
HQ8IDIC PR06RAHHIH6 AIDS INSTRUCTION
HANUAL, VOLUME I
Sylvania Electronic Systeas Si U.S. Aray
1959

Presented to The Coaputer Huseua
by Prof M F Luebbert, Dartaouth Coll.

IB59-1N

MOBIDIC
PROGRAMMING AIDS

INSTRUCTION
MANUAL

VOLUME I

) stf 4/Fsf fro

MOBIDIC PROGRAMMING AIDS

INSTRUCTION MANUAL

VOLUME I

PROGRAM WRITE-UPS

Signal Corps
Technical Requirements

SCL 1866

Contract No. DA-36-039-sc-78111

Submitted to

U.S. Army-
Signal Research and Development Laboratories

Fort Monmouth, New Jersey

SYLVANIA ELECTRONIC SYSTEMS
A Division of Sylvania Electric Products Inc

IPQ T2 ct SYSTEMS OPERATIONS
18 9 B Street - Needham Heights 94, Massachus*

LIST OF VOLUMES

Volume

I PROGRAM WRITE-UPS /
II PROGRAM FLOW CHARTS /

III PROGRAM LISTINGS

IV PROGRAM LISTINGS

V REAL-TIME SYSTEM J
VI MOBIDIC B PROGRAMS

(To Be Supplied)
AND ADDENDA

VOLUME I

TABLE OF CONTENTS

Section

LIST OF TABLES
CONTENTS OF OTHER VOLUMES
PREFACE
I INTRODUCTION

1. 1 Purpose of Minimal Programming Aids
1.2 MOBIDIC A Computer

1 . 2 . 1 G e n e r a l O r g a n i z a t i o n
II FACTUAL DATA

2. 1 Computer Applications
Instructions and Timing
Word Format
2 . 3 . 1 B i n a r y D a t a
2 . 3 . 2 A l p h a n u m e r i c D a t a
2 . 3 . 3 S t a n d a r d I n s t r u c t i o n
2 . 3 . 4 I n p u t - O u t p u t I n s t r u c t i o n s

2.4 Transfer Bus and Registers
2 . 4 . 1 T r a n s f e r B u s

2 . 2

2 . 3

2 . 4 . 2

2 . 4 . 3

2
2 ,

2 . 4 . 6

Memory Address Register and Memory In-Out
Register

Program Counter (PC) and Program Counter
Store (PCS)
Index Registers
Arithmetic Unit
2 . 4 . 5 . 1 A - R e g i s t e r
2 . 4 . 5 . 2 B - R e g i s t e r
2 . 4 . 5 . 3 Q - R e g i s t e r
Converter Instruction Register
2 . 4 . 6 . 1 A d d r e s s C o u n t e r
2 . 4 . 6 . 2 D e v i c e A d d r e s s R e g i s t e r

2 . 4 . 6 . 3 W o r d B l o c k F l i p - F l o p a n d W o r d B l o c k
Counter

2 . 4 . 6 . 4 I n s t r u c t i o n R e g i s t e r

Page

x i

xiii
1 - 1

1 - 1

1 - 1

1 - 3
2 - 1

2 - 1

2 - 1

2 - 1

2 - 2

2 - 2

2 - 2

2 - 3
2 - 3
2 - 3
2 - 3

2 - 3

2 - 4
2 - 4
2 - 4
2 - 5
2 - 5
2 - 5
2 - 5
2 - 6

2 - 6

2 - 6

IB59 -1N(I)

TABLE OF CONTENTS (Cont.)

1

1

1

Section

•
Page

2 . 4 . 7 R e a l - T i m e R e g i s t e r s 2 - 6 1

2 . 4 . 7 . 1 R e a l - T i m e O u t p u t R e g i s t e r 2 - 6 •
2 . 4 . 7 . 2 R e a l - T i m e I n p u t R e g i s t e r 2 - 6 |

2 . 4 . 7 . 3 R e a l - T i m e A d d r e s s R e g i s t e r 2 - 7
MA

III PROGRAMMING 3-1

3. 1 Minimal Programming Aids 3-1

3. 2 Programs, i Routines, and Subroutines 3-1 1
3 . 2 . 1 S y m b o l i c A s s e m b l y P r o g r a m 3-1 "

3 . 2 . 2 M a t h e m a t i c a l S u b r o u t i n e s 3 - 1 •
3 . 2 . 2 . 1 F u n c t i o n s 3-1 •

3 . 2 . 2 . 2 C o m p l e x N u m b e r s a n d D o u b l e P r e c i s i o n 3-2 _
Routines I

3 . 2 . 2 . 3 F l o a t i n g P o i n t R o u t i n e s 3-2

3 . 2 . 3 I n p u t - O u t p u t a n d F o r m a t C o n t r o l R o u t i n e s 3-2

3 . 2 . 4 M a l f u n c t i o n C o n t r o l R o u t i n e s 3-2 •

3 . 2 . 5 G e n e r a l i z e d D a t a H a n d l i n g R o u t i n e s 3-3 m

3 . 2 . 5 . 1 P u r p o s e 3-3 •

3 . 2 . 5 . 2 O b j e c t i v e s 3-3

IV MOBIDIC SYMBOLIC ASSEMBLY PROGRAM 4 - 1 |

4. 1 MOBIDIC Assembly Program 4 - 1
m

4. 2 Purpose 4-1 ;•

4. 3 Usage 4 - 1

4 . 3 . 1 P r e p a r a t i o n o f C a r d s o r T a p e s 4 - 1

4 . 3 . 2 I n p u t F o r m a t 4 - 2

4 . 3 . 3 O u t p u t f r o m M A P 4 - 2 •

4 . 3 . 4 C o d i n g I n f o r m a t i o n 4 - 2 •

4 . 3 . 4 . 1 S e n s e F l i p - F l o p S e t t i n g s 4 - 2 m

4 . 3 . 4 . 2 C a l l i n g S e q u e n c e f o r M A P 4 - 5 |

4 . 3 . 5 A c c u r a c y I n f o r m a t i o n 4-6 •
4 . 4 Error Detection Features 4-7 g

•

vi IB59-

1
1N(I) •

TABLE OF CONTENTS (Cont.)

Section
Page

4. 4. 1 Format for a Line of Coding 4-8
4. 4. 1. 1 Control Character Field 4-8
4. 4. 1. 2 Dewey Decimal Field 4-8
4. 4. 1. 3 Symbolic Location Field 4-9
4. 4. 1. 4 Operation Code Field 4-10
4. 4. 1. 5 Variable Field 4-12
4. 4. 1. 6 Remarks Field 4-14

4. 5 Method of Processing
4- 14

4. 5. 1 First Pass of MAP 4-14
4. 5. 2 Second Pass of MAP 4-16
4.5.3 Third Pass of MAP 4-17
4. 5. 4 Processing MOBIDIC Machine Instructions 4-18
4. 5. 5 Use of the Asterisk 4-23
4. 5. 6 Use of a Double Asterisk 4-23
4. 5. 7 Binary Output Program 4-23
4. 5. 8 Simulated Machine Instructions 4-30
4. 5. 9 Edited Assembly Listing 4-31
4. 5. 10 Supplementary Data Standard Symbolism 4-35

4. 6 Pseudo-Ops
4-35

4. 6 Pseudo-Ops
4-42

4. 6. 1 ORG
4-42

4. 6. 2 BSS
4-42

4 . 6 . 3 B E S
4-43

4 . 6 . 4 E Q U 4 . 6 . 4 E Q U
4-43

4 . 6 . 5 D E F
4-44

4 . 6 . 6 S Y N
4-44

4 . 6 . 7 O C T
4 . 6 . 8 D E C

4-45

4 . 6 . 9 F L T
4-46

4 . 6 . 9 F L T
4. 6. 10 ALF and ALZ

4-47

4. 6. 11 ALZ 4-50
4-53

IB59- 1N(I)
vii

TABLE OF CONTENTS (Cont.)

Section Page

4.6.12 UNLIST 4-53
4.6.13 LIST 4-53
4.6.14 REM 4-54
4.6.15 END 4-54
4.6.16 HED 4-55
4.6.17 UNH 4-56
4.6.18 RLS 4-56
4.6.19 RLE 4-58
4.6.20 LIB 4-58
4.6.21 ENDLIB 4-60
4.6.22 CRS 4-61
4.6.23 CRE 4-61
4.6.24 DEL 4-61
4.6.25 ORGNUM 4-61

4.7 Dewey Decimal System 4-62
4 . 7 . 1 G e n e r a l 4 - 6 2
4 . 7 . 2 U s a g e 4 - 6 4
4 . 7 . 3 C R S a n d C R E 4 - 6 7
4 . 7 . 4 O R G N U M 4 - 6 8

V MATHEMATICAL SUBROUTINES AND DETAILED FLOW CHARTS 5-1
5. 1 Specifications for Mathematical Subroutines 5-1

5 . 1 . 1 F i x e d P o i n t S q u a r e R o o t 5 - 2
5 . 1 . 2 F i x e d P o i n t S i n e , C o s i n e 5 - 4
5 . 1 . 3 F i x e d P o i n t T a n g e n t , C o t a n g e n t 5 - 8
5 . 1 . 4 F i x e d P o i n t A r c s i n e , A r c c o s i n e 5 - 1 2
5 . 1 . 5 F i x e d P o i n t A r c t a n g e n t , A r c c o t a n g e n t (A R C T C 2) 5 - 1 5
5. 1.6 Fixed Point Exponential 5-19
5 . 1 . 7 F i x e d P o i n t N a t u r a l L o g a r i t h m 5 - 2 1
5 . 1 . 8 Floating Point Arithmetic Operations 5-2 3
5 . 1 . 9 " U n f l o a t " C o n v e r s i o n R o u t i n e 5 - 3 2
5. 1.10 "Float" Conversion Routine 5-34
5. 1.11 Floating Point Square Root 5-36

viii IB59-1N(I)

Section

TABLE OF CONTENTS (Cont.)

Page
5. 1.12 Floating Point Sine - Cosine 5-39
5. 1. 13 Floating Point Tangent - Cotangent 5-42
5. 1.14 Floating Point Arcsine - Arccosine 5-47
5. 1. 15 Floating Point Arctangent - Arccotangent 5-49

- 5. 1.16 Floating Point Exponential 5-53
5. 1.17 Floating Point Natural Logarithm 5-55
5. 1.18 Fixed Point Double Precision Arithmetic Operations 5-58
5. 1. 19 Floating Point Double Precision Arithmetic

Operations 5-63

5. 1. 20 Fixed Point Complex Number Operations 5-68
5. 1.21 Floating Point Complex Number Arithmetic

Operations 5-72

5. 1.22 Fixed Point Polar-to-Cartesian Coordinate
Conversion 5-76

5. 1. 23 Fixed Point Cartesian-to-Polar Coordinate
Conversion 5-79

5. 1. 24 Floating Point Polar-to-Cartesian Coordinate
Conversion 5-82

5. 1. 25 Floating Point Cartesian-to-Polar Coordinate
Conversion 5-85

VI INPUT ROUTINE WITH FORMAT CONTROL
6. 1 MOBIDIC Input Program

VII OUTPUT ROUTINE WITH FORMAT CONTROL
7. 1 MOBIDIC Output Program

VIII GENERALIZED DATA HANDLING ROUTINES
8. 1 MOBIDIC Sort Routine
8. 2 MOBIDIC Merge Routine

6 - 1

6 - 1

7-1
7-1
8 - 1

8 - 1

8 — 13
8. 3 Format for Tape Specification Blocks - Format for Tape 8-22

and File Trailer Blocks P **

8 . 3 . 1 F o r m a t f o r T a p e S p e c i f i c a t i o n B l o c k 8 _ 2 2

8. 3. 2 Format for File Specification Block 8.25
8 . 3 . 3 F o r m a t f o r F i l e T r a i l e r B l o c k 8 . 2 9

8. 3. 4 Format for Tape Trailer Block g_31

IB59- IN (I)
ix

TABLE OF CONTENTS (Cont.)

Section Page

8 . 4 G e n e r a l U t i l i t y P a c k a g e 8-33

8 . 4 . 1 Core Dump 8-34

8 . 4 . 2 Tape Dump 8-35

8 . 4 . 3 Transfer Trace Routine 8-36

8 . 4 . 4 Snapshot Printout 8-38

8 . 4 . 5 Data Generator 8-38

8 . 4 . 6 Utility Read Routine 8-40

8 . 4 . 7 MAP Output Loader 8-41

8 . 4 . 8 Save and Restore Routine 8-41

IX MALFUNCTION AND CONTROL ROUTINES 9 - 1

9. 1 Register and Core Saver 9 - 1

9 . 2 T a p e E r r o r R o u t i n e 9-7

X MOBIDIC TAPE SELECTION AND UPDATING ROUTINE 10-1

x IB59-1N(I)

LIST OF TABLES

Table
Page

4-1 Addressable Registers 4-36
4-2 Input-Output Devices 4-37
4-3 Flip-Flops

4-38
4-4 Octal Equivalents of Fieldata, Baudot and Mnemonic

Operation Codes 4-39

8-1 Block and Fieldata Configurations for Tape Specification 8-23

8-2 Block and Fieldata Configurations for File Specification 8-26

8-3 Octal and Fieldata Configurations for File Trailer
JDIOC k 8-30

8-4 Block and Fieldata Configurations for Tape Trailer 8-32

IB59- 1N(I)
xi

CONTENTS OF OTHER VOLUMES

Directly following this page are the Contents Listings of:

VOLUME II - PROGRAM FLOW CHARTS

VOLUME III - PROGRAM LISTINGS

VOLUME IV - PROGRAM LISTINGS

VOLUME V - REAL-TIME SYSTEM

TABLE OF CONTENTS

VOLUME II FLOW DIAGRAMS

Figure

Fixed Point Square Root
Fixed Point Sine, Cosine
Fixed Point Tangent, Cotangent
Fixed Point Arcsine, Arccosine
Fixed Point Arctangent, Arccotangent
Fixed Point Exponential
Fixed Point Natural Logarithm
Floating Point Arithmetic Operations
"Unfloat" Conversion Routine
"Float" Conversion Routine
Floating Point Square Root
Floating Point Sine, Cosine
Floating Point Tangent, Cotangent
Floating Point Arcsine, Arccosine
Floating Point Arctangent, Arccotangent
Floating Point Exponential
Floating Point Natural Logarithm
Fixed Point Double Precision Arithmetic Operations
Floating Point Double Precision Arithmetic Operations
Fixed Point Complex Number Arithmetic Operations
Floating Point Complex Number Arithmetic Operations
Fixed Point Polar-to-Cartesian Coordinate Conversion
Fixed Point Cartesian-to-Polar Coordinate Conversion
Floating Point Polar-to-Cartesian Coordinate Conversion
Floating Point Cartesian-to-Polar Coordinate Conversion
MOBIDIC Input Program
MOBIDIC Output Program

Page

1 - 1

2 - 1

3-1
4-1
5-1
6 - 1

7-1
8 - 1

9-1
1 0 - 1

1 1 - 1

1 2 - 1

13-1
14-1
15-1
1 6 - 1

17-1
1 8 - 1

19-1
2 0 - 1

2 1 - 1

2 2 - 1

23-1
24-1
25-1
2 6 - 1

27-1

IB59-1N(II)
v

TABLE OF CONTENTS (Cont.)

VOLUME II FLOW DIAGRAMS

Figure

Sortl Program
Page

2 8 - 1

30-1

31-1
32-1

Merge 1 Program 2 9 - 1

Sort-Merge Program

Register and Core Saver Routine
Tape Error Routine

MOBIDIC Assembly Program Prepass-Paper to Magnetic Tape 3 3 - 1

MOBIDIC Assembly Program - Pass 1 34_ 1

MOBIDIC Assembly Program - Pass 2 35_1

MOBIDIC Assembly Program - Pass 3 36 _x

Dewey Decimal System 3 7 - 1

MOBIDIC Tape Selection and Updating Routine 38-1

vi IB59- 1N(II)

0
TABLE OF CONTENTS

0
Pi

0
p!
§
§
§

Pi
R (J

§

fi
|

VOLUME III PROGRAM LISTINGS

Figure

Fixed Point Square Root
Fixed Point Sine, Cosine
Fixed Point Tangent, Cotangent
Fixed Point Arcsine, Arccosine
Fixed Point Arctangent, Arccotangent
Fixed Point Exponential
Fixed Point Natural Logarithm
Floating Point Arithmetic Operations
Unfloat" Conversion Routine

'Float" Conversion Routine
Floating Point Square Root
Floating Point Sine, Cosine
Floating Point Tangent, Cotangent
Floating Point Arcsine, Arccosine
Floating Point Arctangent, Arccotangent
Floating Point Exponential
Floating Point Natural Logarithm

Fixed Point Double Precision Arithmetic Operations
Floating Point Double Precision Arithmetic Operations
Fixed Point Complex Number Operations
Floating Point Complex Number Operations
Fixed Point Polar-to-Cartesian Coordinate Conversion
Fixed Point Cartesian-to-Polar Coordinate Conversion
Floating Point Polar-to-Cartesian Coordinate Conversion
Floating Point Cartesian-to-Polar Coordinate Conversion
MOBIDIC Input Program
MOBIDIC Output Program

Page

1 - 1

2 - 1

3-1
4-1
5-1
6 - 1

7-1
8 - 1

9-1
1 0 - 1

1 1 - 1

1 2 - 1

13-1
14-1
15-1
1 6 - 1

17-1
18-1

19-1
2 0 - 1

2 1 - 1

2 2 - 1

23-1
24-1
25-1
2 6 - 1

27-1

IB59- 1N(III)
v

TABLE OF CONTENTS (Cont.)

VOLUME III PROGRAM LISTINGS

Page
Figure
— 2 8 - 1

Sort 1 Program 2g_1

Mergel Program 3Q_1

Register and Core Saver Routine 31-1
Tape Error Routine

vi
IB59 -IN(III)

TABLE OF CONTENTS

VOLUME IV PROGRAM LISTINGS

Figure

MOBIDIC Assembly Program Prepass - Paper to Magnetic Tape

MOBIDIC Assembly Program - Pass 1

MOBIDIC Assembly Program - Pass 2

MOBIDIC Assembly Program - Pass 3

Dewey Decimal System

MOBIDIC Tape Selection and Updating Routine

Utility Package

IB59- 1N(IV)
v

Page

32-1

33-1

34-1

35-1

36-1

38-1

39-1

TABLE OF CONTENTS

VOLUME V MOBIDIC REAL TIME SYSTEM

Section Page

LIST OF ILLUSTRATIONS vii

I INTRODUCTION 1-1

II GENERAL CAPABILITIES AND FEATURES OF THE 2-1
REAL TIME SYSTEM

III MOBIDIC A REAL TIME FEATURES 3-1

IV REAL TIME FEATURES OF OTHER MOBIDIC SYSTEMS 4-1

V CONCLUSION 5-1

IB59-1N(V) v

LIST OF ILLUSTRATIONS

3-1

3-2

3-3
4-1

4-2

VOLUME V MOBIDIC REAL TIME SYSTEM

Page

2 - 2

Figure

2-1 Real-Time Link between two MOBIDICs

?ime topCuf^gtrerS " APP<5arS °" FirSt Enterin« the R^" 3- 2

ofTher1ixthaDatleCĥ ricfePrPearS F°U°Wing 3-2

Real-Time Input Register Flow Chart 3 4

Real-Thne %£$££? ApP^S Up» *• 4!a

2aS"chSlcS ReglSter A'ter SUfti"g °f 4-1

IB59 -1N(V)
vii

VOLUME I

PROGRAM WRITE-UPS

PREFACE

This instruction manual has been written as an aid to Signal
Corps programming personnel in performing programming duties with
the MOBIDIC computer. Four volumes are contained in the manual.
Along with introductory material. Volume I contains the necessary
program write-ups to inform the reader of the purpose of a given pro­
gram, the approach taken in its formulation and the special steps re­
quired of programming personnel in undertaking its use.

Embodied in Volume II are the flow diagrams for the various
routines, subroutines, etc., whose write-ups are contained in Volume
I. Therefore, while reading a given program write-up in Volume I
the reader may reference the appropriate flow diagram for an aid in
understanding the mechanics of the program.

Volumes III and IV contain the hard copy of the coded programs
explained in Volume I.

The governing attitude in writing this manual has been one that
presupposes a fundamental knowledge of programming on the part of
the reader. It is not a training manual. Therefore, a reference to the
PROGRAMMING MANUAL FOR THE MOBIDIC COMPUTER is suggested
for a more basic understanding of MOBIDIC programming features.
Information relating to the MOBIDIC A Input-Output System may be
found in the document titled "MOBIDIC A Input-Output System and
Micro Flow Charts".

IB59-1N(I)
xiii

SECTION I

INTRODUCTION

1. 1 PURPOSE OF MINIMAL PROGRAMMING AIDS

The purpose of the Minimal Programming Aids (MPA) is to meet the initial,
minimum data-processing requirements of MOBIDIC A to facilitate computer oper­
ation in the areas of Combat Support Data Processing, Combat Control Data Proc­
essing, and Combat Computations.

The Minimal Programming Aids consist of a library of utility programs.
They may be broken down into the following five groups;

1. MOBIDIC Assembly Program (MAP)

2. Input-Output Routines

3. Malfunction Control Routines

4. Generalized Data Handling Routines

5. Mathematical Subroutines

1. 2 MOBIDIC A COMPUTER

The MOBIDIC A Computer is a large-scale, general-purpose, mobile
digital computer developed by Sylvania Electronic Systems for the U. S. Army
Signal Research and Development Laboratories. The machine operates in the
parallel mode with an internally-stored program. Logical organization within the
machine is in the binary system. The machine is equipped with high-speed random
access memories and a complete family of input-output devices. The entire equip­
ment is mounted in a trailer van to enable operation in the field, but its advanced
concepts of reliability and flexibility are equally advantageous for fixed plant or
strategic installation.

Because of its operational and design characteristics, MOBIDIC offers
many advantages over other existing commercial and military computers in most

IB59- 1N(I)
1 - 1

data processing applications. Features of particular advantage in MOBIDIC

are:

Computation Speed

The basic clock rate for MOBIDIC is one megacycle. Computation times
for the four basic fixed point arithmetic operations, including memory,

are as follows:

Add 16 Msec

Subtract 16 m sec

Multiply 86 Msec

Divide 88 Msec

The great majority of the instructions in the MOBIDIC repertoire are per­

formed in 16 Mseconds.

Single Address

MOBIDIC is designed primarily as a single-address machine. The stand­
ard instruction word, however, in addition to a full 15-bit address portion,
also contains a 12-bit portion referred to as the (3 portion. The different
uses of the (3 portion make a number of the MOBIDIC instructions resemble
those of a two-address machine. This arrangement combines the afficiency
of a single-address machine with some of the versatility of a double-address

machine.

Number System

MOBIDIC is built to operate internally in the binary number system. This
is due to the greater efficiency, economy and simplicity of the binary sys­
tem over coded decimal or alphanumeric systems for computational pur­
poses. However, there are orders which make it possible to handle alpha­
numeric information with reasonable efficiency.

Expandability

In order to adapt MOBIDIC to possible future requirements of increased
scope, the computer has been made logically expandable in several ways.

1 - 2 IB59- 1N(I)

Addressable Registers

In order to maintain a high degree of versatility, many internal MOBIDIC
registers have been made addressable. Those registers may be addressed
by the program and used for storage of data as if they were locations in the
high-speed memory.

Simultaneous Read-Write-Compute

The in-out converters are sub-processing units which control all of the in-
out devices (other than real-time registers). Use of the in-out converters
enables computation in the central machine to proceed independently of in-
out operation. Either converter, by itself, can control any of the in-out
devices provided. The number of devices which can operate simultaneously
is equal to the number of converters. A maximum of two additional input-
output converters may be connected to the MOBIDIC if desired.

1. 2. 1 General Organization

The MOBIDIC System is composed of the following machine units:

Central Computer
Memory Units
In-Out Converters
Flexowriter
Paper Tape Readers
Paper Tape Punches
Magnetic Tape Units
Communications Equipment
Power Supplies and Air Conditioning Units

In addition to these units, other devices such as card equipment, high­
speed printers, and displays are available.

IB59-1NU) 1-3

TABLE 1-1. MOBIDIC COMPUTER CHARACTERISTICS

Mode of Operation Basic Expanded

Word Structure Binary-Fixed Point
Fractional-Magnitude
and Sign

Binary-Fixed Point
Fractional- Magnitude
and Sign

Word Length (including
parity and sign bits)

38 Bits 50 Bits

Core Memory (number
and capacity)

Two-4, 096 words each.
Total 8, 192 words.

Seven-4,096 words each.
Total 28, 672 words.

Magnetic Tape Units 2 63 *

Simultaneous Tapes 2 4 **

Other In-Out Devices
Paper Tape Readers

8-Channel
5-Channel

1
1

Paper Tape Punches
8-Channel
5-Channel

1
1

Flexowriter 1

System Features
In-Out Converters 2 4

Index Registers 4 7

Real-Time Input
Registers

1 No Practical Limit

Real-Time Output
Registers

1 No Practical Limit

*The addressing format of MOBIDIC allows a total of up to 63 In-Out Devices.

-, .- ,=The number of In-Out Devices that can be operated simultaneously depends
upon the number of In-Out Converters incorporated in the system. For example:
If there are 2 In-Out Converters in the system, then 2 and only 2 In-Out Devices '
can be operated at the same time. If , however, the number of In-Out Converters
were increased to 3, then 3 In-Out Devices could be operated simultaneously.

1-4 IB59-1N(I)

TABLE 1-1. MOBIDIC COMPUTER CHARACTERISTICS (Cont.)

Mode of Operation Basic Expanded

Operating Speeds
(including Memory Access)

Addition 16 jusec
Subtraction 16 /usee
Multiplication 86 /usee
Division 88 /usee

IB59- 1N(I)
1-5

SECTION II

FACTUAL DATA

2. 1 COMPUTER APPLICATIONS

The military applications of the computer are grouped into four major
categories: logistics, scientific computation, battle-area surveillance, and real­
time operations. Emphasis is placed on speed, input-output capability, versatil­
ity, and reliability.

The computer is a parallel-binary machine with a word lingth of 38
bits including parity. Operation is synchronous; arithmetic is performed using
the fixed-point, magnitude, and sign convention. The clock rate is one megacycle
per second.

2. 2 INSTRUCTIONS AND TIMING

Speeds for the four basic (fixed point) arithmetic instructions are 16
microseconds for Add and Subtract, 86 microseconds for Multiply, and 88 micro­
seconds for Divide. Sixteen microseconds is the minimum time for a basic instruc­
tion and 88 microseconds is the maximum. Currently there are 52 instructions
mechanized in MOBIDIC "A".

MOBIDIC is provided with high-speed magnetic core memories in
modules of 4096 words each. Repetitive random-access time is 8 microseconds.
A total of 7 memories can be used, giving a maximum capacity of 28, 672 words.

The computer can be equipped with high-speed magnetic tapes, high
speed paper-tape reader, paper-tape punches, Flexowriter, card reader and
punch, high-speed line printer, and a disc memory that is capable of storing
50 x 10 bits. It also contains real-time registers which permit data to be trans­
ferred to and from external devices or systems in real-time.

2. 3 WORD FORMAT

The word format used in MOBIDIC is as follows:

IB59-1N(I)
2 - 1

o -\

2. 3. 1 Binary Data

From left to r ight in the format for binary numerical data, bits 38 and 37
are the parity and sign bits , respectively. Bits 36 through 1 specify magnitude.

Magnitude
Parity Sign r

2. 3. 2 Alphanumeric Data

The format is the same as that for binary data, except that the sign bit is
not significant and six alphanumeric characters occupy thelocation previously used

for magnitude.

Parity Sign
Six Characters

A

38 37 36 31 | 30 25 | 24
I

19| 18
I

13 112
I

7 |6

2. 3. 3 Standard Instruction

In this format bit 38 is parity, as before. Bit 37 is a spare. The next
six bits , 31 through 36, consti tute the operation code, which specifies the operation
to be performed. Bits 28 through 30, the gamma bits , are used for indexing.
Bits 16 through 27, the beta bits , are loaded into an index register depending on
the type of instruction or added to the contents of an index register. They may
also be used in conjunction with the gamma bits to specify a second address. The
alpha bits , 1 through 15, consti tute the address portion of an instruction.

Operation
Parity Spare Code y (3 a

38 37 36 31 30 28 27 16 15 1

Standard Instruction Word

2 - 2 IB59-1N(I)

2- 3. 4 Input-Output Instructions

The format is identical with that of standard instructions except for the
assignments made to bits 16 through 30. Bits 22 through 30 specify the number
of words or blocks to be processed; bits 16 through 21 specify the particular in-
out device addressed.

Operation
Parity Spare Code k

38 37 36 ' 31 30 22 21 16 15

U

1

Input-Output Instruction

2. 4 TRANSFER BUS AND REGISTERS

2. 4. 1 Transfer Bus

All major elements of the computer are tied to the main transfer bus,
through which all information flows within the computer system. The transfer
bus greatly facili tates the flexibili ty and expandability of the machine, since addi­
tional components such as memories, display devices, and in-out converters can
be added with l i t t le or no modification to the central computer.

2- 4- 2 Memory Address Register and Memory In-Out Register

The memory address register holds the address of the location in memory
from or into which information is being transferred, and the Memory In-Out Reg­
ister holds the data that either have been read out of memory or are about to be
written into memory. These are not program addressable.

2- 4- 2 Program Counter (PC) and Program Counter Store (PCS)

The Program Counter is a 15-bit register that holds the address of the
next instruction. It is arranged to step automatically through all of the memory
cells in sequence.

The Program Counter Store (PCS) provides temporary storage for the
contents of the Program Counter when control is transferred to a subroutine with

IB59-1NU)
2-3

a "Transfer and Load PCS" instruction. At the end of the subroutine, a "Trans­
fer to PC" instruction can be used to return control automatically to the main

program.

2 . 4 . 4 Index Registers

Each of the Index Registers has 12-bit capacity in the basic machine. They

are used to perform the following indexing operations:

1. They specify the number to be added to a programmed address
to generate a relative address.

2. They specify the number of additional times that a particular program­
ming routine is to be repeated.

There are four Index Registers in the basic machine. This number can be
increased to a maximum of seven, and the capacity of an index register can be

increased to a maximum of 15 bits. In addition to the four functioning index
registers, MOBIDIC is equipped with a fictitious index register whose function is

to store a permanent zero.

2 . 4 . 5 Arithmetic Unit

This unit is composed of three special storage registers (Accumulator or
A-register, B-register, and Q-register) and the control circuitry necessary to

perform the arithmetic and logic operations specified by the instruction. They

are all individually addressable.

2 . 4 . 5 . 1 A - R e g i s t e r

The A-register, or Accumulator, is the main register in the arithmetic
unit. Most arithmetic and comparison operations involve the contents of the

Accumulator. The Accumulator can be reset to zero before entering new infor­
mation, or else new information can be added to the contents of the Accumulator
without prior resetting. It also holds the sum, difference, product, and remain-
ser after addition, subtraction, multiplication, and division, respectively. In
addition, it contains the augend or minuend at the start of an addition or sub­

traction, and the multiplicand before multiplication.

2-4 IB59 -1N(I)

2 . 4 . 5 . 2 B - R e g i s t e r

The B-Register is used to hold one of the operands of an arithmetic oper­
ation. It stores the addend, subtrahend, multiplier, and divisor for addition,
subtraction, multiplication and division, respectively.

2 . 4 . 5 . 3 Q - R e g i s t e r

The Q-Register holds the low-order bits of a double-length dividend (that
is, the 36 least significant bits of a 72-bit dividend) at the start of a division. At
the end of multiplication and division, it contains the low-order bits of a double-
length product and the quotient, respectively. The Q-register is also used during
the mask" instruction*. Finally, the Q-register can be joined with the A-register
to perform "shift" and "cycle" operations. The Q-register will contain the low-
order bits in each case.

2 . 4 . 6 Converter Instruction Register

When an In-Out instruction is sent to the selected converter it is placed in
the converter instruction register: an addressable register containing the current
status of the instruction being processed.

2 . 4 . 6 . 1 A d d r e s s C o u n t e r

Bits 1-15 (a) of the Converter Instruction Register specify the memory
address in the central processor to or from which the data is being transferred.
This is the address counter and will be incremented by one during each memory
access. It will not be incremented if it contains a register address.

The ' mask" instruction (MSK) compares each bit in the A-register with its
corresponding bit in the Q-register. If the bit in the Q-register is 0 nothina i*
dona; ; the bit in the Q-register is a 1, the corresponding tat in the A -register
^orttan o'theMSK tastructiota C0rreSPOndin« bit °f «>* —d specified in the a

IB59-1N(I)
2 - 5

2. 4. 6. 2 Device Address Register

Bits 16-21 (j) of the Converter Instruction Register specify the device
being addressed by the instruction. This is the device address register and i ts
contents are not changed during the processing of an in-out instruction.

2. 4. 6. 3 Word Block Flip-Flop and Word Block Counter

Bits 22-30 (K) of the Converter Instruction Register indicate the number
of words or blocks to be processed during the operation. The exact mode of
operation depends on the interplay of the word block fl ip-flop, bit 30, and the
word block counter, bits 22-29. Generally, K will be decreased by one, depending
on the in-out instruction, after a word or block is processed by the converter.

2. 4. 6. 4 Instruction Register

Bits 31-36 of the Converter Instruction Register specify the type of in-out
instruction being processed. This is the part of the converter instruction reg­
ister that controls the device specified by the device address register.

2. 4. 7 Real-Time Registers

2. 4. 7. 1 Real-Time Output Register

This register is connected to the main transfer bus and is addressable.
When a word is assembled in the register, i t is released to the output medium
connected to that real-t ime register.

2. 4. 7. 2 Real-Time Input Register

The information loaded into the real-t ime input register is transferred
either to memory or to an addressable register upon completion of the currently
executed instruction. If information arrives during an instruction which requires
no access to memory at that part icular t ime, such as during multiplication or
division, the transfer occurs while the instruction is executed without delay in
the main program.

2 - 6 IB59-1N(I)

2. 4. 7. 3 Real-Time Address Register

This register stores the 15-bits (a) which are necessary to specify the
memory location or the location of the addressable register which is to receive
the information arriving at the real-time input register. The real-time address
register is addressable and i ts contents is automatically incremented after each
memory access, so that incoming data is stored in consecutive memory locations

IB59- 1N(I)
2-7

SECTION III

PROGRAMMING

3.1 MINIMAL PROGRAMMING AIDS

In writing a library of utility routines for use on a new computer, it is nec­
essary to decide on certain basic objectives and to have a clearly understood phi­
losophy of the basic requirements. The Minimal Programming Aids written by
Sylvania Electronic Systems Inc. are intended to provide basic routines of a general
utility nature for immediate use on MOBIDIC.

3 . 2 P R O G R A M S , R O U T I N E S , A N D S U B R O U T I N E S

This manual contains specific programs consisting of the following:
symbolic assembly programs, input-output routines, malfunction control routines,
generalized data handling routines, and mathematical subroutines.

3 . 2 . 1 Symbolic Assembly Program

This series of programs is referred to as the MOBIDIC Assembly Program
(MAP). The assembly routine itself is a fairly basic type of one-to-one symbolic
assembly program. It has a reasonable list of pseudo operations which include the
ability to handle various types of decimal, octal, and alphanumeric data, library
routines, reservation of storage blocks, remarks, origins, and equating of absolute
and symbolic names. Also included are pseudo instructions which permit the pro­
grammer to code in relative rather than symbolic form.

MAP permits two types of binary outputs, one absolute and the other re­
locatable to any area designated by a programmer. The relocation may be specified
at the time of running. Each binary tape contains its own loading block.

3 . 2 . 2 Mathematical Subroutines

3 . 2 . 2 . 1 F u n c t i o n s

There are seven (7) basic mathematical functions: square root, exponential,
logarithm, and four trigonometric routines --written in both fixed and floating point.

IB59-1N(I)
3-1

All routines which involve angles will contain entrances and exits for numbers
expressed either as degrees or as radians.

3 . 2 . 2 . 2 C o m p l e x N u m b e r s a n d D o u b l e P r e c i s i o n R o u t i n e s

The complex numbers and double precision routines for the four arithmetic
operations have been written in both fixed and floating point.

3 . 2 . 2 . 3 F l o a t i n g P o i n t R o u t i n e s

In the case of the floating point, the representation is a one-word packed,
excess 256 system, where the first nine bits represent the exponent. In floating
point double precision, the second word is used as the low order part of the
mantissa.

3 . 2 . 3 Input-Output and Format Control Routines

These programs are capable of handling both numeric and alphanumeric
information. They have been designed for primary use with paper tape but can be
easily adapted to other media. The input-output routines allow the programmer
maximum flexibility in the specification of the type and mode of data he wishes to
operate upon. As far as input is concerned, the routines allow both numeric and
alphanumeric information which may be put into one or several storage areas. The
numerical information may be a fixed integer or fraction, a mixed number, a float­
ing point number, or a scaled number. The conversion to the proper binary form
is handled automatically.

The output allows the programmer full control over format on the output
device and allows him the option of collecting his numbers in any of several ways.
Conversion of binary integers, fractions, floating point or mixed numbers can be
requested for any number of words. It is also possible for alphanumeric informa­
tion to be controlled in output format.

3 . 2 . 4 Malfunction Control Routines

These are "saving" type programs capable of efficiently coping with inter­
ruptions necessitating the stopping of the computer in the middle of a program.

3-2 IB59- 1N(I)

The program, which preserves the contents of the addressable registers, the flip-
flops, and the core memory, is written in two forms. The first is for complete
operator control and the second is for program control as part of the normal
processing.

3 . 2 . 5 Generalized Data Handling Routines

The primary difficulty in designing these routines was that the exact details
of the applications were not clearly spelled out. They may, in fact, vary widely
from one user to another or from one installation to another.

3 . 2 . 5 . 1 P u r p o s e

The programs are designed to sort and/or merge a wide variety of informa­
tion. They allow for both fixed and variable size items where size may extend
beyond 1100 words.

3 . 2 . 5 . 2 O b j e c t i v e s

The objectives of these routines are as follows:

a. Error indication and correction should be handled by the program as
much as possible.

b. The need for human intervention and the resultant error should be
minimized.

c. The system involving both the tapes and the programs should be self-
contained and consistent without any exceptions.

IB59- 1N(I) 3-3

SECTION IV

MOBIDIC SYMBOLIC ASSEMBLY PROGRAM

4. 1 MOBIDIC ASSEMBLY PROGRAM

The symbolic label for the MOBIDIC Assembly Program is MAP.

4. 2 PURPOSE

The MOBIDIC Assembly Program translates MOBIDIC programs which
are written in a convenient symbolic coding language into explicit binary language
which MOBIDIC can use directly, in the form of a "Binary Output Tape". An
Edited Assembly Listing" is also produced.

4. 3 USAGE

4- 3- 1 Preparation of Cards or Tapes

The input to the MOBIDIC Assembly Program is prepared on punched paper
tape, either 8-hole paper tape in FIELDATA code prepared on a Flexowriter, or
5-hole paper tape in Baudot code prepared on a Teletypewriter. When the Flexo­
writer is used, the left margin must be set at column 45, with tabs set at columns
56, 64, 72, and 97. The right margin is set at the far right. The symbolic
MOBIDIC program is then typed on the Flexowriter following a prescribed format
(given below) with the punch "on", producing a paper tape containing the symbolic
MOBIDIC program. A "carriage return" must precede the first line of coding and
a carriage return followed by two stop codes must be punched at the end of the
program. When the paper tape has been finished, it is fed through the "read
latch" of the Flexowriter and a "read copy" of the paper tape is produced. This
read copy is then proof-read by the programmer to ensure that the paper tape has
been prepared correctly and is ready for assembly.

IB59- 1N(I)
4-1

4. 3. 2 Input Format

The input format consists of several fields, as follows:

Control Character Field (column 45)

Dewey Decimal Field (columns 46-53)

Symbolic Location Field (columns 56-61)

Operation Code Field (columns 64-69)

Variable Field (columns 72-94)

Remarks Field (columns 97-130)

Starting with the Control Character Field, the characters are punched
forming the various fields and ending in a carriage return. This sequence of
characters (ending in a carriage return) is referred to as a "line of coding".
Columns 54, 55, 62, 63, 70, 71, 95, 96 are used for tab purposes.

The function of the various fields is described in some detail in a later

section on "Format for a Line of Coding".

4. 3. 3 Output from MAP

The output from the MOBIDIC Assembly Program is a Binary Output Tape
and an Edited Assembly Listing. The Binary Output Tape may be produced on
either the 8-hole paper tape punch, or a magnetic tape (Magnetic Tape No. 3), or
both if desired. The Edited Assembly Listing may be produced on either the 8-
hole paper tape punch or the on-line Flexowriter. More detail on the Binary Out­
put Tape and the Edited Assembly Listing will be found in later sections of this

writeup.

4. 3. 4 Coding Information

4. 3. 4. 1 Sense Flip-Flop Settings

As one of the input conditions for assembling a program using MAP, it is
necessary that the console switches for the general sense flip-flops 1 through 6 be

4 - 2 I B 5 9 - 1 N (I)

positioned in a specific way to indicate certain conditions to MAP. Each sense
flip-flop switch, from SFF1 through SFF6, must be either manually set, manual­
ly reset, or neutral in accordance with the following scheme.

IB59- 1N(I) 4-3

SENSE FLIP-FLOP SETTINGS

FOR MOBIDIC ASSEMBLY PROGRAM

SFF
No. Manually Set Manually Reset Neutral

1 Binary Output on
Magnetic Tape Only

Binary Output on Both
Paper Tape and Magnetic
Tape

Binary Output on
Paper Tape Only

2 No Library Routines
on Listing

No Listing at all Normal Listing, with
Library Routines

3 Listing on Paper
Tape in Pass 2 -
Stop After Pass 2

Listing on Flexowriter
in Pass 2 - Stop After
Pass 2

Listing on Magnetic
Tape Only in Pass 2

4 Copy Magnetic Tape
Listing From Pass 2
Onto Paper Tape
(Pass 3)

Copy Magnetic Tape
Listing From Pass 2
Onto Flexowriter
(Pass 3)

Stop After Pass 2;
If Desired to Get
Printable Listing,
Manually Set or Reset
SFF 4 and Start at PC

5 Magnetic Tape Input
to Pass 1
(Fieldata)

Paper Tape Input to
Pass 1
(Baudot)

Paper Tape Input to
Pass 1
(Fieldata)

6 Binary Output
RELOCATABLE

Binary Output
FULL
(Self Loading) - for
Paper Tape Only

Binary Output
ABSOLUTE

Note 1: SFF 1 must be compatible with SFF3. That is, SFF3 must not be manually
set if SFF1 is either manually reset or neutral, because there is only one
8-hole paper tape punch available for use when the Binary Output Tape and
the Edited Assembly are produced during Pass 2. If SFF1 and SFF3 are
not compatible, a printout occurs at the beginning of Pass 2, the two flip-
flop switches must be positioned appropriately, and the "Start at PC Switch"
used.

Note 2: SFF6 must be compatible with SFF1. That is, if SFF6 is manually reset,
SFF1 must be neutral. If an incompatible condition occurs, a printout
occurs at the beginning of Pass 2 and appropriate action must be taken as
described in Note 1 above.

Note 3: SFF7 through SFF16 must be in a neutral condition at the beginning of each
pass. If they are not, a printout occurs and the switches must be placed
in the neutral position and the "Start at PC Switch" used.

4-4 IB59- 1N(I)

4 . 3 . 4 . 2 C a l l i n g S e q u e n c e f o r M A P

To use the MOBIDIC Assembly Program to assemble a symbolic MOBjDIC
program, the following equipment is necessary:

MOBIDIC Computer with at least two memories,

8-hole paper tape reader (for Fieldata input),

5-hole paper tape reader (if input is in Baudot code),

8-hole paper tape punch, and

at least two magnetic tape units; if Dewey Decimal is used,
6 tapes are required.

The following procedure must be used:

1. The System Tape containing the MOBIDIC Assembly Program must
be mounted on Magnetic Tape No. 1.

2. A blank magnetic tape (fitted with a "ring" for writing) must be
mounted on Magnetic Tape No. 2.

3. A blank magnetic tape must be mounted on Magnetic Tape No. 3,
if the Binary Output Tape is to be on magnetic tape. If Dewey
Decimal is used, this will also be used for the unsorted correction
lines.

4. A blank magnetic tape must be mounted on Magnetic Tape No. 4,
if the Edited Astsembly Listing is to be on magnetic tape during
Pass 2. If Dewey Decimal prepass is used, this will be used for
the sorted correction lines.

5. A blank magnetic tape must be mounted on Magnetic Tape No. 5
to be used as output for the Dewey Decimal prepass. This will
also be used as input to Pass 1.

6. The input to the Dewey Decimal prepass, if on magnetic tape,
will be on Magnetic Tape No. 6.

7. The 8-hole paper tape punch must be turned on and a few feet of
blank tape produced, if the paper tape pujnch is to be used for either
the Binary Output Tape or the Edited Assembly Listing.

8. The Flexowriter must be turned on, with the "Local-Receive"
switch in the "Receive" position, and an ample supply of paper
available and positioned properly in the platen.

IB59 -1N(I) 4 - 5

9. Sense flip-flop switches 1 through 6 must be set in accordance with
the procedure described above under "Sense Flip-Flop Settings" and
Sense flip-flop switches 7 through 16 must be in the neutral position.

10. The program to be assembled must be mounted on the appropriate
paper tape reader and threaded properly.

11. The First Pass of MAP (or the Dewey Decimal Prepass) is called into
memory from the System Tape and execution of the assembly is initi­
ated by a "Start at ASR". The beginning line has a symbolic location
MCLPS1, and in the version of MAP, at this writing, has an octal
location of 3551. This location must be loaded into ASR prior to the
initiation of the program.

Other Subroutines Required

None (contains many subroutines itself)

Error Halts

No Error Halts - See "Error Detection Features"

Sense Flip-Flops Used

SFF1 through SFF6 for parameters; SFF7 through SFF16 for internal pro­
cessing.

Number of Storage Locations for Symbol Table

2046 (sufficient for 1023 symbols)

Approximate Time

Varies with input and output devices used and with the length of the program
being assembled.

4. 3. 5 Accuracy Information
- 37 Average Error: 2 in DEC and FLT pseudo-ops

4-6 IB59 - 1N(I)

- 36 Maximum Error: 2 in DEC and FLT pseudo-ops

All other calculations use integral arithmetic and are therefore exact.

4. 4 ERROR DETECTION FEATURES

The MOBIDIC Assembly Program checks the symbolic input program for
various kinds of format errors and also for apparent logical errors in the variable
field. For example, if a 7-character symbol is used in the symbol field, this
will be detected as an error; or, if an apparently incorrect order is given (such
as TRU QRG), an error indication is given, although the binary equivalent is still
produced.

The format errors and apparent logical errors which have been detected
by MAP are shown as "flags" on the Edited Assembly Listing. A maximum of 5
such flags may appear on the listing (to the left of the octal notations) for one
instruction line. The letters used for these flags are as follows:

Flag Significance = Possible error in:
C Control Character Field

Dewey Decimal Field
Symbql Field
Operation Code Field
Address part of variable field
Gamma part of variable field
Beta part of variable field
J-part of variable field
K-part of variable field
Variable Field (either error in Pseudo-op, or
multiple errors for Machine instruction)

D
S
(5
A
G
B
J
K
V

IB59-1NQ) 4-7

4. 4. 1 Format for a Line of Coding

4. 4. 1. 1 Control Character Field (column 45)

The Control Character Field may contain any of four characters:

(1) Space

(2) Tab

(3) Carriage Return

(4) Asterisk (*)

(1) Space

A space should be used to reach the Dewey Decimal Field, if there is to be
an explicit Dewey Decimal Number with the l ine of coding.

(2) Tab

A tab may be used to reach the Symbolic Location Field, if there is not to
be any explicit Dewey Decimal with the l ine of coding.

(3) Carriage Return

A carriage return may occur in the Control Character Field, if the Sym­
bolic Input Program, at any t ime, has two or more carriage returns
consecutively, for double or tr iple-spacing etc.

(4) Asterisk

An asterisk (*) in the Control Character Field signifies that the entire l ine
of coding is to be interpreted as "Remarks". An asterisk, being an upper
case character, must actually be preceded by an "upper case" and followed
by a "lower case" FIELDATA character.

Any other character appearing in the Control Character Field will be inter­
preted as an error, result ing in an error printout. The whole l ine will be inter­
preted as a l ine of remarks; no processing of the other f ields will occur.

4. 4. 1. 2 Dewey Decimal Field (columns 46-53)

A Dewey Decimal System may be used with the MOBIDIC Assembly Program
for ease of incorporating corrections and for certain sequencing applications. This

system is described later in some detail under section 4. 7.

4-8 IB59-1N(I)

If the Dewey Decimal System is used, a Dewey Decimal number must appear
on some lines of coding. If a specific Dewey Decimal number does appear on a
specific line of coding, it must be in the form of a lower case letter of the alphabet
followed by one, two, or three pairs of decimal digits (00 to 99) followed by a
period (.); or a lower case letter simply followed by a period with no digits at all.

Examples of acceptable Dewey Decimal numbers are as follows:

a.
bOl.
c2350.
d456789.

A tab or spaces should follow any Dewey Decimal number such as the above
in order to skip to the next field. A tab is recommended.

If there is no Dewey Decimal number associated with the line of coding, a
tab should normally appear in the Control Character Field in order to skip over
the Dewey Decimal Field to the Symbolic Location Field. If, instead, a space is
used in the Control Character Field and there is no Dewey Decimal Number, either
a tab or the correct number of spaces may still be used to reach the Symbolic
Location Field (column 56).

The meaning of the Dewey Decimal numbers and instructions for their use
will be given in more detail in the section on the "Dewey Decimal Prepass".

4. 4. 1. 3 Symbolic Location Field (columns 56-61)

In the Symbolic Location Field, a symbol may appear which may serve
either as a mnemonic label for the position of an instruction or data, or as a
mnemonic label for a parameter to be defined. In any event, the symbol, if pre­
sent, must consist of from one to six alphanumeric characters (letters of the
alphabet and/or digits from 0 to 9) of which at least one must be a letter. Examples
of symbols are given below:

A

CHECK

EXIT

IB59- 1N(I) 4-9

1HALF

BTS23

99999Z

ADJUST

In the implementation of the MOBIDIC Assembly Program, certain standard

symbols are used to refer to addressable registers, input-output devices, and
sense flip-flops (e.g. , ACC for the Accumulator, FLX for the Flexowriter, and
ISN for the Interpret Sign Flip-Flop). These standard symbols, which are listed

in Appendix A should never be used as a symbolic location in a program.

In using symbols in the Symbolic Location Field, it is possible for several

sections of a program, or for several programs being assembled together, to con­
tain the same symbols for different locations or parameters causing "multiply-
defined" symbols. Although this unhappy situation may be avoided by specific
ground rules for coding, it is convenient to be able to "head" symbols so that two
or three indentical symbols (such as "EXIT") can be headed by different characters

producing symbols which are now distinguishable from each other.

The MOBIDIC Assembly Program has the capability of heading symbols

using a system which will be described later. However, only symbols of 5 char­
acters or less can be headed. A six-character symbol (such as ADJUST) cannot

be headed.

After the symbol appearing in the Symbolic Location Field, a tab must
follow to skip to the next field, or, alternatively, the correct number of spaces to

reach column 64. A tab is recommended.

If there is no symbol in the Symbolic Location Field, which is permissible,

a tab or the correct number of spaces should be used to skip to the Operation Code

Field (column 64).

4. 4. 1. 4 Operation Code Field (columns 64-69)

In the Operation Code Field, a mnemonic code consisting of from three to

six alphabetic characters must appear. This code may represent a MOBIDIC

4-10
IB59- 1N(I)

Machine Instruction, such as CLA; or a Simulated Machine Instruction (to be de­
scribed later), such as LDQ; or a Pseudo-Operation (Pseudo-Op), such as ORG,
DEC, or END. A specific list of MOBIDIC Machine Instructions, Simulated
Machine Instructions, and Pseudo-ops will be given later with a description of how

they are handled by MAP.

In the case of machine instructions, any of three characters may appear

after the Operation Code. These characters are as follows:

Character Significance

- (Minus Sien) Attach a minus sign to this instruction when it Uviinus a g been procegsedj L e> > make bit 37 a

"one".

i (Apostrophe) For an order in a region of relative coding (see
'Relative Start' pseudo-op), do not increment
the alpha portion of the variable field.

• (Semicolon) For a MOV order in a region of relative coding
(see 'Relative Start' pseudo-op), do not^incre­
ment the gamma-beta portion of the variable
field.

If these characters do appear in the Operation Code Field (i. e. , any one,
any two, or all three), they may be in any order, but they must immediately follow

the Operation Code, itself.

After the Operation Code and the special characters described above (if

present), a carriage return is permissible if there are no remarks and, if the
machine instruction or pseudo-operation requires no information in the Variable
Field. If information appears in the Variable Field, which is usually the case, a
tab must be used to skip to the Variable Field, or the correct number of spaces to

reach column 72. A tab is recommended.

If the Operation Code is missing, of if it is anything other than three to six

consecutive alphabetic characters, MAP will produce an error printout and will
treat the Operation Code Field as if it were a HLT instruction. This procedure
will also occur if the Operation Code is ostensibly all right, but does not appear
in the Operation Code Table which contains a list of all the permissible MOBIDIC

machine instructions, Simulated Machine Instructions, and Pseudo-ops.

IB59- 1N(I) 4-11

4 . 4 . 1 . 5 V a r i a b l e F i e l d (c o l u m n s 7 2 - 9 4)

The Variable Field contains the various fields which need to be processed

for the completion of an instruction or for the processing of a pseudo-op. In some
cases, the variable field need not contain anything. In these cases, there may be
a tab to reach the remarks field, or a carriage return if there are to be no re­

marks (another option will be mentioned later-an exception to the rule).

Assuming that meaningful data is needed in the variable field, for machine

instructions, the field required must be as follows:

1. Internal machine instructions other than the MOV order: alpha, gamma,
beta (if al l three fields are needed) or alpha, gamma (if beta is not
needed) or alpha (if neither gamma nor beta is needed)

2. For the MOV order, the fields must be: alpha, gamma-beta (where
gamma-beta is one enti ty and, when processed, is placed in bits 16-30)

3. For the input output order, other than RWD, SKP, and BSP: alpha,
j-f ield, k-field

4. For the SKP and BSP orders: j-f ield, k-field (no alpha field at al l)

5. For the RWD order: j-f ield (no alpha field or k-field)

In the composit ion of the various subfields, there must be no spaces.
Commas are used to separate the various fields. After the last subfield, there
should be a tab to reach the remarks field or a carriage return if there are no

remarks.

There is an exception to this. The Variable Field can run beyond column

94 (i ts normal right l imit) , if necessary. If so, i t must be ended by a carriage
return if there are no remarks, or by a space if there are to be remarks. It

should not be ended by a tab.

As well as the possibil i ty of having an unusually long variable field ended
by a space instead of a tab to reach the remarks, i t is also possible to have a short
variable field also ended by a space instead of a tab, in which case, the remarks
start immediately after the space. This can be done if desired where the Variable
Field is short and the remarks are long; thus the Variable Field can overflow into
the left end of the Remarks Field, and the Remarks Field can overflow into the

4 _ 1 2 I B 5 9 - I N (I)

[

right end of the Variable Field, if necessary. This exception to the rule of the
various fields being a fixed size is the reason why the "MAP CODING FORM" has
a dotted line at the right end of the Variable Field.

Further rules for what quantities are allowable or necessary in the various
subfields for machine instructions are given in a later section on "Processing
MOBIDIC Machine Instructions", and for pseudo-ops in the section on Pseudo-ops.

IB59- 1N(I) 4-13

4.4.1.6 Remarks Field (Columns 97-130)

The Remarks Field contains the remarks which help to explain and clarify
the coding, if any remarks are present. The remarks can contain any characters
whatsoever, but must be ended by a carriage return. Normally, the remarks
start in column 97, but they can start either before or after that column, if the
Variable Field is ended by a space instead of a tab. There must be no more than
34 characters in the Remarks Field (not including FIELDATA characters for "up­
per case" and "lower case", which take no space on the paper) assuming the Re­
marks Field starts in column 97. If there are any more than 34 characters, the
Flexowriter carriage is likely to hit the right margin.

4. 5 METHOD OF PROCESSING

4. 5. 1 First Pass of MAP

Input to Pass 1

1. Symbolic Program on Punched Paper Tape.

2. Sense flip-flop settings for SFF1 through SFF6: each one
either manually set, manually reset, or "neutral". SFF7
through SFF16 must be in "neutral" position.

Actions Performed by Pass 1

1. Copies Symbolic Program (on paper tape) onto magnetic
tape, one block per line of coding.

2. Checks Control Character, Dewey Decimal, and Symbol
Fields for format errors. Sets error flags for listing for
each possible error discovered.

3. Assembles Op Code and checks Space Field for format
errors; sets error flags for listing for each possible error
discovered.

4. Determines whether Op Code is Regular or Simulated Ma­
chine Instruction, or Pseudo-op.

5. Processes Pseudo-op depending upon the functions required
by the particular pseudo-op.

4-14 IB59-1N(I)

1

•
•
 8

z

o

o
 5

uIO
z
!

a

Q -J
•»

L
U

d

u
.
 ̂

a 5
C
O

s
 s

$ -

o
-
O

o
o

o

si
6

Si
O
 i/>Ij

c
n

l
O

—

>
J
Q

m
 U
 ii

O
S

o

'
n

s

8
 O

M

o.

-8 o

o Z

o

lO I
C
N

>o
s

I
B
5
9
-
 1N(I)

4-15

6, Forms
Symbol
for eacl

Output from Pass 1

1. Magnetic Tape Copy of Symbolic Program.

2. Symbolic Table (stored in memory).

4. 5. 2 Second Pass of MAP

Input to Pass 2

1. Magnetic Tape Copy of Symbolic Program (from Pass 1).

2. Symbol Table (from Pass 1).

3. Sense Flip-Flop Settings (same as for Pass 1).

Actions Performed by Pass 2

1' FiHd^W f^01 CfharaCter' Dewey Decimal, and Symbolic
errors format erroi*s; sets appropriate flags if any

2. Assembles Op Code and checks Space Field for format
errors; sets flags if any errors.

3' MacM^nTnSa,WheJher °P C°de iS Re^ular or Simulated Machine Instruction, or Pseudo-op.

4-16
IB59- 1N(I)

7. Prepares Edited Assembly Listing, and writes out on
Flexowriter, paper tape, or magnetic tape. Edited
Assembly Listing includes flags for any format errors
discovered. The binary Output and Edited Assembly
output can be processed during this pass only if there is
no conflict between output devices required.

8. When END pseudo-op is encountered, finishes writing
Binary Output Program and Edited Assembly Listing,
and rewinds magnetic tapes. If Edited Assembly Listing
was on Magnetic tape, reads in Pass 3 of MAP, and
transfers control to Pass 3.

Output from Pass 2

1. Binary Output Program, on either magnetic tape, paper
tape, or both.

2. Edited Assembly Listing of Program, either on magnetic
tape, paper tape, or Flexowriter.

4. 5. 3 Third Pass of MAP

Input to Pass 3

1. Edited Assembly Listing on magnetic tape (from Pass 2).

2. Sense Flip-Flop Settings (same as for Pass 1).

Actions Performed by Pass 3

1. Note: Pass 3 is used only when Pass 2 has written the
Edited Assembly Listing on Magnetic Tape.

2. Pass 3 copies the magnetic tape Edited Assembly List­
ing onto either the on-line Flexowriter or directly onto
paper tape using the 8-hole paper tape punch (suitable
for typing on off-line Flexowriter).

3. When finished, rewinds all magnetic tapes not already
rewound.

Output from Pass 3

1. Edited Assembly Listing on either paper tape or Flexo­
writer.

IB59- 1N(I) 4-17

4 . 5 . 4 Processing MOBIDIC Machine Instructions

In Pass 2, the Variable Field of the MOBIDIC Machine Instruction is

processed to obtain a binary equivalent for the various subfields involved. In
this process, different orders naturally fall into different classes. For exam­
ple, a SKP order would not be processed in exactly the same way as a RPT or
der. In implementing the processing of the 52 MOBIDIC Machine Instructions,
the MOBIDIC Assembly Program handles them in convenient groups. The follow­

ing chart gives these groups and describes what information must be present,
what information can be present, and what information is interpreted as being

ostensibly correct.

Each field may consist of a symbol, a numeric quantity, or any meaning­

ful algebraic combination of symbol (s) and numeric (s). In the computation of
the variable field, for algebraic combinations, the standard algebraic rules are
used i.e. that is, multiplications and divisions are performed before additions

and subtractions (in order from left to right).

The chart gives the subfields which may or must be present for each
order. Note that for the RWD, BSP, and SKP orders, the alphafield is omitted

entirely, and must not be present.

4-18
IB59- 1N(I)

Group
Number

OP CODEs
and Octal

Equivalent
Subfields
Permitted

Importance
of this

Subfield

Code number for
Allowable Contents

of Subfield (see
Explanatory Table)

1 RWD - 77 j-field Required 227

2 SKP - 66 j-field Required 227
BSP - 67 k-field Required 203

3 RAN - 70
WAN - 74
ROK - 72
WOK - 76
RRV - 71

alpha Required 747 RAN - 70
WAN - 74
ROK - 72
WOK - 76
RRV - 71

j-field Required 227

RAN - 70
WAN - 74
ROK - 72
WOK - 76
RRV - 71 k-field Required 203

4 SEN - 05
SNS - 06
SNR - 07

alpha Required 703 SEN - 05
SNS - 06
SNR - 07 gamma Required 247

beta Required 237

5 LOD - 51 alpha Required 747

gamma Required 247

beta Required 247

6 MOV - 52 alpha Required 747

gamma-
beta (one
item)

Required 747

7 TRU - 40 alpha Required 703
TRL - 41 gamma Optional 247

beta Optional 203

8 SHR - 32
SRL - 33
CYS - 34
CYL - 35

alpha Required 203 SHR - 32
SRL - 33
CYS - 34
CYL - 35

gamma Optional 247

IB59- 1N(I) 4-19

Group
Number

OP CODES
and Octal

Equivalent
Subfields
Permitted

1
Importance

of this
Subfield

Code number for
Allowable Contents

of Subfield (see
Explanatory Table)

9 SHL - 30
SLL - 31

alpha Required 203 9 SHL - 30
SLL - 31 gamma Optional 247

9 SHL - 30
SLL - 31

beta Optional* 203

10 HLT - 00
TRS - 42

alpha Optional 777 10 HLT - 00
TRS - 42 gamma Optional 777

10 HLT - 00
TRS - 42

beta Optional 777

11 ADD - 12
ADM - 13
SUB - 16
SBM - 17
DVD - 22
DVL - 23

alpha Required 747 11 ADD - 12
ADM - 13
SUB - 16
SBM - 17
DVD - 22
DVL - 23

gamma Optional 247

11 ADD - 12
ADM - 13
SUB - 16
SBM - 17
DVD - 22
DVL - 23

beta Optional* 203

12 ADB - 24
SBB - 25

alpha Required 747 12 ADB - 24
SBB - 25 gamma Required 247

12 ADB - 24
SBB - 25

beta Required 203

13 LDX - 53
RPT - 01

alpha Required 203 13 LDX - 53
RPT - 01 gamma Required 247

13 LDX - 53
RPT - 01

beta Required 203

14 TRP - 44
TRZ - 45
TRN - 46

alpha Required 703 14 TRP - 44
TRZ - 45
TRN - 46

gamma Optional 247

•Note,: If the beta field for group 9 or 11, although "optional" is omitted,
a "b" flag is produced on the listing to remind the programmer
that overflow is possible.

4-20 IB59- 1N(I)

Group
Number

OP CODEs
and Octal

Equivalent
Subfields
Permitted

Importance
of this

Subfield

Code number for
Allowable Contents

of Subfield (see
Explanatory Table)

15 CLA - 10
CAM - 11
CLS - 14
CSM - 15
LGM - 02
LGA - 03
LGN - 04
MLY - 20
MLR - 21
TRC - 47
STR - 50
NRM - 37
RPA - 54
MSK - 55

alpha Required 747 CLA - 10
CAM - 11
CLS - 14
CSM - 15
LGM - 02
LGA - 03
LGN - 04
MLY - 20
MLR - 21
TRC - 47
STR - 50
NRM - 37
RPA - 54
MSK - 55

gamma Optional 247

16 TRX - 43 alpha Required 703
gamma Required 247
beta Required 203

IB59- 1N(I) 4-21

EXPLANATORY TABLE FOR
"ALLOWABLE CONTENTS OF SUBFIELD"

Subfield
Code No.

Allowable Contents of Subfield
(An algebraic combination of these items is also permitted)

203 Numeric, Numeric-type Symbol

227 Numeric, Input-Output Device, Defined Symbol, Numeric-
type Symbol

237 Numeric, Input-Output Device, Flip-Flop, Defined Symbol,
or Numeric-type Symbol

247 Numeric, Addressable Register, Defined Symbol, Numeric-
type Symbol

703 Numeric, Location-type Symbol, Numeric-type Symbol

747 Numeric, Location-type Symbol, Addressable Register,
Defined Symbol, Numeric-type Symbol

777 Numeric, Location-type Symbol, Addressable Register,
Input-Output Device, Flip-Flop, Defined Symbol, Numeric-
type Symbol (in other words, all of the above)

4-22 IB59- 1N(I)

4. 5. 5 Use of the Asterisk

The asterisk (*) may be used to indicate the line on which the asterisk
appears (i.e. , the location counter), or a multiplication sign when appearing be­
tween two quantities.

For example:

TRU *+5 means "Transfer control to 5 lines down in the program" but

SHR 2*2 means "Shift right" "2 x 3", or 6.

The MOBIDIC Assembly Program determines which meaning the asterisk
has by examining its position relative to what precedes it.

4. 5. 6 Use of a Double Asterisk

A "double asterisk" (*•) implies that a subfield is to be filled in later by
the program itself and should be initially zero. The symbol ** is processed as
a numeric zero and satisfies any subfield which is considered "required" in the
processing of machine instructions. For example, if the alpha-field and k-field
are each to be filled in by the program for a WAN order using magnetic tape no. 2
the order should be written:

WAN **, mt2, **

4. 5. 7 Binary Output Program

1. The most important output of the MOBIDIC Assembly Program is the
Binary Output Program which is produced during Pass 2. This Bin­
ary Output Program is produced on either the 8-hole paper tape punch
magnetic tape, (magnetic tape no. 3), or both, if desired. Which of
these options is desired is determined by the setting of Sense Flip-
Flop 1, as shown in the Table of Sense Flip-Flops for MAP, given
earlier in this writeup.

2. The binary output may be in one of three forms: "absolute", "relo­
catable", or "full". The choice is determined by the setting of SFF6.
The "full" option must be used for paper tape only.

IB59- 1N(I) 4-23

Pass 2 of MAP fills a binary output buffer with fully proc­
essed binary words (up to a maximum of 510 words). When
a binary output buffer has been filled, or when an org, bss,
or bes pseudo-op has been detected, the binary output is
completed (including a "hash sum"), a new binary output
buffer is started (there are two buffers available), and the
completed one is written out.

3. When the end pseudo-op has been detected in Pass 2, the
binary output buffer currently being filled is completed and
written out, and the variable field is processed to produce
a Transfer Line, which is then written out; if paper tape is
used, a stop code is written out after the Transfer Line.

4. The absolute format is provided for programs which are to
be stored in a certain place in memory. The binary output
tape for the absolute format (either paper or magnetic tape)
is read into memory using a simple binary loader which reads
the words into the desired place in core memory, computes
and checks a "hash sum" to indicate that the program has been
read in correctly without any errors. Control is transferred
to the starting line of the program after stopping, if desired.
An absolute program cannot be relocated by the loader; if it
is desired to store it elsewhere, the program must be re­
assembled.

5. The relocatable format is provided for programs which are
to be stored nominally at a certain place in the memory, but
which may be relocated elsewhere. When this format is used,
quantities which are considered to be independent of location
within memory are still considered relocatable. In this scheme,
the following criteria are used:

Addressable Register
Input-Output Device
Sense Flip-Flop
Defined Symbol
Numeric-type (equ) Symbol

For algebraic combinations of absolute and relocatable quan­
tities, the following ground rules are used:

(1) Any combination of an absolute quantity with another
absolute quantity produces an absolute quantity.

Absolute Relocatable

Pure Numeric Location-type Symbol

4-24 IB59 -1N(I)

(2) For combinations of absolute and relocatable quanti t ies,
the following relationships are used, where abs and rel
are convenient abbreviations:

(a) rel + abs or abs + rel xx = rel

(b) rel - abs or abs - rel = rel

(c) rel * abs or abs * rel = rel

(d) rel — abs = rel (Note: abs — rel is not very mean­
ingful by i tself .)

(e) rel + rel - rel

(f) rel - rel = xxx abs

(g) rel -f- rel = abs (Note: rel * rel is not very mean­
ingful by i tself .)

Note that most combinations of absolute and relocatable quan­
ti t ies are relocatable, except the difference or quotient of two
relocatable quanti t ies.

Most relocatable quanti t ies are "relocatable direct". However,
if a quanti ty in a field is relocatable but negative, i t is processed

36 module 2 and considered "relocatable complement".

To read in a Binary Output Tape, a relocatable loader is used
which stores the program where desired, adjusts relocatable
fields by the proper amount, computes and checks a "hash sum",
and transfers control to a start ing l ine after stopping, if desired.

6. The "full" option is used for short programs (<_ 508 words) con­
taining no more than one origin, and no bss or bes pseudo-ops,
which are designed to be read directly into the computer from
the 8-hole paper tape reader using the Program Read-in button
on the MOBIDIC Console. When the full option is used, the en­
tire program is punched out in octal without any address words,
hash sums, or counts. To use the "full" option, the programmer
must supply as the very first two orders in the program, the fol­
lowing orders (no origin appears before them as these orders
must not be stored in memory):

ROK (LOCI), ptr8, (NUMB)

TRU (LOC2)

IB59-1N(I) 4-25

where (LOCI) is the starting position in which the program fol­
lowing the two orders is to be stored, (NUMB) is the number of
words required for the program which follows, and (LOC2) is
the location at which the program is to start once it has been
loaded into memory.
For example, if a program containing 40 words, which starts in
position 95 (containing no bss or bes), were desired to be written
using the "full" option, the program should start as follows (where
execution is to start in 98):
ROK 95, ptr8, 40

TRU 98
ORG 95
(Forty words of program)
In the above example, the first two words are not counted as part
of the 40; they are for use by the Program Read-in button only to
load in the rest of the program.

7. The format of the absolute, full, and relocatable blocks of infor­
mation which comprise a binary output tape are shown in the fol-
flowing diagrams, followed by some explanatory remarks.

1 1
Bits 37-31 | Bits 30-22 | Bits 21-16

1 1
"T T

"Key Info." | B R = 0 >

! !

1
k-Bits 15-l->
1

Address

H A S H S U M I

B Words of Binary Program
(Binary Program Buffer)

> 1 Word

1 Word

< 508 Words

Total:
< 5 1 0 W o r d s

NOTE: The Binary Output Format for the FULL option is identical to the Binary
Program Buffer by itself, with the address word and hash sum ignored.

4-26 IB59- 1N(I)

9. Binary Output Format for Relocatable Option

Bits 37-31

"Key Info."

Bits 30-22 | Bits 21-16
_ I [

B R

<- Bits 15-1 ->

Nominal
Address

H A S H S U M

^ 1 Word

• 1 Word

R Words of Relocation Information
(Relocation Buffer)

<
51
Words

B Words of Binary Program
(Binary Program Buffer) = 457

Words

1 0 .

1 1 .

1 2 .

Total:

^ 510
Words

Nominal Address: This is the starting address at which the
binary program would be stored if it were not relocated.

btU!ur° if the Pr°Sram is absolute (i. e. , not relocatable
L iTi herwise' R is the number of words containing relo­

catable bit information. Bit 37 is not used and is always zero
in the words containing relocation bit information.

In a relocatable program, four bits of relocation information
are used for each word of the Binary Program. The first two
bits (reading from left to right) give the relocation information
for the a (alpha) field of the word, according to the following
scheme: s

IB59- 1N(I)
4-27

00 Absolute

1
1

01 Relocatable Direct |
10 Relocatable Complement

The next two bits are always zero except for a MOV order,
where they indicate the relocation information for the y(3
(gamma-beta) f ield, according to the same scheme. Exam­
ples:

1
1 0000 a and y(3 both absolute. •

0100 a relocatable direct , y(3 absolute. 1
0101 a and y(3 both relocatable direct . 1
0010 a absolute, yf3 relocatable complement. 1
The R words of relocation information contain relocation bits
from left to r ight, bits 36-1; thus, requiring one word of re­
location information for each nine Binary Program words. Bit
37 is always zero.

1
1

The R words of relocation information are stored, however, in
REVERSE ORDER, start ing with the verv last word before the
Binary Program words begin, and continuing to the word immed­
iately following the hash sum. The last word of relocation bits is
zero-fi l led (at the right end) if necessary (i .e. , when B is not an
exact multiple of 9).

1
1

13. If R = 0 (Absolute Binary Program), B = 508, and the Binary
Program words start immediately after the hash sum. 1

14. If R ^ 0 (Relocatable Program), the ratio of B to R is 9 to 1;
thus, for a relocatable program, the individual maxima are as
follows:

B = 457
R = 51

1
1

15. For the sake of f lexibil i ty, the MOBIDIC Assembly Program uses
a symbolic location BNBFSZ (Binary Buffer Size) which contains
the number 457, and another location TOBFSZ (Total Buffer Size)
which contains the number 508; thus, the numbers may be changed
to any smaller constants simply by changing the contents of
BNBFSZ and TOBFSZ.

1
1
1

16. Key information will contain a 1 in bit 37 if this block represents
a "transfer l ine" (see Item 14). Also, bit 35 = 1 implies that the
Hash Sum is to be ignored; otherwise, bits 37-31 will be zero.

•

1
•

4-28 IB59-1N(I)

1
1

17. The hash sum will be a sum of all the words in R and B, plus
the first word. As these words are added up, the one's comple­
ment is taken of all negative words (producing a positive num­
ber), and all overflows are ignored.

18. Note that each block never exceeds 510 words.

19. Note that this format is the same for either paper tape or mag­
netic tape.

20. The format for a "transfer line" (the equivalent of "transfer to
start of program") is as follows:

One word only, with this format:*

(a) Bit 37 = 1 means this is a "transfer l ine".

(b) Bit 36:

0 = "Stop computer, then start at PC to transfer to start­
ing address"

1 = "Transfer automatically to starting address".

(c) Bits 17-16:

00 = Starting address is absolute.

01 = "Relocate direct" starting address.

10 = "Relocate complement" starting address.

(d) Bits 15-1 contain the starting address, i .e. , the location
at which the program is to start .

(e) All other bits are zero.

21. For paper tape, a stop code follows this "transfer line".

*On magnetic tape, the transfer line will be a one (1) word block.

IB59 -1N(I) 4-29

4 . 5 . 8 Simulated Machine Instructions

In addition to the 52 standard machine instructions provided in MOBIDIC

A, the following 11 "Simulated Machine Instructions" are provided with MAP for

the convenience of the programmer. Note that these Simulated Machine Instruc­

tions are really equivalent to some of the 52 standard machine instructions, and

accordingly, should be distinguished from pseudo-ops. The 11 Simulated Machine

Instructions listed below constitute the complete list available in MAP. Their use

is encouraged; for example, LDQ MASKER is much more convenient to write then

LOD MASKER, 0,QRG.

Simulated Machine
Instruction

CHS

CLZ

CSZ

LDQa ,y

MVQYP

MVZYP

NOP

SSM

SSP

TRI

XAQ

MOBIDIC
Equivalent

CLS ACC

CLA 70000

CSM 70000

8

8

LODQ , 7, QRG

MOV QRG, yP

MOV 70000g, 7, P

CLA ACC

CSM ACC

CAM ACC

LODq , 7, PCT

CYL 37

Purpose of Instruction

Change Sign

Clear and Add Zero
"(Gets plus zero in accumulator)

Clear and Subtract Zero
"(Gets minus zero in accumulator)

Load Q-Register

Move Q-Register to a storage
location

Move Zero to a storage location

No Operation

Set Sign Minus

Set Sign Plus

Transfer indirect (Transfer to the
contents of a , 7)

Exchange Accumulator & Q-Register

4-30
IB59 -1N(I)

4. 5. 9 Edited Assembly Listing

The Edited Assembly Listing shows the programmer how MAP has assem­
bled the program. The Edited Assembly Listing may be produced during Pass 2
on the on-line Flexowriter, or on the 8-hole paper tape punch if this is not being
used for the Binary Output Program. If it is desired to produce an Edited Assem­
bly Listing on the 8-hole paper tape punch but this is being used for the Binary
Output Program, the Edited Assembly Listing may be put temporarily on magnetic
tape No. 4, and Pass 3 may then be used to copy the magnetic tape onto the 8-hole
paper tape punch for printing. The Edited Assembly Listing can be omitted entirely
if desired, or library routines may be omitted from the listing; all options are fix­
ed by the use of Sense Flip-Flops 3 and 4, as given earlier in this writeup. When
an Edited Assembly Listing is to be produced, the left margin of the Flexowriter is
set at position 15, with tabs at positions 45, 56, 64, 72, and 97. Columns 15-44
are used for the information produced during assembly; columns 45-130 contain
the original line of coding, except in some cases where a line of coding produces
several words where it is blank. For an Edited Assembly Listing the fields are
as follows:

col. 15 • - 19 - Error Indication Field

20 - Space

21 -- 44 - Octal Address and Instruction Field

45 - Control Field

46 -• 53 - Dewey Decimal Field

56 -• 61 - Symbol Field

64 -• 69 - Operation Code Field

72 -• 94 - Variable Field

97 -• 130 - Remarks Field

15 -• 19 - Error Indication Field - will contain
to indicate the type of error (or errors) occurring on
this instruction line. If no errors are found, then this

IB59 -1N(I) 4-31

field will be blank. One or more spaces will be used to
reach the octal address field. The flags which are used
are l isted under "Error Detection Features".

21 - 44 - octal address and octal instruction field - will contain the
octal address and the octal equivalent of the instructions
located on this l ine. There are 8 different formats de­
pending on the type of instruction located on this instruc­
tion l ine.

1) For machine instructions - other than in-out instructions - the format
is as follows:

octal
address space sign

op
code space 7 space P space a space

XXXXX X X XX X X X xxxx X XXXXX XX

21-25 26 27 28-29 30 31 32 33-36 37 38-42
/

43-44

2) For in-out instructions, the format is as follows:

octal
address space sign

op
code space K space J space a space

XXXXX X X XX X XXX X XX X XXXXX XX

21-25 26 27 28-29 30 31-33 34 35-36 37 38-42 43-44

3) For the "move" instruction the format is as follows:

octal
address space sign

op
code space TP space a space

XXXXX X X XX X XXXXX XX XXXXX XX

21-25 26 27 28-29 30 31-35 36-37 38-42 43-44

32 IB59- 1N(I)

4) For the pseudo-op DEC, - the format is as follows:

octal
address space sign 12 octal digits space

XXXXX X X XXXXXXXXXXXX XXXXX

21-25 26 27 28-39 40-44

5) For pseudo-ops ORG - BES - BSS - SYN - EQU - DEF - RLS - RLE -
LIB - END the format is as follows:

octal
space address space

XXXXXXXXXXXXXXXXX XXXXX XX

21-37 38-42 43-44

6) For the pseudo-op OCT, the format is as follows:

octal
address space sign OCT space AL space NUM space BER space

XXXXX X X XXX X XXX X XXX X XXX XX

21-25 26 27 28-30 31 32-34 35 36-38 39 40-42 43-44

7) For the pseudo-op FLT, the format is as follows:

octal
address space sign characteristic space mantissa space

XXXXX X X XXX X XXXXXXXXXX XXXX

21-25 26 27 28-30 31 32-40 41-44

IB59- 1N(I) 4-33

8) For the pseudo-op ALF or ALF or ALZ, the format is as follows:

octal
address space

octal
char. space

octal
char. space

octal
char. space

octal
char. space

octal
char. space

octal
char. space

XXXXX X XX X XX X XX X XX X XX X XX X

21-25 26 27-28 29 30-31 32 33-34 35 36-37 38 39-40 41 42-43 44

Spaces will always be used to reach the control f ield (col. 45) from the
octal instruction field. The spacing of the fields of the assembly l ist ing, from the
control f ield (col. 45) to the remarks field (col. 97-130), is identical to that of the

symbolic program list ing.

-34 IB59- 1N(I)

4 - 5 - 1 0 Supplementary Data Standard Symbolism

This section contains four tables for referencing purposes. They are as
follows:

1. Table 4-1 - Addressable Registers

2. Table 4-2 - Input-Output Devices

3. Table 4-3 - Flip-Flops

4. Table 4-4 - Octal Equivalents of Fieldata, Baudot and
Mnemonic Operation Codes

IB59 -1N(I) 4-35

TABLE 4-1. ADDRESSABLE REGISTERS

Symbol
Octal

Equivalent Significance

zero 70000 Nonexistent memory location - contains zero

irO 70000 Index Register zero (nonexistent) - contains
zero

ir l 70001 Index Register one

ir2 70002 Index Register two

ir3 70003 Index Register three

ir4 70004 Index Register four

ir5 70005 Index Register five

ir6 70006 Index Register six

ir7 70007 Index Register seven

acc 70010 Accumulator

qrg 70011 Q-Register

brg 70012 B-Register

pet 70013 Program Counter

pes 70014 Program Counter Store

cio 70015 Instruction Register of Converter Receiving
Input order

wsr 70020 Word Switch Register

rar 70021 Real Time Address Register

ror 70022 Real Time Output Register

ci l 70030 Instruction Register of First In-Out
Conve r ter

ci2 70031 Instruction Register of Second In-Out
Converter

4-36 IB59-1NU)

TABLE 4-2. INPUT-OUTPUT DEVICES

Symbol
Octal

Equivalent Significance

mtO 37 Magnetic Tape Number 0 (fictit ious magnetic tape)

mtl 40 Magnetic Tape Number 1

mt8 47 Magnetic Tape Number 8

fix 26 Flexowriter

lpr 16 On-Line Printer

ptr5 24 Paper Tape Reader (5-hole)

ptr8 20 Paper Tape Reader (8-hole)

ptp5 25 Paper Tape Punch (5-hole)

ptp8 22 Paper Tape Punch (8-hole)

cdr 14 Card Reader

cdp 15 Card Punch

IB59 -1N(I) 4-37

TABLE 4-3. FLIP-FLOPS

ova

ropi

isn

nhc

rpe

robb

ror38

sffl

sff8

sff9

sffl 6

ioal

ioa2

tpe

100

101

102

103

104

105

106

110

117

1 2 0

127

130

131

135

Overflow Alarm

Real Time Output Program Interrupt

Interpret Sign

No Halt on Converter Error

Real Time Parity Error

Real Time Output Register Busy Bit

Bit Position 38 of Real Time Output Register

Sense Flip-Flop 1

Sense Flip-Flop 8

Sense Flip-Flop 9

Sense Flip-Flop 16

In-Out Alarm Converter 1

In-Out Alarm Converter 2

Tape Erase

4-38
IB59- 1N(I)

TABLE 4-4. OCTAL EQUIVALENTS OF FIELDATA, BAUDOT
AND MNEMONIC OPERATION CODES

Mnemonic
Operation

Octal Code Fieldata Code Baudot Code

00 HLT MASTER SPACE U, L 00
01 RPT UPPER CASE U, L 33
02 LGM LOWER CASE U, L 37

03 LGA TAB N. E.
04 LGN CARRIAGE RETURN U, L 10

05 SEN SPACE U, L 04

06 SNS A L 03

07 SNR B L 31

10 CLA C L 16

11 CAM D L 11

12 ADD E L 01

13 ADM F L 15

14 CLS G L 32

15 CSM H L 24

16 SUB I L 06
17 SBM J L 13

20 MLY K L 17

21 MLR L L 22

22 DVD M L 34

23 DVL N L 14

24 ADB O L 30

25 SBB P L 26

26 Q L 27

27 R L 12

Notes: 1. N.E. - No Equivalent
2. Fieldata characters in parenthesis indicate that they are

typed in the lower case mode.

IB59-1N(I) 4-39

TABLE 4-4. OCTAL EQUIVALENTS OF FIELDATA, BAUDOT

AND MNEMONIC OPERATION CODES (CONT.)

Mnemonic
Operation

Octal Code Fieldata Code Baudot Code

30 SHL S L 05
31 SLL T L 20
32 SHR U L 07
33 SRL V L 36
34 CYS W L 25
35 CYL X L 35
36 Y L 25
37 NRM Z L 21
40 TRU) U 22
41 TRL - U 05
42 TRS + U 32
43 TRX N . E .
44 TRP =

N . E .
45 TRZ N . E .
46 TRN N . E .
47 TRC $ U 11
50 STR j{c N . E .
51 LOD (U 17
52 MOV ft

U 21
53 LDX U 16
54 RPA ? U 35
55 MSK I U 15
56

> U 14
57 STOP CODE N . E .

Notes: 1. N.E. - No Equivalent
2. Fieldata characters in parenthesis indicate that they are

typed in the lower case mode.

4-40 IB59-1NCI)

TABLE 4-4. OCTAL EQUIVALENTS OF FIELDATA, BAUDOT
AND MNEMONIC OPERATION CODES (CONT.)

Mnemonic

Octal
Operation

Octal Code Fieldata Code Baudot Code

60 (0) U 26
61 (1) U 27
62 (2) U 23
63 (3) U 01
64 (4) U 12
65 (5) U 20
66 SKP (6) U 25
67 BSP (7) U 07

70 RAN (8) U 06
71 RRV (9) U 30
72 ROK C) U 13
73 (;) U 36
74 WAN (/) U 31
75 WWA (•) U 34
76 WOK N . E .
77 RWD CODE DELETE N . E .

Notes: 1. N.E. - No Equivalent
2. Fieldata characters in parenthesis indicate that they are

typed in the lower case mode.

IB59-1N(I) 4-41

4 . 6 P S E U D O - O P S

4 . 6 . 1 Origin: org

The org pseudo-op sets the location counter to the value of the expression
appearing in the variable field.

The org pseudo-op, in the variable field, should have a decimal number,
a previously defined symbol, or any meaningful algebraic combination thereof.
The numeric value of this expression is assigned to the location counter. If MAP
cannot obtain a binary equivalent, a flag is set for the listing, and the location
counter is set to zero.

After this expression, there should be a tab, if remarks are to follow, or
a carriage return, if there are no remarks.

When an org is encountered in Pass 2, the binary output block currently
being filled is completed and a new one is started with the address of the org.

Normally, an org pseudo-op should appear at the beginning of a program.
If it does not, an origin of zero is automatically assigned by MAP.

4 . 6 . 2 Block Started by Symbol: bss

The bss pseudo-op reserves a block of core storage extending from L to L
+ n - 1, where L equals the present value of the location counter and n is the numer­
ical equivalent of the expression appearing in the variable field. The expression
n may be a decimal number, a previously defined symbol, or any meaningful
algebraic combination thereof. If MAP cannot obtain a binary equivalent of this
expression, a flag is set for the listing, and n is set to zero.

Normally, a symbol appears in the symbolic location field for a line of
coding containing a bss pseudo-op. This symbol is assigned to the first word of
the block of core storage locations reserved.

When a bss is encountered in Pass 2, the binary output block currently
being filled is completed and a new one is started with the address equal to L + n
(terms defined above).

4-42 IB59 -IN(I)

4 . 6 . 3 Block Ended by Symbol: bes

The bes pseudo-op reserves a block of core storage extending from L to
L + n - 1, and in fact, behaves exactly as the bss pseudo-op except for the treat­
ment of the symbol appearing in the Symbolic Location Field. This symbol is
assigned to location L + n, corresponding to the location of the first word following
the block reserved.

4 . 6 . 4 Equals: equ

The equ pseudo-op equates the symbol appearing in the symbolic location
field to the numerical value of the expression appearing in the variable field. The
expression in the variable field may be a decimal number or a meaningful alge­
braic expression containing decimal number(s) and/or previously defined symbol(s).
It should, however, be equivalent to a number, not an address or storage location.
The equ pseudo-op should be used, as a rule, only in those cases where the symbol
appearing in the symbolic location field implies a preset parameter such as the
order of a matrix, the degree of a polynomial, the number of items in a group, or
any other quantity which is invariant with respect to the location of the program
in storage. (If the symbol refers to the location of either a piece of data or an
instruction, the syn pseudo-op should be used.) If MAP cannot obtain a binary
equivalent for the expression appearing in the variable field, a flag is set for the
listing and the binary equivalent is set to zero. If the binary equivalent is obtained
but is representative of a location, the binary equivalent obtained is used as is,
but an error flag does not occur indicating an apparent error in the use of the equ
pseudo-op.

Examples of equ pseudo-ops follow:

shftn equ 27 number of shifts

matord equ a*b + c/d - 2 matrix order

numb equ start -begin number of words

IB59 -IN (I) 4-43

4 . 6 . 5 Define: def

The symbol appearing in the symbolic location field is assigned the binary
equivalent of the number in the variable field, which must be a single octal number.
The def pseudo-op is used fdr defining a symbol for an addressable register, in-
out device, or sense flip-flop which is not one of the "standard symbols" used in
MAP. It may also be used for assigning an octal equivalent to a symbol referring
to a location whose octal position is known. If the variable field does not contain
a valid single octal number, flag is set for the listing and zero is used for the
binary equivalent. If the octal number exceeds 77777, the 15 low-order bits (the

15 number module 2) are used.

Examples of def pseudo-op follow:

def 160 stop program interrupt

def 167 write control characters

def 17725 location of loader routine

4 . 6 . 6 Synonym: syn

The syn pseudo-op is used to relate the symbol in the symbolic location
field to the expression in the variable field, which may be another symbol or a
meaningful algebraic combination of previously defined symbol(s) and number(s).
The syn pseudo-op should be used in those cases where the symbol appearing in
the location field specifies the location of a piece of data, the location of an instruc­
tion, or any other quantity whose value depends upon the location of the program
in storage; it may also be used to equate a symbol used by the programmer to a
"standard symbol". If MAP cannot obtain a binary equivalent for the expression
in the variable field, a flag is set for the listing, and the binary equivalent is set
to zero. If the binary equivalent is obtained but is representative of an apparent
error (such as a single decimal number, where an equ should be used), the binary

equivalent is used as is, but an error flag does occur.

spi

wcc

loder

4-44 IB59 -IN (I)

Examples of syn pseudo-ops follow:

com syn common + 12

sffz syn sffl3 sffz is the same as sffl3

adjust syn fix-18

4.6.7 Octal Data: oct

The oct pseudo-op takes the octal integer(s) in the variable field, converts
them to binary, and assigns them (if more than one) to successive locations begin­
ning with the current value of the location counter. If there is a symbol in the
symbolic location field, the symbol is entered in the table and is assigned the
current value of the location counter. More than one octal number may be written
in the variable field; if this is done, a comma must be used to separate the various
octal numbers; the last octal number must be followed by a tab, space, or car­
riage return (not a comma). If there are several octal numbers, it is permissible
for the last one to extend beyond column 94, the normal end of the variable field,
but it must be followed by either a space (for following remarks) or a carriage
return, not a tab.

Each octal number must consist of from one to twelve valid octal digits;
each negative number must be preceded by a minus sign; each positive number
may be preceded by a plus sign if desired, but this is not required. If any octal
number is in error (i.e. , contains non-octal characters or is more than 12 digits),
a binary equivalent of zero is substituted, a flag is set for the listing and MAP
scans to a comma or other ending character to look for the next octal number or
t h e e n d o f t h e d a t e . E a c h o c t a l n u m b e r i s t r e a t e d a s b e i n g " r i g h t - j u s t i f i e d " , i . e . ,
ending in bit 1 (not "left-justified" or in bit 36).

Examples of a single octal number and multiple numbers follow:

jmask oct 7700000 mask for "j" bits

octdat oct -3, +4, -77, +37, 40, 41, 42 octal data

IB59 -IN (I) 4-45

4 . 6 . 8 Fixed Point Decimal Data; dec

The dec pseudo-op takes the fixed point decimal number(s) in the variable
field, converts them to binary, and assigns them (if more than one) to successive
locations beginning with the current value of the location counter. If there is a
symbol in the symbolic location field, the symbol is entered in the table and is
assigned the current value of the location counter. More than one decimal number
may be written in the variable field; if this technique is used, a comma must be
used to separate the various decimal numbers; the last decimal number must be
followed by a tab, space, or carriage return (not a comma). If there are several
decimal numbers, it is permissible for the last one to extend beyond column 94,
the normal end of the variable field, but it must be followed by either a space (for

following remarks) of a carriage return, not a tab.

Each negative decimal number must be preceded by a minus sign; a positive
number may be preceded by a plus sign if desired, but this is not required. Deci­
mal numbers (ignoring the sign) may be any of the following classes:

q c
(1) An integer, which may range from 0 to 68719476735 (- 2 -1); the

integer should not be followed by a decimal point.

(2) A f i x e d p o i n t f r a c t i o n , p r e c e d e d b y a d e c i m a l p o i n t , a n d c o n s i s t i n g o f

up to eleven digits.

(3) A scaled fixed point number, with an attached binary scale factor; this
may be in the form of a mixed number with a sufficiently large nega­
t i v e b i n a r y s c a l e f a c t o r t o m a k e i t l e s s t h a n 1 . 0 , o r a f i x e d p o i n t f r a c ­
tion with either a negative binary scale factor or a positive binary scale
f a c t o r s u f f i c i e n t l y s m a l l s o t h a t t h e r e s u l t a n t n u m b e r i s l e s s t h a n 1 . 0 .
In each case, the number is in the form of up to eleven significant
figures, followed by the letter "b", followed by the binary scale factor,

or power of two.

4-46 IB59 -1N(I)

Examples of scaled fixed point numbers are as follows:

3.1415926535b-2

85.1234567b-9

0.11234b3
or

,11234b3

0.66666666667b-2
or

.66666666667b-2

("pi" scaled by 1/4, or 2)

-9 (a number, such as degrees, scaled by 2)
+3 (a small number scaled upward by 8 = 2

actually equivalent to .89872)

(a fractional number scaled downward by l /4,
_ 2 or 2 , in this case the fractional value of

2/3 scaled downward by l /4)

Examples of the use of the dec pseudo-op follow:

piovr4 dec 3.1415926536b-2

degdat dec -45.8b-9, +22.125b-9

decdat dec -99, -372, 0, +82, +.75, .4

pi over 4

scaled degree data

decimal integers
and fractions

If any decimal number is in error (e.g. , the binary equivalent is equal to
or greater than 1. 0 in absolute value, or extraneous characters appear in the
middle of a number), a binary equivalent of zero is substi tuted, MAP scans to a
comma or other ending character to look for the next decimal number or the end
of the data, and a flag is set for the l ist ing.

4 . 6 . 9 Floating Point Data: f i t

The fi t pseudo-op takes the floating point number(s) in the variable field,
converts them to binary, and assigns them (if more than one) to successive loca­
tions beginning with the current value of the location counter. If there is a symbol
in the symbolic location field, the symbol is entered in the table and is assigned
the current value of the location counter. More than one floating point number may
be writ ten in the variable field; if this technique is used, a comma must be used to
separate the various floating point numbers; the last f loating point number must be

IB59-1N(I) 4-47

followed by a tab, space, or carriage return (not a comma). If there are several

floating point numbers, it is permissible for the last one to extend beyond column
94, the normal end of the variable field, but it must be followed by either a space

(for following remarks) or a carriage return, not a tab.

Each negative floating point number must be preceded by a minus sign;

a positive floating point number may be preceded by a plus sign if desired, but
this is not required. Floating point numbers must have no more than ten signifi­
cant figures. Any more digits contribute nothing to the accuracy of a MOBIDIC
floating point number, and are ignored by MAP (except where they might affect
the placement of the decimal point in determining the size of the number).

A floating point number may be in either of two forms:

(1) An ordinary number, either an integer, fraction, or mixed number,
such as 98370, 9837., 9837.0, 9837.45, 3.141592654, 0.75,
0.00123, .345678, or 00012345, or the like. Any of these is
acceptable although there should be no more than 10 significant

figures.

(2) Exponential form, in which the number (as above) is followed b y
the letter "e" and the power of ten by which the number is to be
multiplied. For example, the first and last numbers given above
might be written as 9.8370e4 or 0.9837e5 (or some such), and

. 12345e-3 or 1.2345e-4 (or some such).

In any event, the exponent is a base 10 exponent. The letter b must

not be used.
Each floating point number to be represented is converted to the binary

form of a "Normalized MOBIDIC floating point number", as defined in the write-up
of the "Floating Point Arithmetic Operations" subroutine, to be found elsewhere

in the MOBIDIC Instruction Manual.

If any floating point number is in error (e.g., the binary equivalent is

equal to or greater than 2256 in absolute value, which is too big to represent as a
MOBIDIC floating point number, or extraneous characters appear in the middle of
a number), a binary equivalent of zero is substituted, MAP scans to a comma or

.

other ending character to look for the next floating point number or the end of the
data, aa|^a ^aS i-s set f°r the listing. (A number whose binary equivalent is less
than 2 in absolute value is set to zero without any error indication.)

IB59 -IN (i) 4-49

4 , 6 . 1 0 Alphanumeric Data: alf and alz

1. The alf pseudo-op is used for storing alphanumeric data in the computer.
It retains its alphanumeric nature rather than getting converted to some other form
such as binary. There is another pseudo-op al,z, available, if it is desired to re­
place FIELDATA spaces (000101) by binary zeroes (000000).

The following paragraphs explain the format and give the rules for use of
the alf and alz pseudo-ops.

2. The alf or alz pseudo-ops require that the variable field contain an ex­
pression equivalent to the number of lines of alphanumeric data to be processed.
After this expression, there may be a Remarks.. Field if desired, followed by a
carriage return, or simply a carriage return if there are no remarks. Immediately
following this carriage return, the specified number of lines of alphanumeric data
must follow.

3. The expression in the variable field may be an actual decimal integral
number, or a predefined symbol, or any meaningful algebraic combination thereof;
but in any event, the binary equivalent must equal the number of lines of alpha­
numeric data. This number should always be = 1 in value. In the great majority
of cases, it is expected a regular decimal integer (e.g., 12) would be used.

4. Following this expression in the variable field, there may be:
(a) Carriage return (if no remarks).
(b) Tab, then remarks, then carriage return, or
(c) Space, then remarks, then carriage return.

In any event, the alphanumeric data follows the carriage return.

5. The specified number of lines of alphanumeric information which
follow must obey the following rules:

(a) Each line may be no more than 86 characters including the
carriage return at the end, except that upper case and lower case
characters do not count as part of the 86.

4-50 IB59- 1N(I)

(b) Each line must end either in "Carriage Return" or in the se­
quence "Tab-Carriage Return." A line of alphanumeric data is,
in fact, distinguished by the carriage return at the end; thus, the
"number of lines of alphanumeric data" is actually equal to the
number of carriage returns.

(c) A carriage return all by itself on a line constitutes a valid line
of alphanumeric data and may be used for double spacing, etc.,
if desired.

(d) The rules for ending a line of alphanumeric data are as follows:

(1) End a line simply with a carriage return if that carriage
return is an integral part of the alphanumeric data.

(2) End a line with the sequence "tab-carriage return" if a
carriage return, although not an integral part of the alpha­
numeric data, is required to end the line on the MAP coding
form. For example, if a line of alphanumeric data con­
sisting of 120 characters is desired, the first 80 characters
could be followed by a "tab-carriage return" then, the re­
maining 40 characters are followed simply by a carriage
return. The "tab-carriage return" does not get converted
to binary information by Pass 2, but is merely a necessary
artifice to obviate the restriction of 86 characters. Both
lines, however, count as a line of alphanumeric information
as far as the count is concerned.

6. It is suggested that the following convention be adopted by MOBIDIC
programmers for indicating that a "tab" character is to be punched:

[t] m e a n s " t a b "

Similarly, if there is any doubt whether a carriage return is wanted,
the programmer could write:

[cr] for "carriage return"

7. The alz pseudo-op is identical to the alf pseudo-op, except that (in
Pass 2) MAP converts each FIELDATA Space (05) to a binary zero. The alz
pseudo-op will be used for storing alphanumeric information in the memory for
masking (rather than printing) purposes.

IB59- IN (I) 4-51

8. An example of the use of the_alf pseudo-op is included below. Note
that the number of words taken in the memory by the alphanumeric data need not
necessarily be known as an exact number by the programmer. In this example,
the alphanumeric data starts in Symbolic Location title : the next order in the
program starts in Symbolic Location contin; thus, the programmer may write

an output order as follows:

WAN title1, fix, kl

where

kl equ contin-title 1

The only restriction would be, naturally, that the numeric value of contin-title 1

would not exceed 511.

Example:

Dewey
Decimal Symbolic

Control Field Location OP Code Variable Field Remarks Field

skip tru contin skip over title to contin

title 1 alf 12 12 lines of title 1 follow

This is an example of the alf pseudo-op where the variable field contains an
actual decimal integral number, which would be the usual case. The number 12
means that twelve lines of alphanumeric information are to follow. For example,

we are on the fourth line of those 12 right now.

Each line normally ends in a carriage return, which is part of the alpha­
numeric information itself. However, if it is desired to have an unusually long
line, which will not physically fit on the MAP coding form because the character
count exceeds 86, a "tab-carriage return" combination may be used, indicating
that the carriage return is NOT part of the alphanumeric data, but necessary to
bring us to the start of the next line on the MAP coding form. Note, however,
that a line counts as a line of alphanumeric data as far as the count (in this

case 12) is concerned, regardless of which option it ends in.

4-52 IB59- 1N(I)

contin
I

prntle

cla
add
snr

wan

common + 12
count, 0, 1
adjovf, 9, ova

continue program
add counter
trf to adjovf if overflow

title 1, fix, kl print title 1 on Flexowriter

kl equ contin-title 1 number of memory words for
title 1

4 . 6 . 1 1 Alphanumeric Data with Zeros instead of Spaces: alz

The alz pseudo-op is provided to permit the storage of alphanumeric data
separated by zero-bit characters (binary 000000) instead of FIELDATA spaces.
It is identical to the alf pseudo-op except that each FIELDATA space (05o) en-

8
countered is transformed to a six-bit "binary zero. " The alz pseudo-op is
useful for storing alphanumeric data for masking or searching (rather than
printing) purposes.

The description of the alf pseudo-op should be consulted for further in­
formation.

4 . 6 . 1 2 Discontinue Edited Assembly Listing Temporarily: unlist

The unlist pseudo-op is a signal to MAP that the Edited Assembly Listing
is to be temporarily discontinued. The binary output tape will continue to be
produced as usual. The Edited Assembly Listing is stopped after the unlist
itself has been produced and is resumed only upon discovery of a list pseudo-op.

The unlist and list pseudo-ops are useful for omitting time-consuming
portions from an Edited Assembly Listing which are known to be correct from
previous assemblies or other sources (possibly including divine inspiration or
other inside information).

4 . 6 . 1 3 Resume Edited Assembly Listing: List

The list pseudo-op causes the Edited Assembly Listing to be resumed
immediately, including the printing of the list line itself, after it has been

IB59- 1N(I) 4-53

previously interrupted by an unlist pseudo-op. The list pseudo-op will not cause
the Edited Assembly Listing to "start up" if SFF2 is manually reset (a signal to

MAP that no listing at all is desired).

4 . 6 . 1 4 Remarks: rem

The rem pseudo-op signals MAP that the rest of the line of coding is to
be treated as remarks or comments. All characters following the rem will be
reproduced on the Edited Assembly Listing without affecting the assembly in any
way. A maximum of 59 characters (columns 72-130) may follow a rem pseudo-op

(including spaces and punctuation); a carriage return must always follow the last
remark character.

4 . 6 . 1 5 End of Program: end

The end pseudo-op indicates to MAP the end of the program to be
assembled. The end also may be used to indicate where the program being
assembled is to start when it is loaded into memory to be run. The alpha portion
of the variable field (whether numeric, symbolic, or any meaningful algebraic
combination thereof) designates the starting line for execution of the running
program. If the gamma part of the variable field contains anything other than a
1 (such as a zero or nothing at all), the computer will halt when the program has
been loaded into memory, and the program may then be started at its starting
location by the operator depressing the "Start at PC" switch on the console. The
latter method is frequently used so that the operator has time to set the Flexo-
writer to the left margin, turn on the paper tape punch, etc.

The end pseudo-op must follow the last line of information to be proc­
essed; the line must be ended (with or without remarks) by a carriage return,

and this in turn must be followed by two stop codes. Examples of an end
pseudo-op are as follows:

end
end

begin, 1
195

start program at "begin"
start program at 195

4-54 IB59-1N(I)

4.6.16 Head: hed

The hed pseudo-op causes a heading effect on all symbols of 5 characters
or less which follow, both in the symbolic location field and the variable field.
Six-character symbols are completely unaffected by the hed pseudo-op. The hed
pseudo-op must be followed in the variable field by a single letter or numeric,
giving 36 possible characters for heading symbols. Symbols of 5 characters or
less which are headed by the character appearing in the variable field of the hed
pseudo-op are actually preceded by the heading character; that is, the heading
character occupies bits 36-31 of a MOBIDIC word, and the symbol being headed
occupies the remainder of the word, starting in bits 30-25, etc. Also, a minus
sign is attached to the headed symbol. For example, the symbol "check" when
headed by the character "a" becomes "-acheck" in the memory, and is uniquely
distinguished from any other symbol "check," whether headed or not, and also from
a 6-character symbol "acheck, " which would not, of course, have the minus sign
attached.

The heading of all symbols of 5 characters or less, which is started by the
hed pseudo-op, is ended when the unh ("unhead") pseudo-op is encountered. The
"hed" and "unh" pseudo-ops are used in pairs, as the "list" and "unlist" pseudo-
ops.

During Pass 2, when MAP is trying to obtain a binary equivalent from the
symbol table for all symbols encountered in the variable field, if a symbol is not
found, i t is examined to see if i t is headed. If i t is , the minus sign and heading
character are stripped off, and the resultant unheaded symbol is looked up again.
This procedure assures that symbols in the variable field which refer to addressable
registers, in-out devices, sense flip-flops, symbols outside the headed portion of
coding, and other bonafide symbols are sti l l processed satisfactorily.

The heading procedure is useful for assembling together small programs
which contain symbols within such as "check, " "exit , " "test, " "fixit , " etc. , which
should be different for each program to avoid multiple definition of the same symbol,
but happen to be the same because of their obvious mnemonic value. Nothing can
be done to head 6-character symbols such as "adjust."

IB59- 1N(I) 4-55

If the first character of the variable field is not a letter of the alphabet
or a numeric, no heading takes place at all and a flag is set in the listing.

The heading system provided in MAP also allows reference to a specific
headed symbol from a region of coding not headed by the same character as the
one in current use. This region of coding need not be headed at all. To accom­
plish this cross-reference to a headed symbol, the programmer must write the
heading character of that symbol, followed by a dollar sign ($), followed by the
symbol. For example, to write a "trn" order referring to the locat on "check"
which is within a region of coding headed by the letter "a, " the programmer must
write:

trn a$check

This procedure, of course, is not necessary if the "trn" order itself also
happens to be within the region headed by "a, " although no error indication would
be given if this were done.

4 . 6 . 1 7 Unhead: unh

The unh ("unhead") pseudo-op causes the heading of symbols to cease
immediately and thus nullifies, for the lines of coding which follow, the heading
process previously initiated by a hed (head) pseudo-op. See the discussion of
the hed pseudo-op for a more complete description of the heading process avail­
able in MAP.

4 . 6 . 1 8 Relative Start: rls

The rls pseudo-op precedes a section of relative coding as described be­
low. When the rls pseudo-op is detected, the value of the location counter is
noted and preserved for use in processing the relative coding; hereafter, it shall
be referred to as the "value of the location counter at time of rls. "

4-56 IB59- 1N(I)

The rules for this scheme are as follows:

1. Only the alpha field, and the gamma-beta field (for a MOV order),
are affected; all other fields (i.e., gamma, beta, "j", and "k") are
handled in the usual way.

2. If the alpha or gamma-beta field is a single numeric (e.g. 8191)
it is affected by the rls pseudo-op as described in 4. below. If it
is anything other than a single numeric, the preceding rls has no
affect and it is handled in the usual way.

3. In the "Operation Code Field, " columns 64-69, an apostrophe
immediately following the Operation Code (e.g., cla') signifies that
the alpha field of this order is not to be affected by the preceding
rls. For a MOV order, in addition to the possible presence of an
apostrophe, a semicolon immediately following the Operation Code
(e.g., mov;) signifies that the gamma-beta field of this order is
not to be affected by the preceding rls. If both an apostrophe and a
semicolon are needed, they should be placed immediately after the
MOV order (e.g., mov';).

4. Except for a certain class of orders where the meaning of the alpha
field is never a storage location (listed below), rls pseudo-op has
the following effect on the alpha field and on the gamma-beta field
(for a MOV order) of the line of coding being processed.

If the alpha or gamma-beta field is a single numeric, and if the Op
Code does not have an apostrophe or semicolon for gamma-beta, the
"value of the location counter at time of rls" is added to the numeric
value of the alpha or gamma-beta field in processing the order. If
the apostrophe or semicolon is present, this process is inhibited;
thus the relative fields are incremented and the fields which are not
relative are unaffected.

IB59- 1N(I) 4-57

5. For certain orders, the meaning of the alpha field is independent
of memory location; for these Op Cqdes, the alpha field is never
incremented by the "value of the location counter at time of rls, "
even though the apostrophe is not present. These orders are as
follows: SHL, SLL, SHR, SRL, CYS, CYL, RPT, LDX, TRS, and
HLT. With these orders, an apostrophe is not necessary.

The relative coding process continues, according to the rules given
above, until a relative end" (rle) pseudo-op is encountered.

4 . 6 . 1 9 Relative End: rle

The rle pseudo-op indicates to MAP that a section of relative coding has
been terminated and that all subsequent orders should be processed in the usual
way.

4 . 6 . 2 0 Insert Library Routine: lib

The lib pseudo-op is used to indicate that a routine from the library tape
is to be inserted in the program at the point where the lib pseudo-op appears.
The variable field of the lib pseudo-op must contain the Symbolic Label of the
library routine desired. For example, if the programmer wishes to insert the
library routine for Floating Point Arithmetic Operations (FLTPT1), he would
write:

lib fltptl Insert floating point here

When lib pseudo-op is encountered, the desired routine is called in from
the library tape and assembled, starting with the value of the location counter
at the time the lib pseudo-op is encountered. Each successive library routine
called is internally assigned a 6-bit heading character by which the symbols in
that library routine, exclusive of callwords, are headed. This procedure is
provided to prevent duplicate symbols amont the library routines, which are
coded sumbolically, and the program itself. The 6-bit heading characters are
assigned starting with the number 6 3 (778) and working downwards. If the pro­
grammer assigns his heading symbols (if any) from a to z, the chance that any
two symbols will-have the same heading character is extremely small.

4-58 IB59-1N(I)

In the processing of the library routine being assembled, the callwords of
the routine (for this example, flpadd, flpsub, Jlpmul, flpdiv, and flpnrm) are
added to the symbol table, and thus, any "trl" orders to the callwords of the
routine used by the program will be filled in by MAP without any special effort
by the programmer.

When the library routine has been completely assembled, MAP reverts
to assembling the regular program, starting with the location counter at the
value where the library routine left off. For example, if the location counter is
920 when a library routine of 60 orders is called with a lib pseudo-op, it will be
980 when the library routine has been completely assembled. Any new origin
specified by the program using the routine should be at least 980 so as not to con­
flict with the library routine.

A special feature of MAP is that it keeps track of the implied routines
which should be included in the memory for each routine being assembled. For
example, the Fixed Point Arcsine-Arccosine Routine (ARCSC1) requires that the
Fixed Point Square Root (SQRT2) be included somewhere in the program being
assembled. It is the programmer's responsibility to insure that this other rou­
tine is inserted someplace (with an lib pseudo-op) in the program. However, if
this is not done before the end of the program, MAP will recognize the omission
of the implied SQRT2 routine, and will give a printout at the end of Pass 1 to the
effect that the SQRT2 routine has been omitted from the program.

This procedure is used, instead of automatically inserting an implied
routine right there on the spot, for the following reasons:

1. Each routine used may be included in the memory once and only
once, instead of being included every time another routine specifies
it as an implied routine.

2. Each routine may be located where the programmer wished to put
it; thus, aiding in a memory layout conforming to the programmer's
plans, rather than restricting his choice of memory layout.

IB59- 1N(I) 4-59

3. If, for some reason, a programmer wished to substitute a routine
of his own for one on the library tape, he is permitted to do this
without being forced to use an implied routine on the library tape.

It should be noted that the program writeup of each library routine clearly
indicates "Other Subroutines Required, " so that the programmer should have no
difficulty in making sure that he has not omitted a needed subroutine.

One important thing that the programmer must do is to include a refer­

ence to "common" someplace in his program for library routines which use
"common" locations for their temporary and working storage. For example, if
the programmer were using several of the mathematical routines, he could in­
clude a block of 40 storage locations somewhere in his program by writing:

common bss 40 common locations for lib rtns

If desired, the Edited Assembly Listing of library routines may be inhib­
ited by placing SFF2 in the manually set position at the start of assembly.

Each library routine ends with a pseudo-op endlib (end library routine),
which signals MAP to revert to assembling the regular program. The endlib
pseudo-op, as well as the lib pseudo-op, does appear on the Edited Assembly
Listing even if "No Library on Listing" is specified by SFF2, in which case,
however, there will be nothing in between.

4 . 6 . 2 1 End of Library Routine : endlib

The "endlib" pseudo-op appears on the Edited Assembly Listing to bracket
the library routine called, but originates from the library and not from the sym­
bolic input. It is therefore, a pseudo-op for the library routine, but not for the
symbolic input to MAP. In other words, it is never written in the symbolic in­
put in conjunction with the lib pseudo-op, but is printed on the listing to denote
the end of the coding for a particular library routine.

4-60 IB59-1N(I)

4 . 6 . 2 2 Dewey Decimal Correction Start: crs

The crs pseudo-op is used in conjunction with the Dewey Decimal System
to denote the beginning of a band of Dewey Decimal corrections. See write-up of
Dewey Decimal System for full details.

4 . 6 . 2 3 Dewey Decimal Corrections End: ere

The ere pseudo-op is used with the Dewey Decimal System to signify the
end of a band of Dewey Decimal Corrections. See write-up of Dewey Decimal
System for full detail.

4 . 6 . 2 4 Dewey Decimal Deletion: del

The del pseudo-op is used in conjunction with the Dewey Decimal System
and contains a Dewey Decimal number (explicit or implied) on that line of coding.
See write-up of Dewey Decimal System for full detail.

4 . 6 . 2 5 Dewey Decimal Origin Number: orgnum

The orgnum pseudo-op is used in conjunction with Dewey Decimal correc­
tions and usually appears just after a crs pseudo-op. See write-up of Dewey
Decimal System for full detail.

IB59- 1N(I) 4 - 6 1

4. 7 DEWEY DECIMAL SYSTEM

4.7.1 General

Programs stored on cards can often be corrected with little difficulty.
Obvious problems arise, however, when it is necessary to correct a program
that has been stored on tape or to effect structural changes in a program. Many
devices suitable for particular conditions may not be feasible, efficient, or even
practicable for a given program. A general type of solution is therefore desirable,
one that transfers the bulk of corrective labor from the programmer to the com­
puter and at the same time preserves the continuity of processing. Such a solution
is the DEWEY DECIMAL SYSTEM.

The DEWEY DECIMAL SYSTEM is a programming device that gives the
computer the ability to effect programmer-designated changes during assembly.
The changes may involve substitutions, deletions, and insertions. They are open-
ended, in the sense that they can be successively updated. The system allows the
computer to incorporate designated changes and corrections by the use of ordering
tags or sequencing labels associated with program elements. These tags have
been dubbed Dewey Decimals or Dewey Decimal Numbers because of their resem­
blance to the numbers used in library catalogues. Dewey Decimals establish re­
lative priorities of program elements, and assign proper sequential locations in
the program to corrections, deletions, and insertions. If the Dewey Decimal
System is used, one physical program store contains all programmer-designated
changes as well as the program itself. Such a store also contains sufficient infor­
mation to give both the composition of the program and its changes, and how the
changes are to be applied.

Under the present system a Dewey Decimal Number may be composed of
from two to five alphanumeric character subfields. The first or letter subfield is
always a single lower case letter of the English alphabet. The last or terminal
point subfield is always a single alphanumeric decimal point. Each subfield, if
any, between the initial letter and the terminal point is a pair of decimal digits
from 00 to 99. A Dewey Decimal is thus a string of two, or four, or six, or eight
characters chosen from the 26 lower case letters, 10 decimal digits, and decimal

4-62 IB59- 1N(I)

point. It is also a string of subfields of these characters in any of four specific
configurations. These configurations are the four forms or levels allowable under
the present system for Dewey Decimals, and are:

Level Subfield 1 Subfield 2 Subfield 3 Subfield 4 Subfield 5

1 a
2 a xx
3a xx xx
4 a xx xx xx

where a stands for any one of the 26 lower case English letters, "xx" is a two-
character number from 00 to 99, and ". " is the alphanumeric decimal point.

To il lustrate the mechanism of ordering, consider the following set of
Dewey Decimals:

mOOOOOl. , qOl. , bOO. , a000002. , zOOOO. , mOOOOOO. , aOOOOOl. , z. ,
q05. , bOOOO., zOOOl. , q0501. , mOl., m. , q02. , mOOOl. , bOl. , q. ,
aOOOOOO. , b02. , mOOOO. , zOlOO. , q04. , aOOOO. , q0500. , aOOOl.,
q03. , rnOO., b0002. , aOl. , mOOOlOO. , qOO. , bOOOl. , zOO, , b. , aOO. ,
zOlOOOl., a . , zOlOOOO., zOl.

If a Dewey Decimal less i ts terminal point is given in i ts octal representation,
with a pair of octal zeros (equivalent to six binary zeros) used for each digit in
an unused subfield, the above set can be considered equivalent to:

22606060606061, 26606160606060, 07606000000000, 06606060606062,
37606060600000, 22606060606060, 06606060606061, 37000000000000,
26606500000000, . . . , 37606100000000

The numerical order of the numbers in this equivalent set is the correct order of
the given set of Dewey Decimals. The correct order of the given set of Dewey
Decimals is then:

a. , aOO., aOOOO., a000000., aOOOOOl., a000002. , aOOOl., aOl. , b. ,
b00., b0000., bOOO 1. , b0002. , bOl., b02. , m. , mOO. , mOOOO., mOOOOOO.,
mOOOOOl. , mOOOl. , mOOOlOO. , mOl., q. , qOO. , qOl., q02. , q03. , q04. ,
q05. , q0500., q0501., z. , zOO., zOOOO., zOOOl., zOl. , zOlOO., zOlOOOO.,
zOlOOOl.

IB59- 1N(I) 4-63

In every subfield a blank takes priority; that is, a decimal point in any number sub-
field takes precedence over any numerical entry in that subfield.

As will be seen later (see 9.7.2 USAGE) the above set of Dewey Decimals
cannot occur in the main coding of a program in the order given. The set was used
only to illustrate relative order among Dewey Decimals of all possible types.

The system is of course expandable, but at present is restricted to the
number and types of subfields and characters given above. Within the present
restrictions, however, the system offers a large number of possibilities for tags
in any one program. Level 1 has 26 possible choices of lower case letters; level
2 has 100 possible choices of number for each choice of initial letter, or 2, 600 in
all; level 3 has 260,000; and level 4 has 26,000,000. Since all levels can be used,
as many as 26, 262,626 Dewey Decimals are available for any one program.

It should be noted that deviation from the four allowable forms or levels of
Dewey Decimal will generate an error in the present system. When a Dewey Dec­
imal is used, both an initial lower case letter and a terminal decimal point must
appear. The initial letter subfield can contain no character other than a single
lower case English letter. An intervening number subfield can contain only a
pair of decimal digits. If a number subfield contains only one decimal digit or any
character but a decimal digit, or if the initial letter subfield contains anything but
a single lower case English letter, an error is generated. An error will also be
generated by the use of more than five subfields. The program scans for initial
lower case letter, then for pairs of decimal digits up to three pairs until the ter­
minal point is reached. The decimal point signals the end of the Dewey Decimal
number. If any of these conditions is violated, assembly is not halted but a Dewey
Decimal flag is caused to appear on the coding line affected.

4 . 7 . 2 Usage

When the Dewey Decimal System is used, each line of coding in the program
is identified by a unique Dewey Decimal if an ordering tag is applicable. All
correction lines are similarly identified. The Dewey Decimal tag assigned to a
correction line identifies the main program coding line to which the correction
applies. It thus establishes a clear connection between original and correction
coding lines.

4-64 IB59- 1N(I)

A band of corrections applies to particular l ines of coding in the main pro­
gram. Since a band of corrections can consist of only one line of coding, i t is
possible to have a separate correction band for each main program coding line to
be changed, and for every coding line to be inserted. However, i t is advisable and
recommended that as many corrections and insertions as possible be consolidated
into a single band, thus minimizing the total number of correction bands for a
given program. This would also be helpful to the programmer, since all correc­
tions would be contained in the minimum number of bands.

It is not necessary for the programmer to assign a Dewey Decimal to every
coding line. Within l imits, the Dewey Decimal Program will tag all coding lines
not tagged by the programmer. The Dewey Decimals specifically assigned by the
programmer are called explicit , while those assigned internally by the program
are called implicit .

Explicit Dewey Decimals must be "proper" in the main program; that is ,
they rqust be in proper serial order. Violation of this condition will cause the
Dewey Decimal Program to suspend itself until i t meets a new and proper Dewey
Decimal.

Whenever the program encounters a proper Dewey Decimal in a sequence
of coding lines, i t establishes an increment in the last subfield of that Dewey Deci­
mal. To every succeeding line not explicitly tagged, the program assigns a num­
ber which is the last explicit tag incremented by the succession number of the new
line relative to the explicitly tagged line. This process continues until either of
two things happens:

1. The last subfield of the last explicit Dewey Decimal is exhausted before
a new explicit number occurs.

2. A new and proper explicit Dewey Decimal occurs before the last subfield
of the last explicit number is exhausted.

If a new and proper explicit Dewey Decimal occurs before the last subfield
of the previous explicit number is exhausted by encrementation, the Dewey Deci­
mal Program reinitializes itself relative to the new explicit number.

IB59- 1N(I) 4-65

If the last subfield of the previous explicit number is exhausted before a
new and proper explicit number occurs, the Dewey Decimal Program suspends
itself until it meets a new and proper (relative to the last number assigned) explicit

number. In this case, no error halt occurs; but the printout will show both a
Dewey Decimal flag and no Dewey Decimal tag for every line affected.

In any case, whenever an improper Dewey Decimal occurs the program
suspends itself until a new and proper number is encountered. All lines affected
will have no Dewey Decimal tags and will display a Dewey Decimal flag in the

printout. No error halt occurs.

The Dewey Decimal Program will in no case increment a subfield beyond
its limit, or transcend the level of any Dewey Decimal. Incrementation of a sub-
field beyond its limit and transcendence of the level of a Dewey Decimal are equiv­
alent to generation of an improper number and will cause suspense of the Dewey

Decimal Program until a new and proper number is encountered.

To illustrate: Suppose a program contains just ten lines of main coding.

If the programmer assigns "a. " to line 1, "d. " to line 5, and g. to line 8, the
program first assigns "b. ", "c. ", and "d. " to lines 2, 3, and 4. It then encoun­
ters "d. " on line 5. Since "d. " is improper with respect to the last Dewey Deci­
mal ("d. ") assigned, the Dewey Decimal Program goes into suspense and assigns
no tags to lines 5, 6, and 7. When it scans line 8, it finds that the explicit "g. "
is proper with respect to "d. " on line 4, the last Dewey Decimal assigned. It then
reinitializes itself with respect to "g. " and assigns "h. " and "i. " to lines 9 and 10.
No error halt occurs at any time. The program printout shows "a. " through "d. "
for lines 1 through 4, "g. " through "i. " for lines 8 through 10, and Dewey Decimal

flags but no Dewey Decimal tags for lines 5 through 7.

In general, the discretion of the programmer must be governed by reason­
able precautions in the use of the Dewey Decimal Program. Care must also be
used in the use of Dewey Decimal levels. Carelessness can result in the assign­
ment of Dewey Decimals that do not permit the program to interpolate as required.
No hard and fast rule can be given here. The only guides are experience, prudence,

and the ability to assess contingencies.

4-66 IB59- 1N(I)

All correction lines must be tagged consistently with the main program
coding lines to which they refer. Within a correction band defined by the "crs"
and "ere" codes (see 9. 7. 3 below), l ines may be tagged in any order that pre­
serves both correct sequence and consistency with the main program coding lines.
The programmer must also assign explicit Dewey Decimals sufficient to permit
the program to assign implicit numbers properly. For example, if four consec­
utive l ines are to be inserted between "g2345. " and "g2346. " one between "k6702. "
and "k6703. ", and two between "t4152. " and "t4153. ", all seven correction lines
may be included in a single correction band defined by the codes "crs" and "ere".
An acceptable set of Dewey Decimal tags for the seven lines within the band would
be:

t415202., t415203., k670210., g234531,, g234532., g234533., g234534.

Another acceptable set would be:

g234541., g234542., g234543., g234544., t415222,, t415223., k670250.

In either case, the underlined tags are the only ones that need to be explicitly
assigned by the programmer. If the lines within each "g", "k", or "t" block are
in proper sequence, the blocks themselves may be in any order whatsoever within
the correction band. If, however, the programmer elects to assign an explicit
tag to every correction line, the correction lines within a band may be in any
order. The "crs" and "ere" codes suspend, within l inits, the requirement for
serial order.

4. 7. 3 CRS and CRE

A "crs" operation code signals the beginning of a band of corrections, and
a "ere" operation code signals i ts end. These two operation codes bracket a
correction band and must be used in pairs. All coding lines within a "crs - ere"
pair are processed as corrections to the main body of programming. A "crs"
must not be followed by another "crs" until a "ere" has been used. Correction
bands may not be nested. If a "crs" or a "ere" appears on a coding line, no Dewey
Decimal number may appear on that l ine.

IB59- 1N(I) 4-67

4 . 7 . 4 Orgnum

The function of the "orgnum" operation code is to identify an origin

in the main body of programming. If used, it must appear between a "crs" and
its following "ere". The address field of the "orgnum" operation code must con­
tain a number which is the decimal count of that origin with which a sequence of
corrections is associated. Every origin must be referenced by an "orgnum". For
example, "orgnum 1" refers to the first origin in the program, "orgnum 2" refers

to the second origin, etc.

If no origins are used in the main program, then no "orgnum" need appear

within a correction band.

If an "orgnum" appears on a coding line, no Dewey Decimal number may

appear on that line.

4-68 IB59- 1N(I)

SECTION V

MATHEMATICAL SUBROUTINES AND DETAILED FLOW CHARTS

5. 1 SPECIFICATIONS FOR MATHEMATICAL SUBROUTINES

The following information specifies the requirements which must be
observed when using the mathematical subroutines.

1. All MPA subroutines are entered through the use of a calling sequence
located in the main program. A subroutine calling sequence is defined as a
series of computer instructions and storage locations in the main program which
provides: for transfer of program control to the subroutine, storage locations
for all required parameters in excess of those contained in the accumulator and
the Q-register, storage locations for results computed by the subroutine, and
a normal return location to which control is transferred by the subroutine upon
completion of the assigned function. The first instruction in the calling sequence
will be a Load PCS and Transfer (TRL) to the address of the subroutine entrance
instruction. The address stored in the PCS is used by the subroutine in executing
a transfer to the normal return location in the main program. The starting ad­
dress of a subroutine may be specified by a mnemonic representing a relative
address or an octal number representing as absolute address.

2. All one word input and/or output is in the Accumulator. Return is
always to the line following the one containing the "trl" order.

3. All two-word inputs and/or outputs are in the Accumulator and the
Q-Register, with the second number (c. g. , divisor in floating point division) in
the Q-Register. Return is always to the line following the one containing the
"trl" order.

4. All n word inputs and/ or outputs will have the first two words in the
Accumulator and Q-Register, and the rest under the "trl" order. Thus, the
lines under the "trl" order may contain the inputs, or be reserved for the
outputs, or both. Return is to the line following the last one containing data.

5. All error halts will occur in the subroutine. In no case, will the
control be returned to the main program.

IB59- 1N(I) 5-1

6. There will be an error halt for each violation of the specifications
In the a portion of the "hit" will be the current contents of the PCS so that the
program entry will be completely determined. The beta bits are used to indicate
the number of the error halt for subroutines containing more than one.

„ 7' AU Subroutines wiu use the same temporary storage area, referred
to as common". In general, the input variables will be found in common, com-
mon + 1, etc.

8. Certain sense flip-flops will be used by the subroutines and therefore
may not be locked from the console. They will not be stored to their original
state at the time of exit from the subroutine.

9. The state of the OVA may be changed by the subroutine and will not
be restored.

The following mathematical subroutine descriptions are written in a definite
format for the sake of consistency.

5.1.1. Fixed Point Square Root

Symbolic Label: SQRT2

PURPOSE:

Computes the square root of a fixed point number x, 0 < x < 1
USAGE:

A- Preparation of Cards or Tapes
None

B • Input Format

Fixed Point Fractional Number

C. Output Format

Fixed Point Fractional Number

D. Coding Information

2
IB59 -1N(I)

Calling Sequence

A) trl sqrtfx
A + 1) Returns control here

Entry and Exit Conditions

Entry Condition Exit Condition
A C C : x A C C :

Other Subroutines Required
None

Error Halts
Input number negative (x < 0)

Sense Flip-Flops Used
None

Number of Storage Locations
51

"Common" Locations Used
3 (common thru common + 2)

Approximate Time

Average: 0. 75 milliseconds

Maximum: 0. 8 milliseconds

E. Accuracy Information

Average Error: Exact

Maximum Error: ±2 ^

RESTRICTIONS:

Input number x must be either zero or positive.

IB59- 1N(I) 5-3

METHOD:

x = 2ny, 1/ 2 < y <

1/4 < y <
1 |
1 / 2)

where n is even

2 x y = -a y + a.y + a„ , • 'o cr 1 J 2

+ i y
yn+ 1 " + 2~ ,

requiring only two i terations.

a = 12884901888x2~3 6
o

a^ = 59497 322958x2"3 6) 1/2 < y < 1

a2 = 22107055666x2"3 6

a = 9663676416x2"3 6
o

ax = 42880953483x2"3 6) l /4<y<l/2

a2 = 15365674998x23 6

Remarks:

None

1. 2 Fixed Point Sine, Cosine

Symbolic Label: SNCS 2

PURPOSE:

Computes the sine or cosine of a scaled fixed point angle which
is expressed either in radians or degrees.

-4 IB59- 1N(I)

USAGE:

A. Preparation of Cards or Tapes

None

B. Input Format (See Note 3)

Angle x expressed in radians scaled by l/8(x/ 8), or in
-9 -9 degrees scaled by 2 (x • 2), i. e. binary point considered

to be 9 places from the left.

C. Output Format

Fixed Point Fractional Number

D. Coding Information

1. Calling Sequence for sine, radians

A) trl sinrad
A + 1) Returns control here

Entry and Exit Conditions

Entry Conditions

ACC: ^ in radians

2. Calling Sequence for sine, degrees

A) trl sindeg

A + 1) Returns control here

Entry and Exit Conditions

Entry Conditions

ACC: x • 2 ^ in degrees
(Binary point considered
to be 9 places from the left.)

Exit Conditions

ACC: sine x

Exit Condition

ACC: sine x

IB59-1N(I) 5-5

j
I

3. Calling Sequence For cosine, radians
A) trl cosrad

A + 1) Returns control here

Entry and Exit Conditions

Entry Condition Exit Condition
x ——

ACC: g in radians ACC: cosine x

4. Calling Sequence for cosine, degrees
A) trl cosdeg

A + 1) Returns control here

Entry and Exit Conditions
Entry Condition Exit Condition

-9 ACC: x • 2 in degrees ACC: cosine x
(Binary point considered to
be 9 places from the left.)

Other Subroutines Required
None

Error Halts
See "Restrictions" and Note 2

Sense Flip-Flops Used
None

Number of Storage Locations
58

"Common" Locations Used
2 (common thru common + 1)

Approximate Time
Average: 1. 2 milliseconds
Maximum: 1. 3 milliseconds

5-6 IB59- 1N(I)

E. Accuracy Information

A T71 0-36 Average Error: 2
- 33 Maximum Error: 2 (See Note 1)

RESTRICTIONS:

-27T < x < 27r (radians)

-360 < x < 360 (degrees) (See Note 2)

METHOD:

Form x' such that sin x1 = sin x and 0 < x ' < 7r/ 2

Then cos x = sin (n/ 2 - x)
2x1

sin x = s in 7r/ 2 y y = ——

c- ^ o /- 2i+l
Sin - 2 ^ C2i+ly

i=0

7r The series is an economized Taylor series expansion for sin

Cx = t t /4

C3 = -22195157 38 5x2~ 3 6

C c = 27 3821777 8x2~3 6
o

C ? = -160863808x2~3 6

Cn = 5512621x2"3 6
y

Cn = - 123530x2" 3 6

C1 3 = 187 1x2" 3 6

Since degree input is converted to scaled radian input upon entry,
accuracy for degree input is l imited to 2 '^^.
The routine will accept some angles outside this range and produce
the correct result . For sine output, any angle less than 8 radians
in magnitude can be accomodated; for cosine output, the range is
somewhat more restricted but larger than the stated range.

The degree scaling allows three octal digits to the left of the binary
point e .g. an input angle of 15°n would be represented as +017. 00. . . 0.

Note 1.

Note 2.

Note 3.

IB59-1N(I) 5-7

(3 _

5. 1. 3 Fixed Pat Tangent, Cotangent

Symbolic Label: TNCT2

PURPOSE:

Computes the tangent or cotangent of a scaled fixed point angle which is
expressed either in radians or degrees. The tangent or cotangent will be less
than 1 in absolute value.

USAGE:

V

A- Preparation of Cards or Tapes

None

B. Input Format C ' f i k e d ^ (S e e N o t e 3)

Angle x expressed in radiansjjfor tangent, or scaled by 1/2 ^ far 5
for cotangent; or in degrees scaled by 2~9(x • 2-9) for either function
(binary point considered to be 9 places from the left)

C. Output Format

Fixed Point Fractional Number

Coding Information

1. Calling Sequence for tangent, radians

A) trl tanrad

A + 1) Returns control here

Entry and Exit Conditions

X O f

D

Entry Conditions

ACC: x in radians

2. Calling Sequence for tangent, degrees

A) trl tandeg

A + 1) Returns control here

Exit Conditions

ACC: tangent x

5-8 IB59- 1N(I)

0

Entry and Exit Conditions

Entry Conditions

ACC: x
_ g

2 in degrees

(binary point considered to
be 9 places from the left)

CL
3. Call ing Sequence for Cotangent, Radians

A) tr l cotrad

A + 1) Returns control here

Entry Conditions and Exit Conditions

Entry Condition

ACC: x/2 in radians
a,

4. Call ing Sequence for cotangent, degrees

A) tr l cotdeg

A + 1) Returns control here

Entry and Exit Conditions

Entry Condition
_ 9 ACC: x • 2 in degrees

(binary point considered to
be 9 places from the left)

Other Subroutines Required

None

Error Halts
A /

Exit Condition

ACC: tangent x

Exit Condition

ACC: cotangent x

Exit Condition

ACC: cotangent x

- 9 i - 9
1. For tangent entry: |x | (radians) or | x • 2 | ̂ 45. 2 (degrees)

X i W I X I ^ 7 T f | > 8 o r h i
•9 I ^ „-9 I n-9k ™ o-9

For cotangent entry:

or j x • 2 w | > 45. 2
(degrees).

> A (radians);

or x > 90. 2

IB59-1N(I) 5-9

'

Sense Flip-Flops Used

None

Number of storage locations

63

"Common" Locations Used

4 (common thru common + 3)

Approximate Time

Minimum: . 9 milliseconds (for tan x in radians)

Maximum: 1. 0 milliseconds (for cot x in degrees)

E. Accuracy Information

- 37 Average Error: 2
- Sfi Maximum Error: 2 (See Note 2)

RESTRICTIONS:

1. For tangent in radians, 0 <: |x| <

2. For tangent in degrees, 0 < J x • 2~9 | < 45. 2~9

3. For cotangent in radians, ^ < | ̂ |

4. For cotangent in degrees, 45. 2~9 <: | x • 2~9 | < 90. 2~9

METHOD:

cot | x | = tan ("| - | x|)

tan (-x) = - tan x

3 ^ 5 a x - aQx + aj-x
tan xh 9 5

2 , 4 6
a 0 X ~ a 2 X a 4 x ~ x

5-10 IB59- 1N(I)

(Rational polynomial approximation to tan x)

This approximation has an associated error
q m-13 r| < 3 x 10

aQ = 665280

a1 = 332640X21

a2 = 75600x22

a3 = 10080x23

a4 = 840x24

a, = 42x25
0

< 3

Note 1. For an input number x = ±45° (or ±-|), tan x (cot x) is given as l-2~3 6

O

Note 2. The error figures assume exact input; when degree input is not exact,
accuracy is limited to the number of significant bits in the argument.

Note 3. The degree scaling allows three octal digits to the left of the binary
point; e.g., aninputangle of 15°q would be represented as +017. 00. . . 0

IB59- 1N(I) 5-11

5. 1.4. Fixed Point Arscine - Arccosine

Symbolic Label: ARCSC2

PURPOSE:

To compute arcsin (x) or arccos (x), for a fixed point number x, and to
give the result expressed in either radians or degrees. Values are in the first or

third quadrant for arcsin (x) and in the first or second quadrant for arccos (x).
-9 Positive angles are given. The degree answers are scaled by 2 . The radian

_ 3 answers are scaled by 2

USAGE:

A. Preparation of Cards or Tapes

None

B. Input Format

Fixed Point Fractional Number

C. Output Format (See Note 2)

- 3 -9 Angle y expressed in radians scaled by 2 ; or in degrees by 2

D. Coding Information

1. Calling Sequence for arcsine, radians

A) trl arsinr
A + 1) Returns control here

Entry and Exit Conditions

Entry Condition Exit Condition

ACC: x ACC: 2 ^ arcsin x

2. Calling Sequence for arcsine, degrees

A) trl arsind
A + 1) Returns control here

5-12 IB59-1N(I)

Entry and Exit Conditions

Entry Condition

ACC: x

Exit Condition
-9

Exit Condition

ACC: 2 ~ arcsin x

3. Calling Sequence for arccosine, radians

A) trl arcosr
A + 1) Returns control here

Entry and Exit Conditions

Entry Condition
_3 ACC: x ACC: 2 arccos x

4. Calling sequence for arccosine, degrees

A) trl arcosd
A + 1) Returns control here

Entry and Exit Conditions

Entry Condition

ACC: x

Other Subroutines Required

For all entries: None

Error Halts

For all entries: None

Sense Flip-Flop Used

None

Number of Storage Locations

127

"Common" Locations Used

Exit Condition
-9 ACC: 2 arccos x

5 (Common thru common + 4)

IB59- 1N(I) 5-13

1
1

Approximate Time m

Minimum: 2. 3 mill iseconds

Maximum: 2. 3 mill iseconds

E. Accuracy Information
-9 Average Error: 10 |

Maximum Error: 10"9 g

RESTRICTIONS:
•
•

None 1
METHOD: 1
Evaluate •

i W = a r c c o s 0 - M by means of a polynomial approximation

•
8 1

(x) = aQ + a i 1 x | i

i=l 1
Then |

1 / 8 a r c c o s | x | = \/l - x| ip * (x)

1 / 8 a r c s i n | x | = 1 / 8 - a r c c o s | x |) i

arcsin (-1x|) = ir + arcsin |x |

arccos (-1x|) = IT - arccos |x | •

- 3 - 9 ® Note 1. The Output is scaled by 2 (or 2) ; unsealed accuracy of the result is 0
limited therefore to the number of bits retained after scaling.

Note 2. The degree output scaling allows three octal digits to the left of the binary 1
point, e . g. , an output angle of 15^ would be represented as +017. 00. . . 0.

1

5-14

1
IB59- 1N(I) g

5 . 1 . 5 Fixed Point Arctangent, Arccotangent (ARCTC2)

PURPOSE:

To compute arctangent or arccotangent and give result in degrees
or radians r i the proper quadrant. Answer for arctan is in the quadrant such
that sine and cosine have the sign of y and x respectively. The degree answers are

-9 -3 scaled by 2 . The radian answers are scaled by 2

USAGE:

A. Preparation of Cards or Tapes

None

B. Input Format

x: Fixed Point Fractional Number
»

y : Fixed Point Fractional Number

C. Output Format (See Note 2)

Angle x expressed in radians and scaled by l /8(-g-) ; or in degrees
s c a l e d b y 2 ^ (x - 2 ^) .

D. Coding Information

1. Call ing Sequence for arctangent, radians

A) t r l artanr

A + 1) Returns control here

Entry and Exit Conditions

Entry Conditions Exit Condition

ACC: y ACC: -^arctan 8 x
QRG: x

IB59- 1N(I) 5-15

2. Call ing Sequence for arccotangent degrees

A) t r l artand

A + 1) Returns control here

Entry and Exit Condit ions

ACC: y

QRG: x

3. Call ing Sequence for arccotangent radians

A) t r l arcotr

A + 1) Returns control here

Entry and Exit Condit ions

Entry Condit ions

4.

ACC

QRG
y
X

Call ing Sequence for arccotangent degrees

A) t r l arcotd

A + 1) Returns control here

Entry and Exit Condit ions

Entry Condit ions

ACC: y

QRG: x

Other Subroutines Required

For al l entr ies: None

Error Halts

For al l entr ies: x = 0 and y = 0

Sense Flip-Flops Used

None
Number of Storage Locations

Exit Condit ion

ACC 2 ® arctan —

Exit Condit ion

ACC -5- arccot 8 x

Exit Condit ion

ACC 2 ^ arccot-^

5-16 IB59-1N(I)

"Common" Locations Used

4 (common thru common + 3)

Approximate Time

Minimum 1. 6 milliseconds

Maximum 1. 7 milliseconds

E. Accuracy Information

RESTRICTIONS:

1. At least one of x, y must not be equal to zero.

METHOD:

- S fi Average Error: 2
- 33 Maximum Error: 2 (See Note 1)

if y < x, form arctan —

If y > x, form arctan y

The routine uses a continued fraction approximation to arctan z:

Arctan z = za^ | jz^ +

0 < z < 1

a1 = 15.19704838

a2 = -181. 10084458

a3 = -2. 6244158.18

a4 = -0. 16853569334

b1 = 37.741540761

b2 = 9.073054714

b3 = 2.6456857766

b 4 1.3787177232

IB59- 1N(I) 5-17

Then arccot 2- = arctan — = Z - arctan ^ if y < x x y 2 x J

arccot ^ = arctan— = -S - arctan — if y > xx y x 2 y

- 3 - 9 Note 1. The output is scaled by 2 (or 2); unsealed accuracy of the result
is limited therefore to the number of bits retained after scaling.

Note 2. The degree output scaling allows three octal digits to the left of the
binary point, e. g. , an output angle of 15°Q would be represented as
+ 017. 00. . . 0

5-18 IB59-1NQ)

5 . 1 . 6 Fixed Point Exponential

Symbolic Label: EXP2

PURPOSE:

Computes e for fixed point number x zero or negative (-1 < x < 0).

USAGE:

A. Preparation of Cards or tapes

None

B. Input Format

Fixed Point Fractional Number

C. Output Format

Fixed Point Fractional Number

D. Coding Information

Calling Sequence

A) trl expofx

A+l) Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: x ACC: ex

Other Subroutines Required

None

Error Halts

Input number positive, non-zero (x > 0)

Sense Flip-Flops Used

None

IB59- 1N(I) 5-19

Number of Storage Locations

39

"Common" Locations Used

5 (common thru common + 4)

Approximate Time

Average: 0. 9 milliseconds

Maximum: 0. 9 milliseconds

E. Accuracy Information
_

Average Error: ±2
-35 Maximum Error: ±2

RESTRICTIONS:

Input number x must be either zero or negative.

METHOD:

x _ A + B
6 A - B

where

a 2 ^ 4 , 6 A = a + a„x + a.x + x o 2 4
3 5 B = a.x + a„x + a-x 13 5 x

(Rational polynomial approximation to e) See Note 2

This approximation has an associated error

rj < 4 x

a = 665280 o

a i = 332640

a2 = 75600

5-20 IB59- 1N(I)

ag = 10080

a. = 840
4

a j- = 42 5

elapsed time is 48 p sec.

Note 2. Lanczos, Applied Analysis (1956).

/
/ 5 . 1 . 7 Fixed Point Natural Logarithm

Symbolic Label: LOG2

PURPOSE :

Computes 1/32 In x for a fixed point number x where 0 < x < 1

A. Preparation of Cards or Tapes

None

B. Input Format

Fixed Point Fractional Number

C. Output Format
- R Fixed Point Fractional Number, scaled by 2

D. Coding Information

1. Calling Sequence for In x

A) trl natlog

A+l) Returns control here
Entry and Exit Conditions

USAGE:

Entry Condition
ACC: x

Exit Conditions
ACC:

COM: In x
(if 1/2 < x < 1)

IB59- 1N(I) 5-21

Other Subroutines Required

1

1
•

None •
Error Halts 1
Input number negative •
Sense Flip-Flops Used 1
None •
Number of Storage Locations I
43 |
"Common" Locations Used

5 (common thru common +4) 1
Approximate Time |

Maximum: 1. 1 milliseconds •
E. Accuracy Information

Average Error: 2 ^
- 35 Maximum Error: 2

1

1
RESTRICTIONS: •

1. x must be greater than zero. 1
METHOD:

Set x = 2nz where 1/2 < z < 1
+, , 2(z - 1/ 2) then form y - (z + lf 2)

1

1
1 +£

2 Then 2 z = is an algebraic identity
1 " 2

1

1
1

5-22

I

1
IB59-1NU) -

Expand In 1- = P(y) = (y + a3y3 + a5y5 + a?y7 + agy9)
1 + 2

This polynomial has an associated error r| < 10_11 for 1/2 < z < 1

then In z = P(y) - lriV 2

and In x = P(y) -InV^ n In 2

a3 = 0. 083333329444

ag = 0. 012500185911

a? = 0. 002228558603

ag = 0. 000464044457

Remarks:

Note 1. If the input number satisfies 1/2 < x < 1, lnx (unsealed) is left in
location COM.

5.1.8 Floating Point Arithmetic Operations

Symbolic Label: FLTPT1

PURPOSE :

To perform the basic floating point arithmetic operations of addition,
subtraction, multiplication, division, or normalization upon MOBIDIC Floating
Point Numbers.

USAGE:

» A. Preparation of Cards or Tapes

None

B. Input Format

MOBIDIC Floating Point Numbers (X and X'Mnot necessarily
normalized)

IB59-1N(I) 5-23

C. Output Format

Normalized MOBIDIC Floating Point Number (XM)

D. Coding Information

1. Calling Sequence for floating point addition

A) trl flpadd
A+l) < Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: X ACC: X" = X + X'

QRG: X' QRG: (Transient Quantity)

2. Calling Sequence for floating point subtraction

A) trl flpsub

A+l) < Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: X ACC: X" = X - X'

QRG: X1 QRG: (Transient Quantity)

3. Calling Sequence for floating point multiplication

A) trl frpmul

A+l) < Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: X ACC: X" =X#X'

QRG: X' QRG: (Transient Quantity)

5-24 IB59- 1N(I)

)

4. Calling Sequence for floating point division

A) trl flpdiv

A+l) < Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: X ACC: X" =XfX'

QRG: X' QRG: (Transient Quantity)

5. Calling Sequence for floating point normalization

A) trl flpnrm

A+l) < Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: X ACC: Normalized X

QRG: (Irrevelant) QRG: (Transient Quantity)

Other Subroutines Required

None

Error Halts

1. Characteristic too large during or after an arithmetic operation

2. Attempted division by zero

Sense Flip-Flops Used

None

Number of Storage Locations

2 2 0

"Common" Locations Used

13 (common thru common + 12)

IB59- 1N(I) 5-25

Approximate Time

Average: Addition:
Subtraction:
Multiplication:
Division:
Normalization:

0. 928 millisecond
0. 944 millisecond
0. 754 millisecond
0. 749 millisecond
0. 080 millisecond if input number needs
to is already normalized.
0. 368 millisecond if input number be
normalized.

E. Accuracy Information

Average Error:

Maximum Error: 2

RESTRICTIONS:

, - 2 8

-27

1. Input numbers must be of such a size that the specified arithmetic
256 in absolute value. operation produces a number less than 2

2. Division by zero must not be attempted.

METHOD:

1. Definition of Floating Point Terminology

In general, a "floating point number" as used in digital computer appli­
cations consists of three quantities, two explicit and one implicit,,
which are representative of a single number. Any number can be ex­
pressed as the product of two numbers, one of which is an implied in­
tegral number to an explicit;, positive or negative integral power.
The number which is raised to a power is called the "base"; the power
is called the "exponent" or "characteristic". The explicit number
which the base to the power multiplies is called the "mantissa" or
"fractional part". The format of a floating point number then somewhat
resembles the classic one of a logarithm. For practical purposes the
base is chosen to be positive, and most frequently either 10 or 2. Float­
ing point systems based on 10 may be called "Base 10 Floating Point" or
"Decimal Floating Point", while those based on 2 may be called "Base 2
Floating Point" or "Binary Floating Point".

5-26 IB59-1N(I)

Examples of these floating point systems are as follows:

A. Floatingpoint:

+48.293 = +.48293 x 100 = +.48293 x 10 = +.48293(2), where
1) +48.293 is the number to be represented,
2) +.48293 is the fractional part, and
3) 2 is the exponent (associated with the implied base 10).

B. Binary Floating Point:

^ +7. 2 = +. 9 x 8 = +. 9 x 2 = +. 9(3), where
1) +7.2 is the number to be represented,
2) +. 9 is the fractional part, and
3) 3 is the exponent (associated with the implied base 2)

Floating point numbers, as described above, may be represented in
actual computer words in several different ways. One method is to
use two machine words to represent each floating point number, one
for the fractional part and one for the exponent, and to allow indepen­
dent algebraic signs for the words. This system can be somewhat
inconvenient because it requires two machine words for each floating
point number. Another method is to use a "packed" one-word floating
point system, where quantities representing the fractional part and
the exponent are "packed" into one word length and the exponent is
always positive. This system allows fewer significant figures for
each part and a smaller range of representation than the two-word
system mentioned above; but is more convenient in that it requires
only one machine word for each floating point number.

2. Definition of a "MOBIDIC Floating Point Number"

In MOBIDIC, a packed one-word binary floating point system is used,
where quantities representing the fractional part and the exponent are
packed into one MOBIDIC word. In this system, the following rules
apply:

IB59- 1N(I) 5-27

(a)

1
1

The base is the number 2.

(b) The exponent is of the representation (not necessarily of the •
represented number) positive. _

(c) The sign bit of the MOBIDIC word (bit 37) represents the "
algebraic sign of the floating point number being represented. a

(d) The "characteristic", located in the most significant 9 bits of
the MOBIDIC word (bits 36-28), represents the exponent of the B

number according to an "excess 256" system. In this system, •
the characteristic equals the exponent plus 256, and (as men­
tioned above) the characteristic is located in bits 36-28 of a |
MOBIDIC word.

B
Since only 9 bits are available for the characteristic, a non-zero I

number being represented must be of such size that the true ex­
ponent of the representation lies in the range between -256 and
+255 inclusive:

•
- 256^exponent = +255. •

In order to avoid negative exponents, the true exponent must be
increased by 256. The characteristic of a MOBIDIC Floating
Point Number then lies in the range between 0 and 511 inclusive: B

0 = characteristic - +511,

Where 0 means a true exponent of -256 and +511 means a true
exponent of +255. (Note that the binary equivalent of 511 is
111111111, which just fits into 9 bits). •

(e) The "mantissa", located in the remainder of the packed MOBIDIC
word (bits 27-1), represents the fractional part of the number,
and is less than 1. The mantissa, in fact, may be considered to
be equal to the fractional part, except that it starts in bit 27 •
(binary point considered to be between bits 28 and 27) instead of ®
bit 36, and is limited to 27 bits instead of 36 . A fractional part B

5-28
1

IB59- 1N(I) .

of 28 or more significant bits is necessarily truncated or
rounded (usually rounded) to 27 bits in the composition of a
MOBIDIC floating point number.

(f) The number zero is represented by O's in all 36 bits of the
MOBIDIC word, and usually with a 0 in the sign bit (thus +0).

(g) The system for representing MOBIDIC floating point numbers,
as described above, may be shown as follows :

l Sign
Bit

4... 9 bits fc 27 bits

1 f

P

37 36 28 27 1
1 1

! ! I i
i J

y V

"Characteristic"
= True exponent +256 "Mantissa"

Algebraic = Fractional Part,
Sign rounded or truncated

to 27 bits

3. Definition of a "Normalized" MOBIDIC Floating Point Number

A "normalized" MOBIDIC Floating Point Number is one where the
fractional part (if non-zero) is equal to or greater than . 5 in absolute
value. Thus the most significant bit (bit 27) of the mantissa of a non­
zero normalized floating point number is necessarily a "l". The
number zero is said to be normalized when bits 36-1 are all zero,
whereas an unnormalized zero would contain O's in the mantissa but
not the characteristic. Normalized numbers are usually used because
the significant bits available for the mantissa are maximized, and

IB59- 1N(I) 5-29

normalized MOBIDIC floating point numbers may conveniently be com­
pared for algebraic size directly, without regard to the fact that they

happen to be floating point numbers.

4. Method for Floating Point Arithmetic Operations

The floating point arithmetic operations of addition, subtraction,
multiplication, division, or normalization are performed by this

routine as follows:

a) The input numbers are normalized (if necessary) and "unpacked"
into the characteristic (remaining in bits 36-28) and the fractional

part (positioned in bits 36-10 of another word).

b) Depending on the particular arithmetic function being performed,
appropriate manipulations are performed on the characteristics
and fractional parts of the floating point numbers involved. Then
the fractional part of the answer is normalized and, if necessary,
rounded to 27 bits and repositioned in bits 27-1, becoming the
mantissa of the answer; this is then packed with the character­
istic to produce the answer, a normalized MOBIDIC floating
point number. In the course of calculations, adjustments in the
characteristic are made accordingly for overflows in rounding,

normalizing of answers, etc.

c) If the normalization entrance is used, the number in the accu­
mulator is normalized, without regard to the possible contents of

the Q-Register, which are not preserved.

d) If a characteristic greater than + 511 (including an exponent
greater than + 255) arises in the course of the calculations, an
error halt occurs indicating the characteristic, and thus the

floating point number itself, is too large.

e) If a negative characteristic (indicating a true exponent algebraically
less than - 256) arises in the course of the calculations, the
answer is set to zero, represented by a MOBIDIC word of all Q's

including the sign bit (thus +0).

5-30 IB59- 1N(I)

REMARKS:

Input numbers X and X' need not necessarily be normalized; however, the
routine is faster if they are. Except for the normalization entrance, the times
given above are based on normalized input numbers. In any event, the answer
X'1 is always normalized.

IB59- 1N(I) 5-31

5. 1. 9 "Unfloat" Conversion Routine

Symbolic Label: UNFLT1

PURPOSE:

To compute the normalized fraction and exponent equivalent for a MOBIDIC
floating point number.

USAGE:

A. Preparation of Cards or Tapes

None

B. Input Format

MOBIDIC floating point number

C; Output Format

1. Normalized fraction (fractional part)

2. Fixed point integer (exponent)

D. Coding Information

1. Calling Sequence

A) TRL UNFLTN

A + 1) M Normal Return

2. Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: MOBIDIC Floating Point No. ACC: Fractional Part

QRG: (Irrelevent) QRG: Exponent

3. Other Sub routines Required

None

4. Error Halts

None

5-32 IB59 -1N(I)

5. Sense Flip Flops Used

None

6. Storage Requirements

a. Subroutine: 13 locations

b. Common Storage: 2 (Common, Common + 1)

7. Approximate Time

a. Maximum: . 230 milliseconds

b. Average: . 198 milliseconds

E. Accuracy Information

This subroutine unfloats a MOBIDIC floating point number without
introduction of error.

RESTRICTIONS:

None

METHOD:

1. The exponent is shifted into bits 36-27 of the Q Register by a cycle
short 9 and shift long right 9.

2. The accumulator (fractional part) is normalized and stored. The
number of shifts for normalizing is stored.

3. |Exponent| —> Bits 9-1 of the accumulator. 247 (256 modulus -9)
and the normalizing count are subtracted from the fraction.

4. The computed exponent is stored in the Q Register and normalized
fraction stored in the accumulator

REMARKS:

Note 1. If a zero value floating point number is used as an argument, the ac­
cumulator will contain zero and the Q Register the reset of the input
value of |C(AC)36 27 | -27.

Note 2. See the writeup of "Floating Point Arithmetic Operations for a descrip­
tion of MOBIDIC floating point numbers".

IB59 -1N(I) 5-33

5. 1. 10 "Float" Conversion Routine

Symbolic Label: FLOAT 1

PURPOSE:

To produce a normalized MOBIDIC floating point number, given a fixed point
" f r a c t i o n a l p a r t " a n d " e x p o n e n t " . (T h e e x p o n e n t h a s a n i m p l i e d b a s e o f 2 .)

USAGE:

A. Preparation of Cards or Tapes

None

B. Input Format

Fixed point "fractional pant" and "exponent"

C. Output Format

Normalized MOBIDIC floating point number

D. Coding Information

Calling Sequence

A) trl floatn

A+l) < Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: Fractional Part ACC: Normalized MOBIDIC
Floating Point Number

ORG: Exponent QRG: (Transient Quantity)

Other Subroutines Required

None

Error Halts

Too large a characteristic (>511) in the resultant normalized
MOBIDIC floating point number.

5-34 IB59 -1N(I)

Sense Flip-Flops Used

None

Number of Storage Locations

2 8

"Common" Locations Used

2 (common and common + 1)

Approximate Time

Average: 0. 27 millisecond

Maximum: 0.31 millisecond

E. Accuracy Information
-28 Average Error: 2 in mantissa
-27 Maximum Error: 2 in mantissa (from roundoff)

RESTRICTIONS:

The fractional part and exponent must be of such a size (e.g. exponent
< + 256) that the characteristic of the resultant normalized MOBIDIC
floating point number is no greater than 511.

METHOD:

1. The fractional part is normalized and nounded to 27 bits, becoming
the mantissa of the MOBIDIC floating point number, retaining the
algebraic sign.

2. The number 256 minus the number of shifts from normalizing, plus
the given exponent, produces the characteristic of the MOBIDIC
floating point number which is packed with the mantissa to produce
the desired answer.

3. If the fractional part is zero, the answer is zero with the same sign.

4. If the characteristic is negative, the answer is set to +0.

IB59 -1N(I) 5-35

5. If it is desired to float a regular fixed point fractional number,
this number should be in the Accumulator at entry, with the

Q-Register containing zero.

REMARKS:

1. If overflow occurs in rounding, the mantissa is set to 777777777g

with the proper sign.

2. If the characteristic is greater than 511, the answer is set to
777777777777^ with the proper sign, and an error halt occurs.
If "Start at PC" is activated, control is returned to the using

program with this answer in ACC.

3. See the writeup of "Floating Point Arithmetic Operations" for a
full description of a "normalized MOBIDIC floating point number",
and of the terms "fractional part", "exponent", "mantissa", and

"characteristic".

1. 11 Floating Point Square Root

Symbolic Label: FSQRT1

PURPOSE:

To compute the square root of a floating point number N, where N - 0.

USAGE:

A. Preparation of Cards or Tapes

None

B. Input Format

MOBIDIC floating point number (not necessarily normalized)

C. Output Format

Normalized MOBIDIC floating point number

-36 IB59 -1N(I)

-D- Coding Information

Calling Sequence

A) tr l SQRTFL

A + 1) < Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: N ACC:j/~N

Other Subroutines Required

None

Error Halts

N<0

Sense Flip-Flops Used

None

Number of Storage Locations

6 8

"Common" Locations Used

5 (common thru common + 4)

Approximate Time

Average : 1. 18 mill iseconds

Maximum: 1.22 mill iseconds

E. Accuracy Information

-28 Average Error: 2 in mantissa
-27 Maximum Error: 2 in mantissa

RESTRICTIONS:

N must be posit ive or zero.

IB59-1N(I) 5-37

f
METHOD:

1. The floating point number is unfloated into its fractional part and
exponent. The fractional part is shifted right 0 or 1 place to make
the exponent even.

2. The exponent of the answer is half of the exponent of the input
number (adjusted by 1 bit if necessary).

3. The square root of the fractional part is computed using the
method of the fixed point square root routine.

4. The square root of the fraction and the exponent of the answer
are "floated" to obtain the answer.

5. If the input number is zero, the answer is zero.

REMARKS:

See the writeup of "Floating Point Arithmetic Operations" for a full
description of "MOBIDIC floating point number", "fractional part",
"exponent", and "mantissa".

-38 IB59 -1N(I)

) J

/7 J?}
/ 5-1.12 Title: Floating Point Sine-Cosine

Symbolic Label: FSNCSl

PURPOSE:

To compute the sine or cosine of a floating point angle X expressed in
radians or degrees.

USAGE:

A. Preparation of Cards or Tapes

None

B. Input Format

MOBIDIC floating point number (not necessarily normalized)

C. Output Format

Normalized MOBIDIC floating point number

D. Coding Information

1 • Calling Sequence for floating point sine, radians

A) trl flsinr

A + l M R e t u r n s c o n t r o l h e r e

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: X in radians ACC: sin X

2. Calling Sequence for floating point sine, degrees

A) trl flsind

A + l) ^ — R e t u r n s c o n t r o l h e r e

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: X in degrees ACC: sin X

IB59 -1N(I) 5-39

3. Calling Sequence for floating point cosine, radians

A) trl flcosr

A + l) 4 R e t u r n s c o n t r o l h e r e

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: X in radians ACC: cos X

4. Calling Sequence for floating point cosine, degrees

A) trl flcosd

A+l)-^ Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: X in degrees ACC: cos X

Other Subroutines Required

Label Title

FLOAT1 "FLOAT" Conversion
V/i/FL&ATi Routine

Error Halts

Ii 18 X (in circles) > N • N _ = 2 circles (see RESTRICTIONS) — ITicLX ill 3.X
Sense Flip-Flops Used

None

Number of Storage Locations

158

"Common" Locations Used

8 (common thru common + 7)

-40 IB59-1N(I)

Approximate Time

Average: 2. 15 milliseconds

Maximum: 2. 35 milliseconds

E. Accuracy Information

- 27 Average Error: 2 in mantissa

Maximum Error: 2~ in mantissa

RESTRICTIONS:

The input number X must be less than N circles in absolute value for IXlcLX
the result to have significant accuracy. Nmax may be changed by the
programmer if desired. Its value is 2^ circles as given in the routine.

METHOD:

1. The input number is unfloated, then converted from radians or
degrees to "circles", using a double precision constant for the
conversion, to avoid introducing any appreciable error in the con­
version.

2. Any extra circles (corresponding to an input number larger than 360
degrees or 27rradians) are eliminated.

3. For the cosine entrances, 1/4 of a circle is added, corresponding to
the identity: cos 6 = sin (0 + 7T./2.)

4. If the number is very small, the answer is obtained by converting to
radians and using a 2-term Taylor series for the sine.

5. Otherwise, the number is scaled to a fixed point fraction, and the
method of the fixed point sine routine used.

6. The answer is "floated" to produce a normalized MOBIDIC floating
point number.

IB59 -1N(I) 5-41

REMARKS:

See writeup of "Floating Point Arithmetic Operations" for a full descrip­
tion of the format of a "MOBIDIC floating point number".

(*&
5.1.13 Title: Floating Point Tangent-Cotangent ^ i ,

Symbolic Label: FTNCT1 1

PURPOSE:

To compute the tangent or cotangent in floating point of an angle X ex­

pressed in radians or degrees.

USAGE:

A. Preparation of Cards or Tapes

None

B. Input Format

MOBIDIC floating point number (not necessarily normalized)

C. Output Format

Normalized MOBIDIC floating point number

D. Coding Information

1. Calling Sequence for floating point tangent, radians

A) trl fltanr

A+l)-^ Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: X in radians ACC: tan X

2. Calling Sequence for floating point tangent, degrees

A) trl fltand

A + l) ^ R e t u r n s c o n t r o l h e r e

5-42 IB59- 1N(I)

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: X in degrees ACC: tan X

3. Calling Sequence for floating point cotangent, radians

A) trl flctnr

A+l)-^ Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: X in radians ACC: ctn X

4. Calling Sequence for floating point cotangent, degrees

A) trl flctnd

A+l)-4 Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: X in degrees ACC: ctn X

Other Subroutines Required

Label Title

TNCT1 Fixed Point Tangent,
Cotangent

FLOAT1 "Float" Conversion
Routine

Error Halts

II8 X (in semicircles) > N ; N =2 semicircles (see I = max max
RESTRICTIONS).

2. Tangent of [±(2n + 1) t t / 2] or Cotangent of [±7rn], n = 0, 1, •
or angles so close to these that the corresponding tangent or

256 cotangent is > 2 in absolute value.

IB59- 1N (I) 5-43

Sense Flip-Flops Used

None

Number of Storage Locations

183

"Common" Locations Used

13 (common thru common +12)

Approximate Time

Average: 2. 86 milliseconds

Maximum: 3.23 milliseconds

E. Accuracy Information

- 2 7 Average Error: 2 in mantissa

Maximum Error: 2 ^ in mantissa, except for X near 90°, 180°,
270°, and 360° (or radian equivalents)

RESTRICTIONS:

(The input number x must be less than N semicircles in absolute value ^ max
for the result to have the significant accuracy. N may be changed by °N]_ g max
the programmer if desired. Its value is 2 semicircles as given in the (routine.

The input number x must not be so close to odd or even multiples of
that the corresponding tangent or cotangent is an extremely large number

256 viz equal to or greater than 2 in absolute value.

METHOD:

1. The input number X is unfloated, then converted from radians or
degrees to semicircles, using a double precision constant for the
conversion, to avoid introducing any appreciable error in the con­
version.

5-44 IB59- 1N(I)

2. Any extra semicircles (corresponding to an input number larger
than 180 degrees or i t radians) are eliminated.

3. The tangent or cotangent of |x| is obtained in accordance with
the following table, where Y = Jx/7r | , and Z = TTY:

Y Z Tangent X Cotangent X

= 0 0 0 Undefined
(Error Halt)

m

CM

A i
o

 0 > 7T / 4 tan Z l/ tan Z

= . 2 5 = 7T / 4 1 . 0 1. 0

, 25 —> . 5 7r/4 —> 7r/2 l / c t n Z ctn Z

= . 5 = 7T / 2 Undefined
(Error Halt)

0

. 5 —> . 75 7 T / 2 > 3 7 T / 4 -1 /tan (Z - ?r/2) - tan (Z - n / 2)

II cn

= 3 7 T / 4 - 1 . 0 - 1 . 0

. 75 —> 1. 0 3 7 r / 4 > 7 T -ctn (Z - 7r/2) -1/ctn (Z - n / 2)

4. The fixed point tangent-cotangent routine is used for computing
tan Z or ctn Z, except for tan Z where Z is very small, where a
2-term Taylor series is used instead.

5. If X is negative, the sign of the answer is changed.

6. The answer is "floated" to produce a normalized MOBIDIC float­
ing point number. If the characteristic is too large, an error
halt occurs (see Restrictions and Error Halts).

IB59- 1N(I) 5-45

REMARKS:

See writeup of "Floating Point Arithmetic Operations" for a full descrip­

tion of the format of "MOBIDIC floating point number".

•

5-46 IB59- 1N(I)

5. 1. 14 Title: Floating Point Arcsine-Arccosine

Symbolic Label: FLASC1

PURPOSE:

To compute, the arc&ine or arccosine of a floating point number x , and
give the result in radians or degrees.

USAGE:

A. Preparation of Cards or Tapes

None

B. Input Format

MOBIDIC floating point number (not necessarily normalized)

C. Output Format

Normalized MOBIDIC floating point number

D. Coding Information

1. Calling Sequence for arcsine, radians

A) trl flasnr

A+l) < Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: x ACC: arcsin x in radians

2. Calling Sequence for arcsine, degrees

A) trl flasnd

A+l) < Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: x ACC: arcsin x in degrees

IB59- 1N(I) 5-47

3- Calling Sequence for Arccosine, radians

A) trl flacsr

A+l) < Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: x \nn arccos x in radians

4- Calling Sequence for arccosine, degrees

A) trl flacsd

A+l) < Returns control here

Entry and Exit Conditions

Entry Conditions

ACC: x

Other Subroutines Required

Label

Exit Conditions

ACC: arccos x in degrees

Title
ARCSC1

FLOAT1

Error Halts

Fixed Point Arcsine, Arcco­
sine

"Float" Conversion Routine

14 i> i

Sense Flip-Flops Used

None

Number of Storage Locations

133

"Common" Locations Used

9 (common through common + 8)

5-48
IB59- 1N(I)

Approximate Time

Average: 3. 05 milliseconds

Maximum: 3. 21 milliseconds

E. Accuracy Information
_ 25 Average Error: 2

- 21 Maximum Error: 2

RESTRICTIONS:

The input number x must be less than or equal to one (1.0) in absolute value.

METHOD:

1. For Arccosine, the number X is converted to a fixed point number,
the arccosine is computed using the fixed point arcsine-arccosine
routine, and the answer is "floated".

2. For Arcsine, for numbers other than very small ones, the number X
is converted to a fixed point number, the arcsine is computed using
the fixed point arcsine-arccosine routine, and the answer is "floated".

3. For the Arcsine of very small numbers, a 2-term Taylor series is
used to compute the arcsine in radians; this number is converted to
degrees if necessary, and "floated" to produce the desired answer.

REMARKS:

Values of the answer are in the first or third quadrant (as positive numbers)
for the arcsine, and in the first or second quadrants (as positive numbers)
for the arccosine.
See the writeup of "Floating Point Arithmetic Operations" for a full de­
scription of "MOBIDIC floatingpoint numbers".

5. 1. 15 Title: Floating Point Arctangent-Arccotangent

Symbolic Label: FLATC1

PURPOSE:

To compute the arctangent y/x or the arccotangent y/x in floating point
and to give the result in either radians or degrees.

IB59- 1N(I) 5-49

USAGE:

1
1
|

A. Preparation of Cards or Tapes ™

None fp?

B.
•

Input Format

MOBIDIC floating point number (not necessarily normalized) •

C. Output Format B

Normalized MOBIDIC floating point number •

D. Coding Information
•

1. Calling Sequence for floating point arctangent, radians

A) trl flatnr

A+l) < Returns control here _

Entry and Exit Conditions ™

Entry Conditions Exit Conditions

ACC: y ACC: arctan ̂
J X

ORG: x ORG (Transient Quantity)

2. Calling Sequence for floating point arctangent, degrees

• A) trl flatnd ®

A+l) < Returns control here ^
•

Entry and Exit Conditions

Entry Conditions Exit Conditions ;•

ACC: y ACC: arctan-^ in degrees'

ORG: x ORG: (Transient Quantity) ®

3. Calling Sequence for floating point arccotangent, radians 1
A) trl flactr

A+l) < Returns control here J:

•

5-50

1
IB59- 1N(I) •

Entry and Exit Conditions

Entry Conditions

ACC: y

ORG: x

Exit Conditions

ACC: arccotan-2. in radians

ORG: (Transient Quantity)

4. Calling Sequence for floating point arccotangent, degrees

A) trl flactd

A+l) < Returns control here

Entry and Exit Conditions

Entry Conditions

ACC: y

ORG: x

Other Subroutines Required

Label

ARCTC1

UNFLT1
FLOAT1

Error Halts

y = x = 0

Sense Flip-Flops Used

None

Number of Storage Locations

55

"Common" Locations Used

8 (common thru common + 7)

Approximate Time

Average: 2. 94 milliseconds

Maximum: 3. 15 milliseconds

Exit Conditions

ACC: arccotan — in degrees
X

ORG: (Transient Quantity)

Title

Fixed Point Arctangent,
Arccotangent
"Unfloat" Conversion Routine
"Float" Conversion Routine

IB59- 1N(I) 5-51

E. Accuracy Information

Average Error: Exact
- 27 Maximum Error: 2 in mantissa

RESTRICTIONS:

The input numbers y and x cannot both be zero.

METHOD:

1. Y and X are unfloated. The fractional part of the smaller of these is
scaled by the difference in the exponents.

2. Then the fixed point arctangent routine is used to find the arctangent
of the fractional parts of Y and X, in either degrees of radians.

3. The answer is then "floated" to produce a normalized MOBIDIC float­
ing point number for Arctan Y/X.

4. The arccotangent is obtained by interchanging Y and X and proceeding
as above.

REMARKS:

For either arctangent or arccotangent, the answer is in the proper
quadrant, depending upon the signs of y and x. The angle will be expressed
as a positive number from 0 to 2ir radians or from 0 to 360 degrees.

See writeup of "Floating Point Arithmetic Operations" for a full descrip­
tion of the format of a "MOBIDIC floating point number".

5-52 IB59-1N(I)

5. 1. 16 Title: Floating Point Exponential

Symbolic Label: FLEXP1

PURPOSE:

To compute e in floating point

USAGE:

A. Preparation of Cards or Tapes

None

B. Input Format

MOBIDIC floating point number (not necessarily normalized)

C. Output Format

Normalized MOBIDIC floating point number

D. Coding Information

Calling Sequence

A) trl FLEXPN

A+l) < Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: x ACC: ex

Other Subroutines Required

Label Title

FLOAT1 "Float" Conversion
Routine

Error Halts

x > 176.752531

IB59- 1N(I) 5-53

Sense Flip-Flops Used

None

Number of Storage Locations

226

"Common" Locations Used

17 (common through common + 16)

Approximate Time

Average: 5. 80 milliseconds

Maximum: 6. 02 milliseconds

E. Accuracy Information
- 28

Average Error: 2 in mantissa
- 27 Maximum Error: 2 in mantissa

RESTRICTIONS:

X must be no greater than +176.752531; otherwise eX would be too large

to be represented as a MOBIDIC floating point number.

METHOD:

x = i log 2 + f log 2 i is the integer
e e f is the fraction

z = f * log02

z 2z
6 = 1 + ^ . z2 , 98z2

2 ~ z 2<J 20(42 + z2)

x - oi~z e = 2 e

-x 1
e

e
These calculations are performed in floating point.

For x < -178. 1388254, eX is set to +0.

5-54
IB59-1N(I)

REMARKS:

See writeup of "Floating Point Arithmetic Operations" for a full
description of the format of a "MOBIDIC floating point number".

5. 1. 17 Title: Floating Point Natural Logarithm

Symbolic Label: FLLOG1

PURPOSE:

To compute loggx for a floating point number x > 0.

A. Preparation of Cards or Tapes

None

B. Input Format

MOBIDIC floating point number (not necessarily normalized)

C. Output Format

Normalized MOBIDIC floating point number

D. Coding Information

Calling Sequence

USAGE:

A) trl fllogn

A+l) <- Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: x ACC: logex

Other Subroutines Required

Label Title

LOG1 Fixed Point Natural
Logarithm

IB59- 1N(I) 5-

UNFLT1 "Unfloat" Conversion
Routine

FLOAT1 "Float" Conversion
Routine

Error Halts
x < 0

Sense Flip-Flops Used

None

Number of Storage Locations

94

"Common" Locations Used

9 (common thru common + 8)

Approximate Time

Average: 2. 54 milliseconds

Maximum: 2.75 milliseconds

E. Accuracy Information
- 27

Average Error: 2
- 24 Maximum Error: 2 (near x = 1.0)

RESTRICTIONS:

x must be positive and non-zero.

METHOD:
N

1. The input number X is unfloated, producing F • 2 .

2. LOG F is computed using the fixed point natural logarithm routine.

3. Then,

LOG X = LOG F + N • LOG 2

5-56 IB59- 1N(I)

4. The answer is "floated" to produce a normalized MOBIDIC floating
point number.

5. If X = 1.0, the answer is set to zero.

REMARKS:

See writeup of "Floating Point Arithmetic Operations" for a full description
of the format of a "MOBIDIC floating point number". If log x is desired,

cL

the answer should be multiplied by log e.
cL

IB59 - 1N(I) 5-57

5. 1. 18 Fixed Point Double Precision Arithmetic Operations

Symbolic Label: DBLPR1

PURPOSE:

To perform the basic arithmetic operations of addition, subtraction,
multiplication, and division upon fixed point double precision numbers.

USAGE:

A. Preparation of Cards or Tapes

None

B. Input Format
- 9 fi

The first operand x = x^ + x2. 2 has the most significant part (x^)
in the Accumulator and the least significant part (x9) in the Q-register

_ ^

at entry. The second operand y = y^ + y2- 2 is stored under the
"trl" order, with the most significant part (y) immediately beneath
the "trl" order, and the least significant part (y2) just below that.

Both parts have the sign of the double precision number.

C. Output Format

The result (r) has the most significant part (r^ placed in the Accumu-
later and the least significant part (r2> in the Q-Register at exit.
Both parts have the sign of the double precision number.

D. Coding Information

1. Calling Sequence for Double Precision Addition

A) trl dp add

A+l) (y1>

A+2) (y2)

A+3) < Returns control here

5-58 IB59- 1N(I)

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: (x :) ACC: (r^

ORG: (x2) ORG: (r2)

2 . Call ing Sequence for Double Precision Subtraction

A) tr l dpsub
A+l) (y :)

A+2) (y2)

A+3) < Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

r = x + y

ACC: (X l) ACC: (r^

ORG: (x2) ORG: (r2)

3. Call ing Sequence for Double Precision Multiplication

A) tr l dpmul
A+l) (y :)

A+2) (y2)

A+3) < Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: (xx) ACC: (r^

ORG: (x2) ORG: (r2)

4. Call ing Sequence for Double Precision Division

A) tr l dpdiv
A+l) (yx)

A+2) (y2)

A+3) < Returns control here

r = x - y

x

IB59- 1N(I) 5-59

Entry and Exit Conditions

1

1
Entry Conditions Exit Conditions 1
ACC: (Xj) ACC:

ORG: (x2) ORG: (r2) \
' 7 7 |

Other Subroutines Required I
None •
Error Halts 1
Overflow in addition, subtraction, or division with no provisions a
for overflow made by programmer. (See REMARKS: "Provisions •
for Overflow") i
Sense Flip-Flops Used 1
3 (SFF14 thru SFF16)

|
Number of Storage Locations

•

323 1
"Common" Locations Used •
14 (common thru common +13) I
Approximate Time

|
0 . 5 7 m i l l i s e c o n d f o r a d d i t i o n o r s u b t r a c t i o n

•

1 . 2 1 m i l l i s e c o n d s f o r m u l t i p l i c a t i o n 1
3. 16 milliseconds for division •

E. Accuracy Information
-72 Average Error: 2 for all entrances

1
-72 Maximum Error: 1. 2 for addition, subtraction or multiplication H

2. 2 ^ for division

1

|

5-60

1
IB59-1N(I) -

1

RESTRICTIONS:

Input numbers must have the same sign for both the most significant and
the least significant parts of the double precision number. In case of over­
flow, an error halt will occur unless the programmer provides for such an
eventuality - see REMARKS: "Provisions for Overflow".

METHOD:

Notation: First operand = x = x1 + x2 . 2~36

Second operand = y = y^ + y2 • 2-3^

Result (answer) = r^ + - 2

Addition: r2 = x2 + y2

rl = X1 + + (overflow from r2, if any)

r^ and r2 are adjusted to have the same signs (if necessary)

Subtraction: y is replaced by -y and double precision addition is used.

Multiplication:

Subscript notation:

H = 36 High order bits of 72-bit product

L = 36 Low order bits of 72-bit product

"Rounder" = (x^ + + (x2y2)H

r2 = (xlyl^L + ^xly2^H + ^x2yl^H + (°verflows from "Rounder",
_ Q R

if any) + 2 • (Rounder)

rl = ^l^H + (°verflows from r2, if any)

"Rounder" is lost during calculations; thus a 72-bit rounded
product is the only result.

IB59-1NQ) 5-61

Division: The general case of division is handled by the following

interpolation method:

r / r) -36 \ (yx + 2 >

The various special cases which may occur are handled appro­
priately. In case of overflow in addition, subtraction, or division,

the double precision operations subroutine handles the overflow
as discussed under REMARKS: "Provisions for Overflow".

The double precision operations subroutine performs its various
operations upon fixed point numbers represented by 72 bits (plus
sign) instead of 36 bits. Therefore, it is quite possible that over­
flow may occur, just as in using the basic machine capability of
fixed point single precision. It is also quite likely that the program­
mer may wish to do something constructive in case of overflow in

double precision addition, subtraction or division, rather than
necessarily stopping on an error halt. For this reason, the double
precision operations subroutine will take care of any overflow
which may occur provided that the programmer senses the overflow
alarm flip-flop with a SEN, SNR, or SNS order as the very next
order in his program. If he does so, the overflow alarm flip-flop
will be reset at exit if no overflow occurs, but will be set if over­
flow does occur. If overflow occurs in addition or subtraction, the
operation is finished with the overflow bit lost, but with the result
having the appropriate sign. If overflow occurs in division, the
division does not take place and the original dividend (x) is in the
Accumulator (x^ and Q-Register (x2) at exit. If overflow occurs
and the programmer does not sense the overflow alarm flip-flop
with the very next oder in his program, an error halt will occur.

REMARKS:

PROVISIONS FOR OVERFLOW

5-62 IB59-1N(I)

5. 1. 19 Floating Point Double Precision Arithmetic Operations

Symbolic Label: FLPDP1

PURPOSE:

To perform the basic arithmetic operations of addition, subtraction, multipli­
cation, division, and normalization upon MOBIDIC floating point double pre­
cision (6 9 bits) numbers.

A. Preparation of Cards or Tapes
None

B. Input Format

MOBIDIC floating point double precision numbers x and x' (not necessarily
normalized) (See Method)

C. Output Format

Normalized MOBIDIC floating point double precision number x" (See
Method)

D. Coding Information

1 • Calling Sequence for Floating Point Double Precision Addition

USAGE:

A) trl fdpadd

x

A+3) < Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions
ACC: ACC:

x" = x +
O RG:

x
ORG:

IB59-1NQ) 5-63

2. Calling Sequence for Floating Point Double Precision Subtraction

A) trl fdpsub

A+l)

A+2)

A+3)^— Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC:^ ACC:
X \ x " = X - X 1

ORG:j ORG:

3. Calling Sequence for Floating Point Double Precision Multiplication

A) trl fdpmul

A+l)

A+2)

A+3) M Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC ̂ ACC:

O R G . j O R G :

4. Calling Sequence for Floating Point Double Precision Division

A) trl fdpdiv

A+l)"

A+2)

A+3) *4 Returns control here

x'

x > x" = x . x'

X '

5-64 IB59- 1N(I)

Entry and Exit Conditions

Entry Conditions Exit Conditions

x" = x-x'
ACC:") ACC:

ORG: j ORG:

5. Calling Sequence for Floating Point Double Precision Normalization

A) trl fdpnrm

A+l) ~4 Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC:^ ACC:
| x I x" = Normalized x

ORG: \ ORG: j

Other Subroutines Required

Label Title

DBLPR1 Fixed Point Double Precision Arithmetic Operations

Error Halts

1. Characteristic too large during or after an arithmetic operation.
2. Attempted division by zero.
3. Input numbers have different signs for both parts.

Sense Flip-Flops Used

1 (SFF 13)

Number of Storage Locations

345

"Common" Locations Used

26 (COMMON thru COMMON + 25)
(includes common thru common + 13 for fixed point double precision
arithmetic operations)

IB59- 1N(I) 5-65

Approximate Time

2 . 8 m i l l i s e c o n d s f o r a d d i t i o n o r s u b t r a c t i o n
2. 9 milliseconds for multiplication
5.0 milliseconds for division
0.4 millisecond for normalization

E. Accuracy Information

Average Error: 2
_ 6 3 Maximum Error: 2

RESTRICTIONS:

1. The input numbers must have the same sign for both parts of each
number.

2. The input numbers must be of such a size that the specified arithmetic
256 operation produces a number less than 2 in absolute value.

3. Division by zero must not be attempted.

METHOD:

1. On MOBIDIC a "packed" floating point double precision system to the
base 2 is used, where numbers representing the fractional part and the
exponent are both "packed" into two MOBIDIC words. The rules by which
each floating point precision number is represented in packed form are
as follows:

a) The sign bit of the MOBIDIC word (bit 37) represents the algebraic
sign of the floating point double precision number. The signs of
both words agree.

b) The most significant 9 bits of the first MOBIDIC word (bits 36-28)
are used for the "characteristic", which equals the exponent +256.
The exponent must lie in the range between -256 and +255 inclusive;
thus the characteristic must lie in the range from zero to +511.

5-66 IB59-1NU)

c) The least significant 27 bits of the first MOBIDIC word (bits 27-1)
plus the second word (bits 36-1) are used for the "mantissa", equiv­
alent to the fractional part of the floating point double precision
number.

d) The number zero is represented by O's in all 36 bits of both
MOBIDIC words and usually with a 0 in the sign bit (thus +0)..

e) If a characteristic greater than +511 (indicating a true exponent
greater than +255) arises in the course of calculations, an error
halt occurs indicating that the characteristic and thus the floating
point double precision number itself, is too large.

f) If a negative characteristic (indicating a true exponent algebraically
less than -256) arises in the course of calculations, the answer is
set to zero.

g) A MOBIDIC floating point double precision number (if non-zero) is
said to be "normalized" if the fractional part 5 in absolute value;
this also implies that the most significant bit of the "mantissa" is a
"one".

2. The method by which floating point double precision operations are per­
formed by this subroutine is as follows :

a) The input numbers are normalized (if necessary) and unpacked into
the characteristic and mantissa or fractional part.

b) The necessary computation on the characteristic is performed within
this subroutine. The arithmetic operations carried out on the
mantissa, or fractional part, are performed by the fixed point
double precision subroutine.

c) The answer is normalized and packed according to the rules for a
normalized MOBIDIC floating point double precision number, and is
stored in the Accumulator and Q-Register before control is returned
to the main program.

IB59-1NU) 5-67

REMARKS:

Note 1. Note that when the normalization entrance is used, there is no second
number x' involved, and control is returned to the line immediately be­
low the "trl" order.

Note 2. See the writeup of "Floating Point Arithmetic Operations" for a discussion
of floating point systems in general if desired.

5. 1.20 Fixed Point Complex Number Operations

Symbolic Label: CMPLX1

PURPOSE:

To perform the basic operations of addition, subtraction, multiplication,
and division upon fixed point complex numbers.

USAGE:

A. Preparation of Cards or Tapes

None

B. Input Format

The first operand x = a + bi has the real part (a) in the Accumulator
and the imaginary part (b) in the Q-register at entry. The second
operand x' = c + di is stored under the "trl" order, with the real part
(c) immediately beneath the "trl" order, and the imaginary part (d)
just below the real part.

C. Output Format

The complex answer x" = e + fi has the real part (e) in the Accumulator
and the imaginary part (f) in the Q-register at exit.

D. Coding Information

1. Calling Sequence for Complex Number Addition

5-68 IB59- 1N(I)

ACC: (e^
x

ORG: (f)
x" = x +

A) trl cpxadd

A+l) (c)

A+2) (d)

A+3) 4 Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: (a) ̂

ORG: (b)

Calling Sequence for Complex Number Subtraction

A) trl cpxsub

A+l) (c)
x'

A+2) (d)

A+3)-^ Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: (a)| ACC: (e)

ORG: (b)j ORG: (f)

Calling Sequence for Complex Number Multiplication

A) trl cpxmul

A+l) (c)'

A+2) (d)^

A+3)-4 Returns control here

Entry And Exit Conditions

Entry Conditions Exit Conditions

ACC: (a)| ACC: (e)"

ORG: (b) j ORG: (f)

x'

4• Calling Sequence for Complex Number Division

A) trl cpxdiv

A+l) (c)|
> x'

A+2) (d) \

A+3)^ Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: (af ACC: (ef)

ORG: (b)
x

ORG: (f)
n _ • • X = X — X

J J

Other Subroutines Required

None

Error Halts:

1. Overflow in addition for either the real or the imaginary parts.
2. Overflow in subtraction for either the real or imaginary parts.
3. Overflow in multiplication for either the real or imaginary parts.
4. Overflow in division for either the real or the imaginary parts.

Sense Flip-Flops Used

2 (SFF15 and SFF16)

Number of Storage Locations

"Common" Locations Used

5 (COMMON thru COMMON +4)

Approximate Time

0. 3 milliseconds for addition or subtraction
0.8 millisecond for multiplication
2.0 milliseconds for division

139

5-70 IB59- 1N(I)

E. Accuracy Information
- QfJ

Average Error: 2 for all entrances

Maximum Error: 1.2 for addition, subtraction and multiplication

2. 2 for division

RESTRICTIONS:

The numbers should be scaled so that an overflow will not occur.

METHOD:

Notation: First operand = x = a + bi

Second operand = x' = c + di

Answer = x" = e + fi

Addition: e = a + c; f = b+ d

Multiplication: e = ac = bd; f = be + ad

Division: e = f . bo^_ad
c + d c + d

2 2 Note: if c + d >1.0, the division is scaled as follows:
1

P = i . a c + b d ') (2 (ac + bd
2 J (c2 + c2) °r 11 (c2 +d2)

I f b c - a d 1 (j (b c - a d)

I rrorj »(r^TT",

Which of these methods above is used depends on whether or not (ac + bd)
19 9

or (be - ad) happens to be less than j (c + d) in absolute value.

REMARKS:

Note 1. If a problem involving complex number operations is too difficult
to scale effectively, the routine for Floating Point Complex
Number Arithmetic Operations (FCPLX1) may be used.

IB59- 1N(I) 5-71

5.1.21 Title: Floating Point Complex Number Arithmetic Operations

Symbolic Label: FCPLX1

PURPOSE:

To perform the basic arithmetic operations of addition, subtraction,
multiplication, and division upon single precision floating point complex
numbers.

USAGE:

A. Preparation of Cards or Tapes

None

B. Input Format

Two floating point complex numbers of the form x = a + bi and
x' = c + di, where a, b, c, and d are MOBIDIC single precision
floating point numbers (not necessarily normalized).

C. Output Format

A floating point complex number of the form x" = e + fi, where e
and f are normalized single precision MOBIDIC floating point num­
bers.

D. Coding Information

1. Calling Sequence for floating point complex number addition

A) trl fcxadd

A+l) (c)

A+2) (d)

A+3)-* Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: (a) ^ ACC: (ef)
X * 1 = X X *

ORG: (b) I QRG: (f)

5-72 IB59- 1N(I)

K x" = x - x '

2. Call ing Sequence for floating point complex number subtraction

A) tr l fcxsub

A+l) (c)

A+2) (d)

A+3)-« Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: (a) ^ ACC: (e)

ORG: (b) J ORG: (f)

3. Call ing Sequence for floating point complex number multiplication

A) tr l fcxmul

A+l) < cn

A+2) (d)

A+3)-* Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: (a) ") ACC: (e)")
(x (x" = x • :

ORG: (b) (ORG: (f) j

4. Call ing Sequence for floating point complex number division

A) tr l fcxdiv

A+l) (c)

A+2) (d)

A+3) -« Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions

ORG: (b)j ORG: (f) j

IB59- 1N(I) 5-73

Other Subroutines Required

Label Title

FLTPT1 Floating Point Arithmetic Operations

Error Halts
2 2 1. Attempted division by zero (c + d = 0).

2. Characteristic of floating point number too large during or
after an arithmetic operation, for either the real or imagin­
ary parts. This error halt is located in the floating point
operations subroutine (FLTPT1), which is used with this

routine.

Sense Flip-flops Used

None

Number of Storage Locations

104

"Common" Locations Used

11 (common +13 thru common +23)

Approximate Time

Average:

Addition: 2. 32 milliseconds
Subtraction: 2. 34 milliseconds
Multiplication: 5. 83 milliseconds
Division: 9. 68 milliseconds

E. Accuracy Information
-27 Average Error: 2
~26 Maximum Error: 2

5-74 IB59- 1N(I)

RESTRICTIONS:

1. Input numbers must be of such a size that the specified ari thmetic
operation produces a number, for each part , real and imaginary,

256 which is less than 2 in absolute value.

2. Division by zero (c and d both zero) must not be at tempted.

METHOD:

Notation:

Addition:

Subtraction:

Multiplication:

Division:

First Operand = X = a + bi

Second Operand = X' = c + di
Answer = X"= e + fi

e = a + c ; f = b + d

X' is replaced by -X' and floating point complex
addit ion is used.

e = ac - bd; f = be + ad

ac + bd „ be - ad e = — ; f =
2 ̂ A 2 c + d 2 j . A 2 c + d

Note: ac + bd and be - ad are computed by replacing d by -d and then
using part of the floating point complex multiplication.

REMARKS:

Note 1. See the writeup of "Floating Point Arithmetic Operations" for a
full description of the format of a "MOBIDIC floating point num­
ber".

IB59- 1N(I) 5-75

5 . 1 . 2 2 Fixed Point Polar-to-Cartesian Coordinate Conversion

Symbolic Label: PLCRT1

PURPOSE:

To compute fixed point binary fraction values for cartesian coordinates x

and y given polar coordinate 6 (expressed as radians or degrees) and r.

USAGE:

A. Preparation of Cards or Tapes

None

B. Input Format

la. 6 (degrees) - Fixed point binary mixed number (scale B-9)

lb. 9 (Radians) - Fixed point binary mixed number (scale B-3)

2. r - Fixed point Fraction (Scale BO)

C. Output Format

x and y as fixed point binary fractions (Scale BO)

D. Coding Information

la. Calling Sequence (9 input in degrees)

A) TRL PLCRTD

A + l) < N o r m a l R e t u r n

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: 9 (Scaled B-9) ACC: y (Scale BO)

ORG: r (Scaled BO) ORG: x (Scale BO)

l b . Calling Sequence (0 Input in Radians)

A) TRL PLCRTR

A+l) 4 Normal Return

5 - 7 6
IB59- 1N(I)

Entry and Exit Conditions

Entry Conditions Exit Conditions

ACC: 0 (Scaled B-3) ACC: y (Scaled BO)

ORG: r (Scaled BO) ORG: x (Scaled BO)

2. Other Subroutines Required

L a bel Title

SNCS1 Fixed Point Sine, Cosine

3. Error Halts

None

4. Sense Flip-flops Used

None

5. Number of Storage Locations

23

6. "Common" Locations Used

6 (common thru common +5)

7. Approximate Time

Average: 2. 86 mill isecond

Maximum: 3.13 mill isecond

E. Accuracy Information
_ O f *

Average Error: 2

M a x i m u m E r r o r : 2 ~ ^

RESTRICTIONS:

9 must be < 360° or 2n radians (See "Error Halts")

IB59-1N(I) 5-77

METHOD:

1. Compute Sine Q and Cosine

2. y = r Sine 0

3. x = r cosine 0

REMARKS:

None

- 7 8

5. 1.23 Title . Fixed Point Cartesian-to-Polar Coordinate Conversion

Symbolic Label: CRTPL1

PURPOSE :

To compute polar coordinates 0 and r/2, given fixed point cartesian coordinate
y and x; 0 is to be expressed in radians or degrees.

USAGE:

A- Preparation of Cards or Tapes

None

B. Input Format

y and x fixed point fractional numbers

C. Output Format

r / 2 a f i x e d p o i n t f r a c t i o n a l n u m b e r ; 0 e x p r e s s e d e i t h e r a s r a d i a n s s c a l e d
by 1/8, or as degrees scaled by 2 9 (binary point considered to be 9 places
from the left)

D. Coding Information

1 • Calling Sequence for to be expressed in radians

A) trl crtplr

A + 1) < Returns control here

Entry and Exit Conditions

Entry Conditions

ACC: y

Exit Conditions

ACC: 0/8 in radians

O R G : r / 2 ORG: x

Calling Sequence for 0 to be expressed in degrees

* A) trl crtpld

A + 1) <• Returns control here

IB59-1N(I) 5-79

1

1
Entry and Exit Conditions

«
Entry Conditions Exit Conditions •

ACC: y ACC: 2 0 in degrees •
(binary point consid- ™

ered to be 9 places n
from the left) I

ORG: x ORG: r/2 m

Other Subroutines Required 1

Label Title

SNCS1 Fixed Point Sine, Cosine

ARCTC1 Fixed Point Arctangent, Arcotangent 8

Error Halts •
None 1

Sense Flip-Flops Used |
None

Number of Storage Locations 1

46 •
"Common" Locations Used 1

10 (common thru common + 9) |
Approximate Time

m

Average: 3. 53 milliseconds 1
Maximum: 3.81 milliseconds

E. Accuracy Information 1
-35 Average Error: 2
-34 Maximum Error: 2 1

RESTRICTIONS: 1
None •

•
5-80

8
IB59- 1N(I) •

METHOD:

9 / 8 = l /8 arctany/x (radians), or

o-9 • 9 in degrees • (
180
512 ' V

= 1/2 1 X 1 if lx 1 IIV

= 1/2
Ieos0 1 if r 1 IIV

= 1/2 1 y 1 if i - I > Id = 1/2
Isinfi 1

if i - I > Id

if y = x = 0, 9 and r/2 are set to +0.

REMARKS:

The values of 6 are given as positive numbers from 0 to 2ir /8 in
-9 radians, or 0 to 2 • 360 degrees.

IB59- 1N(I) 5-81

5 ' 1 - 2 4 F l o a t i n g P o i n t P o l a r - t o - Cartesian Coordinate Conversion

Symbolic Label: FPLCT1

PURPOSE:

To compute cartesian coordinates y and x given floating point polar co­
ordinates 6 and r; d may be expressed in either radians or degrees.

USAGE:

A. Preparation of Cards or Tapes

None

B. Input Format

9 and r as MOBIDIC floating point numbers (not necessarily
normalized).

C. Output Format

x and y as normalized MOBIDIC floating point numbers.
D- Coding Information

l a - Calling Sequence (9 in Radians)

A) TRL FPLCTR

A+ 1) Normal Return

Entry Conditions Exit Conditions

ACC: 6 in Radians ACC- y

ORG: r

I k - Calling Sequence (6 in Degrees)

A) TRL FPECTD

A+ D Normal Return

ORG: x

5-82
IB59- 1N(I)

E.

Entry Conditions

ACC: 6 in Degrees

ORG: r

2. Other Subroutines Required

Symbolic Label

FSNCS1

UNFLT1

FLOAT1

3. Error Halts

None

4. Sense Flip-Flops Used

None

5. Number of Storage Locations

59

6. "Common" Locations Used

13 (Common thru common +12)

7. Approximate Time

Average: 6.51 milliseconds

Maximum: 6. 95 milliseconds

Accuracy Information

Maximum Error:

Average Error:

Exit Conditions

ACC: r

ORG: x

Title

Fixed Point Sine, Cosine

"Unfloat" Conversion
Routine

"Float" Conversion
Routine

IB59- 1N(I) 5-83

RESTRICTIONS:

The input number 8 must be less than N circles in absolute value for max
the result to have significant accuracy. N may be changed by the

18 max
programmer if desired. Its value is 2 circles as given in the Floating
Point Sine, Cosine Routine.

METHODS:

1. Compute sin 9 and cos 9

2 . y = r sin 6

3. x = r cos 6

REMARKS:

Note 1. See "Floating Point Arithmetic Operations" for a description of
"MOBIDIC Floating Point Numbers".

5-84 IB59- 1N(I)

5. 1. 25 Title: Floating Point Cartesian-to-Polar Coordinate Conversion

Symbolic Label: FCTPL1

PURPOSE:

To compute polar coordinates 0 and r, given floating point cartesian coordinates
y and x; 6 is to be expressed in radians or degrees.

A. Preparation of Cards or Tapes

None

B. Input Format

y and x MOBIDIC floating point numbers (not necessarily normalized)

C. Output Format

0 and r normalized MOBIDIC floating point numbers

D. Coding Information

1. Calling Sequence for 6 to be expressed in radians

A) trl fctplr
A + 1) < Returns control here

Entry and Exit Conditions

Entry Conditions Exit Conditions
ACC: y ACC: 6 in radians

ORG: x ORG: r

2. Calling Sequence for d to be expressed in degrees

USAGE:

A) trl fctpld
A + 1) < Returns control here

Entry and Exit Conditions

Entry Conditions

ACC: y

ORG:: x
ACC: 6 in degrees
ORG: r

Exit Conditions

IB59- 1N(I) 5-85

Other Subroutines Required

Label Title

CRTPL1 Fixed Point Cartesian-to-Polar Coordinate
Conversion

^ Eixed Point Arctangent, Arccotangent
SNCS1 Fixed Point Sine-cosine
UNFLT1 "Unfloat" Conversion Routine
FLOAT 1 "Float" Conversion Routine

Error Halts

None

Sense Flip-Flops Used

None

Number of Storage Locations

59

"Common" Locations Used

17 (Common thru Common + 16)

Approximate Time

Average: 5. 15 milliseconds
Maximum: 5. 60 milliseconds

E- Accuracy Information

Average Error: 2~27

Maximum Error: 2~26

RESTRICTIONS:

x and y must not be so large that r is greater than the largest possible
MOBIDIC floating point number which can be represented; that is, r must
be less than 2 . If r is too large, an error halt will occur in the "Float"
conversion routine.

5-86
IB59- 1N(I)

METHOD:

1) Y and x are unfloated. The fract ional part of the smaller of these is

scaled by the difference of the exponents. The exponent of the larger ,

increased by one, becomes the exponent for "float ing1 1 r in step 3.

2) The f ixed point cartesian-to-polar routine is used to f ind 6 and r02.

3) These are "floated" to produce normalized MOBIDIC f loat ing point
numbers for 9 and r .

4) I f y = x = 0 , a n s w e r s o f 9 f o r b o t h 9 and r are given.

REMARKS:

See the wri teup of "Floating Point Ari thmetic Operat ions" for a ful l

descript ion of the format of a "MOBIDIC float ing point number".

IB59-1N(I)

SECTION VI

INPUT ROUTINE WITH FORMAT CONTROL

6 . 1 M O B I D I C I N P U T P R O G R A M

Symbolic Label: MIP1

PURPOSE :

To select designated alphanumeric information from paper tape, in either
Fieldata or Baudot code, convert i t to binary, as indicated, and place it in
core storage.

USAGE:

Two classes of information are possible; alphanumeric (ti t les) and decimal
data.

A. Alphanumeric

A sequence of alphanumeric characters is called a ti t le subfield which
must begin and end with a lower case apostrophe.

B. Data

Decimal data may be represented in one of five acceptable forms.
Depending on the form, the data word will be converted to either fixed
or floating point and stored in the specified number memory location.
Plus (+) and minus (-) signs are used to specify the sign. If no sign
appears, the number is assumed to be positive.

Decimal data subfields must be ended by either a tab or a carriage
return. Only one character (i .e. , tab or carriage return) may appear
between subfields. If more than one character appears the second of
these characters will be regarded as the first character of the following
subfield. Similarly, if the very first character on the tape is a carriage
return, it will result in an error since MIP will expect an apostrophe
if a t i t le is called for, or an upper case, or numeric if decimal data
is called for. "

IB59- 1N(I)
6 - 1

t

j

"When a plus (+) or minus (-) sign is used in the input or in the calling
sequence, it must be preceded by an upper case and followed by a
lower case. If the upper case is omitted the sign will be regarded as
an illegal character; if the lower case is omitted, the next character
will be regarded as an illegal character since it will be still in upper
case."

1. Fixed Point

a. Fraction:

Any number without a digit preceding the decimal point.

Example: .3245

This number is converted to a fixed point binary quantity with
the binary point at the left of the word.

b. Integer:

A series of digits with no decimal point and no "e" or "b"
characters.

Example: -3245

This number is converted to a binary integer with the binary
point at the right of the word.

c. Scaled Number:

Any number with or without a decimal followed by the character
"b" and an integer called the binary scale factor.

Example: . 3245b-3 Would produce the binary
equivalent of this fraction with 3
leading binary zeros.

This number is converted to a fixed point binary quantity. The
binary scale factor specifies the implied number of places
between the left of the storage cell and the binary point of this
particular number.

6 - 2 IB59- 1N(I)

2. Floating Point

a. Any number with digits before a decimal point and no "b".

Example: -29.5, 0.3245, 945,

Each number is converted to binary floating point. Note that
the non-significant zero must appear. If the zero were omitted,
the number . 3245 would be converted to a fixed point binary
quantity.

b. A number which contains a decimal point and is followed by the
character "e" and a positive or negative integer.

Example: 32.45e-2, - 0.3245e8

The number following the "e" is the decimal exponent used in
conversion to binary floating point.

Two methods for reading data into memory from paper tape are available:

A. Consecutive

1. BCONS (Input in Baudot Code)

2. FCONS (Input in Fieldata Code)

B. Single

1. BSING (Input in Baudot Code)

2. FSING (Input in Fieldata Code)

CONTROL SPECIFICATIONS:

A. Consecutive

k) tru fcons or bcons
dec a, b
alf Cv C„, . . . ;
hUy,1

hlt yb

IB59- 1N(I) 6-3

1
1

a = Number of times a field is repeated.
|H|

A field is the sum of all the words in a specified number of sub- |1
fields on paper tape, each subfield being composed of either title
words or data words. I

N
. • . Field = £ (C.) |

i= 1 ™

A file = specified number (namely "a") of fields
H

b = Number of storage areas
C. - Number of words in each subfield b

If "C" is negative, "C" words are skipped and not trans- 1
ferred to memory

If b > 1, then for every positive "c" there must be a •
corresponding !Sy" _

If subfield is title information, Cb = t; (i.e., FIELDATA
31) B

y^ = Starting location of each storage area I

B. Single •

k) tru fsing or bsing
dec a, b
alf Cy C2, • • * Cb; d; •
hit yx a

h l t

a = Number of fields
•

b = Number of storage areas
= Designated data words in each subfield which are to be stored

•
d = Length of a field
y^ = Starting location of each storage area

•1

6 - 4

1
IB59-1NO). -

Return to the main program will be executed when either the total
number of words read in equals the number of words in the file or if
a stop code on tape is encountered.

EXAMPLES:

Example 1: k) tru fcons
dec 1,3

alf 1
45, 15, 50;

hit xval
hit yval
hit zval

OCTAL
+ 40 0 0000 03726
+ 000000 000001
+ 000000 000003

+ 646556616556
+ 656073000000
+ 00 0 0000 06000
+ 00 0 0000 06100
+ 00 0 0000 06200

xval def 6000
yval def 6100
zval def 6200

The first 45 numbers are converted as indicated and stored
in memory cells "xval" to "xval + 44", the next 15 to into
"yval" to "yval + 14" and the following 50 go into "zval" to
"zval + 49".

Since a = 1, this pattern is not repeated and control is re­
turned to the main program at A + 1; thus, a total of 110
words have been read.

IB59- 1N(I) 6-5

Example 2:

Example 4:

k)
bcons

k)

The first sequence of alphanumeric information, includ-
ing the beginning and ending apostrophes, is stored in
memory starting at location hdgl. The following 25
data words go into "v" to "v + 24"; the next set of title
words go into "hdg2" and the next 15 numbers into "w"
to "w + 14".

Since a = 1, a total of 2 alphanumeric sequence and 40
words have been read into memory.

r,
Example 3: k) tru

bcons

fcons
dec i, 1
alf 50, - 25, 30;
hit w

The first 50 data words are stored in "w" to "w + 49".
The next 25 are skipped over and the final 30 words in
the field of 105 are stored in " w + 50" to "w + 70".

Since a = 1, a total of 105 numbers have been examined,

bcons

6 - 6 IB59- 1N(I)

The first 25 words are stored in "v" to "v + 24"; the
next 10 words are skipped over, the next 15 words are
stored in "w" to "w + 14".

Since a = 3, this cycle is repeated two more times so
that the area "v" to "v + 74" contains 75 data words
stored consecutively and area "w" to "w + 44" contains
45 words. The length of the fi le is 150.

I fsing
dec 15, 1
alf 1, 3, 5; 10;
hit w

The first , third, and fifth words are stored consecu­
tively in "w" to "w + 2". The eleventh, thirteenth,
and fifteenth words are stored in "w* + 3" to "w + 5".
This pattern is repeated 15 times until 45 words have
been selected from a file of 150, converted and stored
starting in memory position "w".

I fsing
dec 5, 3
alf 1, 2, 3; 3;
hit u
hit v
hit w

The first word is stored in "u", the second in "v", and
the third in "w". This pattern is repeated with the
fourth word in "u + 1", the fifth in "v + 1", the sixth
in w + 1 , etc. , until each of the three memory areas
contains 5 data words.

bsing
Example 5: k) tru

bsing
Example 6: k) tru

IB59-1NU) 6-7

CODING INFORMATION:

Calling Sequence

A) TRL K

A+l) Returns control here

K) TRU BSING
or

BCONS
or

FSING
or

FCONS
Where: BSING = Baudot input,

single mode
BCONS = Baudot input,

consec. mode

FSING = Fieldata input,
single mode

FCONS = Fieldata input,
consec. mode

Entry and Exit Conditions

None

Sense Flip-Flops Used

13, 14, 15, 16

Number of Storage Locations

72

"COMMON" Locations Used

91

Approximate Time

Maximum: < 3 milliseconds per character

Accuracy Information

Integer to integer Exact

6 - 8
IB59- 1N(I)

Fraction

Scaled I 10 decimal places (not rounded)
Floating \

If a stop code is read before the tab or carriage return of the last data
subfield is read an exit from MIP1 will occur immediately, the remaining
subfields will not be processed, and the current subfield will be lost. Two
stop codes are recommended in this case, since before the first stop code
has been detected by the program, the second stop code will have been
read. If some character (preferably a stop code) does not follow the first
stop code, the paper tape reader will read off the end of the paper tape
looking for another character to read. "

ERROR HALTS: (See LOCATION OF ERROR STOPS, below)

1. If any upper case digit or character other than + or - is encountered
unless i t is Baudot input.

2. If there are fewer words on tape than called for and no stop code.

3. If the beginning or ending ti t le marks are omitted.

4. If any character in data subfield other than upper and lower case, e,
b. • » + , -> or one of the digits 0-9 is encountered.

RESTRICTIONS:

1. Ten decimal places are allowed on fraction, scaled fixed point num­
bers, and floating point numbers.

O

2. Maximum integer allowed is 2 - 1.

3. Maximum range of floating point numbers is 0 to 10~7 6 to 107 6 .

4. At present the program allows for 27 subfields. If a capacity for
more than this is desired, an internal table would have to be
lengthened.

IB59- IN (I) 6-9

METHOD:

The decimal data is inspected character by character.

1. The sign is stored as a word of zeros with a plus or minus sign. It
it automatically set to plus before each field is begun.

2. The digits are converted to binary as they occur and the current
value of the digits is stored in binary in a word (TEMP) originally
set to plus zero.

3. The decimal point sets up a counter which will be stepped by one for
each succeeding digit. The program contains a symbolic location
called SWITCH which will transfer control to an appropriate subrou­
tine when a terminating character (tab or carriage return) is encoun­
tered. A decimal point will cause the setting of SWITCH for transfer
to a floating point conversion if a digit has occurred before the decimal
point. If no digit has occurred before the decimal point SWITCH will
be set for transfer to a fraction routine.

4. When a b or e is encountered, the decimal to binary routine is altered
in such a way that succeeding digits will be converted and stored in a
word (BN or EXP) which is set to zero at this point. The decimal
place counter is turned off and SWITCH is further set to handle a
scaled or floating point number.

The actions described above are independent of any prior action. There­
fore, a decimal point following a "b" will have the same action as it would
prior to the b. A b following an e will likewise be unaffected by the e
(SWITCH will be reset accordingly, however). Prior to passing through
SWITCH the program subtracts the decimal place count from EXP and
places the difference in the decimal place count. Therefore, the following
is possible, but not recommended;

.116 elb-3

6 - 1 0
IB59- 1N(I)

This would yield the same result as;

1.116 b-.03 (recommended)

or

116 b-.03

The result would be an octal word in core of: +164000 00000

It is quite possible to scale a number completely out of the machine. If
TEMP is zero when a terminating character is encountered, zero is stored
regardless of BN, EXP, or the decimal place counter. Therefore, when

-b-3e.4

is encountered, the program will disregard BN, EXP and the decimal
place counter, and will store a minus zero in the appropriate location.

The ALF pseudo-op now has a different form in MAP (see present MAP
writeup in this manual). Therefore all calling sequences should be written
as follows:

k) tru fcons or bcons
dec a,b
alf 1

C1,C2, • • • ;
hit y :

hlt yb

LOCATION OF ERROR STOPS:

Contents of Instruction Register

HLT 1 Illegal input-look at last word stored to determine illegal word.
HLT 2 Error in Calling Sequence. Il legal character in Q-Register,

and location of i l legal word in accumulator.
HLT 3 Exponent in floating number is too large.
HLT 4 Characteristic in floating number is too large.

IB59- IN (I) 6 - 1 1

Binary Format Table

g Field Count

No. of sub­
groups

No. of words in
subfield

"S" Tabs
No. of carriage
returns at end of

subgroup
1
e
r
m

No. of deci­
mal places

No. of words in
subgroup

etc.

n/(if any)

n /

Subfield 1

Subgroup 1

Subgroup N

end of subfield

Title subfield

Note: "Subfields" are separated by semicolons. A "subgroup" is
any particular mode specification. There may be many of
these in a subfield.

6 - 1 2 IB59- 1N(I)

SECTION VII

OUTPUT ROUTINE WITH FORMAT CONTROL

7 . 1 M O B I D I C O U T P U T P R O G R A M

Symbolic Label: MOP1

PURPOSE :

To select designated words from storage, convert them to decimal, if
needed, according to the mode specified, and transmit the results to paper tape
in either Baudot or Fieldata code.

USAGE:

Information to be processed is treated as either title information or dec­
imal data. Any number of title and/or data subfields may be printed by one
application of the subroutine.

A. Title

The title subfield is printed out exactly as it appears in the designated
memory area providing the first character is a Fieldata lower case
apostrophe. Successive 6-bit characters are printed until a second
apostrophe is encountered, the printing of which signifies the end of
title.

B. Decimal Data

Each data word is converted according to one of the four following
mode specifications:

1. i : Binary integer to decimal integer

2. r : Binary fraction to decimal fraction '

3. e : Binary floating point to decimal floating point

4. m : Binary floating point to mixed decimal

IB59- 1N(I) 7-1

The digit direction following each mode specification (except 1)

signifies the desired number of digits to be printed to the right of the

decimal point. If more than one word is to be converted m the same

fashion, a word count must precede the mode specification.

CONTROL AND FORMAT SPECIFICATIONS:

k) tru outf (Fieldata code) or outb (Baudot code)

dec a

alf ^2' ^3' " ' ' ̂ i'

alf (Subfield Formats); g;

hit y1

hit yi

a = Number of times the field is repeated

A field is the sum of all the words in the specified number of

subfields in memory, each subfield being composed of either

title words or data words.

Field

C s Number of words in each subfield (if data) or the letter t
i

(if title).

y. = Starting location of each memory area. For every C. there

must be a corresponding y„

g = The number of carriage returns that will be executed after a

file has been printed.

NOTE: If g = 0, there must be two (2) semicolons at the end of the subiield
format. A file = specified number (namely a) of fields.

7 - 2
IB59- 1N(I)

SUBFIELD FORMATS:

Each data subfield format contains one or more line formats and the
different mode specifications in a line format are separated by commas.

Example: A typical line format
le4, 2r3, li, 2m2
would give a line which might look like

4075e-3 .055 -.67 25 29.25 1326.17

The end of each line format may be ended by one or more slashes, indi­
cating carriage returns.

A semicolon indicates the end of a subfield format. If all the words of a
subfield have not been printed by one application of a subfield format the format
is repeated until the subfield is exhausted.

A. Carriage Returns

A slash anywhere in the format produces a single carriage return.
Therefore, a double slash ;would cause one line to be skipped.

If Cj = t, indicating title information, the subfield format is merely
n/j. Thus 11 n" carriage returns will be executed after the last line
of the title is printed.

If specifies a data subfield, then the number of carriage returns
following the printing of the subfield is indicated at the end of the sub-
field format by n/;, A comma must separate the last line format
from the carriage return indication.

Example: A format of alf t, 9
alf 2/;3r4/,3/;

would give
'x y z1

.3652 .6348 .0054

.4225 .5775 .1162

.7335 .2665 .3110
followed by four carriage returns (one supplied by the end of line
format and 3 more supplied by the end of subfield indication).

IB59- 1N(I) 7-3

If any carriage return specification is omitted; succeeding words will
be printed on the same line. If the subroutine is called on to print
more than eight data words per line, it will execute one carriage
return automatically after printing the eighth word. Any overflow
will be printed starting at column 1 of the next line.

B. Column Control

The column width is manually set on the Flexowriter at 15 character
intervals thus limiting the output to a maximum of eight data words
per line. The first character in each data word is printed in position
1 of each column. Immediately after the printing of the last character
a tab is executed. In order to indent or to skip over one or more
columns, the letter s is introduced preceded by the counter n.

Example; A typical output format alf t, 12;
alf 2/; 3r4, l.//2slr4, 1.//;

would produce a printout which might look like
'x y z Case1

.0325 .4675 -.3960 1
.0053 2

.0495 .3662 .0004 3
-.1532 4

GENERAL REMARKS:

The number of words in the subfield need not be an integral multiple of
the words in a field.

More than one data subfield may be printed on the same line. This is
accomplished by omitting the slash character in all the formats except that of
the last subfield to be printed on the line. (See Example 3).

7-4 IB59- 1N(I)

EXAMPLES:

Example 1: k) tru outf
dec 1
alf t, 50
alf 2/; 3r2/2r2/;
hit hdgl
hit v hit

The above will produce as many lines of alphanumeric characters as are
necessary to print the entire title field contained in memory area "hdgl", two
carriage returns followed by the data (3 fixed point values on one line, 2 fixed
point values on the second line, etc., repeated ten times because the subfield has
50 words).

Example 2: k) trl outf

The above will give the title field printed exactly as it appears in memory,
3 carriage returns, five lines (single spaced) composed of 4 floating point numbers
and 1 integer, three carriage returns, title field, 5 carriage returns, 3 lines of
3 fixed point numbers with a tenth number alone on the fourth line. Five carriage
returns (1 supplied by the line format plus 4 extras) will be provided after the
tenth word from area "v" has been printed. Since "a" = 2, this entire output
pattern would now be repeated with the same title headings but data from storage
areas "u + 25 to u + 49 and v + 10 to v + 19".

dec 2
alf t, 25, t, 10;
alf 3/; 4e3, li/, 2/; 5/; 3r4/; 4/;
hit hdgl
hit u
hit hdg 2
hit v hit

hit

IB59- 1N(I) 7-5

Example 3: k) tru outf
dec 5
alf 1, 1, lj
alf lr3j lr3; Ir3/j3/j
hit xval
hit yval
hit zval

Since the slash is omitted in the first two data subfield formats and the
subfield length in each case is 1, each line will contain three fixed point values
(one from each of the memory areas - xval, yval, and zval). This pattern will be
repeated four more times (single spaced). The 15 word file (composed of 5 three-
word fields) will be followed by four carriage returns (one at the end of the fifth
line plus three more specified by "g" s 3/).

CODING INFORMATION:

Calling Sequence

Entry and Exit Conditions

None

Sense Flip-Flops Used

16, 15, 14, 13

Number of Storage Locations

8 2 1

"COMMON" Locations Used

2 0 1

A) TRL K K) TRU
tf

Out B s Baudot output desired
Out F = Fieldata output desired

A+l) < Returns control here

outb

7-6 IB59-1N(I)

Approximate Time

Maximum: Can process full buffer before alternate buffer is completely
written. In effect, the program is "tape bound".

Accuracy Information

1. Average Error: Integer to integer => exact

2. Maximum Error: Fraction to fraction => accurate to "nth" decimal
place (unrounded) where "n" is the number of
decimal places specified by the programmer.

Floating to floating => same as fraction to fraction
Binary to mixed decimal => same as fraction to
fraction.

ERROR HALTS: (See Location of Error Stops Below)

If the first character in the title subfield is not a Fieldata apostrophe

NOTE: If an illegitimate mode is specified, the designated word in
memory will be converted to an integer with an identifying
marker accompanying its print out. The routine will not stop.
The identifying marker will be an "i" immediately preceding
the number. There are error halts if any character is
encountered other than those referred to, viz: i, e, r, m, digits,
+, -, s, /, and decimal points. Of course, any character is
allowed in a title field, provided that apostrophes are present
in the correct places.

RESTRICTIONS:

If "M" conversion is specified and the binary number is > 68, 719, 476, 375
it is converted to floating decimal.

METHOD:

Subfield counts and formats are scanned and a binary format table is set up
to be used for control throughout the program.

IB59- 1N(I) 7-7

ON Conversions:

a. Binary Integer to Decimal Integer: successive division by 10,
saving the remainder each time as a progressively more signi­

ficant digit.

b. Binary Fraction to Decimal Fraction: successive multiplications
by 10, saving the integer part of the answer as a progressively

less significant digit.

c. Binary Floating to Decimal Floating: a polynomial approximation

is used.

d. Binary Floating to Mixed Decimal: previously described integer

and fractional conversions are used.

LOCATION OF ERROR STOPS:

Contents of Instruction Register

HLT 5 Illegal mode or error in Calling Sequence

REMARKS

On Baudot Output: carriage returns are followed by line feeds, and since
there is no teletype equivalent for a "Tab", the
appropriate number of spaces is provided. An upper
case is provided before title fields as a precautionary

measure.

NOTE: Presently the program is set up to handle as much format as
can be specified in 56 characters. If more characters are to
be handled, the binary format table would have to be length­
ened. Leading zeros are omitted on fixed point conversions.
On integer to integer conversion, the least significant digit is
printed in the 12th column of the field. On other conversions,

spaces are not provided for leading zeros.

7-8 IB59- 1N(I)

SECTION VIII

GENERALIZED DATA HANDLING ROUTINES

It is characteristic of data processing work that much of it involves the
need for establishing and updating master files. These files contain information
about a large number of individuals or items. The files are processed by sorting
and merging with subsidiary files according to some control or key fields provided
in each item. Frequently, files are generated according to artificial or fictitious
keys> a.s in the case of program assemblies. Yet, it is a well-established fact
that the majority of work done with such files, both in terms of number of items
processed and time spent on such processing requires sorting and merging.

The generalized data handling routines provided with the Minimal Program-
ming Aids are capable of sorting one input tape file or of merging several tapes
into one string or of generating routines to handle a large variety of sorts and
merges.

8. 1 MOBIDIC SORT ROUTINE

Symbolic Label: SORT1

PURPOSE:

To sequence a file of fixed size items relative to a given amount of infor­
mation contained in each item (called the control field). This program is designed
to work on the basic machine. It will accept a maximum of one full reel (3600
feet) of magnetic tape input formed in the Hi-Reliability Mode and produce one
fully sequenced and labeled standard tape in the Hi-Reliability mode. (See write-
up entitled SPECIFICATIONS FOR STANDARD FIELDATA TAPES - revised 31
July 1959.)

This program may also be used for sorting multi-reel files by the use of
several additional merge passes.

IB59-1N(I)
8 - 1

USAGE:

A. Preparation of Cards or Tapes

An input parameter tape must be used to give the necessary control infor­
mation to the sort program.

The parameter tape requesting either a pure merge or sort or rerun
shall be punched with the following lables and parameters. Each para­
meter will be followed immediately, and terminated by, a carriage return.
This first parameter is preceded by a carriage return.

Parameter Question or
Number Statement

1* Is this a Sort or
Merge or Rerun?

2 No. of Input
reels

3 Today's Date (i. e. ,
date of output
reel)

4 Name of file

5 Number of file

6 Format of file

7** Error checking desired?

Number of
Characters Allowable

Required Choice

5 mergl, sortl, rernl

3 Xrl where X = 1, 2

9 Standard date/time
group

18 Exactly as it ap­
pears in File spec
block

4 Exactly as it ap­
pears in File spec
plus a period

3 rel - high reliability
rex - relaxed

6 fullck
ignore
ncxxxx

" If a rerun is required, parameter No. 1 is followed by a stop code.

There are three sum checking modes. They are: full check (fullck) which
sum checks the input blocks on their block hash total and reforms the block
hash on the output data; ignore check (ignore) which designates that no sum-
checking on the block hash is to be performed; and new check (ncxxxx) which
checks the block hash, and the sumcheck word for the file and recomputes the
sum check on the output tape using word xxx of each item. Results are carried
in the trailer block.

8 - 2 IB59 -1N(I)

Parameter Question or
Number Statement

8 Number of allowable
errors

9 Security classifica­
tion

10 File password

11 Installation Code

12 Output File name

13 Output File number

14 Number of Keys

15 Redundancy necessary for
compatibility with general
sort parameter tape format

T 16 Key and word in item
17^ mask
18 Stop Code

Number of
Characters

Required

6

6

6

18

Allowable
Choice

6

2

10
1 2

1

xxe

Same as file spec
block
Same as file spec
block

Same as file spec
block
As you wish them
to appear in the
output file spec
block

As you wish them
to appear in the
output file spec
block plus a period
xxkeys where xx ±
08
00

xxkywdzzzz
12 octal digits
Stop Code

T These parameters are repeated for each key.

IB59- 1N(I) 8 -

Sample Parameter Tape

1
1
•

sortl We are to start by sorting and dispersing ®

2r 1 We have two input reels s

26062305e The days date in standard date/time group 1

payroll a The file name

001. The file number

rel The input has high reliability format
MM

nc0241 We desire to sumcheck word 241 in the output
file "

03e We will allow 3 errors before stopping sort _

secret The security classification is secret •

xbaker the password is XBAKER

washdc The installation code is Washington D. C.

sorted payclass a The output file name

001. The output file number

04keys The total number of keys is four

00 redundant characters

01kywd0240 The first key is contained in word 240

773000000000 bits 36-31, 29, 28 are to be used a

02kywd0 111 The second key is contained in word 111 •

000000000077 bits 6-1 are to be used _
03kywd0002 The third key is contained in word 2

77000000000077 bits 36-31, 6-1 are to be used

04kywd0100 The last key is contained in word 100 ifj

7600000000007 bits 36-32, 3-1 are to be used

(stop code) 1
B. Input Format 1
The input is composed of a

•
file of items formed in the Hi-Reliability mode on

magnetic tape. 1
1

8-4

1
IB59 -1N(I) •

C. Output Format

JtTrTT,1 13 COmPOSed °f a tape file containing a fully sequenced and labeled
F O R q m a ape in the Hl"Reliabllity mode. (See writeup entitled SPECIFICATION
FOR STANDARD FIELDATA TAPES - revised 31 July 1959.)

Error Halts

ta case °f error, a message of the form ERRNN is printed on the Plexowriter
where NN is the error number.

01 Unreadable Parameter Tape
02 Unreadable Tape Specification Block
03 Unreadable File Specification Block
04 Format Error in Parameter Tape
0 5 Unmatching Password
06 Unmatching Security Code
07 Unmatching File Name
08 Unmatching File Number

09 Number of Errors is greater than the number of allowable errors
10 Machine Error or Possible Bug in Program
11 Partial Item In Block (i. e.. item split across blocks)
12 When the number of allowable errors - n •*

the trailer is unequal to the'res^tTve conS'utedUTs" bl°Ck ^ *

13 Unmatching Trailer Checksum and the number of Allowable Errors = 0
Over maximum number of data blocks

Sense Flip-Flops Used

1-16 They must be in the "neutral" position on the console.

Number of Storage Locations

The first phase program is 2500 orders The second nhoao ine sec°nd phase program is 1500

^8192 thG reSt ^ th6 18 US6d f°r bufferinS- This means na. 8192 storage locations are used.

IB59-1N(I)
8-5

Sort 1

APPROXIMATE TIMING FORMULA

NT

N.
1

W.

w B
N* B
T
K

No. of blocks

No. of items

words per item

words per block

No. blocks optimumly packed

time in microseconds
Intermediate merge phases

Sort and Dispersal Phase

T = 1. 1 UO6 + 9. 103 + N.I + H7w. + 176 1) W. 1

+ 890 {+Ng |244wB + 7. 21- 10'

Log f 1500
2 I w. ,

First Merge Pass

T = 2. 2 |l44 Jl25 + N. • W.J 13. 2 • 103 |nb + 2

Intermediate Merge Passes

T = 2. 2 144 jl25 + N, • W. l l + 13. 2 • 10' [Nis+ 2]
K = Log2

Ni
3000

wi
- 2

(Where bracketed quantities are rounded down to integers)
where K is rounded upward to the nearest integer

Collection Pass

T = Ni 240 • W. + 800j + Ng |86WB + 6.6-. 103 + 128 j + 34. 2

8 - 6

RESTRICTIONS:

1. The input file must be contained on one tape reel and must be in the Hi-
Reliability format.

2. Fixed size items only.

3. No item may exceed 510 words.

4. Words containing control information must be positive.

5. Total control field size less than or equal to eight (8) words.

6. No item may be "split" across tape blocks.

7. 81.92 words of core must be available to SORT1.

8. At least six (6) tape units and two (2) converters must be available.

METHODS AND DESCRIPTION OF SORT1

a) Reads itself into memory and transfers control to the starting line.

b) *Reads in the Specification block, and checks for labels, picks up item
size, etc. initializes itself.

c) vReads and checks the parameter tape, generates the coding necessary to
set up the control field, performs label matching, and in case of incon­
sistency makes a descriptive error printout. Otherwise goes to (d).

d) ''-Starts the main read-in of the items to be sorted, strips their control
field, placing it at the beginning of the item (without increasing size or
item), and sets up an address table containing the address of each item.

e) *Sorts the address table by insertion.

f) * Disperses sorted items to an output area.

g) *Writes out the string of items in the output area.

h) Tests for converter error on new data that has been read in; if none
returns to (d), otherwise continues to (i).

i) A subroutine^ re-read is performed three times. If after three reads the
data is still in error, it will be labeled and entered on the reject tape. The
next block will be read and control passes to (d).

*It should be noted here that those macro steps marked by an asterisk are performed
with either partial or full overlapping.

IB59 -1N(I) 8-7

j). Upon completion of (a-i) which is called the sort-augment-dispersal
phase, the output tapes will contain a number of strings of sorted items.
The trailer block item counts, etc. , are checked at this time, and if
there is no discrepancy, control now passes to the merging phase (k).
This merging phase is part of the MOBIDIC Merge (MERG1) routine
which is automatically called in by the completion of the sort phase.

k) The merging phase will read in strings, using the Von Neuman method
to produce longer and longer strings. This phase may consist of
several passes; however, at the end of some pass the output tapes will
contain no more than one string each. At this time the final phase is
entered.

1) The final phase of MERG1 is a single tape pass consisting of merging
the final strings together into one output tape. This output tape will
have as its header blocks the updated tape and file specification blocks
which may, at the option of the operator, be printed out on the Flexo-
writer. It is during this pass that each item is reorganized into its
original form and the Trailer block updated and written.

0. . = The i*k string of the data. It is on tape j.
U J

After each merge pass the number of strings is at least halved. At "END
SORT" the output may be either on Tape 3 or Tape 5. It is shown for illus­

trative purposes as Tg.

For a rerun the two input reels are always mounted on reels 5 and 6, irre­
spective of which units they were on when the merge was interrupted.

If only six tape units are available, tape unit 3 (Tg) cannot be dialed in during
the sort phase. At receipt of the message "ENDSRT" on the Flexowriter, a
blank tape must be mounted instead of the input tape and this unit must be
dialed as tape unit 3 (Tg).

- 8 IB59-1NQ)

TAPE LAYOUT (BASIC)

Tx T2 T3 T4 T5 T6 T?

START SORT INPUT BLANK BLANK BLANK BLANK BLANK
PROG.

SORT & RE
DISPERSAL
PHASE

RUN

'

1 1
ei,5 *2,6
63,5 04;6 RE

A.SE
1
JECTS

SOI
PR

&
END PHASE 1 RE

RT RE
OG. INI

RUN

WOUND
3UT

01,5 02,6

6i, 5 Vl, 6 ,

START PHASE 2 MC
BL

UNT
ANK

1

01,5 02,6

0i,5 0i-l,6 1

MERGE PASS SOI
PHASE 1 PR<

&

' 9 , Q 0 1 A A 1, 3 1, 4 1/4
RT : : :
3G* ei/2J3 etl2,3 ®i/ 2,3

PHASE
2

, REJECTS

ME
PASS RE

2

RGE
RUN

1

01,5 ®1;6

Si/4,5 0i/4,5

6 1 , 3 °1,4 ®1,4

e i / 8 , 3 ® i / 8 , 3 6 i l 8 , 3 (

END PHASE 2

1

PHASE 1,2
0i/i, 5 0i/i, 5 REJECTS

START PHASE 3 1 . , . - '
COLLECTION
PASS

SPEC
6 FINAL
TRAILER

1 1 1 f 1 '

END SORT RE-
WOI UND

REWOUND
RE- RE- RE- RE- REJECTS
WOUND WOUND WOUND WOUND

IB59- 1N(I) 8-9

SORT1 - FLOW CHARTS

Sort & Dispersal Phase

In the ensuing pages of f low charts, numbers with superscripted

asterisks refer to the following notes:

1* Error stops will cause the message number indicated in the rectangle

to be printed on the Flexowriter.

The only restart procedure available to the operator is to begin over

again.

2* The following are the program parameters:

a. Number, word posit ion, and masks of the keys (from parameters)

b. Maximum number of data blocks (from spec block or parameters)

c. End Of File and End Of Tape indicators (from spec block)

d. I tem size (from spec block)

e. I tem type (from spec block)

f . Sumchecking mode (from spec block)

g. String size = quanti ty of i tems that are contained in the maximum
number of complete input blocks that can fi t into the data storage
area (computed from information on the data tape)

h. Interrupt sign mode for data input (spec block)

3* While the f irst str ing is being generated, no tape writ ing occurs.
Also the posit ion in the data storage for the incoming i tems is assigned
in sequential order instead of from locations contained in the address

table.

4* The address table contains the addresses of the i tems that are contained
in the data storage area. The addresses are arranged in ascending
order of magnitude of the i tems. Thus when an i tem is inserted in
i ts proper order only the address table needs to be rearranged rather
than the entire data storage area.

8 - 1 0 IB59 -1N(I)

5 • The last block of the file may have fewer items than the preceding
blocks.

6* This test is a function of the number of items per block. The output
blocking is the same as the input blocking.

7 • This test is made on cumulative hash totals and block counts if they are
present in the trailer block.

IB59 -1N(I) 8 - 1 1

Insert Routine

The following symbols appear in the flow chart of the Insert Routine:

Argument: The i tem currently being processed.

The item, whose address is already in the Address Table, with
which we are currently matching the Argument.

Upper bound of the Address Table (this is fixed).

The current lower bound of the Address Table (this is decreased
by 1 after each item's address is inserted).

The position in the Address Table that contains the address of
an i tem that is equal to or greater than the Argument.

The position in the Address Table that contains the address of
an i tem that is equal to or less than the Argument.

Index register 2.

Current median value of table.

Entry:

U:

L:

TOP:

BOT:

12:

M:

8 - 1 2
IB59- 1N(I)

8. 2 MOBIDIC MERGE ROUTINE

Symbolic Label: MERG1

PURPOSE:

To merge two (2) f i les of i tems formed in the Hi-Reliabil i ty mode and composed of
internally sequenced tape blocks. Each fi le must be contained on not more than one
(1) rull reel (3600 f t .) of magnetic tape.

USAGE:

A. Preparation of Cards or Tapes

An input parameter tape must be used to give the necessary control information
to the MERGE program.

The parameter tape requesting a merge shall
labels and parameters. Each parameter will
terminated by, a carriage return.

Parameter
Number

1

2

3

4 *

5 *

6

7 **

8

9

Question or
Statement

This is a Merge

No. of input reels

Today's date

Name of f i le

Number of f i le

Format of f i le

Error checking desired?

Number of al lowable errors

Security classification

Number of
Characters
Required

5

3

9

18

3

6

3

6

be punched with the following
be followed immediately, and

Allowable
Choices

mergl

2rl

Standard date/ t ime group

Exactly as i t appears in File
spec block

Exactly as it appears in File
spec block plus a period

rel-high reliabil i ty

fullck, ignore, ncxxx

xx e

Same as fi le spec block

IB59- 1N(I) 8-13

Parameter Question or
Number Statement

Number of
Characters
Required

Allowable
Choices

10 Password

11 Installation Code

12 Output File name

13 Output File number

6

6

18

14

15

161

171

18

Number of Keys

For compatibility with sort
generator format

Key and word in item

mask

stop code

6

2

10

1 2

1

Password

Same as file spec block

As you wish them to appear
in the output file spec block

As you wish them to appear
in the output file spec block
plus a period

xxkeys where xx = 00-08

00

xxkydzzzz

12 octal digits

stop code

T -

These labels are repeated for each input file

There are three sum checking modes. They are: full check (fullck) which
sum checks the input blocks on their block hash total and reforms the block
hash on the output data; ignore check (ignore) which designates that no sum-
checking on the block hash is to be performed; and new check (ncxxxx) which
checks the block hash, and the sumcheck word for the file and recomputes
the sum check on the output tape using word xxx of each item. Results are
carried in the trailer block.

These parameters are repeated for each key.

Specific Example

Suppose we have a main file and a weekly transaction file. The main file is fully
sequenced and the transaction file is sequenced in daily lots. It is desired to mak
merge run, producing a new master file.

8-14 IB59-1N(I)

mergl

2rl

26062305e

Main File

001. .

Transaction fi le

001.

rel

nc0241

03e

secret

washdc

Merged main fi le

001.

04keys

00

01kywd0 240

773000000000

02kywd0111

00000000077

03kywd000 2

7700000000077

04kywd0100

760000000007

(stop code)

IB59- 1N(I)

We are to start by merging

We have two input reels

The days date in standard date/t ime group

The fi le name of the f irst reel

The fi le number of the f irst reel

The fi le name of the second reel

The fi le number of the second reel

The input has a high reliabil i ty format

We desire to sumcheck word 241 in the output f i le

We will al low 3 errors before stopping sort

The security classification is secret

The installat ion code is Washington D. C.

The output f i le name

The output f i le number

The total number of keys is four

Generator compatibil i ty format characters

The first key is contained in word 240

Bits 36-31, 29, 28 are to be used

The second key is contained in word 111

Bits 6-1 are to be used

The third key is contained in word 2

Bits 36-31, 6-1 are to be used

The last key is contained in word 100

Bits 36-32, 3-1 are to be used

8-15

B. Input Format

The input is composed of a fi le of i tems, formed in the Hi-Reliabil i ty
mode, each of whose blocks is internally sequenced.

C. Output Format

The output is composed of a tape fi le containing a fully sequenced and
labeled standard tape in the Hi-Reliabil i ty mode. (See writeup enti t led
SPECIFICATIONS FOR STANDARD FIELDATA TAPES - revised 31

July 1959.)

Error Halts

In case of error, a message of the form ERRNN is. printed on the Flexowriter
where NN is the error number.

01 Unreadable Parameter Tape

02 Unreadable Tape Specification Block

0 3 Unreadable File Specification Block

04 Format Error in Parameter Tape

05 Unmatching Password

06 Unmatching Security Code

07 Unmatching File Name

08 Unmatching File Number

09 Number of Errors is greater than the number of Allowable Errors

10 Machine Error or Possible Bug in Program

11 Partial I tem In Block (i . e . , I tem spli t across blocks)

12 When the number of al lowable errors = 0 and the i tem or block count in
the trai ler is unequal to the respective computed counts.

13 Unmatching Trailer Checksum and the Number of Allowable Errors = 0

16 IB59-1NU)

Error Halts (Cont.)

14 Number of unsorted blocks > the Number of allowable errors

15 Over maximum number of data blocks

Sence Flip-Flops Used

1-16 They must be set in the "neutral" position on the console.

Number of Storage Locations

This program is 1500 orders long; however, most of the remaining core is
used for buffering.

Mergl

Approximate Timing Formulas

Ng = number of blocks

N. = number of i tems l

W\ = words/item

Wg = words/block

N* = number ofiblockijs opiimumly packed

T = number of t ime in microseconds

K = number of intermediate merge phases

S = number of i tems/string

IB59- 1N(I) 8-17

First Merge Pass

T - 5 . l { 1 4 4 1 1 2 5 + N . W .] + 1 3 . 2 x 1 0 3 [N B + 2] j + 1 0 ®

Intermediate Merge Passes

T = 2. 2 | 144[125 + N.W^ + 13. 2 + 103[N* + 2] j

N.
K = Log2[-^-] - 2

Collection Pass

T = N. | 240 x W. + 800 j + ^26WB + 6. 6 x 103 + 128 | + 34. 2 x 103

RESTRICTIONS:

1. Each input f i le must be contained on one tape reel and must be in the
Hi-Reliabil i ty format.

2. Fixed size i tems only.

3. No i tem may exceed 510 words.

4. Words containing control information must be posit ive.

5. Total control f ield size less than or equal to 8 words.

6. No i tem may be "spli t" across tape blocks.

7. All keys must be in the same posit ion in both fi les of i tems.

8. Data i tems must be sequenced, at least between blocks.

9. 8192 words of core must be available.

10. At least six (6) tape units and two (2) converters must be available.

METHOD:

MERG1 performs the following steps in i ts operation:

(a) Reads i tself in memory and transfers control to the start ing l ine.

8-18 IB59- 1N(I)

(b*) Reads in the parameter tape, checks labels, checks for any inconsistency.
Finishes the initialization. Generates coding necessary to pick up control
fields. If the labels do not agree or if there is any inconsistency an approp­
riate error printout is made, otherwise control passes to step (d).

(c*) Reads in the specification blocks of each input file, picks up parameters
from these specification blocks and starts initializing itself.

(d*) Continues the read-in of the input tapes, sequence checks the incoming
items, if i tems arrive out of sequence within a block MERG1 labels and
rejects the block. Continues by preselecting the next input and checking
for any input errors on the previous read. If no error is indicated it passes
to step (e). In case of an error, an automatic re-read sequence is initiated.
If after three reads the information is sti l l in error, i t will be labeled and
written on a reject tape. In any case control passes to step (e).

(e*) Merges and writes out the merged input data, checking for a "break" in
the sequencing of blocks from either file. (This is known as the "single
step down" condition.) If none, returns to step (d); otherwise copies the
sequence from the other input fi le testing for the "break" in i ts sequencing.
(This is known as the "double step down" condition.) As soon as this
occurs, MERG1 terminates the string produced on the output, swaps output
tapes and tests for exhaustion of the input reels. If they are exhausted,
control passes to step (f). Otherwise control returns to step (d).

(f) When the input tapes have been exhausted, input and output tapes are swapped,
rerun information is written and control returns to step (d). Finally there
will exist on each output tape only one long string; at this t ime control is
passed to step (g).

(g) This is the final tape pass known as the collection pass. In this pass the
final merge is performed, the specification block(s) are updated and writ­
ten, hash totals are checked, word rearrangement is performed, and other
bookkeeping tasks completed. There is an option at this t ime for the
operator to print the trailer and specification blocks of the final tape(s).

* These macro steps are performed with either partial or full overlapping.

IB59-1NG) 8-19

FLOW CHARTS

GENERALIZED MERGE ROUTINE

NOTATION

BUFFERS:

R . . I n p u t b u f f e r s (4) i = 5 o r 6
1J j = 1 or 2

i = input index

5 = input reel 1 on tape drive 5

6 = input reel 2 on tape drive 6

j = buffer index

there is an active and an alternating buffer for each input tape

Wk= Output buffers (2) k = 1 or 2

there is an active and a passive output buffer

INDICATORS:

FP first pass

DO output of SORT 1

RD non-output of SORT1

CP collection pass

ME machine error test

SYMBOLS:

EOF end of file of tape

EOS end of string of input

8 - 2 0 IB59- 1N(I)

Par. parameter

RC Read Check Subroutine

ERROR STOPS:

Error numbers are printed on the flexowriter. The only restart
procedure available to the operator is to begin all over again.

IB59- 1N(I) 8 - 2 1

8 . 3 F O R M A T F O R T A P E S P E C I F I C A T I O N B L O C K S -
FORMAT FOR TAPE AND FILE TRAILER BLOCKS

The discussion below concerns itself with procedures that must be followed
by programming personnel when writing out data on to tape if it is anticipated that
such data will eventually require sorting or merging through use of the SORT I or
MERGE I programs. Design of these programs is such that they will recognize
the formats given in the tables presented in subsequent paragraphs and no others.
Failure to label a given table in accordance with the formats given will result in
erroneous operation when the SORT I and MERGE I programs are used.

8. 3. 1 Format for Tape Specification Block

Octal and Fieldata configurations for the Tape Specification Block are
given in Table 8-1 below. Remarks that appear in the Fieldata and Remarks
column and have an associated brace or arrow are further amplified in the ex­
planatory discussion immediately following the table.

8 - 2 2 IB59- 1N(I)

Word
Number Octal Fieldata and Remarks

040303013106
251205302512
101613161006
311624230507
212410200404
110631120531
162212051427
243225055302
050000353535
353535353535
040130121032
271631360510
210630300005
005302050000
322310210630
040131062512
052506303034

242711055305
020000000000
353535353535
040116233031
062121063116
242305102411
120553050200
670605301010
040131062512
052306221205
530502000000

353535353535
353535353535
353535353535
040131062512
052332220712
270553050200
000000353535
040127121221

Value of Date-Time Group
in Decimal (9 characters)

Value of Security Class (6 characters)

TABLE 8-1. OCTAL AND FIELDATA CONFIGURATIONS FOR TAPE SPECIFICATION
BLOCK

Value of Tape Password (6 characters)

Value of Installation Code (6 characters)

Value of
Tape Name
(18 characters)

Value of Tape Number (3 characters)

IB59- 1N(I)
8-23

TABLE 8-1. OCTAL AND FIELDATA CONFIGURATIONS FOR TAPE SPECIFICATION

BLOCK (Cont.)

Word
Number Octal Fieldata and Remarks

37 052332220712 A N U M B E

38 270553050200 R A A 1
39 000000353535 X X x —— Value of Current Reel Number (3 characters)

40 010524130502 t A o F A 1
41 000000353535 X X x Value of Final Reel Number (3 characters)

42 040131062512 / • T A P E

43 053012233116 A S E N T I

44 231221300553 N E L S A

45 050200000000 M
46 077307730773 M ; B ; C ;
47 040107212410 / • B L O c
48 200521060712 K A L A B E

49 210553050237 L A A 1 X Value of Tape Sentinel (1 character)

50 040107212410 / ! B L O C

51 200510243223 K A C O u N

52 310553020500 T A • 1 A

53 000035353535

/ t
X X X x Value (Decimal) of Total Block Count

54 040123322207 / t N U M B

55 122705241305 E R A O F A

56 131621123005 F I L E S A

57 530502606061 1 Value (Decimal) of the Number of Files
57 530502606061 : A

/ 1
t X X X on this Tape (3 characters)

58 040113162112 / t F I L E

59 052306221205 A N A M E A
60 530502000000 : A 1
61 353535353535 X X X X X X 1 Value of 1st File Name

62 353535353535 X X X X X X
on this Tape

63 353535353535 X X X X X x J (18 characters)

64 040113162112 / • F I L E

65 052332220712 A N U M B E

66 270553050200 R A A I
000000353535

I Value of File Number of Above File
67 000000353535

/ !
X X X .Name (3 characters)

68 040107212410 / ! B L O C

69 200521241006 K A L O C A

70 311624230553 T I O N A

71 050260606062 A | X X X X Decimal Value Given Location of 1st File

72 050131240502 A • T O A

73 000035353535
1

X X X x 1 Decimal Value Giving Ending Location of

. 1st File

8 - 2 4 I B 5 9 - 1 N (I)

In reference to the Sort 1 and Merge 1 programs, the following manipula­
tions of the Tape Specification Block are performed for the output Tape Specifica­
tion Block:

1. Date Time Group is set as specified by Parameter Tape.

2. The security code is also set from the Parameter Tape.

3. The password is also set from the Parameter Tape.

4. The installation code is set from the Parameter Tape.

5. The tape name is unaltered and not used.

6. The tape number is unaltered and not used.

7. The Reel Number is set to 001 of 001.

8. The Tape sentinels are preserved.

9. The block label character is preserved.

10. The Block count is computed and set by the sort scanner from
estimated file size and item size obtained from the file spec.

11. Number of f i les is set to 001.

12. The file name is set from the parameter tape. It is also used
for matching purposes on input.

13. The file number is set from the parameter tape. It is also
used for matching purposes on input.

14. The ending Block location is computed from the fi le size and
item size. On input the block location is used by the Sort to
locate the fi le specification block.

8 . 3 . 2 Format for File Specification Block

Octal and Fieldata configurations for the File Specification Block are given
in Table 8-2. Remarks that appear in the Fieldata and Remarks column and have
an associated brace or arrow are further amplified in the explanatory discussion
immediately following the table.

IB59- 1N(I) 8-25

TABLE 8-2. OCTAL AND FIELDATA CONFIGURATIONS FOR FILE SPECIFICATION
BLOCK

Word
Number Octal Fieldata and Remarks

1
2
3

4
5
6
7
8
9

10
1 1

1 2
13
14
15
16
17
18
19
20
2 1
2 2
23

24
25
26
27
28
29
30
31

040303011316
211205302512
101613161006
311624230507
212410200404
110631120531
162212051427
243225055302
050000353535
353535353535
040130121032

271631360510
210630300553
050200000000
322310210630
040113162112
052506303034
242711055305
020000000000
353535353535
040116233031
062121063116
242305102411
120553050200
670605301010
040113162112
052306221205
530502000000
353535353535
353535353535
353535353535

/— —| F I

L E AS P E
CI F I C A
T I O N A B
L O C K/ /
D A T E A T
I M E A G R
O U P A : |
A x x x
x x x x x x

J f S E C U
R I T Y A C
L A S S A :

M
X X X X X X

f f F I L E
A P A S S W
0 L D A : A

1
X X X X X X

f f \ N S T
A L L A T I
O N A C O D
E A : A /
X X X X X X

F I L E
A N A ME A
: A|
X X X X X X

X X X X X X

X X X X X X

Value of Date
Time Group in
Decimal (9 Characters)

(Value of File Security
1 Class (6Characters)

{ Value of File Password
(6 Characters)

Value of Installation
Code (6 Characters)

Value of
File Name
(18 Characters)

- 2 6 IB59-1N(I)

TABLE 8-2. OCTAL AND FIELDATA CONFIGURATIONS FOR FILE SPECIFICATION
BLOCK (Cont.)

Word
Number Octal Fieldata and Remarks

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58
59
60

040113162112
052332220712
270553050200
000000353535
040127121221
052332220712
270553050200
000000353535
010524130502
000000353535
040113162112
053012233116
231221300553
050200000000
077307730773
040107212410
200521060712
210553050236
040131362512

053127061621
122705530502
000013162112
040116311222
053032221015
121020053424
271105530502
000060606060
040116311222
053136251205

/ j F I L E
A N U MB E
R A : A |

X X X
R E E L

A N U MB E
R A : A |

X X X

I A O F A J
X X X

/ | F I L E
AS E N T I
N E L S A :
A I
M j C ; C ;

/ t B L O C
K A L A B E
L A : A j x
/ \ T Y P E
A T R A I L
ERA:A\

X X X X

J f l T EM
A S UM C H
E C KA WO

R D A : A j
X X X X

Jf \ T EM
A T Y P E A

j Value of File Number
((3 Characters)

!

Value of Current
Reel Number
(3 Characters)

(Value of Last Reel
(Number (3 Characters)

Value of End of File
Sentinel This File(l Char.)

{Either File or Tape
if Multireel
(4 Characters)

Value of Location of
Sum Check Word

IB59-1NU) 8-27

TABLE 8-2. OCTAL AND FIELDATA CONFIGURATIONS FOR FILE SPECIFICATION
BLOCK (Cont.)

Word
Number Octal Fieldata and Remarks

6 1
6 2

63
64
65
66

67
68

69
70
71
72
73
74
75
76
77
78
79
80
8 1
8 2

83
84
85
86
87
88
89
90

530502000000
003535353535
040116311222
053016371205
530502000000
000035353535
050131240502
000035353535
040111063106
052224111205
530502233023
040131243106
210513162112
053016371205
530502000000
003535353535
040125062731
160621051316
211205301637
120553050200
006060606060
040113162112
051324272206
310553050200

001516271221
040122063505
110631060507
212410200530
163712055305
023535353535

: A |
X X X X X

y/f I T EM
A S I Z E A
: A |

X X X X

A | T O A \
X X X X

D A T A
A MO D E A
: A ^ x x x -

/f T O T A
L A F I L E
A S I Z E A
: A \

X X X X X

P A R T
I A L A F I
L E A S I Z
EA : A |

X X X X X

FI L E
A F O R N A
T A : A |

X X X X X

MA X A
D A T A A B
L O C K A S
I Z E A : A
| X X X X X

/t

{Either
Fixed or Varys
(5 Characters)

(Value (Decimal) of
(Item Size

(Value (Decimal) of
\ Maximum Item Size

Either NSN or ISN

(Value (Decimal) of
\ Item Count of File

(Decimal Value of Item
\ Count - This file this tape

Either Hire L or
Relax

(Value (Decimal) of
(Maximum Block Size

- 2 8 IB59- 1N(I)

In reference to the fi le specification block, the Sort manipulates the f ields
as follows:

1. Date t ime group-set from the parameter tape.

2. Security Class, f i le password, installat ion code, f i le name,
and fi le number are used for matching purposes with the
parameter tape.

3. Reel number is preserved, but not used.

4. File sentinels are preserved, and used, at present, to show
a block label sentinel .

5. Block label is preserved, and used by the Sort to detect an
EOF condition.

6. Type trailer is preserved, but assumed to be FILE and not
used.

7. I tem sumcheck is preserved, and used, if not zero, by the
Sort for the value of the sumchecking location.

8. I tem type is checked by Sort for FIXED. If FIXED is not
present, an error halt results .

9. I tem size is preserved and used by Sort for init ial ization.

10. Data mode is preserved and used by Sort for al l In-Out orders.

11. Total and partial f i le size are assumed equal and used to com­
pute various factors for Sort init ial ization.

12. File format is checked for HIREL. An error halt will result
if any other configuration is present.

13. Max data block size is computed on basis of i tem size and re-
blocking will occur if possible for optimum tape efficiency.

8 . 3 . 3 Format for File Trailer Block

Octal and Fieldata configurations for the File Trailer Block are given in
Table 8-3. Remarks that appear in the Fieldata and Remarks column and have an
associated brace or arrow are further explained in the explanatory discussion
following the table.

IB59- 1N(I) 8-29

TABLE 8-3. OCTAL AND FIELDATA CONFIGURATIONS
FOR FILE TRAILER BLOCK

Word
Number Octal Fieldata and Remarks

1

2

xx0440010000

043136251205

x 044g 0018

/ t y p e A

0000_ Block Label 1st Char­
acter EOF Sentinel

3 530513162112 : A x x x x File or Tape
4 042306221205 /n a m e A
5 530502000000 • A ^
6 353535353535 X X X X X X * Value of
7 353535353535 X X X X X X > File Name
8 353535353535 X X X X X X . (18 characters)
9 042332220712 /n u m b e

10
11
12

270553050000
000000353535
041106311205

r A : A
Value of File Number

x x x " (3 characters)
/d a t e A

13 311622120514 t i m e A g
14 272432250553 r o u p A :
15 050000358535 A x x x " Value (decimal) of Date-Time
16 353535353535 X X X X X x . Group (9 characters)
17 040721241020 / h l o c k
18 051024322331 A c o u n t
19
20

055305000000
000035353535

A : A
Value (DEC) of File Block

x x x x — Count including this block
(4 characters)

21 041631122205 /i t e m A
22 102432233105 c o u n t
23 530500000000 : A
24 353535353535 x x x x x x-«—Value (DEC) of File Item

Count (6 characters)
25 040721241020 / b l o c k
26 053032071024 A s u b c o
27 322331055305 u n t A : A
28 000035353535 x x x x - * - D e c i m a l V a l u e o f F i l e B l o c k

Count this Reel including this
block (4 characters)

29 041631122205 /i t e m A
30 303207102432 s u b c o u

31 233105530500 n t A : A
32 353535353535 x x x x x x-»-DEC Value of File Item Count

this Reel (6 characters)

33 041316211205 /f i 1 e A
34 303222101512 s u m c h e

35 102005530500 c k A : A

36 353535353535 x x x x x x-»-Value (Binary) of the File Hash
Sum

8-30 IB59- 1N(I)

With respect to the file trailer block, the Sort makes use of i ts fields as
follows:

1. Block label - uses sentinel to determine end of data.

2. The file name is fil led in on output as is the fi le number.
These will be the same as those appearing in the file spec­
ification block.

3. Date time group is fil led in on output as in the fi le name, etc.

4. The block count and item count are used by the first pass of
the sort to check against i ts own computed counts. The Sort 's
computed counts are fil led in on output.

The block and item subcounts are not used, and are set equal
to the block and item counts.

6. If there was an item sumcheck word, the file sumcheck word
will contain i ts value and will be tested against the sort 's com­
puted counts.

8 . 3 . 4 Format for Tape Trailer Block

Octal and Fieldata configurations for the Tape Trailer Block are given in
Table 8-4.

With respect to the tape trailer block, the sort program does not read it
or write i t at present.

IB59- 1N(I) 8-31

TABLE 8-4. OCTAL AND FIELDATA CONFIGURATIONS FOR TAPE

TRAILER BLOCK

Word
Number Octal Fieldata and Remarks

1 xx0510010000 x 051„ 001„ OOOOQ Block Label 1st Char­
acter EOT Sentinel

2 043136251205 /1 y p e A
3 530531062512 : A t a p e
4 042306221205 / n a m e A
5 530502000000 : A |
6
7
8

353535353535
353535353535
353535353535

X X X X X X]
Tape Name

X X X X X X > g o e s h e r e

X X X X X x J
9 042332220712 /n u m b e

10 270553050000 r A : A
11 000000353535 x x x-«—Tape Number
12 041106311205 / d a t e A
13 311622120514 t i m e A g
14 272432250553 r o u p A :
15
16

050000353535
353535353535

A x x x l
? Date - Time Group x x x x x x j

17 041024222521 /c o m p 1
18 123112051316 e t e A f i
19 211230055305 1 e s A : A
20 000000006061 0 1
21 042506273116 /p a r t i
22 062105131621 a 1 A f i 1
23 123005530500 e s A : A
24 000000000061 1
25 043124310621 / t o t a l
26 051631122230 A i t e m s
27 055305000000 A : A
28 353535353535 x x x x x x Item Count
29 042106303105 / l a s t A
30 131621120530 f i 1 e A s
31 252116310553 p 1 i t A :
32 050000000023 A n
33 040721241020 / b l o c k
34 300521063031 s A 1 a s t
35 051316211205 A f i 1 e A
36 530535353535 : A x.x x x-»—Total Block Count

including this block
37 041631122230 / i t e m s
38 052106303105 A 1 a s t A
39 131621120553 f i 1 e A :
40 050000000000 A
41 353535353535 x x x x x x-«—Item Count

8 - 3 2 IB59- 1N(I)

8 . 4 GENERAL UTILITY PACKAGE

The util i ty package comprised of the following subroutines:

1. Core Dump - LPR or Flex, or PTP8

2. Tape Dump - LPR or Flex, or PTP8

3. Transfer Trace - LPR or Flex, or PTP8

4. Snapshot Routine - LPR or Flex, or PTP8

5. Data Generator - MT2(41)

6. Utili ty Read Routine

7. MAP Output Loader - Cards or paper

8. Save and Restore Routine

All of the above can be entered either from the console or directly (via a
TRL) from a running program. At the end of execution, all registers, indices,
and flip-flops are restored to the status they were in upon entry to the subroutine.
Thus, i t is possible to have periodic core dumps, tape dumps, and snapshots dur­
ing the normal execution of a program.

The subroutine system is written so that i t may be used in i ts entirety or
in parts which simplifies the process of adding to or modifying the original routine.

The package is contained in a symbolic deck and has as its origin the sym­
bolic location ORG. By punching an EQU card for the symbol ORG, the deck can
be assembled in any block of 638 (counting 24 word card buffer) locations desired
by the programmer. The same EQU card should be included in the programmer's
deck so that references within his program to the util i ty package will be assem­
bled correctly. A symbolic paper tape is also supplied.

A separate description of each subroutine follows. Any mentioning of
printed output refers to the line printer for the card version and the flexowriter
for the paper tape version. The symbol "out" is used in the device field of all
printing output orders, thus allowing output printing to be specified as any
MOBIDIC output device.

IB59- 1N(I) 8-33

8 . 4 . 1 Core Dump:

Purpose: To dump the contents of the registers, indices, and flip-flops
as well as specified core locations on to the output device.

Entry: L MOV DCW, ORG + 189

L + l t r l O R G + 1 1 4

L + 2 R E T U R N

DCW is a location the contents of which have the following
meaning:

Sign bit: + dump in octal

- dump in alphanumeric

Gamma Beta Field: number of locations to be dumped

Address Field: first location to be dumped

Upon dumping the required locations, registers are restored
t o t h e i r o r i g i n a l s t a t u s a n d c o n t r o l i s t r a n s f e r r e d t o L + 2 .

Entry from console:

Set the WSR keys as indicated for location DCW. Set ASR keys to ORG +
4. Press "start at ASR". Upon completion of routine, machine will HALT
at location ORG + 18.

Format of output is as follows:

Line 1 DUMP from XXXXXX to XXXXXX

Line 2 Address of first word 1st word 2nd word 3rd 4th

Line 3 Address of fifth word etc, 5th word 6th word etc.

If all four locations to be printed on a line contain zeros, the line is not
printed. Any gaps in the address sequence caused by such omissions are
indicated by the sentence "zeros are omitted". However, negative zeros
are printed.

Other Subroutines Used:

Save and Restore Routines

Snapshot Routine

8-34 IB59- 1N(I)

8 . 4 . 2 Tape Dump:

Purpose: To dump a specified number of blocks of tape onto the
output device.

Entry: L CLA READ

L+l LOD COUNT,, ORG

L + 2 T R L ORG+210

L + 3 R E T U R N

Read:

This location contains the actual read instruction that the subroutine will
use to read in one block (or a certain number of words) from the tape unit
specified in the read instruction into the core location of the address of
that instruction. If READ is negative, the tape is read ISN; if positive, it
is read non ISN.

The tape must be positioned before entering the routine. The tape is not
repositioned upon completion of the dumping.

Example: If value of READ is 70 40140 10000 it will cause 1 block to be
read from tape 40g into location 10000g and dumped on the output device.
This procedure is repeated by the number of times indicated by "COUNT".

The number in "COUNT" will determine how many times the "READ" in­
struction is executed (usually number of blocks).

Entry from Console:

Set the WSR keys as indicated for location READ. Set the Q register as
indicated for location COUNT.

Set ASR keys to ORG+7. Press "start at ASR". Upon completion of
routine, machine will halt at location ORG+18.

If the machine indicates a read error on reading the tape, the word
"ERRT" is printed and the dump proceeds normally. Tape is read with
NHC set so that only DVA's stop the dump.

Format of Output:

TAPE Amm Abbbb Ablocks

Blk 01 kkk words

Count:

IB59- 1N(I) 8-35

1st word 2nd word 3rd 4th

5th 6th etc.

Blk 02 kkk words etc.

Zeros are omitted as in core dump.

kkk = number of words in block.

mm = device address in octal.

bbbb = number of blocks (decimal) to be dumped.

Other Subroutines Used:

Core Dump

8 . 4 . 3 Transfer Trace Routine:

Purpose: To execute the snapshot program after each transfer
instruction is executed by the program.

Entry: There are two possible entries to the routine as follows:

1) TRL ORG+10

This will produce a snapshot only if the conditions
of the instruction are met, e.g., TRP ZETA.

If the Accumulator is plus, a snapshot will occur.

2) TRL ORG+12

This will produce a snapshot after the execution of
each transfer instruction.

Tracing will then commence at the instruction following
the TRL instruction.

In order to leave the tracing mode, the program should
execute a TRL ORG+398.

It should be noted that location zero is used by the trace
program, and also the TRA flip-flop.

8-36 IB59-1N(I)

Entry from Console:

Put the address of the location (where tracing is to commence) into the
PCS. Set the ASR to ORG+IO or ORG+12 depending on the type of t race
desired. Then press "Start at ASR".

The trace must be halted by pressing the "HLT" button unless a halt is
to be executed by the program being traced.

Format of Output:

See Snapshot routine.

Other Subroutines Used:

Save and Restore Routine.

IB59-1N(I) 8-37

8.4. 4 Snapshot Printout:

1

1

a
Purpose: To cause the contents of the registers, indices and fl ip- i

f lops to be printed out on the output device.

Entry: L TRL ORG +36 If
L + 1 RETURN

When the snapshot has been printed, the registers, S
indices and fl ip-flops are restored to their original
status and control is returned to L + 1. H

Format of Output: PCS AR QR IR1 IR2 IR3 IR4 SENSE FLIP-FLOPS ™

If a fl ip-flop is reset , a "0" is printed.
If a fl ip-flop is set , a "l" is printed. a

Entry from Console: a
Set ASR to ORG + 2. Press "start at ASR". At end
of execution machine will halt at ORG +18.

Other Subroutines Used: Save and Restore Routine.

8 . 4 . 5 Data Generator
1

Purpose:
•

To generate binary blocks of data on magnetic tape
(41g) in the standard block format. The structure of a
the data is controlled by the parameters. There are
two entries. The first entry (NOSPEC) will rewind the
tape f irst while the second entry (YESPEC) will s tart
to write data from its present posit ion. In each case, I f
a f i le trai ler is generated as the last block. •

Entry 1: TRL ORG + 403 •

Entry 2:
I

TRL ORG + 411

An octal paper tape with the following parameters must be ready in the S;
tape reader:

1. ROKq, PTP8, lO - ^ Q a = Location to read parameters

2. Number of words per block _

3. Start ing value for data generator ®
4. Stepping constant B

5. Number of words per logical record

1

8-38

•

IB59- 1N(I)

6. Number of Blocks to generate

7. ISN indicator

8. File name

9. File name

10. File name

11. File name

12. Word of al l sevens

A HIREL File trai ler is writ ten at the end of the data. The trailer is
writ ten in the same mode as the data. Block counts, f i le name, and i tem counts
are fi l led into the trai ler .

After generation of the tape, control is returned to the instruction follow-
ing the TRL order. The tape is not rewound nor are the registers restored.

Entry from Console:

Entry 1: Set ASR switches to ORG + 14. Press start at ASR.
Entry 2; Set ASR switches to ORG + 411. Press start at ASR.

The computer will halt at ORG + 18 after tape generation.

Sample: If a Parameter tape were punched as follows:

Control

500^Q words per Block
Start ing Constant
Stepping Constant
Number of words per i tem (20^)
Number of Blocks per fi le (201 Q)
Data is non 13N

0 720122005050
0 000000000764
0 000000000777
10000000000001
0 000000000024
0 000000000024
0 000000000000
0 300622252112 Sample
0 051106310605 ADataA
0 141223122706 GenerA
0 312427056061 TORAO 1
0 777777777777 SENTINEL

IB59- 1N(I) 8-39

The data would be generated as follows:

Twenty (decimal) Blocks of data + one 36 (decimal) word file trailer.
Each item would be 20 (decimal) words long and the first would be 20 words of 776
(octal), the second 20 words of 775 octal, etc. There would be 25 (decimal) items
to each tape block. Each tape block of data (not trailer) would be 501 (decimal)
words long where the first word is the standard block label. If entered at ORG
+403 the tape (41g) will be rewound, tape erased (5 blocks), and written. If
entered at ORG + 411 writing of the tape will occur first.

Other Subroutines Used: Utility Read Routine.

8 . 4 . 6 Utility Read Routine

Purpose: To read batches of specified octal words from paper tape
into specified locations in core memory.

Entry: TRL ORG + 561

On return to main program

Will not restore ACC, QRG, or PCS

Format of Paper Tape

First word on the tape (13 octal characters) must be ROK XYZ, PTR8,
LMN. Where XYZ is the starting location for read in of data and LMN is the
number of words to read in. Next LMN words are the data to be read in. The
next word may be either another ROK for more data or a word of seven's which
will terminate the routine. If the first word is octal, but not a ROK or sentinel
an error halt will occur.

Example:

0720012001000 Read 1 word into 1000g
0431000107320
0720022000333 Read 2 words into 333g
0000000000000
1042023426161
0777777777777 Terminate Read

Other Subroutines Used: None

8-40 IB59- 1N(I)

8.4.7 MAP Output Loader:

Purpose: To read the absolute binary paper tape or cards of a
MAP assembly into core.

1. Paper Tape
Entry: TRL ORG+ 21

Entry from Console: Set ASR to ORG and press "Start at ASR"

2. Cards
Entry: TRL ORG + 589

Special Features:

1. Checks hash sum and indicates error, if any.

2. A punch in the 12R sign bit will cause the hash sum to be
ignored.

3. A punch in the 12L high order magnitude bit for a Transfer
Card will cause a halt before entering the program.
This latter punch may be automatically recorded on the
Binary Transfer Card by punching "End X, l" on the symbolic
end card. After this halt , depressing the Start at PC push­
button will effect normal transfer to routine.

Other Subroutines Used: None

8 . 4 . 8 Save and Restore Routine

Save:

Purpose: To save the contents of the registers and indices.

Entry: L MOV IRET, ORG + 113

L + 1 TRU ORG + 90

L + 2 RETURN

where IRET contains a TRU L + 2

When the registers and indices have been saved, control is transferred
to location ORG +113.

IB59- 1N(I) 8-41

Restore:

Purpose: To restore the contents of the registers and indices
to their conditions when saved.

Entry: TRU ORG + 99

Exit is made with a TRS instruction after the PCS is restored to its
SAVED condition.

Other Subroutines Used: Snapshot Routine

8-42 IB59- 1N(I)

SECTION IX

MALFUNCTION AND CONTROL ROUTINES

9. 1 REGISTER AND CORE SAVER

Symbolic Label: RACS1

PURPOSE:

1. To write on magnetic tape a self-restoring copy of core memory and
selected registers under either programmer or operator control.

The following information is saved by RACS1:

a. All of core memory except those locations required to "bootstrap"
the save routine into memory.

b. The following registers:

1. The accumulator

2. The Q-Register

3. The B-Register

4. Each index register

5. The "PCS" register

6. Real-Time output register

7. Real-Time address register

c. The status of each general purpose sense flip-flop.

d. The status of the following special flip-flops:

D OVA 4) IOA2 7) ROP1
2) ROR38 5) RPE
3) IOAl 6) ROBB

To restore a previously "saved" copy of core memory and selected
registers under either programmer or operator control. To print
on the Flexowriter the status of any flip-flop which had been manually
set or reset (only in the case of operator control).

IB59- 1N(I) 9-1

Coding Information

1

1
•

1. Calling Sequence - Save Routine •

A. Under Programmer Control •

The programmer may save the contents of the converters
(RACS1 cannot). He must execute a routine similar to the one
below:

MOV BRG.COM Save BRG g
MOV IR2, COM + 1

•
Save IR2

LOD *+ 2, 0, IR2 1
SNS *+ 1, 0, TPE |
WAN 5. MT2, 511 Write 5 blocks of tape erase. •

TRX * - 2 , 1, 0 1
SNS * + 1 , 0 . I S N

•

WAN 0, MT2, NEC
•

To create the correct amount of space on •
MT2, for the restore routine.

SKP MT1, 2 To skip over the "bootstrap" blocks onRACS •.
tape. •

SNS * + 1 , 0 . I S N 1
WAN 0, MT2, NEC 1

•
To save enough of core to make room for
RACS. -

SEN * 0. MT2 Wait for write to finish.

RAN 0, MT1, 257 Read in RACS. uv

SEN * 0. MT1
•1

Wait for RACS to finish reading to memory.
tm

LOD COM + 1, 0.
IR2

Restore IR2 g

LOD COM, 0, BRG Restore BRG

TRL PRSAU Transfer to "programmer save" entrance.

9-2

1
IB59- 1N(I) m

NEC - Number of core locations (215„ or 141.. . ,) used by the restore
program.

NEC1 = Number of core locations (460„ or 304.,) used by save and
restore routine.

B. Under Operator Control

The operator should save the contents of the converters and the
contents of the program counter. In addition, he should record
the status of the ISN flip-flop and put the switch in the reset posi
t ion.

The operator may then read the first block of MT1 into locations
8182i0 (1^766g) ^ r u 8191io (17777g) and transfer control to loca
tion 8182^0 (17766g). This will result in the execution of the rou
tine shown above but with the following exceptions:

1. The "SKP" instruction will not be executed.

2. The last instruction will be a transfer to "OPSAV", the
operator save routine.

The execution of these orders will "bootstrap" the main RACS1
program into core.

2. Calling Sequence - Restore Routine

A. Under Programmer Control

The programmer need only set the ISN flip-flop, read the first
block from MT2 into location zero, and transfer control to the
"Programmer Restore" entrance.

RACS1 will not print out any console conditions when memory is
restored via the "Programmer Restore" entrance.

B. Under Operator Control

The operator is only required to set the ISN flip-flop, read the
first block from MT2 into location zero, and transfer control to
the "Operator Restore" entrance.

IB59-1N(I) 9-3

Information about the status of the sense flip-flops which were
manually locked will be printed on the Flexowriter to enable the
operator to restore them to their original settings.

Other Subroutines Required

None

Error Halts

None

Sense Flip-Flops Used

None

Number of Storage Locations

305

"Common" Locations Used

31

Approximate Time

1. Programmer Control - takes approximately 5 seconds for a
seven memory machine. (770 ms +
695 ms/memory unit of 4096 words).

2. Operator Control - basically the same as the above plus
the time required for operator manip­
ulation and the time required to print
the condition of any manually locked
flip-flops.

RESTRICTIONS:

1. Ten consecutive memory locations must be sacrificed to provide space
for the "bootstrap" program. These locations, 818 2^ - 8191^ were
arbitrarily selected but may be changed by any installation with only

minor changes to the RACS1 program.

2. The RACS1 program will usually be contained on magnetic tape 1 (MT1)
and it will normally use MT2 as its "save" tape and to obtain restoring
data.

IB59- 1N(I)

3. The positions in which the programmer has his "bootstrap" program
must be at least NEC1 (465g or 309^Q) locations after location zero.

4. Since the RACS1 program has to overwrite itself with core memory
before executing a return to the original program, the programmer
should take care that his return address is in an area not used by the
RACS1 program. He should make sure that all of core memory is
restored before he continues execution of the original program. This
may be done easily be sensing MT2.

To save core and register information the following information is written
on MT2 in ISN mode:

1. Block No. 1 Restore Routine and register flip-flop conditions.
Block No. 2 Partial memory dump (equivalent in length to size of the
RACS program).
Block No. 3 Remainder of memory dump.

2. To restore core and register information.
The restore routine first restores the condition of the registers and
flip-flops. When this task is completed it overwrites itself with orig­
inal core memory as is contained in blocks No. 2 and No. 3 on MT2.
When restoration is completed the program halts if under operator
control, or returns to the orginal program, if under programmer
c o n t r o l , (s e e A p p e n d i x A , p a g e 9 - 6 .)

REMARKS:

At present RACS1 occupies core locations 0-465o.
O

METHOD:

"PRSAV" (programmer save), = 2440 O
"OPSAV" (operator save) = 2510 O
"PRRST" (programmer restore) = 0o O
"OPRST" (operator restore) = 4C O

251 8

IB59- 1N(I) 9-5

1
1

APPENDIX A

FORMAT OF TAPES USED BY RACS *

1
1. MT1 (NSIN)

i
•

Operator
1
•

Bootstrap routine Blocks 1+2 |

RACS1 Block 3 |

2. MT2 (ISN)

1
1

"Restore" program 1
with register and Block 1 •
F. F. Conditions
(NEC words) 1
Core used by ti
RACS1 Block 2
(NEC1 words)

•

Remaining cores Block 3 •

9-6

1
(
1

IB59- 1N(I) •

9. 2 TAPE ERROR ROUTINE

Symbolic Label: TERM1

PURPOSE:

To provide a means of testing and guaranteeing (as far as possible) that
information just written on magnetic tape was not recorded on a "bad"
spot.

To provide a log on the 8-hole paper tape punch, consisting of a written
record of the "bad" blocks thereby giving a measure of the "goodness" of
the tape.

USAGE:

A. Preparation of Cards or Tapes

An input magnetic tape with information written thereon, and a blank
tape. (See Method)

B. Input Format

See Section D, Coding Information

C. Output Format

The input magnetic tape with all "bad" areas of tape erased and all
recorded information "moved" to good areas on the input tape. All
possible incorrect data from the input magnetic tape recorded on the
originally blank tape. (See Method)

D. Coding Information

TERM, 1, TYPE

BUFST, NSI, BLKLB

BUFSZ, TOL

MRJT, MTEST, NUMBK

A) TRL

A + 1) HLT

A + 2) MOV

A + 3) RAN

IB59- 1N(I) 9-7

A + 4) (Tape Label)

A + 5) (Label 1) only the bits 36-31 are used for labelling

A + 6) < Returns control here

Entry and Exit Conditions

Entry Conditions

ACC: BLKNUM

Definition of Terms Used Above

Exit Conditions

ACC: (Transient Quantity)

BLKNUM

BLKLB

TYPE

BUFST

NSI

BUFSZ

TOL

MRJT

MTEST

NUMBK

is an integer using bits 1-12 telling the number of the first
block. This number is used for printing and identification.

- is a 1 or 0 respectively indicating whether a block label is
available as the first word of each block on MTEST. (For
definition of block label see SPECIFICATIONS FOR STANDARD
FIELDATA TAPES revised 31 July 1959)

- is either 1 or 0 respectively showing whether BUFST contains
all the output information in sequence or BUFST is for use as
eraseable storage.

- is the starting location of the buffer.

- is either 1 or 0 respectively showing whether the information
to be tested was written in the ISN mode or not.

- is the size of the buffer starting at BUFST, (e. g. it must be at
least 1 block in length for corrective action to take place).

- is the maximum number of "bad" blocks TERM will accept per
entry.

is the tape address for any rejected information.

- is the tape address of the tape to be tested.

is the number of consecutive blocks to be tested on MTEST per
entry, (e.g., the count of the number of blocks back from the
read head)

9-8 IB59- 1N(I)

(Tape name) - is an alphanumeric word giving the tape name or abbreviation
for the log. It will be printed as the log header.

(Label 1) - is an alphanumeric word used to mark the block label of any
blocks which may contain erroneous information. Will be
ignored if BLKLB is 0. Tests 36-31 of label 1 will be masked
into bits 36-31 of the first word of each possibility erroneous
data block.

Other Subroutines Required

TERM1 will, in certain instances, automatically re-enter itself. For
example, when the reject tape is used, or whenever errors are de­
tected which TERM1 can correct.

Error Halts

1. When TOL is exceeded.

2. When BUFSZ is too small.

3. When the tape address or the block count is unmeaningful.

4. When TERMl's block counts become unsychronized.

Sense Flip-Flops

TERM1 uses five (5) sense flip-flops. SFF1-SFF4 are used internally
by the program and must initially be in neutral. In the case of the
number of errors exceeding the TOLerance, TERM1 will halt to allow
the operator to set the reset SFF5. If SFF5 is set, TERM will pick up
the WSR in which a tape address and a block count must have been
placed by the operator prior to hitting "start at PC", The octal block
count must occupy bits 1-15 and the octal tape address must occupy
bits 16-21. If SFF5 is reset, TERM will rewind MTST, restore reg­
isters and return to the main program.

Common Locations Used

None

IB59- 1N(I) 9-9

Approximate Time

(Depends on the number of blocks being checked and the number of
errors encountered)

E. Accuracy Information

If information is memory contained - 100% reliability, but if not mem­
ory contained the particular block or blocks in question have a low re­
liability rate.

RESTRICTIONS:

1. If more than one block of information is to be checked, the blocks must
all be in the same sign mode (i.e. , either all ISN or all non-ISN) and
must all be of the same size (have the same number of words),

2. No block may exceed 511 words in length.

3. A single block may be of any size from 1 to 511 words.

4. The Tolerance (TOL) must not be greater than 4095.

5. Tapes on which "label 1" may be written should have a block label as
their first word, else data may be overlain by the label.

6. TERM1 does not take end of tape into consideration.

METHOD & DESCRIPTION OF TERM1 ACTION:

1. On the initial entrance, MTEST is read reverse into non-existent core
(60000g) and as each block is read, the IOA is checked. This process
continues until NUMBIK blocks have passed the tape head. If no alarm
has been detected during the reverse pass, the tape is repositioned, and
an entry on the punch is made counting the number of blocks checked.
If an IO alarm is present on entry to TERM1, this condition will also
be printed (since IOA cannot be set). The main program is then re­
entered.

2. If any I-O alarms were noted, and TOL was exceeded, an option is
allowed to either copy all of MTEST or to rewind and halt.

9-10 IB59- 1N(I)

3. If any I-O alarms were noted and TOL was not exceeded, either of
two sequences take place:

a. If all the information scanned by TERM1 is present in BUFSZ in
sequence, all "bad" blocks are erased, all information from
BUFSZ is rewritten (using old good blocks). The remaining infor­
mation is written in a new area (area of tape just "ahead" of the
initial starting point). This area is then automatically checked by
new entry to TERM1. No use is made of label 1 or MTRJT in this
case.

b. If any information scanned by TERM1 is not available in core,
BUFSZ will be considered to be eraseable storage.

1) If BUFZ is large enough to contain NUMBLK blocks of informa­
tion, all blocks are read into BUFSZ, label 1 is placed in the
first word of each block. All bad blocks are copied onto
MTRJT and all bad areas of MTEST erased. The information
(BUFSZ) is then rewritten into the good areas of MTEST and
the remaining information written on a new area of MTEST.
TERM1 is automatically re-entered to test this new area on
both MTEST and MTRJT.

2) If BUFSZ is not large enough to contain all the tape information,
but is large enough to contain one (1) block, a slower correc­
tion cycle is initiated. All tape blocks from the initial bad
block are moved up past the initial read ahead position, and all
the area from the first "bad" block to the initial read head posi­
tion is erased. Those "bad" blocks are also labelled, if speci­
fied, and written on MTRAJT, but are not tested.

3) If BUFSZ is not^large enough to contain one block, then a mes­
sage is punched out, no erasure or "move up" is done, but the
tape is repositioned and control is returned to the main program.

IB59-1NU) 9-11

This routine will print (punch) the following status report(s). If
the printing is to be suppressed, TRU *+ 1's may be inserted to
bypass printing. Those fields shown below with () are figurative,
while those fields without () are literals.

Log Entries (Punch)

1. (Tape Label)
Block (xxxx)?

2. (Tape Label)
(xxxx) Good

3. IOAXX originally

4. (IOE) exceeded tol (TOL)

5. Copying on (TA), (xxxx)

6. (xxxx) Blks copied
RWD (MTEST)

7. BUFSZ too small

8. Block counts off

9. Multiple errors cannot fix

10. BUFSZ less than 2 Blks.
xxxx Blks bad

11. BUFSZ less than (ADC) We
cannot do any corrections
xxxx Blks bad

12. Block xxxx written on (MRJT)

This is the name of the tape. We have
read block twice, once with error, once
without; considered good.

We have found no bad blocks, xxxx were
tested and are good.

IOAXX was on when TERM was entered.
We have turned it off.

(IOE) errors encountered which were
more than (TOL).

We are copying on (TA) xxxx blks from
the beginning of MTEST.

We have finished copying xxxx blocks
from MTEST to TA and are rewinding
MTEST.

BUFSZ is not big enough to hold
NUMBLK Blocks.

The internal counts are out of synchroniz
ation. We must halt. (Flex also)

We cannot ascertain trouble with tape.
Seems to be more than parity. We will
halt. (Flex also)

The buffer will not hold two blocks.
We switch to an extremely slow mode.

The Buffer size is smaller than (ADC)
value. We can do no corrective action.
We will reposition and exit from TERM.

The numbered block has been written on
MRJT.

9-12 IB59- 1N(I)

13. xxxx Blocks on (MRJT) from
MTEST

14. Machine Errors, cannot continue

15. Erased xxxx Blks, xxxx were
good am retesting.

Total count of blocks writ ten on MRJT.

Cannot ascertain trouble, will halt . (Flex
also)

Have finished copy and corrected. Will
now test those areas not previously
writ ten on.

IB59-1NU)
9-13

SECTION X

MOBIDIC TAPE SELECTION AND UPDATING ROUTINE

10. 1 MOBIDIC TAPE SELECTION AND UPDATING ROUTINE

Symbolic Label: TSUP1

PURPOSE:

The Tape Selection and Updating Routine (TSUP1) is a service routine de­
signed for the following general uses:

1. To update Magnetic Tapes.

2. To check tapes mounted on a tape drive.

3. To select the appropriate blocks of information specified by the pro­
grammer.

In order to accomplish these objectives in the most general sense, TSUP1
is provided with twelve control functions some of which have subcontrol functions.
The following set of general control functions show the extent of TSUPl's vocabu­
lary. For the specific formats and capabilities of each word in TSUPl's vocabulary
see the section entitled CONTROL WORD SPECIFICATIONS. By a judicious use
of the specific control words, TSUP1 may be made to selectively rewrite a tape.

Equipment requirements:

1. Three magnetic tape units.

2. Two converter units.

3. Two memory units.

GENERAL CONTROL FUNCTIONS

The control functions of TSUP1 encompass the following five categories:

1. The check reading of tapes.

2. The rewriting of specified blocks or words on a tape.

3. The positioning of a tape.

IB59- 1N(I)
1 0 - 1

4. The selective comparison of tapes.

5. The copying of one tape to another.

In category 5 above there are four sub-categories as follows:

a. Straight copy of a specified amount of information.

b. Copying with selective replacement of information.

c. Copying with selective insertion of information.

d. Copying with selective deletion of information.

Some of these categories apply only to magnetic tapes, some apply to both
magnetic and paper tape. See section entitled CONTROL WORD SPECIFICATIONS

for further discussion.

JSAGE
In order for TSUP1 to perform a control function, information must be sup

died to it. If only a standard amount of information is required, this information
s grouped and called the "control word". Some of TSUPl's control functions re­
quire more than a standard amount of information. In this case, the additional
information is grouped into a "subcontrol word". A set of control and subcontrol

words form a control function.
TSUPl requires for its operation a sequential string of control words. Each

control word will be fully processed before the next control word is executed Any
erroneous control words or improper usage of the control or subcontrol wor s
will cause TSUPl to make an error indication, skip the erroneous contro wor ,

, . ***** Tho iiQt of control words is entered
and execute the next control word in sequence. The ^ ^
to TSUPl from paper tape. The control words may, if desired, be ey

manually.
All input expressions; control words, subcontrols, words to be insert

replaced etc., must be typed on a separate line so that a carriage return separates
them. All must begin at the extreme left of the paper, so that their left margin is
straight. No indentation is permitted. Octal words need not include high order

;eros.

1 0 - 2
IB59- 1N(I)

The series of subcontrols belonging to a given control word must be
terminated by the character e on a line by itself and to the extreme left. The entire
set of control functions must be terminated by the three-character word end on a
line by themselves and to the extreme left. If the control words are to be read in
one batch, a stop code must follow the end characters. If they are to be read in
one at a time, a stop code must follow the last character of the information belong­
ing to each subcontrol.

GENERAL FORMAT OF INPUT CONTROL AND SUBCONTROL WORDS

In order to systematize the control and subcontrol words and to make their
use convenient, a general format was designed for both the control words and the
subcontrol words. These formats are fixed in size. The size of the control word
is fixed at 23 characters including spaces, while the size of the subcontrol word
is fixed at 14 characters including spaces. A control word must be separated from
the next control word or subcontrol word by a carriage return. In all the following
descriptions of the control and subcontrol words, small letters have been used to
indicate a literal expression and capital letters indicate that a symbol has been used.

The general format for a control word is:

KKK Z II L TTT OO L XXX

Where:

KKK - is a three letter mnemonic abbreviation for the control function.

Z - is a single character denoting the sign status of the specified tapes
It is either y for ISN or n for non ISN.

II - is two alphanumeric digits denoting the octal address of the input
device.

L - is a single alphabetic character restricted in choice to either r for
rewind of the device immediately preceding it, p for reposition
without check read of the device, c for reposition with check read
and i for ignore positioning. When II is the address of a paper
tape device, this character is ignored.

TTT - has varying uses depending on the control function. See section
CONTROL WORD SPECIFICATIONS for specific meaning.

OO - is two alphanumeric digits denoting the octal address of the second
or output device.

IB59- 1N(I) 10-3

XXX - is 3 alphanumeric digits expressing in decimal, the total number
of blocks or words over which the control word is to exercise its
function.

In any case where the above defined character sets do not apply, the format
of the control word will contain an alphanumeric zero.

The general format of a subcontrol word is:

DDD EEE FFF GG

Where:

DDD - is three decimal digits denoting the number of consecutive words
or blocks over which the operations are to be performed.

EEE - is three decimal digits denoting the block at which operations will
be started.

FFF - varies depending on whether control word is the "word" type or
"block" type.

GG - is the octal address of a tape on which the information to be inserted
or replaced has been written. It may be the same device the sub-
control words are coming from.

CODING INFORMATION

CONTROL WORD SPECIFICATIONS

In the following, 0 will be used to indicate an alphanumeric zero and 0
will signify the letter "o". Small letters will be used to indicate literals and
capitals for symbolic expressions. It is convenient to first list those control
functions which have no subcontrol.

CONTROL FUNCTIONS WITHOUT SUBCONTROL

A. Straight selective copy.

cpy Z II L TTT OO L XXX

This function copies information from device II onto device OO.

Notes:

1. II may be either a magnetic or paper tape device.

10-4 IB59- 1N(I)

2. OO must be magnetic tape.

3. If II is a magnetic tape address and TTT is zero, XXX blocks are
copied from II to OO.

4. If II is a magnetic tape address and TTT is not zero, XXX words
beginning at word TTT will be copied on to OO.

5. If II is a paper tape device, TTT is not used and should be zero.

6. If II is a paper tape device, and XXX is zero, paper tape will be copied
up to a "stop code".

7... If II is a paper tape device, and XXX is not zero, XXX words will be
copied from II to OO.

8. The other control characters perform as explained under INPUT
FORMAT.

B. Comparison of two magnetic tapes.

cpr Z II L TTO OO L XXX

This function compares the information on tape II and OO. In each case
of discrepancy a message consist ing of the two disagreeing words and the tape
locations, i . e . , block and word, is writ ten on device TT.

Notes:

1. Both II and OO must be magnetic tape addresses.

2. A word by word comparison is made over XXX blocks.

^ Whenever a block of II is unequal in size to the corresponding block of
OO, the extra words are writ ten on device TT.

4. TT may only be the paper tape punch or the f lexowriter s

5. The other control characters perform as explained under INPUT
FORMAT.

C. Posit ioning of magnetic tapes.

pos 0 II L TTT OO L XXX

The function allows the posit ioning of tapes II and 00_ either forward or
backward TTT and XXX blocks respectively. Their posit ioning is independent.

IB59- 1N(I) 10-5

Notes:

1. Both II and OO must be magnetic tape addresses.

2. The L characters are used to denote respective direction of motion
of II and OO. Therefore either b for backward or f for forward are
the only permissible characters for the L fields.

3. Magnetic Tape II will be positioned TTT blocks forward or backward
depending on its L field.

4. Magnetic tape OO will be positioned XXX blocks forward or back­
ward depending on its L field.

D. Rewinding of Magnetic tapes.
rwd 0 II 0 TT 0 OO 0 XX 0

This function rewinds up to three tapes.

Notes:

1. II, TT, OO are magnetic tape addresses.

2. When less than three tapes are to be rewound, the other fields must
be zero filled.

E. Check reading.
crd Z II L TTT OO L XXX

This function reads and checks for parity error on tapes II and OO. It
provides for a re-read sequence when parity error is detected.

Notes:

1. Tapes II and OO will be check read. They may be either paper or mag­
netic tape. If either is paper tape, no re-read can be done.

2. Both tapes must have been written in the same sign node, either ISN
or NISN. If they have not, an I/O alarm may occur.

3. TTT is a count associated with II. If II is magnetic tape, TTT is a
count of the number of blocks to be checked on II. If II is a paper tape,
then TTT is a count of the number of words to be checked.

4. If either II or OO is a paper tape device, a zero should be used in its
L field.

5. If parity error occurs, and automatic re-read is initiated. This is per­
formed three times. If the error persists, the block number and the
tape address are written on the flexowriter and the routine skips the
ba:d block and continues.

1 0 - 6 IB59-1N(I)

F. Updating the block label.

ubl Z II L TTT OO L 000
This function updates the block labels of TTT Blocks on magnetic tape II.

It provides an option for updating the block labels on the input tape (II) or producing
a new tape (OO) with updated block labels.

Notes:

1. II is the tape whose block labels are to be checked.

2. TTT blocks on II will be checked.

3. If OO and II are the same, any updating will be done on II.

4. Both the word count and the block hash sum are checked by this control
function.

5. If the word count is incorrect, the corrected word count will be inserted
in the block label.

6. If the block hash sum is incorrect, an automatic re-read is initiated.
If the error persists, the new hash sum is inserted.

7. Tape H must have a block label on each block to be tested. This block
label must follow the standard block label conventions as depicted in the
document SPECIFICATIONS FOR STANDARD FIELDATA TAPES re­
vised 31 July 1959.

CONTROL FUNCTIONS WITH SUBCONTROL

The following control functions will require at least one subcontrol. A
maximum of twelve subcontrols are allowed per control word. In general, the
control word specifies tapes to be operated on and each subcontrol specifies a sub-
operation on those tapes. Each set of subcontrols is terminated by the character
e on a line by itself.

Within this area there are two general types. The first type operates on
blocks while the second operates on words.

BLOCK CONTROL FUNCTION

A. Block insertion.
isb Z II L TTT OO L 000
DD EEE FFF GG

IB59- 1N(I) 10-7

This function copies EEE blocks from II, then skips FFF-1 blocks on
GG, and copies DDD blocks from GG. The copies blocks are put on tape OO . This

is, in effect, the combination of several simpler control functions.

Notes:

1. Three tapes are involved in this operation, i. e., II OO, GG. II and
OCO must be magnetic while GG may be either magnetic or paper.

2. The input tape II and the inserting tape GG together form the inserted
output tape OO.

3. TTT is the total number of blocks to be retrieved from tape II.

4. DDD is the number of blocks which are to be inserted after block EEE.

5. If a set of subcontrols are used, the numeric values of EEE for each
subcontrol must be ascending, or an error printout will occur. That
is, if a subcontrol refers to an insertion after block K, the next sub-
control may not refer to a block less than or equal to K.

B. Block Deletion.

dlb Z II L TTT OOOOO

DDD EEE 000 00

This function copies TTT blocks from tape II, deleting blocks specified by

each subcontrol. GG is not used.

Notes:

1. II and OO must be magnetic tapes.

2. DDD consecutive blocks are deleted starting with block EEE.

3. TTT is the total number of blocks on which deletions are to be perform
ed. That is, OO will have less than TTT blocks on completion of the
control function.

C. Block Replacement.

rpb Z II L TTT OO 000

DDD EEE FFF GG
This function copies TTT blocks from II into OO replacing specified blocks

by blocks from GG.

10-8
IB59- 1N(I)

Notes:

Pi
8
1
I i
P!
PI
PI
P!
1

IP
P

2 .

3.

4.

II, OO and GG must be magnetic tapes and the sign mode of each
mustbe the same.

Each subcontrol specifies one set of replacements.

Up to 12 subcontrols may be used.

arG C°pied fr°m tape U' then DDD blocks starting at
block FFF are copied from GG while DDD blocks are skipped over
on tape II. This process is performed for each subcontrol.

When ali subcontrols have been performed, additional blocks are
copied from II until tape GG holds TTT blocks.

SrTiordSes156̂ 113 ^ WOCk EEE ^ the bl°Ck after EEE as

P

IB59- 1N(I)
10-9

WORD CONTROL FUNCTIONS

In all cases of the word control functions, the GG field of each subcontrol
is zero filled, e.g. GG<-00. If a number of subcontrol words are given EEE
must be ascending.

A. Insertion by word

isw z II L TTT 00_L 000

DDD EEE FFF 00

WORD 1

WORD 2

WORD 3

e

This function copies TTT blocks from tape II into tape OO inserting infor­
mation as specified by the subcontrol words.

Notes:

1. II and OO must be magnetic tape addresses.

2. TTT specifies the total number of blocks from II to be copied.

3. DDD words will be inserted after word FFF of block EEE of the input
tape II.

4. DDD must equal the number of WORD 1, WORD 2's, etc which appear
directly after the subcontrol.

5. As many words as desired up to 510 may be inserted consecutively.

6. If a block, by virtue of the number of insertions, becomes greater
than 511 words, an error is indicated.

7. The words to be inserted must be octal numbers. They may never
have more than 12 digits and a sign. If no sign is specified, positive
will be assumed.

10-10 IB59- 1N(I)

B. Deletion by word

dlw Z II L TTT OO L 000

DDD EEE FFF 00

This function copies TTT blocks from tape II, deleting the words specified

by the subcontrol words, onto tape OO.

Notes:

1. II and OO must be magnetic tapes.

2. TTT specifies the number of blocks on II to be copied.

3. DDD specifies the number of consecutive words to be deleted.

4. EEE specifies the block in which the deletion is to occur.

5. FFF is the word immediately after which deletions are to occur.

6. Up to 511 consecutive words may be deleted with one subcontrol.

C. Replacement by word

rpw Z II L TTT OO L 000

DDD EEE FFF 00

WORD 1

WORD 2

e

The function copies TTT blocks from magnetic tape II, replacing words

as specified by the subcontrol, onto tape OO.

Notes:

1. II and OO must be magnetic tape addresses.

2. TTT specifies the total number of blocks from II to be copied.

3. The replacing word (s) e.g., WORD 1, WORD 2 etc., must be expressed
as octal numbers with or without sign.

IB59- 1N(I) 1 0 - 1 1

4. The replacement starts at word FFF of block EEE and continues for
DDD words.

5. Up to 12 subcontrol words may be written for each control word.

6. Up to 511 words may be replaced.

ERROR HALTS

There are nine (9) specific error halts in TSUP1. More can be added if
desired. When an error is encountered TSUP1 will print on the flexowriter a
Fieldata e, a number from 1 to 9 and the control word causing the difficulty.
The computer will be halted.

If the "start at PC" switch is depressed, the control word causing the
error will be skipped and the next control word processed.

A list of the error printouts and their cause is below:

Error printout Cause

el The KKK field is illegal.

e2 There are more than 12 subcontrol words attached
to the control word printed out.

e3 There is a non-octal character in the subcontrol
word.

e4 The subcontrol words for an insertion control word
are causing the output block to be larger than 511
words.

e5 The EEE portions of a set of subcontrol words are
incorrectly ordered.

e l

e6 The type of device is inconsistent, e.g. paper tape
specified instead of magnetic tape.

The first L field of the position control function is
neither b nor f.

1 0 - 1 2 IB59- 1N(I)

The second L field of the position control field is
neither b nor f.

e!̂ An illegal character existg in the control word
printed out.

Sense Flip-Flops

Sense flip-flops 1 and 2 are used by TSUP1 for control purposes. The
setting of all other flip-flops is immaterial.

Sense flip-flop 2 is normally reset and is used only in case of error. It
allows the erroneous control word to be corrected.

Sense flip-flop 1 indicates whether the control words are to be read all
at once or one at a time. If it is set one control function at a time will be read,
however a stop code must be placed on the control tape immediately after the
control function. If it is reset, all control words are read in to core and then
executed.

The use of Sense flip-flop 2 can be seen through an example. Suppose we
had 100 control functions to be performed and after the 57th. had been performed
an error was detected in the 58th. control word. This would cause an error print­
out and a halt. Sense flip-flop 2 should then be set, the corrected control word
punched and loaded in the reader, and the start at PC switch depressed. This
causes the corrected control word to be read in and executed. Upon completion
of the function, the computer will print out "Reset SFF2". After this is done the
computer will continue execution of the rest of the control words.

Number of Storage Locations

2500 words.

REMARKS

All block counts, etc., in TSUP's vocabulary are relative to the present
tape position. That is, block number 1 is the block to be read next.

For example, if a tape had been read forwards any number of blocks, and
it was now desired to delete the 10th word in the next block, the EEE field would
001.

IB59- 1N(I) 10-13

