=53 =

CONSIDERATIONS IN THE DESIGN OF A COMPUTER
WITH HIGH LOGIC-TO-MEMORY SPEED RATIO

Leon Bloom,* Morris Cohen, * Sigmund Porter *

SUMMARY

Design assumptions of three levels of logic per nanosecond, 300 levels of logic per memory
cycle, and multiprogram simultaneity lead to a machine with 1. Extremely powerful, efficient and
flexible command structure; 2. No look-ahead, but a "look-aside" (a small logic speed memory
invisible to the programmer); 3. Accumulators and Index Registers which exist logically but not
physically; 4. Multiple sequence operations with data and program protection; 5. Extremely flex-
ible and versatile input-output capability.

INTRODUCTION

The principal design assumption for the system described in this paper was a high logic speed
to memory speed ratio. The numbers used were 10 memory cycles per microsecond and 3,000 levels of
logic per microsecond, where a level of logic is "and", "or", "not", *nor", or the like. Our object-
ive was the development of new machine organizations so that the various aspects of these organiza-
tions could be analyzed for their efficiency. Total system cost and mechanization were not considera-
tions, although we anticipated that o large expensive machine, perhaps most suitable for use in a
service center would result, We felt that the best way to utilize the large amount of logic time in
each memory cycle is to have an efficiently encoded, and consequently complex, command structure
so that as much of the logic capability as was practicable could be used for each memory cycle. This
command structure will be described later after a discussion of principal organization features.

LOOK-ASIDE

The command structure includes variable instruction length and composition combined with a
complex addressing scheme which incorporates many levels of relative and indirect addressing in any
combination, This complex structure made a look-ahead type of organization infeasible, Another
organizational technique called look-aside, which appears to supply at least as many benefits as would
look-ahead, was adopted instead. look-aside consists of a set of logic speed registers, which are in-
visible to the programmer as they are never addressed and are not addressable by the programmer . Thus,
they are, philosophically, part of the main memory. The conventional memory in this system will
henceforth be called the "store" and the entire memory, including look-aside,, will be referred to as
*main memory".

Each look-aside register consists basically of three sections: The first of these ho.lds the con-
tents of a store cell, the second section holds the store address of that cell, and the third is a usage
indicator. (See Figure 1) The store address portions of the look-aside registerf are conn?cfed-to a
comparator which has the ability to simultaneously compare the cell addresses in loo'k-aslde with the
address of a cell requested by the system. [f the address is in look-aside , an operf:hon on fh? con=
tents of that cell may take place immediately without cycling the store. If there is no matching
address, the main store must be accessed, When the store is accessed, the contents of the cell and the
cell address are placed in their respective places in look-aside .

* The National Cash Register Company, Electronics Division

ﬁ

54

since the number of look-aside registers is not infinite, the placement of g cel|

a cell already in look-aside be displaced.™ (As a matter of fact,
once the machine has operated for a short period of time, look-aside will o|wc.:ys be full.) The first
order of business then is to determine which cell is to be displaced. The .clcnslcal method for determ-
ining such things is to have a digital usage algorithm which might 'detemm.e, on the basis of elapsed -
time since the previous access or frequency of access, which cell is least likely to be required in the
immediate future. This method, unfortunately , may be so time consuming that it completely destroys
the advantage gained by this organization, unless the look-aside word is much larger than in the
machine under discussion. Instead an analog usage indicator was chosen which might, for example,
consist of having @ condenser associated with each look-aside register, the condenser being charged
each time that register is accessed. Thus, at any given time, the condenser with the lowest voltage
has associated with it the register which has not been used for the longest period of time. A more
sophisticated technique might involve two condensers per register, one of which is charged to full val-
ve and the other of which is charged with o constant increment, each time the register is accessed.

Obviously, sinc
in look-aside will often require that

Differences With Other Machines

The organization of look-aside is reminiscent of organizations using hierarchies of memories
in other systems, especially the Illiac I and the Atlos. look-aside differs from the memory orgoni-
| t zation of both these systems. It differs from the Atlas in two ways: First, Atlas tronsfers information
in "pages" of 512 contiguous words while look-aside concerns itse If with the contents of individual
! store cells. (A quantative distinction which is great enough to be qualitative in its effect.) The
second difference is the method of determining which portion of memory is to be displaced. As stated
above look-aside makes use of an analog usage indicator while Atlas accomplishes the selection of the
*page " to be displaced by a programmed digital algorithm. Atles and look-oside hove the some char-
acteristic in that both are invisable to the programmer (in Atlas the algorithm program is part of the
executive routine, and as such is not the concemn of any prograommer, save the executive progrommer) .
The difference between look-aside and the use of fost registers of Illiac Il is that the registers in Iliac
Il are not invisable and the programmer must be concemed with their operation.

Use With Single Program

If there is one program in the machine, there is nothing for the processor to do but wait for the
store -access fo be completed. It is anticipated however, that quite often the required cell will alreody
be in look-aside, having found its way there in the manner described obove. This will be porﬁcularl)'
true in the case of accumulators, index registers, short program loops, or repetitively occessed dafa.

i A simplified example of how o look-aside memory would work on @ machine with conventional
i | command structure might be useful in illustrating the manner in which a program's execution time may

reduf:ed. Assume a single address computer with a command structure allowing for the oddressing of

?ulhple ?CCU'"Uh*OfS and index registers. Assume also that these registers ore oll buried in memory.
emporarily assume look-aside is very large; later the effect of small look-aside will be discussed.

r'ob::m is to sum a list of 50 amounts into a single grond total. Each amount is in a field one word in
ength.

* .
The_won? d'sPlcf“d' 'f'ﬂ"' than replaced, in the store, is used odvisedly here. Each look-aside
r:g;;:er ls.provnded with an extra bit, called o change bit, which indicates whether the contents
o register had been altered during its stay in look-aside . Naturally, if the store uses (il

destructive read 2
replaced inrl:oe s:'r:.comi)hte read-write cycle, on unaltered cell in look-aside need not be

~55=
Such a routine might be:
(1 Clear Index Register 1
(2) Clear Accumulator 1
(3) Add Amount into Accumulator 1 using Index Register 1
(4) Increase Index Register 1 by 1
(5) Compare contents of Index Register 1 to 50
(6) = Test
¢ = Finished

After the first instruction, the instruction and then the cleared index register are to be found
in look-aside. The second instruction and the cleared accumulator will be found in look-aside follow-
ing the execution of clear accumulator, When the third instruction is executed, it and the first amount
will be placed in look-aside also. Note that we have already saved 2 memory accesses since the index
register and accumulator required by instruction (3) are already in look-aside. Execution of (4) (5) and
(6) bring those instructions into look-aside (we assume that the modifier (1) and the comparator (50) are
contained as literals in the instruction). It can be seen that once the instructions, accumulator, and
index register are in look-aside, each pass through the loop will require only one memory access, viz.
that needed to pick up the next amount. This is compared to 9 memory accesses that would have been
required per pass for this machine without look-aside; with live registers for accumulators and index
registers 5 memory accesses per pass would have been required without look=-aside.

Let us assume that the look-aside memory is 7 words long. After execution of command (4) we
find that all seven words of look-aside are filled., Their contents is the four instructions, the index
register, the accumulator and the first addend. When instruction (5) is brought into look-aside , the
analog device will show that the cell containing instruction (1) has been inactive longest so that in=
struction (5) will displace instruction (1), Similarly instruction (6) will displace instruction (2). At
this point, following the first pass through the routine, it should be noted that look-aside contains the
four instructions of the tight loop, the required index register and accumulator and the addend. All
this is without the knowledge or planning of the programmer. Each subsequent time through the loop,
the addend will be replaced by the next addend because all other cells in look-aside will have been
active after the cell containing the addend had been active. It should be noted that if a non-destruc-
tive type memory is used for the main memory, there is no need to take the time to restore any of the
memory cells accessed during the running of this entire routine.

Multi Programming

If there are multiple programs in the machine, waiting for a store access will cause transfer
of control to another program sequence which has its required instructions a?d data already in look-
aside. When this newly activated program requires a store access, control is transferred again, per-
haps to the original program, if by this time it has completed ifs store access a?d placement .of the
required cell contents in look-aside. This automatic transfer of control is particularly meaningful when

input or output may be required before a program may continue.

Effect OF Analog Usage Indicator

It is interesting to note that because of the use of an analog usage indicatol: the Pr,"f;:fjure .
which the computer will follow need not be exactly the same each time the pr.oblem By TSN
ability, however, does not alter the final result, and although it will cause different interactions

-56= .

will not materially affect the composite running time of oll programs. Further, a5 '
I tremendously speed up a single program with tight
loops and which operates repetitively on the same dota. In !he case of o multiple program operation,
an additional advantage lies in that there is no need fo provide live registers for accumulators, index
registers, etc., for each program which may be in the system at any one time. When a program be-
comes active, its active cells will cutomatically, without effort (or knowledge) of t.he programmer,
find their way into look-aside and allow operations on these cells to proceed at logic speed,

between programs : A
has been shown by the example, look-aside wi

Look=Aside Size

One other interesting facet of the look-aside structure should be mentioned before moving on
to the remainder of machine organization. It is, that the size of look-aside need not be fixed for dif-
ferent size computers; that is, the speed of the machine is o function of the number of look=-aside regis-
ters in that machine. To illustrate this, use will be made of the above example. |t con be seen that
if look-aside had fewer than seven cells it would be necessary during each pass through the loop to
bring one or more of the instructions, the index register or the accumulator back into look=aside from
memory, in addition to bringing in the new addend. Specifically, o reduction to 6 cells will cause
only the index register and accumulator to be retained. The loop would in this case require seven
accesses rather than the nine which would be required by a conventional machine. A five cell look-
aside will retain only the index register. Conversely, more than seven look=aside cells would allow
more complex and longer loops to be handled efficiently, since it is quite obvious that the number of
words in look-aside must be at least equal to the number of instructions in the loop plus the number of
accumulators and index registers used by the loop in order to be optimally efficient. The complex com-
mand and index register structure of the computer described in this paper drastically reduces the number
of instructions required in a loop, thus reducing the required size of look-aside. The exomple problem
shown would have required only one simple instruction used in conjunction with an index register and
accumulator. It will become obvious as %Fe instruction format and index register organization ore des=
cribed below that far more complex routines can be executed which still require only one instruction
and one index register. A great deal more analysis will be necessary before the optimum size look-
aside can be specified for this machine.

ACCUMULATORS AND INDEX REGISTERS

General Characteristics

The functional characteristics which distinguish accumulators ond index registers from other
cells in memory are that the former are few in number ond are used relatively often. Becouse there are
not many accumulators and index registers, it is not necessary to encode the data in the most compact
manner, and it is possible to use just a few bits to specify o particulor register. Because they are
o.ften, it is desirable for them to have a short address, not be complexly encoded ond be ropidly acces”
sible. Look-aside causes any cell in memory to oppecr to be available ot logic speed, and since often
used data will remain in look-aside, it will actually be available ot logic speed. Hence we have nof
used separate live registers, but have assigned the first thirty=two 128 bit fields of memory (for each
progrc.am*.) to be.index registers and the next thirty=two to be accumulators. The reason for choosing
::8 bits is that it is a power of 2, and hence there is o simple relation between the register number on
I.‘.e normal .oddress.of the d.oto .contained in the register. This is useful to o progrommer because i ‘

im to modify the information in an index register or cccumulator in @ manner other than that permit?

by the format of the index regi
gister or accumul . : ‘ ¢ rather
thos. oo o pbgiEhaie umulator, by oddressing this data in the normal manne

*

See following section on '"X-Register"

~57=

Although thirty=two accumulators and thirty=two index registers are assigned to each program,
the number of each type of register a program can have can be greater or smaller than thirty-two. In
the description of the command structure it will be seen that any memory area in a program can be used
as either an accumulator or an index register, but more bits will be required to address accumulators or
index registers other than the basic thirty=two. If a program requires less than thirty-two accumulators
and thirty=two index registers the area of memory assigned to any unused register can be used for gen-
eral storage.

Accumu lator Format

Each accumulator will have 120 bits for data proper and eight bits for a description byte,
which contains the sign (if any), the description of the data (whether it is decimal or binary, fixed
point, floating point, etc.), some interrupt criteria, and an extension bit. The extension bit is used
when 128 bits is not long enough an accumulator for some particular application. If the extension bit
is one, then the next 128 bit field following this accumulator is tacked on as an extension to the ac-
cumulator. The extension also has an extension bit and so we can extend an accumulator indefinitely.

Index Reg ister Format

Index registers, like the accumulators, have relatively fixed format. The sections that com=
prise an index register are the valve — 32 bits, increment — 16 bits, repeat counter — 16 bits, re-
fill counter — 16 bits, refill address — 32 bits, increment sign — 1 bit, and format control — 15 bits.
The value field is added into the eventual address register (where the operand address is generated) .

The increment field contains the amount added to the value field when the command requests that the
value in the index register be incremented. The repeat counter is used fo repeat a command without re-
quiring another command to jump back to the command which is being repeated. The repeat counter
keeps track of the number of times remaining that a command is to be repeated. It can be used for such
things as generating tables of polynomial functions with one add command. The refill counter and re-
fill address can be used when stepping non-uniformly through memory. The format indicates which sec-
tions of -the index register are to be replaced by data from the area in memory beginning with the address
in the refill address section. This replacement occurs immediately after the refill counter is counted to
zéro. The counting in both the repeat and refill counters is controlled by command,

X-REGISTER

We have stated in the description of the look-aside that we have multiple sequence control.
In order to minimize the interference in use of index registers and accumu lators by the various programs
and minimize the complexity necessary in having programs completely floatable, we have what we call
"X-Registers". One X-Register is assigned o each program. The sum of the X-Register and eventual
address register is transferred into the memory selection register. This in effe.cf, causes each address
referenced in a particular program to be indexed to a common base address, in adt.:hhon to whote.ver.
other indexing may be used. Since the accumulators and index registers are the sixty-four 128 bit fields
with the lowest addresses in the main store, and each program has its own first 64 fields, consequeni:ly
each program has its own accumulators and index registers. In this mach.ine,. the accumulators and ml-
dex registers are not separate live registers, they have no physical location in memory and fh-e actua
number of them is a function of the number of programs which are being operated upon at a given fime.

-58=
PROTECTION

A further necessity, since we have multiple programs, is to protect one program from another.
The two protection probelms are protecting programs from undebugged F.’f°9f°mf going on a rampage,
and security. A user who rents time on a machine at o service bureou is '“f likely to want to have his
programs and data in a machine which is also used by a competitor, if he thinks the competitor can read
or alter his data. The scheme which we use for protection is to assign to each memory word 4 oddition-
al bits which contain a protection identification number. These bits are not included in the 128 data
bits and we see that a memory word will consist of 128 data bits, four protection bits, and nine redun-
dancy bits. The protection number in o memory word is used in the interpretation of commands in that
word and in the use the word may be put by other commands. If the protection number is zero, then
commands from this cell are supervisory program, and can access data with any protection number.
They are the only commands which can execute instructions which affect protection bits. Thus, only
supervisory programs may alter protection bits. If the protection number is 1, then commands are from
the subroutine library and data are common constants. If the protection number is 2, the cell is un-
assigned. If the protection number is 3 through 15, the cell is part of an individual operating program.
These operating programs may transfer or sequence only to commands having the some protection number
or protection number 1. They may write only in the dato portion of cells having the same protection
number, and read only from the data portion of cells having the same protection number or protection
number 1.

It is desirable for the whole library of subroutines to be available to all operating programs.
When a transfer to a command with protection number | is executed, the protection number of the com-
mand which caused the transfer is stored, and as long as subroutine commands are being executed
(i.e. commands with protection number 1) the machine behaves exactly s if the original protection
number were the one in effect. Hence, a subroutine may affect only working storage or commands
which are assigned to the operating program which called it up. Any number of operating programs
may be using the same subroutine quasi-simultaneously, since a subroutine (except when called up
by the supervisory program) cannot alter itself. Since subroutines can use and modify index registers,

COﬂ:;IOhdS, and parts of commands from the operating program, the lack of self-alteration is not @
_problem. .

EVENTUAL ADDRESS REGISTER

A central feature of the machine is the "ear" or eventual address register, around which the
whole command structure is based. The ear is used to compute operand oddresses. The command as
showr\ in Figure 2 consists of a series of operand groups, each of which is made up of address groups.
The |?formotion contained in the address groups is combined in the ear, generating the operand address.
:"” f'."f address group of an operand group states whether or not the operand is found in an accumulator,
in which case there will be no other address groups required. If this address group does not specify an
ac‘cumulofor, then we have the option of clearing the whole ear, clearing just the portion of the ear that
this address group refers to, or clearing none of the ear. We can then add the address portion (called A)
of the address group into the ear, the length of the portion being determined by the 5 bit oddress length
part of the address group. Where in the ear A is added in is determined by the oddress offset portion of
this oddress group. Because of the indexing features supplied by the ear and the X-Register, it is rarely

::::':s:c;y to give a full 32 bit address in A, so the length of A must be specified to minimize wasted

Usually it is not necessary to address to the bi : gy wer
AR Jestaim e bit, so if we are usi byte size which is o po
of 2, then by eliminating least significant bits of an address and specifyi':gg :\, Yoffsef, we further com=
pact the command. To achieve indirect addressing of the usual variety, instead of just adding A into

=59 =

the ear, we caon add the contents of A into the ear with all the combinations of clearing and not clear-
ing and partial clearing which were described above . If we add the contents of A to the ear, then the
length and offset can be in the command or with the field in main memory. The remaining variation is
to put A plus the contents of the contents of the ear in the ear. In this case, the length and offset of
the fields are in the command. Having specified a set of ear modifications, the command must next
state whether or not the ear computations are sufficiently complete to partially execute the command.
If we partially execute, there are three options as to what the content of the ear is. The content of the
ear may be the operand itself, the address of the operand, or the address of the next command. In the
latter case, we skip out of the command without looking at any later fields. This feature is useful when
data is treated as 0 command. |f we don't partially execute, there is the option as to whether or not
the next address field of this operand field is to be contiguous with the field presently being processed;
if not, then the contents of the ear is the address of the start of the next address group. Because of the
possibility of jumping within an operand group, there is another option in the partial execute case, and
that is whether the next operand group is contiguous with the last one, or with the last group which is
contiguous with the physical start of the command.

GENERAL COMMAND STRUCTURE

The fields in the add command are described in the order they are scanned by the computer.
Twenty three major fields in the add command have been numbered. All of the subfields have never
been counted. Fields belong to one of three classes: command fields, operand fields, and address
fields. Figure 2 illustrates each of these types of field. Many of the fields to be described need not
appear at all, most may appear many times.

Command Fields

A command contains command fields (each of which appears not more than once in any given
command) and any number of operand groups. An operand group contains operand fields (each appear-
ing not more than once in any given operand group) and any number of address groups, each of which
contains only address fields (each appearing not more than once in any given address group). The first
field contains the command code, which describes the basic type of operation performed. "Add" does
not specify whether the addition is fixed or floating or decimal or binary. This can be specified later
in the command or it can be determined by the data operated on. A command programmed using the
latter option can add floating point numbers or fixed point numbers or floating and fixed numbers and s0
forth, with no modification, or explicit testing on the part of the programmer required. Thu.s , the basic
operation specified by the command code is modified by prefixes, suffixes, sign alteration bits, number
of operands, etc. The next field determines what is done in the case of overflow and underflow . We
have a field consisting of one bit which states whether or not the first operand address in the add com-
mand is used for an addend in addition to being used as a put-away. That is, if we t\ove n operand
groups in a given command, we can either put the sum of the n operands where the first operond.wos,
or we can put the sum of just the lastn — 1 operands where the first one was. Next. fol!ow's an mc!ei:-h
inite number of operand groups followed by a 2 bit link or transfer control field, which indicates wh?fI:r
the next command is contiguous, a return, or an arbitrary absolute transfer. If the frcnsfer control fie
so indicates the lost field in the command is the number of an index register used to modify the address

of the next command.

Operand Fields

teration field which states whether the operand is sign’ed or
if the sign should be changed absolutely to plus or minus.

At each operand there is a sign al
unsigned, if the sign should be inverted, or

-6H0=

Next is a field which specifies whether this operand is in an accumulator (if‘ .which case, no further ad-
dress groups are in this operand group) or instead, if this Odd'“f group SPGlel.e.s an index register, or
neither. If an accumulator or index register is specified, then it is also specified whether this register
is addressed in long or short form. The next field specifies which ear we are going to be dealing with,
There are 8 ears, each of which is addressable as data or is used to compute the operand address, Note
that since the ear is not automatically cleared, it is desirable to have more than one ear. Next follows
a string of address groups. Following this string is the data type or location field which tells if the data
is fixed point, floating point, binary, decimal, or described with the data. The next field indicotes if
the operand field length is carried with the data or is in the following field of the command. Similarly
the next field, byte size location, tells if the byte size is indicated with the date or in the command as
the following field. The lost field in an operand group tells whether or not this operand field is the
last operand field in the command.

Index Register Control

The general type of address group (illustrated in Figure 2) has been explained in the section on
“"Eventual Address Register”, above. The case that has not been described is that in which the address
group calls out an index register. In this case the field following the ear clear control field is the five
bit index register number. Next follows a very complex group with a number of sub-groups which are
used for controlling the index register. The first sub-group, which is two bits long, tells how repeat is
to be handled. In combination zero, this portion of the command will not request repeat and the repeat
counter in the index register referred to is not counted. In the other three combinations, the repeat
count is counted, unless it is inhibited, as will be described. These latter three combinations differ only
in the initial loading of the repeat counter of the index register. In combination two, the first time we
run through this command under the control of the repeat we will copy o number found later in the com-
mand into the repeat counter. In combination three, the oddress of the number to be put in the repeat
counter is found later in the command, instead of the number of repeats being in the command itself. In
combination one, the repeat counter is not changed.,

In progressing through a command, when the machine first comes to a group which requests
repeat and which refers to an index register whose repeat counter contains @ number greater than one,
a flip-flop, which we will call R, is turned on. The state of R has no effect on groups which do not re=
quest repeat. If R is already on when the machine comes to @ group which requests repeat, counting in
the refill and repeat counters is inhibited and the value will not be incremented. When the end of the
command is reached, R is turned off and the command will be repeated if and only if R had been on.
Because of the action of R, if in each index register used for repeat in a given command, the refill and
repeat counters start with the same number and the index register is refilled with the original number,
then the total number of times that the command will be executed at o time is the product of all the num=

bers in tfne repeat counters. These features allow such things os the generation of a table of values of a
polynomial with one add command.

The next five bits determine whether or not th i i
: : e eor is cleared, the value is added to the edr,
the mcfement is added to the value, the refill counter counts, and the refill feature is enabled. Refill
ot;::.urs .lmmeduatel): off‘er the refill counter is counted to zero. Next appeoars the number of repeafs,
which is fo be copied into the repeat counter. This field is present if and only if we have earlier stot
that the number of repeats will be found initially in the command

INPUT-OQUTPUT

The lost item to be described is in

trol of the peripherals. put-output. There are facilities for extremely flexible con~

One can plug any peripheral into any input-output receptacle on the CPU

61~

allowing us to choose any mix of peripherals. One can use any present day peripheral, and allowance
was made for future peripherals whose nature is not known at this time. There is no fixed logic directly
attached fo each plug, but rather a field in memory corresponds to each plug. Consequently, as far as
the CPU is concerned, no wire has a fixed function. A given wire might be control, might be data,
might be going in, might be coming out. Consequently whoever writes the supervisory program or ex-
ecutive input-output program must know the nature of the peripherals, and the supervisory program must
be told what peripheral is on each plug. Not all of the operations here must be directly programmed in
the usual fashion, however. In the memory field assigned to a plug, we have a data byte and a control
byte which, everytime an output device requests data, are sent out along the lines from the plug to the
peripheral. There is also a field which states how many and which bits comprise the control and data
bytes. Associated with the data byte is a field which +ells where the next data byte comes from (or goes
fo, in the case of an input device). Thus, at each peripheral clock time we automatically go to the
plug, copy the data byte out, which contains new data, copy the control byte out, which changes rath-
er rarely, and update the data byte.

What the programmer will call the data byte will not be what the machine designer considers
data, because control information which changes often in a predetermined manner would be stored with
the data, and consequently the data byte is enlarged by this factor. Control which is changed only slow-
ly or is changed in an unpredictable fashion, will be changed by program control. There is an interrupt
field associated with each plug, which determines which bits coming back from the plug should cause
interruption of the main program, or to phrase it differently, initiate another program sequence by put-
ting another control register into look-aside.

-62-

STORE

ADDRESS MEMORY STACK

= |

USAGE

INDICATORS

1 $
[ADDRESS man ﬁ DATA BUFFER REGISTER |
A
CONTROL ~ ~
LOOK - ASIDE
r
: 0 AR ! = o
| * o4 1) ' - a1
; L o]] ; : > -
: aid s : ' > 1
T - "
ASSOCIATIVE|ADDRESS DATA STORAGE
STORAGE
% L DATA BUFFER REGISTER <4

FIGURE 1. MEMORY (In this example, store is destructive read).

=63~

ARCR-UOLIJ K

dNOYO SS3YAAY NV 40 3T1dAWVX3

S bl oy v
94N20%8 |DIDY

~0wxo nmc._vvu
Y o uBig

y4Bus| sse.ppp
0J4u0d D8 IDR
$$9.ppD wioy buo| Jo 19451694 xapu|

SdNO¥O ANVH3IdO 40 S3TdWVX3

4ou Jo pupiedo yso| IQ ﬁ

9jn2ex?a DDy

Jequnu "wnady

$sa.ppo wioy Buo| Jo/pup 19ysiBas xapu) "“TWASSY
uoiyniay|o ubig
dnouq) ssaippy 3 o T a:o._o $S9.ppY n:o._o $S9IppYy
4sD| puz L
H‘ﬂl uoyo20| 40 ad4} ojop Q
..:mco_ mv_o_m mo COZOUO_ bonED: 08
jou Jo pupniado isp| azis o?ﬁ §0 uoyo30|
495440 40 UoYDIO| oz1s 83

$59.ppo Wwio) Buo| Jo/pup J9ys1Bas xapul “‘wnidy

uoyoia4o ubig

AONVWWOD V 40O 31dWvX3

»dnoig puosad(

dnoug pubsadp
50|

dnoig) puniadQ
PUZ 5]
Jaqunu 1951621 xaput v_:_l_g \é

|©44uU0d wingal g AUty

Jou Jo puappo pupiado sy
_o:cou SO_tOv:D .w 30:;0>O

OVOU uonoNysu|

