A 6502 Op Code Table

Table 1: An explanation of the abbreviations used in the 6502 reference chart.
absolute.
indexed absolute using \times register. accumulator.
indexed absolute using y register. indexed indirect using x register. indexed indirect using y register. immediate.
implied.
absolute indirect.
relative.
zero page.
indexed zero page using x register. indexed zero page using y register. not implemented.

Here's a nice compact reference chart to help you debug those hexadecimal dumps from your 6502 microprocessor. To use the table, find the most significant digit along the top of the chart and follow the column down until you reach the value of the least significant bit of the hexadecimal code on the horizontal row. You now have not only the mnemonic but also the addressing mode being used. Table 1 is an explanation of the abbreviations used in the chart.

LEAST
SIGNIFICANT
4 BITS
MOST SIGNIFICANT 4 BITS

	0	1	2	3	4	5	6	7	8	9	A	B	c	D	E	F
	$\begin{aligned} & \text { BRK } \\ & \text { imp } \end{aligned}$	BPL rel	$\begin{aligned} & \text { JSR } \\ & \text { abs } \end{aligned}$	BMI rel	$\begin{aligned} & \text { RTI } \\ & \text { imp } \end{aligned}$	BVC rel	$\begin{array}{\|l} \text { RTS } \\ \text { imp } \end{array}$	$\begin{aligned} & \text { BVS } \\ & \text { rel } \end{aligned}$	-	$\begin{aligned} & \text { BCC } \\ & \text { rel } \end{aligned}$	$\begin{aligned} & \text { LDY } \\ & \mathrm{imm} \end{aligned}$	BCS rel.	$\begin{aligned} & \text { CPY } \\ & \mathrm{imm} \end{aligned}$	BNE rel	$\begin{aligned} & \mathrm{CPX} \\ & \mathrm{imm} \end{aligned}$	BEO rel
1	$\begin{aligned} & \overline{\text { ORA }} \\ & i, x \end{aligned}$	$\begin{aligned} & \text { ORA } \\ & i, y \end{aligned}$	$\begin{aligned} & \text { AND } \\ & \mathrm{i}, \mathrm{x} \end{aligned}$	AND i.y	$\begin{aligned} & \text { EOR } \\ & i, x \end{aligned}$	$\begin{aligned} & \text { EOR } \\ & i, y \end{aligned}$	$\begin{array}{\|l\|} \hline \\ \hline i, x \\ \hline \end{array}$	$\begin{aligned} & A D C \\ & i, y \end{aligned}$	$\begin{array}{\|l} \hline \text { STA } \\ i, x \end{array}$	$\begin{aligned} & \text { STA } \\ & \text { i. } \gamma \end{aligned}$	$\underset{i, x}{\text { LDA }}$	$\begin{aligned} & \text { L.DA } \\ & i, y \end{aligned}$	$\begin{aligned} & \text { CMP } \\ & i, \mathrm{x} \end{aligned}$	$\begin{aligned} & \text { CMP } \\ & i, y \end{aligned}$	$\begin{aligned} & \text { SBC } \\ & i, x \end{aligned}$	$\begin{aligned} & \mathrm{SBC} \\ & \mathrm{i}, \mathrm{y} \end{aligned}$
2	-	-	-	-	-	*	-	-	-	-	$\begin{aligned} & \text { LDX } \\ & \text { imm } \end{aligned}$	-	-	-	-	-
3	-	-	-	-	-	-	-	-	-	*	-	-	-	-	*	*
4	, ${ }^{\circ}$	-	$\begin{array}{\|l\|} \hline \text { BIT } \\ \text { zer } \end{array}$	-	-	-	-	-	$\begin{aligned} & \text { STY } \\ & \text { zer } \end{aligned}$	$\begin{aligned} & \mathrm{STY} \\ & \mathrm{zpx} \end{aligned}$	$\begin{aligned} & \text { LDY } \\ & \text { zer } \end{aligned}$	$\begin{aligned} & \text { LDY } \\ & \mathrm{zpx} \end{aligned}$	$\begin{aligned} & \text { CPY } \\ & \text { zer } \end{aligned}$	-	$\begin{aligned} & \text { CPX } \\ & \text { zer } \end{aligned}$	-
5	$\begin{aligned} & \text { ORA } \\ & \text { zer } \end{aligned}$	$\begin{aligned} & \text { ORA } \\ & \mathrm{zpx} \end{aligned}$	AND zer	AND	$\begin{aligned} & \text { EOR } \\ & \text { zer } \end{aligned}$	$\begin{aligned} & \text { EOR } \\ & z p x \end{aligned}$	ADC zer	$\begin{aligned} & \mathrm{ADC} \\ & \mathrm{zDx} \end{aligned}$	$\begin{aligned} & \text { STA } \\ & \text { zer } \end{aligned}$	$\begin{aligned} & \text { STA } \\ & \text { zpx } \end{aligned}$	$\begin{aligned} & \text { LDA } \\ & \text { zer } \end{aligned}$	$\begin{aligned} & \text { LDA } \\ & z p x \end{aligned}$	$\begin{aligned} & \text { CMP } \\ & \text { zer } \end{aligned}$	$\begin{aligned} & \text { CMP } \\ & 2 \mathrm{px} \end{aligned}$	$\underset{\text { zer }}{\mathrm{SBC}}$	$\begin{gathered} \text { SBC } \\ \text { zpx } \end{gathered}$
6	ASL zer	$\begin{aligned} & \mathrm{ASL} \\ & \mathrm{zpx} \end{aligned}$	ROL zer	ROL zpx	$\underset{\text { zer }}{\mathrm{LSR}}$	$\begin{aligned} & \mathrm{LSR} \\ & \mathrm{zpx} \end{aligned}$	-	-	$\begin{array}{\|l\|} \hline \text { STX } \\ \text { zer } \end{array}$	$\begin{aligned} & \text { STX } \\ & \text { zpy } \end{aligned}$	$\begin{aligned} & \text { LDX } \\ & \text { zer } \end{aligned}$	$\begin{aligned} & \text { LDX } \\ & \text { zpy } \end{aligned}$	DEC zer	$\begin{aligned} & \mathrm{DEC} \\ & \mathrm{zpx} \end{aligned}$	INC zer	$\begin{aligned} & \text { INC } \\ & \mathrm{zpx} \end{aligned}$
7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	*
8	$\begin{aligned} & \text { PHP } \\ & \text { imp } \end{aligned}$	$\begin{aligned} & \text { CLC } \\ & \text { imp } \end{aligned}$	$\begin{aligned} & \text { PLP } \\ & \text { imp } \end{aligned}$	$\begin{aligned} & \text { SEC } \\ & \mathrm{imp} \end{aligned}$	$\begin{aligned} & \text { PHA } \\ & \text { imp } \end{aligned}$	$\begin{aligned} & \mathrm{CLI} \\ & \mathrm{imp} \end{aligned}$	PLA imp	SEI imp	$\begin{array}{\|l} \hline \text { DEY } \\ \text { imp } \end{array}$	TYA imp	$\begin{aligned} & \text { TAY } \\ & \text { imp } \end{aligned}$	$\begin{aligned} & \text { CLV } \\ & \mathrm{imp} \end{aligned}$	$\begin{aligned} & \text { INY } \\ & \text { imp } \end{aligned}$	$\begin{aligned} & \text { CLD } \\ & \mathrm{imp} \end{aligned}$	$\begin{aligned} & \text { INX } \\ & \text { imp } \end{aligned}$	$\begin{aligned} & \text { SED } \\ & \text { imp } \end{aligned}$
9	ORA imm	ORA aby	AND imm	AND aby	EOR imm	EOR aby	ADC imm	ADC aby	-	STA aby	$\begin{aligned} & \text { LDA } \\ & \mathrm{imm} \end{aligned}$	LDA aby	$\begin{aligned} & \text { CMP } \\ & \mathrm{imm} \end{aligned}$	$\begin{aligned} & \text { CMP } \\ & \text { aby } \end{aligned}$	$\underset{\mathrm{imm}}{\mathrm{SBC}}$	$\begin{aligned} & \text { SBC } \\ & \text { aby } \end{aligned}$
A	ASL acc	-	ROL acc	-	$\begin{aligned} & \text { LSR } \\ & \text { acc } \end{aligned}$	-	-	-	$\begin{aligned} & \text { TXA } \\ & \text { imp } \end{aligned}$	$\begin{aligned} & \text { TXS } \\ & \text { imp } \end{aligned}$	$\begin{aligned} & \text { TAX } \\ & \text { imp } \end{aligned}$	$\begin{aligned} & \text { TSX } \\ & \text { imp } \end{aligned}$	$\begin{aligned} & \text { DEX } \\ & \text { imp } \end{aligned}$	-	$\begin{aligned} & \text { NOP } \\ & \text { imp } \end{aligned}$	-
B	-	-	-	-	-	-	-	-	-	-	*	-	*	-	-	*
C	-	-	$\begin{aligned} & \text { BIT } \\ & \text { abs } \end{aligned}$	-	JMP abs	-	$\begin{aligned} & \text { JMP } \\ & \text { ind } \end{aligned}$	-	$\begin{aligned} & \text { STY } \\ & \text { abs } \end{aligned}$	-	$\begin{aligned} & \text { LDY } \\ & \text { abs } \end{aligned}$	$\begin{aligned} & \text { LDY } \\ & a b x \end{aligned}$	$\begin{aligned} & \text { CPY } \\ & \text { abs } \end{aligned}$	-	$\underset{\text { abs }}{\text { CPX }}$	-
D	ORA abs	ORA abx	AND abs	AND abx	$\begin{aligned} & \text { EOR } \\ & \text { abs } \end{aligned}$	$\begin{aligned} & \text { EOR } \\ & \text { abx } \end{aligned}$	ADC abs	ADC abx	STA abs	$\begin{aligned} & \text { STA } \\ & \text { abx } \end{aligned}$	LDA abs	LDA abx	CMP abs	CMP abx	$\begin{aligned} & \text { SBC } \\ & \text { abs } \end{aligned}$	$\begin{aligned} & \text { SBC } \\ & \text { abx } \end{aligned}$
E	ASL abs	ASL $a b x$	ROL abs	ROL abx	$\begin{aligned} & \text { LSR } \\ & \text { abs } \end{aligned}$	LSR $a b x$	-	-	$\underset{\text { abs }}{\text { STX }}$	-	$\underset{\text { abs }}{\text { LDX }}$	$\begin{aligned} & \text { LDX } \\ & \text { aby } \end{aligned}$	DEC abs	DEC abx	INC abs	INC abx
F	-	-	-	-	-	-	-	*	-	-	*	-	-	-	-	-

 34 yund 4iner
5ym
(hy)
Aher
$\frac{14}{40}$
wive
(4 반
5
3
3
suat?
Hinte
44,5
4.76|

- 4R2
Urive
4

ELECTRONIC SYSTEMS

* 32 Char/Line
* Parallel Input
* 1 K on board memory
* Output for computer controlled curser

P. O. BOX 212, BURLINGAME, CA

This TV typewriter is an ideal addition to any home compputer system. It provides one of the most convenient and inexspensive means of getting data in and out of your computer. Among TVT's, one would be hard pressed to find a more versatile unit than this one. The six on-board memory chips will retain 1024 characters and spaces. These are arranged as thirty-two lines of thirty-two characters each, with sixteen lines displayed at a time and sixteen held off screen. The cursor which indicates where on the screen the next character will appear, as a flashing white rectangle; but can easily be caused to remain always on (white) or off (transparent). In addition, keyboard controls can move the cursor up, down, left, right, or to home (the upper left most position on the screen). When the cursor reaches the end of one line, it automatically moves to the beginning of the next. When it reaches the end of the screen it rolls the top line off the screen and moves the rest of the lines up one space to make room for a new line at the bottom. This allows the typist to fill the entire thirty-two lines with text without ever worring about reaching the end of a line or the bottom of the screen. There ara two "scroll" controls to move lines around without moving the cursor. One shifts lines off the bottom of the screen and brings new lines on at the top, while the other shifts them off the top and brings new ones on at the bottom.

Single characters can be changed or erased by placing the cursor over them and typing the
new character or a space as desired. For larger changes there are "erase to end of line" (EOS) controls. The EOL starts at the cursor location and erases all the characters to the end of that line. The EOS starts at the cursor location and erases the rest of the screen, but doesn't touch any of the characters above and before the cursor or the sixteen off-screen lines. The TVT will accept parallel ASCII from a computer output port just as readily as it will from a key board. Seperate input ports are provided on-board for the computer and the keyboard to make connection easy. A special memory output port is also provided to allow for computer inspection of the on-board memory contents.

The TVT logic will also decode and respond to the ASCII codes for a carriage return and line feed. This means that the computer can move the cursor around with a single ASCII word, just as easily as printing a character.

The output of the TVT is a composite video signal. This means that it contains horizontal and vertical sync signals, as well as blanking and video information. Sync lock and horizontal size and position controls are provided on-board to allow for easy adjustment, while vertical positioning is handled automatically.

In addition to this TV typewriter kit, all that is nessessary to complete the system is an inexspensive video monitor, a keyboard, and a power supply capable of 5V. at 1.5 A . and -12 V . at 30 mA .口

 ロ \square ロ －ans－POS．

This TV typewriter is an ideal addition to any home compputer system. It provides one of the most convenient and inexspensive means of getting data in and out of your computer. Among TVT's, one would be hard pressed to find a more versatile unit than this one. The six on-board memory chips will retain 1024 characters and spaces. These are arranged as thirty-two lines of thirty-two characters each, with sixteen lines displayed at a time and sixteen held off screen. The cursor which indicates where on the screen the next character will appear, as a flashing white rectangle; but can easily be caused to remain always on (white) or off (transparent). In addition, keyboard controls can move the cursor up, down, left, right, or to home (the upper left most position on the screen). When the cursor reaches the end of one line, it automatically moves to the beginning of the next. When it reaches the end of the screen it rolls the top line off the screen and moves the rest of the lines up one space to make room for a new line at the bottom. This allows the typist to fill the entire thirty-two lines with text without ever worring about reaching the end of a line or the bottom of the screen. There ara two "scroll" controls to move lines around without moving the cursor. One shifts lines off the bottom of the screen and brings new lines on at the top, while the other shifts them off the top and brings new ones on at the bottom.

Single characters can be changed or erased by placing the cursor over them and typing the
new character or a space as desired. For larger changes there are "erase to end of line" (EOS) controls. The EOL starts at the cursor location and erases all the characters to the end of that line. The EOS starts at the cursor location and erases the rest of the screen, but doesn't touch any of the characters above and before the cursor or the sixteen off-screen lines. The TVT will accept parallel ASCII from a computer output port just as readily as it will from a key board. Seperate input ports are provided on-board for the computer and the keyboard to make connection easy. A special memory output port is also provided to allow for computer inspection of the on-board memory contents.

The TVT logic will also decode and respond to the ASCII codes for a carriage return and line feed. This means that the computer can move the cursor around with a single ASCII word, just as easily as printing a character.

The output of the TVT is a composite video signal. This means that it contains horizontal and vertical sync signals, as well as blanking and video information. Sync lock and horizontal size and position controls are provided on-board to allow for easy adjustment, while vertical positioning is handled automatically.

In addition to this TV typewriter kit, all that is nessessary to complete the system is an inexspensive video monitor, a keyboard, and a power supply capable of 5V. at 1.5 A . and -12 V . at 30 mA .

Theory of Operation
INPUT:
The TV Typewriter will accept Inputs coded In ASCII (American Standard Code for Information Interchange) from either a keyboard or directly from a computer output port. The seven ASCII bits coming directly from the keyboard are passed directly into a latch consisting of U35 and U36; except for bit six, which is inverted first, for reasons which will be explained later. A pulse on the input strobe line clocks the input word Into the latch and passes the six least significant bits on to the 1 K by 6 bit memory made up of U47 through U52. Bit 6 is taken from the inverted output of the latch to restore it to its original logic state. The six least significant bits from the computer input connector are combined with the six least significant bits from the latch at the memory inputs. All seven bits from both the keyboard latch and the computer input connector are presented to a control instruction recognizer for decoding of carriage return and line feed instructions.

CHARACTER GENERATION:

As each memory location is addressed, its contents appear at the memory output. This is fed both to a memory output connector, and to the most significant six of the תine address lines on the character generator, U46. These six bits select a unique character out of the sixty-four character patterns stored in the generator. Each character is made up of seven rows of five bits each, with an eighth row which is always blank. The other three address lines select which of the eight five bit rows is to be placed on the character generator's five output lines. These three address lines are driven by the three least significant bits of the dot counter, U6, which counts from zero to nine. The dot counter is incremented once for each horizontal scan of the television raster by the horizontal sync pulse. On count zero the blank line is output. For counts one through seven, the bits making up the character pattern are output. With counts eight and nine the three address lines are held low by control logic which causes the blank line to be output two more times. This results in three blank scan lines separating each set of seven scan lines which make up a row of characters. The five output lines of the character generator are clocked into a shift register, U22 and U23, by the system timing after they have had time to stabilize. They are in turn clocked out of the register, one at a time, into the video mixer. The rate at which they are clocked out determines the width of the displayed character and hence the entire display. This rate is controlled by trimmer pot R28 and multivibrator U18.

CURSOR OPERATION:

The cursor uses the count and compare technique of memory update wherein a semistatic cursor address; held by the cursor character and line counters, U26, U32, and U33; is compared to the ever-changing addresses of the display character and line counters, U7, U14, and U21. When the comparator, U38 and U39, senses a match between the instantaneous memory address and the cursor location, and the strobe line is pulsed, the memory write line is momentarily brought low and the new character waiting in the keyboard latch or on the bus input is loaded into the memory. If a character was already present in that location, l.e. the cursor was superimposed on a character, the new character will replace the old one. The cursor must always remain within the visible page, unlike individual characters, which can oo off of the screen. To accomplish this, the output of the display line counter, U7, is added to the output of the roll counter, U45, for memory acdressing. The value in the roll counter represents the number of lines between the cursor and the end of the page. When the cursor would otherwise go off the screen, the roll counter
is either incremented or decremented as necessary to keep it on screen. This has the effect of rolling one line of text off one end of the screen while replacing it with another from the other end. The keybeard scroll controls, or "roll up" and "roll down" Increment and decrement the roll counter directly to accomplish their function, while "cursor up" and "cursor down" increment and decrement the cursor line counter, U32. Similarly, "cursor left" and "cursor right" cause the cursor character counter, U26 and U33, to count up or down. Pulling low on the "home" control line clears both the cursor character and line counters.

ERAS ING:

The cursor symbol is an all white square which blinks off and on with the oscillations of U8. The flashing can be made to stop by pulling the "solid cursor" pin low, or to disappear entirely (become transparent), by pulling the "cursor off" pin low.

The keyboard latch is cleared after each entry. This clear causes all of the outputs to oo low except for bit 6. As was mentioned earlier, bit 6 is taken from the inverted output. This means that the seven bit ASCII word normally at the latch output is 0100000 , which is the code for a blank space. When the "EOL" pin is pulled low the memory write line is enabled and the latch contents (0100000) are clocked into consecutive memory locations until the end of the line is reached. In this way the portion of the line after the cursor position is rewritten with blank spaces, effectively erasing the line. "EOS" works in exactly the same way except that it doesn't stop until the cursor reaches the end of the pane.

SYIC GENERATION AHD VIDEO OUTPUT:

The horizontal oscillator is built around U1 and can be synchronized with the 60 Hz . power line by adjusting trimmer pot R2. Horizontal position is determined by R26 which sets the delay time between the horizontal sync pulse and the start of video from the sync generator. Vertical sync is derived by dividing down the output of the horizontal oscillator through the display line counter, $\mathrm{U7}$ and U4. The vertical sync pulse in U17. Compos a Schmitt trigger and is combined with the pulses from the shift register in vide sync from U17 is then joined with the vidao video output.

TV TYPEWRITER

Assembly and Trouble Shooting

CAIITION: The six memory I.C.'s, U47 through U52; the character generator, UAE: and the two field effect transistors, 01 and 03 , are all static sensitive devices. io avoid static damage, they should be left in the conductive foil until they are inserted in the board. When out of the foll, avoid finger contact with the leads.

ASSEMBLY:

1.) Examine the parts package carefully to see that all parts are present. Since the parts are inserted directly into the layout diạ̣ram, it should be immediately obvious from the diagram if any are missing. The printed circuit hoard should be positioned so that it matches the layout of the parts packaṇe for easiest assembly.
2.) Eegin by inserting the fixed value resistors. The direction of insertion is not important with resistors. Solder the resistor leads, then clip off the excess wire next to the joint.
3.) Insert the four resistor networks R23, R31, R34, and R35; being careful to inserf pin 1 in the hole with the square pad. Pin 1 is usually indicated by an indentation. or a mark on the package. Solder the leads and clid off any exenss wire.
4.) When inserting capacitors, careful attention must be paid to the polarity of C1, C10, C13, C24, C40, and C69. These six caps should be inserted with the positive terminal in the hole with the square pad. Their proper orientation is also indicated on the layout diagram. The rest of the capacitors can be inserted in either direction. As always, clip off any excess wire after soldering.
b.) Insert diodes D1 through D5 with their nenative torminal in the hole with the souare pad. The negative end is the end with a stripe around it. then solderinç diodes, use as little heat as possible and allow the diode to cool after soldering the first lead before soldering the second.
6.) Comnare transistors 01 through $Q 4$ to the basing diagram below and note the location of pin 1. Insert the transistors in their respective locations with gin 1 going in the hole with the square pad. Solder the leads one at a time, allowing the transistor to cool between one lead and the next.

01 and 03 Pin 4 not used.

Q2 and 04
Bottom View

$$
02
$$

7.) Insert the variable resistors R2, R26, and R23 next. In each case thern are three holes, two of which are connected together. One of the end leads and the center lead should go in these holes, the other end lead should go in the third hole. Solder the leads and clip off the excess wire.
8.) Sockets have been supplied for I.C.'s U46 through U52. Solder the sockets into these locations, being careful to put pin 1 in the hole with the souare pad. Do not insert the I.C.'s in the sockets yet.
9.) Insert the rest of the I.C.'s, U1 through U45, in their respective locations,
being very careful to insert pin 1 in the hole with the square pad. Pin 1 is usually identifiable by a dot or indentation next to the pin or on its end of the package. When soldering the I.C.'s, be very careful not to overheat them, and also not to bridge solder between adjacent leads. Allow the package to cool between the soldering of one lead and the next.
10.) Next to U31 are three holes labeled 1, 2, and 3 on the layout diagram. If the strobe output from your keyboard is a positive pulse, connect pin 1 to pin 2; if it is a negative pulse, connect pin 3 to pin 2 instead.
11.) Insert U46 through U52 in their sockets, being careful to get pin 1 in the correct place.
12.) Connect the computer and the keyboard to J 2 through $\mathrm{J5}$ using the ouide on the schematic.
13.) Before poing any further, look the board over carefully. Nake sure all of the I.C.'s are in the right places and oriented properly. Make sure the other polarized components like diodes, transistors, and electrolytic and tantalum capacitors are not reversed. Check the back of the board for cold solder joints and soldor bridges.
14.) Connect the power supply to the Gnd., +5 V. , and -12 V . inputs. Connect the video monitor to Jl (OUT) and Gnd. A 60 Hz . sine wave of up to 12.6 Vrms . can be applied to the sync input, but is usually not required since the circuit is sensitive enough to sync with 60 Hz . radiated from house wiring.
15.) The +5 V . input should draw about 1.5 A ., while the -12 V . should only be in the 15 mA . range. If the currents are much greater than this, shut off the circuit immediately and go back to step 13.
16.) Adjust R2 for a stable display on the video monitor. The screen will be filled with random characters from memory power-up. There should also be a flashing rectangle, which is the cursor. Adjust R26 and R28 for the size and position of the display.

TROUELE SHOOTING:
Listed below are some of the things to check if there are any problems.
1.) Cold solder joints or solder bridges.
2.) Peversed components like diodes, transistors, polarized capacitors, I.C.'s, or resistor networks.
3.) Components in wrong places. Check color codes and device markings with layout and parts list.
4.) Components damaged by heat while soldering.
5.) Variable resistors R2, R26, and R28 adjusted improperly.
6.) Input strobe not connected, see instruction $\$ 10$.
7.) Keyboard or video monitor malfunction.

Parts List

QUANTITY	PART INUPMEER	COMPOINENT MARKING	DESCRIPTION
$\begin{aligned} & 1 \\ & 64 \end{aligned}$	$\begin{aligned} & \mathrm{C1} \\ & \mathrm{C} 2-9,17-23,29- \end{aligned}$	100 uf./ 16 V.	Electrolytic Cap.
1	$35,41-68, ~ 71-84$ C10	0.001 uf. 100 uf. 25	Ceramic Cap.
1	C11	0.02 uf.	
5	C12, 25-28	0.1 uf.	Ceranic Cap.
1	C13	0.47 uf.	Ceramic Cap.
2	C14, 37	0.005 uf.	Ceramic Cap.
2	C15, 39	0.01 uf.	Ceramic Cap.
2	C16, 36	500 pf.	Ceramic Cap.
2	C24,	2 uf./ 10 V .	Tantalum Cap.
1	C38	47 pf.	Ceramic Cap.
1	C40	220 uf. 10 V.	Electrolytic Cap.
1	$\begin{aligned} & C 70 \\ & c 69 \end{aligned}$	$\begin{aligned} & 100 \text { pf. } \\ & 250 \mathrm{pf} . \end{aligned}$	Ceramic Cap.
3	D1, 2, $\mathrm{L}_{\text {Remereo }}^{\text {OS }}$	1N4148	Si. Sw. Diode
1	D3	IN5232B	5.6 V. Zener Diode
1	D4	1N5235B	6.8 V. Zener Diode
2	01, 3	2N4416 MPF 102	$1 / \mathrm{Channel} \mathrm{FET}$
1	Q2	2N2907	Si. PNP Trans.
1	Q4	2N2222	Si. NPN Trans.
3	R1, 13, 14	$4.7 \mathrm{~K} \Omega \mathrm{~L}$ W.	
1	R2	$50 \mathrm{~K} \Omega$	Trimmer Pot.
2	R3, 20	$100 \mathrm{fr}, \frac{1}{4} \mathrm{~W}$.	Res. - Brn., Blk.
6	R4, 8, 16, 22,		Res. - Brn., Bik.,
2	24, 29 R5, 9	$\frac{1}{33} \mathrm{Km}, \frac{1}{4} \mathrm{w}$.	Res. - Brn., Blk.,
6	R6, 12, 15, 17-19	33 Kn, 10 K K, $\frac{1}{4}$ W W	Res. - Org., Org.,
2	R7, 11.15	$2.2 \mathrm{M}_{\mathrm{m}} \frac{1}{6} \mathrm{w} .$	Res. - Brn., Blk., Res. - Red Red Gr
1	R10	100 K 5 , $\frac{1}{6} \mathrm{w}$.	Res. - Brn. Rlk.
1	R21	$47 \mathrm{n}, \mathrm{l}$, w .	Res. - Yel. Pur.
4	R.33, 31, 34, 35	1 Knx 7	8 Pin Res. Pack
1	R25	$3.9 \mathrm{~K} \mathrm{f}_{\rightarrow} \frac{1}{4} \mathrm{w}$.	Res. - Org., Wht.,
1	R26	$10 \mathrm{~K} \Omega$	Trimmer Pot.
1	R27	$3.0 \mathrm{~K} \mathrm{n}_{0} \frac{1}{4} \mathrm{~W}$.	Res. - Org., Blk.,
1	R28	5 Kr	Trimmer Pot.
1	R30	470 ..., $\frac{1}{6} \mathrm{w}$.	Res. - Yel., Pur
2	R32, 33	$5.6 \mathrm{~K} . . ., \frac{1}{4} \mathrm{w}$.	Pes. - Grn., Rlu..

Where substitutions have been mads or where actual component markings differ substantially from the printed parts list, new part numbers have been shown for your convenience.

If an (RO-3-2513) is used instead of the 2513 then the -12 volt supply is not needed.

Active Elect. Sales

$$
\text { Ic's } \$ 29.63
$$

$$
\text { od. } \$ 39.00
$$

Passive $\$ 4.00$
Sockets $\ddagger 10.00$

MODIFICATION INSTRUCTIONS

1. DO NOT attempt this modification unless your TVT is completely functional.
2. Refer to the attached drawings and make the circuit TRACE cuts exactly as shown. (The 2 cuts in the circle at U-17 are only for the cursor Underscore change. Do not cut them unless you are going to install that change concurrent with the 64 Char change.)
3. Remove the IC (7486) at location $U-15$. This is no longer needed.
4. Using small (30 AWG) wire connect the following points.
($\left\{\begin{array}{l}\text { Connect U14-5 to U12-5 } \\ \text { Connect U14-12 to U14-8 }\end{array}\right.$
Connect U14-8 to U15-6 (U15 is empty socket)
Connect U27-9 to U31-11
) Connect U27-10 to U31-9
5. REMOVE C38 (47 pf) capacitor located next to $\mathbb{4} 18-15$ and REPLACE with a 18 pf capacitor
6. Carefully Drill holes to mount 214 -pin and 216 -pin sockets along the edge of the board adjacent to U39, U45 and U52. (you may wish to mount these sockets on a small PC board.)
7. Using your favorite wiring technique (ie, wire wrap, point to point, or etched circuit), wire the 4 sockets as shown on the schematic and connect to the locations indicated on the TVT.
8. Install the 4 IC!s
9. DOUBLE-CHECK all wiring and Trace Cuts.
10. Apply power and readjust the 3 POTS for a stable display.
11. If you do not have a stable 64×16 display RE-CHECK all wiring again.
12. If you do have a good display, enter all 64 ASCII Characters and verify they display correctly.
13. Turn off the power and then turn it back on to get a full screen of mixed characters.
14. Adjust the DOT RATE POT over its full range while watching the screen and see if any characters change their dot pattern. If they do, the most probable cause is SLOW MEMORIES. This problem has also been traced to a SLOW GHARACTER GENERATOR. It is possible, by observation to figure out which Memory is causing the problem. (If your memories are rated for 500 ns or faster) You should have no problem, unless it is the 2513 Character Gen.
15. In some cases, it might not be possible to cover the entire range of the DOT RATE POT without some of the characters changing their pattern. This is $O K$ as long as we can pet a full 64 char . line on the screen without errors.
Since many NONITORS overscan the screen, you should try adjusting your Horiz Width to JUST BARFLY fill the screen. This will in effect, give the slowest DOT RATE requirement and the hest overat ing point for the TVT.
NOTE- SOME HONITORS USe the overscan, to cover un Horizontal Linparity problems, so your width adjustment mist have to be a Compromise between Linearity and DOT RATE.

COMMENTS

I hope anyone installing this chance will enjoy it as much as 1 do. It makes the GAY ARFA TVT a very pleasant looking display and leaves little to be desired. If you add the Underscore Cursor and 1200 RAUD changes its even better yet!
With the addition of some more memory and some additional chances I see no reason the second Pare could not be implimented as in the original TVT. (I have not attempted this yet!)

PURPOSF: This modification chaners the function of the CURSOR from a RIfi flashine squarn to a flasting UMOFRSCORF, which will not obscure the character beins marked!

CORMENTS: This modification is very simple and only recuires the cutting of 2 PC Traces and the addition of a single diode and 3 JUMPRRS.

NOTE:
The IC and/or Socket located at U17 VUST be removed since one of the traces which must be cut is located on the component side under it! Install Ul7 when modification is completed.

MODIFICATION

JUMPER

LAND (COMPONENT SIDE)

- CUT LAND

REMOVE IC's LOCATED AT U4O AND U41.
TIE UP U40-13 TO +5 THRU A 1 K RESISTOR
NOTE- Voltage and Ground connections are IMPLIED.

```
BAY AREA TVT MOD.
64 Char per Line
```


SCHEMATIC

NOTE - Voltage and Ground connectlons are IMPLIED.

1200 BAUN TVT MOD.

NOTE- Voltage and Ground connections are IMPLIED.

CIRCUII SIDE

$$
\pm 12 \mathrm{v} . \text { at } 1 \mathrm{~A} \text {. }
$$

+12 UNREG

Buffer \& Decode \quad /o A2

KyH. kyb'd Pushbutton

440.6 \qquad B
vio N .

$$
.8 \mathrm{wm}
$$

\square UYO-A

A
A
\qquad
\qquad

Unat As. U7-19 (DAV) 600 usec.

UART
CONTROL DECODE

FEATURES

$$
A Y-5-1013 / A Y-5-1013 A
$$

-DTL and TTL Competible-no interfacing circuits required-drives one TTL load.

- Fully Double Buffered-sliminates need for system synchronization, facilitates high-apeed operation.
- Full Duplex Operation-can handle multiple baud rates (receiving-tranamitting) simultaneously.
- Start Bit Verification-decreeses error rate with center sampling.
- Receiver center sampling of serial input; 46% distortion immunity.
- External reset of error flags.
- High Speed Operation-geatent through put: 30k baud (AY-5-1013), 40k baud (AY-5-1013A).
- Tri-State Outputs-bus structure capability.
- Low Power-minimum power requirements
- Input Protected-aliminates handling problems
- Hermetic DIP Package-aeny board insertion and mechanical handling.

GENERAL DESCRIPTION

The Universal Asynchronous Receiver (Transmitter (IJAR/T) is an LSI subsystem which accepts binary characters from either a terminal device or a computer and recaives/transmits this character; with appended control and error detecting bits. All characters contain a start bit, 5 to 8 data bits, one or two stop blts, and either odd/even panty or ne parity. In order to make the UAR/T universal, the baud rate, bits per word, parity mode, and the number of stop bits are externally selectable. Thendevice is constructed on single monolithic chip utilizing MTNS P.channel enhancement mode transistor. All Inputs and outputs are directly compatible with MTOS/MTNS logic, and also with TTL/DTL logic without the need for interfacing components and with all strobes outputs having tri-state logic.

FIGURE 1 BLOCK DIAGRAM

\because pinconfiguration

PACKAGE: 40 LEAD PLASTIC DUAL IN-LINE

DESCRIPTION OF PIN FUNCTIONS

Pin No.	Name	Symbol	Function
1	$V_{\text {cc }}$ Power Supply	V_{Cc}	*5V Supply
2	$V_{\text {GO }}$ Power Supply	VGo	-12V Supply
3	Ground	$\mathrm{V}_{\mathrm{Gl}}{ }^{\text {- }}$	Ground
4	Received Data Enabin	$\overrightarrow{\text { PDt }}$	A logic "0" on the receiver enable line places the received data onto the output lines.
5-12	Recrived Date Bits	RDB-RD 1	These are the 8 deta output lines Received characters art right justified: the LSB alwrys sppears on RD1. These lines have mistate outputs, i.e., they heve the normal TTL output characteristics when $\overline{R D E}$ is " O " and a high impedance state when $\overline{\operatorname{RDE}}$ is " 1 ". Thus, the dets output lines can be bus structure oriented.
13	Parity Error	PE	This line goes to a logic " 1 " if the raceived character parity does not agres with the selected parity. Tristate.
14	Framing Error	FE	This line poes to s logic "1" it the received character has no valid stop bit. Ttistate.
15	Over-Aun	OH	This line poes to a logic " 1 " is the previously eqceivad character is not read (DAV line not reset) before the present character is tuans ferred to the receiver holding register. Tri-state.
16	Status Word Enabie	SWE	A logic " 0 " on this line places the status word bits (PE, FE, OR, DAV, TBMTI onto the output lines. Tristate.
17	Raceiver Clock	RCP	This line will contain a clock whose froquency is 16 times (16 X) the desired recener baud rate.
18	Reset Dete Available	RDAV	A logic "O" will reset the DAV line. The DAV FiF is only thing that is reset.
19	Data Available	DAV	This line poes to a logic "1" when an entire characier has been received and transferred to the receiver holding register Tristate. Fig. 13

Pin No.
Name

Serial Input

21

22

23

24

Number of Stop Bits

Odd/Even Parity Select

Transmitter Clock

SymbolSI

This line accepts the serial bit input stream. A Marking (logic *" $1^{* \prime}$) to epscing (logic " $\mathrm{O}^{\prime \prime}$) transition is required for initiation of data reception. Fig. 12, 13.
Resets shift registers. Sets SO, EOC, and TBMT to a iogic "1". Resets DAV, and error fiags to "O". Clears input data buffer. Must be tied to logic "O" when not in use.
The tranmitter buffer empry fiag goes to a logic "1" when the data bits holding regisier may be loeded with another character. Tristate. Soe Fig. 29, 21.

A strobe on this line will enter the data bits into the data bits hoiding registpr, Initial date tranamission is initiated by the rising eclge of $\overline{\mathrm{DS}}$. Data must be stable during entire strobe

This line goes to e Iogic "1" esch time a full character is trans mitted. It remains at this level until the start of iransmission of the next character, See Fig. 18, 20.

This line will serisily, by bit, provide the entire transmifted character, It will remain at o logic " 1 " when no data is being trans. mitted. See Fig. 17.

There are up to 8 data bit input lines availatie.
A logic "1" on this lead will enter the control bits (EPS, NB1, NB2, TSB, NP) into the control bits holding register. This line can be strobed or hard wired to a logic "1" level.

A logic "1", on this lead will sliminate the darity bit from the tranmmirted and received character (nc PE indication). The stop bit(s) will immediately follow the lest data bit. If not unad, this lead must be tied to a logic " 0 ".

This lesd will select the number of stop bits, 1 or 2 , to be eppended immediataly after the parity bit. A logic " 0 " will inaert 1 stop bit and a logic "1" will insert 2 stop bits.

These two leads will be internally decoded to select either 5, 6, 7 or 8 date bita/character.

NB2	NB1	Bita/Character
0	0	5
0	1	6
1	0	7
1	1	8

The logic level on this pin selects the type of parity which will be eppended immediately after the deta bits. It also determines the parity that will be checked by the receiver. A logic " 0 " will insert odd parity and a logic "1" will insert aven parity.
This line will contain a clock whose frequency is 16 times (16 X) the desired tranumitter baud rate.

TRANSMITTER OPERATION

FIGURE 2

Initializing

Power is applied, external reuet is anabled and clock pulse is epplied having a frequency of 16 times the desired baud rate The above conditions will set TBMT, EOC, and SO to logic "1" (line is marking).

After initielizing is completed, user may aet control bits and dats bits with control bits selection normsily occuring before deta bits selection. However, one mey set both $\overline{\mathrm{SS}}$ and CS simulteneoualy if minimum pulse width specificetions are followed. Once Deta Strobe (DS) is pulsed the TBMT signal will chenge from a logic " 1 " to a logic " 0 " indicating thet the date bits holding register is filled with a provious character and is unable to receive new dete bits, and tranamitter ahift register is tranumitting previously losded dots. TBMT will return to s logic "1". When transmitter shift register is empty, data bits in the holding register are immediately losded into the transmitter ahift register for transmistion. The shifting of information from the holding register to the trans mitter shift register will be followed by SO and EOC going to a logic " O ", and TBMT will also po to a logic "1" Indicating that the whifting operation is completed and that the dets bits holding ragister is ready to acospt new data. It ahould be ramembersd that one full charscter time is now mailabie for loading of the next charscter without loss in transmission speed due to double buffering (separate dats bits holding register and tranamitter ahift register).

Dats tranamission is initiated with tranamission of a start bit, dete bits, perity bit lif desiredl and stop bitfal. When the last stop bit hes been on line for one bit time. EOC will po to a - logic "1" indicating that new cheracter is ready for tranmission. This new character will be tranamitted only if TBMT is e logic " 0 " an was previously discused.

RECEIVER OPERATION FIGURE 3

Initializing

Power is applied, external reset is enabled, and clock pulse is applied having a frequency of 16 times the desired baud rate. The previous conditions will set data avaitable (DAV) to a logic " 0 ".

After initializing is completed, user should note that one set of control bits will be used for both receiver and tranamitter making individual control bit setting unnecessary. Dats reception starts when serial input signal changes from Marking (logic " 1 ") to spacing (fogic " 0 ") which initiates start bit, The start bit is valid if, after transition from logic " 1 " to logic " 0 ", the SI line continues to be at logic " O ", when center sampled, 8 clock pulses later, H, however, line is at a logic "1" when center sampling occurs, the start bit verification procese will be reset. If the Serial Input line transitions from a logic " 1 " to a logic " O " (marking to apacing) when the 16 x clock is in a logic " 1 " state, the bit time, for center sampling will begin when the clock line trahaitions from s logic "1" to a logic "O" state. After verification of a genuine start bit, date bit reception, parity bit reception and stop bit(s), reception proceeds in an orderly manner.

While recelving parity and stop bit(s) the receiver will compare tranamitted parity and atop birf(s) with control date bits (parity and number of stop bita) previously aet and indicate an arror by changing the parity arror flip flop and/or the framing error flip flop to a logic " 1 ". It ahould be noted that if the No Parity Mode is selected the PE (parity error) will be unconditionally set to a logic " 0 ".

Once a full character is received, internal logic looks at the deta available (DAV) signal to determine if data has been the reed out. If the DAV signal is at a logic " 1 " the receiver will sasurne deta has not been read out and the over run flip flop of the status word holding register will be set to a logic "1". If the DAV signal is at a logic " O " the receiver will asaume that dats has been read out. After DAV goes to a logic "1", the receiver shift register is now reedy to accept the next character and has one full character time to remove the reonivad character

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

$V_{G G}$ (with respect to $V_{C C}$)
Clock and iogic input voltages (with respect to V_{CC}).
-20 to +0.3 V

Storage Temperature
Operation Tempersture -20 to +0.3 V $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Lead Tempersture (Soidering. 10 sec)
OC to $70^{\circ} \mathrm{C}$

STANDARD TEST CONDITIONS
The following characteristics apply for any combination of the following test conditions. unless otherwise noted all voltages are mea: sured with respect to ground. Positive current is defined as flowing into the referenced pin

$$
V_{G G}=-12 V \pm 5 \% \quad V_{C C}=5 V \pm 5 \% \quad O^{\circ} C<\tau_{A}<70{ }^{\circ}
$$

ELECTRICAL CHARACTERISTICS (see standerd conditions)

\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER \& CONDITIONS AND COMMENTS \& MIN. \& TYP. \& MAX. \& UNITS \\
\hline Input Logic Levels Loge 0 Logic 1 \& \begin{tabular}{l}
\(V_{I L} \quad \mathrm{I}_{1 \mathrm{~L}}=-1.6 \mathrm{~mA}\) max. \()\) \\
\(\mathrm{V}_{\text {irf }}\) Unit has internal pultup resistors
\end{tabular} \& \[
\begin{gathered}
0 \\
\mathrm{~V}_{\mathrm{cc}}-1.5
\end{gathered}
\] \& - \& \[
\begin{gathered}
0.8 \\
\mathrm{~V}_{\mathrm{Cc}}+0.3
\end{gathered}
\] \& volts volts \\
\hline \begin{tabular}{l}
Input Capacitance \\
All Inputs
\end{tabular} \& 0 volts bias, \(1=1 \mathrm{MHz}\) \& - \& - \& 20 \& pF \\
\hline Leakage Currents Th-State Outputs \& 0 volts \& - \& \& 1.0 \& \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Dats Output Levels \\
Logic 0 \\
Logic 1
\end{tabular} \& I
\(\mathrm{OL}=16 \mathrm{~mA}\) (sink)
\({ }^{1} \mathrm{OH}=-3 \mathrm{~mA}\) (source) \& \(\mathrm{VCC}^{-1.0}\) \& \({ }_{10}\) \& *0.4 \& volts volts \\
\hline Outpul Capacirance \& \& - \& 10 \& 15 \& pF \\
\hline Short Ckt. Current \& See Fig. 24 \& - \& - \& - \& - \\
\hline Power Supply Current \& \& \& 14 \& 16 \& mA \\
\hline IGG

CC \& | See Fig 26a |
| :--- |
| See Fig. 26b | \& - \& 18 \& 20 \& \[

m A
\]

\hline A.C. CHARACTERISTICS \& $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Output losd capecitanct 50pF max. \& \& \& \&

\hline Clock Frequency \& AY-5-1013 \& DC \& - \& 480 \& kHz

\hline * \& AY-5-1013A \& DC \& - \& 640 \& kHz

\hline Boud Rate \& AY-5 1013 \& 0 \& - \& 30 \& k baud

\hline \& AY-5.1013A \& 0 \& - \& 40 \& k beud

\hline Pulse Width \& \& \& \& \&

\hline Clock Pulse \& $$
\begin{array}{ll}
\text { AY.5.1013 } \\
\text { AY-5.1013A }
\end{array} \quad \text { See Fig. } 10
$$ \& 1.0

750 \& - \& - \& ns

\hline Control Strobe \& See Fig. 16 \& 300 \& - \& - \& ns

\hline Deta Strobe \& See Fig. 15 \& 190 \& - \& - \& ns

\hline External Reset \& See Fig. 14 \& 500 \& - \& - \& ns

\hline Status Word Enable \& See Fig. 22 \& 500 \& - \& - \& ns

\hline Reset Dets Aveilabie \& See Fig. 23 \& 250 \& - \& - \& n

\hline Recrived Date Enabie \& See Fig. 22 \& 500 \& - \& - \& \%

\hline Ser Up a Hold Tirre \& \& >0 \& - \& - \& ns

\hline Input Date Brts \& See Fig. 15 \& >0 \& - \& - \& ns

\hline Output Propegetion Delay
TPDO
TPD1 \& See Fig. 22 ± 25
See Fig. 22 ± 25 \& \& - \& 500
500 \& ns

\hline
\end{tabular}

FIGURE 4 TRANSMITTER-BLOCK DIAGRAM

FIGURE 5 RECEIVER-BLOCK DIAGRAM

FIGURE 6 UAR/T-TRANSMITTER TIMING

FIGURE 7 TRANSMITTER AT START BIT

FIGURE B TRANSMITTER AT START BIT

FIGURE 9 ALLOWABLE POINTS TO USE CONTROL STROBE

FIGURE 10 ALLOWABLE TCP, RCP

FIGURE 11 UAR/T-RECEIVER TIMING

FIGURE 12

FIGURE 13 RECEIVER DURING ist STOP BIT

FIGURE $14 \times$ P PULSE
FIGURE $15 \overline{\mathrm{DS}}$

FIGURE 16. CS

CONTROL BITS MUST EE STABLE FOR Last 300m or cs.

FIGURE 16b

FIGURE 18 EOC TURN-ON

FIGURE 16c

LEADINS EDGE OF DATA IS NOT CRITICAL AS LONG AS TRALING CDGE AND PULSE WIOTM SPCCS ARE OBSERvEO

FIGURE 17 SEROUT

FIGURE 19 TBMT TURN OFF

FIGURE 20 EOC TURN-OFF

FIGURE 21 TBMT TURN-ON

Figure 22 कणE, sWe

FIGURE 24 SHORT CIRCUIT OUTPUT CURRENT
FIGURE 25 RDI-RDB, PE, FE, OR, TBMT, DAV

FIGURE 2te -12 VOLT SUPPLY CURRENT

FIGURE 23 RDAV
Dav

$-\quad 500 \mathrm{mix}$

FIGURE 26b *5 VOLT SUPPLY CURRENT

IENERAL INBTRUMENT CORPDRATION

AICROELECTRONICE

UAR/T UNIVERSAL ASYNCHRONOUS RECEIVER/TAANSMITTER

FEATURES

-DTL and TTL Compatible-no interfacing circuits raquired-drives one TTL lond.

- Fislly Double Buffered-aliminates need for syatem synchronization, facilitates high -apeed operation.
- Full Duplex Operstion-can handle multiple baud rates (recsiving-transmitting) simultansously
- Start Bit Verification-decresses arror rate with center sampling.
- Receiver center sampling of serial input: 45% dictortion immunity.
- External reset of error flegr.
- High Speed Operation-grestent through put: 30 k bsud (AY-5.1013), 40k haud (AY-5-1013 A).
- Tri-State Outputs-bus structure capebility.
- Low Power-minimum power requirements.
- Input Protected-aliminates handling problems.
- Hermatic DIP Package-aexy board insertion and mechanical handling.

GENERAL DESCRIPTION

The Univertal Asy achronour Recelver (Transmitrer (I)AATT) is an LSI subsystem which accepts binary characters from either a terminal device of a computer and recaives/transmits this character with appended control and error detecting bits. All characters contain a start bit, 5 to 8 data bits, one or two stop bits, and either odd/even parity or ne pasity, In order to make the UAR/T universal, the baud rate, b. MTNS P.channel enhancement the number of stop bits are externally selectable. Therdevice is constructed on a single monolithic chip utiking MTL. logic without the need for mode transistors. Alt inputs and outputs are directly compatible with MTOS/MTNS logic, and also with TTL/DTL ICgic withc interfacing components and with all strobed outputs having triatate logic

FIGURE 1 BLOCK DIAGRAM

- PIN
 pin configuration

\because

PACKAGE: 40 LEAD PLASTIC DUAL IN-LINE

DESCAIPTION OF PIN FUNCTIONS

Pin No,
1
2
3
4

$5-12$

13

14

15

16

17

18

19

Name
V_{CC} Power Suppiy
V_{Go} Power Supply
Ground
Heceived Data Enable

Received Data Bits
Syimbol
$V_{\text {ce }}$
Vac
V_{GI}
ADE

RDB-RD1

Parity Error

Framing Error

Over:Run

Status Word Enable

Raceiver Clock

Reset Date Available
PE

FE

OH

SWE

RCP

RDAV

Data Available

Function
+5V Supply
-12 V supply
Ground
A logic " 0 " on the receiver enable line places the received data onto the output lines.

These are the 8 data output lines. Racsived characters are right justified: the LSB always appears on RD1, There lines have ristate outputs; t.e., they have the normat TTL output characteristics when ADE is " 0 " and a high impedance state when $\overline{\operatorname{ADE}}$ is " 1 ". Thus, the data output lines can be bus structure oriented.

This line goes to a logic " 1 " if the recsived character parity does not agree with the selected parity. Tristate.
This line poes to a logic "1" it the received character has no valid stop bif. Tristate

This line goes to a logic "1" is the previously received character is not read (DAV line not reset) before the present character is trans ferred to the receiver holding register. Tri-state

A logic " 0 " on this line places the status word bits (PE, FE, OR, DAV, TBMT) onto the output lines. Tristate.
This line will contain a clock whose trequency is 16 times $(16 \mathrm{X})$ the desired recever baud rate.

A logic " 0 " will reset the DAV line. The DAV F/F is only thing that is reset

This line goes to a fogic " 1 " when an entire character has been received and transferred to the receiver holding register. Telistate.

Pin No.

Nome

Serial Input

External Reset

Transmitter Buffer Empty

Date Strobe

End of Character

Serial Output

Deta Bit Inputs
Control Strobe

No Parity

Number of Stop Bits

Number of Bits/Character

Odd/Even Parity Select

Trensmifter Clock
TCP

Function

This line accepts the serial bit input stream. A Marking (logic "1") to spacing (logic " 0 ") transition is requirad for initiation of data reception. Fig. 12, 13.
Resets shift registers. Sets SO, EOC, and TBMT to a logic "1" Resets DAV, and error flags to "O". Clears input data buffer. Must be tied to logic " O " when not in use.
The transmitter buffer empry fixe goes to a losic "1" when the data bits holding register may be loaded with another character. Tri-state. See Fig. 29, 21.
A strobe on this line will enter the data bits into the data bits holding registpr, Initial date transmission is initiated by the rising edge of DS. Data must be stable during entire strobe
This line goes to a logic " 1 " each time a full character is trans mitted. It remains at this ievel until the start of tranymitsion of the next character. See Fig. 18, 20.
This line will seriaily, by bit, provide the entire transmetted character, It will remain at s logic "1" when no data is being transmitted. See Fig. 17.
There are up to 8 data bit input lines availatle.
A logic "1" on this lead will enter the control bits (EPS, NB1, NB2, TSB, NP) into the controt bits holding register. This line can be strobed or hard wired to a logic "1" level.

A logic "1", on this lead will eliminate the parity bit from the tranamitad and ieceived character (no PE indication). The stop bitis) will immediately folion the lest data bit. If not used, this lead must be tied to a logic " 0 ".
This lead will select the number of stop bits, 1 or 2 , to be appended immediately after the parity bit. A logic " 0 " will insert 1 stop bit and a logic " 1 " will insert 2 stop bits.
These two leads will be internally decoded to select either $5,6,7$ or 8 date bits/character.

NB2	NB1	Bits/Character
0	0	5
0	1	6
1	0	7
1	1	8

The logic level on this pin selects the type of parity which will be appended immedietely after the data bits. It also determines the parity that will be checked by the receiver. A logic " 0 " will insert odd parity and a logic " 1 " will insert even parity.
This line will contain a clock whose frequency is 16 times $\{16 \mathrm{X})$ the desired transmitter baud rate.

TRANSMITTER OPERATION
FIGURE 2

Initializing
Power is applied, external revet is anabled and clock pulse is applied having a frequency of 16 times the desired baud rate. The above conditions will set TBMT, EOC, and SO to logic "1" (line is marking).

After initializing is completed, user may set control bits and data bits with control bits selection normally occuring before data bits selection. However, one may set both $\overline{\mathrm{DS}}$ and CS simultaneously if minimum pulse width specificetions are followed. Once Data Strobe (DS) is pulsed the TBMT signal will change from a logic " 1 " to a logic " 0 " indicating that the data bits hoiding register is filled with a previous character and is unable to receive new date bits, and transmitter ahift register is tranmmitting proviously loaded data. TBMT will return to a logic " 1 ", When transmitter shift register is ampty, data bits in the holding register are immediately loaded into the transmitter shift register for transmission. The shifting of information from the holding register to the trans mitter shift register will be followed by SO and EOC going to a logic " 0 ", and TBMT will also go to a logic " 1 " Indicating that the shifting operation is completed and that the deta bits holding register is ready to accept new data. It should be remembered that one full character time is now available for loading of the next character without loss in tranamission speed due to double buffering (separate data bits holding register and transmitter shift register).

Data transmission is initiated with transmission of a start bit, date bits, parity bit (if desired) and stop bit(s). When the last stop bit has been on line for one bit time, EOC will go to a - logic " 1 " indicating that new charscter is ready for transmission. This new character will be transmitted only if TBMT is a logic "0" an was previously discussed.

RECEIVER OPERATION
 FIGURE 3

Initializing

Power is applied, external reset is anabled, and clock pulse is applied having a frequency of 16 times the desired baud rate. The previous conditions will set data available (DAV) to a Iogic "O".

After initializing is completed, user should note that one set of controf bits will be used for both receiver and transmitter making individual control bit setting unnecessary. Dats reception starts when serial input signal changes from Marking (Iogic "1") to spacing (Iogic "0") which initiates start bit. The start bit is valid if, after transition from logic "1" to logic "O", the SI line continues to be at logic " 0 ", when center sampled, 8 clock pulses later, It, however, line is at a logic "1" when center sampling occurs, the start bit verificetion process will be reset. If the Serial Input line transitions from a logic " 1 " to a logic " 0 " (marking to spacingl when the $16 x$ clock is in a logic " 1 " state, the bit time, for center sampling will begin when the clock line trahaitions from s logic " 1 " to a logie " σ " state. After verification of a genuine start bir, date bit reception, parity bit reception end stop bit(s), reception proceeds in an orderly manner.

While receiving parity and stop bit(s) the receiver will compare transmitted parity and stop bit(s) with control deta bits (parity and number of stop bita) previously set and indicate an arror by changing the parity srror flip flop and/or the framing arror flip flop to a logic "1". It should be noted that if the No Parity Mode is selected the PE (parity error) will be unconditionality set to s logic " 0 ".

Once a full charscter is received, internal logic looks at the data available (DAV) signal to determine if data has been the read out. If the DAV signal is at a logic "1" the receiver will assume deta has not been read out and the over run flip flop of the status word holding register will be set to a logic " 1 ". If the DAV signal is at a logic "O" the receiver will assume that data has been read out. After DAV goes to a logic "1". the receiver shift register is now ready to accept the next character and has one full character time to remove the received character

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS
$V_{G G}$ (with respect to $V_{C C}$)
Clock and logic input voltapes (with respect to V_{CC})
-20 to +0.3 V
rage Temperature
20 to +0.3 V
Operation Temperature
Lead Temperature (Soldering. 10 sec)
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$ c to $70^{\circ} \mathrm{C}$ 330°

STANDARD TEST CONDITIONS

The following characteristics apply for any combination of the following fest conditions. untess othenwise noted. All voltages are mea sured with respect to ground. Positive current is defined as flowing into the referenced pin

$$
V_{C c}-5 v+5 \%
$$

ELECTRICAL CHARACTERISTICS (see standard conditions)

PARAME
Indut Logic Levels
Logic 0
Logic I
Input Capacitance
All Inputs

All Inputs
Leakage Currents
Tri-State Outputs
Data Output Levels
Logic 0
Logic 1
Output Capacirance
Short Ckt. Current
Power Supply Current
IGG $\quad 25{ }^{\circ} \mathrm{C}$, all inputs +5 V
${ }^{\mathrm{I}} \mathrm{CC}$
A.C. CHARACTERISTICS

Clock Frequency

Baud Rate

Pulse Width
Clock Pulse

Control Strobe
Data Strobe
External Reset
Status Word Enable
Reset Dats Available
Received Date Enable
Ser Up \& Hold Tirne Input Data Bits Input Controt Bits
Output Propegation Delay TPDO TPDI

FIGURE 4 TRANSMITTER-BLOCK DIAGRAM

FIGURE 5 RECEIVER-BLOCK DIAGRAM

FIGURE 6 UAR/T-TRANSMITTER TIMING

FIGURE 7 TRANSMITTER AT START BIT

FIGURE 8 TRANSMITTER AT START BIT

FIGURE 9 ALLOWABLE POINTS TO USE CONTROL STROBE

FIGURE 10 ALLOWABLE TCP, RCP

ANY PULSE viDTM swical nects
kimove certituti is Allowabli

FIGURE 11 UAR/T-RECEIVER TIMING

FIGURE 13 RECEIVER DURING Ist STOP BIT

FIGURE $14 \times$ P PULSE
FIGURE $15 \overline{\mathrm{DS}}$

FIGURE 168 CS

CONTHOL BITS MLST Ef STABLL FOE Last 300ms or दs.

FIGURE 17 SEROUT

FIGURE 16b

FIGURE 18 EOC TURN-ON

FIGURE 16c

FIGURE 19 TBMT TURN OFF

FIGURE 20 EOC TURN-OFF

FIGURE 21 TBMT TURN-ON

FIGUAE 22 RDE, SWE

FIGURE 24 SHORT CIRCUIT OUTPUT CURRENT

FIGURE 26. $\mathbf{- 1 2}$ VOLT SUPPLY CURAENT

$$
18
$$

FIGURE 23 RDAV

FIGURE 25 RDI-RD8, PE, FE, OR, TBMT, DAV

FIGURE 26 b +5 VOLT SUPPLY CURRENT

;ENERAL INSTRUMENT CORPDRATION

 AICROELECTRONICS

Keyboard
and
Encoder (w /Latch)

Encodert Latch 255 ma .
Pisot Lemp L1 80 ma

ENCODER LATCH

1-6 00-06 IN
1-6 DO-06 OUT

ENCODER LATCH

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 9 & 1
\end{array}
$$

Q W ER T Y U IO PT

Parts LIST FOR ENCODER LATCH

$v 1$	7404
$v 2,8,11$	7400
$v 3,4,5,6$	74121
$v 7$	555
$v 9,10$	2475
$v 12$	7805

Cl 50 ufd. 10 k.
c2 10 ufd .10 v .
c3 1 vfd .
cy 10 ufd 10 v .
C5 . 01 50\%
C6 .01 50W.
C7 10 ufd 10 K
C8 $\quad .1 \mathrm{ufd}$ loou.

PARTS LIST

$\mathrm{C1}-0.1-\mu \mathrm{F}$ disc ceramic. Mount flat.
D1, D2, D3, D4- $\mathrm{FN914}$ or equivalent silicon computer diode
1C1-HD0165 Encoder (Harris)
IC2- 7402 TTL Oupd non gate
IC3-MC769AP Hex Inverter, RTL. do not substatute
IC4, IC5-7400 TTL Ouadjano gate
Q1, O2-2N5139, silicormonp
R1, R2 -Varies with keyboard, 1000 ohms for m chanical contacts and +5 suffr; 3300 of'as for elastomeric high resistance contacks and +12 supply.
R3, RA- 1000 ohms, Vewatt carbon
MISC PC Board, Solder, No. 24 Soldereeze wire, 20 feet for keyboard wiring. sleeving. No. 24 solid wire jumpers.

NOTE: The following is available from Southwest Technical Products, 219 West Rhapsody, San Antonio, Texas, 78216

PC Board, etched and drilled: $\mathbf{5 5 . 7 5}$.

FIG. 1-ASCII ENCODER CIRCUIT (top) is easy to build. FULL SIZE FOIL PATTERN (above) is for the circuit board. PARTS LAYOUT (right) shows where to mount the components on the circuit board.
necd no new Act. ity the comatol coht mands, unters uc arc really gomge to use that
 - used, so, it's handy to have a vpecial key that simultuncous/y gives us at controt and a m command. Similurly, we can get a spacebar by simultancously giving a sutr and a 0 command. Other special functions (DETEME, FSCAPL, At T MODE, etC. . . .) are casily added in the same way.
To decide when a code is sent, a key. pressed command is given when a key is

Weliver a keypressed command for the shift or control key, for they are always used in conjunction with another key. And, in our circuit. we get a free "there's two keys pressed!" output that can be used to tell whatever is on the other end that the typist is running too fast or just made a mistake and please ignore what just arrived. One final, and slightly messy detail involves the $>=<$ and ? keys. Normally, we like to type commas, dashes, periods, and slashes without shifting, and save the question.
wern commanus. imis is dearly back-
wards from the standard code. So if we are going to go along with the standard code (often we are forced to because of the keytops on the keyboard we're going to use), we have to arrange the shift key so that it operates hackwards on these four keys. All this takes are two 21, IC's, but this is a complex and painful little detail to resolve.
The output of the code consists of seven bits in parallel, or all-at-once form. An eighth parity bit can optionally be added for error detection, or the seventh bit can optionally be dropped to get the 10 -bit code that has only alphanumerics to run a character generator. Should we want to talk to a computer or a phone line, we have to convert this code to a serial form, easily done with either the circuit shown in the original article or with a new MOS terminal transmitter/receiver chip. Depending on the type of keyboard and the debouncing in the rest of the system, we may have to add a contact conditioning and debouncing system as well.

About the new circuit

The new circuit is shown in Fig. I. Except for ICt (presently around $\$ 7.50$), all the remaining parts are nickel and dime stuff, and there are only 19 components in all. Just like the code of Table I, we can split the problem into two parts, for the lower four bits couldn't care less what the upper three are doing, so long as everything ends up right. Thus a lower four bits 1101 code could be a carriage return, a group seperator ta very rare machine command), a dash or minus, an equals, a M, or a large unhracket. ICI singlehandedly takes care of the lower four bits for us. It has sixteen input lines and four output lines. If you make any one fonly one!) input line positive, it gives the binary equivalent to that code. Thus the third line generates a 0011 , the eighth line a 1000 , and so on.
The inputs are RTL style and simply need an impedance path to +5 or +12 to serve as an input command. Whatever else the input current flows through on the way to set up the upper three bits is of no concern to ICt. so long as the current gets there when it is needed. ICI also generates a keypressed output that's high if all the inputs are low and goes low of any key is pressed. It also produces an optional output that goes low if two keys or more are simuttancously pressed. This is called a NKRO output, short for N -key-rollover,
It only takes about +3.5 volts to turn on an ICl input. Since the input is current oper-
ated, we can cither set our current from low, we can either get our current from a low impedance (mechanical or reed) contact and $a+5$ supply, or from a higher impedance (elastomeric or foam) contact and a +12 supply. Around two milliamperes are needed, but it can handle much more than that safely. Thus, we can use virtually any kind of keyboard contact simply by picking one optional low current supply voltage.
So much for the lower four bits. The upper three bits are generated by responding to what the ICI input current is routed through on the way down from the positive supply. If it goes through nothing, we set up P-Z. If it goes through Q1, we set up A-O. and if it goes through O2, we set up zero through 9 and the related punctuation. The
(continued on page 92)

HD-0165
 Kayboard Encoder

ORIGINAL

FEATURES

- STROBE OUTPUT
- key rollover output
- EXPANDABLE: 2 PACKAGES REQUIRED FOR

FULL TELETYPEWRITER, EIGHT-BIT ENCODING

- SINGLE +5 OV SUPPLY REQUIREO.

DTL/TTL OUTPUTS

- MONOLITHIC RELIABILITY

GENERAL DESCRIPTION

The HD-0165 Keyboard Encoder is a 16 line to four-hit paraliei encoder intended for use with manual data entry devices such as calculater or typewriter keyboards. In addition to the encoding function, there is a Strobe output and a Key Raliover output which anerghes whenewer owo or more inputs are energized simultaneously. Any fourbit code ctn bs implemented by proper wiring of the input lines. Inputs are normally wired through the key switches to the +5.0 V powar supply. Fuii typewtiter keyboard encoding up to eight bits can be accomplithed with two Encoder circuits by the use of double pole key switches or single pole switches with two isolation diodes per key. Outputs will interface with all popular OTL and TTL. topic familias. The circuit is packaged in a hermetic 24 -pin dual in-line package and operates over the temperature range of $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
ERUIYALENT CIRCUITS

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	+7.0 V
Input Voltage	+5.5 V
Output Voltage	+5.5 V

Output Current	30 mA
Storage Temperature	-65° to $+150^{\circ} \mathrm{C}$
Operating Temperature (Casa)	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$$
\begin{array}{ll}
\text { Test Conditions: } & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \% \\
& \mathrm{~T}_{\text {Case }}=0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\
& \text { Unless otherwise specified }
\end{array}
$$

NOTE (1) Skew time is the maximum time differsntial between propagation delay times of any outputs including strobe and $\overline{\mathrm{K}_{\mathrm{RO}}}$

1	2	2	4	5	5	7	3	9	10	11	12	13	14	15	15	1	2	3	4	St.	$\overline{\mathrm{K}_{30}}$
1	1.	1	1	1	1	1	1	1	1	1	1	1	1	t	1	H	H	H	H	H	H
H	1	:	1	1	L	1	1	1	1	1	t	1	t	1	1	H	H	H	H	1	H
L	H	i	1	L	1	t	1	1	1	1	1	L	1	1	1	t	H	H	H	1	H
1	1	H	1	1	1	I	1	1	1	1	1	L	1	1	1	H	1	H	H	1	H
1	1	1	H	L	L	t	L	t	1	1	t	1	t	1	5	1	1	H	H	1	H
i	1	t	1	H	t	1	1	1	L	L	t	t	1	t	1	H	H	1	H	1	H
1	1	1	1	1	H	L	1	t	t	t	t	t	1	1	1	1	H	L	H	1	
1	1	1	1	1	1	M	1	1	t	1	1	1	t.	1	1	H	1	1	H	1	
L	1	L	\square	t	4	1	H	t	6	L	t	1	1	1	1	$\stackrel{1}{4}$	1	1	H	1	
1	1	1	1	1	1	1	L	H	1	t	1	1	1	1	1	H	H	H	L	1	
1	1	1	i	t	t	1	L	1	H	L	t	1	1	1	1	L	${ }^{\text {r }}$	H	1	1	H
1	1	1	1	1	t	1	1	1	L	H	1	1.	1	1	1	H	1	H	1	t	H
1	1	1	t	t	1	1	1	L	1	1	H	4	1	2	1	H	H	1	1	1	H
1	1	1	1	1	1	1	1	1	1	1	1	H	H	1	1	1	H	1	t	L	H
1	1	t	1	1	1	t	L	1	t	1	1	1	H	H	1	H	1	1	1	i	H
1	1	L	1	1	1	1	1	4	1	1					H	1.	1	1	1	1	H
1	1	1	1	1	1	1	1	t	2	1	1	1				x	x	\times	X	1	1

CUTPUTS $4+<-D \mathrm{NV} \quad 4 \rightarrow>-24 \mathrm{~V} \quad \mathrm{X}=$ Engreow Dita

Di-6

Figure 1. GENERAL CONFIGURATION FOR
ENCODINC TWO TO SIXTEEN KEYS
The Truth Table is used to determine wiring from the key switches to Encoder inputs to produce desired output codes.

APPLICATIONS (comtinued) shencumsuace
i50v super

ALTERNATE ISOLATION METHOD:
SINGLEPOLE K\&Y SWITCH WITH
TNO DIODES
NOTE: Reduce If wookr lavent to tee TTL

Figure 3. ENCODING UP TO 253 KEYS
Use upper Encoder to produce the four most significant output bits: the lower to produce the least significsnt bits. Use Truth Table and rtquired output codes to determine wifing from each key to the two Encoders.
SHIFT and CONTROL functions can be implemented by logic gites in series with the output lines.

Memary sebit Boand

4K RAM BOARD
INTERCONNECTION DIAGRAM

44 PIN
EDGE CONNECTOR

NOTE

There are 12 Address (Ax) lines and 8 Data ($D x$) lines. They are not assigned numbers by their significance. These lines are mutually exclusive, enabling the connector to be wired in any desired combination of the 12 LEAST significant address or 8 data lines. Note also the functional symmetry of the connector, allowing the board to be inserted in either
ection.

SUPPORT CHIP LOCATION

1. Prior to assembly of the kit, note that the orientation of the 74 LSI 38 (D4 on the 'support chip location' figure) is opposite that of the other support chips.
2. MOS Handling Procedures
a. The MOS ICs in the kit are packaged in an anti-static jacket. Do not remove them until assembly.
b. The kit components, handing tools, work area, and the assembler should be at ground potential.
c. Do not wear nylon clothing while handling MOS circuits.
d. Following assembly, insure that system power is OFF before the 4 K RAM BOARD is inserted or removed from a connector.
3. There are 3 lines not buffered through the 4050 s or 8 T 26 s . These lines ($B S, O E$, and R / W) are defined as follows: a. BOARD SELECT (BS)

The BOARD SELECT signal is a board enable, and should be generated by a 4 to 16 decoder on the 4 NOST simnificant address lines. This line is active high,i.e., enabled by a logic 1.
b. OUTPUT ENABLE (OE)

The OUTPUT ENABLE line controls the data direction of the system RAM. When high, this line changes the data direction from input to output, driving the data bus from decoded RAM outputs. For example, in a typical 6800 system, this sienal may be implemented with the CPU R / W.
c. READ/WRITE (R/W)

The READ/WRITE control line signals the memory whether the CPU is in a Read(high) or Write(low) state. During a write cycle, this line should remain high until the address has been present at the RANs for a minimum of 170 nanoseconds and should return high 40 nanoseconds before the data becomes invalid.
(C) $\cos 1976$

C

C

2102 LI

$\square c$

$\square \mathrm{C}$

C

$\square C$

$$
C=.068 \text { uf }
$$

C

MEM-2

Soldering PC Boards

Two common causes of trouble with PC boards are bad solder joints or solder bridges. Usually, bad solder joints are caused by either a cold solder joint or contamination. A good solder joint is characterized by a bright shiny and smooth surface (see figure 1).

Figure 1. CROSS-SECTION OF A PC BOARD SHOWING GOOD AND BAD SOLDER CONNECTIONS

A cold solder joint is characterized by a dull surface and usually a lumpy or balled appearance. It takes practice and patience to obtain a good solder joint consistently. However, the first step is to apply flux to all connections before the solder. Second, heat the connection for a second or two with the soldering iron. Third, apply solder to the opposite side of the connection. Don't touch the solder to the iron. Flux has a "wetting" effect on solder which causes the solder to flow smoothly, completely filling the connection. If flux is not used or the metal around the connection is contaminated (dirty) it is almost impossible to have a good solder joint.

Solder bridges are usually caused by using a soldering iron tip that's too large, solder wire that's too large, or trying to rush the job. Use a small spade tip iron (see figure 2). Touch the connection with the.flat side of the tip. After the flux bubbles, touch the solder to the opposite side of the connection. Again, don't touch the solder to the iron. The connection is hot enough to melt the solder causing it to flow around the connection. Do not use too much solder. Use a little and watch it flow. Solder is like spice for cooking, don't use too much.

Applying heat for extended periods will cause either or both of the following: the trace or pad will lift from the board or the board material will turn brown, Remove the iron before this happens. One hobbyist counts the bubbles that pop in the solder. He found seven to nine bubbles insured good solder flow without over heating.

Please note: The notation on the solder mask for the polarity of the 22uf capacitors is backwards. Install the capacitors opposite to the way indicated on the solder mask.

$$
\text { e } 47 \text { io correct }
$$

The MEM-2 is a memory board designed to interface 2114's to the S-100 (WAMECOTM) bus (see Tables I and II). Provisions have been made for multiple wait states, memory addressing options, Phantom Disable, and Bank Addressing. Any multiple of two memory chips can be used in the board start and stop address can be effectively set in 4 K boundries anywhere in the 65 K Byte memory of your computer. If 4 K Bytes or less, the board can be configured to occupy only the amount of 4 K Bytes in the memory map of your computer. This selection can be increased by 4 K Byte increments until the full 16 K Bytes is selected.

PARTS LIST

Schematic Identifier
U1-U5
U6-U2 1, U37-U44, U47-U54
U22, U23
U24, U27
U25, U26
U28
U29
U30, U31
U32
U33, U35
U34
U36, U45, U46
C1, C4, C14, C19, C25, C36, C37, C46, C50, C52
C2, C3, C13, C24, C47, C49
C5-C12, C15-C18, C20-C23, C266

C29-C32, C34, C35, C38-C 45, C 48, C5
C28
1
C33

1

R1
R2
R3-R20
S1, S2

Quantity	Part
-	7805
32	2114
2	DM8098, 8T98, or 74368
2	74LS138
2	7485
1	74 LS 02
1	7404
2	74LS74
1	74122
2	74 LS 20
1	74LS32
3	DM8097, 8T97, 74367

$0.1 \mu \mathrm{~F}$ disc ceramic capacitor $22 \mu \mathrm{~F} 16 \mathrm{~V}$ (or higher) Tantalum Capacitor $0.01 \mu \mathrm{~F}$ disc ceramic capacitor

39pF lisc ceramic capacitor 68 कF disc ceramic capacitor 330Ω 1/4 W carbon film resistor $100 \Omega 1 / 4 \mathrm{~W}$ carbon film resistor 2. $7 \mathrm{~K} \Omega \quad 1 / 4 \mathrm{~W}$ carbon film resistor 8 position dip switch \#361 AHAM (or equivalent) heat sinks 14 pin low profile sockets 16 pin low profile sockets 18 pin low profile sockets

TOOLS OR SUPPLIES NEEDED TO ASSEMBLE AND TEST MEM-2
Q Tip cotton swab pair needle nose pliers pair diagonal cutting pliers bottle rosin flux tube silicone thermal compound jar solder cleaner roll solder wick Phillips screwdriver small adjustable wrench or socket to fit regulat or nut roll (. $.031^{\prime \prime}$ or. $040^{\prime \prime}$) SN60/40 rosin core solder 25 to 40 W soldering iron with small spade tip
Strong light magnifying glass
XACTO knife with number 16 blade multimeter with leads power supply with variable outputs

S-100 (WAMECO) BUS DESCRIPTION

	1	+5V	
	3	+15V	
	5	XRDY	X
	4	VI\%	X
	95	VII	X
11	11.6	VI2	X
13	37	V13	X
	158	V14	X
	779	V15	X
19	910	V16	X
21	111	V17	X
23	312		
5	13		
27	2 14		
9	$1 \frac{15}{15}$		
31	16		
13	317		
35	518	STAT DISABLE	X
3)	19	CIC DISABLE	X
9	20	UNPROTECT	X
41	$\frac{21}{22}$	SS	X
43	35	ADDR DSBL	X
45	523	DO DSBL	X
7	24	d2	X
9	25	01	X
51	126	PHLDA	X
53	27	PWAIT	
5	28	PINTE	
5 5	29	A5	
59	30	A4	
61	31	A3	
63	32	A 15	
65	33	A12	
67	34	A9	
69	35	DO1	X
71	36	DOQ	X
73	37	A10	
T	38	DO4	X
${ }^{1}$	39	DO5	X
11	40	DO6	X
81	41	DI2	X
83	42	DI3	X
is	43	DI7	X
87	44	SMI	
8^{9}	45	SOUT	
51	46	SINP	
43	47	SMEMR	
25	48	SHLTA	
77	49	CLOCK (2 MHz)	
	50	GND	
	PIN	INEMONIC	RM.

cinget

2	51	$+5 \mathrm{~V}$	A	
4	52	-15V	B	
6	53	SSW DSB	C	
8	54	EXT CLR	D	X
10	55		E	
12	56		F	
14	57		H	
16	58		J	
18	59		K	
20	60		L	
22	61		M	
24	62		N	
26	63		P	
28	64		R	
30	65		5	
32	66		T	
34	67	PHANTOM	U	
36	68	MWRITE	V	X
38	69	PS	W	
40	70	PROTECT	X	X
42	71	RUN	Y	X
44	$\frac{72}{73}$	PRDY	2	X
46	73	PINT	a	X
45	74	PHOLD	b	X
50	75	PRESET	c	X
52	76	PSYNC	d	X
54	77	PWR	e	X
56	78	PDBIN	f	X
58	79	A ${ }^{\text {d }}$	h	
60	80	AI	T	
62	81	A2	k	
64	82	A6	1	
66	83	A7	m	
68	84	A8	n	
70	85	A 13	p	
72	86	A14	r	
24	87	Al1	s	
26	$\frac{88}{88}$	DO2	t	X
78	89	DO3	u	X
80	90	DO7	v	X
82	$\frac{91}{92}$	DI4	w	X
84	$\frac{92}{93}$	DIS	x	X
7^{6}	93	DI6	y	X
${ }^{8}$	94	DII	2	X
10	95	DID	AA	X
42	96	SINTA	AB	
ay	97	SWO	AC	
46	98	SSTACK	AD	
18	99	POC	AE	
10011	100	GND	AF	
	IN 1	MNEMONIC	$\begin{aligned} & \text { ALTER } \\ & \text { PIN } \\ & \text { DESIG. } \end{aligned}$	TERM.

Table I

Pin \# Mnemonic

Used for Memory Bank Sulection (or for SOL © Systems)

Pin \#	Mnemonic	Enabled State

Pin \#	Mnemonic	Enabled State	Description
94	DI1	High	Data In Bit 1 to CPU
95	DIO	High	Data In Bit 0 to CPU
96	SINTA	High	CPU Interrupt Acknowledge
97	SWO		Signal
	SW	Low	CPU output indicating the current cycle involves
			writing to a memory or
98	SSTACK		I/O device.
		High	CPU output indicating the address bus contains the
			stack address and the curren
			cycle will have a stack
			operation.
99	$\overline{\text { POC }}$	Low	Power On Clear reset signal
100	GND	NA	Ground (common)

I. Assembly of MEM-2

I-1. Before placing any parts on the board, check the board for any hairline shorts (slivers). All boards have been inspected at least three times before shipping. Still, a good hobbyist checks any board he buys.

I-2. Using a strong light and a magnifying glass, very carefully check all leads on the top of the board (this is the side marked COMPONENT SIDE). If any slivers are found, carefully cut and scrape them with an XACTO knife. The underside of the board will be checked after assembly.

I-3. Place all the 14,16 , and 18 pin sockets in their positions on the top side of the board.

I-4. After positioning all the sockets in place, check to ensure that a socket is not in the position S1 or S2. Dip switches will not stay in place in a socket. Place a book on top of the sockets, hold the book tight against the board and turn them over so that the underside of the board is up. Press down on the board and solder one pin on each end of each socket. This will ensure the sockets are flat against the board. When the tacking of all sockets is completed, finish soldering all the other pins of the sockets.

NOTE

DO NOT PUT IC'S IN SOCKETS AT THIS TIME. THEY WILL BE INSTALLED LATER.

I-5. Bend the leads on R3-R 20 (2.7K Ω RED, VIOLET, RED) and place in board. Check parts placement drawing (figure 3) for correct locations. Bend the leads of the resistors on the underside of the board to retain them in place until they are soldered. Turn the board over and solder all the resistors. Clip the leads of the resistors flush with the underside of the board with the diagonal pliers.

I-6. Bend the leads on R1 (3300 ORANGE, ORANGE, BROWN) and place in board. Check parts placement drawing (figure 3) for correct location. Bend the leads of the resistor on the underside of the board to retain it in place until it is soldered. Turn the board over and solder the resistor. Clip the leads of the resistor flush with the underside of the board with the diagonal pliers.

1-7. Bend the leads on R2 (100 R BROWN, BLACK, BROWN) and place in board. Check parts placement drawing (figure 3) for correct location. Bend the leads on the resistor on the underside of the board to retain it in place until it is soldered. Turn the board over and solder the resistor. Clip the leads of the resistor flush with the underside of the board with the diagonal pliers.

CAUTION

CHECK DISC CAPACITORS FOR PROPER VALUE BEFORE INSERTING IN BOARD. ENSURE. $01 \mu \mathrm{~F}$ AND $.1 \mu \mathrm{~F}$ DISC CAPACITORS ARE NOT INTERCHANGED.

I-8. Put the leads of C1, C4, C14, C19, C25, C36, C37, C46, C50, C52 (. 1 F) disc capacitors in the board. Check parts placement drawing (figure 3) for proper locations. Bend the leads of the capacitors to retain them in place until they are soldered. Turn the board over and solder the capacitors. Clip the leads of the capacitors flush with the underside of the board with the diagonal pliers.

I-9. Put the leads of C5-C12, C15-C18, C20-C23, C26, C29-C32, C34, C35,C51 C38-C45, C48 (.01 $\mu \mathrm{F})$ disc capacitors in the board. Check parts placement drawing (figure 3) for proper locations. Bend the leads of the capacitors to retain them in place until they are soldered. Turn the board over and solder the capacitors. Clip the leads of the capacitors flush with the underside of the board with the diagonal pliers.

I-10. Place C2, C3, C13, C24, C47, C49 (22 $\mu \mathrm{F}$ tantalum) in place. Ensure that the polarities are correct. Check parts placement drawing (figure 3) for correct placement and polarity. Bend the leads of the capacitors to retain them in place until they are soldered. Turn the board over and rest it on books. Solder the capacitors in place. Clip the leads flush with the underside of the board with diagonal pliers.

I-11. Put the eight position dip switches in place. Ensure that the switches are installed so the the OFF positions are towards the gold fingers of the board. Bend the two pins at each end of each switch to retain it in place until it is soldered. Turn the board over and rest it on books as before. Solder the eight position dip switches in place.
I-12. Before installing the regulators, it is recommended that they be tested for proper voltage regulation.

To prevent oscillation of the regulators, assemble a test rig as shown. The capacitors must be installed observing the correct polarity. This test rig is for pre-installation testing only. The filter capacitors installed on the board serve the same purpose in the final assembly. Attach the power supply, multimeter, and capacitors to the 7805 as shown in figure 4B. Place the multimeter in a DC range that will allow 10 volts to be displayed. The regulator needs a 2.0 volt minimum difference between the input voltage and the regulated output voltage. If the power supply has a voltmeter, observe the input voltage during the test using that. If the power supply does not have a voltmeter, switch the + meter lead between the input lead and the output lead. The input and output voltages can thus be observed.

I-13. Slowly increase the input voltage and observe the input and output voltages. When the input voltage is between 7.0 and 7.5 volts, the regulated output of a properly operating 7805 should be between 4.8 and 5.2 volts. Replace the regulator if it does not meet these limits.

I-14. When the 7805^{\prime} 's have been tested as outlined in I-12, place the 7805^{\prime} 's on the board so that the mounting hole on the 7805 lines up with the corresponding hole on the MEM-2. Note where the leads on the 7805^{\prime} s pass over the connection holes on the MEM-2. Bend the leads on the 7805^{\prime} s so that the leads can be inserted into the proper holes. Mount the 7805^{\prime} s on the board using a \#6 nut and 5/8'1 6-30 screw. Insert a heatsink between the board and the 7805 . Solder the leads of the 7805's in place.

I-15. Remove the nuts and screws from the 7805^{\prime} s. Bend the 7805^{\prime} s upward and remove the heatsinks. Place a moderate amount of silicone thermal heat grease on the underside of the 7805 's and the underside of the heatsinks with a Q tip cotton swab. Coat all of the area mentioned with an even coating of the heat grease. Reinstall the heatsinks, nuts, and screw. Ensure the nuts are tight.
I-16. Clean off the flux on the underside of the board with flux cleaner.
II. Inspection and Testing

II-1. Use a bright light and magnifying glass to inspect all the traces on the underside of the board. If any slivers are found, cut and scrape them with an Xacto knife. Use the solder wick and soldering iron to remove any solder bridges found. Cover the solder bridge with flux and place a clean piece of solder wick on top of the bridge. Place the soldering on top of the solder wick and hold until solder is seen flowing up into the solder wick. Remove the iron and wick. Check to see if the bridge has been completely removed. If not, repeat the process until the bridge has been removed. Clean the flux off the board with flux cleaner.

NOTE

AT THIS TIME NO IC'S HAVE BEEN INSTALLED ON THE BOARD, DO NOT INSTALL IC'S ON THE BOARD UNTIL CALLED FOR IN THE CHECKOUT PROCEDURE.

II-2. Place all switches of the eight position dip switches in the OFF position. Place the multimeter in the $\mathrm{R} \times 1$ scale. Place one probe on the gold finger for pin 1. Place the other probe on all the other fingers sequentially to check for shorts. Repeat this procedure for each pin. There should be only two sets of pins that are shorted; 1 to 51 and 50 to 100. If any other pair of pins are shorted, use a strong light and magnifying glass to locate the solder bridge or sliver causing the short. When the short has been located, correct it as outlined in II-1. If there is no solder bridge or sliver, a component is shorted. Check the MEM-2 schematic (figure 5) to locate the probable component. Lift one lead of the suspected component and recheck between the two fingers that had a bad reading. If the bad reading is now correct, replace the component. If the reading is still bad, continue troubleshooting until the faulty component is located and replaced. Ensure that all components that had a lead lifted have the lead reconnected.
*00'158

Figure 5. MEM-2 Schematic

12

DO NOT INSTALL OR REMOVE ANY BOARD IN COMPUTER WITH POWER ON. DAMAGE TO BOARDS AND COMPUTER MAY RESULT.

II-3. Ensure computer is OFF. Plug MEM-2 into the motherboard. Check that the MEM-2 is correctly plugged in and that the board is fully seated in the connector. Turn the computer power ON and check the outputs of each regulator on the MEM-2. If the regulators do not have outputs as stated in I-13, turn the computer power OFF and replace the defective regulator. Repeat I- 13 to check out the new regulator before installing. If the voltage on the regulator is not now correct, check the voltages on the motherboard. If the voltages on the motherboard are incorrect, repair the power supply as needed. If and when the voltage check good, turn the computer power OFF and remove the MEM-2 from the motherboard.

II-4. Select the proper wait state and MWRITE selection for the board by installing the jumpers on the MEM-2 as shown in Figure 6.

II-5. Clean off the flux on the underside of the board with flux cleaner.
II-6. Install all the IC's on the MEM-2. Check parts placement drawing (Figure 3) for proper location and correct polarity of IC's.

CAUTION

ENSURE ALL IC'S ARE INSTALLED CORRECTLY. INCORRECT POLARIZATION OF IC WILL RESULT IN DAMAGE TO IC AND CAUSE SUBSEQUENT TROUBLES TO APPEAR ON THE BOARD.

II-7. The memory of the MEM-2 is addressed in 4 KByte segments. The minimum segment that can be selected is 4 K . The board can be populated in IKByte increments (2 memory chips) at a time. The memory is divided into four separate sections which will be referred to as A through D (see Figure 7). A will always have memory starting at $0000 \mathrm{H}, 4000 \mathrm{H}, 8000 \mathrm{H}$, or C 000 H . B will always have memory starting at $1000 \mathrm{H}, 5000 \mathrm{H}, 9000 \mathrm{H}$, or D 000 H . C will always have memory starting at $2000 \mathrm{H}, 6000 \mathrm{H}, \mathrm{A} 000 \mathrm{H}$, or E 000 H . D will always have memory starting at 3000 H , $7000 \mathrm{H}, \mathrm{B} 000 \mathrm{H}$, or F 000 H .

II-8. Since the memory starting point of the board dictates which section has the starting (lowest) address, it is important that you consider the addressing examples given below.

EXAMPLE A. 5 KBytes of memory to be put on board, starting at 3000 H .8 KBytes of memory space will be used. Section D will be completely filled and U6 and U14 of section A will be filled. Memory addressing increases from top to bottom of each section. Low limit address switches of Sl (A-D) will be OFF, OFF, ON, ON. High limit (E-H) will be OFF, ON, OFF, OFF.

MWRITE SELECTION

No front panel or no MWRITE - Jumper D2 to D3
Front panel with MWRITE - Jumper D1 to D2
WAIT STATE JUMPER SELECTION
WAIT STATE JUMPER D7 TO

0	D4
1	D5
2	D6
3	D8

NOTE

U30 DOES NOT HAVE TO BE INSTALLED IF 0 OR 1 WAIT STATE IS SELECTED. MEMORY ADDRESS RANGE SELECT (S1)

LOW LIMIT			HIGH LIMIT						SECTION
A	B	C	D	E	F	G	H	ADDRESS RANGE	
OFF	0000-0FFF	A							
OFF	OFF	OFF	ON	OFF	OFF	OFF	ON	1000-1FFF	B
OFF	OFF	ON	OFF	OFF	OFF	ON	OFF	2000-2FFF	C
OFF	OFF	ON	ON	OFF	OFF	ON	ON	3000-3FFF	D
OFF	ON	OFF	OFF	OFF	ON	OFF	OFF	4000-4FFF	A
OFF	ON	OFF	ON	OFF	ON	OFF	ON	5000-5FFF	B
OFF	ON	ON	OFF	OFF	ON	ON	OFF	6000-6FFF	C
OFF	ON	ON	ON	OFF	ON	ON	ON	7000-7FFF	D
ON	OFF	OFF	OFF	ON	OFF	OFF	OFF	8000-8FFF	A
ON	OFF	OFF	ON	ON	OFF	OFF	ON	9000-9FEF	B
ON	OFF	ON	OFF	ON	OFF	ON	OFF	A000-AFFF	C
ON	OFF	ON	ON	ON	OFF	ON	ON	B000-BFFE	D
ON	ON	OFF	OFF	ON	ON	OFF	OFF	C000-CFFF	A
ON	ON	OFF	ON	ON	ON	OFF	ON	D000-DFFE	B
ON	ON	ON	OFF	ON	ON	ON	OFF	E000-EFFF	C
ON	F000-FFFF	D							

ADDRESS SELECT REQUIREMENT

LOW LIMIT SETTING DESIRED ADDRESS RANGE HIGH LIMIT SETTING
Figure 6. MEM-2 Board Configuration

ERRATA FOR WAMECO MEM-2

1. Fig. 7, page 15 should be:

U12 \square CS13
U43
053 CS15

U44 U54 CS16

Schematic should be amended to reflect correct "U" numbers
for each chip select.

EXAMPLE B. 12 KBytes of memory to be put on board, starting at 9000 H .
12 KBytes of memory space will be used. Section B will be the lowest address block. Sections B, C, and D will be completely filled. Low limit switches of S 1 (A-D) will be ON, OFF, OFF, ON. High limit ($\mathrm{E}-\mathrm{H}$) will be ON, OFF, ON, ON. II-9. Select the address range desired on by the selected memory address. Insure that the polarity of the memory chips are correct (see Figure 3).

II-10. The two horizontially adjacent memory chips in each section are the chip pairs that form a one KByte block. Memory increases in address from top to bottom of each section.

- nadress from top to

II-11. Ensure computer is OFF. Plug the MEM-2 into the motherboard. Check that MEM-2 is correctly plugged in and that the board is fully seated in the connector.

WHEN POWER IS APPLIED TO AN 8080 SYSTEM, THE MICROPROCES DOES NOT COME UP IN ANY DFT INITLALIZE THE COMPUTER DETERMINABLE STATE. TO CORRECTLY PUSH THE RESET TO RESET. HOLD THE STOP SWITCH IN STOP AND

II-12. There are three different programs given to check out the memory of your board. They are:

> 1. Memory Address/Checkerboard Test (RTEST)
> 2. Walking One (WLKON)
> 3. Walking Zero (WLKZR)

II-13. All three tests require that your board be configured for address 0000 H . If your computer will not allow this address to be used, you will have to modify the programs to use an allowable address range.

II-14. After configuring your board as above, turn your computer ON and input your choice of the memory tests given. RTEST will only take about a second to r un once it has been inputted, WLKON and WLKZR take an expodential time to run as more and more memory is tested. It is therefore recommended that you not run more than 2 KByy m at a time on these two tests.

II-15. These programs are very basic and are given to help you debug your board They will stop upon completion or when an error is found. It may therefore be needed. to run them a series of times until all errors have been found and correcte d. It an output of all errors found assembly language programming. leave this modification up to you as an exercise in front panel. If you don't have a front programs are written to be input from your you will have to modify the programs to meet your wish to use another input device,

III. BANK ADDRESSING

III-1. Switch S2 controls the bank addressing capabilities of MEM-2. If S2 is not installed, the board will respond if the address presented to it falls within the limits selected by switch S1.

III-2. If S2 is installed, MEM-2 will respond if and only if the address is within the limits selected by S1 and the CPU has selected a memory bank corresponding to the setting of S 2 .

III-3. If MEM-2 is to be used in an application using bank addressing, use Figure 8 to select the correct bank.

BANK ADDRESSING SELECTION (S2)

Figure 8. MEM-2 Bank Addressing Selection

ENSURE ONLY ONE SWITCH IS ON AT ANY TIME. MULTIPLE ON SETTINGS WILL CONFUSE THE BOARD.

NOTE

ALL SWITCHES OFF DISABLE THE BANK SELECT OPTION,

IV. GENERAL

IV -1. The WAMECO INCORPORATED product you have purchased has an unlimited guarantee good for a period of ninety (90) days from date of purchase from your dealer against defects in manufacturing. Upon receipt of the defective board by WAMECO INCORPORATED, pre-paid freight or mailing, the board will be replaced and your shipping charges cheerfully refunded. The guaranty is limited to replacement of the board with an equivalent board even though the board may be defective through negligence in manufacturing or through other fault.

IV -2. For future reference, a print of the front and back traces of the MEM-2 is shown (see Figure 9A and B).

IV-3. We sincerely hope that the MEM-2 will give you long and satisfactory service. If you have any problems with the MEM -2, or if you just want to comment on the board, please write to me personally.

$$
\begin{aligned}
& \text { Norm Walters } \\
& \text { President } \\
& \text { WAMECO INCORPORATED } \\
& 3107 \text { Laneview Drive } \\
& \text { San Jose, Ca. } 95132
\end{aligned}
$$

ISIS-II 8888/8885 MCRO RSSEMBLER V2. 8
OK RAM TEST
RQWSK PRCE
1

LOC OBJ SEQ SOURCE STRTEEENT

$805{ }^{2} 22800$ 806232830 8065 R8 806632828 806978 006832040 8960 C3600

8878228088	103 ERR2:	SHD 8
097346	104	MOY B, H
6874 7C	185	MOV R, H
687585	186	FCOL
8876328388	187	STA 3

; SPVE WFT CONTERTS SHOUD BE

ISIS-II $8988 / 8985$ MFCRO ASSERLER V2. 8 8K RPW TEST

RSSEMSLY COWPLETE, NO ERRORS
ROHOK PACE 3

1SIS-II RSSERRLER SYMEOL CROSS REFERENCE. V2. 8

BPO1	994	99
BPD2	1121	112
BPO3	1221	122
ERCI	36	931
EPR2	46	1831
EPR3	66	81
6000	874	87
L00P3	641	78
LOOP4	791	85
RFY\%	22	
RTEST	381	
TEST1	317	48
TEST2	431	58
TEST3	58	61
TEST4	731	76

CROSS REFERENCE COUPLETE

ISIS-II 8988/8985 MACRO ASSEPRER 128 WIKING OE NENORY TEST - VI 8

LKON PAGE 1

ISIS-II se8e/3885 MCRO RSSEREER 12.8 HKON PACE 2 HELKING OE IENORY TEST - YI. 0

LOC 08 J
SED
SOURCE STRTEENT

EXTERNL. SYBELS

USER SYMEOS

ISI5-II 88s8/8885 WCCRO ASSEIBLER, V2. 8 WPLKING OFE MENORY TEST - YI. 0

BROOR	D 8004	88175	D 8806	ERR2	C 903F	ERR3	C 6041	ERR4	C 8848	WPTCH	$\text { C } 6073$	MTCH HK5	C 8978 C 893 C
STOPA	D 8080	STRTR	D 6088	WK1	C 800C	HK2	C 6017	LLK3	C 6802	LK4			
HKKON	C 8980	ZERO	C 8040	ZER0B	C 8064	ZEROC	C 8053	ZER00	C 805 F				

ISIS-II 8898/8885 MACRO RSSERLER Y2. 8
WKZR PPGE 1
WLKING ZERO IEMORY TEST - VI. 8

- ISIS-II seep/8ess MACRO ASSERLER 128 WIKING ZERO HENORY TEST - YI: B

SOURCE STATEEENT

53

54 ;
55 ; THIS SUBROUTINE HLL CHECK NEMORY TO SEE IF IT IS STILL ONES
56 ; IF NOT, IT CHECKS TO SEE IF THIS IS OUR WHLKING LERO LOCRTIO
58
$604 D$ 4F
804E C5
ZERO:
HOV C, A
PUSH B
PUSH H
LHLD STRTA
ZEROC: NVI R, QFFH
IPOINT TO START OF MEM
;GET NEXT LOC ;OES?
;NO
; EOM?
: NO. DO SOHEMORE
OV A C IRESTORE REGS
;SRVE REGS
804F E5 8058249209 D
6953 3EFF
005523
INX H
CIP M
JNZ ZEROB
CRLL MATCH JRE ZEROC POP H POP B RET ZEROB: POP B PUSH B
00667
8967 B8
8068 C23F89
8008 D
806C B9
0060 C23F88 6978 C35月88

OY R.H CX B JN ERRR
;IS THIS WERE WILKING ; ZERO IS STORED?
; NO. ERROR 12
; MPYBE
CuP C
TN ERR2
;MO. ERROR 12
;YES, DO NEXT LOCRTION

THIS SUBROUTINE WILL DETERMIE IF LE HME RERCHED THE END OF MEMORY

FLRG $z=8$ IF NOT END OF NEWRY
FLAG $2=1$ IF ED OF MEMORY

897347
00747
8975 B
8976 C27890
097970
8978 88
9878 78
887C C9

6098 FF87
60829689
68948908
8906 809689

8008

MOV B, A MOV R H
CNP D
JRE MTCH
HOU R,L
CP E
MOV A.B
RET $\begin{array}{ll}109 & \text { DSEG } \\ 101 \text { STOPA: } & \text { DW TFFH }\end{array}$ 182 STRTR: 183 BPDOR: 185
C 186
;SPME RCC
;DOES HIGH BYTE MATCH?
;NO
; COHPPRE WITH LON BYTE ; RESTORE RCC
;END ROORESS
;START OF TEST SEGYENT - 1
;BPD ADDRESS LOCATION
BAD BITS LOCATION

PUELIC SMEOLS

EXTERNAL SMEOLS

USER SMBOLS

ISIS-II $8988 / 9895$ MACRO RSSEMELER V2 O WKZR PACE 3 HLKING ZERO MEMORY TEST - VI 0

BRODR D8004 B8ITS D 8006
STOPR D 8608 STRTA D 8992
WUZR C 8800 ZERO C 8840

ERR3	C 8041
NLK2	C 8017

RSSERLY COWPLETE, NO ERRCRS ERRDO C 805A HK4 C 8827 HK5

p. 65 datrus sales

$1404-$
14260
1400
7408
$1400<3$
7400
$7190 \quad 20$
$\left\{\begin{array}{l}2 \\ 66 \\ 22 \\ 27 \\ \frac{r}{20} 1\end{array}\right.$ 36
38
38

Lowest Aiority

Highest Primity 6

Vector Thru:

$$
\begin{aligned}
& \text { FFEA-FFEB } \\
& \text { FFE8-FFE9 } \\
& \text { FFEG-FFE? } \\
& \text { FFE4-FFES } \\
& \text { FFE2-FFE } 3 \\
& \text { FFEO-FFE, }
\end{aligned}
$$

ure 4.1: TIM interface module details. The MOS Technology TIM monitor program resides in a single MCS6530 ROM ant peripheral interface circuit. The TIM interface module allows Kompuutar to be used with any serial terminal.

CPU \&T1m
Biand
PU'TAR's BUS
NoT memory Bds

WASATCH
 SEMICONDUCTOR PRODUCTS

FOR PRODUCT INFORMATION OR TELEPHONE ORDERS
CALL (714) 752-1374
Memay Bd

44 PIN
CCS BUS

ABOUT OUR 44 PIN CCS BUS

The CCS BUS was developed for an OEM medical application with an over-riding concern for adequate power and ground connections. The CCS BUS provides 8 ground and 4 power connections to assure such adequacy. In addition, the CCS BUS carries 12 address lines, 8 data lines, board select, $\operatorname{ram} r / w$, output enable (data direction), and 6 spares for system expansion.

WASATCH SEMICONDUCTOR PRODUCTS fully supports the 44 pin CCS BUS with an expanding family of quality products. Our products are readily interfaced to most popular microprocessors. Look for our ad in Kilobaud Magazine.

MOTHER BOARD SET

* 8 SLOTS ON 0.5" CENTERS
* 44 PIN CCS BUS
* 50 PIN I/O CONNECTOR
* 44 PIN CARD CONNECTORS

PRICE

- MOTHER board ONLY $\$ 20.00$
- 44 PIN CARD CONNECTORS, EA. $\$ 2.50$
- CaRD GUIDE SET

80 LINE DIGITAL I/O BOARD

* 44 PIN CCS BUS
* FULLY BUFFERED, 5 VOLT ONLY
* 64 BIDIRECTIONAL DATA LINES
* 16 INTERRUPT LINES
* 250 PIN I/O CONNECTORS

PRICE

- DIGITAL I/O BOARD ONLY
- KIT WITH ALL COMPONENTS
$\$ 22.50$
$\$ 59.95$

WIRE-WRAP BOARD

* 44 PIN CCS BUS
* ACCOMMODATES $14,16,20,22,24,40$ PIN IC's
* ACCOMMODATES VARIOUS HYBRID PACKAGES
* SUBSTANTIAL BUSSED GROUND \& POWER PLANES
* ACCOMMODATES 50 PIK $1 / 0$ CONNECTOR

PRICE

* WIRE-WRAP BOARD ONLY $\$ 15.00$
- ACCESSORY KIT

4K PROM BOARD

* 44 PIN CCS BUS
* FULLY BUFFERED, 5 VOLT ONLY
* LOW POWER (CLOCKED VCC)
* POPULAR 512×8 BIPOLAR PROMS

PRICE

- PROM BOARD ONLY
$\$ 22.50$
- KIT WITH 2 K PROM

- KIT WITH 4 K PROM $\$ 129.95$

150 pin I/0 connector 17 bypass capacitors

Vider Brand

$+5 \mathrm{lg}(\mathrm{yel})$	580 ma
$+5 \mathrm{mg}(\mathrm{kel})$	480 ma.
-12 sg	$\approx 18 \mathrm{ma}$.

UART Bsand
$+5 \mathrm{Neg}$
-12 kg .
300 ma .

Baud Gen.
+5 ng
145 ma .
Tim Bol.

Jogic Analyzer BQ.
$+5 \mathrm{ng}$
150 ma (all LED's on)

Memary Bd (2102L)
$+5 \mathrm{neg}$ 200 ma.

CPU Boand

I10 board
$+5 \sim y$
$\approx 200 \mathrm{ma}$. w/ 46821 's
casutte siterface $B d$.

JI Cable from Keyboard

4 Gren alk x
(C) Eution pound vioci-54-9
E-red

5 sroun sek
D5-B6 vn-31 (ugar)
C-ALK

6 yallen the
$00-81$ Un-26 $\quad \mathrm{C}=\mathrm{CRN}$

7 Onerge BUA
01-B2 un-27 " c-yel

8 erange rod
D2-B3 Un-28 " c-Red
D3-64 $\quad M-29 * B-B L K$
9 Ad-6nky
04-65 \quad 毋7-30 $\quad \mathrm{B}-6 \mathrm{rn}$
10 Broum-Aod
(1) Rog 00 WN

A-Rel
" Red-Brown.
D6-B? v7-32 "B-Yel
12 die-Brancond:)
(0) Home vider-54-14 A-yel

13 Gren Gowin :
14 Priple-Grown
15 Puple-Onange 5w 4

$$
\overline{k f}
$$

$$
4 n-23
$$

B-Red

16 Red Green (swa) curbal (1) I2. 12

D-Gnen-

17 Gney-white.
(1) EOS Witer - J4-13 A-Gote.
is white Brewen
(c) EvRser LGFT vises- $54-7 \quad 0-y=l$

19 onang prople $=$
(2) EOL
Vider- J4-15 A-DeN

20 witagry
21 broum
22 Gounwhite
$25(5 x+1150)$
$26(\operatorname{sen} H 1)$
29 the-yplaw
(-3) CuESOR
Vibe $52-13 \quad$ F-Geer

30 ye - Cry

$$
12
$$

ande witters ya to frudille. Reybune

Solbring gron 1

MICROCOMPDTTEIRS

MCS6500

MICROCOMPUTER FAMILY

TIM MANUAL

MARCH, 1976

The information in this manual has been reviewed and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. The material in this manual is for informational purposes only and is subject to change without notice.

Second Edition
(c) MOS TECHNOLOGY, INC. 1976
"All Rights Reserved"

TABLE OF CONTENTS

I. INTRODUCTION 1
II. SYSTEM CONFIGURATION 3
III. OPERATIONAL FEATURES OF TIM. 6
A. TIM COMMANDS 6
B. TIM INTERRUPT AND BREAKPOINT SECTION 9
C. TIM MONITOR CALLS AND SPECIAL LOCATIONS 11
D. TIM MEMORY USAGE 12
IV. TIM CHECKOUT PROCEDURE 13
APPENDIX A - MEMORY ADDRESS TEST A-1
APPENDIX B - TIM PROGRAM LISTINGS B-1

TIM is the Terminal Interface Monitor program for MOS Technology's 65 XX microprocessors. It is supplied in read-only memory (ROM) as part of the MCS6530-004 multi-function chip. Because the TIM code is nonvolatile, it is available at system power-on and cannot be destroyed inadvertently by user programs. Furthermore, the user is free to use only those TIM capabilities which he needs for a particular program. Both interrupt types, interrupt request (IRQ) and nonmaskable interrupt (NMI) may be set to transfer control to TIM or directly to the user's program. TIM communicates with the user via a serial full-duplex port (using ASCII codes) and automatically adjusts to the speed of the user's terminal. Any speed--even nonstandard ones--can be accommodated. If the user's terminal has a long carriage return time, TIM can be set to perform the proper delay. Commands typed at the terminal can direct TIM to start a program, display or alter registers and memory locations, set breakpoints, and load or punch programs. If available in the system configuration, a high-speed paper tape reader may be used to load programs through a parallel port on the MCS6530-004 chip. Programs may be punched in either of two formats--hexadecimal (assembler output) or BNPF (which is used for programming read-only memories). On loading or modifying memory, TIM performs automatic read-afterwrite verification to insure that addresses memory exists, is read/write type, and is responding correctly. Operator errors and certain hardware failures may thus be detected using TIM.

TIM also provides several subroutines which may be called by user programs. These include reading and writing characters on the terminal, typing a byte in hexadecimal, reading from high-speed paper tape, and typeing a carriage-return, line-feed sequence with proper delay for the carriage of the terminal being used. Program tapes loaded by TIM may also specify a start address so that programs may be started with a minimum of operator action.
II. SYSTEM CONFIGURATION

Since TIM is a "program" resident in the MCS6530-004 it must be properly configured in a proper system environment.

Figure 2-1 represents a block diagram of a minimum system utilizing the TIM program. The MCS6502 is the controlling microprocessor with two pages of memory (pages 0 and 1) representing the minimum RAM requirement. These devices, as well as a representative schematic for the TTY, EIA interfaces, are shown in Figure $2-2$ which is a detailed system schematic utilizing the MCS6530-004. Note that the TIM function select equations are found on this schematic.

TO
PRINTER, KEYBOARD

* Note that the TIM as sold consists only of the MCS6530-004 component accompanied by supporting information to build this system

III. OPERATIONAL FEATURES OF TIM

A. TIM Commands*

Command
2

- M add
- : ADDR data

Description

Set line speed. After RESET, a carriage return is typed to allow TIM to measure the line speed.

Display user registers. The format is: PC PA X Y S
where:
PC is the program counter
P is the processor status
A is the A (accumulator) register
X is the X (index) register
Y is the Y (index) register
S is the stack pointer low byte (high byte is always 01)

Go. Begin execution at user PC location (see R command).

Memory examine. TIM will display the eight bytes beginning at address addr.

Alter registers or memory. TIM allows the user to alter registers (if R command pres-
cedes) or memory (if M command precedes).
Values for registers or memory locations which are not to be changed need not be typed

* Characters typed by the user are underlined. All other character are typed by the computer. \mathcal{q} means carriage-return.
-these fields may be skipped by typing spaces instead of data. The remainder of the fields in a line may be left unchanged by typing carriage return. The $=$ command may be repeated to alter subsequent memory locations without the necessity of typing intervening M commands. Note that TIM automatically types spaces to separate data fields.

Load Hexadecimal. TIM responds with carriage return, line-feed and loads data in assembler output format from the terminal or high-speed paper tape reader. The format is:

Zero or more leading characters except ";" (usually blank leader)

Any number of records of the form: ; ccaaaadddd....ddssss where:
cc is. the number of bytes in the record in hex
aaaa is the hex address to store the first byte of data dddd....dd is the data (two hex digits per byte)
ssss is the check-sum, which is the arithmetic sum, to 16 bits, of all the count, address and data bytes represented by the record

A terminating record of zero length, either: ;00 or ; 7

Note that read-after-write and check-sum tests are performed. An error will result in a "?" being typed at the point the error occurred. Data from records with bad checksums is deposited in memory as received, prior to the error stop. High-speed/low-speed reader switch. This command switches the load device from the user's terminal to the high-speed reader or vice versa.

Write Hexadecimal. An assembler-format tape is generated at the user's terminal. Format is as described above in the LH command description. Note that the address range must be specified with the lower address first. As in the Alter command, TIM types the space between the address fields.
.WB addl addh \underline{f} Write BNPF. A BNPF format tape is generated at the user's terminal. Format is one or more records as follows:
 where:
aaaa is the address of the first of the four bytes specified in the record. (Note: BNPF conventions require that the letter "B" never occur in the address field. Blanks are substituted by TIM.)
B is the letter "B", meaning begin data. dddddddd is eight data bitp- P for logical true, N for logical false.
F is the letter " F ", meaning finish.
Note that the BNPF format is output as multiples of four bytes. Thus, a multiple of four bytes will always be punched even if a non-multiple of four bytes is specified.

Cancel Command. While typing any command, its further effect may normally be terminated by typing one or two carriage returns, as required. During alter (:), carriage return means that no further bytes (or registers) are to be altered.

B. TIM Interrupt and Breakpoint Action

BRK

The BRK instruction causes the CPU to interrupt execution, save PC and P registers on the stack. and branch through a vector at locations FFFE and FFFF. TIM initializes this vector to point to itself on RESET. Unless the user modifies this vector, TIM will gain control when a BRK instruction is executed, print an asterisk $" * "$ and the registers (as in R command), and wait for user commands. Note that after a BRK which vectors to TIM, the user's PC points to the byte following the BRK; however, users who choose to handle BRK instructions thenselves
should note that $B R K$ acts as a two-byte instruction, leaving the PC (on return via RTI) two bytes past the BRK instruction.

IRQ

Interrupt Request is also vectored through location FFFE. The CPU traps (as with BRK) through this vector when IRQ goes low, provided interrupts are not inhibited. Since this vector is the same as for BRK, TIM examines the BRK bit in the p register after this type of interrupt. If a BRK did not cause the interrupt, then TIM will pass control through the UINT vector. Users should normally put the address of their interrupt service routine in the UINT vector location. If an IRQ occurs and UINT has not been set by the user, TIM reports the unexpected interrupt in the same way as an NMI (see below).

NMI

Non-Maskable Interrupts vector through location FFFA. TIM initializes this vector at RESET to point to itself. If an NMI occurs, a pound-sign character $=\left(\frac{2}{\overline{\#}}\right)$ precedes the asterisk and CPU registers printout. This action is the same for IRQ's if the user has not set this vector to point to his own routine.

RESET or POWER-UP

On RESET or POWER-UP, TIM takes control, initializes itself and the system, sets defaults for interrupt vectors and waits for a carriage-return input from the user to determine terminal line speed. After carriage-return is typed; control is passed to the user as in BRK.
C. TIM Monitor Calls and Special Locations

D. TIM Memory Usage

TIM uses the top ${ }^{29}{ }_{10}$ bytes of page zero (locations 00E3 through 00 FF). The user is advised to avoid these locations, except as noted above, if return to TIM or use of TIM subroutines is required before RESETing the processor. TIM also uses the hardware stack when it is in control. Provided the user does not alter the stack pointer during a break, and provided the stack does not overflow, TIM will restore the stack to its original status before returning to the user's program. The user is advised to use page 1 (the stack page) cautiously, leaving at least 20_{10} bytes for TIM use during a break or when using other TIM functions.

The following step-by-step procedure assumes the user has built the TIM hardware system and is now ready to verify its functionality.
() 1. Turn power on, or if the power is on, perform a RESET operation. Type a carriage-return on the terminal. TIM should respond with:

$$
\text { * } 7052 \quad 30 \quad 18 \text { FF } 01 \quad \mathrm{FF}
$$

(Exact values may vary, although the first and last values should be as shown). If no response or a garbled response occurs, RESET and try again. In case of continued trouble, refer to the diagnostic section of the MOS Hardware Manual.

The "* 70523018 FF 01 FF" printout is TIM's standard breakpoint message format. It consists of an asterisk "*" to identify the breakpoint printout, followed by the CPU register contents in this order: $P C, P, A, X, Y$, and S, i.e., Program Counter, Processor Status, Accumulator, X index, Y index and Stack Pointer. Note that all TIM inputs and outputs are in base 16 which is referred to as hexadecimal, or just hex. In hexadecimal, the "diqits" are $0,1,2, \ldots, A, B, C, D, F, F$. After printing the CPU registers, TIM is ready to receive commands from you, the operator. TIM indicates this "ready" status by typing the prompting character "." on a new line.
() 2. TIM's response to RESET is to wait for a carriagereturn and then print the user's registers. TIM uses this car-riage-return character to measure the terminal line speed. If you have a settable-rate terminal, change the
rate (any speed between 10 and 30 cps will work) and repeat Step 1. TIM should respond at the new terminal speed.
() 3. The user's CPU registers may also be displayed with the R command. Type an R. The monitor should respond as above, but without the asterisk. Presence of the asterisk indicates that an interrupt or break instruction caused the printout.

$$
\begin{array}{lllllll}
-\mathrm{R} & 7052 & 30 & 18 & \mathrm{FF} & 01 & \mathrm{FF}
\end{array}
$$

() 4. Displayed values may be modified using the Alter (:) command. To modify register contents, type a colon (:) followed by the new values. For example:

$$
\begin{array}{lllllll}
\cdot \frac{\mathrm{R}}{\mathrm{R}} & 7052 & 30 & 18 & \mathrm{FF} & 01 & \mathrm{FF} \\
-\frac{0100}{\cdot \mathrm{R}} & \frac{010}{0100} & \frac{00}{00} & \frac{00}{00} & \frac{00}{00} & \frac{00}{00} & \frac{\mathrm{FF}}{\mathrm{FF}}
\end{array}
$$

Notice that TIM automatically types spaces to separate data fields. (Note: Characters typed by you, the user, are underlined in this document for clarity. Everything else is typed by the computer.) Examine your registers (R command) to verify the changes.

Memory may be examined and modified, as above, using the M and : commands. Try this:

$$
. \underline{M} \quad \underline{0100} \quad 00 \quad 66 \quad 23 \quad \mathrm{EE} \quad 01 \quad \mathrm{~A} 2 \quad 41 \quad 6 \mathrm{E}
$$

The memory command (M) causes TIM to type the contents of the first eight bytes of memory. Memory data will be random on startup). Alter and verify these bytes using the Alter comrand, as above:

$$
\begin{array}{llllllllll}
-M & 0100 & 00 & 66 & 23 & \mathrm{EE} & 01 & \text { A2 } & 41 & 6 \mathrm{E} \\
\cdot \underline{E} & 0100 & \underline{00} & \underline{01} & \underline{02} & \underline{03} & \underline{04} & \underline{05} & \underline{06} & \underline{07} \\
\hline
\end{array}
$$

If only part of a ḷine is to be altered, items to be left unchanged can be skipped over by typing blanks, and carriagereturn (\downarrow). Try this:

$$
\begin{array}{llllllllll}
\cdot \underline{M} & \underline{0100} & 00 & 01 & 02 & 03 & 04 & 05 & 06 & 07 \\
-\frac{1}{M} & 0100 & \frac{\mathrm{FF}}{\mathrm{M}} & - & -\mathrm{FF} & \frac{\mathrm{FF}}{} & \frac{7}{2} & & & \\
\cdot \underline{0100} & \mathrm{FF} & \mathrm{OL} & \mathrm{FF} & \mathrm{FF} & 04 & 05 & 06 & 07
\end{array}
$$

() 5. Try to alter a location in TIM ROM:

$$
\begin{array}{llllllllll}
. M & \frac{7000}{7000} & 85 & \text { F9 } & \text { A9 } & 23 & \text { D0 } & 58 & \text { A9 } & 16 \\
\therefore \underline{000} & & & & & & &
\end{array}
$$

TIM verifies all changes to memory. Since locations 7000 through 7007 are in read-only memory, alteration is not possible. TIM signals write failure with a question mark. Similarly, the monitor will notify you of an attempt to alter a non-existant location:

$$
\begin{array}{lllllllll}
-M & 9000 \\
-\Xi & 9000 & \underline{00} ?
\end{array}
$$

Note that attempts to read non-existant memory will normally yield the high-order byte of the address read.
() 6. There are three hardware facilities which may be used to stop a running (or run-away) program without the program itself calling TIM. These are the hardware inputs RESET,

IRQ, and NMI. To test this feature enter the following program at location 0000 :

$\frac{\text { location }}{0000}$	$\frac{c}{c}$ contents		instruction
0001	4 C	LOOP JP LOOP	
000	00		
0002	00		

(Use the M and : commands.)
Now, set the program counter (PC) to this location using the R and : commands. Finally, tell. TIM to start executing your program using the Go (G) command:

The computer should now be executing the program. It will continue, to run until interrupted. Using the interrupt request line (IRQ), interrupt the processor. It should respond with:

$$
\text { * } 0000 \quad 30 \quad 00 \quad 00 \quad 00 \quad \mathrm{FF}
$$

Try the same experiment with non-maskable interrupt (NMI). The result should be the same except for a "\#" character preceeding, which identifies the NMI printout. Finally, try it with RESET. RESET, however, forces a CPU branch to TIM, losing the old PC and other register contents. Thus NMI is the preferred means for manually interrupting program execution. IRQ may also be
used unless it is required for other functions such as peripheral interrupts.
() 7. Use M and : to enter the following test program called CHSET because it prints the character-set on the terminal. Note that Alter ($:$) commands may be repeated without intervening M commands to set sequential.locations:
col.
0000
0001
$\begin{array}{llll}010 C & 20 & 8 A & 72 \\ 0103 & A 9 & 20 & \end{array}$
C1CE ES CC
0107 AS 00
CICS CS $6 C$
C10B FJ C8
ClCO ZC CE 72
0110 EE OC
0112 4C $07 \quad 01$

C115 CC

C116 4C CO Cl
©CHECKCUT PRCGRAN -- PRINT THE CFARACTER SET CN USER TERMINAL

$$
\begin{array}{ll}
\text { CRLF }=\$ 728 A & \text { ACLRESS CF TIM } \\
\text { HRT }=\$ 72 C 6 & \text { FADLFRESS CF TIM } \\
\text {; } &
\end{array}
$$

$$
\begin{array}{ll}
\text { CHAR } & \begin{array}{ll}
\eta=C \\
; & \psi=\xi+1 \\
& \%=\$ 01 C 0
\end{array} \\
&
\end{array}
$$

;
CHSET JSR CRLF

$$
\text { LCA As } 50
$$

inci
STA CFAR

LLA CHAR
CNP \#36C
BEQ CONE
$J \subseteq R \quad h R T$
INC CHAR
JNF LCEP
$\begin{array}{ll}\text {; CONE } & \text { BRX } \\ \text {; } & \text { JMP CHSET }\end{array}$
; VARIAELE STCRAGE IN PAGE ZERO
;STURAGE FOR CHARACTER
; PREGRAN STARTS CA PAGE CNE
;CC CARRIAGE RETURN \& LINE FEEC
;FIRST CHAR IS A SPACE
;INITIALIZE
; CET CHARACTER
;CHECX FCR LIMIT
; DONE IF 60
; PRIAT CHAR
; AEXT CHAR CCCE
; CCNT INUE
;STOP \& RETURN TO TIM NCNITCR
;DC IT AGAIN

. M	0100	20	8D	72	20	EC	72	8D	26
\cdots	0100	20	8A	72	A9	20	85	00	A5
\cdots	0108	$\underline{00}$	C9	60	F0	08	20	C6	72
-	0110	E6	$\underline{0}$	4 C	$\underline{07}$	01	00	4C	00
-	0118	01	\pm						

Now run the program. Do this by setting the PC to 0100 and using the G command. The listing should look like this:

```
-R 0000 30 00 00 00 FF
FO100 &
*-\overline{G}
* 0116 33 60 00 00 FF
```

The program may be continued, causing it to execute again, by typing G :


```
* 0116 33 60 00 00 FF
-G...#SZ2.()*+,-./0123456789:;<=>?2ABCDEFGHIJKLMNGPORSTUVWXYZ[\]*-
    * 0116 33 60 00 00 FF
*-G!MSZ&'()*+,-.10123456789:;<=>?9ABCDEFGHIJKLMNCPORSTUVNXYZ[\],-
* 0116 33 60 00 00 FF
```

The CHSET program uses two TIM monitor functions: CRLF is the TIII function which causes a carriage-return and linefeed to be typed on the terninal. WRT is the routine which prints the character whose code is in the A register at the time of the call.
() 8. Save the CHSET program on paper tape (if your
terminal has a punch) as follows: First, punch some leader tape with the terminal in local mode. Then return to line mode and enter:

$$
\text { .WH } 0100 \text { 0118 }
$$

Turn the punch on after typing the second address, but before typing carriage-return. Then type carriage-return to punch the tape. When punching stops, turn the terminal back to local and type:
; 00
and some blank trailer. This is a zero-length record which terminates your tape. See Appendix II Eor more information on tape formats.
() 9. Try re-loading your program using the LH command: - LH

Now start the reader to load the program. The tape will be read and printed simultaneously. Stop the tape when the end is reached. (Before loading, you may wish to destroy the program in memory to verify that loading from tape actually works.)
() 10. Use the M and : commands to load the following program:

. M	0100	20	8D	72	A9	20	85	00	A5
\because	0100	$\underline{20}$	8A	72	$\underline{20}$	E9	72	85	00
\cdots	0108	$\underline{20}$	77	73	A9	08	85	01	A9
\cdots	0110	30	06	00	B0	$\underline{02}$	A9	31	$\underline{20}$
\cdots	0118	C6	72	C6	01	10	Fl	4C	00
\because	0120	01	\downarrow						

The purpose of this program is to print the binary representation of an ASCII input character on the terminal. Run the program by starting it at location 0100. Try typing some characters:

$$
\begin{array}{lllllll}
\cdot \underline{R} & 0116 & 33 & 60 & 00 & 00 & \mathrm{FF} \\
\cdot \underline{:} & \underline{\mathrm{G}} & \underline{1} 00 & \underline{ } & & & \\
-\underline{U} & 101010101 \\
\underline{B} & 101111011 \\
\underline{I} & 110011101
\end{array}
$$

There is obviously something wrong with the program. Bits which should be printed as I^{\prime} 's are 0 's and vice versa. (Refer to your 6500 reference card for character codes.) Looking at the program, the problem is that the branch after PBLOOP goes the wrong way! It should be BCC, Branch if Carry Clear (or alternatively, the 1 and 0 loads could be interchanged). Thus, when a one-bit is shifted out of the character, a one should be printed.

Patch the program and try again (the code for BCC is 90).

There is, alas, still an error-one too many bits is being printed. The cause of this is a little less obvious. (Do you see it?) To investigate the problem, set a breakpoint at location 011E. Do this by replacing the instruction there with a BRK (code of 00). Then run the program:

$$
\begin{aligned}
& \begin{array}{llllllllll}
\text { M } & \text { OLIE } & 4 \mathrm{C} & 00 & 01 & \mathrm{EF} & 4 \mathrm{C} & 00 & 01 & 00
\end{array} \\
& \text { - 011E } 00 \text { I } \\
& \text {.R } 705231 \text { FC FF } 01 \text { FF } \\
& \text { - } \quad 0100 \text { ! } \\
& \text { - G } \\
& \begin{array}{ccccccc}
\text { U } & 010101010 \\
* & 011 \mathrm{~F} & \text { BO } & 00 & 00 & \text { AA } & \mathrm{FF}
\end{array}
\end{aligned}
$$

Once the break has occurred, you are free to investigate the state of the program using TIM. In particular, check the value in location COUNT:

$$
. M \quad \underline{O} \quad 0000 \quad \mathrm{FF} \quad 1 \mathrm{~B} \quad 2 \mathrm{E} \quad 31 \quad \mathrm{EA} \quad \mathrm{FO} \quad \mathrm{FA}
$$

Aha! Although COUNT starts out with a value of 8 , it is going one step too far (FF is minus 1). This is because the test instruction, BPL PBLOOP is testing to see whether the count is
greater than or equal to zero. Replace it with BNE (code D0), replace your breakpoint with the original contents at that location, and try the program again.

$$
\begin{aligned}
& \text {-M 011C } 10 \text { Fl } 00 \quad 00 \text { 01 EF 4C } \\
& \because \text { OIIC D0 }-\underline{4 C} \\
& \text { - R 011F BO } 0000 \text { AA FF } \\
& \because 0100 \text { ? } \\
& \text { - } \underline{G} \\
& \text { U } 01010101 \\
& \text { B } 01000010 \\
& \text { I } 00110001 \\
& \text { I } 01001001 \\
& \text { W } 01010111 \\
& \text { ㅇ } 01001111 \\
& \text { R } 01010010 \\
& \text { K } 01001011 \\
& \text { 'S } 01010011
\end{aligned}
$$

 CC 208472 PEIN JSR CRLF
 O1CE 85 Cl
OLCF AS 3C
0111 CE CO
$0113 \quad 90 \quad 02$
0115 AS 21
C117 20 CE 72
C11A C6 01
CIIC DOF1
$011 E \quad 4 C \quad C O O 1$
$4103 \quad 20$ ES 72
01068500
ClCE $20 \quad 77 \quad 73$
ClCe AS 08

CCEC $\operatorname{ccc} 0$ OCO1

0002

ClCe AS OB ;

OLCF AS $3 C$
$\begin{array}{lll}0111 & \text { CE } & C O \\ 0113 & 90 & 02\end{array}$
0115 AS 31 ;
$\begin{array}{llll}\text { C117 } & 20 & C E & 72 \\ \text { C11A } & \text { C6 } & 01 & \end{array}$
CIIC DOFI
O11E 4 C CO O1

```
```

 ;CHECKOUT PROGRAM -- PRINT BIAARY CF TYFED CHARACTER
    ```
```

 ;CHECKOUT PROGRAM -- PRINT BIAARY CF TYFED CHARACTER
 ;
;
;
;
\#*=0 FVARIAELE STORACE IN PAGE ZERG
\#*=0 FVARIAELE STORACE IN PAGE ZERG
CCUNT \#=%+1
CCUNT \#=%+1
;
;
\# =\$01C0
\# =\$01C0
;
;
CRLF =\$728A
CRLF =\$728A
WRT =\$72C6 ;TIM CRLF RCUTINE
WRT =\$72C6 ;TIM CRLF RCUTINE
RCT =\$72E9 ;TIII REAC RCUTINE
RCT =\$72E9 ;TIII REAC RCUTINE
SPACE =\$7377
SPACE =\$7377
;

```
    ;
```

;
PBLCCP LCA \#'O
ASL BINARY
ECC PRINT
;
LeAn'l
;

```
;
```

;
JSR RDT
JSR RDT
STA EINARY
STA EINARY
JSR SPACE
JSR SPACE
LEA 合8
LEA 合8
STA CCUNT
STA CCUNT
PRINT JSR VRT
PRINT JSR VRT
DEC CCUNT
DEC CCUNT
ENE PELCCP
ENE PELCCP
;
;
JMP PEIN
JMP PEIN
; STCRAGE FCR CHAR LURING CISSECTION
; STCRAGE FCR CHAR LURING CISSECTION
;COLNT CF BITS RENAINING TG PRINT
;COLNT CF BITS RENAINING TG PRINT
;PRCGRAN BEGINS CN PAGE CNE
;PRCGRAN BEGINS CN PAGE CNE
;TIM CRLF RCUTINE
;TIM CRLF RCUTINE
;TIII hRITE RCUTINE
;TIII hRITE RCUTINE
;TIII SFACE FCUTINE
;TIII SFACE FCUTINE
;PRINT CARRIAGE RETURN \& LINE FEE
;PRINT CARRIAGE RETURN \& LINE FEE
;GET A CHARACTER
;GET A CHARACTER
;SAVE FCR CISSECTICN
;SAVE FCR CISSECTICN
;PRINT A SFACE
;PRINT A SFACE
;INITIALIZE EIT CCLNT
;INITIALIZE EIT CCLNT
;ASSUME ZERO: LOAD ASCII "O"
;ASSUME ZERO: LOAD ASCII "O"
;C=\EXT SIT
;C=\EXT SIT
;PRINT ZERO
;PRINT ZERO
;LCAD ASCII "1"
;LCAD ASCII "1"
;PRINT EINARY [IGIT
;PRINT EINARY [IGIT
;COLNT EIT PRINTED
;COLNT EIT PRINTED
;CG NEXT EIT
;CG NEXT EIT
;DO IT ALL AGAIN

```
;DO IT ALL AGAIN
```

() 11. Save the corrected program using the WH command. Before punching the terminating record (as above in step 8), turn off the punch and set the PC to the start address of the program (0100). Then punch locations 00F6 and 00F7 on the tape, then the terminator $(; 00)$, and finally, some trailer:

$$
\begin{aligned}
& \begin{array}{llll}
-\mathrm{R} & 7052 & 30 & 37 \\
\cdot- & \frac{0100}{00 \mathrm{~F}} & \frac{7}{00 F 7} & \\
-\frac{\mathrm{WH}}{0} & \frac{7}{020 \mathrm{~F} 6000101 \mathrm{~A} 2} & \frac{7}{01}
\end{array} \\
& \text { - }
\end{aligned}
$$

The resulting tape can be loaded and then started as follows:

$$
\begin{aligned}
& \underline{. L H} \\
& \vdots \\
& \underline{G}
\end{aligned}
$$

Locations 00F6 and 00F7 contain the starting address for programs. You may assemble and load your starting address into these locations to make tapes which can be started with a minimum of operator action. The carriage-return delay time may also be set in this manner. See Appendix II.
() 12. It is also possible to punch BNPF-format tapes using TIM. BNPF is the format used by some ROM programmers. The command is similar to that for writing hex tapes:

$$
\text { .WB } 0100 \quad 0127 \geq
$$

This command would punch the corrected PBIN program in BNPF
format. Try punching a BNPF tape. (Note that TIM will not load tapes in this format--use hex format (WH) for saving programs for later loading into your 65 XX .)
() 13. If you have a high-speed paper tape reader attached to your 65 xX system, you can use it to load programs in hex format. The H command switches the load device to and from the high speed reader. If you have a high speed reader, try loading a tape as follows:

$$
\begin{aligned}
& \cdot \underline{\mathrm{H}} \\
& \cdot \underline{\mathrm{LH}}
\end{aligned}
$$

Note that control will not return to the user terminal until a terminator record $(; 00)$ is read.

APPENDIX A

MEMORY ADDRESS TEST

CARC 4 LCC 1
2
3
4
5
6
7
8
9 11 12 130000 14 OCC2 150004 le CLC6 17

```
0000
CCC2
CCC6
```

0008
CCI2 $20 \quad$ C6 72
CO15 A9 OA
$0017 \quad 20$ C6 72
CC1A $20 \in 日 00$
cold $20 \quad 7100$
$002 \mathrm{C} \quad$ A 00
CC22 AS 00
31 CC24 8106
$320026 \quad 207 A 00$
33
34
35
36 CO2E A9 FF
37 CC2L 8100
38
39
4 C
41 CC32 A1 O6
42 CC34 FO 17
43 003E A4 06
$44 \quad$ CC38 8400
45 CC3A FO 01
46 003C 00
47
4ε
CCBC A4 O7

CARC
; YEMCRY ADDPESS TEST
;FCR EDCF LCC IN TEST RANGE
; CLEAR hi cle range
SET LOC TO SFF
VERIFY hHCLE RAGE 300 EXCEFT (LCC)
VERIFY (LCC) TC RE SFF
; RREAK TE MCMITOR CN ERRGR WITH LOC IN $(C, 1)$
;PRINT "\%" CA CCNFLETICN CF PASS \& REFEAT
;

* $=\$ 0000$;PAGE C
;
WRT
LCC
LCh
+IGF
PTR
;
;
MAD
LCA ATCO
JSR hiRT
LDA as 50 A
; \& LF
JSR MRT
;
JSR RSTLCC
JSR RSTFTR
;TEST CELL AECR
; LChER LIMIT CF TEST
; LPPER LIMIT CF TEST+1
; fointer te cell under test
; START ACDR
;TYFE CF
; LCC= $=\mathrm{CCh}$
; PTR=LCM
LEX 50
; CLEAR MEMORY AREA UNDER TEST
MLl LEA SO
STA (PTR,X) ;STCFE 2ERC
JSR INCPTR ;INCRENEMT \& TEST
BAE NLI ;NEXT LCC
;
; FUT SFF IA SELEXTEC CELL
TEST LDA H1FF
ST: (LOC,X)
; VERIFY FLL CELLS ZERC EXCEPT (LCC)
$J \subseteq R$ RSTṔTR ; \quad PTR=LCh
;
VLECF LEA $\{P T R, x\}$;GET CELL
REQ NEXTC ;CK IF ZERO
LDY PTR ;NCT ZERC--IS THIS (LCC)?
CFY LCC
EEG CK1
BRK ;NCT (LCC)
;
OXI LDY PTR+1

CARC \# LCC
45 OC3F sc CC4 2 51 cal fo 01 004300 $\begin{array}{lll}52 & \text { CC4 } \\ 53 & \text { C9 FF }\end{array}$ 54 CG4E FO 01 ES CC4E 00 $\begin{array}{lllll}56 & C C 4 S & \\ 57 & C C 4 S & A 9\end{array}$ E® CC4B \&1 00
55 ; $6 C \quad 0040 \quad 20 \quad 7 A \quad 00$

610050 DO EO €2 ; 63 C05 \quad A5 00 $64 \quad 0054 \quad$ C0 07 $t=\operatorname{ccse}$ AS 2A
$66 \quad 0058 \quad 20 \quad$ C6 62
67 005 6 A2 00
七8 ;
$69 \operatorname{COSO} \quad 2088 \quad 00$
C CC6C DO ES
71 (coce 20 er
72 CCE2 206800
$73 \quad 0065 \quad 46 \quad 10 \quad 00$
;

BAE TEST
JSR RSTLCC
; PASS CCNPLETE
;
;RESET LCC TO LOH
RSTLCC LCA LCW
§TA LCC
LCA LOW+1
STA LCC+1.
RTS
;
; RESET PTR TC LCW
RSTPTR LDA LCh
STA PTR
L[A LC' $\alpha+1$
STA PTR*1
RTS
;
; INCREMENT PTR \& CHECK FCR LIMIT
INCFTR INC PTR ; INCREMENT
ENE INCL
;
INC FTR+1
;
INCl LCA HIGH
CNP PTR
BNE IFRET ;NCT AT LINIT

Ct CCBZ C5 O6
¢7 CC84 DO 04

JNF MAD
;NEXT PASS

```
CAR
                LCC
CCCE
    ¢&
    SS CCEG AS OL
    1CC 0088 C5 07
    1Cl ;
    1C2 J03A }6
    1C3
    1C4 0088 E6 OO
    ICE CC8L DO O2
    1C7 EO OR
    1C8 008F E6 01
    1CS ;
    11C CCS1 A5 04
    111 0093 C5 00
    112 CCS5 DO 04
    113 cos7 A5 05
    114 CCSS C5 01
    115
    116 009E 60
                                    CARC
;
    LCA HiGH+1
    CNP PTR+1
        ;Z=1 IF AT LIMIT
; INCRENENT LCC & CFECK FCR LINIT
INCLOC INC LOC ;INCR
IPRET RTS
;
ENE INCZ
;
    1C7 ;
INC LOC+1
    ILRET RTS
```

ENL CF MCS／TECFNDLOGY 6501 ASSENBLY VERSION 3
ALNGER［F EFRCRS $=0$ ，NUNZER CF WARNINGS $=0$

SYMECL TABLE

```
SYNBOL VALUE LINE DEFINED CRCSS-REFERENCES
```

| ＋IGH | COC4 | 15 | 95 | SS | 110 | 113 | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ILRET | cose | 116 | $11 \overline{1}$ | | | | | | | | | |
| INCLOC | core | 1CE | ES． | | | | | | | | | |
| INCPTR | CO7A | ¢C | 32 | EC | | | | | | | | |
| INC1 | coec | ¢ 5 | 51 | | | | | | | | | |
| INCE | CCS 1 | 116 | 1CE | | | | | | | | | |
| IFSET | COEA | 102 | 97 | | | | | | | | | |
| LOC | CCCC | 13 | 37 | 44^{3} | 49 | 58 | 63 | 77 | 75 | 105 | 108 | 111 |
| | | | 114 | | | | | | | | | |
| LCh | $\mathrm{COC2}$ | 14 | 76 | 78 | 83 | E | | | | | | |
| NAL | COIC | 2 C | 72 | | | | | | | | | |
| NLI | CO2z | 3 C | 33 | | | | | | | | | |
| AEどTL | CO45 | tC | 42 | | | | | | | | | |
| NCSTAR | CCSC | ES | 64 | | | | | | | | | |
| ［ 11 | CC3 | 4 ¢ | 45 | | | | | | | | | |
| ［ $\times 2$ | CO_{44} | 53 | 5 C | | | | | | | | | |
| CK2 | CC4C | E7 | 54 | | | | | | | | | |
| PTF | coce | 16 | 31 | 41 | 43 | 48 | 84 | $\varepsilon \epsilon$ | SC | 53 | St | 100 |
| P．STLUC | CCEE | 76 | 25 | ？ 2 | | | | | | | | |
| FSTPTR | C071 | £ 3 | $2 t$ | 35 | | | | | | | | |
| TEST | CG2E | 25 | 7 C | | | | | | | | | |
| VLCC？ | COミ2 | 41 | ¢1 | | | | | | | | | |
| SPT | 72C2 | 12 | 21 | 23 | $\epsilon \epsilon$ | | | | | | | |
| | | | | | | | | | | | | |

APPENDIX B

TIM PROGRAM LISTINGS

```
        TIM VERSICN 1.0 - NEM PAGE C
CAFD LCC CCCE
    3
        :
        ;
```


CARC

LOC

CODE

CARD
A ACA-BRK INTRG INTERRUDT CAUSES AN INDIRECT JUMP TO THE ADDRESS LDCATED AT 'UINT' (HEX FFFB). THIS LCCATICN CAN PE SET USTNG THE ALTER CND, CR LCADED AUTCMATICALLY IA PAPER TAPE FORN WITH THE LH CNE IF THE USER ASSIGNS FIS INTRQ INTERRUPT VECTOR TO SFFFG IA THE SCURCE ASSENRLY FRCGRAN.
IF NCT RESET EY THE USER, UINT IS SET TG CAUSE EXTERNAL OEVICE INTERRLPTS TC ENTER TIN AS NNI'S. I.E., IF A NMI CCCLRS HITHCUT AN IADUCED NNI SIGNAL, IT IS AA EXTFRNAL DEVICE INTERRUPT.

SETTING AND RESETTING PROGRAN PREAKPOINTS

BREAKPOINTS ARE SET AND RESET LSING THE NEMORY DISPLAY ANO ALTER CCMNANDS. ERK HAS A OO' OPERATION CODE.
TC SET A BREAKPCIAT STMPLY OISPLAY THE MEMORY LCCATIOA (FIRST INSTRUCTION EYTE) AT UHICH THE BREAKPOINT IS TC BE PLACED THEN ALTER THE LCCATICA TC 00^{\prime}. THERE IS NC LIMIT TO THE NLMBER OF BREAKPCINTS THAT CAN BE ACTIVE AT CNE TIME.
TC RESET A BREAKPCINT, RESTCRE THE ALTEREL MEMCRY LCCATION TO ITS ORIGINAL VALUE.
WHEN AND IF A BREAKPCIAT IS ENCCUNTEREC CURING EXECTUION, THE BREAKPOINT DATA PRECEDEC BY AN ' IS DISPLAYED. THF PRCGRAN CCUNTER VALUE CISPLAYED IS THE BRK INSTRLCTICN LOCATICA + 1.

f67 554

MDEK $=$ FCCC10110 $: ~ X, X, X$, POR,DATA-AVATL,GOT-DATA,SERIAL-CUT, IN
BAVATL $=\$ 08$
CCTCAT $=\$ \mathbf{C 4}$
ICPASE $=16 \mathrm{FOO}$
$M P A \quad=I C B A S E+0$
MDA =ICRASE +1
$\mathrm{MPE}=$ ICEASE +2
MDB =ICBASE +3
MCLK1T = IOEASE+4
$N C L K R D=I C B A S E+4$
$M C L K I F=10 B A S E+5$
UIAT = IFFF 8
NCNDS $=7$
$\mathrm{MPG}=\$ 7000$
MPI $=\$ 17100$
$\mu P_{2}=1720 \mathrm{C}$
NF3 $=\$ 73 \mathrm{CC}$
:
; ZERO PAGE MONITCR RESERVE APEA
:
CRCLY $=227$
$\mathrm{WRAP}=228$
: CELAY FCR CR IN EIT-TIMES
;ADDRESS WRAP-AROUND FLAG

TIM VERSICN 1.2 - NEM PAGE C

| CARE | LCC CCEE | CARE | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 C 6 | | DIFF | $=229$ | | | |
| 107 | | +SPTR | =2? 21 | | | |
| 108 | | HSPCP | $=232$ | | | |
| 169 | | PREVC | $=233$ | | | |
| 110 | | MAJORT | $=234$ | | | |
| 111 | | NINCRT | $=235$ | | | |
| 112 | | ACNO | $=236$ | | | |
| 113 | | TNPO | $=238$ | | | |
| 114 | | TNP2 | $=240$ | | | |
| 115 | | TNP4 | $=242$ | | | |
| 116 | | TMP6 | $=244$ | | | |
| 117 | | PCL | $=246$ | | | |
| 118 | | PCF | $=247$ | | | |
| 119 | | FLGS | $=248$ | | | |
| 120 | | ACC | $=249$ | | | |
| 121 | | XR | $=25 \mathrm{C}$ | | | |
| 122 | | YR | $=251$ | | | |
| 123 | | SP | $=6.2$ | | | |
| 124 | | SAVX | $=253$ | | | |
| 125 | | TNPC | = 254 | | | |
| 126 | | TNPC2 | = 255 | | | |
| 127 | | 9 CNT | \# TNPC | | | |
| 128 | | LCAT | = TNPC2 | | | |
| 129 | | | BYTE RAM | MON ITFR | RESERVE | AREA |
| 130 | | : 64 | EYTE RAM | montira | | |
| 131 | | | | | | |
| 132 | | RAM64 | $=5$ FFCC | | | |
| 133 | 0000 | | ¢ =RAM64. | | | |

B-5

```
NPQ TIN PAGE O
```


$B-6$

NPO TIN PAEE O


```
NPI TIN PAGE I
```


MPI TIM PAGE 1

NPI TIN PAGE 1

MPI TIM PAGE 1

$$
B-14
$$

```
NPI TIN PAGE 1
```


MPI TIN PAGE 1

B-16


```
NPI TIN PAGE 1
```



```
    793 T3FA OO 70
    754 73FC 06 70
    795 T3FE 52 70
    756
END CF NCS/TECFNCLOGY 6501 ASSENPLY VERSION 3
NUNBER CF ERRCRS = 0. NLNBER CF WARNINGS = 0
```

B-18

| SYNBOL | value | LINE DEFIN | ED | | CROSS | -REFE | ERENCE | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R6 | 704 e | 187 | 185 | | | | | | | | | |
| SAVX | OOFE | 124 | 242 | | | | | | | | | |
| SETR | 7 FFE | $3 \mathrm{l2}$ | 242 331 | 244 357 | 481 | 683 | | | | | | |
| SETWRP | 73 A1 | 727 | 724 | | | | | | | | | |
| SP | COFC | 123 | 217 | 368 | | | | | | | | |
| SPACE | 7377 | $6 ¢ 3$ | 335 | 363 | | | | | | | | |
| SPAC2 | 7374 | 692 | 251 | 363 | 423 | $42 t$ | 490 | 692 | | | | |
| START | 7086 | 230 | 26 C | 345 | 382 | | | | | | | |
| SC | 7097 | 238 | 225 | 345 | 382 | 478 | 756 | | | | | |
| S1 | 7099 | 239 | 25 t | | | | | | | | | |
| S2 | $7 \mathrm{CB7}$ | 255 | 240 | | | | | | | | | |
| TMPC | OOFE | 125 | 127 | 201 | | | | | | | | |
| THPC2 | COFF | 126 | 128 | 494 | 220 499 | 337 | 34 | 422 | 430 | 492 | 504 | |
| TNPO | COFE | 113 | 264 | 267 | 272 | 274 | 279 | | | | | |
| | | | 34 C | $4 \mathrm{C4}$ | 407 | 458 | 461 | 280 | | | | 05 |
| TMP 2 | | | 711 | 719 | 723 | 736 | 739 | | | | | |
| TMP4 | COF2 | 114 | 263 413 | 266 | 414 | 416 | 710 | 713 | | | | |
| TNP6 | COF4 | 116 | 412 | 415 | 52 C | 521 | 522 | 524 | | | | |
| T2T2 | 7387 | 767 | 425 | 428 | | | | | | | | |
| T2T21 | 7389 | 7 CB | 715 | 428 | | | | | | | | |
| UINT | FFF8 | 85 | 150 | 228 | | | | | | | | |
| We | 7238 | 481 | 43 ? | 228 | | | | | | | | |
| WBF 1 | 7258 | $4 \mathrm{S8}$ | 505 | | | | | | | | | |
| WEF 2 | 7262 | $5 C^{3}$ | 456 | 500 | | | | | | | | |
| WBAPF | 7248 | 450 | 512 | 500 | | | | | | | | |
| El | 723 C | 482 | 515 | | | | | | | | | |
| $1+C$ | 71 E2 | 435 | 477 | | | | | | | | | |
| +1 | $72 \mathrm{C7}$ | 455 | 449 | 452 | | | | | | | | |
| H2 | $721 F$ | 465 | 472 | | | | | | | | | |
| RAP | 7112 $00 E 4$ | 421 | 222 | | | | | | | | | |
| ROA | 729A | 105 | 232 355 | 435 | 482 | 727 | | | | | | |
| RCA 1 | 72AE | 546 | 355 540 | 488 542 | | | | | | | | |
| RCA4 | 729 E | 541 | 547 474 | 542 | 544 | | | | | | | |
| ROA6 | 72 A 2 | 543 | 474 | | | | | | | | | |
| RCB | 72 El | 555 | 341 | 457 | | | | | | | | |
| ROC | 72 CE | 578 | 235 | 259 | 46 C | 463 503 | 507 | 545 | | | | |
| RPC | 72AE | 545 | 336 | 259 | 445 | | | | | | | |
| RT | 72 Cb | 576 | 57 C | 578 | 699 | | | | | | | |
| RTWO | 72 CO | 568 | 223 | 530 | | | | | | | | |
| RRT1 | 72 CE | 582 | 586 | | | | | | | | | |
| RR | COFA | 121 | 206 | 377 | | | | | | | | |
| TM | CCFE | 122 | 207 | 378 | | | | | | | | |
| TNF | 7059 | 278 | 393 | 442 | | | | | | | | |

| INSTRUCTICN | CCUNT |
| :---: | :---: |
| ADC | 9 |
| AN C | 9 |
| ASt | 6 |
| BCC | 15 |
| BCS | 6 |
| AEG | 11 |
| AIT | c |
| en I | c |
| BAE | 33 |
| $B P L$ | 5 |
| PRK | 1 |
| BVC | 0 |
| RVS | c |
| CLC | 4 |
| CLC | 1 |
| CLI | 1 |
| CLV | 0 |
| CNP | 11 |
| CPX | 1 |
| CPY | 0 |
| DEC | 6 |
| OEX | 8 |
| CEY | 1 |
| ECR | 4 |
| INC | 7 |
| INX | 0 |
| INY | 2 |
| JNE | 9 |
| $J 5 R$ | 89 |
| LCA | 65 |
| LCX | 24 |
| LOY | 4 |
| LSR | 13 |
| NCP | 0 |
| ORA | t |
| PrA | 18 |
| PrP | 4 |
| PLA | 23 |
| PLP | 4 |
| RCL | 0 |
| RTI | 1 |
| RTS | 15 |
| SPC | 2 |
| SFC | 3 |
| SED | C |
| SEI | 0 |
| STA | 45 |
| STX | 11 |
| STY | 2 |
| tax | 4 |
| TAY | 4 |
| TSX | 1 |
| TXA | 5 |
| T $\times 5$ | 2 |
| TYA | 5 |

SYNBCL TABLE

| SYMBDL | VALLE | definec | | | CRCSS-REFERENCES | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\triangle C C$ | COFG | 120 | 14 C | 154 | 227 | 376 | | | | |
| $\triangle C M D$ | OOEC | 112 | 246 | 248 | 253 | | 511 | | | |
| ALR S | 710 | 316 | 247 | | | | 511 | 749 | 1. | 774 |
| ALTER | 713 A | 351 | 316 | | | | | | | |
| ASCII | 7358 | 673 | 56 C | 564 | | | | | | |
| ASCX | 7372 | 689 | 68% | 685 | | | | | | |
| \triangle Cl | 7361 | 679 | 676 | | | | | | | |
| A2 | 7146 | 357 | 355 | | | | | | | |
| A3 | 714 E | 359 | 352 | | | | | | | |
| A4 | 7150 | $3 \in 2$ | 358 | | | | | | | |
| A5 | 7152 | 363 | 365 | | | | | | | |
| A9 | 715 A | 366 | | | | | | | | |
| eccst | 7238 | 478 | 436 | 483 | 516 | | | | | |
| EEQS1 | 7134 | 345 | $36 t$ | 399 | 516 | | | | | |
| ex | 7081 | 227 | 198 | | | | | | | |
| Erte | 70EC | 285 | 364 | 410 | | | | | | |
| $8{ }^{8} 2$ | T0F 2 | 297 | 298 | | | | | | | |
| EY3 | 70F5 | 298 | 286 | | | | | | | |
| 83 | 7058 | 2 Cl | 142 | | | | | | | |
| 85 | 7073 | 215 | | | | | | | | |
| CNDS | 7106 | 309 | 235 | | | | | | | |
| CROLY | COE? | 1 C 4 | 163 | 531 | | | | | | |
| CRLF | 7281 | 528 | 215 | 233 | 385 | 438 | 487 | | | |
| CR1 | 7293 | 532 | 534 | | | 436 | | | | |
| CADD CAVAIL | 7276 0008 | 518 85 | 297 | 402 | 405 | 408 | 456 | 459 | 462 | 468 |
| CAVAIL DCNP | 0008 | 85 262 | 66 C | | | | | | | |
| CIFF | COES | 262 106 | 417 | 447 269 | 476 450 | 514 | | | | |
| CLX | 733 C | 657 | 26. | 269 | 45 C | | | | | |
| CLY ${ }_{\text {cle }}$ | 732 C | 636 | 611 | ¢ 35 | | | | | | |
| CLYz | 7315 | 635 | 532 | 576 | 583 | 614 | 631 | | | |
| CL2 | 7328 | 643 | | | | | 831 | | | |
| Cl3 | 7328 | 645 | 64 t | 651 | | | | | | |
| ESFLYM | 7116 | 334 | 318 | | | | | | | |
| CSPLYR | 7114 | 330 | 317 | | | | | | | |
| ERROPR | 708 A | 258 | 25 5 | 347 | 419 | | | | | |
| ERRP1 ERRS 1 | 71 PF | 419 | | | | | | | | |
| FLGS | COF 8 | 347 119 368 | 335 205 315 | | 374 | | | | | |
| GC | 715 C | 368 | 319 | | 37 | | | | | |
| GOTDAT | $\mathrm{CCC4}_{4}$ | EE | 665 | | | | | | | |
| -EXIT | 73 ER | 782 | 766 | 773 | | | | | | |
| Hexca | 73 F 5 | 788 | 786 | | | | | | | |
| HSP | $716 F$ | 381 | 32 C | | | | | | | |
| +SPTR | COE7 | 107 | 155 | 231 | | 398 | 601 | | | |
| HSROP | CCE8 | 108 | 156 | 381 | 386 | | 601 | | | |
| IJMP | 7084 | 2 \%3 | 25C | | | | | | | |
| INCTMF | 7397 | 719 | 298 | 47 C | 5 Cs | | | | | |
| INCT1 | 739 C | 723 | 72 C | | | | | | | |
| INTRQ | 7052 | 154 | 795 | | | | | | | |
| IATVEC | 73 F 8 | 792 | 149 | | | | | | | |

B-19

$$
\mathrm{B}-20
$$

0
(

General Design

This PC Board combines two functions needed by microprocessors, the ability to output data and messages on a low-cost TV set, and the ability to reliably store, retrieve, and exchange programs or data at low cost. The TV Readout will display 1024 characters, 16 lines of 64 characters per line, with upper and lower case alpha characters, Greek alphabet, math symbols, and special characters. The characters are formed from a 7×13 matrix of dots, producing easy to read characters with a normal height to width aspect ratio.

The cassette section provided circuits for recording data as well as receiving data previously recorded. Frequency Shift Keying is utilized, 2125 Hz being the Mark of " 1 " frequency, and 2975 Hz used as the space or " 0 " frequency. The frequency shift keying system gives a better signal/noise ratio and the wide spacing of the harmonically unrelated frequencies permit the use of low cost home cassette recorders in spite of their generally poor "wow" and "flutter".

Software parallel to serial conversion systems are used for record, and software serial to parallel conversion systems for data playback. These software conversion systems permit complete flexibility in Data rate (from near \varnothing to 1000 bits per second), Codes utilized (ASCII, Baudot, etc.), and Error checking (Parity, CRC, etc.) inclusion.

IV Readout Description

The TV Readout consists of five interacting sections. They are Memory, Character Generation, Composite Video Output, Read Clock, and Write Clock. The memory section consists of seven 2102 A or faster 1 K memories, giving a possible storage of 1024 seven bit ASCII characters. The microprocessor, keyboard, or some attached circuit writes the characters one by one into the 2102 's, and then the TV Readout continuously displays these characters until either more characters are entered, or the circuit is turned off.

The character generation circuit consists of two $I C^{\prime}$'s, the MCM6571L character generator, and 74165 parallel to serial converting shift register. the 6571 takes the seven bit ASCII character coming from the memories and outputs 7 dots making up a character row for each of 13 potential rows making up each character. The 74165 loads these 7 dots coming out at a time into its internal memory, and then outputs these one at a time for serial transmission to a TV set. For more information on TV character generators, I would suggest reading an excellent article by Don Lancaster in June, 1974 Radio-Electronics (p. 48-52).

The video output section uses a 74151 data selector, a 7401 open collector NAND gate and a driver transistor to produce a low impedence composite video signal. The 74151 permits selecting either white characters on a black background, or black characters on a white background. In addition extermal binary level video (such as IV graphics) may be selected/inverted. The IV output is around 2 volts peak to peak with about a jolt horizontal and vertical sync and blanking pedestal.

The Read Clock is the master control of the various sections. Starting from an initial frequency of 11.980 MHz , a countdown chain of three 74193^{\prime} s (IC's 26, 25, and 37) produce and 8μ s horizontal sync when gated by $1 / 6$ IC2, $1 / 2$ IC27, $2 / 3$ IC29, and $1 / 4$ IC28. A $20 ~ \mu s$ horizontal blanking circuit prevents loss of characters at the edges of the screen and is produced by the gating action of $3 / 4$ ICl7, $1 / 6$ IC2, and $1 / 3$ IC29. The resultant horizontal frequency is $15,598 \mathrm{~Hz}$, somewhat lower than the standard $15,750 \mathrm{~Hz}$, but usually only requires trimming horizontal hold slightly if at all.

The vertical countdown chain uses three more 74193^{\prime} s (IC's 1,15 , and 5) to obtain a final vertical frequency of 60 Hz , syncronous with the AC line to avoid hum roll and wobble problems on low cost TV's. 3/6 IC7 and IC8 produce an 820μ s Vertical sync pulse, $2 / 3$ IC6 gives a $\div 22$ gating to IC's 15 and 5 , and the $1 / 6$ IC7 produces a 3.5 ms Vertical blanking pulse.

A special feature of this TV Readout board is its ability to be externally syncronized to an external video timed base. This permits syncronizing the microprocessor's video countdown chain to an external video source such as a TV camera or a commercial TV program for titling, "Frame Grab", etc. operations. The horizontal countdown chain is syncronized by a short negative going pulse applied to connector pin U which will reset the horizontal counters and the horizontal sync pulse. The Vertical chain is reset by applying a short negative pulse to connector pin V.

The various Read clock timings are brought out to the connector so that external video based systems (such as graphics) may be easily coupled with this TV system. As if these operations weren't enough, various timings from the Read Clock also tell which of the 13 rows, which make up each character, is being currently accessed, and loads the 74165 when the row of 7 dots is available from the 6571 . The 11.980 MHz signal then shifts out 8 dot peroids (the 8 th one is a horizontal space between characters) before the next dot load command occurs. All of these timings are very critical during the design phase, but the builder should have no problems, since no adjustments are needed. The Read Clock also controls which of 1024 characters is currently being inputed to the 6571 for dot encoding, except during Write clock times.

I thought you'd never ask about the Write clock. Well, it controls the entry of the characters from whatever external source into the 2102 memory bank. Several alternatives in character entry are possible. However, this design tries to be as simple as possible, yet give the user a very capable unit, particularly when using a microprocessor, or even mini, midi, or maxi processors.

A sequential entry system is utilized. A Home Reset control signal is developed by IC22 when it detects the 7 character defining input lines high ("1"). IC's 23, 13, and 3 are then preset so that the next character to be entered will result in its being displayed as the top leftmost character on the screen. The 2nd character will be viewed to the right of the first,.... until on the 65 th character a new line appears, displaying the 65 th character. Up to 1024 characters are thus sequentially entered and displayed. If a 1025 th and following characters are entered, an overwrite condition results, with the new page load displayed from the top
leftmost, the former character overwritten "gone forever". The display may be reset at any time. Screen erase consists of either 1024 or more ASCII "spaces" (Octal 240) and an ASCII (all bits on (either a 177 or a 377)), or an ASCII and exactly 512 ASCII spaces, the latter being preferable.

Memory writing occurs when the MSB goes high. The 74157's then allow the 74193 's IC23, 13 and 3 in the Write Clock to control the memory address lines on a priority interrupt basis. 600 ns later, a 600 ns strobe pulse writes the new character into memory.

There is a parallel logic path to step the Write Clock address forward or backward without writing a character. This produces a "Pseudo Cursor" effect without the usual expense of a number of comparators, etc. A software "blink" may be easily implemented with a final result indistinguishable from a hardware cursor. The "Pseudo Cursor" logic consists of $1 / 4$ IC16 and IC38 which detect the presence of an LSB, toggling the Write Clock 74193 's up in count without firing the 74L123 (IC20) Write Strobe if not simultaneously brought high (indicating character entry then, of course). LSB +1 high without the MSB toggles the Write Clock 74193's down in count, which backs up the cursor.

A 74122 (IC39) produces a short pulse each time the MSB is brought high, thereby blanking the screen while the memory updating process is taking place. This reduces the glitches appearing on the screen when high rate updating occurs. The only way to completely eliminate the glitches would be to only update during the Vertical blanking pulse, but this would seriously downgrade performance in some critical operations.

Cassette Interface Circuit Description

The previous 512 character Digital Group TVC used a tunable oscillator which required careful alignment. This requirement has been eliminated by using a digital frequency synthesizer countdown chain. The TV master oscillator is divided by either 5650 or 4030 to get the 2125 or 2975 cassette frequencies. The actual frequencies are a few Hertz low, but well within tolerances. The main cassette countdown chain consists of IC's 45, 46, and 43. IC49 is used to gate an early reset to achieve the 2125 tone, and IC48 gates an early reset for 2975 . The actual output of this chain is 10 times too high, and the 7490 (IC42) provides a : 10 smoothing and squaring function. A logic level input at pin 18 on the connector controls the resultant audio frequency at output pin 10. A high input ("1") produces a 2125 Hz output, and a low output (" \emptyset ") results in 2975 Hz . The output wave shape is a symetrical square wave. The 47 K (R13) resistor in series with the output is a typical value to be used when coupling to the low level, low impedence external microphone inputs of most cassette recorders.

The cassette receive circuitry detects the prerecorded frequency shift keying and produces a " 1 " or a " \varnothing " output as a result of a detected 2125 Hz or 2975 Hz tone at the input. IC40 is a clamped limiter which prevents variations in amplitude from affecting the resultant detection process. The output of IC40 should be about 1.2 volts $p-p$, roughly a square wave of the incoming frequency, constant in amplitude regardless of tape volume setting or minor tape "dropout" problems.
po box 6528 denver, colorado 80206 (303) 777-7133

Two bandpass active filters then amplify a tone 5 times when actually tuned to their respective frequencies of 2975 Hz for the top filter and 2125 Hz for the lower filter. The further off the tuned frequency the tone is, the less amplification the filter will produce. The actual resonance points of the filters may be easily adjusted by merely trimming the multiturn potentiometers in each filter.

Full wave active detectors produce rectified full wave pulses at the summing junction, pin 5 of IC47. The 2975 Hz tones are rectified + , and the 2125 Hz tones are rectified -. As tones depart from either exact frequency, a value less + or - is produced until approximately midway a summed voltage of \emptyset results.

A 3-pole lowpass active filter then removes the remaining traces of pulsating DC from the summed signal with almost no effect on the data pulses up to a speed of 1000 bits per second. If lower data rates were to be utilized, an improved signal to noise ratios could be obtained by multiplying the values of C35, C37, and C38 by the reciprocal of the data rate difference. I doubt you would notice any operational difference, however.

The final section is a slicer connected 741 (IC51). This op amp detects whether the voltage at its pin 2 is + or - with respect to the constant voltage at its pin 3 . The output voltage will then swing either to nearly +5 or to nearly -12 . A forward biased germanium diode prevents the actual output voltage from going less than $=-.2$ volts, so that valid TTL levels are not exceeded. An offset adjusting pot allows the output to be placed in a "Mark Hold" condition when no tone input is being detected. $2 / 47400$ (IC50) provides output TTL level buffering, and allows data inversion by tapping the output to the pin 11 section if a customized circuit required this modification.

Construction

Tools: Fine tipped, low wattage soldering iron, "wire solder" (around 20 gauge resin solder), small diagonal cutters.

Test Equipment: Ohmeter
Audio Generator helpful
10 MHz or better triggered sweep oscilloscope
Frequency Counter
Microprocessor, Mini, etc.
Estimated Construction Time: $3-6$ hours

1. Insert the 24 -pin socket, 58 -pin sockets, 2816 -pin sockets, and 17 14-pin sockets into the PC board. If the sockets have a keyway indication, orient this away from the connector. Note: the top side of the board is indicated by The Digital Group label.
2. Invert the board and carefully solder in the sockets. A special plating process is used by The Digital Group to minimize solder joint troubles. We would suggest a "warmup area" by starting with the cassette interface sections of the card.

3. Insert and solder the 17 resistors in the TV Readout section enclosed by the +12 bus line. Insert and solder the 22 resistors in the cassette section.
4. Insert and solder the zener diode, the germanium diode, and the 8 silicon diodes. Note: all of the diodes are oriented with their cathode or "bar" end oriented towards the right.
5. Insert and solder the output transistor in the TV Readout section.
6. Insert and solder the two 220 pfd and the 330 pfd and the 100 pfd condensers in the TV Readout section.
7. Insert and solder the fourteen condensers in the Cassette Interface section.
8. Insert and solder the three potentiometers in the Cassette section. Note that the potentiometer is a 50 K , the other two are long multiturn 500 ohm units.
9. Insert and solder the various bypass condensers in the TV Readout section. Note: the positive (+) end of the dipped tantalum condensers is indicated by the vertical marking (paint strip) along one side. Additional holes have been provided between IC's 9 and 30 for additional input bypassing with $50-200 \mathrm{pfd}$ condensers if your installation so requires.
10. Trim the crystal socket's pins as shown to fit into the crystal holes. Pin view:

Result:

Press the rear tab into the board hole provided for it. Solder the pins and the rear tab.

The socket provides a space-saving flat mount as well as avoids soldering to the heat-sensitive crystal.
11. At this point, measure the resistance between ground (pin 20) and the other voltage supply pins $(19,21, \& 22)$. A very low resistance indicates a bad bypass or a solder bridge short somewhere.
12. Insert the $I C^{\prime}$'s in the TV Readout section except for the memories ($2102^{\prime} \mathrm{s}$) and the MCM6571L character generator. The notch or pin 1 end of each IC should be oriented away from the connector end of the board. Measure the resistance between pins $19 \& 20$, noting the value. Reverse the ohmeter leads and remeasure. A shorted reading indicates a bad IC, and near equal readings indicates a reversed IC.
13. Temporarily groung pin 1 of the TV readout and connect a TV set modified for direct video, or a commercial TV monitor, between pins 16 (video) and 20 (ground).
14. Putting a +5 voltage between pins $19(+)$ and 20 (Ground) should result in 64 vertical white columns on the screen. Refer to "Troubles" section if this does not happen.
15. Connect the other ± 12 supplies, and turn on power again. Measure the voltages on pins 1, 2, and 3 of the MCM6571L socket. They should measure $-5,+5$, and +12 respectively.
16. Plug in the 2102^{\prime} s and the 6571. The temporary grounding jumper to pin 1 should still be connected as well as the TV monitor. Turning on power this time should result in a random display of 1024 characters on the screen. The actual character at each location is determined by the chance bit structure at the memory locations. Remove the temporary grounding jumper from pin 1 when done with this test.
17. Complete testing of the TV Readout is best performed under microprocessor control, and sample diagnostic programs are included with The Digital Group Systems. "Breadboard diagnostic testing" may be accomplished by temporarily tieing each of pins $2-8$ to +5 through a 1 K resistor. Tie pin 1 to the output of a simple oscillator such as shown below:

Grounding pins $2-8$ to ground should produce:

pin to ground Character

| 8 | \sim |
| :--- | :--- |
| 7 | $\}$ |
| 6 | 亿 |
| 5 | w |
| 4 | o |
| 3 | ? |
| 2 | |

18. Plug in the twelve $I C^{\prime} s$ in the Cassette section.
19. Connect a calibrated frequency counter between pin 10 and ground.
20. Apply +5 and ± 12 voltages to the board. With the Cassette Write input pin 18 open or tied to +5 , the frequency counter should read approximately 2120 Hz .

21. With voltages still applied, ground input pin 18. The frequency counter should now read approximately 2970 Hz . This completes cassette write
22. Jumper pins 10 and 9 together.
section as a master oscillator this permits using the Write Cassette Measure the output at pin 6 of the 741 limiter (IC40) with an oscilloscope counter should rea from ground to connector pin 18, (the frequency the 5558 active bandpass filter (IC41) meare the output at pin 7 of (R30-the pot in the right corner) until then the 2975 trimmer pot leave at this point.
23. Move the jumper on connector pin 18 from gorund over to +5 . The frequency counter should now read about 2120. Measure the output at pin 1 of IC41. and leave at this (R29-the middle pot) until the signal exactly peaks,
24. Measure the detected voltages at pin 5 of IC47. When the input frequency approaches 2125, the output should go - . When approachit the output should go + . Trouble in this area . When approaching 2975, by reversed or defective diodes, or adjacent line shorts. likely be caused
25. Measure the voltage at the
germanium diode (G1). If cathode (bar) end of the output clamping audio oscillator. Sweeping thed, remove the jumpers and attach an result in a clean voltage jump srequency between 2125 and 2975 Hz should that the negativemost voltage somewhere between 2125 and 2975. Be sure
(point is about -. 2 volts.
to ground. Measure theen pins 9 and 10 and short input pin 9 temporarily condition (no oscillation) should pin 6 of IC40 again. A stable to the cathode of Gl again. the small leftmost pot) clockwi Adust the balance potentiometer (R18 Slowly turn the potentiomeckwise so that the voltage is at a - level. + and leave setting at this point.
26. Disconnect the temporary jumper from conn\#ector pin 9 and reconnect the audio oscillator. Perform step 24 again. If all proceeds well at this point, the cassette interface is ready to receive data.

Troubles - General

1. One of the more difficult troubles to find is an IC pin which was bent under the IC when it was inserted. Any unusual pressure when inserting an IC should be investigated.
2. Every pin should be soldered. The most frequent cause of trouble is parallel rows of pins usually finds any that are not soldered.
3. When troubleshooting with a 'scope probe, measure from the top side of the IC, not the bottom, to eliminate a bent under pin problem or defect socket from misleading.
4. Before ever plugging in any IC's, always measure the voltages at the PC board and at the pins of the more expensive IC's, like the 6571.
5. When handling IC's, avoid static charges. Run your house humidity high, and ground yourself ty touching a grounded chassis before touching IC's.
6. Beware of solder splashes and drilling errors. Please inform The Digital Group of board manufacturing errors that you detect. A flashover or splash on the topside would be very difficult to find after soldering the sockets. The black socket body of the sockets used in The Digital Group kits may be pried off after removing the IC should a hidden splash be suspected.
7. Beware of shorts in the cassette area between component leads and underlying circuitry.

Specific Troubles

No white colums on the screen at step 14 .

1. Bad connection between connector pin 16 and TV.
2. Temporary jumper from connector pin 1 to ground not connected.
3. Crystal not oscillating. Check for pulses at pin 1 of IC16.
4. Horizontal Countdown chain defective. Successively measure output at pin 3 of $I C^{\prime}$ s 26,25 , and 37 . Each should be progressively lower in frequency.
5. Vertical Countdown chain defective. As above \#4, but measure $I C^{\prime}$ s 1. 15 , and 5 .
6. Defective video mixer. Look for pulses at pins 1 and 13 of IC19.

Poor or lacking syncronization at step 14.

1. TV is overloaded by the $=3$ volts of video. Swamp the video with a 10 ohm resistor to see of sync $\&$ video stabilizes.
2. Check for Horizontal and Vertical sync and blanking pulses at connector pin 16. A 75 ohm load should be attached. The pattern should look like:

a. If Horizontal Sync is defective, check IC's $2,27,28$, and 29.
b. If Vertical Sync is defective, check IC's 7 and 8.
c. If Horizontal Blank, check $I C^{\prime}$ s 2,17 , and 29.
d. If Vertical Blank, IC7.

No characters at step 16.

1. Missing voltages at the MCM6571 (IC11).
2. Defective Character generator.
3. Defective 74165 (IC10) or 74157 (IC18).
4. Defective logic signals to and from IC11 and IC10. All inputs and outputs should be pulsing at valid TTL levels (\varnothing to .8 volts $=$ low/ 2 to 5 volts $=$ high).
5. Pins 11 and 10 of 74151 (IC1B) not at +5 .

Wrong character (s) in display

1. Miswired or misjumpered input.
2. Defective Memory IC. Note: the bit difference between the intended character. IC30 is the memory for the Least Significant Bit (LSB) of the character... and IC36 is the Most Significant Bit's (MSB)
3. Defecti
4. Shorted $74157(\mathrm{~s})-I C^{\prime}$ s 24, 14, and 4.
"Twinkling" character on TV
5. Slow memories. 500 nanoseconds or faster 2102^{\prime} 's must be used.
6. Overheated memories. Access times increase with heat.
. Slow 6571L - none seen so far, but possible.
Uneven lighting of leading and trailing edges of characters, esp. "H".
7. Monitor bandwidth too low produces a dim left side of H, bright on the horizontal bar part.
8. Incorrectly high peaked monitors give an excessively bright left edg to characters such as " H ".
9. Dim right side of " H " and other characters may be monitor or may require increasing the clock lag condenser (IC43) in value. Too high of a value will reduce the left side of characters such as "H".
Won't write characters
10. Missing Storbe pulse, or continuous level on MSB input (connector pin 1).
11. No Write pulse from 74L123 (IC20). Measure at pin 12 of IC20, looking for an $\approx 600 \mathrm{~ns}$ negative going pulse. Connecting the MSB (connector pin 1) to $a \approx 50 \mathrm{KHz}$ TTL clock will permit viewing on lower cost oscilloscopes.
12. Write Clock not toggling. to MSB, look for pulses at pin 3 of $I C^{\prime}$, 23,13 , oscillator inputing
13. Defective Read/Write Multiplin of IC's 23, 13, and 3.

Extraneous Characters

1. Noise on the input lines to the memory, particularly on the MSB (connector pin 1). Pads for C1, C2, and C3 - small pfd condensers used on the input line to suppress most noise sources. This trouble is addressed.
2. Is adaressed

Data must be character generator faster than it can handle. strobe. Faster data rates can beconds following the rise of MSB condensers in the 74 L 123 (IC20) Writaled by reducing the value of the natively, a data hold lerput to the readout. loop consisting of NOP's can slow the data out-
3. Defective or slow memories.
character to determine if a Look at the bit pattern of the extraneous
4. More bypassing requine if a single memory is bad.
at the top of the TV Readou number of unused voltage bypassing pads your particular system require them. have been included should

1. None at all: Check for ± 12 to IC40.
2. Too high output level. Diodes (S3 and S4) open or one is reversed.

Bandpass Active Filter Problems

1. Check by sweeping with audio oscillator for proper range.
2. Swap 5558 (IC41) with IC's 44 and 47.
3. Check for shorts or out of tolerance (5\%) condensers C30, C31, C32, or C33. Disc ceramics are a no-no in tuned circuits!

Full Wave Detector

1. Diodes open, reversed or shorted.
2. Defective 5558 (IC44).

Low Pass Active Filter

1. Shorted or out of tolerance condensers.
2. Defective IC47.

Output Slicer (IC3B)

1. Reversed, open, or not Germanium diode at Gl.
2. Defective or missoldered resistors in pin 3 circuitry of 741 (IC51).
3. Defective 741 (IC51).

IC's
IC30,36
IC11
IC9, 17, 28, 50
IC19
IC16
IC2, $7-4-$ MCM6571L
IC6, 29
IC27
IC8, $22,48,7400$
IC42 49

Capacitors
C4, 5
C43
C24
C35
C30 - C33
C37
C38

Bypass Capacitors
$24-.01 \mathrm{mfd} \mathrm{disc}$
$4-1$ mfd tantalums

Crystal

$1-11.980 \mathrm{MHz}$
$\frac{\text { Misc }}{5-8}$ pin sockets
17 - 14 pin sockets
28-16 pin sockets
1-24 pin sockets
1 - crystal holder
1 - documentation
$\frac{\text { IC's }}{\text { IC39 }}$
IC20, 38
IC18
IC4, 14, 24
IC10 1 - 74165
IC1, $3,5,12,13,14-74193$
$15,21,23,25$, $26,37,43,45$ 46
IC40, 51
IC41, 44, 47
$\frac{\text { Diodes }}{S 1-S 8}$
1-100 pfd mica
2-220 pfd mica
G1
1-330 pfd mica
1 - 1000 pfd mica Z1
1 - . 0047 mylar
4 -. 01 polystyrene T1
(may be marked 10000)
1 -. . 01 mylar
1 -. . 015 mylar
$\frac{\text { Resistors }}{\text { R11 }}$ all $\frac{1}{4}$ watt 58 unless noted
1-22 ohm
R12
R31
R1, 2, 10
R28
R32
R5, 42
R6, 7, 8, 9, 14
R22
R3, 4, 22

1-220 ohm
1-390 ohm
3-470 ohm
1-470 ohm $\frac{1}{2}$ watt
1-620 ohm
2-1K
$5-2.2 K$
$1-4.7 \mathrm{~K}$
$3-6.8 \mathrm{~K}$

```
Resistors
R16, 17, 19, 20, 21, 26, 11 - 10K
    27, 35, 36, 37, 38
R15 1 - 33K
R13, 24, 25,33 4-47K
R34
R39, 40, 41 3-100K
R29,30 2 - 500\Omega trimpot
R18 1 - 50K pot
```

8 - IN914 or 1N4148
1-1N48 or eq.
Germanium
1-5V 1 watt zener
(1N4733 or eq.)
1 - $2 \mathrm{~N} 5129 / 2 \mathrm{~N} 2369$

Front of Board

Pin Side of Board

| Pin | Function |
| :--- | :--- |
| A | P |
| B | A |
| C | B |
| D | C |
| E | Dorz |
| F | E |
| H | N |
| J | G |
| K | H |
| L | I |
| M | J |
| N | L |
| P | M |
| R | Data Inv |
| S | H Preset |
| T | V Preset |
| U | Graphic Input |
| V | Graphic Select |
| W | not used |
| X | |

the eligitelgroup

This 512 to 1024 character upgrade kit permits using most of the 512 character IC's in addition to a new board, sockets, resistors, condensers and miscellaneous parts to achieve a 1024 character TV readout.

Steps:

1. Remove all IC's from your 512 board except IC27 (74 L 00), IC23 (74123), and IC33 (566).
2. Add the 34 IC's just removed to the IC's supplied with the 1024 character upgrade kit.
3. Continue with regular 1024 character readout directions.

| | | IC's | |
| :---: | :---: | :---: | :---: |
| (IC30, 36) | 7 - 2102-1 or better | IC39 | 1-74122 |
| (IC11) | 1 - MCM6571L | IC20, 38 | 2-74L123 |
| IC9, 17 (28, 50) | 4-7400 | IC18 | 1-74151 |
| (IC19) | 1-7401 | (IC4, 14, 24) | 3-74157 |
| IC16 | 1-7402 | (IC10) | 1-74165 |
| (IC2, 7) | 2-7404 | IC1, 3, 5, 12, 13, | 14-74193 |
| IC6, (29) | 2-7410 | $15,21,23,25$ | |
| (IC27) | 1-7420 | $(26,37,43,45$, | |
| IC8, 22, $(48,49)$ | 4-7430 | 46) | |
| IC42 | 1-7490 | $\begin{aligned} & \text { (IC40, 51) } \\ & \text { (IC41, 44, 47) } \end{aligned}$ | $\begin{aligned} & 2-741 \\ & 3-5558 \text { or LM1458 } \end{aligned}$ |
| Capacitors | | Diodes | |
| C2 | 1 - 100 pfd mica | S1-S8 | 8 - 1N914 or 1N4148 |
| C4, 5 | 2-220 pfd mica | G1 | $1-2 N 48$ or eq. |
| C43 | 1-330 pfd mica | | Germanium |
| C24 | 1 - 1000 pfd mica | Z1 | $1-5 \mathrm{~V} 1$ watt zener |
| C35 | $1-.0047$ mylar | | (1N4733 or eq.) |
| C30 - C33 | 4 - . 01 polystyrene (may be marked 10000) | T1 | 1-2N5129/2N2369 |
| C37 | $1-.01$ mylar | | |
| C38 | 1 - . 015 mylar | | |

$\frac{\text { Bypass Capacitors }}{24-.01 \mathrm{mfd} \text { disc }} \quad \frac{\text { Misc }}{5-8}$ pin sockets
4 - 1 mfd tantalums 17 - 14 pin sockets
28-16 pin sockets
$\frac{\text { Crystal }}{1-11.980 \mathrm{MHz}}$

1-24 pin sockets
1 - crystal holder
1 - documentation

Resistors - all $\frac{1}{4}$ watt 58 unless noted

| R11 | 1-22 ohm | Resistors | |
| :---: | :---: | :---: | :---: |
| R12 | 1-220 ohm | R16, 17, 19, 20 | $11-10 \mathrm{~K}$ |
| R31 | $1-390$ ohm | 27, 35, 36, 37 | |
| R1, 2, 10 | 3-470 ohm | R15 | $1-33 \mathrm{~K}$ |
| R28 | 1-470 ohm 12 watt | R13, 24, 25, 33 | 4-47K |
| R32 | 1-620 ohm | R34 | 1-68K |
| R5, 42 | 2 - 1 K | R39, 40, 41 | 3-100x |
| R6, 7, 8, 9, 14 | 5-2.2K | R29, 30 | $2-5008$ |
| R22 | $1-4.7 \mathrm{~K}$ | | trimpot |
| R3, 4, 22 | 3-6.8k | R18 | 1 - 50 K pot |

() indicates IC's removed from 512 Character Readout and Cassette Interface

TE DIGTRL QnOUP
1024 CHRACTER TV READOUT
CISSETTE INTERACE

 -
 $\mathrm{F}^{2 \times 14^{56}}$
min = =

2 $8,9,10,11,-p$ ply
FULL WAVE DETECTORS
PB
100 K

CASSETTE READ

* means that the value so indicated is the typical calculated value. The precise value is dependent on component tolerance.

Table 1: Theoretical values of components for alternate frequencies. This table glves values of components to be used with the circuits of figures 1 and 2 in order to make this cassette interface work with several alternate specifications. See the text for a definition of the various comments at the left of the table.

Potential Troubles

Knowing about potential problem areas is a first step to minimization of their effects. Troubles seem to break down into six classes.

- Cossette recorders and the cassettes used: A marriage betweenyour $\$ 1000$ microprocessor and junior's \$20 cassette recorder, which has been using $30 d$ cassettes for the last five years, will not produce happy offspringl I have been using a Superscope C-104 for the past year, and can report no failures except for defective casserte tapes. The C-104 has several attractive features. Besides the usual conveniences such as index counter, cuing. etc, it has a variable readback speed control, dandy for out of spec cassettes from friends. Inside, another special motor speed control potentiometer is located near the speaker which allows precisely setting the record/write speed. Quality control seems good overall, and the list price of $\$ 120$ (cheaper at discount stores) is worth the investment. Don't waste your money on cheap cassettes. Sony Low Noise C-45s have been generally good. Some \$2 - \$4 Data Certified Cassettes are superior, but not needed.
- Microprocessor caused problems: Some microprocessor designs will not work directly with this interface system. This interface was designed to be connected directly to a single bit 10 port, with the processor handling all of the bit timings through timing loops. If your processor must periodically catch its breath for such things as dynamic memory refreshing, you may be unable to directly use the "Software UART" system. What a shamel However, a hardware UART will permit using the system even with a system of this nature. - Cabling problems: It is possible to connect your cassette recorders with the read and write cables reversed. Enough crosstalk from the write line to the read limiter existed to give the appearance of data being read, but so many errors resulted that the programming would not run. - Tuning problems: Circuit tuning is the most common problem. Carefully tune the sctive filters! - Cassette Crashes: Cassette damage is frequent
on tapes which have always worked before, but now mysteriously fail. The most common cause of this is removing a cassette from the recorder without completely rewinding. The exposed oxide then gets damaged, and is no longer usable.
- Miscellaneous circuit problems:

Defective level output from cassette read limiter.

1. None at all: Check for $\pm 12 \mathrm{~V}$ to IC34, and IC34.
2. Too high output level: Diodes (DS4 and DS5) open, or one is reversed.
Bandpass active filters don't filter.
3. Off frequency
4. Bad 5558
5. Check for shorts or out of tolerance condensers C8, C9, C10, or C11. Disk ceramics are a "no-no" in tuned circuits.
6. Resistors improperly wired or inserted.

Full wave detector does not work as described:

1. Diodes open, reversed or shorted.
2. Defective IC36.

Low pass active fitter fails to work:

1. Shorted or out of tolerance condensers.
2. Defective IC37.

Output slicer (IG38) fails to produce TTL levels:

1. Reversed, open or not Germanium diode at DG1.
2. Too heavily loaded output. This circuit should drive no more than one TTL load (standard for most IO ports).
VCO won't oscillate.
3. Defective 566 (IC33).
4. Shorted condenser C6.

VCO has parasitic oscillation (high frequency):

1. C7 not connected.
2. Defective 566.
3. C6 is open, producing a very high frequency.
VCO won't tune to frequency or stay there:
4. Out of tolerance or defective C6, You really didn't use a disk ceramic here, did you?
5. Defective 566 .
6. Non-TTL levels used to drive VCO.
7. Defective potentiometers R40 or R41.
8. DS1 or DZ2 reversed or defective.

Listing 1: Stand Alone Suding Cassette Input Program. This program is a self contained data transfer routine which will transfer a block of dota from cassette to split octal memory locations $x x x / x x x$ through yyy/000. This program assumes that MEMTOCAS (see listing 2) wos used to create the tope being read. A more generally useful input facility would be modelled on this program and Ilnked to a system monitor as a subroutine.

Listing 2: Stand Alone Suding Cassette Output

 Program. This program is a self contained data transfer routine which will transfer a block of data from split octal memory locations $X x x / X x x$ through yyy/000 onto cassette tape after a five second leader output delay. This program assumes that CASTOMEM (see listing 1) will be used to read the tope being created. A more generally useful output facility would be modelled on this program and linked to a system monitor as a subroutine.

Figure 2: The schematic of the Suding cassette output Interface as found in the Digital Group systems. The output interface is a simple audio frequency shift keyer made up of a 566 voltage controlled osclllator with two frequency states controlled by a single TTL data line. The TTL level which drives the output modulator is a single bit derived from an output port. The software (see listing 2) to drive this output interface is shown as a programmed simulation of a UART output algorithm; an actual UART or ACIA device
negative is produced until approximately midway (2550 Hz) a summed voltage of 0 results.

A three pole lowpass active filter then removes the remaining traces of pulsating DC from the summed signal with almost no effect on the data pulses up to a speed of 1000 bits per second. If lower data rates were to be utilized, an improved signal to noise ratio could be obtained by multiplying the values of $\mathrm{C} 12, \mathrm{C13}$, and C 11 by the reciprocal of the data rate ratio. Table 1 shows some component values for alternative frequency designs.

The final recelver section is a 741 operational amplifier, IC38, connected as a slicer. This operational amplifier detects whether the voltage at its pin 2 is positive or negative with respect to the constant voltage at its pin 3. The output voltage will then swing either to nearly -12 V or to nearly +5 V . Notice that this operational amplifier has +5 as its positive supply voltage, pin 7. A forward biased germanium diode prevents the actual output voltage from going less

Tune Up Notes

The carsette interface must be carefully tuned to achieve proper performance. Careless tuning has been the most frequent cause of cassette system
failure. failure.

1. Plug in the six integrated circuits of the cassette interface.
2. Connect a calibrated audio oscillator between the limiter input and ground. A digital frequency counter driven by the audio oscillator is highly recommended. The oscillator should cover the desired range of $2-3 \mathrm{kHz}$, with a sine wave output of .5 or so, although the precise level is not at all
critical.
3. Apply +5 and ± 12 voltages to the circuit. Measure the output at pin 6 of the 741 limiter (IC34) with an oscilloscope. The wave shape should be a rounded square wave of about .6 V peak to peak.
4. Set the audio oscillator to 2125 Hz . Measure the output at pin 1 of the 5558 active bandpass filter. Slowly turn R25 until the signal peaks. Be sure that you are peaking at 2125 Hz , not a harmonic. Vary the oscillator frequency a few decades to insure 2125 Hz is the tuned frequency.
5. Similarly, set the oscillator to 2975 Hz and measure the output at pin 7 of the 5558 (IC35). Slowly turn R26 until the signal peaks. Vary the oscillator to insure a 2975
Hz peak.
6. Measure the detected voltages at pin 5 of IC37. When the oscillator approaches 2125 , the voltage should 90 negative. When approaching 2975, the voltage should go positive. Trouble in this area would most likely be caused by reversed or defective diodes, or shorts between adjacent lines.
7. Measure the voltage at the cathode (bar) end of the output clamping germanium diode
(G1). Sweeping the frequency between 2125 and 2975 Hz thould result in a clean voltage jump somewhere between 2125 and 2975 Hz . Measure the output swing to insure that it does not exceed $+5,-.3 \mathrm{~V}$.
8. Remove the audio oscillator and short input connector J 1 temporarily to ground. Measure the output at pin 6 of IC34. A stable condition (no oscillation) should be seen. Connect the oscilloscope to the cathode of G1 again. Adjust the balance potentiometer (R42) so that the output voltage is a negative level. Slowly turn the potentiometer until the output voltage jumps to a positive level and leave the setting at this point.
9. Disconnect the temporary jumper from the input connector and reconnect the audio oscillator. Perform step 7 again. The crossover threshold should be close to 2550 now. If all proceeds well at this point, the cassette interface is ready to receive data.
10. Connect the oscilloscope to pin 4 of the 566 voltage controlled oscillator (IC33). A triangular wave output should be seen.
11. Connect a temporary jumper between the TTL input going to DS1 and +5 V . Connect a frequency counter to pin 3 of the VCO (IC33). Adjust potentiometer R41 for a resultant output frequency of 2125 Hz .
12. Remove the jumper from +5 V and connect the jumper from DST's input to ground. This time adjust R40 for 2975 Hz output.
13. Remove the jumpers, and you are ready for final tune in the driving circuit. Connect the cassette interface to the driving output port, and program the driving processor to send a TTL high level (" 1 "), output to the cassette interface. Adjust R41 to 2125 Hz . Then have the processor send a " 0 " level. This time adjust R40 for 2975 Hz output. The cassette interface is now ready for use.

I/o Board

Board AddressRange $\Rightarrow 6 B \phi \phi-6 B \phi F$

| I/O 10RT $1 A$ | $66 \phi \phi-6 B \phi 1$ | |
| ---: | :--- | :--- |
| $1 B$ | $6 B \phi 2-6 B \phi 3$ | |
| 2A PORT | $6 B \phi 4-6 B \phi 5$ | |
| $2 B$ | $6 B \phi 6-6 B \phi 7$ | |
| I/ PORT | $6 A$ | $6 B \phi 8-6 B \phi 9$ |
| $3 B$ | $6 B \phi A-6 B \phi B$ | |
| IO PORT $4 A$ | $6 B \phi C-6 B \phi O$ | |
| $4 B$ | $6 B \phi E-6 B \phi F$ | |

I/S connector Pin \#t
$1-8$
9
18
11
12

Eunction

$$
\begin{aligned}
& P A D-P A D \text { a } P B \varnothing-P B D \\
& C A 1 \text { a } \angle B I \\
& \frac{\angle A 2}{I R Q A} \text { in } \frac{C B 2}{I R Q B} \\
& \text { GND on GND }
\end{aligned}
$$

Logic Analyzer

F. FWD

Across F.Fwo switch on Front Panel $\approx 270 \mathrm{ma}$ any.

TRY CHANGE
 Across truk change switch That monitors $\approx 1.2 \mathrm{~A}$ Tape

MOTOR CONTROL

FRDNT Panel Tope controller
ALL Relays
Electron Relay

$$
\begin{aligned}
& \Rightarrow R 1554-3 \\
& \text { ail } 1-2 \\
& \text { sintel } 3-4 \\
& \approx 5 \text { ma }
\end{aligned}
$$

TAPE POSITIION counter

Regulated Supply

$$
z+15
$$

$$
+5
$$

from Deck Supply

Fram Ritary sintck

I/O PORT CONFIGURATION

$21 / 6$

$$
\begin{aligned}
\text { PORT A } & 68 \phi \varnothing & C R A-2=1 \\
\text { CRA }= & 6 B \phi 1 & \\
D O R A \quad & 6 B \phi \varnothing & C R A 2=\varnothing
\end{aligned}
$$

PORT B $\quad 6 B \emptyset 2 \quad \angle R-2=1$
$1 C_{16}$

PORTA IMITALLZE $W / 2 \phi H$ (HOLD DISABLED, Reset OISABLGD)
PORT B ivitInlized $w / 1 \varnothing H$ (MOTOR OFF, FFFWD OFF, TRK CHNC OFF)

BIT 7 PORTA

0161
(v8-2)

ATT 2 PORT B
$(\cup 2-3)$ TRK CHNG
when subrertine
is called.

OUTPUT frem
Position dseillator

800 usce $\quad 1.6 \mathrm{msec}$ \square

Q1,2,3,4 $2 N 2222$ Cen Purpose NPN
$K h 2,3 \quad$ I/2v, 5 me coil monnt Electrol $\#$ R1554-3 cail 1-2
smivel 3-4

Tipe DATA

$$
\begin{aligned}
\text { speed-Play } & 3.75 \text { IPS } \\
\text { - F.F. } & \approx 11 \text { IPS }
\end{aligned}
$$

$$
\begin{array}{rl}
\text { Track Levth }-45 \mathrm{~min} & 2531 \mathrm{~m} .-211 \mathrm{ft} \\
& -30 \mathrm{~min} \\
& 1688 \mathrm{~A}-141 \mathrm{ft} \\
\text { Treck count } & -45 \mathrm{~min} \\
& \approx 95 \phi \text { any. } \\
1 \text { count }=20 \mathrm{~min}
\end{array}
$$

yell +15
orenge 6ND

Ba Treck Recorder/Player Deek

PREALIStIC®

Cat. No.
14-944

FREALISTIC*

THE BRAND WITH OVER 1,000,000 CUSTOMERS

Your REALISTIC TR-882 is a component-styled Stereo Tape Recorder/Player for 8 -track cartridges. It operates from 120 Volt, AC power ($220 / 240$ volts, 50 Hz AC power where the sets are so marked on the rear for European and Australian models).

SPECIFICATIONS

POWER REQUIREMENTS: 120 volts, $60 \mathrm{~Hz}, \mathrm{AC} 35$ watts (220/240 volts, $50 \mathrm{~Hz}, 35$ watts)

RECORDING SYSTEM
ERASE SYSTEM
TAPE SYSTEM
TAPE SPEED
FREQUENCY RESPONSE
AC Bias, 50 kHz
AC Erase

INPUTS
MIC $\quad: 0.25 \mathrm{mV}$ input sensitivity $(-70 \mathrm{~dB})$
AUX \mathbb{N}
OUTPUT
DIMENSIONS
WEIGHT : 0.080 volt input sensitivity (-20 dB) : PREAMP OUTPUT, adjustable from 0.05 to 0.75 volts output : $3-7 / 8^{\prime \prime} \times 13-1 / 4^{\prime \prime} \times 8-3 / 5^{\prime \prime}$
: 8.3 lbs .

GUARANTEE: The Realistic guarantee is stated on the Guarantee Card packed with the equipment. It is in effect from coast to coast. At any time, Realistic equipment may be restored to new condition with original parts with MINIMUM delay anywhere in the U.S.A., usually in your own neighborhood. In 98\% of the cases ; it is NOT necessary to return Realistic equipment to our Laboratories.

FEATURES

- Push-button PAUSE control for cuing and editing.
- AUTO-STOP button allows automatic stop after last program.
- When AUTO-STOP is not in use, program automatically changes after last program to go back and repeat tape over and over as long as cartridge is in place.
- PROGRAM select button permits you to advance to the desired program.
- FAST-Forward button advances the tape rapidly for fast selection of programs.
- Dual meters for precise stereo recording levels.
- Dual level controls for recording levels.
- Dual Auxiliary input jacks for stereo recordings from external sources.
- Rear panel Output Level Control for setting suitable output level from deck (to match input level requirements of your amplifier or receiver.)

INSTALLATION AND CONNECTION

Your TR-882 can be installed in any convenient position for operation with your stereo system. It must be connected to an amplifier or receiver for operation; it does not include a power amplifier, thus must use the power amplifier of your existing stereo system.

CONNECTING TO YOUR AMPLIFIER/RECEIVER

For Playing back tapes :

Connect a pair of cables between the LINE OUTPUT jacks of the TR-882 to the auxiliary input (Aux In or Aux Input) jacks of your Amplifier/Receiver. Connect Right jacks (labeled R) together and Left jacks (labeled L) together. The output level from these LINE OUTPUT jacks can be adjusted using the "Output Level Control" mounted next to the LINE OUTPUT jacks on the rear of the unit.

For Recording:

Connect a pair of cables between LINE INPUT jacks on the back of the TR-882 to the Tape Output jacks on your Amplifier/Receiver. Connect Right to Right and Left to Left. This will permit you to record signals being played through your Amplifier/Receiver.

To record directly from microphones, plug microphones into L and R MIC jacks on the front of your TR-882. Use high-quality microphones with an output rating of -50 to -70 dB .

For Recording from Other Sources:
You can record from other signal sources when proper connections are made.

Recording from an FM Tuner:

Connect the Output jacks on the Tuner to the LINE INPUT jacks on the back of the TR-882.

Recording from a Record Player:

If you have a record player which has a ceramic cartridge, you can record directly from it. Connect the output cable from the record player to the LINE INPUT jacks on the back of the TR-882. If the record player uses a magnetic cartridge, you can not record directly.

Recording from a Radio, TV Set or Other Source:

For other types of signal sources, connect cables from jacks labeled "Ear", "Earphone" or "External Speaker" to the MIC input jacks on the front of the TR-882. If the jacks on the signal sources are labeled "Aux", "Auxiliary", "Output" or "High Level Output", connect cables from them to the LINE INPUT jacks on the rear of the TR-882. A signal source should provide approximately 100 mV of peak signal for proper operation with the LINE INPUT jacks. Plug the line cord into a source of 120 Volts, 60 Hz AC Power (220/240 volts 50 Hz AC power where the sets are so marked on the rear for European and Australian models).

MIC Jacks (L and R)-Connect low impedance microphones with output levels of about $-50 / 60 \mathrm{~dB}$ to these jacks for use in making recordings.
RECORD Button-Press while inserting an 8 -track cartridge when you intend to make a recording on the cartridge. Do not attempt to press this button in after a cartridge has already been inserted.
Recording Indicator-Light will come on when the RECORD button is pressed, thus indicating that the Recording function is in operation.
Cartridge Door-Insert 8 -track cartridge through this door-label side up and open end inward.
Program Indicator-The number of the program being played or recorded will light up during operation.
PAUSE Button-Press during recording or playback, to stop the movement of the tape. This is a locking type button-press in to set PAUSE function, press once again to release. This button is very useful for cuing and can be useful when editing.
Recording Level Meters-Indicates the recording level during recording. Recording levels should be adjusted so the pointers swing up to "0" only on peaks; normal levels will move the needle
up to 10,6 or 3 in the black area (with only occasional peaks going up to 0 or up into the red area).

PROGRAM Change Button-Press to change the program at any point during playback. The program will advance one number for each time the button is pressed.
FAST-Forward Button-In the "out" position, the tape will move at the normal speed. When you press the button in, the tape will be advanced rapidly so you can pass unwanted program material quickly. Pressing the button once again, will return the tape speed to normal and continue normal playback function.
This FAST-Forward feature functions only in Playback.
AUTO-STOP Button-Leave this button in the "out" position for continuous play of the cartridge. To stop the tape automatically at the end of program 4, press this button in. This is particularly useful when making recordings-the tape will automatically stop at the end of program 4, rather than switching back to program 1 and thus destroy the program previously recorded on 1 .
RECORD LEVEL Controls-Use to vary the level of the recording signal. Adjust these controls so only occasional peaks reach up to " 0 " on the meters.

OUTPUT LEVEL CONTROL-This control is for adjusting the level of the output from the TR-882

Set this control to match the input of the Amplifier/Receiver in your Stereo System as follows: After connecting cables as outlined previously, set up your stereo system to play records (or another source of signal) and adjust volume for normal listening; insert an 8 -track prerecorded cartridge into the TR-882 and set your Amplifier/Receiver to play the cartridge sound.

Adjust the OUTPUT LEVEL CONTROL on the TR-882 to match the volume as obtained with the records (or other signal source).

Switch back and forth between the two inputs and adjust OUTPUT LEVEL control to obtain equal output levels.

LINE OUTPUT Jacks (\mathbf{R} and L)-Connect to the auxiliary input jacks on your Amplifier/Receiver (or other jacks as previously noted).
LINE INPUT Jacks (\mathbf{R} and \mathbf{L})-Connect to the Tape Output Jacks on your Amplifier/Receiver (or other sources as previously noted).
Line Cord-Plug into a source of 120 volts AC power (220/240 volts, 50 Hz AC power where the sets are so marked on the rear for European and Australian models).

OPERATION

TO RECORD WITH MICROPHONES

1. Make all connections as previously instructed.
2. Select the point on the tape at which the recording is to begin, if it is not already in the correct position. Insert the cartridge into the cartridge door and press PROGRAM select button until program 4 is indicated. Press in AUTO-STOP button.
Press in FAST-Forward. When the tape reaches the end of program 4 it will stop automatically and you will be ready to start at the beginning of program 1 .
Withdraw the cartridge, release both AUTO-STOP and FASTForward.
3. If program 1 has already been recorded, and for example you are into the middle of program 3, press PROGRAM select button to obtain program 3 and listen to the tape. When you come to the point where the recording ends, press the PAUSE button; the tape motion will stop and you are ready to record. Withdraw the cartridge.
4. With PAUSE button still pressed in, press and hold in RECORD button while inserting the cartridge into the cartridge door opening. The Record light will come on, indicating that the Record function is ready.
CAUTION: Do not attempt to press the RECORD button when a cartridge is already seated in place (the switch mechanism can be damaged).
5. Adjust RECORD LEVEL controls as required to keep Meter readings within the black scale area, with oniy the highest peaks moving the pointer up to the " 0 " or touching up into the red area. Excessive recording levels (meter readings constantly going up to " 0 " and into the red area) will result in distortion.
NOTE: To keep the tape from moving, while setting levels and preparing for actual recording, keep PAUSE button " in ". This will keep the tape stopped, but permit you to set recording levels. When you are ready for recording, press the PAUSE button to release the Pause function.
6. The program or track number will light up showing you what track you are on in your recording function.
7. To automatically stop tape movement when you reach the end of track 4, press in AUTO-STOP button. Thus, when the tape has been completely recorded, it will automatically stop (rather than switching back to track 1 and thus destroy material previously recorded on track 1).

TO RECORD FROM OTHER SIGNAL SOURCES

Recording operation is exactly the same when using any other signal source.

You can record from Radio, TV, Tuner, record changer with ceramic cartridge or signals being played through your Amplifier/ Receiver by making the proper connections as noted previously.

NOTES

1. To stop a recording, press the PAUSE button. PAUSE is useful for setting the tape at a particular position and then cuing up for the start of a new recording.
Thus, you can play a tape through to the desired position, press PAUSE, pull out the cartridge, press in RECORD while inserting the cartridge once again and be ready to start with your recording at that exact point on the tape. To start the tape moving, press PAUSE.
2. The FAST-Forward function does not operate in the Record mode.
3. Store cartridges (both blank as well as recorded) in a place free from excessive temperatures and humidity and not in direct sunlight. Do not place recorded cartridges near magnetic fields (radio, TV, transformers, etc.).

TO PLAY BACK TAPES

1. Make all connections as previously instructed. Turn on your stereo system.
2. Insert a pre-recorded 8-track stereo cartridge into the cartridge door (label side up and open end in).
3. Adjust volume on your Amplifier/Receiver for desired level of sound.
4. If necessary, adjust OUTPUT LEVEL CONTROL on the rear of the TR-882 for proper matching of the input jacks on your Amplifier/Receiver.
5. To change programs, press the PROGRAM button.
6. To move the tape forward rapidly, press the FAST-Forward button; to return to normal playing speed, release by pressing the button again.

NOTES

1. To stop playing instantly, press PAUSE button.
2. If you want the tape to play through just once (programs 1 through 4) and then stop, press in AUTO-STOP. With AUTOSTOP in, the tape will stop playing when it comes to the end of program 4.
3. The Level Meters do not function during playback.
4. NEVER LEAVE A CARTRIDGE INSERTED ALL THE WAY IN WHEN YOU ARE NOT USING THE TR-882. REMOVE THE CARTRIDGE AT LEAST HALF-WAY OUT (OR REMOVE ENTIRELY)
5. If you press the RECORD button while you are inserting a prerecorded cartridge, any previously recorded material will be erased. Thus, be careful that you do not press the RECORD button by accident.

ERASING

When you make a recording, any previous recording made on the tape is automatically erased before the new recording is placed on the tape. Thus, only the new recording remains. To erase recordings, without making a new recording, set RECORD LEVEL controls maximum counterclockwise (MIN position) and disconnect cables to MIC and LINE INPUT jacks. Operate the TR882 in a normal manner for recording; this will erase all previous recordings and leave you with a blank tape for brand new recordings.

MAINTENANCE

Because the head inside the tape cartridge door is in constant contact with the tape, dust and residue from the tape easily adhere to the head. The head should, therefore, be cleaned after every 25 hours of use. Special cartridge-tape head cleaners are available to clean the tape head (Realistic Cat. No. 44-1161). Or use a cotton swab moistened slightly with alcohol.

1. The head assembly of this unit is very delicate. Do not subject it to shock or vibration.
2. Do not allow iron or steel objects, such as s screw-driver or magnet, to contact or come near the head.

SCHEMATIC DIAGRAM

TANDY

