Daisy wheel Printer Silver-Reed EXP 550 Daisy whe Daisy Wheel Printer Silver-Reed EXP 550 Daisy Wh 0 Daisy Wheel Printer Silver-Reed EXP 550 Daisy W 50 Daisy Wheel Printer Silver-Reed EXP 550 Daisy 550 Daisy Wheel Printer Silver-Reed EXP 550 Daisy 550 Daisy Wheel Printer Silver-Reed EXP 550 Dais P 550 Daisy Wheel Printer Silver-Reed EXP 550 Dai XP 550 Daisy Wheel Printer Silver-Reed EXP 550 Da EXP 550 Daisy Wheel Printer Silver-Reed EXP 550 D EXP 550 Daisy Wheel Printer Silver-Reed EXP 550 d EXP 550 Daisy Wheel Printer Silver-Reed EXP 550 ed EXP 550 Daisy Wheel Printer Silver-Reed EXP 55 eed EXP 550 Daisy Wheel Printer Silver-Reed EXP 5 Reed EXP 550 Daisy Wheel Printer Silver-Reed EXP -Reed EXP 550 Daisy Wheel Printer Silver-Reed EXP r-Reed EXP 550 Daisy Wheel Printer Silver-Reed EX: er-Reed EXP 550 Daisy Wheel Printer Silver-Reed E, ver-Reed EXP 550 Daisy Wheel Printer Silver-Reed lver-Reed EXP 550 Daisy Wheel Printer Silver-Reed ilver-Reed EXP 550 Daisy Wheel Printer Silver-Reed Silver-Reed EXP 550 Daisy Wheel Printer Silver-Re Silver-Reed EXP 550 Daisy Wheel Printer Silver-R r Silver-Reed EXP 550 Daisy Wheel Printer Silverer Silver-Reed EXP 550 Daisy Wheel Printer Silver ter Silver-Reed EXP 550 Daisy Wheel Printer Silve nter Silver-Reed EXP 550 Daisy Wheel Printer Silv inter Silver-Reed EXP 550 Daisy Wheel Printer Sil rinter Silver-Reed EXP 550 Daisy Wheel Printer Si Printer Silver-Reed EXP 550 Daisy Wheel Printer S Printer Silver-Reed EXP 550 Daisy Wheel Printer 1 Printer Silver-Reed EXP 550 Daisy Wheel. Printer el Printer Silver-Reed EXP 550 Daisy Wheel Printe eel Printer Silver-Reed EXP 550 Daisy Wheel Print heel Printer Silver-Reed EXP 550 Daisy Wheel Prin Wheel Printer Silver-Reed EXP 550 Daisy Wheel Pri Wheel Printer Silver-Reed EXP 550 Daisy Wheel Pr y Wheel Printer Silver-Reed EXP 550 Daisy Wheel P sy Wheel Printer Silver-Reed EXP 550 Daisy Wheel isy Wheel Printer Silver-Reed EXP 550 Daisy Wheel aisy Wheel Printer Silver-Reed EXP 550 Daisy Whee Daisy Wheel Printer Silver-Reed EXP 550 Daisy Whe Daisy Wheel Printer Silver-Reed EXP 550 Daisy Wh 0 Daisy Wheel Printer Silver-Reed EXP 550 Daisy WI 50 Daisy Wheel Printer Silver-Reed EXP 550 Daisy 550 Daisy Wheel Printer Silver-Reed EXP 550 Daisy 550 Daisy Wheel Printer Silver-Reed EXP 550 Dais P 550 Daisy Wheel Printer Silver-Reed EXP 550 Dai XP 550 Daisy Wheel Printer Silver-Reed EXP 550 Da EXP 550 Daisy Wheel Printer Silver-Reed EXP 550 D EXP 550 Daisy Wheel Printer Silver-Reed EXP 550 d EXP 550 Daisy Wheel Printer Silver-Reed EXP 550 ed EXP 550 Daisy Wheel Printer Silver-Reed EXP 55 eed EXP 550 Daisy Wheel Printer Silver-Reed EXP 5 Reed EXP 550 Daisy Wheel Printer Silver-Reed EXP -Reed EXP 550 Daisy Wheel Printer Silver-Reed EXP r-Reed EXP 550 Daisy Wheel Printer Silver-Reed EXI er-Reed EXP 550 Daisy Wheel Printer Silver-Reed E ver-Reed EXP 550 Daisy Wheel Printer Silver-Reed lver-Reed EXP 550 Daisy Wheel Printer Silver-Reed ilver-Reed EXP 550 Daisy Wheel Printer Silver-Ree Silver-Reed EXP 550 Daisy Wheel Printer Silver-Re Silver-Reed EXP 550 Daisy Wheel Printer Silver-R r Silver-Reed EXP 550 Daisy Wheel Printer Silverer Silver-Reed EXP 550 Daisy Wheel Printer Silver ter Silver-Reed EXP 550 Daisy Wheel Printer Silve nter Silver-Reed EXP 550 Daisy Wheel Printer Silvd

OPERATIITC manubl

Sisiver-REED

This equipment generates and uses radio frequency energy and if not installed and used properly, that is, in strict accordance with the manufacturer's instructions, may cause interference to radio and television reception. It has been type tested and found to comply with the limits for a Class B computing device in accordance with the specifications in Subpart J of Part 15 of FCC rules, which are designed to provide reasonable protection against such interference in a residential installation. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient the receiving antenna
- Relocate the equipment with respect to the receiver
- Move the equipment away from the receiver.
- Plug the equipment into a different outlet so that the equipment and receiver are on different branch circuits.

If necessary, the user should consult the dealer or an experienced radio/ television technician for additional suggestions. The user may find the following booklet prepared by the Federal Communication helpful:
"How to Identify and Resolve Radio TV Interference Problems"
This booklet is available from the U.S. Government Printing Office, Washington, DC 20402. Stock No. 004-000-00345-4.

1. Preface

This equipment is a daisy wheel impact printer which delivers high quality printouts.

The printer provides both a serial print mode and a line print mode by means of a DIP switch operation.

In the serial print mode, an ESC sequence offers a minimum of $1 / 120$ inch carriage movement and a minimum of $1 / 48$ inch paper feed, which allows the printer to perform bold print, superscripts and subscripts. Full use of various word processing programs such as WordStar*, etc. is possible.

In line print mode, the equipment automatically prints bi-directionally.
The printer is provided with a Centronics compatible parallel interface. The printer for RS232C serial interface is also available.
*WordStar is registered trademark of MicroPro International Corporation.

Contents

1. Preface 1
2. Description 2
3. Preparing the Machine for Operation 3
4. Control Panel 10
5. DIP Switch 11
6. Codes and Functions 12
6-1 Line Print Mode - Function Codes 13
6-2 Serial Print Mode - Print Formats 13
6-3 Serial Print Mode - Function Codes 15
7. Power-On and Remote Reset 17
8. ASCII Codes 18
9. Parallel Interface 19
9-1 Explanation of Signals and Specifications 19
9-2 Input/Output Circuits 21
10. Complement Spacing Units when PS Daisy Wheel is in use 22
11. Specifications 23
12. Care and Maintenance 24
In Case of Difficulty 24

2. Description

3. Preparing the Machine for Operation

The following accessories are packed together with this printer:

1. Daily Wheel

2. Multi-strike film ribbon (installed to the carriage)
3. Acoustic Hood

Acoustic Hood

To install the acoustic hood

1. Position the right hand hole (a) of the acoustic hood onto the right hinge pin (b), and hold the acoustic hood to the right side.
2. Insert the left hinge pin (c) into the left hand hole (d) of the acoustic hood.
3. Make sure that the acoustic hood can rotate smoothly.

To remove the acoustic hood

1. Raise the left side of the acoustic hood while pushing it to the right, and release it from the left hinge pin (c).
2. Release the acoustic hood from the right hing pin (b).

Paper Table with Paper Support (Option)
The paper table is used to support the paper when inserting it or while printing.

Install the paper table in inserting the two extentions of the paper table into the slots on the upper cover on the rear side of the printer.

Carriage

The carriage prints on the paper while moving in parallel with the platen. The following print elements are attached to the carriage.

1. Ribbon
2. Daisy whee

To replace the ribbon (Multi-strike film ribbon is provided with the printer.)

1. Raise the top cover (a).
2. Hold the ribbon with both hands and lift it up, first from the ribbon tape side, while pulling it towards you.
3. Turn the ribbon feed disk (b) on the new ribbon in the arrow direction and keep the ribbon tape (c) tight.
4. Position the recess (d) of the cassette at the ribbon cassette retainer (e) on the carriage.
5. Push down the cassette until it clicks into position with ribbon tape put between the daisy wheel and the platen.
6. Turn the ribbon feed disk 2 or 3 times in the arrow direction and keep the ribbon tape tight.
7. Close the top cover

Type style

ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz

Daisy Wheel

The following indications are given on the daisy wheel:
a. Type style (standard)

COURIER
b. Typing pitch

10-10-character per inch
c. Symbol of typing pitch

A - 10 -pitch
d. Code number for character arrangement 6421 (4 digits) - ASCII

To replace the daisy wheel

1. Remove the ribbon. (P. 4)
2. Hold the red lever (a) and pull it to tilt the daisy wheel holder unit (b) towards you.
3. Open the lever (c) in the center of the daisy wheel until it clicks, and take it out.
4. Open the lever in the center of the daisy wheel of your choice and align the slot (d) of the daisy wheel with the daisy wheel holder (e) and mount the daisy wheel onto the guide pin (f).
5. Close the lever by pushing it with a forefinger until it clicks into position.
6. Make one turn of the daisy wheel with fingers to confirm it is set properly.
7. Restore the daisy wheel holder unit to the original position using the red lever.
8. Restore the ribbon in the position.

Notes:

- When replacing the daisy wheel, be sure to turn power switch off.
- Do not turn the power switch on before the daisy wheel is mounfed.

Power Switch

This switch supplies power to all circuits of the printer and also initializes the printer.
As to re-initialization with the power switch on, refer to "Power On and Remote Reset" on page 17.

Paper Guide

This guide is responsible for positioning the paper in the horizontal direction.

Paper Release Lever (a)

Pulling the lever towards you permits you to adjust the paper position as desired. Used in conjunction with the paper bail lever.

Paper Bail Lever (b)

Pulling the lever towards you releases the paper bail rollers from the platen, allowing free motion of the paper.

Copy Control Lever

The copy control lever is located on the right when the top cover is opened. It adjusts the distance between the platen and the daisy wheel according to the number of copies or the paper thickness to get the optimum quality of printing on both the original and copies.

Set the copy control lever to one of the following 3 positions:
A - Minimum distance (normal)
B - Medium distance
C - Maximum distance
(original and 5 copies)

Protector Switch

The protector switch is provided inside the printer and open the top cover interrupts the printing and, after closing the top cover depressing the ON LINE switch resumes printing.

4. Control Panel

A - Switches

1. ON LINE

In the "off-line" mode, a BUSY signal is transmitted to host computer while the SELECT signal goes high.
Pressing the "ON LINE" switch toggles the printer between the two states. The present condition is indicated by the "ON LINE" lamp.

2. LINE FEED

Depressing this switch causes a one-line ($1 / 6$ inch) paper feed. Continuous pressure on this switch results in continuous paper feed.

3. FORM FEED

Depressing this switch causes the paper to be advanced to the first line of the next page. This paper advancement is accurate with paper lengths of 11 or 12 inches only. Page length setting is carried out by means of a DIP switch setting.
4. TOF SET

With the printing position set to the position on the paper designated, by the user as the first line, depressing this switch stores "top of form" information in memory.

5. SELF TEST

With power switch off, simultaneously depress the "LINE FEED" switch and place power switch to "ON". A five-line printout will occur. The power switch must be toggled off and back on before normal operation is resumed.

B - Lamps

1. POWER

This lamp is lit when the power switch is on.

2. ALERT

This lamp lights on the following occasions:
-The ribbon is depleted.
-The top cover is opened.
-A "paper out" occurs with the optional tractor installed.
3. ON LINE

This lamp indicates that the printer is ready for printing. If the printer is taken "off-line" mode by means of pressing the "ON LINE" switch, the lamp is extinguished.
The lamp is also extinguished if a fault condition exists, in which case the "ALERT" lamp is lit.

In both cases, the printer is placed back into a "ready" condition by depressing the "ON LINE" switch. In the latter case, of course, the fault condition must be corrected.

5. DIP Switch

DIP switch

Control panel

(3) Auto Line Feed

Auto Line Feed selects whether or not a line feed (LF) is automatically carried out with the execution of a carriage return (CR).
In the serial print mode, the switch condition is read immediately before data input, and in the line print mode, the switch condition is read immediately before execution of a carriage return.

MODE	SW4
CR	OFF
$\mathrm{CR}+\mathrm{LF}$	ON

(4) Serial or Line Print Mode

In the serial print mode, the printer executes the printing as it receives a character of data from the host computer, but in the line print mode, the recelved data is placed into a buffer and printed only upon receipt of a CR, LF, or FF code. In this mode, the printer will automatically print bi-directionally.
The switch condition is read when power is turned on or the prime signal is received.

MODE	SW5
SERIAL	OFF
LINE	ON

6. Codes and Functions

In serial print mode or line print mode, the following codes (X) are usable.

CODE	FUNCTION	$\begin{aligned} & \text { SERIAL } \\ & \text { PRINT } \\ & \text { MODE } \end{aligned}$	LINE PRINT MODE
BEL	Audible Alarm	X	X
BS	Backspace	X	
CR	Carriage Return	X	X
ESC \emptyset	Set Right Margin	X	
ESC 1	Set Horizontal Tab	X	
ESC 2	Clear All Tab Stops	X	
ESC 3	Graphics Mode On	X	
ESC 4	Graphics Mode Off	X	
ESC 5	Forward Print On	X	
ESC 6	Backward Print On	X	
ESC 8	Clear Individual Tab Stop	X	
ESC 9	Set Left Margin	X	
ESC D	Negative Half-Line Feed	X	
ESC U	Half-Line Feed	X	
ESC E	Auto Underscore On		X
ESC R	Auto Underscore Off		X
ESCO	Bold Print On (clear with CR)		X
ESC W	Shadow Print On (clear with CR)		X
ESC \&	Bold/Shadow Print Off		X
ESC Y	Print 20 Hex (ASCII ¢)	X	X
ESC Z	Print 7F Hex (ASCII -)	X	X
ESC LF	Negative Line Feed	X	
ESC HT n	Absolute Horizontal Tab	X	
ESC VT n	Absolute Vertical Tab	X	
ESC RS n	Vertical Motion Index (VMI)	X	
ESC US n	Horizontal Motion Index (HMI)	X	
ESC CR P	Reinitialize	X	
FF	Form Feed	X	X
HT	Horizontal Tab (normal)	X	
LF	Line Feed	X	X
NUL	Ignored	X	X
DEL	Ignored	X	X
SP	Space	X	X

6-1 Line Print Mode - Function Codes
(1) Bell (BEL)

Sounds the bell for a half second.
(2) ESC E, ESC R

After the input of ESC E code, a character or space will automatically be underscored. The underscore mode can be cleared by means of ESC R code.
(3) ESC O, ESC W, ESC \& The input of ESC O code automatically carries out bold print by printing the same character twice shifting the second print position by $1 / 120$ inch.
The input of ESC W automatically carries out shadow print by printing the same character twice shifting the second printing position by $1 / 60$ inch.
These modes can be cleared by means of ESC \& or CR codes.
(4) ESC Y, ESC Z

Used for printing any two characters not included in the 94 -character ASCII code. ESC Y prints the character $\not \subset$, while ESC Z prints the character \neg.
(5) Space (SP)

Moves the carriage by one character space in the printing direction.
(6) Carriage Return (CR)

When in the line print mode, a CR will cause the data stored in the buffer to be printed. A line feed may or may not be generated, depending upon the setting of DIP switch 4. Upon completion of printing, the carriage will remain at the last print position.
The CR code also resets bold print mode and shadow print mode.
(7) Line Feed (LF)

Advances the paper $1 / 6$ inch without changing the position of the carriage.
(8) Form Feed (FF)

Advances the paper to the first line on the next page. The top of form position can be set by depressing the TOF SET switch on the control panel with the print position aligned with the desired top line of the paper.
(9) Ignored Code (NUL, DEL) These codes are ignored.

6-2 Serial Print Mode - Print Formats

(1) Horizontal Motion Index (HMI) Following the printing of a character or a space, the carriage moves by $1 / 120$ inch \times HMI. HMI represents Horizontal Motion Index and is variable from a minimum of 0 (no spacing) to a maximum 125 (125/120 = 1.04 inch).
(2) Vertical Motion Index (VMI)

A line feed causes the paper to move by $1 / 48$ inch \times VMI. VMI represents Vertical Motion Index and is variable from a minimum of 0 to a maximum of 125 .
(3) Standard Format Upon power-on and reset, the following standard format will be set:
a) Standard vertical format: Six lines per inch.
b) Standard horizontal spacing: Standard horizontal spacing depends upon the setting of DIP switches SW1 and SW2. Ten, twelve and fifteen characters per inch plus Proportional Spacing is available.

PITCH SELECT SWITCH	HORIZONTAL SPACING		
10	10	Max. ch. per line	HMI
12	12	132	12
15	15	158	10
PS	Variable	Variable	8

calculated from the maximum left margin setting (the position the carriage goes upon power-on) to the present position of the carriage taking into consideration the pitch selected, according to the following formula:
Print Position $=\frac{\text { Horizontal Position }}{\text { HMI }}+1$
The maximum left magin is always considered as position 1 and therefore the maximum printed line, in 10 pitch, $(\mathrm{HMI}=12)$ is:

$$
(1572 / 12+1)=132
$$

(7) Line Number

The line number is indicated by the number calculated from the first line of the page, to the present position of the carriage, taking into consideration the line feed spacing selected. The line number, there, can be calculated as follows:
Line Number $=\frac{\text { Vertical Position }}{\text { VMI }}+1$
For example, when using the standard (the default value upon power-on) 6 lines per inch spacing ($\mathrm{VMI}+8$) on 11 inches paper, the maximum number of lines would be:

$$
(520 / 8+1)=66
$$

(4) Horizontal Position

This is the value which represents the distance between the printhead and left final stop in the $1 / 120$ inch increment, ranging from a minimum of 0 to a maximum of 1572 ($1 / 120$ inch $\times 1572=13.1$ inches).
(5) Vertical Position

This is the value which represents the distance between the current printing line and the first line in the corresponding page in the $1 / 48$ inch increment, ranging from a minimum of 0 to a maximum of 520 (11 inches paper).
(6) Print Position The print position is indicated by the number

ESC 2-Character Sequence:
ESC \emptyset to ESC 9 (no ESC 7 exists) ESC D, ESC U, ESC Y, ESC Z and ESC LF are input by means of an ASCII code, for example, ESC 8, should be entered as HEX 1B, 38 .
The escape code would be ESC 8 where escape $=$ ASCII 27 and $8=$ ASCII 56 in decimal notation.

ESC 3-Character Sequence:
The n value of ESC HT n, ESC VT n, ESC RSn and ESC US n are indicated by the ASCII code in the following chart.
For example, to directly move the carriage to printing position 37, the hex input would be 1 B , 99,25 and the ESC code would be ESC HT \%, where escape $=$ ASCII 27, $\mathrm{HT}=$ ASCII $\emptyset 9$ and $\%=$ ASCII 37.
(CHART 2)

	UNITS									
	0	1	2	3	4	5	6	7	8	9
0		SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT
10	LF	VT	FF	CR	SO	SI	DLE	DCl	DC2	DC3
20	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS
30	RS	US	SP	$!$		\#	\$	\%	\&	
40	1)	-	+	,	-	.	1	0	1
TENS 50	2	3	4	5	6	7	8	9	:	;
60	$<$	$=$	$>$?	@	A	B	C	D	E
70	F	G	H	I	J	K	L	M	N	\bigcirc
80	P	Q	R	S	T	U	V	W	X	Y
90	Z	[1]	\uparrow	-	,	a	b	c
100	d	e	f	g	h	1	1	k	1	m
110	n	\bigcirc	p	q	r	s	t	u	v	w
120	x	Y	z	I	I	1	\sim			

(1) Bell (BEL)

Sounds the bell for a half second.
(2) ESC Y, ESC Z

Used for printing any two characters not included in the 94 -character ASCII code. ESC Y prints the character $\not \subset$, while ESC Z prints the character \neg.
(3) ESC 5 Forward direction printing mode.

ESC 6 Backward direction printing mode.
Note: When in the backward direction printing mode a CR or an ESC 5 restores the printer to the forward direction printing mode.
(4) HMI setting (ESC US n)

The amount of the carriage movement after printing a character or a space can be
controlled by executing the 3 -character sequence of ESC US n.
$\mathrm{HMI}=\mathrm{n}-1(\mathrm{n}=$ ASCII value from chart \#2)
Amount of the carriage movement would be HMI $\times 1 / 120$ inch.
(5) VMI setting (ESC RS n)

The amount of vertical paper feed can be controlled by executing the 3 -character sequence of ESC RS n.
$\mathrm{VMI}=\mathrm{n}-1(\mathrm{~N}=\mathrm{ASCII}$ value from chart 2)
The amount of paper feed movement would be VMI $\times 1 / 48$ inch.
(6) Space (SP)

SP moves the carriage by one character in the printing direction (HMI $\times 1 / 120$ inch). In the case of graphic mode, the carriage is moved by $1 / 60$ inch.
(7) Back Space (BS)

BS moves the carriage in the direction opposite to the printing direction by one character (HMI $\times 1 / 120$ inch). In the case of graphic mode, the printing position is moved by $1 / 60$ inch.
In the case of PS, if the back space is executed immediately after the printing of a character, the printing position will be returned to the exact last printing position. If additional back spaces are sent to the printer they will be executed by the designated HMI, and the carriage may not be aligned to the already printed character.
(8) Carriage Return (CR) CR moves the carriage to the left margin and at the same time cancels the backward direction printing mode and graphic mode.
(9) Horizontal Tab (HT, ESC HT n)

1. Normal tab

A HT code moves the carriage to a pre-set tab position in the left to right direction.
If there are no further pre-set tabs to the right of the carriage, the carriage will move to the far right position upon receiving another tab command.
2. Absolute Tab

ESC HT n makes it possible to move the carriage to any desired position in the first 126 printing positions, without preliminarily pre-setting the tab position. Since ESC HT n indicates the post-tab printing position, if the carriage is located in any position to the right of the printing position, the tab performance will move the carriage towards the left. The horizontal position following the absolute tab is:
Horizontal position $=($ ASCII character $-1) \times$ HMI
Absolute tab is unchanged in the graphics mode.
(10) Tab Stop setting and clear (ESC 1, ESC 2, ESC 8)
A tab stop can be set by means of an ESC 1 sequence after the carriage has been set to the position where the tab stop is desired.
The tab stop can be cleared by means of an ESC 8 sequence after the carriage has been moved by normal tab performance (HT) to the desired tab stop.
All the stops can simultaneously be cleared by means of an ESC 2 sequence irrespective of the position of the carriage.
(11) Vertical Tab (ESC VT n)

Unlike the horizontal tab, there is only one method of vertical tabbing, that is an absolute vertical tab. The input of ESC VT n directly brings the next printing position to any of the first 126 lines on the page and the vertical position is calculated as: Vertical position $=($ ASCII character -1$)$ \times VMI
Although it is possible for the vertical tab to advance to any line over the page boundary, the paper feed thereafter is conducted from the first line of that page.
(12) Margin (ESC 9, ESC $\emptyset)$

An ESC 9 will set the left margin at the present printing position. It is possible to move the carriage in the left direction, past the left margin stop, by use of the backspace.

7. Power-On and Remote Reset

ESC \emptyset sets the right margin at the current printing position. If printing exceeds the right margin, the bell sounds.
(13) Line Feed (LF, ESC LF, ESC U, ESC D) The line feed execution (LF) feeds the paper by one line ($1 / 48 \times \mathrm{VMI}$) upwards. ESC LF feeds the paper in the negative direction, that is, downwards. In the graphic mode the movement is set at $1 / 48$ inch. The half line feed (ESC U) feeds the paper by $1 / 2$ line upwards, while the negative half line feed (ESC D) feeds paper by $1 / 2$ line downwards. The execution of these two codes in the graphic mode is performed in the same manner.
(14) Form Feed (FF)

Paper is advanced to the first line of the next page. The first paper position is set by depressing the TOF SET switch on the control panel with the carriage aligned with the designated first line of the paper.
(15) Graphics Mode (ESC 3, ESC 4) An ESC 3 places the printer in the graphics mode, while the ESC 4 or a carriage return will return the printer to the normal mode.
In the graphics mode, the carriage will not move even if a character is printed. Moving the carriage requires the operation of tab, space, back space or line feed. In the graphics mode, the space and back space are fixed to $1 / 60$ inch. Line feed (LF) and negative line feed (ESC LF) performs a $1 / 48$ inch paper feed.
(16) Initial Remote Reset (ESC CR P) This code resets the printer in the same manner as a power-on (refer to Item 7 "Power-ON and Remote Reset" on page 17).

Upon:
a-power-on
b-receipt of the $\overline{\text { PRIME signal (pin } 31 \text { of the }}$ connector).
or
c-receipt of the ESC, CR, P sequence (serial mode only), the printer will default to the follows:

1) Carriage moves to the far left (print position 1)
2) Printing will be in the forward printing direction.
3) Horizontal spacing is set at the value set by the pitch select DIP switch.
4) Vertical spacing is set to 6 lines per inch.
5) The left margin is set to print position 1.
6) All horizontal tab stops will be cleared.
7) The present print position will be designated as line \emptyset for the purpose of form feed.
8) The following modes will be set in accordance with the DIP switch setting:
a-Carriage space mode
b-Form length
c-Auto line feed
d-Serial or line print mode
Upon receipt of a remote reset (re-initialization), serial or line print mode is not read.

Note:The carriage will move only when there is a character to be printed after execution of the space (SP), backspace (BS), carriage return (CR) or horizontal tab (HT).

8. ASCII Codes

9. Parallel Interface

9-1 Explanation of Signals and Specifications

PIN RETURN
NO. PIN NO. SIGNAL DIRE.

DESCRIPTION

$\left.\begin{array}{lll}\hline 17 & \text { CHASSIS GROUND } & \text { Ground } \\ \hline 18 & +5 \mathrm{~V} \text { (see note) } \\ \begin{array}{l}19 \\ \text { thru. } \\ 30\end{array} & \begin{array}{ll}\text { Twisted Pair Ground }\end{array} \\ \hline 31 & \overline{\text { PRIME }} & \text { IN }\end{array} \begin{array}{l}\text { This signal, also known as } \overline{\mathrm{INTT}} \text {, when "low" resets the } \\ \text { printer to its initial "Power-on" state. This signal must } \\ \text { be kept high when the printer is in normal operation. The } \\ \text { pulse width of this signal must always exceed 50us at the } \\ \text { printer input. }\end{array}\right\}$

Note: No more than $5 \mathrm{~m} / \mathrm{A}$ may be drawn from pin 18.

Applicable connectors

Plug: (on cable side) Amphenol 57-30360 or equal
Receptacle: (on printer side) Amphenol
$57-40360$ or equal
View on receptacle from connector cable side.

9-2 Input/Output Circuits

DATA $1-8$

STROBE

PRIME

FAULT
ALERT
SELECT

9-3 Timing Chart

10. Complement

Spacing Units when PS Daisy Wheel is in use.

	2		3		4		5		6		7	
0			0	5	@	5	p	6	,	5	p	6
1	$!$	5	1	5	A	7	Q	7	a	5	q	6
2	"	5	2	5	B	7	R	7	b	6	r	5
3	\#	5	3	5	C	7	S	6	c	5	s	5
4	\$	5	4	5	D	7	T	7	d	6	t	4
5	\%	5	5	5	E	6	U	7	e	5	u	6
6	\&	5	6	5	F	6	V	7	f	4	v	6
7	,	5	7	5	G	7	W	7	g	6	w	7
8	$($	5	8	5	H	7	X	7	h	6	*	6
9)	5	9	5	I	4	Y	7	1	3	y	6
A	-	5	:	5	J	5	Z	6	1	3	z	5
B	$+$	5	;	5	K	7	I	5.	k	6	1	5
C	,	5	$<$	5	L	6	1	5	1	3	1	5
D	-	5	$=$	5	M	7	1	5	m	7	1	5
E	-	5	$>$	5	N	7	\sim	5	n	6	\sim	5
F	1	5	?	5	0	7	-	5	-	5		

Note,
(1) The nbove numerical values are indicated in units - one unit is $1 / 60$ inch.
(2) A space and a back space is five units.
(3) HMI is calculated as follows:

LINE

$$
\begin{array}{r}
\longrightarrow(7 / 60+6 / 60) / 2=13 / 120 \mathrm{HMI}=13 \\
\longrightarrow(4 / 60+7 / 60) / 2=11 / 120 \mathrm{HMI}=11 \\
\longrightarrow(6 / 60+4 / 60) / 2=10 / 120 \mathrm{HMI}=10
\end{array}
$$

11. Specifications

Type:	Daisy wheel impact printer
Main body:	Power supply, control board, printing mechanism, paper feed mechanism, carriage feed mechanism, control panel, operating levers and cover.
Interface:	Centronics compatible parallel interface
Printing speed:	16 CPS (Shannon text)
Daisy wheel	96 characters
Printing pitch:	$10 \mathrm{ch} . / \mathrm{inch}, 12 \mathrm{ch} . / \mathrm{inch}, 15 \mathrm{ch} . / \mathrm{inch}$ and Proportional Spacing (PS)
Carriage movement:	1/120 inch minimum
Printing directions:	Bi-directional the shortest distance
Carriage return:	$1350 \mathrm{~ms} / 13.1$ inches
Printing width:	132 ch./10 pitch, 158 ch./12 pitch, 197 ch./15 pitch
Copy capacity:	1 original +3 copies
Copy control:	3 positions
Paper feed:	Friction feed system - tractor feed (option)
Paper feed speed	4-inch/second
Line feed:	Controllable to $1 / 48$ inch minimum by means of host computer
Ribbon:	Multi-strike film ribbon (standard), One-time film ribbon, Fabric ribbon
Controll panel:	Switches - ON LINE, LINE FEED, FORM FEED, TOF SET
	Lamps - POWER, ALERT, ON LINE
Operating levers:	Paper release lever, Paper bail lever, Paper injector, Copy control lever
Power voltage	100 V system $100,115,120 \mathrm{VAC}(50-60 \mathrm{~Hz})$
	200 V system $200,220,240 \mathrm{VAC}(50-60 \mathrm{~Hz}$)
Power consumption	100 V system 75 W max.
	200 V system 80 W max.
External dimensions:	$583(\mathrm{~W}) \times 200(\mathrm{H}) \times 380$ (D) mm.
Weight:	Approx. 14kg.
Environment conditions:	Operation Temperature 5 to $35^{\circ} \mathrm{C}$
	Operation Humidity 20 to 80% (No condensation)
	Stor Temperature -20 to $70^{\circ} \mathrm{C}$
	Stored Humidity 10 to 95\% (No condensation)
Noise level:	65 dB or less (Scale A, 1 meter off)
MTBF:	2×10^{7} actions

12. Care and Maintenance

Please carefully follow the instructions below so that your printer will always perform with the optimum efficiency.

Daisy Wheel:
Be extremely careful not to bend the petal or scratch the typeface when handling.
Cleaning:
An operator should periodically wipe and dust the interior of the printer to remove paper dust or residue with a soft cloth using mild cleaning solvent. Absolutely do not use an organic solvent like thinner.
Also clean the exterior of the printer periodically to keep its appearance.
Do not use the printer in the environment where electro-static or electro-magnetic field exists.
Service:
It is recommended that the printer be periodically checked by an authorized service engineer only.

In Case of Difficulty

The following is a quick reference for solving problems if occurred.

PROBLEMS	POSSIBLE CAUSES
The printer does not operate at all.Make sure: - the power cord is plugged in. - the cable between host unit and the printer is properly connected. - the ON LINE Switch is not in OFF LINE mode. (ON LINE Lamp is lit.)	
Make sure: Maper does not advance. - the paper release lever is in closed position. - platen or at not jammed in the back of the	
Make sure: Ribbon does not feed. - the ribbon is properly set. - the ribbon is not entangled with the daisy wheel or not twisted.	

Wiviver-REED

SILVER-REED (U.K.) LTD.
Silver Seiko House
19-23, Exchange Road, Watford, Herts. WD1 7EB, England
Telephone: 0923-45976

SIIVER SEIKO INTERNATIONAL GMBH
Langer Kornweg 40, 6092 Kelsterbach
Postfach 1112, West Germany
Telephone: 06107-5001 - 6

SILVER SEIKO LTD
16-6, Shinjuku 2-chome Shinjuku-ku, Tokyo, 160 Japan Telephone: 03-356-6111

SIIVER-REED AMERICA, INC.
8665 Hayden Place, Culver City
California 90230, U.S.A.
Telephone: 213-837-6104-9

SIIVER-REED AMERICA,INC.
Liaison Office, Panama
Apartado Postal 6-3694
Estafeta El Dorado
Panama, Republica de Panama
Telephone: 60-6715/60-6179

[^0]
[^0]: SIIVER-REED INTERNATIONAL (HONG KONG) LTD.
 South China Building, 12th Floor
 1-3, Wyndham Street, Central, Hong Kong
 Telephone: 5-212376-7

