
i w DataGeneral

r
Extended

BASIC

User's Manual

093-000065-08

V

Extended

BASIC

User's Manual

093-000065-08

For ihe latest enhancements, cautions, documentation
changes, and other information on this product, please see
the Release Notice (085-series) supplied with the software.

Ordering No. 093-000065
©Data General Corporation, 1971,1972,1973, 1974, 1975,1977, 1978
All Rights Reserved
Printed in the United States of America
Revision 08. November 1978
Licensed Material - Property of Data General Corporation

NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel, licensees,
and customers. The information contained herein is the property of DGC and shall not be
reproduced in whole or in part without DGC prior written approval.

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential) caused by
reliance on the materials presented, including but not limited to typographical, arithmetic, or listing
errors.

Extended
BASIC

User's Manual
093-000065

Revision History:

Original Release -
First Revision
Second Revision -
Third Revision
Fourth Revision -
Fifth Revision
Sixth Revision
Seventh Revision -
Eighth Revision -

November 1971
May 1972

September 1972
March 1973
September 1973
October 1974
February 1975
April 1977
November 1978

This document has been extensively revised from revision 07; therefore,
change indicators have not been used.

The following are trademarks of Data General Corporation, Westboro, Massachusetts:

U.S. Registered Trademarks Trademarks

CONTOUR I INFOS NOVALITE DASHER
DATAPREP NOVA SUPERNOVA DG/L
ECLIPSE NOVADISC microNOVA

Preface

Data General's Extended BASIC is a powerful,
straightforward language. Its interactive qualities
enable beginning programmers to develop their skills;
its advanced features allow experienced programmers
to handle complex and diverse applications. These
attributes have made BASIC very popular, and in
recent years it has become a model language for
multiuser systems.

This manual presumes that you have had some
experience with the BASIC language. If you have not,
the introductory manual, basic BASIC, will give you the
background you need.

This manual begins with a brief description of
Extended BASIC, explains terminology and symbols,
and outlines the steps you will follow to log on to the
BASIC system, create and run a program, and log off.
Chapter 2 explains BASIC arithmetic and strings; it
includes numbers, variables, arrays, and arithmetic
operations.

In Chapter 3, all interactive BASIC commands are
listed alphabetically; each is explained in detail, and
illustrated by example. Chapter 4 presents the BASIC
functions, and Chapter 5 gives you matrix statements
and commands. File input and output is covered in
Chapter 6.

Appendix A lists all BASIC error messages; Appendix
B explains the steps you follow when calling an
assembly language subroutine, and Appendix C
outlines BASIC programming on mark-sense cards.
Other appendixes include Hollerith and ASCII
character sets and a BASIC keyword summary.

See the following manuals for related information:

093-000088 basic BASIC

093-000119 Extended BASIC System Manager's Guide

069-000002 Introduction to the Real- Time Disk Operating
System

093-000075 Real-Time Disk Operating System Reference
Manual

093-000093 Introduction to the Real-Time Operating
System (R TOS)

093-000056 Real-Time Operating System Reference
Manual

093-000201 Diskette Operating System Reference Manual
(DOS)

093-000087 BA TCH User's Manual

069-000016 Introduction to the Advanced Operating
System (A OS)

093-000122 AOS Command Line Interpreter User's
Manual

069-000018 Learning to Use Your Advanced Operating
System

093-000065-08 Licensed Material-Property ol Data General Corporation iii

Keyword Descriptions
In this manual, we describe each BASIC keyword in the
following format:

AOS
RDOS
DOS

Reader, Please Note:
We use these conventions for command formats in this
manual:

COMMAND required [optional] ...

Where Means

BASIC Keyword and Its Purpose

Format
We show the BASIC word in its generalized format.
The parentheses must be inserted as shown (whereas
the brackets indicate optional arguments).

Arguments
We explain how you should evaluate particular
arguments that appear in each BASIC format.

Remarks
This heading includes rules, cautions, and other
pertinent comments to clarify the use of the BASIC
word.

Examples
We provide typical uses to help you understand the
BASIC word and its format.

AOS V
RDOS
DOS

COMMAND You must enter the command (or
its accepted abbreviation) as
shown.

required You must enter some argument
(such as a filename). Sometimes,
we use:

(required i)
(required 2 J

which means you must enter one of
the arguments. Don't enter the
braces; they only set off the choice.

[optional] You have the option of entering
some argument. Don't enter the
brackets; they only set off what's
optional.

You may repeat the preceding
entry or entries. The explanation
will tell you exactly what you may
repeat.

Additionally, we use certain symbols in special ways:

A checked box next to an operating system indicates
that the keyword is available for use on that operating
system's version of Extended BASIC. The keyword
may be available on one, two, or all three systems.
Certain keywords (e.g., MSG) are available in more
than one version of Extended BASIC, but differ
significantly in description. In these cases we have
documented the keyword for each version separately.

S V
c
F

Symbol Means

) Press the NEW-LINE or RETURN
key on your terminal's keyboard.

Be sure to put a space here. (We use
this only when we must; normally,
you can see where to put spaces.)

•
All numbers are decimal unless we indicate otherwise;
e.g., 35g.

A checked box here indicates whether the BASIC word
is used as a statement (S), a command (C), or a
function (F). Some BASIC words may be used both as
statements and commands.

Note that reserved filenames under DOS and RDOS
Extended BASIC use the $ symbol as a prefix, whereas
under AOS Extended BASIC the prefix is an @ symbol.
We executed most of the examples shown in this
manual on an RDOS system, so if you are an AOS
user, please note the difference. See Chapter 6 for
detailed information on reserved filenames.

End

Finally, in examples of system interactions, we use:

THIS TYPEFACE TO SHOW YOUR ENTRY)
THIS TYPEFACE FOR SYSTEM RESPONSES AND
QUERIES

iv Licensed Material-Property of Data General Corporation 093-000065-08

Contents

Chapter 1 - Introduction

General Information l-l
Abbreviations 1-1
Terminology 1-1

Using Extended BASIC 1-2
Logging onto RDOS/DOS Extended BASIC 1-2
Logging onto AOS Extended BASIC 1-2
Creating a New Program 1-2
Running a Program 1-3
Correcting the Program 1-3
Interrupting Program Execution 1-3
Logging off RDOS/DOS Extended BASIC 1-3
Logging off AOS Extended BASIC 1-4
Telephone Line Interruption 1-4
BASIC Program Example 1-5
Commands Derived From Statements 1-5
Perform File I/O 1-5
Desk Calculator 1-5
Desk Calculator Using Program Values 1-5
Dynamic Program Debugging 1-6

Examples 1-6

Chapter 2 - Arithmetic and Strings

Numbers 2-1
Single-precision Print Representation 2-1
Double-precision Print Representation 2-1
Internal Number Representation 2-1

Variables 2-2
Arrays 2-2
Array Elements 2-2

Declaring an Array 2-2
Arithmetic Operations 2-3

Priority of Arithmetic Operations 2-3
Parentheses 2-4
Relational Operators and Expressions 2-4

String Conventions 2-4
String Literals 2-4
String Variables 2-4
Dimensioning String Variables 2-5
Substrings 2-5

Examples 2-5
Assigning Values to String Variables 2-6
Strings in IF - THEN Statements 2-6
String Concatenation 2-6
String Arithmetic 2-7

093-000065-08 Licensed Material-Property of Data General Corporation v

Chapter 3 - BASIC Statements and Commands

Introduction 3-1
ACL 3-1
AUDIT 3-2
BYE 3-2
BYE 3-3
CALL 3-3
CARDS 3-4
CHAIN 3-4
CHAR 3-5
CHAR 3-6
CHATR 3-7
CLI 3-8
CON 3-8
DATA 3-9
DELAY 3.9
DELETE 3-10
DIM 3_11
DISK
END
ENTER
ERASE
FILE
FILE
FOR and NEXT 3-15
GD1R
GOSUB and RETURN 3-17
GOTO
HELP 8
IF--THEN
INPUT
LET 3-21
LIBRARY
LIBRARY
LIST
LOAD
LREAD
LWRITE
MSG

MSG
NEW 27
ON ERR THEN '• 3.2g
ON ESC THEN
ON-GOTOandON-GOSUB
PAGE
PRINT 331

PRINT USING 3 3 3

PUNCH 38

RANDOMIZE
READ 3-40
REM 3

RENAME 34,
RENUMBER 3 4 2

RESTORE 3 4 3

RETRY 3 . 4 3
rGN
SAVE
S1ZE 3-46

VI Licensed Material-Property of Data General Corporation 093-000065-08

Chapter 3 - BASIC Statements and Commands (continued)

S I ZE 3.46

ST O P 3.47

TAB 3-47
T IME 3 -48
T INPUT 3-49

WHATS 3 - 50
WHO 3-50

Chapter 4 - Extended BASIC Functions

I n t roduc t i on t o Ex t ended BASIC Func t i ons 4 -1
A BS 4 - 2
A TN (X) 4 - 2
COS(X) 4 -3
CPU (X) 4 -3
DEF F N a(d) 4 -4
EOF 4 - 5
EXP(X) 4 - 5
INT(X) 4-6
L E N (X $) 4-6
LOG(X) 4 -7
POS(X$,Y$,Z) 4 -7
RND(X) 4-8
SGN(X) 4 -9
S IN(X) 4 -9
SQR(X) 4 -10
STR$(X) 4 -10
SYS(X) 4 -11
TAB (X) 4 -11
T AN(X) 4 - 1 2
VAL(X$) 4 - 1 2

Chapter 5 - Array Manipulation

Dimens ion ing Ar r ays 5 -1
M a t r i x Man ipu l a t i on S t a t emen t s 5 -1

Ma t r i x Ass ignmen t 5 -1
Ze r o Ma t r i x (ZER) 5 -2
Un i t Ma t r i x (CON) 5 -2
Iden t i t y Ma t r i x (1DN) 5 -3

Ma t r i x I / O S t a t emen t s 5 -4
MAT READ 5-4
MAT INPUT 5 -4
MAT TI N P U T 5 -5
MAT PRINT 5 -5

Ma t r i x Ca l cu l a t i on S t a t emen t s 5 - 6
Add i t i on and Sub t r ac t i on 5 - 6
Mu l t i p l i c a t i o n 5 -6
Inve r se Ma t r i x (INV) 5 - 8
Ma t r i x De t e rminan t (DET) 5 -9
Ma t r i x T rans pos i t i on (T RN) 5 -9

093-000065-08 Licensed Material-Property of Data General Corporation V11

Chapter 6 - File Input and Output

File Concepts 6-1
Definition of a File 6-1
DOS and RDOS Disk Filenames 6-1
AOS Disk Filenames 6-1
DOS and RDOS Reserved Filenames 6-2
AOS Reserved Filenames 6-2
OPEN FILE 6-3
CLOSE FILE 6-4
GPOS FILE 6-5
INPUT FILE 6-5
LREAD FILE 6-6
LWRITE FILE 6-7
MAT INPUT FILE 6-8
MAT PRINT FILE 6-8
MAT READ FILE 6-9
MAT WRITE FILE 6-9
PRINT FILE 6-10
PRINT FILE USING 6-10
READ FILE 6-11
RESET FILE 6-12
SPOS FILE 6-12
WRITE FILE 6-13

Appendix A - Error Messages

Appendix B - Calling an Assembly Language Subroutine from
Extended BASIC

Character String Storage and Definitions B-l
Linking the Assembly Language Subroutine B-l

Appendix C - Programming on Mark-Sense Cards

Appendix D - Hollerith Character Set

Appendix E - ASCII Character Sets

Appendix F - Statement, Command and Function Summary

VI I I Licensed Material-Property of Data General Corporation 093-000065-08

Illustrations

Figure Caption

1-1 Telephone Line Interruption 1-4

2-1 Array Elements 2-2

5-1 Product of Two Matrixes 5.7

B-l String Variable Storage B-l
B-2 Argument Control Word B-2
B-3 Example of an Assembly Language Subroutine B-3

C-l Data General Extended BASIC Mark-Sense Programming Card C-l
C-2 450 GOTO 200 C-2
C-3 Marking the Letter "V" c-3
C-4 10 IF V$ = "CAT" THEN C-4

Tables

Table Caption

3-1 Representing Digits by Number Sign 3-33
3-2 Decimal Point Representation 3-34
3-3 Fixed Sign Representation 3-34
3-4 Floating Sign Representation 3-35
3-5 Fixed Dollar Sign Representation 3-35
3-6 Floating Dollar Sign Representation 3-36
3-7 Separator Representation 3-36
3-8 Exponent Representation 3-36

A-l BASIC Error Messages A-2
A-2 RDOS/DOS Extended BASIC File I/O Error A-5

Messages

093-000065-08 Licensed Material-Property of Data General Corporation j %

Chapter 1
Introduction

Extended BASIC is an interactive programming
language that operates under Data General's Advanced
Operating System (AOS), Real-time Disk Operating
System (RDOS), Real-Time Operating System
(RTOS) as a feature of RDOS, and Diskette Operating
System (DOS).

RDOS supports certain commands and features which
DOS does not. Generally, if you try to use an
RDOS-only command or feature in a DOS system, it
will be nonoperational, and you'll receive an error
message.

DOS does not support cassette use or BATCH mode.
Diskettes created under DOS are entirely compatible
with RDOS. Diskettes created under RDOS may not be
compatible with DOS when certain RDOS features not
supported under DOS are used. See the Diskette
Operating System Reference Manual, Appendix H, for
more information.

General Information
Data General's Extended BASIC is an implementation
of the BASIC language as developed at Dartmouth
College, and includes the following features:

• String Manipulation
• Matrix Operations
• Program and Keyboard Modes
• Fixed- and Variable-Length File Manipulation
• Format Control
• Assembly Language Subroutines

Abbreviation Term

col column
control var control variable
svar string variable
mvar matrix variable
filename a disk filename or a device

Terminology
The BASIC language includes words, sometimes called
keywords or instructions. When written in an
appropriate format, they can act as statements and
functions in a program. Many keywords can also be
used as console commands (keyboard mode).

Some BASIC words can be used alone to perform an
operation. Others require one or more arguments to be
properly executed. For example:

INPUT A,B

In this case, A and B are arguments to the INPUT
instruction.

A BASIC program consists of several BASIC
statements. Each statement includes a properly
formatted BASIC word preceded by a line number in
the range l to 9999. The line number you give to a
BASIC statement determines the order in which it is
executed. Program execution proceeds from the lowest
numbered line to the next higher numbered line unless
directed elsewhere by statements such as GOTO or
GOSUB.

Abbreviations
We use the following abbreviations in the descriptions
of BASIC keywords.

Abbreviation Term

var numeric variable
expr numeric expression
rel-expr relational expression
str lit string literal
val numeric value
line no. line number

Each program statement is written on a separate line.
You terminate each line with a carriage return ()).

*05 PRINT "SAMPLE PROGRAM")
*10 LET A = 5)
*15 LET B = 2)
*20 PRINT A*B)
*25 END)

The asterisk (*) prompt at the beginning of each line
indicates that BASIC is ready for another instruction
and you may enter a command or a program statement.
Your system manager can create any prompt string of
up to 10 characters, or use the default asterisk prompt.
We use the asterisk prompt in our examples.

093-000065-08 Licensed Material-Property of Data General Corporation 1 - 1

BASIC console commands do not include line numbers
and are executed immediately after you terminate the
command with a carriage return ()).

• L I S T)
0005 PRINT''5/1MPLEPROGRAM''
0010 PRINT5*2

0025 END
• R U N)
SAMPLE PROGRAM
10
END AT 0025
•

BASIC executes the program starting from the lowest
numbered line.

Using Extended BASIC

Logging onto RDOS/DOS Extended BASIC
You can log onto the system as soon as you see the
BASIC prompt message on your terminal:

BASIC XX.XX
READY

You begin the log on procedure by pressing either the
ESCape or RUBOUT key. Use the ESCape key on
hardcopy terminals for which you want backarrow (—)
as a RUBOUT echo; use the RUBOUT key on CRT
terminals for which you want to backspace the cursor
and erase a character as a RUBOUT echo. The system
will request your account name. Respond by typing the
4-character account name assigned to you by the
System Manager and a carriage return. If you have
been previously assigned a password, the system will
ask for it next. Type the password and a carriage return.
To protect the confidentiality of your password, it will
not be echoed at your terminal.

If your identification (account name and password) are
valid, the system will output your account name, the
date, time, and terminal number assigned, followed by
a prompt.

The format of the log on procedure is as follows:

BASIC XX.XX
READY

ESC (You press ESC or
RUBOUT.)

ACCOUNT NAME: xxxx) (4-character account name.)

PASSWORD: yyyy) (0-20 character password
not echoed.)

xxxx • MM/DD/YYa HH:MM • SIGN ON. Q ZZ

I ' ' I' ' (account (date) (time) (terminal no.)
name)

. (prompt)

Logging onto AOS Extended BASIC
You log onto an AOS system according to the
instructions provided in the AOS Command Line
Interpreter User's Manual.

Once you're logged on to AOS, respond to the CLI
prompt with the command to execute BASIC. BASIC
will respond with a message and a prompt.

) E X E C U T E B A S I C)

AOS BASIC REVISIONXX.XX I4-SEP- 771-OCT- 7709:14:22

Creat ing a New Program
Having successfully logged onto the system, you may
enter a new program, or modify and run an old
program. It is generally good practice to type the NEW
command before entering a new program. The NEW
command clears your work area in memory and
thereby prevents the interspersion of lines from an old
program into your new program. You can find NEW
and all other interactive BASIC commands described in
Chapter 3.

When typing a new program, you must begin each line
with a line number of not more than four digits and end
each line with a carriage return ()). If you make a typing
error before pressing the RETURN key, you can
correct it with the RUBOUT key. Press the RUBOUT
key once for each character you want erased; then
continue by typing the correct characters.

If you are working on a CRT terminal, each RUBOUT
will erase the last character on the screen. Note that on
some terminals a DELETE key replaces a RUBOUT
key.

If you are using a hardcopy terminal, a backarrow (—)
will echo at your terminal each time you press
RUBOUT. For example:

* 1 0 P R I N T " C O N V R R E C T I O N B Y R U B O U T S ")

1 - 2 Licensed Material-Property of Data General Corporation 093-000065-08

I n l i ne number 10 , two cha rac t e r s , (N and V) , a r e
r ubbed ou t an d t hen t he l i ne i s comp le t e d . A LI S T
command w ou ld ou tpu t t he co r r ec t ed l i ne .

' L IST 10)
0010 PRINT "CORRECTIONBYRUBOUTS"
*

I n a dd i t i o n , you can de l e t e an en t i r e cu r r en t s t a t emen t
o r command l i ne by t yp ing t he backs l a sh c ha r ac t e r o n
you r t e rmina l . BASIC echoes w i t h a backs l a sh and a
ca r r i ag e r e t u rn . An ES C w i l l h ave t he s a me e f f ec t a s t he
backs l a sh key .

*10 PRINT "CON R \ (B a c ks l a s h de l e t e s l i ne .)
10 PRINT " CORRECTION BY BACKSLASH")
(L ine i s t yped ove r .)

Running a Program

A f te r you have f i n i sh ed t yp i ng a p rog ram, you execu t e
i t by g iv ing t h e comma nd :

RUN)

BASIC wi l l r un t he p rog ram s t a r t i ng f r om t he l owes t
numbe re d s t a t emen t , a s sum i ng t he r e a r e n o run t ime
e r ro r s (s ee Append ix A) an d wi l l ou tpu t a l l r e su l t s t ha t
you r eques t ed i n PRINT s t a t emen t s .

P rog rams w h i c h we re p r ev ious ly wr i t t en an d SAVEd
can be r un by t yp i n g :

'LOAD "f i l ename")
*RUN) (or RUN " f i l ename"))

where :

f i l ename i s t h e na m e o f you r p rog ram.

Correcting the Program

Af t e r r u n n in g a p rog ram, you may need t o change i t
b ecause o f e r ro r me s sa ge s o r i nco r r ec t r e su l t s . You can
co r r ec t t he p rog ram by u s ing a ny o f t he f o l l owing
p rocedu re s :

a . You can sub s t i t u t e a new s t a t emen t f o r a s t a t emen t
c on t a in ing e r ro r s by r e typ ing t he e n t i r e l i ne
(i nc lud ing l i ne number an d ca r r i age r e t u rn) .

b . You can e l im i n a t e a s t a t emen t f r om the p ro g r am by
t yp ing i t s l i ne number fo l l o wed by a c a r r i age r e t u rn
o r by u s ing t he ERASE c omma nd .

*125)
Dele t e s l i ne 125 .

•ERASE 200 ,300)
Dele t e s a l l l i n e s be tween 2 0 0 an d 300 inc lu s ive .

c . You can i n s e r t n ew s t a t emen t s be twe e n ex i s t i ng
s t a t emen t s i n t he p r o g r am s imp ly by t yp ing t he n ew
s t a t e me n t s w i th i n t e rmed ia t e l i ne number s . I f t h e
number o f n ew s t a t emen t s exceeds t he number o f
l i ne number s ava i l ab l e be tween t he ex i s t i ng
s t a t emen t s , you can u se t he RENUMBER
command (de sc r i bed i n Chap t e r 3) t o c h a n g e t he
i nc r emen t be tween l i ne number s . When you wr i t e
a p rog ram, i t i s g ene r a l l y good p rac t i c e t o number
you r l i n e s by i nc r emen t s o f 10 t o a l l ow f o r p rog ram
expans i on an d c o r r e c t i on .

Interrupting Program Execution
To s top a runn ing p rog ra m, t he l i s t i ng o f a p ro g ram, o r
any o the r t a s k wh ich i s b e i ng pe r f o r me d by BASIC ,
p r e s s t he ESCape key . BASIC wi l t h e n ou tpu t a p ro m p t
t o s i gna l t ha t you can en t e r a new command .

"RUN)

ESC

STOP AT 0110

The l i ne number t ha t i s ou tpu t i s t h e l a s t l i n e t ha t
comp le t ed execu t i on . Ce r t a in BASIC s t a t emen t s o r
commands (INPUT, LREAD, ENTER, ER AS E , MAT
PRINT , DELAY, M A T INPUT, L IST , F IL E , and
L IBRARY) may r equ i r e a l ong t im e t o ex ecu t e . Th ey
may be abo r t ed , bu t f u r t he r execu t i on de penden t upon
t he i r comp le t i on wi l l b e a f f ec t ed .

The s t a t emen t MAT INV and a l l f i l e I /O s t a t em en t s
may r equ i r e c ons ide r a b l e execu t i on t ime , bu t c an ' t b e
i n t e r rup t ed by ESC. I f ESC i s enab l ed on t he conso l e
and you ge t no r e sponse t o ESC , you m u s t check t o s ee
i f yo u ' r e execu t i ng one o f t he se non in t e r rup t ab l e
s t a t emen t s o r i f t h e r e i s a sy s t em fa i l u r e .

Logging off RDOS/DOS Extended BASIC
Af te r you have f i n i shed w ork ing w i th BASIC a t t he
t e rmina l , l og o f f by t yp ing t he command BYE. The
BASIC sys t e m wi l l t h en ou tpu t a su m m ary o f u sage
i n fo rma t ion an d p u t t he t e r mi na l i n to an i d l e s t a t e .

*BYE)
xxxx MM/DDI YY HH:MM SIGN OFF, ZZ
xxxx MM/DDI Y Y HH:MM CPU USED. QQ
xxxxMM/DD/YYHH:MMI/O USED, RR, SS

BASIC xx . xx
READY

093-000065-08 Licensed Material-Property of Data General Corporation 1 - 3

Where:

xxxx is your ACCOUNT NAME.

MMIDDIYY is today's date.

HH.MM is the current time.

ZZ is the terminal port number.

QQ is the number of CPU seconds you used during
the terminal session (calculated to the nearest tenth of
a second).

RR is the number of file input and output statements
you executed (OPEN, CLOSE, READ, WRITE, etc.).

SS is the number of BASIC I/O statements you
executed (LIST, LOAD, ENTER, etc.).

Logging of f AOS Extended BASIC

Type the BYE command to exit from BASIC and
return to the CL1.

BYE)

Telephone Line Interrupt ion

If your terminal is attached to the computer by means
of a Bell 103 modem (or compatible hardware), and
line transmission fails for any reason, BASIC will save
your current program and data in a core image file and
will then do an implicit BYE command. You can
retrieve the file, named AAAAS.C1 ("AAAA" is your
account name), by using the LOAD command. For an
example, see Figure 1-1.

ACCOUNT NAME: MARY)
PASSWORD:

(User signs on)

MARY 10126177 06:35 SIGN ON. 12

20 FOR I = OT O 19) (User enters and runs program)
*30 ; l , SYS(D)
*40 NEXT I)
•L I S T)
0020 FOR 1 = OTO 19
0030 PRINT l.SYS(l)
0040 NEXT/

• R U N)
0 23746
1 26
2 10
3 1977
4 2
5 .2
6 6
7 0
8 (Disconnect occurs here)

ACCOUNT NAME: M ARY) (User repeats sign-on)
PASSWORD:

MARY 10126177 06:47 SIGN ON. 03

*WHATS "MA RY S .CI ") (Identifies disconnected program)

MARYS.CI DW 37910/26/77 06:38 (10/26/77) 00

•LOAD " MA RY S.CI") (Retrieves it)

*LIST) (Examines it)
0020 FOR / = OTO 19
0030 PRINT I, SYS (I)
0040 NEXT1

(Session continues)

Figure 1-1. Telephone Line Interruption

1-4 Licensed Material-Property of Data General Corporation 093-000065-08

BASIC Program Example
The following example shows an entire BASIC session:
logging in, communicating with the system operator,
running the program, and logging off.

BASIC xx.xx
READY
(ESC) (Press ESC or RUBOUT key)
ACCOUNT-NAME: KAST)
PASSWORD: JERR) (Password JERR not echoed)
KAST 1/23/78 10:32 SIGN ON, 2

•MSG OPER PLS MOUNT TAPE #1255 (NO RING))
FROM OPER: DONE- TAPE ON MT12
'MSG OPER THANX)
•LOAD "PRODUCTION")

•LIST)
0010 DIM AS (10)
0020 INPUT "TAPEMOUNTEDON",AS
0030 A$=AS. ":0"
0040 OPEN FILE (0.3), AS
0050 READ FILE (0),A,B, CS
0060 IF EOF (0) = I GOTO 200
0070 PRINTA.B.CS
0100 GOTO 50
0200 CLOSE FILE (0)
0210 PRINT' 'END OF JOB
0220 STOP

•RUN)
TAPEMOUNTEDON MT12)

END OF JOB

STOP AT 0220
•MSG OPER PLS RELEASE MT12)
*FR OM OPER: TA PE R EMO VED FR OM MT 12
•BYE)
KAST 1/23/78 10:40SIGN OFF. 2
KAST 1/23/78 10:40 CPU USED. .3
KAST 1/23/78 10:40 I/O USED, 4,2

BASIC xx.xx
READY

Notice that this program was written to provide device
independence. That is, the assignment of the magnetic
tape drive number was deferred until program
execution time, thereby allowing the system operator
to assign any available unit.

Commands Derived From Statements
You can use most BASIC statements as console
commands. However, certain statements have
meaning only within the context of a program and
cannot be used as commands. These statements are
DATA, DEF, END, FOR, GOSUB, GOTO, NEXT,
ON, REM, RETURN, RETRY, and STOP. All other
BASIC statements can act as commands to help you:

• Perform file I/O
• Perform desk calculations
• Dynamically debug programs

Perform Fi le I /O
Using BASIC, you can open and close files; and you can
input or output programs and data from files and
devices by commands derived from the file I/O
statements described in Chapter 6.

•OPEN FILE (1 ,3) , "$PTR")
•READ FILE (1) , A , B , C , D, E , F , G (5))

Desk Calculator
With the PRINT command, you can obtain immediate
results of arithmetic computations (a semi-colon (;)
can be used for the word "PRINT"):

* ;EXP(SIN(3 .4 /8)))
1.5103188
•LET A = EXP(SIN(3 .4 /8)))
•PRINT USING "+#### .### #H t l " ,A)
+1510.3188E-03

Desk Calculator Using Program Values
You can interrupt a running BASIC program and use
the assigned values of program variables to make
calculations.

•LIST)
0010 FOR 7 = I TO 1000000
0020 X = X + 1
0030 NEXT J

•RUN)

(Press ESC key.)

STOP AT 0010
• P R I N T J , 1 0 * X)
100 990

093-000065-08 Licensed Material-Property ot Data General Corporation 1 -5

Dynamic Program Debugging
You can interrupt a running program (using ESC or
programmed STOP statements) at a number of
different program points. You can check the current
values of the variables at those points and make
corrections to statements or variables in the program,
as necessary. You can then use either RUN line no. or
CON to restart the interrupted program without losing
the values of the variables at the point of interruption
or the newly inserted values and statements.

Examples
1 . * R U N)

(E S C)
(Press ESC key.)
STOP AT 1100
• I F A < > B T H E N P R I N T B , A
(Command conditionally provides for examination
of A and B.)
.025 .5

2. This program performs a series of calculations and
then prints results.
• R U N)

3 . * R U N)

(E S C)
(Press ESC key.)
STOP AT 1100
*:A)
(Print value of variable A.)
0
* A = - 1)
• C $ = " % O F L O S S "
(Change the value of arithmetic variable A and
string variable C$.
• R U N 5 0 5)

(Resume running at statement 505.)

4 . " D I M A (1 4 , 4))
• R U N)

(E S C)
(Press ESC key.)
STOP AT 0500
• D I M A (3 , 5))
(Redimension array A.)

2.33333
5.41234
8.99999
(E S C)
(Press ESC key.)
STOP AT 0570
• R E A D X 1 , X 2 , X 3)
(Space over the next 3 values in the data block.
Resume program execution at next statement.)
• C O N)
3.16524
1.65318

End of Chapter

1 - 6 Licensed Material-Property of Data General Corporation 093-000065-00

Chapter 2
Arithmetic and Strings

Numbers
An Extended BASIC number may range from + or -
5.4 * 10 79 to + or - 7.2 * 1075. Numbers may be
expressed in integer, floating-point, or in exponential
form (E-type notation).

BASIC provides either all single-precision or all
double-precision calculations.

The format of converted numeric data (for example, as
converted by a PRINT statement) depends upon the
BASIC system you generated. The least significant digit
of any printed number is always rounded.

Single-precision Print Representation
BASIC does not use exponential format for any
floating-point or integer number of six digits, or less. A
floating-point or integer number that requires more
than six digits is printed in the following E-type
notation.

(sign)n. nnnnnE(sign)XX

Where:

n.nnnnn is an unsigned number carried to five decimal
places with trailing zeros suppressed.

E means "times 10 to the power of."

XX represents an unsigned exponential value.

Number Single-precision Output Format

2,000,000 2E + 06
108.999 108.999
.0000256789 2.56789E-05
24E10 2.4E+11

(sign)n.nnnnnnnE(sign) XX

Where:

n.nnnnnnn is an unsigned number carried to 7 decimal
places with trailing zeros suppressed.

E means "times 10 to the power of."

XX represents an unsigned exponential value.

Number Double-precision Output Format

.666666666 .66666667
108.999868 108.99987
111111111.99 1.1111111E4-08

Internal Number Representation
Internally, BASIC stores numbers in a format
compatible with other Data General Corporation
software such as FORTRAN IV and the relocatable
assemblers. Single-precision floating point numbers are
stored in two consecutive 16-bit words of the form:

0 1 78 15

<0*

16

SD-1093

31

Double-precision Print Representation
BASIC does not use exponential form for any
floating-point or integer number of eight digits, or less.
A floating-point or integer number that requires more
than eight digits is printed in the following E-type
notation.

Where:

S is the sign of the mantissa (0 is positive, 1 i<
negative).

C is the characteristic and is an integer expressed ir
excess-64 code.

093-000065-08 Licensed Material-Property of Data General Corporation 2-1

The mantissa is a normalized six-digit hexadecimal
fraction.

Double-precision floating-point numbers add two
words of precision to the mantissa, which can be
represented as:

0 1 7 8 15

48

SD-1094

63

The internal floating-point precision is 7 decimal digits
for single-precision and 16 decimal digits for
double-precision. PRINT USING can be used to
override the PRINT format and display the extra digits.

Variables
You must express the names of numeric variables
(shown in program statements as var) as either a single
letter or a single letter followed by a digit. For example:

Acceptable Unacceptable
Variable Variable
Names Names

A
A3
Z
Z6

6A
AZ
B14

In addition to numeric variables, BASIC permits string
variables (svar). A section on string variables follows in
this chapter.

Arrays
An array represents an ordered set of values. Each
member of the set is called an array element. An array
can have either one or two dimensions. An array name
may be a single letter or a single letter followed by a
digit.

Array Elements
Each of the elements of an array is identified by the
name of the array followed by a parenthesized
subscript. See Array B3 in Figure 2-1.

For a two-dimensional array, the first number gives the
number of the row and the second gives the number of
the column for each element. The elements of Array C
would be as shown in Figure 2-1.

ARRAY B3

element element element
B3(1) B3(2) B3(3)

ARRAY C

C(1,1) C(1,2) C(1,3)

element
B3(6)

1 2 3

4 5 6

C (2,1) C (2,2) C (2.3)

SD-01058

Figure 2-1. A rray Elements

A reference to element zero or a negative reference is
an error.

Declaring an Array
Most arrays are declared in a DIM statement, which
gives the name of the array and its dimensions. You
can also dimension an array in a MAT INPUT, MAT
READ, MAT READ FILE, or MAT assignment
statement (a two-dimensional array is also called a
matrix).

The lower bound of a dimension is always 1; the upper
bound is given in DIM statements as in this example:

•10 DIM A(1 5), B1 (2,3))

2 -2 Licensed Material-Property of Data General Corporation 093-000065-08

The uppe r bound o f a r r ay A i s 15 , t he uppe r bounds o f
ma t r i x B1 a r e 2 an d 3 . These s t a t emen t s w i l l a l so
dec l a r e a r r ays :

*10 MAT A = CON (4 ,5))
*20 MAT READ A (4 ,5))
*30 MAT A = B*C)

The uppe r bound o r bounds o f an a r r ay a r e de t e rmined
b y t he exp re s s i ons i n M A T o r by t he subsc r i p t s o f t he
a r r ay v a r i ab l e a s i n M A T READ.

I f an a r r ay i s n o t dec l a r ed , t hen a de f au l t v a lue o f 10 i s
a s s i gned t o eac h d im ens ion o f t he a r r ay . Tha t i s , i f C
ha s no t ye t b een d imens ioned , t he n

*10 C(5) = 1

wi l l c r ea t e a r r ay C wi th 1 0 e l e me n t s , w i t h t he f i f t h
e l em en t s e t t o 1 . I f you t r y t o c r ea t e an a r r ay o r a ma t r i x
w i th d imens ions b igge r t han 10 , an d you haven ' t
dec l a r ed t he a r r ay , a s i n t he s t a t emen t

A num er i c s c a l a r v a r i ab l e an d a numer i c a r r ay va r i ab l e
may s h a r e t he s a m e na me , and BA SIC wi l l t r e a t t h em
a s two d i s t i nc t va r i ab l e s , p r ov ide d you dec l a r e t he a r r a y
i n a DIM s t a t e me n t be fo r e r e f e r r i ng t o t h e s ca l a r
va r i ab l e . Fo r ex amp le :

* 1 0 DIM A(3 ,3))
* 2 0 A = 5067)
* 3 0 MAT A = CON)
*40 PRI NT A)
* 5 0 MAT PRI NT A;)
* RU N)
5067
1 1 1
1 1 1
1 1 1

END AT 0050
*

Line 20 r e f e r s t o t he numer i c s ca l a r va r i ab l e A . L ine 50
r e f e r s t o t h e numer i c a r r ay A .

*10 C(9 ,11) = 273

then C wi l l b ecome a m a t r i x o f 100 e l emen t s , even
t hough t h e e r ro r mes s age -ER R OR 31 -
SUBSCRIPT—wi l l occu r an d t he va lue 273 w i l l no t be
s t o r ed .

The re i s no l i m i t on t he num ber o f e l emen t s i n a g iven
a r r ay o the r t han r e s t r i c t i o n s o f av a i l ab l e memo ry .
S t o r age fo r an a r r ay i s pe r ma ne n t l y a l l oca t ed when i t i s
d e c l a r e d . You c an r ed imens ion an a r r ay , bu t you wi l l
on ly be r ea r r ang ing t he in i t i a l l y a l l oc a t e d space . I f you
t r y t o r ed imens i on an a r r ay t o a l a rge r s i z e , you wi l l g e t
t he e r ro r mes sage , ERROR 2 8 -D IM OVFL .

Red imens ion ing an a r r ay u s ing a DIM s t a t emen t w i l l
no t d i s t u rb t h e da t a i n t he a r r ay , a s shown in t h i s
exa mp le :

Arithmetic Operations
A num er i c exp re s s ion i s an y combina t i on o f number s ,
numer i c va r i a b l e s , an d a r r ay va r i ab l e s and func t i ons ,
l i nked t oge the r by a r i t hme t i c ope ra t i ons . N umer i c
exp re s s ions appea r i n p rog ram s t a t emen t f o r m a t s a s
e xp r . The ope ra to r s u sed in wr i t i ng n u mer i c
exp re s s ions a r e :

Operator Meaning

+ Unary p lu s
Una ry minus

t E xpone n t i a t i on
* Mu l t i p l i c a t i o n
/ D iv i s i o n
+ Add i t i on

Sub t r ac t i on

Example

A + (+ B)
A + (-B)
AfB (A t o t he B power)
A*B
A /B
A + B
A -B

•L IS T)
0010
0020
0030
0040
0050
0060
0070
•RUN)
1 2 3
5 6 7
9 10 11

DIM A (12)
FOR 1 = 1 TO 12

LET A (!) = I
NEXT1
DIM A (3,4)
MAT PRINT A
END

12

END AT 0070

Prior i ty o f Ari thmet ic Operat ions
BASIC ev a lu a t e s a numer i c exp re s s ion (exp r) i n t he
fo l l ow ing o rde r p roceed ing f r om l e f t t o r i gh t :

1 . Any exp r w i th in pa r en the se s a r e eva lua t ed b e fo r e
an y unpa re n the s i z e d e xp r . When pa ren the s i zed
exp r s a r e ne s t ed , t he i nne rmos t exp r i s a lways
eva lua t ed f i r s t .

2 . Una ry p l u s an d m inus .

3 . E xpone n t i a t i on .

093-000065-08 Licensed Material-Property of Data General Corporation 2-3

4. Multiplication and division (equal priority).

5. Addition and subtraction (equal priority).

6. When two operators have equal priority (* and /),
evaluation proceeds from left to right.

7. In a series of exponentiations, evaluation proceeds
from left to right. That is, AlBfC = (A|B)tC.

For example:

Z+(-A) + B*C|D

Step 1. A is negated.

Step 2. C|D is evaluated.

Step 3. B is multiplied by the result of Step 2.

Step 4. Z is added to the result of Step 1.

Step 5. The result of Step 4 is added to the result of
Step 3.

Parentheses
Since parenthesized exprs are evaluated first, you can
use parentheses to change the order of evaluation for
an expr. Using the same variables as the previous
example:

Z-((A + B)*C) 1 D

Step 1. A + B is evaluated.

Step 2. The value from Step 1 is multiplied by C.

Step 3. The value from Step 2 is raised to the D power.

Step 4. The value from Step 3 is subtracted from Z.

With parentheses, you can clarify the order of
evaluation and legibility of an expr. For example, the
following exprs are equivalent:

A * B 1 3/4 + B/C + D 1 3

((A*B(3)/4) + ((B/C) + D I 3)

Relational Operators and Expressions
Relational operators are used to compare two exprs in a
relational-expression (rel-expr). A relational expression
has the form:

exprl relational operator expr2

The relational operators used in BASIC are:

Symbol Meaning Example

= Equal A = B

< Less than A < B
< = Less than or equal A <= B

> Greater than A > B
> = Greater than or equal A >= B

< > Not equal A <> B

You may use a string (see String Conventions following)
instead of an expr in relational expressions.

String Conventions

String Literals
A string is a sequence of characters which may include
letters, digits, spaces, and special characters. A string
literal (constant) is a string enclosed within quotation
marks. String literals are often used in PRINT and
INPUT statements as described in Chapter 3.

*050 REM THE NEXT STATEMENT PRINTS A STRING)
*100 PRINT "THIS IS A STRING LITERAL")
*150 REM STATEMENT 200 INCLUDES A)
*160 REM STRING PROMPT)
*200 INPUT "X = ",X)

The enclosing quotation marks are not printed when
the string is output to a terminal. You can include
special and nonprinting ASCII characters in string
literals by enclosing the decimal equivalent of the
character in angle brackets (< >). See Appendix E for
the decimal equivalents of ASCII character codes.

•LIST)
0010 PRINT "USE DECIMAL 34 TO PRINT < 34 > "
•RUN)
USE DECIMAL 34 TO PRINT"

l

END AT 0010

String Variables
Extended BASIC allows string variables as well as string
literals. A string variable name consists of a letter or a
letter and a digit, followed by a dollar sign ($).

Legal String Variables Illegal String Variables

A$ A14$
A2$ AA$
D6$ 2$

2C$
A1

String values are assigned to string variables by the use
of LET, INPUT, and READ statements.

2-4 Licensed Material-Property of Data General Corporation 093-000065-08

Dimensioning String Variables
Unless you declare a string variable in a DIM
statement, BASIC assumes a maximum string length
of 10 characters. Therefore, undimensioned string
variables longer than 10 characters are truncated to 10
characters. Good programming practice suggests that
you dimension all string variables, regardless of size.
The length of a string must be in the range:

0 < string length < = 32767 characters

In the following DIM statement, the string A$ has a
maximum length of 25 and B3$has a maximum length
of 200.

-*10 DIM A$ (25), B3$ (200))

In the following example, note that BASIC has
truncated the string to its assigned dimension: 15
characters (including spaces).

•LIST)
0010 DIM A2$(15)
0020 LET A2$="PR1NTA2$IS TOO LONG"
0030 PRINTA2$
•RUN)
PRINT A2S1STO

END AT 0030

Substrings
You can select portions of strings (substrings) in
program statements and functions by using subscripts.
Subscripted string variables have the form:

svar

svar is a string variable name.

x is the xth through last character of svar.

y,z is the yth through zth characters inclusive of svar.

For example:

A$ Refers to the entire string.

A$(2) Refers to the second character through the last
character in the string inclusive.

A$(l) Refers to position I through the last character
in the string inclusive (where I evaluates to a
character position in the string).

A$(3,7) Refers to character occupying positions 3
through 7 inclusive.

A$(I,J) Refers to characters occupying positions I
through J inclusive, where l< =J

A$(1,1) Refers to only the first character in the string.

When referring to substrings, x, y, and z must not be
negative andymust not be greater than z. Ifxoryis 0, it
defaults to 1. If z is 0, it defaults to the current length of
the string for substring extractions and to the
dimensioned length of the string for substring
assignments. For extractions, x, y, and z must not be
greater than the current length. For assignments, x, y,
and zmust not be greater than the dimensioned length.

When an assignment provides too many characters, the
extra characters are truncated. When an assignment
provides too few characters, blanks are assigned to the
remaining character positions. When xor^is more than
1 beyond the current length in an assignment, blanks
are assigned to the character positions between the
current length and the character position x or y.

Examples

•LIST)
0005 DIMA$(20)
0010 LETA$(L3)="SUB"
0020 LETA$(4,10)= "STRING "
0030 LETA$(l 1,177= "EXAMPLE"
0040 PRINTA$
•RUN)
SUBSTRING EXAMPLE

END AT 0040
*

You can change the value of a string variable during a
program. For example:

•LIST)
0010 LETA$= "ABCDEF"
0020 PRINT AS
0030 LETBS— "1"
0040 LETA$(3,3)=B$
0050 PRINT AS
0060 LETA$(4)=BS
0070 PRINT AS
•RUN)
ABCDEF
AB1DEF
AB11

END AT 0070

093-000065-08 Licensed Material-Property of Data General Corporation 2-5

Assigning Values to String Variables

READ and DATA statements can assign string values
to string variables. When you include string data in a
DATA list, always enclose the string elements in
quotation marks.

'LIST)
0005 DIM A1$(20),B$(10),D$(5)
0010 READ A,A1$,B$,C,D$
0015 PRINTA,C,D$
0020 DA TA 5,' •A BCD'' 'EFGH ",10/ TJKL''
•RUN)
5 10 IJKL

ENDAT0020

As this example shows, string data and numeric data
may be intermixed in a DATA list. However, each
variable in the READ statement must be of the same
type (numeric or string) as its corresponding element
in the DATA list or else an error message will result.

You may also use INPUT statements to input string
data to a program. When you respond to the INPUT
statement question mark (?), quotation marks to
enclose the string are optional. If data for more than
one string variable is requested by the INPUT
statement, the data entered for each string must be
separated by a comma or a carriage return.

You may include commas in a string by enclosing the
entire string in quotation marks. To include quotation
marks, enclose the decimal value 34 in angle brackets.
Caution must be exercised when NULL <0>, FORM
FEED <12> or CR <13> for RDOS/DOS systems,
or NL <10> for AOS systems are included since these
characters are string delimiters.

*10 INPUT AS, B$, C, D, E$)

RUN)
?ABCD, "EF.GH", 2, 4, "SIX")

If you want to assign exactly what you typed to a string,
use the LREAD statement. The LREAD statement
does not strip leading or trailing blanks, does not use
commas for delimiters, and does not process angle
brackets.

Strings in IF - THEN Statements

Strings may also be used in the relational expression of
an IF - THEN statement. In this case, BASIC compares
the strings character by character on the basis of the
ASCII character value (see Appendix E) until a
difference is found. If a character in a given position in
one string has a higher ASCII code than the character

in that position in the other string, the first string is
greater. If the characters in the same positions are
identical, but one string has more characters than the
other, the longer string is greater.

*200 LET A$ = "ABCDEF")
*300 LET B$ = "25 ABCDEFG")

*310 IF A$>B$GOTO 500)
(True: transfer occurs)
*320 IF A$>B$(4) GOTO 500)
(False: no transfer)
*330 IF A$(1,4) = B$(4,7) GOTO 500)
(True: transfer occurs)

String Concatenation

You may concatenate string variables and string literals
on the right-hand side of LET statements, using a
comma (,) as the concatenation operator. For example:

*10 DIM A$ (50),B$(50))
*1 5 LET A$="@$2.50, PROFIT MARGIN IS 1 5%")
*20 LET B$ = A$(1,4),"25",A$(7,26),"1 %")
*30 PRINT B$)
*RUN)
@ $2.25, PR OF1T MAR GIN IS 11 %
*

String concatenation, therefore, allows the following
statement:

*10 A$ = AS,B$)

where AS is concatenated by B$ to yield a new value
of AS.

However, when concatenated strings are assigned to a
string variable, the result of the concatenation is not
calculated before the assignment is made. The variable
being assigned is constructed piece by piece, therefore,
care must be taken when you use the same string
variable on both sides of an assignment. For example,

*10 A$ = B$, AS)

does not use a temporary string to do the
concatenation, so the value of AS on the right side of
the equal sign is not the original value, but rather the
value after BShas been assigned.

•LIST)
0003 A$= "12345"
0006 B$= "A"
0010 AS = B$,A$
0020 PRINT AS
•RUN)
AA
END AT 0020

2-6 Licensed Material-Property of Data General Corporation 093-000065-08

String Arithmetic
You can perform arithmetic on string variables and
string literals. The arithmetic operation will be
executed provided the strings (or substrings which
begin at the first character of the strings) have legal
numeric values. Any alphanumerics which follow the
numeric substring are ignored. If the substring is not a
legal number, an error condition will occur.

Valid String

"123"
"123."
"-123."
"-123.E5"
"-1 23.E-5FRED"

Invalid String

"FRED"
"1 23.E + FRED"
". + 123"
"FRED123"

Notice that decimal points, signs, and exponential
format are permitted in the substring as long as they
conform to the numeric representation described at the
beginning of this chapter.

You may use the operators + and / to link strings
and create an expression to be evaluated numerically.
The concatenation character (,) may not be used in a
string arithmetic expression.

*LIST)
0010 LETA$="1234 GEARS"
0020 LETB$= "5678GEARS"
0030 PRINT A$+B$+"10"
•RUN)
6922.

END AT 0030
*

BASIC returns 18 digits of precision when string
arithmetic calculations are made. If any precision is
lost, an error message is output. For example:

*10 PRINT "123E27" + "5.793E-4")

This statement would cause an error message since the
decimal point location for the two strings causes the
number of significant digits to exceed 18.

End of Chapter

093-000065-08 Licensed Material-Property of Data General Corporation 2-7

Chapter 3
BASIC Statements and Commands

Introduction
This chapter describes the most common Extended
BASIC statements and commands. The keyword
descriptions are arranged in alphabetical order.
Keyword descriptions for functions, matrix arithmetic,
and file I/O are described in Chapters 4, 5, and 6,
respectively.

AOS V

RDOS
DOS

S \

c \

F

ACL
prints a report of, or changes the Access
Control List for a file in your directory.

Format
A C L " f i l e n a m e " [, "UserlD", "attributes"]...

Arguments
f i l e n a m e is a string literal or string variable that
evaluates to a filename in your directory.

UserlD is a string literal or string variable that
evaluates to your identification.

attributes are file attributes as described under
Remarks.

Remarks
1. The file attributes which you may use in an ACL

command are:

R Read Access. Permits U s e r l D to examine the
da ta in f i l e n a m e .

W Write Access. Permits U s e r l D to modify data in
f i l e n a m e .

0 Owner Access. Permits U s e r l D to change the
Access Control List for filename, delete the file,
or rename the file.

E Execute Access. Permits U s e r l D to execute the
file.

A Append Access. This attribute has no meaning
for nondirectory files. For directory files,
Append Access permits you to make entries in
the directory.

2. When you create a file in your own directory, the
file will automatically have all five attributes,
OWARE, for your UserlD.

3. The ACL command allows you to change the
Access Control List to allow for others to have full
or partial access to your file, or to change your own
access privileges.

4. You must string the file attributes together in the
attributes argument without any delimiting spaces
or punctuation; you may express them as either
string literals or string variables.

5. The ACL command, followed only by f i l e n a m e (no
UserlD and attributes arguments) prints the
cur ren t Access Con t ro l L i s t fo r f i l e n a m e .

6. For RDOS/DOS systems the CHATR statement
provides a similar facility.

Examples
* A C L " P A G E 2 . 2 " , " J O E " , " R E W A O " , " M A R K " , " R E ")
* A C L " P A G E 2 . 2 ")
JOE,OWARE MARK,RE

In this example, J O E has all access privileges to P A G E
2.2, and MARK is limited to Read and Execute access
privileges.

093-1-000065-08 Licensed Material-Property of Data General Corporation 3-1

AOS \

RDOS
DOS

S \
c
F

A U D I T
copies console input and output to a f i le
named by argument .

AOS
RDOS \
DOS \

B Y E
s igns off from the BASIC system and
makes the terminal avai lable to others .

Format
A U D I T ["filename"]

Arguments

filename is an optional string literal or string variable to
represent the audit file that would contain console
input and output.

Remarks
1. AUDIT is valid as a statement or as a command.

Using AUDIT as a command allows copying of
both console input and output.

2. Only one audit file can be in effect at a time. When
an audit file is opened, an error message occurs if
the file already exists.

3. AUDIT without filename will shut off the AUDIT
operation.

Examples
• L I S T)

0010 DELETE "COPY.DT"! DELETE OLD FILE
0020 LET AS = "COPY.DT"! FORM AUDIT ARG
0030 AUDIT AS! OPEN "COPY.DT" AS AUDIT FILE
0040 LET A = 3! ASSIGN A
0050 PRINT-A ! OUTPUT-3 TO CONSOLE
0060 AUDIT! CLOSE AUDIT FILE
0070 END

When this program is RUN, the file "COPY.DT" will
contain the three ASCII bytes "-3 <012>" that are
output to the console.

Format
B Y E

Remarks
1. You can use BYE as a console command or as a

program statement to log off the system.

2. BASIC displays accounting information after you
enter the BYE command.

3. Telephone connections are severed.

4. The ESC key will not be recognized until the
messages which follow BYE have been output.

5. Do not disconnect your terminal until the B Y E
sequence is complete.

Examples
* B Y E)
xxxx 01102/76 10:06 SIGN OFF. 04
xxxx 01/02/76 10:06 CPU USED. 206
xxxx 01/02/76 10:06 I/O USED. 11. 137

BASIC xx.xx
READY

In the first line, 04 is the terminal number. The second
line indicates that 206 seconds of CPU time were used.
The third line shows that 11 file I/O calls were made
and 137 BASIC I/O calls were made.

3-2 Licensed Material-Property of Data General Corporation 093-000065-08

C V

AOS V

RDOS
DOS

BYE
signs off from BASIC and returns one
level, or returns to the CLI, or logs off,
depending on how your system is
configured.

Format
BYE

Remarks

You can use BYE as a console command or as a
program statement to exit from BASIC and return to
the CLI.

Examples
*BYE)
)

CALL
calls a subroutine written in assembly
language from an Extended BASIC
program.

Format
CALL subr[,exprj...

Arguments

subr is a positive integer representing an assembly
language subroutine number.

expr is as many as eight optional arguments to be
passed to the subroutine. Arguments may be
arithmetic or string variables, or expressions.

Remarks

1. All variable arguments passed to an assembly
language subroutine must be initialized before
using them in a CALL statement, or else an error
message will occur.

2. Arrays cannot be passed as arguments to a CALL
subroutine. Therefore, dimensioned variables used
as arguments to a CALL statement must be
considered as expressions and must include
subscripts indicating the one element to be passed
to the CALL.

3. Appendix B describes creating assembly language
subroutines which may be CALLed from Extended
BASIC programs.

Examples
0005 LET A = 12
0010 LETB — A *2
0015 CALL 33,A,B

AOS \

RDOS \

DOS \

Statement 15CALLs subroutine 33, with the values of
A and Bas arguments to the subroutine.

093-000065-08 Licensed Material-Property of Data General Corporation 3-3

C v
AOS
RD0S \
DOS \

CARDS
transfers and merges BASIC statement
lines in DGC mark sense card format
from the card reader, other device or
disk file named by filename into your
current program storage area.

Format
CARDS "filename"

Arguments
filename is a device or disk file, expressed as a string
literal or variable.

Remarks
1. If filename is a disk file, BASIC searches for the

filename in your directory first. If not found,
BASIC searches the library directory for the
filename.

2. When a statement line from filename has the same
line number as a line in the current program, the
current statement is replaced.

3. CARDS provides a convenient method of entering
statements from Extended BASIC mark sense
cards. (Use ENTER for statements not in mark
sense card format.)

4. CARDS provides a way to use both 80 column
punch cards and 37 column DGC mark sense cards
in the same BASIC system, on machines with two
card readers, or one reader equipped to read both
types of cards. However, 37 column and 80 column
cards cannot be mixed in the same deck. You may
enter mixed programs in two steps, as shown in the
example.

Examples
•NEW)
•ENTER "SCDR")
•CARDS "SCDR")

BASIC statements on 80 column cards are merged with
statements on special DGC mark sense cards.

CHAIN
runs a separate program when the
CHAIN statement is encountered in your
program.

Format
CHAIN "filename" [THEN GOTO line no.]

Arguments
filename is a string variable or string literal that
evaluates to a disk filename or a device.

line no. is a line number in program filename.

Remarks
1. When BASIC encounters a CHAIN statement in a

program, it stops execution of that program,
retrieves the program named in the CHAIN
statement from the specified device or file, and
begins execution of the CH AINed program.

2. If the program is on disk, the system searches your
directory for filename; if not found, the system will
search the library disk directory.

3. If filename is found, BASIC clears your current
program from memory and loads filename into
memory. If filename is not found, your current
program remains in memory, and an error message
occurs.

4. CHAIN does not change the status of files. Open
files remain open, and current file position pointers
are maintained.

5. A program must be in core image format before it
can be CHAINed, and may have been partially
executed before it was SAVEd.

6. By default, all variables are cleared from the new
program, and it is run from the lowest numbered
statement. If CHAIN THEN GOTO line no. is used,
variables in the main program maintain the values
they had when the program was SAVEd, and the
program is run from line no. If line no. doesn't exist
in the new program, the new program is loaded but
an error message occurs.

Examples
0010 READ A
0020 IF A > 5 THEN GOTO 0060
0030 IF A = 5 THEN GOTO 0070
0040 DATA 4.1.6,3.5
0050 GOTO 0010
0060 CHAIN "SERVICE"
0070 CHAIN "SUBR '' THEN GOTO 0050

AOS V
RDOS V
DOS V

3-4 Licensed Material-Property of Data General Corporation 093-000065-08

AOS V
RDOS
DOS

CHAR
changes or prints a report of the current
device characteristics.

Format

CHAR

"ON"
"OFF"

characteristics'
\"LPP", svar

'CPL svar
I "device"

'ON"
'OFF"
'characteristics'
'LPP'svar
'CPL svar

"device"

Arguments
svar is a string variable or string literal which
represents a numeric value.

device is the name of a terminal expressed as a string
variable or string literal.

characteristics is a device characteristic, expressed as a
string variable or string literal. See Remarks for a list of
device characteristics.

Remarks
1. If you type the CHAR command without a list of

arguments, BASIC prints a report listing the
current device characteristics on your terminal.

2. The ON and OFF arguments apply only to
characteristics arguments and do not apply to device,
LPP, or CPL arguments.

J. When you use the CHAR command, the keyword
CWis in effect until BASIC encounters the keyword
OFF. OFF then remains in effect until BASIC
encounters ON.

4. Available device names include the following:

40101 (Infoton) 4010A
6012 6040
6052 6053

5. The CHAR command only changes the device
characteristics specified in the command. It does
not replace the existing device characteristics.

6. LPP sets lines per page; CPL sets characters per
line.

7. The MOD characteristic (device on a modem line)
cannot be set on or off with the CHAR command;
it is displayed for your information only.

8. The device characteristics which you can turn ON
or OFF are listed below. Not all characteristics apply
to all devices.

ST simulate tab settings (eight columns).
SFF simulate form feed.
EPI require even parity on input.
WRP device wraps around when line too long.
SPO set even parity on output.
RAF send 21 rubouts after each form feed.
RAT send 10 rubouts after each tab.
RAC send 10 rubouts after each carriage return or

new-line.
NAS device is non-ANSI standard.
OTT old TTY: convert 175 and 176 to 33 octal.
EOL do not execute automatic carriage return -

line feed if CPL is exceeded.
UCO convert lowercase output to uppercase.
LT output 55 nulls upon open and close.
FF output a form feed upon open.
EBO echo all characters.
EB1 echo all characters except control characters.
ULC input both upper- and lowercase.
PM device is in page mode.
NRM disable message reception via 7SEND.
TO timeouts enabled on reads and writes.
TSP no trailing blank suppression (card reader).
PBN packed format on binary read (card reader).
ESC ESC character produces an interrupt.

Examples

*CHAR)
CRT2 LPP24CPL 80
ON ST EPI NAS EBO ESC
OFF SFF SPO RAF RAT RAC OTT EOL UCOLTFFEBI ULC PM NRM MOD TU TSP PBN WRP
•CHAR "OFF","ST")
•CHAR)
CRT2 LPP24CPL 80
ON EPI NAS EBO ESC
OFF ST SFF SPO RAF RAT RAC OTT EOL UCOLTFFEBI ULC PM NRM TO MOD TSPPBN WRP

093-000065-08 Licensed Material-Property of Data General Corporation 3-5

AOS
RDOS \
DOS V

CHAR
changes or prints a report of the current
device characteristics.

Format

CHAR
["ON"
"OFF"

("characteristics"

[O N "
'"OFF"
[' 'characteristics'

Arguments

characteristics is a device characteristic, expressed as a
string variable or string literal. See Remarks for a list of
device characteristics.

Remarks

1. If you type the CHAR command without a list of
arguments, BASIC prints a report which lists its
current characteristics on your terminal.

2. When you use the CHAR command, the keyword
0.\ is in effect until BASIC encounters the keyword
OFF. OFF remains in effect until ON is
encountered.

3. The CHAR command only changes the device
characteristics specified in the command. It does
not replace the existing device characteristics.

4. The device characteristics which you can turn ON
or OFF are listed below.

NCR
DSP
DLC
XON

DNF
NOE
BSP
DTS
ESC
NRM

no carriage return echo,
disable spooling.
disable line feed after carriage return.
XON/XOF protocall for $TTR (only on
multiplexor terminals).
disable 20 nulls after form feed.
no echo of input.
backspace for rubout.
disable tab simulation.
escape character produces interrupt.
disable message reception from other
users.

5. The MOD characteristic (device on a modem line)
cannot be set on or off with the CHAR command;
it is displayed for your information only.

6. For the CLI system console, the NCR, DLC, DNF,
and DTS characteristics are valid only in input
mode.

Examples
*CHAR)
ON XON ESC
OFF NCR DSP DLC DNF NOE BSP MOD DTS NRM

*CHAR "ON'V'BSP")
•CHAR)
ON XON BSP ESC
OFF NCR DSP DLC DNF NOE MOD DTS NRM

3-6
Licensed Material-Property of Data General Corporation

093-000065-08

AOS
RDOS V
DOS V

C V

CHATR
changes, adds, or removes the resolution
file attributes assigned to a file which
already exists in your directory.

Format
CHATR "filename", attributes

Arguments
filename is a disk file in your directory, expressed as a
string literal or string variable.

attributes are file attributes described under Remarks.

Remarks
1. Attributes which can be set by the BASIC CHATR

command are compatible with those of the RDOS
CHATR command.

2. File attributes may be strung together in the
attributes argument without delimiting spaces or
punctuation, and may be expressed as a string
literal or string variable.

3. The attributes given in the BASIC CHATR
command replace existing attributes, unless you
specify otherwise.

4. Any attempt to CHATR an open file will generate
an error condition.

5. The attributes which may be added or removed by
the BASIC CHATR command are:

P Permanent file. The file filename cannot be
deleted or renamed after you assign this
attribute.

R Read-protected. The file filename cannot be
accessed for reading.

W Write-protected. The file filename cannot be
altered.

H Sharable. The file filename may be accessed by
other users if they know the directory and
filename. The file is permanent (P) and
write-protected (W).

O Sharable. The file filename may be accessed by
other users if they know the directory and
filename. The file is not permanent (P) or
write-protected (W) and, therefore, may be
deleted, written into, or renamed by other
users.

E Execute only. Other users may execute the
BASIC program contained in filename, but they
cannot examine the program source
statements. Commands such as the LIST or
SAVE commands will result in an error
message.

0 Zero. Removes current file attributes. When 0
is listed with other attributes in a CHATR
command, the attributes listed replace existing
attributes.

•
Asterisk. Preserve current file attributes and
add those specified. The asterisk may only be
used in conjunction with other attributes in the
argument.

+ Plus. Preserve current file attributes and add
those following the plus sign.

- Minus. Only those attributes following the
minus sign are removed.

Examples
*WHATS "TESTFILE")
TESTFILE. D 260
*CHATR "TESTFILE","WP")
•WHATS "TESTFILE")
TESTFILE. WPD 260

093-000065-08 Licensed Material-Property of Data General Corporation 3-7

AOS V
RDOS
DOS

CLI
provides access to the CLI without
terminating the BASIC process.

Format
CLI [command]

Arguments
command is any valid CLI command.

Remarks
1. If you execute a CLI command, the BASIC process

is temporarily suspended until the CLI command is
completed.

2. The CLI command, without a command argument,
allows you to remain in the CLI. To return to
BASIC, type: BYE)

Examples
*CLI)
(TIME)
13:25:12
(DUMP @MT0:O-.SR)
(BYE)
*CLI TIME)
13:26:25

CON
continues the execution of a program
after a STOP statement in the program
has been executed, the ESCape key has
been pressed, or an error has occurred.

Format
CON

Remarks
1. The CON command causes the continuation of the

program from the point where it stopped.

2. If a runtime error is encountered within the
program, you may correct the error and issue the
CON command to begin execution from the
statement following the one in which the error
occurred.

Examples
•LIST)
0010 PRINT-'PRINCIPAL 1NT(%)
0020 PRINT "TERM(YRS) TOTAL"
0030 READ P, I, T
0035 IF T=0 THEN GO TO 0080
0040 LETA=P*(1 +1/100) | T
0050 PRINTP: TAB(12);I;
0055 PRINTTAB(21):T; TAB(32);A
0060 GOTO 0030
0070 DATA 1000,5,10,0,0,0
0080 PRINT
0090 PRINT "CHANGE DATA AT LINE 70"
0100 STOP
0110 GOTO 0010
•RUN)
PRINCIPAL INT(%) TERM(YRS) TOTAL
1000 5 10 1628.8946

CHANGE DA TA A TLINE 70

STOP AT 0100
*70 DATA 2500,3,10,1459,6,12,0,0,0)
•CON)
PRINCIPAL INTO/,) TERM(YRS) TOTAL
2500 3 10 3359.7909
1459 6 12 2935.7947

CHA NGE DA TA AT LINE 70

STOP AT 0100

AOS V
RDOS V
DOS V

3-8 Licensed Material-Property of Data General Corporation 093-000065-08

AOS V
RDOS V
DOS V

s V
c
F

DATA
provides values for variables specified in
a READ statement.

AOS V
RDOS V
DOS V

DELAY
delays program execution for a specified
amount of time.

Format

DATA
(val \ (,val 1
("strlit'j y,"strlit"f

Arguments
val and str lit are elements that can form a list of
numeric values and string literals.

Remarks
1. You can use more than one DATA statement in a

program.

2. The DATA statement is a nonexecutable
statement. The values appearing in a DATA
statement or statements form a single list. The first
element of this list is the first item in the lowest
numbered DATA statement. The last item in this
list is the last item in the highest numbered DATA
statement.

3. Both numbers and string literals may appear in a
DATA statement and each value in the DATA
statement list must be separated from the next
value by a comma.

4. String literals must be enclosed in quotes.

Examples
0100 DATA 1, 17, "AB.CD", -1.3E-13

(See the READ and MAT READ statements for usage
and additional examples.)

Format
DELAY = expr

Arguments
expr is a numeric expression which represents time in
seconds to the nearest tenth of a second.

Remarks
1. You can use DELAY to postpone program

execution on an error condition before attempting a
RETRY.

2. In AOS, the maximum number for expr is
approximately 4,000,000. In RDOS and DOS, the
maximum is approximately 65,000.

Examples
0005 ON ERR THEN 100
0010 OPEN FILE (0,2), "TH/SF/LE"
0020 LET 1 = 0

0100 IF SYS (7) < > -48 THEN 200
(Is anyone else using this file?)
0105 1 = 1 + 1
0110 IF I > 10 THEN GOTO 200
(Allows 10 RETRY attempts.)
0120 DELAY =10
(One second DELAY before RETRY.)
0125 RETRY
(Returns to statement which caused error.)
0200 STOP

093-000065-08 Licensed Material-Property of Data General Corporation 3-9

AOS V
RDOS V
DOS V

s V
c V
F

DELETE
removes a file from your directory.

Format

DELETE "filename"

Arguments

filename is a file in your directory expressed as a string
literal or string variable that is not protected (see

Remarks

1. After the DELETE command, BASIC searches
your directory and deletes the directory entry for
filename.

2. An error message is returned if the file cannot be
found, is delete-protected, or is not in your
directory.

Examples

•DELETE "TEST.SR")
*

BASIC removes file TEST.SR from your directory and
frees the disk blocks which it occupied.

3-10
Licensed Material-Property of Data General Corporation

093-000065-08

AOS >1
RDOS V
DOS V

DIM
defines the size of one or more numeric
variable arrays.

Format

!

svar (n) i
array (m)
array (row,col)' (,svar(n) |

, array (m)
,array (row,col) J

Arguments
array is a BASIC numeric variable name.

m is an expression for the number of elements in a
one-dimensional array.

row is an expression for the number of rows in the
array.

col is an expression for the number of columns in the
array.

n is the maximum string length.

Remarks
1. Array Elements

The concept of arrays is described in Chapter 2. The
DIM statement declares the size of an array to be a
number of elements other than the default number
(10) for each dimension. For example:

•10 DIM A(13),B(7,7),C(20,5))

The initial value of all elements in an array is zero
until your program assigns other values.

Any variable or expression that you use for a
subscript must have a value between 1 and the
value given in the DIM statement. For example:

*01 DIM A (5,5))
*05 X = 2)
*10 PRINT A(1,X)2))

If the variable or expression subscript does not
evaluate to an integer, BASIC will convert it to an
integer using the INT function (see Chapter 4).

If a subscript evaluates to a larger integer than the
upper bound of the dimension for the array or
smaller than 1, a subscript error condition occurs.

2. Redimensioning Arrays

You can redimension a previously defined array
during execution of a program by declaring the
array in another DIM statement. The total number
of elements of the newly dimensioned array must
not exceed the original total number of elements.

*100 DIM A(3,3))

*200 DIM A(2,3))

*300 DIM A(2,2))

BASIC reassigns the values of elements in array
A(3,3) to elements in array A(2,3) and then to
elements in array A(2,2) as follows:

1 2 3 1 2 3 1 2

4 5 6 4 5 6 3 4

7 8 9

A(1,1) = 1 A (1,1) = = 1 A (1,1)
A(l,2) = 2 AO,2) = = 2 A(l,2)
A(l,3) = 3 A(l,3) = = 3 A (2,1)
A(2,1) = 4 A(2,1) = = 4 A(2,2)
A(2,2) = 5 A(2,2) = = 5
A(2,3) = 6 A(2,3) = = 6
A(3,1) = 7
A(3,2) = 8
A(3,3) = 9

3. For a discussion on the dimensioning of strings,
please refer to Chapter 2.

093-000065-08 Licensed Material-Property of Data General Corporation 3-11

AOS V
RDOS V
DOS V

DISK
determines the number of 256-word
blocks still available in the partition in
which your directory resides.

Format
DISK

Examples
DISK)

USED: 332
LEFT: 193

This message indicates that 193 out of 525 blocks are
still available for use.

END

AOS V
RDOS V
DOS V

s V
c
F

terminates execution of the program and
returns to interactive mode.

Format
END

Remarks

1. Data General's Extended BASIC does not require
an END statement to declare the physical end of a
program. If a control passes through the last
executable statement of the program and if that
statement does not change the flow of control (as
with a GOTO or GOSUB statement), then the
program will transfer control to interactive mode
We have included the END statement for
compatibility with BASIC programs written for
other systems.

2. Multiple END statements may appear in the same
program. When an END statement is encountered
it will terminate execution of the program followed
by a prompt at your terminal.

3. If an END statement is executed before a
FOR/NEXT termiftating condition is reached an
error message will be printed.

Examples
*20 PRINT "PROGRAM DONE")
*30 GOTO 60)

*60 END)
•RUN)
PROGRAM DONE

END AT 0060

3-12
Licensed Material-Property ot Data General Corporation

093-000065-08

AOS V
RDOS V
DOS \

ENTER
transfers and merges BASIC statement
lines from filename into your current
program storage area.

Format
ENTER ("filename")

(svar)

Arguments
filename is a device or disk file, expressed as a string
literal.

svar is a string variable representing filename.

Remarks
1. If filename is a disk file, BASIC searches for

filename in your directory first. If not found, BASIC
searches the library directory for filename.

2. When a statement line from an ENTERed filename
has the same statement number as a line in the
current program, the ENTERed statement replaces
the current program statement.

3. ENTER does not restore data statments even
though some may exist in the ENTERed program.
If a RESTORE is desired, it must be explicitly
coded.

Examples
•NEW)
•ENTER "TEST1.SR")
•ENTER "TEST2.SR")
•LIST "FINAL.SR")

Your storage area is cleared and source programs
TEST1.SR and TEST2.SR are ENTERed and merged.
The resultant program is LISTed to your directory as
FINAL.SR.

AOS V
RDOS V
DOS V

ERASE
removes statements from a program.

Format
ERASE n1, n2

Arguments
n1 and n2 are line numbers in a program.

Remarks
1. This command removes n1 through n2, inclusively,

from your program. ERASE simplifies editing by
allowing you to delete more than one line at a time.

2. Typically, you use the ERASE statement in a
program to clear a range of statements for
replacement with the ENTER command, or to
remove initialization code which is not needed
during execution.

3. If no lines exist in your program in the range n1 to
n2, BASIC outputs an error message to your
terminal. If nl and/or n2 don't exist but there are
lines in your program between n1 and n2, those
lines are erased.

4. Both line number arguments are necessary.

5. The RENUMBER command does not renumber
the arguments to the ERASE statement, since they
most often refer to fixed statement numbers in an
external program file. If you RENUMBER a
program, make certain you change any ERASE
statements in the program to agree with the new
line numbers.

Examples
•10 ERASE 1500, 1900)
(Delete lines 1500 through 1900.)

*20 ERASE 200, 200)
(Delete line 200.)

093-000065-08 Licensed Material-Property of Data General Corporation 3-13

AOS V
RDOS
DOS

AOS
RDOS V

DOS V

FILE
prints all the filenames in your directory
that match the template.

Format
FILE ["template"]

Arguments

template is any combination of up to 15 valid
characters, including asterisk (*), dash (-), and plus
sign (+), in accordance with AOS template rules. You
must express the template as a string literal or string
variable.

Remarks

1. If you omit the template argument, then BASIC
prints a list of all files in the directory.

2. The following information follows each filename
printed:

• the type of file
• the date last modified
• the time last modified
• the size of the file (in bytes)

Examples
"FILE
PAGE2.2 UDF ll-MAR-77 11:17:48 78
•FILE "-.SR)
"FILE "-.2")
PAGE2.2 UDF ll-MAR-77 11:17:48 78
*A$ = "-.2")
"FILE A$)
PAGE2.2 UDF ll-MAR-77 11:17:48 78
*

FILE
prints all filenames in your directory.

Format
FILE

Remarks

BASIC prints one filename per print zone.

Examples
•FILE)
157. 134.
STOP.SR 121.
ON.ES READ.SR
TIME. FOR1.SR
MORSE. 110.SR
113. TAB.SR
COM. CM CON.
TAB. SUBSTRINGS.
115. GOTO.
PAGE. HELLO.SV
PR1NT2.SR 109B.
PR1NT4.SR 92.
107. 117.
*

GOSUB1.SR
NEW.
116.
FOR2.SR
FOR4.SR
132A.
110.
CONCA T.
111A.
PRINTI.SR
PRINT3.SR
1NPUT2.SR
1F3.

3-14 Licensed Material-Property of Data General Corporation
093-000065-08

AOS V
RDOS V
DOS V

s V
c
F

FOR and NEXT
execute a block of statements a specified
number of times.

Format

FOR control var = expr1 TO expr2 [STEPexpr3]

(Block of statements)

NEXT control var

Arguments
control var is a nonsubscripted numeric variable.

exprl is a numeric expression which defines the initial
(first) value of control var.

expr2 is a numeric expression which defines the
limiting value of control var.

expr3 is a numeric expression which defines the
increment added to control var each time the loop is
executed.

(Block of statements) are any statements which may
also contain FOR - NEXT loops.

Remarks

General

1. A program loop begins with a FOR statement which
provides the specifications for repetition, a block of
statements which BASIC executes during each
repetition of the program loop, and a NEXT
statement which denotes the end of the loop.

FOR statement
(Block of statements)
NEXT statement

2. The initial, limiting, and incremental values for
control var determine the number of times the
statements contained in a FOR - NEXT loop are to
be executed. The loop is repeated until the value of
the control var meets the termination condition.

Rules

1. Every FOR or NEXT statement must have a
matching NEXT or FOR statement or an error
message is printed. If a NEXT statement is
executed without the corresponding FOR
statement, and vice-versa, an error will occur.

2. control var must not be subscripted.

3. Expressions exprl, expr2, and expr3 may have
positive or negative values and expr3 must not be
zero.

If you omit STEP expr3 from the FOR statement,
then expr3 is assumed to be 1.

4. The termination condition for a FOR - NEXT loop
depends on the values of exprl and expr3. The loop
terminates if: expr3 is positive and the next value of
control var is greater than expr2; expr3 is negative
and the next value of control var is less than expr2.

If the value of exprl (the initial value) meets the
termination condition, then the loop is not
performed even once. (See example 3.)

5. When the termination condition is met, the loop is
exited; control var equals the first value not used in
the loop.

6. Branching in and out of a FOR/NEXT loop is
possible, but if you enter a loop at any point other
than a FOR statement, upon encountering the
corresponding NEXT statement an error will occur.

Program Loop Operation

1. The expressions exprl, expr2, and expr3 are
evaluated. If you omit expr3, it is assumed to be 1.

2. The control var is set to the value of exprl.

3. If expr3 is positive and control var is greater than
expr2, then the termination condition is satisfied
and control passes to the statement following the
corresponding NEXT statement. The value of
control var then equals the first value not used in
the loop; i.e., control var + expr3.

If expr3 is negative and control var is less than
expr2, then the termination condition is satisfied
and control passes to the statement following the
corresponding NEXT statement. The value of
control var then equals the first value not used in
the loop; i.e., control var + expr3.

093-000065-08 Licensed Material-Property of Data General Corporation 3-15

FOR and NEXT (continued)
steps™'56' the SyStem performs the following

4 m c v t ufX?CUteS the statements in the FOR -
inlx J block.

5. When the corresponding NEXT statement is
executed, control var is set to the value of control
var + expr3.

6. Repeat step 3 (control passes to FOR statement).

Nesting Loops

You can nest FOR - NEXT loops to a depth specified by
your system manager. The FOR statement and its
terminating NEXT statement must be completely
contained within the loop in which it is nested.

Legal Nesting Illegal Nesting

("FOR X = .
r FOR Y =
l-NEXT X
NEXT Y

— FOR X = ..
•FOR Y =

r—FOR Z = .
LNEXTZ
—NEXT Y

NEXT X

Examples
1. "LIST)

0010 FOR 1 = 1 TO 9
0020 NEXT!
0030 PRINT 1
"RUN)
10
I (control var) equals first value not used in the loop.

END AT 0030

AOS
RDOS V

DOS V

CDIR
prints the name of your directory.

Format
GDIR

Remarks
1.

2.

The knowledge of your directory name will be
useful to other programmers who wish to create a
link to any of your files which are CHATRed
sharable (O).

fVnmC,tn ru'e filfS t0 y°Ur own directory, read files
from the library directory BASIC.DR, and read files

attribute (0)directories which have the sharable

Examples
"GDIR)
JOE
All of your file references are to directory JOE.

3.

"LIST)
0040 FOR J=1 TO 9STEP3
0050 NEXT J
0060 PRINT J
"RUN)

EN DAT0060
* 1 0

Final value of J when terminating value (expr2) was
exceeded.

"LIST)
0010 FOR 1=1 TO 3STEP-1

S nexti"SHOIJLDN0TENTERHERR"
0040 PRINT 1
"RUN)
1

END AT 0040

3-16
Licensed Material-Property of Data General Corporation

093-000065-08

AOS V
RDOS V
DOS 4

GOSUBand RETURN
GOSUB directs program control to the
first statement of a subroutine. RETURN
exits the subroutine and returns program
control to the next statement following
the GOSUB statement.

Format
GOSUB line no.

RETURN

Arguments
line no. is a program line number.

Remarks
1. A subroutine is a group of program statements

which is entered via the GOSUB statement and
exited via the RETURN statement. Instead of
repeating the statements each time they are
required, you write the statements into the
program only once and access them by GOSUB
statements. The RETURN statement returns
control to the statement following the last executed
GOSUB statement. In this manner, the program
continues at the appropriate place after the
subroutine has been executed.

2. A subroutine must always be entered by using a
GOSUB statement. Otherwise, the RETURN-NO
GOSUB error message is printed when the
RETURN statement is executed.

3. You may use more than one RETURN statement
in a subroutine if program logic requires the
subroutine to terminate at one of a number of
different places.

4. Although a subroutine may appear anywhere in a
program, it is good practice to place the subroutine
distinctly separate from the main program. To
prevent inadvertant entry to the subroutine by
other than a GOSUB statement, the subroutine
should be preceded by a STOP statement or GOTO
statement which directs control to a line number
following the subroutine.

5. Subroutines may be nested to a depth specified by
your system manager. Nesting occurs when a
subroutine is called during the execution of a
subroutine. Upon execution of the first RETURN
statement, control passes to the statement
immediately following the last executed GOSUB
statement. The next RETURN statement causes
control to pass to the next to last executed GOSUB
statement, and so on.

Examples
1. "LIST)

0010 LET A =6
0020 GOSUB 0100
0030 LET A = 10
0040 GOSUB 0100
0050 STOP
0100 FOR 1 = 1 TO A STEP 2
0110 PR1NTI;
0120 NEXT1
0130 PRINT
0140 RETURN
•RUN)
1 3 5
1 3 5 7 9

STOP AT 0050

2. 'LIST)
0010 GOSUB 0040
0020 PRINT •'EXAMPLE";
0030 STOP
0040 PRINT "NEST";
0050 GOSUB 0080
0060 PRINT "INE ";
00 70 RETURN
0080 PRINT "ED ";
0090 GOSUB 0120
0100 PRINT "ROUT";
0110 RETURN
0120 PRINT "SUB ";
0130 RETURN
•RUN)
NESTED SUBROUTINE EXAMPLE
STOP AT 0030

093-000065-08 Licensed Material-Property of Data General Corporation 3-17

AOS V
RDOS V
DOS V

GOTO
unconditionally transfers control to the
statement with the specified line
number.

Format

GOTO line no.

Arguments

line no. is a program statement line number.

Remarks

1. If control passes to an executable statement, that
statement and those following are executed.

2. If control passes to a nonexecutable statement
(e.g., DATA), program execution continues at the
first executable statement which follows the
nonexecutable statement.

3. If line no. is not a line number in the program, an
error will occur.

HELP
displays information about each BASIC
statement and command.

Format
HELP "verb"

Arguments
verb is the name of a statement, command, or
function expressed as a string literal or string variable.

Examples
•HELP"DATA")

DATA TO PROVIDE VALUES FOR VARIABLES
SPECIFIED IN A [MA T]READ STA TEMENT.

Remarks

HELP "HELP" will display a list of all statements,
commands, and functions that you can use for verb in a
HELP statement or command.

AOS •S
RDOS V
DOS V

Examples
•LIST)
0010 READX
0020 PRINTX
0030 GOTO 0010
0040 DATA 1,2,3,4,5
0050 DATA 20,21,23
0060 END
•RUN)
1
2
3
4
5
20
21
23
ERROR 15 AT 0010- END OF DA TA

3-18 Licensed Material-Property of Data General Corporation 093-000065-08

AOS V
RDOS V
DOS V

IF --THEN
executes a statement on the basis of
whether an expression or a relational
expression is true or false.

Format
(rel-expr) ([THEN] statement)
(expr j |THEN line no. j

Arguments
rel-expr is a relational expression as defined
previously in Chapter 2.

expr is a numeric expression.

statement is any BASIC statement except FOR,
NEXT, DEF, END, DATA, and REM.

Remarks
1. BASIC evaluates the relational expression,

rel-expr. If it is true, then BASIC executes
statement following the optional THEN or transfers
control to line no. following the required THEN. If
the expression is false, program execution
continues at the next statement after the
IF-THEN statement.

2. You can use a numeric expression (expr) instead of
a relational expression (rel-expr). The numeric
expression is considered false if it has a value of 0
and is true if it has a nonzero value.

NOTE: Since the internal representation of
noninteger numbers, as described in Chapter
2, may not be exact (for example, .2 cannot
be exactly represented), it is advisable to test
for a range of values when testing for a
noninteger. For example, if the result of a
computation, A, was to be 1.0, then a reliable
test for 1 is:

IF ABS (A-1.0) < 1 .OE-6 THEN...

If this test succeeds, then A is equal to 1
within 1 part in 1016. This is approximately
the accuracy of single-precision floating point
calculations.

*05 IF A = BTHEN 100)
*10 IF A = B THEN GOTO 1 00)
*20 IFA = BGOTO 100)
*30 IFA-B < = 5 THEN C = 0)
*40 IF A*B < 50 THEN GOSUB 300)
*50 IF AjB > 100 GOSUB 400)

Lines 5, 10, and 20 are equivalent variations of the
IF-THEN statement.

Examples
*LIST)
0005 REM-START
0010 LET N = 10
0020 INPUT "X= ",X
0030 IFX THEN GOTO 0050
0040 GOTO 0100
0050 IFX > =N THEN GOTO 0080
0060 PRINT X, "X IS LESS THAN 10"
0070 GOTO 0020
0080 PRINT X, "X IS GREATER OR EQUAL TO 10"
0090 GOTO 0020
0100 PRINTX, "X=0"
0110 END
•RUN)
Y = 5
5 X IS LESS THAN 10
J= 7
7 X IS LESS THAN 10
X= 12
12 XIS GREA TER OR EQUAL TO 10
X= 10
10 X IS GREA TER OR EQUAL TO 10
X= 0
0 X=0

END AT 0110

Note the nested IF statement in the following example.

•LIST)
0010 LETX = 5
0030 IFX=5 THEN IF AS = "C" THEN PRINT "C"
0040 END
•RUN)
C

END AT 0040

093-000065-08 Licensed Material-Property of Data General Corporation 3-19

AOS V
RDOS V

DOS V

s V
c V
F

INPUT
requests data from your terminal and
assigns the values you supply to a list of
variables.

Format

INPUT ...A

Arguments

var and svar are numeric and string variables
separated by commas.

sir lit is a message or prompt.

Remarks

1. You can use the INPUT statement to enter
numeric data, string data, or both to a program.

2. When an INPUT statement is executed, a question
mark is output as an initial prompt unless the
INPUT statement contains the str lit option. Then
the str lit is output as an initial prompt.

3. You respond by typing a list of data, separating each
datum from the next by a comma or a carriage
return. The list is terminated with a carriage return.

4. If you terminate the data list with a carriage return
before a value has been supplied for each variable
in the INPUT statement, then a question mark will
be output as a prompt, indicating that you must
supply more data.

5. The data that you input in response to the prompt
must be of the same type (numeric or string) as the
variable in the INPUT statement list for which the
data is being supplied. Variables in the INPUT
statement list may be subscripted array elements,
scalars, or strings.

6. If the data you input from the terminal does not
match the type of a variable in the INPUT
statement list, then a \? is output to the terminal
for the data in error.

7. If you terminate the INPUT statement variable list
with a semicolon, then the cursor is left following
the last input data item. Otherwise, a carriage
return-line feed is output. The optional semicolon
terminator has no function in an AOS system,
except to make the INPUT statement compatible in
syntax with that of its counterpart in an RDOS
system.

8. Numeric variables may include digits, plus and
minus signs, decimal points, and the letter E
(exponential notation).

9. If you use commas to delimit the data list and you
supply more items than there are variables in the
INPUT list, an error condition occurs. The values
you supplied will be assigned to the variables in the
list and the excess will be ignored.

Examples
1. "LIST)

0005 INPUTA,B,C,D,E
0010 PRINTA+B.C+D.D+E
•RUN)
? 1,2,3,4,5)
3 7 9

END AT 0010

2. •LIST)
0010 INPUT "A,B,C,D,E= \A,B.C,D,E
0020 PRINTA + B.C+D.D+E

•RUN)
A,B,C,D,E= 1,2) ? 3,4,5)
3 7 9

END AT 0020

3. 'LIST)
0010 INPUTA,B,C;
0020 PRINT-NORETURN"
•RUN)
? A) \ ? 1 , 2 , 3) N O R E T U R N

END AT 0020

3-20 Licensed Material-Property of Data General Corporation
093-000065-08

AOS V
RDOS V
DOS V

LET
evaluates expr and assigns the resultant
value to var or svar.

Format

[LET1 {svar} = expr

Arguments
var and svar are numeric or string variable names,

expr is an arithmetic or string expression.

Remarks
1. The mnemonic L£Tis optional.

2. The variable var or svar may be subscripted.

3. String expressions may be assigned to string
variables.

4. In AOS systems, more than one variable can be
assigned a value by using multiple LET, valid as
either a statement or a command. See line 40 in the
example.

Examples
*10 LET A = A+1)
(Variable A is assigned a value one greater than it was
before.)

*20 A(2,1) = B]2 + 10)
(The element in row 2, column 1 of array A is assigned
the value of expression BJ2 + 10.)

*30 A$=B$,C$)
(A$ is assigned the concatenated value of B$and C$.)

*40 LET A = B = C = 2)
(For AOS only.
Multiple LET assigns the value 2 to A, B and C.)

*50 LET A$ = B$ + C$)
(String arithmetic.)

093-000065-08 Licensed Material-Property of Data General Corporation 3-21

AOS V
RDOS
DOS

S V
c V
F

LIBRARY
prints the filenames in the directory
specified that match the template.

Format

LIBRARY
' 'directory'' 'template'

I' 'directory
["template"

Arguments
directory is any legal directory pathname starting from
the root (:),
variable.

expressed as a string literal or string

template is any combination of up to 15 valid
characters, including asterisk (*), dash (-), and plus
sign (+), in accordance with AOS template rules. The
template must be expressed as a string literal or string
variable.

Remarks
1. If you omit both the directory and template

options, then BASIC will print a list of all files in the
BASIC library directory (:BASIC).

2. If you omit the directory option and specify a
template, BASIC will print a list of all files in the
library directory that match the template.

3. If you omit the template option and specify a
directory, BASIC will print a list of all files in the
directory specified.

4. BASIC provides the following information with
each filename printed:

• the type of file
• the date last modified
• the time last modified
• the size of the file (in bvtes)

Examples

"DIM A$(30))
*A$ = ":UDD:XBASIC")
•LIBRARY A$,"-TAPE-.CLI")
ROOMTAPE.CL1 TXT ll-APR-77 07:29:06 263
RELEASETAPE0100.CLI

TXT ll-APR-77 07:28:36 368
ROOMTAPEOIOO.CLI TXT ll-APR-77 07:29:44 407
*

*A$ = ":UDD:XBASIC:DUDLEY")
•LIBRARY A$)
HOBURG UDF 05-APR-77 08:51:42 106532
MARATHON.BASIC UDF 19-FEB-77 15:14:36 1942

3-22 Licensed Material-Property of Data General Corporation 093-000065-08

AOS
RDOS V
DOS V

LIBRARY
prints all filenames in the library
directory.

Format
L IBRARY

Remarks
One filename is printed per print zone.

Examples
•L IBRARY)
AI.
BACKGAMMON
CASINO.SR
COMPILER.SR
BANK.SR
KILLER. MS
SNOOPY.SR
TESTE
BATNUM.SR
FISCAL.SR
FISCAL.BT

SHOT.SR
SUPERGUESS
SWAP.SV
FCOM.CM
FOOTBALL.SR
K2.
GUESS.SR
HORSERACE.SR
HEMAN.SR
HELLO.SR

SQRT.SR
STOCKS.SR
SNOOP.
BLACKJACK.SR
BILLBOARD.SR
MAT.SR
QUEEN.SR
LUNAR.SR
SHOT1.SR
HELLO.SV

093-000065-08 Licensed Material-Property of Data General Corporation 3-23

AOS V
RDOS V

DOS V

LIST
outputs part or all of your current
program in ASCII to the disk file or
device specified by filename, or to your
terminal if filename is not specified.

Format

LIST

line n2

["filename"]

Arguments
linen1 is the first statement to be listed.

line n2 is the last statement to be listed.

filename is a disk file or device expressed as a string
literal.

Remarks
1. You can use the LIST command in the following

four ways:

LIST)

LIST n1)

LIST

LIST

n2) n
2)

List the entire program from
the lowest numbered
statement.

List only the single statement
at line number n1.

List from the lowest numbered
line through line number n2.

List from line numbers n1
through line number n2.

2. When you include the filename argument, the LIST
command writes the specified lines to the disk file
or device called filename in ASCII format.

3 If filename is a disk file that already exists in your
directory, BASIC will print the message:

TYPECR TO DELETE (RDOS/DOS)

TYPE NL TO DELETE (AOS)

This message lets you confirm whether or not you
would like to delete the existing filename and
replace the file with the lines you specified in the
LIST command. If you type a carriage return
(new-line), BASIC accepts the replacement. 1 ype
anything preceding the carriage return (new-line),
and you cancel your LIST command.

4. The file created by the LIST command can be read
back into the program storage area by the EM LK
or NEW commands.

Examples
*LIST)

Lists your current program on your terminal.

•LIST "$LPT")

Outputs your current program to the line printer.

•LIST 20)

Lists line number 20 on your terminal.

•LIST 700,9999)

Lists line numbers 700 through 9999 at the terminal.

•LIST "TEST.SR")

Outputs your current program in ASCII to your
directory with the filename, TEST.SR, and replaces any
previous file with that name, provided you respond
with a) to the confirmation prompt.

•LIST 100, 200 "TEMP")

Lists line numbers 100 through 200 to disk file TEMP;
TEMP replaces any previous file of that name, provided
you respond with a) to the confirmation prompt.

3-24 Licensed Material-Property of Data General Corporation 093-000065-08

AOS V

RDOS V
DOS V

LOAD
loads a program into your program
storage area that was previously SAVEd
in core image format.

Format
LOAD "filename"

Arguments
filename is the name of a core image file created by a
previous SAVE command.

Remarks
1. The LOAD command executes an implicit NEW

command (clearing the storage area) and then
reads filename into core.

2. filename may be on disk or it may also be on a
binary input device such as the paper tape reader.

3. If filename is a disk file, a search is made for
filename in your directory first. If it is not found, a
search is made in the library directory for filename.

4. After you have LOADed filename, it can be
LISTed, modified, or RUN.

Examples
'LOAD "$PTR")
'LOAD "MATH3")
'LOAD "MT0:1")

LREAD
reads a string from the terminal,
terminated by either a null, form-feed, or
carriage return (new-line).

Format
LREAD ["strlit",] svar [,svar1]

Arguments
str lit is a message or prompt.

svar is a string variable which is assigned the value of
the string read from your terminal.

svar1 is a string variable which is assigned the value of
the delimiter for the string read. Valid delimiters are
null, form-feed, and carriage return (new-line).

Remarks
1. When BASIC executes an LREAD statement, it

outputs a question mark to your terminal as an
initial prompt, unless the LREAD statement
contains the str lit option; then it uses str lit as a
prompt.

2. The maximum string length allowed for svar is 133,
which includes the delimiter. If your response to
the LREAD prompt is longer than 133 characters,
the length of svar1 will be set to 0 and the value of
svar will be terminated at 133 characters.

3. If your response to the LREAD prompt is shorter
than 133 characters, then the length of svar1 is
equal to 1 and svar1 will contain the delimiter.

AOS V
RDOS V
DOS V

Examples
'LREAD A$,B$)
? ABCEDF
•PRINT A$)
ABCEDF
'PRINT B$)

093-000065-08 Licensed Material-Property of Data General Corporation 3-25

AOS V
RDOS V
DOS V

AOS V

RDOS
DOS

LWRITE
writes a string to your terminal.

Format

LWRITE svar [,svar']

Arguments

svar is a string variable whose value is written to your
terminal.

svar1 is a string variable which is the value of the
delimiter for the string written.

Remarks

1. If the argument list includes svar', and its length is
1, then BASIC assumes svar' is one of the valid
delimiters and outputs it as the string terminator.

2. If the length of svar' is 0, then no delimiter will be
output.

3. If the argument list does not include svar', then a
null will be output as the string terminator.

4. LWRITE allows direct output of control characters
to your terminal. For example, LWRITE does not
insert a line feed after a carriage return, and can be
made not to output extraneous string terminators.

Examples
*A$ = "ABCDEFGH")
*A1 $ = "")
•LWRITE A$,A1 $)
ABCDEFGH*
•LWRITE AS)
ABCDEFGH*

MSG
transmits a message from your terminal
to another programmer or to the system
operator.

Format
(pid

MSG \"processname"
("console name"

Arguments

pid is a process identification.

processname is a process name expressed as a string
literal or string variable.

console name is a console identification (e.g.,
@CON1).

message is the text of message, expressed as a string
variable or string literal.

Remarks

1. If a receiving programmer is not on line, then the
transmission will fail, and BASIC will print an error
message at your terminal.

2. If your transmission succeeds, then BASIC will
print the following at the receiving programmer's
terminal:

FROM PID XXX: message

where XXX is your pid number and message is the
text of your message.

3. Message length is limited to one line per MSG
command.

4. Quotation marks are necessary if you express
message as a string literal.

Examples
•MSG 11 ,"RSVP")
*

, message

3-26 Licensed Material-Property of Data General Corporation
093-000065-08

AOS
RDOS V
DOS V

MSG
transmits a message from your terminal
to another programmer or to the
operator.

Format
MS G us e r l D messag e

Arguments
us e r l D i s you r i de n t i f i c a t i on ,

message is the text of message.

Remarks
1. The system operator's userlD is: OPER

2. If a receiving programmer is not on line, the
transmission will not succeed and BASIC will print
an error message at your terminal.

3. If a receiving programmer has disabled message
reception by using the CHAR command with the
MSG argument, the transmission will not succeed
and BASIC will print an error message.

4. If your transmission succeeds, then BASIC will
print the following at the receiving programmer's
terminal:

FR OM sendersID: message

where sendersID is your identification and message
is the text of your message.

5. Message length is limited to one line per MSG
command.

6. Quotation marks are not necessary for message .

Examples
If userlD JACK types:

*MSG OPER MOU N T M Y CASSETTE-THANKS)

The master console receives:

FROM J A CK: MOUNT MY CASSETTE- THANKS

AOS V
RDOS V
DOS V

NEW
clears the program and variables
currently stored in your program storage
area and closes any open files.

Format
NEW ["filename"]

Arguments
filename is a string literal or string variable for a
SAVED file.

Remarks
1. You must clear your storage area with a NEW

command (or statement) before entering a new
program, to avoid intermixing lines from previous
programs with the new program.

2. If you make NEW an executable statement in a
program, the program will clear itself from memory
when NEW is executed, and no STOP or END
message will be issued.

3. You can combine the ON ESC or ON ERR
statements with NEW to prevent unauthorized
access to a program.

4. NEW closes any files left open by previously
executed programs.

5. The variation N EW "filename" is equivalent to the
following pair of statements (or commands):

NEW)
ENTER " F ILEN A ME")

The NEW command will clear your storage area
even if filename doesn't exist.

Examples
•L IST)
0100 READA,B,C,D
0110 LETE=A *23
0115 LETF=C*A
0120 PRINTE;F
0130 NEW
0135 DATA 1,2,3,4
•RUN)
233
•L IST)
ERROR 05 - LINE NUMBER

093-000065-08 Licensed Material-Property of Data General Corporation 3-27

AOS V

RDOS V

DOS V

ON ERR THEN
directs your program to an error handling
routine in your program instead of the
BASIC system error handler.

Format

Arguments

statement is any BASIC statement except those listed
under Remarks.

line no. is a program statement line number.

Remarks
1. The following BASIC statements cannot be used in

statement:

FOR
NEXT
DEF
END
DATA
REM

2. Normally, when a BASIC error occurs, any
operation in progress is interrupted, an error
message is printed at your terminal and the
terminal is placed in interactive mode. If an ON
ERR THEN statement is encountered during
execution of your program, any subsequent error
will cause the statement position of ON ERR
THEN statement to be executed, or will cause
control to be transferred to line no.

3. Place the ON ERR statement at the beginning of
your program if you want all system errors handled
by your error routine. Place the ON ERR statement
anywhere else in your program and your error
routine will be executed only for errors which occur
after the ON ERR statement is encountered.

4. If statement is a GOSUB then, after the subroutine
is Finished (RETURN), control passes back to the
statement following the one on which the error
occurred. A RETRY statement should not be used
in the body of the subroutine.

5. If statement is any statement other than STOP,
GOTO, or GOSUB, then the statement portion is
executed and program control passes back to the
statement following the one on which the error
occurred.

6. You can restore the normal handling of errors by
including the following statement in an appropriate
place in your program:

ON ERR THEN STOP

7. The keyword THEN is optional if a statement is
specified; it is required if you specify line no.

Examples
0010 ON ERR THEN GOTO 1000
0020 OPEN FILE (0,0), "X"
0030 ON ERR THEN STOP

1000 OPEN FILE (0,0), "Y"
1010 GOTO 30

3-28 Licensed Material-Property of Data General Corporation 093-000065-08

AOS V
RDOS V
DOS V

ON ESC THEN
directs your program to an ESCape
handling routine in your program instead
of the BASIC system ESCape handler.

Format
nwr,r /THEN line no. I
ON ESC \[THEN]statement/

Arguments
statement is any BASIC statement except those listed
under Remarks.

line no. is a program statement line number.

Remarks
1. The following BASIC statements cannot be used in

statement:

FOR
NEXT
DEF
END
DATA
REM

2. Normally, when the ESC key is pressed, any
operation in progress is interrupted and the
terminal is placed in interactive mode to wait for
your next command. If an ON ESC THEN
statement line is encountered during execution of a
program, pressing the ESC key will cause the
statement portion of ON ESC THEN statement to
be executed.

3. Place the ON ESC statement at the beginning of
your program if you want all ESCapes to be handled
by your own routine. Place the ON ESC statement
anywhere else in your program and your routine
will be executed only for ESCapes which occur after
the ON ESC statement is encountered.

4. If statement is a GOSUB then, after the subroutine
is finished (RETURN), control passes back to the
point of interruption.

5. Since ESC is not an error condition, the RETRY
statement should never be used in association with
an ON ESC statement.

6. If statement is any statement other than STOP,
GOTO, or GOSUB, then the statement portion is
executed and program control passes back to the
point of interruption.

7. You can restore the normal handling of ESCape by
including the following statement in an appropriate
place in your program:

ON ESC THEN STOP

8. The keyword THEN is optional if a statement is
specified; it is required if you specify line no.

Examples
0100 ON ESC THEN PRINTX, Y.Z

0140 PRINTX
0141 Y=Z

In this example, when you press the ESCape key during
program execution, control passes to the statement on
line 100 and the values of X, Y, and Z are printed. After
line 100 is executed, the program continues from the
point of interruption. Therefore, if line 140 had been
completed when ESC was pressed, line 100 would be
executed followed by line 141.

0010 ON ESC THEN GOSUB 0500
0020 DIM X(2500)
0021 LET A=0
0022 LET B=0
0023 LETC=0
0030 FOR 1=1 TO 2500
0040 LETX(I) =A 7 f 2+B*l+C
0050 NEXT I
0060 STOP
0500 PRINTI.X(I)
0510 INPUT "CONTINUE (0), NEW INPUT (1)",D
0520 IFD = 0THENRETURN
0530 INPUT "NEW VALUES FOR A,B,C = A.B.C
0540 RETURN

In this example, a RETURN from line number 520 or
540 positions you to the line after the last executed line
when the ESC key was pressed, not to line 20.

093-000065-08 Licensed Material-Property of Data General Corporation 3-29

AOS V
RDOS V
DOS V

s V
c
F

AOS V
RDOS %

DOS V
C V

ON-GOTO and ON-GOSUB
transfers control to one of several lines in
a program depending on the value of an
expression at the time the statement is
executed.

Format

ON expr ^qosUBJ line no' U'neno-] ••••

Arguments

expr is a numeric expression which is evaluated to an
integer.

line no. is a list of line numbers in the current program
whose positions in the argument list are numbered
from 1 through n.

Remarks

1. The expression expr is evaluated and if it is not an
integer, the fractional portion is ignored.

2. The program transfers control to the line number
whose position in the argument list corresponds to
the computed value of expr.

3. If expr evaluates to an integer that is greater than
the number of entries given in the argument list or
that is less than or equal to zero, the ON statement
is ignored and control passes to the next statement.

4. The ON-GOSUB statement must contain an
argument list whose entries are the first line of
subroutines within the current program.

Examples

*10 ON M-5 GOTO 500, 75, 1000)

If M-5 evaluates to 1, 2 or 3 then control passes to
statement 500, 75, or 1000, respectively. If M-5
evaluates to any other value, control passes to the next
statement in the program.

*10 ON (SGN(M-5) + 2) GOTO 100, 200, 300)

This statement is equivalent to the following three
statements.

*10 IF M-5<0THEN GOTO 100)
*20 IF M-5=0 THEN GOTO 200)
*30 IF M-5>0 THEN GOTO 300)

PAGE
sets the right margin of your terminal.

Format
PAGE = expr

Arguments
expr is an arithmetic expression evaluating to a
number between 15 and 132, inclusive, and not less
than the current TAB setting. For AOS systems, the
value of expr evaluates to a number between 8 and N,
where N can be as high as 255 depending on the
system.

Remarks
1. BASIC uses a default value of 80 as the maximum

line width.

2. Strings may be as large as 32767 bytes. However, if
a string is longer than the PAGE value it cannot be
printed and an error message is output. To examine
the entire string you must print substrings of
lengths smaller than or equal to the PAGE value.

Examples
•LIST)
0010 PAGE =30
0020 FOR 1 = 1 TO 25
0030 PR/NT/;
0040 NEXT1
*RUN)

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25
END AT 0040

3-30 Licensed Material-Property of Data General Corporation
093-000065-08

AOS V

RDOS V

DOS V

PRINT
performs print operations at your
terminal.

Format

(PRINTj

l svar
[expr
I "sirlit"

svar |
expr I
"sir lit" (

Arguments
; (semicolon) is a synonym for the keyword PRINT.

svar is a string variable.

expr is a numeric or string expression.

sir lit is a message or prompt.

Remarks
The following PRINT operations are possible:

1. Print the result of a computation.

2. Print verbatim the characters in a string literal or
string variable.

3. Print a combination of operations 1 and 2.

4. Print a blank line (skip a line).

Zone Spacing of Output

The print line on a terminal is divided into print zones.
The width of a print zone is determined by the TAB
statement. The default value for TAB is 14 and is used
in the following examples. The first column on a line is
column 1.

1 14

«- 14

columns

15 28

«- 14 -•

cols

29 42

«- 14

cols

43 56

«- 14 —•

cols

57 70

m- 14

cols

71 80

10

cols

A comma(,) between items in the PRINT statement
list causes the next item to be printed in the leftmost
position of the next printing zone. If there are no more
printing zones on the current line, printing continues in
the first printing zone on the next line. If an item
requires more than one print zone, the next item in the
list is printed in the next free print zone. (See example
1.)

Before each item is printed its length is compared with
the space remaining on the line. If insufficient space
remains on the current line, the item is moved to the
next line. If the length of the item is greater than the
width of the page (see PAGE statement), then BASIC
issues an error message.

Compact Spacing of Output

A semicolon (;) between items in the PRINT
statement list causes the next item to be printed at the
next character position. Note that a space is reserved
for the plus (+) sign even though it is not printed, (see
example 2) and there is always a trailing space.

Spacing to the Next Line

When the last item in a print list has been printed,
BASIC outputs a carriage return and line feed unless
the last item in the list is followed by a comma (,) or
semicolon (;). In this case, the carriage return and line
feed are not output and the next item is printed on the
same line according to the comma or semicolon
punctuation. (See example 3.)

If, however, the comma or semicolon would cause
printing of the next item to occur beyond the allowable
line width (see PAGE statement), a carriage return and
line feed are output.

Printing Blank Lines

A PRINT statement with no list of print items or
punctuation will output a carriage return and line feed.
(See example 4.)

For more printing versatility, you can use the TAB (X)
function, the TAB = , the PAGE = , and the PRINT
USING statements.

SD-1092

093-000065-08 Licensed Material-Property of Data General Corporation 3-31

Examples

* L I S T
0 0 1 0 L E T X = 2 5
0 0 2 0 P R I N T " S Q U A R E R O O T O F X I S : " , S G R C X)
* R U N
S G U A R E R O O T O F X I S : 5

E N D A T 0 0 2 0
*

1 5 2 9

(column positions)

3 .
• L I S T
0 0 0 5 P A G E S 7 0
0 0 1 0 L E T X s 5
0 0 2 0 P R I N T X , (X * 2) T 6 ,
0 0 3 0 P R I N T X T 4
0 0 4 0 P R I N T " F I N "
• R U N

5 1 0 0 0 0 0 0
F I N

625

E N D A T 0 0 4 0
*

1
1 4

I
2 9

(column positions)
2.
• L I S T
0 0 1 0 L E T X = 5
0 0 2 0 P R I N T X ? (X ^ 2) T 6 > X ^ 2 J (X ^ 2) T 4 J
0 0 3 0 P R I N T X - 2 5 1 (X ^ 2) T 8 J X - 1 0 0
• R U N

5 1 0 0 0 0 0 0 1 0 1 0 0 0 0 - 2 0 1 E + 0 8
- < 5 5

E N D A T 0 0 3 0
*

t I I I I I
1 3 1 1 1 4 2 0 2 3

(column positions)

4.
• L I S T
0 0 1 0 L E T X s 5
0 0 2 0 P R I N T X ; (X ^ 2) T 6 , X ^ 2
0 0 3 0 P R I N T X - 2 5 ; C X * 2 J T 8
0 0 4 0 P R I N T X - 1 0 0
0 0 5 0 P R I N T
0 0 6 0 P R I N T " D O N E "
• R U N

5 1 0 0 0 0 0 0 1 0
- 2 0 1 E + 0 8
- 9 5

D O N E

E N D A T 0 0 6 0
*

I I I
1 4 1 5

(column positions)

In line 20, the comma and semicolon spacing characters
are both used. Line 50 outputs a blank line before
printing "DONE".

3-32 Licensed Material-Property of Data General Corporation 093-000065-08

2. The format expression may have more than one
format field and may include string literals as well
as the following special characters which are used
for formatting numeric output.

+

$
, (comma)
t

a. Digit Representation by Number Sign (#)

For each # in the format field, a digit (0 to 9) is
substituted from the expr argument. Please
refer to Table 3-1.

NOTE: In the following descriptions, a box
(•) is used to clarify the presence of a
blank space.

inhibit a carriage return.

Table 3-1. Representing Digits by Number Sign

format expr BASIC Outputs Remarks

25 ••25 Right-justify digits
in field with leading
blanks.

-30 ••30 Signs and other
nondigits are
ignored.

1.95 •••2 Only integers are
represented; the
number is rounded
to an integer.

598745 * * * * If the number in
expr has more
digits than
specified by
format, then all
asterisks are
output.

AOS V
RDOS V
DOS V

s V
c V
F

PRINT USING
outputs the values of expressions in the
PRINT USING statement list using the
format specified.

Format

PRINT USING format, expr
;expr
,expr

Arguments
format is a string literal or string variable which
specifies the format for printing the items in the expr
list. See Remarks.

expr is a numeric or string expression.

Remarks
1. All normal PRINT formatting conventions for

TAB, the comma, and semicolon are ignored in a
PRINT USING statement, except when you use a
semicolon or comma at the end of a statement to

093-000065-08 Licensed Material-Property of Data General Corporation 3-33

b. Decimal Point (.) Representation

The decimal character (.) is used to place a
decimal point in the fixed position in which it
appears in format. Digit (#) positions which
follow the decimal point are filled; no blank
spaces are left in these digits positions. When
expr contains fewer fractional digits than
specified by format, zeros are output to fill the
positions. When expr contains more fractional
digits than format allows, the fraction will be
rounded out to the limits of format. Please refer
to Table 3-2.

c. Fixed Sign (+ or-) Representation

A fixed sign character appears as a single plus

(+) sign or minus (-) sign in either the first or
last character position in the format field.
A fixed plus (+) sign is used to print the sign
(+ or -) of expr in the position in which the
fixed plus (+) sign is placed in format.

A fixed minus (-) sign is used to print a minus
(-) sign for negative values of expr or a blank
space for positive values of expr in the position
in which the fixed minus (-) sign is placed in
format.

When a fixed sign is used, any leading zeros
appearing in expr will be replaced by blanks,
except for a single leading zero preceding a
decimal point. Refer to Table 3-3.

Table 3-2. Decimal Point Representation

format expr BASIC Outputs Remarks

. # # 20 ••20.00 Fractional digit
positions are filled
with zeros.

. # # 29.347 ••29.35 Rounding occurs
on fractions.

. # # 789012.34 When expr has too
many significant
digits to the left of a
decimal point, a
field of all asterisks
is output.

Table 3-3. Fixed Sign Representation

format expr BASIC Outputs Remarks

+ ##.## 20.5 + 20.50 Fractional digit
positions are filled
with zeros.

+ ##.## 1.01 +•1.01 Blanks precede the
number.

+ ##.## -1.236 -•1.24 Rounding out
occurs on fractions.

+ ##.## -234.0 Too many digits to
the left of the
decimal point.

###.##- 20.5 •20.50D Decimal digit
positions are filled.

###.##- 000.01 ••0.01 • One leading zero is
printed before the
decimal point.

###.## + 1.236 ••1.24 +

###.##- -234.0 234.00-

3-34 Licensed Material-Property of Data General Corporation 093-000065-08

Table 3-4. Floating Sign Representation

format expr BASIC Outputs Remarks

— . # # -20 -20.00 Second and third
minus signs are
treated as # signs
on output.

— . # # -200 Too many digits in
expr to left of
decimal point.

+ + + . # # 2 • + 2.00 Blanks between
sign and digit are
suppressed.

— . # # 2 ••2.00

d. Floating Sign (+ + or --) Representation f. Floating Dollar Sign ($$) Representation

A floating sign appears as two or more plus
(++) or minus (--) signs at the beginning of
the format field.

The floating plus (+ +) sign prints a plus or
minus sign immediately before the value of
expr with no separating blank spaces as would
occur with fixed signs. A floating minus (—)
prints either a minus or blank (for plus)
immediately preceding the value.

When you use floating signs, the second and
subsequent signs in format are treated as
number signs (#); BASIC will replace them with
numbers from expr as necessary. Please refer to
Table 3-4.

NOTE: A format may include either a floating
sign (plus or minus) or a floating $
sign (described in paragraph f.), but
not both.

e. Fixed Dollar Sign ($) Representation

When you use a dollar sign ($) as either the first
or second character in the format field, a dollar
sign ($) is printed in that position. If the dollar
sign ($) is in the second position, it must be
preceded by a fixed sign (+ or -). A fixed dollar
sign ($) causes leading zeros in the value of
expr to be replaced by blanks. Refer to Table
3-5.

A floating dollar sign appears as two or more
dollar signs ($$) beginning at either the first or
second character in the format field. If the
dollar signs ($$) start in the second position,
they must be preceded by a fixed sign (+ or -).

When you use a floating dollar sign ($$), a
dollar sign is printed immediately before the
first digit of the expr value. Refer to Table 3-6

NOTE: A format may include either a floating
dollar sign ($$) or a floating sign (plus
or minus), described in preceding
paragraph d, but not both.

g. Separator (J Representation

When you use a comma separator (,) a comma
is printed in the fixed position in which it
appears in a string of digits (#) in the format
field.

If a comma would be output in a field of
suppressed leading zeros (blanks), then a blank
space is output in the position for the comma.
Refer to Table 3-7.

Table 3-5. Fixed Dollar Sign Representation

format expr BASIC Outputs

-$###.##

$###.## +

30.512

-30.512

• $•30.51

$•30.51-

093-000065-08 Licensed Material-Property of Data General Corporation 3-35

Table 3-6. Floating Dollar Sign Representation

Table 3-7. Separator Representation

format expr BASIC Outputs Remarks

+ $$$# .## 13.20 +••$13.20 Extra $ signs may
be replaced by
digits as with
floating + and -
signs.

$ $ # # . # # -1.00 • $01.00- Leading zeros are
not suppressed in
the # part of the
field.

format expr BASIC Outputs Remarks

+ $ # , # # # . # # 30.6 + $•••30.60 Space printed for
comma.

+ $ # , # " # . # # 2000 + $2,000.00

+ + # # , # # # 00033 • +00,033 Comma is printed
when leading zeros
are not suppressed.

h. Exponent (f) Representation

Four consecutive up-arrows (IIIf) are used to
indicate an exponent field in format. The four
up-arrows will be output at E + nn, where each
n is a digit.

If the exponent field in format does not have
exactly four up-arrows, then a runtime error
will result. Refer to Table 3-8.

Table 3-8. Exponent Representation

format expr BASIC Outputs

+ ## .## t t t t
+## .##n t t
++## .## t in

170.35

-.2

6002.35

+1 7.04E +01

-20.00E-02

+ 600.24E +01

BASIC differentiates format fields from string
literals by the characters that appear in format fields.

For example:

"TWO FOR $1.25" $1.25 is part of the string
literal.

"TWO FOR $$$.##" $$$.## is a format field in the
format expression.

"ANSWER IS -85" -85 are characters of the string
literal.

"ANSWER IS-###" -### is a format field in the
format expression.

4. A format expression may be specified by referring
to a previously defined string variable, for example:

*05 DIM S$(10))
*10 LETS$ = "##.##")
*20 PRINT USING S$, 1 5 2)

A format expression may include more than one
format field and may include string literals in
addition to the special formatting characters. Values
of the expr argument list are sequentially assigned
to format fields.

36 Licensed Material-Property of Data General Corporation
093-000065-08

5. The format fields in a format expression must be
delimited from each other by using any nonspecial
formatting character after each format field.
However, if the format expression in the PRINT
USING statement is a string literal, then quotation
marks (" ") cannot be used as a field delimiter.
Delimiters are treated as string literals and are
printed on output.

7. When there are more items in the expr argument
list than format fields in the format expression then
the format fields will be used repetitively.

In the following format expression, there are three
format fields and two string literal fields. The string
literal fields delimit the format fields.

"####D@$###.##DPERD###"

The first, fourth, seventh, etc., items in the expr
argument list will be formatted using the format
field, ####.

field delimiter field delimiter

field literal field

The second, fifth, eighth, etc., items in the expr
argument list will be formatted using the format
field, $###.##.

The third, sixth, ninth, etc., items in the expr
argument list will be formatted using the format
field, ###.

6. String literals may appear in the expr argument list
of the PRINT USING statement and will be
superimposed on a format field in the following
manner:

a. Each character of the string literal replaces a
single format field character, which may be any
of the special format characters ($, #,j,
and,).

b. Strings are left-justified in the format field, and
filled with spaces, if necessary.

c. If the number of characters in the string is
greater than the number of characters in the
format field, then the string will be truncated to
fit the field. For example,

*5 PRINT USING "#,###.##","TEST","CHARACTER")
•RUN
TEST a ••• CHARACTE

0100 PRINT USING "A(#)D=n##.#",i,A(l)

RUN)
A (l) • = • 17.9
(Possible output includes two format fields and two
string literals.)

0100 PRINT USING "###.##•",I,A,B

RUN)
•• 1.00 •• 17.90 •• 25.77
(Possible output with format expression repeated
for each item in argument list.)

8. When the number of characters on a line exceeds
the page size, printing continues on the next line.

093-000065-08 Licensed Material-Property of Data General Corporation 3-37

AOS
RDOS V
DOS

PUNCH
outputs part or all of the current program
in ASCII to the terminal punch.

Format

PUNCH

Arguments
line nl is the first statement to be punched.

line n2 is the last statement to be punched.

Remarks
1. A leader of null characters precedes the punched

listing and a trailer of null characters follows the
listing.

2. The number of null characters punched as leader
and trailer equals the number defined as the page
width (see PAGE command). This represents eight
inches of leader for an 80-character line.

3. The PUNCH command does not turn on the
terminal punch. The following procedure is
required:

a. Type the desired PUNCH command followed
by a carriage return and immediately press the
ON button on the terminal punch.

b. A null leader will be punched, followed by a
listing of the desired lines of the current
program, followed by a null trailer.

c. When punching is completed, press the OFF
button on the punch.

4. The variations of the PUNCH command are
described as follows:

f PUNCH)

PUNCH n1)

PUNCH

PUNCH

2)

Punch the entire program
starting at the lowest
numbered statement.

Punch only the single
statement at line number n1.

Punch from the lowest
numbered line through line
number n2.

Punch from line number n1
through line number n2.

Examples
•PUNCH 200 TO 500)

Punch line numbers 200 through 500 of the current
program.

3-38 Licensed Material-Property of Data General Corporation 093-000065-08

AOS V
RDOS V
DOS V

RANDOMIZE
causes the random number generator to
start at a different point in the sequence
of random numbers generated by the
RND function.

Format
RANDOMIZE

Remarks
1. The RANDOMIZE statement resets the random

number generator based on the time of day,
thereby producing different random numbers each
time a program using the RND function is run on a
given day.

2. Without RANDOMIZE, the same sequence of
random numbers is generated by the RND
function each time a program is RUN. This feature
is useful for debugging programs. When the
program has been found to run successfully, the
RANDOMIZE statement should be included in the
program before the first occurrence of a RND
function if you desire different start points in the
sequence.

Examples
This program will print a different value each time it is
run.

*10 RANDOMIZE)
*20 FOR 1 = 1 TO 3)
*30 PRINT RND(O);)
*40 NEXT I)
*RUN)
.619604 .298047 .698036
END AT 0040
*RUN)
.776468 7.84348E-02 .603916
END AT 0040
*RUN)
.784302 .117651 .800002
END AT 0040
•RUN)
.956853 .98038 9.41276E-02
END AT 0040
•RUN)
.10981 .760783 6.31819E-06
END AT 0040

093-000065-08 Licensed Material-Property of Data General Corporation 3-39

AOS V
RDOS V
DOS V

READ
reads values from the DATA list (DATA
statements) and assigns them to
variables.

6. The RESTORE statement can be used to reset the
data element pointer to the first item of the lowest
numbered DATA statement or to the first item of a
specific DATA statement.

Format

READ lv a , l (svarj { :
var)
svar(

Arguments
var and svar are numeric and string variables
separated by commas.

Remarks
1. READ statements must always be used in

conjunction with DATA statements.

2. The variables listed in the READ statement may be
subscripted or nonsubscripted and may be numeric
or string.

3. The order in which variables appear in the READ
statement is the order in which values for the
variables are retrieved from the DATA list.

4. A data element pointer is moved to the next
available value in the DATA list as values are
retrieved for variables in READ statements. If the
number of variables in the READ statement
exceeds the number of values in the DATA list,
BASIC prints an END OF DATA error message.

5. The type of variable (numeric or string) in the
READ statement must match the type of the
corresponding DATA element value or else BASIC
prints a READ/DATA TYPES error message.

Examples
•LIST)
0010 READA,B,C
0020 READ D(1),D(2),D(3)
0030 PRINTC! 2,D(2) 1 2
0040 READE
0050 PRINTE
0060 READFS
0070 PRINTF$
0080 DATA 1,2,3,4,5,6, 7, "ABC"
0090 END
•RUN)
9 25
7
ABC

END AT 0090

In this example the variables are assigned values as
follows:

Variable Value

A 1
B 2
C 3
D(l) 4
D (2) 5
D(3) 6
E 7
F$ ABC

3-40 Licensed Material-Property of Data General Corporation 093-000065-08

c
AOS V
RDOS V
DOS V

REM
inserts explanatory remarks within a
program.

Format
REM [message]

Arguments
message is text comment.

Remarks
1. REM statements do not affect program execution.

BASIC stores them with a program and outputs
them with each LISTing.

2. If control is transferred to a REM statement from a
GOTO or GOSUB statement, then execution
continues with the next executable statement. If no
executable statement follows the REM statement,
then the program will END and control will return
to interactive mode.

3. For AOS systems, comments can be concatenated
to any BASIC statement by using a comment (!)
sign. (See example 2.)

Examples
1. 'LIST)

0010 REM REMARKS IN A PROGRAM.
0020 REM HELPS EXPLAIN THE PURPOSE OF
0030 REMSTA TEMENTS. LINES 10. 20. 30
0040 REM AND 40 AREN'T EXECUTED.
0050 PRINT "END"
'RUN)
END

2. 'LIST)
0010 LETP=61.9 ! P IS THE PR ICE OF GA S
0020 ! IN CENTS PER GALLON.

RENAME
renames a file in your directory.

Format
RENAME "oldfilename", "newfilename"

Arguments
oldfilename is a disk file in your directory that can be a
string literal or string variable.

newfilename is a new filename that can be a string
literal or a string variable.

Remarks
BASIC searches your directory for oldfilename; if it is
found, its name is changed to newfilename.

An error message will be printed at your terminal if:

• oldfilename does not exist.
• newfilename already exists.
• oldfilename is attribute-protected.

Examples
'RENAME "TEST.SR", "A.SR")
•

File TEST.SR is renamed as A.SR for future
referencing.

AOS V
RDOS V
DOS V

093-000065-08 Licensed Material-Property of Data General Corporation 3-41

AOS V
RDOS V
DOS V

RENUMBER
renumbers the statements in the current
program.

Format

R E N U M B E R

line nl

n2

linenl n2

Arguments
line nl is the initial line number for the current
program.

n2 is the desired increment between line numbers.

Remarks
1. The RENUMBER command has several variations.

They are:

• R E N U M B E R)

" R E N U M B E R n 1)

• R E N U M B E R S T E P n 2)

Renumber the current
program starting with
default line number
0010, with a default
increment of 10
between line numbers

Renumber the current
program starting with
line number n1 and by
incrementing line
numbers by n1.

Renumber the current
program starting with
default line number
0010 and incrementing
l ine numbers by n 2 .
You may use a comma
instead of the word
S T E P .

• R E N U M B E R n 1 S T E P n 2) Renumber the current
program starting with
line number n1 and by
incrementing line
numbers by n2. Again,
you may use a comma
instead of the word
S T E P .

2. Line numbers are limited to four digits. If a
RENUMBER command causes a line number to
exceed 9999, the command is re-executed as:

R E N U M B E R 1 S T E P 1

3. The RENUMBER command modifies the line
numbers specified in IF-THEN, GOTO, and
GOSUB statements to agree with the new line
numbers.

4. Line numbers which cannot be resolved are
changed to 0000 and an error message is printed.

5. The RENUMBER command does not renumber
the arguments of ERASE aCHAIN statements.

Examples
• L I S T)
0010 TAB =5
0015 DIM A (3,4)
0020 LET A (1,2) =6
0025 LETA(3,4) = 10
0030 MAT PRINT A
0035 MATA=ZER(3,3)
0037 PRINT
0040 MAT PRINT A
• R E N U M B E R 1 0 S T E P 5)
• L I S T)
0010 TAB =5
0015 DIM A (3,4)
0020 LET A (1,2) =6
0025 LETA(3,4) = 10
0030 MAT PRINT A
0035 MAT A =ZER(3,3)
0040 PRINT
0045 MAT PRINT A

3-42 Licensed Material-Property of Data General Corporation
093-000065-08

AOS V
RDOS V
DOS V

AOS V
RDOS V
DOS V

c

RESTORE
resets the position of the data element
pointer.

Format
RESTORE [line no.]

Arguments

line no. is a DATA statement line number.

Remarks

1. If you use the RESTORE statement without a line
number argument, then the data element pointer is
reset to the beginning of the data list.

2. If you use the RESTORE statement with a DATA
statement line number argument, then the data
element pointer is moved to the first value in the
DATA statement line.

3. If tine no. is not a DATA statement, the data
element pointer will point to the first DATA
statement following line no. If line no. doesn't exist
in the program, an error occurs.

Examples
'05 READ A,B,C)
*10 READ D,E,F)
*15 RESTORE 50)
*20 READ G,H,I)
*25 RESTORE)
*30 READ J,K,L)
*40 DATA 2,4,6)
*50 DATA 8,1 0,1 2)

In the above example the variables are assigned values
as follows:

RETRY
repeats the statement which caused an
error.

Format
RETRY

Remarks

1. You can use the RETRY statement in conjunction
with the ON ERR statement to return control to
the statement which caused the error, and attempt
to re-execute that statement.

2. For the RETRY statement to work properly, an
error condition must have occurred. If no error
condition has occurred, a line-number error results.

Examples
*005 ON ERR THEN 100)
*01 0 OPEN FILE (0,2), "TEST")

(If statement 10 causes an error then RETRY directs
the program to repeat the statement.)
*100 RETRY)

NOTE: If statement 10 caused an error, then the
program would loop indefinitely between
statements 10 and 100. The program should,
therefore, include some provision for exiting
from the RETRY statement after a certain
number of failures.

Variable Values

A 2
B 4
C 6
D 8
E 10
F 12
G 8
H 10
I 12
J 2
K 4
L 6

093-000065-08 Licensed Material-Property of Data General Corporation 3-43

RUN

AOS V

RDOS V

DOS V

S
C V
F

executes a program either from the first
line or from a specified line.

Format

RUN
jline no.
| "filename'

Arguments
line no. is the line in the current program from which
execution is to begin.

filename is the name of a disk file or device.

Remarks

You may use the variations of the RUN command as
follows:

•RUN) Clear all variables, undimension all
arrays and strings, do a RESTORE,
initialize the random number
generator, and then run the current
program from the first line number.

•RUN n) RUN from line n. This form of the
RUN command allows resumption
of program execution retaining
current values of all variables and
parameters. It may be used after a
STOP or after an error and will
incorporate any alterations you
make to the program after the
STOP or error occurred.

•RUN "filename") If the file is on disk, BASIC first
searches your directory and then
the library directory for filename.
When filename is found, the
command executes a NEW,
clearing the current program area,
then LOADs and executes program
filename.

Examples
•RUN)
•RUN "$PTR")
•RUN 250)
•RUN "MATH3")
•RUN "MT1:0")

3-44 Licensed Material-Property of Data General Corporation 093-000065-08

AOS V
RDOS V
DOS V

SAVE
writes the current program and data in
binary format to the device or disk file
named by filename.

Format
SAVE "filename"

Arguments
filename is the name of a disk file or a device,
expressed as a string literal or string variable.

Remarks
1. If filename is a disk file, then filename is entered

into your directory. If filename is a disk file that
already exists in your directory, and you type SAVE
as an immediate command, BASIC will print one of
the following messages depending on your
operating system:

TYPE CR TO DELETE (RDOS/DOS)
TYPE NL TO DELETE (AOS)

This message lets you confirm whether or not you
would like to delete the existing filename, and
replace the file with the lines you specified in the
SAVE command. If you type a carriage return

(new-line), you'll get the replacement. Type
anything preceding the carriage return (new-line),
and you cancel the SAVE command.

2. You can LOAD, CHAIN, or RUN a SAVEd
program.

3. When you SAVE a program, the current values of
all variables are also stored with the program as well
as the point where the program stopped last.
Therefore, you can LOAD the SAVEd program
and CONtinue or RUN line no. as though no
interruption had occurred. Note: File status is not
preserved when you SAVE a program.

4. A SAVEd program may not run under all
configurations of BASIC. In particular, if the
precision of the floating-point representation in the
RUN environment differs from that of the SAVE
environment, you will not be able to load the
program.

Examples
•SAVE "FA.BC"))
'SAVE "$PTP") \ Commands
"SAVE S$(1,7)) j

*10 SAVE"OURSHIP")) „
• on QA\ /n n<n \ / S ta tements

093-000065-08 Licensed Material-Property of Data General Corporation 3-45

AOS V
RDOS
DOS

SIZE
prints the number of bytes and pages
used by the program, and the total
number of bytes and pages that are still
available.

SIZE
prints the number of bytes and pages
used by the program, and the total
number of bytes and pages that are still
available.

AOS
RDOS V
DOS V

Format
SIZE

Remarks
1. The number of bytes used are broken down into

two groups: the number of bytes used for the
program segment (P), and the number of bytes
used for the data segment (D).

2. The number of pages used and left are reported.
One page equals 2048 bytes.

3. The total number of bytes left is reported.

Examples
•SIZE)
USED: 14850 (P), 312 (D) B YTES 8(P), 1 (D) PA GE(S)
LEFT: 29594BYTES 13PAGE(S)

Format
SIZE

Remarks
1. The number of bytes used are broken down into

two groups; the number of bytes used for the
program segment (P), and the number of bytes
used for the data segment (D).

2. If the RDOS/DOS Extended BASIC system uses
swapping or extended memory, the number of
pages used and left are reported. One page equals
512 bytes.

3. The total number of bytes left is reported.

Examples
Example of a swapping system:

•SIZE)
USED: 14850 (P), 312 (D) B YTES 8 (P), 1 (D) PA GE(S)
LEFT: 29594 B YTES 13 PA GE(S)

Example of a nonswapping system:

•SIZE)
USED: 3793 (P), 2821 (D) BYTES
LEFT: 8077 BYTES

From a total of 14,691 bytes of memory available for
program and data storage, 3793 are occupied by the
program, 2821 by the data and 8077 remain unused.

3-46 Licensed Material-Property of Data General Corporation 093-000065-08

AOS V
RDOS V
DOS V

STOP
terminates execution of the current
program and returns control to
interactive mode.

Format
STOP

Remarks
1. You can place STOP statements anywhere in the

program to terminate execution. When STOP is
encountered, BASIC prints the following message
on your terminal:

STOPATXXXX

where XXXX is the line number of the STOP
statement.

2. After resumption of interactive mode, you can
modify the program if you wish. To restart the
program from the beginning, use RUN; to continue
from the STOP statement, use CON or RUN line
no.

Examples
•LIST)
0010 REM-TERMINATE PROGRAM BY STOP
0020 INPUT A
0030 IF A <0 THEN GOTO 0050
0040 GOTO 0020
0050 STOP
•RUN)
? 1)
•? 3)
?-5)

STOP AT 0050

TAB
sets the zone spacing between the data
output by PRINT statements.

Format
TAB = expr

Arguments
expr is an arithmetic expression in the range: 1 < =
expr < = page width (see PAGE command).

Remarks
1. The default zone spacing is 14 columns.

2. Since the maximum range of zone spacing depends
upon the PAGE command setting, it is good practice to
set the page width first and then the zone spacing.

Examples
•LIST)
0010 PAGE =50
0020 TAB =10
0030 FOR 1 = 1 TO 25
0040 PRINTI,
0050 NEXT 1
•RUN)
12 3 4
6 7 8 9
11 12 13 14
16 17 18 19
21 22 23 24
END AT 0050

AOS V
RDOS V
DOS V

s V
c V
F

5
10
15
20
25

093-000065-08 Licensed Material-Property of Data General Corporation 3-47

AOS V
RDOS V
DOS V

TIME
establishes the time limit for timed input
(TINPUT) operation.

Format
TIME = expr

Arguments
expr is a numeric expression which represents time in
seconds to the nearest tenth of a second. In AOS, the
maximum number for expr is approximately 4,000,000.
In RDOS/DOS, the maximum number for expr is
approximately 65,000.

1.

2.

Examples

Remarks
Assigning a value to TIME sets the SYS(14)
function to the value of expr.

The value of SYS (14) is decremented at the clock
tick rate (1/10 of a second per tick) from the time a
TINPUT statement is executed.
Decrementing of SYS(14) stops when you respond
to the TINPUT prompt. Decrementing of SYSU4)
is resumed when the next TINPUT is executed.

If you do not respond to the TINPUT prompt
before the SYS (14) function has decremented to
zero, then an error message is printed and the
program stops (unless an ON ERR THE
statement was executed in your program).

TIME may be reset to another value and may
appear as often as required by the program logic.

•LIST)
0010 DIMA$(50)
0020 PRINT "LET'S TEST YOUR RECALL SPEED
0030 PRINT

0050 T'INPUT" WHAT COLOR ARE YOUR MOTHER'S EYES ? ",A$
0060 GOSUB 0140
00 70 TINPUT "WHAT'S YOUR SOCIAL SECURITY NUMBER? ,A$
0080 GOSUB 0140
0090 TINPUT "HOW OLD IS YOUR FATHER? ' ,A$
0100 GOSUB 0140
0130 GOTO 0190
0140 LET 1=1+1
0150 LET A (I) = (10-SYS(14))
0160 PRINT "TIME USED-'";A (I);'' SECONDS
0170 TIME =10
0180 RETURN
0190 FOR J=1 TO I
0200 LETB=B+A (J)
0210 NEXT J
0220 I F.T C' /?//
0230 PRINT "AVERAGE RESPONSE TIME= ";C;" SECONDS
0240 END
•RUN)
LET'S TEST YOUR RECALL SPEED

WHAT COLOR ARE YOUR MOTHER 'S EYES? BROWN)
TIME USED- 6.8 SECONDS
WHAT'S YOUR SOCIAL SECURITY NUMBER ? 11 234567)
TIME USED- 9.2 SECONDS
HOW OLD IS YO UR FA THER ? 65)
TIME USED- 5.5 SECONDS
A VERAGE RESPONSE T1ME= 7.1666667SECONDS

END AT 0240

3-48 Licensed Material-Property of Data General Corporation 093-000065-08

AOS V
RDOS V
DOS V

S v

TINPUT
assigns, within a prescribed time, the
values supplied by input from the
terminal to a list of variables

Format

TINPUT [(line no. [time]) Jf'str lit "//var \\j'var \
' (svar (\,svarf -[;]

Arguments

line no. is a program line number.

in7fJrS 3 numeric exPression which evaluates to an

tenth of a second""^ X"""'S' ,0 the °earesl

separate<t •» commas«

sir lit is a message or prompt.

Remarks

1 • INPUT statement remarks apply to TINPUT.

2' TIM?® ™PUT statement in conjunction with the
I IME= statement, or the optional (line no. [time])
argument to TINPUT, and the SYS (14) func ion

3. The TIME= statement sets SYS(14) to the value
TTNPn? al,owed for your response to the 1 INPUT prompt.

4.

5.

If you do not respond to the TINPUT prompt
before the SYS(14) function decrements to zero
and the TINPUT s,atemen. has .he opdonal
™'m he Program will branch to that statement

IfyouJused no 'ine number argument, and
^VMI4) has decremented to zero, 'hen BASIC
prints an error message at your terminal and the
program stops (unless an ON ERR THEN
SSd). in y°" P,0gram Was Piously

If the TINPUT statement includes a time argument
TINPTIT atrfment only applies to that specific
I INPUT statement, and does not affect SYS(14)
This form of TINPUT will only set a time limit for
your response, but does not determine the amount
ot time taken by your response.

Examples
0005 ON ERR GOTO 300
0010 TINPUT(100, 25), "ENTER:", AS

The program will branch to line 100 if there is no
response to the ENTER prompt within 25 seconds. The
ine number argument overrides the ON ERR

statement.

093-000065-08
Licensed Material-Property ol Data General Corporation

3-49

AOS V

RDOS V

DOS V

WHATS
determines the status of file filename.

Format

WHATS "filename"

Arguments

filename is the name of a file in your directory or in
the library directory expressed as a string literal.

Remarks

1. BASIC searches your directory for filename; if not
found, the library directory is searched.

2. The output from an AOS WHATS command is
different from RDOS/DOS, and is shown in
Example 2.

Examples

1. *WHATS "ABC")

ABC P 2039 06/14/75 09:15 (1/8/76)

date created

attributes

length in bytes

2. 'WHATS "PHASE4")

time
created

00

t
in use
count

date last
used

AOS V

RDOS
DOS

WHO
identifies other people on the system or
determines your own identification.

Format

WHO
(processID
("processname •)

Arguments

processID is a process identification number.

processname is a process name, assigned by AOS,
expressed as a string variable or string literal.

Remarks

1. You can identify other people using the system by
using the WHO command with either process
identification numbers or process names. BASIC
will respond to the command by printing both the
process identification number and the process
name.

2. The WHO command, without any arguments, will
print your process identification number and
process name on your terminal.

Examples
*WHO 7)
PID: 7 XBASIC:007

PHASE4 UDF 01-MAY-78 16:20 34 690

t t t
filename type date last time last length

modified modified in bytes

End of Chapter

3-50
Licensed Material-Property of Data General Corporation

093-000065-08

Chapter 4
Extended BASIC Functions

Introduction to Extended BASIC
Functions

The Extended BASIC functions perform calculations
which you would otherwise need to execute
yourself—either with a series of program statements or
by consulting mathematical tables. The functions
generally have a three-character mnemonic name and
are followed by a parenthesized expression (expr)
which is the function argument. Generally, a function
may be used as an expression, or may be included as
part of an expression.

The functions included in Extended BASIC are listed
below and are described in this chapter.

Function Value Produced

ABS(x) Absolute value of x.

ATN(x) Arctangent of x (result expressed in
radians).

COS(x) Cosine of x (x expressed in radians).

CPU(x) Console switch value.

DEFFNa(d) User-defined function.

EOF(x) Returns a +1 if an end of file is
detected; otherwise zero.

Function

EXP(x)

INT(x)

LEN(x$)

LOG(x)

POS(x$,y$,z)

RND(x)

SGN(x)

SIN(x)

SQR(x)

STR$(x)

SYS(x)

TAB(x)

TAN(x)

VAL(x$)

Value Produced

ex (-178 < = x <= 175).

The largest integer not greater than x.

The number of characters in string x$.

Natural logarithm of x (x > 0).

The position of a substring in a string.

Random number between 0 and 1.

The algebraic sign of x.

Sine of x (x expressed in radians).

Square root of x (x > = 0).

The string value of a numeric
expression.

System functions.

Used with PRINT to position to column
x.

Tangent of x (x expressed in radians).

The numeric value of a string.

093-000065-08 Licensed Material-Property of Data General Corporation 4-1

AOS V
RD0S V
DOS V

A BS (X)
re turns the absolute (posi t ive) value of
expr .

AOS V
RDOS V
DOS V

A TN (X)
calculates the angle (in radians) whose
tangent is expr . (-7 t /2 < resul t <r<-/2) .

Format
ABS (expr)

Format
ATN(expr)

Arguments
expr is a numeric expression.

Examples
•LIST)
0010 PRINT ABS (-30)
•RUN)
30

END AT 0010

Arguments
expr is a numeric expression.

Examples
•LIST)
0010 REM-CALCULATEANGLE WHOSE TAN = 2
0020 PRINTATN(2)
•RUN)
1.1071487

END AT 0020

4-2 Licensed Material-Property of Data General Corporation 093-000065-08

DOS V F V DOS F V

COS(X)
calculates the cosine of an angle which is
expressed in radians.

Format
COS(expr)

Arguments
expr is a numeric expression specified in radians.

Remarks
SYS(15) is assigned the value of PI (3.1416). For more
information see the SYS(X) function.

Examples
•LIST)
0010 REM-PRINT COSINE OF 30 DEGREES
0020 LETP=SYS(15)/180
0030 PRINTCOS(30*P)
•RUN)
.8660254

END AT 0030

CPU(X)
returns a value equal to the status of a
CPU data switch or the numeric value of
all 16 console switches.

Format
CPU(expr)

Arguments
expr is an expression which evaluates to the number
of a CPU console switch or a -1.

Remarks
1. The value returned is:

0 if console switch is down.
1 if console switch is up.

2. If expr is a -1, the CPU function returns the decimal
value of all 16 console switches. This value is in the
range 0 through 65535.

3. Each switch corresponds to a bit in a 16-bit word
with the bits numbered 0 through 15 from left to
right.

Examples
*10 IF CPU(O) THEN GOTO 85)

Proceed to statement 85 if console switch 0 is up.

•PRINT CPU(-1))
a 33

Switches 11, 12, 14, and 15 are up.

093-000065-08 Licensed Material-Property of Data General Corporation 4-3

AOS V
RDOS V
DOS \

c

DEF FNa(d)
permits you to define as many as 26
different functions which can be
repeatedly referred to throughout a
program.

Format
DEF FNa(d)=expr

Arguments
a is a single letter from A to Z.

d is a dummy arithmetic variable that may appear in
expr.

expr is an arithmetic expression which may contain a
variable d.

Remarks
1. Each function returns a numeric value.

2. BASIC does not relate the dummy variable named
in the DEF statement to variables in the program
with the same name; the DEF statement simply
defines the function and does not cause any
calculation to be carried out.

3. In the function definition, the expr can be any legal
arithmetic expression and may include other
user-defined functions. Functions may be nested to
a depth specified by your system manager.

4. Function definition is limited to a single line DEF
statement. Complex functions which require more
than one program statement should be constructed
as subroutines.

Examples

In line 10 the FNE function is defined. In line 20 the
FNE function is referred to and evaluated with numeric
argument 5.

You can also redefine a function, as in the following
example:

•LIST)
0010 DEF FN A (X) =X} 2
0020 PRINT FNA(2)
0030 DEF FN A (Z)=Z f 3
0040 PRINT FNA (2)
•RUN)
4
8
END AT 0040

The following example illustrates the nesting of
user-defined functions.

•LIST)
0005 TAB =16
0010 LETP=SYS(15)
0020 DEF FNR (X) =X*P/180
0030 DEF FNS (X) = SIN (FNR (X))
0040 DEFFNC(X) =COS(FNR (X))
0050 FOR X=0 TO 45 STEP 5
0060 PRINT X,FNS(X),FNC(X)
0070 NEXTX
•RUN)
0 0 1
5 8.7155743E-02 .9961947
10 .17364818 .98480775
15 .25881905 .96592583

.93969262

.90630779

.8660254

.81915204

. 76604444

.70710678

•LIST)
0010 DEF FNE (J) = (J\2)+2*J+1
0020 LET Y=FNE(5)
0030 PRINT Y
•RUN)
36

20 .34202014
25 .42261826
30 .5
35 .57357644
40 .64278761
45 .70710678

END AT 0070 END AT 0030

4-4 Licensed Material-Property of Data General Corporation 093-000065-08

AOS V
RDOS V
DOS V

EOF(X)
detects the end of file when transferring
data from a file.

AOS V
RDOS V
DOS V

EXP(X)
calculates the value of e (2.71828) to the
power of expr.

Format
EOF (file)

Format
EXP(expr)

Arguments
file is a numeric expression which evaluates to the
number of a file opened for reading in mode 0 or 3.

Remarks
1. The EOF function returns an integer indicating

whether or not the last READ FILE or INPUT
FILE from file included an end-of-file delimiter. If
an end of file was detected, the function returns a
value of 1; otherwise the function returns a 0.

2. When the EOF function is used in conjunction with
the IF-THEN statement, a conditional transfer can
be made if an end of file is detected.

3. Testing for an end of file should occur immediately
after the INPUT FILE or READ FILE statement. If
an end of file was values, which are usually the last
data input or read before the end of file. This
concept also applies to Matrix file I/O statements.

4. A random (mode 0) file returns an EOF if you
attempt to read a record number larger than the last
written in the file. Processing of the random file
may be continued after an EOF by using the
RESET FILE statement.

5. All physical records written to magnetic tape and
cassettes are of a fixed length and padded with
nulls. Therefore, the EOF function is not
necessarily set at logical end of file; the function is
set at logical end of file only when it coincides with
physical end of file.

Arguments
expr is a numeric expression from -178 through 175.

Examples
'LIST)
0010 REM- CALCULATE VALUE OF E\ 1.5
0020 PRINTEXP(1.5)
'RUN)
4.4816891

END AT 0020

Examples
'LIST)
0100 OPEN F1LE(1,3), "$PTR "
0110 READ FILE(1),A,B,C,D,E
0120 IFEOF(l) THEN GOTO 0200
0130 PRINTA,B,C,D,E
0140 GOTO0110
0200 CLOSE FILE(l)

093-000065-08 Licensed Material-Property of Data General Corporation 4-5

AOS V
RDOS V

DOS V

s
c
F V

AOS V
RDOS V
DOS V

s
c
F V

INT(X)
returns the value of the largest integer
not greater than expr.

Format
INT(expr)

Arguments
expr is a numeric expression.

Remarks
The INT function truncates numbers to return
integers, but print formatting rounds numbers for
output. There may appear to be discrepancies, but the
internal number representation does not change.

Examples
•LIST)
0010 PRINT "INT(15.8) = ";INT(15.8)
0020 PRINT "INT(-15.8) = ";INT(-15.8)
0030 PRINT "INT(15.8+.5) — ";lNT(15.8+.5)
•RUN)
1NT(15.8)= 15
I NTT 15.8) =-16
INT(15.8+.5)= 16

END AT 0030

Line 30 of this example demonstrates a technique for
rounding real numbers to the nearest integer.

LEN(X$)
returns a value equal to the number of
characters currently assigned to string
variable svar.

Format
LEN (svar)

Arguments
svar is a string variable.

Examples
•LIST)
0005 DIMA$(80),B1$(80)
0010 INPUT AS,BIS
0020 LETB=LEN(A$)
0040 IFB > LEN (Bl$) THEN GOTO 0060
0050 GOTO 0100
0060 PRINT "LENGTH OFAS= ";LEN(A$)
0070 PRINT "LENGTH OFBl$= ";LEN(B1S)
0080 PRINT "A$> BIS"
0090 GOTO 0110
0100 PRINT "BIS > AS"
0110 END
•RUN)
?CHEESE)?CAKE)
LENGTH OFAS= 6
LENGTH OFBlS= 4
AS > BIS

END AT 0110

4-6 Licensed Material-Property of Data General Corporation 093-000065-08

DOS [V 1 [T

LOG(X)
calculates the natural logarithm of expr.

Format
LOG (expr)

Arguments
expr is a numeric expression.

Examples
•LIST)
0010 REM- CALCULA TE THE LOG OF 959
0020 PRINTLOG(959)
•RUN)
6.8658911

END AT 0020

DOS 71 v
POS(X$,Y$,Z)

determines the POSition of a substring in
a string.

Format
_ 0 (i SN/ar 1 Wsvar2 I

I I"str 1141• t"str li4 2"''
expr

Arguments
svar is a string variable.

str lit is a string literal.

expr is a numeric expression.

Remarks
1. Starting at position expr in a string (svarl or str Iit1)

BASIC searches for the specified substring (svar2
or str Iit2).

2. The POS function returns a value equal to the first
position of the substring in the string. If the
substring cannot be found in the string, the POS
function returns a value of zero. If the value of expr
is less than zero, an error message will occur.

3. If expr is greater than the length of svar, the POS
function will return a value of zero.

4. If expr is equal to zero, the search will begin at the
first position of svar.

Examples
•LIST)
0005 DIMA$(25)
0010 LET AS= ' 'A MNOPFGHIJKLMN OPQR S
0020 LET A = POS (AS, "MNOP".6)
0030 PRINT A
•RUN)
13

END AT 0030

In this example, a search is made for "MNOP" starting
from the sixth character (F) in string A$. A match is
found which begins at the 13th character in string AS.
Therefore, the POS function returns a value of 13
which is assigned to variable A. If expr equalled 1, the
POS function would have found the first MNOP, and
assigned value 2 to A.

093-000065-08 Licensed Material-Property of Data General Corporation 4-7

c
AOS V
RDOS V
DOS V

R N D (X)
produces a pseudo-random number n,
such that 0 < = n < 1.

Format
RND (expr)

Arguments
expr is a numeric expression (required, but not used).

Remarks
1. The RND function requires a numeric argument

(expr), although the argument does not affect
operation of the function.

2. Each time the RND function is called, it provides a
pseudo-random number n, such that 0 < = n < 1.
The sequence of these numbers is fixed. The
sequence repeats starting at the 58384th value (the
58383rd value is zero). RANDOMIZE may start at
some point in this sequence, or may provide a
sequence with a shorter repeat cycle. The sequence
is the same for all systems, but the values in a
double-precision system are output to more
significant digits.

3. Each occurrence of the RND function in a program
yields the value of the next random number in the
list.

4. Each time you issue a NEW, CHAIN, or RUN,
BASIC returns to its original starting place in the
sequence of random numbers. Because the
sequence is fixed, and the starting place is the same
for each RUN, the RND function will provide the
same numbers each time you execute your
program. The capability of reproducing the
sequence can be a useful debugging aid.

5. To alter the starting place in the sequence, use the
RANDOMIZE statement described in Chapter 3.
RANDOMIZE resets the starting place based on
the time of day, thus providing a different sequence
for each run.

Examples
•LIST)
0005 TAB =13
0010 FOR 1 = 1 TO 4
0020 PRINT RND(I)
0030 NEXT1
•RUN)
.21176298
.26666685
.5411776
.90979748

END AT 0030
*

Running the above program a second time will produce
the same five random numbers.

•LIST)
0005 TAB =13
0010 FOR J=1 TO 4
0020 PRINT INT(10*RND(I))
0030 NEXT J
•RUN)
2
2
5
9

END AT 0030

This program will produce four random integers in the
range 0 to 9.

4-8 Licensed Material-Property of Data General Corporation 093-000065-08

AOS V
RDOS V
DOS V

c AOS V
RDOS V
DOS V

c
S C N (X)

returns a value which represents the sign
of an expression.

Format
SGN(expr)

Arguments
expr is a numeric expression.

Remarks
The value returned is:

1 if positive
0 ifO
-1 if negative

Examples
•LIST)
0010 LET A =-3
0020 PRINTSGN(A)
•RUN)
- 1

END AT 0020

S I N (X)
calculates the sine of an angle which is
expressed in radians.

Format
SIN(expr)

Arguments
expr is a numeric expression specified in radians.

Remarks
SYS(15) is assigned the value of PI (3.1416). See the
SYS (x) function for more information.

Examples
•LIST)
0010 REM-PRINT SINE OF 30 DEGREES
0020 PRINTSIN(30*SYS(15)/180)
•RUN)
.5

END AT 0020

093-000065-08 Licensed Material-Property of Data General Corporation 4-9

AOS V
RD0S V
DOS V

s
c
F V

SQR(X)
computes the square root of expr.

Format
SQR(expr)

Arguments
expr is a nonnegative numeric expression.

Examples
•LIST)
0010 LET A=5
0020 PRINTSQR(A \ 2+75)
•RUN)
10

END AT 0020

AOS V
RD0S V
DOS V

STR$(X)
converts the numeric value of an
expression to a string.

Format
STRS(expr)

Arguments
expr is a numeric expression.

Remarks
1. Converting numerics to string manipulation with

no leading or trailing spaces permits string
manipulation by other string handling functions
and statements.

2. This function is useful for combining numbers
when you don't want spaces between them.

Examples
•LIST)
0010 READ A
0015 IF A =0 THEN STOP
0020 LETA$=STR$(A)
0030 IF AS(4,6) =' '222'' THEN GO TO 0050
0040 GOTO 0070
0050 PRINT A; "-THIS IS MODEL 222"
0060 GOTO 0010
00 70 PR INT A;"- THIS ISN'TO UR MODEL''
0080 DATA 111222,212222,123456,0
0090 GOTO 0010
•RUN)
111222- THIS IS MODEL 222
212222 - THIS IS MODEL 222
123456 -THIS ISN'T OUR MODEL

STOP AT 0015

4 - 1 0 Licensed Material-Property of Data General Corporation 093-000065-08

SYS(X)
returns system information based on the
value of expr which is evaluated to an
integer (0 to 18).

Format
SYS (expr)

Arguments
expr is a numeric value or expression, between 0 and
18.

Remarks
The values returned by the SYS function are listed
below:

SYS(O) the time of day (seconds past midnight)
SYS(1) the day of the month (1 to 31) x
SYS(2) the month of the year (1 to 12) I current
S Y S (3) t h e y e a r i n f o u r d i g i t s (d a t e

(e.g., 1977) J
SYS(4) the terminal port number (-1 if operator's

console)
SYS(5) CPU time used in seconds to the nearest

tenth
SYS(6) I/O usage (numbers of file I/O statements

executed)
SYS(7) the error code of the last runtime error
SYS(8) the file number of the file most recently

referred to in a file I/O statement
SYS(9) page size
SYS(10) tab size
SYS(11) hours
SYS(12) minutes current time of day
SYS(13) seconds
SYS(14) seconds remaining before expiration of timed

input
SYS(15) PI (3.14159)
SYS(16) e (2.71828)
SYS(17) 1/10 second clock (Not applicable to AOS)
SYS(18) total number of BASIC I/O calls (ENTER,

LIST, etc.)

Examples
•PRINT SYS (0))
63736
•PRINT SYS(1);SYS(2)(; SYS(3))
31101976

TAB(X)
tabulates to column number expr.

Format
T A B (e x p r)

Arguments
e x p r is an expression which is evaluated to an integer.

Remarks
1. The TAB function can only be used in conjunction

with PRINT statements. It cannot be used with any
other BASIC statement. More than one TAB(X)
function may appear in a PRINT statement. The
next item in the print list is printed at position X.

2. The first column on a line is column 1. The column
number specified by expr is always relative to
column 1. The position at which BASIC prints an
i t e m i n t h e p r i n t l i s t d e p e n d s o n t h e v a l u e o f e x p r
and on the PRINT statement punctuation (; or ,)
following the TAB(X) function.

3. If expr evaluates to a column number lower than
the present column number, then printing proceeds
at that same position on the next line.

4. If expr evaluates to a column number greater than
the page length, the expression is reduced modulo
the page length and positioning proceeds as in 2.

Examples

H I S T
0 0 0 5 L E T A S - 6
0 0 1 0 L E T 8 = 5
0 0 1 5 P R I N T T A B (B) ; A ; T A B (2 * B) ; 2 * A
0 0 2 0 E N D
* R U N

• 1 2

E N D A T 0 0 2 0
*

1 I 1
1 5 10

Notice the use of the semicolon (;) in line 15 after A to
prevent spacing to the next print zone and passing
position 2*13 (Column 10).

AOS V
RDOS V
DOS V

AOS V
RDOS V
DOS V .U

093-000065-08 Licensed Material-Property of Data General Corporation 4-1 1

TAN(X)
DOS

calculates the tangent of an angle which
is expressed in radians.

DOS V I I FlV

VAL(X$)
returns the numeric representation of a
string value.

Format
TAN (expr)

Arguments

expr is a numeric expression specified in radians.

Examples
'LIST)
0010 REM-PRINT TANGENT OF X DEGREES
0020 INPUT "XDEGREES ",X
0030 LETP=SYS(15)I180
0040 PRINT TAN(X*P)
'RUN)
X DEGREES 45
1

END AT 0040

Format

VAL j?r})

Arguments
str litor svar is a string beginning with a number.

Remarks
1. The string variable or string literal argument to the

VAL function must begin with a number or else an
error message will be output. The number may
include digits, plus and minus signs, decimal
points, and the letter E (scientific notation). Any
nonnumeric characters which appear after the
number portion of the string are ignored. For
example:

" + 35.5E-03ABCD7N"

Substring "+35.5E-03" is returned as a numeric
value and substring "ABCD7N" is ignored.

2. Misplaced signs terminate the input scan in a
similar fashion:

"123 + 47- 17"

Substring "123" is returned as a numeric value and
"+47-17" is ignored.

Examples
'LIST)
0010 LETA$= "12345ABCD"
0020 LET B=54321
0030 LETC= VAL(A$)
0040 LETD=B + C
0050 PRINTD
•RUN)
66666

END AT 0050

End of Chapter

4-1 2 Licensed Material-Property of Data General Corporation 093-000065-08

Chapter 5
Array Manipulation

Dimensioning Arrays Matrix Manipulation Statements
are called vectors;
called matrixes. Matrix
vectors wherever the

One-dimensional arrays
two-dimensional arrays are
statements also work for
argument row is optional.

Arrays can be dimensioned by any of the following
three methods:

1. Using a DIM statement to declare the number of
elements for a vector or rows and columns for a
matrix.

2. Including the dimensions in a matrix statement.

3. Allowing a default size of 10 elements, or 10 rows
and 10 columns, by not specifying dimensions in a
DIM or matrix statement.

Please note that a matrix does not have row 0 or
column 0, and as in all BASIC arrays, matrix elements
are stored by row in ascending locations in memory.

A matrix that is dimensioned in a DIM statement is
automatically initialized to all zeros.

Matrix statements allow dimensioning and
redimensioning as long as the total number of elements
in the new dimensions does not exceed the total
number of elements of the matrix declared in the
original DIM or other matrix statement. For example:

*20 DIM A(15,14)) (210 elements in matrix
A)

*40 MAT A=CON(20,7)) (140 elements)
*60 MAT A = ZER(10,10)) (100 elements)

Statements 40 and 60, above, redimension matrix A as
well as perform matrix operations described later in this
chapter.

We cover the following categories of matrix statements
in this chapter:

• Matrix Manipulation Statements
• Matrix I/O Statements
• Matrix Calculation Statements

In addition, you will find more matrix file input/output
statements described in Chapter 6.

AOS V

RDOS V

DOS V

s V
c V
F Matrix Assignment

copies the elements of matrix mvar2 into
matrix mvarl.

Format
MAT mvarl = mvar2

Arguments
mvar is a matrix variable name.

Remarks
This is the matrix assignment statement. Matrix mvarl
will assume the identical dimensions and values of
matrix mvar2, if the storage space allocated to mvarl is
sufficient to accommodate the current dimension of
mvar2. If mvarl has not been dimensioned, it will be
dimensioned by this statement.

Examples
•LIST)
0010 DIM A (2,2)
0020 LETA(l,l)=5
0030 LETA(1,2) = 10
0035 MAT PRINT A
0040 MATB=A
0045 PRINT
0050 MAT PRINT B
•RUN)
5 10 (Matrix A)
0 0

5 10
0 0

END AT 0050

(Matrix B)

Line 40 assigns matrix B the same dimensions as
matrix A and assigns each element value in matrix A to
the corresponding element in matrix B. Therefore,
B(l,l) = 5andB(l,2) = 10.

093-000065-08 Licensed Material-Property of Data General Corporation 5-1

AOS V
RDOS V
DOS V

Zero Matrix (ZER)
sets the value of each element in a matrix
to zero.

Format
MAT m var = ZER [([rowjcol)]

Arguments
m va r is a matrix variable name.

row is the number of rows in matrix.

col is the number of columns in matrix, or number of
elements in a vector.

Remarks
1 . Use form MAT mvar = ZER for previously

dimensioned matrixes.

2 . Use the form M A T mvar = ZER [([row,]col)] if the
matrix was not previously dimensioned or if the
matrix is to be redimensioned.

3. All matrix elements are set to zero regardless of
any previously assigned values.

Examples
•L IST)
0010 DIM A (3,4)
0020 LET A (1,2)=6
0030 LET A (3,4) = 10
0040 MAT PRINT A
0045 PRINT
0050 MA T A = ZER (3,3)
0060 MAT PRINT A
•RUN)
0 6 0 0
0 0 0 0
0 0 0 10

0 0 0
0 0 0 (Matrix A after line 50.)
0 0 0

END AT 0060

In line 50, matrix A is redimensioned and all elements
are assigned a value of zero.

Unit Matrix (CON)
sets the value of each element in a matrix
to one.

Format
MAT mvar = CON [([rowjcol)]

Arguments
mvar is a matrix variable name.

row is the number of rows in matrix.

col is the number of columns in matrix, or elements in
a vector.

Remarks
1. Use the form MAT mva r = CON for previously

dimensioned matrixes.

2. Use the form MAT mvar = CON [([rowjcol)] if the
matrix was not previously dimensioned or if the
matrix is to be redimensioned.

3. All matrix elements are set to one regardless of any
previously assigned values.

Examples
•L IST)
0010 DIM A (2,5)
0020 READA(1,1),A(1,2),A(1,5)
0030 DATA 8,9,10,11,12
0040 MAT PRINT A
0045 PRINT
0050 MATA= CON(2,4)
0060 MAT PRINT A
•RUN)
8 9 0 0 10
0 0 0 0 0

1 1 1 1 (M a t r i x A a f t e r l i n e 5 0 .)
1 1 1 1

END AT 0060

In line 50, matrix A is redimensioned and all elements
of the matrix are assigned a value of one.

AOS V
RDOS V
DOS V

s V

c V

F

5 -2 Licensed Material-Property of Data General Corporation 093-000065-08

AOS V
RDOS V
DOS V

Identity Matrix (IDN)
sets each element of the major diagonal
of the matrix to one and each remaining
element to zero.

Format
MAT mvar = IDN [(frowjcol)]

Arguments
mvar is a matrix variable name.

row is the number of rows in matrix.

col is the number of columns in matrix, or elements in
a vector.

Remarks
1. The major diagonal is defined as the diagonal that

starts at the last element of the array and runs
diagonally upward until the first row or first column
is encountered.

2. Use the form MAT mvar = IDN for previously
dimensioned matrixes.

3. Use the form MAT mvar = IDN [([rowjcol)] if the
matrix was not previously dimensioned or if the
matrix is to be redimensioned.

Examples
•LIST)
0050 DIM A (4,4)
0100 MAT A = IDN
0150 MAT PRINT A
•RUN)
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

END AT 0150

•LIST)
0010 DIM B (4,3)
0015 MAT PRINT B
0020 PRINT
0025 MA TB=IDN(2,3)
0030 MAT PRINT B
•RUN)
0 0 0
0 0 0
0 0 0
0 0 0

0 10 (Matrix B after line 25.)
0 0 1

END AT 0030

093-000065-08 Licensed Material-Property of Data General Corporation 5-3

Matrix I/O Statements

MAT READ
reads values from the data list and
assigns them to the elements of the
matrix or matrixes listed in the MAT
READ statement.

Format
MAT READ mvar [([rowjcol)][,mvar[([row,]col)]]...

Arguments

mvar is a matrix variable name.

row is the number of rows in matrix.

col is the number of columns in matrix, or elements in
a vector.

Remarks

If a matrix was not previously dimensioned, you can
dimension it in a MAT READ statement.

Examples
•LIST)
0010 MA TREADM(5,6)
0020 DA TA 0,2,4,6,8,10,-9, -8, - 7,-6,-5
0030 DA TA -4,-3,-2,-1,0,1,3,5, 7,9,11
0040 DA TA . 1,0„5,7,-8,15, -15,35,41,13,18
0050 MAT PRINT M
•RUN)
0 2 4 6 8 10
-9 -8 -7 -6 -5 -4
-3 -2 -1 0 1 3
5 7 9 11 .1 0
.5 7 -8 15 -15 35

END AT 0050

Values from the data list are read into the 30-element
matrix dimensioned as 5 by 6 in the MAT READ
statement.

MAT INPUT
reads values from your terminal
assigns them to the elements of a matrix
or list of matrixes when your program is
run.

Format
MAT INPUT ["str lit",] mvar [([row,]col)]

[,mvar[([row,]co I)]]...

Arguments

mvar is a matrix variable name.

row is the number of rows in matrix.

col is the number of columns in matrix, or elements in
a vector.

str lit is a message or prompt.

Remarks

1. You can dimension or redimension a matrix with a
MAT INPUT statement.

2. You enter data values, separated by either a comma
or a carriage return, for each element of the matrix.
Terminate the list with a carriage return.

3. If you do not supply enough data to fill the matrix
before typing the carriage return, the program will
continue to request data until each element of the
matrix has been filled.

Examples
•LIST)
0010 MAT INPUT X(2,3)
0015 PRINT
0020 MAT PRINT X
•RUN)
? 2,4,6)
? 77,7,9)

2 4 6
77 7 9

END AT 0020

AOS V
RDOS V
DOS V

AOS V
RDOS V
DOS V

and

5-4 Licensed Material-Property of Data General Corporation 093-000065-08

AOS V
RDOS V
DOS •v

MAT TINPUT
reads values from your terminal and
assigns them to the elements of a matrix
or list of matrixes, within a prescribed
time.

Format
MAT TINPUT [(line [,time]),]["str lit",] mvar [([rowjcol)]
[,mvar[([rowjcol)]]...

Arguments
line is a valid statement line number.

time is a numeric expression which evaluates to an
integer and represents time, in seconds.

str lit is a message or prompt.

mvar is a matrix variable name.

row is the number of rows in matrix.

col is the number of columns in matrix, or elements in
a vector.

Remarks
The remarks for the MAT INPUT statement and the
TINPUT statement (Chapter 3) apply here to the MAT
TINPUT statement.

AOS V
RDOS V

DOS V

s V
c V
F

MAT PRINT
prints the values of the elements of a
matrix or list of matrixes to your
terminal.

Format

MAT PRINT mvar | A mvar ••• | ;|

Arguments
mvar is a matrix variable name.

Remarks
1. A matrix must be dimensioned by a DIM statement

or other matrix statement before you can use it in a
MAT PRINT statement.

2. A semicolon after a variable name in the MAT
PRINT statement indicates the matrix will be
printed in compact format. A comma or carriage
return after the variable name indicates the matrix
will be printed in zone format.

3. Column vectors (arrays) are printed one value per
line.

Examples
•LIST)
0010 DIM A(10,10)
0020 READN
0030 MA TA =CON(N,N)
0050
0060
0070
0080
0090
0130
0190
•RUN)
1
.5
.33333333

FOR 1=1 TON
FOR J=1 TON

LET A (I, J) = 1/(1 +J-1)
NEXTJ

NEXT1
MA T PRINT A
DATA 3

.5

.33333333

.25

.33333333

.25

.2

093-000065-08 Licensed Material-Property of Data General Corporation 5-5

Matrix Calculation Statements

Addition and Subtraction
perform the scalar

AOS V
RDOS V
DOS V

subtraction of two matrixes.
addition or

AOS V
RDOS 4
DOS V

Multiplication
multiplies a matrix by a numeric
expression or another matrix.

Format

MAT mvarl = mvar2 mvar3

Arguments
mvar is a matrix variable name.

Remarks
1. Matrixes mvar2 and mvar3 must have the same

dimensions.

2. Matrix mvarl may appear on both sides of the equal
sign.

3. Arithmetic is performed on an element-by-element
basis of mvar2and mvar3 with the result assigned to
the element of mvarl.

Examples
•LIST)
0010 DIM A (3,2),B(3,2),C(3,2)
0040 MAT READ B,C
0050 MAT A =B+C
0060 DATA -2,-5,3,4,.5,.1,6,4,-2,15,1.5,
0070 MAT PRINT B
0075 PR/NT
0080 MAT PRINT C
0085 PRINT
0090 MAT PRINT A
•RUN)
-2 -5
3 4
.5 .1

6
-2
1.5

4
1
2

4
15
4

- 1
19
4.1

Format
Imvar2)

MAT mvarl = \ (expr) (* mvar3

Arguments
mvar is a matrix variable name.

expr is any numeric expression enclosed in
parentheses.

Remarks
1. Matrix mvarl may not be the same as either matrix

mvar2 or mvar3 if you are multiplying the two
matrixes. Otherwise, mvarl and mvar3 can be the
same if you are multiplying by a scalar, as in the
statement:

mvarl = (expr) * mvar3

2. If two matrixes (mvar2 and mvar3) are multiplied,
the number of columns in mvar2 must equal the
number of rows in mvar3. The resultant matrix
(mvarl) will have the same number of columns as
mvar3, and the same number of rows as mvar2.

3. If a matrix is multiplied by a numeric expression, a
scalar multiplication is performed on each element
of the matrix.

4. To obtain the product of two matrixes (mvar2 *
mvar3), the elements of each row in mvar2 are
multiplied by the elements of each column in
mvar3. Each row/column set is added together to
provide the resultant value of the matrix element in
mvarl.

END AT 0090

5-6 Licensed Material-Property of Data General Corporation 093-000065-08

Examples
1. *LIST)

0001 REM-MA TR1XMUL T1PLICA TION
0010 DIM A (2,2),B(2,2)
0020 MAT READ B
0030 MAT A = (5)*B

•0040 DATA -.5,.8.1.5,-1
0050 MAT PRINT B
0055 PRINT
0060 MAT PRINT A
•RUN)
-.5 .8
1.5 -1

-2.5 4
7.5 -5

END AT 0060

2. *LIST)
0001 REM-PRODUCT OF TWO MATRIXES
0010 DIM A (3,2),B(3,2),C(2,2)
0020 MAT READ B,C
0030 MAT PRINT B
0035 PRINT
0040 MAT PRINT C
0050 MATA—B*C
0055 PRINT
0060 MAT PRINT A
00 70 DA TA 2,3,1,5,0,4,-1.-2,7,8
•RUN)
2 3
1 5
0 4

-1 -2
7 8

19 20
34 38
28 32

END AT 0070

Matrix A is calculated as shown in Figure 5-1.

[B(1,1)*C(1,1) + B(1,2)*C(2,1)]

[B(2,1)*C(1,1) + B(2,2)*C(2,1)]

[B(3,1)*C(1,1) + B(3,2)*C(2,1)]

[2*(-l) + 3*7]

= [1*(-1) + 5*7]

[0* (-l) + 4*7]

[B(l, 1) *C (1,2) + B (1,2)*C (2,2)]

[B (2,1) *C(1,2) + B (2,2) *C (2,2)]

[B(3,1) *C (1,2) + B (3,2) *C (2,2)]

[2* (-2) + 3*8] 19 20

[1 * (-2) + 5*8] = 34 38

[0* (-2) + 4*8] 28 32

Figure 5-1. Product of Two Matrixes

093-000065-08 Licensed Material-Property of Data General Corporation 5-7

AOS V
RDOS V
DOS V

s V
c V
F

Inverse Matrix (INV)
provides a matrix inversion of mvar2 and
assigns the resultant matrix element
value to mvarl.

Format
MAT mvarl INV(mvar2)

Arguments
mvar is a matrix variable name.

Remarks
1. An inverse matrix is defined such that the product

of a matrix and the inverse of the matrix is the
identity matrix (see IDN).

2. Matrix mvar2 must be a square matrix.

3. Matrixes may be inverted into themselves (i.e.,
mvarl = mvar2in the matrix INV statement).

4. If ERROR 08 - SINGULAR MATRIX results,
mvar2 is singular or nearly singular and DET(X)
will be zero. If DET(X) is very small in absolute
value relative to the elements of mvar2, the matrix
mvar2 should be considered singular or nearly
singular and the result, mvarl, should be used with
discretion.

5. The arithmetic of matrix inversion requires a
knowledge of matrix determinants and of matrix
cofactors. For further information on these
subjects, consult a mathematical text.

Examples
•LIST)
0010 DIM A (2,2)
0015 MAT READ A
0020 DATA 1,2,3,4
0030 MATA=INV(A)
0040 MAT PRINT A
•RUN)
-2 1
1.5 -.5

END AT 0040
*

This example may be analyzed as follows:

= matrix A
1 2
3 4

Then:

4 -2
-3 1

1 2

3 4

= cofactor of matrix A

= (1*4) - (2*3) = -2 = determinant of
matrix A

4 - 2 - 2 1
INV (A) = (1/-2) -3 1 = 1.5 -.5

When the original matrix is multiplied by its inverse,

1 2 -2 1
3 4 1.5 -.5

the result is the identity matrix:

1 0 I
0 1

5-8 Licensed Material-Property of Data General Corporation 093-000065-08

DOS hi |FT~
Matrix Determinant (DET)

obtains the determinant of the last matrix
inverted by an INV statement.

DOS |V I F|

Matrix Transposition (TRN)
transposes matrix mvar2 and assigns the
resultant element values to mvarl.

Format
var = DET (X)

Arguments
var is a numeric variable.

X is a dummy argument which is necessary but not
used.

Remarks
The value of the determinant calculated for the matrix
is assigned to numeric variable var.

Examples
•LIST)
0020 DIM A (2,2)
0030 MAT READ A
0040 DATA 1,2,3,4
0050 MAT PRINT A
0080 MAT A —INV(A)
0085 PRINT
0090 MAT PRINT A
0100 LETB=DET(X)
0120 PRINT
0130 PRINT "DETERMINANT= ";B
•RUN)
1 2
3 4

Format
MAT mvarl = TRN (mvar2)

Arguments
mvar is a matrix variable name.

Remarks
1. A matrix is transposed by reversing the row and

column assignments of the matrix elements.

2. Variable names mvarl and mvar2 cannot be the
same in a TRN statement.

3. The resultant matrix, mvarl, is redimensioned to
the reversed row and column dimensions of mvar2.

Examples
•LIST)
0020 DIMB(3,4)
0030 MAT READ B
0040 DA TA 4,5,7,9,0,0,0,0,1,3,5,7
0050 MAT PRINT B
0060 PRINT
0080 MATA = TRN(B)
0090 MAT PRINT A
•RUN)
4 5 7 9
0 0 0 0
I 3 5 7

4 0 1
5 0 3
7 0 5
9 0 7

END AT 0090

-2 1
1.5 -.5

DETERMINANT =-2

END AT 0130

End of Chapter

093-000065-08 Licensed Material-Property of Data General Corporation 5-9

Chapter 6
File Input and Output

File Concepts

Definition of a File
A file is a collection of related data treated as a unit.
Each file has one or more names (called filenames)
which allow both you and the system to address it.

Devices are the physical means for storing and
retrieving information. There are two distinct types of
devices:

• unit record
• multifile

Unit-record devices such as card readers, terminals,
and line printers usually transmit and/or receive only
single records; they're used for I/O, data storage, and
retrieval.

Multifile devices include magnetic tape units and disks.
As the name implies, they allow you to read and write
more than one file per device. In particular, the
flexibility of disks allows you to structure the
organization of the file so that you can randomly access
individual records for reading or writing.

A single record is the result of a single READ FILE or
WRITE FILE statement. When you specify a record
size (or use the mode 0 default record size) in an OPEN
FILE statement, the output of a WRITE FILE
statement with fewer than the specified number of
bytes will be padded with nulls to fit the size of the
record.

Output having greater than the specified number of
bytes will cause an error. If a READ FILE statement
transfers fewer bytes than the record size, the
remaining bytes in the record (including any nulls) are
passed over.

If you specify no record size, WRITE FILE does not
pad with nulls, and READ FILE does not pass over any
bytes.

DOS and RDOS Disk Filenames
Each disk file created under BASIC in a DOS or RDOS
operating system has a filename made up of one to ten
characters. Legal characters include:

A through Z
a through z (converted to uppercase by the operating

system)
0 through 9
$ (dollar sign)

In addition, you may append an optional one- or
two-character alphanumeric extension to the filename
which is separated from the filename by a period in the
form, filename.ex.

Unlike RDOS utility programs such as MAC and
RLDR, BASIC does not recognize any special
two-character alphanumeric extensions. You can create
extensions to suit your needs.

TEST.SR is a meaningful way to signify a SouRce file.

TEST.Ct could signify the Core Image file obtained by
SAVEing TEST.SR.

TEST.LS could be a LiSting file output from the
program.

AOS Disk Filenames
Each disk file created under BASIC in an AOS
operating system has a filename of 1 to 31 characters.
Legal characters include:

A through Z
a through z (converted to uppercase by the operating

system)
0 through 9
. (period)
$ (dollar sign)
_ (underscore)

093-000065-08 Licensed Material-Property of Data General Corporation 6-1

You can select any combination of legal characters to
create a filename. A few examples of legal filenames are
as follows:

FILE_NAME.NEW
SAVE.FILES.SR
LIFE.JAN.5

Unlike AOS utility programs such as MASM (the
macroassembler), BASIC does not recognize any
special alphanumeric extensions. You can create
filename extensions to suit your own needs.

TEST.SR is a meaningful way to signify a SouRce file.

TEST.CI could signify the Core Image file obtained by
SAVEing TEST.SR.

TEST.LS could be a Listing file output from the
program.

DOS and RDOS Reserved Filenames
Unit record devices and magnetic tape devices are
given special names and do not have extensions.
Devices with reserved names are listed below:

$TTIand$TTI1 Input consoles

STTOand STT01 Output consoles

$CDRand$CDR1 Punched card readers

CTn Cassette units (0 < n < 178)

$LPT and SLPT1 Line printers

MTn Magnetic tape units (0 < n < 178)

$PLT and $PLT 1 Incremental plotters (access via
assembly language subroutines; see
Appendix B)

$PTP and SPTP1 Paper tape punches

$PTR and $PTR 1 Paper tape readers

QTY :n Multiplexor consoles

For a complete list of RDOS reserved filenames, see
the RDOS CLI User's Manual.

AOS Reserved Filenames
Unit record devices and magnetic tape devices are
given special names and do not have extensions.
Devices with reserved names are listed below:

@CDR,@CDR1,... @CDRn

@CONO,@CON1 ,...@CONn

@DPnthrough @DPn17

@LPT,@LPT1,...@LPTn

©MTAOthrough ©MTA17

@MCAand @MCA1

@PLT,@PLT1,...@PLTn

@PTP,@PTP1,...@PTPn

@PTR, @PTR1 ,...@PTRn

First and succeeding
card readers.

First and succeeding
console
display/keyboards or
asynchronous
communications lines.

Moving head disk units
0 through 7 on the first
controller, and 10 octal
through 17 octal on the
second controller, n is a
single alphabetic
character indicating the
disk type. These types
are described in the AOS
System Manager's Guide.

First and succeeding line
printers.

Magnetic tape units 0
through 7 on the first
controller, and 10 octal
through 17 octal on the
second controller.

First and second
multiprocessor
communications
adaptor controllers.

First and succeeding
digital plotters.

First and succeeding
paper tape punches.

First and succeeding
paper tape readers.

6-2 Licensed Material-Property of Data General Corporation
093-000065-08

AOS V
RDOS V
DOS V

OPEN FILE
assigns a file number and access mode to
filename for future referencing in file I/O
statements in your program.

Format
OPEN FILE(file.mode), "filename" [,record size [,file size]]

Arguments
file is a numeric expression which evaluates to a
number from 0 through 7 for RDOS and DOS, 0
through 15 for AOS. BASIC uses this number to
simplify the reference to "filename" in other file I/O
statements.

mode is a numeric expression which evaluates to a
number from 0 to 3. This number specifies the access
mode of the file. The modes are described under
Remarks.

filename is a string literal or string variable which
evaluates to a filename.

record size is an optional numeric expression which
evaluates to a fixed length (in bytes) for each record in
a file, record size may be any value from 1 to 32768. In
mode 0, a default value of 128 bytes per record is
assigned.

When record size is specified (or the default record size
in mode 0 is used), if the output of a WRITE FILE
statement has fewer than the specified number of
bytes, the output will be padded with nulls until it
reaches the specified length. If the output has greater
than the specified number of bytes, an error occurs.

file size is used only in RDOS and DOS (not AOS),
and only in conjunction with record size, to create a
contiguously organized file, fde size is an optional
numeric expression, which evaluates to the maximum
number of records in the file, and thereby limits its
size.

Remarks
1. You can calculate record length as follows:

• Numeric Data

Single-precision: 4 bytes per data item
Double-precision: 8 bytes per data item

• String Data

One byte per character in string, plus one byte
for string delimiter

• Arrays

(No. of rows)*(No. of columns)*(precision)

NOTE: precision is 4 for single-precision, 8 for
double-precision.

2. Modes 0 to 3 are described as follows:

Mode 0 - Random-access file (for input and/or
output), the file is not exclusively opened. Only
disk files may be opened in random mode for
reading and writing. If the disk file named filename
does not exist in your directory, BASIC creates it.
Record length is fixed by record size or by the
default value (128 bytes).

Mode 1 - Output (creates a new file for writing).
You can open either a disk file or an appropriate
output device in mode 1. The file is exclusively
opened and only writes are permitted. If filename
already exists in your directory the previous copy is
deleted from the disk. In either case, a new file is
created (initialized with 0 length). In RDOS and
DOS only, the system does not check to insure that
only writes are used. Use the CHATR command to
prevent input use of an output file.

093-000065-08 Licensed Material-Property of Data General Corporation 6-3

AOS V

RDOS V

DOS V

OPEN FILE (continued)

Mode 2 - Output (appends to an existing file). You
can use this mode to open any file previously
opened in mode 1 or mode 2. When an existing file
is opened in mode 2, the file pointer moves to the
end of the file so that subsequent data written to
the file will extend it. If the file does not exist in
your directory, it will be created. The file is
exclusively opened, and only writes are permitted.
In RDOS and DOS only, the system does not check
to insure that only writes are used. Use the CHATR
command to prevent input use of an output file.

Mode 3 - Input (for reading only). You can open
either a disk file or appropriate input device in
mode 3. If a disk file is opened in this mode, the file
must already exist. Only reads are permitted from a
file opened in mode 3, and the file is not exclusively
opened. If the file is not found in your directory,
BASIC searches for it in the library directory.

3. Default value for the mode argument is zero.
OPEN FILE (1) is the same as OPEN FILE (1,0).

4. In RDOS and DOS you can't have a contiguous file
with variable length records.

Examples
1. *100 OPEN FILE (1,1), "NETSAK.JR")

This statement opens file 1, named NETSAK.JR, as
an output file.

2. *100 OPEN FILE (2,0), "RESSEHC.TO",20)

This statement opens the file named RESSEHC.TO
as file number 2. Mode 0 specifies random access
read or write; records are 20 bytes long.

CLOSE FILE
disassociates a filename and a file
number so that the file can no longer be
referred to and the file number can be
reused.

Format
CLOSE [FILE (file)]

Arguments
file is a numeric expression which evaluates to a file
number previously associated with a filename in an
OPEN FILE statement.

Remarks
1. You can use the CLOSE FILE statement to close a

file, and then reOPEN it with a new mode
argument.

2. The CLOSE form of the statement closes all open
files.

Examples
*100 CLOSE FILE (1))
*200 CLOSE FILE (X + 3))
*300 CLOSE)

6-4 Licensed Material-Property of Data General Corporation 093-000065-08

AOS V
RDOS V
DOS V

GPOS FILE
determines the current file pointer
position in an open file.

AOS V
RDOS V

DOS \

INPUT FILE
reads data in ASCII format from a disk
file or device.

Format
GPOS FILE (file), var

Arguments
file is a numeric expression which evaluates to a File
number previously associated with an OPEN FILE
statement.

var is the name of the variable to which BASIC will
assign the current byte position value.

Remarks
We emphasize that this statement returns the value, in
var, of the current byte position of the File pointer; this
does not necessarily coincide with the beginning of a
record position.

Examples
*10 GPOS FILE (2), B1)

Format

INPUT FILE
(file
file,record

A (var I {var I
U ,\svar(,\svarj

Arguments
file is a numeric expression which evaluates to the
number of a File opened for sequential access or for
random access.

record is a numeric expression which evaluates to the
number of a record in a File opened for random access.

var and svar are numeric variables and string variables
whose values are read from a file.

Remarks
1. The type of variable in the INPUT FILE variable

list must correspond to the data type of the
corresponding data item being read from the file.

2. The data must be formatted as for the INPUT
statement, with commas separating data items and
a carriage return at the end of a variable list.

3 The EOF function (see Chapter 4) may be used to
detect an end of file in the file that is being read.

4 The first record number in a random-access file is 0.

Examples
*40 OPEN FILE (1,3), "$PTR")
*70 INPUT FILE (1), Z,Y,X,A$,B$)

093-000065-08 Licensed Material-Property of Data General Corporation
6-5

AOS V

RDOS V
DOS V

LREAD F ILE
reads a string from a record, in either a
random- or sequential-access file, which
has a null, form feed, or carriage return
(new-line) terminator.

Format

LREAD FILE I file
I file,record i

,svar [,svar']

Arguments
file is a numeric expression which evaluates to a File
number previously associated with an OPEN FILE
statement.

record is a numeric expression which evaluates to the
number of a record in a file opened for random access.

svar is a string variable to which BASIC assigns the
value of the string read from the file.

svar' is a string variable to which BASIC assigns the
value of the delimiter for the string read. Valid
delimiters are null, form feed, and carriage return
(new-line).

Remarks
1. The maximum string length allowed for svar is 133

characters, which includes the delimiter. If the
record read is longer than 133 characters, BASIC
will set the length of svar1 to 0, and truncate the
value of svar at 133 characters.

2. If the record read is shorter than 133 characters,
then the length of svar' is 1, and svar' contains the
delimiter.

3. The number of the first record in a random-access
file is 0.

4. You can use the EOF function to detect the end of
the file you're reading.

Examples

•LIST)
0010 DIMA$(60)
0020 REM THIS ROUTINE USES FILE TESTFILE1 CREA TED
0030 REM FOR THE LWRITE FILE EXAMPLE.
0040 OPEN FILE (0,0), "TESTFILE1'50
0050 FOR 1=1 TO 5
0060 LREAD FILE (0,1), A$,B$
0065 PRINT B$
0070 PRINTAS
0080 NEXT I
0090 CLOSE
•RUN)

MONDAY

TUESDA Y

WEDNESDA Y

THURSDA Y

FRIDA Y

EN DAT 0090

6-6 Licensed Material-Property of Data General Corporation 093-000065-08

AOS 4
RDOS 4
DOS <

s 4
c 4
F

LWRITE FILE
writes a string to a record into either a
random- or sequential-access file.

Format

LWRITE FILE Jfile i
Ifile,record |

svar [,svar']

Arguments
file is a numeric expression which evaluates to a file
number previously associated with an OPEN FILE
statement.
record is a numeric expression which evaluates to the
number of a record opened for random access.

svar is a string variable whose value BASIC writes to a
file.

svar' is a string variable which contains the value of

Remarks
1. The LWRITE statement is especially useful for

creating records with nonstandard delimiters, or
records in small pieces to be read later in larger
chunks.

2. If you include svar1 in the argument list, and set its
length to one, then BASIC assumes svar1 is one of
the valid delimiters, and will output it as the string
terminator.

3. If you set the length of svar1 to zero, then no
delimiter will be output.

4. If you don't include svar1 in the argument list, then
a null will be output as the string terminator.

the delimiter for the string written.

Examples

•LIST}
0010 DIMA$(60)
0020 LETZ$= " < 13 > "
0030 LET A$= "MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY "
0040 OPEN FILE (0,0),' 'TESTFILE1 ",50
0050 LET A = 1
0060 LET J=10
0070 LETK=10
0080 FOR 1=1 TO 5
0090 L WRITEFILE(0,I),A$(A,J),Z$
0100 PRINT A$(A,J)
0110 LET A =A +K
0120 LETJ=J+K
0130 NEXT I
0140 CLOSE
•RUN}
MONDA Y
TUESDA Y
WEDNESDA Y
THURSDA Y
FR1DA Y

EN DAT 0140

093-000065-08 Licensed Material-Property of Data General Corporation
6-7

AOS
RDOS V
DOS V

MAT INPUT FILE
reads a record of matrix data in ASCII
format from a file.

IllUord •"»»»«•

Format

MAT INPUT FILE

Arguments
file is a numeric expression which evaluates to the
number of a file opened for sequential or random
access.

record is a numeric expression which evaluates to the
number of a record in a file opened for random access.

mvar is a matrix array whose values are read from a
record in a sequential- or random-access file.

Remarks
1. Previously dimensioned matrix arrays may be listed

in the statement by name only. Matrix arrays which
have not been dimensioned must be dimensioned
in the MAT INPUT FILE statement.

2. Data items are read from the file sequentially and
are assigned to the array elements by row.

3. Data items in the file must be separated by a
comma or carriage return.

4. The EOF function may be used to detect an end of
file in the file that is being read.

5. The first record in a random-access file is 0.

Examples
*05 DIM Y(7,6),Z(13,2))
*10 OPEN FILE (2,3), "XX.AA")
*50 MAT INPUT FILE (2),X(5,5),Y,Z)

AOS V
RDOS \

DOS V

s V
c V
F

MAT PRINT FILE
writes a record of matrix data in ASCII
format into a sequential file or
random-access file.

Format

MAT PRINT FILE file)
(file,record! f.mvar

Arguments
file is a numeric expression which evaluates to the
number of a file opened for sequential or random
access.

record is a numeric expression which evaluates to the
number of a record in a file opened for random access.

mvar is a matrix whose values are written into a record
of a random- or sequential-access file.

Remarks
1. This statement is intended for outputting to an

ASCII device such as a line printer, or to a disk file
for off-line printing.

2. The MAT INPUT FILE statement cannot be used
to input data which was output by MAT PRINT
FILE, because the MAT PRINT FILE statement
does not output delimiters between matrix
elements. Use the MAT WRITE FILE statement to
output data that will later be re-input using the
MAT READ statement.

3. If you use a semicolon after a matrix variable in the
MAT PRINT FILE statement, rather than a
comma or carriage return, it indicates that the
matrix which immediately precedes the semicolon
is printed in compact format rather than zone
format.

4. The first record number in a random-access file is 0.

Examples
'05 DIM B(20,20))
*10 OPEN FILE (0,1),"NUHROK")
*20 MAT PRINT FILE (0), B)

6-8 Licensed Material-Property of Data General Corporation 093-000065-08

AOS V
RDOS V
DOS V

MAT READ FILE
reads a record of data in binary format,
for the elements of matrix arrays, from a
sequentially-accessed file or from a
randomly-accessed file.

Format

MAT READ FILE (file \
I file, record! , mvar [,mvar]...

Arguments
file is a numeric expression which evaluates to the
number of a file opened for random access or for
sequential access.

record is a numeric expression which evaluates to the
number of a record in a file opened for random access.

mvar is a matrix which is assigned values read
sequentially from a randomly-accessed record or
sequentially-accessed record.

Remarks
1. The number of the first record in a random-access

file is 0.

2. Previously dimensioned matrix arrays may be listed
in the statement by name only. Matrix arrays which
have not been dimensioned must be dimensioned
in the MAT READ FILE statement.

3. In random-access files, records which have not
been written into will contain all zeros when read.

4. Data items are read from the record sequentially
and are assigned to the array elements by row.

5. The EOF function may be used to detect an end of
file in the file that is being read.

6. The amount of data to be read must not exceed the
record size specification for files OPENed for
random access.

AOS V
RDOS V
DOS *

MAT WRITE FILE
writes a record of matrix data in binary
form into a sequential-access file or a
random-access file.

Format

MAT WRITE FILE !
!!|e -A) > mvar [,mvar]...
file.record j /

Arguments
file is a numeric expression which evaluates to the
number of a file opened for random access or for
sequential access.

record is a numeric expression which evaluates to the
number of a record in a file opened for random access.

mvar is a matrix whose values are written into a record
of a random-access file or a sequential-access file.

Remarks
1. The number of the first record in a random-access

file is 0.

2. Matrix arrays listed in the MAT WRITE FILE
statement must be previously dimensioned.

Examples
*50 OPEN FILE (0,1), "AAA")
*80 MAT WRITE FILE (0),B,C,X)

Examples
10 DIM A(7,3), B(1 2,7)}
30 OPEN FILE (1,3), "MATRIXA")
40 MAT READ FILE (1), A, B, C(3,4), D(5))

093-000065-08 Licensed Material-Property of Data General Corporation 6-9

AOS V
RDOS V
DOS V

PRINT FILE
writes data in ASCII format into a
sequential- or random-access file.

Format

Arguments
file is a numeric expression which evaluates to the
number of a file opened for sequential or random
access.
record is a numeric expression which evaluates to the
number of a record in a file opened for random access.

expr, var, svar, and str lit... make up a list of one or
more numeric expressions, numeric variables, string
variables, and string literals, whose values are written
into a file.

Remarks
1. This statement is intended for outputting to an

ASCII device such as a line printer, or to a disk file
for later off-line printing.

2. Each item in the expression list must be separated
from the next by a comma, semicolon, or carriage
return. Output formatting is identical to that
discussed in Remarks pertaining to the PRINT
statement.

3. If the data written by PRINT FILE is to be
subsequently read as numeric data by an INPUT
FILE statement, then it is necessary to print the
comma (data separator) as a string literal between
expressions as shown in line 300 of example 1
below.

4. The first record number in a random-access file is 0.

Examples
1. *010 OPEN FILE(3,1), "$LPT")

*100 PRINT FILE(3),"OUT6")
*200 PRINT FILE(3),"X = ";X,"X SQUARED = ";Xj2)
*300 PRINT FILE(3),A;",";B;",";C)
*400 CLOSE)

2. *010 OPEN FILE(3,1), "$LPT", 80)
*100 FOR I = 1 TO 10000)
*110 PRINT FILE(3),l;)
*120 NEXT I)
*130 CLOSE)

PRINT FILE USING
outputs the values of the expressions in
the PRINT FILE USING statement to a
previously OPENed file in the format
specified.

Format

PRINT(FILE(file [>rec°rd]),USING format,expr [.expr]-

Arguments
file is a numeric expression which evaluates to the
number of a previously opened file (see PRINT FILE).

record is a numeric expression which evaluates to the
number of a record in a file.

format is a string literal or string variable which
specifies the output format (see Remarks) for items in
the expr list.

expr... make up a list of one or more numeric
expressions, numeric variables, string variables, and
string literals whose values will be written into a file.

Remarks
The remarks listed for the PRINT FILE statement and
the argument descriptions in the PRINT USING
statement (Chapter 3) all apply to the PRINT FILE
USING statement.

AOS V
RDOS V
DOS V

6-10 Licensed Material-Property of Data General Corporation 093-000065-08

AOS V
RDOS V
DOS V

READ FILE
reads data in binary format from a
sequentially-accessed file or a
randomly-accessed file.

Format

READ FILE I ' file |
I file, record (

(var I
|svar(

j var |

Arguments
file is a numeric expression which evaluates to the
number of a file opened for random or sequential
access.

record is a numeric expression which evaluates to the
number of a record in a file opened for random access.

var and svar are numeric variables and string variables
which are assigned values read sequentially from a
randomly-accessed or sequentially-accessed record.

Remarks
1. The type of variable in the READ FILE variable list

must correspond to the data type of the
corresponding data item being read from the
record.

2. The number of the first record in a random-access
file is 0.

3. In random-access files, records which have not
been written into will contain all zeros when read.
An attempt to read a record which is after the last
record written will cause an end-of-file condition. A
RESET FILE can be used to continue processing.

4. The EOF function (see Chapter 4) may be used to
detect an end-of-file condition in the file that is
being read.

Examples
•LIST)
0001
0005
0010
0020
0030
0040
0050
0060
0070
0080
0090
•RUN)

REM-READ FILE
TAB =10
DIM B (3,4)
OPENFILE(1,0), "TESTF1LE",20
FOR 1 = 1 TO 12

LET ll=INT((I-l)/4) +1
LET J1 =I-(4*(I1-1))
READ F1LE(1,D.B(I1,J1)

NEXT I
MAT PRINT B
CLOSE

36 33 30 27
24 21 18 15
12 9 6 3

END AT 0090

NOTE: This program uses the file TESTFILE which
was created in the program example provided
with the WRITE FILE statement.

093-000065-08 Licensed Material-Property of Data General Corporation 6-11

AOS V
RDOS V
DOS V

RESET FILE
positions the file pointer to the
beginning of a file.

Format
RESET [FILE (file)]

Arguments
file is a numeric expression which evaluates to a file
number previously associated with an OPEN FILE
statement.

Remarks
1. You can use the RESET FILE statement to reset

the position of the file pointer to the beginning of a
file without having to CLOSE and reOPEN the file.

2. The RESET (without file) form of the statement
repositions the file pointers for all open files in your
program to the beginning of their files.

Examples
•ENTER"RESET")
•LIST)
0010 DIMB(3,4)
0020 OPEN FILE (1,0), "TESTFILE",20
0030 FOR 1=1 TO 12
0040 LET 11 =INT ((1-1) 14) A-1
0050 LET J1 =l-(4*(ll-l))
0060 READ FILE (1,1),B(I1,J1)
0065 NEXT1
0070 GPOSFILE (1),B1
0080 PRINTBl;
0086 RESET FILE (1)
0087 GPOSFILE (1),B1
0088 PRINTB1
0090 CLOSE
0095 PRINT
0100 MAT PRINT B

SPOS FILE L .
moves the file pointer to the byte
position specified by expr.

Format
SPOS FILE (file),expr

Arguments
file is a numeric expression which evaluates to a file
number previously associated with an OPEN FILE
statement.

expr is a numeric expression which evaluates to the
number of a byte position in a file.

Remarks
We emphasize that this statement moves the file
pointer to a byte position, and not necessarily to a
record position. Therefore, you must be certain that
the value of expr is indeed the calculated position you
intend to place the file pointer.

Examples
•100 SPOS FILE (1) , 1 + 132)

AOS V
RDOS V
DOS V

•LIST "RESET")
TYPECR TO DELETE OLD:
•RUN)
2480

36 33 30 27
24 21 18 15
12 9 6 3

END AT 0100
•AUDIT)

6-1 2 Licensed Material-Property of Data General Corporation 093-000065-08

AOS V
RDOS V
DOS V

WRITE FILE
writes a record of data in binary format
into a sequential-access file or a
random-access file.

Format

WRITE FILE file
• file, record)

(expr expr
) var

'
var

| svar t svar
["str lit" "str lit"

Arguments
file is a numeric expression which evaluates to the
number of a file opened for random or sequential
access.

record is a numeric expression which evaluates to the
number of a record in a file opened for random access.

expr, var, svar, and str lit... form a list of one or more
numeric expressions, numeric variables, string
variables and literals whose values are written as a
record into a sequential-access file or a random-access
file.

Remarks
1. The first record number in a random-access file is 0.

2. Data files you created using WRITE FILE
statements can be accessed by READ FILE
statements but not by INPUT FILE statements.

Examples
•LIST)
0001 REM-FILE WRITE
0010 DIM A (3,4)
0020 FOR 1=1 TO 3
0030 FOR J= 1 TO 4
0040 LET A (I, J) = ((1-1) *4 +J) *3
0050 NEXTJ
0060 NEXTI
0070 MAT PRINT A
0080 PRINT
0090 OPEN FILE (1,0), "TESTFILE",20
0100 FOR 11 = 1 TO 3
0110 LET 1=4-11
0120 FOR J1 = 1 TO 4
0130 LET J=5-Jl
0140 LETR = (3-1) *4 + (5-J)
0150 WRITE F1LE(1,R),A (I, J)
0160 PRINT A (I,J),
0170 NEXT J1
0180 PRINT
0190 NEXTII
0200 CLOSE
•RUN)
3
15
27

36
24
12

END AT 0200

6 9 12
18 21 24
30 33 36

33 30 27
21 18 15
9 6 3

End of Chapter

093-000065-08 Licensed Material-Property of Data General Corporation 6-13

Appendix A
Error Messages

Extended BASIC error messages are printed as
two-digit codes, followed by a brief explanatory
message. The following categories of errors may occur
when operating BASIC.

1. Errors recognized by BASIC during program input
(Table A-l).

a. If an error is detected in a statement input from
a terminal, the error message refers to the last
statement typed.

b. If the statement in error was input from a file or
other input device, BASIC prints the incorrect
statement followed by the error message.

c. All syntax errors are recognized during
program input.

d. The form of the error message is:

ERROR xx text

where:

xx is a two-digit decimal error code,

text is a brief description of the error.

2. Runtime errors (except file I/O) (Table A-l).

BASIC system runtime errors cause printout of an
error message in the following form:

ERROR [xxATyyyy] text

where:

xx is a two-digit decimal error code.

yyyy is the line number at which the error
occurred, if used in a statement.

text is a brief description of the error.

3. RDOS/DOS Extended BASIC File I/O errors
(Table A-2).

The format for file I/O error messages is as follows:

I/O ERROR xx [A Tyyyy] text

where:

xx is a two-digit decimal error code.

yyyy is the line number at which the file I/O error
occurred, if used in a statement.

4. AOS Extended BASIC File I/O errors. Please refer
to the AOS Programmer's Reference Manual,
Appendix A, for I/O error messages.

093-000065-08 Licensed Material-Property of Data General Corporation A-1

Table A-1. BASIC Error Messages

Code AOS Text RDOS/DOS Text Meaning

00 INVALID OPERATOR FORMAT Unrecognizable statement format.

01 CHARACTER NOT RECOGNIZED CHARACTER Illegal ASCII character or unexpected
character.

02 ILLEGAL STATEMENT SYNTAX SYNTAX Invalid syntax or argument type.

03 DATA TYPES DON'T MATCH READ/DATA TYPES READ specifies different data type
than DATA statement.

04 HARDWARE OR SOFTWARE FAULT SYSTEM Hardware or software malfunction.

05 MISSING OR ILLEGAL LINE NUMBER LINE NUMBER Statement number not in the range 1
< = n < = 9999.

06 348 VARIABLES HAVE ALREADY BEEN
DEFINED

EXCESSIVE VARIABLES Attempt to declare too many variables.

07 KEYWORD NOT VALID AS COMMAND COMMAND Attempt to execute an illegal
command.

08 SINGULAR MATRIX - CANNOT BE
INVERTED

SINGULAR MATRIX Attempt to invert a singular matrix.

09 FILE CANNOT BE LOADED - WRONG
REVISION

Core image file incompatible with
system.

10 ILLEGAL ATTRIBUTE ATTRIBUTE Attempt to assign an illegal attribute to
a file.

11 UNMATCHED PARENTHESIS PARENTHESIS Parentheses in an expression are not
paired properly.

12 MANTISSA OVERFLOW Hardware or software malfunction.

13 ARITHMETIC UNDERFLOW Result of arithmetic expression is too
small.

14 PROGRAM OVERFLOW PGM OVFL Not enough storage to ENTER source
program.

15 END OF DATA END OF DATA Not enough DATA arguments to
satisfy READ.

16 ARITHMETIC ARITHMETIC Value too large or too small to
evaluate; or a divide by 0.

17 ARITHMETIC OVERFLOW Result of arithmetic expression too
large.

18 GOSUB NESTING GOSUB NESTING More nested GOSUBs than specified
at BASIC system generation.

19 RETURN-NO GOSUB RETURN-NO GOSUB RETURN statement encountered
without a corresponding GOSUB.

20 FOR NESTING FOR NESTING More nested FORs than specified at
BASIC system generation.

A-2 Licensed Material-Property of Data General Corporation 093-000065-08

21

22

23

24

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

•000065-1

Table A-1. BASIC Error Messages (continued)

AOS Text

FOR - NO NEXT

NEXT-NO FOR

DATA OVERFLOW

ATTEMPT TO DIVIDE BY ZERO

FEATURE NOT AVAILABLE

(not used)

ILLEGAL FILE NUMBER

UPWARD RE-DIMENSION

EXPRESSION IS TOO COMPLEX FOR
EVALUATION

MODE

SUBSCRIPT OUT OF BOUNDS

UNDEFINED FUNCTION

FUNCTION NESTING

FUNCTION ARGUMENT

LLEGAL MASK

DANNOT EXECUTE COMMANDS NOW

JSER ROUTINE NOT FOUND

not used)

'UPLICATE MATRIX

MATRIXES ARE NOT THE SAME SIZE

NDIMENSIONED VARIABLE

tot used)

RDOS/DOS Text

FOR - NO NEXT

NEXT-NO FOR

DATA OVFL

DIRECTORY EMPTY

OPTION

(not used)

FILE NUMBER

DIM OVFL

EXPRESSION

ILLEGAL FILE MODE

SUBSCRIPT

UNDEFINED FUNCTION

FUNCTION NESTING

FUNCTION ARGUMENT

ILLEGAL MASK

NO COMMANDS NOW

USER ROUTINE

(not used)

DUP MATRIX

MATRIXES SIZES

UNDIMENSIONED VARIABLE

(not used)

Meaning

Unexecutable FOR-NEXT loop; FOR
without a NEXT.

NEXT statement encountered without
a corresponding FOR.

Not enough storage left to assign space
for variables.

Attempt to divide by 0.

No files in your directory.

Feature specified not available.

Invalid file designation in an I/O
statement.

An array or string exceeds its original
dimensions.

An expression is too complex for
evaluation.

Invalid mode designation in an I/O
statement.

Subscript exceeds array's dimensions.

Attempt to use a function never
defined by DEF.

User function nesting exceeds BASIC
systems generation specification.

Argument range out of bounds.

PRINT USING format is illegal.

An ENTERed file has a command
instead of a statement.

CALL statement specifies a user
routine not in storage.

Same matrix appears on both sides of a
MAT multiply or the transpose
statement.

Matrixes have different sizes.

Attempt to use an undimensioned
matrix.

Licensed Material-Property of Data General Corporation A-3

Table A-1. BASIC Error Messages (continued)
1 Code AOS Text RDOS/DOS Text Meaning

43 MATRIX NOT SQUARE MATRIX NOT SQUARE Attempt to invert a nonsquare matrix.

44 (not used) (not used)

45 DATA IS GREATER THAN SPECIFIED
RECORD SIZE

DATA > LRECL Logical record length limit exceeded.

46 MORE DATA SUPPLIED THAN
REQUESTED

INPUT Too many responses to [MAT]
INPUT.

47 CHECKSUM (not used) File did not load correctly.

48 NOT A CORE IMAGE FILE (not used) A filename not created by SAVE was
specified in a LOAD, RUN, or
CHAIN command.

49 (not used) NO ROOM FOR DIRECTORY A FILE or LIBRARY command
cannot find 256 words in your program
storage area to read the disk directory.

50 (not used) (not used)

51 (not used) USER NOT ACTIVE Attempt to send message to an
inactive or nonexistent user.

52 (not used) USER IN NOMSG STATE Attempt to send message to user
whose terminal is in NOMSG state.

53 (not used) (not used)

54 GENERATED STATEMENT IS
GREATER THAN 132 BYTES

STATEMENT LENGTH A statement exceeded 132 characters
in either internal or ASCII format,
when expanded.

55 EXECUTE-ONLY EXECUTE-ONLY Attempt to examine a program
originating from a file with the
execute-only attribute.

56 RANGE RANGE Attempt to refer to a random record
beyond 262,144.

57 (not used) (not used)

58 INCOMPATIBLE CORE IMAGE FILE INCOMPATIBLE CORE IMAGE Attempt to LOAD a core image file
SAVEd under a different version of
BASIC.

59 ZERO STEP ZERO STEP FOR-NEXT with step 0.
60 KEYBOARD RESPONSE NOT IN TIME TIME-OUT Timed input decremented to 0.

61 INVALID DECIMAL STRING INVALID DECIMAL STRING Attempt to perform string arithmetic
with nonnumeric characters.

62

63

64

STRING ARITHMETIC OVERFLOW

(not used)

(not used)

STAR OVFL

(not used)

SYSTEM ACTIVE

The result of string arithmetic requires
more than 18 digits for precision
representation.

Attempt by system manager to
execute a BYE command while people
were still on system.

A-4
Licensed Material-Property of Data General Corporation

093-000065-08

Table A-2. RDOS/DOS Extended BASIC File I/O Error Messages

Code Text Meaning

01 ILLEGAL FILENAME A to Z, 0 to 9 and $ are only valid characters.

02 ILLEGAL SYSTEM COMMAND Command not defined in operating system.

03 ILLEGAL COMMAND FOR DEVICE INIT "$PTR", WRITE to $CDR, etc.

04 NOT A CORE IMAGE FILE File not in SAVE format.

06 END OF FILE Attempt to read beyond EOF marker.
°7

READ PROTECTED FILE Attempt to read from a read-protected file.

08 WRITE PROTECTED FILE Attempt to write to a write-protected file.

09 FILE ALREADY EXISTS Attempt to create an existent file.

10 FILE NOT FOUND Attempt to refer to a nonexistent file.

"
PERMANENT FILE Attempt to alter a permanent file.

12 ATTRIBUTE PROTECTED Attempt to change file attributes when file is protected with RDOS
attribute A.

13 FILE NOT OPENED Attempt to refer to an unopened file.

14 SWAPPING DISK DATA CHECK Disk error on swapping file.

15 REVISION CHECK Object file of LOAD or CHAIN not created by this revision of
BASIC.

16 CHECKSUM Disk error.

17 CHANNEL NOT AVAILABLE Open two files with the same file number, or attempt to open too
many files. Operating system file pool overflowed.

18 LINE LIMIT Line limit exceeded on read or write line.

20 PARITY Parity error on read line.

23 NO FILE SPACE Out of disk space. Delete files to make more room.

24 READ ERROR File read error.

25 SELECT STATUS Unit not ready or is write-protected.

29 DIFFERENT DIRECTORIES Files specified on different directories.

30 ILLEGAL DEVICE CODE Device not in system or illegal device code.

31 ILLEGAL OVERLAY This is an unexpected system software error. If it occurs, please notify
your local Data General representative.

37 DEVICE ALREADY INITIALIZED Device already INITed.

38 INSUFFICIENT CONTIGUOUS BLOCKS Insufficient number of free contiguous disk blocks. Reorganize
partition.

093-000065-08 Licensed Material-Property of Data General Corporation A-5

Table A-2. RDOS/DOS Extended BASIC File I/O Error Messages (continued)

Code Text Meaning

41 NO MORE DOB'S Attempt to open more devices or directories than are configured in
the operating system.

42 ILLEGAL DIRECTORY SPECIFIER Illegal directory specifier.

43 UNKNOWN DIRECTORY SPECIFIER Directory specifier unknown.

44 DIRECTORY TOO SMALL Directory is too small (operator only). Minimum directory size is 48
blocks.

45 DIRECTORY DEPTH Directory depth exceeded (operator only).

46 DIRECTORY IN USE Attempt to release a directory in use by another program.

47 LINK DEPTH Link depth exceeded.

48 FILE IN USE Contact System Operator if file is in your directory.

52 FILE POSITION Attempt to read out of bounds.

54 DIRECTORY NOT INITIALIZED Directory/device not initialized.

58 DIRECTORY SHARED No file space left.

69 DISK IS FULL No file space left.

End of Appendix

A-6 Licensed Mate rial-Property of Data General Corporation 093-000065-08

Appendix B
Calling an Assembly Language

Subroutine from Extended BASIC

You can call a subroutine written in assembly language
Extended BASIC program. The format of the

dASIC. call is:

CALL sub# [, A i , A „ J

Where:

sub# is a numeric expression evaluating to a positive
integer (in the range 0 to 32767) representing the
subroutine number.

Ah An are optional arguments to be passed to the
subroutine (wmust be in the range 1 to 8) and may be
arithmetic variables or expressions, or string variables
or expressions. Dimensioned numeric variable names
should include subscripts. (Statement numbers are not
permitted as arguments.)

Character String Storage and
Definitions

You must refer to the following information if you wish
L°™!e character strings in a CALLed subroutine.
BASIC keeps a count of the number of characters
currently defined in each string variable (referred to as
the current length of the string variable). The current
length is stored as part of the header immediately
preceding the contents of each string variable. (See
Figure B-l.) The current length must be updated each
time characters are added to or taken away from the
string variable.

Current length

Character

CL

C, c2

c3 c4

c5 C6

Increasing memory
addresses

SD-01059

Figure B-l. String Variable Storage

In the following examples, assume that A$ is
dimensioned to 10, and A$ = "ABCDE". The current
length of A$ is 5.

A substring is any contiguous part of a string variable
For example:

A$(2,4) and A$ are substrings of A$

The current length of a substring is the number of defined
characters within the substring. For example the

o l6ngth °f A$(4 '7) is 2 ' if on 'y a$W,4) and
AS(5,5) are defined.

The maximum length of a substring is the number of
character positions within the substring. For example
the maximum length of substring A$(4,7) is 4.

Linking the Assembly Language
Subroutine

Improper use of assembly language subroutines,
system calls, or task calls can crash the system.

Assembly language subroutines must be submitted to
the System Manager at system load time The
subroutines in a file named SBRTB.RB are input to the
relocatable loader when the BASIC system save file is
created. You must include a subroutine table with your
!DD r£UtmeS ' The table must have the entrV Point oBRTB.

The subroutine table is a list of all assembly language
subroutines available to a BASIC program. For each
assembly language subroutine, a four-word list is
required in the table containing the following:

• subroutine number
• subroutine entry point
• number of arguments
• argument control word

You terminate the table by using a subroutine number
of -1.

The argument control word is used by BASIC to check
runtime errors on the types of arguments. The control
word is divided into eight two-bit fields for the eight
possible arguments A, ...A,. The value of the two-bit
field determines the allowable argument.

093-000066-08
Licensed Material-Property of Data General Corporation

B - 1

00 argument may be any string expression
01 argument must be a string variable
10 argument may be any numeric expression
11 argument must be a numeric variable

The argument control word is written in an assembly
language program such that the arguments are
connected by a plus (+) sign and are described as
shown in Figure B-2.

argument Ai argument A2 argument As

3B1 + 3B3 + 2B5

/A A A
octal value
of bit field
(3 = numeric
variable)

bit field
0,1

bit field
2,3

bit field
4,5

SD-1060

Figure B-2. Argument Control Word

If you use an argument to return a value to the calling
program, you must set the argument's flags to either a
01 (for string) or 11 (for numeric).

BASIC calls the assembly language subroutines by the
sequence:

LDA

JMP

ADLST

2, .+ 2

<SUB >

AC2 POINTS TO TOP
OF ADDRESS LIST
JMP TO ASSEMBLY
LANGUAGE SUBROUTINE

ADLST: <arg A1 >
<arg A2>

If A „ is a substring of a string variable, the address list
contains the address of the string descriptor words that
contain the following information:

word 1 byte address of the First character of the
substring

word 2 current length of the substring

word 3 maximum length of the substring

word 4 word address of the current length of the
string variable

If A n is a string expression, the address list contains the
address of the string descriptor words that contain the
following information:

word 1 byte address of the first character of the string

word 2 length of the string

If A „ is a numeric variable, the address list contains the
storage address of the variable. (All numeric variables
are represented in standard floating-point format.)

If A „ is a numeric expression, the address list contains
the storage address of the value of the expression.

The following example shows legal and illegal calls to a
subroutine, the subroutine table, and the subroutine
itself. The argument list in a BASIC call to this
subroutine must match the argument control word
specified in the subroutine table.

An illegal CALL will result from an attempt to pass a
variable in the CALL that does not have a previously
assigned value. All variables passed in the CALL must
have been assigned values even if their current value
will not be used in the CALLed subroutine.

<arg An>
JMP BASIC ;RETURN TO BASIC

INTERPRETER

Several subroutines are available in BASIC to help you
manipulate numbers and character strings. The
pointers to the routines are in page zero and should be
declared as displacement externals.

B-2 Licensed Material-Property of Data General Corporation 093-000065-08

F S U B R O U T I N E T A B L E

. T I T L E S B R T B } B A S I C A S S E M B L Y L A N G U A G E S U B R O U T I N E S

. E N T S B R T B , * E N T R Y P O I N T : S B R T B

. N R E L ; N O R M A L R E L O C A T A B L E C O D E

S B R T B ! 1 S U B R O U T I N E N U M B E R
S U B 1 S U B R O U T I N E E N T R Y P O I N T
2 N U M B E R O F A R G U M E N T S
3 B 1 + 3 B 3 A R G U M E N T C O N T R O L W O R D , B O T H A R G S A R E

N U M E R I C V A R I A B L E S
" 1 E I N D O F T A B L E

S U B 1 :
; C A L L I N G S E Q U E N C E • • C A L L 1 , A , B
; T H I S R O U T I N E I S T H E E Q U I V A L E N T O F L E T B = A
} T H I S R O U T I N E I S N O T R E E N T R A N T

S T A It R E T ; S A V E A D D R E S S L I S T
L D A 3 , 0 , 2 ; A D D R E S S O F A R G 1
L D A 3 , 0 , 3 J W O R D 1 O F A R G 1
L D A 2 , 1 , 2 > A D D R E S S O F A R G 2
S T A 3 , 0 , 2 W O R D 1 O F A R G 1 T O W O R D 1 O F A R G 2
L D A 2 , R E T A D D R E S S L I S T
L D A 3 , 0 , 2 A D D R E S S O F A R G 1
L D A 3 , 1 , 3 W O R D 2 O F A R G 1
L D A 2 , 1 , 2 A D D R E S S O F A R G 2
S T A 3 , 1 , 2 W O R D 2 O F A R G 1 T O W O R D 2 O F A R G 2
L D A 3 , R E T A D D R E S S L I S T = R E T U R N A D D R E S S - 2
J M P 2 , 3 R E T U R N T O B A S I C (2 = N O . O F A R G S)

R E T ! . B L K 1
. E N D

Figure B-3. Example of an Assembly Language Subroutine

093-000065-08 Licensed Material-Property of Data General Corporation B-3

The following routines are helpful when linking your assembly language subroutines. In systems having
floating-point hardware, the floating-point number is stored and returned in the Floating-Point
Accumulator (FPAC) rather than in AC0-AC1.

Routines Result

.FIX Converts floating-point
number in AC0-AC1 (or
floating-point ACO in the
case of hardware
floating-point support) to
an integer in ACO-AC 1. If
there is overflow, the
largest possible integer is
returned in AC0-AC1. Bit
0 of ACO is the sign of the
number. Bit 0 of AC1 is a
significant bit. There are
two returns from .FIX:

return 1: overflow
return 2: OK

.FLOT Converts an integer in
AC0-AC1 to
floating-point format in
AC0-AC1.

.ADDF F0 + F1 Arithmetic routines to
SUBF F0-F1 perform floating-point

.MPYF F0*F1 add, subtract, multiply,
DIVF F0/F1 divide. In each routine,

ACO-AC 1 initially
contains the floating-point
value of F1 and AC2
contains the address of the
value of FO. The result is
returned in AC0-AC1.

Underflow returns a zero
result; overflow results in
error number 16.

Routines Result

.MPY A1 *A2 A0,A1

.MPYA A0+A1 *A2 A0,A1
In the integer multiply
routines, AC1 contains
the unsigned integer
multiplicand and AC2
contains the unsigned
integer multiplier. The
result is a double length
product with high-order
bits in ACO and low-order
bits in AC1. Contents of
AC2 are unchanged. The
difference between the
routines is that .MPYA
adds the result of the
multiplication to the
contents of ACO.

.DVD (A0,A1)/A2 A1,A0

.DVDI A1/A2 A1.A0
In the integer divide
routines the dividend is an
AC1 (single-length) or in
ACO and AC1
(double-length with
high-order bits in ACO).
The divisor is in AC2 and
the result is left with the
quotient in AC1 and the
remainder in ACO.
Contents of AC2 are
unchanged.

End of Appendix

B-4 Licensed Material-Property of Data General Corporation
093-000065-08

Appendix C
Programming on Mark-Sense Cards

You may write BASIC programs on Data General's
Extended BASIC mark-sense programming cards for
input to the mark-sense card reader.

You may mark a stack of cards to include an entire
BASIC program, and input your stack to the card
reader as a batch job. Your system manager will know
about any special cards your system may require.

The mark-sense reader has an option which permits
either markings or punches. With this option, you may

punch mark-sense cards. Marked and punched cards
may be intermixed in a deck; a single card may be both
marked and punched. You must use a No. 2 pencil to
mark cards.

A Data General Extended BASIC mark-sense card has
37 columns, as' shown in Figure C-l. The first four
columns assign statement numbers; the next three
assign the BASIC statement keyword. A single BASIC
statement or part of a statement may be written on each
card.

0 STATENOT
Q UMBO!

STATEMENT

0 STATENOT
Q UMBO!

LET 1] phnt|] BMQ 0 STATENOT
Q UMBO! GOTO I] rwtQ "LE Q

.n.n»n.n

MM

*0 *0 >0 2D

*0 30 30 30

*0 *0 *0 *0

*0 *0 50 50

*0*0 *0*0

T0 T0 T0 70

*0 *0 *0 *0

*0 *0 *0 *0
1 1 1 1

W»0 READp emoQ .n.n»n.n

MM

*0 *0 >0 2D

*0 30 30 30

*0 *0 *0 *0

*0 *0 50 50

*0*0 *0*0

T0 T0 T0 70

*0 *0 *0 *0

*0 *0 *0 *0
1 1 1 1

u DM*j biter}

.n.n»n.n

MM

*0 *0 >0 2D

*0 30 30 30

*0 *0 *0 *0

*0 *0 50 50

*0*0 *0*0

T0 T0 T0 70

*0 *0 *0 *0

*0 *0 *0 *0
1 1 1 1

R>R 0 «0 brartI]

.n.n»n.n

MM

*0 *0 >0 2D

*0 30 30 30

*0 *0 *0 *0

*0 *0 50 50

*0*0 *0*0

T0 T0 T0 70

*0 *0 *0 *0

*0 *0 *0 *0
1 1 1 1

«or0 BIKQ LOAD []

.n.n»n.n

MM

*0 *0 >0 2D

*0 30 30 30

*0 *0 *0 *0

*0 *0 50 50

*0*0 *0*0

T0 T0 T0 70

*0 *0 *0 *0

*0 *0 *0 *0
1 1 1 1

' 0 H] sayeQ

.n.n»n.n

MM

*0 *0 >0 2D

*0 30 30 30

*0 *0 *0 *0

*0 *0 50 50

*0*0 *0*0

T0 T0 T0 70

*0 *0 *0 *0

*0 *0 *0 *0
1 1 1 1

01 0 MIQ SHE 0

.n.n»n.n

MM

*0 *0 >0 2D

*0 30 30 30

*0 *0 *0 *0

*0 *0 50 50

*0*0 *0*0

T0 T0 T0 70

*0 *0 *0 *0

*0 *0 *0 *0
1 1 1 1

a*Q CAU.Q RElO

.n.n»n.n

MM

*0 *0 >0 2D

*0 30 30 30

*0 *0 *0 *0

*0 *0 50 50

*0*0 *0*0

T0 T0 T0 70

*0 *0 *0 *0

*0 *0 *0 *0
1 1 1 1

DEF 0 re- n
STORE. UST 0

.n.n»n.n

MM

*0 *0 >0 2D

*0 30 30 30

*0 *0 *0 *0

*0 *0 50 50

*0*0 *0*0

T0 T0 T0 70

*0 *0 *0 *0

*0 *0 *0 *0
1 1 1 1

DIN 0 DoS'O RIM 0

.n.n»n.n

MM

*0 *0 >0 2D

*0 30 30 30

*0 *0 *0 *0

*0 *0 50 50

*0*0 *0*0

T0 T0 T0 70

*0 *0 *0 *0

*0 *0 *0 *0
1 1 1 1

w D
1 I

0
1 1

H]
1 1

0*0 0 *0*0*0 D0£0f0«0fl10

0-0 0 J0 *0 >0 "0 '0 °0 *0*0 *0

FORMULA

0 20 0 D"0 0 0 0 0 0 0 0

O ' O O O Q i O O O O O O O

0 * 0 0 0 0 Q i O 0 0 0 0 0 o*o o o o o mo o o o o
Q < 0 0 0 0 0 0 0 1 0 0 0 0

O ' O 0 0 0 0 0 0 0 1 0 0 0

0 * 0 0 0 0 0 0 0 0 0 1 0 0

0 * 0 0 0 0 0 0 0 0 0 0 1 0
1 I I I I I 1 I I I I I I I I I I I I I I I I I I

0 0 0 0»n\

0 0 0 O ^ p

OS'S . f
0 O ' O <?

0 0 * 0 i
0 0 30

0 0 * 0

0 0 * 0

0 0 * 0

1 <1

2 s Zs jG) U1 s f »s
2 <

O O ' O 1 ^ 8 a
0 u«u feA

0 0 * 0
J 1 1 1 1

Figure C-l. Data General Extended BASIC Mark-Sense Programming Card

093-000065-08 Licensed Material-Property of Data General Corporation C-1

The BASIC statement field of the mark-sense card is
three columns which allow all possible combinations of
statement keywords. Cards are marked in the
appropriate column; for example, we have marked the
statement 450 GOTO 200 in Figure C-2.

The formula section of the card is 29 columns long, and
12 rows deep. You proceed from the left-most column
to the right, up to 29 characters; the CONT box on the
far right allows you to continue your statement on the
next card.

You must fill out the formula section of each card in
Hollerith code. Each Data General mark-sense card
contains a Hollerith code key (the black squares in the
formula section), which indicates the lines that you
must mark for each character. On all mark-sense cards
numbers are marked directly in the appropriate row,
without the key. Letters require two marks in a row,
and special characters, either two or three marks.

On mark-sense cards, find the character column and
the character you want to mark. We've indicated the
first column with an arrow and the letter V as the
character we will mark. Mark the rectangle at the
intersection of the two arrows as shown in Figure C-3a.

Find any boxes directly under your character. We have
circled the box under the V. Some characters have
more than one box below them. Again, mark the
rectangle at the intersection of the arrows as shown in
Figure C-3b.

Do not draw the arrows on the mark-sense cards as
BASIC will try to interpret them. The first column
contains the completed markings for the character V as
shown in Figure C-3c.

Move over one column and repeat this process for your
next character.

You may be using cards without a key. If so, fill them
out according to the Hollerith character set in Appendix
D. The mark-sense card key and the Hollerith character
set work exactly the same way; you may use whichever
you find easier. If you use the Hollerith code set, the
top horizontal line is number 12, the second from the
top is number 11, and the other lines are numbered
from 0 through 9. To indicate 4, put a mark on line 4; to
indicate an asterisk (*), put marks on lines 11,4, and 8;
to indicate a number sign (#), put marks on lines 3 and
8.

On any card, you can continue a statement to the next
card by marking the CONT box in the upper right-hand
corner of the first card. Continue the statement on the
following card in the FORMULA section.

To write an IF statement, mark IF in the statement
section, mark the test expression in the formula
section, and mark the THEN box in the upper
right-hand corner of the card. Begin the next card in the
statement section.

To further illustrate the use of mark-sense cards, we
have coded 10 IF V$ = "CAT" THEN in Figure C-4.

STXTEBENT

0 STATE*EIT LET0 PRMT[IIS«0

|j NUMBER GOTO [win" F11E0

•flip 0|J«|

'0 '0 '0 '0

cos»0 READ " ENDQ •flip 0|J«|

'0 '0 '0 '0 TURN 0 data 0 EKTErO

20 20 2fl 20 FOR 0 OPE* ' kartD

3fl =0 =0 =0 nextO CLDSEO loadQ

= 0 1 = 0 = 0 » 0 irueO sayeO

sQ 50 5) sQ 01 0 CHAlfl SIZE 0

=0 =0 «o «0 stopO CALL | neiQ

* 0 * 0 * 0 * 0 DEF [RE- n
STORE. ljstQ

«0 =0 =0 =0 DIN] RAN
DOM RUN 0

s Q s f l = 0 = 0
1 1 1 I

MAT 0
1 1

R« 0
1 1

H
1 1

D 4 D D * D B D c D D D E O r Q # D l C I Q

0 - 0 0 J 0 * 0 M 3 " 0 * 0 » D < 1] ® 0 " 0

FORMULA

0 Ofl-O <0

0 0 * 0 < 0 * 0

1 * 0

0=0
G = 0

0 = 0

0*0
O ' O

0 010 0 0 0 0 0 0 0

0 0 010 0 0 0 0 0 0

0 0 0 010 0 0 0 0 0

0 0 0 0 010 0 0 0 0

o o o o o mo o o o

0 0 0 0 0 0 flio 0 0

0 0 0 0 0 0 0 010 0

0 0 0 0 0 0 0 0 010

0 0 0 0 0

0 0"0 0 0
0 0 010 0

0 0 0 010

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 OiOiQiQi

0 0 0 0 0

< 0 * 0 ' 0 0 0 0 0 0 0 0 0 0

M < 0 D I D D O 0 0 0 0

0 0 Q 0 0 O ' O

0 0 0 0 0 0 0 0 0 0 0 - 0

0 0 0*0 0 0 0 0 0 0 0*0
0 0 0 0*0 0 0 0 0 0 0*0
0 0 0 0 0*0 0 0 0 0 0*0

• 0 0 0 0 0 O ' O 0 0 0 0 = 0

010 0 0 0 0 0-0 0 0 0=0

0 010 0 0 0 0 0-0 0 0*0

I0IQIQIQI0IQI0IDIQ 0 0=0

0 0 0 0 0 0 0 0 0 0 0 =0
I I I I I I i I

Figure C-2. 450 GOTO 200-

C-2 Licensed Material-Property of Data General Corporation 093-000065-08

FORMULA

SAilOGJ
999

O'O O'O'O'O'O'O'O'Oflfl D O'O-O'Ofl'O'O 0 DDDODOQQD

'u'
*D *Q 20 2D
»0 30 *0 J0
40 40 40 40

•0 *0 *0 *D

•0»D*D#D
•D»D»D»D
i i

« 0
•0

M
m Q
w Q

* QwieO
•0

cau-D

M

H H

ID 0 0 a U D D U U U U U D D D D D D D D D D
O ' O 0 0 I D 0 0 0 0 1 0 D 0 0 " 0 D 0 0 0 0 4 0 1 0 0 0 0 0 4

HJIO'O 0 0 O'O 0 0 0 0 0 0 1 0 0'
""0 O'O D D 0 0>D 0 0 0 D D D D D O'O D 0 0 D 0*0 0 0 0 D O'O
m0 0»0 0 0 0 0 O'O 0 0 0 0 0 0 0 0 O'O 0 0 0 0 OH 0 0 0 0>0 Igi
• 0 D'D 0 O'O 0 0 Old 0 0 d 0 0 0 0 D 0"0 0 0 0 0 0-0 0 0 0*0 f ?
f i i n i f i n n n n n o a m n a a a o o a o o i o o o 0 0 0 - 0 0 0 < 0 1 3 •0 0 0 0 0 0 0 0 0 0"

010'D 0 0 0 0 0 0 0 0>D 0 0 O'O'O'O'O'O'8'O'O'O'O'O'O 0 O'O

I 1 I I I I I I I I I I I I 1 I » 1 I I I I I 1 I I ' ' 1 1 1 * 1 1 1 1 1

Osnraar auai_y
333

J . FORMULA

0 4 0 4 4 4 4 4 4 4 4 4 0 0 4 4 4 ! f l 4 < l 0 0 0 0 0 0 0 0 0 0

>0 >U 'U1

*0 *0 *0 *0k0
PrQlMgD

404D 40 4Df DH3
»0 »0 #0 «D M
•D «Q «D «D "*0

8EAD

DHA

«D

EAU-O

0 0 O'O 0 0 1 0 0 0 0 0 0"0 0 0 0 0 04 0 0 0 0 0 0 O'O
f»Q l>0 0 0 0"0 0 j 0 0 0 0 0 0 0"0 0 0 0 0 O'O 0 0 0 0 0 O'O
So I'D 0 0 0 010 i 0 0 0 0 0 0 0 DID 0 0 0 0 0«0 0 0 0 0 O'O
ISO hO 0 0 0 0 0C)0 0 0 0 0 0 0 0 010 0 0 0 0 00 0 0 0 O'O

0 O'O 0 0 0 0 0 0"0 0 0 0 0 0 0 0 0 O'O 0 0 0 0 0-0 0 0 O'O I;
t n-A nnnnnnnn dan n n n n n -n n n »fl c ^ H O'O 0 0 0 D 0 0 D"0 0 D D 0 D 0 0 0 OH) 0 0 D 0 D'D 0 U

1) O'O 0 0 0 Q 0 0 0 0«0 0 0 Di0iQ"Qi0«Q"0iQ"Q"O»0iD«0 0 040 •o sn an «o - o sro -o 0*0 o o o o o o o m u u mippmwm u u« ° ° ° ° ° ° , n , . n J » • » • " • " , D • " . ° y

UnUDNlo'S 0 «0"0 H4<0444H? WHAM 0 0 0 0 0 0 0 0 0 0
0-0 0J0*D'O"Q"0°D#D*D 0 D 0 0 0 D 0 0 0 0 0

kuiimil I*0 O'O^O^O»0vQ-oxQrnzQ o 0N0'0%0H]^70.0 0 Q D 0 Q Q S*0
O'O W 0 O'O 0 O'O
0*0 o QiQ 0 0 0 0 0 0 0 0 DiQ 0 0 0 0 0-0 0 0 0 0 0 0 O'O

u»0 O'O 0 0 0"Q 0 0 0 0 0 0 0 0 Q"D 0 0 0 0 0-0 0 0 0 0 0 O'O
1 0 40 0 0 0 01 0 0 0 0 0 0 0 0 0 010 0 0 0 0 D®0 0 0 0 0 040
H PO 0 0 0 0 QiQ 0 0 0 0 0 0 0 0 (HQ 0 0 0 0 0 '0 0 0 0 050

ass

'U 'U "U •
*0 «0 *0 20
jy 3U 3U 3U
40 40 40 40
«0 50 50 50
»0 404040
T0T0T0T0
•D »D »0»0

MTM Era
2H20:51
*XT Q

JCMT

Itw.

" 0
ICUSE I

WrtO
01 0
STOP Q

DEF

MU.Q

eO
3303

n O'O 0 0 0 0 0 O'O 0 0 0 0 0 0 0 0 O'O 0 0 0 0 0-0 0 0 04 i2
0 O'O 0 0 0 0 0 0 O'O 0 0 0 0 0 0 0 0 O'O 0 0 0 0 O'O 0 O'O i <

O'O 0 0 0 0 0 0 0 O'O 0 0 O'O'O'O'O'O'D'O'O'O'O'D'O 0 O'O -

\i\
8 Zs

• * l

I 1

Figure C-3. Marking the Letter "V"-

093-000065-08
Licensed Material-Property of Data General Corporation

C-3

0 STATEMENT
|J NUMBER

LET 0
GOTO |]

®l] "13 «l] «|

• 0 ' 0 1 ' 0
2II 2|1 2|1 2|1

GOSUB

RE-
TURN
FOR 1]

30 30 3D 3Q
40 40 40 40
«Q 50

«0 «Q «D , #D
7D t0 70 70

•Q «0 »D »D

SO BQ »O 80
I I I I

STKTEWENT

PRINT [

READ |]

I DATA
OPEN

NEXT

I
ON 0
STOP

DEF
D,M|]

MAT D

m uiu u*iBicuDu =u*uu^ u ucu -u<i

p5t]D-l O'O WHIM'O'O D Dfl«0»n D 0 0 0 0 0 0 0 0
0 1 1011 '0

1 5 ' ENTER
LI
taRAKTl

CLOSE|]

WMTO
CHAM [|

CALL

RE
STORE
RAN-n
DON U

REM |] RENUM0

FORMULA

0 D 0 0 0 0 0 0 0 0 0 0 0 D'O
>0 0 0 0 0 0 0 0 Q Q»

HllO'i 0I D«l 0 0 0 D 0 0 O'O 0"0 0 0 0 D D'O 0 0 0 D 0 D'O
s«0 O'O 0 0 0 0>0 0 0 0 0 0 0 0 0 0<0 0 0 0 0 0*0 0 0 0 0 O'O jj 3

® 0 I ' D 0 0 0 0 O i O 0 0 0 0 0 0 0 0 0 1 " n * n n n , n n " n n s n 5

« 0 0 * 0 1 0 0 0 0 0 < 0 0 0 0 0 0 0 0 0 0 " 0 0 0 0 0 0 - 0 0 0 D'D
»D O'O 0 D D 0 D D 0"0 D 0 0 D D D 0 D 0"D 0 D D D O'O D O'O | g
>» o o <i I n o o o o o oio o o Dioinioioioi0"0«0"0"0"0"

CONT

I THEN

s z

?:

I • I • I I I * ' » ' 1

-Figure C-4. 10IF V$ = "CAT" THEN-

End of Appendix

C-4 Licensed Material-Property of Data General Corporation 093-000065-08

Appendix D
Hollerith Character Set

Character Lines

0 0

1 1 - -

2 2 - -

3 3 - -

4 4 - -

5 5 - -

6 6 - -

7 7 - -

8 8 - -

9 9 - -

A 12 1 -

B 12 2 -

C 12 3 -

D 12 4 -

E 12 5 -

F 12 6 -

G 12 7 -

H 12 8 -

I 12 9 -

J 11 1 -

K 11 2 -

L 11 3 -

Character Lines

M I 1
1

4 _

N 11 5 -

O 11 6 -

P 11 7 -

Q 11 8 -

R 11 9 -

S 0 2 -

T 0 3 -

U 0 4 -

V 0 5 -

w 0 6 -

X 0 7 -

Y 0 8 -

z 0 9 -

[12 2 8

• 12 3 8

< 12 4 8

(12 5 8

+ 12 6 8

I 12 7 8

] 11 2 8

$ 11 3 8

SD-01075

End of Appendix

Character Lines

* 11 4 8

) 11 5 8

» 11 6 8

1 11 7 8

/ 0 1 -

\ 0 2 8

»
(comma) 0 3 8

% 0 4 8

— 0 5 8

> 0 6 8

? 0 8

. 2 8 -

3 8 -

@ 4 8 -

> 5 8 -

- 6 8 -

t> 7 8 -

& 12 - -

(minus)
11 - -

I

093-000065-08 Licensed Material-Property of Data General Corporation D-1

Appendix E
ASCII Character Sets

ANSI Standard SET
(AOS)

To find the ocial value ol a character, locate the character, and
combine the first two digits at the top ol the character's column
with the third digit in the far left column.

LEGEND:

Character code in decimal
EBCDIC equivalent hexadecimal code
Character

10_

0
64

7C
@

\l 00_ 01 _ 02_ 03_ 04_ 05_ 06_ 07_

0
0

NUL
8 BS

(BACK
SPACE)

16 DLE 24 CAN 32
SPACE

40 48 56
8 0

00
NUL

16

BS
(BACK
SPACE) 10 IP 18 IX 40

SPACE
4D \ FO F8

8

1
1 SOH 9 HT 17 DC1 25 EM 33 41 \

49
1

57
9 1

01 |A 05 (TAB) 11 TO 19 !Y 5A 5D F1
1

F9
9

2
2 STX 10 NL

(NEW
LINE)

18 DC2 26 SUB 34 11 42 50
2

58

02 IB 15

NL
(NEW
LINE) 12 !R 3F IZ 7F (QUOTE) 5C F2

2
7A

3
3 ETX 1 1 VT

(VERT.
TAB)

19 DC3 27 ESC 35 43 + 51
3

59

03 |C OB

VT
(VERT.
TAB) 13 IS 27 (ESCAPE) 7B 4E

+
F3

3
5E '

4
4 EOT 12 FF

(FORM
FEED)

20 DC4 28 FS 36
$

44
(COMMA)

52
4

60 < 4
37 ID 06

FF
(FORM
FEED) 3C IT 1C t\ 5B

$
6B (COMMA) F4

4
4C

<

5
5 ENQ 13 RT 21 NAK 29 GS 37

%
45 53

5
61

5
2D IE OD (RETURN) 3D TU 1 D n 6C

%
60 F5

5
7E

6
6 ACK 14 SO 22 SYN 30 RS 38

&
46 54

6
62 > 6

2E IF OE IN 32 IV 1E II 50
&

4B (PERIOD) F6
6

6E
>

7
7 BEL 15 SI 23 ETB 31 US 39 . 47

/
55

7
63

? 7
2F IG OF 10 26 fW 1F I- 7D (APOS) 61

/
F7

7
6F ?

u 10_ 11_ 12_ 13_ 14_ 15_ 16_ 17_

0
64 72

H
80

P
88

X
96 \ 104

h
112 120

0
7C

W
C8

H
D7

P
E7

X 79 (GRAVE) 88
h

97 P A7

1
65

A
73 81

Q
89

Y
97

a
105 113 121

1
C1

A
C9

I
D8

Q
E8

Y
81

a
89 98

q
A8

y

2
66

B
74 82

R
90

Z
98

b
106 114

r
122

2
C2

B
D1

J
D9

R
E9

Z
82

b
91

j
99

r
A9

67
C

75
K

83
S

91 r 99 107
k

115 123 | J
C3

C
D2

K
E2

S
8D 83 92

k
A2 CO i

68
D

76
L

84
T

92
\

100
d

108
I

116
t

124
i

C4
D

D3
L

E3
T

EO
\

84
d

93 A3
t

4F 1

5
69 77

M
85

U
93 l

101
e

109
m

117
u

125 t 5
65 D4

M
E4

U
9D 85

e
94

m
A4

u
DO 1

6
70

F
78

N
86

V
94

I or -
102

f
110

n
118 126

6
C6

F
D5

N
E5

V
5F

I or -
86

f
95

n
A5 A1 (TILDE)

7
71 79

0
87

w
95

— or _
103 111 119

w
127 DEL

7
C7 G D6

0 E6
w 6D

— or _ 87
g

96
0 A6 w 07 (RUBOUT)

SD-00217 Character code in octal at top and left of charts. I means CONTROL

093-000065-08 Licensed Material-Property of Data General Corporation E-1

i. means CONTROL

Non-ANSI Standard Set
(RDOS and DOS)

CHARACTER CODE IN DECIMAL

EBCDIC EQUIVALENT HEXADECIMAL CODE

CHARACTER

LEGEND:

10
^ —

0
64

7C
@

TAL 00_ 01_ 02_ 03_ 04_ 05_ 06_ 07_

0
0

NUL
8 BS 16 24 32

SPACE
40

(
48

0
56

8 0
00

NUL
16

(BACK
SPACE) 10 IP 18 IX 40

SPACE
4D FO

0
F 8

8

1
1 9 HT 17 25 33

I
41

)
49

1
57

9 1
01 1A 05 (TAB) 1 1 10 19 IV 5A 5D F 1

1
F 9

2
2 10 L I N E 18 26 34 » 42

*
50

2
58 .

2
02 IB 15 F E E D 12 1R 3F 1Z 7F (QUOTE) 5C F2 7A

3
3 1 1 VT 19 27 ESC 35

43 + 51

3
59

3
03 1C 0B

(VERT.
TAB) 13 IS 27 (ESCAPE) 7B 4E F 3 5E

4
4 12 FF 20 28 36 $ 44 52

4
60 < 4

37 ID 06
(FORM

FEED) 3C IT 1C 1\ SB
$

6B (COMMA) F4 4C
<

5
5 13 C R 21 29 37

%
45 53

5
61

5
2D IE 0D (RE TURN) 3D 1U ID 11 6C

%
60 F 5 7E

6
6 14 22 30 38

&
46 54

0
62

> 6
2E IF 0E IN 32 IV 1 E It 50

&
4B (PERIOD) F 6 6E

>

7
7 B E L L 15 23 31 39 47.

/
55

7
63 ? 7

2F 1G OF 10 26 1W IF 1- 7D (APOS) 61
/

F 7 6F
?

TAL 10_ 11_ 12_ 13_ 14_ 15_ 16_ 17_

0
64

@
72

H
80

P
88

X
96 \

(CRAVE)

104
h

112
P

120
X 0

7C
@

C 8
H

O 7
P

E 7
X

79

\

(CRAVE) 88
h

97
P

A 7
X

1
65

A
73

1
81 Q

89
Y

97
a

105
«

113
q

121
y 1

CI
A

C9
1

D8
Q

E8
Y

81
a

89
«

98
q

AS
y

2
66

B
74

J
82

R
90

Z
98

b
106

i
114

r
122

z 2
C 2

B
D 1

J
D9

R
E9

Z
82

b
91

i
99

r
A 9

z

3
67

C
75

K
83

S
91 [99

c
107

k
115

s
123

I 3
C3

C
D2

K
E2

S
8D

[
83

c
92

k
A2

s
CO I

4
68

D
76

L
84

T
92 \ 100

d
108

I
116

t
124 I 4 C4

D
D3

L
E3

T
EO

\
84

d
93

I
A3

t
4F I

5
69

E
77

M
• 5

U
93] 101

e
109

m
117

u
125

I
5

65
E

D4
M

E4
U

9D
]

85
e

94
m

A4
u

DO I

6
70

F
78

N
86

V
94 102

f
110

n
118

V
126

(TILDE)
6

C6
F

D5
N

E5
V

5F 86
f

95
n

AS
V

A 1 (TILDE)

7
71

G
79

o
87

w
95

°r_
103

g 1 1 1
0

119
w

127 DEL
(RUBOUT)

7
C7

G
D6 E6

w
6D

°r_
• 7

g
96

0
A6

w
07

DEL
(RUBOUT)

CHARACTER CODE IN OCTAL A T TOP AND LEFT OF CHARTS.
SD-00476 rr j f A *• End of Appendix

- 2 Licensed Material-Property of Data General Corporation 093-000065-08

Appendix F
Statement, Command and Function Summary

Formats and Descriptions s c F AOS RDOS DOS

A B S (e x p r)

The absolute value of an expression.
• • • •

A C L " f i l e n a m e " [,User/D", "attributes"]...

Prints a report of, or changes, the access control list for a file.
• • •

A T N (e x p r)

The arctangent of an angle. Result expressed in radians.
• • • •

A U D I T ["filename"]

Audits your input and output.
• • •

BYE

Sign-off command.
• • • • •

C A L L s u b r l.expr]...

Calls an assembly language subroutine.
• • • • •

C A R D S " f i l e n a m e "

Enters program in mark sense card format.
• • • •

C H A I N " f i l e n a m e " [THEN GOTO line no.]

Transfers control to the program named in the statement..
• • • • •

C H A R :

("ON" \
"OFF" 1
"characteristics

i "LPP",svar
"CPL",svar \

v "device" /

'rints a report of, or

/ "ON" \
1 -0FF- 1

9 / "characteristics" \ ...
j "LPP",svar (
1 "CPL", svar 1
V "device" '

changes the current device characteristics.

• • •

C H A R
"ON" {
-OFF" >
"characteristics" 1

3rints a report of, or

("ON" 1
' < "OFF" /

/ ' 'characteristics'' \

changes the current device characteristics.

• • • •

093-000065-08 Licensed Material-Property of Data General Corporation F-1

Formats and Descriptions s c F AOS RDOS DOS

CHATR "filename", attributes

Changes file attributes.

• • • •

CLI [command]

Provides access to the CLI without terminating the BASIC process.

• • •

CLOSE [FILE(file)[

Closes an open file or files.

• • • • •

CON

Continues execution of a STOPped program.

• • • •

COS(expr)

The cosine of an angle. Angle expressed in radians.

• • • •

CPU(expr)

Returns a value (0 or 1) equal to the status of a CPU console switch.
• • •

Defines data to be used by READ and MAT READ.

• • • •

DEF

Used with FNa(d) function to define a user function.
• • • •

DELAY = expr

Delays program execution for a specified amount of time.
• • • • •

DELETE "filename"

Deletes a file from your directory.
• • • • •

j svar(n) 1 j ,svar(n) 1
DIM \ array(m) r \ ,array(m) / ""

(array(row.col)) [, array (row, col))

Specifies the size of string variables and numeric arrays.

• • • • •

DISK

Prints the number of blocks used and number available in the partition in which
your directory resides.

• • • • •

END

Stops program execution.
• • • •

ENTER

Merges the program named into the current program.
• • • • •

F-2 Licensed Material-Property of Data General Corporation 093-000065-08

Formats and Descriptions s c F AOS RDOS DOS

ERASE n1, n2

Deletes statements from a program.
• • • • •

EOF (file)

Returns a 1 if an end of file is detected, otherwise, 0.

• • • •

EXP(expr)

The value of e to the power of an expression.
• • • •

FILE ["template"]

Prints the names of files in your directory that match the template.

• • •

FILE

Prints the filenames in your directory.
• • • •

FNa(d)

A user function which is defined in a DEF statement and returns a value.
• • • •

FOR control var — exprl TO expr2 [STEPexpr3]

Begins a FOR-NEXT loop and defines the number of times the loop is executed.

• • • •

GDIR

Verifies the name of your directory.
• • • •

GOSUB line no.

Transfers program control to the first statement of a subroutine.
• • • •

GOTO line no.

Transfers program execution to a specified line.

• • • •

GPOS FILE (file), var

Determines the current filepointer position in an open file.

• • • • •

HELP "verb"

Displays information about each BASIC statement and command.

• • • • •

|p (rel-exprl 1/T//£W/statement! f
|expr J ^THEN line no. j

Executes a statement based on whether an expression is true or false.

• • • • •

INPUT

You input data for variables fr

... [;]

om terminal.

• • • • •

093-000065-08 Licensed Material-Property of Data General Corporation F-3

Formats and Descriptions S c F AOS RDO DOS

INPUT FILE (/file l|,/varl ...
0 flie,record jl | svarj

Reads data in ASCII from a sequential-access file.

• • • • •

INT(expr)

The largest integer not greater than the expression.
• • • •

LEN(svar)

Returns the number of characters currently assigned to a string variable.
• • • •

[LET] |va

Assign

arl > = expr

values or solutions to formulas to a variable.

• • • • •

LIBRARY

Prints

j' 'directory'' 'template''
(."directory"

template"

he names of files in the BASIC library directory that match the template.

• • •

LIBRARY

Prints the filenames in the library directory.
• • • •

LIST

Ou

line nl)

j j f J w M w
i line nl)

tputs part or all of the curren

["filename "J

t program to the terminal or other ASCII device.

• • • •

LOAD "filename"

Loads a previously SAVEd program into the program storage area. • • • •

LOG(expr)

The natural logarithm of an expression.
• • • •

LREAD ["strlit",]s\iar [svarl]

Reads a string from the terminal which is terminated by either a null, form feed,
or carriage return (new-line).

• • • • •

LREAD FILE |(|j® record)| , svar [svarl]

To read a string from a record in either a random- or sequential-access file which
is terminated by either a null, form feed, or carriage return (new line).

• • • • •

F-4 Licensed Material-Property of Data General Corporation
093-000065-08

Formats and Descriptions

LWRITE svar [svarl]

Writes a string to your terminal which
carriage return (new line).

RDOS

is delimited by either a null, form feed,

Performs matrix addition or subtraction.

mvar2| *
(expr) f mvar3

Multiplies a matrix by a numeric expression or another matrix

MAT mvarl

MAT mvarl = INV (mvar2)

Performs matrix inversion

MAT mvarl = TRN (mvar2)

Transposes matrix mvar2.

MAT mvar = ZER ([row, J col)

Sets the value of each matrix element to zero.

MAT INPUT [• 'str lit"Jrrv/ar [([row,]col)][mvar [(row,]col)]]

Specifies matrixes for which
statement is executed. you enter data from the terminal when the

Prints the contents of the specified matrixes,

(• \ /
J > 1 ('
\ > mvar (• > mvar
(PRINT J

' I >

093-000065-08
Licensed Material-Property of Data General Corporation

F-5

Formats and Descriptions s c F AOS RDOS DOS

MAT READ mvar [(frow,]coI)][,mvar[([rowjcol)]] ...

Reads data into the specified matrixes from the data list defined by DATA
statement (s).

• • • • •

MAT INPUT FILE ^{j|!e.record}) 'mvar [-mvar] —

Reads a matrix data in ASCII from a sequential-access file.

• • • • •

MAT PRINT F'LE ̂ file.recordy ,mvar

Outputs matrix file data to an ASCI

H f:il < •> mvar • • • < /

r) (») .
I device.

• • • • •

MAT READ FILE record}^ 'mvar imvar] '''

Reads matrix data in binary format from a file.

• • • • •

MAT TINPUT [(line no. [time]),]["sirlit",]mvar [([row,]col)][mvar [([rowjcol)]] ...

Reads values from your terminal and assigns them to the elements of a matrix or
list of matrixes, within a prescribed time.

• • • • •

MAT WRITE RLE ^ record .mvar [.mvar] ...

Writes matrix data in binary format to a file.

• • • • •

(pid
MSG < "processname >, message

{"console name"!

Transmits a messge from your terminal to another programmer or to the system
operator.

• • •

MSG userlD message

Transmits messages to other users or the operator or cancels NOMSG.
• • • •

NEW ["filename"]

Clears your storage area.

• • • • •

$

F-6 Licensed Material-Property of Data General Corporation 093-000065-08

Formats and Descriptions AOS RDOS DOS

NEXT control var

The last statement in a FOR-NEXT loop; changes the value of the control
variable.

ON ERR J THEN line no.
^ [THEN] statement)

Directs the program to an error handling routine when an error occurs.

nM J tHEN line no. \
ON ESC yTHEN]statement j

Directs the program to a user handling routine when ESCape is pressed.

ON expr-j^Qgygj- line no. [line no.] ...

Transfers program control to a line number whose position in the argument list is
computed from an expression.

OPEN FILElfile,mode),"filename" [recordsize [Jilesize]]

Opens a file which can then be referred to by other file I/O statements.

PAGE = expr

Sets the right margin of the terminal.

.exprl

Locates the position of a substring in a string.

:

PRINT) (svar

Prints specified data.

> 1 1 e x p r
"str lit'

M I svar

expr

PRINT FILE K™| ,„ord Z r

"str lit"!

Outputs data to an ASCII device.

expr
var
svar
"str lit'

PRINT FILE (y f|]e,record)) . USING format, expr

Formats output to Files.

093-000065-08
Licensed Material-Property of Data General Corporation

F-7

Formats and Descriptions S c F AOS RDOS DOS

PRINT USING format, expr

Formats printed output. I * "

• • • • •

PUNCH

Outpi

(line nl \

ts part or all of the curren t program to the terminal punch.

• •

RANDOMIZE

Resets the random number generator.
• • • • •

READ {svar

Reads dat;

\\lVar\ A,svarI

i from DA

a a •

fA statements.

• • • • •

READ FILE,j\ ,ivar]
A (file.recordj / '^svarl

Reads data in binary format fron

'{-}]
a file.

• • • • •

REM [message]

Inserts explanatory comments within a program.
• • • •

RENAME "oldfilename", "newfilename"

Renames files.
• • • • •

RENUMBER

Renumbe

jline nl J
\STEPn2 >
[line nl STEPn2)

rs statements in the cu [rent program.

• • • •

RESET [FILE (file)]

Positions the file pointer to the beginning of a file.
• • • • •

RESTORE [line no.]

Moves the data element pointer to the beginning of a data list or DATA
statement line.

• • • • •

RETRY

Repeats the statement which caused an error.
• • • •

F-8 Licensed Material-Property of Data General Corporation 093-000065-08

Formats and Descriptions
s c F AOS RDOS DOS

RETURN

Last statement of a subroutine; returns program control to statement following
last GOSUB statement executed.

• • • •

RND(expr)

Random number n, such that 0 < — n < 1.
• • • •

RUN ['Zn0- \ 1 filename J
Executes the current program or another program named by filename.

• • • •

SAVE "filename"

Writes the current program into your directory or to a device in binary format.
• • • • •

SGN(expr)

The algebraic sign of an expression.

• • • •

SIN(expr)

The sine of an angle. Angle expressed in radians.

• • • •

SIZE

Provides program and data storage usage information.
• • • • •

SPOS FILE (file), expr

Moves the file pointer to the byte position specified by expr.

* • • • •

SQR(expr)

The square root of an expression.

• • • •

STOP

Stops program execution.

• • • •

STR$(expr)

Converts a numeric expression to its string representation.

• • • •

SYS(O)

The time of day (seconds past midnight).

• • • •

SYS(1)

The day of the month.

• • • •

SYS(2)

The month of the year.

• • • •

093-000065-08
Licensed Material-Property of Data General Corporation

F-9

Formats and Descriptions s c F AOS RDOS DOS

SYS(3)

The year.
• • • •

SYS (4)

The terminal port number (-1 for operator's console).
• • • •

SYS(5)

CPU time used in seconds.
• • • •

SYS (6)

The number of file I/O statements executed.
• • • •

SYS(7)

The error code of the last runtime error.
• • • •

SYS (8)

The number of the file most recently opened.
• • • •

SYS (9)

Page size.
• • • •

SYS(10)

Tab size.
• • • •

SYS01)

Hour of the day.
• • • •

SYS(12)

Minutes past last hour.
• • • •

SYS(13)

Seconds past last minute.
• • • •

SYS(14)

Seconds remaining on timed input.
• • • •

SYS(15)

The constant PI (3.14159).
• • • •

SYS(16)

The constant e (2.71828). • • • •

SYS(17)

1/10 second clock. • • •

F-10 Licensed Material-Property of Data General Corporation 093-000065-08

Formats and Descriptions s c F AOS RDOS DOS

SYS(18)

Total number of BASIC I/O calls.
• • • •

TAB(expr)

Function used with PRINT for tabulating to a column.
• • • •

TAB = expr

Sets the zone spacing for PRINT statements.
• • • • •

TAN(expr)

The tangent of an angle. Angle expressed in radians.
• • • •

TIME = expr

Establishes the time limit for timed input operation.
• • • • •

TINPUT [(line no. [, time]),] [' 'str lit1 gvar |

Sets a time limit for programmer respo

(, v a r)
J,svar(

ise.

. . . [;] • • • • •

(fcv})
Returns decimal representation of a string.

• • • •

WHATS "filename"

Prints attributes and other information relating to a file.
• • • • •

WHO

Iden

j processID \
\ "processname" f

tifies others on the system or provides your own identification.
• • •

WRITE FILE | , i le \ < LE (file,record { \ svar ? '
\ "str lit"' 1

Writes data in binary format to a file.

expr \
var f
svar ?
"str lit")

• m m • • • • •

End of Appendix

093-000065-08 Licensed Material-Property of Data General Corporation F - 1 1

Index

Within this index, the legend "f' after a page number
means "and the following page" (or "pages"). In
addition, primary page references for each topic are
listed first. Commands, calls, and acronyms are in
uppercase letters (e.g., CREATE); all others are
lowercase.

abbreviations 1-1
ABS(X) 4-2

• account name 1-2
ACL 3-1
arguments

definition of 1-1
arithmetic Chapter 2

operations 2-3
numbers 2-lf

array elements 2-2
array manipulation Chapter 5
arrays 2-2

DIM 2-2f
ASCII character set Appendix E
assembly language subroutine Appendix B
assigning values to strings 2-6
ATN(X) 4-2

backarrow (or RUBOUT) l-2f
BASIC keyword summary Appendix F
BYE 3-2, l-3f, 3-3

calculator
desk 1-5

CALL 3-3, Appendix B
CARDS 3-4
carriage return 1-1
CHAIN 3-4
CHAR 3-5f
CHATR 3-7
CLI 3-8
CLOSE FILE 6-4
column (in two-dimensional array) 2-2, 5-1
commands

see individual command names in Chapter 3;
see Appendix F for an alphabetical summary

of all BASIC keywords
commands derived from statements 1-5

CON 3-8
creating a program 1-2
correcting a program 1-3
COS(X) 4-3
CPU(X) 4-3

DATA 3-9, 2-6
debug (programs) 1-6
DEFFNa(d) 4-4
defining a function

DEFFNa(d) 4-4
DELAY 3-9
DELETE 3-10
delete a statement 1-3
delimiters 2-6, 3-25f, 6-6f
desk calculator 1-5
DET (matrix) 5-9
determinents, matrix 5-9
devices 6-1
device characteristics 3-5f
device independence 1-5
DIM 3-11, 2-2f
DISK 3-12
disk filenames 6-If
documentation conventions Preface
double precision 2-lf
dynamic program debugging 1-6

E-type notation 2-1
END 3-12
ENTER 3-13
EOF(X) 4-5
ERASE 3-13
error messages Appendix A

during program input Table A-l
file I/O Table A-2

expression, numeric 2-3f
EXP(X) 4-5

FILE 3-14
file

attributes 3-7
definition 6-1
extension 6-1

filenames 6-If

093-000065-08 Licensed Material-Property of Data General Corporation lndex-1

file I/O 1-5, Chapter 6
keywords

CLOSE FILE 6-4
GPOS FILE 6-5
INPUT FILE 6-5
LREAD FILE 6-6
LWRITE FILE 6-7
MAT INPUT FILE 6-8
MAT PRINT FILE 6-8
MAT READ FILE 6-9
MAT WRITE FILE 6-9
OPEN FILE 6-3
PRINT FILE 6-10
PRINT FILE USING 6-10
READ FILE 6-11
RESET FILE 6-12
SPOS FILE 6-12
WRITE FILE 6-13

floating-point number 2-lf
FNa 4-4
FOR and NEXT 3-15f
format printing

in PRINT USING 3-33f, 3-36f
functions Chapter 4

see individual functions; also see CONTENTS
alphabetical listing

GD1R 3-16
GOSUB and RETURN 3-17
GOTO 3-18
GPOS FILE 6-5

Hollerith character set Appendix D
HELP 3-18

Identity matrix (IDN) 5-3
IF-THEN 3-19
INPUT 3-20, 2-6
INPUT FILE 6-5
interrupting program execution 1-3
interruption, telephone lines 1-4
INT(X) 4-6
INV matrix 5-8

keyword, BASIC
commands Chapter 3
descriptions Preface
file I/O Chapter 6
functions Chapter 4
matrix Chapter 5
statements Chapter 3
summary Appendix F

leader 3-38
LEN(X$) 4-6
LET 3-21
LIBRARY 3-22f
line interruption, telephone 1-4
LIST 3-24

LOAD 3-25
logging off l-3f
log on procedure 1-2
LOG (X) 4-7
loop 3-15f
LREAD 3-25
LREAD FILE 6-6
LWRITE 3-26
LWRITE FILE 6-7

manuals, related to Extended BASIC Preface
mark sense cards Appendix C
MAT

-CON 5-2
DET(X) 5-9
-IDN 5-3
-INV 5-8
INPUT 5-4
INPUT FILE 6-8
PRINT 5-5
PRINT FILE 6-8
READ 5-4
READ FILE 6-9
TINPUT 5-5
-TRN 5-9
WRITE FILE 6-9
--ZER 5-2

matrix manipulation Chapter 5
addition 5-6
assignment 5-1
determinant (DET) 5-9
I/O 5-4f, 6-8f
inverse matrix (INV) 5-8
keywords, see MAT
multiplication 5-6f
subtraction 5-6
transposition (TRN) 5-9

matrix, singular 2-2f, 5-1, 5-8
MSG 3-26f

NEW 3-27,1-2
NEXT 3-15f
numbers 2-lf
numeric expression 2-3f

ON ERR THEN 3-28
ON ESC THEN 3-29
ON GOTO and ON GOSUB 3-30
OPEN FILE 6-3
operators, numeric 2-3

PAGE 3-30
parentheses 2-3f

in array 2-2
password 1-2
POS(X$,Y$,Z) 4-7
PRINT 3-31f
PRINT FILE 6-10
PRINT USING 3-33ff, 3-36f

lndex-2 Licensed Material-Property of Data General Corporation 093-000065-08

PRINT FILE USING 6-10
print representation

single precision 2-1
double precision 2-1

print zone 3-3If
printing blank lines 3-3If
priority of arithmetic operations 2-3f
program BASIC 1 -Iff
program, creating 1-2
prompt 1-1
PUNCH 3-38

RANDOMIZE 3-39
READ statement 3-40, 2-6

also see DATA
READ FILE 6-11
relational operators and expressions 2-4
REM 3-41
RENAME 3-41
RENUMBER 3-42, 1-3
reserved filenames 6-2
RESET FILE 6-12
RESTORE 3-43, 3-40
RETRY 3-43, 3-9
RETURN 3-17
RND(X) 4-8
row (in two-dimensional array) 2-2
RUBOUTkey l-2f
RUN 3-44
running a program 1-3

SAVE 3-45
SGN(X) 4-9
single precision 2-1
singular matrix 5-8
SIN(X) 4-9
SIZE 3-46
spacing, zone 3-3If
SPOS FILE 6-12
SQR(X) 4-10
STEP (in FOR and NEXT) 3-15f
STOP 3-47
STR$(X) 4-10

string 2-4ff
arithmetic 2-7
assigning values to 2-6
comparing 2-6
concatenation 2-6
delimiters 2-6, 3-25f, 6-6f
literals 2-4
substring 2-5
variables 2-4f

substring 2-5
subscript

in array 2-2
summary of keywords Appendix F
symbols, used in keyword descriptions 1-1
SYS(X) 4-11

TAB 3-47
TAB(X) 4-11
TAN(X) 4-12
telephone line interruption 1-4
terminal device 1-1,6-1
terminology 1-1
THEN 3-19
TIME 3-48
TINPUT 3-49
trailer 3-38

userlD 1-2, 3-26f

VAL(X$) 4-12
variables 2-2ff

names 2-2
numeric 2-2
string 2-4f

vectors 5-1

WHATS 3-50
WHO 3-50
WRITE FILE 6-13

zero matrix(ZER) 5-2
zone spacing 3-3If

093-000065-08 Licensed Material-Property of Data General Corporation lndex-3

Ir DataGeneral
Software Documentation Remarks Form

How Do You Like This Manual?
. No.

Title
Pie... • 'ew

rrrrz™.,...... «-»"•*'•°*,a eemr" ̂ *o,•sen'a,,,':,ou w,sh:
_ J* C . , , P . — « > '

2-33°'- H))w ̂, û -FKî Si
Who Are You?
• EDP Manager
• Senior System Analyst
• Analyst/Programmer
• Operator
• Other

(List in order: I = Primary use)

Introduction to the product
Reference
Tutorial Text
Operating Guide

Yes Somewhat No
• • •
n • •
a • U
D • U
n • •
n • u
• • u

Is the manual easy to read?
Is it easy to understand?
Is the topic order easy to follow?
Is the technical information accurate?
Can you easily find what you want?
Do the illustrations help you?
Does the manual tell you everything you need to know .

Comments?
(Please note page number and paragraph where applicable.)

From:

Name .Title - .Company -

.Date

SD-00742

FOLD DOWN FIRST FOLD DOWN

FIRST
CLASS
PERMIT
No. 26

Southboro
Mass. 01 772

BUSINESS REPLY MAIL
No Postage Necessary if Mailed in the United States

Postage will be paid by:

Data General Corporation
Southboro, Massachusetts 01772

ATTENTION: Software Documentation

FOLD UP SECOND FOLD UP

SD-00742A STAPLE

