SO0AP
IBM 650 Symbolic Optimal Assembly Program

Programmer's Guide

Prepared by
Edna Vienop

March, 1957

TABLE OF CONTENTS

Page
INtTOdUeULoN i siaiasiinanniivs e ds S s 5 e v peael Sl Dvae e
DEfinition Of Termslnl.llIIIIllII..IIllllIl.l!.!li"l'llO'IQI!-
Coding form and Input Card format Goeceseco0cassessssssen RS EE
Specifying Program Area on DrUm .,ceceessescssnsscsnnscnnsnronsens
Instruction format 0O O 00 0000008000 OGS ODO0OD0 00000000 0 2860000000 RD e
Types of AAQremBeN ,..cieesssvsinsscasssssisnnsasiasssassnassns
Operation COdes ® 000 0O 000 000 00 OO0 00O @D PR OO0 008D ES00 00 GO0 0O DOS 6O BB
Numerde Data. . cciiosseissevsnssioisssssosnanssnonaesnnsssenss

TagsoIIG'IOGIUDF!UﬂﬂD.G.ODDCGODO.OGDU-.00000.000.0D.'l'lnuﬂl'lu

Alphabetic Data * 000 PDde0 000002000000 00R00000009000930000d0e 88

Signs * 00000000 0000000000000000000000800000OCOSO0COC0000CB0000O0DOC G0N O®S

Symbolic Assignment card 0000000000 D00O000000008000000G0B000DB 8D
Example a0 0000000D0006GC66 0800 00a0DSIODOO0GSED0O0S6G06e00806608000060086a68086060 s 8
Use of Library Prograig ,.esesesesvsssscsssssnsssssssssnsnssense
Relocatable Library Programs ..ceesccesacassesssssoscsssasacaas
Assembly capacity and speed....eecsccesscsvesssssssosssssnsssss
Pogt Asaembly Avallabillity ..ivcvevsnscoesnsessinepanssnaisinans
Order of Assembly Deck ...ssesecesssccscscsasacrsssessssscssscns
Machine Operator's GUlde e ees ses sosinnnsivsvioassesevivese 1D
Programmﬂd Stopa 0000850080008 2008900 PpP00CO0OCOCO0CSOQCSCSEBOBSSEOESEO0SOBS 19
ERROR MARKS sonvsunonssssssnssssonsoassssssssssnssenssenessoess L
650 Operﬂtion COdes ® &5 ¢ 200 %S 000009980 0SSSEE00 S0 880 0SS Ss 00 88808000 20
Optimizing BOOX InstruotioNBss sesesesasnonnesrnsenmnnsnsnnane o
Description Of Output Cards e s &6 v s ST Ve e s 2&
Summary of special type CardS sseecscososssssssscscososressasns 2D
Shandard Wrlting Proosdure o i oiiesseaassssssaovisivess o0

=
;iFJﬁ!G\O\Uﬂn\h¥“hthhJF'Hl4

el
0 ~3~3

Page 1,

Introduction

The purpose of this report is to describe coding procedures and machine operating
rules for "SOAP", the N. Y., Symbolic Optimal Assembly Program for the IEM Type 650
Magnetic Drum Calculatora* The main features of this system are:

1) Ease and speed of programming since most location and instruction addresses
may be left blank,

2) Five-character "free" symbolic addresses.,

3) Ability to restrict the assembled program to any part of the drum,

4) Assembly of most programs in one pass,

5) Simultaneous assembly and optimization.,

6) No restriction on the total number of symbolic addresses.

=) Incorporation of either relocatable absolute or symbolic library programs.
Definition of Terms

location (address)

data (address)

instruction (address)

. = first word address

IWA = last word address

A = number of words in a block

OP = operation

block = a consecutive group of drum locations

region = a block designated by an alphabetic character
pseudo-instruction = an instruction which is never executed
symbolizer part = left most position of the L, OP, D or I field
absolute part = L, OP, D or I field with symbolizer part deleted

EHUL—'
=oaan

Coding Form and Input Card Format

Figure 2 shows the coding form to be used when writing for SOAP, Vertical dotted
lines separate the symbolizer and absolute parts of the L, OP, D and I field, Ob-
serve that the input card format is indicated at the top of the coding form,
Punching in columns 1-39 is immaterial. Column 40 must contain an x punch.

Instructions and data enter the assembly one word per card. The output is the standard
one word per card.

*equipped with an alphabetic device, selectors totaling 20 pilot selectors, 20 co-
selectors, and 5 punch code selectors,

Specifying Program Area on Drum

Prior to assembly, the entire drum is considered as available to the program., It is
usually necessary, however, to prevent the program from occupying certain drum
locations, e, g., read and punch areas, data areas, etc. There are two special types
of cards which can be used to restrict the program to any predesignated part of the
drums

Block Reservation Card: Type 1

This card contains two absolute addresses called FWA, A punched in the absolute
part of the D and I fields, respectively. All locations from FWA to IWA
(inclusive) are made unavailable to the program, where LWA = FWA + A -1,

Regional Specificaticn Card: e

This card contains an alphabetic character to be associated with a region on

the drum defined by the addresses FWA; A, As in the case of a block reservation
card, all locations from FWA to LWA (WA = FWA + A - 1) are made unavailable

to the program. If the programmer wishes to refer to locations within a region
using "regional" addresses (see Regional Addresses, page 3), a regional
specification card defining this region must precede the program being assembled.

Format for Type 1 and 3 Cardsgs

The format for the preceding two types of cards is shown in Figure 2., The type
number must be punched in the column so labeled. The symbolizer part of the D and I
fields must be blank, The symbolizer part of the location of regional specification
cards (* in Figure 2) contains the alphabetic character associated with the region.

ol [40l41la2 43 — 46 W7 48 49]50 51 —> 54[55 56 57—>60|a|62(63 > 72|
% [T T i) I
Y A AlI
" Tnst, Remark
E Location | Oper Adgiggs G Add?eas G'% marks
x|1] | i | &FHA—> | —A—> Block Reservation
x|3|%! [I «FWA —> | e—A— Hegional Specification

Figure 2, Format for Type 1 and 3 cards

Instruction Format

The instruction format for SOAP is as follows:

L 0P . D T . I T
X} 0000 X} XX X} 00X X X} 10XKX X

The various types of addresses and operation codes are described in the following
sectilons,

3a
Types of Addresses {L, D, or I)

Regional Address
A regional address has the form !

liAll 1 NNNN
where "A" is any alphabetic character and NNNN is a four digit number, In order
to utilize regional addresses, one must first define a region by a regional
specification card, It is possible to have as many as twenty six different regions
(one for each letter of the alphabet). The regional address of the first word of
region B, for example, is BOOOO. The twelfth word of region Q has the regional
address Q0011,

One need not employ regional addresses for a region whose limits are known. The
most important use of regional addresses is to facilitate addressing words within

a block whose terminal addresses will not be absolutely determined until completion
of the program,

Regional addresses usually refer to blocks of data.

Symbolic Address
A symbolic address has the form
1
| 9510,€58201 |
where the C's may be any character acceptable to the special character device,
subject to the following restrictions:

a) Cy; must not be blank
B) If 05 is numeric it cannot be followed by 4 numeric characters

c) An address meant to be symbolic must not have a regional form,
i.e., an alphabetic character followed by four numeric characters.

Typical symbolic addresses are:
TART 3
525
C3Q

=

-

o
oW
H ol O

|
|
i
i
I
:
|

Symbolic addresses are assigned optimal drum equivalents when first encountered
in the assembly. When a symbolic address recurs, it is given the equivalent
initially assigned to it,

It is possible to preassign a value to a symbol by use of a symbolic assignment
card (see Symbolic Assignment Card, page 6).

o

Absolute Address

Absolute addresses have the form :

{NINNN
where NNNN is a valid four digit machine address (0000-1999). The symbolizer part
of an absolute address must be blank,

Drum locations corresponding to absolute addresses are not made unavailable during

assembly, Thus locations containing instructions or data specified by absolute
addresses must be block reserved at the beginning of assembly.

Blank Address

Whenever either the D or I address of an instruction sends control to the "next"
instruction written on the coding form, this address may be left blank. The
location of the "next" instruction may be left blank or a symbol inserted, pro-
vided it has not been assigned previously, and the location will be given the
same address as the D or I address left blank in the previous instruction., The
program MUST be assembled without altering the order of these instructions. No
instructions or data should be interspersed between two instructions related
through blank addresses, These rules also apply to the location of data referred
to by the data address of the preceding instruction,

The D and I address of an instruction should not both be blank; if they are the
location of the next instruction will be the same as the previous I address, The
location of the first instruction should not be blank,

An address should not be left blank in an instruction card unless the above
meaning is specifically intended.

Operation Codes

Operation codes may be written in either three character symbolic or two digit
numeric form, Symbolic operation codes to be used with SOAP are given in the
appendix, page 20. Note that in general they differ from the symbolic operation
codes given in the 650 manual,

The format for numeric operation roqeslisr

| XX :
where (XX) is a valid 650 operation code, e.g., 65, and the symbolizer part of the
operation field is blank,

If the D or I address of an instruction is to be assigned an optimal value by the
assembly program, a symbolic operation code, e.g., RAL, must be used, If a
numeric operation code is used, these addresses will be optimized according to the
rules,

D=L +5

I=D+5
Numeric operation codes should be used only for constants.

5.

Numeric Data

Numeric data is written using the absolute part of the OP, D, and I fields, e.g.,

Col £0 Wl|42 43—46|47 48 49 |50 51——54 |55] 56 57 ——60[61| 62| 63 72
oo B T T[S
Y| ‘Location Oper. Data A Inst. Al Remarks
P Address |G Address |G|G
- T T | N
x| [pi1 3 | 14159 | 2654
x| [OINE ™10 0000 0051
x| |E! L 02 | 1782 | 8183
x| | !1850 v 33 | 13333 L3350 | |-

The symbolizer part of these fields must be blank. Leading or trailing zeros must
be punched in the card,

Tags

Whenever a D or I address is to be tagged, an A,B, or C should be inserted into
the corresponding TAG position. If an absolute address is used in the D or I
position it should be a valid drum address (0000-1999). If a SYMBOLIC address

is used in the D or I position it must be remembered that only one (1) location
is assigned to a symbol, If additional addresses are to be used, each additional
address must have been reserved previously and a symbol preassigned. In this
case it may be more convenient to use a preassigned REGIONAL address,

Alphabetic Data

Alphabetic data cards allow the programmer to enter alphabetic information into
the 650 on load cards, up to five characters per card, Any characters acceptable
to the special character device are permissible, and are written in the D field.
During assembly, alphabetic data is converted to its numerical equivalent and the
latter is punched as a ten digit number in exactly the same manner as numeric
data., In the first example of figure 3

L col |40lk1l42 43 —46]47 48 49| 50 51 ——54155[56 57——60|61(62] 63 72
*® 1T T T|S
Y| Location Oper, Data A Inst. [A|I Remarks
P Address |G| Address |(G|G
ey T u T i
x Cilé ! I 1 BMNY '
% 11306 ' 1CPCR ;
: | s :

Figure 3.
the number 69,61,74,75,88 will be loaded into symbolic location (C16).
Similarly, the 2nd example will load 00,63,77,63,92 into location 1306.

The OP field of an alphabetic data card must be blank,
Sipns
An 11 punch in column 62 signifies a negative instruction or negative data, This
may be indicated by a minus sign, =, in the sign column on the Coding Form, A
blank in column 62, or in fact any character not containing an 11 punch, will be
interpreted as positive.
Symbolic Assignment Card: Type 4
Any symbol may be assigned an absolute equivalent prior to assembly by use of a
gymbolic assignment card,
As seen in Figure 4, a symbolic assignment card contains a symbol in the Location
field and its desired four digit equivalent in the absoclute part of the D field,
The symbolizer position of the D field (* in Figure 4) should be punched "U" if
the symbol represents a drum location to be made unavailable, Otherwise, this
position must be blank.
Coll40|41] 42 43 46 |47 48 49150 51 541550 56 57 60161 g:: 63 72
x|T 4y T

Y | Location Oper, Data A Inst. AlI Remarks

L Address: |G| Address |G |G

B N

x |4 s yMBoL * leequiva | | Symbolic Assig.

Figure 4.

7o

Example 1
We wish to compute B = i X3 ¥y
i=l
where x5 = as%X; 4 + 05 - e 0
¥y = B¥y q *Dy ¥, 0
m =10

and the constants s, bi’ C and D are prescribed by the programmer.

We are given the following information:

1

m = 0000000010

ays bi’ C, D = ,x00000xXyy

where yy is the exponent

Figure 5 shows the flow chart for the proposed solution while the program
is given in Figure 6, The assembled program is given in Figure 6A. The
first four columns on the right of the listing show the assembled absolute
program, The last column on the right is an assembled card number. The
left side of the listing r eproduces all information on the coding form.

initialization on

| program read-in

glaca m in
in

exX acc,

..4’

lc,
c%ifl+c

!

xi—>xi_l

v

¥4=byy4_1+D

cale,

!

Yi2¥ia

reduce
index Acc, B

Stop l

\D_w&e[Punch '2'.

Figure 5

2

Col Ko |41k2 43—46 47 48 49 |50 50—>54 |55 |56 57—60|61[62163 72
x (T T T |8
Y | Location Oper. Data A Instr. |A (I Remarks
B Address |G Address |G |G
I ; . ‘ N
x| : 11900 10100 LD PCH RT ¥
x(3 | & i | 0000 ,0010 RESERVE A
x|3 | B! ' 10010 10010 RESERVE B
x4 | SITART | U, 0050 | FIRST INST,
x S'TART L,DD M! |
X : R'SB 1 8001 i Set Index
x A'AAAA RIAU Xid |
x : F!LM A'0010 B :
x r FAD C, | ol
x S ITU X, i | STORE Xi
x : RIAU Y| i !
X : F_ 1M Bl0010 B | |
x | F |AD D! l
x : S TU Yi | STORE Y i
X ! P ILM Xii | XIYI
x 1 F |AD s' _ANS {
{ S Ty s, ANS ! STORE SUM
X : A DB ; 0001 i reduce IND
% ! N 7B Al AAAK | TEST
X ! SITU 11977 '
I | L DD : B,BBEB Set Control
o - 100 , 8888 'gaa8 word
x B \BBER S ITD 11986 '.
e i L 'DD 7! ERO | Clear 2nd
he ¢ lccce S ITD 11978 : word
I P CH : 1977 19999 PUNCH
5 : | | 1
'8 X4 100 1 0000 '0000 X Zera
Yd 00 1 0000 10000 Y Zero
b S | ANS 00 1 0000 10000
0 Z ERO 100 '0000 10000

Figure 6

Program for example 1

Sww

BBBEB
cccece

XI

YT

S ANS
ZERO

oP

LDD
RSB
RAU
FLM
FAD
STU
RAU
FLM
FAD
STU
FIM
FAD
STU
ADB
NZB
STU
LDD

00
STD
LDD
STD
PCH

00
00
00

1900
0000
0010
U0050

8001
AO010 B

XI
FE
BOO10 3

XI

S ANS
S ANS
0001

1977

gag88
1986
ZERO
1978
1977
0000
0000
0000
0000

0100
0010
0010

BBBBB
8888

9999
0000

0000
0000
0000

LD PCH RT
RESERVE A
RESERVE B
FIRST INST

REMARKS

SET INDEX

STORE XI

STORE YI
XIYI

STORE SUM
REDUCE IND
TEST

SET CONTRL
WORD

CLEAR 2nd
WORD

PUNCH

X ZERO

Y ZERO

SUM

9000
9000
9000
9000

0050
0056
0062
0069
0020
0039
0068
0025
0030
0049
0024
0075
0044,
0031
0036
0040
0080
0083
0086
0089
0094
0081
0065
0021
0028
0041

10

OP D
69 0053
83 8001
60 0065
39 4010
32 0023
21 0065
60 0021
39 4020
32 0033
21 0021
39 0065
32 0028
21 0028
52 0001
L2 0062
21 1977
69 0083
00 88388
24 1986
69 0041
24 1978
7L 1977
00 0000
00 0000
00 0000
00 0000

Figure 6 A

0056
0062
0069
0020
0039
0068
0025
0030
0049
0024
0075
0044,
0031
0036
0040
0080
0086
8aa8
0089
0094
0081
9999
0000
0000
0000
0000

MW

11,

USE OF LIBRARY PROGRAMS

Within the framework of SOAP, library programs are in either symbolic or re-
locatable form, Little need be said concerning symbolic library programs,

They are written in exactly the same form as the main symbolic program and
should be treated accordingly, It is important to note that such programs have
no "guaranteed" optimization built into them,

Whenever tight optimization is required, ons should use library programs written
in relocatable form, Such programs are coded in absolute and are wholly con-
tained in a block beginning at (0000) and extending to some specified last word
address(IWA), They may be translated an amount specified by the programmer,
This is accomplished by use of a Library Translation Card,

Library Tranelation Card: Type 7

This card contains the last word address (LWA) of the block to be translated
and the amount of translation (A) punched in the absolute part of the D and I
fields respectively, as shown in Figure 7. If A is negative, the word must be
written negatively (col. 62).

Gol 140 L.'Lx 42 A3—— 461 AT 48 49]50 51 54[55156 57— 601616463 72
x|T T T |S
Y | Location Oper, Data A Instr, |A|I Remarks
P Address |G| Address |G
E
xlz1 ¢ : I IWA— D>

Figure 7:¢ Library Translation Card Format

A library translation card must immediately precede a relocatable library
program and all such programs must precede the main program, Locations used
by relocatable library programs are automatically made unavailable to the main
program,

Example

The following are typical specifications for a relocatable library subroutine for
calculating the square root of a floating point number,

Library Program 308 SR: YA
Conditions upon entrys
Contents of 800l1: EXIT INSTRUCTION
8002: Clear
8C03¢ A in normalized form

Conditions upon exits
Contents of 8001: Irrelevant
8002: Clear
8003z VA in normalized form

Transfer to 308 SR (0064) exit stored in 308xx(0026)

This subroutine occupies location QQQ0 _ to _0079

Index register A is used but is restored to orginal status before exit,
This subroutine should be translated by an even amount to preserve
optimization,

Since the lowest location used by a relocatable library program is always (0000),
and in this example LWA = 0079, it follows that this routine requires an 80 word

block,

12,

If the routine is to occupy the block (1210, 1289), the following library transla-
tion card should precede the square root deck:

| 091_14941' 42 43—46 |47——49 50 51— 54 b5(56 57— 6061|62] 63 72
lz | T T T|S
Y| Location Oper Data A Instr. (4|1 Remarks
P Address G| Address |G %
l ! 1
x |71 | : 0079 1210
A segment of the main program using this routine might be as follows:
| Co1ls0li1l 42 43 46 47——49150 51——54l55056 57——60k11621 63 72
x |T T T| S
Y | Location Oper., Data A Instr, ([A|I Remarks
P Address |G| Address |G| G
L T 1 | I
| x I RIAU o : CALC SQ
x | F|AD Y I ROOT of
x ' F1SB A : X PLUS ¥
x ! L.DD : 31 085R MINUS Z
x ! S\TU Ei2 i STORE ANS, i

When coded as above, the exit instruction
respect to its drum location although it is actually executed from erasable location

(308XX) in which it is placed by the subroutine,
latter location can be effected in the following manner which utilizes a pseudo-

instruction located in (308XX):

[STU(E2) ()] will be optimized with

Optimization with respect to this

_Cotfsolia] 42 43—46 |47——u9]50 51—5455| 56 57——60/61|62 63 72 .
x| T T T|s
Y| Location Oper, Data A| Instr. AlI Remarks
P Address | G| Address |G|G
E L 1 N -
X ! R AU X J CALC SQ
X | F IAD Y, | ROOT of
! F |SB Z\ u X PLUS Y
v]
i | L ,DD E :XIT 3 08SR MINUS Z
3 08X | 8'TU B2 10000)
x E XIT S ITU E|2 . STORE_ANS,

13,

It is generally ummecessary to remove the pseudo-instruction [STU(E2) (0000))
from the assembly output deck, It will merely result in the loading of a spurious
instruction into an erasable location,

A relocatable library program need not be entirely translated by a single amount
A, Tt is possible, within certain restrictions which may be imposed by the
library program, to split such programs into as many as five sub-blocks and
translate each sub-block by an independent amount., A library translation card is
required for each sub-block, IWA being the last location within the sub-block.
These library translation cards are placed in front of the library program deck
in ascending segquence on LWA,

lesz

Due to space limitations, a relocatable library program with IWA = 0536 is to be
split into five parts and translated as follows:

0100

s' B
0090 :
oevL J = 1050 1210
0160 e
0161 A= :

: 1340
O::I'AO 0591
0241 :

i A= 350 T :

| 0765

e 0415 |
0416

: — 4= 5y .

0536 0336

14

The following library translation cards must precede the library deck when

‘assembling:
Lo kolalaz 43 46 b7 48 29150 51 s4l55]56 57 6de1ls2] 63 72
x |T S
Y | Location| Oper, Data i Instr, |11 Remarks
P Address Address |G
G G|y
x7 |] | 10090 10100
x |7 E E '0160 11050
x& 1 | - 10240 11100
xf7 | | g 0415 10350
xl7 1 .’ 10536 10200 -

Note that all sub=blocks have been translated parallel to the drum axis in order to
maintain optimization,

Translation may include a rotation about the drum axis provided all sub-blocks in
a given program are rotated by the same amount, if optimization is to be preserved,

Relocatable Library Programs

As previously mentioned, relocatable library programs are ccded in absolute and

are wholly contained in a block extending from location (0000) to location(IWA),

In the interest of tight optimization, all locations in this block need not be used,
Unused locations are automatically available for the main program,

Two special types of cards are used in writing relocatable library programs:

Relocatable Library Card: Type 8

This card contains an absolute instruction or data located absolutely. The operation
code of instructions MUST be numeric. The symbolizer part of the L,D, or I address
must be blank if the corresponding address is to be translated; it should be

punched "F" if the corresponding address is fixed., All addresses and only addresses
in the L field are made unavailable to the main program. If L is relocatable

then location (L +&) is made unavailable, Instructions located in 800X may be
written on the coding form as a programming aid but must not appear in the final
library deck.

All Tagged addresses should be written in 650 language(address plus 2000, 4000 or
6000).,

Library Symbol Card: Type 9

Library symbol cards provide for the symbolic linkage of the main program with the
library programs, These cards have somewhat the same format as symbolic

assignment cards, i.e., & symbol in the L field and its untranslated drum equivalent
in the absolute part of the D field. The symbolizer part of the D field should be
blank. During assembly, the drum equivalent is translated in exactly the same
manner as the library program and the symbolic address is stored in the symbol

table along with the translated equivalent,.

15,

This card may either precede or follow the relocatable library program but must be
inserted before another library program is translated.

The format for these two types of cards is shown in Figure 8,

Col o142 43 —ib 50 51 —54|55|56 57 —— 60| 61| 62163 74
x|T T Tis
Y| Location | Oper. Date A| Instr, AT Remarks |
E Address @| Address G|G
N
0 | XXXX :xx 0.1 XX 0 10X LIB TRANS.,
9 SYMBOL ! EQUIV-| | LIB SYMB,

XX = digit, @ = "F* (fixed) or blank (relocatable)
Figure 8: Card format for Relocatable Library Programs

To illustrate a relocatable library program, the short load routine "OOSLR" has
been written in SOAP form as shown in Figure 9. Note that a library symbol card
is used in this example to symbolically specify the entry point to the subroutine,
and library translation cards to illustrate how they are used,

Some library programs are not arbitrarily relocatable, For example if a table look=-
up is involved, or read and punch bands used within the routine, the entire routine
must be translated by a multiple of 50 in order to preserve optimization and for
proper operation of the program,

The example of the short load routine need not follow these rules specifically
since optimization is of no value, However, since the read band must be translated
by a multiple of 50, location 1951-»1960 are translated by amount (-1950). All
other locations are translated by amount (=1976), The final translated program
will occupy locations 0001 — 0023,

650 S.0.A.P. Program Sheet

16,

Problem Short Load Routine Written By
Col [4Q41142 43——46U7 48 49[50 51——5/55] 56 57——60b1]62 72
x [T i T|S
Y | Location | Oper. Data Al Instr. AT Remarks
P Address | G| Address G|G
L. T T T T Il
7 | : :1960 11950 -
xi7] | : 11999 11976 -
1 : ' :
xlg | 1996 170 11993 11993 READ CARD
x |8 11993 167 11951 11994
x I8 1199 ' 80 E, 8002 11995 LOCATION
x 8 11995 135 F, 0006 11988
8 | 11988 4l 11991 F18001
x 18 1991 | 82 F 8003 11999 NOT TRANS
x 8 11999 | 50 F, 4000 11992
x 11992 153 F,0001 11997
x 8 11997 169 15951 11990 STORE
x 18 1990 153 F,0001 11998 CONTENTS
x 8 11998 124 F'2000 1989 ON_DRUM
11989 ;42 11992 11996
i]
] L 1 |
O | 010SLR j 11996 l
i ; [
T ’ :
' | :
Figure 9: Library Program

17.

Assembly Capacity. and Speed

During assembly all symbolic addresses and their equivalents are stored in a
symbol table which can accomodate 600 symbols. As soon as the symbol table is
filled the machine will stop with 1357 displayed in the data address of the
instruction. All subsequent output cards will have a Y punched in Col. 40.
Generally Y - 40 cards will be only partially assembled and should be fed into the
533 for a second pass, or more if required, until the last output card does not
have a Y - 40. Intermediate ¥ - 40 cards should then be discarded.

Thus a program containing not more than 600 symbols can be assembled in one pass,
There is no limit to the number of symbols provided a sufficient number of passes
are made to complete the assembly,

Since the waverage program will require one symbolic address for every three to
five instructions, programs containing 1,800 to 3000 instructions can generally
be assembled in a single pass,

Assembly progresses at the rate of 75 to 100 cards per minute depending largely
on the number of symbolic addresses present in the program and the degree of
program packing requested by the programmer. It is preferable for the program
to be assembled in the lower part of the drum if possible, as this will result
in somewhat higher assembly speed. The speed will decrease toward the end of
lengthy assemblies if the symbol table becomes densely packed.

Post Assembly Availability

To facilitate additions or corrections to an assembled program, the programmer can
request an availability punchout upon termination of assembly, This will result
in the punching of fifty "check-off" cards,

Check—off Card:

This card contains forty columns, (11 - 50), each punched one or zero, indicating
respectively the availlability or unavailability of the forty words comprising

8 specified dynamic drum level, e, g, level 00 = 0000, 0050, ==mm=—m===~, 1900, 1950,
The level is punched in cols 57 - 60,

When listed, these fifty check off cards reveal at a glance all locations used by
the program and those remaining for additions or corrections,

Since SOAP will load check-off cards and restore the availability-unavailability
status which existed following a prior assembly, additional assembly at some future
time is possible, Note however that symbolic equivalents cannot be restored in

a similar manner,

It is possible to do a reassembly using output cards of a previous assembly as
input, provided they are gang punched with X - 40,

18,

Order of Assembly Deck

The assembly deck should have the following order:

1) SOAP
2) Deck to be assembled

Due to the one pass nature of the assembly, priority for the choice of optimal
locations decreases as the assembly progresses. Thus, frequently executed portions
of the main program should be placed toward the beginning of the assembly deck. It
is also desirable to initialize a loop following the loop rather than before it,

In order to avoid reservation errors, check-off cards should be loaded immediately
following the SOAP deck, The program should be started at location 0965 rather
than 1000 if previous check off cards are used,

Machine Operator's Guide

1) 533 Read~Punch Unit
a) Ready read feed with assembly deck
b) Ready punch feed with blanks

2) 650 Console
a) Set half-cycle switch to RUN
b) Set display switch to PROGRAM REGISTER
c) Set overflow switch to STOP
d) Set error switch to STOP
e) Set programmed switch to STOP

If SOAP is being loaded:

3A) Set i?D, 1951, 195i] in storage-entry switches
If SOAP is not being loaded:

3B) Set [00,0000,1000] in storage-entry switches

4) Press computer-reset key
5) Press program-start key

6) If before completion of first pass, there was an error stop with 1357 displayed
in data address of instruction, a second pass will be required.

Therefore proceed as follows:

a) Run out and remove completely assembled cards from card runch,

b) Press punch start key.

¢) Press the program start key.

d) When read hopper empties, press end-of-file key,

e) On completion of first pass, run out partially assembled card from punch
feed and insert in read feed,.

f) Press Punch start_key.

g) Set [00,0000,1500] in storage entry switches

h) Perform steps (4), (5), and (6).

If a second pass is not required proceed to step 8

19.

7) After completion of all additional passes, discard all intermediate, (partially
assembled) cards (Y_- 40) and combine all completely assembled cards.

8) Print all final assembly cards (No Y - 40) on 402 with Set-up switch #1 on.

9) Sort completed cards on Col 7 and remove all cards which fall in 8 or 9

pocket.

These should be discarded as they cannot be loaded into the 650.

10) The remaining cards are ready to be loaded into the 650 as a program deck,

Programmed Stops

Data
Address Reason and Procedure

1357 2nd pass required - if start key depressed
assembly will continue, (see machine operators
guide for complete instruction),

9999 Drum is full - Terminate assembly,

8848 Availability punch out completed
ERROR MARKS

ERROR
MARKS Reason

0001 Illegal operation code used,

Operation of 00 was inserted on card and
D and T address were optimized using the
following rules,,

D=L+5, I=D+5

0002 A location of a library card was greater
than LWA given on translation card,
0000 was inserted for location.

0003 The translated location of a library card
was a negative location, 0000 was in-
serted for location,

0005 The symbol on a symbolic assignment card
had already been defined, The original
definition was retained,

0008 The symbol table was full for a symbolie

assignment card, Symbol was not added to
table,

650 OPERATION CODES

20,

OPERATION NU- SYMBOLIC OPERATION NU- SYMBOLIC
i MERIC MERIC
NO OPERATION 00 NOP FLOATING MULTIPLY 39 FLM
STOP 01 HLT BRANCH NON-ZERO A 40 NZA
FLOATING ADD SUPPRESS BRANCH MINUS A L MIA
NORMALIZATION 02 FAS
' BRANCH NON ZERQO B 412 NZB
ADD TO UPPER 10 AUP
BRANCH MINUS B 43 MIB
SUBT., FROM UPPER 13 SUP
BRANCH NON ZERO UPPER Ly NZU
DIVIDE 14 DIV
BRANCH NON ZERO ACC. 45 BNZ
ADD TO LOWER 15 ALO
BRANCH ON MINUS 46 BMI
SUBT. FROM LOWER 16 SLO
BRANCH ON OVERFLOW 47 BOV
ADD. ABS. TO LOWER 17 AAB
BRANCH NON ZERO C 48 NZC
SUBT. ABS. FROM LOWER 18 SAB
BRANCH MINUS C 49 MIC
MULTIPLY 19 MPY
ADD A 50 ADA
STORE LOWER 20 STL
SUBTRACT A 51 SBA
STORE UFPER 21 STU
ADD B 52 ADB
STORE DATA ADDRESS 22 SDA
SUBTRACT B 53 SBB
STORE INSTR. ADDRESS 23 SIA
ADD C 58 ADC
STORE DISTRIBUTOR 24, STD
SUBTRACT C 59 SBC
SHIFT RIGHT 30 SRT
RESET ADD UPPER 60 RAU
SHIFT AND ROUND 31 SRD
RESET SUBT. UPPER 61 RSU
FLOATING ADD 32 FAD
' DIVIDE RESET UPPER 64, DVR
FLOATING SUBTRACT 33 FSB
RESET ADD LOWER 65 RAL
FLOATING DIVIDE 34 FDV
RESET SUBT., LOWER 66 RSL
SHIFT LEFT 35 SLT
RESET ADD ABS. TO LOWER 67 REA
SHIFT AND COUNT 36 SCT
RESET SUBT. ABS. FROM LOWER 68 RES
FLOATING ADD ABS. 37 FAA
LOAD DISTRIBUTOR 69 LDD
FLOATING SUBT. ABS. 38 FSA
READ 70 RDS

215

OPERATION NU- SYMBOLIC
MERIC

PUNCH 71 PCH
RESET ADD A 80 RAA
RESET SUBT. A 81 RSA
RESET ADD B 82 RAB
RESET SUBT, B 83 RSB
TABLE LOOK UP 84 TLU
RESET ADD C 88 RAC
RESET SUBT. C 89 RSC
BRANCH ON 8 IN DIST, 1 91 ED1
BRANCH ON 8 IN DIST. 2 92 BD2
BRANCH ON 8 DIST. 10 90 BDg *

¥ This is a zero

22’

Optimizing 800X Instructions

In order that a program might be continuous, all instructions executed from an
800X address should appear on the coding form, Optimization of these instructions
is not always possible since their D or I address is often a random location
manufactured by the program, However when the range of these variables is known
and reasonable, a certain amount of optimization can still be achieved if the
maximum drum address is inserted in the variable location,

In the following example, the program has computed a shift in the D address part
of the lower accumulator and the upper accumulator is to be shifted left by this
amount, The coding shown in figure 10 causes the symbolic address (N5) of the
mask (35,0000,N5) to be optimized as the I address of a SLT instruction with
shift "9", located in the drum equivalent of 8002,

| o1, l40u1 |42 43—46[47 48 4950 51——54 [55156 57—60 b1l6d 63 72

=T iy TS -
Y| Location Oper. Data A Instr. [A|I Remarks:
P Address G| Address |[G|G
E L]] 1] N

x | A LO Mi ASK ' 8002

x 18002 | S1IT 10009 Ni5

1x N!5 ,--i-__- —_,—— ,-—i-__...--'

Ix M! ASK SILT 10000 Ni5

Figure 10: OPTIMIZING I-address of 8002 instr,

Note that if the pseudo-instruction (SLT,0009,N5) located in 8002 were not written,
(N5) would be assigned a random drum location,

Thus a pseudo-~instruction located in 800X may be used to force optimization of a
manufactured instruction located in 800X provided it is written immediately
following the instruction which sends control to 800X,

Optimizing Tagged Addresses

Tagged addresses, as 800X addresses, cannot always be optimized, However if a
tagged data address refers to a block of data less than 50 words in length a
certain amount of optimization is possible if the maximum drum location
appears in the date address. This may be achieved by originally setting the
index accumulator to a negative quantity.

R3.

In the example in figure 11, the program is to compute iit Qiu The Q's will be placed
i=
in drum location 1000 —»1009, with Ql in location 1000, Q, in location 1001, ete.

[cor, kolual42 43—46[47 48 49|50 51——54]55] 56 57——6061]62]63 72|
% 1L T T |S
Y | Location | Oper. Data A Instr. QA |I Remarks
P Address G| Address |G |G
IR | : : N
x[3 | A i 1 1@gd] Reserve Q
: r - i
x l R 'SA \dgh g "_.f Set, INDEX
X : R 'AU 7%, ero 1 Clear ACC.
x L 100P A'UP A\dd1d 1 Compute
s ! A DA gz .' SUM
x i N 174 L |00P E XIT

Figure 11: Tagged instructions

The index accumulator A is set to negative 10 and the Q's are successively added to the
upper accumulator starting with Q and finally adding in Qe

The I address of the instruction (LOOP) will be optimized as a AUP instruction with data
address of 1010,

Note that if a plus quantity had been stored in index accumulator A this instruction
would be optimized with data address of 1000 so that only the first instruction
address would be optimized with respect to the data address.

Instructions with tagged instruction addresses are difficult to optimize, since
these addresses must be preassigned. However, optimization will begin again with the
new locations referred to by the tagged instructior address.

INSTRUCTION, DATA, and Type 8 cards

2o

X= T |Symb, |Symb.|Symb. | T|Symb,|T |S |[REMARKS ERROR [Card
Assembled -I IQCu OpernnuAddo A. I Add A I MARKS NUM-
Location |Instruction BLANK P G G|G
00,000. aXXX |XX,XXXX,XXXX E N
INPUT REPRQDUCED
1 10 11 240 21 40 141 14246 | 4749|5054 |55 | 56—60[612|63—72|73—76 | 7780
800X Pseudo Instructions
Ko
ERROR |Card
MARKS| NUM,
Pseudo
Instruction BLANK S INPUT REPRODUCED—)
00,0001,800X |XX, XXXX, X0
L1 10 |11 20 21 40 41 72 73—576 |77—
IYPE 1, 3, 4, 7, 9 Cards
ERROR |Card
MARKS | NUM.
00,0001,9000 (00,0000, 0000 BLANK < INPUT REPRODUCED y
1 10 01 201 21 44 41 72 173—76 17780
Check - off Card (0000S€e4< 0049)
/ W1 W2 W3 W4
00,0004,L(W1l) [€&——Dynamic Level 00,0000,%4 BLANK
1 10 [11 20R1 D31 0k 50|51 60|61 80

DESCRIPTION OF OUTPUT CARDS

R5.

[Gor, [0Vl 42 43——46kT 48 49 BO 51—5455 |56 57——60pLb2 [63——— 72
)

T
il Ve T T E

p | Location Oper. Data A | Instr, AlG Remarks

ddress |G |Address GIN

xp| | | K—FWA—>) A BLOCK RESERVATION
x # | n) A3 A REGIONAL SPECIFICATION _
% 1 | s 'ymMBOL ! @ k—equiv) | SYMBOLIC ASSIGNMENT
xf7 | | | e «—=A—3| s LIBRARY TRANSLATION
x |8 | @0 ixx | Booo 1| XXX RELOCATABLE. LTBRARY

o | s lyMeoL ; !

K—FEQUIH l LIBRARY SYMBOL
| -
| | i |

% '= alphabdtid charaleter associgted with regioh .
Q=218 symbgl represents. a d location to pe|malde unavailabley hlank othenwise
I's" = sign of A, -(W) if negative;|blank if popitive
B - F if flixqd address lor datay blank!|if relopatatile
x = digit | '

4
- !
| |
. |
i |
1

|

I

|

|
f
|
I
I
T
|
|
|
[
|
I
|
L
[
[

[

4

L]

i
I
}
l
|
|
|
i
1
|
|
I
f
'
|
i
|
|
|
|
I
|
|
!

|
|
|
:
]
i
1
I
|
|
T
|
|
|
.
f
\
I
f
I
|

L -4 J—}— —|— 4 — =4 =+ 4

t
L
I
|
1

Summary of Special type Cards

26,

Standard Writing Procedure

In order to establish uniformity in writing symbolic
coding and to eliminate errors in misread symbols, the following
practice has been agreed upon:

I ALL LETTERS WILL BE WRITTEN IN CAPITAL LETTERS WITH

THE EXCEPTION OF THOSE IN SECTION II
ITI THE FOLLOWING SET HAS BEEN DEVISED TO ELIMINATE ANY

MISUNDERSTANDING BETWEEN KEYPUNCHERS AND PROGRAMMERS

g ZERO

0 LETTER O

Q LETTER Q, q,
i LETTER I, i
1 NUMBER ONE
A LETTER Z, 2

REMEMBER YOU HAVE TO DEBUG THE CODE SO WRITE LEGIBLY,

