< g LEsSen)

STANFORD-RESEARCH INSTITUTE

MENLD PARK, CALIFORNIA



TREE META

(WORKING DRAFT)

29 December 1967

A META COMPILER SYSTEM

FOR THE SDS 940

By
D, I. Andrews and J. F. Rulifson

Stanford Research Institute
Menlo Park, California

Note: This work was supported jointly by:

1) National Aeronautics and Space Administration
Langley Research Center

2) Rome Air Development Center
' Griffiss Air Force Base

3) Advanced Reseafch Projects Agency
Department of Defense

Copy No. Z



Tree Meta - ABSTRACT - 29 DEC. 1967

0a Tree Meta is a compiler-compiler syvstem for context-Ffree
languages, Parsing  statements of the metalanguage resemble
Backus-Naur Form with embedded tree-building directives., Unparsing
rules include extensive tree-scanning and code-generation constructs,
Examples are drawn from algebraic and special-purpose languages, as
well as the process of Dbootstrapping the comprehensive,
self-defining, treec language from a simpler metalanguage. Thorough
implementation documentation for the Scientific Data System 940
appears in the discussion of the support subroutines and in the
appendices. A history of coﬁputer metalanguages, a tutorial guide to
Tree Meta, and the practical usefulness and scope of the system are

' A

other topics of the report., | : | o

Ob This is an interim project report and reflects the current status

of a portion of a constantly evolving programming svstem,

Oc  Documentation 1level as of 29 December 1967 is TM1,3. .newp



Tyee Meta - CONTENTS - 29 DEC. 1867

1 Introduction

(3% ]

Basie Svntax

L

Program Lnvironment

4 Tormal Description

5 Detailed IExamples

6 Conclusions and Tuture Plans

7 Bibliography

&§ Tree Meta in Tree Meta

9 Tree Meta Support Package

10 Metalib

11 Meta II in a Macro Language (not included)

12 Ixtended Meta in Meta Il (not included)



Tree Meta - CONTENTS - 29 DEC, 1967

13 Outline for a 30 Minute talk on Meta (not included)



Tree Meta - INTRODUCTION - 29 DEC, 1967

1 Terms such as '"metalanguage'" and '"metacompiler' have a variety of

meanings. Their usage within this report, however, is well defined,

la "Language," without the prefix 'meta," means any formal computer
language. These are generally languages like ALGOL or TORTRAN. Any

metalangauge is also a language,

b A compiler is a computer program which reads a formal-language
program as input and translates that program into instructions which
may be executed by a computer. The term ''compiler" also means a

listing of the instructions of the compiler.

1c A language which can be wused to describe other languages is a
metalanguage. Inglish is an informal, general metalanguage which can
describe any formal language., DBackus-Naur Form or BNF (NAUR1) is a
formal metalanguage used to define ALGOL. BNF is weak, for it
describes only the syntax of ALGOL, and says mnothing about the
semantics or meaning. English, on the other hand, is powerful, vet

its informality prohibits its translation into computer programs,

1d A metacompiler, in the most general sense of the term, is a
program which reads a metalanguage program as input and translates
that program into a set of instructions. If the input program is a

complete description of a formal language, the translation is a

101



Tree Meta - INTRODUCTION - 29 DEC. 1967

compiler for the language,

2 The broad meaning of the word "metacompiler," the strong, divergent
views of many people in the field, and our restricted use of the word

necessitate a formal statement of the design standards and scope of Tree

Meta.

2a Tree Meta 1is built to deal with a épeciFic set of languages and
an even more specific set of users, This project, therefore, adds to
the ever-increasing problem of the proliferation of machines and
languages, wyather than attempting to reduce it. There is no attempt
to design universal languages, or machine independent languages, or

any of the other goals of many compiler-compiler systems,

2b  Compiler-compiler systems may be rated on two almost independent
features: the syntax they can handle and the features within the

system which ease the compiler-building process.

2b1 Trec Meta is intended to parse context-free laguages using
limited backup. There is no intent or desire on the part of the
users to deal with such problems as the FORTRAN '"continue"
statement, the PL/I "enough ends to match," or the ALGOL "is it
procedure or is it a variable" question. Tree Meta is only one
part of a system-building technique, There is flexibility at all

‘levels of the system and the design philosophy has been to take

102



Tree Meta - INTRODUCTION - 29 DEC. 1967

the easy way out rather than fight old problenms,

202 Many of the  features  considered necessary for a
compiler-compiler system are absent in Tree Meta. Such things as
symbol~tables that handle ALGOL-stvle blocks and variable types
are not included. Neither are there features for multidimensional
subscripts or higher level macros, These features are not present

because the users have not vet needed them. None, however, would

be difficult to add.

2b3  Tree Meta translates directly from a high-level language to
machine code. This is not for the faint of heart, There is a
very suall number of  users (approximately  3); all are
machine-language coders of about the same high level of
proficiency, The nature of the special-purpose languages dealt
with is such that general formal systems will not work, The data

structures and operations are too diverse to produce appropriate

code with current state-of-the~art formal compiling techniques.

There are two classes of formal-definition compiler~-writing schemes,

3a

In terms of usage, the productive or synthetic approach to

language definition is the most common. A productive grammar

consists primarily of a set of rules which describe a method of

generating all the possible strings of the language,

1035



Tree Heta - INTRODUCTION - 29 DIEC, 1967

3b The reductive or analytic technique states a set of rules which
describe a method of analyzing any string of characters and deciding
whether that string is in the language. This approach simultaneously

produces a structure for the input string so that code may be

compiled.

3¢ The metacompilers are a combination of both schemes. They are
neither purely productive nor purely reductive, but merge both

techniques. into a powerful working systen.

4 The metacompiler class of compiler-compiler systems may be
characterized by a common top~down parsing algorithm and a common
syntax. These compilers are expressible in their own language, whence

the prefix '"meta,"

da The following is a formal discussion of top-down parsing
algorithms, It relies heavily on definitions ana formalisms which
are standard in the literature and may be skipped by the lay reader.
For a language L, with vocabulary V, nonterminal vocabulary N,
productions P, and head S, the top-down parse of a string u in L

starts with 5 and looks for a sequence of productions such that S=>u

(S produces u),

4al Let

104



Tree Meta - INTRODUCTION - 29 DEC. 1967

\', [l'..'l 'l" l:’ +? *3 (.’ )’ x]

[E, T, F]

=z
i

P=fE =T/ T+TF

X g P P RT
Pgg= X7 CE)]
L = (V,N,P,L)

4a2 The following intentionally incomplete ALGOL procedures will

perform a top~down analysis of strings in L.

4a2a beolean procedure [E; L := if T then (if issymbol('+')

then E else true) else false; comment issymbol

(arg) is a

Boolean procedure which compares the next symbol in the input

string with its argument, arg., If there is a match the input

stream is advanced;

4a2b Dboolean procedure T; T := if ¥ then [iﬁ issymbol('*!')

then T else true) else false;

——r e

4a2c  boolean procedure FF; F = if dissymbol('X')

then true

‘else if dssymbol('(') then (if E then (if issymbol(')') then

true else falg&) else false) else false;

4a3  The left-recursion problem can readily be seen by a slight

modification of L. Change the first production to

105



Tree Meta ~ INTRODUCTION - 29 DEC. 1967

4b

Ewte=T/E=+T

and the procedure for E in the corresponding way to

E := if T then true clse if E ...,

4a3a Parsing the string "X+X", the procedure E will call T,
which calls F, which tests for "X" and gives the result "true,"
L is then true but only the first element of the string is in
the analysis, and the parse stops before completion, If the
input string is not a member of the language, T is false and E

loops infinitely,

4a3b  The solution to the problem wused in Tree Meta is the
arbitrary number operator. In Tree Meta the first p}oductinn
could be

E 3= TE( "+ T)
where the dollar sign and the parentheses indicate that the

quantity can be repeated any number of times, including 0.

4a3c Trec Meta makes no check to ensure that the compiler it
is preoducing _lacks syntax rules containing left recursion.
: L]

This problem is one of the more common mistakes made by

inexperienced metalanguage programmers.

The input language to the metacompiler closely resembles DINF,

The primary difference between a BNF rule

106



Tree Meta = INTRODUCTION - 29 DEC. 1967

{go to> ::= go to {labeld
and a metalanguage rule

GOTO = "“GO" “"TO" ,[ID;
is that the metalanguage has been designed to use a computer-oriented
character set and simply delimited |Dbasic entities. The
arbitrary-number operator and parenthesis construction of the
metalanguage are lacking in BNF. For example:

TERM = FACTOR S(('"*" / "/“ / ") FACTOR) ;

is a metalanguage rule that would replace 3 BNF rules.

4c  The ability of the compilers to be expressed in their own
language has resulted in the proliferation of metacompiler systems.
Each one is easily Dbootstrapped from a more primitive version, and

complex compilers are built with little programming or debugging

effort.

5 The early history of metacompilers is closely tied to the history of
SIG/PLAN Working Group 1 on Syntax Driven Compilers. The group was
started in the Los Angles area primarily through the effort of Howard

Metcalfe (SCHMIDTI).

5a In the fall of 1962, he designed two compiler-writing
interpreters (METCALFE1), One used a bottom-to-top analysis
technique based on a method described by Ledley and Wilson (LEDLEY1),

" B
fhe other used a top-to-bottom approach based on a work by Glennie

107



Tree Meta - INTRODBUCTION - 29 DEC, 14967

(GLERNIXE1) to generate random Inglish sentences from a context-free

grammay.

5b At the same time, Val Schorre described two '"metamachines'-.one
generative and one analytic, The generative machine was inplemented,
and produced random algebraic expressions. Schorre implemented Meta
I, the first metacompiler, on an IBM 1401 at UCLA in .January 1963
(SCHORRET) .  His original interpreters and metamachines were written
directly in a pseudo-machine language. Meta I, however, was written
in a higher-level syntax language able to describe its own

conmpilation into the pscudo-machine language, Meta I is described in

an unavailable paper given at the 1963 Colorado ACM conference,

5c  Lee Schmidt at Bolt, Beranek, and Newman wrote a metacompiler in
March 1963 that utilized a CRT display on the time-sharing PDP-1
(SCIMIDT2) . This compiler produced actual machine code rather than

interpretive code and was partially bootstrapped from Meta I,

6 Schorre bootstrapped Meta I1 from Meta I during the Spring of 1963
(SCHORRE2) . The paper on the refined metacompiler system presented at
the 1964 Philadelphia ACM  conference is the first paper on a
metacompiler available as a general reference. The  syntax and
implementation technique of Schorre's system laid the foundation for
most of the systems that followed. Again the svstem was implemented on

a small 14071, and was used to implement a small ALGOL-like language.

108



i

Tree Meta - INTRODUCTION - 29 DEC, 1967

7 Many similar systems immediately followed.

7a  Roger Rutman of A, C. Sparkplug developed and implemented LOGIK,
a language for logical design simulation, on the IBM 7090 in January
1964  (RUTMANT).  This compiler wused an algorithm which produced

efficient code for Boolean expressions.

7b  Another paper in the 1964 ACM proceedings describes Meta TII,
developed by Schneider and Johnson at UCLA for the IBM 7090
(SCHNEIDER1),  Meta III represents an attempt to produce efficient
machine code for a large class of lanpuages, It was implemented
completely in assembly language. Two compilers were writteﬁ in Meta
III--CONOL, a compiler-writing demonstration compiler, and PUREGOL,

a dialect of ALGOL 60, (It was pure gall to call it ALGOL)., The

runored METAFORE, able to compile full ALGOL, has never been

announced.

7c Late in 1904, Lee Schnidt bootstrapped a metacompiler from the
PDP-1  to the Beckman 420 (SCIHMIDT3). Tt was a logic equation

generating language known as EQGEN.

8 Since 1904, System Development Corporation has supported a maior
effort in the development of metacompilers, This effort includes

powerful metacompilers written in LISP which have extensive

109



Tree Meta = INTRODUCTION - 29 DEC., 1967

tree-searching and backup capability (BOOK1) (BOOK2),

9 An outgrowth of one of the Q-32 systems at SDC is Meta 5 (OPPENHEIM1)
(SCHAFFERT) , This system has been successfully released to a wide
number of users and has had many string-manipulation applications other
than compiling. The Meta 5 system incorporates backup of the input
stream and enough other facilities to parse any context-sensitive
language. It has many elaborate push-down-stacks, attribute setting and
testing facilities, and output mechanisms, The fact that Meta 5

successfully  translates JOVIAL programs to P'L/1 programs clearly

demonstrates its powver and flexibility,

10 The LOT system was developed during 1966 at Stanford Research
Institute and was modeled verf closely after Meta IT (KIRKLEY1), It had
new special-purpose constructs allowing it to generate a compiler which
would in turn be able to compile a subset of PL/1. This system had
extensive statistic-gathering facilities and was used to study te
characteristics of top-down apalysiso It also emhedded system contyol,

normally relegated to control cards, in the metalanguage,

lf The concept of the metamachine oripinally put forth by GLENNIE is so
simple that three hardware versions have been designed and one actually
implemented.  The latter at Washington University in St, Lﬁuis. This
machine was built from macromodular components and has for instructions

the codes described by Schovre (SCHORREZ).

110



Tree Meta - BASIC SYNTAX - 29 DEC. 1967

1 A metaprogram is a set of metalanguages rules, Each rule has the
form of a BNF rule, with output instructions embedded in the syntactic

description,

la The Tree !Meta compiler converts each of the rules to a set of

instructions for the computer,

b As the rules (acting as instructions) compile a program, they
read an input stream of characters one character at a time, Lach new
character is subjected to a series of tests until an appropriate
syntactic description is found for <that character. The next
character is then read and the rule éestiug moves forward through the

{nput.

2 The following four rules illustrate the basic constructs in the
system., They will be referred to later by the reference numbers RIA
through R4A,

.null

R1A EXP = TERM (M+' EXP / """ EXP / EMPTY):

.null

R2A TERM = FACTOR S("'*' FACTOR / /" FACTOR);

«null

R3A FACTOR = "=" FACTOR / PRIM;

.null

201



I

Tree Meta -~ BASIC SYNTAX - 29 DEC, 1967

RAA PRIM = ,ID / JNUM / (" EXP "),

null

2a  The identifier to the left of the initial equal sign names the

rule, This name is used to refer to the yule from other rules. The

name of yrule RIA is LXP,

2b  The right part of the rule--everything between the initial equal
sign and the trailing semicolon--is the part of the rule which
effects the scanning of the input. Five basic types of entities may
occur in a right part. ILach of the entities represents some sort of
a test which results in setting a general flag to either "true" or

"false',

2bl1 A string of characters between quotation marks (') represents
a literal string. These literal strings are tested against the

input stream as characters are read.

2b2  Rule names may also occur in a right part. If a rule is
processing input and a name is reached, the named rule is invoked.
R3A defines a FACTOR as being either a minus sign followed by a

FACTOR, or just a PRIM,

2b3  The right part of the rule VACTOR has just been defined as "a

string of elements," '"or" '"another string of elements." The

202



Tree Meta - BASIC SYNTAX - 29 DEC. 1967

"or's" are indicated by slash marks (/) and each individual string

is called an alternative. Thus, in the above exanmple, the minus
sign and the rule name FACTOR are two elements in R3A. These two

elements make up an alternative of the rule,

2b4 The dollar sign is the arbitrary number operator in the
metalanguage. A dollar sign must be followed by a single
element, and it indicates that this element may occur an arbitrary
number of times (including zero), Parentheses may be used to

group a set of elements into a single element as in RIA and R2A,

2b5  The final basic entities may be seen in rule R4A. These
represent the basic recognizers éf the metacompiler system, A
basic recognizer is a program in Tree Meta that may be called upon
to test the input stream for an occurrence of a particular entity,
In Tree Meta the three recognizers are "identifier" as ,ID,
"number" as (NUM, and "string'" as .SR, There 1is another basic

entity which is treated as a recognizer but does not look for

anything. It is .EMPTY and it always returns a value of "true,"

3 Suppose that the input stream contains the string X+Y when the rule

EXP is invoked during a compilation,

32 EXP first calls rule TERM, which calls FACTOR, which tests for a

minus sign. This test fails and FACTOR then tests for a plus sign

203



Tree Meta - BASIC SYNTAX = 29 DEC. 1967

and fails again, Finally FACTOR calls PRIM, which tests for an
identifier. The character X is an identifier; it is recognized and

the input stream advances one character.

b PRIM returns a value of "true" to FACTOR, which in turn returns
to TERM, TERM tests for an asterisk and fails., It then tests for a
slash and fails. The dollar sign in front of the parenthesized group
in TERM, however, means that the rule has succeeded because TERM has
found a FACTOR followed by zero occurrences of "asterisk FACTOR" or
"'slash FACTOR."  Thus TERM returns a "true" value to EXP. EXP now

tests for a plus sign and finds it. The input stream advances

another character.

3¢ EXP now calls on itself. All necessary information is saved so
that the return may be made to the right place. In calling on itself,

it goes through the sequence just described until it recognizes the

Y.

3d Thinking of the rules in this way is confusing and tedious, It
is best to think of each rule separately. For example: one should
think of R2A as defining a TERM to be a series of FACTORs separated
by asterisks and slashes and not attempt to think of all the possible

things a FACTOR could be,

4 Tree Meta 1is different from most metacompiler systems in that it

204



Tree Meta -~ BASIC SYNTAX ~ 29 DEC., 1967

builds a parse tree of the input stream before producing any output.

Before we describe the syntax of node generation, let us first discuss

parse trees,

4a A parse tree is a structural description of the input stream in

tems of the given grammar.

4a1 Using the four rules above, the input stream
.null
.null N+Y*Z
null

has the following parse tree
.null
.null

.qnull

.null XP
.null
.null FACTOR TERM
qnull

.null PRIM TACTOR TACTOR

.ﬁull

.null X PRI PRIM

null

.null Y Z

205



Tree Meta = BASIC SYNTAX - 29 DEC, 1967

4b

4a2 In this tree each node is either the name of a yule or one of

the primary entities recognized by the basic recognizer routines.

4a3 In this tree there is a great deal of subcategorization. For
example, Y is a PRIM which, is a FACTOR, which is the left member

of a TERM, This degree of subcategorization is generally

undesirable.,

The tree produced by the metacompiler program is simpler than the

one above, yet it contains sufficient information to complete the

compilation.

null
.null
null
null
.null

.null

4bl  The parse tree actually produced is
ADD

X {ULT

4b2 In this tree the names of the nodes are not the rule names of
the syntactic definitions, but rather the names of rules which

will be used to generate the code from the trec.

4b3  The rules which produce the above tree are the same as the

2006



Tree Meta - BASIC SYNTAX - 29 DEC, 1967

four previous vules with new syntax additions to perform the

appropriate node  generation. The complete rules are:
Jull |
R1B EXP = TERM ("' EXP :ADD/ "-'' EXP :SUB) [2] .EMPTY);
.null
RZB TERM = FACTOR S(("*'" TACTOR MULT/ "/'" FACTOR :DIVD)
[(21);
.null
R3B FACTOR = "-" FACTOR :MINUS[1] / PRIM;
.null
R4B PRIM = ID / JNUM / V(' EXP )",

dc  As these rules scan an input séream, they perform just like the
first set. As the entities are recognized, however, they are stored
on a push-down stack until the node-generation elements remove them
to make trees., We will step through these rules with the same sample
input strean:

.null X+Y*Z

4¢l EXP calls TERM, which calls FACTOR, which calls PRIM, which
recognizes the X. The input stream moves forwawmd and the X is put

on a stack,

4c2  PRIM returns to FACTOR, which returns to TERM, which returns

to LXP. The plus sign 1is recognized and EXP is again called.

207



Tree Meta - BASIC SYNTAX - 29 DEC. 1967

Again EXP calls TERM, which calls FACTOR, which calls PRIM, which
recognizes the Y. The input stream is advanced, and Y is put on
the push-down stack. The stack now contzins Y X, and the next

¥

character on the input stream is the asterisk.

4¢3 PRIM returns to FACTOR, which yeturns to TERM, The asterisk

is recognized and the input is advanced another character,

4cd  The rule TERM now calls FACTOR, which calls PRIM, which
recognizes the Z, advances the input stream, and puts the Z on the

push=down stack.

4c5 The :MULT in now processed. This names the next néde to be
put in the tree, Later we will see that in a complete
metacompiler program there will be a rule named MULT which will be
processed when the time comes to produce code from the tree,
Next, the [2] in the yule TERM is processed, This tells the
system to construct a portion of a tree. The branch is to have
two nodes, and they are to be the last two entities recognized
(they ave on the stack). The name of the branch is to be MULT,
since that was the last name given, The branch is constructed and

the top two items of the stack are replaced by the new node of the

tree,

4c5a  The stack now contains

208



]

Tree Meta = BASIC SYNTAX = 29 DEC. 1967

null

null

null
Tnull
qnull

.null

MULT
X

4c5b  The parse tree is now

MULT

4c5¢c  Notice that the nodes are assembled in a left-to-right

order, and that the original order of recognition is retained.

4c6  Rule TERM now returns to LEXP which names the next node hy
executing the :ADD, i.e., names the next node for the tree. The
[2] in rule EXP is now executed., A branch of the tree is
generated which contains the top two items of the stack and whose
name is ADD, The top two items of the stack are removed, leaving
it as it was initially, empty. The tree is now complete, as first

shown, and all the input has been passed over.

5 The unparsing rules have two functions: they produce output and they

test the tree in much the same way as the parsing rules test the input

strean. This testing of the tree alows the output to be based on the

deep structure of the input, and hence better output may be produced.

2090



Tree Meta ~ BASIC SYNTAX - 29 DEC. 19067

5a

Before we discuss the node-testing features, let us first

describe the various types of output that may be produced, The

following 1list of output-generation features in the metacompiler

system is enough for most examples.

Tnull

S5al  The output is line-oriented, and the end of a line is
determined by a carriape vyeturn. To instruct the system to
produce a carriage return, one writes a backslash (upper-case L on

a Teletype) as an element of an unparse rule.

5a2 To make the output more readable, there is a talb feature. To
put a tab character into the output stream, one writes a comma as

an element of an output rule,

5a3 A literal string can be inserted in the output stream by
merelvy writing the literal string in the unparse rule, Notice
that in the unparse rule a literal string becomes output, while in
the parse rules it becomes an entity to be tested for in the input
stream. To output a line of code which has L as a label, ADD as
an operation code, and SYS as an address, one would write the
following string of elements in an unparse rule:

ll'LIf ” HAI)I‘]H N HSYS"

Sa4 As can be seen in the last example of a tree, a node of the

tree may be either the name of an unparse rule, such as ADD, or

210



Tyee Meta ~ BASIC SYNTAX - 29 DEC. 1967

.null

one of the basic entities recognized during the parse, such as the

identifier X.

Sada Suppose that the expression X+Y*Z has been parsed and the
program is in the ADD unparse rule processing the ADD node
(later we will see how this state is reached). To put the
identifier X into the output stream, one writes "*1'" (meaning
"the first node below") as an element. For example, to
generate a line of code with the operation code ADA and the
operand field X, one would write:

§ ”ADA"’ *1

S5a4db To generate the code Fér the left-hand node of the tree
one merely mentions "*1'" as an element of the unparse rule,
Caution must be taken to ensure that no attempt is made to
append a nonterminal node to the output stream; each node must
be tested to be sure that it is the right type before it can be

evaluated or output.

5a5 Generated labels are handled automatically. As each unparse
rule is entered, a new set of labels is gencrated. A label is
referred to by a number sign (upper-case 3 on a Teletype) followed
by a number, Every time a label is mentioned during the execution
of a rule, the label is appended to the output stream. If another

rule is invoked in the middle of a rule, all the labels are saved

211



Tree Mcta -~ BASIC SYNTAX - 2% DEC. 1967

and new ones generated, When a return is made the previous labels

are restored.

6 As trees are being built during the parse phase, a time comes when it
is necessary to generate code from the tree, To do this one writes an
asterisk as an element of a parse rule, for example

RSB PROGRAM = " _PROGRAM" $(ST *) ", END";

which generates code for each statement after it has been entirely
parsed. When the asterisk is executed, control of the program is
transferred to the rule whose name is the root (top node or last
generated node) of the tree. When return is finally made to the rule

which initiated the output, the entire tree is cleared and the

generation process begins anew.

6a An unparse rule is a rule name followed by a series of output
rules. Each output rule begins with a test of nodes. The series of
output rules make up a set of highest-level alternatives. When an
unparse rule is called the test for the first output rule is made,
If it is satisfied, the remainder of the alternative is executed; if
it is false, the next alternative output rule test is made. This
process continues until either a successful test is made or all the
alternatives have been tried. If a test is successful, the
alternative is executed and a return is made from the unparse rule
with the general flag set "true." If no test is successful, a return

is made with the general flag 'false."

212



Tree Meta - BASIC SYNTAX - 29 DEC, 1967

6b The simplest test that can Le made is the test to ensure that the
correct number of nodes emanate from the node being processed, The
ADD rule may ﬁegin

.null ADD[=,-] =>
The string within the brackets is known as an out-test. The hyphens
are individual items of the out-test. [FEach item is a test for a
node, All that the hyphen requires is that a node be present. The

name¢ of a rule need not match the name of the node being processed,

6b1 If one wishes to eliminate the test at the head of the
out-rule, one may write a slash instead of the bracketed string of
items. The slash, then, takes thé place of the test and is always
true. Thus, a yule which begins with a slash immediately after
the rule name may have only one out-rule., The rule
«null MT / => .EMPTY;

is frequently used to flag the absence of an coptional item in a
list of items. It may be tested in other unparse rules but it

itself always sets the general flag true and returns,

6b2 The nodes emanating from the node being evaluated ére
referred to as *1, *2, etc., counting from left to right. To test
for equality between nodes, one merely writes *i for some i as
the desired item in an out-test, TFor example, to see if node 2 is

the same as node 1, one could write either [-,*1] or [*2,-]. To

213



Tree Meta -~ BASIC SYNTAX - 29 DEC. 1967

see if the third node is the same as the first, one could write

[-,*2,*1], In this case, the *2 could be replaced by a hyphen.

6b3 One may test to see if a node 1is an element which was
generated by one of the basic recognizers by mentioning the name
of the recognizer. Thus to see if the node is an identifier one
writes .ID; to test for a number one writes ,NUM., To test whether
the first node emanating from the ADD is an identifier and if the

second node exists, one writes [.ID,-].

6b4 To check for a Jliteral string on a node one may write a
string as an item in an out-test. The construct [-,"1'] tests to
be sure that there are two nodes and that the second node is a 1.

The second node will have been recognized by the .NUM basic

recognizer during the parse phase,

6b5 A generated label may be inserted into the tree by using it
in a call to an unparse rule in another unparse rule., This
process will be explained later. To see if a node is a previously
generated label one writes a number sign followed by a number, If
the node is not a generated label the test fails., If it is a
generated label the test is successful and the label is associated
with the number following the number sign. To refer to the label

in the unparse rule, one writes the number sign followed by the

number.



Tree Meta - BASIC SYNTAX - 29 DEC. 1967

.null

,null
.null
null
.null
null
null

.null

6c

6b6 Tinally, one may test to see if the name matches a specified
name. Suppose that one had generated a node named STORE,  The
left node emanating from it is the name of a variable and on the

right is the tree for an expression. An unparse rule may begin as

follows:
STORE[~ ,ADD[*1,"11']] => | "MIN " #]
The *1 as an item of the ADD refers to the left node of the STORI.
Only a tree such as
STORE

ID ADD

LD

-

would satisfy the test, where the two identifiers must be the same
or the test fails. An expression such as X « X + 1 meets all the
requirements, The code generated (for the SDS 940) would be the

single instruction MIN X, which increments the cell X by one,

Each out-rule, or highest-level alternative, in an unparse rule

is also made up of alternatives. These alternatives are separated by

slashes, as are the alternatives in the parse rules.

215



Tree Meta - BASIC SYNTAX - 29 DEC. 1967

6¢cl The alternatives of the out-rule are called "out-exprs.'" The
out-expr may begin with a test, or it may begin with instructions
to output characters. If it begins with a test, the test is made.
If it fails the next out-expr in the out-rule is tried. If the
test is successful; control proceeds to the next element of the
out-expr. When the out-expr is done, a return is made from the

unparse rule.

6c2 The test in an out-expr resembles the test for the out-rule.

There are two types of these tests,

6c2a Any nonterminal node in the tree may be transferryed to by
its position in the tree rather than its name. For example, *2
would invoke the sécond node from the right. This operation
not only transfers control to the specific node, hut.it makes
that node the one from which the next set of nodes tested
emanate, After control is returned to the position immediately
following the *2, the general flag is tested. If it is "true"
the out-expr proceedes to the next element, If it is 'false"
and the 2 is the first element of the out-expr the next
‘alternative of the out-expr is tried. If the flag is "false"
and the *2 is not the first element of the out-expr, a conpiler

error is indicated and the system stops.

6¢c2b  The other type of test 1is made by invoking another

216



Tree Meta -~ BASIC SYNTAX - 29 DEC. 1967

null

unparse rule by name and testing the flag on the completion of

the rule. To c¢all another unparse rule from an out-expr, one
writes the mname of the rule followed by an argument list
enclosed in brackets, The argument list is a list of nodes in
the tree. These nodes are put on the node stack, and when the
call is made the rule being called sees the argument 1list as
its set of nodes to analyze. For example:

ADD[MINUS[-],=] => SUB[*2,%1:%1]

6¢c2b1l  Only nodes and generated labels can be written as
argunents. Nodes are written as *1, *2, etc. To reach
other nodes of the treec one may write such things as *1:%*2,
which means '"the second n&de emanating from the first node
emanating from the node being evaluated.'" Referring to the
tree for the expression X+Y*Z, if ADD is being evaluated,
*2:%1 is Y, To go up the tree one may write an "uparrow" (%)
followed by a number before the asterisk-number-colon
sequence, The uparrow means to go up that wany levels

before the search is made down the tree. If MULT were being

evaluated, *1*1 would be the X.

6c2b2 If a generated label is written as an argument, it is
generated at that time and passed to the called unparse rule
so that that rule may usc it or pass it on to other rules,

The generated label 1is written just as it is in an output

217



Tree Meta - BASIC SYNTAX - 29 DEC. 1967

element--a nunber sign followed by a number.

6¢3 The calls on other unparse rules may occur anywhere 1in an
OUL~EXPT . If they occur in a place other than the first element
they are executed in the same way, except that after the return
the flag is tested; if it is false a compiler error is indi;ated.
This wuse of extra rules helps in making the output rules mnore

concise,

6cd  The rest of an out-expr is made up of output elements
appended to the output stream, as discussed above.

6d Somtimes it is necessarv to set the general flag in an out-expr

2 b4 g s

just as it is sometimes necessary in the parse rules. EMPTY may be

used as an element in an out-expr at any place.

6e Out-exprs may be nested, using parantheses, in the same way as

the alternatives of the parse rules,

7 There are a few features of Trec Meta which are not essential but do

make programming easier for the user.

7a If a literal string is only one character long, one may write an
apostrophe followed by the character rather than writing a quotation

mark, the character, and another quotation mark. TFor example: 'S and

218



Tree Meta - BASIC SYNTAX - 20 DEC. 1967

"S" are interchangeable in either a parse rule or an unparse rule.

7b  As the parse rules proceed through the input stream they may come
to a point where they are in the middle of a parse alternative and
there is a failure., This may happen for two reasons: backup is
necessary to parse the input, or there is a syntax error in the
inpﬁt. Backup will not be covered in this introductory chapter. If
a syntax error occurs the system prints out the line in ervor with an
arrow pointing to the character which cannot be parsed. The system
then stops, To eliminate this, one may write a question mark
followed by a number followed by a rule name after any test except

the first in the parse equations. Tor example:

null ST = .ID '= question 2 E EXP question 3 E ';
.null question 4 E :STORE[2] ;

Suppose this rule is executing and has called yule EXP, and EXP
returns with the flag false. Instead of stopping Tree Meta prints
the line in ervor, the arrow, and an error comment which contains the

number 3, and transfers control to the parse rule E,

7¢ Comments may be inserted anywhere in a metalanguage program where
blanks may occur., A comment begins and ends with a percent sign,

and may contain any character except--of course, a percent sign.

7d In addition to the three basic recognizers .ID, .NUM and SR

there are two others which are occasionally very useful,

219



Tree Meta - BASIC SYNTAX - 29 DEC. 1967

e

is

7d1  The symbol L.LET indicates a single letter. It could be

thought of as a one-character identifier,

7d2 The symbol .CHR indicates any character. In the parse rules,
+.CHR causes the next character on the input stream to be taken as
input regardless of what it is. Leading blanks are not discarded
as for ,ID, .NUM, etc. The character.is stored in a special way,
and hence references to it are not exactly the same as for the
other basic recognizers., In node testing, if one wishes to check
for the occurrence of a particular character that was recognized
by a L.CHR, one uses the single quote-character construct., Vhen
outputting a node item which is a character recognized by a .CliR,

one adds a :C to the node indicator. For example, *1:C,

Occasionally some parts of a compilation are very simple and it

cumbersome to build a parse tree and then output from it. For this

reason the abilitby to output directly from parse rules has been

added.

7el  The syntax for outputting from parse rules is generally the
same as for unparse rules. The output expression is written
within square brackets, however. The items from the input stream
which normally are put in the parse tree may be copied to the

output stream by referencing them in the output expression. The

220



Tree Meta - BASIC SYNTAX - 29 DEC., 1967

most recent item recognized is referenced as * or *50, Items

recognized previous to that are *S51, *52, etc., counting in

reverse order--that is, counting down from the top of the stack

they are kept in.

7e2 Normally the items are removed from the stack and put into
the tree. llowvever, if they are just copied directly to the output
stream, they remain in the stack. They are removed by writing an
anpersand at the end of the parse rule (just before the
semicolon). This causes all input items added to the stack by that

rule to be removed. The input stack is thus the same as it was

when the rule was called.



Tree Meta - PROGRAM ENVIROMMENT - 29 DEC 1967

1 When a Tree Meta program is compiled by the metacompiler, a
machine-language version of the program is generated. llowever, it is not
a conplete program since several routines are missing. All Trec Meta
programs have common functions such as reading input, generating output,
and manipulating stacks. It would be cumbersome to have the
metacompiler duplicate thesel routines for each program, so they are
contained in a library package for all Tree Meta programs. The library
of routines must be loaded with the machine-language version of the Tree

Meta program to make it complete.

la The environment of the Tree Meta program, as it is running, is

the library of routines plus the various data areas.

1b  This section describes the environment in its three logical

parts: input, stack organization, and output.

Tbt  This is a description of the current working version, with

some indications of planned improvements.

2 Input Machinery

2a The input stream of text is broken into lines and put into an
input buffer. Carriage yeturns in the text are used to determine the

ends of lines., Any line longer than 80 characters is broken into two

301



Tree Meta - PROGRAM ENVIRONMENT - 29 DEC 1967

lines. This line orientation is necessary for the following:
2al  Syntax-error reporting

2a2 A possible anchor mode (so the compiler can sense the end of

a line)
2a3  An interlinear listing option,

2a4 In the future, characters for the input buffer will be
obtained from another input buffer of arbitrary block size, but at
present they are obtained from the system with a Character 1/0

command.

2b It is the job of routine RLINE to fill the input line buffer. If
the listing flag is on, RLINE copies the new line to the cutput file
(prefixed with a comment character-~an asterisk for our assembler).
It also checks for an [End-of-File, and for ﬁ multiple blank
character, which is a system feature built into our text files.
There is a buffer pointer which indicates which character is to be
read from the line buffer next, and RLINE resets that pointer to the

first character of the line.

2c Input characters for the Tree Meta program are not obtained from

the input line buffer, but from an input window, which is actually a

302



Tree Meta - PROGRAM ENVIRONMENT - 29 DEC 1967

character ring buffer. Such a buffer is necessary for backup. There

are three pointers into the input window. A program-character.
counter (PCC) points to the mext character to be read by the program.
This may be moved back by the program to effect backup. A
library~character counter (LCC) is never changed except by a library
routine when a new character is stored in the input window. PCC is
used to compute the third pointer, the input-window pointer (IWP).
Actually, PCC and LCC are counters, and only IWNP points into the
array RING which is the character ring buffer. LCC is never backed
up and always indicates the next position in the window where a new
character must be obtained from the input line buffer. Backup is
registered in BACK, and is simply the difference between PCC and LCC.

BACK is always negative or zero,

2d There are several routines which deal directly with the input

window,

2d1 The routine PUTIN takes the next character from the input
line buffer and stores it at the input-window position indicated
by IWP, This involves incrementing the input-buffer pointer, or

calling RLINE if the buffer is empty. PUTIN does not change IWP,

2d2 The routine INC is used to put a character into the input
window. It increases IWP by one by calling a routine, UPIWP,

which makes IWP wrap around the ring buffer correctly. If there is

303



Tree Meta = PROGRAM ENVIRONMENT = 29 DEC 1967

backup (i.e., if BACK is less than 0), BACK is increased by one
and INC returns, since the next character is in the window
already. Otherwise, LCC is increased by one, and PUTIN is called

to store the new character.

2d3 A routine called INCS is similay to INC except that it
deletes all blanks or comments which may be at the current point
in the input stream. This routine implements the conment and
blank deletion for ,ID, .NUM, .SR, and other basic recognizers.
INCS first calls INC to get the next character and increment IWP,
From then on, PUTIN is called to store succeeding characters in
the input window in the same slot. As long as the current
character (at IWP) is a blank, INCS calls PUTIN to replace it with
the next character., The nonblank character is then compared with
a comment character. INCS returns if the comparison fails, but
otherwise skips to the next comment character. When the end of

the comment is located, INCS returns to its blank-checking loop.

2d3a Note that comments do not get into the input window. For
this reason, BACK should be zero when a comment is found in the
loop described above, and this provides a good opportunity for

an error check.

2d4 Before beginning any input operation, the IWP pointer must be

reset, since the program may have set PCC back, The routine WPREP

304



Tree Meta - PROGRAM ENVIROMMENT - 29 DEC 1967

computes the value of BACK from PCC~LCC. This value must be

between 0 and the negative of the window size, IWP is then

computed from PCC modulo the window size.

2d5 The program-library inéerface for inputting items from the
input stream consists of the routines I, NUM, SR, LET, and CHR,
The first four are quite similar. 1IN is typical of them, and
works as follows: Tirst MFLAG is set false, WPREP is called to
set up IWP, then INCS is called to get the first character. If
the character at IWP is not a letter, ID returns (MFLAG is still
false); otherwise a loop to input over letter-digits is:executed.
When the letter-digit test fails the flag is set true, and the
identifier 1is stored in the string storage area. The class of
characters is determined by an array (indexed by the character
itself) of integers indicating éhe class. Before returning, ID
calls the routine GOBL which updates PCC to the last character
read in (which was not part of the identifier). That is, PCC is

set to LCC+BACK-T1.

2d6 The occurrence of a given literal string in the input stream
is tested for by calling routine TST, The character count and the
string follow the call instruction. TST deletes leading blanks and
inputs characters, comparing them éne at a time with the
characters of the literal stying. If at any point the match

fails, TST returns false. Upon reaching the end of the string, TST

305



Tree Meta =~ PROGRAM ERNVIRONMENT - 29 DEC 1967

scts the flag true, sets PCC to LCC+#BACK, and returns. In
addition to TST, there is a simple routine to test for a single
character string (TCl). It inputs one character (deleting
blanks), compares it to the given character and returns false, or

adjusts PCC and returns true.
3 Stacks and Internal Organization

3a Three stacks are available to the program. A stack called MSTACK
is used to hold return locations and generated labels for the
program's recursive routines. Another stack, called KSTACK, contains
references to input items. When a basic recognizer is executed, the
reference to that input item is pushed into KSTACK, The third stack
is called NSTACK, and contains the actual tree. The three stacks are
declared in the Tree Meta program rather than the library: the

program determines the size of each.

3a1 The operation of MSTACK is very simple. At the beginning of
each youtine, the current generated labels and the location that
the Toutine was called fron are put onto MSTACK. The routine is
then free to use the generated labels or call other routines.
The routine ends by restoring the generated labels from MSTACK and

returning.,

3a2 KSTACK contains single-word entries. Iach entry will

306



Tree Meta ~ PROGRAM ENVIRONMENT - 29 DEC 1967

eventually be placed in NSTACK as a node in the tree, The format

of the node words is as follows: There are two kinds of nodes,
terminal and nonterminal. Terminal nodes are references to input
items, Nonterminal nodes are generated by the parse rules, and

have names which are names of output rules,

3a2a A terminal node is a 24-bit word with either a
string-storage index or a character in the address portion of
the word, and a flag in the top part of the word. 'he flag
indicates which of the basic recognizers (ID, NUM, SR, LET, ox

ClIR) is to read the item from the input stream. .newp

307



f

Tree Meta -~ PROGRAM ERVIRONMENT - 29 DEC 1967

3aZb A nonterminal node consists of a word with the address of
- an output rule in the address portion, and a flag in the top
part which indicates that it is a nonterminal node., A node
pointer is a word with an NSTACK index in the address and a
pointer flag in the top part of the word. FIach nonterminal
node in NSTACK consists of a nonterminal node word followed by
a word containing the number of subnodes on that node, followed

by a terminal node word or node pointers for each subnode. For

example,

.null TREE NSTACK : KSTACK

.null

.null ADD

null .

qnull r;;de ptr. Fﬂ\

.null SS item X

.null X MULT 2 node ptr.
: A Fy

.null node ADD b

.null S5 item Z

null 58 item Y

.null 2 .

.null Y Z |node MULT |4/

.null

3a2c  KSTACK  contains  terminal nodes (input items) and

308



Tree Meta - PROGRAM BNVIRONMENT - 20 DEC 1967

nonterminal node pointers which point to nodes already in

NSTACK. NSTACK contains nonterminal nodes,

3b String Storage is another stack-like area. . All the items read
from the input stream by the basic recognizers (except ClIR) are
stored in the string-storage area (S5). This consists of a series of
character strings prefixed by their character counts. An index into
85 consists of the address of the character count for a string.
Strings in S5 are unique, A routine called STORE will search SS for

a given string, and enter it if it is not already there, returning

the S5 index of that string.

3¢ Other routines perform housekeeping functions like paéking and
unpacking strings, etc. There are three error-message writing
routines to write the three types of error messages (syntax, system,
and compiler). The syntax error routine copies the current imput
line to the teletype and gives the line number. A routine called
FINISH closes the files, writes the number of cells used for each of
the four stack areas (KSTACK, MSTACK, NSTACK, and 8S), and terminates

the program.

3cl At many points in the library routines, parameters are
checked to see if they are within their bounds. The system error
routine is called if there 1is something wrong.  This routine

writes a nuaber indicating what the error is, and terminates the

309



Tree Meta -~ PROGRAM ENVIRONMENT - 29 DEC 1967

program. In the current version, the numbers correspond to the

following errors.
3cla (1) Class codes are illegal
3¢1b  (2) Backup too far
3cle  (64) Character with code gfeater than 63 in ring buffer
3cid (4) Test for string longer than ring size

3cie (5) Trying to output a string longer than maximum string

length

3c¢1f (6) String-storage overflow

3elg (7) Illegal character code

3cth  (8) Trying to store SS element of length zero
"3c1i  (11) MSTACK overflow

3clj (12) NSTACK overflow

3cik  (13) KSTACK overflow

310



Tree Meta ~ PROGRAM ENVIRONMENT - 29 DEC 1967

3d  There is a set of routines used by Tree Meta which are not
a;tually part of the 1library, but are loaded with the library for
Tree-Meta., They are not included in the library since they are not
necessarily required for every Tree Meta program, but more likely
only for Tree Meta. They are called 'support routines', The
routines perform short but frequently needed operations and serve to
increase code density in the metacompiler. Examples of the
operations are generating labels, saving and restoring labels and

return addresses on MSTACK, comparing flags in NSTACK, generating

nodes on NSTACK, etc.

4 Output Facilities

4a The output from a Tree Meta proéram consists of a string of
characters. In the future it might be a string of bits constituting a
binary program, but at any rate it can be thought of as a stream of
data., The output facilities available to the program consist of a set

of routines to append characters, strings, and numbers to the output

streamn.

4al A string in S5 can be written on the output stream by calling
the routine OUTS with the §SS index for that string. OUTS checks

the SS index and generates a system-error message if it is not

reasonable,

311



Tree Meta - PROGRAM ENVIRONMENT - 29 DEC 1967

4a2 A literal stying of characters is written by calling the

routine LIT. The literal string follows the call as for TST.

4a3 A number is written using routine OUTS, The binary

representation is given, and is written as a signed decimal

integer.

4a4  All of the above routines keep track of the number of
characters written on the output stream (in CHNO), Based on this
count, a routine called TAB will output enough spaces to advance
the current output 1line to ‘the next tab ston. Tabs are set at
8-character intervals. The youtine CRLF will output a carriage

return and a line feed and reset CHNO,

4a5 There are several routines that are convenient for debugging.
One (WRSS) will print the contents of S5, Another (WRIW) will

print the contents of the input window,

312



Tree Meta - FORMAL DESCRIPTION - 29 DEC 1967

1 This chapter is a formal description of the complete Tree Meta

language. It is designed as a reference guide.

la  TFor clarity, strings which would normally be delimited by
quotation marks in the metalanguage are capitalized instead, in this

chapter only,

b Certain characters cannot be printed on the report-generating
output media but are on the teletyvpes and in the metalanguage-~their
names,  preceeded by periods, are used instead. They  are
.exclamation, .question, Jpound, .ampersand, .hackslésh, and

.percent,
2 Programs and Rules
2a  Syntax

2al  program = .META ,id (.LIST / .empty) size / .CONTINUE Srule

.END;

2a2 size = '( siz $(', siz) ') / .empty;

2a3 siz = ,chr '= ,nun;

401



Tree Meta - FORMAL DESCRIPTION -~ 29 DEC 1967

2b

J

2a4 rule = .,id ('= exj (.ampersand / ,empty) / '/ "=>" genl /

outrul) ';
Semantics

2b1 A file of symbolic Tree Meta code may be either an original
main file or a continuation file. A compiler may be composed of

any number of files but there may be only one main file.

2bla The mandatory identifier following the stying META in a

main file names the rule at which the parse will begin.

2bib  The optional ,LIST, if present, will cause the compiler
currently being generated to list input when it is compiling a

pProgram,

2blc The size construct sets the allocation parameters for the
three stacks and string storage used by the Tree ieta library,
The default sizes are those used by the Tree Meta compiler. M,
K, N, and S are the only valid characters; the size is
something which must be determined by experience., The maximum

number of cells used during each compilation 1is printed out at

the end of the compilation,

402



Tree Meta -~ FORMAL DESCRIPTION - 29 DEC 1967

2b2  When a file begins with ,CONTINUE, no initialization or

storage-allocation code is produced,

2b3 There are three different kinds of ryules in a Tree Meta

progran., All three begin with the identifier which names the rule,

2b3a Parse rules are distinguished by the = following the
identifier. If all the elements which generate possible nodes
during the execution of a parse rule are not built into the
tree, they must be popped from the kstack by writing an

ampersand imnediately before the semicolon.

2b3b  Rules with the string / => following the identifier may
only be composed of elements which produce output. There is no

testing of flags within a rule of this type.

2b3c  Unparse rules have a left Dbracket following the

identifier, This signals the start of a series of node tests,

3 IExpressions

3a  Syntax

Zal

exp = '« suback ('/ exp / .empty) / subexp ('/ exp / .empty):

403



Tree Meta = TFORMAL DESCRIPTION - 29 DEC 1967

3b

i

3a2 suback :

ntest (suback / .empty) / stest (suback / .empty);

1

3a3  subexp = (nfest / stest) (noback / .empty):

3ad4 noback (ntest / stest ('.question ,num (,id / '.question )

/ «empty) ) (noback / ,empty);
Semantics

3b1  The expressions in parse rules are composed entirely of
ntest, stest, and error-recovery constructs. The four rules
above, which define the allowable alternation and concatention of
the test, are necessary to reduce the instructions executed when

there is no backup of the input stream.

3b2  An  expression is essentially a series of subexpressions
separated by slashes, Each subexpression is an alternative of the
expression. The alternatives are executed iﬁ a left-to-right
order until a successful one is found.” The xest of that

alternative is then executed and the 7tule yeturns to the rule

which invoked it,

3b3 The subexpressions are series of tests. Only subexpressions
which begin with a leftarrow are alloved to back up the input

stream and rescan it.

404



Tree Meta - FORMAL DESCRIPTION - 29 DEC 1967

3b3a  Without the arrow at the head of a subexpression, any
test other than the first within the subexpression may be
followed by an errvor code. If the error code is absent and the
stest fails during compilation, the system prints an error
comment and stops. If the error code is present and the stest
fails, the system prints the number following the '.,question in
the error code, and if the optional identifier is given the

system then transfers control to that rule; otherwise it stops,

3b3b  If the test fails, the input stream is restored to the
position it had when the subexpression began to test the input
stream and the next alternative is tried, The input stream may
never be moved bﬂ&k more characters than are in the ring
buffer, Normally, backup is over identifiers or words and the

buffer is long enough,

4 Elements of Parse Rules

4a

Syntax

4al

ntest = (': ,id / ‘[ ( .num '] / genp '] ('.backslash /

.empty ) / '< genp '> ('.backslash / .empty) / (.CIHR [/ t=) / n=du

/ comm;

405



Tree Meta - FORMAL DESCRIPTION - 29 DEC 1967

4b

4a2 genp = genpl / .empty;

4a3 genpl = genp2 (genpl / .empty);

4ad4 genp2 = '* (§ .num / .enpty) (L / C/ N/ .empty) / genu;

4a5 comm = JEMPTY / '.exclamation .st;

440 Btest & ', ,3d [ JAid f .sv ) " exp ") F *.ehy [/ Conum v8 S

'$) (.num / .empty) stest / '- (.sr / '‘.chr);
Semantics

4b1  The ntest elements of a parse rule cannot change the value of
the general flag, and therefore need not be followed by

flag-checking code in the compiler.

4bla The : ,id construct names the next node to be put into

the tree, The identifier must be the name of another rule.

4b1b  The [ .mm ] constructs a node with the name used in the
last : .id construct, and puts the mumber of nodes specified

after the arrow on the new node in the tree.

4blc The [ genp ] is used to write output into the normal

406



Tree Meta -~ FORMAL DESCRIPTION - 29 DEC 1967

output stream during the parse phase of the compilation.

4bld The < genp » is used to print output back on the user
teletype instead of the normal output stream. This is
generally used during long compilations to assure the user that

the system is still up and running correctly,

4ble The occurrence of a .chr causes one character to be read
from the input stream into a special register which may be put
into the tree just as the terminal symbols recognized by the |

other basic recognizers are.

4b1f  An  asterisk causes the rule currently in execution to
perform a subroutine call to the rule named by the top of the

=

tree,

4blg The "=>" ntest construct causes the input stream to be
moved from its current position past the first occurrence of
the next stest., This may be used to skip over comments, or to
move the input to a recognizable point such as a semicolon

‘after a syntax error.
4b2  The comm elements are common to both parse and unparse rules.

4b2a The .IEMPTY in any rule sets the general flag true,

407



Tree Meta - FORMAL DESCRIPTION . 29 DEC 1967

4b2 The .exclamation-string construct is wused to insert
patches into the compiler currently being produced. The string
following the ,exclamation is immediately copied to the output
stream as a new line. This allows the insertion of anyv special

code at any point in a program.

4b3 Stests always test the input stream for a literal string or
basic entity, 1If the entity is found it is removed from the input
stream and stored in string storage., Its position in string

storage is saved on a push-down stack so that the entity may later

be added as a terminal node to the tree.

4b3a A .id construct provides a standard machine-language
subroutine call to the identifier, Supplied with the Tree Meta
library are subroutines for ,id, .num, .sr, .chr, and ,let
wvhich check for identifier, number, string, character, and

letter respectively,

4b3b  An identifier by itself produces a call to the rule with

the name of the identifier,

4b3c A literal string merely tests the input stream for the
string, If it is found it is discarded. The

apostrophe-character construct functions 1like the literal

408



Tree Meta - FORMAL DESCRIPTION - 28 DEC 1967

5

string, except that the test is limited to one character.

4b3d  The number-$-number construct is the arbitrarv-number
operation of Tree Meta, min preceding an element in a parse
rule means that there must be between m and n occurrences of

the next element coming up in the input. The default options

for m and n are zero and infinity respectively.

4b3e The hyphen-string and hyphen-character constructs test in
the same way as the literal string and apostrophe-character
constructs., After the test, however, the flag is complemented
and the input-stream pointer is never moved forward, This

permits a test to be sure that something does not occur,

Unparse Rules

S5a

Syvntax

5al

5a2

Sad

outrul = '[ outr (outrul / .empty):

3

outr = items '] "=>" outexp;

items = item (', items / ,empty);

item = '- / ,id '[ outest / nsimpl / '. .id / .sr / tochr /

409



Tree Meta -~ FOIMAL DESCRIPTION -~ 29 DEC 1967

'.pound;

S5b Semantics

Sb1  The unparse rules are similar to the parse rules in that they
test something and return a true or false value in the general
flag., The difference 1is that the parse rules test the input
stream, delete characters from the input stream, and build a tree,

wvhile the unparse rules test the tree, collapse sections of the

tree, and write output,

5b2 There are two levels of alternation in the unparse rules. The
highcs; level is not written in the normal style of Tree Meta as a
series of expressions separated by slashes; rather, it is written
in a way intended to reflect the matching of nodes and structure
within the tree, Fach unparse rule is a series of these
highest-level alternations. The  tree-matching parts of the
alternations are tried in sequence wuntil one 1is found that
successfully matches the tree, The rest of the alternation is

then executed. There may be further test within the alternation,

but not complete failure as with the parse rules.

5b3 The syntax for a tree-matching pattern is a left bracket, a
series of items separated by commas, and a right bracket. The

items are matched against the branches emanating from the current

410



Tree Meta - FORMAL DESCRIPTION - 29 DEC 1967

top node, The matching is done in a left-to-right order. As soon

as a match fails the next alternation is tried,

Sbd  If no alternation is successful a false value is returned.

5b5  Each item of an unparse alternation test may be one of five

different kinds of test,

5b5a A hyphen 1is merely a test to be sure that a node is
there. This sets up appropriate flags and pointers so that the
node may be refered to later in the unparse expression if the

complete match is successful,

5b5b  The name of the node may be tested by writing an
identifer which is the name of a rule., The identifer must then

be followed by a test on the subnodes,

ShSc A nonsimple construct, primarily an asterisk-number-colon
sequence, may be used to test for node equivalence., Note that
this does not test for complete substructure equivalence, but
merely to see if the node being tested has éhe same name as the

node specified by the construct,

5b5d  The ,id, .num, .chr, .let, or .sr checks to see if the

node is terminal and was put on the tree by a .id recognizer,

411



Tree Meta = FORMAL DESCRIPTION - 289 DEC 1967

G

.num  recognizer, etc, during the parse phasc. This test 1is
very simple, for it merely checks a flag in the upper part a

word,

Sbbe  If a node is a terminal node in the tree, and if it has

been recognized by one of the basic recognizers in meta, it may

“be tested against a literal string. This is done by writing

the string as an item. The literal string does not have to be
put into the tree with a .sr recognizer; it can be any string,

even one put in with a .let.

Sb5f If the node is terminal and was generated by the .chry
recognizer it may be matched against another specific character

by writing the apostrophe-character construct as an item,

5bSg  Finally, the node may be tested to see if it is a
generated label, The labels may be generated in the unparse
expressions and then passed down to other unparse rules, The
test 1is made writing a .pound-number conStruct as an item, If

the node is a generated label, not only is this match

"successful but the label is made available to the elements of

the unparse expression as the number following the .pound,

Unparse Lxpressions

412



Tree Meta - FOMMAL DESCRIPTION - 29 DEC 1967

6a Syntax

G6al outexp = subout ('/ outexp / .empty);

n

6a2 subout = outt (rest / .empty) / rest;

6a3 rest

outt (rest / .empty) / gen (rest / .empty);

6ad outt

Jid [ arglst '] / '( outexp ') / nsimpl (': (S / L/

N/ C) / empty);
6a5 arglst = argnnt (', arglst /..cmpty) / .empty;.
6ab argmnt = nsimp / '.pound .num;
6a7 nsimpl = '% nsimp / nsimp;
6a8 msimp = '* num ( ': nsimp / .empty);
a9 genl = (out / comm) (penl / .empty);
6all0 gen = comm / genu / 'C [/ '>

»

6bh Semantics



Tree Meta ~ FORMAL DESCRIPTION - 29 DEC 1967

6b1  The rest of the wnparse rules follow more closely the style
of the parse rules. Each expression is a series of alternations

separated by slash marks,

6b2  Lach alternation is a test followed by a series of output
instructions, calls of other wunparse rules, and parenthesized
expressions, Once an unparse expression has begun executing calls

on other rules, elements may not fail; if they do a compiler error

is indicated and the system stops.

6b3 The first element of the expression is the test. This
element is a call on another rule, which returns a true or false
value, The call is made by writing the name of the rule 'followed
by a series of nodes. The nodes are put together to appear as
part of the tree, and when the call is made the unparse rule

called views the nodes specified as the current part of the tree,

and thus the part to match against and process,

6b3a Two kinds of things may be put in as nodes for the calls,
The simplest is a generated label, This is done by writing a
.pound followed by a number., Only the numbers 1 and 2 may be
used in the current system. If a label has not vet been
generated one is made up. This label is then put into the

tree,

414



Tree Meta ~ FORMAL DESCRIPTION - 20 DEC 1967

6b3b  Any already constructed node also may be put into the

tree in this new position. The old node is not removed--rather
a copy is made. An asterisk-number construct refers to nodes

in.the same way as the highest-level alternation,

6b4  This process of making new structures from the
already-existing tryce is a very powerful way of optimizing the
compiler and condensing the number of rules needed to handle

compilation,

6bs The rest of the unparse expression is wmade up of output
commands, and more calls on unparse ryules. As noted above, if any
cxcept the first call of a expression fails a compiler error is

indicated and the system stops.

6b6 Just as in the parse rules, brokets may bhe used to send

immediate printout to the user Teletype.

6b7 The asterisk-number-colon construct is used frequently in the
Tree Meta system. It appears in the node-matching syntax as well
as in the form of an element in the unparse expressions. When it
is in an expression it must specify a node which exists in the

tree.

6tb7a If the node specified is the name of another rule, then

4i5



Tree Meta - FORMAL DESCRIPTION - 29 DEC 1967

contrel 1s transferred to that node by the standard subroutine

linkage,

6b7b  If the node is terminal, then the terminal string

associated with the node is copied onto the output stream.

6b7c The simplest form of the construct is an asterisk
followed by a number, in which case the node is found by
counting the appropriate number of nodes from left to right.
This may be followed by a colon-number construct which means to
go down one level in the tree after performing the
asterisk-number choice and count over the number of nodes
specified by the number following the colon., This process may
be repeated as oftén as desired, and one may therefore go as
deep as one wishes. All of this specification may be preceded
by an f-number construct which means to go up in the tree,
through parent nodes, a specified number of times before

starting down.

6b7d  After the search for the node has been completed, a
‘number of different types of output may be specified if the
node is terminal, There is a compiler error if the node is not

terminal.

6b7d1  :s puts out the literal string

4106



Tree Meta - FORMAL DESCRIPTION - 29 DEC 1967

6b7d2 :1 puts out the length of the string as a decimal

nunber

6b7d3 :n puts out the string-storage index pointer if the
node is a string-storage element; otherwise it puts out the

decimal code for the node if it is a .chr node.

6b7d4  :c puts out the character if the node was constructed

with a .chr recognizer.

7 Output

7a

7b

Syntax

7al genu = out / ', .id '] ((.id / .mum) / .empty) '] / '.pound

qum (": / .empty);

7a2 out = (Y.backslash 7 ¥, / .sp f Vi,chr | YenM J Yayht [ Doght

".pound"

Semantics

7b1  The standaml primitive output features include the following:



Tree Meta = FORMAL DESCRIPTION - 29 DEC 1967

7bla Write a carriage return with a backslash

7b1b  Write a tal with a comma

7blc  Write a literal string by giving the literal string

7bld  Write a single character using the apostrophe-character

construct

7ble Write references to temporary storage by using a working
counter. Three types of action may be performed with the
counter. +W adds one to the counter and writes the current
value of the counter onto the output stream. -W subtracts one
from the counter and does not write anything., W writes the
current value without changing it. Finally, .pound W writes the
maximum value that the counter ever reached during the

compilation.

7b2 The .id [ (.nun/,id) ] is used to generate a call (940 BRI
instruction) with a single argument in the A yegister, It has
been used mostly as a debugging tool during various bootstrap
sessions with the systen, For example, .CERR[5] generates a call

to the subroutine CERR with a 5 in the A register.

7b3  .pound 2 means "define generated label 2 at this point in the

418



Tree Meta - FORMAL DESCRIPTION - 29 DEC 1967

program being compiled.," It writes the generated label in the

output stream followed by an EQU *, This construct is added only

to save space and writing.

410



Tree Meta - DETAILED EXAMPLES - 29 DEC 1967

1 This section of the report is merely the 1listings of compilers for

two lanpuages.

2 The first language, known as SAL for "small algebraic language," is a

straightforward algebraic ALGOL-like language,
3 The second example resembles Schorre's META II1. This is the original

metacompiler that was used to bootstrap Tree Meta, It is a one-page

compiler written in its own language (a subset of Tree Meta),

01



ZTREE META SMALL ALGEBRAIC LANGUAGE - 29 SEPTEMBER 1967 %
«META PROGRAM «LIST

PROGRAM = "«PROGRAM" DEC #* $( DEC %) :S8TARTNCLO] ST % $('; ST #)
"o FINISH" 71E :ENDNLO] * FINISH 3

DEC = ".DECLAERE" ID $('s «ID :DOL2]) "; :DECN[1]:;

E = RESET => "; 8$(5T *) ".END" 799E :ENDNLO) * FINIGSH;

ST = IFST /7 WHILEST / FORST / GOS5T / I0ST / BLOCK /
oID ("2 :LBLC1] ST :DOL2] / '~ EXP $STOREL21);

IFST = "eIF" EXP "o THEN" ST ("™.ELSE"™ ST :SIFTEL3) / «EMPTY :SIFTCLR21);
WHILEST = "-WHIiJ?' EXP ".DO'" ST :tWHLC2]1:

FORST = ".FOR"™ VAR '« EXP ".BY" EXP ".T0"™ EXP ".DO" ST :FORLS51;

GOST = "eG0"™ "eTO™ oID :GOLC113

10ST

1

"o OPEN™ ("INPUT" «ID 'C «ID '] :O0PNINPLR2] /
"OUTPUT" «ID *C «ID '] :0OPNOUTLCZ2]) 7/

"+« CLOSE"™ .ID :CLSFILC1] /

"eREAD"™ «ID ": IDLIST :BRS38[2] /

"+ INPUT" 1D ': IDLIST :XCIOC2] /

"sUWRITE"™ ID *: WLIST :0UTNUMLC2]1 /

"o OUTPUT® «ID "¢ VWLIST :OUTCARLC2] 3

IDLIST = VAR (IDLIST :DOLC2] / «EMPTY);

- %8 e0

(eID /7 «NUM / ¢SR) (UWLIST :DOC2] / «EMPTY)S

VLIST

]

BLOCK "«BEGIN'" ST $('5 ST :DOCL2]) ".END";

EXP = "o IF" EXP "o THEN'" EXP " ELSE" EXP :AIFC3] / UNION;

UNION

1]

INTERSECTION (°'N\'/ UNION :0RC2] / «EMPTY):;
INTERSECTION = NEG ('& INTERSECTION :ANDC2] / «EMPTY):
NEG = "NOT * NEGNEG / RELATION;

NEGNEG = "NOT " NEG / RELATION :NOTC1l;

RELATION = SUMCC '<=" 5UM :LE 7/
“<" SWM :LT 7/
=" SUM :1GE /
"=t SUM :GT /
=t SUM EQ /

D)

' SUM :NE C21 /7 «EMPTY);



SUM = TERM (('+ SUM cADD/ "= SUM :$:SURIL21/ <EMPTY)S
TERM = FACTOR (%% TERM ¢MULT/®/ TEEM :DIVIDA "t TERM sRIEMIL2]1/« FMPTY)S
FACTOR = "= FACTOR :MINUSL1] 7 *+ FACTOR / PRIMARY:
PRIMARY = VARIABLE / CONSTANT / *C EXP ");
VARIABLE = ID 2UVARC113
CONSTANT = NUM :COWLC13s
SIFTE[=s=5=] => LOPRL#1,#1,#2]1 BRFO*1s#21 #1"EQU %"\ %28 SIFTEI[#2,%3];
SIFTEI[#1s=1 => ,Y"BRU":#2\ #1:"EQU #\ %2 #2,"EQU =%"\;
SIFTL=:=1 => LOPRL®1:#1:#2]1 BRFI%1:421 41" EQU #"N\ %2 #2,"EQU #'\;
WHLL=s~] => #1s"EQU %"\ WHL1[%1,#2] %2 »"BRU", #1\ #8,EQU *'\3
WHL1L=2 #21 => LOPRL#®1,#1s72] BRF[#1,#2] #1-"EQU ="\3
GOL=1 => »YBRUYs*1\;
FOR[(=s=s=s=5~1 => <"]0 HNOT USE FOR STATEMENTS">;:
LBLL=1 => #i:"5E0U =3
AIFL=s=s=1 => LOPRC:#1,#1,#2] BRFL#1s#21 #1-"EQU =*"N\ ACCL:x#2] AIFIL#2:%313
ATFIL#1s=1 => s"BRU", #2\ #1."LQU ="\ ACCL=#2] #2:"ECU #"\3
LOPREIORL=s=1s #1:=1 => LOPR[#%18:%1s:41,#2] BRTLH1s#1-#11]
FR:TEQU £\ LOPREC#12:k2s #1231
CANDL=s=1z2~s#11 => LOPRL#1¢=1s#2s#1] BRFL#1g:x1,#1]
#2:YEQU "N LOPRL#1:H:8,%2s#11]

[NOTL=~Js#1s#2] => LOPRI*12%H1s#28:#1)]

(=s=p=1 => - FMPTIYS
BRTEDFF s=1s#13 => BRT[=1e#:2s4#11]

[A‘\:Dl'-.r-].onl:l => BETI%1:%8,#1]

CNOTE=-1s#170 => BRF[*1s%1s+#11]

CLFL=s=3s#11 => BLEI[k1lexls1:%2,#11]

CLTL=s~Js #11 => BLTL=%lssisklskls#1]

[EQL=s=1:#11 => BEQ[#1skls1%8,#11]

CGEL=s=12#1] => BORL#:lskls211%28,#11

LCTL=s~12s#11 => BLEC#12k2,tikis#1]

[NFL=s=1s#1] => DNE[#lzflrmliils#1]
L~s#11 ACCL#11 s "S¥E =0""\ »"BRUY, #1\;

11
"{t .\

BRFLORL{~»~1s#11 > BRELH1:2:2.#11
CANDL=s-1s 511 => DBRFL#H13:%Bs4#1]
CNOTC=Jx #1113 > BRTCH1s%1s #1311



CLEC=~2=1s#11 => BLE[:#le®Bslekls#1]
[LTC=s=1-4#11 => BGEL#1s#lsslekds#1]
CEQL=2=1s#11 => BNECRIsklaHlsH2,#1]
CGEC~»=15#11 => BLTO#1s41sk13:52s#1]
CGTL=»=12#11 => BLE[®Isklokig:hl, #1]
CNEL=s=1s#1] => BEQLAissir13%2, #1)]
L=-5#117 => ACCL#1] »¥S8KA =-1\ »"BRU™s #1\3
BLTL=s=s#11 => (TOKENL[#1] ACCL#21 »MEKEY: 31N "SKEYs 21N\ /
WORKL#1] ACCL#:21 » "SKEYs T+ N, "SKGYs T4+ e W=\ )
3 "ERU l}:+2"'\ » "BRU“S ,.:;. 1\;
BLEL=s=2#11 => (TOKINLCZE1 ACCL=1] » "SKGE sk2N\ /
TOKENL#*1]1 ACCL®2]1 »'"SKG"»#1N\s"BRU #+2"\ /
VORKL=#21 ACCL#1] »"SKGE""T+"oW~-U\ )
» V"BRUs # 1\ 2
BEQL=s=5#1] => (TOKENL:#2] ACCI#11 s "SKE"s:%2\ /
TOKENLC#13 ACCL#2] »"SKE"»*1i\ /
WORK(#2] ACCL%1] »"SKE"s "T+"e U=\ )
2 "BRU #+2"\ s "BRU", #1i\3
BEEL=»=»#11 => (TOKENL:*1) ACCL#E] »"EKEYs 1IN "SKE"s¥1N /
WORKL#13 ACCL#21 .o "SHE", T4 e WN\u "SKG"s ""T+"o =W\ )
2 "EBRUYs #1N3
BNE[~s=5#11 => (TOKEN[:#2] ACCL#1] s MSKEs =2\ /
TOKEFNC#1] ACCL#®2] »"SKEY,* 1IN\ 7/
WORKL#2) ACCL#11 »"SKE . "T+ WU\ )
s "BRUS #1N3
STOREC=-,VARL#1]1] => "&ITS ALREADY THERE"\

L= ADDCVARLC %11 CONL™i™]1] => »"MINU,=®i\
C=s ADDIVARL®1]5=1] => ACCL=#2z:H2] »YADMTediin
C~s SUBLVARL:#115=1]1] => ACCL=x2:%2] »YCNAS AN "H1N\

Ema=3

ADDEMIMUSLE=]se=1]

L~s~=]

=> BREGL:*®2] :"5TBYz%1N\ 7/
ACCL=2] s"5TA"s#1\3
=> S5UBC%H8sk1s%1]
=> TOKENLCx21 ACCL#1] L,“ADD',w2\ /
WORKLC:#*11 ACCL#2] »"ADDY,"T+"eUW~U\}

SUBL=s=1 => TOKEN[:®:21 ACCL=x11 »"SUB", %2\ /
TOKFENL#1) (BREGL#E2] »"CbBAs; CNA3 ADD "=%i\ /

ACCL=*E] »YCNAF ADD "#iN) /

VORKL*#2) ACCL*13 »'SUB",»"T+"e li=T\3

MINUSC=-] => TOXENL#11 »"LDA",x1\ s"CNA"N /
BREGL=#13 -»¥CRBAs CNAYSN /
ACCL#1] 5 "CNA'"S

DIVIDL=5~1

=> TOKENC#2] (BREGL#1] 5 "CRA™. /
ACCL#*11) s™RSH 233 DIV "%2\ /
VORKC#23 (BRLEGLH1I APV0BATN 7/
ACCE#12) s "REH 233 DIV T+"e W=TN\3



BREGLMULTL=~5s=1] => TOKENL
TOKENC*12%1]
VORK[=:1e::11 A
[REML=»=11 => TOKENL:*1:2:#2]
ACCL-] => TOKENLC#11 »"LDAYs#1\ /

BREGL:#11 »"CBA"\ /

13
VORKL=1

=> BREGL*1] »"STB", " T+"+

CACCL#11 »"STAYs " T4+
TOKENLVARLoID1] => « EMPTY
[CONLoNUMI] => oEMPTY;

MULT / => «EMPTY;

R / => «IMPTY:

AND / => oEMPTY;

OR / == «EMPTY:

NOT 7/ => oLEWMPTY3

ENDN /

==

T, UBSST, TUN 5 MENDUN;

VARL.ID] => #=1;

CONLNUM] == '=

=> o« EMPTY;

o BMPTYS
o EMPT1Y;

GE / o« EMPTY 3

GT / => «EMFTY:

NE / == «LMPTY:

DOL=s=13 => %1

*#23

OPNINPL~s~] => »"CLEAR’} BRS 15}

OPNOUTL=s~1 => ,"CLEAR: BRS 18;

A

#12k2] ACCL=#1z:11

ACCL#1z%2]
CCCk1e=2]
(EREGL#1s::11]

ACCL#k11) »"RSE 235
VORKI#%12%21 (BREGC*1iz%1] »"CBA"\ /
ACCCa#122:173D

ALY

WN 7/
WN:

BRU "#%2": BRS 163

BRU "#2";
gy

L DA
STA ™H1INS

=3z

A "MUL"

PRALETI LS o R
sTMULe BTk W~U"3
2 "TCBATN /
DnIv

»""BSH 23:
RSH 1'"\;

BRU '"#2"3

ERS

*]pkp%3

1935

RSH 1N 7
RSH 1" 7/

RSH 1"

Y lrk2N /A

DIV T+"

STA "IN

BrRU



CLSFILC=]1 => ,'"LD& "#1"3; BRS 20'"\:3

BRS38[=5ID1 => L"LDA ™#%1%; LDB =105 BES 383 STA "2\
E=a=] => BRS38L#1,%2:%1] BRS3BL*1s*2::%2]3

XCIOL=5+1D] => L,"CIO "=1"; STA "™k2\
E#g'= => XCIO[#1,%2:%1] XCIOL*1,%Bex2]5

OUTCARL~sID] => ,YLDA "%2%; CIO ""=x1\
L=seNUMI => 2"LDA =":#2; CIO =i\
C=208R]1 => »"LDA ="#1"5 LDB ="%2:L"; LDX '"*1'"3 BRS 365 BRU "%2\
#1?"ASC ALl 0;3211 D\
e => QUTCAR[#1s%2:#%1] OUTCARL:#1,%23:#2]3

OUTNUML=2e ID] => "LDAa "#1"3 LDA =105 BRS 34"\
[=seNUMI => ,"LDA =":2%"5 CIO0 "IN
[~5eSR] => LYLDA ="#1"3; LDB ="%2:L"; LDX "%1%3 BRS5 363 BRU "=x2\
#I’IIP_SC e e '55‘:2' !\
[=s=3 => QUTNUMC*1,%2:4%1] OQUTNUML*1,k2:52]3

STARTN / => "“START"s "EQU"s"&"\}

DECNLID] => #H1,"BSS 1\ '
L=1 => DECNC#1z2:#11 DECNCH*1e#23 J

« END



«META PROGRM %5%

PROGRM = W META™ 1D 717 <T"META 1] 1.1"=
' [* NOLIST EXAT-NUL3 SSTART BRM INITL*'I
LYUSKSTKSZ EQU 13 SMSTKSZ EQU 1003 SNSTKSZ EQU 13 $SSSIZE E@U S50™1
(" LISTY [-"CLA:; STA LISIFG™] / o EMPTY)
Co"BRM RLINE: BRM 'S:''; BRM FINISH'"I
("¢ S17Z %C', SIZ) ®) 217E / <EMPTY)
E5T Yo WD ?2E
["STAR BSS 13SSTOP DATA SS+SS8SIZE=S:$SS BSS SSSIZEYI
[YSMSP DATA MSTK: SMSPT DATA MSTHE+MSTKSZ«55 SMSTK BSS MSTHSZ™]
[YSNSP DATA NSTHE; SNSPT DATA NSTK+NSTKSZ- 55 SNSTK BSS NSTKSZ']
["$KSP DATA KSTK3 SKSPT DATA KSTK+KSTKSZ= 53 SKSTK BSS KSTKSZ"]
Co"END™] <"DONE">3
ST = oID t= 73E <"ST'"> [#,"ZR0O; LDA %-13 BRM CLL™]
EXP 74F '3 25E [s"BRU RIN'":
EXP = SUBEXP $C°'/ (s"LDA MFLAGS SKE
- SUBEXP) [*1.,"EQU %"13
SUBEXP = (GEN 7/ ELT C»,"LDA MFLAGS; SKE =13 BRU "%k11)
SREST [#*1,"EQU %13 ‘
REST = GEN / ELT [,"LDA MFLAGs SKE =03 BRU #+4"]
7 «NUM ?12E Cs"LDA ="%"3; BRM ERR™]’
(1D [s"BRM™sx1/ "7 [+"BRS EXIT"137 13E/
e EMPTY [»'"CLA3 BRM ERR:; BRS EXIT"1);
ELT = ' eID ?26F [+"BEMY:%"; STA STAR"1 /
«ID [s"EBRM"s:%1/
¢eSR [s"BRM TST: DATA ":L™; ASC "™9°'%°°] /
‘¢ EXP ?7E ') 28BE / :
9 CHR [s"LDA ='":&N"3: BRM TCH'™I;
bl $O0UT *J1 ?210E C[."BRM CRLF"1 /
*s ([*1."EQU %"] ELT ?9E
[sVLDA MFLAG: SKE =0; BRU "#1%; MIN MFLAGY] /
Y. EMPTYY [LYLDA =13 STA MFLAGM] /
%, CHR'" [s"BRM WPREP; BRM INC3 LDaAx IWP$: STA STAR; MIN NCCP"] /
'< oSR ?12E "> ?13E C-"BRM LITTs DATA "%L":; ASC "*'#''"; BRM CRLFTYZ
‘T::'_"I E*l.. "I:-:@L] :}:"j ELT ?jaE
[s"LDA MFLAGS SKE =0; BRU #+3; MIN NCCP; BRU ™#13/
"1 SR 71i5E [o®ls
OUT = SR Cs"BRM LITs; DATA '"#L'"3 ASC “™''%x''] /
Vs C."BERM TaAB"1 /
% (oNUM [»"LDA =47B; CIO FNUMO; MIN CHNO3; LDA GN"
*''s BEREM GENLAB3 ST£ GN"#%'3 BRM OUTN*'] /
'L, C[s"LDA%x STAR; BRM OUTN™] /
TN (s"LDA STAR; BEM OUTN"] /
'C [+"LDA STAR; CIO FNUMO3 MIN CHNO'M™] /
s EMPTY [."LDA STAR: BERM 0UTSY1)/
* JCHR [+"LDA ="#N%; CI0 FNUMO0O:; MIN CHNO™I/
[o"BEM CELIF™I1;
= =» 3 [>"BRU RTN™] S$ST *"<END"™ ?11E [s"™END'] FINISH;
1Z = "K=" NUM ["SKSTKESZ EQU ®=1 /
=" SNUM [YEMSTKSZ EQU "™k1 /
FN=TY G NG [FONSTKSZ EQU k1 /7
TE=TY JNUM [YHSSSIZE EQU "1
« END

]

0: BRU ™17

GEN



Tree Meta - DETAILED EXAMPLES - 29 DEC 1967

502



Tree Meta - CONCLUSIONS and FUTURE PLANS - 29 DEC 1967

1 Since the work on Tree Meta is still in progress, there are few

conclusions and plentiful future plans,

2 (TAKE THIS BRANCH OUT TFOR THE ROME REPORT.) This report needs

extension in two areas, as well as constant updating as the systenm

evloves.

2a Section 5 should be completed. This was intended to be a
detailed example of a small algebraic-language compiler written in

Tree Meta, The language is  essentially completed, but the

accompanying explanations arc not.

2b Somewhere within the report there 'should be a thorough

discussion of the bootstrap technique of meta.

3 There are many research projects that could be undertaken to improve

the Tree Meta svstem.

3a Something which has never Dbeen done, and which we feel is very
important, is a complete study of the compiling characteristics of
top-down analvsis techniques. This would include an accurate study of
where all the time poes «uring a compilation as well as a study of

the flow of control during Dboth parse and wunparse phases for

601



]

Tree Meta - CONCLUSIONS and TUTURE PLANS - 29 DEC 1967

different kinds of compilers and languages. At the same time it

would be worthwhile to try to get similiar statistics from other
compilers, It may be possible to interest some jeople at Stanford in

cooperating on this.

3b SDC has added an intermediate phase to their metacompiler system.
They call it a bottom~up phase, and it has the effect of putting
various attributes and features on the nodes of the tree. This
allows one to write simpler and faster node-matching instructions in
the wunparse rules, We would like to investipate this scheme, for it
appears to hold the potential for allowing the compiler writer to
conceptualize more complex tree patterns and thus utilize the

node-matching features to a fuller extent,

3c Yet another intermediate phase énuld be added to Tree Meta which
would do transformations on the tree before the wnparse rules produce
the final code. In attempts to write compilers in Tree Meta to
compile code for languages with complex data structures (such as
algebraic  languages with matrix operations or string-oriented
languages with tree operations) and to make these compilers produce
efficient code, we have found that tree transformations similar to
those used for natural-language translation allew one to specify
easily and simply the rules for tree manipulation which permit the
unparse rules to produce efficient, dense code., Implementation of

the tree-transformation phase into the Tree ‘Meta syvstem would be an

602



Tree Meta -~ CONCLUSIONS and TUTURE PLANS - 29 DEC 1967

extensive research project, but could add a completely new dimension

to the power of Tree Meta,

3d There are a series of additions, some very small and some major,

which we intend to add to Tree Meta during the next vear.

3d1  Other metacompiler systems have had a construct which allows
nodes to have an arbitrary number of nodes emanating from them,
This requires additions in parse rules to specify such a search,
additions in the node-matching syntax, and additions in the output
syntax to scan and output any number of branches.

3d2 We have always felt that it would be nice to have Lhe basic
recognizers such as '"identifier" defined in the metalanguage.
There have been systems with this feature, but the addition has
always had very bad effects on the speed of compilation. We feel
that this new freedom can be added to Tree Meta without having

telling effects on the compilation speed.

3d3 The ervor scheme for unparse rules is rather crude--the
compiler just stops. We would 1like to find a reasonable way of

accommodating such errors and putting the recovery-procedure

control in the metalanguage.

3d4  Currently the unparse rules expand into 6 times as many

603



Tree Meta - CONCLUSIONS and TUTURE PLANS - 29 DEC 1967

3e

machine-language instructions as the parse rules, This happens

because we did not choose the most appropriate set of subroutines
and common procedures for the unparse rules. Without changing the
syntax of Tree Meta or the way the stacks work, we feel that we
can reduce the size of the unparse ryules by a factor of 4. This
would free a considerably larger amount of core storage for stacks
and enlarge the size of programs which Tree Meta could handle, It

would also make it run faster in time-sharing mode since less

would have to be swapped into core to run it.

3d5  In doing some small tests on the speed of Tree Meta we found
that Dbetter than 80 percent of the compilation time is spent
outputting strings of characters to the system. The Eodc that
Tree Meta nov produces is the simplest form of assembly code. It
would Dbe a very simple task to make Tree Meta able to directly
produce binary code for the loader yather than symbolic code for
the assembler., A similar change could also be made to output
absolute code directly into core so that Tree Meta could be used

as the compiler for systems that do incremental compilation,

Finally, there is the following 1list of minor additions or

changes to be made to the Tree Meta system.

3el  Make the 1library output routines do block I/0 rather  than

character I/0, This could cut compilation times by more that 70

604



Tree Meta ~ CONCLUSIONS and FUTURE PLANS - 29 DEC 1967

percent,

3e2 Fix Tree Meta so that strings can be put into the tree and
passed down to other unparse rules., This would allow the unparse
rules to be more useful as subroutines and thus cut down the

nunber of unparse rules needed in a compiler.

3e¢3 Tinally, we would like to add the ability to associate a set
of attributes with each terminal entity as it 1is recognized, to
test these attributes later, and to add more or change them if
necessaxy. To do this we would associate a single 24-bit word
with the string when it is put into string storage and add syntax

to the metalanguage to set, reset, and test the bits of the word,

605



Tree Meta - BIBLIOGRAPHY - 29 DEC 1967

1 (BOOK1) [Eywin Book, "The LISP Version of the Meta Compiler,' TECII
MEMO TM-2710/330/00, System Development Corporation, 2500 Colorado

Avenue, Santa Monica, California 90406, 2 November 1965,

2 (B0OOK2) Erwin Book and D. V. Schorre, "A Simple Compiler Showing
Features of Extended META,"™ SP-2822, Syvstem Development Corporation,

2500 Colorado Avenue, Santa Monica, California 90406, 11 April 1967.

3  (GLENNIE1) A. E. Glennie, "On the Syntax Machine and the
Construction of a Universal Computer," Technical Report Number 2, AD

240~512, Computation Center, Carnegie Imstitute of Technology, 19060,

4 (KIRKLEY1) Charles R, Kirkley and Johns F. Rulifson, "The LOT System
of Syntax Directed Compiling,'" Stanford Research Institute Internal

Report ISR 187531-139, 1966,

5 (LEDLEYT) Robert Ledley and J, B. Wilson, "Automatic programming
language translation through syntactical analysis," Communications of
the Association for Computing Machinery, Vol. 5, No. 3 pp. 145-155,

March 1962,

6 (METCALFE1)  lloward Metcalfe, '"A Paraneterized Compiler Based on
Mechanical Linguistics,'" Planning Research Corporation PR=311, March 1,

1963, also in Annual Review in Automatic Programming, Vol. 4, 125-165,

701



Tree Meta -~ BIBLIOGRAPIY - 29 DEC 1967

7 (NAURT) Peter Naur et al,, "ropert on the algorithmic language ALGOL
60," Communications of the Association for Compting Machinery, Vol, 3

2

No. 5, pp.299-384, May 1960,

8 (OPPENHEIMT) D. Oppenheim and D, Haggerty, "META 5: A Toel to
Manipulate  Strings of Data," Proceedings of the 21st National

Conference of the Association for Computing Machinery, 1966,

9 (RUTMANT) Roger ﬁutman, "LOGIK, A Syntax Directed Compiler for

Computer Bit-~Time Simulation,' Master Thesis, UCLA, August 19064,

10 (SCHMIDTT) L. O, Schmidt, "The Status Bit," Special Interest Group

on Programming Languages Working Group 1 News Letter, 1964,
11 (SCHMIDTZ) PDP-1
12 (SCIMIDT3) EQGEN

13 (SCHNIEDER1)  F, W, Schneider and G, D. Johnson, "A Syntax-Directed
Compiler-Writing Compiler to Generate Efficient Code," Proceedings of
the 19th National Conference of the Association for Computing Machinery,

1964,

14 (SCHORRE1) D. V., Schorre, "A Syntax-Directed SMALGOL for the 1401,"

702



Tree Meta - BIBLIOGRAPHY - 29 DEC 1967

proceedings of the 18th National Conference of the Association for

COmputing Machinery, Denver, Colorado, 1963.

15 (SCHORREZ) D, V. Schorre, 'META II, A Syntax-Directed Compiler

Writing Language," Proceedings of the 19th National Conference of the

Association for COmputing Machinery, 1964.

703



«META PROGRM ZTREE 1.3%

PROGRM = ("eMETA™ oID 2?2172 (".LISTY sLISTCLO1/ «EMPTY :MTCQ1)> SIZE
' sBEGINCIY 7/
‘M CONTINUE™ :MTLO] ) <"TREE 1.3"> :SETUPCL1] * &( RULE * )
", ENDY ?2E :ENDNLO] s <"DONE">S

SIZE = "C S1Z $C'» SIZ ::DOC21) *) 2S50FE /7 «EMPTY :MTLO1S
SI7Z = «CHR "= ?54F «NUM 7 55E :SIZSLE13

RULE = 1ID
¢ '= EXP ?3E ('& :KPOPK[1] / ~EMPTY) :0UTPTL2]1 /
*/ =>" 73E GEN1 :SIMPL2] /
OUTRUL :QUTPTL21) 75E '3 ?6E 3

EXP = '+« SUBACK ?7E ('/ EXP 78E :BALTERC2] / oEMPTY $BALTERL11) /
SUBEXP (' EXP ?9E tALTERL21/ <EMPTY);

SUBACK = NTEST (SUBACK :DOL21 / EMPTY) /
STEST (SUBACK :CONCATL2] / EMPTY):

SUBEXP = (NTEST / STEST) (NOBACK :CONCATCL2] / «IMPTY):

NOBACK = (NTEST / STEST ('? .NUM ?10E :LOADC1] (ID /"? $ZROCO1) 711E
¢ ERCODL 3] / «EMPTY $ERL11) D
(NOBACK :DOL21 / «EMPTY);

NTEST = '3 oID ?12E :NDLBL11 7/
'L ¢ <NUM *] ?14E :MKNODEL11 /
GENP '] ?52E (°®1/.EMPTY sOUTCRLO1 :D0OC21) ) /
< GFENP *> ?53E ('t /«EMPTY :OUTCRLO] :DOC21> :TTYL1} /
(" CHR'" :GCHR /
s 2 GOY L0 7/
== STEST ?15EFE :SCANL11 /
COMias

GENP = GENP1 / <EMPTY sMTLOI:
GENP1 = GENP2 (GENP1 :DOL2] / EMPTY)S

GENP2 = %% ('S oNU¥ ?51E :PAROUTC1] / EMPTY :ZROLO1 sPAROUTL131)
('L QL / °*C 20C / °N 3ON / EMPTY :0S8)CL0]1 :NOPTL21/ GENUS

COMM = "o EMPTY™ ¢ SETCLOT 7/
1 oSR ?18E :IMEDL 115

STEST = *e oID 7i9E :PRIWL1] /
eI 2CALLLL13/
«SR $STSTL1]) /
‘( EXP 720E ") 121E 7/
F¥ «CHR :CTSTL13/
CeNUM °S 723E /'S :ZROL01) (eNUM /«EMPTY tMTLOJ) STEST ?24F 2ARBL3]/
Fu (ST YNSRELID / '% «CHR  :NCHRLU 1) 72261E sWNTS5TC 113



OUTRUL = °*[L OUTR ?27E (OUTRUL :ALTERLZ2] 7/ EMPTY) :0SETC11;
OUTR = OQUTEST "=>" ?729E QUTEXP 730E :CONCATLZ2];

OUTEST

{ (%] sMT 7 "=2% fONE / W=p=21" ;TWO / W=s=3=3" ¢THRE)Y L[OI1 /
ITEMS *1 ) sCNTCKL 135 '

ITEMS = ITEM ('s ITEMS 732E :ITMSTRL2] / -EMPTY :LITEMC11) 3

ITEM = '« $MTLOY /
«ID *C ?33E OUTEST ?34E sRITEMLZ21/
NSIMPI sNITEM[1] /
o oID ?35E sFITEML1] /
e SR ¢TTSTL1] 7/
'*' ¢CHR ¢CHTSTCL11 /
'# «NUM ?37E :GNITEMC1D3

QUTEXP = SUBOUT (°'/ OUTEXP ¢ALTERLEZ] / «EMPTY);
SUBOUT = OUTT C(REST :CONCATL2] / EMPTY) / REST;
REST = QOUTT (REST sOER[21/ «FMPTY) / GEN (REST :DOL21/ «EMPTY);
OUTT = oID *C 739E ARGLST 'l 740E :O0UTCLLL2) / *C QUTEXP ') ?41E /
NSIMPI (%3 ('S 20S ./ °L sOL / °'N :sON/ 'C 20COC01 :NOPTL2] /
e EMPTY 2DOITL11)5
ARGLST = ARGMNT $ARGL 11 (', ARGLST :DOL2] 7/ «ENMPTY) / «EMPTY :MTLOI1;
ARGMNT = NSIMP $ARGLDC1] / *# «NUM 2:GENARGC11:
NSIMPl = « "1 NSIMP sUPL2] / NSIMP $LKTC11:

NSIMP = "# oNUM (« ': NSIMP 2CHASEL2] / -EMPTY :LCHASEC11);
GEN1 = (QUT/COMM) (GEN1 $DOLCR2] / <EMPTY):
GEN = COMM / GENU / "< eTTYLC) / F» :FILLOI;

GENU = 0UT /
‘e oID 742E [ T43E (CoID / oNUM)Y :LOADL1] :CALLC2] /
« EMPTY ¢CALLC11) '] /
"4 JNUM sGNLBLLC1) €': eDEFL1] / <EMPTY) 3

OUT = (°*\ =0UTCR / ‘s :0ULTABY CO1 7/
e SR :QUTSRLL] 7/
'Y o CHR :QUTCHL11 7/
P+ g UPURKLO] :OUTWRKC1] /
NwW™ :DUNWRKLO] /
oW sMTLOY :OUTHRK /

Y1fW SMAKVRKLOCD S

=
1
°
=
=
‘o
=
-
=
n
o, |
i

E $C RULE # ) ".END' 799F FINI BH;



Z0UT RULES#

SETUP (=] => ,"NOLIST NULs,EXT; GEN OPD 101BS,1513RBF OPD 102BS5s1s 1"\
BT OFD 103B5s 15 13 PSHN OPD 104B5» 15 15FPSH OPD 105B5s 15 17\
"MKND OPL 106BS-.i. 1;NIDLBL OPD 107BS5s 1+ 13 GET OPD 110BS»15 1"\
“"BPTR OPD 111BSs1» 13 BNPTR OPD 112B5s1,13R11 OPD 113B5s 1, 1"\
"RI2 OFD 114B5,2;FLGT OPD 115BS:1-1BE OPD 116B5s 151"\
"LAB OFD 117B5,1,13CE OPD 120BS5s 1» 13LDKA OPD 121B5s 151"\
"SKSTKSZ EQU 1003 $SMSTKSZ EQU 1305 SNSTKSZ EGU 13003 $SSTKSZ EQU 1400\
#13

BEGINL=s~5=1 => "SSTART BRM INITL3 CLA; STA WRK3 STA XWRK¥™\ %3 %2
sVBRM BLINE: BRM "#1%"; BRM FINISH"\:

LIST /7 == " CLA; STA LISTFG:';

OUTPTL=»~1 => %138 »"ZR0O; LDA %~1; BRM CLLOYN\ %2 »'"BRU RTNO"\;
SIMPL=»=] => #1 ,"ZRO"™\ *2 »"BRR "s&ki\;

BALTERL~1 => ,"BRM SAV"N\ %1 ,"BRM RSTR"\ ‘
L=5=1 => "BRM SAV'\ #*1 L,"BRM RSTR: BT "#i\ %2 #1.DC]1s

D/ => s"EQU *"\;

ALTERC=s SETC]] => #1 %2 :
[CONCATL=s=1s=1 =>PMTL*18%1s#1] #1:%2 »"BRU "#2\ #1.D[] #2 #20DC]
[=s=1 => 1 »"BT "#I\ *2 #1.DL1;

PMTLPRIMC=1s#1] => VBRM “#1:2#:138"3 BF "#1"; MRG "1:#%1:S8"FLG: PSHK =0\
L=s~] => %1 ,VBF ""#1\3
k w— L

ERCALTERL=» SETCI] => &1}
(=] => *x1 »"BE =~1""\;

DOL=s=1 => 1 #23
CONCATL=s=1 == %1 »"BF "#I\ %2 #i.DC1;

LOADL.NUM] => ,"LDA ="=k]155\
LeID] == L"™LDA "#185\s

CALLL=1 => ,"BRM "#%1\

[=s=1 => %2 »"BRM &I\
MT / => LEMPTY;
CLA / => "(CLA™;

ZRO / == "(0%;



ERCODL=p~s=1 => H1 #2 "HE "%3\;
NDLEL=]1 => 5 "NDLBL ="#1\;}
MEKNODE[L=] == »"MEND ="%]1\3
ARBLZROCIsMTLIs=1 => #1eDC] *3,"BT "#1"; MIN MFLAG'™
CeNUMsMTLIs=1 == ARBIC*1] #1.DC1 %3
»"SKR# MSP: BT “#1Y3 SHN#® MSP: BRU =#+3; BT "#1'; MIN MFLAGY\
« ARB3L 1
[~seNUMs=1 => ARBIL*2] #1.DLI *3
s " 5KR# MSP5; BT "#1%; SKN:# MSP™N\ ARB2L*1,%2];
ARB1(=1 => »"BRM SAUV; LDA =%%j:S"+i3 MIN MSP: S5TAx MSP'N\;
ARB2L =+ e NUM] => »"BRU %+45 CLA; STA MFLAG: BRU #%+4; LDA% MSP; SKG ="#2
et i MIN MFLAGYN «ARB3C]
[=] => »"BRU *#+33 CLA 5 STA MFLAG"\ -ARB3[]:
ARBZ3 / => »%YLDA ==13 ADM MSP3 BREM RSTR'\:
GCHR /=> s"“BRM WPREP:; BRM INC:; LDA% IWP; MRG CHRFLG: MIN NCCFP3 PSHK =0'%
GO / => ,"BRM OUTREEs BT #+3; LDA =2; BREM CEREBY\;
SET / => »"LDA =13 S5TA MFLAG"\;

TTY(=1 => TTYLI %1 FILL1]
(1 => »"LDA =13 STA FNUMO"N\ XCHCHLIJ:

FILLI => ,"LDA XFNUMO: STA FNUMO'U\3

XCHCH/ => ,"LDA TCHNO:; XMA CHNO3 STA TCHNOY\;
STRINGL=1 => " DATA "s1:L™; ASC "F'%1°'7\;
OSETL=1 => »"BEW BEGN'™ %13

CNTCKEL~1 => #1 »"CLB: SKE NCNT; STB MFLAGY\}
ONE 7/ => s"LDA =1"'\}

THO / => s"LDA =2"\}

THRE / => »"LDA =3"\;

ITMSTR C=s=1 => %1 ,"MIN ONT; EAX -1s2"\ =2;
LITEM [-1 => %1 ,"MIN CNT$ LDA CNT"\}
RITEMC=~s~] => s"RT1 =":1"3; BRU "“#1\ *2 »"RI2"\ #1.DCJ;

OER(~s=1 => #®1, "“CL =1\ %25



OUTCLL [~»=]1 => s"LDA NSP; STA SNSP; NDLBL ="#1"; CLA; STA CNT"\
#ULDA KT: STA METN %2

»MMEND CNT: PSHN SNSP; LDE KT:; BRM® 0523 BEM POPK'N
»"LDA% NSP: S5TA NSF'™\;

ARGLDL=3 => »"LDA ME™\ *13

ARG [=1 => %1 ,YPSHKE =05 MIN CNT™\;

CHASE [=s5=1 => YGET ="%1"5; BPTR *+35; LDA =35 BRM CERR"\ #2;

LCHASE [=1 => YEET ="=%1\3

DOIT C=-1 => =1 YBNPTR "#1
“: CAX: PSHY =05 BRM# 0,25 BRM POPKS BRU #42%\
#1«DL1 »"BRM OUTS'"\3

NOPT [=»=1 => #*1 »"BNPIR *+35; LDA =4; BRM CERR:;" *2;

SCAN [~] => #1eDL1 %1 ,"BT #+3; MIN NCCP: BRU "#1i\:

PRIM [=]1 => »YBRM %13 BF #+3; MRG “#1"FLG: PFSHK =0"\3

STST [=1 == VBRM TSTs" STRINGL#1D:

CTST [-1 => L"LDA ="&1:N"5 BRM TCHY\3

0S 7 => " BRM QUTS"\;

ON /7 => " ETR =77777Bs; BRM OUTN"\;

OL / => " CAX: LDA 0s23 BRM OUTN"N\;

oc f == " ETR =377B; CIO FNUMO: MIN CHNO™N\;

GNLBIL, [=1 => L"GEEN GNLBM:#IN

DEF [=1 => %1 »"BRM LIT; DATA 65 ASC """ EQU #'"*''\;

QUTCR / => s"BEM CRLF\;

OUTAE /

> »"“BRM TABY\;

QUTSRE [+-] == »"BRM LIT:; " STRINGL:®1]3

QUTCH (=1 =» »"LDA ="4i:N": CIO FNUMO: MIN CHNO'\:

ENDN / => "SSTOP DATA SS5+SSTKSZ~-53 §5S BSS SSTHSZ'\
“IMEP DATA MSTH: SMSPT DATA MSTK+MSTKSZ- 55 BMSTK BSS MSTHKSZUN
NSP DATA MNSTK: SNSPT DATA NSTE+NSTKSZ~S5: SNSTK BSS NSITLESZUN
PESP DATA KSTKS SKSPT DATA KETKHHSTHESZ- 83 SHESTH BSS KSTHSZ™N
"WRK BSS 1;XURK BSS 13 ENDYNS '

SAVGE [=1 => s"BH{M SAVGNYN @1 »"BREM RSTGEN''\:



IMED C=] => s#xlN\;

NITEWMC=]1 => ,757TH INDA; LDA KT\ =1
»"CLBs LDX INDX:; SKE 05253 STB MFLAGY\;

FITEML=] => s"FLGT "#12S"FLG"\3

TTSTL=1 => »"BRM SSTEST:' STRINGL*113

CHTSTC=] => »"CLB; LDA ="=1:N"; MRG CHRFLG; SKE 0,23 STB MFLAG™\;
GNITEML=] => ,"FLGT GEWFLG: ETR =77777B; STA CGNLB":#%1:5\3
GENARGL=1 => s"LAB GNLE"#%1:5"; MRG GENFLG"™\}

NTSTL~] => »"LDA NCCP; STA SNCCP"\ *1}
»VLDA =13 SKR MFrLAG; BRU #+2; STA MFLAG:} LDA SNCCP3 STA NCCP'\;

NCHRC=1 => s"LDA ="#1gN"3 BEM TCH"\}
NSRL~1 => “BREM TST; "STRINGC*1];

UPL™1%s~] => »"LDA% KSPY"\ %2
[=s=1 => Y "LDX KSP; LDA 1="125",2"\ *2;

LEKTL=1 => s"LDA KT\ #1;3

UPURK / => s"MIN URK; LDA WRK; SKG XWRK; LDA XUWRK:; STA XWRK'N\;
DUNWRK 7/ => ,L,"LDA ==1; ADM WRK'\3

OUTWRKL=-1 => #1, “LDA WEK; BREM OUTN"\;

MARUERK / => »"LDA XURK:; BREM OUTN"\;

SIZSLeCHRs—=1 => #1:C'"STKSZ EQU "#%2:25\;

KPOPKL[~1 => »,"MIN MSP; LDA KT; STaA%x MSPF; MIN IViSF’} LDA KSP; STA%x MSP'"\
#1 »"LDX MSP; LDA 0,25 STA KSP; LDA =1,2; STA KT: LDA =-23 ADM MSP'\;

PAROUTLZROLCI] => ,"LDA KT\
L7071 => s"LDA KT\
[=1 => »'"LDKA ="#1\3

o« END



ES

GEN

PSHN

GVUN

L3
PSHEK

OVK

=
MKND

POPD
LDA

‘CI10

MIN
LDA
SKE
BRU
MIN
LDA
STA=
BRM
ERR

POFPD
LDE
SKE
BRR
BRU:*

POPD
LDE
SKE
BRUs
BRR

POPRD
LDE
SKB#
LEA =
MIN
STh#%
LDE
SKG
BRR
LDA
BRM

FOPD
LDE
SKE=*
LDA=
MIN
AMA
STa
LDaA
SKG
BRE
LLDA
BRM

POPD
D&

10100000Es 151
=478
FNUMO
GHNO
0

=0

* k4
EN

CN

0
OUTN
0

10200000k 5121
=771T7711TE
MFLAC

0O

0

10300000Es 151
=777771778
MFLAG

0

O

10400C00B,151
=7777777786
0

0

NSP

NSF

NEP

NSPT

0

=12

SERR

10500000E51»1
=7711777T7E

0

0

K&P

KT

KSP

KSP

KSPT

0

I

w
=] e

3
RR

10600000ES1 51
o

%*POPS, SUEBROUTINES FOR TREE META.

GENFERATE LAREL

BRANCH FALSE

ERANCH TRUL

PUSH THE N STACK

FUSE THE K ST#Ck

MAKE A NODE



MKe

MK 1

MKND 1
3
NDLBL

GET

BPTR

*
BNPTR

T RIN

STe
BERU
BERNM
MIN
STha*
SKR
ERU
LDe
MEG
MIN
AMA
SThx
LDA
MIN
PR
STa
ERU
ESS

FPOFD
LDAS
MIN
SThA#*
LDA
AMA
MIN
STA
BRU

FOPD
CaX
apn
SUE+
CeX
LDaA
BRR

POFD
LDE
SKM
BRR
BRU:

POPD
LDE
SKM
BRU=
BEE

FOFD
LDA
LDE
SKi
BERU

MKIND ]
MK 1
POPK
NEP
NSP
MKND1
MKe
MARK
PTRFLG
KEP
KT
KSP
0
MARK
MARK
MARK
OVN

1

10700000E5151
0

NSP

NSP

NSP

MARK

NSP

NSF

OvVN

11000000B« 141

122
0

2,9
0

11100000Bs1 1
FLEMSK
PTRFLG

0

0

11200000EBs1 21
FLCEMSK
PIRFLC

0

0

11R00000B-121
Q-2

FLEMSK
FTRFLG

RIF2

NODE LAEEL

GET A NODE

ERANCH 1F (£) & POINTER

ErRaANCE IF NO POINTER

KECs ITEM 1



ETF1
RIF2

RINDX
RICNT
%

RIZ

FLCGT

FLGTF

5TX

 LDX

L.Do %
SKE

"BRU

LDaA
MIN
STA*
MIN

LDA .

STA*
MIN
LDA
STh=*
LDA
SKEG
ERU
LDA
BRM
Cho
BRM
CLA
S5Te
MIN
ERR
LDX
CLA
STA
ERR
BSS5
BESS

POPD
LDA
LDX=
ADM
LLDE*
STE
ADM
LDE:=
STE
ADM
BRR

FOFD
L.DA
LDE
SKM#
ERU
BRR
CLa
STA
ERR

RINDX
0s2

0

0:2
RIF1
CNT
MSP
MSP
MSP
NCNT
MSP
MSP
RINDA
MEP
MSP
MESPT
43
=11
SERR

SETA

CNT

0

0
RINDX

MFLAG
0
1
1

11400000E.2
==1
Sk
MEP
MSP
NCNT
MSP
MSP
CNT
MEP
0

115E55151
0:2
FLCGMSK

G

FLGTF

0

MFLAG
0

REC .

SKIP 1F ITEM

ITEM 2

FLAG TEST

MATCHES



BE

LAE

LDKA

*
*S5UES
*
$POFPK

ESETA

FORFD
DB
SKE
ERR
LDA*®
SKE
BRU
CLA
BRM
LD
SKE
SKG
BRS
BRU:

FOPD
LDA*
SKE
ERR
MIN
LpA
SThs
ERR

FOFD
LDE
SKE
ERE
LEA
BR M

FOFD
LCA
SUB#
Cex
L.CA
EBRR

ZRO
LDE %
LD
ADY
CEA
X0
BRR

ZRO
CrX
LDE
ADD
Cex
STE

116855151
=777777778
MELAG

0

0

=-1

42

ERR
0

0

=0
EXIT
0

117B551351
0

=0

0

GN

GN

0

0

120855151
=777171777B
MFLAG

0

0

CERR

121E5-1,1
KSP
0

12
0

KT
POPK

0 SET %X TO TOP OF NODE GRCLF, COUNT IN NCONT

1:2
1+82

NCNT



sk
$CLLS

%
EFRTNS

58V

*k
$RSTR

EAX
BRR

ZRO
MIN
STA#
LDA
SKG
ERR
LDA
ERM

NOP
LDa
LDB=®
ADM
STE
ERR
BSS

ZRO
LDa
MIN
STA#*
LD
MIN
SThs
LDA
MIN
SThA=
LDaA
MIN
STA=
LDA
SKG
BRE
L.DA
BRWM

ZRO
BT
LDA
LDR#*
ADM
STE
LDE*
STE
ADM
LDE:#
STB
ADY
LDE=
STE

1:2
SETA

MSP
MSF
MSF
MSP1
CLLS
=11
SERR

=-1
MSP
MSP
*40
* 1

NCCP
MSP
MSP
NSP
MSP
MSP
KSP
MSP
MSP
KT
MSP
MSP
MSP
MSPT
SV
=11
SERR

RSTT
=-1
MSP
MSP
K1
MSP
KSP
MSP
MSP
NEP
MSP
MEP
NCCP



RSTT

ADM
EBRR
LDA
ADM

- BRE

%

SOUTREE

OUTERR

#
SRESET

s
ESAVEN

*
$RSTEGN

LDA
ENPTR
LDX3*
BRM
BRM
LDa
STA
BRR
LDA
EBRM

ZRO
LDA
STA
LDA
STA
LDA
STA
cLA
STeA
BRR

ZRO
LDA
MIN
STA=
LDA
MIN
STA#
CclL.A
STA
STA
LDA
SKG
ERR
LDg
ERWM

ZR0
LDA
LDE %
STB
ADM
LDE=*
STE
ADM
BER

MSP
RETR
=-4
MSP
RSTR

ZRO

KT
OUTERR
K1

0,2
POPK
=NSTK
NSP
OUTREE
=2
CERR

=MSTK
MSP
=KETK
KSP
=NSTK
NSP

KT
RESET

CGNLE§
MSP
MSP
CNLE®
MSP
MSP

GNLE1
GNLERZ
MSP
MSPT
SAVGEN
=11
SERR

==1
MSP
CNLE2
MspP
MSP
GNLE1
MSF
RSTCN



%

$SSTEST ZRO

SS5TT1

SSTP1R
SSTCNT
SSTLDS
B
$BEGN

SCLLO

4]

$RTNO

#*CELLS

MIN
LDA
S1p
ERM
L.DE
ADWM
STA
STR
MIN
LDA
BP1R
LDA:
SKE
ERU
STx
LDg
ADD
LLDE
LDX
BRM
BRU
LDA
LDX
BRR
LDX
cLA
STA
BRR
BSS
BSS
BSS

ZRO
LDA
STh
LpA
ERN
CLA

STA

ERR

ZRO
BRM
EBRM
ERR

NOP
ERM
BRU
NOP

SSTEST
SSTEST
SSTCNT
mMoD3
SSTEST
SSTEST
S5TWDS
SSTFTR
S5TFTR
0.2
SSTTI1+1
022
SETCNT
SETT1+1
INDX
0.2

=1
SSTPTR
S55TkDS
SKSE
S5S8TT1
CiNT
INDX
SS5TES1T
INDX

MFLAG
SSTEST
1

1

1

=1
MEFLAG
KT
SETA

CNT
BEGN

CLLS
SAVEN
CLLO

RSTEN

RTNS



#*
FME BSS

1
TINDX BSS 1
SCNT ESS 1
ENCNT  EBSS 1
$SNSP BSS 1
EKT BS5S 1
$SRFLEG DATA 10BS
$CHRFLC DA1A 12E5
$1IDFLG DATA 4B5

SNUMFLG DATA 6B5S
$PTRFLG DATA 2ES
EFLGMSK DATA TT6B5
SGENFLE DATA 16E5
FMARK BSS
&GN DATA
$EGNLE1 DATA
FCENLEE DATA
$SAVKT RSS
S5AVKF BSS
FLETFLG DATA
END

485



# ARPAS LIBEARY FOR
¥ PARAMITERS FOR SIZF OF K, W

GOBEL

ES

STORE

51

58T

SFUT

ZRO
LDA
ADD
SUE
STA
ERR

ZRO
LDA
STA
LDA
SKE
BRU
LDA
BRi1
LDA
L.DB
LD¥
EBRM
LDA
SKG
BRU
LDA
STA
LA
BRY
MIN
ADM
L DA
SKE
BRU
B
CAX
LDB
L DA
ADD
ERM
BRU
LDA
BRR

L DA
STA
LA
5TA*
MIN
LDA
LDB
LD
BRM
LA
BRi

N STACKSs

MCCP
BACK

-

NCCF
GOEL

=SS
SSP
L EN
=0
%+ 3
=g
SERR
=STR
=STEST-
LEN
PACK
SSL
SSP
SPUT
SSP
SX
SSP
M0 D3
SSP
SSP
SX
LEN
51
M0 D3

=5TEST
SX

=1
SKSE
S1

SX
STORE

S5L
SX
LEN
SSL
S5L
=5TR
S5L
LEN
PACK
LEN
MOD3

940 META 1] AND TREE SYSTEMS.

AND 55 AREA.



ADM SBL

LDaA Lo
SKG SSTOP
BRU 88T
LDA =6
BRU SERR
*
SSP DATA 58
$SSL LATA 55
SX BSS i
FMAXSTR EQU &0
STPTR BSS i
STR RES MXSTH
STEST BSS MXSTR
FLISTEFG DATA =1
SRLINE ZRO
MIN LINCNT
LDA EOFLG
SKE =0
BRU REQOF
LbA =12B
SKIN LISTFG
Cio FNUMO
LD BUFNO
BRU Ri+1
R1 BRX R3
CIO FNUMI
SKN LISTFG
BRU Ré
K15 STa IBUF:2
SKE =1558
BRU R2
L DA =152E
SKN LISTFG
clo FNUMO
BRU FILL2
R2 SKE =137B
BRU Ri
LDa =1
STa FEOFLG
FILL CLA
STA IBUF:2
FILLZ2 EBERX R3
BRU FILL
R3 LDA BUFNO
STA IBP
BRE ELINE
REQF BRM CRLF1T
BRY LITT
DATA 18
ASC TEND OF FILE INPUTe?
Bl CRLFT
BRS EXI11T

R4 SKE =1520



EOFLG
SINC

o~
PUTIN

F1
P11

P2

P3

PCHK

CHER

SUPHEP

Cio
BrU
DATA
ZRO
BRM
SKN
BRU
MIN
BRR
MIN
BRY
BRE

ZRO
BRM
LDX
MIN
LDA
SKE
ERU
BRY
CLA
STA*
BRR
SKE
BRU
BRM
MIN
BRU
SKG
BRU
ERU

ZR0O
LA
SKG
BRM
BRR

ZRO
L DX
LDa
SK G
BRiU
L DX
CXA
SKG
SKG
BRU
BRR
LDaA
BRU
ZR0
CL.A

FNUMO
Ri5
4]

UPIWP
BACK
H+ 3
BACK
INC
MCCF
PUTIN
INC

PCHK
IBP
IBp
IBURF, 2
= 1558
F2
RLINE

IvP
FUTIN
=135B
P3

FCHK
IBF

Pi

=63

P11
FUTIN+1

MXIB
IBP
RLINE -
PCHK

IWP

=/

IWP
SERR
CLASSs 2

un

L

40
CHER

SERR



WPER

$INCS
INCS2

INCSS

%
$1ID

ip1

I1DF

I1DT1

STA
LDA
S5TA
LDa
SURB
5TA
SKG
SKG
BRU
LDA
ETE
ADD
STA
BRR
LA
BRU

ZRO
BRM
L DA
SKE
BRU
BRU
SKE
BRR
LDA
SKN
BRU
BR¥
BRM
L DA%
SKE
BRU
BRM
BRU

ZR0
cLA
STA
BRI
ERM
BR
BRU
BRM
BRM
BLM
BRD
L DA

_STA
. BRM
 BRUY

BRR
BRU
EREK

LEN
=S5TR
STPTR
NCCP
MCCP
BACK
=0
MRSIZ
VPER
NCCP
MODRSZ
=RING
1WP
WPREP
=2
SERR

INC
IWP
=0
e}
INCS3
CHMNT
INCE
=9
BACK
42
SERR
PUTIN
1UP
CMNT
*=3
PUTIN
INCE&2+ 1

MFLAG
VPREF
INCS
CHER
IDTis»2
CICod
INC
CHEHR
1072: 2
=1
MFLAG
GOBEL
STORE
1D
STER
ID



IDT2

CicC

%
LEN
*

UPIWP

$TOUTS

S0UTS

ouTsa

ourp

BRU
BER
BRR
BRE

BRU

BRU
BRU
BRU
BRU
BRU

ZRO
L DA
STA*
MIN
MIN
BRR

BSS

ZRO
MIN
LDA
SKG
BRR
LDA
5TA
BER
ZK0
STA
LDA
S5TA
LDA
STA
BRU
ZR0
5TA
LDA
S5TA
L DA
SKG
BRU
LDa
BRU
ALY
CAE
MIN
Lba
ETR
LDX
BRS
BRE

BSS

ID1
ID
ip
Ip
STER
I DR
ID1
101
IDF
I DF

IwP
STPTR
STPTR
LEN
cic

1

IWP
IWP
MXIU
UPIWP
=RING
Iwp
UPIVP

ouTP
=2
ouTS
TELNO
LITF
auTsA

0UTP
FNUMO
LITF
OUTP
RSI1Z
B+ 3
=5
SERR
CHNO

ouUTP
ouUTP
=T777778
LITF

34

ouTsS

1



-4

*
$0UTN

OUTNP

O UTNN

OUTNE
*
SWRSS

WRS1

WHSS51
WRESPT

SCRLFT

ZR0
SKE
BRU
STA
LDE
LDX
BRS
LDA
SKG
BRU
BRR
MIN
v UL
RSH
CEA
BRU
MIN
cNa
STA
LDA
Cio
LDA
BRU
BSS

NOP
LDA
STA
BRMY

LDAx

STA
BRNM
MIN
LDA
BEM
LDH
ADN
LDA
nAB
L DX
BRS
LDA
SKG
BRU
BRM
BRS
BSS
BSE

ZR0
LA
Cio
LA

== 1
QUTNN
OUTNE
=10
FNUMO
36

=1
QUTNBE
42
OUTN
CHNO
=10

1

=7
CHNO

OUTNE
=158

FoumMo
CUINB
OUTN -
1

=58
WRESPT
CRLFT
WRESPT
¥RSS51
wWouT
WRSP1
WR551
MO0D3
WRSPT
WRSF1
WRSS1

TELNO
34
VRSPT
SSL
WEHE1
CRLFT
EXIT

1

1

=15586
TELNO
=152B



CIO TELNO

BRR CRLFT
%
$CRLF ZRO
Lbha =155EB
CIiO FNUMO
LDA =158B
CI10 FNUMO
LDA =]
STA CHNO
BRH CRLF
%
SLITT ZRO
LDA e ]
5TA LIT
LDa TELNOD
SThA LITF
MIN LIT
LDAk LIT
BRU LITwW+3
=
SLIT ZRO
LA FNUMOD
STA LITF
LITw MIN LIT
L DA LIT
ADY CHNO
5T4A LIT1
CAB
MIN LIT
Lha LIT
ETR =77777B
LDX LITF
BRS 34
LDA LIT1
BRM MOD3
SUB =1
AW EIT
BRR LIT
LITF BSS i
LITi BSS 1
STABT ZRO
LDA s q
5TA TAB
LDA TELNO
STA LITF
BRU TABA
S$TAB ZRO
LDa FNUMO
STA LITF
TARSL LDa CHNO
AL =108
ETR =77708

S5TA TAERD



TABR

TABS
SURIW

NLIN

WRCK

WRI1
SINITL
AGAIN

AGAINZ

MIN
CcLA
Cio
LDA

SKE

BRU
BRR
ESS
NOP
LDA
58TA
BR
LDA
ADD
CcAaX
LDA
SUB
SKG
BRU
BRS
L DA%
CI1O
MIN
BRX
BRU
BSS
ZR0
BRY
BRM
DATA
ASC
CLEAR
BRS
BRU
STA
CEA
SKE
BRU
BRU
LDA
BRS
BRU
BRY
BRM
DATA
ASC
CLEAR
LDA
BRS
BRU
5TA
SThA
CBA
SKE

CHNO

LITF
TARS
CHNO
THhB2
TAB
1

=RING
Wi g
CRLFT
BUFNO
=10

WRI 1
MXIW
=0
&2
EXIT
WRI1
TELNO
WRI1
NLIN
WRCK
1

CRLFT
LITT

7

*INPUT: °

15
AGAILN
FNUMI

=168

RNy
AGAINZ2
FNUMI

20

AGAIN
CRLFT
LITT

8

fOUTPUT: ¢

=03000C00R8
16

AGAINZ

FNUMO

XFNUMO

=168



BRU g+ 2

BRU Hk 4
LDA FRUMO
BRS 20
BEU AGAINZ
BRM CELFT
BRR INITL
SFNUMO BSS i
$FNUMI BSS 1
SAFNUMO BSS 1
$TELNO DATA 1
$CHNOD DATA 1
ETCHNO DATA 1

% A=UNPACKED FPOINTERs, B=PACKEDs, X=LENGTH
PACK ZRO

STA UPP
STB PP
STX PL EN

PK1 BEM SKOK
BRER PACK
L DA% UPP
MIN UrPF
STA PX
BEM SKOK
BRU FKR1
LDB#® urP
MIN UPP
L SH 16
LDA PX
L.SH 8
5TA FX
BRM SKOK
ERU PKR2
LDB* UFP
MIN urP
LSH 16
LDA PX
LSH 8
STA: FP
MIN FP
BRU PK1

*

SKOK 7ZR0
SKR FLEN
MIN SKOK
BRR SKOK

3

PKR1 LDha PX
CLB
LLSH 16
STh# FF
BRR PACK

PKR2 Lba PX

CLB



¥

LSH
STA#
BRR

UPACK ZERO

PK2

*

PX
UPP
PP
PLEN
ik

S5KS1

SKST

SMOD3

STA
STB
S5TX
SKR
BRU
BRE
L DA%
HSH
BRM
RSH
BRY
BRM
MIN
BRU

ZRO
ETR
STh=
MIN
L DAk
SKR
BRR
BRR

BSS
EBSS
BSS
BSS

SKSE ZERO

STA
STE
STX
SKR
BRU
BRU
LDA%
SK s
BRR
MIN
MIN
BRU
MIN
BRE

ZR0
SUB
RSH
CLA

&
PP
PACK

UPP
FFP
PLEN
PLEN
32
UPACK
PP

16
PST

8

PST
PST
PP
PK2

=377B
UFP
UFP
PP
PLEN
PST
UFACK

[P ( —

PP
UPP
PLEN
PL EN
4+ 2
SKST
PP
UPP
SKSE
urP
PP
SKS1
SKSE
SKSE



I1BUF
BUFND
FIWP
1BP
MXIE
MXIW
BACK
SNCCP
MCCP
RING
SEXIT
CLASS

SERR

ERRC
ERRY
EREN

ERR1

ERRE2

DIV
ADD
BER
BES
natTha
DATA
DATA
DATA
DAaTA
BSS
DATA
DATA
BSS
EQU
DATA
DATA
DATA
ZR0
STA
BEM
BEM
DATA
ASC
Lpa
XMH
BRM
BERM
LATA
ASC
LID¥
LDE
LA
BRS
BRI
LDX
BrU
MIN
Clo
BRX
CXa
SKE
BRU
LDA
5TA
LDA
SKF
BRU
BRU
SKE
BRU
BRU
SKE
BRU
clo

=3
=1
MOD3
g0
3756 05
RING=1
37660R
400008
RING+255
i
0
0
256
10 .
195545 555555595252 52 5525552 5,55358328323-3,3-35323,3
525252555555 552522252525 8525252085252525252:09252082
0225252528355 5555502000

ERRNO
CELFT
LITT
i3
FSYNTAX EERHOR °
==1
ERENO
wout
ETTT

5
'LINE ¢
TELNO
=10
LINCNT
36
CRLFT
BUFNO
ERRN-1
ERENO -
TELNO
EREF

1BP
*+ 3
ERENO
ERRX
IBUFs2
=155E
ERRR1
ERRF
=152B
ERR2
EREN
=1358
ERRC
TELNO



BRX
LA
AT
BRU
ERRF BRI
CLA
EBRU
CcIo
SKR
BRU
LDA
C10
BEM
BEE
4
ERRNO BSS
ERRX BSS
ARROW  DATA
$SFRR  NOP
STA
LDA
LDB
BRU
$CERR NOP
5TA
LDa
LDB
SERR1 LDX
BRS
LDA
LDB
LDX
BRS
Bl
BRS
SEM ASC
CEM ASC
EE1 BSS
s
RSIZ DATA
MRSIZ DATA
MODRSZ
SMITLLAG BSS
CMNT DATA
SLINCNT
3
$WOUT ZRO
LB
LDX
BES
LDA
GL0
CLA
C10

ERRF
IBUF-2
ERENO
EERY
CRLFT

42
TELNO
ERRX
Howe 2
ARROU
TELNO
CRLFT
LERR

1
1
768

SE}
=SEM
=13
SERR1

SE1

=CEM

=15

TELNO

34

SEI

=10

TELNO

36

CRLFT

EXIT

"SYSTEYM ERKHOR °
*COMPILER ERROR
1

256
=256
DATA
1
5
DATA

=10
TELNO
36
=14B
TELNO

TELND

3778



BRER wour

&TST ZR0

cLa
-S5TA MFLAG
MIN TST
BRHM WPREP
BEM INCS
LDA:: TST
SKG RSIZ
ERU % 3
Lba =4
BRU SERR
STA TST2
BRM MOD3
LDE TST
AT TST
CBa
ADD =1
CAR
LDA =5TEST
LDX TST2
5TA TST1
BRM UPACK
SKFk TETE
BRU TSTS1
BRR TST

THTS BRM INC
MIN TST1

TSTS1 LDA#® TET1
SKEz: 1P
BRR TET
SKR TST2
BRU TSTS
LDA MCCP
ADD BACK
STA NCCP
Lpa =1
STA MFLAG
BRER TST

TSTI1 BSS i

TST2 BSS 1

%

-

$SR ZR0
CLA
STA MFLAG
BRM VPREP
ERM INCS
BRM CHER
BRU STTi1:2

STR1 ERM CcIiC
BRM INC

BRM CHER



STH2

STT1

STT2

s

¥

STER

ats
S

SN

N 1

NMTF

NTI

SLET

BRU
BBM
MIN
LDA

STA

BRM
BRR

BRU
BRR
BRER
BRR
BRU
BRR
BRU
BRU
BRU
BRU
BRU
BRU

LDA
BRU

ZRO
CL.A
5TaA
BRY
BRY
BRY
BRU
BRM
BRM
BRM
BRU
LDA
STA
BRM
BRM
BRER

BRU
BRR
BRR
BRU
BRER
BRR
BRU
BRU
BRU
BRU
BRU
BRU
7RO

STTE: 2
GORL
NCCP
=1
MFLAG
STORE
SR

STER
SR
SR
SR
STRi+1 DON®T COPY QUOTE
SR
STER
STRI1
5TR1
STRI1
STR2
5TR1

=7
SERR

MFLAG
WPREP
INCS
CHER
NT1s2
CicC
INC
CHER
NT2s2
=1
MILAG
GOBL
STORE
N UM

STER
N UM
N Ut
N1
NUM
N UM
STER
NMF
NMF
NM 1
NI
NuF



CLA

STA MFLAG
BRM WPREP
BEM INCS
-BRU CHER
BRU LET1s2

LET2 BRM Cic
LDA =1
STA MFLAG
BRM GOBL
MIN NCCP
BRM STORE
BRERE LET

LET1 BRU STER
BRR LET
BRU LET2
BRR LET
BRR LET
ERR LET

%

%

%

SFINISH NOP
LDA =137B
cIio FNUMO
CI1o FNUMO
CIio FN UMO
CIo FNUMO
Cio FNUMO
Lba FNUMO
BRS 20
BRU LIMITS

*

$TCH ZRO
5TA TCH1
CLA
STA MFLAG
BEM VPRER
BRY INCS
L DA IWP
SKE TCH1
BRE TCH
MIN MFLAG
LDA MCCP
ADD BACK
S5TA NCCP
BRR TCH

TCH1 BSS 1

ke

TP MACRO D
LDA DC1Y.SPYT
57TA DC1YeSP
LDA e ]

ALY DCide SF



L DA DC1Ye 5P

SKE =0

BRU Hek 2

BRU k= 5

Lpa DC1Ye SP
SUB =oD(1)e STK
SKG =0

CLA

BRY wouT

EN IV

*

SLIMITS BRY CRLFT
BRM LITT
DATA 5
ASC YUSED *
TOP K
TOP ]

TOP N

LDA SEL
sus =S58
BRY wouT
BEREM CHELFT
BES EXIT

END



ZTREE META SMALL ALGEBRAIC LANGUAGE - 29 SEPTEMBER 1967 %
+META PROGRAM LIST

PROGRAM = " .PROGRAM'" DEC * $C( DEC *) :STARTNLO] ST * $C'; ST %)
".FINISH" ?1E :ENDNCO] * FINISH 3

DEC = " .DECLARE" .ID $(', .ID :DOLC2]) '3 :DECNLC133

E = RESET => '3 S(ST %) ".END'" ?99E :ENDNLO] * FINISH;:

ST = IFST / WHILEST / FORST 7/ GOST / IOST / BLOCK / Ca&® ST

«ID C(': :LBELC11 ST :DOL2]1 / '« EXP :STOREL21);
IFST = “«1F" EXP ".THEN" ST (" ELSEY ST :SIFTEL3] /7 EMPTY :SIFTL21)3
WHILEST = " WHILE" EXP ".DO'" ST :WHLL[21s

ﬁORST = "JFOR"™ VAR '+ EXP ".BY" EXP ".TO"™ EXP " .DO"™ ST :FORES51:
th-.j‘- + =, Cae
BOST = "“«.G0"™ ".TO" +ID :GOL113
IOST = ".OPEN" ("INPUT"™ «ID 'L +ID '3l :0PNINPC2I /
“OUTPUT" «ID '[ .ID '1 :0PNOUTL21) 7/
" ,CLOSE"™ +ID tCLSFILEL1] ~
".READ"™ .ID ': IDLIST :BRS38[2] 7/
"+INPUT™ <IB ": IDLIST :XClOCL21 /
“".WRITE" «ID ": WLIST :OUTNUML2]1 /
“.OUTPUT" LID ": WLIST :OUTCARL2] 3
IDLIST = VAR CIDLIST :DOC2]1 / EMPTY):

WLIST = (.ID / .NUM / .SR) (WLIST :DOL2] / <EMPTY):
BLOCK = ".BEGIN" ST $('s ST :DOL21) " .END":

EXP = "JIF" EXP ".THEN'" EXP ".ELSE" EXP tAIFL3]1 / UNION3
UNION = INTERSECTION C°'\'/ UNION :0RL2]1 / EMPTY):

INTERSECTION = NEG ('& INTERSECTION :ANDL2] / EMPTY):

NEG = "NOT " NEGNEG / RELATION;

NEGNEG = "NOT " NEG /7 RELATION :NOTL 1133
RELATION = SUMCC "<='" SUM :LE /
"™ SUM LT / 2
Ma= SHM IGE S 2 o :
P sSUM :$GT / 2 (5%
=" SUM :EQ /
T# SM :NE ¥ [21 # sEMPTY))



SUM = TERM CC'+ SUM :ADD/ '- SUM :SUB)L21/ <EMPTY):

- VWA
TERM = FACTOR (C'# TERM :MULT/'/ TERM :DIVID/{jjT?iM TREMD[21/ +EMPTY) 3
FACTOR = '~ FACTOR :MINUSC1] / '+ FACTOR / PRIMARY; '4 (echov:@rprin)
PRIMARY = VARIABLE / CONSTANT / 'C EXP ');

VARIAELE «ID :VAR[L11:3

1

CONSTANT

n

«NUM :CONC11313

SIFTEL=s=s=1 => LOPRL*1,#1,#2]1 BRFL[#*1,#23 #1,"EQU *"\ #2 SIFTE1[#2,%313
SIFTEIL#1s=1 => L"BRU"#2\ #1,"EQU %"\ *2 #2,"EQU *'"\3

SIFTL=»<] => LOPRI#1,#1,#2] BRF[*1s#2] #1,"EQU %"\ %2 #2,"EQU *"\3;
WHLL=5=1 => #1,"EQU *"\ WHL1LC*1,#2] *2 ,"BRU"s#1\ #2,"EQU *"\;
WHL1[-,#2] => LOPRL*1,#1,#21 BRFL[*1,#21 #1,"EQU *'\3

GOL=1 => L"BRU"s%*1\;

FORLE=s=5=5-5=-1 => <"DO NOT USE FOR STATEMENTS">3

LBLL=-1 => *1,"EQU =*"3

AIF[=5s=5=] => LOPRL*1s#15#21 BRFL[*1,#21 #1,"EQU *"\ ACCL*2] AIF1L[#2,%313
AIF1L#15=1 => HL"BRU"s#2\ #1,"EQU *"\ ACCL*21] #2,"EGU *''\3

LOPRLORL=5-15#15-1 => LOPRI*1:%1,#1,#2] BRTL*13:*%1s#11]
#2,"EQU %"\ LOPRI*1:%2,#1,%3]
CANDL=5=1s=5#1] => LOPRL*13:%1:#25#11 BRFL*1:%1:#11]
#2,"EQU #"N LOPRIO*13*2,%2,#11]
LNOTL=-J.#1:#21 => LOPRL*1s*1,#25#11]
L=5=5-1 => EMPTY:

BRTLORL=5-15#11 => BRT(*1:%2,#11]
[CANDC=5-15#11 => BRTL#1:%2,#11]
CNOTL=1,#11 => BRFL*1:%1,#11]
[LEC=»=15#11 => BLEL[*1:%1,%1:%2,#1]
[LTL=5-15#1] => BLTL#1:k1sk12%2,5#11]
[EQL=5=-15#1]1 => BEQL*1:k1s%1:2%2,#11]
LGEL=5=12#11 => BGEL*1:%k1,%1:%2,#11]
[GTL=»=15#1]1 => BLE[*1:%2,%12%15#11]
[LNEL=s=15#11 => BNE[*1:%1s%1:%25#11]
[--4#11 => ACCL*11 -"SKE =0""\ »"BRU">#1\3

BRFLORL[=5=1-#1]1 => BRFL[*1:%2,#11
CANDL=5=15#1] => BRFL*1:%2,#11]
[NOTL=15#11 => BRTL*1:%1,#11]



[LEC";“]:#]J
CLTL=s=15#11
[EOL=5=15#11
[GEL=5s=-15#11
[GTE=5=12#11
[NEL=5-=15#11
[=2#11

BLEL*1:#25%1:%15#17]
BGEL*]1:®15,*1:3%2,#11]
BNEC=*1:%15%13%2,#11]
BLTOslskls%1:%2,#11]
BLEL*1:%]1,%1:%2,5#11]
BEQL*1:%k1,%13%2,#1]

ACCL*11 »"SKA ==1"N\ L"BRU"s#1\3

BLTL=-»->#11 => (TOKENL#*11 ACCL#%21]
WORKL=*11 ACCL#21
3 VBRY 28N
BLEL=s=5#11] (TOKENLC*21 ACCL#*11
TOKENL#*1] ACCL*2]
WORKL*21 ACCL*11
s""BRU"™s #1\3
BEQL=s=5#11] (TOKENL#*21]
TOKENL#*11
WORKL*2]
s""BRU

ACCL*11]
ACCL*2]

BGEL=2=2#11 (TOKENIC*11]

WORKLC=#*11

ACCL*21
ACCL*2]

sV SKE" sk 1Ns"SKG"2¥1\ /
VSKE" »" T+« WNS"SKG"s"T+" a =W\ )
2"BRU" s #1\3

s""SKG" » %2\ 7/
2" SKG"s*1\s"BRU *+2"\ /
sV SKGY " TH" sW=WN\ )

2" SKE"» %2\ /
3 TSKE" SN/

ACCL*13 »"SKE",""T+"«W=W\ )
*+2"N\ S"BRU"s#1\3 ‘

2" SKE"s*1\,"SKG" 5> %1\ /
JIISKEII,|lT+|‘-w\‘|ISKGII"IIT+II'w_!.q\ )

2""BRUMs #1\3

BENEL=s=3#113 (TOKENL*21 ACCLC*11
TOKENL#13 ACCL*2]
WORK[C#21 ACCI[:*11]

2U"BRUMs#1N3

STOREL=,VAR[*111
[->ADDILVARLC#11,CONC'"1"11]
[->ADDLVARL*115~-11 => ACCL
[-sSUBLVARL*115=11
Eog= ] => BREGL#*2]

ACCL=*21]
=> SUB[*25%1:2%1]1]
=> TOKEN[*2] ACCL

WORKE*11]

ADDIMINUSL=15=1]
[=»=-1]

SUBL=»=-1 => TOKEN[*2] ACCLC*11]

TOKENLC#*11 (BREGL#*21]
ACCL*21

WORKL=#21 ACCL#*11]
MINUSC=1 => TOKENL=#*11
BREGL*11

ACCL*11

s"LDAMs %1\
s""CEA:s
s"CNA"N:
DIVIDL=-5-1 => TOKENL*2] (BREGL*11]

ACCL=#*11)
WORKL#2] (BREGL:#*11
ACCL*11)

=> ACCL#*2:%2]

ACCL*21

2""SKE" %2\ /
s"SKE"s %1\ /
sVSKE"s"T+" W=W\ )

=> "ITS ALREADY THERE"\
=> S"MIN",%1N

¥2:%2] L"ADM" s k1IN
»"CNA3 ADM "=#1\

aPSTEYN s N/

2 STAY, % 1N3

#¥11 "ADD" %2\ 7/

s"ADD" U TH" oUW =W\S

s""SUB" s *2\ /
s'""CBA;

2""CNA;

2" SUB" " T+" a W=W\3

CNA3 ADD "s*1N\ /
ADD "k1N\) /

J"CNA"\ 7

CNA"N /

2" CBAMN\ /

»"RSH 233
s"CBA"N /
2""RSH 233

DIV "'#%2\ /

DIV T+" «W=W\3



BREGIMULTL=,-11

[REML=5=11]

ACCL-1]

WORKL=1]

BREGL
*13

=> TOKENL*1:%2] ACCE*1:2%1]1 L"MUL"™,*1:%2"3 RSH 1"\ /
TOKENC#12:%1] ACCL*1:%2] ,"MUL"»#1:3%1"3 RSH 1"\ /
WORKL#*1:%1] ACCL*1:%2]1 »"MUL"s"T+" W~-y"3 RSH 1"\
=> TOKEN[#*1:%2] (BREG[*1:%11 ,"CBA"\ /
ACCE#11) ,"RSH 233 DIV "=x1:*2\ /
WORK[*1:%2] (BREGL*1:%1] ,'"CBA"\ /
ACCL*1:%13) L»"RSH 233 DIV T+"
+W=W"3 RSH 1"\3

=> TOKENL#13 »"™LDA",s#1\ /

#11 »"CBA"\ /

=> BREGE#*11 »"STB"»"T+"+W\ /
ACCL*1] »"STA","T+"+W\?

TOKENLVARL.ID11]
[CONL «NUM1] => EMPTY3:

=> +EMPTY

MULT / => «EMPTY3:
REM 7/ => <EMPTY3
AND 7/ => .EMPTY3:
OR 7/ => .EMPTY:
NOT /7 => EMPTY3

ENDN 7/ => "T","BSS"»tW\ »"END"\3

VARL -ID]

=5 %13

CONC «NUM] => °*=

LE /7 =>
LT 7/ =>
EQ /=5
GE / =>
GT / ==
NE / =>
DOL=»=1

SEMPTY 3

+EMPTY

<EMPTY:;

<EMPTY 3

<EMPTY

EMPTY3;

=& k] %23

OPNINPL=»-1 =>

OPNOUTL-2-1 =>

s"CLEAR: BRS 15: BRU "#2"3 BRS 163 BRU "#*2"; STA "*1\;

s"CLEAR; BRS 185 BRU "#2"3 LDX =33 BRS 195 BRU "
*2'"3 STA "#1\3



CLSFILE=3 == »YLDA “%1¥; BRS 20"™\3

BRS38[-s .ID] => L"LDA "*1'"3 LDB =105 BRS 383 STA ":*2\
[=s=1] => BRS3BL*15%23:%1] BRS38L*1%2:%273

ACIOL=-5 .ID1 == L"CIO "*1%3 STA "*2\
== => KCIOL#*15%22%k1] XCIOL*k1.%P:%273

OUTCARL=5+ID] => ,"LDA "*2"3 CIO "*1\
[-»+NUM] => ,"LDA ="#2"3 CIO "*1\
[-5+SR] => ,"LDA ="#1"5 LDB ="#2:L"s LDX "#1"; BRS 363 BRU "#2\
;AI’IIASC l|l|*2' .\
[=5=1 => OUTCARL#1s%2:%11 OUTCARL*1%2:%213

OUTNUML=5+ID] => L"LDA "*1"3 LDA =105 BRS 383"\
[=»NUMI1 == L,"LDA ="%2"3 CIO "#1\
[=5+SE1 => L"LDA ="#1"3 LDB ="*2:L"3 LDX "*1"3 BRS 363 BRU "%2\
¥ s ASE MY ot
[=s=1 => OUTNUML*1,%235%1] OUTNUML*1,%2::%k273
STARTN / => "START""EQU",""%"\;

DECNL «ID] => #1,"BSS 1"\
E=1] => DECNL*1:%1]1 DECNL*1:%21 3

«END



( i e e T T Ly —— =

— - - mee—— e Seeeeesmamme— e — —

e Yl 2 j_>__ﬂ4au: Jewws)

% : e MR Yed¥y

R SRR PR 1 € % < m“J____ e =

I —— *H L‘M" -
v - [N -‘:4-{-}."]

_ Shepa  Tedg! e s——
- o BRu . Ex3
E:'_K..& = T‘P..l

P 7

——— - -
|
‘ e — - - - — — e - - — = e m e m m m  ——= - P -
( |
: __‘3’—’\ é‘
—_— — —— = 4 b .—b. - - . EE—— S
8 e — i By m——— - = . = - = e S l

R SR = . Wik w0 iy NS
IR 21 Hw

. 1
e — - — - — -Q & ..-.—-..... — e o e —h i —— i o]

e e e el i e - B . - -
i é é@_l_l_ —e Bf.:_;.. i i e s g e
—
— — .. . . e S — — -
L
—_— . — e —— S e m o g e — L — - - - - - — — - — — - - {
—_ - e e T e A —— S S o e T — J
- —pp— — T T e — - — — — — — o m— p— ‘
iy =
_-E_ e — e — == et i F PR ——— - S e W S . . . -
i ———— sy g - —— —— e e e e i P






:CACMPL, 06/25/69 1254:27 JFR

.LSP=0; .MIN=TO0; .INS=3;

% . HED="CONTENT-ANALYZER SYNTAX DEFINITION" ;%
%declarations% file camcl(orgcac)

(+pttrnx) !" data 0; sbrm cac;lcacdx data cacode"

.content-analyzer-syntax
.opcodes arb., bf., bt., bru., bfs., brc., brr.,

cpf., ccv., scp,snc,bfr,ieq,ine,lda.,1db.;

.literals ccsp, cctab, ccld, ccl, ccd, cch, ccnp,
bglg, bgnlg, bgpts, bgnps, bgls, bgds, bglds, dirl, dirr,
cpfle, cpfsf, cpfse, rellt, relle, releq, relge,

pttrn
%pattern definition%
pttrn = pexp ’; [brr cacdxl ;
pexp =
“if" posrl "then" [bf #11 pexp "else" [bru #21
.empty [pcp;kset] union [pps =21;
posrl = i
pos [fepl (".1t" pos [ccp =rellt] /
".le" pos [ccp =rellel /
".eq" pos [ccp =releql /
".ge" pos [ccp =relgel /
".gt" pos [ccp =relnel);
%logical expression%
union = inter ¢
"or" [bt #1; scpl union :1 /
.empty);
inter = neg (
“and" [bf #1; scpl inter :1 /
.empty);
neg =
"not" negneg /
alter;
negneg =
"not" neg /
alter [lcl;
%alternation & concatanation%®
alter = concat ¢
*/ [bt #1; scpl alter :1 /
.empty);
concat = $(ele [bf #11 / nele) :1;
%basic recognizers%
ele = .sr [tet; xs8] /
cv /
'( [pecpl pexp ') [pps =21 ¢/
arbno /
‘= ele [lecl /
Imtskp /
".initials" ¢
's ,id [lda =%i; ieql /
'# .id [lda =%i; inel) ¢/
".Bince" date [Bncl /

3 .5CR=1; .PLO=1; .MCH=75;

ccpt'
pdc., pps., sap., scv., pcp, lc, tst, tstf, fcp, rst, kset, sd.,

cept,

relne,

11 pexp

JRTJI=03

ldp.,

ccer,

12

.DSN=1;

In.,

/

bggap,
cpflf,

p0;



CONTENT-ANALYZER SYNTAX DEFINITION

".before" date [bfrl /
unach;
date = '( .num .call cacdtl '/ .num .call cacdt2 '/ .num
.call cacdt3 [lda =%nl] .num .call cacdtl
t .num .call cacdt2 [1ldb =%nl ');
CV = BCVSB / CCVS;
CCVS =
"sp" [cecv =ccspl /
"tab" [ccv =cctabl /
“1d" [cev =ccld]l /
®1% [ecew =ccll
"d" [ccv =cecdl /
"¢h" [ececv =cchl /
"np" [cev =ccnpl /
"pt" [cev =ccptl /
“er" [cCcv =cccrl;
SCVE =
"gap" [scv =bggapl /
"lgap" [scv =bglgl /
"nlgap" [scv =bgnlgl /
"pts" [scv =bgptsl /
"nps" [scv =bgnpsl /
"18" [scv =bglsl /
"ds" [scv =bgdsl /
"lds" [scv =bgldsl;
nele =
".,empty" [ksetl /
spceft;
elles = ele / nele;
%interative phrases%
arbno =
.num [ln =%nl '§ ¢
.num [In =%nl ¢/
.empty [1ln =10001) arbe /
'$ (
.num [In =0; In=%nl] arbe /
.empty :1 elles [bt #1; ksetl);
arbe = [In =01 :1 elles [arb #1; pps =31;
spceft =
¢ [sd =dirll v/
'> [sd =dirrl /
I ’p .num .pchk [sap p0 *n x*nl /
' ’p .num ,pchk [pdc p0 *n *nl /
pos [fcpl;
Imtskp = “"within" .num "find" C[ln =%n; pcpl :1 [rstl union skprt [brc
#1; pps =31;

skprt = "skip" [bt #1 1; ksetl union :1;
unach = [ [pcpl :1 (
.8r (

1 [tstf; xs; pps =21 /
(tst; *8; bf #21 union :2 [bfs #1; pps =21 1 )



CONTENT-ANALYZER SYNTAX DEFINITION

union [bfs #1; pps =21 '1 );
%position setting®
pos = fcnpos / pntr;
pntr = ’p .num .pchk [ldp p0 %n %nl;
fcnpos =
"c(" pos ') /
"sf(" pos ') [cpf =cpfsfl /
"se(" pos ') [cpf =cpfsel;
.end : end of cac



CONTENT-ANALYZER SYNTAX DEFINITION

% .HED="CONTENT-ANALYZER-COMPILER LIBRARY" ;%
%initialization %

(cac) procedure;
“%dummy declares%
prefix for temporaries: ‘’'clt’;

declare cacicv, %instruction counter value%

cacgll, %gen label 1%

cacgl2, %gen label 2%

cacnmv, %number value-last one recognized%
cacnnl, %negative number of literals%
cacltp, %literal pointer-into code array%
cacnml, %number recognizer temporary%
cstk, %the order of these is important%

cstkd[ 2001, cstkt, cstkl=cstk, carstl, carst2,

cacrst%

cactmp, %a good ole temporay%
cacntp, %another%

cacsrx=30, %max string length%
cacsrilfl1];

cstk+~cstkl;

cstkt=$cstkt-1;

cacltp + $cacdnd=-2;

cacnnl « -1;

%for

for cacicv from $cacode inc 1 to $cacdnd do [cacicvl«0;

cacicv + fScacode+1;
cacgll, cacgl2 « 0;
scndir+~1;
< ldp spskd; stp swork>;
call fechcl1(l,,%$8work);
< brm¥ cazcd>;
bump cacode;
(caret0):
call cacrst;
< any gps>;
(cartll): < abort 11>,
(cart12): < abort 12>;
null endp.
(cacrst) procedure;
frozen rsvstl, rsvst;

for carstl from 0 inc 1 to rsvstl do if rsvstlicarstil]

begin
call storsv(.lsh(carst1,0)8);
carst2«.xr;
for carst3 from 0 inc 1 to 253 do begin
[carst2l~[carst2] .a §5TTTT777hb;
carst2«+ 4 end end;
return endp.

“%generated label generation & definition%

(cacgnl) procedure;
call cacgn(,,Scacgll);
return endp.

.ne 0 then



CONTENT-ANALYZER-COMPILER LIBRARY

(cacgnz) procedure;
call cacgn(,,%Scacgl2);
return endp.
(cacgn) procedure;
if $0L.xr] .ncb 40000000b then begin
.br = cacicv;
$0L.xr] ~ .br end
else .ar « =-.,ar;
[cacicvl++.ar;
return endp.
(cacdfl) procedure;
cacgll +~ cacdf(,cacgll);
return endp.
(cacdf2) procedure;
cacgl2 +~ cacdf(,cacgl2);
return endp.
(cacdf) procedure;
if .br .ncb 40000000b then begin
while .br .cb 37777b do begin
.XT + _br;
;Af; by « $0(.xrl;

$0C.xr] « (,ar .a 77740000b) .v cacicv

return (-cacicv) end
else call rerror endp.
%recursive call & return%
(caccll) procedure;
call cpush(,$37777bl(lcacclll)1);
call cpush(,cacgll);
call cpush(,cacgl2);
cacgll,cacgl2+«0;
return endp.
(cacrtn) procedure;
call cpop;
cacgl2+ . br;
call cpop;
cacgll+~. br;
call cpop;
.Xr+ _ br;
go to $1[.xr] endp.
%stack operators%
(cpush) procedure;
if cstk .eq cstkt then goto carti12;
bump cstk;
[cstkl«. br;
return endp.
(cpop) procedure; 7
if cstk .eq cstkl then call rerror
else begin
.br=[cstk];
cstk «+ =1 end;
return endp.

end;



CONTENT-ANALYZER-COMPILER LIBRARY

%basic recognizers®
%main routines%
(cacidr) procedure;
call cacdeb;
cacsrl+~ =-1;
< any pcp; ldx =swork; brm 2,2>;
cactmp+-.ar;
if caclet(cactmp) then begin
while caclet(cactmp) do begin
call apchr(cactmp,,$cacsrx);
.Xre$swork;
< brm 2,2>;
cactmp-.ar end;
< any kset>;
swork[1ll«=+ =1;
call fechel(l,,$8work) end
else begin
flag+=0;
< any scp> end;
< pps =2>;
return endp.
(cacsrr) procedure;
cacsrl +~ =1}
call cacdeb;
< any pcp; any kset>;
if nxtchr() .eq 7 then call apchri(nxtchr(),,$cacsrx)
else if .ar .eq 2 then while nxtchr() ,ne 2 do call
apchr(.ar,,$5cacsrx)
else begin
flag+-0;
< any scp> end;
< pps =2>;
return endp.
(cacnmr) procedure;
cacnmv « 0;
call cacdeb;
< any pcp; ldx =swork; brm 2,2>;
if .ar .gt 17Tb and .ar .le 31b then begin
(cacnml):
cacnml « .ar;
cacnmv « cacnmv¥10+cacnml-20b;
< brm 2,2>;
if .ar .gt 17b and .ar .le 31b then go to icacnml;
< any kset>;
sworkl(lle+ -1;
call fechcl(l,,$swork) end
else begin
flag-0;
< any scp”> end;
< pps8 =2>;
return endp.



CONTENT-ANALYZER-COMPILER LIBRARY

%uility routines%
(caclet)procedure;
return( if (.ar .gt 40b and .ar .le 72b) or (.ar
.ar .le 132b) then 1
else 0) endp.
(cacdeb) procedure;
< any tst; data 0; asc ' '; bt %-3>;
return endp.
(capchk) procedure;
if cacnmv .le 0 or cacnmv .,gt 9 then go to cartl2
else return endp.
(nxtchr) procedure;
.Xxr=§$swork;
< brm 2,2>;
return endp.
%date and time make up%
(cacdtl) procedure;
cacntp + .l1sh(cacnmv,0)16;
return endp.
{cacdt2) procedure;
cacnmv,cacntp- .lsh(cacnmv,0)8 .v cacntp;
return endp.
(cacdt3) procedure;
cacnmv « cacntp .v cacnmv;
return endp.
%code generators%
(cacidc) procedure;
return(cacsrlil(1]1) endp.
(cacsrc) procedure;
{cacicv]l « cacsrl;
for cactmp from 0 inc 1 to cacsrl/3 do begin
call cacicc;
[cacicv] « cacsrilcactmp+1] end;
return endp.
(cacicc) procedure;
bump cacicv;
if cacicv .ge cacltp then call rerror;
return endp.
(cacltr) procedure;
.Xr + cacnnl;
< ske cacdnd,2; brx %-1>;
if .ar .eq cacdndl.xr]l then .ar + .xr + $cacdnd
else begin
[cacltpl « .ar;
.br « cacltp;
cacltp «+ -1
cacnnl +«+ ,ar;
if cacltp .1t cacicv then go to cartll;
.ar + .br end;
[cacicvl+=+.ar;
return endp.

.gt 100b and



CONTENT-ANALYZER-COMPILER LIBRARY

“patch space%
(cacf) procedure;
return endp.
finish



:TXTEDT, 06/25/69 1257:47 JFR ; TEXT EDITOR .8CR=1; .PLO=1; .MCH="75;
.RTJ=0; .DSN=1; .LSP=0; .MIN=70; .INS=3;
% .HED="TXTEDT, SPL CODE"; .RES;



TXTEDT, SPL CODE

%
file txtedt(orgtxt)
“%odds and ends%
(+recred) display() goto [s]
(+subs) call subst return
(+subi) call subint return
% used by parameter spec to build and break statements %
(+gdmys) (al)
tc st al « ", dummy ;" :
return
(+setrot) (al)
tp ctal) > [0 "3" 1 I1p2 :
:¢c st al « &fnx, ",", &stn2%, " ;", p2 se(pl): return
(+8ttxt) (dl1,d2)

¢ st d2 + sf(dl) sel(dl)
return
(+brkst) (al1,d2)
tp ctal) > ch $pt |ple=pl Snp I1p2 :
:c st d2 ~ sp,p2 selal);
st al « sf(al) pl : return
(+staptx) (d1,d2)
¢ st d2 +~ sf(d2) se(d2),sp,s8f(dl) se(dl):
return
(+8tlit) (d1l)
:c 8t dl +~ &litx :
return
% entity finding routines - known as delimiters %
(+cdlim) (al,a2,al,a4,ab)
tp clal) < |a2 ch |a4 c(al) > |a3 ch |af :
return
(+idr) (al,a2,al3,ad,as)
:p clal) < ch Snp lad4 la2+a2 c(al) > ch $Snp la3~a3 |a5 :
return
(+tdr) (al,a2,al,ad,as,ac)
:p if sf(al) .ne sf(a2) then 1" abort 6"
if al .1t a2 then
c(al) 1a3 < ch |a5 c(a2) la4d > ch |aé
else c(al) la4 > ch |ab c(a2) 1a3 < ch la5 :

*

else

return
(+ndr) (al,a2,a3,a4,ah)

tp clal) < §Gd /7 ', /7 '.) (’8/.empty) (’~/.empty) la2+a2

> ch ('=/.empty) ('$/.empty)

d (d (d/.empty) /.empty)

(', d dd $(*, ddd) 7 $d)

(. d §d 7/ .empty) l|a3+al

(sp lah 7/

la5 c(ad4) < (sp/.empty) la4) /

1" abort 2"

return
(+wdr) (al,a2,al,ad4,ad)

:p ctal) >ch $ld la3+a3

|a4



TXTEDT, SPL CODE

(sp lab c(al) <ch $1d |a2+a2 |a4/
la5 c(al) <ch Sid (sp/.empty) la2+a2 l|la4) :
return
(+wdr2) (al,a2,a3,a4,abh)
:p clal)>ch$ld 1a3+~a3dlas c(al)<ch$ld la2~a2la4:
return
(+vdr) (al,a2,al3,ad,ah)
:p c(al)>chfpt |a3~a3l
(sp lah5 c(al) <ch$pt la2+a2 la4d /
a5 clal) <ch Spt (sp/.empty) la2+~a2 |a4) :
return
(+vdr2) (al,a2,ald,ad,ab)
tp c(al)>ch$pt la3d~a3lab c(al)<ch$pt |a2+a2la4d:
return
% statement reconstruction routines %
(+deltx) (dl)
delptr(sf(dl) sel(dl))
:8 deltx dil:
return
(+cpchtx) (al,a2,al,a4,ah)
:c st al « sf(al) a2,%a4 ab,ad sel(al):
+recred;
(+cshft)
:c st bl +~ sf(bl) p3, +pl p2, p4 se(bl):
display() return
(+del)
:¢ st bl « sf(bl) p3,pd4d se(bl):
delptri(pl p2) +recred;
(+mvchtx) (al,a2,ald,a4,a5,a6,a7,ad8,ad,alo)
¢ if sf(al) .eq sf(a2) then
if al .1t a2 then
st al - sf(al) a4,a7 aB,a6 a9,alld se(al)
else st al +~ sf(al) a9,a10 a4,a7 aB,a6 se(al)
else begin
st al «~ sf(al) a4,a7 aB,a6 selal);
st a2 « sf(a2) a%,all se(a2) end:
+recred;
(+mvwdvs) (al,a2,al,a4,a5,a6,a7,aB,all)
¢ if sf(al) .eq sf(a2) then
if al .1t a2 then
st al « sf(al) a4, sp,a7 aB,a6 a9,ald se(al)
else st al « sf(al) a9,al0 a4, sp,a7 aB,a6 se(al)
else begin
st al ~ sf(al) a4, sp,a7 a8,a6 selal);
st a2 « sf(a2) a%,all se(a2) end:
+recred;
(+rpl) (al,az,al)
:¢c st al + sf(al) a2, &litx, ad se(al) :
call rellit +recred;
(+cpwdvs) (al,a2,a3,a4,ab)
:¢ st al «~ sf(al) a2, sp,$a4 a5, ad se(al):



TXTEDT, SPL CODE

+recred;
% control routines called from main control %
% copy %
t+qcc) +cdlimlbl,pl-471 +cdlimlb2,p5-81 +cpchtxlbl,p2,pd,p5,p6]
(+qcw) +wdr2(bl,pl1-41 +wdr2[(b2,p5-81 +cpwdvsibl,p2,p4,p5,p61 ;
%(+qcn) +wdr2(bl,pl-41 +ndrlb2,p5-81 +cpwdvslbl,p2,pd4,ps,p6l ;%
(+qci) +idr(bl,pl=-4] +idrlb2,p5-81 +cpchtx(bl,p2,p4,p5,p6] ;
(+qcv) +vdr20lbl,pl=-41 +vdr20(b2,p5-81 +cpwdvs(bl,p2,p4,p5,p6] ;
(+qct) +cdliimlbl,pl-4] +tdrib2,b3,p5-81 +cpchtx[bl,p2,p4,p5,p61
% delete %
(+qdc) +cdlimibl,pl-4]1 +del;
(+qdw) +wdrlbl,pl-41 +del;
%t+qdn) +ndrlbl,pl-41 +del;%
(+qdi) +idrlbl,pl-41 +del;
(+qdv) +vdribl,pl-4] +del;
(+qdt) +tdrlbl,b2,pl1-4]1 +del;
% insert %
(+qic) +cdlimlbl,pl-41 +rpllbl,p2,p4d] ;
(+qiw) +wdr2Ubl,p1-41 +rpllbl,p2,p4d] ;
%(+qin) +ndrlbl,pl=-41 +rpllbl,p2,pd] ;%
(+#qii) +idr(b1,p1-41 +rpllbl,p2,pd] ;
(+qiv) +vdr20bl,pl-41 +rpilbl,p2,pd] ;
(+qit) +cdlimlbl,pl-41 +rpllbl,p2,p4]
% move %
(+qmc) +cdlimlbl,pl=-41 +cdlimlb2,p5-8]1 +mvchtx(bl,b2,p1-81 ;
(+qmw) +wdr2lbl,pl=-471 +wdrlb2,p5-8]1 +mvwdvs(bl,b2,pl=-81 ;
%(+qmn) +ndrlbl,pl=-41 +ndrlb2,p5-81 +mvwdvsibl,b2,pl-81 ;%
(+qmi) +idrlbl,pl1-41 +idrlb2,p5-81 +mvchtx[bl,b2,pl-81 ;

(+qmv) +vdr2lbl,pl-41 +vdrlb2,p5-8]1 +mvwdvsibl,b2,p1-81 ;

(+qmt) +cdlimlbl,pl-41 +tdrlb2,b3,p5-81 +mvchtxIibl,b2,pl=-81 ;

% replace %
(+qrc) +cdlimlbl,pl-4] +rpllbl,p3,pd]d ;
(+qrw) +wdr2(bl,pl-4]1 +rpllbl,p3,pdl ;
%(+qrn) +ndrlbl,p1-4]1 +rpllbl,p3,pd]l ;%
(+qri) +idrlbl,pl=-41 +rpllbl,p3,pd] ;
(+qrv) +vdr20bl,p1-41 +rpllbl,p3,pd] ;
(+qrt) +tdrlbl,b2,p1-41 +rpllbl,p3,p4l ;

% shift case %
(+gsc) +cdlimibl,pl-4]1 +cehft return
(+qsw) +wdr20lbl,pl1=-471 +cshft return
(+qs8i) +idrlbl,pl-41 +cshft return
(+q8v) +vdr2ibl,pl=-41 +cshft return
(+qst) +tdrlbl,b2,pl-4]1 +cshft return
(+qs8) :¢ 8t bl « +8f(bl1) se(bl) : display() return

%pointer specification%
(+qpf) ptrfix(bl) call rellit +recred;
(+qprs) getrf delptr(sf(bl) se(bl)) +recred;
(+qprt) +tdrlbl,b2,pl1-41 delptri(pl p2) +recred;
(+qprw) +wdrlbl,pl1-4] delptr(pl p2) +recred;

end of txtedt



TXTEDT, SPL CODE

“% .HED="TXTEDT, MOL CODE";  .RES;



TXTEDT, MOL CODE

% < NOLIST>;
(txgd) procedure; .
prefix for generated labels: ’'txl’;
prefix for temporaries: ’tet’;
call rerror endp.
%.HED="txtedt, PONTER FIXUP ROUTINES"; .RES;



txtedt, PONTER FIXUP ROUTINES

%
(fixptr) procedure(fxptrl,,fxptr2);
frozen rplsid;
frozen
fxptrl, fxptr2, fxptr3d, fxptr4,
fxptr5, fxptr6, fxptrT, fxptr8;
frozen ptrtb, ptrtbl;
fxptr3 « ncis(,,fxptr2)-81ifxptrll+1;
fxptréd=fxptril+l;
fxptrS-fxptri+3;
fxptr6+0;
while fxptré .1t ptrtbl do begin
JXr « fxptré6;
fxptré «~+ 3,
if
[fxptrll .eq ptrtbl.xr+1]1 .a 17T7T77777b
and [fxptr4]l .le ptrtbl.xr+21]
and [fxptr5]1 .ge ptrtbl.xr+2]
and ptrtbl.xr+11 .a 20000000b .ne O
then ptrtbl.xr+1J=ptrtbl.xr+11 .v 40000000b end;
fxptr7 « 1,
while fxptr7 do begin 4
fxptr6, fxptr7T « 0;
while fxptr6 .1t ptrtbl and fxptr7 .eq 0 do begin
if ptrtblfxptr6+1]1 .1t 0 then begin
fxpir? « 13
fxptr4 « ptrtblifxptr6l;
fxptr5 « ptrtblfxptr6+21+fxptr3;
for fxptr8 from fxptr6é inc 1 to ptrtbl do
ptrtblfxptrBleptrtblfxptr8+31;
ptrtbles+ -3;
call insptr(rplsid,fxptr5,fxptrd4) end;
fxptr6 «+ 3 end end;
return(fxptrl,,fxptr2) endp.
(delptr) procedure (delptl);
% pointer to table %
frozen delptl, delpt2, delpt3d, delptd;
frozen ptrtb, ptrthl;
delpt2 « delptl+]l;

delptd « 0;
while
delpt3 .1t ptrthl
and (
{delptl] .gt ptrtbldelpt3+11 .a 37777777b
or (

[delptl] .eq ptrtbldelpt3d+1] .a 37777777b
and [(delpt2] .gt ptrtbldelpt3+21))
do delpt3d «+ 3;
delpt4d « delptd;
delpt2 «+ 2;
while



txtedt,

PONTER FIXUP ROUTINES

delpt4 .1t ptrtbl
and [delptl]l .eq ptrtbldelptd+1] .a 377777770
and [delpt2] .ge ptrtbldelptd+2]
do delpt4d «+ 3;

if delpt3 .eq delptd4d then return;

ptrtbl « ptrtbl+delpt3-delptsd;

for delptl from delpt3 inc 1 to ptrtbl do begin
ptrtbldelptl] « ptrtbldelptd];
bump delptd4 end;

return endp.

(insptr) procedure(insptl,inspt2,inspt3);

frozen insptl, inspt2, inspt3, inspt4, inspt5;
frozen ptrtbl, ptrtxn, ptrtb;
if ptrtbl .ge ptrtxn do-single

< err 6>,
for inspt4 from 0 inc 3 to ptrtbl do

if ptrtblinspt4] .eq inspt3 then return;
bump [insptrl;

insptd«~0;
while
inspt4 .1t ptrtbl
and (
insptl .gt ptrtblinsptd4+11 .a 17777777hb
or (

insptl .eq ptrtblinsptd4+11 .a 17777777hb
and inspt2 .gt ptrtblinsptd+21))
do inspt4 «+ 3;
for inspt5 from ptrtbl dec 1 to inspt4
do ptrtblinspt5+3]1 « ptrtblinspt5l;
ptrtbl «~+ 3;
.XT + inspt4;
ptrtbl.xrl « inspt3d;
ptrtbl.xr+1] « insptl;
ptrtbl.xr+2] « inspt2;
return endp.

%.HED="txtedt, TEXT BUILDING"; .RES;



txtedt, TEXT BUILDING

%
(apachr) procedure;
% character in b, work area address in x %

null;

< 1sh 16 >;

< lda% 1,2 >;

< Ish B >;

< stax 1,2 >;

< skr 2,2 >;

< brrx apachr >;

< lda =2 .

< sta 2,2 >;

< lda 1,2 >;

< min 1,2 >;

< eor 1,2 >;

< etr =TT776000b >;
< skg =0 >;

< brr¥ apachr >;

< sbrm gcol >;

< brrx apachr > endp.

(apastr) procedure (apasrl,,apasr4);
% a-string in a, work area in x %
frozen apasrl, apasr2, apasr3, apasr4;
apasr3 + $1lapasrl];
for apasr2 from 0 inc 1 to apasr3 do
call apachr(.ar,ldchr(apasrl,apasr2),apasr4);
return endp.
(aptstr) procedure (aptsl,,apts2);
% 1-ptr to 2 t-pointers, 2-ptr to cwork, 3-temp %
% 6-case set, T-option set, B-option mask, 9-option set %
frozen aptsl, apts2, aptsd, apts6, apts7, apts8, apts9, swork;
JXEECRY S
if $0C.xr]1 .ne $20.xr]l then call rerror;
swkflg « -1,
% turn on gcol %
aptsl0 « getsdb($0[.xrl);
call lodsdb(.ar); /
aptsl0 « sdbstl(.rsh(aptsl10)9)1;
call frzrfb(.ar,1);
if apts7 then % mode set now in operation %
begin
swork[0l+~[aptsll;
bump aptsi;
swork[1l«~[aptsl];
aptsl«=+2;
if swork[1] .gt 1 then begin
swork[11«+ -1;
call fechci(1l,,$swork);
< brm 2,2>;
if .ar .ne endchr and .ar .cb 200b then goto aptsl end
else call fechcl(1,,$swork);



txtedt, TEXT BUILDING

while swork[11 ,le [apts1] do begin
.Xr+fswork;
< brm 2,2>;
aptsd+~. ar;
if .ar .cb 200b then begin
(aptsl):
.ar~(.ar .a aptsB8) .v apts9;
if .ar .ne 200b then call apachr(,.ar,apts2);
.Xxr%swork;
< brm 2,2>;
apts3+~.ar end
else Dbegin
.ar+apts9;
if .ar .ne 200b then call apachr(,.ar,apts2) end;
case apts6 of begin
call apachr(

’
if apts3 .gt 100b and .ar .le 132b then .ar-40b else
.ar, apts2
)3
call apachr(

]
if apts3 .gt 40b and .ar .le 72b then .ar+40b else
.ar,apts2
)5
11 apachr(,apts3,apts2) end end;
apts7+0 end :
else begin
swork[Ol~[aptsel];
bump aptsi;
sworkl[11+Taptsll;
aptsl«+2;
if swork[11 ,gt 1 then begin
swork[11«e+ -1;
call fechcl(l,,$swork);
< brm 2,2>;
if .ar .cb 200b then call apachr(,.ar,apts2) end
else call fechecl(1,,$swork);
while swork[1] .le [aptsl] do begin
xre$swork;
< brm 2,2>;
call apachr(,.ar,apts2) end end;
swkflg « 0;
call frzrfb(aptsl10,-1);
return endp.
%.HED="TXTEDT, POPS"; .RES;

10



TXTEDT, POPS

%
(cchr) pop(13300000b,1,0) procedure;
return(apachr(,[$0],5cwork)) endp.
(anypop) pop(17700000b,1,0) proc;
external bsc, esc, kps, kpr,dlp,cpw,cpx,pfx% %
goto [%01;
(bsc):
rplsid~.ar;
returni{newsdb());
(esc):
call fresdb(rplsid);
return(endsdb(rplsid));
(cpp)l:
call fixptr($sptrl,,$Scwork);
return(aptstr($sptrl,,fScwork));
(kps):
call apastr($0 .a 37777b,,$cwork);
go to strrtn;
(kpr):
call regadr(smareg);
return(apastr(.xr,,Scwork));
(dlp):
return(delptr($Ssptrl));
(cpw):
return{(aptstr($sptrl,,Scwork));
(cpx):
call delptr($sptrl);
call aptstr($sptrl,,$Scwork);
return;
(pfx):
call insptr(,,$201itlcl);
< abort 4>;
return endp.
finish

11



>, f JGM, ll""JUN"73 10312k CLJUURNALZL [UI€E o1l 3 o -

NOTE: “ . 02

This document represents the decisions reached by a combined Comnand
Language / Novice-eXpert review groups meeting held the mornings of
29=-May and 30-May. 03

With the NLS utility will come 2 supstantial increase in our NLS USEr

community. These, in general, are users which we would like 10 please.
consequently, I herein propose modifications to the command language

which I (chi) feel make it simpler, more consistent and somewhat nore

. conplete (although, I think it has a way to go before we cal call it

connlete)., I have discussed nost of these issues with the "ngvice
user" and "comnand language" groups. I think these changes should be
in the running system BEFORE we begin training these new users (say oY
nid JUNE)! It is quite difficult to learn a command language wnich is
changing while you are learning il ' ol

The following changes should be made in the command language: - 05
The command language should be made O consist of an editor an
special purpose subsystems. The command language for each should
consist of frequently used commands, Which are recognized by their
first letter (unless preceded by a space) and infrequentlVy used,
new, or experimental commands, which are preceded by a SPAGE and
which are recognized when the user types enough characterse. There
should be a consistent VERB=-NOWN form to commands and verbs should
be used in a consistent manner, 06

This allows commands to be reasonably naned and added without
worrying about first letter conflicts while "protecting”
frequently used commands == significant problemns currently. o7

This should apply to operand typeé also, of course, but may not

pe Wwidely used at first. 08
In "novice" mode, a system supplied SPACE will preceed each
command the user gives. . o}

supsystem names should be recognized when the user has typed
enough characters for uniqueness. All subsystems should
terminate with the "Quit" command, as should NLS. All subsystens
should have Execute, Goto, and help commandss 010

The concept of Address Expression should be generalized for DNLS,
TNLS, and DEX such that wherever a statement name oOr nunber 1is
currently used, an appropriate ADDRESS EXPRESSION should pe allowed

(see Appendix C). 011
For DNLS, a selection should be defined as 012
SEL = (BUG ¢/ OPTION DAE CA); - 013

Note that the use of markers in DNLS by holding the
rightmost mouse button down a2nd typing the marker nanme
should be eliminated, since one will be able to type OPTION
and an arbitrary DAE followed by a CA. ) OllL



In TNLS a selection should be defined as 015
SEL = DAE CA; 016
Note the syntactic conflict inherant in SEL /7 LIT

alternatives in commands. This can be avoided by
converting any such choice points in TNLS to LIT / OPTION

SEL, _ 017
In DEX a selection is defined as - 018
SEL = STAE CAj ' 019

Where DAE (Dynamic Address ExXpression) is defined in Appendix C,
and STAE (STatic file Address Expression) is defined in the
DEX=I11 design document, : . 020

A Dynanmic Address Expression should be consistent with existing
1inks, the same DAE should work in TNLS and in DNLS, and the
elements of the expression should be reasonably nnemonic. A DAE
should be available in NLS wherever a statement number, SID, oOr
statement name is now used (as in 1inks, Jumps, etc.). 021

The replacement of the statenent nane/number’ field by a DAL
provides a. powerful extention to the link syntax and wWill be
compatible with eXtant links. 022

Editing command changes 023

Terninating any editing command with INSERT or REPEAT (what used
to be called CDOT, for historical reasons) is shorthand for
command Accept (CA) followed by the INSERT or REPEAT commands,
respectively. oz2h

The INSERT command allowWs one to quickly insert a new
statement after the CHM. 025

The REPEAT command allows one to repeat the last used editing
command, perhaps defaulting one of the operands to the
control Marker (CM) instead of asking the user to select it,

026

The notion of operand-type defaulting in DNLS should be
eliminated, 027
Substitute changes 028
For the new form of the substitute command, See Appendix 8'029

An elipses capability should be made avallable in the
substitute command. That is, teXt...text should be allowed
for the specification of text to be reéplaced. This should
result in instances of <texXtl arbitrary=-text text2> bemng
replaced in the substitute. . ; ‘030



JGM, 11-JUN=73 10:2} {IJOURNAL>17052.NLS3L 3

This is subject to the constraint that the <textl...text2>
be in one statement, and that an occurance of textl can
only be paired with the first occurance of text2 followWing

1f textl is null then assume String Front (8F); if texta
is null then assune String End (SE). 032

If one Wishes to actually substitute for a string of three
periods (.e.), one must preceed each of the three periods

by Literal Escape (LE) . 033
Jump conmmand changes 03k
§p command in TNLS will be replaced by Jump tO. 035

The Jump commands Should be made to be 1ike the rest == no state
of its own, 036

Jump -to Successor, Jump to predecessor Should require one to
type 'J 'S 'd 'P Just as Insert Character, Insert Word
yrequires one to type 'I 'C 'l 'W. 037

The sub commands of Jump to End should be deleﬂed. ' - 038

The Jump File Link command should be removed since Jump to Link
is equivzalent. 039

The order of operand selection in Move, Copy, Append, Asgsimilate,
and substitute should be changed. Please see the comnand syntaX in
Appendix B.  Basically, the move/copy/assimilate should be of the
form "MovesCcopy/Assimilate This %o There", rather than its current
form "Move/Copy/Assimilate to There, This". Append should pe
"Append this to that", instead of npppend to that, this". o0

Note that this could be consldered as peing inconsistent with the
ingert command, although this inconsistency might prove minor and
unimportant. i oLl

A nore important problenm is that the first operand gelection 1in a
command (given our current approach for switching commands) RUst
allow us to aifferentiate between a keyword and a LIT.
Consequently, we would not pe able tO allOw nove/copy/append to
have LIT as a possible f£irst operand. oLz

A new control character noPTION" should be availlable for specifying
optional arguments to commands. : . 043

In addition, I propose that there be a FILTER command for content
£ilters, a RESEQUENCE SID's command, and a COMPACT FILE command
(doing away with Output File). Please refer to Appendix B for
details., _ oLl

AppendiXiA: Proposed Command Language (sunnary) : oL5



commands which mus£ be preceded by SP are preceded by SP in this

list:. - oué
( >pend . . ‘ | oL7
allow—private—modifieations to file {old-browse mode) oLs
agsenble progran | ; oL9
i iy - 030
arm NLSDDTFH - : 051
\b¥eak 052
copy | - 053
Ceopy> fite— , | | 051
clear window— : 055
compact file . | 056
compile—pregram ' - 057
‘connect—tuispIay 7 tiy) | ‘ " g8
. createIilTe 059
! delete | 060
Laeleted>—merkers R . & 06l
{delete> file | 062
AdaarnHESDDItH | 063
@isconnect—terminals ' '} | 061,
ME command : ; 065
066
067 .

expuhge directory ' i 068
goto SUBSYSTEM~NAME | 069
help g - 070

Ansert Q7L

072

073




SumP—tDNTS and TNLS) ——— Lok

k (unused)

g EP‘-M {>~_3 ){-‘f;_l-e E’bn%\—a; 081

novice

output—— é;dv*~*bj3€=3 o~u«£?ThAJKT“

p—unused 4 DNLS) print (TNLS)
pleybaek -session

replace

C chion O iﬂé%ﬂ
record—gession
retock—file-
regequence—SIpts—imfite

reset (Hy=simulztien—window /
viewspecs) '

substitute

set (case / :
character size for window /
filter /
1ink default for file /
7 name—delimeteps /
* tey-simidation—windeuw /
viewspecs)

show (f£ile status /
' marker—XYist 7/
7 nane delimiters /
' vyiewspecs [verbose] status)

092
093

034

095

sinulate—terminzi—type—tdtsplay 7 TI=-terminal—/~etc, ) 096



jr——

-
sort/iuJﬁﬂyL ' 097

split window 4vertically / Rorizomtally}—DNES) 098
transpose . , : Q99
t eroia coraing /. :
private £1 on ile) . 0lo00
update file 0101
ock 0102
tgf}gpkjﬁilev . 0103
w (not used) : : | - 010k
X (unused) | _ ; 0105
y (unused) 0106
z (unused) : 0l07
'e (TNLS) ghom CM . - 0108

'/ (TNLS) [type context of CM 0109

s Comn ‘ 0110

"N (TNL§) rint statement : 0111

t+ (TNLS) pxint back statement . 0112

linefegd (éﬁf}{: print next statement 0113

INSERT % St ; rol Markers OLll
REPEAT Test editing command o115

AB occ WOT A% 0116

Pl _ . 0117

Appendix'B: Proposed Command Language (detail) ; ‘ 0118

Definitions 0119

CA.= 1D ( CR (default): : 0120

4SEL or command terminator% 0121

_ REPEAT = CDOT = 1B / ESC/ALTHODE (default); © 0122

%Terminate current editing command and begin REPLAT command,
possibly defaulting a selection to CM% 0123

)



UUI'L’ k= UMUN™[ 3 LU MY T W AT AE S gy | W e W e e

INSERT = 1E / user=-settable characters; ' 0l2k
Zrerminate current editing command and begin INSERT command?
0125
CD = tx / DEL/RUBOUT (default); - 0126
Zabort current command specification% ' f o127
OPTION = 4U / user-settable characters; o128
%use optional parameter or use optional form of a command?
0129
Gonfirmation = CA / INSERT / REPEAT; | 0130
%used-to confirm editing cﬁmmands% | 0131
LEVADJ = $(fu 7 'd) (SP / CA); 0132
TextSpecl = | _ 0133
e €oss Characterd / 'w {.ss Word> / 'v <,.. Visible> /7 '1
oee INvisibled / 11 <eos Linkd / 'n <o.o Numberd>; 013}
‘TextSpec2 = | 0135
't Coen Text> s ‘ 0136
structuregspecl = a | 0137
g Coee Statementd /7 'b <{,.. Branch> / ;p (:.. Plex>; 01338
StructureSpec2 = - TR v 0139
g Coss Groupd; _ 0140
Where <... WORD> denotes that WORD is appended to the command
feedback. - o1yl
FILENAME = LIT / SEL; E : 0lL2
%Qhere lit'ia of-the forn <dird>iile.ext? o143
LIT = | | ' o1lLl

1iteral text typed by the user, excluding control characters
such as CA, CD, INSERT, OPTION, etc. unless preceded by the
1iteral escape (LE) character (default LE is control=V)., 0145

Gommand Language (Note: A1l commands and operand-types may be

precedded by a SP and some MUST be, If a command or operand-type is
not preceded by a SP, the systienm default command or operand=-type for
the first letter typed will be assumed and used. If it is preceded
by a SP then recognition will take place when a sufficient number of



Ju, Li=JdUN={3 LUSZL N WAV LN Sy | M e

characters have been typed to determine uniqueness.)
gppend '
syntax: 'a <Append>
({TextSpecl / StructureSpecl) <at> SEL /
(Textspec? Structurespec2) <from> SEL <(to)> SEL)
<{to> SEL LIT
Confirmation;
gllow private modifications to file (oid browse mode)
assemble progran

syntax: " asse" {Assemble Program atd> SEL <Using>
ASSEMBLER=~NAME <to file> FILENAME CAj;

agsimilate
synta¥: " assi" <Assimilated ©
{StructuresSpecl SEL / Structuredpec2 SEL SEL)
{after Statenent) SEL LEVAD& VIEWSPECS
Confirmation;
arm NLSDDT 1tH ;
break

Syntax: 'b <Break>

({Textspecl / TextSpec2) <at> SEL /

{StructureSpecl / StructuresSpec2) <at> SEL LEVADJ LIT )

Confirmation;

——

016
0147
0148
0149
0150
0151
0152
0153
0154

0155
0156

0157

- 0158

0159
0160
0161
0162

0163

Olslh-

0165
0166

IT would be extremely nice if break Plex ad break group

alloved us to convert a structure like

statement a
statenent b
statenent ¢

statement d

0Llé7
0168
0169

0170

0171 .

ol72



"d4nto a structure like 0173

OL7h

statement a | 0175
statement b 0176

ney statement ? | o177
statenent ¢ o178
statenent d 0179

by breaking at statement b. ' 0180

‘We could define break word, text etc. as Just a quick
insert of a SP. Break statement and branch would be

equivalent (unless we wish to distinguish??). 0181
cOopY 0182
syntax: 'c <Copy> 0183

((TextSpecl <atd> BSEL / TextSpec2 <from> SEL <(to)> SEL)
<to follow> SEL / _ 018l

(StructureSpecl <atd> SEL / StructureSpec? <from> SEL <(to)>

SEL) <to follow> SEL LEVADJ ) 0185
Confirmation; o 0186
{copy> file | ; 0L87
allows users to copy files from NLS. 0188
‘clear window - 0189
compact file 0190
compile progran 0191
syntax: " com" (Compile Program at> SEL <{Using COMPILER=NAME
<to fille> FILENAME Confirmation; 0192
connect (display / tty) | ’ 0193
syntax: 'c <Connect) Oi9h

(Vd <Display> /7 't <TT¥>) <to terminal> NUMBER ['i <Input
and outputd / 'o <Output only>] CA; 0195

"Input and output" type connection requires that the
recipient issue a Receive connection command. 0196



create file
-Syntaxi " er" {Create File> FILENAME Confirmation;
Creates a nevw (empty) iilé.
delete
syntax: 'd <{Delete>
(({TextSpecl / StructureSpecl) <at> SEL /
{TextSpec2 / StructureSpec2) <from> SEL <(to)> SEL)
COnfirmation;
{delete) markers
¢delete> ('a <all markersd> / 'm <marker named)> LIT) CA;
{deleted> file

allows users to delete files from NLS (will take care of
Partial Ccopies).

disarm NLSDDT tH

disconnect terminals
execute SUBSYSTEM=NAME command
edit

expert

The Novice/Expert design group should apecify-this command

expunge directory

goto SUBSYSTEM=NAME
calculator subsystem
identification subsystem
journal subsystem

includes submission, number assignment, secondary
distripbution, etc.

measurement subsysten
programs subsysten

query subsysten

0197

0194
0199
0200
0201
0202
0203
020
0205
0206
0207

0208
0209
0210
0211
0212
0213

0211
0215
0216
0217
0218

0219

0220
0221
0222

0223



vyuil, LL™=UUN™ [0 LVech T o B R e ]

user opticns subsysten ‘ 0224
The Novice/ExXpert design group should specify this
subsystem. ‘ 0225
inecludes eXecute viewchénge and Show «se 0224

print parameters, feedback paraméterS, control _
characters 0227
{Show> ' . ' 0228

('s <sv» Selections> 7/ 'c <.« Control Mark> /7 'u
{ses Upper Cased / 'i <... Input Prompts> / 'l <ees

LEVADJ numbels>) 0229
Confirmation; 0230
help ' 0231

prints out instructions for new or confused users including
definitions of terms used in syntaX rules for commands. 0232

insert _ - 0233
syntax: 'i <Insertd ' | 023l
(({TextSpecl / TextSpec2) Lafter> SEL / 0235

(structureSpec2 / StructuresSpecl) <after> SEL LEVADJ) 0236

LIT ' Q237
confirmation; 0238
{insert> (sequential / assenmbler) file 0239
¢insertd Journal submission form 0240
jump (DNLS and TNLS) | 0241
Syntax for DNLS: 'J <{Jump to> o242

( SEL DAE CA VIEWSPECS) / : o243

( o24L

( 0245

1 eos Item> / 0246

's {sas Successor> / 0247

'p <,.. Predecessor> / . 0248

——



Mg

o W WVIITT 2 LW Y L

fu €eus Up> /

'd <a.« DoOWn> /

ih €eoo Head> /

't €. Talil> /

te {eo.s End of Branch’> /
b <ees Back) /

¥0 <ues Origind /

SP "ne" <... Next> /

SEL VEIWSPEGCS

)

/

C

11 €eee Linkd> ['1l <,e. Lockedd] ( SP LIT / SEL
VEIWSPECS) /

'

‘s

'

'n

%locked is a priviledged facility and is not
available to the average user%

<sse Return> CA
2text from 'return' statement?
$(NOT=CA %text from 'return' statement?) /
<eoes Ahead> CA |
%texXt from 'ahead' statement®
${NOT~CA %text 'ahead' from statement%) /
Ceee Filed
({SP FILENAME / SEL) VIEWSPECS %load file%/
(('a <... Aheadd / |

'r <ses Returnd)

%file name% &(NOT=CA %next file name?) /
{eoe Named

[V €ouo Firstd /

T oW WOV ARLI I S Gy | W =R

e ¥

0249
0250
0251
0252
0253
025}

e

0255

0256

0257
0258

0259 -

0260

026l

0262
0263
026}
0265

0266

0267
0268
0269
Q270
0271
0272
0273
027L
0275



¥ =aisg st W = aw | s~ o =y -—— - —rm - - - -

'n €oes Next>1 ‘ 0276

(SP LIT CA / SEL) VIEWSPECS / 0277
'c ¢.os Content First> 0278
[12 Coos FPiPELY 4 0279
'n €o.s NextdJ . 0280

(SP LIT CA / SEL SEL / OPTION %Accept old content?)
VIEWSPECS / 0281
W <sss Word Firstd 0282
['f eee Firstd / 0283
M Cewo NeXtDJ | | 0281

(SP LIT CA 7 SEL /7 OPTION %Accept old word®)

VIEWSPECS 0285
) - 0286
CAj} 0287
Syntax for TNLS: 'J <Jump to> SEL; 0288
k {(unused) ’ 0289
load file FILENAME CA; 0290
nove _ 0291
syntax: 'm <Move> ‘ 0292
({Textspecl <atd> SEL / Textsﬁecz <{from> SEL <(to)> SEL) <to
follow> SEL / 0293
(Structurespecl <at> SEL / StructureSpec2 <from> SEL <(t0)>
SEL) <to follow> SEL LEVADJ) 029k
confirmation; | 0295
<move> boundary _ 0296
<move> file 0257
allows users to move files from one directory to another from
NLS. 0298
mark | 0299
Syntaxs "ma" {Mark> SEL <with marker name)> LIT CA; 0300

merge ‘ ‘0301



. syntax: " mer" <Merge) 0302

{({{'b €<s.. Branchd / 'p <... Plexd) <at> SEL <into> SEL) /

0303

(12 <oes Group> <from> SEL <(to)> SEL <into> SEL <{to)>
SEL)) 030}
Confirmation; : 0305
novice 0306
The Novice/EXpert design group should specify the semantics of
this command. _ 0307
output 0308
syntax: 'o <Outputd : 0309
{ 0310
('aq <Quickprint> / _ 0311
i j <Journal Mail Quickprint> / 0312
fp <Printer> (COM, etc.)) 0313
FILENAME <{Copies = 1%> [NUMBER] ) / 031}
( 0315
‘g {Sequential File> / ” 0316
ta {Assembler File> ) ‘ 0317
FILENAME ) ' | 0318
CA3 | 0319
p (unused in DNLS) print (TNLS) . 0320
syntax for TNLS print: | 0321
'p {Print> | | 0322

(structurespecl <atd> SEL / StructuresSpec? <érom> SEL
¢{to)> SEL) VIEWSPECS [OPTION <using filter:> PATTERNL
CA / CA; | 0323

1f no structure is specified, printing will continue
until terminated by control ¢ or until the end of the
file is reached. 0324

playback session ' 0325



quit [SUBSYSTEM=NAME / NLSJ ’ 0326

Allows‘one to terminate NLS from within a subsystem. Also
allows one to terminate several levels of supsystem With one

command. . 0327
replace 0328
Syntax: 'r <Replace> _ 0329
((Textspecl / StructureSpecl) <atd> SEL <by> (LIT / rsel) /
0330
{(TextSpec2 / Structurespec2) <from> SEL <(to)> SEL <by>
(LIT / r2sel) ) _ 0331
Confirmation; 0332
where 0333
For DNLS: : 0334
rsel = SEL; : 0335
r2sel = SEL <(to)> SEL} 0336
For TNLS: 0337
rsel = OPTION SEL; 0338
r2sel = OPTION SEL <(te)> SEL; 0339
receive conneciion from terminal ' 0340
record session e o : o3.l
relock file ' | 0342
resequence sib's in f£ile : | 0343
reset (tty-simulation window /
viewspecs) 3Ly
in TNLS, default {and reset) viewspecs will have statement
numpers on (m). Should SID's (I) be on also??? Q345
substitute | S 0346
gyntax: 's <Substituted 0347
(TextSpeecl ‘ 0348

<ind> (StructuresSpecl SEL/ StructureSpec2 SEL SEL) 03L9

<New> GCollectl <For 01d> Collectl / 0350



TextSpec? ‘ 0351
<in> (StructureSpec) SEL/ StructureSpec2 SEL SEL) 0352

<New> Collect2 <For 01d> Collect2) 0353
{Finished?> (N0 %repeat at <New>% / YES / OFTION <Using
filter:> PATTERN) 0351
Confirmation; ' 0355
Where: 0356

For TNLS: 0357

Collectl = Collect2 = LIT; 0358
For DNLS: | 0359
Collectl = (LIT / SEL); 0360
Collect2 = (LIT / SEL SEL); 0361

%propagates the current awkwardness ih specifying
a NULL LIT% 0362

set (case /

character size for vindow /
filter /

link default for file /
name delimeters /
tty=-simulation window /

viewspecs) o 0363
Syntax for case: | 0364
" ca" <Case> | : - 0365
((TextSpecl / StructureSpecl) <atd> SEL / 0366
{TextSpec2 / StructureSpec2) <from> SEL <(to)> SEL) /
0367
'm <Mode>) - | 0368
[mtype) ' | - 0369
confirmation; 'b370
mtype = ('i <initial upper> / 'u <upper> / '1
{lower>); 0371

Note: allows temporary mode Setting for a single instance
of the command 0372

Syntax for Filter: 'f <filter> ('t <to> PATTERN / "on" <On> /



Wil g B T

. "of" <0££>) 0373

syntax for name delimiters: 'n (Name Delimeters> 037L
( FI et 0375
StructuresSpecl <at> SEL / 0376
StructureSpec?2 <from> SEL <(t9)> SEL) 0377

¢Left Deliniterd> LIT <Right Delimiter) LIT 0375

) | 0379
Confirmation; 0380

show (file status /
marker list /
name delimiters /

viewspecs [verbose] status) 0381

name deliniters for statement at > SEL Confirmation; 0382
f£ile [lock / size / ownership / return ring/ staius 0383
simulate terminal type (display / TI-terminal / etc, ) 038l
sort o 0365
Syntax: "so" <Sort> 0386
({('b <ass Branch> / 'P <eeo Plex>) <at> SEL / 636?

1g ¢sss Group® <{from» SEL <(to)> SEL) . 0388
Confirmation; : 0389
split window (vertically / horizontally) (DNLS) ' 0390
splits window into two equal halves. . 0391
transpose 0392
Syntax: 't {Transpose> 0393

((Textspeel / structurespecl) <at> SEL <and> SEL / 039

(TextSpec2 / StructureSpec2) <£from> SEL <{(to)> SEL <and
from» SEL <(to)> SEL ) ' ; 0395

confirmation; ; 0396

terminate (recording /
private modificationsa to file) 0397

update éile 0398



JGM’ -L-L-\.’UN-.(J ..LU: f-'u MW WY AN TR S e | W BT R 8T e = g

'syntax: ‘u <Update File> %default file name% (OPTION <0ld

version> /7 [FILENAME]) CA; 0399
unlock file 0400
verify file oLol
w (not used) : ' 0402
x (unused) | 003
y {unused) OLOL
% -(unused) 0405
'+ (TNLS) show CM 0406
'/ (TNLs) type context of CM o407
'; Comment , 0408
AN ITNLSS print statement : - 0Lo9
¥+ (TNLS) print back statement 0410
linefeed (TNLS) print next statement o411
INSERT %Insert Statement after Control Marker% oul2
syntax: INSERT OL13
LEVADJ LIT Confirmation; : Ohll
Insertion and LEVADJ is relative to CM. oK15

REPEAT last editing command - 0L1é
TAB %to0 next occurrence of content or word% oLl17
2 , oy18

prints the names of all the commands available at the firsy
level, with a comment about typing the f£irst letter of any
command followed by a !'? to find out about that (set of)
command(s) . This should also include an explanation of Az,
T:, etc. AlSo the user is advised to use the command Help to

find out about definitions. o419
Appendix'C: Definition of Dynamic Address Expression 0420
D¥nanic Address Expression elements | Oy21
location number - oy22

A statement number is D S(L / D / '@), 0b23

[



(no preceding period)

nane

oy2y
on25

A Statement name is as defined by the name delimiter routine
== currently defined to pe L $(L/ D/ 1/ '=).

(no preceding period)

System-supplied Statement IDentifiers (SID's)

0 15 D,

(no preceding period)

OL26
on27
Ou28
ou29
Op30

A gequence of digits and letters PRECEEDED IMMEDIATELY BY A
PERIOD can contain the following letters, wWith associated
meaning. NOTE: default value for <number> is 1.

[number/'s
[number]'p
fnunber]'u
[number]'d
(nunber]'a
[number]'r
[numnper )" fa"
[numper]"fr"
[number]'o
[number]'e
[number)'n
[numnber)'b
[number]'h
[numberj't
[number)'l

[number]'w

[number]'c

jump
jump
jump
Jump
jump
Jjump
Jump
Jump
Jjump
jump
Jump
Jump
jump
Jump
Jump

Jump

Jump

to
to
to
to
to
to
to
to
to
to
to
to
Lo
to
to
to

to

successor <{number> times
predecessor <number?> tines
up {nunver> times

down <number?> times

ahead <{nunber> times-
return <number> times

file zhead <numperd> tines
file return <{number> tines
origin

end

next <number> times

back <{number> times

head

tail

the <nunbery>th link

N Jump n
- OL31

0L32
0)33
L3l
0435
036
0437
OL38
0439
0LL0
OLLY
onn2
0443
ol
0445
ouLé

next occurance of word <{number? times

ouy7

next occurance of content <{number> times

Olks



JGM,

s sequence of digits and letters P

11~-JUN=T73 10:24

NLUVUSIHLA L [Vl

Lttt B

RECEEDED IMMEDIATELY BY A PLUS

{SK1IP FORWARD) OR MINUS (SKIP BACKWARD) can contain the following
1atters, with associated meaning. NOTE, default value of
{nunber> is l.

LT

by

L

wa

o
v/
£y

[number]'c skip <number> characters
[number]'w skip <number> word
[number] 'V skip <number>?> visible
[number])'i skip <number> invisible
[number]'n skip <nunber> nunber (s)

[nunber]'l skip <number> link(s)

namne jumps to the next statement by that nane

text ') link

text = directory, filename, DAE : Viewspecs

wext ') content s=sarch

te¥t eXcludes 'J unless preceeded by the
¢haracter :

allows elipses (...) notation

text '> word search

text excludes '> unless preceeded by the

charactuer
allows elipses (e...) notation
text '; dintra-statement content Search

texXt excludes '; unless preceeded by the
character

allows elipses (...) notation
character character search
peginning of statement
end of statement
trext marker name, text = L 8(L/D)
print context

print statement

literal escape

literal escabe

literal escape

ouhy
oL50
0L51
ons2
ous3
oL5h
oL55
oL56
OL57
ous8
0459

0L60
ou6l

OL62

0L63
OLuéL

=

0@65

0L66
Que7
0468
0469
o470
ou71
ou72

ou73



- - - V- - - * W e W ANAN AL S ke | Nt m W Ll e g e -

note that '/ and '\ are part of a DAE, In DNLS this is accomplished
via the two line tty=-simulation area above the Command Feedback
Area, Ooh7k



ARC 1=SLPT=71 W79
CUMMAND SUMMARY

Appendix D, COUMMAND SUMMARY

Section l. EXECUTIVE COMMANDS

log SP USEERNAME Sy PASSWURD SP ACCOUNT nNO. CR (pel)

' directory CR (pol)
directory SP OTHhER DIRuCIOKY'S NAMED> CR (pol)
directory SP , CRr ' (Do L)

@asgize CR [CR]
ad EMPTY CR (pal)
QQEVErythingl " Cr (CRJ |
GUEMPTY COR , (0.5)
gedeletea [files only/) lGR [CR] '
@eEMPTY © ; (p.5)
connect [(to directory)) SP UIREGTGRX Cr (peb)
delete SP FILENAME CR (pa6)
expunge CR | (pe6)
undelete SP FILENAME GR C (0.7
renzme [(existing file)) FILENAME [(to ve)] FILENATE $$
Ds
shut CR - (p.8)
fullduplex CR ' (pa.8)
halfduplex CR (p.8)
link [(to)] USERNAME CR
TeRMINAL NO, (pe9)
preak [(lanks)] Uk © (p.10)
sys Ck (p.10)

NIC TNLS3 USEE GUIDE NIC 7470 Appendix L
[Page 1]



ARC 1=3EPU=T1 ThT79
COMMAND SUMMARY

Section 2. FILE COMMANDS

l/oad/) f[ale] FILENAME CA {p«dl)
u/pdate file ¢(Ca
o/ (Lo old version)] CA (pal3)
ofutput/ f£[ile] FILENAME CA : (podh)
e[Xecute] u/nlockj CA [reallv ?/ CA (pel15)
ofutput) afevice] t[eletype] CA (o.16)
e/Xecute] f£(ile verify] CA _ (pal?)
e/Xecute] rfeset] CA [really %] Ca - (palb)
e/[Xecute] a[ssimilate at] ADDr Ca EMPFTY CA [CRJ
B
. a
[rrom file/ FILENAWE CA [CRJ
[structure/ statement [at] ADLR CA VIEWSFEC CaA
branct [at]
rlex [av/
group [av] ADLR CA ADUR (p.19)

N1IC TdLS USER uwUIDE NIC 7470 Appendix U
: [Papge 3]



ARC 1=-SEPT-T1 Th79
COMMAND SUMMAKRY

PRINT CURKRENT CM LOCATION COMMAND | ' (p. 22)

PRINT STATEMENT AT CM COMHARD ‘ (n. 22)
\
/

PRINT STATEMENT BACK FROM CM COMMAND (ne 23)
0

PRINT STATEMENT NiXT TO Ch COMMAND ' (pe 23)
LF

NIC TNLS USER wUIDx NIC 7L7F0 Appenaix D
[pPage L]



ARC 1=5EPT=T1 TLT9
COMMAND SUMMARY

e[xecute/[ v/iewchange GR/ (p.17)
tv/ext area CRJ
tfabg: Alaa] AA CA [CRr]
ifndenting=oby BB
l/ines/page=scc)] CC
rfovus/page=udj DD
c/olumns=ee/ EE

'NIC TNLS USER uwUIDKL NIC 7L7O Appendix D
[Page 7).



ARC 1=SEPI~T71 TLT7G
COMMAND SUMMAKY

rfeplace] s{tatement] ADDr CA [by text?/ y[es Cr] LIY CA
b({ranch/ nfo] ALULR cpoT
pllex]
g/{roup] ADDR CA ADDR
w/ord]
cfharacter]
‘v[ilsible/
1/nvisiple]
nfumper]
1/ink]
t/ext] ADLDR CA AULDLR (p. 8)

t/ranspose] s[tateient at)
blrancn at] AULDR CA [and/ AbDw CA
pllex at] choT
glroup at]) ALDDR CA ADDkK AUUR CA ALDR
wlora at/
ce/haracter at)
viisible at]
1/nvisible atJ
nfumber at/

1/ink at/
tfext at] ADDR CA ADDR ADDR CA ADLR
(p.10)
a/ppena to) ADUk GA [fromj ADDR CA EMPTY CA
LIT CLOT (p.l2)
bfreak statement at] ADUR CA EMPTE Ca
su cLor
d (peliy)
s/upstitute] s/tatement ai/ Ca [CkJ
b/rancn-at] AODR
pflex at]l
g [roup at] ALDR CA ADDk
[text) ©LIT ca [for] L1IT CA [Go?] yles]
CA
nfeless (pe16)

NIC TNLS USER GUlpgk NIC 7470 Appeéndix L
[Page 9]



{DORNBUSH>CML.NLS3;1, 15-JUN=73 1lh:hk CFD ;
COMMAND META LANGUAGL == GML : 02
Ih EODUCTION 03
The command meta~language (CML) is a vehicle for describing the
syntax and semantics of the user interface to the NLS system.
The syntaxX is described through the tree-meta alternation and
Slccession concepntis, The semantis are lntroduced via bullt in
functions and semantic conventions, 0llL
No attempt is made to describe the full semantics of any copmgnd
via CML, but it is hoped that the front-end interface (parsing
and feedback operations) may be eXxplicitly accomodatled Wliih utnese
facilities, It will still be necessary, and desirable, to use
exXecution functions to perform the low=level semantics of the
command. The CML describes how the command "looks" to tlhe user,

rather than what it does in the system. ' ol
ELEMENTS OF CML 09
RECOGNIZERS 0L
Keyword Recognition 013

The process of keyword recognition is independent of the’
description of the keywords for CML. 1In the CML
description, each keyword is represented by the full textu
of the Keyword. The algorithm used to match a user's’
typed input against any list of alternative Keywords is
Known as keyword recognition, and is a function of the
command interpreter and is independent of the CML
description of the command. olu
SELECTION SPECIFICATION 08
Three types of selections are built into CML. They are DSEL,”
- §SEL, and LSEL (See =~ the writeup on the command languagé ZXor
the expllcit definition of the selections). Basically, they
are recognizers which require some entity ‘type as an argumnent
and they return a pointer to a pair of text pointers., +The
entity type is obtained either by some previious invocation of
the recognition function for some list of keyword entities, or
use of the VALUEQF built in function, ' 089
The DSEL, SSEL, and LSEL functions perform all evaluation and’
feedback operations associated with the selection operations,
uvo
FEEDBACK CONTROL 06
The feedbacKk control elements of CHML are used to proviae -
feedback in addition to the normal feedback generated by the
recognizers, This is used to implement additional "noise
words" and help feedback., 092
1) adding feedback to the command feedback link. 093
A string may be added to the current command feeaback
line oy encloslng the quoted string in angle bracrets.

09U
extra feedback = '< .SR '> 095
2) replac1ng the last word in the feedback line. 096

It is possible to replace the last string in the command
feedback line by using the string replace facility.
This is similar to (1) above except the previous word in
the feedback line is deleted before adding the new
SLring. 097
replace extra feedpback = "<K..s" SR !> 096
FUNCTION. EXECUTION ’ o7



LOW, 30=00T="73 Lbi3b CUUKNDUDHAUML. NLO; 0 4

{DOKNBUSH>CML.NLS:;8, 3=-0CT=73 1l6:05 CFD 3
COMMAND META LANGUAGE =~ CML
INTRODUCTION

The commend meta=language (CML) is a vehicle for describing tne
syntax and semantics oifi the user interface to the NLS system,.
The syntax i3 descriped through the tree-meta alternation anc
succession ceoncepus. The semantics are introduced via bulili=in
funetions and semantic conventions.

No attempt is made to describe the full semantics of any command
via CML, but it is hoped that the front-end interface (parsing
and feedback operations) may be explicitly accomodatec with these
facilities, It will still be necessary, and desirable, to use
execution functions to perform the low~level semantics of the
command. The CML describes how the command "1o00Ks" to the user,
rather than what it does in the system.

USE OF CML
The user interface for the NLS command language is defined in the
CML specification language. This "program" is then compiled DY
the CML compiler (written using ARC's tree-meta compiler compiler
system) to nroduce an interpretive text which drives a command
parser., The command parser is cognizant of the device dependent
feedback and addressing characteristics of the user's i/0 device.
ELEMENTS OF CML
PROGHAM STRUCTURE

The basic compilation structure of 2 CML program is descraiped

Dy *

file = "FILE" .ID (system] (dcls / rule)
#subsys "FINISH";

system = "SYSTEM" .ID %system name% 's
#<'/>.ID %names of subsystems % '3 3

subasys = "SUBSYSTEM" .ID % subsystem name == %
#(command / rule) "END.";

command = ("COMMAND"/ "INITIALIZATION" /
"TERMINATION") rule ;

rule = LID '= exp '; ;

The "file" construct brackets the definition of command
language subsystemns and may optionally include the systenm



DUW, 30=0QUY='f3 Lb: 30 SUUVRNDUORAUllie Nl g U

definition (which defines all subsystems contained 1in a
particular system).

Parsing rules and declarations may appear at this global
level.

The subsystem contruct brackets a Set of rules or commands.
Commanas beginning with the keyword COMMAND are linked
together Lo form a command language subpsytem,

The subsystem may include a rule preceded by the kKeywords
INITIALIZATION or TERMINATION, 1If specified, these rules will
pe executved once upon system initialization/termination
respectively.

Each rule/command is named with an identifier. This name 1is a
global symbol and should not confiict with any other variable
names, rule names, or Keywords.

DECLARATIONS
Declarations are used to associate attributes with identifier
names which are used in cml programs. If not declared,
identifiers are defined by their first occurrence according to
the fellowing rules.

1) Identifiers appearing on the left hand side of an
assignment statement are defined as "VARIABLES".

2) Identifiers followed by a subscripted 1ist are assumed
to be of type "FUNCTION".

3) All otner undefined identifiers are assumed to be names
of parse rules or commands.

The syntaX of the declare statement is given by:

dcls

("DCOL" / "DECLARE") [dclattr] #<',? «1D;

delatir

("VARIABLE" / "FUNCTION" / "PARSEFUNCTION");

If a declare attribute is not given, type VARIABLE 1is assumed.

Identifiers which are implicitly defined as type variaole are
EXTERNAL symbols and will be linked by the loaaer to
externally defined symbols with that name.

RECOGNIZERS
Keyword Recognition

The process of Keyword recognition 1s independent of the
description of the keywords for CML. In the CML
description, each Keyword is represented by the full text
of the keyword. The algorithm used to matcn a user's
typed input against any list of alternative Keywords 1is
Known as keyword recognition, and is a function of the



LUUW, 30=0UU='(3 Lb: 30 SUVKNDUSHZUIML  NLDS 3 ©

command interpreter and is ihdependent of the CHML
description of the command.

Keywords are written in the meta language as upper=case
identifiers enclosed in double guote marks optionaily
follovwed by a set of keyword gqualifiers.

keyword = .SR ([ 'l #qualifier '} J
The gqualifiers serve to control the recognition process for

the keywords and to override the system supplied internal
idgentification for the Keywords.

qualifier = "NOTT" % DNLS only keyword %
/"NOTD" % TNLS only Kkeyword %
ALY % first level Keyword %
/ « NUM % explicit value for
Keyword %

Selection Recognition

Three types of selections are built into CML. They are
DSEL, SSEL, and LSEL (see == <userguides,commands,l> for
the explicit definition of the selections). Basically,
they are recognizers which require some entity type as an
argument and they return a pair of text pointers 1in the
state record. The entity tyve is obtained either oy some
previous invocation of the recognition function for some
list of keyword entities, or use of the VALUEOF bulltl in
function.

The DSEL, SSEL, and LSEL functions perform all evaluation
and feedback operations associated with the selection
operations.

selection = ("SSEL"/ "DSEL"/ "LSEL") '( param ')
Other Recognizers
The processes of viewspec recognition, level adjust
recognition and command confirmation recognition are

represented in CML by bullt=in parameterless functions in
the meta~lalnNEUuige.

others = "YIEWSFECS" % viewspec collection %
/"LEVADJ" % levelad]j collection %
/"CONFIRM" % command confirmation %

FUNCTION EXECUTION

Functions may be invoked at any point in the parse by writing



LGW,

3U=0UL=(3 L5: 30 CLUURNDUDRAUNLs NLD sV

a name of some routine and enclosing a paranmneter list in
parentheses. All functions invoked by the interpreter must
obey the groundrules set up for interpreter routines. The
actual arguments are passed by address, rather than value, andg
two additional actual arguments are appended to the head of
the argument list.

control = .ID % routine name % '( ®<',> param ')
paranm = factor % expression element %
/ "VALUEQF" '( SR ) % keyvword value %
/ '# SR % same as VALUEOQOF %
/ "TRUE" % boolean TRUE value "
/ "FALSE" % voolean FALSE value "
{ “"NULLY % null pointer value %

PARSING FUNCTIONS

Functions which are declared with the PAESEFUNCTION
attribute are azssumed to be parsing functions. They are
called in "parsehelp" mode and when s¢ called, are passed
the address of a string as a third argument. The
parsefunction routine then supplies a prompt string which
tells what the parsing functon does. (see appenaix 3 for
example ). Parse functions may appear as alternatives to
non=failing recognizers and may themselves fail. Tnem must
however, precede any non=-failing recognizers in the list of
alternatives.

FEEDBACK CONTROL

The feedback control elements of CML are used to provide
feedbacK in addition to the normal feedback generated by the
recognizers., This is used to implement additional "necise
words" and help feedback.

1) adding feedback to the command feedback line.

A string may be added to the current command feedback
line by enclosing the quoted string in angle brackels.

extra feedback = '< SR '?
2) replacing the last word in the feedback line.

It is possiple to replace the last string in the command
feedback line by using the string replace facility.

This is similar to (1) above exXcept the previous word in
the feedback line is deleted pefore adding the lew
string.

1



Lun g SUTUV LT 2 L. 2V NAS W AN AT A Y N Ad s WA @ AT g W -

replace extra feedphack = '{"..." .5R '>

A function is also provided to initialiZe the command feedback
mechanisms and clear the command feedback line,

clear cfl = "CLEAR"
EXPRESSION DEFINITION

CML is an expression languge. Commands are defined Lo be a
single expression and expressions are composed of
successive/alternative expression factors. Alternative patns
are indicated by the character '/ in the expression.

The nesting of expressions may be explicitly defined wWith
parenthesis and brackets are used to delimit optional
exXxpression elements, The dollar sign preceeding an optional
construct is used to indicate that the optional element is
repeated as long as the optieon character is typed in.

exp = #<'/»alternative;
alternative = #facuor;
factor = term
/ '( exp ')
/ '[ exp '/ % optional elemnent %
/ 's V[ exp '] % repeated oplt elements
%
tern = subnanme % id/ assign/ function %
/ confirm % command confirmation %
/ feedback % noise word feedaback %

/ recognition % built=-in recognizers %
COMPLETE FORMAL SYNTAX OF CML

file = "FILE" .ID [system/ ®(rule/ dcls)

#eubsys "FINISH";
systen = "SYSTEM" .ID #%system name% 's=

#{'/>.ID %names of subsystems % '3
sSupsys = "SUBSYSTEM" .ID % subsystem name == D%

#(command / rule) "END.";

command = ("COMMAND" / "INITIALIZATION" / "TERMINATION")



DCW, 30=-00T=73 15:30 CUURNBUSH2UML.,NLDO

rule 3
rule = ID '= exp '; 3
dels = ("DCL" / "DECLARE") [declattr] #<',> .ID;
dclatir = ("VARIABLE" / "FUNCTION" / "PARSEFUNCTION");
EXp = #{'/>alternative;
alternative = #factor;
facvor = term/ '( exp ')/ V([ exp 'Jj/ '® '"[ exp '/;
term = subnane/ confirmn/ feedback/ recognition;
subname = JID [ 'e param/ ‘'( &<',>param ')J;
confirm = "CONFIRM": % call routine to terminatve cmd %
recognition = keyword/ bnuiltinrec;
Keyword 5 SR [ 'l #qualifier 'l J;
qualifier = "NOTT"/ "NOTD"/ "L1"/ .NUM;
puiltinrec = (("SSEL"/ "DSEL"/ “LSEL") '( param '))

/ "VIEWSPECS"/ "LEVADJ";
feedback = "CLEAR"/ '< ["4es"] «SR 'D>;
control = JID '( ®<',>param ');
parafm = factor/ ("VALUEOF" '( .8R ') / '# .SR)

/"TRUE"/ "FALSE"/ "NULL";
THE INTERPRETIVE TEXT

Each instruction of the interpretive text contains a structure word
at least one function execution word, The structure word defines
the alternation and successor paths of the grammar for the command
language. Tne function execution words perform the actions of lle
interpreter.

The structure words
Each structure word consists of two pointers. The rignht nalf of
the word defines the alternative node toc the current node. The
left half of the word points to the successor Lo the current
node, Null paths are indicated by O valued pointers.

The executable function word formats



Uy,

AVYTULLT (D LDe 3V SUUMNDUONAwliLe WL p o

Format 1: [OP CTL MODIFIER ADDRJ

This is the only interpreter instruction word format presently
defined. OP 1s an operation code. CTL contains control bits
used by the Keyword regognition function. MODIFIER may
contain an additional value. ADDR is the address or principal
value for the function,

The functions of the interpreter.

RECOGNIZERS

KEYOP =-=- Keyword recognition.

CTL = control pits for level 1 commands, DNLS commands, and
TNLS commands.

ADDR = address of Kkeyword literal string

The current input text is matched against the keyword
string svecified by the current node and all alternatives
of the current node. This function performs Keywora
recogniticn on all of the alternative nodes of the current
node simnultaneously.

This function cannot fail. Control remains in the Keyword
recognition function until appropriate input is recogniZed
or until the control is abnormally wrested via packKup or
command delete functions.

The value returned in the argument record is a single wWord
containing the address of the siring corresponding to tne
Keyword actually reccegnized.

CONFIRM == process command confirmaticn characters

This function interrogates the input text for one of the
command confirmation characters. Control remains in this
routine until a proper confirmation is recognized, and
command terminaticn state is appropriately set. This
function always returns TRUE.

The value returned is a4 single werd containing a command
completion code whicn identifies the completion mode.

S8EL == get a source selection

ADDR = not used

The sselect routine is invoked L0 process a source uvype
selection. The return record contains two text pointers
which delimit the selected entity.

DSEL == get a destination selection

ADDR = not used



DCW, 30=0CT=73 15:38 CDURNBUSH2UHL . NLD3O

Tne dselect routine is invoked to process a destinataon
type selection. The return record contains lwo 1eXt
pointers which delimit the selected entity.

LSEL == get a literal selection
ADDK = not used

The lselect routine is invoked to process a literal lype
selection. The selection type is passed as an actual
argument. Tne return record contains two text pointers
which delimit the selected entity.

VIEWSPECS == process viewspecs information

The viewspec input routine is called Lo process tne input
stream for viewspec characters. The return record contains
the two updated viewspec control words. This function
always returns TRUE.

LEVADJ == process level adjust information
The level adjust input routine is called Lo process ine
input stream for level adjust characters. The return record
contains a single word which indicates tne reiative level
adjust value (u = +1, d = =1, ete)., This function always
returns TRUE.

CONTROL FUNCTIONS

EXECUTE == transfer of control to another point in the tree,
ADDR = address of root of iree for transfer of control
The current point in the tree is marked and control 1is
transferred to the node pointed to by the address fieild.
Control remains in the descendent node untii it has been
completely parsed, at which time control returns to the
successor of the EXECUTE ncde,

CALL == subroutine invocation

MODIFIER = number of actual parameters

ADDR = address of the subroutine

The appropriate number of actual arguments are popped off
of the evaluation stack and passed to the routine whose
address 1s contained in ADDR.

The resultptr from this routine is pushea onto the eval
stack if it returns TRUE.



UUW, JU=QUL=(3 Lb: 30 CUUKNNBUDHAUML, NLD0 ¥

PFCALL == parsing function invocation

MODIFIER = number of actual parameters

ADDR = address of the subroutine

The appropriate numper of actual arguments are popped Off
of the evaluation stack and passed to the routine wnose
address 1s contained in ADDR.

The resulitptr from this routine is pushed onto the eval
stack if it returns TRUE.

This function is alsgo called in "parsehelp" mode to find
out what it does.

QFTION == test for an optional construct.

If the next input character is the COPTION selectu character,
then it i1s read and control is transferred to the node at
address ADDR. If the next character is notv the OPTION
character, then control passes L0 the successor patn of the
current node.

ANYOQF == collect alternative optional keyword values

If the next input character is the OPTION select characuer,
then it is read and control is transferred to the node at
address ADDR. After the descendent nodes have been
processed, control returns to the ANYOF node, permitting
another optional selection to be made irom amncong lhe sel of
alternatives, The result values from the succession oi
optional recognitions are logically OR'ed together tc form
the value for the ANYOF node, Ii the next character is not
the OPTION character, then control passes Lo the successor
path of the ANYOF node.

FEEDBACK ELEMENTS
FBCLEAR == clear the contents of the feeaback buffers.

The feedpack state information and command feedback line
are set to tneir initial or empty position,

ECHO == appends a noise=word string to the command feeaback
link

ADDR = address of the text string to be appened

RECHQO == replaces the last noise=-word string in the command
feedpack line

ADDR = address of the text string which is to replace the
last item in the command feedback buffer



DCW, 30=00T=73 153348 CHURNBUSH2UML. HLD;0 LU

VALUE MANIPULATIONS

LOAD == loads a pointer to an argument record into the top of
the eval stcKa

ADDR = address of the variable containing the pointer to
the argument record.

The pointer value contained in the variable whose aQdress
is contained in ADDR is pushed onto the top of the eval
stack.

STORE == saves a pointer Lo an argument record in & variaple
ADDR == address of the variable

The address of an arzument record is fetched from tne top
of the eval stack and is saved in the variable at address
ADDR.

ENTER == enters a constant value intoe the argument record
pointed to by the top of the eval stackK.

ADDE == value Lo be entered (18 B1TS only)

The value is taken from the ADDR field of the instruction
and is entered into the argument record for the ENTER node
in the path stack (whose address is at the top of the eval
stack).

VALUEOF == enters the system value for a Keyword into the
argument record .

ADDR == address oi the KEYWORD string.

The ADDR peints to a string variaple. The literal area 1is
searched for a match with the argument string and the
address of the literal string which matches the keyword
string is entered into the argument record for VALUEOY,
whose address is pushed onto the top of the eval stack.

FLOW OF CONTROL IN THE INTERPRETER

At any point in the process of parsing, the control pointer for the
interpreter points to a structure word in the grammar. A path stack
also exists wWhich shows the nodes from which TRUE returns have been
achieved. Some operations mark the path stack for halting tue
backup proc€ss. The parser has L distinct control states definea as
follows:

1) parsing: recognition state where input text is compared With
gramaticel constructs to determine the parsing path in the parse
tree.

2) backup: A FALSE return has been obtained from some



LCW, 30-0CT=-72 15:30% CUURNBUSHOUML,NLD ;O

execution/recognition function. The path stackK is backed up
until & non-NULL alternative path is found, at which time the
parse mode is set to parsing, and recognition of tne alternative
path is attemptea. If no non=-NULL alternative path is found,
then the parse fails and the interpreter returns FALSE.

3) cleanup: A terminal parse has been acihnleved and control is
passed to each eXecution routine to reset any state informations
get by the routine.

L) repeat: The command is being repeated, and each execution
function is given control to redo the operation it lastu performed
(if its function is defaulted by the semantic action of the
command) .

The general flow of control is:

1) An initial path stack entry is constructed, and the parse mode
is set to parsing. The exXecution function for the current ncde
is evaluated. A pointer to the "function state record" 1s passed
to the routine. The state record contains the return values for
the function as well as a record of any state information saved
by the function (for backup purposes).

2) If the function returns TRUE, then the successor to the
current node pecomes the current node. Ii this is NULL, thell une
ptrstk stack is backed up until a non-NULL successor path 1s
found. If none i3 locateda before the pottom of the current parse
state is reached, then the root of a2 parse ilree has been reacied,
and a command has been successfully exXecuted. In this case the
command reset operation is performed and the interpreter 15 set
to "parsing" mode once nore.

3) If the function returns FALSE then the parser mode 1§ set Lo
"packup" and a non-NULL alternative path is sought.

After a command hasS been eXecuted, the parsing path for the tree 1is
re-evaluated in "reverse order" peginning with the terminal node of
the path. Fach execution function is re=-invoked, in "cleanup" mode,
and is passed the handle for the state information record which 1t
generated on the forward pass through the grammar. Each executlion
routine has the responsibility of resetting any state information
wnich it wishes to do at the termination of a command. Cleanup
continues until a "starting point" is reached in the parse. 7This is
generally the beginning of the command. Al this point, the
interpreter "shifts gears" and goes into forward or recognition mode
and begins back down the gramnmar for the language.

The same backup mechanism is also used during command specification
in order to back up the parse to allow the respecification of all or
part of the command. The command delete function backs out of tnhe
parse tree until the beginning of the command 18 reached.

The same backup mechanism may be adapted to control the partial
backup required for eXecuting commands in "repeat mode" Wwhere at
least one of the alternatives are defaulted to their current values,

Ll



LCW, 30~-0CT~73 L5:30 CUURNBUSHAIUML.NLD2;0 L2

The process of marking some nodes in the execution path as
defaulted is as yet undefined, It seems that it should be possible
to identify those eXecution functions whicnh need not be re=-evaluatlea
in subsequent invocations of the command. The interpreter wWould
then be smart enocueh to skip over defaulted parameters when in uine
forward or specification phase of the command and Would not invoke
packup for defaulted paramnneters.

APPENDIX 1: USING THE CML SYSTEM
WRITING CML PROGRAMS

Source programns for the CML compller are free form NLS files.
comments may pe used wherever a blank is permitted and the
structural nesting of the source file is 1gnored by the compiler,

COMPILING CML PROGRAMS

CML source programs are compiled into REL files with the Qutput
Compiler command using GCML as the compliler name. [ne current
marker (tep of display area) should point to the first statement
of a GML program, not the top of an NLS file.

RUNNING CHML PROGRAMS

After loading the user program for the parser (<rel=-nls>parser)
and your rel file, you must connect your grammar to the parser,
This is done by using NDDT to chan#ge the address field of tune
instruction at PARSER+1 to point to your grammar (whose aadress
is contained in the symbol table entry corresponding to your
subsystem name).

Example:
IF your subsystem name is "eXpjournal" then you could
connect the parser to your grammar with the followlng NDDT
commanas

S{how] L{ocation) PARSER+l¢ MOVEI Al,EXPJOURNAL<CCR?

After connecting your testu grammar to the parser, parsing is
initiated by tne NLS command :

Gfo to] P[rograms] E[xecute program/ PARSER CA
FUNCTION INTERFACE PROTOGAL

The syntax of the function call in the CML meta=-language 1s
similar to that of most programming languuages: the name of the
function is followed by a list of expressions enclosed in
parenthesis, In the CML system however, there are some strict
rules which apply to all execution functions invoked by tne
interpreter. These ruies are enumerated below:

1) Adcéitional actual arguments



UUW,

3U=0QUL=f3 Lb: 30 CSUURNDUDOH A UIML e NLD 0

2)

3)

u)

Preceeding any actual arguments which appear in a funcition
reference in CML, the interpreter supplies two additional
actual arguments, These are:

1) a pointer ito the "function state record"

2) an integer which defines a2 parsing node

parsings normal execution mode

packup: backup after a FALSE path is taken

= gleanup: resetting of state after completion of
command

These addtional arguments mus&t be used by all execution
functions to determine what they are to do, The pointer to
the "function state recora" is used to return values fronm
the function and to save state information associated With
2 particular invocation of the function. The lengtn of the
function state record is presently 9 words and this recora
may be formatted in any manner appropriate to the function.

If 9 words is not sufficient space to record all of thne
state associated with a particular invocation of a
function, then the function must use a storage allocator to
allocate the additional storage and record the handies Lo
the allocated storage in the function state record. nNote
that if this additional "local state" storage is required,
then it is the responsipility of the execution funcuion to
de=allocaate the local state storage when called in backup
or cleanup nodes,

Returning parse failure

All exXecution functionsg are passed a pointer to thnelr
function state record. If the function processes normally,
then it returns the saie pointer as its only return value.
If the function decides that the parse should fall av a
given point, then it returns FALSE.

Passing arguments by address

411 of the actual arguments in a rfunction call on an
execution function are passed by address rather than by
value. The values actually passed are pointers Lo the
function state records corresponding to tne actual
arguments. The format of the function state records are
defined by the execution functions which manipulatea themn,
and thus the location of parameter values in these records
is determined by convention, the caller and callee Naving
previously agreed to a particular layout for the function
state record. The layout of the records for the builit=-1in
interpreter functions in given elsewhere in this appendiX.

Order of control

L2



LUW, 2USUUL=(3 LDiJu

An exXecution function will always be called in parsing moae

pefore it is called in backup or cleanup modes.

A function routine which saves state information in tne
function state record must initialize its state record to
some consistent state before it calls any subroutines which
may cause SIGNALS or otherwise cause conirol to abnormally

pass above the execution funtion.

Format of the funection state records for the builit=-in CML

recognizers.

Bach of the functions of the CML parser utilitzes the function
state records in a locally defined way summari%ed beloOw.

EEGOGNIZER

keyword

viewspecs

levaja

ssel

dsel
1lsel

confirm

RECORD FOKMAT # WORDS USED

word 1l: address of Keyword str
wordl: updated vs word 1

word2: updated vs word 2

words 3=T7: vs8 collection string
wordl: level adjust count

(u = +1, d = =1, etc)

Words 2=T7: vs collection string
words 1=2: tXt ptr to start of entity
words 3=4: tXt pir to end of entity
same as ssel

same as ssel

word 1l: confirmation code

APPENDIX 2: SAMPLE CML PROGRAM

% the following sample program should help illustrate the use of thne

CML language for describing NLS commands. %

% the grammay is taken from observation of a hypothetical first

Erade clags in the process of receiving art instruction %

% for a more exhauative example, takKe a look at (dornbush,syntax,) %
FILEZ sampleprogranm

SUESYSTEM sample

% CML to sample.lel %

NWNUVORNDULN AVIiL e MW 9 W

1

il

Ly



bCW, 30=0CT=-73 15:38 <DURNBUSH>CML.NLS;&

objects =
"GLUE" JL1!
/ "PASTE"ILll
/ writingthings;
writingthings =
"CRAYONS"IL1!
/ "PENS"
/ "PENCILS";
COMMAND zuse =
"USE"!L1l! what « writingthings
{"to draw a pretty">
{ whom ¢« "PICTURE"!L1ll <"of Aunt Mary">
/ whom ¢ "SKETCH"!L1ll <"oif your d4og"> )
CONFIRM
% call execution routine process the USE command
#3## commented out for now
xuse( what, whom)

43 3 % G o3

COMMAND ztake =
"TAKE"IL1l! what ¢ objects
{"out of your">
where « ("BEARS"!L1l! / "NOSE"I!L1l! /7 "MOUTH"!L1!)
{"PLEASE!!"> CONFIRM;
END.
FINISH

APPENDIX 3: SAMPLE INTERPRETER PARSEFUNCTION ROUTINE

Assume that in some command we want the typein of a number to appear
as an alternative of some set of keywords. We can accomplisn this

15



DCW, 30-0CT=73 15:38 CUURNBUSHIUML.NLD;0 LD

by defining a parsefunction (ecall it looknum) which looks at tune
next input character and succeeds if the next character 1is a digit
and fails otherwise. If we write this function as tne first
alternative in some command, then centrol will pass from the
interpreter to the parsefunction pefore it passes to the Keyword
interpreter.
Suppose our command looks like:
COMMAND sample =
"INSERT"IL1!

( looknum() <"number"> ent ¢ #"NUMBER"

/ ( ent & ( "TEXT"!LL! /7 “"LINK"!LLL) ))

% entity now containg an entity type ( number, text, or

LINK ). We now use the L3EL function to get a selection of

this type %

source « LSEL( entity)
% get a comnand confirmation %

CONFIRM

% now invoke the insert execution function passing as
arguments the entity type and the selection of that type %

xinsert( entity, source);
NOW take a look at the parsefunction looknum wWhich is called oy tlne
interpreter both when prompting the user and also during the actual
parse of the command .
% LOOK FOR A NUMBER %
(Looknum) PROC(

% looknum 1o00ks at the next input character, if it is a
digit, then a true return is taken else FALSE is reuvurnea %

% FORMAL ARGUMENTS %

resultptr, % ptr to the function state record %
parsemnode, % parsing mode for the interpreter %
string); % ptr to prompting string %

REF resultptr, strine;
%'F-ﬂ-ﬂ--—-"-ﬁ%

CASE parsemode OF



PDCW, 30=0CT=73 lb:34 CUURNBUSHA2UML NLD; O L[

= parsing:
CASE lcokc() OF
IN ['0, '9):
NULL;
ENDCASE RETURN (FALSE):
= parsehelp:
#string# « "NUH:";
ENDCASE;
RETURN (&resultptr);

END.



LW g AW TUWLT [ 2 D e N N LD AL I LSS W g e ke

{NLS>SYNTAX<NLS3;10, 29-0CT=73 13:03 CFD ;
FILE nlslanguage % CML.SAV 10 <rel-nls>SYNTAX.REL %
% COMMON RULES %
% ENTITY DEFINITIONS %
editentity = texXtent / structure;
% TEXT ENTITY DEFINITIONS %
textent = textl / "TEXT"IL1ll;
textl = "CHARACTER":L1l! / "WORDL"!L1! / "VISIBLE"[L1l! /
"INVISIBLE"IL1! / "NUMBER"IL1) / "LINK"IL1!:
% STRUCTURE ENTITY DEFINITIONS %

structure = "STATEMENT"I!L1l! / notstatement;

noitstatement = "GROUP"!L1l! / "BRANCH"!LL1! / "PLEX"I!L1! ;
% SUBSYSTEM NAMNES %

nlssubs = "EDITOR"ILL! /7 "CALCULATOR"!LL! / "FORMS"!L1l!

/ WHELP"ILLI] / "IDENTIFICATIQON"!LLL / "JOURNAL"IL1!
/  "MEASUREMENT"IL1l} / "PROGRAM"I!L1ll / "QUBRY"!L1l!
/ "USEROPTIONS"|L1! 3
ANSWER %
answer = ("YES"IL1l Li/"NO"!L1l Ol/ "<CA>"IL1 11l)3
% SWITCH %
switenh = ("ON"ILL 11/"QFF"10Ol);
% RECOGNITION MODES %
rmode = ("LEXPERT"!LLl! / "ANTICIFATORY"IL1l! / "DEMAND"!LL! /
"FIXEDY L1l )3
% CASE SHIFT MODES %
cshmnode =
{ "UFPPER"ILL!
/ "LOWER"ILLl!
/ "INITIAL"!LL! <"upper"> );
% DIRECTGRY OPTIOQNS %
diropt =
( "ACCOUNT"!L1|/ "ARCHIVE"|L1li/ "CHRONOLOGICAL"!L1!/
"CRAM"/ "DATES"IL1l!/ "DELETE"/ "EVERYTHING"[L1ll/
"LENGTH"[L1l!/ "PROTECT"!IL1l!/ "REVERSE"!Lll/ "SIZE"!L1ll/
"TIME"ILL!/ "VERBOSE"I!L1l!);
% DECLARATIONS % :
DECLAKE VARIABLE
%Journal subsystem%
authfield,
clerfield,
commfield,
distfield,
formfield,
Keyvwfield,
linkfield,
numbfield,
numbtype,
obsofield,
subcfield,
submdest,
submtype,
titlfield,
updafield,
aheadfilenane,
dent,
dest,

==



LCW,

30=-0CT=73 15340

ent,
filure,
filenane,
£1;
fromwhom,
level,
literal,
par‘am,
parame,
param3s,
po,

port,
retfilenane,
sent,
sim,
source,
subsys,
tLip,

VS

DECLAKE PARSEFUNCTION

5P, %
readca, %
lookca, %
looknuin, %

notca; %

SUBSYSTEM nlseditor

% NL3

EDITOR COMMANDS

COMMARND %verify%

zverify =
"YVERIFY"IL11i

COMMAND %update®

zupdate =
"UPDATE" {11!
filename «
ent « #"NE
fent «

( "OLD"!L1l! <"version">

/ “"COMP
/ "RENA

CONFIRM
xupdate( e

COMMAND %undelete%

zZundelete =
"UNDELETE"
ent «
{ "FILE

/ "ARCHIVE"!L1l! <"file">

reads next char,

CHNLS2SYNTAA.NLS; LU

TRUE if space %

reads next char if ca %
TRUE if next char is CA %
TRUE if next char is a number %

reads nexuv char,

%

TRUE 1ff not CA char %

"FILE"IL1l! CONFIRM xverify( ) ;

"FILE"ILL!
NULL
W

ACT"ILL!

ME"!11.1! <"filename">
filename « LSEL( #"FILE" ) )]J

nt, filename ) ;

“IL1!

/ "MODIFICATIONS"!IL1! <"to file"> )

filename <
CONFIRM
Xxundelete

COMMAND %trim%

ztrim =

LSEL( #"FILE" )

ent, filename )

"TRIM" "DIRECTORY"IL1l!

<"no. versions to keep"> param ¢ LSEL(#"NUMBER")

2

2



LCW, 30-0CT-73 1l5:L40 CHNLSPSYNLARNLD; LY

CONFIRM ("really?">
CONFIRM
- xtrim( param ) ;
COMMAND %transposeb
zlranspose =
"TRANSPOSE"!LL!
gent +« editentity
<"at"> source ¢« DSEL( sent )
<"and"> dent « sent
dest ¢ DSEL( dent )
vs ¢ NULL filter « FALSE
[ <"Filtered:"> filter ¢ TRUE vs ¢ VIEWSPECS J
CONFIRHM
xtranspose( sent, source, dent, dest, filter, vs ) ;
COMMAND %substitute%
Zzsubstitute =
"SUBSTITUTE"ILL!
filter « FALSE vs « NULL
sent ¢ textent
{"in">» dent ¢ structure
<{"at"> dest ¢ DSEL(dent)
Z#% collect param « subpairs( sent ) ##%
param « NULL
copy?
CONFIRHM
xsubstitute ( sent, dent, cdest, param, filter, vs );
COMMAND %stop%
zZstop =
"STOP" "RECORD"IL1l!l <"of Session"> CONFIRM
xstop() 3
COMMAND %split%
Zsplit =
"SPLIT"INOTT! "WINDOW"I!L1!
param ¢ ("HORIZONTALLY"!L1l! / "VERTICALLY"!L1l!)
CONFIRM
xsplit{ param ) 3
COMMAND %sort%
zsort =
"SORT"
dent ¢« notstatement
dest ¢ DSEL( dent )
CONFIRM
Xsinulate( dent, dest ) 3
COMMAND %sinmulate?

zsimulate =
"SIMULATE" "TERMINAL"ILL! <"type">
ent «

( "DISPLAY"!IL1!
/ "TI"ILLI <"Terminal">
/ "EXECUPORT"IL1!
/ *33-Ppen il 331
/ "35=TTY"|L1l 35!

/ "37=TTY"IL1 37! )
CONFIRM
xsimulate( ent ) :
COMMAND %snow%h



LUW, SU=UUTL=(35 Lhilu SNLSP2OXNLAA.NLD; LU

ZSNOW =
"SHOW"
ent, ¢
( "FILE"!L1l!
param <«

"STATUS"IL1!
"LINK"I1L1l! <"default directory">
"MARKER" <"list">
"MODIFICATIONS"!IL1! <"status">
"RETURN"ILL! <"ring">
"SIZEWIL1) )
/ "ARCHIVE"I!L1! <"directory">
param ¢« (readca() 7/ LSEL(#"NAME") )
%CAN WE DO THISZ??7%
/ "DIRECTORY"I!L1l!
param ¢ (readca() / LSEL(#"NAME") 8/diropt/ )
%CAN WE DO THISZ?%%
/ "DISK" <"space status">
/ "NAME"!L1l! {"delimiters for statement at">
paramn ¢« DSEL( #"STATEMENT" )
/ "VIEWSPECS"IL1! ("status">
param <« NULL
[(param ¢ "VERBOSE"IL1!] )
CONFIRM
xshow( ent, vparanm ) 3
COMMAND %set%
zset =
"sET"
dest « NULL param ¢ NULL param2 ¢« NULL param3 « NULL
ent «
{ "CASE"!L1!
( param ¢ editentity
<"at"> dest « DSEL( param )
param? « NULL [param2 « cshmode]
/ param ¢ "MODE"IL1ll
param2 « cshmode )
/ "CHARACTEK"|INOTT!
{"size for window to"> param « DSEL( #"NUMBER" )
/ "FEEDEACK" <{"mode">
param « ("VEREOSE"IL1l) / "TERSE"IL1lI)
/ "FILTERYILlj}

B e

param e
( "To"]lL1l
{"pattern"> param2 ¢ LSEL( #"CHARACTER" )
/ switech )

/ "LINK"IL1!
{"default for file to directory">
param2 ¢ LSEL(#"NAME")
/ "NAME™ILL!
{"delimiters in"> param e structure
{"at"> dest ¢ DSEL{ paranm )
CLEAKR
{"left delimiter"> param2 ¢« LSEL(#"CHARACTER")
{"right delimiter"> param3 ¢ LSEL(#"CHARACIER")
/ "PROMPT"!L1l!
param « ("OFF"[Ll! / "PARTIAL"IL1l / "FULL"IL1l}l)



bow, 30=0QCT="f3 L5:4U CHNLSP3YINLAANLO ;LU

/ "REGCOGNITIOH"!LL! <"mode">
param ¢ rmode
"TEMPORARY"IL1! <"modifications for file">
"PTY"INOTT! <"window to window'">
param « LSEL(#"WINDOW")
/ "VIEWSPECS"!ILL1l!
param ¢ VIEWSPECS )
CONFIRM
xset( ent, param, param2, param3, dest ) ;
COMMAND %retrieve%
zretrieve =
"RETRIEVE" "FILE"IL1l! <"from arcaive">
filename ¢ LSEL(#"FILE")
CONFIRM
xretrieve( filename );
COMMAND %reset%
zreset =
"RESET"
dest ¢ NULL dent « NULL
ent ¢
( "ARCHIVE"!L1l! <"request for file")
dest ¢ LSEL(#"FILE")
"GASE"IL1l! <{"mode">
"CHARACTER"ILL NOTT! <"size for window">
"FEEDBACK" <"moae">
"FILTER"ILLI
"LINK"!L1l! <"default for file">
YNAME"IL1l) <{"delimiters in">
dent ¢« structure
{"at"> dest ¢ DSEL(dent)
"PROMPT"IL1!
"RECQGNITION"ILL1! <"mode">
"TEMPORARY"!L1l! <"modifications for file">
"PTTY"INOQTT! <"window">
“WIEWSPECS"!L1l! )
CONFIERM
xreset( ent, dent, dest ):
COMMAND %replace%
zreplace =
"REPLACE"|L1!|
aent ¢ editentity
{"at"> dest ¢ DSEL(dent)
sent « dent
<"by"> source « LSEL(sent)
CONFIRM
xreplace( dent, dest, sent, source );
COMMAND %renumber
Zrenunber =
"RENUMBER" "3IDS"ILLI
<"in file"> CONFIRM
xrenumeer( )
COMMAND %release?
srelease =
"RELEASE"INOTT!
ent, €
( "FROZEN"1L1! <"statement atty

N

B e T

T e T



Ll | i [ R S T A L o I e L

dest ¢« DLSEL(#"STATEMENT")
/ "ALL"iLl! {"frozen statements"> dest ¢ NULL )

CONFIRM '
Xrelease( ent, dest );

COMMAND %record%

zrecord =
"RECORD" "SESSION"IL1l! <"on file") filename « LSEL(#"FILE")

CONFIRM
xrecord{ filename );

COMMAND %protects

Zzprotect =
"FROTECT"!L1! "FILE"IL1l! filename ¢« LSEL(#"FILE")
{"from">

fromwhom ¢« ("SELF"!L1l! /"GROUP"ILL! / “OTHERb"lLll}
param « #"ALL"
[
{"protection"> param ¢
"READ" L1 11!
"WRITE"ILl 2|
"EXECUTE"ILL Il
"APPEND" (L1 81!
"LIST"IL1 16!
"ALL"IL1l 31! <"access"> )

e T M

CONFIRM
Xprotect( filename, fromwhom, param );
COMMAND %print%
zprint =
"PRINT"IL1 NOTD!
( readcal) ent « #"REST" dest ¢« NULL vs ¢« NULL
/ ent ¢ structure
<{"at"> dest ¢ DSEL( ent )
vs « VIEWSPECS )
xprint( ent, dest, vs );
COMMAND %playback%
Zzplayback =
"PLAYBAGK" "SESSION"ILL!
{"from file"> filename ¢ LSEL(#"FILE")
CONFIRM
Xxplayback( filename );
COMMAND %outputl%®

zZoutput =
"GUTPUTMILL]
{ ( ent «

("QUICKPRINT"!L1!
/ "JOURNAL"ILL! {"Quickprint">
/ "PRINTER"I!L1l!
/ "COM"ILl! )
filename « NULL
param ¢ TRUE % use default number of copies %
% construct default file name %
G%#% filename ¢ defilname( ent ) ##%
[

"FILE"!L1! filename ¢ LSEL(#"FILE") /
"COPIES"ILL! param ¢ LSEL(#"NUMBER")
]



LGW, 30=00T="r3 LhijoQ SHLS2O0INLAAaNLO LY

CONFIRM
xoutl( ent, filename, param ))
/ { ent «
("SEQUENTIAL"IL1L! /
"ASSEMBLER"IL1! )
{"file"> filename + LSEL(#"FILE")
param ¢ FALSE
("FORCE"|L1! <"upper case"> param ¢ TEUL/
CONFIkM
xoutl( ent, filename, param ))
/|
( ent « "TERMINAL"!LL! tip ¢ NULL port « NULL
/ ent « "REMOQTE"ILL!
{"printer == TIP"> tip ¢ LSEL(#"VISIBLE")
{"Port #"> port ¢ LSEL(#"NUMBER") )
CLEAR
{"Send Form Feeds?">
f1 «
{( "YES"!L1 1! sim ¢ FALSE
/ "NO"IL1l 0! <"Simulate?"> sim & answer)
CLEAR
{"Wait at page break?"> pb ¢ answer
CLEAP
("GO?">
( readcal()
¢/ "YES"I1Lil
FERL [ L e
{"Type CR when ready, CD to abort">
L1}

"1Lil)
xout2( ent, tip, port, ff, sim, pb))
)3
COMMAND %move'®
Zmnove =
"MDVE"lLll
filtre « FALSE
vs ¢« NULL
level « NULL
{ sent ¢ textl
copyl
dent € sent
dest ¢ DSEL{dent)
/ sent « "TEXT"IL1l!
copyl
dent ¢ #"CHARACTER"
dest ¢ DSEL(dent)
/ sent ¢« structure
copyl
dent € #"STATEMENT"
dest ¢ DSEL(dent)
level « LEVADJ
copye
/ dent ¢« "FILE"ILL!
sent ¢ dent
<"from old filename">» source ¢ LSEL(sent)
{"to new filename"> dest ¢ L3EL(dent)

f



DUV, 3U=0UL=73 LbilU CHLES>BYNTAK-NLS; LY

/ dent « "RBOUNDARY"!NOTT!
sent ¢« dent
<"Ffrom"> source ¢ LSEL(#"WINDOW")
<"to"> dest ¢« LSEL(#"WINLOW")
)
CONFIRM
Xmove (sent, source, dent, dest, level, filtre, vs);
COMMANLD %merge%
zmerge =
"MERGE"
sent ¢ notstatement
<"at"»> source ¢ SSEL(sent)
dent ¢ sent
{"into")> dest ¢« DSEL(dent)
CONFIRM
xmerge( sent, source, dent, dest);
COMMAND %mark%
Znark =
"MARK" "CHARACTER"ILL! <"at">
dest ¢« DSEL( #"CHARACTER" )
<"with marker named"> source « LSEL(#"NAME")
CONFIRM
Xmark( dest, source);
COMMAND %logout%
zlogout =
"Logoorm"
CONFIRM xlogout();
COMMAND %load%
zload =
"LOAD"ILL!
ent « ("FILE"IL1! / "BUSY"IL1liI <"file"))
filename « LSEL(#"FILE") CONFIRM
Xload(ent, filename);
%k (unused)%
COMMAND %t jump%
ztjump =
"JUMP"INQTD L1! <"tao">
dest ¢ DSEL(#"CHARACTER")
xjump(#"TITEM", dest, NULL);
COMMAND %ajump%
zajump =
WIUME" I NOTT LI <Yto'>
(
lookca() % look for a bug select %
ent « #F"ITEM"
dest « DSEL( #"STATEMENT" )
dest ¢« xjdae( desgt ) %LSEL( #"ADDR" )% vs €
VIEWSPECS
/ ent e
(
"ITEM"ILL!
"SUCCESS0R"!L1!
"PREDECESSOR"ILL!
typrlrill
"DOWN"!ILL!
"HEAD"I1L1/|

L

O



DCW, 30=0CT-73 15:00 CNLSPSYNLAALNLY ;LU

"TAIL"IL1ll

"END"JL1llI <"of Branch">
"BACK"!L1l!

"ORIGIN"LILL!

"NEXT"

e

)
dest ¢ DSEL(#"STATEMENT") vs « VIEWSPECS

(
ent ¢ "LINK"ILl! (dest ¢ LSEL(#"LINK")
ve ¢« VIEWSPECS)
/ ent ¢ "RETURN"IL1l! dest « NULL vs & NULL
%4 cal)
retstat « NULL
@
retstat « retext(retstat) ##%
%displays textent from ‘'return' statementk
%returns next 'return' statementb
%*% notca() J #*+%
/ ent ¢« "AHEAD"!L1l! dest ¢« NULL vs « NULL
%¥% cal)
aheadstat « NULL
$/
gheadstat ¢ anesadtext(aneadstat)
notca() J #*%
%displays textent from 'ahead' statementvi
Zreturns next 'ahead' statement®
/ ent ¢ "PILE"IL1l! dest ¢« NULL vs ¢« RULL
(
sp() dest e LSEL(#"FILE")
/ lookca() dest ¢ DSEL(#"FILE") vs « VIEWSPECS
/ "AHEAD"!L1L! ent ¢« #"FILEAHEAD"
aheadfilename « HNULL %#
B[
aheadfilename ¢ aheadfile({aheadfilenane)
notca()] #%%
%digplays name of 'ahead' file%
%returns next 'ahead' file%
/ "RETURN"I!LL1! ent « #"FILERETURN"
retfilename ¢« NULIL %
B/
retfilenane « retfile(retfilename)
- notca ()] ##%
%displays name of 'return' file%
%Zreturns next 'return' file%
)
/ ent ¢ "NAME"I!IL1l|
("FIRST"!L1l (ent « #"FIRSTNAME") / "NEXT"ILLI
(ent « #"NEXTNAME") / "ONLY"ILL!)
dest ¢ LSEL(#"NAME") vs « VIEWSPECS
/ "CONTENT"ILL1!
("FIRST"!L1l! ent & #"FIRSTCONTENT" / "NEAT"!LLlI
ent ¢« #"NEXTCONTENT")
(dest ¢ LSEL(#"TEXT") %#% / option() #*% %Accept
old content%) vs « VIEWSPECS
htextent may contain elipses notaticn (eeel?



SHNLO2OINLAA. NLODy LV iV

VCW, 3U=0UUL=(3 L53UU

#Dhefault I8 "next"%
/ "WORD"ILL!
("FIRST"I!L1! ent « #"FIRSTWORD" / "NEXT"ILL! ent *

#F'NERTWORD")
(dest & LSEL(#"WORD") %%% / option() ##% %Accept
old content%) vs ¢« VIEWSPECS
Ztextent may contain elipses notation (.«s)%
%Default is "next"%

)

)
CONFIRM
Xxjump(ent, dest, vs);
COMMAND %insert%
zinsert =
"INSERT"ILL!
level « NUL
( ent « textl
{"to follow">
dest ¢ DSEL(ent)
param « LSEL(ent)
/ ent « "TEXT"ILLI
<"to follow">
dest ¢ DSEL (#"CHARACTER")
param « LSEL(ent)
/ ent e structure
{"to follow">
gest ¢ DSEL(#"STATEMENT")
level « LEVADJ
param ¢ LSEL(ent)
/ ent « "JOURNAL"I!L1!
<"to follow">
dest « DSEL(#"STATEMENT")
level « LEVADJ
param « NULL

{"submission form">

)
CONFIRM
xinsert{ent, dest, level,

% h (unused) %
COMMAND %freeze%

zfreeve =
"PFREEZE"I!L1L NHOTT! "STATEMENT"!L1! <"at">
dest « DSEL(#"STATEMENT")

vs « VIEWSPECS CONFILRM
xfreeze{dest, vs);
COMMAND %expunge%

zeXpunge =
"EXPUNGE"

ent «
( "DIRECTORY"ILL1l!
/ "AHCHIVE"!L1l! <"directory"> )

CONFIRM
xexpunze (ent) ;
COMMAND %edit%

zedit =
"EDIT" INOTD! "STATEMENT"ILL1! <"at">

dest ¢ DSEL(#"STATEMENT")

param)



DOW, 30=0U'L'="f3 L5:iyU0 CNLOZOLNLAAe WL g kv

xedit(dest);
COMMAND %disconnect%
zdisconnect =
"DISCONNECT" "TERMINAL"!L1l! CONFIRM
Xdisconnect()s
COMMAND %delete%
zdelete =
"DELETE"{LL!
filtre « FALSEH dest ¢« NULL vs ¢« NULL
(
( ent « textent
<"at")> dest ¢« DSEL(ent)
/ ent & structure
{"at"> dest « DSEL(ent)
[filtre ¢ TRUE <"Filterea:"> vs ¢« VIEWSPECS/ )
/ ( ent « ("FILE"!L1l! / "ARCHIVE" <"file">) '
dest « LSEL(#"FILE") )
/ ( ent « "MARKER"
{"named"> dest ¢ LSEL(ent) )

/ ( ent e "ALL"!L1l! <{"markers">)
/ (( ent & "MODIFICATIONS"ILL!)
<"to file"> CONFIRM <"really?"> )
)
CONFIRM

xdelete({ent, dest, filtre, vs);
COMMAND %create%®
zcreate =
"CREATE" "FILE"|L1l!
filename ¢« LSEL(#"FILE") CONFIRM
xcreate (filename) ;
COMMAND %copy®
ZCOopy =
n"gopPy"iLll

vs « NULL

level ¢« NULL

filtre « NULL

param ¢ NULL

{ sent ¢ textl
copyl
dgent « sent
deat ¢ DSEL(dent)

/ sent ¢ "TEXT"!L1l!
conyl
dent ¢ #"CHARACTER"
dest ¢« DSEL(dent)

/ sent « structure
copyl
dent ¢ #"STATEMENT"
dest ¢ DSEL(dent)
level « LEVADJ
copye

/ sent « "FILE"!L1l!
dent « sent
{"from"> source ¢« LSEL(sent)
{"to"> dest ¢ LSEL(dent)

/ sent ¢ "DIRECTORY"!LL!

ool



LUW, SU=UUL=73 1354V ANLD/OINLAAS NLD g LU

COopy3
/ sent € "ARCHIVE"I1L1l! ("directory">
copy3
/ sent ¢« "SEQUENTIAL"
{"file from"» source ¢ LSEL(#"FILE")
" to follow"> dest « DSEL(#"STATEMENT")
level « LEVADJ
dent ¢ NULL
[dent ¢« ("HEURISTIC"!Ll!/ "JUSTIFIED"IL1Ll/
"ASSEMBLER"IL11l)/
)
CONFIEM
Xcopy (sent, source, dent, dest, level, filtre, Vs);
copyl =
{"from"> source « SSEL(sent)
{"to follow">;
copy2 =
[filtre « TRUE <"Filtered:"> vs « VIEWSPECS/;
copy3 =
{"from"> source ¢ LSEL( #"VISIBLE" )
{"to follow"> dest ¢ DSEL(#"STATEMENT")
level « LEVADJ
dent « &[diropt);
COMMAND %connect#
zconnect =
"CCNNECT"
("taO")
(ent « ("DISPLAY" /7 "TTY"IL1l!)
{"Number"> dest « L3EL(#"NUMBER")
param ¢ ("INPUT"!L1l! <"and oQutput"> / "QUTPUIL"I{Ll!
<"Only">) /
ent, ¢ "DIRECTORY"I!L1l! dest ¢« LSEL(#"NAML")
param ¢ NULL
[{"Password"> param ¢« LSEL(#"VISIBLE")/J
)
CONFIRHNM
Xconnect (ent, dest, param);
COMMAND %clear%
zclear =
"CLEAR"!NOTT! "WINDOW"ILL! <"at"»
dest « DSEL(#"WINDOW") CONFIRMN
Xclear(dest) ;
COMMAND %break%
zhreak =
"BREAK"I[LL!
ent ¢ "STATEMENT"I!L1!
{M"at"> dest € DSEL(#"CHARACTER")
level « LEVADJ
CONFIRM
Xbreak (ent, dest, level); %should also pass literal%
COMMAND %archive®
zarchive =
"ARCHIVE" "FILE"!L1l!
filename « LSEL(#"FILE") param « S/("DELETE"!L1! / "DO
NQT DELETE"™ / "DEFERRED" / "IMMEDIATE"ILL1! / "WOT
ALLOWED"!L1!] CONFIRM



LLW, 30=0U'L='r3 L5540 CNLO2DINLAAs NLD s LW

xarchive(iile, param);
COMMAND %append?
zappend =
"APPEND"IL1!
( sent « textl % text entities except "TEXT" %
zappl
dent ¢« sent
/ sent ¢ "TEXT"!L1l!
zappl
dent ¢ #"CHARACTER"
/ sent ¢ siructure
zappl
dent ¢« #"STATEMENT"
)
dest ¢ DSEL(dent)
literal ¢ LSEL(#"TEXT")
CONFIRM
Xappend(sent, source, dent, dest, literal);
Zappl =
<Mat">
source ¢ SSEL(sent)
Chyolhs
COMMAND %accept?
Zaccept =
"ACCEPT"IHNOTT! "CONNECT"ILL!
<"from display #"> param ¢ LSEL(#"NUMBER")
CONFIRM xaccept( param );
COMMANL %connenth
peomment =
"}"lLll
%%% Xcomment() #*¥%
COMMAND %period%
zperiod =
n."IL1 NOTD!
xveriod() ;
COMMAND %tab%
ztap =
o "1%:d NOTD
xtab() ;
COMMAND %slash%
zslash =
"/MILL NOTD!
%xslash() ;
COMMAND %bslash@
zbslash =
"\"|TL1l NOTD!
xbslashi{) ;
COMMAND %uparrow?
Zuparrow =
"+"|L] NQTD!
xuparrow() ;
COMMAND %linefeed%
zlinefeed =
"CLFE>"ILL NOTD!
Xlinefeed() ;
END.

L2



LW, JU=0UL=r3s Lbh:lU CHLOOINLAA NLO LY

% NLS SUPERVISOR COMMANDS %
SUBSYSTEM subsupervisor
COMMAND % display subsystem stack %
Zispss =
w¢YIT1l %Xsublist{);
COMMAND % display current subsysten stack name %

Zdspes =
">"IL1! xXsubcurrent():
COMMAND
zauit =
"QUIT"ILL!
( readca() subsys ¢« NULL

/ subsys ¢ (nlssubs / "NLS"i{Ll!) CONFIRM )
xquit(subsys);
CUMMARND
Zgoto =
"GgorTo"lLl! <"subsystem">
subsys ¢ (nlssubs / "TENEX"!L1l!l )
CONFIRM Xgoto(suosys, FALSE):
COMMAND
zexecute =
"EXECUTE"IL1l! <"command in">
Subsys ¢ nlssubs
Xgoto{subsys, TRUE);
END.
% USER PROGRAMMING SUBSYSTEM COMMANDS %
SUBSYSTEM subprograms
uprogtypes =
("CONTENT"!L1l! <"analyzer progran">»/ "SORT"!Ll! <{"key
extractor program">/ "SEGENERATOR"!L1l! <"progranm"> j;
COMMAND
Zzpset =
n SET“
ent «
( "BUFFER"!IL1! <"size to">
source ¢ LSEL(#"NUMBER")
/ "NDDT"!L1! <"control=h">
source ¢ NULL )
CONFIRM xpset(ent, source );
COMMAND
ﬁpShOW =
"SHOW"ILL1l!) "STATUS"!L1l! <"of programs buffer">
CONFIEM xpshow( )3;
COMMAND
Zpreset =
"RESET"IL1l!
ent e
( "BUFFER"ILL! <"size">
/ "NDDT"!L1l <"control=n"> )
CONFLIRM Xpreset( ent )3
COMMARND
Zprun =
"RUN"IL1! "PROGRAM"IL1l!
source « LSEL(#"NAME")
CONFIRM xprun{( source );
COMMAND



LUUW, SU=ULuL='fs Loslyv SNHLOD/OLNLAASNLD g LW

zpload =
"TL,0AD"IL1L! "PROGRAM"!LL!
gource « L3EL(#"FILE")
CONFIRM xXpload( source );
COMMAND
gpinstitute =
"INSTITUTE"!L1! "PROGRAM"I!LL1!
source « LSEL(#"NAME") <"as">
ent ¢« uprogtyvpes
CONFIRM ¥pinstitute( source ent j;
COMMAND
Zzpdeinstitute =
"DEINSTITUTE"
ent ¢« uprogtypes
CONFIEM ¥pdeinstitute( ent );
COMMAND
zpdelete =
"DELETE" 111!
ent, ¢

( "ALL"!L1l! <"programs in buffer")

/ "LAST"IL1ll <"program in buffer") )

CONFIBM xpdelete( ent );

COMMAND
Zpcompile =
"COMPILE"ILL!
sent «

( ("FILE"IL1!l / "ASSEMBLER"IL1LI <("file"> )
<"at"> source ¢ DSEL(#"STATEMENT")
<"using"> compiler ¢ LSLEL(#"FILE")
{"to file"> filename « LSEL(#"FILE")

/ "L1O"!lLl! <"user progranm at">
compiler « NULL filename €« NULL
source « D3EL(#"STATEMENT") )

CONFIRM xpcompile( sent, source, compiler,

filename );

END,
% JOURNAL SUBSYSTEM COMMANDS %
SUBSYSTEM subJournal
INITIALIZATION %possible reenter%
zJjinit =
xjloaworfil() |
Xxjsupine() <"re=enter last supnissioni?">
((readeca()/"YES"IL1!) Xxjgetworfil() / "NO"ILLI!
jouinit ) /
jouinit )3
Jjouinit =
xjzapwerfil() %sets reenter flagh
authfield « NULL

cleriield ¢« NULL
commfield « NULL
distfielda « NULL
formfield « NULL
kevwifield « NULL
linkfield « NULL
numbfield ¢« NULL

numbtype ¢ NULL

2



UUuW, AUTVULU LT[0 LDOsdv NAT AW A 5 LAk FRdh g AV P ey

obsofield « NULL
subcfield « NULL
submdest ¢ NULL
gubntype ¢ NULL
titlfield « NULL
updafield ¢ NULL;
TERMINATION %close workfile%
Ziterm =
Xxjsavworfil() %saves state of variapbles in workfileik
¥xjcloworfil(); %close workfile%
COMMAND %assign%
zjassign =
"ASSIGN"ILL! |
numhtyvpe «
("JOUENAL"!ILLY / "RINS" / "XDOC"!LL! /
"SPECIAL"ILL! / "NIC"IL1l})
{M"numbers == now many:"> numbfield e
LSEL(#"NUMBER") /
numbtype « "RFC"!LL! <"number"> CONFIRM
<Mtitle"d> titlfield ¢ LSEL(#"TEXT")
<"author")> authfield ¢ LSEL(#"TEXT")
¢"distripute ta"» distfield &« LSEL(#"TEXI")
¢"online document?"> submtype ¢ answer
{"show status?"> ((readca()/"YES"IL1!)
xjricshow()/
"NOMITL! )
)
CONFIRM
xjassien();
COMMAND %author%
zZjauthor =
"AUTHOR"!L1!
authfield &« LSEL(#"TEXT")
CONFIRM;
COMMAND %clerk%
zJjclerk =
L] GLERK"
clerfield &« L3EL(#"WORD")
CONFIRM;
COMMAND %commentsh
zjcomments =
"COMMENTS"!1L1!
commnfieid « LSEL(#"TEXT")
CONFIRM;
COMMAND %defer?®
zjdefnumber =
"PDEFER"ILL! "NUMBHER"!L1l! <"assignment">
nunbiype « #"DEFER"
CONFIRM;
COMMAND %distribute?
zjdistribute =
"DISTRIBUTE"!ILL! <"to", distfield ¢ LSEL(#"TEXT")
CONFIRM;
COMMAND %finish%
zjfinish =

"FINISH"!L1l! CONFIRM xjfinish( ); %resets re~enter flagh



LW, SU=UL LT D LOiiVv WML A LN LA e A s e

%performs secondary distripution and journal
submission%
COMMAND %interogate®
Zijihverrogate =
"INTERROGATE"!L1! <"for submission"> CONFIRM
{"gelect"> |
submtype ¢ structure
<{Mat"> submdest ¢ DSEL(submtype) /
submtype ¢ “"FILE" (
["NAMED" submdest ¢« LSBEL(#"FIiLg")J) /
subntype « #"WINDOW" submdest ¢ LSEL(#"WINDOW"))
/
"MESSAGE" submtype « #"STATEMENT"
submdest ¢ L3EL(#"TEXT") /
submtype ¢« "HARDCOPY"I!L1ll|
{"located at"> submndest ¢ LSELI(#"TEXT")

)
<"title"> titlfield ¢« LSEL(#"TEXT")
"distripute to"» distfield ¢ LSEL(#"TEXT")
<"show status?"> (("YES"ILLI/CA) XJshow() / "HNO"ILLlI)
{"finished?">
(("YES"!L1!/CONFIRM) xJfinish() / "NO"ILL1!);
COMMAND %keywords%
Zjkeywords =
"KEYWORDS"!IL1!
keywiield ¢ LSEL(#"IEXT")
CONFIRM;
CGMMAND %1lock%
zilock =
"LOCK"IL1! "JOURNAL"!L1l! <"password">
keywfield « LSEL(#"VISIBLE")
CONFIRM xJjlock(keywiield, TRUE);
COMMAND %number%
Zinumber =
"NUMBER"ILL!
nunbtype « #"NUMBER"
numbfield ¢« LSEL(#"TEXT")
CONFIRM;
CUOMMAND %obsoletes%
zJjobsoletes =
"OBSOLETES"!L1l! <"documents">
obsofield ¢ LSEL(#"TEXT")
CONFIRM; '
COMMAND %place’
zjplace =
NPLACE" "LINK"IL1ll <"at">
linkfield « LSEL(#"VISIBL&")
CONFIRM;
COMMAND %print%
Ziprint =
"PRINT" "HARDCOPY"!L1l! %wheel()%
<"password"> updafield ¢ LSEL(#"VISIBLE") CONFIXNM
xjpriharcop(updafield);
COMMAND %process%
Zjprocess =
"PROCESS"IL1! "SUBMISSION"!L1!l <"form at">



Uwng DUSTUNLT | D kI 4V NAV L 7 b e Y e PR @AY A P e

formfield ¢« LSEL(#"STATEMENT")
CGNFIRM
xjprocess(formfield) ;
COMMAND %rfc number®
zijrfecnumber =
"RFG"ILL! <"number">
numbtype « #"RFC"
numbfield ¢ LSEL(#"TEXT")
CONFIRM;
COMMAND %snow%
Zjshow =
"SHOW"IL1! "STATUS"!L1!
CONFIRM xjshow( );
COMMAND %subceollections%
zJjsubcollections =
"SUBCOLLECTIONS"!LLl!
subcfield ¢« LSEL(#"TEXT")
CONFIRM:
COMMAND %submitb
zjselect =
"SELECT"!LLl!
(
submtype « structure
{"at"> submdest ¢« DSEL(submtype) /
submiype ¢ "FILE" (
["NAMED" submaest ¢ LSEL(#"FILE")) /
submtype « #"WINDOW" submdest ¢ LSEL(#"WINDOW"))
/
"MESSAGE" submtype ¢ #"STATEMENT"
submdest ¢ LSEL(#"TEXT") /
submtype « "HARDCOPY"ILLl!
{"located at") submdest ¢« LSEL(#"TEXT") /
submtype « "JOURWAL"IL1l!l <{"document">
subndest ¢ LSEL(#"NUMBER")
)
CONFIRM;
COMMAND %title%
zijtitle =
"PITLEYILLL
titlfield « LSEL(#"TEXT")
CONFIRM;
COMMAND %unlockd®
zijunlock =
"ONLOCK"!11l! "JOURNAL"JLL1! <"password">
keywfield « LSEL(#"VISIBLE")
CONFIRM Xjlock(Keywiield, FALSE);
COMMAND %updates?
zijupdates =

"UPDATES"IL1! <("document(s)"» updafield ¢ LSEL(#"TLAT")

CONFIRM;
END .
SUBSYSTEM subidentification
INITIALIZATION %not yet implemented%
Ziinit =
Xxsubnotimpl(};
END.

ke N



oW, SUu=UuLl=i3 Loi4V

SUBSYSTEM subhelp
INITIALIZATION %not yet implenented%
Zhelpinitv =
¥xsubnotimpi);
END.
SUBSYSTEM subcalculator
INITIALIZATION %not yet implemented?
zcalcinit =
Xsubnotimpl);
END.
FINISH OF NILSLANGUAGE
% IDENTIFICATION SUBSYSTEM COMMANDS %
SUBSYSTEHM subJjournal
INITIALIZATION %possible reentery
ideinit =

SNLOA/O0LNLHAAs NLWD gk

Xiloaidefil() %s8ets reenter flagh
cavafield ¢ NULL %capabpbilities%

commfield « NULL %comments%
cordfield ¢ NULL %cordinator%
delifield ¢ NULL %delivery%
expafield ¢« NULL %exXpand%
funefield « NULL %function?%

identype « NULL %identh

mempfield ¢ NULL %membersniph

hmaidest ¢ NULL %hardcopy malil address®

nmaifield ¢ NULL %NLS mail addressb
smaifield e NULL %sequential mail address#%
namefield ¢« NULL %name?%

nnhosfield ¢ NULL ‘Z2NLS host name%

orgafield ¢ NULL %organization?®

phonfield « NULL ‘%phone%

rtypfield ¢ NULL

shosfield « NULL

sorgfield « NULL

subcfield ¢ NULL

updafield « NULL;
TERMINATION %close workfiie%
zjterm =
Xxjsavwerfil(

%saves state of variables in workfilewk

)
xjelowor£ili(); %close workfile%

COMMAND %assign%
Zjassign =
"ASSIGN"LITL1!
numbuiype €

("JOURNAL"{LL! /7 "RINS"

/ “"XDOC"ILl!l /

"SPECIAL"IL1l / "NIC"IL1l!)
{"numbers == how many?"> numbfield ¢

LSEL(#"NUMBER") /

nunbtype ¢ "RFC"!L1l! <{"number"> CONFIRMNM
<"title"> titlfield e LSEL(#"TEXT")
<"author")> authfield ¢ LSEL(#"TEXT")
{"distribute to"» distfield & LSEL(#"TEXT")
<{"online document?"> submtype « answer
{"show status?"> (("YES"ILLl/CA) xjrfcshow() /

"NO"IL1Y)

+2



uuw, SU=UUL=(3 LoIUNU SHNLOZOXNLAANLO LY

CONFIRHM
xjassien();
COMMAND %author®
zjauthor =
"AUTHOQR"ILL1!
authfield « LSEL(#"TEXT")
CONFIRM;
COMMAND %clerk%
zjclerk =
"CLERK"
clerfield ¢« LSEL(#"WORD")
CONFIRMS
COMMAND %commentsh
zZjcomments =
"COMMENTS"IL1!
commfield € LSEL{(#"TEXT")
CONFIRM;
COMMAND %defer®
zjdefnumber =
"DEFER"ILL! "NUMBER"I!LL! <"assignment">
numotype « #"DEFER"
CONFIRM;
COMMAND %distribute?
zjdistribute =
"DISTRIBUTE"IL1! <"to"> distiield <« LSEL(#"TEXL")
CONFIRMNM]
COMMAND %iinish%
zjfinish =

WFINISH"!L1! CONFIRM xXxjfinish( ); %resets re=-enter flag¥

%performs secondary distribution and Jjournal
supmission%
COMMAND %interogate®
Zjinterrogate =
"INTERROGATE"!L1! <"for submission"> CONFIRM
{"galect"> (
submtype « structure
<{"at"> submdest « LUSEL(submtype) /
submtype « "FILE" (
["NAMED" submdest ¢« LSEL(#"FILE")] /
submtype ¢ #"WINDOW" submaest « LSEL(#"WINDOW"))
/
"MESSAGE" submtype « #"STATEMENT"
subndest ¢« LSEL(#"TEXT") /
submtype « "HARDGOPY"!L1l!
<"located at"> submdest e LSEL(#"TEXT")
)
¢<"title"> titlfield ¢ LSEL(#"TEXT")
¢"distribute to"> distfield ¢« LSEL(#"TEXT")
¢"show status?")> (("YES"IL1!/CA) xjshow() / "NO"ILLll)
{"finished?">
(("YES"IL1!/CONFIRM) xjfinish() 7/ "NO"!L1l!);
GOMMAND %Keywords%
zikeywords =
"KEYWORDS"IL1!
kKevwfield e LSEL(#"TEXT")
CONFIRM;

49



LUUW s S2UTULULT (2 L4V ST LI AOLINLAND N g (s

COMMAND %lock%
zjlock =
"LOCK"IL1! "JQURNAL"!L1l! <"passwora">
keywfield ¢« LSEL(#"VISIBLE")
CONFIRM xjlock(keywiield);
COMMAND %number%
Zjnumnver =
"NUMBER"ILLI
nunbtyne ¢ #'"NUMBER"
numnbfield « LSEL(#"TEXT")
CONFIRM;
COMMAN) %obsoletes%
Zjobsoletes =
"OBSOLETES"!L1i! <"documents">
obsofield « LSEL(#"TEXT")
CONFIRM;
COMMAND %placef
Ziplace =
"PLAGCE" "LINK"IL1] £"at">
linkfield « LSEL(#"VISIBLE")
CONFIRM;:
COMMAND %print%
ziprint =
"PRINT" "HARDCOPY"!L1l! %wheel()%
{"password"> updafield « LSEL(#"VISIBLE") CONFIRNM
xjpriharcop(updafield);
COMMAND %process?
Ziprocess =
"PROCESS"IL1l! "SUBMISSION"!LL! <"form at">
formfield ¢ LSEL(#"STATEMENT")
CONFIRM
xjprocess(formfield);
COMMAND %rfc numnber®
zjijrfcnumber =
"RFC"IL1L! <"number">
numotype « #"RFC"
numbfield ¢ LSEL(#"TEXT")
CONFIRMS
COMMAND %show®
Zzjghow =
"SHOW"IL1! "STATUS"ILLl!
CONFIRM xXjshow( );
COMMAND %subcollections%
zjsubcollections =
"SUBCOLLECTIONS"IL1!
subcfield « LSEL(#"TEXT")
CONFIRM;
COMMAND %submité
ziselect =
"SELECT" 111!
(
subntype ¢ structure
<"at"> submdest ¢ DSEL(submtype) /
submtype ¢« "FILE" (
["NAMED" submdest ¢« LSEL(#"FILE")J] /
submtype « #"WINDOW" submdest ¢ LSEL(#"WINDOW"))



PRV R SUTUR L= g Lo b\ WAV L wd 5 e 1Y ok TR @AY A g et

/
"MESSAGE" submtype « #"STATEMENT"
submdest ¢ LSEL(#"THXT") /
submtype ¢« "HARDCOPY"!L1ll
{"located at"> submdest « LSEL(#"TEXT") /
submtype « "JOURNAL"IL1l! <"document">
submaest ¢ LISEL(#"NUMBER")
)

CONFIRM:
COMMAND %title%
Zjtitle =
"PITLE"IL1)
titlfield ¢ LSEL(#"TEXT")
CONFIRM;
COMMANWD %unlock%
zjunlock =
"UNLOCK"!L1!{ "JOURNAL"!L1l! <"password">
keywfield ¢ LSEL(#"VISIBLE")
CONFIRM xJjunlock(keywfield);
COMMAND %updates?
Zjupaates =
WUPDATES"IL1! <"document(s)"> updarield ¢ LSEL(#"TEXT")
CONFIRM;
END.



:DEL, 02/06/69 1010:58 JFR ; .DSN=1; ,LSP=0; .SCR=1; ,DPR=0; ['=1 AND
NOT 8P ; ['?]; dual transmission?
Abstract.
The Decode-Encode Language (DEL) is a machine independent language
tailored to two specific computer network tasks:
accepting input codes from interactive consoles, giving immediate
feedback, and packing the w»esulting information into nessage
packets for network transmission.
and accepting message packets - from another computer, unpacking
them, building trees of display information, and sending other
information to the user at his interactive station.
This is a working document £or the evolution of the DEL langauge,
Comments should be made through Jeff Rulifson at SRI.
Foreword.
The initial ARPA network working group met at SRI on October 25-26,
1968,
It was generally agreed beforchand that the running of interactive
programs acyoss the network was the first problem that would be
faced.
This group, already in aggrement about the underlaving notions of
a DEL-1like approach, set down some terminology, expectations for
DEL programs, and lists of proposed semantic capability.
At the meeting were Andrews, DBaray, Carr, Crocker, Rulifsen, and
Stoughton,
A second round of nmeetings was then held in a piecemeal way,
Crocker meet with Rulifson at SRI on November 18, 1968, This
resulted in the incoxporation of formal co-routines.
and Stoughton meet with Rulifson at SRI on December 12, 1968, It
was deceided to meet again, as a group, probably at UTAH, in late
Janurary, 1969,
The first public release of this paper was at the BBN NET meeting in
Cambridge on February 13, 1969,
NET Standard Translators.
NST The NST library is the set of prograns necessary to mesh
efficiently with the code compiled at the user sites from the DEL
programs it receives. The NST -DEL approach to NET interactive system
commumication is intended to Eberate over a broad spectrum,
The lowest level of NST-DEL useage is direct transmission to the
server-host, information in the same format that user programs
would receive at the user-host.
In this mode, the NST defaults to inaction. The DEL progran

does not receive universal hardware representation input but
input in the normal fashion for for the user-host.

And the DEL program becones merely a message builder and
sender.
A more intermediate use of NST-DEL is to have echo tables for a
TTY at the user-host,
In this mode, the DEL program would run a full duplex TTY fir
the user.
It would echo characters, translate them to the character set
of the server-host, pack the translated characters in messages,
and on appropiate Lreak characters send the messages.
lhen messages come from the server-host, the DEL progam would



translate them to the user-hcst character set and print them on
his TTY.
A morve ambitous task for DEL is the operation of large,
display-oriented systems from remote consoles over the NET.
Large interactive systems usually offer a lot of feedback to
the wuser. The unusual nature of the feedback nake it
impossible to model with echo table, and thus a user program
must be activated in a TSS each time a button state is changed,
This puts an unnecessarily large load on a TSS, and if the
system is begin run through the NET it could easily load two
systems.
To avoid this double overloading of TSS, a DEL program will
run on the user-host. It will handel all the immediate
feedback, much like a complicated echo table. At appropiate
button pushes, message will be sent to the server-host and
display updates received in return,
One of the more difficult, and often neglected, problems is the
effective simulation of one non-standard console on another
non-standard console,
e attempt to offer a means of solving this problem through
the co-routine structure of DEL prograns. For  the
complicated interactive systems, part of the DEL prograns
will be constructed by the server-host programmers.
Interfaces between this program and the input stream may
easily be inserted by prograrmers at the user-host site.,
Universal Hardware Representation
To minimize the mumber of translators needed to map any facility's
user codes to any other facility, there is a universal hardware
representation,
This is simply a way of talking, in general terms, about all the
hardware devices at all the interactive display stations in the
initial newtork,
For example, a display is thought of as being a square, the
mid-point has coordinates (0,0), the range is -1 to 1 on both
axes. A peint nay now be specified to any accuracy, regardless of
the particular mmber or density of rastor points on a display.
The representation is discussed in the semantic explanitations
accompaning the formal description of DEL,
Introduction to the Network Standard Translatore (NST).
Suppose that a user at a remote site, say ltah, is entered in the
AL system and wants to run NLS.
The £irst step is to enter NLS in the nexmal way. At that time
the Utah system will request a symbolic program from NLS.
REP This program is written in DEL. Tt is called the NLS
Remote Encode Program (REP).
The program accepts input in  the Universal Ilaxdware
Pepresentation and translates it to a form usable by NLS,
It may pack characters in a buffer, also do some local
feedback.
When the program is first received at Utah it is compiled and
loaded to be mun in conjunction with a standand library.
All input from the Utah console first goes to the NLS NEP, Tt is
processed, parsed, blocked, translated, etc. When NEP receives a



character appropriate to its state it nay finally dinitiate
transfers to the 940, The Dits transferred are in a forn
acceptable to the 940, and mavbe in a standard form so that the
NLS need not differentiate between Utah and other NET users.
Advantages of NST
After each node has implemented the library part of the NST, it
need only write one program for each subsystem, namely the
symbolic file it sends to each user that maps the NET havdware
represenataion into its own special bit formats.
This is the minimum programming that can be expected if each
console is used to its fullest extent.
Since the NST which runs the encode translation is coded at the
user site, it can take advantage of hardware at its consoles to
the fullest extent. It can also add or remove hardvare
features without requiring new or different translation tables
from the host.
Local users are also kept up to date on any changes in the
system offered at the host site. As new features are added,
the host programmers change the symbolic encode program. Vhen
this new program is compiled and used at the user site, the new
features are automatically included.
The advantages of Thaving the encode translation programs
transferred symbolically should be obvious,
Each site can translate any way it sees fit. Thus machine code
for each site can be produced to fit that site; faster 1un
times and greater code density will be the result.
Moreover, extra symbolic programs, coded at the user site, may
be easily interfaced between the user's monitor system and the
DEL program f£rom the host machine. This should ease the
problen of console extension (e.g. acemodating unusual keys and
buttons) without loss of the flexability needed for man-machine
interaction.
It is expected that when there is matching hardware, the symbolic
programs will take this into account and avoid any unnecessary
computing., This is  immediaely possible through the code
translation constructs of DEL. It may someday be possible through
program composition (when Crocker tells us how??).
NI NLS - User Console Cormunication - An Example.
Block Diagran

The right side of the picture wepresents functions done at the

user's main computer; the left side vepresents those done at the

host computer.
Each label in the picture corresponds to a statement with the
same name.
There are four trails associated with this picture. The first
links (in a forward direction) the labels which are concerned
only with network information. The second 1links the total
information flow (again in a forward direction). The last two
are equivalent to the first two but in a backward direction.
They may be set with pointers tl1 through t4 respectively,
[">tif"] OR [">nifM"]; ["Ctif"] OR ["<nif'];

User-to-Host Transmission



keyboard is the set of input devices at the user's console.
Input bits from stations, after drifting through levels of monitor
and interrupt handlers, eventually come to the encode translator.
[>nif(encode)]
encode maps the semi-raw input bits into an input stveam in a
form suited to the serving-host subsystem which will process the
input., [>nifthrt)<{nif(keyboaxrd)]
The FEncode program was supplied by the sexver-host subsvstem
when the subsystem was first requested. It is sent to the usex
machine in symbolic form and is compiled at the user machine
into code particularly suited to that machine.
It may pack to break characters, map multiple characters to
single characters and vice versa, do character translation, and
give imnmediate feedback to the user,
ldm Immediate feedback f£rom the encode translator first goes to
local display management, where it is mapped from the NET standard
to the local display hardware,
A wide wvrange of echo output may come from the encode
translator. Simple character echoes would be a minimum, while
command and machine-state feedback will be common,
It is reasonable to expect control and feedback functions not
even done at the server-host user stations to be done in local
display control. For example, people with high-speed displays
may want to selectively clear curves on a Culler display, a
function which is impossible on a storage tube,
Output from the encode translator for the server-host goes to the
invisible IMP, is broken into appropriate sizes and labeled by the
encode translator, and then joes to the NET-to-host translator,
Output from the user may be nore than on-line input. It may be
larger items such as  computer-generated data, or files
generated and used exclusively at the server-host site but
stored at the user-host site,
Information of this kind mnay avoid translation, if it is
already in server-host fowmat, or it may undergo vet another
kind of translation if it is a block of data,
hrp It £inally gets to the host, and must then go through the
host wreception program. This maps and xeoxders the standard
transmission-style packets of bits sent by the encode programs
into messages acceptable to the host This program may well be
part of the monitor of the host machine.[>tif(net
mode) <nif(encode) ]
Host=to=User Transmission
decode Output from the sexrver-host initially goes through decode,
a translation map similar to, and perhaps more complicated than,
the encode map. [>nif(urt)>tif(inp ctrl)<{tif(net mode)]
This map at least foxmats display output into a simplified
logical-entity output stream, of which meaningful pieces may be
dealt with in various ways at the user site.
The Decode progran was sent to the host machine at the sanme
time that the Encode program was sent to the user machine.
The progran is initially in symbolic form and is compiled
for efficient running at the host nachine,
Lines of characters should be logically identified so that



different line widths can be handled at the user site.
Some fomrm of logical line identification must also me made,
For example, if a straight line is to be drawn across the
display this fact should be transmitted, vrather than a
series of 500 short vectors.
As things fimm up, more and more complicated structural
display information (in the manner of LEAP) should be sent
and accomodated at user sites so that the responsibility for
real-time display manipulation may shift closer to the user.
imp ctrl The server-host may also want to send control
information to IMPs. Formatting of this information is done by
the host decoder, [>tif(uxt) <tif(decode)]
The other control information supplied by the host decoder is
nessage break up and identification so that proper assembly and
sorting can be done at the user site.
From the host decoder, information goes to the invisible IMP, and
directly to the NET-to-user translator. The only operation done
on the messages is that they may be shuffled.
urt The user wreception translator accepts messages from the
user-site IMP and fixes them up for user-site display. [dnif(d
ctrl) >tif (prgm ctrl){tif(imp ctrl)<nif(decode)]
The minimal action is a reoxdering of the message pieces.
detrl For display output, however, more needs be done., The
NET 1logical display information must be put in the format of
the user site. Dispay control does this job., Since it
coordinates between (encode) and (decode) it is able to offex
features of display management local to the usex
site, [>nif(display)<nif(urt)]
prgmctrl Another action may be the selective translation and
routing of information to particular user-site subsystenms,
[>rif(d ctrl)<tif(urt)]
For exanple, blocks of floating-point information may be
converted to user-style words and sent, in block foxm, to a
subsystem for processing or storage,
The styles and translation of this inforxmation may well be a
compact binary format suitable for quick translation, rather
than a print-image-oriented format.
(display) is the output to the user. [<nif(d ctzl)]
User-to-Host Indirect Transmission
(net mode) This is the mode where a remote user can link to a node
indirectly through another node. [>tif(decode){tif(hrt)]
DEL Syntax.
Notes for NLS Users.
All statements in this branch which are not part of the compilex
must end with a period.
To compile the DEL compiler:
Set this pattern for the content aalyzer ( TPl SE(P1) ¢ sl Yy
The pointer "del' is on the first character of pattemn.
Junmp to the first statement of the compiler, The pointer "¢
is on this statement.,
And output the compiler to file( '/A-DEL' ). The pointer "&£
is on the nane of the file for the compiler output ,
Prograns.



Syntax.,
meta file (k=100,m=300,n=20,5=900)
file = mesdecl §declaration Sprocedure "FINISIM;
procedure =
procname (
(
type "FUNCTION" /
"PROCEDUREY ) .id (type .id / .empty)) /
"CO-ROUTINEM) '3 /
$declaration labeledst $(labeledst ';) "endp.";
labeledst = (+.id ': / .empty) statenment;
type = "INTEGER" / "REAL" :
procname = ,id;
Functions are differentiated from procedures to aid cormpilers in
better code production and run time checks.
Functions return values,
Procedures do not return values,
Co-routines do not have names or arguments, Their initial
envocation points are given the pipe declaration,
It is not clear just how global declarations are to be??
Declarations,
Syntax,
declaration = mmbertype / structuredtype / label / 1lcl2uhr /
uhr2rmt / pipetype;
numbertype = ("REAL'" / M"INTEGER'") ("CONSTANT" conlist /
varlist);
conlist =
.id '« constant
$(", «id '« constant);
varlist =
.id ('+ constant / .empty)
$(', .id ('« constant / .empty));
idlist = ,id §(%, .id);
structuredtype = ("tree" / 'pointexr" / "buffer" ) idlist;
label = “LABELY idlist;
pipetype = "PIPE" pairedids $(', pairedids);
pairedids = ,id ,id;

procname = ,id;
integerv = ,id;
pipenane = ,id;

labelv = ,id;

Variables which ave declared to be constant, may be put in

read-only memory at run time,

The label declaration is to declare cells which may contain the

machine addresses of labels in the program as their values. This

is not the B5500 label declaration,

In the pipe declaration the first .ID of each pair is the name of

the pipe, the second is the initial starting point for the pipe.
Arithmetic,

Syntax,
exp = "IF" conjunct "THEN'" exp "ELSE" exp;
sum = term (.
'« sun /

6



'~ sun /
enpty) ;
term = factor (
'* term /
'/ term /
' term /
.empty) ;
factor = '~ factor / bitop;
bitop = compliment (
'/ bitop /
'/t bitop /
'& bitop /
enmpty) 3
compliment = "--" primary / primary;
1 means nod, and / means exclusive or.
Notice that the uniary minus is allowable, and parsed so you can
write X*-y,
Since there is no standard convention with bitwise operators, they
all have the same precedence, and parentheses must be used for
grouping.
Complinent is the 1's compilment.
It is assumed that all arithmetic and bit operations take place in
the mode and style of the machine »unning the code. Anyone who
takes advantage of word lengths, two's compliment arithmetic, etc.
will eventually have problems.

Primary,

Syntax.
primary =

constant /

bhuiltin /

variable /

block /

'( exp ')

variable = ,id (

'+ exp /

'( block ') /

empty) ;

constant = integer / real / stying;
builtin =

mesinfo /

cortnin /

("MIN" / "MAX"M) exp $(', exp) ' :
parenthesised expressions may bhe a series of expressions. The
value of a series is the value of the last one executed at run
time.

Subroutines may have one call by name arguement,
Expressions nay Dbe mixed. Strings are a big problen?? Rulifson
also wants to get rid of real numberstt

Conjunctive Expression.

Syntax.
conjunet = disjunct ("AND' conjunct / .empty);
disjunct = negation ("OR" negation / .empty);
negation = "NOT" relation / relation;



relation =
'( conjunct ') /
sum (
"e=" sun /
=" sun /
t{ sum /
> sum /
'= sum /
'# sum /
.empty) ;
The conjunct construct is 7rigged in such a way that a conjunct
which is not a sum need not have a value, and may he evaluated
using jumps in the code. Reference to the conjunct is made onlyv
in places where a logical decision is called for (e.g. if and
while statements).
Ye hope that most compilers will be smart enough to skip
unnecessary evaluations at run time. I.e. 2 conjunct in which the

left part is false or a disjunct with the left part true need not
have the corresponding right part evaluated.

Arithmetic Expression,

Syntax.
statement = conditional / unconditional;
unconditional = loopst / casest / controlst / iost / treest /
block / null / exp;
conditional = "IF" conjunct "THEN" unconditional (
"ELSE" conditional /
.empty) ;
block = "begin" exp §('; exp) "end";
An expressions may be a statement. In conditional statements the
else part is optional while in expressions is is manditoxry. This

is a side effect of the way the left part of the syntax rules are
ordered,

Semi--Tree Manipulation and Testing.

Syntax.
treest = setpnty / insertpntr / deletepnty;
setpntr = "'set" "pointer'" pntrname "to' pntrexp;
pntrexp = direction pntrexp / pntrnane;
insertpnty = "insert" pntrexp ''as"

(("lefr" / "right") '"brother') /

((M£irst" / Ylast" ) "daughtex'') "of" pntrexp;
direction =

"up" /

"down' /

"forwaxd'" /

"backward" /

"head" /

LT B AL
planttree = "plant" tree "in" treename;
replacepnty = "replace" pntrname "with'" pntrexp;
deletepntr = "delete" pntrname;
tree = '( treel ') ;
treel = nodename $nodenanme ;

nodename = terminal / '( treel ') ;



i

terminal treenane / buffername / pointernane;
treename = ,id;
treedecl = "pointex" .id / "tree" .id;
ixtra parventheses in tree Dbuilding results in
subcategorization, just as in LISP,
Flow and Control.
controlst = gost / subst / loopst / casest;
fo To Statements,
gost = "GO "TO" (labelv / .id);
assignlabel = MASSIGN" ,id "TO" labelv;
Subroutines.
subst = callst / returnst / cortnout;
callst = "CALL" procname (exp / .empty);
returnst = "RETURN" (exp / .empty);
cortnout = "STUFF" exp "IN' pipename;
cortnin = "FETCH" pipename;
FETCH is a builtin fimction whose value is computed by
the naned co-routine,
Loop Statements.,
Syntax,
loopst = whilest / untilst / forst;
whilest = "WHILE" conjunct "DO" statement;
untilst = "UNTIL'" conjunct '"DO" statement;
forst = "FOR" integerv '« exp ("BY" exp / .empty)
"DOM statement;
The value of while and until statements is defined to
and true (or 0 and non-zero) respectively,
For statements evaluate their initial exp, by part, an
once, at initialization time. The xrunning index
statenents is not available for change within the loo
only be read. If some compilers can take advantage
(say put it in a register) all the better. The incr

linear

envoking

HTOH QXP
he false

d to part

of for
Ps it may
of +this

ement and

the to bound will both be rounded to integers during the

initialization,
Case statements.
Syntax,
casest = ithcasest / condcasest;
ithcasest = MITHCASE" exp "OF'!' "BEGIN" statenm
statement) VEND';
condcasest = MCASE" exp "OF' "BEGIN" condes S('

"OTHERWISE" statement MEND!:
condcs = conjunct ': statement;
The value of a case statement is the value of the
executed,
Extra statements.
null = "NULL";
I/0 Statements.
iost = messagest / dspyst
Messages.
Syntax,
messagest = bhuildmes / demand;
buildmes = startmes / appendmes / sendmes;
startmes = "start'" "message';

G

ent §(';

3 condes)

last case



appendnes = "append" 'message" '"hyte" exp ;
sendnes = "send" "message';
demandmes = '"demand" '"message'';
nmesinfo =
"gﬁt” llmessagen "11}’1:&”
"message' "length" /
""message" "empty" '? ;
mesdecl = '"message' '"bytes" "are" .num "bits! "long'" '; ;
Display Buffers.
Syntax.
dspyst = startbuffer / bufappend / estab;
startbuffer = "start" "buffer";
bufappend = "append" bufstuff $('% bufstufs);
bufstuff =
"parameters" dspyparm $(', dspypamm) /
"character" exp /
"string'" string /
"vectox" ("from'" exp ': exp / .empty) "to" exp ', exp /
"position'" (onoff / .empty) "beam' "to" exp ': exp/
H‘curveﬂ ;
dspyparm =
"intensity" '"'to" exp /
"character" "width" "to" exp /
"b1link" onoff /
"italics" onoiff;
onoff = "on" / "off';
estab = "establish" buffername;
Logical Screen.
The screen is taken to be a square. The coordinates ave
normalized fxom -1 to +1 on both axes.
Associated with the screen is a position registexr, called
PREG. The wregister is a triple 4x,y,r>, where x and ¥
specify a point on the screen and x» 1is a zwotation in
radians, countey clockwise, from the x-axis,
The intensity, called INTENSITY, is a real number in the
range from O to 1, 0 is black, 1 is as light as your
display can go, and numbers in between specify the relative
log of the intensity difference.
Character frame size,
Blink bit,
Buffer Building.
The terminal nodes of semi-trees are either semi-tree names
or display bhuffers. A display buffers is a series of
logical entities, called bufstuff,
When the buffer is initilized, it 1is empty. I£f no
parameters are initially appended, those in effect at the
end of the display of the last node in the semi-tree will be
in effect for the display of this node.
As the buffer is huilt, the logical entites are added to it.
When it is established as a buffername, the bhuffer is
closed, and furthur appends are prohibited, Tt is.only a
buffername has been established that it mavy be wused in a
tree building statement,

10



Logical Input Devices,.
Wand.,
Joy Stick,
Keyboaxd.
Buttons.
Light Pens.
Mice.
Audio Output Devices.
.end
Sample Programs
Progranm to run display and kevhoard as tty.
to run NLS,
input part
display part
DEMAND MESSAGE:
While LENGTH # 0 DO
ITHCASE GETBYTE OF Begin
THTCASE GETBYTE OF %file area update% BEGIN
%literal area%
%message area%
%name area%
Shugh
%sequence specs%
%filtexr specsh
%format specs%
Scommand feedback line%
%file area%
%date time%
%echo register%
BEGIN %DEL control%
Distribution List
Steve Cary
NDepartment of Computer Science
University of Utah
Salt Lake City, Utah 84112
Phone 301-322-7211 X8224
Steve Crocker
Boelter Hall
Imiversity of California
Los Angeles, California 90024
Phone 213-825-4364
Jeff Rulifson
Stanford Research Institute
333 Navenswood
Menlo Park, California 04305
Phone 415-326-6200 X4116
Ron Stoughton
Computer Research Laboratory
Imiversity of California
Santa Barbara, California 93106
Phone 805-961-3221
Mehmet Baray
Corey Hall

33



Iniversity of California

Berekely, California
Phone 415-843-2621

94720

12





