b OEAEE

KNOWNS AND UNKNOWNS IN IMMEDIATE ACCESS
TIME SHARED SYSTEMS

by
Murray Turoff

INSTITUTE FOR DEFENSE ANALYSES

(Speech presented at the American
Management Association Conference on
The Computer Utility, March 8-10, 1967
in New York City.)

KNOWNS AND UNKNOWNS IN IMMEDIATE ACCESS
TIME SHARED SYSTEMS

by

Murray Turoff

Introduction

The white man drew a small circle in the
sand and told the red man, "This is what
the Indian knows," and drawing a big
circle around the small one, "This is
what the white man knows." The Indian
took the stick and swept an immense ring
around both circles: "This is where the
white man and red man know nothing."

- Carl Sandburg
The People, Yes

Ladies and Gentlemen, it really doesn't matter much which of us
are the white men or which of us are the red men, for in this instance
we are dealing with a situation where the questions of interest lie in
the unknown region outside our immediate circles of knowledge.

Because of this, there is very little in the way of cold hard facts
that I can offer you. Rather, I am forced to offer you a mixture of
intuition and, hopefully, common sense, based upon my own observations.
However, it is hoped these opinions can be put in a light which will
make.them somewhat obvious to your own intuitive sense.

First, let us try to remember that we are not dealing with new

ideas but rather a new combination of old ideas. YImmediate access"

for humans has been with us since the first hand calculator and is
still with us in the use of the "small" computers. What is meant

by immediate access is the ability of a user to sit down at a console
(perhaps a small computer or perhaps a console) and in some manner
control or manipulate the task he wishes to accomplish.

Second, the area of process control (control of a physical
process by a computer) has lead to many of the ideas which went into
the time sharing systems with which you may be familiar. The unique
difference is that it is no longer a chemical or physical process we
are attempting to aid by increasing efficiency. Rather it is a mental
process as represented by a group of human beings. I can truly per-
ceive of no process which is more unpredictable. At least, in the
- standard process control applications there always existed a group of
experts (e.g., chemists, engineers) who could define the process,
indicate the best ways to aid it and provide warnings on what sort
of overload or troublesome situations might occur. In attempting to
aid mental processes, we would conjecture that, perhaps, the field of
psychology would be able to contribute greatly to the construction of
meaningful immediate access systems. However, when one locks at some
of the current systems of this nature, it becomes quite evident that
the evolution of these systems has not been overly influenced by this
field. As you may begin to suspect at this point, it is perhaps an
interesting philosophical commentary on this subject that before you
today is a physicist in the guise of a computer expert and acting like
a psychologist.

The reason for this rather illogical development is partly

historical and partly human nature. As computers and demand grew
bigger and humans were pushed farther and farther away, longer and
longer delay times in running programs resulted; for a few minutes
of computer time, hours of waiting resulted. Now, humans have the
wonderful quality of being able to adapt to almost any situation,
even though they may not like it. However, if they really dislike
a situation and are given an alternative which is infinitely more
pleasing, they will immediately change and be overjoyed at the pro-
spect. So overjoyed at the comparison between what they now have
and what they had in the past, that many of them forget to ask if
what they have now is really what they want. In other words, in
this drastic transition, anything that gives me immediate access is
. better than nothing, so let me not be too critical of what I get.

My feeling is that in most of the first generation systems very
little thought has been given to providing the user with any sort of
optimized system, but just a system.

In talking to many users of such systems the common attitude or
first remark is that what they have is great. However, a little dis-
cussion begins to indicate that there are things (so called, little
things) that they don't like but with which they are willing to live
for the convenience of sitting at the console. I might also point out
that I've met a number of non-users who will not utilize the system
because of these "little things."

My purpose today is to try to illuminate for you what the re-
quirements would be for a system which approached the greatest possible
convenience for the user, one which would conform to the desires of the

individual user and not force the user to conform to it.

The User

Who is the user? To me he is not what we think of as the pro-
grammer. After all, the poor programmer programs for a living and he
will be forced to utilize whatever is provided him. Rather, the user

is the person who does not have to use the system. He has the freedom

to forget about what he thought of doing, doing it by hand, giving it
to the programmer, or sitting at an immediate access system to do it
himself. We would like a system that will sway him to take the latter
of these alternatives.

Basically, he is a professional man (manager, scientist, engineer,
etc.). To him the computer is a sophisticated hand calculator which
may or may not aid his major task.

First, it is probably useful to contrast the approach he takes
. to a problem with the common approach of the programmer when the

programmer is at the service of the user.

PROGRAMMER USER

Conjecture &

Problem Specification &t Analysis &
!

v
Flow Charts

v

Code €—

v

Debug

l
[
|
I
|
[
l
|
|

Run

4

> Examination

I

From this simple little diagram we can infer a number of
conclusions:

1) The user would like to avoid concern with what is taking

place on the left side (programmer) as far as possible.

2) Whatever must occur on the left should take the shortest

possible time.

3) Trying to turn the user into a programmer will discqurage

a lot of potentially important users.
Therefore, assuming the user wishes to be primarily concerned with
his problem and has no interest in computer-unique problems, the
major goal of immediate access systems should be to eliminate the
left-hand side as much as is economically feasible. This is not
‘to imply that the easement of the programmer's problems is not a
worthwhile goal in itself, and I will comment on this later.

One additional problem, besides the delay time, which the user
encounters if his approach involves going down the left-hand side is
that of communication. The programmer does not have the competence
of the user in the problem area and may tend to inject unintentionally
misleading logic in the coding stage. This often leads to a certain
anount of insecurity on the part of the user when the results are
obtained. This, coupled with the delays, severely limits today the
number of users who utilize computers and the versatility of the
approaches taken when the computer is utilized in the batch environ-
ment.

This problem of communication between user and programmer is a

good deal more severe than is often realized on the surface. Exact

information is rather hard to obtain. However, there recently

appeared in Data Processing Magazine (January 1967, "Using the Remote

Console™) an article that, besides illuminating this point, is so
much in direct disagreement with many of the views expressed here,
that I strongly recommend it to your attention, lest you feel there
is only one side to the coin. The major conclusion of this article,
basically, is that since the average user today does not know what a
computer is capable of doing or how to use it efficiently, it would be
a disaster to give him a remote console unless we train him to be a
programmer, e.g., construction of a complete definition of the problem
before beginning, flow charts, test cases, input-output, pre-writing

of program, etc. The facts presented to support the premise of this

conclusion are those obtained in a survey of 25 programmers -- not users.

It is enlightening to compare some of the questions asked of the pro-
grammers with what might very well be the users' reaction to this, as

follows:

Programmers'! Answers

Yes No
When you first discuss a problem
with a user, does he usually know
what he wants? 35% 65%
Does he usually define the task
in writing? 18% 82%
Does he usually define input and
" output in writing? 12% 88%

USER: IF I XNOW THE APPROACH TO THE PROBLEM THAT WELL, IT
PROBABLY IS NOT WORTH DOING!

Does he make any attempt to learn

what is involved in programming?

Does he usually know what a computer
can do for him?

Does he adequately monitor what
you are doing?

Programmers' Answers

Yes

18%

6%

18%

No

82%

94%

82%

USER: IT TOOK MANY YEARS FOR ME TO BECOME COMPETENT IN MY
FIELD; DO I HAVE TO SPEND A SIMILAR AMOUNT OF TIME

BECOMING COMPETENT IN YOURS?

One additional ground rule I would like to establish before we
proceed is that I'm dealing with a user who has a conjectural type
problem - one in which he may not be sure if he is asking the question
in the proper manner or applying the proper analysis. He will not be
sure of his quéstion or analysis until the results have been examined.
I wish for the moment to divorce this from the production run type
problem where the question and analysis are well defined and what are
required are merely repetitive runs of the program as the data
fluctuates in time. This latter case is, of course, the bread and
butter operation of most business computer installations today. I
would only wish to warn you that when I take this subject up, my

opinions on immediate access and time sharing will take a 180° turn

~with respect to usefulness.

Now that a basis has, I hope, been established, I believe we can

begin to itemize a set of "user" requirements.

Atmosphere

If you recall, our user has obtained a certain level of competence
in his field. Furthermore, not having had years of computer experience,
he does not realize that even the best programmer expects to make all
sorts of idiot errors when dealing with a new system or language.
Therefore, in order to prevent what he considers to be a show of
stupidity, he wishes privacy - he and the console alone in a room, Or
better yet, in his office.

Also, at least for myself, I find it very distracting to try to
think through a problem with consoles or key punches chattering away.

Our first condition, then, is that the user must have privacy and quiet.

While it is very expensive to put a console in every office, it is not
expensive to put a $20 plug in every office and mount the consoles on
casters to provide mobility.

Another point is that users should not be charged individually
for this service. The financing should be out of overhead for a
group of similar users. The time might be monitored which each user
spends for the purpose of discovering any unusually heavy usage by a
single individual, and then request justification in that case. But
once again, if a user feels he doesn't have the facility of an ex-
perienced programmer at this game, he might also feel he shouldn't
waste his budget on the learning effort. The user should have the

same attitude toward this service as he would have in obtaining the

use of a secretary from a pool existing for that purpose.

The Terminal

While a time sharing system may be able to support a limited
number of visual devices reserved for specialized problems, I feel
that for some time to come the average user with a "typical" problem

is going to have to contend with the typewriter or teletype. Further-

more, even with some type of temporary visual display, it is usually

important for this user to retain some sort of written record of his
work for some period of time. Especially in the iterative type
thought and analysis procedure we have described, it sometimes becomes
impossible to recall from memory the details of what took place only
the previous day.

It is rather disturbing, therefore, that while a lot of money

and effort have been poured into the area of visual display, only

10

minor consideration has been given to the typewriter. The question
that T would like to address is, what would users like to see in the
way of modifications to this animal?

There are a few obvious points I would like to make:

1) Users with typing experience find the feel of a typewriter
a good deal more comfortable than the teletype. This is not
a crucial question but merely indicates the most appropriate
choice if there is no "severe" economic penalty involved.

2) The flexibility of having both upper and lower case letters
is a good deal more important. All upper case just slows
down reading and comprehension and is somewhat tiring if one
is not accustomed to it.

3) Two color ribbon on the typewriter is the simplest solution
to providing a record of what the user is saying as opposed
to what the computer may say. This is particularly helpful
in looking back upon previous work.

None of the above modify the typewriter itself. In fact, the
only direct change I would like to see is an automatic backward line
feed so that those people who wish it will have more flexibility both

- in plotting and constructing tables.

The major change is the addition of a special box containing (see
figure):

1) one light and one panic button

2) three to five on-off toggle type switches

3) about ten to twelve blank keys

11

This is the USER BOX; it is really meant to keep him from
becoming frustrated. The first thing that disturbs a user is when
he sits at the console waiting for something to happen and nothing
does. Is he tied up in an endless loop of his own construction or
is the system neglecting him? The little light will blink in pro-
portion to the amount of effort (computer main frame time) that the
user is receiving. The panic button will give a high priority re-
quest to the system to provide a status report on his program (time
run and part of progrém being executed).

The toggle switches are found on every computer console and are
usually referred to as "sense switches." The user may program a
request in his program to test if a given switch is on or off and act

~accordingly. This provides the user with a great deal of logical
flexibility in controlling the logical flow of his program with an
absolute minimum of effort. In other words, he does not have to
construct artificial indicators to enter from the typewriter and keep
track of; another step in removing the conscious effort of programming.
In talking to anyone who has operated a program at the console of a
small computer you will find frequent use of this concept.

The ten blank keys are representative of a concept I would like
to see plagiarized from the Culler-Fried system. This is a system
developed for physicists; it is somewhat tricky in that it involves
two full keyboards. However, there is one row of keys on the aux-
iliary keyboard that represents a set of levels. If the key for the
first level is depressed the other board operates like a hand cal-
culator. The second level key turns the board into an algebra machine

S (a single letter representing a single number), while the next level

12

PLASTIC OVERLAY

USER BOX

indicates a vector keyboard (a single letter representing a row of
numbers), and so on, up to very complex operations including é level
where each key may represent a different program previously constructed
by the user. While the complex mathematics with which this system

deals are not often employed in commercial operations, there is an
analogous situation when dealing with a large file of data and each
level might very well represent a hierarchy of data classes or groupings.
Also, I feel it is very satisfying for the user to have a group of keys
he can call his own and define as he sees fit. We can further provide
each user with little plastic overlays on which he may write as he sees

fit and place over other keys.

A General Comment

At this point one may detect a general premise behind our
approach which should be clarified. The user wants to expend a
minimum of effort on anything not directly related to his problem.
If he could grunt and the machine would pour forth the answer he
wants, this would be a preferred mode of operation. We might note
that in any situation involving human beings and a premium on time,
the effort of communication tends to be minimized. BAs examples, take
men at war, air traffic control, or taxi drivers. Hopefully, this

‘natural selection process may someday see the death of such items as
COBOL, FORTRAN, and some of the more elaborate natural language
schemes. The user wants the shortest possible representation of his
desire - a specific phrase, a single word, a press of a button. In
one of the mac languages, for example, the user may use the option
of typing a few letters to indicate a particular command word. The
computer will query him if he has abbreviated the word to the point

where the computer cannot distinguish it from other possible words.

14

/\

IMMEDIATE
ACCESS

TN

HARDWARE

DOCUMENTAT\ON

DEBUGGING

EFFICIENCY

ON-LINE CONVENIENCE

SYSTEMS

Software

I believe the previous comment leads us to the heart of the
problem. After all else is said and done, the biggest stumbling
block remaining to be surmounted by the user is the software or
language into which he has to translate his problem.

A truly general purpose user language for a time sharing en-
vironment does not yet exist. However, there have been some notable
successes in user languages oriented to numerical problems.' The
languages that stand out here are BASIC, TINT, and JOSS. Of these,
my own opinion is that JOSS is the most successful in meeting many
of the requirements of a user language. Let me now try to go through
what I think these requirements are.

1) With not more than a half-hour's instruction or reading, a
user should be able to do elementary problems of interest to him at
the console. Examples of this are using the system as a hand cal-
culator or requesting and regrouping items of data from a file.
Remember, we have already stated our user has demonstrated a level
of competence in some endeavor; we do not mean to imply that just
anyone should be able to do this. It should also be pointed out, how-
ever, that in our own organization and a number of others, some in-
dividual users have been able to get their secretaries to do straight-
forward hand calculating type problems for them on systems such as
BASIC.

2) The system must contain informative error messages and ed-
ucational information which the user can request in order to expand
his knowledge of the system while he is at the console. He should be

able, for example, to request an explanation on a particular type of

16

instruction without any interference occurring to the work he has

in progress.

3) The grammar should be simple, probably simple declarative sentences
or questions. Instruction words should be short as a rule, and the user
should have the freedom to abbreviate as much as he wishes.

4) It should always be clear to the user, when he looks back on what

happened, what he typed, what his program typed, and what the system
typed.

5) The methods of constructing the logic of his program should not be
constrained artificially by the software. We would hope to see a logical
flexibility similar to that exhibited in the GPSS approach. Users

should be able to treat bits and pieces of a problem and tie these to-

. gether in whatever logical pattern the problem exhibits and not be

constrained by the sequential nature of the monitor system in their

thinking.

6) The system must eliminate artificial constraints on the user which
to him have no logical foundation. Examples of this are the mixed
mode restriction in FORTRAN or the artificial distinction between
numbers with decimal points from those without. Furthermore, exact
arithmetic should be employed (decimal internally rather than floating
point).

7) Particularly in commercial applications, it is going to be necessary
to have versatile but relatively intuitive ways of manipulating and
associating data, both numeric and alphanumeric. Here one would

like the sort of capabilities found in a language like SIMSCRIPT.

As yet however, there is no general user language, to my knowledge,

providing these abilities.

17

8) Another neglected area in the software, also of importaﬁce to
commercial application, is the flexibility of different users at
different consoles to interact in composing and running the same
program. This,I'm sure, would make the modeling or gaming of various
business situations a much more realistic or efficient tool than it is
in current practices.

9) Last and most important (important because it is the item whose
lack causes me the greatest waste of effort every time I sif down at
the particular time sharing system my company utilizes), is the

concept of interactive editing, correction, and modification. Once

a user has a program running, it might stop because of an error or

because he doesn't like the results he is getting and he decides to

" stop it. At this point the user would like to be able to look at data

he may have computed in the running but didn't earlier think he should
print out, or he may want to change some of the actual program or add
to it. Then he would like to be able to start the program running
from the point where he left off or any other point of the program

he desires without destroying any of the results he has obtained to

 that point. It might surprise some of you that very few of the

on-line systems allow the user this flexibility. BASIC, for example,
does not while JOSS is the exception and does. The typical system

forces the user to go back and begin his program at the very beginning.

18

It is quite obvious that if the user has had a program which
provided him good results for ten minutes of his time before he
reached a part of the program that didn't operate the way he hoped
it would, he is going to become frustrated at having to sit through
that ten minutes all over again. The basic reason this occurs is
that some systems programmer feels that the resulting machine level
language program from a recompilation every time a change is made to
the user program is 20% or so faster or has some advantages for the
time sharing system monitor. If he is right - and I'm not so sure
he is - then it means the computer wasn't designed well for this
particular job. But what the systems programmer has really forgotten

or is unaware of is the nature of the user and his problems. The user

~1s treating a conjectural type problem with an uncertain analysis.

Very often there are a lot of preliminary steps, tasks or computations
to accomplish which are fairly well defined and only lay the groundwork
and organize or create the data for the meat or difficult part of the
problem. It is this latter part of the program that will probably be
modified many times by the user. The user will just become very upset
if every time he makes a change he has to repeat all the initialization
section of the program. The systems programmer may be satisfied that
the user's program runs 20% faster, but in fact, he may be causing the
computer to do ten times the work and the user to take ten times as
long to reach a solution. Trying to be as impartial as possible, T
consider this interactive feature to be fundamental to a user system.

Basically, we have been trying to describe a software language
which contains in it the power of languages like FORTRAN, GPSS,

SIMSCRIPT, and perhaps COBOL with respect to the report generating

19

features. However, we don't want it to look any more ecomplex than
something like JOSS. We want the grammar to be common through all the
diverse applications that this level of capability implies, and more
important, we want rather natural subsets of the language to exist
with respect to vocabulary and language so that a user can learn a
very elementary language to begin to operate on the system and at the
same time prepare himself for increasing his scope without undue
effort (i.e., learning a new grammar of separate language). Furthermore,
we really don't want fo force the user to learn any more than he feels
he needs to accomplish his task. If the user is only concerned with
numerical analyses, he should only have to learn enough to do that,
while the user who wants to merely retrieve and examine data stored in
. a large file should have a subset of language available to him for
this purpose which to him appears complete. The user who wishes to
accomplish both tasks should not be faced with a changing grammar or
language as he moves from one task to another.

There is a movement underfoot to impose standards upon software.
I tend to feel this is a particularly inopportune time. We may be
entering an era where a process of true natural selection (survival

of the fittest) could take place in the software area. I would hate

to see the lifetime of relics like FORTRAN or COBOL artifictally
prolonged merely because of inertia.

Most of the large time sharing systems today are collections of
many different languages oriented toward different tasks with the
user finding it impossible to communicate problems from one language
to another. The user's approach to a problem is largely limited by

the particular language he utilizes. Very often complex real world

20

situations modeled on the computer reflect limitations in the soft-
ware more than they do the real situation. Hopefully, we should have
a new generation of software reflecting the supposed increase in com-
putational power inherent in the new generation of computers. For
the user - not the programmer - the answer definitely is not PL-1.
Perhaps one of the current problems is that a language like
JOSS, for example, appears so simple on the surface, so easy to employ
for simple problems, that many people are not aware of the éophistication
and power built into it until they have gotten to the point of really
applying it to a difficult problem. We should realize, however, that
even a person with a good aptitude for programming, entering the field

for the first time, needs a year or two of practice before he really

~acquires reasonable maturity in dealing with complex problems, regard-

less of the language used.

The greatest danger in the utility concept is that in trying to
serve a diverse set of users we reduce the power of a third generation
computer to the point where each individual user feels like he is using

a first or second generation system with respect to either hardware or

software.

21

Summary on the User

The user could not care less what is at the other end of the
wire - a computer or busy little green men. His concern is his
problem and his tools are the console and the software language.
Any knowledge he is forced to acquire about the other end of the
wire is just a waste of his effort as far as he is concerned.

Psychologists can give us very few specifics on the prbcess of
creativity. However, there seems to be one opinion universally held.
Creativity seems to thrive best in an unrestricted atmosphere.
Forced conformity is a damper on the creative process. The measure
of a user-oriented time sharing system should, therefore, be how
well it conforms to the needs of the user and how little it demands
of the user in conforming to it.

I believe these two observations lead one quite naturally to

many of the specifics I've attempted to present to you.

22

The Programmer and Programs

Probably for some time to come the meat of computer usage in
the average company will be the production program which will be
used a great number of times. History has taught us that a curve
similar to the one below exists for any given programmer and any
given program of reasonable size for any given computer in any

given language.

Execution
Time of
Program

Time Spent in Programming

If the program is only to be run a few times, as are the user-
oriented programs we have been talking about, we are really not too
concerned about execution time. However, for a production program
we should have a great deal of concern.

Now in a batch environment with its forced delays between runs
for the programmer, we may unintentionally be forcing the programmer
to spend a little more time in thinking about and improving the

program. A good programmer who takes pride in his work can usually

23

regulate himself fairly well on how far out on this curve to work.
However, I'™m not so sure there isn't a significant group of
programmers who just want to get the job done as quickly as possible.
For the manager who has members of this class in his group, there
are rather obviously horrible implications in providing them with
an immediate access system. There is also the concern that even a
good programmer may tend to become sloppy or "corrupted® by'this
facility.

It is rather disturbing that none of the time shared systems
to day (to my knowledge) have ever examined this in terms of a
number of obvious experiments that could be carried out.

It may be wise to require always that a well defined production
- program be completely programmed at the programmer's desk and the
immediate access system only be used for check out or debugging.

Another problem often swept under the rug is the attempt to
run either large programs (in terms of memory size) or long programs
(in terms of execution time) as a part of a time shared computer.

The current estimate on the overhead cost of operating a program
in a time sharing system as opposed to a batch system is 10-30%.
This is probably true for a program compiled out of a macro language
compiler (such as FORTRAN) written for a time sharing environment.
However, any compiler originally written for a batch environment will usually
produce much larger overheads because the person writing the batch
compiler never considered the influence of a time sharing monitor
or its interaction with the assembly level programs. (After playing
with some of the batch written compilers adapted to a time sharing

enviromment and offered for rental, I feel very strongly this is

24

true but can't really offer any positive proof. In passing, I offer
the advice to beware of time shared software not originally written
for time sharing systems.)

The same applies to production programs which may be
written in assembly level languages by a programmer. If the
programmer does not have a working knowledge of how the time sharing
monitor works, he can unintentionally write an extremely inefficient
program which may work fine in a batch mode but which will be highly
inefficient when put in the time sharing system. This implies that
whatever was the lowest standard you required from a programmer to

write production programs in the batch system, that standard now has

to be raised to at least an elementary system knowledge of time

. sharing operation. This problem of upgrading your programming staff

to meet a time sharing environment, I suspect, may be a point to
seriously consider for some companies.

Many of the time sharing monitors being implemented today work
on what is called a paging scheme where for a large program this means
only a portion of the program may be stored in the memory at one time.
Now if this large program is getting its current share of computer
time and discovers it needs a piece of the program which is out on
drum or disk, then the time sharing monitor goes on to give everyone
else a share of time while the piece of the large program is brought
in from these slower storage units. This means that this one time
the large program did not get an equal share of time with the other,
perhaps shorter, program. How often this will occur for the large
program depends on what might be termed the degree of randomness in

its logical structure. There are certain types of programs that can

25

have a very high degree of randomness; good examples are simu-
lations utilizing random events, others are the sorting and merging
of data where one likes to keep a significant amount of the data

in memory.

For some simulations the claim has been made that a program
which takes five minutes when run alone will not just take a
100-minute time when run with an average twenty other users in a
time shared environment, but rather 8-1/3 hours; a ratio of 100 to 1
rather than 20 to 1 because of the paging scheme.

We know from experience that in the batch enviromment there are
some types of programs which follow a law of nature represented in

the following graph, regardless of time sharing.

Execution
Time of
Program

Mmount of Immediate Storage Available

26

I'm afraid there will always be users who will have problems

not fit for time sharing and some provisions for them (reverting to
first-come, first-served or priorities) should be made.

If one looks carefully, for example, at a place like MIT where
the utility concept is fostered greatly and which has a large scale
time sharing system, one observes that large and long programs are
not too frequently run in this environment and some of the academic
departments (e.g., physics) have their own large batch operated
computers to handle this type of program. Quoting from Nature,
February 11, 1967, "Experience with Project MAC at MIT is said to
have shown that roughly a third of the time spent by users of multiple
access systems goes on comparatively humdrum activities such as editing
~and retrieving information.”" The only time shared system that makes a
direct attempt to take on the large scale programs in a time shared
environment is the SDC system. Because of the unique character of
their hardware, it is extremely difficult to make any cost performance
comparisons with commercial installations. Perhaps now that they are
converting to a commercial hardware installation, future data will be
easier to evaluate.

It took the computer community a while to realize that a small
computer feeding a large one was a very efficient setup as compared
to one large one all alone. I think we will someday realize that
there will be an analogy for time sharing systems where a small
or medium computer undertakes to do most of the routine time sharing
load such as bookkeeping, compilation, fetching information, and feeds
the more difficult tasks or production jobs to a larger computer which
operates on a priority as well as a time sharing scheme. On a per

dollar spent basis, the smaller computers tend to be more cost

27

effective for these operations anyway. However, there has not been
as yet any real effort to look at the netting of computers to
share workload and somehow I feel this is the area where the real

cost savings and user efficiencies ultimately will be.

Recommendations

My first recommendation, and perhaps the most important, is
quite simple:

GO SLOW if possible.

A lot of companies got burned in the attempt to keep up with the
Joneses in terms of bigger and faster computers. Considering the
publicity time sharing has been getting as the panaceas for all ills,
I éuspect a little bit of history will repeat itself.

To clarify this, let's follow a logical progression for a company
as it moves from a batch environment to a éompletely time shared one.
I might point out that this logical development may, in fact, not be
a possible one as it is dependent upon the necessary software being
available, which for the smaller company is an issue decided by the
manuf acturer.

The characteristics of our company are:

1. Tt has a medium or large computer run in a batch (first

priority or occurrence first-served basis) environment.

2. Most of the runs are production type (payroll, inventory,

reports, etc.).

3. BAn average programming staff (a few good, many so-so).

28

4. The last detailed analysis of the company information

flow or structure was at least four to five years ago.
or

5. The computer was always confined to conforming to the

structure of information handling that had grown up in
the evolution of the company and no real consideration
had been given to improve that structure.

The last two suppositions imply that there are some basic
differences in handling data (forms, reports, formats, timing,
analyses, etc.) which are more or less efficient depending upon
whether it is a manual or computer operation, or some compromise of
the two. I also have assumed that the "ultimate" of goals for this
group is to utilize immediate access to bring "timely" data to
individuals in the company for '"meaningful" analyses.

There are a number of things this company can do:

1. Set up a "quasi" time shared system with a single small
computer used as a terminal interfaced to the larger computer by
a disk. By "quasi" here we mean that any program coming into the
system will receive about five minutes of main frame computer time
in which it is time shared with other programs in the same status or
the one program that has been there the longest. After that five
minutes are up, if it still has longer to run it goes into the first-
come, first-served line and the system reverts to a batch system if
no programs are entering it. This eliminates the short program or
debugging problem for the programmer and will probably not affect
the production run problems too severely. Anyway, there should always
be a switch that throws back to a pure batch environment at someone's

discretion (another panic button).

29

2. If the company has a group that is always requesting or
would like to request a lot of one-shot numerical analyses (engineers,
system analysts), rent an on-line J0SS-like system.

Look for a real non-programmer oriented system (avoid FORTRAN)
and reasonable costs (e.g., $250 for 50 hours). This should be
billed toAthe computer operation and individual users should not
be charged.

3. Look for a good user-oriented report editing system
(especially if fhe company has a large key punching operation) and
rent this too. |

The company will now begin to eliminate the production of cards

and do a good deal more in the way of versatile error checking as

-the master tapes are being produced from the on-line terminal.

4, Begin to upgrade the programming staff. Where before you
got along with a majority of average programmers, you would now like
a majority of junior systems programmers.

5. Start a serious effort to examine the structure of information
flow and to analyze its timeliness to the operation of the company.

Now six months or longer have passed and someone from the con-
trolleds office bursts into the office of the manager of the computer
shop to point out that last month x thousand dollars were spend on
time shared services. To placate this upset individual, a notice is
sent out limiting time shared usage. This immediately creates a
ground swell of unrest which offers strong support for the next and
important step.

6. The rented services are eliminated and the x thousand dollars

plus a little more are used to replace the small computer with a

30

medium one and a number of terminals are hooked up to it.

This medium computer must be sufficient to handle the time
shared load and provide the necessary software to duplicate the
rented services. Also the software should be augmented to allow
users to obtain or accumulate information on the disks from the
production programs being run through the main computer. The main
computer still handles the programmers' debugging of production runs.
We now have the ideal situation; we've gone to a time shariﬁg en-
vironment without really going through a rewrite of the production
programs or computer change. Also we can now provide management with
a tool for its attempts to examine the information flowing through
the computer system.

Now as time passes the only changes that may take place are the
relative sizes of the two computers and the addition of disks. As
the flow of information is better understood it will be possible to
eliminate more and more of the batch jobs and replace these with a
real time gathering and analysis of the information through the use
of terminals throughout the company. However, there may be some
batch (long run jobs) that can never be eliminated and if these are
sufficiently great the batch oriented computer may never be eliminated.

To summarize, time sharing as a tool of management appears to
have two important uses:

a) Discovery and analysis by management of what is really

going on with information in the company.

b) To implement a timely and meaningful flow of information

in the company.

31

The latter cannot be accomplished without the preceding and
the preceding is never completely obtainable. A company and the
world it is in changes with time. Perhaps this fact and the
realization of time sharing company information systems givés us
some hint of what the oft debated role of ™middle" management will
be someday in the future: To carry out investigations of the
company structure and information flow with the goal of providing
better tools for "upper" management.

This further implies that a company should carry on a continuing
research effort into its own structure much as it carries on research
for new products. The recognition of this task as research in the
literal meaning of the word is a rather fundamental step in trying

-to obtain a meaningful company utility whose usefulness will not

decay with time.

Concluding Remarks

Let me hypothesize that many of the new computers were well along
in design before time sharing was given serious thought. I suspect
there have even been some attempts to introduce last minute design
changes to accommodate some of the growing demand for immediate access.
My conclusion would be that many of todays new generation of computers
do not really look like the ideal machines for this sort of utility
environment. I would therefore like to speculate what one will see
in the fourth generation.

First, single processors will probably have come close to the
maximum possible speed and be somewhat smaller and simpler in their

instruction set than they are today. A manufacturer will probably

32

market four or five types of processors, all of about the same
speed but differing in instruction sets and structure to make them
highly efficient in different tasks (e.g., straight numeric com-
putation; gathering and shuffling information; monitoring and
controlling communication channels among terminals, memories and
processors; compilations and error control). The purchaser would
then buy as many of each of these as were needed for his jobs and
they would be interconnected to form a multiprocessor. He would
probably form a pool with other users whereby they would all be
interconnected to distribute peak loads to unused sections of the
system. My feeling, therefore, is that time sharing, or the utility

concept or even the concept of a real time management information

'system tied into all the other computer utilization in a company,

begins to lead one to a multi-unequal-processor environment. However,
with this generation of computers we will still be able to do quite
a bit, perhaps not as much or as efficiently as one would like but
maybe we will be able to pinpoint in this experience what it is we
really need.

In the course of this talk you have probably noted a hint of
caution and concern. By this, I in no way mean to imply there are
not tremendous benefits that are inherent in the concepts of immed-
iate access and time sharing. However, in the hectic étruggle between
manuf acturers, and even individuals, to remain at the forefront of
this rapidly developing field, many loose ends seem to remain dangling
to the distress of the average user. Perhaps in the new maturity
which seems to be emerging with greater numbers of critical and com-

petent users there will be more emphasis on the little things which,

33

though small individually, become quite bothersome in the multitude
of occurrences.

Finally, for those wishing to delve deeper into this morass,
a fairly complete bibliography on time sharing may be found in

the Proceedings of the IEEE, Volume 54, No. 12, December 1966, pages

1764-65.

34

