
IIHKB 

PRELIMINARY 

PROGRAMMING 

MANUAL 

for 

THE MOBIDIC 

COMPUTER 

February 1959 

SYLVAN IA ELECTRONIC SYSTEMS 
A DIVISION OF SYLVANIA ELECTRIC PRODUCTS INl 

DATA SYSTEMS OPERATIONS 

NEEDHAM, MASSACHUSETTS 



PRELIMINARY PROGRAMMING 

MANUAL FOR THE MOBIDIC 

COMPUTER 

February 1959 

SYLVANIA Electronic Systems 
A Division of Sylvania Electric Products Inc.  

Data Systems Operations 
Needham, Massachusetts  



A58-6N 

TABLE OF CONTENTS 

Section Page 

I INTRODUCTION 1 

II MACHINE CHARACTERISTICS 3 

A. General Organization 3 

B. Information Structure 3 

C. Logical Organization 7 
1. Sequence Control 7 
2. Input-Output Organization 11 

3. Memory Organization 12 
4. Arithmetic Unit 12 
5. Console Organization 14 

III ELEMENTS OF PROGRAMMING I5 

A. Internal Data Handling 16 
B. Arithmetic Instructions I9 

C. Editing Instructions 23 
D. Sequencing Instructions 24 
E. Indexing Instructions 28 
F. Input-Output Instructions 31 

IV PROGRAMMING TECHNIQUES 37 
A. The Trapping Mode 37 
B. Console Operations 38 

C. Program Preparation and Check-Out 42 
D. Elementary Subroutines 43 

1. Frequency Count 44 
2. Merging 46 
3. Classification 47 
4. Justification 49 
5. Floating-Point Addition 50 
6. Order Code Summary 52 

i 



A58-6N 

LIST OF ILLUSTRATIONS 

Figure Page 

1 General Organization of MOBIDIC System 4 
2 Data Word Format 4 
3 Instruction Word Format 6 
4 Decomposition of Machine Instruction 10 
5 Input-Output Organization 10 
6 Memory Organization 12 
7 Arithmetic Unit 12 
8 Operation of the REPEAT-COMPARE Sequence 31 
9 Organization of the Upper Half of the Control Console: 

The Display Panel 39 
10 Organization of the Lower Half of the Control Console: 

The Control Panel and Step Panel 40 

LIST OF TABLES 

Table Page 

I MOBIDIC Basic Cycle 3 
11 Addressable Registers 16 

III MOBIDIC Sense Flip-Flops 27 
IV Trapping Mode Control 37 
V Summary of Operation Codes 53-5f 

VI Summary of Operation Codes in Numerical Order with 
Programming Manual Page References 57-51 

iii 



A58-6N 

M O B I D I C  4  -  V A N  I N S T A L L A T I O N  

M O B I D I C  E L E M E N T  C A R D  

M O B I D I C  C O N S O L E  

( V a n  I n s t a l l a t i o n )  

M O B I D I C  F I X E D  S T A T I O N  I N S T A L L A T I O N  

MOBIDIC BY SYLVANIA v 



A58-6N 

I. INTRODUCTION 

MOBIDIC is a large-scale, general-purpose, mobile digital computer developed by 
Sylvania Electronic Systems for the U. S. Army Signal Research and Development Labora­
tories. The computer is completely transistorized and has been designed for extremely 
reliable operation under a wide range of environmental conditions to be encountered in world­
wide use with the field armies. Although MOBIDIC was originally designed for mobile 
installation, its advanced concepts of reliability and flexibility are equally advantageous for 
fixed-plant or strategic installation. Because of its operational and design characteristics, 
MOBIDIC offers many advantages over other existing commercial and military computers in 
most data-processing applications. Features of particular advantages in MOBIDIC are small 
size of equipment, fast arithmetic speed, large memory capacity with extremely fast access, 
flexible order code, wide range of input-output media, and the avoidance of the usual require­
ment for air-conditioning and temperature control. 

The present programming manual is prepared to serve both as an introduction to the 
Mobile Digital Computer system (MOBIDIC) and as a preliminary programming manual. 
The general organization of the MOBIDIC system is described in Section II. The structure 
of the information to be processed and of the machine orders is also described, and a brief 
explanation is given of the logical organization of the computer. The individual machine 
orders are described in Section III and suitable examples are given to demonstrate the 
capabilities of the various types of orders. The last section is devoted to a discussion of 
programming techniques which may prove helpful during the problem preparation. The con­
sole operations are also discussed in Section IV and certain methods are suggested for 
program check-out and error detection. 

1 



A58-6N 

II. MACHINE CHARACTERISTICS 

A. General Organization 

The MOBIDIC System is composed of the following machine units: 

Central Computer 
Memory Units 
Input-Output Converters 
Flexowriter Output Units 
Paper-Tape Readers 
Paper-Tape Punches 
Magnetic-Tape Units 
Communications Equipment 
Power Supplies and Air-Conditioning Units 
Control Console 

These units are designed to be stored in a van and will operate when power lines are con­
nected to the van. The general organization is shown in Figure 1. The boxes in the figure 
designate the various machine units and the directed lines designate the flow of information. 
The actual number of machine units used in each case is variable, and depends on the par­
ticular application under consideration. 

In addition to the standard input-output units down in Figure 1, other devices, such 
as card equipment, high-speed printers, displays, etc. are available. 

Although MOBIDIC is designed for installation in a van, it is equally adaptable to 
fixed plant operation. The rugged design, small size, and extreme resistance to environment 
imply that minimum installation provisions are required. 

B. Information Structure 

Information in the machine is represented in terms of binary digits, or bits. A 
binary one is represented by a voltage pulse of a certain magnitude or by a spot on magnetic 
tape, while a binary zero is represented by the absence of that pulse or spot. 

For purposes of information processing, the binary digits are grouped in units 
called words. Each word contains 38 binary digits. Of these 38 bits, 37 are information 
bits and one is a parity check bit chosen as zero or one in such a manner that the total 
number of binary ones in the word is odd. One of the 37 information bits in each word is 
used to represent the sign of a numeric quantity; if the information stored is not a numeric 
quantity, this bit is not decoded. 

It is necessary to distinguish between two types of words: data words and order 
words. Data words are words which contain information to be processed, while order words 
are those words which prescribe the manner in which the information is to be processed. 
A data word contains either purely numeric information, or alphanumeric information 

3 



A58-6N 

P A P E R  T A P E  

P U N C H  

F L E X O -

W R I T E R  

I  N - O U T  

C O N V E R T E R S  

P A P E R  
T A P E  

R E A D E R  

M A G N E T I C  T A P E  

U N I T S  

O T H E R  
I N  - O U T  
U N I T S  

M E M O R Y  

U N I T S  

C O N T R O L  

C O N S O L E  

M A I N  T R A N S F E R  
B U S  

PA R IT  Y  S IGN 

P A R I T Y  

Figure  I .  Genera l  Organ iza t ion  o f  MOBID IC  Sys tem 

S P A C E  

M A G N I T U D E  

N U M E R I C A L  D A T A  W O R D  

S I X  C H A R A C T E R S  

A L P H A N U M E R I C  D A T A  W O R D  

Figure 2. Data Word Format 

4 



A58-6N 

composed of both numeric digits and alphabetic characters. The word format for the two kinds 
o f  d a t a  w o r d s  i s  s h o w n  i n  F i g u r e  2 .  T h e  b i n a r y  d i g i t  p o s i t i o n s  a r e  n u m b e r e d  f r o m  1 - 3 8  
starting with the rightmost bit position. In a numerical data word successive binary digits 
represent successive powers of 2. Since the binary point is understood to be placed between 
bits 36 and 37, numbers ranging from zero to 1 - 2 in absolute value can be represented. 
For example, the number 0. 10111 can be translated into decimal notation as 1 • 2 ^ 
+ 0 • 2~2 + 1 • 2"3 + 1 • 2~4 + 1 • 2"5 = 1/2 + 1/8 + 1/ 16 + 1/32 = 23/32 = 0.71875. 

In an alphanumeric data word, the binary digits are treated in groups of 6 bits, 
each group representing one alphanumeric character. Six alphanumeric characters can 
therefore be represented in one data word. For example, the letter A might be represented 
by 000010, and the digit 4 by 110100. Logical operations such as sorting or rearranging can 
be performed either on pure numerical or on alphanumeric data, while arithmetic operations 
are normally performed on numerical information only. 

The format of the instruction words is similar to the data words. The first 36 
bit positions are used to store the instruction itself; the 37th bit position is not used, and the 
38th bit position is used for parity checking as before. It is necessary to distinguish between 
instructions which transfer information to and from the input-output units and the remaining 
instructions which are not concerned with the input-output units. The format in both cases is 
shown in Figure 3. 

The 36 bit positions comprising the standard instruction words are separated into 
4 parts designated respectively by alpha, beta, gamma and operation code. The alpha part 
is composed of bit positions 1 - 15; it specifies the address to be used in an instruction. 
In general the first 12 bits specify a memory address while bits 13-15 specify which one of 
7 possible memory units is to be used. Since a number of internal storage registers are 
addressable, the 8th configuration for bits 13 - 15 represents internal register addresses. 
The actual register addressed in these cases is specified by bits 1 - 15. Bits 6-12 are not 
interpreted when addressing internal storage registers. 

The beta part of the standard instructions comprises bits 16 - 27. These bit 
positions have several uses depending on the particular instruction being performed. The 
beta bits, either alone, or in combination with the gamma bits, may be used to specify a 
second address, or they may be used for indexing. The two low-order bits of the beta-part 
(bits 16 and 17) are also used to control the trapping mode, while bits 16 to 18 are used for 
overflow control, as explained in a later section. The gamma part composed of bits 28 - 30 
is used primarily for indexing. These bit positions specify which, if any, of the index 
registers are to be used with the instruction. The function of the index registers is explained 
in more detail later. For some instructions, gamma is used as part of a second address as 
previously stated. Bits 31 through 36 designate the operation code which specifies the 
instruction to be performed. Up to 64 different operations can be defined. If the 37th bit 
position were made a part of the operation code, an additional 64 operations could be made 
available. 

5 



A58-6N 

PARITY SPARE OPERATION CODE y $ 

38 3 7 36 31 30 28 27 16 15 |  

STANDARD INSTRUCTION WORD 

PARITY SPARE OPERATION CODE k j a 

38 37 36 31 30 22 21 16 15 i 

INPUT-OUTPUT INSTRUCTION 

Figure 3. Instruction Word Format 

6 



A58-6N 

The format for the input-output instructions is similar to that for standard 
instructions except for the assignments made to bit positions 16 - 30. Bits 22 - 30, called 
the k bits, are used to specify the amount of information to be processed, for example, the 
number of words, cards, or lines, while bits 16 - 21, the j bits, are used to specify the 
particular input-output device addressed. Each input-output unit has a specific address and 
up to 63 input-output units can be used in the system. 

During a transfer to or from magnetic tape a number of words may be treated as 
a unit, called a block. A block will normally contain up to 511 words depending on the par­
ticular problem requirements. 

C. Logical Organization 

1. Sequence Control. Central to the operation of the computer are the information 
storage units (memory units) and the information processing units. Communication between 
the various units is provided by the information transfer bus. Each operation is in the 
nature of a transfer from one unit to another through the transfer bus. For example, infor­
mation may be transferred from the storage units to the processing unit, and results are 
then transferred back from the processing unit into storage. Transfer generally takes place 
in parallel for all binary digits within a given word. 

The time taken to execute one complete instruction is called a basic cycle. The 
time required for one cycle is normally 16 microseconds. Some instructions, such as 
multiplication and division may however take considerably longer. Each basic cycle is sub­
divided into 8 periods, each period being normally two microseconds long. For instructions 
requiring more than 16 microseconds, any of the 8 periods can be extended in increments of 
2 microseconds. The 2-microsecond periods are defined by a timer which generates 8 
gating levels in sequence. These levels identify the 8 periods of the basic cycle. 

The basic cycle is shown in detail in Table I. The basic cycle operations shown 
on the left-hand side of Table I take place for all instructions, while the special operations 
shown on the right-hand side depend on the particular order being interpreted. In Table I, 
the operations of the ADD instruction are shown as an example. 

All operations and information transfers are controlled by the sequence control 
unit. The instructions are interpreted by this unit and appropriate control pulses are sent 
to the various parts of the machine to initiate the required information transfers. When an 
instruction is first extracted from memory, the address specified by the instruction (bits 1 
to 15) is first stored in the address register. From there these bits are transferred to the 
memory address register, as will be explained later. Relative addressing can be used by 
adding to the contents of the address register the contents of an index register to give the 
final absolute address. 

The following twelve bits of the instruction word (bits 16 to 27) are stored in the 
X register, while bits 28 to 30 are stored in the G register. From these two registers the 

7 



A 5 8 - 6 N  

(S 

H 
Q 

PFI 

O 

P 
Q 

C 

co 
5 

O 
T—I 
EH 
< 
OS 

£ 

O HH 
< 

N H-1 
15 
<1 

H FFI 
FC U 

O W 

J S C 
U 
W 
PH 
CO 

p 
Q 

< 

P 
O 
P 

G 
0 

TUO 
0 
p 
H-> G 
a +-> G 
O 

>> G 
o 
6 
0 

o G 
u-t 

X G 
cd G 
0 a 
O 

^ '5 
C2 S 
CO P G 
CD P 
G _ 

H 5 

C 

o -•-> 
P 
X 
X 
cd 

(D 

3 

0 G 
aJ 

P 
-A 
C cd 

G 
<D 

£ 
(1) r~H a 
£ o 
O 

to 
0 G 
o 
ci  ̂
£ CO 
G I 
O CM «+H 

X 

< 
o 

CO 

O 

CO 

§) §) 
•R-I *R—I 
CO CO 
«4H <+-I 

CO 

a 
P 
x x cd 
x G 
aS 

PQ 

G 
0 
> 
O 

O G 
CO 
cd 
£ 
0) G 
0 
J3 
+-» 

X G 
cd 
X 
0 
H-> G 
0 

6 
0 

a 
£ o 
A 

CO 
cd 
£ 
P 

X G 
cd 

a s o 
0 
CO 
0 G 
O 

&> 
.G +-» 

S 
u o 

G 0 
cd 
CO 

a o 
> 
O 

cd r—1 C+H 0 
£ 1 G 
0 G 0 

a •rH i—1 CO cd 0 G 0 «4H £ 
X +-> £ G 0 G T3 cd 0 G r—H cd rC cd 

r—H cd H-» 
X5 X5 
0 o G 

•+-> rt G 
0 c 

p G 
0 c 

G XJ G 
0 c 0 0 G > -+-» 

0 O G 0 a 0 G : 
G rC C 1 

0 G -+-» 
C 1 
0 o r—H 

0 H-» 
0 a 

•+-» CO S o o G 
o 

u 
CO o m cd f-H al 
£ «+-! G 
P 0 > PQ 
VH O <n HH 1—1 

W 
P 

U 
>H 

U 

O H-1 
CO 
<1 
PQ 

U 
H—I 
Q 
HH 
P 

W 
P 

p 
< 
H 

u 0) H-» 
CO 
So 
0 
P 
H-» G 

CO a 
5 H-» 
O 0 
EH 
C G 
OS O 
W £ 

0 
S PL, 

o 
£ 
0 
S 

w "cd 
J CO 
U 0 
>H > •rH u G 

Y 
G 

Y cd 
55 X < G 
PQ cd G 

0 
A 0 

>5 G 
o 
6 
CD 

X G 
cd G 
CD 
a 
O 

G 
£ 
CD 

P 

G 
O 

CO G 
O •H 
4-> 
A G G 

H-> 
CO G 

G 
O 

G 
O 

X 
CD 
CO 
P 

G 
CD 

-*-> 
G 
G 
O 
U 

6 
aS G 
TXO 
O G 
P 

G 
CD +-» 
G 
O 
U 

G 
CD 

G 
CD 

-•-» 
CO •iH 
TUO 
CD 

P 
CO 
CO 
CD G 
X x < 
G 
O 

aS CD 
G  ̂

>•> G 
O 

£ 
CD 

CD 
CO »—H G 
P 
X 
cd 
CD 

P 

X G 
(D 

CO 

CO 
CD 
> 
•H G 
G 
aS 

G 
O •iH H-> 
0 G G 

+-> 
CO G 

X 
CD 
£ 

o 

G 
0 h-> 
CO •H 
tuO 
0 

P 
h-> 
G 
a 
G 
o 
G 
O s 
0 cd 

G 

CO 
CO 
0 
G 
-A 
X < 

G 
0 

TUD 
0 
P 
•*-> 
G 
a +-> G 
o 
G 
O 

6 
0 

X G 
aS 

U 
0 

two 
0 
P 
O 

G 
0 

TUD 
0 
P 
X 

G 
0 

tuO 
0 
P 

G 
0 
+-» 
CO 

"So 
0 
P 
G 
O 

•*H 
+-» 
0 G G 

•+-> 
CO G 

G 
O 

6 
0 

o 
G % 

-R-I 0 

G G 
O G 
3 O 
U U G 

G 
0 

bJD 
0 
P 
X 
0 
XS G 
T-H 

0 

CO 
C 

0 
s: 

G 

0 
P 

s 
aJ G 
BO 
O G 
P 
0 
s: 

a 
0 
-M 
CO 

o 
CO 

G 
0 

C o 
U 

0 
x: 

TJ 
-A 
< 

P 
< 
o 

XJ 
0 

0 
0 a 
CO 

0 
JZ 

p 
< 

o 
CO 

•*-» G 
0 -*-» 
C o 
U 

0 x: -•-» 
G 
0 

G 
EH 

TU) 
0 
P 

CO 
CO 
0 G 

-A 
T3 < 
G 
O 

S 
0 

o 
£ 
0 

0 
CD 
' 4 G 
P 
TJ 
RT 
0 
P 
ri 

T3 
G 
0 

CO 

G 
0 
-•-» 
CD 

So 
0 
P 
G 
O 

-*-> 
0 
G 
G 
-•-» 
CO 
C 

G 
0 -•-» 
G 
O 
0 

G 
0 

«4-H 
CO 
G 
aJ 
G 
E-

0 
G cd 
CD 
0 G 

G 
0 

TS 
O 
0 
0 
Q 

G 
0 
T3 
O 
0 
0 
Q 

TJ 
0 

So 
G 
0 
C 
0 

aS G 
O 

cd 
G 
0 
A 

O 

G 
O 

•rH 

0 G 
G 
P 

P 

EH 

P 
EH 

CO 
1 m 
p P P 
EH EH EH 

P 
EH 

I 

P 
EH 

P 

8 



A58-6N 

information is transferred either to an index register (bits 16 to 27 only) or to another memory 
address register, or to an input-output converter, depending on the particular instruction 
given. 

The last 6 bits which make up an instruction and which specify the operation code 
are transferred to the instruction register and from there they go to the decoder register 
to be interpreted into the proper sequence of control pulses. Figure 4 shows the break-down 
of an instruction into its various components before interpretation. The four storage 
registers which store the various parts of each instruction are not individually addressable. 

During the execution of a given instruction the address of the next instruction in 
sequence is determined. To this effect, the program counter, which holds the address (bits 
1 - 15) of each instruction before execution is stepped through consecutive memory addresses. 
The program counter can be individually addressed. 

The program counter store can be used to store the contents of the program 
counter when a given sequence of instructions is to be interrupted. The original sequence 
can later be resumed by transferring the contents of the program counter store back to the 
program counter. 

Another method for controlling the sequence of operations to be performed by the 
machine consists in using the index registers. These registers have a 12-bit capacity and 
are individually addressable. Any index register can be used to modify a programmed address 
by adding its contents to the specified address. The index registers can also be used as 
counters; for example, an index register might specify the number of times a given program 
is to be used during a calculation. 

2. Input-Output Organization. The organization of the input-output units is shown in 
Figure 5. A set of in-out converters is provided to act as buffering devices during the trans­
fer of information between input-output units and the other machine units. Each in-out 
converter is individually addressable and can store one word exclusive of the parity bit; in 
general any converter can be used in conjunction with any input-output unit. As many input-
output units can normally be used simultaneously as there are converters available to effect 
the information transfer. However, the maximum number of input or output units of any one 
kind which can be used simultaneously depends also on the data transfer rates of the par­
ticular input-output unit. For example, not more than four magnetic-tape units can be used 
s imultaneous ly. 

The transfer of information between input-output and other machine units takes 
place independently of the central machine. Computation is interrupted only during access to 
the memory units. When a word is transferred to an output unit it is broken down into 6-bit 
characters in the in-out converter before the individual characters are released to the given 
output unit. Conversely, during an input operation, the individual characters are assembled 
in the converter as they come in from the input unit, and a whole word (37 bits) is then re­
leased to a machine unit when completely assembled in the converter. 

9 



A58-6N 

F i g u r e  1 .  D e c o m p o s i t i o n  o f  M a c h i n e  I n s t r u c t i o n  

M A I N  T R A N S F E R  B U S  

Figure 5. Input-Output Organization 

10 



A58-6N 

A set of soecial 40-bit inout-outout registers is Drovided to handle asynchronous 
data arriving at the computer from external sources, or being transmitted to an external 
medium by the computer. Bits 38 to 40 are used for control functions. The real-time 
output registers are connected to the main transfer bus and are individually addressable. 
When a word is assembled in the real-time output register, it is released to the outout 
medium connected to that particular real-time output register. 

The information loaded into the real-time input registers is transferred either to 
memory or to an addressable storage register upon completion of the currently executed 
instruction. If information arrives during an instruction which takes considerable time, such 
as multiplication or division, the transfer occurs while the instruction is executed without 
delay in the main program. The real-time address registers store the 15 bits which are 
necessary to specify the memory location or the location of the addressable storage register 
which is to receive the information arriving at one of the real-time input registers. The 
real-time address registers can be individually addressed, and their contents are auto­
matically incremented after each memory access, so as to insure that consecutive memory 

locations receive the input information. 

A program interrupt feature allows control to be transferred to memory location 
0, if bit position number 40 of the word contained in the real-time input register contains a 
one. (The sending device must supply this bit). The regular program is then interrupted 
and the address of the last instruction executed is stored in the B register of the arithmetic 
unit; from here it can later be retrieved when the regular program is to be resumed. An 
addressable flip-flop is used to supply the program-interrupt bit for words being sent out 

through the real-time output register. 

3. Memory Organization. Each memory unit consists of a magnetic-core matrix 
capable of storing 4096 words. A maximum of seven memories can be used for a total of 
28, 67 2 words. The basic memory organization is shown in Figure 6. 

Each memory unit is provided with a read pulser and a write pulser which 
provide the control pulses required to read a word from the memory or to write a word 
into the memory. The memory address register is a 12-bit register which stores the 
address of the memory location addressed by the read or write pulsers. The memory in-
out register acts as a buffer for words being transmitted to and from a memory unit. The 
parity count is also verified in that register for all words coming out of the memory unit. 

4. Arithmetic Unit. The arithmetic unit is composed of three special storage 
registers, all individually addressable, and of the control circuitry necessary to perform 
the arithmetic operations. The organization of the arithmetic unit is shown in Figure 7. 

The A-register, or accumulator, is a 38-bit register and is the main register 
in the arithmetic unit. Most arithmetic and comparison operations involve the contents of 
the accumulator. The accumulator can be reset to zero before entering new information, 
or else new information can be added to the contents of the accumulator without prior re­
setting. The accumulator holds the sum, difference, product, and remainder after addition. 

1 1  



A58-6N 

M A I N  T R A N S F E R  B U S  

F i g u r e  6 .  M e m o r y  O r g a n i z a t i o n  

M A I N  T R A N S F E R  B U S  

Figure 7. Arithmetic Unit 

1 2  



A58-6N 

subtraction, multiplication, and division respectively. It also contains the augend or minuend 
at the start of an addition or subtraction, and the multiplier before multiplication. 

The Q-register is a 38-bit register which holds the low-order bits of a double-
length dividend (that is, the 36 least significant bits of a 72-bit dividend) at the start of a 
division. At the end of multiplication and division, it contains the low-order bits of a double-
length product and the quotient respectively. The Q-register is also used during the "mask" 
instruction, as will be explained later. Finally, the Q-register can be joined with the A-
register as shown in Figure 7, to perform "shift" and "cycle" operations on double-length 
numbers. The Q-register will contain the low-order bits of the double-length number in each 
case. 

The B-registeris a 38-bit register used to hold one of the operands of an arith­
metic operation. It stores respectively the addend, subtrahend, multiplicand, and divisor 
for addition, subtraction, multiplication, and division. 

5. Console Organization. A control console is provided as part of the MOBIDIC 
system. It is used by the machine operator for manual control of the machine and by 
maintenance personnel for repair and maintenance. The control switches and indicators 
permit the operation of the computer in a number of different modes; for example, the com­
puter can be made to stop after the execution of each instruction if this seems desirable. 
The operator can also reset the memory and register contents to zero; he can introduce 
information manually into any register, and read-out the contents of any memory location 
or register by means of a set of indicator lights. In general, the console allows a certain 
amount of manual intervention during the execution of a program, and provides the required 
flexibility for efficient operation of the computer. 

13 



A58-6N 

III ELEMENTS OF PROGRAMMING 

The individual machine orders which are used to determine the processing sequence 
are described in this section. A few simple examples are given to illustrate the use of the 
various instructions. A number of orders whose function is related are grouped together, 
thus orders for internal data handling are first described, followed by arithmetic orders, 
orders for sequence control, indexing orders, input-output orders, and editing orders. 

In each case, the functional name of the order is followed by its operation code in octal 
notation and by its mnemonic abbreviation. The time required to execute the operation is also 
indicated. Finally a brief explanation is given of the action performed by each order. Unless 
otherwise noted, each order can be indexed, the particular index register to be used being 

indicated by the 7 part of the instruction. 

The following conventions and abbreviations are used in the remainder of this section: 

a) Unless otherwise stated, all numeric data words and order words are in octal 

notation. 
b) Since the sign position of an instruction has no influence on its operation, it is 

normally disregarded. 
c) The symbol C( ) is used to indicate the contents (sign and magnitude) of the location 

given in parentheses. For example, C(A) indicates the contents of the accumulator. 
d) A subscript shown with C( ) specifies the contents of the associated bit position (s) 

of the word. For example, C(141)1? indicates the content of bit position 17 of 
memory location 00141. C(A)115 stands for the contents of bit positions 3 through 
15 (inclusive) of the accumulator. C(Q)gn refers to the value of the sign of the Q 

register. 
e) A numeric subscript shown with either A, Q, or B specifies a bit position of the 

word. For example, AJ0 stands for bit position 10. 
f) Normally, an abbreviated instruction is written-operation code 7, P, a. However, 

if a given subdivision of the instruction can have no effect on its operation, its 
designation is left out. For example, CLA7Q, indicates that the CLEAR AND ADD 
instruction is independent of the bit configuration shown in the beta part. 

Table II shows the octal addresses assigned to the various addressable locations 
within the computer. These addresses are generally shown in the part of the instructions. 

15 



A58-6N 

TABLE II 

ADDRESSABLE REGISTERS 

Register Address (Octal) Register Name Code 

00000 - 07777 Memory Unit Zero 
10000 - 17777 Memory Unit One 
20000 - 27777 Memory Unit Two 

60000 - 67777 Memory Unit Six 
70001 Index register one (I1) 
70002 Index register two (I2) 
70003 Index register three (I3) 
70004 Index register four (I4) 
70010 Accumulator (A) 

70011 Q register (Q) 
70012 B register (B) 
70013 Program Counter (PC) 
70014 Program Counter Store (PCS) 
70015 Instruction register of 

converter receiving the 
input order 

(CRI) 

70020 Word Switch Register (WSR) 
70021 Real Time Address Register (RAR) 
70022 Real Time Output Register (ROR) 

70030 Instruction register of first 
in-out converter 

(CISI) 

70031 Instruction register of 
second converter 

(CIS2) 

A. Internal Data Handling 

The instructions which are used primarily for moving words or parts of words from 
one element of the central computer to another are described first 

16 



A58-6N 

LOAD, 51, LODyPa, 18 Msec.  

Replace the contents of the addressable register (not a memory location) specified by P with 
C(a); a refers to a memory address or an addressable register. C(a) is unchanged. C(B) is 
replaced by C(a). 

STORE, 50, STRya, 16 Msec.  

Replace C(a) with C(A). C(A) remains unchanged. 

CLEAR AND ADD, 10, CLAya, 16 Msec.  

Replace C(A) with C(Q) .  C (a) remains unchanged. 

REPLACE ADDRESS, 54, RPAya, 22 Msec. 

Replace C(a)j with CtA)^^. C(A) and c(Q)i0.sn remain unchanged. C(B) is replaced 
by C(A). 

REPLACE THROUGH MASK, 55, MSKya, 22 Msec.  

Replace the bits of C(a) including sign bits with those bits of C(A) corresponding to the "ones" 
of C(Q). C(A), C(Q), and the remainder of C(a) remain unchanged. C(B) is replaced by C(A). 

MOVE, 52, MOVyPa, 26M sec. 

Replace C(yP) with C(a); C(a) remains unchanged. This is a two address instruction in which 
a specifies one 15-bit address, and y and p together specify the second 15-bit address. C(B) 
is replaced by C(a). The MOVE instruction cannot be indexed. If a REPEAT order precedes 
the MOVE order, a special sequence is followed, as explained later in this section. 

The six orders previously defined will now be described in more detail. The LOAD 
order can be used to transfer a word from any register or memory location to an addressable 
register. For example (octal notation will be used): 

OP 
CODE y P a 

51 0 0011 00400 

will transfer the contents of memory location 400 to the Q register, and 

51 0 0011 70001 

will replace C(Q) with the contents of index register 1. 

CLEAR AND ADD is a special-purpose load order used for transferring a word into 
the accumulator. The instruction 

10 0 0000 00701 

will transfer the contents of memory location 701 into the accumulator. 

17 



A58-6N 

The STORE instruction performs the inverse operation of the CLEAR AND ADD. 
The contents of the accumulator are transmitted to another register or to a memory location. 

REPLACE ADDRESS is normally used to modify the address part of an instruction. 
The operation of this instruction is illustrated by the following example: 

Let the Accumulator contain +073 002 113 211 and memory location 371 contain 
+400 000 002 765; then the instruction 

54 0 0000 00371 

stores +400 000 013 211 in memory location 371. 

The operation REPLACE THROUGH MASK is similar to that of REPLACE ADDRESS 
except that it allows the replacement of any bit or combination of bits in a memory location 
or addressable register. The choice of bits to be replaced is controlled by the binary "ones" 
of the contents of the Q register; bit positions of a corresponding to zeros of Q are not affected. 
The following examples will clarify the operation of this instruction. 

Example 1: 

Let C(A) = +123456701 234 = 010 011 100 
C(Q) = +000000000 077 = 000 111 111 
C(7 21) = +000000000 000 = 000 000 000 

Execution of 55 0 0000 007 21 will leave 

C(721) =+000 000 000 034 

Example 2: 

Let C(A) = -765 432 101 234 
C(Q) = -070 605 040 302 
C( 1200) =+432 107 654 321 

After translation into binary form 

C(A) = 1 111 110 101 100 O i l  010 001 000 001 010 O i l  100 
C(Q) = 1 000 111 000 110 000 101 000 100 000 O i l  000 010 
C(1200) = 0 100 011 010 001 000 111 no 101 100 O i l  010 001 

Execution of 55 0 0000 01200 will alter the contents of memory position 1200 as follows: 

C( 1200) = 1 100 110 010 101 000 010 110 001 100 010 010 001 
=  - 4 6  2 5 0 2 6  1  4  2  2  1  

A short program will now be given using the instructions introduced so far. An instruction 
is located at address 1361. It is required to isolate the gamma bits (28-30) and address bits 
(1-15) of the instruction and store them at 1500 and 1501 respectively (memorv location 600 
contains the word +007 000 000 000): 

18  



A58-6N 

10 0 0000 70000 Clear Accumulator 

50 0 0000 01500 Store Zero in 1500 

50 0 0000 01501 Store Zero in 1501 

10 0 0000 01361 Clear and Add C(1361) 

51 0 0011 00600 Load Mask 

55 0 0000 01500 Store Gamma in 1500 

54 0 0000 01501 Store Address in 1501 

The first three instructions of the above program are used to clear memory locations 
1500 and 1501 to +000000000000. The first instruction can be used to clear a register or 
memory location because a zero operand is provided when a non-existent register (in this case 

70000)is addressed. 

The MOVE instruction is used primarily for transferring words from one memory 
location to another. It is the only instruction which will transfer the contents of an address­
able register, other than A, directly to the memory. The program previously given can be 
shortened by one instruction if the following two move orders are used to clear memory loca­

tions 1500 and 1501: 

52 0 1500 70000 
52 0 1501 70000. 

The last four instructions of the original program remain unchanged. 

Whenever data is called for from a nonexistent register the result is the same as 

calling for information from a location containing zero. 

B. Arithmetic Instructions 

Arithmetic operations are performed in MOBIDIC on binary numbers, including sign 
and magnitude. As noted earlier the binary point is fixed and assumed to be between bit 
position 36 and the sign position. The range of numbers which can be represented in 
MOBIDIC is, therefore, between -(1 - 2~36) and +(1 - 2"36). However, by using proper 
scale factors, the programmer is able to perform arithmetic operations in any number range. 
The introduction into the machine of a number whose absolute value is greater than or equal 
to one results in overflow. Normally, the computer will set the overflow alarm and halt 
when an overflow occurs in the accumulator. However, instead of halting the computer, 
several other options are available to the programmer for handling overflow. These options 
will be described in detail after the arithmetic instructions have been introduced. 

ADD, 12, ADDypa, 16psec. 

This instruction replaces C(A) with the algebraic sum of C(A) and C(a); overflow is possible. 
C(a) remains unchanged The contents of the B-register depend on the signs of both the 

accumulator and of memory location a. A detailed explanation is given in Table IV at the end 

of this manual. 

19 



A58-6N 

SUBTRACT, 16, SBMyPa, 16 /usee. 

This instruction replaces C(A) with the algebraic difference between C(A) (minuend) and C(a) 
(subtrahend); overflow is possible. C(a) remains unchanged. C(B) is again dependent on the 
signs of A and of a as explained in Table V. If overflow occurs during addition or subtraction, 
the overflow bit is lost. However, the machine may be halted as will be explained later. 

ADD MAGNITUDE, 13, ADM^Pa, 16 /usee. 

This instruction replaces C(A) with the algebraic sum of C(A) and the absolute value of C(a); 
overflow is possible. C(a) remain unchanged. C(B) depends on A and a as explained in 
_ , , „ sn sn 

SUBTRACT MAGNITUDE, 17, SBMyPa, 16 psec. 

This information replaces C(A) with the algebraic difference between C(A) (minuend) and the 
absolute value of C(q) (subtrahend); overflow is possible. C (a) remains unchanged. C (B) 
depends on A and a as before, sn sn 

The following example serves to illustrate the operation of the various Add and Subtract 
instructions. 

C(A) C(q) Instruction New C(A) 

+000 013 726 130 +011 620 351 072 ADD a 
SUB a 
ADMa 
SBM a 

+-11 634 277 222 
-011 604 422 742 
+011 634 277 222 
-011 604 422 742 

Since C(a) is positive ADD and ADM give the same result; so does SUB and SBM. The next 
example illustrates these operations when cl contains a negative number 

C(A) C(a) Instruction New C(A) 
+125 013 301 075 -734 320 574 001 ADD a -607 305 272 704 

SUB a +061 334 075 076* 
ADMa +061 334 075 076* 
SBM a -607 305 272 704 

* Indicates overflow 

If should be noted that, if the result of an arithmetic operation is equal to aero, the 
sign of the accumulator will be taken as the sign of the result. The following example illus-
trates this rule. 

20 



A58-6N 

C(A) C(a) Instruction New C(A) 

-123 456 701 234 + 123 456 701 234 ADD a -000 000 000 000 
SUB a -247 135 602 470 
ADM a -000 000 000 000 
SBM a -247 135 602 470 

CLEAR AND SUBTRACT, 14, CLS-ya, 16 usee. 

This instruction replaces C(A) with the negative of C(a). 

CLEAR AND ADD MAGNITUDE, 11, CAM-ya, 16 psec. 

C(A) is replaced by C(a) and Agn is set equal to zero. 

CLEAR AND SUBTRACT MAGNITUDE, 15, CSMya, 16 Msec.  

This instruction replaces C(A) with C(a) and sets A equal to 1. sn 

MULTIPLY, 20, MLYtu, 86 Msec.  

This instruction forms the 72-bit algebraic product of C(A) (multiplicand) and C(a) (multiplier). 
The high-order 36 bits of the product are left in A and the low order 36 bits in Q. Both Agn 

and Q hold the sign of the product. C(B) is replaced by C( ). Sl l  

MULTIPLY AND ROUND, 21, MLRya, 86 psec. 

This instruction forms the 7 2-bit algebraic product of C(A) and C(a). The high-order 36 bits 
_ 3 6 of the product are left in A and the 36 low-order bits in Q. If Qgg = 1,1-2 is added to A. 

C(B) is replaced by C(a) if Q^g = 0 and by +000 000 000 000 if Qgg = 1. 

|~For purposes of scaling it is often convenient to assume the existence of a fictitious 
binary point. After a multiplication, the number of bits to the right of the (fictitious) binary 
point in the 72-bit product is equal to the sum of the number of bits to the right of the binary 
points in both the multiplicand and the multiplier. For example, if C(A) = +000 000 000 133 
and C(1401) = -000 000 007 102, then execution of the instruction 20 0 0000 01401 leaves 
C(A) = -000 000 000 000 and C(Q) = -000 001 210 566. Under the assumption that the 
binary point of the multiplier lies between A^g and A^ ^, and the point of the multiplicand 
between positions 4 and 5 of memory location 1401, the binary point of the product will lie 

between and Qjg-J 

DIVIDE, 22, DVDy(3a, 88 Msec.  (18 Msec i f  overf low)  

This instruction forms the unrounded 36-bit algebraic quotient of C(A) (dividend) and C(a) 
(divisor). The quotient is left in Q and the remainder in A. The sign of the remainder agrees 
with the sign of the dividend. If | C(A)| >|c(a)| overflow occurs and the division does not take 

21  



A58-6N 

place. C(A) and C(Q) are unchanged with the exception of Q which is set equal to A . sn ^ sn 
C(B) is replaced by C(a). 

DIVIDE LONG, 23, DVL7pa, 88 psec. (18 psec if overflow) 

This instruction is identical with DIVIDE except that the dividend is a 72-bit number. The 
36 high-order bits of the dividend are stored in the accumulator and the 36 low-order bits in 
the Q-register. The sign of the dividend will be the sign of A. 

Qf the fictitious binary point of the dividend and divisor are in the same relative posi­
tion, the binary point of the quotient will be to the left of Q3g and the binary point of the 
remainder to the left of A^g. Displacement of the point in the dividend results in an equal 
displacement of the points of both the quotient and the remainder. Displacement of the point 
of the divisor results in a change of equal magnitude but opposite direction in the quotient J 

NORMALIZE, 37, NRM7C1, 18 + n - n(mod 2) psec. , n = number of shifts 

C(A) is shifted to the left until a one appears in A^g. C(A) is replaced with n • 2 where n 
is the number of shifts executed, and asn is set to 0. If C(A) is zero, n = 36. A is not sn 
shifted, and a is made positive. The NORMALIZE instruction is useful to compute scale 
factors during calculations. It is also used for floating point operations and to edit output data. 

SHIFT RIGHT, 32, SHR7C1, if a <9: 16 psec; a >14:2+ a+ a(mod2)psec. 

C(A) is shifted a(mod 128) places to the right. The bit positions vacated at the left are 
replaced with zeros, and the bits shifted out at the right are lost. A is not shifted sn 

SHIFT RIGHT LONG, 33, SRL7C1, if a <14: 16psec:a >14:2+ a+ a(mod 2) 

The 72 bits stored in A and Q are shifted a(mod 128) places to the right. The bit positions 
vacated at the left of A are replaced with zeros and the bits shifted out at the right of Q are 
lost. A and Q are not shifted, so that A, is shifted into Qot,. sn sn 1 ob 

SHIFT LEFT, 30, SHL7PQ, if a < 9: 16 psec; a> 9: 8 + a - a(mod 2)psec. 

C(A) is shifted a(mod 1^8) places to the left. The bit positions vacated at the right of A are 
filled with zeros and the bits shifted out at the left of A are lost. Agn is not shifted. If a 
non-zero bit is shifted out of Agg, overflow occurs. 

SHIFT LEFT LONG, 31, SLL7Pa, if a < 9: 16 Msec; a > 9:8 + a - a(mod 2)psec. 

The 72 bits stored in A and Q ape shifted a(mod 128) places to the left. The bit positions 
vacated at the right of Q are filled with zeros and bits shifted out at the left of A are lost. 
Asn and Qgn are not shifted. If a non-zero bit is shifted out of Agg, overflow occurs. 

The instructions which can cause overflow are ADD, ADM, SUB, SBM, DVD, DVL, 
SHL, and SLL. As mentioned previously, several options are available to the programmer 

2 2  



A58-6N 

to handle overflow. A flip-flop called the overflow alarm (OA) is used to indicate to the 
programmer that overflow has occurred. Normally an overflow causes the machine to halt 
and to set OA. However, the three low-order bits of the beta part (bits 16, 17, and 18) of 
instructions which can cause overflow may be used to control the computer in case of over­
flow. The following table shows the effect of each of the eight possible configurations formed 
by bits 16, 17, and 18 in case of overflow: 

Bits 
18 17 16 

Before Execution 
of Instruction 

If Instruction 
Causes Overflow 

0 0 0 Clear OA Set OA and halt 

0 0 1 Clear OA Set OA 

0 1 0 Clear OA Set OA and halt 

0 1 1 Clear OA No action 

1 0 0 No action Set OA and halt 

1 0 1 No action Set OA 

1 1 0 No action Set OA and halt 

1 1 1 No action No action 

The arithmetic instructions previously given are illustrated by the following simple 

example: It is desired to find 

Z = ax + k 
c 

In this example it is assumed that all four parameters are scaled at 2°, that is, 36 bits are 
placed to the right of the binary point. It is further assumed that overflow is not possible. 
Let C(100) = a, C(101) = b, C(102) = c, and C(200) = x, and let it be required to store Z at 

/ 

500. The following program will calculate the required function: 

10 0 0000 00100 place a in A 

21 0 0000 00200 multiply by x 

12 0 0000 00101 add b 

22 0 0000 00102 divide by c 

52 0 0500 70011 store Z 
The beta parts of the ADD and DVD instruction have been coded to halt the machine in case 

of overflow. 

C. Editing Instructions 

This class of instructions is used primarily to change the format of internally stored 
information. This is often required in preparation for an output operation when it is neces­
sary to insure that the information appear in the proper form on the output document. Edit­
ing orders are also used to arrange information in a form convenient for some later operation, 

such as a comparison. 

23 



A58-6N 

The various instructions are described in detail in the next few paragraphs. Both the 

NORMALIZE (NRM) and the REPLACE THROUGH MASK (MSK) instructions, which 

properly belong to this category, were introduced previously for convenience. Examples 

which illustrate the use of these instructions are given as part of the elementary subroutines 
in the next section. 

CYCLE SHORT, 34, CYSya, a< 14:16 psec.; a > 14: 2 + a + a(mod 2) psec. 

The cycle-short instruction forms a closed ring, consisting of the 36 bits of the A register, 
and cycles the bits a(mod 128) places to the left. Bits passing out of A^g enter A^, so that no 
information is lost as it is in an ordinary shift operation. Agn remains unaltered. 

CYCLE LONG, 35, CYSya, a < 14:16 p sec.; a > 14: 2 + a + a(mod 2) psec. 

The cycle-long instruction is similar to CYS except that the ring is formed by the complete A 
and Q registers. All 74 bits are cycled in such a way that bits passing out of A^g enter Agn> 

bits passing out of A enter Q bits passing out of Q„R enter Q , and bits passing out of sn i. uu sn 
Q enter A,. sn 1 

LOGICAL ADD, 03, LGA7C1, 16 psec. 

This instruction forms the logical sum of C(A) and C(a). A Boolean "or" function is performed 
on a bit-by-bit basis, and the result is left in A. For example, if C(A) = 001011 and 
C(a) = 011001, Logical Sum C(A) = 011011. 

LOGICAL MULTIPLY, 02, LGM-ya, 16 psec. 

This instruction performs the Boolean "and" function of C(A) and C(a). The result is again 
left in A. 

' 

D. Sequencing Instructions 

The MOBIDIC order code includes several instructions which allow the programmer to 
control the sequence in which the computer executes the instructions. Most of these "trans­

fer" instructions cause the machine to either leave the normal sequence of instructions or not, 
depending upon the result of some test or comparison. Such instructions are called "condi­

tional transfers". Transfers of control which do not depend on the results of some test or 
comparison are called "unconditional transfers". 

Transfers may be made only to a memory address. Attempts to transfer to an address 
able register not a memory will result irt a halt. 

24 



A58-6N 

UNCONDITIONAL TRANSFER, 40, TRU^pa, 16/usee. 

The next instruction is taken from memory location a. The beta bits of this instruction are 
used to control the trapping mode as will be described later in Section IV A. 

For example, if C(A) = 1101011 and C( ) = 0111000, the logical product C(A) = 

0101000. 

LOGICAL NEGATION, 04, LGNya, 16 /usee. 

This instruction places the one's complement of C(a) in the accumulator. For example, if 
C(a) = 1011101, then this operation will place 0100010 in the accumulator. In each of the 
last three orders, the sign bit is included in the operation. 

The logical operations performed by the last three instructions define a complete 
Boolean algebra and permit the computation of all binary functions of binary variables. Such 
functions, often called "truth functions", or "switching functions" are used in logic and in 
the theory of switching, and are generally useful in the design and application of computing 

machinery. 

Transfer instructions are often used to form a "loop". In a loop the same set of 
instructions is executed repetitively. The program for the computation of: 

z _ ax + b 
c 

is rewritten below in the form of a loop to show how the same instructions can be used to 
compute Z for different values of x. The x. are assumed stored in consecutive memory 
locations starting at 200 and the Z. are to be stored consecutively starting at 500. Since 
this program refers to the storage locations of some instructions, addresses are assigned 
starting, arbitrarily, at location 1000. 

1000 10 0 0000 00100 place a in A 

1001 21 0 0000 00200 multiply by x. 

1002 12 0 0000 00101 add b 

1003 22 0 0000 00102 divide by c 

1004 52 0 0500 70011 store Z. l 
1005 10 0 0000 01001 place MLR in A 
1006 12 0 0000 01014 increment i 
1007 54 0 0000 01001 store address in MLR 
1010 10 0 0000 01004 place MOV in A 

1011 12 •o 0000 01015 increment i 
1012 50 0 0000 01004 store MOV 

1013 40 0 0000 01000 return to beginning 
1014 +00 0 0000 00001 constant for modifying x. 
1015 +00 0 0001 00000 constant for modifying Z. 

25  



A58-6N 

This program could not actually be used for the computation of Z^ since there is no 
provision made for terminating the program. Several instructions will be introduced later 
which can be used to transfer out of a loop after the loop program has been performed a 
given number of times. 

TRANSFER ON NEGATIVE ACCUMULATOR, 46, TRNya, 16 psec. 

If A is a one, the next instruction is taken from a. If A is a zero, the sequence is con-sn sn ' M 

tinued in order. Only the sign bit of the accumulator is considered. 

TRANSFER ON POSITIVE ACCUMULATOR, 44, TRPya, 16 psec. 

If A is a zero, the next instruction is taken from a. If A is a one, the sequence is con-sn sn 
tinued in order. 

TRANSFER ON ZERO ACCUMULATOR, 45, TRZ-ya, 16 psec. 

If C(A)1_gg is zero, the next instruction is taken from a. If C(A)j_gg is non-zero, the 
sequence is continued in order. 

HALT, 00, HLT, 16 psec. 

The computer operations are halted after completion of any input or output operations 
currently in progress. If the START AT PC switch is actuated after the computer is halted, 
the next instruction is taken in sequence. 

COMPARE, 47, TRCya, 22psec. 

C(A) and C(a) are compared algebraically. If C(A) < C(a) the computer continues in sequence. 
If C(A) > C(a), the next instruction is skipped. If C(A) = C(a) the next two instructions are 
skipped. C(A) and C(a) remain unchanged. C(Q) is replaced by C(A). C(B) will contain a. 
In the execution of this order, minus zero is considered equal to plus zero. 

SENSE, 05, SENypa, 16 psec. 

If the flip-flop specified by p is set, the next instruction is taken from a. If it is reset, the 
sequence is continued in order. 

SENSE AND SET, 06, SNSyPa, 16 psec. 

If the flip-flop specified by p is originally reset, it is set by this instruction and the next 
instruction is taken from a. If'the flip-flop is originally set, the sequence is continued in 
order. 

26  



A58-6N 

SENSE AND RESET, 07, SNR-yPa, 16/usee. 

If the flip-flop specified by p is originally set, it is reset by this instruction and the next 
instruction is taken from a. If the flip-flop is originally reset, the sequence is continued 
in order. 

Table III shows the addresses of the various flip-flops in the computer and indicates 
how they can be affected by the console or the program. For example, if the overflow alarm 

is set, the instruction 
07 0 0100 02511 

will reset it and transfer control to 2511. 

TABLE III 

MOBIDIC SENSE FLIP FLOPS 

Octal 
Address Designation Function 

Console 
Switch 

Can Be 
Cleared 

By 
Program 

Can Be 
Set By 

Program 

0000-0077* IOD In-Out Device Busy Signals No No No 

0100 OA Overflow Alarm No Yes Yes 

0101 ROPI Real Time Output Program Interrup : No Yes Yes 

0102 ISN Interpret Sign Yes Yes Yes 

0103 NHC Ignore In Out Converter Error Yes Yes Yes 

0104 RPE Real Time Parity Error No Yes No 

0105 ROBB Real Time Output Busy Bit No No No 

0106 RORgg Real Time Output Reg. Bit No. 38 No Yes Yes 

0110-0117 SFF1-SFF8 General Sense Flip Flops Yes Yes Yes 

0120-0127 SFF9-SFF16 General Sense Flip Flops Yes Yes Yes 

0130 IOAj 
KDAg 

In Out Alarm Converter 1 No No No 

0131 
IOAj 
KDAg In Out Alarm Converter 2 No No No 

0135 TPE Tape Erase Yes Yes Yes 

- - TRA Trapping Mode Yes Yes** Yes** 

* .These addresses correspond to the address of the device being sensed. 
** Done only by p bits of TRU order or when an order is trapped. 

All flip-flops shown in Table III, except TRA, are addressable only by SEN, SNR, and SNS 
instructions, except that RPE cannot be set (SNS); ROBB, IOAI, and IOA2 can only be sensed 
(SEN) and at the time of this writing, the state of TPE cannot be determined (SEN), but it can 
be set (SNS) and reset (SNR). In each case, the flip-flops address appears in the beta-part 

of the instruction. 

27 



A58-6N 

E. Indexing Instructions 

It was mentioned in Section II that a set of index registers is provided in the MOBIDIC 
system. The contents of these index registers can be added to the programmed addresses 
before execution of the instructions in order to allow for more flexible programming. The 
indexing operation itself, that is, the addition of the contents of the index register to a memory 

address, proceeds generally without loss of time in the main program. Address modification 

is used not only to operate on different variables with the same set of instructions, but also 
to permit the programming of routines independently of the memory locations which will be 

used to store these routines. The programmer is then unconcerned with the actual storage 

assignment until all routines are completely programmed. 

When an order is "indexed", the address (a) is internally increased by the contents of 

the specified index register before the order is executed. The contents of the memory posi­

tion containing the order are unchanged. 

Since the index registers are used for address modification, instructions must be 
available to modify the contents of these index registers and to specify memory addresses. 
A set of indexing instructions is therefore provided to increment the contents of the index 
registers by some specified amount, or to specify addresses by other means. Such instruc­

t i o n s  a r e  d e s c r i b e d  b e l o w .  I f  t h e r e  a r e  n  i n d e x  r e g i s t e r s  a n d  y  =  n ,  t h e n  7 + 1  =  1 ;  i f  

7 = 0 or 7 > n, then no data can be transferred into the specified index register and data 
called for by any instructions is zero. 

LOAD INDEX, 53 LDX7|3a, 16/usec. 

This instruction replaces C(IT) by p and C(IT+:1) by a. The LOAD INDEX instruction always 

modifies the contents of two index registers. If it is desired to load only one index register 
from memory, the LOAD instruction should be used. For example, 

51 0 0002 07512 

could be used to load index register 2 with 0(7512)^^. The LOAD INDEX instruction cannot 

be indexed. If a non-existent index register is addressed, the instruction is interpreted as a 
vacuous (skip) order. 

TRANSFER ON INDEX, 43, TRX7PC1, 22/usee. 

If C(I7+1) = 0, the instructions are continued in sequence. If Cd*^1) 4 0, is replaced 

b y C ( I T + 1 ) - l .  I f C ( I 7 + 1 ) i s  n o w  e q u a l  t o  z e r o  t h e  s e q u e n c e  i s  c o n t i n u e d  i n  o r d e r ;  o t h e r w i s e  
C(IT) is replaced by Cd^) + p, and the next instruction is taken from a. In any case C(B) 

is replaced by a. This instruction cannot be indexed. If a non-existent index register is 
addressed, the instruction is interpreted as a vacuous order; C(B) however, is replaced by a. 

28  



A58-6N 

ADD BETA, 24, ADByPci, 26m sec. 

First P is added to CCa)^ The sum is then placed in A, a, and i"1'. C(Q) is replaced by 
the original contents of A. The contents of B depend on both C(A) and C(a), as shown in 
Table V at the end of the manual. Overflow is ignored. The ADD BETA instruction cannot 
be indexed. 

SUBTRACT BETA, 25, SBByPq, 26psec. 

P is subtracted from C(a)^ ^he difference is placed in A, a, and f. C(Q) is replaced by 
the original contents of A. C(B) depends on C(A) and C(A) as before. Overflow is again 
ignored. The subtract beta instruction cannot be indexed. 

LOAD PCS AND TRANSFER, 41, TRLyPu, 16psec. 
y 

The location of this instruction incremented by one is stored in PCS; P is then loaded into I' 
and the next instruction is taken from a. This instruction cannot be indexed. 

TRANSFER TO PCS, 42 TRS, 16psec. 

The next instruction is taken from the location specified by PCS. 

REPEAT, 01, RPTyPq, 16psec. 

The instruction following the REPEAT order is executed a + Cd^) + 1 times. After each 
execution of that instruction, its a part is increased by p of the REPEAT instruction. After 

3 4 completion of the repeated order, I =0 and I = p. The REPEAT instruction and the instruc­
tion being repeated are left unchanged in memory. A REPEAT order followed by any input-
output order will operate in the same manner as a REPEAT order followed by any other 
order. A sense or transfer instruction following a REPEAT order will transfer in the proper 

y 
manner only when it has been executed a + C(I') + 1 times. 

Two MOBIDIC instructions exhibit a special mode of operation when preceded by the 
REPEAT order. These are MOVE (MOV), and COMPARE (TRC). 

The REPEAT-MOVE combination allows the block transfer of an arbitrary number of 
words from one part of memory to another. When the MOVE instruction follows a REPEAT, 
the a address of the MOVE order is incremented as described under the REPEAT order, and 

9 
the yP address is indexed by I . Furthermore, before each MOVE order is executed, its 
effective a-part is placed in the Q-register, and the remaining bits of Q are set to zero. 

As an example, the following program will move a block of one hundred consecutive 
words starting at location 250 to consecutive locations starting at 1200: 

00071 51 0 0002 00074 

00072 01 0 0001 00143 

00073 52 0 1200 00250 

00074 +00 0 0000 00001 

29 



A58-SN 

2 In this program memory location 74 contains a constant used to load I . Since the 
high-order six bits of C(74) represent the operation code for the HALT instruction, the 
machine will stop after completing the block move. It should be noticed that, by substituting 
different values for the beta part of C(72) and for the alpha part of C(74), a large variety of 
block moves can be made. Thus, blocks of words can be increased or reduced in size, and 
the arrangement of the words within a block of data can be substantially altered. 

The REPEAT operation can be used in conjunction with a COMPARE (TRC) operation 
to allow for comparisons between the contents of the accumulator and a specified sequence of 
memory locations. Such comparisons are useful in table look-up operations and in operations 
which make it necessary to rearrange the order of input or output data. 

Consider the following sequence of orders: 

Location Order 

y - 1 RPT TJPJQJ 

y TRC y2 - a2 

y + l 
y+ 2 
y+ 3 

Since both the REPEAT and the COMPARE orders can be indexed, the number of repetitions of 
the COMPARE order is given by R = + C(l"^) + 1, while the effective address of the COM­
PARE order is x = + C(I^). 

The operation of the REPEAT-COMPARE sequence will now be explained in detail. 
The contents of the accumulator are first compared with the contents of x. If C(A) < C(x), 
x is stored in the B register and transfer is made to location y + 1, that is, to the address 
immediately following the TRC order. In a table look-up operation, this case corresponds to 
one where the argument used to search the table is smaller than any of the functional values 
stored in memory in increasing order of magnitude. 

If C(A) = C(x), x is again stored in the B register, and transfer is made to location 
y + 3. This case corresponds to one where the argument stored in the accumulator is equal 
to the functional value stored in location x. 

If C(A) > C(x) the argument is larger than the functional value stored in x, and in 
general a further comparison with a larger functional value should take place. For this 
reason, a further test is made to determine if R (the number of repetitions of the COMPARE 
order) is equal to zero. If R > 0, R is decreased by 1, and the address of the next memory 
location, x, to be compared is increased by Pj of the REPEAT order; the whole program is 
then started over by a new comparison between the contents of the accumulator and the contents 
of the new x. If, on the other hand, R = 0, that is, if all allowable repetitions have already 
been performed, a transfer is made to location y + 2. This case is the one where the argument 
has already been tested against all available functional values. 

30 



A58 -6N 

At the end of the complete sequence, the contents of the accumulator will appear in 
the Q-register, while C(A) and C(x) are unchanged. The actual number of comparison 

3 executed is given by - I + 2. 

The complete RPT-TRC sequence is shown in flow-chart form in Figure 8. The 
round boxes indicate comparisons. The TRC order is assumed to be stored in location y as 
before. The operations coded at locations y + 1, y + 3, and y + 2 can be unconditional transfer 
orders which transfer control to different locations depending on whether the argument is 
smaller than, equal to, or larger than any of the given functional values. 

Figure 8. Operation of the REPEAT-COMPARE Sequence 

F. Input-Output Instructions 

The input-output system of MOBIDIC consists of one or more in-out converters and a 
set of peripheral equipment. Each converter contains storage units and controls to operate any 
of the peripheral devices. As many devices can operate simultaneously as there are available 
converters. 

When an in-out order is decoded the first free converter is selected and the instruction 
is stored in that converter. The computer then proceeds to the next instruction in sequence. 
In the event that all converters are in use, or that the input-output device requested is 
occupied, the sequence is interrupted until the device is free and a converter is available; 
when these conditions are obtained the instruction is processed. 

Before giving a detailed description of the in-out orders, a few comments must be 
made concerning the magnetic and paper tape formats. Characters are recorded on magnetic 
tape in eight parallel channels. Six of the channels correspond to the alphanumeric character 
code, one is used to store a parity bit for each character, and the last is used for control 
purposes. The density of recording is 280 bits-per-linear-inch, and tape speed is 150 inches-
per-second. If the sign of a word is to be read or recorded together with the remaining 

3 1  



A58-6N 

characters of that word, the Interpret Sign Flip-Flop (ISN) must be set by a SENSE AND SET 
order prior to executing the actual in-out instruction. The ISN Flip-Flop will be reset as part 
of the transfer of the in-out instruction to the converter. In the interpret sign mode, the sign 
is then converted to the correct eight-bit pattern and recorded on tape as an individual character. 

The paper tape format is similar to the magnetic tape format, in that information is 
punched in eight parallel channels: six information channels, one parity channel, and one con­
trol channel. However, the code assignment for the individual characters is somewhat different 
for paper tape at either 60, 120, or 270 characters-per-second, depending on the paper tape 
reader; punching is done at the rate of 60 characters-per-second. 

When reading or writing, the Non-Halt On CONVERTER Error flip-flop (NHC) can be 
set, if a parity error is to be ignored. Thus, if the programmer wishes to read 5 words with 
sign from magnetic tape No. 1 and ignore parity errors, the following program can be used: 

Address 

100 06 0 0102 00101 Sense and set ISN, transfer to 101 
101 06 0 0103 00102 Sense and set NHP, transfer to 102 
102 70 005 01 00500 Read 5 words from tape No. 1. 

The input-output instructions will now be described in more detail. 

WRITE ALPHANUMERIC, 74, WANkja, 16psec. + 8/isec. per word + tape time 

The WRITE ALPHANUMERIC order is used to write k words on output device j. The location 
of the first word is specified by the address Q. If the addressable Interpret Sign flip-flop 
(ISN) has not been set, the converter will ignore the sign, and split the remaining word into 
six 6-bit characters, The high-order characters of each word are recorded first. Thus, 
bits 31-36 will be recorded first, followed by bits 25-30, and so on until bits 1-6 are recorded. 
Since k uses only 9 bits of the order word, in general there is a maximum of 511 words per 
block. However, certain very complicated programming tricks can be used to write longer 
blocks. 

If the Interpret Sign flip-flop is set prior to giving the WAN order, a six-bit 
character defined as the sign of the word is recorded, followed by the six characters of the 
word. Thus, in this mode, each word is composed of seven characters, the first character 
being the sign. 

If the device j is a magnetic-tape unit, special symbols known as block marks are 
automatically recorded before the first word and after the kth word. An interlock gap is left 
between each terminating block mark and the beginning block mark of the next block. When a 
WAN order is executed, this gap introduces a delay of approximately 6. 2 milliseconds before 
the first word is transmitted from the memory. Approximately 11 milliseconds are required 
for the tape to pass over a complete interrecord gap. Thereafter, words are recorded at the 
rate of 24 Msec, -per-character (144psec. or 168 psec. per word). During the record opera­
tion, internal computations can take place; an interruption of 8 psec. occurs only when a 

32  



A58-6N 

converter requires access to the memory. This interruption is handled automatically, and is 
not under program control. 

WRITE OCTAL, 76, WOKkja, 16^sec. + 8 qsec. per word + tape time 

The WRITE OCTAL order cannot be used for magnetic tape. In the WRITE OCTAL mode, the 
sign is always interpreted and the 36-bit word is split into 12 octal digits preceded by a sign 
digit. Each octal digit, consisting of three bits, is converted to its equivalent six-bit form and 
sent to the output device. This is done because the output devices respond only to a six-bit 
code. Thirteen 6-bit characters are recorded per word. In all other respects the WOK order 
is similar to the WAN order previously described. 

READ OCTAL, 72, ROKkja, 16psec. + 8psec. per word + tape time 

The READ OCTAL order reads k words from device j and places them in memory starting at 
the address specified by a. This order cannot be used for magnetic tape. Its primary purpose 
is to provide a means for converting information on punched paper tapes directly into machine 
code. This is required since information is not recorded on paper tapes in pure binary form. 
The six-bit characters are converted to equivalent 3-bit octal digits. A machine word is 
assembled from 13 octal digits; the first is treated as the sign, and the remaining twelve com­
prise the 36-bit word. 

Because it is impractical always to specify the exact number of words to be read, a 
special character defined as "stop code" is provided. When this code is r^ad from paper tape 
by the photo-electric tape reader, the reading is terminated, even though less than k words 
have been read. The stop code can be punched on tape either by the flexowriter or under 
program control. 

Other special characters are provided to control the flexowriter action. Since the 
flexowriter has both an upper and a lower case, symbols are provided to shift both up and 
down. Other symbols control the space, tabulator, carriage return, and back-space actions. 
All these special controls are available for both upper and lower case. All the characters, 
including alphanumeric characters and special arithmetic symbols are provided in either 
upper or lower case, but not both. 

READ ALPHANUMERIC, 70,RANkja, 16psec. + 8jUseo. per word + tape time 

If j specifies a magnetic-tape unit, then the READ ALPHANUMERIC order reads k(mod 28) 
words or blocks into consecutive memory locations starting at address a. If the ninth bit 
(the most significant bit) of k is a one, then the remaining eight bits determine the number of 
blocks to be read; if this bit is a zero, then the other eight bits determine the number of 
words to be read. The RAN order can be used with the Interpret Sign flip-flop in a set or 
reset state, as explained previously. Furthermore it is possible Lo read more than k(mod 28) 
words by the use of complicated programming tricks. 

33 



A58-6N 

When a magnetic-tape unit is selected by this order, the converter first searches for 
a beginning block mark before reading words into the machine. For example, if the order 
70 005 01 00300 is to be executed, the converter will search for the next beginning block 
mark on magnetic tape unit one, read five words into memory starting at address 300, and if 
the number of words in the block is greater than five, search for the terminating block mark 

and stop. 

If the device addressed by the RAN order is a paper-tape reader and the Interpret 
Sign flip-flop (ISN) is set, the RAN order will assemble incoming characters consisting of 
six 6-bit characters preceded by a sign character. The reading will be terminated either 
by a stop code on paper tape, or after k(mod 29) words have been read, depending on which 

occurs first. 

Consider, for example, the following orders: 

3000 06 0 0102 03001 
3001 70 777 36 00100 

The first order sets the ISN flip-flop (address 0102); thereafter control is transferred to loca­
tion 3001. The next order reads up to 511 words and stores them starting at location 100. If 
a stop code is encountered the reading operation will cease; otherwise all 511 words will be read. 

If the Interpret Sign flip-flop is not set and the paper-tape reader is addressed, two 
modes of paper-tape reading are possible, depending on whether the most significant bit of k 
is a one or a zero. If this bit is a one, six characters will be grouped to fbrm a word to be 
stored in memory. When the stop code is read, the reading will cease and the stop-code com­
bination will appear as a character in the last word. Zeros will be supplied in the low-order 
positions to fill the last word read into memory. 

If the highest-order bit of the k-part in the instruction is a zero, only one character 
is read and placed in memory location a as a full machine word. This character will occupy 
the low-order six bits; the remainder of the word will be filled with zeros. 

SKIP, 66, SKPkj, 16 Msec. + tape time 

This order applies to magnetic tape only. Tape unit j will skip k(mod 2P) blocks forward. 
The a bits of the order are not used. 

BACKSPACE, 67 BSPkj, 16 psec. + tape time 

This instruction is identical with SKP except that skipping takes place in the reverse direction. 

READ REVERSE, 71 RRVkja, 16 psec. + 8 p sec. per word + tape time 

This instruction is identical with the RAN order except that reading takes place in reverse 
direction. 

34 



A58-6N 

REWIND, 77, RWD j, 16 /usee. + tape time 

This instruction rewinds magnetic-tape unit j. 

RE-WRITE, 75, WWAkja, 16/usee. + 8/usee. per word + tape time 

When this order is given, tape unit j starts in the read mode and searches for the next 
beginning block mark. When this block mark is detected, the tape unit switches to the 
record mode and writes k(mod 29) words beginning at memory location a followed by a 
terminating block mark. If a beginning block mark is not found, the whole tape will be 

searched. 

35 



A58 

IV PROGRAMMING TECHNIQUES 

A number of techniques which may be useful in operating and programming 
the computer are presented in this section. The trapping mode is first described 
followed by a description of the control console. Methods are suggested for 
starting the calculations and for the check-out of problems. Some useful program 
subroutines are then given to illustrate the use of the orders introduced in the 
previous section. 

A. The Trapping Mode 

The trapping mode is used mainly in diagnostic procedures. It can be con­
trolled either by the program or by the operator. The following discussion applies 
only to program control. 

If the trapping mode flip-flop (TRA) is set, and the machine is given any of 
the instructions in the list below, it will not perform the instruction, it will in­
stead take the next instruction from location 0, the contents of the Program Counter 
will be sent to the B register, and the trapping mode flip-flop will be reset. 

TRL TRN SEN 
TRS TRP SNS 
TRX TRZ SNR 

The trapping mode flip-flop (TRA) is not addressable. It may be set by 
using the unconditional transfer (TRU) order, with the 16th and 17th bit positions 
set in accordance with the scheme shown in Table IV. 

TABLE IV TRAPPING MODE CONTROL 

TRA P16 of P17 °f P 0 B 

Flip-Flop TRU Order TRU Order Trapped a + l7 PC 0 TRA 1 TRA 

0 0 0 Unchanged 
0 0 1 Unchanged 
0 1 0 
0 1 1 Unchanged 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

Unchanged 



A58-6N 

B. Console Operations 

A slightly simplified diagram of the console is given in Figures 9 and 10. It may be 
noticed that the control elements on the console consist of a set of switches and a set of 
display lights. The display lights exhibit the state of the flip-flops which store the binary 

digits within each word. 

The contents of the following storage registers can be displayed in the bus indicator 

register: 

A, B, and Q Registers 
Program Counter Store 
Memory Output Registers (1-7) 
Index Registers (1-4) 
Converter Instruction Register (1-4) 

The register selection is provided by the bus selector switches, located below the bus 
indicator register. Each one of the 15 switches controls one of the registers listed above. 
The seven memory output registers can be used to monitor any word in memory after first 
transferring that word from memory to the appropriate memory output register. This 
transfer can be achieved manually by means of a read-out switch provided as part of the 
initiating control switches. 

The instruction word register is used to display the last instruction performed by the 
computer. This register displays the contents of the instruction register, the G and X 
registers, and the address register, as explained in Section II. A third set of indicators is 
used to display the contents of the program counter, that is, the address of the next 
instruction to be performed by the computer. 

The program counter displays the location from which the next order will be taken. 

The mode control switches (Single Pulse, Run, One Construction) are used to fix the 
mode of operation. The computer can be made to operate continuously under program 
control (Run), or it can be made to stop after each instruction is performed during pro­
gramming checking (One Instruction), or it can be made to stop after each pulse time for 
maintenance purposes (Single Pulse). 

The initiating control switches (Read Out, Start at ASR, Manual Instruction, Read In, 
Start at PC, Program Read In) are used to start computer operations, either at the location 
specified by the contents of the program counter (Start at PC), or at the location specified 
by the contents of the address switch register (Start at ASR). The address switch register 
consisting of 15 switches provided on the console can be set manually to store any computer 
address. A set of 15 neon indicators located immediately above the address switches is used 
to display the contents of the address switch register. The initiating controls are also used 
to read-in programs into the computer from punched paper tape (Program Read In). This 
mode is often used when the computer must first be loaded with a set of programs. 

38 



A
58-6N

 

<D 
F—

< 
o § o 
o

 
r—

H 
O ft 
"S O 
o

 
X n QJ a

 
£
 

J! <u 

a o 
•i—

I 

•a N 
&

 
O. 
00 

bo a> 
U X 
O

 H
 

a» <a 9 C
m 

39 





A58-6N 

The initiating controls also permit manual read-in (Read In) and read-out (Read Out) 
operations. To this effect, the word switch register consisting of 37 switches and associated 
display indicators is provided on the console. A word can be set-up in the switches and can 
then be read into the register or memory location specified by the address switch register; 
alternatively, an instruction specified in the word switch register can be executed by means 
of the manual initiating controls (Manual Instruction). This register (WSR) is individually 
addressable. To read-out a word stored in memory, the memory address is set in the 
address switch register; the word is then transferred from memory to the memory output 
register in order to be displayed in the bus indicators. 

A halt switch and an emergency halt switch are provided on the console; these switches 
can be used to stop the computer manually. The halt switch stops the machine after com­
pletion of the current instruction except that all input-output instructions currently being 
executed are finished. The emergency halt stops the machine without waiting for completion 
of the current instruction. In the latter case, all input-output devices are stopped and the 
associated converters cleared. 

The clear memory function provides a method for resetting to zero the contents of all 
memory locations of a given memory unit, while the clear computer switch clears all 
registers (but not the memory) except the halt flip-flop and the flip-flop of the timing function 
generator. Each memory unit is provided with a clear memory switch. 

A set of three-position sense and control switches are provided which can be set or 
reset either manually or under program control. In the neutral position, these flip-flops 
operate under program control only, and can be interrogated by a SENSE order, as pre­
viously explained. In the set or reset positions, the flip-flops are manually controlled and 
cannot be altered by the program. Sixteen sense flip-flops are provided and four special 
control flip-flops designated respectively by NHC (no halt on converter error), ISN (interpret 
sign), TPE (tape erase), and TRA (trapping mode). 

The NHC flip-flop is used to prevent the halting of the machine if a converter error 
is detected, while the ISN flip-flop controls the treatment of the sign of a number during 
input-output operations. The TPE flip-flop permits tape erasure. It is used in conjunction 
with a write order and it erases k words or blocks of that write order. 

The TRA Switch is also shown on the control console. When this switch is reset 
manually, all transfers to the trapping mode are inhibited. 

A set of error and alarm display lights is provided on the console to detect various 
program and machine failures. Thus, an alarm is set if a non-existent memory location is 
addressed or a non-existent instruction is used. Overflow resulting from an arithmetic 
operation can also be detected by an alarm flip-flop under program control. A separate 
error alarm is provided for each memory unit and for each in-out converter to detect 
parity check errors. 

41 



A58-6N 

Under normal circumstances the computer will halt if an error is detected by any of 
the error alarms. However, a No Halt on Error switch provided on the console can inhibit 
the halt action in such cases, if this is desired. This No Halt switch must be set manually. 
If an error is detected and the machine stops, the error alarm is reset by a Clear Error 
switch, which is located below the error alarms on the console. The Clear Error switch 
operates as a common reset control for all error alarms. 

A Disable Program Interrupt switch is provided to inhibit the program interrupt feature 
available with the real time input system. 

A number of power control indicators are provided to indicate whether the main power 
is turned-on; indicators will also show whether the peripheral equipment and the memory units 
are ready to operate. A Not Computing indicator, connected to the halt flip-flop, is turned-on 
if the machine is stopped but ready to compute, while a Computing indicator is turned-on when 
the machine is operating. 

C. Program Preparation and Check-Out 

Programs are normally prepared on punched paper tape. However, if off-line equipment 
is available, magnetic tapes or punched cards can also be used. The program read-in mode is 
used to transfer a program into memory. To initiate the program read-in operation, two 
instruction words must be provided on a special paper tape. The first word on the tape is a 
READ instruction which specifies the address of the input device containing the program, the 
number of words to be read into the computer, and the memory storage location for the pro­
gram. The second word contains the address to which control is transferred after completion 
of the program read-in. 

During check-out of a program, the error and alarm flip-flops should be enabled so as 
to allow detection of non-existent instructions and memory addresses, and of possible overflow 
during arithmetic operations. Furthermore, it is convenient to operate the computer in the 
trapping mode during program check-out. A transfer to memory location zero will then occur 
for each TRANSFER and SENSE order in the program. The program at memory location zero 
can provide for type-out of the contents of important memory locations; moreover, the location 
from which transfer was made to memory location zero.must be saved from the B register so 
that the program can be resumed at the correct location after interruption. 

Since trapping mode permits verification of the conditions which control a transfer of 
control operation, the programmer can follow the programs as they are executed to insure 
that the various paths traced on the flow diagram are actually executed. Instead of stopping 
the computer for each TRANSFER and SENSE operation, the contents of certain key registers 
can be recorded on tape and the program resumed automatically from where the interruption 
originally occurred. At the end of the complete computation, the program can then be checked-
out with the help of the recorded data without tying up the computer. 

42 



A58-6N 

The sense flip-flops can also be used for diagnostic purposes, since they can cause 
transfer of control when set, while not affecting the program when reset. When used in this 
manner they function as "break-points" in the program. 

For maintenance and detection of machine failures, the machine can be operated 
cycle-by-cycle or one pulse at a time. Special programs can also be used to test the various 
units of the computer in order to narrow down the areas where errors are likely to have 
originated. Such programs will be described in a separate maintenance manual. 

Special program packages are also made use of while preparing a problem for solution. 
Such programs are frequently designed to be used repeatedly in a given calculation and are of 
great help to the programmer. Some routines of this nature are described in the next few 

paragraphs. 

D. Elementary Subroutines 

A subroutine can be defined as a set of self-contained orders designed to perform a 
specified task which may be required repeatedly during a given calculation. Often, such 
subroutines are stored in a fixed location in memory throughout the computations, and control 
is transferred to the particular location whenever the routine is needed. Some of the routines 
which are used most frequently for scientific applications include the trigonometric function 
routines; square root, logarithm, and exponential routines; and routines for complex, high-
accuracy (double-length), and floating-point arithmetic. Routines which are used in data-
processing applications include the merging, classification, and ordering of data; the extraction 
of certain characters from a large block of information, and the loading and unloading of the 

memory locations. 

A number of preliminary routines are presented in this section. The methods used 
represent typical solutions to the problems chosen. It is not suggested, however, that these 
routines are necessarily to be included in a subroutine library for MOBIDIC. 

1. Frequency Count. It is often desirable to obtain a frequency count of a set of words 
or characters. For example, in linguistic analysis it might be desirable to determine how 
often each word is used in a given text; alternatively, a frequency count of the individual 
letters within each word might be desired. 

The routine which follows can be used to obtain a frequency count of alphanumeric 
characters. One hundred blocks of twenty words each are stored on magnetic tape. The six 
alphanumeric characters which are included in each word are individually tested and a count 
is kept for each of the 64 possible configurations of 6 bits. This count is kept in memory 
locations 00 000 to 00 077 (the first 64 memory locations in memory unit 0) in such a way that 
memory location a is used for configuration a. The program will process one block of words 
while the next block of words is read into memory. The total time required by the program is 
a function of the read-in time only; no additional time is required by the internal processing. 

4 3  



A58-6N 

M O B I D I C  M A C H I N E  
C O D I N G  F O R M  

PROGRAM- Frequency Count 

ROUTINE 
PROJECT/W.O L 

LOCATION + OP 
K !  J  a COMMENTS LOCATION + OP y & a COMMENTS 

0  1 
100 1 70 4 0 1 ' 20 00124 BLOCK I 

100 2  53 4 0 0 1 00 00144 100, n—>1^ 0->I4 

100 3  10 0 0 0 1 00 70000 *r o
 

o
 

«—1 01 0 0 0 1 01 00077 fclear counters 

ioo 5  50 0 0 0 1 00 00000 
ioo 6  70 4 0 1 1 20 00100 BLOCK II 

ioo 7  07 0 0 1 1 10 01010 0—>SFF1 

101 0  24 0 0 0 1 24 01012 modify process 

101 1 51 0 0 0 1 03 00151 2010->I3 

—*101 2 51 3 0 0 11 00077 word—>Q 

101 3  51 0 0 0 ' 04 
1 

00150 6->I4 

!*• i o i 4 10 0 0  0  , 0 0  70000 clear acc. 

101 5  31 0 0 0 1 00 00006 

101 6  54 0 0 0 1 00 01020 .process 

101 7  10 0 0 0 1 00 70011 6 characters 

102 0 24 0 0 1 01 • 

—102 1 43 3 0 0 1 00 
1 

01014 character test 

102 2 43 2 0  0  , 0 0  01012 word test 

102 3 43 4 0 0 1 00 01025 block test 

102 4 1 Exit 

102 5 05 0 0 1 1 10 01006 sense to determine next read 
102 6 70 4 0 1 1 20 00124 read BLOCK I 
102 7 25 0 0 0 1 24 

. .  . . . I  
01012 modify process 

103 0 06 0 0 1 , 10 01011 l-> SFF1 
1 I 
2  1 LOC CONTENTS 
3 1 

1 0-77 Counters 
4 1 100-123 BLOCK II 
5 1 124-147 BLOCK I 
6 1 

1 150 *>8 
7 1 

1  151 248 

44 



A58-6N 

A sense flip-flop is used to indicate whether the computer is ready to treat block 1 or 
3 4 block 2. Index register 3 (I ) is used to count the words in each block, 1 counts the 

characters in each word, and I1 counts the blocks themselves. The inner loop which processes 
the characters (locations 1014 - 1021) is reduced to a minimum, since each 6-bit character 
is also treated as the address of the counter for that character. 

2. Merging. The operation which consists in taking several sets of ordered numbers 
and forming from these a single ordered set of numbers is called merging. Merging is 
frequently used in business and other data-processing applications for file maintenance, and 
during sorting operations. 

The program presented here takes two sets of positive numbers arranged in ascending 
order and merges them into a single set of numbers in ascending order. The location of the 
first word of set 1 is taken to be an unspecified, memory location x, while location y will 
store the first word of the second set. The merged list will be stored starting at memory 
location S. 

4 Index register number 4 (I ) is used as a counter to step the storage addresses of the 
merged sequence, so that successive numbers are stored in successive locations in memory. 
2 I is similarly used to step from one storage address to the next for the first set of unmerged 

3 numbers, and I steps from address to address for the second set of unmerged numbers. 
The last number in each set is a sentinel identified by a negative sign. The program tests 

v 
each number to find if it is negative. When the first negative number is found, one set of 
numbers is exhausted; the remaining numbers from the other set are then taken in order and 
added to the merged list. 

In this routine it is assumed that the total number of words to be merged does not ex­
ceed the number of locations available in memory. 

3. Classification. The operation which consists in breaking down a single set of 
items into several classes according to some specified criterion is called classification. 
For example, the familiar punched-card sorter arranges a deck of cards into ten pockets 
according as a particular card column contains each one of the ten decimal digits. 

Classification is one of the basic business data-processing operations. It is performed 
when a certain class of items in stock must be segregated from the other items in an inven­
tory control problem, or when a given class of customers must be processed separately in 
an accounts-receivable operation. Classification can be performed both with tabulating 
equipment and with large-scale computing machinery. 

The routine presented hdre classifies one hundred integers into ten classes according 
to the value of the lowest order digit. Since all integers might conceivably end in the same 
digit, one hundred storage locations are reserved for each class of integers. Thus, all 
integers which end in zero are stored starting at location 2001, those ending in 1 are stored 
starting in 2146, those ending in 2 are stored starting in 2313, and so on. One extra memory 
location is reserved for each class of integers to store the number of integers in each class. 

45 



A58-6N 

M O B  I D  I C  M A C H I N E  
C O D I N G  F O R M  

P R O G R A M  Merge, Routine 

L O C A T I O N  ± O P  K  !  J  
a  C O M M E N T S  L O C A T I O N  ± O P  

Y  & a  C O M M E N T S  

0  LDX 2  1 (X) (Y) L(X) - > I 2 ;  L(Y)-> 13 

1  LOD 0 0 0 1 04 00036 L(S)—> I 4  

r 2  CLA 2  0 0 1 00 00000 X 

3  TRN 0 00030 Test for last X 
* 4  CLA 3 1 00000 Y 

5  TRN 0 1 00022 Test for last Y 
6  TRC 2  1 00000 Y:X 
7  TRU 0 1 00016 < 

l O  TRU 0 1 0001 1 > 
1 1  CIA 2  1 00000 = 

1  2  STR 4 1 00000 X —>6 

1 3  ADB 0 00 01 1 70002 X + 1->X 

1 4  ADB 0 00 , 01 70004 S + l-> S 

• -1 5  TRU 1 00002 

1 6  STR 4 1 00000 Y—>S 
1  7  ADB 0 00 | 01 70003 Y + 1—>Y 

2 0  ADB 0 00 1 01 70004 S + 1->S 
L  2  1  TRU 0 1 

1 
00004 

* 2 2  CLA 2  1 00000 X 
23 TRN 0 1 EXIT Test for last X 

2 4  STR 4 1 00000 X->S 

2 5  ADB 0 00 1 01 70002 X + 1 ->X 

2 6  ADB 0 00 1 01 70004 S + 1->S 

^ 2 7  TRU 0 

3 

00 1 00 00022 

1* 3 0  CLA 

0 

3 00 , 00 00000 Y 
3 1  TRN 0  00 | 00 EXIT Test for last Y 
3 2  STR 4 1  00000 Y—> S 
3 3  ADB 0  00 1 01 70003 Y + 1—> Y 
3 4  ADB 0  00 I  01 70004 S + 1->S 
3  5  TRU 0  1  00030 
3 6  1  

L(S) 
7  1  

1  

46 



A58-6N 

M O B  I D I C  M A C H I N E  
C O D I N G  F O R M  

PROGRAM. Class i f ica t ion  

LOCATION + OP Y 
K |  J  

J9 
a  COMMENTS 

0100O 10 0 0
 

0
 

0
" 

0
 

70000  

0100 1 01  0 01 145 00009 ^c lear  counters  

01002 50 0  00 loo  02000 J  

oioo3 53 2 

0
 

0
 

0
 

0
 00144  I O O 1 0 — >I J ,  0 ->I^  

01004 10 0 

0
 

0
 

0
 

0
 70000  0—>ACC 

oioo5 51 2 00 111 01513 N—>Q 

01006 23 0  1 01512 N (mod 10)  =  r em 

01007 50 0  1 70001 rem—> I*  

0101O 10 1  
0

 
0

 

0
 

0
 01500  c r  

01011 54 0  1 01012 ~  

01012 24 0  

'—1 
0

 

0
 

0
 C (C r  + l ->C(C r ) ->A 

01013 12 1  
1 01500 L(C r )  +  C(C r ) ->A 

01014 54 0  1 01016 -

01015 10 2 1 01513 N 
01016 50 0  1 «— N_>L(C(C r )  +  L(C r ) )  

7 43 2 00 101 01004 

0 1 EXIT 
1 1 

1 
2 1 LOCATION CONTENTS 
3 1 1500  2000 -
4 1 1501  2145 add .  
5 1 1502  2312 "  o f  
6 1 co l .  
7 1 

1511  2615 
0 1 
1 1 1512  12 0  

2 1 

3 
1 
1  1513  > 

4 1 — 1  100m numbers  
5 1 J 

1657 
6 

1 

7  1 
1  

47 



A58-6N 

Thus, locations 2000, 2145, 2312, . . . 2615 will serve as counters for integers ending in 

0, 1, 2, . . . , 9 respectively. 

To determine the class to which a given integer belongs, each integer is divided by 
10 (12 in octal notation). The remainder after the division appears in the accumulator and 
specifies the class of the integer. The sum of the contents of each counter plus the address 
of that counter determines the effective storage address for the next integer to be stored in 
each class. 

4. Justification. Justification of a word consists in shifting the word to the right 
until the first non-zero digit appears in the lowest order position of the word. All zeros 
appearing at the low-order end of the word are eliminated. For example, a word containing 
the characters AB0500 will contain 00AB05 after justification. This operation is used mostly 
for editing purposes when output data must be recorded in such a way that each word ends at 
a fixed right-hand margin. 

2 Index register number 2 (I ) is used as a counter. Initially it stores the number of 
2 words to be justified; when I is reduced to zero the process is terminated. Index register 

number 1 is used as a counter, starting at zero. The address of the first word (1000) is 
added to the contents of I* to determine the storage locations of the consecutive words before 
and after justification. Index register number 3 is first cleared, and is then used as a 
counter to store the number of shifts required for justification. The number of shifts required 

4 to justify the various words are stored in consecutive locations starting at 2000. I stores 
the number 36, the maximum number of shifts permitted for each word. If 36 shifts are re­
quired, the word originally stored is equal to zero. 

5. Floating-Point Addition. It is desired to add two numbers, each one being defined 
by a 36-bit mantissa and an exponent (characteristic). The exponent can range in magnitude 

36 36 from 2 - 1 to - (2 - 1) and is assumed to be stored in the memory location immediately 
following the location of the corresponding mantissa. A zero exponent indicates that the 
mantissa is a normalized fraction with zero significant digits to the left of the binary point 
(the binary point lies between bit 36 and bit 37). When the mantissa is shifted n places to the 
right, its exponent is increased by n; conversely, when the mantissa is shifted to the left, the 
exponent is correspondingly decreased. 

Before two numbers which carry different exponents can be added, the number with 
the smaller exponent is shifted to the right by a number of places equal to the difference of 
the two exponents. A zero mantissa is supplied with the smallest possible exponent (-236 + 1) 
so as to insure that it is always considered as the smaller of the two numbers to be added. 
Since the shift circuits in MOBIDIC operate modulo 128, a shift of more than 127 places will 
in general result in an incorrect shift. If, therefore, the difference of the two exponents is 
greater than 127, the number with the larger exponent is taken as the sum of the two numbers. 

48 



A58-6N 

MOBIDIC MACHINE 
CODING FORM 

PROGRAM Justification 

LOCATION ± OP 
K ! J 

COMMENTS LOCATION ± OP y B u COMMENTS 

0 i 
1 53 i 00 100 N N_>I2, 0—>IJ 

2 53 3 00 loo 00044 36i0->I4, 0->I3 

3 10 1 01000 Nj—> A 

4 02 0 00 100 00020 Low Order bit of Nj in A 

5 45 0 1 00012 If Zero, Justify 
6 10 0 1 70003 If One, I3->A 
7 50 1 1 02000 No. of Shifts-> Storage 

10 43 1 00 lo i  00002 Get Next Word 

11 40 0 00 'oo 00017 Exit Line 

12 10 1 1 01000 Ni_>A 

13 32 0 0 00001 Justify 

14 50 1 00 I00 01000 Justified Nj—>L(Nj) 

15 43 3 00 I01 00004 Repeat 

16 40 0 1 00006 

17 1 EXIT 

20 0 00 0 00 loo 00001 

1 1 

2 
1 
1 

3 1 LOC 

4 1 1000-1000 + N N numbers 

5 1 2000-2000 + N no. of shifts 

6 1 

7 1 

0 
! 
1 

3 4 Use I + I to count shifts 
1 1 1 2 Use I + I to count words 

2 1 

3 
1 
1 

4 1 
5 1 
6 

1 

7 1 
1 

49 



A58-6N 

MOB ID IC MACHINE 
CODING FORM 

P R O G R A M  Floating ADD 

R O U T I N E  
P R O J E C T / W . Q  

L O C A T I O N  + O P  
K  J  a C O M M E N T S  L O C A T I O N  + O P  Y B 

a C O M M E N T S  

0  CLA 0 i 70002 r  
1 STR I i 00061 |  Store 

2  LOD 0 00 102 70014 PCS->I2 

3  ADB 0 00 |04 70014 PCS + 4—>PCS 

4  CLA 2 1 00001 Char. A 

5  SUB 2 1 00003 Char. A - Char. B 
6  SRL 0 1 00007 

7  TRZ 1 1 00014 Out to Routine 

10 TRN 1 1 00056 to neg. char < -128 

l 1 CLA 2 1 00000 Mant A 

12 LOD 2 00 'l 1 00001 Char. A 

i 3  TRU 1 00 00 
1 

00031 L(Store I^) 

Routine 1 4  SLL 0 00 ,00 00007 

l 5  TRN 1 1 00034 Char. B > Char. A' 

1 6  RPA 1 1 00020 

l 7  CLA 2  1 00002 Mant. B 
2 0  SHR 0 1 
2 1  LOD 2 00 '11 

1 
00001 Char. A—> Q 

22 ADD 2  1 1 00000 Mant. A 
2 3  SNR 1 01 |00 00043 Exit on Overflow 
2 4  TRZ 1 1 00053 Exit on Zero Mantissa 
2 5  NRM 1 1 00062 
2  6  CYL 0 1 00045 Mant.—>Q Char-^>A 
2 7  SUB 1 1 

L 00062 Adjust Char. . 
3 0  CYL 0 1 00045 Mant.—> A Char.—>Q 
3 1  LOD 1 00 102 00061 Restore l2 
3 2  TRS 1 EXIT 

(Spare) 3 3  0 00 0 00 00 00001 L(Lo Order One) 
Neg. 3 4  RPA 1 1 00037 

3 5  LOD 2 00 'll 00003 Char. B—>Q 
3 6  CLA 2 00000 Mant. A 
3 7  SHR 0 00 '00 1 Shift Right (Char. A - Char. B) Places 

50 



A58-6N 

MOBIDIC MACHINE 
CODING FORM 

PROGRAM Floa t ing  ADD 
ROUTINE 
PROJECT/ W Q  

L O C A T I O N  + O P  
K  : ^ C O M M E N T S  L O C A T I O N  + O P  r B U C O M M E N T S  

4 0  ADD 2 00 ,01 00002 Mant. B 
41 TRU 1 i 00023 to test for overflow 

(Spare) 4 2  0 40 0 00 loo 00000 L(Hi-order one) 
Overflow 4 3  ADD 1 1  00033 Lo-order one 

44 SHR 0 1  00001 
4 5  ADD 1 1 00042 Hi-order one 
4 6  CYL 0 l 00045 

4 7  ADD 1 l 00033 Lo-order one 

5 0  CYL 0 1 00045 

5 1 TRU 1 i 00031 to exit 
(Spare) 5 2  1 77 7 77 '77 77777 L (all ones) 
Zero 
Mantissa 5 3  CLA 0 I 70000 Clear Accumulator 

5 4  LOD 1 0 I11 00052 All ones 

ekU" 128 5 5  TRU 1 1 00031 to EXIT 

5 6  CLA 2 00 |00 00002 Mant. B 

5 7  LOD 2 00 111 00003 Char. B 

60 TRU 1 1 00031 to EXIT 

6 1 stor'age STORE l2 

6 2  STORAGE STORE number of shifts 

3  1 
4  1 

5  1 

6  1 

7  1 

0  1 
1 1 

2  1 

3  
1 
1 

4  1 
5  1 
6  

1 
i 

7  I 
— j_ 

51 



A58-6N 

In the routine presented here the numbers and corresponding exponents are assumed 
to be arranged in storage as shown below: 

Main Routine 
Transfer and Load 

Mantissa 1 
Location n 
Location n + 1 

Main Routine 
Transfer and Load 

Mantissa 1 
p. loc. I1 

loc. I1 + 1 
Floating Point 
Add Routine 

Location n + 2 Exponent 1 
Location n + 3 Mantissa 2 
Location n + 4 Exponent 2 
Location n + 5 Transfer to n + 5 

The two mantissas and corresponding exponents are stored in the four memory loca­
tions immediately following the TRL instruction which transfers control to the subroutine. 
This transfer instruction stores the address of the first mantissa (location n + 1) in the 
program counter store. This permits reference to the four quantities which figure in the 
operation without determining their actual addresses. 

At the end of the floating-point routine, control is transferred back to the main 
routine (location n + 5). The mantissa of the sum will appear in the accumulator and the 
exponent of the sum is stored in the Q-register. Before the transfer back to the main 
routine takes place, the sum must be tested for possible overflow. In case of overflow, the 
sum is shifted to the right by one place, a one is entered into bit position 36, and 1 is added 
to the exponent of the sum. If there is no overflow, the sum is normalized and the number 
of shifts required is subtracted from the exponent. 

The location used to store the first instruction of the subroutine is stored in index 
register number 1 (I1), and reference to all memory locations within the subroutine are made 
relative to this first location. The subroutine will therefore operate unchanged no matter 
where it is eventually stored in memory. 

Index register number 2 is used to store address n + 1, that is, the address of the 
o 

first mantissa. However, the original contents of I are saved before this register is used 
in the subroutine, and are restored later. Thus, the subroutine will destroy only the con­
tents of the registers in the arithmetic unit and the contents of I1. All other machine 
locations can be used by the main program. 

6. Order Code Summary. The order codes which were presented in Section III and 
illustrated in Section IV are summarized in Table V which follows. The input-output 
instructions are treated separately at the end of the table. 

The state of all internal registers and memory locations affected by the various 
internal orders is shown as it appears at the end of the corresponding instruction. The 
table also indicates whether a given instruction can be indexed and whether overflow is 
possible. The programmer should use this table as a permanent reference during problem 
preparation. 

5 2  



A58-6N 

5 3  



54 



A58-6N 

c/3 

W 
P 
o 
u 
£ 
o 
•—I 

h < 
P 
W 
P 
O 
P o 
D h 

£ p 
tt) 

> 
W 
J 
cq 
< 

H 

i 
CM 
•D 
O 
E 

0 
£ 
•- 1 1 

d 

|3 
CM 

i* o-

ft 

1 1 | CM 1 1 I 1 1 
1 

CM 1 

N
o
te

s
 

£ 
T 
d o 

Si 
o • 

T o 
o 

u 
- © 

II II 

§s 
o o 

o 
a. 

' £ 
d t 

i" 

IS 

o -

II u 

§§ 
o o 

TJ 
• 
X» 
3 
"o 
c 

o 
c 

| 

CO 

0 

XI 

0 
m 
o 
a. 

« 

* 
o 

•»-
w 
0 

<s 

O 

£ 7 s 

I ? ;  
+ o + 

o> o a. 

•- d 

2**" 2 
o* A o" 

•< ^ ^ 

o o o 

C
(P

C
) 

+
1
 
-
 P

C
S

 

a
 -
 P

C
 

C
a
n

n
o

t 
b

e
 

In
d

e
x

e
d

 £ 
t. 

+ £ 

o I 

£ 8 
o 

•+" 1 

II II 

z z 
w m 

< •< 

0 
a. 

T 

+ £ 

1 • 

1 + 

II II 

z z 
in in 

"< « 

£ 
T 

CO 

£ 

0 
a. 

1 
o 

.. o 
— a. 

II T 

2 « 

H « 
• »> 
° *5 

11 £ 
ID -C 
— -C-1 

<q. o 

o 
a. 

T 

+ XI 
o ^ © 
a- o 2 
» -S 
d o 

| f f 
I 

— o 
o o 

£ 
T 

£ + 

t o 

8 i 
o 

o o 

II X 

IO (£) 
CJ CO 

•<" j 

o o 

— o 

1 Xv 

i s 
M-

O — 

<0. 

o 
03. X. © © 

0 c* 

Ij. £ J 
1 ° 

o 
o — o c 

aa 

T 

ao 

t 

I 
d 
II 

5 
oo 
oa m 

L 7 ^ ° 

00 

T 

ao 

T T 

oo 

T 

CO 

T 

£ 2 
— CT 

oo 

f 
oo 

f 

CO 

£ 

o 

II 
•X oc f-

£ 
o 

II 

ac 
H 

V. .. 

*d 2 
"o «_ 

Vj 

^ 2 
5. 2i 

oo 

T 

2 
o 

**z 

d 

o 
a. 

o 

H 
•< P 

o 
a. 

o 

II 
•< p 

o 
a. 

o 

II 
•< 
oc *-

o 
a. 

o 

II 
•< 

P 

0 
• • £ 
— o 

c 
II 3 
-< oo OC 
h- •• 0 

» 0 

" I 

s T 
d 

— o 

II II 
•* -< p p 

£ 
o 

II 
-< 
ac 
l-

z 

d" 
II 

z 
M 

d 

X 
z 
0 

•< 

03. o 

©• -e 
c* •» 

— • 
w o 

0 
TJ — 0 A 

•< 

CJ 

M- 00 
— CM 
CO 

TJ 

© s 
o 

2 

i 

o 

d 
o 

S 
u e •» • 
c 

• 

© 
oc 

3 

• 

s 
CO s 

3 
_J 
oc 
CO 

s 
oc 
h-
CO 

CO 

ao 

3 o 

£ 

• 

3" 

_l P 

• 
CO 
3" 

OC 
H-

• 

9 
a. 
ac t-

• 
CM 
3" 

CO 
ac 
1-

• 

3 

3 OC 
1-

• 
CO 
* 
X p 

• 

3 

N OC 
t-

55 



A58-6N 

CO 
W 
P 
O 
U 
£ o 
(—I 

EH 
<! 
PS 
H 
Oh 

O 
P 
O 

PS << 

P 
CO 

> 
H 
J 
PQ 
<J 
Eh 

56 

at 

3 
a 

TJ 
k + 8 

3 

+ 8 

TJ 
k + 8 

"O 
k + s J-? 

o 
!? 

o 
X E 

LU — 
' 

S. 8 
CO Q. I S Is I-1 i 1 

+ 2 

3 - s  1 
+ > 

3- ® 
« 0 
E O-— <0 

H- -M 
"I 00 "I "I "1 

0 
c 
o 

3 
k 

• 2 
4) 
a. k 
CO 4) 

0 
a 
CO 

"3 
k 

s 

3 
H-

TT 
c 
3 
o 

M-

CO 
3 

"a. 

-f Q. 

O CO 
— k 
-C-» 4) 

•C-" 

o 
«•-

"3 

C 

0 

N
o
te

s
 

p
e
r 

w
o
rd

 

li
g

n
. 

4) -*-> 
C U 
at co 
CO k 
E co 

Z 
k o 
o 

H- -k 

0 
c 
en 
« 
E 
k 
o «•-

0 •*•> 
k 
0 
0 
C 

CO 

Js 

c 

». 

c 

JX 

c 

>» 

c 

-X • 
k TJ 0 O 
E z 

U 
-X k 
O 0 
O 0 

CO 
L L 
4> o 

••J H-

TJ Z 
0) 1 
CO X 
3 — 

TJ 
0 
CO 

o 
k 
0 
N • 

o 

0 
a 

O 

0 
a 

o 

0 
a 

o 

0 
a 

• 0 
z 0 
O) — 

o 
<0 k 

CO 
4) 0 

k 0 
0 CO 

•5 * * * 
c — 0 

k «) 
« 
-C o 
O CO 

k 
X <0 
— z 
CO o 

-O C 
• 

-C-" 4) 
O HJ 
C k 

J ii 

-O 

•C-C 
O 
C 
c 
« 
O 

TJ 3 
k 
O H-< 

o 
2 c 
O 

—i 

a 

0 
C 
31 0 
X 

o 

0 
c 
3t 
0 
X 

V 
-c-« 
© 
c 
3< 
0 
X 

O 

0 
c 
3* 0 
X 

C 0 
o> 
0 0 
z — 

o 
•c- z 
— 2 

CO I 
3 X 
L — k 

I o 0 • 
5 • II c 

o 

5 " (0 
o — k 

^  Oj<  0 

• CO CO 
0 3 

-c-» 0 
— z • M- i 8 

C "O o 
O v 2 

0 
O. 

1 0 
X Z 

31 O 

- -b" >s 
k 

— •+> 
M-» 0 Z 

CO 4) 
O L k 

-c-» 

k 
4) 

CO 
TJ 

C 0 
0 4C 

C 0 0 
c Z 0 
— E k 
3C 3 i s 

O H-« 0 

CO H-
•H — 10 

CO 
c -o 

a. 
CO 
a 

c 
o 

0 CO 
•c-c c 

— E 
Z k 
-c-» 0 

t £ J 
O c 0 
E 31 > 

0 

a 
c 

— — O 
CO 

3 4) 
k 4) k 
O z o 2 •*-» M-

4) 
H-c • -O 

c 
0 

k 
2 

CO 
CO 

co — 
0 k k •- -s 

k 

0 0 
E « Z 

O CO m 
•*-> " TJ 
C —< k 
—  ̂ o 

2 

k 
0 

0 

3 CO -fj 
k 4) 73 
— CO 4) 
Lk -M 

0) k 
— 4) 

• CO 

TJ 
C 
CO 

-*-> 
C 
4) 

• o 
d 
-k< -O 
0 0 

0 
at k 

0 o .x 0 
k II 4C 

O 
© OJ c 
k _x 
0 k 

k 

$ 

Ol 
CM 

w-k a. c 
4) O — 
O — 

—- CO 
> 1 X 
a> a. v. 
Q — CO 

CO 
> 

3 
er 
4) 

c 
CO 

c — 
c — 0 
31 TJ 0 o 

H- O 
co — 

•X k 
O .» 0 
O « z 
— JC -c-» 
z u © 

TJ 
O 
E 

Z 

0 
— E -C-c H-

a .x 
a c u +C Ol o 
a — — 
© co z 

+1 4J » 
3 4) 4) 
a. k a. 
c a co 

-— 4) 
•M O 

•*-) C — 
O ~ +» 
O 4> 
— H- C 

•CJ 

z 
1 
X 

CO 

O -c-< 
TJ 
0 
k 
4) 
> 
C s

to
r
e

s
 

in
 
m

e
m

o
ry

 
b

 

n
d

 s
ig

n
. 

I
f
 S

to
p

 c
 

a
d

. 

k
 m

o
d

 2
8

 
w

o
rd

s
 o

r
 

g
n

lf
y

 n
u

m
b

e
r 

o
f
 

b
lo

<
 

In
g

 o
n

 s
to

p
 

c
o

d
e

 w
h

i 

in
t
o

 
e

a
c

h
 
lo

c
a

ti
o

n
. 

CO 
z 
9 
o 
z 

co 
CM 
"3 
O 
E 

JX 
o 
o 

z 

co 
CM 
"3 

c 
o 

o 
o 
k 

"3 

0 

o 
a a 
O 

0 •c-" 
k 
2 • 

0 

S ? 
(5 S 

a 
• CM 

Z 3 
k O 
0 E 
e z 

C CO o . 
o TJ 

TJ 0 0 
C k - — TJ -X E c z 

O k 

w
o

rd
s

 
c

 

a
 

ti
m

e
, 

f 
j 

is
 I

T 0 
CO 

4, 
k 

H-" a 
k 

31 4) 
— 

" "E £ O ° © 
o •* Z 

— CO 
E 0 0 

0 0 
C 00 k 0 
3 1 k 

^1 0 
© -X Q. CO 
Ol O — 
0 - -e-1 

••J — c/5 

TJ 
k 
0 
1 
o 

M-

-X 

0 
0 
V 
0 

0 
"3 0 0 
k 

O 0 

z •*-
0 

a 
c z 
"c 0 

OJ -M 
CM <0 

-o co k 
O -M © 
E — -H 

TJ c 

CO CO 
"C-» >s 
O CO 
O 2 

O -f-< z 
k O 
M- O TJ 

k 
CO CO O 
TJ 0 2 
k 

0 
O II » H-c 
— © O 
-k» OJ Q. 0 
© JX 0 k 
C •*-< 0 
cn *•- ^ 

0 
a 

0 

0 
_x o 
0 
z 

a 
0 
O 
X 
0 0 

c E 

a z 
0 o 
z o 
k Z 

-Q O 
CO 

X X k 
-C-» CO 

o CO — 
2  k .— 

© 3 

0 k (J 
E 0 -C-C -c-» •* 

CO 

a 
0 

•4-t 
o «*- 0 

— CO 
CO CO JZ 
4) O 

-O CO 

0 ~ 

JC C V 
o 

CO 0 0 
« . 0 C 
- tj a o 

1 u
n
 

c 
3 

0 
0 0 

"3 

0 3 0 a 
z 

-M -o 
— CO -M 
k 4) ~ 
* k _Q 

V c 
k CT 

i— co 

"3 k 
0 0 +J 
0 z o 

OS O C 

—1 C Z >N 
O -c-» — 

H- — — c 
— * O T

ap
e 0 

a 
0 
»-

0 
E 
0 

CO 

C 

2 0 
OC 

O 3 
k C 
0 0 
0 

<n d 

c 
o 

o 
a 

3-
fk 

CO 
fk 

CM 
fk o 

tk 
CO 
CO 

fk 
CO 

tk 
fk 

10 
fk 

co 
c 

Z 
-< 
2; 

JX 
o 2 

xe 
o 0C 

•< 
oc 

a. 
z 
co 

a 
CO 
CO 

OC 
OC 

CJ 
2 
cc 

1 

i 



A58-6N 

TABLE VI 
SUMMARY OF OPERATION CODES 

IN NUMERICAL ORDER 
WITH PROGRAMMING MANUAL 

PAGE REFERENCES 

ADDRESS 
OCTAL 
CODE 

OPER. 
ABBREV. 

FIELDS 
USED juSEC OPERATION PAGE INDEXABLE? 

0 0  HLT 1 6  Halt 26 No 
0 1  RPT 7 P a  1 6  Repeat 29 Yes 
02 LGM 7 a  1 6  Logical Multiply 24 Yes 
03 LGA 7 a  1 6  Logical Add 24 Yes 
04 LGN 7 a  1 6  Logical Negation 25 Yes 
05 SEN 7 (3a 1 6  Sense 26 Yes 
0 6  SNS 7 ( 3 a  1 6  Sense & Set 26 Yes 
07 SNR 7|3a 1 6  Sense & Reset 27 Yes 
1 0  CLA 7a 1 6  Clear & Add 17 Yes 
1 1  CAM 7a 1 6  Clear & Add Mag. 2 1  Yes 
1 2  ADD Tpa 1 6  Add 19 Yes 
13 ADM 7 P a  1 6  Add Magnitude 20 Yes 
14 CLS 7a 1 6  Clear & Subtract 2 1  Yes 
15 CSM 7a 1 6  Clear & Subtract Mag. 2 1  Yes 
1 6  Subtract Ypa 1 6  Subtract 20 Yes 
17 SBM Tpa 1 6  Subtract Magnitude 2 0  Yes 
2 0  MLY 7a 86 Multiply 2 1  Yes 
2 1  MLR 7a 86 Multiply & Round 2 1  Yes 
22 DVD 7 ( J a  88 

(18 if over flow) 
Divide 2 1  Yes 

23 DVL Ypa 88 
(18 if over flow) 

Divide Long 22 Yes 

24 ADB Ypa 2 6  Add Beta 29 No 
25 SBB 7pa 25 Subtract Beta 29 No 
2 6  

27 
30 SHL Ypa Q <9 = 16; Shift Left 22 Yes 
31 SLL Ypa a >9, 8 + a - a(MOD 2) Shift Left Long 22 Yes 
32 SHR YQ a < 14 = 16; Shift Right 22 Yes 
33 SRL 7 a  Q  >14, 2 + 0 - a(MOD 2) Shift Right Long 22 Yes 

34 CYS ya < 14 = 16; Cycle Short 24 Yes 
35 CYL 7 a  a  >14, 2 + a + a(MOD 2) Cycle Long 24 Yes 
36 
37 NRM 7 a  

18 + n - n(Mod 2) 
n = f/ of Shifts Normalize 22 Yes 

40 TRU Ypa 16 Uncond. Transfer 25 Yes 

57 



A58-6N 

ADDRESS 
DCTAL 
CODE 

OPER. 
ABBREV. 

FIELDS 
USED pSEC OPERATION PAGE INDEXAE 

41 TRL 7|3a 16 Load P. C. S. & Trans. 29 No 

42 TRS 16 Trans, to Program Cnt. 
Store 

29 No 

43 TRX 7Pa 22 Trans, on Index 28 No 
44 TRP 7a 16 Trans, on Positive Acc. 26 Yes 
45 TRZ 7a 16 Trans, on Zero Acc. 26 Yes 
46 TRN 7a 16 Trans, on Negative Acc. 26 Yes 
47 TRC 7a 22 Compare 26 Yes 
50 STR 7a 16 Store 17 Yes 
51 LOD 7(3a 18 Load 17 Yes 
52 MOV Ypa 26 Move 17 No 
53 LDX YPa 16 Load Index 28 No 
54 RPA 7a 22 Replace Address 17 Yes 
55 MSK 7a 22 Replace Through 

Mask 
17 Yes 

56 
57 

58 

59 
60 
61 
62 

63 
64 
65 
66 SKP KJ 16 + tape 

time 
Skip 34 No 

67 BSP KJ 16 + tape 
time 

Backspace 34 No 

70 RAN KJa 16 + 8 per 
word + 
tape time 

Read Alphanumeric 33 No 

71 RRV KJa 16 + 8 per 
word + 
tape time 

Read Reverse 34 No 

72 

73 

ROK KJa 16 + 8 per 
word + 
tape time 

Read Octal 33 No 

74 WAN KJa 16 + 8 per 
word + 

Write Alohanumeric 32 No 

tape time 

53 



A58-6N 

OCTAL OPER. 
CODE ABBREV. 

75 WWA 

76 WOK 

77 RWD 

ADDRESS 
FIELDS 
USED pSEC 

KJq 16 + 8 per word 
+ tape time 

KJA 16 + 8 per word 
+ tape time 

J 16 + tape time 

OPERATION 

Rewrite 

Write Octal 

Rewind 

PAGE INDEXABLE? 

No 35 

33 

35 

No 

No 

59 



SYLVAN IA ELECTRONIC SYSTEMS 
A DIVISION OF SYLVANIA ELECTRIC PRODUCTS INC. 

1 0 0  F I R S T  A V E N U E ,  W A L T H A M ,  M A S S .  

D I V I S I O N  F I E L D  O F F I C E  

DAYTON, OHIO 333 W. First St. 

LOS ANGELES, CALIF 6505 E. Gayhart St. 

PHILADELPHIA, PA 4700 Parkside Ave. 

R0ME> N Y 225 N. Washington St. 

WASHINGTON, D.C 734 15th St.. N. W. 

PRINTED IN U.S.A.  DSO-2-59-JM 


