UNIVERSITY OF ILLINCIS
GRADUATE COLLEGE
DIGITAL COMPUTER LABORATORY

GENERALTZED
ATGEBRAIC
TRANSLATOR -

COMPILER

(GAT COMPILER)

File No. 384
July 3, 1961

"Certain basic features of this translator were suggested by
the original Internal Translator (IT) written by Prof. A. Perlis et. al.
of Carnegie Institute of Technology. In particular the use of subscripted
letters as variables and the general form of the permissible statements
are the same as the original IT. In addition we are indebted to J. Smith
of Tech Ops for some very helpful comments regarding the decomposition
of algebraic statements.

"The operating packages were written by W. Hanson, who wrote the
input-output routines, and T. O'Brien, P. Anderson and C. Page who adapted
the functional subroutines for use with the Translator. The manual was the
Jjoint effort of R. Graham, Prof. B. Galler, B. Arden, and Mrs. Sarah Brando
who bore the clerical burden of typing and the preparation of flow charts."

From the original GAT manual
University of Michigan

The original GAT manual was extensively revised by J. W. Flenner
and C. Wilmot, advised by L. D. Fosdick, 8. J. Fenves, J. N. Snyder. The

control panels for the 533 and 4O7 were designed by R. H. Flenner.

"But screw your courage to the sticking-place, and we'll not fail."
Lady Macbeth from Macbeth
by William Shakespeare, 1605

TABLE OF CONTENTS

Page

PART I. INTRODUCTION TO THE GAT COMPILER i
PART II. THE ALGEBRAIC CODING LANGUAGE 21
SECTION 1. CONSTANTS AND VARIABLES 23
SECTION 2. SUBSCRIPTS 26
SECTION 3. ARITHMETIC 28
SECTION k. STATEMENTS 32
SECTION 5. SUBROUTINES 45

PART III. GAT INPUT-OUTPUT FORMATS W7
SECTION 1. PREPARATION OF CARDS k9
SECTION 2. OUTPUT FORMATS 55
APPENDIX A. SUMMARY OF LANGUAGE 59
APPENDIX B. SUBROUTINE LIBRARY 63
APPENDIX C. ERROR INDICATIONS TL

APPENDIX D. EXAMPLES 75

PART I

INTRODUCTION TO THE GAT COMPILER

INTRODUCTION 3

The purpose of GAT is to simplify the process of preparing problems
for the IBM 650. Since GAT is a program which allows use of a familiar and
convenient language for presenting problems to the IBM 650, it is not neces-
sary to use the restricted list of machine-language codes. In general, a
program which does this is called a compiler; that is, it converts this famil-

iar language (called the source language) to a series of machine language

instructions (called the object program) which performsthe desired operations.

This conversion process is called compilation.
The presentation of problems to the computer via the compiler can

best be illustrated by some examples.

Example I. Assume that the following computational problem is to be repeated
meny times, taking different values for all the variables, including n, on each

repetition.

Given values for variables x X isey % &
l) 3 2 n?

yl, ye, YT yn; and n,

compute 4 = XY + X ¥+ oeee XV -

(i.e., Compute the inner product of 2 n-dimensional vectors.)

A prose description of the computation procedure might be as follows:

1. Obtain the variable values for the problem to be computed.

2. Set the accumulator to be used to zero. (i.e., Take a blank
sheet of paper, clear the dials of the desk calculator, etc.)

3. Take the first numbers of each set.

INTRODUCTION

4, Obtain the product of the selected numbers and add the product
to the accumulator.

th

)

5. If the product just obtained was the last (i.e., the n do

step 7 next — if not, do step 6.
6. Take the next numbers of each set and then do step L.
T. Copy the answer from the accumulator.
8. Advance to the next set of data and then repeat steps 1 through

8 until all of the problems have been handled.

In actual practice the first step in preparing a problem for a
computer is not to bother to write a prose description of the procedure but

to draw a flow diagram to describe the process. A flow diagram is a pictorial

representation of the sequence of operations necessary for the correct solu-

tion of the problem.

READ n;
V1seees¥ni d‘ » 2 d :=d.+xiyi- e
XJ_,.--,}QH- i =

1 2,3 n

6 |1 := i+l

PRINT
| a4

The number associated with each box indicates the corresponding

original prose statement.

INTRODUCTION 5

FLOW DIAGRAM CONVENTIONS

(::) Remote Connectors (i.e., circles containing the same
number are assumed to be the same point).

Processing Boxes.

Decision Boxes. These contain questions to be
answered yes or no. The yes answer takes the path to

the right and the no answer down, unless otherwise

labeled. e.g.(, the unconventional case).
l"

[- Card Operations (Data input-output).

Q= Set value o to quantity on other side of equal sign;

e.g., in above example, "d := 0" means "set d equal

to zero'.

Indicates an exception to standard flow pattern.
< (Direction of standard flow is always to the right

dcwn.)

By abstracting from the flow diagram it becomes possible to produce
a set of statements describing the process, free from the possible ambiguities

of prose:

1l. Read n, xl, eees Xy Yoo vees ¥

n
Ea d.=O

., L =1

4, d =4 + x

174
5. GotoTif 1i=n

6. i=1i+1

6 INTRODUCTION

Go to U4
7. Print d
8. Go to 1.

These statements are now almost in the form on which the compiler
can operate, The necessary additions and changes to these statements arise
from two facts: 1) the computer can accept only a limited number of characters,
and 2) the limited internal capacity of the computer makes it necessary to in-
clude some information about the size of the problem.

The 650 can accept only numbers, capital (upper case) alphabetic
characters, and the special characters +— /% () =, . $. Also, the commonly
used notation, such as &i and ax, cannot be handled directly by the computer,
since the 650 is not cognizant of carriage shifts. The GAT compiler requires
that the names of all variables be one of the letters C, D, I, J, K, X, ¥, Z,
followed, without a carriage shift, by a permissible subscript (p. 26). For

example, the variable x_, might be given the name X3, the variable i the name

3
Il, and x, would be XI1.

i
With this in mind we will rename the variables of the example as
follows:
n 1is renamed Il
i is renamed 1I2
d is renamed D1
X5
yl’ ceay yn are renamed Yl, ..., YI1 .

seey X oare renamed X1, ..., XI1

In order for the GAT compiler to allocate the available storage it
must know:
a) The highest statement number used (p. 41).

b) A maximum number of locations used by subroutines (p. 41).

INTRODUCTION 7

c) The maximum subscript used for each allowsble letter (p. L2).
In this example 8 is the highest statement number. Assume that 400 locations
are used by subroutines and that the maximum value of n is 100.
The final form of the statements (these are now acceptable to GAT)
describing the example problem are:
8 I8 HIGHEST STATEMENT NUMBER
400 USED IN SUBROUTINES
DIMENSION D(1) I(2) %(100) ¥(100)

Lo Bl ¥ eeey B30 3.0 Y11, BRAD

2 DL =0
3 I2 =1
s D1 = D1 + XI2 % YI?

\a

GO TO 7TIF I2UIL

6 I2 =12 +1

GO TO L4
7 TD1
8 @0 TO 1
END
Notice that in statement 5 the letter "U" is used to indicate "="; in state-

ment 7 "T" means print.
Although the above source language statements are acceptable to GAT,
use of a specialized statement called an iteration statement (p. 34) will allow

compilation of a more efficient object program.

8 IS HIGHEST STATEMENT NUMBER
40O USED IN SUBROUTINES

DIMENSION D(1) I(2) Xx(100) Y(100)

INTRODUCTION

1 Ty o oeess Fols ¥y ey 131, READ
2 DL =0
I T - N O OO

b D1 = D1 + XI2 % YIZ2

7 TD1
8 GO TO 1
END

The iteration statement (statement 3) replaces statements 3, 5, and

6 in the previous source language example. It should be read as follows:

Set I2 initially to 1; repeat statement 4 increasing I2 by 1 each

time; go to the statement following No. 4 when I2 > Il.

10

O~ HFWwwmN

100
100
100
100
100
100
100
100

0244
0357
0405
0557
0247

‘0555

0711
0655
0755
0252
0004
0009
0014
0019
0024
0029
0034

I1
X1
Y1l

Dl

INTRODUCTION

EXAMPLE 1

- PRODUCT OF TWO
N-DIMENSIONAL VECTORS

SOURCE LANGUAGE

8 IS HIGHEST STATEMENT NUMBER
400 USED IN SUBROUTINES

DIMENSION D(1)

Y(100)
D1=0
TD1

GO TO 1
END

0~ £ W

49129181911
D1=Dl+XI2%YIZ2

OBJECT PROGRAM

0000011990+
8803680023+
6002540457+
2100400505+
0000040411+
6000400807+
2100370605+
6002550957+
0007610244+
0000000004+
7100008010+
00000902413+
0000000000+
0000001480+
7965616400+
0000000000+
0000000000+

DATA
5
1000000051
1000000051
RESULTS

5500000052

1990
0368
0457
0505
0411
0807
0605
0957
0256
0000
0005
0010
0015
0020
0025
0030
0035

2
ETC

1(2)

X(100)

IlsX1l9eee?XIleYlsesa2YI1esREAD

8803970024+
2119490361+
2100400455+
6000400607+
6000400707+
8080030611+
0003560461+
2119610705+
0000010007+
0100000000+
7200008010+
0001000252+
0000000000+
0000000000+
7577756368+
0000000000+
0000000000+

2000000051
2000000051

N

0397
0361
0455
0607
0707
0611
0250
0705
0255
0001
0006
0011
0016
0021
0026
0031
0243

ETC
ETC

2119500355+
6019490407+
0004610411+
1100390657+
8080030561+
6020410857+
00C0070356+
8803620025+
0000020001+
6300008010+
8701010041+
0000000000+
0000000000+
0000000000+
0000000000+
0000000000+
0000008000+

3000000051
3000000051

INTRODUCTION

0245
0407

0461

0657
0561
0857
0356
0362
0254
0002
0007
0012
0017
0oz22
0027
0032
0243

ETC
ETC

0000020355+
2100370405+
6002540507+
6180030511+
6021420757+
3919500661+
6002560907+
2119500755+
0000000001+
6400020036+
8801010142+
0000000000+
0000000000+
0000000000+
0000000000+
0000000000+
0000008000+

4000000051
4000000051

0355:

0246
0507
0511
0757
0661
0907
0251
0253
0003
0008
0013
0018
0023
0028
0033
0243

ETC

6002530357+
0000030405+
1000400557+
4603560411+
2119500555+
3200370711+
2119600655+
0000080755+
0000000000+
6900030038+
8900008010+
0000000000+
0000000000+
6673766183+
0000000000+
0000000000+
0000008000+

5000000051

ETC % 5000000051

1L

12 INTRODUCTION

Example II. Some other features of the language can be illustrated by a
second example.
In an A.C. circuit consisting of a resistance R, an impedance L and

8 capacitance C, subjected to a potential of the form

v =V sin 2Tft, (1)

the instantaneous current is given as

Vn
1e - sin (ot - @) (2)
V=;d + (0L - 45?; ’
where w=2mTTf
mL-chc
od.
and ¢ = tan i

For particular values of V, R, L, C and f, we wish to plot the
values of v and i during one cycle (i.e., for ot going from O to 2T). Since
we cannot generate the plots directly, we will compute the ordinates of v and
i at twenty equal time intervals. These ordinates can then be plotted and
connected by a smooth curve,

We first change the given quantities to the compiler notation:

Quantity GAT Notgtion Value For Sample Problem
v Cl 110 wvolts
R c2 1000 ohms
L c3 0.5 henry
. clh 2.0 pF (micro-farads)
P c5 60 cycles/sec.

Reading of the data is accomplished by the statement:

1. VOLT, OHM, HENRY, FARAD, CPS, READ (see Note 1, p. 1h).

INTRODUCTION 13

The second step is to compute the quantities which do not depend

on the time t, as follows:

Computation GAT Statements

Angular frequency = 27pf 2. D1 = 2.%3,1415927 % C5
Reactance x =@l - c% 3. D2 = D1xC3 - 1.0/(D1lxCk)
Tmpedance 7 = ERE 3 4, D3 = SQRT.(C2xC2 + D2xD2)
Max. current I= % 5. Dk = c1/D3

Phase angle g = tan > % 6. D5 = ARTAN.(D2/C2)

7. TD1 ... D5

The statement 7. TD1l ... D5 causes the five quantities D1 through
D5 to be printed.

Finally, we are ready to compute v and i at the desired time inter-
vals. The time t is to be varied from O to % in twenty increments of §%§.
This can be accomplished by an interation statement simi;ar to the one given

in the preceding example.

Computation GAT Statements

Vary t from O to % in increments of E%I‘ 8. 11, XL;°0; 1./(20:405); 1./C5;

v = V sin 217 ft 9. X2 = Cl % SIN.(DlxX1)
i=1Isin (27ft - ¢) 10. X3 = D4 x SIN.(D1xX1l - D5)
Print t, v, i W TEL i X3

The statements, ready for compilation, are as follows:

12 IS HIGHEST STATEMENT NUMBER
800 USED IN SUBROUTINES

DIMENSION ¢(5) D(5) X(3)

1L INTRODUCTION

1. VOLT, OHM, HENRY, FARAD, CPS, READ

2, D1 = 2.%3.1415927%C5

3. D2 = D1xC3 - 1./(D1lxclk)
4, D3 = SQRT.(C2xc2 + D2xD2)
5. Dh = C1/D3

6. D5 = ARTAN.(D2/C2)

T« THL (.. D5
8, 11, X1, 0., 1J(20.#C5), 1./65,

9. X2 = Cl¥SIN.(D1l*X1)

10, X3 = DuxSIN,(D1*X1 - D5)
e TXE .0 X3
12, GO TO 1

END

In the statements above, notice the following:
Note 1) Preceding the READ statement, information may be added about the
quantities being read for the program writer's convenience (p. 39). The
assignment of the symbols Cl, ..., C5 is done by punching on the data card
(2. 51).
Note 2) Functions such as square roct, sine, arctangent, which are not
part of the compiler's language, may be added by subroutines (p. 45). The
statement "800 USED IN SUBROUTINES" reserves space in the object program for
the inclusion of these subroutines.

Finally it is to be noted that the same problem could be solved
without precomputing the quantities D1 through D5, by solving equations (1)
and (2) as originally stated for each value of t. Such a program would be
much more inefficient, since the square root, arctangent, etc., would have to

be evaluated ten times instead of once.

INTRODUCTTON

15

The results produced by the object program for the sample values

are shown on p. 18.

The preceding examples serve to illustrate the various types of

statements allowable in the source language.

description of the language follows.

A more careful and systematic

16 INTRODUCTTION

EXAMPLE 1I - POTENTIAL AND
INSTANTANEOUS CURRENT IN AN
AsCe CIRCUIT

SOURCE LANGUAGE

12 1S HIGHEST STATEMENT NUMBER
800 USED IN SUBROUTINES
DIMENSION C(5) D(5) X(3)

| VOLT sOHMsHENRY s FARAD sCPSsREAD
2 D1=2.%3,1415927%C5
3 D2=D1%C3-1./(D1%C4)
4 D3=SQRT.(C2%C2+D2%*D2)
5 D4=C1/D3
6 D5=ARTAN.(D2/C2)
7 TDleesD5S
8 119X1904s91./(20,#C5)91./C59
9 X2=C1#SIN.(D1%X1)
10 X3=D4%SIN.(D1¥X1-D5)
11 TX1ssuX3
12 GO TO 1
END
OBJECT PROGRAM
2 0053 0000011990+ 1990 8802100024+
3 0170 3900670174+ 0174 3900410224+
3 0220 3900430274+ 0274 2119500268+
4 0318 6000390320+ 0320 3900430374+
4 0368 6000440370+ 0370 3900440474+
5 0524 3219500574+ 0574 2119600468+
6 0518 6000370470+ 0470 3400450624+
7 0520 3400380674+ 0674 2119600618+
i | 0668 6000710570+ 0570 2119600718+
8 0670 2119620818+ 0818 8802880027+
8 0720 2100490918+ 0918 0002370187+
8 0968 6000680820+ 0820 3419500774+
8 0870 3400410874+ 0874 2119501068+
9 0974 4601690187+ 0061 0000090187+
10 0219 8801890028+ 0189 3900371074+
10 1020 3900430175+ 0175 3300470225+
11 0275 2100510369+ 0063 0000110369+
11 0171 2119610469+ 0469 6000740221+
100 0569 0001690237+ 0064 0000120169+
100 0074 0000060003+ 0073 2000000052+
100 0069 0000020005+ 0068 1000000051+
100 0000 0100000000+ 0001 6300060036+
100 0005 7200008010+ 0006 8700040048+
100 0010 0001000065+ 0011 0000000000+
100 0015 0000000000+ 00le 0000000000+
100 0020 0000000000+ 0021 0000000000+
100 0025 8278798300+ 0026 6179836175+
100 0030 0000000000+ 0031 0000000000+

100 0035 0000000000+ 0052 0000008000+

0210
0224
0268
0374
0474
0468
0624
0618
0718
0288
0237
0774
1068
0187
1074
0225
0369
0221
0169
0072
0067
0002
0007
0012
0017
0022
0027
0032
0052

2119500168+
2100430218+
6000680270+
3319500424+
2119500418+
8801880025+
2100460568+
B802380026+
6000700620+
2119500868+
6000410770+
3200490824+
6000490920+
6000490970+
2100500269+
2119600319+
6000761070+
2119620519+
0003380053+
0000000000+
2000000051+
6400060042+
8800008010+
0000000000+
0000000000+
0000000000+
7577756368+
0000000000+
0000008000+

INTRODUCTION

0054
0055
0270
0424
0418
0188
0058
0238
0620
0060
0770
0824
0920
0970
0062
0319
1070
0519
0076
0071
0066
0003
0008
0013
0018
0023
0028
0033
0052

0000020168+
0000030218+
3419500324+
2100440368+
6000380420+
2100450518+
0000060568+
2100470668+
2119610768+
0000080868+
3900730724+
2100491018+
3319500924+
3900431024+
Q000100269+
8802390028+
2119600419+
8802890027+
0000020011+
0000020007+
3141592751+
6900008010+
8900008010+
0000000000+
0000000000+
0000000000+
8269750000+
0000000000+
0000008000+

0168
0218
0324
0056
0420
0057
0568
0059
0768
0868
0724
1018
0924
1024
0269
0239
0419
0289
0075
0Q70
0065
0004
0009
0014
001¢
0024
0029
0034
0052

6000660170+
6000400220+
2119500318+
0000040368+
3900380524+
0000050518+
6000440520+
0000070668+
6000690670+
6000720720+
2119500968+
6000680870+
6180030974+
2119600219+
6000491020+
3900460275+
6000750171+
2119500569+
0800060001+
0800020001+
0000000011+
7100008010+
0000130052+
0000000000+
0000001080+
7965616400+
0000000000+
0000000000+
0000008000+

17

18

ki

Dl
X1
X1
X1
X1
X1
X1
X1
X1
X1
X1
X1
X1
X1
X1
X1
X1
X1
X1
X1
X1
X1

INTRODUCTTION

DATA

1100000053

RESULTS

3769911253

8333333347
1666666748
2500000048
3333333348
4166666648
4999999548
5833333248
6666666548
74699999848
8333333148
9166666448
9999999748
1083333349
1166666649
1249999949
1333333249
1416666549
1499999849
1583333149
1666666449

£2

D2
X2
X2
X2
X2
X2
X2
X2
K2
X2
X2
X2
X2
X2
X2

X2

X2
X2
X2
X2
X2
X2

1000000054

1137795654~

3399187352
6465637552
8899186752
1046162253
1100000053
1046162253
8899186752
6465637552
3399187352

3399186352-
6465637552~
8899186552~
1046162153~
1100000053~
1046162253~
8899190152~
6465643752~
3399194652~
9900000046~

c3

D3
X3
X3
X3
X3
X3
X3
X3
X3
X3
X3
X3
X3
X3
X3
X3
X3
X3
X3
X3
X3
X3

5000000050

1514786754
5454487749
6668925549
7230561949
7084420549
6244806649
4793908049
2873747749
6732497748
1594985049~
3706126949~
5454487749~
6668925049~
7230561449-
7084420449~
6244807349~
4793909649~
2873750349~
6732534148=
1594979449
3706121949
5454482849

INTRODUCTION
C4 2000000045
D4 7261748549

C5

D5

% 6000000052

8497660050~

19

PART II

THE GAT SOURCE LANGUAGE

CONSTANTS AND VARIABLES 23

1. CONSTANTS AND VARTABLES

In Example 1T (p. 12) the characters 2. and 3.141 are constants,
i.e., quantities whose representation is only numeric; the characters D2
and X2 are variables, i.e., their representation is symbolie, and their
values may vary during the solution of the problem. There are two classes

of constants and variables: fixed point and floating point.

1.1. Fixed Point Constants
Fixed point constants in the source language contain from one to
ten digits. The decimal point is always assumed to be immediately to the
right of the rightmost digit (e.g., 25 means 25.0) but the point is always
omitted. These constants may be positive, in which case the sign may be

nmn

omitted, or they may be negaﬁive, in which case a sign must precede the
integer (e.g., 2, +100, =25, -10000, O% are all fixed point constants).
Leading (but not following) zeros may be omitted (e.g., 0005 is the same

integer as 5 or 05, however 1 and 100 are not the same).

1.2 Fixed Point Variables
A fixed point variable consists of one of the letters "I", "J", or

"K" followed by a subscript o (the form of allowable subscripts is treated on

p. 26; for the time being @ represents any allowable subscript). For example,

I, d_, Ka are fixed point variables. [ixed point variables may take on only

o Al o'

the values allowed fixed point constants.

1.3. Floating Point Constants

There are two ways of writing floating point constants in the

¥ In this write-up O is considered a positive integer,

ol CONSTANTS AND VARIABLES

source language. In both forms, if the number is positive no sign need be

o
-

written, but if it is negative a preceding sign is written.

a) Without exponent. This form contains from one to eight digits

LU

and a decimal point, ".", which must be written. The decimal point may appear
anywhere among the digits (e.g., 2.4, .42, 0., -.0005, -4. are all floating
point constants).

b) With exponent. This form contains from one to eight digits
with or without a decimal point (if the decimal point is immediately to the
right of the rightmost digit it may be omitted but not otherwise) which form
the mantissa, followed by the letter "E", followed by the exponent. The ex-
ponent is one or two digits in length preceded by its sign ("+" signs need
not be written). The exponent gives the power of ten by which the mantissa
is to be multiplied and must be > -50 and < 49. For example, 25E2(= 25.0x10°),

i
0 2y

0. 4Bk (=2.4x107), LEHO (=0.4x10"0), -4E2 (= -4.0x102), -.0hE-3 (= -.Okx103)

are floating point constants. All non-zero floating point numbers, N, must

2 k9

be in the range 10770 < |N| < 107,

1.4k, Floating Point Variables
A floating point variable consists of one of the letters "C", "D",

X", ™", or "Z" followed by a subscript @. Floating point variables may

take on only the values allowed floating point constants.

1.5 Alphabetic Constants
In addition to numeric constants, alphabetic constants may be
written. A purpose of these constants is to permit the coder to print, during
execution of the object program, pertinent comments which are meaningful to
the coder. Any group of five or less characters enclosed by "§" symbols is

an alphabetic constant. Blank spaces are counted as a character for the

purpose of alphabetic constants.

CONSTANTS AND VARIABLES 25

In this write-up a blank space will be

represented by the symbol "O", even though nothing is punched on & card.

Any
the
For
The

ing

character acceptable to the

computer is allowed with the exceptilon of

character "B" which is used only to enclose the alphabetic constant.

example, $ AD -0 B § is
characters of an alphabetic

computer two digit internal

an alphabetic constant of five characters,
constant are translated into the correspond-

codes for the characters.

26 SUBSCRIPTS

2. SUBSCRIFTS

2.1.' Normal Subscription

All variables must be subscripted. All subscripts, with the ex-

ception of a specialized matrix form, must be one of the following three:

a) a non-negative fixed point constant < 999;

b) a non-negative fixed point variable whose value < 1999;

c) an expression, B (p. 28), whose value is a non-negative

fixed point number < 1999.
Therefore 2, 48, K5, Kik4, (J2-5), (K8xJU5-167) are all allowable subscripts,
making K2, Y48, ZKS, KKIk, c(J2—5)_, and I(K8%J45-I67) all allowable variables.
(Again note that a fixed point number is always an integer.)

Variables with the same initial letter and consecutive subscripts
are located consecutively in storage. Hence the variables X1, X2, X3, which
might represent the components of a 3-dimensional vector, would be stored in
this manner. A consecutive block of storage can be designated as a matrix

stored by rows. Tor example, the matrix

—

1,1 Hy,e La'J_,3_\

a a a

2,1 2,2 2,3

a a a

31 3,2 73,3

may be stored in X1 through X9, where the elements of the first row (al 1
‘ J

8 8 3) are stored in X1, X2, and X3, the elements of the second row
2 2

(a2 1 8 5 8 3) in X4, X5, and X6, and the elements of the third row
2 2 2

(33,1 83 5 a3’3) in X7, X8, and X9.

SUBSCRIPTS 27

2.2, Matrix Subscription

It is possible to refer to the elements of a two-dimensional array
using the familiar matrix notation. An element is designated by writing
V(m,n) where V is the proper letter (C, D, I, J, K, X, ¥, or Z), m is the
row number and n is the column number of the element. Here m and n must be
one of the following three:

a) a positive (not zero) fixed point constant < 999;

b) a positive (not zero) fixed point variable whose value < 1999;

c) an expression B (p. 28) whose value is a positive non-zero

fixed point number < 1999.

Thus in the above matrix a
3

1,0 © X(l,’E) = X2 and EI.BJl = X(3’l)5 T

28 ARITHMETIC

3 ARTTHMETTIC

3.1. Arithmetic Operations

The following operations are allowed:

Operation Source Language Examples
Symbols

a) Addition + X4k + 28

b) Subtraction - xh <= 28

c) Division / xh / 28

d) Multiplication * X4 * 28; multiplication may
not be written as juxta-
position.

e) Exponentiation P K8p3 = K83

X4pz8 = Xhz&

f) Absolute value A AL = |1k
g) Negation - -I4 = negative of the value
of Ik

X4P - 5 = x1+"5

3.2. Arithmetic Expressions

Any properly parenthesized string of variaeble names, constants,

and/or subroutine calls, separated by operation‘symbols, is an expression.
Parenthases are used in the same manner as in ordinary algebra to specify
sequence of computation. Thus (It + I6) - K8 means IL is added to I6, then
K8 is subtracted from that result; I8%(K9 - J2) means J2 is subtracted from
K9, and that result is then multiplied by I8. Parenthesis nesting may not
exceed 10.

Where the sequence of computation is specified by the following

two rules, parentheses may be omitted. (Redundant parentheses are allowed.)

ARITHMETIC 29

RULE: Within an expression the sequence of computation, if not
otherwise specified by parentheses, is:

a) subscription,

o

absolute value and negaticn,

0

o

)

)

) exponentiation,
) multiplication and division,
)

e addition and subtraction.
That is, the arithmetic operations are performed according to their hierarchy,

which is defined in the sbove list. Thus, subscription is said to be the

operation of highest hierarchy, while addition and subtraction are the opera-

tions of lowest hierarchy and are also of equal hierarchy. (Note that any

expression intended as a subscript must be parenthesized; e.g., K(Ik + J2)

without parentheses becomes KIk + J2.)

Examples:

1) A(I4-K6) means K6 subtracted from ILk and the absolute value
of the result is taken, while AT4-K6 means K6 is subtracted from the absolute
value of Ik,

2) -I2+IL weans the negative of I2 plus I, while -(I2+IL) means
the negative of the result of adding I2 and Ik.

3) ITPI2+K2 means ITIE plus K2, ITP-I2+K2 means IT_IE plus K2
gince negation appears before exponentiation on the above list.

L) K2/I2-IL means K2 divided by I2 and then Il is subtracted
from the result, while K2/(I2-Ik) means Ik is subtracted from I2 and the
result is divided into K2.

5) K2+I3*I5 means K2+(I3*I5).

6) Kep2/I7 means ((k2)%)/37.

30 ARITHMETIC

7) KS*I6PI2 means K5%((16)%%)

8) ATL+J2*¥K2 means |Ih| + (J2%K2)

RULE: Within an expression the sequence of computing when opera-
tions are of equal hierarchy is from left to right, if not otherwise speci-

fied by parentheses.

Examples:
1) I4+I6-K7+J2-I7 means (((IU+I6)-K7)+J2)-I7.
2) J2%I7/J4/K5%K2 means (((J2NIT)/TL)/K5)*K2.
3) I7T+KexJhk/I2+K7*I2 means (IT+((KexJh)/I12))+(K7*12).
L) I6+K2*I8PIkL/I3-K2P-J2¥K4+I8 means

((16+((kex(187*))/13))-((k™72)%k))+18

3.3. Mcde of Arithmetic

Definitions of the terms "fixed point number" and "floating point
number" have previously appeared (pp. 23, 24). The same terms also describe
the arithmetic of a given nuwber, i.e., the actual mechanics of calculation
involved when that number is operated upon. If the arithmetic of all con-
stants and variables in a given expression is the same, then the result
after performing the operations in the expression has that same arithmetic.
Thus the result of IM+KT*JI2 is fixed point, and the result of C9/Z7%.04E2
is floating point. As a general rule, mixed arithmetic in an expression
always leads to a floating point result. It is useful to know the sequence
of conversions, however, to avoid misunderstandings. The procedure followed
by the compiler is to maintain the arithmetic of the two arguments involved
in a given operation if they have the same arithmetic, but to convert to

floating point when an operation is encountered (according to the hierarchy

ARITHMETIC 31

on p. 29) in which the arguments have differing arithmetics. Thus, in

Yh = 6 + 1/13, since the division is performed first, and since both argu-
ments for the division operation are fixed point numbers, the division is

in fixed point. This result is converted to floating point for the addition

to a floating point constant .6. If the above example had read Y4 = .6 + 1./I3,
the value of I3 would have been converted to floating point, since the other

argument of the division operation is now a floating point constant.

32 STATEMENTS

4, STATEMENTS
A statement to GAT corresponds to a sentence in the English language;
that is, it conveys a complete thought to the compiler. The acceptable forms

of GAT statements will be thoroughly illustrated below.

4.1, Substitution Statements

1

The form of a substitution statement is Vo = B where Vo is any

variable and B any arithmetic expression. The value of Vo is replaced by

the value of B. Thus K7 = J*Ik; after execution of this statement the value
of K7 is equal to the product of J4 and Ik, When a variable takes on & new
value as a result of a substitution statement, the arithmetic of the expres-
sion on the right of the "=" symbol is converted to that of the variable on
the left before substitution, if their arithmetics differ. For example, in
the statement Y4 = K2 + Ik, the quantity K2 + I4 is computed in fixed point
arithmetic but is converted to floating point, i.e., "floated", before it is
substituted into Y4. In the statement I2 = K2 + Z8, the quantity K2 + Z8 is
computed in floating point but is converted to fixed point, i.e., "fixed",

before being substituted in I2. See discussion of FIX subroutine, p. 63.

4.2. Control Statements

The normal sequence of program execution is from one statement to
the next statement in the order in which they appear. If a statement is
explicitly referred to by another statement it must have a unique non-zero

number (< 999) which is called the statement number. If no reference is

made to a statement, then the statement number may be omitted. Numbers need
not be in order, nor do all numbers below a given number have to be used.
Statements which transfer control to other statements by number are called

control statements.

STATEMENTS 33

One way of varying the normal sequence of program execution is by

the use of an unconditional GO statement. This statement is of the form

"eo0 TO pw" where p may be:
a) a constant,
b) a variable,
¢) an expression,

all of whose values are non-zero fixed point numbers < 999. Thus "GO TO 5"

means "go to statement number 5". "GO TO J6" means "go to the statement whose
number is equal to the current value of J6". (The value of J6 may be changed
during the execution of the program; hence when the statement "GO TO J6" is
executed, control will transfer to one of several different places in the
program, depending on the current value of J6. This serves as a variable
"switch")

Another method of varying this sequence is the use of a conditional

GO statement. This statement is of the form "GO TO u IF ﬁ'lHBEH’ which means
that the normal sequence of execution is altered if and only if Bl stands in
rEl&tiDIIY{'tO 62. If this relation is not satisfied.then cowputation proceeds
to the next statement in the normal sequence. Here ﬁl and BE may be any ex-
pressions, u has the same form as for the unconditional GO statement discussed
above, and EJ.RBE may be:

1) B,UB, meaning B, = B,

2) BlVBe meaning B, > 52

3) B,WB, meaning B, > B,

L) BlQ’BE meaning B, < B,

5) B,Bp, meaning B, < B, -

3 STATEMENTS

Thus "GO TO 2 IF K7U 3" means "Go to statement number 2 if K7 equals 3,
otherwise follow the normel sequence". "GO TO I5 IF Y8 + 5. V Z7P2" means
"Go to the statement whose number is equal to the current value of I5 if
Y8 + 5 is greater than ZTE, otherwise follow the normal sequence".

A third method of varying the normal sequence of execution is by

means of an iteration statement. In most programs there are usually groups

of statements which are to be repeated many times, incrementing some variable
each time. This repetition is called iteration and the statement controlling
this is the iteration statement. The block of statements repeated in this

manner define the scope of the iteration.

2: k, Vo, El, EE‘ 53, iteration statement
by —---

i scope of iteration

ks ===-

This iterative procedure halts when the variable reaches a certain pre-

defined value. The iteration statement m: "k, Vo, Bys By 53, (all five

commas must be written, particularly the last one) means "Initially set the

value of Vo equal to 61, then execute the block of statements starting with

the statement following this one (if k # m), up to and including the statement

numbered k, then repeat the execution of this block again and again, each time
adding &2 to Vo until Vo > 53. If k¥ = m, the statement number of the itera-
tion statement itself, the incrementing and testing contained in the iteration
statement itself constitute the scope. The block of statements is executed
if Va = BB but not for Vo > 53, hence if (53 - Bl) is not an integral multiple

of BE’ the last time the block will be executed is for (53 - &2) < Vo < B3.

STATEMENTS

Here k is a statement number, Vo any variable, and Bl, BQ’ and 53 any ex-

pressions,

it ﬁe is negative, the test for completion of the iteration will

be Vo < B instead of Vo > B..

Examples:

1)

3)

The program segment,

1l: J2 =J9

2 8, IT, 2, 1, KT,

3: J2 = JexJg
computes the value of J9 raised to the KTth power (K7 > 2).
(Note that I7 is a dummy veriable used as a counter.) The
purpose of this example is to illustrate a variable upper
limit; in actual practice it is more efficient to use the

exponentiation coperation, i.e., J2 = J9PKT.

The program segment,
Z1 =0
Z2 =1

1 K 1; 1, 88

21

n

Z1 + XK1

l: 22 = Z2 ¥ YKl

[}

accumulates the sum of the K2 numbers X1, X2, ..., XK2,
and the product of the K2 numbers Y1, Y2, ..., YKZ2.
Given a vector X1, X2, ..., XKL the following program segment
computes square root of the sum of the last J1 elements.
b X0 =0

2_’ Il’ Kl - Jl + lJ l_, IG.J

35

36

STATEMENTS

2: X0 =30 + ¥11

X0 = X0OP.5
4) To evaluate the polynomial C X" + ¢ .X° % 4 +e.X +c
n n-1 w8 3 ¥ 0
use the formula (...((cﬁx + cn—l) X + cn_e) X+ oo + cl)X + e

5)

Letting Y1 = value of the polynomial, X1 = x, K1 = n, and

CKl = c_, ¢lxL -1) =c¢ «se; CL = c,, CO = c, the follow-

n-1’ 1!
ing program segment will evaluate this polynomisal:

Yl = 0.

2, K2, x1, -1, 0O,

2: Y1 =X1 * Y1l + CK2

X, the square root of the number y can be obtained by applying
Newton's method to the equation f(x) = x> - y = 0. The general
iterative procedure called Newton's method proceeds by calculat-
ing successive approximations to the root x of f(x) = O as
follows:

f(xi)
= X - .

X, :
i+l i f‘(xi)

Applied to the eguation f(x) = x° - y this becomes

xE-
17

X, s
i+l 1, Exi

_1 i
=5 (xi + xi) .

The solution can be written as a single statement if the criter-
ion for stopping the iteration is |f(x)| < e:

1: 1,X1,X0, - (X1P2 - ¥1)/(2. * X1), X1 - A(X1P2 - Y1) + Y2.
In the above statement, Y1 = y, Y2 = €, X0 is the initial
estimate of x, and X1 becomes the desired answer at the termina-
tion of the iteration. (Note again that this is an illustrative
problem; in actual practice the square root can be obtained

simply as X1 = Y1P.5).

STATEMENTS 37

Iteration statements may contain within their scope other itera-
tion statements. This is called nesting. If iteration statement b is in
the scope of another iteration statement a, then the scope of b must be
entirely within the scope of a. The following diagrams represent some valid

configurations:

1) 1: k, (iteration statement a)

e m, (iteration statement b)

scope of b scope of a

2) 5: k, (iteration statement a)

e scope of b scope of a

K: =--

Note: Even though the scope of a and b both end on statement k, the itera-
tion b is incremented and tested first, hence iteration b is completed before

iteration a is incremented.

38

3)

The following

STATEMENTS

k, (iteration statement a)
1E oo
4: m, (iteration statement b)
3t ===
Ve scope of b
m; ---
2: n, (iteration statement c)

vee scope of ¢

ks

scope of a

J

diagram represents an invalid configuration:

: k, (iteration statement a)

: m, (iteration statement b) $$cope of a

o y

scope of b

STATEMENTS 39

The nesting depth of an iteration statement is the number of iteration state-

ments in whose scope it appears. The nesting depth of an iteration statement

may not exceed eight.

For example,

2: k, (iteration statement a)

v e 8

m, (iteration statement b)

Jb =

090 gscope of c

nesting depth = 2

N ===

oo scope of b

nesting depth = 1

m; ===

va scope of a

nesting depth = O

ki -==

4.3. Input-Output Statements
a) Input Statement
The object program usually needs additional data in order to perform its
calculations. The execution of the input statement "READ" causes the next
card(s) appearing in the problem deck to be read by the I.B.M. 533 card reader
(p. 51 for data card formats). No other information is necessary to the READ

statements since all data is fully identified on the card. Comments identify-

40 STATEMENTS

ing any particular READ statement may precede the word "READ" in that state-
ment, but they have no actual effect on the program.
b) Output Statements

The form of the output statement used for printing numeric data on the I.B.M.,

1 e

stants or any variables (not expressions) and n, the number of constants and/or

407 printer is "TA, Th, ... TA" where A, A, ... M, mey be any numeric con-

variables specified in the print statement, must be less than or equal to

16 (n < 16.). For example, TYLTK(2,8)T4 will print the names Y4 and K(2,8)
[the name "K(2,8)" is not printed but appears as "Ka' where o is its numeric
position in the K vector storage, as on p. 26] along with their values, and
the fixed point constant 4 (& constant is usually printed merely as identifica-
tion); TZK8, when K8 = 4, will print the name ZL4 and its value.

To print alphabetic data the statement ”AThl Tha wew Thn" is used,

2

where A, A, ... A may be either fixed point variables (I, J or K) or alpha-

betic constants (p. 24) and n < 16, For example, ATINTJL5 will print numeric

equivalents for the names I4 and J15 and will print their values as if they
were five-character alphabetic constants (see I.B.M. 650 manual G24-5000-0,
P. 21); AT$NOQSOPTSLUTIOPTSN IO MC$ will print "NO SOLUTION". (This illus-
trates the use of the "$" notation as a means of printing a useful message to
the coder during execution of the object program.) See p. 55 for specific
output formats.

Either of the two previous cutput statements may specify regions to
be printed rather than single variables. Writing Thi cea hJ (the three dots
must appear) will cause printing of all the names Ay, Ay s Ao through

hj-l’ hj inclusive with their associated values. Ai and Kj may be any numeric

constants or any variables (not expressions), and i must be less than j. Each

STATEMENTS L1

region designated is regarded by the compiler as two single variables, there-
fore only eight (or less) regions may be specified in one T statement. Regions,
single variables and constants may be mixed, but (n + 2m) must be < 16, where

n = number of single variables and/or constents and m = number of regionms.

L.k, Executive Statements
The function of the following statements is to provide information
to the compiler as to how to allocate storage for the object program, its
variables, and its constants.
a) Statement Nuwber Allocation
The statement

n IS HIGHEST STATEMENT NUMBEER

causes reservation of n words (necessary to GAT during compilation) which
merely occupy storage space in the computer during execution of the object

program. Hence it is to the coder's advantage to make n no greater than the

highest statement number actually used. However, every number < n need not

be used. n must be < 999.

b) Subroutine Allocation (p. 45)
Subroutines to be included when the object program is executed alsc occupy space
in computer storage. GAT must therefore reserve a sufficient number of loca-
tions for these subroutines. The statement

m USED TN SUBROUTINES

provides a number, m, which must be < 999 and must be > the total number of
locations to be saved for subroutines., Appendix B gives the exact number of
locations required by each subroutine available to GAT.

NOTE: The above two statements must appear if statement numbers

and/or subroutines are used.
c) Allocation of Constants

Normally storage space is provided for 100 constants created by the source

language (as opposed to constants read by the object program as data). Here-

4o STATEMENTS

after these constants will be referred to as absolute constants, or abcons.
(The numbers 3.14, L. are abcons, but 2. and -2. occupy only one location.)

If the coder knows that less than 100 abcons will be generated by the compiler,

and if he knows that extra storage space is needed by his program, the state-
ment
L ABCONS
will cause reservation of L locations for abcons. Here, the relationships
100 > R > the actual number of abcons generated must be satisfied.
d) Allocation of Variables
Appearing immediately after the above three statements must be the statement

DIMENS ION Vi(sl,cl,bl) Vé(se,ce,bz) e Vi(si,ci,bi) b Vm(sm,cm,bm)

(the commas must appear, but not the dots). Each Vi is one of the variable

letters: C, D, I, J, K, X, ¥, or Z. Each variable letter used in the program

must be mentioned in the DIMENSION statement. If Vi is not to be used as

a matrix (not necessarily square), c. and b, do not appear. Thus,

i

Vi(si) is an array;
si is the highest subscript number in the Vi array;

Vi(si,ci,bi) is a matrix included in the V, array;

i

cy is the number of columns in the Vi matrix;

b. is the subscript number of V +1 vV is the base element
i 7 (1.1} “{1:1)

of the Vi matrix, and s, > bi (the base element may be any

i
element within the V, array);
also, s, i1s a non-negative fixed point constant, and 8 < 1999;
cy and bi are non-negative, and may be either fixed point constants
or fixed point variables but with a constant subscript (e.g., K2

but not JK2).

STATEMENTS

(GAT assumes the number of rows in the V., matrix to be equal to the largest

i
integer less than (si - b, # l)/ci.)
To illustrate:
DIMENSTION J(25) K(40, 5, 15)

J is an array of 26 elements; JO is its first element, J13
is its 1bth element, and J25 is its 26th and last element.

K is a 41 element array ranging from KO through K4O. K15 is
the base element of a 5-column matrix included in the K array. The K matrix
is assumed to range from K15 through K39, so that K4O is outside the matrix.
K15 may be referred to as K(1,1), K20 as K(2,1), K27 as K(3,3), and K39 as
K(5,5).

DIMENSION X(100, K6, J2)

43

X is a 10l-element array (XO through X100), containing a matrix

of K6 columns whose base element is XJ2. Both K6 and J2 may vary during ex-

ecution of the object program; e.g., if initially K6 = 7 and J2 = O, then X

contains a 98 element matrix, X(1,1) = X0, X(7,5)= XU6, and X(14,7), the last

element in the X matrix, = X97. (X98, X99, end X100 are not within the
matrix.) If K6 and J2 are later computed to be 3 and 98 respectively, then
there are 3 elements in the X matrix, X(1,1)= X98, X(1,2) = X99, end
%¥(1,3) = X100. (Now XO through X97 are not within the matrix.)

Thus the coder is able to vary the size of matrices during computa-
o ol

e) HALT
The statement

HALT

when encountered during execution, causes execution of the object program

Ll STATEMENTS

to cease. The last instruction executed must be either HALT or READ,

f) END
A card containing "END" must be the last card of each source language deck.,
It indicates to the compiler that the object program is now completely com-

piled.

SUBROUTINES

S SUBROUTINES

Subroutines are subprograms, precoded in machine language, which
perform frequently used functions. The set of these routines available to
the GAT user is called the GAT Subroutine Library. A subroutine is incorpo-
rated in the object program by writing

NNNNI. (15 Bpy Bgseews By)

(the period after NNNNN and the commas must be written), where: NNNNN is the
5(ot less)-character name of the subroutine; B, By, By +ee) By are the argu-
ments needed by the subroutine (k, the number of arguments, may vary from
subroutine to subroutine) and may be any constants, any variables, or any
expressions, subject to the limitations of the particular subroutine (see
Appendix B for descriptions of library subroutines).

Subroutine calls appearing in conditional GO statements must be

parenthesized:

GO TO p IF(NNNNN. (B, .05 By)) R(DNNNN. (By, «ves By))

The term "NNNNN. (ﬁl, Bor Bgs wees ﬁk)” may be thought of as meaning

"the result of NNNNN" and the result is treated during computation as a var-
ieble; i.e., Y1 = C3 + 1.3/SIN X1.

| Some subroutines may require as an argument a symbol for the loca-
tion of a variable rather than the variable name. The letter L preceding the
variable name is that symbol, (One of ﬁi being "LJ2" means "the location of
o=

A subroutine may in itself be a complete statement, if one of the

required arguments specifies where the result of the computation is to be
stored. This is analogous to a substitution statemwent. (p.104, statement

no., 2, Runge-Kutta subroutine.)

45

L6 SUBROUTINES

Object programs generally use some subroutines not explieitly called

for in the source language. These may be:

&) T needed for changes of
b) FLOAT arithmetic in a statement
c) READ

d) T, AT (PRINT)
e) EXPONENTIATION
f) MATRIX SUBSCRIPTION
The coder should be careful to reserve enough room for these subroutines if

they are needed (see m USED IN SUBROUTINES, p. 41).

It 1s imperative that the coder know enough asbout the operation of
GAT to know which subroutines will be required to carry out various opera-
tions, e.g.,

X1

J1, (requires FLOAT subroutine);

K5 J1P3, (requires exponentiation subroutine);

1

TI7TTY (1,5) (requires print subroutine and matrix subscription
subroutine).
An object program may not call for more than 16 distinct subroutines.
(When a subroutine has two (or more) entries and both (or more) are used, each
distinct entry used is considered a subroutine call,)

NOTE: The first statement of a source language program may not

contain a call to a subroutine which needs an "L" argument; the first state-

ment may not consist entirely of a subroutine call (other than READ, T or AT).

PART III

GAT INPUT-OUTPUT FORMATS

PREPARATTON OF CARDS L9

1. PREPARATION OF CARDS

1.1, Statement Cards

Statement cards have the following format:

Cols. 1-10 Blank

Cols. 11-15 Identification (or Blank)
Cols. 16-40 | Blank

Cols. 41-43 Statement Nuwber

Cols. 44-50 Blaenk

Cols. 51-80 The Statement

Statement numbers (right-justified in Cols. 41-43) may be punched as one-, two-,
or three-digit integers, since leading zeros need not be punched.
If a statement cannot fit entirely on a single card, it may be con-

tinued on up to three succeeding cards of the sawme format: a total of 4 cards

per statement is the allowable limit. The signal that a given card is not the
last of a statement's cards is the punching of the letter "N" (Next) as the
last character on that card.

The statement number need not be punched on the second, third, or
fourth cards of a statement. If a number is punched on the first card, it
may be omitted on the others, but if the statement number is punched on later
cards it must be the same number as on the first card of the statement.

Except when appearing in an alphabetic constant, blanks in statements
are always ignored by the compiler. Thus they may be used as desired for

easier reading of the statements.

Cat

Input

Object

PGM.
Input

INTERPRETER SPA
193 %aTIT_INNT_IE TV 43 NIADIAY ad 43 de

MULTIPLE LAYOUT FORM
12

FOR ELECTRIC ACCOUNTING MACHINE CARDS

FRTINETHIIONME

parInIEe

bt

Y BEL K > B o O)] @ B |
o B o e o R o R o R
3 -4 N | L o B o B
- N~ on o B o B (-3
o e T = E o B o 2
e o 2 L F - rrosee— }
oz ,§"* o= oz |* © o= =
o R o 2 o 2 e R H ! (= ¥
o B hd o = e R Elr\ o B % -]
o= o = o= o = “ an
P +I,§”" P g :'mz = !‘:ﬁ"
2 o3 Lo~ oz o 3 Lol]
8] g =] o o3 =+| o8
oS en G oz =+ |z g
5 (-1 o o 8 o 2 o 4 "m'
et o 32 o2 o 2 = =g |
ﬂ o I [] o e 1 e 3 9 o J
] =3 o 3 o 3 o 3
0 o 3 '§H o I o = mdmn HE |
oS '{mz @ 5 ar G oo
on 3 Mo 2 o O o S (=]
o s <+ ’ o =t o = Q d—u-; ': o s
2k = =i §o|zi|HEalz2
o g ° e] g oo X o R
Ex Pu‘\ o7 o 5 =253 T E o
o X o X as A Q o 3 N e X
o e A e 4 e 01 au,q L |
o [=] o 0t 5.—1] = e q
- o A N-:n."‘. o & 'ﬂm;‘; %ms
i) 27 S if- napE =g g
oY o Y end '3 - o l.\Icﬂ'l
e s . ar s en 5 s oS
o 3 i} o g o Y a L E o 3
C) =+ |2 o g N |2 Heng
- o3 g o 3 o 3 ez T &7
1 o 3 o 3 @ 7 = o e 9
l s Hen = oz Mo 5 pe
1'“- m;'___w] H= 0 W T
- on |+l @B e |+l or| o o
)] ol o © a1 E 4| =n
o5 o A L ' - s L
:7- o ¥ . o % o Ne] e R’ Hs o i
o B -I-”‘n o f oA T+ |=on Mo n
ie - A ﬂ oA o 3 h o X =%
| e a o] o A o w3 o3
-] e - 8 - en f o |
- o 5 Moo 5 e A M o o
it a2 [4| Mo B e o H"""E
I £0 o B o R | 4] e R - =R
i} 2 Ll ot e (22| gl 2k
= - ~
1‘-‘ o B e E A e ',E.' C RN o B
e o 1 ’am oy B LB " o B HB’:
e - - o A o 5 o A on
!:l'L:: o B o R o B -1 -] o R
“!J o R o | o B = e R o |
I = Her 5 LI Hen 2 o 5
: o |H i ;s |+ el & Nae
o = o = o=] o = | =8
o o= e = — e s E o &=
o= b o= o 2 o o 2
o = 'P"_‘ oz oz o o 2 | ﬂﬂﬂ,
o X ﬁ e = o X ‘e 2 o X
o = o = e 2 (2] o 2 o O
o = o = o = = o 3 e
o= Mo = o= Ao =
=« 2 |4 Cen 2 a2 4 o B :'
- t— = o = - -
:n Tun = o - Q o = . an @
o~ e ~ o - 5‘ o~ g | o~
L Hen = o e o e | b e
o= 12 QUL)] Hor = o - = — o - Henw
on - m oy - on - n on - [B4
L o » [] b' o - an e
(- on =~ on s an s @9 e
o - |+ O - @ - Heov - - -
NIGNNN 0N1D313| VAAWAN OULOINI MIENNN QNA0INI | NIEIWAN 0L 021D | UIERNN OuiDY
g biodiphiptded et vesenen
+ 1 -
mAe e @ ¢ 43
L]
423

PREPARATION OF CARDS 51
1.2, Data Cards

A set of data cards which is intended to be read by the object
program as the result of a single "READ" statement is called a read group.
The program will read cards and store the information as indicated on each
card until an end-of-group character (* or L, see p. 51, 53) is encountered
in column 75. After the contents of the card containing this character are
stored, the program passes on to the next statement.

One of the two types of data cards is the numeric data card. The

format of this data card is as follows:

Cols. 1-10 Value of 1lst variable
Cols. 11-20 Value of 2nd variable
Cols. 21-30 Value of 3rd variable
Cols. 31-40 Value of Uth variable
Cols. 41-50 Value.of 5th varisble
Cols. 51-55 Alphanumeric name of lst variable
Cols. 56-60 Alphanumeric name of 2nd variable
Cols. 61-65 Alphanumeric name of 3rd variable
Cols. 66-70 Alphanumeric name of 4th variable
Cols. T71-75 Alphanumeric name of 5th variable

Cols. 76-80 Not used

If the numeric data card is the last of a read group, punch an "*" in column
75. On this card values of up to 5 variables must be punched, right-justified,
in the designated ten-column field. Leading zeros must be punched. Values

of C, D, X, Y, and Z variables must be punched as ten-digit numbers, the first

eight numbers being the mantissa and the last two the modified exponent; i.e.,

52 PREPARATION OF CARDS

50 + exponent. On all numeric data cards the sign is punched in the tenth
column of the designated field. Plus signs may be omitted; minus signs must
be punched. The alphanumeric name of a variable must be punched left-justified
in its designated field as a letter (C, D, I, J, K, X, Y, Z) followed by a
single numberic subscript, i.e., Cl, DO, but not CI2, Y(1l,4). Whenever a name
field is entirely blank, the corresponding value is completely ignored, and
may also be blank. If the letters ETC are punched in a name field the name

is assumed to be that of the last variable encountered, with the subscript
increased by 1. For example, if the name fields in columns 51=75 of a numeric

data card contained the names

Yo, EIC, ETC, J17, ETC,

the variable names will be interpreted as

¥0; Yi, Y8, Ji7; J18.
An ETC may also refer to the previous card within a read group. Thus, if the
card following that above contained

ETC, EIC, ETC, ETC, ETC,

the names of that card would be interpreted as

J19, J20, J21, J22, J23.

Each name (including ETC) must be left-justified in its five-column name field.

The other type of data card is the alphabetic data card. No signs

are punched on alphabetic data cards. The format of these cards is as follows:

PREPARATION OF CARDS 53

Cols. 1-4 Blank or zero

Cols. 5-10 Numeric name of lst variable

Cols. 11-14 Blank or zero

Cols. 15-20 Numeric name of 2nd variable

Cols. 21-24 Blank or zero

Cols. 25-30 Numeric name of 3rd variable

Cols. 31-34 Blank or zero

Cols. 35-40 Numeric name of Wth variable

Cols. 41-44 Blank or zero

Cols. 45-50 Numeric name of 5th variable

Cols. 51-55 Value of lst alphanumeric variable

Cols. 56-60 Value of 2nd alphanumeric variable

Cols. 61-65 Value of 3rd alphanumeric variable

Cols. 66-T0 Value of Uth alphanumeric variable

Cols. T1-T4 Value of 5th alphanumeric variable

Col. 75 A if not the last card of a read group
I, if the last card of a read group

Cols. 76-80 Not used

Note that the value of the 5th variable may contain only four alphanumeric
characters., When this value is stored in the computer the two-digit code
for "blank" (00) replaces "A" or "L" to make a full ten-digit word. The
numeric names are of the form ODDD 4t nnnn, where O represents a blank
column, nnnn is the subseript of the variable and must be punched as a four-

digit number including leading zeros, and tt represents variable name according

to the following code (the zero must be punched):

5k PREPARATION OF CARDS

tt Variable
0l C
02 D
03 I
Ol J
0% K
06 X
o7 Y
08 7

Whenever a numeric name field is entirely blank, the corresponding alphanumeric
value is completely ignored, and may also be blank. An ETC notation completely
analogous in its effect to that described on p. 52 is available for the alpha-
betic card. This is accomplished by setting tt = 10 and nnnn = 0000 in the

numeric name described above.

2. OUTPUT FORMATS

2.1. Listing

During compilation, the input statement cards are listed and if an

error is detected in a particular statement an error indication appears on the

OUTPUT FORMATS

35

following line. BSee Appendix C for list of errors detected during compilation.

Only one error is detected per statement.

an error indication is:

oW

40O USED IN SUBROUTINES

8 IS HIGHEST STATEMENT NUMBER
DIMENSION. I(1) J(1) N

X(100, K1, 1) ¥(100, J1, 1) N
Z(100, J1, 1)

11, J1, KL, X, Y, READ

6y 30, 3y Iy Ty

6, Jo, 1, 1, Ji,

2(10, JO) = O

& B 1; 1 X

STATEMENT - ERROR NO. 02
z(10, J0) = X(I0, KO) * Y(KO, JO) N
z(10, JO)

STATEMENT - ERROR NC, 02
HALT

END

Error 02 occurred because K was not defined in the DIMENSION statement.

An example of a listing containing

56

OUTPUT FORMATS

Listed data (with the exception of messages using the $ notation,

which are listed in the above format) appears as follows:

Ccl

X3
x5

Y1

4000000051
1000000052
3000000052
5000000052

1000000051

X2
Xh
X6

ETC

1000000051
2000000052
4000000052
6000000052

2000000051

ETC 3000000051

ETC 4000000051

Il 3
Ji 5
hlal 2

ETC 5000000051

The first name, Cl, corresponds to the name in columns 51-55 on input data; the

value of this variable corresponds to columns 1-10, etec.

IListing of an obJject program or a dump appears in the form shown on

Pe 7.

in the 5-instructions-per-card format described on p. 50.

2u24

Card Output

After a successful compilation the object program may be punched

Following punching

of the object program, tables necessary for its execution are punched in the

same format.

57

OUTPUT FORMATS

+0008000000 200 +0000000000 SEOO +000000000O #HEOO +0000000000 €££00 +0000000000 2E00 OOT
+0000000000 TEOO +0000000000 OE00 +0000000000 6200 +0000000000 Q200 +0000000000 L300 00T
+Roto6LLLE) 9200 womﬁmhwmpmﬁ €200 +00H9T9G96L #2300 +0000000000 £200 +0000000000 3I200 OO0T
+00LLLQGoLg T200 +00LLLGS999 0200 +OETTO00000 6TO0 +0000000000 QTOO -+0000000000 LTIOO 00T
+0000000000 9100 +0000000000 STOO0 +0000000000 H#TOO +0000000000 £TO0 +0000000000 SI00 00T
+0000000000 TTOO +£90000TO00 OTO0 +3HOOTZ0000 6000 +0H0OTO0068 QOO0 +0TOR000088 LO0O OOT
+g@£002000L8 9000 +0TOQO000Z2L G000 +O0TOQOOOOTL +H000 +0TOQOO006S £000 +0TOQOO0OHY 2000 00T
+9£002000€9 TO0O +00000000TO 0000 +5000000000 €900 +9HO000000T #900 +TSO000000T S$900 OOT
+T4TS4R520ES 9900 +Hooomoooco L1900 +H0OOTO0000 Q900 +LTZO6HETIO 9180 +9TEOS00000 L{00 00T
+0TQO0S6TTIS HES0 +92004E20g88 99L0 +99L0T96TTZ QT90 +QT90L90009 9TLO +9TLOO96TTIS Q950 1
+8960890009 L9TO +L9TOHOOO0O 900 +EE€30L9TO00 9990 +9990THOOTZ 2LG0 +2LS00G6THE 2360 +
+22606£002€ QE20 +02008E2088 9T90 +OT906E0069 QIS0 +QTSOLE0009 9960 +9950066TT2 2lh0 €
+ZL70G9008E 2eh0 +SSHOOSET6E 2LE0 +2LE099006€ #HRTO +6200%QTORR OIS0 +9TS0096TTS Q9n0 €
+g9H0LEOOD9 99H0 +99HO0SETIS GRTO +020088T0RE OTHO +ITHOGEO069 QTHO +QTHOLE0009 €QTO €
+£QTOE00000 GHOO +EQTOLOTOGH 22E0 +mmmoommamm g9E0 +Q9E06E0009 99£0 +99E€00GATIZ2 2l20 €
+2Ll20h9002E 2220 +23200G6TEE QIE0 +QIEO6E0009 9TEO +OTEO0SETOZ Q920 +Q920THOOLY 9920 2
+t99206£00TS <TLTO +3LTO6E002E QT20 +QT20THOOTY €E€20 +EQGTOEES000 9T20 +9TS06E00TS QITO0 2
+Q9T06£0009 99T0 +99T0200000 HH00 +99TO0SETTIS Q020 +H2009020Q8 O66T +066TTO0000 £q00 2
1 ®*20] a a *2o1 o) 0 *20] d g *o01 v ¥ *00T JIsquny
*207 Jo LIowafy 207 Jo Axows|] *007 JO AIOWSH 007 JO - Axowmaj *007 Jo AJIOWS) 1USWSLIELG
S1U39U0D SqU21U0) g9U21U0) S1U39U0) SqUa1U0)

OUTPUT FORMATS

58

(anjoA oyaqoydip sy jo JybL ayy
0} sipaddp 3|qOLIOA 34} JO BWDU JuBWNU 3y} ‘pyop dyaqoydip uQ) ‘Buipoas JaisDa Joj SIHDW pup SWDU S} JO Jybu auy op sjgouon 3yl Jo
anpon ay} buioojd smojjD Buyuly "pjop pajuud puo (spioo uo) ojop jndul jo s3ouDJIDSAAD YL USAMI3Q FVUSBHLIP 3Yi SBYDUSN||! SIY|

CETPATET A T A et h_,_,w,_“_“_____._,___F_..._ﬂ_.“ﬂ_ﬂ“_ﬂ,m._h_w_u_._n_u_"_.__m___h_,._h_.“_.,_ﬂ_ __,_,_._h_,_.,_.wﬂ_u____u_,w.zww_,_m_m_.z,_‘wh_._mm_.wz__._ﬁ,_.T_m_,_._ﬁ_m___n_,_._h"uw_.z il
. D{ﬂ wﬁt”— Dmi T@ 0 o mﬂﬁu& _“__—. 8-i __“B.wL DT|Qi Wﬂ..,l._ 1N

P oo~ -y swo” " a0 iva
gl
OBELBL L1 PLEL 2L 1L0LES B9 LS voES29 mm.mwhmwwmmvmmﬂﬂm_mnhmwnc.mt*mr#vmtmv IHOFEE BEJEGECEREEC Z2C IE R R Z R W R ZoZaIa L g cwa 2 I0Ie 8 L 9SS €2 |
6666666666666666666666666666 6666666666665666666666/666666666666666666666666666666
s v ¢ 2 | S INwA | & 3NVA ¢ 3ITIWA | 2 3ImwA 1 3INWA cmzﬂ_u
awvn | 3avn | 3wen | 3N | 3N | 319VIMVA | JTIBVIMVA | 3EVIMVA | T1EVIMVA | TT8VIMVA
TEVINTA| I TEVIMYA| GV IMYA| FEVINTA| ITIBVINTA _H_ D D _H_ D

APPENDIX A - SUMMARY 59

APPENDIX A - SUMMARY OF THE LANGUAGE
1. Types of Constants

a. fixed point - 1 to 10 digits.(p. 23)

b. floating point - 1 to 8 digits with decimal point; 1 tD-B digit
mantissa with or without a decimal point, followed
by E, followed by a 1 or 2-digit exponent. (p. 23)

c. alphabetic - 1 to 5 characters including blanks ($ is not a

valid character in an alphabetic constant since

it is used as a delimiter). (p. 2k)
2, Types of Variables

a. fixed point - I, J or K, followed by a subscript. (p. 23)

b. floating point - C, D, X, Y or Z followed by a subscript. (p. 24)
3. Types of Subscripts

a. constant

non-negative, fixed point, < 999.(p. 26)

b. variable non-negative, fixed point, < 1999. (p. 26)

1

c. expression parenthesized; value is non-negative, fixed

point, < 1999. (p. 26)

d. wmatrix V(m,n); m and n may be any of 3.a, 3.b, or 3.c.

]

(p. 27)

L4, Arithmetic Operations
+, -, ¥, /, P, A and negation. (p. 28)

5. Expressions (p. 28)

An expression is any combination of constants, variables, subroutines,

arithmetic operations, and parentheses.

APPENDIX A - SUMMARY

Hierarchy of Operations (p. 29)

a. subscription

b. absolute value and negation
c. exponentiation

d. multiplication and division

e. addition and subtraction
Mode of Arithmetic (p. 30)

a. fixed point if all operands are fixed point.

b. floating point if any operand is floating point.

Substitution Statement (p. 32)

Va =B Vd ig any variable; B is any expression; B converted
to arithmetic of Vd before substitution.

Unconditional GO Statement (p. 33)

GO TO u: i is non-zero, fixed point, and < 999.

Conditional GO Statement (p. 33)

GO TO p IF ﬁl HBE : 1 is non-zero, fixed point, and < 999; [31
and BQ are any expressions; 6{ is

u for =

Vv for

W for

@ for
R for

IAN ALV VU

APPENDIX A - SUMMARY

11, TIteration Statement (p. 34)

k, Va’ Bl, BE’ 53, - do through statement number k, starting
with Va = ﬁl, in steps of BQ, through just
less than or equal to 53; k is fixed point
constant < 999; Vm is any variable; Bl, BE’
53 are any expression; if 52 is negative, do

through Va just greater than or equal to BS;

nesting depth< 8.
12. Input Statement (p. 39)

READ - preceded by suitable comments if desired; data cards read

until ¥ or L in col. T5.
13. Output Statements

a. numeric - Thy Th, ... TA (single variable) or Th, ... TA

2 | k
(regional); Ay is any constant or variable; n + 2m < 16
where m is number of regions. (p. 40)

b. alphabetic - ATAl 5 % Thn or ATA. ... hk; hi any fixed point

J
constant or variable (value appears as alphabetic
characters when printed); n + 2m < 16, m = number

of regions.
1k, Executive Statements

a. m USED IN SUBROUTINES (p. 41)
m is fixed point constant < 999; m > total number
of locations needed by subroutines; appears previous

to DIMENSION statement.

62 APPENDIX A - SUMMARY

b. n IS HIGHEST STATEMENT NUMBER (p. L1)

n is fixed point constant < 999; n > highest statement
number used; appears previous to DIMENSION statement.

c. X ABCONS (p. 42) - £ is fixed point constant < 99; 4 > number
of generated abcons; 100 locations reserved if this
statement omitted; appears previous to DIMENSION
statement.

d. DIMENSION V, (sl, ey bl) vee Vo (sk, Cys bk) (p. 42)
Visg¢ D, I, J, K, X, Y and/or Z; s; is fixed point
constant < 999 and is maximum subscript; c, is fixed
proint constant or wvariable (QOnstant subscript) and
is number of columns in V matrix; bi is fixed point
constant or variable (constant subscript) and is sub-
script of base element of V matrix.

e. HAIT (p., 43) - terminates execution.

f. END (p. LU4) - last card of source language deck

15. Subroutines (p. U45)

NNNNN . (Bl, EE, A Bk) - fixed point result if leftmost N is "X";

LVa means "loc. of Va".

APPENDIX B - SUBROUTINE LIBRARY

APPENDIX B - SUBROUTINE LIBRARY

1l. FIX SUBROUTINE: 9 locations, 1 calling name.

Calling name: XFIX. (V)

This subroutine converts the floating point variable V to a fixed
point number < 8 significant digits. If V contains a fractional part it

will be truncated without rounding. (E.g., 1576000052 becomes 0000000015.)

Error No.: i 15 g ::_109

Note: This subroutine is called for whenever a statement calls for the

substitution of a floating point value into a fixed point variable.

2. FLOAT SUBROUTINE: 17 locations, 1 calling name.

Calling name: FLOAT. (V)

This subroutine converts the fixed point number V to floating

point.

Error No.: 2 if |V| > 10°

63

Note: This subroutine is called for whenever mixed arithmetic is encountered

(p. 30) or a fixed point value is to be substituted into a floating point

variable.

6l APPENDIX B - SUBROUTINE LIBRARY

3. READ SUBROUTINE: &9 locations, 1 calling name.

Calling name: READ. (no arguments required)

This subroutine reads one group of alphabetic or numeric data cards

(p.51).

Error No.: 3 if one of the variables on a card read in was not defined in

the DIMENSION statement.

Note: This subroutine is called for whenever a READ statement is written in

the source language.

L. PRINT SUBROUTINE: 161 locations, 2 calling names.

Calling name 1: NPRNT. (hl, Moy wees M)

This subroutine prints numeric data of the format previously

described. (p. 56)

Calling name 2: APRNT. (xl, Ngs wees xk)

This subroutine prints alphabetic data of the format previously

described. (p. 56)
Error No.: None

Note: This subroutine is called for whenever an output statement (T or AT)

is written in the source language. The A's are the numeric codes for the

desired variable names. (p. 40)

APPENDIX B - SUBROUTINE LIBRARY

5. MATRIX SUBSCRIPTION SUBROUTINE: 20 locations, 1 calling name.

Calling neme: XMATX. (Vi, VE’ VB)

This subroutine obtains the desired element of a matrix where:
V, is the row index (m), V, is the column index (n), and V3 is the code
number for the varisble letter indicated (p. 54). All V's are non-negative

fixed point constants.
Error No.: None

Note: This subroutine is called for whenever matrix subscription notation

(p. 27) is used in the source langusge.

6. GENERAL EXPONENTTATION SUBROUTINE: 168 locations, 3 calling names.

Calling name 1: FEXP. (vl, VE)

v

This subroutine computes V; . (Vl to the V, power) when v, and V,

are both floating point variables., The result is obtained by finding loglo v

v

2 10810 V3
(see subroutine 10, below), then computing 10

(see subroutine 9,

below). The special case where V_, = .5 is computed directly by Newton's

2
method (see subroutine T, below).
Calling nawe 2: XEXP. (vl, VE)
VE
This subroutine computes Vl when V2 is a fixed point variable,
The method used is binary product expansion. (E,g., \' 13 =V, « ¥V b <V 8)

1 . i 1

65

66 APPENDIX B - SUBROUTINE LIBRARY

Calling name 3: GLOG. (V)

This subroutine computes 10510 V as in subroutine 10, below.

Error No.: 6 for 0% 7 for V<0 in V¥V ; 9 for -51 > V < 50 in 10';

10 for V< 0 in lt:Jg:LO Y.

Note: This subroutine is called for whenever P is used in the source language

(p.28). The arguments, V. and V_, are expected by the subroutine to be in the
i 2 P

upper accumulator and the distributor. If P is used in the source language,

loglC and square root can be obtained with no additional storage by using

GLOG. and ViP.E instead of LOG 10. and SQRT.

NOTE THAT NONE OF THE ABOVE SUBROUTINES NEED BE EXPLICITLY
CALLED IN THE SOURCE LANGUAGE IN ORDER TO GENERATE A SUB-
ROUTINE CALL. GREAT CARE MUST BE TAKEN BY THE CODER,

THEREFORE, IN CALCULATING m OF m USED IN SUBROUTINES.

T- SQUARE ROOT SUBROUTINE: 36 locations, 1 calling name.

Calling name: SQRT. (V)

This subroutine computes by Newton's method the square root of the

floating point variable V, where 0 <V < 10°7.

Range of Argument: O <V < 1050.

Error No.: 7 if V < 0.

APPENDIX B - SUBROUTINE LIBRARY

8. ARCTANGENT SUBROUTINE: 65 locations, 1 calling name.

Calling name: ARTAN. (V)

This subroutine computes.the arctangent of the floating point
variable V by evaluating Hastings' 15th degree polynomial. If |V| > 1,

tan_l V is obtained by computing tan“l 1/v :‘TP/E. -ﬁT/E L tan_l vV < 7?/2.

Range of Argument: 107t < v < 10°°,

Error No.: None

9. 10° SUBROUTINE: 35 locations, 1 calling name.

Ccalling nawe: - 10EXP. (V)

This subroutine raises 10 to the floating point power V by

evaluating Hastings' Tth degree polynomial. 10'5 < 10v < 1050.

Range of Argument: -51 <V < 50,

Error No.: 9 if -51 >V > 50,

10. LOG (BASE 10) SUBROUTINE: LL4 locations, 1 calling name,

Calling name: LOGLO, (V)

This subroutine computes loglo of floating point variable V by

evaluating Hastings' 9th degree polynomial; =51 < 10810 V < 50.

67

68 APPENDIX B - SUBROUTINE LIBRARY

Range of Argument: 0 <V < 1050.

Error No.: 10 if V < O.

11. SINE-COSINE SUBROUTINE: 56 locations, 2 calling names.,

Calling name l: SIN. (V)

This subroutine computes the sine of the floating point variable

V (in radians) by evaluating Hastings®' 9th degree polynomial.

Calling name 2: CO0S. (V)

This subroutine computes cos V = sin (V + 7 /2) as in SIN. above.

Range of Argument: |V| < 107. The argument V- used in the polynomial

evaluation is reduced to the range - 17/2 S_Vl <1l/2 by subtracting multiples
of 2T from the original argument V. Therefore large values of V will result
in arguments Vl with fewer significant figures. Note that if the argument

is very large, a large amount of computing time will be used in the process.
The coder is advised to formulate his problem so that these arguments stay

with reasonable bounds.

Error No.: 11 if |V| > 10°.

12. RUNGE-KUTTA-GILL DIFFERENTTAL EQUATION SUBROUTINE: 78 locations,

1 calling name.

Calling name: RKSUB. (n, LV, r)

APPENDIX B - SUBROUTINE LIBRARY 69

Given the set of n simultanecus, first-order differential

equations

v = £y (¥ps vves ¥,)

£ G e W)

= £ (yl, R yn)

with initial conditions at t =t

¥ =

this routine computes

1

=yl (t0+k).’ y2=y2 (to+k)1 L L) yn=yn (t +k)

0

by the Runge-Kutta-Gill method, This subroutine enters a program, called the

auxiliary, which must

be written by the user and which must compute the numbers

h fl (yl’ ERY Yh) P)

I

h fE (yl’ veey Yn) P

T0 APPENDIX B - SUBROUTINE LIBRARY

The subroutine parameter n specifies the number of equations; LV specifies
the location of the first word of the data storage block which contains 3 n
words, the first n words of data storage containing Y12 Yps wves Yo the
second n words containing kl, kE’ ey kn, and the last n words being used
as temporary storage; r is the statement number of the first statement of
the auxiliary.

Before entry to this subroutine the user must put the initial
conditions into the first n words of the data storage. The auxiliary must
use the variables in the first n words of the data storage to compute

k., k

SRR kn and it places these results into the second n words of the

l.”
data sforage. The subroutine places the result of the integration, namely,

yl=yl (t0+h)J y2=y2 (t0+h).’ .-y yn=yn (t0+h)

in the first n words of the data storage, overwriting the initial conditions
placed there by the user; hence, these results can serve as initial consitions
for a second integration step, ete.

If the differential equations depend explicitly on t then the

user should include as one of the n eguations for k the equation

with the initial condition

and the auxiliary shouvld use yi as the value of t (i.e. yi = t) in computing

any of the h's vhich depend expliecitly on t.

Error No.: None

APPENDIX C - ERRORS TL

ERROR NUMBERS DURING COMPILATION

ol

oz

03
ol
05
06

o7

o8

09

10

13
14
16

17

2

A floating point subscript has been used.

A variable letter has been used that did not appear in the
DIMENSION statement or a numeric subscript larger than the
number of variables reserved in the DIMENSION statement.

The actual (or implied) parentheses nesting exceeded 10.
The subroutine entry table capacity of 16 has been exceeded.
The compiled program has exceeded the available storage.

Floating point subscript, statement number (in GO TO), or

exponent (in floating point constant).

An abeon with more than 10 digits or alphabetic constant

with more than 5 characters (or missing $).

A fixed subscript, or statement number with more than 3
digits, or exponent with more than 2 digits (in floating

point constant).
Statement longer than 120 characters (i.e. 4 statement cards).

There are statement numbers larger than the one designated
as largest.

More left parentheses than right.
More than 100 abcons generated.
Constant in an executive statement exceeds allowable limit.

Improper formation of executive statement or improper

sequence.

Exponent of a floating point constant out of range, i.e.,
< -50 or > 50.

i

25

a7
29

30
31

32

33
23

APPENDIX C - ERRORS

Improper statement formation; missing operation,

parenthesis, etec.
Improper combination of operation symbols.

TImproper formation of matrix subscript, output statement,

or use of "L".
One of first 4 commas in iteration statement missing.

ITteration statement nesting depth > 8, improper nesting,
or end of program without terminating all iterations.

<

More than 16 arguments in an output statement or more than

17 arguments in a subroutine call.
More right parentheses than left.

Illegal character or combination of characters in a

statement.

APPENDIX C - ERRORS

SUBROUTINE ERROR NUMBERS

01
02
03
06
o7
09
10

11

XFIX., (V), if V > 10°.

FLOAT. (V), if |v| > 107,

READ,, if variable on card not defined in DIMENSION statement.
FEXP. and XEXP., if attempting OO.

FEXP. and SQRT. if V < 0 in |V .

FEXP., XEXP., and 10EXP., if -51 >V > 50 in 10'.
FEXP., GLOG., and LOGlO., if V < 0 in logl0 V.

SIN. (V) and COS. (V), if |v| > 107,

73

APPENDIX D - EXAMPLES T2

EXAMPLE 1

Problem: Solve the equation f(x) = O (where f is a differentiable
function) by Newton's Method, allowing an arbitrary initial value X5 and an
arbitrary ' tolerance €.

Analysis: Newton's Method consists of choosing an initial guess

X = X, and successively improving it by means of the iterative formula:

£(x,)
If we let qi = fTTEiT_ , We may use as a criterion for stopping the

iteration the condition

8yl = Ik = 2y 5] € o

76

Flow Diagram of Solution Procedure:

APPENDIX D - EXAMPLES

(_ f(x,)
| READ -0 q, = 1
Xy € f Xy

PUNCH
I x4

APPENDIX D - EXAMPLES

Rough Program: [f(x) = 5x3+hx2+6x-7 = 0]

1:

= w
- o .e

e

1

O o - o \an
o8

We

Read Xy €
0

(5x3+hx2+6x-7)/(15x2+8x+6)

N
Il

a
Go to 8 if |q| < ¢
X = X-g
i=1i+l
Go to 3
Punch x,1
Go to 1
make the following storage assignments:
i: Il
x: XO
g: D1

e: D2

Source Language Program:

250 USED IN SUBROUTINES
9 IS HIGHEST STATEMENT NUMBER
DIMENSION I(1) X(0) p(2)

X0, EPSILON READ

IL =0

DL = (5.%XO¥X0*¥X0 + 4.*¥XO¥X0 + 6.%X0 -T.)/
(15.%X0%X0 + 8.%X0 +6.)

Go to 8 IF AD1 @ D2
X0 = X0-D1
Bl = THsl

GO TO 3

N

i

78 APPENDIX D - EXAMPLES

8: TXO TI1
9: GO TO 1
END

NOTE: To produce a more efficient and accurate program, statement 3 could

be replaced by:

3: D1 = (((5.%X0 + 4.) *%X0 + 6.) *X0 - 7.)/ N
((15.%X0 + 8.) *X0 + 6)

Example 2

b
Problem: To approximate gﬁ f(x)dx by Simpson's Rule for en erbitrary in-

terval [a,b] using N equal subintervals (where N is an arbitrary even integer).

Analysis: By Simpson's Rule,

b
__ b-a
gﬁ f(x)dx == =5 (yo+hyl+2y2+hy3+ oow # by 4y

where y, = f(xi), and & = X,, X;, «es; X = b are the partition points of the
interval [a,b]. By changing only the statement(s) needed to compute f(x)
(of."a" in the flow diagram below), this program may be used to approximate
the integral for any reasonable function f(x). The program below is written

for f£(x) = X3,

79

S°N ‘q ‘e

JNTHI

@l

(4+%se+ o Os)g=+

APPENDIX.D - EXAMPLES

i

=2 X

AMVM =2 &

ea op

®

LHYLS

e

80 APPENDTX D - EXAMPLES

We make the storage assignments:

a: Cl X3 X1 SE: Z2
b: C=2 b p i S: Z3
N: Jo 8y 20 h: Zh
J: Jl Sl: Z1
Rough Program: [f(x)] = 1-.'.3] Source Language Program:

250 USED IN SUBROUTINES
23 IS HIGHEST STATEMENT NUMBER

DIMENSION c(2) J(1) x(1) N

¥(1) z(k)

l: Read a, b, N l: A, B, N READ
2: h = (b-a)/N 2: zb = (c2-c1)/J0
3: x=a 3: XL = QL

b: 3=17 Ly Jl =7

2t Y = %2 5: Y1 = X1*X1¥X1
6: Go to J 6: GO TO J1

T3 SO =y T: Z0 = Y1

8: 8, =0 8: Zl = 0.

gz 8,=0 9: Z2 = 0.

O: x = a+h 10: X1 = Cl+zh
11: j =13 1l: J1 = 13
12: Go to 5 12: GO TO 5
13: Sl = Sl+y 13: Z1 = Z1+Y1
1h: x = x+h 1h: X1 = X142k
15: j§ =17 15¢ J1 =17
16: Go to 5 16: GO TO 5

APPENDIX D - EXAMPLES 81

17: x = x+h 17: X1 = X1+2zk
18: Go to 21 if x> D 18: GO TO 21 IF X1VC2
19: S2 2 82+y 19: Z2 = Z2+Y1
20: Go to 11 20: GO TO 11
2l: S = h(S +hs,+28,+y)/3 21: 23 = Zh*(Z0+k . *Z1+2.%Z2+Y1)/3,
22: Punch a, b, N, 8 22: TC1l TC2 TJO TZ3
23: Go to 1 23: GO TO 1
END

NOTE: We could approximate the integral gp sin(3x2)dx by siwply replacing
statement 5 by:

5: Y1 = SIN-(3.%¥X1%*X1)

Example 3
Problem: To find a real solution (if it exists) of the equation f(x) =0
(where f is a continuous function) on an arbitrary interval [a,b], provided
the roots (if there are more than one) are at least € apart.
Analysis: We specify a, b, and € as parameters, and we shall write the pro-
gram in such a way that the evaluation of f(x) need be written only once.
This will allow an easy change to another equation.

The method used will be "half-interval convergence, in which the
function is evaluated at x = a, and then the interval is scanned for a change
of sign in the value of f(x). If no change of sign is found, the scanning
is repeated with a step size for searching equal to one-half the previous
step size. If the step size becomes smaller than €, and no change of sign
is found, the process is terminated, and a comment is printed saying "NO

SOLUTION".

APPENDIX D - EXAMPLES

82

OH_H: i
m U LNTH

uwNOLLOTO

U+e =: X

(x)3 =

APPENDIX D - EXAMPLES

If a change of sign is found between x = x, and x = x,, the value

X+ L =
= i.e., the midpoint of the interval

[xl,xe]. We then determine which of the intervals [xl,xM], [xM,le con-

of f is computed at XM =

tains the change of sign. We then compute the value of f at the midpoint
of that smaller interval, etc., untlil the interval being considered finally
has length less than e, at which time either end may be taken as the solu-
tion with an error less than €.

We make the storage assignments:

o J1 X3 X1 xg ¢ Z1

a: Cl ya: YO xR: e

bs ca ¥ Y1

S c3 h: Y2

Rough Program: [f(x) = sin x+.3cosx=0] Source Language Program:

300 USED IN SUBROUTINES
28 IS HIGHEST STATEMENT NUMBER

DIMENSION J(1) c(3) x(1) N

¥(2) z(2)
1l: Read a, b, € 1: A,B,EPSILON READ
gt 4=7T 2 g1 =7
2t X =18 3¢ X1 =Cl
b: v = sin x + .3 cos x h: Y1 SIN.(X1)+.3*COS.(X1)
5:¢ Go to 27 ify = O 5: GO TO 27 IF Y1U O.
6: Go to J 6: GO TO Jl
T Ty =¥ T: YO = Y1
8: j =12 8: J1 =12
9: h = (b-a)/2 9: Y2 = (Cc2-Cl)/2.

8l

APPENDIX D - EXAMPLES

Rough Program

10¢
113
12z
13z
1hs
153

16:

22:

2ls
251
26

273

NOTE:

12, x, a+h, h, b+h/2,
Go to k4

Go to 18 if y_-y <0
Go to 16 if h < ¢

h = h/2

Go to 10

Punch comment

Go to 1

Go to 27 if |xL-xR{ < ¢
% = (x1+xR)/2

Go to L

Go to 20 if M 4 <0
%L = X

Go to 21

Punch x, a, b, €

Go to 1

Source Language Program

10:
65 £
la:
133
1k
153

16:

18, %1, C14¥8, Y2, Couve/2.,
GO TO 4

GO TO 18 IF YO*Y1QO.

GO TO 16 IF Y2 Q C3

Y2 = Y2/2.

GO TO 10

AT$NO SO$ T$LUTIOP TN &

GO TO 1
Jl = 24
z1 = X1-¥Y2
22 = X1

GO TO 27 IF A(Z1-Z2)QC3
X1 = (zl+z2)/2.

GO TO L

GO TO 20 IF YO*Y1 QO.
Zl = X1

GO TO 21

TX1 TC1 TC2 TC3

GO TO 1
END

In statement 10, the upper limit is b+h/2 rather than b because of

the possibility that because of round-off error the iteration might

end before the computation for x =

if x = a+mh = b exactly,

b is performed.

In other words,

it might happen that due to round-off errors,

a + mh is slightly larger than b, and the iteration would cease before

this last computation with x = a+mh.

APPENDIX D. - EXAMPLES

Example 4

Problem: Multiply the matrix A = (aij) by the matrix B = (bij) to pro-
duce the matrix C = (cij); i.e., C = A-B. Assume that A and B (and
therefore C) are square matrices of order n < 20.
Analysis: An element ciJ of the matrix C is computed by the formula

n

¢, . =

a,. *b . .
i3 =1 ik "kj

We shall write the program twice, the first time without using the itera-
tion statement, to illustrate the usefulness of this type of statement in
such problems.

We make the storage assignment:

i: I0 Xo ' X0 8,y Xx(10,30)
j Jo n: < i bij: Y(10,J0)
ks KO 3 z(10,J0)

The matrices A, B, and C will be in storage starting with X1, Y1,

and Z1, respectively.

NOTE: The DIMENSION statement below reflects the fact that each of the

matrices in this problem may have as many as 20°20 = LOO elements.

85

APPENDIX D - EXAMPLES

86

T+ =:

1 T+C

0 - S T.”u.
LNTHI
I
T+ =%
O " O
u ‘g ‘y
= = =2
T 0 T T Vg
i

LHYLS

Rough Program:

Read, A, B, n

i=1
J=1
xo =0
k=1
X. = X.+a,.. *b

Go to 10 if k> n
k = k+1

Go to 6

CiJ = XO

Go to 14 if 3 > n
J =g+l

Go to 4

Go to 17 if i > n
i=3i+1

Go to 3

Punch matrix C

Go to 1

APPENDIX D - EXAMPLES 87

Source Language Program:

250 USED IN SUBROUTINES
18 IS HIGHEST STATEMENT NUMBER

DIMENSION I(1) J(0) K(0) N
X(399,11,1) ¥(399,I1,1) N
z(399,I1,1)

A,B,N READ
I0 = 1
JO =1
X0 =0,
KO =1

X0 = X0+X(I0,K0)*Y(K0,J0)
GO TO 10 IF KO W Il
KO = KO+1

GO TO 6

2(10,J0) = X0

GO TO 14 IF JO W Il
JO = JO+1

GO TO 4

GO TO 17 IF I0 W Il
I0 = TO0+1

GO TO 3
PZ(1;1) 4. 2(I1,11)
GO TO 1

END

88 APPENDIX D - FEXAMPLES

Shorter Rough Program: Shorter Source Language Program:

250 USED IN SUBROUTINES
18 IS HIGHEST STATEMENT NUMBER
DIMENSION I(1) J(0) K(0) N

X(399,11,1) ¥(399,11,1) N

2(399,11,1)

l: Read A, B, n l: A, B, N READ

8: M0 4 Lo 1y m ge A6, TO, 1, 1, I3,

3¢ 90, A L 15 m S 105 805 1; 1; Ti;

Ls Xy = 0 L: X0 = 0.

5 by X 1, 4, 1 B2 By ¥Oy I 1 Iy

6: Xy = X0+aik°bkj 6: X0 = X0+X(IO,KO)*Y(K0,J0)
10: ¢35 = %o 10: 2z(10,J30) = X0
17s T2(1,1)...2(T1,71) i 2 O B DR P)
18: Go to 1 18: GO TO 1

END

Example §

Problem: Solve a system of n < 20 simultaneocus linear equations in n un-
knowns, assuming that one does not encounter & zero on the main diagonal of
the coefficient matrix during the solution process.

Analysis: We shall use a Jorden Elimination Method, in which each diagonal
coefficient is used to "clear" all other coefficients in its column to zero
by appropriate multiplications and subtractions. Since we shall divide the

"clearing row" by the diagonal element in that row before clearing the

APPENDIX D - EXAMPLES 89

column, we shall finish the process with only a diagonal of ones and the
solution to the problem as the resulting right hand side of the equations.

We denote the system of equations to be solved by:

811% + Bip¥p T o +a, X = al,n+l

(l) - L] L]
8% e oKyt e tB X = an,n+l
We divide the first row by its diagonal element 8- Then to
clear 851 to zero we subtract a5y times the first row from the secend row,
and so on. In general, to clear a , to zero (after row k has been divided
by akk)’ we subtract a,, times row k from row i (ifk). A typical element

aij is thus transformed each time by the formulas:

(2) ®kj ~ akj/akk

(3)

%15 7 %137%4x%k (ifk)

where the value of o in (3) is the result of (2). These transformations
are performed for k¥ = 1,2,..., n. For each (fixed) k, we will let

i=1, 2,...k-1,k+l, ...,n, so as to operate on all rows except i=k.

While transforming each row we will cycle on j from right to left; i.e.,

J = ntl,n,n-1,...k, and we stop at j=k since for j < k there is no change

in the matrix.

90 APPENDIX D.'- EXAMPLES

The array

)
nl n

is called the "matrix of coefficients" of the system (1).

Storage Assignments:

nt I0 g Jl
it 2 k: K1
n+l: I2 8 c(11,J1)

The matrix (ai) will be stored starting with Cl. The value of

J
n+l will be stored in I2 for use in the DIMENSION statement.

Rough Program: Source Language Program:

13 IS HIGHEST STATEMENT NUMBER
250 USED IN SUBROUTINES

DIMENSION I(2) J(1) K(1) N
¢(420, 12, 1)

l: Read n,A l: N, A READ

2: I2 = n+l 2: I2 =10+ 1

3: 10, k, 1, 1, n, 3 10, K, 1, L, I9,

k: 5, 3, n+l, -1, k, Y: 5, J1, 12, -1, K1,

e By = akj/akk 5: ©(K1,J1) = c(K1,J1)/c(K1,K1)
b 105 & 1 X m 6: 10, 11 1 15 T04

T: Go to 10 if i=k T: GO TO 10 IF I1 U K1

91

[Rl
T+T=: T | | Mwﬁmﬁ%u T=% I @ T+
Sl

APPENDIX D - EXAMPLES

e

@\ T =13 T+ =% 2T

92 APPENDIX D - EXAMPLES

Rough Program: Source Language Program:
8: 9, J, ntl, -1, k, 8: 9, J1, 12, -1, Ki,
9t &y =8y, - a8y, 9: c(11,J1) = c(1I1,J1)-C(I1,K1)* N
c(xL,J1)
10: Dummy Statement 10: IO = IO
11: 3825 Ay Ly Ly Oy 1ls 12, IX; Iy Ly IO
L Tai,n+l Ti 12: TC(I1,I2) TIL
13: Go to 1 13: GO TO 1
END
Example 6

Problem: Solve a system of n < 20 simultaneous linear equations in n un-
knowns, assuming that a ﬁnique solution exists.

Analysis: We use the method of example 5, but we shall no longer assume
that 8, 1s never zero during the computation. If akk=0 for some k, we shall
search the elements in column k below the diagpnal; i.e., a,

ik

non-zero element, and if there is one, we shall interchange the row contain-

;3 1>k, for a

ing this element with the k-th row, thus obtaining the desired non-zero
diagonal element. If no such element is found, a comment will be punched
saying "NO UNIQUE SOLUTION".

Since interchanging rows of a matrix is time-consuming, we shall
not physically interchange them. We shall instead maintain a list of "names"
of the rows and interchange the "names". Thus, if we have four rows in the
matrix labeled "1", "2", "3", and "4", instead of interchanging, for example,

the last two rows, we would change our list from 1,2,3,% to 1,2;4,3

APPENDIX D - EXAMPLES 93

At the end of the process, we might have a list such as h,2,1,3
This would mean thet the originally last row should now be first, etc. This
will ensble us to associate correctly the final values of the right side of
the matrix with the variables involved.

For example, if the final list were ‘h,2,1,3 , the final
matrix would be (for some values of a, b, ¢, and d): |
0 o 1 0 g
0 % 0 0 b
0 0 0 1 c

1, 0 0 0 d

If the varisbles in this example were X, ¥y, z, and w (in that order),

we would need to be able to tell that

z =a
y="b
w=c
x =4

This assignment of the right side to variables comes immediately from the
list 4,2,1,3 , since we now associate the number in row "4 (i.e., d)
to x, the number in row "2" (i.e., b) to y, and so on.

The program below illustrates the use of a subscripted subscript to
menipulate the "neme" of a variable. In the flow diagram which follows the
"names" are stored in Wiy Wyy eesy Wy SO the '"name'" toc be used as a subscript
in each case is the number in m, . We shall indicate this by using capital
letters. Thus K will be the number in m, . The variable Z will be used as
temporary storage while interchanging "names". It should be noted that we
need "names" (and capital letters, ete.) only for row subscripts. Column sub-

scripts are not affected in any way.

o~

s r m..m.m\mm.m = T+a =3 n.I@

APPENDIX D - EXAMPLES

OQ T+T =% T ¢ = T | Y . : v ‘u
avad

9l

| IAEINOD \%
INTHd
L

T+T =3 T

&
o%ﬂm \ T+ =3 T 0="lg T =7 |®
ST

S

&= TH T =%F T+ =: gI — LHVLS

95

@ T+ =1 ¥ | @ T+T =% T |

APPENDIX D - EXAMPLES

96 APPENDIX D - EXAMPLES

Storage Assignments:

Z: Jl Ji JO
i I0 k: KO
o] I1 m, 1 K10
n+ls I2 8 4 ¢(10,J0)
The list m , my, ..., m Wwill start in Kl. The matrix A = (aij)

will start in Cl.

Rough Program: Source Language Program:

250 USED IN SUBROUTINES
2l IS HIGHEST STATEMENT NUMBER
DIMENSION I(2) J(1) K(20) N

c(k20, 12, 1)

1: Read n,A l: N, A READ

2: I2 = n+l 2: I2 = Il+l

e My 1y 1p 3 by 3: W, I0, 1, 1, I1,

I m, =14 k: KIO = IO

635 13, %, 1, 1, %, gy 18, KO, 1, 1, T,

6: Go to 17 if fyq = 0 6: GO TO 17 IF C(KKO0,K0) U 0,

7: 8, j, n+l, -1, k, 7: 8, J0, I2, -1, KO,

8: By = aKj/aKk 8: €(XK0,J0) = C(KKO,J0)/C(XKK0,KO)
s A3, 1, 1, 3, o, 9¢ 13, T0, 1, 1, 11,
10: Go to 13 if i=k 10: GO TO 13 IF IO U KO
11x 18, 3, nel; <1, k; 11: 12; Jo; I2, ~1; XO;
12: By = 788, 12: ¢(X10,J0) = C(XKI0,J0) -C(KIO,KO)N

*C(KK0,J0)

APPENDTX D. - EXAMPLES 97

Rough Program: Source Language Program:

13: Dummy Statement 13: I0 = IO

e 18y &y 1y Ty By e 15, 19, 1, 1, Ii,

15: TaI,n+l Ti 15: TC(KIO,I2) T IO

16: Go to 1 16: GO TO 1

17: 18, i, k+1, 1, n, : 17: 18, 10, KO+1, 1, 11,

18: Go to 21 if |&Ik| = 0 18: GO TO 21 IF AC(KIO,K0) V 0.

19: Punch comment 19: AT$NO UN$TSIQUE $ T $sOLUT$ N
T$ION $

20¢ Go to 1 20: GO TO 1

2l: Z = m, 2l: J1 = KIO

Aok m, o= 22: KIO = KKO

23 m = % 23: KKO = J1

2k: Go to 7 2k: GO TO 7

APPENDIX D - EXAMPLES

EXAMPLE 7 - SOLUTION OF
CPX+X=0 BY NEWTONS METHOD
USING AN ITERATION STATEMENT

SOURCE LANGUAGE

750 USED IN SUBROUTINES

20 IS HIGHEST STATEMENT NUMBER
DIMENSION C(1) X(1) Z(1)
X1sC1lsREAD

]

2 3aX19X13—-Z1X1-AZ1+.00001>»
3 Z1=(C1PX1+X1)/(2.3025851% N
LOG10«(C1)#C1PX1+1.0)
4 TX1
5 HALT
END
OBJECT PROGR&M
2 0043 0000011990+ 1990 8802080024+
2 0168 2100390216+ 0216 0002330183+
2 0266 6700410268+ 0268 2019500316+
3 0272 2119500366+ 0366 6000390368+
3 0183 5000370418+ 0418 6900390416+
3 0468 2119600516+ 0516 8801840025+
3 0472 2119500566+ 0566 6000370518+
4 0522 3419500572+ 0572 2100410666+
4 0568 2119600716+ 0716 6000670618+
100 0047 0000050816+ 0gle 0019498000+
100 0065 1000000051+ 0084 1000000046+
100 0002 6400008010+ 0003 6900008010+
100 0007 8800008010+ 0008 8900020040+
100 0012 0000000000+ 0013 0000000000+
100 0017 0000000000+ 0018 0000000000+
100 0022 0000000000+ 0023 0000000000+
100 0027 0000000000+ 0028 0000000000+
100 0032 0000000000+ 0033 0000000000+
DATA
Ll 4000000051 X1 1000000051
RESULTS

X1 4999998950~

0208
0233
0316
0368
oh16
0184
0518
0666
0618
0068
0063
000k
0009
0014
0019
0024
0029
0034

2119500166+
£100410218+
6000390318+
3319500322+
8801880020+
3900660372+
6900390616+
0001670233+
2119610766+
000001000k+
0000000005+
7100008010+
0000210042+
0000000000+
0000001130+
7965616400+
0000000000+
0000000000+

APPENDIX D - EXAMPLES

00kl
0218
0318
0322
0188
0372
0616
0046
0766
0067
0000
0005
0010
0015
0020
0025
0030
0035

0000020166+
3200390172+
3319500222+
4601670183+
2119500466+
3919500422+
8802380020+
0000040167+
8802340026+
0000060001+
0100000000+
7200008010+
0001000063+
0000000000+
6665877700+
7376679190+
0000000000+
0000000000+

0166
0172
0222
00ks5
oL66
oLko2
0238
0167
0234
0066
0001
0006
0011
0016
0021
0026
0031
00k2

6000390168+
2100390266+
3200640272+
0000030183+
6000370468+
3200650472+
3200390522+
6000680568+
2119500816+
2302585151+
6300020036+
8700020038+
0000000000+
0000000000+
8765877700+
T5T7756368+
0000000000+
0000008000+

99

100 APPENDTX D - EXAMPLES

EXAMPLE 8 -~ SOLUTION OF
CPX+X=0 BY THE HALF-INTERVAL
METHOD USING ITERATION
STATEMENTS

SOURCE LANGUAGE

750 USED IN SUBROUTINES

20 15 HIGHEST STATEMENT NUMBER
DIMENSION C€({3) D(1} X(1) Y(1)
1 ClsC2sC3sD1READ

2 YO=ClPC2+C2

3 6sD0sC3=C2+~D0/2.0sD1>

4 62X1sC2sD0sC3

6 GO TO 9 IF YO*(C1lPX1+X1)Q0s

A ATSNO SOSTSLUTIOSTSN $

8 HALT

9 12sD0sD0s-D0/2,0sD172.,0>

10 GO TO 12 IF YO#(ClPX1+X1)QO.
11 X1=X1+DO

12 X1=X1-D0/2.

13 TX1
14 HALT
END

OBJECT PROGRAM

2 0047 0000011990+ 1990 8802120024+
3 0172 6900380220+ 0220 8801960020+
3 0270 6000390222+ 0222 3300380226+
3 0272 3400680276+ 0276 6180030326+
4 0322 3300410426+ 0426 4601710191+
4 0420 0003410291+ 0341 6000400422+
6 0472 3300390526+ 0526 6180030576+
6 0522 6900430520+ 0520 8802460020+
7 0726 4600550271+ 0271 0002210341+
7 0572 2119600570+ 0570 6000750622+
8 0670 6000710722+ 0722 2119630720+
9 0770 0019498000+ 0055 0000090321+
9 0441 6000400822+ 0822 3400680776+
9 0870 6000410872+ 0872 3400680926+
10 0976 4603710391+ 0056 0000100391+
11 0296 3200431026+ 1026 3900441076+
12 0421 6000401022+ 1022 3200430177+
12 1072 3400680227+ 0227 2119501070+
13 1120 0003710441+ 0059 0000130371+
14 0223 2119610521+ 0521 8801930026+

0212
0196
0226
0326
0050
0422
0576
0246
0221
0622
0720
0321
0776
0926
0391
1076
0177
1070
0371
0193

2119500170+
3200380176+
2100400320+
3200400376+
0000040191+
3200430476+
4602210251+
3200430626+
0001710241+
2119610620+
8801920025+
6000400772+
6180030826+
2119500920+
6000370972+
3300691126+
2100431020+
6000431122+
6000780173+
2119500571+

APPENDIX D - EXAMPLES

0048
0176
0320
0376
0191
0476
0052
0626
0053
0620
0192
0772
0826
0920
0972
1126
0058
1122
0173
0060

0000020170+
2100440270+
0002410191+
2100400370+
6000380372+
2100430470+
0000060291+
3900440676+
0000070171+
6000730672+
2119500770+
2100400820+
3200400876+
6000400922+
6900430970+
4600580421+
0000121020+
3319500277+
2119600471+
0000140571+

0170
0049
0241
0370
0372
0470
0291
0676
0171
0672
0054
0820
0876
0922
0970
0057
1020
0277
0471
0571

6000370172+
0000030270+
6000400272+
6000400322+
2100430420+
6000430472+
6000370522+
3300690726+
6000760572+
2119620670+
0000080770+
0004410391+
2100400870+
3319500976+
8802960020+
0000110421+
6000401072+
2100431120+
6000770223+
0019498000+

101

102

100
100
100
100
100
100
100
100
100
100

0078
0073
0068
0003
0008
0013
0018
0023
0028
0033

Cl

X1

APPENDIX D - EXAMPLES

0000010013+
0000000305+
2000000051+
6900008010+
8900008010+
0000000000+
0000000000+
0000000000+
0000000000+
0000000000+

DATA
4000000051
RESULTS

4999923750~

0077
0072
0067
0004
0009
0014
0019
0024
0029
0034

ETC

0000060001+
7384836976+
00000000114+
7100008010+
0000210046+
0000000000+
0000001130+
7965616400+
0000000000+
0000000000+

5000000051~

0076
0071
0000
0005
0010
0015
0020
Q025
0030
0035

ETC

00000320007+
0000000303+
0100000000+
7200008010+
0001000067+
0000000000+
6665877700+
6177756368+
0000000000+
0000000000+

5000000051

APPENDIX D - EXAMPLES

0075
0070
0001
0006
0011
0016
0021
0026
0031
0046

0000000307+
7500000000+
6300040036+
8700020042+
0000000000+
0000000000+
8765877700+
7577756368+
0000000000+
0000008000+

.1000000047

0074
0069
0002
0007
0012
0017
0022
0027
0032
0046

7576008276+
0000000000+
6400020040+
8800020044+
0000000000+
0000000000+
0000000000+
0000000000+
0000000000+
0000008000+

103

10k APPENDIX D - EXAMPLES

EXAMPLE 9 - THE SOLUTION OF

AN ORDINARY DIFFERENTIAL
EQUATION USING THE RUNGE-KUTTA
SUBROUTINE

SOURCE LANGUAGE

750 USED IN SUBROUTINES
11 IS HIGHEST STATEMENT NUMBER
DIMENSION Y(11) D(O)

1 YO0sewusesY3sDELTA YO READ
2 RKSUBs(4eLY0326)
3 TYO TY1 TyzZ TY3
4 GO TO 2 IF Y0 Q 2
5 GO TO 1
6 Y4=DO
7 Y5=D0*{Y2+Y0)
8 Y6=DO%*Y3
9 Y7=DO* (~YO*Y2#Y3%-Y1#YO*#YO0)
10 GO TO 2
11 END
OBJECT PROGRAM
2 0050 0000011990+ 1990 8802060024+
2 0166 2119600214+ 0214 6000630216+
3 0314 8801800025+ 0180 2119500364+
3 0414 6000680366+ 0366 2119610464+
3 0466 2119630564+ 0564 6000650516+
4 0053 0000040664+ 0664 6000700566+
6 0616 3319490220+ 0220 4600510165+
7 0280 60003260666+ 0666 2100410714+
8 0270 3900360320+ 0320 2100420764+
9 0370 2100430814+ 0058 0000090814+
9 0470 6180030520+ 0520 2119500864+
10 0620 3919500670+ 0670 6180030720+
100 0914 0001790051+ 0070 0000000002+
100 0066 0000070002+ 0065 0000070003+
100 0061 0000000009+ 0000 0100000000+
100 0004 7100008010+ 0005 7200008010+
100 0009 0000120049+ 0010 0001000061+
100 0014 0000000000+ 0015 0000000000+
100 0019 0000001130+ 0020 0000000000+
100 0024 7985616400+ 0025 7972828462+
100 0029 0000000000+ 0030 0000000000+

100 0034 0000000000+ 0035 0000000000+

0206
0216
0052
0464
0516
0566
0054
0056
0057
0814
0864
0720
0069
0064
0001
0006
0011
0016
0021
0026
0031
0049

2119500164+
2119610264+
0000030364+
6000670416+
2119640614+
8801860023+
0000050165+
0000070714+
0000080764+
6000370816+
6000390866+
3900360770+
0000040003+
0000000004+
6300068010+
8700008010+
0000000000+
0000000000+
0000000000+
7577756368+
0000000000+
0000008000+

APPENDIX D - EXAMPLES

0051
0264
0364
0416
0614
0186
0165
0714
0764
081leé
0866
0770
0068
0063
0002
0007
0012
0017
0022
0027
0032
0049

0000020164+
6000620266+
6000690316+
2119620514+
8802300026+
2119490170+
0002800050+
6000370716+
6000400766+
3900380420+
3900370570+
2100440914+
0000070000+
0000000037+
6400010036+
8800120037+
0000000000+
0000000000+
0000000000+
0000000000+
0000000000+
0000008000+

0lée4
0266
0316
0514
0230
0170
0055
0716
0766
0420
0570
0059
0067
0062
0003
0008
0013
001ls
0023
0028
0033
0049

6000640166+
2119620314+
2119600414+
6000660466+
2119500664+
6000370616+
0000060280+
3200390270+
3900360370+
3900370470+
3900400620+
0000100914+
0000070001+
0000000006+
6900008010+
8900008010+
0000000000+
0000000000+
6673766183+
0000000000+
0000000000+
0000008000+

105

106

DO

YO
YO
YO
YO
YO
YO
YO
YO
YO
YO

APPENDIX D - EXAMPLES

DATA

2000000050

RESULTS

2000000050
4000000050
6000000050
8000000050
1000000051
1200000051
1400000051
1600000051
1800000051
2000000051

T2

Y1
¥,
i
Y1
Y1
Y1
Y1
b 3
Y1
Y1

1000000051

2399260050
5587418050
9531262450
1416620351
1938914851
2505277051
3095865251
3684212751
4233317451
4684769051

Y3

Ya
Y2
Y2
Y2
Y2
Y2
Y2
Y2
Y2
Y2

1000000051

1198526851
1386967751
155161785])
1674879451
1735988351
1711422351
1573002851
1280886051
7646219150

1375231650«

APPENDIX D - EXAMPLES

YO

Y3
Y3
Y3
b
Y3
Y3
Y3
Y3
Y3
Y3

50

9771385450
8958392150
7358924450
4792589550
1120974750

3812561150~
1035873351~
1942439951~
3345598851~
6060309951~

Y1

50

107

108

XN ~N~N~N~NOCC OOV D P NN

0346
0459
0557
0465
0809
0349
0757
0563
1209
1259
1007
0665
0560
1207
0760
1407
0960
0963
1110
1210
0558
0958
0567
0461
0561
1408

APFENDIX D - EXAMPLES

EXAMPLE 10 MATRIX MULTIPLICA-
TION USING MATRIX NOTATION

SOURCE LANGUAGE

400 USED IN SUBROUTINES
8 15 HIGHEST STATEMENT NUMBER

] K(1) N
J1s1) N

8804990024+
0005150465+
1100370659+
2100380607+
6000380859+
6000360959+
2119620807+
6003561159+
6919490907+
0007150665+
1100411459+
2119601057+
8805160025+
2119601257+
8805660025+
2119601457+
8804670025+
2119500708+
6003571160+
8080031113+
0004580515+
2119611008+
2119501108+
6003570511+
6003620611+

DIMENSION I(1) J(1

X(100sK1s1) Y(100>»

Z2(1009J1s1)
1 I1sJ1sK1sXsYs READ
2 6510515111
3 63J0s1s1sJ]1
4 2(10sJ0)=0
5 625K0s13s19K1s
6 Z{I0sJO)=X(I10sKO)*Y(KOsJO)N

Z(I10+J0)
7 TZ(191)aeeZ(I1sJd1)
8 GO TO 1

END

OBJECT PROGRAM
0000011990+ 1990
2100360507+ 0507
6000360609+ 0609
6003550709+ 0709
2100380657+ 0657
0000040565+ 0565
6003571059+ 1059
2119500857+ 0857
8080030663+ 0663
2100400957+ 0957
6000401409+ 1409
6000360460+ 0460
2119621157+ 1157
6000400660+ 0660
2119621357+ 1357
6000360860+ 0860
2119620658+ 0658
3219501013+ 1013
2119610808+ 0808
1080051063+ 1063
0005080615+ 0508
6000391310+ 1310
1003601410+ 1410
2119611208+ 1208
2119511308+ 1308
6019500711+ 0711

2119621458+

0499
0515
0659
0607
0859
0959
0807
1159
0907
0715
1459
1097
0516
1257
0566
1457
0467
0708
1160
1113
0352
1008
1108
¢Sl1
0611
1458

2119500457+
6003550509+
6180030463+
0006150565+
1100390909+
2119600707+
8804660025+
8804720023+
2420000713+
6003551309+
6180030763+
6000380510+
8080030813+
6000380710+
8080030863+
6000400910+
8080030913+
6000361060+
2119620858+
6919500908+
0000070458+
6003571360+
6003551460+
2119621258+
2119601358+
8806670026+

APPENDIX D - EXAMPLES

0347
0509
0463
0615
0909
0707
0466
0472
0350
1309
0763
0510
0813
9710
0863
0910
0913
1060
0858
0908
0458
1360
1460
1258
1358
0667

0000020457+
1000360559+
4604580465+
6003550759+
6180030513+
6000381009+
8002441109+
2119490613+
0000050713+
1000401359+
4605580665+
2119611107+
6022440610+
2119611307+
6021430810+
2119610608+
6020421010+
2119600758+
8805170025+
2420001163+
6000371260+
2119621058+
2119601158+
8806170025+
6019510661+
2119500761+

0457
0559
0348
0759
0513
1009
1109
0613
0713
1359
0351
1107
0610
1307
0810
0608
1010
0758
0517
1163
1260
1058
1158
0617
0661
0353

6003550459+
2100360557+
0000030465+
1000380809+
4605080565+
2119610757+
1080050563+
6019501209+
6003551259+
2100401007+
0000060665+
6003570560+
2119501207+
6003580760+
2119511407+
6003590960+
3919510963+
6000381110+
8002441210+
0005580715+
2119600958+
B805670025+
6003550461+
1003610561+
2119611408+
0000080761+

109

110

100
100
100
100
100
100
100
100
100
100

0761
0358
0000
0005
0010
0015
0020
0025
0030
0035

X1
X3
X5
Yl
ETC

L1
Z6
Z11

APPENDIX D - EXAMPLES

0004690346+
0000000007+
0100000000+
7200020040+
0001000354+
0000000000+
0000000000+
B774618387+
0000000000+
0000000000+

DATA

1000000052
3000000052
5000000052
1000000051
6000000051

RESULTS
1300000053

2700000053
4100000053

0362
0357
0001
0006
0011
0016
0021
0026
0031
0345

X2
X4
X6
ETE
ETC

Z2
Z7
£12

0000020007+
0000000008+
6300008010+
8701010042+
0000000000+
0300010041+
0000000000+
7577756368+
0000000000+
0000008000+

2000000052
4000000052
6000000052
2000000051
7000000051

1600000053
3400000053
5200000053

0361
0356
0002
0007
0012
0017
0022
0027
0032
0345

ETC
ETC

Z3
28
213

0800080000+
0000000000+
6400008010+
8801010143+
0000000000+
0300010039+
0000000000+
0000000000+
0000000000+
0000008000+

3000000051
8000000051

1900000053
4100000053
6300000053

APPENDIX D - EXAMPLES

0360
0355
0003
0008
0013
0018
0023
o028
0033
0345

ETC
ETE

Z4
Z9
214

0000080000+
0000000001+
6900020036+
8901010244+
0000000000+
0300010039+
6673766183+
0000000000+
0000000000+
0000008000+

4000000051
9000000051

2200000053
4800000053
7400000053

0359
0354
0004
0009
0014
0019
0024
0029
0034
0345

k1l
J1
K1l
ETC
ETC #

Z5
Z10
Z15

0000000006+
0000000008+
7100020038+
0000090345+
0000000000+
0000001480+
7965616400+
0000000000+
0000000000+
0000008000+

3
5
2
5000000051
1000000052

2500000053
5500000053
8500000053

117

P.
P.

12
13
14
14
24

30
L9

50
56

60
61
63
63
63
63
64
64
64
65
65

65
66
66
67
67
67
67
68
70

GAT MANUAL ERRATA AND ADDENDA

line 3 » « o an inductance L . . »

line 14 . . . accomplished by an jiteration statement . . .

line 8 & « ¢ Lo /(20.#C5) & o

bottom line - change to Ybe evaluated twenty times instead of once."

line 26 insert after Man alphabetic constant" (if less than 5 characters,
blanks are inserted on the left to make 5 characters).

line 8 J2%I7/JL/K5%K2 means (((J2¥I7)/JL)/K5)%K2

line 16 replace previous correction with: If a continuation symbel is used

inside the ¢'s of an alphabetic constant, remember that blanks are
valid characters in an alphabetic constant. Hence the N, in this
case, must fall in column 80 to be treated as a continuation symbol.
card format 3(5 instr./card) should have 1994 in cols. 7-10.

line 1 (with the exception of alphabetic data and messages using the

' notation; which are both listed in the above format)

line 18 U for =,

line 13 Thl TA2 0 W & Tkn (single variable) or le i % @ hk

line 2 FIX SUBROUTINE: 18 locations

line 7 Error No.: 1 if V> 107 or if V < 107

line 10 FLOAT SUBROUTINE: 10 locations

line 14 Error No.: 2if 1V 1> 108

line change to "3. READ SUBROUTINE: 121 locations,; 1 calling name.

4,

1
line 2 Calling name: READ. (0) The (0) must appear for correct compilation.
line 9 PRINT SUBROUTINE: 159 locations
1
%

line MATRIX SUBSCRIPTION SUBROUTINE: 21 locations

line Error No.: L if attempting matrix subscription of a variable
which has not been defined as a matrix in the DIMENSION statement.
line 10 GENERAL EXPONENTIATION SUBROUTINE: 169 locations

line3 9 for =51 > V3> 50 in 10’
line 14 SQUARE ROOT SUBROUTINE: 37 1ocati0ns-
line L ARCTANGENT SUBROUTINE: 51 locations
line 8 10 SUBROUTINE: 37 locations

line 11 10T < 10" < 10°°

line 14 1OG (BASE 10) SUBROUTINE: 41 locations
line 3 SINE-COSINE SUBROUTINE: 57 locations

add:

Py L
P, TL
P. 72
P. 83
P. 87
P. 88
P. 94

line
line

line
line
line

line

P. 108 line

ie

01/29/61

16
20

21

2
15

13. HEAD SUBROUTINE: 12 locations, 1 calling name.
Calling name: HEAD. ($X000XXJ, FYVYYYS, #272224, i, $VVVVVE)

This subroutine prints the alphabetic characters XXXXX over the
first variable names field of the data print formati YYYYY over
the second; ZZ2ZZ2Z over the thirds etc. To get a blank heading on
a column it is sufficient to write;;;’. All five headings (blank

or not) must be specified.

Error No. None

s « o Or too extensive use of matrix subscription in this statement.
. + o Or more than number designated in / ABCONS.

insert - 98 Transfer to location 0000 during execution of GAT.
Y1=SIN.(X1)+.3%C0S. (X1)

X(400, I1, 1) Y(400, I1, 1) 2(400, I1, 1)

X(400, I1, 1) Y(400, I1, 1) .2(400, I1, 1)

remote c.onnect-or@ should be @

+2(10,J0)

