TEMAC:

A Machine Language for Processing Text

PART T
Programming Manual

M. D'Imperio

lo
2,

CONTENTS

Igtggductlon

The TEMAC Language.

2,1 TEWAC Data Objects and Operands.

2.1.1 Textual Data Objects: Words, Sentences, Paragraphs.
2.1.2 Cellular Data Objects: Célis, Celi-Lists, Master-Blocks.
2.1.3 Operands, Pt ' '

2.0.4 Coﬁvgﬁsionﬁ

2.2 TEMAC Operations.

3.1 Data Manipulation: Structural and Dafa Mov:ng Operations,
3.2 Data Testing Operafions.

3.3 Readin? and Writing Operations.

3.4 Control Operations.

3.5 Debugging Operations.

The Statements of the Languaggg

3.1 How fo Wrife TEMAC Sra?emep?aq
3.2 Definifion Statements.

3.2.1 Kinds of Definitions: Alphabets, Data Objects; immediate,.
Dummy, Padded, Externaz'i, Fielded Definifions.

3.2.2 The G&n@rai_Form'of Definition Statements.
3.3 Operation Statements.’

i The Generai Form of Operafion Statemenfs.

2 The Data Types and Primary Gpermndsd ; .
:3 Kinds of Primsry Operands: 0ne=¢omponen? Whole, Segquence,
Left-Boundary, Set, Character-Stream, Field.

4 Auxi!tary Operands,

5 Exit Routings: Unconditional and Conditionai Roufings;
Error Exits.

4.

5.

Definition Statements,

4,1

4]2

Alphabet Definitions,
Data Object Definitions.

I The Paragraph.

2 The Sentence,

3 The Word,

4 The master=Block.
5 The Calli=List.

6 The Cell,

Operation Statements,

5,1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

5.9

The

Structural Statements,

{SEG, SEL, COL, OMT, INC, MTY, REF]

Data Moving Statemsnts: Textual.

AEXT, EDT, CVT)

Data Moving Statements: Cellular.

{MOVE, REPT, CVN, ENTER, LKP)

Data Testing Statements: Textual.

{LOC, COM)

Data Testing Statements: Cellular.

{FIND)

Reading and Writing Statements,

(READ, WRITE, OPEN, CLOSE, WEF, REW, BSR, BSF)
Control Statemenfs: Decisions.

{STEP, MOVAD, BRAN, [F]

Control Statements: Transfers of Control, Subroutines.
(DO, EXIT, RETURN, FINISH, START, GOTO}
Debugging Statements.

(Tracing and Displiaying)

Object Program.

6.2

The Job and the Deck.

I The Job.
6.01.2 The TEMAC Deck; |fs Relation to Other Decks in the
6.1.3 The Arrangement of Cards in the Job.
6.1.4 Control Cards {see also Appendix |).
6.1.5 File Cards (see also Appendix |).

Compiliafions, Assemb!lies, Runs.

6.2.1 The TEMAC Program at Compile and Assembly Time,
6.2.2 The TEMAC Program at Run Time.
B “HAR) Chazacter Seta

Job,

L. Introduction.

The TEMAC (Text Macro Compilér] language is a problﬂﬁ-d?ienfed
programming language speclflcally designed for thé& processing of
unedited text, whose contents and form may be greatly garbled or
widely. variable. Programs written in this language will be capable
of applying operations such as word-bank lookups, scanning, extracfing,
and editing directly to raw fext as recorded on magnetic fape without
the need for hand editing or key-punching from hard copy. The TEMAC
system operates under the "[BJOB" monitor for the 7094; it includes
the TEMAC Compiler Program and the TEMAC Processor. The compiler
program accepts statements in the TEMAC |anguage and produces object
coding in 7094 "|BMAP" {assembler) language, convertible directly
into 7094 machine code. The TEMAC Processor is a package of subroutines
in IBMAP language which execute the macro-instructions of the object
program at "run-fime" and provide user-oriented debugging and tracing
facilities.

2. The TEMAC Language.

TEMAC, as a problem-oriented language for handling unedited text,
provides certain specialized ways of describing data and certain kinds
of actions to be performed on the data thus described. The kinds of
descriptions for data will be called "data types", and the objects
defined or described by means of them wil! be called "data objects".
The actions to be carried out upon various data objects, having given
data types, in statements of tHe TEMAC language, will be called
"operations". The data objects and operations of TEMAC are |ike the
nouns and verbs of the English language. Just as nouns in English
enter intfo phrases with articies and adjectives in a sentence, data
object names in TEMAC enter into special phrases’ in the statement
called "operands", which permit patterns of components within a data
object to be selected and acted upon by the operation of the statement.

2,L TEMAC Data Objects and Operands.

There are two major ways in which data may be handled by a
TEMAC program; as textual data - i.e., in a continuous stream of bytes
or characters - or as cellular data = i.e., stored one item to a machine
register or "cell". All data that is not textual is cellular. Some
TEMAC statements require textual data objects in theif¥ operands, while
others require cellular data objects.

’

2.l.1l Textual Data Objects: Words, Sentences, Paragraphs.

LY

Text is made up of characters, arranged in strings which
may be either free-standing words (i.e., surrounded by word-boundary-
characters), or arbitrary character sequences chosen for some purpose
(for example, the third through the seventh characters of a stream).
' words ‘may, . in turn, be ‘arranged 'in ‘strings, which'may be set off by
: .senfehcé-baundary-characters or ‘arblitrarily assembled; the word-string
is called 'a "sentence". Sentences themselves may, finally, be arranged
in strings, set off by paragraph-boundary-characters or arbitrarily

assembied; the sentence-string is called a "paragraph". It should be
noted that the words "paragraph", “sentence", “ward" as used for TEMAC
data object types, are not synonymous im meaning wifth the conventional
English words, though they frequentiy refer to similar things. Larger
‘units then the paragraph, or smaller units than the character do not
appear to be required in most text-handiing applications. TEMAC provides
facilities for defining and manipulating individually~-named variables or
constants of al! three data types described above,

2.1.2 Celluilar Data Objects: Cells, Celi~Lists, Master-Blocks.

TEMAC provides three data types for describing and handling
items such as numbers or names of dafa objects and statements, which
need not be "textual", end are stored in individual machine . registers
in @ format that is much more quickly and cheaply handled in the 7094
than text. One number or name resides in a single "cell"; a string of
numbers or names is sfored in a “cell-list" or "|1ist"™; and a string of
such lists (for example, @ matrix of numeric values), occupies a "master-
block". Numeric values in TEMAC may be decimal signed numbers or octal
numbers, but not floating point numbers.

2.L.3 Operands. The data object names may be called upon to provide
all or some selection of their components for processing by the operation,
or "verb" as it will frequently be called below. The data object name
is accompanied by other special words and variabie names - the "modifier”
and "modifier type code" = to form the operand in a statement of the
TEMAC language. Various types of operands offer many. ways of selecfing
components within an object, or stringing together several objects ‘to
form a compound object to which the acfion of the verb is applied.

The special words called modifiers are a kind of "index" valy@s, which
may be of types called "pointers" or "pointer-sets"; these 6bje&?s
function like arrows or sliding markers attached to components in a
string, and specify elements of the string by their relative position .
from leff to right within ift. '

2.l.4 Conversion. Data coming info the machine from ftape, cards;
efc., is always in ftexfual form, and must be converted to cellular
form before it can be acted on by those TEMAC verbs which require
cellular data. Similarly, data objects developed within the machine
in the form of counts, results of computation, position numbers in
poinfters or poinfter-sets, efc., must be converted to fextual form
before they may be writften out for printing.

2.2 Alphabets, Sorting Sequences, and Character-Cateqgories.

'~ TEMAC provides the capabiliity of setting up and calling by nams
any wather o7 different alternative and concurrenfly available
aiphabets and associated sorting seguences; these may be composed
entirely at the discretion of the programmer, and need not follow any
standard set or sequence. Characters within an alphabet may be chosen
from the FORTRAN or [|BMAP binary-coded decimal ("BCD") character set,
which may be punched on the key=-punch or printed by the peripheral
printers using the "FORTRAN" print chain. Alternatively, characters
may be represented by a special "octal-coded" method which allows any :
six-bit byte {or octal character between "@@" and "77") to be represented
and utilized as an alphabet character regardiess of its validity as a
printabie or punchable [BM character. Characters that are "invalid" for
printing or punching may not, of course, be printed in the output of the
program. The alphabet definition statement allows the programmer to
specify those bytes, or characters within the data, in which he is
interested for a given purpose. The characters are assigned by the
programmer to certain character-categories, which may be up to nine in
number in any one alphabet; examples of some useful categories are
"even numbers", "word-boundary-characters", "invalid characters”,
"vowels", The categories are used in special forms of the data testing
statements for textual data, and boundary categories are used in certfain
other statements as well. Several different alphabets may refer to the
same data stream and be used alternatively in different statements,

2.3 TEMAC Operations.

In processing text, two major kinds of actions are required:
data manipulation actions, and data festing actions. A program to
process fext alternately examines, or scans the text by means of
testing operations, and selects, rearranges, or alters the text by
means of manipulation actions in accordance with results of the tests.
In addition, any programming language requires reading and writing
_operations for bringing material into memory and putting it out, and
control actions for determining the path of control through the program.
Finally, debugging operations are helpful, and almost mandatory with
a compiler language, fto aid in checking out the program.

2.3.1 Data Manipulation Operations. TEMAC does not require that
data be physically moved unless this is actually, intended or required;
if all that is needed is a temporary record of changed reIaTTonships
among paris of a data object, as an intermediate result to be used later
as a basis for moving or altering the data stream, it is much more
economical fespecially for textual objects) fo rearrange or record
symbols 'standing for the data or for some part of it, leaving the data
itself unchanged in its original location. TEMAC provides a large set
of Structural Operations to act upon symbols, tags, or "descriptors"
that stand for data objects and components. When it is desirable

or necessary to alter data or copy it into a new location, the appropriate
Data Moving Operations provided by TEMAC are used. TEMAC provides a
powerful facifity for editing textual .data character by character under
the control of editing "pictures" or specifications called "edit control
strings”, and consisting of strings of edif control characters. These

may be set up by the programmer to carry out just those actions he

wishes in editing the data. For copying data or parts of it into a

new location, an "Extracting® statement Is provided, W|th many helpful
options and special feafures.

2.3.2 Qata Testing Operations. TEMAC includes e powerful faciltity
for "matching" or "comparing” textual or cellular data objects to single
"comparand" objects or to sirings of comparand objects. The textual
data ftesting statements may make use of character catagorlas in alphabets,
or sorting sequences, and thelr actions may be carried out with the aid
of a special pattern called a "match control string", made up of "match
control characters", similar to the control patterns for editing, to
specify requirements character by character in terms of |iteral values
. or character categories desired at a given position for a match. The
data testing statement is a “conditional®™ statement, providing a yes
or no exit path, and in addition, it provides the position number(s) of
those objects or that object which passed the test, in the form of a
pointer or pointer set; this result cbject may subsequently be used in
an operand of some ofher statement which appiies an operation fo just
those object(s) that passed the test in fhP testing statement.

2.,3.3 Reading and Writing Operations. TEMAC uses the i0CS (Input-
Output Control System) facility of the 7094 Operating system, under
IBSYS, to read data from tape or cards and to write data out to tape.

2,3.4 Control Operations. Each TEMAC statement may specify which
other statements are to be executed upon compietion of its own actions.
The names of successor statements are specified in the "routing fields"
of the statement; if one of the exits allowed for a statement is not
supp!ied with a routing field, it is assumed that control is to proceed
to the statement that follows on the coding sheet. In addition to this
built=in sequencing for each statement, there are special "go to"
or "branching” operations fo allow decisions among many alternative
paths and alse facilities for entering and leaving subroutines or
exucuting individual statements "at a distance" from various points
in the program.

2.5.5 bebugglng_ggerations. TEMAC offers a wide variety of
statements for displaying contents of variables, labelled with their
names if desired, or other heipful information during debug runs.

The "displays”, "dumps", and "trace" outputs are placed on a special
“Run Log" tape which may be used to produce a detailed and fully
annotated record of all eventd during a debug run, or for diagnostic
purposes, during operational runs.

3. The Statements of the Language.

There are two main classes of TEMAC statements: Definition
Statements and Operation Statements. Definition statements set up named
data objects and alphabets. Operation statements apply the actions
specified by TEMAC verbs to operands formed around the defined alphsbets
end data objects. In the following paragrephs, and Sections 4 and 5,
detailed descriptions of the fields within definition and operation state-
ments will be provided, along with examples of their use.

3,1 How to Write TEMAC Stetements.

Every TEMAC statement mmst begin with the letters *T, which
tell the TEMAC compiler program that the statement is in the TEMAC
language; every statement must elsc have a name, a verb, and must end
in a dollar sign. The dollar sign, called the "statement end marker", or
"SEM", marks the end of material to be compiled in the statement. Comments
or explanatory material, which will not be compiled but will appear on
the listing, may be punched to fill out the last card or cards of the
statement after the dollar sign. Each TEMAC statement begins on a new card;
more than one statement cannot be placed on a single card. TEMAC statements
are written "free-field," and punched into cards as if they were rumning
text, with the exception of the initial *¥T', which must appear in columns
1 and 2 of the first card. Each subsequent card of the statement after the
first muist have a blank in column 1. Some definition statements may have
two parts; the first part, containing the statement proper, is called the
"header,"and the second part is the "data." In statements having only a
header, this may cverflow one card (72 positions) and occupy from cne to
ceventeen additicnal cards after the first. When there is data, it may
occupy from one tc seventeen cards, and the header must be restricted to
one card. In either case, the number of overflow cards, over and above
the header, must be placed immediately after the *T, with no intervening
blank. No single TEMAC statement may occupy a total of more than eighteen
cards. If a word of data or header threatens to be broken at the end of a
card, it should all bes placed on the next card after the initial blank, and
blanks left in the previous card in its place. A good practice to follow in
preparing TEMAC statements for keypunch is to leave both positions 3 and 4 of
each header card blank, so that, if the statement runs over onto another card
or so, an overflow card number 1 to 9 may be inserted after the *T without
requiring that the card be repunched, or the line be recopied on the keypunch
sheets., All fields within the header must be separated by at least one blank,
slash, or parenthesis, and fields may not be run together. Any number of these
field separator characters (word end markers, or "WEM"s) may be placed between
fields, and they may be used interchangeably; certain usages are strongly
urged upon the programmer here, for reasons of readability, but departures
from these will not usually cause compile errors. In data, only blanks must
sppear between words or groups, and any number of consecutive blanks may be
used. The crucial rule for writing TEMAC statements is that at least one
"WEM" must appear between fields that are shown so separated in statement
formats and examples below; run-together fields will always be erronecusly
interpraeted by the compilier.

3.2 Definition Statements.

3.2.4. Kinds of Definition Statements.

Definition statements are of fwo main kinds: Alphabet
Definitions (verb "ALF"} and Data Object Definitions (verb “DEF"),
Alphabet definitions have only one form, which will be described in
Section 4.1 Data objects may be textual (paragraphs, sentences, words),
or celiular {master~blocks, cell=lists, cells); they may either be
defined as constants, when actuai values are inserted into them -ahead
of time, or as variables, when no actual values are entered infto storage,
but space is saved and descriptors are set up for the deta object structure
desired. Definitions of constants are called |mmediate Definifions in
TEMAC, and definitions of varlables may be Dummy, Padded,
or Fielded Definitions.

A Dummy Definition sets up a structural description (i.e.,
8 set of short tags or descripters standing for data) associated with the
data object name. No actual space is reservetl for the data itself, but
only for descriptors, which usually take up far less room. The same
stream of actual data, elther read or moved info an area or entered info
storage In an immediste definition, may be referred to by many different
dummy definitions, when in the course of the program the descriptors for
the date stream are moved Into various dummy spaces. Similarly, one
dummy definition may refer to different data streams at different times,
as their descriptors are moved into it. The way In which this is
accompl ished should become evident in the discussien of the Operation
statements in Section 5.

Padded Definitions &+ azed 7oy
cell=lists oenly. The Padded definition sers up a structural description
and alsoc an empty storage reservation, which is preset to zero l(e.g.,
for count celis), blank le.g., for input and output formation areas), or
some other convenient “pad"” value. Data will later be read or moved
info such a list by fthe program.

Fielded Definitions are used for sentences and words only,
and set up arbitrary descriptions for text fields in terms of character
positions and character-iengthw!'"in a cell-list (for example, fields
within an inpuft or output formation area or “buffer®)}. Any textual
material currently occupying the buffer may then be acted upon uniformly
in data moving or data testing operations by means of the field definitions,
regardless of word, sentence, or paragraph boundary characters in it.

3.2.2 The General Form of Definition ngtgmgnfg.
#T NAME VERB DATA TYPE DESCRIPTION /COMWPONENTS §$

For those Data objects that may have compoments on a
lower level, the number of these or else a |ist of thelr names must
appear after the slash. Alphabet definitions require no data type.
Nemes of data objects and alphabets may have from one to six characters,
the first of which must be one of the letters A through Z, and the
remainder letters or numbers. Special characters (comma, blank, apostrophe,
wplplp), ==+, %,8) must not be used within names.

3.3 ggaration Statements.

3.3.1 The Genaral Form of oeorgtlgg !I!ﬂlﬂ!!
#T NANE VERB DATA TYPE(S) PRIMARY OPERANDS end AUXILIARY OPERANDS /

RESULT OPERANDS / EXIT ROUTINGS $

There are many varietues of operation statements, each having
a different verb. Every operation statement must have a pame, formed
in accordarice with the rules given in paragreph 3.2.2 for data object
and alphabet names; it must also have at least one primary o$grand
which names the date object to Which the action of the verb is to be
applied, and an implicit or explicit t_routing, which tells the
names or name of other statements to be execufed after the present ong,
or in the event of certain condifions &rising during txocufaun of the
present one. The TEMAC statement is, in many ways, similar to an
English sentence, and can usually be “read® aloud 'wifth the addition
of a few transifional words here and there. Some of the parts of the
operat ion sta?amen? ‘will be discussed in more detail in the following
paragraphs.

3.3.2 The Data Types and Primary Operands.

Some operation statements havé one primary operand,

the Source Operand, whereas others have two primary operands: |n the
latter case, if the statement is a data manipulation statement, it has

a source operand, and a target operand (the source being fhe piace of
origin of the data, and the farget being the destination, or receiving
location for the data); if the statement is a data testing statement,

it has a source and a comparand, providing date to be compared fo the
data obtained from the source. A preposition separates the primary
operands, for readability. There is usualiy e datg Pype code, consisting
of one letter (P, S, W, M, L, C for the main types of data object) attached
to the verb for aech prlmary operand. The date type on the verb

describes the kind of unit designated by the operand in the statement; it is
often but not necessarily the same as the data type assigned to the data
object whoss name enters into the operand. There are five main kinds of
operands, snd two additicnal specisi-purpose operand types which will be
deseribed below.

2.3.3 Kinds of Primary Operande: One-Component, Sequence, Whole,
Left~-Boundarv, Set, Character-Stream, Field.

The five main types of cperands, used in all types of operation
statements, may be illustrated with reference to an artificial "data object"
conslsting of a group of five mea sitting in a row in an auditorium, who are
belng called up one at a time or in subgroups to receive swards or diplomas.
Let the row as a whole be callad "A", and the men, in order as they are
sitting, be called Joe, Jack, Bill, Jim, and Tom. Then TEMAC operands might
be written that would select certain ones alone or in combination with others
from the row, as follows:

One=Component Opersnd Jim, the fourth man OI\]EAA(iy
ONE NAME(POINTER)
Whole Operand All of Row A A
NAME One man: Joe. JOE
Sequence Operand Three men sitting SEQ;3pA(2;
SEQ N NAME(POINTER) next to each other; SEQ’,\.(N AA(I N=3, I=2
Jack, Bill, Jim
Left-Eoundary Operand All men from Bill A(3)
NAME(POINTER) %2 the end of Row A A(I), I=3
Set Operand A selection of men, smp A(143,1 A5A3)
SET N NAME{ PCINTER- pointed to cne at SETAI\f,\\A(HiTé)
SET) a time, Joe, Bill, N=5, HITS=1,3,1,5,3

Bill again.

A pointer may he a positive, non-zero decimal or octal number (octal.
distinguished by an attached = sign), or the name of a cell, A pointer-set
may be a string of octal or decimal numbzrs separated by blanks, or the
name of & cell-list., Pointers and pointer-sets must always be enclosed
in parentheses. The set or sequence length, "N", may be similar to a
pointer., In addition to the five operamd types above, there are two "special
purpose” operand types, the character-stream and the field, which are used
only in data testing and data moving statements. The character-strean
allcws only certain characters of a word, or within a cell-list to be pro-
cessed., Character-streams are specified in an operand of the form "NAME
START LENGTH", or ONE NAME(POINTER) START LENGTH", where START and LENGTH
may be numbers or cell names. For example, in a word named "WD", contain-
ing the velue "characters", the operand "WD 3 5" selects the characters
"aract"; if "WD" is word 3 of the sentence "S1", the operand may be written
"ONES1(3), 3p0"+ If the letters "characters" are packed into a cell-list
named "BUFR", which i1z the second of two buffers in & master-block "BUFRS", the

character stream ™araci® may be obtalned by writing “BUFR2 3 5" or

MONE BUFRS (2) 3 5%, The character-stream bagsed on & word is called a
“word-based charactér<stream™, while that based on a2 list 18 called @
¥jjst-based character-siream". Character-stream operands are also
distinguistred by the data type letter “H® in the position for the operand
ot the verb of the stetement. The fleld operand is similar to a word,
but the number of characters processed is determined by the length of the
other operand in the statement. In other words, only as meay characters
are uysed from the "fleld” as are required to occupy or %o match posi¥iens
in the target or comparand. The field operand is distinguwished oniy by
the use of the letter “F" inh the poaition for that operand on the verb

of the statement.

3.3.4 Auxiliary Operands. Some statements mey have a thipd
or auxiliary cperand, which aids In the action of the statement?, P
example a8 metch or ‘edit contro! string, or a number t® be added or
subtracted. Auxiliary operands are |inked to other gperands in the
statement by a preposition or by a “function“ word | ike “+' or "N,

5.3.5 Resulf Opgrands. These are the hames ¢f cellg or cell=
lists which store certain counts or other Information resulting from
the action of the verb., They are set off from the primary and aux’ilary
operands by a slash. Some statements have none, some one, some ftwo, and
some three result operands. The information stored in the result operends
Is frequently of primary ald in debugging the program, dbut it may also
be a Btajor product of the operation, and may be referred to by later
statements as a data object. [(n dats testing stetements, the resulf
operands contain the record of “hits” found during testing. In many
date manipuiaftion statements, the result operands store the number of
components selected from the source or moved into the targef.

3.3.6 Exit Routings. Feollowing. the resuit operands and a
second slash, there may be one or more hames accompanled by 3tendard
 labelling words; these are the names of statememts to be executed on
complietion of the present statement, or I(f certain conditlons arise
in Its execution. Exit routings msy be Uncondltional Roytings or
Conditionai Routinas. Certain of the exit names and lab@is ‘may be
dropped, In which ¢mse control will proceed to the mext statement in the
program when the conditionsl associated with that exit arises.

3.3.6.4 Unconditional Routings. There may be @ither one or wo
exits in the uncdnditional routing: the Errer %511 and the Yormal Exit.

Some statements do not require an &rror exit. The labe! for the error
exit is "ERR", before the axar name, anu the Iaben for the norma! exit

is “THEN", If Lhs R - B o e - W a3z S the normal

exit for both srror apd normel conditicps: it should be remembered that,
if an error Is |lkely to occur and the “ERR™ exlt has been . ‘eropped, o

test must ‘be made to see (f an errar took pilace in the nest stat

tf both exits are dropped, control proceeds to the next statement in

case of normai compietion as well as am error, so that a ftest for possible
errors is even more imporfant. Each error conditien arising in e stotement
is signalled by @ ‘numeric code in a cell called “DBUG®, which may be
Interrogated by the programmer. (Sse Secticn BeZolid v

9

Poulhlc foram of uncondrﬂcnal routing ares

JERR X THEN Y 8 (Pully specifleds X m Y dre statement names)

/ERR X3 (normal exit Implied to mext statement)
ITHEN Y$ (error exit and normal:both go 46 ¥)!
$ (both error end normel un- proceed fo

Aext statement)
3.3.6.2 Condi{iongl Routings. The fully spt‘i:lllw condifional routing
includes three labels and names: the Error Exit (tabel "ERR®), the
Exlt (label “YES"), ead the Negat|ve ExIT (iabe! “ELSE®). The positive exit
mey never be dropped, but-one or both of the others mey be omitfed.
Possibie forms of Condltlonal roufing ares

/ERR X YES Y ELSE 2 $ (fully specified)

JERR X YES Y § {nsgative exit goes to next statement)
/YES YELSE Z § -~ (error axit and negative both go to Z)
/YES Y § : (error exit and negative go to next st.)

3.3.6.3 Error Bxits. Anm error cen grise in a TEMAC stateimnt if
one of the following cohditions holds:

al A component i® requested tpﬂ does not exist within en

object &t the time it s requested, for oxqmplt, ONE $29)) when S2
-has only seven mrdl.

bl An obj-cf or eo-pumnt is rtqunud as a source mcn it
is empty, or has beén omltted by an OMIT :fﬂmm.

c) uﬂmt hds been mdo to store too many components
info a target object, or t& store sometning into & compoment that
does not exist in a target object.

d) ‘Some special error conditien pecul iar to @ given state-
ment has arisen; these wiil be mttomd in the aucrlpflon of each
statmnt.

i

4, Dgf{nltioﬂ.&ta;gmentsn

4.1, Alphabet Definitions. ‘An alghabet definition sets up ‘@ nemed
TEMAC g Eggbeg and ‘gorting saqusnce. Up to ‘ten different .alphabets mey
be¢ defined in any one ubject programp ahd each &lphebet may ‘have from
one to nine pro . tnemed 4,-2, ..., 9,
‘three boundbry chare cter-categories (nemed W, §, and P for word=boundar | es,
senfence-bounder les, and paragraph boundaries), ‘end ah "unassigned® or
 wastebasket category named U, The order In which the charecters are

_written in'the definition ecstablishes a sorting sequence. Characters
within the alphabet may be represenfed either by punching them directly
on the card (character-coded representation) or by punching an equal -
slgn followed by two octal digits standing for the "BCO" value (octal=
coded representationd. The slphabet dafin?tion statement has the following
g?noral forms (ihe symbol stands for & blank in all examples below)

#T (n) NAME ‘ALF Category Descripfipﬁs-&
Exampie: ¥, ABLALF AL ANZ, 2 (34O, W=6D), 7 { 1Sy Hp\P 53,8

#T = indicates a TEMAC.u#afemant, no -overflow cards in thia exampla.
AB '~ name of alphabét
ALF = verb of alphabet definition ‘statement
'J.A**z - designafion and members of ‘the’ first progremmer-selected
' category:r Iétters A through Z.
2 ﬁﬂﬁg = designation and members of second programmer’s category:
whole numbers @ through 9.
W =60,/1) ~ word boundary categery; =6§ |s octal coded repreaanatlon
of “blank®, :
S % = sentence boundary category; :
P =53 - paragraph boundary category: octal-coded representation of §.
Blank and doilar sign, if they are to be used as members of
‘a category, must be represented octally since the’ tharacters are used
‘as boundary characters in the TEMAC statemsnt., The special categery assign-
ments A¥H*Z and (49 are available to desc ribe the normal Engllah alphabet and
numbers, Any other arrangsments, or any portionz (e.g. A to F, ¢ to 4) must
be written cut in full in the dssirad orde.\“, '
4.2, Data Object Definitlions.

4.2.1 The Paragraph. There are two maln varieties of.
paragraph definitions: the 8 paragra inition and tha ggng
garhgr&ph.definitﬁonn

4.2.1.L The Genaral Paragrggh Def;n??ion. The statement:
folﬂoms the, form: -

*¥T () PNAME DEFP / SNAME,... SNAMES.

Where n may be from L to 17, and tells the number of -extra cards.ogcupied-
by the statement after the first; PNAME fs. rhg name .of the paragraph being
-defined; DEF is the verb: and P affer DEF. is. the dafa type code for the.data
object iparagraphi. SNANE, SNAME, 3re names ef componenf sentences in the
paragraph. There must a!ways be as many such ‘names as there are to be .
compenents in the paragraph, and they mus* be in the same order as thcy

are fo appear. The paragraph definifion, must nlwmya be followed immedistely

'M". b

' br ﬂu sentence definitions for each e , arranged In the seme order

as the names. The sentence defin!fions may be of any kind allowable for
sentences - [mmediate, dumn or fielded. Oiéferent kinds of sentences
may be mixed in any combination within a genera! paragraph. The sentence
definitions are not s part of ¢he persgraph definition sfatement, but must
follow 1t .In the progrem. Esémples of tfie general paragraph definition
and component sentence defisifions may -be seen eftar section 4.2,2 and In
paragreph 4.2.2.3,

4.2,1.2 The Dumwy Peragraph Pafiutsien;
, !r PhARE DEFP N M # |

where N la the nmb-r of component denfencex snd M the nuwber of words
in each sentence. These numbers gét {He meximum of places aflowed
within the structure, 'which represents @ variabie, |f sach senfence s
to. hm @ different maximum length; a slightly different form is ueed:

in urdir to set up @ dmmy purn graph with asmed sentences, the “general"
par-gnph definition form -hnuld be und, with’ ench nnmtu name defined
tl a dluly ununcu., = ‘

WY (VP DEFP 3, 78
'\'TAWJ-A QBFPANBA ‘)'\ 5’-
4.2,2 The Sentence. Sentence definitions may be jmmediate, D
or Flalded. Their MMM Words may have names, In which.case the

names must all appear after .the siash, in order as the words are to Ve in
the sentence. Every component word must heve a name, if any word le to
have one. |f no names for words are needed, the nuﬂnr of mrls should
appnr u the last field of the statement.

4.2.2.0 Ih Sentence DefiNition.
*T ‘n’ SM DEFS i ’ mlunn ma
L) SNANE DEFS | M S (no word. nmn,

*n% dota tards (from L to. 17) way. faltm the- header, which must not
overfiow the first card. The wards ta Be entered’ Inte thie semtence should
be punched. inte the dete cards |ike running: text, seperated by blénks, -
with a'blenk In colume L of each card, snd na’ broken words at the end
of a qnﬂl. (In @il examples, the symbol®, = will stand’ for 'ﬁllﬂk")y

Exemples.of |mediate Sentences: d
| #TL 81, DEFS, | /WL, W2, W5, WA
Am’ési’?s,\a SENTENCE, S
1,83 OEFS, | p 5§
"ss,ursuqs,\ ﬁm,‘mvemmsﬂr

12 3

£.2,2 The Dummy Sentence Definition,

The dummy sentence definition statement may not occupy more than
one card, even though it has only a "header" and no data,

¥T (n) SNAME DERS D / WNAME |, . . WNANE, $
#T SNAME DEFS D M §
g;gmngg m? Dummy Sentences:

*TASVARAPEF%NQA/WVl WVQ Wwv3$

#T VS, DEFS,D 103
4,2,2.3 Ihe Fiald: ¢ inttion.

*T Gn) SNAMEDEFS F ’ FNAmlpvo FN’AHEmi
#T (n) SNAME DEFS F M §

"n" data cards may follow the first card; these cards contain a string
of field definitions, as follows:

BASENAME, S, L| [BASENAME;J Sy Ly oue EIASENME]S e 3

where BASENAME is the name of any cell-list, cell, soﬁfance, or word
which containis or is intendéd to contain characters (the base stream);

is the starting chéracter position of the first field, counting
c#aracfars from left to right in the base stream, and L is the fength
of the first field in chdracters. |f all the fields of“the sentence
are intended to refer to the same base stream, only the first basename
heed be preseént, and the remaining fields may be represented only by
their S and L values, but the first basename at least must be present
at the beginning of the string. Any number of different base streams
may be referred to, by entering a new basename for .each field. Fields
need not be contiguous or exhaustive within any stream.- i.e., gaps can
beé left, and the starting positions may "jump around" in the stream,
as may be seen from the examples below.

Examplgs of Fielded Sentences Within s Genersl Parsaraph Definitiof.

#TAFLDS,DEFPA/, FS1,F828
-w'..!::_“Pu DEFS,.FAB $ o E
ABUFRAS, ity STREMALZAS $2)9,6,$
¥TJy FS? \oars Fn /F Fz,ths

(BUFR STREM, and: 52 are defined in other éxamples: see péragraphs
4.2.5.6, 4.2.5.5 and below)

Examples of a General Pgragraph_uefjnj}ion and Sehtences

®T PL\DEFP/SIAS2,538

#TNSIADEFS, | M1\ W2, W3, W4
. AHERE 5 IS \AASENTENCEAS

*TJ,\SZADEFS |78
ATHISATSAAASENTENGE,, OF A SEVEN,WORPSS
¥T 4, S3,DEFSA| 58

AANSENTENCE WITHAF IVEALAWORDS $

4,2.3 The Word. Word definitions may bo ltwiediate, dummy, or
fielded, |ike sentence definitions.

4.2.3.L The |nmediate Wbrg Definition.

#T WNAME DEFW 1$

(followed by a single date card only, eohtaining any punchable .
character except blank or dollar signh within the word, blanks
surrounding fhe word, and a dollar sigh after the word,)

"gxgmgle of an Immediate Words

*#TL, IW.DEFW,1$
AANT'ID ISESTABL | SHMENTAR | AN ISMpAS

4.2.3.2 The Dummy wb;d quﬂﬁifion.

#T WNAME DEFW D $ (no data cards or overflow cards)
‘Example of a Dumyy Word¢
*T,, OW, DEFW,D$

4.2.5.3 Ihe Fielded Word Defifition:

#T WNAME DEFW F BASENAME S L $§ (nc additionhal cards)

Example of a Fielded Word:

*T, FW, DEFW,Fp BUFRAS,6,$

4.2,4 The Master-Block.

Master-blocks are defined in the same ways as paragraphs -
by a genéral or a dummy definition.

4.2.4.1 The General Master-Block Definitign.
*T (n) MNAME DEFM/ LNANE, ... LNAME ¢
List definitions for the LNAME'S must follow immedidfely, and may Be of

any kind allowed for lists (immediate, dummy, or ‘padded)... Examples
appear after section 4,2.5.

14

4,2.4,2 The Dummy Master-Block Definifion.

*T MNAME DEFM N § (no extra cards).
N is fhg-number of lists in the master-block; no lengths need be
given for the lists, |f named dummy |ists are desired, the general
form of definition should be used, followed by dummy |ist definitions.

Example of a Dummy Master-Biock:

*T, VM DEFM A8

4,2.5 The Cell=List.

Cell-lists may be immsaiate, Padded, cr Dunny., The immediate
definition may have five different sub~types, depending upon the type
of data to be entered into the |ist; these are symbolic, numeric,
edit control string {ECS), match control string (MCS), and Literal.
Symholic definitions set up lists of names, one fo a cell; numeric
definitions set up lists of positive or negative decimal numbers (integers
onlyb, or octal values. Edit control string and match control string
definitions cause a designated number of edit or mafch control characters
to be entered into a cell-list from a single data card In the statement;
these control strings are used in data manipulation and data testing
statements of the program. Literal definitions cause a stream of from
one to fifty-four characters from a single data card to be packed (six
to a cell) into a list of from one to nine cells.

4.2.5.,1 _Immediate Symbolic Definition.

*T (n) LNAME DEFL | SYM / CNAME¢,DH CNAME $
: m
¥T (n) LNAME DEFL | SYM M §
where n may be from L to 17, and refers to data cards; the CNAME's may
not overflow the first card. Examples are together at the end of
section 4.2.5.5.

4,2.5.2 Immediate Numeric Definition.

#T (n) LNAME DEFL | Num / CNAME |. .. CNAMEq$

¥T (n) LNAME DEFL | NUM m §
Data cards may contain decimal numbers with or without minus signs, octal
numbers preceeded by an equal sign, or the word =BLANK, referring to a
cell full of blanks (six blanks).

4.2.5.3 |Immediate Edit Control String Definition.

#TL LNAME DEFL | ECS K $ (no names of cells}

Followed by one data card only; "K" tells the number of characters to
be used from the data card after the initial blank. The characters must

L5

be edit controi characters, which are as follows: T (transmit), D (delete),
E (end or stop), | (insert a single character-coded or octal-coded value

to foliowl, and R (replace current source character by a single character-
coded or octal-coded value to follow).

4.2.5.4 |mmediate Match Control String Definition.

#T1 LNAME DEFL | MCS K §

Followed by a single card containing “K" match contrel characters chosen

from the following: M (source and comparand characters must maftch), .
through 9 (character must belong fo the designated programmer-selected
category), W, S, P, U (character must belong to the designated boundary
category, or the wastebasket category in some alphabet,) % ("skip";

character position is skipped, not tested), E (end or stop), L (character
must match the following octai-coded or character-coded value). The

meanings of these confrol characters and also of the edit control characters
will be expiained further in the section dealing with the Locate and Compare
statemenis and rhe Edit statement.

4.2.5.5 |Immediate Literal Definition.

*77 LNAME DEFL | LIT K §

Followed by one data card, from which "K" characters after the initial
blank are chosen and packed into a cell-list of from one to nine cells.
K must be less than or equal to 54, and the characters may be any
punchable characters, including blank and dollar sign.

Examples of Immediate Cell-List Definitions.

TN JURPSADEFL A IASYM/ J 1, U2, U3,)48
AST.I?\':?TZI,\ST:':AST-H (these are statement names)
L NUMS,DEFL, InNUM/NL, N2, N3, N4S

ANUMS,DEFL, In L\N2,\N3
A2n271n3S

#TL AL IST,DEFL, | \NUM,5$

APA=BA=TT, =BLANK, 100$

#T1 ECSL\DEFLy | \ECS AL3S
ATTTDIOR/R=77E

L ﬁCMCSADEFLAIAMCQALES (Match control string for a compare statement)
A
3571 A LMCS,DEFL, | \MCS, 158 {Match control string for a locate statement)

A’i LLAL ,BWL=77SE

T, STREMADEF Ly I L ITA308
AABCDEFGZ0123456789) . ,=/ () '+-$3*

16

L,2.5.6 The Padded Cell-List Definition.

*I LNAME DEFL P Padvalue / CNAME,...CNAME $

*T INAME DEFL P Padvelue / M §
The "pad value" may be a positive or negative decimel number, an octal number
precedsd by an equal sign, or the value =BLANK representing a cell of blanks.
As was true for the dummy sentence definition, the added definition statement
may not have overflcw cards,; and can occupy only one card.

Examples of Padded List Definiticns:

*[, VCLS, DEFL,P, @p/ 4Ty Ky TAB STAB, TTAB, T, SLS SN
*T , HITS, DEFL, B, ¢ 45
*T (BUFR DEFL, F =BLANK,, 20

4.2.5.7 The Dummy Cell-List Definition.

#T INAME DEFL D § (no additionsl cards or names)

Example of Dummy List:
*T VL DEFLD $

Example of a General Master-Block Definition with its Component Lists:

*T \M1,DEFM/BUFR ,STREM, JUMPS$
#T, BUFR, DEFL, P) =BLANK 200$

#T7, 8 DEFLAT,LIT A30$

A ABCDEFGZP123456789p0 =/ () '+=$%
¥T1) JUMPS\DEFLA T ST/ LI 240 34 T4
A STL ASTE AST3 ASTLI-$

L,2.,& The Cell.

There is only ore kind of cell definition «= the immediate
definition; a singie decimal number, with or without minus sign, an octal
number przceded by an equel sign, the value BLANK, or & single name is
entered intoc a named cell.

#T CNAME DEFC Valiue $

Examples of Cell Definitions.

¥T, NC \DEFC, ~5$
*T, VB \DEFC =BLANK
¥ S, DEFCBUFR$

*T'5CELL ;DEFC, 0

a7

5. Operstion Statements.

5.1 Structural Statements.

Structural statements do not cause data objects to be moved or
altered in memory, but instead cause changes in the TEMAC system tables
that describe the structure of the objects. It is important to remember
that the cell is the only enhtity that possesses any operational reality
in the TOQH computer; the TEMAC chj=zcts called paragraph, sentence, word,
character-gtream, master-block, and celi~lighi are artificial objects which
are accessible through the system descriptor tables that describe them in
terms cf cells and character-positions within cells. The tables are formed
and asscciated with the datez ohject names by the Definition Statements, and
their contents are filled in, altered, or moved from one table to another by
the structural cperations. No cperation statement, even a structural state-
ment, may create a new name or descripter table, but all must refer to
previously defined names and tables set up by the DEF statements ahead of
time. The descriptor tables form s part of the object program, and are
printed out in the listing so that the programmer may see them. They have
names which the programmer may refer to as machine addresses, if he is famil-~
iar with some simple aspects of TO9L machine language and assembly language;
more will te said sbout these matters in Fart II.

5.1.1 The SEGMENT Statement: wverb SEG.

The SEGMENT statement scaps a source string of characters for those
word, sentence, and paragraph boundsry characters specified in an alphabet,
and creates a description for the sentence or paragraph in a previously
defined sentence or paragraph variable. The verb may have data type com-
binations LP, IS, or HS, allowing for either a cell-list containing characters
or a character-stream cperand 2= a source, and a paragraph or sentence vari-
able as target.

*T (n) NAME SEGT,T, SOURCE ALPHABET AS TARGET /):Rrj RC TAB / ERR X THEN ¥ $

#7(n) - TEMAC statement indicator; statement may overflow onto
"n" (1 to 17) cards after the first.

NAME -~ name of the statement.

SEGT T2 - Verb SEG and data type codes for source and target;
Allcwable data type combinations are: IP, LS, HP, HS.

SOURCE ~ The operand containing the characters to be scanned.

ALPHARET - The name of a previously defined alphabet containing
the desired boundary character-categories.

AS - preposition used in all structural statements having more
than one operand.

18

TARGET - The operand naming the sentence or paragraph variable
being formed.
RL - The name of a result cell-list to contain the lengths
of all the sentences found in a paragraph. (SEGLP, SEGHP)
RC = The name of a céll to contain the count of sentences
found (SEGLP, SEGHP), or of werds found (SEGLS, SEGHS),
TAB - The name of a result cell which serves a special purpose

described in paragraph 5.1.l.1 below.

Error exit- Chosen when the stream scanned has too many words
'~ or sentencés to fit into the |imits in the definition
of the target variable, or when no words (i.e., no
non-boundary characters) are found in the stream, or
when the source or target operand is unobtainable.

5.1.L.L The TAB Reésult Cell. This cell serves to store
a special value representing the position” of the next character to be
scanned after scanning left off for one execution of the statement.
When the source is a cell=list, the TAB cell| serves another purpose as
well, in that it confdains a value that tells that statement where to
start scanning in the cell-list for each execution. |f the TAB cell is
zero, scanning begins at the first (left-most) character of the cell-list.
After the statement has been executed once, TAB will contain a value
placed there after that execution, and the next scan will start where the
last one left off (with the next unscanned cheracter). The programmer
need not concern himself with the format of the value in TAB unless he
wishes to; it will be described in Part II.

Examples of SEG Statements:
Given, a stream read into cell=iist "BUFR", as follows:
TH ISM SENTENCE/ qHAS , , (BEENJREADAI A N-%AHOTHERASENTENCE .
TAB, the TAB celf, starts with contents zero for each statement.
iTﬁSTJﬂﬁﬁeLﬂABuFRhABﬂAQAVPISLﬁﬂSNATABIERﬂhﬁT&ATHEQASTYS
#T,ST2 SEGLS, BUFR,AB,AS, VS)/)\ SNATAB/THEN,STY$
*TASTSASEGHSA_BUFRASB Az&inAB,\ASAVSA / A .SNATABS

{In this and future exdiples, data object nemes are as defined in
examples for Definition Statements in Section 4).

*TASLXADEF‘LAPAQ! 5% (a cell-list for lengths of sentences in VP.)

19

5.4.2 Thé s.‘s-n.&‘-:c*r;-"s'iaf'éri{&ah vérb SEL.

- This’ sratement forms a paragrgph senfenco, word, or
mastér-block variable by seiecfing onig comporient or & specified string
of componients ‘from a single previously existing data object. The ’
corfifporients may be chosen from the 'source by a left-boundary, wiole, "
séquence, sef, or one—compcnent aptrand.

#T (R) NAME SELT J_T:a sauﬁce AS TAR‘GET /' RC / ERR’ xmtﬂ Ys

QELTLTZ;- verb $EL and dbta fypes of source and fnrgcr, pdssuble'
datd type ¢omﬁlﬂhtidns dre: PP, 's$, WW, W, LL.

SOURCE =~ the sourae of +he éampﬁneﬁfs hélng chosén to form
thé target variable.

TARGET - a &ingle- pnragraph oF master-hloﬁk ‘name, or ¢lise a
sénterice, word, or.list referred, to by name or as
one componoﬁf of a largar obJect.

RC =~ = fﬁe name of a resuldt cell whHich 5for¢s rne number
R of cofiponénts in'fhe varrable objecr after its
form:tioﬁ is cémPIete.

.Efror Exit = chesen wheh the source or. targef is unpbfalnable,
or whefi. the source has foo many components to fit
into the target. ‘

.f§

Examy !es‘dFISEL Stat r"
¥TAST4ASELPP mﬂ A&AVPA /6T /ERR ,.?.Tx ,,THEN As‘rﬂ
*#T, STS ASELSS /‘SEQA 3 ,g.ﬁt Bip ASAﬁHE*VP.LI 2), /ncT /THEI’}\STYS
*'r AST% SELWNAONEAS.H 3) ﬂnuts,llzw.'.m:Ts
Wt f§T7ASELMM AL(2) AAsﬂvwcn ,
*TA STB,‘SEL LL,\BUFRA AS ,\DNEJ\VM(2) AICT /ERﬁnsrxs

5 l 3 The COLLECT Sfafhmenf: verb COL.

" The COLLECT Statement forms a paragraph, master-block,
or sentence by stringing together scattered components or obJects
previously defined under various names. Its.source operand consists
of a string of names or one-component opeérands formed around names,
and its target operand is a singlée ﬂﬂME or one component of a named
object. ’

20

*T (n) NAME COLT;T, ‘SOURCE / SOURDE ¢ .. ./B0URCE AS TARGET/
RC/ERR % THEN ¥ $ "

COLTBLTz - COL verb and data types; altlowable cembinat I.‘nnﬂ
: are SP, WS, LM.

RC - name of a result cell siorlﬁg the number of components
in the completed target variable, '

Error Exit = chosen if a source or frarget Is ui‘rob/hlnnhlo or If
the source components owerflow the target.

‘-Egamples of COL Statemsnts:

#TASTGACOLSP \S1 4 zE1p - AONENPL(. 3)\AS\ VP, CT/THEN ASTY$

T, ST.10, COLWS,ONE, S2(.L1ntk W21y IWAAS,ONE VPUJA /ACTS
#T\ST1,\COLIM, NUMS A4 AONEANM lfﬂnq,\l\aUT’SAASfoCT$

5.1.4 The OMIT and INCLUDE Statementss Verbs OMT, INC.

These statements have only one operand, which must bw
‘textual., The OMIT statement causes objects or tomponents to be sk ppad
over if ‘they are referred to by a lster statement as a pert of a source
operand or comparand. (f the entire object whuze name is used In an
operand has been omitted, a statement containing that operand as a source
or comparand will not be executed, but am error exit will ‘be taken.
The INCLUDE statement causes previously mwmitted objects or components
to 'be made available again as they were before omission. -No change Is
‘made Tn the data, but the descriptor table entries sre flapged for
omission by OMIT and the flags removed ‘by !NCLUDE. These gperations have
mo effect when applied to objects which -have aliready been omitted or
included, and are equivalent in that case to "no operation”.

$7(n) NAMF om-}'r i SOURCE / ERR X THEN Y §
INC

T = one data type code only, which maey be P, S, W

SOURCE -~ & whole, single-component, set, sequence, or (eff-
boundary operand specifying thedtbjact or components
to be omitted or included.

Error Exift - chosen if the source is unobtainable

Examples of OMIT and INCLUDE Statements:

#T,ST12 OMTP,VP/THEN ,STXS
#T,STL3,0MTS ASET) 3,521 1,2,6)%
¥T, ST44,,OMTW\ONE,53 { L} /ERR{STXS

24

5.L,5 The EMPTY Statement: Verb MTY.

This statement, |ike OMIT and INCLUDE, has only one operand.
It causes an existing paragraph, sentence, or master-block ‘to be marked as
empty of components, so that it may be refilled.
¥T NAME MTYT, SOURCE / ERR X THEN Y §

TL - single data type code, may be P, S, or M (words,
lists, and cells are not "emptied" in this way.)

SOURCE - a paragraph or master-block name, a sentence name, but
no', one component of a paragraph.

Error Exit - chosen if ‘the source is unobtainable or omitted.

Examples of MTY Statements:

*TAST¢5ﬁMTYPAVPAIAERRASTXATHEMASTYS

#T, STL6,MTYS A\S1p /\ERR As*rxﬂs

5.1.6 The REFERENCE or REFER Statement: Verb REF.

The REF statement enters a value info a single target cell
which describes the location of the beginning (left boundary) or end
(right boundary) of an object, or ifts length in components. The beginning
or end of a ftextual object means ‘the position of the first character of its
first word, or of the last character of its last word. The beginning ar
end of a cellular object means the address of its first or last cell.
Lengths are in terms of components on the next lower level (sentences in
a paragraph, words in a sentence, characters in a word, lists in a master-
block, cells in a list).

#T (n) NAME.REFTl TYPE SOURCE AS TARGET / ERR X THEN Y §

" N
T - .data type code for source (target is always a cell).
may be P, S, W, M, L (not C, since a cell is an
indivisible unit having no beginning, end, or length).

TYPE - specifies the type of information desired; may b,J"-BGNn
(beginning), "END, or “"LTH" (length).

SOURCE-a single object name, or one component of a larger
object about which information is desired.

TARGET-a cell name, or one component of a |ist.

Error Exit - chosen if the source is unobtainable.

22

Examples of REF Statements:

'*Th STlTAREE‘PﬁBGN P1 AS ATAB/THENAST%
ASTJ.BARE'SAEND 152,48 ATAB/ERRAS'I‘X.‘}S

*1 ST19, REFM, BGN) M1, AS |CELL$
P\S‘I'2¢A LTH ONE (S1(k) (b8 JCELL$

*1 ST21, REFL, LTH, NUMS | AS r\c‘T/Tszaf ST

5.2 Data Moving Statements: Textual.

The textual data moving statements cause data to be copied, or
moved in altered form from a source to a target area in storage. If the
target otject is a "fielded" sentence or word, or caa be referred to
accurately in termes of a previous segmentation as a word or sentence
variable, it may immediately be treated as a TEMAC word or sentence
after material has been moved into it. In general, however, the target
object created by an EXTRACT, EDIT, cr CONVERT statement has the status
of a character-stream or a cell-list, and must be segmented befors it
can be treated as a word, sentence, or paragraph. Frequently, the
extracting, editing, or converting are performed for the purpose of
formatting material for output, and segmentation is not necessary.

5.2.1 The EXTRACT Statement: Verb EXT,

The EXT statement copies & source word, character-stream,
or sentence into a target cellelist, word, character-stream, or sentence.
A specified boundary-character may be inserted before, after, or both
before and after one word or character-stream, or each word of a sentence
in the target; (only the characters of the word or stream itself are
copied, and not the boundary-characters of the original sentence, which
are considered to be cutside of the words). Alternatively, leading zeroes
or blanks may be inserted to fill out a field. Copying may proceed from
left to right ("left-justified" extracting), or from right to left ("right-
justified" extracting.) Right-justified extracting does rot cause the source
to be inverted or moved "backwards," but rather causes it to appear positioned
to the right within the target area cor field, with overflow characters chopped
off on the left. When leading character insertion is requested with right-
Justified extracting, the leading zeroes or blanks are placed to the right of
the extracted material; the result is no longer in any sense "right-justified,"
but might be useful for some special purpose. If the first data type code
on the verb is "FY, the source is a "field operand" as described in Section
3.3.3, and only as many characters as will fill the target operand are moved
from the source; if the target is full, and there are still characters in
the source to be moved, copying stops but no error exit results as would
usually be the case. Copying that has been interrupted by an error exit
because of a target overflow in the usual case (where neither data type
code is "F") may be resumed where it left off in the source by using the
"continuous"” form of the statement and re-entering the statement after the
full target area has been processed and cleared.

23

*T (n) NAME EXTT,T, SOURCE Ena .ﬂ ['c] rigmr o TaRGET/ ST TI/
%

ERR X THEN Y$ \

24 TE - data type codes for source and target; possible
combinations are WL, HL, HW, HH, WW, WH, FW, FH, 5L, S5E, 53.

SOURCE - operand containing the textual data to be moved.

S L T""
o~

WB x - word-boundary or leading character insertion ontlr;n;
may be A(after), B(before), BA(Before and after), Lu{leadin-
zeroes), or LB (leading blanks). "x" is present oniy <~

B, A, and 34, and may be an cctal-coded or charurizr- s
value for a boundary character to be insertzo.

c - If the letter "C" is present, the "continuous” Torm
or the statement is intended.

RIGHT - If the wora "RIGHT" is present, extracting 'z rlghi-
Justified, olherwise it is left-justiiiad.

TO - opreposition used with most data moving suaitzments,
(INTO is used for the ENTER ststement {or reasons of
readability)

TARGET - operand into which the source characters av= ¢ pe movre!.

ST - Name of a result cell called the "source teb” 2ell,
which records the position in the source whe-a
copying lei'lt off on completion of the opzraticn.

s - DName of & resuli cell called the "targst teop" cell,
whicn perlorms o service for the tarzet shinilor o
thet of Lhe sourzce Lab cell fur the sourse

. IT the
varget overfiows, thls cell is set negetive. When
the target is a cell-list, the tab cell, il non-zero,
tells where copying into the target list is

as well as recording where it leaves off.

to oeglin,

Ereor Exit-chosen if the targel overflows, or if sourns or target
is unobtainable.

Examples of EXTRACT Statements:
¥TAST22\EXTW, ONE,52(T), T0,F2/STAB, TTAB/THEN, STYS
*TASTQBAEXTFW WHABA,hTOAFW/STABATTAE$ (TTAB starts at beginning of BUTH)
¥TAST2UAEXTIH \TH) Lpl AB A =0 ARLGHI, TOARUFR) 5 pL@/STAB\TTL S/ BRRAHTHG
¥T \ST25 \EXTSLy, 82(1)y A\ =6 N1O) BUFR/STAB, TTABS
¥T \ST26) EXTWH \Til C \TOp BUFRy 1,18/ STAB, TTAB/ ERR, 5TX S TIEN 57V
¥T \ST26A \EXTSS (8143 j32(1) \LBATOAFS2/ STAB,TTABS
1) ST26B AEXTHW STREM , 95 pL 7 TONONEAFS2(1), /STAL A TTABS

24

5.2,2 The EDIT Statement: Verb EDT.

The EDIT statement alters the characters of a source word
or character-stream as they are moved into a target cell=-list, word, or
character-stream. Editing is carried out in accordance with an auxiliary
operand called the edit control string, or "ECS", which is a cell=|ist
predefined by a "DEFL | ECS" definition as described in Section 4.2.5,

and contains edit control characters. (These are "T" ~ transmit source
character unchanged; "D" - delete source character; "R"™ - replace source
character by character fo follow in ECS; "I" - insert characfer to follow

in ECS into target before next source character; "E" - stop). |In other
ways, the EDIT statement is |ike the EXTRACT statement for single words

or character streams, and provides similar options (right or left-justified
editing, continuous editing, insertion of boundary characters). (f the

ECS ends without the stop character "E" before all of the source has

been moved, the remaining source characters are transmitted unchanged as

in EXTRACT. The EDT statement does not allow leading character insertien.

*T (n) NAME EDTTiTz SOURCE EVB x] [C] [RIGHﬂ TO TARGET BY ECS/
ST TT/ ERR X THEN Y §

TLT2 - data type codes for source and target; allowable
combinations are WL, HL, HW, HH, WW, WH, FW, FH.

BY - preposition that iinks target operand and ECS

ECS = the name of a cell=|ist containing edit control characters,
or one component of a master=block of control strings.

Error Exit = chosen for the usual reasons, or because the ECS
contained a character that was not an edit control
character.

Examples of EDIT Statements:

*1NSTZ]KEDTWLAW4AAAf6@AFqA3UF%\B$\ECSLfSTAQAITABITHENﬂﬁTY$

HTAST28,EDTHH ASTREMAJ-ABAR {GHT, TO,BUFR A-LABABYAECS L/STAB,TTABS

A
FTRECSLADEFL \ | \AECS L3S
ATTTDIOR/R=77E

5.2.3 The Textual Conversion Statement: Verb CVT.

This statement converts a single unsigned cellular
value or list of such values to decimal form, and represents it in
a stream of BCD numeric characters. The characters are then extracted
to a word, character-stream, or sentence target. A boundary character
may be inserted after each converted value as for EXT and EDT. The'
continuous option is similarly available in case the extracted numbers
overflow the target area. There is no right-=justified conversion,
however, but instead a "leading blank or zero" option; which allows
blanks or zeroes to be inserted to fill out the farget before the number.
Either word-boundary inserfion or leadihg blank or zero may be used,
but not both. |(f the source is negative, it will be converted as positive,
the sign being ignored.

25

*7 (n) NAME CVTTl'I'E SOURCE [WB x_] [c] TO TARGET/ RC TT /
ERR X THEN ¥ $

Tng - data type codes for source and target; allowable
combinations are CW, CH, CL, LS, LH, LL.

SOURCE

1

always a cellular object, a cell or cell-list; may
be any type of cperand involving a cell-list name
or cell name.

TARGET

a word, cell-list or character-stream for a single
number; & sentence, cell-list, or character-stream
for a list of numbers.

RC = the name of a result cell which stores the count of
numbers converted from cells and moved to the target.

bl b = the name of a target tab cell like that in EXT and EDT.

Error Exit - chosen if source or target unobtainable, or if target
overflows. :

Examples of CVT Statements:

T ,ST29,, CVICW , ONE ALIST(NZL) ALZATO AFE/CT ATTAB/ERR STX Anmm,\s'mi;
T ST3(), CVTLH, NUMS, A ; \TO\BUFRAL Ale/CT,\TrAB/THENASTm
*T, 8T31,CVILS,SEQ ANll-AI\TUMS(2),\ I.BATOAFSE/CTATTAB/T}[EN ASTY$

5.3 Data Moving Statements: Celiular.

Cellular data moving statements move contents of cells,
cell-lists, or master-blocks. No "editing" is needed for cellular
objects, as this operation is usually understood, but they may be
altered by adding or subtracting, multiplying or dividing with some value
or else by replacing their contents by other cellular objects.

5.3.1 The MOVE Statement: Verb MOVE,

The contents of a cell-list are moved to the cells of
another cell-list, or the contents of a master-block to the cells of
the listsin another masster-block. The value in each cell may be
incremented or decremented as it is moved by a single auxiliary value,
or each cell may be copied unchanged.

26

*T (n) MDVETJ_TE SOURCE [d: AUXBLIARY] TO TARGET / RC 7/ ERR X THEN Y §

lez - data type codes for source and targetf; allowable
combinations LL, MM.
SOURCE - a whole Iist or master-block, or a left-boundary,

sequence, sef, or one-component operand,

- a pius or minus that must be surrounded by blanks,
+ and not attached to the following word; it must
precede fthe auxiﬂiary if one is present.

AUMILIARY-& c=!l name, one component of a cel!-llst, or a
"literal" number (i.e., a decimal number or an octal
number with an equal sign attached to it).

TARGET - similar to the source; source and target must describe
objects having the same number of components, so that
there is a source cell for every targef cell.

RC - a result cell to store the number of cells or |ists
moved info the target |ist or master-blocka

Error Exit = chosen if source or target is unobfulnable, or
if the target overflows.

Examples of MOVE Statements:

#T) ST32,MOVEMMASEQ 2L 1) ATOAVMV/CT/ERRASTXATHEN ;STYS
#T \ST33, MOVELLSET,3,NUMS 3,24)0~ BGATOAL ISTIN4)/CT/THEN,,STY$
T, ST34,MOVELLAONE\MLL3) TOAVL/CTS

5.3.2 The REPEAT Statement: Verb REPT.

A single cell, a signed decimal number, or an octal number
is copied repeatediy into specified cells in a list. A single list, one
component of a master-block, or a literal string of octal or signed
decimal numbers is copied repeatedly into specified lists of a master-
block. No change is made in the source values as they are moved.

#T (n) REPTTiTz SOURCE TO TARGET / RC 7/ ERR X THEN Y §

Tsz - data type codes for source and target; may be CL, LM.
SOURCE -~ the single value or iist of values to be copied.

27

TARGET =~ the name of a whole |ist or master-block, or a one-
component, sequence, set, or l|left-boundary opeland
referring to a |list or master-block name.

RC - result cell to store the total number of repefitions
of the source value or list into the target.

Error Exit - chosen if source or target is unobtainable, or
if the target overflows,

Examples of REPEAT Statements:
*TA$T35AREFT LMA-2A5A=77?A @ATOAMJ.,(2 I_/CT/THENASTYS

*TASTSGAREPTLMASEﬁ\QANUMSt2A*A3hATQASEqA2AMLI21ICT$

*T STSzAREPTCHn=BLANKATQABUFRI;T$

N
*ENSTSﬁAREPTCHNQIJOAﬁITSICT$
*Tﬂ§T32AREPTCLAN2ATQ\SEIASALISTI%N§A§J/CTITHENASTY$

5.3.3 The Cellular Conversion Statement: Verb CVN,

A ftextual word or character-stream containing numeric
characters is converted to binary and stored in a cell; a sentence made
up of words containing numeric characters is converted and its component
values stored in the cells of a cell=list. Any number read in from tape
as a stream of BCD numeric characters must be converted in this way
before it can be referred to in cellular data moving or data testing
statements, or used as a pointer in an operand. |t should be noted that
number words using alphabetic characters, such as "one hundred", "five",
are not what is meant by a textual word containing numeric characters, buf
rather "I@g", "5". |f the source word or character-stream is longer than
eleven characters, or if it contains any non-numeric characters, the error
exit from the statement is taken.

#T (n) CVNTsz SOURCE TO TARGET / RC ST / ERR X THEN Y §

Tsz - data type codes for source and tfargef; allowable
combinations are WC, HC, SL.

SOURCE - a word or character-stream, one component of a
paragraph, a sentence name, or any operand involving
a sentence name, containing the characters to be
converted.

28

TARGET = g8 cell name, a list names, or any operand involving
a list rame; one component of a master-block.

RC = 7result cell to store the nmunber of values converted.
ST - a source tab cell, similar to that for EDIT and EXTRACT.
Error Exit -~ chosen for the usual reasons and aslso if the source

contained more than 11 characters or one of its
charscters was non-numeric,

Examples of CVN Statements:

CGiven, an immediate sentence as follows:
*T1 \NSENT \DEFS \I/NS1\NS2Z W63, NS4 $
ﬁ'-15¢j\ 2P EYpeft p
*T Ascrh;d,\cvmc ASTREM, 144 \TOACELL/CT NETAB /THEN ST
¥T') STU1) CYNSL\NSENT(2), TOANIMS /CT\STABS
*T Asmha,\cmc Ansh nZ0 ACELL/ cT AS’I.‘AB$

5.3.4 The ENTER Statement: Verb ENTER.

A string of differsnt vaiuves specified by cell names, single
components of cellelists, octal numbers or signed decimel numbers may be
entered, each into a corresponding target cell name or single list component.
The source and target operands of the stabtement may both be compound, con-
sisting of a string cof nameg or cne-component operands or numbers separated
by slashes. There is no data typs code, since ENTER always refers to single
cells. No error exit ig needed, bscausze single cells, unlike other TEMAC
objects, always have machine addresses and are thus slweys considered to be
"obtainable." There must always be an equal number of scurce and target
elements. The value "," (comma) occurring as a source means that the material
obtained from the previous scurce value should be inserted again, into a
differsnt target name. Similarly, the use of & comms between parentheses as
a poivter implies that the same pointer value is used as for the previous
operand. (Needless to say, a comma cannct be ussd in either of these ways
in the first source desigmnation of the statement.) These featurss provide
a saving in machine instructions in the compiled MAP czoding.

*7 (n) NAME ENTER SOURCE E/SOURGE/ vid SOURGE] INTO TARGET &TARGEJJ/
+«+/ TARGET] /THEN Y$

Examples of ENTER Statements:
¥T(STU3 \ENTER, 7/ 3/ s \INTO, T/ 3/ K /THEN), STY $
*T, SThL\ ENTER AL/ B/ =5 \INTO, T [ONE NUMS(3) /CELL$

XT/STUSAENTER/, / /1] |, §ENTONA/B/C DB/
¥Ty STUSBAENTER (ONE,NUMS(I) JONE LIST(,)\ ZNTO ONE (HITS(,) JONEAVCLS(,)$
29

5.3.5 The IOOKUP Statement; Verb IKP,

A singie cell or one list-component is "looked up" (i.e.,
used as a pointer or position number) on a cell-list; the value in the
cell thereby selected is similarly looked up on a second cell-list, ete.
The final result, read out of the last cell lcoked up, is stored in the
third operand, a single cell or one component of a list. A single cell
name, list component, decimal or octal number may be added or subtracted
from the scurce to produce the value that is looked up. The list names on
which the lookups are made are arranged in a string separated by slashes,
like the cperands of the ENTER statement, and form a compound auxiliary
cperand in addition to the source, the added or subtracted number (if any),
and the target. DNo data type codes are needed on the verb, since the
statement has only cells as its primsry operands (source and target). The
auxiliary objects must bhe List names and not components of a master-block.
No error exit is required.

¥T (n) IKP SOURCE ON AUXILIARY EAUXILJ:ARI/ e /AUXILIARY:] TO
TARGET / THEN X $

Examples of IKP Statements:

Given a master-blcck as follows:

T, M2 \DEFM/ LA \LB,LC$

¥T1 LA \DEFL I NUM 1

A24Lakp308

*T1, LB, DEFL, T, M 44

A*A2A3pLAS

T ASTLE, LR, ONELB(4)\ ON 14/ 1B/ LGATO, CELL/ THEN, STY$
¥INSTAT, LK, Nk ONALC /1B TONONEAVCLS, (3)$

5.4 Date Testing Statements: Textual,

Textual datz testing statements investigate the similarity
between a source cperand snd a comparsnd, according to any one of eight
different match conditions, as follows: identity mateh (ID), or character=-
by-character comparison requiring that source and comparand have the same
characters; tolerance metch { IT THR), a match requiring that source and
comparand have the same characters, but allowing a number of mismstches
rot to exceed that specified as a cell name or number at "THR"; category
match (EC ALF), accepting as matches either identical characters or
characters belonging to the same category in the TEMAC alphabet named
at "ALF"; length match (EL), accepting only words of the same length,
without regard to the characters they contain; sort-order tests, of which
there are four, referring to the sorting sequence of a named TEMAC alphabet
at "AIF" (AFT ALF - source must ve after comparsnd; EEF AIF - source must
be before comparand; AFQ ALF - source must be affer or equal to comparand;
BFQ ALF - source must be before or equal to comparand). If the special
"skip" character "*" appears in either source or comparand, the corresponding
position is skipped, or sccepted unconditionally.

30

5.4.)l. The COMPARE Statement: Verb COM.

The COM statement compares two words or character-streams
according to any one of the eight match conditions described above. |f
the’ two objects - the source and comparand - are accepted as a matching
pair, the "YES" exit is taken from the statement, otherwise the "ELSE"
exit. |f either source or comparand has an apostrophe at some position,
the other operand will be considered’ to match only if it has & number
(O through nine) at the corresponding position. ' This provigion allows
numerals to be matchied as if they were a character-category, without
the need for a match control string or the "EC ALF" conditions The
result operands store various kinds of information about the compared
objects. This information is primarily useful in case of a non-match.
When the match condition is [D, IT THR, or EC ALF, the result cell stores
the total number of non-matching positions, and the result. |ist stores
the character position-numbers where the discrepancies occurred. Whén
the condition is EL, the result cell stores zero, or the signed difference
between the lengths of the objects (source length minus comparand length),
and the result list is not required.” When the condition is & sort-drder
test, the result cell stores the position of the character-comparison
that was decisive in assigning a refative sort order to the operands,
and the result list is not used. |[f one data type code is "F", that
operand is a “field operand", and only as many characters are used from
it as are needed to pair with characters in the other operand. ' |f
neither type code is "F", the operands must have the same length to be
accepted as a match, but information is recorded about non-matching.
positions up to the end of the shortest operand in any case. In the
EC ALF condition, an auxiliary operand is required, in the form of a
match control string, predefined by a "DEFL | MCS" definition, and
containing match contro! characters. Each match control character
applies to a pair of characters in the primary operands. Match control
characters are as follows"” “M" -~ source and comparand characters must
be the same; “l through 9" - both must belong to the specified character=

category; "W, S, P, U" - both must beiong to the specified baundary
characfcr—cntegory, or to the wastebasket category; "#" — character
pesition is sklppad- “E" - matching Is terminated, regardless of other
conditions. |f the MCS ends without an “E" character, before the.source
or comparand is done, matching continues as if the condition were ID.

T (n) NAME COMT T, SOURCE CONDITION IN COMPARAND EY Mcs_]/ Eag‘nc /
ERR X YES Y ELSE Z §

T T, = data type codes for source and comparand; allowable
combinations are W, WF, FW, HH, FH, HF, HW,'WH.

CONDIT|ON-match condition; may be ID, IT THR, EC ALF, EL,
AFT ALF, BEF ALF, AFQ ALF, BFQ ALF, where ALF is a
predefined alphabet name., and THR is a number cr cell
name,
34

IN - preposition used for all date testing statements.
[?Y ~ preposition used to [ink the comparand and the MCS.

MC%] - match control string; a cell-list name or one component
of a master-block.

Error Exit - chosen if source or comparand is undbfainable,
or the result list is too short to hold the
information being stored in it.

Examples of COM Statements:
Given a gentence:

*T\SA \DEFSp | 15$
ABABBC \BBB \BBCDE BBCDA$

and a word:

#TL\WORD,DEFW,| 1$
ABBCD,S

*TAST4BACDNWqﬂWORDAIDA}N,PNEﬂﬁAlJ)/HIT%ACT/YESASTYAELsEA§TZS (let J=l)
*TA§T4QACOMFQAWDRD/JTﬂgnlﬂAPNEASA(JLnIHITSACTIYEﬁhﬁT!AELSEASTZS

Given a sentence:

#T 1 AENDS \DEFS 71238
AIONALLYAALLY,LY, $

and a word:

¥T | \WORD2,DEFW,,|§
AINTENT IONALLYAS

‘Note: Thers is no right-justified match option for COM; if a
sight~to-left match of two single words is desired, a LOC
statement should be used, having the fcllowing form:

#T ANAMEALOGWS AWORD ALDRIGHT /IN, SEQ 1 ,\SAL’ J) /HIT/YES ASTX$

32

1.2 The IOCATE Statement: Verh [0C.

wn

The LOCATE Statement compares = single source word or
character-stream successively to each word of a comparand sentence,
or each offset within a comparand cherzcter-stream. If the "ALL" option
is requested, all hits are Tound in the comparand:; the result 1list stores
the position numbers of words, or the character positions of offsets in the
comparand that matched the source, aznd the result cell then stores the number
of hits, or zero if there were ncne, If the word "ALL" is not present in
the statement, only the first (left-most) hit ie found, and the position
number 1s stored in the result cell; the result list is not reguired., Lhe
match conditions are the seme as for COM. If at least one hit is found in
the comparand sentence or stream, the "YSI" exit is taken, otherwise the
"ELSE" exit. A right-justified matching ovtion is allowed with LOCATE,
which provides for matching of the end of a source word against the end-
of the comparand words. For the EC ALF condition, one of the orimazry
operands must be a match control string; it is not, as in COMPARE, n thni-
operand. Iff the MCS is the source, the {irst data type code on the verb
must be "LY¥ and if a string of MCS patterns in a master-block is the arwi-
parand, the second data type code must be "M!s Control characters state
a requirement on the corresponding charscter-position in the other OnerEand.
The control characters sre the same as for COM, with one excepticn: insteuad
of "M"y the character "L" i1s used, followed by a single octal-coded or
character-coded value which must be matched by the corresponding character
in the other operand. Ivery MCS pattern for a ILOC statement must cad in Lhan
stop character "E¥, and matching always continues in the EC ALF condition
untlil the stop cuaracter is reached in the MCS, regardless of the length
of the other operand. When endings of words are being compared by means
of the EC ALF condition, and one <perand contains match control churscters,
the control string is still read from left to right, and must be set vp
with that in mind. There may te an "F" lor either scurce or compsrand on
the verb, meaning that it is a field operand, and resulting in the same
modifications in the operation as were described for COM; it should be
noted that, vhen the source is the [iuld opersnd, o different number of
characters will be matched for each comparand word. If there 1s nc "F"
on the verb for either operand, matehing will not take place for any vord
or stream-pair that does not have the same length, but they will be con-
sidered sc non-matching.

*0 (n) Nave rocm. T, [arn] souser conprrzon RIGHTJ IN COMPARAND /
[RL] RC / &R X ¥ Y ELSE Z §

T, T, - data type codes for source end comparand: allowable
' combinations WS, HS, HH, WH, WF, HF, FS, LS, L, WM, HM.

[}I{J - If this word is not present, matehing will step as soon
as the first hit nes been found. If "ALL" is present,
the entire comparand string will be scanned and all hits
found.

33

SOURCE - a single word, character-stream, or MCS.

RIGHT - |If this word is present, right-justified matching
is called for (endings of words are matched).

TARGET - @a string of words in a sentence, all offsets within
a character-stream, or a master-biock of MCS patterns.
RL "= name of a result list; not needed im statements

where the word ' "ALL" was ' absent, since only one
hit will be fuund, which is stored in the result cell,

Error Exit - chosen for the same reasons as in CO&.

Examples of LOC Statements:

*?ASISjALDCFSAﬁLIV\WORD%AIqﬂRIGHﬂAIN ENDSIHIT%AFTIYE§N§Tﬁ\ELSE STZ$

*TRSTS?ATDCWS’\AIL A WDRDAI DAI N,,éA/H ITS,.{.‘.TIY_ESASTYS
(these two statements use the definitions set up for COM)
Given an immediate sentence:

*TL NMWDEFS | ,2%
(A (AYA)

AABCL50 BQZGQMS
and a master-block of MCS patterns:

#T, PATRN DEFM PATLWFATzs
AKPAT DEFL I MCS B$
zzzuué!“ Al
72, PAT2,DEF L\ | MCSABS
A22LZLAWE

*T,ST53,LOCWM ONE KM p (2] |EC,AB,RIGHT,,IN PATRN/CELL/YES,STYS

¢
*T ST54,LOCWN A ONE \ NMW 4 (2) \ EC,ABLIN PATRN/CELL/YESASTYS
(numbers may also be found by using the special control

character "apostrophe" in one operand as for COM, without the need for
a match control string).

34

5.5 Data Testing Statements: Cellular, ~ The FIND Statement, Verb FIND.

There is only one cellular data tesflng verb, the FIND verb. The
FIND statement allows for testing each of a |ist of comparand values for
cerfain condifions or certain relationships to a given source value. |If ths word
"ALL" deces nct appear in the statemenf, only one hit is looked for in the
comparand, and only a resulf cell is needed to store the position of that hit. If
ALL is present, all hits are found, and a result list is required to
store their position numbers; the result cell then stores the number of
hits. The source and comparand values are signed numbers, and all tests
and comparisons take the sign into account. Due fo a peculiarity of the
computer, if a negative number is subtracted from a positive number of
equal magnitude, the result Is "plus zero", but if a positive number Is
subtracted from an equal negative number, the result is "minus zero".
It should be noted also that the cellular value=BLANK, {corresponding to
an octal number "606@6@606060") is negative in the computer. The FIND
statement has, at present, only the data type combination "CL" on lts
verb; "LM" may later be added if a need is felt for it.

5.5.1 Finding the Larqest or Smal&esi Celluiar Value,

This form of the FIND statement has only a comparand, and
produces one position number only, stdored in a result cell,

*T (n) NAME FINDCL CONDITION IN COMPARAND /RC/ ERR X THEN Y §

QONDIT#ON « may be "GST“ {find the greatest value), or
C nLSTY (find the smallest value)

COMPARANb - one componhent of a master-block, or any operand
i containing a List name.

(examples are at the end of this section.)

5.5.2 Flinding Cellular Values of a Given Type.

In this form of the statement, there is only a comparand,
and the exit routing Is conditional, with a "YES" and an “ELSE" exit,

¥ (n) NAME FiNDCL [ST} TEST CONDITION IN CompARAND 7[RI} R /
ERR X YES Y ELSE Z §
TEST CONDITION <~ may be “ZRO" (zero valuel, "NZE" (non-zero
! value), "MNS"™ (hegative valuel), "PLS™ (positive
walue), "RNG L U" (value greater than or equal
to a number or cell name at L and less than or
equal to a nuimber or cell name at U).

RL - required if the word "ALL" is present in
the statement.

Error exit « chosen if a comparand element was unobtainable,
or because the result |ist overflowed.

35

- 5eBad Einding Cellular Values With a-G[vqp‘qugTiqq {o Another.

In this form, there is a'source.aa well| as a comparand,
and a conditional exit routing.

¥T (n} NAME FINDCL [LA_]'CGMRARISON CONDITION SOURCE I[N COMPARAND /
E;q RC 7/ BRR X YES Y ELSE Z $

COMPAR |SOM: COND.ITION -~ ®EQU" (squrce equal to comparand),
®WNEQ™ ‘(source unequal to comparand), "GRT (source
greater than comparand), "GRE" (source greater
than or equal fo comparand), "LES™ (source less
than cﬁﬁparand), " SE" {source less thanh or equal
to comparand).

SOURCE - a cell name, one component of a list, a signed
decime| number, or an octal number preceded by
an equal sign.

Examples of FIND Statements:

¥Tp ST55 p FINDCLAGSTAINNUMS,// CELL,$

*TASTSEAFINDLIAAU ZROAI NALIST 74 H ITSACTA YESASTYAELSE STZ, $
*qASTSTAFINDGE«AL%ARNGﬂ%ﬂ IN NUMSIHITS‘A /YE%ASTY$
*Tﬁ@TS%AFINDG%AﬁLLHLE%nNdnlﬂANUMSIHIT%ACT/YESASTYS

*T AST 59 AFINDCL/@LLANEQ ﬂmfﬁﬂl N A.L IST/HITS ACTI YES l'...STYS

5.6 Reading and Writing STajementsa

The TEMAC programmer may have several input and ouftput tapes,
or™iles” in his program. The number of these is |imited by the unfortunately
large requirements of the [BSYS system, but there are ways in which extra
tapes may be borrowed from the system if they are needed. The usual text-
processing program wiil need at least & major text input file and a major
output file, both of which will probably be "multi-reel” files (i.e., al lowed
to run over onto more than one physical fape reel). The output file may be
intended for printing or for future machine processing on the 7094 or some
other machine., There may be several output fliles, some for prinfing and
others for machine processing. There might also be an additional input
file, to provide parameters or contro! information, or a large dictionary.
Every TEMAC program has a special file called the "system run log," which'
contains debugging information produced by the debugging statements and
material the programmer chooses to write on it for the purpose of recording
or explaining occurrences during the run. Files are named and defined by
means of "file cards", which are required for any 7094 program using |OCS,
and are not peculiar to TEMAC programs. The file name in the file card
is used in all TEMAC reading and writing statements that refer to the file.

36

Files must be "opened" at least once, before they msy be read or written,
and they may also raquire to be "closed" (these actions form a part of
the IOCS system). The RUNLOG file must be opened, but should never be
closed by the programmer; all other files must be opened, and may be
closed. The IBJOB system cleses them all if they have not been closed
by the programmer when the job is terminated. All non-normal exits

from reading and writing statements must be present; only the normal or
"THEN" exit may be dropped. File cards are discussed in Section 6 and
Part II.

5.5.,1 The READ Statement: Verb READ,

A single "logical record" is read from a named source file
into cre or more target aress of memory. The length of the material read
from the file is equal Lo the sum of the cell counts of material read into
different memory areas. If this total count is less than the block size
for the file, specified in its file card, the remaining, unread cells in
the block will be skipped, and subsequent reading will start from the
beginning of the next physical block. If the count is greater than the
block size for the file, all cells of each block will be read in a con=-
tinuous stream regardless of physical boundaries on the file, except for
any cells left over in the last block read. These left-over cells will be
skipped, and the next "READ" will start at the beginning of the following
block. The target names must be cell nemeg or list names; they cannot be
single components of master-blocke {"ONE M(I)"). Each target name must be
followed by two positive decimal numbers: a starting position, and a length
in cells. The starting position tells which eell; relative to the target
name, will contain the first cell-full of material read in, and the length
tells how many cells are tc be read into the area. For example, "BUFR 1 12"
means that 12 cells are to be read into cells "BUFR" through "BUFR#l1". The
length can be any number, regardless of TEMAC cell-iist cr other object
boundaries. Mandatory error exits ars provided for "end-of-file" and tape
reading errors {"bad reccrds"). The programmer must specify these exits,
which cannot be dropped; he should place there the names of routines or
stetements which handle the conditions in whatever way he desires, e.8.,
finishing cff the program rum at "end-of-file", or preparing to read a new
file; accepting a "bad record" or skipping to the next record. To accept
a bad record, (which is frequently the most reasonable thing to do since
the record is rarely sericusliy in error), an immediate return is made to
the same READ statement; a warning may be displayed on the RUNLOG file with
a "DISPI" debugging statement (sse 5.9) before returning to the READ, To
skip the bad record, an additional "dummy” READ statement should be executed
and then a return made, with or without displaying a message on RUNLOG, %o
the original REAL.

*T (n) NAME READ FILENAME TO TARGET, S; ng - TARGET; S; 1;1/

EOF X ERR X THEN Z $

FILENAME - name of a file defined in a file card as an INPUT file.

TARGET - & cell name, cell-list name, or IBMAP address.

S = & positive decimal number, not a cell name; starting
position.

L - like S5; length.

ECF = end of file; X is exit address for this condition.

37

ERR - bad record exit; Y is exit address.

Examples of READ Statements:

*T) ST6H, READ,TEXTFL, 10 BUFR 1 A2¢/EOFASTIAERRASTY THEN, STZ$
Accepting bad records:
*T s'.végéA READ, INFIL, TOBUFR, 1 14/EOF 3T6¢x4 ERR As'rspir/\ THEN, STZ$

*T1 ,\s'régéx DISPI 9/T}ENAST6¢A$
ABADARECO chcﬁpr

ST6¢1 DIS 2¢/TI-IENAFMDUP$
ROF ON , INPUT

*TAENDUPAFINISH".;S
Multiple Target areas:
Ty ST6¢B,READ (CEXTFL, TO (BUFR, 1 Alpﬁ/A STREM 1,5/HITS,\L,5/ { EOF\STX, ERR, STY

5.6.2 The WRITE Statement: Verb WRITE.

A single physical record (block) is written onto a named file from
one or more areas of memory. The total number of cells written must equal
the block size of the file in the file card. The source name or names are
like the target for the READ statement. Each source name must be followed
by a starting cell position and a length in cells, as for READ. No error
exits are required.

¥T (n) NAME WRITE FILENAME FROM SOURCE; S, Ll[.. i f SOURCE; S Lg/
THEN X $

Examples of the WRITE Statement:

*T r\STl‘Jl!\WRITE!\PRNTFLAFROMABUFR ! Aagi /THEN STX$

*I), ST61A WRITE APRNTFLAFROMALISTAlf\S/BUFRAllAm/A}H‘I‘S 1 A5$

N

38

5.6,3 The OPEN Statement: Verb OPEN,

This statement causes a file to be "opened" by the IOCS
system; this means that material is read from the tape into buffers
outside of the TEMAC program, and various initializing actions are
carried out in the buffering system. Physical reading takes place in
IOCS independently of "READ" statements given by the programmer, which
serve only to move data from the system buffers to the target ares and
to trigger more physical reading when more data is needed; the "opening”
of the file starts off this process. The file may be opened with or
without rewinding the tape to the beginning before getting data from the
file; it is frequently safest to rewind the tape, if the beginning of the
file is desired. The RUNLOG file should be opened by the programmer
along with the others as close to the begimning of his program as possible;
RUNLOG should never be rewound, however,

*T NAME OPEN OPTION FILENAME / THEN X $

OPTION - may be "REW" (rewind the tape), or "NOREW" (do not rewind)

Examples of the OPEN Statement:

T ST62 \OPEN,, REW, TEXTFL,, f THEN, STX$

*Tn ST63 hOPENANORmhRUNm

39

5.6.4 The CLOSE Statement: Verb CLOSE.

This statement causes |0CS to "CLOSE™ s file; closing
involves releasing the system buffers in which material was being
read for the file, and carrying out other actions which render the
file unavailable until It has been re-opened, or in some cases (when
the file has been "unloaded") unavallable under any circumstances.
Closing should, therefore, be done when reading or writing in a file
Is completed, and it Is desired that the system buffers be free for
processing another file, or when the program run is over and all files
are completed. The RUNLOG file should not be closed by the programmer.

*T NAME CLOSE OPTION FILENAME / THEN X §

OPTION * - may be "REWUNL" (write end-of-file on an output
file, rewind and unload the tape,) "REWEOF" (write
end-of«file and rewind the tape,) "NOREW" (write
end-of~file, |eave tape positioned as it is,)
"NOEOF" (does nothing to the tape; releases buffers).
lend-of-file 1s not, of course, written unless
the file is an aufput filel,

Examp les of CLOSE Sfatemegts.

*T 5T64ACLOSE REWUNQ,FEXTFL$

*T STﬁanLOSEAREWEOE¢MACFILITHEH,§TXS

5.6.5 Other /0 Actiansg REWINDﬂ WRITE Eﬂp-OF-FI_gn BACKSPACE
RECORD, QACKSPACE FILE; Verbs REW, WEF, §§ o BSF.

The REWIND statement allows a tape to be rewound to
the beginning, e.g., preparatory to re-réading it, without closing
the file or affecting the system buffers, WRITE END-QF-FILE allows
an end-of-file mark to be written and action temporarily suspended
on an output file, prior to writing another physical file onto the
reel, under the same file name, without closing the file. BACKSPACE
RECORD allows a single physical record (not a logical record, as in
the READ statement) fo be re-read. BACKSPACE FILE allows a specified
numbér of files on a multi-file reel to be re-read or re-written.
Most TEMAC programmers will not need to use these provisions unless
they are also familfiar with |0CS, or have done something out of the
ordinary with respect to tape usage. As may be seen care must be used
in mixing these statements with READ, WRITE, OPEN and CLOSE statements,
and the programmer must have a clear idea of the physical arrangement
of material on the tape reel. All error exits must be specified,

4o

¥T NAME REW FILENANE / THEN X §
¥T NAME WEF FILENAME / EOT X THEN Y §
| T NAME BSR FILENANE / EOF X THEN Y §

#T NAME BSF- N FILENAME / THEN Y §

EOT Exit = taken if end of tape is found while writing
end-of-file.
EOF Exit = taken if an end-of-file (signalling the end of
' the last file and the beginning of the current
one) is found while backspacing a record.
N - positive decimal number, telling how many files

are to be backspaced over; not a cell name.

Examples of REW, WEF, BSR, BSF Statements:

*3‘STﬁEABEﬂATEKTFLlTHENASTXS

iﬂhST67 WiﬁhPRNTFLIEUTAFTKATHEQASTYS

#7, ST68,BSR TEXTFL/EOFASTXS

*TASTGQA B_SF,l 2 [TEXTF LS

5.7 Control Statements: Decisions.

The control statements provide ways of determining the path
of contral in the program. ™“Decisions® allow a choice among alternative
paths; if some condition is present, a given statement will be executed
next, otherwise a different statement. There are three TEMAC statements
whose primary function is to provide a decision among alternatives, or
a choice of where to go next in the program: (MOVAD, 'IF, BRAN);. scme forms
only. alter single cellular valués without providing a test or decision,
All forms have only single cellular values as operands, and none require
error exits. Most forms have a conditional exit routing, of which the
positive exit may not be dropped; no label ®YES™ |s used before the
positive exit in these statements, since they are more easily readable
without the label, No data type codes are needed on the verb, except
in the case of BRANCH, which has two special data type possibilities.

41

5.7.-1 The MOVE-ADL Statement: Verb MOVAD.,

This statement changes the value in a source cell by multiplying
or dividing it by another value, adding or subtracting one or more other
values, or performing several such operations, then moves the result into a
target cell or list component. If multiplication or division is specified,
only one of these operations can be performed, and it must come first, before
any additions or subtractions. Any number of additions and subtractions may
be carried out. The source and target are cells or single components of
lists, and the auxiliaries may be decimal numbers, octal numbers (with =
sign prefixed), cells, or list components. The unconditional form of the
MOVAD statement does not provide & test, but simply alters and moves a source
value, then goes to a normal exit. The conditional forms change and move
the source value, then apply various tests to the result or compare it to
another, comparand value end provide & positive (unlabelled) or negative
("EISE") exit depending on the outcome. If & comms appears as the source,
the current contents of the accumilator register are used (this feature
saves machine instructiong, but must be used with care by someone who under-
stands the machine code genersted by the compiler). If a comma appears
between parentheses as a pointer to select a list component, the same value
as wag specified in the previous pointer will be used; a similar feature
was described for the ENTER statement. A source list component or cell
name may be preceded by an attached minus gign; auxiliaries should not
have such & sign (and do not reguire it since they are preceded by plus
or minus signs as arithmetic function words, surrounded by blanks).

T (n) NAME MOVAD SOURCE F mclﬁ veoF AUX’B TO TARGET / THEN X $
T (n)UHI\'[AIwIE"MpVAI) SOURCE F AUX, [F ...F AUYJ TO TARGET / TEST CONDITION
X EISE Y $
*T (n) NAME MOVAD SOURCE F AUK, [F ...F AUX]TO TARGET / COMPARISON
CONDITION COMPARAND X EISE ¥ $

'wal to AUy - a cell name, one list component, decimal number,
octal number (preceded by attached = sign).

F - Arithmetic function word; may be "+" (plus), "-" (miﬁus),
".D" (divided by), "." (multiplied by)..

Examples of MOVAD Statements:

*¥T)\STT3,MOVAD,I, +\ J, TO, K/THEN, STX$

*T STTh I\MOVADAJ,\:- 1\TOAONE VOIS (1) /RNG -2 3STX$

*Ty STT5, MOVAD), ONE,\VCIS (3)) + 5 ATOAI/GREAIQ pSTX \ELSEASTY
*T\STT5A NMOVAD-Jp. D,\G AN - Aomm,\m'rs(3)ATOALS

*T)\STT 5B\MOVAD) ONE (HTTE (T) oy 5+ ONE,NUMS (,), 7O, ONE\VCLS(,) $

L2

*T, STT5C \MOVAD, , r « (A TO K
'*‘I.‘ASTTSDAMOVADAIA+AJ|.ATO“\I/GRJ.‘ASNAS'EC$

5.7.2 The IF Statement: Verb IF.

The IF statement does not alter or move any cellular wvalue; it
provides the same tests as the MOVAD statement {conditional forms) as if
the source value had been mltered in specified ways (also similar to those
provided by MOVAD), but leaves the source unchenged. All IF statements
have a positive (unlsbelled) exit and a negative ("EISE") exit.

#T NAME IF SOURCE F AUXy (F ,..F wa_;!/ms-r CONDITION X EISE Y $
*T NAME IF SOURCE F AUK, [F ...F Am_;ycaymmsom CONDLTION
COMPARAND X EISE Y $

Examples of IF Statements:

*T, ST76, IF II\ZRO/S'IEX$

*T ST TF) Ip -2 \MNS /STKAELSE,\STN

*T ST78 WIFAT\ NI ,\GRT[\K/ STXS$

T, STT8A ALF} 5 f\,pAGAzRO/ ST

*1) STT8B) IF ONE, VTS (CELLY, «\ ONE N0MS () 4 +4 2\EQUONE HITS () /STX$

5.7.3 The BRANCH Statement: Verb BRAN. ,

The BRANCH statement allows a many-wey decision among alternatives,
keyed to the value in e single source cell, which may have a single value
added or subtracted. The source cell is tested for one of a specified
string of values or relations, and the corresponding one of a string of
‘exits is selected. There are two forms of the statement: the immediate
form (verb BRANI), which lists in the statement itself certain key values
For the source cell and the exite corresponding to them, and the cell-list
form (verb BRANL), which tests all posgible values of the source cell and
names a cell-list, usually predefined by a& "DEFL I" definition statement,
containing the exits as a list of statement names. The BRANI form has an
"ELSE" exit which is taken if the source doez not agree with-any of the
specified test values; the BRANL form has no exit routing at all, since all
exits are supposed to be included in the exit list outside of the state-- -
ment .

1
*I (n) NAME BRANI ON SOURCE [+ AUXILIARY] CONDITION CCMPARAND,/ ...
/ COMPARAND; TO NAME, / ... / NAME; /EISE X $

*T' (n) NAME BRANL CN SOURCE [# AmszY] TO EXIT LIST $

43

SOURCE

AUXTLIARY

CONDITION

COMPARAND -

NAME -
EXIT LIST -

e cell name or one list component

e cell name, list component, decimal m:.mber, or octal .
number (prefixed = sign) -

may be EQU, LSE, GRE

positive or negative decimal numbers, octal numbers, cell
names; list components.

statement name elsewhere in program.

ce;!.l list name; not one component of master-block

E‘xamples of BRAWCH Statements:

.'.

*Tp STT9 BRANIA ON). AISEA1fh/T/&ATOASTA/STB/STC/BTD/ﬂEISEASTX$

*T ,\smaﬂ,\nnm,\o Tq\ JUMPS$

ASTsﬂA,\EBANL AON/\IA /\JA‘I'OAJEMP%

ETBﬂBABRANLA ot 72N TO JUMPS$

*‘I‘,\STBQCAZBRANLAONAGEIL“ ,\-TTAEQU 576/=75/=-7hj\'ro STA/STB/STC$

5.8 Control Statements: Transfers of Control and Subroutines.

Transfers

of control are unconditional jumps, or specifications of

one place to go next in the program. Almost all TEMAC operation statements "
have exit routings built into them, so that the verb "GOTO", which has no
other. function except to specify where to go next, will seldom be needed
in most programs, and is supplied only for the sake of completeness. The
verbs "FINISH" and "START" are needed for commmication with the IBJOB

monitor; START to tell which is the first executable instruction of the

program, and FINISH to return control to the monitor at the end of a run.

The verbs "DO",

"EXIT", and "RETURN" are very useful for providing intemal

closed aubmtines within a

TEMAC progrem deck (as disfinct from “external subrout ines®, which

dre other decks “called® by the TEMAC deck; more will be sald about
decks and externs! closed subroutimss in Section 6). Closed subroutines
withip a TEMAC deéck may consist of 2 single statement, executed "at a
distance® by'a DO stetement, or they mey consist of many TEMAC
statements, and may contain loops and even sub-subroutines of their own.
Subrout ines consls?lng of more tham one statement are executed by an
EXIT statement, and the program finds its way back to the place It came
from by a RETURN statemen? within the subroutine. All closed sub-

rout ines have the common feature that control Is net transferred te
them penmancn?iyp but instesd, when their actions are completed, the
exit routings of the original EXIT or DO statement are used to tell where
the program goes next. Subroutines may, however, contain direct trans-
fers of control which go to other parts of the program without returning
to the place where the subroutine was entered (for exemple, if an error
was found during execution of the subroutine, control might be trans-
ferred to a standard error action outside of the subroutine, and never
return to the original exit address), A subroutine may be entered at
any statement within it, besfors ite axits . Because all TEMAC operation
statements may have explicit exit routings, the path of contrel is much
freer and less constrained within a subroutine thaen In languages that
follow a strict sequence from one Instruction to the next.

5.8.1 The GOTO Statement: Verb 60TO.
The single exit name after the verb Is fakan‘aa the name
of the next statement fo be executed; GOTO is an unconditional jump
or trqnafer of control.

#T NAME GOTO X §
Exemple_of GOTO Stetsment:

M ST1,GOTOLSTXS |
5.8.2 The START Statements Verb START.

'

This statement should appear as the first statement after
the STEMAC comtrol card for the prograsm, and especislly, before any
of the date definition statements. (t tells the |BJOB monitor which
statement is the first to be exscuted at rum time. (For a discussion
of "run-time® and “comp!le~time” and a description of control cards
see Section 6). The statement name for START should be the program
name, or deck name as given In the $TEMAC cerd, and the name after the
verb Is the neme of the (irst operation statement to be executed - l.e.,
where the action of the progrem actuslly begins. Every TEMAC program
must have a START stetement. :

&1 QECKNAIE START X §
Example ST Statement:
*EhTXEOTA§TARﬁﬂFEIH§
; o

5.8.3 The FINISH Statement: _!-r_! FiNiSH.

This statement telis the (BJOB monitor that the program
run Iis complete, or is fo be terminated, and the monitor is to take over,
close aut the job, and bring in the next job of the batched run. There
is no operand or exit, but simply the verb "FINISN". A FINISH statement
is not needed if the programmer has used a “DUMP® debug statement to end
his program, as this svtomatically returns confrol to the moniter.

#T NANE FINISH $
Example of F|NISH Statements

*T ASTBZ IIF II‘lISHS ‘ |
5.8.4 The DO Statement: Yerb 80.

- The DO statement executes another, single TEMAC statement
of a special type (the ®object® statement) Py remote contrel, seo that
on completion of the action of the object statement, the progrem returns
to the exit routing of the PQl statement to find where to go mext. Theé
object statement must be of a form that differs from the normal statement
in that is has the word ®.EX® after a slash In plece of the wswal exit
routing. The DO statement, instead, has those exit iabels and names which
would be appropriate to the verb ¢f the executed statement. The DO
statement is useful for executing lengthy and complex EXT, EDT, CVT, COA,
LOC, and SEG statements that are fo be used again and agein [n differeant
parts of the program; these statements need then be writtemn and complled
only once. [t showild Be noted thet o stetement with ®.EX® ae its
routing should only be executed fthrough DQ statements and should not
be named directly ag an exit in the rouﬂna of @ normel! statement, a
START statement, or a 60TO stetement.

¥T NAME DO STA / ERR X YES Y THEM Z § (conditional routing)
*T NAME DO STB / ERR X THEN Y § (uncomditional reuting)
*T NANE DO STG / THEM IS

IExamglng -gflm.Sf!tﬁgtg and_their Object Statements:

*7 ASTB3 ADO A $T834/ EM“STX AT&!_E.H ﬁT Y$
-I-TAST_Sb IAWAQMA&M i) !"-‘Aﬂ » ATOAFII STAB ,\TT_AI_I <EX$
*7 ASTMDDOAST 84.L/YES ASTX.S
#T,STB4.L/LOCWS \W2 AlPpl N S2/HITS,CT/.EXS
Note: Only the following statements may be the-objects of a "DO" -
SEG, SEL, COL, OMT, INC, REF, EXT, EDT, CVT, CVN, MOVE, REPT, LOC, COM,

FIND. (A method of 'gimmicking" DO stat.ements for the others will be
shown in Part II.)

4%

5.3.5 The EXIT and RETURN Statements: Verbs EXIT, RETURN.

The EXIT statement causes its own name to be stored, or
"remenmbered,” in the specified one of ten special "return address boxes,"
and then causes an unconditional jump to a statement within an internal
closed subroutine elsewhere in the program. This subroutine must contain
a RETURN statement referring to the same "box" number as the EXIT state-
ment used., When the RETURN statement is encountered in the subroutine,
control returns to the EXIT statement whose nsme is stored in the specified
return box, and the exit routines of that statement are examined to see
where to gc next. If a subroutine has a sub-subroutine, they must use
different boxes, since whenever a box is used by an EXIT statement, the
previous return address it contained is covered up by the new one. Several
different conditions may arise in a subroutine, so that there may be a
choice of places to go nexu from the subroutine. In that case, the original
EXTT statement should have exit nemes after the slash and the label "THEN"
for each of the different conditions, and there will be as many different
REIURN statements at various places within the subroutine; each selecting
a different exit. The RETURN statement may specify exit 1, 2, etc. up to
any number that were present in the EXIT statement. If there is only one
return address. and it is to the next statement in sequence in the "main"
routine, the THEN exit may be dropped on both EXIT and RETURN statements.

If a single return address only is specified on the EXIT statement, the
RETURN statement need have no "THEN" exit. But if more than one exit address
is present on the EXIT statement, the RETURN statement must specify the exit
number as its "THEN" exit.

¥ (n) NAME EXIT TO STA ON BOX K / THEN A B ... Z $
¥ (n) RETURN TO BOX K / THEN EXIT M $
K - box number; a positive decimal number not greater than 16

M = any positive decimal number

Exemples of EXIT and RETURN Statements from an actusl TEMAC Program:

¥T ENDT'1 EXIT ,TO, FDDAT , ON, BOX, 1/THEN ,S1TX1, ENDI'2$
*T, ENDT'2, EXLT, TO,WRLTE, ON, BOX, 2/THEN, R}
¥T\S1TX1, SEISS, 81,AS, 52/
(Main program continues)
¥ FDDAT), LOCF'S ONEAS1{}4) yID,INsSEQ)2 MSCUE(25) /HIT/YES \FDDT1$
T, FDDX,, RETURN 4 TO, BOX 1/THEN (EXIT, 1$
Ty, FDDT1,RETURN, TO ,BCX 4 1/THEN \EXIT 25

¥T) WRITR, SELSS ,081, AS \52/7K$

*T WRTR1p EXTT, TO (LOGR2 0N, BOX , 1% (subroutine using Box 2, which
has a sub-subroutine On Box 1)

T\ WRTR6, RETURN, TCBOX, 2%

*T' LOGR2, DISPL \H,52$
*T \LOGR3 \RETURN \TO, BOX 1§ (sub~-subroutine)

W7

5.9 Debugging Statements.

TEMAC debugging facilities fall into two main types: TRACING
and DISPLAYING. TRACING causes the name of each statement being traced,
and the contents of the DBUG error cell (if non-zero), to be placed on
the RUNLOG file each time the statement is executed during the program
run, so that the programmer msy see a detailed picture of the path of
control throughout his program. In many cases, a well chosen set of trace
outputs and a printout of the input data are sufficient for debugging
a TEMAC program. DISPLAYING causes a printout of the contents of a
TEMAC object tc be placed on the RUNLOG, in a specified format (e.g.,
decimal, octal, or characters), with or without its name as a label.

In addition to the TRACE and DISPLAY provisions, there are
several debugging facilities which, while not properly a part of TEMAC,
are available to the TEMAC programmer as a part of IBJOB. Among these
are the AID debugging package, developed during the implementation of
TEMAC to aid the system programmers in debugging, and generalized for
use by all TO9k Programmers as a part of the system library. AID allows
single cells to be displayed in decimal, octal, or character format on
the RUNLOG file (SYSOUl, or Bl), and it allows streams of from one to 24
characters 1o be placed on the RUNLOG as headings, comments, etec. There
is also a system memory dump, which provides dumps in various formats
for larger segments of memory than ATD cor the TEMAC DISPLAY facility
can handle; these are familiar tools for the programmer, but may not
be as easy to read for scmeons who has never used a "memory dump." There
are two verbs for dumps, FPDUMP which allows dumps to be made in the midst
of the program run, and DUMP which terminates the run and returns control
to IBJOB as socn as the dump is completed. There is a third system
debugging facility, the SNAPSHOT program, which is called by a calling
sequence like a subroutine; this program is similar to PDUMP in its
provisions, but has the advantage of greater economy in time and in
usage of space on the RUNIOG file. It is recommended that SNAPSHOT be
used for dvmps in the midst of the program, rather than PDUMP. To obtain
further information about ATD, DUMP, SNAPSHOT and other information
on IBJOB and IBSYS facilities, refer to the relevant Chl Technical Bulletins,
or see someone in CL43,

5+9.1 Tracing.
¥TRACES$

¥TRACEALL$

If single selected statements are to be traced, a special TEMAC
control card containing the single word *TRACE$, punched in columns 1
thorugh T, should be placed immediately in front of each statement to
be traced. A large number of these cards can be punched up at once, and
inserted at different pcints in the program during debugging. Frequently,
especially in early stages of debugging, it is more convenient

L3

to trace all traceable instructions of the program, or all between

given points. In this case, a single control card, containing the

word *TRACEALL$ in cols 1 through 1§ should be placed before the first
instruction of the set to be traced. In addition to the control cards,
it is also necessary to enter a non-zero value into a system switch

cell called "ENABLT" before tracing begins. This switch "ensbles," or
mekes effective, the tracing facility, and if it is zero (the value

it has to start with unless changed by the programmer in his progrem),

no trace will sgppear even if trace control cards are present. By compiling
his program with *TRACEALL$ at the beginning, and then setting ENABLT to
zero or non=zero at various points in his program, the programmer may
selectively trace various subroutines or routines under program control,
without the nuisance of punching up many *TRACE$ cards. A program that
has been compiled with *TRACE$ or ¥TRACEALL$ cerds may be run without
any trace output by leaving ENABLT set to zero. In general, it is a
good practice to remove all ¥TRACE$ and ¥TRACEALL$ cards from a program
and recompile when it is about to become operational, after debugging

is done, since the testing of the switch ENABLT uses up a certain number
of extra machine cycles even if the switch is zero and no tracing occurs.

5.9.2 Displaying: Verb DISP.

*T DISPC TYPE[LABEL| SOURCE / THEN R$

*T1 DISPL K / THEN R $
second card - 1 to 24 chsracters after blank in col 1.

% DISPL TYPE SOURCE[S L] / THEN R $

TYPE - format of output; may be D (decimal), 8 (octal),
H (character-stream)

SOURCE = & cell name, list name, or an IBMAP address; any
single TEMAC name other than that of a paragreph
or master-block.

K - +the number of characters (maximum 24) to be displayed

=] - ghtarting cell relative to source name; a positive
non-zerc decimal integer only.

L - Jlength of cell sequence to be displayed; a positive

non=zero decimal integer only.

DISPC ("Display cell"”) displays the contents of single cells, and
labels the output with the source name if "LABEL" is regquested (see
examples below). Its output is one erdwe lineson the RUNIOG, containing
the label if requested and a single five digit decimal number, octal
(12 digit) number, or 6 BCD characters. If the cell contained zero,
the output will be blank. DISPI ("Display immediate message") displays

hg

from 1 to 24 characters specified on a single overflow card following

the header of the DISPI statement; this card must have a blank in col. 1,
and the characters for display are counted starting with position 2.

It produces one line on the RUNLOG containing the displayed characters
exactly as they appear on the DISPI overflow card. DISPL("Display Iist")
displays a sequence of cells as a single line on the RUNILOG in one of
three formats. Decimal format provides from 1 to 17 five-digit decimal
numbers, each preceded by a plus or minus sign. Oectal format provides
from 1 to 9 12-digit octal numbers separated by blanks. Character-stream
format provides from 1 to 2@ cells full of BCD characters in a continuous
stream. There is always a blank in the first position of the output line,
so that program control may be used for listing. If no S and L fields
appear in the DISPL statement after the source, the meximum number of
cells for the format will be displayed. S may be any number, from 1 to
32767 (the limit of storage size), regardless of TEMAC object boundaries.
L may be any number less than or equal to the maximum for the format; if
a larger number is specified (e.g., 2f for "octal™), the maximum number
only will be provided. If sequences of cells greater than the maximum
allowed are to be displayed, several DISPL statements should be used, with
S values or IBMAP source addresses so chosen as to form the desired
sequence. The source in DISPL may not be a one-component operand, but
m1st be a single name.

Examples of DISP Statements:

*T, DSC1y DISFC/ 8 (LABEL \BUFR$
¥T; DSC2, DISPC, D \LABEL,ONE ,VCLS(J) /THEN,STX$
T DSC3, DISPC, H, STREM+2$

T 4DSCly DISPC) H)\LABEL ,ONE \STREM(3)$

¥T1, DSI1,DISPI, 21/ THEN \STX$
AEND)OF \FILE, ON ,INFUT .

¥T'1\DSI2,DISPI16$
§, TAPE, READ, ERROR.

*I§ DISPLy D VCLS, 1 ,3/THEN STX$
*T), DISPL,D,VCLS$
*T)\DISPLAB ALIST, 3 n3$

*T) DISPL,H ABUFR$

50

5.9.3 Sngpshots: SNAP Subroutine.

Snepshots provide an octal memory dump of sections of storage
on the RUNLOG file. They are familiar tools for TO94 programmers, and
can be useful to others who wish to learn their simple format. The
following calling sequence, inserted into the program in IBMAP coding
at any point where a SNAP is desired, will produce a dump of the TEMAC
reference cells (PARLO, SNTLO, WRDLO, MBKLO, LSTLO), the programmers
data objects and "constants" (CONST), and the TEMAC-compiled constants
(LITRL) for the average program: (See Part II for an explanation of these
names) . col. ol

% 6
TSX SNAP,L
MON RUNIQG,,2
PZE PARLO, ,LITRI~20

If the program itself is to be snapped as well (which is not usually
necessary), the last line of the calling sequence should be:

PZE NAME,,LITRL-2§ (where NAME is the first executable
instruction, e.g. the one specified
after START)

The snapshot output is preceded by a console dump, telling contents of
key machine registers (M Q, accumulator, index registers, etc).

5.9.4 Dumps: DUMP Call.

Dumps are, like snapshots, a tool for the machine programmer,
which may not appeal to those not familiar with their format. If the
programmer wishes a dump at the end of the program, just before termina-
ting the run, he uses the following MAP "call":

col. ¥ 16
CALL DUMP(NAMEL,NAME2,®)

This statement provides an octal dump of locations NAME1l through NAMEZ2,
with a few extra preceding and following, and a console dump of machine
registers. The DUMP call turns over control to IBJOB as soon as the
dump is completed, so that a "FINISH" statement is not required. If
dumps during the program run are desired, the programmer is advised to
use SNAPSHOT (5.9.3), as PDUMP wastes machine time and print time with
no advantage over the output of SNAPSHOT.

51

6. The Object Program.

The TEMAC ob ject program, when punched on cards and supplied with
appropriate control cards for the IBJOB monitor and IBSYS system, will
be submitted as one deck of a job, to be compiled, assembled and run
by 7094 operations.

6.1 The Job and the Deck.,

6.1l.) The Job,

y A ®job" is all of the material submitted by a programmer for a
machine run; it has a ®job name® distinct from the names of sny of [ts
‘component decks. A job may contain only one program deck, or it may
‘contain many separate decks, each of which may use a different compller
or assembly program within the system (e.g., FORTRAN, COBOL, TEMAC, IBMAP);
some decks may not require compilation or assembly ("object decks" as
opposed to "source decks™, in IBM terminology); there may be data cards
to be read in by one or more of the decks, and placed at the end of the
entire Job. Data tapes ("files™) may also be submitted with the job,
to be read by some deck or decks within the job at run=time.

6.1.2 The TEMAC Deck: |ts Relation to Other Decks in the Job.

The TEMAC deck may contain TEMAC statements.alone, or
Intermixed with |BMAP statements. |t may not contain FORTRAN, COBOL,
or .any other non-|BMAP statements inftermixed with TEMAC statements, but
it may ®call* other decks.within the job, compiled or assembled by '
FORTRAN, COBOL, etc., as external closed subroutines, or it may call
subroutines within the IBLIB |ibrary (e.g., Sysp. DUWP, AID), or In the °
COBOL or FORTRAN subroutine |ibraries. The calling of external subroutines
may be done either by using the “calling sequences™ for them in IBMAP
language, (which may be learned by reference to the appropriate manual.
or technical memo, or from someone in C443), or by using an IBMAP "call"
statement, or forming a "MACRO™ in IBMAP (for which see someone in C443
or the IBMAP manual). FORTRAN or IBMAP decks may call TEMAC decks within
the same job in a similar way. The deck has a deck name, or "program
name", distinct from the job name. Deck names and job.names are formed
the same way as data object and statement names, and may have from | to
6 characters, . All the decks of a job are assigned storage locatlons for
a given run in accordance with a "relocatable” or relative system of
addressing, and ‘loaded into the machine by a sophisticated "loader" praogram;
there are many advantages to relocatable addressing, and it is a real
necessity where multi-deck jobs, in many different languages, are being
run as one entity. In general, names within any one deck may not be
used to refer to the same objects or locations in any other deck, .unless
the deck where they are first defined or set up has an "ENTRY" statement
in IBMAP for them (e.g., for the name "BLOCK", defined in Deck A, to be
used fo mean the same storage location in Déeck B, Deck A must contain
a statement "ENTRY BLOCK", with “ENTRY® in col. 8 and "BLOCK" in col. 16,
Similarly, if names in one deck are to be '"SNAPPED" in another deck, they
must have ENTRY cards. ' : !

53l

6,1.3 The Arrangement of Cards for a Job.

The Job contains the following parts:

col. col. col,
1 8 16
Job $J0B JOBNAME, NUMBER, PROGRAMMER'S
NAME, PHONE
control
cards $PAUSE
$EXECUTE IBJOB
$IBJOB JOBNAME MAP
IEDIT ALTER]
[$CEDIT PREST]
first TEMAC DECKL NODECK
deck *T4 DECK1, START p x$
(TEMAC) (file cards may come anywhere before "END")
TEMAC and IBMAP data definitions, alphabets.
TEMAC and IBMAP operation statements
END
second $TRVAP DECK2 NODECK (other options)
deck (file cards)
(IBvAP) IEMAP statements
- END
/8
Deta cards (if any)
end of job 7/8

6.1.4 Control Cards.

6.1.4,1 The $J0B Card., This card, the first of the job, contains
the job name, job number, programmer's name, phone number, and any other use-
ful information, such as the date or a comment on the run.

6.1.4,2 The $PAUSE Card. It need contain only the word $PAUSE
in column 1.

6.1.4,3 The $EXECUTE Card. It need contein only the woxrd
$EXECUTE in columns 1-8 and the word IBJOB in columns 16-20,

6olok i The $IBJOB Card. It contains the word $IBJOB in cols.
1-6 and the job name, as in the $JOB card, starting in col. 8. The word
MAP in col. 16 should be included, since it causes a "memory map" to be
provided by the system, telling where in storage the relocatable decks
were loaded after assembly for execution. This information, while primarily
useful to the experienced machine programmer, should be routinely included
in the listing of TEMAC programs.

23

6.4.4.5 $SIEDIT and $OEDIT Cards. These are optional,
if the programmer wishes to change his deck before recompiling fthrough
the “ALTER® facility in the system. If he wishes ‘to use this facility,
he must use an $0EDIT card calling for "FREST {col. 168) in his assembly
and compilation. On subsequent recompinat:ons he may then use an $IEDIT
card calling for ™ALTER" (col, 16). Foir the instructions for using
ALTER the programmer should consujt the relevant manual or C443, The
PREST option produces a special type of program deck, in condensed form,
which may then be corrected by ALTER cards in the next run.

6ol.4.6 The STEMAC Card. This card is similar in every
way to an $IBMAP card, except for the first 6 positions. It may have
many option flelds, which control the printing of the assembly listing,
the production of program decks, efc. These may be leff out, as on the
other control cards, unless the programmer requires some provision which
is different from what the system routinely provides. The $TEMAC card
need have only the deck name (l-6 chars in col. 8} and a card count in
column 16, which should be a rough upward estimate of the total numher
of cards in the deck.

6.L:4.7 The END Card. This card marks the end of the program
deck; it contains only the word END in col, 8.

6.4.4.8 7/8 Card. This card is the equivalent of an "end-
of—fule" ofi the job tape; if there are no data cards for the job,
it marks the end of the job., There may be one or more files of
data cards, separated by 7/8 -cards, and the last one terminated by a
7/8 card. These will be read in by fthe object program as an input
file (file definition FNAMES below) at run time.

6.1.5 File Cards.

The following forms for file definitions are recommended
for those who are unfamiliar with [0CS. For an éexplanation of details
see . PartTI. No spaces must appear after col. 16 until the end of
the card. | :

col col col
L 8 16
oW, (HoLD
FNAMEL FILE ,A(L),MOUNT, INPUT ,BLK=XOX,BCD, HULTIREEL il Sop vy
FNAME2 FILE ,,BLU,,MDUNT,OUTPUT,BLK%XK,BCD,MULT!REEL%LM' HOLD
., HIGH JPRINT
FNAME3 FILE ,A(2),MOUNT, INPUT ,BLK=XXXX,BC o, oo
LAL2), ,BCD, LT IREEL L Tex o0

FNAME4 FILE BEEB,M‘DUNT OUTPUT BLWXXJ(,BCD MlULTIREELkl GH, g‘;:’".

FNAMES FILE ,IN¢¢READY,!NPUT,BLW=L4PMULIIREEL,BCD,NOLPST

RUNLOG FHFE ,0U$,READY,0UTPUTNBLKE22;BCD,MULTIﬂEELpNCLIST

5if

_OUTPUT/INPUT ~ The programmer may specify this for FNAMEL
' to FNAME4; the suggested arrangement for these files
is appropriate fo a program with two input and two
nufput_fltusg FNAMES (data cards at the end of
" @ Job) must be an INPUT FILE, and the RUNLOG must
be an QUTPUT FILE. -

BLK=000X - block size; the number of cells in each physical
record on the file. This must be the same as the
cell count in any WRITE statement that writes on
the file. It is a decimal number with one fo four
digits, '

MULT |REEL - allows fop running over onto another tape reel,
' ' which is hapdled nufomntlcallv by 10CS.

LOW/H IGH - the Sdensity® of the tape; this will be determined
by the use fo be made of output tapes, or the source
‘of Input tepes, but i¥ must be known.

HOLD/PRINT - the tape is kept in the 7094 ares to be picked up
by the programmer, or else sent to beé printed out.

NOL IST -~ coficerns 7004 operator actions for certdin files.

lother fields in the cards may be looked up in Park JL.

6.2 C ilatio ; i@s, Runs.
6.2.4 The Igmc Progrem at Compile sng Assembiy Ti.m!,

At thls time, the TEMAC Compiler Program is baing executed
by the 7094, undeér control of .IBSYS énd. I1BJOB. The TEMAC Compiler is]
in memory, and i reading in the TEMAC program deck within the job., TEMAC
has been called in by (BSYS, because of the $TEMAC'control card which '
IBSYS has found i@, front of the deck. The TEMAC compiler places its
output on a system tape, and returns control to IBSYS after it finds
the "END" card for the deck. Then IBSYS callis in the IBMAP assembler
and turns over confrol to it. [BMAP -reads the system tepe as requested
by the programmer. (The ®two-phase® action of TEMAC followed by |BMAP
is similar to the method of COBOL compilation; it sdds c¢nly a few seconds to
the total processing fime). The TEMAC Compiler produces a |isting of
the TEMAC stabements exactly as the programmer submitted them; with
var.ious indicat ions of compile errors, which forms psrt of thc RUN LOG
file for the Job. The |BMAP assemb ler then produces a |isting of the
machine instructions, along with all the TEMAC statements, which appear

55

as "comments," and all the indications of assembly errors; in addition,

there is much useful information about the assembly and the job as a
whole: for example, a "memory mep"” to provide the actual locations of
the decks in memory at run time, and a "cross reference dictionary" to
list every reference to every name in the program. If there were no
serious errors during the compilation or assembly, the object program
Just created will be read in by the lcader (IBLDBS and executed, so
that "run-time" begins immediately after assembly.

6.2.2 The TEMAC Program at Run Time.

All the decks of the job are in the machine. One of the
decks (probably = TEMAC or IBMAP deck) is the "mein program” and is
being executed; it may call in (i.e., jump in and out of) various
other decks in the job which are its external subroutines. Subroutine
decks may themselves call in other decks as subroutines. Debugging
output from SNAPSHOT, DUMP, and TEMAC debugging statements is being
written on the RUN IOG, where it will follow the compiler listing and the
assembly listing for the job. The programmer's input and ocutput files are
being read and written. When the path of control encounters a DUMP or -
FINISH statement, the run is terminated, any unclosed files are closed,
and control returns to IBJOB. The RUN 1LOG will be printed and returned to
the programmer, along with his tapes or the listings of any files for which
he has requested printing. For further instructions regarding debugging
and operational procedures for the TO94, see Part II .-

56

6.2.3 -~ Ihe Octal and IBSYS Character Sets.

octal value print/punch octal value print/punch

00 0 40 -

oL 1 4] J
02 2 42 K .
03 3 43 L
04 4 44 M
05 5 45 N -
.06 6 46 0
Q7 T 47 P
30 8 50 Q
A 9 SL R
12 invakid 52 “invalid
13 ot 53 b
14 -or ', 54 ®
15 invalid. 55 iaval id
+'16 invalid 56 iavalid
17 invalid 57 invalid
20 * €0 blank
24 c A 6L /
w227 B 62 'S
3 'C . 63 s 3
:;m [+ 4 64 u

- 25 E 65 v
26 F 66 W
27 6 67 X
30 H 70 Y

-3 8 | /3 Z

3 invalid 72 invalid
33 o - 73 ' ’
34). . 74 "

35 invél id 75 invalid
36 _ Inval id 76 invalid
37 tnvalid 77 Invalid

57

6.2.4 Compiler Error Messeges at Compile Time.

During compilation, the compiler places error messages on the
RUNLOG file along with a listing of the TEMAC statements of the object
program, as a part of the Source Program Iisting. The error message is
preceded by six asterisks, and appears immediately following the statement
to which it refers. ' The mame error message, both preceded and followed by
8ix asterisks, is placed on the IBMAP Asgembly Listing (which follows the
Source Program Listing on the RUNIOG print); the error message may appear
after a few MAP instructions have been sssembled and placed on the print,
but usually it follows the TEMAC instruction immedistely. The compiler
usually forms all the MAP instructions up to the point of error, and
frequently leaves space for the missing instructions, so that they may be
corrected or entered by means of "ALTER" cards if the programmer wishes to
do so. The error messages, while accurate in most cases, do not always
exactly describe the condition that prevented further compilation of the
statement; this is because errors in variable fields, which cannot be caught
when they occur, are not sensed by the compiler until they indirectly dis-
Place some required or restricted field a few words further on in the state~
ment. The error is apt to be no more than two words before the point
specified in the error message. We hope to improve the accuracy and in-
formativeness of error messeges as we gain experience with the compiler;
in the meantime, if a programmer is puzzled about an error message, he
should consult someone in the TEMAC group of Chl43. It is also possible that
certain conditions, which will cause the compiled coding to be different
from the programmer's intentions, may slip through the compiler without
being signslled by an error message. Until all such unsignalled errors
can be found and dealt with, we suggest that the programmer who understands
IEMAP coding check his IBMAP assembly for undefined virtuals, improperly
qualified addresses, and assembler error messesges if he can find nothing
wrong with his TEMAC Source Program Listing. Others should consult
someone in Ch43, or M. D'Imperio. Below is a list of the error messages
and an explanation of their probaeble causes. -

6.2.4,1 NOT A TEMAC VERB, The verb of the TEMAC statement was
unrecognizable (misspelled, broken, run onto other words).

6.2.4.2 NOT A TEMAC DATA TYPE., One of the datae type codes on the
verb was wrong, although the verb itself was recognized.

6.2.4.3 NO $ TO END STATEMENT., The dollar sign, which must end the
TEMAC statement, was not found (because it was mis-punched, left out, or
else the value in the overflow card number after *T was wrong).

6.2.4.4 TOO MANY OBJECT NAMES. There were more than 5¢¢ TEMAC date
object names in the program, and the compiler symbol table is full. No
further definitions will be compiled, but compilation proceeds. Any later
program statements referring to objects that were not compiled will cause
error 6.2.4.14 (see below). :

6.2.4.5 STATEMENT INCOMPIETE, Some crucial field or fields were left,
off at the end of the statement; it is too short.

58

6.2.4.6 TOO MANY COMPCNENT NAMES, One dsta object had more than 204
named components, causing an overflow in a temporary table. Compilation
of the DEF statement involved ceases, but all following statements are
compiled correctly, and the name of the bad data object iz still recognized
by the compiler. GStatements referring to names of components that were
not compiled will- ceuse error 6.2.4.1k,

6.2.4.7 TOO MANY CARDS, An overflow card number was greater than 17.

6.2.4.8 SOME M-BLOCK INCOMPIETE., A component list reguired for a
general master-block definition earlier in the program has been left out,
or has failed to compile. The incomplete block is the master~block defini-
tion just before the one currently being compiled (the compiler discovers
the condition when it tries to compile the next master-bloek). The compiler
wipes out the left-over information for the missing list and proceeds to
compile the new master-block. There will be an error in the reference
tables at this point, concerning the bad magter-block only; all other data
objects are unaffected.)

6.2.4.9 SOME PARA INCOMPLETE, A component sentence required by &
general paragraph definition hag been left out or has failed to compile.

6.2.4.1¢ CCOMPONENT NUMEER WRONG., The number of components called for
by the header of a IEF statement without component names does not agree
with the actual number of components found in the data cards for that
statement.

6.2.4.11 ERRCR IN CONTROL STRING. A match or edit control string
conteins en improper charscter (a ron-control character in a position where
a control character is expected). This may be caused by a literal character
left out, an = sign before an octal coded literal mis-punched or left out,
etec.

6.2.4.12 PREPCSITION NOT FUUND, The preposition separating the primary
operands of a TEMAC statement was not found; it was mis-spelled, run onto
nearby words, or left out, or else an error in a previous word caused it
to be missed.

6.2.4,13 EXIT ROUUTINGS INCORRECT, The statement does not have the
exit routing labels it showuld have; a conditional statement does not have
a YES exit, a reamd/write statement has no ERR or ECF exits, or an exit
label occurs with no exit address following it.

6.2.4.14 ERROR IN OBJECT NAME, A TEMAC dsta object name referred to
in the operand of an operation statement was not recognized as one of those
defined by the DEF statements. Thiz may be due to the mis-spelling of the
name, failure to include a DEF statement for it, or the failure of its
TEF statement to compile:. Run-on or left out fields earlier in the state-~
ment may csuse the compiler to sttempt to look wp the wrong word as an
object neme.

6.2,4,15 NO RETURN ADDRESS BOX. The label "BOX" did not sppear, or
. was not found where expected, in an EXIT or RETURN statement.

59

6.2.4.16 WRONG DATA TYPE ON VERB, A verb has a data type code which,
while one of the possible TEMAC types, is not allowed on this verb in that
‘position.

6.2.4.17 NO ATPHABET NAME., The mlphabet neme was not found in a SEG
statement; it was left out, run onto other words, or a previous error
caused it to be over-run,

6.2.4.18 ERROR IN WORD XXX, This message is by far the most frequent,
and is intended to cover all cases not covered by the specific messages
above. If the programmer cawnot find anything wrong with the word
designated, he should look at the words immediately preceding it. If the
cause of error is still a mystery, see someone in Ch43, or M. D'Imperio.

6.2.5 Debug Error Codes &t Run Time.

While the object program is running, every time s TEMAC state-
ment which uses one of the proceszor subroutines is executed; a value is
placed in a system commmication cell called "DBUG", which is accessible
to the programmer. If no error or special condition occurred during
execution of the statement, DEUG containg zero., A non-zero value in DBEUG
does not always mean gn error; it may simply report a condition which may
or may not be an error depending upcn the action that is being performed
in the program (for example, if a result list is "full", there may be no
error if the intention was to fill the 1list). If a trace is requested, the
contents of the DBEUG cell are printed next to the name of the statement
in the trace output. If DBUG was zero, or was not used by the statement,

a blank will eppesr for its value. 'Statements which use processor subroutines,
end create new values. in DBUG, are the following: SEG, SEL, COL, OMT, INC,
REF, EXT, EDT, CVI, MOVE, REPT, CVN, LOC, COM, FIND). DBUG error codes are
nunbers between @1 end 52; of these, sll numbers between @1 and 1§ refer

to errors in the gource operand; 11 to 2¢ refer to the target operand; 21

to 3¢ refer to the comparand, 31 to Uf refer to an auxilisry (MCS, ECS,

added or subtracted value, etc.), and 41 to 52 are miscellaneous codes for
special conditions. Below is a list of DIBUG error codes and their mean-

ings; "x" below may be #, 1, 2, 3, or 4, for source, target, comparand, and
auili&r‘Vo !

¥l - object unobtaingble

¥2 - component unobtainable

%3 - object flagged with omit flag

x4 - pointer has negative or zero value

x6 - pointer exceeds length of object it refers to

x8 - set length zero or too large for set

x9 - sequence length zero or too large for length of object
(x+1)¢ - object length zero

L1 - target object threatens to overflow; is full.

k2 - target component threstens to overflow; is full.

43 - result list

il - result list is unobtainable.

45 - control string is unobtainable.

46 - control string is incorrect.

47 - end of source stream reached.

69

59
51

1

attempt to convert non-numeric character or stream longer
than eleven numbers to cellular form in CVN,

TAB cell negative on entering SEG.

target stream filled; end of target stream reached.

maximum allowable number of characters moved (728¢) in
one EXT, EDT, or CVT statement. '

6d

Study Questions, pages 1 —— 4

1. What data types are possible for TEMAC data object definitions?
2, What is the difference between a data object and an operand?
3, What is the difference between textual data and cellular data?

L. What is the difference between a TEMAC cell-list which happens
to contain text and a TEMAC word or sentence?

5, Give examples of things that might be TEMAC paragraphs made up
of sentences in some program; give examples of TEMAC words.

6, Give examples of TEMAC master-blocks, cell-lists, cells,

7. When does textual data have to be converted to cellular form?
8, When does cellular data have to be converted to textual form?
9. What purposes can a TEMAC alphabet be used for?

10, Make up some examples of character-categories that might be useful
in a program,

11, Does data always have to be moved in a TEMAC program? When can
structural operations be used instead of data-moving operations?

12, Think of some examples of situations in a program where data

need not be moved, but a new arrangement of data must be temporarily
recorded or "remembered".

Study Questions, pages 5 -- 10.

1. What are the things every TEMAC statement must have?

2, What would happen if some words of a TEMAC statement were run
together: a) in an operation statement ? b) in the data cards of an
immediate definitiom statement?

3. What would happen if more than one blank were to come between
words of a TEMAC definition or operation statement?

,, What would happen if a slash came between two separate data words
in a TEMAC immediate definition statement?

5, Tell in your own words what the following definitions do: dummy,
immediate, padded, fielded,

6, Give examples of situations in a program where an immediate, dummy,
padded, and fielded definition would be useful.

1

7. What is the purpose of a source operand? a target operand?

8, Where are the data type codes for the primary operands in the
operation statement?

9, What two special-purpose data types are possible on verbs of
data manipulation statements?

10, Given a sentence named "B", with seven component words named
"Wl, W2, W3, Wi, W5, W6, W7", write TEMAC operands to obtain the following
data from the sentence; (let the sentence contain the data words "HERE IS
A\SENTENCE \WITH, SEVEN ,WORDS" a) The words "HERE, A, SEVEN", b) All the
words of B from "IS" on to the end, ¢) The single word "SENTENCE",
d) Four neighboring words starting with "IS", e) All of sentence B.
f) If sentence B is the third sentence in a paragraph "PB", give another
way of getting all of sentence B,

11, Write "word-based character-stream" operands to obtain the
characters "ENCE,\WI" from sentence B in two different ways. (The character
/ stands for blank, or space.)

12, If the character-stream "pjABCADEFG" is in the cell-list "IBUFR",
which is the second of two cell-lists in master-block BUFFS, write
"list-based character-stream" operands to obtain the characters "CgDE" in
two different ways.

13, If a source word 6 characters long, e.g, the word "FISHES", is to
be physically moved into a target word-space only L4 characters long, what
would happen (i.e., would there be an error exit from the statement, and
what would be moved into the target?) a) if the source data type code is
WFM on the verb? b) if neither data type code is "F"?

14, If the b-character source word "EATING" is to be compared against
a 3-character comparand word "EAT", what would happen (i,e., would there be
a hit? Which exit would be taken from the data testing statement? How many
character-pairs would be tested?) a) if the source data type code is "F"?
b) if the comparand data type code is "F"? ¢) if neither data type code
iS ngne

15, Give some examples of impossible or unobtainable operands for sentence
B,

Study Questions, pages 11 —- 14,

1., Set up alphabet definition statements for the following alphabets
(here and in all following questions, use the character p to mean "blank"
in your answers; word spacers are perhaps the single most important
feature in thé TEMAC statement, and should be positively and specifically
indicated,) a) An alphabet named "ABET1", having the following categories:
even numbers; letters A, B, C; odd numbers; letters X, Y, Z; word-boundary
letters comma and blank; sentence-boundary letters period and slash,
b) An alphabet named "ALPH2", having categories: vowels; consonants before

2

M: all the numbers zero to nine; word-boundary characters plus, dash, blank;
sentence-boundary characters asterisk, dollar-sign. c) An alphabei named
AB2, having categories: all the letters in reverse order; all the numbers
in reverse order; word-boundary letters blank and plus.

2. Set up a definition for a dummy paragraph named "PD", with spaces
for four sentences, having maximum lengths of 3, 5, 3, and 7 words,

3, Set up definitions for a general paragraph named "PARA" and its
component sentences named "SA, SB, SC", OSA is a dummy sentence having space
for 10 words. SB is a fielded sentence having 3 words all in the base stream
NOBUFR" and named "FA, FB, FC"; choose your own starting positions and
lengths for the fields. SC is an immediate sentence containing the three
words "THREEAWORDASENTENGE".

L. Set up a definition for a dummy word named "VWORD".

5, Set up a definition for a fielded word named "FIELD", in base
stream OBUFR, starting at character 12 and 6 characters long.

6, Set up a definition for an immediate word named "WCONS", containing
the letters "YESTERDAY",

Study Questions, pages 14 —— 17

1, Set up a gereral master-block named "LISTS" containing the following
components: "NLS", an immediate numeric list containing deeimal 5, 3, &4, 2, 1;
WNAMES", an immediate symbolic list containing the symbols (statement names)
JUMP, J2, BLOCK, J2A; "PNTRS", a padded list preset to zero, containing
cells named I, J, K, L.

2, Set up a dummy master-block named "MATRIX", containing space for
6 lists.

3, Set up an immediate literal list named "CHARS", containing the
characters "NOWAISATHEATIME*/.THEkpAZYhDOG*."

L, Set up an edit control string called "ECSX" to do the following:
transmit one character; insert the character "gn; delete two characters;
transmit three characters; stop editing.

5, Set up a match control string named "COMCS" for a compare statement,
calling for: matching one character position; skipping two positions;
character-category 2 in one position; a word-boundary character in one
position; stop matching.

6, Set up a match control string named "LCMCS" for a locate statement,
calling for: the literal character "Z"; skip one position; a word-boundary
character; the literal character "@"; character-category 1; stop matching.
Is the "stop" character necessary?

7. Set up a dummy cell-list named "VLIST",

8., Set up a general master-block called "IBUFS", containing three input
buffer cell-lists padded to blanks, called "IBUFl, IBUF2, IBUF3", each 20
cells long.

9. Set up definitions for the following cells: a) a cell called “CT"
containing zero, b) a cell ealled "BASE" containing the symbol (address or
name) of list "PNTRSY, c¢) a cell called "MINUSH containing the value =75,
d) a cell called "OCTCN" containing the octal value 777.

10, What is the purpose of a "symbolic!" immediate cell-list or cell?

Study Questions, pages 17 —- 23,

1, What would happen if, in example STl on p. 19, the target operand
were VPl instead of VP? Which exit would be taken?

2, Give the following information for each of statements ST1, ST2, ST3:
a) What is in SLX and/or SN? b) What character does TAB point to after the
statement is done? c¢) Which exit is taken?

3. Given the following stream of characters, read into the cell-list BUFR:
A !\THIS /SENTENCE, s 4(SHOULD) HAVE, /SINGLE/BLANKS,) , BETWEEN, WORDS , *

Write a SEG statement called "SCAN" which would allow the words to be edited
by a later EXT statement in the way the meaning of the sentence suggests,
Choose a variable for the target operand from those used as examples of
sentence definitions on p, 13 (for this and all subsequent questions of this
type, alphabets; exit routings, result cells, etc. may be supplied as you
wish, so long as they obey the rules),

L. What value is in result cell "CT" after each of the examples on page
20 has been executed? Which exit is chosen after each? (SEL)

5. Write a SEL statement named "STSL" to select the fifth, second, first,
and third words of 52, in that order, and form from them a sentence in
variable VS,

6., Write a SEL statement called "RPTS2" which will form a paragraph
variable in VP consisting of three repetitions of sentence S2.

7. a) What would the variables created in VP, ONE VP(1), and VM of examples
S5T9, ST10, and ST1l look like if they were moved to an output area (converted
to textual form if necessary) and printed out with a single blank after each
component word?

8. Write a COL' statement called "MIXR" that would form a sentence variable
in VS from the words of Sl in such a way as to say "AASENTENCEAISAHER%{ if
moved and printed out with single blanks after words,

9. a) What would happen if an attempt were made to process VP after
statement ST12 had been executed? b) How many words of sentence S2 will be
left for processing after ST13 has been executed? Which words are left?

4

10, Given cell-list HITS, as defined on p. 17, but now containing
the position numbers of all words in 52 having more than A4 characters,
(i.e., position numbers 4, 6, 7), and a cell CT containing the total number
of these (3), write an OMIT statement named "OMTX" that will cause just
those words to be left out of 52 the next time it is processed, Do you
have to know the contents of HITS and CT to write the statement?

11. What would happen if an attempt were made to process BP after
statement ST15 had been executed?

12. a) What does TAB point to after statement ST17? b) What does TAB
point to after statement ST187 ¢) What will CELL contain after ST19?
d) What will CELL contain after ST2¢? e) What will CT contain after ST21?

13, What would happen if statement ST2@ said "ONE S1(5)" instead of
"ONE S1(4)"? What if it said "ONE S1(J)" and J contained zero?

14. Write a REF statement called "SETUP" to put a value for the

beginning of cell-list BUFR into TAB, When might such a REF statement be
necessary in a program?

Study Questions, pages 23 —- 26,

1. What characters are moved, and where are they placed, by each of
statements ST22, ST23, ST24, ST25, ST26, ST26A, ST26B? s

2. Write an EXT statement named "XTO" to move the words of the variable
VS, produced as an answer to question 3 for pages 17 to 23, into an output
buffer area OBUFR with a blank after each word, Precede the EXT statement
with a REF statement called "GETBG" to set TTAB to the beginning of OBUFR,
and use STAB and TTAB as result cells for the EXT statement. What will be
in OBUFR after the REF and EXT statements have been executed?

3, Write an EXT statement named "XTS2" to move some of the words
of 82 to OBUFR in such a way as to create the sentence: g?HISASENTENCEAISA
OF \WORDS", with a single blank after each compenent word, and also before
the first word,

L. What characters are moved into BUFR by each of statements ST27, ST287
What character positions do they occupy in BUFR? Is there an error?

5, Set up an edit control string called "ECSB" and write an-EDT statement
called "EDWD" which uses ECSB to correct the spelling of a source word
NEMISTHEAKS" which is the third word of a sentence named "INST", and moves
the corrected word "MISTAKES" to OBUFR, followed by a comma,

6, What characters are moved by ST29, ST3@, ST31l; where are they placed?

7, Write a textual convert statement (CVT) called "CVX" to conwert and
move the number "1¢" in the cell-list "LIST" (p. 16) to the fielded word
variable "FW" (p. 14), preceded by leading zeroes to fill out the field.
What is the difference in the way the number H1g@#" looks in the cell of
the cell-list "LISTS" and in the field "FW" within cell-list BUFR? (For
example, what would they look like if they were displayed or SNAPPED?

5

Study Questions, pages 26 — 130,

1., What has to be in variable "VM" in order to prevent an error exit from
ST32? What kind of statements might have to be executed before ST32 to ensure
that VM contains the right thing?

2. If a value had been assigned to VM by the following définitions and
operation statement:
#P STOR DEFM/STOR1 STOR2$
#T STORL DEFL P ¢ 2¢$
#T STOR2 DEFL P ¢ 1¢$
®*T GETM COLLM STOR1 + STOR2 AS VM/CT$

which and how many cells would be moved by statement ST32? Which cells would
the material be moved into? What would CT say after ST327

3. What values would be moved by statement ST33? Which target cells
would receive the material? What would CT say after ST337

Lo Write a MOVE statement called "ADD5" to add 5 to each of I, J, and K
from VCLS and place the results in the first three cells of LIST.

5. What values are moved by ST35, ST36, ST37, ST38, ST39? Where are
the values placed? What is in CT? .

6, Write a REPT statement called RESET to fill the cells of STREM
with blanks,

7. What characters are obtained as sources by statements ST4@, ST41,
ST42? What targgt cells are the converted values placed in? What is in CT?

8. What would happen if STL{ had WSTREM 8 L" as its source?

9. Write a CVN statement called "CVNX" tc convert the characters "567"
in STREM and store the value in the third cell of "HITS",

10, Write an ENTER statement called "INIT" to place zeroes in N2, the
second cell of HITS, CT, and SN,

11, What happens when STL6 and ST47 are executed? (Trace the lookups
through each step until the final value is obtained and placed in the target).

Study Questions, pages 31 == 32,

1, Which and how many characters are compared in ST48, ST4L9? Which
exit is chosen? What is in HITS and CT?

2, The following is a table showing some of the results for various
forms of the COM statement with "WORD" as a source and each of the words of
"SA" as a comparand; various data type code combinations are shown, and
several different match conditions, The numbers in the body of the table

are those values of "J", as J increases from 1 through 5, for which a positive
exit would be taken from the statement; in other words, those components of
"SA" which would be accepted as Hits under the given match conditions. The
number "5" circled in the row for condition ID represents the single word
"BBCD" which alone would be accepted as a match-in statement ST48. Study the
table and verify for yourself the results for data types WW, WF, and FW (the
character-stream data type, H, does not differ from W in its effects on the
outcome of matéhing),

Match Meaning of data type| codes
Condi- | condition WW(HH,HW,WH) |WF(HF) FW(FH)
tion
ID | "WORD" is @ fy B 1,2,5
identical to
EL WWORD" is of 5 not used not used
same length
®
AFT | "WORD" is 1.2,3 3 3,4
after
BEF | "WORD" is A l,Eg) none
before
®
AFQ | "WORD" is after 372 . P 3,4,5 1,2,3,4,5
or equal to
BFQ | "WORD" is @
before or equal L,5 L2545 1,2,5
notes: 1 BBCDj is after BBCDE,
2 BBCD is before BBCp.
3 remember the blank after words 1 and 2 of SA,
4 BBCD is equal to the first L characters of word A4 of SA.
5 The first 3 characters of "WORD" are equal to word 2

of SA,

3. Write COM statements for some other entries in the table (using pointer
J to select a comparand word from sentence SA as in ST48.)

Study Questions, pages 33 -- 36,

1. Which, and how many comparand words or patterns are accepted as hits
in each of statements ST51, ST52, ST53, ST547?

2. How many characters of- each comparand word are compared to the source
in ST51 and ST527

3. The following table shows the results for various forms of the LOC
statement, in the same way as the table given for COM in the previous study
question section; Compare the two tables and verify the results in this
table to your own satisfaction., The numbers in the body of the table below
represent the position numbers of words in the comparand sentence SA that
would be accepted as hits for each LOC statement, It should be remembered
that LOC matches the source against all the words of SA, and not only one,
so that, if "ALL" were requested in the statement, the result list HITS
would contain all the position numbers in each box of the table after
execution of the statement, The circled value represents the result 1list
contents for statement ST52, Data type codes WH and HH are not included,
since they have a special meaning (comparison at all single-character
offsets) for LOC.

Match Meaning of data type codes
Condi- condition
tion WS(HS) WF(HF) FS
D "WORD" equals 5 L,5 1,2;5
words of SA
EL "WORD" same length 5 not used not used
as words of SA
AFT "WORD" after 1,2,3 3 3,4
words of SA
BEF "WORD" before b 1,2 none
words of SA
3shy5 1,2,3,4,5
AFQ "WORD" after or L2y 35

equal words of SA
i

BFQ | "WORD" before or Ly5 1,2,4,5 1,2,5
equal words of SA

L, Write LOC statements for some other boxes in the table,

5. Which and how many cells pass the tests in ST55, SI56, SI57, ST58, ST597

6. Write a FIND statement called "ZROS" to find all zero values in VCLS.

7. Write a FIND statement called "NEG" to find all negative values in
the three cells TAB, STAB, TTAB,

8, Write a FIND statement called "OVER3" to find all values greater than

3 in LIST,

Study Questions, pages 36 —- L0,

1. Describe the results of executing statements STég, ST61, ST62, STé3,
STéL, ST65.

2. What would happen if statement ST63 said "OPEN REW RUNLOG"?

3. Let TEXTFL be a file with physical records (blocks) each containing
100 cells, and let statement ST6@ have been executed three times, so that 60
cells will have been processed in all, the first 20 of each of three successive
physical blocks, If statement ST68 is then executed, backspacing a record,
which block will the next 20 cells be read from the next time ST6@ is
executed? Where was the tape positioned after the third "READ", before
the backspace?

4. What would haopen if a TEMAC programmer wrote end-of-file, backspaced
a record, backspaced a file, or rewound the RUNLOG?

5, Write a "READ" statement called RDTX to read 10 cells from TEXTFL
into the last 1¢ cells of BUFR.

6. Write a "WRITE" statement called OUTPT to put out, as one physical
record 25 characters long, the contents of BUFR followed by the contents of
STREM to the file MACFIL, Since BUFR and STREM are next to each other in
storage, what is another, simpler way the WRITE statement could be written?

Study Questions, pages 40 -- 43,

1. Write a MOVAD statement called "JTEST" to decrement J by -5, and
go to STX when the result is greater than or equal to -15. How many times
would the statement JTEST be executed, if J starts at zero, before the routing
of control will change to something other than STX?

2, Write a MOVAD statement called"FIXTB" to subtract 30 from TTAB and
place it in TAB; if the result is negative go to STX.

3. Write an IF statement called "KTEST" to go to STX if K is within the
range -4 through +4.

Lo Indstatement ST79, where will control go if J happens to contain
37 =1? 197

5. In ST8f, where will control go if J happens to be 27 -1? ¢f? 5?

Study Questions, pages 43 - 55,

1. What statements can be the objects of "DO" statements?
2, What is the result of executing statements ST83, ST84?

3. Describe the sequence of events in the example on p. 47 for EXIT
and RETURN,

L. Write FILE cards for the following files: a) INFIL, 2¢¢ cells in
each block, high density, to be held, b) OUTFL, 20 cells in each block,
high density, to be printed.

5. What card should be placed at the beginning of the program to
cause a TRACE of every traceable statement? What else has to be done to
cayse trace output to appear?

6. What statements are not traceable (i.e,, produce no trace outout
on RUNLOG)?

7. Write a DISP statement named "DP" to display the decimal contents
of the cell N3, labelled with its name. What will the display output on
RUNLOG look like?

8. Write a DISP statement named "DL" to display the decimal contents
of the first three cells of LIST. What will the display look like?

9. Write a DISP statement "DI" to display the message "BADARECORD".

1P

Answers to Study Questions, pages 1 -- I,

1, P, S, W, M, L, C (Paragraph, sentence, word, master-block, cell-list,
cell),

2., An operand is a selection of data from a data object to be acted on
in a particular operation statement. A data object is a named constant or
variable set up by a definition statement. Operands are used to obtain data
by referring to data object hames; data objects are set up in order to
provide data for operands.

3. Textual data is made up of characters, packed into memory in a
continuous stream, It may be structured as a character-stream, a word, a
sentence, or a paragraph. Cellular data is any material whatsoever that
is arranged in individual 7094 machine registers in binary or machine-
internal form. Characters may be treated as cellular data if they are to
be moved or acted upon a cell-full (six characters) at a time, instead of
as a continuous stream or as text words running over machine-register boundaries,

L. The characters within a TEMAC cell-list which happens to contain text
(for example, an input or output buffer area), may only be processed in one
of two ways: character by character (in a list-based character-stream operand),
or 6 characters at a time (cell by cell), in operands of cellular data manipu-
lation statements. In other words, to get at meaningful words or character
groups within the cell-list, the programmer must know that they are there,
that they are correct, and that they are located in exactly specified character
positions in the cell-list. In a TEMAC textual object like a word or sentence,
however, a word may be acted upon as an independent unit, regardless of where
it is in the machine memory or how long it is, or what comes before or after it,

5. Paragraphs, sentences: a message made up of teletype print lines,
(boundary characters space, carriage return)., A message made up of English
sentences (boundary characters space, period). A dictionary made up of entries,

A format or file description or logical or mthematical expression made up of
smaller formulae, expressions, specifications, A group of code-word strings

or lookup glossaries, A program made up of statements in some programming
language, Words: English words; code-groups, elements of formulae or expressions,
(e.g., "A=B", "$500,00", "BALPHA-2NUM"), descriptors or tags ("XXX123", MAAA"),
cue words, endings, stems, abbreviations, etc. for lookups ("ing", "ed", "196-"
"JAN,"),

6, Master-blocks, cell-lists: a group of lists containing numeric weights,
additives, factors, sums, etec. A group of input or output buffer areas,
A group of lists containing program symbols (names of data objects or statements).
A group of "pointer-sets" for indexing in TEMAC set operands. A group of match
or edit control strings. A group of count cells. Cells: a single count, sum,
difference, etc, A program symbol. A numeric constant for adding or subfracting.
A test threshold or limit, A pointer for indexing. The length of a data object.
A "tab" cell containing the cell-address and character position of a TEMAC word,

L

(Answers, pages 1 -- 4, cont'd.)

7. Textual data must be converted to cellular form when it conzists of
numeric words (words containing numeric characters only) which are to be used
as counts, as pointers, in computations, or stored or picked up one to a cell,
If a numeric word is to be used only as part of an output print line, or for
matching to other textual words, it need not be converted to cellular form.,
In matching numeric words in textual form; it should be remembered that all non-
significant positions must contain zerces if the words are to be accepted,
€.g.; "150" will not match "@@F15¢"; both number words must be the same length,

8. Cellular data must be converted to textual form when it is to be
printed out; or if it is to be matched against something else which is already
in textual form., A cell containing a value "20" developed in the machine as
a count cannot be matched against a TEMAC word containing the characters "2g"
in any TEMAC data testing statement., One or the other must be converted so
that both have the same form (usually, it is easier to convert the textual
one to cellular form),

9. A TEMAC alphabet may be used to establish useful character-categories
for matching; to establish a sorting sequence for matching; and to set up
boundary categories for segmenting data into words, sentences, paragraphs or
for matching,

1L. No, data does not always need to be moved, When the results of selection
or test are not to be printed or written out immediately, but just need to be
temporarily "remembered" until some later test or selection is applied to them,
a structural statement may be used to save their descriptors or tags in a TEMAC
variable witfout moving any data,

12, All the words in a sentence ending in "-ed" have just been found;
their position numbers are now known. These words may be selected by a
structural statement as a sentence variable named ~ "EDWDS", without moving
the words themselves, Then a second test might be applied to "EDWDS", for
example, finding all those words that ended in "»ed" and also began with "e¢=",
This smaller group of words might be selected to form a new variable '"CEDWDS",
etc, Whenever no further tests are to be apolied, and the desired set of
words for output has been arrived at, they may be physically moved into an
output buffer area by referring to the appropriate variable name ("EDWDS" or
"CEDWDS") in a source operand of a data moving statement, For many purposes,
it is sufficient to leave their position numbers in the "pointer~set" variable
or result list produced by the data testing statement that found them, and
refer to this set or list in the source cperand of a data moving statement,

Answers to Study Questions, pages 5 -- 10,

1. *T in cols, 1 and 2; NAME, VERB, $ at end of statement,

2. The statements would not compile correctly, a) a compile error would
be noted on the program listing. b) the data words run together would be
compiled as one word, and there would probably also be a compile error message.

3. The statement would compile correctly; any number of blanks, slashes, or
parentheses may come between the words of an operation statement; any number
of blanks between words of data in a definition statement,

1

s The words of data separated only by a slash would be treated as one
word with a slash in the middle; a compile error would probably be noted as
well, Only blank may be used as a word separator in data.

6. Immediate: for setting up a print heading; a list of constant numeric
values for thresholds, lengths, index limits; a string of cue words, endings,
match control characters for matching. Dummy: for sentences to be segmented
as variables in data read in from tape; for sentences to be selected as a result
of tests applied to words of other sentences, or collected from scattered words.,
Padded: for input or output areas preset to blank; for count cells, pointer
cells, pointer lists preset to zero or some constant value. Fielded: for
describing the format of an output area containing characters; for describing
restricted fields within an input area,

7. A source operand tells where data comes from; a target operand tells
where source data is to be moved (or temporarily "remembered"); a comparand
tells what data is to be matched to the source data.

8, Data type code(s) for primary operand(s) in the operation statement
are on the end of the verb,

9. H (character-stream) and F (word-related field).

10, a) SETA_'?.RB(].ABRE)),\ b) sB(2)a (length of B need not be known), or
SEQ, 6 yB(2).' (B 'can only be 6 words long) c) p\ONE\B(4) oraWiy d),SEQ,L 19.(2)i
ARTQUO NEL2) NONE£BLL) or p\WEp ASE=p
e)I\BI\ (note: also possible arer\SETt\?[\B(lhzr\Bl\h 1\5A6A7)A’ SEQA'z,\B(l)n, kB(l)ﬁ.

L1, Wy 547 and ONE,B(L)\ 547,

19, AIBUFRRSAA)\ and NDNE r\BUFF‘S(z)r\SRI;’\

13, a) The first four letters of "FISHES" ("FISH") will be moved into the
target; then the normal exit will be taken, since target is full and the target
length is the controlling factor when the source data type is "F®, b) The first
four letters will be moved into the target, but an error exit will be taken
when the attempt to move a fifth letter threatehs to cause an overflow, and
the source has not been completely moved.

14, a) The first 3 character-pairs will be compared and a hit will be
found, The positive exit will be taken. b) Six character-pairs will be
compared; the first three will match, but the last three almost certainly will
not (we do not know for certain what comes after "EAT" in the data area where
it is stored); no hit will be found, and the negative exit will be taken.

Care must be ex@8rcised with these "field" or incompletely matching operands,
since sometimes things will "match" by chance which should not have been hits.
¢) In some statements, no character-pairs will be matched, and a negative
exit will be taken as soon as the discrepancy in lengths between the operands
is spotted; in other statements, three character-pairs will be matched for

the shorter of the two operands, but as soon as a character cannot be obtained
from the shorter one to match a character of the longer one, matching will
cease and the negative exit will be taken., In either case, no hit will occur.

1A

15.

3.

Impossible operands (not allowed, will cause compiler errors):

ONE;B(P)n (ONEpB(=1) (SETA@4B(112,3)1 ASETA-LAB(152,3) ASET3, B(% -1, 5)
RN R e g h BB =00

LJ_!}obt.aina.ble operands (not possible at a given time, or in a given
data object; will cause error exits at run time):

ONEAB(9)p ASEQubAB(6)\ ASETA34 B(1A9A5 1B(8)) fONE4B(I)) (where I contains
zerg, miﬁnﬁ %: QBwnbé\rAgregtﬁar t/l\‘la/r\l 6‘)4 sin{Ii arl};;erB(I A ASEQNAB(I)A
(where I is as above or N contains zero, a negative number, or too large
a number),,\SEI“,\NAB(SET)A (where SET contains zeroes, negative nu mbers

or excessive numbers)

Answers to Study Questions, pages 11 —-= 1k,

a) #T, ABET1; ALF, 21, #2468 (n20ABC, 4 3n13579 AbinXYZar W s =6FA Sn o /an $
b) *ﬂ\ALPHQiALF,\'i,\ﬁEIOUA ,f'z\,\%cDFE_JﬁLManﬁHQA A wﬂ-:&;a,q,\ ?*:5_%“ $
c) *TKABzf\ALFAlI\ZIXWVUTSRQ,POMKuIHGFEDGBA.MZI\%%SASQJ. A ,\wA- F-p &
*T'APD ADEFEA L /3 A3 A’m
*T\PARANDEFP, L,/SA~SBASC$
NSANDBFS DL "
#T1, 5B, DEFS\F/FA,FBAFCH
AOBGFRAB/\ 6 ANFA3pNLL f\5/\$
H¥T1ASCADEFSI 138
ATHREENWORD SENTENCES
*T;\VWORDADEFW\W
*T/\FIELDADEFWAFAOBUFR,J_.EA6$

*T'14 CONS ADEFW I$
AYESTERDAY, §

Answers to Study Questions, pages 14 =- 17,

:?\LISTSADEFM/NLS AMESAPNTRS$

1ANLSADEFL T NUMA5$

N5 P3Ny 2ALS

*T1 A\NAMES \DEFL , T SYMy 4

/;TJUI-'IPAJEABLOGK,\J.?Aﬁ
APNTRS,\DEFLAPAWIAJAKAW

*‘I‘/\MATRIX/\DEFMAE:%

#T15 CHARS\DEFLAIALITA32$
/\NO/L}AIS ,\‘I'{I\EATIME*/, HEALAZYADOGH.

*T1 AECSXADEFLATAECS)\9%
ATI@DDTTTE

44

(Answers, pages 14 -- 17, cont'd)

5, #*T1,COMCS DEFLNLAMCSA6%
JMA*2WE s i L

6. *T1,LCMCS,\DEFL, I MCS,8%
A}Z*WLQIE (the stop character is required for LOCATE)
7. ¥T,VLIST,DEFL AD#

g, *T,IBUFS,DERM/IBUF1 IBUF2 IBUF3§
*T \TBUF1,DEFL,P\=BLANK 20$
#*T \LBUF2ADEFLPy= BLANK A20/$
*TNIBUF3 \DEFL\ P = BLANK \20/%

9, a) ¥I,CT\DEFC\#$ b) *Tx\BASE.DEFCA\PNTRS$ c) *TMINUS\DEFCA-75%
d) *‘I‘AOCTCNAD%FC?\=777$ AR 7 el b il

10, A symbolic immediate list contains "program symbols"; these are not
textual objects, characters, or words like those in a sentence or literal
immediate list; instead, the symbeols are machine addresses for statements or
names of data objects having storage addresses in memory. Such a list is useful
for decisions in directing the path of control (in the BRANCH statement, for
example) ., Otherwise, symbolic lists and cells are useful primarily to protrammers
familiar with IBMAP who wish to write addresses directly into TEMAC calling
sequences and system cells for gimmicks and shortcuts. Allowable symbols for
such purposes, in addition to TEMAC or MAP names, are such things as: J+2; ¥=3;%%;
BASE,1; WRDLO49; ADDRS,k,DECR; ADDRS,4,19,

Answers to Study Questions, pages 17 -- 23,

1. The error exit would be taken, and control would go to STX, because the
first sentence of VPl has space for only five words, while there are six words
in the first sentence in BUFR if segmented as specified.

2, a) 8Tl: SLX contains 6, 2, ¢, ¢, @; SN contains 2.

ST2: SN contains 6, SLX unused. %132 SN is 2, SLX unused.
b) ST1: TAB points to the character (probably a blank) following the
dollar sign., ST2: TAB points to the blank after the asterisk, ST3: TAB points
to the second peried.

c) Normal exit in all cases.

3. *Ty SCAN, SEGLS)\BUFRy AB)AS \VS/SN\TAB/THEN ; STX$

(When the words of VS are moved to an output cell-list by a data moving
statement, they will be edited in the specified way; see gquestion 2, pp. 23--26),

L, ST4: CT is 3, normal exit. ST5: CT is 3, normal exit, ST6&: CT is 1,
normal exit, ST7: CT is 2, normal. SI8: CT is 1, normal.

5. T, STSLSELSS,SET, 4 ﬂsz(5n 2A1,\3),\As ,\vs /CT$

6, *T/\RPT52 {\SELPP ASET,3,P1 (2 ,\2/;\\2) AS AVP /CT /THEN ,\SszE

15

(Answers, pages 17 -- 23, cont'd)

7. a) In VP: HEREpISA\SENTENCENHERE LS ANSENTENCEAA SENTENCE,OF 5\FIVE)WORDS 4 |
In ONE,VP(1): THIS;IS,DISESTABLISHMENTARIANISM A
In WM: 5,2 ﬂlﬂaAABGDEFQZQ;Lthse?BC)A 05~/ () '==$%1 524103 /

b) 8T9: CT is 3, ST1@F: CT is 3., ST1l: CT is 3,
8. *Ty MIXR, COLWS) WL, +Wi 4,2 ¢ WL\ AS VS /CT$

9. a) An error exit would be taken from any structural, data testing, or
data moving statement which attempted to refer to UP or to any of its component
sentences or words as a source or comparand., b) Four words are left, namely
“ﬁ‘SENTENGEAOFﬁWDRDS" (numbers 3, 4, 5, and 7).

10, *T;OMTX,OMTS,SET) CT, S2(HITS)$
No; they are variables,

11. An error exit would be taken from any statement referring to VP or to
one of its sentences as a source or comparand,

12, a) The first character, "H", in the word "HERE" in S1. b) The last
letter "S" of word "WORDS" in S2. ¢) The address of the first cell in BUFR
(IBMAP address BUFR or BUFR4@). d) The number 8 (length of word "SENTENGE",
e) The number 4 (length of list "NUMS",

13, An error exit would result in both cases; however, since no explicit
error exit has been provided in ST2@, control would proceed to the next
statement in the program; the programmer must test to see if anything was
vlaced in CELL (if there was an error CELL will be zero) or if the DBUG cell
contains a non-zero error value,

14, *TA§ETU3AREFLABGNAPUFR“ASA?AB$
This statement might be necessary just before a SEGLS or SEGLP statement,

or an EXTSL, EXTWL, EDTWL, CVICL etc. , to set the TAB cell referred to by
the statement to the correct initiel value.

Answers to Study Questions, pages 23 -- 26,

1., 8T22: the five characters "WORDS" are moved to positions 6 through 10
of BUFR; no error., 35I23: the six characters ",SENTE" are moved to positions
5 through 10 of BUFR; no error, 3$I24: the six characters "AﬁNT%a" are moved
to positions 9 through 14 of BUFR, the last character béing moved first, etc.;
no err&r. ST25: The characters “SENTENCEAOFnﬁEVENAHDRDﬁf are moved into the
first few cells of BUFR; no error. ST26: The eighteen characters
"ANTIDISESTABLISHME" are moved into positions 1 through 18 of BUFR, then an
error exit is taken to STX because the target is full while the source is not
completely moved, If the instructions at STX process and clear BUFR and then
return to ST26, the remaining 10 characters "NTARIANISM" will be moved into
positions 1 through 10 of BUFR and a normal exit will be taken. This is the
"continuous" option, ST26A: BUFR will contain: |d/\£,r/\4 THIS MM .
(characters inserted by the instruction are underlined), ST26B: BUFR will

contain ANAAAANAAA ,‘AAAQQQQ@HBA. iF:ur leading zeroes were inserted,

(Answers, pages 23 -- 26, cont'd)

2, *T,GETBGAREFLABGNAOBUFR AASATTABS
*TAXTOA@ETSLnySAAN:6¢ATOAOBUFR/STABFFTAB$

In OBUFR after XTO: “THI%NSENTENCEP§HOULDﬂﬂAVEhSINGLE[pLANquBETWEENﬂWORD%{

2 W *TAXTSQAEXTSH«Squhmsz(1A4f@A5A7)AB%NﬁéqAToﬂPBUFR/STAgf;TAB/THEQASTX$

(BA does not insert two blanks between words, but merely ensures that a
blank will come before the first word and after all words.)

L. 8I27: The seven characters "“SENJ/77" are moved into whatever positions
of BUFR were specified by "TTAB"; "77" is an "invalid" character, which cannot
be punched or printed but may be manipulated in memory. ST28: The six characters
"77/@FGZ" are moved into positions 2 through 8 of BUFR, The first edit control
character of ECS1l applies to the last character of the operand in "STREM",

5. %114 ECSBADEFLAI\MCS 128
ADTTTTDDTTIET
*Tp@DWDAEDTWL“ONEp;NST(31\AA9AToﬁpBUFRA?YAECSB/STAquTAB$

6., $I29: The five characters "JFlg@" are moved into positions 6 through
10 of BUFR, §8T3@: The eight characters "5,2,1,3,% are placed in positions
1 through 8 of BUFR. 8I31l: Characters in BUFR are as follows:
pos 1 3 6 10 15 23

i ﬂ:ACVXAQVTcwﬂONEA;IST(5)ALZA¢0ﬁ§w/GTATTAB$
In LISTS, if the cell containing "1@@" were "SNAPPED" or "DISPLAYED" it would

look as follows: pom—— ()
SNAP - 144 tal
DISPLAY | 5 ¢¢¢¢¢¢¢¢¢1uﬁ>\ e

In BUFR, the characters for "1¢g" in the first two cells, if SNAPPED or DISPEAYED,
would lock as follows:

b
SNAP: 4 -20606060800¢ \~d0e180006d6@ A (octal)
DISPLAY: A6@6060600000, 30010007 6&«
(The underlined characters are the BCD numbers for "@@l@@g". It is assumed that
the rest of the BUFR area contains blanks or octal "6@", The TTAB cell points
to that charactér in BUFR marked with an arrow on completion of the statement CVX,

The difference in form before and after conversion, and the reasons why
conversion is necessary, should become clearer with study of this example,

Answers to Study Questions, pages 26 —- 3@.

1. A master-block structure having component cell-lists suitable for
receiving the cells to be moved must be in VM; the lists must have been selected
or collected by a structural statement (SEL, COL) to form VM before ST32 is
executed, In other words, a value must have been assigned to the "dummy"
variable VM in terms of some other data object which may receive material,

A7

(Answers, pages 26 -- 30)

before VM can be used as a target operand in the MOVE statement, If ST32
were executed without any value having been assigned to VM by a previous
structural statement, an error exit would result, because VM would be
"inobtainable™ or "null", What has just been said about VM applies also to
the dummy list VL in statement ST34.

2, Twenty cells would be moved from BUFR into twenty cells of STORI,
Then five cells would be moved from STREM into the first five cells of STOR2,
CT would say "2", for the two cell-lists moved,

3. The values 1, 2, 3, from cells N3, N2, and N4 of NUMS are each
decremented by 50 and the results (-49, =48, =47) would be placed in the
last three cells of LIST, where they would cover up the values already there.

Le *1hADD5AMOVLLWSEQA3&VGLS(l)A+A5ATOﬁ§EQA34LIST(1)/CT$

5, ST35: The values =2, 5, octal 777, and zerc are placed in the first
four cells of STREM and the four cells of JUMPS, destroying their previous
contents (for purposes of this example only), CT is 2, for lists moved.

ST36: The values 2, 5, 1 from NUMS are moved into the first three cells of
STREM and of JUMPS; CT is 2, ST37: The 20 cells of BUFR are set to "blank";

CT is 20, ST38: The 5 cells of HITS are set to zero; CT is 5. S5T39: The
value 2 from N2 is moved into the first, third, and fifth cells of LIST; CT is 3,

6. *TARESIWAHEPTGLA=BLANKFTDRSTREM/CT/THENASTY$

A STQQ: The four characters "1234"% (positions 10 through 13 of STREM)
are converted to cellular form and moved to cell "CELL"; CT is 1, ST4)l: The
characters "2g" , 64", and "2¢@" from NSENT are converted and moved into the
first three cells of NUMS; CT is 3, ST42: The characters "2g@" are converted
and moved to "CELL"; CT is 1,

8, An error exit would be taken from statement ST4P, because a non-numeric
character (z) was included in the source, The source tab cell contains a value
pointing to the non-numeric character,

9. *TACVNXLQVNHCASTREMRIAABATOAONEhﬁITS(j)/CEhSTAB/THENASTI$

N

11, SThb: The value 1 is obtained by looking up 2 on LA; the value 1 is
obtaingd again by looking up 1 on LB; the value 4 is obtained by looking up
1 on LC; 4 is placed in CELL; control proceeds to STY, ST47: The value 3 is
obtained by looking up 3 (in NAi) on LC; the value 4 is obtained by looking up
3 in LB (which is ONE M2(2)); the L is stored in K, which is ONE VCLS(3);
control proceeds to the next statement after STLT.

10, *T INITAENTERNﬁyg/,/,A;NTOANE/ONEAHITS(Q)/CT/SN$

1%

Answers to Study Questions, pages 31 —- 32,

1. ST4L8: One character-pair is tested - the first B of "BBCD" in WORD
against the single B in the first word of SA., Matching stops then because
there are no more characters in the first word of SA to pair with the remaining
characters of WORD, The negative exit is chosen, even though the single
pair tested was a match, because the data type codes on the verb (WW) require
that the entire source word should mafch the entire comparand word a&s a whole,
HITS and CT contain zero (since no character pesition actually tested failed
to match,) ST49: One character-pair is tested, as in ST48, This time, howevér,
the positive exit is chosen, because the data type codes "FW" on the verb
require only that as many characters of the source be tested as are needed to
pair with characters of the comparand, and the single pair called for by that
requirement was a match, HITS and CT are zero.

3. *T,CX, COMWF, WORD, ID INAONE‘\SA(J) /HITSRCT/YESASTY&

[AR

#T kCY Aconw {WORD, BFQ AAB §IN{ONE ASA(J)/CT/YES 1 STY$

1,02 ,\GOWWAWORDAEL (I, ONE ASA(J) /CT/YES / STY$

Answers to Study Questions, pages 33 -- 36,

1. ST51: All three endings in "ENDS" match portions of the ending of
"WORD2"; HITS contains positions "1, 2, 3"; CT contains 3. ST52: Only the
fifth word of SA matches "WORD"; HITS contains 5, CT is 1, ST53: No match is
found, since the source does not end with numbers (category 2 of alphabet AB);
CELL contains zerc. ST54: The second pattern, PAT1, is a match, since it
calls for two numbers, a "Z", two letters, and a word-boundary; CELL is 2,

2. ST51: seven character-pcsitions are matched for the first ending,
four for the second, and two for the last, ST52: no character-pairs are
matched for any word of SA except the lash, for which four pairs are tested,
In LOCATE, if the data type codes are "WS", a word-pair is rejected immediately
unless the lengths of the words are the same,

lie *T) LX, LOCFSALL (WORD; AFT, AB,IN ,\SA/HITS 4 CT/YES 4 STY$

#T ’\LY {LOCWF (ALL WORD \ID, IN ASA/HITSA CT/YES ASTY&

A
#T (B ALOCW‘W AALLn WORD L AIN{\SA/H ITS)CT/YES A STY AELSEA STZ$

5. ST55: One cell, N1, is chosen; the position number 1 is placed in "CELL",
ST56: Only the first cell of LIST passes the test; HITS contains the number 1;
CT is also 1, ST57: The last three cells of NUMS pass the test; HITS contains
2, 3, 4; CT is 3, ST58: The second and third cells of NUMS pass the test; HITS
contains 2, 3; CT is 2, ST59: All but the third cell pass the test; HITS
contains 1, 2, 4, 5; CT is 4,

é. *TA ZROS; FINDCLy ALL AZRO 1N AVCLS /HITS; CT/YES,STY$H
7. ¥T\NEG,FINDCI\ ALL (NS §N4SEQ, 3, VCLS(4) /HITS{CT/YES \STY; ELSE, STZ4
B. *T)\ OVER3 AFINDCLAA]_LA GRT, 3 AIN(\ LIST/HITS ACT /YES AS’I‘YﬂELSE ASTZ$

19

Answers to Study Questions, pages 36 -- 40,

1., STé@: 20 cells of data are read from the file TEXTFL into the 20
cells of BUFR, ST6l: 20 cells of data are written as one physical record
onto the file PRNTFL. ST62: The file TEXTFL is made ready for reading and
writing; the tape reel is rewound to itg beginning, IOCS buffers are made
ready and the first data is brought into memory from an input taps to be
picked up and moved to the programmer's buffers by a "read" statement later,
ST63: The RUNLOG is made ready to be written on by the program; the tape
reel is not rewound, ST6L: Processing of the file TEXTFL is terminated.

If TEXTFL is an output file, an end-of-file is written; the reel is rewound
and unloaded from the tape unit in any case., TEXTFL cannot be referred to
again in any way by the program after ST6L is executed, and the file may

not be re-opemed, ST65: Processing of the file MACFIL is terminated; if it

is an output file, an end-of=file is written; the tape is rewound, but remains
loaded in the columns on the tape unit, If MACFIL were opened again, it
could be reread or rewritten from the beginning to the end-of-file,

2, The RUNLOG, system tape "SYSOULl¥ on unit Bl, would be rewound, This
would undoubtedly result in the destruction of the stacked ocutput of many other
programs already on the tape. The 7094 operators would express their displeasure
to the programmer in vehement terms, and he would probably also be unpapular
with the other programmers whose runs preceded his that day.

3. The same 20 cells as just read would be read over again from the third
block; “BSR" backspaces to the beginning of the 100-cell physical record, not
the logical record read by the programmer's READ statement, The third "READ"
caused the tape to be ppsitioned at the beginning of the fourth physical block
before the backspace record, '

4. The same answer: given for question 2 apply te question 4. The programmer
should never write end-of-file; backspace recerds or files, or rewind the RUNLOG,

5. *T7RDTX,READ) TEXTFLATO /\BUFRAIJ?,[1¢ /EOF AETXAERR, STY; THEN, STZ$
6. First way; *Tf\OUTPT AWRITE AMAGFIL/\ FROM, BUFPy\l zd/STB.EMA 14 5/THEN/| STX$

Second way: ¥T,OUTPT ﬁ-JRITE,\MAGFILAFROM JBUFR ;1 A25/THENA STX$

Answerslto Study Questions, pages LO -= L3,

l, *T /\J TEST AMOVADAJ N SATOA J/ GRE/\nl 5 ASTX$

If J starts at zero, control will go to STX the first three times JTEST
is executed (as J becomes =5, -1f, -15); when J becomes -2@, control proceeds
to the next statement after JTEST,

2, *TAFIXTBﬂyOVADA?TABAmnquIDp$AB/MNSASTX$

3. *T f\KTEST A IFAKARNG}A =k AL.. /STX$

Lo

(Answarsg pages 4O == L3, cont 'd)

L. If J is 3, control goes to STB; if J is -1, control goes to STA; if J
is 10, control goes to STX, ;

5. If J is 2, conbrol goes to ST2; if J is =1, control will attempt to
go to the next to last cell of STREM;, which does not contain a jump, and will
cause a program error or a machine stop. If J is @, control will attempt to
go to the last cell of STREM, causing an error or stop, If J is 5, control will
attempt to go to the first cell of NUMS, causing a machine stop, When a machine
stop occurs during a run it is always an error, and the 7094 operators usually
take a dump of mempry and note the fact that the program stopped in execution;
they should also note the octal location where it stopped,

Answers to Study Questions, pages 43 -- 55,

1, SEG, SEL, COL, OMT, INC, REF, MTY, EXT, EDT, CVT, MOVE, REPT, CVN, LOC,
COM, FIND., |

2. ST83: The extract action of ST831 is executed; it it was successful,
control goes to STY; if there was an error, control goes to STX, ST84: The tests
of the LOC statement ST84]1 are made; if any hit is found, control goes to STX;
otherwise control goes to the next statement after the DO statement ST84L,

3. Statement "ENDT1" in the main program causes an entry into subroutine
"FDDAT" via Box 1. FDDAT contains a test, with twoc possible outcomes; if the
test has a positive exit, control proceeds to statement "FDDT1", which causes
a return to the second exit name on statement ENDT1, which is "ENDT2", in the
main program, If the test has a negative exit in the subroutine,control
proceeds within FDDAT to statement "FDDX", which causes a return to the first
exit address on statement ENDT1, which is "S1TX1", Statement S1TXl continues
in the main program, selecting a sentence for further processing. Statement
ENDT2, which was reached by a positive exit from subroutine FDDAT, causes an exit
via Box 2 to a new subroutine, "WRITR", which selects a sentence variable
82 and exits to a sub-subroutine "LOGR2", via Box 1 (which is now free again),
LOGR2 displays the sentence in S2 on the RUNLOG and returns control to subroutine
WRITR again. At the end of WRITR, a return is made via Box 2 to the main program,
to the single exit address on statement ENDT2, which sends contreol to a statement
"R2" which is not shown in the example.

col.L 1 %
L, a) INFIL,,FILE,,, ,A(1),MOUNT,INPUT, BLK=2(@f, BCD,MULTIREEL , HIGH, HOLD
b) OUTFLAAFILEAHAA,B(l)9MOUNT,OUTPUTDBLK=2¢,BCD,MULTIREEL,HIGH,PRINT

5. A ¥TRACEALL$ card. RUNLOG must have been opemed, ENABLT set non-zero,

6. DISP, READ, WRITE, WEF, BSR, BSF, REW, OPEN, CLOSE, GO TO, START, FINISH,
DEF, ALF.

7. *Ty DP, DISPC, D LABEL,N2§ Output : ﬁrz

8, *1)DL,DISPL,D,LIST,1,3$
Output: \AHHIIF ~HPHH5 409963
21

(Answers, pages 43 -- 55, cont'd)

9. *T1,DI,DISPT,1g$
A\BAD) RECORD

Output: ABADARECDRD

A

Alphabetical List of Data Objects in the Text.

Name Type Definition
AB alphabet T, AB) ALF, 1) A¥¥Z AAQAQ’**?A AW 4:695, /()N\sn'.*AAPA:se. N\$
BUFR cell-list T, BUFR (DEFL,P/=BLANK,20$ ~ (see also M1)
CELL cell T, CELL, DEFC ﬂgﬂf,
CMCS match control #T1, CMCS ,\DEFL, I AMCSAIW
string (COM) f MLL2WW*ME
CT cell (see VCLS)
DW word Ty DW ,DEFW, D§
ECS1 edit control *T1,ECS1, DEFL, I \ECS,13$
string ATTTDIQ!R/R_.T'?E
ENDS sentence #T1, ENDSADEFS; I, 3%
,\IONALLY,\ALLY,\LW
FLDS paragraph *@AFLDSADEFP/FSIAF82$ (see also FS1, FS2)
Fs1l sentence #T1,FS1 ,DEFS, Rﬁgf
,\BUFR 3 7A STREM, 12 5, A2, 9, 6%
FS2 sentence 14gsz NDEFS F/FlAF2%F3$
ABUFRAL5 7% A /\5nr\1n3
FW word *T), FW; DEFW, \ BUFR, 5A6$
F1,F2,F3 words (see Fs2)
HITS cell-list *‘I‘AHITSADEFLAPAGJ 5%
p £ cell (see VCLS)
Iw word #T1,IW,DEFW, I$
AANTIDISESTABLIS}MENTARIANISM$
J cell (see VCLS)
JUMPS cell-list ¥T1, JUMPS, DEFL, T,SYM/J1,J2,J3,J4$ (see M1)
ST1,ST2 @T:a STL$
Y e et e
Jl, J2, cells (see JUMPS)
J3, Ji
K cell (see VCLS)

2%

LA cell-list #T1, LA« DEFL, I NUM,A$ (see also M2)

A2nlplp3n$
LB cell-list #T1,LB, DEFL, I ANUMA.{..$ (see also M2)
IECTER.
LC cell-list *‘I‘l,\LGADEFLAIﬁNUMAh# (see also M2)
nla2p3n1p%
LIST cell-list #I1\LISTADEFL,I 5%

I ¢;\-5 A=17 n=BLANK, L @$

LMCs match control #T1, LMCS, DEFL, I ,MCS A15$
string (LOC) AlliAL,‘**WLt??SE

ML master-block *Tkm,\DEFM/BUFRASTRm{A JUMPS$ (see BUFR, STREM,JUMPS)
M2 master-block *TAMQADEFM/LAALBAL% (see LA, 1B, LC)
NB cell *T,\NBADEFCA:BLAI\IKﬁi
NG cell *TANGADEFCA-5$
MW sentence #T0, NMW, DEFS, I, 2%
AABCL504 89760 1§
NS cell *T ,[NS ADEFC, BUFR$
NSENT sentence *T NSENTADEFSJ\ I/NSJnNSEANSB PETE
AL 201 6L 200) $
NUMS cell-list *T1ANUMS) DEFL, IANUM/NJ.-AN.?AMANW
524103
N1,N2, cells Tsee NGMS)
N3,N4
PATRN master=block *Tfl PATRNADEFM/PAT]ﬂPAT% (see PAT1, PAT2)
PAT1 match control #T14 PATlADEFLAIAMGSAaﬂh (see also PATRN)
string (LOC) A222LZILWE
PAT2 " " #T1, PAT2,DEFL, I,MCS, 8§ L "
Azﬁmwm :
Pl paragraph *TAPILADEFP/SIASE!AS% (see 51, S2, S3)
SA sentence #T1y SA (DEFS\I,5%
4B \BBC\BBB \BBCDE /\BBCD,\$
SLS cell (see VCLS)
SLX cell-list *T), SLX ,\DEFLA P l\¢ /\5$

24

SN, STAB cells

STREM cell-list

SVAR sentence
S1 sentence
52 sentence
53 sentence

TAB, TTAB cells

VCLS cell-list
VL cell-list
™ master-block
VP paragraph
VPl paragraph
Vs sentence

WORD word

WORD2 word

WV1,WV2, words

Wl,W2, words
W3, Wh

(see VCLS)

*T1,STREM,DEFL,I \LIT 3¢$ (see also Ml)
AABCDEFGzﬁlz:aasé?a% ey JO) 1=

*T/\ SVAR; DEFS; D/WVl (WV2 A WU3$

¥T1y SléDEFSéI/Wl W2, W3, Wi (see also P1)

AHERE) 1S A \SENTE cE,\$

#T1,S2,DEFSAT 4786 (see also P1)

ATHIS fs fA ngNTENGE OF \SEVEN, WORDS$

#T1y 53, DEFS, I (see also P1)
SEN&‘ENCEA ITI-}.\ FIVE, {WORDS, $

(see VCLS)

T VCLS, DEFL, Py g/1 24 K TAB ASTABﬂ TTAB,CT ASL% SN$
#1) VL DEFL,, D}

*T VM DEFM, 3%

*T, VP \DEFF; 3, 7$

*T VP, DEFF, 3/5, 4,3%

*T), VS, DEFS, D ALP8

*T WORD \DEFW, I
ABECDp $

*T1, WORD2, DEFW, I$
IN%ENTI@NALLT&
(see SVAR)

(see S1)

A5

List of Operation Statements in the Text, Alphabetical by Verb,

BRAN 3T ST79xBRANI, ON,JLSEA1/L/7/8 ,T04 STA/STB/STC/STD/ELSE, STX$
*T,\srsﬁ BRANL, ONJ \TOAJUMPS $
*TASTBQIAABRANI,\ON,II,WJ TO, JUMPS$
*T \ST8YB ,\gRANL AONp s A #A2 ,\To JUMPS$

*ThSTagﬁG RANI ON ,\(::ELLA:.,i =TT EQUA =76/=75 /=74 ATO ASTA/STB/STW
BSF *#T AST(;?,,\BSF}\ 2 ATEX’I‘FLSB
BSR *TASTGBABSR,\TEXTFL/EOF STX$
CLOSE #T,8T6l, CLOSE\REWUNL, TEXTFL$
#T\ST6 5 CLOSE, REHEOF\MACFTL,/ THEN \STX$
COL s'r9 COLSPASL + Sy +, ONE, P1(3) V'P/G'I‘/THEN STX$
As'm@ GOLWS;\I m@ 2(1.) ,\wz,\-,.ﬁ AS,ONE vp(l)?c'm
)\STll COLLM AHAON Ml(2 A+ANUMS 4AS 4 /CT$
coM STL48 ; COMWW, WORD, IDA IN SA(J) HITSACT/YESASTY ,ELSE,STZ$
*TA STh?,\COME‘W,\WORDAIT 1,\'31\1,\01% SA(J) /HITS/\CT/Y% Ty ELSEA STZ$
CVN #T)\ STL@, CVNHC (STREM gﬁ,\a TOACELL/CT ASTAB/THEN Asw:m
*TASTi.l,\GVNSL NSEN (2 MS/CT STAB$
¥T\STh2 ACVNWC, NSk, TO AGELL CT, STAB$
CVT #T)\ ST29 ACVICH, ONE LIS'I‘ (N1)\ LZ\TOpF2/CTATTAB/ERR ,STX THENASTY:&
*T,\ST3 CVILH TO BUFﬁ 1 12icT’\rTAB/THEﬂ

/\STalAcVTLs’;\SEQANuAN'UMS 2)ALB,\TOAF52 GT,\TTAB/THENASTX&I‘:

DISP T DSC1\DISPG, 8 ,LABEL, BUFR§
*T DSC?.’\JISPC D LABEL,ONEAVCLS(J) /THEN , STX$
DSCjADISPG H STREIﬁ-
ﬂAnscu DISPGyH ,,LABEL,\ONE ASTREM(3)$
#11, DSIlADISPIAEl/THENASTK$
AENDy OFAFILE,ON, INPUT.
"“I‘IADSIEADISPIﬁ
/\TAPE READ AERROR «
#T, DSL1NDIBPLAD WVCLS A1 3 /THEN ,STX$
DSL\DISPIAD VCLSE
*T DSL3%ISPL,‘3 LIST,3,3%
*TI\DSLI;‘\ ISPI,H \BUFR

DO #T)ST83,D0 \STE31/ERRASTX EHENASTTw
‘*?,\STBL, DO, STBhl/YES ASTE
Lol g coI 16
DUMP A, CALL g DUMP (NAMEL, NAMEZ2 @)
EDT #T \ ST27 \EDTWL Wi Ay = 60 ;0o BUFR ,BY, ECS1/STAB,TTAB/THEN,STY$
*’I",\STEB EDTHH ,\STREM nIAB\RIGHT,TO BUFR, 1,8 BY ECSl/STABATTA%

26

ENTER ~ *T,ST43,ENTER,@/,/, \INTO I/J K/THENASTY$
*T,\STM ENTERAlf 5AINTOJ/ONE NUMS(3) /CELL$
*T, STL5A ,ENTER /,71/ / INTO A/B/G/D/E/N;
ASTASB,\ENTERAONEANUMS(I ONE LIST()/\INTOAONE/\HITS() /ONE/\VCLS()$

EXT *T) ST22,EXTWI, NE sz(‘?) TOAF /STAB,\TTAB/THENASTYS';%
*T\ST23 XTFW L,\B ” STAB,TTAB$
#T STzlv\’\zerH,\Iw 114 A 4;3 RIGH'I}.,TO ABUFR 5 11¢//STAB,TTAB/ERR ySTX$
#T \ST25\EXTSL,S2 _6¢ TOABUFR/STAB TTABH
#T \ST267EXTWH ,IWAC ,\TO,\BUFR 1,18/STAB AB/ERR STX THENASTY:&
*T,\ST26A EXTSSASEQp3S2(1) "B TOAFSZ?STABATTABﬁﬁ
*‘I‘,\ST‘%B W EXTHW ,STREM, 95 LG Tb\ ONE,F52(1) /STAB,TTAB}

EXIT #Ty ENDT14EXIT ,TO,FDDAT, ON5BOX, 1/THEN ,S1TX1,ENDT2§
*T4 ENDT2 ,EXIT 40, WRITR ONABOXAQ/THEN AR2$
*‘I‘AWRTRl,\EXITATO ,\Locﬂz,pNABox,\w

FIND T, ST55 ,FINDCL, GST IN ,NUMS/CELL$
T ,;31‘56 INDCLAALL pZRO ALN ALIST/HITS, cT/YEs,\f%r,@LSE,\STzﬁ
*T) ST57,FINDCL ALLARNG nln3nIN NUMS/ TS\CT/YES\STY$
ST58 FINDCLAALL\LES\NL ALN Al NUMS/HITS or XESASTYﬁ.
*T/\ST 59 \FINDCL ALLI\NEQ,\ =7 /\IN LIST/HITSI\CT/YES ASTYH

FINISH 'WTASTBQI\‘FINISHQ':
GOTO *T,ST8L,GOTO,STXS

IF #T \ST76 \IF)I \ZRO/STX$
®T) ST77p IFs Jp= 42 \MNS/STX \ELSE,STY
*T, STT78 \IF, I - AJ RT,\K/Sﬁ(
®T, ST78A,IFp, AZRO/STX$
7 ofl, Ko

*T,\ST'?BB IF,0 S(CELL)/\ ONE NUMS(,)p+42 EQUAONEAHITS ,) /STX$

A
INC T, STLLA JINCS SE‘I‘,.\BASE(lj\z,\é)&b
LKP *T (STL6,LKPLONEALB(L) ON LA/LB/LG,\TO CELL/THEN 4STX$
#T), STAT , LKP N4 AONALC 0/ONE AVCLS(3) $
¥TASTLTA LKE, NIy, =72 \ON /.gdc LB ATD CELL$
LOC *T/\STﬁl ALOCFS pALL \WORD2,, ID,RIGHT, INAENDS/HIT %gT/IES 4STY, ELSE, STX$
STY#

ST52,LOCWS \ALL,WORD,, I Ny SA/HITS CT/YES,,
'\ST53 OCWM ONEANW(E) Qc NB IGHTAIN ATRN CELL/YES /§TY$
*T/\s'rsu DCWM ONE | (2) CAAB N,\PATRN CELL/YES s'rm

MOVAD T ,ST73,MOVAD,TI, + nJp T4 K/THEN STx$
KT \ST71, MOVADAY N~ 1 NTO JONE,VOES(1) /RNGy ~2,3 (STX$
#T ST75 MOVAD,\ONE VCLS(3 +7 5,10 I/GH.E{\lgﬁ STX, ELSE, STY$
A2 Top A {1 2 14#

*TAST75A\MOVAD, =d 2D A6 p#pK s~ ONE HITs(3
?ST?SB /\MOVAD ONE,\HITg(I)A ;\\5 A4 ONE | Nmﬁ(‘S\ TO AONE VCLS(,)$

MOVE #T \ST32,MOVEMM , SEQ\ 2 ML(1)\ TOAVM/CT/ERR STX ATHEN ,STY$
*T ST33 OVELLASET,\a NUMS(BAQ,\ ,\5@’,\1'6\ ST(NL) /CT/THEN ASTTH
*TA\STSLI, OVELL ONEAMJ. 3) TO VL/LGEQIS

a7

MTY

OMT

OPEN

READ

REF

REPT

RETURN

SEG

SNAP

START

TRACE

WEF

WRITE

¥T, ST15,MTYP VP /ERR \STX, THEN ,STY$!
*’I'A'STJ.&AMIYSASI/'EHR,\STX% g \

*TRSleAPMTPAVP/THENASTX$
*T\ STL3)OMTS \SET; 3,52(15 26)
*TKSTIAAPMTWhpNE 53(1) ERR, STX$

#T, 5762 ,OPEN, REW , TEXTFL, / \THEN , STX}
*ThST63ADPENANOREW RUNLDG@

*T), ST6Y \READ \TEXTFL, TO BUFR \1 ,20f/EOF \STX \ERR., STY \THEN xSTZ%
#T ngzm READ;\INF’ IL, TO EUFR 1"11,/E0F ST6PX ERR '\wr THEN ,STZ$
*TrgTéﬁB EAD,TEXT Aro BU l¢/STREMﬂlA5/HIT541A5 OF gTXﬂEﬂﬁquYﬁ

*T STlﬂ\REFPABGNAPIAASATAB/THENASTI$
\STLE \REFSNEND;S2 AS TAB/ERR. \STX$

*T,\sng) PBGNAML 5AS ForLe

#T STEQAREFWALTHﬂONEAS (4)4ASCELL$

*Tﬁ_TzlﬂREFLﬂLTHANUMq\ASAQQ/THEN STY$

HTp ST34, REPTLM =2, 55 =77y @nTOy M1(2) /CT/THEN\STT§
*T RST3 AgngLM SETAB NUMS(EAI 3)ATO ﬁEQA2rM1(2)/CT$
*#T 5T37 =BLANK,TO, BUFR/CT$

#T STBBﬂgEPTCL TO HITS T

*T ST39 \REPTCLN2 4 nSETnsf;IST(%ﬂ3A5 /GT/THENASTY$
#T) FDDX \RETURN, TO \BOX,, 1 /THEN \EXIT, 1§

#TFDDTL RETURN T0,BOX, 1/THEN \EXIT) 24

T WHTH& ARETURN TO Boxz$
'\nocmg)RETURN ,\TO,\ BOXA1$

*TA§T66AEEWA?EXTFL/THENASTX$
*T\STL \SEGLP\BUFR \ABAS \VP/SLX, SNATAB/ERR, STX, THEN ,STY$
*T) ST2 \SEGLS \BUFR AB”i3AVS/SN AB/THEN STQ$
*TA§T3 SEGHSABUFRA38A AABAAS VS/SN,TA
“ex SNAPS&
MON RUNLOG, ,2
PZE PARLOsPLITRL-zg
T, TXEDT, START, BGING

*TRACE$
¥TRACEALLS

T, ST67\WEF, PRNTFL/EOT, STIATHENASTY$

*T, ST61, WRITE, PRNTFL\FROM, BUFR 1 2@ /THEN zSTY$
*T STélﬂAWRIT PRNTFQ\FROMALISﬁ 1 5/BUFRA1¥q1¢/HIT§\ A5

R

