IT 

Octo l:er 1976 

is the location of a full word integer 
value indicates what sort of ~~Q is 
s~ecified , as follows : 

.Y§.l!!g 

~!!Q is a signon 10 0 
~l!Q is a project number 1 
~hQ is OTHERS 2 
~hQ is ALL 3 
~hQ is HE 4 
.!tQQ is OWNER 5 
who is program key 6 
ih2 is signoD 10 and 

program key 7 
!!QQ is project number 

and program key 8 

whose 
being 

~hQ.gn is the location of a fullword integer which 
s~ecifies the number of characters in the 
signon 10 or project number (1 to 4) speci­
fied by !!!!Q (for !!QQly~g=O,1 , 7 . or 8 ) or the 
number of characters in the program key (1 to 
1 3) specified by !!h2 (for !!hQ1YEg=6) 

~hQ is the location of the 1- to 4-character 
signon 10 or project number (for ~hQ:tY.Eg=O ,1, 
7, or 8) or the 1- to 13-character program 
key (for whotype=6) 

~nfQ is the location of a fullword integer that 
s~ecifies the kind of ~h~l parameter 
supplied . 

~hQ.gn~ is the location of a fullword integer which 
specifies the number of characters i n the 
program key (1 to 13) specifi ed by !!~Q24 
This parameter i s reguired only when !!hQ1y~g= 
7 or 8 . 

!!hQ2 is the location of the 1- to 13 - character 
program key. This parameter is reguired only 
when !!hQ1YEg=7 or 8. 

g££Qqg ( o~tional l is the locat i on of a full word in 
which the PERMIT subroutine will place an 
error number if an error return (ret urn code 
4) is made . If this par a meter i s emitted, 
then the g r!:.!!!§g parameter must also be 
omitted. Asse.bly code users who wish to 
omit these parameters should either follow 
the variable parameter l i st convention (high ­
order bit of the previous parameter ' s adcon 
in the parameter list shoul d be 1) o r else 
s upply an adcon which i s zero (rathe r than 
pointing to a zero). 



( October 1976 

( 

( 

nTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Error numbers 
thing was wrong 
the subroutine 
parameters: 

less than 100 indicate some ­
with either the mechanics of 
call or the values of the 

1 ILLEGAL PARAMETER LIST POINTER 
2 ILL EGAL "WHA T" PARAMETER ADDRESS 
3 ILL EGAL "HOW" PARAMETER ADDRESS 
4 I' HOWII PARAMETER VAL UE NOT 0 TO 63 OR 128 
5 ILLEGAL "WHOTYPE " PARAMETER ADDRESS 
6 " WHOTYPE " PARAMETER VALUE NOT 0 TO 8 
7 ILLEGAL " WH OlENII PARAMETER ADDRESS 
8 BAD "WHOLEN !! PARAMETER VALUE 
9 ILLEGAL "WHO" PARAMETER ADDRESS 
10 ILLEGAL " INFO't PARAMETER ADDRESS 
1 1 "INFO" PARAMETER VALUE NOT 0 TO 1 
12 ILLEGAL " WHOLEN2" PARAMETER ADDRESS 
13 BAD " WHOLEN2 " PARAMETER VALUE 
14 ILL EGAL " WH02" PARAMETER ADDRESS 
15 ILLEGAL PROGRAM KEY 

Error numbers between 10 0 AND 200 describe 
erLors common to the $PERMIT co.mand : 

101 ILLEGAL FILE NAME 
' 0 2 FILE NOT FOU NO - FIL E " XXXX" 
103 ACCESS NOT ALLOWED TO FILE " XXXX" 

(permit access required to permit a 
file . ) 

104 DEADLOCK SITUATIO N, TRY LATER FILE 
" XXXX " 

105 INTERRUPTED OUT OF WAIT FOR LOCKED FILE 
" XXXX " 

Error numbers 20 1 and above indicate a file 
system error of some sort. 

~~I~2g (optional) is the location of a 20-fullword 
(BO -character) region in which the PERMIT 
subroutine will place the corresponding error 
message if an error return (return code 4) is 
made. Assembly language users should see the 
previous instructions on omi tting optional 
parameters for the ~££Q~~ parameter. 

~£~ is the statement label to transfer to if the 
corresponding return code occurs. 

Return Codes: 

o The file has been permitted in the requested 
manner. 

PERMIT 315 



MTS 3 : SYSTEM SUBROUTINE DESLhIPTIONS 

Examples : 

316 PERMIT 

October 1976 

4 Error . The file has not been permitted . See the 
!lI.s:2~~ and ~~I.!!!§.g value s returned for the specific 
error . 

S Illegal ~I;:.!!!§.g or ~I.s:Qg~ parameter . 

Assembly: CALL PERMIT# (WHA T, HOW# WHOTYP # WHOlEN #WHO , 
INPO,ERCODE , ERRMSG) 

WHAT DC C'PROB10ATA 
HOW DC P ' " 
WHOTYPE DC F '1 ' 
WHOLEN DC 1'13' 
WHO DC C' 2AA I 
INFO DC p IO' 
ERCOllE. OS F 
ERRHSG OS CLBO 

FORTRAN: CALL PERMIT (I PROB1DATA • #1,1, 3 #' 2AA ',0) 

The above ex amples permit the file PROB1DATA for read 
access by a ll users whose project nUlllber begins with the 
three characters 2AA . 



( 

( 

October 1976 

Purpose: 

Location: 

Alt. Entry: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

~~!!±±B~ 

SUbROUTINE DESCRIPTION 

To allow cOutrol to be returned to the user on a program 
interrupt. 

Resident System 

PGNTT 

Calling sequences: 

Assembly: LM O, 1 ,=A (exit, region) 
CALi. PGNTTRP 

Parameters: 

GRO should contain zero or the location to transfer 
control to if a program interrupt occurs. 

GR1 should contain the location of a 72-byte save 
region for storing pertinent information. 

Return Codes: 

Note: 

None. 

FORTRAN users can call this subroutine 
the RCAli. subroutine specifying PGNTT as 
point. 

by 
tbe 

using 
entry 

Description: A calIon the subroutine PGNTTRP sets u p a program 
interrupt intercept for one interrupt only. The calling 
sequence specities the save region for storing information 
and a location to transfer to upon the next occurrence of 
a program interrupt. When an interrupt occurs and the 
exit is taken , the intercept is cleared so that another 
call to PGNTTRP is necessary to intercept the next program 
interrupt. When a program interrupt occurs, the exit is 
taken in the ferm of a subroutine call (BALR 1 4 , 15 with a 
GR13 save region provided) to the location previously 
specified. It the exit subroutine returns to MTS (BR 14), 
MTS will hanole the interrupt as if PGNTTRP had not been 
called originally. This feature allows the user to taKe 
brief control of the interrupt before MTS takes complete 
control of the interrupt. When MTS takes control of the 
interrupt, execution of the program will be terminated and 
a message will be printed providing the locaticn of the 
interrupt. 

PGNITRP 317 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Example: 

318 PGNTTRP 

October 1976 

If GRO is zero on a call to PGNTTRP, the program interrupt 
intercept is d i sabled. GR l should be zero or point to a 
valid save region_ 

When the program interrupt exit is taken , the first eight 
bytes of the save reg i on cor.tain the program interrupt 
PSW , and the remainder of the save region contai ns the 
contents of general registers 0 through 15 (i n that order) 
at the time of the interrupt. The floating - point regis ­
ters remain as they were at the time of the i nterrupt_ 
GR l will contain the location of the save region. 

If , on a call to PGNTTRP, the first byte o f the sa ve 
region is X' FF', PGNTTfiP does not return to the calling 
program; rather the right-hand half of the PSW and the 
general registers are immediately restored from the sa ve 
region and a branch is made to the location specif i ed i n 
the second word of the region. This type of calIon 
PGNTTRP, after the first program i nterrupt exit is taken , 
allows the user t o set a switch (f or example) and to 
return to the point at which he was interrupted with the 
interrupt i ntercept again enabled. 

I n th i s example, the program interrupt inte r cept is 
enabled for a specifi ed portion of the program. When the 
interrupt occurs, a branch will be made to the label EXIT 
where a switch will be set mark i ng the interrupt occur ­
rence~ The ir,terrupt intercept will be reenabled by a 
second call to PGNTTRP with the FF flag set, and a cranc h 
will be made back to the point where the interrupt 
occurred . 

L" a , 1 , =A (EXIT, REGION) 
CALL PGNTTRP The i ntercept is enabled . 

SR 0,0 
SR " 1 
CALL PGNTTRP The intercept is disab l ed. 

USING *, 15 
EXIT 01 SW , X'Ol' 

"VI O(l) , X' FF ' 
LA a , EXIT 
CALL PGNTTRP The intercept i s reenabled. 

REGION OS 18F 
S. DC X ' 00 t 



October 1976 

Purpose: 

Location: 

Alt .• Entry: 

MTS 3: SYSTEM SUBROUTIN E DESCRIPTIONS 

~Q1Ji! 

SUBROUTINE DESCRIPTION 

To alter the values of any or all of the logical pOinters 
for a seguer.tial file. 

Resident System 

POINT#. 

Calling Seguences : 

Assembly: CALL POINT, (unit ,info,code) 

FORTRAN: CALL POINT(unit,info,code,&rc4,&rc8,&rc1~,&rc16, 
&rc20,&rc24) 

Parameters: 

Yrr~! is the location of either 
(a) a fullword-integer FDUB-pointer (as returned 

by GETFD), 
(b) a full word-integer logical I/O unit number 

(0 through 19), or 
(c) a left- justified a-character logical I/O 

uni t name (e.g., SCARDS). 
~UfQ is the location of a region of four full words 

from which the POINT subroutine will set any or 
all o f the logical pointers according to the 
value of code. The region contains the pointers 
in the same- order as returned by the NOTE 
subroutine, that is, the Read, Write, and Last 
Pointers as well as the last line number, 
respecti vely. 

£Qg~ is the location of a full word containing a value 
from 1 to 15 indicating wbich of the 4 logical 
pOinters should be set . Tbe conventions are as 
follows: 

1 Set Read Pointer 
£ Set Write Pointer 
4 Set Last Pointer 
8 Set last line number 

These values should be added for multiple 
actioL, i.e., 7 means to set the Read, Write and 
Last Pointers only. 

££~L~~~L~£l~ are the statement labels to transfer to 
if a nonzero return code is encountered. 

POINT 319 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Description : 

Examples : 

320 POINT 

October 197 6 

Return Codes: 

Note: 

o Successful ret urn. 
4 Illegal FDUB- pointer speci fied . 
8 I llegal parameter specifi ed . 

12 Read or wr i te access not allowed. 
16 Lockifig the file appropriately will result in a 

deadlocK. 
20 Hardware error 

encountered. 
24 Automatic wait for 

or software inconsi stency 

(shared) f i le was interrup t ed. 

If any of the f i rst three values of the regi on 
~nf2 are set to zero and the POINT subro utine i s 
called , the effect will be to reset the indicated 
pointers (Read , Write and/or Last depending on the 
value of £Qgg) to the beginni ng of the f ile. 

See Appendix B of the section " Files and Devi ces " 
Volume 1 for details concerning using sequential 
wi th the NOTE and POINT subroutines. 

i n HTS 
f i les 

Assembly: CALL POINT , (UNIT, I NFO, CODE ) 

UNIT DC F ' 6 ' 
INFO DS 4F 
CODE DC F ' 7 ' 

FORTRAN: INTEGER * 4 UNIT,lNFO ( 4) 
DATA UNIT/6/ 

CALL POINT ( UNIT,INFO,7 ) 

These examples call POINT (ass u ming tbat the NOTE subrou ­
tine was called previously) for the seguent i a l f ile 
attached to logical I/O unit 6. The CODE parameter (7 ) 
specifies that the pai nters are to be set for Read , Write, 
and Last. 



( 

f 

MTS 3: SYSTEM SUBROUTINE DESCRIFTIONS 

October 1976 

SUBROUTINE DESCRIPTION 

Purpose: To produce pl ots in the normal outp ut stream . 

Location: *LIBRARY 

Entry Points : The printer plot routines have the following entr y points : 
PLOT 1, PLOT2, PLOT3 , PLOT 4, PLOT 14, PRCHAR, PRE ND, PRPLOT , 
STPLT 1, STPLT2 , OMIT , and SETLOG . The standard approach 
to produce a plot is to call PLOT 1, PLOT2 , PLOT3 , and 
PLOT4 in that order . PLOT2 must be called for eacb plot 
to be produc ed . 

Logical I/D. Units Referenced: 

Example : 

SPRINT - Output from the printe r plot routines (th e plot) .. 
Note: When the printer is used as t he SPRINT 
device , a page skip is normally issued !!! 1l!g 
~§g~ before calling PLOT4 in order to force a 
skip to ~he top of the next page before starting 
the plOL 

SERCOM - Error messages. 

FORTRAN: 

20 

DI MEN SION IMAGE (1 S00) 
DATA BCD/ ' * ' /,NSC (S)/1 , 0 , 3 ,0, 2/ 
CALL PLOT 1( NSC , 1' , 3 ,11, S) 
CALL PLOT2 (Il1AGE ,1. 0 ,-1. 0 ,1. 0, -1. 0) 
DO 20 1 = 1, 60 
DO 20 J=1,40 
X = (1 - 30 _1/30 . 
Y = (J - 20 . 1/20 . 
IF (X **2+Y**2 . GT . 0.7S**2) GO TO 20 
CALL PLOT3 ( BCD,X , Y,1,4 ) 
CONTINUE 
CALL PLOT4 (1 4 ,' VERTICAL LABEL ') 
STOP 
END 

The above FORTRAN program will produce the plot given on 
the follow i ng page . 

Pr i nter Plot Routines 321 



MTS 3: SYSTE~ SUBROUTINE DESCRIPTIONS 

October 1976 

1. 000 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 
I I I I I I I I I I I 
I I I I I I I I I I I 
I I I I I I I I I I I 

0 . 8 00 +-----+- - ---+--~- -+-- - --+-----+- -- -- + -----+-----+-----+---- - + 

I I I I I * I I I I I 
I I I I ***************** I I I I 
I I I 1* **********************1 I I I 

0.600 +- --- -+- ----+-- - - ***************************---- +- -- --+-- ---+ 
I I I ******************************* I I I 
I I I ********************************* I I I 
I I ************************************* I I 

0 . 400 +-----+----***************************************- ---+-----+ 
V I I *************************************** I ~ 
E I I ***************************************** I I 
R I I ******************************************* I I 
T 0.200 +-----+-- ******************************************* - - +-----+ 
I I I ********************************************* I I 
C I I ********************************************* I I 
A I I ********************************************* I I 
L 0.000 +-- ---+-********************************************* -+--- - -+ 

I I ********************************************* I I 
L I I ******** ************************************* I I 
A I I ********************************************* I I 
a -0 . 200 +-----+-- ******************************************* --+-----+ 
E I I ******* ************************************ I I 
L I I ***************************************** I I 

I I ********************** ***************** I I 
- 0 . 400 +--- --+----***************************************--- -+-----+ 

I 
I 
I 

I 
I 
I 

************************************* 
I ********************************* I 
I ******************************* I 

I 
I 
I 

I 
I 
I 

- 0 . 600 +-----+ -----+--- -*************************** --- -+--- --+-----+ 
I I I 1****** *****************1 I I I 
I I I I *** ************** I I I I 
I I I I I * I I I I I 

- 0 . 800 +-----+---- -+ -----+-----+-----+-----+-----+-----+-----+-----+ 
I I I I I I I I I I I 
I I I I I I I I I I I 
I I I 1 I I I I I I I 

- 1. 000 +-----+-----+ -- - --+-----+ -----+- -- -- +-----+-- --- +-----+- --- - + 
-1. 00 -0 .• 80 · 0.60 - 0 . 40 - 0 . 20 ·0 . 00 0.20 0.40 0 .60 0 . 80 '. 0 

322 Printer Plot Routines 



r-- October 1 976 

( 

( 

FORTRAN; 

1 

MTS 3: SYSTEM SUBROUTINE DESCR l fTIONS 

REAL ARG/O . / , X ( 6 1) , Y5IN ( 6 1) , YC05 ( 6 1) 
REAL PI60/.0523599/ 
INTEGER CSIN/ ' * ' / , CCOS/ ' " ' / 
INTEGER NSCALE (5)/1, O, 3 , 0 , O/ 
CALL PLOT l (N5CALE (l) ,11, 3 ,11, 5) 
CALL PLOT2eO , laO. , 0 , 1.,-1.) 
X (1 ) = O. 
Y5IN (1) = a . 
YCOS (1 ) = 1. 
DO 1 I '" 2 , 6 1 

X CI) = X (I -l) -+ 3 . 
ARG = ARG -+ PI60 
YSIN ( I) = SIN (ARG) 
YCOS (1) :; COS ( ARG) 

CALL PLOT3 (CSIN , X (1 ) , YSIN (1) , 6 1, 4 ) 
CALL PLOT3 (CCOS , X (1 ) , YCOS (1 ),61, 4) 
CALL PLOT4 (11, ' SIN AND COS ') 
CALL SYSTEM 
END 

The above FORTRAN program w~ll prod uce the Flot given on 
t he following page . 

Printer Plot Routines 323 



MTS 3 : SYSTEM SUBROUTINE DESC~IPTIONS 

October 1976 

1. 0 00 %%%%%-+-----+-----+-----+-********* -+-----+-----+-----+-----+ 
I %%% I 1 *** I *** I I I I 
I I %~ I I ** I I I ** I I I I 
I I %%1 1** I I I **1 I I I 

0. 800 +-----+----- %%--- **- ----+-----+-----+-----** ----+-----+-----+ 
I I 1%*1 I I I 1* I I I 
I I 1%1 I I I 1*1 I I 
I I 1** %5i.1 I I I I **1 I I 

0.600 +-----+--- -- * ----- ~ -----+-----+-----+-----+-----*-----+-----+ 
I I *1 1% I I I I 1* I I 
I I * 1 1% I I I I 1* I I 
11*11%1 I I I 1*1 I 

0 . 400 +-----+-*---+-----+---%-+-----+-----+-----+-----+---*-+-----+ 
I 1* I 1 %1 I I I I *1 I 
I * I I % I I I I * I 

S I *1 I 1 1% I I I I 1* I 
I 0 .200 +---*-+-----+-----+-----+-%---+-----+-----+-----+-----+-*---+ 
N 1*1 I 1 1%1 I I I 1*1 

1* 1 I I I %1 I I I I *1 
A 1* I I I I %1 I I I I *1 
N 0.000 *-----+---- -+-----+-----+----- %-----+-----+-----+-----+-----* 
o I I I 1 I 1% I I I I I 

I I I I I 1 % I I I I I 
C I I I 1 I 1%1 I I I I 
o - 0.200 +-----+-----+-----+-----+-----+---%-+-----+-----+-----+-----+ 
S I I I I I 1%1 I I I I 

I I I I I I % I I I I 
I I I 1 I I 1 % I I I I 

-0 .400 +-----+-----+-----+-----+-----+-----+- %---+-----+-----+-----+ 
I I I I I I 1%1 I I I 
I I I 1 I 1 I %1 I I I 
I I I 1 I I 1 %1 I I I 

- 0.600 +-----+-----+-----+-----+-----+-----+-----%-----+-----+-----+ 
I I I 1 I I I 1 %% I I I 
I I I I I I I 1%1 I I 
I 1 I I I I I I % 1 I I 

-0.800 +-----+-----+-----+-----+-----+-----+-----+----%%-----+-----+ 
I I I I I I I I 1%% I I 
I I I 1 I I I I I %" I I 
I I I I I I I I I %~U I 

-1 . 000 +-----+-----+-----+-----+-----+-----+-----+-----+-----+- %%%%% 
O. 18. 36. 54 . 72 . 90.. 108 . 126 . 144. 16 2.. 180. 

324 Printer Plot Routines 



( 

( 

( 

October 1976 

Purpose: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

PLOT1 sets up the information required to construct the 
plot. 

Calling Sequences: 

Assembly: CALL PLOT1, (nscale,nhl , nsbh, nVI , nsbv) 

FORTRAN : CALL PLOT 1 (nscale (1 ) , nhl,Dsbh,Dvl,nsbv,&rc4) 

Parameters: 

n2~~lg is the location of a region of f ive full word 
integers supplying information about scaling 
and the number of places to be printed to the 
right of the decimal paint . The field width 
for printing Y values is 8, and for X values 
is min (nsbv, 8) • 
rr§£slgJ!L If rr§£~lgJ!L=O , the values 0,3 , 0,3 

are used for n§£21gJ£L through 
!!§£algJ2L; 

rr§£~lgJfL If n§£slgJfL=Y, the numbers printed 
along the Y-axis are 10**Y times 
their true value. 

£§£~lgJJL The number of decimal places 
printed for Y values. 

n§£al~j~l I f n§£21gJ~1=X, the numbers printed 
along the X- axis a re 10**X t imes 
their true values. 

fi§£algJ2L The number of decimal places 
printed for X values . 

nhl is the location of a full word integer giving 
the number of horizontal lines in the plot . 
This number must be 2 or greater . 

n§Q~ is the location of a fullvord integer giving 
the number of spaces between horizontal 
lines. This number must be 1 or greater. 

Uyl i s the location of a full word integer g1v1ng 
the number of vertical lines in the plot. 
This number must be 2 or greater. 

n§QY is the location of a fullword integer giving 
the number of spaces between the vertical 
l~rles. Thi s number must be 1 or greater . 

!:£~ is the statemeI,t label to transfer to if a 
return code of 4 is encountered. 

Return Codes: 

o Normal return. 
4 Improper Argument. PLOT 1 has not been entered. 

Printer Plot Routines 325 



MTS 3; SYSTEM SUBROUTINE DESCRIPTIONS 

Purpose: PLOT2 prepares the 
r eq uired by PLOT3 to 

grid 
place 

October 1976 

and sets up the information 
a point correctly in the graph . 

Calling Sequences: 

Assembly: CALL PLOT2 , (image,xmax , xmin,ymax , ymin) 

FORTRAN: CALL PLOT2(image,xmax,xmin , ymax,ymin , &rc4,&rc8) 

Parameters: 

Return Codes: 

is either the 
loca tion of 
length than 

loca tion of a 
a region equal to 

zero or the 
or greater in 

(nsbh*nhl - nsbh+nhl)* (n sbv*nvl-nsbv+n vl+ 8)+ 8 

bytes. This region is used to form the image 
of the graph . 
is the loca~ion of the largest X value of t he 
points to be plotted. 
is the location of the smallest X valu e of 
the point s to be plotted. 
is the location of the largest Y value of the 
points to be plotted. 
is the location of the smallest Y value of 
the points ~o be plotted. 
Note: The preceding four arguments are eith­
er short or loog floating - point numbers. 
is the statement label to transfer to if a 
return code of 8 is encountered. 

o Normal ret urn. 
8 ~m~~ ~ ~mia or Ym~! ~ Y~in· 

entered . 
PLOT2 has not been 

Description : If PLOT l has not been entered by the time PLOT2 is called, 
defa ults are assumed for ll§.£§:!.g , !!.!;!;!. , n§.!:!:!!, nyl, and D§Qy·· 
In particular, n§.£§:l~=O , n'!;!;1=6, n§Q~=9 , and 1l§Qy=9 . The 
value of llY!. depends on the SPRINT d e vice; for a printer , 
ny.!=", and for a Teletype , 1l!1=6 .• 

If a zero is specified for !!!!g,gg , then PLOT2 will 
automatically allocate sufficient space for the image 
region. On successive calls to PLOT2 , space will released 
and reallocated as needed. 

326 Printer Plot Routines 



( October 1976 

purpose: 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

PLOT3 places t he p·lotting character in the graph for each 
point (X,Y ). 

Call~ng Sequences: 

( 

( 

Assembly: CALL PLOT3 , (bcd ,x ,y,ndata,int) 

FORTRAN: CALL PLOT3 (bcd / x, y,ndata / int,&rc4 , &rc8,6rc1 2 , 
&rc 16) 

Parameters : 

~£~ i s the location of the plotting character to 
be used. 

! is the location of a f loating - point region of 
X values. 

y is the location of a floating-point region of 
Y values. 

ng£1~ is the location of the fullword i nteger 
n u mber of points to be plotted . 

in1 is the location of the fullwo.rd integer 
number of bytes between the addresses of 
successive numbers to be used as coordi nates. 
For a short form v ector , this is 4. !n1 
should be a multiple of 4. 

££1£L!£1~ are the statement labels to transfer to if 
a retur n code of 12 or 16 is encountered . 

Return Codes : 

o No r mal 
1 2 Using 

return. 
a log scale with a negative or zero !~!n, 

value, or , !.!!1 not a ~m~!,Y~!~, Y~!n, or y~~! 
multiple of 4. 

16 PLOT2 has never been entered , or 
entered since the last call to PLOT4 . 

bas not been 

Printer Plot Routines 327 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

purpose: PLOT4 prints the 
and Y- axes aLd 
side . 

completed graph wi th values 
a centered vertical label 

October 1976 

along the x ­
down the left 

Calling Sequences : 

Descr i ption : 

Assembly: CALi.. PLOT4, (nchar, la bel) 

FORTRAN : CAi..L PLOT4 (nchar , label,&rc4 , ~rc8 , &rc 1 2 , &rc ' 6 , 
&rc20 , &rc 24 , &rc28) 

Pa rameters : 

rr£h~~ is the location of the fullword integer 
number of characters i n the vert i cal label . 
If this is zero , no label wi l l be printed . 

1~~~1 i s the location of a region contai ni ng the 
label to be pr i nted . 

~£~Q~~££~~££~~ are statement l abe l s to transfer to i f 
a return code of 20 , 24 , o r 28 is 
er,countered. 

Return Codes: 

See 
the 

o Normal return . 
20 PLOT2 has not been entered . 
24 USiLg a log scale wi th a negati ve or zero !~irr , 

! !!!9:.! , Y!!!irr, or Y!!!.!! ~ val ue (see SETLOG and PLOT2) . 
28 Error in scali ng ; one or more values can not be 

priLted in the form specified by rrs c~lg (see 
PLOT') . 

OMIT for the poss i bi lity of deleting gr i d values and 
last lir.e of the graph . 

If ret urn code 28 is gi ven , the plot wi l l be printed wi t h 
all gr i d values whic h can be pr i nt ed . 

328 Printer Plot Routines 



( 

( 

( 

October 1976 

Purpose : PLOT14 
PLOT1, 

alloW'$ the 
PLOT2 , PLOT3 , 

MTS 3 : SYSTEM SUBROUTINE DESCR I PTIONS 

user to 
and PLOT4 

combine successi v e calls on 
into one callan PLOT 14. 

Calling Seq uences: 

Description: 

Assembly: CALL PLOT 14 , (nscale , nhLnsbh , ovl , nsb v , image , 
x max ,x min ,ymax ,y min,bcd , x,y,ndata , 
int,nehar,label) 

FORTRAN : CALL PLOT 14 (nscale (1 ) , nhl,nsbh , nvl , nsbv,image, 
xmax , xmin , ymax , ymin,bcd,x,y , ndata , 
int,nchar,label,&rc4 , &rc8 , &rc 12 , 
&rc 16 ,Src20 , &rc24 , Src28 ) 

Parameters: 

See the descriptions of 
PLOT4 for the parameters 

This routine 
PLOT2 , PLOTJ, 

€executes 
and PLOT4 . 

the 

PLOT 1, PLOT2 , 
and return codes 

PLOT3, 
used . 

and 

appropriate calls on PLOT 1, 

printer Plot Ro utine~ 329 



I1TS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Purpose: 

October 1976 

PRCHAR allows the user to change the characters used in 
printing the grid. 

Call1ng Sequences: 

Assembly: CALL PRCHAR, (arg ) 

FORTRAN: CALL PRCHAR (arg) 

Parameter: 

is the location 
bytes are used to 
The bytes are used 

of a full word integer whose 
define the grid character. 
as follows: 

byte 0: intersection character (initially +) 
byte 1: horizontal line character (initially - J 
byte 2: vertical line character (initially I) 
byte 3: fill character (initially blank) 

A X'OO' in any byte indicates that no change is 
to be made to that character. 

Return Code: 

None. 

Description: Changes made by a call to thi s subroutine affect all plots 
starting with the next call to PLOT2, STPLT1, STPLT2, or 
PREND . 

Example: FORTRAN: INTEGER CHARS/Z00006AOO/ 

CALL PRCHAR (CHARS) 

The above example changes the vertical line character to 
" J" (vertical bar) , and leaves the other three characters 
unchanged. 

330 Printer Plot Routines 



( 

October 1976 

purpose! 

HTS 3: SYSTEM SUBROUTINE DESCRiPTIONS 

PRENO constructs and prints a plot using the points saved 
by PRPLOT. Values are printed along the x- and Y-axes, 
and a centered label is printed on the left -hand side. 
See the description of PRPLOT. 

Calling sequences: 

Assembly: CALL PRE NO, (nchar , label) 

FORTRAN: CALL PREND (nchar,label,&rc4,&rc8) 

Parameters! 

i s the location of a full word integer giving 
the number of characters in the vertical 
label. If this i s less than or equal to 
zero, no l abel will be printed. 
is the location of a region containing the 
labeL 

~~£g4~I£~ are t he statement labels to tra nsfer to if 
a return code of 4 or 8 is encountered. 

Return Codes! 

o Normal return . 
4 PRPLOT has not been successfully called . 
8 Log argument S 0 (occurs only when a log scale is 

used). 

Printer Plot Rout ines 331 



MTS 3 : SYSTEM SUBROUTI NE DESCRIPTIONS 

Purpose: 

October 1976 

PRPLOT collects points to be plotted by a subsequent call 
to PREND. 

calling Sequences: 

Assembly: CALL PRPLOT, (bcd,x,y,ndata,int) 

FORTRAN: CALL PRPLOT(bcd,x / y,ndata / int,6rc4) 

Parameters: 

Q£g is the location of the plotting character to 
be used. 

! ~s the location of a floating-point region of 

y 
x values. 
is the location of a floating-point region of 
Y values. 
is the location of the fullword integer 
number of paints. 
is the location of the full word integer 
number of bytes between the addresses of 
successive coordinate values. For a short 
form vector (REAL*4) I this is 4. :!!!!. should 
be a multiple of 4. 
is t he statement label to transfer to if a 
return code of 4 is encountered. 

Return Codes: 

o Normal return. 
4 !g!. is not a multiple of 4. 

Description: PRPLOT saves points to be plotted; PRENO determines the 
minima and maxima and constructs the actual plot. PRPLOT 
may be called many times before calling PREND.. PRPLOT 
allows the user to obtain a printer plot without knowing 
in advance how many points will be accumulated or what the 
minimum and maximum X and Y values will be. It is !gg§!. 
efficient (in terms of CPU time) to call PRPLOT for one 
point at a time. When plotting in log mode, points for 
which the logarithm is undefined will be ignored. 

Example: FORTRA N: 

1 

332 Printer Plot Routines 

REAL X (10) , Y (10) 
INTEG ER LABEL(2) '; ' A LA', ' BEL'/ 
X( l ) = 1-
Y( 1)=2. 
DO 1 1=2, 10 

XCI) = X(I- 1)+1. 
Y (I) = 2 .• *X (I) 



( October 1976 

( 

MTS 3: SYSTEM SUBROUTI NE DESCR I PT ION S 

CALL PRPLOT('*',X(1) ,Y(1) , 3 ,4,&4) 
CALL PRPLOT('(',X(4) ,Y(4) ,7,4,&4) 
CALL PREND ( 7 , LABEL (1» 
CALL SYSTEM 

4 CALL ERROR 

Printer Plot Ro utines 333 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

Purpose : 

October 19 76 

STPLT1 is called by the user who wishes the pl o t r o utine 
to inspect his data and then make appropriate calls on 
PLOT1 and PLOT2 . The defau lt gri d s iz e (see PLOT2) i s 
always used , but the s caling and decimal places to be 
printed are determined by STPLT 1. The user must callan 
PLOT3 and PLOT4 to have the graph printed. 

calling seq uen ces : 

Descript ion: 

Assembly: CALi. STPLT1, (image,x,y , ndata ,i nt ) 

FORTRAN : CALL STPLT ' (i mage,x , y,ndata ,int , trc4 ,trcB. 
&rc 12 , 6rc16 , &rc20 , &rc24 , &rc2B ) 

Parameters: 

See t he descripti ons of 
PLOT4 for the parameters 

PLOT 1. PLOT2, 
and return codes 

PLOT3 , 
used. 

and 

ST PL T1 
E-type 

will 
iormat 

cause grid values 
when necessar y_ 

to be printed in FORTRAN 

334 Printer Plot Routines 



( 

( 

( 

October 1976 

Purpose : 

MTS 3: SYSTEM SUBROUTINE DESCRIPiIONS 

STPLT2 does thE work of STPLT 1 and in addition calls on 
PLOT3 and PLOT4 to print the graph . 

Calling sequences : 

Assembly: CALL STPLT2 , (image , x , y , ndata,int , bcd , nchar, 
label) 

FORTRAN: CALL STPLT2(image , x , y , ndata , int,bcd,nchar , label , 
Src4,&rcB , &rc12,&rc 16 , &rc20,&rc24, 
Src28) 

Parameters : 

See 
and 

the descriptions of PLOT1 , PLOT2 , PLOT3 , 
STPLT1 for the parameters and return codes 

PLOT4 , 
used . 

Printer Plot Rout ines 335 



MTS 3: SYSTEM SUBROUTINE DESC~lPTIONS 

Purpose: 

October 1976 

SETLOG is called by the user to specify whether be wants a 
normal , semi - log, or log-log plot. 

Calling sequences: 

Assembly: CALL SETLOG , (arg) 

FORTRAN: CALL SETLOG (arg) 

Parameters: 

~&.g is the location of a word with bits 6 and 7 
inter~reted as follows : 

bit 7 0 
1 

bit 6 0 
1 

y 
y 

X 
X 

scale 
scale 
scale 
scale 

is normal. 
i s logarithmic. 
is normal. 
is logarithmic. 

The Flatting mode is initially set to Dormal. 

Re t urn Codes: 

o Normal return. 
4 Mode not changed. 

Description: If PLOT2 or STP1T1 has been called, but the graph has not 
yet been priLted by PLOT4, or if PRPLOT has been called, 
and has not yet beeD followed by a call to PREND , the 
plotting mode will not be changed. This is because the 
grid has already been set up. Base 10 logarithms are used 
for the grid. 

Example : FORTRAN: LO GI CAL* 1 XLOG/Z02/,YLOG/Z01/ , XYLOG/Z03/ 

CALL SETLOG(XLOG) Plot with log X, normal Y 

CALL SETLOG (YLOG) Plot with log Y, normal X 

CALL SETLOG(XYLOG) Log-log plot 

CALL SETLOG (0) Normal plot 

336 Printer Plot Routines 



( 

( 

( 

October 1976 

purpose: 

MTS 3: SYSTE~ SUBROUTINE DESCRIPTIONS 

Q!1J! 

OMIT is called by the user to specify 
graph line, the vertical grid values, 
grid values will be printed. 

whether the last 
and the horizontal 

Calling Sequences: 

Assembly: CALL OMIT, (arg) 

FORTRAN: CALL OMIT (arg) 

Parameters: 

sI9 is the location of a full word integer inter­
preted as follows: if ~£9 is positive, the 
function designated by the appropriate bit is 
turned off. To turn it back on, s£9 is made 
negative and OMIT is called again_ 

bit :i;8 

bit 29 
bit 30 
bit 3 1 

Return Code: 

None. 

scaling factor messages (PRPLOT, STPLT 1 
ouly) . 
the last graph line. 
vertical grid values .. 
horizontal grid values. 

Description: A graph can be produced by producing the graph in pieces, 
deleting the horizontal grid values and the last graph 
line (s£g=S) for each piece except the last, and starting 
the next graph segment where the last graph line would 
have been prin't.ed. When the last segment is to be 
printed, OMIT can be called (s£9=-S) to restore the 
functions_ Initially , all four functions are turned aD. 

If STPLT1 or PRPLOT scales the X or Y values , 
normally printea stating what was done. Bit 
controls the printing of this message. 

a message is 
28 of s£9 

Printer plot Routines 337 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

OctoJ:e:c 1976 

338 P:cinter Plot Ro ut i nes 



( 

( 

October 1976 

Purpose: 

Location: 

HTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

To caUSe the user to be signed off when the next HTS 
command is encountered . 

Resident System 

Calling Sequences : 

Assembly: CALL QUIT 

or 

QUIT (WHO= {BATCH I ALL} ,][ WHEN= {NOW I LATER] ] 

FORTRAN: CALL QUIT 

PL/I: CALL QUIT ; 

Return Codes: 

Note: 

None. 

The complete descri ption for using the QUIT macro 
i s given in Hrs Volume 14. Additional parameters 
may be given to the QUIT macro to control whether 
the subrouti ne is called i n batch mode only and 
whether the effect is immediate. 

Description: This subroutine does not ca use the user to te s i gned off 
i mmediately. It does set a fl ag so that the next time the 
user returns to MTS command mode (due to te r minati on of 
execution , attention interrupt, etc .) the effect wil l be 
the same as if tbe user entered a $SIGNOFF command. 

It is also possib l e to use 

CALL CHD('SSIGNOFF ',9) 

which does cause the user to be signed off immediately. 

QUIT 339 



~TS 3 : SYSTE~ SUBROUTINE DESC1IPTIONS 

October 1976 

340 QUIT 



( 

( 

( 

October 1976 

Purpose : 

Location: 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

n~!bb 

SUBROUT I NE DESCRIPTION 

To call R- type sUbrout i nes (such as GET FD) from FORTRA N. 

*LIBRARY 

Calli n g Sequences: 

FORTRAN: CALL RCALL(a , m, ir (1) , .•. ,ir ( m) . n . rr (l ) •. • . , 
rr (n) . &rc4 •..• ) 

Parameters: 

~ is the address of the R- type subroutine which is 
to be called. This should be declared EXTERNAL . 

m is ~he f ullword integer number of general regis ­
ters starting with GRO to be set up prior to 
calli ng the R- type subroutine . l!! may range 
bet ween 0 and 1 1 inclusive . 

!£11LL~~~Li£lmL a r e the values to be placed in GRO 
through GR ( m. -1) respectively.. These parameters 
must be full word - aligned and four bytes i n 
length . 

n i s tbe full word integer n umber of gene r a l regis ­
ters starting with GR O to be stored after 
call i r. g the R- type subroutine . !!. ma y range 
between 0 and 11 inclusive . 

I£11LL~~~L££lnL are the n variables into which the 
contents of GRO through GR (n -l ) will be stored 
after calling the R- type subroutine. These 
parameters must be fullword - aligned and four 
bytes i n length. 

££~L~~~ is the statement label to transfer tc upon 
rece~ving a nonzero r eturn code from the subrou ­
tine called via ReALL. 

Ret u rn Codes: 

The return code i s in GR 1S as returned b y the R- type 
subroutine . The contents of the general reg i ~ters 

have been returned after the R- type subroutine call 
as specified by the parameters . 

Description : The general registers startin g with 0 are set u p as 
speci fied by the par ame t er l i st . The second parameter 
specifi es the number of reg i sters t o be set u p . a nd the 
parameters following specify the val ues to be placed i nto 
the registers. The R- type subroutine i s called, and when 

BCALL 341 



MTS 3: SYSTEM SUBROUTINE DESCEIPTIONS 

Example: 

34 2 BCALL 

October 1976 

it returns, the general 
stored as specified b y the 
code is as re turned by the 

registers starting with 0 are 
paramete r list. The ret urn 

R- type subroutine . 

Many R- type subroutines require that addresses be pl aced 
in registers be f ore calling them . These addresse s can be 
computed by using the subrouti ne ADROF . See t he ADRO F 
subroutine descript i on in this vol ume . 

If the s ubroutine also req uires an S- type parameter lis t, 
the address of the parameter l ist must be placed i n GR 1. 
Th i s may be dorle by using the ADROF subrout ine where the 
argument to ADROF is a scalar variable for a s i n9le ­
element parameter list or a n array for a multiple - e l emen t 
parameter l i st. 

FORTRAN : EXTER NAL GETFI> 
INTEGER*4 ADROF , FDUa 
CALi. RCALL (GETFD , 2 , O, ADROF('FDname 1) , 1, FDUB , &9) 

This example calls GETFD wi th GRO conta i ning a zero a nd 
GR 1 containing the address of the charac te r stri n g 
II FDname li • GETFD retur ns the FDUB- pointer in GRO, a nd th i s 
is stored i n the vari able FDUB . A return code of four 
from GETFD will cause control to be transferred to 
statement 9 of the FORTRAN program . 

FORTRAN : EXTERNAL CHKFIL 
INTEGER*4 ADROF , X 
DATA MASK/Z0000000 1/ 
PAR ~ ADROF (1 2AGA : DATAFILE I ) 
CALL RCAL L(CHKFIL , 2,O , ADROF (PAR) , 1, x , &10 0) 
X '=' LAND (X, MASK) 
IF (X. EQ .1) GO TO 10 

This e xample ill ustrates a call to the subrou t i ne CHKFIL 
wh i ch uses both an S- t ype calli ng sequence parame t er list 
and a R- type return of a value. In th i s case , the f i rst 
parame t er to CHKFI L is the location of the name of a f i le. 



( 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

SUBROUTINE DESCRIPTION 

Purpose.: To read an input record from a specified logical I/O un i t . 

Location : Resident system 

Alt . Entry : READ# 

Calling Sequences: 

Assemb ly: CALL READ , (r eg , leL , mod , lnuw ,unit) 

FORTRAN: CALL READ (reg , len , mod , ln um, unit,£rc4, ..• ) 

PL/I: See the IHEREAD subroutine description. 

Parameters: 

~~g is the location of the virtual memory region to 
whicl:. data is to be transmitted. 

19n is the locati on of a halfword (I NTEGER*2) inte­
ger in which is placed the number of by tes read . 

~Q~ i s the locati on of a fullword of modifier bits 
used to control the acti on of the s ubroutine . 
If ~Q~ is zero, no mod i fier bits are specified. 
See the " I/O Modifiers " descri ption in this 
volume. 

ln~~ i s the location of a f ullword i nteger giving the 
internal representation of the line nuwber that 
is to be read or has been read by the s ubro u­
tine. The internal form of the line number is 
the e xternal form times 1000 , e.g ., the i nte r nal 
form of line 1 is 100 0 , and the internal form of 
line .00 1 is 1. 

YUi! is the location of either 
(a ) a ful l word-integer FDUB- po i nter (such as 

ret u rned by GETFD) , 
(b) a fullword-integer logical I/O unit number 

(0 through 1 9 ) , or 
(c) a left -justified a - character logical I/O 

unit name (e . g. , SCARDS). 
~£~L~~~ i s the state me nt label to transfer to if the 

corresponding nonzero return code is 
encountered . 

READ 34 3 



HTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

Return Codes : 

o Successiul return. 
4 End - ai -file. 

October 1976 

>4 See the " 1/0 Subroutine Ret urn Codes " descri ption 
i n this vol ume. 

Description: All five of the parameters in the calling seq uence are 
requi red . The s ubroutine reads a record from the I/O un i t 
speci fied by ~nii i nto the region specified by ~gg and 
puts the length of the record (in bytes) into the location 
specified by 19n. If the mQQ parameter (or the FDname 
modifier) specifies the INDEXED bit, the l~~m parameter 
must specify the line number to be read. Otherwise , the 
subroutine will put the line number of the record read 
into the locat~on specified by lQ~~ . 

Examples : 

344 READ 

There are no default fDnames for READ . 

There is a macro READ in the system macro litrary for 
generating the calling sequence to this subroutine. See 
the macro description for READ in MTS Volume 14. 

The example below , given in assembly language and FORTRAN, 
calls READ specifying an input region of 20 fullwords . 
The logical I/O unit speci fied is S and there is no 
modifier speciiication made i n tbe subroutine cal l . 

Assembly : 

REG 
LEN 
MOD 
LNUl'! 
UN I T 

FORTRAN: 

30 

CALL READ , (REG , LEN , MOD,LNUtI,UNIT) 

OS CL80 
OS H 
DC flOI 
OS F 
DC pl S I 

or 

READ 5 , REG , LEN Suhre 

INTEG.L:.~*2 LEN 
INTEGER REG (20 ) ,LNUH 

call using 

CALL READ (REG,LEN , O, LNUH , S , &30) 

macro 

The example below , gi ven in assembly language and FORTRAN, 
sets up a call to READ specifying that the input will be 
read from the file FYLE . 



( October 1 976 

( 

( 

Assembly : 

FORTRAN : 

REG 
LEN 
MOD 
lHU/'! 
UNIT 

30 

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

LA 1, =C ' PYLE 
CALL GETFD 
ST O,UN!T 

CALL READ , (REG,LEN ,MOD, LNUM , UNIT) 

OS 
OS 
DC 
OS 
OS 

20r 
H 
F ' O I 
F 
F 

EXTERNAL GETFD 
INTEGER*4 ADRO P, UNIT 
CALL RCALL (G ETFD,2 , Q,ADROF (' FYLE ') ,1 , UN I T) 

CALL RE AD{ REG , LEN,O , LNUM , UNIT , 630) 

READ 345 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

346 REAO 



( 

October 1976 

Purpose : 

Location: 

MTS 3: SYSTEM SUBROUTINE DESCRI PTIONS 

SUBROUTI NE DESCRIPTION 

To allow programs to read from an arbitrary file or device 
without knowing the maxim um record length in advance . 

*LIBRARY 

Calling Sequence : 

Assembly: CALL READBFR (bfr , len , mod , ln u m,unit) 

Parameters: 

f!!.!: is zero (not the loea tion of a zero) on the 
first call and the l ocation of t he input buffer 
on subsequent calls (see " Description" telow ). 

19~ is the location of a halfword integer in which 
is plQced the number of QY~~§ read . 

~Q~ is ~he location of a fullword of modifier bi ts 
used to control the action of the subrouti ne .• 
If mQ~ i s zero , no modifier bi ts are speci fied. 
See the " I/O Modifiers" section in thi s volume. 

1nY~ is the location of a full word integer giving the 
i nternal representat i on of the line number that 
is to be read or has been read by the subrou ­
tine. The i nternal form of the line number is 
the external form times 1000, e . g ., the i nternal 
form of line 1 is 1000 , and the i nter nal form of 
l i ne .00 1 is 1. 

Yn!~ i s the location of either 
(a) a f ull word-integer fBUB-pointer (such as 

returned by GETfD) , 
(b) a full word-integer logical I/O unit number 

(0 through 19), or 
(cl a left-justi fied , a - character logical I/O 

unit name (e.g ., SCARDS) . 

RetUrn Codes: 

a Successful return. 
4 End-of-file ret urn. 

>4 See the "I/O Subro utine Return Codes " secti on in 
th i s volume. 

Description: If the first pa r ameter f!££ is zero, the subroutine READBFR 
will internally ca l l t he subrouti ne GDINFO t o determi ne 
the length of the longest record that can be read from 
Yrri1 and will allocate a butfer tha~ is large enough to 

READEFR 347 



MTS .. SYSTEM SUBROUTINE DESCRI PTIONS 

Example: 

348 READBFR 

October 1976 

accommodate it; the address of this buffer will be stored 
into bfr in place of the zer:o . The READ subroutine will 
then be called internally to read a record using the 
READBFR parameter list as the parameter list for READ; the 
NOTIFY modifier will also be set for the read operation. 

If bfr is not zero (usually on the second and subsEguent 
calls to READBFR) , READBFR will call READ directly using 
the READBFR parameter list and setting the NOTIFY 
modifier. 

If the file or device attached to Ynil changes , READBFR 
will release the current buffer and allocate a new buffer 
of the appropriate size and will store the address of t he 
new buffer into Q;£: . 

Assembly : LABEL CALL READBFR ( BUFF , LEN , LNUM , UNIT ) 
LTR 15 , 1 5 
BNZ EOF 
L 2 ,BUFF Get address of b uffer 

Process record 

B LABEL 
EOF L 1 , BUFF Release buffer 

CALL FREESPAC 

BUFF DC F ' O' 
LEN OS H 
LNUM OS F 
UNIT DC C' SCARDS 

The above example reads records from SCARDS until a 
nonzero return code is encountered . After each call 
to READBFR , BUFF contains the location of the record 
read . When a nonzero return code is encountered , the 
buffer is not released. 



( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

SUBROUTINE DESCRIPTION 

Purpose : To change the name of a file. 

Location: Resident system 

Calling sequence: 

Assembly: CALL RENAME , (oldname , newname) 

FORTRAN: CALL RENAftE (oldname , newname , 6rc4 , &rc8,Src 12 , 
Src 16 , Src20 , Src24 , Src28 , Src32 , &rc36) 

Parameters : 

Qlgn~~g is the location 
trail i ng blank) of 

of the old 
the file to 

the Dew 

name (wit h a 
be renamed . 
name (wi th a rr~~n~~~ is the location of 

trailing blank). 
££~~~~I£J§' are stat e ment labels to 

corresponding return codes 
transfer to if the 
occur . 

Return Codes: 

o The file was renamed successfully. 
4 Illegal old name specified . 
8 old name does not exi st . 

12 Rename access not permitted (old file Dame) . 
1 6 Locking the file for renaming will result in a 

deadlock . 
20 Illegal new name specified. 
24 New Dame already exists. 
28 Disk space allotment exceeded . 
32 Hardware error or software inconsistency 

eDcountered. 
36 An at~ent ion interrupt has canceled the automatic 

wait on the fi l e (waiting caused by concurrent 
usage of the (shared) f i le). 

Notes: 

Temporary as well as permanent old file names may be 
renamed. 

The old file name may belong to another user. 

The new f i le name may not 
another signon IO unless 

specify a 
the o l d 

file belonging to 
file name also 

RENAME 349 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Examples: 

350 RENAME 

October 1976 

belonged to that same sigoon 10 (and rename access 
was permitted). 

Assembl y : CALL RENAME , (OLDNAHE , NEWNAME) 

OLDNAME DC 
NEWNAHE DC 

C'-TEST I 

C ' TEST. 0 ' 

The above example renames the temporary file -T EST t o the 
permanent file TEST . O. 

FORTRAN: CALL RENAME (' STAT : TEST I, MYTEST ') 

The above example renames the file TEST under the signon 
10 STAT to the tile HYTEST under the calling signon 10. 
After the renalling has occurred , the file STAT:TEST will 
no longer exist under the signon In STAT and the disk 
storage in use by tha~ sign on 10 will have been updated 
accordingly . 



( 

October 1976 

Purpose: 

Location: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

R~!!!!!i~ 

SUBROUTINE DESCRIPTION 

To renumber all or a subset of the lines in a l!n~ file. 

Resident System 

Calling Sequence : 

Assembly CALL RENUMB , (u nit , f irst,last,beg ,incl 

FORTRAN: CALL RENU~B (u nit , first ,la~t , beg,inc ,&rc4,&rca , 

&rc12 , &rc16 , &rc20 , &rc24,&rc28l 

Parameters : 

Yni~ is the location of either 
(al a fullword -integer FDUB-pointe r (as 

returned by GETFDl, 
(b) a full word -in teger logi cal I/O unit num­

ber (0 through 1 9), or 
(Cl a left-justified a -character l og i cal I/O 

unit name (e. g., SCARDSl. 
t!~~~ is the location of a full word cont a i nin g the 

iLternal line number of the first line to be 
renumbered. 

1~~! is the location of a full word containing the 
internal line number of the last line to be 
renumbered. 

Q~g i s the location of a fullword con tai ning the 
n~~ internal line number to be associated 
with the first line to be renumbered . 

! n£ is the location of a fullword conta inin g the 
internal increment to be used while r enumber­
ing the requested lines in the file . 

rc4 • ..• rc28 are statement labels to transfer to if the 
--------corresponding return codes occur. 

Return Codes : 

o The file was renum bered successfully. 
4 The file does not exi s t. 
a Hardware error or software incoD~istency 

encoun tered o 
12 Renumber (or read-write) access not allowed. 
16 Locking the file for modification will result in a 

deadlock. 
20 An attent i on interrupt has canceled the automatic 

wait on the file (wai ting caused by concurrent 

RENDMB 35 1 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Examples : 

352 RENUMB 

October 1976 

usage CIt the (shared) file). 
24 Inconsistent parameters specified (ren umberi ng 

will cause duplicate or nonincreasing l i ne num ­
bers , etc.). 

28 The file is not a l i ne file. 

Notes: 

If t!~§l and 
n umbers in tile 
numbers will be 

ls§l do not correspond 
file, the next and 
used respectively. 

to actual 
previous 

line 
line 

In MTS , the internal line number (e. g .• , 2100) is 
equal to the external line number (e. g., 2 .1 ) times 
one thousand. 

Assembly: 

FORTRAN: 

CALL GETFST, (UN I T, FST1N ) 
CALL GETLST , (UNIT,LSTlN ) 
CALL RENUMB , (UN I T,FSTLN,LSTLN,BEGLN, I NC) 

UNIT DC 
FSTLN DS 
LSTLN DS 
BEGLN DC 
INC DC 

F ' 4 ' 
F 
F 
F ' 1000 ' 
F '1 000 ' 

INTEGER*4 UNT 
DATA UNT/4/ 

First line number 
Last line number 
1 in internal form 
1 i n internal form 

CALL RENUMB(UNT ,- 99999999 , 99999999, 1000,1000) 

The above exam~les illustrate two ways to ren u mber all of 
the lines of the line file attached to logical I/O unit 4. 
The lines are renumbered starting at line 1 by increments 
of 1. 



( 

( 

October 1976 

Purpose : 

Location : 

MTS 3: SYSTE11 SUBROUTINE DESCRIPTIONS 

!!~n&g 

SUBhOUTINE DESCRIPTION 

To return all or a subset of the line numbers in a line 
file. 

Resident System 

Calling Sequences: 

Assembly: CALL RETLNR , (unit,first,last,cnt,[;uffer) 

FORTRAN : CALL RETLNR(un i t , first , last,cnt,buffer , &rc4 , 
&rc8 , &rc 12 , &rc 16 , &rc20 , &rc24 , &r c28 , 
&rc32) 

Parameters : 

~n~l is the location of either 
(a) a fullword - integer FDUB - pointer (s uch as 

returned by GETFD) , 
( b) a fullword - integer logical I/O unit Dum­

ber (0 through 19) , or 
(c) a left-justified, a-character logical I/O 

unit name (e . g., SCARDS) . 
fi£§l is the location of a full word containing the 

internal line number of the first line number 
to be r eturned . 

1~§1 i s the location of a full word containi ng the 
iI.ternal line number of the last line number 
to be returned . 

£Bl i s the location of a fullword in which the 
count of the number of lines in the speci f i ed 
range will be returned . 

Q~ffg£ is the location of a buffer ~ The buffer i s 
supplied by the caller ; bytes 8 and on are 
filled in by the subroutine. This buffer 
should be of the form: 

Return Codes: 

bytes 0-3 
bytes 4-7 

bytes 8- ••• 

pointer to next buffer or ze~o. 
length of this buffer i n bytes 
(including first 8 bytes)_ 
returned line numbers (4 bytes 
each) • 

o The line numbers were returned. 
4 The file does not e xist . 

RE'IlN R 353 



MTS 3: SYSTEM SUBROUTINE DESC~IPTIONS 

Examples : 

354 RETLNR 

October 1976 

8 Hardware error ox: soft ware inconsistency 
encoun t ered:. 

12 Read ox: renumber access not allowed. 
1 6 Locking the file fox: reading will result in a 

deadlock. 
20 An attention interrupt has canceled the a uto matic 

wait on the file (waiting caused by concurren t use 
of the (shared) f i le). 

2 4 Inconsistent parameters specified (ti£§1 greater 
than ±~§1 , etc.) . 

28 The file is not a line f i le. 
32 Buffers e xhausted before line - number range was 

exhausted. 

Notes! 

If tiI§i and ±22i do not correspond to actual line 
numbers in the file, the next and pre vious line 
numbers, respectively , will be used. 

In MTS , thEo internal line number (e .g., 
equal to the external line number (e.g., 
one t housand . 

2100) is 
2 .1) times 

Assembl y : CALL GETFST, (UNIT , FSTLNR) 
CALL GETLST, (UNI T , LSTl.NR) 
CALL RETLNR, (UNIT,FSTLNR , LSTLNR,CNT , BUFFER ) 

UNIT DC F '4' 
FSTLNR DS F First line number 
LSTLNR DS F Last line number 
CNT DS F count of lines in file 
BUFFER DC F l O' The only buffer 

DC F ' 808 ' This many bytes 
DS 200F Line number s go he r e 

The above example i llustrates how to return all o f the 
line numbers of the l i ne file attached to logical I/O unit 
4 (assuming there are less than 200 lines in the fil e). 

FORTRAN: INTEGER*4 UNIT,FSTLNR,LSTLNR , CNT ,$14(1) , LNR 
COtH'lON /$/ $14 
DATA UN1T/4/ 

CALL GETFST(UNIT,FSTLNR) 
CALL GETLST (UN I T,LSTLNR ) 
CALL CNTLNR (UNI T, F STLNR, LSTLNR, CNT) 

CALL ARINIT (1, 1) 
CALL ARRAY(LNR,4,CNT+2) 



( October 1976 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

$14 (LNR+1)=O 
$14 (LNR+2) = CNT*4+ 8 
CALL RETLNR (UNIT , FSTLNR , LSTLNR , CNT , SI 4 (LNR+ 1» 

The above example illustrates ho w to return all of the 
line number s of a line file attached to logical I /O unit 4 
(using the FORTRAN array management subroutines to dynami­
cally allocate a buffer) . 

BETLNR 355 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

356 RETLNR 



( 

( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

SUBROUTINE DESCRIPTION 

Purpose: To rewind a logical I/O unit in FORTRAN. 

Location: *LIBRARY 

Calling Sequences: 

FORTRAN: CALL REWIND (arg) 

Parameters: 

~I9 is the location of a fullword integer corre­
sponding to the logical I/O unit number to be 
rewouDd . These are 0 through 19 . 

Description: If the logical I/O unit number specified by ~I9 is 
attached to a tape , it is rewound. If i t i s attached to a 
line file , it is reset so that the next reference to it 
will read or write the line specified by the beginning 
line number given when the file was attached . If it is 
attached to a sequential file, it is reset so that the 
next reference to it will read or wri te from the beginning 
of the file . In all o~her cases, an error comment is 
produced on the logical I/O unit SERCOM , and the s ub rou ­
tine ERROR i s callej. 

Example : 

The REWIND subroutine generates a call to the REWIND# 
subrout i ne . 

FORTRAN: CALL REWIND (l ) 

The file or device attached to l ogical I/O unit 1 is 
rewound. 

, 

REW I ND 357 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Octot:er 1976 

358 REWIND 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

r- October 1976 

( 

( 

Purpose: 

Locat i on: 

!!~li:!!ilH 

SUBROUTINE DESCRIPTION 

To reset a magnetic tape or a file to be read from the 
beginning . 

Resident System 

Calling Seq uences: 

Assembly : (a) L O, unit 
SR 1,1 
CALL REW IN D. 

or 

REWIND unit 

(b) LM O,l,unit 
CALL REWIND# 

or 

REWIND 'unit ' 

Parameters: 

(a) GRO contai ns an FDUB - pointer (such as GETFD 
returns) or a fullword logical I /O unit number 
(0-19), and GR1 contains zero. 

(b) GRO aild GR1 contain an a-character lQg!~~l __ :!LQ 
~uit __ u~m~ left - justified with trail i ng blanks . 
The logical I/O unit names are : SCARDS , SPRINT , 
SPUNCH , SERCCM , GUSER , and a tbrough 19. 

Return Codes: 

Note: 

a Successful return . 
4 Unable to rewind the device specified by GRO and 

GR 1. 

The complete description for using the REWIND 
macro is gi ven in MTS Vol ume 14. 

Description: I f GRO and GR l specif y a ta~e, it is rewound. If they 
specify a l i ne f i le , it is reset so that i f the next 
reference to thi s PDUB or logical I/O unit is sequenti a l, 
it wil l read or write the line specified by the beginning 
line number given when the file was attached. If they 

REWINDi 359 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

Example: 

360 REWIND# 

October 1976 

specify a se9uential file , the PDUS is reset so that the 
next read or write will be at the beginning of the file. 
For all other cases, a return code of 4 is given. 

If the logical I/O unit or FDUB-pointer specified by GRO 
and GR1 is ~art of an explicit concatenation , this 
subroutine affec~s only the currently active member of the 
concatenation. 

Assembl y: 1M O,1, 1NAME 
CALL REWIND. 

LNAME DC CLB ' SPRINT 

REWIND ' SPRINT ' 

The above two examples reset the magnetic 
attached to the logical I/O unit SPRINT. The 
the CALL macro and the second uses the REWIND 

tape or 
f irst 

macrc . 

file 
uses 



( 

( 

( 

October 1976 

purpose: 

Location: 

HTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

.B~±.!!1~ 

SUBnOUTINE DESCRIPTION 

To cancel timer interrupts set up by the SETInE 5utroutine 
and return the time remaining until the interrupt would 
have occurred. 

Resident system 

Calling Sequences: 

Assembly: CALL RSTIl'1E, (id,value,aexit) 

Parameters : 

Return Codes: 

15 the location of the full word identifier 
Wh1Ch specifies the timer interrupt to be 
car.celed. This is the same identifier which 
was given to SETIHE when the interrupt was 
set up. If this identifier is zero, all 
timer interrupts with the specified exit 
region will be canceled. 
is the location of a q- , 8-, or 16 - byte 
full word-aligned region in which RSTIHE 
returns the time remaining until the inter­
rUf-t would have occurred . The interpretation 
of this value depends upon the fQg~ parameter 
given to SETIHE when the interrupt was set 
up . For codes 0 and 2. the value is an 
a-byte binary integer specifying micrcseconds 
of Lask CPU time; for codes 1. 3, and 5, the 
value is an 8- byte binary integer specifying 
m~croseconds of real time; for code 4, the 
value is a 4-byte binary integer specifying 
timer units of task CPU time. 
is the location of the address of the 76 - byte 
exit region which was given to SETIHE when 
the interrupt was set up. The combination of 
the identifier and the exit region address 
will always specify a unique timer interrupt. 
Ii both ~~~!1 and !~ are zero, all timer 
interrupts will be canceled. 

o Successful return_ 
4 No such timer interrupt was found .. This means 

either 
(1) no such interrupt was ever set up. or 

RSTIME 361 



MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

( 2) the interrupt 
taken before 

has occurred , 
the e xecution 

instruction which branches to 

October '97 6 

and the exit was 
of the BALR 

RSTIHE. 

Description: A calIon the RSTIME subroutine cancels a timer interrupt 
set up by the SETIME subroutine , and returns the time 
remaining until the interrupt would have occurred in the 
y~b~~ parameter. The timer interrupt to be canceled is 
specified by the combination of the !Q and ~~~!! parame ­
ters. The interrupt will be canceled even if it has 
already occurred and is pending. 

Example: 

362 RSTIME 

For further details, see also the GETIME , SETHIE, and 
TIMNTRP subrout10e descriptions. 

Assembl y : CALL RSTIME , (ONE,TIMLEFT,AEXIT) 

ONE DC 
TIMLEFT DS 
AEXIT DC 
EXIT DS 

F I, I 

FLB 
A (EXIT) 
19F 

This example cancels the interrupt with the identifier II'" 
and the exit region " EXIT" ,. The time r .emaining is 
returned in II TIHLEFT". 



( 

( 

October 1976 

Purpose: 

Locat i on: 

Alt. Entry : 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

SUBROUTINE DESCRIPTION 

To !tscan " storage blocks. For each block of allocated 
storage in the range specified, SCANSTOR will call a 
subroutine specified , giving it the location and length of 
that block. 

Resident System 

SSTOR 

calling Sequences: 

Assembly : L O,switch 
1 ,sinbr 
2 , subr 
SCANSTOR 

L 
L 
CALL 

Parameters: 

Note : 

GRO if 0, only storage with the specified storage 
index number (GR1). 

if +1 , storage with index numbers less than or 
equal to the one given (this and lower 
link levels) . 

if -1, storage with index numbers greater than 
or equal to the one given (this and 
hi gher link levels). 

GR 1 storage index number or zero . If zero , the 
storage index number of the current l i nk level 
will be used. 

GR2 location of the suoroutine to call for each 
block. When th i s call is made, GRO wi ll ha ve 
the length and GR 1 will hav e the locati on of the 
block. 

FORTRAN users can call this subroutine by 
the RCALL subroutine and specify ing SSTOR 
entry !'oint . 

using 
as the 

Return Codes: 

None 

Description: For a further descript i on of storage index numbers, see 
the ttVirtual Memory Management!! section in MTS Volume 5. 

SCANSIOR 363 



HTS 3 : SYSTEH SUBROUTINE DESCRIPTIONS 

Exampl es : 

364 SCANSTOR 

Octo ber 1976 

Assembl y: LA O. 1 
5R 1 • 1 
LA 2 , f1YD UI1P 
L 15 , =V (SCANSTOR ) 
BALR 14 , 15 

or 

LM O, 2,S PAR 
CALL SCA NSTOR 

SPAR DC A (1 , O, I1 YDUf1P) 

The above e x ample (coded i n t wo d i fferent wa y s ) call s 
SC ANSTOR specifyi ng that stor age i s to be sca nn e d whi ch 
has storage index n u mbers egual to or less t han t he 
current l i n k le vel storage i nde x number . 



( 

( 

October 1 976 

Purpose: 

Location: 

Alt. Entry: 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

SC!!!.!!:~ 

SUBROUTIN E DESCRIPTION 

To read an input record from the logical I/O unit SCAR OS . 

Resident System 

SCARDS# 

Calling Sequences: 

Assembly: CALL SCARDS , (reg,len , mod,lnum) 

FORTRAN : CALL SCARDS (reg ,len , mod ,lnum,&rc4 , ... ) 

Parameters: 

!:~g 

1~!! 

!!!QQ 

i s the location of the virtual memory region to 
which data i s to be transmitted . 
is the location of a halfword (INTEGER*:;:) inte­
ger iL which i s place 1 the number of Q~!~§ read . 
is the location of a full word of modifier bits 
used to control the action of the subroutine . 
If mQ~ is zero , no modifier bits are specified. 
See the "I/O Modifiers" description in th i s 
volume . 

l~~m is the location of a full word integer giving the 
internal representation of the line number that 
is to be read or has been reaa by the subro u­
t i ne . The internal form of the line number is 
the external form times 1000, e.g., the internal 
form of line 1 is 1000 , and the internal form of 
line .00 1 is 1. 

!:£~L~~~ is the statement label to transfer to if the 
corresponding nonzero return code is 
encountered. 

Return Codes: 

o Successful return. 
4 End - of-file. 

>4 See the " I/O Subroutine Return Codes " description 
in this volume. 

Descr i ption: All four of the above parameters in the calling sequence 
are required. The subroutine reads a record into the 
region specified by !:gg and puts the length of reccrd (i n 
bytes) i nto the locat ion specified by 19n. I f the ~Qg 
parameter (or the FDname modif i er) specifies the IN DEXED 

SCUDS 365 



MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS 

Examples: 

366 SCARDS 

October 1976 

bit, the ln~~ p~rameter must specify the line numter to be 
read. Otherwise, the subroutine will put the line number 
of the record read into the location specified by ln~! . 

The default FDr.ame for SCARDS is *SOURCE* . 

There is a macro SC ARO S iL the system macro library for 
generating the calling sequence to this s ubroutine. See 
the macro description for SCAROS in MT S Volume 14. 

The example below, given in assembly language and FORTRAN, 
calls SCAR OS specifying an input region of 20 fullwords. 
There is no modifier specification made on the s ubroutine 
call. 

Assembly: 

FORTRAN: 

REG 
LEN 
HOD 
LNUM 

30 

CALL SCARDS , (REG,LEN,J100,LNUM) 

OS 
OS 
DC 
OS 

01: 

CL80 
H 
F l O I 

F 

SCARDS REG , lEN Subr . call using macro 

INTEGE R*2 LEN 
INTEGER REG (20 ) , LNUM 

CA"iL SCAR OS (REG,LEN,O,LNUI'I,& 30) 



( 

( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

October 1976 

SUBROUTINE DESCRIPTION 

Purpose: To produce a dum£.' of any or all of the following: 

(1) general registers, 
( 2 ) floating - point r eg i sters, 
(3) a specified region of virtual storage. 

Location: Resident system 

Calling Sequences: 

Assembly : EXTRN outsub 
CALL SDUMP , (switch, outsub,wkarea , first,last) 

Parameters: 

is the 
switches 
ot the 
assigned 

location of a 
that govern the 
dump produced. 
as follows: 

fullword containing 
content and format 

The switches are 

bit 3 1: 

30: 

29: 

26: 

27: 

on if hexadecimal conversion of the 
storage region is desired . 
on if mnemonic conversion of the 
storage region is desired . 
on if EBCDIC conversion cf the 
storage region is desired . 
on if double spacing is desired; off 
if single spacing is desired . 
on if long output records (130 char ­
acters) are to be formed; off if 
short output records (70 characters) 
are to be formed. 

26: on if general registers are to be 
dumped. 

25: on if fJoating - point registers are 
to be dumped. 

2 4: on if a storage region is to be 
dumped. 

23: on if no column headers are to be 
produced for the dump of the storage 
region. 

is the location of a subroutine (e.g .• , 
SPRINT) that causes the printing , punching, 
etc., of the output line images formed by 
SDU HP.. This subroutine should be declared as 

SDU MP 367 



MTS 3; SYSTEM SuBROUTINE DESCRIPTIONS 

368 SDUMP 

Note; 

October 1976 

EXTRN . 
~~~£~~ is the location of a douhleword -aligned area 

of 400 hytes that may be used by SDUHP as a
work area .

f!~§~ is the location of the first bytE of a
storage region to be dUmped. There are no
boundary requirements for this address.

~a§~ i s the location of the last byte of a stor age
region to he dumped. There are no boundary
requirements for this address; however , an
address in l~§~ which is less than the
address in f!~§~ will cause an er ror r eturn.

The default case for §~!~fb (all switches off)
produces a dump as though bits 24 , 25 , 26, and 3 1
were Of. . Furthermore, if bit 30 (mnemonics) is
on , bit 31 (h exadecimal) is implied. Note that
bits :24 , 25, and 26 specify what is to be dumped,
bits 27 and 28 specify the page format, and bits
29 , 30 , and 31 specify the interpretation (s) to be
placed on the region of storage specified_ Bits
29 through 3 1 have significance only if bit 24 is
on.

Return Codes:

o Successfu l return .
4 Illegal parameters specified .

Registers :

Genera l and floating-paint registers , i f r eguested,
are always given in labeled hexadecimal format. The
length of the output record is governed by the
setting of bit 27 of the switch.

Virtual Storage:

Although arrl combination of switches is acceptable ,
the appearance of the dump output for a region of
virtual storage i s determined as follows:

(1) If , aL.d only if, the mnemonic switch is 9E , the
unit of storage presented in each print item is
a halfword-aligned halfword.

(2) If, and only if, the mnemonic switch i s Q!! and
the hexadecimal switch is Qn (through intent or
defa ul t) , the unit of storage presented in each
print item is a full word-aligned full word .

r October 1 916

(

(

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS

(3) If , and only if , the mnemonic and hexadecimal
switches are off but the EBCDIC switch is on ,
the unit of storage presented in each pr i nt i tem
is a double word-aligned doubleword .

In all cases , the output includes :

(1) the entire storage unit (halfword , fu l lvord , or
doubleword) in which the first specified loca ­
tion (parameter 1!£§.t) is found,

(2) the ent i re storage unit in which the last
location (parameter !s§l) is found , and

(3) all intervening storage .

Thus , the first and last printed items of a storage
dump may include up to a maximum of seven bytes more
than actually requested in the parameter l i st .

If mnemoLics are requested and SDUMP di scovers a
byte that cannot be interpreted as an oFeration
code, then instead of a legal mnemonic , the charac­
ters " XXXX " appear direct l y below the hexadecimal
presentati on of the halfword in storage that should
have contained an operation code . When th i s cccurs ,
the mnemonic scanner jumps ahead as though the
illegal operation code specified an RR-type instruc­
tion (tvo bytes) and tries to interpret the byte at
the new location as an operation code , etc . Any
mnemoni c print line that contains the " XXXX" for at
least one of its entries is also marked with a
single "X" directly below the line address that
prefixes the hexadecimal presentation of that same
region of storage. (The mnemonic conversi on ro ut i ne
'includes the Universal Instruction Set and those
instructions exclusively used by the IBH 360/61 .
The five special mnemonics for the IBH 360/20 are
also included.) To faci litate the location of
particular items i n the output , line addresses
S1~~Y§ bave a !~IQ in the l east significant hexadec­
imal position. Col ullin headers are provided wh i ch
give the value of the least significant hexadeci mal
digi t of the address of the first byte in eac h pri nt
item.

A line of dots is printed to ind i cate that a reg i on
of storage contains identical items . The storage
un i t used for comparisons is half word, fullword , or
doublevord depending upon the type (s) of conversi on
specifiea . In all cases , the storage unit corre ­
sponding to the last item printed before the l ine of
dots , the storage unit for the f i rst item after the

SDUHI' 369

MTS 3 : SYSTEM SUBROUTINE DESCRIP TIONS

Example:

370 SDUMP

Oct c ber 19 76

line , and a ll intervening storage units havE i dent­
ical contents. The last line is a lways printed
(e ven if a ll of its entries exact l y match the
pre viously printed line) .

Assembly : EXTRN
CALL

WK CS
SW DC
FI RST DC

SPR IN T
SDUMP , (SW , SPRINT , WK ,PIRST,P I RST +3)

SOD
F'O '
X' F1r2F3F4 '

The above example will cause SCUMP to print the hexadeci­
mal st ri ng 'F1F 2F3 F4 ' .

r

(

MTS 3: SYSTE~ SUBROUTINE DESCRIFTIONS

October 1976

SUBROUTINE DESCRIPTION

Purpose: To write an output reco.rd on the logical I/O unit SERCOI'!..

Location : Resident System

Alt . Entry: SERCOM#

Calling sequences:

Assembly: CALL SERCOM, (reg,len,mod,l,num)

FORTRAN: CALL SERCOI'!. (reg,len,mod,lnulD,&rc4, . •.)

Pa ra me te rs:

£~g is the location of the virtual memory region
from which data is to be transmitted.

19n is the location of a halfword (INTEGER*2) inte ­
ger giving the number of QYlg§ to be
transmi t ted.

~Qg is the location of a full word of modif i er bits
used to control the action of the sucroutine.
If ~Q~ is zero, no modifier hits are specified.
See the 11 1/0 Modifiers ll description in this
volume.

lnY~ (optional) is the location of a fullword integer
giving the internal representation of the line
number that is to be written or has been written
by the subroutine. The internal form of the
line number is the external form times 1000,
e.g., the internal form of line 1 is 1000 , and
the internal form of line . 001 is 1.

£~~~~~~ is the statement label to transfer to if the
corresponding nonzero return code is
encountered.

Return Codes:

a Successful return.
4 output device is full.

>4 See the 111/0 Subroutine Return Codes II descri ption
in this volume.

Description: The subroutine writes a record of length 1&!! (in bytes)
from the region spec i fied by fgg on the logical I/O unit
SEReol'!.. The parameter l!!Y~ is needed only if the ~QQ
parameter or the FDname specifies either INDEXED or PEEL

SERCOtl 37 1

MTS 3: SYSTEM SUBROUTIN E DESCRIPTIONS

Examples:

372 SERCOM

Octot:er 1976

(RETURNLINE#) . If INDEXED i s specified , the line number
to be written is specified in lnym. If PEEL is specified,
the line number of the record written is returned in !nym.

The default FDname for SERCOM is *MSINK*.

There is a macro SERCOM in the system macro library for
generating the calling sequence to this subroutine~ See
the macro descript i on for SERCOM i n MTS Volume 14.

The example below, given in assembly language and FORTRAN ,
calls SERCOM specifying an output reg i on of 80 bytes.
There is no modifier specification made in the subro utine
call.

Assembly:

FORTRAN;

REG
"00
LEN

CALL SERCOM, (REG,LEN,MOD)

OS
DC
DC

or

CL80
FIOI
Hl eO '

SERCOM REG Subr . call using macro

INTEGER REG (20) , LEN*2/80/

CALL SERCOff (REG,LEN,O)

(

(

October 1976

Purpose:

Location :

MTS 3: SYSTE~ SUBROUTINE DESCRIPTIONS

§~.'!:!!1~

SUBROUTINE DESCRIPTION

To set up a timer
ti lie inter val (ei ther
current task).

Resident System

interrupt to
real time

occur after a
or CPU time

sFecified
for the

Calling Sequences:

Assembly : CALL SETHIE , (code , id,value , aexit)

Parameters:

is the location of a full word integer which
specifies the meaning of the YslY~ paralleter .
The valid choices are:

o Y~lY~ is an a -b yte bina ry integer which
specifies a time interval in microseconds
of task CPU time, relative to the time of
the 'Fa 11 .

1 value is an a - byte binary integer which
specI fies a time interval in micrcseconds
of real time , relati ve to the time of the
ca l l.

2 Yalyg is an a-byte binary
specifies a tille interval
of task CPU time , relative
signon .

integer which
in microseconds
to the time at

3 YalY~ is an 8 -byte binary integer which
specifies a time interval in lI i crcseconds
of real time , relative to the time at
sig rro n.

4 value is a 4-byte binary integer which
specifies a time interval in timer units
(13 1/48 microseconds per uni t) of task
CPU time , relative to the time of the
call.

5 Ya!Y~ is a 16-byte
the time and date
is to occur, in the

EBCDIC string giving
at whicb the interrupt
form HH:MH.SSMM - DD -YY.

is the location of a fullword identifier
which will be passed to the exit routine when
the interrupt occurs and the exit is taken.
id should be nonzero. Is the location of a 4-, 8- , or 16-byte

SE'IHIE 373

HTS 3 : SYSTEM SaBROUTINE DESCRIPTIONS

Return Codes :

Octoher 1976

full word-ali gned region whi ch specifies the
time at which the interrupt is to occur , as
determined by tbe s!QQg parameter,.
is the location of the address of the 76 - byte
exit region to be used when the interrupt
occurs and the exit is taken. This i s the
same exit region address used in the calIon
TIMNTRP which enables the exit for this
interrupt.

o Successful return.
4 Invalid S:QQ~ parameter .
8 Too many interrupts set up.

Description: Each calIon the SETIHE subroutin e sets up a new timer
interrupt to occur at the time specified by the £Q~g and
ys!!!~ paramet.ers. When the interrupt occurs , an exit will
be taken using the exit region speci fied by the ~~!~~
parameter , if that exit is enabled . Exits are enabled or
disabled by the TIMNTRP sub rout.ine, and all exits are
disabled until enabled by THINTRP subroutine . The combi ­
nation of tbe identifier specified by iQ and the exit
region is forced to be unique , since the SETIHE subroutine
will cancel auy previously set up interrupt with the same
identifier and exit region address .

Example:

374 SETI ME

A maximum of 100 interrupts is allowed. This restriction
is for error-checking purposes only .

For further details, see also the GETIHE , RSTIHE , and
TIMNTRP subro utin e descriptions .

Assembly: CALL SETHJE , (ZERO , ONE , TEN SEC , AEXI'l')

CALL SETHIE , (ONE,TWQ,FIVMIN,A EX IT)

CALL SETIHE , (FIVE,THRE E,TW030 ,AEXIT)

ZERO DC F'O '
ONE DC F ' 1 '
TWO DC F'2'
THREE DC F'3 '
PIVE DC F ' S '
TENSEC DC PL8 ' 1'0000"000'
PIVHIN DC PL8 ' 3 00000000'
TW030 DC C'02:30.00 ', C' 04-12-72'
AEXIT DC A (EXIT)
EXIT DS 19F

(October 1976

(

fiTS 3: SYSTEM SUB ROUTIN E DESCRIPTI ONS

This example sets up three t imer interrupts ~ Tbe first
interrupt is a task CPU time interrupt 10 seconds after
the call; the second is a real-time interrupt 5 minutes
after the call ; the third is a real-time interrupt at 2:30
8 . DI . on April 12, 1972.

SETIHE 375

MTS 3 : SYSTEM SUBROUTINE DESCRIPTIONS

October 1976

376 SETII1E

(

(

October 1976

Purpose :

Location:

HTS 3: SYSTEM SUBROUTINE DESCRIPTIONS

SUBROUTINE DESCRIPTION

To allow users to regain control
errors that would otherwise be
errors or exceeding the size of
execution.

Resident System

when I/O transmission
fatal (such as tape I/O
a file) occur during

Calling Sequence :

Assembly: CALL SETIOERR , (loc)

Parameters :

J.QS: i s either:
(al the location of a subroutine to transfer to

when an I/O error occurs, or
(b) zero , in which case the error exit is reset.

Description : A callan the subroutine SETIOEBR sets up an I/O transmis­
sion error exit for one error only . When an error occurs
and the exit is taken , the intercept is cleared so that
another call to SETI OERR is necessary to intercept the
next I/O transmission error .

When the error routine is called , registers 0 and 1 both
contain what was in GR13 upon entry to the I/O routine ,
i . e ., the location of the save area in which the I/O
routine sa ved registers at the time of the call. This can
be used to obtain the parameter list for the calIon the
I/O subroutine ...

If the error routine returns (SR 14), a return is made to
the user ' s program from the I/O routine with the return
code indicating the type of error that occurred. The
ret urn code aepends upon the type of device in use when
the error occ urred . See the section " I/O Subroutine
Return Codes" in this volume. This is the same behavior
as if the aERRRTN I/O modifier had been set for the I/O
call . If the ~ERRRTN modifier is used on an I/O call, the
SETIOERR exit is never taken .

Note : SETIOERR is for assembly language users and SIOERR
is for FORTRAN users. See the SIOERR subroutine
description in this volume. There is a difference

SETI OERR 377

MTS 3 : SYSTEM SUBROUTINE DESCnIPTIONS

Example:

378 SETIOERR

October: 1976

in the level of indirection
subroutines; ther:e for:e , SIOERR
by asse~bly language user:s.

bet een t be
should not be

two
used

Assembly: CALL SETIOERR, (SUBR)
SCARDS DATAREG , LEN , EXIT= (EOF,IOERR)

SUBR ENTER 1 2
SPRINT ' TAPE READ ERROR '
EXIT 0

The call to SETIOERR enables the er:r:or exit .
succeedi ng I/O operation , a tr:ansmission occur:s,
will call SUBR , thus allowing the user to take
er:r:or exit .

If on a
SETIOERR
bis own

(

r

(

October 1976

purpose:

Location :

MTS 3: SYSTEM ~uJ:)ROUTINE DESCRIPTIONS

'§~I!S.n~

SUBROUTINE DESCRIPTION

To set the program key associated with a file .

Resident sy stem

calling sequences:

Asse mbl y: CALL SE TKEY , (what, pkey , in fo, ercode, errmsg)

FORTRAN: CALL SETKEY(what,pkey,info,ercode,errmsg,£rc4)

Parameters:

~h~i is the location of either:
(a) a file name with trailing blank (if

!!!fQ=O) ,
(b) a fullword-integer FDUB - pointer (such as

returned by GETFD) (if !nfQ""1l,
(cl a fullword-integer logical I/O unit num­

ber (0 'Lhrough 19) (if iniQ=ll , or
(d) a left-justified , B-character logical I/O

unit name (e.g., SCARDS) (if info= l) .•
H~gy is the location of the program key to be

associated with the file. One trailing blank
is required.

igtQ is the location of a fullword integer which
s~ecifies the kind of ~h~i parameter
supplied.

~~~Qgg (optional) is the location of a fullword in 
which the SET KEY subroutine will place an 
error number if an error return (return code 
4) is made. If this parameter is emitted , 
then the grfm§9 parameter must also be 
omi t ted. 

Assembly language users who wish to omit this 
parameter should either follow the variable 
parameter list convention (high-order bit of 
the previous parameter ' s adcon in the parame­
ter list should be 1) or else supply an adcon 
which is zero (ra ther t han pointing to a 
zero) • 

Error numbers 
thing was wrong 
the subroutine 
parameters : 

less than 100 indicate some­
with either the mechanics of 
call or the values of the 

SETKEY 379 



MTS 3 : SYSTEM SUBROUTINE DESLRIPTIONS 

Examples : 

3BO SET KEY 

Octo(:eI" 1976 

1 ILLEGAL PARAMETER LIST POINTER 
2 ILLEGAL " WHAT" PARAMETER ADDRESS 
3 ILLEGAL " PKEY " PARAMETER ADDRESS 
4 ILLEGAL PROGRAM KEY 
5 ILLEGAL " INFO" PARAI1ETER ADDRESS 
6 " INFOt' PARAMETER VALUE NOT a OR 1 

Error numbers between lOa and 
errors that occur in accessing 

101 ILLEGAL FILE NAME 

10 5 describe 
the file . 

102 FILE NOT FOUND-FILE "XXXX" 
1 03 ACCESS NOT. ALLOWED TO FILE "XXXX" 

(Permit access is required to set 
the program key . ) 

1 04 DEADLOCK SITUATION, TRY LATER - F·ILE 
" XXXX " 

105 INTERRUPTED OUT OR WAIT FOR LOCKED 
FILE " XXXX " 

Error numbers 201 and above indicate a file 
system error . 

§££~§g (optional ) is the location of a 20-f ul lword 
(BO - character) region in which the SETKEY 

s ubrou tine will place the corresponding error 
message if an error return (return code 4) i s 
made . Assembly language users should see 
ir,structions above on omit ting optional par­
ameters for the g££Q.Q.§ parameter .. 

££~ is the statement label to transfer tc if the 
corresponding return code occurs . 

Return Codes : 

o The program key has been set as requested. 
4 Error . The program key has not been set . See the 

gr£Qgg and g~r!§g values returned for the specific 
error. 

Assembly: CA LL S ETKEY , (W HAT , P KEY , INF O, ERCODE , ERRMSG) 

WHAT DC 
PKEY DC 
INFO DC 
ERCODE OS 
ERRI1SG OS 

C'PROGRA" 
C ' DBMS 
F ' O ' 
F 
CLBO 



( October 1976 

( 

( 

MTS 3: SYSTEM SUBROUTINE DESCRIPTIONS 

FORTRAN: CALL SETKEY ('PROGRAM ',' DBMS 1, 0) 

The above examples set the program key for file PROGRAM to 
DBMS. 

SE~rKEY 38 1 



MTS 3 : SYSTEM SUBROUTINE DESC~IPTIONS 

October 1976 

382 SETKEY 


